Electrode and Redox Potentials of Molybdenum and Stability of Molybdenum Chloro-Species in Alkali Chloride Melts

V. A. Volkovich,a,*,1 A. B. Ivanov,a R. V. Kamalov,a D. S. Maltseva, B. D. Vasin,a and T. R. Griffithsb

aDepartment of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia
bEnergy Process Developments Ltd., London, SE1 4AG, United Kingdom

Molybdenum electrode and Mo(III)/(IV) redox potentials were measured in fused alkali chlorides. Experiments were performed in individual salts (LiCl, NaCl, KCl, RbCl and CsCl) and in several binary and ternary eutectic or low-melting mixtures between 633 and 1173 K (depending on the melting point of the solvent salt). Formal standard electrode potentials \(E^\circ_{\text{Mo(III)/Mo(IV)}}\) and redox potentials \(E^*_{\text{Mo(III)/Mo(IV)}}\) in respect to \(\text{Cl}^-/\text{Cl}_2\) couple and Gibbs free energy change of formation of molybdenum(III) chloride in alkali chloride melts were calculated. Electronic absorption spectra of Mo(III) ions were recorded, and spectroscopic parameters of MoCl\(_6^{3-}\) complex ions determined. High temperature spectroscopy measurements were used to study the stability of Mo(III) chloro-species in fused chlorides and the reaction rates of Mo(III) ions disproportionation were also determined. Diffusion coefficients of molybdenum ions in LiCl-KCl-CsCl and NaCl-CsCl eutectic based melts were determined from the results of electrochemical measurements.

Some aspects of molybdenum chemistry in fused chlorides were considered earlier, primarily in relation to pyrochemical reprocessing, but these did not include electrochemical processes. Electrochemistry of molybdenum in chloride melts first attracted attention several decades ago but no systematic study of the electrode potentials has been performed, with the exception of the earlier studies by Ryzhik and Smirnov. They determined molybdenum standard electrode potentials in melts based on individual alkali chlorides (LiCl, KCl, CsCl) and in the LiCl-KCl eutectic mixture. Their results, however, did not agree with the data by Senderoff and Brenner and Selis, who reported significantly more positive potential values for LiCl-KCl based melts at 873–1173 K and 733–813 K, respectively. Subsequent measurements in NaCl-KCl equimolar mixture at 992–1088 K and NaCl-CsCl eutectic at 845–1010 K also resulted in more positive molybdenum electrode potential values than could have been expected from the data of Ryzhik and Smirnov. Thus, there was noticeable disagreement between the data reported over the past years. Very little attention was subsequently paid to measuring molybdenum electrode potentials in fused chlorides.

Molybdenum is a polyvalent metal and it is generally agreed now that the lowest oxidation state of molybdenum in high temperature chloride melts is +3. Such observation corresponds to the trend of increasing the lowest stable oxidation state of transition d-block metal ions in chloride melts upon increasing the period number, i.e. from 3d to 4d and 5d. For instance, the lowest oxidation state of chromium in chloride melts is +2 and that of tungsten is +4. Co-deposition of lower oxidation state molybdenum species together with the metal on a cathode was observed during electrolysis at low temperatures (in NaCl-KCl-CsCl and NaCl-KCl-MgCl\(_2\) based melts) at high molybdenum concentrations. This compound was not characterised and was said to be insoluble in the melt. Earlier reports also mentioned a possibility that polynuclear molybdenum(III) ions can exist in the melts and subsequent spectroscopy studies produced no evidence of such species. Higher oxidation states of molybdenum in fused chlorides have yet to be sufficiently studied. Molybdenum(IV) and (V) chloro-species could be formed under certain conditions and were characterised primarily by spectroscopy. Molybdenum(VI) species can be present in chloride melts only in the form of oxygen containing ions.

The present study was aimed at studying molybdenum electrochemical properties and speciation in alkali chloride based melts, focusing on molybdenum electrode potentials and probing the Mo(III)/Mo(IV) oxidation-reduction process.

Experimental

To assess the effect of the melt cationic composition on molybdenum speciation and behavior, the experiments were performed in
individual alkali chlorides (LiCl, NaCl, KCl, RbCl, CsCl), as well as in several binary and ternary mixtures of eutectic or low melting compositions. These included LiCl-KCl (58 mol.% KCl, m.p. 625 K); NaCl-KCl (50 mol.% NaCl, m.p. 923 K); NaCl-CsCl (34 mol.% NaCl, m.p. 763 K), KCl-CsCl (36 mol.% KCl, m.p. 879 K); LiCl-KCl-CsCl (57.5 mol.% LiCl, 16.5 mol.% KCl, m.p. 536 K) and NaCl-KCl-CsCl (30 mol.% NaCl, 24.5 mol. % KCl, m.p. 753 K) mixtures. Commercially available alkali chlorides were used and these included LiCl (99.4%, Aldrich), NaCl (99.6%, Reakhim), KCl (99.8%, Reakhim) and CsCl (99.9%, Reakhim). Salts were dried under vacuum at 573 K for 3 hours in silica cells. The temperature was then increased to ca. 50 degrees above the melting point of the salt. The cell was filled with argon (99.99%) and the molten salt was sparged with gaseous hydrogen chloride or a mixture of chlorine and hydrogen chloride for several hours and then held under vacuum to remove the gases dissolved. Mixtures of alkali chlorides were prepared by fusing together the individual salts thus prepared. All salt mixtures were stored in an argon filled dry box prior to use.

Molybdenum-containing melts were produced either by anodic dissolution of the metal or by dissolving potassium hexachloromolybdate(III). The latter compound was prepared using the procedure given by Senderoff and Brenner;32 starting potassium molybdate was synthesized by reacting stoichiometric amounts of molybdenum trioxide (99.5% Reakhim) and potassium carbonate (99.5% Reakhim). The impurities content in the compound prepared was not determined. Molybdenum metal (99.95%, wire and foil) was obtained from Alfa Aesar. Anodic dissolution of molybdenum is a three-electron process.33,34 Previous high temperature spectroscopy studies showed that six-coordinated MoCl6^{3–} ions were formed in the melt irrespectively of the method used for introducing molybdenum ions (anodic dissolution of the metal or dissolution of K₂MoO₄).35,36 The concentration of molybdenum in the quenched melt samples was determined photometrically with thiocyanate.36 Volumetric analysis (oxidimetric titration) was employed to estimate the mean oxidation state of molybdenum in the quenched melts.37 A sample of the melt was dissolved in a known volume of ammonium vanadate solution (0.01 M in 5 M sulfuric acid) resulting in oxidation of all molybdenum to the oxidation state +6. The excess vanadate was then determined by titrating with Mohr salt solution (0.01 M of ammonium iron sulfate in 5 M H₂SO₄) in the presence of phenylalanine redox indicator. The mean oxidation state of molybdenum (n_m) was calculated using the following equation:

\[n_m = 6 - (C_V - C_{Fe} - V_{Fe} - V_{Fe}) \times 95.94/(m \cdot \omega_m), \]

where C_V and C_{Fe} are the concentrations of ammonium vanadate and Mohr salt solutions, respectively, M; V_{Fe} and V_{Fe} are the volumes of ammonium vanadate and Mohr salt solutions used, dm³; m is the melt sample weight used for the analysis, g; and \(\omega_m \) is molybdenum concentration in the melt, mass fraction.

High temperature spectroscopy measurements.—Electronic absorption spectra of molybdenum-containing melts were recorded between 350 and 1100 nm using a custom-built set-up based on a double channel spectrometer AvaSpec-2048FT-2-SPU (Avantes) and an optical fiber unit TF1726 (Instron SFL). The melts were held in standard 1 cm path length silica optical cells equipped with the necessary arrangements and electrodes, i.e., for performing molybdenum metal anodic dissolution, sampling the melt, etc. The electrodes were positioned in the cell that spectra could be recorded in the course of the metal anodic dissolution without interrupting the process.

Electrochemistry measurements.—Electrode potentials of molybdenum were determined using the electromotive force (emf) measurements method.10,15,33,34 Measurements were performed at zero current using an Autolab PGSTAT 302N potentiostat/galvanostat. Molybdenum plate (ca. 4 cm²) attached to a molybdenum rod served as a working electrode. Chlorine (Cl²−/Cl) or silver chloride (Ag/AgCl) electrodes were used as references, and all the measured potentials were recalculated to Cl⁻/Cl₂ couple. The chlorine reference electrode was used in a number of experiments for verification of the values obtained with the silver chloride electrode. The chlorine electrode30 consisted of a silica sheath of ca 15 mm i.d. having an asbestos diaphragm (ca. 2 mm i.d.) in the bottom and containing the corresponding alkali chloride solvent melt. A graphite tube was dipped into the melt and a constant flow of gaseous chlorine was passed through this tube. The melt was thus kept saturated with chlorine and the pressure of Cl₂ above the melt was equal to the ambient. The silver chloride reference electrode consisted of a silver wire dipped into a 1 mol.% solution of AgCl in the NaCl-CsCl eutectic. The electrode potential of silver in this melt is described by the following equation (T in K):39

\[E_{AgCl/Ag} = -1.223 + 3.266 \times 10^{-4} T (\pm 0.008) \ V \]

Temperature was monitored using a K-type thermocouple in a beryllium oxide sheath and a silica capillary sampling tube was used for withdrawing a portion of the molten salt for further chemical analysis. Silica was used for the sheaths of the reference and counter electrodes and the bottom parts of the sheaths were closed with asbestos diaphragms. Asbestos was preliminary calcined at 973 K and the diaphragms were impregnated with the corresponding solvent salt prior to use. The melt was held in a glassy carbon crucible positioned in a silica cell, closed with a stopper containing all the necessary electrodes and attachments.

Formal standard electrode potentials of molybdenum were calculated from the experimentally measured potential values and molybdenum concentration determined by chemical analysis.

To determine molybdenum redox potentials, the potentiometric measurements were performed in the melts containing the products of reaction of molybdenum dioxide (or mixtures of molybdenum and molybdenum dioxide) with hydrogen chloride. In this case glassy carbon rods were used as working electrodes and with silver chloride electrode as the reference.

Cyclic voltammetry and chronopotentiometry measurements were also performed employing the Autolab PGSTAT 302N potentiostat. A silver chloride electrode was used here as the reference and a glassy carbon rod (2.48 mm dia.) sheathed from the sides by a beryllium oxide tube acted as a working electrode. The surface area of the working electrode was 0.048 cm². A silica tube closed with a diaphragm and contained a molybdenum wire dipped into a MCl-PbCl₂ melt (M = alkali metal) served as a counter electrode. The surface area of the counter electrode was ca. 1.2 cm². The design of the counter electrode allowed separating any counter electrode reaction from the bulk of the electrolyte.

Results and Discussion

Stability of Mo(III) ions in chloride melts.—Electronic absorption spectroscopy offers a convenient tool for monitoring processes involving Mo(III) species in fused salts. Molybdenum(III) containing chloride melts have characteristic electronic absorption spectra (EAS) in the visible region. The EAS contain two relatively intense absorption bands with clearly defined maxima around 580 and 440 nm and a weak shoulder around 680 nm, Fig. 1. The absorption bands originate from the electronic transitions in the six-coordinated MoCl₆³⁻ complex ions, i.e. two spin-allowed transitions (\(^4A_{2g} \rightarrow ^4T_{1g} \) and \(^4A_{2g} \rightarrow ^4T_{2g} \)) and a spin forbidden transition \(^4A_{2g} \rightarrow ^2T_{2g}. \) Spectra recorded in the course of molybdenum anodic dissolution showed a steady absorbance increase. The concentration of molybdenum(III) ions (calculated using Beer’s law and results of the chemical analysis of the final melt) linearly increased with time, Fig. 2.

The results of analysis of Mo(III) EAS in various chloride melts are summarized in Table I. Positions of the absorption bands were determined after resolving the spectra into constituent Gaussian bands except for the spectra taken from the literature where the peak positions reported by the authors or estimated from spectral curve profiles were used. Absorption bands shifted toward lower energy (higher wavelengths) upon increasing temperature or mean radius of the alkali metal cation. Ligand field splitting energy \(D_Q \) also decreases with
temperature and cationic radius. Racah parameter B increases with the radius of the cation resulting in increasing the nephelauxetic parameter β characterizing the degree of “ionicity” of bonds in the complex ions. The value of β varies from ca. 0.7 to ca. 0.9 upon changing the melt cation from Li$^+$ to Cs$^+$. Racah parameter C was determined from the energy of the low intensity spin-forbidden transition $^4A_{2g} \rightarrow ^2T_{2g}$ and the values obtained should be treated as approximate. No clear effect of temperature and melt composition on the value of this parameter was found. Ligand field stabilization energy δ of MoCl$_6^{2-}$ ion decreases from LiCl to CsCl based melts indicating increasing stability of the complex ion due to lowering polarizing effect of the outer sphere cations.

Table I. Spectroscopic parameters of Mo(III) species in chloride melts.

Melt	Mean cation radius / Å	T / K	$^4A_{2g} \rightarrow ^2T_{2g}$	$^4A_{2g} \rightarrow ^4T_{2g}$	$^4A_{2g} \rightarrow ^4T_{1g}$	Dq / cm$^{-1}$	B / cm$^{-1}$	C / cm$^{-1}$	β	δ / kJ/mol	Ref.
emimAlCl$_4$											
LiCl	0.78	298	685a	544a	439a	1840	398	2030	0.65	263.9	40
1023	661	564	448	1770	418	2120	68	254.3			
NaCl	0.98	1123	721	588	462	1700	426	1870	0.7	244.1	-
LiCl-KCl	1.0	673	685	552	425	1810	505	1900	0.83	260.1	42
LiCl-KCl-CsCl	1.097d	1023	668	571	444	1750	463	2040	0.76	251.2	
NaCl-KCl	1.16c	737	695	591	445	1690	525	1700	0.86	242.9	
KCl	1.33c	707	584	441	1730	496	1890	0.81	247.7		
NaCl-KCl-CsCl	1.37d	597	584	446	1710	481	1890	0.79	245.8		
NaCl-CsCl	1.43c	784	699	595a	443	1680	559	1840	0.91	241.2	41
RbCl	1.49c	707	584	444	1720	500	1860	0.82	247.1		
KCl-CsCl	1.53d	597	584	446	1670	561	1840	0.92	239.6		
CsCl	1.65c	965	699a	592a	446a	1690	524	1860	0.86	242.5	41

aEstimated without resolving the spectra into individual bands.

bThe dash in the reference column indicates the results obtained in the present study.

cTaken from Smirnov.

dCalculated here from the molar composition of the mixture.

Downloaded on 2019-04-27 to IP 207.241.231.83 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).
Molybdenum chloro-ions have limited stability in fused alkali chlorides and the concentration of molybdenum(III) ions in high-temperature chloride melts left under an inert atmosphere decreased over time. Electrochemical, chemical, and spectroscopy studies showed that Mo(III) chloro-species in chloride melts can undergo disproportionation:26,42

\[
5 \text{MoCl}_3^- \leftrightarrow 2 \text{Mo} + 3 \text{MoCl}_5^+ + 15 \text{Cl}^- \quad [3]
\]

resulting in a gradually decreasing molybdenum concentration in the melt and precipitation of fine molybdenum metal particles. EAS measurements showed that Mo(III) concentration in the melt prepared by anodic dissolution of molybdenum metal or by dissolving K₃MoCl₆, decreased over time and this decrease was essentially linear, Fig. 3. Molybdenum concentration in the melt was determined from the absorption values using Beer’s law. The rate at which Mo(III) concentration decreased depended on temperature and cationic melt composition, the higher the temperature or smaller the cation, the faster the Mo(III) concentration dropped. The reaction rates determined for various melt compositions are summarized in Table II. The starting molybdenum(III) concentration in the melt was around 0.15–0.2 mol/kg and the reaction rates increased with temperature or decreasing alkali cation radius, showing that the equilibrium of Reaction 3 was shifted to the right at elevated temperatures or in the presence of cations with high ionic momentum. Such instability of Mo(III) concentration decreased depended on temperature and cationic melt composition.

Molybdenum electrode potentials in alkali chloride melts.—In the present study molybdenum powder was added to the melt during measurements to slow down the Reaction 3 and minimize its influence on the results. Potentials were taken as stationary if they did not change by more than 5 mV over 30 minutes. Immediately after finishing recording the potentials, a sample of the melt was withdrawn into a sampling silica capillary tube, rapidly quenched and used for the further chemical analysis. Student’s t-distribution with 95% confidence interval was used for the statistical analysis of the experimental data.

Individual alkali metal chlorides have relatively high melting points and therefore mixtures of low-melting or eutectic compositions are preferred for technological applications. In the present study, three mixtures were selected, i.e. NaCl–KCl (inexpensive but relatively high melting); NaCl-CsCl (low-melting and non-hygroscopic but expensive); and LiCl-KCl-CsCl (having the lowest melting point amongst all alkali chloride mixtures). The results obtained are presented in Fig. 4 where they are also compared with the available literature data. The following equations were obtained by the linear least squares fitting and describe the temperature dependencies of the formal standard electrode potentials of molybdenum:

\[
E^{*}_{\text{Mo/Mo(III)}} = -1.727 + 8.65 \cdot 10^{-4} \cdot T (\pm 0.04) \, \text{V (NaCl-CsCl, 793 – 1023 K)} \quad [4]
\]

\[
E^{*}_{\text{Mo/Mo(III)}} = -1.327 + 4.46 \cdot 10^{-4} \cdot T (\pm 0.04) \, \text{V (NaCl-KCl, 973 – 1123 K)} \quad [5]
\]

\[
E^{*}_{\text{Mo/Mo(III)}} = -1.405 + 6.05 \cdot 10^{-4} \cdot T (\pm 0.04) \, \text{V (LiCl-KCl-CsCl, 633 – 1173 K)} \quad [6]
\]

Table II. Rate of Reaction 3 in alkali chloride based melts.

Melt	\(T / \text{K}\)	Starting Mo(III) conc.	Reaction rate	
LiCl	1023	0.0205	1.38 \cdot 10^{-4}	1.98 \cdot 10^{-6}
LiCl-KCl	1023	0.0169	1.30 \cdot 10^{-6}	1.94 \cdot 10^{-6}
NaCl-KCl	1023	0.0166	7.51 \cdot 10^{-7}	1.17 \cdot 10^{-6}
NaCl-KCl-CsCl	923	0.0158	4.49 \cdot 10^{-7}	1.08 \cdot 10^{-6}
NaCl-CsCl	823	0.0122	6.09 \cdot 10^{-7}	1.41 \cdot 10^{-6}
KCl-CsCl	1023	0.0143	1.90 \cdot 10^{-7}	4.88 \cdot 10^{-7}
CsCl	1023	0.0134	5.12 \cdot 10^{-7}	1.21 \cdot 10^{-6}

Figure 3. Decreasing Mo(III) concentration in alkali chloride based melts held under argon atmosphere. Melt composition and temperature shown for each set of data.

Figure 4. Molybdenum formal standard electrode potentials in NaCl-CsCl (a), LiCl-KCl-CsCl (b) and NaCl-KCl (c) based melts. Cl⁻/Cl₂ reference couple. Empty symbols – present work; solid symbol and lines – literature data.9–21
Table III. Molybdenum formal standard electrode potentials in fused alkali metal chlorides (Cl2−/Cl\textsubscript{2} reference couple).

Melt	\(E_{\text{Mo(Mo(III)}}^{\circ}/\text{Cl}_2 \) at 1123 K / V (present work)	\(E_{\text{Mo(Mo(III)}}^{\circ}/\text{Cl}_2 \) at 1100 K / V9-13,15,16
LiCl	0.720 ± 0.040	-0.754
NaCl	0.780 ± 0.040	-0.107
KCl	0.810 ± 0.020	-0.877 ± 0.005
RbCl	0.843 ± 0.035	-1.113
CsCl	0.877 ± 0.005	-1.113

The potential values shift in a negative direction with increasing mean radius of the alkali cation. The results obtained here for NaCl-CsCl eutectic-based melt agree closely with the earlier work.21 The NaCl-KCl mixture, the results obtained by Aleksandrov et al.3 were around 60–70 mV more positive than found here, while the single point reported by Baraboshkin9 at 973 K was even more positive.

The temperature dependencies of the Gibbs free energy change of MoCl\textsubscript{3} formation in the melts studied were calculated from the temperature dependencies of the formal standard electrode potentials using the standard relation between the free energy and the electrochemical cell emf,38 and the following equations were derived:

\[
\Delta G_{\text{MoCl}_3}^{\circ} = -499.9 + 250.4 \cdot 10^{-3} - T \cdot (\pm 3) \text{kJ/mol (NaCl-CsCl, 793 – 1023 K)} \quad [7]
\]

\[
\Delta G_{\text{MoCl}_3}^{\circ} = -384.1 + 129.1 \cdot 10^{-3} - T \cdot (\pm 4) \text{kJ/mol (NaCl-KCl, 973 – 1123 K)} \quad [8]
\]

\[
\Delta G_{\text{MoCl}_3}^{\circ} = -406.7 + 175.2 \cdot 10^{-3} - T \cdot (\pm 1) \text{kJ/mol (LiCl-KCl-CsCl, 633 – 1173 K)} \quad [9]
\]

Electrode potentials of metals in fused chlorides depend on the cationic composition of the melts. Alkali metal cations form second coordination sphere around the transition metal centres and have the low ionic momentum cations (cesium).31 Electronic absorption spectroelectrochemistry studies showed that Mo(IV) chloro-species are most stable at lower temperatures and in the melts containing low ionic momentum cations (cesium).32 Electronic absorption spectroscopy allowed clear distinction between Mo(III) and Mo(IV) ions. Examples of the EAS of the melts containing the products of reaction of MoO\textsubscript{2+} with HCl at various temperatures are presented in Fig. 6.

The spectra recorded at 823 and 873 K contain a well pronounced peak around 13,000 cm-1, as well as a hidden band around 16,100 cm-1 and a low energy edge of a band with the maximum above 20,000 cm-1, cf. top and middle spectra in Fig. 6. The mean oxidation state of molybdenum in these melts determined by redox titration was close to zero. Analysis of the possible electronic transitions for d4 electronic configuration showed that these bands correspond to the following transitions in the MoCl\textsubscript{6}2− complex ion (in order of increasing energy): \(T_{2g} \rightarrow A_{1g} \rightarrow T_{2g} \rightarrow A_{1g} \rightarrow T_{1g} \rightarrow T_{1g} \). The second transition is spin-forbidden and therefore the intensity of the corresponding band is lower than for the spin-allowed transitions. The spectra recorded at 923 K contained more bands, cf. bottom spectrum in Fig. 6. The mean oxidation state of molybdenum in this melt determined oxidimetrically was 3.40 ± 0.03. The melt therefore contained a mixture of Mo(IV) and Mo(III) ions and the EAS contained a superposition of the absorption bands corresponding to the following transitions in the MoCl\textsubscript{6}2− complex ion (in order of increasing energy): \(T_{1g} \rightarrow T_{2g} \rightarrow A_{2g} \rightarrow T_{1g} \rightarrow T_{1g} \rightarrow A_{1g} \rightarrow T_{2g} \rightarrow A_{1g} \rightarrow T_{2g} \). The latter were formed as the result of disproportionation of Mo(IV) into Mo(III) and Mo(VI) ions.
species and the following reactions describe the process of MoO₂ chlorination by HCl in a chloride melt:

\[
\text{MoO}_2 + 2 \text{HCl} \rightarrow \text{MoOCl}_2 \uparrow + \text{H}_2\text{O} \uparrow \quad [11]
\]

\[
\text{MoO}_2 + 4 \text{HCl} + 2 \text{Cl}^- \rightarrow \text{MoCl}_6^{2-} + 2 \text{H}_2\text{O} \uparrow \quad [12]
\]

\[
2 \text{MoCl}_6^{2-} \rightarrow \text{MoCl}_6^{3-} + \text{MoCl}_6^{-} \quad [13]
\]

\[
\text{MoCl}_6^{-} \rightarrow \text{MoCl}_5 \uparrow + \text{Cl}^- \quad [14]
\]

Molybdenum oxychloride (MoOCl₂) having a low boiling point sublimed (at least partially) from the melt and condensed in the form of yellow needles in the upper cold part of the experimental cell. Increasing temperature favored Reactions 13 and 14. The high vapor pressure of molybdenum(V) chloride assists its sublimation from the melt. A dark blue solid condensed in the upper part of the cell during the experiments at 650 °C indicated the formation of MoCl₅.

In a preliminary study, high temperature spectroscopy and spectrophotometry measurements showed that Mo(III)/Mo(IV) oxidation/reduction was a reversible process, and Mo(III)/Mo(IV) redox potential was estimated from the results of spectroelectrochemistry in NaCl-CsCl eutectic. At 823 K the potential found was –(0.83 ± 0.04) V vs. Cl⁻/Cl₂ or 0.45 ± 0.04 V vs. Ag/AgCl reference electrode. In the present work, potentiometry measurements on an inert (glassy carbon) electrode were employed to determine \(E^{\ast}_{\text{Mo(III)/Mo(IV)}} \) redox potentials. Chlorination of molybdenum metal by hydrogen chloride resulted in the melts containing only Mo(III) ions. Therefore, melts containing a mixture of Mo(III) and Mo(IV) ions were prepared by reacting a mixture of Mo and MoO₂ with HCl. The results obtained in NaCl-CsCl and NaCl-KCl-CsCl based melts are summarized in Table IV. The primary factor affecting the value of Mo(III)/Mo(IV) redox potential is the ratio of Mo(IV) and Mo(III) concentrations in the melt, which in turn was calculated from the oxidimetrically determined mean oxidation state of molybdenum in the melt. Increased temperature resulted in a significant decreasing mean oxidation state with Mo(III) ions becoming predominant. The oxidimetric titration is, by its nature, not a very precise method as are all titrimetry techniques. Direct potentiometry measurements produced rather scattered data due to considerable uncertainty in determining mean oxidation state of molybdenum in the melt by redox titration (Table IV). Therefore the values of \(E^{\ast}_{\text{Mo(III)/Mo(IV)}} \) redox potentials given in Table IV should be considered as estimates. Analysis of the \(E^{\ast}_{\text{Mo(III)/Mo(IV)}} \) values obtained, and comparison with the \(E^{\ast}_{\text{Mo(III)/Mo(IV)}} \) electrode potentials allowed, at the present stage, the derivation of the following equations of temperature dependencies of the formal standard redox potentials Mo(III)/Mo(IV) vs. Cl⁻/Cl₂ couple:

\[
E^{\ast}_{\text{Mo(IV)/Mo(III)}} = -1.24 + 5.51 \times 10^{-4} \, T \, (\text{NaCl-CsCl}, \, 823 - 923 \, \text{K}) \quad [15]
\]

\[
E^{\ast}_{\text{Mo(IV)/Mo(III)}} = -0.97 + 3.08 \times 10^{-4} \, T \, (\text{NaCl-KCl-CsCl}, \, 823 - 973 \, \text{K}) \quad [16]
\]

Cyclic voltammetry was next employed to study molybdenum redox behavior. Gabriel et al. noted that cyclic voltammograms (CVs)
recorded in LiCl-KCl-K3MoCl6 melts contained only one reduction peak attributed to a three-electron reduction of Mo(III) and a corresponding oxidation peak. Close examination of the CV presented by Gabriel et al., however, showed that there were one additional cathodic peak at the potential about 1.2 V more positive than Mo(III)-to-Mo(0) reduction and one anodic peak, ca. 0.6 V more positive than Mo(0)-to-Mo(III) oxidation. It was, therefore, of interest to investigate this process in more detail. In the present study the experiments were performed in NaCl-CsCl and NaCl-KCl-CsCl based melts at 823 and 923 K. Examples of CVs recorded are presented in Fig. 7.

Cyclic voltammograms recorded in molybdenum containing melts. Glassy carbon working electrode, 0.048 cm2; Ag/AgCl reference; Pb/PbCl2 counter electrode. Scan rate, V s⁻¹: (a) NaCl-KCl-CsCl, 923 K, 0.92 wt% Mo; (b) NaCl-CsCl, 823 K, 1.07 wt% Mo. Arrows show the starting point and direction of the potential scan.

Table IV. Results of potentiometric measurements of Mo(III)/Mo(IV) redox potentials in chloride melts.

T/K	Mo concentration/wt%	n_{ox}	GC electrode potentiala / V	[Mo(VI)] / [Mo(III)]	E^*_{Mo(III)/Mo(IV)}b / V
823	1.44	3.90 ± 0.04	0.478	10.7 ± 5.0	-0.962 ± 0.036
823	2.582	3.64 ± 0.05	0.255	1.8 ± 0.4	-1.068 ± 0.016
873	1.668	3.04	0.363	0.04	-0.683
923	1.991	3.06 ± 0.02	0.298	0.06 ± 0.03	-0.755 ± 0.041
973	2.145	3.04	0.006	0.04	-1.019
823	2.016	3.15	0.332	0.18	-0.724
873	0.358	3.75 ± 0.02	0.262	3.03 ± 0.33	-0.996 ± 0.033
823	1.450	3.24 ± 0.01	0.276	0.31 ± 0.01	-0.820 ± 0.002
823	1.336	3.34 ± 0.14	0.491	0.57 ± 0.32	-0.637 ± 0.048
873	3.11 ± 0.01	0.299	0.12 ± 0.02	-0.728 ± 0.008	
923	0.913	3.11 ± 0.04	0.261	0.12 ± 0.04	-0.755 ± 0.031
973	0.969	3.42 ± 0.08	0.273	0.75 ± 0.25	-0.889 ± 0.028
973	2.037	3.04 ± 0.01	0.200	0.04 ± 0.01	-0.739 ± 0.010
1.058	3.07 ± 0.03	0.218	0.07 ± 0.04	-0.740 ± 0.053	

a vs. Ag/AgCl (1 mol. % in NaCl-CsCl); b vs. Cl⁻/Cl₂.

The value of n obtained for the scan rates below 0.2 V/s was 1.05 ± 0.15 for the cathodic reaction and 1.10 ± 0.15 for the anodic reaction. The cyclic voltammmograms recorded were therefore assigned to a one-electron Mo(III)→Mo(IV) oxidation-reduction process. Formal standard redox potentials of the Mo(III)/(IV) couple were estimated from the results of cyclic voltammetry measurements using the half-peak potential:

\[E_p - E_{p/2} = -2.2 \cdot R \cdot T / (n \cdot F) \]

[17]

The number of electrons (n) was calculated from the difference of peak and half-peak potentials (E_p and E_{p/2}):

\[E_{1/2} = E^*_{Mo(III)/Mo(IV)} + \frac{R \cdot T}{F} \cdot \ln \left(\frac{D_{Mo(III)}}{D_{Mo(IV)}} \right)^{1/2} + \frac{R \cdot T}{F} \cdot \ln \left(\frac{\gamma_{Mo(III)}}{\gamma_{Mo(IV)}} \right) \]

[18]
As expected, the diffusion coefficients increase with temperature and decreasing mean alkali cation radius. Analysis of the cathodic parts of anodic waves of cyclic voltammograms and are included in Table VI. Molybdenum containing melts based on the ternary LiCl-KCl-CsCl eutectic were here studied using chronopotentiometry, and molybdenum ions diffusion coefficients were determined employing Sand’s equation:

\[
\log(D_{Mo(III)}) = -3702.3/T - 0.9 (±0.3)
\]

To make an estimate of the formal standard redox potentials, the diffusion coefficients of the reduced and oxidized species are often taken as very close and the following equation is used:

\[
E^{*}_{Mo(III)/Mo(IV)} = E^{0}_{Mo(III)/Mo(IV)} + \frac{R \cdot T}{F} \cdot \ln\left(\frac{\gamma_{Mo(III)}}{\gamma_{Mo(IV)}}\right)
\]

The results obtained are summarized in Table V. The redox potential values are more positive than molybdenum electrode potentials, as expected. The \(E^{*}_{Mo(III)/Mo(IV)}\) redox potentials estimated from the results of cyclic voltammetry are, however, more negative than those obtained by potentiometry (cf. Tables IV and V). More accurate determination of molybdenum redox potentials would require information on the diffusion coefficients of the molybdenum species.

Table V. Molybdenum(II)/(IV) formal standard redox potentials obtained from the results of cyclic voltammetry measurements, Cl-/Cl2 reference couple.

Melt	T / K	Mo concentration / wt%	\(E^{*}_{Mo(III)/Mo(IV)}\) / V
NaCl-CsCl	823	0.17	-0.811 ± 0.008
		0.27	-0.806 ± 0.006
		0.68	-0.868 ± 0.013
		1.07	-0.865 ± 0.013
NaCl-KCl-CsCl	833	0.85	-0.867 ± 0.010
		0.98	-0.873 ± 0.006
	923	0.13	-0.902 ± 0.008
		0.30	-0.950 ± 0.020
		0.92	-1.096 ± 0.025

In dilute solutions the activity coefficients of dissolved species (γ) remain essentially constant. Standard potential \(E^{0}\) can therefore be changed to the formal standard potential \(E^{*}\):

\[
E^{*}_{Mo(III)/Mo(IV)} = E^{0}_{Mo(III)/Mo(IV)} + \frac{R \cdot T}{F} \cdot \ln\left(\frac{\gamma_{Mo(III)}}{\gamma_{Mo(IV)}}\right)
\]

The results obtained are summarized in Table V. The redox potential values are more positive than molybdenum electrode potentials, as expected. The \(E^{*}_{Mo(III)/Mo(IV)}\) redox potentials estimated from the results of cyclic voltammetry are, however, more negative than those obtained by potentiometry (cf. Tables IV and V). More accurate determination of molybdenum redox potentials would require information on the diffusion coefficients of the molybdenum species.

Table VI. Diffusion coefficients of molybdenum(III) chloro-ions in alkali chloride melts.

T, K	\(D_{Mo(III)} \cdot 10^5\) / cm²/sec	Source	\(D_{Mo(III)} \cdot 10^5\) / cm²/sec	Source	\(D_{Mo(III)} \cdot 10^5\) / cm²/sec	Source
773	0.80 ± 0.05	42	0.19	present work	0.37 ± 0.14	present work
823	1.43	26	1.69	present work	2.53	present work
923	2.53	26	1.69	present work	2.53	present work

For a flat working electrode the Randles-Sevcik equation can be employed to calculate the diffusion coefficients of the electroactive species:

\[
t_p = 0.4463 \cdot n^{3/2} \cdot F^{3/2} \cdot A \cdot \tau \cdot D^{1/2} / (R \cdot T)^{1/2}
\]

where \(t_p\) is the peak current, \(A\) the potential scan rate, \(V/s\); \(R\) the universal gas constant, \(J/(mol \cdot K)\); \(T\) temperature, \(K\); and \(n, F, A, C\) and \(D\) are the same as in Eq. 21. Diffusion coefficients of Mo(III) ions in NaCl-CsCl eutectic melts were determined from the analysis of the anodic waves of cyclic voltammograms and are included in Table VI. As expected, the diffusion coefficients increase with temperature or decreasing mean alkali cation radius. Analysis of the cathodic parts of
the CVs allowed the estimation of Mo(IV) diffusion coefficients. In the NaCl-CsCl melt at 823 K the diffusion coefficient thus obtained was $0.58 \pm 0.28 \cdot 10^{-9}$ cm2/sec, which is about 6 times less than the diffusion coefficient of Mo(III) ions.

Conclusions

The electrochemical behavior of molybdenum was studied in alkali chloride melts by stationary and transient electrochemical techniques and the speciation of molybdenum(III) and (IV) ions were characterized by electronic absorption spectroscopy. EAS measurements were also employed to assess the stability of Mo(III) ions in high temperature chloride melts. Increasing temperature or increasing ionic momentum of the melt cation decreases the stability of Mo(III) chloro-species and the rate of Mo(III) disproportionation reaction increases by an order of magnitude upon changing the melt from CsCl to LiCl.

Formal standard electrode potentials of molybdenum were determined in a variety of alkali chloride based melts (individual chlorides and their mixtures) and compared with the data available in the literature. Increasing temperature or decreasing alkali cation radius shift $E^\circ_{\text{Mo(III)/Mo(IV)}}$ in a positive direction. Changing temperature by 540 mV (for LiCl-KCl-CsCl melt) and switching from LiCl to CsCl alters the potential by ca. 150 mV.

Molybdenum(III)/(IV) redox potentials were measured employing potentiometry and cyclic voltammetry and found to be 0.2–0.3 V more positive than Mo/Mo(III) electrode potentials. The stability of Mo(III) chloro-species decreases with temperature and at 923 K and above they undergo disproportionation into molybdenum(III) and (V) chlorides.

References

1. R. M. Hengstler, L. Beck, H. Breitkreutz, C. Jarousse, R. Jungwirth, W. Petry, H. Breitkreutz, C. Jarousse, and H. S. Kamat, J. Alloys Comp., 491, 753 (2010).
2. A. Berche, N. Dupin, C. Guéneau, C. Rado, B. Sundman, and J. C. Dumas, J. Nucl. Mater., 411, 131 (2011).
3. V. P. Sinha, P. V. Hegde, G. J. Prasad, G. K. Dey, and H. S. Kamath, J. Alloys Comp., 506, 253 (2010).
4. J. I. Brammar, R. M. Sharpe, D. Thom, and G. Yates, J. Nucl. Mater., 25, 201 (1968).
5. H. Kleykamp, J. Nucl. Mater., 131, 221 (1985).
6. S. Imoto, J. Nucl. Mater., 140, 19 (1986).
7. V. A. Volkovich, T. R. Griffiths, R. C. Thied, and B. Lewin, J. Nucl. Mater., 323, 93 (2003).
8. O. A. Ryzhik, State of Divalent and Trivalent Molybdenum in Molten Alkali Metal Chlorides, PhD thesis, Institute of Electrochemistry, Svedlovsk (1965) (in Russian).
9. M. V. Smirnov, Electrode Potentials in Molten Chlorides, Nauka, Moscow (1973) (in Russian).