Ligand-Mediated Spin State Changes in a Cobalt-Dipyrrin-Bisphenol Complex

Nicolaas P. van Leest, Wowa Stroek, Maxime A. Siegler, Jarl Ivar van der Vlugt, Bas de Bruin

Submitted date: 02/07/2020 • Posted date: 03/07/2020
Licence: CC BY-NC-ND 4.0

Citation information: van Leest, Nicolaas P.; Stroek, Wowa; Siegler, Maxime A.; van der Vlugt, Jarl Ivar; de Bruin, Bas (2020): Ligand-Mediated Spin State Changes in a Cobalt-Dipyrrin-Bisphenol Complex. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12605333.v1

ABSTRACT: The influence of a redox-active ligand on spin changing events induced by coordination of exogenous donors is investigated within the cobalt complex \([\text{Co}^{\text{II}}(\text{DPP}^{\text{2}-})]\), bearing a redox-active DPP\(^{2-}\) ligand (DPP = dipyrrin-bis-(o,p-di-tert-butylphenolato) with a pentafluorophenyl moiety on the meso-position. This square planar complex was subjected to coordination of THF, pyridine, tBuNH\(_2\) and AdNH\(_2\) (Ad = 1-adamantyl), and the resulting complexes were analyzed with a variety of experimental (XRD, NMR, UV-Vis, HRMS, SQUID, Evans’ method) and computational (DFT, NEVPT2-CASSCF) techniques to elucidate the respective structures, spin states and orbital compositions of the corresponding octahedral bis-donor adducts, relative to \([\text{Co}^{\text{II}}(\text{DPP}^{\text{2}-})]\). This starting species is best described as an open-shell singlet complex containing a DPP\(^{2-}\) ligand radical that is antiferromagnetically coupled to a low-spin (\(S = \frac{1}{2}\)) cobalt(II) center. The redox-active DPP\(^{n-}\) ligand plays a crucial role in stabilizing this complex, and in its facile conversion to the triplet THF-adduct \([\text{Co}^{\text{II}}(\text{DPP}^{\text{2}-})(\text{THF})_2]\) and closed-shell singlet pyridine and amine adducts \([\text{Co}^{\text{III}}(\text{DPP}^{\text{3-}})(\text{L})_2]\) (\(\text{L} = \text{py, tBuNH}_2\) or \(\text{AdNH}_2\)). Coordination of the weak donor THF to \([\text{Co}^{\text{II}}(\text{DPP}^{\text{2}-})]\) changes the orbital overlap between the DPP\(^{2-}\) ligand radical π-orbitals and the cobalt(II) metalloradical d-orbitals, which results in a spin-flip to the triplet ground state without changing the oxidation states of the metal or DPP\(^{2-}\) ligand. In contrast, coordination of the stronger donors pyridine, tBuNH\(_2\) or AdNH\(_2\) induces metal-to-ligand single-electron transfer, resulting in formation of low-spin (\(S = 0\)) cobalt(III)-complexes \([\text{Co}^{\text{III}}(\text{DPP}^{\text{3-}})(\text{L})_2]\) containing a fully reduced DPP\(^{3-}\) ligand, thus explaining their closed-shell singlet electronic ground states.

File list (2)

CoDPP_IC_1_B.pdf (1.63 MiB) view on ChemRxiv download file
CoDPP_SI_IC.pdf (1.70 MiB) view on ChemRxiv download file
Ligand-Mediated Spin State Changes in a Cobalt-Dipyrrin-Bisphenol Complex

Nicolaas P. van Leest,† Wowa Stroek,‡ Maxime A. Siegler,‡ Jarl Ivar van der Vlugt†‡ and Bas de Bruin*†‡

† Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
‡ Department of Chemistry, John Hopkins University, Baltimore, Maryland 21218, United States.

KEYWORDS: cobalt, redox-active ligand, spin flip, metal-to-ligand single-electron transfer

ABSTRACT: The influence of a redox-active ligand on spin changing events induced by coordination of exogenous donors is investigated within the cobalt complex \([\text{Co}^{\text{II}}(\text{DPP}^2\text{•}2\text{‒})]\), bearing a redox-active DPP\(^2\text{•}2\text{‒}\) ligand (DPP = dipyrrin-bis-(o,p-di-tert-butylphenolato) with a pentafluorophenyl moiety on the meso-position. This square planar complex was subjected to coordination of THF, pyridine, \(\beta\text{BuNH}_2\) and AdNH\(_2\) (Ad = 1-adamantyl), and the resulting complexes were analyzed with a variety of experimental (XRD, NMR, UV-Vis, HRMS, SQUID, Evans' method) and computational (DFT, NEVPT2-CASSCF) techniques to elucidate the respective structures, spin states and orbital compositions of the corresponding octahedral bis-donor adducts, relative to \([\text{Co}^{\text{II}}(\text{DPP}^2\text{•}2\text{‒})]\). This starting species is best described as an open-shell singlet complex containing a DPP\(^2\text{•}2\text{‒}\) ligand that is antiferromagnetically coupled to a low-spin \((S = \frac{1}{2})\) cobalt(II) center. The redox-active DPP\(^{2\text{•}2\text{‒}}\) ligand plays a crucial role in stabilizing this complex, and in its facile conversion to the triplet THF- adduct \([\text{Co}^{\text{II}}(\text{DPP}^2\text{•}2\text{‒})(\text{THF})]\) and closed-shell singlet pyridine and amine adducts \([\text{Co}^{\text{II}}(\text{DPP}^{2\text{•}2\text{‒}})(L)_2]\) (L = py, \(\beta\text{BuNH}_2\) or AdNH\(_2\)). Coordination of the weak donor THF to \([\text{Co}^{\text{II}}(\text{DPP}^{2\text{•}2\text{‒}})]\) changes the orbital overlap between the DPP\(^2\text{•}2\text{‒}\) ligand radical \(\pi\)-orbitals and the cobalt(II) metalloradical d-orbitals, which results in a spin-flip to the triplet ground state without changing the oxidation states of the metal or DPP\(^{2\text{•}2\text{‒}}\) ligand. In contrast, coordination of the stronger donors pyridine, \(\beta\text{BuNH}_2\) or AdNH\(_2\) induces metal-to-ligand single-electron transfer, resulting in a spin crossover to the closed-shell singlet complexes \([\text{Co}^{\text{II}}(\text{DPP}^{2\text{•}2\text{‒}})(L)_2]\) containing a fully reduced DPP\(^{2\text{•}2\text{‒}}\) ligand, thus explaining their closed-shell singlet electronic ground states.

INTRODUCTION

Spin state changes (spin crossover) can play an important role in chemistry and material research, amongst others in biochemistry (respiration, enzymatic conversions), development of molecular magnets and spintronics, and as a potential rate-accelerating process in organometallic chemistry and catalysis. Purely metal-centered spin state changes of coordination complexes can be explained in terms of the coordination and geometry dependent energy difference between partially filled and empty \(d\)-orbitals, as described by the ligand-field splitting parameter \(\Delta\).

The respective roles of the metal and traditional (redox-innocent) ligands are well-understood in these cases. However, when a redox-active ligand, capable of bearing unpaired electrons, is present in the coordination sphere of the metal, the relative contributions and the roles and influence of metal and ligand to changes in the total spin state of the overall complex are far less well understood. The main four modes of action of redox-active ligands that have been studied thoroughly can be summarized as: (i) changing the Lewis acidity/basicity of the metal, (ii) acting as an electron reservoir, (iii) generation of a reactive ligand-centered radical, and (iv) radical-type activation of a substrate. We wish to expand upon these functions by investigating the role of a redox-active ligand in spin changing events. Specifically, by keeping the redox-active ligand and metal center constant we set out to investigate how coordination of different additional redox-innocent donors to the metal center influences the total spin state of the complex, which is governed by interactions of the metal \(d\)-orbitals and the redox-active ligand orbitals of \(\pi\)-symmetry.

In this context, we became interested in the family of dipyrrin-bisphenol ligands (DPP, Figure 1), known since the 1970s. Different substitution patterns on the backbone were explored since 2009 and complexes of Al, B, Ga, In, Ti, Zr, Ge, Sn and Mn have been reported. The DPP ligand scaffold was first described as being redox-active in 2012 after the synthesis of cobalt- and nickel-DPP complexes. Hereafter, the redox-activity was further studied in Mn, Pt, Cu and Au complexes. Catalytic applications have been reported for the Ti, Zr, G and Sn complexes (copolymerization of epoxides with CO\(_2\)) and Cu (aerobic alcohol oxidation). Contrarily, cobalt(III)-DPP complexes proved catalytically inactive in epoxide ring opening reaction with alcohols, which was attributed to the low Lewis acidity of the cobalt-center. Initial studies on cobalt-DPP complexes were mainly focused on comparison of their (redox) properties and (catalytic) reactivity with cobalt-porphyrin, -salen and -corrole analogues. The ligand was predominantly found to coordinate as a di-anionic (radical) ligand to a low-spin cobalt(II) center in neutral Co-DPP complexes. Density functional theory (DFT) calculations indicated that the triplet and broken-
symmetry open-shell singlet (BSS) ground state (inerring
(anti)ferromagnetic coupling between the metal- and ligand-
centered unpaired electrons) are energetically close (< 1 kcal
mo1).127 Although a BSS (S = 0) spin state was inferred
based on experimental data for a Co-DPP complex, DFT
calculations indicated that the triplet state was slightly
favoured (~1.0 kcal mol1).18 Furthermore, moreover, coordination of
benzonitrile, DMSO and pyridine was observed, and full
conversion to the octahedral (bis-axially-coordinated)
complexes was described for DMSO, pyridine and NH3. Bis-
coordination of two pyridine molecules to afford the
octahedral complex was indicated by UV-Vis studies and DFT
calculations revealed orbital compositions expected for a
trianionic ligand coordinated to a low-spin (B3LYP
functional) or intermediate-spin (OLYP functional) cobalt(III)
center. The exact electronic structure of the investigated
species therefore remains largely unknown at this point.

Figure 1. General structure of a dipyrrin-bisphenol (DPP) ligand
on a metal (M).

The aforementioned studies on cobalt-DPP complexes
indicate that intermediate- and low-spin configurations on
cobalt are energetically close and that the DPP ligand is redox-
active on cobalt. Due to these properties we selected the
Co-DPP system as a suitable candidate to evaluate the influence of
the redox-active ligand on the total spin state of the cobalt
complex in the presence and absence of axial redox-innocent
donor ligands. Specifically, in this work we study the
electronic configuration of a neutral [Co6(DPP2−)] complex
(with Ar = C6F5, R1 = R3 = t-Bu; R2 = H, Figure 1), bearing a
new DPP ligand derivative, upon coordination of different
axial donor ligands with experimental (XRD, χm, NMR,
HRMS, UV-Vis) and computational (DFT, NEVPT2-
CASSCF) techniques. We thereby describe how the molecular
orbitals are influenced by coordination of THF, pyridine and
primary amines and elucidate the exact electronic structures of
these complexes and the influence of the redox-active ligand
on the orbital changes upon coordination of axial donors.

RESULTS AND DISCUSSION

Synthesis and open-shell singlet electronic ground state
configuration of [Co6(DPP2−)]. The dipyrrin-bisphenol
ligand DPPH2, bearing two tert-butyl groups on the phenol
ring and a pentafluorophenyl substituent on the meso-position,
was obtained via a four step synthesis in 65% overall isolated
yield according to modified literature procedures (see
Supporting Information and Scheme 1A).812 Coordination of
cobalt(II) and in situ oxidation to the neutral complex was
achieved according to an adapted literature procedure12 by
employing Co(OAc)2·4(H2O) and NEt3 under aerobic
conditions to afford [Co6(DPP2−)] as a purple powder in 88%
isolated yield.

Slow evaporation of a concentrated solution of DPPH3 in
CH2Cl2 afforded single crystals suitable for X-ray structure
determination (Scheme 1B). Single crystals suitable for XRD
analysis of [Co6(DPP2−)] were also obtained in a similar
manner. The molecular structure of the latter is depicted in
Scheme 1C and shows a slightly distorted square planar
geometry around cobalt. This distortion is most likely caused
by steric repulsion between the ortho-tert-butyl substituents on
the phenolate rings. Comparison of the bond lengths in
[Co6(DPP2−)] with those found in the fully aromatic DPPH3 liga-
d shows alternating elongation and shortening of the C–C
bond lengths (see SI), consistent with loss of aromaticity due
to oxidation of the DPP ligand in the complex. The bond
lengths are similar to a previously described DPP ligand in the
dianionic (radical) state on cobalt(II),12 thus supporting the
proposed DPP2− oxidation state of the ligand. The two
2-pyryllylphenolato fragments in [Co6(DPP2−)] have similar
sand bonds, indicating a fully conjugated ligand and a
delocalized ligand-centered radical coordinated to a cobalt(II)
center in the neutral [Co6(DPP2−)] complex.19

1H NMR analysis of [Co6(DPP2−)] in CD2Cl2 showed two
remarkably down-field shifted resonances at δ = 12.82 (2H)
and 4.29 (18H) ppm. Note that these signals are observed at
(respectively) δ = 7.03 and 1.54 ppm in DPPH3. All other
resonances are shifted <1 ppm relative to the free ligand.
These unusual shifts are suggestive of (minor) paramagnetic
contributions to the observed chemical shift in the 1H NMR
spectrum, which seems to correlate with the experimentally
determined bond lengths from XRD that suggest a ligand-
centered radical (DPP2−) and consequently a cobalt(II)
(radical) center. However, whether these apparent
paramagnetic contributions are best explained by an open-
shell singlet ground state (with temperature independent
paramagnetism, TIP) or as the result of population of an
excited higher spin-multiplicity state (either thermally or
induced by weak and dynamic coordination of CD2Cl2) is
unclear at this stage. Nonetheless, these shifts are noteworthy.

Measurement of the effective magnetic moment (µeff) of
[Co6(DPP2−)] in the solid state as a function of the
temperature with a superconducting quantum interference
device (SQUID), to investigate the coupling of the two
unpaired electrons, showed no significant magnetization in the
5–290 K range (see SI). The effective magnetic moment in
CD2Cl2 solution, as determined by Evans’ method,20 also
afforded a µeff of 0.2 µB. The combined XRD, NMR
spectroscopic and magnetoochemical data thus indicate a
diamagnetic ground state, resulting from strong
antiferromagnetic coupling of the two unpaired electrons,
yielding an overall (open-shell) S = 0 singlet spin state.

To study the electronic structure we initially performed
DFT calculations at the B3LYP/def2-SVP/B3LYP/def2-
TZVP level of theory, employing an m4 grid and Grimme’s
version 3 dispersion corrections (see SI for more details).
The calculated bond metrics for [Co6(DPP2−)] in the open-shell
singlet state closely resemble those found in the crystal
structure (see SI) and show similar alternating C–C bond
lengths, consistent with oxidation of the ligand to the
DPP2−-redox state. The relative energies of the open-shell singlet
(ΔG298K = +1.3 kcal mol−1), triplet (ΔG298K = 0.0 kcal mol−1)
and closed-shell singlet (ΔG298K = +14.8 kcal mol−1) are
consistent with the proposed open-shell (bi-radical) character of
[Co6(DPP2−)], but fail to reproduce the experimentally
observed (open-shell) singlet spin state being the ground state
of the molecule.
Distinguishing between a triplet and a multireference broken-symmetry singlet (BSS) electronic structure is (nearly) impossible when relying on single reference DFT calculations.21 We therefore investigated the electronic structure of \([\text{Co}^6(\text{DPP}²^-)]\) with multiconfigurational \(N\)-electron valence state perturbation theory (NEVPT2)-corrected complete active space self-consistent field (CASSCF) calculations (see SI), a method we have previously used successfully to study the orbitals compositions of cobalt complexes bearing a redox-active ligand.22 A NEVPT2-CASSCF(18,14) calculation, employing 18 electrons in 14 active orbitals on \([\text{Co}^6(\text{DPP}²^-)]\) converged on the singlet surface and showed a dominant (>96%) contribution from a multireference open-shell singlet (OSS) electronic configuration of \([\text{Co}^6(\text{DPP}²^-)]\). A pure triplet spin state solution could not be found in this, nor in a reduced, active space. State averaging of the singlet and triplet state in a 50:50 mixture in the active space did afford a solution for the triplet spin state, but this triplet state was found to be +6.5 kcal mol\(^{-1}\) less stable than the OSS state.

A selection of the active orbitals and their occupations derived from the NEVPT2-CASSCF(18,14) calculation on \([\text{Co}^6(\text{DPP}²^-)]\) is depicted in Scheme 1D. The \(d_{yz}\) and \(d_{xz}\) orbitals are doubly filled, whereas the \(d_{x^2−y^2}\) orbital is empty. The two main contributors to the multireference OSS solution are described by the \(d_{xy}\) orbital, which has a bonding and antibonding combination with the \(\pi\)-frame of the ligand (\(L^2\) or \(L^−_2\)) or is non-bonding (\(d_{xy}\)).

Specifically, 50.6% of the total wavefunction is described by a doubly filled \(L^2\) orbital (and empty \(d_{xy}\)), while 45.5% of the wavefunction is described by a doubly filled \(d_{xy}\) (and empty \(L^−_2\) orbital). The electronic structure of \([\text{Co}^6(\text{DPP}²^-)]\) is thus best described as an open-shell singlet based on the combined experimental (XRD, \(\^1\text{H NMR}, \mu_{eff}\)) and computational (NEVPT2-CASSCF) studies. Effectively, one unpaired electron resides in the \(d_{xy}\) orbital on cobalt and another unpaired electron is fully delocalized over the ligand with a small contribution from the \(d_{x^2−y^2}\) orbital on cobalt. As such, this complex is best described as a system containing antiferromagnetically coupled cobalt(II)- and \(\text{DPP}²^-\) ligand-centered unpaired electrons.

Spin-flip to a triplet state upon coordination of THF to \([\text{Co}^6(\text{DPP}²^-)]\) to generate \([\text{Co}^5(\text{DPP}²^-)(\text{THF})]\). Whereas \([\text{Co}^6(\text{DPP}²^-)]\) is purple in non-coordinating solvents (CH\textsubscript{3}Cl, toluene) we noticed a distinct color change to green upon solvation of the complex in coordinating solvents (CH\textsubscript{3}Cl, MeCN), indicative of solvent coordination. The UV-Vis spectra of \([\text{Co}^6(\text{DPP}²^-)]\) in THF (solid green line, \(\lambda_{\text{max}} = 318, 409, 423, 474, 632 \text{ and } 833 \text{ nm}\)) and CH\textsubscript{3}Cl (solid purple line, \(\lambda_{\text{max}} = 326, 374, 556 \text{ and } 755 \text{ nm}\)) are shown in Figure 2 left. Titration of THF (guest) to a CH\textsubscript{3}Cl solution of \([\text{Co}^6(\text{DPP}²^-)]\) (host) afforded spectral changes in the UV-Vis spectra characteristic for multiple binding events (see Figure 2 left and SI). Isosbestic points are found in two regimes; between 0 and 1.3\times10\(^4\) eq. THF (solid purple to solid light green line, \(\lambda = 413, 488, 600, 667, 771 \text{ nm}\)) and between 5.2\times10\(^4\) and 1.4\times10\(^5\) eq. THF (solid orange to solid brown line, \(\lambda = 393, 489, 593, 679, 776 \text{ nm}\)). Between these two regimes the spectral crossing points are found between the isosbestic points, suggestive of the simultaneous presence of three species.
The titration data could be fitted\(^\text{23}\) to weak non-cooperative host-guest-guest binding with an overall association constant \((K_{as})\) of 1.2 M\(^{-1}\) for binding of two THF molecules (see SI). The data is therefore consistent with initial (predominant) formation of a mono-THF adduct (first regime), followed by formation of a bis-THF adduct (second regime, see SI). Full conversion to this latter species is not reached at the end of the depicted titration curve (brown solid line, Figure 2 left), and is only observed in neat THF (solid green line, Figure 2 left), as indicated by the increased absorbance of various spectral bands and the shoulder at 474 nm. Similar mono- and bis-coordination of solvent has been described in literature for related Co-DPP complexes,\(^\text{18}\) and in combination with the titration data in Figure 2 we thus propose formation of a bis-THF adduct \((\text{[Co}^{III}\text{DPP}^2\text{]}\text{(THF)}_2)\) in neat THF (Scheme 2).

To further study the coordination of THF to \([\text{Co}^{III}\text{DPP}^2\text{]}\) we followed the spectral changes in the \(^1\text{H}^\text{NMR}\) spectrum upon addition of THF to a 5.89 mM CD\(_2\)Cl\(_2\) solution of \([\text{Co}^{III}\text{DPP}^2\text{]}\) (Figure 2 right). The presence of 1.1, 2.0 or 3.8 M THF (spectra B, C, D) led to signal broadening and gradual downshifting of one resonance (labelled as a red circle), while three other resonances (labelled as a blue square, orange triangle and yellow diamond) are strongly shifted upfield, approaching the shifts observed in neat THF-\(d_8\) (spectra E). The observed sharp paramagnetically shifted resonances in the \(-65\) to \(+45\) ppm region in neat THF-\(d_8\) clearly indicate conversion toward a new open-shell species. Interestingly, concentrating and thoroughly drying the sample obtained in neat THF-\(d_8\), followed by dissolution in CD\(_2\)Cl\(_2\) afforded a purple solution for which the spectral data (\(^1\text{H}^\text{NMR}, \text{UV-Vis}\)) exactly matched that of \([\text{Co}^{III}\text{DPP}^2\text{]}\) (spectrum F). These combined data thus point to weak and reversible binding of THF to the square planar complex, consistent with the low \(K_{as}\) as derived from the UV-Vis spectroscopic titration study.

No THF adducts were observed by high resolution mass spectrometry (HRMS), presumably due to the reversible weak binding and low boiling point of THF, which is likely easily lost in the ionization process. Attempts to crystallize a THF adduct of \([\text{Co}^{III}\text{DPP}^2\text{]}\) were unfortunately unsuccessful. Determination of the effective magnetic moment of \([\text{Co}^{III}\text{DPP}^2\text{]}\text{(THF)}_2\) in THF-\(d_8\) by Evans’ method\(^\text{20}\) afforded \(\mu_{eff} = 2.91\ \mu_B\), indicating the formation of a triplet \((S = 1)\) complex.

DFT calculations (B3LYP/def2-SVP/B3LYP/def2-TZVP, m4 grid, Grimme’s version 3 dispersion corrections) indicated that both the square pyramidal mono-THF adduct \((\text{[Co}^{III}\text{DPP}^2\text{]}\text{(THF)}\)) and the octahedral bis-THF complex \((\text{[Co}^{III}\text{DPP}^2\text{]}\text{(THF)}_2)\) have a triplet spin \((S = 1)\) ground state, consistent with the experimentally determined spin state. To obtain more insight in the electronic structure of \([\text{Co}^{III}\text{DPP}^2\text{]}\text{(THF)}_2\) and to investigate possible multireference contributions to the ground-state wavefunction, we performed NEVPT2-CASSCF\((18,15)\) calculations on the singlet, triplet and quintet spin surfaces. The triplet state was again found to be the lowest in energy, with the (open-shell) singlet and quintet states being disfavoured by \(+32.2\) kcal mol\(^{-1}\) and \(+33.0\) kcal mol\(^{-1}\), respectively. Dominant multireference character was observed in the triplet spin state, leading to an interesting electronic structure wherein cobalt retains the +II oxidation state and is ferromagnetically coupled to a ligand-centered radical on the DPP\(^{2-}\) ligand (Figure 3).

With the \(d_{xy}, d_{xz}\) and \(d_{yz}\) orbitals on cobalt doubly filled, the unpaired (and uncorrelated) \(\alpha\)-spin electron on cobalt resides in the \(d_{xy}\) orbital (Figure 3). The other \(\alpha\)-spin electron mainly resides in the strongly correlated antibonding combinations of the \(d_{x^2-y^2}\) orbital with the ligand pyrrole \(\pi\)-framework \((d_{x^2-y^2} \rightleftharpoons \text{Pyr}\) \(L_{\alpha}, -0.26254\ \text{Eh}, 46.1\% \) only \(\alpha\)-spin, 1.51 total electron occupation\) and the complete ligand \(\pi\)-system \((L_{\alpha\beta} \rightleftharpoons \text{Pyr}\) \(L_{\beta}, 0.20887\ \text{Eh}, 34.9\% \) only \(\alpha\)-spin, 1.59 total electron occupation\).\(^\text{24}\) The energetically slightly higher lying \(L_{\alpha\beta}\)
orbital is more diffuse over the ligand π-system, thus leading to a smaller electron-electron repulsive interaction (i.e. pairing energy of the α and β spin electrons) upon filling of this orbital in comparison to the more localized (less diffuse) \(d_{xy} \) orbital. Consequently, in the multiconfigurational description of the total triplet spin state wavefunction, the ligand-centered unpaired electron is mainly (46.1%) localized on the least diffuse orbital (\(d_{xy} \)).

The spin-flip in the transition from \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}](\text{OSS})\) to \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}](\text{THF})_2\) (triplet) can be understood by looking at the composition of the SOMOs. The α- and β-spin electrons in \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}]\) are located in \(d_{xy} \) orbitals \((d_{xy} \text{ and } L_{xy} \pm d_{xy}) \). A triplet state would lead to severe (α) spin-spin repulsion in this cobalt-centered orbital, and consequently an OSS solution is favoured. This is not the case for \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}](\text{THF})_2\), wherein the two unpaired electrons reside in spatially different orbitals \((d_{x^2} \text{ and } d_{y^2}-d_{z^2}) \). In this case Hund’s rule applies, which states that the maximization of the total spin is favored for a given electronic configuration, thus leading to the observed triplet spin state.

Figure 3. Selected active orbitals, occupancies in parenthesis and electronic structure of cobalt and the ligand from a NEVPT2-CASSCF(18,15) calculation on \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}](\text{THF})_2\). Isosurface set at 80.

Closed-shell singlet spin state via metal-to-ligand single-electron transfer induced by coordination of stronger donors. We next set out to explore the influence of replacing the weak-field ligand THF with the stronger field ligand pyridine. Addition of excess (100 eq.) pyridine to \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}]\) in CH\(_2\)Cl\(_2\) afforded quantitative formation of the bis-pyridine adduct \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}](\text{Py})_2\) as a green powder after work-up (Scheme 3A). The six-coordinate complex was characterized **inter alia** by \(^1\)H NMR spectroscopy and positive mode cold-spray ionization (CSI) HRMS. Single crystals suitable for X-ray structure determination were grown by slow evaporation of a concentrated solution of the complex in a 5:1 mixture of CH\(_2\)Cl\(_2\) and MeOH. Three octahedral \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})_2\) complexes are present in the unit cell (see SI), one of which (left structure) is depicted in Scheme 3B. The bond metrics of all three \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})_2\) molecules are similar, although the relative rotation of the pyridine ligands differs from nearly parallel to perpendicular (see SI).

The experimentally determined C–C bond lengths of the DPP moiety (see SI) in the crystal structure of \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})_2\) resemble the aromaticity that is also observed in the free DPPH\(_1\) ligand, thus suggesting a fully reduced tri-anionic DPP\(^3\)− redox state for the ligand and consequently a cobalt(III) center in the neutral complex. The \(^1\)H NMR resonances of \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})_2\) do not show any paramagnetic shifts and are found entirely in the diamagnetic region (\(δ = 8.04-1.25 \) ppm), suggesting a closed-shell singlet electronic configuration, i.e. a low-spin Co\(^{III}\) center. SQUID analysis of solid \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})_2\) did not show significant magnetization in the 4–290 K range, again consistent with a singlet ground state (see SI).

DFT calculations (B3LYP/def2-SVP//B3LYP/def2-TZVP, m4 grid, Grimme’s version 3, dispersion corrections) indicated that formation of the closed-shell singlet octahedral bis-pyridine \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})_2\) complex is more exergonic (\(\Delta G^\circ_{298K} = -14.2 \) kcal mol\(^{-1}\)) than formation of the square pyramidal mono-pyridine adduct \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})\) (\(\Delta G^\circ_{298K} = -9.1 \) kcal mol\(^{-1}\), \(S = 1 \)). Orbital analysis clearly showed that coordination of pyridine in \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})_2\) (Scheme 3C) leads to a strongly destabilized \(d_{x^2} \) orbital \((d_{x^2}-2N_{\text{Py}}) \), resulting in a quite large HOMO (highest occupied molecular orbitals) to LUMO (lowest unoccupied molecular orbital) gap of 0.10346 Eh, and therefore a low-spin (CSS) configuration. The \(L_{x^2}-d_{xy} \) (HOMO) is doubly filled, reflecting the reduction of the ligand to the DPP\(^2\)− state. Cobalt adopts the +III oxidation state in \([\text{Co}^{	ext{III}}\text{DPP}^2\text{−}](\text{Py})_2\) with doubly filled \(d_{3z^2}, d_{xy} \) and \(d_{yz} \) orbitals, which are stabilized due to the higher oxidation state of cobalt in comparison to \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}])\). Thus, pyridine coordination effectively results in ligand reduction via metal-to-ligand single-electron transfer. Interestingly, interaction of the pyridine-π system with the \(d_{y^2} \) orbital is observed in the \(d_{y^2}-2N_{\text{Py},y^2} \) orbital, reflecting at least some π-back donation from cobalt to the pyridine ligands.

Coordination of pure σ-donors was achieved via addition of the primary amines tert-butyl amine and 1-adamantyl amine. Complex \([\text{Co}^{	ext{II}}\text{DPP}^3\text{−}](\text{NH}_2\text{Bu})_2\) was obtained in quantitative yield as a green powder through addition of 100 equivalents \(\text{BuNH}_2 \) to \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}]) \) and subsequent concentration and drying under reduced pressure (Scheme 4A). \([\text{Co}^{	ext{II}}\text{DPP}^3\text{−}](\text{NH}_2\text{Ad})_2\) (Ad = 1-adamantyl) was obtained in 43% yield as green crystals after addition of 2 equivalents \(\text{AdNH}_2 \) to \([\text{Co}^{	ext{II}}\text{DPP}^2\text{−}]) \) and subsequent crystallization.
Scheme 3. A: formation of [CoIII(DPP$^-$)(Py)$_2$]. B: Displacement ellipsoid plot (50% probability level) of one [CoIII(DPP$^-$)(Py)$_2$] molecule. H atoms and disorder are omitted for clarity. D: Selection of DFT calculated orbitals and electronic structure of cobalt and the ligand in [CoIII(DPP$^-$)(Py)$_2$]. Isosurface set at 80.

Scheme 4. A: formation of [CoIIII(DPP$^-$)(NH$_2$Bu)$_2$] and [CoIIII(DPP$^-$)(NH$_2$Ad)$_2$]. Ad = 1-adamantyl. B: Displacement ellipsoid plot (50% probability level) of [CoIIII(DPP$^-$)(NH$_2$Ad)$_2$]. C: Displacement ellipsoid plot (50% probability level) of [CoIIII(DPP$^-$)(NH$_2$Bu)$_2$]. H atoms and disorder are omitted for clarity.

The 1H NMR resonances of [CoIIII(DPP$^-$)(NH$_2$Bu)$_2$] and [CoIIII(DPP$^-$)(NH$_2$Ad)$_2$] are similar to the bis-pyridine adduct, found within the diamagnetic region, suggesting that both complexes are most stable in the CSS spin state. Crystals suitable for X-ray structure determination of both complexes were obtained by slow evaporation of concentrated solutions in CH$_2$Cl$_2$ and MeOH (5:1) at room temperature. The C–C and Co–DPP bond lengths obtained from the crystal structure of
[CoIII(DPP3+)(NH\textsubscript{2}Ad)\textsubscript{2}] (Scheme 4B) closely resemble those found in [CoIII(DPP3+)(Py)\textsubscript{2}] and are consistent with a fully reduced (3–) redox state of the DPP ligand and consequently a cobalt(III) center. The crystallographically independent molecules of [CoIII(DPP3+)(NH\textsubscript{2}Bu)\textsubscript{2}] found in the asymmetric unit (see SI) have mutually similar bond metrics, which are also comparable to those observed in [CoIII(DPP3+)(NH\textsubscript{2}Ad)\textsubscript{2}]. One molecule found in the crystal structure of [CoIII(DPP3+)(NH\textsubscript{2}Bu)\textsubscript{2}] is depicted in Scheme 4C.

The DFT (B3LYP/def2-SVP//B3LYP/def2-TZVP, m4 grid, Grimme’s version 3, dispersion corrections) calculated bond lengths of [CoIII(DPP3+)(NH\textsubscript{2}Bu)\textsubscript{2}] in the CSS spin state are consistent with the experimentally determined bond metrics (see SI). Moreover, the corresponding triplet spin state was found to be +4.0 kcal mol-1 less stable. DFT orbital analysis of [CoIII(DPP3+)(NH\textsubscript{2}Bu)\textsubscript{2}] (Figure 4) shows a destabilized empty d\textsubscript{xy} orbital due to coordination of the rBuNH\textsubscript{2} lone σ-pair (N\textsubscript{a,\text{r}}). However, bonding interactions of these lone pairs with the d\textsubscript{yz} and d\textsubscript{zx} orbitals are observed in the doubly filled d\textsubscript{yz}+2N\textsubscript{a,\text{r}} and d\textsubscript{zx}+2N\textsubscript{a,\text{r}} orbitals. The d\textsubscript{xy}, d\textsubscript{xz}, and d\textsubscript{y} orbitals are all doubly filled, consistent with a low-spin cobalt(III) electronic configuration formed after metal-to-ligand single electron transfer.

The electronic ground state of [Co0(DPP2−)] is characterized as a multiconfigurational open-shell singlet, which is best described as a system containing antiferromagnetically coupled cobalt(II)- and ligand-centered unpaired electrons. Solvation of this complex in THF (sp3-hybrid donor) affords clean formation of a THF-adduct, [Co0(DPP2−)(THF)]\textsubscript{2}, which resides in the triplet spin state. The origin of this spin-flip is the orbital overlap of the redox-active ligand π-framework with the cobalt d-orbitals, which leads to population of two ligand-d\textsubscript{d\textsuperscript{z2}} orbital combinations in a multiconfigurational triplet solution to reduce spin-spin repulsion. Coordination of pyridine (σ-donor, weak π-acceptor), rBuNH\textsubscript{2} or AdNH\textsubscript{2} (σ-donors) afforded the closed-shell singlet octahedral complexes via metal-to-ligand single-electron transfer. The redox-active DPP ligand is reduced to the tri-anic anionic redox state and cobalt adopts a low-spin +III oxidation state.

Concluding, we have described that a redox-active DPP ligand on cobalt can accommodate three different spin states of the complex within an integer spin system. The spin-state changes are induced via coordination of axial ligands to the square planar complex, but the relative energy and overlap of the ligand- and cobalt-centered orbitals determine the most stable spin state. The capability of the redox-active ligand to stabilize unpaired electrons and accommodate intramolecular electron transfer was found to be crucial in this context.

EXPERIMENTAL SECTION

General considerations. All reagents were of commercial grade and used without further purification, unless noted otherwise. All reactions were performed under an inert atmosphere in a N\textsubscript{2} filled glovebox or by using standard Schlenk techniques (under Ar or N\textsubscript{2}), unless noted otherwise. CH\textsubscript{3}Cl\textsubscript{2} and MeOH were distilled from CaH\textsubscript{2}, toluene was distilled from sodium, THF was distilled from sodium benzophenone ketyl. Detailed information regarding NMR, HRMS, UV-Vis, SQUID and XRD measurements are included in the SI. XRD and DFT derived bond lengths are also included in the SI. The magnetic moments in solution were determined via Evans’ method20.

Synthesis and characterization

DPPH\textsubscript{3}. Synthesized in four steps (overall isolated yield 65%) according to adapted literature procedures8,10 Characterized by 1H and 19F NMR, HRMS-FD+, elemental analysis and XRD (see SI).

[Co0(DPP2−)]. Prepared in 88% isolated yield according to a literature procedure for the insertion of cobalt in a DPP ligand12 Characterized by 1H and 19F NMR, HRMS-FD+, UV-Vis, elemental analysis, \(\mu\text{eff} (\text{Evans’ method and SQUID})\) and XRD (see SI).

[Co0(DPP2−)(THF)]\textsubscript{2}. Quantitatively prepared by solvation of [Co0(DPP2−)] in THF. Characterized by 1H NMR, \(\mu\text{eff} (\text{Evans’ method})\) and UV-Vis (see SI).

[Co0(DPP2−)(Py)\textsubscript{2}]. Obtained in quantitative isolated yield by addition of pyridine (100 eq.) to a solution of [Co0(DPP2−)] in CH\textsubscript{3}Cl\textsubscript{2}. Characterized by 1H and 19F NMR, HRMS-CSI+, UV-Vis, elemental analysis, \(\mu\text{eff} (\text{SQUID})\) and XRD (see SI).

[Co0(DPP3+)(NH\textsubscript{2}Bu)\textsubscript{2}]. Obtained in quantitative isolated yield by addition of rBuNH\textsubscript{2} (100 eq.) to a solution of...
[Co⁹⁹(DPP)₃⁺] in CH₂Cl₂. Characterized by ¹H and ¹⁹F NMR, HRMS-CI, UV-Vis and XRD (see SI).

[Co⁹⁹(DPP)⁺(NH₃Ad)₂]. Obtained in 43% isolated yield by addition of AdNH₂ (2.0 eq.) to a solution of [Co⁹⁹(DPP)₃⁺] in CH₂Cl₂. Characterized by ¹H and ¹⁹F NMR, HRMS-CI, UV-Vis and XRD (see SI).

Computational studies

DFT. Calculations were conducted on full atomic models at the B3LYP/def2-SVP/°/B3LYP/def2-TZVPP level of theory on an m₄ grid with Grimme’s version 3³⁸ ("zero-damping") dispersion corrections with the TURBOMOLE 7.3²⁹ software package coupled to the PQQ2 Baker optimizer³⁰ via the BOpt package.³¹ Orbital interpretation was performed by Löwdin population analysis of quasi restricted orbitals (QRO) generated with the ORCA 4.1.³² software package at the B3LYP/def2-TZVP level, using the coordinates from the structures optimized in TURBOMOLE as the input and using the UNO keyword. Graphical representations of orbitals were generated using IboView.³³ Energies, xyz coordinates and more details on the calculations are included in the SI.

NEVPT2-CASSCF. The NEVPT2 corrected CASSCF calculations were performed with the ORCA 4.1.³³ software package on the geometries optimized in TURBOMOLE. The def2-TZVPP basis set was used together with the RIJCOSX³⁴ approximation in conjunction with the def2-TZVPC fitting basis set to reduce computational cost. The single root spin state was calculated. NEVPT2³⁵ calculations using the RI approximation were carried out on converged CASSCF wavefunctions. Energies, contributions to the wavefunctions, full representations of the active spaces and more details on the calculations are included in the SI.

ASSOCIATED CONTENT

Supporting Information. Experimental details, synthetic procedures, NMR-, HRMS- and UV-Vis spectra, crystallographic refinement details, geometries (xyz coordinates) and energies of DFT calculated structures, description of the NEVPT2-CASSCF calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

Accession Codes

CCDC 2012086 (DPPH), 2012087 ([Co⁹⁹(DPP)₃⁺]), 2012088 ([Co⁹⁹(DPP)⁺(Py)_₂]), 2012089 ([Co⁹⁹(DPP)⁺(NH₃Bu)_₂]) and 2012090 ([Co⁹⁹(DPP)⁺(NH₃Ad)_₂]) contain the supplementary crystallographic data and can be obtained free of charge via http://
https://www.ccdc.cam.ac.uk/structures/.

AUTHOR INFORMATION

Corresponding Author

* Email: b.debruin@uva.nl

Present Addresses

¹ Current address of J.I.v.d.V.: Bioinspired Coordination Chemistry & Homogeneous Catalysis Group, Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany.

Author Contributions

All authors have given approval to the final version of the manuscript.

Funding Sources

This research was funded by The Netherlands Organization for Scientific Research (NWO) TOP-Grant 716.015.001 to B.d.B.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

Financial support from The Netherlands Organization for Scientific Research (NOW TOP-Grant 716.015.001) to B.d.B. and the research area Sustainable Chemistry of the University of Amsterdam (RPA SuSchem, UvA) is gratefully acknowledged. Dr. Eckhard Bill (MPI CEC) is acknowledged for SQUID measurements and related discussions. Ed Zuidinga is thanked for HRMS measurements and Tessel Bouwens is thanked for valuable discussions regarding the UV-Vis titration data.

REFERENCES

(1) Likhtenshtein, G. I. Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation. Electron Spin Interactions in Chemistry and Biology; Springer International Publishing, 2016.

(2) Molecular Magnets Recent Highlights; Linert, W.; Verdaguer, M. Eds.; Springer International Publishing, 2003.

(3) Wolf, S. A.; Awshalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chichilianne, A. Y.; Treger, D. M. Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 5546, 1488–1495.

(4) Dzik, W. I.; Böhmer, W.; de Bruin, B. In Spin States in Biochemistry and Inorganic Chemistry: Influence on Structure and Reactivity; Swart, M.; Costas, M., Eds.; Wiley, 2015; pp 103–130.

(5) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 5th ed.; John Wiley & Sons, Inc.: Hoboken, 2009.

(6) (a) Lyaskovskyy, V.; de Bruin, B. Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2, 270–279. (b) van Leest, N. P.; Epping, R. F. J.; van Vliet, K. M.; Lankelma, M.; van den Heuvel, E.; Heijbrink, N.; Broersen R.; de Bruin, B. In Advances in Organometallic Chemistry; Pérez, P. J.; Stone, F. G. A.; West, R., Eds.; Elsevier, 2018; Vol. 70, pp 71–180.

(c) Broere, D. L. J.; Plessius R.; van der Vlugt, J. I. New avenues for ligand-mediated processes – expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. Chem. Soc. Rev. 2015, 44, 6866–6915. (d) van der Vlugt, J. I. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chem. Eur. J. 2019, 25, 5621–5662.

(7) Bloom S. M.; Garcia, P. P. U.S. Pat. 3691161, 1972.

(8) Ikeda, C.; Ueda, S.; Nabeshima, T. Aluminium complexes of N₂O-type dipyrrins: the first hetero-multinuclear complexes of metallo-dipyrrins with high fluorescence quantum yields. Chem. Commun. 2009, 2544-2546.

(9) Sumiyoshi, A.; Chiba, Y.; Matsouka, R.; Noda, T.; Nabeshima, T. Efficient luminescent properties and cation recognition ability of heavy group 13 element complexes of N₂O- and N₂O-type dipyrrins. Dalton Trans. 2019, 49, 13169–13175.

(10) Nakano, K.; Kobayashi, K.; Nozaki, K. Tetravalent Metal Complexes as a New Family of Catalysts for Copolymerization of Epoxides with Carbon Dioxide. J. Am. Chem. Soc. 2011, 133, 10720–10723.

(11) (a) Rausaria, S.; Kamadulis, A.; Ruth, N. P.; Byant, L.; Chen, Z.; Salvemini, D.; Neumann, W. L. Manganates(Ill) Complexes of Bis(hydroxyphenyl)dipyrromethenones Are Potent Orally Active Peroxynitrite Scavengers. J. Am. Chem. Soc. 2011, 133, 4200–4203. (b) El Ghachoui, S.; Wójcik, K.; Copey, L.; Szdylo, F.; Frayer, E.; Goux-Henry, C.; Billon, L.; Charlot, M.-F.; Guillot, R.; Andriotto, B.; Aukauloo, A. Dipyrrinophenol–Mn(II) complex: synthesis, electrochemistry, spectroscopic characterisation and reactivity. Dalton Trans. 2011, 40, 9090–9093.
(12) Kochem, A.; Chiang, L.; Baptiste, B.; Philouze, C.; Leconte, N.; Jarayes, O.; Storr, T.; Thomas, F. Ligand-Centered Redox Activity in Cobalt(II) and Nickel(II) Bis(phenolate)-Dipyrin Complexes. Chem. Eur. J. 2012, 18, 14590–14593.

(13) Lecarme, L.; Chiang, L.; Moutet, J.; Leconte, N.; Philouze, C.; Jarayes, O.; Storr, T.; Thomas, F. The structure of a one-electron oxidized Mn(III)-bis(phenolate)dipyrin radical complex and oxidation catalysis control via ligand-centered redox activity. Dalton Trans. 2016, 45, 16325–16334.

(14) Yamamura, M.; Takizawa, H.; Gobo, Y.; Nabeshima, T. Stable neutral radicals of planar N₂O₂-type dipyrin platinum complexes: hybrid radicals of the delocalized organic π-orbital and platinum d-orbital. Dalton Trans. 2016, 45, 6832–6838.

(15) Lecarme, L.; Kochem, A.; Chiang, L.; Moutet, J.; Berthiol, F.; Philouze, C.; Leconte, N.; Storr, T.; Thomas, F. Electronic Structure and Reactivity of One-Electron-Oxidized Copper(II) Bis(phenolate)-Dipyrin Complexes. Inorg. Chem. 2018, 57, 9708–9719.

(16) Thomas, K. E.; Desbois, N.; Conradie, J.; Teat, S. J.; Gros, C. P.; Ghosh, A. Gold dipyrin-bisphelenolates: a combined experimental and DFT study of metal–ligand interactions. RSC Adv. 2020, 10, 533–540.

(17) Fung, Y.; Bums, L. A.; Lee, L.-C.; Sherril, C. D.; Jones, C. W.; Murdock, C. Co(III) complexes of tetradsate X: type ligands: Synthesis, electronic structure, and reactivity. Inorg. Chem. Acta 2015, 450, 30–35.

(18) Shan, W.; Desbois, N.; Pacquelet, S.; Brandes, S.; Rousselin, Y.; Conradie, J.; Ghosh, A.; Gros, C. P.; Kadish, K. M. Ligand Noninnocence in Cobalt Dipyrin-Bisphelenols: Spectroscopic, Electrochemical, and Theoretical Insights Indicating an Emerging Analogy with Corroles. Inorg. Chem. 2019, 58, 7677–7689.

(19) Two-electron oxidation of the DPP ligand to DPP⁺ is highly unlikely to be stable on a cobalt(I) center. Furthermore, the DPP⁻ oxidation state is also evident from ²H NMR analysis due to two downshifted resonances and was also consistent with the NEVPT2-CASSCF calculations.

(20) (a) Evans, D. F. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 1959, 2003–2005. (b) Deutsch, J. L.; Poling, S. M. The determination of paramagnetic susceptibility by NMR: A physical chemistry experiment. J. Chem. Educ. 1969, 46, 167–168. (c) Piguet, C. Paramagnetic Susceptibility by NMR: The "Solvent Correction" Removed for Large Paramagnetic Molecules. J. Chem. Educ. 1997, 74, 815–816. (d) Sur, S. K. Measurement of magnetic susceptibility and magnetic moment of paramagnetic molecules in solution by high-field fourier transform NMR spectroscopy. J. Magn. Reson. 1989, 82, 169–173. (e) Grant, D. H. Paramagnetic Susceptibility by NMR: The "Solvent Correction" Reexamined. J. Chem. Educ. 1995, 72, 39. (f) Homam, J. I. Effective magnetic moment. J. Chem. Educ. 1972, 49, 505. (g) Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascal's Constants. J. Chem. Educ. 2008, 85, 532–536.

(21) Cramer, C. J. Essentials of Computational Chemistry: Theories and Models, 2nd ed; John Wiley & Sons Ltd: West Sussex, U.K., 2004; pp 205–210.

(22) (a) van Leest, N. P.; Tepaske, M. A.; Oudsen, J.-P. H.; Venderbosch, B.; Rietdijk, N. R.; Siegler, M. A.; Tromp, M.; van der Vlugt, J. I.; de Bruin, B. Ligand Redox Noninnocence in [Co(II)(TAML)]³⁻ Complexes Affects Nitrene Formation. J. Am. Chem. Soc. 2020, 142, 552–563. (b) van Leest, N. P.; Tepaske, M. A.; Venderbosch, B.; Oudsen, J.-P. H.; Tromp, M.; van der Vlugt, J. I.; de Bruin, B. Electronically Asynchronous Transition States for C–N Bond Formation by Electrophilic [Co(II)(TAML)]⁻ Nitrene Radical Complexes Involving Substrate-to-Ligand Single-Electron Transfer and a Cobalt-Centered Spin Shuttle. ACS Catal. 2020, 10, 7449–7463.

(23) Fitted with http://limhes.net/optim/ (accessed June 2, 2020) according to a HGG model with a cooperativity parameter of 1.

(24) The larger occupation number for the energetically higher correlated orbital is sometimes described as a HOMO-SOMO inversion or a non-Aufbau orbital configuration. This is however, to at least in our case, purely caused by the increased electron-electron repulsion (i.e. destabilization) upon double filling of the orbital. See: (a) Kumar, A.; Sevilla, M. D. SOMO–HOMO Level Inversion in Biologically Important Radicals. J. Phys. Chem. B. 2018, 122, 98–105. (b) Grym'ova, G.; Coote, M. L.; Corminboeuf, C. Theory and practice of uncommon molecular electronic configurations. WIREs Comput. Mol. Sci. 2015, 5, 440–459.

(25) Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F. Shriver & Atkins’ Inorganic Chemistry, 5th ed.; Oxford University Press: Oxford, U. K., 2010; pp 18–47.

(26) (a) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

(27) (a) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. (b) Weigend, F.; Haser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2: optimized basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998, 294, 143–152.

(28) Grimmie, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104–154119.

(29) TURBOMOLE Version 7.3; TURBOMOLE Gmbh, Karlsruhe, Germany, 2018.

(30) (a) P65 Version 2.4; Parallel Quantum Solutions, Fayetteville, AR, USA, 2001. (b) Baker, J. An algorithm for the location of transition states. J. Comput. Chem. 1986, 7, 385–395.

(31) Budzelaar, P. H. M. Geometry optimization using generalized, chemically meaningful constraints. J. Comput. Chem. 2007, 28, 2226–2236.

(32) Neese, F. The ORCA program system. Comput. Mol. Sci. 2012, 2, 73–78.

(33) Available at www.iboview.org. (a) Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013, 9, 4834–4843. (b) Knizia, G.; Klein, J. E. M. N. Electron Flow in Reaction Mechanisms: Revealed from First Principles. Angew. Chem. Int. Ed. 2015, 54, 5118–5122.

(34) Iszak, R.; Neese, F. An overlap fitted chain of spheres exchange method. J. Chem. Phys. 2011, 135, 144105–144111.

(35) (a) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, P.-J. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001, 114, 10252–10264. (b) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001, 330, 297–305. (c) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. N-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002, 117, 9138–9153.
TOC figure

SPIN FLIP
METAL-TO-LIGAND
SINGLE-ELECTRON TRANSFER
Electronic Supplementary Information

Ligand-Mediated Spin-State Changes in a Cobalt-Dipyrrin-Bisphenol Complex

Nicolaas P. van Leest,a Wowa Stroek,a Maxime A. Siegler,b Jarl Ivar van der Vlugtac and Bas de Bruina,a

a Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
b Department of Chemistry, John Hopkins University, Baltimore, Maryland 21218, United States.
c Bioinspired Coordination Chemistry & Homogeneous Catalysis Group, Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany.

General considerations S2
Synthesis and characterization S7
Complete Active Space Self Consistent Field Calculations S22
Density Functional Theory calculations S26
References in the Electronic Supplementary Information S39
General considerations

Chemicals and solvents

All reagents were of commercial grade and used without further purification, unless noted otherwise. All reactions were performed under an inert atmosphere in a \(\text{N}_2 \) filled glovebox or by using standard Schlenk techniques (under \(\text{Ar} \) or \(\text{N}_2 \)), unless noted otherwise. \(\text{CH}_2\text{Cl}_2 \) and \(\text{MeOH} \) were distilled from \(\text{CaH}_2 \), toluene was distilled from sodium, THF was distilled from sodium benzophenone ketyl.

NMR spectroscopy

\(^1\text{H}, ^{13}\text{C}, ^{19}\text{F} \) and \(^{31}\text{P} \) NMR spectra were recorded on a Bruker DRX 500, Bruker AMX 400, Bruker DRX 300 or Varian Mercury 300 spectrometer at room temperature, unless noted otherwise.

Mass spectrometry

CSI mass spectra were collected on an AccuTOF LC, JMS-T100LP Mass spectrometer (JEOL, Japan). The CSI apparatus features a liquid nitrogen cooling device to maintain the temperature of the capillary and spray itself between \(0 \) °C and \(-50 \) °C. Typical measurement conditions are as follows: Positive-ion mode; Needle voltage 2000V, Orifice 1 voltage 90V, Orifice 2 voltage 9V, Ring Lens voltage 22V. Orifice 300C, Desolvating Chamber \(30 \) °C, spray temperature \(-40 \) °C. FD Mass spectra were collected on an AccuTOF GC v 4g, JMS-T100GCV Mass spectrometer (JEOL, Japan). FD/FI probe (FD/FI) equipped with FD Emitter, Carbotec or Linden (Germany), FD 13 \(\mu \)m. Current rate 51.2 mA/min over 1.2 min. FI Emitter, Carbotec or Linden (Germany), FI 10 \(\mu \)m. Flashing current 40 mA on every spectra of 30 ms. Typical measurement conditions are: Counter electrode \(-10kV \), Ion source 37V.

UV-Vis spectroscopy

UV-Vis spectra were recorded on a Hewlett Packard 8453 or a double beam Shimadzu UV-2600 spectrometer in a 1.0 cm quartz cuvette.

Elemental Analysis

Was performed by Mikroanalytisches Laboratorium Kolbe (Oberhausen, Germany).

SQUID

Measured with a SQUID susceptometer (Quantum Design) 7T, 4K - 290K range and acquisition software MultiVu.

Single Crystal X-ray Crystallography

For \([\text{Co}^{II}(\text{DPP}^2)]\) and \([\text{Co}^{III}(\text{DPP}^3)(\text{NH}_2\text{Ad})_2]\): X-ray intensities were measured on a Bruker D8 Quest Eco diffractometer equipped with a Triumph monochromator (\(\lambda = 0.71073 \) Å) and a CMOS Photon 100 detector at a temperature of 150(2) K. Intensity data were integrated with the Bruker APEX2 software.\(^1\) Absorption correction and scaling was performed with SADABS.\(^2\) The structures were solved using intrinsic phasing with the program SHELXT.\(^3\) Least-squares refinement was performed with SHELXL-2013\(^4\) against \(F^2 \) of all reflections. Non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were
placed at calculated positions using the instructions AFIX 13, AFIX 43 or AFIX 137 with isotropic displacement parameters having values 1.2 or 1.5 times U_{eq} of the attached C atoms.

For DPPH$_3$, [CoIII(DPP3)(Py)$_2$] and [CoIII(DPP3)(NH$_2$Bu)$_2$]: all reflection intensities were measured at 110(2) K using a SuperNova diffractometer (equipped with Atlas detector) with Cu Kα radiation ($\lambda = 1.54178$ Å) under the program CrysAlisPro (Version CrysAlisPro 1.171.39c, Rigaku OD, 2017). The same program was used to refine the cell dimensions and for data reduction. The structures were solved with the program SHELXS-2018/3 (Sheldrick, 2018) and were refined on F^2 with SHELXL-2018/3 (Sheldrick, 2018). Analytical numeric absorption correction using a multifaceted crystal model was applied using CrysAlisPro. The temperature of the data collection was controlled using the system Cryojet (manufactured by Oxford Instruments). The H atoms were placed at calculated positions (unless otherwise specified) using the instructions AFIX 43, AFIX 137 or AFIX 147 with isotropic displacement parameters having values 1.2 or 1.5 U_{eq} of the attached C or O atoms. Crystal structures were visualized with the Mercury software package.

Accession codes: CCDC 2012086 (DPPH$_3$), 2012087 ([CoIII(DPP3)]), 2012088 ([CoIII(DPP3)(Py)$_2$]), 2012089 ([CoIII(DPP3)(NH$_2$Bu)$_2$]) and 2012090 ([CoIII(DPP3)(NH$_2$Ad)$_2$]) contain the supplementary crystallographic data and can be obtained free of charge via http://https://www.ccdc.cam.ac.uk/structures/.

Additional refinement details:

DPPH$_3$: The structure is mostly ordered. The H atoms attached to N1, N2, O1 and O2 were found from difference Fourier maps, and the coordinates were refined pseudofreely using the DFIX instruction in order to keep the N–H and O–H distances within some acceptable ranges. The disordered sets of H atoms (H1N1, H1O1, H1O2) and (H2N2, H2O1, H2O2) occur with equal probability. If N1 is protonated, then the H atom attached to O1 points away from N1, and the H atom attached to O2 points toward N2. If N2 is protonated, then the H atom attached to O2 points away from N2, and the H atom attached to O1 points toward N1.

[CoIII(DPP3)(Py)$_2$]: The asymmetric unit contains three crystallographically independent molecules of the target compound (labelled A, B and C). The structure is partly disordered. One –C$_8$F$_3$ group and one t-butyl group are found to be disordered over two orientations, and the occupancy factors of the major components of the disorder refine to 0.781(8) and 0.553(7), respectively. The asymmetric unit also contains some amount of lattice solvent molecules that are very disordered and most likely partially occupied. Their contribution has been removed using the SQUEEZE procedure in Platon.

[CoIII(DPP3)(NH$_2$Bu)$_2$]: The asymmetric unit contains three crystallographically independent molecules of the target compound (labelled A, B and C). The H atoms attached to N3X and N4X (X = A, B and C) were found from difference Fourier maps, and their coordinates were refined pseudofreely using the DFIX instruction in order to keep the N–H distances within an acceptable range. The structure is mostly ordered.
The structure contains some small amount of very disordered and/or partially occupied MeOH solvent molecules. In the final refinement, their contribution has been removed using the SQUEEZE procedure in Platon (Spek, 2009).

EPR spectroscopy

EPR spectra were recorded on a Bruker EMX X-band spectrometer equipped with a He cryostat. The spectra were analyzed and simulated using the W95EPR program of Prof. F. Neese (MPI Mülheim a/d Ruhr).

Magnetic moment measurements using Evans’ method

Magnetic moments were determined according to reported procedures by solvation of a known amount of the analyte in a known amount of deuterated solvent with an internal standard in an NMR tube. A capillary containing the deuterated solvent and internal standard was inserted in the NMR tube and a ¹H NMR spectrum was recorded. The mass susceptibility (χ in cm³g⁻¹) of the analyte was calculated with equation (1), wherein v_0 is the operating frequency of the NMR spectrometer (Hz) and c is the concentration of the analyte in the solution (g L⁻¹). The molar susceptibility (χ_M in cm³mol⁻¹) can be calculated by equation (2), wherein M is the molar mass of the analyte. χ_M^P is the pure paramagnetic molar susceptibility and can be calculated by equation (3) in which χ_M^{Dia} (the diamagnetic molar susceptibility) is a correction on χ_M to account for the diamagnetic contributions within the analyte. The diamagnetic molar susceptibility (χ_M^{Dia}) can be calculated by using Pascal’s constants, or estimated from the molecular mass. With equation (4), χ_M^P can be used to calculate the effective magnetic moment (μ_{eff}) of the analyte, in which k is the Boltzmann constant, T is the temperature in Kelvin, N_A is the Avogadro constant and μ_B is the Bohr magneton. The electron spin quantum number (S) can now be calculated with equation (5) from the effective magnetic moment by solving for S. Here, g is obtained from an EPR measurement or taken as the g-e-value for the free electron (2.0023).

\[
\chi = \frac{3000 \times \Delta \nu}{4\pi \times v_0 \times c}
\]

\[
\chi_M = \chi \times M
\]

\[
\chi_M^P = \chi_M - \chi_M^{Dia}
\]

\[
\mu_{eff} = \sqrt{\frac{3 \times k \times T \times \chi_M^P}{N_A \times \mu_B^2}} \approx 2.82787 \sqrt{T \times \chi_M}
\]

\[
\mu_{eff} = g \sqrt{S(S + 1)}
\]

DFT calculations

DFT studies were performed on full atomic models (no simplifications) using TURBOMOLE 7.3⁸ coupled to the PQS Baker optimizer⁹ via the BOpt package. The geometry optimizations and frequency analysis was
performed at the B3LYP11/def2-SVP12 level of theory (unless noted otherwise) on an m4 grid, using Grimme’s version 3 (disp3, “zero damping”) dispersion corrections.13 All minima (no imaginary frequencies) were characterized by numerically calculating the Hessian matrix. Final orbital and energy evaluation was performed at the B3LYP11/def2-TZVP14 level of theory (unless noted otherwise) on an m4 grid, using Grimme’s version 3 (disp3, “zero damping”) dispersion corrections,15 on the optimized geometries. Energy output was reported in Hartree and was converted to kcal mol-1 by multiplication with 627.503.

When applicable, corrected broken symmetry energies ε_{BS} of the open-shell singlets ($S = 0$) were estimated from the energy (ε_S) of the optimized single-determinant broken symmetry solution and the energy (ε_{S+1}) from a separate unrestricted triplet single-point calculation at the same level, using the approximate correction formula (6).10

$$
\varepsilon \approx \frac{S^2_{S+1} \times \varepsilon_S - S^2_S \times \varepsilon_{S+1}}{S^2_{S+1} - S^2_S}
$$

Orbital interpretation was done by Löwdin population analysis of quasi restricted orbitals (QRO) generated with the ORCA 4.116 software package at the B3LYP11/TZVP12 level, using the coordinates from the structures optimized in TURBOMOLE as the input and using the UNO keyword.

Graphical representations of orbitals were generated using IboView17 and structures were visualized with Chimera (available at http://www.cgl.ucsf.edu/chimera).

NEVPT2-CASSCF calculation

The NEVPT2 corrected CASSCF calculations were performed with the ORCA 4.116 software package on the geometry optimized in TURBOMOLE at the experimentally found spin state. The def2-TZVP12 basis set was used together with the RIJCOSX18 approximation in conjunction with the def2-TZVP/C fitting basis set to reduce computational cost. The single root spin state was calculated. NEVPT219 calculations using the RI approximation were carried out on converged CASSCF wavefunctions. Canonical orbitals were generated for visualization using IboView.17 Energy output was reported in Hartree and was converted to kcal mol-1 by multiplication with 627.503.

A general flow-scheme for the calculation is described below, including the input for the calculation in brackets:

1. The molecule was aligned properly along the x, y and z axis and QRO-type orbitals were generated in a single-point calculation by usage of the UNO keyword.
 \[[!BP86 def2-TZVP def2-TZVP/C RIJCOSX UNO Normalprint KeepDens] \]
 \[%scf rotate {orbital number, active space location} end end\]

2. The QRO orbitals were used for a restricted open-shell Kohn-Sham (ROKS) calculation.
 \[[! ROKS BP86 def2-TZVP def2-TZVP/C RIJCOSX Normalprint noiter MOREAD %moinp "orbitals.qro"]\]

3. Löwdin population analysis and visualization using IboView were used to identify the orbitals of interest (all metal d orbitals, relevant ligand π orbitals and relevant metal-ligand bonding and antibonding orbitals) and rotate these into the active space.
 \[[! ROKS BP86 def2-TZVP def2-TZVP/C RIJCOSX Normalprint noiter MOREAD %moinp "orbitals.gbw"]\]

4. The single root CASSCF calculation was performed.
5. The converged CASSCF calculation was analyzed for convergence and preservation of the active space. The NEVPT2 correction was then applied and the orbitals were transformed to canonical orbitals for final visualization and (total) energy evaluation.

```plaintext
#!/ def2-TZVP def2-TZVP/C RIJCOSX Normalprint MOREAD
%moinp "orbitals.gbw"
%casscf
trafostep ri
nel (number of active electrons)
norb (number of active orbitals)
mult (multiplicity)
end]
```

```plaintext
#!/ def2-TZVP def2-TZVP/C RIJCOSX Normalprint MOREAD RI-NEVPT2
%moinp "orbitals.gbw"
%casscf
trafostep ri
nel (number of active electrons)
norb (number of active orbitals)
mult (multiplicity)
actorbs canonorbs
intorbs canonorbs
extorbs canonorbs
nevpt
d4step fly
end
end]
```
Synthesis and characterization

Scheme S1. Synthesis of DPPH$_3$ and [CoIIDPP$^{2-}$].

Pyrrolylsodium,2_0 1,2_1 and 222 were prepared according to literature procedures, and the spectral data were found to match the reported spectra (see Scheme S1).

3: Adapted from a literature procedure for the condensation reaction.22 2-(3,5-di-tert-butyl-2-methoxyphenyl)-1H-pyrrole (2, 4.00 g; 14.0 mmol; 1.0 eq) was dissolved in CH$_2$Cl$_2$ (50 mL) under the exclusion of light in a flame dried Schlenk under a nitrogen atmosphere. Pentafluorobenzaldehyde (0.87 mL; 7.0 mmol; 0.5 eq) and trifluoroacetic acid (0.16 mL; 2.1 mmol; 0.15 eq) were added sequential and the mixture was stirred for 3 hours at r.t. to yield a blue solution. DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 1.59 g; 7.0 mmol; 0.5 eq) was added, yielding a purple solution and stirred at r.t. overnight. The purple solution was washed three times with saturated aqueous NaHCO$_3$ (30 mL). The organic layer was further purified by filtration over silica using hexane/CH$_2$Cl$_2$ (9:1) as the eluent. The product was obtained as an orange powder in 4.91 g; 6.6 mmol; 94% yield.
1H NMR (300 MHz, Methylene Chloride-d2) δ 7.55 (d, J = 2.5 Hz, 2H), 7.41 (d, J = 2.5 Hz, 2H), 6.84 (d, J = 4.3 Hz, 2H), 6.53 (d, J = 4.3 Hz, 2H), 3.64 (s, 6H), 1.43 (s, 18H), 1.33 (s, 18H).

19F NMR (282 MHz, Methylene Chloride-d2) δ -137.79 – -141.33 (m), -154.07 (t, J = 21.0 Hz), -160.32 – -164.08 (m).

13C NMR (75 MHz, Chloroform-d) δ 156.30, 155.78, 145.59, 142.27, 140.77, 126.73, 126.43, 125.47, 125.06, 120.27, 120.17, 61.93, 35.39, 34.58, 31.56, 31.04. All four 13C resonances corresponding to the C_{6}F_{5} fragment are absent due to broadening of the signal as a result of coupling with 19F. Similar signal loss in DPPF-derived ligands was reported in literature. Similar loss of signal intensity was observed in 13C NMR analysis of a highly concentrated pentafluorobenzaldehyde solution. Which gave relative peak intensities of 1 (13C=O) : 0.78 (13C-F) : 0.13 (13C-F) : 0.82 (13C-F) : 0.33 (13C=C=O).

HRMS-FD*: calc. for [C_{45}H_{31}F_{5}N_{4}O_{5}]^+: 746.3871, found: 746.3899 [M]^*.

DPPH₃: Adapted from a literature procedure for the deprotection reaction. 3 (0.400 g; 0.54 mmol; 1.0 eq) was dissolved in CH₂Cl₂ (20 mL) and cooled to 0 °C in a flame dried Schlenk under a nitrogen atmosphere compound. BBr₃ (0.52 mL; 5.4 mmol; 10 eq) was added dropwise to give a blue solution that was stirred while warming to r.t. and stirred for 6 more days. MeOH (30 mL) was added slowly to quench the unreacted BBr₃. The blue mixture was concentrated and dissolved in MeOH (50 mL), 30 mL concentrated HCl(aq) solution was added and the mixture was refluxed at 70 °C for 3 days. The reaction mixture was neutralized with a saturated aqueous NaHCO₃ solution (100 mL). The obtained pink suspension was extracted with EtOAc (100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and the filtrate was concentrated. The crude product was purified by filtration over silica using hexane as eluent. The product was obtained as pink crystalline powder in 0.356 g; 0.50 mmol; 93% yield. In order to speed up the reaction, it is advised to perform the work up each day and start the reaction again until full conversion is reached.

1H NMR (300 MHz, Methylene Chloride-d2) δ 7.61 (d, J = 2.4 Hz, 2H), 7.41 (d, J = 2.4 Hz, 2H), 7.03 (d, J = 4.5 Hz, 2H), 6.56 (d, J = 4.5 Hz, 2H), 1.54 (s, 18H), 1.35 (s, 18H).

19F NMR (282 MHz, Methylene Chloride-d2) δ -139.84 (m), -153.77 (t, J = 20.9 Hz), -162.00 (m).

13C NMR (75 MHz, Methylene Chloride-d2) δ 153.69, 142.90, 139.54, 136.51, 128.61, 126.78, 123.87, 120.17, 118.39, 118.08, 35.36, 34.87, 31.79, 30.66. Five 13C NMR signal are missing for the reasons as explained in the characterization of 3 (vide supra).

HRMS-FD*: calc. for [C_{45}H_{31}F_{5}N_{4}O_{5}]^+: 718.3558, found: 718.3559 [M]^*.

Elemental analysis: calc. for C_{45}H_{31}F_{5}N_{4}O_{5}: C 71.85; H 6.59; F 13.21; N 3.90; O 4.45; found: C 71.95; H 6.63; F 13.14; N 3.87; O 4.29.

XRD: XRD quality single crystals were grown by slow evaporation of a concentrated solution in CH₂Cl₂ at room temperature. The 50% thermal ellipsoid probability plot is included in the main text, and the relevant bond lengths and atom numbering are depicted in Table S1. DPPH₃, C_{45}H_{31}F_{5}N_{4}O_{5}, FW = 718.82, pink-purple plate, 0.29 mm × 0.14 mm × 0.05 mm, monoclinic, P2₁/c, a = 21.9848(4) Å, b = 15.9671(3) Å, c = 10.8173(2) Å, β = 96.9017(18)°, V = 3769.72(12) Å³, Z = 4, μ = 0.78 mm⁻¹; 25014 reflections were measured with (sin θ/λ)max = 0.616 Å⁻¹. 7407 Reflections were unique (Rint = 0.034) of which 5443 were observed [I > 2σ(I)]. Residual electron density between −0.23 and 0.61 e/Å³. S = 1.041. Refinement: RF(F² > 2σ(F²)) = 0.043, wR(F²) = 0.124, number of reflections: 7407, number of parameters: 501, number of restraints: 10.
[Co(DPP$^{2-}$)], Adapted from a literature procedure for the insertion of cobalt into the ligand.24 DPPH\textsubscript{3} (1.00 g; 1.39 mmol; 1.0 eq) and [Co(OAc)$_2$]·4H$_2$O (0.347 g; 1.39 mmol; 1.0 eq) were dissolved in MeOH (50 mL) to afford a purple solution. Triethylamine (0.582 mL; 4.18 mmol; 3.0 eq) was added and the mixture was stirred at r.t. overnight under aerobic conditions. The obtained green suspension was concentrated, extracted with CH$_2$Cl$_2$ and concentrated yielding a purple powder, which was washed with MeOH (50 mL) and dried. The product was obtained as a purple powder in 0.954 g; 1.23 mmol; 88% yield.

1H NMR (300 MHz, Methylene Chloride-d$_2$) δ 12.82 (d, $J = 5.1$ Hz, 2H), 8.58 (d, $J = 2.3$ Hz, 2H), 7.78 (d, $J = 5.1$ Hz, 2H), 6.96 (d, $J = 2.3$ Hz, 2H), 4.29 (s, 18H), 1.27 (s, 18H).

19F NMR (282 MHz, Methylene Chloride-d$_2$) δ -137.16 (dd, $J = 23.4$, 7.8 Hz), -152.98 (t, $J = 20.8$ Hz), -160.58 (td, $J = 23.6$, 22.5, 8.0 Hz).

13C NMR (75 MHz, Methylene Chloride-d$_2$) δ 169.35, 158.47, 158.16, 156.03, 153.02, 152.19, 149.86 (w), 141.68 (w), 140.83 (w), 138.44 (w), 125.04, 124.82, 118.15, 117.60, 115.13 (w, t, $J = 21.3$ Hz), 37.81, 35.28, 34.68, 31.30. Low-intensity signals are denoted by w, which is caused by the reasons as explained in the characterization of 3 (vide supra).

HRMS-FD$: calc. for [C$_{43}H_{44}CoF_5N_2O_2$]$^+$: 774.2655, found: 774.2604 [M]$^+$. X-band EPR: silent at r.t. and 20 K.

UV-Vis (32.27 μM, CH$_2$Cl$_2$, 1.0 cm cuvet) nm {ε, cm$^{-1}$M$^{-1}$}: 230, 269 {26.3$x10^3$}, 326 {25.7$x10^3$}, 374 {20.6$x10^3$}, 556 {21.0$x10^3$}, 755 {5.67$x10^3$}.

Elemental analysis: calc. for C$_{43}$H$_{44}$CoF$_5$N$_2$O$_2$: C 66.66; H 5.72; Co 7.61; F 12.26; N 3.62; O 4.13; found: C 65.72; H 5.87; Co 7.43; F 13.49; O 5.13.

μ_{eff}(Evans' method, CD$_2$Cl$_2$ with toluene as internal standard, 297.2 K, 7.9 mM, $\Delta\nu = 0$ Hz): 0 μ_B

SQUID: constant susceptibility observed in the 5 K – 290 K range (Figure S1).

XRD: XRD quality single crystals were grown by slow evaporation of a concentrated solution in CH$_2$Cl$_2$ at room temperature. The displacement ellipsoid plot (50% probability level) is depicted in the main text, and the atom numbering and relevant bond lengths are provided in Table S1. [Co(DPP$^{2-}$)]. C$_{43}$H$_{44}$CoF$_5$N$_2$O$_2$, FW = 774.73, 0.45 mm \times 0.14 mm \times 0.12 mm, black block, monoclinic, C2/c, a = 11.7070(6) Å, b = 22.5631(15) Å, c = 28.4794(15) Å, β = 95.793(2), V = 7484.3(7) Å3, Z = 8, μ = 0.523 mm$^{-1}$; 84122 reflections were measured. 7650 Reflections were unique ($R_{int} = 0.039$) of which 6588 were observed ($I > 2\sigma(I)$). Residual electron density between –0.43 and 0.50 e/\AA^3. S = 1.07. Refinement: $R(F^2 > 2\sigma(F^2)) = 0.039$, $wR(F^2) = 0.092$, number of reflections: 7650, number of parameters: 562, number of restraints: 235.
Figure S1. SQUID measurement of $[\text{Co}^{II}(\text{DPP}^{3-})]$ between 5 K and 290 K, corrected for presence of small oxide nanoparticles.
Table S1. Atom numbering scheme for DPPH₃ and [Co⁰(DPP²⁻)] and bond lengths derived from the single crystal XRD measurements and the DFT calculated structure (B3LYP/def2-SVP).

Bond	DPPH₃ (XRD, Å)	[Co⁰(DPP²⁻)] (XRD, Å)	[Co⁰(DPP²⁻)] (DFT, Å)
C1–C2	1.411(2)	1.443(3)	1.454
C2–C3	1.395(2)	1.371(3)	1.380
C3–C4	1.395(2)	1.420(3)	1.427
C4–C5	1.385(2)	1.364(3)	1.376
C5–C6	1.403(2)	1.416(3)	1.425
C6–C1	1.408(2)	1.426(3)	1.446
C6–C7	1.463(2)	1.413(3)	1.427
C7–C8	1.426(2)	1.441(3)	1.450
C8–C9	1.368(2)	1.342(3)	1.364
C9–C10	1.422(2)	1.438(3)	1.441
C10–C11	1.400(2)	1.390(3)	1.402
C11–C12	1.395(2)	1.393(3)	1.402
C12–C13	1.426(2)	1.434(3)	1.441
C13–C14	1.364(2)	1.344(3)	1.364
C14–C15	1.425(2)	1.445(3)	1.450
C15–C16	1.462(2)	1.404(3)	1.427
C16–C17	1.406(2)	1.418(3)	1.425
C17–C18	1.382(2)	1.359(3)	1.376
C18–C19	1.393(2)	1.422(3)	1.427
C19–C20	1.395(2)	1.371(3)	1.380
C20–C21	1.406(2)	1.444(3)	1.454
C21–C16	1.403(2)	1.431(3)	1.446
C1–O1	1.3644(18)	1.300(2)	1.287
C21–O2	1.3678(18)	1.288(2)	1.287
C7–N1	1.3519(19)	1.368(2)	1.368
C10–N1	1.383(2)	1.382(2)	1.381
C12–N2	1.388(2)	1.377(2)	1.381
C15–N2	1.3493(19)	1.375(2)	1.368
Co–O1	-	1.8432(13)	1.893
Co–O2	-	1.8457(13)	1.894
Co–N1	-	1.8610(16)	1.913
Co–N2	-	1.8696(15)	1.913
[Co^II(DPP^2)•(THF)]: Obtained when dissolving [Co^II(DPP^2•)] in THF.

^1H NMR (500 MHz, THF-d8) δ 37.51 (s, 2H), 9.34 (s, 18H), 2.51 (6H) -24.49 (s, 2H), -34.04 (s, 2H), -60.49 (s, 2H). Part of the CH3 resonances (of the tBu groups) are missing. This signal is gradually disappearing upon addition of THF to a CD2Cl2 solution of [Co^II(DPP^2•)] (see NMR in main text). Coordinated THF is not visible because THF-d8 was used as the solvent.

UV-Vis (32.27 μM, THF, 1.0 cm cuvet) nm {ε, cm⁻³M⁻¹}: 318 {28.0×10³}, 409 {16.3×10³}, 423 {16.5×10³}, 474 {12.3×10³}, 632 {22.9×10³}, 833 {15.3×10³}.

X-band EPR: silent at r.t. and 20 K.

µ_eff (Evans’ method, THF-d8 with toluene as internal standard, 297.2 K, 13.4 mM, Δν = 21.4 Hz, diamagnetic contribution = -0.00039): 2.91 μB.

HRMS measurements afforded only detection of [Co^II(DPP^2•)] due to the relatively weak coordination of THF and the evaporation of THF under the measurement conditions.

The association constant (K_assoc) for coordination of THF (guest, G) to [Co^II(DPP^2•)] (host, H, 32.27 μM in CH2Cl2) was obtained after a titration of guest to host and fitting of the absorption band at 833 nm according to a HGG model with non-cooperative binding. The fitting was performed with the software available at http://limhes.net/optim and the results are summarized in Figure S2, Figure S3 and Figure S4.

Figure S2. Fit of the changes in the absorption at 833 nm upon titration of THF to [Co^II(DPP^2•)].
Figure S3. Residual errors of the fit of the changes in the absorption at 833 nm upon titration of THF to [Co^{II}(DPP²•)].

Figure S4. Calculated molar ratios from the fit of the changes in the absorption at 833 nm upon titration of THF to [Co^{II}(DPP²•)].

[Co^{II}(DPP³•)(Py): [Co^{II}(DPP²•)] (0.100 g; 0.13 mmol; 1.0 eq) was dissolved in CH₂Cl₂ (10 mL) and pyridine (1.05 mL; 13.0 mmol; 100 eq) was added to yield a dark green solution, which was stirred for 3 hours, concentrated and dried under reduced pressure. The product was obtained as a green powder in 120 mg; 0.13 mmol; quantitative yield.

¹H NMR (500 MHz, THF-d₈) δ 8.04 (d, J = 5.7 Hz, 4H), 7.60 (t, J = 7.6 Hz, 2H), 7.41 (d, J = 2.5 Hz, 2H), 7.21 (d, J = 4.6 Hz, 2H), 7.17 (d, J = 2.6 Hz, 2H), 7.08 (t, J = 6.7 Hz, 4H), 6.96 (d, J = 4.5 Hz, 2H), 1.59 (s, 18H), 1.25 (s, 18H).

¹⁹F NMR (282 MHz, Methylene Chloride-d₂) δ -140.91 (d, J = 23.4 Hz), -154.76 (t, J = 20.8 Hz), -161.59 – -163.84 (m).

¹³C NMR (75 MHz, Methylene Chloride-d₂) δ 158.83, 153.37, 138.13, 124.05, 36.71, 31.36. Most of the ¹³C
NMR signals are missing for unknown reasons and partially due to the reasons as explained in the characterization of 3 (vide supra).

HRMS-CSI+: calc. for [C_{53}H_{54}CoF_{5}N_{4}O_{2}]^{+}: 932.3499, found: 932.358 [M]^{+}, 853.315 [M-Py]^{+}, 774.272 [M-2Py]^{+}.

SQUID: constant susceptibility observed in the 5 K – 290 K range (Figure S7).

UV-Vis (32.27 μM, 2.00 mL CH₂Cl₂ + 10 μL pyridine, 1.0 cm cuvet) nm \{ε, cm⁻¹M⁻¹\}: 337 {25.0×10³}, 479 {15.0×10³}, 661 (shoulder) {13.8×10³}, 723 {26.3×10³}. See Figure S5. Addition of pyridine was necessary to prevent partial decoordination of pyridine.

XRD: XRD quality single crystals were grown by slow evaporation of a concentrated solution in CH₂Cl₂ and MeOH (5:1) at room temperature. The displacement ellipsoid plot (50% probability level) depicted in the main text and the three crystallographically independent molecules in the asymmetric unit are depicted in Figure S6. The atom numbering scheme and bond distances are provided in Table S2.

Table S2. [Co^{III}(DPP^{3−})(Py)₂], C_{53}H_{54}CoF_{5}N_{4}O_{2}, FW = 932.93, black needle, 0.36 mm × 0.05 mm × 0.04 mm, triclinic, P-1, a = 15.8847(7) Å, b = 20.0568(8) Å, c = 26.1206(9) Å, α = 69.329(3)°, β = 78.077(3)°, γ = 85.913(3)°, V = 7474.3(5) Å³, Z = 6, μ = 3.21 mm⁻¹; 96163 reflections were measured with (sin θ/λ)_{max} = 0.617 Å⁻¹. 29269 Reflections were unique (R_{int} = 0.089) of which 19036 were observed [I > 2σ(I)]. Residual electron density between −0.53 and 0.65 e/Å³. S = 0.96. Refinement: R[F² > 2σ(F²)] = 0.056, wR(F²) = 0.153, number of reflections: 29269, number of parameters: 1908, number of restraints: 529.

Figure S5. UV-Vis spectrum of [Co^{III}(DPP^{3−})(Py)₂] (32.27 μM) via addition of 10 μL pyridine to a 2.0 mL CH₂Cl₂ solution of [Co^{II}(DPP^{2−})].
Figure S6. Single crystal XRD measured molecular structure of $[\text{Co}^{III}(\text{DPP}^3)(\text{Py})_2]$, showing the three crystallographically independent molecules in the asymmetric unit (A, B and C from left to right), depicted as wireframes. H atoms and disorder are omitted for clarity.
Table S2. Atom numbering scheme, bond lengths and dihedral pyridine angles for the three crystallographically independent molecules of \([\text{Co}^{II}(\text{DPP}^3\text{-})(\text{Py})] \) (labelled A, B and C in Figure S6), and the DFT (B3LYP/def2-TZVP geometry optimization) calculated structure. Ar = C₆F₅.

Bond	A (XRD, Å)	B (XRD, Å)	C (XRD, Å)	DFT (Å)
C1–C2	1.435(5)	1.443(5)	1.433(5)	1.447
C2–C3	1.395(5)	1.393(5)	1.397(5)	1.391
C3–C4	1.394(5)	1.403(6)	1.400(5)	1.412
C4–C5	1.369(5)	1.365(5)	1.369(5)	1.382
C5–C6	1.400(4)	1.420(5)	1.408(5)	1.418
C6–C1	1.429(4)	1.413(5)	1.408(5)	1.429
C6–C7	1.453(5)	1.446(5)	1.455(5)	1.449
C7–C8	1.438(4)	1.429(5)	1.420(5)	1.440
C8–C9	1.357(5)	1.354(5)	1.364(5)	1.374
C9–C10	1.420(4)	1.418(5)	1.413(5)	1.429
C10–C11	1.382(5)	1.384(5)	1.388(5)	1.399
C11–C12	1.394(4)	1.390(4)	1.380(5)	1.399
C12–C13	1.415(5)	1.413(5)	1.414(5)	1.429
C13–C14	1.358(5)	1.363(5)	1.367(5)	1.374
C14–C15	1.435(5)	1.435(4)	1.432(5)	1.440
C15–C16	1.441(5)	1.442(4)	1.440(5)	1.449
C16–C17	1.411(5)	1.416(4)	1.414(4)	1.418
C17–C18	1.368(5)	1.380(5)	1.370(5)	1.382
C18–C19	1.395(5)	1.405(5)	1.393(5)	1.412
C19–C20	1.380(5)	1.386(5)	1.388(5)	1.390
C20–C21	1.437(4)	1.437(4)	1.448(5)	1.447
C21–C16	1.419(5)	1.423(5)	1.422(5)	1.430
C1–O1	1.323(4)	1.321(4)	1.323(4)	1.311
C21–O2	1.326(4)	1.318(4)	1.314(4)	1.311
C7–N1	1.356(4)	1.355(4)	1.347(4)	1.355
C10–N1	1.399(4)	1.398(4)	1.408(4)	1.391
C12–N2	1.401(4)	1.391(4)	1.408(4)	1.392
C15–N2	1.358(4)	1.353(4)	1.350(4)	1.355
Co–O1	1.923(2)	1.904(2)	1.910(2)	1.929
Co–O2	1.913(2)	1.913(2)	1.909(2)	1.929
Co–N1	1.912(2)	1.906(3)	1.913(3)	1.933
Co–N2	1.912(2)	1.903(3)	1.908(3)	1.933
Co–N3	1.975(2)	1.973(3)	1.946(3)	1.988
Co–N4	1.963(2)	1.941(3)	1.959(3)	1.986

Dihedral angle of the pyridine planes

Dihedral angle of the pyridine planes	A (°)	B (°)	C (°)	DFT (°)
C22–N3–Co–N4	10.80	51.39	176.11	14.74
C23–N4–Co–N3	10.80	7.47	84.50	11.80

S16
Figure S7. SQUID measurement of [Co(III)(DPP-)(Py)2] between 4 K and 290 K, corrected for the presence of oxide nanoparticles.

[Co(III)(DPP-)(NH2tBu)2]: [Co(III)(DPP-)] (0.100 g; 0.13 mmol; 1.0 eq) was dissolved in CH2Cl2 (10 mL) and t-butyamine (1.36 mL; 1.29 mmol; 100 eq) was added to yield a green solution, which was stirred for 3 hours, concentrated and dried under reduced pressure. The product was obtained as a green powder in quantitative yield (0.119 g; 0.13 mmol).

1H NMR (500 MHz, Methylene Chloride-d2) δ 7.67 (s, 2H), 7.31 (d, J = 2.6 Hz, 2H), 7.28 (d, J = 4.8 Hz, 2H), 6.85 (s, 2H), 2.11 (s, 4H), 1.74 (s, 18H), 1.39 (s, 18H), 0.52 (s, 18H).

13C NMR (126 MHz, Methylene Chloride-d2) δ 158.96, 156.97, 142.10, 137.80, 136.64, 130.77, 125.64, 121.84, 119.02, 115.94, 49.97, 36.15, 33.59, 31.74, 30.83. One 13C signal is missing, presumably due to overlap. Five 13C NMR signal are missing for the reasons as explained in the characterization of 3 (vide supra).

19F NMR (282 MHz, Methylene Chloride-d2) δ -137.36 – -141.36 (m), -154.75 (t, J = 21.2 Hz), -160.77 – -164.48 (m).

UV-Vis (32.27 μM, CH2Cl2: tBuNH2 = 2.0 : 0.01, 1.0 cm cuvet) nm {ε, cm⁻¹M⁻¹}: 276, 336 (30.1×10³), 487 (16.5×10³), 650 (shoulder, 16.9×10³), 705 (30.7×10³). See Figure S8. Addition of tBuNH2 was necessary to prevent decoordination of the amine.

HRMS-CSI+ calc. for [C51H66CoF5N4O2]: 920.4438, found: 847.374 [M-tBuNH2]+, 774.283 [M-2tBuNH2]+.

XRD: XRD quality single crystals were grown by slow evaporation of a concentrated solution in CH2Cl2 and MeOH (5:1) at room temperature. The three crystallographically independent molecules in the asymmetric unit and the displacement ellipsoid plot (50% probability level) of one molecule is depicted in Figure S9. The atom numbering scheme and relevant bond lengths are provided in Table S3. [Co(III)(DPP-)(NH2tBu)2]. 3(C51H66CoF5N4O2)-CH3O, FW = 2795.05, dark green needle, 0.35 mm × 0.04 mm × 0.03 mm, triclinic, P-1, a = 12.9446(5) Å, b = 21.7384(9) Å, c = 27.2202(9) Å, α = 84.432(3)°, β = 89.826(3)°, γ = 86.438(3)°, V = 7608.7(5) Å³, Z = 2, μ = 3.15 mm⁻¹; 74031 reflections were measured with (sin θ/λ)max = 0.616 Å⁻¹. 29771 Reflections were unique (Rint = 0.075) of which 19074 were observed [I > 2σ(I)]. Residual electron density
between -0.44 and 0.51 e/Å3. $S = 0.98$. Refinement: $R[F^2 > 2\sigma(F^2)] = 0.056$, $wR(F^2) = 0.139$, number of reflections: 29771, number of parameters: 1812, number of restraints: 39.

Figure S8. UV-Vis spectrum of $[\text{Co}^{\text{III}}(\text{DPP}_3-)(\text{tBuNH}_2)_2]$ (32.27 μM) via addition of 10 μL tBuNH$_2$ to a 2.0 mL CH$_2$Cl$_2$ solution of $[\text{Co}^{\text{II}}(\text{DPP}^+)]$.

Figure S9. Left: single crystal XRD measured molecular structure of $[\text{Co}^{\text{III}}(\text{DPP}_3-)(\text{NH}_2\text{tBu})_2]$, showing the three crystallographically independent molecules in the asymmetric unit (A, B and C from left to right), depicted as wireframes. H atoms and lattice solvent molecules are omitted for clarity. Right: Displacement ellipsoid plot (50% probability level) of $[\text{Co}^{\text{III}}(\text{DPP}_3-)(\text{NH}_2\text{tBu})_2]$ (molecule A). H atoms (except NH) are omitted for clarity.
Table S3. Atom numbering scheme for the three crystallographically independent molecules of [CoIII(DPP3‒)(NH\textsubscript{2}tBu)]\textsubscript{2} (labelled A, B and C) and DFT (B3LYP/def2-TZVP geometry optimization) calculated structure. Ar = C\textsubscript{6}F\textsubscript{5}. Bond lengths derived from the single crystal XRD measurements and the DFT calculated structure are included below.

Bond	A (XRD, Å)	B (XRD, Å)	C (XRD, Å)	DFT (Å)
C1–C2	1.441(5)	1.436(4)	1.437(4)	1.445
C2–C3	1.386(5)	1.386(4)	1.390(4)	1.390
C3–C4	1.398(6)	1.406(4)	1.399(5)	1.413
C4–C5	1.375(5)	1.364(5)	1.378(5)	1.382
C5–C6	1.423(4)	1.423(4)	1.417(4)	1.418
C6–C1	1.408(5)	1.416(4)	1.416(4)	1.429
C6–C7	1.444(5)	1.437(4)	1.450(4)	1.452
C7–C8	1.425(5)	1.442(4)	1.429(4)	1.439
C8–C9	1.357(5)	1.357(5)	1.365(5)	1.375
C9–C10	1.418(4)	1.422(4)	1.422(4)	1.427
C10–C11	1.388(4)	1.390(5)	1.384(4)	1.396
C11–C12	1.382(4)	1.398(5)	1.394(4)	1.398
C12–C13	1.420(4)	1.407(5)	1.424(4)	1.428
C13–C14	1.358(5)	1.365(5)	1.354(4)	1.375
C14–C15	1.428(4)	1.423(5)	1.425(4)	1.438
C15–C16	1.452(4)	1.444(5)	1.451(4)	1.451
C16–C17	1.417(4)	1.412(4)	1.424(4)	1.418
C17–C18	1.381(5)	1.376(5)	1.373(4)	1.383
C18–C19	1.402(5)	1.393(5)	1.399(5)	1.413
C19–C20	1.381(5)	1.396(5)	1.389(4)	1.391
C20–C21	1.431(5)	1.437(4)	1.443(4)	1.444
C21–C16	1.408(4)	1.409(5)	1.403(4)	1.427
C1–O1	1.333(4)	1.331(4)	1.330(4)	1.313
C21–O2	1.326(4)	1.339(4)	1.330(4)	1.315
C7–N1	1.359(4)	1.363(4)	1.356(4)	1.357
C10–N1	1.390(4)	1.394(4)	1.398(4)	1.390
C12–N2	1.403(4)	1.398(4)	1.391(4)	1.391
C15–N2	1.370(4)	1.361(4)	1.351(4)	1.358
Co–O1	1.917(2)	1.928(2)	1.911(2)	1.924
Co–O2	1.920(2)	1.921(2)	1.925(2)	1.935
Co–N1	1.912(3)	1.914(2)	1.912(2)	1.932
Co–N2	1.922(3)	1.913(3)	1.914(3)	1.938
Co–N3	2.003(3)	2.001(3)	1.993(3)	2.019
Co–N4	1.997(3)	2.003(3)	2.008(3)	2.024
[CoII(DPP3‒)(NH2Ad)]•: [CoIII(DPP2‒)] (10.0 mg; 13.0 µmol; 1.0 eq) and 1-adamantylamine (3.9 mg; 26.0 µmol; 2.0 eq) were dissolved in CH2Cl2 (10 mL) and stirred for 3 hours at r.t. yielding a green solution. Single crystals suitable for XRD analysis were obtained by slow evaporation of a concentrated solution in CH2Cl2 and MeOH (5:1). The green crystals were filtered and washed with MeOH (2 mL). The product was obtained as green crystals in 6.0 mg; 5.6 µmol; 43% yield.

1H NMR (500 MHz, Methylene Chloride-d2) δ 7.54 (s, 2H), 7.38 – 7.14 (m, 4H), 6.94 (s, 2H), 2.09 (s, 4H), 1.79 – 0.59 (m, 48H).

HRMS-CSI+ calc. for [C36H78CoF5N4O2]+: 1076.5371, found: 1076.5386 [M]+.

XRD: XRD quality single crystals were grown by slow evaporation of a concentrated solution in CH2Cl2 and MeOH (5:1) at room temperature. The displacement ellipsoid plot (50% probability level) with relevant bond lengths is provided in Table S4.

Table S4. [CoII(DPP3‒)(NH2Ad)]•, C36H78CoF5N4O2, FW = 1077.22, 0.71 mm × 0.15 mm × 0.15 mm, green block, orthorhombic, Pbcn, a = 18.0240(10) Å, b = 24.2843(13) Å, c = 25.7668(14) Å, α = β = γ = 90°, V = 11278.1(11) Å3, Z = 8, μ = 0.368 mm−1; 299626 reflections were measured. 12941 Reflections were unique (Rint = 0.062) of which 10510 were observed [I > 2σ(I)]. Residual electron density between −0.59 and 0.76 e−/Å3. S = 1.12. Refinement: R[F2 > 2σ(F2)] = 0.053, wR(F2) = 0.118, number of reflections: 12941, number of parameters: 892, number of restraints: 869.
Table S4. Atom numbering scheme for $[\text{Co}^{III}(\text{DPP}^{3-})(\text{NH}_2\text{Ad})_2]$, single crystal XRD measured structure and relevant bond lengths. Ellipsoid level set at 50% probability. Hydrogen atoms (except NH) and disorder in $t\text{Bu}$, C_6F_5 and adamantyl are omitted for clarity. $\text{Ar} = C_6F_5$.

Bond	XRD (Å)	Bond	XRD (Å)
C1–C2	1.437(3)	C17–C18	1.374(3)
C2–C3	1.386(3)	C18–C19	1.406(3)
C3–C4	1.402(3)	C19–C20	1.383(3)
C4–C5	1.372(3)	C20–C21	1.432(3)
C5–C6	1.412(3)	C21–C16	1.414(3)
C6–C1	1.417(3)	C1–O1	1.326(2)
C6–C7	1.447(3)	C21–O2	1.330(2)
C7–C8	1.430(3)	C7–N1	1.352(3)
C8–C9	1.361(3)	C10–N1	1.388(3)
C9–C10	1.421(3)	C12–N2	1.393(3)
C10–C11	1.388(3)	C15–N2	1.353(3)
C11–C12	1.384(3)	Co–O1	1.9193(15)
C12–C13	1.418(3)	Co–O2	1.9332(14)
C13–C14	1.357(3)	Co–N1	1.9145(17)
C14–C15	1.431(3)	Co–N2	1.9173(17)
C15–C16	1.447(3)	Co–N3	2.0034(18)
C16–C17	1.415(3)	Co–N4	2.0103(19)
Complete Active Space Self Consistent Field Calculations

The NEVPT2 corrected CASSCF calculations were performed according to the method described in the general considerations.

\[\text{[Co}^{II}(\text{DPP}^2\text{-})]\text{NEVPT2-CASSCF(18,14)} \]

The energy for the singlet state and its contributors for \([\text{Co}^{II}(\text{DPP}^2\text{-})]\) was obtained from NEVPT2 corrected CASSCF(18,14) calculations and are reported in Table S5. All initial active orbitals were preserved in the active space. It is observed that the singlet state has >86% multireference character and is best described as a broken-symmetry singlet (BSS) solution. CASSCF(18,14) or CASSCF(8,7) calculations on the triplet state did not converge after multiple attempts and the active space was not preserved in these calculations. State averaging of the singlet and triplet state in a NEVPT2-CASSCF(18,14) calculation afforded a solution which is +6.48 kcal mol\(^{-1}\) (total energy = \(-2385460,093\) kcal mol\(^{-1}\)) less stable than the found singlet state as depicted in Table S5. These findings are consistent with the experimentally found BSS/OSS spin state. A quantitative orbital analysis of the complete active space of the broken symmetry singlet state is shown in Figure S10. The most relevant active orbitals and an assignment of the electronic structure (from Löwdin population analysis) of the broken symmetry singlet state are shown in the main text.

Table S5. Total energy (NEVPT2 corrected) for the singlet states and their contributions for the single-root NEVPT2-CASSCF(18,14) calculation on \([\text{Co}^{II}(\text{DPP}^2\text{-})]\). The most important contributions of the state are highlighted in grey.

Multiplicity	Total energy (kcal mol\(^{-1}\))	Contribution : state
1 (singlet)	-2385466,571	0.45476 : 222222222000000
		0.40887 : 222222220200000
		0.03292 : 22222221111000
		0.01103 : 22222220202000
		0.01002 : 22222220022000
		0.00461 : 22202222020200
		0.00437 : 22222121100100
		0.00417 : 22202222002000
		0.00413 : 22202222020200
		0.00378 : 2222212200011
		0.00375 : 22202222020200
		0.00340 : 2222212120011
Figure S10. Active space and occupancies of the orbitals in parenthesis of a NEVPT2-CASSCF(18,14) calculation on \([\text{Co}^\text{II}(\text{DPP}^- \cdot 2\text{-}\text{THF})_2]\). Isosurface set to 80.

\([\text{Co}^\text{II}(\text{DPP}^- \cdot 2\text{-}\text{THF})_2]\) \text{NEVPT2-CASSCF}(18,15)

The total and relative energies for the singlet, triplet and quintet states and their contributors for \([\text{Co}^\text{II}(\text{DPP}^- \cdot 2\text{-}\text{THF})_2]\) were obtained from NEVPT2 corrected CASSCF(18,15) calculations and are reported in Table S6. All initial active orbitals, except the \(d_{xy}\) orbital, were preserved in the active space. The \(d_{xy}\) orbital is found to be non-correlated and doubly filled in the inactive space. A quantitative orbital analysis of the complete active space of the triplet state is shown in Figure S11. The most relevant active orbitals and an assignment of the electronic structure (from Löwdin population analysis) of the triplet state are shown in the main text.
Table S6. Total energy (NEVPT2 corrected) for the singlet, triplet and quintet states and their contributors for the single-root NEVPT2-CASSCF(18,15) calculation on \([\text{Co}^{II}(\text{DPP}^2-)(\text{THF})_2]\). The most important contributions of the states are highlighted in grey.

Multiplicity	Total and relative energy (kcal mol\(^{-1}\))	Contribution : state
1 (singlet)	-2676607.654 (+32.2)	0.81815: 222222221100000
		0.01380: 222212221110000
		0.01197: 2222220221100020
		0.01025: 222221211110000
		0.00938: 222022221100002
		0.00926: 220222221100002
		0.00504: 222111221120000
		0.00494: 222222212100000
		0.00477: 222222201100200
		0.00473: 2222222021120000
		0.00452: 202222221100002
		0.00446: 222222211110000
		0.00427: 222222220110200
		0.00406: 222221121100200
		0.00361: 222221211110100
		0.00356: 221122221200001
		0.00338: 222220221100200
		0.00312: 222221121100200
		0.00266: 222220221120000
3 (triplet)	-2676639.862 (= 0)	0.36435: 222222221120000
		0.27900: 222222221100000
		0.13337: 222222221220000
		0.01962: 222122221200000
		0.01209: 222222221202000
		0.01001: 222222221100000
		0.00755: 221222212100100
		0.00637: 222222221120000
		0.00636: 222222221200000
		0.00578: 212222222200000
		0.00564: 212222222100000
		0.00553: 220222221120200
		0.00530: 122222222020100
		0.00472: 221222221201000
		0.00305: 222222222110000
		0.00270: 220222221202000
		0.00259: 221122221201000
		0.00258: 222222222200000
		0.00252: 221222221101000
5 (quintet)	-2676606.869 (+33.0)	0.82815: 222222221110000
		0.01094: 112222221221000
		0.00906: 221222221111000
		0.00634: 222222221111100
		0.00602: 222222221111100
		0.00569: 112222221210000
		0.00366: 222222221110000
		0.00359: 221222221111100
		0.00321: 222211211110011
Figure S11. Active space and occupancies of the orbitals in parenthesis of a NEVPT2-CASSCF(18,15) calculation on [CoII(DPP2‒)(THF)\textsubscript{2}]. Isosurface set to 80.
Density Functional Theory calculations

All calculations were performed according to the methods described in the general considerations. Calculations with the GGA BP86 functional were not able to reproduce the experimentally found spin states. The correlation between theory and experiment was found upon usage of the hybrid functional B3LYP. However, in combination with the def2-TZVP basis set on an m4 grid, geometry optimization and frequency analysis was too expensive (>30 days wall time). Usage of the def2-SVP basis set afforded geometries with similar bond-lengths as found in the crystal structures, we therefore optimized geometries and performed frequency analysis at the B3LYP/def2-SVP/disp3/m4-grid level of theory. A single point energy SCF calculation at the B3LYP/def2-TZVP/disp3/m4-grid level of theory was then performed for final energy evaluation, wherein the previously calculated vibrations were used.

Absolute energies for all DFT optimized structures

The relevant $<s^2>$, ΔH_{298K}°, ΔS_{298K}° and ΔG_{298K}° (in Hartree) for all relevant compounds is depicted in Table S7. Relevant bond lengths are depicted above in Table S1, Table S2 and Table S3.

Table S7. Calculated $<s^2>$, SCF corrections, ZPE corrections, enthalpy corrections and ΔG_{298K}° (in Hartree) and relative energies (in kcal mol$^{-1}$ relative to [CoIIDPP$^2\text{-}2$]) or [CoIIDPP($^1\text{-}3$)])* for the different complexes and spin states at the B3LYP/def2-SVP/B3LYP/def2-TZVP level of theory on an m4 grid with Grimme’s version 3 zero-damping dispersion corrections.

Compound	Spin state	$<s^2>$	SCF (Hartree)	ZPE correction (Hartree)	Enthalpy correction (Hartree)	Entropy correction (Hartree)	ΔG_{298K}° (Hartree)	Relative energy (kcal mol$^{-1}$)
[CoIIDPP$^2\text{-}2$]	OSS	1.0250	-3806.67821	0.77833	0.82930	0.69608	-3805.98213	$= 0$ a,b
	OSS/Triplet	2.0310	-3806.67909	0.77833	0.82930	0.69595	-3805.98314	-
	CSS	-	-3806.65526	0.77896	0.82972	0.69780	-3805.95746	$+14.8$
	Triplet	2.0312	-3806.67920	0.77843	0.82939	0.69600	-3805.98319	-1.3
[CoIIDPP($^1\text{-}3$)])*	OSS	1.0301	-4039.10798	0.89644	0.95382	0.80579	-4038.30219	-3.1 b
	OSS/Triplet	2.0302	-4039.10975	0.89644	0.95382	0.80567	-4038.30408	-
	CSS	-	-4039.07864	0.89821	0.95486	0.80934	-4038.26930	$+16.3$
	Triplet	2.0298	-4039.10979	0.89658	0.95391	0.80583	-4038.30396	-5.5
	Quintet	6.0314	-4039.10110	0.89378	0.95210	0.80308	-4038.30072	-3.4
(DPP$^2\text{-}2$)	OSS	1.0288	-4271.53298	1.01440	1.07829	0.91420	-4270.61878	-4.2 b
	OSS/Triplet	2.0299	-4271.53551	1.01440	1.07829	0.91408	-4270.62144	-
	CSS	-	-4271.52490	1.01773	1.08029	0.92114	-4270.60376	$+3.5$
	Triplet	2.0271	-4271.53555	0.90977	1.07666	1.01200	-4270.62578	-10.3
	Quintet	6.0350	-4271.52843	1.01200	1.07666	0.90969	-4270.61874	-5.9
Geometry optimizations and frequency analysis were performed at the B3LYP/def2-SVP/disp3/m4-grid level of theory. A single point energy SCF calculation at the B3LYP/def2-TZVP/disp3/m4-grid level of theory was then performed for final energy evaluation, wherein the previously calculated vibrations were used. Conversion from Hartree to kcal mol\(^{-1}\) can be achieved by multiplication with 627.503. \(^a\) Although the energy for this OSS species is slightly (1.3 kcal mol\(^{-1}\)) higher in energy than the triplet, CASSCF calculations demonstrated that the BSS-state is the most stable (which is approximated by the DFT OSS solution). \(^b\) Calculated from the approximate correction formula for the OSS as described in the general considerations. \(^c\) SCF at the triplet spin state on the converged geometry for the OSS spin state. \(^d\) The OSS spin state could not be found and consequently converged to the CSS solution, even when starting from orbitals and a geometry first optimized at the triplet spin state.
The formation energies of \([\text{Co}^{II}(\text{DPP}^{2-})(\text{THF})]\) and \([\text{Co}^{III}(\text{DPP}^{2-})(\text{THF})_2]\) are overestimated by the DFT calculations due to over-estimation of the dispersion corrections. We therefore exchanged CH₂Cl₂ (in \([\text{Co}^{II}(\text{DPP}^{2-})] \cdot \text{CH}_2\text{Cl}_2\) and \([\text{Co}^{III}(\text{DPP}^{2-})] \cdot (\text{CH}_2\text{Cl}_2)_2\) for THF. However, this results in an erroneous cancelation of all translational entropy contributions to the calculated free energies because the translational entropy contributions to substrate/product association/dissociation are fully counterbalanced by the translational entropy contributions resulting from dissociation/association of the CH₂Cl₂ solvent molecule. This is not accurate for solution phase reactions, wherein the translational entropy contributions associated with substrate/product association/dissociation steps cannot be neglected. As the complexes in solution are completely surrounded by solvent molecules, these solvent association/dissociation steps lead to only small contributions to the translational entropy. These steps are of little influence on the THF association/dissociation steps and therefore the latter are not cancelled by the former in solution. Therefore, we applied a +6.0 or +7.5 kcal mol⁻¹ correction term (corresponding to the translational entropy contribution) to the calculated free energies of all substrate/product association/dissociation steps. The results are summarized in Table S8. The (nearly) thermoneutral formation energies are consistent with the observed weak binding of THF.

Correction (kcal mol⁻¹)	Formation of \([\text{Co}^{II}(\text{DPP}^{2-})(\text{THF})]\)	Formation of \([\text{Co}^{III}(\text{DPP}^{2-})(\text{THF})_2]\)
+6.0	−0.7 kcal mol⁻¹	−1.2 kcal mol⁻¹
+7.5	+0.9 kcal mol⁻¹	+1.8 kcal mol⁻¹
Geometries were optimized at the B3LYP/def2-SVP/m4/disp3 level of theory.

[Co^9(DPP^2^-)] (BSS/OSS)

97 atoms

C 9.6946996 6.6621611 6.4490478
C 14.2879990 1.8260576 -0.6721206
C 7.8533346 10.9031663 -3.6044570
F 8.0481751 12.2120662 -3.7333308
C 4.6315735 10.5831912 6.1115962
H 5.0817669 11.3454246 5.455928
H 3.9697154 11.1062757 6.8199593
H 4.001361 9.9241763 5.4936212
C 7.2369010 10.1855262 -6.4337124
F 6.8433485 10.8108140 -5.7361061
C 15.6165844 1.8616907 0.1190854
H 16.0161403 2.8873973 0.1679980
H 16.3713029 1.2212954 -0.3671591
H 15.4912534 1.5008359 1.1517404
C 12.1741138 3.9411143 4.4937059
H 13.2621352 4.0686084 4.3698140
H 11.9796252 3.690909 5.5501650
H 11.6830512 4.8909559 4.2614403
C 10.1361837 2.6019472 3.7384997
H 9.5741534 3.4951158 3.4422698
H 8.9825863 3.2720958 4.7883318
H 9.7893027 1.755810 3.1177687
C 11.0873265 7.074854 5.916538
H 11.1539040 6.9622546 4.8284580
H 11.8715055 6.4550045 6.3782974
H 11.294576 8.1293512 6.1699654
C 7.0355051 8.8085323 -4.5005006
F 6.4454084 8.1272301 -5.4779435
C 12.3494074 1.5024558 4.0118198
H 12.0460082 0.6432033 3.3982711
H 12.0637912 1.2772697 5.0577829
H 13.4482650 1.5790221 3.9911961
C 13.7577395 0.3739846 -0.7230640
H 13.5736091 -0.0331239 0.2832319
H 14.4890715 -0.2855076 -1.2193760
H 12.8112435 0.3220425 -1.2847875
C 6.5150297 10.7850113 7.7433453
H 7.2729382 10.2745978 8.3574258
C 5.8489020 11.3537837 8.4282227
H 7.0362352 11.5183312 7.1072909
C 4.9825163 6.7798083 7.8063133
C 4.3931926 6.0593584 7.2157492
H 4.2970616 9.3040186 8.4924958
H 5.6932793 8.2059086 8.4215932
C 9.4100741 5.169111 6.1732194
H 8.4178124 4.8912615 6.5652057
C 10.1603750 4.5355531 6.6714967
C 9.4341149 4.9536980 5.1007258
C 7.9118854 6.8602450 8.7972132
C 9.8945924 7.9102944 8.2577440

Coordinates (xyz) for the most stable spin state of the calculated structures.
[\text{Co}^\text{II}(\text{THF})_{\text{2}}] (\text{Triplet})

110 atoms

C 4.477167 10.4243987 5.9815870
H 4.8726450 11.1950659 5.3004926
C 3.7952763 10.9245070 6.6869169
H 3.8800622 9.7138422 5.3887494
C 7.2964826 10.3000457 -4.6778972
F 6.9515862 10.9969193 -5.7540364
C 15.4801900 1.7221752 -0.1978277
H 15.8737027 2.7471513 -0.2743010
H 16.1839697 1.0363992 -0.6805748
H 15.4697262 1.4638665 0.8902709
C 12.3694844 4.2225540 4.3357462
H 13.4288602 4.4161928 4.0982045
H 12.2913776 4.0604902 5.4221989
C 11.7830306 5.1091331 4.0774634
H 10.3753756 2.7001530 3.8599671
H 9.7379275 3.5242841 3.5184700
H 10.2164282 2.5640620 4.9417945
C 10.0545733 1.7771913 3.3495228
C 11.198185 7.3277628 5.7201503
H 11.1425566 7.1871371 4.6362417
H 11.9646775 6.7744341 6.1608887
H 11.2643818 8.3992492 5.9385233
C 7.0014651 8.9356891 -4.6035196
F 6.3711400 8.3382369 -5.6107529
C 12.6727201 1.7668120 4.0718780
C 12.3735667 0.8312509 3.5726359
H 12.4908594 1.6367704 5.1540696
C 13.7580499 1.9006606 3.9357849
C 13.5564280 0.1624038 -0.6700403
C 13.4864008 -0.1464793 0.3843474
C 14.2356134 -0.5421881 -1.1785014
C 12.5549901 0.0582613 -1.1174677
C 6.3668501 10.7785296 7.5794140
H 7.1617697 10.3299876 8.1950990
H 5.6783736 11.3066776 8.2601067
C 6.8346909 11.5247612 6.9174836
C 4.9580834 8.6879928 7.7145114
H 4.4044963 7.9202357 7.1505875
C 4.2523788 9.1881975 3.3987158
C 7.3891560 8.3007295 3.6096289
H 5.7106160 8.1730055 8.3315029
C 9.6017387 5.3180280 6.1151884
H 8.6497241 4.9826965 6.5582622
C 10.4174716 4.7617174 6.6032058
C 9.5981304 5.0656148 5.0511710
C 8.3714919 7.1010890 7.8392647
H 9.9497372 8.1727130 8.0707837
Co 9.5095281 6.5839345 1.6135154
O 11.1080355 8.0557775 1.6599602
C 12.4733144 7.6431931 1.8255680
C 13.2456412 8.9439343 2.028604
C 12.2243254 9.7932607 2.8011682
C 10.9026481 9.3956954 2.1402702
Atom	X	Y	Z
H	9.4563200	4.9982362	5.2139278
C	9.7761361	6.8576431	8.114392
H	9.9674183	7.9016837	8.407947
Co	9.4208522	6.6471585	1.8833985
O	11.1105061	8.1311312	2.159834
C	12.4603226	7.6415512	2.1900991
C	13.3319584	8.8085351	2.0046493
H	12.4671989	9.168720	1.0516297
Co	9.4208522	6.6471585	1.8833985
O	11.1105061	8.1311312	2.159834
C	12.4603226	7.6415512	2.1900991
C	13.3319584	8.8085351	2.0046493
H	12.4671989	9.168720	1.0516297

[Co^9(DPP^2)(Py)] (Triplet)

108 atoms
119 atoms

[Co\sup\text{III}] (DPP3) (Py\textsubscript{2})\textsubscript{(CSS)}

O 10.5726227 4.9908021 2.2913571
O 9.3645949 6.7807129 3.7191409
N 8.3452375 8.0291426 1.4743160
C 10.8369298 5.3923626 -0.5698020
N 9.9468300 6.2811261 -0.0664071
C 8.0244397 8.5598908 0.2267326
H 8.3616717 6.1273179 8.4429823
H 10.1114631 5.8757561 8.6054141
C 11.4050265 4.2502631 1.5980131
C 7.5981077 8.6717798 2.4039547
C 9.4612021 7.0475302 -1.1216406
C 11.6058060 4.4294924 0.1936130
C 10.0581321 6.5879260 -2.335708
H 9.8640083 6.9911148 -3.3271262
C 8.5230801 7.4930012 4.4217556
C 12.5639886 3.6450577 -0.496533
H 12.7066598 3.8324139 -1.5571924
C 12.1570560 3.2051736 2.2552297
C 10.9080447 5.5625321 -1.9983415
H 11.5188722 4.9795347 -2.6814813
C 13.0725943 2.4749138 1.5055773
H 13.6438669 1.6981789 2.0097387
C 8.1292198 8.8100279 -2.2281547
C 6.6589884 9.0985658 4.6350803
H 5.9491076 9.7557540 4.1400426
C 7.0578938 9.5923565 0.4006536
H 6.6245594 10.1920898 -0.3971122
C 8.5169022 7.3746821 5.8635980
H 6.7924160 9.6679273 1.7466008
H 6.1079562 10.3576087 2.2324187
C 8.5553154 8.1047878 -0.9866568
C 11.9536104 2.8800947 3.7488917
C 7.5709185 8.0953253 6.5842632
H 7.5623535 7.9896858 7.6671780
H 6.6114291 8.9576564 6.0094547
C 5.5950777 9.6817380 6.9086630
C 13.3186428 2.6701691 0.1286152
C 7.5970494 8.4063289 3.8287270
C 8.6216632 10.082383 -2.5385427
F 9.4912936 10.6776301 -1.7191375
C 14.4969008 2.1763207 -2.0817764
H 13.5491564 2.0146959 -2.6198726
H 15.2623505 1.5450803 -2.5611387
C 14.7967282 3.2270820 -2.2228095
C 7.2264746 8.2239229 -3.1217539
F 6.7246666 7.0144400 -2.8638071
C 9.5322612 6.4817215 6.6047836
C 14.3747191 1.8139876 -0.5909411
C 8.2343579 10.7555580 -3.6966685
F 8.7198071 11.9620972 -3.9785524
C 4.6397135 10.5767425 6.0995785
H 5.1836369 11.3631082 5.5223800
H 3.9272887 11.0755722 6.7762081
C 4.0536590 9.9939310 5.3711170
C 7.3295221 10.1497948 -4.5705033
F 6.9529025 10.7781970 -5.6824832
C 15.7542837 2.0317904 0.0722819
H 16.0560858 3.0897146 0.0072728
H 16.5272383 1.4220755 -0.4257976
H 15.7441965 1.7518502 1.1371369
C 12.2837150 4.1187308 4.6079809
H 13.3126258 4.4612746 4.4085352
H 12.2068042 3.8814567 5.6808021
H 11.5904163 4.9356031 4.395932
Pyridine (Py) (CSS)
11 atoms
H 1.9614782 -0.8296369 0.5132752
H 1.5297383 -0.4788886 -1.1836576

Pyridine (Py) (CSS)
11 atoms
H 2.1660057 0.0000000 -1.1849204
C 1.206924 0.0000000 -0.6723427
C -1.1432790 0.0000000 0.7266375
C 1.1432790 0.0000000 0.7266375
C 0.0000000 0.0000000 -1.3868794
C -1.2006924 0.0000000 -0.6723427
N -0.0000000 0.0000000 1.4182010
H 2.0698592 0.0000000 1.3142228
H 0.0000000 0.0000000 -2.4805160
H -2.1660057 0.0000000 -1.1849204
H -2.0698593 0.0000000 1.3142228

rBuNH₂ (CSS)
16 atoms
N 1.0039775 1.8495204 5.3308355
H 3.4919014 2.6902035 4.6739121
C 1.3361844 2.9477220 4.4076059

CH₂Cl₂ (CSS)
5 atoms
C 0.3149601 2.9134825 3.2601133
H 0.5326840 3.6912676 2.5106400
H 0.3282208 1.9301442 2.7654023
H -0.7066897 3.0897058 3.6389428
C 1.2972133 4.3275429 5.0986141
H 0.2927068 4.5287476 5.5086025
H 1.5470939 5.1451646 4.4013606
H 2.0171466 4.3644855 5.9340263
C 2.7468095 2.6819240 3.8596094
H 2.7883631 1.6958093 3.3720250
H 3.0411729 3.4523322 3.1289891
H 0.0771458 2.0040919 5.7330007
H 1.6531096 1.8528558 6.1203202
References in the Electronic Supplementary Information

1. Bruker, *APEX2 software*, Madison WI, USA, 2014.
2. G. M. Sheldrick, *SADABS*, University of Göttingen, Germany, 2008.
3. Sheldrick, G. M. Crystal structure refinement with *SHELXL*. *Acta Cryst. C* 2015, 71, 3-8.
4. G. M. Sheldrick, *SHELXL2013*, University of Göttingen, Germany, 2013.
5. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Platigs, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. *J. Appl. Cryst.* 2020, 53, 226–235.
6. Spek, A. L. *Acta Cryst.* 2009, D65, 148–155.
7. (a) Evans, D. F. *J. Chem. Soc.* 1959, 2003–2005. (b) Deutsch, J. L.; Poling, S. M. *J. Chem. Educ.* 1969, 46, 167–168. (c) Piguet, C. *J. Chem. Educ.* 1997, 74, 815–816. (d) Sur, S. K. *J. Magn. Reson.* 1989, 82, 169–173. (e) Grant, D. H. *J. Chem. Educ.* 1995, 72, 39. (f) Hoppeé, J. I. Effective magnetic moment. *J. Chem. Educ.* 1972, 49, 505. (g) Bain, G. A.; Berry, J. F. *J. Chem. Educ.* 2008, 85, 532–536.
8. TURBOMOLE Version 7.3; TURBOMOLE Gmbh, Karlsruhe, Germany, 2018.
9. (a) PQS Version 2.4; Parallel Quantum Solutions, Fayetteville, AR, USA, 2001. (b) Baker, *J. Comput. Chem.* 1986, 7, 385–395.
10. Budzelaar, P. H. M. *J. Comput. Chem.* 2007, 28, 2226–2236.
11. (a) Becke, A. D. *J. Chem. Phys.* 1993, 98, 5648–5652. (b) Lee, C. Yang, W. Parr, R. G. *Phys. Rev. B* 1988, 37, 785–789.
12. (a) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305. (b) Weigend, F.; Haser, M.; Patzelt, H.; Ahlrichs, R. *Chem. Phys. Lett.* 1998, 294, 143–152.
13. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.* 2010, 132, 154104–154119.
14. (a) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305. (b) Weigend, F.; Haser, M.; Patzelt, H.; Ahlrichs, R. *Chem. Phys. Lett.* 1998, 294, 143–152.
15. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.* 2010, 132, 154104–154119.
16. Neese, F. *Comput. Mol. Sci.* 2012, 2, 73–78.
17. Available at www.iboview.org. (a) Knizia, G. *J. Chem. Theory Comput.* 2013, 9, 4834–4843. (b) Knizia, G.; Klein, J. E. M. N. *Angew. Chem. Int. Ed.* 2015, 54, 5118–5522.
18. Iszak, R.; Neese, F. *J. Chem. Phys.* 2011, 135, 144105–144111.
19. (a) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J.-P. *J. Chem. Phys.* 2001, 114, 10252–10264. (b) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. *Chem. Phys. Lett.* 2001, 350, 297–305. (c) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. *J. Chem. Phys.* 2002, 117, 9138–9153.
20. Rieth, R. D.; Mankad, N. P.; Calimano, E.; Sadighi, J. P. *Org. Lett.* 2004, 6, 3981–3983.
21. Nakano, K.; Kobayashi, K.; Nozaki, K. *J. Am. Chem. Soc.* 2011, 133, 10720–10723.
22. Ikeda, C.; Ueda, S.; Nabeshima, T. *Chem. Commun.* 2009, 2544–2546.
23. Feng, Y.; Burns, L. A.; Lee, L.-C.; Sherril, C. D.; Jones, C. W.; Murdock, C. *Inorg. Chim. Acta* 2015, 430, 30–35.
24. Kochem, A.; Chiang, L.; Baptiste, B.; Philouze, C.; Leconte, N.; Jarjayes, O.; Storr, T.; Thomas, F. *Chem. Eur. J.* 2012, 18, 14590–14593.
