The evolution of star formation activity in galaxy groups

G. Erfanianfar, P. Popesso, A. Finoguenov, S. Wuyts, D. Wilman, A. Biviano, F. Ziparo, M. Salvato, K. Nandra, D. Lutz, D. Elbaz, M. Dickinson, M. Tanaka, M. Mirgazemi, M. L. Balogh, M. B. Altieri, H. Aussel, F. Bauer, S. Berta, R. M. Bielby, N. Brandt, N. Cappelluti, A. Cimatti, M. Cooper, D. Fadda, O. Ilbert, E. Le Floch, B. Magnelli, J. S. Mulchaey, R. Nordon, J. A. Newman, A. Poglitsch, F. Pozzi.
1 INTRODUCTION

One of the most fundamental correlations between the properties of galaxies in the local Universe is the so-called morphology-density relation (Dressler 1980; Davis & Geller 1976). A plethora of studies utilizing multi-wavelength tracers of activity have shown that late type star-forming galaxies favour low density regions in the local Universe (e.g. Gómez et al. 2003; Blanton et al. 2003; Hogg et al. 2004; Lewis et al. 2002). In particular, the cores of massive galaxy clusters are full of massive spheroids that are dominated by old stellar populations. A variety of physical processes might be effective in suppressing star formation and affecting the morphology of cluster and group galaxies. Two big families of such processes can be identified: (i) interactions with other cluster members and/or with the cluster potential and (ii) interactions with the hot gas that permeates massive galaxy systems. In the current standard paradigm for structure formation, dark matter collapses into halos in a bottom-up fashion: small objects form first and subsequently merge into progressively larger systems. In this context, galaxy groups are the building blocks of galaxy clusters. Galaxy groups have at any epoch a volume density orders of magnitude higher than those of massive clusters, which represents the rare and extreme specimen at the high mass end of the dark halo mass function (Jenkins et al. 2001). This is confirmed by the observational evidence that groups are the most common environment of galaxies in the present day universe, containing 50%-70% of the galaxy population (Geller & Huchra 1983; Eke et al. 2005). This naturally implies that processes taking place in the group environment can have a significant impact on the evolution of the galaxy population as a whole.

The main debate now centers on the role of galaxy “internal” versus “external” processes as driving mechanisms of the galaxy evolution, or, according to an old-fashion approach, the “nature” versus “nurture” scenario. In the current paradigm of galaxy formation the “internal” processes are mainly linked to the co-evolution of the host galaxy and its central black hole (Di Matteo, Springel & Hernquist 2005; Croton et al. 2006; De Lucia et al. 2006; Hopkins et al. 2006). However, as pointed out by De Lucia et al. (2012), the nature versus nurture dichotomy is an ill-posed problem. In the current paradigm of galaxy formation these physical internal and external processes are coupled with a history bias that is an integral part of the hierarchical structure formation of cosmic structure (De Lucia et al. 2012; Cooper et al. 2010; Wilman et al. 2013) have demonstrated that halos in overdense regions statistically form earlier and merge more rapidly than halos in regions of lower density (Gao et al. 2004). This differential evolution leaves a trace on the observable properties of galaxies that inhabit different regions at any cosmic epoch (De Lucia et al. 2012). This aspect makes the interpretation of the observational evidences even more difficult. In fact, binning galaxies according to their stellar mass does not suffice to disentangle the role of nature and nurture. For instance, two galaxies of identical mass at some cosmic epoch can end up having different stellar masses if one of them falls on to a cluster and the other remains in a region of average density. An important attempt to investigate from the observational point of view the inter-relationships between stellar mass, star-formation rate and environment comes from Peng et al. (2010) in the SDSS, zCOSMOS surveys. This study shows that a) two distinct processes, mass (internal) quenching and environment (external) quenching are both operating since $z\sim1$, b) environment-quenching occurs as large-scale structure develops and is more effective on satellite galaxies, c) mass-quenching is more efficient for central and generally more massive galaxies. The limit of this analysis is mainly in the definition of the environment that relies on the local galaxy density, which is only a poor proxy of the DM halo mass.

In the last decade a lot of effort has been devoted to the study of high redshift groups to investigate the possibility of a differential evolution of group galaxies with respect to field galaxies. A big step forward was made thanks to the advent of very deep multiwavelength surveys conducted on several blank fields, such as the Great Observatories Origin Deep Survey -South and -North (GOODS-S and GOODS-N, respectively), the Extended Chandra Deep Field South (ECDFS), the Cosmic Evolution Survey (COSMOS) and the All-wavelength Extended Groth strip International Survey (AEGIS). Those surveys combine deep photometric (from the X-rays to the far-infrared wavelengths) and spectroscopic (down to $i_{AB}\sim24$ mag and $b\sim25$ mag) observations...
over relatively large areas to lead, for the first time, to the construction of statistically significant samples of groups up to high redshift (z \approx 1.3-1.6, e.g. Finoguenov et al. 2010 and Bielby et al. 2010). In this context, the main outcome of these surveys is that group galaxies show a much faster evolution with respect to the field galaxies. For instance, the formation of the galaxy red sequence, which leads to the local dichotomy between red and blue galaxies, happens earlier in groups than in the field especially at high stellar masses (Iovino et al. 2010; Kovac et al. 2010; Cooper et al. 2007; Willman et al. 2009; Willman & Erwin 2012). It seems also that group galaxies undergo a substantial morphological transformation. Indeed, groups at z=1 host a transient population of “red spirals” which is not observed in the field (Jeltema et al. 2007; Tran et al. 2008; Balogh et al. 2009; Wolf et al. 2009; Mei et al. 2012).

Most analyses so far have concentrated on comparisons of the star-forming properties of the group galaxy population as a whole with those of field galaxies. However, it is also important to assess the dependence (if any) of the star-forming properties of group galaxies on their system global properties, such as the mass, velocity dispersion and X-ray luminosity of the groups at different epochs to understand if and how the evolution of the star formation activity depends on these variables. A way of looking at the evolution of the SF activity in galaxy systems is to consider global quantities such as the total star formation rate, that is the sum of the SFRs of all the galaxies in a system (see e.g. Popesso et al. 2007) or the fraction of star-forming galaxies in a system (see e.g. Poggianti et al. 2006). Understanding how the relation between these global quantities and the group properties changes with time can teach us how the evolution of galaxies depends on the environment where they live. For this purpose we create the largest homogeneous X-ray selected sample of groups at 0.15 < z < 1.1 by using the deepest available X-ray surveys conducted with Chandra and XMM – Newton on the ECFDS, CDFN, COSMOS and EGS regions. In addition, we use the latest and deepest available Spitzer MIPS and Herschel PACS (Photoconducting Array Camera and Spectrometer, Poglitsch et al. 2010) mid and far infrared surveys, respectively, conducted on the same blank fields to retrieve an accurate measure of the star formation rate of individual group galaxies. This is the first of a series of papers analyzing the relation between SF activity and galaxy environment defined as the membership of a galaxy to a massive dark matter halo. In this paper we carefully describe the catalog and present a calibration of all the relevant quantities involved in our analysis. We use this unprecedented dataset to study the evolution of the relation between the total SFR in galaxy groups at 0.15 < z < 1.1 with the group global properties, mainly the total halo mass, and to the stellar mass content of the groups and Halo Occupation Distribution (HOD) to understand how the group galaxy population evolves though cosmic times.

The paper is organized as follows. In Sect. 2 we describe our dataset. In Sect. 3 we describe how all relevant quantities are estimated. In Sect. 4 we describe our results and in Sect. 5 we discuss them and draw our conclusions. We adopt a Chabrier (2003) initial mass function (IMF), \(H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}, \Omega_m = 0.3, \Omega_\Lambda = 0.7 \) throughout this paper.

2 THE DATASET

The aim of this work is to analyse the evolution of the star formation activity in galaxy groups. For this purpose, we build a dataset which combines wide area surveys with good X-ray coverage, deep photometry, and high spectroscopic coverage. Galaxy clusters and groups are permeated by a hot intracluster medium radiating optically diffuse thermal emission in the X-ray band. Under the condition of hydrostatic equilibrium, the gas temperature and density are directly related to halo mass. A tight relation (rms=0.15 dex) exists also between the cluster dynamical mass and the X-ray luminosity (\(L_X, \text{Pratt et al. 2007; Rykoff et al. 2008} \). A similar scaling relation, though with a larger scatter, holds also in the galaxy group mass region (\(\text{Sun et al. 2012; rms=0.3 dex} \). Thus, the X-ray selection is the best way to select galaxy groups and clusters and to avoid incorrect galaxy identification due to projection effects associated with optical selection techniques. In addition, deep and accurate multi-wavelength catalogues are necessary in order to identify the group membership and to study the properties of the group galaxy population. Thus, we combine X-ray selected group catalogues and photometric and spectroscopic galaxy catalogues of four major blank field surveys: AEGIS, COSMOS, ECDFS and CDFN. Throughout our analysis we use spectroscopic redshifts to define the group membership and the multiwavelength photometric information for studying the galaxy properties. For calibration purposes we will also make use of photometric redshifts. In the following section we describe the multiwavelength dataset of each field.

2.1 The blank fields

2.1.1 AEGIS

The All-Wavelength Extended Groth Strip International Survey (AEGIS) brings together deep imaging data from X-ray to radio wavelengths and optical spectroscopy over a large area (0.5-1 deg\(^2\); Davis et al. 2003). This survey includes: Chandra/ACS X-ray (0.5-10 keV; Laird et al. 2004), GALEX ultraviolet (1200-2500 \(\lambda \); Davis et al. 2007), CFHT/MegaCam Legacy Survey optical (3600-9000 \(\lambda \); CFHT/CFHT2K optical (4500-9000 \(\lambda \); Coil et al. 2004), Hubble Space Telescope/ACS optical (4400-8500 \(\lambda \); Lotz et al. 2008), Palomar/WIRC near-infrared (1.2-2.2 \(\mu m \); Bundy et al. 2004), Spitzer/IRAC mid-infrared (3.6, 4.5, 5.8, 8 \(\mu m \); Barmby et al. 2008), Herschel far-infrared (100, 160 \(\mu m \)), VLA radio continuum (6-20cm; Wlinen et al. 2012) and a large spectroscopic dataset.

In particular, the X-ray data come from sensitive Chandra and XMM – Newton observations of this field which lead to one of the largest X-ray selected samples of galaxy groups catalog to date (Erfanianfar et al. 2013). The total X-ray exposure time with Chandra in this field is about 3.4 Ms with a nominal exposure of 800 ks in three central fields. The XMM – Newton observations in the southern part of this field have an exposure of 100 ks. The spectroscopic information is taken from different spectroscopic surveys performed in this field. The AEGIS field, as part of the Extended Groth Strip (EGS) field, has been targeted with the DEEP2 galaxy redshift survey (Davis et al. 2003; Newman et al. 2012) and it is the only field that has been a subject of extensive spectroscopic follow-up data in DEEP3.
In the DEEP2 fields EGS is the only field which is not color selected, so it gives us a nearly complete sample with redshift. In addition to DEEP2 and DEEP3, EGS is located in Sloan Digital Sky Survey coverage so we have additional spectra for low-redshift galaxies. We also used redshifts of spectroscopic galaxies obtained in follow-up observations of the DEEP2 sample with the Hectospec spectrograph on the Multiple Mirror Telescope (MMT; Coil et al. 2009).

Furthermore, the EGS field is located at the center of the third wide field of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS-Wide3, W3) which is imaged in u^*, g^*, r^*, i' and z' filters down to $i'=24.5$ with photometric data for 366,190 galaxies (Brinchoule et al. 2008). The EGS field also contains the CFHTLS Deep 3 field, which covers 1 deg2 with $ugriz$ imaging to depths ranging from 25.0 in z to 27 in g. For this work, we have used the T006 release of the CHTLS Deep data. The CFHTLS Deep field also contains near-infrared coverage in the JHK bands via the WIRCam Deep Survey (WIRDS - Bielby et al. 2012). This covers 0.4 deg2 of the D3 field and provides deep imaging to ~ 24.5 (AB) in the three NIR bands. Photometric redshifts in the region covered by the NIR data were determined using the Le Phare code as described in (Bielby et al. 2012).

2.1.2 COSMOS

The Cosmological Evolution survey (COSMOS) is the largest survey ever made using the Hubble Space Telescope (HST). With its 2 square degrees of coverage, COSMOS enables the sampling of the large scale structure of the universe, and reduces cosmic variance (Scoville et al. 2007). In particular COSMOS guarantees full spectral coverage, with X-ray (Chandra & XMM – Newton), UV (GALEX), optical (SUBARU), near-infrared (CFHT), mid-infrared (Spitzer), Herschel far-infrared (100, 160 µm), sub-millimetric (MAMBO) and radio (VLA) imaging. Furthermore, the X-ray information provided by the 1.5 Ms exposure with XMM – Newton (53 pointings on the whole field, 50 ks each, Hasinger et al. 2007) and the additional 1.8 Ms exposure with Chandra in the central square degree (Elvis et al. 2009) enable robust detections of galaxy groups out to $z \sim 1.2$ (Finoguenov et al. 2003; George et al. 2011; 2013).

COSMOS has been targeted by many spectroscopic programs at different telescopes and has a broad spectral coverage. The spectroscopic follow up is still continuing and so far includes: the zCOSMOS survey at VLT/VIMOS (Lilly et al. 2007, 2008). GEEC2 survey with the GMOS spectrograph on the GEMINI telescope (Balogh et al. 2011; Mok et al. 2013). Magellan/IMACS (Trump et al. 2007) and MMT (Prescott et al. 2006) campaigns, observations at Keck/DEIMOS (Pis: Scoville, Capak, Salvo, Santos, Kartaltepe) and FLS/FAST (Wright, Drake & Civano 2010).

The COSMOS photometric catalog (Capak et al. 2007; Capak 2008) contains multi-wavelength photometric information for $\sim 2 \times 10^6$ galaxies over the entire field. The position of galaxies has been extracted from the deep i-band imaging (Taniguchi et al. 2007). A limit of 80% completeness is achieved at $i_{AB} = 26.5$. The optical catalog of Capak et al. (2007); Capak (2009) includes 31 bands (2 bands from the Galaxy Evolution Explorer (GALEX), 6 broad bands from the SuprimeCam/Subaru camera, 2 broad bands from MEGACAM at CFHT, 14 medium and narrow bands from SuprimeCam/Subaru, J band from the WFCAM/UKIRT camera, H and K band from the WIRCAM/CFHT camera, and the 4 IRAC/Spitzer channels). In particular, We take the catalogue provided by Ilbert et al. (2009) and Ilbert et al. (2010). They cross-match the S-COSMOS Sanders et al. (2007) 3.6 µm selected catalogue with the multi-wavelength catalogue (Capak et al. 2007; Capak 2009) and calculate photo-z, stellar masses and SFR in a consistent way by using the Le Phare code (Ilbert et al. 2009, 2010).

2.1.3 ECDFS

ECDFS is observed broadly from X-ray to radio wavelengths and centred on one of the most well-studied extragalactic fields in the sky (e.g. Giavalisco et al. 2004; Rix et al. 2004; Lehmer et al. 2003; Quadri et al. 2007; Miller et al. 2008; Padovani et al. 2004; Cardamone et al. 2010; Xue et al. 2011; Damen et al. 2011). The smaller CDFS and GOODS-S regions is achieved by matching the Cardamone et al. (2010) catalog with all new publicly available spectroscopic redshifts, such as the one of Silverman et al. (2010) and the Arizona CDFS Environment Survey (ACES, Cooper et al. 2012). We clean the new catalogue of redshift duplications for the same source by matching the Cardamone et al. (2010) catalog with the Cooper et al. (2012) and the Silverman et al. (2010) catalog within 1" and by keeping the most accurate z_{red} entry (smaller error and/or higher quality flag) in case of multiple entries (see Ziparo et al. 2013 for a more detailed discussion). We also include the very high quality redshifts of the GMASS survey (Cimatti et al. 2008) using the same procedure. The total number of secure redshifts in the sample is 5080 out of 7277 total, unique targets.

We use the multi-wavelength photometric data from the catalogue of Cardamone et al. (2010). It includes a total of 10 ground-based broad bands ($U, U38, B, V, R, I, z, J, H, K$), 4 IRAC bands (3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm), and 18 medium-band imaging (I4427, I4454, I4464, I4844, I5055, I527, I550, I574, I598, I6424, I6561, I679, I709, I738, I767, I797, I8456). The catalogue includes multi-wavelength SEDs and photometric redshifts for ~ 80000 galaxies down to $R_{AB} \sim 27$.

2.1.4 CDFN

The Chandra Deep Field North (CDFN) survey is one of the deepest 0.5–8.0 keV surveys ever made. The Chandra survey is comprised of two partially overlapping ~ 1 Ms ACIS-I

1 http://terapix.iap.fr/cplt/T0006-doc.pdf
exposures covering a total of 448 sq. arcmin, of which \(\approx 160 \) sq. arcmin has 1.7-1.9 Ms of exposure. In addition, there is 150 ks of good XMM-Newton exposure. The GOODS-North field within the CDFN centers at RA= 12\(^{\circ}\)36\(^{\prime}\)55\({''}\), Dec. = +62\(^{\circ}\)14\(^{\prime}\)15\({''}\) (J2000) and has become one of the most well-studied extragalactic fields in the sky with existing observations among the deepest at a broad range of wavelengths (e.g., Alexander et al. 2003; Morrison et al. 2010; Cooper et al. 2014; Elbaz et al. 2011). GOODS-N covers an area of approximately \(10^\circ \times 16^\circ \) (Giavalisco et al. 2004).

We use the multi-wavelength catalogue of GOODS-N built by Berta et al. (2010), who adopted the Grazian et al. (2006) approach for the PSF matching. The catalogue includes ACS \(beiz \) (Giavalisco et al. 2004), Flamingos JHK, and Spitzer IRAC data. Moreover, MIPS 24 \(\mu m \) (Magnelli et al. 2009) and deep \(U, Ks \) (Barger, Cowie & Wang 2008). The catalog is also complemented by the spectroscopic redshift compilation of Barger, Cowie & Wang (2008).

2.2 X-ray Analysis

All the blank fields considered in our analysis are observed extensively in the X-ray with Chandra and XMM–Newton. Firstly, we remove point sources in both of the Chandra and XMM–Newton images following the procedure explained in Finoguenov et al. (2009). Then the residual images were coadded, taking into account the different sensitivity of each instrument. The “residual” image, free of point sources, is then used to identify extended emission. Groups and clusters are selected as extended emission with at least 4\(\sigma \) significance with respect to the background (see Finoguenov et al. 2009 for further details regarding the precise definition of background and detection significance level). A redshift to each system on the basis of spectroscopic redshift, when available, or otherwise photometric redshift is assigned. The X-ray luminosity \(L_X \) and \(r_{200} \) is determined iteratively, based on the aperture flux and recalculating the correction for the missing flux. \(M_{200} \) is determined via the scaling relation from weak lensing by the final \(L_X \) and so is \(r_{200} \). The \(r_{200} \) is the radius at which the density of a cluster is equal to 200 times the critical density of the universe (\(\rho_c \)) and is defined as \(M_{200} = (4\pi/3)200\rho_c r_{200}^3 \). After taking into account the possible missed flux through the use of the beta-model. The total masses \(M_{200} \) within \(r_{200} \), are estimated based on the measured \(L_X \) and its errors, using the scaling relation from weak lensing calibration of Leauthaud et al. (2010). The intrinsic scatter for mass in this relation is 20% (Leauthaud et al. 2010; Allevato et al. 2012) which is larger than a formal statistical error associated with the measurement of \(L_X \).

The X-ray group catalogs derived with this approach comprise 52 detections in AEGIS (Erfanianfar et al. 2013), 277 detections in the COSMOS field (George et al. 2011), 50 detections in the ECDFS (Finoguenov et al. in prep.) and 27 detection in CDFN. We present the full CDFN X-ray group catalog in the Appendix. In the following section we describe how we select a subsample of “secure” groups and how we associate them to the respective galaxy population.

2.2.1 Group Identification

To associate the respective galaxy population to any X-ray extended emission and to define properly the group redshift we follow the same procedure described in Erfanianfar et al. (2013) and performed on the AEGIS X-ray dataset. We extend here this procedure to all the other fields described in the previous section. In brief, we estimate the galaxy over-density along the line of sight in the region of each X-ray extended emission following the red sequence technique (Finn et al. 2010). Additionally we screen for the existence of an over-density of red galaxies in the 3rd dimension using the spectroscopic redshift distribution of the X-ray extended source.

As described in Erfanianfar et al. (2013), we assigned to each X-ray extended source a flag that describes the quality of the identification. We define the following flags:

- Flag=1 indicates a confident redshift assignment, significant X-ray emission, and a well-determined center of red galaxies with respect to X-ray emission center
- Flag=2 indicates that the centering has a large uncertainty \((\sim 15''\)\)
- Flag=3 indicates no secure spectroscopic confirmation but good centering
- Flag=4 or more depending on the survey indicates that we have uncertain redshifts due to the lack of spectroscopic objects and red galaxies, and also a large uncertainty in centering or unreliable cases for which we could not identify any redshift.

For the purpose of this work we consider only X-ray extended emission with a secure redshift definition with flag 1 or 2. Out of the initial 406 X-ray group candidates in the four considered fields, we identify 244 secure groups. The secure redshift estimate is used to refine the initial X-ray luminosity of the groups and, thus, the mass \(M_{200} \) with the scaling relation of Leauthaud et al. (2010) as described in the previous paragraph. The final step of the analysis is the identification of the group galaxy members via dynamical analysis as described below.

2.2.2 Group Membership

In order to properly define the galaxy membership of each group, we identify among our 244 secure groups those which are relatively isolated. Indeed, the presence of a close companion may bias the estimate of the velocity dispersion of the group and, thus, also the galaxy membership definition which relies on this quantity. This procedure leads to a subsample of 211 clean isolated groups. We follow the procedure described in Erfanianfar et al. (2013) to estimate the group velocity dispersion and the galaxy membership definition. The procedure is iterative and it needs a first guess of the velocity dispersion to define the redshift interval around the group redshift to determine the initial galaxy membership. We derive the first guess of the velocity dispersion from the group’s X-ray luminosity \(L_X \) by using the relation of Leauthaud et al. (2010). This velocity dispersion provides the intrinsic velocity dispersion \(\sigma(v)_{intr} \) - which can be achieved by subtracting the errors of the redshift measurements in quadrature from the rest frame velocity dispersion - of the group. We estimate, then, the observed velocity dispersion
by considering the redshift of the group \((z_{\text{group}})\) and the errors of the redshift in our spectroscopic samples, \((\Delta v)^2\) according to these relations:

\[
\sigma(v)^2_{\text{rest}} = \sigma(v)^2_{\text{intr}} + (\Delta v)^2
\]

\[
\sigma(v)^2_{\text{obs}} = \sigma(v)^2_{\text{rest}} 	imes (1 + z_{\text{group}})
\]

We consider as initial group members all galaxies within \(|z - z_{\text{group}}| < \delta(z)_{\text{max}}\) where \(\delta(z)_{\text{max}} = \frac{2}{(1 + z_{\text{group}})}\) and within virial radii \((r_{200})\) from the X-ray center. We recompute the observed velocity dispersion of the groups, \(\sigma(v)^2_{\text{obs}}\), using the “gapper” estimator method which gives more accurate measurements of velocity dispersion for small size groups (Beers, Flynn & Gebhardt 1990; Wilman et al. 2005) in comparison to the usual formula for standard deviation (see Erfanianfar et al. 2013 for more details). The observed velocity dispersion is estimated according to:

\[
\sigma(v)^2_{\text{obs}} = 1.135c \times \frac{\sqrt{\pi}}{N(N-1)} \sum_{i=1}^{n-1} \omega_i g_i
\]

where \(w_i = i(N - i)\), \(g_i = z_{i+1} - z_i\) and \(N\) is the total number of spectroscopic members. In this way we measure the velocity dispersion using the line-of-sight velocity gaps where the velocities have been sorted into ascending order. The factor 1.135 corrects for the \(2\sigma\) clipping of the Gaussian velocity distribution. We iterate the entire process until we obtain a stable membership solution. We then calculate errors for our velocity dispersions using the Jackknife technique (Efron 1982). The procedure can be considered reliable for groups with at least 10 galaxy members. The 10 galaxy members threshold is reached for 36 groups out of 211. For the groups with less than 10 members but still more than 5 members within \(r_{200}\), we base the velocity dispersion estimate on \(L_X\) and the relation between \(\sigma\) and \(L_X\) as in Leauthaud et al. 2010. This leads to a sample of 111 groups out of 211. Figure 1 shows the \(L_X - \sigma\) relation for X-ray groups with more than 10 spectroscopic members, where \(\sigma\) is estimated via dynamical analysis. The solid red line shows the power-law fit to the relation. The bisector procedure is used for this fit (Akritas & Bershady 1996). We also plot the \(L_X - \sigma\) relation (dashed blue line) expected from scaling relations obtained for a sample of groups with similar luminosities in the \(0 < z < 1\) redshift range in COSMOS (Leauthaud et al. 2010). The consistency between two relations ensures that the estimate of the velocity dispersion derived from the X-ray luminosity and the one calculated via dynamical analysis are in good agreement.

Once we have the estimate of the velocity dispersion of each group, we define as group members all galaxies within \(2 \times r_{200}\) in the angular direction and \(\pm 3 \times (\sigma/c) \times (1 + z_{\text{group}})\) in the line of sight direction in order to consider also the infalling regions of the groups. When a member galaxy is associated to more than one group, we consider it as a member of the group for which the distance to the galaxy is lowest in units of virial radii.

2.3 Infrared data

For all considered fields we use the deepest available Spitzer MIPS 24 \(\mu\)m and PACS 100 and 160 \(\mu\)m datasets. For COSMOS, these are coming from the public Spitzer 24 \(\mu\)m (Le Floc’h et al. 2009, Sanders et al. 2007) and PEP PACS 100 and 160 \(\mu\)m data (Lutz et al. 2011). Both Spitzer MIPS 24 \(\mu\)m and PACS 100 and 160 \(\mu\)m data are used to detect and extract MIPS and PACS sources, respectively, at 24, 100 and 160 \(\mu\)m. This is feasible since extremely deep IRAC and MIPS 24 \(\mu\)m observations are available for the COSMOS field (Scoville et al. 2007). The source extraction is based on a PSF-fitting technique, presented in detail in Magelli et al. 2009. The association between 24 \(\mu\)m and PACS sources with their optical counterparts, taken from the optical catalog of Capak et al. 2007, is done via a maximum likelihood method (see Lutz et al. 2011, for details).

The same approach is used also for the AEGIS field, where we use the Spitzer MIPS 24 and PEP PACS 100 and 160 \(\mu\)m catalogs produced by the PEP team (see Magelli et al. 2009).

In the CDFS and GOODS regions the deepest available MIR and FIR data are provided by the Spitzer MIPS 24 \(\mu\)m Fidell Program (Magnelli et al. 2009) and by the combination of the PACS PEP (Lutz et al. 2011) and GOODS-Herschel (Elbaz et al. 2011) surveys at 70, 100 and 160 \(\mu\)m. The GOODS Herschel survey covers a smaller central portion of the entire GOODS-S and GOODS-N regions. Recently the PEP and the GOODS-H teams combined the two sets of PACS observations to obtain the deepest ever available PACS maps (Magnelli et al. 2013) of both fields. The more extended CDFS area has been observed in the PEP survey as well, yet having a higher flux limit. As for the COSMOS catalogs, the 24 \(\mu\)m and PACS sources are associated to their optical counterparts via a maximum likelihood method (see Lutz et al. 2011, for details).

For all galaxies identified as galaxy group members, we use the MIPS and PACS data to accurately estimate the IR bolometric luminosity and, thus, the SFR. We compute the IR luminosities integrating the SED templates from Elbaz et al. 2011 in the range 8-1000 \(\mu\)m. The PACS (70, 100 and 160 \(\mu\)m) fluxes, when available, together with the 24 \(\mu\)m fluxes are used to find the best fit templates among...
the main sequence (MS) and starburst (SB, Elbaz et al. 2011) templates. When only the 24 µm flux is available for undetected PACS sources, we rely on this single template turns out to be the best fit template in the majority of the cases with common PACS and 24 µm detection. Ziparo et al. (2013) show also that by using only 24 µm data and the MS template there could be a slight underestimation (10%) only above \(z \sim 1.7 \) or \(L_{IR}^{7} > 10^{11.7} L_{\odot} \). In larger fields such as COSMOS and ECDFS there is a larger probability to find rare strong star-forming off-sequence galaxies at \(L_{IR}^{7} > 10^{11.7} L_{\odot} \) even at low redshift. However, those sources should be captured by the Herschel observations given the very high luminosity threshold. Thus, it would not be a problem in getting a proper estimate of the \(L_{IR} \) from the best fit templates also for these rare cases. The SFR for these sources is then estimated via the Kennicutt (1998) relation and then corrected from Salpeter IMF to Chabrier IMF for consistency with SFR_{SED} and stellar mass.

\[SFR_{UV} = \frac{\Sigma_{IR} - \Sigma_{V}}{E(B-V) \times A_{V}} \]

2.3.1 Stellar masses and star formation rate from SED fitting

Due to the flux limits of the MIPS and PACS catalogs in the four considered blank fields, the IR catalogs are sampling only the Main Sequence region and can not provide a SFR estimate for galaxies below the Main Sequence or in the region of quiescence. For a complete census of the star formation activity of the group galaxies, we need, however, an estimate of the SFR of all group members. For this reason, we complement the SFR estimates derived from IR data \((SFR_{IR}) \), as described in the previous section, with an alternative estimate of the SFR. SFR based either on SED fitting technique \((SFR_{SED}) \) or on rest-frame UV observations \((SFR_{UV}) \) are both reliable candidates. According to Ziparo et al. (2013), the scatter of the SFR_{UV}-SFR_{IR} relation is always bigger (at every redshift) with respect to the SFR_{SED}-SFR_{IR} calibration. So, we use SFR_{SED} as an alternative estimate of the SFR. Thus, for all galaxies undetected in MIPS and PACS maps, we use the SFR_{SED} taken from the following catalogs:

- in AEGIS, SFR estimated with FAST \((\text{Kriek et al. 2009}) \) taken from Wuyts et al. (2011)
- in COSMOS, SFR estimated with Le Phare \((\text{Ilbert et al. 2010}) \)
- in ECDFS, SFR estimated with Le Phare, from Ziparo et al. (2013)
- in CDFN, SFR estimated with FAST \((\text{Kriek et al. 2009}) \) taken from Wuyts et al. (2011)

The same catalogs provide also an estimate of the galaxy stellar mass. All SFR_{SED} and stellar mass estimates are in Chabrier IMF.

Ziparo et al. (2013) point out, in general, the stellar masses and SFR_{SED} derived from Wuyts et al. (2011), Ilbert et al. (2010) and Ziparo et al. (2013) are all in agreement when compared on a common galaxy subsample. According to Ziparo et al. (2013), the scatter around the 1 to 1 relation is of the order of 0.6 dex. Indeed, previous studies \((\text{Papovich, Dickinson & Ferguson 2001; Shapley et al. 2001; 2005; Santini et al. 2009}) \) already demonstrate that, while stellar masses are rather well determined (within a factor of 2) by very different methods, the SED fitting procedure does not strongly constrain star formation histories at high redshifts, where the uncertainties become larger due to the SFR-age-metallicity degeneracies. This degeneracy leads to the confusion of young, obscured star-forming galaxies with more massive, old, more quiescent galaxies. Wuyts et al. (2011) confirm the SFR_{SED} provides a quite good estimate of the SFR for moderately star-forming galaxies and fails to provide a good estimate for very obscured objects.

Indeed, if we examine the scatter of the SFR_{SED}-SFR_{IR} relation we clearly see a degeneracy with the stellar mass, as shown in the left column panels of Figure 2. This degeneracy is stronger than the one due to the redshift, as shown in Wuyts et al. (2011), though the two aspects are related via selection effects (only massive star-forming galaxies are generally have spectroscopic redshifts at high redshift). The mass dependence of the scatter is different from field to field and depends on the method used for the SED fitting. This is probably due to two aspects. First, any blank field is characterized by a different dataset in terms of multiwavelength coverage (number and type of broad band filters) and, thus, by a different sampling of the galaxy SED. Second, different recipes, thus different star formation histories, and different fitting techniques are used for estimating the stellar masses and the SFR_{SED}. This also explains why there is such a large scatter in the SFR_{SED} derived with different methods.

The result of this exercise shows that we can not use the SFR_{SED}-SFR_{IR} relation observed in one of the fields to calibrate the SFR_{SED} of the other fields or obtained with a different method. Thus, we use the following approach. In order to correct a posteriori for the stellar mass bias in the SFR_{SED}, we fit the plane SFR_{IR}-SFR_{SED}-Mass, separately for each field. The best fit relation is listed below for AEGIS and CDFN (same fitting procedure):

\[SFR_{IR} = -6.16 + 0.59 \times SFR_{SED} + 0.66 \times M \]

for COSMOS:

\[SFR_{IR} = -4.54 + 0.61 \times SFR_{SED} + 0.49 \times M \]

and for ECDFS and GOODS-S:

\[SFR_{IR} = -4.56 + 0.63 \times SFR_{SED} + 0.49 \times M \]

Once this calibration is used to correct the SFR_{SED} with the additional information of the stellar mass, the scatter around the SFR_{SED}-SFR_{IR} relation decreases to 0.21 dex, 0.23 dex and 0.12 dex in comparison to SFR_{IR} for galaxies with more than \(10^{10.5} M_{\odot} \) in AEGIS, COSMOS, and ECDFS, respectively, as shown in central column panels of Figure 2. The values of the scatter are still 0.34, 0.42 and 0.44 in AEGIS, COSMOS, and ECDFS, respectively, when the whole mass range is considered.

We adopt this calibration to correct a posteriori the SFR_{SED} estimates for all IR undetected galaxies above \(log(SFR) > -0.5 \). We think that this calibration is applicable in the SFR range considered here to IR undetected galaxies for the following reasons. Elbaz et al. (2011) show that the IR SED of star-forming galaxies are not evolving with redshift and that, instead, there is a much stronger dependence on the location of galaxies with respect to the
Figure 2. The left panels show SFR$_{IR}$ vs. SFR$_{SED}$ color-coded by stellar mass before re-calibration for EGS, COSMOS and GOODS-S from top to bottom respectively. The middle panels show corresponding SFR$_{IR}$ vs. re-calibrated SFR$_{SED}$. The dashed line is one to one relation. The right panels are the histogram of corresponding SFR$_{IR} - SFR_{SED}$. The black and red histograms show before (black) and after (red) re-calibration.

0.15 < z < 0.5
COSMOS field
mock catalogs

differential completeness in log(M/M$_\odot$)
differential completeness in log(SFR M$_\odot$ yr$^{-1}$)

Figure 3. Left panel: spectroscopic completeness per stellar mass bin in the low redshift sample (black histogram) and in the simulated "incomplete" mock catalog (red line) in the same redshift range. Right panel: spectroscopic completeness per SFR bin for the low redshift sample (black histogram) and in the simulated "incomplete" mock catalog (red line).
The evolution of star formation activity in galaxy groups

2.4 The final galaxy group and group galaxy samples

The aim of our analysis is to study how the star formation activity in group-sized halos depends on the global properties of the systems. In order to do that, we would need to sample the complete group galaxy population in stellar mass and SFR. However, since the group members are spectroscopically selected, we need to consider how the spectroscopic selection function drives our galaxy selection and, thus, how it can affect our results. We point out that we cannot define a galaxy sample which is, at the same time, complete in stellar mass and SFR. For this purpose, we check how the spectroscopic completeness in the IRAC band translates into a completeness in mass and SFR. For EDFCS and CFDFN this is already done in Ziparo et al. (2013). For the new datasets of AEGIS and COSMOS we follow the same approach of the mentioned work. This is done separately in two redshift bins (0.15 < z < 0.5 and 0.5 < z < 1.1). The reference catalogs used to estimate this completeness are the photometric catalogs described in Section 2.3.1. All those photometric catalogs are IRAC selected at 3.6 or 4.5 μm and should ensure photometric completeness down to at least $m_{AB}(3.6μm) \sim 23$. From these catalogs we extract, for each field, the photometric redshift, the stellar mass and the SFR information derived from the SED fitting technique, after replacing the SFR$_{SED}$ with SFR$_{IR}$, where available, and after correcting SFR$_{SED}$ with the calibration presented in Section 2.3.1. Given the high accuracy of the photometric redshifts of Cardamone et al. (2010), Wuys et al. (2011) and Ilbert et al. (2010), we assume the photometric redshifts, and the physical properties based on those, to be correct. We then, estimate the completeness per stellar mass and SFR bins, respectively, as the ratio between the number of galaxies with spectroscopic redshift and the total number of galaxies in that bin. This procedure allows us to determine how the spectroscopic selection, based on the photometric information (e.g. colour, magnitude cuts, etc.), affects the choice of galaxies as spectroscopic targets according to their physical properties. Indeed, Figure 3 illustrates while in any bin of stellar mass, the most star-forming galaxies are preferentially selected, the most massive galaxies are preferentially observed at any given SFR.

Thus, we follow the following approach to deal with spectroscopic incompleteness. We fix the stellar mass threshold to a value of 10^{10} M$_\odot$, which guarantees a minimum spectroscopic completeness (40%) for our analysis. We impose that this minimum completeness level (40%) above the stellar mass threshold (10^{10} M$_\odot$) must be reached in the region of the group. This completeness is estimated as follows. We consider a cylinder along the line of sight of the group with a radius of $2 \times r_{200}$ from the X-ray center and half width in redshift equal to $5 \times \sigma_{\Delta z/(1+z)}$, where $\sigma_{\Delta z/(1+z)}$ is the error of the photometric redshifts in each survey. This width is set to be much larger than the photometric redshift uncertainty and still small enough to sample the group region. The completeness is the ratio of the number of galaxies with spectroscopic redshift to the number of galaxies with spectroscopic or photometric redshift within this cylinder, with stellar mass above the given mass threshold. We perform the same analysis with different values of the cylinder half width (up to $10 \times \sigma_{\Delta z/(1+z)}$) and we obtain consistent measures of the completeness in mass. This minimum completeness level of 40% is fulfilled for almost all groups in the AEGIS, EDFCS, CFDFN due to a very high and spatially homogeneous spectroscopic completeness. However, the 40 % threshold is hardly reached in many of the COSMOS group regions. The requirements is mainly fulfilled by the groups in the zCOSMOS region and by the GEEC2 groups. To deal with the reliability of our method, we analyse the possible biases induced by the spectroscopic selection function using mock catalogs. Our approach is explained in Section 3.

We point out that the use of the full zCOSMOS and the GEEC2 spectroscopic sample increases the level of completeness in the COSMOS field by 20% in the mean and in the group regions with respect to Ziparo et al. (2013).

The final group sample is shown in Figure 3. The sample comprises 83 galaxy groups in the redshift range $0.15 < z < 1.1$. In order to study the evolution of the relation between the SF activity in groups and the system global properties, we divide the sample in two subsamples at $0.15 < z < 0.5$ (31 galaxy groups) and $0.5 < z < 1.1$ (52 galaxy groups). For 29 of 83 galaxy groups we have velocity dispersion from dynamical analysis and for the rest of them from X-ray properties. 50 of galaxy groups have Flag=1 and the remaining 33 have Flag=2.

2.5 The reference nearby group sample

Our group sample does not cover the local Universe. Indeed, we apply a cut at $z = 0.15$ in order to sample the same cosmic time epoch in the two redshift bins (~ 3 Gyrs) considered in our analysis. In order to follow the evolution of the group galaxy population down to $z \sim 0$, we complement our sample with a reference sample of
nearby groups. Unfortunately, an X-ray selected sample of nearby groups in the same mass range as our sample with the same information as our groups, does not exist. Most of the X-ray selected samples available in the literature have a quite complicated selection function. In addition we need also a complete, spectroscopically confirmed, membership of any system and auxiliary information of the group galaxy stellar mass and star formation activity. Thus, we choose as a reference sample an optically-selected sample of nearby groups drawn from the SDSS and with a well studied and clean selection function. The group catalog and its general properties are discussed in Yang et al. (2007). The catalog is drawn from the clean NYU-VAGC DR4 galaxy catalog (Blanton et al. 2005), which is a sub-sample of the SDSS DR4 galaxy spectroscopic catalog. The group selection is based on the halo-based group finder of Yang et al. (2003), that is optimized for grouping galaxies that reside in the same dark matter halo. The performance of this group finder is extensively tested using mock galaxy redshift surveys constructed from the conditional luminosity function model (Yang, Mo & van den Bosch 2003), van den Bosch, Yang & Mo 2003; Yang et al. 2004). The Yang et al. (2003) group catalog provides for each system the group membership and an estimate of the halo mass (M_{200}) (see Yang et al 2007 for a detailed discussion). In order to study the SF activity of nearby groups, we complement the group galaxy catalog of Yang et al. (2003) with the stellar masses and the SFR based on SDSS Hα emission estimated by Brinchmann et al. (2004). These quantities are corrected from aperture to total and to the same IMF used in our work. We also apply the same stellar mass cut (M_* > 10^{10}) and completeness level (> 40%) in the nearby group sample for consistency.

2.6 The Millennium mock catalogs

In order to estimate the errors involved in our analysis and check for possible biases due to the spectroscopic incompleteness, we follow the same approach used in Ziparo et al. (2013) based on the mock catalogs provided by the Millennium Simulation (Springel et al. 2005). The Millennium simulation follows the hierarchical growth of dark matter structures from redshift z = 127 to the present (Springel et al. 2005). Out of several mock catalogues created from the Millennium simulation, we choose to use those of Kitzbichler & White (2007) based on the semi-analytical model of De Lucia et al. (2006). The simulation assumes the concordance ΛCDM cosmology and follows the trajectories of 21603^3 \sim 1.0078 \times 10^{10} particles in a periodic box 500 Mpc h^{-1} on a side. Kitzbichler & White (2007) make mock observations of the artificial Universe by positioning a virtual observer at z \sim 0 and finding the galaxies which lie on a backward light-cone. The backward light-cone is defined as the set of all light-like worldlines intersecting the position of the observer at redshift zero. We select as information from each catalogue the Johnson photometric band magnitudes available \((R, I, J, K) \), the redshift, the stellar mass and the star formation rate of each galaxy with a cut at \(I_J < 26 \) to limit the data volume to the galaxy population of interest. In order to simulate the spectroscopic selection function of the surveys used in this work, we choose one of the available photometric bands \((R_J) \) and extract randomly in each magnitude bin a percentage of galaxies consistent with the percentage of systems with spectroscopic redshift in the same magnitude bin observed in each of our surveys. We do this separately for each survey, since each field shows a different spectroscopic selection function as shown in Figure 5. We follow this procedure to extract randomly 25 catalogs for each survey from different light-cones. The “incomplete” mock catalogues, produced in this way tend to reproduce, to a level that we consider sufficient to our needs, the selection of massive and highly star-forming galaxies observed in the real galaxy samples, as already shown in Ziparo et al (2013).

We note that the galaxy mock catalogs of the Millennium simulation fail in reproducing the correct distribution of star-forming galaxies in the SFR-stellar mass plane, as already shown in Elbaz et al. (2007) at higher redshift (z \sim 1), although they provide a rather good representation of the local Universe. This is caused by the difficulty of the semi-analytical models of predicting the observed evolution of the galaxy stellar mass function and the cosmic star formation history of our Universe (Kitzbichler & White 2007, Guo et al. 2010). We stress here that this does not produce a problem for our approach. Indeed, we aim to understand...
the bias induced by selection function like the spectroscopic selection function of our dataset by using the Millennium galaxy mock catalogues. In other words, we only need to extract mock catalogues randomly to reproduce the same bias in selecting, on average, the same percentage of most star-forming and most massive galaxies of the parent sample. By comparing the results obtained in the biased randomly extracted mock catalogues and the unbiased parent catalogue, we estimate the bias of our analysis. Since in both biased and unbiased mock catalogues the understimation of the SFR or the stellar mass of high redshift galaxies exists, it does not affect the result of this comparative analysis. We also stress that the aim of this analysis is only to provide a way to interpret our results in terms of possible biases introduced by the spectroscopic selection function not to provide correction factors for our observational results.

3 ESTIMATION OF TOTAL M_*, TOTAL SFR AND HALO OCCUPATION DISTRIBUTION OF GALAXY GROUPS

In this section we describe our method for estimating the total stellar mass (ΣM_*), the total star formation rate (ΣSFR) and the Halo Occupation Distribution of the galaxy groups in our sample. As explained in Section 2.4, we impose a stellar mass cut at $M_*>10^{10}M_\odot$ since below this limit the spectroscopic completeness is rather low in all considered fields (see left panel of Figure 3). The halo occupation distribution of each group, $N(M_*>10^{10}M_\odot)$, is defined by the number of galaxies with stellar mass above $M_*>10^{10}M_\odot$. The total stellar mass and star formation rate of each system are estimated as the sum of the group galaxy members stellar mass and SFR, respectively, with mass above the given limit. We correct for spectroscopic incompleteness by dividing ΣM_*, ΣSFR and $N(M_*>10^{10}M_\odot)$ by the spectroscopic completeness estimated as explained in Section 2.4. In order to check if there are biases in our estimates due to the spectroscopic selection function or to our method, and to calculate the uncertainties of each quantity, we use the galaxy mock catalogues described in Section 2.4. For this purpose we extract from the original Kitzbichler & White (2007) Mock catalog a sample of galaxy groups in the same mass and redshift range of the observed sample. We base our selection on the dark matter halo virial mass which, according to De Lucia et al. (2006), is consistent with the mass calculated within r_{200}, as in the observed group sample. The members of the groups are identified by the same Friends of Friends (FoF) identification number, defined according to the FoF algorithm described in De Lucia et al. (2006). We assume that the group galaxy members identified by the FoF algorithm, which takes into account also the real 3D spatial distribution of galaxies, are the correct (“true”) group members. The “true” velocity dispersion, ΣSFR, ΣM_* and N are, thus, the one based on this membership.

We apply, then, our method for calculating the membership, the velocity dispersion, total M_*, total SFR and halo occupation distribution on the “incomplete” mock catalogues described in Section 2.4 which include also the effect of the different spectroscopic selection functions. For each group we assume the coordinates of the central galaxy (the identification of central and satellite galaxies is provided in the mock catalog) as group center coordinates. These estimates are based on the 2D projected galaxy distribution and redshift information as in the real dataset. In this way we take into account both projection and incompleteness effects. These quantities provide the “observed” velocity dispersion, ΣSFR, ΣM_* and N.

3.1 Reliability of group membership and velocity dispersion estimate

In order to check if our method is able to recover efficiently the membership of each group, we compare the completeness and the contamination of the membership obtained in our analysis with the original group membership identified by the FoF algorithm of the mock catalog. The completeness is estimated by computing the fraction of “true” members identified by our method. The contamination is estimated by calculating the fraction of interlopers (galaxy identified as group members by our method but not in the original mock catalog). Figure 8 shows the completeness level (top panel) and the contamination level (bottom panel) of our group membership. The dashed histograms in both panels show the completeness and contamination levels obtained if we considered all members without any stellar mass cut. The completeness level is quite high (>90%) but on average 35% of the members are interlopers. If we apply a mass cut of $10^{12}M_\odot$, the completeness level reaches almost in all cases 100% with a much lower contamination fraction (solid histograms). It is clear that our method is much more robust in identifying rather massive galaxy members, which are likely more clustered in the phase space, than low mass galaxies. The red and blue histograms (Figure 8) indicate the cases in which the velocity dispersion first guess is estimated from the mock catalog M_{200} without and with error, respectively (see below). After performing the same recovery test on the “incomplete” mock catalog, we check that the completeness level is driven by the mean simulated completeness of the sample, while the contamination level remains at the same values.

We estimate the “observed” velocity dispersion on the basis of this membership to take into account the effect of spectroscopic incompleteness. We measure the “observed” velocity dispersion estimate on M_{200} and the relation between σ and r_{200} as in Carlberg, Yee & Ellingson (1997) for groups with less than 10 members and on the dynamical analysis for groups with more than 10 galaxies. We consider also that our first guess for the velocity dispersion is affected by the uncertainty in the M_{200} in the observed dataset, which is retrieved via L_X-M_{200} correlation. To take this into account we add a random error to the M_{200} of the group provided by the mock catalog. The scatter of the L_X-M_{200} relation is quoted about 20% in the group mass region based on the estimation via stacking analysis (Leauthaud et al. 2010; Allevato et al. 2012). However, to be conservative, we use the L_X-T_X relation and scatter reported in Sun (2011) to estimate a scatter in the L_X-M_{200} relation. We use a value of 0.3 dex in our exercise. The green histogram of Figure 9 shows the residual distribution between the “true” and “observed” velocity dispersion. The two values are in rather good agreement with a scatter of 0.1 dex. The main source of scatter is given by the spectroscopic incompleteness. Indeed,
if we perform the same test by using the original “complete”
mock catalog, the scatter decreases to 0.06 dex (blue histo-
gram) and it is due to projection effects. The uncertainty
in the first guess of the velocity dispersion does not affect
significantly the final estimate. Indeed, without including
this source of error the scatter decreases only to 0.09 dex
(red histogram).

As shown in Figure 7, the peak of the residual distribu-
tion is not zero but it shows that we tend to underestimate
the true velocity dispersion by ∼20%. This shows that the
Carlberg, Yee & Ellingson (1997) relation (used for estimat-
ing the first guess, in general, and the velocity dispersion for
systems with less than 10 members, in particular) is not itse-
lf a source of scatter but it could cause a bias in the estimation
of velocity dispersion.

We also point out that using the estimate of M200 for
deriving the velocity dispersion first guess is a fundamen-
tal ingredient of our analysis. Indeed, if we use a constant
value for the first guess, as usually done in the literature,
we find that the scatter in the relation between “true” and “ob-
served” velocity dispersion increased significantly as shown
in Figure 8 (orange points) and there is no good correlation
between the two quantities.

3.2 Reliability of Total M∗, Total SFR and Halo
Occupation Distribution

As for the “observed” velocity dispersion, we also estimate
the “observed” total stellar mass, total star formation rate
and halo occupation distribution by applying our method
to the “incomplete” mock catalogs to include the effect of
projection and spectroscopic incompleteness. Each estimate
is obtained after applying our stellar mass cut at M∗ >
10^{10}M_⊙. We also apply the correction for incompleteness as
described in Section 2.4. Figure 9 shows the comparison of
the “true” and “observed” quantities. We find a rather good
agreement between the two values in all cases. However, we
notice a large scatter (0.3 dex) between the “true” and “ob-
served” total SFR and a smaller scatter for “true” versus
“observed” total M∗ (0.17 dex) and N (0.15 dex). This dif-
ferent behavior of the scatter is due to two aspects. On aver-
age, the galaxies contaminating the group membership are
field galaxies, likely less massive, due to mass segregation (
The evolution of star formation activity in galaxy groups

less massive galaxies prefer low density regions while more massive galaxies mostly located in high density environments, and more star-forming than group galaxies. This is true in particular for the Millennium Simulation mock catalogs that are affected by an overabundance of red and dead galaxies in groups due to the satellite overquenching problem described in Weinmann et al. (2009). The result of this overquenching is that the level of star formation in group galaxies is suppressed with respect to less crowded environments. Thus, in the case of groups with a low number of galaxies, the presence of even one contaminant with a high star formation rate can highly alter the total level of star formation activity. On the other hand, group galaxies tend to be rather massive and the addition of one or few field galaxies of average mass does not much affect the total M∗ of the system. Thus, the uncertainty turns out to be much larger in the total SFR than in the total M∗ or the N. Since in the local Universe we do not observe such a high abundance of red and dead satellite in groups as in the mocks (Weinmann et al. 2009), it is likely that the uncertainty from the total SFR estimated in the Millennium Simulation mock catalogs is overestimating the actual uncertainty.

The low level contamination (see previous section) also explains why in some cases we observed a slightly larger number of galaxies in groups with respect to the “true” value.

4 RESULTS

In this section we analyse several relations. First we study the correlation between the total SFR in groups versus the group redshift as visible in Figure 4 at z > 0.5. This correlation is due to the X-ray selection that tends to select higher mass systems at high redshift. In order to take this selection effect into account we select a subsample of the high redshift groups in the redshift range 0.5 < z < 0.8. This subsample comprises 38 systems and it does not show any correlation between M200, ΣSFR or ΣM∗ or N with the group redshift. We use this subsample to check whether the observed correlations between the aforementioned quantities and their slopes are driven by a redshift dependence.

We perform the analysis of each correlation by estimating the quantities within r200 and 2 × r200. The results obtained within r200 are consistent with the corresponding results in 2 × r200. We present in this section the results obtained within 2 × r200 since this is the case with the best statistics.

4.1 Σ SFR, Σ M∗ vs M200 and N

The upper panel of Figure 11 shows the ΣSFR-M200 relation in the low (blue points) and high (red points) redshift bins. A Spearman correlation test shows a much more significant positive correlation in the high-z sample and a very mild correlation in the low-z one (see Table 1).

We first investigate the possibility that the lack of a significant correlation in the low redshift bin could be due to the low number statistics. Indeed, the low redshift bin contains 31 galaxy groups. This relatively low number together with the scatter due to the differences in the age of the stellar population of the group galaxies in such a wide redshift bin (~ 3Gyrs), could prevent us from observing a correlation. To check this possibility we use as a reference sample of nearby groups the optically-selected group sample of Yang et al. (2007) drawn from the SDSS. We select in particular a subsample of groups at z < 0.085. This is done because the SDSS spectroscopic sample is complete at masses >10^10M⊙ below this redshift limit (see Peng et al. 2014). As shown in the left panel of Figure 11 the total SFR and total mass of the nearby groups are strongly correlated. We do not see, however, a simple linear correlation in the log-log space but a double slope, flatter (ΣSFR ∝ M200^0.5±0.03) at M200 < 10^13M⊙ and steeper (ΣSFR ∝ M200^0.9±0.03) at M200 > 10^13M⊙. As explained by Yang, Mo & van den Bosch (2008) the break at the low-mass end can be explained by the Halo Occupation Statistics. Indeed, we observe the same sharp break in the N of the Yang et al. (2007) subsample at N(M>10^10M⊙)~1 (central panel of Figure 11). This break indicates that, on average, below M200 ~ 10^13M⊙ only the central galaxy has a mass above M>10^10M⊙ and satellites have lower masses. The existence of a significant correlation between ΣSFR and M200 in the nearby groups and in the more populated high redshift group sample would suggest that we should likely observe a correlation also in the low redshift bin. Thus, to check if the low number statistics and the scatter are hiding such a correlation, we perform the following test. We extract randomly 5000 times the same number of objects as in the intermediate redshift sample from the Yang et al. (2007) subsample in the same mass range. We perform for each extraction the Spearman test between ΣSFR and M200. In 65% of the cases we observe a correlation between the two quantities of the same significance as in our low redshift sample. Thus, we conclude that the mild correlation observed in our low redshift group sample is due to low number statistics in addition to the scatter due to the width of the redshift bin.

To further check if the positive correlation between
Figure 9. From left to right, “True” values of total SFR, total stellar masses and halo occupation number of the groups vs. our estimates in the “incomplete catalogs” with the same level of spectroscopic incompleteness of the surveys used in this work.

relation	z	Intercept	Slope	Spearman ρ	Spearman P
log(M_{200})-log(Σ SFR)	0.15-0.5	-7.68±0.14	0.68±0.17	0.3	0.02
log(M_{200})-log(Σ SFR)	0.5-1.1	-11.32±0.52	1.00±0.11	0.44	4e-6
log(L_X)-log(Σ SFR)	0.15-0.5	-14.35±0.14	0.37±0.14	0.29	0.02
log(L_X)-log(Σ SFR)	0.5-1.1	-23.22±3.9	0.59±0.09	0.47	3e-7
log(σ)-log(Σ SFR)	0.15-0.5	-1.32±0.69	1.12±0.5	0.26	0.02
log(σ)-log(Σ SFR)	0.5-1.1	-2.60±1.00	1.93±0.4	0.4	6e-5
log(M_{200})-log(Σ M_*)	0.15-0.5	-1.82±3.23	1.02±0.24	0.5	2e-4
log(M_{200})-log(Σ M_*)	0.5-1.1	-1.52±3.67	0.99±0.25	0.4	1e-5
log(L_X)-log(Σ M_*)	0.15-0.5	-14.36±4.53	0.62±0.09	0.52	8e-5
log(L_X)-log(Σ M_*)	0.5-1.1	-11.63±4.5	0.55±0.11	0.38	7e-5
log(σ)-log(Σ M_*)	0.15-0.5	7.09±0.93	1.95±0.38	0.47	1e-4
log(σ)-log(Σ M_*)	0.5-1.1	6.88±1.06	2.02±0.42	0.37	8e-5
log(M_{200})-log(N)	0.15-0.5	-8.04±1.98	0.67±0.14	0.5	1e-4
log(M_{200})-log(N)	0.5-1.1	-10.87±1.52	0.90±0.11	0.57	1e-8
log(L_X)-log(N)	0.15-0.5	-17.13±3.65	0.43±0.08	0.5	5e-4
log(L_X)-log(N)	0.5-1.1	-21.39±2.9	0.52±0.06	0.51	0
log(σ)-log(N)	0.15-0.5	-2.27±0.73	1.34±0.31	0.44	1e-4
log(σ)-log(N)	0.5-1.1	-3.39±0.75	1.81±0.3	0.43	1e-6
log(M_{200})-SF fraction	0.15-0.5	1.97±4.08	-0.11±0.3	-0.25	0.35
log(M_{200})-SF fraction	0.5-1.1	6.94±1.9	-0.45±0.13	-0.49	0.002
log(L_X)-SF fraction	0.15-0.5	2.46±8.02	-0.045±0.18	-0.251	0.34
log(L_X)-SF fraction	0.5-1.1	13.3±3.54	-0.29±0.08	-0.5	0.001
log(σ)-SF fraction	0.15-0.5	1.31±1.0	-0.33±0.41	-0.25	0.34
log(σ)-SF fraction	0.5-1.1	2.94±0.66	-0.87±0.26	-0.41	0.0097

Table 1. The table present all the best fit results of the ordinary least squares regression method performed on the low and high galaxy group sample. The first column indicates the considered $x - y$ relation. The second column indicates the redshift bin. The third and fourth columns indicate the intercept and the slope, respectively, of the best fit so that $y = slope \cdot x + intercept$. The fifth column indicates the Spearman correlation coefficient and the sixth column indicate the value of the probability of the null hypothesis of no correlation among the considered quantities.
we conclude that the positive correlation is not induced by a redshift bias in our group sample and that the positive correlation of the $\Sigma SFR - M_{200}$ relation is real.

By comparing the $\Sigma SFR - M_{200}$ relation at different redshifts, we see a clear evolution in the level of star formation activity. Indeed, the total star formation activity in high-redshift groups is higher with respect to the low redshift sample. By dividing the two samples in several M_{200} bins, we estimate a mean difference of 0.8 ± 0.1 dex between high and low redshift groups. A milder difference (0.35 ± 0.1 dex) is observed between the $0.15 - 0.5$ redshift bin and the groups at $z < 0.085$ of Yang et al. (2007). In order to check if this evolution is happening faster in the group galaxy population than the field population, we compare the mean SFR per galaxy in groups as a function of redshift with the mean SFR per galaxy in the whole galaxy population (Figure 12). The mean SFR per galaxy in groups is derived by dividing the sum of the corrected ΣSFR for the groups by the sum of their corrected N in the considered redshift bin. For the mean SFR per galaxy in the whole galaxy population, we use the infrared luminosity density obtained by Gruppioni et al. (2013), based on PACS data, for galaxies with mass above $M* > 10^{10} M_\odot$. Using Kennicutt (1998) relation, we convert the IR luminosity density to the SFR density. In order to obtain the mean SFR per galaxy, we divide the SFR density by the number density for $M* > 10^{10} M_\odot$ derived from the integration of the sum of the quiescent and star-forming galaxies mass function derived by Ilbert et al. (2010). According to Figure 12 group galaxies have very similar level of star formation activity with the whole galaxy population at $z \sim 1$, but at lower redshifts they experience much faster evolution than the global relation. Since the whole galaxy population should be dominated by lower mass halos, $M_{200} \sim 10^{12} - 10^{13} M_\odot$ according to the predicted dark matter halo mass function (e.g. Jenkins et al. 2001; Tinker et al. 2008) and to the estimate of Eke et al. (2005), this would imply that the level of SF activity is declining more rapidly since $z \sim 1$ in the more massive halos than in the more common lower mass halos consistent with Ziparo et al. (2014). This confirms a “halo downsizing” effect as discussed in Popesso et al. (2012). In addition, as discussed above, we also point out that the result does not change if we do not calibrate SFR$_{SED}$ (see 2.3.1). The effect of this calibration is just to slightly reduce the scatter of the relation.

The central and bottom panels of Figure 10 show the N and the $\Sigma M_* - M_{200}$ relations in the two redshift bins. In these cases we see a very tight relation in both samples as confirmed by a Spearman test at 99% confidence level (see Table I). This is not surprising. Indeed, while the stellar mass function of the galaxy population, and of the group galaxy population in particular, is not evolving significantly since redshift ~ 1 as shown in Ilbert et al. (2010) and Giodini et al. (2012), respectively, the SF activity of the Universe is dropping down by an order of magnitude in the same time window (see e.g. Magnelli et al. 2013 for the whole galaxy population, Popesso et al. 2012 for groups and clusters in particular). As a consequence the spread in ΣSFR is much higher than the spread of ΣM_*. Thus, we see a strong correlation between ΣM_* and M_{200} and only a mild correlation between ΣSFR and M_{200}.

The halo occupation distribution is consistent with a linear relation in the high redshift bin and marginally consistent with it (within 2.5 σ, see Table I) in the low redshift

Figure 10. Σ SFR- (upper panel), N- (middle panel) and Σ M$_*$- (bottom panel) M_{200} relations for member galaxies with $M_* > 10^{10} M_\odot$ in the low-z sample (0.15<z<0.5, in blue) and the high-z groups (0.5<z<1.1, in red). The blue and red lines show the best-fitting using the ordinary least squares regression method presented by Akritas & Bershady (1996). The total star formation activity in high-z groups is higher with respect to the low-z sample at any mass by 0.8 \pm 0.12 dex. The N- and Σ M$_*$- M_{200} are consistent with a linear relation in both redshift bins with no evolution since $z \sim 1.1$. M_{200} and the redshift of the groups in the high redshift bin can induce the positive correlation observed between ΣSFR and M_{200}, we consider the subsample of the high-z groups, described above, at 0.5 < z < 0.8. We perform the Spearman test and the ordinary least squares regression method (Akritas & Bershady, 1998) in the log-log space of ΣSFR and M_{200} for such subsample and we find a correlation significance and slope to be perfectly consistent (within 1σ) with the results obtained with the whole high redshift sample. The effect of the addition of the remaining $z > 0.8$ groups is only to increase the scatter of the relation by 17%. Thus, we conclude that the positive correlation is not induced by

The evolution of star formation activity in galaxy groups

15
Figure 11. Σ SFR- (left panel), N- (middle panel) and Σ M∗- (right panel) M200 relations for a subsample of [Yang et al. 2007] optically selected catalog at z < 0.085 (grey points). The magenta points connected by the solid line shows the median per bin of M200 in the [Yang et al. 2007] subsample. The blue solid lines show the best fit relation of our low-z sample and the red solid lines show the best fit relation of our high-z group sample. The Σ SFR and total mass of the nearby groups are strongly correlated. We do not see, however, a simple linear correlation in the log-log space but a double slope, flatter (Σ SFR ∝ M0.56±0.01200) at M200 < 1013 M⊙ and steeper (Σ SFR ∝ M0.89±0.03200) at M200 > 1013 M⊙.

Figure 12. Mean SFR as a function of redshift. Black points show the mean of SFR for galaxies in the whole galaxy population and the red points and the error bars indicate the mean SFR in bins of redshift and respective errors in the mean for group galaxies.此举是由于我们对组的挑选所导致的。在具体选择中，我们需要正确地定义组的红移和成员。在此，此分类方式可能会更可能地我们挑选出的丰富组群。对于给定的红移，其中的平均M200为低红移群的两倍，则此偏差在低红移群中更为显著。在低红移群中，由于组中的星系质量与组的总质量成正比，因此，观测到的总质量与星系的质量之间关系在双对数空间中似乎具有非线性特征，以M0.56±0.01200和M0.89±0.03200表现。我们注意到，对于低红移群，观测到的关系与富集星系群中高红移群的相似，这表明我们的结果非常切合实际。我们指出的是，根据 [Popesso et al. 2007]，组群的径向密度分布对于低红移群来说更为平坦，这表明与更大红移群相比这个关系可能更为重要。我们同样注意到，这个观测到的关系与在较高红移星系群中所观测到的相似，比如 [Marinoni & Hudson 2002; Pisani, Ramella & Geller 2003; Lin, Mohr & Stanford 2004; Popesso et al. 2007]。
of Giodini et al. (2012) (see bottom panel of Figure 10 and right panel of Figure 11).

The picture emerging from Figure 10 and 11 is that accretion of galaxies or stellar mass goes together with accretion of total halo mass. Since, the massive halos are not predicted to increase their total halo mass by a large factor (Stewart et al. 2008; Fakhouri, Ma & Boylan-Kolchin 2010; Moster, Naab & White 2013) through a merger event in the last 10 Gyr, thus, the same is true for their stellar mass and number of galaxies. This picture in addition to Figure 12 imply that the most evident evolution of the galaxy population of the most massive systems is in terms of the quenching of their star formation activity. This also implies that the group galaxy population should progressively move from high to low specific star formation rate from \(z \sim 1 \) to \(z \sim 0 \) and move away from the Main Sequence more rapidly than galaxies in lower mass halos, in agreement with the result of Ziparo et al. (2014).

4.2 Fraction of MS galaxies vs. \(M_{200} \) and velocity dispersion

Often the level of star formation activity in groups and clusters is estimated through the fraction of star-forming galaxies. In order to compare with previous results, we analyse in this section the evolution of the fraction of star-forming galaxies as a function of the group halo mass. We define the star-forming galaxies as the ones lying on the Main Sequence (Elbaz et al. 2007). In order to identify the main sequence at different redshifts, we extrapolate the MS relation at the mean redshift of each redshift bin by interpolating the MS relation of Peng et al. (2011), Noeske et al. (2007) and Elbaz et al. (2007). According to these works the scatter of the relation is \(\sim 0.3 \) dex. Figure 13 illustrates the distribution of the residual \(\Delta (SFR) = SFR_{MS} - SFR_{obs} \), where \(SFR_{MS} \) is the SFR given by the MS relation at a given mass and \(SFR_{obs} \) is the observed SFR of a galaxy at that mass. The distribution shows a well known bimodal distribution with the Gaussian representing the MS location with peak around 0 residual, and a tail of quiescent/low star-forming galaxies at high positive values of \(\Delta SFR \). This distribution is reminiscent of the bimodal behavior of the U-R galaxy color distribution observed by Strateva et al. (2001) in the SDSS galaxy sample. At all redshifts, the value \(\Delta SFR = 1 \) turns out to be the best separation for MS galaxies. It is also consistent with \(3\sigma \) of main sequence uncertainty. The fraction of star-forming galaxies is, then, defined as the ratio between the number of SF galaxies with \(M_* > 10^{10} M_\odot \) and the total number of galaxies with \(M_* > 10^{10} M_\odot \). We apply the same spectroscopic incompleteness correction for the number of star-forming galaxies as for the total number of galaxies, so it is cancelled from the fraction. We do not find any correlation in the low redshift bin with the halo mass (see Table 1 and Figure 14). This is confirmed also by a lack of correlation in the Yang et al. (2007) group subsample at \(z < 0.085 \). We observe a significant anti-correlation with the halo mass in the high redshift bin, as confirmed by a Spearman test (see Figure 15). Figure 16 shows the relation between fraction of star-forming galaxies and velocity dispersion for the galaxy groups with more than 10 spectroscopic members for which we have a reasonable estimate of the galaxy velocity dispersion. The magenta line in Figure 16 is the upper envelope of Poggianti et al. (2006) for the EDIsCS clusters and groups at \(z=0.4-0.8 \). Even in this case, high mass systems seem to be already evolved at \(z \sim 1 \) by showing a fraction of star-forming galaxies consistent with the low redshift counterparts at \(z < 0.085 \), where we measure a mean constant fraction of SF galaxies of 0.28 \(\pm 0.5 \).

Given the almost linear relation between the SFR and \(M_{200} \) in the high-z sample, this implies that most of the contribution to the total SFR of the most massive systems (\(M_{200} \sim 10^{14} M_\odot \)) is given by few but highly star-forming galaxies, while in lower mass systems (\(M_{200} \sim 10^{13} M_\odot \)) it is given by more star-forming galaxies of average activity. Thus, this would still indicate a faster evolution in the more massive systems in terms of star formation activity with respect to lower mass groups.
group and cluster galaxies. Indeed, even the level of activity of the galaxy population and, in particular, of the high redshift groups is well below the level of the low redshift groups of our sample (dotted blue line in the plot). This class of models assumes that, when galaxies are accreted onto a more massive system, the associated hot gas reservoir is stripped instantaneously. This, in addition to the AGN feedback, induces a very rapid decline of the star formation histories of satellite galaxies, and contributes to create an excess of red and passive galaxies with respect to the observations (e.g. [Wang et al. 2007]). More recent high resolution simulations do not help in improving the results [Weinmann, Neistein & Dekel 2011; Guo et al. 2011]. This is known as the “overquenching problem” for satellites galaxies. Over 95% of the cluster and group galaxies within the virial radius in the local simulated Universe are passive [Guo et al. 2011], at odds with observations (e.g. Weinmann et al. 2006; Kimm et al. 2006; Liu et al. 2011; Hansen et al. 2009; Popesso et al. 2005). Indeed, as Figure 15 shows, galaxies in mock groups reside under the main sequence in any redshift bin, indicating that the evolution even in group galaxies is happening at z > 2. This is at odds with our results since in the previous section we have shown that in the low mass groups most of the galaxies above $10^{10} M_\odot$ are Main Sequence galaxies.

We do not observe any evolution in the halo occupation distribution (central panel of Figure 17), which is consistent also quantitatively with the halo occupation distribution observed in our group sample. In the same way we do not observe any evolution in the $\Sigma M_s - M_{200}$ relation but we also observe a quantitative discrepancy with respect to observations. Indeed, at any redshift the total stellar mass in groups is underpredicted with respect to the observed one. This is understandable given the much lower star formation rate of the simulated group galaxies with respect to the observations, which limits the galaxy stellar mass growth.

5 SUMMARY AND CONCLUSION

In this paper we provide an analysis of the evolution of the total star formation activity, total stellar mass and halo occupation distribution by using one of the largest X-ray selected samples of galaxy groups with secure spectroscopic identification on the major deep field surveys (ECDF, CDFN, COSMOS, AEGIS) up to z~1.1. We first check the robustness of our method in determining the group velocity dispersion and membership extensively using mock catalogs and check the possible biases induced by the spectroscopic incompleteness of the surveys used in our analysis. We show that for a robust measurement of the group velocity dispersion and group membership definition a first guess of the velocity dispersion derived from the X-ray luminosity is essential for a reliable result. We compare our results with the one based on an optically-selected sample of groups at z < 0.085 in order to fully follow the evolution of the galaxy population in groups to the local Universe. We list below our main results:

- We observe a clear evolution in the level of star formation activity in galaxy groups. Indeed, the total star formation activity in high redshift groups (0.5 < z < 1.1) is higher with respect to the low redshift sample (0.15 < z < 0.5) at any mass by almost 0.8 ± 0.1 dex. A milder difference (0.35 ± 0.1 dex) is observed between the [0.15-0.5] redshift...
The evolution of star formation activity in galaxy groups

bin and the groups at $z < 0.085$. This evolution seems to be much faster than the one observed in the whole galaxy population (Grupioni et al. 2013), dominated by lower mass halos ($M_{200} \sim 10^{12-12.5} M_\odot$; Jenkins et al. 2001; Tinker et al. 2008; Eke et al. 2003). This would imply that the level of SF activity is declining more rapidly since $z \sim 1.1$ in the more massive halos than in the more common lower mass halos, confirming a “halo downsizing” effect as discussed by Popesso et al. (2012).

- The halo occupation distribution and the total stellar mass M_{200} relation are consistent with a linear relation in all redshift bins in the M_{200} range considered in our analysis. We do not observe any evolution in the halo occupation distribution since $z \sim 1$. Similarly we do not observe evolution in the relation between the total stellar mass in groups and the total mass, in agreement with the results of Giodini et al. (2012). The picture emerging from our findings is that massive groups at $M_{200} \sim 10^{13-14} M_\odot$ have already accreted the same amount of mass and have the same number of galaxies as the low redshift counterparts, as predicted by Stewart et al. (2008). This implies that the most evident evolution of the galaxy population of the most massive systems acts in terms of quenching their galaxy star formation activity. This also implies that the group galaxy population should progressively move from high to low specific star formation rates from $z \sim 1$ to $z \sim 0$ and rapidly move away from the Main Sequence since $z \sim 1$ consistent with the recent results of Ziparo et al. (2013) based on a similar dataset.

- The analysis of the evolution of the fraction of SF galaxies as a function of halo mass or velocity dispersion shows that high mass systems seem to be already evolved at $z \sim 1$ by showing a fraction of star-forming galaxies consistent with the low redshift counterparts at $z < 0.085$. Given the almost linear relation between the ΣSFR and M_{200} in the high-z sample, this implies that the differential evolution of the SF activity in massive halos with respect to field or lower mass halos. For instance, the formation of the galaxy red sequence, which leads to the local dichotomy between red and blue galaxies, happens earlier in groups than in the field especially at high stellar masses (Iovino et al. 2010; Kovac et al. 2010; Mok et al. 2013; Wilman et al. 2009; Wilman & Erwin 2012). Morphological transformations are in place in groups at $z < 1$, leading to a transient population of “red spirals” not observed in the field (Balogh et al. 2009; Wolf et al. 2009; Mei et al. 2012). There is also evidence that at $z \sim 1$ there is a flattening of the SFR-density relation (Elbaz et al. 2007; Popesso et al. 2011; Cooper et al. 2008; Ziparo et al. 2014) with respect to the local anti-correlation. Ziparo et al. (2014) find on the very same dataset that the differential evolution of the groups galaxies with respect to field is due to the fact that star-forming group galaxies are perfectly on the Main Sequence at $z \sim 1$ whereas at lower redshift they are quenched, thus, dropping off the MS quicker than field galaxies towards the region of SF quiescence.

- The comparison of our results with the prediction of the Millennium Simulation semi-analytical model confirms the known problem of the models. We confirm the strong bias due to the “satellite overquenching” problem in suppressing significantly the SF activity of group galaxies (more than an order of magnitude) at any redshift with respect to observations. The halo occupation distribution predicted by the simulations is remarkably in agreement with the observations. But due to the low SF activity of galaxies in massive halos, the models predict also a lower total stellar mass in groups with respect to the observed one at any redshift.

Our results support a scenario in which the quenching of SF occurs earlier in galaxies embedded in more massive halos, though we are considering a quite narrow halo mass range. This would be consistent with the results obtained by Popesso et al. (2012) in a similar redshift range but in a broader mass range, which includes also galaxy clusters. Other evidences in the literature support the differential evolution of the SF activity in massive halos with respect to the field or lower mass halos. For instance, the formation of the galaxy red sequence, which leads to the local dichotomy between red and blue galaxies, happens earlier in groups than in the field especially at high stellar masses (Iovino et al. 2010; Kovac et al. 2010; Mok et al. 2013; Wilman et al. 2009; Wilman & Erwin 2012). Morphological transformations are in place in groups at $z < 1$, leading to a transient population of “red spirals” not observed in the field (Balogh et al. 2009; Wolf et al. 2009; Mei et al. 2012). There is also evidence that at $z \sim 1$ there is a flattening of the SFR-density relation (Elbaz et al. 2007; Popesso et al. 2011; Cooper et al. 2008; Ziparo et al. 2014) with respect to the local anti-correlation. Ziparo et al. (2014) find on the very same dataset that the differential evolution of the groups galaxies with respect to field is due to the fact that star-forming group galaxies are perfectly on the Main Sequence at $z \sim 1$ whereas at lower redshift they are quenched, thus, dropping off the MS quicker than field galaxies towards the region of SF quiescence.

What is causing this differential evolution as a function of the halo mass? According to Peng et al. (2010) massive galaxies, as the ones considered in our sample, evolve mostly because of an internally driven process, called ‘mass

Figure 18. SFR as a function of stellar mass for the member galaxies in the mock catalog. The red points show the position of the main sequence for the lowest redshift ($z = 0$, 0.5 and 1 from left to right, respectively) in each bin.
quenching', caused perhaps by feedback from active galactic nuclei. But since this process is unlikely to be more efficient in quenching SF of massive galaxies in massive halos than in other environments as the stellar mass functions do not change significantly in groups with respect to field (Giodini et al. 2012), the "environmental quenching" must be the main mechanism for quenching the SF of the most massive satellites in massive halos. Which kind of process is causing this "environmental quenching" is still quite unknown. Ram-pressure stripping (Gunn & Gott 1972) and starvation (Larson, Tinsley & Caldwell 1980) are two plausible candidates for producing this quenching. Ram-pressure stripping "quench" star formation immediately (Abadi, Moore & Bower 1999) as it can sweep Interstellar medium out of a galaxy. Starvation, caused by the removal of the hot gas halo reservoirs of galaxies which leads to a cut in the supply of cold gas in the galaxy is also a likely candidate. Tidal galaxy-galaxy encounters or the interaction with the intra-cluster/intra-group medium can lead to the removal of galaxy hot gas reservoirs which induce starvation. Therefore, starvation should quench SF earlier in more massive halos than in low mass halos, as we observe.

Cen (2011) propose that this differential evolution could be explained simply in terms of the current theory of gas accretion that hinges on the cold and hot two-mode accretion model (Keres et al. 2005; Dekel & Birnboim 2006). The halo mass is the main determinant of gas accretion: large halos primarily accrete hot gas while small halos primarily accrete cold gas. The overall heating of cosmic gas due to formation of large halos (such as groups and clusters) and large-scale structure causes a progressively larger fraction of halos to inhabit regions where gas has too high entropy to cool to continue feeding the residing galaxies. The combined effect is differential in that overdense regions are heated earlier and to higher temperatures than lower density regions at any given time. Because larger halos tend to reside in more overdense regions than smaller halos, the net differential effects would naturally lead to both the standard galaxy downsizing effect and the halo downsizing effect.

The current analysis can not provide evidences in favour of one of these scenarios. Further analysis must be conducted to study the cold gas content of galaxies in halos of different masses, to distinguish between the different possibilities and identify the process responsible for the "environmental quenching".

APPENDIX A: X-RAY GROUPS OF GALAXIES IN CDFN

The catalog of X-ray groups follows the original results of Bauer et al. (2002), based on the first 1Ms Chandra data. The main difference in the catalog consist in a self-consistent use of the flux at R_{200}, larger apertures for the flux extraction. This allows us to use our calibrations of group masses, provided by COSMOS (Leauthaud et al. 2010) and ECDFS (Finoguenov et al. subm.) surveys. In column 1, 2 and 3, we provide the group identification number, RA and Dec. of the peak of X-ray emission. In Column 4, the mean of red sequence redshifts which is substituted with the median of sequence redshifts. In Column 5, the mean of red sequence redshifts which is substituted with the median of sequence redshifts. The corresponding 1σ error is listed. The rest-frame luminosity in the 0.1–2.4 keV is presented in Column 6. Column 7 gives the estimated total mass, M_{200}, computed following Leauthaud et al. (2010) and assuming a standard evolution of scaling relations: $M_{200}E_x = f(L_xE_x^{-1})$ where $E_x = (\Omega_M(1+z)^3 + \Omega_{\Lambda})^{1/2}$, standard evolution of the scaling relation. The corresponding r_{200} in degrees is listed in Column 8. Column 9 lists flux significance which provides insights on the reliability of both the source detection and the identification. Column 10 presents the flag for our identification, as described in section 2.2. The velocity dispersion estimated from X-ray luminosities is given in column 11. The number of spectroscopic member galaxies inside $2 \times r_{200}$ is given in Column 12.
ACKNOWLEDGEMENTS

GE acknowledges the support from and participation in the International Max-Planck Research School on Astrophysics at the Ludwig-Maximilians University. MLB acknowledges financial support from an NSERC Discovery Grant, and from NWO and NOVA grants that supported his sabbatical at the University of Leiden, where this work was completed. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAIMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICYT/MCYT (Spain).

This research has made use of NASA’s Astrophysics Data System, of NED, which is operated by JPL/Caltech, under contract with NASA, and of SDSS, which has been funded by the Sloan Foundation, NSF, the US Department of Energy, NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Coun-

cil of England. The SDSS is managed by the participating institutions (www.sdss.org/collaboration/credits.html).

We gratefully acknowledge the contributions of the entire COSMOS collaboration consisting of more than 100 scientists. More information about the COSMOS survey is available at [http://www.astro.caltech.edu/cosmos]. This project has been supported by the DLR grant 500R1013 to MPE.

ID	RA	Dec	z	Flux	LX	M200	T200	Flux significance	Flag	Velocity dispersion	N(ze)
2	189.45619	62.36314	0.398	1.26±0.36	1.21±0.34	2.16±0.35	0.0262	3.52	3	229	0
4	189.26089	62.35124	0.800	0.54±0.17	3.60±1.12	2.94±0.52	0.0177	3.19	1	277	9
5	188.86385	62.35366	0.652	1.91±0.57	6.32±1.89	4.69±0.79	0.0238	3.34	3	319	0
6	189.36276	62.32381	0.277	0.84±0.19	0.34±0.08	1.12±0.12	0.028	4.22	2	176	9
7	189.42824	62.25552	0.455	2.99±0.24	3.83±0.31	4.12±0.19	0.0294	12.22	1	294	14
8	189.18499	62.26146	0.850	1.38±0.17	8.92±1.07	4.85±0.34	0.0209	8.36	1	336	46
9	189.98803	62.2646	0.375	1.07±0.28	0.88±0.23	1.82±0.27	0.0259	3.78	3	214	3
10	189.07392	62.26097	0.999	0.39±0.85	36.09±7.74	4.41±0.54	0.0119	4.66	2	402	3
11	189.0872	62.18605	1.014	0.51±0.18	7.12±2.58	3.67±0.75	0.0164	2.76	1	314	20
12	189.5959	62.1628	0.914	1.24±0.32	10.77±2.74	5.13±0.75	0.0196	3.92	3	348	0
13	189.33336	62.12823	0.943	0.76±0.17	7.80±1.71	4.13±0.52	0.0179	4.56	3	323	0
14	189.13775	62.15006	0.840	0.48±0.12	3.77±0.93	2.92±0.41	0.0171	4.05	1	279	12
15	189.04209	62.14711	1.139	0.61±0.14	11.41±2.52	4.37±0.56	0.0162	4.52	3	343	2
16	189.96164	62.12097	0.491	2.49±0.40	3.84±0.62	4.00±0.38	0.0275	6.2	3	292	0
17	189.538	62.13181	0.948	0.64±0.23	6.89±2.46	3.81±0.77	0.0174	2.8	3	314	0
18	189.86226	62.10217	0.895	1.37±0.41	11.05±3.41	5.30±0.93	0.0201	3.24	5	351	0
19	189.11361	62.10088	1.217	0.45±0.13	10.99±3.14	4.00±0.65	0.0152	3.5	3	337	1
20	189.28415	62.09072	0.956	0.69±0.17	7.46±1.88	3.97±0.57	0.0175	3.96	3	319	0
21	189.02017	62.08888	1.217	0.91±0.22	17.94±4.34	5.37±0.74	0.0167	4.13	5	375	0
22	189.22003	62.07806	0.188	4.20±0.53	0.65±0.08	1.75±0.13	0.045	7.92	3	204	0
23	189.28874	62.02523	1.640	1.20±0.27	46.55±10.55	6.73±0.88	0.0152	4.41	5	442	0
24	189.17982	62.02488	0.426	1.80±0.42	1.98±0.47	2.84±0.39	0.0274	4.22	3	254	0
25	189.08941	62.0975	0.681	0.17±0.11	0.90±0.61	1.42±0.52	0.0155	1.48	2	207	7
26	189.10007	62.25822	0.642	0.45±0.28	1.71±1.06	2.16±0.73	0.0185	1.6	2	249	10
27	189.09046	62.26367	1.241	0.19±0.08	6.75±2.73	2.93±0.66	0.0135	2.48	4	302	3
28	189.33757	62.15165	1.126	0.49±0.11	9.45±2.23	3.95±0.53	0.0158	4.24	3	330	0
29	189.53013	62.11978	0.280	1.26±0.57	0.51±0.23	1.41±0.36	0.03	2.2	5	192	0
REFERENCES

Abadi M. G., Moore B., Bower R. G., 1999, MNRAS, 308, 947

Akritas M. G., Bershady M. A., 1996, ApJ, 470, 706

Alexander D. M. et al., 2003, AJ, 126, 539

Allevato V. et al., 2012, ApJ, 758, 47

Balogh M. L. et al., 2009, MNRAS, 398, 754

Balogh M. L. et al., 2011, MNRAS, 412, 2303

Barger A. J., Cowie L. L., Wang W.-H., 2008, ApJ, 689, 687

Barnaby P., Huang J.-S., Ashby M. L. N., Eisenhardt P. R. M., Fazio G. G., Willner S. P., Wright E. L., 2008, ApJS, 177, 431

Bauer F. E. et al., 2002, AJ, 123, 1163

Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32

Berta S. et al., 2013, A&A, 551, A100

Berta S. et al., 2010, A&A, 518, L30

Bielby R. et al., 2007, MNRAS, 376, 1445

Bielby R. M. et al., 2012, A&A, 523, A66

Blanton M. R., Eisenstein D., Brinkmann J., 2005, ApJ, 629, 143

Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G., Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151

Buat V., Takeuchi T. T., Burgarella D., Giovannoli E., Murrata K. L., 2005, A&A, 381, 503

Bundy K. et al., 2006, ApJ, 651, 120

Capak P. et al., 2007, ApJS, 172, 99

Cardamone C. N. et al., 2010, ApJS, 189, 270

Carlberg R. G., Yee H. K. C., Ellingson E., 1997, ApJ, 478, 462

Cen R., 2011, ApJ, 741, 99

Chabrier G., 2003, PASP, 115, 763

Cimatti A. et al., 2008, A&A, 482, 21

Coil A. L. et al., 2009, ApJ, 701, 1484

Coil A. L., Newman J. A., Kaizer N., Davis M., Ma C.-P., Kocevski D. D., Koo D. C., 2004, ApJ, 617, 765

Cooper M. C. et al., 2011, ApJS, 193, 14

Cooper M. C., Gallazzi A., Newman J. A., Yan R., 2010, MNRAS, 402, 1942

Cooper M. C. et al., 2012, MNRAS, 419, 3018

Cooper M. C. et al., 2007, MNRAS, 376, 1445

Cooper M. C. et al., 2008, MNRAS, 383, 1058

Croton D. J. et al., 2006, MNRAS, 365, 11

Damen M. et al., 2011, ApJ, 727, 1

Davis M. et al., 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4834, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Guhathakurta P., ed., pp. 161–172

Davis M., Geller M. J., 1976, ApJ, 208, 13

Davis M. et al., 2007, ApJ, 660, L1

De Luca G., Springel V., White S. D. M., Croton D., Kauffmann G., 2006, MNRAS, 366, 499

De Luca G., Weinmann S., Poggianti B. M., Aragón-Salamanca A., Zaritsky D., 2012, MNRAS, 423, 1277

Dekel A., Birnboim Y., 2006, MNRAS, 368, 2

Di Matteo T., Springel V., Hernquist L., 2005, Nat, 433, 604

Dressler A., 1980, ApJ, 236, 351

Efron B., 1982, The Jackknife, the Bootstrap and other resampling plans

Eke V. R., Baugh C. M., Cole S., Frenk C. S., King H. M., Peacock J. A., 2005, MNRAS, 362, 1233

Elbaz D. et al., 2007, A&A, 468, 33

Elbaz D. et al., 2011, A&A, 533, A119

Elvis M. et al., 2009, ApJS, 184, 158

Erfanianfar G. et al., 2013, ApJ, 765, 117

Fakhouri O., Ma C.-P., Boylan-Kolchin M., 2010, MNRAS, 406, 2267

Finn R. A. et al., 2010, ApJ, 720, 87

Finoguenov A. et al., 2009, ApJ, 704, 564

Finoguenov A. et al., 2007, ApJS, 172, 182

Finoguenov A. et al., 2010, MNRAS, 403, 2063

Gao L., White S. D. M., Jenkins A., Stoehr F., Springel V., 2004, MNRAS, 355, 819

Geller M. J., Huchra J. P., 1983, ApJS, 52, 61

George M. R. et al., 2011, ApJ, 742, 125

George M. R., Ma C.-P., Bundy K., Leauthaud A., Tinker J., Wechsler R. H., Finoguenov A., Vulcana B., 2013, ApJ, 770, 113

Giavalisco M. et al., 2004, ApJ, 600, L93

Gioiili S. et al., 2012, A&A, 538, A104

Gómez P. L. et al., 2003, ApJ, 584, 210

Grazian A. et al., 2006, A&A, 449, 951

Gruppioni C. et al., 2013, MNRAS, 432, 23

Gunn J. E., Gott I. R. J., 1972, ApJ, 176, 1

Guo Q. et al., 2011, MNRAS, 413, 101

Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111

Hansen S. M., Sheldon E. S., Wechsler R. H., Koester B. P., 2009, ApJ, 699, 1333

Hasinger G. et al., 2007, ApJS, 172, 29

Hogg D. W. et al., 2004, ApJ, 601, L29

Hopkins P. F., Hernquist L., Cox T. J., Di Matteo T., Robertson B., Springel V., 2006, ApJS, 163, 1

Ilbert O. et al., 2009, ApJ, 690, 1236

Ilbert O. et al., 2010, ApJ, 709, 644

Iovino A. et al., 2010, A&A, 509, A40

Jeltema T. E., Mulchaey J. S., Lubin L. M., Fassnacht C. D., 2007, ApJ, 658, 865

Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., Cole S., Evrard A. E., Couchman H. M. P., Yoshida N., 2001, MNRAS, 321, 372

Kennicutt J. R. C., 1998, ARA&A, 36, 189

Kereš D., Katz N., Weinberg D. H., Davé R., 2005, MNRAS, 363, 2

Kimm T. et al., 2009, MNRAS, 394, 1131

Kitzbichler M. G., White S. D. M., 2007, MNRAS, 376, 2

Kovač K. et al., 2010, ApJ, 718, 86

Kriek M., van Dokkum P. G., 2004, MNRAS, 353, 692

Kurczynski K. et al., 2011, ApJ, 730, 136

Laird E. S. et al., 2009, ApJ, 687, 135

Laird E. S. et al., 2009, ApJ, 690, 1236

Laird E. S. et al., 2010, ApJ, 709, 644

Le Floc’h E. et al., 2009, ApJ, 703, 222

Leauthaud A. et al., 2010, ApJ, 709, 97
The evolution of star formation activity in galaxy groups

Lehmer B. D. et al., 2005, ApJS, 161, 21
Lewis I. et al., 2002, MNRAS, 334, 673
Lilly S. J. et al., 2009, ApJS, 184, 218
Lilly S. J. et al., 2007, ApJ, 172, 70
Lin Y.-T., Mohr J. J., Stanford S. A., 2004, ApJ, 610, 745
Liu L., Yang X., Mo H. J., van den Bosch F. C., Springel V., 2010, ApJ, 712, 734
Loz J. M. et al., 2008, ApJ, 672, 177
Lutz D. et al., 2011, A&A, 532, A90
Magnelli B., Elbaz D., Chary R. R., Dickinson M., Le Borgne D., Frayer D. T., Willmer C. N. A., 2009, A&A, 496, 57
Magnelli B. et al., 2013, A&A, 553, A132
Marinoni C., Hudson M. J., 2002, ApJ, 569, 101
Mei S. et al., 2012, ApJ, 754, 141
Miller N. A., Fomalont E. B., Kellermann K. I., Mainieri V., Tozzi P., 2008, ApJS, 179, 114
Mok A. et al., 2013, MNRAS, 431, 1090
Morrison G. E., Owen F. N., Dickinson M., Ivison R. J., Ibar E., 2010, ApJS, 179, 1
Padovani P., Mainieri V., Tozzi P., Kellermann K. I., Fomalont E. B., Miller N., Rosati P., Shaver P., 2009, ApJ, 694, 235
Papovich C., Dickinson M., Ferguson H. C., 2001, ApJ, 559, 620
Peng Y. et al., 2010, ApJ, 721, 193
Pisani A., Ramella M., Geller M. J., 2003, AJ, 122, 1677
Poggianti B. M. et al., 2006, ApJ, 642, 188
Poglitsch A. et al., 2010, A&A, 518, L2
Popesso P. et al., 2012, A&A, 537, A58
Popesso P., Biviano A., Romaniello M., Böhringer H., 2007, A&A, 461, 411
Popesso P., Böhringer H., Romaniello M., Voges W., 2005, A&A, 433, 415
Popesso P. et al., 2011, A&A, 532, A145
Pratt G. W., Böhringer H., Croston J. H., Arnaud M., Borgani S., Finoguenov A., Temple R. F., 2007, A&A, 461, 71
Prescott M. K. M., Impey C. D., Cool R. J., Scoville N. Z., 2006, ApJ, 644, 100
Quadri R. et al., 2007, AJ, 134, 1103
Rix H.-W. et al., 2004, ApJS, 152, 163
Rykoff E. S. et al., 2008, MNRAS, 387, L28
Sanders D. B. et al., 2007, ApJS, 172, 86
Santini P. et al., 2009, A&A, 504, 751
Scodeggio M. et al., 2009, A&A, 501, 21
Scoville N. et al., 2007, ApJS, 172, 1
Shapley A. E., Steidel C. C., Adelberger K. L., Dickinson M., Giavalisco M., Pettini M., 2001, ApJ, 562, 95
Shapley A. E., Steidel C. C., Erb D. K., Reddy N. A., Adelberger K. L., Pettini M., Barmby P., Huang J., 2005, ApJ, 626, 698
Silverman J. D. et al., 2010, ApJS, 191, 124
Springel V. et al., 2005, Nat, 435, 629
Stewart K. R., Bullock J. S., Wechsler R. H., Maller A. H., Zentner A. R., 2008, ApJ, 683, 597
Strateva I. et al., 2001, AJ, 122, 1861
Sun M., 2012, New Journal of Physics, 14, 045004
Taniguchi Y. et al., 2007, ApJS, 172, 9
Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G., Gottlöber S., Holz D. E., 2008, ApJ, 688, 709
Tran K.-V. H., Moustakas J., Gonzalez A. H., Bai L., Zaritsky D.,Kautsch S. J., 2008, ApJ, 683, L17
Trump J. R. et al., 2007, ApJS, 172, 383
van den Bosch F. C., Yang X., Mo H. J., 2003, MNRAS, 340, 771
Wang L., Li C., Kauffmann G., De Lucia G., 2007, MNRAS, 377, 1419
Weinmann S. M., Kauffmann G., van den Bosch F. C., Pasquali A., McIntosh D. H., Mo H., Yang X., Guo Y., 2009, MNRAS, 394, 1213
Weinmann S. M., Neistein E., Dekel A., 2011, MNRAS, 417, 2737
Weinmann S. M., van den Bosch F. C., Yang X., Mo H. J., 2006, MNRAS, 366, 2
Willner S. P. et al., 2012, ApJ, 756, 72
Wilman D. J. et al., 2005, MNRAS, 358, 88
Wilman D. J., Erwin P., 2012, ApJ, 746, 160
Wilman D. J., Fontanot F., De Lucia G., Erwin P., Monaco P., 2013, MNRAS, 433, 2986
Wilman D. J., Oemler J. A., Mulchaey J. S., McGee S. L., Balogh M. L., Bower R. G., 2009, ApJ, 692, 298
Wolf C. et al., 2009, MNRAS, 393, 1302
Wright N. J., Drake J. J., Civano F., 2010, ApJ, 725, 480
Wuyts S. et al., 2011, ApJ, 742, 96
Xue Y. Q. et al., 2011, ApJS, 195, 10
Yang X., Mo H. J., Jing Y. P., van den Bosch F. C., Chu Y., 2004, MNRAS, 350, 1153
Yang X., Mo H. J., van den Bosch F. C., 2003, MNRAS, 339, 1057
Yang X., Mo H. J., van den Bosch F. C., 2008, ApJ, 676, 248
Yang X., Mo H. J., van den Bosch F. C., Jing Y. P., 2005, MNRAS, 356, 1293
Yang X., Mo H. J., van den Bosch F. C., Pasquali A., Li C., Barden M., 2007, ApJ, 671, 153
Ziparo F. et al., 2013, MNRAS, 434, 3089
Ziparo F. et al., 2014, MNRAS, 437, 458