Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Predictors of silent hypoxia in hospitalized patients with COVID-19 in Japan

Kayoko Hayakawa a,b,*, Shinichiro Morioka a,b,c, Yusuke Asai b, Shinya Tsuzuki a,b,d, Gen Yamada a, Setsuko Suzuki a, Nobuaki Matsunaga b, Norio Ohmagari a,b

a Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
b AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
c Emerging and Reemerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
d Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium

INTRODUCTION

Silent hypoxia (SH), also known as happy hypoxia, has been frequently observed in COVID-19 patients in Japan and other countries [1–4]. The early identification of SH and initiation of therapeutic interventions are important given that more treatment options for coronavirus disease-2019 (COVID-19) have now become available. This study aimed to identify predictors of SH using a nationwide COVID-19 registry of hospitalized patients.

Methods: Adult patients who were admitted to hospital with COVID-19 between January 2020 and June 2021 and who were hypoxic on admission (SpO2 ≥ 90%), not transferred from another facility, and who did not have disturbance of consciousness, confusion, or dementia, were included. SH was defined as hypoxia in the absence of shortness of breath/dyspnea upon admission. Predictors of SH were identified using univariable and multivariable logistic regression.

RESULTS: The study included 1904 patients, of whom 990 (52%) satisfied the criteria for SH. Compared to patients without SH, patients with SH were older, more likely to be female, and had a slightly higher SpO2 on admission. Compared to patients without SH, patients with SH had a lower prevalence of chronic lung disease (CLD) other than chronic obstructive pulmonary disease (COPD), asthma, and obesity. Multivariable analysis revealed that the independent predictors of SH were older age, a shorter interval from symptom onset to admission, higher SpO2, and an absence of CLD or COPD.

CONCLUSIONS: The absence of underlying lung disease and older age were important predictors of SH. The results of this study, which is the largest such study reported to date in Japan, may help clarify the mechanism of SH.

* Corresponding author. 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
E-mail address: khayakawa@hop.ncgm.go.jp (K. Hayakawa).

https://doi.org/10.1016/j.jiac.2022.06.001
Received 3 April 2022; Received in revised form 19 May 2022; Accepted 2 June 2022
Available online 13 June 2022

© 2022 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
other than chronic obstructive pulmonary disease (COPD), asthma, and obesity, was lower in the SH group than in the non-SH group. The days from symptom onset (DSO) were shorter in the SH group than in the non-SH group. Multivariate analysis revealed that the independent predictors of SH were older age, shorter DSO, higher SpO₂, and not having CLD or COPD.

The results were partially similar to those in the study by Garcia-Grimshaw et al., which identified DSO as a predictor of SH [6]. However, they were not concordant with the report by Alhusain et al., which did not include DSO or vitals on admission [7]. Both studies used different definitions of hypoxia and included symptoms as predictors. In the present study, although symptoms were excluded to avoid confounding effects, more comorbidities were considered. The correlation between the risk factors for severe COVID-19 and the predictors of SH

Table 1
Predictors for silent hypoxia on admission among hypoxic COVID-19 patients.

Parameters	Silent Hypoxia (n = 990)	Non-Silent Hypoxia (n = 914)	Univariable analysis	Multivariable analysis		
	OR	P value	OR	P value		
Demographics						
Age (years), median (IQR)	71 (60-80)	65 (54-76)	1.02 (1.02-1.03)	<0.001	1.02 (1.01-1.03)	0.002
Male sex	617 (62.3%)	663 (72.7%)	0.62 (0.51-0.75)	<0.001	0.8 (0.58-1.11)	0.179
Japanese race	950 (97.2%)	870 (96%)	1.46 (0.88-2.42)	0.147	1.5 (0.74-3.05)	0.258
Current or previous smoker	429 (51.5%)	434 (54.5%)	0.89 (0.73-1.08)	0.232	1.01 (0.76-1.35)	0.93
Alcoholic beverage drinker	382 (51.8%)	406 (57.5%)	0.7 (0.65-0.98)	0.031	1.02 (0.76-1.36)	0.92
Days from symptom onset, median (IQR)	6 (3-8)	6 (4-9)	0.93 (0.91-0.96)	<0.001	0.94 (0.91-0.98)	0.001
Vital signs on admission						
SpO₂, median (IQR)	92 (91-93)	91 (89-93)	1.16 (1.12-1.2)	<0.001	1.14 (1.09-1.19)	<0.001
Temperature in Celsius, median (IQR)	37.4 (36.8-38.1)	37.5 (36.9-38.3)	0.88 (0.8-0.97)	0.007	1.06 (0.92-1.22)	0.392
Respiratory rate, median (IQR)	20 (17-22)	21 (18-24)	1.00 (1.0-1.0)	0.512	1.00 (1.0-1.0)	0.551
Heart rate, median (IQR)	89 (80-101)	92 (82-103)	0.99 (0.98-0.99)	<0.001	1.00 (0.99-1.01)	0.472
Comorbidities						
Myocardial infarction	33 (3.3%)	32 (3.5%)	0.95 (0.58-1.56)	0.84	1.00 (0.46-2.14)	0.992
Congestive heart failure	41 (4.1%)	24 (2.6%)	1.6 (0.96-2.67)	0.071	1.78 (0.79-4.02)	0.168
Peripheral vascular disease	18 (1.8%)	23 (2.5%)	0.72 (0.39-1.34)	0.296	0.43 (0.15-1.26)	0.125
Cerebrovascular disease	86 (8.7%)	55 (6%)	1.49 (1.05-2.11)	0.027	1.14 (0.66-1.98)	0.64
Chronic lung disease (excluding COPD)	23 (2.3%)	41 (4.5%)	0.51 (0.3-0.85)	0.11	0.35 (0.18-0.68)	0.002
COPD	50 (5.1%)	62 (6.8%)	0.73 (0.5-1.07)	0.8	0.75 (0.48-1.2)	0.392
Asthma	42 (4.2%)	65 (7.1%)	0.58 (0.39-0.86)	0.007	0.67 (0.39-1.16)	0.154
Liver disease	33 (3.3%)	29 (3.2%)	1.05 (0.63-1.75)	0.844	1.08 (0.48-2.43)	0.85
Peptic ulcer disease	11 (1.1%)	7 (0.8%)	1.46 (0.56-3.77)	0.439	1.29 (0.3-5.58)	0.738
Diabetes mellitus	271 (27.4%)	269 (29.4%)	0.9 (0.74-1.1)	0.32	0.85 (0.63-1.16)	0.303
Obesity	71 (7.2%)	105 (11.5%)	0.6 (0.43-0.82)	0.001	0.98 (0.64-1.51)	0.927
Severe renal dysfunction	17 (1.7%)	9 (1%)	1.76 (0.78-3.96)	0.174	3.46 (0.69-17.25)	0.13
Solid tumors	51 (5.2%)	47 (5.1%)	1 (0.67-1.51)	0.993	0.65 (0.33-1.27)	0.205
Metastatic solid tumors	17 (1.7%)	15 (1.6%)	1.05 (0.52-2.11)	0.897	0.75 (0.27-2.14)	0.594
Leukemias or lymphomas	6 (0.6%)	10 (1.1%)	0.55 (0.2-1.52)	0.251	0.36 (0.07-1.86)	0.221
Collagen disease	16 (1.6%)	20 (2.2%)	0.73 (0.38-1.43)	0.362	0.65 (0.23-1.84)	0.415
Hypertension	465 (47%)	401 (43.9%)	1.13 (0.95-1.36)	0.175	1.01 (0.76-1.35)	0.936
Dyslipidemia	222 (22.4%)	218 (23.9%)	0.92 (0.75-1.14)	0.461	1.05 (0.77-1.44)	0.758

a Presented as number (%) unless otherwise indicated.
b Two-sided P value of <0.05 was considered statistically significant (indicated as bold text).
c Definitions were based on their Charlson Comorbidity Index scores, unless otherwise specified [12].
d Based on the physician’s diagnosis. Abbreviations: COPD, chronic obstructive pulmonary disease; IQR, interquartile range; OR, odds ratio.
was minimal [8].

Based on our results, patients with COPD and CLD were more likely to complain of SOB. Oxygen-requiring patients on admission were not included in the study; therefore, patients with advanced COPD or CLD were likely excluded. These findings suggest that patients with underlying pulmonary diseases that are not sufficiently advanced for them to be accustomed to hypoxia, are less likely to develop SH because they tend to be more aware of their respiratory status.

Various hypotheses regarding the pathomechanism of SH have been proposed [9–11]. The lung perfusion, sensory feedback, and central neural regulation of breathing are likely to be affected in patients with underlying lung abnormalities. The findings of the present study require further basic investigation and validation in non-Japanese cohorts.

Limitations of this study include the use of registry data, which may have resulted in selection bias, as previously reported [5]. Although we performed multivariable analysis, there may be some residual confounding.

In conclusion, in a large cohort of patients hospitalized with COVID-19, the absence of underlying lung disease and age were important predictors of SH. The results of this study, which included the largest number of reported cases, may help clarify the mechanism of SH.

Acknowledgments

The authors thank all participating facilities for their care of patients with COVID-19 and their cooperation in data entry into the registry.

References

[1] Akiyama Y, Morioka S, Asai Y, Sato L, Suzuki S, Saito S, et al. Risk factors associated with asymptomatic hypoxemia among covid-19 patients: a retrospective study using the nationwide Japanese registry, COVIREGI-JP. J Infect Public Health 2022;15:312–4.
[2] Buana M, Garperetti A, Giosa L, Forleo GB, Schiavone M, Mitachione G, et al. Prevalence and outcome of silent hypoxemia in covid-19. Minerva Anestesiolog 2021;87:325–33.
[3] Okahama A, Ishikane M, Hotta M, Sato L, Akiyama Y, Morioka S, et al. Clinical and radiological findings of silent hypoxia among covid-19 patients. J Infect Chemother 2021;27:1536–8.
[4] Ribeiro A, Mendonca M, Sabina Sousa C, Trigueiro Barbosa M, Morais-Almeida M. Prevalence, presentation and outcomes of silent hypoxemia in covid-19. Clin Med Insights Circulatory, Respir Pulm Med 2022;16:11795484221082761.
[5] Matsunaga N, Hayakawa K, Terada M, Ohtsu H, Asai Y, Tsuzuki S, et al. Clinical epidemiology of hospitalized patients with covid-19 in Japan: report of the COVID-19 registry Japan. Clin Infect Dis 2021;73:e3677–89.
[6] Garcia-Grinshaw M, Flores-Silva FD, Chiquete E, Cantu-Brito C, Michel-Chavez A, Viguera-Hernandez AP, et al. Characteristics and predictors for silent hypoxemia in a cohort of hospitalized covid-19 patients. Auton Neurosci 2021;235:102855.
[7] Alhusain F, Alromaih A, Alhajress G, Alshaghiry A, Alqobaisi A, Alaboddi T, et al. Predictors and clinical outcomes of silent hypoxia in covid-19 patients, a single-center retrospective cohort study. J Infect Public Health 2021;14:1595–9.
[8] Terada M, Ohtsu H, Saito S, Hayakawa K, Tsuzuki S, Asai Y, et al. Risk factors for severity on admission and the disease progression during hospitalisation in a large cohort of patients with covid-19 in Japan. BMJ Open 2021;11:e047007.
[9] Herrmann J, Mori V, Bates JHT, Suki B. Modeling lung perfusion abnormalities to explain early covid-19 hypoxemia. Nat Commun 2020;11:4883.
[10] Simonson TS, Baker TL, Banzett RB, Bishop T, Dempsey JA, Feldman JL, et al. Silent hypoxemia in covid-19 patients. J Physiol 2021;599:1057–65.
[11] Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN. The pathophysiology of ‘happy’ hypoxemia in covid-19. Respir Res 2020;21:198.
[12] Charlson ME, Pompei P, Ales KL, Mackenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 1987;40:373–83.