Genome-wide identification and expression analysis of the 14-3-3 gene family in soybean (*Glycine max*)

Yongbin Wang¹,², Lei Ling³, Zhenfeng Jiang², Weiwei Tan¹, Zhaojun Liu¹, Licheng Wu¹, Yuanling Zhao⁴, Shanyong Xia⁴, Jun Ma⁴, Guangjin Wang⁵ Corresp., Wenbin Li Corresp.

¹ Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
² Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
³ Harbin Normal University, Harbin, Heilongjiang, China
⁴ Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
⁵ Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China

Corresponding Authors: Guangjin Wang, Wenbin Li
Email address: gjw1962@yeah.net, wenbinli@neau.edu.cn

In eukaryotes, proteins encoded by the 14-3-3 genes are ubiquitously involved in the plant growth and development. The 14-3-3 gene family has been identified in several plants. In the present study, we identified 22 *GmGF14* genes in the soybean genomic data. On the basis of the evolutionary analysis, they were clustered into ε and non-ε groups. The *GmGF14s* of two groups were highly conserved in motifs and gene structures. RNA-seq analysis suggested that *GmGF14* genes were the major regulator of soybean morphogenesis. Moreover, the expression level of most *GmGF14s* changed obviously in multiple stress responses (drought, salt and cold), suggesting that they have the abilities of responding to multiple stresses. Taken together, this study shows that soybean 14-3-3s participate in plant growth and can response to various environmental stresses. These results provide important information for further understanding of the functions of 14-3-3 genes in soybean.
Genome-wide identification and expression analysis of the 14-3-3 gene family in soybean (Glycine max)

Yongbin Wang¹,², Lei Ling³, Zhenfeng Jiang², Weiwei Tan¹, Zhaojun Liu¹, Licheng Wu¹, Yuanling Zhao⁴, Shanyong Xia⁴, Jun Ma⁴, Guangjin Wang⁵, Wenbin Li²

¹ Biotechnology Research Institute Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, PR China
² Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
³ Harbin Normal University, Harbin, Heilongjiang, 150025, PR China
⁴ Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, PR China
⁵ Soybean Research Institute Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, PR China

Corresponding Author:
Wenbin Li²
NO.600 Changjiang Street, Xiangfang District, Harbin, Heilongjiang, 150086, China
Email address: wenbinli@neau.edu.cn
Guangjin Wang⁵
NO.368 Xuefu road, Nangang District, Harbin, Heilongjiang, 150086, China
Email address: gjw1962@yeah.net
Abstract

In eukaryotes, proteins encoded by the 14-3-3 genes are ubiquitously involved in the plant growth and development. The 14-3-3 gene family has been identified in several plants. In the present study, we identified 22 GmGF14 genes in the soybean genomic data. On the basis of the evolutionary analysis, they were clustered into ε and non-ε groups. The GmGF14s of two groups were highly conserved in motifs and gene structures. RNA-seq analysis suggested that GmGF14 genes were the major regulator of soybean morphogenesis. Moreover, the expression level of most GmGF14s changed obviously in multiple stress responses (drought, salt and cold), suggesting that they have the abilities of responding to multiple stresses. Taken together, this study shows that soybean 14-3-3s participate in plant growth and can response to various environmental stresses. These results provide important information for further understanding of the functions of 14-3-3 genes in soybean.

Introduction

The 14-3-3 genes are first isolated from brain tissue, and they are ubiquitously found in eukaryotes (Li et al., 2015; Yang et al., 2017; Kumar et al., 2015; Takahashi, 2006). 14-3-3 proteins are highly conserved small acidic proteins in different organisms, encoded by a large gene family (27-32 kDa) (Ferl et al., 1994; Cao & Tan, 2018). These proteins can form dimers (homo- or hetero- dimers) and have approximately nine antiparallel α-helices (Ferl et al., 2002; Rodriguez & Guan, 2010). These structures work as binding sites and interact with 14-3-3 proteins and their targets, they also bringing two proteins together as a protein complex based on their dimeric properties (Sijbesma et al., 2017; Valente et al., 2012; Li & Dhaubhadel, 2012). 14-3-3s involved in several protein-protein interactions, such as responding to biotic/abiotic stress, participating in plant hormone signaling and regulating tissue development in various plants (Roberts et al., 2002; Camoni et al., 2018; Zhang et al., 2010).
To date, more 14-3-3s have been reported in several plants, such as Arabidopsis, rice, tobacco, populus and *Medicago truncatula* (Chen et al., 2006; Rosenquist et al., 2001; Xu & Shi, 2006; Tian et al., 2015; Cheng et al., 2016). In plants, the 14-3-3 proteins were named as GF14 or GRF due to they are a part of protein/G-box complex (de Vetten & Ferl, 1994; Rosenquist et al., 2001). 14-3-3s distributed in different organelles, such as cytoplasm, cell membrane, nucleus, chloroplast and mitochondria (Bihn et al., 2010; Sehnke et al., 2000; Ferl et al., 2002). In plants, they were regulated by several biological processes (Cheng et al., 2016; Tian et al., 2015), for example, multiple mutant analysis suggested that Arabidopsis 14-3-3 genes regulate root growth, chloroplast division, photosynthesis and leaf longevity (Liesbeth et al., 2015). *GhGRFs* were found involving in plant development and signaling transduction in cotton fiber (Zhang et al., 2010). In addition, an increasing number of works were carried out to investigate the roles of 14-3-3s in plants under multiple stresses (Roberts et al., 2002). Most of *OsGRF* genes’ expression changed under the heat, cold and salt stresses (Yashvardhini et al., 2017). Overexpression of *AtGRF6* in transgenic cotton, results showed a stay-green phenotype, indicating that they can improve plant tolerance to drought stress (Juqiang et al., 2004).

Soybean is an important cash crop in the world, while its production often influenced by various environmental stresses (Masuda & Goldsmith, 2009). However, there are not enough attentions focus on soybean *GmGF14s*. Previous studies identified 18 *GmGF14* genes in soybean, which was different from our study (Li et al., 2011). In this study, we identified a total of 22 *GmGF14* genes in soybean genome. Phylogenic relationship, gene structures, protein motifs and expression patterns of all the *GmGF14* genes were analyzed, together with their responses to various stresses in soybean. These results will provide important information for further study to understand the regulating mechanism of *GmGF14* genes during their growth and their responding abilities to various environmental stresses.

Materials & Methods

1. Identification of 14-3-3 genes
The Hidden Markov Model (HMM) profiles of the 14-3-3 motif PF00244 were downloaded from the Pfam database (Punta et al., 2004). HMM searched 14-3-3 motif (PF00244) from the Glycine max protein database with values (e-value) cut-off at 0.1 (Punta et al., 2004). The integrity of the 14-3-3 motif was determined using the online program SMART (http://smart.embl-heidelberg.de/) with an e-value ≤0.1 (Ivica et al., 2012). In addition, the three fields (length, molecular weight, and isoelectric point) of each 14-3-3 protein was predicted by the online ExPASy program (http://www.expasy.org/tools/) (Johana et al., 2015).

2. Phylogenetic analysis

To investigate the phylogenetic relationship of the 14-3-3 gene families in Arabidopsis thaliana, Oryza sativa, Medicago truncatula and Glycine max, 14-3-3 protein sequences were downloaded from Phytozome v12.1 (http://www.phytozome.org) (Goodstein et al., 2012). 14-3-3s were aligned using the BioEdit program. A neighbor-joining (NJ) phylogenetic tree was constructed using the MEGA 5.0 program (Tamura et al., 2011). Bootstrapping was performed with 1000 replications. Genes were classified according to the distance homology with Arabidopsis thaliana genes (Ferl et al., 1994).

3. Sequence alignment, motif prediction and gene structure of 14-3-3 genes

The 3D structure of 14-3-3 proteins were predicted by using Phyre2 and ESPript 3.0 software (Gouet et al., 2003; Kelley et al., 2015). Multiple alignments of proteins were conducted using Jalview software with ClustalW method (Clamp et al., 2004). The online MEME analysis is used to identify the unknown conserved motifs (http://meme.ewi.ebi.edu.au/meme/intro.html) by using the following parameters: site distribution: zero or one occurrence (of a contributing motif site) per sequence, maximum number of motifs: 20, and optimum motif width ≥6 and ≤200 (Bailey et al., 2015). A gene structure display server program (http://gsds.cbi.pku.edu.cn/index.php) was used.
to display the \textit{G. max} 14-3-3 gene structures.

4. Gene duplication and collinearity analysis

The physical locations of the GmGF14 genes on the soybean chromosomes were mapped by using MG2C website (http://mg2c.iask.in/mg2c_v2.0/). The analysis of synteny among the soybean genomes was conducted locally using a method similar to that developed for the PGDD (http://chibba.agtec.uga.edu/duplication/) (Krzywinski & Schein, 2009). First, BLASTP, OrthoMCL software (http://orthomcl.org/orthomcl/about.do#release) and MCScanX software (Wang et al., 2012) were used to search for potential homologous gene pairs (E < 1 e-5, top 5 matches) across multiple genomes. Then, these homologous pairs were used as the input for the PGDD database (http://chibba.agtec.uga.edu/duplication/). Ideograms were created by using Circos (Krzywinski & Schein, 2009).

5. Calculating Ka and Ks

The Ka and Ks were used to assess selection history and divergence time (Li et al., 1981). The number of synonymous (Ks) and nonsynonymous (Ka) substitutions of duplicated 14-3-3 genes were computed by using the KaKs_Calculator 2.0 with the NG method (Wang et al., 2010). The divergence time (T) was calculated using the formula $T = Ks / (2 \times 6.1 \times 10^{-9}) \times 10^6$ million years ago (MYA) (Kim et al., 2013).

6. 14-3-3 genes expression analysis of soybean

The expression data of 14-3-3 genes in different tissues, including root, root hair, flower, nodule, pod, stem, leaf, SAM and seed, were available in Phytozone v12.1 database (https://phytozone.jgi.doe.gov/pz/portal.html). We retrieved the fragments per kilobase per
million reads (FPKM) value representing the expression level of GmGF14 genes, then generated
the heatmap and k-means clustering by using R 3.2.2 software.

7. Plant material and treatments

Glycine max (Williams 82) was used in this study. Seeds were planted in a 3:1 (w/w) mixture of
soil and sand, germinated, and irrigated with half-strength Hoagland solution once every 2 days.
The seedlings were grown in a night temperature of 20 °C and day temperature of 22 °C, relative
humidity of 60 %, and a 16/8 h photoperiod (daytime: 05:00–21:00). After 4 weeks, the
germinated seedlings were treated with 20% PEG6000 (drought), 250 mM NaCl solution (salt),
and 4 °C (cold). Control and treated seedlings were harvested 1 h, 6 h, and 12 h after treatment.
All samples were frozen in liquid nitrogen and stored at -80 °C until use.

8. RNA extraction and Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from the root of soybean using RNAiso Plus (TaKaRa, Toyoto, Japan)
according to manufacturer's instructions. 2μg RNA was extracted using PrimeScript RT reagent
Kit with gDNA Eraser (TaKaRa, Toyoto, Japan). The cDNA samples were diluted to 2.5 ng/L.
Quantitative Real-time PCR (qRT-PCR) was performed using SYBR Premix Ex Taq II
(TaKaRa, Toyoto, Japan) on an ABI Prism 7000 sequence detection system (Applied
Biosystems, USA) with the primers listed in Table S1. PCR amplification was performed in
accordance with SYBR Premix Ex Taq (TaKaRa, Toyoto, Japan) response system. For each
sample, three biological replicates were conducted. Relative expression was calculated by the
$2^{-\Delta\Delta Ct}$ method (Livak & Schmittgen, 2001). The actin and GAPDH genes were used as internal
control.

9. Gene Ontology Enrichment
Once the sequences were obtained ran a BLASTX search against the Uniref100 database at a 1e-30 significance level. The matches were extracted and compared to the GO annotation generated against Uniref100 hits located at EBI. The GO annotation of the *GmGF14* genes by using WEGO 2.0 website (http://wego.genomics.org.cn/).

Reframed the sentence as: The GO annotation of the GmGF14 genes was obtained by using WEGO 2.0 website.

Results

1. Identification and multiple sequences alignment of *GmGF14* genes

 We identified 22 *GmGF14* genes, which were named from *GmGF14a* to *GmGF14v* based on their physical locations on chromosomes. ExPASy predicted that 22 GmGF14 proteins have different physical and chemical properties as their amino acid lengths ranged from 71 aa (*GmGF14v*) to 754 aa (*GmGF14j*), with an average of 295 aa, and their molecular weights ranged from 7.92 kDa (*GmGF14v*) to 81.75 kDa (*GmGF14j*), the isoelectric points ranged from 4.67 (*GmGF14c/e*) to 5.7 (*GmGF14v*). Detail information of GmGF14 proteins is provided in Table 1. Besides, we found that most of the *GmGF14s* contain highly conserved domains, and ten α-helices were identified in their secondary structures (Fig. 1). In addition, the C-terminal end of 14-3-3 proteins are quite unique in sequence and length.

2. Phylogenetic analysis of the GmGF14s

 We constructed a phylogenetic tree to show the phylogenetic and evolutionary relationships of *GmGF14* genes among *A. thaliana*, *O. sativa*, *M. truncatula* and *G. max* (Fig. 2). The 22 GmGF14 proteins were composed of ε group or non-ε group, 13 GmGF14 proteins (*GmGF14a/b/f/g/j/k/l/n/o/p/q/u/v*) belonged to the former group, while the other 9 GmGF14 proteins (*GmGF14c/d/e/h/i/m/r/s/t*) belonged to the non-ε group.
3. Gene structure and motif analysis

Exon/intron pattern divergence plays a crucial role during evolution. We analyzed the exon/intron pattern of GmGF14s and found that genes of soybean contained 1-6 introns. Among them, non-ε group GmGF14 genes contained 1-4 introns, whereas ε group genes had 1-6 introns. The exon/intron pattern were obviously different in the two groups of GmGF14 genes, suggesting the diversity of GmGF14 genes during the evolution (Fig.3A, Tables S2 and S3). A total of 15 conserved motifs in GmGF14 genes were identified by MEME software. As shown in Fig. 3B, 5 motifs (motifs 1–5) were annotated as 14-3-3 domains, and most of GmGF14 proteins contained these motifs. All non-ε group GmGF14 proteins shared motifs 3, 4 and 15, whereas most ε group soybean 14-3-3 proteins contained the motifs 1-7 and motif 15. In addition, the GmGF14f/j in ε group contained motifs 8-14, and GmGF14v only had motif 6.

4. Chromosomal location and duplication analysis

A chromosomal location map of GmGF14 genes on each chromosome was drawn. As shown in Fig. 4, 22 GmGF14 genes were mapped to thirteenth of twenty chromosomes unevenly, and they were densely distributed on chromosome 4 and chromosome 6, containing 3 members, respectively (Fig. 4). Most of them were distributed on the two ends of the chromosomes. To better understand the evolution of soybean 14-3-3 genes, we checked genome duplication events in this gene family. The GmGF14 gene pairs had 19 segmental duplication events without tandem duplication (Table S4). Among the duplication events, genes on chromosome 8 had the largest number of that (Fig. 4).

5. Evolution and divergence of the 14-3-3 gene family

We found 19 pairs of paralogous in soybean, 27 orthologous pairs between soybean and Arabidopsis, 15 orthologous pairs in soybean and M. truncatula (Table 2). Additionally, we
found that two 14-3-3 genes (GmGF14i and GmGF14s) did not have any homology genes. Two
or more GmGF14 genes matched to one AtGRF gene or Mt14-3-3 gene, implying that these
genes might play key roles in the GmGF14 genes’ expansion during evolution. In addition, to
examine the evolutionary selection process, we calculated Ka/Ks ratios of 19 GmGF14
paralogous pairs (Table 3). All the Ka/Ks value were under 0.3, indicating that they had evolved
mainly in strong purifying selection. The gene differentiation of the 19 gene pairs were
approximately occurred in the 5-20 MYA.

6. Cis-elements in GmGF14s promoters

Cis-elements involved in transcriptional regulation and can response to variety stresses. We
isolated the sequence which is 1.5 kb upstream of the GmGF14 genes to explore their potential
function (Table 4). We found nine potential elements, such as ABRE, AuxRR-core, GARE-
motif, CGTCA/TGACG-motif, P-box, TATC-box, TCA-element and TGA-element, were
involved in ABA, IAA (auxin), GA (gibberellin), MeJA (methyl jasmonate) and SA (salicylic
acid) regulating mechanism. Additionally, there were four elements (TC-rich repeats, ARE,
MBS and LTR) involved in defense/stress, anaerobic induction, drought and low-temperature
responses, respectively. In the GmGF14 promoters, we found different types and numbers of cis-
elements, indicating that they participated in different regulatory mechanisms during plant
growth and development.

7. Expression analysis of GmGF14 genes in different tissues

We analyzed the expression level of GmGF14 genes in different soybean tissues and organs (e.g.,
root, root hair, flower, nodule, pod, stem, leaf, SAM and seed) based on RNA-seq data (Fig. 5).
Results showed that the expression level of most GmGF14 genes varies in different tissues,
suggesting the diversity of their roles. Significantly, most GmGF14s’ expression level in
vegetative organs (e.g., root, root hair, stem, leaf, and SAM) were higher than that of reproductive organs (e.g., flower, pod and seed). Ten *GmGF14* genes (*GmGF14e/i/h/c/r/m/n/q/g/t*) were highly expressed in all tested tissues, suggesting that they regulated the growth and development of soybean. *GmGF14k* was specifically expressed in root, *GmGF14p* was highly expressed in pod and stem, *GmGF14o* was highly expressed in pod. In addition, *GmGF14s* and *GmGF14v* can’t be detected in these tissues.

8. Expression patterns of *GmGF14s* under abiotic stress

Drought, salinity and cold are major factors affecting the production of soybean under natural conditions. We selected 19 genes from *GmGF14* which were differentially expressed (except *GmGF14s, GmGF14u* and *GmGF14v*) to further explore their expression pattern by qRT-PCR under abiotic stresses (Figs 6-8, Tables S5-S8). The expression levels of them were changed over time during the stresses, showing that there were dynamic processes in the *GmGF14s* when they responding to stresses. In addition, we found that different gene duplication pairs have different expression patterns under the abiotic stresses (Table S5). During drought treatment, the expression pattern of three genes (*GmGF14a/b/g*) were all up-regulated in all the time point (Fig. 6, Table S6). Five genes (*GmGF14a/b/e/g/t*) were highly induced at 1h, while the expression levels of *GmGF14c/d/q/r* did not significantly changed at all the time after drought treatment. Conversely, under drought treatment, four *GmGF14* genes (*GmGF14c/d/q/r*) were obviously down-regulated. Under salt stress, the expression levels of *GmGF14a/b/c/e/g/i/q/r/t* at 1h time point up-regulated considerably, then the expression levels decreased (Fig. 7, Table S7). The expression levels of three *GmGF14* genes (*GmGF14f/h/p*) were generally down-regulated at one time point. 5 of 19 *GmGF14* genes (*GmGF14g/h/l/m/t*) were expressed essentially identical, with expression peaking at the first time point (1h) under cold stress (Fig. 8, Table S8). Eight genes (*GmGF14a/b/c/d/e/n/q/r*) were not significantly changed at first time points (1h), followed by a strongly decrease under cold stress.
9. Gene Ontology Enrichment

To further understand the functions of the GmGF14s, we performed GO annotation and GO enrichment analyses (Figure S2 and Table S9). Usually, the GO terms included biological process, molecular function and cellular component. Within the biological process, most genes were assigned to the cellular process (16/22), single-organism process (16/22), biological regulation (14/22), regulation of biological process (14/22) and response to stimulus (14/22). In terms of cellular process, most GmGF14 proteins were predicted to be involved in cell (20/22), cell part (20/22), membrane (16/22), organelle (16/22) and organelle part (14/22). Few genes had predicted distributions in cell junction (2) and symplast (2). Within the molecular function category, only 20 GmGF14 proteins were predicted to be involved in binding. The number of GmGF14 proteins predicted to cell and binding were very high, suggesting that the GmGF14 gene family may play a crucial role in protein binding and cell development.

Discussion

In eukaryotes, the 14-3-3s were highly conserved and could form homo- or hetero- dimers, which then produced different proteins in a protein complex (Takahashi et al., 2003; Ferl et al., 2002). They played important roles in various biological progresses and signal transduction process (Yoon et al., 2012; Wilson et al., 2016). Hence, we carried out genome-wide analysis of GmGF14 genes by bioinformatics analysis and qRT-PCR to investigate their regulation during development processes and/or stress responses. Li identified 18 GmGF14 genes in soybean (Li et al., 2011), however, we found 22 GmGF14 genes. This may due to the fact that we used a newer version database compared with previous study. Recently, the 14-3-3s has been reported in several plants, such as Arabidopsis (13), tobacco (17), rice (18), Populus (12), cotton (6), banana (25) and grape (11) (Saalbach et al., 1997; Ferl et al., 1994; Yashvardhini et al., 2017; Tian et
In soybean, 14-3-3s were divided into two groups, ε group (13 members) and non-ε group (9 members) based on their phylogenetic analysis. Besides, there is a very close relationship between soybean and *M. truncatula*, suggesting that the 14-3-3 family members in legumes are relatively conserved. In addition, ε group *GmGF14* genes have much more exons/intron than non-ε group genes, while the first intron of non-ε group was longer than that of ε group. Besides, the members in ε group contained eight motifs, while non-ε group members had less, usually 3-4 motifs. Furthermore, protein structure analysis show that compared with other species such as banana, grape and rice, the members of 14-3-3s had ten typical antiparallel α-helices. The result of 14-3-3 proteins was different from that in other species, that might due to the soybean genome has undergone two gene duplication events and has more gene diversity in the process of evolution (Wang et al., 2017).

Gene duplication events is important in gene family expansion and could gain functional diversity during evolution, including tandem, transposition and segment duplication events (Kaessmann, 2010). There were 19 gene pairs involved in segment duplication, while no tandem duplication event occurred in *GmGF14s*, indicating that the segment duplication maybe the major gene duplication for this gene family's expansion (Cheng et al., 2018). Among them, ε group had more gene duplication events (14/19; 73.68%) than non-ε group (5/19; 26.32%) in soybean. In addition, we calculated the *Ks* value of each paralogous pairs, and found the most recent duplication event in soybean appeared between 5 to 20 MYA, which is consisting with the recent whole genome duplication (WGD) event in soybean (Wang et al., 2017). The *Ka/Ks* of all the *GmGF14* gene pairs were less than 0.3, suggesting that they were evolved in mainly under strong purifying selection. This result was similar to other plants, meaning that 14-3-3 genes evolved more slowly at the protein level in plants, and they have a conserved evolutionary pattern in *GmGF14* genes.
It has been reported that the 14-3-3 genes were expressed in different tissues in many plants. *PvGRFr* might involve in flower development based on the expression patterns in switchgrass (Wu et al., 2016). In banana, the expression quantity of most *MaGRFs* were accumulated during fruit ripening obviously (Li et al., 2012). The expression levels of most *GmGF14* genes in vegetative organs were higher than that of reproductive organs in plants, suggesting that 14-3-3 genes may participate in morphogenesis directly or indirectly. In soybean, 14-3-3 genes involved in nodule mature, they can affect the formation of the early nodule development when the expression levels of *SGF14c* and *SGF14l* reduced (Radwan et al., 2012). In *M. truncatula*, *Mt14-3-3* genes were involved in rhizobium infections, *Mt14-3-3c* was involved in the early stage of nodule formation (Chen et al., 2006). These results suggesting that the 14-3-3 gene family has various functions, they were similar to the results of the GO enrichment. For the GO enrichment, *GmGF14* genes were mainly concentrated in cell development and protein binding. Except this, different *GmGF14* genes had similar expression patterns in different tissues. For example, paralogous pairs *GmGF14a/b*, *GmGF14k/u*, and *GmGF14o/p* had similar expression patterns in most tested tissues, meanwhile, they also had gene duplication relationship, indicating that they might have similar functions in different tissues, in accordance with the results of GO enrichment.

More and more evidences had suggested that 14-3-3 genes response to environmental stimuli in many plants (Xu & Shi, 2006; Chen et al., 2006; Li et al., 2015). Plant 14-3-3 genes are signal moderators, playing an important role in response to abiotic stress (Li et al., 2015). Overexpression of *AtGRF9* resulted in more carbon distribution from the shoot to the root, and enhanced the drought tolerance of plant by increasing proton secretion in the root growing zone (He et al., 2015). As homologous gene of *AtGRF9*, *GmGF14g* was up regulated during the treatment, and the 1h drought stress treatment caused a threefold increase of its expression level (its expression increased 3-fold with 1h drought stress treatment). In tomato, transcription level of four 14-3-3 genes were significantly up-regulated under salt stress (Xu & Shi, 2006). In this study, nine genes (*GmGF14a/b/c/e/g/i/q/r/t*) were first up-regulated and then decreased after salt stress.
treatment, indicating that soybean 14-3-3 genes have different regulatory mechanisms under stress. In addition, many 14-3-3 genes (e.g., GmGF14b/c/g/j) of soybean changed distinctly under cold treatment, most of the gene expression levels decreased at 6h and 12h treatment time points, suggested that they might play a potential role in responding to cold stress. The results of GO enrichment suggested that GmGF14 genes can respond to stimuli.

The ABA signaling pathway is a major pathway in response to the drought, salt and cold stresses (Zhang et al., 2006; Yu & Qi, 2017). 14-3-3s promoter region contain ABRE promoters, and they could response to stresses directly or indirectly by involving in the ABA signal pathway. In addition, four cis-elements of GmGF14 genes (TC-rich repeats, ARE, MBS and LTR) involved in responding to different abiotic stresses, while other eight cis-elements were involved in multiple plant hormone stress responses. Taken together, these results reported that GmGF14s may have various functions, including regulate plant growth and response to abiotic stresses.

Conclusions

All the 22 GmGF14s were classified into ε group and non-ε group based on their phylogenetic relationship among A. thaliana, O. sativa and M. truncatula. Gene structure and duplication event showed that 14-3-3 gene family was relatively conserved. RNA-seq and qRT-PCR were used to explore the function of GmGF14s. The expression levels of most GmGF14s showed that they could response to multiple stresses. In summary, these results suggest the potential roles of GmGF14 genes in plant development and multiple stress responses, therefore provide scientific references for the further study of GmGF14 genes’ function.

Acknowledgements

The authors would like to thank the key laboratory of crop and livestock molecular breeding of
Heilongjiang Province for providing plenty of helpful manpower and material support.

References:

Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S. 2015. The MEME Suite. *Nucleic Acids Research* **43**: W39-W49 DOI 10.1093/nar/gkv416.

Bihn, E.A., Paul, A.L., Wang, S.W., Erdos, G.W., and Ferl, R.J. 2010. Localization of 14-3-3 proteins in the nuclei of arabidopsis and maize. *Plant Journal for Cell & Molecular Biology* **12(6)**: 1439-1445 DOI 10.1046/j.1365-313x.1997.12061439.x.

Camoni, L., Visconti, S., Aducci, P., and Marra, M. 2018. 14-3-3 Proteins in Plant Hormone Signaling: Doing Several Things at Once. *Frontiers in Plant Science* **9**:297 DOI 10.3389/fpls.2018.00297.

Cao, J., and Tan, X. 2018. Comparative and evolutionary analysis of the 14-3-3 family genes in eleven fishes. *Gene* DOI 10.1016/j.gene.2018.04.016.

Chen, F., Li, Q., Sun, L., and He, Z. 2006. The Rice 14-3-3 Gene Family and its Involvement in Responses to Biotic and Abiotic Stress. *DNA Research* **13(2)**:53 DOI 10.1093/dnares/dsl001.

Cheng, C., Yi, W., Chai, F., Li, S., Xin, H., and Liang, Z. 2018. Genome-wide identification and characterization of the 14–3-3 family in *Vitis vinifera* L. during berry development and cold- and heat-stress response. *BMC Genomics* **19**(1):579 DOI 10.1186/s12864-018-4955-8.

Cheng, Q., Cheng, L., Shen, J., Zhang, Y., Cao, H., Dan, L., and Shen, C. 2016. Genome-Wide Identification and Expression Analysis of the14-3-3Family Genes inMedicago truncatula. *Frontiers in Plant Science* **7** DOI 10.3389/fpls.2016.00320.

Clamp, M., Cuff, J., Searle, S. M., Barton, G. J. 2004. The jalview java alignment editor. *Bioinformatics* **20**(3):426-427. DOI: 10.1093/bioinformatics/btg430

de Vetten, N.C., and Ferl, R.J. 1994. Two genes encoding GF14 (14-3-3) proteins in Zea mays. Structure, expression, and potential regulation by the G-box binding complex. *Plant Physiology* **106**(4):1593-1604 DOI 10.1104/pp.106.4.1593.

Ferl, R.J., Lu, G., and Bowen, B.W. 1994. Evolutionary implications of the family of 14-3-3 brain protein homologs in Arabidopsis thaliana. *Genetica* **92**(2):129-138 DOI 10.1007/bf00163762.

Ferl, R.J., Manak, M.S., and Reyes, M.F. 2002. The 14-3-3s. *Genome Biology* **3**(7):1-7 DOI 10.1186/gb-2002-3-7-reviews3010.

Goodstein, D.M., Shengqiang, S., Russell, H., Rochak, N., Hayes, R.D., Joni, F., Therese, M., William, D., Uffe, H., and Nicholas, P. 2012. Phytozome: a comparative platform for green plant genomics. *Nucleic Acids*
Gouet, P., Robert, X., and Courcelle, E. 2003. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. *Nucleic Acids Research* 31(13):3320-3323 DOI 10.1007/s10404-008-0309-1.

He, Y., Wu, J., Lv, B., Li, J., Gao, Z., Xu, W., Baluška, F., Shi, W., Pang, C.S., and Zhang, J. 2015. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. *Journal of Experimental Botany* 66(8):2271 DOI 10.1093/jxb/erv149.

Ivica, L., Tobias, D., and Peer, B. 2012. SMART 7: recent updates to the protein domain annotation resource. *Nucleic Acids Research* 40(D1):302-305 DOI 10.1093/nar/gkr931.

Johana, R., Teresa, R., Gloria Isabel, M., Elsa, Z., Juan Carlos, R., Beatriz Eugenia, F., and Jaime, R. 2015. Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Clinical Isolates. *Antimicrobial Agents & Chemotherapy* 59(12):7805-7810 DOI 10.1128/AAC.01028-15.

Juqiang, Y., Cixin, H., Jing, W., Zhehui, M., Holaday, S.A., Allen, R.D., and Hong, Z. 2004. Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a "stay-green" phenotype and improves stress tolerance under moderate drought conditions. *Plant & Cell Physiology* 45(8):1007-1014 DOI 10.1093/pcp/pch115.

Kaessmann, H. 2010. Origins, evolution, and phenotypic impact of new genes. *Genome Research* 20(10):1313-1326 DOI 10.1101/gr.092759.109.

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. *Nature Protocols* 10(6):845-858 DOI 10.1038/nprot.2015.053.

Kim, M.Y., Yang, J.K., Lee, T., and Lee, S.H. 2013. Divergence of Flowering-Related Genes in Three Legume Species. *Plant Genome* 6(3):841-856 DOI 10.3835/plantgenome2013.03.0008.

Krzywinski, M., and Schein, J.I. 2009. Circos: an information aesthetic for comparative genomics. *Genome Research* 19(9):1639-1645 DOI 10.1101/gr.092759.109.

Kumar, K., Muthamilarasan, M., Bonthala, V.S., Roy, R., and Prasad, M. 2015. Unraveling 14-3-3 proteins in C4 panicsoid with emphasis on model plant Setaria italica reveals phosphorylation-dependent subcellular localization of RS splicing factor. *Plos One* 10 DOI 10.1371/journal.pone.0123236.

Li, M.Y., Xu, B.Y., Liu, J.H., Yang, X.L., Zhang, J.B., Jia, C.H., Ren, L.C., and Jin, Z.Q. 2012. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian). *Plant Cell Reports* 31(2):369-378 DOI 10.1007/s00299-011-1172-1.

Li, R., Jiang, X., Jin, D., Dhaubhadel, S., Bian, S., and Li, X. 2015. Identification of 14-3-3 Family in Common Bean and Their Response to Abliotic Stress. *Plos One* 10(11): e143280 DOI 10.1371/journal.pone.0143280.
Li, W.H., Gojobori, T., and Nei, M. 1981. Pseudogenes as a paradigm of neutral evolution. *Nature* **292**(5820):237-239 DOI 10.1038/292237a0.

Li, X, and Dhaubhadel, S. 2011. Soybean 14-3-3 gene family: identification and molecular characterization. *Planta* **233**(3):569-582 DOI 10.1007/s00425-010-1315-6.

Li, X., and Dhaubhadel, S. 2012. 14-3-3 proteins act as scaffolds for GmMYB62 and GmMYB176 and regulate their intracellular localization in soybean. *Plant Signal Behav* **7**(8):965-968 DOI 10.4161/psb.20940.

Liesbeth, V., Tognetti, V.B., Nathalie, G., Judith, V.D., Liesbeth, D.M., Agnieszka, B., Riet, D.R., Frank, V.B., and Dirk, I. 2015. Growth Regulating Factor 5 Stimulates Arabidopsis Chloroplast Division, Photosynthesis, and Leaf Longevity. *Plant Physiology* **167**(3):817-832 DOI 10.1104/pp.114.256180.

Livak, K.J., and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**:402-408.

Masuda, T., and Goldsmith, P.D. 2009. World soybean production: area harvested, yield, and long-term projections. *International Food & Agribusiness Management Review* **12**:233-236.

Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., and Clements, J. 2004. The Pfam protein families database. *Nucleic Acids Research* **28**(1):263-266 DOI 10.1093/nar/gkh121.

Radwan, O., Wu, X., Govindarajulu, M., Libault, M., Neece, D.J., Oh, M.H., Berg, R.H., Stacey, G., Taylor, C.G., and Huber, S.C. 2012. 14-3-3 proteins SGF14c and SGF14l play critical roles during soybean nodulation. *Plant Physiology* **160**(4):2125-2136 DOI 10.1104/pp.112.207027.

Roberts, M.R., Salinas, J., and Collinge, D.B. 2002. 14-3-3 proteins and the response to abiotic and biotic stress. *Plant Molecular Biology* **50**(6):1031-1039 DOI 10.1023/a:1021261614491.

Rodriguez, L.G., and Guan, J.L. 2010. 14-3-3 regulation of cell spreading and migration requires a functional amphipathic groove. *Journal of Cellular Physiology* **202**(1):285-294 DOI 10.1002/jcp.20122.

Rosenquist, M., Alsterfjord, M., Larsson, C., and Sommarin, M. 2001. Data Mining the Arabidopsis Genome Reveals Fifteen 14-3-3 Genes. Expression Is Demonstrated for Two out of Five Novel Genes. *Plant Physiology* **127**(1):142-149 DOI 10.1104/pp.127.1.142.

Saalbach, G., Schwerdel, M., Natura, G., Buschmann, P., Christov, V., and Dahse, I. 1997. Over-expression of plant 14-3-3 proteins in tobacco: enhancement of the plasmalemma K+ conductance of mesophyll cells. *Febs Letters* **413**(2):294-298 DOI 10.1016/S0014-5793(97)00865-X.

Sehnke, P.C., Henry, R., Cline, K., and Ferl, R.J. 2000. Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid-targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. *Plant Physiology* **122**(1):235-241 DOI 10.2307/4279094.
Sijbesma, E., Skora, L., Leysen, S., Brunsveld, L., Koch, U., Nussbaumer, P., Jahnke, W., and Ottmann, C. 2017. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. *Biochemistry* 56:7b-153b DOI 10.1021/acs.biochem.7b00153.

Takahashi, Y. 2006. *14-3-3 Proteins in Brain function* DOI 10.1007/978-0-387-30381-9_12.

Takahashi, Y., Fukazawa, J., Matushita, A., and Ishida, S. 2003. Involvement of RSG and 14-3-3 Proteins in the Transcriptional Regulation of a GA Biosynthetic Gene. *Journal of Plant Growth Regulation* 22(2):195-204 DOI 10.1007/s00344-003-0035-6.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Molecular Biology & Evolution*.

Tian, F., Wang, T., Xie, Y., Zhang, J., and Hu, J. 2015. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus. *Plos One* 10(4): e123225 DOI 10.1371/journal.pone.0123225.

Valente, C., Turacchio, G., Mariggiò, S., Pagliuso, A., Gaibisso, R., Tullio, G.D., Santoro, M., Formiggini, F., Spanò, S., and Piccini, D. 2012. A 14-3-3[gamma] dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIII[beta] to regulate post-Golgi carrier formation. *Nature Cell Biology* 14(4):343-354 DOI 10.1038/ncb2445.

Wang, D., Zhang, Y., Zhang, Z., Zhu, J., and Yu, J. 2010. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. *Genomics Proteomics & Bioinformatics* 8(1):77-80 DOI 10.1016/S1672-0229(10)60008-3.

Wang, J., Sun, P., Li, Y., Liu, Y., Yu, J., Ma, X., Sun, S., Yang, N., Xia, R., and Lei, T. 2017. Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform. *Plant Physiology* 174:284-300 DOI 10.1104/pp.16.01981.

Wang Y, Tang H, Debarry J D, Tan, X., Li, J., Wang, X., Lee, T; Jin, H.; Marler, B.; Guo, H.; Kissinger, J.C. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synten and collinearity. *Nucleic Acids Res* 40(7): e49-e49 DOI 10.1093/nar/gkr1293.

Wilson, R.S., Swatek, K.N., and Theilen, J.J. 2016. Regulation of the Regulators: Post-Translational Modifications, Subcellular, and Spatiotemporal Distribution of Plant 14-3-3 Proteins. *Frontiers in Plant Science* 7:611 DOI 10.3389/fpls.2016.00611.

Wu, S., Yan, H.D., Zhang, A.L., Huang, L.K., Yin, G.H., and Lee, S. 2016. Identification and characterization of the 14-3-3 gene family in switchgrass. *Genetics & Molecular Research Gmr* 15 DOI 10.4238/gmr15048688.

Xu, W., and Shi, W. 2006. Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: Analysis by real-time RT-PCR. *Annals Of Botany* 98(5):965-974 DOI 10.1093/aob/mcl189.
Yang, L., You, J., Wang, Y., Li, J., Quan, W., Yin, M., Wang, Q., and Chan, Z. 2017. Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. *Plant Physiology & Biochemistry* **117**:1-11 DOI 10.1016/j.plaphy.2017.05.013.

Yashvardhini, N., Bhattacharya, S., Chaudhuri, S., and Sengupta, D.N. 2017. Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress. *Planta* **247**:1-25 DOI 10.1007/s00425-017-2779-4.

Yoon, B.C., Zivraj, K.H., Strochlic, L., and Holt, C.E. 2012. 14-3-3 proteins regulate retinal axon growth by modulating ADF/cofilin activity. *Developmental Neurobiology* **72**(4):600-614 DOI 10.1002/dneu.20955.

Yu, F., and Qi, X. 2017. Ubiquitination modification precisely modulates the ABA signaling pathway in plants. *Hereditas* **39**(8):692 DOI 10.16288/j.yczz.17-043.

Zhang, J., Jia, W., Yang, J., and Ismail, A.M. 2006. Role of ABA in integrating plant responses to drought and salt stresses. *Field Crops Research* **97**(1):111-119 10.1016/j.fcr.2005.08.018.

Zhang, Z.T., Ying, Z., Yang, L., Shao, S.Q., Li, B.Y., Shi, H.Y., and Li, X.B. 2010. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation. *Journal Of Experimental Botany* **61**(12):3331-3344 DOI 10.1093/jxb/erq155.
Figure legends

Fig. 1 Multiple sequence alignment of all 14-3-3 proteins from soybean.

Fig. 2 Phylogenetic tree analysis of the 14-3-3 genes in *Glycine max, Arabidopsis thaliana, Medicago truncatula* and *Oryza sativa*. The phylogenetic tree was constructed using MEGA 5.0 by the neighbor-joining method. The bootstrap value was 1,000 replicates. The two clusters were designated as non-ε group and ε group, and indicated them in a specific color.

Fig. 3 Conserved motifs and gene structure in GmGF14s. (A) Exon/intron structures of GmGF14 genes. Green and yellow boxes indicates exons and UTRs, respectively. Black lines represent introns. The lengths of the exons, introns and UTRs were drawn to scale. (B) Conserved motifs of the GmGF14s. Each motif is represented by a number in colored box.

Fig. 4 Chromosome location and duplication events analysis in *Glycine max*. The lengths of the each chromosome was drawn to scale. Genes of ε group related to gene duplication relationship are linked by red lines (14), and genes of non-ε group are linked by blue lines (5).

Fig. 5 Expression analysis of GmGF14 genes in different tissues. The gene expression values are square-root transformed fragments per kilo-bases per million mapped reads (FPKM). Different colors in map represent FPKM values as shown in bar at top of figure.

Fig. 6 qRT-PCR analysis reveals GmGF14 genes under PEG (drought) treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).
Error bars represent SD of biologic replicates.

Fig. 7 qRT-PCR analysis reveals *GmGF14* genes under salt treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p*<0.05, **p**<0.01). Error bars represent SD of biologic replicates.

Fig. 8 qRT-PCR analysis reveals *GmGF14* genes under cold treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p*<0.05, **p**<0.01). Error bars represent SD of biologic replicates.

Table legends

Table 1 List of all *GmGF14* genes information identified in the *Glycine max*.

Table 2 List of paralogous and orthologous pairs between soybean, *Arabidopsis thaliana* and *Medicago truncatula*.

Table 3 List of *Ka*, *Ks* and *Ka/Ks* values calculated for paralogous *GmGF14* gene pairs. Note: *Ka* indicates nonsynonymous substitution rate, and *Ks* indicates synonymous substitution rate.

Table 4 Number and composition of each *cis*-acting element in the promoter region (1.5 kb upstream of the translation start site) of GmGF14 genes.
Supplemental Data legends

Supplemental Fig. 1 Sequence logo of motifs in GmGF14 genes. The font size represents the frequency of the respective amino acid.

Supplemental Fig. 2 GO enrichment of the GmGF14 genes

Supplemental Table 1 List of primers used in qRT-PCR.

Supplemental Table 2 The sequence information of GmGF14 genes

Supplemental Table 3 The GFF file for GF14 genes

Supplemental Table 4 Duplication relationship of GmGF14 genes.

Supplemental Table 5 Similarity of duplication gene pairs under abiotic stresses (drought, salt and cold).

Supplemental Table 6 Raw data for the drought stress.

Supplemental Table 7 Raw data for the salt stress.

Supplemental Table 8 Raw data for the cold stress.

Supplemental Table 9 GO terms of the GmGF14 genes
Figure 1

Multiple sequence alignment of all 14-3-3 proteins from soybean.
Figure 2

Phylogenetic tree analysis of the 14-3-3 genes in Glycine max, Arabidopsis thaliana, Medicago truncatula and Oryza sativa.

The phylogenetic tree was constructed using MEGA 5.0 by the neighbor-joining method. The Bootstrap value was 1,000 replicates. The two clusters were designated as non-ε group and ε group, and indicated them in a specific color.
non-ε group

ε group
Figure 3

Conserved motifs and gene structure in GmGF14s.

(A) Exon/intron structures of GmGF14 genes. (B) Conserved motifs of the GmGF14s. Each motif is represented by a number in colored box.
Figure 4

Chromosome location and duplication events analysis in Glycine max.
Figure 5

Expression analysis of GmGF14 genes in different tissues.

The gene expression values are square-root transformed fragments per kilo-bases per million mapped reads (FPKM). Different colors in map represent FPKM values as shown in bar at top of figure.
Figure 6

qRT-PCR analysis reveals GmGF14 genes under PEG (drought) treatment compared to the controls.

Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).
Figure 7

qRT-PCR analysis reveals GmGF14 genes under salt treatment compared to the controls.

Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).
Figure 8

qRT-PCR analysis reveals GmGF14 genes under cold treatment compared to the controls.

Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).
Table 1 (on next page)

List of all GmGF14 genes information identified in the Glycine max genome.
Table 1 List of all 14-3-3 genes identified in the *Glycine max* genome

Gene name	Gene locus	Chromosome location	Length (aa)	pI	Molecular weight (Da)	Group
GmGF14a	Glyma.01G058000	Chr01:7642485-7646277	260	4.83	29487.17	ε
GmGF14b	Glyma.02G115900	Chr02:11280858-11285984	260	4.83	29498.19	ε
GmGF14c	Glyma.02G208700	Chr02:39388574-39391014	263	4.67	29353.86	non-ε
GmGF14d	Glyma.04G092600	Chr04:8158031-8160711	251	4.81	28208.84	non-ε
GmGF14e	Glyma.04G099900	Chr04:9132954-9135203	289	4.67	32432.54	non-ε
GmGF14f	Glyma.04G183400	Chr04:45129363-45133820	727	4.94	79220.24	ε
GmGF14g	Glyma.05G158100	Chr05:35025422-35029392	260	4.8	29249.8	ε
GmGF14h	Glyma.06G094400	Chr06:7432085-7434388	251	4.81	28365.07	non-ε
GmGF14i	Glyma.06G101500	Chr06:8052625-8054939	280	5.46	31708.21	non-ε
GmGF14j	Glyma.06G182800	Chr06:15705290-15709591	754	5.06	81749.77	ε
GmGF14k	Glyma.07G226000	Chr07:40298318-40302692	260	4.79	29579.23	ε
GmGF14l	Glyma.08G115800	Chr08:8877809-8881104	260	4.9	29247.74	ε
GmGF14m	Glyma.08G363800	Chr08:47528826-47532060	261	4.81	29384.49	non-ε
Gene	Accession	Chromosome:Start-End	Length	p-value	MAF	
--------	--------------	--------------------------	--------	---------	-------	
GmGF14n	Glyma.12G210400	Chr12:36943077-36946491	262	4.73	29461.02 ε	
GmGF14o	Glyma.12G229200	Chr12:38919217-38923409	266	4.85	30493.26 ε	
GmGF14p	Glyma.13G270600	Chr13:37265741-37269626	264	4.84	30207.93 ε	
GmGF14q	Glyma.13G290900	Chr13:39120795-39124124	262	4.77	29518.07 ε	
GmGF14r	Glyma.14G176900	Chr14:43637893-43642553	315	4.71	35233.85 non-ε	
GmGF14s	Glyma.17G208100	Chr17:34108328-34108849	160	5.61	18687.61 non-ε	
GmGF14t	Glyma.18G298300	Chr18:57587135-57590454	258	4.7	29063.69 non-ε	
GmGF14u	Glyma.20G025900	Chr20:2845106-2852380	261	4.79	29640.22 ε	
GmGF14v	Glyma.20G043700	Chr20:7939112-7939943	71	5.7	7920.14 ε	
Table 2 (on next page)

List of paralogous and orthologous pairs between soybean and Arabidopsis thaliana and Medicago truncatula.
Table 2 Paralogous (Gm-Gm) and orthologous (Gm-Mt and Gm-At) gene pairs

Gm-Gm	Gm-Mt	Gm-At
GmGF14a/GmGF14b	GmGF14c/Mt14-3-3i	GmGF14f/AtGRF16
GmGF14a/GmGF14k	GmGF14r/Mt14-3-3i	GmGF14j/AtGRF16
GmGF14a/GmGF14u	GmGF14a/Mt14-3-3h	GmGF14d/AtGRF8
GmGF14b/GmGF14k	GmGF14b/Mt14-3-3h	GmGF14d/AtGRF6
GmGF14b/GmGF14u	GmGF14d/Mt14-3-3f	GmGF14h/AtGRF8
GmGF14c/GmGF14e	GmGF14h/Mt14-3-3f	GmGF14h/AtGRF6
GmGF14c/GmGF14r	GmGF14l/Mt14-3-3j	GmGF14c/AtGRF1
GmGF14d/GmGF14h	GmGF14g/Mt14-3-3j	GmGF14c/AtGRF4
GmGF14f/GmGF14j	GmGF14k/Mt14-3-3g	GmGF14c/AtGRF2
GmGF14g/GmGF14l	GmGF14u/Mt14-3-3g	GmGF14e/AtGRF1
GmGF14g/GmGF14n	GmGF14n/Mt14-3-3c	GmGF14e/AtGRF4
GmGF14g/GmGF14q	GmGF14q/Mt14-3-3c	GmGF14e/AtGRF2
GmGF14k/GmGF14u	GmGF14e/Mt14-3-3e	GmGF14r/AtGRF1
GmGF14l/GmGF14n	GmGF14o/Mt14-3-3b	GmGF14r/AtGRF4
GmGF14l/GmGF14q	GmGF14p/Mt14-3-3b	GmGF14r/AtGRF2
GmGF14m/GmGF14t	GmGF14g/AtGRF9	
GmGF14n/GmGF14q	GmGF14l/AtGRF9	
GmGF14o/GmGF14p	GmGF14n/AtGRF9	
GmGF14r/GmGF14e	GmGF14q/AtGRF9	
GmGF14m/AtGRF3
GmGF14m/AtGRF7
GmGF14m/AtGRF5
GmGF14t/AtGRF3
GmGF14t/AtGRF7
GmGF14t/AtGRF5
GmGF14a/AtGRF12
GmGF14b/AtGRF12
GmGF14k/AtGRF12
GmGF14u/AtGRF12
Table 3 (on next page)

List of Ka, Ks and Ka/Ks values calculated for paralogous GmGF14 gene pairs.
Table 3 Ka, Ks and Ka/Ks values calculated for paralogous *GmGF14* gene pairs

Gene 1	Gene 2	Ka	Ks	Ka/Ks ratio
GmGF14a	GmGF14b	0.006657464	0.098400891	0.067656541
GmGF14a	GmGF14k	0.050954843	0.601979458	0.084645484
GmGF14a	GmGF14u	0.052668354	0.646064072	0.081521874
GmGF14b	GmGF14k	0.053326335	0.624443785	0.085398135
GmGF14b	GmGF14u	0.05474254	0.686620201	0.07972754
GmGF14c	GmGF14e	0.041987099	0.46411507	0.090467003
GmGF14c	GmGF14r	0.007777127	0.13330521	0.058329686
GmGF14d	GmGF14h	0.014039603	0.130901237	0.1072534
GmGF14f	GmGF14j	0.038562958	0.163525641	0.23582089
GmGF14g	GmGF14l	0.016897364	0.089125506	0.189590661
GmGF14g	GmGF14n	0.095210598	1.445569001	0.065863752
GmGF14g	GmGF14q	0.096117116	1.432594886	0.067093019
GmGF14k	GmGF14u	0.006698342	0.14254911	0.04698715
GmGF14l	GmGF14n	0.08659209	1.528599239	0.056648
GmGF14l	GmGF14q	0.087490577	1.514174801	0.057781028
GmGF14m	GmGF14t	0.052328317	0.201934457	0.259135156
GmGF14n	GmGF14q	0.008325325	0.127514764	0.065289105
GmGF14o	GmGF14p	0.015822932	0.069501128	0.227664399
GmGF14r	GmGF14e	0.037835791	0.428494041	0.088299457
Table 4 (on next page)

The number and composition of cis-acting regulatory elements of each GmGF14 gene.
Gene	ABRE (ABA)	AuxRR-core (IAA)	TGA-element (IAA)	CGTCA-motif (MeJA)	TGACG-motif (MeJA)	GARE-motif (GA)	P-box (GA)	TATC-box (GA)	TCA-element (SA)	TC-rich repeats (Defense/stress)	LTR (cold)	ARE (anaerobic)	MBS (drought)
GmGF14a	1	1	1	1	1	1	1	1	1				
GmGF14b	1	1	1	1	1	1	1	1	1				
GmGF14c	1	2	2	1	1	1	1	1	1				
GmGF14d	3	2	2	2	1	1	1	1	1				
GmGF14e	4	1	1	1	1	1	1	1	1				
GmGF14f	2	1	1	1	1	1	1	1	1				
GmGF14g	3	1	2	1	1	1	1	1	1				
GmGF14h	7	1	1	1	1	1	1	1	1				
GmGF14i	3	1	1	1	1	1	1	1	1				
GmGF14j	1	1	1	1	1	1	1	1	1				
GmGF14k	1	1	1	1	1	1	1	1	1				
GmGF14l	2	1	1	1	1	1	1	1	1				
GmGF14m	3	1	1										
--------	---	---	---										
GmGF14n	1	2											
GmGF14o	1	1											
GmGF14p	1												
GmGF14q	1	1	1	1									
GmGF14r	3	2	2										
GmGF14s	1	1											
GmGF14t	1	2	2										
GmGF14u	2	2	2	1									
GmGF14v	1												