A lattice study of Λ_b semileptonic decay

Steven Gottlieb a and Sonali Tamhankara*

aIndiana University, Bloomington, IN 47405, USA; Theory Group MS106, Fermilab, PO Box 500, Batavia, IL 60510, USA.

We present results from a lattice study of the semileptonic decay $\Lambda_b \to \Lambda_c \ell \nu$. We use $O(a^2, \alpha_s a^2)$ improved quenched lattices of the MILC collaboration \cite{2}. These are $O(\alpha_s a^2)$ improved $20^3 \times 64$ lattices, with $a^{-1} = 1.33$ GeV, as determined from m_{p}. We use three light quark masses near the strange quark mass, $\kappa_f = 0.1343, 0.1333, 0.1323$. Two heavy quark κ values, 0.104 and 0.114 bracket the charm quark, and other two, 0.064 and 0.077 bracket the bottom. We use the clover action for the valence quarks, with a tadpole improved clover coefficient. The value for the tadpole improvement factor u_0 is taken from the Landau gauge fixed mean link. Fermilab formalism is used for the heavy quarks. Results are presented for 300 lattices for two-point functions, and 237 lattices for three-point functions.

1. INTRODUCTION

Current knowledge of the CKM matrix element V_{cb} is derived from the mesonic decays $B \to D^{*} \ell \nu$ or $B \to D \ell \nu$. Experimental knowledge of the Λ_b semileptonic decay can lead to an independent estimate of V_{cb} if the effect of the strong interaction in the decay are understood, e.g., via lattice QCD. A first lattice study of the baryonic semileptonic decay was performed by the UKQCD collaboration \cite{1}. We report our initial results for the dominant form factors of this decay.

The semileptonic decay $\Lambda_Q \to \Lambda_Q' \ell \nu$ can be parametrized in terms of six form factors, F_i and G_i, for $i = 1, 2, 3$.

\begin{equation}
\langle \Lambda_Q^{(r)}(v) | J_{\mu} | \Lambda_Q^{(r)}(v') \rangle = \bar{u}_Q^{(r)}(v) \gamma_{\mu} (F_1 - \gamma_5 G_1) + v_{\mu} (F_2 - \gamma_5 G_2) + v'_{\mu} (F_3 - \gamma_5 G_3) u_Q^{(r)}(v').
\end{equation}

Here J_{μ} is the weak current and r,s are polarisation states of the baryons. Since both Λ_b and Λ_c are hadrons containing a single heavy quark, heavy quark effective theory (HQET) is applicable \cite{3}. Hence the matrix element is taken between baryons of a given velocity, and the form factors are functions of the scalar $\omega = v \cdot v'$. To leading order in HQET, the combinations $F_1 + v_0 F_2 + v'_0 F_3$ and G_1 involving the dominant form factors F_1 and G_1 can be written in terms of a single function, called the (baryonic) Isgur-Wise function, $\xi(\omega)$. This function is normalised at zero-recoil, $\xi(1) = 1$.

2. SIMULATION PARAMETERS

The simulations are performed on the Asqtad quenched lattices at $\beta = 8.00$ generated by the MILC collaboration \cite{2}. These are $O(\alpha_s a^2)$ improved $20^3 \times 64$ lattices, with $a^{-1} = 1.33$ GeV, as determined from m_{p}. We use three light quark masses near the strange quark mass, $\kappa_f = 0.1343, 0.1333, 0.1323$. Two heavy quark κ values, 0.104 and 0.114 bracket the charm quark, and other two, 0.064 and 0.077 bracket the bottom. We use the clover action for the valence quarks, with a tadpole improved clover coefficient. The value for the tadpole improvement factor u_0 is taken from the Landau gauge fixed mean link. Fermilab formalism is used for the heavy quarks. Results are presented for 300 lattices for two-point functions, and 237 lattices for three-point functions.

3. TWO-POINT RESULTS

The dispersion relation is shown in Fig. 4. The fitted energy values agree very well with the expectation from the lattice dispersion relation. The chiral extrapolations for a fixed heavy quark mass are shown in Fig. 5. The baryon kinetic mass M_2 is estimated as $M_2 = M_1 + m_2 - m_1$. Where $M_2(1)$ and $m_2(1)$ are the baryon and heavy quark kinetic(rest) masses respectively. We use
3.2 \quad 3.4 \quad 3.6 \quad 3.8 \quad 4.0 \quad 4.2 \quad 4.4 \quad 4.6

0 \quad 0.5 \quad 1 \quad 1.5 \quad 2

Figure 1. Dispersion relation for $\kappa_h=0.114$, $\kappa_l=0.1323/0.1323$. The E here is E_1, the parameter obtained from exponential fits. The line shows the lattice dispersion relation.

4. THREE-POINT RESULTS

Different form factors contribute to different matrix elements in the three-point function. For $\mu=0$, the dominant contribution to three-point functions comes from the vector form factors and for $\mu=i$, axial-vector form factor G_1 gives the dominant contribution. We present results for the Isgur-Wise function from vector as well as axial-vector data. Λ_b is created at time 0 and Λ_c is annihilated at time $t_x \equiv 16$ in lattice units. The time at which the current acts is varied, and we study three-point function as a function of this time $t_y \equiv t$. For the results presented here, the initial baryon is at rest and the final baryon is moving with different velocities giving different values for ω. On the lattice, one is restricted to region near $\omega = 1$ as data starts getting noisy for high momenta. In this region, ν_0 can be approximated by 1. Then for an initial baryon of mass M' decaying to a final baryon of mass M moving with a momentum \vec{q}, if we consider the sum of the co-efficients of I and γ_0, for large t_y and $t_x - t_y$, the three-point expression simplifies to

a linear fit for these extrapolations. In Fig. 2, we have shown the chirally extrapolated baryon mass as a function of the heavy quark mass, along with the corresponding meson masses taken from the MILC collaboration. Our values for m_{Λ_b} and m_{Λ_c} are 5.626(36)GeV and 2.300(27)GeV.

Figure 2. Chiral extrapolations of the measured heavy baryon masses to the u quark. We have used the light quark kinetic mass m_2 for the fit.

Figure 3. The heavy baryon mass, plotted as a function of the heavy quark mass. Also shown are the heavy-light meson masses, taken from studies of the MILC collaboration. The bursts correspond to the b and c quark.

Figure 4. Isgur-Wise function from the vector current. κ_{h1} is 0.114 for all these points, and the points corresponding to four different κ_h are shown with four different symbols.
Figure 5. Isgur-Wise function from the axial-vector current. As before, \(\kappa_{h1} = 0.114 \) for all these points, and the points corresponding to four different \(\kappa_h \) are shown with four different symbols.

\[
C(t_\eta) = \frac{Z_l Z'_s(|\vec{q}|)}{16 M'E} e^{-t_\eta M'(E+M')} (F_1(\omega) + F_2(\omega) + F_3(\omega))/(E + M),
\]

where \(Z_l \) and \(Z'_s \) are known from the two-point functions. We fit this to a form \(A e^{-Bt} \) and consider the ratio

\[
\frac{A([M',0] \rightarrow (M,\vec{q})]}{A([M',0] \rightarrow (M,0))} = \left(\frac{F_1(\omega) + F_2(\omega) + F_3(\omega)}{F_1(1) + F_2(1) + F_3(1)} \right) \cdot \left(\frac{Z'_s(|\vec{q}|)}{Z'_s(0)} \right) \cdot \frac{(E + M)}{2E}.
\]

(3)

First factor on the RHS is \(^2\) the Isgur-Wise function \(\xi_{QQ'} \). The second and third factors are known from the two-point functions. The third factor may be approximated by 1 to 0.5 per cent accuracy. The second factor differs from 1 by up to 10\% over our range of \(\vec{q} \). The ratio is independent of the renormalization constant \(Z_V \) because we have the same heavy quark transition in both numerator and denominator.

Our results for the Isgur-Wise function from the vector current are shown in Fig. 4. The Isgur-Wise function obtained from the axial-vector current (\(\mu = i \) case) is shown in Fig. 5. The Isgur-Wise function seems to be quite insensitive to the heavy quark mass.

We have also studied the light quark mass dependence of the Isgur-Wise function. The Isgur-Wise function is expected to fall slower for smaller light quark masses, by a heuristic argument. We do see such a trend in this preliminary study, but it is very far from clear with the statistical errors we have. This is shown in Fig. 6.

The calculations were done on the IBM SP at Indiana University. We gratefully acknowledge the hospitality of the Fermilab Theory Group.

REFERENCES

1. K. C. Bowler et al., Phys. Rev. D 57, 6948 (1998), [hep-lat/9709028]
2. C. Bernard et al., Phys.Rev. D 64, 054506 (2001), [hep-lat/0104002]
3. A. V. Manohar and M. B. Wise, Heavy Quark Physics. Cambridge University Press, 2000, and references therein.