Role of H₂O in CO₂ Electrochemical Reduction As Studied in a Water-in-Salt System
Qi Dong,†‡ Xizi Zhang,†‡ Da He,†‡ Chaochao Lang,† and Dunwei Wang*†‡
†Chemistry Department, Boston College, Chestnut Hill, Massachusetts 02467, United States

ABSTRACT: CO₂ electrochemical reduction is of great interest not only for its technological implications but also for the scientific challenges it represents. How to suppress the kinetically favored hydrogen evolution in the presence of H₂O, for instance, has attracted significant attention. Here we report a new way of achieving such a goal. Our strategy involves a unique water-in-salt electrolyte system, where the H₂O concentration can be greatly suppressed due to the strong solvation of the high-concentration salt. More importantly, the water-in-salt electrolyte offers an opportunity to tune the H₂O concentration for electrokinetic studies of CO₂ reduction, a parameter of critical importance to the understanding of the detailed mechanisms but difficult to vary previously. Using Au as a model catalyst platform, we observed a zeroth-order dependence of the reaction rate on the H₂O concentration, strongly suggesting that electron transfer, rather than concerted proton electron transfer, from the electrode to the adsorbed CO₂ is the rate-determining step. The results shed new light on the mechanistic understanding of CO₂ electrochemical reduction. Our approach is expected to be applicable to other catalyst systems, as well, which will offer a new dimension to mechanistic studies by tuning H₂O concentrations.

INTRODUCTION

Direct CO₂ reduction by methods such as electrochemistry has attracted significant attention.¹,² On the one hand, as a key culprit for the greenhouse effect, using CO₂ for chemical synthesis holds promises for decreasing its concentrations in atmosphere.¹ On the other hand, CO₂ reduction ensures severe thermodynamic and kinetic penalties, often leading to a myriad of products (e.g., hydrocarbons and hydrogen).³ How to steer the reaction toward desired products represents a fundamentally important challenge.⁴ The intense research has indeed greatly advanced our understanding on this reaction.⁵–¹⁰ Just within the context of electrochemical reduction of CO₂, for instance, we have learned that the product selectivity is highly sensitive to at least two parameters, namely, the nature of the catalyst and the electrolyte.¹¹,¹² The relative adsorption energy of the intermediates, most notably M-CO (where M represents a metal center), has been understood to dictate the subsequent chemical steps and, hence, the product selectivity.¹³–¹⁵ Along this line, various metallic or compound catalysts have been studied,¹⁶–¹⁸ with the oxide-derived metal (e.g., Au and Cu) being perhaps the most notable.¹⁹–²¹ The role played by the electrolyte has been examined, as well.²²–²³ For example, the mass transport of protons was exploited by Sargent et al. to suppress hydrogen evolution reactions (HER) in highly concentrated alkaline solutions.²⁴,²⁵ In parallel, the ionic effect was recognized to exert a profound influence on the product selectivity,²⁶ which was attributed to how the ions impact the interactions between H₂O and the substrates (and/or the reaction intermediates).²⁷–²⁹ These progresses notwithstanding, much remains unknown about the detailed processes in a CO₂ electrochemical reduction reaction, especially at the molecular level. To illustrate this point, let us next consider the first steps of the initial electron and proton transfer in CO₂ reduction as an example. While concerted proton electron transfer (CPET) has been often used as a basis for kinetic discussions,¹⁵,¹⁹,³²–³⁴ the details of this process were not studied until recently. Already, diverging views have been developed.³⁵–³⁹ Using Au as a prototypical catalyst platform and by studying the kinetics relative to CO₂ partial pressure (P_{CO₂}) and [HCO₃⁻], Surendranath et al. observed no apparent dependence of the reaction rate on [HCO₃⁻], implying that electron transfer (ET) is the rate-determining step (RDS), followed by proton transfer (PT) (Scheme 1).³⁸,⁴⁰ Similar experiments by Xu et al., however, reported apparent dependence of the reaction rate on [HCO₃⁻], which the authors attributed to possible fast pre-equilibrium between CO₂, H₂O, and HCO₃⁻.³⁷,⁴¹ The latter results could be interpreted as evidence to support the CPET rather than the ET pathway. Conflicting views like this highlight the need for additional research to elucidate the details of CO₂ reduction. Examinations of the literature reveal that a key constituent of the reaction, H₂O, has not been varied in previous studies. On the one hand, as an important proton donor, suppression of H₂O concentration ([H₂O]) could greatly limit HER so as to promote carbonaceous product selectivity.²⁴ On the other
Reduction on Au Catalyst

Previous research by others and us has shown that the activity of H$_2$O is significantly suppressed due to limited hydrogen evolution as a result of decrease in H$_2$O concentration,42,43 prompting to conduct the present study in which H$_2$O concentration is varied for the understanding of CO$_2$ electrochemical reduction reactions.

The key enabling factor of this work is the “water-in-salt” (WiS) electrolyte, in which ultra-high concentrations of salt (LiTFSI, where TFSI represents bis-(trifluoromethanesulfonyl)imide) is mixed with H$_2$O (up to 21 m, where m is molality, or mole of LiTFSI in 1 kg of H$_2$O).16 Previous research by others and us has shown that such an electrolyte behaves differently from bulk H$_2$O in that the activity of H$_2$O is significantly suppressed.42,43 We are, therefore, offered an opportunity to perform electrochemical reactions such as CO$_2$ reduction in an aqueous solution, whose H$_2$O concentration is no longer constant. Two immediate benefits would be expected from such a system. First, we would be able to significantly suppress HER due to the limited supplies of H$_2$O so as to promote selectivity toward carbonaceous products, similar to what has been achieved by Sargent et al.,24 albeit in a milder, near neutral condition in our case. Second, we would be able to interrogate the electrokinetics of the system by varying the H$_2$O concentration, a feature that has not been assessed by prior studies.42,43 Thus, our results are expected to shed new light onto the mechanistic details of the CO$_2$ electrochemical reduction processes. Indeed, selectivity toward CO up to 80% was measured in WiS on planar Au catalyst, comparable to the reported values measured on carefully modified Au such as oxide-derived or nanostructured Au catalysts.$^{19,32,34,44−46}$ Moreover, our electrokinetic analyses revealed that the reaction rate appeared independent of H$_2$O concentration at low overpotentials, further supporting that ET is the RDS in the initial reduction of CO$_2$. Importantly, as our approach exploits a new dimension of the reaction parameters, it offers a new route to highly selective CO$_2$ reduction for practical applications.

■ RESULTS

We elected to use Au as a model catalyst for this study, as it features high selectivity toward CO production as opposed to other carbonaceous products.43 For instance, it has been reported that, under common experimental conditions, the cathodic currents on Au electrode mainly constitute of CO and H$_2$ production.34,47 As such, it is convenient to interpret the electrochemical data for kinetic analyses of the elemental steps during CO$_2$ electrochemical reduction. Another reason we chose Au for this study is the broad knowledge on Au-based CO$_2$ reduction, which will allow for easy comparison of our results with the literature.$^{19,32,34,37−41,44,46}$ As shown in Figure 1, the most prominent feature of the cyclic voltammogram (CV) in different electrolytes was the suppression of the cathodic currents with the gradual increase of salt concentration from 15 to 21 m (the home-designed electrochemical cell is shown in Figure S1 in the Supporting Information). We hypothesize that the suppression is due to limited hydrogen evolution as a result of decrease in H$_2$O concentration,42,43 more discussions of which will be presented in the next section. Here, we wish to direct the readers’ attention to the reduction features as magnified in the inset of Figure 1 (the conversion of potentials using a calibrated pseudoreference electrode is listed in Table S1). The cathodic peaks, which are likely due to CO$_2$ reduction reactions, remained at ca. −0.52 V (vs reversible hydrogen electrode, RHE; unless noted, all potentials henceforth are relative to RHE) for different salt concentrations. The onset potentials at which CO$_2$ was reduced are consistent with literature reports on various Au catalysts.38,45 It is also consistent with that measured in 0.5 M NaHCO$_3$ electrolyte (Figure S2). Moreover, substitution of CO$_2$ with Ar eliminated these features, strongly supporting that these reduction peaks are indeed due to CO$_2$ electrochemical reduction. It is important to note that, other than at the highly negative potentials (e.g., lower than −0.8 V), the combined Faradaic efficiencies of CO plus H$_2$ were consistently measured to be greater than 90%. Additional control experiments confirmed that the WiS electrolyte was not decomposed under our experimental conditions (vide infra). Taken as a
whole, we established that the WiS system is a reliable platform that offers electrochemical features of CO₂ reduction by Au similar to other electrolyte systems.

Next, we aimed to delineate the main contributions to the cathodic current by performing potentiostatic electrolysis and product analyses. The percentage of CO production relative to the overall yield (CO plus H₂) was plotted against the applied potentials (Figure 2). No liquid product or decomposition of electrode and electrolyte were observed upon electrolysis (Figures S3−S5). One sees from this set of data that the maximum selectivity toward CO on planar Au catalyst in CO₂-saturated 0.5 M NaHCO₃ electrolyte (pH 7.2) was relatively poor, lower than 30%, which would serve as a basis for the following comparisons. Similarly low selectivity has been reported on Au without special treatments.¹⁹,³⁸,⁴⁸ When WiS was used, however, the maximum selectivity was readily increased to up to ca. 72% in 21 m WiS. The performance is close to the best reported in the literature.¹⁹,³²,³⁴,⁴⁵,⁴⁶ Most notably, the high selectivity was achieved at near neutral pH of the electrolyte (measured using a double-junction pH electrode as shown in Figure S6) and on Au catalyst without special treatments.²⁴,²⁵

The second feature in Figure 2 worth highlighting concerns the trend of selectivity as measured against the applied overpotentials. At high overpotentials (e.g., potentials lower than −0.52 V), the reaction is believed to be mass-transport limited, where relatively low solubility of CO₂ and its poor diffusivity greatly limit CO production in comparison to HER;⁴²,⁴⁵ at low overpotentials (e.g., potentials greater than −0.52 V), the reaction is believed to be more kinetically controlled, in which region higher applied overpotential leads to increased CO production rates.³,¹³,¹⁵,¹⁹,⁴⁷ In other words, the low selectivity of CO at high overpotentials is mainly due to the increase of HER but not the decrease of CO production.⁴⁵ This understanding is confirmed by the data as shown in Figure S7, more details of which will be discussed next. Here, however, let us focus on the data shown in Figure 2. It is observed that the maximum selectivity was achieved at −0.52 V for all three WiS electrolytes. Maximum CO selectivity at comparably low overpotentials has been reported in the literature, and the reasons have been mainly attributed to suppressed HER and catalyst surface modifications.¹⁹,³²,⁴⁶ Given that our planar Au catalysts for all experiments were unmodified and the same, whose inherent CO selectivity as tested in NaHCO₃ is poor (<30%), we are inspired to understand the data as an indication that low H₂O concentrations (e.g., 21 m) greatly suppress HER. The effect is most pronounced for the most concentrated solution and, hence, the highest selectivity.

The realization that the H₂O concentration may be modulated in WiS through altering the salt concentrations (Table S2) prompted us to next study the electrokinetics of CO₂ reduction. For this purpose, we extracted the partial currents due to CO production (Figure 3a). In the low

![Figure 2. CO selectivity measured in WiS of different concentrations and in 0.5 M NaHCO₃ electrolyte. All electrolytes were saturated with CO₂.](image)

![Figure 3. Electrokinetic analyses on CO₂ reduction to CO in WiS of different H₂O concentrations. (a) Partial current densities due to CO production at different potentials. (b) Partial current densities due to H₂ production at different potentials. (c) Tafel analyses in WiS of different H₂O concentrations. (d) Partial current densities due to CO production at fixed potentials for different [H₂O].](image)
studies, we performed a systematic study by measuring the potentials as a function of $[\text{H}_2\text{O}]$ in Figure 3d. As expected, a Figure 3, we assumed a constant $[\text{CO}_2]$ at first-order dependence of the reaction rate toward CO formation. Nevertheless, the presence of HCO_3^- due to the $\text{CO}_2/\text{H}_2\text{O}$ equilibrium is ubiquitous in aqueous electrolytes. Our results could be readily corroborated with previous studies using HCO_3^- buffer. $[\text{CO}_2]$ is involved as a buffer. In the presence of a HCO_3^- buffer, the fast equilibrium between it and CO_2 and H_2O could make the interpretation of electrokinetic data as a function of P_{CO_2} and [HCO$_3^-$]$^{-}$.38,40 The zeroth-order dependence of the reaction rate toward CO formation on $[\text{H}_2\text{O}]$ can be observed with other planar Au catalyst as well (Figure S7).

A key distinction between our approach presented here and those by Surendranath et al. and Xu et al.,37,38,40,41 separately, is whether bicarbonate (HCO_3^-) is involved as a buffer. In the presence of a HCO_3^- buffer, the fast equilibrium between it and CO_2 and H_2O could make the interpretation of electrokinetic data as a function of P_{CO_2} challenging, as has been pointed out by Xu et al.37,41 Our results provide a new dimension for the understanding of the electrokinetics of CO$_2$ reduction. We envision, for instance, more results supporting our understanding may be drawn from future studies similar to those by Surendranath et al. and Xu et al. but without using HCO_3^- buffer. Nevertheless, the presence of HCO_3^- due to the $\text{CO}_2/\text{H}_2\text{O}$ equilibrium is ubiquitous in aqueous electrolytes. CO selectivity measured in 21 m WiS electrolyte in a flow cell using a GDL electrode with sputtered Au catalyst, shown as hollow circles in red. For comparison, the selectivity as measured in a H-cell in 21 m WiS electrolyte with Au foil catalyst from Figure 2 is replotted here as solid red circles. All electrolytes were saturated with CO$_2$.

The above results demonstrated the promises of using WiS to understand the mechanism of CO$_2$ electrochemical reduction reactions, as well as to improve its performance such as selectivity and current densities toward practical applications.
Notwithstanding, we are mindful of the potential limitations of the system. For example, one question that may arise from analyzing our results is whether the knowledge generated here is transferrable to systems where different electrolytes (e.g., bicarbonate-based ones) are used. Indeed, the composition of the electrolyte could play critical roles in defining the detailed mechanisms. For instance, the nature of the proton donor (e.g., H$_2$O or bicarbonate) may exert a profound influence on the electrokinetics. Encouraged by two important considerations, however, we expect the understanding presented here to be readily transferrable. First, despite the apparent difference, H$_2$O is the overwhelming majority chemical in both cases (bicarbonate vs WiS). As such, we do not expect the role played by H$_2$O to be fundamentally different. Second and more importantly, the conclusion supported by our results is readily corroborated with those obtained using other methods.36,38,40 Taken as a whole, we conclude that ET but not CPET is the RDS during the initial steps of CO$_2$ reduction on Au in both WiS and bicarbonate-based electrolytes. Nevertheless, we caution against taking this conclusion out of the context. Whether the understanding is universally conclusive requires additional research that is beyond the scope of this work.

Moreover, we caution that a more accurate electrokinetic analysis will need to be performed using the activity but not concentration of H$_2$O. At the present time, however, we do not have quantitative information on the H$_2$O activity in WiS electrolytes. It is, therefore, envisioned that future research will be needed to correct this deficiency and to further refine the electrokinetic studies for a more complete understanding of the CO$_2$ to CO electrochemical reduction mechanisms.

\section*{CONCLUSIONS}

We have performed a mechanistic study of CO$_2$ electrochemical reduction in the unique water-in-salt electrolyte on a Au prototypical catalyst platform. The strong solvation effect to the high concentration of the salt locks down the H$_2$O molecules to change their behaviors drastically different from bulk H$_2$O. As a result, the H$_2$O reduction activity is greatly reduced, increasing the selectivity toward CO production. Up to 80\% selectivity was measured, which is to be compared with ca. 30\% in the conventional electrolyte at nearly neutral pH. More importantly, electrokinetic studies in the kinetically controlled potential region revealed that the reaction rate exhibits a pseudo-zeroth-order dependence on [H$_2$O]. The results imply that an electron transfer process is rate-determining. The information helps resolve diverging views on the initial steps of CO$_2$ reduction on Au catalyst and may find implications for future catalyst and electrochemical cell designs for practical CO$_2$ reduction applications.

\section*{ASSOCIATED CONTENT}

\section*{Supporting Information}

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.9b00519.

Additional experimental details, electrochemical characterizations, spectroscopic and microscopic analyses, additional schematics, detailed mathematical derivations, and tables of additional data (PDF)

\section*{REFERENCES}

\begin{thebibliography}{99}
\bibitem{1} Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbe, H.; Dubois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kierfeld, C. A.; Morris, R. H.; Peden, C. H. J.; Portis, A. R.; Ragdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO$_2$ Fixation. \textit{Chem. Rev.} \textbf{2013}, 113 (8), 6621--6658.
\bibitem{2} Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazabal, G. O.; Perez-Ramirez, J. Status and Perspectives of CO$_2$ Conversion into Fuels and Chemicals by Catalytic, Photocatalytic and Electrocatalytic Processes. \textit{Energy Environ. Sci.} \textbf{2013}, 6 (11), 3112--3135.
\bibitem{3} Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic Chemical Carbon Cycle for a Sustainable Future. \textit{J. Am. Chem. Soc.} \textbf{2011}, 133 (33), 12881--12898.
\bibitem{4} Whipple, D. T.; Kenis, P. J. A. Prospects of CO$_2$ Utilization Via Direct Heterogeneous Electrochemical Reduction. \textit{J. Phys. Chem. Lett.} \textbf{2010}, 1 (24), 3451--3458.
\bibitem{5} Calle-Vallejo, F.; Koper, M. T. M. Accounting for Bifurcating Pathways in the Screening for CO$_2$ Reduction Catalysts. \textit{ACS Catal.} \textbf{2017}, 7 (10), 7346--7351.
\bibitem{6} Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. \textit{J. Phys. Chem. Lett.} \textbf{2015}, 6 (20), 4073--4082.
\bibitem{7} Hori, Y. Electrochemical CO$_2$ Reduction on Metal Electrodes. \textit{Mod. Asp Electrochem} \textbf{2008}, 42 (42), 89--189.
\bibitem{8} Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic Process of CO Selectivity in Electrochemical Reduction of CO$_2$ at Metal-Electrodes in Aqueous-Media. \textit{Electrochim. Acta} \textbf{1994}, 39 (11--12), 1833--1839.
\end{thebibliography}
Electrocatalytic and Homogeneous Approaches to Conversion of CO2

Electrochemical Reduction of CO2 at Metal-Electrodes in Aqueous Solution. Baltrusaitis, J. Electrochemical CO2 Reduction on Cu2O-Derived at Very Low Overpotential on Oxide-Derived Au Nanoparticles. Nature 2014, 12201.

J. Electrochem. Soc. 2013, 139 (32), 11277–11287.

Hydroxide-Mediated Copper Catalysis at an Abrupt Interface. Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; Burdyny, T.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Koga, O. Adsorption of CO Accompanied with Simultaneous Charge-Transfer on Copper Single-Crystal Electrodes Related with Electrochemical Reduction of CO2 to Hydrocarbons. Surf. Sci. 1995, 335 (1–3), 258–263.

Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. J. Phys. Chem. Lett. 2013, 4 (3), 388–392.

Hori, Y.; Murata, A.; Takahashi, R. Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous-Solution. J. Chem. Soc., Faraday Trans. 1 1989, 85, 2309–2326.

Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of Carbon Monoxide to Liquid Fuel on Oxide-Derived Nanocrystalline Copper. Nature 2014, 508 (7507), 504–507.

Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Electrochemical CO2 Reduction on CuO-Derived Copper Nanoparticles: Controlling the Catalytic Selectivity of Hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16 (24), 12194–12201.

Tomita, Y.; Teruya, S.; Koga, O.; Hori, Y. Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile-Water Mixtures. J. Electrochem. Soc. 2000, 147 (11), 4164–4167.

Li, J.; Li, X.; Gunathunge, C. M.; Waegle, M. M. Hydrogen Bonding Steers the Product Selectivity of Electrochemical CO Reduction. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (19), 9220–9229.

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; Garcia de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; Zou, C. Q.; Quintero-Bermudez, R.; Pang, Y. J.; Sinton, D.; Sargent, E. H. CO2 Electroreduction to Ethylene via Hydroxide-Mediated Copper Catalysis at an Abrupt Interface. Science 2018, 360 (6390), 783–787.

Seifitokaldani, A.; Gabardo, C. M.; Burdyny, T.; Dinh, C. T.; Edwards, J. P.; Kibria, M. G.; Bushuyev, O. S.; Kelley, S. O.; Sinton, D.; Sargent, E. H. Hydronium-Induced Switching between CO2 Electroreduction Pathways. J. Am. Chem. Soc. 2018, 140 (11), 3833–3837.

Murata, A.; Hori, Y. Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode. Bull. Chem. Soc. Jpn. 1991, 64 (1), 123–127.

Bagger, A.; Arnarson, L.; Hansen, M. H.; Spohr, E.; Rossmeisl, J. Electrochemical CO Reduction: A Property of the Electrochemical Interface. J. Am. Chem. Soc. 2019, 141 (4), 1506–1514.

Resasco, J.; Lum, Y.; Clark, E.; Zeledon, J. Z.; Bell, A. T. Effects of Alkaline-Earth-Metal Ions on the CO2 Reduction Kinetics at Au(111). J. Am. Chem. Soc. 2014, 136 (46), 16132–16135.

Hatsukade, T.; Kuhl, K. P.; Cava, E. R.; Abram, D. N.; Jaramillo, T. F. Insights into the Electrocatalytic Reduction of CO2 on Metallic Silver Surfaces. Phys. Chem. Chem. Phys. 2014, 16 (27), 13814–13819.

Zhu, W. L.; Michalsky, R.; Metin, O.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and Selective Conversion of CO2 to CO on Ultrathin Au Nanowires. J. Am. Chem. Soc. 2014, 136 (46), 16132–16135.

Shi, C.; Chan, K.; Yoo, J. S.; Norskov, J. K. Barriers of CO2 Electroreduction at Metallic Silver Surfaces. Phys. Chem. Chem. Phys. 2014, 16 (27), 13814–13819.

Schouten, K. J. P.; Qin, Z. S.; Perez Gallent, E.; Koper, M. T. M. Theoretical Considerations on the Reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138 (39), 13006–13012.

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; Burdyny, T.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Koga, O. Adsorption of CO Accompanied with Simultaneous Charge-Transfer on Copper Single-Crystal Electrodes Related with Electrochemical Reduction of CO2 to Hydrocarbons. Surf. Sci. 1995, 335 (1–3), 258–263.
