The emergence of saddle-point Van Hove singularities (VHSs) in the density of states, accompanied by a change in Fermi surface topology, Lifshitz transition, constitutes an ideal ground for the emergence of different electronic phenomena, such as superconductivity, pseudo-gap, magnetism, and density waves. However, in most materials the Fermi level, E_F, is too far from the VHS where the change of electronic topology takes place, making it difficult to reach with standard chemical doping or gating techniques. Here, we demonstrate that this scenario can be realized at the interface between a Mott insulator and a band insulator as a result of quantum confinement and correlation enhancement, and easily tuned by fine control of layer thickness and orbital occupancy. These results provide a tunable pathway for Fermi surface topology and VHS engineering of electronic phases.
Quantum interactions at the interfaces between strongly correlated materials trigger new emergent phenomena that do not exist in each single material alone.1–10. Their properties can be controlled by varying the parent constituents and/or their stacking geometry.11–14. One notable example is the emergence of electronic liquid behavior, created by novel charge mismatch in the quantum well of nonpolar band insulator SrTiO$_3$ embedded in polar Mott insulator, such as SmTiO$_3$, showing hallmarks of strongly correlated phases, including non-Fermi liquid behavior,15,16 transport lifetime separation,15 pseudo-gap,17 spin density waves,18, and antiferromagnetism.18 These behaviors are tuned by the thickness of the quantum wells in SrTiO$_3$, defined by the number of SrO layers (t_{QW} = x-SrO), embedded in SmTiO$_3$. Transport measurements have shown two different regimes as a function of thickness. Specifically, the temperature dependence of resistivity shows a sharp change from a T^2 behavior to a T^n ($n < 2$) behavior as the number of layers decreases, with a sharp crossover at the critical thickness t_{QW} = 3-SrO where a divergence of resistivity and other electronic properties, such as the Hall coefficient, is observed.15–18 While the origin of these exotic properties is believed to be related to quantum confinement, involving atomic orbital and coupling/correlation of the interfacial electron liquids, no study of the electronic structures at these buried interfaces exists.

Here, we use angle-resolved photoemission spectroscopy (ARPES) to access this information in SrTiO$_3$ band insulator embedded in Mott insulator SmTiO$_3$. As the critical thickness is approached,15,16 we reveal the formation of a Van Hove singularity (VHS), a change of orbital character and Fermi surface topology, reminiscent of a Lifshitz transition. These results allow us to identify the critical parameters for Fermi surface topology and VHS engineering of electronic phases at the interfaces.

Results

Fermi surface and orbital character. Fig. 1a illustrates the four types of structures, t_{QW} = ∞, 6, 5, and 3-SrO, investigated in this work. The role of SmTiO$_3$ is to create a potential barrier and charge source to confine the electronic states within SrTiO$_3$ and prevent their diffusion in the SmTiO$_3$ layers. Each structure belongs to three distinct transport regimes: T^2 regime ($n \approx 2$) for the ∞- and 6-SrO layer, $1 < n < 2$ regime for 5-SrO layers and the critical crossover regime for 3-SrO layers.15–17. Figure 1b–i shows the evolution of the Fermi surfaces as a function of thickness for two different photon polarizations. Given the fact that both SrTiO$_3$ and SmTiO$_3$ are insulating and the experimental evidences shown and discussed in the “Method” section and the Supplementary Notes 1–3, these Fermi surfaces are representative of the buried interface conducting states. For p-polarized light (Fig. 1b–e), the main feature is an elliptical electron pocket at the Brillouin zone (BZ) center (most visible in the 2nd BZ, see green arrows). Following previous works,20–27 we associate these pockets with the Ti $d_{yz/yz}$ orbitals. The intensity variation across the different BZ is due to photoemission matrix element effects: p-polarized light is mostly sensitive to orbitals with even symmetry with respect to the scattering plane. As the number of SrO layers decrease, we observe an increase in the size of the electron pocket. This suggests an increase of electron occupancy in the $d_{yz/yz}$ orbitals. When the light polarization is changed from p to s, additional circular features appear both at the BZ center and corner (see red arrows in Fig. 1f–l). These states have odd parities relative to the horizontal plane. The pockets at the BZ center resemble similar features observed in the electron gas of SrTiO$_3$,22–24 and can be associated with the subband states of Ti d_{xy} orbitals.20–27

The additional circular pockets at the BZ corner are present in neither bulk SrTiO$_3$ nor SmTiO$_3$. Because SmTiO$_3$ has the orthorhombic distorted perovskite structure with TiO$_6$ octahedral rotation, these new structures suggest the presence of structural reconstruction at the interface, resulting in Fermi surface folding $(\sqrt{2} \times \sqrt{2} \times 4\delta)$28–30. Note that the finite intensity around X point (best observed in Fig. 1e) is relatively less clear than the folded d_{xy} state at M, but may suggest the possibility of a 2×2 in-plane reconstruction instead as also reported for SrTiO$_3$/LaAlO$_3$ heterostructure.27. Similar reconstructions are observed in all the studied thicknesses, suggesting a negligible effect of the distortion between different samples. In contrast to the elliptical features, the size of the circular pockets decreases from ∞-SrO to t_{QW} ≤ 5-SrO, suggesting a decrease of occupancy of the d_{xy} orbitals. This can be seen in more details in Fig. 1j–m, where the two splitting states of the d_{xy} pocket in ∞-SrO are clearly resolved. This splitting is considered to be the subband states or a Rashba like splitting of the d_{xy} pocket, a manifestation of spin–orbit interaction, similarly observed in electron gas on the surface of SrTiO$_3$.

From the Fermi surface area we find that the charge density increases from $(1.9 \pm 0.1) \times 10^{14}$ cm$^{-2}$ (∞-SrO), $(2.7 \pm 0.7) \times 10^{14}$ cm$^{-2}$ (6-SrO), $(4.7 \pm 0.4) \times 10^{14}$ cm$^{-2}$ (5-SrO), to $(5.4 \pm 0.2) \times 10^{14}$ cm$^{-2}$ for 3-SrO. As the quantum well thickness decreases, the total mobile charge is confined in a narrower region, making the carrier density in each TiO$_2$ layer higher, consistent with the trend in our results. We note that the estimated carrier density from our ARPES data may be slightly increased, due to the presence of additional carriers originating from oxygen vacancies induced by annealing and synchrotron radiation (See Supplementary Note 1 for more details) as reported in previous works.22,23 However, our results are in consistent well with those expected within the transport measurements, given the ambiguity in the interpretation of the Hall coefficient15,16,32,33.

Electronic dispersion and mass renormalization. Figure 2 shows the electronic dispersion, energy versus momentum of each orbital, for the different quantum well structures. In general, the data for the ∞-SrO (Fig. 2a, e, i) resemble the surface and interface states of SrTiO$_3$.21–24,34–39. The top and middle panels (Fig. 2a–h) show the dispersion for the $d_{yz/xz}$ electron pockets, while the bottom panels show the dispersion for the d_{xy} states. The bandwidth of the $d_{yz/yz}$ electron pockets (Fig. 2a–d and e–h) increases from ~38 meV for the ∞-SrO to ~85 meV for 6-SrO to ~130 meV for 5-SrO, and decreases to a slightly shallower level ~110 meV for the 3-SrO system. In contrast, the bandwidth of the d_{xy} electron pockets (Fig. 2i–l) decreases in accordance with the decrease of the Fermi surface area (~260 meV (~150 meV) for the outer (inner) pocket in the ∞-SrO, ~190 meV for 6-SrO, ~165 meV for 5-SrO, and ~195 meV for 3-SrO).

In order to quantify the electron effective mass (electron correlation for each orbital, the band renormalization factor, Z, is determined from the renormalized dispersion $E_{\text{DFT}}(k\parallel)$: $E_{\text{DFT}}(k\parallel) = \frac{Z E_{\text{Bare}}}{Z E_{\text{DFT}}(k\parallel) + \epsilon_0} = \frac{Z E_{\text{Bare}}}{Z E_{\text{Bare}}(k\parallel)$, (1)} where E_{Bare} is the band dispersion of the bulk SrTiO$_3$ Ti t_{2g} orbitals obtained by first principle calculations (DFT), and E_{Bare} is the bare band (black solid line in Fig. 2) based on the experimental Fermi momentum k_F and the bandwidth ϵ_0 (See “Method” section for more detail). As shown in Fig. 2, the renormalized band dispersions E (green dashed line) sufficiently match the ARPES spectra. In general, the larger discrepancy between the renormalized band dispersions and the bare band.
Fig. 1 Overview of the heterostructures and evolution of the interface Fermi surfaces. a The schematics of heterostructures studied in this work. Under the top capping layers of SmTiO$_3$ (two quasi-unit cells), x layers of SrTiO$_3$ are embedded. The thickness of SrTiO$_3$, t_{QW}, is defined by the number of SrO layers (x-SrO). From left to right, $t_{QW} = \infty$, 6, 5, and 3-SrO structures are shown, respectively. Fermi surface maps at E_F for different quantum well states taken over multiple BZ: $t_{QW} = \infty$ (b, f), 6 (c, g), 5 (d, h), and 3 (e, i). Spectra are obtained by integrating intensities in the energy window of ±10 meV at E_F. Data are taken with two polarization (p-polarization in b–e, and s-polarization f–i). The black solid line represents the in-plane BZ of SrTiO$_3$ with high symmetry points marked. The green arrows (red circles and red arrows) are guides to the eye for the Fermi surface of $d_{xz/yz}$ (orbital bands clearly shows such enhancement of the mass renormalization and hence electron correlation can be explained by the increase of electron doping in each TiO$_2$ layers. Indeed, as the distance between interfaces decreases, more electrons are confined in the narrower and flatter quantum potential, resulting in a significant increase of electrostatic doping level.

Lifshitz transition and emergence of Van Hove singularity. In Fig. 3, we study the details of the electron pocket and Fermi surface topology near the BZ boundary (the X point, see blue dashed square in Fig. 1b) for the different layers. For the ∞-SrO (Fig. 3a), the $d_{xz/yz}$ state forms a closed Fermi surface, forming an isolated small electron pocket centered around the Γ point as also seen in Fig. 1b, and hence absence of electronic states in the proximity of the X point (see also the dispersion curves in Fig. 3k, l). Once the thickness of SrTiO$_3$ changes to 6-SrO, the $d_{xz/yz}$ state evolves to have a larger Fermi surface and a deeper bandwidth as discussed in Figs. 1 and 2, and the topology of the Fermi surface is the same as the ∞-SrO (a closed electron pocket centered around the Γ point). On the contrary, as the number of layers decreases $t_{QW} \leq 5$SrO, the size of the electron pocket at the Γ point expands eventually covering the entire BZ, till the X point, see Fig. 3c, d. This gives rise to a hole-like structure along Γ-X direction (light-blue dashed line), and electron-like structure along the other
Fig. 2 Evolution of electronic structures at the interfaces for different quantum well structures. ARPES spectra for light band \(d_{x^2-y^2}\) orbital \((t_{QW} = \infty)\) (a), 6- \((\text{b})\), 5- \((\text{c})\), and 3- \((\text{d})\) SrO. ARPES spectra for heavy band \(d_{x^2-y^2}\) \((t_{QW} = \infty)\) (e), 6- \((\text{f})\), 5- \((\text{g})\), and 3- \((\text{h})\) SrO. ARPES spectra for energy versus momentum cuts for \(d_y\) orbital as a function of number of layer \((t_{QW} = \infty)\) (i), 6- \((\text{j})\), 5- \((\text{k})\), and 3- \((\text{l})\) SrO. Only \(\infty\)-SrO shows clear evidence of two parabolic sub-bands. The insets in each figure show the locations of the cuts. The black solid lines and green dashed lines are the bare bands based on DFT of bulk SrTiO\(_3\) and the renormalized experimental band dispersions, respectively.

direction \(\Gamma-M\) (red dashed line). The detailed Fermi surface structure around the \(X\) point is shown in Fig. 3h, i. The peak positions in the momentum-distribution curves (MDC) in Fig. 3h, i and the MDCs along \(M-X-M\) shown in Fig. 3j delineate a clear change in Fermi surface topology. The dashed lines #1–#6 in Fig. 3f–i indicate the directions of energy versus momentum cuts along \(M-X-M\) (#1, 3, 5, and 7) and \(\Gamma-X-\Gamma\) (#2, 4, 6, and 8) presented in Fig. 3k–l. The peak positions of MDC (red dots in Fig. 3n, o, q) and energy-distribution curve (EDC) (light-blue dots in Fig. 3n–r) reveal electron- and hole-like dispersion at the \(X\) point. Moreover, as shown in Fig. 3o–r clearly, the local minimum and local maximum are observed at the same momentum location, the \(X\) point, displaying the emergence of a saddle-point VHS, where the curvatures of bands have opposite signs along two orthogonal directions (schematically illustrated in Fig. 3c). Figure 3s shows the EDCs divided by the Fermi–Dirac function at the \(X\) point for each structure indicating the evolution of energy level of VHS.

Discussion

In summary, by studying the evolution of the thickness dependence of the electronic states in SrTiO\(_3\) confined by Mott insulator SmTiO\(_3\), we report a change of Fermi surface topology from a closed electron pocket centered around the \(\Gamma\) point for \(t_{QW} > 5\)-SrO, to a large-opened electron pocket extending all the way to the BZ boundary for \(t_{QW} \leq 5\)-SrO as schematically summarized in Fig. 4a. As the distance between the two interfaces decreases, the interface starts to couple each other drastically when the distance of the interfaces is smaller than \(t_{QW} \sim 6\)-SrO (see Supplementary Note 5), resulting in the change of orbital occupancy order as shown in Fig. 4c. In this regime \((t_{QW} \leq 6\)-SrO\)), as the quantum well thickness decreases, the interface coupling increases, resulting in higher doping and hence deeper bandwidth. \(t_{QW} \leq 5\)-SrO layer appears to be a critical thickness beyond which the interlayer coupling reach a critical value leading to increase of electron–electron interaction and therefore a strong renormalization, as shown in Fig. 2 and summarized in
The emergence of a VHS near the Fermi level E_F on the electric properties has been discussed for past decades, especially because of the induced electronic instability leading unconventional phenomena, such as superconductivity, pseudo-gap, magnetism, and density waves. Manipulation of the position of VHS near E_F shows to be the key to give rise to a new phase of matter. However, changing the energy level of VHS near low-energy level has been impossible for most materials. Here, as shown in Fig. 3o–s, the position of VHS in the SmTiO$_3$/SrTiO$_3$ can be tuned in low-energy region by changing the number of layers, t_{QW}, as a result of quantum confinement and couplings discussed above. These results suggest that the quantum confinement at the oxide interface provides a robust possibility for engineering electronic phases. Finally, it is noteworthy to point out the obtained locations with respect to E_F of VHS in 5-SrO and 3-SrO system (\sim15 and \sim40 meV, respectively) are in scale with the recent observation of pseudo-gap, 2Δ \sim 65 meV in 2-SrO17. Further studies are needed to investigate in details the relation between the two.

In summary, we discovered a change of Fermi surface topology, typical of a Lifshitz transition occurs at the interface between a Mott insulator and a band gap insulator by changing quantum confinement of the 2D electron liquid. Moreover, we find that such transition is accompanied by the appearance of a VHS and an enhancement of electron correlation. These results provide a new tunable pathway to engineer Fermi surface topology and VHSs in materials.

Methods

Samples. All samples were grown on (001) (LaAlO$_3$)$_{3-x}$(Sr$_x$TiAlO$_3$)$_{1.7}$ (LSAT) substrates by hybrid molecular beam epitaxy. The quantum well thickness and the
The samples were annealed at 700–800 °C for 30–60 min in ultra high vacuum (UHV), transferred to the ARPES chamber in situ, and measured at 20–25 K in UHV better than 3×10^{-11} Torr using photon energy of 80–120 eV and a Scienta 4000 analyzer. All data shown in the main text were taken with photon energy of 92 eV. The energy resolution was 20–30 meV and the angular resolution was better than 0.2° for all measurements. It should be noted that the following arguments corroborate that our ARPES results are mainly produced by the buried interfaces. First, because the top layers of SmTiO$_3$ of all samples have the same thickness and structure, they should not account for a significant difference in the electronic structures between the samples. Second, although the details of surface conditions between the measurements might be different based on the low-energy electron diffraction (LEED), the main results near the E_F shown in this work were reproduced from the same samples but different LEED quality (Supplementary Note 2). This suggests that the data in this work are less sensitive to the surface, but more to the interface which is protected by the capping layer. In addition, the observation of Ti$^{4+}$ core level spectra ensures that the detected photoelectrons come from the buried SrTiO$_3$ layers as the Ti layers in SmTiO$_3$ consist of only Ti$^{3+}$ (Supplementary Note 1). Thus, we believe that the difference in the electronic structure observed in this work stem mainly from the interface.

Theory. Theoretical calculations were performed within generalized gradient approximation (GGA) for bulk SrTiO$_3$ as implemented in the QUANTUM ESPRESSO Package\cite{23,24}. Correlation effects are taken into account through an on-site Hubbard U correction in form of GGA + U, with the local Coulomb repulsion U for Ti 3d electrons being 4.5 eV. Ultra-soft pseudopotentials with a plane wave energy cut-off of 30 Ry were used, and Monkhorst k-mesh was chosen as $32 \times 32 \times 32$. The crystal structures considered in the calculation is simple cubic with 3.905 Å of the lattice constant. The calculated electronic structures for Ti 3d_{xy} orbitals ($E_{	ext{VHS}}(k_z)$) have been used to evaluate the experimental electronic structures. The bare band structure $E_{	ext{bare}}(k_z)$ is obtained by using the following equation:

$$E_{	ext{bare}}(k_z) = E_{	ext{VHS}}(k_z) - E_{	ext{VHS}}(k_z),$$

where k_z is the experimental Fermi momentum, obtained by fitting with Lorentzian function to MDC at E_F. The band renormalization factor Z is obtained from: $Z = rac{n}{E_{	ext{VHS}}(k_z)}$ where n is the experimental bandwidth. For the renormalization factor for heavy d_{3z^2} bands (especially for 5- and 3-SrO layers), we use the same value obtained by light d_{3z^2} bands.

Data availability

The data that support the finding of this study are available from the corresponding author upon request.

Received: 6 September 2018; Accepted: 16 October 2019; Published online: 04 December 2019

Fig. 4 Fermi surface topology and interlayer coupling. **a** The schematics of Lifshitz transition and the effect of interlayer coupling as a function of t_{QW}. The red and light blue lines highlight the electron- and hole-like dispersion, respectively. After Lifshitz transition, the electron correlations in the quantum well are enhanced by the effect of interface-interface coupling, making the Van Hove singularity (VHS) deeper and the bandwidth around the Γ point shallower. **b** The temperature dependence of the resistance ($R \sim AT^\alpha$) from the transport measurement in refs. 16, showing the phase transition. **c** Evolution of orbital occupancy for orbital (d_{xy} (red circle) and d_{3z^2} (blue diamond) orbitals as a function of t_{QW}. The total occupancy of the d_{3z^2} orbitals is twice of the value shown here, because of the degeneracy. **d** Electron mass enhancement factor $1/2$ for each orbital, d_{xy} (red circle) and light d_{3z^2} (blue diamond) as a function of t_{QW}. The red and blue dashed lines in **c** and **d** are guides to the eye for other thickness structures. The vertical black dashed line in **b**–**d** separates the two distinct phases of the system\cite{35,36}. The error bars in **c**, **d** are estimated by absolute maximum variations of peak positions obtained by Lorentzian fittings for EDC and MDC.

Photoemission measurement. ARPES measurements were performed at the Beamline 4.0.3 (MERLIN) of the Advanced Light Source in Berkeley, California.

References

1. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196 (2007).

2. Richter, C. et al. Superconducting interfaces with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013).

3. Bucarás, J. et al. Two-dimensional superconductivity at a mott insulator/band insulator interface LaTiO$_3$/SrTiO$_3$, Nat. Commun. 1, 89 (2010).

4. Dikin, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).

5. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

6. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO$_3$/SrTiO$_3$ heterointerface. Nature 427, 423–426 (2004).

7. Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M. & Lowndes, D. H. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005).

8. Takahashi, K. S., Kawasaki, M. & Tokura, Y. Interface ferromagnetism in oxide quantum wells. Science 317, 426–427 (2004).

9. Cao, Y. et al. Coexistence of superconductivity and ferromagnetism in oxide superlattices of CaMnO$_3$/CaRuO$_3$. Appl. Phys. Lett. 79, 1524–1526 (2001).

10. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80 (2018).

11. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43 (2018).

12. Lee, J. J. et al. Interface mode coupling as the origin of the enhancement of T_c in FeSe films on SrTiO$_3$, Nature 515, 245 (2014).

13. Steurer, S. & Millis, A. J. Quantum confinement in oxide quantum wells. MRS Bulletin 38, 1032–1039 (2013).

14. Monkman, E. J. et al. Quantum many-body interactions in digital oxide superlattices. Nat. Mater. 11, 855–859 (2012).
