On Computing of Eigenvalues of Differential Equations
\[Q = \lambda P \] with Eigenparameter in Boundary Conditions

S.M. Al-Harbi
Department of Mathematics, University College, Umm Al-Qura University, Makkah, Saudi Arabia, P.O. Box 8140

Abstract: Problem statement: Our purpose of this study is to use sinc methods to compute approximately the eigenvalues of second-order operator pencil of the form \(Q - \lambda P \). Approach: Where \(Q \) is second order self-adjoint differential operator and \(P \) is a first order and \(\lambda \in \mathbb{C} \) is an eigenvalue parameter. Results: The eigenparameter appears in the boundary conditions linearly. Using computable error bounds we obtain eigenvalue enclosures in a simple way. Conclusion/Recommendations: We give some numerical examples and make companions with existing results.

Key words: Sinc method, operator pencil, eigenvalue problem, eigenparameter in boundary conditions, computing eigenvalues, Whittaker-Kotel'nikov-Shannon (WKS)

INTRODUCTION

The aim of the present study is to compute the eigenvalues numerically of a differential operator of the form \(Q - \lambda P \) approximately by the sinc method, where \(Q \) and \(P \) are self-adjoint differential operators of the second and first order respectively. By the sinc method we mean the use of the Whittaker-Kotel'nikov-Shannon (WKS) sampling theorem, (Shannon, 1949; Whittaker, 1915; Zayed, 1993). The WKS states that if \(f(\lambda) \) is entire in \(\lambda \) of exponential type \(\sigma, \sigma > 0 \), which belongs to \(L^2(\mathbb{R}) \) where restricted to \(\mathbb{R} \), then \(f(\lambda) \) can be reconstructed via the sampling representation:

\[
f(\lambda) = \sum_{n=-\infty}^{\infty} f \left(\frac{n\pi}{\sigma} \right) \sin \left(\frac{\pi}{\sigma} (\lambda - n\pi) \right), \lambda \in \mathbb{C}
\]

Series (1.1) converges absolutely on \(\mathbb{C} \) and uniformly on \(\mathbb{R} \) and on compact subsets of \(\mathbb{C} \) (Butzer et al., 2001; Stenger, 1993). The space of all such \(f \) is the Paley-Wiener space of band limited functions with band width \(\sigma \) which will be denoted by \(PW^2_{\sigma} \). The nodes \(\left\{ \frac{n\pi}{\sigma} \right\}_{n=\pm \infty} \) are called the sampling points and the sinc functions are:

\[
\sin \left(\frac{\pi}{\sigma} (\lambda - n\pi) \right) = \begin{cases}
\sin \left(\frac{\pi}{\sigma} (\lambda - n\pi) \right), & \lambda \neq \frac{n\pi}{\sigma} \\
(\lambda - n\pi), & \lambda = \frac{n\pi}{\sigma}
\end{cases}
\]

Theorem (1.1) is used extensively in approximating solutions and eigenvalues of boundary value problems, (Boumenir, 2000a; 2000b; Lund and Bowers, 1992; Stenger, 1981; 1993). One type of error is associated with sinc-based methods, truncation error. An estimate for the truncation error is established by Jagerman (1966), as follows. For \(N \in \mathbb{N} \) and \(f(\lambda) \in PW^2_{\sigma} \), let \(f_n(\lambda) \) be the truncated cardinal series:

\[
f_n(\lambda) := \sum_{n=-N}^{N} f \left(\frac{n\pi}{\sigma} \right) \sin \left(\frac{\pi}{\sigma} (\lambda - n\pi) \right)
\]

Jagerman proved that if \(\lambda \in \mathbb{R} \) and in addition \(\lambda f(\lambda) \in L^1(\mathbb{R}) \), for some integer \(k > 0 \), then for \(N \in \mathbb{N}, k \left| \frac{\lambda}{\pi} \right| < N\pi / \sigma \), we have:

\[
\left| f(\lambda) - f_n(\lambda) \right| \leq \frac{E_n(f) | \sin \sigma |}{\pi (\pi / \sigma)^k \sqrt{1 - 4^{1/k}}} \left(\frac{1}{\sqrt{N\pi / \sigma - \lambda}} + \frac{1}{\sqrt{N\pi / \sigma + \lambda}} \right)
\]

Where:

\[
E_n(f) := \int_{-\infty}^{\infty} |f(\lambda)|^2 \, d\lambda \left(\frac{1}{N+1} \right)^{1/2}
\]

We are concerned with the computation of eigenvalues of the boundary-value problem:
\[-(p(y'-ry))(x) - T(x)p(x)(y'-ry)(x) + q(x)y(x) = \lambda(2ipy' + ip'y + wy)(x), 0 \leq x \leq 1 \]
(1.6)

\[
\cos \gamma y(0) - \sin \gamma (p(y'-ry) + iy)(0) = 0
\]
(1.7)

\[
\cos \delta y(l) + \sin \delta (p(y'-ry) + iy)(l) = 0
\]
(1.8)

where, \(p, q, \rho \) and \(w \) are real-valued functions on \([0, 1]\), \(p^{-1}, r, q, w \in L^1(0, 1) \), \(p \geq 0 \), \(\rho \in AC[0, 1] \), the set of all absolutely continuous functions on \([0, 1]\), \(q \) is essentially bounded from below and \(\gamma, \delta \in [0, \pi) \). This problem has been studied in its general form in the comprehensive study of (Langer et al., 1966) as a linear pencil \(Q-\lambda P \), where \(Q \) is a second-order operator and \(P \) is a first-order operator. Problem (1.6-1.8) differs from classical second-order eigenvalue problems in several respects. First, the operator in the left-hand side of (1.6) is not the identity operator multiplied by the eigenparameter, but a first order operator. Also, the eigenvalue parameter appears linearly in the boundary conditions. Illustrative examples and tables are included in the last section. It is worthy to mention that the sampling scheme is used to approximate eigenvalues for different types of boundary value problems in (Boumenir, 1999; 2000a; 2000b; Chanane, 1999; 2005).

Preliminaries: In the following we consider the eigenvalue problem (1.6-1.8) introduced in Section 1 above. For simplicity, we assume that \(\gamma, \delta \in [0, \frac{\pi}{2}] \) and without any loss of generality, we assume that \(r = 0, p = \rho = w = 1 \) on \([0, 1]\). Thus we consider the eigenvalue problem:

\[-y''(x, \lambda) + q(x)y(x, \lambda) = \lambda(2iy\gamma(x, \lambda))0 \leq x \leq 1 \]
(2.1)

\[U_1(y) := \cos \gamma y(0, \lambda) - \sin \gamma (y'(0, \lambda) + iy)(0) = 0 \]
(2.2)

\[U_2(y) := \cos \delta y(l, \lambda) + \sin \delta (y'(l, \lambda) + iy)(l) = 0 \]
(2.3)

where, \(q \in L^1(0, 1) \). Let \(\phi(., \lambda) \) denote the solution of (2.1) satisfying the following initial conditions:

\[\phi(0, \lambda) = \sin \gamma, \phi^{[1]}(0, \lambda) = \cos \gamma \]
(2.4)

where, \(\phi^{[1]}(x, \lambda) := \phi(x, \lambda) + i\lambda \phi(x, \lambda) \). Since \(\phi(., \lambda) \) satisfies (2.2), then the eigenvalues of problem (2.1-2.3) are the zeros of the function, cf. (Langer et al., 1966):

\[\Omega(\lambda) := e^{izi} \left[\cos \delta \phi(1, \lambda) + \sin \delta \phi^{[1]}(1, \lambda) \right] = e^{izi} H(\lambda) \]
(2.5)

where:

\[\Delta(\lambda) := \left[\cos \delta \phi(1, \lambda) + \sin \delta \phi^{[1]}(1, \lambda) \right] \]
(2.6)

According to (Langer et al., 1966) \(\Delta(\lambda) \) has two sequences of positive and negative simple eigenvalues \(\{ \lambda_{1,n} \} \). Using the method of variation of constants, the solution \(\phi(x, \lambda) \) satisfies the integral equation:

\[\phi(x, \lambda) = e^{-izx} \left[\sin \gamma \cos \sqrt{\lambda^2 + \lambda x} + \cos \gamma \cos \sqrt{\lambda^2 + \lambda x} \right] + T_1 \phi(x, \lambda) \]
(2.7)

where, \(T_1 \) is the Volterra integral operator:

\[T_1 f(x) = \int_0^x \sin \sqrt{\lambda^2 + \lambda t} (x-t) e^{-i(t-x)} q(t) f(t) dt \]
(2.8)

Differentiating (2.7) and adding the result to \(i\lambda \phi(x, \lambda) \), we obtain:

\[\phi^{[1]}(x, \lambda) = e^{-izx} \left[-\sqrt{\lambda^2 + \lambda x} \sin \gamma \sin \sqrt{\lambda^2 + \lambda x} + \cos \gamma \cos \sqrt{\lambda^2 + \lambda x} \right] + T_1 \phi(x, \lambda) \]
(2.9)

Here \(T_1 \) is the Volterra integral operator:

\[T_1 f(x) = \int_0^x \cos \sqrt{\lambda^2 + \lambda t} (x-t) e^{-i(t-x)} q(t) f(t) dt \]
(2.10)

Define \(u(x, \lambda) \) and \(v(x, \lambda) \) to be:

\[u(x, \lambda) := T_1 \phi(x, \lambda), v(x, \lambda) := T_1 \phi(x, \lambda) \]
(2.11)

In the following, we shall make use of the estimates (Chadan and Sabatier, 1989):

\[\sqrt{\lambda + \mu} \leq \sqrt{\mu} + \sqrt{\lambda} \leq e^{|\mu|} \left[\frac{\sin z}{z} \right] \leq \frac{c_0}{1 + |\mu|} e^{|\mu|} \]
(2.12)

where, \(c_0 \) is some constant (we may take \(c_0 = 1.72 \) cf. (Chadan and Sabatier, 1989)). For convenience, we define the constants:

\[q_0 = \int_0^1 |q(t)| dt, c_1 = |\sin \gamma| + c_1 |\cos \gamma|, c_1 = c_0 q_0, c_1 = c_0 c_1, c_1 = c_0 c_1 \]
(2.13)
From (2.7) and (2.10), we have:

\[
\begin{align*}
 u(x, \lambda) &= \int_0^x \frac{\sin \sqrt{x^2 + \lambda}(x-t)}{\sqrt{x^2 + \lambda}} e^{-\alpha x} q(t) dt \\
 &= \int_0^x \frac{\sin \gamma \cos \sqrt{x^2 + \lambda} + \cos \gamma \sin \sqrt{x^2 + \lambda}}{\sqrt{x^2 + \lambda}} dt \\
 &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \int_0^x q(t) dt \frac{c_0(x-t)}{1 + \sqrt{x^2 + \lambda}}(x-t) \\
 &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \int_0^x q(t) dt \frac{c_0(x)}{1 + \sqrt{x^2 + \lambda}}x \\
 &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \frac{c_0 x}{1 + \sqrt{x^2 + \lambda}}x \\
\end{align*}
\]

(2.14)

Lemma 1: For \(\lambda \in \mathbb{C} \), the following estimates hold:

\[
|u(x, \lambda)| \leq \frac{c_0 c_1}{1 + \sqrt{x^2 + \lambda}} \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \quad (2.15)
\]

\[
|u(x, \lambda)| \leq \frac{c c_1}{1 + \sqrt{x^2 + \lambda}} e^{\frac{c}{2} |x|} \quad (2.16)
\]

Proof: Using the inequalities (2.12), we have for \(\lambda \in \mathbb{C} \):

\[
\begin{align*}
 \int_0^x \frac{\sin \sqrt{x^2 + \lambda}(x-t)}{\sqrt{x^2 + \lambda}} e^{-\alpha x} q(t) dt \\
 &= \int_0^x \frac{\sin \gamma \cos \sqrt{x^2 + \lambda} + \cos \gamma \sin \sqrt{x^2 + \lambda}}{\sqrt{x^2 + \lambda}} dt \\
 &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \int_0^x q(t) dt \frac{c_0(x-t)}{1 + \sqrt{x^2 + \lambda}}(x-t) \\
 &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \int_0^x q(t) dt \frac{c_0(x)}{1 + \sqrt{x^2 + \lambda}}x \\
 &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \frac{c_0 x}{1 + \sqrt{x^2 + \lambda}}x \\
\end{align*}
\]

(2.17)

On the other hand:

\[
\begin{align*}
 |u(x, \lambda)| &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \frac{c_0}{1 + \sqrt{x^2 + \lambda}}x \\
 &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \int_0^x q(t) dt \frac{c_0(x-t)}{1 + \sqrt{x^2 + \lambda}}(x-t) \\
 &\leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \int_0^x q(t) dt \frac{c_0(x)}{1 + \sqrt{x^2 + \lambda}}x \\
\end{align*}
\]

(2.18)

Combining (2.17) and (2.18) together with (2.14), we obtain for any complex \(\lambda \):

\[
|u(x, \lambda)| \leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \frac{c_0}{1 + \sqrt{x^2 + \lambda}}x \\
\]

(2.19)

The use of Gronwall's inequality, cf. (Eastham, 1970), yields, \(\lambda \in \mathbb{C} \):

\[
\exp(-((|\lambda| + |\sqrt{x^2 + \lambda}|) x))|u(x, \lambda)| \leq
\]

\[
\begin{align*}
 &\left[\int_0^x q(t) dt \frac{c_0(x-t)}{1 + \sqrt{x^2 + \lambda}}(x-t) \right] \exp(c_0 \int_0^x q(t) dt) \\
 &\leq \left[\int_0^x q(t) dt \frac{c_0(x)}{1 + \sqrt{x^2 + \lambda}}x \right] \exp(c_0 \int_0^x q(t) dt) \\
\end{align*}
\]

Therefore:

\[
|u(x, \lambda)| \leq \exp((|\lambda| + |\sqrt{x^2 + \lambda}|) x) \frac{c_0}{1 + \sqrt{x^2 + \lambda}}x \\
\]

The use of Gronwall's inequality, cf. (Eastham, 1970), yields, \(\lambda \in \mathbb{C} \):

\[
\exp(-((|\lambda| + |\sqrt{x^2 + \lambda}|) x))|u(x, \lambda)| \leq
\]

\[
\begin{align*}
 &\left[\int_0^x q(t) dt \frac{c_0(x-t)}{1 + \sqrt{x^2 + \lambda}}(x-t) \right] \exp(c_0 \int_0^x q(t) dt) \\
 &\leq \left[\int_0^x q(t) dt \frac{c_0(x)}{1 + \sqrt{x^2 + \lambda}}x \right] \exp(c_0 \int_0^x q(t) dt) \\
\end{align*}
\]
From (2.12), we get, for \(\lambda \in \mathbb{C} \):

\[
\sqrt{\lambda^2 + \lambda} = \sqrt{\left(\lambda + \frac{1}{2}\right) + \left(-\frac{1}{4}\right)} \leq \sqrt{\left(\lambda + \frac{1}{2}\right) + 1}
\]

\[
= \lambda + 1 \leq \lambda + 1
\]

Then from the previous inequality together with (2.15), we get (2.16).

Also, from (2.7) and (2.11), we have:

\[
v(x, \lambda) = \int_0^1 \cos \sqrt{\lambda^2 + \lambda}(x - t)e^{-itq}dt
\]

\[
+ \int_0^1 \sin \sqrt{\lambda^2 + \lambda}x e^{-itq}u(t, \lambda)dt
\]

(2.20)

Hence, by using (2.12), we have the following estimates.

Lemma 2: For \(\lambda \in \mathbb{C} \), the following estimates hold:

\[
|v(x, \lambda)| \leq (q, c_4 + c_5) \exp(\left(3\lambda^2 + \lambda\right)x)
\]

(2.21)

\[
|v(x, \lambda)| \leq c(q, c_4, c_5)e^{|x|}
\]

(2.22)

Proof: Using the inequalities (2.12), we have for \(\lambda \in \mathbb{C} \):

\[
\int_0^1 \cos \sqrt{\lambda^2 + \lambda}(x - t)e^{-itq}dt
\]

\[
\leq \exp(\left|3\lambda^2 + \lambda\right|x) \int_0^1 |q(t)| dt
\]

\[
\left|\sin \sqrt{\lambda^2 + \lambda}x + \frac{c_4}{1 + \sqrt{\lambda^2 + \lambda}}\right| dt
\]

\[
\leq \exp(\left|3\lambda^2 + \lambda\right|x) \int_0^1 q(t) dt
\]

(2.23)

Also, from (2.15), we have:

\[
\int_0^1 \cos \sqrt{\lambda^2 + \lambda}(x - t)e^{-itq}u(t, \lambda)dt \leq \frac{c_c c_s}{1 + \sqrt{\lambda^2 + \lambda}} \exp(\left|3\lambda^2 + \lambda\right|x) \]

(2.24)

Combining (2.23) and (2.24) together with (2.20), we obtain for any complex \(\lambda \):

\[
|v(x, \lambda)| \leq \exp(\left|3\lambda^2 + \lambda\right|x) \int_0^1 |q(t)||\sin \gamma| + |\cos \gamma|c_s,t| dt
\]

(2.25)

The rest of the proof can be accomplished as in the previous lemma.

The method and error bounds: In this section we derive the method of computing eigenvalues of problem (2.1-2.3) numerically. The basic idea of the scheme is to split \(\Delta(\lambda) \) into two parts:

\[
\Delta(\lambda) := G(\lambda) + S(\lambda)
\]

(3.1)

where, \(S(\lambda) \) is the unknown part:

\[
S(\lambda) := \cos \delta u(1, \lambda) + \sin \delta v(1, \lambda)
\]

(3.2)

and \(G(\Delta) \) is the known part:

\[
G(\lambda) := \exp \left(-\lambda^2 - \lambda\right) \left[\cos \delta \sin \gamma + \sin \delta \cos \gamma \right] \sin \sqrt{\lambda^2 + \lambda} + \left[\cos \delta \cos \gamma - \sin \delta \sin \gamma \right] \sin \sqrt{\lambda^2 + \lambda} \]

(3.3)

Then, from Lemma 2.1 and Lemma 2.2, we have the following lemma.

Lemma 3: The function \(S(\lambda) \) is entire in \(\lambda \) for each \(x \in [0, 1] \) and the following estimates hold:

\[
|S(\lambda)| \leq c_e \exp(\left|3\lambda^2 + \lambda\right|x)
\]

(3.4)

\[
|S(\lambda)| \leq ec_4 e^{|x|}
\]

(3.5)

Proof: Since:

\[
|S(\lambda)| \leq \left|\cos \delta\right|u(1, \lambda) + \left|\sin \delta\right|v(1, \lambda)
\]

(3.6)
Table 2: Observe that $\lambda_{k,N}$ and the exact solution λ_k are all inside the interval $[a-, a+]$ when $N = 40$, $m = 20$ and $\theta = 1/10$

λ_k	Exact λ_k	a_-	a_+	$\lambda_{k,N}$
λ_{-2}	-6.842613403785793	-6.842477722988150	-6.842477722988150	-6.8426134037858080
λ_{-1}	-3.7586220927015312	-3.758980937270120	-3.758980937270120	-3.7586220927015312
λ_0	2.758605094490024	2.758605094490024	2.758605094490024	2.758605094490024
λ_1	5.842613403785775	5.842613403785775	5.842613403785775	5.842613403785775
λ_2	8.964493358995961	8.964493358995961	8.964493358995961	8.964493358995961

Table 3: Observe that $\lambda_{k,N}$ and the exact solution λ_k are all inside the interval $[a-, a+]$ when $N = 30$, $m = 8$ and $\theta = 1/11$

λ_k	Exact λ_k	a_-	a_+	$\lambda_{k,N}$
λ_{-2}	-3.7419233725545210	-3.74237866791672640	-3.741469122061940000	-3.7419233725545240
λ_{-1}	-1.2582490364604133	-1.25859144578689120	-1.25790866905852680	-1.2582490364604058
λ_0	0.2582490364604128	0.25749078764309463	0.25901052779376754	0.2582490364603885
λ_1	2.7419233725545210	2.74136528771669540	2.74248197201602740	2.7419233725545240
λ_2	5.8305081032590080	5.830427794153775000	5.830588592049987000	5.8305081032590140

then from (2.15) and (2.21), we get:

$$|S(\lambda)| \leq \cos \frac{c_1 c_2}{1 + \sqrt{\lambda^2 + \lambda}} \cdot \exp((\Im \lambda + \Im \lambda + \lambda)) +$$

leading to (3.4). Also, from (2.16), (2.22) and (3.6) we obtain (3.5).

Let $\theta \in (0, 1)$ and $m \in \mathbb{Z}^+$, $m \geq 1$ be fixed. Let $G_\theta,m(\lambda)$ be the function:

$$G_\theta,m(\lambda) := \left(\frac{\sin \theta^2 \lambda}{\lambda} \right)^m S(\lambda), \lambda \in \mathbb{C}$$

The number θ will be specified latter. The number 1 is the smallest positive integer that suites our investigation as is seen in the next lemma.

Lemma 4: $F_{\theta,m}(\lambda)$ is an entire function of λ which satisfy the estimates:

$$|F_{\theta,m}(\lambda)| \leq \frac{c_0 c_m}{(1 + \theta \lambda)^m} \exp((\Im \lambda (1 + m\theta) + \Im \lambda (1 + \lambda))$$

Moreover, $\lambda^{m^{-1}} F_{\theta,m}(\lambda) \in L^1(\mathbb{R})$ and:

$$E_{m^{-1}}(F_{\theta,m}) = \int_{-\infty}^{\infty} |\lambda|^{-m} F_{\theta,m}(\lambda) d\lambda \leq c_0 c_m \nu_0$$

Where:

$$\nu_0 = \sqrt{(1 + \theta m \lambda)^{2m-2}} + \int_{-\infty}^{\infty} \left|\lambda^{m^{-1}} F_{\theta,m}(\lambda)\right|^2 d\lambda \leq c_0 c_m^2$$

Proof: Since $S(\lambda)$ is entire, then also $F_{\theta,m}(\lambda)$ is entire in λ. Combining the estimates $|\sin z| \leq c_0, \left|\frac{1}{1 + \theta \lambda}\right| \leq c_m$, where $c_0 = 1.72$, cf. (Chadan and Sabatier, 1989) and (3.4), we obtain:

$$\left|F_{\theta,m}(\lambda)\right| \leq \frac{c_0 c_m}{(1 + \theta \lambda)^m} \exp((\Im \lambda + \Im \lambda + \lambda))$$

leading to (3.9). Also, as the above lemmas, we can prove (3.10). Therefore if $\lambda \in (-\infty, -1) \cup (0, \infty)$, we have:

$$\left|\lambda^{m^{-1}} F_{\theta,m}(\lambda)\right| \leq c_0 c_m \left|\frac{1}{1 + \theta \lambda}\right|$$

and from which:

$$\int_{-\infty}^{\infty} \left|\lambda^{m^{-1}} F_{\theta,m}(\lambda)\right|^2 d\lambda \leq c_0 c_m^2$$

Then $\lambda^{m^{-1}} F_{\theta,m}(\lambda) \in L^1(\mathbb{R})$ and by calculating the integrals we obtain (3.11).

What we have just proved is that $F_{\theta,m}(\lambda)$ belongs to the Paley-Wiener space PW^σ_θ with $\sigma = 2 + m\theta$.

Table 4: Observe that $\lambda_{k,N}$ and the exact solution λ_k are all inside the interval $[a-, a+]$ when $N = 30$, $m = 5$ and $\theta = 2/25$

k	Exact λ_k	a_-	a_+	$\lambda_{k,N}$
λ_2	-3.741923725545210	-3.7402908191575300	-3.7402908191575300	-3.7419237255545210
λ_1	-1.2582490364604133	-1.25732395370185630	-1.25732395370185630	-1.2582490364604133
λ_0	0.2582490364604128	0.2539975606237622	0.2539975606237622	0.2582490364604128
λ_1	2.741923725545210	2.7408673846710445	2.7408673846710445	2.7419237255545210
λ_2	5.8305081032590080	5.8265514673283900	5.8265514673283900	5.8305081032150110

Hence, $F_{\theta,m}(\lambda)$ can be recovered from its values at the points $\lambda_n = \frac{n\pi}{\sigma}, n \in \mathbb{Z}$ via the sampling expansion:

$$F_{\theta,m}(\lambda) := \sum_{n=-\infty}^{\infty} F_{\theta,m}(\frac{n\pi}{\sigma}) \sin(\sigma\lambda - n\pi)$$ \hspace{1cm} (3.15)

Let $N \in \mathbb{Z}^+, N > m$ and approximate $F_{\theta,m}(\theta)$ by its truncated series $F_{\theta,m,N}(\lambda)$, where:

$$F_{\theta,m}(\lambda) := \sum_{n=-N}^{N} F_{\theta,m}(\frac{n\pi}{\sigma}) \sin(\sigma\lambda - n\pi)$$ \hspace{1cm} (3.16)

Since $\lambda^{m-1} F_{\theta,m}(\lambda) \in L^1(\mathbb{R})$, the truncation error is given for $|\lambda| < \frac{N\pi}{\sigma}$ by:

$$|F_{\theta,m}(\lambda) - F_{\theta,m,N}(\lambda)| \leq T_N(\lambda)$$ \hspace{1cm} (3.17)

Where:

$$T_N(\lambda) = \frac{E_{N+1}(F_{\theta,m})}{\sqrt{1 - 4^{-m+1} \pi^2 / \sigma^2}} \left[\frac{1}{N\pi / \sigma - \lambda} + \frac{1}{\sqrt{N\pi / \sigma + \lambda}} \right]$$ \hspace{1cm} (3.18)

Let:

$$\Delta_{\theta} = G(\lambda) + \left(\frac{\sin \theta \lambda}{\theta \lambda} \right)^m F_{\theta,m,N}(\lambda)$$

Then (3.17) implies:

$$|\Delta_{\theta} - \Delta_{\theta}(\lambda)| \leq \left| \frac{\sin \theta \lambda}{\theta \lambda} \right|^m T_N(\lambda), |\lambda| < \frac{N\pi}{\sigma}$$ \hspace{1cm} (3.19)

and θ is chosen sufficiently small for which $|\theta \lambda| < \pi$.

Let λ^* be an eigenvalue, that is:

$$\Delta(\lambda^*) = G(\lambda^*) + \left(\frac{\sin \theta \lambda^*}{\theta \lambda^*} \right)^m F_{\theta,m}(\lambda^*) = 0$$

Then it follows that:

$$G(\lambda^*) + \left(\frac{\sin \theta \lambda^*}{\theta \lambda^*} \right)^m F_{\theta,m,N}(\lambda^*) = \left(\frac{\sin \theta \lambda^*}{\theta \lambda^*} \right)^m$$

and so:

$$|G(\lambda^*) + \left(\frac{\sin \theta \lambda^*}{\theta \lambda^*} \right)^m F_{\theta,m,N}(\lambda^*)| \leq \left| \frac{\sin \theta \lambda^*}{\theta \lambda^*} \right|^m T_N(\lambda^*)$$

Since $G(\lambda^*) + \left(\frac{\sin \theta \lambda^*}{\theta \lambda^*} \right)^m F_{\theta,m,N}(\lambda^*)$ is given and, $\left| \frac{\sin \theta \lambda^*}{\theta \lambda^*} \right|^m T_N(\lambda^*)$ has computable upper bound, we can define an enclosure for λ^*, by solving the following system of inequalities:

$$F_{\theta,m,N}(\lambda^*) \leq \left| \frac{\sin \theta \lambda^*}{\theta \lambda^*} \right|^m T_N(\lambda^*)$$ \hspace{1cm} (3.20)

Its solution is an interval containing λ^* and over which the graph $G(\lambda^*) + \left(\frac{\sin \theta \lambda^*}{\theta \lambda^*} \right)^m F_{\theta,m,N}(\lambda^*)$ is trapped between the graphs:

$$\left| \frac{\sin \theta \lambda^*}{\theta \lambda^*} \right|^m T_N(\lambda^*) \text{ and } \left| \frac{\sin \theta \lambda^*}{\theta \lambda^*} \right|^m T_N(\lambda^*)$$

Use the fact that $F_{\theta,m,N}(\lambda) \to F_{\theta,m}(\lambda)$ converges uniformly over any compact set and since λ^* is a simple root, we obtain for large N:

$$\frac{\partial}{\partial \lambda} \left(G(\lambda) + \frac{\sin \theta \lambda}{\theta \lambda} \right)^m F_{\theta,m,N}(\lambda) = 0$$
Fig. 1: $\Delta(\lambda), \Delta_N(\lambda)$ with $N = 40, m = 10$ and $\theta = 1/15$

in a neighborhood of λ^*. Hence the graph of

$$G(\lambda) + \left(\sin \frac{\theta \lambda}{\theta \lambda} \right)^{-m} F_{0,m,N}(\lambda) = 0$$

say, in a neighborhood of λ^*. Now we choose N_0 such that:

$$G(\lambda) + \left(\sin \frac{\theta \lambda}{\theta \lambda} \right)^{-m} F_{0,m,N}(\lambda) = 0$$

has two distinct solutions which we denote by $a(\lambda^*, N_0)$ and $a(\lambda^*, N_0)$ as $N \to \infty$. For the second point we recall that $F_{0,m,N}(\lambda) \to F_{0,m}(\lambda)$ as $N \to \infty$. Hence by taking the limit we obtain:

$$G(a(\lambda^*, \infty)) + \left(\sin \frac{\theta \lambda}{\theta \lambda} \right)^{-m} F_{0,m}(a(\lambda^*, \infty)) = 0$$

that is $\Delta(a_1) = \Delta(a_2) = 0$. This leads us to conclude that $a_1 = a_2 = \lambda^*$, since λ^* is a simple root.

Examples: In this section, we now illustrate the above theory by looking at two simple examples where eigenvalue enclosures are obtained. We also indicate the effect of the parameters m and γ by several choices. Both numerical results and the associated figures prove the credibility of the method. In the following examples, we consider $\lambda_{k,N}$ to be the kth root of $G(\lambda) + \left(\sin \frac{\theta \lambda}{\theta \lambda} \right)^{-m} F_{0,m,N}(\lambda) = 0$. Also, in the following examples, we observe that $\lambda_{k,N}$ and the exact solution λ^* are all inside the interval $[a_-, a_+]$.

Example 1: Consider the boundary value problem:

$$-\frac{d}{dx} \left(\frac{\sin \lambda x}{\lambda x} \right) y(x) + \lambda \frac{\sin \lambda x}{\lambda x} y(x) = 0, \quad 0 \leq x \leq 1 \quad (4.1)$$

$$U_i(y) := y(0, \lambda) = 0, \quad U_j(y) := y(1, \lambda) = 0 \quad (4.2)$$

This problem is a special case of problem (2.1-2.3) when $q(x) = x, \delta = \gamma = 0$. After some easy calculations:

$$G(\lambda) := \frac{\sin \sqrt{\lambda} + \lambda}{\sqrt{\lambda} + \lambda^2} \quad (4.3)$$
Example 2: Consider the boundary value problem:

\[-y''(x, \lambda) + x^2y(x, \lambda) = \lambda(2iy'(x, \lambda) + y(x, \lambda)), 0 \leq x \leq 1\]

\[U_i(y) := y'(0, \lambda) + i\delta y(0, \lambda) = 0, \quad U_j(y) := y'(1, \lambda) + i\delta y(1, \lambda) = 0\] \hspace{1cm} (4.5)

This problem is a special case of problem (2.1-2.3) when \(q(x) = x^2, \delta = \gamma = \frac{\pi}{2}\). After some easy calculations:

\[G(\lambda) := -\sqrt{\lambda + \lambda^2} \sin \sqrt{\lambda + \lambda^2}\] \hspace{1cm} (4.6)

CONCLUSION

In this study, we have used the regularized sampling method introduced recently (Chadan and Sabatier, 1989) to compute the eigenvalues of second-order operator pencil of the form \(Q-\lambda P\), where \(Q\) is second order self adjoint differential operator and \(P\) is a first order and \(\lambda \in \mathbb{C}\) is an eigenvalue parameter. We recall that this method constitutes an improvement upon the method based on Shannon’s sampling theory introduced in (Boumenir, 1999) since it uses a regularization avoiding any multiple integration. The method allows us to get higher order estimates of the eigenvalues at a very low cost. We have presented two examples to illustrate the method and compared the computed eigenvalues with the exact ones when they are available. In these examples we observed, in Tables 1-4, that \(\lambda_{k,N}\) and the exact solution \(\lambda_k\) are all inside the enclosure interval \([a-, a+]\), and also we illustrated, in Fig. 1-4, a slight different between \(\Delta(\lambda)\) and \(\Delta_N(\lambda)\) for different values of \(N, m, \theta\).

REFERENCES

Boumenir, A., 1999. Eigenvalues of a periodic Sturm-Liouville problems by the Shannon-Whittaker sampling theorem. Math. Comput., 68:, 1057-1066. Doi: 10.1090/S0025-5718-99-01053-4

Boumenir, A., 2000a. Higher approximation of eigenvalues by the sampling method, BIT J., 40: 215-225. DOI: 10.1023/A:1022334806027

Boumenir, A., 2000b. The sampling method for Sturm-Liouville problems with the eigenvalue parameter in the boundary condition. Numer. Funct. Anal. Optim., 21: 67-75. DOI: 10.1080/01630560008816940

Butzer, P.L., G. Schmeisser and R.L. Stens, 2001. An Introduction to Sampling Analysis. In: Non Uniform Sampling: Theory and Practices, Marvasti, F. (Ed.). Kluwer, New York, pp: 17-121.

Chadan, K. and P.C. Sabatier, 1989. Inverse Problems in Quantum Scattering Theory. 2nd Edn., Springer-Verlag, California, ISBN-10: 0387187316, pp: 499.

Chanane, B., 1999. Computing eigenvalues of regular Sturm-Liouville problems, Applied Math. Lett., 12: 119-125. DOI: 10.1016/S0893-9659(99)00111-1
Chanane, B., 2005. Computation of the eigenvalues of Sturm-Liouville problems with parameter dependent boundary conditions using the regularized sampling method. Math. Comput., 74: 1793-1801. DOI: 10.1090/S0025-5718-05-01717-5

Eastham, M.S.P., 1970. Theory of Ordinary Differential Equations. 1st Edn., Van Nostrand Reinhold, London, ISBN-10: 0442022174, pp: 116.

Jagerman, D., 1966. Bounds for truncation error of the sampling expansion, SIAM. J. Applied Math., 14: 714-723. DOI: 10.1137/0114060

Langer, H., R. Mennicken and C. Tretter, 1966. A self adjoint linear pencil Q-λP of ordinary differential operators. Methods Funct. Anal. Topol., 2: 38-54. http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4290552/Annaby_and_Tharwan.pdf

Lund, J. and K.L. Bowers, 1987. Sinc Methods for Quadrature and Differential Equations.1st Edn., Society for Industrial Mathematics, Philadelphia, SBIN-10: 089871298X, pp: 314.

Shannon, C.E, 1949. Communication in the presence of noise. Proc. IRE, 37: 10-21. DOI: 10.1109/JRPROC.1949.232969

Stenger, F., 1981. Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev., 23: 165-224. DOI: 10.1137/1023037

Stenger, F., 1993. Numerical Methods Based on Sinc and Analytic Functions. 1st Edn., Springer-Verlag, New York, ISBN-10: 0387940081, pp: 565.

Whittaker, E.T., 1915. On the functions which are represented by the expansion of the interpolation theory. Proc. Roy. Soc. Edin., Sec. Edinburgh, 35: 181-194.

http://www.maa.org/pubs/Calc_articles/ma003.pdf

Zayed, A.I., 1993. Advances in Shannon’s Sampling Theory. 1st Edn., CRC Press, Boca Raton, ISBN-10: 0849342937, pp: 334.