Neuropsychological Consequences of Chronic Drug Use: Relevance to Treatment Approaches

Jean Lud Cadet1* and Veronica Bisagno2*

1 National Institute on Drug Abuse Intramural Program, Molecular Neuropsychiatry Research Branch, Baltimore, MD, USA,
2 Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina

Heavy use of drugs impacts the daily activities of individuals in these activities. Several groups of investigators have indeed documented changes in cognitive performance by individuals who have a long history of chronic drug use. In the case of marijuana, a wealth of information suggests that heavy long-term use of the drug may have neurobehavioral consequences in some individuals. In humans, heavy cocaine use is accompanied by neuropathological changes that might serve as substrates for cognitive dysfunctions. Similarly, methamphetamine users suffer from cognitive abnormalities that may be consequent to alterations in structures and functions. Here, we detail the evidence for these neuropsychological consequences. The review suggests that improving the care of our patients will necessarily depend on the better characterization of drug-induced cognitive phenotypes because they might inform the development of better pharmacological and behavioral interventions, with the goal of improving cognitive functions in these subsets of drug users.

Keywords: marijuana, cocaine, methamphetamine, frontal cortex, cognition

INTRODUCTION

Substance use disorders continue to be a major health concern worldwide. Chronic use of various drugs can impact brain structures and functions (1, 2). Use of these drugs may also be associated with both acute and chronic neuropsychological abnormalities (3). The present review summarizes some of the evidence documenting cognitive changes reported in drug users [with a focus on marijuana, cocaine, and methamphetamine (METH)]. We also discuss potential biological substrates for these observations. The neuropathological changes associated with the use of larger quantities of some of these drugs have been recently reviewed (1). In addition to having differential abuse liability, the use of some of these substances is also associated with differential pathoanatomic changes in the brain (1). There is also evidence that a history of substance use may also exacerbate pre-existing neuropsychological deficits (4) and comorbid neurological or psychiatric disorders (3). It is also clear that substance-related changes in neuropsychological functions may negatively impact activities of daily living, including ability to manage finances and/or holding on to jobs (5). A meta-analysis of METH users and cognition revealed that these individuals exhibited small-to-medium effect sizes for an association between neurocognitive impairment and employment (6). Cognitive domains associated with employment status included executive function, learning and memory, attention, and general intellectual ability (6). In the present review, we will discuss alterations that are linked to psychological and neural mechanisms that detect error signals and generate suitable behavioral
responses (7). Also discussed is the accumulated evidence of poor learning and memory, diminished executive functions, and risky decision-making in some individuals with a history of heavy drug use (8–11).

**MARIJUANA USE**

Marijuana is the most commonly used illicit substance (12). Investigations of cognitive functions in heavy marijuana users have recently documented poor performance in a number of cognitive subdomains. Some of these deficits appear to be related to frequency of drug use and can impact activities of daily living.

**Neuropsychological Findings**

Adult marijuana users suffer from changes measured in broad cognitive domains (13, 14). These include memory (9, 13, 14, 15), attention (16), decision-making (17), and psychomotor speed (9, 18). Bolla et al. (9) reported that impairments observed in marijuana users could be measured in heavy users even after 28 days of forced abstinence during their participant stay on a closed research unit, with light use of marijuana not being associated with any significant decrements in performance (9). In a recent study, Colizzi et al. (19) studied whether functional variations in cannabinoid receptor 1 (CNR1) gene and marijuana exposure interact to modulate prefrontal functions and related behaviors. The authors suggested that deleterious effects of marijuana use may be more evident in individuals with specific genetic backgrounds that might impact receptor expression (19). Additionally, it is important to note that, even if marijuana use during early adulthood is associated with cognitive impairments in selected domains, prolonged abstinence may promote improvement in performance (13, 14, 20). These data are summarized in Table 1.

Functional imaging studies comparing activation in both adult and adolescent chronic marijuana users to healthy controls during the performance of different cognitive tasks have reported that chronic marijuana users showed altered patterns of brain activity [Ref. (31–38), see Table 2]. There is also evidence to suggest that heavy marijuana use may produce deficits on measures of decision-making and inhibitory control that persist for long periods of time (27). Among recreational marijuana users, lack of inhibitory control depends on contextual or situational factors, with loss of control being evident only when situations or tasks involve a motivational component (27). Also, poorer cognitive performance in areas of risk-taking, decision-making, and episodic memory may influence the degree to which marijuana users engage in risky behaviors with consequent negative health consequences (39). In addition, it has been reported that the main active ingredient in marijuana, delta-9 tetrahydrocannabinol (THC), can alter time perception by impairing time estimation and production in the seconds range (30). Temporal processing changes may have functional consequences because it is relevant to many everyday tasks, including driving (30).

Interestingly, although much more in-depth research remains to be done on this controversial issue, marijuana use during adolescence has been reported to increase the risk of developing psychotic disorders later in life (40). THC was also reported to induce acute psychotic symptoms in healthy individuals (41) and to increase the risk of psychotic disorders after long-term use (42). A recent study by Bhattacharyya et al. (43) reported a significant relationship between the effects of THC on striatal activation, its effects on task performance, and appearance of positive psychotic symptoms, suggesting that THC might induce psychosis by influencing the neural substrate of attentional salience processing (43). Although more research is needed on this subject, there are plausible biochemical pathways that marijuana can impact to induced psychotic responses in some individuals. Specifically, the endocannabinoid system consists of cannabinoids receptors and endogenous cannabinoid ligands that interact with these receptors to impact the release of several neurotransmitters, including GABA, glutamate, and dopamine (44, 45). Therefore, it seems possible that exposure to marijuana-based psychoactive substances during adolescence could negatively impact glutamatergic and GABAergic systems, with subsequent alterations of maturation processes of these systems, resulting in psychosis-like phenomena (46). The appearance of psychiatric disturbances might also depend on the exact dose, time windows during adolescence, and/or duration of drug exposure (24, 28, 40). Interestingly, hair analyses also revealed that marijuana users with high THC concentration were more likely to exhibit schizophrenia-like symptoms (47, 48). Some of the neuroimaging and cognitive changes reported in marijuana users appear to be moderated by gender (24, 49). These findings highlight potential THC-induced neuroadaptations in the

**Table 1 | Cognitive deficits reported in marijuana users.**

| Reference           | Cannabis dependence                          | Cognitive findings         |
|---------------------|----------------------------------------------|----------------------------|
| Solowij et al. (21, 22) | Adult chronic users                          | ↓ Attention                |
| Pope et al. (13, 14)  | Adult heavy users (abstinent)                 | ↓ Verbal memory            |
|                     | Adult moderate users (abstinent)              |                            |
| Bolla et al. (9)     | Adult abstinent users                         | ↓ Verbal memory            |
|                     | Twin study                                    | ↓ Visual memory            |
|                     |                                              | ↓ Executive function       |
|                     |                                              | ↓ Psychomotor speed        |
| Lyons et al. (23)    | Adult abstinent users                         | ↓ Manual dexterity         |
| Medina et al. (24)   | Adolescent abstinent users                   | ↓ General intelligence     |
| Hanson et al. (25)   | Adolescent abstinent users                   | ↓ Executive function       |
| Battisti et al. (26) | Adult chronic users                           | ↓ Memory recall            |
| Griffith-Lendering et al. (27) | Adult recreational users                  | ↓ Inhibitory control       |
| Meier et al. (28)    | Adolescent onset vs. adult onset              | ↓ IQ                       |
|                     | Prospective study                             | ↓ Working memory           |
| Solowij et al. (29)  | Adolescent chronic users                     | ↓ Reasoning                |
| Sewell et al. (30)   | Frequent and infrequent users                 | ↓ Temporal processing      |
|                     |                                              | in infrequent users        |

↓, Cognitive deficits.
TABLE 2 | Functional neuroimaging studies on marijuana users performing cognitive tasks.

| Reference       | Cannabis dependence | Neuroimaging method | Main findings                                                                 |
|-----------------|---------------------|---------------------|-------------------------------------------------------------------------------|
| Block et al. (15) | Adult chronic users | PET                 | ↓ Verbal memory; ↓ Activation in PFC; ↑ Activation in cerebellum              |
| Bolla et al. (17) | Adult abstinent users | PET              | ↓ Decision-making; ↓ Activation in DLPc and OFC; ↑ Activation in cerebellum |
| Chang et al. (31) | Adult chronic users | fMRI               | ↓ Activation in cerebellum; Altered activation pattern in the attention network |
| Padula et al. (32) | Adolescent abstinent users | fMRI | ↑ Activation in temporal gyrus, ACC; ↓ Activation in thalamus, pulvinar, left temporal gyrus |
| Tapert et al. (33) | Adolescent abstinent users | fMRI | ↑ Activation in DLPc, medial frontal cortex, parietal, and occipital gyrus |
| Schweinsburg et al. (34) | Adolescent abstinent users | fMRI | ↑ Activation in parietal cortex; ↓ Activation in DLPc and occipital cortex |
| Hester et al. (35) | Adult chronic users | fMRI               | ↓ Monitoring of interoceptive awareness; ↓ Activation in insula, ACC, parietal, and frontal cortex |
| Abdullaev et al. (16) | Young adult chronic users | fMRI | ↓ Attention; ↑ Activation in PFC and parietal cortex |
| King et al. (18) | Adult chronic users | fMRI               | ↓ Psychomotor speed; ↓ Activation in lingual gyrus; ↑ Activation in frontal gyrus |
| Wesley et al. (37) | Adult chronic users | fMRI               | ↓ Decision-making; ↓ Activation in cerebellum, ACC, parietal, and frontal cortex |
| Harding et al. (38) | Adult chronic users | fMRI               | ↑ Functional connectivity between PFC and occipitoparietal cortex             |

ACC, anterior cingulate cortex; DLPc, dorsal lateral prefrontal cortex; PFC, prefrontal cortex; ↓, decreased brain activation; ↑, increased brain activation; |, cognitive deficits.

adolescent brain and support the importance of prevention and treatment of adolescent users (28). Nevertheless, this topic needs to be further investigated before any firm conclusion can be reached concerning the relationship of THC to psychosis and other psychiatric diseases.

**COCAINe USE**

Although cocaine is a highly addictive agent, the vast majority of cocaine users do so recreationally over extended periods of time without developing dependence (50). Thus, documenting the potential cognitive effects of cocaine is an important public health issue because of its high prevalence in the general population. Recent neurobehavioral studies have shown that cocaine heavy users show a number of cognitive decrements that may be secondary to cocaine-induced changes in brain structure and function (1). These cognitive deficits are detailed below.

**Neuropsychological Findings**

Heavy cocaine use is associated with decrements in performance in several cognitive domains [Ref. (51), detailed in Table 3]. These include problems in executive function, decision-making, increased impulsivity, abnormal visuoperception, abnormal psychomotor speed, impaired manual dexterity, poor verbal learning, and decrements in memory functions (8, 52–58). Additionally, cocaine users showed different patterns of brain activation while performing cognitive tasks [Ref. (59–67), see Table 4]. Chronic cocaine users show poor insight and judgment, lack foresight, and are also disinhibited (68). These cognitive changes are probably related to functional dysfunctions in the prefrontal cortex (69) since patients who suffer damage in this brain region manifest similar cognitive problems (70). This suggestion is supported by neuroimaging studies demonstrating hypofrontality in cocaine users performing tasks of attention and executive function (62, 71). From this perspective, the possibility that a core deficit in executive functions, such as context processing, might contribute to the well-documented impairments in top-down control that are commonly associated with heavy cocaine use (72). In addition to those observations in chronic heavy cocaine users, subtle cognitive deficits have been reported in non-dependent, recreational cocaine users (50, 73–76).

There is a compelling evidence to suggest that cocaine-associated impairments in cognitive functioning might be secondary to cocaine-induced dysfunctions in dopaminergic systems (88–93). Cerebral hypoperfusion observed in the frontal and temporo-parietal cortical areas of cocaine users (77, 94) may also subserve some of the observed cognitive deficits in these patients. These suggestions are consistent with the report of increased cerebral vascular resistance in cocaine users, abnormalities that lasted for, at least, 1 month of monitored abstinence (95).

In addition to specific deficits observed in cocaine users, these individuals may also suffer from psychosocial impairments. For
TABLE 3 | Cognitive deficits reported in cocaine users.

| Reference                | Cocaine dependence       | Cognitive findings                           |
|--------------------------|--------------------------|----------------------------------------------|
| Ardila et al. (52)       | Adult chronic users      | ↓ Verbal memory, ↓ Attention                  |
| O’Malley et al. (53)     | Adult chronic users      | ↓ Verbal memory, ↓ Intelligence, ↓ Verbal abilities, ↓ Global neuropsychological functioning |
| Strickland et al. (77)   | Adult abstinent users    | ↓ Attention, ↓ Visual memory, ↓ Psychomotor speed |
| Hoff et al. (54)         | Adult abstinent users    | ↓ Spatial memory, ↓ Cognitive flexibility, ↓ Psychomotor speed, ↑ Verbal abilities |
| Gillen et al. (65)       | Adult abstinent users    | ↓ Visual memory, ↑ Visual motor speed         |
| Robinson et al. (78)     | Adult chronic cocaine users |↓ Psychomotor functioning                      |
| Bolla et al. (8)         | Adult abstinent users    | ↓ Visuoception, ↓ Executive function, ↓ Psychomotor speed, ↓ Manual dexterity |
| Aharonovich et al. (79)  | Adult chronic users      | ↓ Attention, ↓ Memory, ↓ Spatial ability      |
| Colzato et al. (73)      | Adult recreational users | ↓ Inhibitory control                         |
| Woicik et al. (80)       | Adult chronic users      | ↓ Verbal memory, ↓ Executive function, ↓ Attention |
| Kalapatapu et al. (81)   | Young adult chronic users |↓ Psychomotor speed                           |
| Old adult chronic users  |                          | ↑ Attention, ↑ Memory                         |
| Madoz-Gúrpide et al. (82)| Adult chronic users      | ↑ Executive function                         |
| Soar et al. (83)         | Adult recreational users | ↑ Executive function, ↑ Attention            |
| Vonmoos et al. (84)      | Adult chronic users      | ↑ Executive function, ↑ Attention             |
| Old recreational users   |                          | ↑ Working memory, ↓ Declarative memory        |
| Winhusen et al. (86)     | Adult chronic users      | ↑ Executive function, ↑ Inhibitory control, ↑ Apathy |
| Jones et al. (72)        | Adult chronic users      | ↑ Context processing ability                  |
| Preller et al. (85)      | Adult chronic users      | ↑ Empathy                                     |

1. Cognitive deficits; ↑, cognitive improvement; ↑, neurobehavioral symptoms.

example, a recent study by Preller et al. (87) suggests a relationship between social cognition test outcomes in cocaine-dependent patients and real-life social functioning. Specifically, participants showing more empathy and better mental processing abilities had a larger social network. In addition, social network size was correlated with duration and amount of cocaine use. This suggests that cocaine use and the associated altered empathy and insight may have consequences in everyday life, including fewer social contacts and deprivation of emotional support (87). Additionally, Preller et al. (85) also reported that individuals with cocaine dependence have blunted reward responses to social interactions as well as having reduced orbitofrontal cortex signals while performing a social cognition test. Taken together, these observations suggest that the treatment armamentarium may need to include interventions that boost more interactions of patients with other individuals in various social networks. This argument may explain, in part, why the affiliation-promoting peptide, oxytocin, may have beneficial effects in substance use treatment (96, 97). The possibility that social reward deficits might precede or be consequent to cocaine use needs to be investigated further (96).

In summary, although these cocaine-associated changes in cognitive functions have been well documented, their biological substrates have yet to be understood. Recent functional and structural imaging data provide ample support for impaired connectivity in frontostriatal (4, 98) and striatal-insular (99) connections that serve as neuroanatomical and functional substrates for some of the cognitive deficits reported in cocaine using individuals. A clinical approach that takes into consideration the fact that some patients may actually suffer from cognitive impairments should stimulate investigations in order to provide more details on the basic substrates of cocaine use by humans (74).

METHAMPHETAMINE USE

Methamphetamine use is a serious public health problem (100). Long-term exposure to the drug has been shown to cause severe neurotoxic and neuropathological effects with consequent disturbances in several cognitive domains (1). These neuropsychological impairments that can impact the daily lives of METH users are detailed below.

Neuropsychological Findings

Chronic METH users show mild signs of cognitive decline (10) affecting a broad range of cognitive functions [Ref. (5, 6, 101–112), see details in Table 5; but see also Ref. (113) for a counterargument]. A meta-analysis study by Scott et al. (107) identified significant deficits of a medium magnitude in several different cognitive processes that are dependent on the functions of frontostriatal and limbic circuits. The affected domains include episodic memory, executive functions, complex information processing speed, and psychomotor functions (107). Additionally, METH use often results in irritability, agitation, and numerous other forms of psychiatric distress probably related to the myriad of interpersonal problems experienced by these patients (114, 115). METH dependence is also associated with complaints of cognitive dysfunctions including memory problems and self-reported deficits in everyday functioning (110). Additionally, impulsive behaviors may exacerbate their psychosocial difficulties and promote maintenance of drug-seeking behaviors, especially, by those who use large amounts of the drug (116, 117). The nature and magnitude of cognitive deficits associated with chronic
TABLE 4 | Functional neuroimaging studies on cocaine users performing cognitive tasks.

| Reference                | Cocaine dependence  | Neuroimaging method | Main findings                                      |
|--------------------------|---------------------|---------------------|---------------------------------------------------|
| Goldstein et al. (59)    | Adult chronic users | [(18)FDG PET]      | ↓ Visual memory                                    |
|                          |                     |                     | ↓ Verbal memory                                    |
|                          |                     |                     | ↑ Executive function                               |
|                          |                     |                     | ↓ Attention                                        |
|                          |                     |                     | Differential DLPC and ACC metabolism                |
| Tucker et al. (60)       | Adult abstinent users | SPECT              | ↓ Decision-making                                  |
|                          |                     |                     | ↑ Hyperperfusion in frontal cingulate and superior frontal gyrus |
| Kübler et al. (61)       | Adult chronic users | fMRI               | ↓ Visuospatial working memory                      |
|                          |                     |                     | ↓ Verbal working memory                            |
|                          |                     |                     | ↓ Activation in prefrontal cortex, ACC, thalamus, and striatal areas |
| Tomasi et al. (62)       | Adult chronic users | fMRI               | ↓ Working memory                                   |
|                          |                     |                     | ↓ Activation in thalamus and mesencephalon         |
|                          |                     |                     | ↑ Activation in frontal/parietal cortex             |
|                          |                     |                     | ↑ Deactivation in putamen, ACC, parahippocampal gyrus, and amygdala |
| Volkow et al. (86)       | Adult chronic users | [(18)FDG PET]      | ↓ Functional laterality in cortical motor areas    |
| Hantla et al. (63)       | Adult chronic users | fMRI               | ↓ Activation in PFC, striatum, and thalamus        |
| Moeller et al. (64)      | Adult abstinent users | fMRI              | ↓ Activation in thalamus associated with poor treatment response |
| Volkow et al. (65)       | Adult male and female chronic users | [(18)FDG PET] | ↑ Brain reactivity to cocaine-cues in women |
| Camchong et al. (66)     | Adult chronic users | fMRI               | ↓ Activation in frontal, cingulate, and parietal cortex, thalamus, and midbrain in women |
| Barrós-Loscertales et al. (67) | Adult chronic users | fMRI           | ↓ Delay rewards                                    |
| Preller et al. (67)      | Adult chronic users | fMRI               | ↓ Decision-making                                  |
|                          |                     |                     | ↓ Learning                                         |
|                          |                     |                     | Altered connectivity within the ACC network, frontal hyperconnectivity |
|                          |                     |                     | ↓ Activation in PFC                                |
|                          |                     |                     | ↓ Activation in OFC                                |

ACC, anterior cingulate cortex; DLPC, dorsal lateral prefrontal cortex; NAcc, nucleus accumbens; OFC, orbitofrontal cortex; PFC, prefrontal cortex; ↓, decreased brain activation; ↑, increased brain activation; ↓↑, cognitive deficits.

METH use increase the risk of poorer health outcomes, high-risk behaviors, treatment non-adherence, and repeated relapses (110, 118). These adverse consequences might be secondary to poor executive function and memory deficits that may contribute to continuous drug-seeking behaviors (70). It needs to be noted that partial recovery of neuropsychological functioning and improvement in affective distress can be achieved after a period of sustained abstinence from METH (5). Hart et al. (113) have reviewed the literature and suggested that the deficits reported may be statistically but not clinically significant. In a follow-up analysis of similar data, Dean et al. (10) came to a different conclusion. These issues are important to clinicians who are responsible for the daily and/or long-term care of patients because small deficits may be of substantial importance when it comes to patients being able to follow instructions that would help them to participate in their own care, given the high rate of recidivism in that patient population (119, 120). Therefore, identifying patients with neuropsychological deficits would allow for the development of specific cognitive or pharmacological approaches that would benefit them.

Neuroimaging studies have documented several alterations in brain activation patterns induced by METH [Ref. (104, 121–128), see Table 6]. These studies reported decreased frontal activation associated with impaired decision-making (104) and cognitive control (127). Other brain regions sensitive to METH effects include the cingulate gyrus and insula (122, 128). METH users who showed impaired attention (122) and impaired cognitive control (128) exhibited abnormalities in these brain regions (see Table 6). It is worth mentioning that, in some cases, stimulant-dependent patients report clinically significant neuropsychological abnormalities prior to lifetime initiation of psychostimulant use (68).

**Recovery of Neurocognitive Functioning and Treatment Implications**

Chronic use of several illicit drugs is associated with variable degrees of impaired cognitive functioning that shows different levels of improvement during sustained abstinence (3). Recovery from METH dependence is associated with improved performance in tests of mental flexibility, attention, processing speed, verbal memory, fine motor functioning, and verbal fluency (5). Improvements in performance are also seen in abstinent marijuana users (13, 14). Moreover, Brewer et al. (131) found that activation in corticostriatal regions, linked to cognitive control, correlated with abstinence and cocaine-free urine toxicology (131). There was also an inverse correlation between prefrontal cortex activation and treatment retention (131), thus supporting the notion that identification of patients with cognitive deficits are important for the long-term care of these patients (3, 132). This suggestion is supported by the results of a very recent report that strength of craving for METH can be reduced by cognitive strategies (133).
addition, patients who participated in computer-assisted cognitive behavioral therapy showed improved task performance and reduced task-related signal changes in several regions implicated in cognitive control, impulse control, and motivational salience, including the anterior cingulate and midbrain (134).

**CONCLUSION**

Chronic use of illicit substances, including marijuana, cocaine, and METH, is associated with abnormal goal-directed behaviors that are thought to be the manifestations of altered cortico-striatal-limbic circuits (2, 135). Nevertheless, the wealth of clinical presentations, neuroimaging studies, and some pathological findings suggest that the biochemical and structural effects of chronic heavy use of drugs may reach beyond the boundaries of these reward circuits (1). The data reviewed here indicate that chronic use of illicit drugs is accompanied by moderate cognitive impairments in some patients. These observations may be related to functional and structural changes in various brain regions, including both cortical and subcortical regions of the human brain (1, 98, 136). In addition, it has been reported frontal deficits in psychostimulant-dependent patients reporting current clinically neurobehavioral abnormalities may be linked to pre-existing abnormalities (68). Because drug dependence develop over many months, it is likely that drug-related changes of behaviors may be modulated by some of these pathological phenomena in such a way as to significantly impact the clinical course of chronic use of these substances. Thus, impaired learning and memory functions might negatively impact the ability of a specific subset of patients to benefit from general treatment approaches. This inability may explain, in part, the high rate of recidivism in this patient population. This argument suggests that

### TABLE 5 | Cognitive deficits reported in methamphetamine users.

| Reference | Methamphetamine dependence | Cognitive findings |
|-----------|----------------------------|--------------------|
| Simon et al. (101) | Adult chronic users | ↓ Attention, ↓ Verbal memory, ↓ Executive function |
| Simon et al. (102) | Adult chronic users | ↓ Psychomotor speed, ↓ Attention, ↓ Inhibitory control |
| Salo et al. (105) | Adult abstinent users | ↓ Cognitive inhibition |
| Simon et al. (103) | Adult abstinent users with relapse Adult chronic users | ↓ Episodic memory |
| Newton et al. (106) | Adult abstinent users | ↓ Working memory, ↓ Psychomotor speed |
| Scott et al. (107) | Adult chronic users meta-analysis | ↓ Executive function, ↓ Verbal fluency, ↓ Motor ability, ↓ Language, ↓ Visuo-constructional abilities, ↓ Information processing speed |
| Rendell et al. (108) | Adult abstinent users | ↓ Executive function, ↓ Working memory, ↓ Retro and prospective memory |
| Henry et al. (109) | Adult abstinent users | ↓ Facial recognition |
| Henry et al. (110) | Adult abstinent users | ↓ Functioning everyday abilities |
| Ludicello et al. (6) | Adult abstinent users, w or w/o relapse Longitudinal study abstinence | ↓ Global cognitive and affective improvements with sustained abstinence |
| Weber et al. (111) | Adult abstinent users | ↓ Global cognitive scores = predictor of unemployment |
| Cattie et al. (112) | Adult abstinent users | ↓ Neurobehavorial symptoms, ↓ Inhibition (self-reported), ↓ Executive function (self-reported) |

↓, Cognitive deficits; ↑, cognitive improvement; |, neurobehavorial symptoms.

### TABLE 6 | Functional neuroimaging studies on methamphetamine users performing cognitive tasks.

| Reference | Methamphetamine dependence | Neuroimaging method | Main findings |
|-----------|----------------------------|---------------------|--------------|
| Paulus et al. (104) | Adult abstinent users | fMRI | ↓ Decision-making, ↓ Activation in PFC |
| Chang et al. (121) | Adult chronic users | Structural MRI | Larger globus pallidus and putamen |
| London et al. (122) | Adult abstinent users | [18]FDG PET | ↓ Attention, Differential activation in cingulate gyrus and the insula |
| Johanson et al. (123) | Adult abstinent users | PET | ↓ Memory, ↓ Attention, ↓ Information processing speed, ↓ DAT and VMAT2 in striatal regions |
| Monterosso et al. (124) | Adult abstinent users | fMRI | ↓ Decision-making, ↓ Cortical efficiency in frontoparietal clusters |
| Payer et al. (129) | Adult abstinent users | fMRI | ↓ Activation in ACC, ↓ Activation in PFC |
| Hoffman et al. (130) | Adult abstinent users | fMRI | ↓ Impulsivity, ↓ Activation in caudate, DLPC, ACC |
| Salo et al. (127) | Adult abstinent users | fMRI | ↓ Cognitive control, ↓ Activation in PFC |
| Nestor et al. (128) | Adult abstinent users | fMRI | ↓ Cognitive control, ↓ Activation in motor cortex/ anterior cingulate gyrus, insular cortex |

ACC, anterior cingulate cortex; DLPC, dorsal lateral prefrontal cortex; PFC, prefrontal cortex; ↓, decreased brain activation; ↑, increased brain activation; ↓, cognitive deficits; ↑, cognitive improvement; |, neurobehavorial symptoms.
approaches to these individuals should take into consideration the diversity of patterns of substance use and clinical presentations. This argument suggests that thorough neuropsychological and neuroimaging assessments should be undertaken to identify these subsets of drug users. This approach should help to dichotomize patients as being unimpaired or impaired, with specific subsets of drug users. This approach should help to dichotomize patients as being unimpaired or impaired, with specific subsets of drug users.

**REFERENCES**

1. Cadet J, Bisagno V, Milroy CM. Neuropathology of substance use disorders. *Acta Neuropathol* (2014) 127:91–107. doi:10.1007/s00401-013-1221-7
2. Volkow ND, Wang G-J, Fowler JS, Tomasi D. Addiction circuitry in the human brain. *Annu Rev Pharmacol Toxicol* (2012) 52:321–36. doi:10.1146/annurev-pharmtox-010611-134625
3. Schulte MH, Cousijn J, den Uyl TE, Goudriaan AE, van den Brink W, Veltman DJ, et al. Recovery of neuropsychological functions following sustained abstinence after substance dependence and implications for treatment. *Clin Psychol Rev* (2014) 34:531–50. doi:10.1016/j.cpr.2014.08.002
4. Ersche KD, Turton AJ, Chamberlain SR, Müller U, Bullmore ET, Robbins TW. Cognitive dysfunction and anxious-impulsive personality traits in endophenotypes for drug dependence. *Am J Psychiatry* (2012) 169:926–36. doi:10.1176/appi.ajp.2011.10091241
5. Judicello JE, Woods SP, Vigil O, Scott JC, Cherner M, Heaton RK, et al. Longer term improvement in neuropsychological functioning and affective distress among methamphetamine users who achieve stable abstinence. *J Exp Clin Psychopharmacol* (2010) 32:704–18. doi:10.1088/1383-9035/32/6/007
6. Kaleschtein AD, Newton TF, Green M. Methamphetamine dependence is associated with neuropsychological impairment in the initial phases of abstinence. *J Neuropsychiatry Clin Neurosci* (2003) 15:215–20. doi:10.1176/jnp.15.2.215
7. Garavan H, Stout JC. Neuropsychological insights into substance abuse. *Trends Cogn Sci* (2005) 9:195–201. doi:10.1016/j.tics.2005.02.008
8. Bolla KI, Rothman R, Cadet JL. Dose-related neurobehavioral effects of chronic cocaine use. *J Neuropsychiatry Clin Neurosci* (1999) 11:361–9. doi:10.1176/jnp.11.3.361
9. Bolla KI, Brown K, Eldreth D, Tate K, Cadet JL. Dose-related neurocognitive effects of marijuana use. *Neurology* (2002) 59:1337–43. doi:10.1227/01.WNL.0000031432.66442.49
10. Dean AC, Gorman SM, Morales AM, London ED. An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. *Neuropsychopharmacology* (2013) 38:259–74. doi:10.1038/npp.2012.179
11. Weinborn M, Myloe J, Bucks RS, Stritzke W, Leighton A, Woods SP. Time-based prospective memory predicts engagement in risk behaviors among substance users: results from clinical and nonclinical samples. *J Int Neuropsychol Soc* (2013) 19:284–94. doi:10.1017/S1355617712001361
12. UNODC. 2013 World Drug Report. (2013). Available from: https://www.unodc.org/unodc/secured/wdr/wdr2013/World_Drug_Report_2013.pdf
13. Pope HG, Gruber AJ, Hudson JJ, Huestis MA. 2006. Neuropsychological performance in long-term cannabis users. *Arch Gen Psychiatry* (2001) 58:909–15. doi:10.1001/archpsyc.58.10.909
14. Pope HG Jr, Gruber AJ, Yurgelun-Todd D. Residual neuropsychologic effects of cannabis. *Curr Psychiatry Rep* (2001) 3:507–12. doi:10.1007/s11920-001-0045-7
15. Block RI, O’Leary DS, Hichwa RD, Augustinack JC, Boles Ponto LL, et al. Functional neuroanatomical correlates of frequent marijuana use. *Ann Neurol* (2005) 57:480–92. doi:10.1001/neurology.2005.02.012
16. Arabi V, Posner MI, Nunnally R, Dishion TJ. Functional MRI evidence for inefficient attention control in adolescent chronic cannabis abuse. *Behav Brain Res* (2010) 215:45–57. doi:10.1016/j.bbr.2010.06.023
17. Bolla KI, Eldreth D, Matochik J, Cadet JL. Neural substrates of faulty decision-making in abstinent marijuana users. *Neuroimage* (2005) 26:480–92. doi:10.1016/j.neuroimage.2005.02.012
18. King GR, Ernst T, Deng W, Stenger A, Gonzeles RM, Nakama H, et al. Altered brain activation during visuomotor integration in chronic active

**FUNDING**

The Intramural Research Program of the National Institute on Drug Abuse, NIH, and DHHS supports JC. VB is supported by a grant from ANPCyT, PICT 2012-0924, Argentina.
Cadet and Bisagno
Neurobehavior and Addiction

Hoff AL, Riordan H, Morris L, Cestaro V, Wieneke M, Alpert R, et al. doi:

O’Malley S, Adamse M, Heaton RK, Gawin FH. Neuropsychological impairments in chronic cocaine abusers. *Am J Drug Abuse* (1999) **25**:377–81. doi:10.1375/0207450108992421

Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction circuitry in the human brain. *Ann Neurol* (2010) **67**:73–9. doi:10.1002/ana.22028

McQueeny T, Padula CB, Price J, Medina KL, Logan P, Tapert SF. Gender differences in prefrontal and striatal function during attentional salience processing. *Arch Gen Psychiatry* (2012) **69**:27–36. doi:10.1001/archgenpsychiatry.2011.161

Pertwee RG. Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. *Addict Biol* (2008) **13**:147–59. doi:10.1111/j.1369-1600.2008.00108.x

Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. *Nat Rev Neurosci* (2015) **16**:579–94. doi:10.1038/nrn4004

Chadwick B, Miller ML, Hurd YL. Cannabis use during adolescent development: susceptibility to psychiatric illness. *Front Psychiatry* (2013) **4**:129. doi:10.3389/fpsyt.2013.00129

Di Forti M, Morgan CJA, Dazzan P, Pariante C, Mondelli V, Marques TR, et al. High-potency cannabis and the risk of psychosis. *Arch Gen Psychiatry* (2015) **72**:681–92. doi:10.1001/archgenpsychiatry.2014.0002

Morgan CJA, Curran HV. Effects of cannabinoids on schizophrenia-like symptoms in people who use cannabis. *Br J Psychiatry* (2008) **192**:306–7. doi:10.1192/bjp.bp.107.046649

McQueeney T, Padula CB, Price J, Medina KL, Logan P, Tapert SF. Gender effects on amygdala morphometry in adolescent marijuana users. *Behav Brain Res* (2011) **224**:128–34. doi:10.1016/j.bbr.2011.05.031

Colzato LS, Hommel B. Recreational use of cocaine eliminates inhibition of return. *Neuropsychology* (2009) **23**:125–9. doi:10.1037/a0013821

Volkow ND, Wang C, Fowler JS, Tomasi D. Addiction circuitry in the human brain. *Annu Rev Pharmacol Toxicol* (2012) **52**:321–36. doi:10.1146/annurev-pharmtox-010611-134625

Ardila A, Rosselli M, Strunwasser S. Neuropsychological deficits in chronic cocaine abusers. *Int J Neuropsychol* (1991) **7**:73–9. doi:10.3109/00207459101950348

O’Malley S, Adams M, Heaton RK, Gawin FH. Neuropsychological impairment in chronic cocaine abusers. *Am J Drug Alcohol Abuse* (1992) **18**:131–44. doi:10.3109/0095299920892826

Hoff AL, Riordan H, Morris L, Cestaro V, Wieneke M, Alpert R, et al. Effects of crack cocaine on neurocognitive function. *Psychol Res* (1996) **60**:167–76. doi:10.1007/BF01657258

Gillen RW, Kranzer HL, Bauer LO, Burleson JA, Samarel D, Morrison DJ. Neuropsychologic findings in cocaine-dependent outpatients. *Prog Neuropsychopharmacol Biol Psychiatry* (1998) **22**:1061–76. doi:10.1016/S0278-5846(98)00057-8

Winson M, Ardila A, Lubomski M, Murray S, King K. Personality profile and neuropsychological test performance in chronic cocaine-abusers. *Int J Neuropsychopharmacol* (2001) **4**:115–22. doi:10.3109/0207450108992421

Mittenberg W, Motta S. Effects of chronic cocaine abuse on memory and learning. *Arch Clin Neuropsychol* (1993) **8**:477–83. doi:10.1080/0887-6179(93)90048-6

Smelser R, Roy A, Santana S, Engelhart C. Neuropsychological deficits in withdrawn cocaine-dependent males. *Am J Drug Abuse* (1999) **25**:377–81. doi:10.1081/ADA-100101867

Goldstein RZ, Leskovjan AC, Hoff AL, Hitzemann R, Bashan F, Khalsa SS, et al. Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. *Neuropsychologia* (2004) **42**:1447–58. doi:10.1016/j.neuropsychologia.2004.04.002

Tucker KA, Potenza MN, Beavers JE, Browndyke JN, Gottschalk PC, Kosten TR. Perfusion abnormalities and decision making in cocaine dependence. * Biol Psychiatry* (2004) **56**:527–30. doi:10.1016/j.biopsycho.2004.06.031

Kübler A, Murphy K, Garavan H. Cocaine dependence and attention switching within and between verbal and visuospatial working memory. *Eur J Neurosci* (2005) **21**:1894–92. doi:10.1111/j.1460-9568.2005.04027.x

Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, et al. Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence. *Brain Res* (2007) **1171**:83–92. doi:10.1016/j.brainres.2007.06.102.

Hanlon CA, Wesley MJ, Roth AJ, Miller MD, Porrino L. Loss of laterality in chronic cocaine users: an fMRI investigation of sensorimotor control. *Psychiatry Res* (2010) **181**:15–23. doi:10.1016/j.psychres.2009.07.009

Moeller FG, Steinberg JL, Schmitz JM, Ma L, Liu S, Kjome KL. Working memory fMRI activation in cocaine-dependent subjects: association with treatment response. *Psychiatry Res* (2010) **181**:174–82. doi:10.1016/j.psychres.2009.11.003

Volkow ND, Tomasi D, Wang G-J, Fowler JS, Telang F, Goldstein RZ, et al. Reduced metabolism in brain "control networks" following cocaine-cues exposure in female cocaine abusers. *PLoS One* (2011) **6**:e16573. doi:10.1371/journal.pone.0016573

Camchong J, MacDonald AW, Nelson B, Bell C, Mueller BA, Specker S, et al. Frontal hyperconnectivity related to discounting and reversal learning in chronic cocaine subjects. *Biol Psychiatry* (2011) **69**:1117–23. doi:10.1016/j.biopsych.2011.01.008

Barrois-Loscertales A, Garavan H, Bustamante JC, Ventura-Campos N, Llopis JJ, Belloch V, et al. Reduced striatal volume in cocaine-dependent patients. *Neuroimage* (2011) **56**:1021–6. doi:10.1016/j.neuroimage.2011.02.035

Hanft DB, Vinhasen TM, Somozza EC, Lewis DE, Kropp FB, Horigian VE, Adinoff B. Frontal systems deficits in stimulant-dependent patients: evidence of pre-illness dysfunction and relationship to treatment response. *Drug Alcohol Depend* (2012) **127**:94–100. doi:10.1016/j.drugalcdep.2012.06.017

Bolla KI, Cadet JL, London ED. The neuropsychiatry of chronic cocaine abuse. *J Neuropsychiatry Clin Neurosci* (1998) **10**:280–9. doi:10.1176/jnp.10.3.280

Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. *Cognition* (1994) **50**:7–15. doi:10.1016/0010-0277(94)90018-3

Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldredh D, Contoreggi C. Prefrontal cortical dysfunction in abstinent cocaine abusers. *J Neuropsychiatry Clin Neurosci* (2004) **16**:456–64. doi:10.1176/jnp.16.4.456

Jones JA, Lim KO, Wozniak JR, Specker S, MacDonald AW III. Contextual systems deficits in stimulant-dependent patients: evidence of pre-illness dysfunction and relationship to treatment response. *Drug Alcohol Depend* (2012) **127**:94–100. doi:10.1016/j.drugalcdep.2012.06.017

Colzato LS, Van den Wildenberg WPM, Hommel B. Impaired inhibition control in recreational cocaine users. *PLoS One* (2007) **2**:e1143. doi:10.1371/journal.pone.0001143

Moreno-López L, Catena A, Fernández-Serrano MJ, Delgado-Rico E, Stamatakis EA, Pérez-García M, et al. Trait impulsivity and prefrontal gray matter reductions in cocaine dependent individuals. *Drug Alcohol Depend* (2012) **125**:208–14. doi:10.1016/j.drugalcdep.2012.02.012

Colzato LS, Huizinga M, Hommel B. Recreational cocaine polydrug use impairs cognitive flexibility but not working memory. *Psychopharmacology* (2009) **207**:225–34. doi:10.1007/s00213-009-1650-0
Herning RI, King DE, Better WE, Cadet JL. Neurovascular deficits in cocaine abusers. *Am J Psychiatry* (2000) 157:55–8. doi:10.1176/ajp.157.1.55

Martinez D, Narendran R, Foltin RW, Slifstein M, Hwang DR, Broft A, et al. Amphetamine-induced dopamine release: markedly blunted in cocaine abusers. *Neuropsychopharmacology* (2012) 37:586–608. doi:10.1038/npp.2011.276

Newton TE, Kalechstein AD, Hardy DJ, Cook IA, Nestor L, Ling W, et al. Association between quantitative EEG and neurocognitive performance in methamphetamine-dependent volunteers. *Clin Neurophysiol* (2004) 115:194–8. doi:10.1016/j.clinph.2003.09.011

Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, et al. Neurocognitive effects of methamphetamine: a critical review and meta-analysis. *Neuropsychol Rev* (2007) 17:275–97. doi:10.1007/s11065-007-9031-0

Rendell PG, Mazur M, Henry JD. Prospective memory impairment in former users of methamphetamine. *Psychopharmacology* (2009) 203:69–16. doi:10.1007/s00213-008-0808-0

Henry JD, Mazur M, Rendell PG. Social-cognitive difficulties in former users of methamphetamine. *Br J Clin Psychol* (2007) 46:586–608. doi:10.1348/014466506X68081

Crawford J, Jelicic J, Vinson D, Martindale L. Social cognition and reward function in methamphetamine-dependent men. *Addict Behav* (2010) 35:593–8. doi:10.1016/j.addbeh.2010.01.013

Weber E, Blackstone K, Jelicic JE, Morgan RE, Grant I, Moore DJ. Neurocognitive deficits are associated with unemployment in chronic methamphetamine users. *Drug Alcohol Depend* (2012) 125:146–53. doi:10.1016/j.drugalcdep.2012.04.002

Cattie JE, Woods SP, Jelicic J, Vinson D, Martindale L. Social-cognitive difficulties in former users of methamphetamine. *Br J Clin Psychol* (2007) 46:586–608. doi:10.1348/014466506X68081

Henry JD, Minassian A, Perry W. Effect of methamphetamine dependence on everyday functional ability. *Addict Behav* (2010) 35:593–8. doi:10.1016/j.addbeh.2010.01.013
The authors declare that the research was conducted in accordance with the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.