Vacuolar ATPase depletion contributes to dysregulation of endocytosis in bloodstream forms of *Trypanosoma brucei*

Zhi-Shen Xu¹, Feng-Jun Li², Geoff Hide³, Zhao-Rong Lun¹,³* and De-Hua Lai¹*

Abstract

Background: Vacuolar H⁺-ATPase (V-ATPase) is a highly conserved protein complex which hydrolyzes ATP and pumps protons to acidify vacuolar vesicles. Beyond its role in pH maintenance, the involvement of V-ATPase in endocytosis is well documented in mammals and plants but is less clear in *Trypanosoma brucei*.

Methods: In this study, the subcellular localization of V-ATPase subunit B (TbVAB) of *T. brucei* was assessed via *in situ* N-terminal YFP-tagging and immunofluorescence assays. Transgenic bloodstream forms (BSF) of *T. brucei* were generated which comprised either a V-ATPase subunit B (*TbVAB*) conditional knockout or a V-ATPase subunit A (*TbVAA*) knockdown. Acridine orange and BCECF-AM were employed to assess the roles of V-ATPase in the pH regulation of BSF *T. brucei*. The endocytic activities of three markers were also characterized by flow cytometry analyses. Furthermore, trypanosomes were counted from trypanolysis treatment groups (either containing 1% or 5% NHS) and endocytosed trypanosome lytic factor (TLF) was also analyzed by an immunoblotting assay.

Results: TbVAB was found to localize to acidocalcisomes, lysosomes and probably also to endosomes of BSF of *T. brucei* and was demonstrated to be essential for cell growth. TbVAB depletion neutralized acidic organelles at 24 hours post-tetracycline depletion (hpd), meanwhile the steady state intracellular pH increased from 7.016 ± 0.013 to 7.422 ± 0.058. Trypanosomes with TbVAB depletion at 24 hpd were found to take up more transferrin (2.068 ± 0.277 fold) but less tomato lectin (49.31 ± 22.57%) by endocytosis, while no significant change was detected in dextran uptake. Similar endocytic dysregulated phenotypes were also observed in *TbVAA* knockdown cells. In addition, *TbVAB* depleted trypanosomes showed a low uptake of TLF and exhibited less sensitive to lysis in both 1% and 5% NHS treatments.

Conclusions: TbVAB is a key component of V-ATPase and was found to play a key function in endocytosis as well as exhibiting different effects in a receptor/cargo dependent manner in BSF of *T. brucei*. Besides vacuolar alkalinization, the dysregulation of endocytosis in *TbVAB* depleted *T. brucei* is considered to contribute to the reduced sensitivity to lysis by normal human serum.

Keywords: *Trypanosoma brucei*, Vacuolar ATPase, Apolipoprotein L1, Endocytosis, Trypanolysis

Background

Trypanosoma brucei, a unicellular haemoflagellate, the causative agent of sleeping sickness or human African trypanosomiasis, is threatening approximately 70 million people living in sub-Saharan Africa [1]. *Trypanosoma brucei* evades the mammalian immune system using antigenic variation in the surface coat and relying on a very
efficient endocytic protein system that is capable of recycling the entire surface protein coat within 12 minutes [2]. It also utilizes the serum-resistance associated (SRA) protein in T. b. rhodesiense [3] or glycoprotein TgsGP in T. b. gambiense [4] to resist trypanolysis mediated by APOL1 in normal human serum (NHS). Recently, genomic-scale RNA interference screening revealed a link between NHS/APOL1-mediated trypanolysis [5, 6] and drug toxicity [7] to vacuolar H⁺-ATPase (V-ATPase) in T. brucei, indicating the potential physiological functions of V-ATPase in challenging environments.

V-ATPase is a conserved and crucial protein complex found in endosomal compartments in all eukaryotes [8, 9]. This large complex contains many subunits, forming a rotary cytoplasmic V₁ moiety (V₁-ATPase, subunits A₃B₃CDE₃FG₃H) and a transmembrane Vo moiety (Vo proton channel, subunits ac₆c₆de). The concerted action of the V₁ and Vo moiety couples ATP hydrolysis with the transport of protons across membranes and defines the fundamental function of V-ATPase in cellular compartment acidification. The V-ATPase generates an electrochemical proton gradient as a driving force for numerous secondary transport activities across membranes [10]. Furthermore, V-ATPase can be coupled with other transporters, e.g. the Na⁺/H⁺ antiporter, and contributes to intracellular pH homeostasis in mammalian cells [11]. Previous studies also revealed multi-physiological functions of V-ATPase in response to environmental stresses such as nutrient availability, salinity and pH, via an assembly/disassembly mechanism [12–14]. The requirement for V-ATPase activity in secretory and endocytic trafficking was also observed in mammals and plants [15–18], providing important evidence for an extensive function of V-ATPase activity. Although V-ATPase has been well studied in various model organisms, its roles and mechanisms of action in early-branched single cell protozoans is less clear.

Bioinformatic analyses have identified all orthologues of the V-ATPase subunits in T. brucei [5] and pioneering studies indicated some important and distinctive roles of the V-ATPase in T. brucei [7]. Subunits α (Tb427.04.1080) and d (Tb927.5.550) of V-ATPase in the procyclic form (PCF) found in the insect vector of T. brucei was found localized to the lysosomes, Golgi complex and acidocalcisomes [19], indicating localization-dependent distinct roles of V-ATPase. RNAi knockdown of subunit A (TbVAA, Tb427.04.1080) and α blocked the acidification of lysosomes and acidocalcisomes in the PCF of T. brucei [20]. Treatment of the cells with bafilomycin A₁, a V-ATPase inhibitor binding to subunit c [21], markedly acidified the steady-state pH of PCF of T. brucei and decreased the pH, recovery rate [22]. The bafilomycin A₁ could further disturb Ca²⁺ homeostasis in the PCF of T. brucei via a Ca²⁺/H⁺ antiporter in a pH gradient-dependent manner [23]. However, for the medically important human infective bloodstream form (BSF) of T. brucei, only a few studies have been conducted. Important questions remain unanswered such as whether V-ATPase has a similar localization in the BSF as in the PCF of T. brucei and whether V-ATPase has similar roles in endocytic trafficking in BSF of T. brucei as in other eukaryotes. Several V-ATPase subunits have been revealed to be crucial for trypanolysis by NHS/recombinant APOL1 [5, 6] and drug toxicity [7], and have been suggested to attribute to V-ATPase’s role in vacuolar acidification [5–7]. However, studies of the roles of trypanosomal V-ATPase activity in endocytosis are preliminary [5] although it has been consistently shown to make a contribution to pH regulation [5, 22].

To better understand the functions of V-ATPase in the BSF of T. brucei, we characterized the localization of the V-ATPase subunit B (TbVAB) and investigated its function by using conditional knockout mutants (cKO) or RNAi knockdown (KD) methods. Our results reveal its multiple localizations and crucial roles affecting endocytosis in the BSF of T. brucei in a receptor/cargo dependent manner. Our findings also indicate coordination of lysosomal function with upstream endocytic activity in trypanosomes, in which V-ATPase defects may lead to a reduced sensitivity to TLF-mediated trypanolysis.

Methods

Cell culture and transfection

Trypanosoma brucei brucei cell lines Lister 427, SmOx B427 [24], SmOx PANant1.1 and derivatives were grown in HMI-9 (for bloodstream forms) or SDM-79 (for procyclic forms) media supplemented with 10% fetal calf serum (ExCell Bio, Shanghai, China). Transfection was conducted using an Amaxa Nucleofector (Lonza, Cologne, Germany) with human T-cell Nucleofector solution [25] and transfectants were selected with blasticidin, hygromycin, neomycin, phleomycin or puromycin [26]. Cell proliferation was monitored by counting with a hemocytometer every 12 or 24 h.

Plasmid construction

Gene-specific RNAi fragments (~400 bp) of TbVAA (Tb427.04.1080) and TbVAB (Tb927.11.11690) were selected with RNAit (https://dag.compbio.dundee.ac.uk/RNAit/), amplified by PCR using primers shown in Additional file 1: Table S1 and cloned into p2T7Ti-177 backbone, respectively [28]. To ectopically express the N-terminal TY-tagged TbVAB, the full-length ORF was...
amplified with Q5 HF DNA polymerase (NEB, Ipswich, USA), digested with SpeI and BclI, and then cloned into the pDex577 plasmid [29, 30]. For inducible expression of C-terminal HA-tagged Rab11 [30], the ORF was amplified (a HA-tag was introduced in the reverse primer, Additional file 1: Table S1) and cloned into the pDex577 vector. Linearized pDex577 plasmids were transfected and integrated into the trypanosomes 177 bp telomere repeats through homologous recombination [27]. To construct the N-terminal YFP-tagged TbVAB, the 5’ UTR and 5’ CDS fragments were amplified and cloned into SpeI and BamHI-digested pEnT6B-Y [30].

Recombinant TbVAB expression and antiserum preparation

To express the N-terminal His6-tagged protein, the full length of TbVAB ORF was cloned into pET-32 α (+), using primers shown in Additional file 1: Table S1. The resultant vectors were transformed into E. coli BL21 (DE3) cells (Transgen, Beijing, China) and protein expression was induced with 0.6 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) at 37 °C for 5 h. Cells were centrifuged at 10,000×g for 5 min and inclusion body proteins were extracted using ultra-sonication. The recombinant proteins were purified using Ni-NTA resin (Qiagen, Valencia, USA) following the manufacturer’s protocol. Rabbits were immunized with purified proteins according to standard procedures. The antisera were stored at -80 °C until used.

Immunoblotting

Proteins extracted from 2.5 × 10⁶ cells were separated by SDS/PAGE gel and transferred onto NC membrane (PALL, Ann Arbor, USA). The immunoblotting against specific proteins were performed using rabbit anti-TbVAB (1:2000), rabbit anti-APOL1 (1:500, Proteintech Group, Chicago, USA) and mouse anti-PFR (L8C4, 1:500) [31] after blocking in TTBS with 5% milk. The blots were incubated with hors eradish peroxidase conjugated anti-mouse or anti-rabbit IgG (H+L) antibody (1:2000, Invitrogen, Carlsbad, USA) and visualized using the ECL substrate (Thermo Fisher Scientific, Rockford, USA). The signal intensity was quantified using Image J.

Vacuolar and cellular pH measurement

After 30 min incubation at 37 °C with 6 μM acridine orange (AO) (Sigma, St. Louis, USA), and washing with PSG, vacuolar pH of trypanosomes was monitored by fluorescence microscopy using the 590–650 nm filter channel, while DNA contents were also monitored with the 505–550 nm filter channel. The intracellular pH (pHi) of trypanosomes was monitored using the cell-permeant, dual-excitation ratiometric pH indicator BCECF-AM (2', 7'-bis (2-carboxylethyl)-5, 6-carboxyfluorescein acetoxy-methyl ester) (Beyotime, Shanghai, China) following the published protocol [22]. Briefly, cells were harvested and washed twice in buffer A (116 mM NaCl, 5.4 mM KCl, 0.8 mM MgSO₄, 5.5 mM D-glucose and 50 mM Hepes, pH 7.4) at 4 °C and resuspended in loading buffer (135 mM NaCl, 5 mM KCl, 1 mM MgSO₄, 1 mM CaCl₂, 15 mM sucrose, 10 mM Hepes at pH 7.4 and 0.1 μM BCECF-AM) to a final density of 1 × 10⁸ cells/ml. After incubation on ice for 30 min, all samples were washed twice with pre-chilled separation buffer (40 mM NaCl, 57 mM Na₂HPO₄, 3 mM NaH₂PO₄, 10 mM D-glucose at pH 7.4) and resuspended in the same buffer to a final density of 2 × 10⁷ cells/ml. A total of 200 μl cell suspension was transferred into a black 96-well microplate and the fluorescence was monitored at 37 °C using a thermally controlled SpectraMax i3x microplate fluorometer (Molecular Devices, Sunnyvale, USA). pHi values in triplicate wells were obtained from three technical replicates and two biological replicates. A standard curve was obtained using cells suspended in loading buffer at pH of 6.2, 6.6, 7.0, 7.4, 7.8 or 8.2 with 0.1 μM BCECF-AM and 2 μM Nigericin. The intracellular pH was calculated based on the standard curve.

Immunofluorescence microscopy

Cells were settled onto poly-L-lysine treated slides, fixed in 4% formaldehyde and permeabilized with 0.3% Triton X-100. After blocking with 3% BSA in PBS, cells were stained with Rabbit anti-HA polyclonal (1:100, Beyotime, Shanghai, China) and rabbit anti-VP1 polyclonal (1:300) [32] primary antibodies to visualize HA-tagged protein and acidocalcisomes, respectively. As a secondary antibody, TRITC conjugated goat anti-rabbit IgG (H+L) (Invitrogen, Carlsbad, USA) was used. The mitochondrion in T. brucei was monitored by microscopy after incubation with 50 nM Mito-Tracker Red CMXRos (Life Technologies, Carlsbad, USA) in HMI-9 for 20 min at 37 °C, followed by washing with PBS. The cells were fixed on slides in 4% formaldehyde and washed in PBS with 0.1 M glycine. DNA contents were stained with DAKO fluorescent mounting medium containing 50 ng/ml DAPI. Images were documented using a Zeiss Axio Imager A2m epifluorescence microscope and a Nikon N-SIM microscope.

Trypanolysis assay

Wild-type (WT) and TbVAB cKO cells were pelleted and resuspended in tetracycline-free HMI-9 medium supplemented with 10% (v/v) FCS and incubated for 8 h at 37 °C. Then cells were diluted to 2 × 10⁵ cells/ml in HMI-9 medium and aliquoted into 48-well plates
alongside various concentrations (1% or 5%) of normal human serum (donated by male volunteers in our laboratory). Cells were incubated in triplicate wells at 37 °C with 5% CO₂ and counted with a hemocytometer every 8 h. Experiments were done with three biological replicates \((n = 3)\).

Endocytosis assays using fluorescence microscopy and flow cytometry

BSF cells in exponential phase were harvested by centrifugation at 1000 \(\times g\) for 10 min at 4 °C, washed in cold PSG and then resuspended to 5 \(\times 10^6\)/ml in cold PSG with either 10 μg/ml DyLight 488-tomato lectin (Vector Laboratories, Burlingame, USA) or DyLight 594-tomato lectin (Vector Laboratories, Burlingame, USA), 5 mg/ml 10,000 MW dextran Alexa Fluor 488 (Life Technologies, Carlsbad, USA) or 50 μg/ml transferrin Alexa Fluor 488 (Life Technologies, Carlsbad, USA) \([33]\). After incubation at 37 °C for series time points, the endocytosis was terminated on ice and half of the cells were pelleted and resuspended to 2.5 \(\times 10^6\)/ml in cold PSG with 2% paraformaldehyde and then analyzed by flow cytometry (30,000 counts). The other half of the cells were mounted on slides and monitored by fluorescence microscopy.

Statistical analysis

Image J software \([34]\) was used to measure the quantitative relation of proteins in western blot assays by gray scanning. Prism® 5.0 software (GraphPad Software Inc) was used to graphically represent data and perform statistical analysis using an unpaired \(t\)-test. \(P\)-values of less than 0.05 were considered significant. Data are presented as the mean ± standard deviation (SD).

Results

TbVAB is localized in multiple organelles of bloodstream form trypanosomes and essential for cell growth

To investigate the localization of vacuolar ATPase in the BSF of *T. brucei*, a cell line expressing YFP-tagged vacuolar ATPase subunit B *in situ* was generated (TbVAB:YFP). Immunoblotting using rabbit polyclonal antibodies against TbVAB showed that both the YFP-tagged TbVAB gene and the wild-type TbVAB gene were expressed (Additional file 2: Figure S1). We incubated YFP-tagged trypanosomes with 10 μg/ml tomato lectin, at 37 °C for 30 min, which are efficiently taken up and delivered to the lysosome. Fluorescence microscopy revealed multiple intracellular localizations, a few large spots adjacent to the flagellar pocket colocalized with
the endocytosed 594-Lectin (Fig. 1a) while punctuated spots diffused through the cytosol colocalized with the acidocalcisomal marker TbVP1 (vacuolar proton pyrophosphatase) (Fig. 1b). Some TbVAB-positive punctuated spots were colocalized with HA-tagged Rab11, a recycling endosomal marker (Fig. 1c). Nevertheless, TbVAB was not found in the mitochondrion as defined by the Mito-Tracker dye (Fig. 1d).

To understand the function of TbVAB, a conditional knockout BSF cell line was generated by replacing both TbVAB alleles in a tetracycline inducible TbVAB expression cell line. The correct gene integrations of both TbVAB alleles were confirmed by PCR (Additional file 3: Figure S2) and the disruption of TbVAB expression after tetracycline withdrawal was confirmed by immunoblotting using the rabbit polyclonal antibodies against TbVAB (Fig. 2a). TbVAB cKO BSF parasites exhibited severe growth defects at 36 h post-tetracycline depletion, but almost no growth defects before 24 hpd (Fig. 2a). When looking at the cell cycle stages, little was altered during the 12 to 24 hpd phase (Fig. 2b), therefore the following experiments were conducted in that same time window.

RNAi knockdown of the V-ATPase subunit A (TbVAA) in the BSF of T. brucei clones led to significant growth defects (Fig. 2c). These data, taken together with similar growth defects caused by knockdown of other V-ATPase subunits in previous studies [5–7], revealed that the integrity of the whole V-ATPase complex is essential for the BSF of T. brucei.

V-ATPase depletion neutralized the acidic organelles and disturbed the intracellular pH homeostasis in BSF trypanosomes

V-ATPase has well known activity in maintaining the acidic environment of intracellular vacuoles, such as lysosomes and also acidocalcisomes, a lysosome-related organelle, in T. brucei [5, 20]. To confirm the specificity of depletion of TbVAB, the acidity of these intracellular organelles of TbVAB cKO and control cells were monitored with Acridine Orange staining. In comparison with the non-induced control cells, AO red fluorescence intensity was significantly depleted in TbVAB cKO cells at 12 hpd (t(35) = 6.202, P < 0.001) and 24 hpd (t(35) = 8.465, P < 0.001) (Fig. 3a, b).

![Fig. 2](image-url) Growth curves of bloodstream forms of Trypanosoma brucei after depletion of TbVAB and TbVAA. a Cumulative growth curves of the inducible conditional TbVAB knockout in T. brucei bloodstream SmOx B427 cells. The ectopically TbVAB modified cells were grown in HMI-9 (10% FCS) with 1μg/ml tetracycline and used as a control. TbVAB expression was detected by Western blot analysis with the internal loading control being monoclonal antibody L8C4 which recognizes the paraflagellar rod. b Analysis of kinetoplast (K) and nucleus (N) numbers in the bloodstream form T. brucei after knockout of TbVAB. Kinetoplasts and nuclei of 510 cells in each group were counted after stained with DAPI. c Cumulative growth curve of the inducible knockdown of TbVAA in T. brucei bloodstream forms. Non-induced trypanosomes were used as control. The extent of TbVAA mRNA knockdown was assayed by qRT-PCR at indicated time points. The TbVAA mRNA expression from biological triplicates was shown with reference to the GAPDH gene.
The steady state intracellular pH (pHᵢ) was monitored using the cell permeable pH indicator BCECF-AM. The TbVAB cKO cells at 0 hpd showed a similar level of pHᵢ to the parental cells (7.016 ± 0.013 versus 7.038 ± 0.019, t(4) = 1.580, P = 0.189) (Fig. 3c), whereas at 12 hpd and 24 hpd, the pHᵢ was increased to 7.219 ± 0.068 (t(4) = 5.017, P < 0.001) and 7.422 ± 0.058 (t(4) = 11.560, P < 0.001), respectively (Fig. 3c). Similar phenotypes were found in TbVAA knockdown cells (Fig. 3c). Taken together, these data suggested that the depletion of TbVAB or TbVAA resulted in the disruption of intracellular pH homeostasis in the BSF of T. brucei.

Depletion of V-ATPase subunits altered endocytosis in BSF trypanosomes and reduced the sensitivity to NHS-mediated trypanolysis

Our findings that the V-ATPase subunit TbVAB is localized to lysosomes and probably endosomes (Fig. 1) imply a possible relationship between V-ATPase and endocytic activity. To test this, fluorescence imaging and flow cytometry assays were performed using different surrogate markers: transferrin, tomato lectin and dextran. At 4 °C, the TbVAB cKO cells hardly bound transferrin in the flagellar pocket and were similar to the non-induced cells (Fig. 4a). When incubated with transferrin for 16 min at 37 °C, the internalization (endocytosis) of transferrin could be clearly seen in TbVAB cKO cells at 0 hpd and were even uplifted at 24 hpd (Fig. 4a, b). Flow cytometry assays were employed to quantify the time course of transferrin accumulation. Compared with the initial status at 0 hpd, the TbVAB cKO 24 hpd cells took up significantly more transferrin by endocytosis (2.068 ± 0.277 fold at 16 min, t(4) = 5.310, P = 0.006) after the 37 °C incubation (Fig. 4a, d). However, no statistically significant difference in transferrin uptake was found in TbVAA KD cells (Fig. 4c, d).

At 4 °C, the TbVAB cKO 24 hpd cells bound tomato lectin mainly in the flagellar pocket and this was similar to the cells at 0 hpd (Fig. 5a). Intriguingly, after incubation at 37 °C for various times, the internalization of tomato lectin was disrupted in the TbVAB cKO cells (24 hpd vs 0 hpd cells, dropped to 52.67 ± 21.29% at 8 min,
4.514, \(P = 0.011 \), or 49.31 ± 22.57% at 16 min, \(t(4) = 4.225, P = 0.013 \); Fig. 5b-d). However, it was only slightly inhibited in the *TbVAA* KD cells (24 h induced vs non-induced cells, dropped to 90.05 ± 8.86% at 8 min, \(t(4) = 1.222, P = 0.289 \), or 87.24 ± 11.93% at 16 min, \(t(4) = 1.811, P = 0.144 \), respectively) after the 16 min incubation (Fig. 5c, d). Neither mislocalization of lectin nor transferrin was observed, indicating no major defects in the endomembrane system morphology. To exclude the possibility that the internalization
of tomato lectin or transferrin was caused by receptor-independent fluid-phase pinocytosis, the uptake of Dextran Alexa Fluor 488 was measured in control or V-ATPase depleted cells. As shown in Fig. 5e, no significant change in relative fluorescence was detected by measurements of dextran uptake. Taken together, the above results indicated that V-ATPase contributes to the endocytosis process in BSF trypanosomes in a receptor/cargo-dependent manner.

As the endocytosis-related function of V-ATPase depends on the specific receptor/cargo, this raises the question of whether it also influences uptake of trypanosome lytic factor (TLF). Considering that both TLF-1 and -2 contain APOL1 and haptoglobin-related protein, TLF uptake could be assessed by immunoblotting with anti-APOL1 antibodies. The uptake of TLF in TbVAB cKO 24 hpd cells was at a distinctively low level (about 30% of the 0 hpd cells’ level at 8 hpd and later undetectable at 16 or 24 hpd) (Fig. 6a). Consistent with the low uptake of TLF, we found that TbVAB cKO cells, 8 hpd before 8 or 16 h NHS incubation, exhibited a high resistance to either 1% or 5% NHS treatment (Fig. 6b).

Discussion

In this work we report, for the first time, the multiple localization of V-ATPase in the bloodstream forms of *T. brucei*. This feature suggests potential involvement of the complex in the function of co-localized organelles. Previous studies showed that V-ATPase mainly contributes to H⁺ gradient generation in acidicosomes and acidification in other vesicles as well as pH regulation and Ca²⁺ homeostasis in *T. brucei* [5, 22, 23]. It has also been reported that V-ATPase contributes to the action of other membrane pumps/channels, such as Ca²⁺/H⁺ exchangers, Na⁺/H⁺ exchangers, Ca²⁺ transporters, Zn²⁺ transporters, pyruvate transporters and other H⁺-ATPase(s) in *T. brucei* [19, 22, 35]. Therefore, the multiple functions of V-ATPase in *T. brucei* may reflect its position as a vital node in the ion distribution network. In our hands, by eliminating potential nonspecific interference by chemical compound inhibitors, we provided direct evidence of vacuolar and cytoplasmic alkalization in TbVAB depleted BSF of *T. brucei*. *T. brucei* maintains a constant pH₄ over a narrow range of extracellular pH [36], which we measured as a pH₄ of 7.016 ± 0.013. This value is in a good agreement with some studies [37–39], but lower than others [22, 40]. The discrepancy in pH₄ values might be due to different choices of pH reporters or probes. We suspect that these abnormalities in the pH homeostasis in the cytoplasm of V-ATPase ablated BSF of *T. brucei* might be due to abnormal proton efflux activity occurring as a result of the coordinated effects of V-ATPase and membrane pumps.

The localization of *T. brucei* V-ATPase in lysosomes and, probably endosomes, suggests the potential involvement of V-ATPase in endocytosis linked protein trafficking. We showed that endocytosis in TbVAB depleted BSF was linked to a significant decrease in lectin and TLF uptake. Hence, we consider that V-ATPase may possibly act as a specific endocytosis regulator in the BSF *T. brucei*. In contrast to lectin and TLF uptake, endocytosed transferrin was elevated in TbVAB depleted cells and this was consistent with another study using V-ATPase subunit F knockdown in *T. brucei* [5]. In fact, selective endocytosis, induced by endocytic protein silencing in *T. brucei*, is a common phenomenon such as in ATG24 silencing which impairs the uptake of transferrin but not lectin [41]. Ablation of *Tbrab11* has less of an effect on trafficking of GPI anchored proteins but strongly influenced recycling of transmembrane proteins [42]. Taken together these data suggest that, in the BSF *T. brucei*, V-ATPase may be a key component in endocytosis and determine specific cargo/receptor-dependent interactions.

The endocytic process and endosomal sorting regulatory mechanisms have been well studied in *T. brucei* [43, 44]. Other studies, such as effects of silencing endocytosis regulators on cell morphology, may help to understand the possible mechanisms that link V-ATPase to the endocytic process. By possessing a subpellicular microtubule cytoskeleton, *T. brucei* restricts endocytosis.
and exocytosis to the flagellar pocket (FP) [45]. Endocytic mutant phenotypes such as FP enlargement can be observed in examples like the ‘BigEye’ trypanosome, caused by ablation of clathrin [46]. Interestingly, however, FP enlargement was only very occasionally observed in *TbVAB* depleted BSF *T. brucei* suggesting that V-ATPase might not affect clathrin function. Also endocytosed lectin dramatically decreased while the flagellar pocket
T. brucei rhodesiense, conferring human serum resistance [3]. Endosomal alka-
inization, such as chloroquine treatment, can block trypanolytic tolerance. This study provides a deeper
interpretation of the roles of V-ATPase in endocytic activity in T. brucei BSF physiology.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13071-020-04068-4.

Additional file 1: Table S1. Primers used for PCR in this study.

Additional file 2: Figure S1. Immunoblotting of BSF and PCF of Trypanosoma brucei probed with rabbit polyclonal antibodies against TbVAB. TbVAB was detected by resolving whole cell lysates samples of bloodstream forms (SmOX B427) and procyclic forms (SmOX PhATat 1.1) of T. brucei on 10% Tris-SDS-PAGE gels followed by western blotting probed with rabbit anti-TbVAB polyclonal antibodies. TbVAB: YFP and TbVAB were detected by resolving whole cell lysates samples of in situ monoallelic TbVAB::YFP labeled bloodstream forms of T. brucei with rabbit anti-TbVAB polyclonal antibodies. M, molecular mass markers.

Additional file 3: Figure S2. Validation of the TbVAB knockdown and homologous recombination strategy for the deletion of TbVAB. The gel shows the PCR assays. PCR using primers targeting UTR flanking sequences and gene internal sequences demonstrated that the original alleles were disrupted (lane 3). For single TbVAB allele replacement by homologous recombination, the TbVAB gene locus was initially disrupted by integration of a linear fragment containing TbVAB UTR and a hygromycin gene. After obtaining a single allele replaced population, an additional tetracycline inducible overexpression TbVAB fragment was integrated into the genome and followed by the integration of a linear fragment containing TbVAB UTR and a neomycin gene. PNAP, procyclic acidic repetitive protein promoter. T7RNAP, bacteriophage T7 RNA polymerase. ALD, aldolase derived UTRs. ACT, actin derived UTRs. Tet, Tet repressor. HYG, hygromycin phosphotransferase gene. NEO, neomycin phosphotransferase gene.

Acknowledgements
We thank Professor Cynthia He from the National University of Singapore, Singapore and Professor Keith Gull from the University of Oxford, UK for providing the anti-VP1 antibody (generated by Professor Roberto Docampo) and the L8C4 antibody.

Authors' contributions
ZX, DHL and ZRL designed this work and XZS carried out the experiments. ZX, DHL, ZRL, FIL and GH analyzed the data. ZXS wrote the draft of the manuscript. DHL, FIL, ZRL and GH improved the final versions of the manuscript. All authors approved the final version of the manuscript.

Funding
This work was supported by the National Science Foundation of China (31672276 and 31720103918) to ZRL and the National Science Foundation of Guangdong Province (2016A030306048) to DHL.

Availability of data and materials
All relevant information has been included in the manuscript and its additional files. Data analyzed in this study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate
This study was approved by the Medical Science Ethical Committee and the Laboratory Animal Use and Care Committee of Sun Yat-Sen University under license No. 31672276. All volunteer participants were informed about the objectives of this study before blood donation. Four- to five-month-old female New Zealand rabbits used in this study were purchased from the Guangdong medical laboratory animal center. All animals were housed under specific pathogen-free condition according to the National Institutes of Health on animal care and the ethical guidelines.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, The People’s Republic of China. 2 Department of Biological Sciences, National University of Singapore, Singapore 11754, Singapore. 3 Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK.

Received: 24 December 2019 Accepted: 9 April 2020
Published online: 25 April 2020

References
1. Kennedy PGE. Update on human African trypanosomiasis (sleeping sickness). J Neurol. 2009;266:2334–7.

2. Engstler M, Thilo L, Weise F, Grünfelder CG, Schwarz H, Boshart M, Overath P. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci. 2004;117:1105–15.

3. Xong HV, Vanhamme L, Chamekh M, Chirimwebe CE, Van Den Abbeele J, Pays A, et al. VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell. 1998;95:839–46.

4. Capewell P, Clucas C, Dejesus E, Kieff R, Hajduk S, Vteich N, et al. The TgsGP gene is essential for resistance to human serum in Trypanosoma brucei gambiense. PLoS Pathog. 2013;9:e1003666.

5. Lecordier L, Uzureau P, Tébal P, Perez-Morga D, Nolan D, Schumann-Burkard G, et al. Identification of Trypanosoma brucei components involved in trypanolysis by normal human serum. Mol Microbiol. 2014;94:625–36.

6. Currier RB, Cooper A, Burrell-Savard H, Macleod A, Alsford S. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. PLoS Pathog. 2008;14:e1006855.

7. Baker N, Hamilton G, Wilkes JM, Hutchinson S, Barrett MP, Horn D. Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast DNA-dependent, and drug sensitivity in trypanosomes. Proc Natl Acad Sci USA. 2015;112:9112–7.

8. Mehlman J, Fuchs H, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700.

9. Marshansky V, Futai M. The V-type H⁺-ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol. 2008;20:415–26.

10. Nelson N, Harvey WR. Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev. 1999;79:361–85.

11. Kurashima K, Yu FH, Cabado AG, Szabo EZ, Grinstein S, Orlovski J. Identification of sites required for down-regulation of Na⁺/H⁺ exchanger NH33 activity by cAMP-dependent protein kinase phosphorylation-dependent and -independent mechanisms. J Biol Chem. 1997;272:28672–9.

12. Diakov TT, Kane PM. Regulation of vacuolar proton-translocating ATPase activity by extracellular pH? J Biol Chem. 2010;285:23771–8.

13. Nelson H, Nelson N. Disruption of genes encoding subunits of yeast vacuolar H⁺-ATPase causes conditional lethality. Proc Natl Acad Sci USA. 1990;87:3503–7.

14. Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL. Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H⁺-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol. 2005;25:575–9.

15. Clague MJ, Urbel S, Aniento F, Gruenberg J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol Chem. 1994;269:21–4.
16. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K. Vacuolar H^+‐ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell. 2006;18:715–30.

17. Matsuoaka K, Higuchi T, Maeshima M, Nakamura K. A vacuolar-type H^+‐ATPase in a nonvaccuolar organelle is required for the sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell. 1997;9:533–46.

18. TawfEEK HA, Abou-Samra AB. Important role for the V-type H^+‐ATPase and the Golgi apparatus in the recycling of PTH/PTHrP receptor. Am J Physiol-Endoc. M. 2004;286:704–10.

19. Huang G, Ulrich PN, Storey M, Johnson D, Tischer J, Tovar JA, et al. Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathog. 2014;10:e1004555.

20. Li FJ, He CY. Acidocalcisome is required for autophagy in Trypanosoma brucei. Autophagy. 2014;10:1978–88.

21. Bowman BJ, McCaill ME, Baertsch R, Bowman EJ. A model for the proteolipid ring and baflomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem. 2006;281:31885–93.

22. Vanderheyden N, Wong J, Docampo R. A pyruvate-proton symport and an H^+‐ATPase regulate the intracellular pH of Trypanosoma brucei at different stages of its life cycle. Biochem J. 2000;346:53–62.

23. Vercesi AE, Moreno SN, Docampo R. Ca^{2+}+H^+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J. 1994;304:227–33.

24. Poon SK, Peacock L, Gibson W, Gull K, Kelly S. A modular and optimized single marker system for generating Trypanosoma brucei cell lines, expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2012;2:110037.

25. Burkard G, Fragoso CM, Roditi I. Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol. 2007;153:220–3.

26. Alford S, Horn D. Single-locus targeting constructs for reliable regulated cell lines Trypanosoma brucei. J Eukaryotic Microbiol. 1999;46:105–9.

27. Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol. 2007;154:103–9.

28. Kohl L, Sherwin T, Gull K. Assembly of the paraflagellar rod and the flagellar luminal attachment zone complex during the clathrin-mediated endocytosis in Trypanosoma brucei. Exp Parasitol. 2007;114:59–69.

29. Matsuoka K, Higuchi T, Maeshima M, Nakamura K. A vacuolar-type H^+‐ATPase in the Golgi apparatus of the kinetoplastida. Part II: machinery and components of the system. Trends Parasitol. 2002;18:540–6.

30. Quintana JF, Pino RCD, Yamada K, Zhang N, Field MC. Adaptation and therapeutic exploitation of the plasma membrane of African trypanosomases. Genes. 2018;9:368.

31. Field MC, Carrington M. The trypanosome flagellar pocket. Nat Rev Microbiol. 2009;7:775–86.

32. Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 2003;22:4991–5002.

33. Garcia-Salcedo JA, Perez-Morga D, Gijon P, Dilbeck V, Pays E, Nolan DP. A differential role for actin during the life cycle of Trypanosoma brucei. EMBO J. 2004;23:79–80.

34. Holliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, et al. The amino-terminal domain of the B subunit of vacuolar H^+‐ATPase contains a filamentous actin binding site. J Biol Chem. 2000;275:32331–7.

35. Vitavska O, Merzendorfer H, Wieczorek H. The TAT pathway is involved in the intracellular pH in the protozoan parasite Trypanosoma brucei brucei. Mol Biochem Parasitol. 2002;125:211–6.

36. Scott DA, Moreno SN, Docampo R. Trypanosomes require Ca^2+ for survival. PLoS Pathog. 2014;10:e1004555.

37. Thissen JA, Wang CC. Maintenance of internal pH and an electrochemical gradient in Trypanosoma brucei: solving the three-compartment problem. Eur J Biochem. 2000;267:4601–14.

38. Scott DA, Moreno SN, Docampo R. Ca^{2+} storage in Trypanosoma brucei: the influence of cytoplasmic pH and importance of vacuolar acidity. Biochem J. 1995;310:789–94.

39. Ana B, Eva R, Rodeg OJ, Patrick VDS, Courtjot P,Michels PAM. ATG24 represses autophagy and differentiation and is essential for homeostasy of the flagellar pocket in Trypanosoma brucei. PLoS ONE. 2015;10:e0130365.

40. Umaer K, Bush PJ, Bangs JD. Rab11 mediates selective recycling and endocytic trafficking in Trypanosoma brucei. Traffic. 2018;19:406–20.

41. Morgan GW, Hall BS, Denney PW, Field MC, Carrington M. The endocytic apparatus of the kinetoplastida. Part II: machinery and components of the system. Trends Parasitol. 2002;18:540–6.

42. Silverman JS, Schwartz KJ, Hajduk SL, Bangs JD. Late endosomal Rab7 regulates lysosomal trafficking of endocytic but not biosynthetic cargo in Trypanosoma brucei. Mol Microbiol. 2011;82:664–72.

43. Faulkner SD, Oli MW, Kieft R, Cotlin L, Widener J, Shiflett A, et al. In vitro generation of human high-density-lipoprotein-resistant Trypanosoma brucei. J Biol Chem. 2012;287:15712–20.

44. Halliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, et al. The amino-terminal domain of the B subunit of vacuolar H^+‐ATPase contains a filamentous actin binding site. J Biol Chem. 2000;275:32331–7.

45. Vitavska O, Merzendorfer H, Wieczorek H. The TAT pathway is involved in the intracellular pH in the protozoan parasite Trypanosoma brucei brucei. Mol Biochem Parasitol. 2002;125:211–6.

46. Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 2003;22:4991–5002.

47. Garcia-Salcedo JA, Perez-Morga D, Gijon P, Dilbeck V, Pays E, Nolan DP. A differential role for actin during the life cycle of Trypanosoma brucei. EMBO J. 2004;23:79–80.

48. Holliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, et al. The amino-terminal domain of the B subunit of vacuolar H^+‐ATPase contains a filamentous actin binding site. J Biol Chem. 2000;275:32331–7.

49. Vitavska O, Merzendorfer H, Wieczorek H. The V‑ATPase subunit C binds to the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem. 2006;281:31885–93.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.