A Survey of Implicit Discourse Relation Recognition

WEI XIANG, Huazhong University of Science and Technology, China
BANG WANG, Huazhong University of Science and Technology, China

A discourse containing one or more sentences describes daily issues and events for people to communicate their thoughts and opinions. As sentences are normally consist of multiple text segments, correct understanding of the theme of a discourse should take into consideration of the relations in between text segments. Although sometimes a connective exists in raw texts for conveying relations, it is more often the cases that no connective exists in between two text segments but some implicit relation does exist in between them. The task of implicit discourse relation recognition (IDRR) is to detect implicit relation and classify its sense between two text segments without a connective. Indeed, the IDRR task is important to diverse downstream natural language processing tasks, such as text summarization, machine translation and so on. This article provides a comprehensive and up-to-date survey for the IDRR task. We first summarize the task definition and data sources widely used in the field. We categorize the main solution approaches for the IDRR task from the viewpoint of its development history. In each solution category, we present and analyze the most representative methods, including their origins, ideas, strengths and weaknesses. We also present performance comparisons for those solutions experimented on a public corpus with standard data processing procedures. Finally, we discuss future research directions for discourse relation analysis.

CCS Concepts:
• General and reference → Surveys and overviews;
• Information systems → Information extraction; Relational database model;
• Computing methodologies → Discourse, dialogue and pragmatics; Machine learning;
• Computer systems organization → Neural networks.

Additional Key Words and Phrases: Implicit discourse relation, relation recognition, Penn discourse TreeBank, natural language processing

ACM Reference Format:
Wei Xiang and Bang Wang. 2022. A Survey of Implicit Discourse Relation Recognition. ACM Comput. Surv. 1, 1 (March 2022), 32 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A discourse normally is referred to a sequence of clauses, sentences, or paragraphs in an article, which is often used to describe some issues, events, opinions, etc. Discourse parsing is to analyze the structure of the components of a discourse, which is a fundamental task in Natural Language Processing (NLP) [158, 159]. It is widely agreed that a piece of text cannot be well understood in isolation, but should be related to its context [80]. Discourse relation recognition (DRR), as a subtask of discourse parsing, aims at identifying the existence of some logical relation between two text segments in a discourse; And if existing, further classifies the relation sense into some predefined type, such as the temporal, causal, contrastive sense, etc [107].

Discourse relation recognition provides important information to many NLP tasks, such as question answering [37, 77, 134], information extraction [16, 65], machine translation [30, 70, 92, 158].

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).
0360-0300/2022/3-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn
recognizing a causal relation between two text segments identifies the cause segment as well as the effect segment, which can assist in answering the ‘why’ question. A discourse may contain one or more connectives in between text segments. A connective is a lexical unit (a word or a phrase) that may directly indicate some particular relation sense. For example, a connective ‘because’ often indicates a causal relation between two text segments. If a connective exists, it can be exploited for the DDR task. In such a case, the task is called explicit discourse relation recognition (EDRR).

On the other hand, it is not uncommon that two text segments express some relation sense but without any connective in between them. The task of detecting and classifying some latent relation in between two segments without an explicit connective is called implicit discourse relation recognition (IDRR). Although it is very challenging, the IDRR task is of great importance in discourse parsing and other NLP tasks and has attracted lots of research efforts in recent years. This article surveys the developments, progresses and achievements in the IDRR community. Before that, we first introduce some basic definitions according to the widely acknowledged Penn Discourse TreeBank (PDTB) corpus [97, 108].

1.1 Discourse Relation Recognition Task

We use the following terminologies introduced in the PDTB corpus¹ (more details will be introduced in the next section) [97, 108]:

- **Argument**: It is defined as a text segment in a discourse, containing at least one predicate for stating an issue, event, or opinion.
- **Sense**: It is the type of a discourse relation, such as the comparison, contingency, expansion, temporal, etc.
- **Connective**: It is a lexical item conveying some relation between two arguments, such as ‘but’, ‘because of’, etc.

In the PDTB corpus, the existence and sense of a relation between two arguments are judged and annotated by several professionals. The DRR task is to recognize such annotated relations by machine algorithms. Depending on whether a connective exists in the raw text, two kinds of DRR tasks are further defined. If a connective exists between two arguments, it corresponds to an EDRR task, whose main focus is to extract such an explicit connective as a kind of relation trigger and classify it into some relation sense. If a connective does not exist in the raw text, it corresponds to an IDRR task, whose main focus is to detect some implicit relation and classify its sense from the semantics and interactions of the two arguments. In the PDTB corpus, if two arguments holds an implicit relation, a connective, called as implicit connective, is manually inserted into the raw text as an indication.

Fig. 1 provides two annotation examples in the PDTB corpus, where text colors are used to denote arguments and connectives. In the first example, an explicit connective ‘because’ exists in the raw text, which is judged as revealing an explicit relation of contingency sense between the two arguments. In the second example, an implicit relation of contingency is annotated for the two arguments, yet an implicit connective ‘so’ is also inserted by annotators.

1.2 summary of this survey

This article provides an up-to-date survey for the task of implicit discourse relation recognition. To the best of our knowledge, there has few similar review articles in this field [2, 35, 160]. The Chinese survey by Yan et al. (2016) [160] introduced the background, annotation, evaluation and challenge of the DRR task. Another Chinese survey by Hu et al. (2020) [35] categorized some IDRR

¹https://www.seas.upenn.edu/pdtb/
methods into argument encoding-based, argument interaction-based and semi-supervised. The most recent position paper by Atwell et al. (2021) [2] examined the performance of some discourse parsing models and discussed promising future directions.

A few of articles on the IDRR performance comparison can be found [9, 50, 64, 78, 128]. Braud and Denis (2015) [9] presented a comparative framework for assessing the usefulness of various word representations in the IDRR task. Li and Nenkova (2016) [73] analyzed the characterization factors for implicit instantiation relation detection in the PDTB corpus. Sun and Zhang (2018) [128] compared the distribution pattern of discourse relations between the PDTB corpus and the Rhetorical Structure Theory Discourse Treebank (RST-DT) corpus. Li et al. (2019) [64] investigated the influence of neural components on the IDRR performance for several neural models. Liang et al. (2020) [78] analyzed the additional annotations and relation sense distribution differences in the PDTB version 3.0, and Kim et al. (2020) [50] presented an improved evaluation protocol considering the inconsistencies in published literatures.

Compared with the aforementioned articles, we try to provide a comprehensive survey with systematic technique taxonomy for the IDRR task, not only providing its task definition, data sources and performance evaluations, but also categorizing the main approaches from the viewpoint of its development history. We present and analyze the most representative methods in each technique group, especially their origins, basics, advantages and disadvantages. We also discuss some promising directions for future research.

In this article, we group the main approaches of the IDRR task into the traditional machine learning (ML) methods and deep learning (DL) methods. In the early years of discourse relation recognition, the common approach is to feed manually designed linguistic features into some traditional ML classifier to recognize relations. Recently, many deep learning methods have designed advanced neural networks to automatically conduct representation learning and classify argument-pair relations. In addition, we also introduce some semi-supervised learning methods that aim to solve the problem of limited resources of labelled data.

The rest of this article is organized as follows: Section 2 introduces the widely used PDTB corpus and the CoNLL dataset. We group the main approaches into the traditional machine learning methods in Section 3 and deep learning methods in Section 4. Section 5 reviews the semi-supervised schemes in the literature. We also compare the performance for those algorithms experimented on the PDTB corpus in Section 6. Finally, Section 7 concludes the survey with some discussions.

2 THE PDTB CORPUS AND THE CONLL DATASET

This section introduces two widely used data resources for discourse relation recognition: One is the PDTB corpus developed by the University of Pennsylvania [97, 108, 109, 144]. Another is the CoNLL
dataset released by the SIGNLL (ACL Special Interest Group on Natural Language Learning)\(^2\). In both datasets, articles from news and journals are annotated with predefined discourse relation types, which can be regarded as with ground truth labels.

2.1 The PDTB Corpus

The PDTB corpus is the largest one for the DRR task, which contains more than one million words of English texts from the Wall Street Journal on top of the Penn Treebank corpus [91] and Propbank corpus [104], which have labeled arguments with a kind of predicate-argument structure [53, 90]. The first version PDTB 1.0 was released on April 2006 and a significantly extended version PDTB 2.0 was released on February 2008. The latest version PDTB 3.0 corpus has been released on March 2019 and updated on February 2020 through the Linguistic Data Consortium (LDC)\(^3\).

Articles in the PDTB corpus are manually annotated by experts with domain knowledge. The PDTB corpus has annotated argument, connective, sense for discourse relations, as well as attribution and supplement for arguments. Discourse relations in PDTB 1.0 and 2.0 are inter-sentential, where arguments can only be a single clause, a single sentence, or a sequence of clauses and/or sentences. Some intra-sentential discourse relations have been added to the latest PDTB version 3.0. Since arguments are annotated according to the minimality principle, any other span of text perceived to be relevant (but not necessary) to the interpretation of arguments has been annotated as supplementary information in parentheses.

Each discourse relation between two consecutive arguments, called an argument-pair, has been annotated with a sense; Where the sense annotation follows a hierarchical classification scheme

\(^2\)https://www.signll.org/
\(^3\)http://www.ldc.upenn.edu

![Fig. 2. The hierarchy of sense annotation tags in the PDTB.](image)
with three levels: class, type and subtype. Fig. 2 presents the hierarchy of sense annotation tags, including four classes: temporal, comparison, contingency and expansion, as well as several sense types and subtypes. Note that a discourse relation can be annotated with more than one sense in the PDTB corpus. Fig. 3 presents such examples: In the first sentence, the connective ‘since’ is annotated with a temporal relation sense; In the second sentence, the connective ‘since’ is annotated with a contingency relation sense. In the last one, it is with both the contingency and temporal sense. Multiple senses can also be inferred and annotated by inserting multiple implicit connectives.

2.2 The CoNLL Dataset and Shared Task

The Conference on Natural Language Learning (CoNLL) is a yearly conference, in which a so-called Shared Task for Shallow Discourse Parsing has been announced in the CoNLL-2015 [158] and CoNLL-2016 [159]. The discourse relation in CoNLL is restrained between adjacent arguments, so it is called the shallow discourse parsing. The CoNLL Shared Task introduces a slightly modified version of the PDTB corpus, which consists of the full PDTB dataset with some reductions of sense subtypes. In addition to containing all of the PDTB dataset, the CoNLL Shared Task includes an external blind test set and a second test set in the CoNLL-2015 and CoNLL-2016.

The full CoNLL Shared Task consists of not only discourse relation recognition, but also discourse argument segmentation. For the explicit DRR task, connective detection and classification are also required. The tasks in the CoNLL focus on a kind of fine-grained discourse relation classification, i.e. classifying the lowest level of discourse relations in the discourse hierarchy as shown in Fig. 2. Many models have been proposed for the CoNLL Shared Task, including some machine learning-based methods [15, 19, 44, 49, 76] and deep learning-based methods [69, 94, 119, 139, 145].

3 IMPLICIT DISCOURSE RELATION RECOGNITION BASED ON MACHINE LEARNING

The IDRR task can be straightforwardly formalized as an argument-pair classification problem, with the input of two arguments (and if necessary, other raw text in a discourse) and with the output of the classified relation sense between the two arguments. This section reviews those using traditional machine learning (ML) algorithms for the IDRR task, like the Naive Bayes, Maximum Entropy, Support Vector Machine (SVM) algorithm, etc. Those using neural network techniques (or so-called deep learning) will be reviewed in the next section. Note that they both are a kind of supervised learning approaches and require training data with ground truth labels.

![Fig. 3. Examples of connective with multiple senses in the PDTB corpus.](image-url)
The basic idea and procedure are similar in those machine learning approaches. First, various features are designed to capture lexical, syntactic regularity and/or contextual information for an argument-pair. Next, each feature is represented by a numerical vector, mostly an one-hot vector. These features are combined as the input of a ML classifier, which is trained based on training samples. Some ML approaches also enable feature selection to select a subset of available features for improving classification performance. Finally, the trained classifier is applied to recognize the relation for an argument-pair, which returns a relation sense label with a confidence value indicating its classification likelihood.

The key to the success of such ML classifiers is how to construct and select representative features, which is also called feature engineering. For the IDRR task, linguistically informed features, such as lexical, syntactic, contextual features, have been widely used. Most of such features can be obtained via some open-source NLP tools, lexicons and annotated corpus, such as the Stanford CoreNLP, Levin English Verb Class, General Inquirer Lexicon MPQA corpus. For feature selection, Park and Cardie and Li et al. proposed a simple greedy approach: Starting with a single best-performing feature, in each iteration including the feature with the largest performance improvement. The iteration terminates until no significant improvement can be made. We next introduce some typical features widely used in the literature.

3.1 Lexical features

The words of an argument-pair and their semantic characteristics can be utilized to design lexical features. Some commonly used lexical features include (1) word-pair: a pair of two words in an argument-pair with the first word from the first argument and the second word from the second argument; (2) semantic tag: some lexical characteristics of a word according to existing lexicons or corpora; (3) numerical value: the number, dollar amounts, or percentage in arguments.

The word-pair features could instinctively reveal some relation between arguments. For example, a word-pair (rain, wet) might be indicative of a causal relation between two arguments, as illustrated by Fig. 4. Marcu and Echihabi proposed to determine a discourse relation r_k between argument A_1 and A_2 by the word-pairs in terms of their cartesian product defined over the words in the two arguments $(w_i, w_j) \in A_1 \times A_2$. They collected all word-pairs appearing around an explicit connective from a large corpus and computed the probability of each word-pair appearing in a specific relation sense. Biran and McKeown [5] found that using word-pairs may suffer from the data sparsity problem, as a word-pair in the training data may not appear in the test data. They aggregated some of the word-pairs with similar meaning to alleviate the data sparsity problem. Rutherford and Xue employed the Brown Cluster algorithm with a hierarchy word organization to provide a compact word representation for word-pairs.

![Fig. 4. An example of word-pair which is indicative of a causal relation between two arguments.](image-url)
A semantic tag marks a word with some predefined type according to existing lexicons or corpora, such as the sentiment polarity, verb class, inquirer, modality and so on [106]. For example, the Polarity Tag marks a word with a sentiment category, such as positive, negative, and neutral, according to the Multi-perspective Question Answering Opinion Corpus [146]. The Inquirer Tag marks each word with a more fine-grained semantic polarity according to the General Inquirer lexicon [127]. The Verb Tag marks each verb in an argument with a particular class according to the Levin verb class [63]. The Modality Tag indicates the presence of modal words that are often used to express conditional statements, such as "can", "may", "should", etc. A semantic tag feature is usually represented by its occurrences in arguments.

Some other lexical features have also been designed for the IDRR task [33, 62, 74, 86, 114]. For example, Louis et al. [86] found that about a quarter of all adjacent sentences are linked purely by the entity coherence, solely because they talk about the same entity. They designed entity category features, such as the entity grammatical role (an entity being the subject of a main clause or other clauses), the entity Part-of-Speech role (an entity being a pronoun, nominal, name or expletive), etc. Lei et al. [62] encoded topic continuity and attribution of an argument as features.

3.2 Syntactic features

Syntactic parsing is to analyze the grammatical structure of a sentence, which often uses a tree structure to describe the grammatical dependencies of the sentence components. Syntactic parsing can be divided into constituent parsing and dependency parsing. The constituent parsing aims at recognizing the phrase structures in a sentence and their hierarchy. Fig. 5 (a) presents an example of a constituent parsing tree: Each internal node represents a kind of phrase structure such as NP (Noun Phrase), VP (Vereb Phrase), etc.; Each leaf node represents a word in sentence with its Part-Of-Speech (POS) tag such as NN (Noun), VBD (Verb, past tense), PRP (Personal pronoun), DT (Determiner), etc.; The edges connect components of a phrase structure. The dependency parsing aims at recognizing the syntactic dependency between words in a sentence. Fig. 5 (b) presents an example of a dependency parsing tree, in which each node represents a word and the edges are syntactic dependency relations.

![Fig. 5. Examples of syntactic parsing tree obtained via Stanford Natural Language Parser², in which figure (a) presents an example of constituent parsing tree and figure (b) presents an example of dependency parsing tree.](image-url)
Syntactic knowledge has been shown effective and important for discourse analysis [60]. Some researchers have proposed to integrate syntactic knowledge into feature engineering [67, 72, 80, 140]. For example, Lin et al. [80] extracted syntactic production rules from both the constituent parsing tree (CPT) and dependency parsing tree (DPT) of an argument. The syntactic production rule is the basic fragment of a syntactic tree. As illustrated by Fig. 5, in CPT, it contains a head node and its dependent nodes, such as: \((S \rightarrow NP, S \rightarrow VP), (PRP \rightarrow "he"), etc.; While in DPT, it contains a head node and its dependency relation edges, such as: ("slept" \(\rightarrow\) obl : tmod, "slept" \(\rightarrow\) obj), ("day" \(\rightarrow\) det), etc. All the syntactic production rules are collected from the training dataset. Then each syntactic production rule is represented as three binary features: whether this rule appears in the first argument, second argument and both arguments. In addition, Wang et al. [140] proposed to use tree kernel-based approach to mine syntactic information from a constituent parsing tree; while the tree kernel measures the similarity between two structured objects.

3.3 Contextual Features

Some implicit relation could appear immediately before or immediately after certain explicit relation [107]. Pittler et al. [106] defined contextual features as follows: For an implicit relation immediately preceding or following an explicit relation, include the explicit connective trigger and its sense as contextual features. Lin et al. [80] observed from the PDTB corpus that fully embedded arguments and shared arguments are the most common patterns. Specifically, between two adjacent discourse relations \(r_1\) and \(r_2\), if the previous discourse relation \(r_1\) with its two arguments as a whole is one of the argument of the next discourse relation \(r_2\), it is called a fully embedded argument. If an argument of previous discourse relation \(r_1\) is also an argument of the next discourse relation \(r_2\), it is called a shared argument. These fully embedded arguments and shared arguments between two adjacent discourse relations are represented as binary contextual features.

3.4 Implicit Connectives

In the PDTB corpus, implicit connectives are manually inserted by annotators in between two arguments with implicit relations, although such implicit connectives are not present in the raw text. Some studies have proposed to exploit such manually inserted implicit connectives for the IDRR task [10, 10, 34, 157, 172, 174, 175]. Zhou et al. [175] experimented that the F-score of implicit discourse relation classification can achieve 91.8% on the PDTB corpus by simply mapping the annotated implicit connectives to their most frequent sense.

In contrast to using hand-crafted features to directly recognize implicit relations, another interesting approach is to first predict an implicit connective and then recognize its relation sense as an explicit task. Zhou et al. [174, 175] proposed to first predict implicit connectives with the use of a perplexity-based language model trained on a large amount of un-annotated corpora, and then to classify predicted implicit connectives to output relation senses.

Some studies have utilized annotated implicit connectives as additional features in ML models. Xu et al. [157] predicted an implicit connective between two arguments using a ML model trained on various linguistically informed features. The predicted implicit connective is then used as an additional feature combined with other features as an input to a ML model again to output final implicit relation.

Hong et al. [34] and Zhou et al. [172] proposed a kind of cross-argument inference mechanism to infer implicit relations from a large number of comparable argument-pairs with explicit connectives. Such comparable argument-pairs are retrieved from the web via, e.g., Google search engine.

7https://nlp.stanford.edu/software/lex-parser.html
kind of pair-to-pair inference is based on the assumption that two argument-pairs with high content similarity would hold a same discourse relation.

4 IMPLICIT DISCOURSE RELATION RECOGNITION BASED ON DEEP LEARNING

The aforementioned ML approaches heavily rely on various hand-crafted features to construct argument representation for discourse relation recognition. Such features are normally designed and selected by professionals with linguistic knowledge and domain expertise; While the process of feature engineering is rather time-consuming and labor-intensive. Furthermore, conventional ML approaches might also suffer from the data sparsity problem due to their use of one-hot feature representations, which may not be able to well capture semantic and syntactic information in arguments.

Recently, various neural networks have been proposed for automatic representation learning, which use multiple layers of connected artificial neurons to convert raw data embeddings into abstract yet informative representations. Compared with conventional machine learning, neural network-based deep learning does not require manual feature engineering and can learn to capture more useful information hidden in raw data. Indeed, DL approaches have achieved significant improvements on many NLP tasks [4, 88], such as named entity recognition [57, 100, 164], search query retrieval and question answering [121, 131], sentence classification [48, 51], sentiment analysis [137, 138], event extraction [153], and so on.

For the IDRR task, recent years have also witnessed a boost of numerous neural models with significant performance improvements, compared with conventional ML approaches. Although those neural models employ diverse architectures with different types of neurons, connections and operations, they are with the same design objective, that is, how to learn to represent the most useful information in arguments, like semantic, syntactic, contextual information, as well as interactions between arguments. In the rest of this section, we review some representative types of neural networks for the IDRR task.

Before reviewing neural models, we first introduce some common procedures adopted in these neural models. A piece of raw text is first divided into individual characters/words, each using a low-dimensional and real-valued vector as its representation, viz., word embedding. Word embeddings can be pre-trained from external corpus via, say for example, the continuous bag-of-words model [95] or the continuous skip-gram model [96]. Some common techniques have been used for neural network training, including the activation function, back-propagation gradient, normalization, and dropout regularization, etc.

4.1 Convolutional Neural Networks

For its great successes in many applications, the architecture and operation of a typical convolutional neural network (CNN) have also been researched for the IDRR task [67, 84, 99, 111, 112, 120, 132, 150, 152, 165]. A CNN generally consists of one or multiple convolution layers, pooling layers, fully connected layers, and a softmax output layer [51], Fig. 6 illustrates the basic architecture of a CNN for the IDRR task. At the heart of a CNN is the convolutional operation, which is used to convert multiple consecutive input features in a sliding window into a single output feature. It is argued that such convolutional operations can help to capture semantic information in an argument.

The Shallow Convolutional Neural Network (SCNN) [165] might be the first CNN model for the IDRR task, which first obtains each argument representation via a single convolution layer and then concatenates a pair of argument representations to input a softmax layer for relation classification. At first, the word embeddings of an argument form a so-called argument matrix. The convolution operation is used to obtain the average, min and max feature from each column of the argument matrix, by which an argument is converted into a three dimensional vector.
Qin et al. [111] proposed a stacking gated neural network, which can be divided into three parts: (1) two CNNs for argument representation learning; (2) a collaborative gated neural network for feature transformation; and (3) a softmax layer for relation classification. In their model, two gates work collaboratively to control the information flow of inner cells sequentially, resembling the logical AND operation in a probabilistic version.

As mentioned in Section 3.4, a few ML methods have attempted to make use of annotated implicit connectives in the PDTB corpus [174, 175]. However, these methods operates in a pipeline way, which might suffer from error propagations. Some researchers have also tried to include implicit connectives into CNN models [99, 112, 150, 152]. For example, Wu et al. [150, 152] proposed to learn discourse-specific word embeddings by performing connective classification on massive explicit discourse corpus, such that various discourse clues can be encoded into the word embeddings. Nguyen et al. [99] employed a multi-task learning framework to predict implicit connectives and discourse relations simultaneously. Each predicted implicit connective corresponds to a kind of discourse relation, which can be used to facilitate knowledge transfer between two prediction tasks. Specifically, they proposed to project implicit connectives and discourse relations into a same latent representation space, and the knowledge from connective prediction are transferred to the relation prediction via a connective-relation mapping.

Qin et al. [112] proposed to incorporate implicit connectives into an adversarial framework, which enables a self-calibrated imitation mechanism. The adversarial mechanism is an emerging method recently proposed for image generation [26] and domain adaptation [23], which learns to produce realistic samples through competition between a generator and a real/fake discriminator. In [112], the adversarial framework contains three main components: (1) a CNN for implicit relation recognition over raw arguments without access to connectives; (2) a connective-augmented CNN whose inputs are augmented with implicit connectives, serving as a feature emulation model; and (3) a discriminator to distinguish the features output from the two networks. The discriminator is a binary classifier modeled by a multi-layer perceptron (MLP) and enhanced with a gated mechanism to identify the correct source of input features.
4.2 Recurrent Neural Networks

The convolution operation in CNN models is executed on consecutive neighboring words, which can help capturing local contextual information for a word, but might ignore the word order information of an argument. As such, it cannot well capture potential inter-dependencies and interactions between distant words. In language modeling, an argument may be better treated as a sequence of words, such that not only word order information but also potential inter-dependencies in between distant words can be well exploited for representation learning.

A Recurrent Neural Network (RNN) consists of a series of connected neurons to accept sequential data input and enables capturing some hidden information of the current word by taking consideration of all of its preceding words. Fig. 7 illustrates a basic RNN structure, in which a neuron computes the hidden state and output state for an input word and the hidden state of its preceding neuron also serves as its input. Such a recursive structure can effectively make use of the word sequence information of an argument.

Many RNN models have been proposed for the IDRR task [54, 116, 147, 163]. For example, Rutherford et al. [116] employed a Long Short-Term Memory (LSTM) network, which extends memory cells with Gated Recurrent Units (GRU). Specifically, each word of an argument is fed into a LSTM network, then a pooling function is applied over all words’ output to produce an argument representation. The interaction between two arguments is modeled by multiple hidden layers that take a pair of argument representations as input and use an activation function and a softmax layer for relation classification. Yue et al. [163] designed two RNN variants: One is an Externally Controllable LSTM network whose internal gates are controlled by externally supplied vector; The other is an Attention-Augmented GRU network which uses attention mechanism to augment the traditional GRU network. The two networks are stacked to incorporate arguments’ interaction via a repeated reading strategy for relation classification.

The syntactic tree of a sentence can be used to augment the basic RNN structure to encode syntactic dependencies in between words for argument representation learning [24, 41, 103, 116,
For example, Rutherford et al. [116] proposed a tree-structured LSTM network built upon the syntactic tree of an argument, in which a neuron accepts not only an input word but also the hidden state from its syntactically dependent words. Ji and Eisenstein [41] proposed to further augment a tree-structured RNN with external entity mentions and some other linguistically informed features, like word-pair feature, to enrich input words’ representations.

Generally, the semantics of a sentence cannot be interpreted independently from the rest of a paragraph or discourse. The aforementioned RNN models are not well in capturing long-range dependencies in a document. Some RNN-based models have been proposed to exploit inter-sentence contextual information [18, 42]. For example, Ji et al. [42] proposed a latent variable RNN, which encodes inter-sentence context information by a Document Context Language Model (DCLM) [40]. The DCLM encodes contextual information with two vectors: one representing the intra-sentence word-level context, and another representing inter-sentence context from the first sentence of document. These two vectors are linearly combined to generate a latent variable, which is used for each word of next sentence as the hidden state of its previous sentences. Dai and Huang [18] proposed a paragraph-level RNN model that takes a sequence of discourse units as input and predicts a sequence of implicit discourse relations in a paragraph. A discourse unit is represented by the combination of word-level representations and argument-level representations, each produced by a bi-directional LSTM (BiLSTM) network in a paragraph.

4.3 Hybrid Neural Network Models

The aforementioned CNN and RNN models each has its own merits and demerits when used to capture semantic information of an argument and interaction between arguments for the IDRR task. A CNN can well encode local contextual information, but might lose the word order information. A RNN considers the word order information, however, cannot well capture the long-range dependencies of a paragraph or document. Some researchers have proposed various hybrid neural networks to enjoy the excellence of both models.

A common approach of building a hybrid neural model is to combine a CNN with a RNN [27, 129]. For example, Guo et al. [27] proposed a Dynamic Chunk-based Max Pooling BiLSTM-CNN framework. Specifically, they first exploited a BiLSTM network to obtain semantic representation of an argument. They next adopted a convolutional layer to extract multi-granularity (n-gram) features from argument semantic representation. A dynamic chunk-based max-pooling strategy is followed up to divide each argument into several chunks according to the argument length. Finally, a fully connected layer with a softmax function is applied for relation classification. Sun et al. [129] proposed a multi-grain representation learning method, which concatenates word-level representation and larger-grain (such as phrase, chunk) representation of each argument. The word-level representation is obtained by a BiLSTM and the larger-grain representation is obtained by a few of convolution filters.

Conventional word embedding models learn representation vectors at word level and ignore the information from characters that make up the word. Character-aware model can learn word representations from its character compositions through a neural network that inputs the concatenation of character representations and outputs the representation of a word [52, 81].

Some researchers proposed to combine character embeddings and word embeddings in neural networks [82, 110]. For example, Qin et al. [110] proposed a context-aware character-enhanced embedding model, which covers semantic information of three levels, that is, character, word, and sentence. Specifically, the model includes a character-level module and a word-level module. In the character-level module, the convolutional operation and max-pooling operation perform character-based word encoding and feature selection to obtain a sequence of character-based word representations. The sequence is transformed to a new sequence representation via a BiLSTM.
as the output of the character-level module. In the word-level module, the character-based word representations are concatenated into word embeddings. Finally, a CNN is used again to obtain sentence-level representations for an argument-pair, and followed by a conventional hidden layer and a softmax layer for the final classification.

Some other hybrid neural networks have been designed through combining various models such as simplified topic model, gated convolutional network, factored tensor network, graph convolutional network, directed graphic model, sequence to sequence model, etc. [122, 155, 166, 168]. For example, Xu et al. [155] proposed a Topic Tensor Network (TTN) model which combines a simplified topic model, a gated convolutional network and a factored tensor network. The simplified topic model can be interpreted as a neural network encoder that compresses the bag-of-word representation of arguments into a continuous hidden vector, i.e. the latent topic distribution, to provide topic-level representation. The gated convolutional network encodes each argument by stacking multiple gated convolutional layers to obtain sentence-level representation. They further proposed a factored tensor network to model both the sentence-level interactions and topic-level relevances using multi-slice tensors.

Zhang et al. [168] proposed a Semantic Graph Convolutional Network (SGCN) to enhance the inter-argument semantic interaction. They first encoded each argument into a representation vector by a BiLSTM network. A semantic interaction graph is next built on an argument-pair, in which nodes are words from two arguments and an edge only exists in between one word in the first argument and another word in the second argument. The weight of an edge indicates the strength of semantic association between two connected nodes. A graph convolutional network is used to extract interactive features from the semantic interaction graph.

4.4 Attention Mechanism

Recently, various attention mechanisms have been proposed to augment representation learning for many NLP tasks [136, 161, 171]. Generally speaking, an attention mechanism is used to unequally treat each component of an input according to its importance to a given task [133]. The importance weights are computed based on an alignment model that can be self-learned during the training process of a neural network. A weighted sum operation is normally executed to obtain a so-called context vector as the new input. For the IDRR task, it is also argued that different words in arguments contribute differently in learning argument representations and interactions.

Some researchers have proposed to augment conventional neural models with attention mechanisms, such as the attention-based CNNs [98, 167] and attention-based RNNs [12, 21, 58, 83]. For example, Zhang et al. [167] proposed a full attention model that combines an inner attention model to process internal argument information and an outer attention model to exploit external world knowledge. In the inner attention model, they employed the SCNN [165] to encode each argument as its original representation, which is then used to compute the attention weight of each word by a score function. They further explored a cross-argument attention strategy that uses the original representation of one argument to obtain the attention attribution of the other one. In the outer attention model, they used an external semantic memory, i.e. a pre-trained word embedding matrix, which is considered to have encoded some world knowledge.

Lan et al. [58] presented a multi-task attention-based RNN to conduct argument representation learning. Fan et al. [21] proposed a BiLSTM-based model combining self-attention mechanism and syntactic information. Liu and Li [83] proposed a Neural Network with Multi-level Attention (NNMA) model, which includes an attention mechanism and external memories into a RNN model. Specifically, they first captured the general representation of each argument based on a BiLSTM model. Several attention levels are stacked upon the BiLSTM model and generate different weight vectors over an argument-pair, indicating what degree each word should be concerned. In each
attention level, an external short-term memory is designed to store the information exploited in
the previous levels and helps updating the argument representation.

Some other neural models also adopt attention mechanisms for the IDRR task [3, 28, 29, 85, 113,
115]. For example, Bai and Zhao [3] proposed to learn different granularity levels of representations
via an attention-augment neural model. First, the token sequences (i.e. characters, sub-words, and
words) of an argument are firstly processed by several stacked encoder blocks (CNN or RNN) that are
then processed by a bi-attention module in the argument-pair level for relation classification. Guo
et al. [29] proposed to use an interactive attention mechanism to enhance argument representation.
They encoded each argument with a BiLSTM and computed the semantic connections in between
all the word-pairs in two arguments as a pair-wise matrix. They next conducted column-wise
and raw-wise softmax function on this matrix to get an interactive attention matrix. They further
proposed a Knowledge-Enhanced Attentive Neural Network (KANN) framework [28] to integrate
external knowledge via mapping a knowledge matrix into the interactive attention matrix.

Recently, the *Bidirectional Encoder Representation from Transformers* (BERT) [20] technique has
been proposed as a language representation model, which is a recent breakthrough in the NLP
field for its excellent performances in diverse tasks. The training model of BERT is a sequence-
to-sequence transformer-based neural network architecture, which is solely based on attention
mechanisms [133]. The BERT training procedure consists of two stages: pre-training and fine-
tuning. In the pre-training, the BERT is trained by two unsupervised prediction tasks on large
corpora like Wikipedia and BooksCorpus to capture contextual information, and output pre-trained
words’ representations. In the fine-tuning, the task-specific neural models can be designed upon
the BERT with one additional output layer.

Some researchers have proposed to exploit the BERT model for the IDRR task [45, 46, 55, 75,
82, 101, 123, 170]. In the pre-training, two arguments are concatenated into a single sequence as
input, with a special token inserted at the beginning. In the fine-tuning, a classifier accepts the
token sequence and outputs a discourse relation. Shi et al. [123] performed additional pre-training
on domain-specific text. Nie et al. [101] inserted an explicit connective prediction task in the pre-
training. Kishimoto et al. [55] trained the BERT to jointly predict implicit connectives and discourse
relations in fine-tuning steps as a multi-task learning task. Li et al. [75] used a penalty-based
loss re-estimation method in classifier to strengthen the attention mechanism. Zhou et al. [170]
leveraged document-level discourse context to improve argument representation.

4.5 Neural Learning of Argument Pair Interaction

A word-pair in the IDRR task refers to a pair of two words, one from the first argument and another
from the second argument. It has been experimented that such word-pairs can help improving the
IDRR performance in those conventional ML methods (see Section 3). Some researchers proposed
to use word embedding based features to replace hand-crafted word-pair features in order to
capture interactions between arguments via neural networks. As illustrated in Fig. 8, words in each
argument can be firstly encoded via a BiLSTM network. Then a *word-pair interaction encoding*
can be computed as the Cartesian product of the hidden states of two words each from one argument.
The *word-pair interaction matrix* is next transformed into an argument-pair representation via a
neural network for relation classification [13, 14].

Chen et al. [13] introduced a mixed generative-discriminative framework to word embedding
offsets as the elements of the word-pair interaction matrix. As the length of each argument is
different, they further used a Fisher Kernel [36] to aggregate the word-pair interaction matrix into
a fixed length argument-pair representation for relation classification. Chen et al. [14] proposed
to construct a relevance score word-pair interaction matrix for an argument-pair, in which the
relevance score of each word-pair is computed by a bilinear model [38, 130] and a single layer neural
model [17]. Varia et al. [132] constructed a word-pair interaction matrix by using the concatenation of the words’ embeddings of a word-pair as a matrix element. A CNN is then used to learn an argument-pair representation from the word-pair interaction matrix.

Some researchers utilized the word-pair interaction matrix to represent an argument as a probability distribution vector in order to capture some contextual interactions between two arguments. For example, Lei et al. [61] proposed a Simple Word Interaction Model (SWIM) to learn an argument representation from word-pair matrix. They computed linear and quadratic relations in word-pair embeddings to form an word-pair interaction score matrix. The SWIM then computes each argument a representation as the concatenation of word-pair embeddings, and weights them by the word-pair interaction score matrix to account its importance.

Motivated by the Translating Embeddings Model (TransE) for entity relation extraction [7], some work intended to embed the first argument into one latent space and the second argument into another latent space, so as to model their relation by the direction and position between two arguments’ representations in the two latent spaces [31, 66, 68]. Intuitively, the same sense of a discourse relation may have similar direction and position information in the two latent spaces, by which new discourse relations can be recognized by using the translating operation in those Trans-series models [39, 79, 143, 154]. For example, He et al. [31] proposed a novel TransS-driven joint learning architecture, which translates a discourse relation into a low-dimensional latent space to mine some latent geometric structure information of arguments for relation classification. Li et al. [66, 68] designed a multi-view Tensor and Trans Neural Network (TTNN) model, in which the Tensor module focuses on the interactions between arguments and the Trans module explores the direction and position information between arguments in two latent spaces.

5 DATA EXPANSION BASED ON SEMI-SUPERVISED LEARNING

The aforementioned fully-supervised ML and DL methods require a large amount of labeled data for model training. However, the available annotated corpus is limited. Manually annotating data...
is a time-consuming process which also requires domain expertise and professional knowledge in most cases. Semi-supervised learning is a combination of supervised and unsupervised learning, that uses a small set of labeled data to generate more training data from unlabeled data for model training. In this section, we review such solutions in the literature, mainly focusing on how they expand labeled data and how classification models can be trained from mixed data.

5.1 Data Expansion from Explicit Discourse Relations

A straightforward solution is to exploit an explicit relation corpus (ERC) to expand an implicit relation corpus (IRC). The difference between the two types of corpus is that the connectives in an ERC are from raw texts, but in an IRC the connectives are manually inserted by annotators as a part of label for model training. Early methods obtained an expanded IRC via directly removing connectives in an ERC [89, 126]. Obviously, such approaches are easy to implement to obtain a so-called synthetic IRC. However, a synthetic IRC may exhibit much differences from the native IRC. Experiment results have shown that training on a synthetic IRC is not necessarily a good strategy due to the linguistically dissimilarity between explicit and implicit samples [126].

Researchers have proposed various approaches to select the most suitable explicit samples in ERC into a synthetic IRC [118, 151, 156]. For example, Rutherford and Xue [118] proposed two selection criteria: omission rate and context differential. They hypothesized that those connectives often omitted or insensitive to semantic contexts are good candidate explicit samples. The omission rate of a connective is computed by the ratio of its occurrences in an IRC to its total occurrences in both ERC and IRC. They used a Jensen-Shannon Divergence (JSD) to measure the context differential between the context of a connective in implicit and explicit discourse relation. If a connective has a high omission rate or a low context differential, it can be included into a syntactic IRC.

Wang et al. [141] considered that an effective sample for training should have distinct characteristics to signify some discourse relation, called a typical sample, which can be either from a native IRC or a synthetic IRC. They proposed a Single Centroid Clustering (SCC) to select typical samples as training data. Specifically, the SCC computes a centroid based on the most significant features for each discourse relation and then uses the relation centroid to reassign samples as either typical or atypical. Ji et al. [43] argued why explicit and implicit samples may be linguistically dissimilar is due to domain mismatch. They proposed to construct a synthetic IRC by using two domain adaptation methods: (1) feature representation learning: mapping the source domain (explicit) and target domain (implicit) to a shared latent feature space; (2) re-sampling: modifying the distribution of relation sense in explicit to match the distribution over implicit relations.

5.2 Data Expansion from Multi-Language Data

A same argument-pair and their relation may be described in different languages; While the labeled data from one language is highly possible to convey similar information in another language. Motivated from such considerations, some approaches have been proposed to utilize multi-language corpora [47, 124, 148, 149, 173]. For example, Wu et al. [148, 149] proposed to construct a bilingually-constrained synthetic IRC, which includes an implicit sample in one language if its corresponding one in another language is an explicit sample. Zhou and Xue [173] showed that the connectives in Chinese omit much more frequently than those in English. They constructed their bilingually-constrained synthetic IRC from a Chinese-English sentence-aligned corpus according to the mismatch of connectives in the two languages.

People sometimes omit connectives during translation, or insert connectives not originally present in the source text. Lu et al. [47] used machine translation to generate Chinese implicit samples from a labeled English discourse corpus. Shi et al.[124] proposed to automatically extract implicit samples from parallel corpora via back-translation. They used a sentence-aligned parallel
Table 1. Statistics of positive and negative implicit relation instances in training, development and test sets for each relation sense on PDTB 2.0.

Relation	Train	Dev.	Test
Comparison	1942/1942	197/986	152/894
Contingency	3342/3342	295/888	297/767
Expansion	7004/7004	671/512	574/472
Temporal	760/760	64/1119	85/961

corpus with English and French discourses. The potential implicit discourse relations in English are back-translated from French with explicit connectives. The inserted connective in English disambiguates the originally implicit discourse relation with a relation confidence score.

5.3 Joint Data Expansion and Model Training

Although the golden labeled data are few and the synthetic data may contain some linguistically dissimilarity, they can be iteratively used for model training [8, 22, 32, 56, 59, 71, 102, 169]. For example, Fisher et al. [22] and Zhou et al. [169] used the bootstrapping method in an iterative training model. The basic idea is to train the model using golden labeled data first, and then the predictions on unlabeled data with high confidence are added as training data for iterative training.

The idea of multi-task learning method is to solve a main task together with other related auxiliary tasks at the same time. Lan et al. [59] designed a multi-task learning model, in which the main task is based on the original IRC while the auxiliary task is based on a synthetic IRC. According to the principle of multi-task learning, their model can be optimized by the shared part of the main task and the auxiliary tasks. Liu et al. [84] found that under different discourse annotation frameworks existing multiple corpora have some internal connections. They exploited such different corpora to design a CNN-based multi-task learning system to synthesize other tasks by learning both unique and shared representations for each task.

Multi-lingual corpora can be utilized to train a joint IDRR model in different languages. Li et al. [71] used projections across a parallel corpus with Chinese and English for exploiting implicit samples. The main idea is to first recognize English implicit discourse relations, then project the predicted sense labels in English onto the corresponding Chinese samples. Kurfali and Ostling [56] represented arguments with multi-language sentence embedding via a pre-trained LASER model [1], and fed them into a feed forward network [116]. She et al. [120] employed a distributed representation of hierarchical semantic components from different languages as classification triggers.

6 PERFORMANCE COMPARISON

The PDTB corpus provides a hierarchical structure for discourse relation senses. But most of researches have mainly focused on the Level-1 relation senses, that is, the Comparison, Contingency, Expansion and Temporal relation sense, as those senses of Level-2 types and Level-3 subtypes are too fine-grained with very few training samples. For experimentation, the PDTB corpus is normally split into three parts, namely, a training set, a development set, and a test set. In order to make fair comparisons, most researches use the following dataset partition [106]: Section 0-2 and 21-22 of the PDTB dataset are used as the development set and the test set, respectively. Section 2-20 are randomly down-sampled to construct training sets each with both positive and negative samples with respect to a target relation. Table 1 presents such an example of dataset division. We compare only those models using this division for the Level-1 relation recognition; While a few of other models use different dataset divisions are not included for comparison.
Table 2. Performance comparison of implicit discourse relation recognition based on machine learning on the PDTB 2.0 dataset.

System	Classifier	Result (F1-score)			
		Comp.	Cont.	Exp.	Temp.
Pitler et al. (2009)	Naive Bayes	21.96%	47.13%	76.42%	16.76%
Zhou et al. (2010)	Support Vector Machine	31.79%	47.16%	70.11%	20.30%
Park & Cardie (2012)	Naive Bayes	31.32%	49.82%	79.22%	26.57%
Xu et al. (2012)	Maximum Entropy	24.45%	50.37%	63.44%	16.91%
Biran & McKeown (2013)	Naive Bayes	25.40%	46.94%	75.87%	20.23%
Rutherford & Xue (2014)	Naive Bayes	39.70%	54.42%	70.23%	28.69%
Li et al. (2015)	Support Vector Machine	40.55%	55.14%	70.71%	35.00%
Li et al. (2016)	Maximum Entropy	34.24%	50.32%	66.98%	20.08%
Roth (2017)	Logistic Regression	37.00%	56.30%	69.40%	32.10%
Wei et al. (2018)	Naive Bayes	43.24%	57.82%	72.88%	29.10%
Average		32.97%	51.54%	71.53%	24.57%

As shown in Table 1, the samples of the Level-1 four discourse relations are imbalanced. For example, the samples of the Expansion relation occupy more than 50%; While those of the Temporal relation constitute only 5% of the PDTB corpus. Given such an imbalanced dataset, the IDRR task has been often formulated as four one-against-all binary classification, with the one for each Level-1 relation sense and the all for the other three relation senses. Furthermore, the positive and negative samples in the test set are also not balanced. For example, there are only 8.8% positive samples in the test set of Temporal sense. For these considerations, most researches adopt the F1 score as the main performance metric, which is a harmonic mean of the precision and recall performance metric.

Table 2 and Table 3, respectively, present the reported F1 score by those traditional machine learning and deep learning algorithms for the English IDRR task. It is worth of noting that some algorithms also depend on certain upstream tasks’ results; While most of them have directly used the gold annotations in the PDTB corpus as a part of the input for the IDRR task. Table 2 and Table 3 show that in general advanced neural models can achieve better performance than traditional machine learning algorithms. The state-of-the-art performances of Temporal, Comparison, and Contingency relation classification have improved 46%, 32%, and 15% respectively; While the Expansion relation has a 2% slight improvement. This can be attributed to the powerful capabilities of neural networks for learning deep yet more comprehensive context-aware and/or syntactic-aware word and argument representations.

Furthermore, we can also observe from Table 3 that attention mechanism has an effective improvement in the four-way relation classification and the Comparison, Contingency, and Temporal relation recognition. This indicates that attention mechanisms can enhance representation learning by unequally treating each input argument component according to its importance. Finally, we note that the model developed by Kishimoto et al. (2020) [55] and Liu et al. (2020) [82] that have applied the recent BERT model for the IDRR task can achieve over 70% F1 score in all the four relation recognitions and over 60% F1 score in four-way relation classification respectively. This indicates that the IDRR task can greatly benefit from the informative pre-trained language model trained from massive amounts of unlabeled text with diverse backgrounds.
Table 3. Performance comparison of implicit discourse relation recognition based on deep learning on the PDTB 2.0 dataset.

System	Four-way Classification	Binary Classification (F1)				
-------------------------------	-------------------------	-----------------------------				
	F1	Acc	Comp.	Cont.	Exp.	Temp.
-------------------------------	-------------------------	-----------------------------				
Convolutional neural networks						
Zhang et al. (2015) [165]	44.98%	57.27%	33.22%	52.04%	69.59%	30.54%
Liu et al. (2016) [84]	-	-	34.65%	46.09%	69.88%	31.82%
Qin et al. (2016) [111]	44.84%	**58.85%**	35.10%	47.82%	70.66%	25.81%
Wu et al. (2017) [150]	-	-	40.87%	54.56%	72.38%	36.20%
She et al. (2018) [120]	43.00%	55.40%	35.90%	52.50%	**77.00%**	18.20%
Wu et al. (2019) [152]	48.39%	58.36%	33.18%	48.99%	69.10%	**42.31%**
Nguyen et al. (2019) [99]	53.00%	-	48.44%	56.84%	73.66%	38.60%
Average	**46.84%**	**57.47%**	37.86%	52.02%	71.72%	32.36%
Recurrent neural networks						
Ji & Eisenstein (2015) [41]	-	-	35.93%	52.78%	**80.02%**	27.63%
Geng et al. (2017) [24]	44.20%	**62.40%**	35.40%	53.80%	81.40%	32.80%
Yue et al. (2018) [163]	-	-	40.03%	56.38%	70.10%	32.85%
Dai & Huang (2018) [18]	**51.84%**	59.75%	**46.79%**	**57.09%**	70.41%	**45.61%**
Average	48.02%	61.08%	39.54%	55.01%	75.48%	34.72%
Hybrid neural networks						
Zhang et al. (2016) [166]	-	-	35.88%	50.56%	71.48%	29.54%
Qin et al. (2016) [110]	-	-	38.67%	54.91%	**80.66%**	32.76%
Guo et al. (2019) [27]	46.39%	57.69%	39.84%	56.31%	71.59%	37.76%
Sun et al. (2019) [129]	-	-	45.10%	54.72%	73.30%	40.18%
Shi & Demberg (2019) [122]	46.40%	**61.42%**	41.83%	**62.07%**	69.58%	35.72%
Zhang et al. (2021) [168]	**53.11%**	-	**46.86%**	55.63%	73.71%	**45.90%**
Average	**48.63%**	59.56%	41.56%	55.70%	73.39%	36.98%
Attention Mechanism						
Liu & Li (2016) [83]	46.29%	57.17%	36.70%	54.48%	70.43%	38.84%
Lan et al. (2017) [58]	47.80%	57.39%	40.73%	58.96%	72.47%	38.50%
Zhang et al. (2018) [167]	-	-	34.84%	54.11%	71.11%	34.11%
Guo et al. (2018) [29]	47.59%	59.06%	40.35%	56.81%	72.11%	38.65%
Bai & Zhao (2018) [3]	51.06%	-	47.85%	54.47%	70.60%	36.87%
Guo et al. (2020) [28]	47.90%	57.25%	43.92%	57.67%	73.45%	36.33%
Zhou et al. (2020) [170]	48.75%	59.18%	33.48%	52.19%	70.11%	39.21%
Ruan et al. (2020) [115]	-	-	46.75%	59.56%	75.83%	39.35%
Li et al. (2020) [75]	-	-	50.91%	58.88%	76.35%	43.51%
Liu et al. (2020) [82]	**63.39%**	**69.06%**	59.44%	60.98%	**77.66%**	50.26%
Kishimoto et al. (2020) [55]	58.48%	65.26%	**75.46%**	**73.01%**	72.86%	**80.88%**
Munir et al. (2019) [98]	54.20%	63.10%	49.76%	55.20%	73.10%	42.10%
Average	51.72%	60.93%	46.68%	58.03%	73.01%	38.75%
Argument Pair Interaction						
Chen et al. (2016a) [13]	-	-	30.21%	53.57%	**80.90%**	20.24%
Chen et al. (2016b) [14]	-	-	40.17%	54.76%	80.62%	31.32%
Li et al. (2016) [66]	-	-	41.91%	54.72%	71.54%	34.78%
Lei et al. (2017) [61]	46.46%	-	40.47%	55.36%	69.50%	35.34%
Varia et al. (2019) [132]	**51.84%**	**60.52%**	45.03%	**56.53%**	73.50%	**46.15%**
He et al. (2020) [31]	51.24%	59.94%	**47.98%**	55.62%	69.37%	38.94%
Average	49.85%	60.23%	40.96%	55.09%	74.24%	34.46%
7 CONCLUSION AND DISCUSSION

Implicit discourse relation recognition is to detect relations and classify their senses in between arguments without explicit connectives. As a crucial task in the NLP field, the IDRR task has been intensively researched in the last decade.

This article has presented a comprehensive survey for the IDRR task, including the task definitions, common datasets, solution approaches and performance comparisons. We have adopted the mostly researched PDTB corpus and its task definition to review three main groups of almost all solutions proposed in the literature. Those machine learning solutions manually design many features by domain experts to train classifiers; Those deep learning solutions design neural networks with different architectures to enable a kind of end-to-end relation recognition without manual feature construction. Both ML and DL solutions require large amounts of labeled training data; While semi-supervised approaches apply data expansion techniques to augment model training to deal with the data sparsity problem. Comparisons on the PDTB English dataset indicate that those sophisticated neural models can achieve the state-of-the-art performance.

The challenge of the IDRR task mainly lies in the absence of explicit connectives in raw texts. If explicit connectives exist in raw texts, Pilter et al. (2008) [107] have reported as high as 93% relation recognition accuracy; While the most advanced neural models can only achieve about 80% recognition accuracy in the IDRR task. Lin et al. [80] summarized four reasons for the poor performance, namely, ambiguity between relations, inference, contextual modeling and world knowledge. These suggest that deeper semantic representations, external knowledge exploitations and more robust models are needed in future solutions. In what follows, we discuss possible future research directions for the IDRR task.

7.1 Interaction-boosted representation learning

Many neural models have been designed to learn the representation of an argument from its word sequence and use simple operations like concatenation, fully-connected layer and pooling function to capture argument-level interactions from argument representation for relation recognition. However, these neural models have not fully exploit word-level interactions of two arguments. Indeed, word-pairs have been shown as important features for machine learning-based relation classifiers. Besides word-pair interactions, external interactions may also need to be considered, like interactions with external lexicons, corpora, and knowledge bases, as such external resources can provide some background or side information for better understanding arguments. New neural models are needed to encode such word-level and external interactions into representation learning for implicit relation recognition.

7.2 Synthetic Implicit Corpus Refinement

The PDTB corpus has provided a gold labeled dataset for the IDRR task. However, its volume is still far behind high demands for training sophisticated neural models. Although simple approaches like removing explicit connectives in the explicit relation corpus can be applied to enrich implicit relation dataset, many explicit relation instances have been shown with much differences with implicit relation instances in real-world raw texts, which might not be appropriate to be directly used as gold labeled data. Recently, adversarial learning has been proposed to train a kind of discriminative classifier with erroneous or modified input data. It is worth of trying such adversarial learning framework to produce high-quality synthetic implicit relation corpus. Furthermore, other semi-supervised neural models also need to be investigated for joint data expansion and model training.
7.3 Joint relation recognition and discourse parsing

A discourse often contains multiple arguments’ relations, some explicit and some implicit. Yet the logical structure of multiple relations needs to be further analyzed to help understanding the whole discourse, which is also one of the discourse parsing tasks. Current relation recognition is generally modeled as an argument-pair classification problem; While individual arguments’ relations are next utilized for discourse parsing. However, arguments and their relations might be better understood against the whole discourse, especially together with other arguments’ relations. Although a few of machine learning solutions have utilized shared arguments as contextual features, they still followed the procedure of a single argument-pair classification. How to capture discourse-level information needs to be next investigated, like using preceding and following arguments and their relations. Furthermore, the design objective and operation structure of new neural models shall become an important research focus for joint relation recognition and discourse parsing.

ACKNOWLEDGMENTS

This work is supported in part by National Natural Science Foundation of China (Grant No: 62172167). The corresponding author is Bang Wang.

REFERENCES

[1] Mikel Artetxe and Holger Schwenk. 2019. Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond. Transactions of the Association for Computational Linguistics 7 (2019), 597–610. https://doi.org/10.1162/tacl_a_00288

[2] Katherine Atwell, Junyi Jessy Li, and Malihe Alikhani. 2021. Where Are We in Discourse Relation Recognition?. In Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue (Singapore) (SIGDIAL ’21). The Association for Computational Linguistics, Stroudsburg, PA, USA, 314–325. https://aclanthology.org/2021.sigdial-1.34

[3] Hongxiao Bai and Hai Zhao. 2018. Deep Enhanced Representation for Implicit Discourse Relation Recognition. In Proceedings of the 27th International Conference on Computational Linguistics (Santa Fe, New Mexico, USA) (COLING ’18). The Association for Computational Linguistics, Stroudsburg, PA, USA, 571–583. https://www.aclweb.org/anthology/C18-1048/

[4] Joshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language model. J. Mach. Learn. Res. 3, Feb (March 2003), 1137–1155.

[5] Or Biran and Kathleen McKeown. 2013. Aggregated Word Pair Features for Implicit Discourse Relation Disambiguation. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Soﬁa, Bulgaria) (ACL ’13). The Association for Computer Linguistics, Stroudsburg, PA, USA, 69–73. https://www.aclweb.org/anthology/P13-2013/

[6] Sasha Blair-Goldensohn, Kathleen McKeown, and Owen Rambow. 2007. Building and Refining Rhetorical-Semantic Relation Models. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference (Rochester, New York, USA) (NAACL ’07). The Association for Computational Linguistics, Stroudsburg, PA, USA, 428–435. https://www.aclweb.org/anthology/N07-1054/

[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. In Advances in neural information processing systems (Lake Tahoe, Nevada) (NIPS’13, Vol. 26). Curran Associates Inc., Red Hook, NY, USA, 2787–2795. http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data

[8] Chloé Braud and Pascal Denis. 2014. Combining natural and artificial examples to improve implicit discourse relation identification. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers (Dublin, Ireland) (COLING ’14). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1694–1705. https://www.aclweb.org/anthology/C14-1160/

[9] Chloé Braud and Pascal Denis. 2015. Comparing Word Representations for Implicit Discourse Relation Classification. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (Lisbon, Portugal) (EMNLP ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2201–2211. https://doi.org/10.18653/v1/d15-1262

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: March 2022.
[10] Chloé Braud and Pascal Denis. 2016. Learning Connective-based Word Representations for Implicit Discourse Relation Identification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (Austin, Texas, USA) (EMNLP ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 203–213. https://doi.org/10.18653/v1/d16-1020

[11] Peter F Brown, Vincent J Della Pietra, Peter V Desouza, Jennifer C Lai, and Robert L Mercer. 1992. Class-based n-gram models of natural language. *Computational linguistics* 18, 4 (Dec. 1992), 467–480.

[12] Deng Cai and Hai Zhao. 2017. Pair-aware neural sentence modeling for implicit discourse relation classification. In *International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems* (Arras, France) (Lecture Notes in Computer Science). Springer, Berlin, Germany, 458–466. https://doi.org/10.1007/978-3-319-60045-1_47

[13] Jifan Chen, Qi Zhang, Pengfei Liu, and Xuanjing Huang. 2016. Discourse relations detection via a mixed generative-discriminative framework. In *Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence* (Phoenix, Arizona, USA) (AAAI ’16). AAAI Press, Palo Alto, California, USA, 2921–2927. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11815

[14] Ruiying Geng, Ping Jian, Yingxue Zhang, and Heyan Huang. 2017. Implicit discourse relation identification based on a deep architecture with gated relevance network. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)* (Berlin, Germany) (ACL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1726–1735. https://doi.org/10.18653/v1/p16-1163

[15] Christian Chiarcos and Niko Schenk. 2015. A minimalist approach to shallow discourse parsing and implicit relation recognition. In *Proceedings of the Nineteenth Conference on Computational Natural Language Learning-Shared Task* (Beijing, China) (CoNLL ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 42–49. https://doi.org/10.18653/v1/k15-2006

[16] Philipp Cimiano, Uwe Reyle, and Jasmin Šarić. 2005. Ontology-driven discourse analysis for information extraction. *Data & Knowledge Engineering* 55, 1 (2005), 59 – 83. https://doi.org/10.1016/j.datak.2004.11.009 Natural Language and Database and Information Systems.

[17] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In *Proceedings of the 25th international conference on Machine learning* (Helsinki, Finland) (ICML ’08). ACM Press, New York, NY, USA, 160–167. https://doi.org/10.1145/1390156.1390177

[18] Zeyu Dai and Ruihong Huang. 2018. Improving Implicit Discourse Relation Classification by Modeling Inter-dependencies of Discourse Units in a Paragraph. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)* (New Orleans, Louisiana, USA) (NAACL ’18). The Association for Computational Linguistics, Stroudsburg, PA, USA, 141–151. https://doi.org/10.18653/v1/n18-1013

[19] Sobha Lalitha Devi, Sindhiya Gopalan, S Lakshmi, Pattabhi RK Rao, Vijay Sundar Ram, and CS Malarkodi. 2015. A hybrid discourse parser in conll 2015. In *Proceedings of the Nineteenth Conference on Computational Natural Language Learning-Shared Task* (Beijing, China) (CoNLL ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 50–55. https://doi.org/10.18653/v1/k15-2007

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)* (Minneapolis, MN, USA) (NAACL ’19). The Association for Computational Linguistics, Stroudsburg, PA, USA, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[21] Ziwei Fan, Yin Zhang, and Zhenghua Li. 2019. BiLSTM-based Implicit Discourse Relation Classification Combining Self-attention Mechanism and Syntactic Information. *Computer Science* 46, 5 (2019), 214–220. https://doi.org/10.1189/j.issn.1002-137X.2019.05.033

[22] Robert Fisher and Reid Simmons. 2015. Spectral semi-supervised discourse relation classification. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)* (Beijing, China) (ACL ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 89–93. https://doi.org/10.3115/v1/p15-2015

[23] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016. Domain-adversarial training of neural networks. *J. Mach. Learn. Res.* 17, 1 (Jan. 2016), 2096–2030.

[24] Ruiying Geng, Ping Jian, Yingxue Zhang, and Heyan Huang. 2017. Implicit discourse relation identification based on tree structure natural network. In *2017 International Conference on Asian Language Processing* (Singapore) (IALP ’17). IEEE Press, New York, NY, USA, 334–337. https://doi.org/10.1109/IALP.2017.8300611

[25] Shima Gerani, Yashar Mehdad, Giuseppe Carenini, Raymond Ng, and Bita Nejat. 2014. Abstractive summarization of product reviews using discourse structure. In *Proceedings of the 2014 conference on empirical methods in natural language processing* (Helsinki, Finland) (EMNLP ’14). Association for Computational Linguistics, Stroudsburg, PA, USA, 428–437. https://doi.org/10.3115/v1/n14-1041

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: March 2022.
A Survey of Implicit Discourse Relation Recognition

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems (Montreal, Quebec, Canada) (NeurIPS '14). MIT Press, Cambridge, MA, USA, 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets

Yangfeng Ji, Jacob Eisenstein. 2015. One Vector is Not Enough: Entity-Augmented Distributed Semantics With Dynamic Chunk-Based Max Pooling. IEEE Access 7 (2019), 169281–169292. https://doi.org/10.1109/ACCESS.2019.2954988

Ruifang He, Jianwu Dang, and Jian Wang. 2020. Working Memory-Driven Neural Networks with a Novel Knowledge Enhancement Paradigm for Implicit Discourse Relation Recognition. In The Thirty-Fourth AAAI Conference on Artificial Intelligence (New York, NY, USA) (AAAI '20). AAAI Press, Palo Alto, California, USA, 7822–7829. https://aaai.org/ojs/index.php/AAAI/article/view/6287

Francisco Guzmán, Shafiq Joty, Lluís Màrquez, and Preslav Nakov. 2014. Using discourse structure improves machine translation evaluation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, 547–558. https://www.aclweb.org/anthology/C14-1046/

Yu Hong, Xiaopei Zhou, Tingting Che, Jianmin Yao, Qiaoming Zhu, and Guodong Zhou. 2012. Cross-argument inference using neural tensor network with interactive attention and sparse learning. In Proceedings of the 21st ACM international conference on Multirelational-data. The Association for Computational Linguistics, Stroudsburg, PA, USA, 399–409. https://www.aclweb.org/anthology/D12-1039/

Yu Hong, Siyuan Ding, Yang Xu, Xiaofei Jiang, Yu Wang, Jianmin Yao, Qiaoming Zhu, and Guodong Zhou. 2019. Focus-sensitive relation disambiguation for implicit discourse relation detection. Frontiers of Computer Science 13, 6 (2019), 1266–1281. https://doi.org/10.1007/s11704-017-6558-y

Yu Hong, Xiaopei Zhou, Tingting Che, Jianmin Yao, Qiaoming Zhu, and Guodong Zhou. 2012. Cross-argument inference for implicit discourse relation recognition. In Proceedings of the 21st ACM international conference on Information and knowledge management (Maui, HI, USA) (CIKM '12). ACMPress, New York, NY, USA, 295–304. https://doi.org/10.1145/2396761.2396801

Chaowen Hu, Yalian Yang, and Changxing Wu. 2020. Survey of Implicit Discourse Relation Comprehension Based on Deep Learning. Computer Science 47, 4 (2020), 157–163. http://www.jsjx.com/CN/abstract/article_18980.shtml

Tommi Jaakkola and David Haussler. 1999. Exploiting generative models in discriminative classifiers. In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, 1602–1613. https://doi.org/10.3115/v1/d14-1168

Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems (Denver, Colorado, USA) (NeurIPS ’99). MIT Press, Cambridge, MA, USA, 487–493. http://papers.nips.cc/paper/1520-exploiting-generative-models-in-discriminative-classifiers

Peter Jansen, Mihai Surdeanu, and Peter Clark. 2014. Discourse complements lexical semantics for non-factoid answer reranking. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Baltimore, MD, USA) (ACL ’14). The Association for Computational Linguistics, Stroudsburg, PA, USA, 977–986. https://doi.org/10.3115/v1/p14-1092

Rodolphe Jenatton, Nicolas L Roux, Antoine Bordes, and Guillaume R Obozinski. 2012. A latent factor model for highly multi-relational data. In Advances in neural information processing systems (Lake Tahoe, Nevada, USA) (NeurIPS ’12). MIT Press, Cambridge, MA, USA, 3167–3175. http://papers.nips.cc/paper/4744-a-latent-factor-model-for-highly-multi-relational-data

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge graph embedding via dynamic mapping matrix. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: Long papers) (Beijing, China) (ACL ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 687–696. https://doi.org/10.3115/v1/p15-1067

Yangfeng Ji, Trevor Cohn, Lingpeng Kong, Chris Dyer, and Jacob Eisenstein. 2015. Document context language models. (2015). arXiv:arXiv:1511.03962

Yangfeng Ji and Jacob Eisenstein. 2015. One Vector is Not Enough: Entity-Augmented Distributed Semantics for Discourse Relations. Transactions of the Association for Computational Linguistics 3 (2015), 329–344. https://
Wei Xiang and Bang Wang

//doi.org/10.1162/tacl_a_00142

[42] Yangfeng Ji, Gholamreza Haffari, and Jacob Eisenstein. 2016. A Latent Variable Recurrent Neural Network for Discourse-Driven Language Models. In The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (San Diego, California, USA) (NAACL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 332–342. https://doi.org/10.18653/v1/n16-1037

[43] Yangfeng Ji, Gongbo Zhang, and Jacob Eisenstein. 2015. Closing the gap: Domain adaptation from explicit to implicit discourse relations. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (Lisbon, Portugal) (EMNLP ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2219–2224. https://doi.org/10.18653/v1/d15-1264

[44] Ping Jian, Xiaohan She, Chenwei Zhang, Pengcheng Zhang, and Jian Feng. 2016. Discourse relation sense classification systems for conll-2016 shared task. In Proceedings of the Twentieth Conference on Computational Natural Language Learning-Shared Task (Berlin, Germany) (CoNLL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 158–163. https://doi.org/10.18653/v1/k16-2022

[45] Dan Jiang and Jin He. 2020. Tree framework with BERT word embedding for the recognition of Chinese implicit discourse relations. IEEE Access 8 (2020), 162004–162011. https://doi.org/10.1109/ACCESS.2020.3019500

[46] Feng Jiang, Peifeng Li, and Qiaoming Zh. 2021. Recognizing Chinese Discourse Relations Based on Multi-Perspective and Hierarchical Modeling. In 2021 International Joint Conference on Neural Networks (Shenzhen, China) (IJCNN ’21). IEEE, IEEE Press, New York, NY, USA, 1–8. https://doi.org/10.1109/IJCNN52387.2021.9534273

[47] Yao jie Lu, Mu Xu, Chang xing Wu, De yi Xiong, Hong ji Wang, and Jin song Su. 2018. Cross-lingual implicit discourse relation recognition with co-training. Frontiers of Information Technology & Electronic Engineering 19, 5 (2018), 651–661. https://doi.org/10.1631/FITEE.1601865

[48] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Baltimore, MD, USA) (ACL ’14). The Association for Computational Linguistics, Stroudsburg, PA, USA, 655–665. https://doi.org/10.3115/v1/p14-1062

[49] Yoshi Kano and Akiko Aizawa. 2016. Discourse relation sense classification with two-step classifiers. In Proceedings of the Twentieth Conference on Computational Natural Language Learning-Shared Task (Berlin, Germany) (CoNLL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 129–135. https://doi.org/10.18653/v1/k16-2018

[50] Najoung Kim, Song Fang, R. Chulaka Gunasekara, and Luis A. Lastras. 2020. Implicit Discourse Relation Classification: We Need to Talk about Evaluation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (Online) (ACL ’20). The Association for Computational Linguistics, Stroudsburg, PA, USA, 5404–5414. https://doi.org/10.18653/v1/2020.acl-main.480

[51] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (Doha, Qatar) (EMNLP ’14). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1746–1751. https://doi.org/10.3115/v1/d14-1181

[52] Yoon Kim, Jacint Jernite, David Sontag, and Alexander M Rush. 2016. Character-aware neural language models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (Phoenix, Arizona, USA) (AAAI ’16). AAAI Press, Palo Alto, California, USA, 2741–2749. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489

[53] Paul R. Kingsbury and Martha Palmer. 2002. From TreeBank to PropBank. In Proceedings of the Third International Conference on Language Resources and Evaluation (Las Palmas, Canary Islands, Spain) (LREC ’02). European Language Resources Association, Paris, France, 1989–1993. http://www.lrec-conf.org/proceedings/lrec2002/summaries/283.htm

[54] Yudai Kishimoto, Yugo Murawaki, and Sadao Kurohashi. 2018. A knowledge-augmented neural network model for implicit discourse relation classification. In Proceedings of the 27th International Conference on Computational Linguistics (Santa Fe, New Mexico, USA) (COLING ’18). The Association for Computational Linguistics, Stroudsburg, PA, USA, 584–595. https://www.aclweb.org/anthology/C18-1049/

[55] Yudai Kishimoto, Yugo Murawaki, and Sadao Kurohashi. 2020. Adapting BERT to Implicit Discourse Relation Classification with a Focus on Discourse Connectives. In Proceedings of The 12th Language Resources and Evaluation Conference (Marseille, France) (LREC ’20). European Language Resources Association, Paris, France, 1152–1158. https://www.aclweb.org/anthology/2020.lrec-1.145/

[56] Murathan Kurfalı and Robert Ostling. 2019. Zero-shot transfer for implicit discourse relation classification. In 20th Annual Meeting of the Special Interest Group on Discourse and Dialogue (Stockholm, Sweden) (SIGDIAL ’19). The Association for Computational Linguistics, Stroudsburg, PA, USA, 226–231. https://doi.org/10.18653/v1/W19-5927

[57] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (San Diego, California, USA) (NAACL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 260–270. https://doi.org/10.18653/v1/n16-1030
[58] Man Lan, Jianxiang Wang, Yuanbin Wu, Zheng-Yu Niu, and Haifeng Wang. 2017. Multi-task attention-based neural networks for implicit discourse relationship representation and identification. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (Copenhagen, Denmark) (EMNLP ’17). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1299–1308. https://doi.org/10.18653/v1/d17-1134

[59] Man Lan, Yu Xu, and Zheng-Yu Niu. 2013. Leveraging synthetic discourse data via multi-task learning for implicit discourse relation recognition. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Soﬁa, Bulgaria) (ACL ’13). The Association for Computational Linguistics, Stroudsburg, PA, USA, 476–485. https://www.aclweb.org/anthology/P13-1047/

[60] Alan Lee, Rashmi Prasad, Aravind Joshi, Nikhil Dinesh, and Bonnie Webber. 2006. Complexity of dependencies in discourse: Are dependencies in discourse more complex than in syntax. In Proceedings of the 5th International Workshop on Treebanks and Linguistic Theories (Prague, Czech Republic) (TLT ’06). University of Pennsylvania, Philadelphia, PA, USA, 12–23. https://www.seas.upenn.edu/~pdb/papers/lee-et-al-tlt06.pdf

[61] Wenqiang Lei, Xuancong Wang, Meichun Liu, Ilija Ilievski, Xiangnan He, and Min-Yen Kan. 2017. SWIM: a simple word interaction model for implicit discourse relation recognition. In Proceedings of the 26th International Joint Conference on Artiﬁcial Intelligence (Melbourne, Australia) (IJCAI ’17). Elsevier, Amsterdam, Netherlands, 4026–4032. https://doi.org/10.24963/ijcai.2017/562

[62] Wenqiang Lei, Yuanxin Xiang, Yuwei Wang, Qian Zhong, Meichun Liu, and Min-Yen Kan. 2018. Linguistic Properties Matter for Implicit Discourse Relation Recognition: Combining Semantic Interaction, Topic Continuity and Attribution. In 32nd AAAI Conference on Artiﬁcial Intelligence (New Orleans, Louisiana, USA) (AAAI ’18). AAAI Press, Palo Alto, California, USA, 4848–4855. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17260

[63] Beth Levin. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press, Chicago, IL, USA.

[64] Dejian Li, Man Lan, and Yuanbin Wu. 2019. Comparative Investigation of Deep Learning Components for End-to-end Implicit Discourse Relationship Parser. In China National Conference on Chinese Computational Linguistics (Kunming, China) (Lecture Notes in Computer Science, Vol. 11856). Springer, Berlin, Germany, 143–155. https://doi.org/10.1007/978-3-030-32381-3_12

[65] Huifeng Li, Rohini K Srihari, Cheng Niu, and Wei Li. 2002. Location normalization for information extraction. In Proceedings of the 19th international conference on Computational linguistics-Volume 1 (Taipei, Taiwan) (COLING ’02). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1–7. https://www.aclweb.org/anthology/C02-1127/

[66] Haoran Li, Jiajun Zhang, Yu Zhou, and Chengqing Zong. 2016. Predicting implicit discourse relation with multi-view modeling and effective representation learning. In Natural Language Understanding and Intelligent Applications (Kunming, China) (Lecture Notes in Computer Science, Vol. 10102). Springer, Berlin, Germany, 374–386. https://doi.org/10.1007/978-3-319-50496-4_31

[67] Haoran Li, Jiajun Zhang, and Chengqing Zong. 2015. Predicting Implicit Discourse Relations with Purely Distributed Representations. In Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (Guangzhou, China) (Lecture Notes in Computer Science). Springer, Berlin, Germany, 293–305. https://doi.org/10.1007/978-3-319-25816-4_24

[68] Haoran Li, Jiajun Zhang, and Chengqing Zong. 2017. Implicit discourse relation recognition for English and Chinese with multiview modeling and effective representation learning. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 16, 3 (March 2017), 1–21. https://doi.org/10.1145/3028772

[69] Jiwei Li, Rumeng Li, and Eduard Hovy. 2014. Recursive deep models for discourse parsing. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (Doha, Qatar) (EMNLP ’14). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2061–2069. https://doi.org/10.3115/v1/d14-1220

[70] Junyi Jessy Li, Marine Carpuat, and Ani Nenkova. 2014. Assessing the discourse factors that inﬂuence the quality of machine translation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Baltimore, MD, USA) (ACL ’14). The Association for Computational Linguistics, Stroudsburg, PA, USA, 283–288. https://doi.org/10.3115/v1/p14-2047

[71] Junyi Jessy Li, Marine Carpuat, and Ani Nenkova. 2014. Cross-lingual Discourse Relation Analysis: A corpus study and a semi-supervised classiﬁcation system. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers (Dublin, Ireland) (COLING ’14). The Association for Computer Linguistics, Stroudsburg, PA, USA, 577–587. https://www.aclweb.org/anthology/C14-1055/

[72] Junyi Jessy Li and Ani Nenkova. 2014. Reducing sparsity improves the recognition of implicit discourse relations. In Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (Philadelphia, PA, USA) (SIGDIAL ’14). The Association for Computer Linguistics, Stroudsburg, PA, USA, 199–207. https://doi.org/10.3115/v1/w14-4327
A Survey of Implicit Discourse Relation Recognition

[88] Christopher D. Manning. 2015. Computational Linguistics and Deep Learning. *Comput. Linguist.* 41, 4 (Dec. 2015), 701–707. https://doi.org/10.1162/COLI_a_00239

[89] Daniel Marcu and Abdessamad Echihabi. 2002. An unsupervised approach to recognizing discourse relations. In *Proceedings of the 40th annual meeting of the association for computational linguistics* (Philadelphia, PA, USA) (*ACL* ’02). The Association for Computer Linguistics, Stroudsburg, PA, USA, 368–375. https://doi.org/10.3115/1073083.1073145

[90] Mitchell P. Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn Treebank: Annotating Predicate Argument Structure. In *Proceedings of the ARPA Human Language Technology Workshop* (Plainsboro, New Jersey, USA). Morgan Kaufmann, San Francisco, CA, USA, 114–119. https://www.aclweb.org/anthology/H94-1020

[91] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a Large Annotated Corpus of English: The Penn Treebank. *Comput. Linguist.* 19, 2 (June 1993), 313–330.

[92] Thomas Meyer and Andrei Popescu-Belis. 2012. Using Sense-labeled Discourse Connectives for Statistical Machine Translation. In *Proceedings of the Joint Workshop on Exploiting Synergies between Information Retrieval and Machine Translation* (ESIRMT) and Hybrid Approaches to Machine Translation (HyTra) (Avignon, France) (*EACL* ’12). The Association for Computational Linguistics, Stroudsburg, PA, USA, 129–138. https://www.aclweb.org/anthology/W12-0117

[93] Thomas Meyer and Bonnie Webber. 2013. Implicitation of discourse connectives in (machine) translation. In *Proceedings of the Workshop on Discourse in Machine Translation* (Sofia, Bulgaria) (*ACL* ’13). The Association for Computational Linguistics, Stroudsburg, PA, USA, 19–26. https://www.aclweb.org/anthology/W13-3303

[94] Todor Mihaylov and Anette Frank. 2016. Discourse relation sense classification using cross-argument semantic similarity based on word embeddings. In *Proceedings of the Twentieth Conference on Computational Natural Language Learning-Shared Task* (Berlin, Germany) (*CoNLL* ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 100–107. https://doi.org/10.18653/v1/k16-2014

[95] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. (2013). arXiv:arXiv:1301.3781

[96] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems* (Lake Tahoe, Nevada, USA) (*NeurIPS* ’13). MIT Press, Cambridge, MA, USA, 3111–3119. http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality

[97] Eleni Miltsakaki, Rashmi Prasad, Aravind K. Joshi, and Bonnie L. Webber. 2004. The Penn Discourse TreeBank. In *Proceedings of the Fourth International Conference on Language Resources and Evaluation* (Lisbon, Portugal) (*LREC* ’04). European Language Resources Association, Paris, France, 1–4. http://www.lrec-conf.org/proceedings/lrec2004/summaries/618.htm

[98] Kashif Munir, Hai Zhao, and Zuchao Li. 2021. Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification. *IEEE ACM Transactions on Audio, Speech, and Language Processing* 29 (2021), 2421–2433.

[99] Linh The Nguyen, Linh Van Ngo, Khoat Than, and Thien Huu Nguyen. 2019. Employing the Correspondence of Relations and Connectives to Identify Implicit Discourse Relations via Label Embeddings. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (Florence, Italy) (*ACL* ’19). The Association for Computational Linguistics, Stroudsburg, PA, USA, 4201–4207. https://doi.org/10.18653/v1/p19-1411

[100] Thien Huu Nguyen and Ralph Grishman. 2015. Relation extraction: Perspective from convolutional neural networks. In *Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing* (Denver, Colorado, USA) (*NAACL* ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 39–48. https://doi.org/10.3115/v1/w15-1506

[101] Allen Nie, Erin Bennett, and Noah Goodman. 2019. DisSent: Learning sentence representations from explicit discourse relations. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (Florence, Italy) (*ACL* ’19). The Association for Computational Linguistics, Stroudsburg, PA, USA, 4497–4510. https://doi.org/10.18653/v1/p19-1442

[102] Noriki Nishida and Hideki Nakayama. 2018. Coherence Modeling Improves Implicit Discourse Relation Recognition. In *Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue* (Melbourne, Australia) (*SIGDIAL* ’18). The Association for Computational Linguistics, Stroudsburg, PA, USA, 344–349. https://doi.org/10.18653/v1/w18-5040

[103] Atsushi Otsuka, Toru Hirano, Chiaki Miyazaki, Ryo Masumura, Ryuichiro Higashinaka, Toshiro Makino, and Yoshihiro Matsuo. 2015. Discourse relation recognition by comparing various units of sentence expression with recursive neural network. In *Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation* (Shanghai, China) (*PACLIC* ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 63–72. https://www.aclweb.org/anthology/Y15-1008
[104] Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An annotated corpus of semantic roles. *Computational linguistics* 31, 1 (2005), 71–106. https://doi.org/10.1162/0891201053630264

[105] Joonsuk Park and Claire Cardie. 2012. Improving implicit discourse relation recognition through feature set optimization. In *Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue* (Seoul, South Korea) (SIGDIAL ’12). The Association for Computer Linguistics, Stroudsburg, PA, USA, 108–112. https://www.aclweb.org/anthology/W12-1614/

[106] Emily Pitler, Annie Louis, and Ani Nenkova. 2009. Automatic sense prediction for implicit discourse relations in text. In *Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP (Singapore)* (ACL ’09). The Association for Computer Linguistics, Stroudsburg, PA, USA, 683–691. https://www.aclweb.org/anthology/P09-1077/

[107] Emily Pitler, Mriridula Raghupathy, Hena Mehta, Ani Nenkova, Alan Lee, and Aravind K. Joshi. 2008. Easily Identifiable Discourse Relations. In *22nd International Conference on Computational Linguistics, Posters Proceedings* (Manchester UK) (COLING ’08). The Association for Computer Linguistics, Stroudsburg, PA, USA, 87–90. https://www.aclweb.org/anthology/C08-1022/

[108] Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind K. Joshi, and Bonnie L. Webber. 2008. The Penn Discourse TreeBank 2.0. In *Proceedings of the International Conference on Language Resources and Evaluation* (Marrakech, Morocco) (LREC ’08). European Language Resources Association, Paris, France, 1–8. http://www.lrec-conf.org/proceedings/lrec2008/summaries/754.html

[109] Rashmi Prasad, Eleni Miltsakaki, Nikhil Dinesh, Alan Lee, Aravind Joshi, Livio Robaldo, and Bonnie Webber. 2007. The Penn Discourse Treebank 2.0 Annotation Manual. Technical Report. University of Pennsylvania, Philadelphia, PA, USA.

[110] Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016. Implicit discourse relation recognition with context-aware character-enhanced embeddings. In *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers* (Osaka, Japan) (COLING ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1914–1924. https://www.aclweb.org/anthology/C16-1180/

[111] Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016. A stacking gated neural architecture for implicit discourse relation classification. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing* (Austin, Texas, USA) (EMNLP ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2263–2270. https://doi.org/10.18653/v1/d16-1246

[112] Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu, and Eric Xing. 2017. Adversarial Connective-Exploiting Networks for Implicit Discourse Relation Classification. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)* (Vancouver, Canada) (ACL ’17). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1006–1017. https://doi.org/10.18653/v1/P17-1093

[113] Samuel Rönnqvist, Niko Schenk, and Christian Chiarcos. 2017. A Recurrent Neural Model with Attention for the Recognition of Chinese Implicit Discourse Relations. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)* (Vancouver, Canada) (ACL ’17). The Association for Computational Linguistics, Stroudsburg, PA, USA, 256–262. https://doi.org/10.18653/v1/P17-2040

[114] Michael Roth. 2017. Role Semantics for Better Models of Implicit Discourse Relations. In *12th International Conference on Computational Semantics—Short papers* (Montpellier, France) (IWCS ’17). The Association for Computer Linguistics, Stroudsburg, PA, USA, 1–8. https://www.aclweb.org/anthology/W17-6934/

[115] Huibin Ruan, Yu Hong, Yang Xu, Zhen Huang, Guodong Zhou, and Min Zhang. 2020. Interactively-Propagative Attention Learning for Implicit Discourse Relation Recognition. In *Proceedings of the 28th International Conference on Computational Linguistics (Online)* (COLING ’20). International Committee on Computational Linguistics, Barcelona, Spain, 3168–3178. https://doi.org/10.18653/v1/2020.coling-main.282

[116] Attapol Rutherford, Vera Demberg, and Nianwen Xue. 2017. A systematic study of neural discourse models for implicit discourse relation. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers* (Valencia, Spain) (EACL ’17). The Association for Computational Linguistics, Stroudsburg, PA, USA, 281–291. https://doi.org/10.18653/v1/e17-1027

[117] Attapol Rutherford and Nianwen Xue. 2014. Discovering implicit discourse relations through brown cluster pair representation and coreference patterns. In *Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics* (Gothenburg, Sweden) (EACL ’14). The Association for Computer Linguistics, Stroudsburg, PA, USA, 645–654. https://doi.org/10.3115/v1/e14-1068

[118] Attapol Rutherford and Nianwen Xue. 2015. Improving the inference of implicit discourse relations via classifying explicit discourse connectives. In *Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies* (Denver, Colorado, USA) (NAACL ’15). The Association for Computational Linguistics, Stroudsburg, PA, USA, 799–808. https://doi.org/10.3115/v1/n15-1081
A Survey of Implicit Discourse Relation Recognition

119. Niko Schenk, Christian Chiarcos, Kathrin Donandt, Samuel Rönqvist, Evgeny Stepanov, and Giuseppe Riccardi. 2016. Do we really need all those rich linguistic features? a neural network-based approach to implicit sense labeling. In Proceedings of the Twentieth Conference on Computational Natural Language Learning-Shared Task (Berlin, Germany) (CoNLL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 41–49. https://doi.org/10.18653/v1/K16-2005

120. Xiaohan She, Ping Jian, Pengcheng Zhang, and Heyan Huang. 2018. Leveraging hierarchical deep semantics to classify implicit discourse relations via a mutual learning method. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 17, 3 (Feb. 2018), 1–12. https://doi.org/10.1145/3178456

121. Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014. Learning semantic representations using convolutional neural networks for web search. In Proceedings of the 23rd International Conference on World Wide Web (Seoul, Republic of Korea) (WWW ’14). ACMPress, New York, NY, USA, 373–374. https://doi.org/10.1145/2567948.2577348

122. Wei Shi and Vera Demberg. 2019. Learning to Explicitate Connectives with Seq2Seq Network for Implicit Discourse Relation Classification. In Proceedings of the 13th International Conference on Computational Semantics-Long Papers (Gothenburg, Sweden) (IWCS ’19). The Association for Computational Linguistics, Stroudsburg, PA, USA, 188–199. https://doi.org/10.18653/v1/w19-0416

123. Wei Shi and Vera Demberg. 2019. Next sentence prediction helps implicit discourse relation classification within and across domains. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (Hong Kong, China) (EMNLP-IJCNLP ’19). The Association for Computational Linguistics, Stroudsburg, PA, USA, 5794–5800. https://doi.org/10.18653/v1/D19-1586

124. Wei Shi, Frances Yung, Raphael Rubino, and Vera Demberg. 2017. Using explicit discourse connectives in translation for implicit discourse relation classification. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (Taipei, Taiwan) (IJCNLP ’17). The Association for Computational Linguistics, Stroudsburg, PA, USA, 484–495. https://www.aclweb.org/anthology/I17-1049/

125. Swapna Somasundaran, Galileo Namata, Janyce Wiebe, and Lise Getoor. 2009. Supervised and unsupervised methods in employing discourse relations for improving opinion polarity classification. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (Singapore) (EMNLP ’09). The Association for Computer Linguistics, Stroudsburg, PA, USA, 170–179. https://www.aclweb.org/anthology/D09-1018/

126. Caroline Sporleder and Alex Lascarides. 2008. Using automatically labelled examples to classify rhetorical relations: An assessment. Natural Language Engineering 14, 3 (2008), 369–416. https://doi.org/10.1017/S1351324906004451

127. Philip J Stone, Dexter C Dumphry, and Marshall S Smith. 1966. The general inquirer: A computer approach to content analysis. MIT press, Cambridge, MA, USA.

128. Kun Sun and Lili Zhang. 2018. Quantitative aspects of PDTB-style discourse relations across languages. Journal of Quantitative Linguistics 25, 4 (Jan. 2018), 342–371. https://doi.org/10.1080/09296174.2017.1390934

129. Yu Sun, Huibin Ruan, Yu Hong, Chenghao Wu, Min Zhang, and Guodong Zhou. 2019. Multi-grain Representation Learning for Implicit Discourse Relation Recognition. In CCF International Conference on Natural Language Processing and Chinese Computing (Dunhuang, China) (Lecture Notes in Computer Science, Vol. 11838). Springer, Berlin, Germany, 725–736. https://doi.org/10.1007/978-3-030-32233-5_56

130. Ilya Sutskever, Joshua B Tenenbaum, and Russ R Salakhutdinov. 2009. Modelling relational data using bayesian clustered tensor factorization. In Advances in neural information processing systems (Vancouver, British Columbia, Canada) (NeurIPS ’09). MIT Press, Cambridge, MA, USA, 1821–1828. http://papers.nips.cc/paper/3863-modelling-relational-data-using-bayesian-clustered-tensor-factorization

131. Wen tau Yih, Xiaodong He, and Christopher Meek. 2014. Semantic parsing for single-relation question answering. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Baltimore, MD, USA) (ACL ’14). The Association for Computational Linguistics, Stroudsburg, PA, USA, 643–648. https://doi.org/10.3115/v1/p14-2105

132. Siddharth Varia, Christopher Hidey, and Tuhin Chakrabarty. 2019. Discourse Relation Prediction: Revisiting Word Pairs with Convolutional Networks. In Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue (Stockholm, Sweden) (SIGDIAL ’19). The Association for Computational Linguistics, Stroudsburg, PA, USA, 442–452. https://doi.org/10.18653/v1/W19-5951

133. Ashish Vaswani, Noam Shazeer, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems (Long Beach, CA, USA) (NeurIPS ’17). MIT Press, Cambridge, MA, USA, 5998–6008. http://papers.nips.cc/paper/7181-attention-is-all-you-need

134. Suzan Verberne, Lou Boves, Nelleke Oostdijk, and Peter-Arno Coppen. 2007. Evaluating discourse-based answer extraction for why-question answering. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (Amsterdam, The Netherlands) (SIGIR ’07). ACMPress, New York, NY, USA, 735–736. https://doi.org/10.1145/1277741.1277883
[135] Chang Wang and Bang Wang. 2020. Encoding Sentences with a Syntax-Aware Self-attention Neural Network for Emotion Distribution Prediction. In CCF International Conference on Natural Language Processing and Chinese Computing (Zhengzhou, China) (Lecture Notes in Computer Science). Springer, Berlin, Germany, 256–266. https://doi.org/10.1007/978-3-030-60457-8_21

[136] Chang Wang and Bang Wang. 2020. An End-to-end Topic-Enhanced Self-Attention Network for Social Emotion Classification. In Proceedings of The Web Conference 2020 (Taipei, Taiwan) (WWW ’20). ACMPress, New York, NY, USA, 2210–2219. https://doi.org/10.1145/3366423.3380286

[137] Chang Wang, Bang Wang, Wei Xiang, and Minghua Xu. 2019. Encoding Syntactic Dependency and Topical Information for Social Emotion Classification. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (Paris, France) (SIGIR ’19). ACMPress, New York, NY, USA, 881–884. https://doi.org/10.1145/3331184.3331287

[138] Chang Wang, Bang Wang, and Minghua Xu. 2019. Tree-Structured Neural Networks With Topic Attention for Social Emotion Classification. IEEE Access 7 (2019), 95505–95515. https://doi.org/10.1109/ACCESS.2019.2929204

[139] Jianxiang Wang and Man Lan. 2016. Two end-to-end shallow discourse parsers for English and Chinese in CoNLL-2016 shared task. In Proceedings of the Twentieth Conference on Computational Natural Language Learning-Shared Task (Berlin, Germany) (CoNLL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 33–40. https://doi.org/10.18653/v1/k16-1004

[140] Wenting Wang, Jian Su, and Chew Lim Tan. 2010. Kernel Based Discourse Relation Recognition with Temporal Ordering Information. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (Uppsala, Sweden) (ACL ’10). The Association for Computer Linguistics, Stroudsburg, PA, USA, 710–719. https://www.aclweb.org/anthology/P10-1073/

[141] Xun Wang, Sujian Li, Jiwei Li, and Wenjie Li. 2012. Implicit discourse relation recognition by selecting typical training examples. In Proceedings of COLING 2012, the 23th International Conference on Computational Linguistics: Technical Papers (Mumbai, India) (COLING ’12). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2757–2772. https://www.aclweb.org/anthology/C12-1168/

[142] Yizhong Wang, Sujian Li, Jingfeng Yang, Xu Sun, and Houfeng Wang. 2017. Tag-Enhanced Tree-Structured Neural Networks for Implicit Discourse Relation Classification. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (Taipei, Taiwan) (IJCNLP ’17). The Association for Computational Linguistics, Stroudsburg, PA, USA, 496–505. https://www.aclweb.org/anthology/I17-1050/

[143] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence (Quebec city, Quebec, Canada) (AAAI ’14, Vol. 28). AAAI Press, Palo Alto, California, USA, 1112–1119. http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531

[144] Bonnie Webber, Rashmi Prasad, Alan Lee, and Aravind Joshi. 2019. The Penn Discourse Treebank 3.0 Annotation Manual. Technical Report. University of Pennsylvania, Philadelphia, PA, USA.

[145] Gregor Weiss and Marko Bajec. 2016. Discourse sense classification from scratch using focused rnns. In Proceedings of the Twentieth Conference on Computational Natural Language Learning-Shared Task (Berlin, Germany) (CoNLL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 50–54. https://doi.org/10.18653/v1/k16-1006

[146] Theresa Wilson, Janymc Wiebe, and Paul Hoffmann. 2005. Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of human language technology conference and conference on empirical methods in natural language processing (Vancouver, British Columbia, Canada) (EMNLP ’05). The Association for Computational Linguistics, Stroudsburg, PA, USA, 347–348. https://www.aclweb.org/anthology/H05-1044/

[147] Changxing Wu, Chaowen Hu, Ruochen Li, Hongyu Lin, and Jinsong Su. 2020. Hierarchical multi-task learning with CRF for implicit discourse relation recognition. Knowl. Based Syst. 195 (2020), 105637. https://doi.org/10.1016/j.knosys.2020.105637

[148] Changxing Wu, Xiaodong Shi, Yidong Chen, Yanzhou Huang, and Jinsong Su. 2016. Bilingually-constrained synthetic data for implicit discourse relation recognition. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (Austin, Texas, USA) (EMNLP ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2306–2312. https://doi.org/10.18653/v1/d16-1253

[149] Changxing Wu, Xiaodong Shi, Yidong Chen, Yanzhou Huang, and Jinsong Su. 2017. Leveraging bilingually-constrained synthetic data via multi-task neural networks for implicit discourse relation recognition. Neurocomputing 243 (2017), 69–79. https://doi.org/10.1016/j.neucom.2017.02.084

[150] Changxing Wu, Xiaodong Shi, Yidong Chen, Jinsong Su, and Boli Wang. 2017. Improving implicit discourse relation recognition with discourse-specific word embeddings. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Vancouver, Canada) (ACL ’17). The Association for Computational Linguistics, Stroudsburg, PA, USA, 269–274. https://doi.org/10.18653/v1/P17-2042
[151] Changxing Wu, Xiaodong Shi, Jinsong Su, Yidong Chen, and Yanzhou Huang. 2017. Co-training for implicit discourse relation recognition based on manual and distributed features. *Neural Processing Letters* 46, 1 (2017), 233–250. https://doi.org/10.1007/s11063-017-9582-x

[152] Changxing Wu, Jinsong Su, Yidong Chen, and Xiaodong Shi. 2019. Boosting implicit discourse relation recognition with connection-based word embeddings. *Neurocomputing* 369 (2019), 39–49. https://doi.org/10.1016/j.neucom.2019.08.081

[153] Wei Xiang and Bang Wang. 2019. A Survey of Event Extraction From Text. *IEEE Access* 7 (Nov. 2019), 173111–173137. https://doi.org/10.1109/ACCESS.2019.2956831

[154] Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016. TransG: A Generative Model for Knowledge Graph Embedding. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)* (Berlin, Germany) (*ACL ’16*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2316–2325. https://doi.org/10.18653/v1/p16-1219

[155] Sheng Xu, Peifeng Li, Fang Kong, Qiaoeming Zhu, and Guodong Zhou. 2019. Topic Tensor Network for Implicit Discourse Relation Recognition in Chinese. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Florence, Italy) (*ACL ’19*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 608–618. https://doi.org/10.18653/v1/p19-1058

[156] Yang Xu, Yu Hong, Huibin Ruan, Jianmin Yao, Min Zhang, and Guodong Zhou. 2018. Using active learning to expand training data for implicit discourse relation recognition. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (Brussels, Belgium) (*EMNLP ’18*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 725–731. https://doi.org/10.18653/v1/d18-1079

[157] Yu Xu, Man Lan, Yue Lu, Zheng Yu Niu, and Chew Lim Tan. 2012. Connective prediction using machine learning for implicit discourse relation recognition. In *The 2012 International Joint Conference on Neural Networks (Brisbane, Australia) (*IJCNN ’12*). IEEE Press, New York, NY, USA, 1–8. https://doi.org/10.1109/IJCNN.2012.6252548

[158] Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi Prasad, Christopher Bryant, and Attapol Rutherford. 2015. The conv-2015 shared task on shallow discourse parsing. In *Proceedings of the Nineteenth Conference on Computational Natural Language Learning-Shared Task (Beijing, China) (*CoNLL ’15*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1–16. https://doi.org/10.18653/v1/k15-2001

[159] Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Attapol Rutherford, Bonnie Webber, Chuan Wang, and Hongmin Wang. 2016. Conll 2016 shared task on multilingual shallow discourse parsing. In *Proceedings of the Twentieth Conference on Computational Natural Language Learning-Shared Task (Berlin, Germany) (*CoNLL ’16*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1–19. https://doi.org/10.18653/v1/k16-2001

[160] Weirong Yan, Yang Xu, Shanshan Zhu, Yu Hong, Jianmin Yao, and Qiaoeming Zhu. 2016. A Survey to Discourse Relation Analyzing. *Journal of Chinese Information Processing* 30, 4 (2016), 1–11. http://jcip.cipsc.org.cn/CN/abstract/article_2241.shtml

[161] Zhihui Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In *Advances in neural information processing systems* (Vancouver, BC, Canada) (*NeurIPS ’19*). MIT Press, Cambridge, MA, USA, 5753–5763. http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding

[162] Yasuhisa Yoshida, Jun Suzuki, Tsutomu Hirao, and Masaaki Nagata. 2014. Dependency-based discourse parser for single-document summarization. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (Doha, Qatar) (*EMNLP ’14*). The Association for Computer Linguistics, Stroudsburg, PA, USA, 1834–1839. https://doi.org/10.3115/v1/d14-1196

[163] Xihan Yue, Luoyi Fu, and Xinbing Wang. 2018. Externally controllable RNN for implicit discourse relation classification. In *Proceedings of the Ninth Conference on Computational Natural Language Learning-Shared Task* (*CoNLL ’18*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1–16. https://doi.org/10.18653/v1/p18-1076

[164] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In *Advances in neural information processing systems* (Vancouver, BC, Canada) (*NeurIPS ’19*). MIT Press, Cambridge, MA, USA, 5753–5763. http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding

[165] Yasuhisa Yoshida, Jun Suzuki, Tsutomu Hirao, and Masaaki Nagata. 2014. Dependency-based discourse parser for single-document summarization. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (Doha, Qatar) (*EMNLP ’14*). The Association for Computer Linguistics, Stroudsburg, PA, USA, 1834–1839. https://doi.org/10.3115/v1/d14-1196

[166] Xihan Yue, Luoyi Fu, and Xinbing Wang. 2018. Externally controllable RNN for implicit discourse relation classification. In *Proceedings of the Ninth Conference on Computational Natural Language Learning-Shared Task* (*CoNLL ’18*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1–16. https://doi.org/10.18653/v1/p18-1076

[167] Xiaoyan Zhu, Jianmin Yao, and Qiaoeming Zhu. 2016. A Survey to Discourse Relation Analyzing. *Journal of Chinese Information Processing* 30, 4 (2016), 1–11. http://jcip.cipsc.org.cn/CN/abstract/article_2241.shtml

[168] Zhihui Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In *Advances in neural information processing systems* (Vancouver, BC, Canada) (*NeurIPS ’19*). MIT Press, Cambridge, MA, USA, 5753–5763. http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding

[169] Yasuhisa Yoshida, Jun Suzuki, Tsutomu Hirao, and Masaaki Nagata. 2014. Dependency-based discourse parser for single-document summarization. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (Doha, Qatar) (*EMNLP ’14*). The Association for Computer Linguistics, Stroudsburg, PA, USA, 1834–1839. https://doi.org/10.3115/v1/d14-1196

[170] Xihan Yue, Luoyi Fu, and Xinbing Wang. 2018. Externally controllable RNN for implicit discourse relation classification. In *National CCF Conference on Natural Language Processing and Chinese Computing* (Dalian, China) (*Lecture Notes in Computer Science*). Springer, Berlin, Germany, 158–169. https://doi.org/10.1007/978-3-319-73618-1_14

[171] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun Zhao, et al. 2014. Relation classification via convolutional deep neural network. In *25th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers* (Dublin, Ireland) (*COLING ’14*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2335–2344. https://www.aclweb.org/anthology/C14-1220/

[172] Biao Zhang, Jinsong Su, Deyi Xiong, Yaojie Lu, Hong Duan, and Junfeng Yao. 2015. Shallow convolutional neural network for implicit discourse relation recognition. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (Lisbon, Portugal) (*EMNLP ’15*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 2230–2235. https://doi.org/10.18653/v1/d15-1266

[173] Biao Zhang, Deyi Xiong, Jinsong Su, Qun Liu, Rongrong Ji, Hong Duan, and Min Zhang. 2016. Variational Neural Discourse Relation Recognizer. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (Austin, Texas, USA) (*EMNLP ’16*). The Association for Computational Linguistics, Stroudsburg, PA, USA, 382–391. https://doi.org/10.18653/v1/d16-1037
[167] Biao Zhang, Deyi Xiong, Jinsong Su, and Min Zhang. 2018. Learning better discourse representation for implicit discourse relation recognition via attention networks. Neurocomputing 275 (2018), 1241–1249. https://doi.org/10.1016/j.neucom.2017.09.074

[168] Yingxue Zhang, Fandong Meng, Peng Li, Ping Jian, and Jie Zhou. 2021. Context Tracking Network: Graph-based Context Modeling for Implicit Discourse Relation Recognition. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Online) (NAACL '21). The Association for Computational Linguistics, Stroudsburg, PA, USA, 1592–1599. https://doi.org/10.18653/v1/2021.naacl-main.126

[169] Meilin Zhou, Qi Liang, Lu Ma, Dan Luo, Peng Zhang, and Bin Wang. 2020. Towards Selective Data Enhanced Implicit Discourse Relation Recognition via Reinforcement Learning. In 2020 International Joint Conference on Neural Networks (Glasgow, United Kingdom) (IJCNN ’20). IEEE, IEEE Press, New York, NY, USA, 1–8. https://doi.org/10.1109/IJCNN48605.2020.9207006

[170] Meilin Zhou, Qi Liang, Peng Zhang, Lu Ma, Dan Luo, and Bin Wang. 2020. Global Context-aware Representation for Implicit Discourse Relation Recognition. In 2020 IEEE Intl Conf on Parallel Distributed Processing with Applications. Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom) (Exeter, United Kingdom) (BdCloud ’20). IEEE Press, New York, NY, USA, 458–465. https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00083

[171] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu. 2016. Attention-based bidirectional long short-term memory networks for relation classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Berlin, Germany) (ACL ’16). The Association for Computational Linguistics, Stroudsburg, PA, USA, 207–212. https://doi.org/10.18653/v1/p16-2034

[172] Xiaopei Zhou, Yu Hong, Tingting Che, Jianmin Yao, and Qiaoming Zhu. 2013. An Unsupervised Approach to Inferring Implicit Discourse Relation. Journal of Chinese Information Processing 27, 2 (2013), 17–25. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=MESS201302003&DbName=CJFQ2013

[173] Yuping Zhou and Nianwen Xue. 2012. PDTB-style discourse annotation of Chinese text. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Jeju Island, Korea) (ACL ’12). The Association for Computational Linguistics, Stroudsburg, PA, USA, 69–77. https://www.aclweb.org/anthology/P12-1008/

[174] Zhi Min Zhou, Man Lan, Zheng-Yu Niu, Yu Xu, and Jian Su. 2010. The effects of discourse connectives prediction on implicit discourse relation recognition. In Proceedings of the SIGDIAL 2010 Conference (Tokyo, Japan) (SIGDIAL ’10). The Association for Computer Linguistics, Stroudsburg, PA, USA, 139–146. https://www.aclweb.org/anthology/W10-4326/

[175] Zhi-Min Zhou, Yu Xu, Zheng-Yu Niu, Man Lan, Jian Su, and Chew Lim Tan. 2010. Predicting discourse connectives for implicit discourse relation recognition. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters (Beijing, China) (COLING ’10). Chinese Information Processing Society of China, Beijing, China, 1507–1514. https://www.aclweb.org/anthology/C10-2172/