On injectors of Hartley set of a finite group

Nanying Yang∗
School of Science, Jiangnan University
Wuxi 214122, P. R. China
E-mail: yangny@jiangnan.edu.cn

N.T. Vorob’ev†
Department of Mathematics, Masherov Vitebsk State University
Vitebsk 210038, Belarus
Email: vorobyovvt@tut.by

T.B. Vasilevich‡
Department of Mathematics, Masherov Vitebsk State University,
Vitebsk 210038, Belarus
E-mail: tatyana.vasilevich.1992@mail.ru

Abstract

Let G be a group and \mathcal{H} be a Hartley set of G. In this paper, we prove the existence and conjugacy of \mathcal{H}-injectors of G and describe the structure of the injectors. As application, some known results are directly followed.

1 Introduction

Throughout this paper, all groups are finite. In theory of classes of finite soluble groups, a basic result which generalizes fundamental theorems of Sylow and Hall is the theorem of Fischer, Gaschütz and Hartley [4] on existence and conjugacy of \mathfrak{F}-injectors in soluble groups for every Fitting class \mathfrak{F}.

Recall that a class \mathfrak{F} is called a Fitting class if \mathfrak{F} is closed under taking normal subgroups and products of normal \mathfrak{F}-subgroups. For any class \mathfrak{F} of groups, a subgroup V of a group G is said to be \mathfrak{F}-maximal if $V \in \mathfrak{F}$ and $U = V$ whenever $V \leq U \leq G$ and $U \in \mathfrak{F}$. From the definition of Fitting class \mathfrak{F}, every group G has the largest normal \mathfrak{F}-subgroup $G_\mathfrak{F}$, so called \mathfrak{F}-radical of G, which is the

∗Research is supported by a NNSF grant of China (Grant #11301227) and the Natural Science Fundation of Jiangsu Province (grant #BK20130119).
†Research is supported by the State Research Programme ”Convergence” of Belarus (2016-2020).
‡Research is supported by the Belarusian Republican Foundation for Fundamental Research (F17M-064).
Keywords: Hartley set, injector, h-radical, H-function.
Mathematics Subject Classification (2010): 20D10, 20D15
product of all normal \mathfrak{F} subgroups. In particular, if $\mathfrak{F} = \mathfrak{N}$ is the Fitting class of all nilpotent groups, then $G_{\mathfrak{N}} = F(G)$ is the Fitting subgroup of G. A subgroup V of a group G is said to be an \mathfrak{F}-injector of G if $V \cap N$ is an \mathfrak{F}-maximal subgroup of N for every subnormal subgroup N of G. Note that if $\mathfrak{F} = \mathfrak{N}_p$ is the Fitting class of all p-groups, then the \mathfrak{F}-injectors of a group G are Sylow p-subgroups of G; if \mathfrak{F} is the Fitting class of all groups with soluble Hall π-subgroups (i.e. G is E_π^s-group [8, p.81]), where π is a set of prime numbers, then the \mathfrak{F}-injectors of G are Hall π-subgroups of G.

As a development of the theorem of Fischer, Gaschütz and Hartley [4], Shemetkov [15] (resp. Anderson [1]) proved that if G is a π-soluble group (resp. soluble group) and \mathcal{F} is a Fitting set of G, then G possesses exactly one conjugacy class of \mathcal{F}-injectors, where π is the set of all primes dividing orders of all subgroups of G in \mathcal{F}.

Recall that a nonempty set \mathcal{F} of subgroups of a group G is called a Fitting set of G [1, 15], if the following three conditions hold: (i) If $T \subseteq S \subseteq \mathcal{F}$, then $T \in \mathcal{F}$; (ii) If $S \in \mathcal{F}$ and $T \in \mathcal{F}$, $S \unlhd ST$ and $T \unlhd ST$, then $ST \in \mathcal{F}$; (iii) If $S \in \mathcal{F}$ and $x \in G$, then $S^x \in \mathcal{F}$. So from the definition of Fitting set \mathcal{F}, the \mathcal{F}-radical $G_{\mathcal{F}}$ of a group G can also be defined as the product of all its normal \mathcal{F}-subgroups. For a Fitting set \mathcal{F} of G, the \mathcal{F}-injector of G is similarly defined as the \mathcal{F}-injector for Fitting class \mathfrak{F} (see [1, Definition VIII. (2.5)]).

If \mathfrak{F} is a Fitting class and G is a group, then the set $\{H \leq G : H \in \mathfrak{F}\}$ is a Fitting set, which is denoted by $Tr_\mathfrak{F}(G)$ and called the trace of \mathfrak{F} in G (see [3, VIII, 2.2(a)]). Note that for a Fitting class \mathfrak{F}, the \mathfrak{F}-injectors and $Tr_\mathfrak{F}(G)$-injectors of G coincide, but not every Fitting set of G is the trace of a Fitting class ([3, VIII. Examples (2.2)(c)]). Hence, if $\mathcal{F} = Tr_\mathfrak{F}(G)$, then the theorem of Anderson [1] and the theorem of Fischer, Gaschütz and Hartley [4] are Corollaries of the theorem of Shemetkov [15]. Vorob’ev and Semenov [17] proved that for every set π of primes and every Fitting set \mathcal{F} of π-soluble group G, G possesses an \mathcal{F}-injector and any two \mathcal{F}-injectors are conjugate if \mathcal{F} is π-saturated, i.e. $\mathcal{F} = \{H \leq G : H/H_{\mathcal{F}} \in \mathfrak{C}_\pi\}$. In connection with these theorems, the following question naturally arise:

Question 1.1 For an arbitrary Fitting set \mathcal{F} of a group G (in case G is a non-π-soluble group), when G possesses \mathcal{F}-injector and any two \mathcal{F}-injectors are conjugate?

There has been substantial research on characterizations of \mathfrak{F}-injector for various types of soluble Fitting classes \mathfrak{F} (see [5, 6, 7, 9, 10, 12, 14, 15]). It is well known that the product of any two Fitting classes is also Fitting class and multiplication of Fitting classes satisfies associative law (see [3, Theorem IX. (1.12)(a),(c)]). Hartley [9] proved that for the Fitting class of type \mathfrak{N} (where \mathfrak{N} is a nonempty Fitting class and \mathfrak{N} is the Fitting class of all nilpotent groups), a subgroup V of a soluble group G is an \mathfrak{N}-injector of G if and only if $V/G_{\mathfrak{N}}$ is a nilpotent subgroup of G. As a further improvement, Guo and Vorob’ev [6] proved that for the Hartley class \mathfrak{H}, the set of all \mathfrak{H}-injectors of soluble group G coincide with the set of all \mathfrak{H}-maximal subgroups of G containing \mathfrak{H}-radical of G.

Let \mathbb{P} be the set of all prime numbers. Following [9], a function $h : \mathbb{P} \to \{\text{nonempty Fitting classes}\}$ is a Hartley function (or in brevity H-function). Let $LH(h) = \cap_{p \in \mathbb{P}} h(p) \mathfrak{N}_p$, where \mathfrak{N}_p is the class
of all \(p \)-groups and \(\mathcal{E}_{p'} \) is the class of all soluble \(p' \)-groups. A Fitting class \(\mathcal{H} \) is called a Hartley class if \(\mathcal{H} = LH(h) \) for some \(H \)-function \(h \).

We need to develop and extend the local method of Hartley [9] (for soluble Fitting classes) for Fitting sets of groups (not necessary in the universe of soluble groups). For a Fitting set \(\mathcal{H} \) of a group \(G \) and a nonempty Fitting class \(\mathcal{F} \), we call the set \(\{ H \leq G : H/H \mathcal{H} \in \mathcal{F} \} \) of subgroups of \(G \) the product of \(\mathcal{H} \) and \(\mathcal{F} \), and denote it by \(\mathcal{H} \circ \mathcal{F} \) is a Fitting set of \(G \) (see Lemma 2.1).

Following [16], a function \(h : \mathcal{P} \to \{ \text{Fitting sets of } G \} \) is called a Hartley function of \(G \) (or in brevity an \(H \)-function of \(G \)).

Definition 1.2 Let \(h \) be an \(H \)-function of a group \(G \) and \(HS(h) = \bigcap_{p \in \mathcal{P}} h(p) \circ (\mathcal{E}_{p'}\mathcal{H}_p) \), where \(\mathcal{E}_{p'} \) is the class of all \(p' \)-groups. A Fitting set \(\mathcal{H} \) of \(G \) called the Hartley set of \(G \) if \(\mathcal{H} = HS(h) \) for some \(H \)-function \(h \).

Definition 1.3 Let \(\mathcal{H} = HS(h) \) be a Hartley set of a group \(G \). Then \(h \) is said to be:

1. integrated if \(h(p) \subseteq \mathcal{H} \) for all \(p \);
2. full if \(h(p) \subseteq h(q) \circ \mathcal{E}_{q'} \) for all different primes \(p \) and \(q \);
3. full integrated if \(h \) is full and integrated as well.

It is easy to see that every Hartley set of a group \(G \) can be defined by an integrated \(H \)-function. Moreover we prove that every Hartley set of \(G \) can be defined by a full integrated \(H \)-function in Lemma 3.4.

In connection with above, the following question naturally arise:

Question 1.4 Let \(G \) be a group (in particular, \(G \) is a soluble group), and \(\mathcal{H} \) be a Hartley set of \(G \), what’s the structure of \(\mathcal{H} \)-injectors of \(G \)?

For a Hartley set \(\mathcal{H} = HS(h) \) of \(G \), \(h \) is a full integrated \(H \)-function of \(\mathcal{H} \), we call the subgroup \(G_h = \prod_{p \in \mathcal{P}} G_{h(p)} \) the \(h \)-radical of \(G \). A group \(G \) is said to be \(\mathcal{H} \)-constrained if \(C_{G}(F(G)) \leq F(G) \).

The following theorem resolved the Questions 1.1 and 1.4.

Theorem 1.5 Let \(\mathcal{H} \) be a Hartley set of a group \(G \) defined by a full integrated \(H \)-function \(h \) and \(G_h \) the \(h \)-radical of \(G \). If \(G/G_h \) is \(\mathcal{H} \)-constrained, then the following statements hold:

1. A subgroup \(V \) of \(G \) is an \(\mathcal{H} \)-injector of \(G \) if and only if \(V/G_h \) is a nilpotent injector of \(G/G_h \);
2. \(G \) possesses an \(\mathcal{H} \)-injector and any two \(\mathcal{H} \)-injectors are conjugate in \(G \);
3. A subgroup \(V \) of \(G \) is an \(\mathcal{H} \)-injector of \(G \) if and only if \(V \) is an \(\mathcal{H} \)-maximal subgroup of \(G \) and \(G\mathcal{H} \leq V \).

Theorem 1.5 give the new theory of \(\mathcal{H} \)-injectors for Fitting sets of non-soluble groups. From Theorem 1.5, a series of famous results can be directly generalized. For example, Fischer [5, Corollary IX.4.13], Hartley [9, section 4.1], Mann [12, Theorem IX.4.12], Guo and Vorob’ev [8, Theorem 5.6.8].
All unexplained notion and terminology are standard. The reader is referred to [3, 8, 2].

2 Preliminaries

Note that if all groups in a class \mathcal{X} are soluble groups (that is $\mathcal{X} \subseteq \mathcal{S}$), then \mathcal{X} is said to be a soluble class.

Lemma 2.1 [13, Proposition 3.1] Let \mathcal{F} be a Fitting set of a group G and \mathcal{X} is a nonempty Fitting class. Then the product $\mathcal{F} \circ \mathcal{X}$ is a Fitting set of G.

Lemma 2.2 Let \mathcal{F} and \mathcal{K} be Fitting sets of G, and \mathcal{X}, \mathcal{Y} be nonempty Fitting formations. Then

(a) [13, Proposition 3.4 (3)] $\mathcal{F} \circ (\mathcal{X} \cap \mathcal{Y}) = \mathcal{F} \circ \mathcal{X} \cap \mathcal{F} \circ \mathcal{Y}$.

(b) [13, Proposition 3.2 (1)] If \mathcal{M} is nonempty Fitting class, then $\mathcal{F} \subseteq \mathcal{F} \circ \mathcal{M}$.

(c) [13, Proposition 3.4 (2)] $(\mathcal{F} \cap \mathcal{K}) \circ \mathcal{X} = \mathcal{F} \circ \mathcal{X} \cap \mathcal{K} \circ \mathcal{X}$.

(d) [13, Proposition 3.4 (1)] If $\mathcal{F} \subseteq \mathcal{M}$, then $\mathcal{F} \circ \mathcal{X} \subseteq \mathcal{M} \circ \mathcal{X}$.

Lemma 2.3 [13, Proposition 3.3] Let \mathcal{F} be a Fitting set of a group G and \mathcal{X}, \mathcal{Y} be Fitting formations. Then $$(\mathcal{F} \circ \mathcal{X}) \circ \mathcal{Y} = \mathcal{F} \circ (\mathcal{X} \circ \mathcal{Y})$$

Lemma 2.4 [3, Theorem IV. (1.8)] Let \mathcal{F} and \mathcal{K} be nonempty formations. If $\mathcal{F} \subseteq \mathcal{K}$, then $G^\mathcal{F} \leq G^\mathcal{K}$ for every group G.

Lemma 2.5 [3, Proposition VIII. (2.4) (d)] Let \mathcal{F} be a Fitting set of a group G. If $N \trianglelefteq G$, then $N^\mathcal{F} = N \cap G^\mathcal{F}$.

Let \mathcal{F} be a nonempty Fitting class. A group G is said to be \mathcal{F}-constrained if $C_G(G_\mathcal{F}) \leq G_\mathcal{F}$.

Lemma 2.6 [3, Remark p.624] or [11] The class of all \mathcal{R}-constrained groups is a Fitting class strictly large than \mathcal{S}.

Lemma 2.7 [3, Theorem IX.(4.12) (c)-(d)] Let G be a group. If G is \mathcal{R}-constrained, then G possesses exactly one conjugacy class of nilpotent injectors.

The following properties follow at once from definition of an \mathcal{F}-injector of a group G and [3] Remarks IX, (1.3), VIII, (2.6)(2.7)].

Lemma 2.8 Let \mathcal{F} be a Fitting set of a group G and \mathcal{K} a class of finite groups. Then

(a) If $K \trianglelefteq G$ and V is an \mathcal{F}-injector of G, then $V \cap K$ is an \mathcal{F}-injector (or \mathcal{F}_K-injector) of K;

(b) If V is an \mathcal{F}-injector of G, then $G_\mathcal{F} \leq V$ and V is an \mathcal{F}-maximal subgroup of G;

(c) If V is an \mathcal{F}-maximal of G and $V \cap M$ is an \mathcal{F}-injector M for any maximal normal subgroup M of G, then V is an \mathcal{F}-injector of G.

(d) If $V \in \text{Inj}_\mathcal{F}(G)$ and $\alpha : G \to G_\alpha$ an isomorphism, then $V_\alpha \in \text{Inj}_\mathcal{F}(G_\alpha)$; in particular, $\text{Inj}_\mathcal{F}(G)$ is a union of G-conjugacy classes.
Lemma 2.9 [12] or [3, Theorem IX. (4.12)] If G is a \mathcal{N}-constrained group, then a subgroup V of G is a nilpotent injector of G if and only if $F(G) \subseteq V$ and V is an \mathcal{N}-maximal subgroup of G.

3 Hartley set and h-radical

In this section we give some results about Hartley sets and h-radical of a group G, which are also main steps in the proof of Theorem 1.5. Recall that by Lemma 2.1 for a Fitting set \mathcal{H} of G and a nonempty Fitting class \mathcal{F}, the set $\mathcal{H} \circ \mathcal{F} = \{ H : H/H\mathcal{H} \in \mathcal{F} \}$ is a Fitting set of G. Firstly, we give some following examples of Hartley set.

Example 3.1 (a) Let \mathcal{N} be the trace of the Fitting class \mathcal{N} in group G and let h be an H-function defined as follows: $h(p) = \{ 1 \}$ for all $p \in \mathbb{P}$, where 1 is an identity subgroup of G. Then by Lemma 2.2 (a), we have $HS(h) = \cap_{p \in \mathbb{P}} \{ 1 \} \circ (\mathcal{E}_p \mathcal{N}_p) = \{ 1 \} \circ \left(\cap_{p \in \mathbb{P}} \mathcal{E}_p \mathcal{N}_p \right) = \{ 1 \} \circ \mathcal{N} = \mathcal{N}$. Hence the set of all nilpotent subgroups of G is a Hartley set of G.

(b) Let \mathcal{F} be a Fitting set of G and $\mathcal{H} = \mathcal{F} \circ \mathcal{N}$. Let h be an H-function such that $h(p) = \mathcal{F}$ for all $p \in \mathbb{P}$. Then by Lemma 2.2 (a) we obtain $HS(h) = \mathcal{F} \circ \left(\cap_{p \in \mathbb{P}} \mathcal{E}_p \mathcal{N}_p \right) = \mathcal{F} \circ \mathcal{N}$ and so \mathcal{H} is a Hartley set of G (the least equality follows from [3, Lemma 2.7 (a)]).

(c) If $k \in \mathbb{N}$, let $N^k(k \geq 1)$ the set of all subgroups of soluble group G of the nilpotent length at most k. If $k \geq 1$, take the H-function h such that $h(p) = Tr_{\mathbb{N}^k-1}(G)$ for all $p \in \mathbb{P}$. Then by Example (b) above we have $HS(h) = \mathcal{N}^k$ is a Hartley set of G.

(d) Let \mathcal{H} be the trace of Fitting class $\mathcal{E}_p \mathcal{N}_p$ in group G, i.e. \mathcal{H} is the set of all p-nilpotent subgroups of G. Let h be an H-function defined as follows: $h(p) = \{ 1 \}$ and $h(q) = \mathcal{H}$ for all primes $q \neq p$. Then by Lemma 2.2 (a), we have $HS(h) = (\{ 1 \} \circ \mathcal{E}_p \mathcal{N}_p) \cap (\mathcal{H} \circ (\cap_{p \neq q} \mathcal{E}_p \mathcal{N}_p)) = \mathcal{H} \cap \mathcal{H} \circ (\mathcal{E}_p \mathcal{N}_p)$. Now by Lemma 2.2 (b) $HS(h) = \mathcal{H}$ and \mathcal{H} is a Hartley set.

Lemma 3.2 Every Hartley set can be defined by an integrated H-function.

Proof. Let \mathcal{H} be a Hartley set of a group G. Then $\mathcal{H} = HS(h_1)$ for some H-function h_1. Let h be an H-function defined as follows: $h(p) = h_1(p) \cap \mathcal{H}$ for all $p \in \mathbb{P}$. By Lemma 2.2 (c), we have $HS(h) = \cap_{p \in \mathbb{P}} (h_1(p) \cap \mathcal{H}) \circ \mathcal{E}_p \mathcal{N}_p = (\cap_{p \in \mathbb{P}} h_1(p) \circ \mathcal{E}_p \mathcal{N}_p) \cap (\cap_{p \in \mathbb{P}} \mathcal{H} \circ (\mathcal{E}_p \mathcal{N}_p))$.

Hence by Lemma 2.2 (a), (b), $HS(h) = \mathcal{H} \cap \mathcal{H} \circ (\cap_{p \in \mathbb{P}} \mathcal{E}_p \mathcal{N}_p) = \mathcal{H} \cap \mathcal{H} \circ \mathcal{N} = \mathcal{H}$. The Lemma is proved.

Let \mathcal{H} be a set of subgroups of a group G. For \mathcal{H} and nonempty Fitting class \mathcal{F}, we call the set $\{ H \leq G : H$ has a normal subgroup $L \in \mathcal{H}$ with $H/L \in \mathcal{F} \} \subseteq \mathbb{N}$ of subgroups of G the product of \mathcal{H} and \mathcal{F} and denote it by $\mathcal{H}\mathcal{F}$.

Remark 3.3 Let \mathcal{H} be a Fitting set of a group G. Then it is clear that $\mathcal{H} \circ \mathcal{F} \subseteq \mathcal{H}\mathcal{F}$. Assume that \mathcal{F} is the Fitting class and \mathcal{F} is a homomorph, i.e. \mathcal{F} is quotient closed. Put $H \leq G$ and $H \in \mathcal{H}\mathcal{F}$. Then $H/L \in \mathcal{F}$ for some normal subgroup $L \in \mathcal{H}$ of H. Since $L \leq H_{\mathcal{H}}$ and $H/L/H_{\mathcal{H}}L \cong H/H_{\mathcal{H}}$,
$H \in \mathcal{H} \circ \mathfrak{F}$. Thus $\mathcal{H}\mathfrak{F} = \mathcal{H} \circ \mathfrak{F}$.

Let G be a group and \mathfrak{Y} is a set of subgroups of a group G. Then $\text{Fitset}\mathfrak{Y}$ will denote the intersection of all Fitting sets of G that contain \mathfrak{Y} (see [3, Definition VIII. 3.1 (b)]).

Lemma 3.4 Every Hartley set can be defined by a full integrated H-function.

Proof. Let \mathcal{H} be a Hartley set of a group G. By Lemma 3.2, $\mathcal{H} = HS(h_1)$ for some integrated H-function h_1. We define a set of subgroups of G by $\overline{h_1}(p) = \{H \leq G : H$ is conjugate with $R^{p^{p'}}$ in G for some $R \in h_1(p)\}$ for all $p \in \mathbb{P}$. Note that if $H \in \overline{h_1}(p)$, then $H \in h_1(p)$ and so $\overline{h_1}(p) \subseteq h_1(p)$ for all $p \in \mathbb{P}$.

Assume that $X \in \overline{h_1}(p)e_{p'}$. Then X has a normal subgroup $K \in \overline{h_1}(p)$ with $X/K \in e_{p'}$. Since $\overline{h_1}(p) \subseteq h_1(p)$, $K \leq X_{h_1(p)}$. Hence by the isomorphism $X/K/X_{h_1(p)}/K \cong X/X_{h_1(p)}$, we have $X/X_{h_1(p)} \in e_{p'}$ and so $X \in h_1(p) \circ e_{p'}$. Thus $\overline{h_1}(p)e_{p'} \subseteq h_1(p)e_{p'}$.

On other hand, let $Y \in h_1(p) \circ e_{p'}$. Then $Y/Y_{h_1(p)} \in e_{p'}$ and $Y^{e_{p'}} \leq h_1(p)$. Hence $Y^{e_{p'}} \in h_1(p)$. Since $(Y^{e_{p'}})^{e_{p'}} = Y^{e_{p'}}$ and obviously, $Y^{e_{p'}}$ is a subgroup conjugate with $Y^{e_{p'}}$ in G, we have $Y^{e_{p'}} \in \overline{h_1}(p)$ and so $Y \in \overline{h_1}(p)e_{p'}$. Thus we obtain the following equation:

$$\overline{h_1}(p)e_{p'} = h_1(p) \circ e_{p'}.$$

Now, let h be a function such that $h(p) = \text{Fitset}(\overline{h_1}(p))$ for all $p \in \mathbb{P}$. We prove that $HS(h) = \mathcal{H}$. Since $\overline{h_1}(p) \subseteq h_1(p)$, $\text{Fitset}(\overline{h_1}(p)) \subseteq \text{Fitset}(h_1(p)) = h_1(p)$ and so $h(p) \subseteq h_1(p)$. Hence by Lemma 2.2 (d), we have $h(p) \circ e_{p'} \subseteq h_1(p) \circ e_{p'}$. Note that by Lemma 2.3 $(h(p) \circ e_{p'}) \circ \mathfrak{N}_p = h(p) \circ (e_{p'} \mathfrak{N}_p)$ and $(h(p) \circ e_{p'}) \circ \mathfrak{N}_p = h_1(p) \circ (e_{p'} \mathfrak{N}_p)$. Therefore by Lemma 2.2 (d) $h(p) \circ (e_{p'} \mathfrak{N}_p) \subseteq h_1(p) \circ (e_{p'} \mathfrak{N}_p)$ for all $p \in \mathbb{P}$. Consequently, $HS(h) \subseteq \mathcal{H}$.

Further more, by (*), we have $h_1(p) \circ e_{p'} = \text{Fitset}(\overline{h_1}(p)e_{p'})$. Since $\overline{h_1}(p) \subseteq \text{Fitset}(\overline{h_1}(p))$, by Lemma 2.2 (d) $\overline{h_1}(p)e_{p'} \subseteq (\text{Fitset}(\overline{h_1}(p))) \circ e_{p'}$. Hence $\text{Fitset}(\overline{h_1}(p)e_{p'}) \subseteq (\text{Fitset}(\overline{h_1}(p))) \circ e_{p'}$. Thus, for every $p \in \mathbb{P}$, we have the inclusion:

$$\overline{h_1}(p)e_{p'} \subseteq (\text{Fitset}(\overline{h_1}(p))) \circ e_{p'} = h(p) \circ e_{p'}$$

By Lemma 2.3 and Lemma 2.2, we have $h_1(p) \circ (e_{p'} \mathfrak{N}_p) \subseteq h(p) \circ (e_{p'} \circ \mathfrak{N}_p)$. Hence $\mathcal{H} \subseteq HS(h)$ and $\mathcal{H} = HS(h)$.

Since $\overline{h_1}(p) \subseteq h_1(p)$ for all $p \in \mathbb{P}$ and h_1 is an integrated H-function of \mathcal{H}, $h(p) \subseteq \mathcal{H}$ for all $p \in \mathbb{P}$ and so h is an integrated H-function of \mathcal{H}.

Now, we show that $h(p) \subseteq h(q) \circ e_{q'}$ for all $p \neq q$.

Let H be an arbitrary subgroup in $h_1(p)$ and $p \neq q$. Since h_1 is an integrated H-function, $H \in \mathcal{H}$ and so $H \in h_1(q) \circ (e_{q'} \mathfrak{N}_q)$. By Lemma 2.3 $h_1(q) \circ (e_{q'} \mathfrak{N}_q) = (h_1(q) \circ e_{q'}) \circ \mathfrak{N}_q$. Hence $H^{\mathfrak{N}_q} \in h_1(q) \circ e_{q'}$. Since $p \neq q$, $H^{e_{q'}} \leq H^{\mathfrak{N}_q}$ by Lemma 2.4. Consequently, $H^{e_{q'}} \in h_1(q)e_{q'}$. Then by (**), $H^{e_{q'}} \in h(q) \circ e_{q'}$ for every $H \in h_1(p)$ and all primes $p \neq q$.

Let $R \in \overline{\mathbf{r}_1}(p)$. Then by definition of the set $\overline{\mathbf{r}_1}(p)$, we have that R is a conjugate subgroup of G with $S^{\mathbf{r}_1}$ for some subgroup $S \in h_1(p)$. Therefore $R \in h(q)\mathbf{r}_q'$ and so $h_1(p) \subseteq h(q) \circ \mathbf{r}_q'$. Thus $h(p) = \text{Fitset}(\overline{h_1}(p)) \subseteq \text{Fitset}(h(q) \circ \mathbf{r}_q') = h(q) \circ \mathbf{r}_q'$ for all primes $q \neq p$. This complete the proof.

Recall that $G_h = \prod_{p \in \mathbb{P}} G_{h(p)}$, where h is a full integrated H-function of a Hartley set of a group G, i.e. h is an h-radical of G.

Lemma 3.5 Let \mathcal{H} be a Hartley set of a group G and h is a full integrated H-function of \mathcal{H}. If H is a subgroup of G such that $G_h \leq H$ and H/G_h is a nilpotent subgroup of G/G_h, then $H \in \mathcal{H}$.

Proof. Let q be an arbitrary prime number. Since $G_{h(q)} \leq H$, $G_{h(q)} \leq H_{h(q)}$ for all $q \in \mathbb{P}$. Let $p \in \mathbb{P}$ and $p \neq q$. Note that $G_{h(q)} G_{h(p)}/G_{h(q)} \cong G_{h(p)}/G_{h(q)} \cap G_{h(p)} = G_{h(p)}/(G_{h(p)}/G_{h(q)}).$ Since h is a full integrated H-function of \mathcal{H}, $h(p) \subseteq h(q)\mathbf{r}_q'$. Hence $G_{h(p)} \subseteq h(q)\mathbf{r}_q'$. Therefore $G_{h(q)} G_{h(p)}/G_{h(q)} \subseteq \mathbf{r}_q'$ for all primes p and q. Consequently, $G_h/G_{h(q)} \subseteq \mathbf{r}_q'$ and by using the isomorphisms $H_{h(q)} G_h/H_{h(q)} \cong G_{h(q)}/G_{h(q)} \cap G_{h(p)} \cong (G_{h(q)}/G_{h(q)})/(H_{h(q)} \cap G_{h(p)}),$ we obtain that $H_{h(q)} G_h/H_{h(q)}$ is a q'-group. Since H/G_h is a nilpotent subgroup of G/G_h, $H/H_{h(q)} G_h$ is also a nilpotent subgroup of G/G_h and so $H/H_{h(q)} G_h \in \cap_{q \in \mathbb{P}} \mathbf{r}_q'$. Therefore, by the isomorphism $H/H_{h(q)} G_h \cong (H/H_{h(q)})/(H_{h(q)} G_h/H_{h(q)}),$ we have that $H/H_{h(q)} G_h \in \cap_{q \in \mathbb{P}} \mathbf{r}_q'$ for all $q \in \mathbb{P}$. Hence $H \in \cap_{q \in \mathbb{P}} h(q)\mathbf{r}_q' = \mathcal{H}$. The Lemma is proved.

Lemma 3.6 Let \mathcal{H} be a Hartley set of a group G. If h is a full integrated H-function of \mathcal{H}, then $G_{\mathcal{H}}/G_h = F(G/G_h)$.

Proof. Let $F(G/G_h) = R/G_h$. Since h is a integrated H-function of \mathcal{H}, $(G_{\mathcal{H}})_{h(p)} = G_{h(p)}$. Hence $G_{\mathcal{H}} G_{h(p)} \subseteq \mathbf{r}_p' \mathbf{r}_p$ for all $p \in \mathbb{P}$ and so $G_{\mathcal{H}}/G_h$ is a nilpotent subgroup of G/G_h. Hence $G_{\mathcal{H}}/G_h \leq F(G/G_h)$ and we have that $G_{\mathcal{H}} \leq R$.

On the other hand, since R/G_h is a nilpotent subgroup of G/G_h, by Lemma 3.5, $R \in \mathcal{H}$. Hence $R \leq G_{\mathcal{H}}$. Thus $F(G/G_h) = G_{\mathcal{H}}/G_h$. The Lemma is proved.

Lemma 3.7 Let h be a full integrated H-function of a Hartley set \mathcal{H} of a group G. If G/G_h is \mathcal{H}-constrained, $G_{\mathcal{H}} \leq H \leq G$ and $H \in \mathcal{H}$, then H/G_h is nilpotent.

Proof. Since $G_{\mathcal{H}} \leq H$ and h is an integrated H-function of \mathcal{H}, by Lemma 2.5, $G_{h(p)} = (G_{\mathcal{H}})_{h(p)} = H_{h(p)} \cap G_{\mathcal{H}}$. Hence $[H_{h(p)}, G_{\mathcal{H}}] \leq H_{h(p)} \cap G_{\mathcal{H}} = G_{h(p)}$ and so $H_{h(p)} \leq C_G(G_{\mathcal{H}}/G_{h(p)}) \leq C_G(G_{\mathcal{H}}/G_h)$. Since G/G_h is constrained and by Lemma 3.6 $G_{\mathcal{H}} G_h = F(G/G_h)$, $C_G(G_{\mathcal{H}}/G_h) \leq G_{\mathcal{H}}$. Thus $H_{h(p)} \leq G_{\mathcal{H}}$. Therefore, $G_{h(p)} = (G_{\mathcal{H}})_{h(p)} = H_{h(p)} \cap G_{\mathcal{H}} = H_{h(p)}$ for all $p \in \mathbb{P}$. Hence, $H/G_h = H/H_{h(p)} \in \mathbf{r}_p' \mathbf{r}_p$ for all $p \in \mathbb{P}$ and so H/G_h is a nilpotent group. This complete the proof.

Corollary 3.8 Let h be a full integrated H-function of a Hartley set of a group G. Let G/G_h be an \mathcal{H}-constrained group and $G_{\mathcal{H}} \leq H \leq G$. Then $H \in \mathcal{H}$ if and only if H/G_h is nilpotent.
4 Proof and Some Applications of Theorem 1.5

Proof of Theorem 1.5 (1) We first prove that if V is a subgroup of a group G such that V/G_h is a nilpotent injector of G/G_h, then V is an \mathcal{H}-injector of G. We prove this statement by induction on the order of G.

Let M be an arbitrary maximal normal subgroup of G and M_h is an h-radical of M.

Since h is a full integrated H-function of Hartley set \mathcal{H}, $h(p) \subseteq h(q) \circ \mathcal{E}_q$ and $h(p) \subseteq \mathcal{H}$, for all different $p, q \in \mathbb{P}$. Then, by the isomorphism $G_{h(q)}G_{h(p)}/G_{h(q)} \cong G_{h(p)}/G_{h(q)} \cap G_{h(q)} = G_{h(p)}/(G_{h(p)})_h(q)$, we see that $G_{h(q)}G_{h(p)}/G_{h(q)}$ is a q'-group of $G/G_{h(q)}$ for any prime q. Hence $G_{h(q)}$ is also a q'-group. Since $(G_h \cap M)G_{h(q)}/G_{h(q)} \leq G_h/G_{h(q)}$, by the isomorphism $(G_h \cap M)(G_{h(q)}/G_{h(q)} \cong (G_h \cap M)/(G_h \cap M) \cap G_{h(q)} = (G_h \cap M)/G_{h(q)} \cap M$, by Lemma 2.5, we obtain that $G_h \cap M/M_{h(q)}$ is a q'-group, for all $q \in \mathbb{P}$. Now, note that $(G_h \cap M)/M_{h(q)}/M_h/M_{h(q)} \cong G_h \cap M/M_h$. Hence $G_h \cap M/M_h \in \cap q \in \mathbb{P} \mathcal{E}_q' = (1)$ and so $G_h \cap M = M_h$.

If $G_h \leq M$. Then $G_h = M_h$.

Since V/G_h is a nilpotent injector of G/G_h, $V \cap M/G_h$ is a nilpotent injector of M/G_h and consequently $V \cap M/M_h$ is a nilpotent injector of M/M_h. Hence, by induction, $V \cap M$ is an \mathcal{H}-injector of M.

Now, in order to complete the proof of the statement, we only need to prove that V is an \mathcal{H}-maximal subgroup of G. Since V/G_h is nilpotent and $G_{\mathcal{H}} \leq V$, by Lemma 3.5 $V \in \mathcal{H}$. Assume that $V < V_1$, where V_1 is an \mathcal{H}-maximal subgroup of G. Since $V \cap M$ is an \mathcal{H}-maximal subgroup of M, $V \cap M = V_1 \cap M$. Hence V_1 is an \mathcal{H}-maximal subgroup of G and $V \cap M$ is an \mathcal{H}-injector of M for any maximal normal subgroup M of G. Consequently, by Lemma 2.8 (b), (c), V_1 is an \mathcal{H}-injector of G and $G_{\mathcal{H}} \leq V_1$. Then, by Corollary 3.8, we have V_1/G_h is a nilpotent subgroup of G/G_h, contrary to the fact that V/G_h is \mathcal{H}-maximal in G/G_h. Hence $V = V_1$ and so by Lemma 2.8 (c), V is an \mathcal{H}-injector of G.

If $G_h \not\leq M$. In this case, by the maximality of M, we have that $G = G_hM$. Since, by Lemma 2.8(d), $G_h \cong M/G_h \cap M = M/M_h$ and so $V \cap M/M_h$ is a nilpotent injector of M/M_h. Then, by induction, $V \cap M$ is an \mathcal{H}-injector of M. By Lemma 3.5, we know that $V \in \mathcal{H}$. If $V < F_1$, where F_1 is an \mathcal{H}-maximal subgroup of G, then $V \cap M = F_1 \cap M$. Since $G_h \leq V$, $VM = G$. Consequently, $F_1 = F_1 \cap VM = V(F_1 \cap M) = V(V \cap M) = V$ and so V is an \mathcal{H}-maximal subgroup of G. Therefore V is an \mathcal{H}-injector of G.

Conversely, let V be an \mathcal{H}-injector of G. We prove that V/G_h is a nilpotent injector of G/G_h. By Lemma 2.8 (b),(c) $G_{\mathcal{H}} \leq V$ and V is \mathcal{H}-maximal in G. Hence by Lemma 3.5, V/G_h is nilpotent. Since V is \mathcal{H}-maximal in G, we obtain that V/G_h is \mathcal{H}-maximal subgroup of G/G_h containing the nilpotent radical of G/G_h. Consequently, by Lemma 2.9, V/G_h is a nilpotent injector of G/G_h. Thus, statement (1) hold.

(2) The existence of \mathcal{H}-injectors has proved in (1). Let F/G_h and V/G_h are nilpotent injectors of
Then by Lemma 2.7 \(F/G_h \) and \(V/G_h \) are conjugate in \(G/G_h \). Hence \(F \) and \(V \) are conjugate in \(G \).

(3) Let \(V \) be an \(\mathcal{H} \)-injector of \(G \). Then by Lemma 2.8 (b), (c), \(V \geq G_2^\mathcal{H} \) and \(V \) is \(\mathcal{H} \)-maximal in \(G \).

Conversely, let \(V \) be an \(\mathcal{H} \)-maximal subgroup of \(G \) and \(V \geq G_h \). We prove that \(V \) is an \(\mathcal{H} \)-injector of \(G \). Clearly, \(G_h \leq V \). Then by Lemma 3.5, \(V/G_h \) is nilpotent. Since \(V \) is \(\mathcal{H} \)-maximal in \(G \), \(V/G_h \) is \(\mathcal{H} \)-maximal in \(G/G_h \). Now by Lemma 3.6, \(V/G_h \geq F(G/G_h) \). Hence by Lemma 2.9, \(V/G_h \) is a nilpotent \(\mathcal{H} \)-injector of \(G/G_h \). This complete the proof of the theorem.

Let \(X \) be a Fitting set of a group \(G \) and \(X \odot \mathcal{S} = \{ H \leq G : H/H_X \in \mathcal{S} \} \), where \(\mathcal{S} \) is a class of all soluble groups. Note that the set \(X \odot \mathcal{S} \) is a Fitting set by Lemma 2.1.

We give some applications of our main results

Corollary 4.1 Let \(G \in X \odot \mathcal{S} \) and \(\mathcal{H} = X \odot N \) is a Fitting set of \(G \). Then:

(1) A subgroup \(V \) of \(G \) is an \(\mathcal{H} \)-injector of \(G \) if and only if \(V/G_X \) is nilpotent injector of \(G/G_X \).

(2) The set of all \(\mathcal{H} \)-injectors of \(G \) is exactly the subgroups \(V \) of \(G \) such that \(V \geq G_h \) and \(V \) is \(\mathcal{H} \)-maximal in \(G \).

Proof. By Example 3.1 (b), \(\mathcal{H} \) is a Hartley set of \(G \), which can be defined by full integrated \(H \)-function \(h \) such that \(h(p) = X \) for all \(p \in \mathbb{P} \). Since \(G/G_X \) is soluble, \(G/G_X \) is \(\mathcal{H} \)-constrained.

Let \(X \) be a nonempty Fitting class and \(\mathcal{H} = X \odot M \) is a Fitting product of \(X \) and \(M \), then we have the following result immediately from our Theorem.

Corollary 4.2 (1) A subgroup \(V \) of a group \(G \in \mathcal{F} \odot \mathcal{S} \) is an \(\mathcal{H} \)-injector of \(G \) if and only if \(V/G_X \) is a nilpotent injector of \(G/G_X \).

(2) A subgroup \(V \) of a group \(G \in \mathcal{F} \odot \mathcal{S} \) is an \(\mathcal{H} \)-injector if and only if \(V \geq G_h \) and \(V \) is \(\mathcal{H} \)-maximal in \(G \).

Proof. Since the set of all \(X \odot M \)-injectors of \(G \) and the set of all \(Tr_{X \odot M}(G) \)-injectors of \(G \) are coincide, so Corollary 4.2 holds from Corollary 4.1.

Corollary 4.3 (Hartley [9]) Let \(X \) be a nonempty soluble Fitting class and \(\mathcal{H} = X \odot M \). A subgroup \(V \) of soluble group \(G \) is an \(\mathcal{H} \)-injector if and only if \(V/G_X \) is a nilpotent injector of \(G/G_X \).

Corollary 4.4 (Fischer [5]) A subgroup \(V \) of soluble group \(G \) is a nilpotent injector of \(G \) if and only if \(F(G) \leq V \) and \(V \) is \(\mathcal{H} \)-maximal in \(G \).

Corollary 4.5 (Guo and Vorob’ev [6]) Let \(\mathcal{H} \) be a soluble Hartley class and \(G \) is a soluble group. Then a subgroup \(V \) of \(G \) is an \(\mathcal{H} \)-injector of \(G \) if and only if \(V/G_h \) is a nilpotent injector of \(G/G_h \).

Corollary 4.6 Let \(N^k(k \geq 1) \) be a Fitting set of all subgroup of a soluble group \(G \) with a nilpotent length at most \(k \). Then the set of all \(N^k \)-injectors of \(G \) is exactly the set of all subgroups \(V \) of \(G \) such that \(V/G_{N^k-1} \) is a nilpotent of \(G/G_{N^k-1} \). In particular, a subgroup \(V \) is an \(N^2 \)-injector of \(G \) if
and only if $V/F(G)$ is a nilpotent injector of $G/F(G)$.

Proof. By Example 3.1 (c), N^k is a Hartley set of G and the function h such that $h(p) = Tr_{N^k-1}(G)$ for all $p \in \mathbb{P}$ is a full integrated H-function of N^k. Since a group G is soluble, G/G_h is H-constrained and so the Corollary hold from our Theorem.

Corollary 4.7 (Guo and Vorob’ev [6]) Let \mathfrak{N}^k ($k \geq 1$) be the class of all groups with nilpotent length at most k and G a soluble group. Then the set of all \mathfrak{N}^k-injectors of G is exactly the set of all subgroups V of G such that $V/G_{\mathfrak{N}^k-1}$ is a nilpotent injector of $G/G_{\mathfrak{N}^k-1}$. In particular, a subgroup V of a soluble group G is metanilpotent injector if and only if $V/F(G)$ is a nilpotent injector of $G/F(G)$.

References

[1] W. Anderson, Injectors in finite soluble groups, J.Algebra. 36 (1975) 333-338.

[2] A. Ballester-Bolinches, L.M. Ezquerro, *Classes of Finite groups*, Springer, Dordrecht, 2006.

[3] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin, New York, 1992.

[4] B. Fischer, W. Gaschütz, B. Hartley, Injectoren endlicher auflösbarer Gruppen, Math.Z. 102 (1967), 337-339.

[5] B. Fischer, Klassen Konjugierter Untergruppen in endlichen auflösbarer Gruppen, Habilitations schrift. Universität Frankfurt (M), 1966.

[6] W. Guo, N.T. Vorob’ev, On injectors of finite soluble groups, Comm.Algebra. 36 (2008), 3200-3208.

[7] W. Guo, Y.F. Liu, N.T. Vorob’ev, Description of \mathfrak{F}-injectors of finite soluble groups, Math.Sci.Res.J. 12 (1) (2008).

[8] W. Guo, Structure Theory for Canonical Classes of Fitting Groups, Springer, 2015.

[9] B. Hartley, On Fischer’s dualization of formation theory, Proc. London Math. Soc. 3(2) (1969), 193-207.

[10] P. Hauck, V.N. Zahursky, A characterization of dominant local Fitting class, J.Algebra. 358 (2012), 27-32.

[11] M.J. Iranzo, F. Perez Monazor, \mathfrak{F}-constraint with respect to a Fitting class. Arch.Math. (Basel), 46 (1986), 205-210.

[12] A. Mann, Injectors and normal subgroups of finite groups, Israel J.Math. 9 (1971), 554-558.
[13] Nanying Yang, W. Guo, N.T. Vorob’ev, On \(F\)-injectors of fitting set of a finite group, Comm. Algebra, DOI:10.1080/00927872.2017.1319475 (2017), 1-13.

[14] M.G. Semenov, A formul of injector of finite \(\pi\)-soluble group, Problem of Phusik, Mathematic and Technik. 4 (21) (2014), 77-88.

[15] L.A. Shemetkov, On subgroups of \(\pi\)-soluble groups, Nauka i Technika. (1975), 207-212.

[16] N.T. Vorob’ev, On the Hawkes Conjecture for radical classes, Sib.Math.J. 37 (6) (1996) 1137-1142.

[17] N.T. Vorob’ev, M.G. Semenov, Injectors in Fitting set of finite groups, Math.Notes 97(4) (2015), 521-530.