NEWTON POLYGONS AND FAMILIES OF POLYNOMIALS

ARNAUD BODIN

Abstract. We consider a continuous family \((f_s)_s \in [0, 1]\) of complex polynomials in two variables with isolated singularities, that are Newton non-degenerate. We suppose that the Euler characteristic of a generic fiber is constant. We firstly prove that the set of critical values at infinity depends continuously on \(s\), and secondly that the degree of the \(f_s\) is constant (up to an algebraic automorphism of \(\mathbb{C}^2\)).

1. Introduction

We consider a family \((f_s)_s \in [0, 1]\) of complex polynomials in two variables with isolated singularities. We suppose that coefficients are continuous functions of \(s\). For all \(s\), there exists a finite bifurcation set \(\mathcal{B}(s)\) such that the restriction of \(f_s\) above \(\mathbb{C} \setminus \mathcal{B}(s)\) is a locally trivial fibration. It is known that \(\mathcal{B}(s) = \mathcal{B}_{\text{aff}}(s) \cup \mathcal{B}_\infty(s)\), where \(\mathcal{B}_{\text{aff}}(s)\) is the set of affine critical values, that is to say the image by \(f_s\) of the critical points; \(\mathcal{B}_\infty(s)\) is the set of critical values at infinity. For \(c \notin \mathcal{B}(s)\), the Euler characteristic verifies

\[
\chi(f_s^{-1}(c)) = \mu(s) + \lambda(s),
\]

where \(\mu(s)\) is the affine Milnor number and \(\lambda(s)\) is the Milnor number at infinity.

We will be interested in families such that the sum \(\mu(s) + \lambda(s)\) is constant. These families are interesting in the view of \(\mu\)-constant type theorem, see [HZ, HP, Ti, Bo, BT]. We say that a multi-valued function \(s \mapsto F(s)\) is continuous if at each point \(\sigma \in [0, 1]\) and at each value \(c(\sigma) \in F(\sigma)\) there is a neighborhood \(I\) of \(\sigma\) such that for all \(s \in I\), there exists \(c(s) \in F(s)\) near \(c(\sigma)\). \(F\) is closed, if, for all points \(\sigma \in [0, 1]\), for all sequences \(c(s) \in F(s), s \neq \sigma\), such that \(c(s) \to c(\sigma) \in \mathbb{C}\) as \(s \to \sigma\), then \(c(\sigma) \in F(\sigma)\). It is well-known that \(s \mapsto \mathcal{B}_{\text{aff}}(s)\) is a continuous multi-valued function. But it is not necessarily closed: for example \(f_s(x, y) = (x - s)(xy - 1)\), then for \(s \neq 0\), \(\mathcal{B}_{\text{aff}}(s) = \{0, s\}\) but \(\mathcal{B}_{\text{aff}}(0) = \emptyset\).

We will prove that \(s \mapsto \mathcal{B}_\infty(s)\) and \(s \mapsto \mathcal{B}(s)\) are closed continuous functions under some assumptions.

Theorem 1. Let \((f_s)_{s \in [0, 1]}\) be a family of complex polynomials such that \(\mu(s) + \lambda(s)\) is constant and such that \(f_s\) is (Newton) non-degenerate for all \(s \in [0, 1]\), then the multi-valued function \(s \mapsto \mathcal{B}_\infty(s)\) is continuous and closed.

Remark. As a corollary we get the answer to a question of D. Siersma: is it possible to find a family with \(\mu(s) + \lambda(s)\) constant such that \(\lambda(0) > 0\) (equivalently \(\mathcal{B}_\infty(0) \neq \emptyset\)) and \(\lambda(s) = 0\) (equivalently \(\mathcal{B}_\infty = \emptyset\)) for \(s \in [0, 1]\).
Corollary 2. expressed in the following corollary (of Theorems 1 and 3): μ closed even if μ s

Remark. Theorem 1 does not imply that $\mu(s)$ and $\lambda(s)$ are constant. For example let the family $f_s(x, y) = x^2y^2 + sxy + x$. Then for $s = 0$, $\mu(0) = 0$, $\lambda(0) = 2$ with $B_\infty(0) = \{0\}$, and for $s \neq 0$, $\mu(s) = 1$, $\lambda(s) = 1$ with $B_{\text{aff}}(s) = \{0\}$ and $B_\infty(s) = \{-s^2\}$.

The multi-valued function $s \mapsto B_{\text{aff}}(s)$ is continuous but not necessarily closed even if $\mu(s) + \lambda(s)$ is constant, for example (see [Ti]): $f_s(x, y) = x^4 - x^2y^2 + 2xy + s x^2$, then $\mu(s) + \lambda(s) = 5$. We have $B_{\text{aff}}(0) = \{0\}$, $B_\infty(0) = \{1\}$ and for $s \neq 0$, $B_{\text{aff}} = \{0, 1 - \frac{s^2}{4}\}$, $B_\infty(s) = \{1\}$. We notice that even if $s \mapsto B_{\text{aff}}(s)$ is not closed, the map $s \mapsto B(s)$ is closed. This is expressed in the following corollary (of Theorems 1 and 3):

Corollary 2. Let $(f_s)_{s \in [0, 1]}$ be a family of complex polynomials such that $\mu(s) + \lambda(s)$ is constant and such that f_s is non-degenerate for all $s \in [0, 1]$. Then the multi-valued function $s \mapsto B(s)$ is continuous and closed.

We are now interested in the constancy of the degree; in all hypotheses of global μ-constant theorems the degree of the f_s is supposed not to change (see [HZ, HP, Bo, BT]) and it is the only non-topological hypothesis. We prove that for non-degenerate polynomials in two variables the degree is constant except for a few cases, where the family is of quasi-constant degree. We will define in a combinatoric way in paragraph 3 what a family of quasi-constant degree is, but the main point is to know that such a family is of constant degree up to some algebraic automorphism of \mathbb{C}^2. More precisely, for each value $\sigma \in [0, 1]$ there exists $\Phi \in \text{Aut} \mathbb{C}^2$ such $f_s \circ \Phi$ is of constant degree, for s in a neighborhood of σ. For example the family $f_s(x, y) = x + sy^2$ is of quasi-constant degree while the family $f_s(x, y) = sxy + x$ is not.

Theorem 3. Let $(f_s)_{s \in [0, 1]}$ be a family of complex polynomials such that $\mu(s) + \lambda(s)$ is constant and such that f_s is non-degenerate for all $s \in [0, 1]$, then either $(f_s)_{s \in [0, 1]}$ is of constant degree or $(f_s)_{s \in [0, 1]}$ is of quasi-constant degree.

Remark. In theorem 3, f_0 may be degenerate.

As a corollary we get a μ-constant theorem without hypothesis on the degree:

Theorem 4. Let $(f_s)_{s \in [0, 1]}$ be a family of polynomials in two variables with isolated singularities such that the coefficients are continuous function of s. We suppose that f_s is non-degenerate for $s \in [0, 1]$, and that the integers $\mu(s) + \lambda(s)$, $\#B(s)$ are constant $(s \in [0, 1])$ then the polynomials f_0 and f_1 are topologically equivalent.
It is just the application of the μ-constant theorem of [Bo], [BT] to the family (f_s) or $(f_s \circ \Phi)$. Two kinds of questions can be asked: are Theorems 1 and 3 true for degenerate polynomials? are they true for polynomials in more than 3 variables? I would like to thank Prof. Günter Ewald for discussions concerning Theorem 3 in n variables (that unfortunately only yield that the given proof cannot be easily generalized).

2. Tools

2.1. Definitions. We will recall some basic facts about Newton polygons, see [Ko], [CN], [NZ]. Let $f \in \mathbb{C}[x, y]$, $f(x, y) = \sum_{(p, q) \in \mathbb{N}^2} a_{p,q} x^p y^q$. We denote $\text{supp}(f) = \{(p, q) \mid a_{p,q} \neq 0\}$, by abuse $\text{supp}(f)$ will also denote the set of monomials $\{x^p y^q \mid (p, q) \in \text{supp}(f)\}$. $\Gamma_-(f)$ is the convex closure of $\{(0, 0)\} \cup \text{supp}(f)$, $\Gamma(f)$ is the union of closed faces which do not contain $(0, 0)$. For a face γ, $f_\gamma = \sum_{(p,q)\in\gamma} a_{p,q} x^p y^q$. The polynomial f is (Newton) non-degenerate if for all faces γ of $\Gamma(f)$ the system

$$\frac{\partial f_\gamma}{\partial x}(x, y) = 0; \quad \frac{\partial f_\gamma}{\partial y}(x, y) = 0$$

has no solution in $\mathbb{C}^* \times \mathbb{C}^*$.

We denote by S the area of $\Gamma_-(f)$, by a the length of the intersection of $\Gamma_-(f)$ with the x-axis, and by b the length of the intersection of $\Gamma_-(f)$ with the y-axis (see Figure 1). We define

$$\nu(f) = 2S - a - b + 1.$$

![Figure 1. Newton polygon of f and $\nu(f) = 2S - a - b + 1$.](image)

2.2. Milnor numbers. The following result is due to Pi. Cassou-Noguès [CN], it is an improvement of Kouchnirenko’s result.

Theorem 5. Let $f \in \mathbb{C}[x, y]$ with isolated singularities. Then

1. $\mu(f) + \lambda(f) \leq \nu(f)$.
2. If f is non-degenerate then $\mu(f) + \lambda(f) = \nu(f)$.

2.3. **Critical values at infinity.** We recall the result of A. Néméthi and A. Zaharia on how to estimate critical values at infinity. A polynomial \(f \in \mathbb{C}[x, y] \) is *convenient for the x-axis* if there exists a monomial \(x^a \) in \(\text{supp}(f) \) \((a > 0)\); \(f \) is *convenient for the y-axis* if there exists a monomial \(y^b \) in \(\text{supp}(f) \) \((b > 0)\); \(f \) is *convenient* if it is convenient for the x-axis and the y-axis. It is well-known (see [Br]) that:

Lemma 6. A non-degenerate and convenient polynomial with isolated singularities has no critical value at infinity: \(B_\infty = \emptyset \).

Let \(f \in \mathbb{C}[x, y] \) be a polynomial with \(f(0,0) = 0 \) not depending only on one variable. Let \(\gamma_x \) and \(\gamma_y \) the two faces of \(\Gamma_{-}(f) \) that contain the origin. If \(f \) is convenient for the x-axis then we set \(C_x = \emptyset \) otherwise \(\gamma_x \) is not included in the x-axis and we set

\[
C_x = \left\{ f_{\gamma_x}(x, y) \mid (x, y) \in \mathbb{C}^* \times \mathbb{C}^* \text{ and } \frac{\partial f_{\gamma_x}}{\partial x}(x, y) = \frac{\partial f_{\gamma_x}}{\partial y}(x, y) = 0 \right\}.
\]

In a similar way we define \(C_y \).

A result of [NZ, Proposition 6] is:

Theorem 7. Let \(f \in \mathbb{C}[x, y] \) be a non-degenerate and non-convenient polynomial with \(f(0,0) = 0 \), not depending only on one variable. The set of critical values at infinity of \(f \) is

\[
B_\infty = C_x \cup C_y \quad \text{or} \quad B_\infty = \{0\} \cup C_x \cup C_y.
\]

Unfortunately this theorem does not determine whether \(0 \in B_\infty \) (and notice that the value 0 may be already included in \(C_x \) or \(C_y \)). This value 0 is treated in the following lemma.

Lemma 8. Let \(f \in \mathbb{C}[x, y] \) be a non-degenerate and non-convenient polynomial, with isolated singularities and with \(f(0,0) = 0 \). Then

\[
B_\infty = B_{\infty,x} \cup B_{\infty,y}
\]

where we define:

1. if \(f \) is convenient for the x-axis then \(B_{\infty,x} := \emptyset \);
2. otherwise there exists \(x^py \) in \(\text{supp}(f) \) where \(p \geq 0 \) is supposed to be maximal;
 a. If \(x^py \) is in a face of \(\Gamma_{-}(f) \) then \(B_{\infty,x} := C_x \) and \(0 \notin B_{\infty,x} \);
 b. If \(x^py \) is not in a face of \(\Gamma_{-}(f) \) then \(B_{\infty,x} := \{0\} \cup C_x \);
3. we set a similar definition for \(B_{\infty,y} \).

Theorem 7 and its refinement Lemma 8 enable to calculate \(B_\infty \) from \(\text{supp}(f) \). The different cases of Lemma 8 are pictured in Figures 2 and 3.

Proof. As \(f \) is non-convenient with \(f(0,0) = 0 \) we may suppose that \(f \) is non-convenient for the x-axis so that \(f(x, y) = yk(x, y) \). But \(f \) has isolated singularities, so \(y \) does not divide \(k \). Then there is a monomial \(x^py \in \text{supp}(f) \), we can suppose that \(p \geq 0 \) is maximal among monomials \(x^ky \in \text{supp}(f) \).
Let $d = \deg f$. Let $\bar{f}(x, y, z) - cz^d$ be the homogenization of $f(x, y) - c$; at the point at infinity $P = (1 : 0 : 0)$, we define $g_c(y, z) = \bar{f}(1, y, z) - cz^d$. Notice that only $(1 : 0 : 0)$ and $(0 : 1 : 0)$ can be singularities at infinity for f. The value 0 is a critical value at infinity for the point at infinity P (that is to say $0 \in \mathcal{B}_{\infty,x}$) if and only if $\mu_P(g_0) > \mu_P(g_c)$ where c is a generic value.

The Newton polygon of the germ of singularity g_c can be computed from the Newton polygon $\Gamma(f)$, for $c \neq 0$, see [NZ, Lemma 7]. If A, B, O are the points on the Newton diagram of coordinates $(d, 0), (0, d), (0, 0)$, then the Newton diagram of g_c has origin A with y-axis AB, z-axis AO, and the convex closure of $\text{supp}(g_c)$ corresponds to $\Gamma_-(f)$.

![Newton polygon of g_c. First case: $0 \notin \mathcal{B}_{\infty,x}$.

![Newton polygon of g_c. Second case: $0 \in \mathcal{B}_{\infty,x}$.

We denote by Δ_c the Newton polygon of the germ g_c, for a generic value c, Δ_c is non-degenerate and $\mu_P(g_c) = \nu(\Delta_c)$. The Newton polygon Δ_0 has no common point with the z-axis AO but ν may be defined for non-convenient series, see [Ko, Definition 1.9].

If x^py is in the face γ_x of $\Gamma_-(f)$ then Δ_0 is non-degenerate and $\nu(\Delta_0) = \nu(\Delta_c)$, then by [Ko, Theorem 1.10] $\mu_P(g_0) = \nu(\Delta_0)$ and $\mu_P(g_c) = \nu(\Delta_c)$. So $\mu_P(g_0) = \mu_P(g_c)$ and 0 is not a critical value at infinity for the point $P : 0 \notin \mathcal{B}_{\infty,x}$.

If x^py is not in a face of $\Gamma_-(f)$ then there is a triangle Δ_c that disappears in Δ_0, by the positivity of ν (see below) we have $\nu(\Delta_0) > \nu(\Delta_c)$, then by [Ko, Theorem 1.10]: $\mu_P(g_0) \geq \nu(\Delta_0) > \nu(\Delta_c) = \mu_P(g_c)$. So we have $0 \in \mathcal{B}_{\infty,x}$. □
2.4. Additivity and positivity. We need a variation of Kouchnirenko’s number ν. Let T be a polytope whose vertices are in $\mathbb{N} \times \mathbb{N}$, $S > 0$ the area of T, a the length of the intersection of T with the x-axis, and b the length of the intersection of T with the y-axis. We define

$$\tau(T) = 2S - a - b,$$

so that, $\nu(T) = \tau(T) + 1$.

It is clear that τ is additive: $\tau(T_1 \cup T_2) = \tau(T_1) + \tau(T_2) - \tau(T_1 \cap T_2)$, and in particular if $T_1 \cap T_2$ has null area then $\tau(T_1 \cup T_2) = \tau(T_1) + \tau(T_2)$. This formula enables us to argue on triangles only (after a triangulation of T).

Let T_0 be the triangle defined by the vertices $(0, 0), (1, 0), (0, 1)$, we have $\nu(T_0) = -1$. We have the following facts, for every triangle $T \neq T_0$:

1. $\nu(T) \geq 0$;
2. $\nu(T) = 0$ if and only if T has an edge contained in the x-axis or the y-axis and the height of T (with respect to this edge) is 1.

Remark. The formula of additivity can be generalized in the n-dimensional case, but the positivity can not. Here is a counter-example found by Günter Ewald: Let $n = 4$, a a positive integer and let T be the polytope whose vertices are: $(1, 0, 0, 0), (1 + a, 0, 0, 0), (1, 1, 1, 0), (1, 2, 1, 0), (1, 1, 1, 1)$ then $\tau(T) = \nu(T) + 1 = -a < 0$.

2.5. Families of polytopes. We consider a family $(f_s)_{s \in [0,1]}$ of complex polynomials in two variables with isolated singularities. We suppose that $\mu(s) + \lambda(s)$ remains constant. We denote by $\Gamma(s)$ the Newton polygon of f_s.

We will always assume that f_s is non-degenerate for $s \in (0,1]$. We will always assume that the only critical parameter is $s = 0$. We will say that a monomial x^py^q disappears if $(p, q) \in \text{supp}(f_s) \setminus \text{supp}(f_0)$ for $s \neq 0$. By extension a triangle of $\mathbb{N} \times \mathbb{N}$ disappears if one of its vertices (which is a vertex of $\Gamma(s)$, $s \neq 0$) disappears. Now after a triangulation of $\Gamma(s)$ we have a finite number of triangles T that disappear (see Figure 4, on pictures of the Newton diagram, a plain circle is drawn for a monomial that does not disappear and an empty circle for monomials that disappear).

![Figure 4. Triangles that disappear.](image-url)
Lemma 9. Let \(T \neq T_0 \) be a triangle that disappears then \(\tau(T) = 0 \).

Proof. We suppose that \(\tau(T) > 0 \). By the additivity and positivity of \(\tau \) we have for \(s \in [0, 1] \):

\[
\nu(s) = \nu(G(s)) \geq \nu(G(0)) + \tau(T) > \nu(0).
\]

Then by Theorem 5,

\[
\mu(s) + \lambda(s) = \nu(s) > \nu(0) \geq \mu(0) + \lambda(0).
\]

This gives a contradiction with \(\mu(s) + \lambda(s) = \mu(0) + \lambda(0) \).

We remark that we do not need \(f_0 \) to be non-degenerate because in all cases we have \(\nu(0) \geq \mu(0) + \lambda(0) \). \(\square \)

3. Constancy of the degree

3.1. Families of quasi-constant degree. Let \(\sigma \in [0, 1] \), we choose a small enough neighborhood \(I \) of \(\sigma \). Let \(M_\sigma \) be the set of monomials that disappear at \(\sigma \): \(M_\sigma = \text{supp}(f_s) \setminus \text{supp}(f_{s'}) \) for \(s \in I \setminus \{\sigma\} \). The family \((f_s)_{s \in [0,1]} \) is of quasi-constant degree at \(\sigma \) if there exists \(x^p y^q \in \text{supp}(f_\sigma) \) such that

\[
(\forall x^{p'} y^{q'} \in M_\sigma \ (p > p') \text{ or } (p = p' \text{ and } q > q'))
\]

or

\[
(\forall x^{p'} y^{q'} \in M_\sigma \ (q > q') \text{ or } (q = q' \text{ and } p > p')).
\]

The family \((f_s)_{s \in [0,1]} \) is of quasi-constant degree if it is of quasi-constant degree at each point \(\sigma \) of \([0, 1]\). The terminology is justified by the following remark:

Lemma 10. If \((f_s) \) is of quasi-constant degree at \(\sigma \in [0, 1] \), then there exists \(\Phi \in \text{Aut } \mathbb{C}^2 \) such that \(\text{deg } f_s \circ \Phi \) is constant in a neighborhood of \(\sigma \).

The proof is simple: suppose that \(x^p y^q \) is a monomial of \(\text{supp}(f_\sigma) \) such that for all \(x^{p'} y^{q'} \in M_\sigma , p > p' \text{ or } (p = p' \text{ and } q > q') \). We set \(\Phi(x,y) = (x + y^\ell, y) \) with \(\ell \gg 1 \). Then the monomial of highest degree in \(f_s \circ \Phi \) is \(y^{q+p\ell} \) and does not disappear at \(\sigma \). For example let \(f_s(x,y) = xy + sy^3 \), we set \(\Phi(x,y) = (x + y^\ell, y) \) then \(f_s \circ \Phi(x,y) = y^4 + xy + sy^3 \) is of constant degree.

We prove Theorem 3. We suppose that the degree changes, more precisely we suppose that \(\text{deg } f_s \) is constant for \(s \in]0,1[\) and that \(\text{deg } f_0 < \text{deg } f_s , s \in]0,1[\). As the degree changes the Newton polygon \(\Gamma(s) \) cannot be constant, that means that at least one vertex of \(\Gamma(s) \) disappears.

3.2. Exceptional case. We suppose that \(f_0 \) is a one-variable polynomial, for example \(f_0 \in \mathbb{C}[y] \). As \(f_0 \) has isolated singularities then \(f_0(x,y) = ay + b_0 \), so \(\mu(0) = \lambda(0) = 0 \), then for all \(s \), \(\mu(s) = \lambda(s) = 0 \). So \(\nu(s) = \nu(\Gamma(s)) = 0 \), then \(\text{deg } y f_s = 1 \), and \(f_s(x,y) = asy + b_s(x), \) so \((f_s)_{s \in [0,1]} \) is a family of quasi-constant degree (see Figure 5). We exclude this case for the end of the proof.
3.3. **Case to exclude.** We suppose that a vertex $x^p y^q$, $p > 0, q > 0$ of $\Gamma(s)$ disappears. Then there exists a triangle T that disappears whose faces are not contained in the axis. Then $\tau(T) > 0$ that contradicts Lemma 9 (see Figure 6).

![Figure 5](image1.png)

Figure 5. Case $f_0 \in \mathbb{C}[y]$.

3.4. **Case where a monomial x^a or y^b disappears (but not both).** If, for example the monomial y^b of $\Gamma(s)$ disappears and x^a does not, then we choose a monomial $x^p y^q$, with maximal p, among monomials in $\text{supp}(f_s)$. Certainly $p \geq a > 0$. We also suppose that q is maximal among monomials $x^p y^k \in \text{supp}(f_s)$. If $q = 0$ then $p = a$, and the monomial $x^p y^a = x^a$ does not disappear (by assumption). If $q > 0$ then $x^p y^q$ cannot disappear (see above). In both cases the monomial $x^p y^q$ proves that (f_s) is of quasi-constant degree.

3.5. **Case where both x^a and y^b disappear.**
Sub-case: No monomial $x^p y^q$ in $\Gamma(s)$, $p > 0, q > 0$. Then there is an area T with $\tau(T) > 0$ that disappears (see Figure 7). Contradiction.

![Figure 6](image2.png)

Figure 6. Case where a monomial $x^p y^q$, $p > 0, q > 0$ of $\Gamma(s)$ disappears.

![Figure 7](image3.png)

Figure 7. Sub-case: no monomial $x^p y^q$ in $\Gamma(s)$, $p > 0, q > 0$.
Sub-case: there exists a monomial x^py^q in $\Gamma(s)$, $p > 0, q > 0$. We know that x^py^q is in $\Gamma(0)$ because it cannot disappear. As $\deg f_0 < \deg f_s$, a monomial x^py^q that does not disappear verifies $\deg x^py^q = p + q < \deg f_s$, \((s \in]0, 1[)\). So the monomial of highest degree is x^a or y^b. We will suppose that it is y^b, so $d = b$, and the monomial y^b disappears. Let x^py^q be a monomial of $\Gamma(s)$, $p, q > 0$ with minimal q. By assumption such a monomial exists. Then certainly we have $q = 1$, otherwise there exists a region T that disappears with $\tau(T) > 0$ (on Figure 8 the regions T_1 and T_2 verify $\nu(T_1) = 0$ and $\nu(T_2) = 0$). For the same reason the monomial x^py^q' with minimal p' verifies $p' = 1$.

We look at the segments of $\Gamma(s)$, starting from $y^b = y^d$ and ending at x^a. The first segment is from y^d to xy^q', ($p' = 1$) and we know that $p' + q' < d$ so the slope of this segment is strictly less than -1. By the convexity of $\Gamma(s)$ all the following slopes are strictly less than -1. The last segment is from x^py to x^a, with a slope strictly less than -1, so $a \leq p$. Then the monomial x^py gives that $(f_s)_{s \in [0, 1]}$ is of quasi-constant degree.

4. Continuity of the critical values

We now prove Theorem 1. We will suppose that $s = 0$ is the only problematic parameter. In particular $\Gamma(s)$ is constant for all $s \in]0, 1[$.

4.1. The Newton polygon changes. That is to say $\Gamma(0) \neq \Gamma(s)$, $s \neq 0$. As in the proof of Theorem 3 (see paragraph 3) we remark:

- If f_0 is a one-variable polynomial then $\mathcal{B}_\infty(s) = \emptyset$ for all $s \in [0, 1]$.
- A vertex x^py^q, $p > 0, q > 0$ of $\Gamma(s)$ cannot disappear.

So we suppose that a monomial x^a of $\Gamma(s)$ disappears (a similar proof holds for y^b). Then for $s \in]0, 1[$ the monomial x^a is in $\Gamma(s)$, so there are no critical values at infinity for f_s at the point $P = (1 : 0 : 0)$. If $\Gamma(0)$ contains a monomial x^a', $a' > 0$ then there are no critical values at infinity for f_0 at the point P. So we suppose that all monomials x^k disappear.
Then a monomial $x^{p}y^{q}$ of $\text{supp}(f_{0})$ with minimal $q > 0$, verifies $q = 1$, otherwise there would exist a region T with $\tau(T) > 0$ (in contradiction with the constancy of $\mu(s) + \lambda(s)$, see Lemma 9). And for the same reason if we choose $x^{p}y$ in $\text{supp}(f_{0})$ with maximal p then $p > 0$ and $x^{p}y \in \Gamma(0)$. Now the edge of $\Gamma_{-}(f_{0})$ that contains the origin and the monomial $x^{p}y$ (with maximal p) begins at the origins and ends at $x^{p}y$ (so in particular there is no monomial $x^{2p}y^{2}$, $x^{3p}y^{3}$ in $\text{supp}(f_{0})$). Now from Theorem 7 and Lemma 8 we get that there are no critical values at infinity for f_{0} at P.

So in case where $\Gamma(s)$ changes, we have for all $s \in [0, 1]$, $B_{\infty}(s) = \emptyset$.

4.2. The Newton polygon is constant : case of non-zero critical values. We now prove the following lemma that ends the proof of Theorem 1.

Lemma 11. Let a family $(f_{s})_{s \in [0, 1]}$ such that f_{s} is non-degenerate for all $s \in [0, 1]$ and $\Gamma(s)$ is constant, then the multi-valued function $s \mapsto B_{\infty}(s)$ is continuous and closed.

In this paragraph and the next one we suppose that $f_{s}(0, 0) = 0$, that is to say the constant term of f_{s} is zero. We suppose that $c(0) \in B_{\infty}(0)$ and that $c(0) \neq 0$. Then $c(0)$ has been obtained by the result of Némethi-Zaharia (see Theorem 7). There is a face γ of $\Gamma_{-}(f_{0})$ that contains the origin such that $c(0)$ is in the set:

$$C_{\gamma}(0) = \left\{ (f_{0})_{\gamma}(x, y) \mid (x, y) \in (\mathbb{C}^{*})^{2} \text{ and } \frac{\partial (f_{0})_{\gamma}}{\partial x}(x, y) = \frac{\partial (f_{0})_{\gamma}}{\partial y}(x, y) = 0 \right\}.$$

Now, as $\Gamma(s)$ is constant, γ is a face of $\Gamma_{-}(s)$ for all s. There exists a family of polynomials $h_{s} \in \mathbb{C}[t]$ and a monomial $x^{p}y^{q}$ ($p, q > 0, \gcd(p, q) = 1$) such that $(f_{s})_{\gamma}(x, y) = h_{s}(x^{p}y^{q})$. The family (h_{s}) is continuous (in s) and is of constant degree (because $\Gamma(s)$ is constant). The set $C_{\gamma}(0)$ and more generally the set $C_{\gamma}(s)$ can be computed by

$$C_{\gamma}(s) = \left\{ h_{s}(t) \mid t \in \mathbb{C}^{*} \text{ and } h'_{s}(t) = 0 \right\}.$$

As $c(0) \in C_{\gamma}(0)$ there exists a $t_{0} \in \mathbb{C}^{*}$ with $h'_{s}(t_{0}) = 0$, and for s near 0 there is a $t_{s} \in \mathbb{C}^{*}$ near t_{0} with $h'_{s}(t_{s}) = 0$ (because $h'_{s}(t)$ is a continuous function of s of constant degree in t). Then $c(s) = h_{s}(t_{s})$ is a critical value at infinity near $c(0)$ and we get the continuity.

4.3. The Newton polygon is constant : case of the value 0. We suppose that $c(0) = 0 \in B_{\infty}(0)$ and that $f_{s}(x, y) = yk_{s}(x, y)$. We will deal with the point at infinity $P = (1 : 0 : 0)$, the point $(0 : 1 : 0)$ is treated in a similar way. Let $x^{p}y$ be a monomial of $\text{supp}(f_{s})$ with maximal $p \geq 0$, $s \neq 0$. If $x^{p}y$ is not in a face of $\Gamma(s)$ then $0 \in B_{\infty}(s)$ for all $s \in [0, 1]$, and we get the continuity. Now we suppose that $x^{p}y$ is in a face of $\Gamma(s)$; then $x^{p}y$ disappears otherwise 0 is not a critical value at infinity (at the point P) for all $s \in [0, 1]$. As $\Gamma(s)$ is constant then the face γ that contains the
origin and x^py for $s \neq 0$ is also a face of $\Gamma(0)$, then there exists a monomial $(x^py)^k$, $k > 1$ in $\text{supp}(f_0)$. Then $(f_\gamma)_\gamma = h_s(x^py)$, $h_s \in \mathbb{C}[t]$. We have $\deg h_s > 1$, with $h_s(0) = 0$ (because $f(0,0) = 0$) and $h'_s(0) = 0$ (because x^py disappears). Then $0 \in C_\gamma(0) \subset B_\infty(0)$ but by continuity of h_s we have a critical value $c(s) \in C_\gamma(s) \subset B_\infty(s)$ such that $c(s)$ tends towards 0 (as $s \to 0$). It should be noticed that for $s \neq 0$, $c(s) \neq 0$.

In all cases we get the continuity of $B_\infty(s)$.

4.4. **Proof of the closeness of $s \mapsto B_\infty(s)$**. We suppose that $c(s) \in B_\infty(s)$, is a continuous function of $s \neq 0$, with a limit $c(0) \in \mathbb{C}$ at $s = 0$. We have to prove that $c(0) \in B_\infty(0)$. As there are critical values at infinity we suppose that $\Gamma(0)$ is constant.

Case $c(0) \neq 0$. Then for s near 0, $c(s) \neq 0$ by continuity, then $c(s)$ is obtained as a critical value of $h_s(t)$. By continuity $c(0)$ is a critical value of $h_0(t)$: $h_0(t_0) = c(0)$, $h'_0(t_0) = 0$; as $c(0) \neq 0$, $t_0 \neq 0$ (because $h_0(0) = 0$). Then $c(0) \in B_\infty(0)$.

Case $c(0) = 0$. Then let x^py be the monomial of $\text{supp}(f_s)$, $s \neq 0$, with maximal p. By Lemma 8 if $x^py \notin \Gamma(s)$ for $s \in [0,1]$ then $0 \in B_\infty(s)$ for all $s \in [0,1]$ and we get closeness. If $x^py \in \Gamma(s)$, $s \neq 0$, then as $c(s) \to 0$ we have that x^py disappears, so $x^py \notin \Gamma(0)$, then by Lemma 8, $c(0) = 0 \in B_\infty(0)$.

4.5. **Proof of the closeness of $s \mapsto B(s)$**. We now prove Corollary 2. The multi-valued function $s \mapsto B(s)$ is continuous because $B(s) = B_{\text{aff}}(s) \cup B_\infty(s)$ and $s \mapsto B_{\text{aff}}(s)$, $s \mapsto B_\infty(s)$ are continuous. For closeness, it remains to prove that if $c(s) \in B_{\text{aff}}(s)$ is a continuous function with a limit $c(0) \in \mathbb{C}$ at $s = 0$ then $c(0) \in B(0)$.

We suppose that $c(0) \notin B_{\text{aff}}(0)$. There exist critical points $Q_s = (x_s, y_s) \in \mathbb{C}^2$ of f_s with $f_s(x_s, y_s) = c(s)$, $s \neq 0$. We can extract a countable set S of $[0,1]$ such that the sequence $(Q_s)_{s \in S}$ converges towards P in $\mathbb{C}P^2$. As $c(0) \notin B_{\text{aff}}(0)$ we have that P relies on the line at infinity and we may suppose that $P = (0 : 1 : 0)$.

By Theorem 3 we may suppose, after an algebraic automorphism of \mathbb{C}^2, that $d = \deg f_s$ is constant. Now we look at $g_{s,c}(x, z) = f_s(x, 1, z) - cz^d$. The critical point Q_s of f_s with critical value $c(s)$ gives a critical point $Q'_s = (\frac{x_s}{y_s}, \frac{1}{y_s})$ of $g_{s,c}(s)$ with critical value 0 (see [Bo, Lemma 21]). Then by semi-continuity of the local Milnor number on the fiber $g_{s,c}(s)(0)$ we have $\mu_P(g_{0,c}(0)) \geq \mu_P(g_{s,c}(s)) + \mu_{Q'_s}(g_{s,c}(s)) > \mu_P(g_{s,c}(s))$. As $\mu(s) + \lambda(s)$ is constant we have $\mu_P(g_{s,c})$ constant for a generic c (see [ST, Corollary 5.2] or [BT]). Then we have $\mu_P(g_{0,c}(0)) - \mu_P(g_{0,c}) > \mu_P(g_{s,c}(s)) - \mu_P(g_{s,c}) \geq 0$. Then $c(0) \in B_\infty(0)$ and we get closeness for $s \mapsto B(s)$.

References

[Bo] Bodin, A.: Invariance of Milnor numbers and topology of complex polynomials. Comment. Math. Helv. 78, 134–152 (2003)

[BT] Bodin, A., Tibâr, M.: Topological equivalence of complex polynomials. Preprint
Broughton, S.A.: Milnor numbers and the topology of polynomials hypersurfaces. Invent. Math. 92, 217–241 (1988)

Cassou-Noguès, Pi.: Sur la généralisation d’un théorème de Kouchnirenko. Compositio Math. 103, 95–121 (1996)

Hà, H.V., Pham, T.S.: Invariance of the global monodromies in families of polynomials of two complex variables. Acta. Math. Vietnam. 22, 515–526 (1997)

Hà, H.V., Zaharia, A.: Families of polynomials with total Milnor number constant. Math. Ann. 304, 481–488 (1996)

Kouchnirenko, A.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)

Némethi, A., Zaharia, A.: On the bifurcation set of a polynomial function and Newton boundary. Publ. Res. Inst. Math. Sci. 26, 681–689 (1990)

Tibăr, M.: On the monodromy fibration of polynomial functions with singularities at infinity. C. R. Acad. Sci. Paris, 324, 1031–1035 (1997).

Siersma, D., Tibăr, M.: Deformations of polynomials, boundary singularities and monodromy. Moscow Math. J. 3, 661–679 (2003)