Influence of Agronomic Bio-fortification of Zinc and Iron on Their Density in Maize Grain and Nutrients Uptake

Nikhil kumar and SR Salakinkop*

Main Agriculture Research Station, University of Agricultural Sciences, India

Submission: November 30, 2017; Published: December 11, 2017

*Corresponding author: SR Salakinkop, Main Agriculture Research Station, University of Agricultural Sciences, Dharwad - 580 005, Karnataka, India, Email: salakinkopsr@uasd.in

Abstract

A field experiment on agronomic bio-fortification of zinc and iron micronutrients in maize was carried out during kharif season of 2015 at Agricultural Research Station, Bail Hongal. The experiment laid out in randomized block design with factorial concept with three replications consisted of 16 treatment combinations involving seed treatment (no seed treatment and seed treatment with Zn and Fe each @ 1%), soil application of Zn and Fe (no soil application, soil application of recommended ZnSO\(_4\) and FeSO\(_4\) each @ 25 kg ha\(^{-1}\) and FYM enriched ZnSO\(_4\) and FeSO\(_4\) application each @ 15 kg ha\(^{-1}\) and FYM enriched ZnSO\(_4\) and FeSO\(_4\) application each @ 25 kg ha\(^{-1}\)) and foliar application of Zn and Fe at 45 DAS (no foliar and foliar spray of ZnSO\(_4\) and FeSO\(_4\) each @ 0.5%). Significantly higher Zn (47 mg kg\(^{-1}\)) and Fe (75.2 mg kg\(^{-1}\)) density in maize grain was recorded with soil application of FYM enriched ZnSO\(_4\) and FeSO\(_4\) each @ 25 kg ha\(^{-1}\) than control. And it was on par with the soil application of FYM enriched ZnSO\(_4\) and FeSO\(_4\) each @ 15 kg ha\(^{-1}\).

Similarly higher foliar application of ZnSO\(_4\) and FeSO\(_4\) each @ 0.5 per cent accounted significantly higher zinc and iron content in grain (44.82 and 70.93 mg kg\(^{-1}\) respectively). Combined application of Zn and Fe through soil application of FYM enriched ZnSO\(_4\) and FeSO\(_4\) each @ 15 kg ha\(^{-1}\) and foliar application without seed treatment (T\(_S\) S F\(_S\)) recorded higher Zn concentration in grain (48.57 g kg\(^{-1}\)) whereas, combined application of Zn and Fe through soil application of FYM enriched ZnSO\(_4\) and FeSO\(_4\) each @ 25 kg ha\(^{-1}\) and foliar application without seed treatment (T\(_S\) S F\(_F\)) recorded higher Fe concentration in grain (75.81 g kg\(^{-1}\)) compared to treatment consisting of no seed, soil and foliar spray.

Introduction

Maize (Zea mays L.) is the third most important cereal crop next to wheat and rice in the world as well as in India. In India maize is cultivated on 9.4 m ha with production of 2.3 m tonnes and productivity of 2.55 tonnes ha\(^{-1}\). In Karnataka it is being grown on an area of 1.36 m ha with production of 4.4 m tonnes and the productivity of 3.5 t ha\(^{-1}\) [1]. About half of the world’s population suffers from micronutrient malnutrition, including iron, zinc and iodine which are mainly associated with low dietary intake of micronutrients in diets with less diversity of food [2,3]. Recent reports indicate that nearly 500,000 children under 5 years of age die annually because of Zn and Fe deficiencies [4]. Zinc deficiency in humans is widely noticed since zinc is an essential micronutrient for every living organism. In humans, zinc deficiency can lead to stunted growth, poor immune system, and in children under five, impaired physical and neural development, leading to decreased brain functions that will remain up to adulthood. Iron deficiency is the most common cause of anemia globally. According to a recent report based on the WHO database, anemia affects nearly 1.6 billion people, and pre-school children and pregnant women are under great risk of Fe deficiency anemia [5].

Materials and Methods

The field experiment was conducted at Agricultural Research Station (ARS), Bailhongal, Belagavi District, and Karnataka during kharif season of 2015 which is situated in Northern Transitional Zone of Karnataka and located between 150.81’ North latitude and 740.86’ East longitudes with an altitude of 546 m above mean sea level. The soil of the experimental site is medium black in nature and the texture of the soil is clayey, belonging to the order vertisols. Composite soil sample were drawn from 0 to 15 cm depth from the experimental site before sowing and was analysed for physical and chemical properties. Clayey in texture (10.65% sand, 30.08% silt, 59.12% clay), pH 7.3, E.C 0.34, low in organic carbon (4.8 g kg\(^{-1}\)), available nitrogen (218.4 kg ha\(^{-1}\)), available phosphorus (36.4 kg ha\(^{-1}\)) available potassium (347.2 kg ha\(^{-1}\)) available zinc (0.76 ppm) and available iron (4.19 ppm). Recommended dose of fertilizer (RDF-100:50:25 N: P\(_2\)O\(_5\): K\(_2\)O kg ha\(^{-1}\) + 7.5 t ha\(^{-1}\) FYM) was applied to soil before sowing. The experiment was laid out in Randomized
Complete Block Design (factorial concept) with 16 treatment combinations. Treatment combinations involving seed treatment, no seed treatment (T1) and seed treatment with Zn and Fe each @ 1% (T2) soil application of Zn and Fe i.e. no soil application (S1), soil application of recommended ZnSO4 and FeSO4 each @ 25 kg ha\(^{-1}\) (S2), FYM enriched ZnSO4 and FeSO4 application each @ 15 kg ha\(^{-1}\) (S3) and FYM enriched ZnSO4 and FeSO4 application each @ 25 kg ha\(^{-1}\) (S4) and foliar application of Zn and Fe i.e. no foliar (F1) and foliar spray of ZnSO4 and FeSO4 each @ 0.5% (F2) at 45 DAS (Table 1).

Table 1: Zinc and iron content (g kg\(^{-1}\)) in maize after harvest of the crop as influenced by seed, soil and foliar application of zinc and iron.

Factor I : Seed treatment	Zinc (g kg\(^{-1}\))	Iron (g kg\(^{-1}\))	Grain yield (q ha\(^{-1}\))
T1: No seed treatment with Zn and Fe	42.64a	68.56a	69.70a
T2: Seed treatment with Zn and Fe	44.32a	68.87a	71.17a
SEm ±	0.77	0.29	1.55

Factor II : Soil application	Zinc (g kg\(^{-1}\))	Iron (g kg\(^{-1}\))	Grain yield (q ha\(^{-1}\))
S1: Control (No application of Zn and Fe)	38.33a	57.34a	61.11a
S2: Soil application of recommended ZnSO4 and FeSO4 each @ 25 kg ha\(^{-1}\)	42.31ab	68.11b	69.42ab
S3: FYM enriched ZnSO4 and FeSO4 application each @ 15 kg ha\(^{-1}\)	46.29ab	74.27b	75.02ab
S4: FYM enriched ZnSO4 and FeSO4 application each @ 25 kg ha\(^{-1}\)	47.00ab	75.15b	76.18b
SEm ±	1.09	0.41	2.19

Factor III : Foliar spray	Zinc (g kg\(^{-1}\))	Iron (g kg\(^{-1}\))	Grain yield (q ha\(^{-1}\))
F1: No foliar application of Zn and Fe	42.14a	66.51a	68.03a
F2: Foliar application of ZnSO4 and FeSO4 each @ 0.5%	44.82a	70.93a	72.83a
SEm ±	0.77	0.29	1.55

Interaction

T1S2F1	36.59a	55.18a	59.72a
T1S2F2	37.97a	59.02a	61.11a
T1S3F1	40.27a	63.16a	66.25a
T1S3F2	43.17ab	72.74b	69.39ab
T2S3F1	41.63ab	72.47b	71.53ab
T2S3F2	48.57a	75.54a	77.64a
T1S4F1	45.47a	74.57a	73.61a
T1S4F2	47.43a	75.81a	78.36a
T2S4F1	38.23a	54.76a	60.62a
T2S4F2	40.53b	60.40a	62.97cd
T1S5F1	41.83ab	63.91a	66.36a
T1S5F2	43.97bc	72.61a	75.69bc
T2S5F1	46.47ab	73.32a	72.44ab
T2S5F2	48.48a	75.75a	78.47a
T1S6F1	46.67ab	74.69a	73.73ab
T1S6F2	48.42a	75.53a	79.03a
SEm ±	2.18	0.82	4.39

Means followed by same letters in the column do not differ significantly by DMRT (p=0.05)

Results and Discussion

Zinc and iron content in grain after harvest of crop increased significantly due to soil application of different levels of Zn and Fe. There was increase in grain concentration of Zn and Fe from 38.83 to 47 and 57.59 to 75.23 mg kg\(^{-1}\) respectively. Application of FYM enriched ZnSO4 and FeSO4 each @ 25 kg ha\(^{-1}\) (47 g kg\(^{-1}\)), FYM enriched ZnSO4 and FeSO4 each @ 15 kg ha\(^{-1}\) (46.29 g kg\(^{-1}\)) and application recommended ZnSO4 and FeSO4 each @ 25 kg ha\(^{-1}\) (42.31 g kg\(^{-1}\)) increased the zinc content in grain by 18.4, 17.1 and 9.4 per cent respectively over no application of Zn and Fe (38.33 g kg\(^{-1}\)). The higher Zn uptake by maize crop was observed with soil application of FYM enriched ZnSO4 and FeSO4 each @ 25 kg

How to cite this article: Nikhil K, SR Salakinkop. Influence of Agronomic Bio-fortification of Zinc and Iron on Their Density in Maize Grain and Nutrients Uptake. Int J Environ Sci Nat Res. 2017; 7(2): 555708. DOI: 10.19080/IJESNR.2017.07.555708.
The results were in accordance with the finding [8]. The reason over control (57.34 g kg⁻¹) of iron content in grain by 23.6, 22.7 and 15.8 per cent respectively over no foliar application of Zn and Fe each @ 15 kg ha⁻¹. Similarly application of FYM enriched ZnSO₄ and FeSO₄ each @25 kg ha⁻¹ (75.15 g kg⁻¹) and straight application of recommended ZnSO₄ and FeSO₄ each @25 kg ha⁻¹ (68.11 g kg⁻¹) increased the iron content in grain by 23.6, 22.7 and 15.8 per cent respectively over control (57.34 g kg⁻¹) and they were on par with each other. The results were in accordance with the finding [8]. The reason could be enrichment of FYM with zinc and iron which regulates its supply to the crop by slowly releasing of the nutrients into soil solution would have facilitated the higher nutrient uptake. And further enrichment of nutrients with organics prevents them from leaching and other losses [9]. The higher Fe uptake by maize crop was observed with soil application of FYM enriched ZnSO₄ and FeSO₄ each @25 kg ha⁻¹ (1098 g ha⁻¹) over control (578.29 g ha⁻¹). And it was on par with the application of FYM enriched Zn and Fe each @15 kg ha⁻¹. Foliar application of ZnSO₄ and FeSO₄ each @0.5 per cent accounted significantly higher zinc and iron content in grain (44.82 and 70.93 mg kg⁻¹ respectively) over no foliar application of Zn and Fe (42.14 and 66.51 mg kg⁻¹ respectively). Foliar application of ZnSO₄ and FeSO₄ each @0.5 per cent recorded significantly higher Zn and Fe uptake by maize crop (840.25 and 947.96 g ha⁻¹) over no foliar application (773.66 and 862.21 g ha⁻¹). Similar observations were recorded [10] (Table 2).

Table 2: Nitrogen, phosphorus and potassium uptake by maize at harvest as influenced by seed, soil and foliar application of zinc and iron.

Factor	N (kg ha⁻¹)	P (kg ha⁻¹)	K (kg ha⁻¹)	Zn (g ha⁻¹)	Fe (g ha⁻¹)
I: Seed treatment					
T₁, No seed treatment with Zn and Fe	168.09²	35.09	152.62	795.21	889.56
T₂: Seed treatment with Zn and Fe	172.56	35.12	153.47	818.69	920.00
S. Em ±	2.37	0.46	1.12	11.97	12.27
II: Soil application					
S₁: Control (No application of Zn and Fe)	138.52	34.36	139.08	655.35	578.29
S₂: Soil application of recommended ZnSO₄ and FeSO₄ each @ 25 kg ha⁻¹	163.28	35.75	148.98	786.46	898.70
S₃: FYM enriched ZnSO₄ and FeSO₄ application each @ 15 kg ha⁻¹	187.87	35.52	161.39	891.35	1043.27
S₄: FYM enriched ZnSO₄ and FeSO₄ application each @ 25 kg ha⁻¹	191.61	34.79	162.74	894.64	1098.86
S. Em ±	3.36	0.66	1.58	16.93	17.36
III: Foliar spray					
F₁: No foliar application of Zn and Fe	164.89	35.07	151.57	773.60	862.21
F₂: Foliar application of ZnSO₄ and FeSO₄ each @ 0.5 %	175.75	35.14	154.53	840.25	947.36
S. Em ±	2.37	0.46	1.12	11.97	12.27

Interaction

	N (kg ha⁻¹)	P (kg ha⁻¹)	K (kg ha⁻¹)	Zn (g ha⁻¹)	Fe (g ha⁻¹)
T₁S₂F₁	136.07	34.46	137.62	607.05	548.39
T₁S₂F₂	140.63	34.60	139.32	697.85	593.19
T₁S₂F₃	146.23	35.55	147.10	724.02	811.45
T₁S₂F₄	175.53	35.73	151.82	823.74	941.25
T₁S₂F₅	174.08	36.05	158.91	829.83	999.27
T₁S₂F₆	192.33	35.37	160.78	916.76	1072.17
T₁S₂F₇	188.98	34.65	162.28	882.08	1073.88
T₁S₂F₈	190.83	34.32	163.17	911.75	1119.88
T₁S₂F₉	138.71	33.46	139.93	615.22	549.26
T₁S₂F₁₀	138.67	34.93	140.44	701.28	622.33
T₁S₂F₁₁	153.04	35.75	142.18	720.70	854.39
T₁S₂F₁₂	178.31	35.99	154.81	877.37	1007.70
T₁S₂F₁₃	188.44	35.81	162.93	911.87	1025.17
T₁S₂F₁₄	196.65	34.86	162.94	924.73	1116.94
Zn and Fe were directly absorbed by leaves and finally accumulated into grain [11]. Foliar application of ZnSO₄ and FeSO₄ each @0.5 per cent at 45 DAS facilitates much better translocation of applied nutrients into the developing grains [12]. Combined application of Zn and Fe through soil, seed and foliar application recorded significantly higher Zn and Fe density in the maize grain. There was increase in grain concentration of Zn and Fe from 36.59 to 48.57 and 55.18 to 75.81 mg kg⁻¹ respectively. Combined application of Zn and Fe through soil application of FYM enriched ZnSO₄ and FeSO₄ each @15 kg ha⁻¹ and foliar application but without seed treatment (T1 S2 F) increased the Zn concentration in grain (48.57 g kg⁻¹) by 24.3 per cent over devoid of seed, soil and foliar application of Zn and Fe (36.59 g kg⁻¹). Similarly, combined application of Zn and Fe through soil application of FYM enriched ZnSO₄ and FeSO₄ each @25 kg ha⁻¹ and foliar application but without seed treatment (T S2 F₂) increased the Fe concentration in grain (75.81 g kg⁻¹) by 27.2 per cent over no seed, soil and foliar application of Zn and Fe (55.18 g kg⁻¹). Among the interactions treatment combination involving seed treatment, soil application of FYM enriched ZnSO₄ and FeSO₄ each @15 kg ha⁻¹ and foliar application (T S F) recorded higher uptake zinc (924.73 g ha⁻¹) and iron (1116.94 g ha⁻¹) compared to devoid of seed, soil and foliar application.

The application of FYM enriched ZnSO₄ and FeSO₄ each @25 kg ha⁻¹ recorded significantly higher uptake of N and K by maize crop at harvest (191.61 and 162.7 kg ha⁻¹) over no application of Zn and Fe (138.5 and 139.0 kg ha⁻¹). Foliar application of ZnSO₄ and FeSO₄ each @0.5 per cent accounted higher nitrogen and potassium uptake by maize (175.7 and 154.5 kg ha⁻¹ respectively) over no foliar application (164.8 and 151.5 kg ha⁻¹ respectively). Among the interactions treatment combination involving seed treatment, soil application of FYM enriched ZnSO₄ and FeSO₄ each @15 kg ha⁻¹ and foliar application (T S F₂) recorded higher uptake of nitrogen (196.6 kg ha⁻¹) and potassium (162.9 kg ha⁻¹). This could be due to synergistic effect between Zn and Fe with other nutrients. The similar observation was earlier recorded [1,13].

The soil application of FYM enriched ZnSO₄ and FeSO₄ each @25 kg ha⁻¹ recorded significantly lower available N and K in soil after harvest (202.9 and 291.6 kg ha⁻¹) over no application of Zn and Fe (211.5 and 313.1 kg ha⁻¹). Control recorded significantly higher available nitrogen and potassium in soil after harvest of maize as result of lower uptake of these nutrients in plants. The enrichment of FYM with Zn and Fe caused utilization of nutrients mainly due to its beneficial effect in mobilizing the native nutrients to increase their availability to crop uptake this could be the reason for less available N and K in the soil after harvest. Application of recommended ZnSO₄ and FeSO₄ each @25 kg ha⁻¹ to the soil recorded significantly higher available Zn and Fe (1.12 and 7.75 ppm respectively) over no application of Zn and Fe (0.61 and 4.40 ppm respectively). Similar results were also observed by [3]. Treatment combination involving seed treatment, soil application of FYM enriched Zn and Fe and foliar application recorded significantly lower available nitrogen (T S F₂): 202.9 kg ha⁻¹) and potassium (T S F₂: 289.6 kg ha⁻¹) compared to devoid of seed, soil and foliar application (212.7 kg ha⁻¹ and 314.8 kg ha⁻¹ respectively). Availability of Zn and Fe in soil after harvest was the highest in combination involving seed treatment and application of recommended ZnSO₄ and FeSO₄ each @25 kg ha⁻¹ without foliar application (T S F₂): 1.16 and 7.85 ppm) compared to no seed soil and foliar application (0.6 and 4.41 ppm). Similar results found in maize.

References

1. Anonymous (2014) Agricultural Statistics at glance, Directorate of economics and statistics. Department of Agriculture and Co-operation, Ministry of Agriculture, Govt. Of India, India.
2. Brown KH, Wueehler SE, Peerson JM (2001) The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull 22(1): 113-125.
3. Hotz C, Mc Clafferty B (2007) From Harvest to Health: Challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food Nutr Bull 28(2): 271-279.
4. Black RE, Lindsay HA, Bhutta ZA, Caulfield LE, De Onnis M et al. (2008) Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 371: 243-260.
5. Mc Leon E, Cogswell M, Egli I, Wojdyla D, de Benois B (2009) Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System. Public Health Nutr 12(4): 444-454.
6. Anuradha P, Asole PB, Ganesh G, Ajet P, Shaik MS (2011) Influence of zinc and iron application on kharif sorghum. Bioinflet 11 (2): 572-574.
7. Rathod DD, Meena MC, Patel KP (2012) Effect of Different Zn-Enriched Organic on Yields and Micronutrient uptake under Wheat-Maize (Fodder) Cropping Sequence in Semi-Arid Region of Gujarat. Indian J Dryland Agric Res Dev 27(1): 37-42.
8. Basavaraj PK, Dasog R, Vijayakumar, Sarangamath PK (1995) Effect of zinc and iron application on maize yield in an irrigation vertisol. Karnataka J Agric Sci 8(1): 34-39.
9. Sharma A, Nakul HT, Jegleri BR, Ashok Surwenshi (2001) Effect of micronutrients on growth, yield and yield components in pigeonpea (Cajanus Cajan L.Millsp.). Res J Agric Sci 12(2): 142-144.
10. Dhaliwal SS, Sadana US, Khurana MPS, Dhandli HS, Manchand JS (2010) Enrichment of rice grains with Zinc and Iron through ferti-fortification. Indian J Fertilizer 6(7): 28-35.
11. Slaton NA, Charles E, Wilson J, Ntamutungino S, Richard J, et al. (2001) Evaluation of zinc seed treatments for rice. Agron J 93(1): 152-157.
12. Mufit K, Zafer A, Ogu O, calmak I (2005) The effect of soil and foliar application of Zn on grain Zn concentration of wheat and maize. Archives Agron Soil Sci 53(3): 305-313.
13. Pooniya V, Shivay YS (2011) Effect of green manuring and zinc fertilization on productivity and nutrient uptake in Basmati rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian J Agron 56(1):28-34.