Introduction

High-nuclearity heterometallic clusters containing Zn$^{II}$-Ln$^{III}$ metal ions have blossomed into a promising topic of modern coordination chemistry and attracted increasing attention primarily because of their interesting magnetic and photophysical properties since the first Zn$^{II}$-Eu$^{III}$/Sm$^{III}$ heterometallic clusters were reported in 1995 by Brennan et al.$^{4}$ This is attributed to: (a) magnetic behaviour that can easily be explained due to the diamagnetic character of the Zn$^{II}$ ion, and (b) Ln$^{III}$ ions are desired luminescent and magnetic species because of their characteristic 4f electronic configuration. The magnetic properties of Zn$^{II}$-Ln$^{III}$ heterometallic compounds mainly arise from the intrinsic large spin ground state and the strong uniaxial magnetic anisotropy of some Ln$^{III}$ ions. It is expected that the incorporation of Zn$^{II}$ and Ln$^{III}$ ions into one coordination system may not only enhance the structural diversity, but also integrate the optical and magnetic properties of Ln$^{III}$ ions which can offer multifunctional properties.$^{5-7}$ To our best knowledge, high-nuclearity Zn$^{II}$-Ln$^{III}$ coordination clusters are still scarce because their design and controllable synthesis represent a formidable challenge. Consequently, only a few nanosized Zn$^{II}$-Ln$^{III}$ clusters of varying nuclearities range from kite-like Ln$_2$Zn$_2$, square-shaped Ln$_2$Zn$_2$, cyclic Zn$_2$Ln$_2$, cubane-like Ln$_2$Zn$_2$, drum-like Ln$_2$Zn$_4$ (ref. 6) and triangular ring-like Ln$_2$Zn$_4$ (ref. 7) have been reported. Due to the strong easy-axis type magnetic anisotropy and larger $J(L + S)$ value originating from lanthanide ions,$^*$ the magnetic exploration for Ln$^{III}$-based compounds, especially for single-molecule magnets (SMMs), have stimulated a wide range of research interests. Among which, Dy$^{III}$ ions are the most appealing mainly because they have an inherent strong spin–orbital coupling effect and very large magnetic anisotropy of the $^8$H$_{15/2}$ ground state. It is well known that the coordination environment, the local ligand field and the magnetic interaction strength between metal ions can have impact on SMM behavior of Dy$^{III}$ containing systems. Undoubtedly, further exploration of Dy$^{III}$ containing SMMs deserves attention not only for better SMMs but also for deciphering the relaxation dynamics and mechanisms. Although several Cu$^{II}$–Dy$^{III}$ clusters displaying ferromagnetic behavior with slow magnetization relaxation systems have been reported,$^9$ it is rare that ferromagnetic interaction with slow magnetic relaxation exists in Zn$^{II}$–Dy$^{III}$ heterometallic clusters.

Recently, we reported a nitrate-bridged Zn$_2$Dy$_6$ dodecanuclear heterometallic cluster of Salen-like salicylamide ligand, 1-(2-hydroxy-benzamido)-2-(2-hydroxy-benzylideneamino)-ethane, which represents an unusual example of Zn$^{II}$–Dy$^{III}$

Three new sandwich-type hexanuclear Zn$^{II}$–Ln$^{III}$ clusters based on a methoxy substituted salicylamide Salen-like ligand and o-vaniline, [Zn$_2$Ln$_4$(HL)$_4$(o-vaniline)$_2$](OH)$_2$(CH$_3$OH)$_2$·2NO$_2$·5CH$_3$OH (Ln = Eu, Tb and Dy). The structure analyses reveal that these Zn$^{II}$-Ln$^{III}$ clusters display a hydroxyl bridged tetraneural Ln$^{III}$ core sandwiched in an environment of two Zn$^{II}$ ions, four doubly deprotonated HL$_2^-$ and two singly deprotonated o-vaniline. Photophysical determinations indicate that the Zn$^{II}$–Eu$^{III}$ cluster shows mixed emissions both originating from ligands and Eu$^{III}$ ions, and the other two only display ligand-centered emission in visible region. The magnetic studies reveal that the Zn$^{II}$–Dy$^{III}$ cluster displays rare ferromagnetic behavior with slow magnetic relaxation behavior at zero field.

$^a$School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China. E-mail: songx@mail.ljtu.cn; Fax: +86-931-4938755; Tel: +86-931-4938755

$^b$Lanzhou University, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou, China. E-mail: liuws@lzu.edu.cn; Fax: +86-931-8915151; Tel: +86-931-8915151

$^*$Electronic supplementary information (ESI) available: A brief statement in CIF, figures of TGA curves (Fig. S1), figures of PXRD curves (Fig. S2), coordination polyhedron of Dy$^{III}$ in Zn$_6$[Dy$_4$(en)$_3$(NO$_2$)$_2$](Fig. S3), excitation spectra of Zn$_4$[Eu$_3$(en)$_3$(NO$_2$)$_2$](Fig. S4), emission decay curves of Zn$_4$[Eu$_3$(en)$_3$(NO$_2$)$_2$, Zn$_4$[Eu$_3$(en)$_3$(NO$_2$)$_2$, and Zn$_4$[Dy$_3$(en)$_3$(NO$_2$)$_2$](Fig. S5–S7), emission spectra of different wavelength excitation (Fig. S8–S10). A summary of the relevant crystallographic data and the final refinement details are given in Table S1, important bond lengths are listed in Table S2. CCDC 482428–1482430. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7ra01469d
cluster that exhibits ferromagnetic SMM behavior.10 However, the blocking temperature is lower than the temperature limit of the magnetometer even an external field of 2 kOe was applied. For the sake of increasing energy barrier and therefore to improve the SMM properties of ZnII–DyII clusters of this kind of ligands, a new methoxy substituted Salen-like salicylalidene ligand, 1-(2-hydroxy-4-methoxy-benzamido)-2-(2-hydroxy-3-methoxy-benzylideneamino)-ethane (H3L, Scheme 1) was synthesised. The basis of the strategy presented herein, relies on the use of a new multidentate Salen-like salicylalidene ligand as well as o-vanilline, which are elaborately selected to compartmentalize LnIII ions through oxygen based coordination pockets free of nitrate coordination. As a result, we succeeded in obtaining three heterometallic hexanuclear clusters, [ZnII2L4(CH3OH)4(OH)4][2NO3·5CH3OH (Ln = Eu, Tb and Dy)]. The photophysical properties of compounds ZnII2Eu4(HL)4(OH)4(CH3OH)2 and ZnII2Tb4(HL)4(OH)4(CH3OH)2 as well as the magnetic properties of ZnII2Dy4(HL)4(OH)4(CH3OH)2 have been explored and the results indicate ZnII2Ln4(HL)4(OH)4(CH3OH)2 shows mixed emissions both originating from ligands and LnIII ions, and the other two only display ligand-centered emission in visible region. Interestingly, the corresponding dysprosium containing complex ZnII2Dy4(HL)4(OH)4(CH3OH)2 shows typical ferromagnetic single molecule magnetic behavior with slow zero-field relaxation. To our best knowledge, it is rather infrequent for other molecules to exhibit such magnetic behavior.

Preparation of complexes

General procedure. 27 µL (0.2 mmol) triethylamine was added to a 15 mL acetonitrile solution containing 0.1 mmol (0.028 g) H3L and 0.1 mmol (0.015 g) o-vanilline. Then 0.1 mmol (0.021 g) Zn(NO3)2·2H2O was added and the solution was stirred for 4 h to obtain a suspension. 0.1 mmol Ln(NO3)3·6H2O in 5 mL of methanol was added to this epinephelus solution and after another 4 h a clear solution was obtained. The mixture was stirred overnight and filtered into a sealed glass vial for crystallization at room temperature. After about three weeks pale yellow single crystals suitable for crystal analysis were obtained which were collected by filtration, washed with cold methanol, and dried in the air.

\[
\text{[ZnII}2\text{EuIII(HL)4(OH)4(CH3OH)2·2NO3·5CH3OH}}
\]

(ZnII2Eu4III(HL)4(OH)4(CH3OH)2·2NO3·5CH3OH). The empirical formula and the molecular weight is C95H118Eu4N10O43Zn2 and 2868.68 respectively. Yield: 34.2 mg, 52% based on Eu(NO3)3·6H2O. Analytical data (%), calcd: C, 39.97; H, 4.17; N, 4.91; found: C, 40.16; H, 4.19; N, 4.94; IR (KBr, \(\text{cm}^{-1}\)): 3440 (w), 1618 (s), 1544 (s), 1470 (m), 1446 (m), 1386 (m), 1217 (s), 1168 (s), 1130 (m), 1074 (m), 734 (m), 594 (m).

\[
\text{[ZnII}2\text{TbIII(HL)4(OH)4(CH3OH)2·2NO3·5CH3OH}}
\]

(ZnII2Tb4III(HL)4(OH)4(CH3OH)2·2NO3·5CH3OH). The empirical formula and the molecular weight is C95H118Tb4N10O43Zn2 and 2854.48 respectively. Yield: 34.2 mg, 48% based on Tb(NO3)3·6H2O. Analytical data (%), calcd: C, 39.77; H, 4.15; N, 4.88; found: C, 39.94; H, 4.13; N, 4.90; IR (KBr, \(\text{cm}^{-1}\)): 3440 (w), 1618 (s), 1544 (s), 1470 (m), 1446 (m), 1386 (m), 1211 (m), 1164 (m), 1130 (m), 1093 (m), 740 (m), 594 (m).

Physical measurements

Elemental analyses were performed on a Perkin-Elmer 2400 Series II CHNO elemental analyzer. IR spectra were recorded in the range 400–4000 cm\(^{-1}\) on a Perkin-Elmer FTIR spectrometer using KBr pellets. X-ray powder diffractometry (XRPD) patterns of the samples were recorded on a X-ray diffractometer (Rigaku D/Max 2200PC) with a graphite monochromator and Cu Kα radiation (\(\lambda = 1.5418 \text{ Å}\)) at room temperature with a scan speed of 0.2 s per step and a step size of 0.02 (2θ), while the voltage and electric current were held at 40 kV and 20 mA. Thermogravimetric analysis experiments were performed using a TGA/

Experimental section

Materials

Methyl 2-hydroxy-4-methoxybenzoate, ethane-1,2-diamine and 3-methoxy-4-hydroxybenzaldehyde were obtained from Aladain. Solvents and all other chemicals were analytical grade, available commercially, and used as received.

Synthesis of the ligand

1-(2-Hydroxy-4-methoxy-benzamido)-2-(2-hydroxy-3-methoxy-benzylideneamino)-ethane (H3L) is shown in Scheme 1. N-(2-Aminoethyl)-2-hydroxy-4-methoxybenzamidine was prepared according to literature using methyl 2-hydroxy-4-methoxybenzoate instead.13 10 mmol (1.52 g) o-vanilline was added to a 30 mL ethanol solution of N-(2-aminoethyl)-2-hydroxy-4-methoxybenzamidine (2.10 g, 10 mmol) under stirring. The mixture was refluxed for 4 h to make a clear solution. Then the solution was rotary-evaporated to near dryness to obtain a pale-yellow solid. The yellow crystalline product obtained by ethanol recrystallization was washed with ethanol and dried in air. H3L: 2.68 g, yield 78.0%. Mp 166–167 °C. Analytical data, calc. for C18H20N2O5: C, 62.78; H, 5.85; N, 8.13; found: C, 62.81, H, 5.85, N, 8.17; IR (KBr, \(\text{cm}^{-1}\)): 3393 (w), 2938 (w), 1649 (s), 1598 (s), 1544 (m), 1467 (m), 1389 (m), 1251 (s), 1204 (m), 1160 (m), 1076 (m), 1022 (m), 958 (m), 831 (m), 736 (m). \(^1\)H NMR (CDCl3, 400 MHz) \(\delta\) 3.77 (m, 3H, \(\text{CH}_3\)), 3.85 (m, 2H, \(\text{CH}_2\)), 3.80 (m, 2H, \(\text{CH}_2\)), 3.85 (m, 2H, \(\text{CH}_3\)), 6.71 (s, 1H, ArH), 6.80 (m, 1H, ArH), 6.88 (m, 1H, ArH), 6.97 (m, 1H, ArH), 7.23 (m, 1H, ArH), 7.35 (m, 3H, CH=–N), 8.41 (t, 1H, NH, \(J = 4 \text{ Hz}\), 12.21 (s, 2H, OH).

Scheme 1 The synthesis route of the ligand H3L.
NETZSCH STA449C instrument heated from 25–800 °C (heating rate of 10 °C min⁻¹, nitrogen stream). Emission and excitation spectra were recorded with a Hitachi F-7000 spectrophotometer equipped with quartz cuvettes of 2.5 cm path length. The luminescence decays were recorded using a pumped dye laser (Lambda Physics model FL2002) as the excitation source. The magnetic susceptibility measurements were obtained on a Quantum Design SQUID magnetometer MPMS-XL. Measurements were performed on a polycrystalline sample of 30.09 mg for Zn₁²Dy₄III. Direct-current magnetic susceptibility measurements were carried out at 2–300 K for dc applied fields at 1000 Oe. Field dependence of the magnetization magnetic susceptibility measurements on the polycrystalline samples were performed with the same magnetometer. Alternating-current susceptibility measurements were carried out utilizing an oscillating ac field of 3.0 Oe and frequencies ranging from 20 to 1600 Hz under 0 and 2000 Oe dc field respectively. All non-crystalline samples for photoluminescence and magnetic studies were obtained from the same batch and characterized by PXRD, TG, EA and IR spectra.

**X-ray crystallography**

Suitable pale yellow block crystals of Zn₁²Eu₁³II (0.24 × 0.18 × 0.14 mm³), Zn₁²Tb₁³II (0.32 × 0.26 × 0.14 mm³) and Zn₁²Dy₁³II (0.33 × 0.31 × 0.23 mm³) were coated with perfluoropolyether oil before mounting. Intensity data of all the complexes were recorded at 293(2) K employing a Bruker SMART APEX II CCD diffractometer equipped with a monochromatized Mo Kα radiation (λ = 0.71073 Å) source. No crystal decay was observed during the data collections. In all cases, absorption corrections based on multis-scans using the SADABS software were applied. The structures were solved by direct methods and refined on F² by a full-matrix least-squares procedure. SHELXL was used for both structure solutions and refinements. All non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were calculated and isotropically fixed in the final refinement. The SMART and SAINT software packages were used for data collection and reduction respectively. Crystallographic diagrams were drawn using the DIAMOND software package. Also severely disordered methanol molecules in Zn₁²Eu₁³II, Zn₁²Tb₁³II and Zn₁²Dy₁³II were removed by SQUEEZE during the structural refinements. For details about the squeezed material, see CIF data in ESL. Therefore, five methanol molecules which were determined on the basis of TGA and elemental microanalysis, and the data treated with the SQUEEZE routine within PLATON were added to the molecular formula of Zn₁²Eu₁³II, Zn₁²Tb₁³II and Zn₁²Dy₁³II respectively.

**Result and discussion**

**Synthesis and characterization**

A stepwise synthetic protocol was employed to prepare the three heterometallic hexanuclear Zn₁²-Ln₁³II clusters. A suspension solution of zinc containing solution was obtained from the treatment of Zn(NO₃)₂·2H₂O with mixture of H₃L, o-vanilline and triethylamine in CH₃CN in a 1 : 1 : 2 molar ratio. Addition of a solution of Ln(NO₃)₃·6H₂O in MeOH followed by magnetic stirring gave a clear pale yellow solution from which yellow crystals suitable for crystal analysis of Zn₁²Eu₁³II, Zn₁²Tb₁³II and Zn₁²Dy₁³II were obtained during the evaporation of the solvent after three weeks. The series of compounds were soluble in methanol, DMSO and DMF. Their chemical formulas were confirmed by elemental analysis. Consistent with the successful formation of the desired compounds, the characteristic bands of carboxyl and imine of the H₃L (1648 and 1598 cm⁻¹) hypochromatic shifted about 30 and 49 cm⁻¹, with two new bands presented at IR spectra ca. 1618 cm⁻¹ and 1544 cm⁻¹ respectively. The none but Z₁ (1380 cm⁻¹) of the free nitrate groups’ appearance in the IR spectra of the three compounds clearly indicates the exclusive existence of free nitrate groups as further confirmed by X-ray crystallography analysis as follows.

Thermal gravimetric analysis (TGA) were carried out under N₂ atmosphere to show their thermal stability. As shown in Fig. S1† the three hexanuclear complexes Zn₁²Eu₁³II, Zn₁²Tb₁³II and Zn₁²Dy₁³II showed very similar TG curves, and Zn₁²Dy₁³II is selected to describe as a representative. The thermal decomposition of Zn₁² Dy₁³II occurs in a three-step process from 25 to 800 °C. The first stage takes place in the range of 27–112 °C with a weight loss of 3.36% which was caused by the release of three crystalline methanol molecules free of hydrogen bonding. Upon further heating to about 168 °C, the two crystalline hydrogen bonded nitrates and methanol molecules were lost and the weight loss was 6.54%. Above 172 °C, the entire architecture began to collapse. PXRD experiments were also carried out for Zn₁²Eu₁³II, Zn₁²Tb₁³II and Zn₁²Dy₁³II to verify whether the crystal structures are truly representative of the bulk materials. As we can see in Fig. S2† the experimental patterns are in good agreement with that of the simulated ones indicating the as-synthesized samples are pure enough for spectroscopic and magnetic properties’ study.

**Description of structures**

Signal-crystal X-ray diffraction analysis revealed that the as-synthesized Zn₁²-Ln₁³II clusters are all sandwich-type hexanuclear compounds with a formula of [Zn₂Ln₄(HL)₄(o-vanilline)₂(OH)₄(-CH₃OH)]·2NO₃·5CH₃OH. For they are isostructural, here we select Zn₁²Dy₁³II to describe its structure features in detail. The crystal structure of Zn₁²Dy₁³II consists of a divalent cationic entity [Zn₂Dy₄(HL)₆(o-vanilline)₂(OH)₄]Cl₂(4CH₃OH)|·2NO₃|·5CH₃OH. For they are isostructural, here we select Zn₁²Dy₁³II to describe its structure features in detail. The crystal structure of Zn₁²Dy₁³II consists of a divalent cationic entity [Zn₂Dy₄(HL)₆(o-vanilline)₂(OH)₄(CH₃OH)]₂⁺, two coordinated nitrate anions for charge balance, and five crystalline methanol molecules. A cursory glance at the structure reveals that a μ₁-OH-bridged Dy₁³II core is sandwiched between two layers composed of one Zn₁²II, two H₂L⁺ and one deprotonated o-vanilline (Fig. 1a) with the asymmetric unit shows half of the molecule. As depicted in Fig. 1b, Zn₁ is in an tetragonal pyramid geometry coordinated by two phenolate oxygen atoms from two different H₂L⁺ ligands, one oxygen atom from μ₁-hydroxyl group, and two imine nitrogen atoms from two different H₂L⁺ ligands. Meanwhile, two crystallographically independent Dy₁³II ions (Dy₁ and Dy₂) are merely coordinated to eight oxygen atoms with Dy-O bond lengths range between 2.189 and 2.645 Å. Exact geometry analysis by SHAPE 2.1 software shows that the inner coordination sphere of eight-
coordinated DyIII ions are residing in distorted biaugmented trigonal prisms with a deviation of 6.174 for Dy1 and 8.035 for Dy2 from the ideal C3v symmetry (Fig. S3†). Owing to the two oxygen atoms from two hydroxyl groups (O11 and O15) and one phenoxo oxygen atom (O12) of singly deprotonated o-vanilline, Dy1 and Dy2 are bridged to give a trigonal pyramidal [Dy4O6] unit. Furthermore, Zn1 is appended at Dy2 site with two oxygen bridge (O4 and O15) giving a Zn···Dy distance of 3.609 Å. Noticeably, the oxygen atoms both from two hydroxyl groups (O11) and four phenoxo oxygen atom of doubly deprotonated o-vanilline (O7) and singly deprotonated o-vanilline (O12) further bridged the crystallographically Dy1 and Dy2 forming two plane-sharing cubic units [Dy4O6] short of one vertex (Fig. 1c). The Dy···Dy distance of the four precisely coplanar DyIII ions are 3.567(7) Å and 3.889(5) Å. Such tetranuclear subunits with four μ3-OH displaced above and below the Dy4 plane by 0.869(2) Å and 0.490(4) Å can be viewed as a parallelogram and the shortest edge, Dy1···Dy2A, is that which comprises three oxygen bridges. Noticeably, this structural characteristic is quite different from reported OHbridged Dy4 clusters.29

Luminescent properties

Chromogenic ZnII components have been used as sensitizers for lanthanide luminescence following ligand → f and d → f energy-transfers.28 The photophysical properties of H3L, o-vanilline, ZnIIv EuIII, ZnIIv TbIII and ZnIIv DyIII in solid state were studied and their emission spectra is shown in Fig. 2. Upon UV irradiation at 340 nm, both H3L and o-vanilline present very broad bands ranging from 435 nm to 600 nm, which can be attributed to π* → π and intramolecular charge transitions of H3L and o-vanilline. The excitation spectra of ZnIIv EuIII exhibits broad bands ranging from 325 nm to 425 nm upon EuIII-centered emission (Fig. S4†). Excited at ca. 365 nm, ZnIIv EuIII shows reddish luminescence and exhibits both ligand-centered (λmax = 456 nm) and the typical f → f transitions of the EuIII ion with the former stronger than the latter. As for the characteristic emission of EuIII ion, the strong emission peak at 599 and 621 nm is assigned to magnetic dipolar 5D0 → 7F1 transition and the electric dipolar 5D0 → 7F2 transition respectively, the weak one at 582 nm can be attributed to the 5D0 → 7F0 transition. The intensity of the 5D0 → 7F2 transition is about 2.26 times stronger than that of the 5D0 → 7F1 transitions, higher than the value (0.67) for a centrosymmetric EuIII compound.21 The symmetry-forbidden emission 5D0 → 7F2 also appears in the emission spectra of ZnIIv EuIII. All these indicate that EuIII ions in ZnIIv EuIII occupy sites with low symmetry and have no inversion center which is in good agreement with the result of the single crystal structure analyses. The luminescence decay of ZnIIv EuIII is best described by a double-exponential process with significantly shorter lifetimes of τ1 = 0.245 ms, τ2 = 0.072 ms observed likely because of the presence of two distinct emitting species (Fig. S5†). When the same system were adopted to populate the excited state of the TbIII ion, the ligands-centered emission rather than TbIII luminescence is observed, indicating this mixed system can transfer some excitation energy to EuIII than to TbIII ions. Compared to that of ZnIIv EuIII, the luminescence lifetime of ZnIIv TbIII is quite shorter with τ = 0.097 ms (Fig. S6†). In the case of ZnIIv DyIII, very strong blue emission with shortest lifetime of 9 ns (Fig. S7†) attributed to Zn-ligands system presented. It is well-known that the presence of OH oscillators in the lanthanide first coordination sphere provides an efficient non-radiative path,22 so we can suggest that the observed weak EuIII luminescence in ZnIIv EuIII and the absence of TbIII/DyIII-centered emission are mainly related to increases in non-radiative transitions due to the presence of OH oscillators in the first coordination shell together with the mismatch between resonance energy levels of LnIII and excited states of ligands in these clusters. Notably, the emission spectra of the three clusters showed negligible changes when excited at different wavelengths as shown in Fig. S8–S10.†

Magnetic properties

The static magnetic behaviour of the ZnIIv DyIII complex through direct current (dc) magnetic measurements between 2 and 300 K with an applied dc field of 1000 Oe was performed on microcrystalline samples. As observed in Fig. 3a, the χM/T value almost remains unchanged from 300 to 12 K with a value of 57.44 cm3 K mol−1 at 300 K which is fairly close to the expected
value of 56.68 cm$^{-3}$ K mol$^{-1}$ for four uncoupled Dy$^{III}$ ions ($^6$H$_{15/2}$, $g = 4/3$). Below 10 K, the $\chi_M T$ value sharply goes up upon cooling and reaches 83.11 cm$^{-3}$ K mol$^{-1}$ at 2 K. This behavior indicates that spin–orbital coupling leads the 4f$^n$ configuration of Ln$^{III}$ to split into $^{2S+1}L_J$ states, and further into Stark components under the crystal-field perturbation, and the effect of depopulation of the Stark components of Dy$^{III}$ is nearly equal of the ferromagnetic coupling between Dy$^{III}$ ions in the higher temperature range. The increase of $\chi_M T$ in the low-temperature range obviously implies the presence of ferromagnetic coupling between Dy$^{III}$ ions, and it is strong enough to overcome the effect of depopulation of the Stark components of Dy$^{III}$.$^8$ Such strong ferromagnetic interactions are rare for both Zn$^{II}$-Ln$^{III}$ clusters and Ln$^{III}$ complexes.$^{23}$ Its occurrence may result from the connecting of two [Dy$_2$Zn] building blocks through two μ$_2$-OH$^-$-bridge. In Zn$^{II}$Dy$^{III}$, the [Dy$_4$O$_6$] core was closely wrapped and the Dy–OH$^-$–Dy angles with shortest distance of 3.567(7) Å are 96.51 and 98.76°, which therefore may lead to the strong uniaxial anisotropy of the Dy$^{III}$ ion. By comparison, a similar Dy$_4$ clusters with the Dy–OH$^-$–Dy angle above 103.95° exhibits antiferromagnetic interactions.$^{19a}$ The $M$ vs. $H$ data below 8 K show a rapid increase in the magnetization at low magnetic fields (Fig. 2b) which is expected for materials having ferromagnetically coupled spins. At higher fields, $M$ increases slowly reaching a value of 36 μ$_{M}$ which almost close to the theoretical value of 40 μ$_{M}$ of four Dy$^{III}$ ions. The nonsuperposition of $M$ vs. $H$ in different fields (Fig. 2b inset) suggests the presence of significant magnetic anisotropy and/or low-lying excited states in Zn$^{II}$Dy$^{III}$. In addition, it is worth mentioning that the $M$ vs. $H$ data do not exhibit a hysteresis effect above 2 K with sweep rates used (100–300 Oe min$^{-1}$). The absence of the $M$ vs. $H$ hysteresis loop at 2 K may be caused by the presence of a relatively fast zero-field relaxation as ascertained as follows.$^{24}$

To further explore the dynamics of magnetization, we performed alternating current (ac) magnetic measurements on Zn$^{II}$Dy$^{III}$. Expectedly, strong frequency dependences for the real $\chi'$ and the imaginary $\chi''$ parts of the ac susceptibilities were observed below 20 K as shown in Fig. 4. In plots of both $\chi'm$ and $\chi''m$, the peaks are observed above 20 Hz and shift to high temperature with increasing frequencies, which is the nature of slow magnetic relaxation. Noticeably, both $\chi'M$ and $\chi''M$ below about 6 K increase with decreasing temperature, indicating the intervention of QTM. For Kramer’s ions, such as Dy$^{III}$, dipole–dipole and hyperfine interactions allow the mixing of the two Kramer’s ground states at zero field, leading to the quantum tunnelling dynamics of the magnetization. Therefore, the temperature and frequency dependent ac susceptibility were measured under an applied 2000 Oe field which is also shown in Fig. 4. The diminishing of the upward $\chi_M$ and $\chi''$ at low temperatures can be taken as a clear indication of the efficient suppression of zero-field tunneling of magnetization occurring in Zn$^{II}$Dy$^{III}$. In addition, compared with magnetization at zero-field, the out-of-phase component $\chi''$ for higher frequencies exhibits a series of frequency-dependent peaks around 16.5 K, with a second set around 6 K, which indicates two relaxation processes dominate for Zn$^{II}$Dy$^{III}$ under an applied 2 kOe field. The low temperature one (RLT) and high temperature one (RHT) could be ascribed to the two different Dy$^{III}$ ions centers in Zn$^{II}$Dy$^{III}$. Soncini et al. used an electrostatic model to determine the magnetic anisotropy in dysprosium complexes and their results indicated the ground state of Dy$^{III}$ is doublet quantized along the anisotropy axis with an angular momentum quantum number $m_f = ±15/2$ in absence of high symmetry. Theoretical research has presented that the large magnetic anisotropy is obtained when only the low-lying ground state, $|±15/2\rangle$ Kramers doublet, which in turn leads to strong magnetic anisotropy.$^{25}$ The peak temperatures, $T_p$, obtained by the Lorentzian peak function fitting from plots of $\chi''mT$ deduce a linear plot of $1/T_p$ vs. $\ln(2\pi f)$ and obey the Arrhenius law $1/T_p = -k_B\Delta E/ln(2\pi f) + ln t_0$, where $f$ is the frequency. The best fitting of out-of-phase component $\chi''m$ under zero dc field yields the energy barrier $\Delta E/k_B = 56.7$ K and the relaxation time $\tau_0 = 4.8 \times 10^{-7}$ s, which are comparable to those of reported Dy$^{III}$-based SMMS.$^{26}$

Plotting the relaxation time $\tau$ of out-of-phase component $\chi''$ under 2000 Oe dc field versus the temperature $T_p$ and a linear
fitting of the thermally activated points to the Arrhenius law afford $\Delta E_1/k_B = 6.30$ K and the relaxation time $\tau_1 = 9.55 \times 10^{-3}$ s for RLT and $\Delta E_2/k_B = 67.1$ K and $\tau_2 = 1.66 \times 10^{-6}$ s for RHT (Fig. 6). As a comparison, the energy barriers extracted from the high temperature regions is only a slight increase of the energy barrier, indicating that the quantum tunneling effect in this compound is not very pronounced.29

The frequency dependence of ac susceptibilities at zero field leads to the semicircle Cole–Cole plots of $\chi''_M$ vs. $\chi'_M$ (Fig. 7) at 8, 10, 12 and 14 K, respectively. The least-squares fitting results of the data are in good agreement with a distribution of single relaxation processes with $\alpha$ parameters of 0.07–0.15 ($\alpha = 0$ corresponding to an infinitely narrow distribution of relaxation times), which is also compatible with the value reported.28 The shift of the peak temperature ($T_p$) of $\chi''_M$ is measured by a parameter $\phi = (\Delta T_p/T_p)/(\Delta \log f) = 0.26$, which falls in the range of a normal value for a superparamagnet.28

**Conclusions**

The self-assembly of a methoxy substituted salicylamide Salen-like ligand and o-vanillin in Zn$^{II}$–Ln$^{III}$ chemistry led to three sandwich-like heterometallic clusters with hydroxyl bridged tetranuclear Ln$^{III}$ core swaddled by Zn$^{II}$ ion and deprotonated ligands. Photophysical determination indicate that Zn$^{II}$Eu$^{III}$ shows mixed emission both originating from ligands and Eu$^{III}$ ions, and ligand-centered emission in visible region is exclusively found for Zn$^{II}$Tb$^{III}$ and Zn$^{II}$Dy$^{III}$. Interestingly, Zn$^{II}$Dy$^{III}$ exhibits strong ferromagnetic magnetic behavior with a slow zero-field relaxation with $T_\beta = 4.8 \times 10^{-7}$ s and $\Delta E/k_B = 56.7$ K. To our best knowledge, it is quite unusual that strong ferromagnetic coupling and slow magnetic relaxation coexist in Zn$^{II}$–Ln$^{III}$ heterometallic clusters. Our current studies on construction of high-nuclearity heterometallic clusters are helpful in achieving further insights into the rational design and preparation of novel multifunctional Zn$^{II}$–Ln$^{III}$ heterometallic clusters. Further studies focused on the construction of d–f nanoclusters of Salen-like salicylamide ligands with other auxiliary ligands, different substitution and different d-metal ions are in progress in our group.

**Acknowledgements**

This work was supported by the National Natural Science Foundation of China (Grant: 21661019) and Gansu Natural Science Foundation of China. (Grant: 1212RJZA038).

**Notes and references**

1 (a) M. Brewer, J. Lee and J. G. Brennan, Inorg. Chem., 1995, 34, 5919; (b) M. Berardini, T. J. Emge and J. G. Brennan, Inorg. Chem., 1995, 34, 5327; (c) J. Ruiz, G. Lorusso, M. Evangelisti, E. K. Brehin, S. J. A. Pope and E. Colacio, Inorg. Chem., 2014, 53, 3586; (d) T. D. Pasatoiu, C. Tiseanu, A. M. Madalan, B. Jurca, C. Duhayon, J. P. Sutter and M. Andruh, Inorg. Chem., 2011, 50, 5879.

2 K. Z. Su, F. L. Jiang, J. J. Qian, M. Y. Wu, K. C. Xiong, Y. L. Gai and M. C. Hong, Inorg. Chem., 2013, 52, 3780.

3 H.-B. Xu, H.-M. Wen, Z.-H. Chen, J. Li, L.-X. Shi and Z.-M. Chen, Dalton Trans., 2010, 39, 1948.

4 X.-Q. Lü, W.-X. Feng, Y.-N. Hui, T. Wei, J.-R. Song, S.-S. Zhao, W.-Y. Wong, W.-K. Wong and R. A. Jones, Eur. J. Inorg. Chem., 2010, 2010, 2714.

5 Z.-S. Meng, F.-S. Guo, J.-L. Liu, J.-D. Leng and M.-L. Tong, Dalton Trans., 2012, 41, 2320.
6 X. P. Yang, Z. P. Li, S. Q. Wang, S. M. Huang, D. Schipperc and R. A. Jones, Chem. Commun., 2014, 50, 15369.
7 L. Zhang, L. Zhao, P. Zhang, C. Wang, S.-W. Yuan and J. K. Tang, Inorg. Chem., 2015, 54, 11535.
8 Z. Chen, B. Zhao, P. Cheng, X.-Q. Zhao, W. Shi and Y. Song, Inorg. Chem., 2009, 48, 3493.
9 (a) H. Zhang, G.-L. Zhuang, X.-J. Kong, Y.-P. Ren, L.-S. Long, R.-B. Huang and L.-S. Zheng, Cryst. Growth Des., 2013, 13, 2493; (b) R. Modak, Y. Sikdar, G. Cosquer, S. Hatterjee, M. Yamashita and S. Goswami, Inorg. Chem., 2016, 55, 691; (c) S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba and J. Mrozinski, J. Am. Chem. Soc., 2004, 126, 420; (d) S. F. Xue, Y.-N. Guo, L. Zhao, H. X. Zhang and J. K. Tang, Inorg. Chem., 2014, 53, 8165; (e) I. A. Kühne, G. E. Kostakis, C. E. Anson and A. K. Powell, Inorg. Chem., 2016, 55, 4072; (f) J. Q. Zhang, C. Li, J. J. Wang, M. Zhu and L. C. Li, Eur. J. Inorg. Chem., 2016, 2016, 1383; (g) X. F. Wang, P. Hu and J.-P. Sutter, Inorg. Chem., 2015, 54, 9664; (h) H.-R. Wen, J. Bao, S.-J. Liu, C. M. Liu, C.-W. Zhang and Y.-Z. Tang, Dalton Trans., 2015, 44, 11191; (i) W.-W. Kuang, L. L. Zhu, L. C. Li and P.-P. Yang, Eur. J. Inorg. Chem., 2015, 2015, 2245; (j) Y.-A. Liu, C.-Y. Wang, M. Zhang and X.-Q. Song, Polyhedron, 2017, 127, 278; (k) F. J. Kettle, V. A. Milway, F. Una, R. Valiente, L. H. Thomas, W. Wernsderfer, S. T. Ochsenbein and M. Murrie, Inorg. Chem., 2014, 53, 8970.
10 X.-Q. Song, P.-P. Liu, Y.-A. Liu, J.-J. Zhou and X. L. Wang, Dalton Trans., 2016, 45, 8154.
11 X.-Q. Song, P.-P. Liu, Z.-R. Xiao, X. Li and Y.-A. Liu, Inorg. Chim. Acta, 2015, 438, 232.
12 D. C. Santra, K. B. Manas, K. S. Pradip and M. Sudip, Chem.–Eur. J., 2016, 22, 2012.
13 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, 46, 467.
14 G. M. Sheldrick, SHELXL-2014, University of Gottingen, Gottingen, Germany, 2014.
15 (a) SAINT, version 6.02, Bruker AXS Inc, Madison, WI, 2002; (b) K. Bhattacharya, M. Maity, D. Mondal, A. Endo and M. Chaudhury, Inorg. Chem., 2012, 51, 7454.
16 (a) DIAMOND, Visual Crystal Structure Information System, version 3.1, Crystal Impact, Bonn, Germany, 2004; (b) X.-Q. Song, Y.-K. Lei, X.-R. Wang, M.-M. Zhao, Y.-Q. Peng and G.-Q. Cheng, J. Solid State Chem., 2014, 218, 202.
17 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
18 A. K. Mondal, H. S. Jena, A. Malviya and S. Konar, Inorg. Chem., 2016, 55, 5237.
19 (a) P.-H. Guo, J.-L. Liu, Z.-M. Zhang, L. Ungur, L. F. Chibotaru, J. D. Leng, F.-S. Guo and M.-L. Tong, Inorg. Chem., 2012, 51, 1233; (b) H. S. Ke, P. Gamez, L. Zhao, G.-F. Xu, S. F. Xue and J. K. Tang, Inorg. Chem., 2010, 49, 7549.
20 X. P. Yang, D. Chipper, R. A. Jones, L. A. Lytwak, B. J. Holliday and S. M. Huang, J. Am. Chem. Soc., 2013, 135, 8468.
21 M. Latva, H. Takalo, V.-M. Makkala, C. Matachescu, J. C. Rodriguez-Usb and J. Kankare, J. Lumin., 1997, 75, 149.
22 (a) W. D. Horrocks Jr, J. Am. Chem. Soc., 1979, 101, 334; (b) X. Q. Song, X. Y. Zhou, W. S. Liu, W. Dou, J. X. Ma, X. L. Tang and J. R. Zheng, Inorg. Chem., 2008, 47, 11501.
23 (a) M. Chen, E. C. Sainudo, E. Jiménez, S.-M. Fang, C.-S. Liu and M. Du, Inorg. Chem., 2014, 53, 6708; (b) R.-X. Yao, X. Xu and X.-M. Zhang, RSC Adv., 2014, 4, 53954; (c) S.-J. Liu, J.-P. Zhao, W.-C. Song, S.-D. Han, Z.-Y. Liu and X.-H. Bu, Inorg. Chem., 2013, 52, 2103; (d) P. Zhang, L. Zhang, S.-Y. Lin and J. K. Tang, Inorg. Chem., 2013, 52, 6595.
24 P.-H. Lin, T. J. Burchell, R. Clérac and M. Murugesu, Angew. Chem., Int. Ed., 2008, 47, 8848.
25 W.-B. Sun, B. Yan, L.-H. Jia, B.-W. Wang, Q. Yang, X. Cheng, H.-F. Li, P. Chen, Z.-M. Wang and S. Gao, Dalton Trans., 2016, 45, 8790.
26 N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny and A. Soncini, Nat. Commun., 2013, 4, 2551.
27 I. Oyarzabal, J. Ruiz, J. M. Eco, M. Evangelisti, A. Camón, E. Ruiz, D. Aravena and E. Colacio, Chem.–Eur. J., 2014, 20, 14262.
28 S. Liu, K. Lang, Y. Zhang, Q. Yang, B. Wang and S. A Gao, Dalton Trans., 2016, 45, 8149.
29 G. Abbas, Y. Lan, G. E. Kostakis, W. Wernsderfer, C. E. Anson and A. K. Powell, Inorg. Chem., 2010, 49, 8067.
30 (a) W.-M. Wang, W.-Z. Qiao, H.-X. Zhang, S.-Y. Wang, Y.-Y. Nie, H.-M. Chen, Z. Liu, H.-L. Gao, J.-Z. Cui and B. Zhao, Dalton Trans., 2016, 45, 8182; (b) G. Xiong, X. Y. Qin, P. F. Shi, Y. L. Hou, J. Z. Cui and B. Zhao, Chem. Commun., 2014, 50, 4255; (c) R. Modak, Y. Sikdar, G. Cosquer, S. Hatterjee, M. Yamashita and S. Goswami, Inorg. Chem., 2016, 55, 691.