ARTIGO ORIGINAL

Audiological profile of patients treated for childhood cancer☆,☆☆

Patricia Helena Pecora Libermana,*, Maria Valéria Schmidt Goffi-Gomeza, Christiane Schultza, Paulo Eduardo Novaesb, Luiz Fernando Lopesc

aNúcleo de Audiologia do A.C. Camargo Cancer Center, São Paulo, SP, Brasil
bHospital Vitoria, Santos, SP, Brasil
cHospital de Câncer de Barretos, Departamento de Pediatria, Barretos, SP, Brasil

Recebido em 15 de junho de 2015; aceito em 9 de novembro de 2015

KEYWORDS
Radiotherapy; Ototoxicity; Chemotherapy; Cisplatin; Hearing loss; Hearing

Abstract
Objective: To characterize the hearing loss after cancer treatment, according to the type of treatment, with identification of predictive factors.
Methods: Two hundred patients who had cancer in childhood were prospectively evaluated. The mean age at diagnosis was 6 years, and at the audiometric assessment, 21 years. The treatment of the participants included chemotherapy without using platinum derivatives or head and neck radiotherapy in 51 patients; chemotherapy using cisplatin without radiotherapy in 64 patients; head and neck radiotherapy without cisplatin in 75 patients; and a combined treatment of head and neck radiotherapy and chemotherapy with cisplatin in ten patients. Patients underwent audiological assessment, including pure tone audiometry, speech audiometry, and immittance.
Results: The treatment involving chemotherapy with cisplatin caused 41.9% and 47.3% hearing loss in the right and left ear, respectively, with a 11.7-fold higher risk of hearing loss in the right ear and 17.6-fold higher in the left ear versus patients not treated with cisplatin (p < 0.001 and p < 0.001, respectively). Children whose cancer diagnosis occurred after the age of 6 have shown an increased risk of hearing loss vs. children whose diagnosis occurred under 6 years of age (p = 0.02).

© 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Publicado por Elsevier Editora Ltda. Este é um artigo Open Access sob a licença CC BY (https://creativecommons.org/licenses/by/4.0/deed.pt).
Perfil audiológico de pacientes tratados de câncer na infância

Resumo

Objetivo: Caracterizar as alterações auditivas após o tratamento do câncer, segundo o tipo de tratamento identificando os fatores preditivos.

Método: Foram avaliados prospectivamente duzentos pacientes que tiveram câncer na infância. A idade média ao diagnóstico foi de 6 anos e à avaliação audiométrica de 21 anos de idade. O tratamento incluiu quimioterapia sem uso de derivados de platina ou radioterapia em cabeça e pescoço em 51 pacientes; quimioterapia com uso de cisplatina sem radioterapia em 64 pacientes; radioterapia em cabeça e pescoço sem cisplatina em 75 pacientes; e 10 pacientes receberam o tratamento combinado de radioterapia em cabeça e pescoço e quimioterapia com cisplatina. Os pacientes foram submetidos à avaliação audiológica incluindo audiometria tonal, audiometria vocal e imitanciometria.

Resultados: O tratamento envolvendo quimioterapia com cisplatina levou a 41,9% e 47,3% de perda auditiva na orelha direita e esquerda, respectivamente, apresentando risco 11,7 vezes maior de desenvolver perda auditiva na orelha direita e 17,6 vezes na orelha esquerda do que aqueles que não receberam cisplatina (p < 0,001 e p < 0,001; respectivamente). Crianças cujo diagnóstico do câncer ocorreu após os 6 anos de idade mostraram maior risco de apresentar perda auditiva do que crianças menores do que 6 anos de idade (p = 0,02).

Conclusão: A característica audiológica encontrada após tratamento oncológico foi perda auditiva sensorineural bilateral simétrica. A quimioterapia com cisplatina mostrou ser fator de risco, enquanto a radioterapia em cabeça e pescoço não foi determinante para aquisição da perda auditiva.

© 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Publicado por Elsevier Editora Ltda. Este é um artigo Open Access sob a licença CC BY (https://creativecommons.org/licenses/by/4.0/).

Introdução

Nas duas últimas décadas, a mortalidade do câncer da infância tem diminuído significativamente, porém, ainda representam a segunda causa de morte no Brasil. Atualmente, com os avanços no diagnóstico, melhora dos tratamentos e suporte clínico apropriado é possível um aumento do custo da cura das neoplasias malignas na infância. Com o crescimento da taxa de sobreviventes, esses indivíduos são acompanhados por vários anos. Sendo assim, é possível observar o impacto dos efeitos tardios relacionados ao tratamento, na qualidade de vida destes adultos jovens.

As diferentes modalidades de tratamento (cirurgia, radioterapia e quimioterapia) e a combinação entre elas contribuem para melhorar os resultados, tanto no controle da doença como na melhora das taxas de sobrevida.

Dentre as drogas ototóxicas, a cisplatina é um antineoplásico com atividade antitumoral comprovada, mas que pode apresentar como efeito colateral a ototoxicidade, sendo descrita como a dosagem de risco 400 mg/m². A radioterapia em cabeça e pescoço concomitante ao uso de CDDP aumenta a probabilidade de perda auditiva severa. Contudo, quando utilizada isolada e em doses inferiores de 50 a 60 Gy, os pacientes não apresentam perda auditiva clinicamente significante. A ototoxicidade é o efeito conhecido pela lesão do órgão periférico da audição, sendo caracterizada quando da ocorrência de perda auditiva neurosensorial descendente bilateral e irreversível. A incidência de perda auditiva é bastante variada, devido ao modo da administração da droga, localização do tumor, função renal, idade do paciente, medicamentos associados, irradiiação prévia, preexistência de perda auditiva, dose cumulativa, dose total do tratamento ou susceptibilidade individual.

O presente trabalho foi realizado com objetivo de caracterizar o perfil audiológico dos pacientes que tiveram câncer na infância, estando fora de tratamento oncológico há pelo menos oito anos, relacionar as alterações auditivas encontradas segundo o tipo de tratamento e idade, e identificar fatores preditivos de perda auditiva.

Método

No período de 2000 a 2004, foram avaliados prospectivamente pacientes que tiveram câncer na infância, tratados no...
periodo de 1961-1996, e que encontravam-se fora de trata-
mento oncologico, no mínimo, há oito anos, em acompanha-
mento no grupo de estudos pediátricos sobre os efeitos
tardios do tratamento oncologico. Foram excluídos pacientes
que apresentavam passado otológico ou que tinham história
de cirurgia que envolvesse o sistema auditivo. O estudo foi
aprovado pela comissão de ética em pesquisa da instituição
sob protocolo 549/03. Os pacientes elegíveis, ou seus res-
sponsáveis legais, foram consultados sobre a possibilidade de
participar, e foram convidados a assinar o termo de consen-
timento livre e esclarecido.

Os pacientes foram submetidos a anamnese no ambulatório
de Pediatria com o objetivo de investigar a presença de quei-
xa auditiva e encaminhados para avaliação auditiva no serviço
de Audiologia, independentemente da existência ou não da
queixa. A metatocopia foi realizada antes do exame e, caso o
paciente apresentasse cerume ou qualquer suspeita e/ou
obsturação que impedisse a realização do teste, era encami-
nhado para o otorrinolaringologista antes da avaliação.

Para avaliação da audição foram usados testes de quanti-
ficação da audição (audiometria tonal limiar e audiometria
vocal) e testes de avaliação do sistema timpano-ossicular
(imitanciometria). Para tanto foram usados audiômetro Mad-
sen Otiber 922 e imitanciómetro Madsen Zodiac 901.

A dose de CDDP recebida pelos pacientes foi calculada e
ajustada para superfície corpórea de 1 m², pelo oncologista
pediátrico. As fichas dos pacientes que realizaram radioter-
pia em região de cabeça e pescoço foram analisadas segundo
o lado em que foi realizada a radioterapia e inclusão do sis-
tema auditivo no campo de radiação. A dose total e a dose
estimada de radiação que atingia o sistema auditivo foram
calculadas por orelha, por um radioterapeuta e com base na
ficha de planejamento. A variável radioterapia que atingiu
o sistema auditivo foi categorizada em: sem Rxt, Rxt ≤ 4000 cGy
e Rxt > 4000 cGy.15

Os pacientes foram estudados de acordo com o tipo de tra-
tamento realizado, baseado no uso de quimioterapia com cis-
platina (CDDP) ou radioterapia na região de cabeça e pescoço.

O critério de perda auditiva utilizado foi baseado no Bu-
reau International d’Audio Phonologie – BIAP,16 que conside-
ra perda auditiva os limiares tonais maiores que 20 dB nas
frequências de 0,5 a 4 kHz.

Análise estatística

Para identificação dos fatores preditivos de perda auditiva
foi criada uma variável dicotômica (sim/não), sendo consi-
derada perda auditiva somente alterações nas frequências
de 0,25 a 4 kHz. A perda auditiva em 6 e 8 kHz não foi inclui-
da na análise estatística, devido ao pequeno prejuízo que
essas perdas causam na vida diária destes indivíduos.16,17

A variável idade ao diagnóstico foi categorizada em ≤ 6 anos
e > 6 anos, baseada na mediana dos valores encontrados.

Foram calculadas as medidas de tendência central e disper-
são para as variáveis quantitativas, assim como frequências
absolutas e relativas para as variáveis categóricas. Para veri-
ficar a associação entre as variáveis independentes e a perda
auditiva, foi empregado o teste de associação do Qui-quadra-
do ou teste exato de Fisher (quando pelo menos uma das
frequências esperadas foi menor do que 5). Para identificar os
fatores de risco independentes para a ocorrência de perda
auditiva, foi utilizada a regressão logística, com cálculo das
odds ratios brutas e ajustadas e seus respectivos intervalos de
confiança de 95%. Para todos os testes estatísticos, foi estab-
elecido um erro α = 5%, isto é, os resultados foram conside-
rados estatisticamente significativos quando p < 0,05.

Resultados

A amostra selecionada contou com 200 pacientes tratados
por câncer na infância, que se encontravam fora de trata-
tamento na época do estudo. A tabela 1 mostra a distribuição
segundo a neoplasia primária e o tipo de tratamento empre-
gado. Nesta casuística, 51 não realizaram radioterapia em
região de cabeça e pescoço e nem usaram CDDP; 64 recebe-
aram quimioterapia com CDDP e não realizaram radioterapia
em região de cabeça e pescoço; 75 foram submetidos a tra-
tamento radioterápico em região de cabeça e pescoço sem
quimioterapia com CDDP; e 10 pacientes submetidos à radio-
terapia em região de cabeça e pescoço e quimioterapia com
CDDP. As crianças tratadas por radioterapia (Rxt) sem cisplá-
tina (CDDP) tinham diagnóstico, em sua maioria, de leucemia
ou de retinoblastoma, e foram tratadas com radiação de
megavoltagem. Nos pacientes que receberam CDDP+Rxt, a
dosagem total de radioterapia foi maior (4214,0 ± 678,9 cGy)
do que nos pacientes que receberam somente Rxt (2996,8 ±
1427,8 cGy) (tabela 2).

A tabela 1 revela que 104 (52%) pacientes da amostra eram
dos do sexo masculino e 96 (48%) do sexo feminino.

Caracterização da perda auditiva

Os pacientes que receberam CDDP e CDDP+Rxt apresentaram
perda auditiva neurosensorial bilateral simétrica nas fre-
quências de 4, 6 e 8 kHz, e não foi observada perda auditiva
nos pacientes oncológicos que não receberam tratamento de
risco para a audição ou Rxt em cabeça e pescoço como tra-
tamento isolado (fig. 1).

Identificação dos fatores preditivos
de perda auditiva

Observamos diferença estatisticamente significante ao com-
parar os três grupos sem Rxt, e com Rxt até 4,000 ou acima
de 4.000 cGy, tanto para o lado direito (p = 0,025), quanto
para o lado esquerdo (p = 0,020). Entretanto, não podemos
afirmar que o fator Rxt tenha influenciado na perda auditiva,
porque ao comparar a porcentagem de perda no grupo que
nen recebeu Rxt e o grupo que recebeu mais que 4000 cGy,
estes valores são semelhantes, levando a crer que a signifi-
cância estatística se deve à baixa porcentagem de perda no
grupo que recebeu menos de 4.000 cGy, diferindo assim dos
dois outros grupos, conforme observado na tabela 3.

Análise múltipla dos fatores preditivos
de perda auditiva

Na análise múltipla, considerando os pacientes que não usa-
ram CDDP como controles, o uso de CDDP e a idade ao diag-
nóstico foram fatores preditivos de perda auditiva.
Tabela 1 Distribuição dos pacientes de acordo com o tipo de neoplasia primária ao diagnóstico e tipo de tratamento (GEPETTO 2000-2004)

Neoplasia maligna	Sem Rxt sem CDDP	CDDP	Rxt	Rxt+CDDP	Total
	n (%)	n (%)	n (%)	n (%)	n (%)
Tumores ósseos	8 (15,7)	39 (60,9)	1 (1,3)	0 (0,0)	48 (24,0)
Leucemias	1 (2,0)	0 (0,0)	43 (57,3)	0 (0,0)	44 (22,0)
Linfomas (LNH,LH)	14 (27,5)	0 (0,0)	10 (13,3)	0 (0,0)	24 (12,0)
Retinoblastoma	8 (15,7)	1 (1,6)	10 (13,3)	5 (50,0)	24 (12,0)
Tumor de células germinativas	2 (3,9)	12 (18,7)	0 (0,0)	0 (0,0)	14 (7,0)
Tumores renais	12 (23,5)	1 (1,6)	0 (0,0)	0 (0,0)	13 (6,5)
Sarcomas de partes moles	3 (5,8)	3 (4,6)	3 (4,0)	2 (20,0)	11 (5,5)
Tumor do SNC	0 (0,0)	0 (0,0)	4 (5,3)	2 (20,0)	6 (3,0)
Tumor SNS (neuroblastoma)	1 (2,0)	4 (6,3)	0 (0,0)	1 (10,0)	6 (3,0)
Não especificados	0 (0,0)	1 (1,6)	4 (5,3)	0 (0,0)	5 (2,5)
Carcinomas	2 (3,9)	1 (1,6)	0 (0,0)	0 (0,0)	3 (1,5)
Tumores hepáticos	0 (0,0)	2 (3,1)	0 (0,0)	0 (0,0)	2 (1,0)
TOTAL	51 (100)	64 (100)	75 (100)	10 (100)	200 (100)

SNC, sistema nervoso central; SNS, sistema nervoso simpático; CDDP, cisplatina; Rxt, radioterapia; LNH, linfoma não Hodgkin; LH, linfoma de Hodgkin.

Tabela 2 Médias e desvios padrão da dosagem de radioterapia (Rxt) e cisplatina (CDDP) utilizadas segundo o tipo de tratamento para as orelhas direita (OD) e esquerda (OE) (GEPETTO 2000-2004)

Tipo de tratamento	n	Dose total Rxt (cGy)	Dose Rxt OD (cGy)	Dose Rxt OE (cGy)	Dose CDDP (mg/m²)
Sem Rxt e sem CDDP	51	-	-	-	-
CDDP	64	-	-	-	647,4 ± 326,5
Rxt	75	2996,8 ± 1427,8	1894,8 ± 1544,3	1821,5 ± 1540,8	-
Rxt+CDDP	10	4214,0 ± 678,9	2292,0 ± 1744,2	1524,0 ± 1692,7	668,1 ± 260,7

Tabela 3 Distribuição de pacientes que atingiram o critério de perda auditiva em relação aos fatores estudados, sexo, idade, radioterapia e quimioterapia com uso de CDDP (GEPETTO 2000-2004)

OD	Total	p*	OE	Total	p*				
	Sem perda	n (%)	Com perda	n (%)		Sem perda	n (%)	Com perda	n (%)
Sexo									
Masc	86 (82,7)	18 (17,3)	104	88 (84,6)	16 (15,4)	104	71 (74,0)	25 (26,0)	96
Fem	76 (79,2)	20 (20,8)	96	98 (88,3)	13 (11,7)	105	61 (68,5)	28 (31,5)	95
Idade									
≤ 6 anos	100 (90,1)	11 (9,9)	111	98 (88,3)	13 (11,7)	105	61 (68,5)	28 (31,5)	95
> 6 anos	62 (69,7)	27 (30,3)	89	61 (68,5)	28 (31,5)	95			
RxT									
sem RxT	103 (76,9)	31 (23,1)	134	103 (74,6)	35 (25,4)	138	72 (78,0)	28 (22,0)	100
≤ 4000	52 (92,9)	4 (7,1)	56	50 (92,6)	4 (7,4)	54	10 (75,0)	4 (25,0)	14
> 4000	7 (70,0)	3 (30,0)	10	6 (75,0)	4 (25,0)	8			
QT									
Sem CDDP	119 (94,4)	7 (5,6)	126	120 (95,2)	6 (4,8)	126	59 (74,9)	21 (25,1)	80
Com CDDP	43 (58,1)	31 (41,9)	74	39 (52,7)	35 (47,3)	74	15 (75,0)	6 (25,0)	21
Total	162 (81,0)	38 (19,0)	200	159 (79,5)	41 (20,5)	200			

Os valores em negrito referem-se ao nível de significância estatística (p < 0,05).

p* Estatística segundo o teste do Qui-quadrado.
As crianças cujo tratamento incluiu o uso de CDDP apresentaram 11,7 vezes maior risco para perda auditiva na orelha direita e 17,6 na orelha esquerda (p < 0,001 para ambas as orelhas) do que as crianças que não usaram CDDP. A idade ao diagnóstico > 6 anos apresentou 2,7 vezes maior risco para a perda auditiva na orelha direita (p = 0,02), quando comparada com crianças com idade ≤ 6 anos (tabela 4).

Na análise múltipla, a dose de radioterapia não foi fator de risco para perda auditiva quando utilizados como controle os pacientes que não receberam Rxt.

Discussão

Nosso estudo teve como objetivo relacionar as alterações auditivas encontradas segundo o tipo de tratamento e idade, e identificar fatores preditivos de perda auditiva em pacien-

tes que tiveram câncer na infância e encontravam-se fora de tratamento oncológico. Para definirmos qual o tratamento de risco para a audição, foi necessária a separação entre as orelhas, considerando que a incidência da irradiação variou com o local do tumor.

Encontramos um predominio de exames com limiares dentro dos padrões de normalidade para os pacientes que não realizaram tratamento com CDDP, enquanto que os pacientes que fizeram uso de CDDP ou CDDP+Rxt mostraram um predomínio de perda auditiva neurosensorial simétrica bilateral nas frequências de 4, 6 e 8 kHz. É possível inferirmos que a perda auditiva está relacionada ao tipo do tratamento oncológico, até mesmo em indivíduos avaliados muitos anos após o término do tratamento, uma vez que o grupo cujo tratamento não envolveu CDDP ou Rxt, nas mesmas condições, não apresentou perda auditiva.

Paulino et al. (2000), Johannesen et al. (2002), Low et al. (2006) e Dell’Aringa et al. (2010) relataram que doses entre 4.000 e 6.000 cGy foram dosagens de risco para audição, e sugeriram o acompanhamento audiológico. O tratamento de Rxt em tumores de cabeça e pescoço pode causar alterações de orelha média como otite externa, otite média serosa, necrose do conduto auditivo externo e osteorradionecrose do osso temporal. Em nossa casuística, as leucemias foram predominantes no grupo de pacientes que fizeram Rxt sem CDDP não apresentando perdas auditivas, estando de acordo com os resultados relatados no estudo de Thibadoux et al. (1980). De fato, a dosagem de radioterapia que atingiu a orelha direita (2.292,0 ± 1.744,2 cGy) e a orelha esquerda (1.524,0 ± 1.692,7 cGy) foi de baixo risco nos pacientes que realizaram Rxt. A tabela 3 mostra que 92,9% dos pacientes que receberam doses de radioterapia inferiores a 4.000 cGy não apresentaram perda auditiva, justificando a associação significante. Na análise múltipla dos fatores pre-

Figura 1 Configuração audiométrica média dos limiares auditivos segundo o tipo de tratamento. CDDP, cisplâmina; Rxt, radioterapia; OD, orelha direita; OE, orelha esquerda.

Tabela 4 Análise múltipla dos fatores preditivos de perda auditiva nas orelhas direita (OD) e esquerda (OE)

Orelha	Variáveis	Categorias	OR bruta	OR ajustada	IC 95%	p	
OD	CDDP	não	1,0	1,0	Referência		
		sim	12,2	11,7	4,2; 32,1	< 0,001^a	
		Rxt	Sem Rxt	1,0	1,0	Referência	
			≤ 4000cGy	0,3	0,9	0,2; 3,3	0,894
			> 4000cGy	1,4	4,3	0,8; 24,1	0,196
		Idade (anos)	≤ 6	1,0	1,0	Referência	
			> 6	3,9	2,7	1,1; 6,4	0,028
OE	CDDP	não	1,0	1,0	Referência		
		sim	17,9	17,6	6,0; 51,4	< 0,001^a	
		Rxt	Sem Rxt	1,0	1,0	Referência	
			≤ 4000cGy	0,2	0,9	0,2; 3,4	0,912
			4000cGy	0,9	3,9	0,5; 31,2	0,192
		Idade (anos)	≤ 6	1,0	1,0	Referência	
			> 6	3,5	2,1	0,9; 5,0	0,084

OR, odds ratio; CDDP, cisplâmina; Rxt, radioterapia.

^a Teste de Hosmer e Lemeshow (p = 0,856).

^b Teste de Hosmer e Lemeshow (p = 0,459).
ditivos de perda auditiva, a Rxt não foi fator de risco para audição (tabela 4).

Os pacientes tratados com CDDP e CDDP+Rxt receberam dosagens de CDDP elevadas, superiores à considerada de risco para a perda auditiva (≥ 400 mg/m²). Nesta casuística, a dosagem média de CDDP nos pacientes que fizeram quimioterapia foi de 650 mg/m², e nos indivíduos que receberam CDDP+Rxt foi de 670 mg/m². Li et al. (2004) apontaram a relação entre dosagem de CDDP e perda auditiva, sendo que dosagens iguais ou superiores a 400mg/m² apresentaram maior risco para perda auditiva. Os estudos que utilizaram as frequências convencionais (0,25-8 kHz) para avaliação auditiva revelam variação em relação à incidência de perdas auditivas entre 20 e 70%.[18] Esta variação acontece por diversos fatores, entre eles: frequências avaliadas, faixa etária dos indivíduos, dosagem de CDDP, esquema de administração da droga e critério de perda auditiva adotado. Em nosso estudo, encontramos uma prevalência de 41,9% para OD e 47,3% para OE, com base no critério de perda auditiva nas frequências de 0,25 a 4 kHz.

Li et al. (2004)[19] destacaram maior risco para perda auditiva em crianças menores de 5 anos. Brock et al. (1992),[18] Simon (2002)[19] e Gunn et al. (2015)[20] não encontraram uma relação estatisticamente significante entre o uso de CDDP e idade.

Em nossa amostra, encontramos que idade maior que 6 anos ao diagnóstico do câncer apresentou 2,7 vezes maior risco para perda auditiva (p = 0,02), quando comparada com crianças com idade ≤ 6 anos ao diagnóstico somente para orelha direita e com tendência para orelha esquerda (OR = 2,1; p = 0,08). Esse fato pode dever-se ao fato de a nossa casuística de pacientes que apresentaram perda auditiva estar concentrada em diagnósticos de osteosarcoma, mais frequentes na adolescência (tabela 1).

Em nosso estudo, não houve relação estatisticamente significante para sexo; entretanto, Yancey et al. (2012)[21] referiram que o sexo e a dose cumulativa são os marcadores clínicos mais importantes de ototoxicidade. A gravidade da ototoxicidade pode estar inversamente relacionada à idade na época do tratamento, sendo que as crianças mais jovens teriam graus maiores de perda auditiva após o tratamento.[18] Ondrey et al. (2000)[22] relataram que a combinação dos dois tratamentos (Rxt + GT) será o melhor tratamento oncológico no futuro, porém, ambos apresentam efeitos ototôxicos.

No presente estudo, a amostra de pacientes que realizaram tratamento combinado (Rxt + CDDP) foi reduzida (n = 10), porém encontramos o mesmo grau e tipo de perda auditiva verificada nos pacientes que realizaram quimioterapia com CDDP sem Rxt, mostrando que a Rxt, neste estudo, não foi fator de risco para perda auditiva, e sim a CDDP.

Considerando o impacto de perdas auditivas, ainda que subclínicas, no desenvolvimento linguístico, pedagógico e cognitivo das crianças tratadas por câncer na infância,[23] e que ainda não há estudos que comprovem efeitos otoprotetores significantes,[23] a monitorização se impõe como a ferramenta mais importante no acompanhamento desses pacientes.[24]

Conclusão

A característica da perda auditiva identificada nos pacientes oncológicos fora de tratamento foi senssonorioneural, bilateral e simétrica, acometendo eminentemente as frequências de 4, 6 e 8 kHz.

O tratamento quimioterápico com cisplatina mostrou ser fator de risco para aquisição da perda auditiva, enquanto a radioterapia em cabeça e pescoço não foi determinante.

Conflitos de interesse

Os autores declaram não haver conflitos de interesse.

Agradecimento

Os autores agradecem à dra. Karina B. Ribeiro pelo valioso auxílio na análise dos dados.

Referências

1. Ministério da Saúde Instituto Nacional de Câncer. Estimativas da incidência e mortalidade por câncer. Rio de Janeiro: INCA; 2003.
2. Robison LL, Bhatia S. Late-effects among survivors of leukemia and lymphoma during childhood and adolescence. Br J Haematol. 2003;122:345-59.
3. Oeffinger KC, Hudson MM. Long-term complications following childhood and adolescent cancer: foundations for providing risk-based health care for survivors. CA Cancer J Clin. 2004;54:208-36.
4. Rybak LP, Whitchurch C, Somani S. Application of antioxidants and other agents to prevent cisplatin ototoxicity. Laryngoscope. 1999;109:1740-4.
5. Bertolini P, Lassalle M, Mercier G, Raquin MA, Izzzi G, Corradini N, et al. Platinum compound-related ototoxicity in children: longterm follow-up reveals continuous worsening of hearing loss. J Pediatr Hematol Oncol. 2004;26:649-55.
6. Huang E, Teh BS, Strother DR, Davis QG, Chiu JK, Lu HH, et al. Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys. 2002;52:599-605.
7. Schultz C, Goffi-Gomez MV, Liberman PH, Carvalho AL. Report on hearing loss in oncology. Braz J Otorhinolaryngol. 2009;75:634-41.
8. Low WK, Toh ST, Wee J, Fook-Chong SM, Wang DY. Sensorineural hearing loss after radiotherapy and chemoradiotherapy: a single, blinded, randomized study. J Clin Oncol. 2006;24:1904-9.
9. Dell’Arlinga HB, Isaac ML, Arruda GV, Dell’Arlinga AR, Esteves MCBN. Achados audiológicos em pacientes tratados com radioterapia para tumores de cabeça e pescoço. Braz J Otorhinolaryngol (impr). 2010;76:527-32.
10. Hyppolito MA, Oliveira JAA. Ototoxicity, otoprotection and self defense of the cochlear outer hair cells. Medicina (Ribeirão Preto). 2005;8:279-89.
11. Brock PR, Knight KR, Freyer DR, Campbell KC, Stegner PS, Blakley BW, et al. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J Clin Oncol. 2012;30:2408-17.
12. Skinner R. Best practice in assessing ototoxicity in children with cancer. Eur J Cancer. 2004;40:2352-4.
13. Peleva E, Emami N, Alzahrani M, Bezdjian A, Gurborg J, Carret AS, et al. Incidence of platinum-induced ototoxicity in pediatric patients in Quebec. Pediatr Blood Cancer. 2014;61:2012-7.
14. Jereczek-Fossa BA, Zaworski A, Milani F, Orecchia R. Radiotherapy-induced ear toxicity. Cancer Treat Rev. 2003;29:417-30.

15. Bureau International d’Audio Prologic (BIAP). BIAP Recommendation n° 02/1 bis: audiometric classification of hearing impairments; 2007 [acessado em 12 de julho de 2007]. Disponível em: http://www.biap.org/biapanglais/rec021eng.htm

16. Liberman PH, Goffi-Gomez MV, Schultz C, Lopes LF. Quais as frequências audiométricas acometidas são responsáveis pela queixa auditiva nas disacusias por ototoxicidade após o tratamento oncológico. Arquivos Int Otorrinolaringol. 2012;16:26-31.

17. Liberman PH, Schultz C, Goffi-Gomez MV, Lopes LF. Speech recognition and frequency of hearing loss in patients treated for cancer in childhood. Pediatr Blood Cancer. 2013;60:1709-13.

18. Brock PR, Yeomans EC, Bellman SC, Pritchard J. Cisplatin therapy in infants: short and long-term morbidity. Br J Cancer Suppl. 1992;18:536-40.

19. Madasu R, Ruckenstein MJ, Leake F, Steere E, Robbins KT. Ototoxic effects of supradose cisplatin with sodium thiosulfate neutralization in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg. 1997;123:978-81.

20. Berg AL, Spitzer JB, Garvin JH Jr. Ototoxic impact of cisplatin in pediatric oncology patients. Laryngoscope. 1999;109:1806-14.

21. Langer T, Stoehr W, Bielack S, Palussen M, Treuner J, Beck JD, et al. Late effects surveillance system for sarcoma patients. Pediatr Blood Cancer. 2004;42:373-9.

22. Li Y, Womer RB, Silber JH. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur J Cancer. 2004;40:2445-51.

23. Paulino AC, Simon JH, Zhen W, Wen BC. Long-term effects in children treated with radiotherapy for head and neck rhabdomyosarcoma. Int J Radiat Oncol Biol Phys. 2000;48:1489-95.

24. Johannesen TB, Rasmussen K, Winther FO, Halvorsen U, Lote K. Late radiation effects on hearing, vestibular function, and taste in brain tumor patients. Int J Radiat Oncol Biol Phys. 2002;53:86-90.

25. Bhandare N, Antonelli PJ, Morris CG, Malayapa RS, Mendenhall WM. Ototoxicity after radiotherapy for head and neck tumors. Int J Radiat Oncol Biol Phys. 2007;67:469-79.

26. Gyorkey J, Pollock FJ. Radiation necrosis of the ossicles. Arch Otolaryngol. 1960;71:793-6.

27. Thibadoux GM, Pereira WV, Hodges JM, Aur RJ. Effects of cranial radiation on hearing in children with acute lymphocytic leukemia. J Pediatr. 1980;96:403-6.

28. Yancey A, Harris MS, Egbelakin A, Gilbert J, Pisoni DB, Renbarger J. Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatr Blood Cancer. 2012;59:144-8.

29. Simon T, Hero B, Dupuis W, Selle B, Berthold F. The incidence of hearing impairment after successful treatment of neuroblastoma. Klin Padiatr. 2002;214:149-52.

30. Gunn ME, Lähdesmäki T, Malila N, Arola M, Grönroos M, Maatomäki J, et al. Late morbidity in long-term survivors of childhood brain tumors: a nationwide registry-based study in Finland. Neuro Oncol. 2015;17:747-56.

31. Ondrey FG, Greig JR, Herscher L. Radiation dose to otologic structures during head and neck cancer radiation therapy. Laryngoscope. 2000;110:217-21.

32. Knight KR, Kraemer DF, Neuweit EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23:8588-96.

33. van As JW, van den Berg H, van Dalen EC. Medical interventions for the prevention of platinum-induced hearing loss in children with cancer. Cochrane Database Syst Rev. 2014;7:CD009219.

34. Bass JK, Bhagat SP. Challenges in ototoxicity monitoring in the pediatric oncology population. J Am Acad Audiol. 2014;25:760-74.