Carbon-Free Energetic Materials: Computational Study on Nitro-substituted BN-cage Molecules with High Heat of Detonation and Stability

Xin Zeng, Nan Li*, Qingjie Jiao*

State key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

E-mail addresses: leen04@bit.edu.cn, leen04@163.com (Nan Li)

jqji@bit.edu.cn, jqbit@126.com (Qingjie Jiao)

Table S1 The calculated densities for some compounds at the M06-2X/6-311++G** level with their experimental data

Figure S1 The color-filled map and curve map of ELF for B-N bond paths of the designed BN-cage at the M06-2X levels of theory

Figure S2 Optimized geometries (bond lengths in Å) at the M06-2X level for the mononitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol⁻¹) at M06-2X level are indicated in parentheses

Table S2 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the mononitro-substituted BN-cage compounds and their isomers at the M06-2X, and B3LYP level.

Figure S3 The color-filled map and curve map of ELF for B3-N7 bond path of NO₂⁻1-3 at the M06-2X levels of theory

Figure S4 Optimized geometries (bond lengths in Å) at the M06-2X level for the dinitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol⁻¹) at M06-2X level are indicated in parentheses

Table S3 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the dinitro-substituted BN-cage compounds and their isomers at the M06-2X, oB97XD and B3LYP level.

Figure S5 Optimized geometries (bond lengths in Å) at the M06-2X level for the trinitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol⁻¹) at M06-2X level are indicated in parentheses

Table S4 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the trinitro-substituted BN-cage compounds and their isomers at the M06-2X, oB97XD and B3LYP level.

Figure S6 Optimized geometries (bond lengths in Å) at the M06-2X level for the tetrinitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol⁻¹) at M06-2X level are indicated in parentheses
Figure S7 The color-filled map and curve map of ELF for B3-N7 bond path of NO$_2$-4-2 at the M06-2X levels of theory

Figure S8 The color-filled map and curve map of ELF for B3-N7 bond path of NO$_2$-4-3 at the M06-2X levels of theory

Table S5 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the tetrinitro-substituted BN-cage compounds and their isomers at the M06-2X, ωB97XD and B3LYP level.

Figure S9 Optimized geometries (bond lengths in Å) at the M06-2X level for the pentanitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol$^{-1}$) at M06-2X level are indicated in parentheses

Table S6 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the pentanitro-substituted BN-cage compounds and their isomers at the M06-2X, ωB97XD and B3LYP level.

Figure S10 The color-filled map and curve map of ELF for B3-N7 bond path of NO$_2$-5-1 at the M06-2X levels of theory

Figure S11 Optimized geometries (bond lengths in Å) at the M06-2X level for the hexanitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol$^{-1}$) at M06-2X level are indicated in parentheses

Table S7 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the hexanitro-substituted BN-cage compounds and their isomers at the M06-2X, ωB97XD and B3LYP level.

Table S8 Total energies (E), zero point energies (ZPE), thermal correction values (H$_T$), heat of formation (kJ/mol), molecular surface properties (As, v6tot2), enthalpy of sublimation (ΔH$_{sub}$) and solid phase enthalpy of formation (ΔH$_o(s)$) of the NO$_2$-substituted BN-cage compounds at the M06-2X /6-311++G** level.

Table S9 Total energies (E), zero point energies (ZPE), thermal correction values (H$_T$), heat of formation (kJ/mol), molecular surface properties (As, v6tot2), enthalpy of sublimation (ΔH$_{sub}$) and solid phase enthalpy of formation (ΔH$_o(s)$) of the NO$_2$-substituted BN-cage compounds at the ωB97XD/6-311++G** level.

Table S10 Total energies (E), zero point energies (ZPE), thermal correction values (H$_T$), heat of formation (kJ/mol), molecular surface properties (As, v6tot2), enthalpy of sublimation (ΔH$_{sub}$) and solid phase enthalpy of formation (ΔH$_o(s)$) of the NO$_2$-substituted BN-cage compounds at the B3LYP/6-311++G** level.
Table S1 The calculated densities for some compounds at the M06-2X/6-311++G** level with their experimental data

compounds	Experiment (g/cm^3)	Calculated (g/cm^3)
TNT	1.654	1.647
RDX	1.816	1.800
HMX	1.902	1.877
PETN	1.732	1.656
CL-20	2.040	1.954
Figure S1 The color-filled maps and curve maps of ELF for B-N bond paths of the designed BN-cage at the M06-2X levels of theory
Figure S2 Optimized geometries (bond lengths in Å) at the M06-2X level for the mononitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol\(^{-1}\)) at M06-2X level are indicated in parentheses.

Table S2 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the mononitro-substituted BN-cage compounds and their isomers at the M06-2X, ωB97XD and B3LYP level.

	M06-2X	ωB97XD	B3LYP
E	-685.871906	-685.870761	-685.868852
ΔE	0	20.3	0.0
symmetry	C1	Cs	C1

Figure S3 The color-filled map and curve map of ELF for B3-N7 bond path of NO\(_2\)-1-3 at the M06-2X levels of theory.
Figure S4 Optimized geometries (bond lengths in Å) at the M06-2X level for the dinitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol⁻¹) at M06-2X level are indicated in parentheses.

Table S3 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the dinitro-substituted BN-cage compounds and their isomers at the M06-2X, ωB97XD and B3LYP level.

	2-1	2-2	2-3	2-4	2-5
M06-2X	-890.392507	-890.382149	-890.343073	-890.334532	-890.319916
ΔE	0	27.2	129.9	152.3	190.7
symmetry	Cs	C1	C1	C1	Cs
ωB97XD	-890.397972	-890.390197	-890.350567	-890.340891	-890.326487
ΔE	0	20.4	124.5	149.9	187.8
symmetry	Cs	C1	C1	C1	Cs
B3LYP	-890.389855	-890.382626	-890.341921	-890.331176	-890.318839
ΔE	0	18.8	126.0	154.0	186.7
symmetry	Cs	C1	C1	C1	Cs
Figure S5 Optimized geometries (bond lengths in Å) at the M06-2X level for the trinitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol\(^{-1}\)) at M06-2X level are indicated in parentheses.

Table S4 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the trinitro-substituted BN-cage compounds and their isomers at the M06-2X, ωB97XD and B3LYP level.

	3-1	3-2	3-3	3-4
M06-2X	E = -1094.897765	E = -1094.849808	E = -1094.840454	E = -1094.836407
ΔE	0	126.0	150.5	161.2
symmetry	Cs	Cs	C1	C1
ωB97XD	E = -1094.913044	E = -1094.863675	E = -1094.856440	E = -1094.856044
ΔE	0	129.7	148.7	149.7
symmetry	Cs	Cs	C1	C1
B3LYP	E = -1094.898515	E = -1094.846713	E = -1094.840291	E = -1094.839262
ΔE	0	136.0	152.8	155.7
symmetry	Cs	Cs	C1	C1
Figure S6 Optimized geometries (bond lengths in Å) at the M06-2X level for the tetranitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol\(^{-1}\)) at M06-2X level are indicated in parentheses.

Table S5 Total energies (\(E\) in hartree), relative energies (\(\Delta E\) in kJ/mol) and symmetries for the tetranitro-substituted BN-cage compounds and their isomers at the M06-2X, \(\omega\)B97XD and B3LYP level.

	4-1	4-2	4-3
M06-2X			
\(E\)	-1299.351602	-1299.348266	-1299.279785
\(\Delta E\)	0	8.8	188.6
symmetry	Cs	C1	Cs
\(\omega\)B97XD			
\(E\)	-1299.385229	-1299.386115	-1299.308946
\(\Delta E\)	0	-2.3	200.4
symmetry	Cs	C1	Cs
B3LYP			
\(E\)	-1299.351958	-1299.351286	-1299.283357
\(\Delta E\)	0	1.7	180.0
symmetry	Cs	C	Cs
Figure S7 The color-filled map and curve map of ELF for B3-N7 bond path of NO$_2$-4-2 at the M06-2X levels of theory

Figure S8 The color-filled map and curve map of ELF for B3-N7 bond path of NO$_2$-4-3 at the M06-2X levels of theory
Figure S9 Optimized geometries (bond lengths in Å) at the M06-2X level for the pentanitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol\(^{-1}\)) at M06-2X level are indicated in parentheses.

Table S6 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the pentanitro-substituted BN-cage compounds and their isomers at the M06-2X, \(\omega\)B97XD and B3LYP level.

	5-1	5-2
M06-2X E	-1503.799129	-1503.718869
ΔE	0	210.8
symmetry	C1	Cs
\(\omega\)B97XD E	-1503.829668	-1503.750364
ΔE	0	208.3
symmetry	C1	Cs
B3LYP E	-1503.781134	-1503.709551
ΔE	0	188.0
symmetry	C1	Cs

Figure S10 The color-filled map and curve map of ELF for B3-N7 bond path of NO\(_2\)-5-1 at the M06-2X levels of theory.
Figure S11 Optimized geometries (bond lengths in Å) at the M06-2X level for the hexanitro-substituted BN-cage compounds and their isomers. Relative energies (kJ mol\(^{-1}\)) at M06-2X level are indicated in parentheses.

Table S7 Total energies (E in hartree), relative energies (ΔE in kJ/mol) and symmetries for the hexanitro-substituted BN-cage compounds and their isomers at the M06-2X, ωB97XD and B3LYP level.

	E	ΔE	symmetry
M06-2X	-1708.236006	0	Cs
ωB97XD	-1708.272682	0	Cs
B3LYP	-1708.209609	0	Cs
Table S8 Total energies (E), zero point energies (ZPE), thermal correction values (H_T), heat of formation (kJ/mol), molecular surface properties (As, ν_b^{tot2}), enthalpy of sublimation (ΔH^o_{sub}) and solid phase enthalpy of formation ($\Delta fH^o(s)$) of the NO$_2$-substituted BN-cage compounds at the M06-2X/6-311++G** level.

compounds	E (Hartree)	ZPE (kJ/mol)	H_T (kJ/mol)	As	ν_b^{tot2}	ΔH^o_{sub} (kJ/mol)	$\Delta fH^o(s)$ (kJ/mol)
NO2-1-1	-685.872	332.772	362.968	195.450	102.097	124.900	-289.545
NO2-2-1	-890.393	343.310	380.750	222.400	88.958	132.842	-449.511

Table S9 Total energies (E), zero point energies (ZPE), thermal correction values (H_T), heat of formation (kJ/mol), molecular surface properties (As, ν_b^{tot2}), enthalpy of sublimation (ΔH^o_{sub}) and solid phase enthalpy of formation ($\Delta fH^o(s)$) of the NO$_2$-substituted BN-cage compounds at the ωB97XD/6-311++G** level.

compounds	E (Hartree)	ZPE (kJ/mol)	H_T (kJ/mol)	As	ν_b^{tot2}	ΔH^o_{sub} (kJ/mol)	$\Delta fH^o(s)$ (kJ/mol)
NO2-1-1	-685.871	331.089	361.455	195.563	99.072	123.909	-269.297
NO2-2-1	-890.398	342.447	379.931	222.788	92.823	134.435	-413.859

Table S10 Total energies (E), zero point energies (ZPE), thermal correction values (H_T), heat of formation (kJ/mol), molecular surface properties (As, ν_b^{tot2}), enthalpy of sublimation (ΔH^o_{sub}) and solid phase enthalpy of formation ($\Delta fH^o(s)$) of the NO$_2$-substituted BN-cage compounds at the B3LYP/6-311++G** level.

compounds	E (Hartree)	ZPE (kJ/mol)	H_T (kJ/mol)	As	ν_b^{tot2}	ΔH^o_{sub} (kJ/mol)	$\Delta fH^o(s)$ (kJ/mol)
NO2-1-1	-685.869	325.331	355.989	198.391	101.246	125.908	-274.313
NO2-2-1	-890.390	333.32	371.382	227.201	95.520	137.619	-554.623