DNA-Mediated Excitonic Upconversion FRET Switching

Donald L. Kellis
Boise State University

Sarah M. Rehn
Boise State University

Brittany L. Cannon
Boise State University

Paul H. Davis
Boise State University

Elton Graugnard
Boise State University

See next page for additional authors

Publication Information
Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; and Knowlton, William B. (2015). "DNA-Mediated Excitonic Upconversion FRET Switching". New Journal of Physics, 17, 115007-1 - 115007-11. https://doi.org/10.1088/1367-2630/17/11/115007

This is an author-created, un-copyedited version of an article published in New Journal of Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.1088/1367-2630/17/11/115007
Authors
Donald L. Kellis, Sarah M. Rehn, Brittany L. Cannon, Paul H. Davis, Elton Graugnard, Jeunghoon Lee, Bernard Yurke, and William B. Knowlton

This article is available at ScholarWorks: https://scholarworks.boisestate.edu/mse_facpubs/249
DNA-mediated excitonic upconversion FRET switching

Donald L Kellis¹, Sarah M Rehn², Brittany L Cannon¹, Paul H Davis¹, Elton Graugnard¹, Jeunghoon Lee¹,², Bernard Yurke¹ and William B Knowlton¹,³

¹ Department of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
² Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
³ Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA

E-mail: jeunghoonlee@boisestate.edu, bernardyurke@boisestate.edu and bknowlton@boisestate.edu

Keywords: upconverting nanoparticles, FRET, DNA nanotechnology, excitons, strand displacement, excitonic switch

Supplementary material for this article is available online

Abstract

Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy upconversion via upconversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based upconversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an upconversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy upconversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy upconversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.

1. Introduction

In many nanophotonic systems, excitons are funneled down an energy gradient created by an array of fluorophores possessing successively lower excitation energies. Examples of such excitonic systems include light harvesting antennae in higher plants [1, 2], certain bacteria [3, 4], synthetic waveguides [5, 6], switches, and logic gates [7–9]. The energy is degraded due to losses at each step in the exciton transfer process, limiting the performance of exciton funnels. This degradation raises the question of whether the exciton funnel performance can be improved via an upconversion process in which two excitons combine to form a single exciton of higher energy, thus rejuvenating the exciton energy. Indeed, nature appears to have taken this approach, as energy upconversion has been observed in the energy transfer pathways present within the Fenna–Mathews–Olson [10–12] complexes of natural photosynthetic systems [13, 14]. Optical upconversion also occurs in lanthanide-doped materials such as NaYF₄:Gd³⁺, Yb³⁺, Er³⁺, both in bulk solid crystals and nanoparticles; however, the upconversion process in these materials differs mechanistically from the natural upconversion phenomenon [15, 16]. Although inherently inefficient, the efficiencies of upconversion nanoparticles (UCNPs) continue to improve [17], which offers an opportunity to pursue energy upconversion in artificial excitonic systems including excitonic wires, switches, and light harvesting antennae. UCNPs are being explored in the biomedical field as alternatives or supplements to current imaging agents, bioassays, and drug delivery modalities because of their narrow bandwidth emission, near zero autofluorescence, low toxicity, deep tissue penetrating near infrared (NIR) excitation, and minimal photobleaching [16, 18–24]. Additionally, UCNPs are currently studied as potential components in optoelectronic applications such as light-emitting diodes [25], fluorescent lighting [26], telecommunications [27], security coatings [23, 24], and photovoltaic devices [28, 29]. Further
development of UCNP systems may provide significant advancements in these nanomedicine and optoelectronics applications.

Combining optical upconversion and Förster resonance energy transfer (FRET) can create new hybrid UCNP systems affording production of novel bioanalytical tools [30] and improve device functionality in optoelectronics applications [31, 32]. Upconversion in lanthanide-doped nanoparticles is a nonlinear optical phenomenon achieved through the excitation of rare earth ions by two or more lower energy NIR photons, resulting in multistep electronic transitions followed by higher energy visible photon emission [27, 33, 34]. FRET is excitonic energy transfer on the nanometer scale between donor and acceptor molecules mediated by dipole–dipole coupling [35, 36]. The acceptor molecule need not be a fluorophore, and the energy transferred need not be radiated as fluorescence [37–39]. Though there are multiple ways in which combined upconversion and FRET systems can be constructed, here the focus will be on FRET between a UCNP donor and an acceptor fluorophore. During FRET, the UCNP non-radiatively transfers its energy via dipole–dipole interactions (FRET) to an acceptor molecule (fluorophore). This process results in emission of a photon from the acceptor.

**Figure 1.** Schematic illustration of optical upconversion followed by FRET for a donor (UCNP)/acceptor (fluorophore) pair. The donor UCNP undergoes a multi-step energy transition upon low energy near infrared (NIR) excitation as detailed in various review publications [15–17, 27, 33, 41]. Upon relaxation to the ground state, the UCNP non-radiatively transfers its energy via dipole–dipole interactions (FRET) to an acceptor molecule (fluorophore). This process results in emission of a photon from the acceptor.
lies in the NIR spectrum, while the acceptor fluorophore excitation is in the visible. As a result, the incident UCNP excitation photons do not have sufficient energy to directly excite the acceptor fluorophore. Figure 2(b) shows the relevant absorption and emission spectra of the FRET system components used in this study (i.e., spectral overlap). This system is composed of an upconverting NaYF₄ nanoparticle donor doped with Gd³⁺, Yb³⁺, and Er³⁺ and a 6-carboxy-X-rhodamine (ROX) fluorophore acceptor bound to the UCNP via a hybridized DNA tether. Nanoparticle information, DNA sequences, and fluorophore details are provided in supplementary material S1. The low wavelength absorbance shoulder of the ROX acceptor coincides well with the emission peaks of the UCNP donor in the range of 515–562 nm, which provides adequate spectral overlap for FRET. Furthermore, cross-talk is minimized as the acceptor emission peak lies in a longer wavelength region than the donor emission resulting in virtually no cross-talk at the 608 nm peak ROX acceptor emission wavelength. It should be noted that some attenuation of the UCNP fluorescence in the range of 515–562 nm occurs when ROX is introduced, which will be discussed later. There is also potential cross-talk between the donor and acceptor in the 645–675 nm range; however, this spectral region falls well outside the spectral overlap region and does not contribute to the FRET. Thus, the unique optical properties of the UCNP donor and choice of ROX as the acceptor allow clear observation of donor quenching and acceptor emission in the spectral data.

There have been several reports of UCNP-fluorophore FRET systems [44–49], which have also been referred to as energy transfer [18, 50] or luminescence resonance energy transfer systems [51–56]. To the best of our knowledge, published investigations of UCNP-fluorophore FRET systems have primarily demonstrated one aspect of the FRET process, namely donor quenching [57–60], accompanied by a nominal increase in acceptor molecule emission suggesting an inefficient FRET process. In order for potential optoelectronic applications of UCNP-fluorophore FRET-based constructs, realization of higher efficiency FRET (figure 2(a)), in which both donor quenching and acceptor emission are significant, is an essential challenge that must be addressed.
2. Materials and methods

To address the primary challenge of hydrophobicity of as-synthesized lanthanide-doped UCNPs, biofunctionalization techniques [18] have been used such as PEGylation [61], oxidation [50], phospholipid coating [44], recombinant antibody fragment coating [46], aminoethyl dihydrogen phosphate [49], citrate capping [60], polyacrylic acid [62], streptavidin coating [53, 63], and silica shell growth [45, 64, 65]. These UCNPs modification methods enable the use of acceptor molecules currently employed in the FRET process; however, these techniques potentially increase the UCNPs dimensions [44] resulting in greater donor–acceptor pair separation distances, which decreases the FRET efficiency [58, 66]. Additionally, typical biofunctionalization methods, such as covalent lectin binding [57], covalent biotinylation [49, 50, 53, 63, 64], fluorophore incorporation within hydrophilic coatings [44, 61, 67, 68], amino group conjugation [45, 58], stain intercalation [52], covalent DNA immobilization [60], and covalent sulphydryl linkage [69] involve multi-step processes. These multi-step biofunctionalization processes reduce overall yield and add complications to the UCNPs preparation. Recently, a simple single-step ligand exchange method was reported by Li et al [70], in which single stranded DNA (ssDNA) was directly attached to the UCNPs in a one step process, producing hydrophilic, monodispersed UCNPs for salt concentrations ranging from 5 to 100 mM. Subsequently, they were able to selectively attach a variety of ssDNA functionalized particles such as gold nanoparticles (AuNPs), Cy3 fluorophores, and cell targeting aptamers via Watson–Crick [71] hybridization to the available ssDNA. We believe this ssDNA functionalization method is advantageous for UCNPs-based excitonic FRET because not only is it a single-step process, but additionally it reduces the donor–acceptor pair separation distance, thereby enhancing their FRET efficiency. Moreover, ssDNA functionalization enables the modulation of FRET through toehold-mediated strand-displacement reactions [42] when invasion (INV) and restoration (RES) ssDNA strands are introduced to perform UCNPs-based FRET excitonic switching.

To explore the possibility of DNA-mediated UCNP-fluorophore FRET switching, four distinct challenges needed to be addressed: (i) rendering the hydrophobic UCNPs hydrophilic, (ii) functionalizing the hydrophilic UCNPs using the ssDNA biofunctionalization method, (iii) devising a FRET system, and (iv) designing a strand displacement sequence. Oleic acid capped, hydrophobic UCNPs were rendered both hydrophilic and functionalized with ssDNA, denoted as UCNPs, via the one step ssDNA biofunctionalization method demonstrated by Li et al [70], as described in the supplementary material S2. In addition to imparting hydrophilicity, the ssDNA on the UCNPs surface serve as tethers to which complementary ROX-functionalized ssDNA oligomers can hybridize. ROX was chosen as the acceptor because it can be readily attached to ssDNA and it provides adequate spectral overlap with the donor as discussed previously (figure 2(b)). The base sequences for the DNA strands involved in toehold-mediated strand displacement were designed using UNIQUIMER [72] software. UNIQUIMER employs random ssDNA sequence generation combined with parameters to control base pair (bp) length, complementarity, and C-G content of each strand. Thermodynamic analysis using the web-based NUPACK [73] program determined the free energy changes as each DNA oligomer (ROX, INV, or RES) hybridizes to its complement.

The scheme that was implemented to control the FRET between ssDNA functionalized UCNPs and the ROX fluorophore is illustrated in figure 3. The ROX fluorophore is covalently attached to a ssDNA oligomer complementary to a portion of the UCNPs ssDNA sequence; this ROX-DNA pair is referred to as ROX. Figure 3 (1) shows the UCNPs in the ‘OFF’ state where no ROX emission is observed. Switching to the ‘ON’ state occurs when the ROX oligomer hybridizes to the tether on the UCNPs as shown in (2). Here, the hybridization of the ROX strand to a 10 nucleotide (nt) toehold binding region (TH) on the UCNPs tether holds the ROX fluorophore in proximity to the UCNPs enabling FRET and the consequent ROX emission. Switching to the ‘OFF’ state is accomplished by displacement of the ROX oligomer from the donor with the introduction of a 22 nt invasion (INV) strand (3). Finally, restoration of the ROX strand to the UCNPs, and thus reestablishing the ‘ON’ state, is achieved by addition of a 17 nt restoration (RES) strand displacing ROX by preferentially hybridizing with the INV strand (4). The process can be iterated to reversibly switch the system between the ‘ON’ and ‘OFF’ states (5). For the experiments described in this paper, the concentration of available DNA tethers was estimated to be ~4 μM using the procedure described in supplementary material S2.3.

3. Results and discussion

The state of the FRET system was monitored in two ways after each switching event via fluorescence spectroscopy under conditions of continuous 980 nm excitation (instrumentation details provided in supplementary material S3). The emission intensity of the donor and the acceptor were acquired as a function of wavelength and time; the latter was performed at the peak emission wavelength of the ROX acceptor (608 nm). Figure 4 shows the normalized fluorescence spectra obtained for the ‘OFF’ and ‘ON’ states before and after
addition of INV and RES strands to induce one cycle of excitonic switching. The normalization process is described further in supplementary material S4. As a control, the initial emission spectrum of the UCNP in the absence of ROX strand is shown as the black curve in figure 4.

Figure 4. Normalized emission spectra of functionalized UCNPs under continuous 980 nm excitation. Hybridization of the ROX acceptor strand (step 2, figure 3) produced a decrease in the UCNP emission peaks in the range of 515–562 nm coupled with a simultaneous increase in the ROX emission (red trace) in the range of 580–630 nm. Introduction of the ROX invasion strand (step 3, figure 3) induced a reduction of FRET (blue trace). Subsequent addition of the ROX restoration strand (step 4, figure 3) increased ROX emission (green trace), a signature of increased FRET and a demonstration of excitonic upconversion FRET switching. Spectra were collected approximately 30 min post interaction with the indicated strand. Interaction time is well beyond the calculated time to half completion of 120 ± 40 and 500 ± 120 s for the ‘ON’ and ‘OFF’ states, respectively, as described in the supplementary material S6.

addition of INV and RES strands to induce one cycle of excitonic switching. The normalization process is described further in supplementary material S4. As a control, the initial emission spectrum of the UCNP in the absence of ROX strand is shown as the black curve in figure 4.

The red curve in figure 4 shows that once the ROX strand attaches to the UCNP, a clear decrease in the donor emission peaks in the range of 515–562 nm and a concomitant increase in the acceptor emission in the range of 580–630 nm, indicating FRET from the donor (upper inset) to the acceptor (lower inset). To our knowledge, such a significant and pronounced increase in acceptor fluorescence has not been previously observed in the published studies of lanthanide-doped UCNPs [44, 45, 50, 60, 61]. In these prior works, acceptor emission was either not observed or was nominal. We attribute the clear acceptor emission increase demonstrated in figure 4 to the shorter donor–acceptor (i.e., UCNP to ROX) distance arising from the direct
DNA functionalization method [70]. Although removal of the ROXₘ (step 3, figure 3) by addition of INV strand only resulted in partial recovery of the donor emission peaks in the range of 515–562 nm to their original values, a simultaneous significant reduction (i.e., quenching) in the 608 nm acceptor emission peak was noted (lower inset blue curve). The partial recovery of the donor emission peaks in the range of 515–562 nm is most likely due to the incomplete removal of ROXₘ from the UCNPₐ, as evidenced by the incomplete quenching of the 608 nm acceptor emission. Analysis of the area containing the donor emission peaks was performed by integrating from 500 to 562 nm and revealed values consistent with expected changes (supplementary material S13). The subsequent addition of the ROX restoration strand (step 4, figure 3) returns the ROXₘ emission to the values of the green curve indicated in figure 4. To demonstrate the repeatability of this switching, the ‘OFF–ON’ cycle was iterated again resulting in spectra similar to the blue and green curves in figure 4 (raw emission spectra of all three cycles are provided in supplementary material S5).

Isothermal dynamic switching of FRET between UCNPₐ and ROXₘ (i.e., induced acceptor emission changes at 608 nm as a function of time) is further highlighted in figures 5(a) and (b), which shows a series of successive switching events. Sequential and reversible switching between ‘ON’ and ‘OFF’ states is clearly demonstrated as evident by the saw-tooth pattern of figure 5(a), which is averaged over three trials. Stoichiometric dynamic switching was performed on 30 min intervals, figure 5(b). The average time to half-completion, as modeled by second-order kinetics for attachment (‘ON’ state) and removal (‘OFF’ state) of the ROXₘ to the UCNPₐ, were calculated to be 120 ± 40 s and 500 ± 120 s, respectively, at ~80 μM concentrations (data provided in supplementary material S6). As noted in figure 4 and observed in figures 5(a) and (b), the ROXₘ emission at 608 nm does not return to zero in the ‘OFF’ state, which can most likely be attributed to the incomplete removal of the ROXₘ strand from the UCNPₐ as discussed earlier. Except for the acceptor emission data (figures 4 and 5) in which the INV and RES strands were added in 1:1 stoichiometry, the acceptor emission does not noticeably decrease further upon application of INV strand in excess ratios (data not shown). Hence, it can be inferred that a substantial fraction of the initially supplied ROXₘ is bound to the UCNPₐ in such a manner that it cannot be removed by strand invasion. Incomplete invasion due to oligomer crowding and direct adsorption of the ROX fluorophore to the surface of the UCNPₐ may explain why the 608 nm acceptor fluorescence does not return to zero in the switched ‘OFF’ state. Relative to the latter, we have found evidence of direct adsorption of the ROX fluorophore, or unspecified binding, when a control experiment was performed in which a mismatched sequence of the ssDNA ROX strand was used and added to a solution of UCNPₐ while monitoring the 608 nm acceptor emission (supplementary material S13). Nonetheless, the switching results demonstrated in figures 5(a) and (b) indicate that the toehold domains at least moderately retain their ability to perform the toehold-mediated strand-displacement reactions necessary for excitonic switching.

In order to compare this excitonic upconversion FRET system with other published work [44, 45, 50, 60, 61], the energy conversion efficiency (E_con) was determined. The E_con is defined as the ratio of the number of photons emitted by the acceptor in the presence of the donor to the number of photons emitted by the donor (UCNP) in the absence of the acceptor (fluorophore). This quantity is conveniently computed using the simple relationship:
was applied to our data prior to computing $Q_{fl}$ with the acceptor, $Q_{a}$ and ROX $f$ acceptor. emission. produced by the attachment chemistry increases nonradiative energy losses of either the donor or acceptor within experimental uncertainty and falls within the range of the literature values for the quantum efficiency of the acceptor. 

Further insight into the performance of the UCNP$_d$–ROX$_a$ system can be obtained by considering two other quantities: the energy transfer efficiency ($E_{trans}$) [74] of the system and the quantum efficiency ($Q_{eff}$) [74–78] of the acceptor fluorophore. To define these quantities, in addition to $f_D$ and $f_{DA}$ already defined, we introduce $f_a$ and $f_{DA}$, where $f_a$ is the acceptor emission peak area in the absence of the UCNP donor and $f_{DA}$ is the UCNP donor emission peak area in the presence of the acceptor. The $E_{trans}$ is then given by

$$E_{trans} = 1 - \frac{f_{DA}}{f_D}$$

$E_{trans}$ is thus a measure of the relative decrease in UCNP donor fluorescence in the presence of the acceptor, with $E_{trans} = 1$ corresponding to complete (ideal, see figure 2(a)) FRET between the donor and acceptor; accordingly, $E_{trans}$ is also occasionally referred to as the quenching efficiency [44, 74]. Assuming the decrease in the fluorescence of the donor in the presence of the acceptor is entirely due to the transfer of those photons to the acceptor, $Q_{eff}$ is then given by

$$Q_{eff} = \frac{f_{AD} - f_A}{f_D - f_{DA}}$$

$Q_{eff}$ is a measure of the efficiency with which excitonic quanta transferred to the donor are converted into acceptor fluorescence photons and is thus a measure of the FRET acceptor’s fluorescence quantum yield. For the UCNP$_d$–ROX$_a$ system, direct excitation of the ROX$_a$ by the infrared laser used to pump the UCNP$_d$ did not result in significant measurable ROX$_a$ fluorescence, thus we can reasonably assume that $f_A = 0$ for this system (see supplementary material S9). Under these conditions, equations (1)–(3) yield:

$$E_{con} = Q_{eff} E_{trans}.$$ 

This decomposition of $E_{con}$ provides a means of assessing the relative contributions to the conversion efficiency of two separate physical effects: exciton transfer from the donor to the acceptor and fluorescence emission of the acceptor.

A number of studies have been conducted to determine the $Q_{eff}$ of ROX [75–78], all of which report values within the range of 1.0 ± 0.05 (i.e., unity quantum yield, within experimental uncertainty), indicating ROX is highly efficient at re-emission of absorbed photons. To calculate $Q_{eff}$ of the UCNP$_d$–ROX$_a$ system using equation (3), the donor emission peak areas from the spectra shown in figure 4 (black and red curves) were integrated from 514 to 562 nm, and the acceptor emission peak areas were integrated from 565 to 645 nm. Although minimal, it was necessary to consider the attenuation of the UCNP$_d$ in the presence of ROX$_a$. An attenuation correction factor ($\int f_D^C$) was applied to our data prior to computing $Q_{eff}$ and $E_{trans}$ for our system to account for free ROX absorption, however, this could not be performed for the comparison to other published work (supplementary material S10). The $Q_{eff}$ of this system calculated via equation (3) (1.08 ± 0.11) is unity within experimental uncertainty and falls within the range of the literature values for the quantum efficiency of
We have demonstrated efficient and switchable DNA-mediated upconversion FRET by engineering an UCNP–ROX donor/acceptor excitonic system through implementing (1) a simple, one-step direct attachment of ssDNA to hydrophobic UCNPs, and (2) a ROX acceptor-DNA strand design that exploits the ability to both hybridize with the ssDNA biofunctionalized UCNPs and undergo toehold-mediated strand-displacement. Decreased donor–acceptor distance from the direct attachment resulted in a quantum efficiency indistinguishable from unity and superior FRET that produced energy conversion and energy transfer efficiencies of nearly 25%. Successive switching events were performed using toehold-mediated strand-displacement that, although only 45% of sites were actually switching, allowed cycling of the excitonic FRET switch’s state to be performed through three complete ‘OFF–ON’ cycles. The FRET produced a clear quenching of the donor emission with a significant simultaneous increase in acceptor emission that has yet to be fully demonstrated in other work. In principle, the upconversion FRET scheme reported here can lead to more efficient artificial light harvesting systems and excitonic devices, be incorporated to enhance photovoltaic devices, and be utilized to produce novel nanomedical assays.

Figure 6. The energy transfer efficiency \( E_{\text{trans}} \) of the UCNP\(_d\)–ROX\(_a\) system for three successive switching events observed in each of three trials. In the initial cycle, the system begins in the ‘OFF’ state in the absence of ROX\(_a\). The ROX\(_a\) is incompletely removed by the INV oligomer when restoring the system to the ‘OFF’ state in subsequent cycles. Hence, \( E_{\text{trans}} \) is lower for subsequent cycles because there are fewer active attachment sites for the ROX\(_a\).

ROX. This result indicates that the excitonic coupling to the UCNP and attachment scheme adopted for ROX\(_a\) have no observable detrimental effect on the \( Q_{\text{eff}} \) of ROX.

The energy transfer efficiency \( (E_{\text{trans}}) \) for the UCNP\(_d\)–ROX\(_a\) system was evaluated using equation (2), where once again peak areas from 514 nm to 562 nm and 565 nm to 645 nm were used to calculate the donor and acceptor emission, respectively. Black bars in figure 6 represent \( E_{\text{trans}} \) for the first ‘OFF–ON’ cycle evaluated for three separate trials.

The average value of \( E_{\text{trans}} \) for these three trials was 0.23 ± 0.03 (see supplementary material S11); note that since in our system \( Q_{\text{eff}} \) is close to unity, \( E_{\text{trans}} \) is essentially equal to \( E_{\text{on}} \) as shown in table 1. The nearly 25% energy transfer conversion efficiency is comparable to that of other UCNP FRET systems reported in the literature [44, 45, 50, 60, 61]. Figure 6 also displays \( E_{\text{trans}} \) evaluated for the second and third ‘OFF–ON’ cycles (red and blue bars) for each of the three trials. The combined average value of \( E_{\text{trans}} \) for all of the second and third ‘OFF–ON’ cycles is 0.07 ± 0.03. As already indicated, not all the ROX\(_a\) is removed from the UCNP\(_d\) by the INV oligomers used to transition the system from the ‘ON’ state to the ‘OFF’ state (see figure S3, supplementary material). Hence, after the first ‘OFF–ON’ cycle, there are fewer attachment sites to which ROX\(_a\) (supplementary material S12) can bind; however these sites remain active on successive cycles as indicated by the similar \( E_{\text{trans}} \) values for the two additional switching cycles (cycles 2 and 3). An estimate of the fraction of ROX\(_a\) binding sites that remain active \( (r_a) \) for FRET switching is given by:

\[
r_a = 1 - \frac{\mathcal{F}_{\text{ADoff}}}{\mathcal{F}_{\text{ADon}}} \tag{5}
\]

where \( \mathcal{F}_{\text{ADon}} \) is \( f_{\text{AD}} \) evaluated for the system in the ‘ON’ state, and \( \mathcal{F}_{\text{ADoff}} \) is \( f_{\text{AD}} \) evaluated for the system in the ‘OFF’ state. The averaged \( r_a \) value for successive ‘OFF–ON’ cycles is 0.45 ± 0.11. Hence, 45% of the ROX\(_a\) binding sites remain active, which is one area that can be improved upon in future work.

4. Conclusion

We have demonstrated efficient and switchable DNA-mediated upconversion FRET by engineering an UCNP–ROX donor/acceptor excitonic system through implementing (1) a simple, one-step direct attachment of ssDNA to hydrophobic UCNPs, and (2) a ROX acceptor-DNA strand design that exploits the ability to both hybridize with the ssDNA biofunctionalized UCNPs and undergo toehold-mediated strand-displacement. Decreased donor–acceptor distance from the direct attachment resulted in a quantum efficiency indistinguishable from unity and superior FRET that produced energy conversion and energy transfer efficiencies of nearly 25%. Successive switching events were performed using toehold-mediated strand-displacement that, although only 45% of sites were actually switching, allowed cycling of the excitonic FRET switch’s state to be performed through three complete ‘OFF–ON’ cycles. The FRET produced a clear quenching of the donor emission with a significant simultaneous increase in acceptor emission that has yet to be fully demonstrated in other work. In principle, the upconversion FRET scheme reported here can lead to more efficient artificial light harvesting systems and excitonic devices, be incorporated to enhance photovoltaic devices, and be utilized to produce novel nanomedical assays.
Acknowledgments

The authors thank the students, staff, and faculty within the Nanoscale Materials & Device group for valuable assistance with this work and Mr Lonnie Tuition of Custom Tooling Services (Boise, Idaho) for his aid in design and fabrication of laser filter mounts. The research was supported in part by: (1) NSF IDR No. 1014922, (2) a WM Keck Foundation Award, and (3) the Micron Technology MSE PhD Fellowship. The UCNs were obtained from the Lawrence Berkeley National Laboratory’s Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11251. We are appreciative of Dr Emory Chan of the Molecular Foundry for helpful discussions on UCNs and IR lasers.

References

[1] Horton P, Kuban A V and Walters R G 1996 Regulation of light harvesting in green paints Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 655–84
[2] Scholes G D, Fleming G R, Olaya-Castro A and van Grondelle R 2011 Lessons from nature about solar light harvesting Nat. Chem. 3 763–74
[3] Yamazaki I, Mimuro M, Murao T, Yamazaki T, Yoshihara K and Fujita Y 1984 Excitation energy transfer in the light harvesting antenna system of the red alga porphyridium cruentum and the blue-green alga anaecystis nidulans: analysis of time-resolved fluorescence spectra Photochem. Photobiol. 39 233–40
[4] Schmíd am, Busch M, Müh F, El-Amine Madjet M and Renger T 2011 The eighth bacteriochlorophyll completes the excitation energy funnel in the fmo protein J. Phys. Chem. Lett. 2 923–8
[5] Vyawahare S, Eyal S, Mathews K D and Quake S R 2004 Nanometer-scale fluorescence resonance optical waveguides Nano Lett. 4 1035–9
[6] Dutta P K, Varghese R, Nangreave J, Lin S, Yan H and Liu Y 2011 DNA-directed artificial light-harvesting antenna J. Am. Chem. Soc. 133 11985–93
[7] Spillmann C M and Medintz I I 2013 Use of biomolecular scaffolds for assembling multistep light harvesting and energy transfer devices J. Photochem. Photobiol. B 123 1–24
[8] Graugnard E, Kella D L, Bui H, Barnes S, Kuang W, Lee J, Hughes W L, Knowlton W B and Yurke B 2012 DNA-controlled excitonic switches NANO Lett. 12 2117–22
[9] Cannon B L, Kellar L D, Davis P H, Lee J, Kuang W, Hughes W L, Graugnard E, Yurke B and Knowlton W B 2015 Excitonic and logic gates on DNA brick nanobreadboards ACS Photonics 2 398–404
[10] Fenna R E and Matthews B W 1975 Chlorophyll arrangement in a bacteriochlorophyll protein from chlorobium limicola Nature 258 573–7
[11] Tronrud D E, Schmid M F and Matthews B W 1986 Structure and x-ray amino acid sequence of a bacteriochlorophyll a protein from prosthococcoida aestuarii refined at 1.9 A resolution J. Mol. Biol. 188 443–54
[12] Vulso S I E, Neerken S, Louwe R J W, de Baat M A, Amesz J and Aartsma T J 1998 Excited-state structure and dynamics in fmo antenna complexes from photosynthetic green sulfur bacteria J. Phys. Chem. B 102 10630–5
[13] Ishizaki A and Fleming G R 2009 Theoretical examination of quantum coherence at a photosynthetic system at physiological temperature Proc. Natl Acad. Sci. USA 106 17255–60
[14] Ishizaki A and Fleming G R 2012 Quantum coherence in photosynthetic light harvesting Annu. Rev. Condens. Matter Phys. 3 333–61
[15] Page R H, Schafers K I, Waide P A, Payne S A, Krupe W F and Bischof W K 1998 Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium J. Opt. Soc. Am. B 15 996–1008
[16] Haase M and Schäfer H 2011 Upconverting nanoparticles Angew. Chem., Int. Ed. Engl. 50 5080–29
[17] Liu G 2015 Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors Chem. Soc. Rev. 44 1635–52
[18] Chen G, Qiu H, Prasad P N and Chen X 2014 Upconversion nanoparticles: design, nanochemistry, and applications in theranostics Chem. Rev. 114 5161–214
[19] Chen N-T, Cheng S-H, Liu C-P, Souris J, Chen C-T, Mou C-Y and Lo L-W 2012 Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling Int. J. Mol. Sci. 13 16598–623
[20] DaCosta M V, Doughan S, Han Y and Krull U J 2014 Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review Anal. Chem. 832 87–96
[21] Gargas D J et al 2014 Engineering bright sub-10 nm upconverting nanocrystals for single-molecule imaging Nat. Nanotechnology 9 300–5
[22] Zhou J, Liu Q, Feng W, Sun Y and Li F 2015 Upconversion luminescent materials: advances and applications Chem. Rev. 115 395–465
[23] Bettinelli M, Carlos L and Liu X 2015 Lanthanide-doped upconversion nanoparticles Phys. Today 68 38–44
[24] de Bettencourt-Dias A 2007 Lanthanide-based emitting materials in light-emitting diodes Dalton Trans. 2239–41
[25] Dong H, Sun L-D and Yan C-H 2015 Energy transfer in lanthanide upconversion studies for extended optical applications Chem. Soc. Rev. 44 1608–34
[26] Eliseeva S V and Bunzl J-G 2010 Lanthanide luminescence for functional materials and bio-sciences Chem. Soc. Rev. 39 189–227
[27] van der Ende B M, Aarts L and Meijerink A 2009 Lanthanide ions as spectral converters for solar cells J. Photochem. Photobiol. A 201 1–6
[28] Vuojola J and Soukka T 2014 Luminescent lanthanide reporters: new concepts for use in bioanalytical applications Methods. Appl. Fluoresc. 2 012001
[29] Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W and Liu X 2014 Recent progress in metal–organic complexes for optoelectronic applications Chem. Soc. Rev. 43 3259–302
Soukka T, Rantanen T and Kuningas K 2008 Photon upconversion in homogeneous nanocrystals

Liu J, Cheng J and Zhang Y 2013 Upconversion nanoparticle based lret system for sensitive detection of mrsa DNA sequence

Selvin P R, Rana T M and Hearst J E 1994 Luminescence resonance energy transfer

Ang L Y, Lim M E, Ong L C and Zhang Y 2011 Applications of upconversion nanoparticles in imaging, detection and therapy

Cen Y, Wu Y-M, Kong X-J, Wu S, Yu R-Q and Chu X 2014 Phospholipid-modified upconversion nanoparticles for bioimaging

Kuningas K, Ukonaho T, Päkkilä H, Rantanen T, Rosenberg J, Lövgren T and Soukka T 2006 Upconversion

Didenko V V 2001 DNA probes using fluorescence resonance energy transfer (FRET): designs and applications

Bogdan N, Vetrone F, Roy R and Capobianco J A 2010 Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin binding assays

Quach A D, Crivat G, Tarr M A and Rosenzweig Z 2011 Gold nanoparticle – quantum dot – polystyrene microspheres as fluorescence resonance energy transfer probes for bioassays

Tu D, Liu L, Ju Q, Zhu H, Ma E and Chen X 2011 Time-resolved fret biosensor based on amine-functionalized lanthanide-doped nanocrystals

Yuan Y and Liu Z 2012 An effective approach to enhanced energy-transfer efficiency in up-converting nanoparticles

Wang Y, Wu Z and Liu Z 2012 Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanoparticles as the label-free energy acceptor

Li L-L, Wu P, Hwang K and Lu Y 2013 An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging

Watson J D and Crick F H C 1953 Molecular structure of nucleic acids: a structure for deoxyribonucleic acid
[72] Wei B, Wang Z and Mi Y 2007 Uniquimer: software of De Novo DNA sequence generation for DNA self-assembly—an introduction and the related applications in DNA self-assembly J. Comput. Theor. Nanosci. 4 133–49
[73] Zadeh J N, Steenberg C D, Bois J S, Wolfe B R, Pierce M B, Khan A R, Dirks R M and Pierce N A 2011 Nupack: analysis and design of nucleic acid systems J. Comput. Chem. 32 170–3
[74] Lakowicz JR 1999 Principles of Fluorescence Spectroscopy 3rd edn (Berlin: Springer)
[75] Porrès L, Holland A, Pålsson L-O, Monkman A, Kemp C and Beeby A 2006 Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere J. Fluoresc. 16 267–73
[76] Karstens T K, K 1980 Rhodamine b as reference substance for quantum yield J. Phys. Chem. 84 1871–2
[77] Uddin M J and Marnett L J 2008 Synthesis of 5- and 6-carboxy-x-rhodamines Org. Lett. 10 4799–801
[78] Eaton D F 1988 Reference materials for fluorescence measurement Pure Appl. Chem. 60 1107