The derived algebra of a stabilizer, families of coadjoint orbits, and sheets

Anton Izosimov*

Abstract

Let g be a finite-dimensional real or complex Lie algebra, and let $\mu \in g^*$. In the first part of the paper, the relation is discussed between the derived algebra of the stabilizer of μ and the set of coadjoint orbits which have the same dimension as the orbit of μ. In the second part, semisimple Lie algebras are considered, and the relation is discussed between the derived algebra of a centralizer and sheets.

1 Introduction

Let g be a finite-dimensional real or complex Lie algebra. The group G acts on the dual space g^* via the coadjoint action, and g^* is foliated into the orbits of this action. Consider the union of all orbits which have the same codimension k. Denote this union by g^*_k. Each of the sets g^*_k is a quasi-affine algebraic variety. The study of the varieties g^*_k was initiated by A.Kirillov in connection with the orbit method [6], which relates the unitary dual of G to the set of coadjoint orbits g^*/G. The sets g^*_k/G appear in this picture as natural strata of g^*/G, therefore it is important to understand the geometry of g^*_k for each k.

So, consider a finite-dimensional real or complex Lie algebra g. Let $g_\mu = \{x \in g \mid \text{ad}^* x(\mu) = 0\}$ be the stabilizer of an element $\mu \in g^*$ with respect to the coadjoint representation of g. In the present note, the following simple geometric fact is proved: any element $\xi \in g^*$ which is tangent to the variety g^*_μ at a point $\mu \in g^*$ vanishes on the derived algebra of g_μ. As a corollary, the codimension of the set $\{\mu \in g^* \mid \dim [g_\mu, g_\mu] \geq k\}$ is at least k, which generalizes the well-known fact that the stabilizer of a generic element $\mu \in g^*$ is Abelian.

In the second part of the note, a semisimple Lie algebra g is considered. In this case, the set g^*_k can be identified with the variety of adjoint orbits of codimension k. The irreducible components of this latter variety are called sheets. Let $a \in g$, and let $g^a = \{x \in g \mid [x, a] = 0\}$ be the centralizer of a. Then the above-formulated statement becomes the following: the derived algebra of the centralizer of a is orthogonal to any sheet passing through a. It was conjectured in the earlier version of the present paper [5] that if g is a classical simple Lie algebra, and there is a unique sheet S passing through $a \in g$, then $[g^a, g^a]$ is exactly the orthogonal complement to S. As it has been recently shown by A.Premet and L.Topley [12], this conjecture is true for any algebraically closed ground field of characteristic zero. The second conjecture, stating that if S_1, \ldots, S_k are sheets passing through a, then $[g^a, g^a]$ is the orthogonal complement to $\sum T_{a,S_i}$, remains open.

*Moscow State University and Higher School of Economics. E-mail: a.m.izosimov@gmail.com
2 The derived algebra of a stabilizer and families of coadjoint orbits

Families of coadjoint orbits of the same dimension Let \(g \) be a real or complex Lie algebra. Let \(g_\mu = \{ x \in g \mid \text{ad}^*x(\mu) = 0 \} \) be the stabilizer of an element \(\mu \in g^* \) with respect to the coadjoint action. Let \(g^*_k = \{ \mu \in g^* \mid \dim g_\mu = k \} \). It is clear that \(g^*_k \) is a quasi-affine algebraic variety for each \(k \), and \(g^* \) is a disjoint union of all \(g^*_k \). The variety \(g^*_k \) can be also defined as the union of all coadjoint orbits of codimension \(k \).

For any \(\mu \in g^* \), denote \(g^*_\mu = g^*_\dim g_\mu \); in other words, \(g^*_\mu \) is \(g^*_k \) passing through \(\mu \).

Main statement

Proposition 2.1. Let \(\gamma \) be a smooth curve in \(g^* \) such that \(\gamma(0) = \mu \) and \(\gamma(t) \in g^*_\mu \) for all \(t \). Then the tangent vector \(\dot{\gamma}(0) \) vanishes on the derived algebra of \(g_\mu \):

\[
\langle \dot{\gamma}(0), [g_\mu, g_\mu] \rangle = 0.
\]

Proof. Since \(\dim g_\gamma(t) = \dim g_\mu \) for all \(t \), the bundle of stabilizers is locally trivial over the curve \(\gamma \), and it is possible to choose a basis \(e_1(t), \ldots, e_k(t) \) in \(g_\gamma(t) \) such that \(e_i(t) \) depends smoothly on \(t \). Since \(e_i(t) \in g_\gamma(t) \), the following equality holds:

\[
\langle \gamma(t), [e_i(t), e_j(t)] \rangle = 0.
\]

Differentiating with respect to \(t \) at \(t = 0 \), obtain

\[
\langle \dot{\gamma}(0), [e_i(0), e_j(0)] \rangle + \langle \mu, [\dot{e}_i(0), e_j(0)] \rangle + \langle \mu, [e_i(0), \dot{e}_j(0)] \rangle = 0.
\]

Since \(e_i(t) \) are elements of the stabilizer, the last two terms vanish, and

\[
\langle \dot{\gamma}(0), [e_i(0), e_j(0)] \rangle = 0,
\]

which implies that \(\dot{\gamma}(0) \) vanishes on the derived algebra of \(g_\mu \). q.e.d.

Remark 2.1. The proposition remains true if \(\gamma(t) \) is only defined for \(t \geq 0 \) and the right derivative \(\dot{\gamma}(0) \) exists. This may happen if \(g^*_\mu \) has a singularity at \(\mu \).

Corollary 2.1. Consider the case when \(g^*_\mu \) is smooth at the point \(\mu \). Then

1. Each element of the tangent space \(T_\mu g^*_\mu \) vanishes on the derived algebra of \(g_\mu \):

\[
\langle T_\mu g^*_\mu, [g_\mu, g_\mu] \rangle = 0.
\]

2. The following inequality is satisfied:

\[
\dim [g_\mu, g_\mu] \leq \text{codim}_\mu g^*_\mu.
\]

3. The equality

\[
\dim [g_\mu, g_\mu] = \text{codim}_\mu g^*_\mu
\]

is satisfied if and only if \(T_\mu g^*_\mu \) is exactly the annihilator of \([g_\mu, g_\mu] \).
Remark 2.2. Inequality (1) shows that the derived algebra of a stabilizer cannot be too big. It resembles the following inequality for the index of a stabilizer: \(\text{ind} \mathfrak{g}_\mu \geq \text{ind} \mathfrak{g} \) (Vinberg, see [10]).

Corollary 2.2. The codimension of the set of elements \(\mu \in \mathfrak{g}^* \) such that

\[
\dim [\mathfrak{g}_\mu, \mathfrak{g}_\mu] \geq k
\]

is at least \(k \).

Example 2.1. For regular \(\mu \), obtain a well-known fact: \(\mathfrak{g}_\mu \) is abelian. Corollary 2.2 can be viewed as a natural generalization of this fact. It says that for a “not too singular” \(\mu \), its stabilizer is almost Abelian.

Example 2.2. Let \(\mathfrak{g} \) be complex semisimple. Then, for a generic singular element \(\mu \), the dimension of \([\mathfrak{g}_\mu, \mathfrak{g}_\mu]\) equals three. So, by Corollary 2.2, the codimension of the singular set for a complex semisimple Lie algebra is at least three. On the other hand, it is well known that this codimension is exactly three.

Example 2.3. Suppose that the set of singular elements in \(\mathfrak{g}^* \) is a hypersurface. Then the stabilizer of a generic singular element is one of the following types:

1. Abelian;
2. \(\text{aff}(1) \oplus \text{Abelian} \), where \(\text{aff}(1) \) is the Lie algebra of affine transformations of the line;
3. \(\mathfrak{h}_{2n+1} \oplus \text{Abelian} \), where \(\mathfrak{h}_{2n+1} \) is the \(2n + 1 \)-dimensional Heisenberg algebra.

The class of Lie algebras for which the set of singular elements in \(\mathfrak{g}^* \) is a hypersurface is particularly important for integrable systems [1, 2].

Remark 2.3. Rewrite (1) as

\[
\dim \mathfrak{g}^*(\mu) - \dim O(\mu) \leq \dim \mathfrak{g}_\mu - \dim [\mathfrak{g}_\mu, \mathfrak{g}_\mu] \tag{2}
\]

where \(O(\mu) \) is the coadjoint orbit of \(\mu \). Coadjoint orbits form families and the difference

\[
\dim \mathfrak{g}^*(\mu) - \dim O(\mu)
\]

is exactly the local dimension of such a family. Inequality (2) estimates this dimension.

Example 2.4. Let \(\mathfrak{g} = \mathfrak{gl}(n) \),

\[
\mu = \text{diag}(\lambda_1, \ldots, \lambda_1, \lambda_2, \ldots, \lambda_2, \ldots, \lambda_s, \ldots, \lambda_s).
\]

Then \(\mathfrak{g}_\mu \simeq \mathfrak{gl}(k_1) \oplus \cdots \oplus \mathfrak{gl}(k_s) \), so \(\dim \mathfrak{g}_\mu - \dim [\mathfrak{g}_\mu, \mathfrak{g}_\mu] = s \). On the other hand, the set of orbits close to \(O(\mu) \) which have the same dimension as \(O(\mu) \) is parameterized by the eigenvalues \(\lambda_1, \ldots, \lambda_s \), so \(\dim \mathfrak{g}^*(\mu) - \dim O(\mu) \) is also equal to \(s \), and inequality (2) turns into equality.

What happens if the transverse Poisson structure is linearizable. Let \(M \) be a Poisson manifold, and \(\mu \in M \). Recall that, by the Weinstein splitting theorem [14], \(M \) can be locally decomposed into the direct product of a symplectic manifold and a manifold with a Poisson structure vanishing at \(\mu \). This latter Poisson structure is unique up to a diffeomorphism and is called the transverse Poisson structure at the point \(\mu \). More details can be found in [3].
In the case when M is the dual \mathfrak{g}^\ast of a Lie algebra \mathfrak{g}, the linear part of the transverse Poisson structure at a point μ is the Lie-Poisson structure of the stabilizer \mathfrak{g}_μ. Consequently, if the transverse Poisson structure at a point μ is linearizable, then the Lie-Poisson structure on \mathfrak{g}^\ast can be locally decomposed into the direct product of a symplectic structure and the Lie-Poisson structure of the stabilizer \mathfrak{g}_μ, which allows to prove the following.

Proposition 2.2. Assume that the transverse Poisson structure at a point μ is linearizable. Then $\mathfrak{g}^\ast(\mu)$ is smooth at the point μ, and

$$\dim_\mu \mathfrak{g}^\ast(\mu) - \dim O(\mu) = \dim \mathfrak{g}_\mu - \dim [\mathfrak{g}_\mu, \mathfrak{g}_\mu].$$

Example 2.5 (M. Duflo, see [13, 3]). Let \mathfrak{g} be a Lie algebra given by the following linear Poisson structure

$$\frac{\partial}{\partial x_1} \wedge (x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3} + 2x_4 \frac{\partial}{\partial x_4}) + x_4 \frac{\partial}{\partial x_2} \wedge \frac{\partial}{\partial x_3}.$$

Consider $\mu \in \mathfrak{g}^\ast$ with $x_4 = 0$ and $x_2^2 + x_3^2 > 0$. Then the stabilizer of μ is Abelian: $\dim [\mathfrak{g}_\mu, \mathfrak{g}_\mu] = 0$. On the other hand, $\text{codim} \mathfrak{g}^\ast(\mu) = 1$. Consequently, the transverse Poisson structure at μ is not linearizable.

3 Semisimple case: the derived algebra of a centralizer and sheets

Sheets In the semisimple case, the coadjoint and the adjoint actions can be identified by the means of the Killing form. This identification maps the variety \mathfrak{g}_k^\ast to the variety

$$\mathfrak{g}^{(k)} = \{ a \in \mathfrak{g} \mid \dim g^a = k \}$$

where $g^a = \{ x \in g \mid [a, x] = 0 \}$ is the centralizer of a.

Irreducible components of the varieties $\mathfrak{g}^{(k)}$ are called sheets of \mathfrak{g}. Recall some facts about the topology of sheets.

1. Sheets are not necessarily smooth. However, if \mathfrak{g} is a classical simple Lie algebra, then sheets are smooth (Im Hof [4]).

2. Sheets are not necessarily disjoint even in the classical case. However, they are for $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$ (Kraft and Luna [7], Peterson [11]).

Study the relation between sheets and the derived algebra of a centralizer.

The main statement in the semisimple case Using Corollary [2.1] obtain the following.

Proposition 3.1. Let \mathfrak{g} be a real or complex semisimple Lie algebra. Suppose that $a \in \mathfrak{g}$ belongs to a sheet S, and S is smooth at the point a. Then the derived algebra of the centralizer of a is orthogonal to S at the point a: $$\langle [g^a, g^a], T_a S \rangle = 0.$$
Corollary 3.1. Let \(g \) be a real or complex semisimple Lie algebra. Suppose that \(a \in g \) belongs to a sheet \(S \), and \(S \) is smooth at the point \(a \). Then the following three statements are equivalent.

1. The derived algebra of the centralizer of \(a \) is exactly the orthogonal complement to \(S \) at the point \(a \):
 \[
 [g^a, g^a] = (T_\mu S)^\perp.
 \] (3)

2. The dimension of the derived algebra of the centralizer of \(\mu \) is equal to the codimension of \(S \):
 \[
 \dim [g^a, g^a] = \operatorname{codim} S.
 \]

3. The codimension of \([g^a, g^a] \) in \(g^a \) is equal to the codimension of \(O(a) \) in \(S \):
 \[
 \dim g^a - \dim [g^a, g^a] = \dim S - \dim O(a).
 \]

If one of these three conditions is satisfied, the picture is the following: the centralizer is the orthogonal complement to the orbit while its derived algebra it is the orthogonal complement to the sheet (Figure 1).

The case of a semisimple element

Proposition 3.2. If \(g \) is a real or complex semisimple Lie algebra, and \(a \in g \) is semisimple, then there is only one sheet \(S \) passing through \(a \), \(S \) is smooth at \(a \), and equality (3) holds.

Proof. Since the transverse Poisson structure at a semisimple point is linearizable \cite{8}, the proof follows from Proposition 2.2. \(\square \)

Corollary 3.2. Let \(g \) be a compact real Lie algebra. Then all sheets of \(g \) are smooth, disjoint, and the equality (3) holds for every \(a \in g \).

Proof. The proof follows from the fact that all elements of a compact algebra are semisimple. \(\square \)
The case of \(sl(n, \mathbb{C}) \)

Proposition 3.3. The equality (3) holds for every \(a \in sl(n, \mathbb{C}) \).

Proof. Denote by \(h(\lambda) \) the size of the largest Jordan block of \(a \) with the eigenvalue \(\lambda \). Prove that

\[
\dim g^a - \dim [g^a, g^a] = \dim S - \dim D(a) = \left(\sum h(\lambda) \right) - 1.
\]

1. \(\dim g^a - \dim [g^a, g^a] = (\sum h(\lambda)) - 1 \).
 It suffices to prove this equality for the case when \(a \) is nilpotent. This can be easily done by studying the commutation relations for \(g^a \) found by O.Yakimova [15].

2. \(\dim S - \dim D(a) = (\sum h(\lambda)) - 1 \).
 This fact is known in the case when \(a \) is nilpotent (A.Moreau [9]). The idea of the proof for an arbitrary element is as follows. For each eigenvalue \(\lambda \), take a sequence of complex numbers \(\varepsilon_1(\lambda), \ldots, \varepsilon_k(\lambda) \) where \(k \) is the size of the block. This gives a family \(a_\varepsilon \in sl(n, \mathbb{C}) \) of dimension \((\sum h(\lambda)) - 1 \). It is easy to check that the dimension of the centralizer of each \(x \in a_\varepsilon \) is equal to the dimension of \(g^a \), so \(a_\varepsilon \subset S \) where \(S \) is the sheet passing through \(a \). At the same time, the family \(a_\varepsilon \) is transversal to the orbit \(D(a) \), so

\[
\dim S \geq \dim D(a) + \left(\sum h(\lambda) \right) - 1.
\]

On the other hand, by Proposition 3.1

\[
\dim S - \dim D(a) \leq \dim g^a - \dim [g^a, g^a] = \left(\sum h(\lambda) \right) - 1,
\]

so \(\dim S - \dim D(a) = (\sum h(\lambda)) - 1 \), q.e.d.

The case of an arbitrary classical simple Lie algebra

In the previous version of the present paper [5], the following conjecture was formulated.

Conjecture 3.1. Let \(g \) be a complex classical simple Lie algebra.

1. If there is only one sheet \(S \) passing through \(a \in g \), then equality (3) holds, i.e.

\[
[g^a, g^a] = (T_a S)^\perp.
\]

2. If \(a \in g \) belongs to several sheets \(S_1, \ldots, S_k \), then

\[
[g^a, g^a] = \left(\sum_{i=1}^k T_a S_i \right)^\perp.
\]

Recently, A.Premet and L.Topley [12] have proved the first part of this conjecture for any algebraically closed ground field of characteristic 0. They have also provided a combinatorial description of those elements \(a \in g \) for which there is only one sheet passing through \(a \).

The second part of the conjecture remains open.

Also note that the conjecture is false for the exceptional Lie algebra \(G_2 \), as it follows from Remark 3 of [15].
References

[1] Bolsinov, A.V., *Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution*, Mathematics of the USSR-Izvestiya, 38:1 (1992), 69-90.

[2] Bolsinov, A., and Zhang P., *Jordan-Kronecker invariants of finite-dimensional Lie algebras*, arXiv:1211.0579v2 (2012).

[3] Dufour, J.-P., and Nguyen T.Z., “Poisson Structures and Their Normal Forms”, Birkhauser Basel, 2005.

[4] Im Hof, A., *The sheets of a classical Lie algebra*, PhD Thesis, University of Basel, Faculty of Science (2005).

[5] Izosimov, A., *The derived algebra of a stabilizer, families of coadjoint orbits, and sheets*, arXiv:1202.1135v2 (2012).

[6] Kirillov, A.A., *Représentations unitaires des groupes de Lie nilpotents*, Uspehi Mat. Nauk, 17 (1962), 57-110.

[7] Kraft, H., *Parametrisierung von Konjugationsklassen in sl(n)*, Math. Ann., 234 (1978), 209-220.

[8] Molino, P., *Structure transverse aux orbites de la représentation coadjointe: le cas des orbites réductives*, Séminaire Gaston Darboux de Géométrie Différentielle à Montpellier (1983-1984), 55-62.

[9] Moreau, A., *On the dimension of the sheets of a reductive Lie algebra*, Journal of Lie Theory, 18:3 (2008), 671-696.

[10] Panyushev, D., *The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser*, Math. Proc. Camb. Phil. Soc. 134 (2003), 41-59.

[11] Peterson, D., *Geometry of the adjoint representation of a complex semisimple Lie algebra*, Harvard thesis (1978).

[12] Premet, A., and Topley, L., *Derived subalgebras of centralisers and finite W-algebras*, arXiv:1301.4653v1 (2013).

[13] Weinstein, A., *Poisson structures and Lie algebras*, Astérisque, hors série (1985), 421-434.

[14] Weinstein, A., *The local structure of Poisson manifolds*, J. Diff. Geom. 18 (1983), 523-557.

[15] Yakimova, O., *On the derived algebra of a centraliser*, Bull. des Sciences Math. 134:6 (2010), 579-587; arXiv:1003.0602v1.