Relationship between serum bilirubin concentrations and diabetic nephropathy in Shanghai Han’s patients with type 1 diabetes mellitus

Xu Li†, Lei Zhang†, Haibing Chen†, Kaifeng Guo, Haoyong Yu, Jian Zhou, Ming Li, Qing Li, Lianxi Li, Jun Yin, Fang Liu, Yuqian Bao, Junfeng Han* and Weiping Jia*

Abstract

Background: Recent studies highlight a negative association between total bilirubin concentrations and albuminuria in patients with type 2 diabetes mellitus. Our study evaluated the relationship between bilirubin concentrations and the prevalence of diabetic nephropathy (DN) in Chinese patients with type 1 diabetes mellitus (T1DM).

Methods: A total of 258 patients with T1DM were recruited and bilirubin concentrations were compared between patients with or without diabetic nephropathy. Multiple stepwise regression analysis was used to examine the relationship between bilirubin concentrations and 24 h urinary microalbumin. Binary logistic regression analysis was performed to assess independent risk factors for diabetic nephropathy. Participants were divided into four groups according to the quartile of total bilirubin concentrations (Q1, 0.20–0.60; Q2, 0.60–0.80; Q3, 0.80–1.00; Q4, 1.00–1.90 mg/dL) and the chi-square test was used to compare the prevalence of DN in patients with T1DM.

Results: The median bilirubin level was 0.56 (interquartile: 0.43–0.68 mg/dL) in the DN group, significantly lower than in the non-DN group (0.70 [interquartile: 0.58–0.89 mg/dL], P < 0.001). Spearman’s correlational analysis showed bilirubin concentrations were inversely correlated with 24 h urinary microalbumin (r = -0.13, P < 0.05) and multiple stepwise regression analysis showed bilirubin concentrations were independently associated with 24 h urinary microalbumin. In logistic regression analysis, bilirubin concentrations were significantly inversely associated with nephropathy. In addition, in stratified analysis, from the first to the fourth quartile group, increased bilirubin concentrations were associated with decreased prevalence of DN from 21.90% to 2.00%.

Conclusion: High bilirubin concentrations are independently and negatively associated with albuminuria and the prevalence of DN in patients with T1DM.

Keywords: Type 1 diabetes mellitus, Diabetic nephropathy, Bilirubin concentrations
Background
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide, which remains a major cause of morbidity and mortality in patients with T1DM [1]. Oxidative stress may be a common pathway linking diverse, seemingly distinct, potential mechanisms underlying the pathogenesis of complications in diabetes, including nephropathy [2]. Bilirubin is the end product of haem catabolism and it acts as a powerful biological antioxidant [3, 4]. A study on Gilbert syndrome (GS) reported that the prevalence of ischemic heart disease (IHD) was 2% in GS patients (who are characterised by high bilirubin concentrations) compared to 12.1% in the general population, indicating that chronic hyperbilirubinemia prevents the development of IHD by increasing the antioxidant capacity of serum [5]. In a recent study that used the deoxycorticosterone acetate (DOCA)-salt model of hypertension in Heine oxygenase (HO)-1−/− and HO-1+/+ mice, systolic arterial pressure was significantly elevated in HO-1−/− mice treated with DOCA salt but not in HO-1+/+ mice; in addition, DOCA-salt impaired vasorelaxation was noted in wild-type rats but not in hyperbilirubinemic rats [6]. These results suggest that the HO-1 isozyme and the product bilirubin may have protective effects on vascular disease. This finding has also been confirmed in a model of balloon injury [7]. In addition, diabetic hyperbilirubinemic Gunn j/j rats excrete significantly less urinary albumin than diabetic non-hyperbilirubinemic Gunn j/+ rats and administration of biliverdin (5 mg/kg) protects against both albuminuria and renal mesangial expansion in db/db mice [8]. These findings suggest that bilirubin and biliverdin may protect against DN. A population-based study showed that high bilirubin concentrations in serum are associated with reduced risk of DN [9]. Furthermore, several longitudinal studies on healthy subjects and type 2 diabetes mellitus (T2DM) also demonstrated that low serum bilirubin concentration could be a novel risk factor for the development of albuminuria in patients with type 2 diabetes [10, 11]. However, renal disease remains a major cause of morbidity and mortality in patients with T1DM and the association between bilirubin concentrations in serum and the prevalence of diabetic nephropathy in patients with T1DM has not yet been studied. Therefore, in the present study, we evaluated the association between bilirubin concentrations in serum and the prevalence of DN, and we hypothesized that bilirubin concentrations may inversely associate with the prevalence of DN in Chinese patients with T1DM.

Methods
Study population
This was a cross-sectional, population-based study involving 258 patients with T1DM. Participants were hospitalised patients who presented at the Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital between January 2008 and January 2013. T1DM was defined as anti-glutamate decarboxylase (GAD) antibody level ≥1.5 U/mL and injecting insulin at least three times daily or using an insulin pump, and DN were diagnosed according to KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease for 2007 [12]. Hypertension was diagnosed if the patient had a blood pressure greater than 140/90 mmHg or used anti-hypertensive drugs. Subjects were excluded for the following reasons: absence of data (bilirubin, haemoglobin A1c [HbA1c]), abnormal thyroid function (hyperthyroidism or hypothyroidism), elevated serum levels of creatinine (>124 μmol/L), serum bilirubin concentrations >2.0 mg/dL, and T2DM or specific diabetes. In addition, patients were excluded if they had confounding hepatobiliary or haemolytic disease, hepatitis B or C, alcoholic liver disease, gallstones, cirrhosis, IgA nephropathy, or urinary tract infections.

Clinical and laboratory measurements
The clinical parameters investigated included age, height, weight, duration of diabetes, systolic blood pressure (SBP), diastolic blood pressure (DBP), waist circumference (WC), hip circumference, and waist-to-hip ratio (WHR). Biochemical variables were analysed after an overnight fast of at least 10 h and included fasting plasma glucose (FPG), 2 h postprandial glucose (2hPG), glycated haemoglobin A1c (HbA1c), glycated albumin (GA), C-reactive protein (CRP), 30-min postprandial venous C peptide, 120-min postprandial venous C peptide, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyltransfere (γ-GT), total cholesterol (TC), triglyceride level (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), haemoglobin (Hb), 24 h urinary microalbumin, total GFR, uric acid, creatinine (Cr), and total bilirubin.

Subject height was measured to the nearest 0.1 cm with subjects not wearing shoes and weight was measured to the nearest 0.1 kg while the subjects wore light clothing; BMI was calculated as weight (kg) divided by the square of the height (m). SBP and DBP were measured after participants had rested for at least 5 min. WC (cm) was measured midway between the costal margin and the iliac crest at the end of a normal expiration and the hip circumference was measured as the circumference around both greater femoral trochanters. The WHR was calculated by dividing waist by hip circumference (cm). All biochemical determinations were performed using the same standard laboratory methods. After overnight fasting, blood was drawn early
in the morning from the antecubital vein into vacuum tubes to determine the concentrations of fasting plasma glucose (FPG), C peptide, CRP, and concentrations of lipid components and liver enzymes. Bilirubin concentrations from serum samples were determined using the vanadate oxidation method.

Measurement of GFR using the $^{99m}$Tc-diethylene triamine pentaacetic acid ($^{99m}$Tc-DTPA) renal dynamic imaging method, and $^{99m}$Tc-DTPA renal dynamic imaging (modified Gate’s method) was measured by Millennium TMMPR SPECT from General Electric Medical System [13]. Urine albumin excretions were evaluated by calculating total amounts of 24 h urinary microalbumin. The stage of albuminuria was defined as normal if no more than 30 mg/24 h, microalbuminuria if 24 h urinary microalbumin was 30–299 mg/24 h, and macroalbuminuria if 24 h urinary microalbumin was equal to or higher than 300 mg/24 h [12].

Statistical analysis
Data are expressed as the means ± standard deviation (SD) for a normal distribution of variables or as the median (interquartile range) for a skewed distribution of variables. For continuous data with a normal distribution and a skewed distribution between DN and non-DN patients, unpaired Student’s $t$-tests and nonparametric tests, respectively, were used for statistical analyses. Categorical variables were compared using a chi-square test. Spearman’s correlational analysis between 24 h urinary microalbumin, and other variables was performed. Multiple stepwise regression analysis was performed to assess the relationship between bilirubin concentrations and 24 h urinary microalbumin. Binary logistic regression analysis was performed to assess independent risk factors for diabetic nephropathy. Participants were divided into four groups according to the quartile of total bilirubin concentrations and the chi-square test was used to compare the prevalence of DN in patients with T1DM. The first quartile was 0.20–0.60 mg/dL, second quartile was 0.60–0.80 mg/dL, third quartile was 0.80–1.00 mg/dL, and fourth quartile was 1.00–1.90 mg/dL. All statistical analyses were performed using SPSS version 17.0 for Windows (SPSS, Chicago, IL, USA). A $P$-value less than 0.05 was considered to indicate statistical significance.

Results
Patient demographics and laboratory data
This study included 33 DN and 225 non-DN patients with T1DM. The general and biochemical characteristics of the DN patients (16 males and 17 females) and non-DN patients (111 males and 114 females) are shown in Table 1. The prevalence of patients with diabetic nephropathy, without nephropathy, were 12.8% ($n = 33$), 87.2% ($n = 225$), respectively. Of 33 patients with diabetic nephropathy, 20 were with microalbuminuria and 13 were with macroalbuminuria. The median age was 54 years (34.50–66 years) in DN subjects and 49 years (31–60 years) in non-DN patients. Median bilirubin concentrations were 0.56 mg/dL (0.43–0.68 mg/dL) in the DN group and 0.70 mg/dL (0.58–0.89 mg/dL) in non-DN patients ($P < 0.01$), a significant difference. 24 h urinary microalbumin level was significantly higher in the DN group than the non-DN group (196.67 mg vs. 7.01 mg, $P < 0.01$) and the same trend was observed with the duration of diabetes, SBP, WHR, uric acid, creatinine levels ($P < 0.01$), whereas albumin, haemoglobin, and total GFR levels were lower in the DN group ($P < 0.05$).

Bilirubin concentrations in serum are independently and negatively associated with 24 h urinary microalbumin
Previous studies have shown that microalbuminuria can indicate the progression of DN in patients with T1DM [14, 15]. To investigate the risk factors associated with microalbuminuria, we performed Spearman’s correlation analysis between bilirubin concentrations and other biochemical characteristics. As expected, 24 h urinary microalbumin was negatively correlated with bilirubin concentrations ($r = -0.13, P < 0.05$), HDL-C ($r = -0.16, P = 0.01$), and total GFR ($r = -0.20, P < 0.001$) and positively correlated with duration of diabetes, BMI, SBP, WHR, CRP, uric acid, Cr, TG levels (all $P < 0.001$). These results are presented in Table 2. To determine whether bilirubin concentrations were independently correlated with 24 h urinary microalbumin, we performed multiple stepwise regression analysis. Cr ($\beta = 0.45, P < 0.001$), total bilirubin ($\beta = -0.19, P < 0.001$), SBP ($\beta = 0.15, P = 0.005$) levels were independently related to 24 h urinary microalbumin. This result is shown in Table 3.

Bilirubin concentrations in serum are independently associated with diabetic nephropathy
The significant 24 h urinary microalbumin-related findings prompted a binary logistic regression analysis to identify factors that were independently correlated with DN. When DN was set as the dependent variable and bilirubin concentrations, duration of diabetes, BMI, SBP, DBP, WHR, HbA1c, GA, CRP, Fasting C peptide, FGP, CRP, HDL-C, TG, TC, LDL-C, Albumin, Haemoglobin were set as covariates, bilirubin concentrations were identified as an independent protective factor for DN (OR = 0.05, 95% confidence interval [CI]: 0.01–0.66), while duration of diabetes (OR = 1.15, 95% CI: 1.07–1.22) and SBP (OR = 1.05, 95% CI: 1.02–1.08) were identified as independent risk factors for DN (all $P < 0.01$, Table 4).
Bilirubin concentrations in serum are negatively associated with the prevalence of DN in patients with T1DM

The prevalence of DN in patients with T1DM for each quartile of bilirubin concentrations is illustrated in Table 5. The first quartile group had the highest prevalence of DN (21.90%) among the four quartiles. From the second to the fourth quartile group, the prevalence of DN decreased from 17.10% to 2.00% as bilirubin concentrations increased. ORs from the third to fourth quartile were statistically significant compared to the first quartile using logistic regression analyses (all \( P < 0.05 \)), but not in the second quartile (\( P = 0.48 \)). After adjusting for duration of diabetes, BMI, TG, Albumin, Haemoglobin and WHR, the ORs for the prevalence of DN decreased significantly with the quartiles of bilirubin concentrations (\( P \) for the trend = \( 0.04 \)). Therefore, we deduced that high bilirubin concentrations in serum (0.80–1.90 mg/dL) may be a protective factor for the development of DN in Chinese patients with T1DM.

**Discussion**

Several previous studies have reported that high bilirubin concentrations in serum are negatively associated with the...
incidence of hypertension [16] and T2DM [17]. In addition, a recent study demonstrated that bilirubin concentrations were significantly negatively correlated with log (UAE) in patients with type 1 diabetes [18]. We performed a cross-sectional study to examine whether bilirubin concentrations in serum are associated with the prevalence of DN in patients with T1DM. We found that bilirubin concentrations were independently and negatively associated with albuminuria and the prevalence of DN in patients with T1DM. We deduced a range of bilirubin concentrations (0.80–1.90 mg/dL) that may serve as protective factors for the development of DN in Chinese patients with T1DM and likely represent a pharmacologically attractive target for slowing the development of DN.

We found that bilirubin concentrations and HbA1c level were not relevant \((r = 0.06, P = 0.334)\) in 258 patients with type 1 diabetes mellitus (33 patients with diabetic nephropathy, 225 patients without diabetic nephropathy). However, a study from Choi SW et al. evaluated the relationship between HbA1c and bilirubin in 690 patients with type 2 diabetes mellitus and found that bilirubin concentrations were negatively associated with HbA1c, independent of gender, age, and other confounding factors [19]. Because several studies have confirmed that high bilirubin concentrations are inversely associated with insulin resistance [20–22], T1DM is possibly due to β-cell destruction and leads to absolute insulin deficiency rather than insulin resistance. Furthermore, results from Mianowska B et al. showed that serum total bilirubin concentration is an independent factor inversely associated with HbA1c level in young patients with type 1 diabetes (type 1 diabetes duration of more than 12 months, age from 2 to 18 years) [23], which means that in T1DM, the results are controversial. Thus, we infer that the unsynchronized results of relationship between serum bilirubin concentration and HbA1c in patients with diabetes mellitus were attributed to the age, duration of diabetes mellitus and glycemic control. Therefore, we admitted that further study should be designed to investigate the

### Table 2

| Independent variable | 24 h urinary microalbumin (unadjusted) | B | Wald | P-value | Exp (B) | 95% CI |
|----------------------|----------------------------------------|---|------|---------|---------|-------|
| Duration of diabetes | 0.18                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| BMI                  | 0.18                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| SBP                  | 0.30                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| DBP                  | 0.08                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| WHR                  | 0.30                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| FPG                  | 0.06                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| 2hPG                 | –0.10                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| HbA1c                | 0.02                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| GA                   | –0.05                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| CRP                  | 0.19                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| Uric acid            | 0.23                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| Cr                   | 0.20                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| Fasting C peptide    | 0.01                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| 30-min postprandial venous C peptide | –0.02 | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| 120-min postprandial venous C peptide | –0.02 | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| TC                   | –0.01                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| TG                   | 0.24                                   | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| HDL-C                | –0.16                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| LDL-C                | –0.01                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| Albumin              | –0.07                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| Haemoglobin          | –0.03                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| Total bilirubin      | –0.13                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |
| Total GFR            | –0.20                                  | 17.38 | <0.001** | 1.87 | 0.07–1.22 |

### Table 3

| Independent variable | Standardised β | t | P-value |
|----------------------|----------------|---|---------|
| Cr                   | 0.45           | 8.34 | <0.001** |
| Total bilirubin      | –0.19          | –3.65 | <0.001** |
| SBP                  | 0.15           | 2.85 | <0.001** |

The original model included the duration of diabetes, BMI, SBP, WHR, Cr, uric acid, CRP, TG, total bilirubin, GFR

### Table 4

| Independent risk factors associated with the diabetic nephropathy in patients with type 1 diabetes | B | Wald | P-value | Exp (B) | 95% CI |
|-------------------------------------------------------------------------------------------------|---|------|---------|---------|-------|
| Duration of diabetes (years) | 0.14 | 17.38 | <0.001** | 1.15 | 1.07–1.22 |
| SBP (mmHg) | 0.05 | 8.93 | <0.001** | 1.05 | 1.02–1.08 |
| Total bilirubin (mg/dL) | –3.01 | 5.17 | <0.001** | 0.05 | 0.01–0.66 |

Variables of the original model included duration of diabetes, BMI, SBP, DBP, WHR, HbA1c, GA, CRP, Fasting C peptide, FPG, CRP, HDL-C, TG, TC, LDL-C, Albumin, Haemoglobin and total bilirubin. Only significant variables are presented

**Abbreviations:** BMI body mass index, SBP systolic blood pressure, WHR waist-to-hip ratio, FPG fasting plasma glucose, HbA1c glycated haemoglobin A1c, GA glycated albumin, CRP C-reactive protein, TC total cholesterol, TG triglycerides, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, CRP C-reactive protein, HDL-C high-density lipoprotein cholesterol, TG triglycerides, 95% CI 95% confidence interval

*P < 0.01
Bilirubin in serum may potentially serve as protective factors against the development of DN through their antioxidative properties.

This study had several limitations. First, only total bilirubin concentrations in serum were measured, without distinguishing between conjugated versus unconjugated bilirubin. Second, this was a single-center, cross-sectional study, which prevented us from drawing conclusions regarding the temporal nature of the observed association between bilirubin concentrations and the prevalence of DN in Chinese patients with T1DM. Third, the study population consisted of Chinese males and females and whether our findings apply to other ethnic groups remains unclear.

### Conclusion

In conclusion, our study evaluated the association between total bilirubin and albuminuria, the prevalence of DN in Chinese patients with T1DM. Our data indicate that high bilirubin concentrations in serum may be protective factors for the development of DN.

### Abbreviations

- DN: Diabetic nephropathy
- GAD: Glutamate decarboxylase
- GFR: Glomerular filtration rate
- HO: Heine oxygenase
- IHD: Ischemic heart disease
- T1DM: Type 1 diabetes mellitus

### Acknowledgements

The authors are grateful for support from the Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People’s Hospital. We are also extremely appreciative of all of the participants for their dedication in data collection and laboratory measurements.

### Funding

This work was supported by a grant the National Natural Sciences Foundation of China (81200564) to Junfeng Han.

### Availability of data and materials

The dataset supporting the conclusions of this article is available from the corresponding author on reasonable request.

### Authors’ contributions

JFH and WPJ participated in the design of the study. LZ and HBC performed the statistical analysis. XL is involved in drafting the manuscript. KFG, HY, JZ, ML, QL, LXL, JY, FL, YQB conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.
Competition of interest
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
This study was performed according to the principles of the Declaration of Helsinki and was pre-approved by the Ethics Committee of Shanghai Jiaotong University Affiliated Sixth People’s Hospital, and all subjects provided written informed consent prior to participating.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 27 October 2015 Accepted: 24 March 2017
Published online: 31 March 2017

References
1. Raine AE. The rising tide of diabetic nephropathy—what is your warning before the flood? Nephrol Dial Transplant. 1995;10:460–1.
2. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–12.
3. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Armes BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–6.
4. Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Eaton JW, Balla G. Heme oxygenase and ferritin in vascular endothelial cell injury. Mol Nutr Food Res. 2005;49:1030–43.
5. Vitek L, Jirsa M, Brodanová M, Kaláb M, Marecek Z, Danžík V, Novotný L, Kotal P. Gilbert syndrome and ischemic heart disease: a protective effect of elevated bilirubin levels. Atherosclerosis. 2002;160:449–56.
6. Nath KA, d’Uschio LV, Juncos JP, Croatt AJ, Mannriquez MC, Pittcock ST, Katusic ZS. An analysis of the DOCA-salt model of hypertension in HO-1−/− mice and the Gunn rat. Am J Physiol Heart Circ Physiol. 2007;293:H333–42.
7. Peyton KJ, Shebib AR, Azam MA, Liu XM, Tulis DA, Durante W. Bilirubin inhibits neointima formation and vascular smooth muscle cell proliferation and migration. Front Pharmacol. 2012;3:48.
8. Han SS, Na KY, Chae DW, Kim YS, Kim S, Chon HJ. High Serum Bilirubin is Associated with the Reduced Risk of Diabetes Mellitus and Diabetic Nephropathy. Tohoku J Exp Med. 2010;221:133–40.
9. Toya K, Babazono T, Hanai K, Uchigata Y. Association of serum bilirubin levels with development and progression of albuminuria, and decline in estimated glomerular filtration rate in patients with type 2 diabetes mellitus. J Diabetes Investig. 2014;5:285–9.
10. Jung CH, Lee MJ, Kang YM, Hwang JY, Jang JE, Leem J, Park JY, Kim HK, Lee WJ. Higher serum bilirubin level as a protective factor for the development of diabetes in healthy Korean men: a 4-year retrospective longitudinal study. Metabolism. 2014;63:87–93.
11. Okada H, Fukui M, Tanaka M, Matsumoto S, Kobayashi K, Iwase H, Tomiyasu K, Nakano K, Hasegawa G, Nakamura N. Low serum bilirubin concentration is a novel risk factor for the development of albuminuria in patients with type 2 diabetes. Metabolism. 2014;63:409–14.
12. KDOQI. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–13.
13. Gates GF. Split renal function testing using Tc-99 m DTPA. A rapid technique for determining differential glomerular filtration. Clin Nucl Med. 1983;4:197–8.
14. Vilbert GC, Hill RD, Jarrett RJ, Argypoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982;1:1430–2.
15. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311:89–93.
16. Chin HJ, Song YR, Kim HS, Park M, Yoon HJ, Na KY, Kim Y, Chae DW, Kim S. The bilirubin level is negatively correlated with the incidence of hypertension in normotensive Korean population. J Korean Med Sci. 2009;24(Suppl S50):6.
17. Ohnaka K, Kono S, Imoguchi T, Yin G, Morita M, Adachi M, Kawate H, Takeyama R. Inverse associations of serum bilirubin with high sensitivity C-reactive protein, glycolated hemoglobin, and prevalence of type 2 diabetes in middle-aged and elderly Japanese men and women. Diabetes Res Clin Pract. 2010;88:103–10.
18. Nishimura T, Tanaka M, Sekioka R, Itoh H. Serum bilirubin concentration is associated with eGFR and urinary albumin excretion in patients with type 1 diabetes mellitus. J Diabetes Complications. 2015;29:1223–7.
19. Choi SW, Lee YH, Kwak SS, Song HR, Ahn HR, Ihwee JA, Choi IS, Shin MH. Association between Total Bilirubin and Hemoglobin A1c in Korean Type 2 Diabetic Patients. J Korean Med Sci. 2012;27:1106.
20. Song YS, Koo BK, Cho NH, Moon MK. Effect of Low Serum Total Bilirubin levels in serum (SD=32 mg/dL) on Risk of Coronary Artery Disease in Patients With Metabolic Syndrome. Am J Cardiol. 2014;114:1965–70.
21. Kwak MS, Kim O, Chung GE, Kang SL, Park MJ, Kim YJ, Yoon JH, Lee HS. Serum bilirubin levels are inversely associated with nonalcoholic fatty liver disease. Clin Mol Hepatol. 2012;18:383.
22. Lin LY, Kuo HK, Hwang JJ, Lai LP, Chiang FT, Tseng CD, Lin JL. Serum bilirubin is inversely associated with insulin resistance and metabolic syndrome among children and adolescents. Atherosclerosis. 2009;203:563–8.
23. Mianowska B, Kaminski A, Fendler W, Szadkowska A, Mlynarski W, Bilirubin is an independent factor inversely associated with glycosated hemoglobin level in pediatric patients with type 1 diabetes. Pediatr Diabetes. 2014;15:389–93.
24. Adin CA, Cropper BK, Agarwal A. Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol. 2005;288:F778–84.
25. Rodella L, Lamon BD, Rezani R, Sangras B, Goodman AL, Falk J, Abraham NG. Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type 1 diabetes. Free Radic Biol Med. 2006;40:2198–205.
26. Dekker D, Doresteijn MJ, Pijnenburg M, Heemskerk S, Rasing-Hoogveld A, Burger DM, Wagener FA, Smits P. The Bilirubin-Increasing Drug Atazanavir Improves Endothelial Function in Patients With Type 2 Diabetes Mellitus. Antioxid Redox Signal. 2011;15:558–63.
27. Marfella R, Verrazzo G, Acampora R, La Marca C, Giunta R, Lucarelli C, Paolisso G, Ceriello A, Guigliano D. Glutathione reverses systemic hemodynamic changes induced by acute hyperglycemia in healthy subjects. Am J Physiol. 1995;268:E161–77.
28. Curcio F, Ceriello A. Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications. In Vitro Cell Dev Biol. 1992;28A:787–90.