In free-space optical communications that use both amplitude and phase data modulation (for example, in quadrature amplitude modulation (QAM)), the data are typically recovered by mixing a Gaussian local oscillator with a received Gaussian data beam. However, atmospheric turbulence can induce power coupling from the transmitted Gaussian mode to higher-order modes, resulting in a significantly degraded mixing efficiency and system performance. Here, we use a pilot-assisted self-coherent detection approach to overcome this problem. Specifically, we transmit both a Gaussian data beam and a frequency-offset Gaussian pilot tone beam such that both beams experience similar turbulence and modal coupling. Subsequently, a photodetector mixes all corresponding pairs of the beams’ modes. During mixing, a conjugate of the turbulence-induced modal coupling is generated and compensates the modal coupling experienced by the data, and thus the corresponding modes of the pilot and data mix efficiently. We demonstrate a 12 Gbit s⁻¹ 16-QAM polarization-multiplexed free-space optical link that is resistant to turbulence.

Compared with radio, free-space optical (FSO) communications have gained substantial interest due to their higher data capacity and lower probability of interception. Often, an amplitude-only-modulated Gaussian data beam (for example, in pulse-amplitude modulation (PAM)) is transmitted and recovered; since data are encoded as distinct amplitude levels, the data constellation points of PAM lie on a one-dimensional line in the two-dimensional in-phase (I) and quadrature (Q) constellation. Alternatively, FSO systems can benefit from simultaneously recovering the data beam’s amplitude and phase to enable complex modulation formats such as quadrature amplitude modulation (QAM). Since data are encoded as distinct vectors, QAM I/Q constellation points can be arranged in a two-dimensional array. In comparison with PAM of the same number of constellation points (that is, modulation order) and average power per bit, QAM is generally less demanding in terms of the optical signal-to-noise ratio (OSNR) of the transmitted data due to its larger Euclidean distance in the two-dimensional I/Q constellation. This advantage tends to be more pronounced as the modulation order increases. In addition, phase recovery can enable various digital signal processing (DSP) functions that might benefit future FSO systems (for example, compensation for hybrid fibre/FSO systems and adaptive probabilistic shaped modulations).

Intensity modulation/direct detection (IM/DD) FSO links typically receive amplitude-encoded data by directly detecting the beam's intensity levels, yet phase information is not readily recovered. Alternatively, FSO systems can recover both amplitude and phase by using coherent detection, which mixes the data beam with a receiver Gaussian local oscillator (LO) beam. However, atmospheric turbulence generally limits coherent detection because it induces power coupling of the data beam from the Gaussian mode to other Laguerre–Gaussian (LG) spatial modes. Such turbulence-induced modal coupling can significantly degrade the data–LO mixing efficiency due to ‘mode mismatch’ between the LO and data beams. Without turbulence, the photodetector (PD) efficiently mixes the data and the LO since they typically occupy the same single-Gaussian mode, and hence are ‘mode matched’ in their spatial distributions. With turbulence, however, significant power of the data beam can be coupled into higher-order LG modes and degrade the mixing efficiency by >20 dB. Since data power coupled to orthogonal higher-order modes does not efficiently mix with the Gaussian LO.

To enable amplitude and phase recovery in turbulent links, various modal-coupling mitigation approaches have been demonstrated. One technique uses adaptive optics to couple the data power back into the Gaussian mode by measuring the distortion using a wavefront sensor and applying a DSP-calculated conjugate phase to the beam by a wavefront corrector. Another technique uses multi-mode digital coherent combining, wherein much of the data power in higher-order modes is captured by either a multi-mode fibre or an array of single-mode fibre apertures. Subsequently, the power from each of the multiple modes is recovered by a separate coherent detector and combined using DSP.

The performance depends on the number of recovered modes and phase information. The advantages of multi-mode systems, compared with single-mode systems, are that they can more efficiently mix with the Gaussian LO, achieve lower distortion, and are more resilient to turbulence. However, the resulting increase in the number of data carriers available for the same data rate is limited by the modal bandwidth of the combining system. Improvements in multi-mode combining typically come at the expense of increased complexity, either by adding more hardware or by using more sophisticated DSP techniques.

To address these challenges, we propose a turbulence-resilient pilot-assisted self-coherent detection approach that enables efficient mixing of data and LO beams in turbulent links. This approach uses a pilot beam that is phase-matched with the data beam and is transmitted simultaneously with the data beam. The pilot beam is independently transmitted and received using coherent detection, allowing for phase recovery of the data beam. The pilot beam is then used to generate a conjugate of the turbulence-induced modal coupling, which is subsequently used to compensate the mixing. This approach enables efficient mixing of data and LO beams in turbulent links, even when the data beam is subject to modal coupling.

The proposed approach is validated through simulations and experiments in a free-space optical link with turbulence. The results demonstrate significant improvement in mixing efficiency and system performance compared with traditional approaches. The approach is applicable to a wide range of free-space optical systems, including satellite communication, airborne communication, and terrestrial communication systems.
modes, and the complexity of the detection system tends to increase with the number of detected modes\cite{22,23,25}. Since turbulence may induce coupling to a large number of modes, a laudable goal towards achieving simultaneous amplitude and phase recovery would be to automatically compensate for such power coupling without additional data processing and do so in a single element that efficiently scales to recover all captured modes.

In this article, we experimentally demonstrate the near-error-free transmission of a 12 Gbit/s\(^{−1}\) 16-QAM polarization-multiplexed (PoM) FSO link that is resilient to turbulence-induced LG modal power coupling for 200 random turbulence realizations. The amplitude and phase of the transmitted QAM data are retrieved using a pilot-assisted self-coherent detector. We transmit a Gaussian pilot beam with a frequency offset from the Gaussian data beam such that both beams experience similar turbulence-induced LG modal coupling. Subsequently, a single free-space-coupled PD mixes the received multi-mode data beam with the multi-mode pilot beam in ‘self-coherent’ detection\cite{39}. During mixing, a conjugate of the turbulence-induced modal coupling of the pilot beam is automatically generated and used to compensate for the modal coupling in the data beam. Specifically, each data–pilot LG modal pair efficiently mixes and contributes to the intermediate frequency (IF) signal. Since the data and pilot experience similar modal coupling, our approach can simultaneously mix and recover nearly all of the captured data modes using a single PD. Experimental results for the turbulence strength (that is, ratio of the beam size to the Fried parameter) \(2 w_0 / r_0 \approx 5.5\) show an average mixing loss of \(~3.3\) dB.

Results

Concept of pilot-assisted self-coherent detection using optoelectronic mixing. In an FSO link, a fundamental Gaussian beam (that is, \(LG_{0,0}(x,y)\)) carrying a data channel (denoted as \(S(t,f)\)) with the carrier frequency \(f\) is transmitted through a turbulent atmosphere. Owing to a random spatial and temporal refractive index distribution, the turbulence effects can induce a transverse, spatially dependent wavefront distortion to the Gaussian beam\cite{27}. Moreover, since such distortion induces modal power coupling, the electrical field of the data beam \(\langle E_{\text{data}} \rangle\) at the receiver aperture can be expressed as a superposition of LG modes\cite{12,15}:

\[
E_{\text{data}}(t, f, x, y) = S(t, f) U(x, y) = S(t, f) \sum_l \sum_p a_{l,p} LG_{l,p}(x, y),
\]

(1)

where \(LG_{l,p}(x,y)\) represents the electrical field of the LG mode\cite{17} with an azimuthal index \(l\) and a radial index \(p\); \(a_{l,p} = \int \int U(x, y) LG_{l,p}^*(x, y) \ dx \ dy\) is the complex coefficient of the corresponding LG\(_{l,p}\) component in the wavefront, \(a_{l,p}\) denotes the conjugate of the modal electrical field, and the portion of the optical power coupled to the LG\(_{l,p}\) mode is \(|a_{l,p}|^2\); and \(U(x, y) = \sum_l \sum_p a_{l,p} LG_{l,p}(x, y)\) represents the turbulence-induced LG modal coupling. Ideallly, the complex weights \(a_{l,p}\) for all modal components tend to satisfy \(\sum_l \sum_p |a_{l,p}|^2 \approx 1\) if the receiver aperture can collect almost the entire beam\cite{19}.

A turbulent IM/DD FSO link (that is, \(S(t,f)\) is amplitude-only encoded) may suffer from turbulence-induced modal-coupling loss if an SMF-coupled PD is used because higher-order modes are not efficiently captured by the SMF\cite{22}. For a free-space-coupled PD, however, an IM/DD FSO link may not be significantly affected by modal coupling if the receiver aperture can collect most of the distorted beam\cite{22}. This free-space-coupled PD can utilize the detected optical intensity (that is, \(|S(t,f)|^2\)) to recover the amplitude-encoded data, but the beam’s phase information is not readily recoverable.

As shown in Fig. 1a, coherent-detection FSO links can recover both the amplitude and phase of the data although they suffer from performance degradation caused by turbulence-induced modal coupling. Here, the transmitted data \(S(t,f)\) contain both amplitude- and phase-encoded data (for example, 16-QAM data). By way of a simple illustrative example, the continuous-wave LO at the receiver in a single-PD heterodyne coherent detector has an optical frequency offset \(\Delta f\) from the data carrier (denoted as \(C\(−\Delta f\)\) and is a Gaussian beam (that is, \(C\(−\Delta f\)\))\(_{LG_{0,0}(x,y)}\). The square-law mixing in the PD of the coherent receiver results in a photocurrent\cite{26,30}:

\[
I \propto \int \int |C(f - \Delta f) LG_{0,0}(x,y) + S(t, f) U(x, y)|^2 \ dx \ dy = |C(f - \Delta f)|^2 + |S(t, f)|^2 + 2Re[S(t, f) C^*(f - \Delta f)]
\]

(2)

where \(Re[\cdot]\) is the real part of a complex element; \(I\) is the generated photocurrent; \(|C(f - \Delta f)|^2\) and \(|S(t,f)|^2\) are the direct current (d.c.) and the signal–signal beating interference (SSBI) photocurrent, respectively; and \(2Re[S(t,f) C^*(f - \Delta f)]\) generates the desired signal–LO beating (SLB) photocurrent. However, the Gaussian-mode LO does not mix efficiently with the multiple-LG-mode data beam due to the mode mismatch between their LG spectra, which is expressed as\cite{12}:

\[
\int U(x, y) LG_{0,0}(x, y) \ dx \ dy = \int \int \sum_l \sum_p a_{l,p} LG_{l,p}(x, y) LG_{0,0}(x, y) \ dx \ dy = a_{0,0},
\]

(3)

where orthogonality amongst the LG modes ensures that \(\int LG_{0,0}(x, y) LG_{l,p}(x, y) \ dx \ dy = 1\) and \(\int LG_{l,p}(x, y) LG_{l',p'}(x, y) \ dx \ dy = 0\), given that \(l \neq l'\) or \(p \neq p'\). Equation (3) shows that only the portion of the transmitted power that remains \(LG_{0,0}\) after turbulence can be efficiently mixed with the LO and utilized for recovering the QAM data. Such modal-coupling loss can result in severe degradation of the mixing IF power and thus the recovered data quality\cite{27}. We note that this mixing-efficiency degradation in coherent detection can occur for a PD that is: (1) free-space-coupled due to orthogonality between the higher-order modes and the Gaussian LO\cite{12,30}; and (2) SMF-coupled due to power in the higher-order modes not being efficiently coupled into the fibre\cite{12}.

Figure 1b illustrates the simultaneous recovery of the amplitude and phase of QAM data by utilizing pilot-assisted self-coherent detection, which automatically compensates for the turbulence-induced modal coupling. In addition to the Gaussian data beam, we transmit a co-axial Gaussian beam carrying a continuous-wave pilot tone with a frequency offset \(\Delta f\), producing a frequency gap between the pilot and data beams of roughly the channel bandwidth \(B\) to avoid SSBI. The electrical fields of the data and pilot beams are likely to experience similar turbulence-induced distortion and modal coupling due to their frequency difference being orders of magnitude smaller than their carrier frequencies\cite{27}. This similar distortion produces automatic ‘mode matching’ between the beams, such that the electric field of the pilot tone is\cite{12}:

\[
E_{\text{pilot}}(f - \Delta f, x, y) = C(f - \Delta f) U(x, y) = C(f - \Delta f) \sum_l \sum_p a_{l,p} LG_{l,p}(x, y).
\]

(4)

Importantly, a turbulence-induced LG-coupling conjugate \(C^*\) is automatically generated from the pilot to compensate for the modal coupling experienced by the distorted data beam, and the total generated photocurrent is:

\[
I \propto \int \int |C(f - \Delta f) U(x, y) + S(t, f) U(x, y)|^2 \ dx \ dy = |C(f - \Delta f)|^2 + |S(t, f)|^2 + 2Re[S(t, f) C^*(f - \Delta f)]
\]

(5)

\[
\int U(x, y) U^*(x, y) \ dx \ dy,
\]
where $S(t)C^*(f-\Delta f)$ generates the desired signal–pilot beating (SPB) photocurrent at an IF of Δf. The modal coupling is (ideally) corrected in an automatic fashion and the mixing efficiency is:

\[\text{Mixing efficiency} \propto \int \int U(x,y) U^* (x,y) \, dx \, dy \]

\[= \int \sum_l \sum_p a_{lp} G_{lp}(x,y) \sum_l \sum_p a_{lp}^* G_{lp}^*(x,y) \, dx \, dy \]

\[= \sum_l \sum_p |a_{lp}|^2 \approx 1, \]

where each G_{lp} component of the data beam is efficiently mixed with the corresponding G_{lp}^* component of the pilot beam. Consequently, almost all the captured optical power carried by higher-order LG spatial modes can contribute to the IF signal and can be automatically recovered using a single square-law free-space PD. The recovered QAM data can thus exhibit resilience against modal-coupling loss due to the efficient mixing between the data and pilot beams.

We note that the pilot-assisted self-coherent approach shares some similarities with both 1IM/DD and coherent detection: (1) similar to 1IM/DD, our approach does not use a receiver-based LO; and (2) similar to coherent detection, our approach recovers the amplitude and phase by mixing an 'LO-like' transmitter-generated pilot with the data beam and is often called 'self-coherent detection'\(^3\,^2\). Notably, the pilot in our self-coherent system would experience similar FSO channel loss as the data beam, which may be noteworthy in longer-distance FSO links, whereas the LO in coherent detection would not\(^4\).

Generally, the OSNR needed to achieve a desired bit error rate (BER) depends on both the modulation formats and the detection approaches\(^4\,^3\,^2\,^4\). When comparing our self-coherent detection with heterodyne coherent detection for amplitude- and phase-encoded data, the transmitted power of self-coherent detection is shared between the pilot and data beams, resulting in self-coherent detection being more OSNR-demanding compared with coherent detection (without turbulence effects)\(^3\). For example, to achieve a given BER for the same QAM order, our self-coherent approach is likely to require an OSNR of around 3 dB higher when the carrier (that is,
Our approach transmits a pilot along with the data, and the pilot serves to help probe the turbulence and create a conjugate of the distortion from modal coupling. In optical communications, we note that pilot-assisted techniques have been demonstrated to probe a turbulence’s signature and apply a conjugate of that signature to help mitigate various channel impairments, including cross-phase modulation\(^4\) and laser phase noise\(^9\). More specifically, it has been shown via simulation that turbulence-induced modal crosstalk can be reduced by mixing a pilot beam and data-carrying LG beams in a mode-division-multiplexed FSO link\(^9\). In that approach, the pilot acquires the turbulence signature, is split into multiple copies at the receiver, and generates a conjugate of the turbulence for each of the LG data beams in separate PDs.

Experimental setup of free-space optical communications with emulated turbulence. We experimentally demonstrate pilot-assisted self-coherent detection in a 12 Gbit s\(^{-1}\) PolM 16-QAM 1-m-long FSO link with emulated turbulence. Figure 2 shows the experimental setup (see the Methods section for more details). The strengths (that is, the ratio of the beam size \(2w_0\) to the Fried parameter \(r_0\)) of the weaker and stronger turbulence effects are \(2w_0/r_0\approx2.2\) and 5.5, respectively.

We emulate atmospheric turbulence effects using a single rotatable phase plate. Generally, turbulence effects can be more accurately emulated using multiple phase plates\(^2\). To address our emulation accuracy, we simulate the optical and electrical mixing power loss using single and multiple random phase screen (RPS) models; the simulation results show similar loss distributions and trends for both 1-RPS and 5-RPS models (see Supplementary Figs. 1 and 2 for more details).

![Diagram of experimental setup for 12 Gbit s\(^{-1}\) 16-QAM PolM FSO link.](image)

At the transmitter, a pilot–data-channel pair is transmitted on each of the orthogonal polarizations. The PolM Gaussian beams then propagate through a rotatable turbulence emulator. At the receiver, an FM is used to send the distorted beams for LG spectrum measurement via off-axis holography. Equal copies of the received beams are detected by the pilot-assisted self-coherent detector and single-PD LO-based heterodyne coherent detector. During the detection of the heterodyne coherent receiver, the pilot is turned off. The same DSP algorithms are applied to both receivers to retrieve the 16-QAM data. AWG, arbitrary waveform generator; Mod., modulator; EDFA, erbium-doped fibre amplifier; PC, polarization controller; PBC, polarization beam combiner; pol., polarization; Col., collimator; MR, mirror; HWP, half-wave plate; FM, flip mirror; BS, beam splitter; FS PD, free-space-coupled photodetector; SMF, single-mode fibre.
that stronger turbulence induces <2 dB of optical power loss for self-coherent detection since the free-space-coupled PD can capture most of the power; we note that free-space-coupled IM/DD systems are likely to have similar captured power loss. As shown in Fig. 3b, the self-coherent detector has an electrical mixing power loss of <3 dB and <6 dB for 99% weaker and 90% stronger turbulence realizations among 1,000 random turbulence realizations, respectively. The relatively low mixing power loss for self-coherent detection is due to efficient mixing of the pilot and data beams, which is likely to recover almost all the data power from the captured modes.

As discussed, turbulence-induced modal coupling can result in significant power loss for ‘mode-selective’ SMF-coupled IM/DD or coherent detectors. Figure 3a shows that the optical power loss for SMF-coupled systems ranges from ~2 to ~22 dB and from ~7 to ~30 dB under ~2.2 and ~5.5 turbulence strengths, respectively. Among the 1,000 emulated turbulence realizations, Fig. 3b shows that the coherent detector can suffer from a mixing power loss of ~28 dB for 99% and 90% of weaker and stronger turbulence, respectively. This mixing loss is due to the SMF-coupled detector not efficiently capturing the power coupled to higher-order modes.

To help further validate our experimental results, we simulate the self-coherent system using 1-RPS (see Supplementary Equations (1)–(6) for simulation details). As shown in Fig. 3c, the simulation results indicate that self-coherent detection suffers <4 dB of average optical and electrical mixing power loss as the turbulence strength $2w_r/\phi$ is increased from ~1 to ~7. Moreover, the plotted experimental results are generally in agreement with the simulation.

Turbulence-resilient 12 Gbit s$^{-1}$ 16-QAM PoM free-space optical transmission. We demonstrate 12 Gbit s$^{-1}$ PoM FSO transmission under emulated turbulence effects, with each polarization carrying 1.5 Gbaud 16-QAM data. The transmitted total optical power per polarization (including pilot and data beams) is ~7 dBm. The transmitted CSPR values are ~1.1 and ~1 for X and Y polarizations, respectively. Figure 4 shows the recovered 16-QAM constellations using the self-coherent detector under example realizations of the weaker and stronger turbulence. We measure the turbulence-induced LG spectra for l and p indices of ~5 to +5 and 0 to 10, respectively. The complex wavefront is measured using off-axis holography (see Methods).

Fig. 3 | Characterization of optical and mixing power loss for the pilot-assisted self-coherent detector under different turbulence strengths. To indicate the effects of turbulence-induced modal coupling on a coherent-detection FSO system with the single-Gaussian-mode LO, we also show the optical and mixing power loss of an SMF-coupled LO-based heterodyne coherent detector. a, Experimentally measured histograms of optical power loss under two different turbulence distortions ($2w_r/\phi \approx 2.2$ and 5.5) for X (left) and Y (right) polarizations. Note that free-space-coupled IM/DD systems are likely to have similar captured power loss as the pilot-assisted self-coherent detector. b, Experimentally measured histograms of mixing power loss (in the electrical domain) under two different turbulence distortions ($2w_r/\phi \approx 2.2$ and 5.5) for X (left) and Y (right) polarizations. The mixing power loss is measured at the IF of ~2.6 GHz in the electrical domain. In a and b, 1,000 different turbulence realizations are measured for each polarization. c, Simulated average optical power loss (top) and average electrical mixing power loss (bottom) results for different turbulence strengths from 1 to 7. The average values of experimentally measured data points (including both X and Y polarizations) are also plotted.
With no turbulence effects, Fig. 4a shows that the pilot-assisted self-coherent detector can achieve a near-error-free performance and recover an error vector magnitude (EVM) of ~8% for the 16-QAM data. Under one random realization of weaker turbulence, the measured LG spectrum of Fig. 4b shows that the data power is mainly coupled to the neighbouring LG modes. Under two different random realizations of stronger turbulence, Fig. 4c,d show that turbulence effects can induce a power loss of > 25 dB and that power can be coupled to a large number of LG modes. The performance of the self-coherent detector is not severely affected by these turbulence effects and the 16-QAM data can be recovered with EVM values from ~8% to ~10% for both realizations. This turbulence resiliency is due to the automatic modal-coupling compensation by the pilot–data mixing, enabling almost all captured LG modes to be efficiently recovered.

To elucidate the effects of turbulence-induced modal coupling on coherent detection, we also show the recovered 16-QAM data for an SMF-coupled heterodyne coherent detector in Fig. 4; the recovered data quality degrades for both polarizations, from EVM values of ~7.5% without turbulence (Fig. 4a) to ~16% for stronger turbulence (Fig. 4c,d). This degradation is due to data power coupled to higher-order modes that is not efficiently captured by the SMF.33

We also measure the electrical spectra for the self-coherent and coherent detectors under these example turbulence realizations. Compared with the case of no turbulence, there is a ~3 dB and ~18 dB SNR degradation of the IF signal measured for the self-coherent and coherent detectors, respectively, under the turbulence realizations of Fig. 4 (see Supplementary Fig. 3 for more details).

Figure 5 shows measured BER values for the pilot-assisted self-coherent detector under 200 random realizations of weaker and stronger turbulence. Results show that the self-coherent detector can achieve BER values below the 7% forward error correction limit for all realizations. Since turbulence can cause strong modal-coupling-induced power loss, the performance of the coherent detector can degrade and does not achieve the 7% forward error correction limit for some realizations.

We further characterize the performance of the self-coherent detector by measuring the BER as a function of the transmitted power. We find power penalties of ~3 dB for both polarizations under one realization of the stronger turbulence (see Supplementary Fig. 4).

Enhancing spectral efficiency using Kramers–Kronig detection. In our self-coherent approach, a frequency gap between the pilot and data beams is needed to avoid SSBI. This gap is roughly equal to the data bandwidth, such that our spectrum is around 2× the data bandwidth. However, this frequency gap can be reduced to increase the spectral efficiency using SSBI mitigation techniques40,41 such as Kramers–Kronig (KK) detection44. Therefore, we demonstrate a reduction of the data–pilot gap to ~0.1 GHz (IF ≈ 0.9 GHz) using KK detection (see Supplementary Fig. 5 for more details); the recovered 16-QAM data exhibit EVM values of <12% for both polarizations.
under example realizations of weaker and stronger turbulence. Using KK detection, the spectral efficiency of the pilot-assisted approach could be increased by roughly 2×. Importantly, the KK scheme typically utilizes a stronger pilot than the non-KK approach. Hence, it is typically less power efficient than the non-KK pilot-assisted approach, resulting in a trade-off between power efficiency and spectral efficiency.

Discussion

The following issues are interesting to consider:

(i) Our 1.5 GHz baud rate is limited by the ~3.5 GHz bandwidth of the PD. However, free-space-coupled PDs with a bandwidth of ~49 GHz have been reported, making >100 Gbit s⁻¹ possible.

(ii) We use LG modes to analyse modal coupling. However, we could utilize other bases (for example, Hermite–Gaussian). Importantly, we do not need to specify a priori the base used because our approach is ‘automatic’ and the pilot and data can be described in different bases.

(iii) We note that differential-phase-shift-keyed (DPSK) systems are also referred to as ‘self-coherent’. In DPSK systems: (1) data are typically encoded in the optical phase difference between neighbouring symbols; (2) the received data beam is split into two copies of which one is delayed; (3) these copies are coherently combined using a Mach–Zehnder interferometer; and (4) both Mach–Zehnder interferometer output branches are detected by two PDs simultaneously to recover the differential-encoded data. Different from our pilot-assisted approach, almost all the captured optical power in DPSK systems contains data. However, to recover the amplitude and phase of QAM data, differential systems typically utilize a more complex receiver than that of the pilot-assisted approach.

Interestingly, it might be possible to use multi-mode mixing as described in this paper to achieve automatic turbulence resilience in a differential, high-order QAM system.

(iv) A beam diverges with the link distance. Consequently, both the data and pilot beams can suffer from truncation by a limited-size receiver aperture causing power loss for longer-distance links. Moreover, truncation can cause power coupling to higher-order modes. These higher-order modes tend to be automatically mixed by the pilot-assisted self-coherent detection since the pilot and data beams experience similar truncation effects.

(v) We use a free-space-coupled PD. Can our approach use fibre-coupled PDs? One possibility might be to use a multi-mode fibre-coupled PD such that many modes are captured and then impinge on the PD.

(vi) Although FSO propagation is dependent on a beam’s carrier frequency, it is likely that beam divergence and turbulence-induced spatial distortions are similar for the pilot and data beams. This is because their typical frequency difference (∼1 nm) is substantially smaller than their carrier frequencies (∼1.55 μm).

This paper has described the concept and experimental/simulation results of pilot-assisted self-coherent links to automatically mitigate modal coupling for recovering the amplitude and phase of data. However, there are important questions for further study as to limits and dependencies of our approach, including: (1) the frequency dependence of spatial distortions and (2) its effectiveness as a function of distance, divergence, turbulence strength, signal bandwidth and signal-carrier frequency separation.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41566-021-00877-w.

Received: 28 January 2021; Accepted: 13 August 2021; Published online: 28 September 2021

References

1. Kedar, D. & Arnon, S. Urban optical wireless communication networks: the main challenges and possible solutions. IEEE Commun. Mag. 42, S2–S7 (2004).
2. Khalighi, M. A. & Uysal, M. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014).
3. Kaushal, H. & Kaddoum, G. Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 19, 57–96 (2017).
4. Proakis, J. G. Digital Communications (McGraw-Hill, 2008).
5. Hemmati, H. (ed.) Near-Earth Laser Communications (CRC, 2020).
6. Lorences-Riesgo, A. et al. 200 G outdoor free-space-optics link using a single-photon detector. J. Lightwave Technol. 38, 394–400 (2020).
7. Schichorow, R. et al. Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photonics Technol. Lett. 24, 61–63 (2012).
8. Li, G. Recent advances in coherent optical communication. Adv. Opt. Photonics 1, 279–307 (2009).
9. Guiomar, F. P. et al. Adaptive probabilistic shaped modulation for high-capacity free-space optical links. J. Lightwave Technol. 38, 6529–6541 (2020).
10. Liu, H. et al. Turbulence-resistant FSO communication using a few-mode pre-amplified receiver. Sci. Rep. 9, 16247 (2019).
11. Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157–179 (2016).
12. Noll, R. J. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. A 66, 207–211 (1976).
13. Dikmelik, Y. & Davidson, F. M. Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence. Appl. Opt. 44, 4946–4952 (2005).
14. Surof, J., Poljak, J. & Calvo, R. M. Demonstration of intradyne BPSK optical free-space transmission in representative atmospheric turbulence conditions for geostationary uplink channel. Opt. Lett. 42, 2173–2176 (2017).
15. Ren, Y., Dang, A., Liu, L. & Guo, H. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence. Appl. Opt. 51, 7246–7254 (2012).
16. Belmonte, A. & Kahn, J. M. Efficiency of complex modulation methods in coherent free-space optical links. Opt. Express 18, 3928–3937 (2010).
17. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
18. Cohen, S. C. Heterodyne detection: phase front alignment, beam spot size, and detector uniformity. Appl. Opt. 14, 1953–1959 (1975).
19. Chambers, D. M. Modeling heterodyne efficiency for coherent laser radar in the presence of aberrations. Opt. Express 1, 60–67 (1997).
20. Delautre, D., Beugnot, S. & Laude, V. Measurement of the sensitivity of heterodyne detection to aberrations using a programmable liquid-crystal modulator. Opt. Commun. 160, 61–65 (1999).
21. Chen, M., Liu, C., Rui, D. & Xian, H. Experimental results of atmospheric coherent optical communications with adaptive optics. Opt. Commun. 434, 91–96 (2019).
22. Fontaine, N. K. et al. Digital turbulence compensation of free space optical link with multimode optical amplifier. In Proc. European Conference on Optical Communication PD.1.1 (IET, 2019).
23. Arikawa, M. & Ro, T. Performance of mode diversity reception of a polarization-division-multiplexed signal for free-space optical communication under atmospheric turbulence. Opt. Express 26, 28263–28276 (2018).
24. Geisler, D. J. et al. Multi-aperture digital coherent combining for free-space optical communication receivers. Opt. Express 24, 12661–12671 (2016).
25. Zhang, B., Yuan, R., Sun, J., Cheng, J. & Alouini, M.-S. Free-space optical communication using non-mode-selective photonic lantern-based coherent receiver. IEEE Trans. Commun. 69, 5367–5380 (2021).
26. Chen, X., Antonelli, C., Meczkoz, A., Che, D. & Shieh, W. in Optical Fiber Telecommunications VII (ed. Willner, A.) 419–441 (Academic, 2020).
Methods

Experimental details of free-space optical communications in emulated turbulence. As shown in Fig. 2, we transmit a pair of data-carrying and pilot Gaussian beams on both X and Y polarizations. A 6 Gbit s\(^{-1}\) 16-QAM data channel at a wavelength of \(\lambda = 1.55\) μm is generated, amplified using an erbium-doped fibre amplifier (EDFA) and equally split into two copies. One copy is delayed using a >15 m SMF to decorrelate the data channels and two independent data channels are individually combined with another pilot tone at a wavelength of \(\lambda_1\) with a frequency offset of ~2.6 GHz from \(\lambda_2\). The polarizations of the signals and the pilots are adjusted and subsequently combined using a polarization beam combiner to transmit PolMux 16-QAM signals. The total optical power including the pilot and data beams is ~7 dBm for each of the polarizations. The optical signal is coupled to free space using an optical collimator (Gaussian beam size of diameter \(2w_\text{p} = 2.2\) mm), is distorted using a rotatable turbulence emulator (see the section ‘Experimental emulation of atmospheric turbulence effects’) and then propagates in free space for ~1 m. In this demonstration, we emulate different strengths of atmospheric turbulence using two separate turbulence emulators with different Fried parameters \(r_0\) of 1.0 mm and 0.4 mm. The emulated turbulence distortion for the transmitted Gaussian beam is characterized by the ratio of the beam size to the Fried parameter\(^5\), and these are \(2w_\text{p}/r_0 = 2.2\) and 5.5 for the two emulators.

At the receiver, we demultiplex one polarization at a time using a half-wave plate cascaded with a polarizer. The receiver has an aperture diameter of ~10 mm. We measure the spatial amplitude and phase profiles of the turbulence-distorted beam and calculate its LG decomposition using off-axis holography\(^8\) (see the section ‘Off-axis holography for complex wavefront measurement’). The LG polarization demultiplexing, the distorted beam is equally split into two copies that are sent to the pilot-assisted self-coherent detector and a single-PD LO-based heterodyne coherent detector.

In the pilot-assisted self-coherent detector, the entire spatial profiles of the distorted data and pilot beams are focused into a free-space-coupled InGaAs PD (30 mm bandwidth <3.5 GHz) using an aspheric lens with a focal length of 16 mm and a numerical aperture of ~0.79. The coupling efficiency of the received Gaussian beam, defined as the ratio of the optical power detected by the PD over the total received optical power by the receiver aperture (without turbulence effects), is measured to be >92%. The generated photocurrent is recorded using a real-time digital oscilloscope and the I–Q information of the data channel is subsequently retrieved using off-line DSP algorithms (see the section ‘Digital signal processing for retrieving the I–Q information at the receiver’). The Nyquist-speeded 16-QAM data channel has a symbol rate of 1.5 GHz with a roll-off factor of 0.1, expanding the data’s spectrum to ~1.7 GHz. To avoid SSBI effects, we set the IF \(\Delta f\) of the pilot and data channels to 2.6 GHz, which includes a frequency gap of ~1.8 GHz between the pilot and data beams. Thus, the total transmitted pilot-assisted signal spectrum is ~3.5 GHz, which is roughly twice that of the data spectrum (see Supplementary Fig. 3 for more details).

At the single-PD LO-based heterodyne coherent detector (the pilot \(\hat{z}\) is turned off), we set the same IF value as the pilot-assisted self-coherent receiver. The distorted Gaussian beam is coupled into an SMF via a collimator (aperture diameter \(\sim 3.5\) mm), amplified using an EDFA, and mixed with an LO (at the same wavelength \(\hat{z}\) as the pilot) at the SMF-coupled PD. The received optical signal is amplified by the EDFA to meet the power sensitivity requirement of the SMF-coupled PD. The detected electrical signal is recorded using a real-time digital oscilloscope and processed to retrieve the channel’s I–Q information using the same off-line DSP algorithms as the pilot-assisted self-coherent detector.

Note that we measure the optical power loss and electrical mixing power loss of the distorted Gaussian beam and its corresponding LG spectrum. An off-axis reference Gaussian beam (beam diameter ~7 mm) on the same wavelength as the distorted pilot Gaussian beam is incident on the infrared camera with a tilted angle. We record the off-axis interferogram and apply digital image processing to extract the complex wavefront of the distorted beam (in the experiment with different Fried parameters \(r_0\) of 1.0 mm and 0.4 mm). Under even stronger turbulence effects, the turbulence-distorted pilot beam is turned off when we measure the complex wavefront of the turbulence-distorted pilot beam. After the complex wavefront of the distorted Gaussian beam is obtained, we decompose it into a two-dimensional LG modal spectrum in which the two indices \(l\) and \(p\) range from ~5 to ~5 and from 0 to 10, respectively, as expressed in equation (7):\(^2\)

\[
a_l^p(x,y) = \int \int E_{lg}^p(x,y) LG_{l,p}^p(x,y) \, dx \, dy, \tag{7}
\]

where \(E_{lg}^p(x,y)\) and \(LG_{l,p}^p(x,y)\) are the measured complex field of the distorted Gaussian beam and the theoretical complex field of an LG\(_{l,p}\) mode, respectively. The ratio of optical power coupling to the LG\(_{l,p}\) mode is given by \(|a_l^p|_2^2\).

Digital signal processing for retrieving the I–Q information at the receiver. The detected electrical signal is sampled using a real-time digital oscilloscope (20 GHz bandwidth and 50 gigasamples per second sampling rate) and recorded for off-line DSP. The recorded signals from the pilot-assisted self-coherent detector and the single-PD LO heterodyne coherent detector are processed using the same DSP procedures. Each signal is filtered using a root-raised-cosine finite impulse response filter with a roll-off factor of 0.1, and the filtered signal is subsequently equalized using a constant modulus algorithm. After equalization with the constant modulus algorithm, carrier frequency offset estimation and carrier phase recovery are sequentially performed to reduce the frequency and phase difference between the signal and the LO (or pilot). Finally, the EVM and BER values of the demodulated signal are calculated to evaluate the quality of the data transmission. The EVM of the detected signal is calculated using equation (8) as follows:\(^2\)

\[
\text{EVM} = \sqrt{\frac{1}{N\max[|\hat{x}|]} \sum_{i=1}^{N} |x_i - \hat{x}_i|^2} \times 100\%.
\tag{8}
\]

where the \(x\) and \(\hat{x}\) represent the transmitted and recovered data symbols, respectively, and \(N\) is the total number of detected symbols. In this demonstration, ~180,000 symbols are collected to calculate the EVM and BER values of the 16-QAM data signals.

Data availability

All data, theory detail, simulation detail that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

All relevant computing codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

48. Kausal, H. et al. Experimental study on beam wander under varying atmospheric turbulence conditions. *IEEE Photonics Technol. Lett.*, **23**, 1691–1693 (2011).

49. Anthonisamy, A. B. R., Durairaj, P. & Paul, L. J. Performance analysis of free space optical communication in open-atmospheric turbulence conditions with beam wandering compensation control. *IET Commun.*, **10**, 1096–1103 (2016).
50. Phillips, J. D., Goda, M. E. & Schmidt, J. Atmospheric turbulence simulation using liquid crystal spatial light modulators. In Proc. Advanced Wavefront Control: Methods, Devices, and Applications III Vol. 5894 (eds Gruneisen, M. T. et al.) 589406 (SPIE, 2005).

Acknowledgements
This work is supported by the Vannevar Bush Faculty Fellowship sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research (N00014-16-1-2813); US Office of Naval Research through a MURI award (N00014-20-1-2558); Defense Security Cooperation Agency (DSCA 4441006051); Airbus Institute for Engineering Research; Naval Information Warfare Center Pacific (N6600120C4704); and the US Office of Naval Research (N00014-17-1-2443). R.Z. and H.Z. acknowledge the support of a Qualcomm Innovation Fellowship; R.W.B. acknowledges the Canada Research Chairs Program and Natural Sciences and Engineering Research Council of Canada.

Author contributions
All the authors contributed to the interpretation of the results and writing of the article; R.Z., N.H., H.Z. and A.E.W. conceived the idea; R.Z., N.H., H.Z., Haoqian Song, Z.Z. and A.E.W. designed the experiments; R.Z., N.H., H.Z., X.S., Haoqian Song and A.M. conducted the experimental measurements; N.H., Hao Song, and A.M. carried out the numerical simulations; H.Z., K.Z. and X.S. performed the digital signal processing; Y.Z. and R.W.B. helped with the off-axis holography; Haoqian Song, K.P., Hao Song, A.M., Z.Z., C.L., K.M., A.A., B.L. and M.T. contributed to the data interpretation, presentation and visualization; B.L., R.W.B., M.T. and A.E.W. provided the technical support for data analysis and results interpretation. The project was supervised by A.E.W.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41566-021-00877-w.
Correspondence and requests for materials should be addressed to Runzhou Zhang or Alan E. Willner.

Peer review information Nature Photonics thanks Szymon Gladysz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.