Anti-p200 Pemphigoid: A Systematic Review

Khalaf Kridin and A. Razzaque Ahmed

1 Department of Dermatology, Rambam Health Care Campus, Haifa, Israel, 2 Department of Dermatology, Center for Blistering Diseases, Tufts University School of Medicine, Boston, MA, United States

The many clinical aspects of anti-p200 pemphigoid are not well-characterized. We aimed to analyze and correlate known existing data on the epidemiological, clinical, histological, and immunological features of anti-p200 pemphigoid. We performed a review using Medline, Embase, and Web of Science databases (1900–2018). Case reports and series of patients were included. A total of 68 eligible studies that comprised 113 anti-p200 pemphigoid patients were included in the qualitative analysis, where there was a mean age of onset of 65.5 years. All patients presented with bullae/vesicles, and 54.3% had urticarial plaques. A similarity to bullous pemphigoid was reported in 66.1% of cases, but palmoplantar (51.4%), cephalic (40.3%), and mucosal (38.5%) involvement, besides frequent development of scars/milia (15.7%), were reported. Autoantibodies against recombinant laminin γ1 were detected in the sera of 73.1% of patients. Psoriasis was present in 28.3% of anti-p200 pemphigoid patients, particularly among Japanese patients (56.4%). The incidence of pustular psoriasis in this subgroup, was significantly greater than in the normal population. In conclusion, the diagnosis of anti-p200 pemphigoid may be suspected when a subepidermal autoimmune blistering disease develops in a younger age group, along with significant acral and cephalic distribution and mucosal involvement.

Keywords: anti-p200 pemphigoid, anti-laminin gamma-1 pemphigoid, IIF of salt-split skin, immunoblotting, ELISA, BMZ autoantibodies, mucosal disease, psoriasis

INTRODUCTION

Anti-p200 pemphigoid is a rare subepidermal autoimmune bullous disease (AIBD) initially described in 1996 (1, 2). This novel disease, presumed to be a subset of pemphigoid, was characterized by autoantibodies targeting a 200-kDa protein localized within the lower lamina lucida of the basement membrane zone (BMZ). Their sera bound to the dermal side of salt-split skin by indirect immunofluorescence (IIF) microscopy (3). Subsequent studies demonstrated that sera from 90% of anti-p200 pemphigoid patients recognized laminin γ1, which C-terminus was identified as an immunodominant region and utilized for immunoblotting and ELISA for diagnosis (4, 5). In outstanding research by German and Japanese investigators, using human foreskin and various mouse strains, the investigators clearly demonstrated that autoantibodies in anti-p200 pemphigoid sera are pathogenic, but their pathogenicity is not entirely mediated by autoantibodies against laminin γ1. The specific or precise role for laminin γ1 in pathogenesis requires further study, as ex vivo and in vivo studies did not show evidence of a direct pathogenic role of anti-laminin γ1 antibodies, leaving the true molecular identity of the pathogenic 200 kDa autoantigen yet to be
fully characterized (6, 7). To elaborate, in two different mouse animal models for anti-laminin γ1 pemphigoid, although murine IgG of the recombinant laminin γ1 C-terminus bound to the epidermal basement membrane zone in the passive transfer model, no obvious blister formation was seen (7). In an earlier ex vivo model of autoantibody-mediated leukocyte-dependent neutrophil activation, human and rabbit IgG from the C-terminus of laminin γ1 failed to attract neutrophils at the dermal-epidermal-junction and to induce dermal-epidermal separation (6).

The clinical presentation of anti-p200 is polymorphic and may mimic bullous pemphigoid (BP), mucous membrane pemphigoid (MMP), and other subepidermal AIBD (8). However, data on its morphological features and the clinical course are limited, primarily because of the small number of reported cases and the lack of a large cohort of patients studied in detail with long-term follow-up.

We did not focus on therapy because it was considered beyond the scope of this analysis due to lack of uniformity, cohesive information, defined protocol, and outcome data. The aim of the current study was to perform a review of the available epidemiological, clinical, histological, and immunopathological data and the major comorbidities in patients with anti-p200 pemphigoid. The purpose was to help clinicians recognize this newly described clinical entity. This could result in early therapy and better prognosis.

MATERIALS AND METHODS

Data Collection

The literature review was conducted using Ovid-Medline (1946–present), Embase (1947–present), and Web of Science (1900–present) to identify eligible articles. Publications until August 9th, 2018, were searched. The search strategies are detailed in Supplementary Table 1.

Selection of Articles

All publications reporting on one or multiple cases of anti-p200 pemphigoid were included. All cases were defined by the authors of the respective publications as anti-p200 pemphigoid based on the following three mandatory criteria: (i) clinical profile suggestive of subepidermal AIBD; (ii) reactivity to the 200 kDa protein or to the recombinant C-terminus of laminin γ1 by immunoblot analysis; and (iii) exclusion of other subepidermal AIBDs. Additionally, at least one of the following two minor criteria was required to establish the diagnosis of anti-p200 pemphigoid: (i) subepidermal cleft on histology; (ii) and direct immunofluorescence (DIF), demonstrating linear deposition of IgG of the recombinant laminin γ1 C-terminus bound to the epidermal basement membrane zone in the passive transfer model; no obvious blister formation was seen (7). In an earlier ex vivo model of autoantibody-mediated leukocyte-dependent neutrophil activation, human and rabbit IgG from the C-terminus of laminin γ1 failed to attract neutrophils at the dermal-epidermal-junction and to induce dermal-epidermal separation (6).

The following information was obtained when authors provided it: age at onset, sex, ethnicity, morphological features of the mucocutaneous manifestation and their anatomic distribution, histopathology, immunopathology, comorbidities, and triggering factors (if known). All statistical analysis was performed using SPSS software, version 23 (SPSS, Chicago, IL, USA).

RESULTS

After a full-text review, 68 articles fulfilled the inclusion criteria, thereby providing 113 patients from 15 different countries that were included in the qualitative synthesis. Between 1996 and 2018, 50 cases (44.2%) were reported from Japan (Table 1).

Clinical Characteristics

The mean age at onset was 65.5 years (range 5–94) (9, 10). The majority of the patients were males (n = 85; 75.2%) and of Asian ancestry (n = 57, 50.4%; Table 1).

The clinical presentation was described as resembling other subepidermal AIBD and inflammatory dermatoses by authors in 68 (60.2%) patients. The leading similar condition was BP (n = 45; 66.2%), followed by linear IgA bullous dermatosis (LABD; n = 5; 7.4%) (9, 11–14), epidermolysis bullosa acquisita (EBA; n = 3; 4.4%) (15–17), dermatitis herpetiformis (DH; n = 3; 4.4%) (18–20), mucous membrane pemphigoid (n = 3; 4.4%) (21–23), and others (Table 2). In the remaining 45 patients, a similarity to a distinct clinical entity was not mentioned.

Table 1 | Demographic characteristics of the patients reported with anti-p200 pemphigoid.

| Ethnicity of reported patients, n (%) | 85 (75.2%) |
| Age at diagnosis | 65.5 (15.9) |

Mean age of male patients (±SD)*
Mean age of female patients (±SD)*

Geographical distribution of reported cases, % (n)

Japan	50 (44.2%)
France	18 (15.9%)
Germany	13 (11.5%)
Netherlands	12 (10.6%)
USA	7 (6.2%)
India	3 (2.7%)
Poland	2 (1.8%)
Spain	2 (1.8%)
China	1 (0.9%)
UK	1 (0.9%)
Israel	1 (0.9%)
Croatia	1 (0.9%)
Greece	1 (0.9%)
Austria	1 (0.9%)
Korea	1 (0.9%)

Mean age of male patients (±SD)*
Mean age of female patients (±SD)*

*Excluding the study of Meijer et al. (3) which did not report standard deviation.

TABLE 1 | Demographic characteristics of the patients reported with anti-p200 pemphigoid.

| Male patients, n (%) | 85 (75.2%) |
| Age at diagnosis | 65.5 (15.9) |

Mean age of male patients (±SD)*
Mean age of female patients (±SD)*

Geographical distribution of reported cases, % (n)

Japan	50 (44.2%)
France	18 (15.9%)
Germany	13 (11.5%)
Netherlands	12 (10.6%)
USA	7 (6.2%)
India	3 (2.7%)
Poland	2 (1.8%)
Spain	2 (1.8%)
China	1 (0.9%)
UK	1 (0.9%)
Israel	1 (0.9%)
Croatia	1 (0.9%)
Greece	1 (0.9%)
Austria	1 (0.9%)
Korea	1 (0.9%)

Mean age of male patients (±SD)*
Mean age of female patients (±SD)*

*Excluding the study of Meijer et al. (3) which did not report standard deviation.

TABLE 1 | Demographic characteristics of the patients reported with anti-p200 pemphigoid.

| Male patients, n (%) | 85 (75.2%) |
| Age at diagnosis | 65.5 (15.9) |

Mean age of male patients (±SD)*
Mean age of female patients (±SD)*

Geographical distribution of reported cases, % (n)

Japan	50 (44.2%)
France	18 (15.9%)
Germany	13 (11.5%)
Netherlands	12 (10.6%)
USA	7 (6.2%)
India	3 (2.7%)
Poland	2 (1.8%)
Spain	2 (1.8%)
China	1 (0.9%)
UK	1 (0.9%)
Israel	1 (0.9%)
Croatia	1 (0.9%)
Greece	1 (0.9%)
Austria	1 (0.9%)
Korea	1 (0.9%)

Mean age of male patients (±SD)*
Mean age of female patients (±SD)*

*Excluding the study of Meijer et al. (3) which did not report standard deviation.
All patients presented with bullae and/or vesicles, 54.3% (50/92) had urticarial plaques, 15.7% (16/102) had scars and/or milia (Table 2).

The distribution of cutaneous lesions was reported in 72 patients. The extremities were the most frequently involved (95.1%), the trunk in 70.7%, and palmoplantar and cephalic involvement in 51.4 and 40.3% of patients, respectively. Generalized involvement was reported in 41.5% of patients. Mucosal involvement was reported in 38.5% of patients, with the oral mucosa (32.3%) being the most frequently involved. None of the patients had exclusively mucosal diseases (Table 2). Of great interest, the prevalence of mucosal involvement among Japanese patients (22.5%) was significantly lower when compared to the remaining patients (48.2%; \(P < 0.001 \)).

Histological Characteristics

Histology data was available on 100 (88.5%) patients. A subepidermal blistering was observed in all patients, along with mild to dense inflammatory infiltrates in the upper dermis composed of neutrophils and eosinophils in 41 (41.0%) and 15 (15.0%) patients, respectively. A mixed infiltrate of neutrophils and eosinophils was seen in 40 (40.0%) of patients. In two patients, an exclusively lymphocytic infiltrate was observed (24, 25); papillary microabscesses were observed in 11 (11.0%) patients, a predominantly neutrophilic infiltrate in 10 patients (2, 14, 18–20, 26–29) and a mixed infiltrate in one patient (3). Eosinophilic spongiosis was observed in two patients (3, 27) and ruptured secondary milia with inflammatory granulomatous in one patient (16).

Immunopathological Characteristics

DIF microscopy of perilesional skin was reported in 98 (88.1%) patients. Deposition of IgG and C3 was observed in 77 (78.6%), whereas the simultaneous deposition of IgG, IgA, and C3 was observed in 10 (10.2%) patients (3, 9, 12, 14, 20, 30). Deposition of IgG or C3 alone was observed in two (2.0%) (16, 31) and four (4.1%) patients (22, 32–34), respectively. N-serration deposition pattern from a BMZ immunoreactant was shown in 11 of 13 (84.6%) patients, whereas this pattern was undetermined in the remaining two (15.4%) patients (3, 35, 36) (Table 3).

On salt-split skin, binding to the dermal side of the split was reported in 90 patients (83.3%) and binding to both the

Table 2: Clinical and morphological characteristics of the reported patients with anti-p200 pemphigoid.

Similar condition, n (%)—reported in 68 cases	Number of cases
Bullous pemphigoid	45 (66.2%)
Linear IgA bullous dermatosis	5 (7.4%)
Vesicular pemphigoid	4 (5.9%)
Epidermolysis bullosa acquisita	3 (4.4%)
Dermatitis herpetiformis	3 (4.4%)
Mucous membrane pemphigoid	3 (4.4%)
Erythema gyratum repens	2 (2.9%)
Pemphigus	1 (1.5%)
Pempholyx	1 (1.5%)
Morphology of cutaneous lesions, n (%)	
Bullae-vesicles	113 (100%)
Urticarial plaques	50 (54.3%)
Scars/milia	16 (15.7%)
Anatomical distribution of cutaneous lesions, n (%)	
Extremities	78 (95.1%)
Trunk	58 (70.7%)
Palms and soles	58 (70.7%)
Head and neck	29 (39.3%)
Mucosal involvement	37 (38.5%)
Mucosal involvement, n (%)	
One mucosal surface	29 (30.2%)
Two mucosal surfaces concomitantly	6 (6.3%)
Three mucosal surfaces concomitantly	2 (2.1%)
Oral mucosa	31 (32.3%)
Anogenital mucosa	12 (12.5%)
Conjunctival mucosa	2 (2.1%)

Table 3: Immunopathological and immunological characteristics of the reported patients with anti-p200 pemphigoid.

Direct immunofluorescence, n (%)	Number of cases
Linear deposition along the BMZ	113 (100%)
Linear deposition of IgG and C3	77 (78.6%)
Linear deposition of IgG, IgA, and C3	10 (10.2%)
Linear deposition of C3 alone	4 (4.1%)
Linear deposition of IgG, IgA, IgM, and C3	2 (2.0%)
Linear deposition of IgG alone	2 (2.0%)
N-serration deposition pattern	11 (84.6%)
U-serration deposition pattern	0 (0%)
Undetermined deposition pattern	2 (15.4%)

NaCl-split indirect immunofluorescence deposition, n (%)	Number of cases
Dermal side	90 (83.3%)
Both dermal and epidermal sides (more prominently in the dermal side)	16 (14.8%)
Epidermal side	1 (0.9%)
Negative	1 (0.9%)

Immunoblot analysis, n (%)	Number of cases
200-kDa dermal protein	111 (100%)
Recombinant C-terminus of laminin γ1	19 (73.1%)

ELISA detecting recombinant monomeric C-terminal fragment of human laminin γ1, n (%)	Number of cases
10 (100%)	10
dermal and epidermal sides in 16 patients (14.8%) (Table 3). Immunoblot analysis demonstrated reactivity to the 200 kDa protein in all 111 patients tested using human dermal extract \((n = 108) \), epidermal extracts \((n = 11) \) \((10, 37) \) and keratinocytes extracts \((n = 2) \) \((32) \). Sera of several patients were tested on multiple extracts, and 10 of the 11 patients reacting to the epidermal extract were also seropositive on dermal extracts \((10) \). In the remaining two patients, immunoblotting showed reactivity only to the recombinant C-terminus of laminin γ1 \((38, 39) \). Of significant interest is that the sera of patients who were positive for antibodies when tested using immunoblot analysis with the recombinant C-terminus of laminin γ1 was positive in 17 of 24, with a 70.8% sensitivity \((3, 9, 31, 38–43) \). Sera of 10 patients was tested by ELISA bound to a recombinant monomeric C-terminal fragment of human laminin γ1 \((10, 44, 45) \) (Table 3).

Autoantibodies targeting other antigens were detected in 20 (17.7%). Autoantibodies against BP-180 alone, BP-230 alone and both BP-180 and BP-230 were identified in two \((1.8\%) \) \((19, 46) \), four \((3.5\%) \) \((2, 36, 47) \), and three \((2.7\%) \) \((10, 48) \) patients, respectively. Antibodies to Type-VII collagen were found in three \((2.7\%) \) \((15, 16, 49) \), whereas autoantibodies against different subunits of laminin 332 were detected in 7 \((6.2\%) \) \((21, 22, 34, 44, 50–52) \).

DISCUSSION

This review highlights the multiple aspects of a recently described interesting subset of pemphigoid. Based on the current information, its main focus is the clinical features. Many of the unique characteristics and associations could be important to cutaneous biology and the pathogenesis of autoimmunity. A heterogeneous clinical profile that mimicked BP was present in the majority of patients, accompanied by a high prevalence of cephalic, palmoplantar and mucosal involvement. Autoantibodies against the recombinant C-terminus of laminin γ1 were detected by immunoblotting in 73.1% of patients. The prevalence of coexistent psoriasis was significantly higher than in the general population. Interestingly, the presence of psoriasis was very significantly higher in Japanese than non-Japanese patients \((56.0 \text{ vs. } 6.4\%, \text{ respectively}) \).

Palmoplantar lesions and mucosal involvement in BP has been reported in up to 20% of patients \((63–65) \), and these regions were affected in 51.4 and 38.5% of patients with anti-p200 pemphigoid, respectively. Interestingly, scars and milia were reported in 3.4% of patients with BP \((63) \) but in 15.7% of patients with anti-p200 pemphigoid. In the clinical criteria suggested by Vaillant et al. \((66) \), which yield a positive predictive value of 95% for a clinical diagnosis of BP, it is the absence of each of the three aforementioned features that has been identified as an independent predictive criterion for the diagnosis of BP.

The age at onset of patients with anti-p200 pemphigoid \((65.5 \text{ years}) \) is younger than many with BP, where it commonly occurs in those older than 70 \((67–69) \). An overwhelming preponderance of males \((75.2\%) \) were reported with anti-p200 pemphigoid, which contrasts with the female-to-male ratio ranges between 1.04 and 5.1 in different cohorts of BP \((69) \).

In 2009, Dainichi et al. \((4) \) found that 90% of sera tested from anti-p200 pemphigoid patients reacted to the C-terminus of recombinant laminin γ1, using an immunoblot assay. This observation has been confirmed by Groth et al. \((5) \). This analysis demonstrates that sera from 73.1% of the patients reported reacting to the C-terminus of recombinant laminin γ1 protein using the immunoblotting assay. With respect to the ELISA using a monomeric C-terminal fragment of human laminin, the sensitivity was estimated at 68.6% \((5) \).

The incidence of anti-p200 pemphigoid is considerably low amongst AIBD \((70) \). In a cohort of 145 Japanese patients with various AIBDs, anti-p200 pemphigoid was the second most prevalent AIBD \((37.2\%) \). The prevalence of psoriasis among non-Japanese anti-p200 pemphigoid patients \((6\%) \) was greater than its incidence in the general population of the world \((71, 72) \). The pathomechanism of this ethnic association is yet to be established \((70) \). Pustular psoriasis was present in 12.5% of p-200 pemphigoid patients. This incidence is significantly higher than the 1.3% reported in a cohort of 104,669 patients with different variants of psoriasis \((P < 0.001) \) \((73) \). This observation confirmed an earlier Japanese study which reported that 53.8% of patients with pustular psoriasis and AIBD had anti-p200 pemphigoid \((70) \). The molecular basis for this rare and unique combination of clinical entities has not been clearly defined and warrants attention. Senescence was suggested to alter the distribution and
amount of proteins in the BMZ, thus increasing its antigenicity and raising the risk of the development of an autoimmune response against its components (74). Since the cell cycle and turnover of the epidermal keratinocytes are extremely accelerated in psoriasis, it was recently assumed that the extracellular matrix in psoriatic skin may simulate the senescent extracellular matrix and contribute to the development of BP and other AIBDs that were found to be associated with psoriasis (75).

Our current knowledge of anti-p-200 pemphigoid brings into focus several important and interesting issues. Traditionally, pemphigoid is divided into BP and mucous membrane pemphigoid. It is possible that because anti-p200 pemphigoid has certain features of both conditions, it could be the bridge or missing link between them. Some anti-p200 pemphigoid also has features of other AIBD, since their sera contain autoantibodies associated with them. It would be interesting to speculate whether this was due to epitope spreading (76). Patients with systemic lupus erythematosus have multiple pathogenic autoantibodies per patient (77), including multiple phenotypes and symptomatologies.

An additional unsolved question is whether anti-p-200 pemphigoid is truly rare or whether it is rather underdiagnosed worldwide. In the US, tests for detecting autoantibodies to laminin γ1 are commercially unavailable, though they are available in Germany and Japan. Moreover, investigators in those countries, whose laboratories are equipped to perform these assays, provide them to their colleagues. The majority of patients are thus reported from Japan and Europe. Unless there are very specific unidentified reasons, there are generally no reasons to believe that it cannot not be as prevalent in other countries. Unless more patients are studied, serologically characterized and followed up for several years, this challenging variant of pemphigoid will remain less well-studied and understood. This would be tragic, because it could help advance our knowledge.

The main limitations of this review are that it was based on case reports and small case series and that it is retrospective. Some of the variables were not provided by some authors. Data on treatment were scarce, limited and not comprehensive. Limited follow-up did not provide a clear clinical course or an overview of the impact of treatment on clinical course. The universal lack of the ELISAs makes it impossible to assess its global presence. Since psoriasis is present universally, its relationship could not be accurately assessed.

In conclusion, this new subset provides, to clinicians and scientists alike, a unique opportunity to study several new frontiers of cutaneous biology, inflammation, immunology, scar formation and disease pathogenesis. The location of laminin γ1 provides the opportunity to study interactions amongst other BMZ proteins. An association with psoriasis provides a playground to study what influences neutrophils to cause different pathologies and clinical profiles. The presence of scarring in mucosal tissues of some patients and not in others could provide important leads into what thrusts patients into one direction or the other. This opportunity, provided by nature, should not be missed but utilized to the advantage of our patients and the progress of our specialty.

AUTHOR CONTRIBUTIONS

AA and KK contributed to the concept, content, and writing of the manuscript.

FUNDING

This study was supported in part by an unrestricted educational grant from the Dysimmune Diseases Foundation, Panama City, FL, USA.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2019.02466/full#supplementary-material

REFERENCES

1. Zillikens D, Kawahara Y, Ishiko A, Shimizu H, Mayer J, Rank CV, et al. A novel subepidermal blistering disease with autoantibodies to a 200-kDa antigen of the basement membrane zone. *J Invest Dermatol.* (1996) 106:1333–8. doi: 10.1111/1523-1747.ep12349283
2. Chen KR, Shimizu S, Miyakawa S, Ishiko A, Shimizu H, Hashimoto T. Coexistence of psoriasis and an unusual IgG-mediated subepidermal bullous dermatosis: identification of a novel 200-kDa lower lamina lucida target antigen. *Br J Dermatol.* (1996) 134:540–6. doi: 10.1111/j.1365-2133.1996.tb07625.x
3. Meijer JM, Diercks GH, Schmidt E, Pas HH, Jonkman MF. Laboratory diagnosis and clinical profile of anti-p200 pemphigoid. *JAMA Dermatol.* (2016) 152:897–904. doi: 10.1001/jamadermatol.2016.1099
4. Dainichi T, Kurono S, Ohyama B, Ishii N, Sanzen N, Hayashi M, et al. Anti-laminin gamma1 pemphigoid. *Proc Natl Acad Sci USA.* (2009) 106:2800–5. doi: 10.1073/pnas.0809230106
5. Groth S, Recke A, Vafia K, Ludwig RJ, Hashimoto T, Zillikens D, et al. Development of a simple enzyme-linked immunosorbent assay for the detection of autoantibodies in anti-p200 pemphigoid. *Br J Dermatol.* (2011) 164:76–82. doi: 10.1111/j.1365-2133.2010.10056.x
6. Vafia K, Groth S, Beckmann T, Hirose M, Dworschak J, Recke A, et al. Pathogenicity of autoantibodies in anti-p200 pemphigoid. *PLoS ONE.* (2012) 7:e41769. doi: 10.1371/journal.pone.0041769
7. Koga H, Ishii N, Dainichi T, Tsuruta D, Hamada T, Ohata C, et al. An attempt to develop mouse model for anti-laminin gamma1 pemphigoid. *J Dermatol Sci.* (2013) 70:108–15. doi: 10.1016/j.jdermsci.2013.01.001
8. Goletz S, Hashimoto T, Zillikens D, Schmidt E. Anti-p200 pemphigoid. *J Am Acad Dermatol.* (2014) 71:185–91. doi: 10.1016/j.jaad.2014.02.036
9. Patsatsi A, Meltzanidou P, Katafigiotis S, Sotiriadis D, Schmidt E, Lambropoulos A. Chronic bullous disease of childhood with IgG reactivity to p200 antigen. *Int J Dermatol.* (2017) 56:773–5. doi: 10.1111/ijd.13616
10. Commin MH, Schmidt E, Duvert-Lehembre S, Lasek A, Morice C, Estival JL, et al. Clinical and immunological features and outcome of anti-p200 pemphigoid. *Br J Dermatol.* (2016) 175:776–81. doi: 10.1111/bjd.14629
11. Myers DJ, Uwala RD, Xia L, Groth S, Zillikens D, Stratman EJ. Generalized annular bullous eruption—quiz case. Anti-laminin gamma1 pemphigoid with a linear IgA bullous dermatosis-like presentation. *Arch Dermatol.* (2011) 147:109–14. doi: 10.1001/archdermatol.2010.404-a
27. García-Díez I, Martínez-Escala ME, Ishii N, Hashimoto T, Masaró Galy JM, Puig RM, et al. Usefulness of a simple immunohistochemical staining technique to differentiate anti-p200 pemphigoid from other autoimmune blistering diseases: a report of 2 cases. *Acta Dermosifiliogr*. (2016) 108:18–21. doi: 10.1016/j.adengl.2016.11.018

28. Rose C, Weyers W, Denisijk N, Hillen U, Zillièvens D, Shimanoovich I. Histopathology of anti-p200 pemphigoid. *Am J Dermatopathol*. (2007) 29:119–24. doi: 10.1097/DAD.0b013e318033266

29. Egan CA, Yee C, Zillièvens D, Vance RB. Anti-p200 pemphigoid: diagnosis and treatment of a case presenting as an inflammatory subepidermal blistering disease. *Am Acad Dermatol*. (2002) 46:786–9. doi: 10.1067/mjd.2002.129023

30. Kingsbery MJ, Grossman ME, Nguyen H. Consider antilaminin gamma-1 pemphigoid when faced with conflicting histopathology and immunofluorescence results. *J Am Acad Dermatol*. (2013) 68:e60–1. doi: 10.1016/j.jaad.2012.08.038

31. Iikawa M, Muroi E, Ishii Y, Mochid AK, Setoyma K, Kurokawa M, et al. A case of anti-laminin gamma-1 pemphigoid with cutaneous polyarteritis nodosa. *Nishi Nihon Hifuka*. (2013) 75:7–10. doi: 10.2353/nihonhifu.75.1704

32. Hofmann SC, Voith U, Sasaki TS, Trueee RM, Nisch RN, Bruckner-Tuderman L. Evidence for synthesis of p200, the autoantigen in anti-p200 pemphigoid, by keratinocytes and fibroblasts. *J Invest Dermatol*. (2007) 127:573–8. doi: 10.1038/sj.jid.5500952

33. Miyakura T, Yamamoto T, Tashiro A, Okubo Y, Oyama B, Ishii N, et al. Anti-p200 pemphigoid associated with annular pustular psoriasis. *Eur J Dermatol*. (2008) 18:481–2. doi: 10.1111/j.1365-2133.2008.04657.x

34. Kamata M, Fujita H, Hamanaka T, Takahashi K, Koga H, Hashimoto T, et al. Anti-laminin gamma1 pemphigoid accompanied by autoantibodies to laminin alpha3 and gamma2 subunits of laminin-332. *JAMA Dermatol*. (2013) 149:1437–9. doi: 10.1001/jamadermatol.2013.3358

35. Igashira M, Dunemee Y, Koga H, Hashimoto T, Tateishi C, Tsuruta D, et al. Anti-laminin gamma1 pemphigoid associated with pustular psoriasis. *Eur J Dermatol*. (2014) 24:629–30. doi: 10.1084/ejd.2014.24119

36. Ohzono A, Numata S, Hamada T, Fukuda S, Teye K, Shirakashi Y, et al. Anti-laminin-gamma 1 pemphigoid developed in a case of autosomal recessive congenital ichthyosis. *Acta Derm Venereol*. (2015) 95:93–4. doi: 10.2340/00015555-1875

37. Munisch C, Prey S, Joly P, Meyer N, Lamant L, Livideanu C, et al. [Anti-p200 pemphigoid: a spectacular response to dapsone]. *Ann Dermatol Venereol*. (2011) 138:379–42. doi: 10.1016/j.annder.2011.05.024

38. Goeftz S, Durnke A-K, Zilièvens D, Hipcer UC, Elnser P. Anti-p200/laminin gamma1 pemphigoid associated with metastatic oesophageal cancer. *J Eur Acad Dermatol Venereol*. (2017) 31:e219–21. doi: 10.1111/jdv.13983

39. Tatsumi M, Kamei R, Nakai D, Mabuchi E, Ikegami E, Fukuda S, et al. Complicated case of anti-laminin gamma-1 pemphigoid in psoriasis. *Skin Res. (2012) 11:75–81. doi: 10.11340/skinresearch.11.1_75

40. McCarty M, Zilliken D, Fivenson D. Anti-p200 pemphigoid (anti-laminin-gamma-1 pemphigoid) demonstrating pathergy. *Int J Women Dermatol*. (2015) 1:173–4. doi: 10.1016/j.ijwd.2015.09.002

41. Alloro A, Strazzu L, Rotschild B, Harywelck L, Evince D, Hoang MP, et al. Refractory antilaminin gamma1 pemphigoid successfully treated with intravenous immunoglobulin and myocoplone fotepil. *J Eur Acad Dermatol Venereol*. (2014) 28:1401–3. doi: 10.1111/jdv.12352

42. Goyal N, Rao R, Sheni S, Pai S, Kumar P, Bhogal B, et al. Epidermolysis bullosa acquisita and anti-p200 pemphigoid as major subepidermal autoimmune bullous diseases diagnosed by floor binding on indirect immunofluorescence microscopy using human salt-split skin. *Indian J Dermatol Venereol Leprol*. (2017) 83:550–5. doi: 10.4103/ijdvl.IJDVL_678_16

43. Geller S, Gat A, Zeeli T, Schmidt E, Ishii N, Hashimoto T, et al. A refractory, cutaneous, subepidermal bullous disease. *Clin Exp Dermatol*. (2016) 41:753–5. doi: 10.1111/ced.12823

44. Monshi B, Groth S, Richter L, Schmidt E, Zillièvens D, Rappersberger K. A long-term study of a patient with anti-p200 pemphigoid: correlation of autoantibody levels with disease activity and an example of epitope spreading. *Br J Dermatol*. (2012) 167:179–83. doi: 10.1111/j.1365-2133.2012.11076.x

45. Ishida S, Takahashi K, Nakaoka M, Okawa T, Tateishi C, Yousukato A, et al. Case of subepidermal autoimmune bullous disease with psoriasis vulgaris reacting to both BP180 C-terminal domain and laminin gamma-1. *J Dermatol*. (2015) 42:391–3. doi: 10.1111/jder.12801

46. Ansai S-I, Hashizume S, Kawana S, Tateishi C, Koga H, Hashimoto T. Case of anti-laminin gamma 1 pemphigoid with antibody against C-terminal domain
of BP180 in a patient with psoriasis vulgaris. J Dermatol. (2014) 41:1031–3. doi: 10.1111/1346-8138.12625

47. Kawahara Y, Zillikens D, Yancey KB, Marinkovich MP, Nie Z, Hashimoto T, et al. Subepidermal blistering disease with autoantibodies against a novel dermal 200-kDa antigen. J Dermatol Sci. (2000) 23:93–102. doi: 10.1016/S0923-1811(99)0003-6

48. Imanishi A, Tateishi C, Imanishi H, Sowa-Osako J, Koga H, Tsuruta D, et al. Pemphigoid with antibodies to laminin gamma 1, BP180 and BP230, associated with psoriasis vulgaris: Successful disease control with cyclosporin. J Dermatol. (2015) 42:394–7. doi: 10.1111/1346-8138.12798

49. Furukawa H, Miura T, Takahashi M, Nakamura K, Kaneko F, Hamade Y, Nomura Y, Kaku Y, Muramatsu T, et al. Anti-laminin-gamma 1 pemphigoid associated with ulcerative colitis and psoriasis vulgaris. J Eur J Dermatol. (2015) 25:198–9. doi: 10.1684/ejd.2014.2499

50. Di Zenzo G, Thoma-Uszynski S, Fontao L, Calabresi V, Hofmann SC, Hellmark T, et al. Multicenter prospective study of the humoral autoimmune response in bullous pemphigoid. Clin Immunol. (2008) 128:415–26. doi: 10.1016/j.clim.2008.04.012

51. Shimanovich I, Petersen EE, Weyers W, Bedane C, et al. Evaluation of clinical criteria for diagnosis of bullous pemphigoid. French Bullous Study Group. Arch Dermatol. (1998) 134:1075–80. doi: 10.1001/archderm.134.9.1075

52. Vaillant L, Bernard P, Joly P, Prost C, Labeille B, Bedane C, et al. Incidence and mortality of bullous pemphigoid in France. J Invest Dermatol. (2012) 132:1998–2004. doi: 10.1038/jid.2012.35

53. Furukawa H, Miura T, Takahashi M, Nakamura K, Kaneko F, Hamade Y, Nomura Y, Kaku Y, Muramatsu T, et al. Anti-laminin-gamma 1 pemphigoid associated with ulcerative colitis and psoriasis vulgaris. J Dermatol. (2015) 42:394–7. doi: 10.1111/1346-8138.12798

54. Morris SD, Mallipeddi R, Oyama N, Gratian MJ, Harman KE, Bhogal BS, et al. Psoriasis bullosa acquisita. J Eur J Dermatol. (2014) 24:320–5. doi: 10.1111/j.1365-2230.2013.01100.x

55. Kawahara Y, Yamada Y, Iizuka H, Tsuchida A, Nakamura K, et al. Evaluation of clinical criteria for diagnosis of bullous pemphigoid. J Dermatol. (2012) 167:1111–7. doi: 10.1111/j.1346-8138.2012.11080.x

56. Clapé A, Muller C, Gatoüillat G, Le Jan S, Barbe C, Pham B-N, et al. Mucosal involvement in bullous pemphigoid is mostly associated with disease severity and to absence of anti-BP230 autoantibody. Front Immunol. (2018) 9:479. doi: 10.3389/fimmu.2018.00479

57. Gawaz A, Metzler G, Hertl M, Hashimoto T, Schaller M. Treatment of anti-p200 pemphigoid with autoantibodies against both a novel 200-kDa dermal antigen and the 290-kD epidermolysis bullosa acquisita antigen. Dermatology. (2004) 204:145–8. doi: 10.1159/000079601

58. Clapé A, Muller C, Gatoüillat G, Le Jan S, Barbe C, Pham B-N, et al. Mucosal involvement in bullous pemphigoid is mostly associated with disease severity and to absence of anti-BP230 autoantibody. Front Immunol. (2018) 9:479. doi: 10.3389/fimmu.2018.00479

59. Ippolito A, Wallace DJ, Gladman D, Fortin PR, Urowitz M, Werth V, et al. Autoantibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity. Elife. (2017) 6:e26635. doi: 10.7554/eLife.26635

60. Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. (2017) 31:205–12. doi: 10.1111/jdv.13854

61. Hafner C, Agathopoulos D, Czosnek T, et al. Impact of systemic lupus erythematosus (SLE) on the development of psoriasis vulgaris and of SLE on the outcome of psoriasis vulgaris. J Cutan Med Surg. (2017) 21:495–500. doi: 10.1089/jcms.2016.0160

62. Nishi Nihon Hifu. (2006) 68:789–99. doi: 10.2336/nishinihonhifu.68.789

63. Wozniak K, Kowalewski C, Hashimoto T, Iizuka H, Moritani T, et al. Detection of major epitopes for autoantibodies in dipeptidyl peptidase IV inhibitors-associated bullous pemphigoid. J Invest Dermatol. (2018) 138:S53. doi: 10.1016/j.jid.2018.03.319

64. Takahashi H, Nakamura K, Kaneko F, Nakagawa H, Ishii N, et al. Analysis of psoriasis patients registered with the Japanese Society for Psoriasis Research from 2002-2008. J Dermatol. (2011) 38:1125–9. doi: 10.1111/j.1346-8138.2010.01145.x

65. Watanabe M, Natsuga K, Ishii N, Kishie W, Kobayashi Y, Donati G, Suzuki S, et al. Type XVII collagen coordinates proliferation in the interfollicular epidermis. Elife. (2017) 6:e26635. doi: 10.7554/eLife.26635

66. Della Torre R, Combescure C, Cortés B, Marazza G, Beltraminelli H, Naldi L, et al. Clinical presentation and diagnostic delay in bullous pemphigoid: a prospective nationwide cohort. Br J Dermatol. (2012) 167:1111–7. doi: 10.1111/j.1365-2133.2012.11080.x

67. Chan LS, Vanderlugt CJ, Hashimoto T, Nishikawa T, Zone JJ, Black MM, et al. Epitope spreading: lessons from autoimmunity skin diseases. J Investig Dermatol. (1998) 110:103–9. doi: 10.1046/j.1523-1747.1998.00107.x

68. Ippolito A, Wallace DJ, Gladman D, Fortin PR, Urowitz M, Werth V, et al. Autoantibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity. Lupus. (2011) 20:250–5. doi: 10.1177/0961203310385738

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.