Exotic Hadrons and Underlying $Z_{2,3}$ Symmetries

Adil Belhaj, 1,* Salah Eddine Ennadifi, 2,† and Moulay Brahim Sedra 3,‡

1 Département de Physique, Faculté Polydisciplinaire, Université Sultan Moulay Slimane, Béni Mellal, Morocco
2 LPHE-MS, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
3 Département de Physique, SIMO-FSK, Faculté des Sciences, Université Ibn Tofail Kénitra, Morocco

(Received May 11, 2015; revised manuscript received August 10, 2015)

Abstract The recent observation of higher quark combinations, tetraquarks and pentaquarks, is a strong indication of more exotic hadrons. Using Z_2 and Z_3 symmetries and standard model data, a general quark combination producing new hadronic states is proposed in terms of polygon geometries according to the Dynkin diagrams of A_n affine Lie algebras. It has been shown that $Z_{2,3}$ invariance is crucial in the determination of the mesonic or the baryonic nature of these states. The hexagonal geometry is considered in some details producing both mesonic and baryonic states. A general class of this family is also presented.

PACS numbers: 12.60.-i, 14.65.-a, 02.20.-a

Key words: standard model, exotic hadrons and Lie symmetries

1 Introduction

For a long time, it has been realized that the experimental situation in the Quantum Chromodynamics (QCD) is quite stable and well understood [1−2]. This describes the interaction between quarks carrying the color charge of the strong interaction by force mediating gluons which can not only couple to quarks but also to themselves, due to the SU(3)$_C$ gauge theory. They carry color charge. Although SU(3)$_C$ describes the strong interactions of particles, until today experiments have not been able to detect colored objects directly. However, only colorless hadrons can be observed. The explanation of this fact and the combination of hadrons from quarks and gluons remain incomplete.

Understanding how matter is formed is one of the big problems in modern particle physics. It is known that the biggest part of the observable matter is made of strongly interacting quarks and gluons. The standard model (SM) of particle physics constitutes one of the most successful realizations in this field. Based on the SM symmetry group SU(3)$_C \times SU(2)_L \times U(1)_Y$ describing strong, weak and electromagnetic interactions, it provides an elegant theoretical framework, which is able to describe with a high precision the known experimental phenomenon in modern physics. [3−4] However, with the progressive probes of high energies in experiments and results become more precise, the SM satisfactory is still far and physics beyond is widely expected to reside with new elementary particles, hadrons, and symmetries. [5−6]

The richness of the hadronic spectrum could be revealed by a fast look into the particle spectrum. [7] The large number of the hadronic states has clearly suggested the existence of a deeper level where the messy hadronic world can be easily understood in terms of a few constituent of spin-1/2 quark flavors. [8] At this level, in agreement with the QCD, almost all observed states could be clearly identified as two- or three-quark states. More precisely, quark-antiquark qq are known as mesons and three quark states qqq are known as baryons. In this picture, the entire hadronic spectrum could be nicely classified as the colorless mesons and baryons.

In the last years, results in the strong sector SU(3)$_C$ have opened new windows in the understanding of flavor physics including quark configurations. [8−11] In particular, it has been suggested some four quark states. This suggestion has been supported by an observation of new resonances corresponding to four quark states around 2 GeV–5 GeV. They belong to a strange series of particles known by X, Y, and Z states. They were named X, Y, Z. [12−15] Pentaquark states discovery was also suggested many years ago by several experiments. However, due to poor data and statistical analysis such claims were not accepted. Very recently, new results consistent with pentaquark states were reported by the LHCb collaboration at CERN. [16−17] Decay experiments are expected to run soon in order to determine its nature with more precision. Motivated by these recent works, there is no reason to ignore higher quark combinations.

*E-mail: belhaj@mizan.es
†E-mail: ennadifi@gmail.com
‡E-mail: sedra@ictp.it

© 2015 Chinese Physical Society and IOP Publishing Ltd

http://www.iopscience.iop.org/ctp http://ctp.itp.ac.cn
In this work, we aim to give a possible generalization dealing with hadronic states using a geometric approach based on discrete symmetries derived from the SM gauge group. More precisely, the centers of the SU(3) and SU(2) Lie symmetries of the SM will guide us to specify the possible orders for the generalization. To keep contact with the observed physics, we present a general quark configuration of the mesonic and baryonic states exhibiting Z_2 and Z_3 global geometrical symmetries. In fact, these symmetries have not been explored in the related physics. It does not mean that there have no roles in modern particle physics. Here, we show up their importance. In particular, they allow one to propose possible higher quark states beyond the usual hadrons known in the SM.

A close inspection shows that the Z_2 and Z_3 symmetries can produce a higher combination of quarks associated with exotic hadronic states. To do so, it is convenient to use the following notation,

$$M : \langle q\bar{q}\rangle, \quad B : \langle qq\bar{q}\rangle.$$

It is observed that these states are invariant under Z_2 and Z_3 symmetries respectively. The mesonic states containing q and \bar{q} are invariant under the Z_2 symmetry acting as,

$$q \to -q, \quad \bar{q} \to -\bar{q}.$$

However, the baryonic states are invariant under the Z_3 symmetry acting as

$$q \to wq, \quad w^3 = 1.$$

It is important to recall that the quadratic combination $\langle q\bar{q}\rangle$ is invariant under Z_2 acting only as $q \to -q$. However, it is not allowed by the confinement phenomenon. This kind of states and their generalization should be projected out.

According to the SM data and the $Z_{2,3}$ symmetries, we give an extended combination for the allowed hadronic states. To be precise, we explore techniques of polygon geometries to support the existence of such exotic states. Our analysis will be based on geometric shapes, which are invariant under the above mentioned symmetries. In fact, each hadronic state will correspond to an allowed polygon geometry playing similar role as graph theory used to encode physical data including gauge and matter fields derived from string theory compactification using quiver methods. In this scenario, the Z_2 and Z_3 symmetries will be crucial in the determination of the nature of such states. To show how the philosophy works in practice, let us first start by giving the two leading polygon geometry pieces playing a primordial role in the building block of higher hadronic states. In this way, the mesonic state (1) is represented by two connected nodes, and the leading baryonic state $\langle qq\bar{q}\rangle$ is represented by three nodes forming a triangle. At first sight, it seems that these graphs share similarities with the toric geometry realization of complex manifolds. However, the SM Lie symmetries push us to think about polygon geometries associated with such symmetries. Considering closed quiver diagrams and taking into account of $Z_{2,3}$ symmetries, the $su(2)$ and $su(3)$ Lie symmetries should be shown up in the discussion. An investigation reveals that these quivers can be identified with the corresponding affine Dynkin geometries. This is illustrated in Fig. 1. Inspired by the recent theoretical and experimental works, the extended hadronic states will be represented by closed Dynkin diagrams associated with the Affine A_n series. This geometric approach based on the Z_2 and Z_3 symmetries is interesting since one can control completely the engineering of allowed diagrams associated with possible hadronic states.

![Fig. 1 Standard hadrons: mesons (a) and baryons (b).](image)

Naturally, the first extended polygon geometry will be associated with four nodes corresponding to the A_3 affine Dynkin diagram. A priori, there are many q and \bar{q} systems, which can be placed on these four nodes. However, the above physical requirement allow only one possible configuration invariant under a geometric Z_2 leading to a mesonic state $\langle q\bar{q}qq\rangle$. Such states have been investigated in Refs. [10–11], and have been supported by the recent experimental result. Roughly, the corresponding diagram and the geometric Z_2 symmetry are represented in Fig. 2. With such four quarks constituents, several ways of combinations are possible. Indeed, a tetraquark can either contain four quarks $\langle q\bar{q}qq\rangle$ or something resembling two ordinary mesons bound together $\langle qq\rangle$ (a dineutron). Reported examples of such tetraquark states are the mesons $X(3872)$, $Y(4140)$, $Zc(3900)$, and $Z(4430)^-$. They differ by theirs flavors content $\langle q\bar{q}qq\rangle x \neq \langle q\bar{q}qq\rangle y \neq \langle q\bar{q}qq\rangle z$, which are still being under investigated to characterize their determined masses and quantum numbers. Concretely, the heaviest one, $Z(4430)^-$, with a negative charge -1 and a mass around 4,430 GeV, has been definitely identified with the tetraquark meson $\langle q\bar{q}qq\rangle \equiv \langle c\bar{c}d\bar{u}\rangle_z$. It is worth noting that the $\langle q\bar{q}qq\rangle$, for instance, is not allowed as required by the confinement phenomenon.

The next possible five quarks state $\langle q\bar{q}qq\rangle$ has been very recently also identified from the decay of the bottom lambda baryon Λ_b^0 into a $J/\Psi(cc)$ meson, a kaon $K^- (\bar{s}u)$ and a proton $p(udd)$ by the LHCb with two hidden-charm
pentaquarks as $|qqqqq\rangle \equiv |uudc\rangle_{C^+}$ being a charmonium-pentaquark.\cite{16} Such state can be combined into two possible combinations: a five quark bag $|qqqqq\rangle$ an ordinary meson-baryon bound together $(|qqq\rangle, (qq))$. It is interesting to note that, with respect to the $Z_{2,3}$ symmetries, the latter combination is more likely.

![Fig. 2](image)

Fig. 2 Tetraquark mesons.

After a graphic examination based on the $Z_{2,3}$ invariance, the next fantastic example concerns six nodes associated with the hexagonal geometry. The appearance of this geometry is the more remarkable one since it appears naturally in many places in physics including even in the SU(3) gauge theory describing the strong interaction.\cite{21} Indeed, the gluon gauge fields are associated with the root systems of the corresponding su(3) finite Lie symmetry. Its Weyl group is the symmetric group $S_3 = D_3$ of order 6, which acts transitively and freely on the hexagon. It is obvious to see that this group contains Z_2 and Z_3 as subgroups. At this level, we remark that the presence of such symmetries seem to be useful in the present discussion. We believe that this feature would play an important role in the understanding of the hexagonal hadrons. In fact, we will see that this geometry produces both mesonic and baryonic states depending on the chosen symmetry. Later on, we show that this example constitutes in fact particular geometries of infinitely many possible quark configurations giving rise to both mesonic and baryonic states. For the hexagonal structure, we can obviously determine the nature of hadronic state by taking only one discrete symmetry. It is observed that the Z_3 geometric invariance generates the baryonic state $|qqqqqq\rangle$. Its complex conjugate is also allowed giving the state $|qqqqqq\rangle$. However, the Z_2 geometric invariance gives only a mesonic state denoted by $|qqqqqq\rangle$ in accordance with the known data. The corresponding diagrams are represented in Fig. 3.

As for the four state quark constituents, such six quark ones involve several ways of combinations are possible. Indeed, a hexaquark can either contain six quarks $|qqqqqq\rangle$ or something resembling two ordinary baryons bound together $(|qqq\rangle, (qq))$ a dibaryon, or three quarks and three antiquarks $(|qqq\rangle, (qqq))$ a baryon antibaryon or six antiquarks $(|qqq\rangle, (qqq))$ (a diantibaryon). Once formed, dibaryons are predicted to be fairly stable, i.e., the diproton and dineutron. The existence of a stable dibaryon having the light quark composition $|qqqqqq\rangle = |uuds\rangle$ is possible. To detect such states, many experiments have been suggested for their decays and interactions where several candidates were observed but they are not yet confirmed.\cite{22} The last potential one, called $d^*(2380)$, was detected at about 2,380 GeV for $10^{-23}s$.\cite{23} We can now generalize to higher geometries involving more than six nodes. To get a mesonic states, the geometry should be consist of $(2 + 2n)$ nodes according to the A_{1+2n} Dynkin diagram. SM and the Z_2 invariance require a system of $(1+n)$ quarks and $(1+n)$ antiquarks. However, the geometry corresponding to a baryonic state contains a collection of $(3 + 3m)$ nodes according to the A_{2+3m} affine Dynkin diagram. The corresponding states will be denoted by $|qq\cdots qq\cdots qq\rangle$ and $|q\cdots q\cdots q\rangle$ respectively and are illustrated by the diagrams presented in Fig. 4.

![Fig. 3](image)

Fig. 3 Hexaquark Baryons (a) and hexaquark mesons (b).

![Fig. 4](image)

Fig. 4 Higher hadrons: higher baryons (a) and higher mesons (b).

It is worth noting to comment this generalization involving two interesting features. First, it is noted that the case $n = m = 0$ corresponds to the standard baryonic and mesonic states. Second, it is observed that both the baryonic and mesonic states can appear when $m = 2j + 1$ and $n = 2m - j$ where j is a positive integer. This family of geometry goes beyond the case of the hexagon associated with $j = 0$.

In this work, we have proposed new quark combinations generating exotic hadronic states. The theoretical analysis has been relied on polygon geometries sharing
similarities with the \hat{A}_n affine Dynkin diagrams. Inspired by the QCD description of the strong interaction and its effective treatment of the quark states arising in standard pictures of the mesonic and baryonic states, we have explored the $\mathbb{Z}_{2,3}$ geometrical symmetries to construct possible higher quark states going beyond the standard hadrons. These symmetries have played an essential role for identifying the mesonic or the baryonic nature of the corresponding states. Although, we have tried to give a theoretical argument behind the existence of higher quark combinations, this present study deserves a deeper investigation since the observation of more exotic hadrons remains enhanced.

Acknowledgments
AB would like to thank his family in Témara (Morocco) for hospitality, where a part of the research reported in this work was conducted. He would like to thank also his mother Haja Fatima for all kind of supports.

References
[1] T. Muta, Foundations of Quantum Chromodynamics, Lect. Not. Phys. Vol. 5, World Scientific, Singapore (1987).
[2] F.J. Yndurain, The Theory of Quark and Gluon Interactions, Texts and Monographs in Physics, Springer-Verlag, New York (1999).
[3] C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, Benjamin-Cummings Publishing Company Co, New York (1983).
[4] T.P. Cheng and L.F. Li, Gauge Theories of Elementary Particle Physics, Oxford University Press, London (1984).
[5] G. Bertone, D. Hooper, and J. Silk, Phys. Rept. 405 (2005) 279.
[6] S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. D 24 (1981) 1681.
[7] C. Caso, et al., Eur.Phys. J. C 3 (1998) 1.
[8] M. Gell-Mann, Phys. Lett. 8 (1964) 214.
[9] H. Fritzsch and Z.Z. Xing, Prog. Part. Nucl. Phys. 45 (2000)1-81.
[10] S. Weinberg, Phys. Rev. Lett. 105 (2010) 261601.
[11] S. Weinberg, Phys. Rev. Lett. 110 (2013) 261601.
[12] The LHCb Collaboration, Phys. Rev. Lett. 110 (2013) 222001.
[13] G. Cotugno, R. Faccini, A.D. Polosa, C. Sabelli, and Charmed Baryonium, Phys. Rev. Lett. 104 (2010) 132005.
[14] T. Xiao, S. Dobbs, A. Tomaradze, and K.K. Seth, Phys. Lett. B 727 (2013) 366; arXiv:1304.3036[hep-ex].
[15] The LHCb Collaboration, Phys. Rev. Lett. 112 (2014) 222002.
[16] The LHCb Collaboration, arXiv:1507.03414 [hep-ex].
[17] The LHCb Collaboration, Phys. Rev. Lett. 112 (2014) 222002.
[18] A. Belhaj, et al., Cent. Eur. J. Phys. 9 (2011) 1458.
[19] W. Fulton, Introduction to Toric Varieties, Annals of Math. Studies, No. 131, Princeton University Press, New Jersey (1993).
[20] V.G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge (1990).
[21] M. Gell-Mann and Y. Neeman, The Eightfold Way, Benjamin, New York (1964).
[22] KTeV Collaboration, Phys. Rev. Lett. 84 (2000) 2593.
[23] P. Adlarson, et al., Phys. Rev. Lett 112 (2014) 02301.