Private and public drug benefit plans in Canada use numerous forms of out-of-pocket charges for covered prescription drugs.1,2 When applied indiscriminately, cost-sharing can reduce patient adherence to medications, even for important classes of drugs such as antidiabetic medications.3–7 Reduced medication adherence because of cost-sharing can negatively affect the health of vulnerable populations.8–10 The final report of the Advisory Council on the Implementation of National Pharmacare, published in June 2019, called for universal, single-payer, public pharmacare in Canada.11 Pharmacare is shaping up to be a defining issue of the 2019 federal election.

Consideration of national pharmacare represents an opportunity to define not only what drugs will be on any national formulary, but also what extent of coverage will be provided for those drugs. Because the level of patient charges for covered prescriptions can have substantial budget implications, some form of such “cost-sharing” might be expected under universal pharmacare. For example, an average copayment of $10 per prescription would generate about $6 billion in revenue.12 Although revenues of that scale may be welcome news to departments of finance, the design of copayments under a national pharmacare system must be considered carefully from a clinical and health policy perspective. In an effort to balance clinical, policy and economic goals, a variety of payers in the United States have applied value-based insurance design, under which patient copayments are based on a drug’s assessed clinical and economic value. Some of these approaches have generated sufficiently promising results that the application of this design deserves consideration in Canada.

We describe the use of value-based insurance design in the US and discuss the practical implications of applying such an approach in the Canadian context.

Value-based insurance versus cost-based insurance

The value-based insurance approach sets the out-of-pocket costs of a covered drug based on its assessed value: drugs of higher assessed value from a health system perspective will be available with low or no copayments, and drugs of lower assessed value will be available with higher copayments. For instance, a value-based insurance plan might waive cost-sharing for generic antihypertensive medications and impose a higher cost-share for branded statins. The primary function of the tiered copayments under a policy with value-based insurance design is to make higher-value drugs readily available while steering patients away from lower-value drugs. This also has some secondary effects of generating revenues for the health plan through increased cost-sharing and reduced use of lower-value options, and increasing the drug plan’s price negotiating power with manufacturers, who may be asked to provide lower prices in exchange for having lower copayments placed on their products.

How has value-based insurance design been applied in other settings?

Policies with value-based insurance design gained in popularity among US private employer-sponsored plans beginning in the 2000s13,14 and have since gained traction in public policy. For example, the 2010 Patient Protection and Affordable Care Act required health plans to include certain preventive drugs and services without cost-sharing, such as certain generic statins.15 More recently, the US federal government has charged the Medicare Advantage program (managed care coverage for older
How could value-based insurance design be applied to national pharmacare?

Table 1 provides a high-level summary of the terms of cost-sharing for 3 main types of beneficiaries of public drug plans in Canada: people receiving social assistance, people aged 65 years and older, and the balance of the general population. Recipients of social assistance receive first-dollar or near first-dollar coverage in all provinces. Furthermore, although some provinces have moved away from age-targeted drug benefits, people aged 65 years and older receive more extensive public drug coverage than younger populations in most provinces. This is one of the legacies of the incremental evolution of pharmacare in Canada to date; public drug plans evolved as subsidy programs for specific demographic groups.35,36

The use of value-based insurance design in the creation of a national formulary for Canada would represent a substantial paradigm shift should a national pharmacare program be implemented. A national pharmacare program using such a design would set levels of subsidy not primarily based on the demographic characteristics of beneficiaries but primarily based on the characteristics of treatments. Under a value-based insurance approach, high-value medications with proven safety and effectiveness would receive full public coverage for all Canadians, and other medications would receive limited or no public coverage for all Canadians. Government programs might still provide first-dollar coverage for low-income households; however, a well-designed value-based insurance policy would ensure universal access to high-value treatments while still leveraging the revenue powers and “steering effects” of value-based copayments.

National pharmacare with value-based insurance design might, for example, employ 3 tiers of copayment based on the assessed economic value of the therapies from a health system perspective. The copayments could be $0 for cost-saving medications, $25 for good-value medications (e.g., treatments with incremental cost-effectiveness ratios of ≤$50000), and $50 for acceptable-value medications (e.g., treatments with incremental cost-effectiveness ratios of ≤$100000). Medications that do not represent acceptable value for money or that lack evidence on value for money would not be covered under the national pharmacare plan.

Table 2 summarizes the expected effects of using a simpler 2-copayment-tier ($0/$25) value-based insurance design under national pharmacare on medication use and spending compared with having a flat $0 or $15 copayment for all covered medications. In terms of patient medication use, a flat $0 copayment program will foster the use of all medications. A flat $15 copayment program will foster more limited use of all medications. In contrast, national pharmacare based on a value-based insurance approach would be expected to increase the use of drugs of higher assessed value while reducing the use of drugs of lower assessed value relative to either scenario of flat $0 or $15 copayments. This is because the difference in copayments will tend to “steer” patients toward the higher-value option. For example, a higher-value drug with a $0 copayment may be used more often in a program with a value-based insurance design than even in a

Table 1. Comparison of national pharmacare programs in Canada

Program	Cost-sharing for social assistance	Cost-sharing for 65+ years	Cost-sharing for balance of population
Public drug plans	First-dollar or near first-dollar	First-dollar	First-dollar or near first-dollar
National pharmacare	First-dollar or near first-dollar	First-dollar	First-dollar or near first-dollar
Table 1: Cost-sharing terms for beneficiaries of the main public drug plans in Canada’s provinces*

Province	Social assistance recipients	Residents aged ≥ 65 yr	General population
British Columbia	No deductible, no copayments or co-insurance	Income-based deductibles, thereafter co-insurance of 30% (25% if born before 1939)	Income-based deductibles, thereafter co-insurance of 30%
Alberta	No deductible, no copayments or co-insurance	No deductible, co-insurance of 30% subject to a maximum of $25 per prescription	If voluntary public plan is purchased, co-insurance of 30% subject to a maximum of $25 per prescription
Saskatchewan	No deductible, copayment of up to $2	Income-tested program, no deductible, copayments of $25	Copayments set so that annual patient costs equal income-based thresholds
Manitoba	No deductible, no copayments or co-insurance	Income-based deductibles, thereafter no copayments or co-insurance	Income-based deductibles, thereafter no copayments or co-insurance
Ontario	No deductible, copayment of up to $2	Depending on income, deductibles of $0 or $100, thereafter copayments of $2.00 or $6.11	Income-based deductibles, thereafter copayment of $2
Quebec	No deductible, no copayments or co-insurance	Monthly deductible of $19.90 per person, thereafter co-insurance of 34.9%	Monthly deductible of $19.90 per person, thereafter co-insurance of 34.9%
New Brunswick	No deductible, copayment of $4 for adults, copayment of $2 for children	Income-tested program, no deductible, copayments of $9.05 or $15 depending on income	If voluntary public plan is purchased, copayments of $5 to $30 depending on income
Nova Scotia	No deductible, copayment of $5	If voluntary public plan is purchased, co-insurance of 30%	Income-based deductibles, thereafter co-insurance of 30%
Prince Edward Island	No deductible, no copayments or co-insurance	No deductible, copayments of $7.69 plus first $8.25 of drug cost	Income-based deductibles, thereafter no copayments or co-insurance
Newfoundland and Labrador	No deductible, no copayments or co-insurance	Income-tested program, no deductible, patient pays up to $6 of dispensing fee	Co-insurance rates set so that annual patient costs equal income-based thresholds

*Authors’ analysis of provincial drug plan websites and policy documents as of Aug. 31, 2018.34

Table 2: Expected effects of a simple value-based insurance design with $0 copayment for drugs with higher assessed value and $25 copayment for drugs with lower assessed value in comparison with a fixed $15 copayment and a fixed $0 copayment for drugs covered under national pharmacare

Outcome	Drug type	Expected effects of VBID compared with $15 copayments for all covered medications	Expected effects of VBID compared with $0 copayments for all covered medications
Initiation of treatment by drug type	High-value drugs	Higher	Same or higher
	Low-value drugs	Lower	Lower
Adherence to treatment by drug type	High-value drugs	Higher	Same
	Low-value drugs	Lower	Lower
Patient spending by drug type	High-value drugs	Lower	Same
	Low-value drugs	Higher	Higher
	All covered drugs	Same or lower*	Higher
Plan spending by drug type	High-value drugs	Higher	Same or higher
	Low-value drugs	Lower	Lower
	All covered drugs	Same or lower*	Lower
Total (patient + plan) spending	All covered drugs	Lower*	Lower
Other use of health services	NA	Same or lower	Same or higher

Note: NA = not applicable, VBID = value-based insurance design.
*Spending will depend on factors such as how drugs are assigned to value tiers, proportion of low- and high-value drugs, and patient medication use changes as a response to copayment changes.
flat $0 copayment program owing to patients switching from lower-value therapeutic substitutes that are assigned a $25 copayment in the program with a value-based insurance design.

These changes in medication use would affect any spending projections. However, we first estimate plan drug spending purely based on copayment revenue. We assume that low-income households of any age will be fully covered under a national pharmacare program, and that those households would account for about 30% of all prescriptions filled under the program; therefore, we assume that national pharmacare copayments would apply to about 400 million prescriptions filled by households who would not qualify for income-related waiver of copayments. Under those assumptions, the fixed $15 copayment model would raise an estimated $6 billion in revenue for the pharmacare program. Similar amounts of revenue would be raised under a policy with a value-based insurance design if higher-tier ($25) copayments applied to about 60% of medications on the national formulary, which is not an unreasonable assumption given US experiences with these types of policy.

In contrast, of course, the option of having no copayment on covered medications will raise no revenues via cost-sharing.

The projected drug-spending changes of a program with a value-based insurance design accounting for changes in use are harder to quantify. This will depend on the extent to which tiered copayments induce changes in use of lower- and higher-value medications and the relative costs of those medications to the pharmacare program. However, it is often the case that high-value drugs are also lower-cost options. Thus, it could be that tiered copayments will reduce plan spending on medications relative to either types of flat copayments that would apply to all drugs on the formulary provided there are high-value, low-cost options for most patients’ needs.

What could hinder the application of value-based insurance design in national pharmacare?

If national pharmacare were to apply principles of value-based insurance design, careful consideration would need to be given to avoid mechanisms that reduce the ability of tiered copayments to give incentives for use of medications according to assessed value. These mechanisms include copayment coupons provided by manufacturers and secondary insurance. When coupons cover patient out-of-pocket costs for the manufacturers’ products, they negate the ability of tiered cost-sharing formularies to steer use toward drugs of higher assessed value. This affects program costs directly, as higher-value medications are often those available at lower cost to the program. It also reduces manufacturers’ incentives to lower prices if it is cheaper for them to simply pay patients’ copayments rather than to compete on price. One solution applied in certain states in the US is to ban the use of copayment coupons for medications with generic equivalents.

A potential solution might be to apply reference-based reimbursement within therapeutically equivalent medication class that would require patients to cover the full price differential between a given product and the reference-based reimbursement level, as in Germany and the Netherlands. This would steer patients to the most cost-effective treatment options and would remove the incentive for manufacturers to offer copayment coupons. However, such a system is typically limited to assuming equal effectiveness of medications within class and only functions well in markets with little or no confidential rebates paid by manufacturers of covered drugs and to insurers. To the degree that drugs within class differ in effectiveness (as well as costs and rebate levels), a reference-based reimbursement scheme could misalign copayments with value.

Most Canadian workers would probably continue to receive extended health insurance as part of their work-related compensation packages if national pharmacare were to be implemented. If extended health insurance plans in Canada were to cover copayments under the national pharmacare program, they could mitigate the intended effects of value-based insurance design. A solution to this would be to make pharmacare the payer of last resort for lower-value drugs. This would continue to ensure universal, first-payer coverage of higher-value drugs while reducing public liability for lower-value drugs.

Value-based insurance design also requires accurate and precise estimates of treatment value. To the degree that value estimates are unavailable or inaccurate for the pharmacare population or that value is heterogeneous (e.g., use of treatments for primary v. secondary prevention), value-based insurance design may not appropriately give incentives for treatment adherence. Despite this, the US experience is that this system can produce cost savings without harming patients. The proposed approach of setting $0 cost-sharing to treatments with strong evidence of high value to the population that is expected to use it is a good first step. More nuanced systems could be considered in the future.

A related issue is that the value measure itself needs to reflect the values of the population. For instance, it is recognized that there are additional dimensions of value that are not traditionally captured in an incremental cost-effectiveness ratio estimate (e.g., disease rarity, end-of-life treatments). Such additional values could be accounted for by setting a more generous incremental cost-effectiveness ratio threshold for drugs with additional value dimensions or by inflating the incremental cost-effectiveness ratio estimate based on approaches to explicitly gather and analyze stakeholder input.

Conclusion
Cost-sharing reduces prescription drug use and can place substantial financial burdens on patients. At the same time, cost-sharing can be a tool to help finance a drug plan, steer patients toward cost-effective therapies, and encourage manufacturers to price their medications at levels that reflect the best value. If Canada seeks to control any future national pharmacare program costs while ensuring access to a diverse set of drugs and encouraging use of drugs of the greatest value to the medicare system, we suggest that the program apply principles of value-based insurance design. Such a system would allow cost-sharing to be modified by both sociodemographic and value considerations such that no charges would apply to patients who could not afford it, and no charges would apply to medications of the highest value to the Canadian health care system, regardless of
the patient’s income or age. Provided careful consideration is
given to design details, value-based insurance design could help
national pharmacare to balance the sometimes competing goals
of access, equity, value and choice.

References
1. National prescription drug utilization information system plan information
document. Ottawa: Canadian Institute for Health Information; 2018.
2. Kratzer J, McGrail K, Strumpf E, et al. Cost-control mechanisms in Canadian
private drug plans. Healthc Policy 2013;9:35-43.
3. Heuler M, Choi H, Rosen AB, et al. Hospitalizations and deaths among adults with
cardiovascular disease who underuse medications because of cost: a longitudinal
analysis. Med Care 2010;48:87-94.
4. Sinnott SJ, Buckley C, O’Riordan D, et al. The effect of copayments for pre-
scriptions on adherence to prescription medicines in publicly insured popu-
lations; a systematic review and meta-analysis. PLoS One 2013;8:e64914.
5. Kennedy J, Morgan S. Cost-related prescription nonadherence in the United
States and Canada: a system-level comparison using the 2007 International
Health Policy Survey in Seven Countries. Clin Ther 2009;31:213-9.
6. Law MR, Cheng L, Dhalla IA, et al. The effect of cost on adherence to prescription
medications in Canada. CMAJ 2012;184:297-302.
7. Goldman DP, Joyce GF, Escaree JJ, et al. Pharmacy benefits and the use of
drugs by the chronically ill. JAMA 2004;291:2344-50.
8. Goldman DP, Joyce GF, Zheng Y. Prescription drug cost sharing: associations
with medication and medical utilization and spending and health. JAMA
2007;298:619.
9. Lexchin J, Grootendorst P. Effects of prescription drug user fees on drug and
health services use and on health status in vulnerable populations: a systematic
review of the evidence. Int J Health Serv 2004;34:101-22.
10. Hsu J, Price M, Huang J, et al. Unintended consequences of caps on Medicare
drug benefits. N Engl J Med 2006;354:2349-59.
11. A prescription for Canada: achieving pharmacare for all. Final report of the Advi-
sory Council on the Implementation of National Pharmacare. Ottawa: Health
Canada; 2019. Available: www.canada.ca/en/health-canada/corporate/about
-health-canada/public-engagement/external-advisory-bodies/implementation
-national-pharmacare/final-report.html (accessed June 26).
12. Busby C. Federal cost of a national pharmacare program. Ottawa: Office of the
Parliamentary Budget Officer; 2017.
13. Mahoney JJ. Reducing patient drug acquisition costs can lower diabetes
health care. Am J Manag Care 2005;11(Suppl S):S170-6.
14. Choudhry NK, Fischer MA, Smith BF, et al. Five features of value-based insurance
design plans were associated with higher rates of medication adherence. Health
Aff (Millwood) 2014;33:493-501.
15. Patient Protection and Affordable Care Act, P. L. No. 111-148 § 124 Statute. 119. 2010.
16. Bipartisan Budget Act of 2018, P. L. No. 115-123 § 122 Statute. 64. Senate and
House of Representatives of the United States of America in Congress. 2018.
17. National Defense Authorization Act for Fiscal Year 2018, P. L. No. 115-91 § 131
Statute. 1283. Senate and House of Representatives of the United States of
America in Congress. 2017.
18. Chevreul K, Berg Brigham K, Durand-Zaleski I, et al. France: Health System
Review. [viii.]. Health Syst Trans 2015;17:1-218.
19. Maciejewski ML, Farley JF, Parker J, et al. Copayment reductions generate
greater medication adherence in targeted patients. Health Aff (Millwood) 2010;
29:2002-8.
20. Chernew ME, Shah MR, Wegh A, et al. Impact of decreasing copayments on
medication adherence within a disease management environment. Health Aff (Millwood)
2008;27:103-12.
21. Maciejewski ML, Wansink D, Lindquist JH, et al. Value-based insurance design
program in North Carolina increased medication adherence but was not cost
neutral. Health Aff (Millwood) 2014;33:300-8.
22. Choudhry NK, Avorn J, Lynn RJ, et al. Full coverage for preventive medica-
tions after myocardial infarction. N Engl J Med 2011;365:2088-97.
23. Melnick SJ, Metheral BR. Is value-based value wasted? Examining value-based
insurance designs through the lens of cost-effectiveness. J Manag Care Pharm
2010;16:130-3.
24. Gibson TB, Mahoney J, Rangehill K, et al. Value-based insurance plus disease man-
agement increased medication use and produced savings. Health Aff (Millwood)
2011;30:100-8.
25. Chernew ME, Juster IA, Shah M, et al. Evidence that value-based insurance can
be effective. Health Aff (Millwood) 2010;29:530-6.
26. Nieuwlaat R, Wilczynski N, Navarro T, et al. Interventions for enhancing medication
adherence. Cochrane Database Syst Rev 2014(11):CD000011.
27. Volop K, Troxel AB, Long JA, et al. A randomized controlled trial of co-payment
elimination: the CHORD trial. Am J Manag Care 2015;21:e455-64.
28. Choudhry NK, Fischer MA, Avorn J, et al. At Pitney Bowes, value-based insurance
design cut copayments and increased drug adherence. Health Aff (Millwood)
2010;29:1995-2001.
29. D’Souza AO, Rahnama R, Regan TS, et al. The h-e-B value-based health manage-
ment program: impact on asthma medication adherence and healthcare cost.
Am Health Drug BENefits 2010;3:394-402.
30. Maciejewski ML, Wansink D, Lindquist JH, et al. Value-based insurance design
program in North Carolina increased medication adherence but was not cost
neutral. Health Aff (Millwood) 2014;33:300-8.
31. Sullivan SD, Yeung K, Vogeler C, et al. Design, implementation, and first-year
outcomes of a value-based drug formulary. J Manag Care Spec Pharm 2015;
21:269-75.
32. Yeung K, Basu A, Hansen RN, et al. Impact of a value-based formulary on medi-
cation utilization, health services utilization, and expenditures. Med Care 2017;
55:191-8.
33. Yeung K, Basu A, Hansen RN, et al. Price elasticities of pharmaceuticals in a
value based-formulary setting. Health Econ 2018;27:1788-1804.
34. Morgan SG. Evaluating national pharmacare options: existing policies across Can-
ada: Ottawa: Health Canada; 2018. Available on request from Health Canada (www.
canada.ca/en/health-canada/corporate/about-health-canada/public-engagement
/external-advisory-bodies/implementation-national-pharmacare.html).
35. Grootendorst P. Beneficiary cost sharing under Canadian provincial prescription
drug benefit programs: history and assessment. Can J Clin Pharmacol 2002;
9:79-99.
36. Morgan SG, Dow Jr. Canadian pharmacare: looking back, looking forward.
Healthc Policy 2012;8:14-23.
37. Dafny L, Ody C, Schmitt M. When discounts raise costs: the effect of copay coupons
on generic utilization. Am Econ J Econ Policy 2017;9:91-123.
38. 2014 Massachusetts General Laws. Part I administration of the government title
XXII corporations chapter 175§ false health care claims. Section 3 Solicitation,
improper inducement to use goods, facilities, services, or products covered by
insurance. (Universal citation: MA Gen L ch 175 § 3).
39. Legislative Counsel’s Digest. Sacramento (CA): State of California Legislative
Counsel Bureau; 2017.
40. Lodewyka DN, Doshi JA, Garrison LP Jr., et al. Defining elements of value in
health care — a health economics approach: an ISPOR special task force report
[3]. Value Health 2018;21:131-9.
41. Phelps CE, Lakdawalla DN, Basu A, et al. Approaches to aggregation and decision
making-a health economics approach: an ISPOR special task force report [5].
Value Health 2018;21:146-54.

Competing interests: Kai Yeung is a research scientist at Kaiser Permanente Washington Health Research Institute, a nonprofit, public-interest research centre in Washington State. Steven Morgan has received funding from the Government of Canada for research in support of the Advisory Council on the Implementation of National Pharmacare. This article has been peer reviewed.

Affiliations: Kaiser Permanente Washington Health Research Institute (Yeung), Seattle, Wash.; School of Population and Public Health (Morgan), The University of British Columbia, Vancouver, BC

Contributors: Kai Yeung and Steven Morgan jointly conceived of the work. Both authors contributed to the collection and interpretation of evidence. Kai Yeung produced the first draft and both authors revised the manuscript for important intellectual content. Both authors gave final approval of the version to be published and agreed to be accountable for all aspects of the work.

Correspondence to: Kai Yeung, Kai.Yeung@kp.org