Multiwavelength lidar node development and simulation for a regional tropospheric aerosol monitoring network.

E E Pawelko¹, P R Ristori¹, L A Otero¹, J V Pallotta¹, and E J Quel¹
CEILAP (CITEFA-CONICET) - Juan B. de La Salle 4397 - B1603ALO Villa Martelli, Argentina.
E-mail: epawelko@citefa.gov.ar

Abstract. This work studies multiwavelength lidar node operation requirements to operate in a regional aerosol monitoring network. Some of the parameters taken into account are simplicity and robustness of the system in continuous and remote operation conditions. Sub-system modularity and accessibility is also contemplated. A numerical simulation is performed on a synthetic atmospheric signal to analyze the behaviour of this system in a) the visible (532 nm) and infrared (1064 nm) spectral regions; b) the main atmospheric compound Raman spectral region (nitrogen, oxygen water vapor). Adding depolarization channels in the 532 nm spectral region is also contemplated.

Keywords: lidar network, aerosol, water vapor

1. Introduction
The role that aerosols meet in the atmospheric system is very complex and still not well known. A deeper understanding of its temporal and spatial distribution and of the interaction with other geophysical variables, such as water vapor, are necessary to understand better the dynamics of global climate balance [1].

Several remote sensing instruments placed in ground based stations, aircrafts and satellites are being used to collect aerosols information. Among them, the lidar (acronym of LIght Detection and Ranging) technique has the ability to retrieve both spatial and temporal aerosol information by means of their optical properties [2]. This system operates as radar but instead of using radio waves it operates at the infrared to ultraviolet spectral region, in which particle and molecular scattering are more important. These instruments are usually classified by the type of scattered radiation detected by the system. The most common ones are the elastic and inelastic (Raman) backscatter lidars. Elastic lidars detects the same wavelengths as the ones emitted by the laser source [3]. For weak atmospheric aerosol loads, Rayleigh scattering prevails due to the presence of molecules, while in presence of aerosols aerosol (Mie) scattering is predominant. As the elastic lidar equation has two unknown terms (extinction and backscatter), the solution arrives from an a priori assumption that links them [4]. For the Raman case, the atmospheric scattering of the majoritarian atmospheric compounds is proportional to the molecular concentration. Knowing this profile the extinction can be retrieved. For this reason inelastic Raman scattering is measured when possible [5].

The multiwavelength lidar system (MWLS) operating at the Lidar Division at Villa Martelli [6], is a powerful instrument for aerosol characterization through the use of multiple emission and detection wavelengths as it combines all the above mentioned measuring techniques.
A new system is being developed to perform measurements at remote geographical areas. This lidar has similar capabilities than the MWLS and it also incorporates new features. Two photomultipliers (PMT) at different polarization angles will measure atmospheric-induced laser depolarization to retrieve aerosol geometry parameters for an additional aerosol characterization [7].

This technique contributes to discriminate liquid from solid aerosols, ice crystal presence in clouds, etc. Also a 32 channel spectrometer combined with a multi-cathode photomultiplier module and a photoncounting acquisition system [8] [9] will help to characterize aerosol composition from its range resolved spectra.

2. Lidar Objectives

The system will be able to retrieve the geophysical variables presented in Table 1. Among the main requirements for the design of the system are:

- **Mobility**: It has to be easily transported to a remote site in which the system must be able to operate for long periods of time.
- **Continuous and automatic operation**: It has to be able to perform long-term measurements with minimal human intervention.
- **Modularity**: It must be scalable design to allow new features to the system.
- **Node operation features**: Operation and data management are oriented to create a base design for an aerosol monitoring network in Argentina.
- **Scanning Capabilities (Optional)**: Capable to monitor aerosols profiles at different lines of sights.

Table 1. Geophysical products to relieve the mobile lidar

Lidar products	Associated Wavelengths For the measurement
Elastic Backscatter attenuated	355, 532, 1064 nm
Aerosol extinction - Fernald inversion	355, 532, 1064 nm
Aerosol extinction - Raman investment	580 \(^{a}\), 607 \(^{b}\) nm
Water Vapour Mixing Ratio	580, 607, 660 \(^{c}\) nm
Total molecular backscatter	532, 580, 607 nm
Lidar ratio	532, 580, 607 nm
Depolarization Ratio	532 nm
Aerosol Optical Thickness,	355, 532, 1064 nm
Cloud: Optical / Geometrical thickness	355, 532, 1064 nm
Atmospheric Boundary Layer, height	355, 532, 1064 nm
Aerosol type discrimination.	Height dependent spectrum acquired using 32 channels

\(^{a}\) Oxygen Raman scattering after 532 nm excitation.

\(^{b}\) Nitrogen Raman scattering after 532 nm excitation.

\(^{c}\) Water Vapour Raman scattering after 532 nm excitation.
3. Lidar Instrument Description

Figure 1 shows the lidar main modules as a block diagram.

3.1. System emission

The transmitter is a Quantel Brilliant 20, flash pumped Nd:YAG laser. It delivers short pulses (5 ns) of linearly polarized radiation (> 90%) at a repetition rate of 20 Hz. The energies at the fundamental, second and third harmonic are 350 mJ (1064 nm), 150 mJ (532 nm) and 90 mJ (355 nm) respectively. This laser was chosen because of its relative high energy per pulse at the visible wavelength (used for Raman backscatter detection) and its polarized emission (for aerosols depolarization studies).

The laser beam is redirected to the atmosphere by a broadband dielectric mirror having 99% reflection at the 320 to 1100 nm spectral range.

3.2. Receiver

The backscattered light is collected using a Celestron C8-A XLT Schmidt-Cassegrain telescope with a primary mirror diameter of 203 mm diameter and a focal length of 2032 mm. In operation conditions a diaphragm at its focal plane acts as a field stop to narrow the field of view (FOV) to 1 mrad. The reflective and antireflective coatings assures high transmission efficiency at visible wavelengths.

3.3 Polychromator setup

After reaching the focal plane, a convex lens collimates the incoming radiation. Depending on the type of measurement, the light can be redirected to the range dependent spectrum analyzer or continue to the filter based polychromator. This last discriminates the elastic backscattered wavelengths (Rayleigh and Mie scattering at 355, 532 and 1064 nm) and the Raman backscattered wavelengths created from the interaction of the the 532 nm laser emission and the atmospheric oxygen, nitrogen and water vapor molecules. The polychromator design scheme is presented in figure 2.
The dichroic and interference filters specifications for polychromator optical design are shown in table 2 and table 3 respectively.

Table 2. Dichroic beamsplitters

Number	Reflectivity	Transmission
0	70 @ 500 to 800 nm	30 @ 532 nm; 95 @ 355, 580, 607, 660
1	95 @ 1064 nm; 99 @ 355 nm	98 @ 532, 580, 607, 660 nm
2	99 @ 355 nm	98 @ 1064 nm
3	99 @ 532 nm	96 @ 580, 607, 660 nm
4	99 @ 580, 607 nm	94 @ 660 nm
5	98 @ 580 nm	94 @ 607 nm

Table 3. Filters

Number	Wavelength (nm)	Peak transmission (%)	FWHM (nm)
A	1064	95	4
A1	1064	80 (Long pass 1000 nm)	NA
B	355	80	1.3
B1	355	90 (Band pass, 377 nm center)	50
C	660	95	1
D	580	95	1
E	607	95	1
F	532	95	2
The ideal polychromator efficiency, without taking into account losses from lens surface and their internal transmission, is 73.6% at 1064 nm, 95% at 532 nm, 72% at 355 nm, 90.25% at 580 nm, 83.60% at 607 nm and 83.6% at 660 nm. After this separation the beams are focused to the photodetectors which are described in table 4.

Wavelength (nm)	Photodetectors
355	Hamamatsu PMT module H6780-03
532, 580, 607, 660	Hamamatsu PMT module H6780-20
1064	EG&G APD based Licel unit
Spectrometer	Licel Module based on an Oriel (MS125)
(32 channels)	spectrometer and a Hamamatsu linearly distributed multicathode PMT module (H7260-20).

The lidar is designed to detect the polarization of the 532 nm elastic backscatter using a polarizing cube beam splitter placed inside the polychromator close to the corresponding photomultipliers.

All the signals are acquired using Licel TR-20-160 AP transient recorder modules operating at 20 MSPS. Raman signals are measured in photon-counting mode (bandwidth of 0 to 300 MHz and a maximum counting rate of 250 MHz) and elastic signals are measured in analog mode (12 bits, 20 MHz sampling frequency A/D converter). The module performs internal summation of multiple profiles up to a maximum of 4096. Final records are sent by an Ethernet connection to the main computer.

3.4 Spectrometer description

The Multi Spectral Lidar Detector (MSLD) from Licel Company collects a continuous spectrum divided in 32 equally separated bands (channels). Each one is a photosensitive area of a multianode photomultiplier module connected to a photon-counting unit acquiring 1024 bin profiles (15.36 km length, with a 15 m bin size). The configuration description is presented in Table 5.

Spectrograph model	Oriel MS125, 77400.	Acquisition
- Design	Crossed Czerny-Tuner	- Photon counting rate: 100 MHz
- F /number:	3.7	- Bin size: 100 ns
- Focal length:	120 mm	- Bins: 1024
Gratings		- Max. average: 4096.
- Grating A:	77464, Plane, Ruled, 500 nm Blaze, 280-1600 nm Spectral Range	- Max. rep. rate: 30 Hz
- Grating B:	77421, plane, holographic, 500 nm Blaze, Spectral range 300-840 nm.	
Multi-Spectral Lidar Detector:	Multianode Hamamatsu 32 channel array - H7260-20.	Fiber Optic type:

Spectral resolution	<6 nm
- 1200 lines / mm grating:	<6 nm
- 1800 lines / mm grating:	<4 nm
The polychromator uses a Raman edge filter (filter S, Figure 2) to remove the strong elastic backscatter lidar return at 532 nm, allowing the transmission of the weak inelastic backscatter lidar signals within visible spectrum range (537-750 nm) with an efficiency exceeding 90%.

4. System Overlap Function

The overlap function is the range-dependent fraction of the total illuminated air mass that is seen by the detector while the laser beam propagates through the atmosphere. This function can be simulated by means of optical ray tracing techniques. For this case the free version of OSLO (Optics Software for Layout and Optimization) [10][11] was used using the simulation parameters from table 6.

This lidar will use a coaxial configuration in which the laser emission axis coincides with the telescope line of sight.

Table 6. Simulation parameters for the Overlap system
Receiver
Telescope type: Schmidt-Cassegrain
Primary mirror diameter: 203 mm (8")
Secondary mirror diameter: 68.58 mm (2.7")
Focal ratio: F/10 (2032 mm)
Field of view: 0.49 mrad to 0.98 mrad

In the simulations, the lidar backscattered signals were projected on an 8 mm in diameter circular target, corresponding to the abovementioned Hamamatsu PMT module up to a distance of 3.75 km distance which can be considered as infinity. Two FOV were used giving an overall transmission of 89.5% and 82.5% with a FOV of 0.98 mrad (aperture 1.8 mm) and 0.5 mrad (aperture 1 mm), respectively.

Figure 3 shows the overlap functions. Maximum overlap is achieved at 450, 550, 900, 5500 m with aperture settings of 2, 1.8, 1.5 and 1 mm, respectively.

For lower altitudes the system starts to see the laser beam at 20, 40, 60 and 80 m, with this aperture settings.
5. Mobile Laboratory
The mobile laboratory is being built in a 20 feet's shelter and it has two rooms: one for the lidar instrumentation and the other for the acquisition computers, and eventually a lidar operator. This laboratory is shown on Figure 4.

6. Lidar Signal Simulation
Some a priori simulation are required to parameterize the laser source, telescope, polychromator and detector requirements and to study the system behaviour under different atmospheric conditions.

6.1. Lidar Equation
Equation (1) shows the elastic lidar signals under a given molecular scattering (Rayleigh) and aerosol (Mie) distribution. Equation (2) shows the same but for the Raman lidar signals.

\[
S(\lambda, z) = K(\lambda, \lambda, z)[\beta_{\text{aer}}(\lambda, z) + \beta_{\text{mol}}(\lambda, z)] \exp \left\{-2 \int_0^Z \left(\alpha_{\lambda}^{\text{aer}}(\zeta) + \alpha_{\lambda}^{\text{mol}}(\zeta) \right) d\zeta \right\}
\]

(1)
\[S^X_{\lambda,\lambda_R}(z) = K(\lambda_L, \lambda_R, z).N^X(z), \frac{d\sigma^X_{\lambda}(\pi)}{d\Omega}. \exp \left\{- \int_0^z [\alpha^\text{aer}_{\lambda}(\zeta) + \alpha^\text{mol}_{\lambda}(\zeta)]d\zeta - \int_0^z [\alpha^\text{aer}_{\lambda_R}(\zeta) + \alpha^\text{mol}_{\lambda_R}(\zeta)]d\zeta \right\} \] (2)

Where:
- \(S^X_{\lambda,\lambda_R}(z) \): Elastic lidar backscatter signal,
- \(S^X_{\lambda,\lambda_R}(z) \): Raman lidar backscatter signal for gas species X,
- \(z \): height range,
- \(\lambda \): laser wavelength,
- \(\lambda_R \): Raman laser wavelength for gas species X,
- \(\beta^\text{aer}(\lambda, z) \) and \(\beta^\text{mol}(\lambda, z) \) volume backscattering coefficients of aerosols and molecules in the wavelength \(\lambda \) for an incident radiation wavelength \(\lambda_L \),
- \(\alpha(\zeta) \): wavelength-dependent extinction coefficient.
- \(N^X(z) \): number of molecules for gas species X.
- \(d\sigma^X_{\lambda}(\pi)/d\Omega \): Raman backscattering cross section for gas species X.
- \(K(\lambda_L, \lambda, z) \): Instrumental factor in the system, expressed in the equations (3).

\[K(\lambda_L, \lambda, z) = E_L \cdot \frac{A_0}{Z} \cdot \frac{c}{2}, k(\lambda_R).O(z) = [w.m] \] (3)

\[.... = E_L \cdot \frac{A_0}{Z^2} \cdot \frac{c}{2\Delta z}, k(\lambda).O(z).Q.G.e.50\Omega = [V.m] \]

\[.... = E_L \cdot \frac{A_0}{Z^2} \cdot \frac{c}{2\Delta z}, k(\lambda).O(z).Q.10^{-6} = [MCPS.m] \]

Where:
- \(E_L \): laser emission power,
- \(A_0 \): optical area of collection,
- \(c \): speed of light,
- \(e \): electron charge,
- \(k(\lambda_R) \): subsystem instrumental factor receptor,
- \(O(z) \): overlap factor between the section irradiated by the laser and the telescope's field of view,
- \(Q \): photomultiplier or avalanche photodiode quantum efficiency.
- \(G \): photomultiplier or avalanche photodiode current gain.
- \(\Delta z \): spatial resolution.

6.2. Simulation parameters
Simulations backscatter lidar signals are performed using the parameters in table 7 together with those already specified for the instrument.
Table 7. Simulation parameters for lidar backscatter signals

Parameter	Value
Radiosonde (date)	August 24, 2009, Ezeiza, Argentina.
Emission: Energy laser / wavelength:	350 mJ @ 1064 nm, 160 mJ @ 532 nm and 70 mJ @ 355 nm.
Instrumental: Telescope reflectivity:	0.8 @ 532 nm, 0.7 @ 1064 nm, 0.6 @ 355 nm.
FOV:	0.885 mrad
Atmospheric boundary layer height:	2000 m
Entrainment zone depth:	150 m
Aerosol extinction cross section:	8×10^{-5} m$^{-1}$
K_p aerosol:	$1 / 50$ @ 532, 1064, 355 nm.

6.2.1. Elastic lidar signal simulation. Figure 5 shows the elastic backscatter simulations results, according to the parameters in table 6.

![Figure 5](image)

Figure 5. Simulations of the backscatter lidar signals in the elastic backscatter 355, 532 (sum of two components, parallel and orthogonal) and 1064 nm.
6.2.2. **Simulations of elastic lidar signals.** Figure 6 shows the elastic backscatter simulations, according to table 6.

![Figure 6](image)

Figure 6. Simulation of Raman backscattering profiles of O_2, N_2 and water vapor.

7. **Monitoring Network**

The aim of developing a mobile lidar is to strengthen aerosol observation in Argentina held by the Lidar Division [12]. Figure 7 shows the geographic location of the current aerosol measurement sites. Some of them are equipped with aerosol lidars (Lidar at CEILAP - Buenos Aires and CEILAP - Rio Gallegos). The others can be potential sites for a network lidar applications as they have AERONET / NASA network (CEILAP - Buenos Aires, CEILAP - Rio Gallegos, CEITT at Cordoba and Trelew at the Universidad Nacional de la Patagonia San Juan Bosco) [13].

![Figure 7](image)

Figure 7. Measurement sites of aerosol used by the CEILAP Lidar Division.
8. Summary
The description of a new tropospheric aerosol lidar that will be operating as a monitoring network mobile node is presented. Main features include full Raman detection of the atmospheric majoritarian compounds (nitrogen, oxygen and water vapor) in the visible region, depolarization measurements at 532 nm, and the use of a spectrometer for range and wavelength resolved lidar measurements. The overlap function results shows that the system is appropriate for close-to-ground boundary layer studies, reaching overlap maximum at the 450 m with 1 mrad FOV. Simulations show the desired system lidar profile; absolute values are probably overestimates due to the fact that there is still not a measurement of the overall lidar system optical throughput at the detection stage. Finally possible lidar locations are suggested for a lidar network operation, which is the principal goal of this instrument.

Acknowledgements
The authors thank JICA (Japan International Cooperation Agency) for supporting this project.

References
[1] D’Almeida G, Koepke P and Shettle E 1991 Atmospheric aerosols: Global climatology and radiative characteristics (Virginia: A. Deepak)
[2] Fujii T and Fukuchi T 2005 Laser Remote Sensing (Florida: CRC Press Taylor & Francis Group)
[3] Otero L, Ristori P, Fochesatto J, Wolfram E, Porteneuve J, Flamant P and Quel E 2004 First aerosol measurements with a multiwavelength lidar system at Buenos Aires, Argentina Esa. J-Eur. Space Agen. 561 769
[4] Fernald F 1984 Analysis of atmospheric lidar observations: some comments Appl. Optics. 23 652-53
[5] Ansmann A, Riebesell M and Weitkamp C 1990 Measurement of atmospheric aerosol extinction profiles with a Raman lidar Opt. Lett. 15 746-48
[6] Otero L, Ristori P, Dworniczak J, Vilar O and Quel E 2006 New system of six wavelengths at CEILAP Anales AFA 18 282-85
[7] Sugimoto N and C-H Lee 2006 Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths Appl. Optics. 45 7468-74
[8] Tatarov B, Sugimoto N, Matsui I, Dong-Ho S and Muller D 2010 Multi-channel lidar spectrometer for atmospheric aerosol typing on the basic of chemical signatures in Raman spectra Proc. 25th ILRC (St. Petersburg, Russia, 5-9 July) ed IAO (St. Petersbug: Russia) pp 47-50
[9] Tatarov B and Sugimoto N 2005 Estimation of quartz concentration in the tropospheric mineral aerosols using combined Raman and high-spectral-resolution lidars Opt. Lett. 30 3407-09
[10] Web site: http://www.sinopt.com/
[11] Pawelko E, Otero A, Ristori P, Vilar O, Pallotta J, Raponi M, D’Elia R and Quel E 2009 Diseño y construcción de un sistema de emisión coaxial para el lidar multilongitud de onda del CEILAP 94ª Reunión de Física Argentina 1 204
[12] Web site: http://www.division-lidar.com.ar/
[13] Web site: http://aeronet.gsfc.nasa.gov/