Research Article
Upregulation of Centromere Proteins as Potential Biomarkers for Esophageal Squamous Cell Carcinoma Diagnosis and Prognosis

Xiao Wang (1), Minshan Lai (2,3), Yue Wang (2), Ruihuan Chai (2), Nan Li (2), Ling Ou (1), Kai Zheng (2), Jieling Li (2), Guifeng Xu (2), Shaoqi Wang (4), Yun Dong (2), and Shaoxiang Wang (2)

1Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
2School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
3Polytechnic Institute, Zhejiang University, Hangzhou, China
4Department of Oncology, Hubei Provincial Corps Hospital, Chinese People Armed Police Forces, Wuhan, China

Correspondence should be addressed to Yun Dong; yundong@szu.edu.cn and Shaoxiang Wang; wsx@szu.edu.cn

Received 2 January 2022; Accepted 28 March 2022; Published 20 April 2022

Copyright © 2022 Xiao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Esophageal squamous cell carcinoma (ESCC) has a high incidence and low survival rate, necessitating the identification of novel specific biomarkers. Centromere-associated proteins (CENPs) have been reported to be biomarkers for many cancers, but their roles in ESCC have seldom been investigated. Here, the potential clinical roles of CENPs in ESCC patients were demonstrated by a systematic bioinformatics analysis. Most CENP-encoding genes were differentially expressed between tumor and normal tissues. CENPA, CENPE, CENPF, CENPI, CENPM, CENPN, CENPQ, and CENPQ were upregulated universally in the three datasets. Survival analysis demonstrated that high expression of CENPE and CENPQ was positively correlated with the outcomes of ESCC patients. The CENPE-based forecast model was more accurate than the tumor-node-metastasis (TNM) staging-based model, which was classified as stage I/II vs. III/IV. More importantly, the forecast model based on the commonly upregulated CENPs exhibited a much higher area under the curve (AUC) value (0.855) than the currently known TTL, ZNF750, AC016205.1, and BOLA3 biomarkers. The nomogram model integrating the CENPs, TNM stage, and sex was highly accurate in the prognosis of ESCC patients (AUC = 0.906). Besides, gene set enrichment analysis (GSEA) demonstrated that CENPE expression is significantly correlated with cell cycle, G2/M checkpoint, mitotic spindle, p53, etc. Finally, in validation experiments, we also found that CENPE and CENPQ were significantly overexpressed in esophageal cancer cells. Taken together, these results clearly suggest that CENPs are clinically promising diagnostic and prognostic biomarkers for ESCC patients.

1. Introduction

Esophageal cancer ranks seventh globally in terms of incidence and sixth in overall mortality [1]. Esophageal cancer is classified into two main subtypes: esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). In parts of Asia and sub-Saharan Africa, nearly 90% of esophageal cancer cases are ESCC [2], suggesting that ESCC is the dominant subtype. Although a variety of diagnostic methods and multiple therapies for ESCC patients have proven to be effective, the 5-year overall survival (OS) rate is still <20% [2]. Several studies have suggested that long noncoding RNA (lncRNA), microRNA- (miR-) 375, and miR-483-5p might serve as potential biomarkers for ESCC [3–5]. However, the outcomes of ESCC patients are still not ideal. The identification of novel diagnostic and prognostic biomarkers for ESCC is urgently needed to improve the outcomes of ESCC patients.

Centromere-associated proteins (CENPs) are a group of proteins involved in kinetochore formation. CENPs contain
18 inner kinetochore-located proteins (CENPA, B, C, H, I, K, L, M, N, O, P, Q, R, S, T, U, W, and X) and two fibrous corona-located proteins (CENPE and CENPF) [6]. Malfunctions of kinetochore can cause aneuploidy [7], a well-known hallmark of human cancers. This has prompted the reasonable hypothesis that CENPs play critical roles in tumorigenesis. Indeed, many researchers have confirmed that the dysregulation of CENPs is significantly associated with cancer prognosis and may serve as a biomarker for non-small-cell lung cancer and breast cancer [8, 9]. Only two specific CENPs, CENPE and CENPF, have been reported to be possible prognostic biomarkers for ESCC [10, 11]. The other CENPs need to be further investigated. The focus of this paper is to find a more accurate model for ESCC than previously reported, such as ZNF750, TTL, AC016205.1, and BOLA3 [12, 13].

The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) databases have provided a lot of information about gene expression profiles and clinical data related to cancer patients. Bioinformatics analysis provides a number of strategies for cancer prevention and treatment [14]. Herein, we conducted a comprehensive analysis of the expression of overlapping DEGs from the three datasets. The effects of the expression of overlapping DEGs from the three datasets on the survival of ESCC patients were determined in a survival analysis. Based on the expression of overlapping DEGs, forecast models were established to forecast the survival of patients with ESCC. Furthermore, we explored the underlying mechanisms using gene set enrichment analysis (GSEA) and coexpression network analysis (WGCNA). Our results suggest that CENPs are promising diagnostic and prognostic biomarkers for ESCC.

2. Materials and Methods

2.1. Patient Profiles. Profiles of ESCC patients were downloaded from TCGA (https://portal.gdc.cancer.gov/) and the GSE38129 and GSE20347 datasets from GEO (https://www.ncbi.nlm.nih.gov/geo/). In TCGA, the clinical information data of ESCC and EAC were downloaded together. The samples with incomplete information were removed, leaving 95 ESCC patient cases. In addition, there were 30 cases in GSE38129 and 17 cases in the GSE20347 dataset. Relationships between the clinicopathological characteristics and the OS of ESCC patients were determined using univariate analysis using SPSS software (version 23.0).

2.2. Analysis of Expression Difference. The gene expression profiles of CENPs were extracted from the three datasets. In TCGA, some of the 95 clinical samples lacked gene expression, and 81 tumor samples and 11 normal samples were left after selection. In GSE38129, there were 30 normal and 30 tumor samples. In GSE38129, there were 17 normal and 17 tumor samples. Differences in CENP expression between normal and tumor samples were analyzed by calculating log2 fold change (logFC), false discovery rate (FDR), and P values using edgeR and limma packages in R 3.5.1 software for TCGA and GEO data, respectively [15, 16]. Genes with FDR < 0.05, and P < 0.05 were identified as DEGs. Heatmaps, Venn diagrams, and boxplots were plotted using R.

2.3. Survival Analysis. According to the gene expression level, DEGs in tumor samples were divided into low and high expression groups. Gene expression levels were ranked from high to low levels, with the top 50% as the high expression group and the bottom 50% as the low expression group. OS curves were plotted using R software based on the Kaplan–Meier method [17]. Statistical significance was set at P < 0.05.

2.4. Establishment of the Forecast Model. The risk scores of each patient were calculated as the sum of the expression levels of each gene multiplied by its corresponding coefficient using multivariate Cox regression analysis in R software [18]. Based on the risk scores and survival analysis data, time-dependent receiver operating characteristic (ROC) curves were plotted using the “survivalROC,” “timeROC,” and “bootstrap” package of R software. Package “survival” was used for multivariate risk regression analysis through Cox proportional hazards model. Sensitivity was the ordinate for true positive rate, and I-specific was the abscissa for false-negative rate. A nomogram for individual forecast was generated based on the risk score of the multigene model and clinical risk factors using R software [19].

2.5. Analysis of the Mechanism. In GSEA, expression profiles of tumor samples were divided into CENPE-low and CENPE-high groups, as defined by the median expression value of CENPE. Hallmark gene sets, Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets, and oncogenic signature gene sets were used as references. Enriched gene sets were identified using GSEA-3.0.jar (http://software.broadinstitute.org/gsea/downloads.jsp). Gene sets with FDR < 0.25 and P < 0.05 were considered statistically significant [20]. WGCNA was conducted to identify genes coexpressed with CENPs [21]. The visualized network was plotted using Cytoscape 3.6.1. Correlation analysis was performed using Pearson’s correlation analysis with R software.

2.6. Validation of Cell Lines. The cell lines, including KYSE 30, 410, 450, 510, 520, and HDF (human dermal fibroblasts), were purchased from the Shanghai Cell Bank of the Chinese Academy of Sciences (Shanghai, China). The cells were cultured in RPMI 1640 medium (Gibco Life Sciences, USA) supplemented with 10% fetal bovine serum (Gibco Life Sciences), 100 U/mL penicillin (Gibco; Thermo Fisher Scientific, Inc., USA), and 100 μg/mL streptomycin (Gibco; Thermo Fisher Scientific, Inc.) and were incubated at 37°C in a humidified incubator containing 5% CO2. In quantitative real-time PCR analysis, total RNA was extracted using the RNeasy® Mini Kit (Qiagen, USA). RT-qPCR was performed using SYBR Premix Ex Taq II (TaKaRa BIO, Japan) in a LightCycler® Real-Time PCR System (Roche, Switzerland). The thermocycling conditions included reverse
transcription at 50°C for 10 min and initial denaturation at 95°C for 3 min, followed by 40 cycles of denaturation at 95°C for 15 s, annealing, and extension at 60°C for 30 s. The data were calculated using the 2 –ΔΔCt method. The forward and reverse primers for CENPE were 5′-AGGAGAAGAATCACTTG-3′ and 5′-CAGCAGAGAAGAATCACTTG-3′ and for CENPC were 5′-CAATACGCTCTCAACATTTCCTTG-3′ and 5′-GTGCTGTTATGTG-3′. Histograms were drawn using the GraphPad Prism 8 software. Statistical significance was set at \(P < 0.05 \).

3. Results

3.1. Clinical Characteristics of ESCC Patients in TCGA. This study explored the effect of CENPs on ESCC (Figure S1). The relationship between the clinical characteristics and OS of ESCC patients in TCGA was clarified by performing univariate Cox regression analysis. Due to the lack of survival data, the GSE23964 dataset (two normal esophageal epithelial cell lines and 14 ESCC cell lines) was extracted from the GSE23964 dataset. Among these DEGs, CENPA, CENPE, CENPF, CENPI, CENPM, CENPN, CENPQ, and CENPR overlapped in all three datasets (Figure 1(d)). The expression of the selected CENPs in each dataset is shown in boxplots (Figures 1(a)–1(g)), which clearly demonstrated a significantly higher expression profile in tumors than in normal tissues. The correlations among CENPs are shown in Figure S2. The collective findings revealed that a variety of CENPs might be promising diagnostic biomarkers for ESCC.

3.3. Correlation between Expression of CENPs and Survival of ESCC Patients. The Kaplan–Meier OS curves were plotted to determine the prognostic value of the overlap of DEGs in ESCC patients. As shown in Figure 2(a), high expression levels of CENPE and CENPQ were significantly correlated with better outcomes in ESCC patients (\(P = 0.015 \) and \(P = 0.038 \), respectively). Although the other commonly upregulated CENP-encoding genes in three datasets (CENPA, CENPF, CENPI, CENPM, CENPN, and CENPR) did not display statistically significant survival differences between the lower- and higher-expressed groups (\(P > 0.05 \); Figure 2(a)), they exhibited a similar trend with CENPE and CENPQ, where high expression was associated with better survival. Therefore, CENPE and CENPQ may serve as potential prognostic biomarkers for patients with ESCC.

Since the N stage, sex, and TNM stage exhibited notable relationships with OS of ESCC patients in the univariate Cox regression analysis (Table 1), the Kaplan–Meier OS curves were also drawn for the three clinical characteristics. The results further demonstrated that N stage, sex, and TNM

Characteristics	Total n = 95n (%)	HR (95% CI)	\(P \)		
Sex	Female vs. male	15 (15.8%) vs. 80 (84.2%)	0.175 (0.041-0.756)	0.020*	
Race	White+other vs. Asian	47 (49.5%) vs. 45 (47.4%)	3 (3.2%)	1.570 (0.688-3.581)	0.284
Age	≥60 vs. <60	39 (41.1%) vs. 56 (58.9%)	1.296 (0.631-2.662)	0.461	
T stage	T3+T4 vs. T1+T2	54 (56.8%) vs. 40 (42.1%)	1 (1.1%)	1.351 (0.649-2.811)	0.422
N stage	N2+N3 vs. N0+N1	9 (9.5%) vs. 84 (88.4%)	2 (2.1%)	3.265 (1.302-8.189)	0.012*
TNM stage	III+IV vs. I+II	31 (32.6%) vs. 63 (66.3%)	2 (2.1%)	2.443 (1.1915-011)	0.015*
Tumor grade	G3 vs. G1+G2	21 (22.1%) vs. 65 (68.4%)	9 (9.5%)	0.736 (0.277-1.950)	0.537
Tumor location	Lower vs. upper+middle	44 (46.3%) vs. 50 (52.6%)	1 (1.1%)	0.958 (0.448-2.051)	0.913
Tobacco use	Yes vs. no	51 (53.7%) vs. 44 (46.3%)	1 (1.1%)	1.965 (0.901-4.285)	0.089
Alcohol use	Yes vs. no	68 (71.6%) vs. 25 (26.3%)	2 (2.1%)	2.172 (0.751-6.276)	0.152

HR: hazard ratio; CI: confidence interval; TNM: tumor-node-metastasis; * \(P < 0.05 \)
Figure 1: Continued.
Figure 1: Continued.
Figure 1: Continued.
stage were tightly correlated with the OS of patients with ESCC ($P = 0.006, 0.009,$ and 0.010, respectively; Figure 2(b)).

3.4. Prognostic Accuracies of CENPE, CENPQ, and the Other CENPs in ESCC Patients. ROC analysis is a widely applied method to evaluate the prognostic performance of patients using the area under the curve (AUC) as an index [22]. The forecast model is significant only when its AUC value exceeds 0.60 [23–25]. By selecting those universally upregulated CENP-encoding genes, we established more focused forecast models to forecast OS. A single gene CENPE-based forecast model was more accurate than the TNM staging forecast model classified as stage I/II vs. III/IV in forecasting the OS of patients with ESCC (0.657 vs. 0.625, respectively; Figures 3(a) and 3(b)). However, the single gene forecast model of CENPQ did not show a superior value (AUC = 0.5). To assess the joint effect of these overlapping DEGs on patient survival, a multigene forecast model was established. Using the R package [18], the risk scores of patients were calculated according to the following formulas:

$$\text{Risk score} = (-0.020 \times \text{CENPA}_\text{Exp}) + (-0.966 \times \text{CENPE}_\text{Exp}) + (0.222 \times \text{CENPF}_\text{Exp}) + (0.899 \times \text{CENPI}_\text{Exp}) + (-0.520 \times \text{CENPM}_\text{Exp}) + (0.480 \times \text{CENPN}_\text{Exp}) + (-0.609 \times \text{CENPQ}_\text{Exp}) + (-0.402 \times \text{CENPR}_\text{Exp}).$$

The AUC value (0.8550) of such a multigene forecast model was satisfactory (Figure 3(c)) and was much higher than that of TNM staging, implying that the forecast model has high specificity and sensitivity for ESCC survival forecast. According to the median risk score, patients were divided into low-risk and high-risk groups. The corresponding survival curve demonstrated that low-risk patients had a higher survival rate than the high-risk group ($P = 0.014$; Figure 3(c)).

A nomogram is a reliable tool for the prognosis of cancer patients by incorporating and illustrating important factors for oncologic prognosis [26]. Based on the aforementioned results of the strong association of TNM stage and sex were tightly associated with patients with ESCC OS (Table 1 and Figure 2(b)), we further constructed a nomogram integrating CENP-based risk score and the two clinicopathological risk factors (TNM stage and sex). The N stage was excluded from the nomogram because it was included in the TNM stage. As shown in the nomogram, the CENP-based risk score contributed the most to forecast patients’ OS, followed by sex and TNM stage (Figure 3(d)). The ROC curve showed that the true positive rate of our nomogram integrating CENP-based risk score, TNM stage, and sex could reach 90.6% (Figure 3(e)), implying the extremely high accuracy of the nomogram in forecasting individual OS of ESCC patients. In addition, to clarify whether our forecast models were superior in forecasting the survival of ESCC patients, compared with previously published biomarkers, we also performed ROC analysis of other known biomarkers, including ZNF750, TTL, AC016205.1, and BOLA3 [12, 13]. The results demonstrated that our CENP-based forecast model, CENP-based forecast model, and integrated nomogram all had higher AUC values than the four other known biomarkers (AUC values for TTL, ZNF750, AC016205.1, and BOLA3 of 0.652, 0.643, 0.623, and 0.613, respectively; Figures 3(e) and 3(f)). Collectively, our forecast models based on CENPE, CENPs, and integrating CENP-based risk score, TNM stage, and sex are promising in the prognosis of ESCC patients.

3.5. Identification of the Potential Mechanism of CENPE in ESCC Progression. To investigate the underlying mechanism of CENPE in ESCC progression, we performed GSEA and WGCNA. GSEA is a computational method to explore whether a specific gene set is markedly enriched in a group of gene markers ranked by their relationship to a phenotype of interest [20, 27]. In the experiment, the expression profiles of tumor samples were divided into CENPE-low and CENPE-high groups and then analyzed based on hallmark gene sets, KEGG gene sets, and oncogenic signature gene sets. Several cancer-related gene sets, including G2/M checkpoint, mitotic spindle, cell cycle, E2F targets, VEGF, RB/p107, EGFR, ERB2, and p53, were significantly enriched in the high CENPE expression group (FDR < 0.25 and $P < 0.05$; Figure 4). To further explore the molecular
mechanism, we performed WGCNA and correlation analyses. In WGCNA, genes coexpressed with CENPs with correlation coefficients > 0.5 were selected and demonstrated in the visualized network (Figure 5). Some of the coexpressed genes that were highly related to CENPE and/or tumorigeneses, such as TOP2A, NDC80, BRCA1, CENPF, BARD1, TTK, BRCA2, and BUB1B, were further selected to plot correlation maps (Figure S3(a)). The results of differential expression analysis showed that BRCA1, BUB1B, and TTK were significantly upregulated in ESCC tissues based on the TCGA, GSE38129, and GSE20347 datasets, at the same time notable overexpressed in ESCC cell lines based on the GSE23964 dataset (FDR < 0.05 and P < 0.05; Figures S3(b)–S3(e)).

3.6. Target Validation in Human Cell Lines. To validate the mRNA expression differences of CENPE and CENPQ at the cell line level, RT-qPCR was done, and expression difference analysis was performed using expression profiles extracted from the GSE23964 dataset. Analysis results based on the GSE23964 dataset showed that CENPE was overexpressed by microarray assay in ESCC cell lines (logFC = 1.86, P < 0.001; Figures 6(a) and 6(b)). There were no CENPQ expression data in the GSE23964 dataset. In RT-qPCR analysis, since normal esophageal epithelial cell lines were very difficult to obtain, human dermal fibroblasts (HDF) were chosen as the ESCC control cell line with reference to other published articles [28, 29]. RT-qPCR analysis results demonstrated that both CENPE and CENPQ were significantly upregulated in the five ESCC cell lines compared to the normal cell line (P < 0.05; Figures 6(c) and 6(d)). Overall, these results validated that CENPE and CENPQ were upregulated in ESCC cell lines compared to the normal ones, consistent with their expression difference at the tissue level in TCGA and GEO databases.
Figure 3: Continued.
4. Discussion

Tumor markers of esophageal cancer may have pivotal roles in evaluating tumor response to therapy [30], which could be exploited to develop early diagnostic biomarkers. Averrariant expression of CENPs has reportedly been related to several human cancers. For instance, in non-small-cell lung cancer, CENPU expression promotes cancer cell proliferation and forecasts poor survival [8]. In breast cancer, elevated expression of CENPA is associated with cancer malignant progression and is a prognostic biomarker [9]. However, the potential role of CENPs in ESCC has seldom been investigated. Herein, we systematically clarified the potential clinical functions of CENPs in ESCC patients using bioinformatics methods based on multiple datasets.

Most CENP-encoding genes, including CENPA, CENPE, CENPF, CENPI, CENPM, CENPN, CENPQ, and CENPR, were upregulated in ESCC patients in the TCGA, GSE38129, and GSE20347 datasets. Consistently, a previous study demonstrated the overexpression of CENPF in ESCC cell lines at both the mRNA and protein levels when compared to normal tissue [11]. CENPE was also upregulated in ESCC based on the TCGA dataset in a recent study [10]. However, the previous study only analyzed a single gene using a single dataset to draw the conclusion. In contrast, we obtained our results for all CENP-encoding genes based on three datasets, making it more convincing. Except for CENPE and CENPF, to the best of our knowledge, the overexpression of the other six CENPs in ESCC is described for the first time. Additionally, CENPH was overexpressed in ESCC samples compared to normal samples based on the TCGA dataset. Interestingly, CENPH is overexpressed and is prognostic in esophageal carcinoma [31].

In survival analysis, high expression of CENPE and CENPQ was significantly associated with better outcomes in ESCC patients. Similarly, some genes with high expression in pathological tissues will act against certain aberrations of pathological cells. Previous research has shown that the downregulation of CENPE causes an increase in aneuploidy, which in turn triggers an elevated level of spontaneous lymphomas and lung tumors in aged animals [32], implying that CENPE acts as a tumor suppressor. In a recent study, high expression of CENPE was closely correlated with better survival in ESCC patients but with unfavorable outcomes in EAC patients [10]. These findings indicate that CENPE might play crucial and complicated roles in the survival of cancer patients. Importantly, in the current study, CENPQ was first reported to act as a prognostic biomarker for ESCC patients. We speculate that although CENPE is highly expressed in tumor tissues, it has a good effect on survival, which may be a protective factor for ESCC. Thus, CENPE and CENPQ could serve as potential prognostic biomarkers for ESCC patients.

Since there are various factors that affect gene expression, a single gene is usually difficult to be an ideal factor to forecast. Indeed, the single gene CENPE-based model was capable of forecasting the OS of ESCC patients, while CENPQ was not. Therefore, a multigene forecast model
based on the expression of CENPs was established. Satisfactorily, the multigene model exhibited an especially higher AUC value than that of TNM staging classified as stage I/II vs. III/IV, with an accuracy of 85.5% (AUC = 0.855). The stage I/II vs. III/IV based TNM staging system is a recognized benchmark for classifying the degree of spread of cancer and is a principal prognostic factor in forecasting the consequences of patients with cancer [33]. In this study, TNM staging was combined with the CENP-based risk score to construct a new nomogram-based forecast model. Surprisingly, the AUC value of the integrated nomogram reached 0.906, implying the high accuracy of our nomogram in the estimation of the individual OS of ESCC patients. Interestingly, the CENP-based risk score was the most important factor for OS in the nomogram to forecast, suggesting that CENPs are important in the prognosis of ESCC patients.

GSEA results demonstrated that cell cycle, G2/M checkpoint, mitotic spindle, RB/p107, p53, E2F targets, VEGF, ERB2, and EGFR were significantly related to CENPE expression. CENPE is a kinesin-like microtubule motor protein that accumulates maximally in the G2 phase [34]. It plays a crucial role in the cell cycle by forming a link between the attachment of spindle microtubules to kinetochores and the mitotic checkpoint [35]. High gene expression of CENPE is positively correlated with the tumor suppressor pathway. The G2/M

Figure 4: Significantly enriched gene sets in GSEA. The number of samples in GSEA was 81. NES: normalized enrichment score.

Figure 5: The coexpressed network of CENPs and their coexpressed genes. The blue circles represented the coexpressed genes. The red circles represented CENPs, of which the bigger ones represented the overlapped DEGs and the biggest one represented CENPE. The number of samples in WGCNA was 81.
checkpoint pathway can prevent the cell from entering mitosis (M phase). Hence, high CENPE expression inhibits cell division, which leads to a better prognosis in cancer patients. CENPE is regulated by E2F transcription factor 4. This regulation is important in maintaining G2-arrest and is regulated by p130/p107/Rb signaling [36]. Moreover, we found that CENPE was positively related to genes including TOP2A, NDC80, BRCA1, CENPF, BARD1, TTK, BRCA2, and BUB1B/BUBR1 by correlation analysis. CENPE, CENPF, TTK, and BUB1B are all mitotic spindle assembly checkpoint-related genes. The depletion of CENPE and CENPF has been related to the significant disruption of the cell cycle and paclitaxel resistance in ovarian cancer [37]. In addition, CENPE and TOP2A are upregulated in a number of solid cancers and are involved in mitotic cell cycle nodes in breast cancer [38]. Additionally, CENPE, TOP2A, CENPF, TTK, and NDC80 are highly expressed in the cell cycle of basal-like breast cancer [39]. Therefore, our findings indicate that CENPE affects ESCC progression, possibly by regulating cell cycle-related pathways.

In conclusion, CENPs, especially CENPA, CENPE, CENPF, CENPI, CENPM, CENPN, CENPQ, and CENPR, could serve as promising diagnostic biomarkers for ESCC. CENPE and CENPQ may be potential prognostic biomarkers for patients with ESCC. In addition, the CENPE-based model, CENP-based model, and nomogram integrating CENP-based risk score, TNM stage, and sex are especially promising in forecasting OS of ESCC patients. Mechanistically, CENPE may affect the progression of ESCC by regulating cell cycle-related pathways by interacting with TOP2A, NDC80, and BRCA1. Further studies are required to confirm their detailed roles by performing cell and animal experiments.

Data Availability

The datasets analysed during the current study are available in The Cancer Gene Atlas (https://portal.gdc.cancer.gov/) and Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).
Confl icts of Interest
The authors declare that they have no competing interests.

Authors’ Contributions
Xiao Wang, Minshan Lai, and Yue Wang authors contributed equally to this work.

Acknowledgments
This research was funded by the National Natural Science Foundation of China (82073937), Natural Science Foundation of Guangdong Province (2018A030313122), Shenzhen Science and Technology Project (JCYJ20210324093602007, GJHZ20200731095200003, JCYJ2018030516358916, and JCYJ20180228175057944), and Shenzhen Key Medical Discipline Construction Fund (SZXK059) and Shenzhen Key Laboratory of Prevention and Treatment of Severe Infections (ZDSYS20200811142804014).

Supplementary Materials
Figure S1: the flow chart of the study. From left to right, the leftmost row is all the original data, the contents in the dotted grid are the methods, then the right is the experimental results, and the rightmost row is the general name of the steps. Figure S2: Pearson’s correlations among CENPs. Green color represented negative correlations and red color represented positive correlations. The deeper color indicated the higher correlations. Figure S3: (a) Pearson’s correlations between CENPE and its coexpressed genes, including TOP2A, NDC80, BRCA1, CENPF, BARD1, TTK, BRCA2, between CENPE and its coexpressed genes, including.

References
[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394–424, 2018.
[2] D. C. Codipilly, Y. Qin, S. M. Dawsey et al., “Screening for esophageal squamous cell carcinoma: recent advances,” Gastrointestinal Endoscopy, vol. 88, no. 3, pp. 413–426, 2018.
[3] H. S. Luo and D. H. Wu, “Identification of miR-375 as a potential prognostic biomarker for esophageal squamous cell cancer: A bioinformatics analysis based on TCGA and meta- analysis,” Pathology, Research and Practice, vol. 215, no. 3, pp. 512–518, 2019.
[4] Y. Mao, Z. Fu, Y. Zhang et al., “A seven-lncRNA signature predicts overall survival in esophageal squamous cell carcinoma,” Scientific Reports, vol. 8, no. 1, p. 8823, 2018.
[5] L. Xue, J. Nan, L. Dong et al., “Upregulated miR-483-5p expression as a prognostic biomarker for esophageal squamous cell carcinoma,” Cancer Biomarkers, vol. 19, no. 2, pp. 193–197, 2017.
[6] M. Perpelescu and T. Fukagawa, “The ABCs of CENPs,” Chromosoma, vol. 120, no. 5, pp. 425–446, 2011.
[7] D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nature Reviews. Genetics, vol. 13, no. 3, pp. 189–203, 2012.
[8] X. Wang, D. Chen, J. Gao et al., “Centromere protein U expression promotes non-small-cell lung cancer cell proliferation through FOXM1 and predicts poor survival,” Cancer Management and Research, vol. 10, pp. 6971–6984, 2018.
[9] X. Sun, P. L. Clermont, W. Jiao et al., “Elevated expression of the centromere protein-a(CENP-A)-encoding gene as a prognostic and predictive biomarker in human cancers,” International Journal of Cancer, vol. 139, no. 4, pp. 899–907, 2016.
[10] X. Q. Zhu, X. Luo, G. Feng et al., “CENPE expression is associated with its DNA methylation status in esophageal adenocarcinoma and independently predicts unfavorable overall survival,” PLoS One, vol. 14, no. 2, 2019.
[11] Y. J. Mi, J. Gao, J. D. Xie et al., “Prognostic relevance and therapeutic implications of centromere protein F expression in patients with esophageal squamous cell carcinoma,” Diseases of the Esophagus, vol. 26, no. 6, pp. 636–643, 2013.
[12] S. Nambara, T. Masuda, T. Tobo et al., “Clinical significance of ZNF750 gene expression, a novel tumor suppressor gene, in esophageal squamous cell carcinoma,” Oncology Letters, vol. 14, no. 2, pp. 1795–1801, 2017.
[13] M. Shao, W. Li, S. Wang, and Z. Liu, “Identification of key genes and pathways associated with esophageal squamous cell carcinoma development based on weighted gene correlation network analysis,” Journal of Cancer, vol. 11, no. 6, pp. 1393–1402, 2020.
[14] Z. Zhang, S. Wang, and W. Liu, “EMT-related long non-coding RNA in hepatocellular carcinoma: a study with TCGA database,” Biochemical and Biophysical Research Communications, vol. 503, no. 3, pp. 1530–1536, 2018.
[15] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data,” Bioinformatics, vol. 26, no. 1, pp. 139–140, 2010.
[16] G. K. Smyth, “limma: linear models for microarray data,” in Bioinformatics & Computational Biology Solutions Using R & Bioconductor, pp. 397–420, Springer, New York, NY, 2011.
[17] B. Efron, “Logistic regression, survival analysis, and the Kaplan–Meier curve,” Journal of the American Statistical Association, vol. 83, no. 402, pp. 414–425, 1988.
[18] Z. Wang, Q. Song, Z. Yang, J. Chen, J. Shang, and W. Ju, “Construction of immune-related risk signature for renal papillary cell carcinoma,” Cancer Medicine, vol. 8, no. 1, pp. 289–304, 2019.
[19] A. Iasonos, D. Schrag, G. V. Raj, and K. S. Panagapas, “How to build and interpret a nomogram for cancer prognosis,” Journal of Clinical Oncology, vol. 26, no. 8, pp. 1364–1370, 2008.
[20] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15545–15550, 2005.
[21] P. Langfelder and S. Horvath, “WGCNA: an R package for weighted correlation network analysis,” BMC Bioinformatics, vol. 9, no. 1, p. 559, 2008.

[22] R. H. El Khouli, K. J. Macura, P. B. Barker, M. R. Habba, M. A. Jacobs, and D. A. Bluemke, “Relationship of temporal resolution to diagnostic performance for dynamic contrast enhanced MRI of the breast,” Journal of Magnetic Resonance Imaging, vol. 30, no. 5, pp. 999–1004, 2009.

[23] C. E. Metz, “Basic principles of ROC analysis,” Seminars in Nuclear Medicine, vol. 8, no. 4, pp. 283–298, 1978.

[24] N. A. Obuchowski, “Receiver operating characteristic curves and their use in radiology,” Radiology, vol. 229, no. 1, pp. 3–8, 2003.

[25] L. Ludemann, W. Grieger, R. Wurm, P. Wust, and C. Zimmer, “Glioma assessment using quantitative blood volume maps generated by T1-weighted dynamic contrast-enhanced magnetic resonance imaging: a receiver operating characteristic study,” Acta Radiologica, vol. 47, no. 3, pp. 303–310, 2006.

[26] W. Liang, L. Zhang, G. Liang et al., “Development and validation of a nomogram for predicting survival in patients with resected non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 33, no. 8, pp. 861–869, 2015.

[27] V. K. Mootha, C. M. Lindgren, K. F. Eriksson et al., “PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes,” Nature Genetics, vol. 34, no. 3, pp. 267–273, 2003.

[28] Z. Engelbrecht, K. Potgieter, Z. Mpela, R. Malgas-Enus, R. Meijboom, and M. J. Cronje, “A comparison of the toxicity of mono, Bis, Tris and tetrakis phosphino silver complexes on SNO esophageal cancer cells,” Anti-Cancer Agents in Medicinal Chemistry, vol. 18, no. 3, pp. 394–400, 2018.

[29] Z. Engelbrecht, R. Meijboom, and M. J. Cronje, “The ability of silver(I) thiocyanate 4-methoxyphenyl phosphine to induce apoptotic cell death in esophageal cancer cells is correlated to mitochondrial perturbations,” Biometals, vol. 31, no. 2, pp. 189–202, 2018.

[30] K. J. Napier, M. Scheerer, and S. Misra, “Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities,” World Journal of Gastrointestinal Oncology, vol. 6, no. 5, pp. 112–120, 2014.

[31] X. Z. Guo, G. Zhang, J. Y. Wang et al., “Prognostic relevance of centromere protein H expression in esophageal carcinoma,” BMC Cancer, vol. 8, no. 1, 2008.

[32] B. A. Weaver, A. D. Silk, C. Montagna, P. Verdier-Pinard, and D. W. Cleveland, “Aneuploidy acts both oncogenically and as a tumor suppressor,” Cancer Cell, vol. 11, no. 1, pp. 25–36, 2007.

[33] X. B. D’Journo, “Clinical implication of the innovations of the 8th edition of the TNM classification for esophageal and esophago-gastric cancer,” Journal of Thoracic Disease, vol. 10, Suppl 22, pp. S2671–S2681, 2018.

[34] K. D. Brown, R. M. Coulson, T. J. Yen, and D. W. Cleveland, “Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis,” The Journal of Cell Biology, vol. 125, no. 6, pp. 1303–1312, 1994.

[35] X. B. Yao, A. Abrieu, Y. Zheng, K. F. Sullivan, and D. W. Cleveland, “CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint,” Nature Cell Biology, vol. 2, no. 8, pp. 484–491, 2000.

[36] D. Plesca, M. E. Crosby, D. Gupta, and A. Almasan, “E2F4 function in G2: maintaining G2-arrest to prevent mitotic entry with damaged DNA,” Cell Cycle, vol. 6, no. 10, pp. 1147–1152, 2007.

[37] T. Chong, A. Sarac, C. Q. Yao et al., “Deregulation of the spindle assembly checkpoint is associated with paclitaxel resistance in ovarian cancer,” Journal of Ovarian Research, vol. 11, no. 1, p. 27, 2018.

[38] E. Hitti, T. Bakheet, N. al-Souhibani et al., “Systematic analysis of AU-rich element expression in cancer reveals common functional clusters regulated by key RNA-binding proteins,” Cancer Research, vol. 76, no. 14, pp. 4068–4080, 2016.

[39] K. Yang, J. Gao, and M. Luo, “Identification of key pathways and hub genes in basal-like breast cancer using bioinformatics analysis,” Oncotargets and Therapy, vol. 12, pp. 1319–1331, 2019.