The potential for using risk models in future lung cancer screening trials

John K Field* and Olaide Y Raji

Address: Roy Castle Lung Cancer Research Programme, School of Cancer Studies, University of Liverpool Cancer Research Centre, 200 London Road, Liverpool, L3 9TA, UK
* Corresponding author: John K Field (j.k.field@liv.ac.uk)

Abstract

Computed tomography screening for early diagnosis of lung cancer is one of the more potentially useful strategies, aside from smoking cessation programmes, for reducing mortality and improving the current poor survival from this disease. The long-term success of lung cancer screening will be dependent upon identifying populations at sufficient risk in order to maximise the benefit-to-harm ratio of the intervention. Risk prediction models could potentially play a major role in the selection of high-risk individuals who would benefit most from screening intervention programmes for the early detection of lung cancer. Improvements of developed lung cancer risk prediction models (through incorporation of objective clinical factors and genetic and molecular biomarkers for precise and accurate estimation of risks), demonstration of their clinical usefulness in decision making, and their use in future screening programmes are the focus of current research.

Introduction and context

Lung cancer is the most commonly diagnosed cancer worldwide and the leading cause of all cancer deaths [1,2]. The disease is diagnosed mostly at an advanced stage, when surgical resection is unlikely to be a treatment option, thus leading to poor survival rates [3]. The 5-year survival rate for all stages of lung cancer ranges from 6% in the UK [4] to 15% in the US, in contrast to a survival rate of about 70% for stage I lung cancer, suggesting that early diagnosis and treatment of the disease would vastly improve outcome and reduce mortality [5].

Computed tomography (CT) screening has been highlighted as one of the potential strategies for early diagnosis of lung cancer [6-9]. However, the lung cancer research community is eagerly awaiting results of various ongoing screening trials (Table 1) evaluating the potential benefit of CT screening [6]. For optimum cost-effectiveness, a population of individuals at sufficiently high risk of the disease needs to be identified so that the benefit-to-harm ratio of the screening can be maximized [10]. The need for the selection of a high-risk population for lung cancer screening has renewed international interest in developing methods for the prediction of an individual's risk of developing lung cancer.

There are now a number of lung cancer risk prediction models, including those of Peto and colleagues [11], Bach and colleagues [12], Spitz and colleagues [13], and the Liverpool Lung Project (LLP) [14]. These models use a selection of data which includes the patient's self-reported information on epidemiological and clinical risk factors with local lung cancer incidence data to predict the individual's risk within a specified period. For example, the LLP risk model included information on the patient's smoking duration, prior diagnosis of pneumonia, asbestos exposure, previous diagnosis of a non-melanoma malignant tumour, and family history of lung cancer (using age of diagnosis in first-degree relatives). The individual's 5-year absolute risk of lung cancer was then estimated by combining the relative risk model with age- and gender-specific lung cancer incidence rates [14].
Recent advances

Risk prediction models could be incorporated into the design, recruitment, and analysis of studies of lung cancer prevention programmes, potentially reducing the sample size required to achieve the desired statistical power for outcome benefit [12]. We recently discussed the potential use of the LLP risk model in the design of a CT screening trial and a population screening intervention programme in the event of positive results from the trial [15]. The results reveal that increasing the minimum 5-year absolute risk criterion of individuals to be selected in a screening trial from 1.5% to 2.5% reduces the required sample size by approximately one-third.

Recent advances

Ideally, the lung cancer community needs to be developing risk prediction models that embrace not only epidemiological parameters but also emerging genetic and molecular biomarkers [16] (Figure 1). Recently, three major genome-wide association studies in lung cancer identified genetic susceptibility genes strongly associated with lung cancer [17-19]. The promise of the expansion of genomic research is that many more biomarkers will be identified and validated in case control studies with specimens such as serum, plasma, bronchial lavage, induced sputum, or tissue. It is anticipated that the addition of these biomarkers or their combinations into existing risk models would improve the precision and accuracy of the predicted risks [16,20]. This has led to the recent quest to identify the best methodology for assessing improvements in risk models, which incorporate additional risk factors such as genetic biomarkers. The recent emergence of new methodologies such as decision curve analysis and relative utility of risk models has put assessment of risk model performance in clinical perspective rather than using pure statistical measure [21-24].

Recently, two specific respiratory risk factors have been highlighted in the development of lung cancer, that of pre-existing tuberculosis [25] and chronic obstructive pulmonary disease (COPD) [26]. The inclusion of these risk factors, particularly an objective COPD measurement (ratio of forced expiratory volume in 1 second to forced expiratory capacity, or FEV1/FEC) and other validated clinical information, in place of self-reported responses to questionnaire data would alleviate the impact of recall bias on the estimated risks.

Implications for clinical practice

In recognizing the impact of late diagnosis of cancer, the Cancer Reform Strategy recently established a National Awareness and Early Diagnosis Initiative (NAEDI) with a view to continuously promote early diagnosis in the large majority of patients who present with symptoms [27]. The NAEDI-hypothesized pathways for late presentation include low awareness of the signs and symptoms of cancer among the public as well as delay occurring within primary care, which may be due to inadequate access to a decision tool that may assist general practices (GPs) to reassure or observe patients, request further investigations, or refer patients to specialist services. As a result, there are now plans to equip every GP within a period of 5 years with a computerized algorithm to predict cancer risk [28].

Country, study name	Patients receiving LDCT	Patients in control arm	Study design	Selection of participants	Report date	Publications
The Netherlands and Belgium, NELSON	8000*	8000*	LDCT versus no intervention	Smokers and ex-smokers with a history of >30 PKS	Recruitment completed	[9,33]
Denmark, NELSON	2000*	2000*	LDCT versus no intervention	Smokers and ex-smokers with a history of >30 PKS	Recruitment completed	[34]
Italy, Italung-CT	1500	1500	LDCT versus no intervention	Smokers and ex-smokers with a history of >30 PKS	Report 2005	[35]
DANTE	1276	1196	Chest X-ray and sputum cytology for all patients in year 1. LDCT versus yearly review.	Smokers with a history of >20 PKS	Report 2007	[36]
France, Dépiscan	330	291	LDCT versus chest X-ray	Smokers (64%) and ex-smokers (36%)	Report 2006	[37]
USA, LSS feasibility study	1600	1658	LDCT versus chest X-ray	Smokers with a history of >30 PKS	Report 2005	[38]
USA, NLST	26,500	26,500	LDCT versus chest X-ray	Smokers and ex-smokers with a history of >30 PKS	Recruitment completed	[39,40]

*Planned recruitment. Pack years (PKS) = (packs smoked per day) × (years as a smoker). DANTE, Randomized Study on Lung Cancer Screening With Low-Dose Spiral Computed Tomography; Dépiscan, Pilot Study to Evaluate Low Dose Spiral CT Scanning as a Screening Method for Bronchial Carcinoma; Italung-CT, Multicentric Randomised Clinical Trial for Lung Cancer Screening with Low-Dose CT; LDCT, low-dose computed tomography; LSS, Lung Screening Study; NELSON, Dutch-Belgian Randomised Lung Cancer Screening Trial; NLST, National Lung Screening Trial. Table modified and updated from Field & Duffy, Br J Cancer 2008 [6]. Copyright © 2008 Cancer Research UK.
Meanwhile, risk models need to be validated in different populations and demonstrated to be clinically useful for making decisions regarding patient treatment or clinical interventions before they can be acceptable as decision tools by clinicians [29,30]. This is rarely undertaken as only a few existing models, including those for lung cancer, have been validated in independent populations. The validation of the LLP risk model in data from three independent studies revealed promising results (unpublished data); the model displayed good clinical utility by performing better than all other alternative approaches for making decisions about whom to screen or not to screen for lung cancer.

The LLP risk model has been implemented in a feasibility study (funded by the Knowsley Primary Care Trust, UK) in the primary care setting [31] and is being evaluated in other high-risk GP locations. The outcome of this study will provide important public health guidance as to how to identify individuals who are at risk of developing lung cancer prior to developing symptoms. Also, an assessment of the model in the UK Lung Cancer CT Screening Study (UKLS) trial [32] was successful; therefore, it has been recommended as a major tool in stratification of patients to be screened in the general population.

In conclusion, screening and other clinical interventions for prevention and early diagnosis of lung cancer would be cost-effective if targeted on patients at sufficient high risk. Risk models provide useful tools to stratify patients into high or low risk and provide counselling regarding level of risks, motivating changes in personal lifestyle.
Abbreviations
COPD, chronic obstructive pulmonary disease; CT, computed tomography; GP, general practice; LLP, Liverpool Lung Project; NAEDI, National Awareness and Early Diagnosis Initiative.

Competing interest
The authors declare that they have no competing interests.

Acknowledgments
OYR is supported by the Roy Castle Lung Cancer Foundation (UK).

References
1. Hirsch FR, Lippman SM: Advances in the biology of lung cancer chemoprevention. J Clin Oncol 2005, 23:3186-97.
2. Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 2005, 55:74-108.
3. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH: Eastern Cooperative Oncology Group: Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002, 346:92-8.
4. Coleman MP, Rachet B, Woods LM, Mitry E, Riga M, Cooper N, Quinn MJ, Brenner H, Estève J: Trends and socioeconomic inequalities in cancer survival in England and Wales up to 2001. Br J Cancer 2004, 90:1367-73.
5. Ganti AK, Mulshine JL: Lung cancer screening: panacea or pipe dream? Ann Oncol 2005, 16(Suppl 2):i215-9.
6. Field JK, Duffy SW: Lung cancer screening: the way forward. Br J Cancer 2008, 99:557-62.
7. Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, Koizumi J, Altorki NK, Smith JP: Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 1999, 354:99-105.
8. Mulshine JL, Sullivan DC: Clinical practice. Lung cancer screening. N Engl J Med 2005, 352:2714-20.
9. van Klaveren RJ, Oudkerk M, Prokop M, Scholten ET, Mackaerts K, Vernhout R, van Iersel CA, Koizumi J, Altorki NK, Smith JP: Management of lung nodules detected by volume CT scanning. N Engl J Med 2009, 361:2221-9.
10. van Klaveren RJ, de Koning HJ, Mulshine J, Hirsch FR: Lung cancer screening by spiral CT. What is the optimal target population for screening trials? Lung Cancer 2002, 38:243-52.
11. Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R: Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ 2000, 321:323-9.
12. Bach PB, Kattan MW, Thornquist MD, Kris MG, Tate RC, Barnett MJ, Hsieh LJ, Begg CB: Variations in lung cancer risk among smokers. J Natl Cancer Inst 2003, 95:470-8.
13. Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, Shete S, Etzel CJ: A risk model for prediction of lung cancer. J Natl Cancer Inst 2007, 99:715-26.
14. Cassidy A, Duffy SW, Myles JP, Liloglou T, Field JK: Lung cancer risk prediction: a tool for early detection. Int J Cancer 2007, 120:1-6.
15. Duffy SW, Raj OY, Agbaje OF, Allgood PC, Cassidy A, Field JK: Use of lung cancer risk models in planning research and service programs in CT screening for lung cancer. Expert Rev Anticancer Ther 2009, 9:1467-72.
16. Field JK: Lung cancer risk models come of age. Cancer Prev Res 2008, 1:226-8.
17. Hung RJ, McKay JD, Gaborieau V, Buffett A, Hashibe M, Zaridze D, Mukaer A, Szeshenina-Dabrowska N, Lissowska J, Rudnai P, Fabianoa E, Mates D, Bencko V, Foretova L, Janout V, Chen C, Goodman G, Field JK, Liloglou T, Xinariatos G, Cassidy A, McLaughlin J, Liu G, Narod S, Krokau HE, Skorpen F, Elvestad MB, Hveem K, Vatten L, Linseisen J, et al.: A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008, 452:633-7.
18. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Maakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WW, Shete S, Spitz MR, Houlston RS: Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008, 40:616-22.
19. Thorogreissn TE, Feller G, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, Stacey SN, Berthgornss JH, Thorlacis S, Gudmundsson J, Jonsson T, Jakobsdottir M, Sasmundsdottir J, Olafsdottir O, Gudmundsson LJ, Bjornssdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsater A, Flex A, Aben KK, de Vegt F, et al.: A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008, 452:638-42.
20. Spitz MR, Etzel CJ, Dong Q, Amos CI, Wei Q, Wu X, Hong WK: An expanded risk prediction model for lung cancer. Cancer Prev Res 2008, 1:250-4.
21. Baker SG: Putting risk prediction in perspective: relative utility curves. J Natl Cancer Inst 2009, 101:538-42.
22. Vickers AJ, Cronin AM, Elkin EB, Gonen M: Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak 2008, 8:53.
23. Pencina MJ, D’Agosto RB Jr, D’Agostino RB Jr, Vasan RS: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008, 27:157-72; discussion 207-12.
24. Pepe MS, Janes HE: Gauging the performance of SNPs, biomarkers, and clinical factors for predicting risk of breast cancer. J Natl Cancer Inst 2008, 100:978-9.
25. Liang HY, Li XL, Yu XS, Guan P, Yin ZH, He QC, Zhou BS: Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer 2009, 125:2936-44.
26. Punturieri A, Szabo E, Croxton TL, Shapiro SD, Dubinett SM: Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst 2009, 101:554-9.
27. Richards MA: The National Awareness and Early Diagnosis Initiative in England: assembling the evidence. Br J Cancer 2009, 101(Suppl 2):S1-4.
28. The Lancet: General practitioner or computerised algorithm? Lancet 2010, 375:94.
29. Freedman AN, Seminara D, Gail MH, Hartge P, Colditz GA, Ballard-Barbash R, Pfeiffer RM: Cancer risk prediction models: a workshop on development, evaluation, and application. J Natl Cancer Inst 2005, 97:715-23.
30. Reilly BM, Evans AT: Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med 2006, 144:201-9.
31. Ashton M, Mimnagh C, Forrest D, Field J: A pilot study to explore lung cancer early detection and clinical intervention in a
primary care setting in Knowsley, Merseyside. J Thorac Oncol 2008, 3(Suppl 7):S179-257 Abstract PP24.

32. NIHR Health Technology Assessment Programme – Details of completed HTA project: UK Lung Cancer Screening Trial (UKLS) - Feasibility study and protocol development. [http://www.hta.ac.uk/1752]

33. van Iersel CA, de Koning HJ, Draisma G, Mali WP, Scholten ET, Nackaerts K, Prokop M, Habbema JD, Oudkerk M, van Klaveren RJ: Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON). Int J Cancer 2007, 120:868-74.

34. Pedersen JH, Dirksen A, Olsen JH: [Screening for lung cancer with low-dosage CT]. Ugeskr Laeger 2002, 164:167-70.

35. Picozzi G, Paci E, Lopez Pegna A, Bartolucci M, Roselli G, De Francisci A, Gabrielli S, Masi A, Villari N, Mascalchi M: Screening of lung cancer with low dose spiral CT: results of a three year pilot study and design of the randomised controlled trial "Italung-CT". Radiol Med (Torino) 2005, 109:17-26.

36. Infante M, Lutman FR, Cavuto S, Brambilla G, Chiesa G, Passera E, Angeli E, Chiarenza M, Aranzulla G, Cariboni U, Aloisiio M, Incarbone M, Testor A, Destro A, Cappuzzo F, Roncalli M, Santoro A, Ravasi G; DANTE Study Group: Lung cancer screening with spiral CT Baseline results of the randomized DANTE trial. Lung Cancer 2008, 59:355-63.

37. Blanchon T, Bréchot JM, Grenier PA, Ferretti GR, Lemarié E, Milleron B, Chagué D, Laurent F, Martinet Y, Beigelman-Aubry C, Blanchon F, Revel MP, Friard S, Rémy-Jardin M, Vasile M, Santelmo N, Lecalier A, Lefebure P, Moro-Sibilot D, Breton JL, Carette MF, Brambilla C, Fournel F, Kieffer A, Fria G, Flahaut A; Dépiscan Group: Baseline results of the Dépiscan study: a French randomized pilot trial of lung cancer screening comparing low dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer 2007, 58:50-8.

38. Gohagan JK, Marcus PM, Fagerstrom RM, Pinsky PF, Kramer BS, Prorok PC, Ascher S, Bailey W, Brewer B, Church T, Engelhard D, Ford M, Fouad M, Freedman M, Gelmann E, Gierada D, Hocking W, Inampudi S, Irons B, Johnson CC, Jones A, Kucera G, Kvale P, Lappe K, Manor W, Moore A, Nath H, Neff S, Oken M, Plunkett M, et al.: Lung Screening Study Research Group: Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer. Lung Cancer 2005, 47:9-15.

39. Ford LG, Minasian LM, McCaskill-Stevens W, Pisano ED, Sullivan D, Smith RA: Prevention and early detection clinical trials: opportunities for primary care providers and their patients. CA Cancer J Clin 2003, 53:82-101.

40. National Cancer Institute – U.S. National Institutes of Health: National Lung Screening Trial (NLST). [http://www.cancer.gov/nlst]