Multi-drug resistant *Enterococcus faecium* in late-onset keratitis after deep anterior lamellar keratoplasty

A case report and review of the literature

Francesco D’Oria, MD*, Alessandra Galeone, MD, Valentina Pastore, MD, Nicola Cardascia, MD, PhD, Giovanni Alessio, MD

Abstract

Rationale: Interface keratitis after lamellar keratoplasty is one of the causes of graft failure. We report the first case of microbiologically proven *Enterococcus faecium* infection following deep anterior lamellar keratoplasty (DALK) and review the available literature.

Patient concerns: A 37-years-old Caucasian man presented with pain, redness and severe vision loss in his right eye. Five weeks before, he underwent DALK using the FEMTO LDV Z8 in the same eye for the surgical correction of keratoconus.

Diagnoses: Upon presentation, slit-lamp biomicroscopy revealed corneal graft edema with multiple infiltrates located in the graft-host interface.

Interventions: Therapeutic penetrating keratoplasty (PKP) was carried out in addition with cultures of the donor lenticule removal. Laboratory results isolated a multi-resistant *Enterococcus faecium* interface infection. According to the antibiogram, the patient was treated with systemic Tigecycline and Linezolid for 7 days.

Outcomes: During the following weeks, clinical features improved over time and no signs of active infection were visible seven months postoperatively.

Lessons: Early PKP showed to be a good therapeutic option with great anatomic and functional outcomes.

Abbreviations: BCVA = best-corrected visual acuity, DALK = deep anterior lamellar keratoplasty, MIC = minimum inhibitory concentration, OCT = optical coherence tomography, PKP = penetrating keratoplasty.

Keywords: deep anterior lamellar keratoplasty, *Enterococcus faecium*, interface infection, penetrating keratoplasty

1. Introduction

Deep anterior lamellar keratoplasty (DALK) represents an efficient technique for corneal diseases not affecting the endothelium. This technique presents many advantages over penetrating keratoplasty (PKP), such as the maintenance of globe integrity and the absence of irreversible graft rejection.[1] Interface keratitis after corneal transplantation is one of the causes of graft failure and is associated with poor vision. Although infrequent, keratitis after lamellar keratoplasty may threaten corneal graft clarity and may cause endophthalmitis with potential need for enucleation. Diagnosis and treatment of interface keratitis is a challenge, due to the deep stromal location that precludes access for microbial examination and topical drug penetration in the site of infection.[2] We describe herein the first case of *Enterococcus faecium* infection following DALK, successfully treated with targeted systemic therapy with Tigecycline and Linezolid associated with therapeutic PKP.

2. Case report

A 37-year-old Caucasian man was referred to our clinic for surgery evaluation in a case of advanced keratoconus in the right eye. His best-corrected visual acuity (BCVA) was 20/200 and preoperative topography (Sirius; Costruzione Strumenti Oftalmici, Florence, Italy) showed an Amsler–Krumeich stage IV keratoconus in the right eye (Fig. 1) and the patient was scheduled for a DALK.

On April 2018, the patient underwent femtosecond laser-assisted mushroom-configuration DALK in his right eye,
performed with the FEMTO LDV Z8 femtosecond laser (Ziemer Ophthalmic Systems AG, Port, Switzerland). Surgery was uneventful, and the early post-operative course was unremarkable. The patient was discharged 2 days after surgery, and was instructed to instill atropine 1% eye drops twice daily, chloramphenicol 0,5% and dexamethasone 0,1% eye drops 4 times daily associated with systemic ciprofloxacin 500mg twice daily and prednisone 25mg once a day. During the subsequent follow-up visits, no signs of active ocular infection were detected.

Five weeks post-operatively, the patient presented at our Department with pain, red eye, and loss of vision in the operated eye. Visual acuity was limited to hand motion and slit-lamp examination revealed corneal graft edema with multiple whitish infiltrates (Fig. 2, part A); anterior segment-Optical Coherence Tomography (OCT) (MS-39) confirm the location of the infiltrates at the graft-host interface (Fig. 2, part B). Due to the suspicion of Candida infection, we started a topical and systemic therapy with Voriconazole. Since clinical picture continued to worsen despite therapy, therapeutic femtosecond laser-assisted PKP was performed to avoid endophthalmitis and to obtain a specimen for bacteriological examination. By using FEMTO LDV Z8, it has been possible to match the exact shape of the removed and donated tissue segments, so that the prepared donor transplant nestles perfectly in the opened eye. Aqueous cultures obtained before PKP were negative for bacterial and fungal growth. Excised cornea cultures yielded E faecium; it was tested for antibiotic susceptibility to 14 antibiotics and was found to be resistant to twelve antibiotics including: ampicillin, ampicillin/sulbactam, cefuroxime, clindamycin, erythromycin, gentamycin, imipenem, moxifloxacin, streptomycin, teicoplanin, tetracycline, and vancomycin. The antibiogram revealed that the microorganism was sensitive to tigecycline (minimum inhibitory concentration [MIC] ≤ 0.12) and linezolid (MIC=2). Therefore, medical treatment was shifted to tigecycline 50mg 2 times a day and linezolid 600mg 2 times a day for a week as off-label regimen. Additionally, topical tetracycline 1% eye drop was prescribed every 4 hours. Clinical picture improved soon after targeted therapy and currently, at 7 month follow-up, the corneal graft is clear and BCVA is 20/25 (Fig. 2, part C).

3. Discussion

Enterococcus faecalis – formerly classified as part of the group D Streptococcus system – is a Gram-positive, commensal bacterium habitating the gastrointestinal tracts of humans and other mammals. They are a leading cause of nosocomial infection, resistant to many antimicrobials, especially vancomycin-resistant. Although Enterococci have been described as a relatively uncommon cause of endophthalmitis post-keratoplasty, we performed an extensive review of the literature about ocular infection after DALK using the Medline/Pubmed database.
from January 2000 to February 2019. The free-text search terms "keratitis", "interface", "infection", "keratoplasty," and "laminar" were used. Two independent observers (F.D. and A.G) reviewed the abstracts to determine the eligibility of studies for inclusion. Articles that presented aggregate patient data (e.g., clinical trials in which data on individual patients were not reported) were excluded. A total of 84 relevant publications were identified. Of these studies, specific case information was available for 17 cases. The salient clinical findings of these cases are summarized in Table 1.

According to the literature, the development of multiple infiltrates located in the donor-recipient interface was the first sign of keratitis, without any signs of inflammation in the anterior chamber. Laboratory investigations, including either corneal scraping or excised cornea culture, were taken to identify the microorganism and yielded *Candida* spp., *Klebsiella pneumonia*, *Alternaria*, *Aspergillus flavus*, *Mycobacterium chelonae*, *Actynomices*, *Lectyphora mutablis*, and *Herpes simplex virus*. Infectious pathogens were identified from cultures of the excised donor buttons in almost all cases and from the culture and smear tests from the material employed to irrigate the graft-host interface in 1 case. Donor rim cultures resulted positive in 3 of 5 cases, with correspondence to the organisms identified in the recipients. In our case, microbiological analysis of the excised donor button disclosed the diagnosis of *E. faecium* infection.

None of these patients developed endophthalmitis: these data suggest that in anterior lamellar keratoplasties, the Descemet Membrane in capable to avoid or at least delay the intraocular penetration of microorganism. Although the development of endophthalmitis may be hampered in the setting of postoperative DALK interface infection, the typical location at the interface could be more difficult to treat, making conventional approach to the treatment of microbial keratitis more likely to fail. In fact, none except 1 case responded to medical treatment alone and almost all the reported cases of infection required subsequent surgical treatment, either donor button exchange or PKP, to resolve the infection.

The result of our case should be interpreted in the light of certain limitations. Specifically, donor rim cultures were not performed, and the possibility of donor contamination cannot be ruled out.

Our report provides evidence of the protective property of DALK of hampering the direct intraocular penetration of microorganisms in case of donor graft microbial contamination, allowing good outcome, obtain with PKP, even in case of multi-resistant bacterium.
Author, Year [reference]	# of cases [age, gender]	Primary pathology	Infection onset	Clinical presentation	Laboratory diagnosis	Pathogen	Management	BCVA (Snellen)
Kodavoor SK et al (2016)[7]	One (32, F)	Keratoconus	89 days	Dense infiltrates, streak hypopyon	Corneal scraping	Candida albicans	Medical therapy	20/80
Bajracharya et al (2015)[8]	One (42, F)	Granular dystrophy	1 day	Interface infiltrates with severe anterior chamber reaction	Excised donor cornea culture	Klebsiella pneumoniae	Donor button exchange + PKP	nr
Le et al (2015)[9]	One (31, M)	Keratoconus	4 days	Interface deposits	Corneal scraping and excised cornea culture	Candida glabrata	Donor button exchange + PKP	20/40
Naik et al (2014)[10]	One (30, M)	Keratoconus	3 months	Large brown pigmented dry lesion	Corneal scraping	Alternaria	Donor button exchange	20/60
Wessel et al (2013)[11]	One (39, M)	Keratoconus	5 days	Whitish round retro-corneal infiltrates	Excised corneal culture	Candida orthopsilosis	PKP	20/630
Jafarinasab et al (2012)[12]	One (28, F)	Keratoconus	4 days	Interface infiltrates	Excised corneal culture	Aspergillus flavus	Donor button exchange	20/60
Sedoghat et al [14]	One (18, F)	Keratoconus	4 months	Keratic precipitates	Irrigating cultures	Candida albicans	Medical therapy	20/30
Lyali et al (2012)[15]	One (44, M)	Lattice corneal dystrophy	4 months	Stromal infiltrate	Excised corneal culture	Gram-positive Cocci	DALK	20/40
Bahadir et al (2012)[16]	One (23, F)	Keratoconus	4 weeks	White cream color deposits interface	Excised corneal culture	Candida spp.	PKP	nr
Zarei-Ghanavati et al (2011)[17]	One (35, F)	Keratoconus	2 days	Multiple white deposits confluent	Excised corneal culture	Klebsiella pneumoniae	PKP	20/20
Caretti et al (2011)[18]	One (31, M)	Keratoconus	6 days	Multiple white deposits confluent	Excised corneal culture	Actinomycetes	PKP	20/25
Fintelmann et al (2011)[19]	One (53, F)	Corneal ulcer	One week	Endophthalmitis	Excised corneal culture	Lecythidium mutabile	PKP	nr
Eberwein et al (2008)[20]	One (45)	Keratoconus and severe atopic disease	Available only in German text	Corneal melting	Available only in German text	Herpes simplex virus	PKP	Available only in German text
Kanavi et al (2007)[21]	Two (21, M)	Keratoconus	2 months	Cream color deposits interface	Irrigation fluid and corneal button	Candida glabrata	PKP	nr
Fontana et al (2007)[22]	One (30, M)	Keratoconus	4 weeks	Multiple interface infiltrates	Donor rim culture	Candida albicans	Donor button exchange + PKP	20/25

BCVA = best-corrected visual acuity, DALK = deep anterior lamellar keratoplasty, F = female, M = male, nr = not reported, PKP = penetrating keratoplasty.
Acknowledgments
We sincerely thank Dr Date P. for the help in proofreading the style of the paper.

Author contributions
Conceptualization: Francesco D’Oria.
Data curation: Francesco D’Oria, Alessandra Galeone, Valentina Pastore, Nicola Cardascia, Giovanni Alessio.
Formal analysis: Francesco D’Oria.
Investigation: Francesco D’Oria, Alessandra Galeone, Valentina Pastore, Nicola Cardascia, Giovanni Alessio.
Methodology: Francesco D’Oria, Giovanni Alessio.
Supervision: Francesco D’Oria, Giovanni Alessio.
Validation: Francesco D’Oria, Giovanni Alessio.
Writing – original draft: Francesco D’Oria, Alessandra Galeone, Valentina Pastore, Nicola Cardascia, Giovanni Alessio.
Writing – review & editing: Francesco D’Oria, Alessandra Galeone, Valentina Pastore, Nicola Cardascia, Giovanni Alessio.
Francesco D’Oria orcid: 0000-0002-5702-8595.

References
[1] Watson SL, Ramsay A, Dart JK, et al. Comparison of deep lamellar keratoplasty and penetrating keratoplasty in patients with keratoconus. Ophthalmology 2004;111:1676–82.
[2] Fontana L, Moramarco A, Mandara E, et al. Interface infectious keratitis after anterior and posterior lamellar keratoplasty. Clinical features and treatment strategies. A review. Br J Ophthalmol 2018;0:1–8.
[3] Fontana L, Parente G, Di Pede B, et al. Candida albicans interface infection after deep anterior lamellar keratoplasty. Cornea 2007;26:883–5.
[4] Ryan KJ, Ray CG. Sherris Medical Microbiology. McGraw Hill, 2004;294–5.
[5] Carsou Y, Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother 2013;68:731–42.
[6] Gentile RC, Shukla S, Shah M, et al. Microbiological spectrum and antibiotic sensitivity in endophthalmitis: a 23-year review. Ophthalmology 2014;121:1634–46.
[7] Kodavoor SK, Dandapani R, Kaushik AR. Interface infectious keratitis following deep anterior lamellar keratoplasty. Indian J Ophthalmol 2016;64:597–600.
[8] Bajracharya L, Sharma B, Gurung R. A case of acute postoperative keratitis after deep anterior lamellar keratoplasty by multidrug resistant Klebsiella. Indian J Ophthalmol 2015;63:344–6.
[9] Le Q, Wu D, Li Y, et al. Early-onset candida glabrata interface keratitis after deep anterior lamellar keratoplasty. Optom Vis Sci 2015;92:93–6.
[10] Naik M, Mohd S, Sheth J, et al. Alternaria keratitis after deep anterior lamellar keratoplasty. Middle East Afr J Ophthalmol 2014;21:92–4.
[11] Munro SL, Jain R, Swarup R, et al. Recurrent non-tuberculous mycobacterial keratitis after deep anterior lamellar keratoplasty for keratoconus. BMJ Case Rep 20132013.
[12] Wessel JM, Bachmann BO, Meiller R, Kruse FE. Fungal interface keratitis by Candida orthopsilosis following deep anterior lamellar keratoplasty. BMJ Case Rep 2013;2013:bcr2012008361.
[13] Jafarinasab MR, Feizi S, Yazdizadeh F, et al. Aspergillus flavus keratitis after deep anterior lamellar keratoplasty. J Ophthalmic Vis Res 2012;7:170–1.
[14] Sedaghat MR, Hosseinpour SS. Candida albicans interface infection after deep anterior lamellar keratoplasty. Indian J Ophthalmol 2012;60:328–30.
[15] Lyall DA, Sinuvasan S, Roberts F. A case of interface keratitis following anterior lamellar keratoplasty. Surv Ophthalmol 2012;57:551–7.
[16] Bahadir AE, Bozkurt TK, Kutan SA, et al. Candida interface keratitis following deep anterior lamellar keratoplasty. Int Ophthalmol 2012;32:383–6.
[17] Zarei-Ghanavati S, Sedaghat MR, Ghavami-Shahri A. Acute Klebsiella pneumoniae interface keratitis after deep anterior lamellar keratoplasty. Jpn J Ophthalmol 2011;55:74–6.
[18] Caretti L, Babighian S, Capuizi E, et al. Fungal keratitis following deep anterior lamellar keratoplasty. Semin Ophthalmol 2011;26:33–5.
[19] Fintelmann RE, Gelmer W, Bloomer MM, et al. Recurrent Lecythophora mutabilis keratitis and endophthalmitis after deep anterior lamellar keratoplasty. Arch Ophthalmol 2011;129:106–10.
[20] Eberwein P, Auw-Hadrich C, Birnbaum F, et al. Corneal melting after deep anterior lamellar keratoplasty. Indian J Ophthalmol 2012;600.
[21] Gentile RC, Shukla S, Shah M, et al. Microbiological spectrum and antibiotic sensitivity in endophthalmitis: a 23-year review. Ophthalmology 2014;121:1634–46.
[22] Kodavoor SK, Dandapani R, Kaushik AR. Interface infectious keratitis following deep anterior lamellar keratoplasty. Indian J Ophthalmol 2016;64:597–600.
[23] Bajracharya L, Sharma B, Gurung R. A case of acute postoperative keratitis after deep anterior lamellar keratoplasty by multidrug resistant Klebsiella. Indian J Ophthalmol 2015;63:344–6.
[24] Le Q, Wu D, Li Y, et al. Early-onset candida glabrata interface keratitis after deep anterior lamellar keratoplasty. Optom Vis Sci 2015;92:93–6.
[25] Naik M, Mohd S, Sheth J, et al. Alternaria keratitis after deep anterior lamellar keratoplasty. Middle East Afr J Ophthalmol 2014;21:92–4.
[26] Munro SL, Jain R, Swarup R, et al. Recurrent non-tuberculous mycobacterial keratitis after deep anterior lamellar keratoplasty for keratoconus. BMJ Case Rep 20132013.
[27] Wessel JM, Bachmann BO, Meiller R, Kruse FE. Fungal interface keratitis by Candida orthopsilosis following deep anterior lamellar keratoplasty. BMJ Case Rep 2013;2013:bcr2012008361.
[28] Jafarinasab MR, Feizi S, Yazdizadeh F, et al. Aspergillus flavus keratitis after deep anterior lamellar keratoplasty. J Ophthalmic Vis Res 2012;7:170–1.
[29] Sedaghat MR, Hosseinpour SS. Candida albicans interface infection after deep anterior lamellar keratoplasty. Indian J Ophthalmol 2012;60:328–30.
[30] Lyall DA, Sinuvasan S, Roberts F. A case of interface keratitis following anterior lamellar keratoplasty. Surv Ophthalmol 2012;57:551–7.
[31] Bahadir AE, Bozkurt TK, Kutan SA, et al. Candida interface keratitis following deep anterior lamellar keratoplasty. Int Ophthalmol 2012;32:383–6.
[32] Zarei-Ghanavati S, Sedaghat MR, Ghavami-Shahri A. Acute Klebsiella pneumoniae interface keratitis after deep anterior lamellar keratoplasty. Jpn J Ophthalmol 2011;55:74–6.
[33] Caretti L, Babighian S, Capuizi E, et al. Fungal keratitis following deep anterior lamellar keratoplasty. Semin Ophthalmol 2011;26:33–5.
[34] Fintelmann RE, Gelmer W, Bloomer MM, et al. Recurrent Lecythophora mutabilis keratitis and endophthalmitis after deep anterior lamellar keratoplasty. Arch Ophthalmol 2011;129:106–10.
[35] Eberwein P, Auw-Hadrich C, Birnbaum F, et al. Corneal melting after deep anterior lamellar keratoplasty. Indian J Ophthalmol 2012;600.
[36] Gentile RC, Shukla S, Shah M, et al. Microbiological spectrum and antibiotic sensitivity in endophthalmitis: a 23-year review. Ophthalmology 2014;121:1634–46.