Design and Synthesis of Five Cyclobuta-1,3-Dien-1-yl-Steroid Derivatives to Evaluate Their Theoretical Activity Against COVID-19

Figueroa-Valverde Lauro 1, *, Díaz-Cedillo Francisco 2, López-Ramos Maria 1, Rosas-Nexticapa Marcela 3, *, Mateu-Armad Maria Virginia 3, Garcimarrero E. Alejandara 3, Cauich-Carrillo Regina 1, Ortiz-Ake Yazmin 1

1 Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México
2 Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala s/n Col. Santo Tomas, D.F. C.P. 11340, México
3 Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México

* Correspondence: lfiguero@uacam.mx (F.V.L); maclopez@hotmail.com (R.N.M);
Scopus Author ID 55995915500

Received: 20.05.2020; Revised: 10.06.2020; Accepted: 12.06.2020; Published: 15.06.2020

Abstract: Several drugs have been prepared to evaluate their interaction with coronavirus disease (COVID-19) using some docking models. The aim of this research was to prepare five cyclobuta-1,3-dien-1-yl-steroid derivatives from 3-ethylinaniline using some chemical reactions. In addition, the interaction of compounds 3 to 7 with COVID-19 (6LU7 protein) was evaluated using chloroquine, remdesivir, and favipiravir as controls in a theoretical model. The results showed that compounds 6 have a higher affinity by 6LU7-protein surface compared with either chloroquine, remdesivir, and favipiravir. In addition, remdesivir have lower affinity by 6LU7-protein in comparison with compound 5. In conclusion, this phenomenon suggests that either compounds 5 or 6 could exert some changes in the biological activity of COVID-19.

Keywords: Steroid; derivative; 3-ethylinaniline; COVID-19.

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Respiratory diseases are one of the main health problems worldwide [1-6]. Some of these clinical pathologies have been related to severe acute respiratory syndrome coronavirus 2 (SARS-COV) [7-12]. It is noteworthy that some antiviral drugs have been used for the treatment of SARS-COV; unfortunately, at present, there is no drug to decrease respiratory diseases caused by SARS-COV. In search of some therapeutic alternatives, several compounds have been synthesized to the treatment of SARS-COV: For example, the synthesis of compound an oxohexanoic-acid analog from hydroxyhexanoic-acid derivative [13]. Furthermore, a report showed the synthesis of an oxo-pyrrolidin-3-yl]butanamide analog by the reaction of a α-hydroxyamide with periodinane [14]. Other study shown the preparation of an indole derivative from 2,3-Dioxo-2,3-dihydro-1H-indole-5-carboxylic acid and 2-(bromomethyl)naphthalene [15]. Additionally, a report indicated the synthesis of a carboxamide via reaction of pyridine-3-carboxaldehyde and 4-tert-butylaniline [16]. Other
data, showed the synthesis of piperidine from of Naphthyl)ethyl]-4-methoxycarbonylpiperidine and with dimethylformamide [17]. All these data have shown the synthesis of several drugs with activity against some SARS-CoV strains. However, the binding of these compounds with several SARS-CoV strains is very confusing; perhaps this phenomenon could be due to the different chemical structure of each compound. Analyzing these data, the objective of this investigation was to synthesize five cyclobuta-1,3-dien-1-yl-steroid derivatives to evaluate their theoretical activity against COVID-19 using the 6LU7-protein as a theoretical model on the DockingServer.

2. Materials and Methods

2.1. General methods.

The steroid derivatives were prepared using a previous method reported [18, 19]. In addition, all reagents used in this investigation were acquired from Sigma-Aldrich Co., Ltd. The melting point for compounds was evaluated on an Electrothermal (900 model). Infrared spectra (IR) were evaluated with a Thermo Scientific iSOFT-IR spectrometer. 1H and 13C NMR spectra were recorded using a Varian VXR300/5 FT NMR spectrometer at 300 MHz in CDCl$_3$ using TMS as an internal standard. EIMS spectra were obtained with a Finnigan Trace Gas Chromatography Polaris Q-Spectrometer. Elementary analysis data were acquired from a Perkin Elmer Ser. II CHNS/02400 elemental analyzer.

2.2. Synthesis of (3-Ethynyl-phenyl)-methyl-amine (2).

In a round bottom flask (10 ml), 3-ethynilaniline (100 µl, 0.90 mmol), potassium hydroxide (50 mg, 0.89 mmol), palladium on carbon (100 mg, 0.93 mmol) and 10 ml of methanol were stirred at reflux for 12 h. Then, the solvent was evaporated under reduced pressure and following the product was purified via crystallization using the methanol:hexane:water (4:2:1) system; yielding 60% of product; m.p. 70-72 ºC; IR (V$_\text{max}$, cm$^{-1}$) 3310 and 1602: 1H NMR (300 MHz, CDCl$_3$-d$_2$) δH: 2.82 (s, 1H), 2.88 (s, 3H), 4.82 (broad, 1H), 6.54-7.12 (m, 4H) ppm. 13C NMR (300 Hz, CDCl$_3$) δC: 30.32, 78.22, 84.00, 114.50, 122.12, 122.35, 126.22, 129.70, 151.30 ppm. EIMS m/z: 131.07. Anal. Calcd. for C$_9$H$_9$N. C, 82.41; H, 6.92; N, 10.68. Found: C, 82.40; H, 6.90.

(13S,17S)-13-methyl-17-[4-[(methylamino)phenyl]cyclobuta-1,3-dien-1-yl]-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (3).

In a round bottom flask (10 ml), compound 2 [100 mg, 0.76 mmol], 17α-ethynilestradiol (fragment A) ([225 mg, 0.76 mmol], Copper(II) chloride [105 mg, 0.78 mmol] and 5 ml of methanol were stirred at room temperature for 72 h. Then, the solvent was evaporated under reduced pressure and following the product was purified via crystallization using the methanol:water (4:1) system; yielding 55% of product; m.p. 165-167 ºC; IR (V$_\text{max}$, cm$^{-1}$) 3400 and 3312: 1H NMR (300 MHz, CDCl$_3$-d$_2$) δH: 0.72 (s, 3H), 1.12-2.50 (m, 13H), 2.74 (s, 3H), 2.77-2.80 (m, 2H), 6.12 (d, 1H, J = -0.96 Hz), 6.26 (broad, 3H), 6.28 (d, 1H, J = -0.96 Hz), 6.60 (m, 1H), 6.72-6.76 (m, 2H), 6.80-7.16 (m, 2H), 7.20 (m, 1H), 7.26 (m, 1H) ppm. 13C NMR (300 Hz, CDCl$_3$) δC: 15.12, 23.76, 26.25, 27.96, 30.26, 30.28, 33.04, 33.12, 40.70, 42.60, 44.30, 50.88, 79.56, 112.54, 113.64, 115.96, 116.00, 119.55, 126.57, 126.76, 128.44, 128.60, 131.92, 135.66, 138.20, 138.50, 142.00, 146.06, 156.02 ppm. EIMS m/z: 427.25. Anal. Calcd. for C$_{29}$H$_{33}$NO$_2$. C, 81.46; H, 7.78; N, 3.28; O, 7.48. Found: C, 81.44; H, 7.73.
In a round bottom flask (10 ml), compound 2 [100 mg, 0.76 mmol], 2-nitro-17αethynilestradiol (fragment B) [260 mg, 0.76 mmol], Copper(II) chloride [105 mg, 0.78 mmol] and 5 ml of methanol were stirred at room temperature for 72 h. Then, the solvent was evaporated under reduced pressure and following the product was purified via crystallization using the methanol:hexane:water (4:2:1) system; yielding 52% of product; m.p. 144-146 °C; IR (\(V_{\text{max}}\), cm\(^{-1}\)) 3040, 3310, 1622 and 1222. \(^1\)H NMR (300 MHz, CDCl\(_3\); \(\delta_H\)) 0.72 (s, 3H), 1.12-2.58 (m, 13H), 2.74 (s, 3H), 2.82-2.86 (m, 2H), 5.96 (broad, 1H), 6.06-6.08 (m, 2H), 6.60-6.80 (m, 2H), 7.16 (m, 1H), 7.18-7.40 (m, 2H), 7.48-7.60 (m, 2H), 10.02 (s, 1H), 10.06 (s, 1H) ppm. \(^{13}\)C NMR (300 Hz, CDCl\(_3\); \(\delta_C\)) 17.80, 24.24, 24.55, 27.26, 27.76, 29.62, 30.26, 35.74, 36.34, 40.90, 44.60, 52.78, 61.78, 111.92, 116.00, 118.90, 124.75, 125.40, 126.10, 128.44, 129.85, 132.13, 135.16, 135.66, 135.90, 136.70, 143.50, 147.44, 150.92, 192.12, 195.32 ppm. EI-MS m/z: 472.23. Anal. Calcd. for C\(_{29}\)H\(_{32}\)N\(_2\)O\(_4\). C, 73.70; H, 6.83; N, 5.93; O, 13.54. Found: C, 73.68; H, 6.80.

(15S,16S)-16-methyl-15-[4-(3-methylamino)phenyl]cyclobuta-1,3-dien-1-yl]-5-oxapentacyclo[7.7.0.0.4.8.2.0.8.4.6.0.12,16]octadeca-2(8),3,6-trien-15-ol (5).

In a round bottom flask (10 ml), compound 2 [100 mg, 0.76 mmol], oxirenol-steroid derivative (fragment C) [225 mg, 0.76 mmol], Copper(II) chloride [105 mg, 0.78 mmol] and 5 ml of methanol were stirred at room temperature for 72 h. Then, the solvent was evaporated under reduced pressure and following the product was purified via crystallization using the methanol:water (4:1) system; yielding 66% of product; m.p. 170-172 °C; IR (\(V_{\text{max}}\), cm\(^{-1}\)) 3310, 1622 and 1222. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta_H\) 7.32. \(^{13}\)C NMR (300 Hz, CDCl\(_3\)) \(\delta_C\) 15.30, 23.76, 26.25, 27.86, 29.82, 30.26, 33.04, 33.14, 40.70, 42.60, 45.40, 50.88, 79.56, 108.84, 108.90, 112.56, 116.00, 119.55, 126.57, 128.44, 128.60, 132.33, 135.66, 138.50, 142.00, 145.08, 146.06, 148.46 ppm. EI-MS m/z: 425.23. Anal. Calcd. for C\(_{29}\)H\(_{32}\)N\(_2\)O\(_2\). C, 81.85; H, 7.34; N, 3.29; O, 7.52. Found: C, 81.82; H, 7.32.

(13S,17S)-13-methyl-17-[4-(3-methylamino)phenyl]cyclobuta-1,3-dien-1-yl]-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthrene-3,17-dicarbaldehyde (6).

In a round bottom flask (10 ml), compound 2 [100 mg, 0.76 mmol], 17α-ethyl-steroid-3,17-dicarbaldehyde (fragment D) [245 mg, 0.76 mmol], Copper(II) chloride [105 mg, 0.78 mmol] and 5 ml of methanol were stirred at room temperature for 72 h. Then, the solvent was evaporated under reduced pressure and following the product was purified via crystallization using the methanol:water (3:1) system; yielding 65% of product; m.p. 144-146 °C; IR (\(V_{\text{max}}\), cm\(^{-1}\)) 3312, 1720 and 1602. \(^1\)H NMR (300 MHz, CDCl\(_3\)); \(\delta_H\) 1.10 (s, 3H), 1.12-2.58 (m, 13H), 2.74 (s, 3H), 2.82-2.86 (m, 2H), 5.96 (broad, 1H), 6.06-6.08 (m, 2H), 6.60-6.80 (m, 2H), 7.16 (m, 1H), 7.18-7.40 (m, 2H), 7.48-7.60 (m, 2H), 10.02 (s, 1H), 10.06 (s, 1H) ppm. \(^{13}\)C NMR (300 Hz, CDCl\(_3\)); \(\delta_C\) 17.80, 24.24, 24.55, 27.26, 27.76, 29.62, 30.26, 35.74, 36.34, 40.90, 44.60, 52.78, 61.78, 111.92, 116.00, 118.90, 124.75, 125.40, 126.10, 128.44, 129.85, 132.13, 135.16, 135.66, 135.90, 136.70, 143.50, 147.44, 150.92, 192.12, 195.32 ppm. EI-MS m/z: 451.25. Anal. Calcd. for C\(_{31}\)H\(_{33}\)NO\(_2\). C, 82.45; H, 7.37; N, 3.10; O, 7.09. Found: C, 82.42; H, 7.34.
(13S,17S)-13-methyl-17-[4-[(3-methylamino)phenyl]cyclobuta-1,3-dien-1-yl]-2-nitro-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthrene-3,17-dicarbaldehyde (7).

In a round bottom flask (10 ml), compound 2 [100 mg, 0.76 mmol], 17-ethynyl-2-nitrostereoid-3,17-dicarbaldehyde (fragment E) [265 mg, 0.76 mmol], Copper(II) chloride [105 mg, 0.78 mmol] and 5 ml of methanol were stirred at room temperature for 72 h. Then, the solvent was evaporated under reduced pressure and following the product was purified via crystallization using the methanol:water (4:1) system; yielding 56% of product; m.p. 188-190 °C; IR (νmax, cm⁻¹) 3312, 1722, 1600 and 1540; ¹H NMR (300 MHz, CDCl₃-d) δH: 1.10 (s, 3H), 1.12-2.58 (m, 12H), 2.74 (s, 3H), 2.82-2.92 (m, 3H), 5.96 (broad, 1H), 6.06-6.08 (m, 2H), 6.60-7.40 (m, 4H), 7.80-7.92 (m, 2H), 10.06 (s, 1H), 10.80 (s, 1H) ppm. ¹³C NMR (300 Hz, CDCl₃) δC: 17.80, 24.24, 24.55, 27.26, 27.76, 29.62, 30.26, 35.74, 36.34, 40.90, 44.98, 52.78, 61.78, 111.92, 116.00, 118.90, 122.72, 126.22, 126.50, 128.44, 129.85, 132.13, 135.16, 135.66, 143.50, 145.52, 147.44, 151.74, 152.74, 194.22, 195.32 ppm. EI-MS m/z: 496.23. Anal. Calcd. for C₃₁H₃₂N₂O₄. C, 74.98; H, 6.50; N, 5.64; O, 12.89. Found: C, 74.96; H, 5.63.

2.3. Ligand-protein interaction.

The interaction of the steroid derivatives with the COVID-19 surface was evaluated using 6LU7 protein as a theoretical model [20]. Furthermore, to calculate binding energy involved in the interaction of the steroid derivative and 6LU7-protein surface, either chloroquine, remdesivir, and favipiravir as controls were used on a docking Server software [21].

2.4. Pharmacokinetics Parameter.

To evaluate some pharmacokinetic factors involved in the chemical structure of the steroid derivatives, the SwissADME software was used [22].

3. Results and Discussion

Several drugs have been developed for the treatment of coronavirus disease (COVID-19) using some reagents which are dangerous and require special conditions [13-17]. Furthermore, the interaction with COVID-19 is very confusing; perhaps, this phenomenon could be to different structure chemical of each compound. Analyzing these data, in this investigation, five cyclobuta-1,3-dien-1-yl-steroid derivatives were synthesized to evaluate their interaction with COVID-19 using several strategies as follows.

3.1. Methylation reaction.

There are studies for methylation of some compounds using several reagents such as Copper [23], Ruthenium [24], Iridium chloride [25], Cobalt [26], Manganese chloride [27], Palladium [28], Nikel [29] and others. In this research, the compound 3-Ethynyl-phenyl-methyl-amine (2) was prepared from 3-ethynylaniline and methanol in the presence of palladium on carbon in middle conditions (Figure 1).

The ¹H NMR spectrum of 2 showed several signals at 2.82 ppm for alkyne group; at 2.82 ppm for methyl group; at 4.82 for the amino group; at 6.54-7.12 ppm for phenyl group. The ¹³C NMR spectra display chemical shifts at 30.32 ppm for methyl group; at 78.22 and
84.00 for alkyne group; at 114.50-151.30 ppm for phenyl group. Additionally, the mass spectrum from 2 showed a molecular ion (m/z) 13.07.

![Figure 1](https://nanobioletters.com/) Synthesis of (3-Ethynyl-phenyl)-methyl-amine (2). Reagents and conditions: i = 3-ethynylaniline, palladium on carbon, methanol, potassium hydroxide, reflux, 12 h.

3.2. Synthesis of cyclobuta-1,3-dien-1-yl-steroid derivatives.

Several cyclobutadiene derivatives have been prepared using some reagents such as PdCl₂, [30], cobalt chloride [31], 1,2-dibromoethane [32], Cupric chloride [33], ruthenium chloride [34], tetrakis(trimethylsilyl)cyclobutadienylcyclopentadienyl cobalt complex [35] and others. In this study, five cyclobutadiene-steroid derivatives were prepared (compound 3 to 7) from some steroid-analogs (A to E fragments) and compound 2 in the presence of Copper(II) chloride (Figure 2). The 1H NMR spectrum of 3 showed several signals at 0.72 ppm for methyl groups bound to steroid nucleus; at 1.12-2.50, 2.77-2.80, 6.72-6.76 and 7.20 ppm for steroid moiety; at 2.74 for methyl bound to the amino group; at 6.26 ppm for both hydroxyl and amino groups; at 6.12 and 6.28 ppm for cyclobutadiene ring; at 6.60, 6.80-7.16 and 7.26 ppm for phenyl group. The 13C NMR spectra display chemical shifts at 15.12 for methyl group linked to steroid nucleus; at 30.28 ppm for methyl bound to the amino group; at 23.76-30.26, 33.04-79.56, 113.64-115.96, 126.76, 131.92, 138.20 and 156.02 ppm for steroid moiety; at 112.54, 116.00-119.55, 128.44, 135.66 and 146.06 ppm for phenyl group; at 126.57, 128.60 and 138.50-142.00 for cyclobutadiene ring. Finally, the mass spectrum from 3 showed a molecular ion (m/z) 427.25.

On the other hand, other data display several signals involved in the 1H NMR spectrum for 4 at 0.72 ppm for methyl group bound to steroid nucleus; at 2.74 ppm for methyl group bound to the amino group; at 1.2-1.90, 2.77-2.90, 6.66 and 7.82 ppm for steroid moiety; at 6.12-6.26 ppm for cyclobutadiene ring; at 6.48 for both amino and hydroxyl groups; at 6.60 and 6.80-7.26 ppm for phenyl group. In addition, the 13C NMR spectra display chemical shifts at 12.42-15.30 ppm for methyl groups linked to steroid nucleus; at 30.26 ppm for methyl bound to the amino group; at 23.76-30.26, 33.04-79.56, 114.04, 123.54, 132.33-132.90, 145.08 and 148.46 ppm for steroid moiety; at 112.54, 116.00-119.55, 128.44, 135.66 and 146.06 ppm for phenyl group; at 126.57, 128.60 and 138.50-142.00 ppm for cyclobutadiene ring. In addition, the mass spectrum from 4 showed a molecular ion (m/z) 472.23.

In addition, the 1H NMR spectrum of 5 showed several signals at 0.72 ppm for methyl group bound to steroid nucleus; at 2.74 ppm for methyl group bound to the amino group; at 1.22-2.44, 2.77-2.80 and 6.30-6.32 ppm for steroid moiety; at 6.80-7.26 ppm for phenyl group; at 4.92 ppm for both hydroxyl and amino groups; at 6.12-6.26 ppm for cyclobutadiene ring. The 13C NMR spectra display chemical shifts at 15.30 ppm for methyl group linked to steroid nucleus; at 30.26 ppm for methyl bound to the amino group; at 23.76-29.82, 33.04-79.56, 114.04, 123.54, 132.33-132.90, 145.08 and 148.46 ppm for steroid moiety; at 112.54, 116.00-119.55, 128.44, 135.66 and 146.06 ppm for phenyl group; at 126.57, 128.60 and 138.50-142.00 ppm for cyclobutadiene ring. Additionally, the mass spectrum from 5 showed a molecular ion (m/z) 425.23.
Figure 2. Preparation of cyclobutadiene-steroid derivatives (3-7). reagents and conditions: ii = Copper(II) chloride, methanol, room temperature, 12 h. Fragments; A = 17α-ethynilestradiol; B = 2-nitro-17αethynilestradiol; C = oxirenol-steroid derivative; D = 17α-ethynyl-steroid-3,17-dicarbaldehyde; E = 17-ethynyl-2-nitro-steroid-3,17-dicarbaldehyde.

Other data involved in the 1H NMR spectrum of 6 showed several signals at 1.10 ppm for methyl group bound to steroid nucleus; at 2.74 ppm for methyl group bound to the amino group; at 1.22-2.58, 2.82-2.86, 7.16 and 7.48-7.60 ppm for steroid moiety; at 5.96 ppm for the amino group; at 6.06-6.08 ppm for cyclobutadiene ring; at 6.60-6.80 and 7.18-7.40 ppm for phenyl group; at 10.02 and 10.06 ppm for aldehyde groups. The 13C NMR spectra display chemical shifts at 17.80 ppm for methyl group linked to steroid nucleus; at 30.26 ppm for methyl bound to the amino group; at 24.24-29.62, 35.74-61.78, 124.75-128.10, 135.90-136.70 and 150.92 ppm for steroid moiety; at 11.92-118.90, 129.85, 135.66 and 147.44 ppm for phenyl group; at 128.44, 132.13-135.16 and 143.50 ppm for cyclobutadiene ring; at 192.12-195.32 ppm for aldehyde groups. Additionally, the mass spectrum from 6 showed a molecular ion (m/z) 451.25.

Finally, the 1H NMR spectrum for 7 display several signals at 1.10 ppm for methyl group bound to steroid nucleus; at 2.74 ppm for methyl group bound to the amino group; at 1.22-2.50, 2.82-2.86 and 7.80-7.92 ppm for steroid moiety; at 5.96 ppm for the amino group; at 6.06-6.08 ppm for cyclobutadiene ring; at 6.60-7.40 ppm for phenyl group; at 10.02 and 10.80 ppm for aldehyde groups. The 13C NMR spectra display chemical shifts at 17.80 ppm for methyl group linked to steroid nucleus; at 30.26 ppm for methyl bound to the amino group; at 24.24-29.62, 35.74-61.78, 122.72-126.50, 145.52 and 151.74-152.74 ppm for steroid moiety; at 11.92-118.90, 129.85 and 135.66 and 144.44 ppm for phenyl group; at 128.44, 132.13-135.16, and143.50 ppm for cyclobutadiene ring; at 194.22-195.32 ppm for aldehyde groups. Besides, the mass spectrum from 7 showed a molecular ion (m/z) 491.23.

3.3. Ligand-protein interaction.

For several years, some techniques were used to analyze the coupling of biomolecules with some drugs; These techniques involve the flexible coupling of ligands on the surface of some either protein or enzyme. Furthermore, these studies involve the evaluation of the free binding energies and the solvation energies involved between the ligand-biomolecule interaction [36-41]. In this way, in this investigation a theoretical ass was carried out to analyze the interaction of steroid derivatives with the 6LU7-protein surface.
The results (Figures 3-7; Table 1) showed that there are different amino acid residues involved in the binding of the steroid derivatives with 6LU7 protein surface; however, the inhibition constant (Ki) for compound 6 was lower compared with either compounds 3-5, 7.
and the controls (favipiravir, chloroquine, and remdesivir). Furthermore, compound 5 also showed a good theoretical interaction with 6LU7-protein surface (Ki, 4.73; Table 2).

Table 1. Interaction of either steroid-derivatives and controls (chloroquine, remdesivir, and favipiravir) with 6LU7-protein surface.

Compound	Favipiravir	Chloroquine	Remdesivir	1	2	3	4	5
Met17	His164	Glu166	Asn142	Leu80	Asn133	Met165		
Gln19	Met165	Leu167	Met165	Pro9	Met165	Phe134		
Gln69	Glu166	Pro168	Glu166	Ile152	Pro168	Pro184		
Asn119	Pro168	Gln189	Pro168	Tyr154	Gln189	Gln189		
Gly120	Gln189	Ala191	Gln189	Phe294	Gln192	Thr198		
Ser121	Ala193					Met235		

Table 2. Thermodynamic parameters involved in the binding of either steroid-derivatives and controls (chloroquine, remdesivir and favipiravir) with 6LU7-protein surface.

Compound	Est. Free Energy of Binding	Est. Inhibition Constant (Ki)	vDW + H-bond Energy	Electrostatic Energy	Total Interm. Energy	Interact Surface
Chloroquine	-3.99	1.20	-4.54	-2.03	-6.56	495.65
Remdesivir	-2.45	15.90	-6.09	-0.38	-6.48	643.33
Fivipiravir	-3.73	1.83	-3.97	-0.06	-4.03	338.65
3	-6.56	15.43	-8.04	-0.04	-8.09	716.06
4	-5.11	93.11	-6.42	0.10	-6.32	611.75
5	-7.27	4.73	-7.80	0.00	-7.79	726.52
6	-4.08	1.03	-4.81	-0.11	-4.92	636.16
7	-5.58	81.02	-5.98	-0.04	-6.02	595.67

3.4. Pharmacokinetic evaluation.

Several studies have reported the evaluation of some pharmacokinetic parameters of different drugs using theoretical models such as PKQuest [40], PharmPK [41] Gitub [42], SwissADME [43]. In this way, in this research, some pharmacokinetic parameters possibly involved in the steroid derivatives were evaluated using the SwissADME software. The results (Table 3) indicate that these compounds could have different gastrointestinal absorption and, consequently, their metabolism could involve different types of CYP enzymes (Cytochrome P450 system).

Table 3. The pharmacokinetics properties of the Fluoro-2,4dioxaspiro[bicyclo[3.3.1]indene derivative. The values determine using the SwissADME software.

Parameter	3	4	5	6	7
GI absorption	high	Low	high	high	Low
BBB permenat	No	No	No	No	No
P-gp substrate	No	Yes	No	No	Yes
CYP1A2 inhibitor	No	No	No	Yes	No
CYP2C19 inhibitor	No	No	No	No	No
CYP2C9 inhibitor	No	Yes	No	Yes	Yes
CYP2D6 inhibitor	No	No	No	Yes	No
CYP3A4 inhibitor	No	Yes	Yes	Yes	Yes
LogKp (cm/s)	-5.06	-4.97	-5.69	-4.77	-5.17

4. Conclusions

In this investigation, the synthesis of five cyclobuta-1,3-dien-1-yl-steroid derivatives using several chemical strategies is reported. Furthermore, theoretical analysis of the interaction between steroid derivatives showed a higher affinity of compounds 5 and 6 by the
6LU7-protein surface. All these data suggest that both compounds 5 and 6 could be good candidates as COVID-19 inhibitors.

Funding

This research received no external funding.

Acknowledgments

To Benjamin Valverde and Raquel Anzurez, for your unconditional support on this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Zhang, J.; Zhou, L.; Yang, Y.; Peng, W.; Wang, W.; Chen, X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. The Lancet Respiratory Medicine 2020, 8, e11-e12, https://doi.org/10.1016/S2213-2600(20)30071-0.
2. Perelló, R.; Moreno, A.; Camps, M.; Cervera, C.; Linares, L.; Pumarola, T.; Marcos, M. Implicación de los virus respiratorios en la neumonía adquirida en comunidad en pacientes infectados por el virus de la inmunodeficiencia humana. Enfermedades Infecciosas y Microbiología Clínica 2008, 26, 85-87, https://doi.org/10.1157/13115543.
3. Fong-Ponce, B. Neumonía adquirida en la comunidad: Identificando las comorbididades como factores de riesgo. Karger Kompass Neumología 2020, 2, 24-25, https://doi.org/10.1159/000504867.
4. Matus, C.; Oyarzún, G. Impacto Del Material Particulado aéreo (MP 2, 5) sobre las hospitalizaciones por enfermedades respiratorias en niños: estudio caso-control alterno. Revista chilena de pediatría 2019, 90, 2.
5. Galván, J.; Rajas, O.; Aspa, J. Revisión sobre las infecciones no bacterianas del aparato respiratorio: neumonías víricas. Archivos de Bronconeumología 2015, 51, 590-597, https://doi.org/10.1016/j.arbres.2015.02.015.
6. Tirado, M.; Silva P. Perfil epidemiológico de infecciones respiratorias agudas en adultos hospitalizados. Medicencias UTA 3.3 2019, 3, 112-119, https://doi.org/10.31243/mdc.uta.v3i3.196.2019.
7. Lai, C.; Liu, Y.; Wang, C.; Wang, Y.; Hsueh, S.; Yen, M.; Hsueh, P. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection 2020, 53, 404-412, https://doi.org/10.1016/j.jmii.2020.02.012.
8. Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; Zhang, X.; Zhang, M.; Wu, S.; Song, J.; Chen, T.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of Clinical Investigation 2020, 130, 2620-2629, https://doi.org/10.1172/JCl137244.
9. Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet (London, England) 2020, 395, e30, https://doi.org/10.1016/S0140-6736(20)30304-4.
10. Van Doremalen, N.; Bushmaker, T.; Morris, D.; Holbrook, M.; Gamble, A.; Williamson, B.; Lloyd-Smith, J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 2020, 382(16), 1564-1567.
11. Chen, L.; Liu, H.; Liu, W.; Liu, J.; Liu, K.; Shang, J.; Wei, S. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Chinese journal of tuberculosis and respiratory diseases 2020, 43, E005-E005.
12. Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Yu, T. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet 2020, 395, 507-513, https://doi.org/10.1016/S0140-6736(20)30211-7.
13. Zhang, H.; Zhang, H.; Kemnitzer, W.; Tseng, B.; Cinatl, J.; Michaelis, M.; Cai, S. Design and synthesis of dipetidyl glutaminy fluoromethyl ketones as potent severe acute respiratory syndrome coronavirus (SARS-CoV) inhibitors. Journal of Medicinal Chemistry 2006, 49, 1198-1201, https://doi.org/10.1021/jm0507678.
14. Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; DeWild, A. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. Journal of Medicinal Chemistry 2020.
35. Lybrand, T.P. Ligand—protein docking and rational drug design. Current Opinion in Structural Biology 1995, 5, 224-228, https://doi.org/10.1016/0959-440X(95)80080-8.
36. Li, J.; Fu, A.; Zhang, L. An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. Interdisciplinary Sciences: Computational Life Sciences 2019, 11, 320-328, https://doi.org/10.1007/s12539-019-00327-w.
37. García-Nieto, J.; López-Camacho, E.; García-Godoy, M.J.; Nebro, A.J.; Aldana-Montes, J.F. Multi-objective ligand-protein docking with particle swarm optimizers. Swarm and Evolutionary Computation 2019, 44, 439-452, https://doi.org/10.1016/j.swevo.2018.05.007.
38. Nguyen, D.D.; Wei, G.-W. AGL-Score: Algebraic Graph Learning Score for Protein–Ligand Binding Scoring, Ranking, Docking, and Screening. Journal of Chemical Information and Modeling 2019, 59, 3291-3304, https://doi.org/10.1021/acs.jcim.9b00334.
39. Evangelista Falcon, W.; Ellingson, S.R.; Smith, J.C.; Baudry, J. Ensemble Docking in Drug Discovery: How Many Protein Configurations from Molecular Dynamics Simulations are Needed To Reproduce Known Ligand Binding? The Journal of Physical Chemistry B 2019, 123, 5189-5195, https://doi.org/10.1021/acs.jpcb.8b11491.
40. Levitt, D. PKQuest_Java: free, interactive physiologically based pharmacokinetic software package and tutorial. BMC Research Notes 2009, 2, 1-6, https://doi.org/10.1186/1756-0500-2-158.
41. Ishaku, S.; Bakare, M.; Musa, A.; Yakasai, I.; Garba, M.; Adzu, B. Evaluating the effect of artesunate on the pharmacokinetics of gliclazide in diabetic subjects. International Journal of Biological and Chemical Sciences 2019, 13, 2104-2111.
42. Guerra, R.P.; Carvalho, A.M.; Mateus, P. Model selection for clustering of pharmacokinetic responses. Computer Methods and Programs in Biomedicine 2018, 162, 11-18, https://doi.org/10.1016/j.cmpb.2018.05.002.
43. Br insanity, L.; Pavlidis, N.; Terret, C.; Bauer, J.; Fiedler, W.; Schöffski, P.; Raoul, J.L.; Hess, D.; Selvais, R.; Lacombe, D.; Bachmann, P.; Fumoleau, P. Glufosfamide administered using a 1-hour infusion given as first-line treatment for advanced pancreatic cancer. A phase II trial of the EORTC-new drug development group. European Journal of Cancer 2003, 39, 2334-2340, https://doi.org/10.1016/S0959-8049(03)00629-4.
44. Rosas-Nexticapa Marcela Figueroa-Valverde Lauro, Díaz-Cedillo Francisco, López-Ramos Maria, Mateu-Armad Maria Virginia, Garcimarrero E, Alejandara, Cauich-Carrillo Regina. Design and Two New Indol-Steroid Derivatives to Evaluate their Theoretical Activity Against Protein Kinase 2 (CK2) Protein. Biointerface Research in Applied Chemistry. 2020, 10(6), 6810-6820. https://doi.org/10.33263/BRIAC106.68106820