PHOTOCATALYTIC DEGRADATION OF MULTIPLE CHLOROPHENOLS AS SIMULATED ENVIRONMENTAL POLLUTANTS IN TiO\textsubscript{2}/H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40}/Ag COMPOSITE FILM SYSTEM

LI, L.1 – YANG, L.1 – JIANG, L. Y. – WANG, Z. R. – WU, J. K. – LU, N.* – QU, J.*

School of Environment, Northeast Normal University, Changchun 130117, P. R. China

†These authors contributed equally.

\textsuperscript{*Corresponding authors
e-mail: lun100@nenu.edu.cn (Lu, N.); Quj100@nenu.edu.cn (Qu, J.)

(Received 22nd May 2019; accepted 28th Aug 2019)

Abstract. Photocatalytic degradation of chlorophenols (CPs) has been attracting an increasing attention lately. In the paper, TiO\textsubscript{2}/H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40}/Ag composite film was prepared by sol-gel method with programmed heating hydrothermal technology and spin coating technique to treat CPs. Direct photolysis of five CPs was performed according to the pseudo-first-order kinetics model, in which the photolysis rate of PCP was faster than that of the others under the simulated solar light. The results of mineralization indicated that the aromatic ring in PCP was difficult to be broken down via direct photolysis. By TiO\textsubscript{2}/H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40}/Ag composite film, photocatalytic degradation efficiency elevated due to the enhancement of the quantum efficiency and visible-light absorption in comparison with direct photolysis as well as other reaction systems (TiO\textsubscript{2}/H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40} film and TiO\textsubscript{2} film), and the mineralization of PCP increased to 75.70%. The initial degradation rate (\(r_0\)) was in the following order as PCP (0.158 mg·L-1·min-1) > 4-CP (0.144 mg·L-1·min-1) > 2,4-DCP (0.014 mg·L-1·min-1) > 2,4,6-TCP (0.047 mg·L-1·min-1) > 2-CP (0.038 mg·L-1·min-1), confirming TiO\textsubscript{2}/H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40}/Ag composite film as new catalyst to be more effective at removing for CPs.

Keywords: direct photolysis, kinetics model, chlorine substituent, mineralization degree, degradation path

Introduction

Chlorophenols (CPs) possess 19 homologues including mono-, di-, tri-, tetra-, and penta-chlorinated phenols, which have been widely used as pesticides, herbicides, fungicides, acaricides, and mold inhibitors (Olaniran et al., 2011; Garba et al., 2019; Yang et al., 2018; Guo et al., 2016). The position and quantity of chlorine substituent in CPs are closely correlated to their toxicity, e.g. ortho-substituted homologues are generally of lower toxicity than meta- and para-ones, and polychlorinated CPs are ascribed to increase hazardous effect for the organisms (Devillers et al., 1986; Du et al., 2016; Yu et al., 2019; Ge et al., 2017). CPs have been listed as priority pollutants by US EPA because of their adverse environmental effects, consequently, the disposal is currently one of the most serious environmental issues (Descorme et al., 2017). Photocatalytic degradation of CPs has been attracting an increasing attention lately, and numerous semiconductors have been investigated (Ku et al., 1996; Li et al., 2011; Gaya et al., 2009; Han et al., 2018; Al-Fahdi et al., 2019). TiO\textsubscript{2} is the most studied photocatalyst, however, the disadvantages including low quantum yield (approximately 0.14 at 365 nm) (Emeline et al., 2006), the limited solar light utilization (Meng et al., 2018), hindered its practical application.

In our previous work, an efficient plasmonic TiO\textsubscript{2}/H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40}/Ag composite film was fabricated with an enhanced solar light photocatalytic activity due to the combined actions
of electrons-trapping via H$_3$PW$_{12}$O$_{40}$, visible-response induced by Ag, and Schottky-junction formed between TiO$_2$ and Ag (Lu et al., 2017). It has been documented that the chlorine positions in chlorophenol homologues act an important role in its photodegradation kinetics (Hugül et al., 2000; Czaplicka et al., 2006). It is well known that ·OH is a very strong activator as well as ortho- and para-directing in electrophilic aromatic substitution (Antonarakı et al., 2002). Therefore, ·OH radical that was confirmed as the main role in TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag reaction system (Lu et al., 2017) can directly attack the electron-rich positions in CPs molecules with a rapid degradation rate.

The current study is aimed to compare the removal efficiency and rate between direct photolysis and photocatalytic degradation of mono-, di-, tri- and penta-chlorophenols in TiO$_2$, TiO$_2$/H$_3$PW$_{12}$O$_{40}$, and TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag systems. Moreover, the influence of chlorine substituent position and quantity on photocatalytic degradation in TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag system was intensively investigated. The speculation of degradation path accompanied by mineralization degree analysis was discussed. This work would provide necessary information on the development of photocatalysis technique in practical application towards CPs wastewater treatment.

Material and methods

Reagents

The titanium tetraisopropoxide (TTIP, 98%) was purchased from Sigma-Aldrich Corporation. H$_3$PW$_{12}$O$_{40}$ (guaranteed reagent, GR), isopropanol (analytical purity, AR), AgNO$_3$ (AR), 2-CP (AR), 4-CP (AR), 2,4-CP (AR), 2,4,6-CP (AR) and PCP (AR) were purchased from China Pharmaceutical Group. Other chemicals were of reagent grade and applied without further purification. Double distilled water was utilized throughout the experimental procedures.

Catalyst preparation

The combining process of sol-gel-hydrothermal route and temperature programming was employed to fabricate TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag composite film, which has been described in our previous study (Lu et al., 2017). The as-prepared film was confirmed with anatase phase TiO$_2$, the intact saturation Keggin structure, and metallic Ag inserted into the pore structures of TiO$_2$/H$_3$PW$_{12}$O$_{40}$, which enhanced the quantum efficiency, visible-light absorption and further improving in the photocatalytic performance.

Direct photolysis and photocatalytic experiment

2-chlorophenol (CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) were selected as the targets, the corresponding molecular structures and detection conditions were listed in Table 1. The photocatalytic degradation of CPs was conducted in a home-made quartz photoreactor (Fig. 1) under the simulated solar light provided by a PLS-SXE300 Xe lamp (300 W, Beijing Trustech Co. Ltd., China) placing ca. 15 cm above the reactor. The lamp was equipped with cut filters to match solar light with wavelength of 320-780 nm, as well as light intensity of 200 mW/cm2 measured by a radiometer (OPHIR, Newport, USA) (Lu et al., 2012). In the photocatalytic system, 2 pieces of coated films (Ag-TiO$_2$/H$_3$PW$_{12}$O$_{40}$ composite film, TiO$_2$/H$_3$PW$_{12}$O$_{40}$ composite film, or TiO$_2$ film) with a weight of ca. 5.0 mg were submerged in CPs solution (100 ml; 5 mg·L$^{-1}$). Prior to

Table 1

Compound	Molecular Structure	Detection Conditions
CP	![Structure](https://example.com/structure.png)	...
4-CP	![Structure](https://example.com/structure.png)	...
2,4-DCP	![Structure](https://example.com/structure.png)	...
2,4,6-TCP	![Structure](https://example.com/structure.png)	...
PCP	![Structure](https://example.com/structure.png)	...
irradiation, the films were maintained in dark for 30 min to reach adsorption-desorption equilibrium of CPs. After irradiation, 2 mL CPs solution was sampled and analyzed at 30 min intervals. The experiments were carried out in triplicate. Direct photolysis were conducted in the same conditions without catalyst.

Table 1. Molecular structures and detection conditions of CPs

CPs	Molecular structures	Detection conditions
2-CP	![OH](/images/chemistry) ![Cl](/images/chemistry)	Mobile phase of acetonitrile (40%) and H₂O (60%, containing 0.1% acetic acid) at a flow rate of 0.7 ml·min⁻¹ with a detection wavelength of 254 nm
4-CP	![OH](/images/chemistry) ![Cl](/images/chemistry)	Mobile phase of acetonitrile (50%) and H₂O (50%, containing 1% acetic acid) at a flow rate of 1.0 ml·min⁻¹ with a detection wavelength of 254 nm
2,4-DCP	![OH](/images/chemistry) ![Cl](/images/chemistry)	Mobile phase of methyl alcohol (80%) and H₂O (20%) at a flow rate of 1.0 ml·min⁻¹ with a detection wavelength of 284 nm
2,4,6-TCP	![Cl](/images/chemistry) ![OH](/images/chemistry) ![Cl](/images/chemistry)	Mobile phase of methyl alcohol (80%) and H₂O (20%, containing 0.3% phosphoric acid) at a flow rate of 1.0 ml·min⁻¹ with a detection wavelength of 210 nm
PCP	![Cl](/images/chemistry) ![OH](/images/chemistry) ![Cl](/images/chemistry)	Mobile phase of methyl alcohol (90%) and H₂O (10%, containing 2.0% acetic acid) at a flow rate of 0.7 ml·min⁻¹ with a detection wavelength of 254 nm

Figure 1. Self-constructed quartz photoreactor
Kinetics

Direct photolysis and photocatalytic degradation kinetics was accorded to simplified pseudo-first-order kinetics (Eq. 1) when the initial concentration of target compound was low.

\[\ln \left(\frac{C_0}{C_t} \right) = K_{\text{app}} \cdot t + b \]
(Eq.1)

\[r_0 = K_{\text{app}} \cdot C_0 \]
(Eq.2)

in which \(K_{\text{app}} \) is the apparent constant; \(C_0 \) and \(C \) are initial and process concentration of the target compound, respectively; \(t \) is the reaction time; \(b \) is the intercept, R value was obtained by fitting with the least square method.

Statistical analysis

Statistical analysis and linear regression were conducted using SPSS 23.0 statistical software (SPSS Inc., Chicago, USA). The differences of \(K_{\text{app}} \) and \(r_0 \) were tested by one-way ANOVA, in which the comparisons were considered statistically significant, when \(P < 0.05 \).

Results

Direct photolysis and photocatalytic degradation

The direct photolysis of CPs under UV light was usually studied in many previous reports (Pandiyan et al., 2002; Hong et al., 2000); however, UV light only was around 4-5 percent in sunlight. In the current study, solar simulating irradiation was selected as light source, which was more similar to that of the practical proceeded under the natural sunlight. The results (Fig. 2) showed that PCP represented the highest direct photolysis rate as 90.95% after 240 min irradiation, followed by 4-CP (66.05%), 2,4-DCP (50.41%), 2,4,6-TCP (43.02%), and 2-CP (5.11%), which concluded most CPs could be direct photodegraded quickly except 2-CP.

In photocatalytic degradation system, the removal efficiency of CPs was increased obviously after adding the catalysts relative to direct photolysis (Fig. 3). By TiO\(_2\)/H\(_3\)PW\(_{12}\)O\(_{40}\)/Ag film, after 120 min irradiation, the photocatalytic degradation efficiency of 2-CP, 4-CP, 2,4-CP, 2,4,6-TCP, and PCP was 48.49%, 89.89%, 94.57%, 75.15%, and 90.50%, respectively. The degradation efficiency integrally elevated when irradiation time extended to 240 min, 4-CP, 2,4-CP and PCP was hardly completely degraded, while 90.22% of 2,4,6-TCP and 82.40% of 2-CP was degraded. All the values were higher than the attained degradation efficiency in TiO\(_2\)/H\(_3\)PW\(_{12}\)O\(_{40}\) or TiO\(_2\) film reaction systems.

Kinetics

By direct photolysis (Fig. 4 and Table 2), the values of initial react rate (\(r_0 \)) were in order as PCP (0.051 mg·L\(^{-1}\)·min\(^{-1}\)) > 4-CP (0.021 mg·L\(^{-1}\)·min\(^{-1}\)) > 2,4-DCP (0.014 mg·L\(^{-1}\)·min\(^{-1}\)) > 2,4,6-TCP (0.011 mg·L\(^{-1}\)·min\(^{-1}\)) > 2-CP (0.001 mg·L\(^{-1}\)·min\(^{-1}\)).

By photocatalytic degradation (Fig. 5 and Table 3), kinetic study was conducted by selecting TiO\(_2\) film, TiO\(_2\)/H\(_3\)PW\(_{12}\)O\(_{40}\) film and TiO\(_2\)/H\(_3\)PW\(_{12}\)O\(_{40}\)/Ag film as the catalyst.
In TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag composite film system, the values of initial react rate (r_0) were in order as PCP (0.158 mg·L$^{-1}$·min$^{-1}$) > 4-CP (0.144 mg·L$^{-1}$·min$^{-1}$) > 2,4-DCP (0.014 mg·L$^{-1}$·min$^{-1}$) > 2,4,6-TCP (0.047 mg·L$^{-1}$·min$^{-1}$) > 2-CP (0.038 mg·L$^{-1}$·min$^{-1}$), which was faster than that of TiO$_2$/H$_3$PW$_{12}$O$_{40}$ or TiO$_2$ film.

Figure 2. Direct photolysis of CPs

Figure 3. Photocatalytic degradation of CPs by TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag film, TiO$_2$/H$_3$PW$_{12}$O$_{40}$ film and TiO$_2$ film (a) 2-CP; (b) 4-CP; (c) 2,4-DCP; (d) 2,4,6-TCP; (e) PCP
Li et al.: Photocatalytic degradation of multiple chlorophenols as simulated environmental pollutants in TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag composite film system

Figure 4. Direct photolysis kinetics

Table 2. Direct photolysis kinetics

CPs	Kinetic equation $ln(C_0/C) = K_{app}$	Apparent constant K_{app} (min$^{-1}$)	Initial rate r_0 (mg·L$^{-1}$·min$^{-1}$)	R
2-CP	$y = 0.0020x - 0.0064$	0.0002	0.001	0.9708
4-CP	$y = 0.0041x + 0.0670$	0.0041	0.021	0.9882
2,4-DCP	$y = 0.0027x + 0.0058$	0.0027	0.014	0.9895
2,4,6-TCP	$y = 0.0022x + 0.1051$	0.0022	0.011	0.9548
PCP	$y = 0.0102x - 0.2070$	0.0102	0.051	0.9855

Table 3. Photocatalytic degradation kinetics

Films	CPs	Kinetic equation $ln(C_0/C) = K_{app}$	Apparent constant K_{app} (min$^{-1}$)	Initial rate r_0 (mg·L$^{-1}$·min$^{-1}$)	R
TiO$_2$	2-CP	$y = 0.0020x + 0.0410$	0.0020	0.010	0.9892
	4-CP	$y = 0.0129x - 0.0291$	0.0129	0.065	0.9952
	2,4-DCP	$y = 0.0116x + 0.2938$	0.0116	0.058	0.9928
	2,4,6-TCP	$y = 0.0056x + 0.1989$	0.0056	0.028	0.9653
	PCP	$y = 0.0146x - 0.1851$	0.0146	0.073	0.9928
TiO$_2$/H$_3$PW$_{12}$O$_{40}$	2-CP	$y = 0.0025x + 0.0424$	0.0025	0.013	0.9927
	4-CP	$y = 0.0253x - 0.5083$	0.0253	0.127	0.9695
	2,4-DCP	$y = 0.0212x + 0.0697$	0.0212	0.106	0.9841
	2,4,6-TCP	$y = 0.0065x + 0.3175$	0.0065	0.033	0.9454
	PCP	$y = 0.0253x - 0.5083$	0.0253	0.127	0.9695
TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag	2-CP	$y = 0.0075x - 0.1095$	0.0075	0.038	0.9900
	4-CP	$y = 0.0287x - 0.4627$	0.0287	0.144	0.9665
	2,4-DCP	$y = 0.0340x - 0.2204$	0.0340	0.170	0.9828
	2,4,6-TCP	$y = 0.0094x + 0.2502$	0.0094	0.047	0.9862
	PCP	$y = 0.0315x - 0.6207$	0.0315	0.158	0.9657
Mineralization degree

The mineralization of PCP (20 mg·L⁻¹) was evaluated by monitoring the changes of TOC in both direct photolysis and TiO₂/H₃PW₁₂O₄₀/Ag photocatalytic degradation system. Even though degradation rate of PCP was faster than that of other CPs in the two reaction systems, the mineralization degree of PCP was approximately 25.70% in direct photolysis, whereas it reached 75.70% in the photocatalytic reaction after 720 min (Fig. 6).

Figure 5. Photocatalytic degradation kinetics

Figure 6. TOC evolution of CPs
Discussion

Based on the results of direct photolysis and photocatalytic degradation, it could be concluded as follow: firstly, all position was full by chlorine atoms in PCP molecule resulting in electron density decreased on the ring due to the electron withdrawing properties of Cl atoms, making the ring less favorable to electrophilic attack, so increased degradation rate (Kim et al., 2003); secondly, degradation of 2-CP was retarded due to the formation of intramolecular hydrogen bonding between OH and Cl (Yang et al., 2014); thirdly, the degradation rate order of 4-CP > 2,4-DCP > 2,4,6-TCP was attributed to the fact that the more chlorine substituent in meta- position, the stronger passivation generated among them (Sundstrom et al., 1989). Therefore, the direct photolysis and photocatalytic degradation was mainly controlled by the position and quantity of substituted chlorine atoms in CPs, which were in agreement with other reports (Ko et al., 2007; Yuan et al., 2005).

As-prepared TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag film showed the excellent photocatalytic property, the results showed that K_{app} of as-prepared TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag reaction system increased significantly in comparison with TiO$_2$ system ($P < 0.05$). Because TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag reaction system delayed the recombination of holes and electrons pairs efficiently owing to the synergistic effects between the Keggin unit and TiO$_2$ and the generation of Schottky junction at the interface between Ag and TiO$_2$, meanwhile expanded the absorption of visible-light due to SPR effect (Lu et al., 2017). It is worth noting that only a limited amount of ca. 5.0 mg TiO$_2$/H$_3$PW$_{12}$O$_{40}$/Ag was used in the current system, the degradation rate under simulated solar light was considerable in comparison with that in other studies (Table 4) even if their experimental conditions showed more advantages including of strong ultraviolet as light source or large catalyst amount.

Table 4. Photocatalytic degradation dynamics in other reports

CPs	Co (mg·L$^{-1}$)	Catalyst	Lamp	Initial rate r_0 (mg·L$^{-1}$·min$^{-1}$)	Reference
2-CP	10	TiO$_2$ (2 g·L$^{-1}$)	15 W black flue fluorescent	0.047	Ku et al., 1996
4-CP	20	TiO$_2$/AC-PC (2.5 g·L$^{-1}$)	125 W Hg lamp	6.733	Herrmann et al., 2002
2,4-DCP	20	TiO$_2$ (0.1 g·L$^{-1}$)	125 W Hg lamp	0.569	Jardim et al., 1997
2,4,6-TCP	100	α-Fe$_2$O$_3$ (1.5 g·L$^{-1}$)	Solar simulator	0.231	Bandara et al., 2001
PCP	170	TiO$_2$ (0.1 g·L$^{-1}$)	125 W Hg lamp	0.789	Jardim et al., 1997

In the mineralization study, the photon energy of simulated solar light can only destroy Cl-C of PCP molecule successively till producing the mono-chlorinated phenol but not powerful enough to break down the aromatic ring (Skurlatov et al., 1997). In photocatalytic degradation system, the complex effect of dichlorination, hydroxylation and ring-cleavage functioned in the removal of chlorophenols (Tang et al., 1996). The specific degradation path was shown in Figure 7.
Li et al.: Photocatalytic degradation of multiple chlorophenols as simulated environmental pollutants in TiO₂/H₃PW₁₂O₄₀/Ag composite film system

- 12981 -

Figure 7. Possible reaction pathway during photocatalytic degradation of PCP

Conclusion

TiO₂/H₃PW₁₂O₄₀/Ag composite film as new photocatalyst represented an excellent removal efficiency towards CPs under the simulated sunlight relative to others photocatalytic system. The values of initial react rate (r₀) were in the order as PCP (0.158 mg·L⁻¹·min⁻¹) > 4-CP (0.144 mg·L⁻¹·min⁻¹) > 2,4-DCP (0.014 mg·L⁻¹·min⁻¹) > 2,4,6-TCP (0.047 mg·L⁻¹·min⁻¹) > 2-CP (0.038 mg·L⁻¹·min⁻¹) in the current system, which was related with chlorine substituent position and quantity in CPs molecules. Therein, PCP was highest degradation rate due to the decreased electron cloud density by full chlorine substituents in the phenolic ring, and 75.70% PCP (20 mg·L⁻¹) could be mineralized after 720 min irradiation due to ∙OH attack. This work will provide necessary information on the development of photocatalysis technique for chlorophenols wastewater treatment in practical application. Moreover, it can be predicted that other noble metal (Pt, Cu, et al) modified TiO₂/H₃PW₁₂O₄₀ will also show excellent photocatalytic performance, and the photoelectrocatalytic study of TiO₂/H₃PW₁₂O₄₀/Ag composite film is expected.

Acknowledgments. This work was financially supported by the National Natural Science Foundation of China (51408109); Changchun Science and Technology Project (18DY009).
REFERENCES

[1] Al-Fahdi, T., Marzouqi, F. A., Kuvarega, A. T., Mamba, B. B., Salma, M. Z., Kindy, A., Kim, Y. H., Selvaraj, R. (2019): Visible light active CdS@TiO2 core-shell nanostructures for the photodegradation of chlorophenols. – Journal of Photochemistry and Photobiology A: Chemistry 374: 75-83.

[2] Antonarakis, S., Androulaki, E., Dimotikali, D., Hiskia, A. Papaconstantinou, E. (2002): Photolytic degradation of all chlorophenols with polyoxometallates and H2O2. – Journal of Photochemistry Photobiology A: Chemistry 148: 191-197.

[3] Bandara, J., Mielczarski, J. A., Lopez, A., Kiwi, J. (2001): Sensitized degradation of chlorophenols on iron oxides induced by visible light. Comparison with titanium oxide. – Applied Catalysis B: Environmental 34: 321-333.

[4] Czaplicka, M. (2006): Photo-degradation of chlorophenols in the aqueous solution. – Journal of Hazardous Materials B134: 45-59.

[5] Descorme, C. (2017): Catalytic wastewater treatment: oxidation and reduction process. Recent studies on chlorophenols. – Catalysis Today 297: 324-334.

[6] Devillers, J., Chambon, P. (1986): Acute toxicity and QSAR of chlorophenols on Daphnia magna. – Bulletin of Environmental Contamination and Toxicology 37(4): 599-605.

[7] Du, P. H., Zhao, H., Li, H. T., Zhang, D., Huang, C. H., Deng, M. F., Liu, C. M., Cao, H. B. (2016): Transformation, products, and pathways of chlorophenols via electro-enzymatic catalysis: How to control toxic intermediate products. – Chemosphere 144: 1674-1681.

[8] Emeline, A. V., Zhang, X., Jin, M., Murakami, T., Fujishima, A. (2006): Application of a “Black Body” like reactor for measurements of quantum yields of photochemical reactions in heterogeneous systems. – Journal of Physical Chemistry C 110: 5259-5275.

[9] Garba, Z. N., Zhou, W. M., Lawan, I., Xiao, W., Zhang, M. X., Wang, L. W., Chen, L. H., Yuan, Z. H. (2019): An overview of chlorophenols as contaminants and their removal from waste water by adsorption: a review. – Journal of Environmental Management 241: 59-75.

[10] Gayya, U. I., Abdullah, A. H., Zainal, Z., Hussein, M. Z. (2009): Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. – Journal of Hazardous Materials 168: 57-63.

[11] Ge, T. T., Han, J. Y., Qi, Y. M., Gu, X. Y., Ma, L., Zhang, C., Naem, S. J., Huang, D. J. (2017): The toxic effects of chlorophenols and associated mechanisms in fish. – Aquatic Toxicology 184: 78-93.

[12] Guo, J. Q., Wu, C. H., Lv, S. L., Lu, D. S., Feng, C., Qi, X. J., Liang, W. J., Chang, X. L., Xu, H., Wang, G. Q., Zhou, Z. J. (2016): Associations of prenatal exposure to five chlorophenols with adverse birth outcomes. – Environmental Pollution 214: 478-484.

[13] Han, A. J., Zhang, H. W., Lu, D., Sun, J. L., Chuah, G. K., Jaenicke, S. (2018): Efficient photodegradation of chlorophenols by BiOBr/NaBiO3 heterojunctioned composites under visible light – Journal of Hazardous Materials 341: 83-92.

[14] Herrmann, J. M., Guilard, C., Didier, J., Lehaut, C., Malato, S., Blanco, J. (2002): New industrial titania photocatalysts for the solar detoxification of water containing various pollutants. – Applied Catalysis B: Environmental 35: 281-294.

[15] Hong, J., Kim, D. G., Cheong, C., Jung, S. Y., Yoo, M. R., Kim, K. J., Kim, T. K., Park, Y. C. (2002): Identification of photolytical transformation products of pentachlorophenol in water. – Analytic Sciences 16: 621-626.

[16] Hugul, M., Apak, R., Demirci, S. (2000): Modeling the kinetics of UV/hydrogen peroxide oxidation of some mono-, di-, and trichlorophenols. – Journal of Hazardous Materials B77: 193-208.
[17] Jardim, W. F., Moraes, S. G., Takiyama, M. M. K. (1997): Photocatalytic degradation of aromatic chlorinated compounds using TiO$_2$: toxicity of intermediates. – Water Research 31: 1728-1732.

[18] Kim, Y. H., Carraway, E. R. (2003): Dechlorination of chlorinated phenols by zero valent zinc. – Journal Environmental Technology 24(12): 1455.

[19] Ko, S. O., Lee, D. H., Kim, Y. H. (2007): Kinetic studies of reductive dechlorination of chlorophenols with Ni/FE bimetallic particles. – Environmental Technology 28: 583-594.

[20] Ku, Y., Leu, R. M., Lee, K. C. (1996): Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide. – Water Research 30(11): 2569-2578.

[21] Li, J. J., Hu, Y., Liu, W. H., Shi, L., Sun, Q., Zhou, Y. G., Xu, J. F., Wang, J., Shen, B. Z. (2011): Efficient oxidative degradation of 2-chlorophenol and 4-chlorophenol over supported CuO-based catalysts. – Journal of Natural Gas Chemistry 20: 493-497.

[22] Lu, N., Zhao, Y. H., Liu, H. B., Guo, Y. H., Yuan, X., Xu, H., Peng, H. F., Qin, H. W. (2012): Design of polyoxometalate-titania composite film (H$_2$PW$_{12}$O$_{40}$/TiO$_2$) for the degradation of an aqueous dye rhodamine B under the simulated sunlight irradiation. – Journal of Hazardous Materials 199-200: 1-8.

[23] Lu, N., Wang, Y. Q., Ning, S. Q., Zhao, W. J., Qian, M., Ma, Y., Wang, J., Fan, L. Y., Guan, J. N., Yuan, X. (2017): Design of plasmonic Ag-TiO$_2$/H$_2$PW$_{12}$O$_{40}$ composite film with enhanced sunlight photocatalytic activity towards o-chlorophenol degradation. – Scientific Reports 7: 17298-1-17.

[24] Meng, J., Xiong, X. Q., Zhang, X., Xu, Y. M. (2018): Improved photocatalytic degradation of chlorophenol over Pt/Bi$_2$WO$_6$ on addition of phosphate. – Applied Surface Science 439: 859-867.

[25] Olaniran, A. O., Igbinoso, E. O. (2011): Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation process. – Chemosphere 83: 1297-1306.

[26] Pandiyan, T., Rivas, M., Martinez, J. O., Amezcuda, G. B., Martinez-Carrillo, M. A. (2002): Comparison of methods for the photochemical degradation of chlorophenols. – Journal of Photochemistry Photobiology A: Chemistry 146: 149-155.

[27] Skurlatov, Y. I., Ernestova, L. S., Vichutinskaya, E. V., Samsonov, D. P., Semenova, I. V., Rodko, I. Y., Shvidky, V. O., Pervunina, R. I., Kemp, T. J. (1997): Photochemical transformation of polychlorinated phenols. – Journal of Photochemistry Photobiology A: Chemistry 107: 207-213.

[28] Sundstrom, D. W., Weir, B. A., Klei, H. E. (1989): Destruction of aromatic pollutants by UV light catalyzed oxidation with hydrogen peroxide. – Environmental Progress Banner 8: 6-11.

[29] Tang, W. Z., Huang, C. P. (1996): Effect of chlorine content of chlorinated phenols on their oxidation kinetics by Fenton’s reagent. – Chemosphere 33: 1621-1635.

[30] Yang, J., Cui, S. H., Qiao, J. Q., Lian, H. Z. (2014): The photocatalytic dehalogenation of chlorophenols and bromophenols by cobalt doped nano TiO$_2$. – Journal of Molecular Catalysis A: Chemical 395: 42-51.

[31] Yang, K., Fu, Z. W., Cao, Y. F., Li, S. N., Du, Z., Sun, X. Y., Liu, Y. Z., Yang, K., Fang, Z. Z. (2018): New insights for risks of chlorophenols (CPs) exposure: Inhibition of UDP-glucuronosyltransferases (UGTs). – Chemosphere 206: 9-16.

[32] Yu, C., Wang, C., Lu, Z. B., Zhang, C., Dai, W., Yu, S. Q., Lin, S., Zhang, Q. (2019): The endocrine-disrupting potential of four chlorophenols by in vitro and in silico assay. – Chemosphere 218: 941-947.

[33] Yuan, S. H., Lu, X. H. (2005): Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation. – Journal of Hazardous Materials 118: 85-92.