4f spin density in the reentrant ferromagnet SmMn$_2$Ge$_2$

J.E. McCarthy1, J.A. Duffy2, C. Detlefs1, M.J. Cooper2, P. Canfield3

1European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France
2Department of Physics, University of Warwick, Coventry CV4 7AL, UK
3Ames Laboratory, 59 Physics, Iowa State University, Ames, Iowa 50011, USA

(September 18, 2021)

The spin contribution to the magnetic moment in SmMn$_2$Ge$_2$ has been measured by magnetic Compton scattering in both the low and high temperature ferromagnetic phases. At low temperature, the Sm site is shown to possess a large 4f spin moment of 3.4 \pm 0.1μ_B, aligned antiparallel to the total magnetic moment. At high temperature, the data show conclusively that ordered magnetic moments are present on the samarium site.

PACS numbers: 75.25.+z, 78.70.Ck, 75.30.Kz

The ternary compounds of structure RT_2X_2, where R is a rare earth, T is a transition metal and X is either Si or Ge, are of considerable interest since they exhibit a wide variety of phenomena, ranging from heavy fermion behavior and superconductivity to strong ferromagnetism. The RMn$_2$Ge$_2$ sub-series is of particular interest as the transition metal carries a magnetic moment. These compounds crystallize in the ThCr$_2$Si$_2$-type body-centered tetragonal structure consisting of layers stacked along the c-axis in the sequence R–Ge–Mn$_2$–Ge–R (Ref. 1). The magnetic ordering depends critically on the planar Mn–Mn distance, d. For values greater than $d_c = 2.87\AA$ ferromagnetism is observed, whereas below this antiferromagnetic ordering is favored. In SmMn$_2$Ge$_2$, d is approximately equal to this critical value, and numerous magnetization measurements have shown a complex temperature dependence of the magnetic ordering in the compound. Furthermore, this material exhibits giant magnetoresistance of magnitude $\approx 8\%$ associated with the antiferromagnetic phase. As a naturally-layered material, the properties of SmMn$_2$Ge$_2$ provide an interesting complement to studies of artificial multilayer materials.

The purpose of the present study was to determine the moments on the Sm site at different temperatures. The spin moments on the Sm and Mn sites were determined by fitting atomic models to the magnetic Compton profiles (MCP).

One of the key objectives of earlier work has been to determine the different magnetic structures of this material at various temperatures. SmMn$_2$Ge$_2$ has three magnetically ordered phases. At 345K (above which it is paramagnetic), the material becomes ferromagnetic. Below 155K, antiferromagnetic ordering occurs, and remains for temperatures down to 105K (Ref. 4), then the compound becomes ferromagnetic once more. The ordering is strongly anisotropic: in the high temperature ferromagnetic phase, the easy axis lies along the [001] direction but along the [110] direction in the low temperature ferromagnetic phase. A further phase transition has been suggested at $T_c \approx 30K$ and was thought to arise from an ordering of the Sm magnetic moment.

Very recently, Tomka et al. (Ref. 9) used powder neutron diffraction to study the origin of the magnetic moments in this material. They revealed a complex non-collinear buckled structure with net ferromagnetic components of $\approx 2\mu_B$ per Mn and up to 0.65μ_B per Sm site. It was shown that the Mn moments are not aligned with any high symmetry direction of the crystal, and that the change in orientation of the easy magnetization axis results from a change of the coupling, which leads to cancellation of the net ferromagnetic moment components within the basal plane or along [001] in the high and low temperature phases, respectively. These measurements were performed on isotopically enriched samples in order to minimize the prohibitive neutron absorption in natural samarium. Tomka et al. derived these results from a Rietveld refinement which relies on tabulated values for the neutron magnetic form factors. They assumed the Sm moment to be induced by the Mn net ferromagnetic moment and therefore they refined only its collinear projection. While Tomka et al. were mostly concerned with the Mn antiferromagnetism, our current work focuses on the distribution of the net ferromagnetic moments, mainly on the Sm sublattice. For more details on the antiferromagnetic structures, we refer the reader to Ref. 5.

Samarium has electronic configuration $4f^5$, and its Hund’s rules ground state is predicted to have a small total moment of 0.84μ_B arising from large antiparallel spin ($S = 5/2$) and orbital ($L = 5$) angular momenta. However, another J-multiplet lies just above this free-ion ground state, and crystalline electric field (CEF) effects frequently lead to different ground states: hence Hund’s rules are expected to be unreliable in this system. Indeed in pure Sm metal the paramagnetic moment is observed to be 1.5μ_B, instead of the 0.84μ_B expected. Consequently, knowledge of the spin and orbital moments is particularly important in order to understand the magnetization of this material. Magnetic form factors are sensitive to the assumed S and L values of the magnetic ground state, leading to uncertainties in the total Sm

\[4f^{\text{spin density in the reentrant ferromagnet SmMn}_2\text{Ge}_2} \]
moment derived from neutron powder data. X-ray magnetic circular dichroism (XMCD) is not an ideal technique in this case because the validity of the sum rules is not well established for the investigation of 4f materials. This magnetic Compton scattering (MCS) measurement, however, provides this essential information directly and unambiguously.

MCS is a uniquely sensitive probe of the spin component of the magnetization. The Compton effect is observed when high energy photons are scattered off electrons. For bound electrons which have some distribution of momenta, the scattered photon energy is Doppler broadened into an energy distribution. The Compton profile, \(J(p_z) \), is defined as the 1-dimensional projection of the electron momentum distribution, \(n(p) \), onto the scattering vector, taken to be parallel to the \(z \) direction.

\[
J(p_z) = \int \int n(p) \, dp_x \, dp_y.
\]
(1)

Within the impulse approximation, the Compton profile is directly proportional to the scattering cross-section. The integral of \(J(p_z) \) is simply the total number of electrons per unit cell. If the photons impinging on a sample have a component of circular polarization, then a small spin dependence appears in the scattering cross section. Reversing either the photon polarization or the magnetization of the sample changes the sign of the spin-dependent signal, which enables the spin part to be isolated. The resultant magnetic Compton profile (MCP), is a projection of the momentum density of only those electrons with unpaired spins,

\[
J_{\text{mag}}(p_z) = \int \int (n^\uparrow(p) - n^\downarrow(p)) \, dp_x \, dp_y.
\]
(2)

Here, \(n^\uparrow(p) \) and \(n^\downarrow(p) \) are the momentum dependent majority and minority spin densities respectively. The area under the MCP is equal to the number of unpaired electrons, i.e. the total spin moment per formula unit in Bohr magnetons.

Magnetic Compton scattering is now an established technique for probing momentum space spin densities and band structures in magnetic materials. Within the impulse approximation, the method is solely sensitive to spin magnetic moments, \(S \) (Ref. [13,15,16]); the orbital moment, \(L \), is not measured. This is especially useful in the light rare earths and actinides, where \(J = L - S \) may be small, even if \(L \) and \(S \) are large. Unlike XMCD, MCS is equally sensitive to all spin polarized electrons, regardless of their binding energy and the symmetry of their wave functions. Since the MCP is a difference between Compton profiles, the contributions from the spin-paired electrons, and from unwanted systematic sources cancel out. In the study of Sm and related materials, high energy x-rays have the additional advantage that they do not suffer from the large absorption factors associated with neutrons, which have severely hindered such experiments.

The basal plane MCP for SmMn\(_2\)Ge\(_2\) was measured on the high energy x-ray beamline, ID15, of the ESRF. The experiment was performed in reflection geometry with a scattering angle of 168°. The incident beam energy of 296keV was selected by the \(\{311\} \) reflection of a Si monochromator. The sample was grown by the slow cooling of a ternary melt rich in Mn and Ge (Ref. [13]). For the experiment a piece of dimensions \(5 \times 3 \times 1.5 \text{mm}^3 \) was cut from the resultant crystal, and was oriented so that the resolved direction was in the basal plane to within ±2°.

The temperature of the sample was maintained at \(15 \pm 2 \text{K}, 40 \pm 2 \text{K} \) and \(230 \pm 2 \text{K} \) for the three measurements. The sample’s magnetization was reversed with a 0.96T rotating permanent magnet. For the two low temperature measurements, this was sufficient to saturate the magnetic moment, while at 230K the moment was approximately 50% saturated, since in the high temperature ferromagnetic phase the easy axis is perpendicular to the basal plane. A degree of circular polarization of \(P_c \approx 45\% \) was obtained by selecting a beam 20\(\mu \text{rad} \) above the orbital plane of the synchrotron. The energy spectrum of the scattered x-rays was measured by a solid-state Ge detector. The momentum resolution obtained was 0.44 atomic units (a.u., where 1 a.u. = \(1.99 \times 10^{-24} \text{ kg m s}^{-1} \)). The total number of counts in each of the charge profiles was \(1.5 \times 10^8 \), resulting in \(3.7 \times 10^9 \) in the MCP with a statistical precision of ±3% at the magnetic Compton peak in a bin of width 0.09 a.u. The usual correction procedure for the energy dependence of the detector efficiency, absorption, the relativistic scattering cross-section and magnetic multiple-scattering were applied, and after checking that the profiles were symmetric about zero momentum, the MCPs were folded about this point to increase the effective statistical precision of the data. The amplitude of the MCP spectra, \(J_{\text{mag}}(p_z) \), was calibrated using data for Fe and Ni obtained under the same experimental conditions to correct for the partial circular polarization of the incident beam and other geometrical factors.

The results from the measurements at 15K and 40K are shown in Figure 1, together with model profiles for Sm 4f and Mn 3d electrons based on relativistic Hartree Fock (RHF) free atom wavefunctions. The model profiles have been scaled to provide a best least-squares fit to the data for \(p_z \geq 1.5 \text{ a.u.} \). The fact that these free atom model profiles must provide an accurate description of the Compton profiles at high momentum results from energy considerations. The kinetic energy of the electron distribution is given by the second moment of the Compton profile. The virial theorem ensures that the kinetic energy and the total energy are numerically equal but opposite in sign. Therefore the very small total energy changes responsible for cohesion derive from changes in the electron distribution at low momenta, associated with electron density away from the atomic cores. The profiles for Mn 3d and Sm 4f electrons are significantly different, the latter being 50% broader, and therefore fitting at high
momenta can be used to separate the moments. This difference can be thought of as simply arising from the fact that the Sm 4f electrons are more tightly bound than the Mn 3d electrons, and this difference manifests itself in higher momentum components for the 4f against the 3d electrons: a result which is also evident from simple consideration of the uncertainty principle.

The analysis of magnetic Compton line shapes in terms of the characteristically different orbital profiles has been demonstrated in many similar cases e.g. HoFe$_2$, CeFe$_2$, and UFe$_2$. Our results presented in Figure 1 clearly show that there is a large negative 4f spin moment, opposed to the positive Mn 3d moment. Even though the magnetic configuration of Sm is sensitive to the CEF environment, the MCP of Sm and other 4f materials indicate that deviations from the atomic behavior are small, a result also supported by neutron diffraction data. Thus the area under the fitted 4f curve gives a reliable estimate of the Sm spin moment. Combination of bulk magnetization data with the measured spin moments allow us to infer the size of the orbital moment. These values, given in Table I, were determined as follows.

The total spin moment, calculated simply by integrating the MCP, is effectively zero for the 15K and 40K data. The area under the Sm 4f profile at 40K was deduced to be $3.4 \pm 0.1 \mu_B$ per formula unit. This means that the spin moment associated with the Mn 3d electrons together with the delocalised electrons, also amounts to the same value, $3.4 \mu_B$ per formula unit, but aligned antiparallel. Note that the fitted Mn 3d profile (dotted line in Figure 1) is inappropriate at low momenta ($p_z < 1.5 \text{a.u.}$) because the 3d electrons are sensitive to the solid state environment, and their contribution will differ from free atom behavior, unlike the Sm 4f electrons. In addition small contributions at low momentum from both delocalised Mn (4sp-like) and Sm (5d- and 6sp-like) electrons, are evident in Figure 1 from the discrepancy between the data and the fitted curve at low momentum. Similar effects are found in studies on other 3d systems, and an electronic structure calculation would be needed to examine this further. The main interpretation of this MCP is that there is a Sm 4f spin moment of $3.4 \mu_B$, which is aligned antiparallel to the Mn 3d, and total magnetizations. Since the total spin moment is zero, we can also deduce the size of the orbital moment in this material. In order to account for the macroscopic ferromagnetic moment of $4.1 \mu_B$ measured by SQUID magnetometry there must be an orbital moment of this size. This orbital moment is aligned with the total magnetization, i.e. parallel to the Mn spin direction. A large orbital contribution is expected from the Sm 4f shell ($L = 5$), while the orbital moment of delocalised electrons is usually quenched. The transition metals represent an intermediate case, where spin-orbit coupling and CEF effects are of comparable strength, therefore a 3d orbital moment will be reduced, but can not be ruled out completely, as has been shown recently in NiO (Ref. 22). In the Mn$^{2+}$ ion the 3d shell is exactly half filled ($S=5/2, L=0$), so that the orbital moment vanishes. In SmMn$_2$Ge$_2$, however, the valence of Mn is not known, so that an orbital moment on the Mn site cannot be neglected a priori. Nevertheless, the comparison of MCP and bulk magnetization clearly shows that at low temperature there is a significant contribution from orbital moments, even though from the present measurements we cannot determine its origin.

The moments determined for the 15K data (Figure 1) and given in Table I show that no significant difference was observed between the 15K and 40K profiles. Hence, we observe no evidence of the re-ordering of the Sm moment between these temperatures proposed by Sampathkumaran et al.

In Figure 2 we present preliminary MCP data measured at T=230K. Despite the poorer statistical accuracy it is clear that the data are still negative for momenta above 3a.u., in fact the area in the region $4 < p_z < 10 \text{a.u.}$ is $-0.04 \pm 0.01 \mu_B$. The Sm 4f spin moment is reduced compared with the low temperature data. The lines shown in Figure 2 represent fits to the data points first assuming there is no Sm spin moment present (dashed line) and then assuming contributions from both Sm 4f and Mn 3d electrons (solid line). The least squares fit was made in the momentum range $1.5 < p_z < 15 \text{a.u.}$, i.e. beyond the low momentum region where solid state effects reduce the Mn moment. The curve obtained using Mn only clearly does not represent a good fit to the data, whereas the data points show a normal distribution about the fit including both Sm and Mn contributions, which yields a Sm spin moment of $0.7 \pm 0.1 \mu_B$, again aligned antiparallel to the total and Mn 3d magnetizations. As far as the authors are aware, this is the first time that a Sm spin moment has been observed conclusively in the high temperature phase in this material. A vanishing Sm moment at high temperature could not be excluded in the neutron data of Tomka et al. since the refinement procedure was consistent with moment values ranging from zero to $0.6 \mu_B$. It should also be noted that since the total moment, measured by neutrons, is much smaller than the spin and orbital contributions, the magnetic Compton scattering experiment is more sensitive to the existence of any ferromagnetic ordering. Furthermore, the MCP result does not rely on complex data analysis; it can be deduced directly from the raw data. The negative tail of the MCPs shown in Figures 1 and 2 cannot be interpreted without a negative 4f contribution to the moment.

The bulk magnetization at 230K and 0.96T was measured to be $2.1 \mu_B$. Together with the spin component measured by MCP, $0.7 \mu_B$, this means that there has to be an orbital magnetic moment of $1.4 \mu_B$. Where this unexpectedly large orbital moment originates is subject of ongoing research.

In conclusion, our results show that in the low temperature ferromagnetic phase there is a large spin moment of $3.4 \pm 0.1 \mu_B$, negatively polarized with respect to the Mn spin moment and total magnetization. This, together with the magnetization data, means that there
is also a large orbital moment of similar size. Our data do not support the existence of a magnetic phase transition near $T=30K$. At high temperature, a Sm 4f moment definitely exists, albeit reduced in size from the low temperature value.

We would like to thank the ESRF for provision of beam time, and the EPSRC (UK) for financial support. We also thank Clemens Ritter for critical reading of the manuscript and helpful discussions, and Martin Lees for performing magnetization measurements at Warwick. The Ames Laboratory is operated for the US DOE under contract number W-7405-ENG-82. This work was supported by the Directorate for Energy Research, Office of Basic Energy Sciences.

* Present Address: H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
1 A. Szytula and J. Leciejewicz, *Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics* (CRC Press, Boca Raton, 1994), pp 114-192.
2 A. Szytula and J. Leciejewicz, in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Gschneidner, Jr. and L. Eyring (Elsevier Science, Amsterdam, 1989), Vol. 12, pp. 133-211.
3 E.V. Sampathkumaran, P.L. Paulose and R. Mallik, Phys. Rev. B 54, R3710 (1996).
4 H. Fujii, T. Okamoto, T. Shigeoka and N. Iwata, Solid State Commun. 53, 715 (1985).
5 E.M. Gyorgy, B. Batlogg, J.P. Remeika, R.B. van Dover, R. Fleming, H.E. Bair, G.P. Espinosa, A.S. Cooper and R.G. Maines, J. Appl. Phys. 61, 4237 (1987).
6 R.B. van Dover, E.M. Gyorgy, R.J. Cava, J.J. Krajewski, R.J. Felder and W.F. Peck, Phys. Rev. B 47, 6134 (1993).
7 J.S. Lord, P.C. Riedi, G.J. Tomka, Cz. Kapusta and K.H.J. Buschow, Phys. Rev. B 53, 283 (1996).
8 G.J. Tomka, Cz. Kapusta, C. Ritter, P.C. Riedi, R. Cywinski and K.H.J. Buschow, Physica B 230-232, 727 (1997).
9 G.J. Tomka, C. Ritter, P.C. Riedi, Cz. Kapusta and W. Kocemba, Phys. Rev. B 58, 6330 (1998).
10 P.M. Platzman and N. Tzoar, Phys. Rev. B 2, 3556 (1970).
11 P. Holm, Phys. Rev. A 37, 3706 (1988).
12 F. Bell, J. Felsteiner and L.P. Pitaevskii, Phys. Rev. A 53, R1213 (1996).
13 N. Sakai, J. Appl. Cryst. 29, 81 (1996).
14 M.J. Cooper, J. Rad. Phys. Chem. 50, 63 (1997).
15 M.J. Cooper, E. Zukowski, S.P. Collins, D.N. Timms, F. Itoh and H. Sakurai, J.Phys.:Condens. Matt. 4, L399 (1992).
16 S.W. Lovesey, J.Phys.: Condens. Matter 8, L353 (1996).
17 P. Carra, M. Fabrizio, G. Santoro and B.T. Thole, Phys. Rev. B 53, R5994 (1996).
18 J.A. Duffy, J.E. McCarthy, S.B. Dugdale, V. Honkimäki, M.J. Cooper, M.A. Alam, T. Jarlborg and S.B. Palmer, J. Phys.: Condens. Matter 10, 10391 (1998).
19 P.C. Canfield and Z. Fisk, Phil. Mag. B 65, 3151 (1992).
20 E. Zukowski, S. P. Collins, M.J. Cooper, D.N. Timms, F. Itoh, H. Sakurai, H. Kawata, Y. Tanaka and A. Malowski, J. Phys.: Condens. Matter 5, 4077 (1993).
21 F. Biggs, L.B. Mendelsohn and J.B. Mann, At. Data Nucl. Data Tables 16, 201 (1975).
22 M.J. Cooper, P.K. Lawson, M.A.G. Dixon, E. Zukowski, D.N. Timms, F. Itoh, H. Sakurai, H. Kawata, Y. Tanaka and M. Ito, Phys. Rev. B 54, 4068 (1996).
23 P.K. Lawson, M.J. Cooper, M.A.G. Dixon, D.N. Timms, E. Zukowski, F. Itoh and H. Sakurai, Phys. Rev. B 56, 3239 (1997).
24 M.A.G. Dixon, J.A. Duffy, S. Gardelis, J.E. McCarthy, M.J. Cooper, S.B. Dugdale, T. Jarlborg and D.N. Timms, J. Phys.: Condens. Matter 10, 2759 (1998).
25 V. Fernandez, C. Vettier, F. de Bergevin, C. Giles, and W. Neubeck, Phys. Rev. B 57, 7870 (1998); W. Neubeck, C. Vettier, V. Fernandez, F. de Bergevin, and C. Giles, J. Appl. Phys. 85, 4847 (1999).

FIG. 1. The experimental magnetic Compton profile of SmMn$_2$Ge$_2$ at $T = 15K$ and $T = 40K$. The fits were performed for $p_z > 1.5$ a.u., using RHF predictions for the Mn 3d and Sm 4f moment, convoluted with a Gaussian of FWHM = 0.44 a.u. to represent the experimental resolution.
FIG. 2. The experimental magnetic Compton profile of SmMn$_2$Ge$_2$ at $T = 230$K. The lines represent the fitted RHF profiles obtained using the least squares method for Mn 3d electrons only and both Sm 4f and Mn 3d electrons. These fits clearly indicate the presence of a Sm 4f contribution.

TABLE I. The magnetic moments associated with Sm and Mn at 15K and 40K.

Moments [µ$_B$/formula unit]	15K	40K
Total spin	$-0.01(3)$	$+0.02(3)$
Sm spin	$-3.5(1)$	$-3.4(1)$
Mn + delocalised spin	$+3.5(1)$	$+3.4(1)$
Total magnetisation	$+4.1$	$+4.1$
Total orbital	$+4.1$	$+4.1$