∗-CONFORMAL η-RICCI SOLITONS IN ϵ-KENMOTSU MANIFOLDS

Abdul Haseeb and Rajendra Prasad

ABSTRACT. We characterize ϵ-Kenmotsu manifolds admitting \ast-conformal η-Ricci solitons. At last, an example of 7-dimension ϵ-Kenmotsu manifold is given.

1. Introduction

In 1993, Bejancu and Duggal [2] introduced the concept of ϵ-Sasakian manifolds. Later, it was shown by Xufeng and Xiaoli [19] that every ϵ-Sasakian manifolds are real hypersurfaces of indefinite Kahlerian manifolds. In 1972, Kenmotsu studied a class of contact Riemannian manifolds satisfying some special conditions [14]. We call it Kenmotsu manifold. The concept of an ϵ-Kenmotsu manifold was introduced by De and Sarkar [5] who showed that the existence of new structure on an indefinite metric influences the curvatures. ϵ-Kenmotsu manifolds have also been studied by various authors in several ways to a different extent such as [10, 11, 12, 18] and many others.

In 1982, Hamilton [9] introduced the notion of Ricci flow to find a canonical metric on a smooth manifold. The Ricci flow is an evolution equation for metrics on a Riemannian manifold defined by

$$\frac{\partial}{\partial t}g_{ij}(t) = -2R_{ij}.$$

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution to the Ricci flow is called Ricci soliton if it moves only by a one parameter group of diffeomorphism and scaling. A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is a generalization of an Einstein metric such that $\mathcal{L}_V g + 2S + 2\lambda g = 0$, where S is the Ricci tensor, \mathcal{L}_V is the Lie derivative operator along the vector field V on M and λ is a real number. The Ricci soliton is said to be shrinking, steady or expanding according to λ being negative, zero or positive, respectively.

2010 Mathematics Subject Classification: 53C15, 53C25.

Key words and phrases: \ast-conformal η-Ricci solitons, ϵ-Kenmotsu manifolds, concircular curvature tensor, η-Einstein manifolds, Einstein manifolds.

91
As a generalization of the Ricci soliton, the notion of \(\eta\)-Ricci soliton was introduced by Cho and Kimura \[4\] and is given by \(\mathcal{L}_V g + 2S + 2\lambda g + 2\mu \eta \otimes \eta = 0\), where \(\lambda\) and \(\mu\) are real numbers.

In 2004, the concept of conformal Ricci flow which is a variation of the classical Ricci flow equation was introduced by Fischer \[6\]. In the classical Ricci flow equation the unit volume constraint plays an important role, but in the conformal Ricci flow equation, the scalar curvature \(r\) is considered as a constraint. The conformal Ricci flow on \(M\) is defined by the equation \(\[6\]
\[
\frac{\partial g}{\partial t} + 2(S + \frac{g}{n}) = -pg
\]
and \(r = -1\), where \(p\) is a scalar non-dynamical field (time dependent scalar field), \(r\) is the scalar curvature of the manifold and \(n\) is the dimension of manifold.

The conformal Ricci soliton equation and conformal \(\eta\)-Ricci soliton equation are given by \(\[1\]\n\[
\mathcal{L}_V g + 2S = \left(2\lambda - \left(p + \frac{2}{n}\right)\right) g,
\]
\[
\mathcal{L}_V g + 2S + (2\lambda - \left(p + \frac{2}{n}\right)) g + 2\mu \eta \otimes \eta = 0,
\]
respectively, where \(\lambda\) and \(\mu\) are constants.

The notion of \(*\)-Ricci tensor on almost Hermitian manifolds was introduced by Tachibana \[17\]. Later, Hamada \[8\] studied \(*\)-Ricci flat real hypersurfaces of complex space forms and Blair \[3\] defined \(*\)-Ricci tensor in contact metric manifolds given by
\[
S^*(X,Y) = g(Q^*X,Y) = \text{Trace} \{\phi \circ R(X,\phi Y)\},
\]
where \(Q^*\) is the \(*\)-Ricci operator and \(S^*\) is a tensor field of type \((0,2)\).

Definition 1.1. \[13\] A Riemannian metric \(g\) on \(M\) is called a \(*\)-Ricci soliton, if
\[
(\mathcal{L}_V g)(X,Y) + 2S^*(X,Y) + 2\lambda g(X,Y) = 0
\]
for all vector fields \(X, Y\) on \(M\) and \(\lambda\) is a constant.

If \(S^*(X,Y) = \lambda g(X,Y) + \mu \eta(X)\eta(Y)\) for all vector fields \(X, Y\) and \(\lambda, \mu\) are smooth functions, then the manifold is called \(*\)-\(\eta\)-Einstein manifold. Further if \(\mu = 0\), that is, \(S^*(X,Y) = \lambda g(X,Y)\) for all vector fields \(X, Y\), then the manifold becomes \(*\)-Einstein.

Recently, the \(*\)-Ricci solitons on almost contact metric manifolds have been studied by various authors such as \[7, 13, 15, 16\] and many others.

The notion of \(*\)-conformal \(\eta\)-Ricci soliton is defined as follows:
\[
\mathcal{L}_V g + 2S^* + \left(2\lambda - \left(p + \frac{2}{n}\right)\right) g + 2\mu \eta \otimes \eta = 0,
\]
where \(\mathcal{L}_V\) is the Lie derivative along the vector field \(V\), \(S^*\) is the \(*\)-Ricci tensor and \(\lambda, \mu\) are constants.

In the present paper we study \(*\)-conformal \(\eta\)-Ricci solitons in an \(\epsilon\)-Kenmotsu manifold satisfying certain curvature conditions.
2. Preliminaries

An n-dimensional smooth manifold (M, g) is said to be an ϵ-almost contact metric manifold [2], if it admits a $(1,1)$ tensor field ϕ, a structure vector field ξ, a 1-form η and an indefinite metric g such that

\begin{align*}
\phi^2 X &= -X + \eta(X)\xi, \quad \eta(\xi) = 1, \\
g(\xi, \xi) &= \epsilon, \quad \eta(X) = \epsilon g(X, \xi), \\
g(\phi X, \phi Y) &= g(X, Y) - \epsilon \eta(X)\eta(Y)
\end{align*}

for all vector fields X, Y on M, where ϵ is 1 or -1 according as ξ is spacelike or timelike vector fields and rank ϕ is $(n-1)$. If $d\eta(X, Y) = g(X, \phi Y)$ for every $X, Y \in \chi(M)$, then we say that M is an ϵ-contact metric manifold. Also, we have $\phi \xi = 0, \eta(\phi X) = 0$. If an ϵ-contact metric manifold satisfies

$$(\nabla_X \phi)(Y) = -g(X, \phi Y)\xi - \epsilon \eta(Y)\phi X,$$

where ∇ denotes the Levi-Civita connection with respect to g, then M is called an ϵ-Kenmotsu manifold [5].

An ϵ-almost contact metric manifold is an ϵ-Kenmotsu, if and only if

$$\nabla_X \xi = \epsilon(X - \eta(X)\xi).$$

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in an ϵ-Kenmotsu manifold M with respect to the Levi-Civita connection satisfies

\begin{align*}
(\nabla_X \eta)Y &= g(X, Y) - \epsilon \eta(X)\eta(Y), \\
R(X, Y)\xi &= \eta(X)Y - \eta(Y)X, \\
R(\xi, X)Y &= \eta(Y)X - \epsilon \eta(X)\xi, \\
R(\xi, \xi)X &= -R(X, \xi)\xi = X - \eta(X)\xi, \\
\eta(R(X, Y)Z) &= \epsilon(g(X, Z)\eta(Y) - g(Y, Z)\eta(X)), \\
S(X, \xi) &= -(n-1)\eta(X), \quad S(\xi, \xi) = -(n-1), \\
Q\xi &= -\epsilon(n-1)\xi
\end{align*}

for any X, Y, Z on M, where $g(QX, Y) = S(X, Y)$. We note that if $\epsilon = 1$ and the structure vector field ξ is spacelike, then an ϵ-Kenmotsu manifold is usual Kenmotsu manifold.

Definition 2.1. An ϵ-Kenmotsu manifold M is said to be η-Einstein manifold if its Ricci tensor S is of the form $S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y)$, where a and b are smooth functions on M. If $b = 0$ (resp., $a = 0$), then the manifold is called Einstein (resp., special type of an η-Einstein) manifold.

Definition 2.2. The concircular curvature tensor C in an n-dimensional ϵ-Kenmotsu manifold M is defined by [20]

$$C(X, Y)Z = R(X, Y)Z - \frac{r}{n(n-1)}[g(Y, Z)X - g(X, Z)Y],$$

where R is the Riemannian curvature tensor and r is the scalar curvature of the manifold.
Lemma 2.1. In an \(n \)-dimensional \(\epsilon \)-Kenmotsu manifold, we have
\[
\bar{R}(X, Y, \phi Z, \phi W) = \bar{R}(X, Y, Z, W) + \epsilon \Phi(X, Z)\Phi(Y, W) - \epsilon \Phi(Y, Z)\Phi(X, W) + \epsilon g(Y, Z)g(X, W) - \epsilon g(X, Z)g(Y, W)
\]
for any \(X, Y, Z, W \) on \(M \), where \(\bar{R}(X, Y, Z, W) = g(\bar{R}(X, Y)Z, W) \) and \(\Phi \) is the fundamental 2-form of \(M \) defined by \(\Phi(X, Y) = g(X, \phi Y) \).

Proof. By using equations \((2.3)-(2.4)\), \((2.6)\) and the expression of the curvature tensor \(\bar{R}(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z \) in \(\bar{R}(X, Y, \phi Z, \phi W) = g(\bar{R}(X, Y)\phi Z, \phi W) \), after straightforward calculations \((2.13)\) follows. \(\square \)

Lemma 2.2. In an \(n \)-dimensional \(\epsilon \)-Kenmotsu manifold the \(\ast \)-Ricci tensor is given by
\[
S^\ast(Y, Z) = S(Y, Z) + \epsilon(n - 2)g(Y, Z) + \eta(Y)\eta(Z)
\]
for any \(Y, Z \) on \(M \).

Proof. Let \(\{e_i\}, i = 1, 2, \ldots, n \) be an orthonormal basis of the tangent space at each point of the manifold. Therefore from \((2.13)\) and \((1.1)\), we have
\[
S^\ast(Y, Z) = \sum_{i=1}^{n} \bar{R}(e_i, Y, \phi Z, \phi e_i)
\]
\[
= \sum_{i=1}^{n} [\bar{R}(e_i, Y, Z, e_i) + \epsilon\Phi(e_i, Z)\Phi(Y, e_i) - \epsilon\Phi(Y, Z)\Phi(e_i, e_i) + \epsilon g(Y, Z)g(e_i, e_i) - \epsilon g(e_i, Z)g(Y, e_i)].
\]
By using \((2.3)\) and \(\Phi(X, Y) = g(X, \phi Y) \) in the above equation, \((2.14)\) follows. \(\square \)

3. \(\ast \)-conformal \(\eta \)-Ricci solitons in \(\epsilon \)-Kenmotsu manifolds

Let an \(n \)-dimensional \(\epsilon \)-Kenmotsu manifold admits \(\ast \)-conformal \(\eta \)-Ricci soliton. Then \((1.2)\) holds and thus we have
\[
(L_\xi g)(Y, Z) + 2S^\ast(Y, Z) + \left[2\lambda - \left(p + \frac{2}{n}\right)\right]g(Y, Z) + 2\mu\eta(Y)\eta(Z) = 0.
\]
In an \(\epsilon \)-Kenmotsu manifold, we have \((1.1)\)
\[
(L_\xi g)(Y, Z) = 2\epsilon(g(Y, Z) - \epsilon\eta(Y)\eta(Z)).
\]
Therefore, from \((3.1)\) and \((3.2)\), we find
\[
S^\ast(Y, Z) = -\left[\epsilon + \lambda - \frac{1}{2}\left(p + \frac{2}{n}\right)\right]g(Y, Z) + (1 - \mu)\eta(Y)\eta(Z).
\]
By using \((3.3)\), \((3.1)\) takes the form
\[
S(Y, Z) = -\left[\epsilon\mu - \epsilon - \lambda - \frac{1}{2}\left(p + \frac{2}{n}\right)\right]g(Y, Z) - \mu\eta(Y)\eta(Z).
\]
which is of the form
\[S(Y, Z) = A g(Y, Z) + B \eta(Y) \eta(Z), \]
where \(A = -[n \epsilon - \epsilon + \lambda - \frac{1}{2}(p + \frac{2}{n})] \) and \(B = -\mu \). Taking \(Z = \xi \) in (3.4), we find
\[S(Y, \xi) = -\left[n - 1 + \epsilon \lambda + \mu - \frac{\epsilon}{2} \left(p + \frac{2}{n} \right) \right] \eta(Y). \]
From equations (2.10) and (3.5), we obtain
\[\lambda + \epsilon \mu = \frac{1}{2} \left(p + \frac{2}{n} \right). \]
Thus we have the following:

Theorem 3.1. If an \(n \)-dimensional \(\epsilon \)-Kenmotsu manifold admits \(*\)-conformal \(\eta \)-Ricci soliton, then the manifold is an \(\eta \)-Einstein manifold of the form (3.4) and the scalars \(\lambda \) and \(\mu \) are related by
\[\lambda + \epsilon \mu = \frac{1}{2} \left(p + \frac{2}{n} \right). \]
Now we consider an \(\epsilon \)-Kenmotsu manifold admitting \(*\)-conformal \(\eta \)-Ricci soliton and have Codazzi type of Ricci tensor and cyclic parallel Ricci tensor.

Definition 3.1. An \(\epsilon \)-Kenmotsu manifold is said to have Codazzi type of Ricci tensor if its Ricci tensor \(S \) of type \((0, 2)\) is non-zero and satisfies the following condition
\[(\nabla_X S)(Y, Z) = (\nabla_Y S)(X, Z) \]
for all \(X, Y, Z \in \chi(M) \).

Taking covariant derivative of (3.4) and making use of (2.6), we find
\[(\nabla_X S)(Y, Z) = -\mu [g(X, Y) \eta(Z) + g(X, Z) \eta(Y) - 2g(Y) \eta(X) \eta(Y) \eta(Z)]. \]
If the Ricci tensor \(S \) is of Codazzi type, then we have from (3.4) and (3.5) that
\[\mu [g(X, Z) \eta(Y) - g(Y, Z) \eta(X)] = 0 \]
from which it follows that either \(\mu = 0 \) or \(g(X, Z) \eta(Y) - g(Y, Z) \eta(X) = 0 \). Therefore,
(i) if \(\mu = 0 \), then the \(*\)-conformal \(\eta \)-Ricci soliton becomes \(*\)-conformal Ricci soliton. Hence we state the following:

Theorem 3.2. A \(*\)-conformal \(\eta \)-Ricci soliton in an \(\epsilon \)-Kenmotsu manifold whose Ricci tensor is of Codazzi type becomes a \(*\)-conformal Ricci soliton.

Again for \(\mu = 0 \), (3.4) becomes \(S(Y, Z) = -\epsilon(n - 1)g(Y, Z) \). Therefore the manifold becomes an Einstein manifold. Also it is known that a 3-dimensional Einstein manifold is a manifold of constant curvature \[20\]. Thus we have:

Corollary 3.1. An \(\epsilon \)-Kenmotsu manifold whose Ricci tensor is of Codazzi-type admitting \(*\)-conformal Ricci solitons is a manifold of constant curvature.

(ii) If \(g(X, Z) \eta(Y) - g(Y, Z) \eta(X) = 0 \), then we replace \(Y = \xi \) in the foregoing equation, we obtain \(g(X, Z) = \epsilon \eta(X) \eta(Z) \) which by substituting \(X \) by \(QX \) turns to \(S(X, Z) = -(n - 1) \eta(X) \eta(Z) \). Thus we have the following:
Theorem 3.3. If an n-dimensional ϵ-Kenmotsu manifold admits \ast-conformal η-Ricci soliton and the manifold has Ricci tensor of Codazzi type, then the manifold is a special type of an η-Einstein manifold.

Definition 3.2. An ϵ-Kenmotsu manifold is said to have cyclic parallel Ricci tensor if its Ricci tensor S of type $(0, 2)$ is non-zero and satisfies the following condition
\[(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0\]
for all $X, Y, Z \in \chi(M)$.

Let an n-dimensional ϵ-Kenmotsu manifold admitting \ast-conformal η-Ricci soliton and the manifold has cyclic parallel Ricci tensor, then (3.9) holds. By virtue of (3.8), we have
\[\mu[g(X, Y)\eta(Z) + g(Y, Z)\eta(X) + g(Z, X)\eta(Y) - 6\epsilon\eta(X)\eta(Y)\eta(Z)] = 0\]
which by putting $Z = \xi$ reduces to
\[\mu[g(X, Y) - \epsilon\eta(X)\eta(Y)] = 0 \implies \mu g(\phi X, \phi Y) = 0\]
from which it follows that $\mu = 0$ and $g(\phi X, \phi Y) \neq 0$. Thus we have the following:

Theorem 3.4. A \ast-conformal η-Ricci soliton in an ϵ-Kenmotsu manifold whose Ricci tensor is cyclic parallel becomes a \ast-conformal Ricci soliton.

Now by considering (3.6) along with $\mu = 0$, we get from (3.4) that
\[(3.12)\]
\[S(Y, Z) = -\epsilon(n - 1)g(Y, Z)\]
Thus we have the following:

Corollary 3.2. If an n-dimensional ϵ-Kenmotsu manifold admits \ast-conformal η-Ricci soliton and the manifold has a cyclic parallel Ricci tensor, then the manifold is an Einstein manifold of the form (3.12).

4. \ast-conformal η-Ricci solitons in ϵ-Kenmotsu manifolds satisfying $R(\xi, X) \cdot S = 0$

Let an n-dimensional ϵ-Kenmotsu manifold admitting \ast-conformal η-Ricci soliton satisfies $R(\xi, X) \cdot S = 0$. Then we have
\[(4.1)\]
\[S(R(\xi, X)Y, Z) + S(Y, R(\xi, X)Z) = 0\]
for all $X, Y, Z \in \chi(M)$. By using (2.7) in (4.1), we have
\[S(\eta(Y)X - \epsilon g(X, Y)\xi, Z) + S(Y, \eta(Z)X - \epsilon g(X, Z)\xi) = 0\]
which by taking $Z = \xi$ and using (3.5) takes the form
\[(4.2) S(X, Y) = -\epsilon(n - 1 + \epsilon\lambda + \mu - \frac{\epsilon}{2}(p + \frac{2}{n}))g(X, Y)\].
Now from (5.4) and (4.2), we obtain

$$\mu(g(X,Y) - \epsilon \eta(X)\eta(Y)) = 0 \implies \mu g(\phi X, \phi Y) = 0$$

from which it follows that $\mu = 0$ and $g(\phi X, \phi Y) \neq 0$. Thus we have the following:

Theorem 4.1. A \ast-conformal η-Ricci soliton in an ϵ-Kenmotsu manifold satisfying $R(\xi, X) \cdot S = 0$ becomes a \ast-conformal Ricci soliton.

By virtue of (3.4), (4.2) becomes

$$S(X, Y) = -\epsilon(n - 1)g(X, Y).$$

Thus we have the following:

Corollary 4.1. If an n-dimensional ϵ-Kenmotsu manifold admitting \ast-conformal η-Ricci soliton satisfies $R(\xi, X) \cdot S = 0$, then the manifold is an Einstein manifold of the form (4.3).

5. \ast-conformal η-Ricci solitons in ϵ-Kenmotsu manifolds satisfying $S(\xi, X) \cdot R = 0$

Let an n-dimensional ϵ-Kenmotsu manifold admitting \ast-conformal η-Ricci soliton satisfies $S(\xi, X) \cdot R = 0$. Then we have

$$(X \wedge S\xi)R(U, V)Z + R((X \wedge S\xi)U, V)Z + R(U, (X \wedge S\xi)V)Z$$

$$+ R(U, V)(X \wedge S\xi)Z = 0$$

for any $X, U, V, Z \in \chi(M)$, where the endomorphism $X \wedge S\xi$ is defined by

$$(X \wedge S\xi)Z = S(\xi, Z)X - S(X, Z)\xi.$$

Using definition (5.3), (5.4) becomes

$$S(\xi, R(U, V)Z)X - S(X, R(U, V)Z)\xi + S(\xi, U)R(X, V)Z - S(X, U)R(\xi, V)Z$$

$$+ S(\xi, V)R(U, X)Z - S(S(X, V)R(U, \xi)Z + S(\xi, Z)R(U, V)X - S(X, Z)R(U, V)\xi = 0.$$

Taking the inner product of above equation with ξ, we have

$$S(\xi, R(U, V)Z)\eta(X) - S(X, R(U, V)Z) + S(\xi, U)\eta(R(X, V)Z)$$

$$- S(X, U)\eta(R(\xi, V)Z) + S(\xi, V)\eta(R(U, X)Z) - S(X, V)\eta(R(U, \xi)Z)$$

$$+ S(\xi, Z)\eta(R(U, V)X) - S(X, Z)\eta(R(U, V)\xi = 0,$$

$\epsilon \neq 0$, which by putting $V = Z = \xi$ and using (2.6) - (2.8) reduces to

$$S(X, U) - \eta(U)S(X, \xi) - \eta(X)S(\xi, U) + S(\xi, \xi)\eta(X)\eta(U)$$

$$+ cS(\xi, \xi)g(X, U) - S(\xi, \xi)\eta(X)\eta(U) = 0.$$

In view of (5.5), (5.4) takes the form

$$(5.5) \quad S(X, U) = \epsilon \left(n - 1 + \epsilon \lambda + \mu - \frac{\epsilon}{2} \left(p + \frac{2}{n}\right) \right) g(X, U)$$

$$- 2 \left(n - 1 + \epsilon \lambda + \mu - \frac{\epsilon}{2} \left(p + \frac{2}{n}\right) \right) \eta(X)\eta(U).$$
Now taking $X = U = \xi$ in (5.5) and using (2.11), we find
\[(5.6)\]
\[\lambda = 1 \frac{1}{2} \left(p + \frac{2}{n} \right) \epsilon \mu.\]

Thus we can state the following:

Theorem 5.1. If an n-dimensional ϵ-Kenmotsu manifold admitting $*$-conformal η-Ricci soliton satisfies $S(\xi, X) \cdot R = 0$, then the scalars λ and μ are related by $\lambda + \epsilon \mu = 1 \frac{1}{2} \left(p + \frac{2}{n} \right)$.

Now from equations (5.5) and (5.6), we get
\[(5.7)\]
\[S(X, U) = \epsilon(n - 1)g(X, U) - 2(n - 1)\eta(X)\eta(U).\]

Thus we have the following:

Corollary 5.1. If an n-dimensional ϵ-Kenmotsu manifold admitting $*$-conformal η-Ricci soliton satisfies $S(\xi, X) \cdot R = 0$, then the manifold is an η-Einstein manifold of the form (5.7).

6. $*$-conformal η-Ricci solitons in ϵ-Kenmotsu manifolds satisfying $C(\xi, X) \cdot S = 0$

Let an n-dimensional ϵ-Kenmotsu manifold admitting $*$-conformal η-Ricci soliton satisfies $C(\xi, X) \cdot S = 0$. Then we have
\[(6.1)\]
\[S(C(\xi, X)Y, Z) + S(Y, C(\xi, X)Z) = 0.\]

From (2.12), we find
\[(6.2)\]
\[C(\xi, X)Y = \left(1 + \frac{\epsilon r}{n(n - 1)} \right)(\eta(Y)X - \epsilon g(X, Y)\xi).\]

By making use of (6.2) in (6.1), we have
\[
\left(1 + \frac{\epsilon r}{n(n - 1)} \right) [\eta(Y)S(X, Z) - \epsilon g(X, Y)S(\xi, Z) + \eta(Z)S(X, Y) - \epsilon g(X, Z)S(Y, \xi)] = 0
\]
which by putting $Z = \xi$ and using (2.11), (2.2) and (3.5) reduces to
\[
\left(1 + \frac{\epsilon r}{n(n - 1)} \right) \left[S(X, Y) + \epsilon \left(n - 1 + \epsilon \lambda + \mu - \frac{\epsilon}{2} \left(p + \frac{2}{n} \right) \right) g(X, Y) \right] = 0.
\]

Therefore we have either $r = -\epsilon n(n - 1)$, or
\[(6.3)\]
\[S(X, Y) = -\epsilon \left(n - 1 + \epsilon \lambda + \mu - \frac{\epsilon}{2} \left(p + \frac{2}{n} \right) \right) g(X, Y).
\]

From the equations (5.7) and (6.3), we obtain
\[\mu(g(X, Y) - \epsilon \eta(X)\eta(Y)) = 0 \implies \mu g(\phi X, \phi Y) = 0\]
from which it follows that $\mu = 0$ and $g(\phi X, \phi Y) \neq 0$. Thus we have the following:

Theorem 6.1. If an n-dimensional ϵ-Kenmotsu manifold admitting $*$-conformal η-Ricci soliton satisfying $C(\xi, X) \cdot S = 0$, then either the scalar curvature is constant or $*$-conformal η-Ricci soliton on the manifold becomes a $*$-conformal Ricci soliton.
By virtue of \((3.6)\), \((6.3)\) turns to
\[(6.4)\]
\[S(X, Y) = -\epsilon(n - 1)g(X, Y).\]
Thus we have the following:

Corollary 6.1. If an \(n\)-dimensional \(\epsilon\)-Kenmotsu manifold admitting \(*\)-conformal \(\eta\)-Ricci soliton satisfies \(C(\xi, X) \cdot S = 0\), then the manifold is an Einstein manifold of the form \((6.4)\).

7. \(\phi\)-concircularly flat \(\epsilon\)-Kenmotsu manifolds admitting \(*\)-conformal \(\eta\)-Ricci solitons

Definition 7.1. An \(\epsilon\)-Kenmotsu manifold is said to be \(\phi\)-concircularly flat if
\[(7.1)\]
\[\phi^2C(\phi X, \phi Y)\phi Z = 0\]
for all \(X, Y, Z\) on \(M\).

Let \(M\) be an \(n\)-dimensional \(\phi\)-concircularly flat \(\epsilon\)-Kenmotsu manifold admitting \(*\)-conformal \(\eta\)-Ricci soliton. Therefore from \((7.1)\), it follows that
\[(7.2)\]
\[g(C(\phi X, \phi Y)\phi Z, \phi W) = 0.\]
In view of \((2.12)\), \((7.2)\) turns to
\[(7.3)\]
\[g[R(\phi X, \phi Y)\phi Z, \phi W] = \frac{r}{n(n - 1)}[g(\phi Y, \phi Z)g(\phi X, \phi W)\]
\[\quad - g(\phi X, \phi Z)g(\phi Y, \phi W)].\]
Let \(\{e_1, e_2, \ldots, e_{n-1}, \xi\}\) be a local orthonormal basis of the vector fields on \(M\). Using that \(\{\phi e_1, \phi e_2, \ldots, \phi e_{n-1}, \xi\}\) is also a local orthonormal basis. If we put \(X = W = e_i\) in \((7.3)\) and sum up with respect to \(i\) \((1 \leq i \leq n - 1)\), then we have
\[(7.4)\]
\[\sum_{i=1}^{n-1} g[R(\phi e_i, \phi Y)\phi Z, \phi e_i] = \frac{r}{n(n - 1)} \sum_{i=1}^{n-1} [g(\phi Y, \phi Z)g(\phi e_i, \phi e_i)\]
\[\quad - g(\phi e_i, \phi Z)g(\phi Y, \phi e_i)].\]
It can be easily verified that
\[(7.5)\]
\[\sum_{i=1}^{n-1} g[R(\phi e_i, \phi Y)\phi Z, \phi e_i] = S(\phi Y, \phi Z) + \epsilon g(\phi Y, \phi Z),\]
\[(7.6)\]
\[\sum_{i=1}^{n-1} g(\phi e_i, \phi Z)g(\phi Y, \phi e_i) = g(\phi Y, \phi Z),\]
\[(7.7)\]
\[\sum_{i=1}^{n-1} g(\phi e_i, \phi e_i) = (n - 1).\]
By using \((7.5)\)–\((7.7)\) in \((7.4)\), we obtain
\[(7.8)\]
\[S(\phi Y, \phi Z) = \left[\frac{r(n - 2)}{n(n - 1)} - \epsilon\right]g(\phi Y, \phi Z).\]
By virtue of (3.4) and (5.6), we find

\begin{equation}
S(\phi Y, \phi Z) = \epsilon (\mu - n + 1) g(\phi Y, \phi Z),
\end{equation}

\begin{equation}
r = \sum_{i=1}^{n} S(e_i, e_i) = \epsilon (n\mu - \mu - n^2 + n).
\end{equation}

By using (7.9) and (7.10), (7.8) gives

\begin{equation}
S(\phi Y, \phi Z) = 0 \text{ from which it follows that } \mu = 0 \text{ and } \epsilon (n - 1) g(\phi Y, \phi Z) \neq 0. \text{ Thus we have the following:}
\end{equation}

Theorem 7.1. A \ast-conformal η-Ricci soliton in ϕ-concircularly flat ϵ-Kenmotsu manifolds becomes a \ast-conformal Ricci soliton.

Now by using (5.6) along with $\mu = 0$ in (3.4), we obtain

\begin{equation}
S(X, Y) = -\epsilon (n - 1) g(X, Y).
\end{equation}

Thus we have the following:

Corollary 7.1. If an n-dimensional ϕ-concircularly flat ϵ-Kenmotsu manifold admits \ast-conformal η-Ricci soliton, then the manifold is an Einstein manifold of the form (7.11).

Example 7.1. We consider the 7-dimensional manifold $M = \{(x_1, x_2, x_3, x_4, x_5, x_6, x_7) \in \mathbb{R}^7\}$, where $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ are the standard coordinates in \mathbb{R}^7. Let $e_1, e_2, e_3, e_4, e_5, e_6$ and e_7 be the vector fields on M given by

\begin{align*}
e_1 &= z \frac{\partial}{\partial x_1}, \quad e_2 = z \frac{\partial}{\partial x_2}, \quad e_3 = z \frac{\partial}{\partial x_3}, \quad e_4 = z \frac{\partial}{\partial x_4}, \\
e_5 &= z \frac{\partial}{\partial x_5}, \quad e_6 = z \frac{\partial}{\partial x_6}, \quad e_7 = -\epsilon z \frac{\partial}{\partial x_7} = \xi.
\end{align*}

Let g be the indefinite Riemannian metric defined by $g(e_i, e_j) = 0$, $i \neq j$, $i, j = 1, 2, 3, 4, 5, 6, 7$ and $g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = g(e_4, e_4) = g(e_5, e_5) = g(e_6, e_6) = g(e_7, e_7) = 1.$

Let η be the 1-form on M defined by $\eta(X) = \epsilon g(X, e_7) = \epsilon g(X, \xi)$ for all $X \in \chi(M)$.

Let ϕ be the (1, 1)-tensor field on M defined by

\begin{align*}
\phi e_1 &= e_2, \quad \phi e_2 = -e_1, \quad \phi e_3 = e_4, \quad \phi e_4 = -e_3, \quad \phi e_5 = e_6, \quad \phi e_6 = -e_5, \quad \phi e_7 = 0.
\end{align*}

The linearity property of ϕ and g yields

\begin{align*}
\eta(e_7) &= 1, \quad \phi^2 X = -X + \eta(X) \xi, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y) \text{ for all } X, Y \in \chi(M). \text{ Thus for } e_7 = \xi, \text{ the structure } (\phi, \xi, \eta, g, \epsilon) \text{ defines an indefinite almost contact metric structure on } M. \text{ Now, by direct computations, we obtain}
\end{align*}

\begin{align*}
[e_1, e_2] &= [e_1, e_3] = [e_1, e_4] = [e_1, e_5] = [e_1, e_6] = [e_2, e_3] = [e_2, e_4] = [e_2, e_5] = 0, \\
[e_2, e_6] &= [e_3, e_4] = [e_3, e_5] = [e_3, e_6] = [e_4, e_5] = [e_4, e_6] = [e_5, e_6] = 0, \\
[e_1, e_7] &= \epsilon e_1, [e_2, e_7] = \epsilon e_2, [e_3, e_7] = \epsilon e_3, [e_4, e_7] = \epsilon e_4, [e_5, e_7] = \epsilon e_5, [e_6, e_7] = \epsilon e_6.
\end{align*}
The Riemannian connection ∇ of the metric g is given by
\[
2g(\nabla_X Y, Z) = X g(Y, Z) + Y g(Z, X) - Z g(X, Y)
- g([X, Y], Z) + g([Z, X], Y) + g(Z, [X, Y]),
\]
which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate
\[
\nabla e_i e_1 = -e_7, \quad \nabla e_i e_2 = 0, \quad \nabla e_i e_3 = 0, \quad \nabla e_i e_4 = 0, \quad \nabla e_i e_5 = 0, \quad \nabla e_i e_6 = 0, \quad \nabla e_i e_7 = \epsilon e_i,
\]
Using the above relations, for any vector field X on M, it follows that
\[
\nabla_X \xi = \epsilon (X - \eta(X) \xi)
\]
for any $\xi \in \chi(M)$. Hence the manifold M under the consideration is an ϵ-Kenmotsu manifold of dimension seven. From the above results, it is not difficult to find
\[
R(X, Y) Z = -\epsilon (g(Y, Z) X - g(X, Z) Y)
\]
from which it follows that $S(Y, Z) = -6\epsilon g(Y, Z)$ and hence $r = -42\epsilon$. From the equation (3.6), we have
\[
\sum_{i=1}^{7} e_i S(e_i, e_i) = -\left[6\epsilon + \lambda - \frac{1}{2}\left(p + \frac{2}{7}\right)\right] \sum_{i=1}^{7} e_i g(Y, Z) - \sum_{i=1}^{7} e_i \mu \eta(Y) \eta(Z)
\]
where $e_i = g(e_i, e_i)$. This implies
\[
\lambda + \frac{1}{7} \epsilon \mu = \frac{1}{2}\left(p + \frac{2}{7}\right).
\]
From equations (3.6) and (7.12), we obtain $\mu = 0$. Therefore, the data (g, ξ, λ, μ) for $\lambda = \frac{1}{2}(p + \frac{2}{7})$ and $\mu = 0$ defines a ϵ-conformal Ricci soliton on the manifold $(M, \phi, \xi, \eta, g, \epsilon)$.

Acknowledgement. The authors are thankful to the editor and anonymous referees for their valuable suggestions in the improvement of the paper.

References

1. N. Basu, A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global J. Adv. Res. Class. Modern Geom. 4 (2015), 15–21.
2. A. Bejancu, K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci. 16 (1993), 545–556.
3. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition, Progress in Math. 203, Birkhauser, Boston, MA, 2010.
4. J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61(2) (2009), 205–212.
5. U. C. De, A. Sarkar, On ϵ-Kenmotsu manifold, Hardyonic J. 32 (2009), 231–242.
6. A. E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav. 21 (2004), 171–218.
7. A. Ghosh, D. S. Patra, ∗-Ricci soliton within the framework of Sasakian and (K, µ) contact manifold, Int. J. Geom. Methods Mod. Phys. 15 (2018), 21 pages.
8. T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor, Tokyo J. Math. 25 (2002), 473–483.
9. R. S. Hamilton, The Ricci flow on surfaces, in: Mathematics and General Relativity, Contemp. Math. 71, American Mathematical Society, Providence, RI, (1988), 237–262.
10. A. Haseeb, Some results on projective curvature tensor in an ε-Kenmotsu manifold, Palestine J. Math. 6 (Special Issue:II) (2017), 196–203.
11. A. Haseeb, U. C. De, η-Ricci solitons in ε-Kenmotsu manifolds, J. Geom. 110 34 (2019), 12 pages.
12. A. Haseeb, M. Ahmad, S. Rizvi, On the conformal curvature tensor of ε-Kenmotsu manifolds, Ital. J. Pure Appl. Math. 40 (2018), 656–670.
13. G. Kaimakamis, K. Panagiotidou, ∗-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408–413.
14. K. Kenmotsu, A class of almost contact Riemannian manifold, Tohoku Math. J. 24 (1972), 93–103.
15. P. Majhi, U. C. De, Y. J. Suh, ∗-Ricci solitons on Sasakian 3-manifolds, Publ. Math. Debrecen 93 (2018), 241–252.
16. D. G. Prakasha, P. Veeresha, Para-Sasakian manifolds and ∗-Ricci solitons, Afrika Mat. 30 (2018), 989–998.
17. S. Tachibana, On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. 11 (1959), 247–265.
18. Venkatesha, S. V. Vishnuvardhana, ε-Kenmotsu manifolds admitting a semi-symmetric metric connection, Ital. J. Pure Appl. Math. 38 (2017), 615–623.
19. X. Xufeng, C. Xiaoli, Two theorems on ε-Sasakian manifolds, Int. J. Math. Math. Sci. 21 (1998), 249–254.
20. K. Yano, M. Kon, Structures on Manifolds, World Scientific, (1984).

Department of Mathematics (Received 16 05 2020)
Faculty of Science, Jazan University
Jazan, Saudi Arabia
malikhaseeb80@gmail.com
haseeb@jazanu.edu.sa

Department of Mathematics and Astronomy
University of Lucknow
Lucknow, India
rp.nampur@rediffmail.com