An Investigation of Supervised Learning Methods for Authorship Attribution in Short Hinglish Texts using Char & Word N-grams.

ABHAY SHARMA, Microsoft Corporation, India
ANANYA NANDAN, Guru Gobind Singh Indraprastha University, India
REETIKA RALHAN, Guru Gobind Singh Indraprastha University, India

The writing style of a person can be affirmed as a unique identity indicator; the words used, and the structuring of the sentences are clear measures which can identify the author of a specific work. Stylometry and its subset — Authorship Attribution, have a long history beginning from the 19th century, and we can still find their use in modern times. The emergence of the Internet has shifted the application of attribution studies towards non-standard texts that are comparatively shorter to and different from the long texts on which most research has been done. The aim of this paper focuses on the study of short online texts, retrieved from messaging application called WhatsApp and studying the distinctive features of a macaronic language (Hinglish), using supervised learning methods and then comparing the models. Various features such as word n-gram and character n-gram are compared via methods viz., Naïve Bayes Classifier, Support Vector Machine, Conditional Tree, and Random Forest, to find the best discriminator for such corpora. Our results showed that SVM attained a test accuracy of up to 95.079% while similarly, Naïve Bayes attained an accuracy of up to 94.455% for the dataset. Conditional Tree & Random Forest failed to perform as well as expected. We also found that word unigram and character 3-grams features were more likely to distinguish authors accurately than other features.

CCS Concepts: • Computing methodologies → Information extraction: Language resources; Supervised learning; Supervised learning by classification; Support vector machines;

Additional Key Words and Phrases: authorship attribution, macaronic languages, Hinglish, stylometry, machine learning, social media, WhatsApp

ACM Reference Format:
Abhay Sharma, Ananya Nandan, and Reetika Ralhan. 2018. An Investigation of Supervised Learning Methods for Authorship Attribution in Short Hinglish Texts using Char & Word N-grams. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 1, 1 (December 2018), 11 pages.

1 INTRODUCTION

With accelerated evolution of the internet, the online textual material present before us has also increased with time. The anonymous nature of the abundant data which is easily available gives rise to illicit possibilities. Thus, determining the authors of some unknown texts for verification purposes is a modern-day need. Such an attempt to identify the author of a given text using Natural Language
Abhay Sharma, Ananya Nandan, and Reetika Ralhan

Processing (NLP) is known as Authorship Attribution. With the help of basic textual features like word or sentence length, we can determine the author of a given text. But the extraction of only such textual features does not provide us with accurate results since every author’s linguistic style greatly varies. Ergo, to define the style of an author, we need to study and quantify the linguistic style of an author. This quantitative method used is termed as stylometry. Stylometry emphasizes on the study of the writing style of a certain author, which highlights certain features that are independent of the author’s will and cannot be manipulated.

While Authorship Attribution in English has gained attention like the works of Efstathios Stamatas, Nikos Fakotakis, and George Kokkinakis on automatic text categorization in terms of genre and author [25] or authorship attribution by Patric Juola [11–13]. One such work is by Roy Schwartz, Oren Tsur, Ari Rappoport and Moshe Koppel on Authorship Attribution of Micro Messages [22], mainly focusing on tweets. But the focus of our research is macaronic languages. These languages are a mixture of languages. For example, the macaronic language formed by the switching from English to Hindi (or other Indian dialects) is termed as Hinglish, i.e., it contains parts of both the languages. Although researches have been conducted in the past on macaronic languages by Rahel Oppliger on Automatic Authorship Attribution based on character n-gram as features of Naïve Bayes Classifier, in Swiss-German [19], the work done under the umbrella of such languages is quite low. The non-standard features of these languages, like subject-specific spellings and inter-mixed grammar standards, give rise to a large number of distinctive attributes for various authors.

The main focus of our paper is concentrated on the analysis of one of such language — Hinglish. Since the corpus to be used for our research is difficult to gather due to low availability (as Hinglish is region specific and nonstandard), we decided to use texts from a popular messaging platform — WhatsApp.

The next section describes the corpora that have been used for the process of authorship attribution while section 3 describes the methodology. The main focus lies on the study of word n-gram and character n-gram Naïve Bayes Classifier, Support Vector Machine, Conditional Tree, and Random Forest. Our aim is to understand and compare the methods. Section 4 depicts the results extracted from the methods used in Section 3. With the results in hand, Section 5 holds the discussions based on the results obtained that further leads to the conclusions of the results, which are described in Section 6.

2 CORPORA

The data used in this study was obtained from an Instant Messaging Application — WhatsApp; and includes personal as well as group texts from four different authors. The dataset consisted of 76,000 words (approximately uniformly distributed). All the participants shared a similar dialect. The conversation they conducted was a combination of two languages — Hindi and English, switching between both as per their needs. One of the unique aspects of South Asian language users such as those writing in Hindi, Punjabi, Bengali etc. is the use of Latin script to depict the native language rather than the native script. So, for example, rather than using Devanagari script for Hindi, the user/authors use English alphabets which resonate to a similar sound and tone of a given word.

3 METHODOLOGY

3.1 Word n-gram

A word n-gram can be defined as a continuous sequence of n words. Word n-grams have been proposed as textual features by Peng, et al. [20] ; Sanderson & Guenther [21] ; Coyotl-Morales, Villaseñor-Pineda, Montes-y-Gómez, & Rosso [5]. However, the accuracy attained by word n-grams shows limitations in comparison to individual word features, or word unigrams (Sanderson &
An Investigation of Supervised Learning Methods for Authorship Attribution in Short Hinglish Texts using Char & Word N-grams.

Guenther [21] and Coyotl-Morales, et al. [5]. The dimensionality of the problem increases if n-grams are used since the number of comparisons to be taken into consideration increases. Also, the output representation by this method is extremely sparse, since the majority of the combinations do not even occur in short texts. Moreover, it is very much possible to apprehend content-specific information instead of stylistic information [7].

To avoid such limitations of word n-grams, just word unigrams & bigrams are extracted from the texts. In unigram condition, the words are the primary features, and hence the words from the texts have to be isolated. A list of single words occurring in the texts is generated. For each text of each author, the occurrence of the feature, or word, is counted, i.e., the frequency of occurrence is calculated. This frequency is then normalized according to the text length. Normalization is necessary at this step, because the frequency of a given feature may be higher compared to other texts. If a text consists of a higher number of words, then the chance of occurrence of a particular feature in the said text expands. In bigram condition, the same methodology is used, except the number of words is two.

3.2 Character n-gram

In this family of measures, the text is regarded as a sequence of characters. This information regarding characters is easily available for any natural language and its corpus and is exceedingly beneficial to quantify the style of an author [8]. A more elaborate, yet computationally simplistic procedure is to retrieve frequency of n-grams on the character level. This can capture the nuances of the author’s style. In addition, this method of representation is tolerant to noise. In certain cases, in which the texts under study are noisy — containing grammatical errors, or strange use of punctuation, the representation of character n-grams is not affected highly. Also, for oriental languages in which it is difficult to carry out the tokenization process, character n-grams are usually preferred [17]. The process involving the retrieval of most frequent n-grams is certainly language-independent and requires no special tools. However, the dimensionality of this depiction is very much increased to the word-based approach [23, 24], because character n-grams encapsulate redundant information as well, as well as many characters n-grams are required to represent an individual word. The applications of character n-gram approach have proven to be quite advantageous and successful in the arena of authorship attribution. Kjell [14] initially used character bigrams and trigrams to recognize and differentiate the Federalist Papers. Similarly, Forsyth and Holmes [6] proved that bigrams and character n-grams of variable length are a much better technique in comparison to lexical features in text classification tasks. In our research, since the focus lies on macaronic languages, more specifically on Hinglish, the words generally used by the authors constituted of a sequence of four or five letters. It was presumed that character 3-grams, 4-grams and 5-grams will be able to provide better and accurate results than other values of n.

3.3 Naïve Bayes Classifier

The Naïve Bayes classifier has demonstrated itself to be exceptional for most of the text processing experiments including text classification. The first publication, dealing with Bayesian methods as applied to large-scale data analysis was probably carried out by Mosteller et al. [18] to classify and provide statistical evidence on the most probable author of The Federalist papers. More recently, Hoorn et al. [9] identified the intended poet behind the definite prose using letter sequences through neural networks. Peng et al. [20] proposed to augment the Naïve Bayes models with statistical n-gram language models, thereby removing the shortcomings of the standard Naïve Bayes Text Classifier.
Given a set of features $F = \{f_1, f_2, f_3, \ldots \}$, Naïve Bayes can be utilized to determine the probability of a document d belonging to the class c_i, as follows [24]:

$$P(c_i | d) = \frac{P(d | c_i) P(c_i)}{P(d)}$$

$$P(c_i | d) = P(c_i) \prod_{i \in \text{items}} P(f_i | c_i)$$

3.4 Support Vector Machine

Based on Statistical Learning Theory and Structural Risk Mitigation [27], Support Vector Machines were first propounded by Vapnik for classification and forecasting purposes. They have been extensively used for studies involving text classification, pattern, speech and image recognition, face detection, etc. Thus, use of SVM in data mining applications makes it an incumbent tool for development of products in varied fields.

R Burbridge et al. [4] demonstrated and compared various machine learning methods already being used in structure-activity relationship analysis, with SVM, and observed that SVM outperformed all these techniques.

Giorgio Valentini [26] proposed to classify types of lymphoma and analyze the role of coordinately expressed genes (n-grams) in carcinogenic processes, using SVM. To reduce the training and testing error for better performances, Chin-Teng Lin et al. [16] have proposed an SVM based Fuzzy Neural Network, to develop an algorithm so that the clustering principle is able to determine the fuzzy rules and membership functions, automatically.

The principle idea for SVM is constructing the optimal hyperplane, used for classifying the linear separable patterns. In simpler words, a hyperplane is a plane chosen from a set of similar hyper planes that maximizes the margin of hyperplanes, so as to correctly classify the patterns.

Hyperplane can be represented by the following equation:

$$aX + bY = C$$

3.5 Conditional Tree

Conditional Tree Learning uses a Conditional Tree as a predictive model which maps observations about an item (represented in the branches) to conclusions about the item’s target value (represented in the leaves). It is one of the predictive modeling approaches used in statistics, data mining and machine learning. Tree models where the target variable can take a finite set of values are called classification trees; in these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees. In decision analysis, a conditional tree can be used to represent decisions and decision-making visually and explicitly. In data mining, a conditional tree describes data (but the resulting classification tree can be an input for decision making). [11]

3.6 Random Forest

Random Forest generates a group of different decision trees [15]. It is basically a classifier which consists of a set of tree-structured classifiers, $\{h(x, \Theta_k), \text{where } k = 1, 2, \ldots \}$, where $\{\Theta_k\}$ can be seen as an independent identically distributed random vector, and each tree of the set put forward of a vote for the most definite class at a given input x.

To achieve diversity among the set of decision trees, Breimann [2, 3] experimented through the following steps: The number of records N given in the training set are samples randomly, which in turn is used as the training set for the growing tree. If there are M input variables, a number $m \ll M$ is chosen so that at each node of the tree, m variables are chosen randomly out of M and the best split on these m attributes is used to split the node. The value of m is kept consistent while the forest
An Investigation of Supervised Learning Methods for Authorship Attribution in Short Hinglish Texts using Char & Word N-grams.

grows. Each tree is developed to the largest extent possible. Thus, multiple trees are induced in the forest; the number of trees is pre-decided by a new parameter N_{tree}. Once the forest is constructed, it is run across all the trees in the forest. Each tree gives classification for the new instance which is recorded as a vote (by each tree). The votes from all trees are amalgamated and the class for which maximum votes are enumerated is declared as classification of the new instance. This process is referred to as Forest RI [3].

3.7 Putting it all together

In our research, the short online texts taken from four different authors make up the corpora. These online texts are cleaned and converted into the desired encoding format. N-gram features such as Word n-gram (Unigram and Bigram) and Character n-gram (Character 3-gram, 4-gram, and 5-gram) are then extracted from the corpus, so as to compare across classifiers, viz. Naïve Bayes, Support Vector Machine, Conditional Tree and Random Forest. These supervised learning algorithms have been previously used in Authorship Identification experiments for standard languages. Our aim was to understand and compare these models for macaronic languages.

Our experiment begins by, firstly, splitting the corpus into training and testing data. 30% of the data makes up the training data, and the remaining 70% is split into half, thereby building two testing data. After splitting the data, the above-mentioned features are extracted from the corpus. However, all the features extracted may not be able to train and test the classifiers efficiently, hence proper feature selection is carried out using weightage methods, i.e., Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF), and Binary Weight. By doing this, we are also able to compare these methods. The features finally are extracted in the form of a document matrix, and these are deployed to train the classifiers to build respective training models. Lastly, the two-testing data are tested on these models, for validating the performance of the resultant classification models. Evaluation techniques are assessed to estimate the future performance by measures such as accuracy, sensitivity, and precision, to maximize the empirical results.

The results of the two testing data are described in a tabular form in Section 4.

4 RESULTS

4.1 Naïve Bayes Classifier

Table 1. Result of Naïve Bayes Classification

| Weight | Token | Test One | | | Test Two | | |
|--------|-------------|----------|---|---|----------|---|
| | | **Accuracy** | **TPR** | **Precision** | **Accuracy** | **TPR** | **Precision** |
| TF | Unigram (Word) | 81.890 | 77.268 | 79.788 | 81.225 | 75.741 | 80.907 |
| | Bigram (Word) | 68.701 | 65.115 | 54.211 | 67.194 | 67.083 | 53.096 |
| | Char 3 Gram | 77.362 | 76.439 | 74.302 | 75.692 | 71.858 | 73.807 |
| | Char 4 Gram | 79.528 | 77.478 | 75.924 | 78.459 | 76.055 | 78.769 |
| | Char 5 Gram | 79.331 | 79.308 | 77.565 | 80.632 | 78.703 | 81.981 |
| TF-IDF | Unigram (Word) | 79.331 | 70.521 | 80.294 | 79.644 | 71.997 | 82.683 |
| | Bigram (Word) | 8.661 | 24.441 | 26.894 | 7.510 | 21.700 | 25.758 |
| | Char 3 Gram | 87.402 | 81.469 | 82.875 | 90.316 | 85.995 | 86.456 |
| | Char 4 Gram | 80.315 | 70.918 | 82.030 | 80.632 | 72.474 | 79.424 |
| | Char 5 Gram | 55.709 | 53.466 | 62.757 | 54.150 | 52.589 | 58.246 |

Continued on next page
Table 1 continued

Weight Bin Unigram (Word)	94.276	93.856	91.817	94.455	93.827	93.588
Bigram (Word)	69.685	64.719	56.738	68.577	67.460	54.405
Char 3 Gram	93.194	92.430	91.372	94.269	93.302	92.068
Char 4 Gram	91.929	95.155	90.444	91.304	92.841	89.528
Char 5 Gram	92.701	92.125	90.405	92.061	91.248	90.974

4.2 Support Vector Machine

Table 2. Result of SVM Classification

Weight	Token	Test One	Test Two				
	Accuracy	TPR	Precision	Accuracy	TPR	Precision	
TF	Unigram (Word)	91.535	94.444	82.006	94.269	96.623	88.787
	Bigram (Word)	69.291	74.838	46.673	68.972	74.466	45.090
	Char 3 Gram	91.929	92.494	81.825	92.095	94.935	83.038
	Char 4 Gram	90.551	93.208	77.028	91.107	95.016	80.089
	Char 5 Gram	91.929	95.578	80.881	90.514	93.798	79.471
TF-IDF	Unigram (Word)	78.937	93.245	55.416	76.087	92.604	54.875
	Bigram (Word)	60.630	28.048	32.508	59.684	27.690	32.986
	Char 3 Gram	93.307	96.658	84.544	92.885	96.401	84.838
	Char 4 Gram	83.071	94.267	62.067	83.992	94.512	68.419
	Char 5 Gram	62.992	40.147	30.871	61.660	39.938	29.545

4.3 Conditional Tree

Table 3. Result of Conditional Tree Classification

Weight	Token	Test One	Test Two				
	Accuracy	TPR	Precision	Accuracy	TPR	Precision	
TF	Unigram (Word)	74.604	50.315	61.320	94.862	97.061	89.404
	Bigram (Word)	67.126	70.803	47.655	69.565	80.337	45.589
	Char 3 Gram	78.346	56.929	57.710	80.435	59.425	69.451
	Char 4 Gram	79.528	57.902	64.986	79.842	58.764	68.542
	Char 5 Gram	73.819	50.825	61.180	73.320	51.065	64.278
TF-IDF	Unigram (Word)	75.197	62.684	58.386	75.099	72.850	59.896
	Bigram (Word)	65.157	70.778	42.869	64.625	76.966	43.875
	Char 3 Gram	76.378	57.228	64.283	77.470	58.701	67.057

Continued on next page
An Investigation of Supervised Learning Methods for Authorship Attribution in Short Hinglish Texts using Char & Word N-grams.

Table 3 continued

Weight Bin Unigram (Word)	75.000	52.102	62.997	75.494	54.891	66.292
Bigram (Word)	67.323	70.868	45.055	66.798	76.558	46.061
Char 3 Gram	78.740	58.311	65.012	75.694	56.773	64.362
Char 4 Gram	78.346	57.745	57.877	79.051	58.970	63.655
Char 5 Gram	75.197	54.461	62.434	75.296	56.773	64.362

4.4 Random Forest

Table 4. Result of Random Forest Classification

Weight	Token	Test One	Test Two				
	Accuracy	TPR	Precision	Accuracy	TPR	Precision	
TF	Unigram (Word)	59.449	39.596	27.462	59.486	64.604	30.192
	Bigram (Word)	60.433	39.745	28.409	58.103	39.400	26.136
	Char 3 Gram	58.268	64.421	29.055	57.905	64.487	31.072
	Char 4 Gram	57.874	39.364	25.947	57.905	64.371	27.039
	Char 5 Gram	56.890	14.222	25.000	56.920	14.229	25.000
TF-IDF	Unigram (Word)	63.780	65.275	32.175	63.439	65.222	35.071
	Bigram (Word)	60.039	39.685	28.030	57.708	39.343	25.758
	Char 3 Gram	66.535	65.741	35.372	67.984	66.000	39.427
	Char 4 Gram	58.465	39.450	26.515	58.300	64.429	27.418
	Char 5 Gram	59.055	39.537	27.083	58.103	64.400	26.682
Weight Bin	Unigram (Word)	61.417	64.897	29.902	60.277	64.724	29.311
	Bigram (Word)	60.433	39.745	28.409	58.300	39.429	26.326
	Char 3 Gram	57.283	64.279	25.925	58.103	39.400	29.412
	Char 4 Gram	56.335	39.279	25.379	57.312	39.286	26.471
	Char 5 Gram	56.248	39.190	25.370	57.410	64.314	26.114

5 DISCUSSION

The research in the area of authorship attribution has been largely done on standard languages, due to easy availability of corpora and the extensive features that are accessible to study authorship for such languages. The study of macaronic languages is a difficult one since extensive datasets are often unavailable for research and moreover, there are no proper tools to process the features. With our project, we wished to understand the efficiency of modern attribution methods on one of such non-standard language and the intricacies of such languages.

Our investigation gave important understanding on the feasibility of utilizing standard strategies on macaronic dialects, and we found that such dialects are morphologically rich and have certain features like atypical spellings, gender explicit pronouns and user determined syntax, which differentiate them from standard dialects.

A distinctive feature of macaronic language seems to be their idiolectic spellings. Our Hinglish texts were also plagued by such spelling usage. To illustrate how idiolectic spellings are reflected, we look at distinctive word unigrams of authors: (see Figure 1).
A closer investigation of this word cloud reveals that words such as “mein” and “main” which can be used in interchangeably (and are just different Devanagari transliteration) can be highly indicative of a particular author since they represent a unique stylometric feature of an author. Words such as “hai” and “hain” can provide an important distinction because they might represent accent of an author that is embodied in writing unknowingly.

Using Word Bigrams, we can observe more distinctive features: (see Figure 2).

The spellings of words - "raha" and "rha", “hai” and “h” which are different Devanagari transliteration act as an important differentiator. We can also see the distinctive grammar patterns, which are found in Hinglish.

Overall, consistent idiolectic spelling and grammar choices such as the aforementioned are shown to be indicative of authorship, especially if they are characteristic of only the specific author. In this way, these characteristic orthographical freedoms in Hinglish can be exploited as an effective feature for automatic authorship attribution. N-grams investigated in the study were successful in capturing the orthographical idiosyncrasies. As previously identified by Houvardas and Stamatatos [10], the major advantage of using n-gram features was their independence from strict grammar rules. Hence, they will play a vital role in authorship attribution in Macaronic Languages (or, in general, non-standard languages), since these languages do not follow, or more often, do not have any grammatical rules. The authors under our experiment have conducted their WhatsApp conversations in the same language — Hinglish, still they depict considerable differences in their grammatical style. Since such non-standard languages do not have strict grammar rules and spellings, the writing style of a

Fig. 1. Word cloud of top unigram words
An Investigation of Supervised Learning Methods for Authorship Attribution in Short Hinglish Texts using Char & Word N-grams.

Fig. 2. Word cloud of top bigram words

particular author may differ from other, even if the meaning is clearly understood by the recipient of the text.

It is clearly observed from the results that we have computed - Support Vector Machine, and Naïve Bayes Classifier provide much better Accuracy, TPR, and Precision, across all the features examined, in comparison to Conditional Tree and Random Forest. SVM provides accuracy of 94.862% in the case of Word unigram, and an accuracy of 95.079% in the case of Character 3-gram. Similarly, Naïve Bayes Classifier computed the maximum accuracy of 94.455% and 93.259%, in the case of Word unigram and Character 3-gram, respectively. Ergo, overall, SVM is considered to be the better classification method for Authorship Identification, among other algorithms under the study.

Moreover, from the above results, two observations can be duly noted. First, the better features for authorship identification for Hinglish are, unquestionably — Word unigram and Character 3-gram. Performance generally degraded when higher n-grams were used. Word bigrams led to surprisingly large performance reductions with accuracy decreasing up to 60%. This may be attributed to the sparsity of data set used and how the texts are too short for regular re-occurrence of bigrams. Second, Weight Bin generally presented the most optimal results out of all the three weightage techniques we assessed for our research. Also, Term Frequency was better than TF-IDF in algorithms like SVM and Naïve Bayes while TF-IDF worked better with algorithms like Decision Tree and Random Forest.

6 CONCLUSION

The aim of this research was to determine which types of information make it possible to identify the author of a short digital text and which supervised methods are better suited for a macaronic language such as Hinglish. We constructed several classifiers and compared them for achieving our goal.

The results indicate that SVM and Naïve Bayes work better than Conditional Tree and Random Forest in classifying texts. Overall, SVM performed better than all the algorithms used. Binary Weights were found to be the best representation for achieving high accuracy of classification,
followed by Term Frequency and TF-IDF. We also found that Character 3-grams and Word unigrams were better features for identifying and distinguishing authors.

In the end, our analysis gave valuable insight on the viability of using standard methods on macaronic languages, and we found that such languages are morphologically rich and have certain features such as atypical spellings, gender-specific pronouns, and user-specific grammar, which distinguish them from standard languages.

The outcome of this research leads us to conclude that lexical and character n-gram based authorship attribution using supervised methods in macaronic languages such as Hinglish is promising, even for datasets like instant messages.

REFERENCES

[1] Emmanuel Abishakiye, Danison Taremwa, Ivan Niyonzima, and Elisha Opiyo Omulo. 2017. Crime Prediction Using Decision Tree (J48) Classification Algorithm. International Journal of Computer and Information Technology 6, 3 (2017). https://www.ijcit.com/archives/volumes/issue3/Paper060308.pdf

[2] L. Breimann. 1996. Bagging Predictors., Machine Learning 24, 2 (1996), 123–140. https://doi.org/10.1023/A:1018054314350

[3] L. Breimann. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32. https://doi.org/10.1023/A:1010933404324

[4] R. Burbridge, S. Holden, B. Buxton, and M. Trotter. 2001. Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis. Computers and Chemistry 26, 1 (2001), 5–14. https://doi.org/10.1016/S0097-8485(01)00094-8

[5] R. M. Coyotl-Morales, P. Rosso, M. Montes y Gomez, and L. Villasenor-Pineda. 2006. Authorship Attributing using Word Sequences,. In CIARP. Springer, 844–853. https://doi.org/10.1007/11892755_87

[6] R. Forsyth and D. Holmes. 1996. Feature-finding for Text Classification. Literary and Linguistic Computing 11, 4 (1996), 163–174. https://doi.org/10.1093/lhc/11.4.163

[7] M. Gamon. 2004. Linguistic Correlates of Style : Authorship Classification with Deep Linguistic Analysis Features. International Conference on Computational Linguistics, 611–617.

[8] J. Grieve. 2007. Quantitative Authorship Attribution: An evaluation of techniques. Literary and Linguistic Computing 22, 3 (2007), 251–270. https://doi.org/10.1093/ltc/lqm020

[9] J. F. Hoorn, F. v. d. Ham, W. Kowalcz, and S. L. Frank. 1999. Neural Network Identification of Poets using Letter Sequences. Literary and Linguistic Computing 14, 3 (1999), 311–338. https://doi.org/10.1093/ltc/14.3.311

[10] J. Houvardas and E. Stamatatos. 2006. N-gram Feature Selection for Authorship Identification,. In AIMSA Proceedings of the 12th international conference on Artificial Intelligence. 77–86. https://doi.org/10.1007/11861461_10

[11] P. Juola. 2006. Authorship attribution. Foundations and Trends in Information Retrieval 1, 3 (2006), 233–334.

[12] P. Juola. 2006. Authorship Attribution for Electronic Documents. In Digital Forensics 2006: Advances in Digital Forensics II , Vol. 222. International Federation for Information Processing, 119–130. https://doi.org/10.1007/0-387-36891-4_10

[13] P. Juola. 2007. Future Trends in Authorship Attribution. The International Federation for Information Processing, Springer 242 (2007), 119–132. https://doi.org/10.1007/978-0-387-73742-3_8

[14] B. Bjell. 1994. Discrimination of Authorship using Visualization. Information Processing & Management 30, 1 (1994), 141–150. https://doi.org/10.1016/0306-4573(94)90029-9

[15] V. Kulkarni and P. K. Sinha. 2012. Random Forest Classifiers: A Survey and Future Research Directions. In International Conference on Data Science & Engineering (ICDSE). https://doi.org/10.1109/ICDSE.2012.6282329

[16] C. Lin, C. Yeh, S. Liang, J. Chung, and N. Kumar. 2006. Support-Vector-Based Fuzzy Neural Network for Pattern Classification. IEEE Transactions on Fuzzy Systems 14, 1 (2006), 31–41. https://doi.org/10.1109/TFUZZ.2005.861604

[17] T. Matsuura and Y. Kanada. 2000. Extraction of Authors’ Characteristics from Japanese Modern Sentences via N-gram Distribution,. In Discovery Science. Springer, 315–319. https://doi.org/10.1007/3-540-44418-1_38

[18] F. Mosteller and D. Wallace. 1964. Inference and Disputed Authorship: The Federalist Reading. Review of the International Statistical Institute 34, 2 (1964), 287.

[19] R. Oppliger. 2016. Automatic authorship attribution based on character n-grams in Swiss German,. In KONVENS. https://www.linguistik.rub.de/konvens16/pub/22_konvensproc.pdf

[20] F. Peng, S. Wang, and D. Shuurmans. 2004. Augmenting Naive Bayes Classifiers with Statistical Language Models. Information Retrieval 7, 3–4 (2004), 317–345. https://doi.org/10.1023/B:INRT.000001209.19643.e2

[21] C. Sanderson and S. Guenter. 2006. Short Text Authorship Attribution via Sequence Kernels, Markov Chains and Author Unmasking : An Investigation,. In Conference on Empirical Methods in Natural Language Processing. 482–491.
An Investigation of Supervised Learning Methods for Authorship Attribution in Short Hinglish Texts using Char & Word N-grams.

[22] R. Schwartz, M. Koppel, O. Tsur, and A. Rappoport. 2013. Authorship Attribution of Micro Messages. In EMNLP. http://aclweb.org/anthology/D13-1193

[23] E. Stamatatos. 2006. Authorship Attribution based on Feature Set Supspacing Ensembles. International Journal on Artificial Intelligence Tools (2006), 823–838. https://doi.org/10.1142/S0218213006002965

[24] E. Stamatatos. 2006. Ensemble-based Author Identification using Character n-grams. 41–46. https://www.researchgate.net/publication/249861746_Ensemble-based_Author_Identification_Using_Character_N-grams

[25] E. Stamatatos and N. Fakotakis G. Kokkinakis. 2000. Automatic Text Categorization in Terms of Genre and Author. Computational Linguistics 26, 4 (2000), 471–495. https://doi.org/10.1162/089120100750105920

[26] G. Valentini. 2001. Gene Expression Data Analysis of Human Lymphoma using Support Vector Machines and Output Encoding Ensembles,. Computers and Chemistry 26 (2001), 5–14.

[27] V. Vapnik. 1998. Statistical Learning Theory. John Wiley and Sons.