Hypertrophic pachymeningitis in a southern Chinese population: a retrospective study

CURRENT STATUS: POSTED

Xuewen Xiao
Xiangya Hospital Central South University

Dongni Fu
Xiangya Hospital Central South University

Li Feng
Xiangya Hospital Central South University

fenglihx@163.com Corresponding Author
ORCID: https://orcid.org/0000-0001-7658-1399

DOI: 10.21203/rs.3.rs-18651/v1

SUBJECT AREAS
Anesthesiology & Pain Medicine

KEYWORDS
hypertrophic pachymeningitis, retrospective study, a southern Chinese population, clinical features
Abstract

Background Hypertrophic pachymeningitis (HP) is a fibrotic disorder featuring a thickening of the dura matter. Most HP studies were from Caucasian population and only a few studies of HP are available in China. In this study, we investigated the causes, clinical and imaging features and therapeutic implications of HP in a southern Chinese population.

Methods We retrospectively analyzed 48 patients with HP with different causes from 1 January 2006 to 31 December 2018. Clinical manifestation, laboratory findings, neuroimaging results, and clinical course were evaluated in all HP patients.

Results The mean age at onset was 50±12 years. The most common diagnosis was idiopathic HP (67%), followed by ANCA-associated vasculitis (15%), tuberculous meningitis (8%), viral meningitis (6%), and bacterial meningitis (4%). The main clinical manifestations were headache and cranial nerve deficits. The most frequently changed laboratory finding was elevated ESR. Imaging was characterized by cerebral or spinal dura matter enhancement in MRI scan with contrast. Enhancements were mainly located in the posterior fossa for idiopathic HP; frontal, parietal and occipital lobes for ANCA-related HP; and the posterior fossa for tuberculous-associated HP. Diffuse enhancement was found in most cases, except for tuberculous-associated HP. Glucocorticoid or immunosuppressive treatment were applied in most cases.

Conclusions HP was diagnosed based on clinical manifestations, imaging and laboratory results. Etiology varied among patients, with idiopathic HP being the most common. MRI with contrast showed enhancement of the dura matter, which differed according to different etiologies. Glucocorticoid or immunosuppressive agents were the primary drugs for treatment.

1. **Background**

Hypertrophic pachymeningitis (HP) is a fibrosing inflammatory disorder featuring localized or diffused thickening of the cranial or spinal dura matter. Enhanced MRI is currently the most powerful tool to diagnose HP. The disorder can be divided into cranial or spinal pachymeningitis by lesion location and idiopathic or secondary HP by etiology. Infections and autoimmune diseases are among the most identified causes of secondary HP[1]. Notably, thickening of the dura mater is present in other
conditions, such as intracranial hypotension syndrome or neoplastic pachymeningitis, which should be carefully differentiated to avoid misdiagnosis.

As a rare disease, the prevalence of HP has been reported to be 0.949/100,000 persons, half of whom had idiopathic HP[2]. Such a low prevalence contributes to the fact that most published articles are case reports, which has made it difficult to draw a complete picture of the disease. Furthermore, most HP cases have been reported in the Caucasian population; only a few studies of HP, with relatively small sample sizes, are available in China[3–5]. In this study, we retrospectively investigated 48 patients diagnosed with HP in our neurology department. With the largest simple size in HP patients thus far, we hope to characterize HP in terms of its etiology and clinical manifestation in a southern Chinese population and further our understanding of HP.

2. Methods

Forty-eight patients diagnosed with hypertrophic pachymeningitis were retrospectively reviewed from January 2006 to 31 December 2018 in the neurology department of Xiangya hospital from electronic medical records. The entry criteria were defined as follows: (i) diagnosis was based on dura matter biopsy or dura matter enhancement in gadolinium MRI T1 sequences; and (ii) dural thickening could not be explained by intracranial hypotension, neoplastic pachymeningitis or other conditions. We collected clinical, laboratory, imaging, and therapeutic data from these patients from our electronic medical records system.

MRI enhancements were categorized by their locations, distributions, and patterns according to a definition described by Hahn et al[6]. Locations were identified by an experienced radiologist. Distributions were categorized according to the following standards: lesions covering more than 50% of the intracranial compartment or greater than five vertebral levels were defined as “diffuse enhancement”, and the rest were described as “focal enhancement”. Furthermore, we used the concept of “roughness” to describe the enhancement patterns in a more detailed manner. “Roughness” was classified into “irregular” and “regular”. “Irregular” referred to the existence of nodules, while “regular” was characterized by linear enhancement without any nodules.

Clinical records, including basic information, such as age at onset, sex, duration; clinical
presentations, which were recorded from the history of the present illness; and laboratory findings, such as white blood cell count (WBC), neutrophil count, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF), cerebrospinal fluid (CSF) pressure, CSF protein, CSF glucose, CSF adenosine deaminase (ADA), CSF immune globulin, and other laboratory results during the hospitalized period, were collected.

3. Results

3.1. Demographics

Among the 48 HP cases, there were 24 men and 24 women, with no sex predominance. However, distribution of etiology differs between genders. Idiopathic and AAV-related HP were found in both genders, while viral and tubercular HP only found in female, and bacterial HP were only found in males. The most common diagnosis was idiopathic HP (32/48, 67%), followed by ANCA-associated vasculitis (AAV) (7/48, 15%), tuberculous meningitis (4/48, 8%), viral meningitis (3/48, 6%), and bacterial meningitis (2/48, 4%) (Table 1) (Fig. 1a,b).

The first HP-related symptom occurred at an average age of 50±12 years (range 26-73 years). Among the HP patients, those with AAV had the oldest age at onset (60±13 years), and the youngest were those with viral meningitis, whose average age at onset was 38±12 years (Fig. 1c).

The duration from symptom onset to diagnosis of HP ranged from 0.25 to 144 months (with an average of 22 months), among which bacterial meningitis had the shortest duration (0.6±0.4 months), while idiopathic HP had the longest duration (25±36 months).

3.2 Radiographic imaging features

Locations of the enhancements varied greatly among the different types of HP. The posterior fossa was the most affected area in idiopathic HP (fifteen cases; Fig. 2a) and was also common in patients with tuberculous meningitis HP (three cases; Fig. 2b), while frontal, parietal and occipital lobes were the most affected areas in AAV (three cases; Fig. 2c).

For the enhancement distribution patterns, we found that idiopathic (16/32), AAV (4/7) and viral HP (2/3) presented diffuse enhancement patterns. In contrast, almost all tuberculous meningitis HP (4/4) showed focal enhancement patterns. “Irregular” enhancement was much more common in idiopathic
patients (15/32), while other types of HP exhibited more regular patterns (Table 2).

3.3 Clinical features

Headache, the most common clinical feature of HP, regardless of etiology, occurred in 92% of all HP patients (Table 1) and accounted for 94% of idiopathic HP (30/32), 100% of AAV HP (7/7), 75% of tuberculous meningitis HP (3/4), 100% of viral meningitis HP (3/3), and 50% of bacterial meningitis HP (1/2).

Cranial nerve deficits, the second most common symptom, existed in more than half of the idiopathic HP, AAV, and tuberculous meningitis patients. In cases of idiopathic HP, cranial nerve II (optic nerve) was the most frequently affected nerve (25%), followed by cranial nerves VI, VIII, III, IV, and V. Ten of the 32 idiopathic HP patients complained of diplopia, indicating cranial nerve III and VI deficits. Cranial nerves II (57%) and VIII (29%) were the most frequently involved nerves in AAV patients. Deficits in cranial nerves II (25%), VII (25%), and VIII (25%) were common in HP patients with tuberculous meningitis. Cranial nerves VI (33.3%) and II (50%) were the only affected nerves in HP patients with viral and bacterial meningitis, respectively. A minority of idiopathic HP patients presented disturbance of consciousness, fever, ataxia, and seizures. Fever, dizziness, diuresis, and suspicious positive pathologic reflex were reported in some AAV HP patients.

3.4 Laboratory features

Elevated ESR (87.5%) topped the rank of altered laboratory findings in blood tests, followed by CRP elevation (79%) (Table 1). RF elevation mainly occurred in 4 cases (57.1%) of AAV and 3 cases (9.4%) of idiopathic HP. WBC elevation (57.1%) and neutrophil elevation (85.7%) presented mostly in patients with AAV, accounting for 57.1% and 85.7% of AAV-related HP, respectively. Regarding idiopathic HP and tuberculous meningitis, WBC and neutrophil elevation occurred in approximately 25% of HP patients. CSF pressure increased in 10 patients with idiopathic HP, followed by 3 patients with AAV, 1 patient with tuberculous meningitis and bacterial meningitis. CSF protein elevation was present in 17 patients with idiopathic HP, 7 patients with AAV, 3 patients with tuberculous meningitis and 2 patients with viral meningitis (Fig. 3). Dural biopsy of a patient with idiopathic HP showed fibroplasia and chronic inflammatory cell infiltration.
3.5 Treatment modalities

Glucocorticoids were the most used drugs and were administered to 68.75% of all patients (33/48).

For idiopathic HP patients, 16 patients were receiving active follow-up. Eight of these patients improved and three relapsed with glucocorticoid treatment, while four of them improved and one relapsed without the use of glucocorticoids. For ANCA-related HP patients, four patients had partial responses while one patient relapsed after treatment with steroids. Two HP patients with tuberculous meningitis progressed despite glucocorticoid treatment. Additionally, two HP patients with viral meningitis and bacterial meningitis recovered after the etiological treatments.

4. Discussion

HP is a rare disease worldwide with relatively low prevalence but that is seriously debilitating or life-threatening. The existing studies of HP are usually based on small sample sizes, especially in China. To our knowledge, this is the largest HP study conducted in China with the aim of exploring the clinical features of people with HP and could be useful for clinicians in diagnosis and prognosis.

4.1 Demographics

We found that the most common type of HP was idiopathic HP, followed by AAV-related HP, tuberculous-associated HP, viral-related HP and bacterial-related HP. No sex preference was identified in our study, which was not consistent with previous works[2-4]. The onset of the first symptoms mainly occurred at an age of 50±12 years, which was earlier than the patients in the US and Japan[2,5]. The definite time to diagnosis of HP ranged from 0.25 to 144 months (with an average of 22 months), among which the HP patients with bacterial meningitis had the shortest duration (0.6±0.4 months) and idiopathic HP patients had the longest (25±36 months). For idiopathic HP patients, many different types of examinations were needed to rule out multiple possible reasons before the final diagnosis, which may explain why idiopathic HP patients required a relatively long time for diagnosis.

4.2 Imaging features

In our results, idiopathic, AAV and viral HP showed “diffuse” enhancement patterns, which was also confirmed by Hahn et al in idiopathic HP patients. We found that all cases of tuberculous meningitis
appeared with “focal” enhancement patterns, which was similar to the results reported from Portugal[7]. The “roughness” of the enhancement patterns seems to be a distinguishing factor for idiopathic HP. An “irregular” pattern was common in idiopathic HP patients, while other HP patients were likely to present a “regular” pattern. However, Hahn et al[6] holds a contrasting view that the majority of idiopathic HP patients in the US exhibited regular enhancement instead of an irregular pattern. The reasons for the different conclusions between the two studies is not clear. The question of whether race was taken into consideration will require more studies in the future.

Locations of the thickened dura matter differ among different causes. The posterior fossa was the most affected area in idiopathic HP and tuberculous meningitis HP according to our study, which was also reported in other studies[6,8,9]. It is notable that posterior fossa HP can cause acute noncommunicating hydrocephalus[9]. In addition to the posterior fossa, thickened falx cerebri[10-14], anterior cranial fossa[15], cerebellar tentorium[10,16], frontal lobes[10,11,17], sphenoid wings[18], cavernous sinuses[19], and paranasal maxillary sinuses[19,20] were also involved in HP patients. With enhancements in the cerebral falx and tentorium cerebelli in coronal scanning, a typical “Eiffel Tower”[21,22] or “Benz” sign emerged[23]. Enhancement in the cerebral falx or tentorium cerebelli can be mistakenly regarded as subarachnoid hemorrhage or superior sagittal sinus. Thus, attention must be paid to the signs in images to avoid misdiagnosis. Temporal or occipital enhancements may be secondary to suppurative otitis media. Granulation or effusion in the middle ear caused by small vasculitis may spread to the dural mater and lead to secondary HP[4]. Therefore, patients with otitis media or concurrent multiple cranial nerve deficits should receive contrast-enhanced MRI to rule out HP. In addition, the involvement of the junction of the craniocervical area has been reported in several cases[8,24] and causes obstructive hydrocephalus along with cerebellar tonsillar herniation.

Peripheral to the lesion, there is usually a circle of enhancement in images[18,25], which may be caused by a zone of active inflammation along with the border of the lesion[5]. Enhancement of spinal HP is typically found within cervical and high thoracic regions. In our study, the lumbar and cervical dura were enhanced in several idiopathic HP patients. In a Japanese retrospective study, dura matter in the convexity was the most commonly thickened area in AAV-induced HP[26]. These findings
suggested the potential role of racial differences for differential diagnosis in dural enhancement patterns in HP.

4.3 Clinical manifestation

Headache was the most common clinical feature of HP, regardless of etiology[6] and was also the case in our study. As an initial symptom of HP, headache can progress overtime[12]. Thus, for patients with progressive chronic headache, enhanced MRI is of great importance. Locations of headache mainly coincided with the locations of enhanced dura matter in MRI[27], which suggested that headache might be associated with irritations caused by inflammation[18], stenosis of cerebral venous sinus resulting from fibrosis[28], and hydrocephalus and intracranial hypertension caused by difficulty reabsorbing CSF[29].

Cranial nerve deficits, the second most common symptom of HP, might be caused by oppressive ischemia, thickened meninges encroachment, or epineurium inflammatory infiltration[30]. Cranial nerve deficits can be divided into two types according to the location of the thickened dura matter. Cranial nerve II to VI deficit might be associated with thickened meninges from the cavernous sinus to the superior orbital fissure. Thickened meninges from the cerebral falx and tentorium cerebelli to the posterior cranial fossa may lead to cranial nerve IX to XII dysfunction. Cranial nerves II and VIII were the most affected cranial nerves in HP, which was in agreement with our study[6].

Other common symptoms in HP patients in our study included psychiatric disorders[12,18], ataxia, and seizures[31], which were in accordance with previous studies. Venous sinus thrombosis[32-34] and venous sinus stenosis[35-37] were reported in some western countries but have not been identified in China, including in our study[38].

IHSP mainly affects the cervical and thoracic spine (86%) and, in rare situations, involves the entire spine (7%)[8]. Only a few cases of the craniospinal form of idiopathic HP have been reported[24,39]. Generally, the ventral spine canal dura was more susceptible than the dorsal spine canal dura[18]. The most common symptom, paralysis, occurred in 71% of the HSP patients. Other symptoms include numbness (64%), bladder and rectal dysfunction (43%), back pain, and nerve root or spinal cord compression[8].
4.4 Laboratory findings

In a retrospective study of 12 Chinese patients, elevated CRP and ESR were reported[38], which is in accordance with our results, revealing an inflammatory nature of HP. In a retrospective study of 22 Chinese patients diagnosed with HP, 17 patients had abnormal cerebrospinal fluid (CSF) and/or abnormal biochemical tests, such as increased CSF pressure, elevated CSF protein levels and immunoglobulins[10], which was also in line with our study. Blood-CSF barrier damage caused by adjacent inflammation, such as necrotizing vasculitis at the arachnoid, enabled inflammatory cell infiltration and increased immunoglobulin levels in the CSF[40]. Excessive proteins may be synthesized by intrathecal plasma cells due to a fibroinflammatory immune reaction[2] to stabilize the CSF internal environment. The arachnoid is involved in idiopathic HP, and a proportion of immunoglobulins may originate from the blood because of damage to the blood-CSF barrier at the arachnoid[30].

4.5 Etiology

According to a large-scale national epidemiological survey of 159 cases that was conducted in Japan, the majority of HP cases were idiopathic (44%). The prevalence rates of ANCA-related HP and IgG4/multifocal fibrosclerosis (MFS)-related HP were 34.0% and 8.8%, respectively[2]. In our study, the highest proportion was idiopathic HP, followed by AAV-related HP and infection-related HP. No cases of IgG4-related HP were confirmed in our study since few of them underwent biopsies. Immune-related HP included HP caused by AAV, IgG4-related disorder, rheumatoid arthritis, sarcoidosis, Behcet disease, and Sjogren syndrome. In a retrospective study in Japan, 7 of the 39 patients with AAV presented with HP[41]. ANCA-associated vasculitis (AAV) include granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA). GPA, characterized by necrotizing granulomatous vasculitis in small-to-medium vessels, mainly affects the respiratory tract, pulmonary capillaries, and kidneys[42]. Additionally, central nervous system involvement has been reported in 22%-54% of GPA cases[43,44]. MPA is a systemic vasculitis of small- to-medium-sized vessels that is associated with antibodies directed against the target antigen myeloperoxidase (MPO)[45]. GPA is the most common form of AAV-related
HP, followed by MPA. In a recently published article, the HP incidence was significantly higher in patients with GPA than in those with MPA (60.2 versus 3.3 persons per 1000 person-years, respectively)[46]. The reasons why AAV-related disorders affect the CNS may include the following: (1) granulomatosis tissue extends directly to the intracranial nervous system from adjacent lesions in the orbit or the paranasal cavity; (2) granulomatosis tissue transfers to the intracranial nervous system from the respiratory tract; and (3) vasculitis affects intracranial vessels[29]. In addition, IgG4-related disorder (IgG4-RD) is a newly recognized immune-mediated fibro-inflammatory disease that affects multiple systems. Induced by overactivity of T2-helper cells, stimulating plasma cells can produce excessive IgG4, resulting in lesions in virtually every system, including the meninges. The histopathological features of IgG4-related HP include lymphoplasmacytic infiltration of IgG4-positive plasma cells, storiform fibrosis, and obliterative phlebitis. Diagnosis may be challenging, given that serum IgG4 concentrations were neither specific nor sensitive and biopsy samples stained for IgG4+ plasma cells were difficult to obtain.

Infection-related HP usually originates from peri-cranial infections, such as paranasal sinusitis, otitis media[29] or mastoid process inflammation[12]. Common pathogens include Mycobacterium tuberculosis, Treponema pallidum, and EB virus[18]. Uncommon infections, including Lyme disease, cysticercosis, and human T-cell lymphotropic virus, are also involved in the pathogenesis of HP[5]. However, it has also been reported that untreated HP is a predisposing factor for bacterial meningitis (BM) due to Streptococcus pneumoniae[47]. More efforts should be made to draw a cause-effect conclusion.

4.6 Pathology

The histopathology of HP shows infiltration of small mature lymphocytes, plasma cells, and epithelioid histiocytes at the surface of the dura mater[25]. Dense fibrosis occurs, mainly consisting of collagen fibers associated with hyaline degeneration, arranged in a concentric-circle-like manner[31]. This can be explained by a theory that inflammatory infiltrate activates fibroblasts and induces collagen deposition, leading to tissue hypertrophy and increased dural thickness[48]. Necrotizing vasculitis of small arteries located in the dura and cerebral surfaces has also been reported[12]. In our study, only
one patient underwent a biopsy, which was mainly conducted to confirm the diagnosis of IgG4-RD[48-50]. In fact, the biopsy rates were low both in China and other countries because of the potential risks of the procedure. Empiric treatment was usually administered when there was sufficient clinical evidence without biopsy results[4,23].

4.7 Treatment

Etiological treatments, including antibiotic, antifungal, and antituberculosis drugs, are essential in HP patients. Glucocorticoids are considered the first-line therapy after the exclusion of infection. However, consensus on the course and dose of glucocorticoid treatment has not been reached. Classical treatment for HP patients in the active stage is methylprednisolone pulse therapy (500 mg/d for 3 days) followed by maintenance treatment with oral prednisone. The maintenance is also important, since disease recurrence occurred when prednisone was reduced to 10-30 mg/d[51]; the condition can also sometimes cause progressive deterioration and death[18]. Disease recurrence is one of the major concerns in treatment. Approximately 50% of HP patients are reported to have disease relapse[4]. In our study, three idiopathic HP patients relapsed on a 30-50 mg prednisone daily dose, and an ANCA-related HP patient suffered relapse at a dose of 30 mg of prednisone, suggesting that the corticosteroid should be tapered off extremely slowly in case of recurrence. For refractory HP patients, long-term steroid monotherapy may lead to potential adverse effects as well as disease recurrences. Immunosuppression therapies, including azathioprine[52,53], cyclophosphamide[52,54], rituximab or combined therapies, are often therapeutic options or adjuvant treatments for steroids. Rituximab (RTX), a monoclonal antibody targeting CD20 on the surface of pan-B cells, selectively suppresses B-cell-associated autoimmunity. RTX treatments for HP with IgG4-RD suppress the reciprocal activation of T2-helper cells to relieve the systemic inflammation[51]. Three steroid-refractory HP patients treated with RTX for four weeks showed clinical improvements and exhibited prominent decreases in dural thickness[55]. Thus, RTX has been suggested to be a second-line therapy for steroid-refractory HP, especially for IgG4-RD[56-60].

If conservative treatments are ineffective, surgery for decompression should be considered, especially for HSP[61-64]. Decompressive surgery, such as laminectomy or laminoplasty, and excision of the
thickened dura were recommended[60,65,66]. In cases of chronic compressive myelopathy caused by dural hypertrophic change, decompressive surgery and postoperative steroid therapy may be helpful[63]. Surgery serves not only as a purpose by achieving immediate decompression of the spinal cord but also as a means to diagnose some complicated cases. Extensive laminectomies may be an effective therapeutic option but may result in chronic discomfort[67]. Once HP invades the brainstem, it may progress rapidly and even lead to death. Endoscopic third ventriculostomy (ETV) can be effective in resolving clinical deterioration and avoiding complications of ventriculoperitoneal shunt for HP-related hydrocephalus. With the application of ETV, immunosuppressive therapy can be postponed[9].

5. Conclusion
Hypertrophic pachymeningitis (HP) is a rare fibrosing inflammatory disorder characterized by localized or diffuse thickening of the cranial or spinal dura matter. In our study, the etiology of HP included a wide spectrum of conditions. Idiopathic HP accounted for the majority, and AAV-related HP was the most frequent form of secondary HP in the southern Chinese population. The most common symptom was headache, followed by cranial nerve deficits. Elevated ESR was the most frequently changed laboratory finding in HP patients, followed by CRP. MRI with contrast showed that the thickening of the dura matter differs according to different etiologies. Glucocorticoid or immunosuppressive agents were the primary drugs used in the treatment of HP patients.

Abbreviations
HP: Hypertrophic pachymeningitis
MRI: magnetic resonance imaging
WBC: white blood cell count
ESR: erythrocyte sedimentation rate
CRP: C-reactive protein
RF: rheumatoid factor
CSF: cerebrospinal fluid
ADA: adenosine deaminase
AAV:ANCA-associated vasculitis

IgG4-RD:IgG4-related disorder

Declarations

Ethics approval and consent to participate

This study was performed with the approval of the Medical Research Ethics Committee of Xiangya Hospital and informed consent was obtained from each participant prior to participation.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

None of the authors have any competing interests in the manuscript.

Funding

This study was supported by National Natural Science Foundation of China (Grant nos. 81771407 to Li Feng).

Author contributions

Li Feng and Xuewen Xiao contributed to the study conception and design. Xuewen Xiao and Dongni Fu collected and analyzed data. The first draft of the manuscript was written by Xuewen Xiao and Dongni Fu, which was supervised by Li Feng. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to all subjects for participation in our study.

References

1. Yokoseki A, Saji E, Arakawa M, Kosaka T, Hokari M, Toyoshima Y, et al. Hypertrophic pachymeningitis: significance of myeloperoxidase anti-neutrophil cytoplasmic antibody. Brain. 2014;137(Pt 2):520-36.

2. Yonekawa T, Murai H, Utsuki S, Matsushita T, Masaki K, Isobe N, et al. A nationwide
survey of hypertrophic pachymeningitis in Japan. J Neurol Neurosurg Psychiatry. 2014;85(7):732-9.

3. Peng A, Yang X, Wu W, Xiao Z, Xie D, Ge S. Anti-neutrophil cytoplasmic antibody-associated hypertrophic cranial pachymeningitis and otitis media: a review of literature. European Archives of Oto-Rhino-Laryngology. 2018;275(12):2915-23.

4. Zhao M, Geng T, Qiao L, Shi J, Xie J, Huang F, et al. Idiopathic hypertrophic pachymeningitis: clinical, laboratory and neuroradiologic features in China. Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australasia. 2014;21(7):1127-32.

5. Zhu R, He Z, Ren Y. Idiopathic hypertrophic craniocervical pachymeningitis. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015;24 Suppl 4:S633-5.

6. Hahn LD, Fulbright R, Baehring JM. Hypertrophic pachymeningitis. Journal of the neurological sciences. 2016;367:278-83.

7. Cacao G, Calejo M, Alves JE, Medeiros PB, Vila-Cha N, Mendonca T, et al. Clinical features of hypertrophic pachymeningitis in a center survey. Neurol Sci. 2019;40(3):543-51.

8. Botella C, Orozco M, Navarro J, Riesgo P. Idiopathic chronic hypertrophic craniocervical pachymeningitis: case report. Neurosurgery. 1994;35(6):1144-9.

9. Barbieri FR, Novegno F, Iaquinandi A, Lunardi P. Hypertrophic Pachymeningitis and Hydrocephalus-The Role of Neuroendoscopy: Case Report and Review of the Literature. World Neurosurg. 2018;119:183-8.

10. Chen H, Zhang W, Jing J, Raza HK, Zhang Z, Zhu J, et al. The clinical and imaging features of hypertrophic pachymeningitis: a clinical analysis on 22 patients. Neurol
11. Li LF, Tse PY, Tsang FC, Lo RC, Lui WM, Leung GK. IgG4-Related Hypertrophic Pachymeningitis at the Falx Cerebrii with Brain Parenchymal Invasion: A Case Report. World Neurosurg. 2015;84(2):591 e7-10.

12. Riku S, Kato S. Idiopathic hypertrophic pachymeningitis. Neuropathology. 2003;23(4):335-44.

13. Watanabe K, Tani Y, Kimura H, Asai J, Tanaka K, Hayashi Y, et al. Hypertrophic cranial pachymeningitis in MPO-ANCA-related vasculitis: a case report and literature review. Fukushima J Med Sci. 2013;59(1):56-62.

14. Shintani S, Shiigai T, Tsuruoka S. Hypertrophic cranial pachymeningitis causing progressive unilateral blindness: MR findings. Clin Neurol Neurosurg. 1993;95(1):65-70.

15. Teramoto H, Hara M, Morita A, Kamei S. A case of bilateral ophthalmoplegia caused by focal idiopathic hypertrophic pachymeningitis on the anterior cranial fossa. Rinsho Shinkeigaku. 2015;55(1):33-6.

16. Hayashi K, Somagawa C, Hayashi Y, Iwanaga M. A Case of IgG4-related Hypertrophic Pachymeningitis. No Shinkei Geka. 2018;46(12):1103-9.

17. Itaya S, Ueda Y, Kobayashi Z, Tomimitsu H, Kobayashi D, Shintani S. Bilateral Frontal Lobe Vasogenic Edema Resulting from Hypertrophic Pachymeningitis due to Granulomatosis with Polyangiitis. Intern Med. 2017;56(24):3353-5.

18. Kupersmith MJ, Martin V, Heller G, Shah A, Mitnick HJ. Idiopathic hypertrophic pachymeningitis. Neurology. 2004;62(5):686-94.

19. Nagashima T, Maguchi S, Terayama Y, Horimoto M, Nemoto M, Nunomura M, et al. P-ANCA-positive Wegener's granulomatosis presenting with hypertrophic pachymeningitis and multiple cranial neuropathies: case report and review of
literature. Neuropathology. 2000;20(1):23-30.

20. Vargas-Bellina V, Saavedra-Pastor H, Alvarado-Rosales M, Porras-Carrion M, Cjuno-Pinto R, Gonzales-Quispe I, et al. Idiopathic hypertrophic pachymeningitis: a case report. Rev Neurol. 2009;48(6):300-3.

21. Chittem L, Ganti S, Rajesh A. Revisiting Eiffel- at night, in brain.... Neurology India. 2013;61(6):667-8.

22. Thomas B, Thamburaj K, Kesavadas C. 'Eiffel-by-Night': A New MR Sign Demonstrating Reactivation in Idiopathic Hypertrophic Pachymeningitis. Neuroradiol J. 2007;20(2):194-5.

23. Heckmann JG, G. O. Peace Sign in Calcified Idiopathic Hypertrophic Pachymeningitis. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques. 2014;41(2):265-6.

24. Voller B, Vass K, Wanschitz J, Machold K, Asenbaum S, Hoberstorfer M, et al. Hypertrophic chronic pachymeningitis as a localized immune process in the craniocervical region. Neurology. 2001;56(1):107-9.

25. Brand B, Somers D, Wittenberg B, Gautreaux J, Deputy S. Diplopia With Dural Fibrotic Thickening. Seminars in pediatric neurology. 2018;26:83-7.

26. Shimojima Y, Kishida D, Hineno A, Yazaki M, Sekijima Y, Ikeda SI. Hypertrophic pachymeningitis is a characteristic manifestation of granulomatosis with polyangiitis: A retrospective study of anti-neutrophil cytoplasmic antibody-associated vasculitis. Int J Rheum Dis. 2017;20(4):489-96.

27. Xiong Bin, Zhang Hailing, Liu Jianguo, Yao Sheng, Xiaokun. Q. Clinical characteristics of 11 cases with idiopathic hypertrophic cranial pachymeningitis. Beijing Medical Journal. 2014;36(7):562-5.

28. Okuma H, Kobori S, Shinohara Y, Takagi S. A case of hypertrophic pachymeningitis
with prolonged headache, attributable to Epstein-Barr virus. Headache. 2007;47(4):620-2.

29. Dziedzic T, Wojciechowski J, Nowak A, Marchel A. Hypertrophic pachymeningitis. Child's nervous system: ChNS: official journal of the International Society for Pediatric Neurosurgery. 2015;31(7):1025-31.

30. Zhao M, Qiao L, Shi J, Huang F, Zhang M, Lin X, et al. Arachnoid involved in idiopathic hypertrophic pachymeningitis. Journal of the neurological sciences. 2014;346(1-2):227-30.

31. Xiao X, Qing D, Lingru Z, Wen L. Clinical, imaging and pathologic features of hypertrophic cranial pachymeningitis. Journal of Clinical Neurology. 2009;22(6):461-3.

32. Saito T, Fujimori J, Yoshida S, Kaneko K, Kodera T. Case of cerebral venous thrombosis caused by MPO-ANCA associated hypertrophic pachymeningitis. Rinsho Shinkeigaku. 2014;54(10):827-30.

33. Xia Z, Chen-Plotkin A, Schmahmann JD. Hypertrophic pachymeningitis and cerebral venous sinus thrombosis in inflammatory bowel disease. Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australasia. 2010;17(11):1454-6.

34. Singh C, Kesavadas C, Nair MD, Sarada C. Acquired anterior Basal encephalocele in idiopathic hypertrophic pachymeningitis. The neuroradiology journal. 2009;21(6):791-4.

35. Tanboon J, Felicella MM, Bilbao J, Mainprize T, Perry A. Probable IgG4-related pachymeningitis: a case with transverse sinus obliteration. Clinical neuropathology. 2013;32(4):291-7.

36. Oiwa Y, Hyotani G, Kamei I, Itakura T. Idiopathic hypertrophic cranial
37. Bhatia R, Tripathi M, Srivastava A, Garg A, Singh MB, Nanda A, et al. Idiopathic hypertrophic cranial pachymeningitis and dural sinus occlusion: two patients with long-term follow up. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2009;16(7):937-42.

38. Qin L-x, Wang C-y, Hu Z-p, Zeng L-w, Tan L-m, Zhang H-n. Idiopathic hypertrophic spinal pachymeningitis: a case report and review of literature. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015;24 Suppl 4:S636-S43.

39. Zheng Y, Zhang Y, Cai M, Lai N, Chen Z, Ding M. Central Nervous System Involvement in ANCA-Associated Vasculitis: What Neurologists Need to Know. Frontiers in Neurology. 2019;9(1166).

40. Della-Torre E, Passerini G, Furlan R, Roveri L, Chieffo R, Anzalone N, et al. Cerebrospinal fluid analysis in immunoglobulin G4-related hypertrophic pachymeningitis. The Journal of rheumatology. 2013;40(11):1927-9.

41. Olubajo F, Yermakova T, Highley JR, Arzoglou V. Concomitant idiopathic hypertrophic spinal pachymeningitis and Guillain-Barré syndrome in a patient: coincidence or a triggering mechanism? Journal of neurosurgery Spine. 2017;27(3):335-40.

42. Jennette JC, Falk RJ, Andrassy K, Bacon PA, Churg J, Gross WL, et al. Nomenclature of Systemic Vasculitides. Arthritis & Rheumatism. 1994;37(2):187-92.

43. de Groot K, Schmidt DK, Arlt AC, Gross WL, Reinhold-Keller E. Standardized Neurologic Evaluations of 128 Patients With Wegener Granulomatosis. JAMA Neurology. 2001;58(8):1215-21.
44. Nishino H, Rubino FA, DeRemee RA, Swanson JW, Parisi JE. Neurological involvement in Wegener's granulomatosis: an analysis of 324 consecutive patients at the Mayo Clinic. Annals of neurology. 1993;33(1):4-9.

45. Graf J. Central Nervous System Disease in Antineutrophil Cytoplasmic Antibodies-Associated Vasculitis. Rheum Dis Clin North Am. 2017;43(4):573-8.

46. Imafuku A, Sawa N, Kawada M, Hiramatsu R, Hasegawa E, Yamanouchi M, et al. Incidence and risk factors of new-onset hypertrophic pachymeningitis in patients with anti-neutrophil antibody-associated vasculitis: using logistic regression and classification tree analysis. Clin Rheumatol. 2019;38(4):1039-46.

47. Ueno T, Hikichi H, Kon T, Nunomura JJ, Tomiyama M. Bacterial meningitis due to Streptococcus pneumoniae following untreated idiopathic hypertrophic pachymeningitis. J Neurol Sci. 2017;380:44-5.

48. De Virgilio A, de Vincentiis M, Inghilleri M, Fabrini G, Conte M, Gallo A, et al. Idiopathic hypertrophic pachymeningitis: an autoimmune IgG4-related disease. Immunol Res. 2017;65(1):386-94.

49. Lu LX, Della-Torre E, Stone JH, Clark SW. IgG4-related hypertrophic pachymeningitis: clinical features, diagnostic criteria, and treatment. JAMA Neurol. 2014;71(6):785-93.

50. Boban J, Ardali S, Thurnher MM. Leptomeningeal form of Immunoglobulin G4-related hypertrophic meningitis with perivascular spread: a case report and review of the literature. Neuroradiology. 2018;60(7):769-73.

51. Xia L, Jiuliang Z, Qian W, Yunyun F, Lili Z, Yan Z. Causes and Clinical Features of 17 Cases with Hypertrophic Pachymeningitis. Chinese Journal of Allergy & Clinical Immunology. 2015;9(4):287-91.

52. Li X, Zhao J, Wang Q, Fei Y, Zhao Y. ANCA-Associated Systemic Vasculitis Presenting With Hypertrophic Spinal Pachymeningitis: A Report of 2 Cases and Review of
53. Roongpiboonsopit D, Phanthumchinda K. Idiopathic hypertrophic pachymeningitis at King Chulalongkorn Memorial Hospital. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 2014;97(4):374-80.

54. Huang K, Xu Q, Ma Y, Zhan R, Shen J, Pan J. Cerebral Venous Sinus Thrombosis Secondary to Idiopathic Hypertrophic Cranial Pachymeningitis: Case Report and Review of Literature. World Neurosurg. 2017;106:1052.e13-.e21.

55. Jang Y, Lee ST, Jung KH, Chu K, Lee SK. Rituximab Treatment for Idiopathic Hypertrophic Pachymeningitis. Journal of clinical neurology (Seoul, Korea). 2017;13(2):155-61.

56. Zimelewicz Oberman D, Cuello Oderiz C, Baccanelli M, Christiansen S, Zurrú MC. Pachymeningitis associated with IgG4 disease. Medicina. 2017;77(3):242-4.

57. Suárez AR, Capote AC, Barrientos YF, Soto ML, Moreno SG, Martín FG. Ocular involvement in idiopathic hypertrophic pachymeningitis associated with eosinophilic angiocentric fibrosis: a case report. Arq Bras Oftalmol. 2018;81(3):250-3.

58. Waheed W, Skidd PM, Borden NM, Gibson PC, Babi MA, Tandan R. Metachronous Involvement, Diagnostic Imprecision of Serum Immunoglobulin G4 Levels, and Discordance Between Clinical and Radiological Findings in Immunoglobulin G4-Related Pachymeningitis: A Longitudinal Case Report. Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases. 2017;23(4):215-21.

59. De Virgilio A, de Vincentiis M, Inghilleri M, Fabrini G, Conte M, Gallo A, et al. Idiopathic hypertrophic pachymeningitis: an autoimmune IgG4-related disease. Immunol Res. 2017;65(1):386-94.

60. Popkirov S, Kowalski T, Schlegel U, Skodda S. Immunoglobulin-G4-related
hypertrophic pachymeningitis with antineutrophil cytoplasmatic antibodies effectively treated with rituximab. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2015;22(6):1038-40.

61. Ranasinghe MG, Zalatimo O, Rizk E, Specht CS, Reiter GT, Harbaugh RE, et al. Idiopathic hypertrophic spinal pachymeningitis. Journal of neurosurgery Spine. 2011;15(2):195-201.

62. Tsutsui M, Yasuda T, Kanamori M, Hori T, Kimura T. Long-term outcome of idiopathic hypertrophic thoracic pachymeningitis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2012;21 Suppl 4(Suppl 4):S404-S7.

63. Kim JH, Park YM, Chin DK. Idiopathic hypertrophic spinal pachymeningitis : report of two cases and review of the literature. Journal of Korean Neurosurgical Society. 2011;50(4):392-5.

64. Jee TK, Lee S-H, Kim E-S, Eoh W. Idiopathic hypertrophic spinal pachymeningitis with an osteolytic lesion. Journal of Korean Neurosurgical Society. 2014;56(2):162-5.

65. Paulson GW MJ, Burkhart J,. Spinal pachymeningitis secondary to mucopolysaccharidosis. Case report. J Neurosurg. 1974;41(5):618-21.

66. Beniamino G, Emanuele La T. Hypertrophic Spinal Pachymeningitis. J Neurosurg. 1967;26(5):496-503.

67. Dumont AS, Clark AW, Sevick RJ, Myles ST. Idiopathic hypertrophic pachymeningitis: a report of two patients and review of the literature. The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques. 2000;27(4):333-40.

Tables
Diagnosis	N	Age at presentation ±STDEV	Gender	Duration (month)	Clinical presentation	ESR elevation	CRP elevation	CSF pressure elevation	CSF protein elevation
Idiopathic HP	32	49.4±11.9	20M	25±36	Headache30	28/32	26/32	10/30	17/30
			12F		Craneal nerve deficits (17)				
					Disturbance of consciousness(2)				
					Fever(2)				
					Ataxia (2)				
					Seizure (1)				
ANCA-associated vasculitis	7	59.4±9.1	2M	14±16	Headache7	7/7	7/7	3/7	7/7
			5F		Cranial nerve deficits (4)				
					Visual acuity decreased 3				
					Fever(1)				
					Hearing loss (1)				
					Dizziness (1)				
					Diuresis (1)				
					Arteria temporalis eminence (1)				
					Cushing sign (1)				
					Pathologic reflex suspicious positive (1)				
Tuberculous meningitis	4	51.0±5.6	0M	33±50	Headache3	3/4	1/4	3/4	
			4F		Cranial nerve deficits (3)				
					Pathologic reflex positive (2)				
					Neck pain (1)				
					Visual acuity decreased 1Fever (1)				
					Seizure (1)				
					Vomiting 1				
					Meningeal irritation sign 1				
Viral meningitis	3	37.7±4.6	0M	0.7±0.2	Headache3	2/2	1/2	0/3	2/3
			3F		Cranial nerve deficits (1)				
					Fever (1)				
					Vomiting 1				
					Palpitation 1				
					Photophoby1				
					Meningeal irritation sign 1				
Bacterial meningitis	2	46.5±19.5	2M	0.6±0.4	Headache1	1/2	1/2	1/2	0/2
			0F		Syncope (1)				
Cranial nerve deficits (1)
Disturbance of consciousness (1)
Visual acuity decreased (1)
Cognitive disorder (1)
Hearing loss (1)

Abbreviations: N: number STDEV: standard deviation

Table 2 Patient imaging features.

Diagnosis	N	Location	Diffuse vs. focal enhancement	Roughness of enhancement
Idiopathic HP	32	Posterior fossa (15)	Diffuse (16)	Regular (12)
		Global(10)	Focal(11)	Irregular (15)
		Cerebral falx (5)	Unknown(5)	Unknown(5)
		Temporal lobe (2)		
		Unilateral hemisphere (2)		
		Lumbar dura (2)		
		Cavernous sinus (1)		
		Middle fossa (1)		
		Cervical dura (1)		
		Occipital lobe (1)		
ANCA-associated vasculitis	7	Frontal/parietal/occipital lobe (3)	Diffuse (4)	Regular (6)
		Temporal lobe (2)	Focal(3)	Irregular (1)
		Posterior fossa (2)		
		Global (1)		
Tuberculous meningitis	4	Posterior fossa (3)	Focal(4)	Regular (3)
		Cerebral falx (1)		Irregular (1)
		Frontal lobe (1)		
		Temporal lobe (1)		
Viral meningitis	3	Frontal/temporal/parietal lobe (2)	Diffuse (2)	Regular (3)
		Brae and cavernous sinus (1)	Focal(1)	
Bacterial meningitis	2	Frontal lobe (1)	Diffuse (1)	Regular (2)
		Frontal/parietal/occipital lobe (1)	Focal(1)	
		Posterior fossa (1)		

Figures
Figure 1

Demographics for HP patients of different etiologies: (a) Proportion of HP patients according to different etiologies; (b) Number of patients according to genders; (c) Age of Onset for patients of different etiologies
Typical radiology features for HP patients: (a) A 61-year-old man presented with headache and hearing loss. He was diagnosed with idiopathic HP. There was dural enhancement of the posterior fossa in an axial T1-weighted MRI; (b) Axial T1-weighted MRI of a 54-year-old woman demonstrated dural enhancement of the posterior fossa. She was diagnosed with tuberculous-related HP; (c) A 66-year-old woman complained of headache, right hearing loss and right vision loss for 2 months. MPO antibodies were positive, and a diagnosis of ANCA-related HP was established. The enhanced MRI showed dural enhancement of the frontal, parietal and occipital lobes.
Laboratory results of periphery blood in different etiologies of HP: (a) Blood WBC (normal range: 3.5-9.5*10^9/L); (b) Blood Neutrophil count (normal range: 1.8-6.3*10^9/L); (c) Blood ESR (normal range: 0-21mm/h); (d) Blood CRP (normal range: 0-8mg/L); (e) CSF WBC (normal range: 0-8*10^6/L); (f) CSF pressure (80-180mmH2O); (g) CSF protein (normal range: 0.15-0.45g/L); (h) CSF ADA (normal range: <40U/L)