Two New Species of *Microloxoconcha* (Crustacea: Ostracoda) from the Sublittoral Zone in Western Japan

Hayato Tanaka¹,³ and Susumu Ohtsuka²

¹ Tokyo Sea Life Park, 6-2-3 Rinkai-cho, Edogawabashi-ku, Tokyo 134-8587, Japan
E-mail: Cladocopina@gmail.com
² Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 5-8-1 Minato-machi, Takehana, Hiroshima 725-0024, Japan
³ Corresponding author

(Received 24 April 2019; Accepted 2 September 2019)

http://zoobank.org/B327B697-2B0F-4C93-80E7-DFAD1EEB4B77

In the present study, we describe two new marine species, *Microloxoconcha toyoshioae* n. sp. and *M. sublittoralis* n. sp., collected from the sandy bottom in the western part of Japan, from the depths of approximately 20 to 30 m and 50 m, respectively. This represents the first record of this genus from such depths, since all 10 previously described species are known from the beach interstitial waters. We suspect the two new species are most probably also inhabiting spaces between sand grains since they have very small body and have been collected with other common interstitial ostracods belonging to *Cobanocythere* Hartmann, 1959; *Parovocythere* Hartmann, 1959; *Paracobanocythere* Gottwald, 1983; *Parapolycope* Klie, 1936; and *Psammocythere* Klie, 1936. Owing to their small body and fragile carapace, previous studies might have overlooked the existence of interstitial ostracods from habitats other than beach interstitial. In addition, a key to all species of the genus *Microloxoconcha* is provided.

Key Words: Podocopida, Cytheroidea, interstitial ostracods, TRV *Toyoshio-maru*, meiobenthos.

Introduction

The Ostracoda is a large group of small bivalved crustaceans that inhabit various aquatic habitats (Horne et al. 2002), including interstices of sand grains. Taxonomic studies on interstitial species have been conducted in Japan since the 1970's, with a considerable increase in the number of species descriptions in the last decade (see Table 1). All of these species have been reported from marine or brackish beach interstitial habitats of intertidal to supralittoral zones, except for *Callistocythere ventricostata* Hao in Ruan and Hao, 1988. The species was originally described from empty valves obtained from sediments at a depth of 1,400–1,500 m from the Okinawa Trough. Subsequently, Tran and Tsukagoshi (2015) reported living individuals of this species from interstitial environments of sandy bottoms near the shoreline in Sesoko Beach, Okinawa. We consider that Ruan and Hao (1988) had described this species based on the allochthonous fossil.

Most Japanese interstitial ostracod species have been a very restricted distribution. However, there are some exceptions, *Parapolycope widoensis* Karanovic, Tanaka, and Tsukagoshi, 2016; *P. japonica* (Hiruta, 1983) and *P. uncatata* Tanaka and Tsukagoshi, 2013 are reported from both Japan and South Korea (Karanovic et al. 2016). Consequently, 12 genera and 35 living species of marine and brackish interstitial ostracods have hitherto been known from Japanese interstitial waters (Table 1).

The podocopid ostracod genus *Microloxoconcha* Hartmann, 1954 is characterized by the laterally compressed carapace with smooth external surface, and a relatively large seventh limb (Hartmann 1954; Higashi and Tsukagoshi 2008). To date, all 10 species have been described from and are known to inhabit only interstitial environments of the intertidal to shallow subtidal zones of the world (Table 2). During the faunal surveys on Japanese ostracods with TRV *Toyoshio-maru*, both sexes of the two new species of *Microloxoconcha* were found from coarse sandy bottoms in shallow waters of western Japan, and are described in detail herein.

Materials and Methods

Sediment samples were obtained from two sites in western Japan, using a dredge (mouth 50 cm wide×15 cm high; 5-mm mesh) of TRV *Toyoshio-maru*, Hiroshima University: off the north of Hosonosu sand bank, Hiroshima Prefecture, Japan (34°22′29″N, 133°07′36″E; depth 19–28 m; 4 November 2014) (Fig. 1A, B); off the south of Nagannu Island, Okinawa Prefecture, Japan (26°14′20″N, 127°32′17″E; depth 52 m; 21 May 2016) (Fig. 1A, C). Sediments were stirred in sea-water, and the supernatant was filtered with a small plankton net (0.1 mm mesh). Living specimens of ostracods were extracted from the remaining deposits under a binocular stereo-microscope (OLYMPUS SZ60). The collected specimens were fixed and preserved in 80% ethanol at room temperature by November 10, 2020.
Table 1. List of interstitial Ostracoda from Japan.

Subclass	Order	Family	Species	Type locality	Latitude, Longitude	Reference
Myodocopa	Halocyprida	Polycopidae	Kilecope oligohalina	Kanogawa Rivermouth, Numazu, Shizuoka	35°04′52″N, 138°51′33″E	Tanaka and Tsukagoshi (2010)
			Kilecope mihoensis	Miho-masaki Beach, Shizuoka	35°01′15″N, 138°30′58″E	Tanaka et al. (2014)
				Mukaihashima, Onomichi, Hiroshima	34°21′54″N, 133°12′57″E	Hiruta (1983), this study***
				Ohura Beach, Shimoda, Shizuoka	34°40′03″N, 138°56′28″E	Tanaka et al. (2010)
				Miho-masaki Beach, Shizuoka	35°01′15″N, 138°31′20″E	Tanaka and Tsukagoshi (2010)
				Orange Beach, Ito, Shizuoka	34°97′52″N, 139°09′70″E	Tanaka and Tsukagoshi (2013a)
				Kojirio Beach, Ito, Shizuoka	34°57′15″N, 139°08′51″E	Tanaka and Tsukagoshi (2013a)
				Miho-masaki Beach, Shizuoka	35°01′15″N, 138°30′58″E	Tanaka and Tsukagoshi (2014)
				Wado Island, South Korea*	35°35′05″N, 126°15′12″E	Karanovic et al. (2016)
				Kilecope mihoensis	35°08′45″N, 139°40′48″E	Tanaka et al. (2014)
				Kitagi island Beach, Kasaoka, Okayama	34°22′29″N, 133°31′54″E	Tanaka et al. (2014)
				Miho-uchihama Beach, Shizuoka	35°00′51″N, 138°31′07″E	Tanaka et al. (2014)
				Shijuchima Beach, Onomichi, Hiroshima	34°21′41″N, 133°09′46″E	Tanaka and Ohsuka (2016)
				no information		Schornikov (1975)
				no information		Schornikov (1975)
				Mochimune Beach, Shizuoka	35°55′04″N, 138°21′43″E	Hiruta et al. (2011)
				Ohura Beach, Shimoda, Shizuoka	34°40′06″N, 138°56′28″E	Hiruta et al. (2011)
				Mataroki Beach, Kushiho, Hokkaido	42°56′25″N, 144°29′23″E	Hiruta (1989), this study***
				Ohura Beach, Shimoda, Shizuoka	34°40′06″N, 138°56′28″E	Watanabe et al. (2008)
				Ikeji Beach, Kitakami Island, Kagoshima	28°19′42″N, 129°57′06″E	Hiraga and Tsukagoshi (2008)
				Wada-Nagahama Beach, Yokosuka, Kanagawa	35°11′24″N, 139°36′42″E	Hiraga and Tsukagoshi (2008)
				Wada-Nagahama Beach, Yokosuka, Kanagawa	35°11′24″N, 139°36′42″E	Hiraga et al. (2011)
				Mihomaki Beach, Shizuoka	35°01′13″N, 138°31′20″E	Yamada and Tanaka (2011)
				Toshiki Beach, Awaji Island, Hyogo	34°24′12″N, 134°06′01″E	Yamada and Tanaka (2013)
				Sosoko Beach, Motobu, Okinawa	26°39′04″N, 127°51′27″E	Tran and Tsukagoshi, 2015
				Sosoko Beach, Motobu, Okinawa	26°39′04″N, 127°51′27″E	Tran and Tsukagoshi, 2015
				Ohura Beach, Shimoda, Shizuoka	34°40′06″N, 138°56′28″E	Watanabe et al. (2008)
				Kour Beach, Odawara, Kanagawa	35°16′44″N, 139°12′45″E	Hiraga and Tsukagoshi (2012)
				Daito-zaiki, Shima, Mie	34°16′35″N, 136°53′49″E	Hiraga and Tsukagoshi (2012)
				Mataroki Beach, Kushiho, Hokkaido	42°56′25″N, 144°29′23″E	Hiruta (1991), this study***

* Parapolycope widiosis is also found from interstitial environment of Miho-masaki Beach, Shizuoka, Japan (35°01′15″N, 138°30′58″E). ** Callistocythere ventricostata was originally described by dead specimens (empty valve) collected from the Oki- nawa Trough, however, Tran and Tsukagoshi (2015) found living specimens of this specime from marine interstitial habitat of Sosoko Beach, Okinawa. *** Exact localities were not shown in original descrtions. Therefore, we got accurate information from the author.
Two new species of *Microloxoconcha*

Table 2. List of the genus *Microloxoconcha* of the world.

Species	Habitat	Water depths	Locality	Reference
Microloxoconcha compressa	intertidal	—	Beaches of Argeles, Saint-Cyprien and Corsica (Moriani Plage), France	Hartmann (1954); Gottwald (1983)
Microloxoconcha marinovi	sublittoral	2 to 3 m	Black Sea	Schornikov (1969)
Microloxoconcha fragilis	sublittoral	3 m	Coral debris, Tanga, Tanzania	Hartmann (1974)
Microloxoconcha santacruzensis	sublittoral	0.5 to 1.5 m	Bahia Academy (Santa Cruz Island) and Cabo Douglas (Fernandina Island), Ecuador	Gottwald (1983)
Microloxoconcha subterranea	intertidal	—	Makapu’u Beach and Hau’ula Beach, Oahu Island, Hawaii	Gottwald (1983)
Microloxoconcha kushiroensis	intertidal	—	Matatoki Beach, Kushiro, Hokkaido, Japan	Hiruta (1989)
Microloxoconcha ikeyai	intertidal	—	Ohura Beach, Shimoda, Shizuoka, Japan	Watanabe et al. (2008)
Microloxoconcha kikaijimaensis	intertidal	—	Ikei Beach (Kikaijima Island), Kagoshima, Japan	Higashi and Tsukagoshi (2008)
Microloxoconcha schornikovi	intertidal	—	Wada-Nahama Beach, Yokosuka, Kanagawa, Japan	Higashi and Tsukagoshi (2008)
Microloxoconcha dimorpha	intertidal	—	Wada-Nahama Beach, Yokosuka, Kanagawa, Japan	Higashi et al. (2011)
Microloxoconcha toyoshioae	sublittoral	18 to 29 m	Off Hosonosu sand bank, Hiroshima, Japan	This study
Microloxoconcha sublittoralis	sublittoral	52 m	Off Nagannu Island, Okinawa, Japan	This study

![Fig. 1. Map showing the sampling sites.](image)

temperature for description. The valves and soft parts were dissected using fine needles. The valves were preserved on a cardboard cell slide and the soft parts were mounted in a type of Hoyer’s medium (Shiga Konchu Fukyusha, Neo-Shigarai), on glass slides under a binocular stereo microscope. These specimens were then observed and illustrated using a transmitted-light binocular microscope (OLYMPUS BX53) equipped with a differential interference contrast system and a camera lucida. The valves were washed with distilled water and gold-coated with an ion sputtering device (JEOL, JFC-1100). The material was then observed under a scanning electron microscope (SEM) (JEOL, JSM-6510LV). The type specimens are deposited in the collection of the National Museum of Nature and Science, Tokyo (NSMT), with the prefix ‘NSMT-Cr.’ The terminology of morphological description follows Higashi et al. (2011): abbreviations; LV, left valve; RV, right valve.

Taxonomy

Subclass *Podocopa* Sars, 1866
Order *Podocopida* Sars, 1866
Superfamily *Cytheroidea* Baird, 1850
Family *Cytheromatidae* Elofson, 1938
Genus *Microloxoconcha* Hartmann, 1954
Microloxoconcha toyoshioae n. sp.
(Figs 2–6)

Type series. Holotype: adult male (NSMT-Cr 26685), RV length 0.30 mm, height 0.13 mm, LV length 0.30 mm, height 0.13 mm, soft parts mounted on a slide and valves preserved.
in a cardboard cell slide. The holotype specimen was collected from the bottom consisting of coarse granite sand off north of Hosonosu sand bank, Hiroshima Prefecture, Japan (34°22′29″N, 133°07′36″E) at depth 19–28 m, on 4 November 2014. Paratypes: adult male (NSMT-Cr 26686), RV length 0.28 mm, height 0.12 mm, LV length 0.29 mm, height 0.12 mm; adult male (NSMT-Cr 26687), RV length 0.30 mm, height 0.13 mm, LV length 0.30 mm, height 0.13 mm; and adult female (NSMT-Cr 26688), RV length 0.28 mm, height 0.12 mm, LV length 0.28 mm, height 0.12 mm. Same data as in holotype.

Diagnosis. Carapace round-subcrescent in lateral view. Marginal infold and vestibula broad in both anterior and posterior regions. Seventh limb much longer than fifth and sixth limbs. Upper ramus shape of male copulatory organ gently bending spoon-like with one protrusion on anterior-middle margin. In female, Sclerotized framework of paired genital openings elongated triangle shape.

Description of adult male. Carapace (Figs 2A, B, 3). Carapace round-subcrescent in lateral view (Figs 2A, B, 3). Surface smooth. Anterior and posterior margins rounded in lateral view (Figs 2A, B, 3). Marginal infold and vestibula broad in both anterior and posterior regions (Fig. 3). Adductor muscle scar pattern consisting of row of four closely spaced scars and two frontal scars (Fig. 3). Hingement weak adont type.

Antennula (Fig. 4A). Consists of five slender articulated podomeres. First and second podomere bare. Third podomere with one anterio-distal seta. Fourth podomere with one short anterio-middle seta and two long anterio-distal setae. Fifth podomere with one long slender seta and two spatulate setae (aesthetascs) at distal end.

Antenna (Fig. 4B). Four articulated podomeres. First podomere (basis) bare, with a long, thick, three-segmented exopodite (spinneret seta). Second (first endopodial) podomere with one medium seta on posterio-distal end. Third (second endopodial) podomere with one medium posterio-middle seta, one short posterio-distal spine, and one stout claw at posterio-distal end. Fourth (third endopodial) podomere small, with one stout distal claw.

Mandibula (Fig. 4C). Coxal with one short seta on anterior margin. Coxal endite consisting of seven teeth with two short setae. Palp consisting of four indistinct podomeres. First podomere of palp (Basis) with thick nib-like plate (exopodite) near posterio-middle margin and short anterio-distal seta. Second and third podomeres of palp fused. Second podomere of palp (first endopodite) with one posterio-distal setulous seta and two anterio-distal setulous setae. Third podomere of palp (second endopodite) with three long setae at anterio-distal end. Fourth podomere of palp...
Two new species of *Microloxoconcha* (third endopodite) slender, with three distal setae.

Maxillula (Fig. 4D). Thin branchial plate with 16 plumose setae. Basal podomere with one palp (endopodite) and three endites. Palp consisting of two distinct podomeres: first podomere with two distal setae; second podomere with three distal setae. Endite: dorsal one with four setae; middle one with five setae; ventral one with five setae.

Fifth limb (Fig. 5A). Four articulated podomeres. First podomere with one antero-distal seta, one setulous antero-middle seta and setulous postero-middle seta. Second and third podomeres with rows of setulae on distal margin. Fourth podomere with rows of setulae on anterior surface and one distal claw.

Sixth limb (Fig. 5B). Four articulated podomeres. First podomere with one antero-distal seta, one setulous antero-middle seta and postero-middle seta. Second podomere with one antero-distal seta and rows of setulae on distal margin. Third podomere with rows of setulae on distal margin. Fourth podomere with rows of setulae on anterior surface and one distal claw.

Seventh limb (Fig. 5C). Four thick articulated podomeres. First podomere with one stout antero-distal seta, one short antero-middle spine, and short seta on near postero-proximal part. Second podomere with one stout antero-distal spine and rows of setulae on anterior and distal margin. Third podomere small, with rows of setulae on anterior and distal margin. Fourth podomere small, with rows of setulae on anterior and distal margin and long distal claw.

Male brush-shaped organ (Fig. 5D). Consisting of two branches (right and left) each with 13 setae on distal margin.

Male copulatory organ (Fig. 5E). Consisting of semi-quadrilateral basal capsule, with very thin and semi-triangular distal lobe; copulatory duct short, approximately one fourth as long as length of capsule; upper ramus gently bending spoon-like with one protrusion on antero-middle margin; and clasping apparatus thick, parallelogram with a...
concave on posterior margin.

Description of adult female. Carapace (Fig. 2C, D). Carapace round-subcrescent in lateral view (Fig. 2C, D). Surface smooth. Anterior and posterior margin rounded in lateral view (Fig. 2C, D).

Posterior part of body and female genitalia (Fig. 6). Sclerotized framework of paired genital openings elongated triangle in shape. Spermathecal duct long, connecting with genital opening and receptaculum seminis. Rows of tiny setulae on abdominal end.

Occurrence. So far known only from the type locality.

Etymology. The species was named after TRV "Toyoshio-maru," the ship deployed for the sample collection.

Remarks. The carapace shape and pattern of the anterior vestibule of *Microloxoconcha toyoshioae* n. sp. resembles those of *M. dimorpha* Higashi et al., 2011. *Microloxoconcha*

Fig. 5. *Microloxoconcha toyoshioae* n. sp. A, B, paratype male (NSMT-Cr 26687); C–E, holotype male (NSMT-Cr 26685). A, fifth limb; B, sixth limb; C, seventh limb; D, brush shaped organ; E, male copulatory organ. Scale bar: 0.05 mm. Abbreviations: Bc, basal capsule; Ca, clasp- ing apparatus; Cd, copulatory duct; Di, distal lobe; Ur, upper ramus.
dimorpha has genetically indistinguishable two morphotypes in the male (Higashi et al. 2011). However, this new species can be easily distinguished from M. dimorpha by the shape of the upper ramus of the male copulatory organ: a gently bending spoon-like in M. toyoshioae n. sp. versus elliptical in M. dimorpha. In addition, the terminal claw of the seventh limb is different in length between M. toyoshioae n. sp. and M. dimorpha; 1.5 and 2.5 times as long as fourth podomere, respectively.

Co-occurring species. Following ostracod species were found in the same sample: Cobanocythere sp. 1, Microcythere sp. 1, Parvocythere sp., and Cobanocytheridae gen. et sp.

Microloxoconcha sublittoralis n. sp.

(Figs 7–11)

Type series. Holotype: adult male (NSMT-Cr 26689), RV length 0.24 mm, height 0.10 mm, LV length 0.24 mm, height 0.09 mm, soft parts mounted on a slide and valves preserved in a cardboard cell slide. The holotype specimen was collected from the bottom consisting of coarse coral sand off south of Nagannu Island, Okinawa Prefecture, Japan (26°14′20″N, 127°32′17″E) at depth 52 m on 21 May 2016. Paratype: 1 adult female (NSMT-Cr 26690), RV length 0.24 mm, height 0.10 mm, LV length 0.24 mm, height 0.10 mm, same data as in holotype.

Diagnosis. Carapace in lateral view, elongate and bean-shaped, anterior margin rounded, postero-dorsal margin gently inclined toward posterior end (Figs 7A, B, 8). Surface smooth. Marginal infold broad in both anterior and posterior regions (Fig. 8). Vestibula broad in anterior and narrow in posterior regions, respectively (Fig. 8). Adductor muscle scar pattern consisting of row of four closely spaced scars and two frontal scars (Fig. 8). Hingement weak adont type.

Antennula (Fig. 9A). Consists of five slender articulated podomeres. First podomere bare. Second podomere with row of setulae on anterior margin. Third podomere with one antero-distal seta. Fourth podomere with one short antero-middle seta and one long antero-distal seta. Fifth podomere with one slender seta and two spatulate setae (aesthetascs) at distal end.

Antenna (Fig. 9B). Four articulated podomeres. First podomere (basis) bare, with a long, thick, three-segmented exopodite (spinneret seta). Second (first endopodial) podomere with one short seta on postero-distal end. Third (second endopodial) podomere with one medium postero-middle seta, one short postero-distal spine, and one stout claw at postero-distal end. Fourth (third endopodial) podomere small, with one stout distal claw.

Mandibula (Fig. 9C). Coxa with one short setulous seta on anterior margin. Coxal endite consisting of six teeth. Palp consisting of four articulated podomeres. First podomere of palp (Basis) with thick nib-like plate (exopodite) near postero-middle margin and short seta on antero-middle margin. Second podomere of palp (first endopodite) with one thick antero-distal seta, and one thick and one slender postero-distal setae. Third podomere of palp (second endopodite) with two setae near antero-proximal margin, one thick and one slender antero-distal setae, and one short postero-distal seta. Fourth (third endopodite) podomere of palp slender, with three distal setae.

Maxillula (Fig. 9D). Thin branchial plate bearing 11 plumose setae. Basal podomere with one palp (endopodite) and three endites. Palp consisting of two distinct podomeres: first podomere with one distal seta; second podomere with three distal setae. Endite: dorsal one with five setae; middle
one with four setae; ventral one with five setae.

Fifth limb (Fig. 10A). Four articulated podomeres. First podomere with one antero-distal seta, one stout setulous antero-middle seta and one slender postero-middle seta. Second podomere with one short antero-distal spine. Third podomere bare. Fourth podomere with one stout distal claw.

Sixth limb (Fig. 10B). Four articulated podomeres. First podomere with one antero-distal seta, one antero-middle seta and postero-middle seta. Second podomere with one antero-distal seta. Third podomere bare. Fourth podomere with one stout distal claw.

Seventh limb (Fig. 10C). Four thick articulated podomeres. First podomere with one antero-distal seta, one short antero-middle spine, and short seta on near postero-proximal part. Second podomere with one stout antero-distal spine and rows of setulae on anterior and distal margin. Third podomere small, with rows of setulae on anterior and distal margin. Fourth podomere small, with rows of setulae on anterior and distal margin and one distal claw.

Male brush-shaped organ (Fig. 10D). Consisting of two branches (right and left) each with 11 setae on distal margin.

Male copulatory organ (Fig. 10E). Consisting of spindle-shaped basal capsule, with very thin and semi-triangular distal lobe; copulatory duct long flagellum shape, approximately half lengths as capsule.

Description of adult female. Carapace (Fig. 7C, D). Carapace elongate and bean-shaped in lateral view, anterior margin rounded, postero-dorsal margin gently inclined toward posterior end (Fig. 7C, D).

Posterior part of body and female genitalia (Fig. 11). Sclerotized framework of paired genital openings liver-like shape. Spermathecal duct long, connecting with genital opening and receptaculum seminis. Rows of tiny setulae on abdominal end.

Occurrence. So far known only from the type locality.

Etymology. Sublittoral, referring to the habitat of this species.

Remarks. Microloxoconcha sublittoralis n. sp. has unique morphology of the male copulatory organ: a long flagellate copulatory duct has never been reported from any other Microloxoconcha species. It most closely resembles M. santacruzensis Gottwald, 1983 in the shape of the carapace. However, the appendages differ between these species: distal end of the antennula has one slender seta and two spatulate setae in M. sublittoralis n. sp. versus two slender setae and one spatulate seta in M. santacruzensis; posterior seta on the third podomere of the antenna has one slender seta in M. sublittoralis n. sp. versus one stout and one spoon-like setae in M. santacruzensis; basal capsule of the male copulatory organ is spindle-shaped in M. sublittoralis n. sp. versus tear-drop-shaped in M. santacruzensis. Microloxoconcha sublittoralis n. sp. is similar with M. toyoshioae n. sp. by the cha-
Two new species of Microloxoconcha

Two new species of Microloxoconcha totaxy of antennula and a three segmented spinneret seta. However, Microloxoconcha sublittoralis n. sp. and M. toyoshioae n. sp. can be distinguished by the carapace shape (elliptical and bean-shaped versus round-subcrescent) and the appendage morphologies (the mandibula has a 4 segmented palp versus 3 segmented palp; the branchial plate bears 11 setae versus 16 setae).

Co-occurring species. The following 35 ostracod species were found in the same sample: Parapolycope sp. 1, Parapolycope sp. 2, Polycoopia sp. 1, Polycopiella sp. 2, Pontopolycope sp., Micropolycope sp., Anchistrocheles sp., Neonesidea sp., Triebelina sp., Bythoceratina sp. 1, Bythoceratina sp. 2, Pseudocythere sp., Cobanocythere sp. 2, Paracobanocythere sp., Pontocythere sp., Microloxoconcha sp., Hemicytherura sp., Semicytherura sp. 1, Semicytherura sp. 2, Semicytherura sp. 3, Callistocythere sp., Loxoconcha sp., Microcythere sp. 2, Cytherois sp. 1, Cytherois sp. 2, Cytherois sp. 3, Paradoxostoma sp., Xiphichilus sp., Keijia sp., Propontocypris sp. 1, Propontocypris sp. 2, Psammocythere sp., Xestoleberis sp. 1, Xestoleberis sp. 2, and Xestoleberis sp. 3.

Discussion

It is likely that the two new Microloxoconcha species described herein inhabit the interstices of sand grains. All the previously known species of Microloxoconcha have been recorded from only interstitial environments of intertidal to...

Fig. 9. Microloxoconcha sublittoralis n. sp., holotype male (NSMT-Cr 26689). A, antennula; B, antenna; C, mandibula; D, maxillula. Scale bar: 0.05 mm. Abbreviations: ba, basis; cx, coxa; en, endopodite; ex, exopodite.
shallow subtidal zones (Table 2). Some species of the genera Cobanocythere, Parvocythere, Paracobanocythere, Parapolycope, and Psammocythere co-occur with the two new Microloxoconcha species. Extant species of these five genera have been reported so far only from the interstitial environments of the intertidal to shallow subtidal zones (Hiruta 1991; Higashi and Tsukagoshi 2011, 2012; Tanaka 2013; Tanaka et al. 2016). A small body size of *M*. toyoshioae n. sp. and *M*. sublittoralis n. sp. seems to imply their habitat in sandy interstices (Hartmann 1973; Maddocks 1976; Yamada and Tanaka 2013). Due to their small body size and fragile carapace, previous studies that are mainly performed by palaeontological methods might have overlooked their existence. However, it is difficult to be affirmative on the original habitat of *M*. toyoshioae n. sp. and *M*. sublittoralis n. sp., because they were obtained by dredge sampling in the present study.

In order to determine whether these ostracods actually live in the interstitial habitat of the sublittoral zone, a quantitative sampling method that can collect coarse sediments with infaunal meio-benthos such as the use of a Reinecker type box-corer (Farris and Crezée 1976), should be applied.

Key to species of Microloxoconcha
Hartmann, 1954

1. Second podomere of antennula with one postero-distal seta. ... *M*. santacruzensis
 - Second podomere of antennula lacks postero-distal seta. ... 2

2. Copulatory duct of male copulatory organ is long flagellated *M*. sublittoralis n. sp.

Fig. 10. Microloxoconcha sublittoralis n. sp., holotype male (NSMT-Cr 26689). A, fifth limb; B, sixth limb; C, seventh limb; D, brush shaped organ; E, male copulatory organ. Scale bar: 0.05 mm. Abbreviations: Bc, basal capsule; Ca, clasping apparatus; Cd, copulatory duct; Di, distal lobe; Ur, upper ramus.
Two new species of Microloxoconcha

Acknowledgments

The authors thank the captain and crew of the TRV Toyoshio-maru, Hiroshima University, for their cooperation at sea. Thanks is also due to Drs Takeshi Hirabayashi and Yusuke Kondo and other plankton laboratory members of Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University for their assistance in collecting specimens. We are thankful to two anonymous reviewers for constructive and valuable comments. This study was funded by the JSPS KAKENHI Grant Numbers JP263700 (HT). We would like to thank Editage (www.editage.jp) for English language editing.

References

Baird, W. 1850. The Natural History of the British Entomostraca. Ray Society, London, 364 pp.
Eldefon, O. 1938. Neue und wenig bekannte Cytheriden von der schwedischen Westküste. Arkiv för Zoologi 30: 1–21.
Farris, R. A. and Crezée, M. 1976. An improved Reineck Box for sampling coarse sand. International Review of Hydrobiology 61: 703–705.
Gottwald, J. 1983. Intermittente fauna von Galapagos XXX. Podocopida 1 (Ostracoda). Mikrofauna des Meeresbodens 90: 1–187.
Hartmann, G. 1954. Ostracodes des eaux souterraines litérales de la Méditerranée et de la Majorque. Vie et Milieu 4: 238–253.
Hartmann, G. 1973. Zum gegenwärtigen Stand der Erforschung der Ostracoden interstitieller Systeme. Annales de Spéléologie 28: 417–426.
Hartmann, G. 1974. Zur Kenntnis des Eulitorals der afrikanischen Westküste zwischen Angola und Kap der Guten Hoffnung und der afrikanischen Ostküste von Südafrika und Mocambique unter besonderer Berücksichtigung der Polychaeten und Ostracoden. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 69: 229–521.
Higashi, R. and Tsukagoshi, A. 2008. Two new species of Microloxoconcha (Crustacea: Ostracoda: Podocopida) from Japan, with a redescription of the Genus. Species Diversity 13: 157–173.
Higashi, R. and Tsukagoshi, A. 2011. Four new species of the interstitial family Cobanocytheridae (Crustacea, Ostracoda, Cytheroidea) from central Japan. Zootaxa 2924: 33–56.
Higashi, R. and Tsukagoshi, A. 2012. Two new species of the interstitial genus Parvocythere (Crustacea, Ostracoda, Cytheridea) from Japan: an example of morphological variation. ZooKeys 193: 27–48.
Higashi, R., Tsukagoshi, A., Kimura, H., and Kato, K. 2011. Male dimorphism in a new interstitial species of the genus Microloxoconcha (Podocopida: Ostracoda). Journal of Crustacean Biology 31: 142–152.
Hiruta, S. 1983. A new species of the genus Polycope Sars from the Inland Sea of Japan (Ostracoda: Cladocoptina). Proceedings of the Japanese Society of Systematic Zoology 26: 1–10.
Hiruta, S. 1989. A new species of marine interstitial Ostracoda of the genus Microloxoconcha. Proceedings of the Japanese Society of Systematic Zoology 39: 29–36.
Hiruta, S. 1991. A new species of marine interstitial Ostracoda of the genus Psammocythere Klie from Hokkaido, Japan. Zoological Science 8: 113–120.
Hiruta, S. F., Hiruta, S., and Mawatari, S. F. 2007. A new, interstitial species of *Terrestricythere* (Crustacea: Ostracoda) and its microdistribution at Orito Beach, northeastern Sea of Japan. Hydrobiologia 585: 43–56.

Horne, D. J., Cohen, A., and Martens, K. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. Pp. 5–36. In: Holmes, J. A. and Chivas, A. R. (Eds) *The Ostracoda, Applications in Quaternary Research*. American Geophysical Union, Washington DC.

Karanovic, I., Tanaka, H., and Tsukagoshi, A. 2016. Congruence between male upper lip morphology and molecular phylogeny in *Parapolycope* (Ostracoda), with two new species from Korea. Invertebrate Systematics 30: 231–254.

Maddocks, R. F. 1976. *Pussellinae* are interstitial Bairdiidae (Ostracoda). Micropaleontology 22: 194–214.

Ruan, P. and Hao, Y. 1988. Systematic description of microfossils. 2. Ostracoda. Pp. 227–395. In: Rong, L. and Shu, Z. (Eds) *Quaternary Microbiotas in the Okinawa Trough and their Geological Significance*. Geological Publishing House, Beijing.

Sars, G. O. 1866. Oversigt af Norges marine Ostracoder. Forhandlinger i Videnskabs-Selskabet Christiania 8: 1–130.

Schornikov, E. I. 1969. Subclass Ostracoda, shelled Crustacea-Ostracoda Latreille, 1816. Pp. 163–217. In: Vodyanitsky, V. A. (Ed.) *Identification Book for the Black Sea and the Azov Sea Fauna*, Vol. 2. Free Living Invertebrates Crustacea. Naukova Dumka, Kiev. [In Russian]

Schornikov, E. I. 1975. Ostracod fauna of the intertidal zone in the vicinity of the Seto Marine Biological Laboratory. Publication of the Seto Marine Biological Laboratory 20: 1–30.

Tanaka, H. 2013. The mating behaviour of the seed shrimp *Parapolycope spiralis* (Ostracoda: Cladocopina), with insight into the evolution of mating systems in cryptic interstitial habitats. Biological Journal of the Linnean Society 109: 791–801.

Tanaka, H., Le, D. D., Higashi, R., and Tsukagoshi, A. 2016. A new interstitial ostracod species of the genus *Panicobanocythere* from Vietnam, with mitochondrial CO1 sequence data of three Asian species. ZooKeys 559: 17–33.

Tanaka, H. and Ohtsuka, S. 2016. Historical biogeography of the genus *Polycopissa* (Ostracoda: Myodocopa: Cladocopina), with the description and DNA barcode of the second Indo-Pacific species from the Seto Inland Sea. Marine Biodiversity 46: 625–640.

Tanaka, H. and Tsukagoshi, A. 2010. Two new interstitial species of the genus *Parapolycope* (Crustacea: Ostracoda) from central Japan. Zootaxa 2500: 39–57.

Tanaka, H. and Tsukagoshi, A. 2013a. The taxonomic utility of the male upper lip morphology in the ostracod genus *Parapolycope* (Crustacea), with descriptions of two new species. Journal of Natural History 47: 963–986.

Tanaka, H. and Tsukagoshi, A. 2013b. Description and scanning electron microscopic observation of a new species of the genus *Polycopetta* (Crustacea, Ostracoda, Cladocopina) from an interstitial habitat in Japan. ZooKeys 294: 75–91.

Tanaka, H. and Tsukagoshi, A. 2014. Intraspecific variation in male upper lip morphology of *Parapolycope watanabei* n. sp. (Crustacea: Ostracoda) and its implications for speciation. Zoological Science 31: 758–765.

Tanaka, H., Tsukagoshi, A., and Hiruta, S. 2010. A new combination in the genus *Parapolycope* (Crustacea: Ostracoda: Myodocopa: Cladocopina), with the description of a new species from Japan. Species Diversity 15: 93–108.

Tanaka, H., Tsukagoshi, A., and Karanovic, I. 2014. Molecular phylogeny of interstitial Polycopidae ostracods (Crustacea) and descriptions of new genus and four new species. Zoological Journal of the Linnean Society 172: 282–317.

Tran, M. H. and Tsukagoshi, A. 2015. First records of interstitial leptocytherids (Crustacea, Ostracoda): two new species and a redescription of *Callistocythere ventricostata* Ruan & Hao, 1988 collected from the Okinawa Islands, southern Japan. Zootaxa 4006: 83–102.

Watanabe, S., Tsukagoshi, A., and Higashi, R. 2008. Taxonomy and ecology of two new interstitial cytheroid Ostracoda (Crustacea) from Shimoda, central Japan. Species Diversity 13: 53–71.

Yamada, S. and Tanaka, H. 2011. First report of an interstitial *Semicytherura* (Crustacea: Ostracoda: Cytheruridae: Cytherurinae): a new species from central Japan. Species Diversity 16: 49–63.

Yamada, S. and Tanaka, H. 2013. Two interstitial species of the genus *Semicytherura* (Crustacea: Ostracoda) from Japan, with notes on their microhabitats. Zootaxa 3745: 435–448.