[CII] observations of H$_2$ molecular layers in transition clouds

T. Velusamy, W. D. Langer, J. L. Pineda, P. F. Goldsmith, D. Li, and H. W. Yorke

Herschel/HIFI: first science highlights

LETTER TO THE EDITOR

1. Introduction

The Herschel key program GOT C+ (Galactic Observations of Terahertz C+) is designed to study the diffuse interstellar medium (ISM) by observing with the HIFI instrument the [CII] $^2P_{3/2} \rightarrow ^2P_{1/2}$ fine structure line emission and absorption at 1.9 THz (158 μm) over a volume weighted sampling of 500 lines of sight (LOSs) throughout the Galactic disk. The GOT C+ project is described by Langer et al. (2010a) and the use of [CII] emission to detect warm H$_2$ gas not seen by CO observations) by Langer et al. (2010b). C$^+$ is a major ISM coolant, and its 158 μm line is an important tracer of the properties of the diffuse atomic and diffuse molecular gas clouds. The [CII] line thus enables us to trace an important and to date poorly-studied stage in cloud evolution - the transition clouds going from atomic to molecular: HI to H$_2$ and C$^+$ to CI and CO (Snow & McCall 2006). These clouds have a large molecular hydrogen fraction in which carbon exists primarily as C$^+$ rather than as CO (Tielens & Hollenbach 1985; van Dishoeck & Black 1988). Transition clouds are difficult to study using the standard tracers (HI or CO) but [CII] can trace this gas.

There is growing evidence that a substantial amount of interstellar gas exists as molecular H$_2$, not traced by CO, for example: from gamma-ray data from EGRET (e.g. Grenier et al. (2005)) and Fermi-LAT (e.g. Abdo et al. 2010); and, the infrared continuum in diffuse clouds (Reach et al. 1994). Goldsmith et al. (2010) detected warm H$_2$ in emission beyond the CO extent of Taurus. Wolfe et al. (2010) have modeled the molecular cloud surfaces to estimate the amount of “dark gas” in the form of molecular H$_2$ in the H$_2$/C$^+$ layers and find it contributes about 30% of the total mass in clouds with total $A_V \sim 8$ mag. Here, we present direct observational evidence for the H$_2$/C$^+$ layer in a number of transition clouds through the detection of an excess [CII] line emission in them. We use a sample of 53 transition clouds characterized by $A_V < 5$ mag. and the presence of both HI and 12CO emissions but no 13CO. We analyze the observed [CII] intensities combined with HI and CO data to obtain an inventory of the total molecular H$_2$ in different layers in transition clouds and then constrain the physical conditions by applying simple models for CO formation and photodissociation.

2. Observations and data analysis

The observations reported here were made as part of the HIFI performance verification and priority science phases. We observed the [CII] line at 1900.5469 GHz towards 16 LOSs in the galactic plane with the HIFI (de Graauw et al. 2010) instrument on the Herschel Space Observatory (Pilbratt et al. 2010). The [CII] spectra were obtained using the wide band spectrometer (with 0.22 km s$^{-1}$ velocity resolution, over 350 km s$^{-1}$ range) at band 7b and using integration of 800 s to 1800 s (with rms of 0.1 K to 0.2 K on data smoothed to 1 km s$^{-1}$). For each target we used the load chop (HPoint) with a sky reference offset by 2° in latitude. The data were processed in HIPE version 3.0 using the standard pipeline for HIFI. Using a fringe fitting tool within HIPE we were able to mitigate the standing waves in band 7b (Higgins & Kooi 2009) to sufficiently low levels to provide good baselines in the [CII] spectra (Boogert, priv. comm.). The data presented here are in the Galactic plane at $l = 337.8°$, 343.04°, 343.91°, 344.78°, 345.65°, 18.3°, 22.6°, 23.5° & 24.3°; of the plane at $b = 0.5°$ for $l = 24.3°$ and $b = 1°$ at $l = 22.6°$ & 24.3°; at $b = -0.5°$ & -1°at $l = 18.3°$ & 23.5°. Table 1 summarizes all the observational data used in our analysis.

An example of the [CII] spectrum is shown in the top panel in Fig. 1. The [CII] intensities were corrected for main beam efficiency (~0.63). For comparison the HI and the CO spectra are...
Table 1. Observational data.

Line	Survey facility	Beam chan.	Velocity chan.	Sensitivity chan.	Ref.
[CII]	GOT C+	12''	1.0	0.1-0.2	1,2
1.9 THz	Herschel HIFI	12''	0.84	1.6	3
HI	SGPS/ATCA	132''	0.84	0.6	5
	VGPS/VLA	60''	0.84	2.0	4
12CO (1-0)	ATNF	33''	0.84	0.6	5
13CO (1-0)	Mopra	22-m	1.6	0.6	5
C18O (1-0)					

Notes. (1) This paper; (2) Langer et al. (2010a); (3) McClure-Griffiths et al. (2005); (4) Stil et al. (2006); (5) Pineda et al. (2010).

Fig. 1. An example of [CII] spectrum for $l = 24.3^\circ$, $b = 0.0^\circ$ and Gaussian fits marked in red and black (top panel) and ancillary data (lower panel).

shown in the lower panel. The [CII] spectra show many velocity resolved features. All [CII] emission features show an overall correlation with the HI, though not all HI features show corresponding [CII] emission. Many [CII] features are also correlated with CO features. To separate the individual velocity components we used multiple Gaussian fitting. In the case of complex (overlapping) velocity features we used both [CII] and HI profiles together to identify the individual components. We identified a total of 146 velocity components in all the LOSs. As seen in Fig. 1 as well as in the examples shown in Langer et al. (2010b) & Pineda et al. (2010) in each spectrum we detect many velocity components. However, their identity as clouds is somewhat uncertain as the decomposition itself is not very unique and may not be reliable (e.g. Falgarone et al. 1994). Though we use the HI profile as an independent check on the features, the beam sizes (Table 1) are not modeled into the decomposition. For simplicity, here we refer to them as clouds, but in reality some of them may be for example, isolated turbulent clumps, transient fluctuations of larger structures, or superposition of extremely narrow velocity components. In view of the uncertainties, for all our quantitative analysis we do not use all of the Gaussian fit parameters. Instead we use the fitted V_{LSR} to locate a parcel of the gas at a certain velocity and width. The I(CII), I(HI), I(12CO) intensities for each cloud were then obtained, in a consistent manner, by integrating the intensities (T_{mb}) over the velocity width (AV) centered at the respective V_{LSR} (except in a few cases which are confused by the adjacent component).

We identified 58 [CII] components as dense molecular clouds traced by their 13CO emission (e.g. the red Gaussian fits in Fig. 1) and these are discussed in a separate paper by Pineda et al. (2010). We regard the remaining 88 components without 13CO counterparts (e.g. the black Gaussian fits in Fig. 1) as diffuse clouds, envelopes or transition clouds. We examined these 88 diffuse [CII] clouds by correlating them with the 12CO spectra. We found that 53 components have associated 12CO emission while the remaining 35 have no 12CO counterparts. These 35 clouds are labeled diffuse atomic clouds of which 29 are discussed by Langer et al. (2010b). To place our [CII] cloud samples in the context of the general interstellar clouds, in Fig. 2 we identify them in an AV - FUV parameter space. We use our 3-σ detection limits (Table 1) for [CII], 12CO, 13CO, and C18O to estimate the corresponding thresholds of AV and FUV based on the calculations by Visser et al. (2009). The Visser et al. calculations use $T_{gas} = 100$ K, and $n_H = 300$ cm$^{-3}$ similar to what we use below in our analysis. Here we present results on 50 transition clouds excluding 3 for data quality and other issues.

3. Results and discussion

3.1. [CII] sample of transition clouds

In Fig. 2 we find that our [CII] sample of transition clouds are diffuse having $AV \leq 3$–4 mag, for reasonable interstellar FUV, in the range of 1–104 erg cm$^{-2}$ s$^{-1}$ Draine (1978). In Fig. 3 we show a schematic of the diffuse cloud layers. In the dense cores with 13CO emission, the conversion of C$^+$ to CO is more complete while it is partial in these diffuse transition clouds due to lack of sufficient self-shielding. All clouds contain some quantity of HI. As seen in Fig. 3, the observed [CII] emission originates from the purely atomic HI layer along with a contribution from the H2/C$^+$ layer, while the 12CO emission originates in the H2/CO core. Thus estimates of H2 column densities using 12CO intensity alone entirely misses the H2 in the H2/C$^+$ (“dark gas”) layer. Therefore, a complete inventory of molecular H2 in the cloud requires both the [CII] and 12CO intensities.

3.2. [CII] in the HI/Cl+ layer

In Fig. 4a we plot the [CII] intensities against the HI intensities for all 50 transition clouds. The error bars in Figs. 4a,b represent the 1-σ uncertainties in the respective measured intensities. In spite of the large scatter we note a lower bound to I(CII) that increases gradually with I(HI) which is consistent with the [CII] emission expected from a HI/C$^+$ layer (Fig. 3). For quantitative
Having estimated \(I(\text{CII})_{\text{HI}} \) arising from the HI/C\(^+\) layer we can now calculate the [CII] excess arising from the H\(_2/C^+\) layer as
\[
I(\text{CII})_{\text{H}_2/C^+} = I(\text{CII})_{\text{total}} - I(\text{CII})_{\text{HI}}.
\]
In Fig. 4b we show this excess plotted against \(I(12\text{CO}) \). Since all the carbon in the \(12\text{CO} \) emitting region is converted to CO we do not expect to see any correlation. However, in spite of the large scatter we do note a lower bound to the excess \(I(\text{CII})_{\text{HI}} \) that increases gradually with \(I(12\text{CO}) \) as shown by the straight line fit in Fig. 4b. This suggests the presence of a C\(^+\) layer surrounding the \(12\text{CO} \) emitting core. A majority of the clouds have \(I(\text{CII})_{\text{HI}} \) and the observed \(I(12\text{CO}) \) to estimate the H\(_2 \) columns in the H\(_2/C^+\) and \(12\text{CO} \) layers respectively. For \(12\text{CO} \) we use the phenomenological relationship (cf. Dame et al. 2001):

\[
N(\text{H}_2)_{\text{CO}} \sim 1.8 \times 10^{20} I(12\text{CO}) \text{ cm}^{-2}.
\]

In the H\(_2/C^+\) layers the C\(^+\) excitation is by H\(_2\) molecules and we can use the [CII] excess shown in Fig. 4b to derive the \(N(\text{H}_2)_{\text{CII}} \) column density as follows:

i) Use the \(I(\text{CII})_{\text{HI}} \) to calculate the C\(^+\) column density, \(N(\text{C}^+)_\text{HI} \), in the H\(_2/C^+\) layer, as a function of density \(n(\text{H}_2) \) and temperature \(T_k \). Here we assume a higher density of \(n(\text{H}_2) \sim 300 \text{ cm}^{-3} \) than in the HI layer and a temperature \(T_k \sim 100 \text{ K} \).

\[
N(\text{H}_2)_{\text{HI}} = 0.15 \times n(\text{H}_2)_{\text{HI}}.
\]

ii) We use \(N(\text{H}_2)_{\text{HI}} \) to estimate the \(N(\text{C}^+)_\text{HI} \) column density, as a function of density \(n(\text{H}_2) \) and temperature \(T_k \) (see Langer et al. 2010b). Then we can express it in terms \(I(\text{HI}) \), as

\[
I(\text{CII})_{\text{HI}} \approx f(n(\text{HI}), T_k)/I(\text{HI}).
\]

\[
N(\text{H}_2)_{\text{CII}} \sim 2.8 \times 10^{20} I(\text{CII})_{\text{HI}} \text{ cm}^{-2}.
\]

In Fig. 5 we show the distribution of the ratios of the H\(_2 \) column density traced by [CII] to that traced by \(12\text{CO} \). In Table 2 we list a few diffuse clouds showing a large H\(_2\) layer around the \(12\text{CO} \) emitting core. A majority of the clouds have \(N(\text{H}_2)_{\text{CII}} < N(\text{H}_2)_{\text{CO}} \). In 15 clouds the \(N(\text{H}_2)_{\text{CII}} \) is 50% or greater than \(N(\text{H}_2)_{\text{CO}} \). In this sample of 50 transition clouds, on average, 24% of the total H\(_2 \) column density is in the H\(_2/C^+\) layer which is not traced by \(12\text{CO} \). Although these estimates are only approximate, they show a likely scenario in the transition cloud structure. Lower densities (\(\sim 100 \text{ cm}^{-3} \)) and/or lower temperatures (\(\sim 50 \text{ K} \)) will increase the \(N(\text{H}_2) \) in the H\(_2/C^+\) layer (required to account for the observed \(I(\text{CII}) \)) by factors of 2–3, while higher density (\(\sim 500 \text{ cm}^{-3} \)) will decrease the \(N(\text{H}_2) \) by a factor of 2. However, at higher densities the temperature is likely to be \(<100 \text{ K} \) and the required \(N(\text{C}^+)_\text{HI} \) and \(N(\text{H}_2)_{\text{CII}} \) will be larger.

We can use \(N(\text{H}_2) \) in the H\(_2/C^+\) layer and \(N(\text{HI}) \) in the HI layer derived from \(I(\text{CII}) \) and \(I(\text{HI}) \) to evaluate \(X_v \) in the cloud up to the C\(^+\)/CO transition layer. We define the C\(^+\)/CO transition layer as an inner cloud boundary where \(X(C^+) \sim X(CO) = X(C_{\text{total}})/2 \). We can now solve for the ratio of external FUV to
Table 2. Selected transition cloud parameters.

Cloud	l(C II)	l(HI)	l(12CO)	N(H2) in C+	N(H2) in 12CO	N(H2) in 12CO	[Av] (C+CO)**	FUV (1017 cm-2)	40k_{standard}
G018.26-1.00V	0.00V-114	3.9	0.00V-120	6.7	263	6.4	15.2	11.5	1.70
G345.65+0.00V-120	6.7	263	6.4	15.2	11.5	1.70			
G337.82+0.00V-127	6.1	308	10.8	12.9	19.5	0.88			
G345.65+0.00V-114	3.9	182	3.6	8.5	6.5	0.88			
G024.34+0.50V+116	5.1	279	6.7	10.1	1.43				
G018.26+0.00V+58	2.3	271	1.96	3.1	0.59				
G337.82+0.00V-118	8.2	414	11.6	17.2	1.80				

Notes. (a) Av corresponding to the C+CO layer. (b) External FUV radiation field derived for two cosmic ray ionization rates.

density ($\chi_0/n(H_2)$) balancing the photodissociation and the CO formation rates at the C+/CO transition layer. We derive analytical photodissociation rates for the attenuation and the self-shielding which are consistent with those given by Lee et al. (1996). For simplicity in the warm regions (in all our chemical modeling and analysis we use $T_K \sim 100$ K) we consider only the H+ + OI chemistry; however, detailed modeling should also include C+ + H2 radiative association. Therefore, for the CO formation rates we use a simple chemical network incorporating the H+ + OI chemistry by extending the approach discussed by Nelson & Langer (1997) for a CO core surrounded by a warmer tenuous C+ envelope. In our calculation we use the reaction rates given by Glover et al. (2010). The results for a few clouds are listed in Table 2; the last three columns list Av up to the C+/CO transition layer and the external FUV, χ_0, in units of Draine radiation feature (χ_0). (Though the solution to the chemical modeling was obtained as $\chi_0/n(H_2)$ we have give only χ_0 as we have assumed $n(H_2)\approx 300$ cm$^{-3}$ in our analysis of [CII] intensities). In nearly half of our sample the clouds have very low FUV, χ_0 in the range of 0.01 to 0.1 χ_0. Such low values seem less likely in the ISM; it has been suggested that the [CII] in the ISM originates from clouds exposed to FUV, $\chi_0 > 10^{-2} \chi_0$ (Cubick et al. 2008). Using PDR models (Pineda et al. 2010) find that in a [CII] sample of dense molecular clouds the majority have $\chi_0 = 1-10 \chi_0$. Furthermore it may be noted that the H+ + OI chemistry used here is sensitive to the cosmic ray (CR) ionization rate. Above we used the standard CR ionization rate $\zeta_{standard} = 2.5 \times 10^{-17}$ s$^{-1}$. However, there is recent evidence of much higher rates in the outer layers (low Av) of clouds (Shaw et al. 2008; Indriolo et al. 2007, 2009). We find that using $40 \zeta_{standard}$ increases the derived value of the FUV substantially as shown in the last column in Table 2. At least two of the clouds with high FUV values (G337.82+0.00V-127 and G337.82+0.00V-118) are near the supernova remnant G337.8-0.1, about a shell radius from its boundary at $V_{LSR} \sim -122$ km s$^{-1}$ (Caswell et al. 1975), and thus may be consistent with our results for higher value for CR ionization. However, for the cloud G345.65+0.00V-120, though this LOS passes near a HII region (G345.64+0.01), no enhanced radiation feature is observed at this V_{LSR} (Caswell & Haynes 1987).

Our preliminary analysis assumes optically thin HI and C+ emission. We do not take into account the different beam sizes used in the observations. We do not include the gas traced by CI in the C+/CO transition zone. Nevertheless, the results of our simplified approach show a definite statistical trend for the presence of a majority of “nominal” diffuse clouds with a thin H2 layer and a significant fraction of clouds with a thick H2 layer without any accompanying CO.

4. Conclusions

We have observed [CII] line emission in 16 LOSs towards the inner Galaxy and detected 146 velocity resolved [CII] components. We identify 53 of these components that are characterized by the presence of both HI and 12CO but no 13CO emission as transition clouds in which the conversion of C+ to CO is partial and a large fraction of carbon exists as C+ mixed with H2 in a “dark gas” layer surrounding the 12CO emitting core. Our results show that [CII] emission is an excellent tool to study transition clouds in the ISM, in particular as a unique tracer of molecular H2 which is not easily observed by other means. In about 10% of the clouds the H2 column density traced by the [CII] emitting layer is greater than that traced by 12CO emission. On average ~25% of the H2 in these clouds is in the H2/C+ layer which is not traced by CO. Finally our estimates of the FUV field indicate the CR ionization is likely much larger than the standard value in the outer layers, consistent with recent determinations from chemical abundances in diffuse regions.

Acknowledgements. We thank the referee for suggestions. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The Mopra Telescope is managed by the Australia Telescope, and funded by the Commonwealth of Australia for operation as a National Facility by the CSIRO.

References

Abdo, A. A., Ackermann, M., Ajello, M., et al., 2010, ApJ, 710, 133
Caswell, J. L., & Haynes, R. F. 1987, A&A, 171, 261
Caswell, J. L., Murray, J. D., Roger, R. S., et al. 1975, A&A, 45, 239
Cubick, M., Stutzki, J., Ossenkopf, V., et al. 2008, A&A, 488, 623
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, Science, 307, 1292
Goldsmith, P. F., Velusamy, T., Li, D., & Langer, W. D. 2010, ApJ, 715, 1370
Higgins, R. D., & Kooi, J. W. 2009, SPIE, 7215, 72150
Indriolo, N., Fields, B. D., & McCall, B. J. 2008, ApJ, 694, 257
Indriolo, N., Geballe, T. R., Oka, T., & McCall, B. J. 2007, ApJ, 671, 1736
Langer, W. D., Velusamy, T., Pineda, J. L., et al. 2010a, EASB2010, on line
Langer, W. D., Velusamy, T., Pineda, J. L., et al. 2010b, A&A, 521, L17
Langer, N. R., & Langer, W. D. 1997, ApJ, 482, 796
Nelson, R. P., & Langer, W. D. 1997, ApJ, 482, 796
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, MNras, 404, 2
Reach, W. T., Koo, B., & Heiles, C. 1994, ApJ, 429, 672
Shaw, G., Feild, G. J., Srianand, R., et al. 2008, ApJ, 675, 405
Snow, T. P., & McCall, B. J. 2006, ARA&A, 44, 367
Stil, J. M., Taylor, A. R., Dickey, J. M., et al. 2006, AJ, 132, 1158
Tielens, A. G. G. M., & Hollenbach, D. 1984, ApJ, 291, 722
van Dishoeck, E. F., & Black, J. H. 1988, ApJ, 334, 771
Visser, R., van Dishoeck, E. F., & Black, J. H. 2009, A&A, 503, 323
Wolfire, M. G., Hollenbach, D., & McKee, C. F. 2010, ApJ, 716, 1191