BRIEF CUTTING EDGE REPORT
Clinical Trials and Investigations

History of bariatric surgery and COVID-19 outcomes in patients with type 2 diabetes: Results from the CORONADO study

Claire Blanchard1,2 | Tanguy Perennec3 | Sarra Smati1 | Blandine Tramunt4 | Béatrice Guyomarch1 | Edith Bigot-Corbel5 | Lyse Bordier6 | Sophie Borot7 | Olivier Bourron8 | Cyrielle Caussy9,10 | Christine Coffin-Boutreux11 | Anne Dutour12 | Natacha Germain13,14 | Céline Gonfroy-Leymarie15 | Laurent Meyer16 | Gaëtan Prevost17 | Ronan Rousse18 | Dominique Seret-Bégé19 | Charles Thivolet20 | Bruno Vergès21 | Matthieu Pichelin1 | Pierre Gourdy4 | Samy Hadjadj1 | Matthieu Wargny1,3 | François Pattou22 | Bertrand Cariou1 | for the CORONADO investigators

1Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut Du Thorax, Nantes, France
2Chirurgie Cancérologique Digestive et Endocrinienne (CCDE), Institut des Maladies de l'Appareil Digestif (IMAD), Centre Hospitalo-universitaire de Nantes (CHU) Hôtel-Dieu, Nantes, France
3CHU de Nantes, INSERM CIC 1413, Pôle Hospitalo-Universitaire 11 : Santé Publique, Clinique des données, Nantes, France
4Département d'Endocrinologie, Diabétologie et Nutrition, CHU Toulouse, Institut des Maladies Métaboliques et Cardiovasculaires, UMR1297 INSERM/UPS, Université de Toulouse, Toulouse, France
5Laboratoire de Biochimie, CHU de Nantes, Hôpital G et R Laënnec, Nantes, France
6Hôpital d'instruction des Armées Bégin, Saint Mandé, France
7Département d'Endocrinologie, Diabétologie et Nutrition, CHU de Besançon, Besançon, France
8Département de Diabétologie, CHU La Pitié Salpêtrière-Charles Foix, Inserm, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 06, Institute of Cardiometabolism and Nutrition ICAN, Sorbonne Université, Assistance Publique–Hôpitaux de Paris, Paris, France
9Univ-Lyon, laboratoire CarMeN, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France
10Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
11Département d'Endocrinologie, Diabétologie, Maladies Métaboliques, CH de Périgueux, Périgueux, France
12Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, Hôpital Nord Département d'Endocrinologie et de Diabétologie, Marseille, France
13Département d'Endocrinologie, CHU de Saint-Etienne, Saint-Etienne, France
14Laboratoire TAPE, Eating disorers, Addiction and Extreme bodyweight, Université Jean Monnet, Saint-Etienne, France
15Service d'Endocrinologie, Diabétologie, CH de Pontoise, Pontoise, France
16Département d'Endocrinologie, Diabétologie et Nutrition, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
17Département d'Endocrinologie, Diabète et Maladies Métaboliques, Normandie Univ, UNIROUEN, CHU de Rouen, Rouen, France
18Département d'Endocrinologie, Diabétologie et Nutrition, Hôpital Bichat, Assistance Publique–Hôpitaux de Paris, Centre de Recherche des Cordeliers, INSERM, U-1138, Université de Paris, Paris, France
19Service de Diabétologie, CH Gonesse, Gonesse, France
20Centre du Diabète DIAB-eCARE, Hospices Civils de Lyon, Lyon, France
21Service Endocrinologie, Diabétologie et Maladies Métaboliques, Hôpital du Bocage, Dijon, France
22Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, European Genomic Institute of Diabetes, Chirurgie Endocrinienne et Métabolique, Cente Intégré de l'Obésité, Lille, France

François Pattou and Bertrand Cariou contributed equally to this work.
Soon after the beginning of the COVID-19 pandemic, people with obesity were quickly identified as being at risk for severe forms of COVID-19 (1,2). For instance, we previously reported a sevenfold increase in the risk of invasive mechanical ventilation (IMV) in individuals with BMI ≥35 kg/m² (3). Management of obesity is therefore a priority to reduce the severity of COVID-19.

Metabolic and bariatric surgery (MBS) has progressively emerged as the most efficient therapeutic option for patients with severe obesity (4). Because MBS significantly reduces body weight and improves metabolic comorbidities (5), one can hypothesize that MBS may decrease the risk of severe COVID-19. Conversely, one cannot exclude that MBS can also lead to undernutrition, which could increase the severity of COVID-19 (6).

In order to further decipher the relationship between MBS and COVID-19–related outcomes, we conducted a post hoc analysis focused on CORONADO (Coronavirus SARS-CoV2 and Diabetes Outcomes) participants with a history of MBS (7).

Methods

Study design and patients

The multicenter nationwide CORONADO study (ClinicalTrials.gov NCT04324736) is a retrospective study designed to describe the phenotypic characteristics and prognosis of patients with diabetes admitted for COVID-19 to 68 French hospitals between March 10, 2020, and April 10, 2020. The study was conducted in accordance with the Declaration of Helsinki and French legislation and approvals were obtained from the local ethics committee (IRB/IEC - GNEDS [groupe nantais d'éthique dans le domaine de la santé]; Ref.CORONADOV2), the CEREES (comité d'expertise pour les recherches, les études et les évaluations dans le domaine de la santé; n° INDS:1544730), and the CNIL (commission nationale de l'informatique et des libertés; DR-2020-155/920129). The design of the study has been previously reported elsewhere (7). In this ancillary study, individuals with type 1 diabetes or other causes of diabetes (including newly diagnosed diabetes) were excluded (Supporting Information Figure S1).

Funding information

This study received the following funding: the Fondation Francophone de Recherche sur le Diabète (FFRD), supported by Novo Nordisk, MSD, Abbott, AstraZeneca, Lilly, and FFD (Fédération Française des Diabétiques) – CORONADO initiative emergency grant; Société Francophone du Diabète (SFD) – CORONADO initiative emergency grant; Air Liquide Health Care international. CORONADO initiative emergency grant; Allergan, CORONADO initiative emergency grant; Astra Zeneca, CORONADO initiative emergency grant; Elivie, CORONADO initiative emergency grant; Fortil, CORONADO initiative emergency grant; Lifescan, CORONADO initiative emergency grant; NHC, CORONADO initiative emergency grant; Nantes Métropole, CORONADO initiative emergency grant; Novo Nordisk, CORONADO initiative emergency grant; Sanofi, CORONADO emergency grant; PHRC National COVID-19 Hospitalization and Care Organization Division (DHOS) as part of the Hospital Clinical Research Program (PHRC COVID-19-20-0138). All research facilities are acknowledged for providing research associates and research technicians for clinical investigations pro bono. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
All patients with a personal history of MBS were included in the "exposed" group. These patients were matched 3:1 with other CORONADO participants without a history of MBS, according to sex, age (±3 years), and BMI (±3 kg/m²) measured either before surgery (exposed/controls, Study A) or at the time of hospital admission (exposed/controls, Study B). In the "control" group, BMI on admission was used to match both groups.

The percentage of excess weight loss (%EWL) was defined as: (weight loss/baseline excess weight) × 100. The success of MBS was defined as EWL ≥50%.

COVID-19–related outcomes

The composite primary outcome (CPO) combined IMV and/or death by day 7 (D7). A secondary time point was considered by day 28 (D28) for all patients alive and not discharged by D7 in order to consider outcomes between admission and D28.

Statistical methods

Quantitative variables are expressed using mean (SD) or median (25th to 75th percentile) and categorical variables using number

Note: Population size was n = 60. Data shown are number (%) with mean ± SD or median (25th–75th percentiles) if not normally distributed. MRA includes spironolactone and eplerenone; diuretics stand here for loop diuretics, thiazide diuretics, and potassium-sparing diuretics. Abbreviations: ACE, angiotensin converting enzyme inhibitor; ARB, angiotensin-2 receptor blocker; COPD, chronic obstructive pulmonary disease; DPP4, dipeptidyl peptidase 4; GLP-1RA, glucagon-like peptide 1-receptor agonist; MBS, metabolic and bariatric surgery; MRA, mineralocorticoid receptor antagonist; NAFLD, nonalcoholic fatty liver disease; OSA, obstructive sleep apnea.

TABLE 1
Comparison of clinical characteristics before admission in patients with history of MBS (cases) and age-, sex-, and preoperative BMI-matched controls (exposed/controls, Study A)

Clinical features	Available data	Exposed	Control
	n = 16	40.8 ± 5.6	40.8 ± 5.6
	n = 44	60.8 ± 10.0	60.8 ± 10.0

Diabetes characteristics	Available data	Exposed	Control
BMI (kg/m²) (on admission)	60	33.1 ± 5.6	40.8 ± 5.6
BMI (kg/m²) (presurgery for exposed, on admission for controls)	60	41.8 ± 5.7	40.8 ± 5.6
Sex (female)	60	9 (56.3%)	26 (59.1%)
Age (y)	60	60.7 ± 10.0	60.8 ± 10.0
Hemoglobin A1c (mmol/mol)	54.1 (43.7–64.5)	60.7 (54.1–77.6)	
Hemoglobin A1c (%)	7.1 (6.2–8.1)	7.7 (7.1–9.3)	
Microvascular complications	7 (63.6%)	15 (45.5%)	
Macrovascular complications	58	4 (25.0%)	13 (31.0%)
Treatments			
Metformin	60	4 (25.0%)	26 (59.1%)
Sulfonylurea/glinides	60	1 (6.3%)	9 (20.3%)
DPP-4 inhibitors	60	2 (12.5%)	10 (22.7%)
GLP1-RA	60	4 (25.0%)	11 (25.0%)
Insulin	60	7 (43.7%)	18 (40.9%)
Diuretics	60	6 (37.5%)	21 (47.7%)
Beta-blockers	60	3 (18.8%)	15 (34.1%)
Calcium channel blocker	60	6 (37.5%)	17 (38.6%)
ARB and/or ACE and/or MRA	60	3 (18.8%)	11 (25.0%)
Statin	60	10 (62.5%)	19 (43.2%)
Antiplatelet agent	60	5 (31.3%)	10 (22.7%)
Anticoagulation therapy	60	1 (6.3%)	4 (9.1%)
Comorbidities			
Hypertension	60	12 (75.0%)	30 (68.2%)
Dyslipidemia	60	9 (56.3%)	20 (45.5%)
Heart failure	57	1 (6.7%)	5 (11.9%)
NAFLD	57	3 (20.0%)	6 (14.3%)
Active cancer	60	2 (12.5%)	3 (6.8%)
COPD	58	1 (6.7%)	9 (20.9%)
Treated OSA	59	4 (25.0%)	11 (25.6%)

Note: Population size was n = 60. Data shown are number (%) with mean ± SD or median (25th–75th percentiles) if not normally distributed. MRA includes spironolactone and eplerenone; diuretics stand here for loop diuretics, thiazide diuretics, and potassium-sparing diuretics. Abbreviations: ACE, angiotensin converting enzyme inhibitor; ARB, angiotensin-2 receptor blocker; COPD, chronic obstructive pulmonary disease; DPP4, dipeptidyl peptidase 4; GLP-1RA, glucagon-like peptide 1-receptor agonist; MBS, metabolic and bariatric surgery; MRA, mineralocorticoid receptor antagonist; NAFLD, nonalcoholic fatty liver disease; OSA, obstructive sleep apnea.
TABLE 2 COVID-19–related outcomes in patients with history of metabolic and bariatric surgery (exposed) and age-, sex-, and on-admission or preoperative BMI–matched controls (exposed/controls, Study A)

The statistical association between two categorical variables was tested using Fisher exact test. The statistical association between binary and quantitative variables was tested using unpaired t test (Mann–Whitney U test in case of skewed distribution), and for variables with more than two categories, we used ANOVA (Kruskal–Wallis in case of skewed distribution). Confidence intervals (CI) for proportions were calculated using the Clopper–Pearson estimate.

Logistic regression models were used to calculate odds ratio (OR) associated with the different outcomes by D7. For quantitative variables, OR was expressed for an increase of 1 SD. Multiple logistic regression analyses were performed focusing on the OR associated with BMI, considering covariates identified either as clinically relevant (background knowledge) and/or significantly associated with obesity status in univariable analysis.

All statistical tests were two-sided with a type I error set at 5%, without correction for multiple testing. All analyses were performed on available data, without imputation, using statistical software R version 4.0.0.

RESULTS

Baseline characteristics of patients with history of bariatric surgery

Among 2,398 participants with T2D in the CORONADO study, 20 (0.83%) had a history of MBS, performed a median of 8.5 years (0 to 19 years) before hospital admission. The main clinical characteristics of patients with or without a history of MBS on admission are shown in Supporting Information Table S1. Patients with a history of MBS were mostly female (60%) with a mean age of 59.0 ± 10.8 years. Sixteen patients (80%) underwent a single procedure: five gastric banding (GB), five sleeve gastrectomies (SG), and six Roux-en-Y gastric bypasses (RYGB), whereas two patients underwent, respectively, two or three procedures. The success of MBS defined by EWL ≥50% was observed in eight patients (four RYGB, two GB, and two SG), whereas seven patients had a failure (three GB, two SG, two RYGB). The EWL could not be calculated in five patients because of missing data.

COVID-19–related outcomes in patients with history of bariatric surgery

By D7 following admission, 5 out of 20 patients with MBS (25%) experienced the primary composite outcome—mainly IMV (four patients, 20%)—rather than death (one patient, 5%). By D28, one additional patient died. When compared with all patients with T2D (n = 2,378), the rate of CPO was not statistically different between patients with or without MBS by D7 (25.0% vs. 28.7%; OR: 0.83 [0.30 to 2.29], p = 0.72) or D28 (25.0% vs. 35.4%; OR: 0.61 [0.22 to 1.68], p = 0.34).

Comparison of baseline characteristics and hospital outcomes of patients with history of MBS with patients with T2D matched for preoperative BMI

Because preoperative BMI was lacking in 4 patients, this analysis included 16 out of 20 patients (80%) with a history of MBS. Their clinical characteristics are detailed in Table 1. Patients with obesity who underwent previous MBS had lower BMI on admission than controls, confirming the persistent effectiveness of MBS on body weight loss.

When considering the occurrence of the CPO by D7 or D28, patients with a history of MBS were intubated and/or died less frequently than matched patients with T2D without a history of MBS (Table 2). After further adjustment for diabetes duration, the CPO occurred significantly less frequently in patients with a history of MBS by D7 (p = 0.03) and D28 (p = 0.02).

Note: Categorical data are presented using n (%). P values are calculated using likelihood ratio test, unadjusted and adjusted on diabetes duration logistic regression.

All patients with personal history of MBS were included in the "exposed" group. These patients were matched 3:1 with other CORONADO participants without history of MBS, according to sex, age (±3 years), and BMI (±3 kg/m²) measured either before surgery (exposed/controls, Study A) or at the time of hospital admission (exposed/controls, Study B).

Abbreviations: IMV, invasive mechanical ventilation; NC, algorithm did not converge and OR was not estimated.
Comparison of baseline characteristics and hospital outcomes of patients with history of MBS with patients with type 2 diabetes matched for BMI on admission

The second ancillary analysis included all patients \(n = 20 \) with a history of MBS and 58 patients with T2D matched for age, sex, and on-admission BMI (33.1 ± 5.4 vs. 33.0 ± 5.1 kg/m\(^2\)) (Table 3). The rates of death and IMV were not statistically different between the two groups within D7 and D28 after admission. The results were similar after further adjustment for diabetes duration (Table 4).

DISCUSSION

In this observational study, we found that a history of MBS was associated with a better prognosis in sex-, age-, and BMI-matched patients with T2D hospitalized for COVID-19 during the same time period.

TABLE 3 Comparison of clinical characteristics before admission in patients with history of MBS (cases) and age-, sex-, and on-admission BMI-matched controls.

Clinical features	Available data	Exposed \(n = 20 \)	Control \(n = 58 \)
BMI (kg/m\(^2\)) on admission	78	33.1 ± 5.4	33.0 ± 5.0
BMI (kg/m\(^2\)) (presurgery for exposed, on admission for controls)	75	42.3 ± 5.9	33.0 ± 5.0
Sex (female)	78	12 (60.0%)	34 (58.6%)
Age (y)	78	59.0 ± 10.8	59.8 ± 9.7
Diabetes duration (y)	65	20 (7 to 30)	7 (2-16)
Hemoglobin A\(_{1c}\) (mmol/mol)	55	59.6 (46.5-69.4)	61.8 (52.7-72.1)
Hemoglobin A\(_{1c}\) (%)	55	7.6 (6.4-8.5)	7.8 (7.0-8.8)
Microvascular complications	63	8 (57.1%)	19 (38.8%)
Macrovascular complications	76	4 (20.0%)	15 (26.8%)
Treatments			
Metformin	78	7 (35.0%)	42 (72.4%)
Sulfonylurea/glinides	78	1 (5.0%)	16 (27.6%)
DPP-4 inhibitors	78	3 (15.0%)	9 (15.5%)
GLP1-RA	78	4 (20.0%)	9 (15.5%)
Insulin	78	8 (40.0%)	19 (32.8%)
Diuretics	78	6 (30.0%)	18 (31.0%)
Beta-blockers	78	5 (25.0%)	19 (32.8%)
Calcium channel blocker	78	7 (35.0%)	24 (41.0%)
ARB and/or ACE and/or MRA	78	5 (25.0%)	16 (27.6%)
Statin	78	11 (55.0%)	30 (51.7%)
Antiplatelet agent	78	7 (35.0%)	25 (43.1%)
Anticoagulation therapy	78	1 (5.0%)	2 (3.5%)
Comorbidities			
Hypertension	77	14 (70.0%)	46 (80.7%)
Dyslipidemia	78	11 (55.0%)	37 (63.8%)
Heart failure	74	1 (5.3%)	7 (12.7%)
NAFLD	75	3 (15.8%)	6 (10.7%)
Active cancer	77	2 (10.0%)	4 (7.0%)
COPD	76	1 (5.3%)	3 (5.3%)
Treated OSA	69	4 (21.1%)	7 (14.0%)

Note: Population size was \(n = 78 \). Data shown are number (%) with mean ± SD or median (25th–75th percentiles) if not normally distributed. MRA includes spironolactone and eplerenone. Diuretic stands here for loop diuretics, thiazide diuretics, and potassium-sparing diuretics. Abbreviations: ACE, angiotensin converting enzyme inhibitor; ARB, angiotensin-2 receptor blocker; COPD, chronic obstructive pulmonary disease; DPP4, dipeptidyl peptidase 4; GLP-1RA, glucagon-like peptide 1-receptor agonist; MBS, metabolic and bariatric surgery; MRA, mineralocorticoid receptor antagonist; NAFLD, nonalcoholic fatty liver disease; OSA, obstructive sleep apnea.
also shown that T2D is an independent risk factor for SARS-CoV-2 COVID-19 is now well established (8,9). A large body of evidence has the association of class II/III obesity with the more severe forms of outcomes (8,18).

counterbalance the burden of diabetic complications on COVID-19 on admission. This latter finding suggests that MBS is able to admission BMI-matched controls (exposed/controls, Study B).

TABLE 4 COVID-related clinical outcomes in patients with history of metabolic and bariatric surgery (exposed) and age-, sex-, and on-admission BMI-matched controls (exposed/controls, Study B)

Admission BMI-matched controls	Exposed (n = 20)	Controls (n = 58)	OR (95% CI)	p value	Adjusted OR (95% CI)	Adjusted p value
Within 7 days						
Primary outcome	5 (25.0%)	22 (37.9%)	0.55 (0.16-1.63)	0.29	0.39 (0.08-1.54)	0.12
Death	1 (5.0%)	1 (1.7%)	0.33 (0.01-8.7)	0.45	NC	NC
IMV	4 (20%)	21 (36.2%)	0.44 (0.11-1.39)	0.17	0.43 (0.08-1.68)	0.16
Within 28 days						
Primary outcome	5 (25.0%)	23 (39.7%)	0.51 (0.15-1.51)	0.23	0.34 (0.07-1.29)	0.09
Death	2 (10.0%)	6 (10.3%)	0.96 (0.13-4.63)	0.96	0.22 (0.01-1.98)	0.56
IMV	4 (20.0%)	21 (36.2%)	0.44 (0.11-1.39)	0.17	0.44 (0.09-1.72)	0.16

Note: Categorical data are presented using n (%). P values are calculated using likelihood ratio test, unadjusted and adjusted on diabetes duration logistic regression.

All patients with personal history of MBS were included in the “exposed” group. These patients were matched 3:1 with other CORONADO participants without history of MBS, according to sex, age (±3 years), and BMI (±3 kg/m2) measured either before surgery (exposed/controls, Study A) or at the time of hospital admission (exposed/controls, Study B). Abbreviations: IMV, invasive mechanical ventilation; NC, algorithm did not converge and OR was not estimated.

Even if the underlying mechanisms remain to be fully elucidated, the association of class II/III obesity with the more severe forms of COVID-19 is now well established (8,9). A large body of evidence has also shown that T2D is an independent risk factor for SARS-CoV-2 infection and COVID-19 severity (7,10,11). By surveying a single-center bariatric cohort during the first lockdown, Bel Lasem et al. found that COVID-19–likely events were associated with lower BMI at the time of the lockdown and a higher surgery-induced weight loss in patients with a history of MBS, suggesting that MBS could be detrimental regarding COVID-19 prognosis (12). In contrast, retrospective studies based on the post hoc analysis of electronic records suggested that MBS may be protective against severe forms of SARS-CoV-2 infection. In a nationwide French medico-administrative study, a history of MBS was independently associated with a significant reduction in the risk of mortality in individuals with obesity who developed COVID-19 infection (OR 0.50; 95% CI: 0.31-0.80; p < 0.01) (13). In the United States, Aminian et al. found a reduced need for hospitalization in 33 patients with a history of MBS compared with 330 matched controls with class II/III obesity but no history of MBS (14). In addition, a retrospective observational study suggested that patients submitted to MBS (n = 353) develop less severe COVID-19 infection than patients with obesity waiting for MBS (n = 169) (15).

Although observational, the CORONADO study has several strengths. First, although no previous study has specifically analyzed the impact of MBS on COVID-19 outcome in T2D, it should be noted that the proportion of patients with a history of MBS in our study population (0.8%) was in agreement with the expected proportion of operated patients in people with T2D in France (16,17). Second, we showed that participants with a history of MBS presented with slightly lower hemoglobin A₁c and glycemia on admission. This latter finding suggests that MBS is able to counterbalance the burden of diabetic complications on COVID-19 outcomes (8,18).

Some limitations should be mentioned. The most obvious is the observational design of our study, the low number of patients with MBS, the low number of CPO events (especially regarding deaths), and the absence of randomization between exposed and unexposed patients, which makes the control of confounding factors uncertain. Also, we did not account for multiple testing. Finally, substantial data were missing, such as preoperative BMI, which could not be documented in four patients (20%).

CONCLUSION

In conclusion, our study suggested that a history of MBS in patients with obesity and T2D and hospitalized for COVID-19 might be associated with a better prognosis than in those without MBS. Prospective studies are needed to confirm these results in larger populations in order to further promote efficient weight loss interventions as therapeutic strategy to improve COVID-19 prognosis in patients with severe obesity.

ACKNOWLEDGMENTS

We wish to thank the sponsor (DRCI CHU Nantes) Clinical Project Manager (Maëva Saignes) and assistant (Jeanne Saumier), Clinical Research Associates (Selma El Andaloussi, Joëlle Martin-Gauthier, Emily Rebouilleau), and data manager (Tanguy Roman). We thank the Communication Manager of L'institut Du Thorax (Vimla Mayoura). We acknowledge all medical staff involved in the diagnosis and treatment of patients with COVID-19 in participating centers. We thank all GPs, specialists, pharmacists, and biological laboratories in charge of hospitalized patients for providing additional medical information to our investigators. We thank the Société Francophone du Diabète and Société Française d'Endocrinologie for disseminating study design and organization and the Fédération Française des Diabétiques for participating in the study organization.
CONFLICT OF INTEREST

EB-C reports grants, nonfinancial support, or personal fees from Fujirebio, NovaBiomedica, and Siemens Healthineers. LB reports grants, nonfinancial support, or personal fees from AstraZeneca, Becton Dickinson, BMS, Boehringer Ingelheim, Eli Lilly, Janssen, MSD, Novartis, Novo Nordisk, Pierre Fabre Santé, Roche, and Sanofi. SB reports grants, nonfinancial support, or personal fees from Abbott, Boehringer Ingelheim, Eli Lilly, Medtronic, Medtrum, Novartis, and Novo Nordisk. CC reports grants, nonfinancial support, or personal fees from Eli Lilly, Novo Nordisk, and Sanofi. MP reports grants, nonfinancial support, or personal fees from Air Liquid, Allergan, Amgen, Eli Lilly, Fortil, Lifescan, NHC, Novo Nordisk, and Sanofi. MW reports personal fees from Novo Nordisk. SH reports grants, nonfinancial support, or personal fees from Air Liquid, Allergan, AstraZeneca, Bayer, Boehringer Ingelheim, Dinno Santé, Eli Lilly, Elivie, Fortil, Lifescan, LVL, Merck Sharpe Dome, NHC, Novartis, Pierre Fabre Santé, Sanofi, Servier, and Valbiots. PG reports grants or personal fees from Abbott, Air Liquid, Allergan, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Lifescan, Merck Sharp and Dohme, Mundipharma, Novo Nordisk, Sanofi, and Servier. BC reports grants, nonfinancial support, or personal fees from Abbott, Amgen, Akcea AstraZeneca, Pierre Fabre, Genfit, Gilead, Eli Lilly, Merck Sharpe Dome, Novo Nordisk, Regeneron, and Sanofi. The other authors declared no conflict of interest.

AUTHOR CONTRIBUTIONS

CB, BC, and FP had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: BC, FP, CB. Acquisition, analysis, or interpretation of data: CB, BC, PG, BGa, SH, FP, MP, SS, TP, MW. Critical revision of the manuscript for important intellectual content: all coauthors. Statistical analysis: TP, MW. Patient recruitment: LB, SB, OB, CC, CC-B, BGa, NG, CG-L, LM, GP, RR, DS-B, CT, BT, BV.

ORCID

Claire Blanchard https://orcid.org/0000-0001-6801-7018
Cyrielle Caussy https://orcid.org/0000-0001-8089-2907

REFERENCES

1. Lim S, Bae JH, Kwon HK, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17:11-30.
2. Seidu S, Gillies C, Zaccardi F, et al. The impact of obesity on severe disease and mortality in people with SARS-CoV-2: a systematic review and meta-analysis. Endocrinol Metab. 2021;4:e00176. doi:10.1002/edm.2.176
3. Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020;28:1195-1199.
4. Courcoulas AP, Yanovski SZ, Bonds D, et al. Long-term outcomes of bariatric surgery: a National Institutes of Health symposium. JAMA Surg. 2014;149:1323-1329.
5. Arterburn DE, Telem DA, Kushner RF, Courcoulas AP. Benefits and risk of bariatric surgery in adults: a review. JAMA. 2020;324:879-887.
6. Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: an overview. Nutrition. 2021;81:111016. doi:10.1016/j.nut.2020.111016
7. Cariou B, Haiedjaj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63:1500-1515.
8. Smati S, Tramunt B, Wargny M, et al. Relationship between obesity and severe COVID-19 outcomes in patients with type 2 diabetes: Results from the CORONADO study. Diabetes Obes Metab. 2021;23:391-403.
9. Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020;8:562-564.
10. Roncon L, Zuin M, Rigatelli G, Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J Clin Virol. 2020;127:104354. doi:10.1016/j.jcv.2020.104354
11. Carlsson LMS, Sjöholm K, Jacobson P, et al. Life expectancy after bariatric surgery in the Swedish Obese Subjects Study. N Engl J Med. 2020;15:1535-1543.
12. Bel Lassen P, Poitou C, Genser L, et al. COVID-19 and its severity in bariatric-surgery-operated patients. Obesity (Silver Spring). 2021;29:24-28.
13. Iannelli A, Bouam S, Schneck AS, et al. The impact of previous history of bariatric surgery on outcome of COVID-19. A nationwide medico-administrative French study. Obes Surg. 2021;31:1455-1463.
14. Aminian A, Fathizadeh A, Tu C, et al. Association of prior metabolic and bariatric surgery with severity of coronavirus disease 2019 (COVID-19) in patients with obesity. Surg Obes Relat Dis. 2021;17:208-214.
15. Uccelli M, Cesana GC, De Carlì SM, et al. COVID-19 and obesity: Is bariatric surgery protective? Retrospective analysis on 2145 patients undergone bariatric-metabolic surgery from high volume center in Italy (Lombardy). Obes Surg. 2021;31:942-948.
16. Caiazzo R, Baud G, Clément G, et al. Impact of centralized management of bariatric surgery complications on 90-day mortality. Ann Surg. 2018;268:831-837.
17. Thereaux J, Lesuffleur T, Czernichow S, et al. Association between bariatric surgery and rates of continuation, discontinuation, or initiation of antidiabetes treatment 6 years later. JAMA Surg. 2018;1:526-533.
18. Wargny M, Potier L, Gourdy P, et al. Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: updated results from the nationwide CORONADO study. Diabetologia. 2021;64:778-794.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Blanchard C, Perennec T, Smati S, et al; for the CORONADO investigators. History of bariatric surgery and COVID-19 outcomes in patients with type 2 diabetes: Results from the CORONADO study. Obesity (Silver Spring). 2022;30:599-605. doi:10.1002/oby.23314