Crumble: supplementary material

June 18, 2018

1 Introduction

Crumble does not compress quality values itself, rather it replaces quality values in a SAM/BAM/CRAM file with different qualities which compress better in standard tools. If the distribution of quality value usage becomes more extreme, the entropy decreases and compression ratios increase.

This means that existing software pipelines continue to work on crumpled data. However it also means some file formats gain more from Crumble than others.

2 Software versions and git commit hashes

Software	Version	Commit Hash	Repository
Crumble	0.8	996341e	https://github.com/jkbomfield/crumble
Htslib	0.7	209894b	https://github.com/samtools/htslib
Samtools	0.7	b8d69cd	https://github.com/samtools/samtools
GATK	3.7		https://software.broadinstitute.org/gatk
CALQ	1.0.0	5b2ba4c	https://github.com/voges/calq
Bcftools	1.6-7	b7b502e	https://github.com/samtools/bcftools
Freebayes	1.1.0-46	812b3a0	https://github.com/ekg/freebayes
QVZ2	0.1-24	70e5926	https://github.com/mikelhernaez/qvz2
VT	0.5772	6686b5c	https://github.com/atks/vt

Htslib was used to write CRAM files, either directly from within Crumble or via Samtools for production of the lossless CRAMs (converted from the downloaded BAM files). Default compression levels were used.

3 Evaluation pipeline

GATK HaplotypeCaller, Bcftools and Freebayes are used without a set of known variants and without application of GATK Variant Quality Score Recalibration (VQSR). This is to demonstrate the raw calling power without attempts to rescue mistakes via known variants and to judge likely performance on new organisms. Command line arguments used were:

```
java -Xmx4g -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R $human_ref \
-L 1 --genotyping_mode DISCOVERY -stand_call_conf 10 \n-I $prefix.bam -o $prefix.gatk.vcf
```

```
freebayes -f $human_ref $prefix.bam > $prefix.freebayes.vcf
```

```
bcftools mpileup -f $human_ref $prefix.bam | bcftools call -vm - > $prefix.bcftools.vcf
```

Truth sets are downloaded from Heng Li’s CHM-eval release:

https://github.com/lh3/CHM-eval/releases/download/v0.2/CHM-evalkit-20161018.tar

Comparison of VCF call and truth sets is made after normalising variant coordinates and splitting multi-allelic sites and MNP's into separate vcf records, followed by region filtering using the inclusion / exclusion bed files in the CHM-eval release kit. The effect of these may mean that some compound variants can yield both a match and a mismatch, for example calling a homozygous mutation as heterozygous, but it makes comparisons between tools easier. These operations are performed with bcftools and vt:
bcftools norm -m -both -t $region -f $href $v 2>/dev/null | \
 vt decompose_blocksub - | \
 bcftools view -T "$exclude.bed" | bcftools view -T $include.bed > $v.norm.vcf

The normalised / filtered files are then compared with “bcftools isec” to count the shared variables between truth and call sets and those occurring only in one file:

bcftools isec -c both -p $call.isec $truth.norm.vcf.gz $call.norm.vcf.gz

This is a relatively strict definition of identity, meaning that the variant must occur at both the same site and be the same call. The “isec” command produces 4 VCF files in the $call.isec directory:

0000.vcf: private to truth.norm.vcf (false negatives)
0001.vcf: private to call.norm.vcf (false positives)
0002.vcf: records from truth.norm.vcf, shared by both files (correct calls)
0003.vcf: records from call.norm.vcf, shared by both files (correct calls)

By counting the VCF records in each file we observe the recall and precision. The files can be filtered by quality and type using “bcftools view”, for example:

```
FN_SNP=`bcftools view -H -i "TYPE='snp' && QUAL >= 30" $call.isec/0001.vcf | wc -l`
```

More aggressive filtering was also applied based on the recommended practices from each tool, where available. The following are exclusion filter rules, applied using ‘bcftools view -e $filter’. We also applied a simple over-depth filter too, of DP > 90 for the full 50x sample and DP > 30 for the 15x sample.

- **GATK HaplotypeCaller**
 https://software.broadinstitute.org/gatk/documentation/article.php?id=3225

 SNP

 QUAL < $qual || QD < 2 || FS > 60 || MQ < 40 || SOR > 3 || MQRankSum < -12.5 || ReadPosRankSum < -8 || DP > $DP

 Indel

 QUAL < $qual || QD < 2 || FS > 200 || ReadPosRankSum < -20 || DP > $DP

- **Bcftools** (No quality filtering for indels)

 SNP

 QUAL < $qual || DP > $DP

 Indel

 IDV < 3 || IMF < 0.03 || DP > $DP

- **Freebayes**
 https://wiki.uiowa.edu/download/attachments/145192256/erik%20garrison%20-%20IoWa%20talk%202.pdf?api=v2

 SNP / Indel

 QUAL < $qual || SAF <= 0 || SAR <= 0 || RPR <= 1 || RPL <= 1 || DP > $DP

Note that due to some variants being compound, it is possible for a single VCF record to contain the correct variant while also containing either a false positive or false negative.

It is also noted that the normalisation step is not always perfect and we cannot compute whether a compound insertion and deletion is identical to a series of SNPs. Hence some of the reported numbers of false positives / negatives may be pessimistic. However we do not believe the results are biased in favour of any specific method of quality reduction.
4 Results

The original BAM input file was chromosome 1 of CHM1_CHM13_2.bam, from ERR1341796 with depth \sim50x. We also subsampled this to evaluate performance on a \sim15x data set, where quality values become much more important.

The first assessment we do is to evaluate the baseline of lossless quality values, followed by no quality values (using a fixed score) to demonstrate the impact that having any quality has. Subsequent tests evaluate quality quantisation, Crumble, Calq and QVZ2. We test variant calling precision and recall using GATK HaplotypeCaller, Bcftools and Freebayes.

Tables below show the number of true positives (TP), false positives (FP) and false negatives (FN) for all variants, after filtering by quality, and with a more complete filtering by quality, depth and per-tool recommended rules.

For our tables we use variant quality 30 in our filters, but variant callers calibrate quality values differently and the trade off between precision and recall may alter at a different quality threshold. To get a better comparison between tools and the effect that variant quality filtering has on each tool we plot the true positive vs false positive rates as a line, with points produced by varying the quality filter to values 10, 15, 20, 25, 30, 40, 50, 75 and 100. Points closer to the top-left of the graph represent a better result with fewer false positive and/or false negative calls. Each tool is graphed with and without the additional filtering steps listed in the introduction.

4.1 Original / Quantised, Chromosome 1

We first present the baseline original quality values for Chromosome 1 of the download BAM file along with no quality values using a fixed quality of 25, and simple binary quantisation with qualities 4 and 28. The reason to consider these one and two value quantisations is to provide a baseline for more targeted approaches.

We count the total number of bases in chromosome 1 alignments along with the expected number of base call errors according to their quality values. For example, if we observe 1,000 bases with phred quality 20 then we expect approximately 10 will be erroneous as quality 20 (assuming a correct BQSR recalibration) indicates a 1 in 100 error rate. For the full 50x data on chromosome 1 this gives 12,239,915,644 bases with an estimated 599,904,677 errors, yielding an amortised average quality score of 13.1. Unfortunately using this gives no calls with GATK and a large number of false negatives using bcftools and freebayes. So instead we chose an arbitrary quality value of 25 as a means to evaluate quality-less performance.

For the binary quantisation, we observe a dip in the quality frequency distribution between 16 and 20, so we split the distribution into bases with quality \geq 20 and those below. By similar counting these lead to amortised base quality scores of 4 and 28 for the two bins, which unlike single quality 13 does work well for all three tools.

The binary quantisation using values 4 and 28 has minimal impact on bcftools and freebayes recall and accuracy. With GATK it also has minimal impact on the 15x data, but with the 50x it has a small negative impact.

All three callers perform poorly with the unary quality 25, with significant increases in either false positives (Bcftools, Freebayes) or false negatives (GATK). Thus we establish that some degree of quality value separation is important for calling accuracy, even at 50 fold coverage. While using a unary quality would effectively remove all storage requirements for quality values, the binary quantisation compresses quality value storage by a factor of 7.6.
Figure 1: True Positive vs False Negative rates of GATK HaplotypeCaller on the original qualities vs binary and unary quantisation.

These show that having some fidelity of quality values is beneficial, as the fixed value of 25 does not compare well to the original. Binary quantisation to 4 and 28 has a negative impact on GATK at high depth, but minimal change on the shallow data set.

Tables with the actual counts of true positives, false positives and false negatives are shown below.

Table 1: GATK HC: 50x Original

Type	Q>0	Q>=30	Filtered	
SNP	TP	265007	264828	261977
SNP	FP	6185	5950	3047
SNP	FN	4618	4827	7682
InDel	TP	38162	38103	38075
InDel	FP	3972	3861	3690
InDel	FN	7674	7933	7961

CRAM qual size 4,106,563,351

Table 2: GATK HC: 15x Original

Type	Q>0	Q>=30	Filtered	
SNP	TP	254670	247683	241894
SNP	FP	4798	3564	2517
SNP	FN	14985	21972	27671
InDel	TP	32900	32117	32111
InDel	FP	2781	2561	2521
InDel	FN	13136	13919	13925

CRAM qual size 1,211,486,517

Table 3: GATK HC: 50x Qual 4 + 28

Type	Q>0	Q>=30	Filtered	
SNP	TP	264592	264442	261645
SNP	FP	5661	5438	2950
SNP	FN	5063	5213	8010
InDel	TP	37322	37265	37238
InDel	FP	3000	3514	3377
InDel	FN	8714	8771	8798

CRAM qual size 539,249,433

Table 4: GATK HC: 15x Qual 4 + 28

Type	Q>0	Q>=30	Filtered	
SNP	TP	249779	243924	238273
SNP	FP	4000	3132	2206
SNP	FN	10876	25731	31382
InDel	TP	30170	29891	29884
InDel	FP	2312	2167	2133
InDel	FN	15666	16145	16152

CRAM qual size 159,104,061
Table 5: GATK HC: 50x Qual 25

Type	Q>0	Q>=30 Filtered
SNP TP	264727	264408 261295
SNP FP	7055	5556 3189
SNP FN	4928	8682 8721
InDel TP	37522	37354 37315
InDel FP	3685	3496 3402
InDel FN	8514	8682 8721

CRAM qual size 756,507

Table 6: GATK HC: 15x Qual 25

Type	Q>0	Q>=30 Filtered
SNP TP	252113	242781 236923
SNP FP	9614	3946 3132
SNP FN	17542	26874 32732
InDel TP	31651	30461 30451
InDel FP	2558	2258 2236
InDel FN	14385	15575 15585

CRAM qual size 223,176

Table 7: Bcftools: 50x Original

Type	Q>0	Q>=30 Filtered
SNP TP	263750	262682 262599
SNP FP	5493	3942 3216
SNP FN	5905	6973 7056
InDel TP	35434	33790 35143
InDel FP	14490	13048 1678
InDel FN	10002	12237 10893

CRAM qual size 4,106,563,351

Table 8: Bcftools: 15x Original

Type	Q>0	Q>=30 Filtered
SNP TP	253194	232858 232734
SNP FP	4763	2243 1648
SNP FN	16461	36797 36921
InDel TP	31820	28302 29450
InDel FP	5198	3085 596
InDel FN	14216	17534 16586

CRAM qual size 1,211,486,517

Bcftools

Figure 2: True Positive vs False Negative rates of Bcftools on the original qualities vs binary and unary quantisation.

As with GATK HaploypeCaller, Bcftools is harmed by having no quality values. However the lines showing binary binned (4 and 28) qualities are nearly superimposed on top of the lossless quality calls, at some points being marginally improved by the binning process.

Note the bcftools indel filtering doesn’t use quality values, hence these come out as a single point.
Table 9: Bcftools: 50x Qual 4 + 28

Type	Q>0	Q>=30 Filtered
SNP TP	263644	262507
SNP FP	5521	3171
SNP FN	7065	1488
InDel TP	35364	33080
InDel FP	14630	1652
InDel FN	1056	10936

CRAM qual size 539,249,433

Table 10: Bcftools: 15x Qual 4 + 28

Type	Q>0	Q>=30 Filtered
SNP TP	252813	230917
SNP FP	4945	1613
SNP FN	7065	3171
InDel TP	35364	33080
InDel FP	14630	1652
InDel FN	1056	10936

CRAM qual size 159,104,061

Table 11: Bcftools: 50x Qual 25

Type	Q>0	Q>=30 Filtered
SNP TP	263813	262507
SNP FP	11444	4515
SNP FN	7116	1148
InDel TP	34831	31564
InDel FP	14630	1652
InDel FN	11472	1148

CRAM qual size 756,507

Table 12: Bcftools: 15x Qual 25

Type	Q>0	Q>=30 Filtered
SNP TP	252531	228851
SNP FP	17447	2688
SNP FN	17124	4680
InDel TP	30978	28782
InDel FP	14630	1652
InDel FN	11472	1148

CRAM qual size 223,176

Freebayes

Figure 3: True Positive vs False Negative rates of Freebayes on the original qualities vs binary and unary quantisation.

As with Bcftools, fixed quality is harmful, but again we see binary quantisation having either no effect or a small benefit.
Table 13: Freebayes: 50x Original

Type	Q > 0	Q ≥ 30	Filtered
SNP TP	264313	262900	261709
SNP FP	6018	4994	2880
SNP FN	5342	6746	7886
InDel TP	32756	32018	31362
InDel FP	675	574	330
InDel FN	13280	14018	14674

CRAM qual size 4,106,563,351

Table 14: Freebayes: 15x Original

Type	Q > 0	Q ≥ 30	Filtered
SNP TP	258860	222751	200892
SNP FP	4994	2984	1269
SNP FN	10787	46904	68763
InDel TP	30122	23257	18760
InDel FP	535	297	108
InDel FN	15914	22779	27276

CRAM qual size 1,211,486,517

Table 15: Freebayes: 50x Qual 4 + 28

Type	Q > 0	Q ≥ 30	Filtered
SNP TP	264310	262753	261637
SNP FP	5863	4856	2789
SNP FN	5345	6902	8018
InDel TP	32687	31795	31159
InDel FP	654	566	324
InDel FN	13349	14241	14877

CRAM qual size 539,249,433

Table 16: Freebayes: 15x Qual 4 + 28

Type	Q > 0	Q ≥ 30	Filtered
SNP TP	258878	219981	199141
SNP FP	5018	2919	1236
SNP FN	10777	49674	70514
InDel TP	30098	22849	18462
InDel FP	532	287	99
InDel FN	15938	23187	27574

CRAM qual size 159,104,061

Table 17: Freebayes: 50x Qual 25

Type	Q > 0	Q ≥ 30	Filtered
SNP TP	264306	262900	261822
SNP FP	9670	6698	4147
SNP FN	5349	6695	7833
InDel TP	32064	32578	31797
InDel FP	739	633	354
InDel FN	13072	13438	14239

CRAM qual size 756,507

Table 18: Freebayes: 15x Qual 25

Type	Q > 0	Q ≥ 30	Filtered
SNP TP	258860	219683	200481
SNP FP	11610	3433	1455
SNP FN	10795	49972	69174
InDel TP	30555	24061	19185
InDel FP	631	349	118
InDel FN	15781	21975	26851

CRAM qual size 223,176
Tool Comparisons

Given the above analysis, we are also able to do a side by side comparison between GATK HaplotypeCaller, Bcftools and Freebayes results on both 50x and 15x data sets. Such an analysis is not the primary focus of this paper, but given we have the data available it is an interesting diversion.

Missing from these figures is the usefulness of output. In order to compare between tools and get a constant total number of variants we have split all multi-allelic sites and MNP's into individual records, as this permits Freebayes haplotype calls to be compared against bcftools and GATK HaplotypeCaller, however in doing so it removes one of the strengths of Freebayes in that neighbouring mutations are phased. It should be noted this is purely a snapshot of one single individual with two alleles in even proportion, so we do not encourage any broader conclusions to be made. Also note that regardless of the tool used for calling, the data has previously been passed through GATK BQSR (base quality score recalibration).

On this data set we observe that each tool occupies its own distinct space in the accuracy (true positives) vs recall (false negatives) graph for SNP calling, meaning that each tool has its own strengths.

Figure 4: A summary of True Positive vs False Negative rates of GATK HaplotypeCaller, Bcftools and Freebayes at multiple quality thresholds, with and without filtering.
4.2 Crumble

Crumble was tested with minimum (-1), maximum (-9p8) and custom optimised (-9p8 -u30 -Q60 -D100) parameters. The compression level (1 to 9) controls a larger set of parameters, which can be seen with `crum ble -h’. Some of these are the ones adjusted in the optimised crum ble: -u30 adjusts the quality used in high confidence calls (defaults to 40); -Q60 reduces the minimum SNP consensus confidence required to trigger quality value replacement, from 70 (-9) or 75 (-1); likewise -D100 reduces the minimum indel consensus confidence, from -125 (-9) or 150 (-1).

The lightest compression level (crum ble -1) is designed to cope better with subsequent remapping to different reference sequences, achieved by storing more lossless quality values in regions of low mapping score, potential collapsed repeats or missing insertions. However this requires a considerably larger amount of storage.

For the full 50x data set, to run crum ble -9p8 on chromosome 1 took 41 minutes elapsed time on a 2.2GHz Intel Xeon E5-2600, using 3Gb of RAM. Processing the entire genome (a 155Gb BAM file) took just over 10 hours, peaking at 3.8Gb of RAM.

The effect differs slightly per caller, although as expected the lowest level of lossy compression (crum ble -1) was always closest to the original calls. Even so, crum ble -1 gives a compressed quality size only 14% larger than the binary quantisation method using scores 4 and 28 introduced in the previous section. Crumble with the maximum optimised GATK parameters appears to also work well with bcftools and freebayes, indicating the optimisation is more related to the data rather than the caller.

Both higher levels of crum ble tested give around 2.3 times better quality compression than the binary quantisation.

GATK HaplotypeCaller

![Figure 5: True Positive vs False Negative rates of GATK HaplotypeCaller on the Crumbled vs lossless qualities.](image)

There is some variation between 50x / 15x and between SNP / Indel on whether the light Crum ble -1 qualities are better than the lossless ones. However uniformly the P-score smoothing and more aggressive compression modes of Crum ble are beneficial to all tests, with the more optimised parameters working best overall.
Type	Q>0	Q>=30	Filtered
SNP	265007	264896	262030
SNP	6226	5715	2968
SNP	4648	48 29	7625
InDel	38155	38088	38064
InDel	3965	3846	3649
InDel	7881	7948	7972
CRAM qual size 613,816,217

Type	Q>0	Q>=30	Filtered
SNP	254875	247918	242191
SNP	4787	3624	2580
SNP	14780	21737	27464
InDel	32908	32116	32106
InDel	2783	2544	2507
InDel	13128	13920	13930
CRAM qual size 260,305,104

Type	Q>0	Q>=30	Filtered
SNP	265032	264907	262161
SNP	6334	5770	2980
SNP	4623	4748	7494
InDel	38055	38193	38157
InDel	3901	3869	3699
InDel	7771	7843	7879
CRAM qual size 234,945,688

Type	Q>0	Q>=30	Filtered
SNP	257697	252166	246502
SNP	5145	3804	2742
SNP	11958	17489	23153
InDel	33384	32549	32538
InDel	2890	2625	2581
InDel	12652	13487	13498
CRAM qual size 77,416,003

Type	Q>0	Q>=30	Filtered
SNP	264966	264834	262100
SNP	6059	5551	2866
SNP	4689	4281	7555
InDel	38555	38187	38147
InDel	3937	3819	3658
InDel	7781	7849	7889
CRAM qual size 228,658,529

Type	Q>0	Q>=30	Filtered
SNP	256536	250405	244179
SNP	4439	3491	2488
SNP	13119	19250	24896
InDel	33344	32534	32521
InDel	2834	2589	2547
InDel	12692	13502	13515
CRAM qual size 72,072,237

Bcftools

The effect of Crumble on bcftools is less clear than GATK, particularly at 50x. Not visible in the plot, the lossless and Crumble -1 SNP lines are superimposed for the 15x sample, possibly because at shallow data fewer quality values are adjusted. Which algorithm works best varies slightly based on which quality score is used in filtering, but the winner for SNPs is usually one of the two highest Crumble levels. Indels show less significant differences after filtering, perhaps due to lack of using quality in the filtering, with all 4 methods picking a slightly different trade off between precision and specificity.
Figure 6: True Positive vs False Negative rates of Bcftools on the Crumble vs lossless qualities.

Table 25: Bcftools: 50x crumble -1

Type	Q>0	Q>=30	Filtered
SNP	263659	262617	262534
SNP	5096	7038	7121
SNP	5496	3972	3234
SNP	5996	7038	7121
InDel	35618	33992	33237
InDel	14361	13136	1710
InDel	10418	12044	10709

CRAM qual size 613,816,217

Table 26: Bcftools: 15x Crumble -1

Type	Q>0	Q>=30	Filtered
SNP	253190	232872	232748
SNP	4764	2243	1647
SNP	16465	36783	36907
InDel	31980	28783	29391
InDel	5307	4079	605
InDel	14056	17253	16445

CRAM qual size 260,305,104

Table 27: Bcftools: 50x crumble -9p8

Type	Q>0	Q>=30	Filtered
SNP	263766	262883	262798
SNP	5818	4361	3560
SNP	5889	6772	6857
InDel	35649	33868	35186
InDel	14801	13321	1740
InDel	10367	12168	10530

CRAM qual size 234,945,688

Table 28: Bcftools: 15x Crumble -9p8

Type	Q>0	Q>=30	Filtered
SNP	256171	242505	242379
SNP	5675	2907	1873
SNP	13484	27150	27276
InDel	32053	28951	29643
InDel	5566	4291	608
InDel	13983	17085	16393

CRAM qual size 77,416,003

Table 29: Bcftools: 50x crumble -9p8 -u30 -Q60 -D100

Type	Q>0	Q>=30	Filtered
SNP	263799	262793	262710
SNP	5856	6862	6845
InDel	35674	34073	33394
InDel	15310	13747	1765
InDel	10362	11963	10642

CRAM qual size 228,658,529

Table 30: Bcftools: 15x Crumble -9p8 -u30 -Q60 -D100

Type	Q>0	Q>=30	Filtered
SNP	253740	234599	234475
SNP	4909	2169	1579
SNP	15915	35065	35180
InDel	32146	29044	29732
InDel	5081	4400	623
InDel	13890	16992	16304

CRAM qual size 72,072,237
Figure 7: True Positive vs False Negative rates of Freebayes on the Crumble vs lossless qualities.

With Freebayes, as with Bcftools, the lossless and Crumble -1 lines are superimposed. Crumble makes little difference to SNP calling after filtering, although there are slight gains with the GATK-optimised parameters. For indels after filtering the more compressed -9p8 options give a slight improvement at 50x.

Table 31: Freebayes: 50x crum ble -1

Type	Q>0	Q>=30 Filtered	
SNP TP	264319	262915	261772
SNP FP	6026	5002	3881
SNP FN	5336	6740	7883
InDel TP	32759	32000	31403
InDel FP	677	575	331
InDel FN	13277	13976	14633

CRAM qual size 613,816,217

Table 32: Freebayes: 15x Crumble -1

Type	Q>0	Q>=30 Filtered	
SNP TP	258868	222752	200889
SNP FP	5014	2991	1273
SNP FN	10787	46903	68766
InDel TP	30122	23260	18760
InDel FP	535	297	108
InDel FN	15914	22776	27276

CRAM qual size 260,305,104

Table 33: Freebayes: 50x crumble -9p8

Type	Q>0	Q>=30 Filtered	
SNP TP	264318	263302	262094
SNP FP	6376	5324	3136
SNP FN	5337	6333	7561
InDel TP	32974	32610	31847
InDel FP	716	612	333
InDel FN	13062	13426	14189

CRAM qual size 234,945,688

Table 34: Freebayes: 15x Crumble -9p8

Type	Q>0	Q>=30 Filtered	
SNP TP	258916	236683	207011
SNP FP	6004	3410	1476
SNP FN	10739	32972	62644
InDel TP	30393	25528	19627
InDel FP	597	362	125
InDel FN	15643	20908	26409

CRAM qual size 77,416,003
Type	Q>0	Q>=30	Filtered
SNP	264312	263002	261876
SNP	5976	4923	3907
SNP	5343	6633	7779

InDel: TP 32865, FP 689, FN 13171

CRAM qual size 228,658,529

Type	Q>0	Q>=30	Filtered
SNP	258853	225856	202815
SNP	5065	2921	1283
SNP	10802	43799	66840

InDel: TP 30189, FP 559, FN 15847

CRAM qual size 72,072,237
4.3 CALQ

CALQ requires a sorted SAM file plus reference sequence as input and emits a new file containing the compressed qualities in its own format. The decode process produces a file containing just qualities, which with the aid of a supplied python script can then be put back into the original SAM file.

To encode:

```
calq -r $HREF -q Illumina-1.8+ -o CHM1_CHM13_2.chr1.sam.cq \
     -f CHM1_CHM13_2.chr1.sam 2>&1 | tee CHM1_CHM13_2.chr1.sam.calq.txt
```

To decode:

```
calq -f -s CHM1_CHM13_2.chr1.sam -d -o CHM1_CHM13_2.chr1.sam.cq.qual \
     CHM1_CHM13_2.chr1.sam
```

Followed by `replace_qual_sam.py` to replace the qualities in the original input SAM file.

The encode process took approximately 7 hours for chromosome 1 and the decode 1.5 hours.

Figure 8: True Positive vs False Negative rates of GATK HaplotypeCaller on the lossless vs CALQ qualities.

We only show GATK HaplotypeCaller results for CALQ and QVZ2, as evaluating these tools is not the primary focus of this paper.

Compared to the lossless qualities, with the 50x data sets CALQ gives a significant decrease in true positives. The 15x data set fares better, representing a different tradeoff between precision and recall. The compressed quality size is comparable to the lightest compression with crumble (`crumble -1`).

Type	Q>0	Q>=30 Filtered	CALQ .cq size
SNP	264619	264530	618,891,043
SNP	6408	5877	
SNP	5036	5116	
InDel	37202	37235	
InDel	3685	3585	
InDel	8756	8801	

Table 37: CALQ + GATK HC, 50x

Type	Q>0	Q>=30 Filtered	CALQ .cq size
SNP	250152	248941	187,994,047
SNP	4527	3432	
SNP	19203	20714	
InDel	30484	29767	
InDel	2875	2211	
InDel	15688	16269	

Table 38: CALQ + GATK HC, 15x
QVZ2 operates on a file containing only quality values (e.g. every 4th line in a FASTQ file). It required around 10Gb of RAM and took 27 minutes to encode. It uses its own compressed file format for storing the quality values. After decoding we ran the `replace_qual_sam.py` tool from CALQ to update the SAM file prior to variant calling.

Comparing the Crumble results with QVZ2 we see the effect of minimising quality mean squared error vs aggressively increasing and decreasing qualities based on likelihood of variant calls changing. The mean squared error from Crumble changes will be very significant, but the size reduction is proportionally far greater while still achieving minimal changes to variant calling, in this case a small gain. QVZ2 has minimal impact on calling precision and recall at its lowest level (-t1). QVZ2 -t4 produces a slight shift towards more false positives with fewer false negatives, but is broadly beneficial, especially post filtering. The compression ratio at this option is not far behind CALQ and Crumble -t1. Finally QVZ2 -t16 gives the smallest file of all (about 10% smaller than crumble -9p8), but has a significant increase in false positives.

Table 39: QVZ2 -t 1 + GATK HC, 50x

Type	Q>0	Q≥30 Filtered
SNP TP	264991	264810 261954
SNP FP	6541	5947 3052
SNP FN	4664	4845 7701

InDel TP | 38125 | 38065 38038 |
InDel FP | 3948 | 3826 3663 |
InDel FN | 7911 | 7971 7998 |

QVZ2 qual size: 1,493,843,021

Table 40: QVZ2 -t 1 + GATK HC, 15x

Type	Q>0	Q≥30 Filtered
SNP TP	254503	247938 241799
SNP FP	4668	3495 2457
SNP FN	15152	22057 27856

InDel TP | 32732 | 31970 31964 |
InDel FP | 32732 | 31970 31964 |
InDel FN | 13304 | 14066 14072 |

QVZ2 qual size: 441,580,609
Table 41: QVZ2 -t 4 + GATK HC, 50x

Type	Q>0	Q>=30 Filtered
SNP TP	265058	264873 263025
SNP FP	6874	6155 3095
SNP FN	4927	4782 7630
InDel TP	38256	38175 38138
InDel FP	4058	3904 3732
InDel FN	7780	7861 7898

QVZ2 qual size: 657,068,110

Table 42: QVZ2 -t 4 + GATK HC, 15x

Type	Q>0	Q>=30 Filtered
SNP TP	255342	248070 242197
SNP FP	5105	3706 2635
SNP FN	14313	21585 27458
InDel TP	33240	32373 32365
InDel FP	2837	2592 2557
InDel FN	12796	13663 13671

QVZ2 qual size: 194,172,554

Table 43: QVZ2 -t 16 + GATK HC, 50x

Type	Q>0	Q>=30 Filtered
SNP TP	265051	264852 261936
SNP FP	8959	7322 3545
SNP FN	4604	4803 7719
InDel TP	38215	38108 38073
InDel FP	4126	3925 3740
InDel FN	7821	7928 7963

QVZ2 qual size: 201,725,874

Table 44: QVZ2 -t 16 + GATK HC, 15x

Type	Q>0	Q>=30 Filtered
SNP TP	255105	247508 241601
SNP FP	9314	4541 3410
SNP FN	14550	22147 28054
InDel TP	32997	31986 31977
InDel FP	2918	2616 2584
InDel FN	13039	14050 14059

QVZ2 qual size: 59,859,656

4.5 Syndip regions

The Syndip data set is not perfect and there are bed files to filter out poor regions. This may lead to concern that we are testing only well behaved data and do not know how the tools work in hard to sequence regions. This concern is true for all truth sets generated from real sequencing data, including the Genome in a Bottle (GIAB) and Platinum Genomes (PlatGen) data sets that have been established for longer. The Syndip paper indicates that testing variant callers on Syndip probes more of the genome, including more difficult parts, leading to substantially higher false positive rates than seen with GIAB and PlatGen.

"Figure 2a reveals that the FPPM of SNPs estimated from Syndip is often 5-10 times higher than FPPM estimated from GIAB or PlatGen. Looking into the Syndip FP SNPs, we found most of them are located in CNVs that are evident in PacBio data in the context of long flanking regions, but look dubious in short-read data alone."

The total number of bases included in chromosome 1 from Syndip is 212.9Mb out of 225.3Mb of non-N reference. This compares favourably to 204.4Mb in filtered GIAB.

Furthermore we can subtract the GIAB regions from Syndip regions to get only regions that occur in Syndip (around 8.4Mb). To see a significantly elevated overall false positive rate, either the Syndip data is highly erroneous or the bulk of the extra false positives are within this region. To test this we ran GATK on the data sets filtered to this region alone.

Comparing this to the full Syndip regions for chromosome 1 we see that 65% of false positives occur within this small portion. This addresses the possibility that we are restricting ourselves to only good quality data. The results show that Crumble still performs well in this region.

Table 45: GATK HC: 50x Original

Type	Q>0	Q>=30 Filtered
SNP TP	19858	19740 18298
SNP FP	4384	4014 1950
SNP FN	3818	3036 5378
InDel TP	9822	9774 9752
InDel FP	2992	2933 2807
InDel FN	4416	4464 4486

Table 46: GATK HC: 15x Original

Type	Q>0	Q>=30 Filtered	
SNP TP	17411	16711 15616	
SNP FP	3063	2533 1643	
SNP FN	6255	6965 8600	
InDel TP	7187	6966 6961	
InDel FP	2040	1923 1887	
InDel FN	7051	7272 7277	
Type	Q>0	Q>=30	Filtered
----------	------	-------	----------
SNP TP	19900	18801	18360
SNP FP	4229	3872	1829
SNP FN	3776	3875	3316
InDel TP	9879	9822	9789
InDel FP	2985	2902	2792
InDel FN	4359	4416	4449

Table 48: GATK HC: 15x Crumbl -9p8...

Type	Q>0	Q>=30	Filtered
SNP TP	17711	16990	15899
SNP FP	2948	2496	1624
SNP FN	5965	6686	7777
InDel TP	7399	7130	7125
InDel FP	2080	1921	1884
InDel FN	6839	7108	7113

Table 49: GATK HC: 50x Calq

Type	Q>0	Q>=30	Filtered
SNP TP	19521	19465	18050
SNP FP	4203	3931	1999
SNP FN	4155	4211	5626
InDel TP	9186	9133	9123
InDel FP	2751	2688	2576
InDel FN	5052	5085	5115

Table 50: GATK HC: 15x Calq

Type	Q>0	Q>=30	Filtered
SNP TP	16267	16065	15020
SNP FP	2726	2367	1525
SNP FN	7409	7611	8656
InDel TP	6042	5913	5908
InDel FP	1716	1628	1598
InDel FN	8196	8325	8330

Table 51: GATK HC: 50x QVZ2 -t 4

Type	Q>0	Q>=30	Filtered
SNP TP	19901	19771	18335
SNP FP	4486	4087	1981
SNP FN	3775	3905	5341
InDel TP	9894	9829	9799
InDel FP	3038	2932	2833
InDel FN	4344	4409	4439

Table 52: GATK HC: 15x QVZ2 -t 4

Type	Q>0	Q>=30	Filtered
SNP TP	17588	16842	15729
SNP FP	3234	2652	1730
SNP FN	6088	6834	7947
InDel TP	7358	7097	7083
InDel FP	2078	1940	1900
InDel FN	6880	7141	7155
5 Syndip Summary

Table 53: Summary of filtered 50x Syndip Chromosome 1

Tool	Method	SNP FP	SNP FN	Indel FP	Indel FN	Qual size
GATK	Lossless	3047	7678	3600	7961	4,106,563,351
GATK	Qual 4 + 28	2950	8010	3377	8798	539,249,433
GATK	Qual 25	3189	8360	3402	8721	756,507
GATK	Crumble -1	2968	7625	3649	7972	613,816,217
GATK	Crumble -9p8	2980	7494	3699	7879	234,945,688
GATK	Crumble -9p8 -u30...	2866	7555	3658	7889	228,658,529
GATK	CALQ	3266	7915	3412	8834	618,891,043
GATK	QVZ2 -t1	3052	7701	3663	7998	1,493,843,021
GATK	QVZ2 -t4	3095	7630	3732	7898	657,068,110
GATK	QVZ2 -t16	3545	7719	3740	7963	201,725,874
Bcftools	Lossless	3216	7056	1678	10893	4,106,563,351
Bcftools	Qual 4 + 28	3171	7148	1652	10956	539,249,433
Bcftools	Qual 25	4515	7116	1567	11472	756,507
Bcftools	Crumble -1	3234	7121	1710	10709	613,816,217
Bcftools	Crumble -9p8	3569	6857	1740	10850	234,945,688
Bcftools	Crumble -9p8 -u30...	3197	6945	1765	10642	228,658,529
Freebayes	Lossless	2880	7886	330	14674	4,106,563,351
Freebayes	Qual 4 + 28	2789	8018	324	14877	539,249,433
Freebayes	Qual 25	4147	7833	330	14239	756,507
Freebayes	Crumble -1	2881	7883	331	14633	613,816,217
Freebayes	Crumble -9p8	3136	7561	353	14189	234,945,688
Freebayes	Crumble -9p8 -u30...	2907	7779	340	14385	228,658,529

Table 54: Summary of filtered 15x Syndip Chromosome 1

Tool	Method	SNP FP	SNP FN	Indel FP	Indel FN	Qual size
GATK	Lossless	2517	27761	2521	13925	1,211,486,517
GATK	Qual 4 + 28	2206	31382	2133	10956	539,249,433
GATK	Qual 25	4515	7116	1567	11472	756,507
GATK	Crumble -1	3234	7121	1710	10709	613,816,217
GATK	Crumble -9p8	2742	27464	2507	13930	260,305,104
GATK	Crumble -9p8 -u30...	2488	24896	2547	13515	72,072,237
GATK	CALQ	2469	26346	2177	16275	187,994,047
GATK	QVZ2 -t1	2457	27856	2473	14072	441,580,609
GATK	QVZ2 -t4	2635	27458	2557	13671	194,172,554
GATK	QVZ2 -t16	3410	28054	2584	14059	59,859,656
Bcftools	Lossless	1648	36921	596	16586	1,211,486,517
Bcftools	Qual 4 + 28	1613	38738	594	16682	159,104,061
Bcftools	Qual 25	2088	40804	557	17254	223,176
Bcftools	Crumble -1	1647	36907	605	16445	260,305,104
Bcftools	Crumble -9p8	1873	27276	608	16393	77,416,003
Bcftools	Crumble -9p8 -u30...	1579	35180	623	16304	72,072,237
Freebayes	Lossless	1269	68763	108	27276	1,211,486,517
Freebayes	Qual 4 + 28	1236	70514	99	27574	159,104,061
Freebayes	Qual 25	1455	69174	118	26851	223,176
Freebayes	Crumble -1	1273	68766	108	27276	260,305,104
Freebayes	Crumble -9p8	1476	62644	125	26409	77,416,003
Freebayes	Crumble -9p8 -u30...	1283	66840	114	26886	72,072,237
6 Further compression

Unlike QVZ2 and CALQ, Crumble does not output compressed qualities itself. It is designed to be used in conjunction with an existing file format, ideally one that has efficient encoding of quality values. This means it works well in conjunction with CRAM, but improving compressibility of qualities also helps BAM.

The 15x sub-sampled file with and without Crumble for the single chromosome 1 test above have the following sizes:

file	bytes
CHM1_CHM13_2.15x.chr1.bam	3963702044
CHM1_CHM13_2.15x.chr1.cram	2188724919
CHM1_CHM13_2.15x.chr1.crumble-opt.bam	2326189762
CHM1_CHM13_2.15x.chr1.crumble-opt.cram	1049688799

In absolute bytes saved, BAM reduces by more (1.6 vs 1.1 Gb), due to initially poor compression of qualities. However in ratio terms, the original lossless CRAM was 45% smaller than the original BAM, but after Crumble the lossy CRAM is now 55% smaller than the corresponding BAM.

This particular data set has been through the GATK Base Quality Score Recalibration (BQSR) process which has preserved original qualities in the SAM OQ:Z tag. The cram_size tool from the Staden io_lib package gives summaries of the space taken by each data type within a CRAM file. The original and crumbled version are shown below for chromosome 1 of the 15x Syndip data set along with annotation of the most significant SAM fields.

Block content_id	total size	g RN (read names)	Block content_id	total size	g QS (quality scores)
11	147342810		12	1214886517	
13	210086		14	31483340	
15	7866518	R SF (BAM flags)	16	3517731	R CF (CRAM flags)
17	13006529	g AP (POS field)	18	13021662	R RG (Read group)
19	1900911	g MQ (Mapping quality)	20	355913	g NS (Mate reference ID)
21	384498	r MF (Mate flags)	22	2814026	g TS (TLEN field)
23	5262870	g NP (PNEXT field)	24	7926641	g NF (Read pairing)
26	7764331	r FN (Feature (diff) count)	27	2999682	r RC (Feature code)
28	35781940	g FP (Feature position)	29	155914	g DL (Length of CIGAR "D")
30	5926103	r RR BA (Bases)	31	8649685	r RR BS (Base substitutions)
32	3087067	r TL (Aux. tag list)	42	42526	g GPi (GP:i: aux tag)
4281155	6309393	r ASC (AS:i: aux tag)	4281187	3410488	g ASCi (AS:i: aux tag)
5063514	14956889	g NCZ (NC:Z: aux tag)	5063770	686	g MDZ (MD:Z: aux tag)
5067107	2031763	g MUC (MU:i: aux tag)	5131619	66	g NMC (NM:i: aux tag)
5194586	155914	g OCZ (OC:Z: aux tag)	5197929	42526	g GPi (GP:i: aux tag)
5198170	5926103	r RR BA (Bases)	5261146	601811789	R GZ (GU:Z: aux tag)
5456218	29615899	g PGZ (PG:Z: aux tag)	5591363	602922	g UBC (UB:i: aux tag)
5591395	1106915	r UMC (UM:i: aux tag)	5591411	289324	g UUs (UU:i: aux tag)
5797235	42	g XNC (XX:i: aux tag)	5798739	141166	g XTC (XT:i: aux tag)
Crumble: as above, but with QS (quality scores) data series as:

After this the next largest blocks are the original qualities (OQZ) as output as part of GATK BQSR and read query names (RN).

The original qualities can be completely discarded, as is now the recommendation in the GATK best practices. The other large auxiliary tag we safely remove is PG, as in this particular data it is both superfluous (existing only to inform which subset in a map-reduce style processing pipeline the read came from) and unfortunately also incorrect (none of the per-read PG tags match the @PG SAM header lines).

When all reads from the same template occur within the same CRAM slice the read names may be discarded without affecting variant calling and without losing pairing information as this is held in the CRAM NF data series. Long distance read pairs have their names retained to ensure pairing information is kept intact.

Crumble supports removal of both read names and specific auxiliary tags, as illustrated in the command below:

crumble -T OQ,PG -O cram,lossy_names -9p8 -u30 -Q60 -D100 CHM1_CHM13_2.15x.chr1.cram CHM1_CHM13_2.15x.chr1.crumble-opt.cram

The CRAM file now has no OQ:Z or PG:Z blocks and read names consume 15,480,044 bytes instead of 147,342,810.

Repeating this test on the whole genome, at full depth (50x) and reduced depths of 30x and 15x, yields the file sizes show below. Comparison between BAM and CRAM sizes show that the benefits of using a columnar storage are significantly greater on the crumpled data.

file	BAM bytes	CRAM bytes
CHM1_CHM13_2.all.lossless	165,881,395,078	94,722,033,125
CHM1_CHM13_2.all.crumble-opt	42,971,979,964	12,735,423,262
CHM1_CHM13_2.30x.lossless	100,407,390,797	56,798,653,417
CHM1_CHM13_2.30x.crumble-opt	26,826,816,872	7,635,898,756
CHM1_CHM13_2.15x.lossless	51,338,937,983	28,416,618,181
CHM1_CHM13_2.15x.crumble-opt	14,483,060,883	3,862,050,827

An approximate breakdown of storage in the reduced CRAM for the complete 30x sample is 24% qualities, 16% remaining auxiliary tags, 12% soft-clipped bases, 5% remaining read names, 5% read groups, 4% alignment position and the remaining 34% alignment and sequence-reference differences plus a small amount of overhead.

Compressing with maximum compression levels (CRAM level 9) has a marginal impact on file size, reducing the 15x original and crumbled CRAMs by 1.6% and 0.8% only. Further compression is possible by adding bzip and lzma compression methods, but these were not tested as they are not commonly used.
7 Other data sets

Although no truth sets are used for evaluating variation calling, we ran Crumble on a variety of other data sets to report the size reduction when using `crumble -O cram,lossy_names -9p8`. The output was then converted back to BAM to compare the file size between formats.

Data sets chosen were a 420x deep E.Coli Illumina MiSeq run (MiSeq_Ecoli_DH10B_110721_PF) and an Illumina human RNASeq run (K562_cytosol_LID8465_TopHat_v2). These were taken from the Moving Picture Experts Group (MPEG, JTC1/SC29/WG11 committee) data set for on-going development of the MPEG-G format.

See https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md for download links. We avoided Oxford Nanopore Technology and Pacific Biosciences data as Crumble has not been evaluated on these yet.

Before and after file sizes are reported along with the space taken up by quality values and read names where applicable.

File	Format	Method	Total size	Quality size	Name size
MiSeq_Ecoli_DH10B_110721_PF	BAM	Original	1411850544	n/a	n/a
MiSeq_Ecoli_DH10B_110721_PF	CRAM	Original	862693214	714245853	65303357
MiSeq_Ecoli_DH10B_110721_PF	CRAM	Crumble -9p8	383029759	n/a	n/a
MiSeq_Ecoli_DH10B_110721_PF	CRAM	Crumble -9p8	110638273	22526180	5197781
K562_cytosol_LID8465_TopHat_v2	BAM	Original	13756734292	n/a	n/a
K562_cytosol_LID8465_TopHat_v2	CRAM	Original	9323049695	643896054	1655419459
K562_cytosol_LID8465_TopHat_v2	CRAM	Crumble -9p8	4625068006	n/a	n/a
K562_cytosol_LID8465_TopHat_v2	CRAM	Crumble -9p8	279664367	417779131	1065784309

The effect of Crumble on both data sets is a considerable reduction to quality size within CRAM (32 fold and 15 fold respectively). The ability to perform lossy read name compression (which is part of CRAM rather than Crumble) is hampered on the RNASeq data by having reads split over larger regions and not colocating within the same CRAM slice and very few being labelled as properly paired. As a consequence the read names are the largest data type in the crumbled RNASeq data set. Neither of these files have an excessively large collection of auxiliary tags.

For both files the ratio of original to crumbled size is higher with CRAM (7.8 and 3.4) than BAM (3.7 and 3.0), demonstrating the benefit of combining lossy quality encoding with a columnar file format.

During preparation of this manuscript a bug was fixed affecting the speed of Crumble on RNASeq data. Thus the RNASeq TopHat data was processed using a more recent git commit (v0.8-4-g556fc716). Both version 0.8 and 0.8-4 were tested on the E.Coli data and observed to give identical results. Final timings were 6 min 43 seconds for the E.Coli data and 599 min 11 seconds for the RNASeq data corresponding to unthreaded BAM processing speeds of 3.3Mb/s and 0.34 Mb/s, demonstrating that there is still some degraded CPU performance operating on RNASeq data sets.

8 Conclusion

As expected, the 15x sample has fewer confident consensus bases than the 50x sample leading to a slightly lower quality compression ratio, however even at 15x there is sufficient confidence in calling to discard most quality values.

The original CRAM file for the 15x chromosome 1 comprised 24 million reads and 36 billion base pairs, giving 2.67 bits per lossless quality value. After optimal Crumble parameters were applied, this reduced to 0.16 bits per quality.

It is clear there are a lot of parameters that can be adjusted for controlling when to adjust quality values, and to which values. We have not exhaustively explored this search space. There are also open questions on the performance of Crumble on somatic / non-clonal samples, such as cancers, or mixed sample data sets. Hence we do not recommend the use of Crumble on such data without prior evaluation.

We also do not recommend usage of Crumble on non-Illumina data sets until further evaluation has been made.