Passive Micron-scale Time-of-Flight with Sunlight Interferometry

Alankar Kotwal ¹ Anat Levin ² Ioannis Gkioulekas ¹

¹ Carnegie Mellon University ² Technion

https://imaging.cs.cmu.edu/sunlight_interferometry
[Kotwal et al., 2020]
dark room with curtains
artificial light sources
pneumatic vibration isolation
https://imaging.cs.cmu.edu/sunlight_interferometry
Passive micron-scale depth sensing

[Kotwal et al., 2020] ours

https://imaging.cs.cmu.edu/sunlight_interferometry
Passive micron-scale depth sensing

Reference mirror
Splitter
Mirror
Scene
Camera

https://imaging.cs.cmu.edu/sunlight_interferometry
Passive micron-scale depth sensing

https://imaging.cs.cmu.edu/sunlight_interferometry
Setup

- Imaging camera
- Ref mirror
- Scene
- Tracking camera
- Tracking mirror on rotation stages

https://imaging.cs.cmu.edu/sunlight_interferometry
Depth sensing: Raspberry Pi

rendered depth
texture-mapped
resistor and pad
conducting tracks

https://imaging.cs.cmu.edu/sunlight_interferometry
Depth sensing: gummy bear

https://imaging.cs.cmu.edu/sunlight_interferometry
Seeing through scattering with sunlight

https://imaging.cs.cmu.edu/sunlight_interferometry
Indoor passive interferometry

scene

transient response

depth

https://imaging.cs.cmu.edu/sunlight_interferometry
Passive Micron-scale Time-of-Flight with Sunlight Interferometry

more details: https://imaging.cs.cmu.edu/sunlight_interferometry

many thanks to our sponsors:

https://seebelowtheskin.org