Tailoring inhomogeneous \mathcal{PT}-symmetric fiber Bragg grating spectra

S. Vignesh Raja, A. Govindarajan, A. Mahalingam and M. Lakshmanan

Department of Physics, Anna University, Chennai - 600 025, India and Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024, India

The unique spectral behavior exhibited by a class of non-uniform Bragg periodic structures, namely chirped and apodized fiber Bragg gratings (FBGs) influenced by parity and time reversal (\mathcal{PT}) symmetry, is presented. The interplay between the \mathcal{PT}-symmetry and nonuniformities brings exceptional functionalities in the broken \mathcal{PT}-symmetric phase such as wavelength selective amplification and single-mode lasing for a wide range of variations in gain-loss. We observe that the device is no more passive and it undergoes a series of transitions from asymmetric reflection to unidirectional invisibility and multi-mode amplification as a consequence of variation in the imaginary part of the strength of modulation in different apodization profiles, namely Gaussian and raised cosine, at the given value of chirping. The chirping affords bandwidth control as well as control over the magnitude of the reflected (transmitted) light. Likewise, apodization offers additional functionality in the form of suppression of uncontrolled lasing behavior in the broken \mathcal{PT}-symmetric regime besides moderating the reflected signals outside the band edges of the spectra.

I. INTRODUCTION

The possibility of inscribing newly engineered Bragg structures in the core of an optical fiber never seems to get exhausted despite a large number of scientific contributions dealing with their fundamental aspects (see [1–4] and references therein). From an application point of view, fiber Bragg gratings have emerged as an inevitable component in modern telecommunication arena as their spectral characteristics can be tailor-made at ease to facilitate functionalities like spectral filtering, wavelength routing [3], gain equalizers [4], pulse compression [5], optical add-drop multiplexing [6], optical delay lines [7], and so forth.

The existence of group delay ripples and significant reflectivity at the side lobes of the spectra are some of the major concerns associated with uniform gratings which potentially lead to other detrimental effects such as cross talk and effective bandwidth reduction in dense wavelength division multiplexing (DWDM) systems [1]. A uniform FBG features abrupt change in the modulation index at the interfaces between the grating and the background material. Hence, the boundaries of such FBGs behave similar to a Fabry-Pérot like cavity and thus resulting in the above detrimental effects [1, 2, 3, 4]. By employing an apodization technique, the index modulation is allowed to vanish smoothly at each of the interfaces rather than varying it in an abrupt way in contrast to the uniform gratings [3]. As a result, reflections in the side lobes are severely reduced [8] and hence the overall spectral response gets highly improved [2, 10]. On the other hand, chirping customizes the dispersive characteristics of the propagating light by broadening the pulse profile. In a chirped FBG, the Bragg wavelength of the system varies as a function of the propagation distance (z) [11] as a consequence of the variation in the grating period with respect to position z [1,4]. The incoming optical field experiences an enhancement or reduction in the spatial frequency of the grating as in the case of positively and negatively chirped FBGs, respectively [12]. Dispersion of a chirped grating without apodization becomes detrimental on high-bit rate DWDM systems due to the presence of ripples along the spectra. A mix of suitable apodization profile and judiciously tailored chirping parameter into a single FBG can blend these constructive characteristics and thus deliver a bandwidth controlled smooth spectrum [9, 13]. Hence chirped and apodized FBGs are widely used in fiber lasers [14] and dispersion compensation applications [15, 16].

The \mathcal{PT}-symmetric notion brings about some remarkable optical behaviors in a fiber Bragg grating which include coexistence of perfect absorption and lasing [17], unidirectional invisibility [15], nonreciprocal light propagation dynamics [19] and so on. The inherent loss in an optical system can thus be beneficial rather than being catastrophic with the inclusion of \mathcal{PT}-symmetric potentials [20–22]. It has also paved the way for some fascinating works which essentially confirm that supplying an appropriate amount of loss is necessary to preserve the \mathcal{PT}-symmetric condition $n(z) = n^*(-z)$ [23, 24]. In the literature, there are two distinct directions in which the studies on \mathcal{PT}-symmetric systems are carried out. Primarily, the first one is focused on studying the dynamics of the system under various physical conditions (see [25–35] and references therein). Studies on applications of \mathcal{PT}-symmetric system is the other direction of interest [36–41]. Invoking the notion of \mathcal{PT} symmetry in traditional structures is considered to be a trending subject matter in optics as they are more fruitful than the conventional systems owing to the management of intrinsic loss of the materials rather than neglecting it. As Lupu et al. have pointed out, the notion of \mathcal{PT}-symmetry opens

vickyneeshraja@gmail.com
govin.nld@gmail.com
drmaha@annauniv.edu
lakshman.cnld@gmail.com
up an alternative route to overcome some of the critical problems prevailing in the current hybrid integration optical technologies to build tunable and reconfigurable devices \[12\]. In the context of nonuniform PT-symmetric FBG, incorporation of the apodization techniques with the aid of duty cycle methods was proposed recently \[13\]. It is well known that apodization without chirping might lead to undesirable truncation of the spectral response which in turn reduces the effective length of the grating. Also, the nonuniform dc index change offered by an apodized FBG without chirping is highly undesirable since it can induce crosstalk between adjacent channels of closely spaced DWDM systems. If the grating period is allowed to vary along the propagation direction (chirping) in the presence of apodization then it is possible to obtain strong sidelobe suppression, flat-top amplitude response, and low delay distortion which are made possible by employing a chirped and apodized FBG. As of now, there seem to exist no scientific contributions which analyzes the effects of different apodization profiles on the spectral features of PT-symmetric chirped FBGs.

Having stated the need to study the proposed system, we aim at exploring the multi-functional capabilities of the system such as directional dependent broadband dispersion compensator, optical delay lines and optical demultiplexer in the unbroken PT-symmetric regime, tunable mode selective lasing in the broken PT-symmetric regime. To set up such applications, we first examine typical grating characteristics such as reflection, transmission, group delay and dispersion in a chirped PT-symmetric FBG in the presence of Gaussian and raised-cosine apodization profiles.

The paper is structured as follows. Section II illustrates the mathematical model of the system. Sections III and IV present the light propagation characteristics and applications in the unbroken PT-symmetric regime, respectively. Section V demonstrates the lasing behavior in the broken PT-symmetric regime. Section VI brings out the exceptional point dynamics of the system. The article is concluded in Sec. VII.

II. MATHEMATICAL MODEL

The refractive index profile of a chirped and apodized PT-symmetric fiber Bragg grating (CAPT-FBG) of length \(L\) and grating period \(\Lambda\) (see Fig. 1) is written as \[13, 14\]

\[
n(z) = n_0 + n_{1R} \cos \left(\frac{2\pi}{\Lambda} z + \phi(z) \right) f(z) + i n_{1I} \sin \left(\frac{2\pi}{\Lambda} z + \phi(z) \right) f(z) \tag{1}
\]

In Eq. (1) the first term on the right hand side represents the refractive index of the background material, \(n_{1R}\) and \(n_{1I}\) stand for the real and imaginary parts of modulation strength of Bragg grating, respectively. Also, \(\phi(z)\) represents the slowly varying grating phase \[8, 13\] and it should be even function of \(z\) for the system to be PT-symmetric and \(f(z)\) denotes the apodization profile \[13\]. Though the chirping is responsible to make the FBG non-uniform in addition to the apodization by breaking the periodicity, it should be noted that each unit cell will certainly obey the PT-symmetric condition \((n(z) = n^*(z))\) locally for a given grating period \((\Lambda_n)\) as shown in Fig. 1(c). The mathematical form of the Gaussian apodization profile is given by \[8\]

\[
f(z) = \exp \left[-G(z/L)^2 \right] \tag{2}
\]

where \(G\) stands for the Gauss width parameter \[1, 8, 13\].

\[
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{(a) Schematic of a chirped PT-symmetric FBG (b) Segmentation of the nonuniform PT-symmetric FBG into \(j\) number of uniform and periodic sections. The length, period, coupling, gain-loss, detuning parameter are given by \(l_j, \lambda_j, k_j, g_j, \delta_j\). The input, transmitted, reflected signal at a section \(j\) are represented by \(u_{ij-1}, u_j, v_j\). (c) Represents one unit cell of the PT-FBG \[37\], where the solid and dotted lines represent the modulation of real \((n_{1R})\) and imaginary part \((n_{1I})\) of refractive index profile, respectively.}
\end{figure}
For a raised-cosine profile one has the representation
\[f(z) = \frac{1 + \cos(\pi z/L)}{2} \] (3)

For an unapodized grating \(f(z) = 1 \). The coupled mode equations which describe the dynamics of the optical fields evolving from the proposed system is found to be
\[+i \frac{du}{dz} + \delta(z)u + (k(z) + g(z))v = 0, \] (4)
\[-i \frac{dv}{dz} + \delta(z)v + (k(z) - g(z))u = 0, \] (5)

where \(u \) and \(v \) are the forward and backward propagating optical fields inside the grating. The coupled mode equations are solved by conventional transfer matrix method (piece-wise uniform routine) having \(n \) number of uniform sections (see Fig. 1). The coupling, gain/loss and the detuning parameters accordingly are defined by [1, 44]
\[k(z) = \pi n_{1R}(z)/\lambda, \quad g(z) = \pi n_1(z)/\lambda, \]
\[\delta(z) = \delta_0 - \frac{1}{2} \frac{d\delta}{dz} = \delta_0 + \frac{4\pi n_0 \Lambda}{\lambda^2} \frac{d\lambda_0}{dz} \] (6)

where \(\delta_0 = 2\pi n_0 \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right) \). The derivative term \(d\lambda_0/dz \) represents the variation in the Bragg wavelength (\(\lambda_0 = 2n_0\Lambda(z) \)) proportional to grating position or simply chirp (C), whereas \(\lambda \) symbolizes the operating wavelength.

Let \(j = 1, 2, 3, \ldots, n \) represents the \(j^{\text{th}} \) section of the grating with length and period of each section taken to be \(l_j \) and \(\lambda_j \) respectively, such that \(\sum_{j=1}^{n} l_j = L \). Hence, the transmitted and reflected amplitudes of the traversing field at any section \(j \) (after propagating \(j - 1 \) sections) are taken to be \(u_j \) and \(v_j \), respectively [1]. Assuming \(n_0 = 1 \) and \(v_0 = 0 \) and taking \(M_j \) to be the transfer matrix that relates the propagation through an individual section \(j \) with the previous section \(j - 1 \), it can be mathematically expressed as
\[\begin{bmatrix} u_j \\ v_j \end{bmatrix} = M_j \begin{bmatrix} u_{j-1} \\ v_{j-1} \end{bmatrix}. \] (7)

For a \(\mathcal{PT} \)-symmetric FBG, \(M_j \) is given by Eq. (7) with
\[[M_j] = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \] (8)

where the matrix elements of \(M_j \) are given by
\[m_{11} = m_{22} = \cosh(\sigma_j l_j) + i \left(\frac{\delta_j}{\sigma_j} \right) \sinh(\sigma_j l_j), \]
\[m_{12} = i \left(\frac{k_j + g_j}{\sigma_j} \right) \sinh(\sigma_j l_j), \]
\[m_{21} = -i \left(\frac{k_j - g_j}{\sigma_j} \right) \sinh(\sigma_j l_j), \]

where \(\sigma_j = \sqrt{\left(k_j^2 - g_j^2 - \delta_j^2 \right)} \) represents the eigenvalues of the matrix \(M_j \) and the local values of coupling, gain/loss, and detuning parameters in the \(j^{\text{th}} \) section are given by \(k_j, g_j, \delta_j \). The transfer matrix \(M \) which describes the output fields of the grating of length \(L \) is the multiplication of matrices of the \(n \) individual sections each having a length \(l_j \). The output field in terms of the incident field is written as
\[\begin{bmatrix} u_n \\ v_n \end{bmatrix} = M \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}, \] (9)

where \(M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} = M_n * M_{n-1} * \ldots M_j * \ldots M_1 \).

The reflection amplitudes of the grating for the left, right incidence, and transmission amplitudes are specified as [18]
\[r_L = -\frac{M_{21}}{M_{22}}, \quad r_R = \frac{M_{12}}{M_{22}}, \]
\[t_L = t_R = t = 1/M_{22}. \] (10)

The corresponding reflection and transmission coefficients read as
\[R_L = |r_L|^2, \quad R_R = |r_R|^2, \quad T = |t|^2. \] (11)

It is important to note that the \(\mathcal{PT} \)-symmetric structures possess real eigenvalues below a phase-transition point and so they can be regarded as closed systems [46]. Nevertheless, they function like open systems at the broken \(\mathcal{PT} \)-symmetric phase as a consequence of the complex nature of the eigenvalues of the non-Hermitian Hamiltonians [22, 47]. Hence they do not obey the conservation relation of the form \(T + R = 1 \) [48]. But the generalized conservation relation for the \(\mathcal{PT} \)-symmetric structures is given by \(|T - 1| = \sqrt{R_L R_R} \) [49].

Further, we like to emphasize on the group delay and dispersion characteristics of the system. The phase \(\theta \) of the reflected and transmitted fields which dictates the group delay \(\tau \) and dispersion characteristics \(D \) of the \(\mathcal{PT} \)-symmetric FBG is given by
\[\theta_{RL} = \arctan(-M_{21}/M_{22}), \quad \theta_{RT} = \arctan(M_{12}/M_{22}), \quad \theta_T = \arctan(1/M_{22}). \] (12)

The time delay offered by the group velocity \((v_g) \) of the propagating optical fields can be found if the phase given in Eq. (12) is further expanded around a local value of frequency, say \(\omega_0 \). The gradient of \(d\theta/d\omega \) is the group delay which is proportional to the operating frequency \((\omega) \) and it reads as [1]
\[\tau_{L,R,T} = \frac{d\theta_{L,R,T}}{d\omega} = -\frac{\lambda^2}{2 \pi c} \frac{d\theta_{L,R,T}}{d\lambda}, \] (13)

where \(c \) represents the speed of light in free space. The dispersion offered by the system is proportional to
the derivative of delay (τ) with respect to the operating wavelength (λ) and it can also be expressed in terms of the second derivative of the phase with respect to the frequency ($d^2\phi/d\omega^2$) as

$$D_{L,R,T} = \frac{2\pi c}{\lambda^2} \frac{d^2\phi}{d\omega^2} = \frac{d\tau_{L,R,T}}{d\lambda}.$$ \hspace{1cm} (14)

Note that the delay and dispersion are measured in terms of picoseconds and picoseconds/nanometer, respectively. We may also mention that, works dealing with the time delay characteristics in a PT-symmetric system are not many \[18,19\]. Even these contributions are limited to the uniform grating structures. We believe that the present work is the first work pertaining to the investigation of delay and dispersion features of a nonuniform PT-symmetric FBG. In our studies, we will first investigate the dynamics of the nonuniform PT-symmetric FBG in the unbroken regime followed by the dynamics in the broken PT-symmetric regime and finally the dynamics at the exceptional point.

III. EFFECT OF NONUNIFORMITIES ON THE SPECTRA OF AN UNBROKEN PT-SYMMETRIC FBG

It is to be remembered that the device works in unbroken PT-symmetric regime if it satisfies the condition $n_{1R} > n_{1I}$. Throughout the analysis, we use the following system parameters of a standard FBG \[1\] as $L = 10$ mm, $n_0 = 1.45$, $n_{1R} = 10^{-3}$, and $\lambda_b = 1550$ nm. Before we proceed to study the grating characteristics of the proposed system in detail, it is important to investigate the effect of chirping, apodization, and PT-symmetry individually. In the absence of PT-symmetry ($n_{1I} = 0$) the reflection coefficient (R) is found to be the same for both left (R_L) and right light incidence (R_R) and the relation between R and transmission (T) is given by $T + R = 1$ as shown in Figs. \[2\](a), \[2\](c), and \[2\](e). The effect of PT-symmetry on the linear spectra is well-known and that it gives rise to enhanced and reduced reflection for right and left light incidence, respectively, as seen in Figs. \[2\](b), \[2\](d), and \[2\](f). These conclusions are true irrespective of the nature of apodization profile and the chirping. From Figs. \[2\](a) and \[2\](b), one can visualize that in the absence of apodization, chirping produces unwanted ripples in the stopband of the grating. Also, it induces a stronger reflection in the side lobes. In the presence of Gaussian apodization, the reflection (transmission) in the side lobes is reduced but not suppressed completely as seen in Figs. \[2\](c) and \[2\](d). However the ripples in the stopband are strongly reduced. To obtain a smooth, ripple-less, and side lobe suppressed spectra one can adapt the raised-cosine apodization as illustrated in Figs. \[2\](e), and \[2\](f).

A. Gaussian apodization profile

The different amplitudes of reflection (transmission) coefficients in the side lobes arise essentially due to the interplay among PT-symmetry, chirping, and Gaussian apodization as seen in Figs. \[3\](a) - \[3\](d). With an increase in the value of n_{1I}, the sidelobes show growth in the reflectivity. For instance, in R_R it is measured to be 0.2311 in Fig. \[3\](a), whereas in Fig. \[3\](b) it is found to be 0.4958. From these figures, we can also infer that any increase in the value of n_{1I} intensifies the light reflected from the rear side (R_R) compared to Fig. \[2\](d). However, there is a fall in the amount of light reflected from the front end (R_L). Thus we can conclude that the asymmetric light propagation behavior depends on the PT-symmetry and it is portrayed in Fig. \[3\](e). The growth in the reflection coefficient for right incidence (R_R) occurs as a result of the constructive interplay between the modes of the optical fields propagating along with the gain segments of the PT-symmetric grating \[12\]. When the input signal is incident on the other side of the grating the reflection (R_L) decreases, as any increase in loss ($-g$) decreases the coupling (k) between the two propagating waves. Finally, we look at the role of chirping on the light propagation characteristics of the device. In the absence of apodization, it may produce an adverse effect like the introduction of ripples in the spectra. However, it plays a positive role in controlling the bandwidth of the spectra in the presence of apodization. With a decrease in the value of chirping, the full width half maximum (FWHM) of the spectrum reduces. This is illustrated in Figs. \[3\](c) and (f). On the other hand, if the value of chirping is high ($C = 0.5 \text{ nm/cm}$), the FWHM is increased as observed in Figs. \[3\](d) and \[3\](f). Hence, one can enlarge or taper the nature of bandwidth by merely manipulating the chirping parameter along with the judiciously chosen apodization profile.

B. Raised-cosine apodization profile

In Fig. \[4\] we observe that some weak reflections persist on the wings of the spectra. This issue can be addressed by employing a raised-cosine apodization profile which can eliminate the side lobes entirely on both sides of the central lobe as seen in Fig. \[4\](a). Having stated the above, we also note that the reflectivity (transmittivity) can be tuned by varying the parameter n_{1I}. Similar to the last subsection, the amplitude of reflection from the rear (front) end of the device gets amplified (reduced) when n_{1I} is increased (decreased) as seen in Figs. \[4\](b) and \[4\](c). From Figs. \[4\](e) and \[4\](c), we conclude that the maximum reflectivity depends only on the value of PT-symmetry and is independent of the nature of apodization. The bandwidth control is facilitated by varying the chirp (C) offered by the PT-symmetric grating. In Fig. \[4\](c), the value of chirping is set to 0.125 nm/cm and thus we get a narrow spectrum and without ripples. Neverthe-
less, any further increase in the chirping contributes to the widening of the spectrum which gives an additional degree of freedom to enlarge the spectrum remarkably as identified in Figs. 4(d) and 4(f).

IV. GROUP DELAY AND DISPERSION CHARACTERISTICS OF A CAPT-FBG

A chirped FBG can induce dispersion as the light propagates inside it. It is desirable to have a linear delay without any ripples and hence apodization plays a central role in fine-tuning the delay characteristics of the device. The delay may increase or decrease linearly according to the sign of chirp (C) and hence the sign of dispersion (D) also varies with the sign of C. As mentioned earlier, studying these properties aids in the construction of applications such as delay lines, dispersion compensator and so on. Kulishov et al. investigated the delay characteristics of a FBG in the absence of nonuniformities. The question that arises here is whether the addition of nonuniformities impacts the delay and dispersion properties of a PT-symmetric FBG. With this aim, we now look into the group delay offered by the system under study.

A. Gaussian apodization profile

In Fig. 5(a), the group delay for the transmitted light (τ_T) is approximately constant around 50 ps. The group delay for the light reflected from the front end (τ_L) increases non-monotonically (with a lot of ripples even at the stop band) with an increase in the wavelengths, while the group delay from the rear end (τ_R) decreases in the same way with an increase in wavelength. Physically, these ripples in the delay characteristics arise as a consequence of the interference between the reflected signals from the grating edges and the nature of reflection within
FIG. 4. Plots illustrating the same dynamics as in Fig. 3 except it is plotted for the case of raised-cosine apodization. The wavelength range is selected between 1549 nm and 1551 nm in (a) – (d).

FIG. 5. (a) Group delay and (b) dispersion characteristics of a chirped ($C = 0.25$ nm/cm) and Gaussian apodized ($G = 4$) PT-symmetric FBG when the system is operated in the unbroken PT-symmetric regime ($n_{1I} = 0.0008$). (c) and (d) Show the same dynamics with same parameters as in (a) and (b), respectively except that it is plotted for three different values of $G = 5, 9, 15$. Also, the x-axis is scaled between 1549.7 nm and 1550.3 nm in the bottom panel.

B. Raised-cosine apodization profile

For the chirped and apodized FBG which is supposed to function as an efficient dispersion compensator the following criteria must be met: first, the delay characteristics of the device is expected to show monotonic increase or decrease with respect to increase in wavelength and must be free from any ripples. Second, these types of linear variations should be observed for a wide range of wavelengths so as to obtain a flat dispersion characteristics over a wide spectral range with high reflectivity [50, 51]. In this perspective, chirped FBGs with a raised-cosine apodization is the optimum choice to compensate dispersion accumulated in the input pulse as it travels through an optical fiber. The physical explanation for the absence of ripples in the delay is due to the fact that there are no reflections from the ends of the grating for the interference phenomenon discussed in the previous section. As shown in Fig. 6(a), the delay is shifted to higher values with the inclusion of PT-symmetry ($n_{1I} = 0.0008$) compared to the delay offered by a conventional FBG ($n_{1I} = 0$). It is very clear that the time delay for the transmitted light is $\tau_T \sim 50 \text{ ps}$. The small number of fluctuations in the group delay plots which were visible in the presence of Gaussian apodization (see Fig. 5) is suppressed by employing a raised-cosine apodiza-
tion characteristics thanks to the notion of PT-symmetry (See Fig. 4). Other important application of CAPT-FBG (raised-cosine) in the unbroken PT-symmetry includes add and drop multiplexer-demultiplexer and delay lines.

![FIG. 6. Delay and dispersion characteristics of a CAPT-FBG (raised-cosine). (a) Shows the role of PT-symmetry on direction dependent delay (τ) plotted at $n_{1I} = 0$ and 0.0008 with a chirp of $C = 1 \text{ nm/cm}$. (b) Depicts the role of chirping (C) on delay (τ) at $n_{1I} = 0.0008$. The dispersion characteristics in the absence of gain-loss ($n_{1I} = 0$) is illustrated in (c). Influence of PT-symmetry on dispersion (D) simulated at $C = 1$ and 2 nm/cm with a gain-loss parameter value of 0.0008 is shown in (d).](image)

We recall that the FBG is said to be operating in the broken PT-symmetric regime under the mathematical condition $n_{1I} > n_{1R}$.

V. EFFECT OF NONUNIFORMITIES ON THE SPECTRA OF A BROKEN PT-SYMMETRIC FBG

It is worthwhile to mention that in a broken CAPT-FBG (Gaussian), selective amplification of certain wavelengths of the spectra can be achieved by varying the value of n_{1I} and chirping (C). Under such circumstances, the system may behave like a Fabry-Pérot cavity [1]. Thus it allows the amplification of certain wavelengths and the suppression of remaining wavelengths of the reflected (transmitted) spectra as shown in Figs. and . The undesirable amplification from the sidelobes of the spectra can be eliminated with ease by passing the output through a bandpass FBG filter and thus we scale down the plots in Fig. between 1549.6 nm and 1550.4 nm. In contrast to the previous sections (unbroken PT-symmetry), in the present case of broken PT-symmetry the reflectivity (R) [transmittivity (T)] can be controlled by changing the value of the chirp or gain and loss. Due to the nature of apodization, the amplification at the Bragg wavelength of the spectra is suppressed (but not to zero), but the wavelengths lying on the shorter and longer sides of the Bragg wavelengths of the spectra experience a symmetric (resonant) amplification behavior pertaining to blue and red shifts of the resonant frequency (wavelength) of the spectrum within the stopband as

![FIG. 7. Schematic of a dispersion compensator build using a CAPT-FBG](image)

A. Gaussian apodization profile

...
mum reflectivity and transmittivity (λ nm/cm) on (d) the maximum reflectivity and transmittivity

In (f) spectral separation (λ lowered to which maximum reflectivity (transmittivity) occurs when n_{1I} is varied. The inset in (f) shows full width maximum of the spectra with variation in the gain-loss at constant chirping.

![Diagram](image)

FIG. 8. Transmission and reflection characteristics of CAPT-FBG (Gaussian) in the broken PT-symmetric regime. (a) and (b) Show the role of gain-loss on the spectra simulated at $C = 0.25$ nm/cm with $n_{1I} = 2.22 \times 10^{-3}$ and 2.24×10^{-3}, respectively. (c) Illustrates the decrease in reflectivity and transmittivity R and T of the spectra when the chirping is lowered to $C = 0.2$ nm/cm at $n_{1I} = 2.285 \times 10^{-3}$. Influence of n_{1I} at fixed values of chirping ($C = 0.25$ nm/cm and 0.2 nm/cm) on (d) the maximum reflectivity and transmittivity (R_{max} and T_{max}). (e) Wavelengths corresponding to maximum reflectivity and transmittivity (λ_{max1} and λ_{max2}), and (f) spectral separation (λ_d) between the two wavelengths at which maximum reflectivity (transmittivity) occurs when n_{1I} is varied. The inset in (f) shows full width maximum of the spectra with variation in the gain-loss at constant chirping.

and transmittivity occur in the spectra as shown in Fig. S(c). Also, the FWHM of the spectra grows with an increase in n_{1I} as shown in the inset of Fig. S(f). The wavelengths (λ_{max1} and λ_{max2}) at which maximum reflectivity (R_{max}) or transmittivity (T_{max}) occurs in the spectra are shifted towards the Bragg wavelength. To illustrate the spectral response further, we introduce another useful parameter λ_d which indicates the difference in wavelengths between λ_{max1} and λ_{max2}. It is inferred from Fig. S(f) that λ_d gets shrunk with an increase in the value of n_{1I}. Physically, this means that with an increase in the value of n_{1I} the wavelengths which were experiencing a larger gain at lower values of n_{1I} now experience comparably lesser gain and wavelengths closer to the Bragg wavelength will acquire larger gain. Any
Further increase in the value of n_{1I} leads to a narrow band single-mode lasing behavior of the spectra centered at the Bragg wavelength as depicted in Fig. 10. Interestingly, any increase in the value of n_{1I} decreases the maximum reflectivity (R_{max}) and transmittivity (T_{max}) of the spectra in the single mode lasing regime as shown in Figs. (a), (b) and (c) which is in contrast to the dual-mode amplification regime. At the same time, the FWHM of the spectra increases with an increase in n_{1I} as shown in the inset of Fig. (c). The decrease (increase) in the chirping tends to push the magnitude of n_{1I} to higher (lower) values where R_{max} and T_{max} occurs as shown in Figs. (c) and (d). For instance, at a chirp of $C = 0.2$ nm/cm and $n_{1I} = 0.00226$ the system exhibits amplification at two different wavelengths, whereas the same system at $C = 0.25$ will exhibit single-mode lasing behavior [see Figs. (d) and (d)]. The FWHM of the spectra keeps on increasing until a particular value of n_{1I} and beyond that any increase will break the single-mode lasing behavior in the spectra and it degenerates to produce amplification at the resonances outside the Bragg wavelength. The occurrence of alternate regimes of single-mode lasing behavior and mode selective amplification in the broken CAPT-FBG spectra is observed for a wide range of n_{1I} for a given value of chirping as depicted in Figs. (e) and (f).

B. Raised-cosine apodization profile

In Fig. 11(a), we observe that the amplification at other wavelengths of the spectra is totally inhibited except that the amplification is now experienced only by a single wavelength (1550 nm) thanks to the presence of a raised-cosine apodization profile. Physically, this
means that the resonance can occur only at the Bragg wavelength and this wavelength experiences a larger gain compared to other wavelengths and shifting of resonances with variations in gain is prohibited by the nature of apodization. This phenomenon is observed for a wide range of n_{1I} and chirping. In the previous section, we discussed about two distinct regimes (dual and single-mode) of the broken CAPT-FBG spectra depending on the range of n_{1I} in which the system is operated. In the presence of raised-cosine apodization, there is no such dual mode amplification behavior. Instead, we have two distinct regimes of single-mode lasing behavior. One of the regimes (see Fig. 10) is characterized by increase in reflectivity and transmittivity and narrowing of the full width half maximum of the spectra with any increment in the device parameters (C and n_{1I}) and the other regime (see Fig. 10) features decrement in the reflectivity and transmittivity and broadening of FWHM of the spectra with an increase in the value of the system parameters. Similar to the conclusions drawn in the last section, the appearance of two distinct single-mode lasing regimes is cyclic in nature with variations in n_{1I}. When n_{1I} increases, we observe that the reflectivity and transmittivity grows at the given value of chirping as shown in Figs. 10(a) – 10(c). Nevertheless, in the other regime shown in Figs. 10(a) – 11(c), any increment in n_{1I} decreases the magnitude of the maximum reflectivity and transmittivity (R_{max} and T_{max}). Decrement in the value of chirping reduces (increases) the reflectivity and transmittivity in Fig. 10(d) [Fig. 11(d)]. Thus, controlling R_{max} and T_{max} in the single-mode lasing behavior of a CAPT-FBG (raised-cosine) is feasible in two different ways: first, by varying the chirp parameter and second, by varying the gain and loss. Also, it is possible to control the full width half maximum of the spectra in two distinctive directions just like the amplitude control as shown in Figs. 10(e), 10(f), 11(e) and 11(f). Thus the system offers unique ways to control the spectral characteristics in the broken PT-symmetric regime compared to the unbroken PT-symmetric regime.

VI. UNIDIRECTIONAL REFLECTIONLESS WAVE TRANSPORT WITH GRATING NONUNIFORMITIES

When $n_{1R} = n_{1I}$, the system is said to be operating at the exact PT-symmetric phase. As a consequence of operating at the exceptional point, the FBG reveals a peculiar phenomenon of unidirectional reflectionless transmission which was termed as unidirectional invisibility [18, 54] that results in an ideal light transmission on one side ($T = 1$) and ($R = 0$) which is unrealistic in the context of conventional systems. This concept is well established in the framework of PT-symmetric linear as well as nonlinear gratings [18, 43]. From our investigations, we confirm that unidirectional invisibility can persevere even in the presence of chirping and apodization as depicted in Figs. 12(a) – 12(d). The effect of the nonuniformities of the grating is similar to the unbroken PT-symmetric case discussed earlier except for an additional growth in the amplitude of the reflected light as a result of an increase in the value of n_{1R}. When Gaussian apodization is used, ripples are seen all over the spectra due to the presence of chirping as shown in Fig. 12(c). The convenient way is to make use of a raised cosine apodization window which can completely reduce the side lobes and ripples in the spectra when chirping is sufficient. We would like to stress that a chirp of 0.375 nm/cm or greater can produce a large band spectrum without any side lobes which is one of the notable outcomes of our study as illustrated in Fig. 12(d). In Fig. 12(e), we can see that the delay in the transmitted signal is constant around 48 ps and this is due to presence of chirping and by increasing or decreasing the value of chirping the delay can be tuned in the

![FIG. 12. Exceptional point dynamics exhibited by a chirped and apodized PT-symmetric FBG ($n_{1R} = n_{1I} = 0.001$). The phenomenon of unidirectional invisibility is illustrated in (a). The reflected spectra (in dB) for the right incidence for different apodization profiles with $C = 0.25$ nm/cm is depicted in (b). (c) and (d) Depict the same under variations in C in the presence of Gaussian apodization and raised-cosine apodization profiles respectively. (e) Depicts the variation in delay for the two apodization profiles when $C = 0.25$ nm/cm.](image-url)
transmission and thus can be used as delay lines. Similar to unbroken PT-symmetry, τ_R features a lot of oscillations in the presence of Gaussian apodization whereas a monotonically decreasing delay can be obtained by employing a raised-cosine apodization profile.

VII. CONCLUSIONS

In this article, we have presented a detailed study on the spectra exhibited by a PT-symmetric FBG in the presence of nonuniformities of the grating such as chirping and apodization. The system offers some unique features in the presence of PT-symmetry. We found that the spectral bandwidth varies as the chirping term is varied, and reflectivity and transmittivity get altered as the gain/loss term is tuned, while the apodization suppresses the sidelobes partially or completely in the unbroken PT-symmetric regime. We also found that the role of chirping on delay characteristics depends on the direction of incidence and it is possible to obtain a flatter dispersion curve with the addition of PT-symmetry compared to the conventional system. The spectral response of the broken PT-symmetric FBG features dual-mode amplification and single-mode lasing behavior as a consequence of the interplay between the other system parameters in the presence of Gaussian apodization. Also, the system exhibits single-mode lasing behavior in its spectral characteristics for a wide range of system parameters in the presence of raised-cosine apodization. From the simulations, we have confirmed that the phenomenon of unidirectional invisibility is independent of the nonuniformities of the grating and the reflected light corresponding to the right light incidence is influenced by the variations in the nonuniformities of the grating. To sum up, the proposed system can offer multi-functionalities against the variations in nonuniformities of the grating together with PT-symmetry and can yield applications like direction dependent dispersion compensation, optical delay lines and demultiplexers in light-wave communication systems.

ACKNOWLEDGMENTS

SVR is indebted for the financial assistantship provided by an Anna University through Anna Centenary Research Fellowship (CFR/ACRF-2018/AR1/24). AG was supported by Science and Engineering Research Board (SERB), Government of India through a National Postdoctoral Fellowship (Grant No. PDF/2016/002933). ML is supported by SERB through a Distinguished Fellowship (Grant No. SB/DF/04/2017) in which A. G. is a Visiting Scientist. A.G. and M.L. also thank Council of Scientific and Industrial Research (Grant No.03/1331/15/EMR-II).

[1] T. Erdogan, Fiber grating spectra, J. Light. Technol. 15, 1277 (1997).
[2] C. Giles, Lightwave applications of fiber Bragg gratings, J. Light. Technol. 15, 1391 (1997).
[3] K. O. Hill and G. Meltz, Fiber Bragg grating technology fundamentals and overview, J. Light. Technol. 15, 1263 (1997).
[4] A. Othonos, Fiber Bragg gratings, Rev. Sci. Instrum. 68, 4309 (1997).
[5] N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression, J. Light. Technol. 15, 1303 (1997).
[6] I. Baumann, J. Seifert, W. Nowak, and M. Sauer, Compact all-fiber add-drop-droplenxer using fiber Bragg gratings, IEEE Photon. Technol. Lett. 8, 1331 (1996).
[7] G. Lenz, B. Eggleton, C. K. Madsen, and R. Slusher, Optical delay lines based on optical filters, IEEE J. Quantum Electron. 37, 525 (2001).
[8] J. L. Rebola and A. V. Cartaxo, Performance optimization of gaussian apodized fiber Bragg grating filters in WDM systems, J. Light. Technol. 20, 1537 (2002).
[9] K. Ennsr, N. Zervas, and R. Laming, Optimization of apodized linearly chirped fiber gratings for optical communications, IEEE J. Quantum Electron. 34, 770 (1998).
[10] T. Komukai, K. Tamura, and M. Nakazawa, An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering, IEEE Photonics. Technol. Lett. 9, 934 (1997).
[11] F. Ouellette, Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides, Opt. Lett. 12, 847 (1987).
[12] D. N. Maywar and G. P. Agrawal, Effect of chirped gratings on reflective optical bistability in DFB semiconductor laser amplifiers, IEEE J. Quantum Electron. 34, 2364 (1998).
[13] D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Martí, Design of apodized linearly chirped fiber gratings for dispersion compensation, J. Light. Technol. 14, 2581 (1996).
[14] X. Cheng, P. Shum, C. Tse, J. Zhou, M. Tang, W. Tan, R. Wu, and J. Zhang, Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon, IEEE Photonics. Technol. Lett. 20, 976 (2008).
[15] K. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. Johnson, J. Albert, and K. Takiguchi, Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion, Opt. Lett. 19, 1314 (1994).
[16] B. Eggleton, G. Lenz, N. Litchinitser, D. Patterson, and R. Slusher, Implications of fiber grating dispersion for WDM communication systems, IEEE Photonics. Technol. Lett. 9, 1403 (1997).
[17] C. Huang, R. Zhang, J. Han, J. Zheng, and J. Xu, Type-II perfect absorption and amplification modes with controllable bandwidth in combined PT-symmetric and conventional Bragg-grating structures, Phys. Rev. A 89,
023842 (2014).
[18] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106, 213901 (2011).
[19] M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and D. V. Plant, Nonreciprocal waveguide Bragg gratings, Opt. Express 13, 3068 (2005).
[20] A. Govindarajan, A. K. Sarma, and M. Lakshmanan, Tailoring PT-symmetric soliton switch, Opt. Lett. 44, 663 (2019).
[21] A. Lupu, H. Benisty, and A. Degiron, Switching using PT-symmetry in plasmonic systems: Positive role of the losses, Opt. Express 21, 21651 (2013).
[22] A. Govindarajan, B. A. Malomed, and M. Lakshmanan, Nonlinear anti-directional couplers with gain and loss, Opt. Lett. 44, 4650 (2019).
[23] C. Hahn, E. K. Keshmarzi, S. H. Song, C. H. Oh, R. N. Tuít, and F. Berini, Unidirectional Bragg gratings using parity-time symmetry breaking in plasmonic systems, IEEE J. Sel. Top. Quantum Electron. 22, 48 (2016).
[24] L. Razzari and R. Morandotti, Optics: Gain and loss mixed in the same cadium, Nature 488, 163 (2012).
[25] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity–time symmetry and exceptional points in photonics, Nat. Mater. 18, 783 (2019).
[26] R. El-Ganainy, K. Makris, D. Christodoulides, and Z. H. Musslimani, Theory of coupled optical PT-symmetric structures, Opt. Lett. 32, 2632 (2007).
[27] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and PT-symmetry, Nat. Phys. 14, 11 (2018).
[28] T. Kottos, Optical physics: Broken symmetry makes light work, Nat. Phys. 6, 166 (2010).
[29] S. Longhi, Parity-time symmetry meets photonics: A new twist in non-Hermitian optics, Europhys. Lett. 120, 64001 (2018).
[30] K. G. Makris, R. El-Ganainy, D. Christodoulides, and Z. H. Musslimani, Beam dynamics in PT-symmetric optical lattices, Phys. Rev. Lett. 100, 103904 (2008).
[31] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity–time symmetry in optics, Nat. Phys. 6, 192 (2010).
[32] A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, Nonlinear suppression of time reversals in PT-symmetric optical couplers, Phys. Rev. A 82, 043818 (2010).
[33] Y. V. Bludov, V. V. Konotop, and B. A. Malomed, Stable dark solitons in PT-symmetric dual-core waveguides, Phys. Rev. A 87, 013816 (2013).
[34] A. E. Miroshnichenko, B. A. Malomed, and Y. S. Kivshar, Nonlinearly PT-symmetric systems: Spontaneous symmetry breaking and transmission resonances, Phys. Rev. A 84, 012123 (2011).
[35] H. Ramezani, J. Schindler, F. M. Ellis, U. G¨unther, and T. Kottos, Bypassing the bandwidth theorem with PT-symmetry, Phys. Rev. A 85, 062122 (2012).
[36] S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, Ultrafast optical switching using parity-time symmetric bragg gratings, J. Opt. Soc. Am. B 30, 2984 (2013).
[37] S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, Impact of dispersive and saturable gain/loss on bistability of nonlinear parity–time bragg gratings, Opt. Lett. 39, 2603 (2014).
[38] S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, A versatile all-optical parity-time signal processing device using a bragg grating induced using positive and negative Kerr-nonlinearity, Opt. Quant. Electron. 47, 37 (2015).
[39] B. Baum, H. Alaeian, and J. Dionne, A parity-time symmetric coherent plasmonic absorber-amplifier, J. Appl. Phys. 117, 063106 (2015).
[40] S. V. Raja, A. Govindarajan, A. Mahalingam, and M. Lakshmanan, Multifaceted dynamics and gap solitons in PT-symmetric periodic structures, Phys. Rev. A 100, 033838 (2019).
[41] S. V. Raja, A. Govindarajan, A. Mahalingam, and M. Lakshmanan, Nonlinear nonuniform PT-symmetric Bragg grating structures, Phys. Rev. A 100, 053806 (2019).
[42] H. Benisty, A. Lupu, and A. Degiron, Transverse periodic PT symmetry for modal demultiplexing in optical waveguides, Phys. Rev. A 91 (2015).
[43] A. T. Lupu, H. Benisty, and A. V. Lavrinenko, Tailoring spectral properties of binary PT-symmetric gratings by duty-cycle methods, IEEE J. Sel. Top. Quantum Electron. 22, 35 (2016).
[44] M.-A. Miri, A. B. Acese, T. Kottos, V. Kovanis, and D. N. Christodoulides, Bragg solitons in nonlinear PT-symmetric periodic potentials, Phys. Rev. A 86, 033801 (2012).
[45] G. Palumbo, D. Tosi, A. Iadicicco, and S. Campopiano, Analysis and design of chirped fiber Bragg grating for temperature sensing for possible biomedical applications, IEEE Photonics J. 10, 1 (2018).
[46] C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT-symmetry, Phys. Rev. Lett. 80, 5243 (1998).
[47] A. Mostafazadeh, Pseudo-hermiticity versus PT-symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43, 205 (2002).
[48] A. Mostafazadeh, Invisibility and PT symmetry, Phys. Rev. A 87, 012103 (2013).
[49] L. Ge, Y. Chong, and A. D. Stone, Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures, Phys. Rev. A 85, 023802 (2012).
[50] K. Hill, S. Theriault, B. Malo, F. Bilodeau, T. Kitagawa, D. Johnson, J. Albert, K. Takiguchi, T. Kataoka, and K. Hagimoto, Chirped in-fibre Bragg grating dispersion compensators: Linearisation of dispersion characteristic and demonstration of dispersion compensation in 100 km, 10 gbit/s optical fibre link, Electron. Lett. 30, 1755 (1994).
[51] J. E. Roman and K. A. Winick, Waveguide grating filters for dispersion compensation and pulse compression, IEEE J. Quantum Electron. 29, 975 (1993).
[52] B. A. Tennant, R. Ara, A. Atwiri, G. P. Agrawal, N. M. Litchinitser, and D. N. Maywar, Distributed feedback laser based on a negative-index metamaterial waveguide, Opt. Lett. 44, 4586 (2019).
[53] A. Govindarajan, B. Malomed, and M. Lakshmanan, Tunable nonlinear spectra of anti-directional couplers,
[54] J. W. Yoon, Y. Choi, C. Hahn, G. Kim, S. H. Song, K.-Y. Yang, J. Y. Lee, Y. Kim, C. S. Lee, J. K. Shin et al., Time-asymmetric loop around an exceptional point over the full optical communications band, Nature 562, 86 (2018).