Maximal entropy measures of diffeomorphisms of circle fiber bundles

Raúl Ures, Marcelo Viana and Jiagang Yang

Abstract

We characterize the maximal entropy measures of partially hyperbolic C^2 diffeomorphisms whose center foliations form circle bundles, by means of suitable finite sets of saddle points, that we call skeletons.

In the special case of 3-dimensional nilmanifolds other than the torus, this entails the following dichotomy: either the diffeomorphism is a rotation extension of an Anosov diffeomorphism — in which case there is a unique maximal measure, with full support and zero center Lyapunov exponents — or there exist exactly two ergodic maximal measures, both hyperbolic and whose center Lyapunov exponents have opposite signs. Moreover, the set of maximal measures varies continuously with the diffeomorphism.

1. Introduction

The metric entropy describes the complexity of a dynamical system relative to an invariant probability measure. For diffeomorphisms of a compact Riemannian manifold, the variational principle (see [19]) states that the supremum of the metric entropy over all invariant probability measures coincides with the topological entropy of the system.

We call maximal (entropy) measure any invariant probability measure whose metric entropy coincides with the topological entropy. Such measures reflect the complexity level of the whole system, and constitute a classical topic in ergodic theory: Are there maximal measures? How many ergodic maximal measures does the system have, and where are they supported? How do they vary with the dynamical system?

It is a classical fact, see, for instance, [6], that every transitive hyperbolic set admits a unique maximal measure. Recently, new approaches were developed for the study of maximal measures of non-uniform hyperbolic maps and partially hyperbolic diffeomorphisms, including C^∞ interval maps [8], $C^{1+\alpha}$ surface diffeomorphisms [9, 27] and derived from Anosov diffeomorphisms [10, 29, 32, 34]. For some recent progress in the more general setting of equilibrium states, see [11] and references therein.

In the present paper, we study C^2 partially hyperbolic diffeomorphisms with 1-dimensional center and whose center foliation forms a circle bundle. It was shown in [24] that if the diffeomorphism is accessible and not rotation type, then it admits finitely many ergodic maximal measures. Those conditions are satisfied on an open and dense subset of partially hyperbolic diffeomorphisms.

Here we use a combinatorial object — a finite set of hyperbolic saddles, that we call skeleton — to describe all the maximal measures. More precisely, by observing those saddles, we can
count the number of ergodic maximal measures, locate their supports, and explain how they vary with respect to the diffeomorphism. Our main detailed results will be stated in Section 2. Right now, let us mention some applications to diffeomorphisms on 3-dimensional nilmanifolds, that is, manifolds M that are circle bundles over the torus \mathbb{T}^2 (the case $M = \mathbb{T}^3$ is excluded).

Theorem A. Let f be a C^2 partially hyperbolic diffeomorphism on a 3-dimensional nilmanifold $M \neq \mathbb{T}^3$. Then:

(a) either f has a unique maximal measure, in which case f is conjugate to a rotation extension of an Anosov diffeomorphism, and the maximal measure is supported on the whole M and has vanishing center exponent;

(b) or f has exactly two ergodic maximal measures μ^+, μ^-, with positive and negative center Lyapunov exponents, respectively.

Diffeomorphisms as in (a) are called rotation type. These are clearly rigid systems: for instance, they cannot admit hyperbolic periodic orbits. Although we will not need it here, let us note that the complement is a C^1 open and C^r ($r \geq 1$) dense subset of the set $\text{PH}(M)$ of all C^2 partially hyperbolic diffeomorphisms on M. Indeed, by [15], the center foliation of any $f \in \text{PH}(M)$ is a circle bundle. Now, it is a well-known fact (due to Peixoto, see [22, p. 154]) that Morse–Smale systems form a C^1 open and C^r dense subset of the space of all circle diffeomorphisms. Those perturbation arguments applied to the leaves of the center foliation prove that existence of some hyperbolic periodic orbit is a dense (and obviously open) property.

We also get the following global result, asserting that the ergodic maximal measures vary continuously with the diffeomorphism. To state this precisely, let $\mathcal{P}(M)$ be the space of probability measures on M endowed with the weak* topology. Let $\text{PH}(M)$ be endowed with the C^1 topology.

Theorem B. Let M be a 3-dimensional nilmanifold different from \mathbb{T}^3. Then there are continuous functions,

$$\Gamma^+ : \text{PH}(M) \to \mathcal{P}(M),$$

such that for each $f \in \text{PH}(M)$, $\Gamma^+(f)$ is the ergodic maximal measure of f with non-negative center exponent, $\Gamma^-(f)$ is the ergodic maximal measure of f with non-positive center exponent, and $\Gamma^+(f) = \Gamma^-(f)$ if and only if either of them has vanishing center exponent.

Theorems A and B will be deduced from much more detailed results that we state in the next section.

2. Statement of results

In this section, we state more detailed versions of our main results, which contain Theorems A and B. In all that follows, M is any compact manifold and f is assumed to belong to the subset $\text{SPH}_1(M)$ of diffeomorphisms given by Definition 2.1.

2.1. Objects

A diffeomorphism $f : M \to M$ is partially hyperbolic, if the tangent bundle splits into three invariant subbundles, $TM = E^s \oplus E^c \oplus E^u$, such that E^s is uniformly contracting, E^u is uniformly expanding, and E^c has intermediate behavior. By this we mean that there exists some Riemannian metric on M such that

$$\|df_x|_{E^s}\| < 1, \|df_x^{-1}|_{E^u}\| < 1, \text{ and } \|df_x(e^s)\| < \|df_x(e^c)\| < \|df_x(e^u)\|$$

for all $e^\sigma \in E^\sigma_x$, $\|e^\sigma\| = 1$, $\sigma \in \{s, c, u\}$, and all $x \in M$.
A partially hyperbolic diffeomorphism f is accessible if any two points x, y can be joined by a curve formed by finitely many arcs which are tangent to either the strong stable subbundle E^s or the strong unstable bundle E^u. A partially hyperbolic diffeomorphism f is dynamically coherent if for $i = cs, cu$, there is an invariant foliation \mathcal{F}^i tangent to the bundle E^i, where $E^{cs} = E^c \oplus E^s$ and $E^{cu} = E^u \oplus E^c$.

Recall that accessibility is a C^1 and open C^r ($r \geq 1$) dense property for the partially hyperbolic diffeomorphisms with 1-dimensional center direction ([7, 12]). Moreover, when f is dynamically coherent, $\mathcal{F}^c = \mathcal{F}^{cs} \cap \mathcal{F}^{cu}$ is an invariant center foliation of f, that is, tangent to the center subbundle E^c.

Definition 2.1. $\text{SPH}_1(M)$ is the set of C^2 partially hyperbolic, accessible, dynamically coherent diffeomorphisms with 1-dimensional center direction for which the center foliation \mathcal{F}^c forms a circle bundle, and the quotient space $M_c = M/\mathcal{F}^c$ is a torus.

In what follows, we always take the diffeomorphism f to be in $\text{SPH}_1(M)$. Let f_c denote the map induced by f on M_c. Then f_c is a topological Anosov homeomorphism (a globally hyperbolic homeomorphism, in the sense of [30, Section 1.3] or [32, Section 2.2]). We will use $\mathcal{F}^i, i \in \{s, c, u\}$ to denote the invariant foliations of f, and $W^i, i \in \{s, u\}$ to denote the stable and unstable foliations of f_c, respectively.

If M is a 3-manifold, then the fact that $f_c : M_c \to M_c$ is an Anosov homeomorphism implies that M_c is a (2-dimensional) torus; see Hiraide [16] or Lewowicz [20]. Combining this observation with the classification results in [14, 15], especially the next proposition, we see that if M is a 3-dimensional nilmanifold other than \mathbb{T}^3, then $\text{SPH}_1(M)$ contains every C^2 partially hyperbolic diffeomorphism of M. Thus the present setting does include the assumptions of Theorems A and B.

Proposition 2.2 [15, Propositions 1.9 and 6.4]. If $f : M \to M$ is a C^2 partially hyperbolic diffeomorphism on a 3-dimensional nilmanifold M other than \mathbb{T}^3, then it admits a unique center foliation, tangent to the center bundle E^c, and which forms a circle bundle. Moreover, f is accessible, and it has a unique compact, invariant, u-saturated (respectively, s-saturated) minimal subset.

Recall that a compact subset of M is said to be u-saturated if it consists of entire leaves of the unstable foliation of f. Moreover, a u-saturated subset is said to be minimal if it coincides with the closure of every unstable leaf contained in it. The definition of a (minimal) s-saturated subset is analogous, considering the stable foliation instead.

Remark 2.3. By another result of Hiraide [17], f_c is conjugate to a linear Anosov torus diffeomorphism, for any $f \in \text{SPH}_1(M)$. In particular, f_c is a transitive homeomorphism, and admits a unique probability measure of maximal entropy ν.

2.2. Main results

Let $f : M \to M$ be a partially hyperbolic diffeomorphism. A finite set $S = \{p_1, \ldots, p_k\}$ is a skeleton of f if:

(a) each p_i ($1 \leq i \leq k$) is a hyperbolic saddle of f with stable index $\dim(E^{cs})$;
(b) $\mathcal{F}^u(x)$ intersects $\bigcup_{1 \leq i \leq k} W^s(\text{Orb}(p_i))$ transversely at some point, for every $x \in M$;
(c) $W^s(p_i) \cap W^s(\text{Orb}(p_j)) = \emptyset$ for $1 \leq i \neq j \leq k$.

A finite set satisfying the conditions (a) and (b) is called a pre-skeleton. A pre-skeleton is minimal if no strict subset is a pre-skeleton. Skeletons not always exist. The following facts about skeletons and pre-skeletons can be found in [13]:

PROPOSITION 2.4. Let $f : M \to M$ be a partially hyperbolic diffeomorphism.

(a) If both S_1 and S_2 are skeletons of f, then $\#S_1 = \#S_2$.
(b) If \{p_1, \ldots, p_k\} is a pre-skeleton of f, then \{$p_1(g), \ldots, p_k(g)$\} is a pre-skeleton of any g sufficiently close to f, where $p_i(g)$ denotes the hyperbolic continuation of p_i.
(c) If \{p_1, \ldots, p_k\} is a skeleton of f then, for any g sufficiently close to f, \{$p_1(g), \ldots, p_k(g)$\} is a skeleton of g if and only if no heteroclinic intersection was created relating $p_i(g)$ and $p_j(g)$, for any $1 \leq i \neq j \leq k$.
(d) Every pre-skeleton contains a minimal pre-skeleton, and a pre-skeleton is minimal if and only if it is a skeleton.

Part (b) ensures that the subset of diffeomorphisms with a pre-skeleton is open.

We will deduce Theorems A and B from the two theorems that follow, by means of Proposition 2.2. Recall that, given a foliation \mathcal{F}, we say that a compact subset of M is \mathcal{F}-saturated if it consists of entire leaves. Following [1, 5], we call an \mathcal{F}-saturated set an \mathcal{F}-minimal component if each leaf contained in it is dense. We use u-saturated and s-saturated as synonyms to \mathcal{F}-saturated and \mathcal{F}^s-saturated, respectively.

THEOREM C. Let $f \in \text{SPH}_1(M)$. If f is rotation type, then it has a unique maximal measure, and this measure has vanishing center exponent. Otherwise, f and f^{-1} have skeletons $S(f) = \{p_1, \ldots, p_k\}$ and $S(f^{-1}) = \{q_1, \ldots, q_l\}$, respectively, and f has exactly $k + l$ ergodic maximal measures.

(a) k ergodic maximal measures μ_i^- with negative center exponents; each support $\text{supp} \mu_i^-$ coincides with $\text{Cl}(\mathcal{F}^u(\text{Orb}(p_i)))$, which has finitely many connected components, each of which is an \mathcal{F}^u-minimal component.
(b) l ergodic maximal measures μ_i^+ with positive center exponent; each support $\text{supp} \mu_i^+$ coincides with $\text{Cl}(\mathcal{F}^s(\text{Orb}(q_i)))$, which has finitely many connected components, each of which is an \mathcal{F}^s-minimal component.

We also analyze how the maximal measures vary with the diffeomorphism. For the second part of the following statement, keep in mind that part (c) of Proposition 2.4 characterizes when the hyperbolic continuation \{$p_1(g), \ldots, p_k(g)$\} of a skeleton of f is a skeleton of a nearby map g.

THEOREM D. Let $f \in \text{SPH}_1(M)$. If f has no hyperbolic periodic points:

(a) there exists a C^1-neighborhood \mathcal{U} of f among C^2 diffeomorphisms such that any $g \in \mathcal{U}$ has at most two ergodic maximal measures;
(b) there are continuous functions $\Gamma^+, \Gamma^- : \mathcal{U} \to \mathcal{P}(M)$ such that, for any $g \in \mathcal{U}$, $\Gamma^+(g)$ is an ergodic maximal measure of g with center exponent greater than or equal to 0, and $\Gamma^-(g)$ is an ergodic maximal measure of g with center exponent smaller than or equal to 0.

If f has hyperbolic periodic points, consider skeletons $S(f) = \{p_1, \ldots, p_k\}$ and $S(f^{-1}) = \{q_1, \ldots, q_l\}$ of f and f^{-1}, respectively. Then:

(c) there is a C^1-neighborhood \mathcal{U} of f among C^2 diffeomorphisms such that the number of ergodic maximal measures of any diffeomorphism $g \in \mathcal{U}$ with negative (respectively, positive) center exponent is smaller than or equal to k (respectively, l);
(d) if the hyperbolic continuation \{${p_1(g), \ldots, p_k(g)}$\} is a skeleton of g (respectively, \{${q_1(g), \ldots, q_l(g)}$\} is a skeleton of g^{-1}), then f and g have the same number of ergodic maximal measures with negative (respectively, positive) center exponent, and
corresponding ergodic maximal measures of the two diffeomorphisms are close to each other in the weak* topology.

It is worthwhile interpreting and detailing the contents of Theorems C and D in more geometric terms, by means of the space $\mathrm{MM}(f)$ of all maximal measures of f.

Since the metric entropy is an upper semi-continuous function of the diffeomorphism and the invariant probability measure (see [21]), $\mathrm{MM}(f)$ is a non-empty compact subset of the space of invariant probability measures, and it varies upper semi-continuously with f. Since the metric entropy function is affine, $\mathrm{MM}(f)$ is a convex set. Its extreme points are precisely the ergodic maximal measures, whose set we denote as $\mathrm{MM}_{\text{erg}}(f)$. Thus, the ergodic components of any maximal measure are ergodic maximal measures. Theorem C gives that $\mathrm{MM}(f)$ is a simplex of finite dimension, for any $f \in \text{SPH}_1(M)$.

In the first case of Theorem D, that is, if f has no hyperbolic periodic points, $\mathrm{MM}(f)$ reduces to a point. Then for every g close to f in the C^1 topology, $\mathrm{MM}(g)$ is either a point or a segment whose endpoints are ergodic maximal measures with positive center exponent and negative center exponent, respectively. Moreover, $\mathrm{MM}(g)$ is close to $\mathrm{MM}(f)$ in the weak* topology.

In the second case of Theorem D, the set $\mathrm{MM}_{\text{erg}}(f)$ of extreme points of $\mathrm{MM}(f)$ splits into two subsets, $\mathrm{MM}_{\text{erg}}^-(f)$ and $\mathrm{MM}_{\text{erg}}^+(f)$, consisting of the ergodic maximal measures with negative center exponent and positive center exponent, respectively. Each $\mathrm{MM}_{\text{erg}}^\sigma(f)$, $\sigma = \{+,-\}$ generates a finite-dimensional sub-simplex $\mathrm{MM}^\sigma(f)$.

We can mark each extreme point μ_i ($i = 1, \ldots, k$) in $\mathrm{MM}_{\text{erg}}^+(f)$ by any periodic point $p_i \in \text{supp } \mu_i$ with stable index equal to the dimension of E^c_s. These periodic points form a skeleton $S = \{p_1, \ldots, p_k\}$ of f, and $C(W^u(\text{Orb}(p_i)))$ coincides with the support of μ_i for every i. Fix S and let $S(g) = \{p_1(g), \ldots, p_k(g)\}$ be its hyperbolic continuation, for any nearby diffeomorphism g. If g is close to f, the space $\mathrm{MM}^-(g)$ is contained in a small neighborhood of $\mathrm{MM}^-(f)$.

There are two situations to be considered. If there are no heteroclinic intersections between the saddle points $p_i(g)$, then $\dim(\mathrm{MM}^-(g)) = \dim(\mathrm{MM}^-(f))$, and the set $\mathrm{MM}_{\text{erg}}^-(g)$ of extreme points is close to $\mathrm{MM}_{\text{erg}}^-(f)$. Otherwise, if heteroclinic intersections are indeed created between distinct saddles $p_i(g)$ and $p_j(g)$, different ergodic maximal measures with negative center exponent ‘merge’ with one another, so that $\dim(\mathrm{MM}^-(g)) < \dim(\mathrm{MM}^-(f))$.

Clearly, entirely similar remarks apply to $\mathrm{MM}^+(f)$ and $\mathrm{MM}_{\text{erg}}^+(f)$.

3. Preliminaries

Let $\pi_c : M \to M_c$ be the canonical quotient map. Since each $\pi_c^{-1}(x_c)$, $x_c \in M_c$ is a circle with uniformly bounded length, and f acts by homeomorphisms on those circles, the projection π_c preserves the topological and metric entropies:

\[
 h_{\text{top}}(f) = h_{\text{top}}(f_c) \quad \text{and} \quad h_{\mu}(f) = h_{(\pi_c)_*\mu}(f_c) \quad \text{for every } f\text{-invariant probability measure } \mu.
\]

In particular, $\mathrm{MM}(f)$ coincides with the set of f-invariant probability measures μ such that $(\pi_c)_*\mu = \nu$, where ν denotes the maximal measure of f_c (Remark 2.3).

The part of Theorem C stating that there are finitely many ergodic maximal measures was proved in [24, Theorem 1]:

Proposition 3.1. Let $f \in \text{SPH}_1(M)$, then:

(a) either f admits a unique maximal measure, with vanishing center exponent, in which case f is rotation type;
we may view diffeomorphisms satisfying the conditions in case (b) form a open dense subset.

Moreover, the disintegration is both s-invariant and u-invariant, meaning that the conditional probabilities are preserved by both the stable holonomies and the unstable holonomies. In particular, the support of the maximal measure coincides with the ambient manifold. The diffeomorphisms satisfying the conditions in case (b) form a C^1 open and C^∞ dense subset.

3.1. Unstable partitions and invariant holonomies

Let $\{\tilde{B}_1, \ldots, \tilde{B}_k\}$ be a Markov partition for $f_c : M_c \to M_c$ such that $\nu(\bigcup_{1 \leq i \leq k} \partial \tilde{B}_i) = 0$. For every $x_c \in \tilde{B}_i \subset M_c$, let $W^u_{loc}(x_c)$ be the connected component of $W^u(x_c) \cap \tilde{B}_i$ that contains x_c, and let $\tilde{\xi}$ be the partition of M_c whose elements are those local unstable sets. This partition $\tilde{\xi}$ is measurable (in the sense of Rokhlin [26], see [31, Chapter 5]) and increasing, meaning that $\tilde{f} \prec \tilde{\xi}$. Let $\{\nu^c_{x_c} : x_c\}$ be a Rokhlin disintegration of ν relative to this partition.

For each x_c and y_c in the same \tilde{B}_i, and any $z \in \tilde{\xi}(x_c)$, let $\tilde{H}^s_{x_c,y_c}(z)$ be the unique point where $W^u_{loc}(z)$ intersects $\tilde{\xi}(y_c)$. The map $\tilde{H}^s_{x_c,y_c} : \tilde{\xi}(x_c) \to \tilde{\xi}(y_c)$ thus defined is called stable holonomy map from x_c to y_c.

Lemma 3.3. ($\tilde{H}^s_{x_c,y_c}$)$_*\nu^u_{x_c} = \nu^u_{y_c}$ for ν-almost any points x_c and y_c in the same Markov set \tilde{B}_i.

This is well known (see [6], for example) and can be proven as follows. Up to conjugacy, we may view f_c as a linear Anosov torus diffeomorphism, and then the stable holonomy maps $\tilde{H}^s_{x_c,y_c}$ are affine. Moreover, ν corresponds to the Lebesgue area, and each $\nu^u_{x_c}$ corresponds to the normalized Lebesgue length along the plaque $\tilde{\xi}(x_c)$. Thus the lemma follows from the fact that affine maps preserve normalized Lebesgue length.

In general, Rokhlin disintegrations are defined up to zero measure sets only. However, Lemma 3.3 ensures that in the present setting there is a canonical choice for which the conditional measure is defined on every plaque $\tilde{\xi}(z_c)$ and depends continuously on z_c on every \tilde{B}_i. Indeed, for each i, choose $x^i \in \tilde{B}_i$ as in the lemma, and then define

$$\tilde{\mu}^u_{z_c} = (\tilde{H}^s_{x^i_c,z_c})_*\nu^u_{x^i_c}$$

for every $z_c \in \tilde{B}_i$.

(the definitions may not coincide on overlapping boundaries of different Markov sets, but that need not concern us too much, since the assumptions ensure that such overlaps have zero measure for ν). By the lemma, $\tilde{\mu}^u_{z_c} = \nu^u_{z_c}$ for ν-almost $z_c \in \tilde{B}_i$, and so $\{\tilde{\mu}^u_{z_c} : z_c\}$ is also a disintegration of ν. Just replace the initial disintegration with this one, and note that it does not depend on the choices of the points x^i.

Then we also have that (keep in mind that $\tilde{\xi}$ is an increasing partition)

$$(f_c)_*\left(\nu^u_{f^{-1}(x_c)} \mid f^{-1}(\tilde{\xi}(x_c))\right) = \nu^u_{f^{-1}(x_c)}(f_c^{-1}(\tilde{\xi}(x_c)))$$

for every point $x_c \in M_c$. It is easy to see that, for a linear Anosov map, the factor $\nu^u_{f^{-1}(x_c)}(f_c^{-1}(\tilde{\xi}(x_c)))$ takes only finitely many values. This fact will be useful later.
For any $z_c \in M_c$ and $\Delta \subset W^u_{\text{loc}}(z_c)$ with positive $\nu_{z_c}^u$-measure,
\[
\lim_{n} \frac{1}{n} \frac{1}{\nu_{z_c}^u(\Delta)} \sum_{i=1}^{n} (f^i_x)_*(\nu_{z_c}^u|\Delta) = \nu.
\]

Proof. Up to conjugacy, we may view f_x as a linear Anosov torus diffeomorphism. Then ν is the Lebesgue area and $\nu_{z_c}^u$ the normalized Lebesgue length on the plaque $\xi(z_c)$. Then the statement reduces to [3, Section 11.12].

Next, denote $B_i = (\pi_c)^{-1}(B_i)$ for each i. For every $x \in B_i \subset M$, let $\mathcal{F}^u_{\text{loc}}(x)$ be the connected component of $\mathcal{F}^u(x) \cap B_i$ that contains x. Denote by ξ the partition of M whose atoms are those local unstable leaves. It is clear that ξ is an increasing partition for f. For every $x \in M$, denote $x_c = \pi_c(x) \in M_c$. Then $\pi_c|_\xi(x)$ is a homeomorphism from $\xi(x)$ onto $\xi(x_c)$. By a slight abuse of language, we denote by ν^u_x the probability measure on $\xi(x)$ such that $(\pi_c)_*(\nu^u_x) = \nu_{z_c}^u$.

For x and y in the same B_i, and any $z \in \xi(x)$ denote by $\mathcal{H}^c_x(z)$ the unique point in the intersection of $\mathcal{F}^a_{\text{loc}}(z)$ with $\xi(y)$. The map $\mathcal{H}^c_x : \xi(x) \to \xi(y)$ defined in this way is called the center-stable holonomy map from x to y. Lemma 3.3 and the remarks about the canonical choice of a disintegration following it immediately yield:

\begin{enumerate}
\item \text{Lemma 3.5.} (a) $(\mathcal{H}^c_x)_*\nu^u_x = \nu^u_y$ for any two points $x, y \in B_i$.
\item \text{Lemma 3.5.} (b) For every $x \in M$,
\[f_*\left((\nu^u_{f^{-1}(x)}|f^{-1}(\xi(x))) = (f^{-1}(\xi(x)))\nu^u_{f^{-1}(x)}\right)\]
\item \text{Lemma 3.5.} (c) The factor $(\nu^u_{f^{-1}(x)}|f^{-1}(\xi(x)))$, $x \in M$ takes only finitely many values.
\end{enumerate}

3.2. Partial entropy, ν-Gibbs u-states, and u-invariant measures

Let μ be any probability measure invariant under $f \in \text{SPH}_1(M)$. We call μ a ν-Gibbs u-state if it admits a disintegration $\{\mu^u_{x} : x\}$ with respect to the partition ξ such that $\mu^u_{x} = \nu^u_x$ for μ-almost every point $x \in M$. This is a variation of a general notion due to [23]; the main difference with respect to the standard definition (see [3, Chapter 11], for instance) is that here we replace Lebesgue with ν as the reference measure. Let $\text{Gibb}_u^\nu(f)$ denote the space of ν-Gibbs u-states of f.

\text{Lemma 3.6.} $\text{Gibb}_u^\nu(f) \subset \text{MM}(f)$ for every $f \in \text{SPH}_1(M)$.

Proof. Let $\mu \in \text{Gibb}_u^\nu(f)$. Then, by definition, the disintegration of $(\pi_c)_*(\mu)$ along the partition ξ coincides with $\{\nu^u_{x_c} : x \in M\}$. Thus $(\pi_c)_*(\mu) = \nu$, and so $\mu \in \text{MM}(f)$. □

We denote by $\{\mu^c_x : x\}$ the disintegration of an f-invariant probability measure along the center foliation of f. We say that $\mu \in \text{MM}(f)$ is u-invariant if there is a full ν-measure set $\Delta \subset M_c$ such that for any $x, y \in M$ with $x_c, y_c \in \Delta$ belonging to the same unstable leaf, the unstable holonomy map takes μ^c_x to μ^c_y. According to [28, Proposition 5.4], this turns out to be the same as the previous notion:

Proposition 3.7. Let $f \in \text{SPH}_1(M)$. Then $\mu \in \text{MM}(f)$ is u-invariant if and only if it is a ν-Gibbs u-state.

The following fact was proven in [2, Corollary 4.3], see also [28, Corollary 2.3]:
Proposition 3.8. Let \(f \in \text{SPH}_1(M) \). If \(\mu \in \text{MM}_{\text{erg}}(f) \) has non-positive center Lyapunov exponent, then it is \(u \)-invariant.

There is a notion dual to \(u \)-invariance, called \(s \)-invariance, where one requires the disintegration of \(\mu \) along the center foliation to be invariant under stable holonomies instead, at almost every point. The following fact was proven in [24, Section 5], based on the invariance principle of [2, 4]; similar ideas appear in [32, Section 5.2].

Proposition 3.9. Let \(f \in \text{SPH}_1(M) \). If there exists some \(\mu \in \text{MM}(f) \) which is \(u \)-invariant, \(s \)-invariant, and ergodic, then \(f \) is rotation type and \(\text{MM}(f) = \{ \mu \} \).

As before, let \(\mu \) be an invariant probability measure for \(f \in \text{SPH}_1(M) \). The partial entropy of \(\mu \) along the unstable foliation \(F_u \) is defined by
\[
h_\mu(f, F_u) = H_\mu(f^{-1} \xi | \xi).
\]

Theorem A in [28] provides the following very useful criterion for an invariant measure to be a \(\nu \)-Gibbs \(u \)-state:

Proposition 3.10. \(h_\mu(f, F_u) \leq h_\nu(f, W_u) \) for any \(f \)-invariant probability measure \(\mu \). Moreover, the equality holds if and only if \(\mu \) is a \(\nu \)-Gibbs \(u \)-state.

The following upper semi-continuity property of partial entropy, proven in [33, Theorem D], is important to understand the dependence of \(\nu \)-Gibbs \(u \)-states with respect to the diffeomorphism:

Proposition 3.11. Let \(f_n \) be a sequence of diffeomorphisms in \(\text{SPH}_1(M) \) converging to some \(f \) in the \(C^1 \) topology, and \(\mu_n \) be \(f_n \)-invariant probability measures converging, in the weak* topology, to some \(f \)-invariant probability measure \(\mu \). Then
\[
\limsup_n h_{\mu_n}(f_n, F_{u_n}) \leq h_\mu(f, F_u),
\]
where \(F_u \) is the unstable foliation of \(f_n \).

3.3. Space of \(\nu \)-Gibbs \(u \)-states

The next two propositions contain useful properties of the space \(\text{Gibb}_u^\nu(f) \) of \(\nu \)-Gibbs \(u \)-states of \(f \).

Proposition 3.12. (a) \(\text{Gibb}_u^\nu(f) \) is a non-empty compact subset of \(\text{MM}(f) \).

(b) If \(\mu \in \text{Gibb}_u^\nu(f) \), then restricted to some full \(\mu \)-measure subset, every ergodic component of \(\mu \) is also a \(\nu \)-Gibbs \(u \)-state.

(c) \(\text{Gibb}_u^\nu(f) \) varies upper semi-continuously with respect to the diffeomorphism \(f \) in the \(C^1 \) topology.

(d) The support of every \(\mu \in \text{Gibb}_u^\nu(f) \) is \(u \)-saturated.

Proof. First, we prove claim (a). By Proposition 3.1, there exists some ergodic maximal measure \(\mu \) with non-positive center exponent. By Proposition 3.8, such a \(\mu \) is a \(u \)-invariant probability measure. So, by Proposition 3.7, it is a \(\nu \)-Gibbs \(u \)-state. This proves that \(\text{Gibb}_u^\nu(f) \) is non-empty. The fact that \(\text{Gibb}_u^\nu(f) \) is compact was proven in [28, Proposition 6.2]. We have already seen in Lemma 3.6 that \(\text{Gibb}_u^\nu(f) \subset \text{MM}(f) \).

Claim (b) is contained in [28, Proposition 6.2].
Next we prove claim (c). Let \(f_n \in \text{SPH}_1(M) \) be a sequence converging to some \(f \in \text{SPH}_1(M) \) in the \(C^1 \) topology, and \(\mu_n \in \text{Gibb}_n^c(f_n) \) converge to some \((f\)-invariant\) probability measure \(\mu \) in the weak* topology. We need to show that \(\mu \in \text{Gibb}_1^c(f) \).

Let \(F_n \) denote the center foliation of \(f_n \), and \(f_{n,c} \) be the map induced by \(f \) on the quotient space \(M/F_n \). Observe that \(f \) and \(f_n \) are leaf conjugate, for every large \(n \), since each is leaf conjugate to its algebraic part (see \([14, \text{Theorem 1.1}] \) and \([15, \text{Theorem 1.6}])\), and the algebraic parts coincide. Thus, \(f_c \) and \(f_{n,c} \) are topologically conjugate (this also follows from Remark 2.3), and so \(h_{\text{top}}(f_c) = h_{\text{top}}(f_{n,c}) \) for every large \(n \). Using (1) and Lemma 3.6, it follows that

\[
h_{\mu_n}(f_n) = h_{\text{top}}(f_n) = h_{\text{top}}(f_{n,c}) = h_{\text{top}}(f_c) = h_{\text{top}}(f)
\]

for every large \(n \). Since partially hyperbolic diffeomorphisms with 1-dimensional center are away from homoclinic tangencies, \([21, \text{Corollary C}] \) gives that their metric entropies vary upper semi-continuously in the \(C^1 \) topology. Thus,

\[
h_{\mu}(f) \geq \limsup_{n} h_{\mu_n}(f_n) = h_{\text{top}}(f),
\]

which means that \(\mu \in \text{MM}(f) \).

Let \(\nu_n \) denote the (unique) maximal measure for \(f_{n,c} \) (recall Remark 3.2). As observed previously, \(f_c \) and \(f_{n,c} \) are conjugate by some homeomorphism \(g_n \). Thus

\[
h_{(g_n)_*(\nu)}(f_{n,c}) = h_{\nu}(f_c) = h_{\text{top}}(f_c) = h_{\text{top}}(f_{n,c}),
\]

and so \((g_n)_*(\nu) = \nu_n\). Moreover, observing that \(g_n \) maps \(W^u \) to \(W^u_n \),

\[
h_{\nu_n}(f_{n,c},W^u_n) = h_{\nu}(f_c, W^u).
\]

Since \(\mu_n \in \text{Gibb}_n^c(f_n) \), Proposition 3.10 gives that

\[
h_{\mu_n}(f_n, F^u_n) = h_{\nu_n}(f_{n,c}, W^u_n) = h_{\nu}(f_c, W^u).
\]

On the other hand, Proposition 3.11 gives that

\[
\limsup_{n} h_{\mu_n}(f_n, F^u_n) \leq h_{\mu}(f, F^u).
\]

These two inequalities imply that \(h_{\mu}(f, F^u) \geq h_{\nu}(f_c, W^u) \). Using Proposition 3.10, we conclude that \(h_{\mu}(f, F^u) = h_{\nu}(f_c, W^u) \) and \(\mu \in \text{Gibb}_1^c(f) \).

To prove claim (d), it suffices to show that \(\xi(x) \subseteq \text{supp} \mu \) for \(\mu \)-almost every \(x \). By the definition of \(\nu \)-Gibbs \(u \)-state, \((\pi_c)_* (\mu^u_x) = \nu^u_x \) for every \(x \). Note that \(\nu^u_x \) is supported on the whole \(\xi(x,c) \), as it corresponds (in the sense of Remark 2.3) to the normalized Lebesgue measure on \(\xi(x,c) \). Thus \(\text{supp} \mu^u_x = \xi(x) \). Moreover, for \(\mu \)-almost every point \(x \), \(\mu^u_x \)-almost every point is a regular point of \(\mu \), hence \(\xi(x) = \text{supp} (\mu_x^u) \subseteq \text{supp} \mu \). \(\square \)

Proposition 3.13. For every \(x \in M \), any weak* limit of the sequence of probability measures

\[
\frac{1}{n} \sum_{j=0}^{n-1} (f^j)_* (\nu^u_x)
\]

is a \(\nu \)-Gibbs \(u \)-state.

Proof. Let \(\Phi_i : I \times D \to B_i \) be a foliation chart for the foliation \(F^u |_{B_i} \), that is, a homeomorphism such that each \(\Phi(\cdot, \theta) \) maps the interval \(I \) diffeomorphically to an element of the partition \(\xi \) inside \(B_i \). This may be chosen in such a way that the image of each \(\Phi_i(a, \cdot) \) is contained in a leaf of \(F^u \), and we do so. We shall use on each \(B_i \) the coordinates defined
by the corresponding chart Φ. Observe that in these coordinates the partition ξ | _B_i consists of the horizontal line segments I × {θ}. Moreover, the assertion in Lemma 3.5(a)

$$(\mathcal{H}_{x,y}^\nu)_{*}(\nu^\nu_x) = \nu^\nu_x$$

for any x, y ∈ B_i,

means that the disintegration of ν^u along ξ | _B_i is constant: the conditional measure is the same on every horizontal segment. Let ˆν_i denote this measure, which we may also view as a probability measure on I. Then, by Lemma 3.5(b), every

$$\frac{1}{n} \sum_{j=0}^{n-1} (f^j)_{*}(\nu^\nu_x)$$

is a finite linear combination of such measures ˆν_i. It follows that every accumulation point for this sequence is a sum of measures of the form ˆν_i × ξ_i on each B_i ≈ I × D. Thus, its conditional measures are precisely the ν^u_x, as we wanted to prove. □

4. Maps with ν-mostly contracting center

We say that f ∈ SPH_1(M) has ν-mostly contracting center if for every x ∈ M there is a positive ν^u_x-measure set Δ ⊂ ξ(x) such that

$$\limsup_n \frac{1}{n} \log \|Df^n|_{E^c(y)}\| < 0$$

(3)

for every y ∈ Δ. This is a straightforward adaptation of the notion of diffeomorphisms with mostly contracting center introduced in [5]: we just replace Lebesgue measure along unstable leaves with the conditional measures of ν^u. The next couple of propositions also have analogues in the classical setting (see [5, 13]). The proofs in our present context will be given in the following two subsections.

Proposition 4.1. A diffeomorphism f ∈ SPH_1(M) has ν-mostly contracting center if and only if every ergodic ν-Gibbs u-state has negative center exponent.

Proposition 4.2. If f ∈ SPH_1(M) has ν-mostly contracting center, then it has finitely many ergodic ν-Gibbs u-states, and their supports are pairwise disjoint. Moreover, each support is the union of finitely many minimal components of the unstable foliation.

4.1. Proof of Proposition 4.1

Suppose that f has ν-mostly contracting center and let μ be any ergodic ν-Gibbs u-state of f. By ergodicity,

$$\lim_n \frac{1}{n} \log \|Df^n|_{E^c(y)}\|$$

coincides with the center exponent λ^c(μ) at μ-almost every point or, equivalently, at μ^u_x-almost every point for μ-almost every x. Thus, since it is assumed that μ^u_x = ν^u_x at μ-almost every x, the assumption (3) implies that λ^c(μ) < 0 is negative.

Conversely, suppose that all ergodic ν-Gibbs u-states of f have negative center exponent. Using Proposition 3.12(a), for any x ∈ B_i there exists an increasing sequence (n_k) of positive integers such that

$$\lim_{k \to \infty} \frac{1}{n_k} \sum_{j=0}^{n_k-1} f_j^j\nu^u_x$$
converges to some ν-Gibbs u-state μ. By part (b) of that same proposition, almost every ergodic component of μ is a ν-Gibbs u-state. It is clear that $\text{supp} \mu$ is a full measure set for almost every ergodic component of μ. Thus there exists an ergodic component $\tilde{\mu}$ of μ that is a ν-Gibbs u-state and satisfies $\tilde{\mu}(\text{supp} \mu) = 1$.

We call basin of a measure the set of points whose (forward) time averages converge to that measure. By ergodicity, the basin $\text{Basin}(\tilde{\mu})$ has full $\tilde{\mu}$-measure. By definition, $\tilde{\mu}_x = \nu_x$ for a full μ-measure set $\Gamma \subset \text{Basin}(\tilde{\mu}) \cap \text{supp} \mu$. By assumption, the center exponent $\lambda^c(\tilde{\mu})$ is negative, and so $\tilde{\mu}$-almost every point has a Pesin local stable manifold with dimension equal to $\dim E^{cs}$.

It is no restriction to suppose that this holds for every $x \in \Gamma$ (reducing this set if necessary). Let $\Gamma \subset \Gamma$ be a full $\tilde{\mu}$-measure subset such that $\nu_x(\Gamma) = 1$ for every $x \in \Gamma$. Next, fix $z \in \Gamma$ such that $\nu_x(\Gamma) = 1$ and, consequently, there exists some positive ν_x-measure set $K \subset \xi(z)$ consisting of points with Pesin local stable manifolds of size uniformly bounded from below. Observe that the Pesin local stable manifolds are contained in the corresponding center-stable leaves, and that the holonomy induced by the center-stable foliation preserves the family of reference measures ν_x (see part (a) of Lemma 3.5). Thus, there exists $\delta > 0$ such that, for every y in the δ-ball around z, the local stable manifolds through the points of K intersect $\xi(y)$ on a subset whose ν_y-measure is independent of y. Note that all these Pesin local stable manifolds are contained in $\text{Basin}(\tilde{\mu})$. In particular, $\nu_y(\text{Basin}(\tilde{\mu}))$ is positive for any y in the δ-ball around z. This δ-ball has positive μ-measure, since $z \in \text{supp} \mu$. So, by weak* convergence,

$$\lim_k \frac{1}{n_k} \sum_{j=0}^{n_k-1} \langle f^j \rangle, \nu_x(B_\delta(z)) \geq \mu(B_\delta(z)) > 0.$$

This ensures that there are $j \geq 0$ and $y \in B_\delta(z) \cap f^j(\xi(x))$ such that $\text{Basin}(\tilde{\mu}) \cap \xi(y)$ has positive ν_y-measure. Since $\text{Basin}(\tilde{\mu})$ is invariant under iteration, the Markov property in Lemma 3.5(b) implies

$$\nu_y(\text{Basin}(\tilde{\mu})) = \nu_y(\text{Basin}(\tilde{\mu})) > 0.$$

Finally, the Birkhoff ergodic theorem asserts that

$$\lim_n \frac{1}{n} \log \|Df^n|E^c(w)\| = \lim_n \frac{1}{n} \sum_{j=0}^{n-1} \log \|Df|E^c(f^j(w))\|$$

$$= \int \log \|Df|E^c\| d\tilde{\mu} = \lambda^c(\tilde{\mu}) < 0,$$

for every $w \in \xi(x) \cap \text{Basin}(\tilde{\mu})$. Hence f is mostly contracting.

This completes the proof of Proposition 4.1.

4.2. Proof of Proposition 4.2

The proof consists of several lemmas.

Lemma 4.3. There are only finitely many ergodic ν-Gibbs u-states of f.

Proof. Suppose there are infinitely many ergodic ν-Gibbs u-states μ_n. By Proposition 3.12(a), we may assume that $(\mu_n)_n$ converges to some ν-Gibbs u-state μ_0. By Proposition 3.12(b), almost every ergodic component $\tilde{\mu}$ of μ_0 is a ν-Gibbs u-state. Moreover, $\tilde{\mu}(\text{supp} \mu) = 1$ and so $\text{supp}(\tilde{\mu}) \subset \text{supp}(\mu)$. By Proposition 4.1, the center exponent of $\tilde{\mu}$ is negative. Thus, $\tilde{\mu}$-almost every point has a Pesin local stable manifold of dimension $\dim E^{cs}$. So, in view of the definition of ν-Gibbs u-state, for $\tilde{\mu}$-almost every z, there exists a set $K \subset \xi(z) \cap \text{Basin}(\tilde{\mu})$ with positive ν_z-measure and such that its points have Pesin local stable manifolds with size bounded from zero. Keep in mind that these Pesin local stable manifolds
are contained in \(\text{Basin}(\hat{\mu}) \) and the holonomy induced by the center stable foliation preserves the family of conditional measures \(\nu^u_y \). Let such a point \(z \) be fixed from now on, and \(\delta > 0 \) be small enough that, for every \(y \in B_\delta(z) \), \(\xi(y) \) intersects \(\text{Basin}(\hat{\mu}) \) on a subset with \(\nu^u_y \)-measure equal to \(\nu^u_y(K) > 0 \). It is clear that \(\mu_n(B_\delta(z)) \) is positive for every large \(n \). Let \(n \) be fixed, large enough. By ergodicity, \(\text{Basin}(\mu_n) \subset \Gamma \) and \(\text{dim} \text{Basin}(\mu_n) \) is \(\Gamma \)-invariant and closed, it follows that \(\mu_n \)-almost every \(y \in B_\delta(z) \) we have that \(\mu_n^u(y) = \nu^u_y \) which, in view of the previous observations, implies \(\mu_n^u, y \text{Basin}(\hat{\mu}) > 0 \). Combining these two observations, we see that the basins of \(\mu_n \) and \(\hat{\mu} \) intersect. Thus \(\mu_n = \hat{\mu} \), a contradiction. \(\square \)

Now we are going to show that

Lemma 4.4. The supports of different ergodic \(\nu \)-Gibbs \(u \)-states are disjoint.

Proof. Suppose that there are ergodic \(\nu \)-Gibbs \(u \)-states \(\mu_1 \) and \(\mu_2 \) whose supports are not disjoint, and let \(x \in \text{supp} \mu_1 \cap \text{supp} \mu_2 \). Then, as shown in the proof of Proposition 4.1, there is \(\Gamma \subset \xi(x) \) with positive \(\nu^u_{\xi(x)} \)-measure such that the Pesin local stable manifolds of its points dimension is equal to \(\text{dim} \mathcal{F}^{cs} \) and have uniform size. Choose points \(x_1 \) and \(x_2 \) close to \(x \) such that their conditional measures along unstable leaves satisfy:

\[
\mu_{1,x_1}^u = \nu^u_{x_1} \quad \text{and} \quad \mu_{2,x_2}^u = \nu^u_{x_2}.
\]

Assume furthermore that \(x_1 \) and \(x_2 \) are such that \(\mu_{1,x_1}^u \)-almost every point belongs to the basin of \(\mu_i \), for \(i = 1, 2 \). Recall that the basins of both measures are saturated by Pesin local stable manifolds. By Lemma 3.5(a), the stable local holonomy preserves the family of conditional measures \(\nu^u_y \). It follows that the basin of \(\mu_1 \) and \(\mu_2 \) intersect, and hence \(\mu_1 = \mu_2 \). This contradiction proves the claim. \(\square \)

It remains to show that the support of every ergodic \(\nu \)-Gibbs \(u \)-state \(\mu \) consists of finitely many connected components, and each of them is an \(\mathcal{F}^u \)-minimal component.

Lemma 4.5. There is a hyperbolic periodic orbit \(\text{Orb}(p) \) with stable index \(\text{dim} \mathcal{F}^{cs} \) contained in \(\text{supp} \mu \).

Proof. This is a consequence of Katok’s closing lemma. Indeed, by [18] there one can find \(x \in \text{supp} \mu \) and a periodic point \(p \) such that \(\mathcal{W}^s(p) \) has dimension equal to \(\text{dim} \mathcal{F}^{cs} \) and intersects the unstable leaf of \(x \) transversely at some point \(y \). Since \(\text{supp} \mu \) is \(u \)-saturated (by part (d) of Proposition 3.12), the point \(y \in W^u_{\text{loc}}(p) \cap \text{supp} \mu \). Let \(\kappa \) be the minimum period of \(p \). Since \(\text{supp} \mu \) is invariant and closed, it follows that \(p = \lim_{n \to \infty} f^{n\kappa}(y) \) also belongs to \(\text{supp} \mu \). \(\square \)

Lemma 4.6. Assuming \(\mu \) is ergodic, \(\text{supp} \mu = \text{Cl}(\mathcal{F}^u(\text{Orb}(p))) \).

Proof. It is clear that \(\text{supp} \mu \supset \text{Cl}(\mathcal{F}^u(\text{Orb}(p))) \), since \(\text{supp} \mu \) is closed and \(\mathcal{F}^u \)-saturated. To prove the converse, let \(\hat{\mu} \) be any accumulation point of the sequence

\[
\frac{1}{n} \sum_{i=0}^{n-1} f^i \nu^u_p.
\]

It is clear that \(\text{supp} \hat{\mu} \) is contained in \(\text{Cl}(\mathcal{F}^u(\text{Orb}(p))) \) and, thus, is contained in \(\text{supp} \mu \). By parts (d) and (b) of Proposition 3.12, \(\hat{\mu} \) is a \(\nu \)-Gibbs \(u \)-state, and so are almost all its ergodic components. Let \(\tilde{\mu} \) be any ergodic component of \(\mu \). It is clear that \(\text{supp} \tilde{\mu} \supset \text{supp} \hat{\mu} \subset \text{Cl}(\mathcal{F}^u(\text{Orb}(p))) \subset \text{supp} \mu \). By Proposition 3.12(b), almost ergodic component \(\tilde{\mu} \) is a Gibbs
Let p be a hyperbolic periodic point as in Lemma 4.5, and let κ be its period. Note that $F = f^\kappa$ also has ν-mostly contracting center: the assumption (3) remains valid if we replace f by any positive iterate, clearly. Since μ is f-ergodic, its ergodic decomposition for F has the form

$$\mu = \frac{1}{l}(\mu_0 + \cdots + f_*^{l-1}(\mu_0))$$

for some μ_0 such that $f_*^l(\mu_0) = \mu_0$ and some divisor l of κ. By Proposition 3.12(b), the $f_*^i\mu_0$ are ν-Gibbs u-states. Then, by Lemma 4.4, their supports are pairwise disjoint.

It remains to show that each $\text{supp}(f_*^i(\mu_0))$ is an F^n-minimal component. It is no restriction to suppose that $i = 0$ and $p \in \text{supp} \mu_0$, and we will do so. For every point $x \in \text{supp} \mu_0$, the same argument as in the proof of Lemma 4.6, shows that

$$\frac{1}{n} \sum_{i=0}^{n-1} F_*^i \nu_*^n \text{ converges to } \mu_0.$$

It follows that $\bigcup_{n \geq 0} F^n(\mathcal{F}^u(x))$ is dense in $\text{supp} \mu_0$ and, in particular, $F^n(p)$ is dense in $\text{supp} \mu_0$. Keeping in mind that \mathcal{F}^u is a continuous foliation, it follows that there is $n_x \geq 1$ such that $F^{n_x}(\mathcal{F}^u(x))$ intersects $W^u(p)$ transversely at some point. Taking backward iterates, we get that $\mathcal{F}^u(x)$ also intersects $W^u(p)$ transversely and so, by continuity of the unstable foliation, it follows that there exists a neighborhood U_x of x such that $\mathcal{F}^u(y)$ intersects $W^u(p)$ transversely at some point, for every $y \in U_x$. Moreover, we can fix $R_x > 0$ large enough so that those transverse intersections may be taken in the (relative) neighborhood $W_{R_x}^u(p)$ of radius R_x around p inside $W^u(p)$. Let $\{U_{x_1}, \ldots, U_{x_j}\}$ be a finite cover of $\text{supp} \mu_0$ by such neighborhoods and $R = \max\{R_{x_1}, \ldots, R_{x_j}\}$. Then $\mathcal{F}^u(y)$ intersects $W_{R}^u(p)$ transversely at some point, for every $y \in \text{supp} \mu_0$. This also implies that for each $n \geq 1$ there exists $a_n \in F^n(\mathcal{F}^{-n}(y)) \cap W_{R}^u(p)$ a point of transverse intersection. Since $F^n(a_n) \to p$, we conclude that $p \in \text{Cl}(\mathcal{F}^n(y))$, which implies that $\mathcal{F}^u(p) \subseteq \text{Cl}(\mathcal{F}^u(y))$. Since we have already shown that $\mathcal{F}^u(p)$ is dense in $\text{supp} \mu_0$, this finishes the proof.

5. Proof of Theorem C

This is similar to the proof of [13, Theorem A], which deals with physical measures of diffeomorphisms with mostly contracting center. The case when f is of rotation type is covered by Proposition 3.1. So, we only need to consider the case when f has some hyperbolic periodic point, and all the ergodic maximal measures of f have non-vanishing center exponent. Let us focus on the ergodic maximal measures with negative center exponent, corresponding to part (a) of the theorem. Part (b) is entirely analogous. Recall that $\text{MM}^-(f)$ denotes the simplex generated by the finitely many ergodic maximal measures with negative center exponent.

Lemma 5.1. $\text{MM}^-(f) = \text{Gibb}_u^n(f)$.

Proof. Combining Propositions 3.7 and 3.8, we get that every ergodic maximal measure with negative center exponent is a ν-Gibbs u-state, that is, $\text{MM}^-(f) \subseteq \text{Gibb}_u^n(f)$.

Suppose that there is some ergodic ν-Gibbs u-state μ with non-negative center exponent. On the one hand, by Proposition 3.7, μ is u-invariant since it is a ν-Gibbs u-state. On the other hand, by Proposition 3.8, the assumption on the center exponent ensures that μ is s-invariant.
Hence, μ is both s- and u-invariant. By Proposition 3.9, that implies that f is of rotation type, which contradicts the assumptions. This contradiction proves that every ergodic ν-Gibbs u-state has negative center exponent. Using Proposition 3.12(a), it follows that $\text{Gibb}_\nu(f) \subset \text{MM}^-(f)$.

Combining Lemma 5.1 with Proposition 4.1, we immediately get

Corollary 5.2. f has ν-mostly contracting center.

Thus, using Proposition 4.2 we get that f has finitely many ergodic ν-Gibbs u-states. Their supports are u-saturated, pairwise disjoint, and each one is a union of finitely many minimal components of the unstable foliation. Denote by μ_1, \ldots, μ_k the ergodic maximal measures with negative center exponent. For every $1 \leq i \leq k$, let $p_i \in \text{supp} \mu_i$ be a hyperbolic periodic point whose stable manifold has dimension equal to $\dim E^{cs}$ (see Lemmas 4.5 and 4.6).

Lemma 5.3. $\{p_1, \ldots, p_k\}$ is a skeleton for f.

Proof. By Proposition 4.2, the support of each μ_i coincides with the closure of $\text{Orb}(p_i)$. Since the supports are pairwise disjoint, it follows from the inclination lemma (Palis’ λ-lemma) that $W^s(\text{Orb}(p_i)) \cap W^u(\text{Orb}(p_j)) = \emptyset$ for any $1 \leq i \neq j \leq k$. To complete the proof, it remains to show that the unstable leaf through any point $x \in M$ intersects $W^s(\text{Orb}(p_i))$ for some i. Let μ be any accumulation point of the sequence

$$\frac{1}{n} \sum_{i=1}^{n} (f^i)_*(\nu^u_x).$$

By Proposition 3.13, μ is a ν-Gibbs u-state. By Proposition 3.12(b), μ is a convex combination $a_1\mu_1 + \cdots + a_k\mu_k$. Fix any j such that $a_j > 0$. Then there exist n arbitrarily large and $r > 0$ arbitrarily small such that

$$f^n(\nu^u_x)(B_r(p_j)) > 0.$$

This implies that $f^n(F^u_{\text{loc}}(x))$ intersects $B_r(p_j)$, which on its turn implies that $f^n(F^u_{\text{loc}}(x))$ has some intersection with $W^s(\text{Orb}(p_j))$. The intersection is transverse, since the dimensions are complementary. By taking backward iterates, we get that $F^u_{\text{loc}}(x)$ has some transverse intersection with $W^s(\text{Orb}(p_j))$. \qed

The proof of Theorem C is complete.

6. **Proof of Theorem D**

6.1. **Rotation type case**

If $f \in \text{SPH}_1(M)$ has no hyperbolic periodic points, then, by Theorem C(a), it has a unique ergodic maximal measure μ, and it has vanishing center exponent. Moreover, by Proposition 3.1(a), the support $\text{supp} \mu$ is the whole ambient manifold. By Proposition 3.12(a), there is a unique ν-Gibbs u-state and it coincides with μ. Thus, by Proposition 3.13, for any $x \in M$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f^i(\nu^u_x) = \mu$$

and, in particular, $\bigcup_{n \geq 0} f^n(F^u_1(x))$ is dense in the ambient manifold M. Recall, from [12] that accessibility is a C^1 open property.
Proposition 6.1. Every g in a C^1-neighborhood of f has a unique u-saturated compact invariant subset.

Proof. We need the following criterium that we borrow from [25]:

Lemma 6.2. Let h be a partially hyperbolic diffeomorphism. Suppose that for any two unstable leaves $F^u(x_1)$ and $F^u(x_2)$, there are $n_1, n_2 > 0$ and a stable leaf $F^s(y)$ such that $F^s(y) \cap h^{n_i}(F^u(x_i)) \neq \emptyset$ for $i = 1, 2$. Then, h has a unique compact, invariant and u-saturated subset.

We will use the following terminology. Let D_1 be the graph of a continuous map $\phi_1 : I^d \to I$, where $I = [0, 1]$. Given a point $x = (x_1, x_2) \in I^d \times I$, we say that x is above D_1 if $x_2 > \phi_1(x_1)$ and we say that x is below D_1 if $x_2 < \phi_1(x_1)$. Let D_2 be the image of a continuous injective map $\phi_2 : I^d \to I^d \times I$, we say D_2 crosses D_1 if there are $y, z \in D_2$ such that y is above D_1 and z is below D_1. It is easy to see that if D_2 crosses D_1, then $D_1 \cap D_2 \neq \emptyset$.

The next lemma is related to results in [2, 12]:

Lemma 6.3. Let f be a dynamically coherent accessible partially hyperbolic diffeomorphism with 1-dimensional center. Then there are points $x_1 \in M$ and $x_2 \in F^{s}_{1}(x_1)$, where $F^{s}_{1}(x_1)$ denotes the ball contained in the leaf $F^u(x_1)$ with center x_1 and radius 1, such that the holonomy map $H^{s}_{x_2,x_1} : F_{1}^{u}(x_2) \to F_{1}^{u}(x_1)$ induced by the stable foliation satisfies that $H^{s}_{x_2,x_1}(F^{u}_{1}(x_2))$ crosses $F^{u}_{1}(x_1)$.

Proof. First, we claim that there are points $y_1 \in M$ and $y_2 \in F^{s}_{1}(y_1)$ such that $H^{s}_{y_2,y_1}(F^{u}_{1}(y_2))$ is not contained in $F^{s}_{1}(y_1)$. Suppose otherwise. Then for every $x \in M$, the union $\bigcup_{y \in F^{u}(x)} F^{s}(y)$ is a topological codimension-one submanifold $F^{su}(x)$ which is sub-foliated by F^{u} and F^{s}. The family $F^{su}(x)$, $x \in M$ is a topological foliation for which every leaf F^{su} is an accessible class. But it is clear that $F^{su}(x) \neq M$, and so this contradicts the assumption that f is accessible. This contradiction proves the claim.

Fix y_1 and y_2 as before. Then we may assume that there is $y \in H^{s}_{y_2,y_1}(F^{u}_{1}(y_2))$ which is below $F^{s}_{1}(y_1)$, Take $y_3 \in F^{s}_{1}(y_1)$ very close to $F^{s}_{1}(y_1)$ and still below $F^{s}_{1}(y_1)$. Then $y_1 = H^{s}_{y_2,y_1}(y_2)$ is above $F^{s}_{1}(y_2)$. On the other hand, since F^{s} is continuous, y is below $F^{s}_{1}(y_2)$. Thus $H^{s}_{y_2,y_1}(F^{s}_{1}(y_2))$ crosses $F^{s}_{1}(y_3)$. Take x_1 to be a crossing point, and $x_2 = H^{s}_{y_1,y_2}(x_1) \in F^{s}_{1}(y_2)$.

Lemma 6.3 has the following immediate consequence:

Corollary 6.4. Let f be an accessible partially hyperbolic diffeomorphism with 1-dimensional center. Then there are a C^1-neighborhood \mathcal{U} of f, and two disjoint open sets U_1, U_2 such that, for any $g \in \mathcal{U}$, and any pair of points $x_1 \in U_1$, $x_2 \in U_2$, there is a stable leaf $F^s(y)$ of g such that $F^s(y)$ intersects both $F^s_{1}(x_1)$ and $F^s_{1}(x_2)$.

Proof. Since F^u and F^s vary continuously with the diffeomorphisms, crossing is a robust property. Thus it still holds for any pair of points in the vicinity of the points x_1 and x_2 in Lemma 6.3.

We are ready to complete the proof of Proposition 6.1. Take a neighborhood \mathcal{U} of f and open sets U_1 and U_2 as in Corollary 6.4. As already stated at the beginning of this section, Proposition 3.13 implies that $\bigcap_{i>0} f^i(F^u_1(x))$ is a dense subset of M for any $x \in M$. Hence for each $x \in M$ and $i = 1, 2$ there is $n_{x,i} \leq n_0$ such that $f^{n_{x,i}}(F^u_1(x))$ intersects U_i for $i = 1, 2$. Up
to shrinking U if necessary, this remains true for any $g \in U$. Now it suffices to use the criterium in Lemma 6.2.

Let us proceed with the proof of Theorem D in the rotation type case. Let g denote a C^2 diffeomorphism C^1-close to f. By Theorem C, either g has no hyperbolic periodic point, in which case it has a unique maximal measure; or the ergodic maximal measures of g have non-vanishing center exponents, and their supports are pairwise disjoint u-saturated invariant compact sets. By Proposition 6.1, there is at most one of such invariant set. Hence, g has a unique ergodic maximal measure with negative center exponent. A similar argument shows that g admits a unique ergodic maximal measure with positive center exponent.

Denote by Γ^+ (respectively, Γ^-) the map assigning to $g \in U \cap \text{Diff}^2(M)$ its ergodic maximal measure with non-negative (respectively, non-positive) center exponent.

Lemma 6.5. For $g \in \text{SPH}_1(M)$ sufficiently close to f in the C^1 topology, $\Gamma^-(g)$ is the unique ν-Gibbs u-state of g.

Proof. If g has no hyperbolic periodic orbit, then by Theorem C(a), it admits a unique ergodic maximal measure and it coincides with $\Gamma^-(g)$. By Proposition 3.12(a), $\Gamma^-(g)$ is also the unique ν-Gibbs u-state for g, so we get the conclusion in this case. If g does have some hyperbolic periodic orbit, then, from Lemma 5.1 and the previous observation that g has a unique ergodic maximal measure $\Gamma^-(g) = \mu^-_g$ with negative center exponent, we conclude that g has a unique ν-Gibbs u-state, and it coincides with $\Gamma^-(g)$. Thus we get the conclusion also in this case.

Consider a sequence of C^2 diffeomorphisms $\{g_n\}_{n=0}^\infty \subset U$ converging to g in the C^1 topology. According to Proposition 3.12(c), any accumulation point of ν-Gibbs u-states of g_n is a ν-Gibbs u-state of g. Since we have just shown that the latter is unique, it follows that $\Gamma^-(g_n)$ converges to $\Gamma^-(g)$ when $n \to \infty$. This proves that the map Γ^- is continuous. The argument for Γ^+ is entirely analogous.

This proves Theorem D in the rotation type case.

6.2. Hyperbolic case

Now suppose that f has some hyperbolic periodic orbit. Then the same is true for any diffeomorphism in some neighborhood U of f. By Corollary 5.2, every $g \in U \cap \text{Diff}^2(M)$ has ν-mostly contracting center. Suppose that f has $k \geq 1$ ergodic maximal measures $\{\mu^-_1, \ldots, \mu^-_k\}$ with negative center exponents. By Lemma 5.1, these are precisely the ergodic ν-Gibbs u-states of f. By Theorem C, the diffeomorphism f has some skeleton $S(f) = \{p_1, \ldots, p_k\}$ such that the dimension of the stable manifold of each p_i is equal to $\dim E^{cs}$. By parts (c) and (d) of Proposition 2.4, the continuation $\{p_1(g), \ldots, p_k(g)\}$ is a pre-skeleton of g and contains some skeleton of g. In fact, it is itself a skeleton of g if and only if no heteroclinic intersection was created between $p_i(g)$ and $p_j(g)$ for $1 \leq i \neq j \leq k$ after perturbation. Obviously, the number of elements of this (or any other) skeleton of g is at most $k = \# S(f)$. Using Theorem C once more, we get that the number of ergodic maximal measures with negative center exponent of any C^2 diffeomorphism $g \in U$ is smaller than or equal to the number of ergodic maximal measures with negative center exponent of f.

Consider any sequence $(f_n)_n$ of C^2 diffeomorphisms converging to f in the C^1 topology, and suppose $\{p_1(f_n), \ldots, p_k(f_n)\}$ is a skeleton of f_n for each n. By Theorem C, each f_n has exactly k ergodic maximal measures $\mu^-_i, i = 1, \ldots, k$ with negative center exponent. Moreover, their supports are pairwise disjoint and, up to renumbering, we may assume that $p_i(f_n) \in \text{supp} \mu^-_i$ for every i. We want to prove that

\[(\mu^-_i)_n \text{ converges to } \mu_i \text{ for every } i. \quad (5)\]
Up to reordering, it is no restriction to consider $i = 1$. Also, up to restricting to a subsequence, we may suppose that $(\mu_{1}^{n}\cdot n)$ converges to some μ_1. Now, parts (b) and (c) of Proposition 3.12 imply that $\mu_1 \in \text{Gibb}_{u}(f)$ and can be written as a convex combination $\hat{\mu}_1 = a_1\mu_1 + \cdots + a_k\mu_k$. To prove (5), we just have to check that $a_j = 0$ for every $j > 1$.

Now, the next lemma asserts that otherwise $\{p_1(f_n), \ldots, p_k(f_n)\}$ is not a skeleton of f_n, which would contradict the currents assumptions. So, to finish all we need is

Lemma 6.6. If $a_j > 0$ for some $j > 1$, then $\mathcal{F}^u(p_1(f_n))$ has a transverse intersection with $W^s(p_j(f_n))$ for every large enough n.

Proof. Choose B a small neighborhood of p_j such that $\mu_j^{-}(B) = b > 0$ and $W^s(p_j)$ has a transverse intersection with $\mathcal{F}_{\text{loc}}^u(x)$ for every $x \in B$. Take n large enough that $\mu_1^{-}(B) > a_jb/2$ and $p_j(f_n)$ is close enough to $p_j(f)$ that its stable manifold $W^s(p_j(f_n))$ has a transverse intersection with $\mathcal{F}_u^u(x)$ for any $x \in B$. In particular, $\text{supp}(\mu_1^{-})$ intersects B. By Proposition 3.12, $\text{supp}(\mu_1^{-})$ is u-saturated, and by Theorem C, we conclude that $\mathcal{F}^u(\text{Orb}(p_1(f_n)))$ intersects B. Hence, $\mathcal{F}^u(\text{Orb}(p_1(f_n))) \cap W^s(p_j(f_n)) \neq \emptyset$. However, this contradicts the assumption that $\{p_1(f_n), \ldots, p_k(f_n)\}$ is a skeleton and, consequently, there are no heteroclinic intersections between its periodic orbits.\square

This finishes the proof of Theorem D.

7. Proofs of Theorems A and B

Let M be a 3-dimensional nilmanifold different from T^3. Recall that (Proposition 2.2), every partially hyperbolic diffeomorphism $f : M \to M$ is in $\text{SPH}_1(M)$.

First we deduce Theorem A. By Proposition 2.2 and Theorem C, there are two cases.

- Either f has no hyperbolic periodic point, in which case it has a unique maximal measure, and is transitive.
- Or f has some hyperbolic periodic point, and then both $\text{Gibb}^u_v(f)$ and $\text{Gibb}^s_v(f)$ contain each a unique element, and so f has exactly two ergodic maximal measures. (In the second case, uniqueness is a consequence of the fact that u-saturated and s-saturated invariant compact sets are unique.)

The proof of Theorem A is complete. Now we prove Theorem B.

As before, define $\Gamma^{+}(f)$ (respectively, $\Gamma^{-}(f)$) to be the ergodic maximal measure with non-negative (respectively, non-positive) center exponent. To show that these maps are continuous at f relative to the C^1 topology, we consider the following two situations.

- f has no hyperbolic periodic orbits: then continuity is a direct corollary of Theorem D(a).
- f has a hyperbolic periodic orbit: then every C^2 diffeomorphism g in a C^1-neighborhood of f also has a hyperbolic periodic orbit; by Theorem A, g admits a unique maximal measure with negative (positive) center exponent; in particular, the number of ergodic maximal measures with negative (positive) center exponent is constant; by Theorem D(b), the ergodic maximal measure with negative (positive) center exponent varies continuously with the diffeomorphisms in the C^1 topology.

The proof is finished.

References

1. J. F. Alves, C. Bonatti and M. Viana, ‘SRB measures for partially hyperbolic systems whose central direction is mostly expanding’, *Invent. Math.* 140 (2000) 351–398.
2. A. Avila and M. Viana, ‘Extremal Lyapunov exponents: an invariance principle and applications’, Invent. Math. 181 (2010) 115–189.
3. C. Bonatti, L. J. Díaz and M. Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences 102 (Springer, Berlin, 2005).
4. C. Bonatti, X. Gómez-Mont and M. Viana, ‘Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices’, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 579–624.
5. C. Bonatti and M. Viana, ‘SRB measures for partially hyperbolic systems whose central direction is mostly contracting’, Israel J. Math. 115 (2000) 157–193.
6. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics 470 (Springer, Berlin, 1975).
7. K. Burns, F. Rodriguez-Hertz, M. A. Rodriguez-Hertz, A. Talitskaya and R. Ures, ‘Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center’, Discrete Contin. Dyn. Syst. 22 (2008) 75–88.
8. J. Buzzi, ‘Intrinsic ergodicity for smooth interval maps’, Israel J. Math 100 (1997) 125–161.
9. J. Buzzi, S. Crovisier and O. Sarig, ‘Measures of maximal entropy for surface diffeomorphisms’, Preprint, 2018, arXiv:1811.02240.
10. J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez, ‘Maximal entropy measures for certain partially hyperbolic derived from Anosov systems’, Ergodic Theory Dynam. Systems 32 (2012) 63–79.
11. V. Climenhaga, Ya. Pesin and A. Zelerowicz, ‘Equilibrium measures for some partially hyperbolic systems’, J. Mod. Dyn. 16 (2020) 155–205.
12. Ph. Didier, ‘Stability of accessibility’, Ergodic Theory Dynam. Systems 33 (2003) 1717–1731.
13. D. Dolgopyat, M. Viana and J. Yang, ‘Geometric and measure-theoretical structures of maps with mostly contracting center’, Comm. Math. Phys. 341 (2016) 991–1014.
14. A. Hammerlindl, ‘Partial hyperbolicity on 3-dimensional nilmanifolds’, Discrete Contin. Dyn. Syst. 33 (2013) 3641.
15. A. Hammerlindl and R. Potrie, ‘Pointwise partial hyperbolicity in three-dimensional nilmanifolds’, J. Lond. Math. Soc. 89 (2014) 853–875.
16. K. Hiraide, ‘Expansive homeomorphisms with the pseudo-orbit tracing property of n-tori’, J. Math. Soc. Japan 41 (1989) 357–389.
17. K. Hiraide, ‘Expansive homeomorphisms of compact surfaces are pseudo-Anosov’, Osaka J. Math. 27 (1990) 117–162.
18. A. Katok, ‘Lyapunov exponents, entropy and periodic orbits for diffeomorphisms’, Publ. Math. Inst. Hautes Études Sci. 51 (1980) 137–173.
19. F. Ledrappier and P. Walters, ‘A relativised variational principle for continuous transformations’, J. Lond. Math. Soc. 16 (1977) 568–576.
20. J. Lewowicz, ‘Expansive homeomorphisms of surfaces’, Bull. Braz. Math. Soc. 20 (1989) 113–133.
21. G. Liao, M. Viana and J. Yang, ‘The entropy conjecture for diffeomorphisms away from tangencies’, J. Eur. Math. Soc. (JEMS) 15 (2013) 2043–2060.
22. J. Palis and W. de Melo, Geometric theory of dynamical systems - an introduction (Springer, Berlin, 1982), (Translated from the Portuguese by A. K. Manning.)
23. Ya. Pesin and Ya. Sinaï, ‘Gibbs measures for partially hyperbolic attractors’, Ergodic Theory Dynam. Systems 2 (1982) 417–438.
24. F. Rodriguez-Hertz, M. A. Rodriguez-Hertz, A. Tahzibi and R. Ures, ‘Maximizing measures for partially hyperbolic systems with compact center leaves’, Ergodic Theory Dynam. Systems 32 (2012) 825–839.
25. J. Rodriguez-Hertz and R. Ures, ‘On the three-legged accessibility property’, New trends in one-dimensional dynamics, Springer Proceedings in Mathematics & Statistics 285 (eds M. J. Pacifico and P. Guarino; Springer, Berlin, 2019) 239–248.
26. V. A. Rokhlin, ‘Selected topics from the metric theory of dynamical systems’, Amer. Math. Soc. Transl. 49 (1966) 171–240. (Transl. from Uspekhi Mat. Nauk. 4-2 (1949), 57–128.)
27. O. Sarig, ‘Symbolic dynamics for surface diffeomorphisms with positive entropy’, J. Amer. Math. Soc. 26 (2013) 431–426.
28. A. Tahzibi and J. Yang, ‘Intrinsic principle and rigidity of high entropy measures’, Trans. Amer. Math. Soc. 371 (2019) 1231–1251.
29. R. Ures, ‘Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part’, Proc. Amer. Math. Soc. 140 (2012) 1973–1985.
30. M. Viana, ‘Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents’, Ann. of Math. (2) 167 (2008) 643–680.
31. M. Viana and K. Oliveira, Foundations of ergodic theory, Cambridge Studies in Advanced Mathematics 151 (Cambridge University Press, Cambridge, 2016).
32. M. Viana and J. Yang, ‘Physical measures and absolute continuity for one-dimensional center direction’, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013) 845–877.
33. J. Yang, ‘Entropy along expanding foliations’, Preprint, 2016, arXiv:1601.05504.
34. F. Yang and J. Yang, ‘Decay of correlations for maximal measure of maps derived from Anosov’, Preprint, 2016, arXiv:1610.00796.
