Data Article

Dataset on cellulose nanoparticles from blue agave bagasse and blue agave leaves

Eduardo Robles, Javier Fernández-Rodríguez, Ananda M. Barbosa, Oihana Gordobil, Neftali L.V. Carreño, Jalel Labidi

*Biorefinery Processes Research Group, Chemical & Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia, Spain

Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Gomes Carneiro 1, 96010610 Pelotas, RS, Brazil

A R T I C L E I N F O

Article history:
Received 6 January 2018
Received in revised form 25 January 2018
Accepted 6 March 2018
Available online 10 March 2018

A B S T R A C T

These data and analyses support the research article “Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes” Robles et al. [1]. The data and analyses presented here include fitted curves for selected carbons of the 13C CP-MAS NMR analysis; SEM images of the raw and bleached fibers, graphics with chemical composition and visual images of the fibers throughout the process.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Chemistry
More specific subject area	Cellulose, nanocellulose
Type of data	Figures and graphs
How data was acquired	SEM (JSM-6400 F Scanning electron microscope, JEOL)
	NMR (AVANCE-500 Digital NMR spectrometer, Bruker)

DOI of original article: https://doi.org/10.1016/j.carbpol.2018.01.015

* Corresponding author. Tel. +34 943 017 178.
E-mail address: jalel.labidi@ehu.eus (J.o.s. Labidi).

https://doi.org/10.1016/j.dib.2018.03.028

Corresponding author. Tel. +34 943 017 178.
E-mail address: jalel.labidi@ehu.eus (J.o.s. Labidi).

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
AFM (Multimode TM-AFM with NanoScope IIIa controller, Bruker)
Images (COOLPIX S6400, Nikon)

Data format
Raw micrographs, fitted curves, analyzed graphics.

Experimental factors
SEM samples coated with graphite.
AFM samples coated with graphite.

Experimental features
NMR data were recorded in solid state with Cross Polarization/Magic Angle Spinning

Data source location
AFM and visual images were taken at the Faculty of Engineering, Gipuzkoa, NMR data were collected at the Joxe Mari Korta Center, both within the Campus of Gipuzkoa of the University of the Basque Country UPV/EHU SEM images were recorded at the Faculty of Science and Technology of the University of the Basque Country UPV/EHU in the Campus of Biscay

Data accessibility
Data is accessible in the present document.

Related research article
Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes.

Value of the Data

- These data provide the micrographics, chemical composition and crystallinity data of CNC and CNF from blue agave waste.
- These data provide further information about NMR analyses of the different cellulose nanoentities.
- These data allow researchers to extend the comprehension of the related article.

1. Data

The data in this article contains information on the chemical composition (Fig. 2), visual aspect of the fibers through pulping and bleaching (Fig. 3), SEM (Fig. 1 and Fig. 4) and AFM (Fig. 5) micrographics as well as NMR (Fig. 6) analysis of different cellulose nanoentities obtained from blue agave (Agave tequilana Weber var. azul) waste. For more information, please refer to Robles et al. [1].

2. Materials and methods

SEM images were obtained with a Scanning electron microscope Hitachi S-3400N with field emission cathode, with a lateral resolution of 10–11 Å at 20 kV.
Chemical characterization was done according to standard methods [2–6].

Fig. 1. SEM images of a) blue agave leaf fibers and b) blue agave bagasse fibers as received.
13C NMR spectrometry was performed at a frequency of 250 MHz with an acquisition time of 0.011 s, at room temperature. The spectrum was recorded over 32 scans and water was used as solvent for all the nanocelluloses.

Crystallinity indexes were calculated as follows:

Fig. 2. Chemical composition of leaf and bagasse fibers as obtained from TAPPI standard methods.

Fig. 3. Schematic depiction of the fibers after each treatment.

Fig. 4. SEM images of a) blue agave leaf fibers and b) blue agave bagasse fibers after Organosolv pulping and TCF bleaching.
In which I_{200} corresponds to the main crystalline domain at around $2\theta = 23^\circ$, and I_{AM} is the scatter of the amorphous cellulose, which has its highest intensity around $2\theta = 18^\circ$.

Table 1

Sample/Method	Cr.I$_{SI}$ [%]	Cr.I$_{PF}$ [%]	Cr.I$_{C4}$	δ_{110} [Å]	δ_{200} [Å]
CNFB	75.89	73.75	50.50	60.60	55.61
CNFL	72.29	72.16	51.32	38.15	30.03
CNCB	84.68	78.12	52.01	71.22	71.40
CNCL	87.10	82.65	63.76	49.85	37.47

Segal Index [7]:

$$\text{Cr.I}_{\text{Segal}} = 100 \times \frac{I_{200} - I_{AM}}{I_{\text{tot}}}$$

In which I_{200} corresponds to the main crystalline domain at around 23°, and I_{AM} is the scatter of the amorphous cellulose, which has its highest intensity around $2\theta = 18^\circ$.

Fig. 5. AFM images of CNF (left) normalized height from −5 to 10 nm and CNC (right) normalized height from −5 to 5 nm.

Fig. 6. Fitted curves for the C$_4$ and C$_6$ regions as obtained by 13C NMR.
Peak fitting:

\[
\text{Cr.I}_{\text{Peakfitting}} = 100 \times \frac{\int_{2\theta_1}^{2\theta_2} S_{110}d2\theta + \int_{2\theta_1}^{2\theta_2} S_{110}d2\theta + \int_{2\theta_1}^{2\theta_2} S_{200}d2\theta + \int_{2\theta_1}^{2\theta_2} S_{004}d2\theta}{\int_{2\theta_1}^{2\theta_2} S_{\text{tot}}d2\theta}
\]

(1)

In which the sum of the areas correspondent to the diffraction of crystalline planes is assumed to be the area of the crystalline region, being \(2\theta_1\) and \(2\theta_2\) the limits of the fitted signal for the corresponding crystalline domains (\(S_{110}, S_{110}, S_{200}, S_{004}\)); while \(S_{\text{tot}}\) corresponds to the total area \([8-10]\). Least square iterations were done until coefficient of determination \(R^2 \geq 0.997\) was achieved, which corresponds to a 99.7% accurate fitting.

C4-NMR:

\[
\text{Cr.I}_{\text{NMR}} = 100 \times \frac{\int_{87}^{93} Scrys dx}{\int_{80}^{90} Stot dx}
\]

(2)

In which \(Scrys\) corresponds to the crystalline region of the C4 spectra (from 87 to 93 ppm) while \(Stot\) corresponds to the total area of the C4 region which includes crystalline and amorphous contribution.

Crystallite domain sizes (\(\delta_{hkl}\)) were estimated with the Scherrer equation \([11,12]\), using the peaks corresponding to the crystalline regions:

\[
d_{hkl} = \frac{\kappa \lambda}{H_{hkl} \cos \theta}
\]

The different crystallinities, as well as the contributions of each crystallite domain size, is present in Table 1

Acknowledgments

The authors would like to acknowledge the University of the Basque through grant PIF 13/050, the Basque Government (IT1008-16), the Federal Agency for Support and Evaluation of Graduate Education (CAPES) through process BEX 8710/14-7 and Mexican Council of Science and Technology (CONACyT), through scholarship No. 216178 for financially supporting this work.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.dib.2018.03.028.

References

[1] O. Gordobi, N.L.V. Carreño, J. Labidi, Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes, Carbohydr. Polym. 183 (2018) 294–302. http://dx.doi.org/10.1016/j.carbpol.2018.01.015.

[2] TAPPI T204 cm-07. Solvent extractives of wood and pulp. Standard by Technical Association of the Pulp and Paper Industry, Atlanta, GA, 2007.

[3] TAPPI T207 cm-08. Water solubility of wood and pulp. Standard by Technical Association of the Pulp and Paper Industry, Atlanta, GA, 2008.

[4] TAPPI T211 om-12. Ash in wood, pulp, paper and paperboard: combustion at 525 degrees. Standard by Technical Association of the Pulp and Paper Industry, Atlanta, GA, 2012.

[5] TAPPI T222 om-11. Acid-insoluble lignin in wood and pulp. Standard by Technical Association of the Pulp and Paper Industry, Atlanta, GA, 2011.

[6] L.E. Wise, M. Murphy, A.A. D’Addieco, Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses, Paper Trade J. 122 (1946) 35–43.

[7] L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29 (1959) 786–794. http://dx.doi.org/10.1177/004051755902901003.

[8] E.L. Hult, T. Iversen, J. Sugiyama, Characterization of the supermolecular structure of cellulose in wood pulp fibres, Cellulose 10 (2003) 103–110. http://dx.doi.org/10.1023/A:1024080700873.
[9] N. Terinte, R. Ibbett, K.C. Schuster, Overview on Native Cellulose and Microcrystalline Cellulose I Structure Studied By X-Ray Diffraction (Waxd): Comparison Between Measurement Techniques, Lenzinger Berichte (2011) 118–131. http://dx.doi.org/10.1163/156856198X00740.

[10] P. Ahvenainen, I. Kontro, K. Svedström, Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials, Cellulose 23 (2016) 1073–1086. http://dx.doi.org/10.1007/s10570-016-0881-6.

[11] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Mathematisch-Physikalische Klasse 1918;1918:98–100.

[12] T. Ungár, J. Gubicza, Nanocrystalline materials studied by powder diffraction line profile analysis, Z. Kristallogr. 222 (2007) 114–128. http://dx.doi.org/10.1524/zkri.2007.222.3-4.114.