Characterization of Auxin Metabolism in the Ovaries of the Lychee (*Litchi chinensis*) ‘Salathiel’

Yutaro Osako¹, Hisayo Yamane²*, Ryunhee Kim³, Hisashi Miyagawa³ and Ryutaro Tao²

¹Faculty of Agriculture, Shinshu University, Kamiina, Nagano 399-4598, Japan
²Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
³Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

Seed size affects the edible portion rate of lychee fruit and is therefore an important trait for fruit quality in lychee (*Litchi chinensis*). Lychee fruits can be classified into four categories in terms of seed properties: normal, small, aborted seed and seedless. ‘Salathiel’ is known to bear a relatively high rate of aborted-seeded (pseudo-parthenocarpy, stenospermocarpy) and seedless (parthenocarpy) fruit regardless of environmental and cultivation conditions. In other horticultural fruit crops, such as tomato, auxin metabolism and signaling is critical for parthenocarpy, although auxin metabolism has not been characterized in relation to (pseudo) parthenocarpy in lychee. The purpose of this study was to characterize the physiological and morphological properties of maternal reproductive organs in ‘Salathiel’ female flowers, with a specific focus on the associated auxin metabolism. Microscopic observations of the internal structures of the ‘Salathiel’ embryo revealed that ‘Salathiel’ reproductive organ differentiation is similar to that of normal-seeded cultivars. However, the obturator was significantly smaller in ‘Salathiel’ than in other normal-seeded cultivars, suggesting that specific developmental characteristics may exist in the maternal reproductive organs of ‘Salathiel’. Our investigation of indole acetic acid (IAA) contents revealed that IAA levels were significantly higher in ‘Salathiel’ than in other cultivars. Moreover, the IAA metabolite contents also differed significantly between ‘Salathiel’ and the normal-seeded and small-seeded cultivars. Specifically, N-3-hydroxy-2-oxindole-3-acetyl glutamic acid contents were significantly higher in ‘Salathiel’ than in ‘Yu Her Pau’ and ‘Hei Ye’. 3-hydroxy-2-oxindole-3-acetic acid was lower in ‘Yu Her Pau’ and ‘Salathiel’ than in ‘Hei Ye’, while indole-acetylaspartic acid was significantly lower in ‘Salathiel’ compared to ‘Hei Ye’. Expression analyses of the genes related to auxin biosynthesis, catabolism, transport, and signaling indicated that the IAA influx-related and efflux-related gene expression levels were respectively higher and lower in ‘Salathiel’ than in the other cultivars, which is consistent with the increased IAA accumulation in the ‘Salathiel’ ovary. The possible involvement of auxin metabolism in the aborted-seeded and seedless fruit production in ‘Salathiel’ is discussed herein.

Key Words: auxin transporter, indole acetic acid (IAA), seed, parthenocarpy, pseudo-parthenocarpy (stenospermocarpy).

Introduction

Lychee (*Litchi chinensis* Sonn.), which is a subtropical fruit tree species belonging to the family Sapindaceae, originated in the region between southern China, northern Vietnam, and Myanmar (Mitra and Pathak, 2010). In lychee, seed size is an important factor influencing lychee fruit quality and value (Kays, 1999; Menzel, 2002). Almost all common lychee cultivars have one seed per fruit, and seed size greatly affects the amount of edible flesh per fruit as well as how easily it can be eaten. Lychee fruit containing a small aborted seed (i.e., chicken tongue seed) are preferred by consumers and are economically valuable because they have a substantial amount of edible flesh and a desirable taste (Wang et al., 2017). Thus, the production of small aborted-seeded lychee fruit is likely to be economically beneficial for growers. However, the seed abortion that leads to the formation of chicken...
tongue seeds usually adversely affects fruit set and development. Accordingly, small aborted-seeded lychee fruit production is possible only with a few cultivars.

Based on seed development, lychee fruit can be classified into the following four categories: seedless, aborted-, small-, and normal-seeded (Wang et al., 2017). Seedless fruit and aborted-seeded fruit are believed to be produced without and after fertilization, respectively; thus, they are the result of parthenocarpy and pseudo-parthenocarpy (stenospermocarpy), respectively. Lychee cultivars bear fruit with various proportions of aborted seeds with various abortion levels (Menzel et al., 1986; Xie et al., 2019). ‘Hei Ye’ and ‘Chakrapat’, which are the major normal-seeded cultivars, tend to produce a relatively high proportion of normal-seeded fruit (Menzel, 2002; Menzel et al., 1986; Wang et al., 2017), although Matsuda and Higuchi (2019) reported that ‘Chakrapat’ can bear aborted-seeded fruit in greenhouse cultivation conditions. In contrast, ‘No Mai Tsz’, which is also known as ‘Nuomici’, and ‘Salathiel’ usually bear a high proportion (>90%) of aborted-seeded fruit. In particular, although ‘Salathiel’ is categorized as aborted-seeded cultivar (Menzel, 2002; Menzel et al., 2005), it occasionally produce seedless fruit (Koul and Singh, 2017), so it may have both parthenocarpy and pseudo-parthenocarpy ability. Zhang et al. (2018) proposed that in cultivars with a high percentage of aborted-seeded fruit (e.g., ‘Nuomici’), seed abortion is controlled by the mother plant genetic factors. ‘Yu Her Pau’, which is also known as ‘Feizixiao’, and ‘Guiwei’ are often considered to be small-seeded cultivars (Wang et al., 2017; Zhang et al., 2018). These small-seeded cultivars vary in terms of the rates of aborted-, small-seeded (of various sizes), and normal-seeded fruit. In these cultivars, the aborted- and small-seeded fruit rates depend on the year, cultural practices, and location (Menzel et al., 1986; Wang et al., 2017). For example, ‘Yu Her Pau’ was reported to bear a high rate of aborted-seeded fruit in Taiwan (Fang et al., 2018).

Plant hormones have major effects on vegetative and reproductive growth. Accordingly, they are utilized in various types of horticultural production. For example, plant hormones are commonly used to promote high-quality commercial fruit production (Bons and Kaur, 2020). Plant hormones also significantly influence embryo development, seed formation, and fruit set. Auxin is a plant hormone that plays an important role in various plant developmental processes, including embryonic development and seed formation (Möller and Weijers, 2009; Ni et al., 2001; Teale et al., 2006). In tomato (Solanum lycopersicum), auxin biosynthesis and metabolism is critical for inducing fruit set (Matsuo et al., 2018). Additionally, auxin inhibitor treatment enhanced tomato seed formation, suggesting auxin significantly modulates fruit set as well as seed abortion (Takisawa et al., 2019). Furthermore, the application of synthetic auxin (i.e., NAA) is a useful culture practice for increasing fruit set in some lychee orchards in Brazil and Israel (Gonçalves et al., 2014; Stern and Gazit, 1999; Stern et al., 2000). In these studies, synthetic auxin application significantly reduced lychee fruitlet abscission and increased yield. These findings imply that internal auxin metabolism may be related to lychee parthenocarpy and pseudo-parthenocarpy (stenospermocarpy); however, there is a lack of research aimed at characterizing the relationship of endogenous auxin metabolism with seed abortion and fruit retention in lychee.

Among three plant endogenous auxins, indole-3-acetic acid (IAA), phenyl acetic acid, and 4-chloroindole acetic acid, IAA is a major auxin, and it is believed to be active as a free acid. The IAA level in organs is regulated by coordinated synthesis, metabolism, and transport. Moreover, IAA metabolites are produced by oxidation, such as with 2-oxindole-3-acetic acid (OxIAA), by conjugation as with indole-3-acetylaspatic acid (IAA-Asp) and indole-acetylglucose (IAA-Glc), and by a combination of oxidation and conjugation, as with 2-oxindole acetylglucose (OxIAA-Glc). Because the IAA metabolites are generally more abundant and can be more easily monitored (Gonçalves et al., 2008; Kim et al., 2021; Ludwig-Müller, 2011; Osterc et al., 2016), the IAA metabolite contents combined with IAA-related gene expression data may be useful for assessing the auxin status related to tissue growth and development.

In this study, we characterized auxin metabolism in the aborted-seeded cultivar, Salathiel. Auxin and its metabolites contents were compared between ‘Salathiel’ and cultivars other than aborted-seeded ones, the small-seeded ‘Yu Her Pau’, and the normal-seeded ‘Hei Ye’. The expression levels of genes related to IAA biosynthesis, metabolism, transport, and signaling were also analyzed to explore the molecular mechanisms underlying the auxin accumulation in ‘Salathiel’ ovaries. Based on these results, we discuss the relationships among auxin metabolism, seed abortion and fruit retention in lychee.

Materials and Methods

Plant materials

The following five lychee cultivars were used in this study: ‘No Mai Tsz’, ‘Salathiel’, ‘Yu Her Pau’, ‘Hei Ye’, and ‘Chakrapat’. ‘Hei Ye’ (11 years old) and potted ‘Salathiel’ (8 years old) plants were grown at the Subtropical Plant Branch, Miyazaki Agricultural Research Institute, while potted ‘No Mai Tsz’, ‘Yu Her Pau’, and ‘Chakrapat’ plants (all 7 years old) were grown at the Kyoto farmstead of Kyoto University Experimental Farm. In spring 2019, female (functional hermaphroditic female) flowers just after the anthesis period (Fig. 1) were collected to excise their ovaries, which were subsequently analyzed. We removed the
stigma, style, and anthers just after sampling. Each excised ovary, including an ovule and embryo, was immediately immersed in FAA fixative solution (formaldehyde:acetic acid:50% aqueous ethanol = 5:5:90) and stored at 4°C prior to microscopy analysis. The ovaries of ‘Hei Ye’, ‘Yu Her Pau’, and ‘Salathiel’ were either immediately frozen in liquid nitrogen and stored at −80°C for an analysis of the auxin content or immersed in RNA later™ Stabilization Solution (Thermo Fisher Scientific, MA, USA) and stored at −20°C for RNA extraction.

Microscopic examination of the internal ovary structure

The FAA fixative solution was replaced with a gradient of sucrose solutions (10%, 20%, and 30%) and then samples were embedded in SCEM medium (Leica Microsystems GmbH, Wetzlar, Germany). Frozen ovaries were cut into 10–15 μm sections using a CM1520 cryostat (Leica) as described by Kawamoto (2003). The longitudinal sections containing the largest ovule section were used for subsequent observations. Sections were stained with 0.1% toluidine blue, embedded in SCEM medium, and examined and photographed using a BX53FL light microscope (Olympus, Tokyo, Japan) equipped with a DP80 digital camera (Olympus). The area and length of specific tissue regions were measured using ImageJ (Abramoff et al., 2004). At least six samples (either one of two ovule portions were used from six independent florets) were analyzed per cultivar as biological replicates. The Tukey-Kramer test was used to test for significant differences (P < 0.05) among the mean values. Percentage data was subjected to arcsine transformation before statistical analysis.

Measurement of endogenous auxin and metabolite contents in ovaries

The frozen ovaries of ‘Hei Ye’, ‘Yu Her Pau’, and ‘Salathiel’ (50–100 mg fresh weight) were homogenized in liquid nitrogen for phytohormone extraction, as described by Kim et al. (2021). Briefly, phytohormones were extracted using an 80% acetone solution containing the isotope-labeled internal standards of IAA and its metabolites (0.1 nmol): N-13C6-IAA, IAA-d3, OxIAA-d3, 3-hydroxy-2-oxindole-3-acetic acid (DiOxIAA)-d3, N-2-oxindole-3-acetyl aspartic acid (OxIAA-Asp)-d3, N-2-oxindole-3-acetyl glutamic acid (OxIAA-Glu)-d3, N-3-hydroxy-2-oxindole-3-acetyl aspartic acid (DiOxIAA-Asp)-d3, and N-3-hydroxy-2-oxindole-3-acetyl glutamic acid (DiOxIAA-Glu)-d3. The extraction process was repeated and then the extracts were concentrated using an evaporator. After adjusting the pH using 0.1% formic acid, the concentrated extracts were added to Sep-Pak C18 cartridges (Waters, Milford, MA, USA) for solid-phase extraction. The purified samples were eluted using 70% acetonitrile. Following an evaporation step, the contents were determined by LC-ESI-MS/MS using an LCMS-8030 system (Shimadzu, Kyoto, Japan) in the MRM mode. Each metabolite was quantified on the basis of the ratio of its peak area to the peak area of the specified amount of the internal standard. The amount was expressed as nanomoles per gram of fresh weight (nmol·g⁻¹ FW). For each cultivar, three biological replicates were analyzed. The Tukey-Kramer test was used to test for significant differences (P < 0.05) among the mean values.

Analysis of auxin-related gene expression

Total RNA was extracted from the ovaries (‘Hei Ye’, ‘Yu Her Pau’, and ‘Salathiel’) using PureLink Plant RNA Reagent (Thermo Fisher Scientific). mRNA libraries were then constructed and sequenced (Illumina HiSeq, 150-bp paired-end reads) according to the manufacturer’s instructions (GENEWIZ, NJ, USA). For each cultivar, three biological replicates were prepared for the mRNA sequencing (mRNA-seq) analysis, with one replicate comprising two ovaries from one female flower.

The raw sequencing data were preprocessed by removing adapter sequences using fastp (Chen et al., 2018). The remaining ‘Hei Ye’ reads were used for the de novo sequence assembly using Trinity (Grabherr et al., 2011), with a read-length cut-off of 35 bp. After clean reads were mapped to the de novo assembled contigs by bowtie2 (Langmead and Salzberg, 2012; Langmead et al., 2019) and samtools (Li, 2011; Li et al., 2009), the sam/bam file created was used to calculate the TPM values of each contig using Salmon (Patro et al., 2017). A principal component analysis (PCA) of the TPM values of all contigs was performed using R (version 4.1.0) (R Core Team, 2021) to confirm similarities and differences in the sequencing data among cultivars.

The coding sequences and encoded amino acid sequences of the auxin-related genes in Arabidopsis
thaliana, Oryza sativa, Citrus sinensis, Vitis vinifera, and Prunus persica were obtained from the NCBI and Phytaze databases (Goodstein et al., 2012). Twelve auxin-related gene homologs, including 3 IAA biosynthesis-related TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA), YUCCA (YUC), AMIDASE (AM1), 3 IAA metabolism-related DIOXYGENASE (DAO), GRECHEN HAGEN3 (GH3), UDP-GLYCOSYLTRANSFERASE (UGT), 3 auxin signaling-related AUX/IAA, AUXIN RESPONSE FACTOR (ARF), TRANSPORT INHIBITOR RESPONSE (TIR1), and 3 auxin transporters, PIN-FORMED (PIN), ATP-BINDING CASSETTE B (ABC), and AUXIN RESISTANT/LIKE AUX (AUX/LAX), were extracted by a local BLAST search from the contigs of the de novo assembly using A. thaliana coding sequences as the query (e-value < 1E-10). A phylogenetic analysis was conducted to confirm the sequence similarity and conservation between the extracted contigs and the sequences in A. thaliana, O. sativa, C. sinensis, V. vinifera, and P. persica. Protein sequences were aligned using MAFFT (version 7) (Katoh and Standley, 2013). The phylogenetic tree was constructed according to the neighbor-joining method using MEGA X (Kumar et al., 2018). The TPM values of each contig encoding auxin-related genes were compared between cultivars. The data are herein presented as a heatmap, which was produced on the basis of the Z-score using the gplots package in R.

Results and Discussion

In this study, we categorized five cultivars into the aborted-seeded cultivars, ‘No Mai Tsz’ and ‘Salathiel’, the small-seeded cultivar ‘Yu Her Pau’, and the normal-seeded cultivars, ‘Hei Ye’ and ‘Chakrapat’. The mean seed size of ‘Salathiel’ and ‘Chakrapat’ fruits from the trees grown at Miyazaki Agricultural Research Insti-
On the contrary, the obturator to ovule size ratio was the results of our recent study on lychee flower auxin ‘Salathiel’, which ultimately leads to increased seed High level of IAA in the ‘Salathiel’ ovaries and other amino acid and glucose conjugates were not detected (data not shown), which is consistent with the results of our recent study on lychee flower auxin contents (Kim et al., 2021). Additionally, the IAA, DiOxIAA, IAA-Asp, and DiOxIAA-Glu levels were significantly different among cultivars. More specifically, the IAA and DiOxIAA-Glu contents were significantly higher in ‘Salathiel’ than in the other two cultivars examined. DiOxIAA was lower in ‘Yu Her Pau’ and ‘Salathiel’ than in ‘Hei Ye’, while IAA-Asp was significantly lower in ‘Salathiel’ compared to ‘Hei Ye’.

Our study revealed that the ‘Salathiel’ ovary contains a higher level of IAA than the ovaries of normal-seeded and small-seeded cultivars. Auxin has important effects on the stability of fruit set in fruit tree species, as well as in various other horticultural crops (Alabadi et al., 1996; Bons and Kaur, 2020; Tiwari et al., 2012). In fact, exogenous auxin application is one conventional lychee crop management strategy used to improve fruit set in Southeast Asia (Anand et al., 2003; Arora and Singh, 2017; Menzel, 2002). In tomato and eggplant (Solanum melongena), high IAA levels are associated with fruit retention and the induction of parthenocarpic fruit production (Matsuo et al., 2020; Takisawa et al., 2019). Moreover, auxin promotes fruit retention in some other fruit crops (Else et al., 2004; Kumlawati and Hamim, 2009). Therefore, high IAA levels in reproductive organs, including the ovary, may contribute to flower and fruit retention. Because the strong sink activities of seeds help trees retain fruit (Ohsugi, 2003; Zhang et al., 2020), normal-seeded or small-seeded fruit are likely retained on trees more than aborted-seeded fruit. Poor embryo development reportedly increases physiological fruit drop in peach (Fukuda et al., 2006). Furthermore, it has been suggested that appropriate pollination, fertilization, and seed development may increase the lychee fruiting percentage (Chu et al., 2015). Therefore, we hypothesize that the high IAA level in the ‘Salathiel’ ovaries may contribute to fruit retention and prevent early flower shattering or aborted-seeded and seedless fruit drop.

‘Hei Ye’, which is a normal-seeded cultivar, had high IAA metabolite contents (Fig. 3). Among the IAA metabolites detected in this study, OxIAA and DiOxIAA, which are oxidized IAA metabolites, were the most abundant (Fig. 3B, C). ‘Yu Her Pau’ had a

Cultivar	Ovary (mm²)	Ovule (mm²)	Embryo Sac (mm²)	Obturator (mm²)	Inner Integument (µm)	Outer Integument (µm)	Embryo Sac/Ovule (%)	Obturator/Ovule (%)
Chakrapat	0.36 ± 0.02 b*	0.27 ± 0.02 b	0.010 ± 0.01 a	0.041 ± 0.02 a	74.0 ± 2.0 a	75.6 ± 2.0 b	3.9 ± 0.1 ab	15.5 ± 0.6 a
Hei Ye	0.23 ± 0.01 c	0.20 ± 0.01 c	0.008 ± 0.01 b	0.024 ± 0.01 b	49.6 ± 1.2 c	88.0 ± 2.6 b	3.9 ± 0.2 ab	11.5 ± 0.2 b
Yu Her Pau	0.55 ± 0.01 a	0.34 ± 0.01 a	0.012 ± 0.01 a	0.043 ± 0.02 a	52.0 ± 0.7 c	109.8 ± 2.0 a	3.6 ± 0.2 b	12.7 ± 0.5 b
No Mai Tsz	0.36 ± 0.01 b	0.25 ± 0.08 b	0.011 ± 0.00 a	0.017 ± 0.01 c	63.2 ± 2.5 b	105.9 ± 4.7 a	4.6 ± 0.3 a	6.2 ± 0.4 d
Salathiel	0.22 ± 0.01 c	0.20 ± 0.05 c	0.006 ± 0.01 b	0.018 ± 0.01 bc	71.6 ± 2.0 ab	78.4 ± 2.2 b	3.2 ± 0.4 b	9.3 ± 0.4 c

Data are presented as the mean ± SE.

* Different letters in a column indicate significantly different means (P < 0.05), as determined by the Tukey-Kramer test. The percentages were subjected to arcsine transformation before the statistical analysis.

High level of IAA in the ‘Salathiel’ ovaries

We analyzed auxin metabolism because it has been well-documented that auxin is critical for fruit set, seed development, and parthenocarpy in other plants, including tomato (Matsuo et al., 2018; Möller and Weijers, 2009; Teale et al., 2006). The active auxin IAA and its metabolites (OxIAA, DiOxIAA, IAA-Asp, OxIAA-Asp, DiOxIAA-Asp, IAA-Glu, and DiOxIAA-Glu) were detected in the aborted-seeded ‘Salathiel’, small-seeded ‘Yu Her Pau’, and normal-seeded ‘Hei Ye’ cultivars (Fig. 3). However, OxIAA-Glu and other amino acid and glucose conjugates were not detected (data not shown), which is consistent with the results of our recent study on lychee flower auxin contents (Kim et al., 2021). Additionally, the IAA, DiOxIAA, IAA-Asp, and DiOxIAA-Glu levels were significantly different among cultivars. More specifically, the IAA and DiOxIAA-Glu contents were significantly higher in ‘Salathiel’ than in the other two cultivars examined. DiOxIAA was lower in ‘Yu Her Pau’ and ‘Salathiel’ than in ‘Hei Ye’, while IAA-Asp was significantly lower in ‘Salathiel’ compared to ‘Hei Ye’.

Our study revealed that the ‘Salathiel’ ovary contains a higher level of IAA than the ovaries of normal-seeded and small-seeded cultivars. Auxin has important effects on the stability of fruit set in fruit tree species, as well as in various other horticultural crops (Alabadi et al., 1996; Bons and Kaur, 2020; Tiwari et al., 2012). In fact, exogenous auxin application is one conventional lychee crop management strategy used to improve fruit set in Southeast Asia (Anand et al., 2003; Arora and Singh, 2017; Menzel, 2002). In tomato and eggplant (Solanum melongena), high IAA levels are associated with fruit retention and the induction of parthenocarpic fruit production (Matsuo et al., 2020; Takisawa et al., 2019). Moreover, auxin promotes fruit retention in some other fruit crops (Else et al., 2004; Kumlawati and Hamim, 2009). Therefore, high IAA levels in reproductive organs, including the ovary, may contribute to flower and fruit retention. Because the strong sink activities of seeds help trees retain fruit (Ohsugi, 2003; Zhang et al., 2020), normal-seeded or small-seeded fruit are likely retained on trees more than aborted-seeded fruit. Poor embryo development reportedly increases physiological fruit drop in peach (Fukuda et al., 2006). Furthermore, it has been suggested that appropriate pollination, fertilization, and seed development may increase the lychee fruiting percentage (Chu et al., 2015). Therefore, we hypothesize that the high IAA level in the ‘Salathiel’ ovaries may contribute to fruit retention and prevent early flower shattering or aborted-seeded and seedless fruit drop.

‘Hei Ye’, which is a normal-seeded cultivar, had high IAA metabolite contents (Fig. 3). Among the IAA metabolites detected in this study, OxIAA and DiOxIAA, which are oxidized IAA metabolites, were the most abundant (Fig. 3B, C). ‘Yu Her Pau’ had a
lower endogenous IAA level than ‘Salathiel’, but it tended to have more or equal amounts of OxIAA. ‘Hei Ye’ contained significantly more DiOxIAA than the other cultivars. Several studies have confirmed that IAA metabolites are derived from IAA (Gonçalves et al., 2008; Kim et al., 2021; Ludwig-Müller, 2011; Oster et al., 2016). Therefore, these results may indicate that IAA levels peaked in ‘Hei Ye’ and ‘Yu Her Pau’ before flowering, and that the IAA level peaked later in ‘Salathiel’ than in the other two cultivars. Auxin contents and homeostasis greatly affect plant organ development (Cao et al., 2020). In this study, the abundance of IAA metabolites varied between cultivars with diverse seed traits. We hypothesize that differences in auxin levels during female flower development may be related to the variability in female organ development and subsequent seed and fruit development.

IAA efflux and influx may be the primary factors mediating the high auxin content in ‘Salathiel’

We tried to clarify the mechanisms underlying the increased IAA accumulation in the ‘Salathiel’ ovaries by conducting mRNA-seq analysis. Our mRNA-seq analysis generated a total of 106,840,115 reads (32.05 Gb). All the obtained sequences from Illumina sequencing reads are available from the NCBI/DDBJ Sequence Read Archive under the following accession number, DRA012830. The PCA results revealed a clear separation of read components among cultivars and a high similarity between biological replicates (Supplementary Fig. 1). Moreover, PC1 and PC2, respectively, accounted for 29.3% and 24.2% of the variance, and each sample formed three clusters depending on the cultivar. This implies that the expression pattern in the ovary just after flowering may differ among the cultivars, even though the samples were collected at the same development stage.

The expression levels of genes related to IAA biosynthesis, metabolism, transport, and signaling were compared among the cultivars (Fig. 4). In *A. thaliana*, the indole-3-pyruvic acid (IPA) pathway is a major IAA biosynthetic pathway (Mashiguchi et al., 2011). In this pathway, TAA converts tryptophan to IPA, which is then oxidized by YUC to produce IAA. Several studies indicated IAA can also be synthesized in a pathway mediated by AMI, in which indole acetamide is converted to IAA (Abu-Zaitoon et al., 2012; Mano et al., 2010; Mashiguchi et al., 2011). We identified several homologs of the corresponding genes and the subsequent gene expression analysis indicated that

Fig. 3. Endogenous IAA contents in lychee ovaries just after flowering. The amount was expressed as nanomoles per gram of fresh weight (nmol·g⁻¹ FW). For each cultivar, three biological replicates were analyzed. a: IAA, b: OxIAA, c: DiOxIAA, d: IAA-Asp, e: OxIAA-Asp, f: DiOxIAA-Asp, g: IAA-Glu, h: DiOxIAA-Glu. Different letters above the bars in each graph indicate significant differences (*P* < 0.05), as determined by the Tukey-Kramer test.

Y. Osako, H. Yamane, R. Kim, H. Miyagawa and R. Tao
‘Salathiel’ had relatively high AMI expression levels. Regarding the IAA biosynthesis-related genes, although AMI was more highly expressed in ‘Salathiel’ than in the other cultivars, the expression levels of TAA and YUC, which are key genes in the main IAA biosynthesis pathway, were not different from the others overall. Therefore, there was no clear association between IAA biosynthesis activity and the high IAA content in ‘Salathiel’. Regarding IAA catabolism, the three major catabolic pathways (oxidation, amino acid conjugation, and glycosylation) have been well characterized in Arabidopsis; these pathways involve DAO, GH3, and UGT, respectively. The expression data for these IAA catabolism-related genes revealed that UGT expression levels were lower in ‘Salathiel’ than in the other cultivars (Fig. 4). Regarding IAA metabolism-related genes, in ‘Hei Ye’, which had a relatively low IAA content, the DAO expression level was generally higher than that in the other cultivars, which is in accordance with the highest accumulation of DiOxIAA in ‘Hei Ye’. The UGT expression levels were lower in ‘Salathiel’ than in ‘Hei Ye’ and ‘Yu Her Pau’. However, IAA glycosides were undetectable in our analysis of IAA metabolites, which is similar to the lack of IAA glycosides detected in lychee flowers during our previous investigation (Kim et al., 2021). Therefore, similar to IAA biosynthesis genes, IAA metabolism-related genes may not be the primary factors responsible for the high IAA contents in ‘Salathiel’.

The AUX/IAA family proteins negatively regulate auxin signaling by inactivating the ARFs that promote auxin-responsive gene expression. In the presence of high auxin levels, auxin binds to the TIR1–AUX/IAA complex, leading to the ubiquitination and degradation of AUX/IAA and the activation of ARFs (Dharmasiri et al., 2005; Guilfoyle and Hagen, 2007; Wang et al., 2005). In our study, the magnitudes of ARF expression levels were in the order ‘Hei Ye’ > ‘Salathiel’ > ‘Yu Her Pau’ and TIR1 expression levels were substantially higher in ‘Hei Ye’ than the others (Fig. 4). AUX/IAA expressions tended to be higher in ‘Yu Her Pau’ compared to the other cultivars because three out of six AUX/IAA genes showed higher expression intensities. In tomato, the molecular roles of the IAA signaling genes ARF and TIR1 on parthenocarpy have been thoroughly characterized. The suppressed expression of SlARF5 alters ovary growth and results in the formation of seedless fruit (Liu et al., 2018), whereas the over-expression of SlTIR1 induces abnormal seed development and stimulates stenospermocarpic fruit formation in tomato (Ren and Wang, 2016). Because no clear difference was found in the overall expression patterns of ARF, TIR1, and AUX/IAA genes between ‘Salathiel’ and the others, the relationship between altered IAA signaling activity and genetic regulation of seed abortion in ‘Salathiel’ was unclear. Actually, our data indicated the IAA signaling genes, especially ARF and TIR1, were highly expressed in ‘Hei Ye’, which can produce more fruit per tree than the other cultivars (Chang et al., 2017). Although the relationship between auxin signaling genes expressions (i.e. ARF and TIR1) and fruit retention have not been examined in lychee, it is possible that the enhanced expressions of IAA signaling genes in ‘Hei Ye’ could be related to its relatively high fruit set.

In contrast to the genes related to IAA biosynthesis and metabolism, the IAA transporter gene expression levels were closely correlated with the increased IAA accumulation in ‘Salathiel’. Three major auxin transporter families have been reported, including the auxin efflux carriers (PIN and ABCB) and the auxin influx carrier (AUX/LAX) (Cho and Cho, 2013; Péret et al.,
expression in ‘Hei Ye’ and ‘Yu Her Pau’, the ABCB and PIN expression levels were lower in ‘Salathiel’, while the AUX/LAX expression levels were higher in ‘Salathiel’ (Fig. 4). Because ABCB and PIN encode auxin efflux carriers, whereas AUX/LAX encodes an auxin influx carrier, lower expressions of ABCB and PIN and higher expressions of AUX/LAX may help to accumulate IAA more in the cytoplasm rather than extracellular tissues, leading to the localization of IAA inside the ovary rather than transportation of IAA from the ovary. Thus, this expression pattern is consistent with the higher endogenous IAA levels in the ‘Salathiel’ ovaries. Auxin transport helps facilitate auxin homeostasis and localization in plants, as well as auxin metabolism (Cho and Cho, 2013; Péret et al., 2012; Robert et al., 2015; Vieten et al., 2005). The regulation of IAA contents and the maintenance of auxin homeostasis via IAA transport are reportedly vital for embryonic and subsequent development (Robert et al., 2015; Vieten et al., 2005).

In conclusion, we revealed that ‘Salathiel’, which can produce a high proportion of aborted-seeded fruit, shows specific reproductive organ developmental characteristics and accumulates a relatively large amount of IAA in the ovary in the anthesis period. High accumulation of IAA could be due to altered auxin transport polarity and intensity. On the basis of the results of previous studies and the current study, we hypothesize that the accumulation of endogenous auxin and the timing of peak accumulation of auxin in ‘Salathiel’ may contribute to the retention of aborted-seeded and seedless fruit. Our study also raises the possibility that auxin metabolism could be related to lychee seed abortion; however, future studies will need to verify this possibility.

Acknowledgements

We would like to thank Mr. Yuichi Hirahara (Subtropical Plant Branch, Miyazaki Agricultural Research Institute) for kindly providing lychee flower samples.

Literature Cited

Abràmoff, M. D., P. J. Magalhães and S. J. Ram. 2004. Image processing with imageJ. Biophotonics Int. 11: 36–42.

Abu-Zaitoon, Y. M., K. Bennett, J. Normanly and H. M. Nonhebel. 2012. A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiol. Plant. 146: 487–499.

Alabadi, D., M. S. Agüero, M. A. Pérez-Amador and J. Carbonell. 1996. Arginase, arginine decarboxylase, ornithine decarboxylase, and polyamines in tomato ovaries (Changes in unpollinated ovaries and parthenocarpic fruits induced by auxin or gibberellin). Plant Physiol. 112: 1237–1244.

Anand, M., P. S. Kahlon and B. V. C. Mahajan. 2003. Effect of exogenous application of growth regulators on fruit drop, cracking and quality of litchi (Litchi chinensis sonn.) cv. Dehadrun. Agric. Sci. Digest 23: 191–194.

Arbeloa, A. and M. Herrero. 1987. The significance of the obturator in the control of pollen tube entry into the ovary in peach (Prunus persica). Ann. Bot. 60: 681–685.

Arora, R. and N. Singh. 2017. Growth regulators for yield and quality enhancement in litchi (Litchi chinensis L)—a review. Int. J. Curr. Microbiol. App. Sci. 6: 2152–2159.

Bons, H. K. and M. Kaur. 2020. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: a review. J. Hortic. Sci. Biotechnol. 95: 137–146.

Cao, J., G. Li, D. Qu, X. Li and Y. Wang. 2020. Into the seed: Auxin controls seed development and grain yield. Int. J. Mol. Sci. 21: 1662. DOI: 10.3390/ijms21051662.

Chang, J. W., P. A. Chen and I. Z. Chen. 2017. Litchi breeding and plant management in Taiwan. p. 31–58. In: M. Kumar, V. Kumar, R. Prasad and A. Varma (eds.). The Lychee Biotechnology. Springer Nature, Singapore.

Chen, S., Y. Zhou, Y. Chen and J. Gu. 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884–i890.

Cho, M. and H. T. Cho. 2013. The function of ABCB transporters in auxin transport. Plant Signal. Behav. 8: e22990. DOI: 10.4161/psb.22990.

Chu, Y. C., T. S. Lin and J. C. Chang. 2015. Pollen effects on fruit set, seed weight, and shriveling of ‘73-S-20’ litchi- with special reference to artificial induction of parthenocarpy. HortScience 50: 369–373.

Cousin, M. and M. El Maataoui. 1998. Female reproductive organs in self-compatible almond (Prunus dulcis (Mill.) D.A. Webb) Lauranne and fertilization patterns. Sci. Hortic. 72: 287–297.

Dharmasiri, N., S. Dharmasiri and M. Estelle. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445.

Dos Santos, R. C., L. M. Ribeiro, M. O. Mercadante-Simões, M. R. Costa, S. Nütsche and C. T. Pereira. 2014. Stenospermy and seed development in the “Brazilian seedless” variety of sugar apple (Annona squamosa). An. Acad. Bras. Cienc. 86: 2101–2108.

Else, M. A., A. P. Stankiewicz-Davies, C. M. Crisp and C. J. Atkinson. 2004. The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. J. Exp. Bot. 55: 2099–2109.

Fang, H. H., W. L. Lee, S. H. Yang, C. C. Hsu and Y. S. Liang. 2018. Investigation on composition changes of sour and sweet substances during the fruit development of lychee (Litchi chinensis Sonn.). J. Taiwan Soc. Hortic. Sci. 64: 137–146 (In Chinese with English abstract).

Fukuda, F., R. Yoshimura, H. Matsuoka and N. Kubota. 2006. Relationship between fruit enlargement and seed development with respect to physiological fruit drop in ‘Shimizu Hakuto’ Peach. J. Japan. Soc. Hortic. Sci. 75: 213–218.

Gonçalves, J. C., G. Diogo, M. T. Coelho, N. Vidal and S. Amâncio. 2008. Quantitation of endogenous levels of IAA, IAAsp and IBA in micro-propagated shoots of hybrid chestnut pre-treated with IBA. In Vitro Cell. Dev. Biol. Plan. 44: 412–418.

Gonçalves, V. D., M. C. Pires and O. K. Yamanishi. 2014. Synthetic auxin 3-5-6 TPA increased fruit size and retention of “Bengal” lychee in Brazil. Acta Hortic. 1042: 65–72.

Goodstein, D. M., S. Shu, R. Howson, R. Neupane, R. D. Hayes, J. Fazo, T. Mitros, W. Dirks, U. Hellsten, N. Putnam and D. S. Rokhsar. 2012. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 40: 1178–1186.
Grabherr, M. G., B. J. Haas, M. Yassour, A. J. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, E. N. Hacohen, A. Gnirke, N. Rhind, F. Di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29: 644–652.

Guilfoyle, T. J. and G. Hagen. 2007. Auxin response factors. Curr. Opin. Plant Biol. 10: 453–460.

Hirahara, Y. 2018. Project for the creation of new fruit production areas for the future: 1. Research on the characteristics of lychee cultivars. Bull. Subtropic. Plant Branch Miyazaki Agric. Res. Inst. 2018: 148–149 (In Japanese).

Katoh, K. and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772–780.

Kim, R., Y. Osako, H. Yamane, R. Tao and H. Miyagawa. 2021. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 61: 25–32.

Kawamoto, T. 2003. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66: 123–143.

Kays, S. J. 1999. Preharvest factors affecting appearance. Postharvest Biol. Technol. 15: 233–247.

Kim, R., Y. Osako, H. Yamane, R. Tao and H. Miyagawa. 2021. Quantitative analysis of auxin metabolites in lychee flowers. Biosci. Biotechnol. Biochem. 85: 467–475.

Koul, B. and J. Singh. 2017. Lychee biology and biotechnology p. 137–192. In: M. Kumar, V. Kumar, R. Prasad and A. Varma (eds.). The Lychee Biotechnology. Springer Nature, Singapore.

Kumar, S., G. Stecher, M. Li, C. Knayaz and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547–1579.

Kurnlawati, B. and Hamim. 2009. Physiological responses and fruit retention of carambola fruit (Averrhoa carambola L.) induced by 2,4-D and GA3. HAYATI J. Biosci. 16: 9–14.

Langmead, B. and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359.

Langmead, B., C. Wilks, V. Antonescu and R. Charles. 2019. Mapping read alignment/map format and SAMtools. Bioinformatics 35: 421–432.

Li, H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetic parameter estimation from sequencing data. Bioinformatics 27: 2987–2993.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis and R. Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.

Liu, S., Y. Zhang, Q. Feng, L. Qin, C. Pan, A. T. Lamin-Samu and G. Lu. 2018. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci. Rep. 8: 2971. DOI: 10.1038/s41598-018-21315-y.

Lora, J., J. I. Hormaza, M. Herrero and C. S. Gasser. 2011. Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proc. Natl. Acad. Sci. USA 108: 5461–5465.

Losada, J. M. and M. Herrero. 2017. Pollen tube access to the ovule is mediated by glycoprotein secretion on the obturator of apple (Malus × domestica, Borkh). Ann. Bot. 119: 989–1000.

Ludwig-Müller, J. 2011. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 62: 1757–1773.

Mano, Y., K. Nemoto, M. Suzuki, H. Seki, I. Fujiji and T. Muranaka. 2010. The AMI1 gene family: Indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. J. Exp. Bot. 61: 25–32.

Matsuda, H. and H. Higuchi. 2019. Effects of the pollen parent on the fruit set and seed type of ‘Bengali’, ‘Chakrapat’, and ‘Tai So’ lychee cultivars. Trop. Agr. Develop. 63: 79–82.

Matsuoka, T. 2003. The lychee crop in Asia and the Pacific. RAP Publ. FAO. Bangkok.

Matsuo, S., K. Miyatake, M. Endo, S. Urashini, S. Negoro, S. Shimakoshi and H. Fukuoka. 2020. Loss of function of the Pad-1 aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants. Proc. Natl. Acad. Sci. USA 117: 12784–12790.

Menzel, C. 2002. The lychee crop in Asia and the Pacific. RAP Publ. FAO. Bangkok.

Menzel, C. M., K. R. Chapman, B. F. Paxton and D. R. Simpson. 1986. Growth and yield of lychee cultivars in subtropical queensland. Aust. J. Exp. Agric. 26: 261–265.

Menzel, C. M., X. Huang and C. Liu. 2005. Cultivars and plant improvement. p. 59–87. In: C. M. Menzel and G. K. Waite (eds.). Litchi and longan: botany, production and uses. CAB International, Oxfordshire.

Mita, S. K. and P. K. Pathak. 2010. Litchi production in the Asia-Pacific region. Acta Hort. 863: 29–36.

Müller, B. and D. Weijers. 2009. Auxin control of embryo patterning. Cold Spring Harb. Perspect. Biol. 1: a001545. DOI: 10.1101/ebsperspect.a001545.

Ni, D. A., L. J. Wang, C. H. Ding and Z. H. Xu. 2001. Auxin distribution and transport during embryogenesis and seed germination of Arabidopsis. Cell Res. 11: 273–278.

Ohsugi, R. 2003. Sink-source relationship and crop yield. Kagaku To Seibutsu 41: 366–373 (In Japanese).

Ostere, G., M. M. Petkovšek and F. Stampar. 2016. Quantification of IAA metabolites in the early stages of adventitious rooting might be predictive for subsequent differences in rooting response. J. Plant Growth Regul. 35: 534–542.

Patro, R., G. Duggal, M. I. Love, R. A. Irizarry and C. Kingsford. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14: 417–419.

Péret, B., K. Swarup, A. Ferguson, M. Seth, Y. Yang, S. Dhondt, N. James, I. Casimiro, P. Perry, A. Syed, H. Yang, J. Reemmer, E. Venison, C. Howells, M. A. Perez-Amador, J. Yun, J. Alonso, G. T. S. Beemster, L. Laplaze, A. Murphy, M. J. Bennett, E. Nielsen and R. Swarup. 2012. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24: 2874–2885.

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

Ren, Z. and X. Wang. 2016. SITIR1 is involved in crosstalk of phytohormones, regulates auxin-induced root growth and stimulates stenospermocarpic fruit formation in tomato. Plant Sci. 253: 13–20.

Robert, H. S., W. Grunevald, M. Saur, B. Cannoot, M. Soriano, R. Swarup, D. Weijers, M. Bennett, K. Boutiller and J. Frlml. 2015. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142: 702–711.
Stern, R. A. and S. Gazit. 1999. The synthetic auxin 3,5,6-TPA reduces fruit drop and increases yield in “Kaimana” litchi. J. Hort. Sci. Biotechnol. 74: 203–205.
Stern, R. A., D. Stern, M. Harpaz and S. Gazit. 2000. Applications of 2,4,5-TP, 3,5,6-TPA, and combinations thereof increase lychee fruit size and yield. HortScience 35: 661–664.
Takisawa, R., S. Koeda and T. Nakazaki. 2019. Effects of the pat-2 gene and auxin biosynthesis inhibitor on seed production in parthenocarpic tomatoes (Solanum lycopersicum L.). Hort. J. 88: 481–487.
Teale, W. D., I. A. Paponov and K. Palme. 2006. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7: 847–859.
Tiwari, A., R. Offringa and E. Heuvelink. 2012. Auxin-induced fruit set in Capsicum annuum L. requires downstream gibberellin biosynthesis. J. Plant Growth Regul. 31: 570–578.
Vieten, A., S. Vanneste, J. Wiśniewska, E. Benková, R. Benjamins, T. Beeckman, C. Luschnig and J. Friml. 2005. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132: 4521–4531.
Wang, H., B. Jones, Z. Li, P. Frasse, C. Delalande, F. Regad, S. Chaabouni, A. Latché, J. C. Pech and M. Bouzayen. 2005. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17: 2676–2692.
Wang, H. C., B. Lai and X. M. Huang. 2017. Litchi fruit set, development, and maturation. p. 1–30. In: M. Kumar, V. Kumar, R. Prasad and A. Varma (eds.). The Lychee Biotechnology. Springer Nature, Singapore.
Xie, D. R., X. S. Ma, M. Z. Rahman, M. C. Yang, X. M. Huang, J. G. Li and H. C. Wang. 2019. Thermo-sensitive sterility and self-sterility underlie the partial seed abortion phenotype of Litchi chinensis. Sci. Hortic. 247: 156–164.
Zhang, C., D. Xie, T. Bai, X. Luo, F. Zhang, Z. Ni and Y. Chen. 2020. Diversity of a large collection of natural populations of mango (Mangifera indica Linn.) revealed by agromorphological and quality traits. Diversity 12: 27. DOI: 10.3390/d12010027.
Zhang, J., Z. Wu, F. Hu, L. Liu, X. Huang, J. Zhao and H. Wang. 2018. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. Hortic. Res. 5: 39. DOI: 10.1038/s41438-018-0042-1.
Zhu, Y. J. 2008. Seed development and fruit-set enhancement by girdling in ‘No Mai Tsz (73-S-20)’ Litchi (Litchi chinensis Sonn.). Master Thesis. National Taiwan Univ., Taipei (In Chinese with English abstract).