INTRODUCTION

Papaya is developed broadly in all tropical and sub-tropical parts of the world. Papaya has been viewed as a standout among the most profitable tropical organic products that contain beta-carotene, protein, starch, vitamins, and minerals. The papaya is a little, scantily expanded plant, for the most part with a solitary stem developing from 5 to 10 m tall, leaves are extensive, 0.5 to 0.7m in width, significantly palmtusely lobed, with seven projections. Papaya common items have smooth skin, green, while young turning yellow. The normal Philippine papaya is typically pear shape around 0.1–0.4 m long on maturity [1]. Prepared papaya feels fragile, the skin has yellowish shading, and when opened it has a sensitive orange-yellowish tissue with different minimal dim seeds embedded at the vacant core interest (Fig. 1) [2].

MATERIALS AND METHODS

Medical advantages of papaya

Carica papaya leaves extracts for the treatment of dengue fever [3-13]

Ahmad et al. have revealed an examination that the capacity of C. papaya deports separates evacuates against dengue fever in Asian Pacific Journal of Tropical Biomedicine. The patient was given 25 ml of leaves extracts twice, day by day for 5 back to back days. It was noted in the report the platelets check, white blood cells and neutrophils lessen from 84.0% to 46.0%. In this way, the blood tests were rechecked after the association of leaves evacuate, watched that the platelets tally, white blood cells, and neutrophils extended from 46.0% to 78.3%.

Patil et al. decided the impact of C. papaya deports fluid concentrate in expanding the platelet check in thrombocytopenic rodent display. Watery concentrate of C. papaya leaves at a grouping of 400 mg/kg and 800 mg/kg were given to cyclophosphamide prompted thrombocytopenic rats for a time of 15 days. Blood was pulled back at different time interims to decide the platelet check. Likewise, the coagulating time was resolved on the 15th day of the examination by slender strategy. C. papaya leaf separate was found to increase the platelet check and furthermore to diminish the coagulating time in rats. The investigation goes for deciding the conceivable impacts of papaya leaves in thrombocytopenia happening in dengue fever.

C. papaya health benefits for blood-related helpful issues [14-16]

Ikpeme et al. have reported an examination on the phytochemistry and hematological capacity of the ethanolic seed, leaf and mash think of C. papaya in Pakistan Journal of Biological Sciences. In this examination, it was perceived that the phytochemical substance in the seeds, leaf, and mash of C. papaya was almost the same however in contrasting degrees. It was likewise watched that the phytochemicals found in C. papaya by and large improved the creation of certain blood parameters in treated albino rats.

Antihyperglycemic effects of ethanol extracts of C. papaya [17-20]

Sasidharan et al. have revealed an examination on the phytochemicals in C. papaya may have antihyperglycemic activity in Journal of Natural Product Research. The ethanolic concentrates of C. papaya and Pandanus amaryfollius were coordinated to a social occasion of diabetic rats to measure it's against diabetic effects. The examination prescribes that the phytochemical found in C. papaya and P. amaryfollius might be in charge of the counter diabetic well-being benefits.

C. papaya health benefits for digestive disorder [21-25]

Muss et al. have reported a study on the on the digestive disorders of C. papaya in the journal of Biogenic Amines. Clinical trials including volunteers with constant acid reflexes and dysfunctions in the gastrointestinal tract were given papaya preparation. They were contrasted with a control aggregate given a fake treatment. The examination prescribes that gigantic change in the symptoms of acid reflux and swelling for those under the papaya arranging when stood out from the control gathering. The estimation of the constituents of papaya and its health benefits were discussed in Table 1 and Table 2 respectively.

Antifungal activity [26-30]

Chavez-Quintal et al. have revealed an examination on the antifungal activity of ethanolic extracts of C. papaya L. cv. Maradol leaves and seeds of discarded ripe and unripe fruit in Indian Journal of Microbiology. Seed extracts indicated inhibition of fungal activity against three phytopathogenic growths: Rhizopus stolonifer, Fusarium spp. also,
Green papaya have distributed an article on the antibacterial showed remarkable hepatoprotective activity. 570 mg. reported the effect of 700 mg, 900 mg, 200 mg, 0 mg, and Colletotrichum gloeosporioides. Singh and Ali have reported the antifungal movement of the methanolic concentrate of the seeds indicated antifungal action against Aspergillus flavus, Candida albicans, and Penicillium citrinum in Indian diary of pharmaceutical sciences.

Papaya and pregnancy: Safety and side effects [31]
Adelbeyi et al. have reported an investigation done in the Department of Obstetrics and Gynaecology in the British Journal of Nutrition. In a lab examine, the effects of prepared papaya blend (500 ml/l water) and papaya fowl latex to the uteri of pregnant Sprague Dawley rats was diverged from a control aggregate given with water in a manner of speaking. Results have shown that ready papaya has no threatening or perceptible responses, while the rough latex incited convulsive narrowing of the uterine muscles. The examination prescribes that common usage of ready papaya and pregnancy may not represent any noteworthy threat speak to any gigantic hazard. The unripe or semi-ready papaya could be unsafe in pregnancy.

Antihelminthic and antiamoebic activity of C. papaya seeds [22,32-34]
Okenyi et al. have uncovered the amappiness of dried C. papaya seeds against human intestinal parasitosis in the Journal of Medicinal Food. The patient was given either dried seeds of C. papaya blended with nectar or nectar alone. 76.7% of the individuals who were given nectar blended with dried seeds of papaya were cleared of parasites following 7 days while 16.7% of the individuals who took nectar alone. This examination reasons that air-dried C. papaya seeds are strong in treating human intestinal parasites and without critical side effects.

Anticancer and immunomodulatory activity of C. papaya [35-37]
Otsuki et al. have detailed that liquid plan of C. papaya leaf extricates have basic improvement inhibitory activity on tumor cell lines in the Journal of Ethnopharmacology. The examination additionally proposes that C. papaya leaf concentrate may conceivably give way to the treatment and anticipation of chose human illnesses, for example, growth, different unfavorably susceptible scatters, and may likewise fill in as immune adjuvant for antibody therapy.

Fauziya and Krishnamurthy papaya (2013) reported the anticancer activity of papaya in QB Tech JPharm Sic. A papaya in vitro thinks about demonstrates that it will treat numerous disease cell line and papaya physiochemical having anticancer exercises. Papaya is rich in compound papain which is viable against growth. Papain separates the fibrin disease cell divider furthermore, protein into the amino corrosive frame. Other than papain, it, moreover, contains lycopene which exceedingly receptive toward oxygen and free radical. Isothiocyanate present in Papaya is powerful against lung, pancreas and prostate cancer. These chemicals fit of restraining both arrangement and improvement of disease cell.

Antibacterial and wound healing effect of C. papaya [38-41]
Dawkins et al. have distributed an article on the antibacterial development of C. papaya natural product remove against fundamental damage life shapes in the West Indian Medical Journal. They reported seed isolates from the organic product showed obstruction of bacterial development against Bacillus cereus, Escherichia coli, Streptococcus faecalis, Staphylococcus aureus, Proteus vulgaris, and Shigella flexneri. This examination prescribes that C. papaya has antibacterial effects that could be profitable in treating perpetual skin ulcers to advance healing. Islam et al. have reported antibacterial activity of the latex of papaya against Bacillus subtilis, E. coli, Agrobacterium sp., and Rhizobium sp. in Asian Journal of Pharmaceutical and Clinical Research.

Antifertility activity [42,43]
Poharkar et al. revealed that the counter fruitfulness impacts of C. papaya were analyzed by bolstering grown-up and pregnant rodent with various parts of the natural product in the Journal herb med toxicology. No endeavor was made to forcibly feed the creature, and the outcome showed that the unripe fruit interfered with the estrous cycle and instigated fetus removal. This impact vanished as the organic product wound up stale or over ripe. Chlorofuran concentrate of C. papaya seeds initiated long haul azosperma in drowsiness monkey. Papaya additionally demonstrated the counter implantation and abortifacient effect.

Antisickling activity [44-47]
Mojisola et al. reported antisickling properties of C. papaya fruit pulp in reared water, methanol, and chloroform utilizing sodium metabisulfite in Journal of Natural product. Sickle cell sickness comes about because of a transformation in hemoglobin inside the red platelets, where a glutamic acid at sixth position is replaced by valine.

Hepatoprotective effect [48-50]
Sadeque et al. have revealed the hepato cautious impacts of dried natural products of papaya against carbon tetrachloride prompted hepatoxicity and it contrasted and that of Vitamin-E. The outcomes affirmed that C. papaya and Vitamin E exhibited gigantic hepatic injury against CCl4 instigated hepatoxicity, anyway C. papaya demonstrated more tremendous changes in alkaline phosphatase level than Vitamin E. Rajkapoor et al. reported the effect of C. papaya on hepatoxicity in the biological and pharmaceutical bulletin. The ethanol and aqueous extracts of C. papaya showed remarkable hepatoprotective activity against CCl4 induced hepatoxicity.

Antineoplastic activity [17,51,52]
Praveena et al. reported antineoplastic activity of hydroethanolic concentrate of unripe fruit of papaya utilizing animal model in Asian Journal of Pharmaceutical and Clinical Research. This examination was embraced to screen the effect of administration of different measurements of a hydroethanolic concentrate of the unripe product of papaya against Dalton’s ascitic lymphoma (DAL) in Swiss albino mice. In this examination, hydroethanolic concentrate of papaya indicated significant antitumor activity against DAL cell line induced malignant ascites tumor animals.

Antioxidant and Anticancer activities of Hexane fraction from papaya male flower [53-59]
Sanipar et al. reported antioxidant and anticancer activities of hexane fraction from papaya male flower in Asian Journal of Pharmaceutical and Clinical Research. The antioxidant activity was completed utilizing the α,α-diphenylβ- picrylhydrazyl technique and the anticancer potential movement was completed utilizing 3-(4,5-dimethyldiazol-
Table 2: Therapeutic uses of papaya [78]

Part	Preparation	Therapeutic uses
Peel	Utilization of peel with a little drain and nectar	Protects, soothes, and moisturizes the skin
	Apply peel as the face veil for around 20 min	To get rid of blemishes on the skin and face
	Absorb cut papaya vinegar for half a month.	Against dandruff
	Peel stewed in olive oil, almond oil, and rose oil, and the subsequent papaya oil rubbed into the skin with use of nectar and rose water	Works as skin toner and skin cleanser
Fruit	Eat new ready papaya toward the beginning of the day	Indigestion, dizziness, farts, enhance hunger
Unripe fruit	Apply unripe papaya squeeze on influenced zone	Pimples, skin inflammation, mouth ulcer
Ripe fruit		Utilized to treat mouth ulcer and toothache
Soup made from fish and nearly ripe fruit		Pimples and in some Asian nations.
Leaves	Wash the leaf and cut into little pieces squeeze the mash and channel with the fabric	Used for dressing wounds and injuries, treating nervous pains, and elephant growths
Two tablespoons serving for every day	Leaves of papaya	Can cure dengue fever
Root	A decoction shaped by heating up the external piece of the roots	Used for treating jaundice
Root infusion	The sinapism prepared from the root of the plant	Utilized as a part of curing jaundice
Seeds	Crisp or dry pulverized seeds	Can cure jaundice
Root infusion	Download the plant and add water to make a decoction	Can cure jaundice
Flower	The blossoms from the plant	Can cure jaundice
Latex	Latex of papaya	Can cure jaundice

Table 3: Some restorative employments of papaya plant as specified in antiquated Ayurveda literature [79,80]

Parts	Medicinal aid
Latex	Anthelmintic soothes dyspepsia, cure looseness of the bowels, agony of consumes and topical utilite, draining hemorrhoids, stomachic, whooping hack
Ripe Fruits	Stomachic, stomach related, carminative diuretic, looseness of the bowels and interminable the runs, expectonat, calming and tonic, oesatus stoutness, draining heaps, and injuries of the urinary tract
Unripe fruit	Purgative, diuretic, dried juice decreases developed spleen and liver, utilized as a part of snakebite to evacuate harm, abortifacient, and antibacterial action
Seeds	Carminative, emmenagogue, vermifuge, abortificient, counter aggravation, as glue in the treatment of ringworm and psoriasis, antifectional operators in guys
Seed Juice	Draining heaps and amplified liver and spleen
Root	Abortificient, diuretic, checking stomachic and topical utilite
Leaves	Younful leaves as vegetable, jaundice (fine glue), urinary protestations and gono rhea (implantation), dressing wounds (crisp leaves), antibacterial action, vermifuge in colic, fever, beriberi, fetus removal (imbuement), and asthma (smoke)
Flowers	Jaundice, emmenagogue, febrifuge, and pectoral properties
Stem bark	Jaundice, hostile to hemolytic action, sore teeth (inward bark), against parasitic action

2-yl)-2,5-diphenyl tetrazolium bromide examines to check the cytotoxic movement on WiDr (colorectal carcinoma cell) and Vero cell (typical cell). Phytochemical screening of the hexane portion from the male blossom of papaya hinted at solid triterpenoids and steroids, while the IC\textsubscript{50} of cancer prevention agent esteem was 100.81 ±1.180 μg/ml cytotoxic impact demonstrates that the hexane portion of papaya male blossom had selectivity to WiDr cell.

Antimicrobial activity of C. papaya [60-64]

Baskaran et al. assessed the subjective examination of phytochemicals and antimicrobial action of different dissolvable concentrates of C. papaya. The antimicrobial exercises of distinctive dissolvable concentrates of C. papaya were tried against the Gram-positive and Gram-negative bacterial strains and growth by watching the zone of a hindrance. The Gram-positive microorganisms utilized as a part of the test were S. aureus, B. cereus, and Micrococcus luteus, and the Gram-negative microorganisms were E. coli, and Klebsiella pneumoniae, and the fungus used in the test were Aspergillus niger, A. flavus, Calbicans, Candida tropicalis, Cryptococcus neoformans and Candida kefyr.

Sumathi detailed (2014) phytochemical investigation and in vitro antimicrobial action of fluid and dissolvable concentrates of C. papaya against clinical pathogens in Int J Adv Res Biol Science. The dried powdered plant material is subjected to dissolvable extraction utilizing the solvents chilly water, high temperature water, and ethanol. Antimicrobial measure of plant remove against clinical segregates by AWD examines. Just the leaf separates demonstrated inhibitory impact against C. albicans, though stem and root extricates were ineffective. Among the leaf, stem, and root separates, the leaf remove is found to display more antimicrobial movement than the stem and root.

Anti-HIV activity of C. papaya [2,65-76]

Rashed et al. (2013) proclaimed phytochemical screening of the polar concentrates of C. papaya Linn and the evaluation of the anti-HIV-1 advancement in J Appl Ind Sci. The methanol and watery concentrates of C. papaya were striven for their against HIV-1 activity using the syncyta advancement test. The outcomes have shown that C. papaya methanol and fluid concentrates have quiet limit as debilitating to HIV-1 directors.
Table 4: Synthetic segments distinguished from the leaf concentrates of C. papaya [81]

Sl No.	Synthetic segments	Molecular weight	Molecular formula
1	Decylene	140	C₆H₁₂O
2	Trans-Geranylacetone	194	C₇H₁₄O₂
3	Methyl tridecanoate	226	C₁₃H₂₆O₂
4	Palmitic acid	256	C₁₉H₃₈O₃
5	Methyl tetradecanoate	242	C₂₀H₄₂O₃
6	Myristic acid	228	C₁₄H₂₇O₂
7	Methyl palmitate	270	C₁₉H₃₈O₂
8	Hexadecanoic acid	256	C₁₆H₃₄O₂
9	Methyl oleate	294	C₂₀H₄₂O₃
10	Methyl cis-6-octadecenoate	296	C₂₀H₄₀O₂
11	Stearic acid, methyl ester	298	C₂₀H₄₀O₂
12	Oleic acid	282	C₁₇H₃₂O₂
13	Stearic acid	284	C₁₉H₃₈O₂
14	15-Tetracosenoic acid	380	C₃₀H₆₀O₂
15	Methyl heptacosanoic acid	424	C₂₇H₄₄O₂
16	trans-13-Docosenoic acid	338	C₃₃H₆₄O₂
17	Methyl erucate	352	C₃₀H₶₀O₃
18	Methyl behenate	354	C₃₀H₆₀O₂
19	Henicosanoic acid, methyl ester	340	C₁₀₀H₂₀₀O₁₀
20	Farnesyl cyanide	410	C₂₁H₳₂O€

C. papaya: Carica papaya

Nutritional value of papaya plant

Papaya is a sensibly surveyed standard thing has high nutritive respect. It is low in calories and rich in normal vitamins and minerals. The relative low calories content effects this most needed to ordinary thing for hefty individuals who are into weight diminish organization. The nutritional values and the chemical constituents of papaya plant were tabulated in Table 3 and Table 4 respectively.

CONCLUSION

Papaya plant is fundamentally utilized as the food ingredient all through the world in light of its foods grown from the ground nutritive esteem. From the above examinations about the papaya plant exhibits that its leaves, seeds, roots, blossoms, ready, and unripe fruit juices were used as a customary drug. By the conventional cases, papaya is a capable pharmaceutical. Critical measure of work has been done on the biological activities and the uses of substance constituents, consequently broad examination on its pharmacodynamics, energy, appropriate institutionalization, clinical trials are expected to abuse the healing utility to fight diverse disorders.

ACKNOWLEDGMENTS

We sincerely thank the SRM Institute of Science and Technology, Chennai, for their continuous support and cooperation to carry out this work.

AUTHOR’S CONTRIBUTIONS

All authors contributed equally to this work.

CONFLICTS OF INTEREST

The authors have none to declare.

REFERENCES

1. Oliver-Bever B. Medicinal Plants in Tropical West Africa. Cambridge: Cambridge University Press; 1986. p. 161.
2. Yogiraj V, Goyal PK, Chauhan CS, Goyal A, Vyas B. Carica papaya Linn: An overview. Int J Herb Med 2014;2:1-8.
3. Ahmad N, Fazal H, Ayaz M, Abbas BH, Mohammad I, Fazal L, et al. Dengue fever treatment with Carica papaya leaves extracts. Asian Pac J Trop Biomed 2011;1:330-3.
4. Charan J, Saxena D, Goyal JP, Yasobant S. Efficacy and safety of Carica papaya leaf extract in the dengue: A systematic review and meta-analysis. Int J Appl Basic Med Res 2016;6:249-54.
5. Patil S, Shetty S, Bhide R, Narayanan S. Evaluation of platelet aggregation activity of Carica papaya leaf aqueous extract in rats. J Pharmacog Phytochem 2013;1:271-32.
6. Pigli RK, Runja C. Medicinal plants used in dengue treatment. Int J Chem Nat Sci 2014;2:70-6.
7. Hettige S. Salutary effects of Carica papaya leaf extract in dengue fever patients—a pilot study. Sri Lankan Fam Physician 2008;29:17-9.
8. Yunita F, Hanani E, Kristianto J. The effect of Carica papaya L. Leaves extract capsules on platelets count and hematocrit level in dengue fever patient. Int J Med Aromat Plants 2012;2:573-8.
9. Manohar PR. Papaya, dengue fever and ayurveda. Anc Sci Life 2013;32:131-3.
10. Senthivel P, Lavanya P, Kumar KM, Swetha R, Anitha P, Bag S, et al. Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents dengue 2 viral assembly. Bioinformation 2013;9:889-95.
11. Sarala N, Palkarink S. Papaya extract to treat dengue: A novel therapeutic option? Ann Med Health Sci Res 2014;4:320-4.
12. Dharmarathna SL, Wickramasinghe S, Weduge RN, Rajapakse RP, Kularatne SA. Does Carica papaya leaf-extract increase the platelet count? An experimental study in a murine model. Asian Pac J Trop Biomed 2013;3:720-4.
13. Kasture PN, Nagabhushan KH, Kumar A. A multi-centric, double-blind, placebo-controlled, randomized, prospective study to evaluate the efficacy and safety of Carica papaya leaf extract, as empirical therapy for thrombocytopenia associated with dengue fever. J Assoc Physicians India 2016;64:15-20.
14. Ipemne EV, Ekahe UB, Koofoor ME, Udenski O. Phytochemistry and hepatotoxic potential of ethanolic seed leaf and pulp extracts of Carica papaya (Linn.). Pak J Biol Sci 2011;14:4088-11.
15. Jaiswal P, Kumar P, Singh VK, Singh DK. Carica papaya Linn: A potential source for various health problems. J Pharm Res 2010;3:998-1003.
16. Kumar KS, Bhownik D. Traditional and medicinal uses of banana. J Pharm Phytochem 2012;1:51-63.
17. Sasidharan S, Sunanth V, Jegathambigai NR, Lahre LY. Antihyperglycemic effects of ethanol extract of Carica papaya and Pandanus amaryllifolius leaf in streptozotocin-induced diabetic mice. Nat Prod Res 2011;25:1982-7.
18. Maniyar Y, Bhixavatimath P. Antihyperglycemic and hypolipidemic activities of aqueous extract of Carica papaya leaf. Leaves in alloxan-induced diabetic rats. J Ayurveda Integ Med 2012;3:70-4.
19. Oloyede OI. Chemical profile of unripe pulp of Carica papaya. Pak J Nutr 2005;4:379-81.
20. Mentredy SR, Mohamed AI, Rimando AM. Medicinal plants with hypoglycemic/anti-hyperglycemic properties: A review. Proc Assoc Adv Ind CropConf 2005;20:341-53.
21. Muss C, Mosgoeller W, Endler T. Papaya preparation in digestive disorders. Biogenic Amines 2012;26:1-17.
22. Okeniyi JA, Ogunlesi TA, Oyelami OA, Adeyemi LA. Effectiveness of dried Carica papaya seeds against human intestinal parasitosis: A pilot study. J Med Food 2007;10:194-6.
23. Ayooa PB, Adeeye A. Phytochemistry and nutrient evaluation of Carica papaya leaves. Int J Recent Res Appl Stud 2010;5:325-8.
24. Alanis AD, Calzada F, Cervantes JA, Torres J, Ceballos GM. Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol 2005;100:153-7.
25. Calzada F, Yépez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol 2006;108:367-70.
26. Chávez-Quintal P, González-Flores T, Rodríguez-Buenfil I, Gallegos-Tintore S. Antifungal activity in ethanolic extracts of Carica papaya L. Cv. Maradol leaves and seeds. Indian J Microbiol 2011;51:54-60.
27. Singh O, Ali M. Phytochemical and antifungal profiles of the seeds of Carica papaya L. Indian J Pharm Sci 2011;73:447-51.
28. Baskaran C, Velu S, Kumaran K. The efficacy of Carica papaya leaf extract on some bacterial and a fungal strain by well diffusion method. Asian Pac J Trop Dis 2012;2:56-62.
29. Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S, et al. Does flavonoid from Carica papaya inhibit NS2B-NS3 protease and prevents dengue 2 viral assembly. Bioinformation 2013;9:889-95.
30. Pattnaik S, Subramanyam VR, Bapaji M, Kole CR. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 1997;89:39-46.
31. Adebiyi A, Adaikan PG, Prasad RN. Papaya (Carica papaya) consumption is unsafe in pregnancy: Fact or fable? Scientific evaluation of a common belief in some parts of Asia using a rat model. Br J Nutr 2002;88:203.

32. Bose BC, Saifi AQ, Vijayvargiya R, Bhagwat AW. Pharmacological study of Carica papaya seeds with special reference to its antihelmintic action. Preliminary report. Indian J Med Sci 1961;15:888-92.

33. Satria F, Fanns P, Murtini S, He S. Antihelminthic activity of papaya latex against patient Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 1995;48:161-4.

34. Kanthak LK, Mondal P, Somnath DE, Jana S, Aneela S, Satyavathi K. Antihelminthic activity of Carica papaya Latex using Pheritinga Posthumus. Int J Life Sci Pharm Res 2012;2:10-2.

35. Otoki N, Dang NH, Kudjoe E, Kondo A, Iwata M, Morimoto C, et al. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacol 2010;127:760-7.

36. Nguyen TT, Shaw PN, Parat MO, Hewittharana AK. Anticancer activity of Carica papaya. Areviol. Mol Nutr Food Res 2013;57:153-64.

37. Santra G, Krishnamurthy R. Papaya source material for anticancer. CIB Tech J Pharm Sci 2013;2:25-34.

38. Dawkins G, Hewitt H, Wint Y, Obiechina PC, Wint B. Antibacterial effects of Carica papaya fruit on common wound organisms. West Indian Med J 2006;55:290-2.

39. Romasi EF, Karima J, Parhusip AJ. Antibacterial activity of Papaya leaf extracts against pathogenic bacteria. Makara Tegnol 2011:15:173-7.

40. Islam A, Al-Mamun MA, Parvin S, Meh S. Evaluation of antibacterial activity of Latex of Caricaeae. Asian J Pharm Clin Res 2017;10:179-81.

41. Praveena P, Jethinlalkhosh JP, Doss VA. Pharmacological evaluation of antineoplastic activity of hydroethanolic extract of unripe fruit of Carica papaya Linn. J Nat Prod 2008;51:65-66.

42. Imaga NO, Gbenle GO, Okochi VI, Akanbi SO, Edeoghon SO. Antioxidant and anti-inflammatory effects of aqueous and solvent extracts of Carica papaya against clinical methicillin resistant Staphylococcus aureus. Int J Adv Res Biol Sci 2014;1:73-7.

43. Rahmat A, Bakar MF, Faezah N, Hambali Z. The effects of consumption of Carica papaya on total antioxidant and lipid profile in normal male youth. Asia Pac J Clin Nutr 2004;13:S106.

44. Rajkumar A, Bakar MF, Faezah N, Hambali Z. The effects of consumption of guava (Psidium guajava) or papaya (Carica papaya) on total antioxidant and lipid profile in normal male youth. Asia Pac J Clin Nutr 2004;13:S106.

45. Prakash D, Upadhyay G, Singh BN, Dhakarey R, Kumar S, Singh KK. Antisickling properties of hemane fraction from Carica papaya L. In experimentally induced diabetic rats. Indian J Exp Biol 2007;45:739-43.

46. Poharkar RD, Saraswat RK, Kotkar S. Survey of plants having anti-inflammatory activity of Carica papaya leaf extract on some bacterial and fungal strain by well diffusion method. Asian J Trop Dis 2012;2:11:347-9.

47. Mehdipour S, Yasa N, Dehghan G, Khorasani R, Mohammadirad A, Rahmat A, Bakar MF, Faezah N, Hambali Z. Antioxidant and anti-inflammatory effects of unripe papaya. Life Sci 1993;53:1383-9.

48. Singh A, Abhishek A, Singh S, Haldar S. Antioxidant and in vitro antimicrobial activity of aqueous and solvent extracts of Carica papaya against clinical methicillin resistant Staphylococcus aureus. J Pharm Anal 2014;4:1-4.

49. Anjana et al. Curr Sci 2015;115:74-85.