INTRODUCTION

Inflammation and coagulation are two crucial systems in mammals. They constantly influence each other and are constantly in balance. In particular, inflammatory processes can promote coagulation which, in turn, can also sustain inflammation. The inter-dependence of the two processes is confirmed by clinical settings where the inherited or acquired deficiency of natural anticoagulants is associated with an increase in inflammatory processes[1].

This observation is particularly relevant in acute inflammatory diseases, such as sepsis[2], but it also seems to be very important in chronic inflammatory conditions, such as inflammatory bowel disease (IBD).

Patients with Crohn’s disease (CD) and ulcerative colitis (UC) have an increased risk of thromboembolic events[3], which appears to be more frequent when IBD is in an active phase[4,5] and is affecting the whole colon[6,7]. However, it is worth noting that, in a large study, one-third of thromboembolic complications occurred during
disease quiescence, supporting the hypothesis of a greater prothrombotic tendency in IBD, independent of disease activity. The incidence of thromboembolic events in patients with IBD has been reported to be 1%-8%.[3,9] Patients with IBD have a 3-fold increased risk for deep vein thrombosis and pulmonary embolism compared with the general population.[8,10,11] In addition, IBD patients experience more thromboembolic events at a younger age than the general population or patients affected by rheumatoid arthritis or celiac disease.[4,8]

Finally, indirect evidence that vascular thrombosis may be involved in the pathogenesis of IBD was provided by an epidemiological study performed on a large cohort of subjects with hemophilia or von Willebrand's disease.[1,8] In this population, in which more than 9000 patients were included (6000 patients with hemophilia and more than 3000 with von Willebrand's disease), IBD occurred less frequently than expected, and it was suggested that inherited hemorrhagic disorders might be protective against IBD.[9]

Most available reports tried to explain the increased thromboembolic risk in IBD by analyzing different components of the coagulation cascade, such as serological/phenotypical markers and genetic pro-thrombotic mutations/polymorphisms. Several studies exist on major pro-thrombotic genetic predispositions and IBD. Most published data demonstrate that there is no difference in the prevalence of Factor V Leiden between IBD patients and healthy controls,[11,13] as well as PT gene G20210A mutation.[14,17] Polymorphisms of Methylene tetrahydrofolate reductase, the enzyme involved in the re-methylation pathway of homocysteine metabolism, have been found to have discordant results in IBD patients compared to controls.[1,15-18] Other studies looking at the prevalence of Antithrombin III deficiency[7,19], Protein C[20] and Protein S deficiencies[20] in IBD have been contradictory or equivocal,[22,23] suggesting that these factors, although possibly related to IBD pathogenesis, are not genetically related to IBD.[20,23] Finally, the inherited Val34Leu factor X III polymorphism, which is protective against thrombosis, has been evaluated in IBD patients.[24] Available data demonstrated no significant difference in the prevalence of this polymorphism in IBD patients with respect to the general population.[24]

Taken together, the information on genetic factors does not explain the greater risk of venous thrombosis in CD and UC.[23,24] On the contrary, a pathogenesis-oriented approach suggests that the coagulation abnormalities occurring in IBD are very likely the result of the biological and biochemical effects exerted by the activation of the inflammatory machinery (cells, cytokines, etc) in these disorders. Furthermore, activation of the coagulation cascade can in turn sustain activation of inflammatory reactions, promoting the vicious circle between chronic inflammation and thrombosis.

In this review, we will firstly describe single quantitative abnormalities of coagulation factors observed in IBD and cellular components closely involved in the coagulation pathway. We will then describe the mechanisms by which these abnormalities interfere with intestinal mucosa homeostasis. Finally, the possible therapeutic implications emerging from the unraveling of coagulation abnormalities associated with IBD pathogenesis will also be briefly presented and critically reviewed.

QUANTITATIVE ALTERATIONS OF HEMOSTATIC FACTORS IN IBD

Coagulation is a complex system, which can be schematically divided into different pathways, referred to as “intrinsic”, “extrinsic” and “common” pathways.[28] An important role is also played by the fibrinolysis system, which controls clot dissolution, and the family of serine protease inhibitors, which inhibits many coagulation enzymes. We will use this classification to better summarize findings concerning the linkage between the coagulation system and inflammation associated with IBD.

The extrinsic pathway

The extrinsic pathway is initiated by tissue damage that exposes tissue factor (TF) to blood, causing the formation of TF/FVIIa, which circulates at low levels in the bloodstream. It is thought that high factor VIIa activity is associated with an increased risk of ischemic myocardial events in men over 40 years of age.[8,29] It is the main determinant of the laboratory assay referred to as prothrombin time (PT). No definitive data are available on changes of the extrinsic pathway in IBD. Most of the data available report no significant difference in PT among active UC and/or CD and control patients.[3,8,30] Other studies reported different findings showing that PT values and platelet levels are predictors of CD activity index in female patients.[2] Levels of factor VIIa seem to be higher in active IBD compared to controls.[20] This finding suggests the existence of a pro-thrombotic tendency in IBD patients, arising from activation of the extrinsic pathway.

The intrinsic pathway

Activation of the “intrinsic” pathway of coagulation leads to formation of factor Xa (FXa).[28] This process stems from previous activation of Factor IX and FVII, with formation of the tenase complex, that is FVIIa-factor IXa on the membrane of platelets and endothelial cells.[28] As FXI strongly accelerates the formation of FXa, recent studies showed that inherited high levels of FXI (> 140%) can be considered a risk factor for venous thromboembolic disorders.[31] No significant difference in APTT value or FXI level was observed in IBD patients compared to controls.[8,34] However, higher APTT levels were found in other reports, although this finding may be the expression of mere consumption of some coagulation factors upon their activation.[2] Other investigations found that factor XIa and Xla levels, were higher in active IBD patients compared to patients in the quiescent phase.[8,35] This finding may be in agreement with studies showing that higher levels of FXIa and FXIIa may be considered coagulation
markers associated with increased risk for thromboembolic disorders[36-38].

The common pathway
FXa thus occupies a central position in the coagulation cascade as a convergence point between the intrinsic and extrinsic pathway. In fact, in the presence of its cofactor FVa, FXa converts prothrombin to thrombin[30]. The common pathway is considered the main determinant of both PT and APTT assays. In observational studies, FXa and FVa levels were significantly elevated in active IBD patients compared to those in patients with disease remission[33,39]. The protease-mediated stimulus for inflammatory reactions, particularly for FXa and thrombin, is mediated by cleavage of membrane cleavable receptors and will be discussed below.

The thrombin-generating system
Markers of the thrombin generating system directly involve zymogen prothrombin but also other side-products of prothrombin cleavage such as prothrombin fragment 1+2 and the thrombin-antithrombin complex (TAT). Prothrombin levels in active IBD patients were significantly higher than those in patients with inactive disease or control patients[30,32,39-41]. The same observation was also made for FVa and TAT, suggesting that thrombin generation might be an early event in IBD[40,42,43].

Factor X III
Coagulation factor XIII is a plasma transglutaminase involved in the crosslinking of fibrin, the last step of the coagulation cascade and a connective tissue factor contributing to the wound healing process. It circulates as a heterotetrameric molecule consisting of two identical protease subunits (factor X III A) and two carrier protein subunits (factor X III S).

A study by Chiarantini et al.[30] reported decreased factor X III (FX III) levels, especially in acute phases of the disease, and deposits of FX III have been detected in both affected and macroscopically normal bowel mucosa[19,41-43]. Those results were confirmed by several other reports, comparing IBD patients to control subjects as well as patients affected by diverticulitis and rheumatoid subjects[30,41]. As anticipated above for other coagulation factors, this finding does not play an etiopathogenetic role in IBD but may represent only the result of chronic consumption of this enzyme associated to deposition of fibrin at the level of inflamed vessels in enteric mucosa.

The system of natural coagulation inhibitors
The system of coagulation inhibitors is composed of a family of proteins, globally referred to as serpins, a typical example of which is antithrombin (AT), and by the protein C pathway, in which a series of different proteins (such as protein C and protein S) and membrane receptors [thrombomodulin (TM), endothelial protein C receptor (EPCR)] are involved. AT is the physiological inhibitor of thrombin, factor Xa, FXa, FXa and FXIIIa. There is a growing body of evidence that AT is not only an inhibitor of blood coagulation, but it is also able, when present at high concentrations, to reduce the inflammatory responses of endothelial and other cells[48-50]. Thus, AT was shown to reduce the mortality of patients with severe sepsis in a recent clinical trial[39]. AT-induced attenuation of inflammatory responses might be linked to endothelial production of prostacyclin and inhibition of leukocyte and endothelial cell expression of pro-inflammatory mediators via suppression of nuclear factor (NF)-κB activation[48,50,51]. Furthermore, AT prevents water-immersion restraint stress-induced gastric mucosal injury in rats by promoting the endothelial release of PGI2[32]. In addition, non-uniform information exists on the quantitative expression of these components in IBD. Overall, it seems that no differences in the levels of protein S[46], protein C[35] and ATII[41,43] exist among IBD patients compared to controls. However, in studies comparing the levels of these molecules in the active vs. inactive form of the disease or in controls, lower levels of protein C, ATII and protein S were observed[31,39,43,53-56]. In a single study, higher levels of protein S and C in IBD patients compared to controls were also reported[39]. Those conflicting results indicate that changes in systemic levels of these inhibitors do not necessarily reflect the local loss of inhibition of coagulation occurring within enteric mucosa in IBD. Hence, a new approach has tried to correlate an enhanced production of thrombin in IBD with a possible loss of function in natural anticoagulants mostly occurring on the endothelium of enteric mucosa. This issue will be addressed in the section below.

The fibrinolytic system
In normal hemostasis, the fibrinolytic system allows removal of a fibrin clot when the damaged vessel wall is restored. Activation and regulation of fibrinolysis occurs by multiple proteins and results in the generation of plasmin. Plasminogen may be activated by tissue plasminogen activator (tPA) or urokinase plasminogen activator (uPA). The latter binds to a cellular receptor [urokinase plasminogen activator receptor (uPAR)] resulting in enhanced activation of cell-bound plasminogen and its main role is the induction of pericellular proteolysis[35]. tPA is the most potent activator of plasminogen in plasma and the main regulator of fibrinolysis. After stimulation, tPA is locally released into the circulation from the endothelial cells where it is produced. tPA-mediated plasminogen activation is facilitated by a fibrin surface, which restricts fibrinolysis to the site of thrombus formation[35]. Moreover, once bound to fibrin, tPA is protected from inhibition by plasminogen activator inhibitor 1 (PAI-1), its principal inhibitor in plasma[57]. The level of PAI-1 in blood usually exceeds that of tPA; thus, in general, no active tPA circulates in plasma[58].

α2-Antiplasmin is the primary physiological inhibitor of plasmin, as it can very rapidly inhibit plasmin in plasma[59]. However, plasmin is partly protected from α2-antiplasmin inhibitory activity when the enzyme is bound to fibrin[60]. During thrombus formation, α2-antiplasmin is cross-linked to fibrin by factor X IIIa, facilitating local inhibition of fibrinolysis[61].

Another important player in the fibrinolytic system is
thrombin-activatable fibrinolysis inhibitor (TAFI), which directly connects coagulation and fibrinolysis. It is activated by thrombin, but its activation is over 1000-fold enhanced by the thrombin-TM complex. Activated TAFI removes carboxyl-terminal lysine residues from partially degraded fibrin. Consequently, the binding of plasminogen and tPA to fibrin clots is decreased, which attenuates clot lysis.[62]

Reduced activity of the fibrinolytic system has been described in IBD.[65-66] Indeed, a reduction in activators (such as tPA) and an increase in inhibitors (such as PAI and TAFI) of the fibrinolytic system have been described in IBD patients.[66-69] This condition would favor pro-thrombotic mechanisms.

Cellular elements involved in the coagulation pathway

The haemostatic system is composed not only of soluble proteins and enzymes but also of different cell types. Platelets and endothelial cells play a central role in the maintenance of a physiological balance between pro- and anti-coagulant mechanisms. Moreover, accumulating evidence indicates that platelets and endothelial cells, besides their well-known haemostatic functions, play a role in inflammation and its resolution mechanisms.[67].

Platelets

Platelets can release a number of mediators of the inflammatory response, including cytokines, chemokines, nitric oxide (NO) and eicosanoids. Furthermore, they interact with polymorphonuclear cells (PMN) and monocytes, regulating their extravasation and recruitment at sites of inflammation. Along these lines, platelets have the enzymatic machinery to synthesize both pro- and anti-inflammatory eicosanoids. As an example, platelets contain 2-lipoxygenase (12-LO), a key enzyme in the biosynthesis of the lipoxins (LXs), arachidonic acid metabolites with potential anti-inflammatory properties.[68] LX formation during platelet/PMN interactions occurs in vivo and represents a main stop signal of inflammation.[68] Thus, a sustained inflammatory response, as it occurs in IBD may originate by both increased formation of pro-inflammatory mediators, and reduction in counter-regulatory signals.

Platelet adhesion GPIbα is a ligand of P-selectin, a transmembrane adhesion molecule present on endothelial cells, and supports platelet rolling on activated endothelium. P-Selectin binding to P-Selectin Glycoprotein Ligand 1 (PSGL-1) stimulates the release of microparticles bearing tissue factor; its expression on monocytes and activation of platelets by thrombin, but its activation is over 1000-fold enhanced by the thrombin-TM complex. Activated TAFI removes carboxyl-terminal lysine residues from partially degraded fibrin. Consequently, the binding of plasminogen and tPA to fibrin clots is decreased, which attenuates clot lysis.[62]

Platelet activation is associated with the metalloprotease-mediated split of a soluble fragment of the CD40-ligand [sCD40L] [70]. Soluble CD40L was shown to promote blood coagulation by two mechanisms: induction of tissue factor expression on monocytes and activation of platelets via interaction with integrin α II b/β3. The sCD40L binding to integrin α II b/β3 activates platelets at high shear stress and stabilizes arterial thrombi.[74] Increased levels of CD40L on platelets and sCD40L in circulating blood were found in clinical settings characterized by thrombosis associated with inflammation, such as unstable angina, myocardial infarction and other cardiovascular diseases.[77,78]

Thus, a realistic scenario shows that platelet activation during inflammation and expression of adhesive proteins, P-selectin and integrins, leads to their aggregation with leukocytes and the release of contents of intracellular granules. In conclusion, platelet-platelet and platelet-leukocyte aggregates produce a cell surface, which provides activation of both blood coagulation and inflammation.

The association between active IBD and thrombocytosis was first recognized in 1968 and it became clear that patients with IBD also have increased numbers of circulating platelet aggregates and activated platelets compared with healthy controls.[79-81] More recently, it was demonstrated in studies from different groups that supranormal platelet-leukocyte aggregates are frequently present in patients with IBD compared with both healthy and inflammatory controls.[82] In other studies, significant changes in platelet volume were also observed.[83,84] In particular, an
increase in platelet count\cite{83} and a statistically significant decrease in MPV was noted in patients with colitis compared with healthy controls. Moreover, MPV of active colitis patients was significantly lower than that of the inactive phase of the disease. It is, however, difficult to correlate this finding with the functional alterations that could be responsible for the platelet-mediated thrombotic mechanisms summarized above. It may be hypothesized that in IBD the reduction in MPV may be associated with a peripheral platelet activation responsible for an exalted formation of platelet-platelet, platelet-PMN and platelet-endothelium adducts. This process would mainly involve younger platelets which have a bigger volume. Thus, the overall reduction of MPV could reflect the relative prevalence in circulating blood of less reactive platelets, which are older and smaller\cite{85}. In a very recent study, an enhanced expression of CD40/CD40L in intestinal epithelial cells was demonstrated\cite{86}. In particular, endothoscopy biopsies taken from CD and UC patients showed a positive immunofluorescence staining for CD40 in intestinal epithelial cells of inflamed ileal or colonic mucosa, while no staining was observed in uninvolved intestinal segments\cite{86}. These findings provide, for the first time, direct evidence for the epithelial expression and modulation of CD40 in IBD-affected mucosa and indicate its involvement in the pro-inflammatory and platelet-activating function of inflamed intestinal cells.

Finally, another paper from our group showed that in vitro activated platelets directly increase CD40L expression by intestinal endothelial cells, leading them to interact with other immune cells and sustain intestinal chronic inflammation. This pathway has been proposed as a new mechanism of chronic inflammation, as a result of the complex interplay among different cell types in the intestinal mucosa\cite{87}.

Endothelium

In a normal artery, endothelium creates a non-thrombogenic surface that acts as a selectively permeable barrier. Endothelium plays a key role in response to vascular injury, regulating leukocyte adhesion, platelet activation and adhesion and blood coagulation. Endothelium expresses and responds to multiple active substances, including cell adhesive molecules, cytokines and chemokines, to accomplish these functions\cite{88,89}. Injury to a vessel wall results in the triggering and propagation of inflammatory and coagulation events. The cell adhesion molecules (CAM) are expressed onto the surface of activated endothelial cells and attract leukocytes and platelets. Adhesive proteins provide for the binding and spreading of leukocytes, their rolling, and their further transmigration across endothelium. There are three major classes of CAM: selectins, the immunoglobulin superfamily CAM and integrins. Some integrins in turn can be receptors of CAM and the endothelial adhesion molecule, von Willebrand factor (VWF), which binds platelets.

Weibel-Palade bodies in endothelial cells and platelet \(\alpha\)-granules contain and release platelet P-selectin (CD62P, GMP140) responsible for adhesion of leukocytes, their rolling, and for stabilization of platelet aggregates\cite{90,91}. The lectin-containing N-terminal domain of P-selectin binds to PSGL-1 on monocytes, neutrophils and platelets\cite{91,92}.

E-selectin (CD62E) is another molecule exposed on the endothelial cell surface that can bind to PSGL-1 in response to mechanical injury and inflammatory mediators as IL-1\(\beta\), TNF-\(\alpha\), bacterial toxins and oxidants\cite{89}. P- and E-selectin mediate rolling of activated and quiescent platelets on activated endothelium similar to the mechanism of leukocyte rolling\cite{93}.

The immunoglobulin superfamily CAM includes ICAM-1 (CD54), ICAM-2 and VCAM-1, which are expressed by many cell types including endothelial and SMC. In response to vascular injury, these cells upregulate expression of ICAM-1 and VCAM-1\cite{93}, engaged in leukocyte adhesion. Adhesion of platelets to injured endothelium is controlled by VWF, a multimeric protein, whose molecular weight ranges from 0.5 to 20 million Da\cite{94} and is stored and released from Weibel-Palade bodies in endothelial cells\cite{95}. Hence, VWF is considered a marker of endothelial injury. The VWF molecule contains domains responsible for binding blood coagulation factor \(\mathbf{V}\) and platelet integrins such as glycoprotein transmembrane complexes GPIb/\(\mathbf{IX}/\mathbf{V}\) and integrin \(\alpha\)I\(\beta\)3 (GP \(\mathbf{IIb/\mathbf{IIIa}}\), as well as collagen\cite{96}. VWF binds subendothelial collagens and after immobilization attaches to platelets via the membrane complex GP Ib\(\alpha\).IX-V\cite{90}. VWF may be involved in the pathogenesis of acute thrombotic occlusion of stenosed arteries, where high shear stress promotes the formation of “stretched” VWF conformers, which are suitable for binding to platelets and subendothelial components\cite{90,94}. P-Selectin could serve as an anchor site for the ultra large VWF multimers on the surface of activated endothelium, to facilitate their cleavage at the Tyr1605-Met1606 peptide bond by the disintegrin and metalloproteinase with thrombospondin motif-13 (ADAMTS-13)\cite{95}. Microvascular dysfunction has been clearly demonstrated in IBD patients and involved several aspects of endothelium biochemical physiology\cite{98,99}. In particular, such dysfunction involves an alteration in nitrogen and reactive oxygen species balance, where the microvascular endothelium fails to generate NO, a potent vasodilator and anti-aggregating agent, forming instead elevated levels of superoxide anion\cite{100}. However, the mechanism responsible for the loss of endothelial nitrogen oxide in IBD gut microvessels also involves additional biochemical pathways. Previous studies showed an acquired deficient transcription of nitric oxide synthase 2 (NOS2) in chronically inflamed IBD endothelium\cite{101}. Furthermore, more recently, it was demonstrated that decreased production of nitrogen oxide in IBD endothelial cells can also arise from the induction by many inflammatory cytokines (IL2, TNF-\(\alpha\)) of the enzyme arginase (isofrom I and II)\cite{101}. This enzyme converts L-Arg into urea and L-ornithine, precursors for polyamines and L-proline compounds, which are vital to tissue homeostasis and wound repair\cite{102}. Arginase I and II compete with inducible NOS (iNOS, NOS2), the most relevant inducible pathway for the production of NO, for L-Arg, which is their common substrate in endothelial cells\cite{103}. Thus, an
increased arginase activity in IBD may contribute to inhibit the production of a potent antithrombotic agent such as nitric oxide. The increased production of reactive oxygen species in inflamed endothelium may also contribute to oxidative stress in VWF molecules, which become unresponsive to proteolysis by ADAMTS-13 and the accumulation of ultra large VWF multimers. The latter are the most haemostatically active forms of VWF and, favoring platelet adhesion and aggregation, may contribute to microvascular thrombosis in IBD.

To conclude, endothelium plays an essential role in inflammation due to its central “gatekeeper” function, which controls the quality and quantity of leukocytes that transmigrate from the vasculature into the interstitial space, regulates vascular tone and promotes platelet adhesion and aggregation. The latter function directly affects the haemostatic system and may clearly favor thrombotic phenomena. Several papers reviewed over the last few years suggest an activated status of endothelium in the course of IBD.

A COHERENT SCENARIO FOR UNBALANCED HAEMOSTASIS IN IBD

At this point a question arises as to whether the haemostatic and inflammatory alterations briefly described in the above paragraphs could be functionally linked in a coherent framework.

Globally, the coagulation system in IBD patients seems to sustain pro-thrombotic mechanisms, involving both soluble factors and cells, such as platelets, endothelium and leukocytes. This conclusion is supported by results obtained from new laboratory assays. The conventional and global coagulation tests such as PT and APTT both have low sensitivity and specificity and do not contain sufficient amounts of TM or glycosaminoglycans. Thus, these assays do not automatically reflect the coagulation reactions and their inhibition as they occur in vivo. In contrast, the latest generation of methods that monitor the tissue factor induced thrombin generation in the presence of TM are credited as better laboratory tools to represent the balance of pro- and anti-coagulant forces operating in plasma. In a recent study from Saibeni et al, endogenous thrombin potential, a parameter of the thrombin generation curve, was significantly higher in IBD patients than controls only when the test was performed in the presence of TM. This new assay strongly suggests that in IBD, as anticipated above, the increased generation of thrombin is mainly linked to a partial loss of function of natural anticoagulant pathways, and particularly of the TM-PC system.

Thus, systemic coagulation alterations in IBD may be recognized using more sophisticated techniques, which better reflect the in vivo setting. Furthermore, pathogenic considerations suggest that the coagulation imbalance in IBD could be particularly relevant in the vasculature of enteric mucosa, where inflammation shows the majority of destroying effects.

THE INFLAMMATION-COAGULATION INTERPLAY WITHIN THE INTESTINAL MILIEU

In addition to the demonstration that coagulation abnormalities and thromboembolic complications are clinically relevant events in IBD, they have been shown to exert effects at the mucosal level, where a coagulative imbalance exists.

In fact, one of the earliest abnormalities in CD mucosa is the presence of platelet thrombi cross-linked with fibrin in the mucosal microvasculature. This feature, however, is not specific for CD and can be found in other idiopathic IBD. The involvement of the microcirculation in IBD pathogenesis is underlined by the analysis of a segment of the small and/or large bowel during active IBD which reveals vasodilatation, venocongestion, edema, infiltration of large inflammatory cells and ulcerations. This picture is the result of an unregulated intestinal inflammation with a consequent abnormal immune response and production of inflammatory cytokines, which, in turn, sustain the activation of the microvascular endothelium and subsequent recruitment of more leukocytes into the intestinal wall. This uncontrolled inflammatory response produces dramatic alterations in gut microvascular function which contributes greatly to perpetuating the inflammatory damage observed in IBD.

Coagulation factors mainly interact with local endothelium, although this interaction is potently conditioned by many features of the mucosal immunity.

The principal link between endothelium and the coagulation cascade is determined by Protease-activated receptors (PARs). PARs, and in particular PAR-1 and PAR-2, are cellular receptors activated after proteolytic cleavage by enzymes, mainly thrombin and activated factor X. Only a single study reports over-expression of PAR1 in patients with IBD, and there are no data available on animal models addressing its role in IBD. The expression of PAR2, which is greatly increased in patients with UC and CD, and the functional consequences of its activation in animal models are more widely documented.

Next to expression in the intestine, PAR expression in enteric neurons might be highly relevant for IBD because PARs can mediate gut inflammation via neurogenic mechanisms. Interestingly, PAR activation on submucosal and myenteric neurons causes severe edema in rat models. Moreover, the local activation of PAR2 but not PAR1 in the gut causes colitis through a neurogenic mechanism. Taken together, these results point towards PAR2 expression/cleavage as a cardinal factor in IBD.

The APC-TM system is the natural pathway by which the pro-inflammatory activity of PAR-1 and 2 signaling is contra-balanced. In the following section major findings on how thrombin, factor X and APC contribute to IBD, will be shown and briefly discussed.

Thrombin

Once thrombin is sequentially activated through the in-
trinastic and extrinsic pathway, it not only amplifies the coagulant process but it can also favor inflammation induced by other stimuli, either through ischemia (consequent upon thrombosis), indirectly through the generation of downstream mediators or directly via signals through protease-activated receptors (PARs) [19].

Thrombin activates PARs, thereby establishing a link between activation of coagulation and pathobiology of IBD. Indeed, thrombin signals through PAR1, PAR3 (in mouse) and PAR4, while tissue factor (TF)/FVIIa activates PAR2, and FXa activates PAR1 and PAR2 [16,128].

In addition to promoting platelet activation, thrombin exerts influence over monocytes, macrophages [12] and neutrophils in processes related to tissue repair at the site of injury [22,23]. Thrombin also interacts through an equilibrium high affinity binding with the N-terminus of GpIbα of platelets and endothelial cells [124,125]. Notably, on platelet membrane, binding of thrombin to GpIbα accelerates cleavage of PAR1 by the enzyme [126]. Thrombin also affects endothelial cells through various pathways including NF-κB, early growth response factor-1 and GATA binding proteins [127]. Thrombin signaling might result in post-transcriptional changes, including calcium influx, cytoskeletal reorganization, and release of soluble mediators, growth factors, and matrix metalloproteinases. In addition, thrombin signaling results in changes in downstream gene transcription, for example increasing the expression of genes involved in cell proliferation, inflammation, leukocyte adhesion, vasomotor tone, and hemostasis [128,138].

Factor Xa

Borensztajn et al [116] suggested that Factor Xa signaling through PAR2 contributes to the progression of IBD and fibro-proliferative responses. Because FXa is a well-known PAR2 agonist, FXa-induced PAR2 activation is gaining attention in pathophysiology. Accordingly, in a variety of endothelial in vitro systems, FXa induces an array of pro-inflammatory responses and the deposition of connective tissue growth factor [116,131,132]. It also leads to the activation of NF-κB, and the release of IL-6, IL-8, and MCP-1 on endothelial cells as well as fibroblasts [120,133]. Moreover, on endothelial cells, FXa induces the expression of E-selectin and both intracellular ICAM-1 and VCAM-1, resulting in leukocyte adhesion [116,134,135].

In synergy with tumor necrosis factor, FXa induces TF expression via inhibition of its negative regulators IkBα and A20 [116,136]. Most of these responses are mediated via PAR2 activation, although some studies showed minor involvement of PAR1 [116,137].

Although the potential pro-inflammatory role of FXa on epithelial cells of the gastrointestinal tract is not fully investigated, studies on Hela cells showing that FXa induces activation of the pro-inflammatory transcription factor NF-κB suggest that it plays an important role [116,138]. Finally, FXa also affects immune cells inducing the production of IL-2 by lymphocytes [119]. Evidence that FXa may mediate inflammatory responses in vivo has come from several studies. In particular, Cirino et al [149] demonstrated that FXa induces the formation of edema when injected subcutaneously in a rat paw inflammation model, via local recruitment of mast cells.

The PC pathway

Traditionally described as a major anti-coagulant system, the protein C (PC) pathway, consisting of TM, the EPCR and activated PC (APC), is gaining increasing attention as an important regulator of microvascular inflammation, and in particular intestinal inflammation observed in IBD [140]. The anticoagulant function of the PC pathway has been reviewed extensively [142,144]. The main components of the PC system are the cell membrane receptor for PC, referred to as EPCR, the integral membrane glycoprotein TM, and two vitamin K-dependent plasma proteins, the zymogen PC, and the cofactor protein S. Upon cleavage of a dodecapeptide from the N-terminus of the light chain of PC by the thrombin-TM complex, the zymogen PC is activated to PC. Protein C per se is a poor substrate for thrombin. Allosteric binding of free thrombin to TM enhances, by several orders of magnitude, the thrombin-PC interaction and subsequent conversion of PC zymogen into its proteolytically active form, APC. The rate of PC activation by the TM-thrombin complex is further enhanced when the substrate PC zymogen is bound to its receptor, EPCR, which is able to reduce the K_a value of the catalytic interaction with thrombin. The extent of in vivo PC activation is therefore greatly linked to the bioavailability of PC, thrombin and, critically, by the density of TM and EPCR molecules expressed on endothelial cells. With the exception of disseminated intravascular coagulation, consumptive coagulopathy and defective biosynthesis, thrombin bioavailability in first approximation reflects the intensity of coagulation activation. Within such limits, it was shown that thrombin formation and generation of APC are strongly correlated [145]. APC is formed mainly within the microcirculation, where endothelial cells express high levels of TM. As a consequence, due to the very small intravascular volume, the concentration of TM may be > 100 nmol/L, greatly exceeding the K_a value of the thrombin-TM interaction. Under these conditions, any amount of formed thrombin is rapidly and completely bound to TM. At variance with this situation, expression of TM is much lower in the endothelium of larger arteries and veins. Notably, EPCR expression is inversely related to that of TM, as it is more abundant in large vessel endothelium than in microvascular beds. Thus, the efficiency and extent of APC formation differs considerably between different organs. The anticoagulant activity of the PC pathway includes the limited proteolysis by APC of the activated forms of coagulation factors V and VIII (FVα and FⅧa), thereby limiting active thrombin generation. Protein S, in turn, cooperates with APC in inactivating FVα and FⅧa, exerting an accelerating effect [146]. The current model of APC suppression of excessive thrombin generation assumes that the EPCR-bound pool of endothelial cell-associated APC plays a more important role for FV inactivation than the circulating plasma pool of APC. In part, this may be explained by the fact that binding of APC to cell surfaces is
mediated only by EPCR, implying that the site of EPCR expression largely dictates the site of the anticoagulant function of APC. This model is fully consistent with the finding that FVα is highly susceptible to proteolytic degradation by APC when it is associated with the endothelial cell surface. FVα is instead refractory to APC cleavage in the platelet-associated prothrombinase complex[148-150]. Other mechanisms can potentially limit the anticoagulant activity of APC on, or close to platelets, i.e. inhibition of APC by the vitronectin-plasminogen activator inhibitor-1 complex, secondary to local release of plasminogen activator inhibitor-1 from activated platelets, and the inhibition of protein S activity by platelet factor 4 released from platelet α-granules[148-150]. Notably, platelet factor 4 can inhibit the anticoagulant function of APC alone, but not its ability to cleave and activate PAR-1. Thus, the interaction of platelet factor 4 may potentially redirect APC function toward anti-inflammatory and cytoprotective signaling pathways.

Overall, the relatively poor ability of APC to suppress thrombin generation in forming platelet aggregates might support effective and localized platelet-dependent hemostasis while sustaining the systemic anticoagulant potential. Thus, the APC activity in the presence of platelets may be considered another example of the compartmentalized haemostatic system.

Recently, it was demonstrated that surface-immobilized PC supports in a GPIbα- and apolipoprotein E receptor 2-dependent manner the adhesion and aggregation of platelets under flow conditions[152]. Thus, the ability of zymogen to engage these receptors raises the question as to whether PC immobilization occurs in vivo and whether changes in PC plasma levels are associated with altered platelet adhesion and aggregation.

Protein S circulates in blood in complex with a carrier protein, C4b-binding protein[153]. The level of C4b-binding protein increases in clinical settings characterized by inflammation. Hence, the amount of bound protein S increases, causing a decrease of free protein S concentration[152]. It is known that the anticoagulant function of protein S is exerted by its free form. Thus, systemic inflammatory conditions may represent a risk factor for protein-S dependent thrombotic disorders[152]. Finally, protein S exerts both APC-dependent and aPC-independent anticoagulant effects. The APC-dependent mechanism, involving the cofactor function of protein S for the acceleration of APC-mediated degradation of factors VII and V, is likely the physiologically dominant pathway. The APC-independent anticoagulant activity of protein S is attained by stimulating the inhibition of tissue factor (TF) by tissue factor pathway inhibitor (TFPI)[153]. The latter blocks the intermediate complex of TF-FVila-FXa, thereby preventing substrate exchange of already activated FX a for new FX. Protein S enhances the inhibitory interaction of TFPI with the TF initiation complex, and thereby limits the extent of thrombin generation in plasma. This APC-independent anticoagulant activity of protein S is most pronounced at low TF levels. Due to the anticoagulant effects described above, severe protein S deficiency is associated with severe thrombotic disorders.

The relevance of the PC system for the prevention of atherothrombotic diseases is further corroborated by studies in animals. Some interesting aspects of in vivo PC activation were unraveled by analyzing the role of EPCR in the response of mice to an inflammatory challenge with lipopolysaccharide (LPS)[154]. In these studies, mice lacking EPCR showed substantially enhanced activation of coagulation, concomitantly with reduced APC formation attributable to the absence of EPCR. Yet, the plasma APC levels in LPS-challenged EPCR-deficient mice were almost identical to that measured in wild-type animals. The authors of this study then showed that in wild-type mice a large fraction (approximately 40%) of APC did not enter the systemic circulation but remained bound to endothelial cell-associated EPCR at its site of activation. It is this sequestered APC pool that is completely missing in EPCR deficient mice, and its absence apparently accounts for all the pro-coagulant and pro-inflammatory effects of EPCR deficiency in mice[154].

Recent studies have shown that the anti-inflammatory effect of APC, at least in part, is mediated through the EPCR-dependent proteolysis of PAR-1 in endothelial cells[155,156]. This finding seems paradoxical, as it is known that the cleavage of PAR-1 by thrombin elicits potent prothrombotic and pro-inflammatory responses[157]. It is well known that thrombin is mainly responsible for the activation of PC in the presence of TM and that the enzyme also cleaves PAR-1 with a high catalytic efficiency, which is 3-4 orders of magnitude higher than that of APC. This finding raises the question as to how APC in the presence of thrombin is able to produce physiologically significant cleavage of PAR1 associated with protective signaling events[158], as is presented in Figure 1. Notably, both APC and PC bind to EPCR with a similar equilibrium constant, so that it can be hypothesized that thrombin can increase the local concentrations of EPCR-bound APC[159]. This phenomenon may induce channeling of the protease directly into the signaling pathway.

In a very elegant study, Rezaie and coworkers demonstrated that the critical receptors required for both protein C activation (TM and EPCR) and APC cellular signaling (EPCR and PAR-1) pathways colocalize in the membrane lipid rafts of endothelial cells. The co-localization of EPCR and PAR-1 in lipid rafts of endothelial cells is a fundamental requirement for the cellular signaling activity of APC, which leads to anti-inflammatory and anti-apoptotic cellular effects, such as phosphorylation of mitogen-activated protein kinase[160] and suppression of NFκB expression[161].

TM co-localization with these receptors on the same membrane microdomain can also recruit thrombin to activate the EPCR-bound protein C, therefore eliciting PAR-1 signaling events that are involved in the APC protective pathways[159] linked to dissociation of caveolin subunits (Figure 1). These findings explain how thrombin effectively channels endogenous APC to the protective signaling pathways, through cleaving the same receptor of thrombin.
The APC pathway in IBD

TM and EPCR expression is diminished in the colonic mucosal microvasculature of IBD patients[^3,162-164], but is increased in their sera, suggesting increased shedding of TM and EPCR from cells. Inflammatory cytokines also down-regulate TM and EPCR by inhibiting transcription on cultured intestinal endothelial cells (HIMEC) [162]. These changes in TM and EPCR expression would be expected to affect the conversion of protein C in its activated form, which, in addition to its anticoagulant properties, also has potent anti-inflammatory activity [165], as described above.

Restoring the function of the PC pathway has anti-inflammatory effects on HIMEC, by decreasing pro-inflammatory cytokines secretion as well as adhesion molecules induced by TNF-α stimulation[^144,162,166]. Furthermore, restoration of APC by supplementation reduces stress-induced gastric mucosal injury in rats by inhibiting the decrease in gastric mucosal blood flow through attenuation of the activated neutrophil-induced endothelial cell injury via inhibition of TNF-α production[^167].

Overall, it can be concluded that a homeostatic balance exists between thrombin and APC in coagulation and inflammation. In particular, activated thrombin promotes the generation of APC and the two molecules influence the extent of both fibrin (clot) formation and the inflammatory response. This mechanism is mediated mainly by the cleavage of PAR-1 by either APC or thrombin on endothelial cells. Through binding to EPCR, APC would reverse the pro-inflammatory effects of thrombin on the same PAR[^163].

Figure 1 Models of protease-activated receptor-1 cleavage and activation by either activated protein C or thrombin when endothelial protein C receptor is occupied by its ligand protein C. A: The unoccupied endothelial protein C receptor (EPCR) is associated with caveolin-1 (Cav-1) within lipid rafts of endothelial cells. Upon thrombin cleavage of protease-activated receptor (PAR)-1, a pro-inflammatory signal is generated through G12/13 and Gq under these conditions; B: The occupancy of EPCR by protein C (PC) results in dissociation of EPCR from Cav-1. This process is linked with the coupling of PAR-1 to Gi. Thrombin cleavage of PAR-1 initiates an anti-inflammatory response under these conditions; C: The same as (B) except that the EPCR and PAR-1 dependent protective signaling response is mediated by activated protein C (APC) (adapted from[^108]).

Figure 1 Models of protease-activated receptor-1 cleavage and activation by either activated protein C or thrombin when endothelial protein C receptor is occupied by its ligand protein C. A: The unoccupied endothelial protein C receptor (EPCR) is associated with caveolin-1 (Cav-1) within lipid rafts of endothelial cells. Upon thrombin cleavage of protease-activated receptor (PAR)-1, a pro-inflammatory signal is generated through G12/13 and Gq under these conditions; B: The occupancy of EPCR by protein C (PC) results in dissociation of EPCR from Cav-1. This process is linked with the coupling of PAR-1 to Gi. Thrombin cleavage of PAR-1 initiates an anti-inflammatory response under these conditions; C: The same as (B) except that the EPCR and PAR-1 dependent protective signaling response is mediated by activated protein C (APC) (adapted from[^108]).

THERAPEUTIC PERSPECTIVES FOR COAGULATION ABNORMALITIES IN IBD

Based on the reported findings from several studies, one can conclude that the PC pathway is strategically located at the crossroads between coagulation and inflammation, where it exerts entirely unexpected roles in the damage that occurs in chronic inflammatory conditions[^169]. Unraveling the pathogenic role of the PC pathway offers a very promising tool in the therapeutic arsenal against IBD as well as many other chronic inflammatory diseases. Inflammation most likely mediates systemic hypercoagulability through various cytokines, which can affect the coagulation cascade at numerous points as well as platelet quantity and function. Unfortunately, perhaps due to this diversity of prothrombotic abnormalities that can exist in IBD patients and their likely multifactorial etiology, no specific therapy has ever been proposed in any clinical randomized trial to correct the cytokine-linked pro-inflammatory unbalance and pro-thrombotic phenomena occurring in IBD. Notably, unfractioned (UFH) and low-molecular-weight heparins (LMWHs), apart from their known anticoagulant/antithrombotic activities, display a broad spectrum of immune modulating and anti-inflammatory properties, such as modulation of cytokine production, T-lymphocyte cytotoxic activity[^170] and inhibition of leukocyte adhesion, activation and trafficking[^171]. Based on these features, these molecules have been proposed for the treatment of IBD. Some open studies suggested the efficacy of UFH[^172,173] and LMWHs[^174] for the treatment of active...
UC. Conversely, large controlled studies using UFH and LMWHs did not show a clear efficacy [175-178]. Moreover, a recent meta-analysis by Shen et al [179] indicated no significant additive benefit for heparins in the treatment of active UC. However, all studies included in the meta-analysis were very heterogeneous about their clinical, methodological and pharmacological features.

These studies, not only considered different definitions for response and remission, but also used different heparins, with theoretically very different anti-inflammatory activities [179]. For these reasons, it is still difficult to set the real value of this therapeutic approach in IBD.

Recently, experimental data on animal models of IBD suggested efficacy of LMWHs, when selectively delivered in the site of disease, compared to the other route of administration. The multimatrix oral formulation MMX releasing pannaparin sodium at three different doses was evaluated in a clinical trial in patients with mild-to-moderate UC activity [180]. This study, carried out on ten UC patients, showed no relevant side effects, including either interference with haemostatic parameters or increased bleeding. After treatment, seven patients were in clinical remission and only one achieved endoscopic healing. However, in a recent meta-analysis it was found that there is no evidence to support the use of UFH or LMWH for the treatment of active UC. In this study no further trials examining these drugs in patients with UC were warranted, except perhaps a trial of UFH in patients with mild disease [181]. Furthermore, it has to be outlined that any benefit found using heparins in this clinical setting should be weighed against a possible increased risk of rectal bleeding, especially in patients with active UC.

In conclusion, a direct therapeutic approach for controlling inflammation-driven imbalances in the coagulation system in IBD patients is not yet available. The growing body of evidence concerning the molecular and cellular perturbations in this setting should be unraveled to promote a more efficacious, pathogenesis-oriented therapy for these disorders.

CONCLUSION

Overall, this paper was designed to underline the delicate and unstable equilibrium, at the mucosal level, between inflammation and coagulation. This complex equilibrium actively participates in the pathogenesis of several inflammatory disorders, in particular IBD.

Although the majority of available reports have looked at alterations in single coagulation components in IBD patients, no clear evidence of single alterations have been demonstrated to be crucial in IBD development. On the contrary, it is evident that several factors, with diverse relevance, are involved in maintaining chronic inflammation as well as a pro-coagulant profile in IBD. These factors include mainly classical coagulation components as well as inhibitors, and also cells, such as endothelium and platelets, which interact extensively at the mucosal level. Pathways that seem to play a major role in IBD pathogenesis are the APC, thrombin and Factor Xa pathways.

The delicate balance between these pathways, affecting different mucosal cell types, is responsible for controlling endothelium, leukocyte activation and trafficking, cytokines and chemokines secretion as well as the coagulation cascade. Despite a better understanding of the interaction between coagulation and inflammation, very few drugs targeting the coagulation pathways are available or under evaluation for clinical purposes. In conclusion, further studies are required to better characterize the relationship between coagulation and inflammation in different IBD patients and to identify good therapeutic targets.

REFERENCES

1. Esmon CT. The interactions between inflammation and coagulation. *Br J Haematol* 2005; 131: 417-430
2. Shen J, Ran ZH, Zhang Y, Cai Q, Yin HM, Zhou XT, Xiao SD. Biomarkers of altered coagulation and fibrinolysis as measures of disease activity in active inflammatory bowel disease: a gender-stratified, cohort analysis. *Thromb Res* 2009; 123: 604-611
3. Danese S, Papa A, Saibeni S, Repici A, Malesci A, Vecchi M. Inflammation and coagulation in inflammatory bowel disease: the clot thickens. *Am J Gastroenterol* 2007; 102: 174-186
4. Michelsler W, Reinisch W, Valic E, Osterode W, Tillinger W, Feichtenschlager T, Grisar J, Machold K, Scholz S, Vogelsang H, Novacek G. Is inflammatory bowel disease an independent and disease specific risk factor for thromboembolism? *Gut* 2004; 53: 542-548
5. Spina L, Saibeni S, Battaglioti T, Peyvandi F, de Franchis R, Vecchi M. Thrombosis in inflammatory bowel diseases: role of inherited thrombophilia? *Am J Gastroenterol* 2005; 100: 2036-2041
6. Novotny DA, Rubin RJ, Slezak FA, Porter JA. Arterial thromboembolic complications of inflammatory bowel disease. Report of three cases. *Dis Colon Rectum* 1992; 35: 193-196
7. Oldenburg B, Van Tuyl BA, van der Griend R, Fijnheer R, van Berge Henegouwen GP. Risk factors for thromboembolic complications in inflammatory bowel disease: the role of hyperhomocysteinaemia. *Dig Dis Sci* 2005; 50: 235-240
8. Kume K, Yamasaki M, Tashiro M, Yoshikawa I, Otsuki M. Activations of coagulation and fibrinolysis secondary to bowel inflammation in patients with ulcerative colitis. *Intern Med* 2007; 46: 1323-1329
9. Talbot RW, Heppell J, Dozois RR, Beart RW Jr. Vascular complications of inflammatory bowel disease. *Mayo Clin Proc* 1986; 61: 140-145
10. Bernstein CN, Wajda A, Blanchard JR. The incidence of arterial thromboembolic diseases in inflammatory bowel disease: a population-based study. *Clin Gastroenterol Hepatol* 2008; 6: 41-45
11. Bernstein CN, Blanchard JF, Houston DS, Wajda A. The incidence of deep venous thrombosis and pulmonary embolism among patients with inflammatory bowel disease: a population-based cohort study. *Thromb Haemost* 2001; 85: 430-434
12. Thompson NP, Wakefield AJ, Pounder RE. Inherited disorders of coagulation appear to protect against inflammatory bowel disease. *Gastroenterology* 1995; 108: 1011-1015
13. Turri D, Rosselli M, Simioni P, Tormene D, Grimaudo S, Martorana G, Siragusa S, Mariani G, Cottone M. Factor V Leiden and prothrombin gene mutation in inflammatory bowel disease in a Mediterranean area. *Dig Liver Dis* 2001; 33: 559-562
14. Vecchi M, Sacchi E, Saibeni S, Meucci G, Tagliabue L, Duca F, De Franchis R. Inflammatory bowel diseases are not associated with major hereditary conditions predisposing to thrombosis. *Dig Dis Sci* 2000; 45: 1465-1469
Scaldaferrì F et al. Coagulation and IBD

15 Papa A, De Stefano V, Gasbarrini A, Chiusolo P, Cianci R, Casorcelli I, Paciaroni K, Cammarota G, Leone G, Gasbarrini G. Prevalence of factor V Leiden and the G20210A prothrombin-gene mutation in inflammatory bowel disease. Blood Coagul Fibrinolysis 2000; 11: 499-505

16 Papa A, Danese S, Grillo A, Gasbarrini G, Gasbarrini A. Review article: inherited thrombophilia in inflammatory bowel disease. Am J Gastroenterol 2003; 98: 1247-1251

17 Jackson LM, O’Gorman PJ, O’Connell J, Cronin CC, Cotter KP, Shanahan F. Thrombosis in inflammatory bowel disease: clinical setting, procoagulant profile and factor V Leiden. QJM 1997; 90: 183-188

18 Yilmaz S, Bayan K, Tüzün Y, Batun S, Altintas A. A comprehensive analysis of 12 thrombophilic mutations and related parameters in patients with inflammatory bowel disease: data from Turkey. J Thromb Thrombolysis 2006; 22: 205-212

19 Lake AM, Stauffer JQ, Stuart MJ. Hemostatic alterations in inflammatory bowel disease: response to therapy. Am J Dig Dis 1978; 23: 897-902

20 Korsten S, Reis HE. [Acquired protein C deficiency in ulcerative colitis. The cause of thromboembolic complications] Dttsch Med Wochenschr 1992; 117: 419-424

21 Aadland E, Odegaard OR, Røseth A, Try K. Free protein S deficiency in patients with chronic inflammatory bowel disease. Scand J Gastroenterol 1992; 27: 957-960

22 Wysock E, Caldwell M, Crowley JP. Deep venous thrombosis, inflammatory bowel disease, and protein S deficiency. Am J Clin Pathol 1988; 90: 653-635

23 Sundaram KK, Cotten R, Hart P, Jones L, Gould SR. Laboratory findings associated with thrombophilia are not more common in inflammatory bowel disease. Clin Lab Haematol 2000; 22: 243-245

24 Franco RF, Reitsma PH, Maffei FH, Morelli V, Tavella MH, Araújo AG, Piccinato CE, Zago MA. Factor XIII Val34Leu is a genetic factor involved in the etiology of venous thrombosis. Thromb Haemost 1999; 81: 676-679

25 Saibeni S, Vecchi M, Faioni EM, Franchi F, Rondonotti E, Borsì G, de Franchis R. Val34Leu factor XIII polymorphism in Italian patients with inflammatory bowel disease. Dig Liver Dis 2003; 35: 32-36

26 Bernstein CN, Sargent M, Vos HL, Rosendaal FR. Mutations in clotting factors and inflammatory bowel disease. Am J Gastroenterol 2007; 102: 338-343

27 Guédon C, Le Cam-Duchez V, Lalaude O, Ménard JF, Lebrous E, Borg JY. Prothrombin inherited abnormalities other than factor V Leiden mutation do not play a role in venous thrombosis in inflammatory bowel disease. Am J Gastroenterol 2001; 96: 1448-1454

28 Esmon CT. Regulation of blood coagulation. Biochim Biophys Acta 2000; 1477: 349-360

29 Pottinger BE, Read RC, Paleolog EM, Higgins PG, Pearson JD. von Willebrand factor is an acute phase reactant in man. Thromb Res 1989; 53: 387-394

30 Chiariantini E, Valenzano R, Liotta AA, Cellai AP, Fedi S, Illari I, Prisco D, Tonelli F, Abbate R. Hemostatic abnormalities in inflammatory bowel disease. Thromb Res 1996; 82: 137-146

31 Hudson M, Chitole A, Hutton RA, Smith MS, Pouder RE, Wakefield AJ. Thrombotic vascular risk factors in inflammatory bowel disease. Gut 1996; 38: 733-737

32 Appleyard CB, Williams JL, Hathaway CA, Percy WH. Temporal patterns of colonic blood flow and tissue damage in an animal model of colitis. Dig Dis Sci 1999; 44: 431-438

33 Schambeck CM, Grossmann R, Zonnur S, Berger M, Teuchert K, Spahn A, Walter U. High factor VIII (FVIII) levels in venous thromboembolism: role of unbound FVIII. Thromb Haemost 2004; 92: 42-46

34 Yurekli BP, Aksoy DY, Aybar M, Egesel T, Gurgey A, Hascelik G, Kirazli S, Haznedaroğlu IC, Arslan S. The search for a common thrombophilic state during the active state of inflammatory bowel disease. J Clin Gastroenterol 2006; 40: 809-813

35 Payzin B, Adakan FY, Yalçın HC, Çetinkaya GS, Berkmen S, Eraslan S, Ünası B. Natural coagulation inhibitory proteins and activated protein C resistance in Turkish patients with inflammatory bowel disease. Turk J Gastroenterol 2006; 17: 183-190

36 Schousboe I. Pharmacological regulation of factor XII activation may be a new target to control pathological coagulation. Biochim Pharmacol 2008; 75: 1007-1013

37 Grundt H, Nilsen DW, Hetland Ø, Valente E, Fagertun HE. Activated factor 12 (FXIIa) predicts recurrent coronary events after an acute myocardial infarction. Am Heart J 2004; 147: 260-266

38 Yamashita A, Nishiihi K, Kitazawa T, Yoshishashi K, Soeda T, Esaki K, Imamura T, Hattori K, Asada Y. Factor XI contributes to thrombus propagation on injured neo-intima of the rabbit iliac artery. J Thromb Haemost 2006; 4: 1496-1501

39 Zeoss P, Papaioannou G, Nikolaidis N, Vasiliadis T, Gio- uleme O, Evgenidis N. Elevated plasma von Willebrand factor levels in patients with active ulcerative colitis reflect endothelial perturbation due to systemic inflammation. World J Gastroenterol 2005; 11: 7639-7645

40 Weber P, Husemann S, Vielhaber H, Zimmer KP, Nowak-Göttlich U. Coagulation and fibrinolysis in children, adolescents, and young adults with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 1999; 28: 418-422

41 van Bodegraven AA, Schoor M, Linskens RK, Bartels PC, Tuyman HA. Persistent activation of coagulation and fibrinolysis after treatment of active ulcerative colitis. Eur J Gastroenterol Hepatol 2002; 14: 413-418

42 Zeoss P, Papaioannou G, Nikolaidis N, Patsiouara K, Vasiliadis T, Mposoupanoris A, Giouleme O, Evgenidis N. Elevated markers of thrombin generation and fibrinolysis in patients with active and quiescent ulcerative colitis. Med Sci Monit 2009; 15: CR563-CR572

43 Hayat M, Ariëns RA, Moayyedi P, Grant PJ, O’Mahony S. Coagulation factor XIII and markers of thrombin generation and fibrinolysis in patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol 2002; 14: 249-256

44 Stadnicki A, Kloczko J, Nowak A, Sierka E, Sliwiński Z. Factor XIII subunits in relation to some other hemostatic parameters in ulcerative colitis. Am J Gastroenterol 1991; 86: 690-693

45 Hudson M, Wakefield AJ, Hutton RA, Sankey EA, Dhillon AP, More L, Sim R, Pouder RE. Factor XIIIa subunit and Crohn’s disease. Gut 1993; 34: 75-79

46 Vrij AA, Rijken A, van Wiersch JW, Stockbrügger RW. Differential behavior of coagulation factor XIII in patients with inflammatory bowel disease and in patients with giant cell arteritis. Haemostasis 1999; 29: 326-335

47 Chamouard P, Grunebaum L, Wiesel ML, Sibilia J, Couma- ros G, Wittersheim C, Baumann R, Cazenave JP. Significance of diminished factor XIII in Crohn’s disease. Am J Gastroenterol 1998; 93: 610-614

48 Uchiba M, Okajima K, Murakami K. Effects of various doses of antithrombin III on endotoxin-induced endothelial cell injury and coagulation abnormalities in rats. Thromb Res 1998; 89: 233-241

49 Warren ML, Eid A, Singer P, Pillay SS, Carl P, Novak I, Cha- lupa P, Ahersteon I, Pénzes I, Kübler A, Knaub S, Keinecke HO, Heinrichs H, Schindel F, Juers M, Bone RC, Opal SM. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001; 286: 1869-1878

50 Uchiba M, Okajima K, Kaun C, Wojta J, Binder BR. Inhibi- tion of the endothelial cell activation by antithrombin in vitro. Thromb Haemost 2004; 92: 1420-1427

51 Oelschläger C, Römisch J, Staubitz A, Stauss H, Leit häuser B, Tillmanns H, Höschlmermann H. Antithrombin III inhibits nuclear factor kappaB activation in human monocytes and vascular endothelial cells. Blood 2002; 99: 4015-4020

52 Isobe H, Okajima K, Liu W, Harada N. Antithrombin pre-
vents stress-induced gastric mucosal injury by increasing the gastric prostacyclin level in rats. J Lab Clin Med 1999; 133: 557-565

53 Tshosho S, Mackie MJ, McVerry BA, Galloway M, Ellis A, McKay J. Chronic inflammatory bowel disease, deep-venous thrombosis and antithrombin activity. Acta Haematol 1983; 70: 50-53

54 Hatoun OA, Binion DG, Otterson MF, Gutterman DD. Acquired microvascular dysfunction in inflammatory bowel disease: Loss of nitric oxide-mediated vasodilation. Gastroenterology 2003; 125: 58-69

55 Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 2001; 86: 324-333

56 Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 1982; 257: 2912-2919

57 Chmielewska J, Ränby M, Wiman B. Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor. Evidence for ‘second-site’ interactions. Biochim J 1988; 251: 327-332

58 Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost 2009; 7: 4-13

59 Collen D. Identification and some properties of a new fast-reacting plasmin inhibitor in human plasma. Eur J Biochem 1976; 69: 209-216

60 Rákóczi I, Wiman B, Collen D. On the biological significance of the specific interaction between fibrin, plasminogen and antiplasmin. Biochim Biophys Acta 1978; 540: 295-300

61 Sakata Y, Aoki N. Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest 1982; 69: 536-542

62 Mosnier LO, Bouma BN. Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler Thromb Vasc Biol 2006; 26: 2445-2453

63 Saibeni S, Bottasso B, Spina L, Bajetta M, Danese S, Gasbarrini A, de Franchis R, Vecchi M. Assessment of thrombin-activatable fibrinolysis inhibitor (TAFI) plasma levels in inflammatory bowel diseases. Am J Gastroenterol 2004; 99: 1966-1970

64 Gris JC, Schved JF, Raffanel C, Dubois A, Aguilar-Martinez P, Arnaud A, Sanchez N, Sarlat C, Balmès JL. Impaired fibrinolytic capacity in patients with inflammatory bowel disease. J Thromb Haemost 1990; 63: 472-475

65 de Jong E, Porte RJ, Knot EA, Verheijen JH, Dees J. Disturbed fibrinolysis in patients with inflammatory bowel disease. A study in blood plasma, colon mucosa, and faeces. Gut 1989; 30: 188-194

66 Koutroubakis IE, Sfridaki A, Tsilakoudi G, Coucoutsi C, Theodoropoulou A, Kouromalis EA. Plasma thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 levels in inflammatory bowel disease. Eur J Gastroenterol Hepatol 2008; 20: 912-916

67 von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100: 27-40

68 Fiore S, Serhan CN. Formation of lipoxins and leukotrienes by receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor–primed neutrophils. J Exp Med 1990; 172: 1451-1457

69 Gangemi S, Lucitti G, D’Urbano E, Mallamace A, Santoro D, Bellinghieri G, Davi G, Romano M. Physical exercise increases urinary excretion of lipoxin A4 and related compounds. J Appl Physiol 2003; 94: 2237-2240

70 Breitenstein A, Camici GG, Tanner FC. Tissue factor: beyond coagulation in the cardiovascular system. Clin Sci (Lond) 2009; 118: 159-172

71 Cel A, Pellegrini G, Lorenzut R, De Blasi A, Ready N, Furie BC, Furie B. P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci USA 1994; 91: 8767-8771

72 Cambien B, Wagner DD. A new role in hemostasis for the receptor P-selectin. Trends Mol Med 2004; 10: 179-186

73 Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357: 2482-2494

74 André P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD. CD40L stabilizes arterial thrombi by a beta2 integrin-depended mechanism. Nat Med 2002; 8: 247-252

75 Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 2001; 58: 41-43

76 Russo S, Bussolati B, Deambrosis I, Mariano F, Camussi G. Platelet-activating factor mediates CD40-dependent angiogenesis and endothelial-smooth muscle cell interaction. J Immunol 2003; 171: 5489-5497

77 Anand SX, Viles-Gonzalez JF, Badimon LJ, Cavusoglu E, Marmor JD. Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb Haemost 2003; 90: 377-384

78 Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, Zernecke A, Seijkens T, Engel D, Cleutjens J, Keller AM, Naik SH, Boon L, Oufella HA, Mallat Z, Ahonen CL, Noblelle RJ, de Winther MP, Daemen MJ, Biessen EA, Weber C. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 2010; 207: 391-404

79 Morowotz DA, Allen LW, Kirnsen JB. Thrombocytosis in chronic inflammatory bowel disease. Ann Intern Med 1968; 68: 1013-1021

80 Webberley MJ, Hart MT, Melikian V. Thromboembolism in inflammatory bowel disease: role of platelets. Gut 1993; 34: 247-251

81 Collins CE, Cahill MR, Newland AC, Rampton DS. Platelets circulate in an activated state in inflammatory bowel disease. Gastroenterology 1994; 106: 840-845

82 Irving PM, Macey MG, Shah U, Webb L, Langmead L, Rampton DS. Formation of platelet-leukocyte aggregates in inflammatory bowel disease. Am J Gastroenterology 2004; 100: 361-372

83 Larsen TB, Nielsen JN, Fredholm L, Lund ED, Brandslund L, Munkholm P, Hey H. Platelets and anticoagulant capacity in patients with inflammatory bowel disease. Pathophysiol Haemost Thromb 2002; 32: 92-96

84 Yüksel O, Helvacı K, Başar O, Kökülü S, Caner S, Helvaci N, Abaylı E, Altiparmak E. An overlooked indicator of disease activity in ulcerative colitis: mean platelet volume. Platelets 2009; 20: 277-281

85 Vizioli L, Muscari S, Muscari A. The relationship of mean platelet volume with the risk and prognosis of cardiovascular diseases. Int J Clin Pract 2009; 63: 1509-1515

86 Borcherding F, Nitschke M, Hundorfean G, Rupp J, von Smolinski D, Bieber K, van Kooten C, Lehrert H, Fellermann K, Bünning J. The CD40-CD40L pathway contributes to the proinflammatory function of intestinal epithelial cells in inflammatory bowel disease. Am J Pathol 2010; 176: 1816-1827

87 Danese S, Scaldaferri F, Papa A, Pola R, Gasbarrini A, Sgambaro A, Cattadini A. CD40L-positive platelets induce CD40L expression de novo in endothelial cells: adding a loop to microvascular inflammation. Arterioscler Thromb Vasc Biol 2004; 24: e162

88 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8: 1227-1234

89 Davis C, Fischer J, Ley K, Sarembock IJ. The role of inflammation in vascular injury and repair. J Thromb Haemost 2003; 1: 1699-1709

90 Vestweber D, Blanks JE. Mechanisms that regulate the function of the selectins and their ligands. Physiol Rev 1999; 79: 181-213

91 Vandendries ER, Furie BC, Furie B. Role of P-selectin and PSGL-1 in coagulation and thrombosis. Thromb Haemost 2004; 92: 459-466
92 Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. *Thromb Haemost* 2001; 86: 178-188

93 Wagner DD, Burger PC. Platelet in inflammation and thrombosis. *Arterioscler Thromb Vasc Biol* 2003; 23: 2131-2137

94 Sadler JE. Biochemistry and genetics of von Willebrand factor. *Annu Rev Biochem* 1998; 67: 395-424

95 Huang RH, Wang Y, Roth R, Yu X, Purvis AR, Heuser JE, Egelman EH, Sadler JE. Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand factor. *Proc Natl Acad Sci USA* 2008; 105: 482-487

96 Huizinga EG, Tsuji S, Romijn RA, Schiphorst ME, de Groot PG, Sixma JJ, Gross P. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. *Science* 2002; 297: 1176-1179

97 Padilla A, Moake JL, Bernardo A, Ball C, Wang Y, Arya M, Nolasco L, Turner N, Berndt MC, Anvari B, López JA, Dong JF. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. *Blood* 2004; 103: 2150-2156

98 Papa A, Scaldaferrer F, Danese S, Guglielmo S, Roberto I, Bonizzi M, Mocci G, Felice C, Ricci C, Andrisani G, Fedeli G, Gasbarrini G, Gasbarrini A. Vascular involvement in inflammatory bowel disease: pathogenesis and clinical aspects. *Dis Dig* 2008; 26: 149-155

99 Danese S, Sans M, de la Motte C, Grassi I, West G, Phillips MH, Pola R, Rutella S, Willis J, Gasbarrini A, Fiochii C. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. *Gastroenterology* 2006; 130: 2060-2073

100 Rafiee P, Johnson CP, Li MS, Ogawa H, Heidemann J, Johnson CP, Cederbaum SD, Ignarro LJ. Arginase activity during high-output NO production. *Biochemistry* 2006; 45: 13268-13273

101 Buga GM, Singh R, Pervin S, Rogers NE, Schmitz DA, Jenkins CM, Cederbaum SD, Ignarro LJ. Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. *Am J Physiol Gastrointest Liver Physiol* 2007; 292: G1323-G1336

102 Gobert AP, Cheng Y, Akhtar M, Mersey BD, Blumberg DR, Cross RK, Chaturvedi R, Drachenberg CB, Boucher JL, Hackler A, Casero RA Jr, Wilson KT. Protective role of arginase in a mouse model of colitis. *J Immunol* 2004; 173: 2109-2117

103 Borensztajn K, Peppelensbosh MP, Spek CA. Evidence of ADAMTS-13: A new prothrombotic mechanism in diseases associated with oxidative stress. *J Clin Invest* 2004; 114: 1444-1456

104 Chen D, Dorling A. Critical roles for thrombin in acute and chronic inflammation. *J Thromb Haemost* 2009; 7 Suppl 1: 122-126

105 Ruf W, Dorflerentzner A, Riewald M. Specificity of coagulation factor Xa signaling: the link between coagulation and inflammatory bowel disease? *Trends Pharmacol Sci* 2009; 30: 8-16

106 Vergnolle N, Cellars L, Steinhoff M, Andrade-Gordon P, Hollenberg MD, Wallace JL, Fiorucci S, Vergnolle N. Proteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune response. *Inflamm Bowel Dis* 2005; 11: 792-798

107 Borensztajn K, Peppelensbosh MP, Spek CA. Coagulation factor Xa signaling: the link between coagulation and inflammatory bowel disease? *Trends Pharmacol Sci* 2009; 30: 8-16

108 Sabo TM, Maurer MC. Biophysical investigation of GpIbalpha binding to thrombin anion binding exosite II. *Biochemistry* 2001; 40: 13269-13273

109 Sankey EA, Dhillon AP, Anthony A, Wakefield AJ, Sim R, More L, Hudson M, Sawyer AM, Pounder RE. Early mucosal changes in Crohn's disease. *Gut* 1993; 34: 375-381

110 More L, Sim R, Hudson M, Dhillon AP, Pounder R, Wakefield AJ. Immunohistochemical study of tissue factor expression in normal intestine and idiopathic inflammatory bowel disease. *J Clin Pathol* 1995; 48: 703-708

111 Kirchner J, Shorter RG. Inflammatory Bowel Disease. Baltimore: Williams & Wilkins, 1995

112 Arfors KE, Ruttili G, Svensjo E. Microvascular transport of macromolecules in normal and inflammatory conditions. *Acta Physiol Scand Suppl* 1979; 147: 93-102

113 Cunningham MA, Rondoue E, Chen X, Coughlin SR, Holdsworth SR, Tipping PG. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. *J Exp Med* 2000; 191: 455-462

114 Howell DC, Laurent GJ, Chambers RC. Role of thrombin and its major cellular receptor, protease-activated receptor-1, in pulmonary fibrosis. *Biochem Soc Trans* 2002; 30: 211-216

115 Cenac N, Cellars L, Steinhoff M, Andrade-Gordon P, Hollenberg MD, Wallace JL, Fiorucci S, Vergnolle N. Proteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune response. *Inflamm Bowel Dis* 2005; 11: 792-798

116 Chen D, Dorling A. Critical roles for thrombin in acute and chronic inflammation. *J Thromb Haemost* 2009; 7 Suppl 1: 122-126

117 Ruf W, Dorfler A, Riewald M. Specificity of coagulation factor Xa signaling. *J Thromb Haemost* 2003; 1: 1495-1503

118 Bar-Shavit R, Khan AJ, Mann KG, Wilner GD. Identification of a thrombin sequence with growth factor activity on macrophages. *Proc Natl Acad Sci USA* 1986; 83: 976-980

119 Dutt T, Toh CH. The Yin-Yang of thrombin and activated protein C. *Br J Haematol* 2008; 140: 505-515

120 Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD. Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. *Cell* 1996; 84: 563-574

121 de Cristofaro R, De Candia E, Landolfi R, Rutella S, Hall SW. Structural and functional mapping of the thrombin domain involved in the binding to the platelet glycoprotein Ib. *Biochemistry* 2001; 40: 13268-13273

122 de Cristofaro R, De Candia E, Landolfi R, Rutella S, Hall SW. Structural and functional mapping of the thrombin domain involved in the binding to the platelet glycoprotein Ib. *Biochemistry* 2001; 40: 13268-13273

123 Sabo TM, Maurer MC. Biophysical investigation of GPIbalpha binding to thrombin anion binding exosite II. *Biochemis* 2009; 48: 7110-7122

124 de Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. *J Biol Chem* 2001; 276: 4692-4698

125 Minami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Aird WC. Thrombin and phenotypic modulation of the endothelium. *Arterioscler Thromb Vasc Biol* 2004; 24: 41-53

126 Tesfamariam B, Allen GT, Normandin D, Antonacci MJ. Involvement of the "tethered ligand" receptor in thrombin-induced endothelium-mediated relaxations. *Am J Physiol* 1993; 265: H1744-H1749

127 Hamilton JR, Moffatt JD, Frauman AG, Cocks TM. Protease-activated receptor (PAR) 1 but not PAR2 or PAR4 mediates endothelium-dependent relaxation to thrombin and trypsin

Scaladaferr Fi et al. Coagulation and IBD

WJG - www.wjgnet.com

February 7, 2011 | Volume 17 | Issue 5 |
in human pulmonary arteries. J Cardiovasc Pharmacol 2001; 38: 108-119

130 Wu SQ, Aird WC. Thrombin, TNF-alpha, and LPS exert overlapping but nonidentical effects on gene expression in endothelial cells and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2005; 289: H1873-H1885

131 Blanc-Brude OP, Archer F, Leoni P, Derian C, Bolsover S, Laurent GJ, Chambers RC. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation. Exp Cell Res 2005; 304: 16-27

132 Riewald M, Ruf W. Mechanistic coupling of protease signalling and initiation of coagulation by tissue factor. Proc Natl Acad Sci USA 2001; 98: 7742-7747

133 Daubie V, Cauwenberghs S, Senden NH, Pochet R, Lindhout T, Buurman WA, Heemskerk JW. Factor Xa and thrombin evoke additive calcium and proinflammatory responses in endothelial cells subjected to coagulation. Biochim Biophys Acta 2006; 1763: 860-869

134 Seymour ML, Binion DG, Compton SJ, Hollenberg MD, MacNaughton WK. Expression of proteinase-activated receptor-2 on human primary gastrointestinal myofibroblasts and stimulation of prostaglandin synthesis. Can J Physiol Pharmacol 2005; 83: 605-616

135 Senden NH, Jeunhomme TM, Heemskerk JW, Wagenvoord R, van’t Veer C, Hemker HC, Buurman WA. Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol 1998; 161: 4318-4324

136 Hezi-Yamin A, Wong PW, Byen-Ly N, Komuves LG, Prasad KS, Phillips DR, Sinha U. Synergistic induction of tissue factor by coagulation factor Xa and TNF: evidence for involvement of negative regulatory signaling cascades. Proc Natl Acad Sci USA 2005; 102: 12077-12082

137 McLean K, Schirm S, Johns A, Morser J, Light DR. FXa-induced responses in vascular wall cells are PAR-mediated and inhibited by ZK-808754. Thromb Res 2001; 103: 281-297

138 Riewald M, Kravchenko VV, Petrovan RJ, O’Brien PJ, Brass LF, Ulevich RJ, Ruf W. Gene induction by coagulation factor Xa is mediated by activation of protease-activated receptor 1. Blood 2001; 97: 3109-3116

139 Altieri DC, Stammes SJ. Protease-dependent T cell activation: ligation of effector cell protease receptor-1 (EPR-1) stimulates lymphocyte proliferation. Cell Immunol 1994; 155: 372-383

140 Cirino G, Cicale C, Bucci M, Sorrentino L, Ambrosini G, DeDominicis G, Altieri DC. Factor Xa as an interface between coagulation and inflammation. Molecular mimicry of factor Xa associated with effector cell protease receptor-1 induces acute inflammation in vivo. J Clin Invest 1997; 99: 2446-2451

141 Lust M, Vulcano M, Danese S. The protein C pathway in inflammatory bowel disease: the missing link between inflammation and coagulation. Trends Mol Med 2008; 14: 237-244

142 Dahlbäck B, Villoutreix BO. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol 2005; 25: 1311-1320

143 Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev 2009; 23: 225-229

144 Castellino FJ, Ploplis VA. The protein C pathway and pathologic processes. J Thromb Haemost 2009; 7 Suppl 1: 140-145

145 Bauer KA, Kass BL, Beeler DL, Rosenberg RD. Detection of protein C activation in humans. J Clin Invest 1984; 74: 2033-2041

146 Castoldi E, Hackeng TM. Regulation of coagulation by protein S.Curr Opin Hematol 2008; 15: 529-536

147 Magdelevnas EJ, Keuren JF, Curvers J. Factor Va, bound to microparticles released during platelet storage, is resistant to inactivation by activated protein C. Transfusion 2007; 47: 1880-1888

148 Rezaie AR. Vitronectin functions as a cofactor for rapid inhibition of activated protein C by plasminogen activator inhibitor-1. Implications for the mechanism of profibrinolytic action of activated protein C. J Biol Chem 2001; 276: 15567-15570

149 Komissarov AA, Andreason PA, Declerck PJ, Kamikubo Y, Zhou A, Gruber A. Redirection of the reaction between activated protein C and a serpin to the substrate pathway. Thromb Res 2008; 122: 397-404

150 Preston RJ, Tran S, Johnson JA, Aine FN, Harmon S, White B, Smith OP, Jenkins PV, Dahlbäck B, O’Donnell JS. Platelet factor 4 impairs the anticoagulant activity of activated protein C. J Biol Chem 2009; 284: 5869-5875

151 White TC, Berny MA, Tucker EL, Urbanus RT, de Groot PG, Fernández JA, Griffin JH, Gruber A, McCarty OJ. Protein C supports platelet binding and activation under flow: role of glycoprotein Ib and apolipoprotein E receptor 2. J Thromb Haemost 2006; 8: 995-1002

152 Dahlbäck B. The tale of protein S and C4b-binding protein, a story of affinity. Thromb Haemost 2007; 98: 90-96

153 Heeb MJ, Prashun D, Griffin JH, Bouma BN. Plasma protein S contains zinc essential for efficient activated protein C-dependent anticoagulant activity and binding to factor Xa, but not for efficient binding to tissue factor pathway inhibitor. FASEB J 2009; 23: 2244-2253

154 Zheng X, Li W, Gu JM, Qu D, Ferrell GL, Esmon NL, Esmon CT. Effects of membrane and soluble EPCR on the hemostatic balance and endothoxemia in mice. Blood 2007; 109: 1003-1009

155 Mosnier LO, Griffin JH. Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease-activated receptor-1 and endothelial cell protein C receptor. Biochem J 2003; 373: 65-70

156 Cheng T, Liu D, Griffin JH, Fernández JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 2003; 9: 338-342

157 Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3: 1800-1814

158 Ludeman MJ, Kataoka H, Srinivasan Y, Esmon NL, Esmon CT, Coughlin SR. PAR1 cleavage and signaling in response to activated protein C and thrombin. J Biol Chem 2005; 280: 13122-13128

159 Bae JS, Yang I, Rezaie AR. Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc Natl Acad Sci USA 2007; 104: 2867-2872

160 Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 2002; 296: 1880-1882

161 Joyce DE, Gelbert L, Ciaccia A, Defoff B, Grinnell BW. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 2001; 276: 11199-11203

162 Scaldaferris F, Sans M, Vetranio S, Graziani C, De Cristofaro R, Gerlitz B, Repici A, Arena V, Malessa A, Fanes J, Grinnell BW, Danese S. Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease. J Clin Invest 2007; 117: 1951-1960

163 Boehme MW, Autschbach F, Zuna I, Scherbaum WA, Stange E, Raeth U, Sieg A, Stremmel W. Elevated serum levels and reduced immunohistochemical expression of thrombomodulin in active ulcerative colitis. Gastroenterology 1997; 113: 107-117

164 Diamanti M, Tsuchiue ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest 2004; 34: 392-401

165 Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004; 24: 1374-1383

166 Faioni EM, Ferrero S, Fontana G, Gianelli U, Ciulla MM, Vecchi M, Sabileni S, Biguzzi E, Cordani N, Franchi F, Bosari S, Cattaneo M. Expression of endothelial protein C recep-
tor and thrombomodulin in the intestinal tissue of patients with inflammatory bowel disease. Crit Care Med 2004; 32: S266-S270
167 Isobe H, Okajima K, Harada N, Liu W, Okabe H. Activated protein C reduces stress-induced gastric mucosal injury in rats by inhibiting the endothelial cell injury. J Thromb Haemost 2004; 2: 313-320
168 Bae JS, Rezaie AR. Thrombin and activated protein C inhibit the expression of secretory group IIA phospholipase A(2) in the TNF-alpha-activated endothelial cells by EPCR and PAR-1 dependent mechanisms. Thromb Haemost 2004; 92: e9-e15
169 Danese S, Vetrano S, Zhang L, Poplis VA, Castellino FJ. The protein C pathway in tissue inflammation and injury: pathogenic role and therapeutic implications. Blood 2010; 115: 1121-1130
170 Elsayed E, Becker RC. The impact of heparin compounds on cellular inflammatory responses: a construct for future investigation and pharmaceutical development. J Thromb Thrombolysis 2003; 15: 11-18
171 Papa A, Danese S, Gasbarrini A, Gasbarrini G. Review article: potential therapeutic applications and mechanisms of action of heparin in inflammatory bowel disease. Aliment Pharmacol Ther 2000; 14: 1403-1409
172 Folwaczny C, Wiebecke B, Loeschke K. Unfractionated heparin in the therapy of patients with highly active inflammatory bowel disease. Am J Gastroenterol 1999; 94: 1551-1555
173 Ang YS, Mahmud N, White B, Byrne M, Kelly A, Lawler M, McDonald GS, Smith OP, Keeling PW. Randomized comparison of unfractionated heparin with corticosteroids in severe active inflammatory bowel disease. Aliment Pharmacol Ther 2000; 14: 1015-1022
174 Dotan I, Hallak A, Arber N, Santo M, Alexandrowitz A, Knaani Y, Hershkoviz R, Brazowski E, Halpern Z. Low-dose low-molecular weight heparin (enoxaparin) is effective as adjuvant treatment in active ulcerative colitis: an open trial. Dig Dis Sci 2001; 46: 2239-2244
175 Panés J, Esteve M, Cabrè E, Hinojosa J, Andreu M, Sans M, Fernandez-Bañares F, Feu F, Gassull MA, Piqué JM. Comparison of heparin and steroids in the treatment of moderate and severe ulcerative colitis. Gastroenterology 2000; 119: 903-908
176 Bloom S, Kielerich S, Lassen MR, Forbes A, Leiper K, Langholz E, Irvine EJ, O’Morain C, Lowson D, Orm S. Low molecular weight heparin (tinzaparin) vs. placebo in the treatment of mild to moderately active ulcerative colitis. Aliment Pharmacol Ther 2004; 19: 871-879
177 Zezos P, Papaioannou G, Nikolaidis N, Patsioura K, Papa-georgiou A, Vassiliadis T, Giouleme O, Evgenidis N. Low-molecular-weight heparin (enoxaparin) as adjuvant therapy in the treatment of active ulcerative colitis: a randomized, controlled, comparative study. Aliment Pharmacol Ther 2006; 23: 1443-1453
178 de Bievre MA, Vrij AA, Schoon EJ, Dijkstra G, de Jong AE, Oberndorff-Klein Woolthuis AH, Hemker HC, Stockbrügger RW. Randomized, placebo-controlled trial of low molecular weight heparin in active ulcerative colitis. Inflamm Bowel Dis 2007; 13: 753-758
179 Shen J, Ran ZH, Tong JL, Xiao SD. Meta-analysis: The utility and safety of heparin in the treatment of active ulcerative colitis. Aliment Pharmacol Ther 2007; 26: 653-663
180 Pastorelli L, Saibeni S, Spina L, Signorelli C, Celasco G, de Franchis R, Vecchi M, Oral, colonic-release low-molecular-weight heparin: an initial open study of Parnaparin-MMX for the treatment of mild-to-moderate left-sided ulcerative colitis. Aliment Pharmacol Ther 2008; 28: 581-588
181 Chande N, McDonald JW, Macdonald JK. Unfractionated or low-molecular weight heparin for induction of remission in ulcerative colitis. Cochrane Database Syst Rev 2008; CD006774

S- Editor Tian L L- Editor Webster JR E- Editor Lin YP