Effect of sodium-dependent glucose transporter inhibitors on glycated hemoglobin A1c after 24 weeks in patients with diabetes mellitus
A systematic review and meta-analysis
Mao-Bing Chen, MDa,b,∗, Hua Wang, MDb, Qi-Han Zheng, MDa, Hua-Lan Xu, MDb, Wei-Yan Cui, MDb

Abstract
Background: To evaluate dapagliflozin, canagliflozin, empagliflozin, ertugliflozin, and sotagliflozin according to their effect on the glycated hemoglobin A1c (HbA1c) level in patients with type 2 diabetes mellitus.

Methods: The Web of Science, PubMed, Cochrane Library, EMBASE, and Clinical Trials databases were electronically searched to collect randomized controlled trials of patients with type 2 diabetes mellitus through June 2020. Two researchers independently screened and evaluated the obtained studies and extracted the outcome indexes. RevMan 5.3 software was used to perform the meta-analysis and to create plots.

Results: Finally, 27 studies were selected and included in this study. The meta-analysis results showed that sodium-dependent glucose transporter (SGLT) inhibitors significantly reduced the HbA1c level in patients with type 2 diabetes mellitus. However, these results were highly heterogeneous, so we conducted a subgroup analysis. The results of the subgroup analysis suggested that by dividing populations into different subgroups, the heterogeneity of each group could be reduced.

Conclusions: SGLT inhibitors had a good effect on the HbA1c level in patients with type 2 diabetes mellitus, but there might be differences in the efficacy of SGLT inhibitors in different populations. It is hoped that more studies will be conducted to evaluate the efficacy and safety of SGLT inhibitors in different populations.

Registration Number: CRD42020185025.

Abbreviations: CANA = canagliflozin, CI = confidence interval, DAPA = dapagliflozin, EMPA = empagliflozin, ERTU = ertugliflozin, HbA1c = glycated hemoglobin A1c, MD = mean difference, PROSPERO = International Prospective Register of Systematic Reviews, RCTs = randomized controlled trials, SGLT = sodium-dependent glucose transporter, SOTA = sotagliflozin, T2DM = type 2 diabetes mellitus.

Keywords: type 2 diabetes mellitus, meta-analysis, sodium-glucose transporter 1, sodium-glucose transporter 2

1. Introduction
Diabetes mellitus, commonly known as diabetes, is a group of metabolic disorders characterized by prolonged hyperglycemia. Symptoms of diabetes, including type 1 diabetes mellitus and type 2 diabetes mellitus (T2DM), usually include frequent urination, thirst, and increased appetite.[1,2] T2DM begins with insulin resistance, a condition in which cells cannot respond normally to insulin. As the disease progresses, insulin deficiency may also occur. The most common cause is a combination of overweight and insufficient exercise.[3] Without being well controlled, these conditions can lead to serious complications.[4] In 2019, there were approximately 463 million people with diabetes worldwide, close to 9% of adults.[5] In that year, 4.2 million people died of diabetes, the seventh leading cause of death in the world.[6]

The formation of glycated hemoglobin suggests the presence of excessive sugar in the bloodstream, indicating the possibility of diabetes. There are different subfractions of glycated hemoglobin A1c (HbA1c), which are easy to detect and have recently received more attention from researchers.[7,8] HbA1c is measured primarily to determine the 3-month average blood sugar level. Three months is the lifespan of a red blood cell. A persistently elevated level of HbA1c increases the risk of vascular
complications, such as coronary disease, heart attack, stroke, heart failure, kidney failure, blindness, erectile dysfunction, neuropathy, gangrene, gastroparesis, and short-term complications of surgery such as poor wound healing. [9,10]

There are many types of hypoglycemic drugs, among which sodium-dependent glucose transporter (SGLT) inhibitors are the focus of current research because they have a unique hypoglycemic mechanism and can remove glucose from the blood. [7,8] SGLT inhibitors are mainly divided into SGLT-2 inhibitors and dual SGLT-1/2 inhibitors. Specific drugs include dapagliflozin (DAPA), canagliflozin (CANA), empagliflozin (EMPA), etragli- flozin (ERTU), and sotagliflozin (SOTA). [9,10] SGLT inhibitors are commonly used as second-line hypoglycemic agents in clinical practice. [11]

The purpose of this study was to evaluate the effects of these SGLT inhibitors on HbA1c and to perform a variety of subgroup analyses to evaluate their effects in different populations, thereby providing a basis for the clinical selection of drugs.

2. Methods

2.1. Design and registration

A meta-analysis was conducted to evaluate the effect of SGLT inhibitors on the HbA1c level in patients with T2DM. This protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO), registration number: CRD42020185025 (https://www.crd.york.ac.uk/PROSPERO). No ethics approval was required because this study used data that were already in the public domain. [11]

2.2. Study selection

2.2.1. Study type. The quantitative analysis of this study included data from randomized controlled trials (RCTs).

2.2.2. Study subjects. The subjects of this study were patients with T2DM, with no restrictions on age, weight, basic HbA1c, drug background, etc. However, patients with serious underlying acute and chronic diseases or heart and kidney failure were excluded.

2.2.3. Intervention measures. First, the targets of this study were SGLT inhibitors; currently, there are 5 major SGLT inhibitors: DAPA, CANA, EMPA, ERTU, and SOTA. Due to their different doses, there were 10 different interventions. Second, the placebo control groups were also included in this network meta-analysis.

The purpose of this study was to compare the efficacy of individual medications, and studies on the efficacy and safety of medication combinations were not included in this study.

This study did not exclude patients based on background medications. If the dose of background medications did not change during the course of treatment, the study was still included in this meta-analysis.

2.2.4. Outcome indicators. The final outcome index included in the quantitative analysis was the HbA1c level at week 24 (±2 weeks).

Through a previous review of the literature, we found that after approximately 12 weeks of oral treatment with SGLT inhibitors, the HbA1c level of patients reached a low point and could be maintained at that level thereafter. Therefore, we included all studies with HbA1c data for week 24.

2.2.5. Exclusion criteria. Studies with data that could not be extracted or utilized, studies based on animal experiments, and literature reviews were excluded.

2.3. Data sources and searches

We searched publications through June 2020 using the following databases: Web of Science, PubMed, Cochrane Library, EMBASE, and Clinical Trials. We searched in English as a retrieval strategy. However, we did not limit the retrieved results by language. With the help of translation software (Google Translate), we could read literature in other languages. The search terms included “SGLT,” “diabetes,” and “mellitus.” Figure 1 shows an example of the search in the PubMed database.

2.4. Study screening, data extraction and assessment of the risk of bias

Data were collected independently by 2 researchers. The unqualified studies were eliminated, and the qualified studies were screened out after reading the title, abstract, and full text. Then, the research data were extracted and checked, and disagreements were resolved by discussion or a decision made by the author. The extracted data included the following:

(1) basic information of the study, including title, author, and year of publication;
(2) characteristics of the included study, consisting of study duration, sample size of test group and control group, and intervention measures;
(3) outcome indicators and data included;
(4) collection of risk assessment elements of bias.

The risk of bias in the included studies was assessed using the RCT bias risk assessment tool recommended in the Cochrane Handbook for Systematic Reviews of Interventions (5.1.0). [12]

2.5. Statistical analysis

RevMan 5.3 software was used for the meta-analysis. The continuous variables are expressed as the mean difference (MD) as effect indicators, and the estimated value and 95% confidence interval (CI) were included as effect analysis statistics. A heterogeneity test was conducted with the results of each study. A fixed-effects model was used for analysis if there was no statistical heterogeneity in the results (I² ≤ 50%). The sources of heterogeneity were analyzed if I² > 50%. After excluding the influence of obvious clinical heterogeneity, a random-effects model was used for analysis. The significance level was set at α = 0.05.

3. Results

3.1. Included studies and patients

Through database searches, we retrieved a total of 7657 studies. Finally, 27 studies were selected and included. No grey literature was included in this study. The specific flow diagram is shown in Figure 1. Through data collation for the included studies, a total of 14,074 patients were enrolled. In each study, the characteristics of patients in the groups were similar.
3.2. Characteristics of the included studies and quality assessment

All included studies were RCTs. The basic characteristics and quality assessment of the studies are presented in Table 1.

3.3. Meta-analysis results

3.3.1. HbA1c. Twenty-seven studies reported comparisons of the HbA1c level, including 11 articles on DAPA, 6 articles on EMPA, 4 articles on ERTU, 6 articles on CANA, and 0 articles on SOTA (Fig. 2, Table 2).

A random-effects model was adopted, and the HbA1c level in the DAPA group was lower than that in the placebo group: 5 mg DAPA group: $I^2=22\%$ [MD $= -0.50$, 95% CI $(-0.63, -0.38)$, $P < .00001$]; 10 mg DAPA group: $I^2=60\%$ [MD $= -0.61$, 95% CI $(-0.72, -0.51)$, $P < .00001$].

A random-effects model was adopted, and the HbA1c level in the EMPA group was lower than that in the placebo group: 10 mg EMPA group: $I^2=83\%$ [MD $= -0.68$, 95% CI $(-0.84, -0.51)$, $P < .00001$]; 25 mg EMPA group: $I^2=68\%$ [MD $= -0.67$, 95% CI $(-0.80, -0.54)$, $P < .00001$].

A random-effects model was adopted, and the HbA1c level in the ERTU group was lower than that in the placebo group: 5 mg ERTU group: $I^2=64\%$ [MD $= -0.71$, 95% CI $(-0.85, -0.56)$, $P < .00001$]; 15 mg ERTU group: $I^2=25\%$ [MD $= -0.80$, 95% CI $(-0.91, -0.70)$, $P < .00001$].

A random-effects model was adopted, and the HbA1c level in the CANA group was lower than that in the placebo group: 100 mg CANA group: $I^2=44\%$ [MD $= -0.71$, 95% CI $(-0.82, -0.56)$, $P < .00001$]; 300 mg CANA group: $I^2=70\%$ [MD $= -0.88$, 95% CI $(-1.03, -0.72)$, $P < .00001$].
Table 1
Basic information and bias risk assessments of the studies.

No.	First author	Year	Trials No.	Country	Background	Duration of treatment	Group-1	Group-2	Group-3	Literature quality score	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
1	Bailey, C. J.	2010	NCT00528879	UK	MET	24 wk	DAPA 5 mg	DAPA 10 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
2	Bailey, C. J.	2012	–	UK	Diet and Exercise	24 wk	DAPA 5 mg	PLA		low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
3	Bode, Bruce	2013	NCT01106651	US	Unlimited	26 wk	CANA 100 mg	CANA 300 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
4	Bohden, J.	2014	NCT00655166	Sweden	MET	24 wk	DAPA 10 mg	PLA		low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
5	Daggi-Jack, S.	2018	NCT01065715	US	MET and STA	24 wk	ERTU 5 mg	ERTU 15 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
6	Ferrannini, E.	2010	NCT00282372	Italy	Diet and Exercise	24 wk	DAPA 5 mg	DAPA 10 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
7	Forst, T.	2014	NCT01106690	Germany	MET and pioglitazone	26 wk	CANA 100 mg	CANA 300 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
8	Harri, Hans-Ulrich	2014	NCT01159000	Germany	Diet and Exercise	24 wk	EMPA 10 mg	EMPA 25 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
9	Jabbour, Serge A.	2018	NCT0084867	US	SITA and/or MET	24 wk	DAPA 10 mg	PLA		low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
10	J. L.	2019	NCT00303706	China	MET	26 wk	ERTU 5 mg	ERTU 15 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
11	Kadowaki, T.	2017	NCT02354255	Japan	Teneligliptin	24 wk	CANA 100 mg	PLA		low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
12	Kawamoto, R.	2018	NCT02455555	Japan	Linaclotide	24 wk	DAPA 10 mg	PLA		low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
13	Kowacs, C. S.	2015	NCT01210001	Canada	MET	24 wk	EMPA 10 mg	EMPA 25 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
14	Mathieu, C.	2015	NCT01646320	Romania	MET and saxagliptin	24 wk	DAPA 10 mg	PLA		low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
15	Matthaei, T.	2015	NCT01382677	Germany	MET and SUL	24 wk	DAPA 10 mg	PLA		low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
16	Neal, B.	2015	NCT01052629	Australia	Insulin	24 wk	CANA 100 mg	CANA 300 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
17	Nomes, L.	2016	–	Spain	MET or SUL and so on.	24 wk	EMPA 10 mg	EMPA 25 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
18	Rosenstock, J.	2018	NCT02033899	US	MET	26 wk	ERTU 5 mg	ERTU 15 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
19	Rosenstock, J.	2012	NCT00633878	US	MET	26 wk	ERTU 5 mg	ERTU 15 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
20	Scheflan, E.	2017	NCT01734789	Norway	Linsagliflozin and MET	24 wk	EMPA 10 mg	EMPA 25 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
21	Stanford, K.	2013	NCT01081834	Sweden	Diet and Exercise	26 wk	CANA 100 mg	CANA 300 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
22	Stroemp, K.	2011	NCT00964745	Poland	Glimipride	24 wk	DAPA 5 mg	DAPA 10 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
23	Tems, S. G.	2017	NCT01905671	US	Diet and Exercise	26 wk	ERTU 5 mg	ERTU 15 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
24	Wilking, J.	2013	NCT01106625	UK	MET and SUL	24 wk	DAPA 10 mg	CANA 300 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
25	Yang, W.	2016	NCT01096666	China	MET	24 wk	DAPA 5 mg	DAPA 10 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
26	Yang, W.	2018	NCT02096705	China	Insulin with or without oral antihyperglycemic drugs	24 wk	EMPA 10 mg	EMPA 25 mg	PLA	low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk
27	Rodin, M.	2013	NCT01177813	Germany	Diet and Exercise	24 wk	DAPA 10 mg	PLA		low risk	low risk	low risk	low risk	low risk	low risk	low risk	low risk

CANA = canagliflozin, DAPA = dapagliflozin, EMPA = empagliflozin.
3.4. Subgroup analysis
We tried to perform subgroup analysis from the following aspects (Table 3):

1. Drug naivety.
2. Duration of diabetes. We used 2 methods to establish subgroup analysis. The first method was based on whether the disease history was more than 5 years. The second method was based on even division into 2 groups according to the disease duration.
3. BMI. We used two methods to establish subgroup analysis. The first method was based on whether BMI was larger than 30. The second method was based on even division into 2 groups according to the BMI.
4. Region.

Reduced heterogeneity was found through subgroup analysis of the 10mg EMPA, 15mg ERTU, 100mg CANA, and 300mg CANA groups. Among them, the 100mg CANA group and the 300mg CANA group showed significant differences between the subgroups.

4. Discussion
HbA1c is mainly used to evaluate the average blood glucose level over the last 3 months, which could be used in the diagnosis of diabetes and the evaluation of blood glucose control in patients with T2DM.[40,41] This study demonstrate that SGLT inhibitors have a significant therapeutic effect on T2DM by significantly reducing the HbA1c level.[42,43] The studies included in this analysis were performed in Europe, America, Asia, and Oceania. The results of each study were all positive; that is, SGLT inhibitors were effective for patients with T2DM, independent of region. However, there was significant heterogeneity for each SGLT inhibitor, so we chose a random-effects model and performed a subgroup analysis to analyze the possible sources of heterogeneity.

Table 2
The meta-analysis results of SGLT inhibitors versus PLA.

Comparison	Size	Total	I^2	Model
DAPA 5mg VS PLA	11	-0.5	[0.03, 0.38]	22% Random effect model
DAPA 10mg VS PLA	-0.61	[0.072, 0.51]	60%	Random effect model
EMPA 10mg VS PLA	-0.68	[0.084, 0.51]	83%	Random effect model
EMPA 25mg VS PLA	-0.67	[0.080, 0.54]	68%	Random effect model
ERTU 5mg VS PLA	-0.71	[0.085, 0.56]	64%	Random effect model
ERTU 15mg VS PLA	-0.80	[0.091, 0.70]	25%	Random effect model
CANA 100mg VS PLA	-0.71	[0.062, 0.60]	44%	Random effect model
CANA 300mg VS PLA	-0.88	[0.103, 0.72]	70%	Random effect model

CANA = canagliflozin, DAPA = dapagliflozin, EMPA = empagliflozin, ERTU = etaglitazin, SGLT = sodium-dependent glucose transporter.
Table 3

The subgroup analysis results of SGLT inhibitors versus PLA.

Drug-naive	Duration of diabetes	P	Less duration (half of studies)	More duration (half of studies)	P	
Comparison	**BMI**	**Region**	**BMI**	**Region**	**BMI**	**Region**
DAPA 5mg VS PLA	0.68	0.13	0.69	1.04	0.65	1.04
DAPA 10mg VS PLA	0.66	0.13	0.69	1.04	0.65	1.04
EMPA 10mg VS PLA	0.68	0.13	0.69	1.04	0.65	1.04
EMPA 25mg VS PLA	0.75	0.13	0.70	1.16	0.77	1.16
ERU 5mg VS PLA	0.15	0.13	0.16	1.16	0.17	1.16
CANA 100mg VS PLA	0.91	0.22	0.92	1.15	0.56	1.15
CANA 300mg VS PLA	1.17	0.60	1.26	1.15	0.87	1.15

CANA = canagliflozin, DAPA = dapagliflozin, EMPA = empagliflozin, ERU = etogliptin, SGLT sodium-dependent glucose transporter.

The difference between subgroups is statistically significant.
inhibitors achieve the goal of blood sugar control by increasing the excretion of glucose from urine.\(^{[40,41]}\)

The use of SGLT inhibitors is common in clinical practice, and it is considered feasible to administer SGLT inhibitors alone in patients in the early stage.\(^{[42,43]}\) Reducing the number of pharmacological interventions in patients with T2DM improves their quality of life.\(^{[44,45]}\) Long-term follow-up studies showed that the administration of SGLT2 inhibitors was associated with a reduction in the primary composite outcome composed of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke.\(^{[46–49]}\)

The purpose of this study was not only to verify the efficacy of SGLT inhibitors in T2DM but also to analyze the possible causes of heterogeneity. A total of 4 meta-analyses were conducted in this study, and the results of each showed significant heterogeneity. These findings indicate that the efficacy of SGLT inhibitors in different populations might be different, especially according to differences in the duration of diabetes, BMI, and region. This study only analyzed the effects of SGLT inhibitors on the HbA1c level in different populations, and whether there are differences in other effects or the safety of SGLT inhibitors in different populations remains to be determined by relevant systematic research. It is hoped that more studies will be conducted to evaluate differences in the efficacy and safety of SGLT inhibitors in different populations.

The limitations of this network meta-analysis are as follows:

1. The literature on SOTA retrieved in this study did not meet the inclusion criteria; thus, the efficacy of SOTA in T2DM was not analyzed.
2. Subgroup analysis could not explain all the sources of heterogeneity.

5. Conclusions

SGLT inhibitors have a good effect on patients with T2DM, but there may be differences in the efficacy of SGLT inhibitors in different populations. It is hoped that more studies will be conducted to evaluate the efficacy and safety of SGLT inhibitors in different populations.

Author contributions

Conceptualization: Mao-Bing Chen, Hua-Lan Xu.

Data curation: Mao-Bing Chen, Hua Wang, Qi-Han Zheng, Wei-Yan Cui.

Methodology: Mao-Bing Chen, Hua Wang.

Software: Mao-Bing Chen, Wei-Yan Cui.

Supervision: Mao-Bing Chen, Qi-Han Zheng.

Writing – original draft: Mao-Bing Chen, Hua Wang, Qi-Han Zheng, Hua-Lan Xu, Wei-Yan Cui.

Writing – review & editing: Mao-Bing Chen.

References

[1] Cooke DW, Plotnick L. Type 1 diabetes mellitus in pediatrics. Pediatr Rev 2008;29:374–85.

[2] Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2163–96.

[3] Picon J, Jones J, Colquitt JL, et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess 2009;13:1-190, 215-357, iii-iv.

[4] Kinabchi AE, Umpierrez GE, Miles JM, et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009;32:1335–43.

[5] Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 2020;16:506–18.

[6] Saeedi P, Salpea P, Karuranga S, et al. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2020;162:108086.

[7] Miedema K. Standardization of HbA1c and optimal range of monitoring. Scand J Clin Lab Investig 2003;65:61–72.

[8] Johansson KS, Sonne DP, Knop FK, et al. What is on the horizon for type 2 diabetes pharmacotherapy? – an overview of the antidiabetic drug development pipeline. Expert Opin Drug Discov 2020;15:1253–65.

[9] Kilpatrick ES, Bloomgarden ZT, Zinman B. Is haemoglobin A1c a step forward for diagnosing diabetes? BMJ 2009;339:b4432.

[10] Handelsman Y. Rationale for the early use of sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes. Adv Ther 2019;36:2567–86.

[11] Sideri S, Papa Georgiou SN, Eliades T. Registration in the international prospective register of systematic reviews (PROSPERO) of systematic
review protocols was associated with increased review quality. J Clin Epidemiol 2018;100:103–10.
[12] Augustijn H, van Aert RCM, van Assen MALM. The effect of publication bias on the Q test and assessment of heterogeneity. Psychol Methods 2019;24:116–34.
[13] Bailey CJ, Gross JL, Pieters A, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 2010;375:2223–33.
[14] Bailey CJ, Jialal N, T’joen C, et al. Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomised-controlled trial of low-dose range. Diabetes Obes Metab 2012;14:951–9.
[15] Bode B, Stenlöf K, Sullivan D, et al. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract 2013;41:72–84.
[16] Bolinder J, Ljunggren Ö, Johansson L, et al. Dapagliflozin in patients with type 2 diabetes inadequately controlled with metformin and sitagliptin: the VERTIS SITA2 placebo-controlled randomised study. Diabetes Obes Metab 2018;20:530–40.
[17] Dagogo-Jack S, Liu J, Eldor R, et al. Efficacy and safety of the addition of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: the VERTIS SITA2 placebo-controlled randomised study. Diabetes Obes Metab 2018;20:530–40.
[18] Ferrannini E, Ramos SJ, Salsali A, et al. Dapagliflozin in drug-naive patients with type 2 diabetes who have inadequate glycaemic control by diet and exercise: a randomised, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010;33:2217–24.
[19] Forst T, Guthrie R, Goldenberg R, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab 2014;16:467–77.
[20] Häring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomised, double-blind, placebo-controlled trial. Diabetes Care 2014;37:1650–9.
[21] Jabbour SA, Hardy E, Sugg J, et al. Dapagliflozin is effective as add-on therapy to sitagliptin with or without metformin: a 24-week, multicenter, randomised, double-blind, placebo-controlled study. Diabetes Care 2014;37:740–50.
[22] Ji L, Liu Y, Miao H, et al. Safety and efficacy of etruggedliflozin in Asian patients with type 2 diabetes mellitus inadequately controlled with metformin monotherapy: VERTIS Asia. Diabetes Obes Metab 2019;21:1474–82.
[23] Kadwaki T, Inagaki N, Kondo K, et al. Efficacy and safety of canagliflozin as add-on therapy to teneligliptin in Japanese patients with type 2 diabetes mellitus: results of a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2017;19:874–82.
[24] Kawamori R, Haneda M, Suzuki K, et al. Empagliflozin as add-on to linagliptin in a fixed-dose combination in Japanese patients with type 2 diabetes: glycaemic efficacy and safety profile in a 52-week, randomized, placebo-controlled trial. Diabetes Obes Metab 2018;20:2200–9.
[25] Kovacs CS, Seshia V, Merker L, et al. Empagliflozin as add-on therapy to pioglitazone with or without metformin in patients with type 2 diabetes mellitus. Clin Ther 2015;37:1773–88.e1.
[26] Mathieu C, Ranetti AE, Li D, et al. Empagliflozin improves glycaemic control and reduces body weight as add-on therapy to metformin plus sulfonylurea: a 24-week, randomized, double-blind clinical trial. Diabetes Care 2015;38:365–72.
[27] Neal R, Perkovic V, de Zeeuw D, et al. Efficacy and safety of canagliflozin, an inhibitor of sodium–glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care 2015;38:403–11.
[28] Roden M, Weng J, Edlund RC, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2013;1:208–19.
[29] Romero I, Ampudia-Blasco FJ, Pérez A, et al. Efficacy and safety of empagliflozin in combination with other oral hypoglycaemic agents in patients with type 2 diabetes mellitus. Endocrinol Nutr 2016;63:519–26.
[30] Rosenstock J, Frías J, Páll D, et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab 2018;20:520–9.
[31] Rosenberg J, Vico M, Wei L, et al. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA1c, body weight, and hyperglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care 2012;35:1473–8.
[32] Söffeland E, Meier JJ, Vangen B, et al. Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care 2017;40:201–9.
[33] Stenlöf K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes inadequately controlled with diet and exercise. Diabetes Obes Metab 2013;15:372–82.
[34] Strojek K, Yoon KH, Hruby V, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 2011;13:928–38.
[35] Terra SG, Focht K, Davies M, et al. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes Obes Metab 2017;19:721–8.
[36] Wilding JPH, Carpenter G, Holland P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract 2013;67:1267–82.
[37] Yang W, Han P, Min KW, et al. Efficacy and safety of dapagliflozin in Asian patients with type 2 diabetes after metformin failure: a randomized controlled trial. J Diabetes 2016;8:796–808.
[38] Yang W, Ma J, Li Y, et al. Dapagliflozin as add-on therapy in Asian patients with type 2 diabetes inadequately controlled on insulin with or without oral antihyperglycemic drugs: a randomized controlled trial. J Diabetes 2018;10:589–99.
[39] Le Marois E, Bruzzo F, Reach G, et al. Comparison between a rapid glycohaemoglobin (HbA1c) immunoassay and other indices of glycaemic control. Acta Diabetol 1996;33:232–5.
[40] Giaccari A. Sodium-glucose co-transporter inhibitors: medications that mimic fasting for cardiovascular prevention. Diabetes Obes Metab 2019;21:2211–8.
[41] Louridas C, Papadopoulou E, Angeloudi E, et al. The beneficial actions of SGLT-2 inhibitors beyond management of hyperglycemia. Curr Med Chem 2019;27:6682–702.
[42] Feng M, Lv H, Xu X, et al. Efficacy and safety of dapagliflozin as monotherapy in patients with type 2 diabetes inadequately controlled on insulin with or without oral antihyperglycemic drugs: a randomized controlled trial. J Diabetes 2018;10:589–99.
[43] Le Marois E, Bruzzo F, Reach G, et al. Comparison between a rapid glycohaemoglobin (HbA1c) immunoassay and other indices of glycaemic control. Acta Diabetol 1996;33:232–5.
[44] Giaccari A. Sodium-glucose co-transporter inhibitors: medications that mimic fasting for cardiovascular prevention. Diabetes Obes Metab 2019;21:2211–8.
[45] Louridas C, Papadopoulou E, Angeloudi E, et al. The beneficial actions of SGLT-2 inhibitors beyond management of hyperglycemia. Curr Med Chem 2019;27:6682–702.
[46] Feng M, Lv H, Xu X, et al. Efficacy and safety of dapagliflozin as monotherapy in patients with type 2 diabetes inadequately controlled on insulin with or without oral antihyperglycemic drugs: a randomized controlled trial. J Diabetes 2018;10:589–99.
[47] Le Marois E, Bruzzo F, Reach G, et al. Comparison between a rapid glycohaemoglobin (HbA1c) immunoassay and other indices of glycaemic control. Acta Diabetol 1996;33:232–5.
[48] Giaccari A. Sodium-glucose co-transporter inhibitors: medications that mimic fasting for cardiovascular prevention. Diabetes Obes Metab 2019;21:2211–8.
[49] Louridas C, Papadopoulou E, Angeloudi E, et al. The beneficial actions of SGLT-2 inhibitors beyond management of hyperglycemia. Curr Med Chem 2019;27:6682–702.
[50] Zou CY, Liu XK, Sang YQ, et al. Effects of SGLT2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes: a meta-analysis. Medicine 2020;99:e20875.