THREE TOPOLOGICAL PROBLEMS ABOUT INTEGRAL FUNCTIONALS ON SOBOLEV SPACES

BIAGIO RICCERI

ABSTRACT. In this paper, I propose some problems, of topological nature, on the energy functional associated to the Dirichlet problem $-\Delta u = f(x, u)$ in Ω, $u_{|\partial \Omega} = 0$. Positive answers to these problems would produce innovative multiplicity results on this Dirichlet problem.

In the present very short paper, I wish to propose some problems, of topological nature, on the energy functional associated to the Dirichlet problem (P_f)

$-\Delta u = f(x, u)$ in Ω, $u_{|\partial \Omega} = 0$.

and explain their motivations as well.

So, let $\Omega \subset \mathbb{R}^n$ ($n \geq 3$) be an open bounded set. Put $X = W^{1,2}_0(\Omega)$. For $q > 0$, denote by A_q the class of all Carathéodory functions $f: \Omega \times \mathbb{R} \to \mathbb{R}$ such that

$$\sup_{(x,\xi) \in \Omega \times \mathbb{R}} \frac{|f(x,\xi)|}{1 + |\xi|^q} < +\infty.$$

For $0 < q \leq \frac{n+2}{n+2}$ and $f \in A_q$, put

$$\Phi_f(u) = \int_{\Omega} \left(\int_0^{u(x)} f(x, \xi) d\xi \right) dx$$

and

$$J_f(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \Phi_f(u)$$

for all $u \in X$.

So, the functional J_f is continuously Gâteaux differentiable on X and one has

$$J'_f(u)(v) = \int_{\Omega} \nabla u(x) \nabla v(x) dx - \int_{\Omega} f(x, u(x)) v(x) dx$$

for all $u, v \in X$. Hence, the critical points of J_f in X are exactly the weak solutions of problem (P_f).

If $q < \frac{n+2}{n-2}$, the functional Φ_f is sequentially weakly continuous, by Rellich-Kondrachov theorem. However, Φ_f may be discontinuous with respect to the weak topology. In this connection, consider the following.

Example 1. If $f(x,\xi) = |\xi|^{q-1}\xi$ with $0 < q \leq \frac{n+2}{n-2}$, then Φ_f is discontinuous with respect to the weak topology.

2000 Mathematics Subject Classification. 35J20.

Key words and phrases. Energy functional; local minimum; isolated point; disconnectedness.
In fact, if \(V \) is any neighbourhood of 0 in the weak topology of \(X \), then \(V \) does contain an infinite-dimensional linear subspace \(F \) of \(X \). Consequently, if we choose \(u \in F \setminus \{0\} \), we have \(\lambda u \in V \) for all \(\lambda \in \mathbb{R} \) as well as
\[
\lim_{\lambda \to +\infty} \Phi_f(\lambda u) = \lim_{\lambda \to +\infty} \int_{\Omega} |u(x)|^q + 1 dx \lambda^q + 1 = +\infty,
\]
and so \(\Phi_f \) is weakly discontinuous at 0.

On the other hand, when \(f \) does not depend on \(\xi \), the functional \(\Phi_f \) is weakly continuous being linear and continuous. The above remarks then lead to the following natural question:

Problem 1. Is there some \(f \in A_q \), with \(q < \frac{n+2}{n-2} \), which is not of the form \(f(x, \xi) = a(x) \), such that the functional \(\Phi_f \) is continuous with respect to the weak topology of \(X \)?

To formulate the next problem, denote by \(\tau_s \) the topology on \(X \) whose members are the sequentially weakly open subsets of \(X \). That is, a set \(A \subseteq X \) belongs to \(\tau_s \) if and only if for each \(u \in A \) and each sequence \(\{u_n\} \) in \(X \) weakly convergent to \(u \), one has \(u_n \in A \) for all \(n \) large enough.

Problem 2. Is there some \(f \in A_q \), with \(q < \frac{n+2}{n-2} \), such that, for each \(\lambda > 0 \) and \(r \in \mathbb{R} \), the functional \(J_{\lambda f} \) is unbounded below and the set \(J_{\lambda f}^{-1}(r) \) has no isolated points with respect to the topology \(\tau_s \)?

The interest for the study of Problem 2 comes essentially from the following result:

Theorem 1 ([3, Theorem 3]). Let \(f \in A_q \) with \(q < \frac{n+2}{n-2} \). Then, there exists some \(\lambda^* > 0 \) such that the functional \(J_{\lambda^* f} \) has local minimum with respect to the topology \(\tau_s \).

If \(\Phi_f \) is weakly continuous, then the conclusion of Theorem 1 becomes stronger: the topology \(\tau_s \) can be replaced by the weak topology. This remark is a further motivation for the study of Problem 1.

In the light of Theorem 1, the relevance of Problem 2 is clear. Actually, if \(f \) was answering Problem 2 in the affirmative, then, by Theorem 1, for some \(\lambda^* > 0 \), the functional \(J_{\lambda^* f} \) would have infinitely many local minima in the topology \(\tau_s \). Consequently, problem \((P_{\lambda^* f})\) would have infinitely many weak solutions.

It is also worth noticing that if \(f \in A_q \) with \(q < \frac{n+2}{n-2} \) and \(\lim_{\|u\| \to +\infty} J_f(u) = +\infty \), then the local minima of \(J_f \) in the strong and in the weak topology of \(X \) do coincide ([3, Theorem 1]). On the other hand, if \(f(x, \xi) = |\xi|^{q-1} \xi \) with \(1 < q < \frac{n+2}{n-2} \), then, for some constant \(\lambda > 0 \), it turns out that 0 is a local minimum of \(J_{\lambda f} \) in the strong topology but not in the weak one ([3, Example 2]). However, I do not know any example of \(f \) for which \(J_f \) has a local minimum in the strong topology but not in \(\tau_s \).

To introduce the third problem (the most difficult, in my opinion), let me recall that in any vector space there is the strongest vector topology of the space ([1, p. 42]).

Problem 3. Denote by \(\tau \) the strongest vector topology of \(X \). Is there some \(f \in A_{\frac{n+2}{n-2}} \) such that the set \(\{ (u, v) \in X \times X : J_f'(u)(v) = 1 \} \) is disconnected in \((X, \tau) \times (X, \tau)\)?
The motivation for the study of Problem 3 comes from the following result:

Theorem 2 ([5], Theorem 1.2). Let S be a topological space, Y a real topological vector space (with topological dual Y^*), and $A: S \to Y^*$ a weakly-star continuous operator. Then, the following assertions are equivalent:

(i) The set $\{(s, y) \in S \times Y : A(s)(y) = 1\}$ is disconnected.

(ii) The set $S \setminus A^{-1}(0)$ is disconnected.

Assume that $f \in A_{n+2}$ have the property required in Problem 3. Since $J_f \in C^1(X)$, clearly the operator $J'_f: X \to X^*$ is τ-weakly-star-continuous. Hence, by Theorem 2, the set $X \setminus (J'_f)^{-1}(0)$ is τ-disconnected. Then, this implies, in particular, that the set $(J'_f)^{-1}(0)$ is not τ-relatively compact ([4], Proposition 3)), and hence is infinite. So, for such an f, problem (P_f) would have infinitely many weak solutions.

Of course, to recognize the disconnectedness of the set $\{(u, v) \in X \times X : J'_f(u)(v) = 1\}$ in $(X, \tau) \times (X, \tau)$, it is enough to check that this set is disconnected in $(X, \tau_1) \times (X, \tau_1)$, where τ_1 is any vector topology on X (which, to be meaningful in view of Theorem 2, should also be stronger than the norm topology).

REFERENCES

[1] J. L. Kelley and I. Namioka, *Linear topological spaces*, Van Nostrand, Princeton, 1963. MR 29 #3851

[2] A. J. B. Lopes-Pinto, *On a new result on the existence of zeros due to Ricceri*, J. Convex Anal. 5 (1998), no. 1, 57–62. MR 99j:47075

[3] O. Naselli, *A class of functionals on a Banach space for which strong and weak local minima do coincide*, Optimization 50 (2001), no. 5-6, 407–411. MR 1 892 912

[4] B. Ricceri, *Applications of a theorem concerning sets with connected sections*, Topol. Methods Nonlinear Anal. 5 (1995), no. 2, 237–248. MR 97i:47135

[5] *Existence of zeros via disconnectedness*, J. Convex Anal. 2 (1995), no. 1-2, 287–290. MR 96k:47104

[6] *A further improvement of a minimax theorem of Borenshtein and Shul'man*, J. Nonlinear Convex Anal. 2 (2001), no. 2, 279–283. MR 2002e:49011

Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy