Seiberg-Witten Theory and Monstrous Moonshine

Shun’ya Mizoguchi*

Theory Center, Institute of Particle and Nuclear Studies, KEK
Tsukuba, Ibaraki, 305-0801, Japan and
SOKENDAI (The Graduate University for Advanced Studies)
Tsukuba, Ibaraki, 305-0801, Japan
(Dated: August 22, 2022)

Abstract

We study the relation between the instanton expansion of the Seiberg-Witten prepotential for $D = 4$, $\mathcal{N} = 2$ $SU(2)$ SUSY gauge theory for $N_f = 0$ and 1 and the monstrous moonshine. By utilizing a newly developed simple method to obtain the SW prepotential, it is shown that the coefficients of the expansion of $q = e^{2\pi \tau}$ in terms of $A^2 = \frac{\Lambda^2}{16\pi^2} (N_f = 0)$ or $\frac{\Lambda^2}{16\sqrt{2}\pi^2} (N_f = 1)$ are all integer coefficient polynomials of the moonshine coefficients of the modular j-function. A relationship between the AGT $c = 25$ Liouville CFT and the $c = 24$ vertex operator algebra CFT of the moonshine module is also suggested.

* E-mail:mizoguch@post.kek.jp
“Seiberg-Witten (SW) theory” \[1, 2\] is a method, or the entire framework thereof, for solving analytically (and/or geometrically) the low-energy strongly coupled dynamics of $D = 4, \mathcal{N} = 2$ (originally $SU(2)$) SUSY gauge theory, based on the idea that, after all, the complexified gauge coupling can be identified (for the $SU(2)$ case) as the complex structure modulus of an elliptic fibration (see \[3\] for a review). It succeeded to determine the exact low-energy effective prepotential including the full instanton contributions \[4\] in terms of some integrals on the “Seiberg-Witten curve”. It has developed in connection with various research areas of modern string theory and mathematical physics, such as embedding into M-theory/Gaiotto duality \[5\], 7-brane system/F-theory \[6\], E-strings \[7\], AGT 4d/2d correspondence \[8\] and matrix models (e.g.)\[9\].

“Monstrous moonshine”, on the other hand, refers to the curious fact, first noticed by John McKay in 1979, that the Fourier coefficients of the modular j-function can be written as a simple linear combination of dimensions of irreducible representations of the monster group \[10\] (see \[11\] for a review including interesting anecdotes about the monstrous moonshine). The reasoning for this coincidence was given by constructing $c = 24$ vertex operator algebra CFT whose character is the j-function such that the monster group acts on this module as a symmetry \[12\]. Later it was shown that this was a \mathbb{Z}_2 asymmetric orbifold \[13\].

In this paper, we study the relation between the two. In fact, the fact that the two are related is not in itself surprising. This is because a SW curve is a rational elliptic surface over the u-plane and the j-function is a fundamental function in the theory of elliptic functions. However, the details of this specific relationship have not been known until now. This paper fills this gap.

We use a newly developed method for easily deriving the $SU(2)$ SW prepotential to show that the coefficients of the instanton expansion of the prepotential are related to the monstrous moonshine in a way specifically explained in the text. In particular, it is shown that, in the $N_f = 0$ case, the coefficients of the expansion of $q = e^{2\pi \tau}$ in terms of $A^2 = \frac{A^2}{16\pi}$ are all integer coefficient polynomials of the moonshine coefficients. A similar thing holds for $N_f = 1$.

The idea of the new method is very simple. The modular j-function has an expansion in
terms of $q = e^{2\pi i \tau}$ as

$$j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + 864299970q^3 + 20245856256q^4 + O(q^5).$$ \hspace{1cm} (1)

Thus q is conversely expanded in terms of $\frac{1}{j}$ as

$$q = \frac{1}{j} + a_0 \left(\frac{1}{j}\right)^2 + (a_0^2 + a_1) \left(\frac{1}{j}\right)^3 + (a_0^3 + 3a_1a_0 + a_2) \left(\frac{1}{j}\right)^4 + O\left(\frac{1}{j}\right)^5,$$ \hspace{1cm} (2)

where $a_0 = 744$, $a_1 = 196884$, $a_2 = 21493760, ...$ are the coefficients of the expansion (1).

Note that the coefficient of the $\left(\frac{1}{j}\right)^k$ term in (2) is an integer given by a $(k - 1)$th order homogeneous polynomial of a_i if the “degree” of a_i is counted as $i + 1$. Since $q = e^{2\pi i \tau}$, we can obtain $2\pi i$ times the prepotential by taking its logarithm and integrating it with respect to a twice. On the other hand, suppose that the SW curve is given in the Weierstrass form

$$Y^2 = X^3 + f(u)X + g(u),$$ \hspace{1cm} (3)

then its complex structure modulus τ is found by inversely solving the equation

$$j(\tau) = \frac{123 \cdot 4f(u)^3}{4f(u)^3 + 27g(u)^2}.$$ \hspace{1cm} (4)

We expand the rhs of this equation (4) by u around $u = \infty$, thereby obtain a $1/j$-expansion of $1/u$. Furthermore, since the $1/a$-expansion of $1/u$ is obtained by the period integral on the SW curve, we end up with the $1/a$-expansion of q, from which the $1/a$-expansion of the prepotential F is obtained.

As a concrete example, let us consider the pure ($N_f = 0$) $SU(2)$ $\mathcal{N} = 2$ SYM theory. The SW curve is given in the quartic-polynomial representation as

$$y^2 = C(x)^2 - G(x), \hspace{0.5cm} C(x) = x^2 - u, \hspace{0.5cm} G(x) = \Lambda^4.$$ \hspace{1cm} (5)

This is equivalent to the Weierstrass form

$$Y^2 = X^3 + f(u)X + g(u),$$

$$f(u) = -\frac{16}{3}u^2 + 4\Lambda^4,$$

$$g(u) = -\frac{128}{27}u^3 + \frac{16}{3}\Lambda^4u$$

where $C(x) = x^2 - u$ and $G(x) = \Lambda^4$. All the series expansions performed in this paper have been assisted by Mathematica.
The integral of the holomorphic differential along the cycle that collapses as $u \to \infty$ yields $\frac{\partial a}{\partial u}$, which can be obtained by, for instance, solving the Picard-Fuchs equation \[15\]. The result is

$$\frac{\partial a}{\partial u} = \frac{\sqrt{2}}{4\sqrt{u}} F \left(\frac{1}{4}, \frac{3}{4}, 1; \frac{\Lambda^4}{u^2} \right).$$

(7)

Integrating it with respect to u, we find

$$a = -\frac{\sqrt{u}}{\sqrt{2}} \sum_{n=0}^{\infty} \frac{(4n - 3)!!}{4^{2n}(n!)^2} \left(\frac{\Lambda^4}{u^2} \right)^n,$$

(8)

where we have used the infinite series representation of the hyperelliptic function.

Looking at this, it might appear that, except its prefactor, a has a series expansion in $\frac{\Lambda^4}{u^2}$ with rational-number coefficients whose denominators are integers containing very many prime factors. This is not case, however, as all the factors of powers of odd prime integers in $(n!)^2$ are contained in $(4n - 3)!!$ and hence cancel out, leaving only powers of 2 in the denominator. Moreover, these factors of powers of 2 turn out to be absorbed if we take the expansion parameter to be $\frac{\Lambda^4}{8u^2}$ instead of $\frac{\Lambda^4}{u^2}$. Therefore, defining

$$A \equiv \frac{\Lambda}{4a}, \quad U \equiv \frac{\Lambda^2}{8u},$$

(9)

A^2 is expanded by U as

$$A^2 = \frac{U}{\left(\sum_{n=0}^{\infty} \frac{(4n - 3)!!}{(n!)^2} (4U^2)^n \right)^2} = U + 8U^3 + 168U^5 + 5056U^7 + 184040U^9 + 7525440U^{11} + 332612800U^{13}$$

$$+ 15538219520U^{15} + 756483502440U^{17} + 38023703291200U^{19}$$

$$+ 1960287432256832U^{21} + 103165644665826816U^{23} + O(U^{25}),$$

(10)

where the coefficients are all positive integers. Note that the factor of 8 in the denominator of U is the smallest one that can absorb all the factors of powers of 2^{-1} in the expansion. This U is inversely expanded by A^2 as

$$U = A^2 - 8A^6 + 24A^{10} - 448A^{14} - 4520A^{18} - 151872A^{22} - 4095296A^{26}$$

$$- 124070400A^{30} - 3886030632A^{34} - 126167064640A^{38} - 4206822732736A^{42}$$

$$- 143383813565952A^{46} + O(A^{50}).$$

(11)
On the other hand, by plugging (6) into (4), we have

\[
\frac{1}{j} = \frac{U^4 (1 - 64U^2)}{(1 - 48U^2)^3} \\
= U^4 + 80U^6 + 4608U^8 + 221184U^{10} + 8847360U^{12} + 254803968U^{14} + 782757789696U^{18} \\
- 84537841287168U^{20} - 6763027302973440U^{22} - 47611712212930176U^{24} + O(U^{25}).
\]

(12)

Thus, using this in (11), we obtain an \(A_2 \)-expansion of \(\frac{1}{j} \). This expansion can be further used in (2) to finally obtain an \(A_2 \)-expansion of \(q \). We can see from (2), (12) and (11) that its expansion coefficients are all integer-coefficient polynomials of \(a_i \)'s. Though we do not present the explicit expression for this expansion of \(q \), we instead show the expansion of its logarithm:

\[
2\pi i \tau = \log A^8 + 48A^4 + (a_0 + 96)A^8 + 48(a_0 - 304)A^{12} \\
+ \frac{1}{2} \left(a_0^2 + 2496a_0 + 2a_1 - 1570368 \right) A^{16} + \frac{48}{5} \left(5a_0^2 + 880a_0 + 10a_1 - 3352464 \right) A^{20} \\
+ \frac{1}{3} \left(a_0^3 + 7200a_0^2 + 6a_1a_0 - 3447648a_0 + 14400a_1 + 3a_2 - 3648416256 \right) A^{24} \\
+ \frac{48}{7} \left(7a_0^3 + 9968a_0^2 + 42a_1a_0 - 12245520a_0 + 19936a_1 + 21a_2 - 6513833472 \right) A^{28} \\
+ \frac{1}{4} \left(a_0^4 + 14208a_0^3 + 12a_1a_0^2 + 140160a_0^2 + 85248a_1a_0 + 12a_2a_0 \\
- 1570795104a_0 + 6a_1^2 + 280320a_1 + 42624a_2 + 4a_3 - 6519374734464 \right) A^{32} + O(A^{34}).
\]

(13)

Thus we can find the expansion of \(2\pi i \) times the prepotential \(F \) by integrating (13) with respect to \(a \) twice. For example, if we integrate the second term \(48A^4 \) with respect to \(a \) twice, we get

\[
48A^4 \rightarrow \frac{48}{4^4 \cdot 3 \cdot 2} \frac{\Lambda^4}{a^2} = \frac{1}{32} \frac{\Lambda^4}{a^2},
\]

which agrees with the \(k = 1 \) term of the known \(N_f = 0 \) prepotential

\[
F = \frac{i a^2}{2\pi} \left(4 \log \frac{a}{\Lambda} - 6 + 8 \log 2 - \sum_{k=1}^{\infty} F_k \left(\frac{\Lambda}{a} \right)^{4k} \right)
\]

(15)

(Table II). From the third term \((a_0 + 96)A^8 \) we can compute the \(k = 2 \) term. By using \(a_0 = 744 \) we find

\[
(a_0 + 96)A^8 \rightarrow \frac{a_0 + 96}{48 \cdot 7 \cdot 6} \frac{\Lambda^8}{16384 \cdot a^6} = \frac{5}{214} \frac{\Lambda^8}{a^6},
\]

(16)
Rational-coefficient polynomial of a_i's

k	F_k
1	$\frac{48}{4^3 \cdot 3} \cdot a_0 + 96 \cdot a_9 - 304 \cdot a_2$
2	$5 \cdot 2^4 \cdot 3^3 \cdot 6^2$
3	$3 \cdot 2^3 \cdot 14 \cdot 11 \cdot 10$
4	$\frac{1}{4^4 \cdot 15 \cdot 14} \left(a_9^2 + 2496a_0 + 2a_1 - 1570368 \right)$
5	$4471 \cdot 2^4 \cdot 5$
6	$40397 \cdot 2^4 \cdot 7$
7	$866589165 \cdot 2^4 \cdot 64$

TABLE I: The instanton expansion of the prepotential for $N_f = 0$ and the monstrous moonshine.

If we use the actual values of the Fourier coefficients a_i's of the j-function in the middle column, we re-derive the correct F_k in the right column on the corresponding row. Since each a_i is an integer-coefficient linear combination of the dimensions of irreducible representations of the monster, F_k is also a rational-coefficient polynomial of them.

which is also the correct result.

In fact, $a_0 = 744 (= 3 \times \text{dim}E_8)$ has nothing to do with the monster; the first Fourier coefficient a_1 related to monster representations appears for the first time in the A_{16} term. From this, by using $a_0 = 744$, $a_1 = 196884$ and integrating with respect to a twice, we find

$$\frac{1}{2} \left(-1570368 + 2496a_0 + a_9^2 + 2a_1 \right) A_{16} \rightarrow \frac{1}{4^4 \cdot 15 \cdot 14} \left(-1570368 + 2496a_0 + a_9^2 + 2a_1 \right) \Lambda_{16}$$

$$= \frac{1469 \cdot 2^4 \cdot \Lambda_{16}}{a_{14}^4},$$

which is a correct answer. In this way, all the known results can be correctly recovered. Incidentally, since this method directly determines τ, it also correctly produces the perturbative part of F (15). Indeed, \(\frac{1}{2\pi i} \times \frac{1}{2\pi i} \times \)

$$\int da \int da \log A^8 = 6a^2 + \frac{1}{2} a^2 \log \left(\frac{\Lambda^8}{2^{16} a^8} \right)$$

(18)

coincides with the perturbative part.

The similar is true for $N_f = 1$. The SW curve for $N_f = 1$ is

$$y^2 = C(x)^2 - G(x), \quad C(x) = x^2 - u, \quad G(x) = \Lambda^2(x + m)$$

(19)
in the quartic-polynomial representation, whose equivalent Weierstrass form reads

\[Y^2 = X^3 + f(u, m)X + g(u, m), \]
\[f(u, m) = -\frac{16}{3}u^2 + 4\Lambda^3m, \quad (20) \]
\[g(u, m) = -\frac{128}{27}u^3 + \frac{16}{3}\Lambda^3mu - \Lambda^6. \]

From these data, \(\frac{1}{j} \) can be computed as

\[\frac{1}{j} = \frac{U^3 ((64\hat{m}^3 + 432)U^3 - 72\hat{m}U^2 - \hat{m}^2U + 1)}{(48\hat{m}U^2 - 1)^3} \]
\[= -U^3 + \hat{m}^2U^4 - 72\hat{m}U^5 + (80\hat{m}^3 - 432)U^6 - 3456\hat{m}^2U^7 \]
\[+ (13824\hat{m}^4 - 144\hat{m} (64\hat{m}^3 + 432))U^8 - 110592\hat{m}^3U^9 \]
\[+ (1105920\hat{m}^5 - 13824\hat{m}^2 (64\hat{m}^3 + 432))U^{10} \]
\[+ (79626240\hat{m}^6 - 1105920\hat{m}^3 (64\hat{m}^3 + 432))U^{12} + 382205952\hat{m}^5U^{13} \]
\[+ (342456532992\hat{m}^8 - 5350883328\hat{m}^5 (64\hat{m}^3 + 432))U^{16} + O(U^{17}), \quad (21) \]

where \(U \equiv \frac{\Lambda^2}{16u}, \hat{m} \equiv \frac{4m}{\Lambda} \) in this \(N_f = 1 \) case.

On the other hand, \(\frac{\partial a}{\partial u} \) is given by using the quadratic and cubic transformations of the hypergeometric functions \[16\]

\[\frac{\partial a}{\partial u} = \frac{F\left(\frac{1}{12}, \frac{5}{12}, 1; \frac{123}{J}\right)}{\sqrt{2(-3f(u, m))^4}}. \]

Plugging \((20), (21) \) in this equation, we find

\[\frac{\partial a}{\partial u} = \frac{1}{2\sqrt{2u}} (1 + 12\hat{m}U^2 - 60U^3 + 420\hat{m}^2U^4 - 5040\hat{m}U^5 + (18480\hat{m}^3 + 13860)U^6 \]
\[- 360360\hat{m}^2U^7 + (900900\hat{m}^4 + 2162160\hat{m})U^8 + (-24504480\hat{m}^3 - 4084080)U^9 \]
\[+ (46558512\hat{m}^5 + 232792560\hat{m}^2)U^{10} + (-1629547920\hat{m}^4 - 931170240\hat{m})U^{11} \]
\[+ (2498640144\hat{m}^6 + 21416915520\hat{m}^3 + 1338557220)U^{12} \]
\[+ (-107084577600\hat{m}^5 - 133855722000\hat{m}^2)U^{13} \]
\[+ (137680171200\hat{m}^7 + 1807052247000\hat{m}^4 + 401567166000\hat{m})U^{14} + O(U^{15}) \), \quad (23) \]

Integrating this with respect to \(u \), we derive a \(u \)-expansion of \(a \), from which the expansion
of $U \equiv \frac{A^2}{16a}$ in terms of $A \equiv \frac{A}{4\sqrt{2}a}$ is found as follows:

$$U = A^2 - 8A^6\hat{m} + 24A^8 + 24A^{10}\hat{m}^2 + 64A^{12}\hat{m} - 8A^{14}(56\hat{m}^3 + 81) + 6960A^{16}\hat{m}^2$$

$$-40A^{18}(\hat{m}(113\hat{m}^3 + 1128)) + 384A^{20}(449\hat{m}^3 + 268) - 1344A^{22}(\hat{m}^2(113\hat{m}^3 + 1517))$$

$$+ 128A^{24}\hat{m}(46735\hat{m}^3 + 77976) - 8A^{26}(511912\hat{m}^6 + 11530560\hat{m}^3 + 2197485) + O(A^{27}).$$

Thus $\frac{1}{\hat{m}}$ is expanded by A^2, whose coefficients are this time integer-coefficient polynomials of \hat{m}. This yields

$$q = -A^6 + A^8\hat{m}^2 - 48A^{10}\hat{m} + A^{12}(a_0 + 48\hat{m}^3 - 504) - 2A^{14}((a_0 + 372)\hat{m}^2)$$

$$+ A^{16}((a_0 + 1248)\hat{m}^4 + 96(a_0 - 512)\hat{m})$$

$$+ A^{18}(-192(a_0 - 212)\hat{m}^3 - a_0^2 + 1008a_0 - a_1 - 61992)$$

$$+ 3A^{20}\hat{m}^2(32(a_0 + 88)\hat{m}^3 + a_0^2 + 928a_0 + a_1 - 939920)$$

$$- 3A^{22}(\hat{m}((a_0^2 + 2864a_0 + a_1 - 1343656)\hat{m}^3 + 48a_0^2 - 48896a_0 + 48(a_1 + 67320)))$$

$$+ A^{24}((a_0^2 + 4800a_0 + a_1 - 1149216)\hat{m}^6 + 48(9a_0^2 - 3264a_0 + 9a_1 - 2473280)\hat{m}^3$$

$$+ a_0^3 - 1512a_0^2 - 1512a_1 + 3a_0(a_1 + 126000) + a_2 - 2282112)$$

$$- 4A^{26}(\hat{m}^2(12(9a_0^2 + 2640a_0 + 9a_1 - 4424600)\hat{m}^3 + a_0^3 + 1530a_0^2$$

$$+ 3(a_1 - 915340)a_0 + 1530a_1 + a_2 + 215271600))$$

$$+ 6A^{28}(8(3a_0^2 + 2848a_0 + 3(a_1 - 583120))\hat{m}^7 + (a_0^3 + 4572a_0^2 + 3(a_1 - 1279560)a_0$$

$$+ 4572a_1 + a_2 - 632801280)\hat{m}^4 + 32(a_0^3 - 1524a_0^2 + 3(a_1 + 130008)a_0$$

$$- 1524a_1 + a_2 - 2995968)\hat{m})$$

$$+ A^{30}(-4(a_0^3 + 7614a_0^2 + 3(a_1 - 966660)a_0 + 7614a_1 + a_2 - 2146774992)\hat{m}^6$$

$$- 768(a_0^3 - 498a_0^2 + (3a_1 - 670444)a_0 - 498a_1 + a_2 + 73856560)\hat{m}^3$$

$$- a_0^4 + 2016a_0^3 - 2a_1^2 - 948024a_1 - 6a_0^2(a_1 + 158004)$$

$$+ a_0(6048a_1 - 4a_2 + 67052160) + 2016a_2 - a_3 - 146853000)$$

$$+ O(A^{32}),$$

whose coefficients are again integer-coefficient polynomials of a_i’s and \hat{m}. The a_1, a_2 and a_3 related to the monster group representation appear for the first time in the coefficients of A^{18}, A^{26} and A^{30}, respectively. Taking the logarithm and integrating with respect to a
We have defined \(\tilde{\mathcal{F}} \) of \([17]\) as

\[
\tilde{\mathcal{F}} \equiv \frac{\pi i}{4} \frac{2}{A^2} \mathcal{F}_k^{N_f=1} \text{ for } N_f = 1 \text{ and the monstrous moonshine.}
\]

We can derive \(2\pi i \) times the \(N_f = 1 \) prepotential

\[
\mathcal{F}_k^{N_f=1} = \frac{i a^2}{2\pi} \left(3 \log \frac{a}{\Lambda} + \frac{1}{2} (-9 + 15 \log 2 + \pi i) - \frac{m^2 \log a}{2 a^2} - \sum_{k=2}^{\infty} \mathcal{F}_k^{N_f=1}(\Lambda / a)^{2k} \right) (26)
\]

with \(\mathcal{F}_k^{N_f=1} \)'s shown in Table III.

In this paper, we have shown that, in both \(N_f = 0 \) and 1 cases, \(q \) is expanded by \(A^2 \) whose coefficients are integer-coefficient polynomials of \(a_i \)'s (as well as \(\tilde{m} \) for \(N_f = 1 \)) if \(A \propto a^{-1} \) is appropriately defined. As a result, the coefficients of the instanton expansion of the prepotential are expressed as rational-coefficient polynomials of the “moonshine coefficients” \(a_i \)'s (as well as \(\tilde{m} \) for \(N_f = 1 \)) as shown in Tables I and III. We expect a similar relationship to hold for \(N_f = 2 \) and 3, and perhaps even for E-string theory.

From these tables, we can see that in both cases the polynomials contain “inhomogeneous terms”, that is, the terms that remain after all \(a_i \)'s are set to 0. Of course, these numbers are not arbitrarily determined, but are determined by the given SW curves. In fact, setting all \(a_i \)'s to 0 in (11) amounts to approximating \(j(\tau) \) by \(\frac{1}{q} \). Since

\[
j(\tau) = \left(\frac{\vartheta_3^8 + \vartheta_4^8 + \vartheta_2^8}{2\eta^8} \right)^3, \tag{27}
\]
this implies that the whole affine E_8 character is replaced solely by the contribution of the ground state. Thus we may conclude that these inhomogenous terms represent information on the ground state of the moonshine module.

We note that something similar occurs with the asymptotic behavior of the Atiyah-Hitchin (AH) metric, where the similar replacements $\vartheta_3 \to 1$, $\vartheta_4 \to 1$, $\vartheta_2 \to 0$ and $\eta \to q^{\frac{2}{24}}$ lead to the Taub-NUT metric with a negative NUT charge [18]. The AH space is known to be the moduli space of $D = 3 \, N = 2 \, SU(2)$ SUSY gauge theory [19], and the instanton corrections resolves the singularity of the negative-charge Taub-NUT. Since the Taub-NUT space is the transverse space of the M-theory lift of a D6-brane and the AH-space corresponds to an O6-plane, our results in the present analysis may be considered to show the corresponding facts in the D7/O7 system.

The results in Tables I and II also show that the coefficients of the polynomials of a_i’s contain large integers (unlike the moonshine). Since each term of the instanton expansion of the prepotential is known to be expressed as a $c = 25$ Liouville correlation function [8], while the moonshine module is a \mathbb{Z}_2 orbifold of $c = 24$ vertex operator algebra CFT [13], we suspect that these mysterious large numbers may be interpreted as a contribution coming from the missing $c = 1$ CFT.

The author thanks Kazunobu Maruyoshi, Sota Nakajima, Kazuhiro Sakai and Taro Tani for valuable discussions.

[1] N. Seiberg and E. Witten, Nucl. Phys. B 426 (1994) 19 [Erratum-ibid. B 430 (1994) 485] [arXiv:hep-th/9407087].

[2] N. Seiberg and E. Witten, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099].

[3] Y. Tachikawa, “N=2 supersymmetric dynamics for pedestrians,” arXiv:1312.2684 [hep-th].

[4] N. Nekrasov and A. Okounkov, Prog. Math. 244, 525-596 (2006) [arXiv:hep-th/0306238 [hep-th]].

[5] E. Witten, Nucl. Phys. B 500, 3-42 (1997) [arXiv:hep-th/9703166 [hep-th]].

D. Gaiotto, JHEP 08, 034 (2012) [arXiv:0904.2715 [hep-th]].

[6] A. Sen, Nucl. Phys. B 475, 562-578 (1996) [arXiv:hep-th/9605150 [hep-th]].

O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, JHEP 03, 006 (1999) [arXiv:hep-th/9902179]
Y. Yamada and S. K. Yang, Nucl. Phys. B 566, 642 (2000) [hep-th/9907134].

[7] W. Lerche, P. Mayr and N. P. Warner, Nucl. Phys. B 499, 125-148 (1997) [arXiv:hep-th/9612085 [hep-th]].
J. A. Minahan, D. Nemeschansky and N. P. Warner, Nucl. Phys. B 508, 64-106 (1997) [arXiv:hep-th/9705237 [hep-th]].
T. Eguchi and K. Sakai, JHEP 05, 058 (2002) [arXiv:hep-th/0203025 [hep-th]].
T. Eguchi and K. Sakai, Adv. Theor. Math. Phys. 7, no.3, 419-455 (2003) [arXiv:hep-th/0211213 [hep-th]].

[8] L. F. Alday, D. Gaiotto and Y. Tachikawa, Lett. Math. Phys. 91, 167 (2010) [arXiv:0906.3219 [hep-th]].

[9] R. Dijkgraaf and C. Vafa, Nucl. Phys. B 644, 21-39 (2002) [arXiv:hep-th/0207106 [hep-th]].
R. Dijkgraaf and C. Vafa, [arXiv:0909.2453 [hep-th]].
A. Mironov and A. Morozov, Phys. Lett. B 680, 188 (2009) [arXiv:0908.2190 [hep-th]].
H. Itoyama, K. Maruyoshi and T. Oota, Prog. Theor. Phys. 123, 957 (2010) [arXiv:0911.4244 [hep-th]].
T. Eguchi and K. Maruyoshi, JHEP 1002, 022 (2010) [arXiv:0911.4797 [hep-th]].

[10] J. H. Conway and S. P. Norton, Bull. London Math. Soc. 11, no.3, 308-339 (1979).
[11] J. McKay and Y. H. He, ICCM Not. 10, no.1, 71-88 (2022) [arXiv:2106.01162 [math.HO]].
[12] I. B. Frenkel, J. Lepowsky and A. Meurman, Proc. Natl. Acad. Sci. U.S.A. 81 (1984) 32566.
I. B. Frenkel, J. Lepowsky and A. Meurman, in “Vertex Operators in Mathematics and Physics,” Springer-Verlag, New York (1985) 231.
[13] L. J. Dixon, P. H. Ginsparg and J. A. Harvey, Commun. Math. Phys. 119, 221-241 (1988).
[14] A. Hanany and Y. Oz, Nucl. Phys. B 452, 283-312 (1995) [arXiv:hep-th/9505075 [hep-th]].
[15] A. Klemm, W. Lerche and S. Theisen, Int. J. Mod. Phys. A 11, 1929-1974 (1996) [arXiv:hep-th/9505150 [hep-th]].
[16] T. Masuda and H. Suzuki, Int. J. Mod. Phys. A 12, 3413-3431 (1997) [arXiv:hep-th/9609066 [hep-th]].
[17] Y. Ohta, J. Math. Phys. 37, 6074-6085 (1996) [arXiv:hep-th/9604051 [hep-th]].
[18] M. F. Atiyah and N. J. Hitchin, “The Geometry And Dynamics Of Magnetic Monopoles. M. B. Porter Lectures.” Princeton University Press (1988).
G. W. Gibbons and N. S. Manton, Nucl. Phys. B 274, 183 (1986).

E. J. Weinberg and P. Yi, Phys. Rept. 438, 65 (2007) [arXiv:hep-th/0609055].

H. Imazato, S. Mizoguchi and M. Yata, Int. J. Mod. Phys. A 26, 5143-5169 (2011) [arXiv:1107.3557 [hep-th]].

[19] N. Seiberg and E. Witten, “Gauge dynamics and compactification to three-dimensions,” [arXiv:hep-th/9607163 [hep-th]].