The effect of preoperative finasteride therapy on perioperative blood loss in transurethral resection of Prostate for patients with benign prostatic hyperplasia

Preetam Penumatcha, Krishna Rao SV and Rambabu DVS

DOI: https://doi.org/10.33545/surgery.2020.v4.i1d.339

Abstract

Background: Benign prostatic hyperplasia (BPH) is an abnormal stromal and glandular proliferation of the prostate gland and is a common benign tumor found in men above 50 years of age. Most men who reach their average expectancy will experience this condition in their life time. The amount of intra-operative and postoperative bleeding depends on the gland size, surgeon’s expertise and duration of surgery. Intraoperative bleeding is usually controlled with electro-coagulation, but excessive intra and perioperative blood loss can cause hemodynamic instability, that may increase morbidity and mortality associated with the procedure. Proliferation of the prostatic glandular tissue depends on the androgen dihydro-testosterone, hence inhibition of 5α-reductase cause’s reduction of gland volume that will indirectly reduce the duration of surgery and decrease the blood loss.

Methods: The study was conducted in the Department of Urology, Katuri Medical College, Guntur, Andhra Pradesh. One hundred patients who underwent TURP for symptomatic BPH from September 2015 to December 2019 fulfilling the inclusion and exclusion criteria were included in the study.

Results: They were randomized in to group A (received 2 weeks of preoperative tab. Finasteride 5 mg OD) and group B (placebo group), with a total of fifty patients in each group. In 70% of the patients in this study group, the prostatic weight was between 40 to 60 grams. 10 out of 50 patients in group A and 9 out of 50 patients in group B had prostatic weight of more than 60 grams. There is significant haemoglobin drop difference between the groups. p=0.001.it’s statistically significant. Postoperative mean haemoglobin in group A & B were 10 grams and 9.4 grams/dl respectively. Postoperative mean PCV in both group A& B were 30 and 28%.

Conclusions: Pre-operative short course of finasteride therapy (Tab. finasteride 5 mg OD) definitely reduces the perioperative complications like intra and postoperative blood loss, persistent hematuria, need for blood transfusions, clot retention and postoperative voiding failure. It also decreases operative time, tissue microvessel density and post-operative UTI.

Keywords: Finasteride, TURP, haemoglobin

Introduction

Benign prostatic hyperplasia (BPH) is an abnormal stromal and glandular proliferation of the prostate gland and is a common benign tumor found in men above 50 years of age. Most men who reach their average expectancy will experience this condition in their life time1. Like prostate cancer, BPH also very often occurs in the West compared to Eastern nations, such as Japan, China, and Asian countries like India. They are more common in blacks1. BPH is characterised by the proliferation of the prostatic epithelial and stromal cells within the prostatic transition zone, which results in enlargement of the prostate gland which in turn leads to compression of the prostatic urethra, and restriction of urinary flow2.

The amount of intra-operative and postoperative bleeding depends on the gland size, surgeon’s expertise and duration of surgery. Intraoperative bleeding is usually controlled with electro-coagulation, but excessive intra and perioperative blood loss can cause hemodynamic instability, that may increase morbidity and mortality associated with the procedure9. Proliferation of the prostatic glandular tissue depends on the androgen dihydrotestosterone, hence inhibition of 5α-reductase causes reduction of gland volume, that will indirectly reduce the duration of surgery and decrease the blood loss10. There have been few studies that have suggested the 5α-reductase inhibitors finasteride and dutasteride to have anti-angiogenic properties and cause reduction of
Intraprostatic and suburethral microvessel density. Among 5α-reductase inhibitors finasteride inhibits only 5α-reductase type 2, the main enzyme for development of BPH. Dutasteride inhibits both 5α-reductase type 1 and 2. Studies have reported that patients treated with finasteride prior to surgery have lesser bleeding following TURP than those who had been on dutasteride.

Even though several studies have shown that preoperative short course of finasteride for BPH reduces perioperative blood loss following TURP, this is not practised routinely. The goal of this study is to evaluate the effect of finasteride on intraoperative and postoperative blood loss following TURP, which could resolve some of the controversies over the use of this drug.

Aims and objectives
Aim
To assess the surgical blood loss in patients who undergo transurethral resection of prostate for BPH with and without preoperative short course Finasteride therapy.

Objectives
Primary objectives
- To assess the post-operative drop in Haemoglobin and PCV, and intra-operative calculated blood loss in the two groups.
- To assess the resected prostatic tissue micro vessel density, resected tissue weight and operative time in the two groups.

Secondary objectives
To assess and compare the other postoperative complications like clot retention, need for blood transfusion, failure to void after catheter removal and post-operative urinary tract infection in two groups.

Methods
The study was conducted in the Department of Urology, Katuri Medical College, Guntur, Andhra Pradesh. One hundred patients who underwent TURP for symptomatic BPH from September 2015 to December 2019 were included here.

Group A: (Test Group): Symptomatic BPH patients received 2 weeks Tab. Finasteride 5 mg OD dose prior to Surgery (TURP).

Group B: (Placebo Group): Symptomatic BPH patients received 2 weeks placebo prior to surgery.

Inclusion criteria
1. Men with enlarged prostate and associated lower urinary tract symptoms.
2. Patient’s age should be more than 40 years.
3. USG prostate weight should be more than 30 grams.
4. Patients with no psychological or clinical contraindications to anaesthesia or surgery.
5. Able to understand and give written consent for the study.
6. Patients who have comprehension and commitment to follow up.

Exclusion criteria
1. Previous history of prostatic surgery.
2. Suspected prostatic carcinoma or prostatic diseases other than BPH.
3. Patients who already received long term 5 alpha reductase inhibitors or alpha blockers.
4. Patients who are on anti-coagulants, aspirin or NSAIDS.
5. Patients with bleeding diathesis or liver disease.

6. Patients who are high risk for surgery (ASA iv).
7. Patients who refused to consent for the study.

Results
They were randomized in to group A (received 2 weeks of preoperative tab. Finasteride 5 mg OD) and group B (placebo group), with a total of fifty patients in each group.

Table 1: Age Group
Group

Group A
Group B

Mean age in group A & B was 65.74, 65.08 years and minimum and maximum age of the patients in group A was 56 and 82 years, in group B, 52 & 80 years respectively. In both the groups more than 40% of the patients belonged to the age group 60 to 70 years. From table no 3, age distributions in both groups were comparable.

Table 2: Prostate weight distribution
USG Prostate Weight (Grams)

Group A (no of patients)
Group B (no of patients)
Total study group

In 70% of the patients in this study group, the prostatic weight was between 40 to 60 grams. 10 out of 50 patients in group A and 9 out of 50 patients in group B had prostatic weight of more than 60 grams.

From the above table it can be inferred that the mean haemoglobin for group A was 11.7 grams/dl and the range was 10 to 12.5 grams. The mean haemoglobin for group B was 12.0 grams and the range was 10.1 to 12.7 grams/dl. The p value for this table was 0.114, hence statistically not significant. Therefore both the groups were comparable.

Fig 1: Prostate weight distribution

Table 3: Pre-operative Hb
Preoperative Haemoglobin (grams/dl)

Group A (grams/dl)
Group B (grams/dl)
Total Study group (grams/dl)
Table 4: Post-operative Hb

Post-Operative Haemoglobin (gms/dl)	Range	Mean	Standard Deviation
Group A (gms/dl)	8 to 11.0	10	0.5049
Group B (gmd/d1)	8.2 to 103	9.	0.5148

There is significant haemoglobin drop difference between the groups. p=0.001, it’s statistically significant.

Table 5: Mean-operative Hb

Mean Preoperative Haemoglobin (Gins/dl)	Mean post op Hb (Gauss/dl)	Mean HB loss (g/dl)
Group A (gms/dl)	12.	10.
Group B (gms/dl)	12.	9.
Total Study Group (gins,411)	12.	10.

It can be inferred from the above table pre and postoperative mean haemoglobin in group A were 11.7 & 10 grams and mean haemoglobin loss after TURP in this group was 1.7 grams/dl and p value is 0.112. In group B pre and post-operative haemoglobin were 12.0 & 9.2 grams and mean haemoglobin loss in group B was 2.8 grams and p value is 0.000. So there is significant post-operative haemoglobin drop in group B and that is statistically significant.

Table 6: Blood Loss

Blood Loss (ml)	Range	Mean	Standard Deviation
Group A	95 to 270	175	95.
Group B	150 to 320	220	125.

The mean postoperative USG residual prostate weight in group A and B were 18.3 and 19.9 grams respectively. The mean reduction in prostatic weight after TURP in group A & B were 27.2gms and 26.1 gms respectively. The p value was calculated to be 0.054. Though group A had more reduction in prostate weight than group B, this difference had no statistical significance.

Discussion

Benign prostatic hyperplasia (BPH) is one of the common urological diseases after fifty years of age. The symptoms can start at any age and may present even in early age group. At 50 years of age, up to 50% of men have symptoms or histological evidence of BPH. The incidence of symptomatic BPH is known to increase with age.

When prostate get enlarged, the prostatic urethra gets compressed between the prostatic lobes. This outflow obstruction produces impedance to urinary flow from the bladder and it may cause storage and voiding symptoms like frequency, urgency, hesitancy, nocturia and decreased stream. These symptoms are collectively known as lower urinary tract symptoms (LUTS). As the disease progresses, the associated complications like recurrent UTI, bladder calculi, diverticulum formation, refractory hematuria and obstructive uropathy also increase. Therefore treatment for symptomatic BPH is the cornerstone for avoiding these complications in older age group.

Intraprostatic Dihydrotestosterone (DHT) is the main mediator for BPH progression. 5α reductase is the main nuclear enzyme which converts testosterone to DHT. Hence 5α reductase inhibitors have been the main drugs used in the medical management of BPH. Finasteride and dutasteride are the two common 5α reductase inhibitors (ARI) used in the current
medical management of BPH. Dutasteride inhibits both 5α reductase Type 1 & 2, but finasteride inhibits only 5α reductase type. Due to this dual action dutasteride reduce serum DHT up to 90%, whereas finasteride reduces DHT levels by only 70 to 80%. Within the prostate 5α reductase type 2 is the predominant enzyme, and reduces intraprostatic DHT up to 90%. These drugs mainly induce apoptosis of stromal and glandular components of the prostate. Up to 30% glandular volume reduction is noticed after six months of finasteride therapy.

Our study showed that short course preoperative finasteride therapy (5mg od for two weeks) significantly reduced the intra and post-operative blood loss, operative time and resulted in greater resection of tissue and lessened the complications like post-operative clot retention, voiding failure, requirement of blood transfusion.

Conclusion
From our study we conclude that preoperative short course of finasteride therapy (Tab. finasteride 5 mg OD) definitely reduces the perioperative complications like intra and postoperative blood loss, persistent hematuria, need for blood transfusions, clot retention and postoperative voiding failure. It also decreases operative time, tissue microvessel density and post-operative UTI. It aids removal of more prostatic tissue and also improves the urinary flow rate (Q max). Hence based on our study we recommend the use of preoperative short course (2 weeks) finasteride therapy prior to TURP in the treatment of BPH, due to its role in effective control of perioperative Blood loss and associated complications.

References
1. Meigs JB, Barry MJ. Natural history of benign prostatic hyperplasia, in Kirby R, McConnell JD, Fitzpatrick JM, et al. (Eds), Textbook of Benign Prostatic Hyperplasia. Oxford, UK, Isis Medical Media Ltd, 1996, 139-148.
2. Lee C, Kozlowski JM, Gray hack JT. Intrinsic and extrinsic factors controlling benign prostatic growth. Prostate. 1997;31:131-138.
3. Berry SJ, Coffey DS, Walsh PC et al. The development of human benign prostatic hyperplasia with age. J Urol. 1984;132:474-479.
4. Russell DW, Wilson JD. Steroid 5alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994; 63:25.
5. McConnell JD, Bruskewitz R, Walsh P, Andriole G, Lieber M, Holtgrewe HL et al. The effect of finasteride on the risk of acute urinary retention and the need for surgical treatment among men with benign prostatic hyperplasia: Finasteride Long-Term Efficacy and Safety Study Group. N Engl J Med. 1998; 338:557-63.
6. De la Rosette J, Alivizatos G, Madersbacher S et al. Guidelines on Benign Prostatic Hyperplasia. European Association of Urology, 2006.
7. Mebust WK, Holtgrewe HL, Cockett AT et al. Transurethral prostatectomy: immediate and postoperative complications. A cooperative study of 13 participating institutions evaluating 3,885 patients. J Urol. 1989;141:243-7.
8. Alankar Shrivastava and Vipin B. Gupta1Various treatment options for benign prostatic hyperplasia: A current update- J Midlife Health. 2012; 3(1):10-19.
9. Reich O, Gratzke C, Stief CG. Techniques and long-term results of surgical procedures for BPH. Eur Urol. 2006; 49:970-978.
10. Dutasteride tablets [package insert]. Glaxo Smith Kline.