Vibrio Parahaemolyticus: A Review on Distribution, Pathogenesis, Virulence Determinants and Epidemiology

Lubna Ghenem, Nasreldin Elhadi, Faisal Alzahrani, Mitsuaki Nishibuchi

Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia, Center for Southeast Asian Studies, Kyoto University, 46 Shomoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Correspondence: Dr. Nasreldin Elhadi, Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, P.O. Box 2435, 31441 Dammam, Kingdom of Saudi Arabia. E-mail: nmohammed@uod.edu.sa

A B S T R A C T

Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium isolated from marine environments globally. After the consumption of contaminated seafood, *V. parahaemolyticus* causes acute gastroenteritis. To initiate infection, a wide range of virulence factors are required. A complex group of genes is known to participate in the pathogenicity of *V. parahaemolyticus*; however, to understand the full mechanism of infection, extensive research is yet required. *V. parahaemolyticus* has become the leading cause of seafood-related gastroenteritis in Japan, the United States and several other parts of the world. In addition, outbreaks caused by the pandemic clone of this organism are escalating and spreading universally. To minimize the risk of *V. parahaemolyticus* infection and warrant the safety of seafood, collaboration between governments and scientists is required. We herein provide an updated review of the pathogenicity determinants and distribution of *V. parahaemolyticus* to deliver a better understanding of the significance of *V. parahaemolyticus* and its host–pathogen interactions.

Key words: Pandemic clone, pathogenesis, *Vibrio parahaemolyticus*, virulence determinants

INTRODUCTION

The constant interaction of human populations with their surroundings continues to transform the spectrum of infectious diseases. Therefore, the search of emerging pathogens must not come to a pause. An emerging infectious disease is one for which the rate of incidence has increased within the past two decades or one which threatens to spread rapidly. Examples of these are infections caused by *Vibrio parahaemolyticus*, which is progressing as a significant human pathogen. *V. parahaemolyticus* is a Gram-negative halophilic bacterium that produces a capsule with different somatic (O) and capsular (K) antigens. *V. parahaemolyticus* is isolated from coastal and estuarine environments universally. In addition, it has been recovered from a wide variety of environments including seafood, water, and clinical samples such as blood, stool, and wound swabs.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Ghenem L, Elhadi N, Alzahrani F, Nishibuchi M. *Vibrio Parahaemolyticus*: A review on distribution, pathogenesis, virulence determinants and epidemiology. Saudi J Med Sci 2017;5:93-103.
of marine organisms. The consumption of raw or undercooked seafood contaminated by virulent strains of *V. parahaemolyticus* leads to acute gastroenteritis. The symptoms of the disease include diarrhea, nausea, abdominal pain, vomiting and low-grade fever. In most cases, the disease is self-resolving. However, incidences where *V. parahaemolyticus* caused a more debilitating and dysenteric form of gastroenteritis have been reported. In addition, when open wounds come in contact with contaminated seawater, wound infections occur. Uncommonly, in immunocompromised patients, it may progress into a life-threatening fulminant necrotizing fasciitis characterized by the rapid necrosis of subcutaneous tissue. In rare cases, *V. parahaemolyticus* causes septicemia, which is associated with a high mortality rate. It has been mostly reported in individuals who are immunocompromised due to underlying medical conditions such as liver diseases. To initiate infection, a wide range of virulence factors are used by *V. parahaemolyticus* including adhesins, toxins and secretion systems. *V. parahaemolyticus* has become the leading cause of seafood-related gastroenteritis in Japan, the United States and several other parts of the world. Further, outbreaks caused by the pandemic clone of this organism are escalating and spreading universally. To minimize the risk of *V. parahaemolyticus* infection and warrant the safety of seafood, collaboration between governments and scientists is required. Therefore, the objective of this study was to provide an updated review of the pathogenicity determinants and distribution of *V. parahaemolyticus* and use this information to deliver a better understanding of the *V. parahaemolyticus* significance and its host–pathogen interactions.

QUORUM SENSING

Quorum sensing (QS) is a term that defines the cell–cell communication process by which bacteria respond to released signaling molecules (known as autoinducers), on the basis of cell density fluctuations, to regulate gene expression. As the density of QS bacteria increases, the concentration of the autoinducers increases until it reaches a critical threshold, at which point bacteria forms a response. In the process of QS, individual cells’ function in unison to coordinate their gene expression and control their synchrony-requiring activities such as virulence factor secretion. At high cell densities, *V. parahaemolyticus* bacteria produce their major transcriptional regulator OpaR in response to the QS system. To summarize the role of OpaR in controlling the phenotypic output of *V. parahaemolyticus*, Kernell Burke et al. demonstrated 11 transcription factors under the downstream regulation of OpaR. They fall into the following four broad themes: first, genes related to cell surface and adhesion; second, virulence factors and cell–cell interactions including type III and type VI secretion systems (T3SS and T6SS); third, surface-specific regulon including the lateral flagellar system, chemotaxis and the swarm-specific sRNA and finally, other functions such as competency.

ADHESION TO HOST CELLS

Multivalent adhesion molecules (MAMs) are present in a wide range of Gram-negative pathogens. It enables high-affinity binding to the host cells during preliminary stages of infection, which is essential for delivery of virulence factors. MAM7 is the adhesin expressed constitutionally by *V. parahaemolyticus*. With its aid, *V. parahaemolyticus* is able to attach different types of host cells including macrophages, fibroblasts and epithelial cells. Correct localization and outer membrane anchoring of the protein are achieved by the hydrophobic stretch of 44 amino acids in MAM7 N-terminus. MAM7 has two host surface receptors: host membrane phosphatidic acid lipids (PA), to which MAM7 has a high affinity of binding, and extracellular matrix protein fibronectin, which acts as a co-receptor. MAM7 is constituted of seven mammalian cell entry domains, and each of them is capable of PA binding. The binding of MAM7 to PA in the host membrane causes downstream activation of small GTPase RhoA, which eventually leads to redistribution of epithelial tight junction proteins. The consequences of this pathway are the free migration of bacteria across epithelial layers and the depolarization of the barrier, leaving apical and basolateral surfaces with no particular markers.

IRON ACQUISITION

Iron is essential for the survival of organisms. Therefore, bacteria develop different methods to acquire iron from their hosts. Intracellularly, iron is involved in many processes ranging from signaling to metabolism. Furthermore, many organisms use the intracellular “low-iron conditions” to stimulate the expression of virulence genes. In humans, iron is present as part of multiple molecular complexes such as transferrin and hemoglobin. During infection, *V. parahaemolyticus* utilizes at least two methods of iron acquisition: production of siderophores and use of heme as a direct source of iron. Siderophores are compounds with a low molecular weight and a high iron affinity. They can scavenge extracellular iron, remove transferrin and lactoferrin-bound iron and facilitate its uptake by the...
bacteria.[23] \textit{V. parahaemolyticus} produces a siderophore known as vibrioferrin, which is synthesized by proteins from the pvsABCDE operon.[8] An outer membrane receptor, composed of PvuA1 and PvuA2 proteins, recognizes the ferric-charged vibrioferrin.[21] Since this receptor is coupled to the inner membrane ATP-binding cassette, it imports the ferric-charged vibrioferrin to the inner side of the cell.[21] As it acquires the energy required for iron-siderophore transportation across the outer membrane, \textit{V. parahaemolyticus} contains three sets of the TonB energy transduction system.[21] The process of iron uptake should be highly regulated because the concentration of iron inside the cell is critical; too little prevents the completion of certain cellular processes and too much causes the accumulation of free radicals, leading to cell death.[20] In \textit{V. parahaemolyticus}, this vital process is controlled by the ferric uptake regulation protein “Fur.”[25] By the downstream regulation of several genes, it represses the iron absorption.[21]

TOXINS

The late 1980s witnessed the study of the first \textit{V. parahaemolyticus} virulence factors: thermostable direct hemolysin (TDH)[24] and the thermostable direct-related hemolysin (TRH).[23] Today, TDH and TRH remain the most distinct virulence factors, as almost all clinically isolated strains of \textit{V. parahaemolyticus} possess hemolytic activity attributed to these two genes.[3] TDH is composed of four soluble monomers, in which a central pore is formed to allow the diffusion of small molecules.[26] In a process termed as Kanagawa phenomenon (KP), tdh + strains of \textit{V. parahaemolyticus} exhibit β-hemolytic activity when plated on special blood media known as Wagatsuma agar.[8] Purified TDH is heat stable after being exposed to 100°C for 10 min.[27] Hemolysis, enterotoxicity, cytotoxicity and cardiotoxicity represent a group of biological activities caused by TDH.[28] TDH is a pore-forming toxin. The fairly large pores it creates on erythrocytes allow both water and ions to flow through membranes.[29] Eventually, this results in colloidal osmotic lysis.[30] The primary targets for TDH activity are the epithelial and intestinal cells. The effect of TDH on these cells is very crucial for biological functions, such as diarrhea, during infection.[27] TDH binds to phospholipid bilayers, in which single channel events occur.[31] The mechanisms of cell binding and calcium ions influx result in the increase of intracellular Ca2+ and release of chloride ions in human colonic epithelial cells.[27] When the osmotic pressure of the cell exceeds its limit of self-regulation, pathological changes follow, leading to cell expansion and even death.[32] Homologs of \textit{V. parahaemolyticus} TDH are expressed in other vibrios causing diarrhea, such as non-O1 \textit{Vibrio cholerae} and \textit{Vibrio mimicus}. They have all been included in the \textit{tdh} family because the coding sequences of these genes share >93% homology.[33] Clinical samples from an outbreak of gastroenteritis in the Republic of Maldives presented KP-negative strains of \textit{V. parahaemolyticus}. However, these strains were found to express a new hemolysin, termed as TRH.[25] TRH is immunologically similar to TDH and their genes share approximately 70% homology.[29] TRH demonstrates hemolytic activity similar to that of TDH on blood cells.[6] Moreover, TRH activates Cl− channels and causes altered ion influx, in a manner analogous to TDH.[29] However, TRH is heat-labile when exposed to 60°C for 10 min.[27] Besides, when compared to TDH, evidence of a lesser role of TRH in the pathogenicity of \textit{V. parahaemolyticus} was proposed.[34] Although the association between the expression of \textit{tdh} and \textit{trh} and the pathogenicity of \textit{V. parahaemolyticus} is well acknowledged, it should be perceived that not all clinical strains possess these genes.[3] Some of the isolated clinical strains do not contain \textit{tdh} and/or \textit{trh} although these main hemolysins are absent, \textit{V. parahaemolyticus} remains pathogenic, indicating the expression of other virulence activities.[29] It should not escape our notice that \textit{V. parahaemolyticus} bacteria express an additional toxin, known as thermolabile hemolysin (TLH).[35] It is encoded by the \textit{tlh} gene, which is targeted during the genetic detection of \textit{V. parahaemolyticus} because it is a species-specific marker.[11] TLH exhibits phospholipase activity and the ability to lyse human erythrocytes.[6] Furthermore, the expression of \textit{tlh} was strongly upregulated under conditions simulating the human–host intestinal environment.[35] Therefore, TLH is assumed to have a role in \textit{V. parahaemolyticus} similar to TDH.[12] However, its direct contribution to the pathogenicity of \textit{V. parahaemolyticus} is yet to be elucidated.[33]

TYPE III SECRETION SYSTEMS

The T3SS bacterial machinery is a needle-like apparatus that injects bacterial proteins (termed effectors) directly into the cytoplasm of eukaryotic cells, without encountering the extracellular environment.[11] Those effectors disrupt the regular cell signaling processes to modify the biological activities of the host cell.[36] The basic structure of the T3SS apparatus is conserved among different species of bacteria. However, their effectors’ functions and targets differ.[11] According to the needs of pathogens, the production of effectors may be up- or downregulated.[8] The secretion apparatus of T3SS consists of first, the basal body spanning the
bacterial inner and outer membrane; second, a needle that connects between the bacteria and the host cells and finally, a translocon pore that penetrates the eukaryotic cell membrane.\(^3\) The whole genome sequencing of \textit{V. parahaemolyticus} RIMD 22106633 (O3:K6) revealed the acquisition of two sets of T3SS gene clusters, with one on each of its two circular chromosomes, and thus they were entitled T3SS1 and T3SS2.\(^{17}\)

Type three III secretion system 1

The T3SS1 gene cluster is encoded in the first pathogenicity island on chromosome 1. Nearly all clinical and environmental strains of \textit{V. parahaemolyticus} encode T3SS1.\(^{12}\) The sequence homology of T3SS1 gene cluster with \textit{Yersinia} spp. and other vibrios suggests that it was ancestrally acquired and has been evolutionarily conserved.\(^3\) A dual regulatory system consisting of ExsACDE regulatory cascade and heat-stable nucleoid-structuring protein (H-NS) orchestrates the transcription of T3SS1.\(^{18}\) ExsA, a member of AraC family of transcription regulators, is the master transcriptional regulator of T3SS1 expression.\(^{19}\) Under noninducing conditions, ExsD (an anti-activator) directly binds to ExsA and renders it inactive. Meanwhile, the anti-anti-activator ExsC binds to ExsE. In inducing conditions, ExsE is secreted to release ExsC. ExsC then sequesters ExsD and liberates ExsA. Free ExsA binds to the promoter genes and activates T3SS1.\(^{20}\) H-NS is a major component of the bacterial nucleoid.\(^{21}\) In \textit{V. parahaemolyticus}, H-NS was found to repress the T3SS1-related genes’ expression by suppressing \textit{exsA} gene.\(^{22}\) During \textit{V. parahaemolyticus} infection, the activation of T3SS1 initiates a reproducible series of events. Their outcome includes the induction of rapid autophagy followed by cell rounding, eventually leading to cell lysis.\(^{11}\) To date, four T3SS1 effectors have been recognized: Vibrio outer protein (Vop) Q, VopS, VPA0450 and VopR (VP1638) \([\text{Table 1}].\(^{32}\) The effector VopQ contributes to T3SS1 cytotoxicity.\(^{40}\) Through membrane permeations, VopQ manipulates lysosomal homeostasis and autophagic flux, leading to rapid induction of autophagy.\(^{41}\) The mediated autophagy inhibits recruitment of phagocytosis-related cellular machinery, leading to debilitated phagocytes engulfment of \textit{V. parahaemolyticus} bacteria during infection.\(^{40}\) Moreover, Vop-Q triggers mitogen-activated protein kinases (MAPKs) pathway that regulates transcription of inflammatory cytokines. Through MAPK, VopQ induces production of interleukin-8, which is known for its leukocyte chemotactic properties and role in inflammatory disease.\(^{42}\) VopS (VP1686) modifies a conserved threonine residue on Rho, Rac and Cdc42, with adenosine-\(^5\)-monophosphate (AMP).\(^{43}\) The AMPylation of Rho GTPases prevents subsequent interaction with downstream effectors, by which actin assembly is inhibited.\(^{43}\) The upshots of VopS activities in \textit{V. parahaemolyticus} infection are the interference with the assembly of specks in infected macrophages, the hindrance of inflammasome activation and the assistance in the bacterial evasion from inflammatory responses.\(^{49}\) VPA0450 is another T3SS1 effector protein contributing to host cell death.\(^{8}\) In the human host, VPA0450 disrupts the cytoskeletal binding sites on the inner surface of the

Table 1: List of \textit{Vibrio parahaemolyticus} type III secretion systems effectors
T3SS
T3SS1
T3SS2

T3SS – Type III secretion systems; Vop – Vibrio outer protein; \textit{V. parahaemolyticus} – \textit{Vibrio parahaemolyticus}
membrane. The subsequent plasma membrane blebbing compromises the membrane integrity, facilitates cell lysis and participates in cytotoxicity.\(^8\) Finally, by binding to the phosphoinositide on the host cell, VopR localizes to the cellular membrane. It may also play a role in the infection of \textit{V. parahaemolyticus} by promoting the refolding of T3SS effector proteins after their delivery into host cells.\(^{12}\)

Type three III secretion system 2

The second cluster of genes encoding T3SS2 is found on the pathogenicity island Vp-PAI (VPaI-7) on chromosome 2. Along with T3SS2 and its known effectors, VPaI-7 typically encodes two \textit{idh} genes.\(^{37}\) Accordingly, it is primarily expressed in clinical isolates of \textit{V. parahaemolyticus} and associated with large outbreaks of the disease.\(^8\) The G + C content of VPaI-7 is lower than the genomic average and has a higher number of genes unique to each Vibrio spp. These annotations indicate that it was recently acquired by \textit{V. parahaemolyticus} through lateral transfer.\(^6\) The genes of T3SS2 are mainly regulated by two transcriptional regulators, VtrA and VtrB.\(^{38}\) Gotoh \textit{et al.}\(^{35}\) demonstrated that \textit{V. parahaemolyticus} recognizes the intestinal environment through detecting bile acids, which induce VtrA-mediated VtrB transcription and subsequent production of T3SS2 effector proteins. Noteworthy, VtrA and VtrB do not only regulate the expression of T3SS2 but also regulate the expression of both \textit{idh} genes on Vp-PAI. Thus, they play a major role in \textit{V. parahaemolyticus} cytotoxicity.\(^{46}\) The delivery of effector proteins to host cells requires the presence of a translocon complex. During \textit{V. parahaemolyticus} infection, VopB2, VopD2 and the recently identified VopW are necessary for the T3SS2 effector translocation through permeation of the host cell membrane.\(^6\) While the cytotoxicity of T3SS2 is limited and associated with the function of TDH, T3SS2 appears to be the major contributor to the enterotoxicity occurring in rabbit ileal loop model.\(^{50}\) In addition, the T3SS2 effectors are capable of adhering to human cells, leading to cytoskeletal disruption and loss of membrane integrity.\(^{34}\) To date, seven T3SS2 effector proteins have been characterized: first, Vop A/P (VPA1346), which shares around 55% homology with the Yop-like proteins of \textit{Yersinia} and \textit{Salmonella}.\(^{44}\) VopA is an acetyltransferase that prevents the activation of MAPK kinases, inhibits MAPK signaling pathway and ultimately suppresses the host’s innate immune response.\(^{45}\) Second, VopL contains three N-terminal Wiskott–Aldrich homology 2 motifs and a unique VopL C-terminal domain. Its main function is actin nucleation and induction of stress fibers.\(^{52}\) Ham and Orth\(^6\) suggested that the role of VopL in actin manipulation may contribute to the bacterial uptake into the host cells. Third, VopC, which displays homology to the catalytic domain of cytotoxic necrotizing factor toxins.\(^{46}\) VopC exhibits transglutaminase activity, by which it modifies Rho family GTPases. Once Rho GTPase is activated, it triggers changes in the actin cytoskeleton of infected cells.\(^{146}\) In the meantime, the activation of CDC42 facilitates the invasion of \textit{V. parahaemolyticus} into host cells.\(^{46}\) Fourth, VopT is a cytotoxin and ADP-ribosyltransferase effector that targets Ras GTPase in \textit{V. parahaemolyticus}-infected cells.\(^{47}\) Fifth, VopV is the homolog of VopM protein that is involved in non-O1/non-O139 \textit{V. cholerae} enterotoxicity. Parallel to VopM, VopP possesses multiple F-actin-binding domains and an enterotoxic activity during infection of \textit{V. parahaemolyticus}.\(^{36}\) Sixth, VopZ is a multifunctional effector crucial for the pathological phenotypes induced by \textit{V. parahaemolyticus}. Strains lacking \textit{vopZ} genes fail to colonize the intestine and cause diarrhea.\(^{48}\) VopZ inhibits the activation of transforming growth factor \(\beta\)-activated kinase-1, TAK1, which is essential for MAPK and NF-\(\kappa\)B signaling pathway activation. TAK1 has a profound influence on the preservation of intestinal integrity, and its absence leads to different consequences including inflammation, apoptosis and reduced transepithelial resistance.\(^{48}\) Finally, VPA1380 is the most recently identified T3SS2 effector protein. It is a typical cytostatic protease that catalyzes its targeted substrates.\(^{53}\) VPA1380 possibly contributes to the invasion of the host cell by \textit{V. parahaemolyticus}. However, its direct role in the pathogenicity of \textit{V. parahaemolyticus} has not been fully recognized.\(^{12}\)

TYPE VI SECRETION SYSTEM

Of Gram-negative bacterial secretion systems, the latest to be described is the T6SS. It is a complex molecular machine that utilizes a bacteriophage-like cell-puncturing device to inject effector proteins into target cells.\(^{54}\) Homologs of \textit{V. parahaemolyticus} T6SS are found in a range of Gram-negative bacteria. During the infection of those cells, T6SS is predicted to take part in actin cross-linking, intracellular trafficking, secretion and vesicular transport.\(^{55}\) \textit{V. parahaemolyticus} holds two sets of putative T6SSs, one on each chromosome.\(^{56}\) VPT6SS1 is mainly associated with clinical isolates, while all strains of \textit{V. parahaemolyticus} encode VPT6SS2. Both systems have different aspects of adherence to Caco-2 and/or Hela cells.\(^{56}\) Furthermore, there is recent evidence of a significant role of T6SS of \textit{V. parahaemolyticus} in inducing autophagy in macrophages.\(^{57}\)
Spread of *Vibrio parahaemolyticus* and emergence of pandemic clone

During 1950, Japan witnessed an outbreak of acute gastroenteritis, in which 272 people were infected and 20 died. An investigation of the leading cause, held by Fujino et al., resulted in the first isolation of the Gram-negative rods presently known as *V. parahaemolyticus*. Some of the earliest outbreaks caused by *V. parahaemolyticus* were reported in the United States and Europe [Figure 1]. The occurrence of *V. parahaemolyticus* cases had a typical sporadic manner, with no clear association between distinct serotypes of *V. parahaemolyticus* and gastroenteritis incidence. This situation remained until 1996, during which a surveillance of *V. parahaemolyticus* gastroenteritis incidence in Kolkata, India, witnessed a sudden surge due to the new unique serotype, O3:K6. Since then, cases of gastroenteritis caused by O3:K6 *V. parahaemolyticus* have been reported worldwide: in Africa, Asia, Europe and the American continent [Figure 1]. The rapid spread of O3:K6 marked the first pandemic of *V. parahaemolyticus* and placed this pathogen on the global public health agenda.

Matsumoto et al. exploited the intraspecies variation of the toxRS sequence to develop a group-specific polymerase chain reaction method that permits the confirmation of the clonality of the new O3:K6 strains. During this period, emerging strains that belong to different serovars were found to be almost indistinguishable from the new O3:K6 clone. By 2007, 21 different serotypes of *V. parahaemolyticus* appeared to have identical genotypes and molecular profiles to those of O3:K6 and were collectively entitled as “serovariants” of O3:K6 isolates, in which the most common serotypes were O4:K68, O1:K25 and O1:KUT (unypeable). The understanding of the genetic diversity of *V. parahaemolyticus* was enhanced by the establishment of a multilocus sequence typing (MLST) scheme. It is the elected method for determining the global epidemiology of bacterial pathogens based on sequence analysis of chosen housekeeping genes. After gathering data from the pubMLST database and different studies, Han et al. generated a comprehensive overview of the spread of clinical and environmental pandemic *V. parahaemolyticus* strains [Table 2]. They concluded that 49 serotypes, widely distributed in 22 countries, represent the pandemic isolates. The comparison between the genetic organizations of O3:K6 and other serotypes of *V. parahaemolyticus* disclose the complexity of the pandemic clones. One possible explanation for the widespread of O3:K6 is the acquisition of open reading frame 8 (orf8) through phage f237 infection. It was suggested that O3:K6 strains have a higher epidemic potency because the protein product of orf8 caused them to be more adhesive to host intestine cells. Although orf8 appears to be a suitable genetic marker for the identification of pandemic clones, its reliability became debatable after findings of O3:K6 strains lacking f237 were reported. Soon after that, the gene sequence VP2905 was proposed as an alternative genetic marker exclusive to the pandemic clones. The gene is located in a 16-kb region inserted in the open reading frame of the histone-like DNA-binding protein HU-α, causing a frameshift in the amino acid sequence. However, its role in the pathogenicity of *V. parahaemolyticus* is yet undecided.

CONCLUSIONS AND RECOMMENDATIONS

Studying the virulence determinants used by *V. parahaemolyticus* reveals a complex combination of genes orchestrating the host–pathogen interactions. However, the exact mechanism by which the infection is initiated is yet unknown. Therefore, further research is required to fill gaps in the literature. This is especially emphasized because *V. parahaemolyticus* may act as a reservoir from which genes may be transferred to other bacteria. In addition, the transient nature of the gastroenteritis infection caused by *V. parahaemolyticus* masks the true burden of this pathogen. However, reviewing the emergence of the pandemic clone and its ability to cause large outbreaks highlights the significance of *V. parahaemolyticus* and its impact on the population health as well as calls for the systematic monitoring of its existence and potential pathogenicity in the region.

Financial support and sponsorship

Nil.
Table 2: Overview of the global clinical and environmental distribution of Vibrio parahaemolyticus

Continent	Country	Source(s)	Pandemic serotypes	Reference(s)
Asia	Japan	Clinical and environmental	Yes	[72]
	Korea	Clinical and environmental	Yes	[71,73]
	China	Clinical and environmental	Yes	[64]
	Vietnam	Clinical and environmental	Yes	[71,74]
	Laos	Clinical and environmental	Yes	[71,72]
	Indonesia	Clinical and environmental	Yes	[69]
	Malaysia	Clinical and environmental	No	[75]
	Singapore	Clinical and environmental	Yes	[3]
	Thailand	Clinical and environmental	Yes	[76,77]
	India	Clinical and environmental	Yes	[78,79]
	Bangladesh	Clinical and environmental	Yes	[80]
	Jordan	Environmental	No	[81]
Europe	Russia	Clinical and environmental	Yes	[82]
	Sweden	Environmental	No	[83]
	Norway	Environmental	Potentially yes	[84]
	United Kingdom	Clinical and environmental	Yes	[85,86]
	Spain	Clinical and environmental	Yes	[87,88]
	France	Clinical and environmental	Yes	[89,90]
	Italy	Clinical and environmental	Yes	[46,91]
	Switzerland	Environmental	No	[92]
	Germany	Environmental	No	[93]
	Turkey (Black Sea)	Environmental	No	[94]
Africa	Egypt	Environmental	No	[95]
	Tunisia	Environmental	No	[96]
	Nigeria	Environmental	No	[97]
	Kenya	Environmental	No	[98]
	Mozambique	Clinical and environmental	Yes	[63]
	Côte d’Ivoire	Environmental	No	[99]
	Senegal	Environmental	No	[100]
	South Africa	Environmental	No	[101]
	Guinea-Bissau	Environmental	No	[102]
America	Canada	Clinical and environmental	No	[103]
	United States	Clinical and environmental	Yes	[104,105]
	Mexico	Clinical and environmental	Yes	[66]
	Ecuador	Clinical and environmental	Yes	[71,106]
	Brazil	Clinical and environmental	Yes	[107]
	Peru	Clinical and environmental	Yes	[108]
	Chile	Clinical and environmental	Yes	[109]

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. van Doorn HR. Emerging infectious diseases. Medicine 2014;42:60-3.
2. Igbinosa EO, Okoh AI. Emerging Vibrio species: An unending threat to public health in developing countries. Res Microbiol 2008;159:493-506.
3. Ceccarelli D, Hasan NA, Huq A, Colwell RR. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol 2013;3:97.
4. Fabbro C, Cataletto B, Del Negro P. Detection of pathogenic Vibrio parahaemolyticus through biochemical and molecular-based methodologies in coastal waters of the Gulf of Trieste (North Adriatic Sea). FEMS Microbiol Lett 2010;307:158-64.
5. Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 2014;5:705.
6. Ham H, Orth K. The role of type III secretion system 2 in Vibrio parahaemolyticus pathogenicity. J Microbiol 2012;50:719-25.
1. Ghenem, et al.: Pathogenesis and epidemiology of *Vibrio parahaemolyticus*, a notably lethal human pathogen derived from seafood: A review of its pathogenicity, characteristics, subspecies characterization, and molecular methods of detection. Food Biotechnol 2006;20:93-128.

2. Broberg CA, Calder TJ, Orth K. *Vibrio parahaemolyticus* cell biology and pathogenicity determinants. Microbes Infect 2011;13:992-1001.

3. Tena D, Arias M, Alvarez BT, Mauleón C, Jiménez MP, Bisquert J. Fulminant necrotizing fasciitis due to *Vibrio parahaemolyticus*. J Med Microbiol 2010;59(Pt 2):235-8.

4. Ahmad A, Brumble L, Maniaci M. *Vibrio parahaemolyticus* induced necrotizing fasciitis: An atypical organism causing an unusual presentation. Case Rep Infect Dis 2013;2013:216854.

5. Zhang L, Orth K. Virulence determinants for *Vibrio parahaemolyticus* infection. Curr Opin Microbiol 2013;16:70-7.

6. Nelapati S, Nelapati K, Chinnam BK. *Vibrio parahaemolyticus* – An emerging foodborne pathogen – A review. Vet World 2012;5:48.

7. Klein SL, Gutierrez West CK, Mejia DM, Lovell CR. Genes similar to the *Vibrio parahaemolyticus* virulence-related genes tdh, tth, and vscC2 occur in other vibriocae species isolated from a pristine estuary. Appl Environ Microbiol 2014;80:595-602.

8. Canizalez-Roman A, Flores-Villaseñor H, Zazueta-Beltran J, Muro-Amador S, León-Sicairos M. Comparative evaluation of a chromogenic agar medium-PCR protocol with a conventional method for isolation of *Vibrio parahaemolyticus* strains from environmental and clinical samples. Can J Microbiol 2011;57:136-42.

9. Henke JM, Bassler BL. Quorum sensing regulates type III secretion in *Vibrio harveyi* and *Vibrio parahaemolyticus*. J Bacteriol 2004;186:5794-805.

10. Kornell Burke A, Guthrie LT, Modise T, Cormier G, Jensen RV, Orth K. Outer membrane adhesion factor one 2011;108:11614-9.

11. Krachler AM, Ham H, Orth K. Outer membrane adhesion factor multivalent adhesion molecule 7 clusters act as signaling platform and an adhesin and extracellular effector of host GTPase signaling. Mol Microbiol 2009;73:639-49.

12. Takahashi A, Yamamoto C, Kodama T, Yamauchi K, Harada N, Nakano M, et al. Pore formation of thermostable direct hemolysin secreted from *Vibrio parahaemolyticus* in lipid bilayers. Int J Toxicol 2006;25:409-18.

13. Hardy SP, Nakano M, Iida T. Single channel evidence for innate pore-formation by *Vibrio parahaemolyticus* thermostable direct haemolysin (TDH) in phospholipid bilayers. FEMS Microbiol Lett 2004;240:81-5.

14. Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. Cloning, expressing, and hemolysis of VopV, an F-actin-binding type III secretion effector, is required for *Vibrio parahaemolyticus* virulence. Acta Pathol Microbiol Immunol Scand A 2003;111:151-60.

15. Zhao Y, Tang X, Zhan W. Cloning, expressing, and hemolysis of thermostable direct hemolytic protein induced by a dual regulation system consisting of the ExsACDE regulatory cascade and H-NS. FEMS Microbiol Lett 2010;311:10-7.

16. Toyota K, Sato S, Tagomori K, Akeda Y, Kurokawa K, Yokoyama K, et al. Outer membrane porin (OmpW) as a virulence factor of *Vibrio parahaemolyticus*. J Bacteriol 2003;185:6938-49.

17. Sredlatha A, Bennett TL, Zheng H, Jiang QX, Orth K, Starai VJ. *Vibrio parahaemolyticus* effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux. Proc Natl Acad Sci U S A 2013;110:11559-64.
Induction of IL-8 secretion through dual pathway via VP1680 in Caco-2 cells. J Infect Dis 2011;203:537-44.

Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 2009;325:269-72.

Trosky JE, Mukherjee S, Burdette DL, Roberts M, McCarter L, Siegel RM, et al. Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 2004;279:51953-7.

Trosky JE, Li Y, Mukherjee S, Keitany G, Ball H, Orth K. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J Biol Chem 2007;282:34299-305.

Zhang L, Krachler AM, Broberg CA, Li Y, Mirzaei H, Gilpin CJ, et al. Type III effector VopC mediates invasion for Vibrio species. Cell Rep 2012;1:453-60.

Kodama T, Rokuda M, Park KS, Cantarelli VV, Matsuda S, Iida T, et al. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cell Microbiol 2007;9:2598-609.

Zhou X, Gewurz BE, Ritchie JM, Takasaki K, Greenfeld H, Kieff E, et al. A Vibrio parahaemolyticus TSS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation. Cell Rep 2013;3:1690-702.

Higa N, Tomia C, Koizumi Y, Nakasone N, Nohara T, Masumoto J, et al. Vibrio parahaemolyticus effector protein suppresses inflammasome activation by interfering with host autophagy signaling. PLoS Pathog 2013;9:e1003142.

Hiyoshi H, Kodama T, Iida T, Honda T. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect Immum 2010;78:1772-80.

Caburlotto G, Haley BJ, Lleo MM, Huq A, Colwell RR. Serodiversity and ecological distribution of Vibrio parahaemolyticus in the Venetian Lagoon, Northeast Italy. Environ Microbiol Rep 2013;5:225-33.

Yu B, Cheng HC, Bradtigam CA, Tomchick DR, Rosen MK. Mechanism of actin filament nucleation by the bacterial effector VopL. Nat Struct Mol Biol 2011;18:1068-74.

Calder T, Kinch LN, Fernandez J, Salomon D, Grishin NV, Orth K. Vibrio type III effector VPA1380 is related to the cytoeptine protease domain of large bacterial toxins. PLoS One 2014;9:e104387.

Coulthurst SJ. The Type VI secretion system – A widespread and versatile cell targeting system. Res Microbiol 2013;164:640-54.

Boyd EF, Cohen AL, Naughton LM, Ussery DW, Binnewies TT, Stine OC, et al. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol 2008;8:110.

Yu Y, Yang H, Li J, Zhang P, Wu B, Zhu B, et al. Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol 2012;194:827-35.

Yu Y, Fang L, Zhang Y, Sheng H, Fang W. VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages. Front Microbiol 2015;6:168.

Fujino T, Okuno Y, Nakada D, Aoyama A, Mukai T, Ueho T. On the bacteriological examination of shirasu food poisoning. Med J Osaka Univ 1953;4:299-304.

Molenda JR, Johnson WG, Fishbein M, Wentz B, Mehmhan JJ, Dadasman TA Jr. Vibrio parahaemolyticus gastroenteritis in Maryland: Laboratory aspects. Appl Microbiol 1972;24:444-8.

Hooper WL, Barrow GI, McNab DJ. Vibrio parahaemolyticus food-poisoning in Britain. Lancet 1974;1:1100-2.

de Jesús Hernández-Díaz L, Leon-Sicairos N, Velazquez-Roman J, Flores-Villaseñor H, Guadron-Llanos AM, Martinez-Garcia JJ, et al. A pandemic Vibrio parahaemolyticus O3:K6 clone causing most associated diarrhea cases in the Pacific Northwest coast of Mexico. Front Microbiol 2015;6:221.

Okuda J, Ishibashi M, Hayakawa E, Nishino T, Takeda Y, Mukhopadhyay AK, et al. Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J Clin Microbiol 1997;35:3150-5.

Ansaruzzaman M, Chowdhury A, Bhuiyan NA, Sultana M, Safa A, Lucas M, et al. Characteristics of a pandemic clone of O3: K6 and O4: K6 Vibrio parahaemolyticus isolated in Beira, Mozambique. J Med Microbiol 2008;57(Pt 12):1502-7.

Li J, Xue F, Yang Z, Zhang X, Zeng D, Chao G, et al. Vibrio parahaemolyticus strains of pandemic serotypes identified from clinical and environmental samples from Jiangsu, China. Front Microbiol 2016;7:787.

Martinez-Urtaza J, Simental L, Velasco D, DePaola A, Ishibashi M, Nakaguchi Y, et al. Pandemic Vibrio parahaemolyticus O3:K6, Europe. Emerg Infect Dis 2005;11:1319-20.

Velazquez-Roman J, Leon-Sicairos N, de Jesus Hernández-Díaz L, Canizalez-Roman A. Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front Cell Infect Microbiol 2014;4:110.

Matsumoto C, Okuda J, Ishibashi M, Iwanaga M, Garg P, Ramamurthy T, et al. Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses. J Clin Microbiol 2000;38:378-85.

Chowdhury NR, Chakraborty S, Ramamurthy T, Nishibuchi M, Yamaski S, Takeda Y, et al. Molecular evidence of clonal Vibrio parahaemolyticus pandemic strains. Emerg Infect Dis 2000;6:631-6.

Nair GB, Ramamurthy T, Bhattacharyya SK, Dutta B, Takeda Y, Sack DA. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 2007;20:39-48.

González-Escalona N, Martinez-Urtaza J, Romero J, Espeso RT, Jaykus LA, DePaola A. Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing. J Bacteriol 2008;190:2831-40.

Han C, Tang H, Ren C, Zhu X, Han D. Sero-prevalence and genetic diversity of pandemic V.parahaemolyticus strains occurring at a global scale. Front Microbiol 2016;7:567.

Har-Rudo Y, Kumagai S. Impact of seafood regulations for Vibrio parahaemolyticus infection and verification by analyses of seafood contamination and infection. Epidemiol Infect 2014;142:2237-47.

Kang CH, Shin Y, Kim W, Kim Y, Song K, Oh EG, et al. Prevalence and antimicrobial resistance characteristics of Vibrio parahaemolyticus isolated from oysters in Korea. Environ Sci Pollut Res Int 2016;23:918-26.

Tak DT, Vinh Thuy A, Nhi NT, Ngoc NT, Lan NT. Virulence and antimicrobial resistance characteristics of Vibrio parahaemolyticus isolated from environment, food and clinical samples in the south of Vietnam, 2010. BMC Proc 2011;5:P94.

Letchumanan V, Yin WF, Lee LH, Chan KG. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 2015;6:33.

Thongjun J, Mittrarpap-Arthorn P, Yingkajorn M, Kongreung J, Nishibuchi M, Vuddhakul V. The trend of Vibrio parahaemolyticus infections in Southern Thailand from 2006 to 2010. Trop Med Health 2013;41:151-6.

Kongreung J, Yingkajorn M, Bunpa S, Sermwittayawong N, Singkhaman K, Vuddhakul V. Characterization of Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease

Vibrio parahaemolyticus.
81. Alaboudi AR, Ababneh M, Osaili TM, Al Shloul K. Detection, identification, and prevalence of pathogenic Vibrio parahaemolyticus in fish and coastal environment in Jordan. J Food Sci 2016;81:MI30-4.

82. Rykovskaia OA, Mazrukho AV, Smolikova LM, Monakhova EV, Rykovskaya OA, Mazrukho AV, Smolikova LM, Monakhova EV. Occurrence and genetic diversity of pathogenic populations of Vibrio parahaemolyticus in coastal waters of Galicia, Spain. Environ Microbiol Rep 2013;5:107.

83. Collin B, Rehnstam-Holm AS. Occurrence and potential pathogenesis of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus on the South Coast of Sweden. FEMS Microbiol Ecol 2011;78:306-13.

84. Ellingsen AB, Olsen JS, Granum PE, Rørvik LM. Occurrence of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus from shrimp ponds in east coast of India. Curr Microbiol 2016:61:235-40.

85. Pazhani GP, Bhowmik SK, Ghosh S, Guin S, Dutta S, Rajendran K, et al. Trends in the epidemiology of pandemic and non-pandemic strains of Vibrio parahaemolyticus isolated from diarrheapatients in Kolkata, India. PLoS Negl Trop Dis 2014;8:e2815.

86. Akther F, Neogi SB, Chowdhury WB, Sadique A, Islam A, Akhter MZ, et al. Major tdh(+) Vibrio parahaemolyticus serotype changes temporally in the Bay of Bengal estuary of Bangladesh. Infect Genet Evol 2016;41:153-9.

87. Martinez-Urtaza J, Powell A, Jansa J, Rey JL, Montero OP. Comparison of pandemic Vibrio parahaemolyticus isolated from fish in Kenya. East Afr Med J 2001;78:124-7.

88. Traoré SG, Bonfoh B, Krabi R, Odermatt P, Uitzinger J, Rose KN, et al. Risk of Vibrio transmission linked to the consumption of crustaceans in coastal towns of Côte d’Ivoire. J Food Prot 2012;75:1004-11.

89. Robert-Pillot A, Copin S, Himber C, Gay M, Quilici ML. Occurrence of the three major O3:K6 serogroup Vibrio parahaemolyticus – The causative agent of food toxic infection outbreaks in Primorsky region of Russian federation. Zh Mikrobiol Epidemiol Immunobiol 2014;4:57-61.

90. Robert-Pillot A, Copin S, Himber C, Gay M, Quilici ML. Occurrence of Vibrio parahaemolyticus isolated in seafood products consumed in France using real-time whole-genome sequence analysis. Front Microbiol 2015;6:125.

91. Quilici ML, Robert-Pillot A, Picart J, Fournier JM. Pandemic Vibrio parahaemolyticus O3:K6 spread, France. Emerg Infect Dis 2005;11:1148-9.

92. Quilici ML, Robert-Pillot A, Copin S, Himber C, Gay M, Quilici ML. Occurrence of the three major Vibrio species pathogenic for human in seafood products consumed in France using real-time PCR. Int J Food Microbiol 2014;189:73-81.

93. Ottaviani D, Leoni F, Rocchegiani E, Santarelli S, Canonico C, Masini L, et al. First clinical report of pandemic Vibrio parahaemolyticus O3:K6 infection in Italy. J Clin Microbiol 2008;46:2144-5.

94. Schärer K, Savioz S, Cernela N, Saegesser G, Stephan R. Occurrence of Vibrio spp. in fish and shellfish collected from the Swiss market. J Food Prot 2011;74:1345-7.

95. Huehn S, Eichhorn C, Urmersbach S, Breidenbach J, Bechlers S, Bier N, et al. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol 2014;304:843-50.

96. Terzı Gulek G, Martinez-Urtaza J. Molecular characterizations of Vibrio parahaemolyticus in seafood from the Black Sea, Turkey. Lett Appl Microbiol 2016;62:494-500.

97. Abd-Elghany SM, Sallam KI. Occurrence and molecular identification of Vibrio parahaemolyticus in retail shellfish in Mansoura, Egypt. Food Control 2015;33:399-405.

98. Khoudja S, Suffredini E, Spagnolletti M, Croci L, Colombo MM, Amina B. Presence of pathogenic Vibrio parahaemolyticus in waters and seafood from the Tunisian Sea. World J Microbiol Biotechnol 2013;29:1341-8.

99. Eja ME, Abriba C, Etok CA, Ikpeme GE, Enyi-Idoh KH, et al. Seasonal occurrence of vibrios in water and shellfish obtained from the Great Kwa River estuary, Calabar, Nigeria. Bull Environ Contam Toxicol 2008;81:245-8.

100. Kagiiko MM, Damiano WA, Kayihura MM. Characterisation of Vibrio parahaemolyticus isolated from seafoods and cases of Vibrio cholerae and Vibrio parahaemolyticus detected in seafood products from Senegal. Foodborne Pathog Dis 2013;10:1050-8.

101. Coly I, Sow AG, Seydi M, Martinez-Urtaza J. Vibrio cholerae and Vibrio parahaemolyticus detected in seafood products from Senegal. Foodborne Pathog Dis 2013;10:1050-8.

102. Machado A, Bordalo AA. Detection and quantification of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in Coastal Waters of Guinea-Bissau (West Africa). Ecohealth 2016;13:339-49.

103. Haendiges J, Timme R, Allard MW, Myers RA, Brown EW, Gonzalez-Escalona N. Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012-2013) and comparisons to a locally and globally diverse Vibrio parahaemolyticus strains isolated from a pristine estuary. Appl Environ Microbiol 2013;79:2247-52.

104. Gutierrez West CK, Klein SL, Lovell CR. High frequency of virulence factor genes tdh, trh, and tsh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Appl Environ Microbiol 2013;79:2247-52.

105. Gil AI, Miranda H, Lanata CF, Prada A, Hall ER, Barreno CM, et al. O3:K6 serotype of Vibrio parahaemolyticus identical to the global pandemic clone associated with diarrhea in Peru. Int J Infect Dis 2007;11:324-8.

106. Fuenzalida L, Hernández C, Toro J, Rioseco ML, Romero J, Espejo RT. Vibrio parahaemolyticus in shellfish and clinical samples during two large epidemics of diarrhoea in southern Chile. Environ Microbiol 2006;8:675-83.

107. Nasu H, Iida T, Sugahara Y, Yamaichi Y, Park KS, Yokoyama K, et al. A filamentous phage associated with recent pandemic
Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol 2000;38:2156-61.

111. Bhuiyan NA, Ansaruzzaman M, Kamruzzaman M, Alam K, Chowdhury NR, Nishibuchi M, et al. Prevalence of the pandemic genotype of Vibrio parahaemolyticus in Dhaka, Bangladesh, and significance of its distribution across different serotypes. J Clin Microbiol 2002;40:284-6.

112. Osawa R, Iguchi A, Arakawa E, Watanabe H. Genotyping of pandemic Vibrio parahaemolyticus O3:K6 still open to question. J Clin Microbiol 2002;40:2708-9.

113. Williams TL, Musser SM, Nordstrom JL, DePaola A, Monday SR. Identification of a protein biomarker unique to the pandemic O3:K6 clone of Vibrio parahaemolyticus. J Clin Microbiol 2004;42:1657-65.

114. Okura M, Osawa R, Arakawa E, Terajima J, Watanabe H. Identification of Vibrio parahaemolyticus pandemic group-specific DNA sequence by genomic subtraction. J Clin Microbiol 2005;43:3533-6.