Optimization of turning process variables for surface integrity using taguchi technique

Gaurav Kumar¹, Ankit Tomer², Mukesh Kumar², Pankul Goel³* and Om Prakash Singh²

¹M.M. Deemed to be University, Department of Mechanical Engineering, Ambala-133207, India.
²Vidya College of Engineering, Department of Mechanical Engineering, Meerut-251001, India.
³IMS Engineering College, Department of Mechanical Engineering, Ghaziabad-201009, India.
*pankul.goel@imsec.ac.in

Abstract. The selection of proper machining parameters is crucial for the production of a product of desired quality. The Taguchi method will accomplish this. For this work, using tin coated tungsten carbide method, SS-321 work parts are placed onto CNC lathe machine. Stainless steel machining (SS-321) has issues such as worn-out tool and high roughness to the surface. The key reasons for choosing SS-321 grade as workpiece material is the issue of the machining process related with super finishing of Stainless Steel. For this work twenty-seven experiments were carried out on stainless steel (SS-321), as per Taguchi’s L₂₇ orthogonal array. Data analysis was carried out using Taguchi response table method and ANOVA. Following this method, a confirmation experiment was performed to assess the surface integrity change. Turning machining parameter levels to reduce surface roughness were A₁B₃C₁ i.e., depth of cut 0.5 mm, cutting speed of 120 m/min and feed of 0.2 mm/rev. ANOVA table represented the parameters which mostly affected the surface roughness with 76.27% contribution of depth of cut which is maximum followed by feed (7.72%), and effect of speed (3.48%) is insignificant. The research also shows that this approach can efficiently boost the surface finish of the turning process.

1. Introduction

Surface roughness (SR) plays a vital role in various fields and plays an important role in evaluating processing accuracy [1]. Our main concern now is to reduce costs and time, improve quality and economic productivity. Better surface finish and less tool wear are a challenge when using materials with high strength, resistance to corrosion and resistance to wear while turning. Optimized cutting parameters should be employed to solve the above problems [2].

Turning is one of the excess metal removal methods used for machining. The metal removal is the removal of a piece of metal from the workpiece to produce a finished product with the desired lengths, shapes and characteristics of surface roughness. The task for engineers is to search the best parameters for the desired output, and optimize performance with the resources available [3]. Most of the components like rail road cars, mining, various kinds of vehicles etc. are constructed from machined SS-321. Siddiquee et al [4] conducted the experiments on SS-321 steel by taguchi method for optimizing deep drilling process parameters. Dhar et al. [5] submitted that the roughness of the SS-4340 surface decreases by using minimal lubrication. Sijo M.T et al. [6] concluded that optimization of the turning process parameter is time consuming and highly complex. During turning the cutting parameters were
optimized by taguchi techniques. Om Prakash Singh et al [7,8] proposed the taguchi and grey relational analysis for optimizing the shoulder milling parameters of AA 6063T6 Aluminium alloys.

A plethora of research on the impact of process parameters on surface roughness has been published in literature surveys. There is, however, little literature on the effect on SS-321 of the turning process parameters. Many researchers have noted that the taguchi approach and grey relationship analysis have become powerful tools for increasing productivity in the development process and have found a wide range of applications through different machining processes. High quality goods can therefore be manufactured easily and at low cost.

In this study 27 experiments were conducted by using taguchi for optimization of three turning parameters (depth of cut, speed and feed) for machining of SS-321 on CNC lathe machine for improving surface roughness.

2. Experimental Details

2.1 Work piece Material
Machined SS-321 material was used to perform experimental work. General purpose SS-321 has been chosen as the standard because it is most flexible and commonly used. SS-321 fragment samples used during testing are as shown in figure1 and the chemical constituents present in SS-321 are shown in table 1.

![Figure 1. Stainless steel (AISI-321) pieces](image)

Elements	Concentration (by weight%)	Concentration (by weight %)	Concentration (by weight %)
	Minimum	Maximum	Actual
Carbon	00.080	00.070	
Manganese	2.000	1.780	
Silicon	1.000	1.000	
Phosphorus	00.045	00.380	
Sulphur	00.030	0.260	
Nickel	9.000	12.000	10.380
Chromium	17.000	19.000	17.200
Copper	0.750		00.380
2.2 CNC Lathe Machine
The turning operations were performed on the SS-321 pieces by the CNC Lathe machine as shown in figure 2. Mitotoyo tester was used for testing the surface roughness as shown in figure 3.

![Figure 2. CNC lathe Machine](image1)

![Figure 3. Surface Roughness Tester](image2)

Different operating conditions for turning with their specifications are shown in table 2.

Condition	Specification
Work piece material	SS-321
Geometry of work piece	50mm in dia. and 200mm in length
Turning machine	CNC Turning machine (Make: Taiwan in 2011 Model: Leadwell, T-6; Tool movement: X-150 mm, Z-350mm, and 5.5-KW/4500 rpm)
Cutter used	Tin coated solid carbide tool (nose radius 0.8mm)
Measuring tool	Mitotoyo surface roughness tester

2.3 Experimental Design
The experimental work was carried out according to the experimental configuration of the L27 orthogonal array on a CNC turning machine. Optimal order of turning parameters for turning was obtained by using ANOVA. As shown in table 3, three key turning parameters i.e., doc, speed and feed and their levels were determined during machining.

Factor identifier	Machining parameter	Level 1	Level 2	Level 3
A	Depth of Cut (mm)	0.5	1	1.5
B	Speed (m/min.)	60	90	120
C	Feed (mm/rev.)	0.2	0.25	0.3

3. Results and discussion
3.1 Analysis of Signal to Noise Ratio
In this study, equation one was used for minimization of surface roughness which is based on lower is the good criterion.

Lower-is-Good:

\[
S/N_{dB} = -10\log \left[\frac{1}{m} \sum_{y=1}^{m} R_{xy}^2 \right]
\] (1)
Where, R_{xy} is the value of surface roughness for x^{th} observation at the y^{th} test, m is the number of total observations taken. Other formulae of Signal to Noise ratio calculations can be found in references [9, 10, 11]. Table 4 represents the S/N ratios for 27 experiments. Calculations of mean value (θ_i) of S/N ratios was find out by equation 2 as given below [12,13,14].

$$\theta_i = \frac{1}{M} \sum_{j=1}^{M} \gamma(j)$$ (2)

Where $j=1,2,\ldots, M$ (here $M=27$) and $\gamma(j)$ is S/N ratio for j^{th} experiment condition. From table 5 and figure 4 based on the maximum value of S/N ratio, an optimum level for each turning parameter was $A_1B_3C_1$ which means depth of cut 0.5 mm, speed 120 m/min and feed of 0.2 mm/rev. was noticed.

Table 4. Values of S/N ratio

Experiment No.	doc	speed	feed	Ra(μm)	S/N Ratio $\gamma(j)$
1	1	1	1	1.57	-3.918
2	1	1	2	0.92	0.724
3	1	1	3	1.26	-2.007
4	1	2	1	0.97	0.265
5	1	2	2	1.285	-2.178
6	1	2	3	1.11	-0.906
7	1	3	1	0.645	3.809
8	1	3	2	0.71	2.975
9	1	3	3	0.8	1.938
10	2	1	1	2.005	-6.042
11	2	1	2	2.06	-6.277
12	2	1	3	2.86	-9.127
13	2	2	1	1.545	-3.779
14	2	2	2	2.07	-6.319
15	2	2	3	3.09	-9.799
16	2	3	1	1.82	-5.201
17	2	3	2	2.145	-6.629
18	2	3	3	2.655	-8.481
19	3	1	1	2.41	-7.640
20	3	1	2	2.445	-7.766
21	3	1	3	3.09	-9.799
22	3	2	1	2.105	-6.465
23	3	2	2	2.605	-8.316
24	3	2	3	3.165	-10.007
25	3	3	1	1.695	-4.583
26	3	3	2	2.74	-8.755
27	3	3	3	3.335	-10.462
Avg.				1.967	-134.74

Table 5. Average S/N ratio response

level	doc	speed	feed
1	0.0778	-5.761	-3.728
2	-6.850	-5.278	-4.726
5

3	-8.199	-3.932	-6.516
Delta	8.277	1.829	2.788
Rank	1	3	2

The total mean S/N ratio = -4.99

![Main Effects Plot for SN ratios](image)

Figure 4. Response Graph

It was observed from table 5 and figure 4, that the S/N ratios for depth of cut and feed decreases with increase in their levels where as for speed value of S/N ratios increases with increase in its levels. Values of delta for all parameters is also shown in table 5 which depict that doc has maximum value of delta i.e., 8.277 and hence ranked first, feed and speed are ranked second and third with reduced values as 2.788 and 1.829 respectively and it was also observed that S/N are maximum at level1 for doc, level 3 for speed and level1 for feed so optimum arrangement of parameters is A\(_1\)B\(_3\)C\(_1\).

3.2 Analysis of variance

Evaluation of S / N ratios was completed by ANOVA at a confidence level of 95 percent see table 6. Contribution in percentage of each cutting parameter to the surface roughness is also evaluated by ANOVA. The depth of cut indicates a greater contribution of 76.27% from the table of ANOVA. The error was noticed here at 12.54%.

Source	Dof	Sum of square	Mean square	F-Value	Contribution
doc	2	355.00	177.502	60.84	76.27%
speed	2	16.18	8.088	2.77	3.48%
feed	2	35.93	17.965	6.16	7.72%
Error	20	58.35	2.918		12.54%
Total	26	465.46			100.00%
Table 6 shows that the speed given has little impact on the surface roughness for the given sample, since the speed F value is less than 4. ANOVA's results also show that the depth of cut (76.27%) is the most important turning parameters likewise feed rate (7.72%) and speed (3.48%) (see figure 5).

![Figure 5. Percentage contribution](image)

3.3 Confirmation Experiments

When the optimal level of process parameters has been established, the next step is to use this optimal level to check the performance characteristic improvement. The outcomes of the confirmation experiment are shown in Table 7 using optimal turning process parameters.

Table 7. Optimum parametric conditions	Prediction	Experiment	% change
A₁B₃C₁	A₁B₃C₁		
Surface roughness	0.428	0.645	50.70 %
S/N Ratio (db)	7.38	3.80	48.50 %

From table 7 it was observed that signal to noise ratio changed from 7.38 to 3.80 (a decrement of 48.50%) on account of raise in value of roughness from 0.428 to 0.645 μm (an increment of 50.70%) which represents that the optimal combination (A₁B₃C₁) are good enough for reducing the machined surface roughness.

4. Conclusions

The optimization of turning operations is done by taguchi method in this paper. As described earlier, taguchi technology design gives an efficient, well arranged and easy technology for the optimization. Optimized level of parameters (A₁B₃C₁) in turning shows minimum surface roughness (i.e., depth of cut1.5 mm, speed-120m / min. and feed rate-0.20mm / rev). The determination of the optimum cutting parameters is verified by the confirmation experiment. The percentage contribution of depth of cut is higher (76.27%), followed by feed (7.72%) and speed (3.48%). Therefore, the use of this method can significantly improve surface roughness. So, taguchi is most helpful to optimize process parameters in the industry in order to reduce cost and time.

Acknowledgement
The authors are thankful for the motivation, support and facilities given by Vidya Knowledge Park, Meerut, India for carrying out this study.

References
[1] PalaniKumar K, Karunamoorthy L and Karthikeyan R 2006 Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites Materials & Design 27(10) pp 862-871
[2] Ranganathan S and Senthilvelan T 2011 Multi-response optimization of machining parameters in hot turning using grey analysis The International Journal of Advanced Manufacturing Technology 56(5-8) pp 455-462
[3] Black K M 1994 An industry view of engineering education Journal of Engineering Education 83(1) pp 26-28
[4] Siddiquee A N, Khan Z A, Goel P, Kumar M, Agarwal G and Khan N Z 2014 Optimization of deep drilling process parameters of AISI 321 steel using Taguchi method Procedia Materials Science 6 pp 1217-1225
[5] Dhar N R, Kamruzzaman M and Ahmed M 2006 Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel Journal of Materials Processing Technology 172(2) pp 299-304
[6] Sijo M T and Biju N 2011 Taguchi method for optimization of cutting parameters in Turning Operations International Journal on Manufacturing and Material Science 1(1) pp 44
[7] Singh O P, Kumar G and Kumar M 2019 Multi Performance optimization of shoulder milling process parameters of AA6063 T6 aluminium alloy by Taguchi Based GRA International Journal of Innovative Technology and Exploring Engineering 8 pp 420-425
[8] Singh O P, Kumar G and Kumar M 2019 Role of Taguchi and grey relational method in optimization of machining parameters of different materials: a review Acta Electronica Malaysia (AEM) 3(1) pp 19-22
[9] Kuram E and Ozcelik B 2017 Optimization of machining parameters during micro-milling of Ti6Al4V titanium alloy and Inconel 718 materials using Taguchi method Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture 231(2) pp 228-242
[10] Sosa PB, Makwana RD and Acharya GD 2018 Optimization of Machining Parameters on End Milling of EN 8 Back Shaft for Power Press Trends in Mechanical Engineering and Technology 8(3) pp 49-58
[11] Roy R K 2010 A primer on the Taguchi method Society of Manufacturing Engineers
[12] Chang CL, Tsai CH and Chen L 2003 Applying grey relational analysis to the decathlon evaluation model International Journal of Compute Internet Manage 11(3) pp 54–62
[13] Kumar M, Kumar G, Singh O P and Tomer A 2021 Multiperformance Optimization of Parameters in Deep Drilling of SS-321 by Taguchi-Based GRA In Recent Advances in Mechanical Engineering Springer Singapore pp 675-681
[14] Kumar G, Kumar M and Tomer A 2021 Optimization of End Milling Machining Parameters of SS 304 by Taguchi Technique in Recent Advances in Mechanical Engineering Springer Singapore pp 683-689