The quality of corn milk-based cheese analogue made with virgin coconut oil as a fat substitute and with various emulsifiers

N Aini¹, J Sumarmono², B Sustriawan¹, V Prihananto¹ and E Priscillia¹
¹Department of Food Science and Technology, Jenderal Soedirman University, Purwokerto, Indonesia
²Department of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia
Email: nur.aini@unsoed.ac.id

Abstract. Cheese analogues can be produced by modifying ingredients to produce low-fat cheese. Low-fat cheese generally has a less preferable texture and taste, so it is used as a fat substitute. Virgin coconut oil (VCO) is commonly used as a fat substitute because it can reduce total cholesterol, triglycerides, phospholipids and low-density lipoprotein (LDL) cholesterol, and increase high-density lipoprotein (HDL) cholesterol in the blood. In this study, we aimed to: 1) determine the effect of VCO concentration on the quality of corn milk-based cheddar cheese analogue; and 2) study the effect of emulsifier type on the quality of the cheese analogue. This research used experimental methods with a randomized group design. Two factors were studied: the concentration of VCO (i.e. 15%, 20%, 25%) and type of emulsifier (Span 80, Tween 80 (1%), Span 80:Tween 80 (1:1)). The observed variables included yield, total solids, total titrated acidity, moisture content, fat content, protein content, and sensory properties. The results showed that an increase in VCO concentration of 15–25% in the cheese analogue-making process increased fat and moisture content, but reduced sensory value. The emulsifiers did not influence the physicochemical variables and sensory properties of the produced cheese analogue significantly. The best cheese analogue was produced using 25% VCO and Tween 80. The characteristics of this product were: 59.93% bb yield, 54.62% moisture content, 30.2 degrees Brix total solids, pH 5.62, 19.96% fat content, 11.51% soluble protein with colour sensory value of 3.84 (yellowish white), scent value of 4.07 (slightly typical of cheese), taste value of 5.48 (slightly salty), texture value of 2.55 (not hard) and favourite value of 4.38 (slightly favourable).

Keywords: cheese analogue, virgin coconut oil, Span 80, Tween 80

1. Introduction
The consumption of cheese in the world increases every year. In 2017, the increase in cheese consumption in Indonesia reached 0.252 ounces per year. To anticipate the increasing demand for cheese, cheese products are being developed using raw materials other than cow milk, and are known as cheese analogues. Cheese analogues, also termed imitation cheese, are a cheese-like product in which fat, milk protein or both are partly or wholly replaced by non-milk components, mainly from vegetable ingredients such as rice bran oil, sunflower seeds, or other plants [1-3]. During cheese analogue
production, the fat that usually comes from milk is replaced by oil or vegetable fat. This reduces the level of saturated fatty acids and the risk of cardiovascular diseases [4-5].

Corn milk is an innovative product that has been used to replace cow milk and to reduce fat levels in cheese. Corn milk-based cheese analogues have been produced by [6-7] with low yield levels. Filler material such as whey protein can be used to increase the yield level. Virgin coconut oil (VCO), which contains unsaturated fatty acids, is used as a fat substitute. According to [8], the addition of oil has a significant influence on customer acceptance and cheese texture and structure.

The use of vegetable oil with skim milk requires emulsifiers with a hydrophilic–lipophilic balance (HLB) value of 9–14 to produce a stable emulsion [9]. In the present, the emulsifiers Tween 80 and Span 80 were used to maintain the product’s stability. The addition of VCO and emulsifier significantly influences the cheese analogue quality. Therefore, VCO concentration and emulsifier type are related to the physicochemical quality of the resultant cheese analogue.

This research aimed to 1) determine the effect of VCO concentration on the quality of a corn milk-based cheddar cheese analogue; 2) study the effect of emulsifier type on cheese analogue quality, and 3) determine the best product and its characteristics.

2. Experimental details

2.1. Ingredients

The ingredients used in this study were sweet corn from the wage market Purwokerto, whey protein concentrate (PT Naturelle Inti Global), VCO (CV Mutia, Yogyakarta), Span 80 (CV Prima chemical), Tween 80 (CV Prima chemical), and ingredients for analysis. The materials included the equipment for cheese analogue production and analysis tools.

2.2. Cheese analogue production

The cheese analogue production consisted of two parts: corn milk production and cheese analogue production. The corn milk was produced based on the method described by Aini et al [10]. The cheese analogue was produced using the modified method [6].

2.3. Experimental design

We used experimental methods with a random group design. The factors examined included: (1) VCO concentration (15%, 20%, 25%) and emulsifier type (Span 80, Tween 80, combined Span 80:Tween 80 (1:1)). Three replications were conducted for this experiment, so there were 27 test units.

2.4. Analysis of samples

The variables tested included pH [11], total solids [11], total titrated acid, moisture content [12], fat content [12], soluble protein and sensory properties (colour, flavour, taste, texture, preference). The result of physicochemical variables was analyzed using analysis of variance (ANOVA). If the analysis showed a significant influence, it was followed by the DMRT (Duncan multiple-range test) with a 95% confidence interval.

3. Results and discussion

3.1. Characteristics of the product

3.1.1. Yield. The concentration of VCO and emulsifier type did not influence the yield significantly. The average levels of cheese analogue from 15%, 20% and 25% VCO were 58.49%, 59.51% and 58.26%, respectively (figure 1). We suspect that the results were derived because the same proportion
of whey protein, i.e. 20%, was used in all samples. This corresponds with the study by [13], where the same proportions of whey protein concentrate resulted in similar yield concentrations.

![Figure 1](image1.png)

Figure 1. Yield of the corn milk-based cheddar cheese analogue according to emulsifier and VCO concentration combinations.

The yield rate of cheese analogue produced with Span 80, Tween 80 and the combined Span 80 plus Tween 80 was 59.91%, 58.72%, and 57.63%, respectively. The yield rate of cheese analogue produced with Span 80 tended to be higher compared to the other two treatments. This shows that Span 80 is the best emulsifier for maintaining fat and protein stability in the cheese analogue. According to [14], Span 80 is better for stabilizing emulsions compared to Tween 80. Meanwhile, the combination of Span 80 and Tween 80 did not have a significant effect on stabilizing the emulsion.

Protein and fat content are the influencing factors of yield. According to Abd El-Salam [13], there is a linear correlation between yield and the concentrations of protein and fat. Higher protein and fat concentrations increase yield. This corresponds with Stankey *et al.* [15], who found that adding 0.5% microparticulate whey protein to low-fat cheddar cheese increased the yield and sensory values. The yield value of the cheese analogue was 54.87%–62.12%; higher than the findings by Aini *et al.* [6], who reported a yield of 14.262%–17.072%. In the present research, we used whey protein concentrate, and gum arabic as filler, resulting in a higher yield.

3.1.2. pH. The variance analysis showed that VCO concentration and emulsifier type and interaction did not influence the pH value significantly. This was apparently due to the indirect addition of acid during production via the use of the same proportion of papain for all treatments. The pH of the cheese analogue was 5.48–5.82 (figure 2).

![Figure 2](image2.png)

Figure 2. pH of the corn milk-based cheddar cheese analogue according to emulsifier and VCO concentration combinations.
According to Felfoul et al [16], the pH of cheese is not influenced by decreased fat or the addition of fat substitutes. The pH of full-fat cheese is 5.06; that of reduced-fat cheese is 5.07; that of cheese made with olive oil is 4.98. Abd El-Salam stated that the pH of cheese is not affected by the addition of canola oil, whey protein concentrate or emulsifier [13]. The pH value produced by several treatment combinations was 6.5–6.7. This value is higher than that of our cheese analogue, as the pH of corn milk is generally lower than that of cow milk (6.7). The pH of our cheese analogue corresponds with that of [6] and [7], who stated that the pH of the cheddar cheese analogue from corn milk extract ranged from 5.3–6.4.

3.1.3. Total solids. VCO concentration and emulsifier type and interaction did not affect the total solid significantly. The total dissolved solids of the cheese analogue containing 15%, 20% and 25% VCO were 29 degrees Brix (°Bx), 29.6°Bx and 29°Bx, respectively (figure 3). The soluble solids of the cheese analogue made using Span 80 and Tween 80 were 29°Bx and 29.5°Bx, respectively; the cheese analogue made using the combination of Span 80 and Tween 80 had soluble solids of 29°Bx.

Here, the range of total solids of 28.2°Bx–30.3°Bx is higher compared to the corn milk-based cheddar cheese analogue produced by Aini [6], which was 19°Bx. This difference appears to stem from the use of additional ingredients during cheese analogue production, namely whey protein concentrate and gum arabic. According to Stankey et al [15], the amount of solids added during production affects the total value of dissolved solids.

The high value of soluble solids might be caused by the fatty acid content in the VCO. According to Villarino [17], lauric acid is the dominant fatty acid in VCO, ranging from 46%–48%, followed by myristic acid and stearic acid. Organic acid in the form of fatty acids (lauric acid, myristic acid, stearic acid) is a type of acid that can increase the total value of dissolved solids. However, the difference in VCO concentration did not have a significant effect on the total value of dissolved solids.

3.1.4. Titrated acidity. Variance analysis showed that VCO concentration and emulsifier type and interaction did not affect the total titrated acid significantly. The average value of total titrated acid in the cheese analogue produced from 15%, 20% and 25% VCO were 1.67%, 1.79% and 1.64%, respectively (figure 4). Regarding emulsifier type, the average total titrated acid in cheese analogue made with Span 80 and Tween 80 was 1.83% and 1.71%, respectively; that of cheese analogue made with the combination of Span 80 and Tween 80 was 1.56%.

Total titrated acid is the amount of lactic acid formed during fermentation as the result of the breakdown of lactose by lactic acid bacteria [18]. In the present cheese analogue, the whey protein concentrate was the source of lactose. According to Stankey et al [15], whey protein concentrate contains 1%–80% lactose, which is hydrolyzed during fermentation and produces lactic acid. We assume that using the same concentration of whey protein concentrate for all treatments is one of the factors that caused the
non-significant total titrated acid value. Here, the cheese analogue contained lactic acid levels according to the National Standard (1992): 0.5%–2.0%.

![Figure 4](image-url)
Figure 4. Titrated acidity of corn milk-based cheddar cheese analogue according to emulsifier and VCO concentration combinations.

3.1.5. Fat content. The variance analysis showed that the VCO concentration, but not the emulsifier type and interaction, affected the fat content in the cheese analogue significantly. The addition of higher VCO concentrations increased fat content. The cheese analogue with the highest fat content (19.24% dry basis [db]) was produced by the addition of 25% VCO (figure 5), while that with the lowest fat content (13.95% db) was produced by the addition of 15% VCO. The low lipid content in the cheese analogue means that it can be categorized as low-fat cheese. According to Stankey et al [15], cheese can be categorized into four groups according to its fat content. Low-fat cheese contains 10–25% fat.

![Figure 5](image-url)
Figure 5. Fat content of corn milk-based cheddar cheese analogue according to emulsifier and VCO concentration combinations.

Compared to cow-milk cheese, the present cheese analogue had much lower fat content. According to Ramel and Marangoni [19], the fat content of cow milk-based cheese containing canola oil, whey protein concentrate and emulsifier is influenced by the fat content of the cow milk, the emulsifier mixture and interaction and the whey protein concentrate. The fat content of cheese containing canola oil, whey protein concentrate and emulsifier is 11.9%–13.4%. According to Abd El-Salam [13], the fat content of cheese containing olive oil (41.36%) is lower than that of full-fat cheese (44.55%), but is higher than that of reduced-fat cheese (37.68%). The difference in the fat content of all three samples was also influenced by the addition of water during cheese production. In addition, the loss of fat content can be influenced by the HLB value of the emulsifier mixture. The type of emulsifier had no effect on the fat content of the cheese analogue. The fat content of the cheese analogues containing Span 80, Tween 80 and the combination of Span 80 and Tween 80 was
17.19% bk, 16.84% bk and 16.76% bk, respectively. The HLB value of Span 80 (sorbitan monooleate), Tween 80 (polyethylene sorbitan monooleate) and the combination of Span 80 and Tween 80 (0.5:0.5) is 4.3, 15.0 and 9.65, respectively [20]. According to Abd El-Salam [13], the emulsifier mixture suitable for cheese production is 0.5:0.2:0.3 polyethylene sorbitan monostearate:sorbitan monostearate:monostearate glycerol, with a HLB value of 9.3, to increase the size of fat droplets. This is in contrast with Lobato-Calleros et al [21] due to the incorrect HLB value for mixing the emulsifiers.

3.1.6. Moisture content. The VCO concentration had a significant effect on the moisture content of the cheese analogue, while the emulsifier type and interaction did not. The cheese analogue produced with 15% VCO had the highest water content of 60.78%, followed by 56.78% for 20% VCO and 55.93% for 25% VCO (figure 6).

![Figure 6. Moisture content of corn milk-based cheddar cheese analogue according to emulsifier and VCO concentration combinations.](image)

The reduction of fat content or the use of fat substitutes impact the moisture content of cheese analogues. The lubricity properties of water are decreased during viscosity and it will fill the space between the globula and the casein molecule [16]. According to Lobato-Calleros et al [21], cheese water content is dependent on the mixture of emulsifier, whey protein concentrate and milk fat content. Higher milk fat and canola oil emulsion will produce a higher amount of fat, preventing the formation of protein bonds. Therefore, the use of whey protein concentrate is appropriate for improving the water-binding capacity and for increasing water retention in low-fat cheese. The moisture content of cheese containing canola oil, whey protein concentrate and emulsifier is 61.7%–66.3%. This result is not much different from that of the present cheese analogue, i.e. 57.43%–61.35%.

3.1.7. Soluble protein. VCO concentration, and emulsifier type and interaction did not influence the dissolved protein levels of the cheese analogue significantly. The soluble protein content of the cheese analogue containing 15%, 20% and 25% VCO was 9.57% db, 8.75% db and 9.35% db, respectively (figure 7). The dissolved protein levels of the cheese analogue containing Span 80, Tween 80 and the combination of Span 80 and Tween 80 were 8.70% db, 9.65% db and 9.32% db, respectively. The non-significant value of the dissolved protein content is assumed to have been caused by the use of protein additives in the form of the 20% whey protein concentrate in all three samples. According to Dhanraj et al [9], protein content is influenced by the emulsifier mixture and whey protein concentrate. The
The emulsifier mixture will maintain the canola oil emulsion, inhibit syneresis and decrease protein reduction.

![Figure 7](image-url)

Figure 7. Soluble protein of corn milk-based cheddar cheese analogue according to emulsifier and VCO concentration combinations.

The protein content of the cheese analogue was 7.34%–9.97%, which is lower than that of the cheese analogue containing canola oil, whey protein concentrate and emulsifiers, which ranged 14.9%–18.2% [21], and was also lower than that of the cheese analogue produced by Abd El-Salam [13], which contained 12%–13.61% protein.

3.1.8. Sensory characteristics. The combination of VCO concentration and emulsifier type affected the colour of the cheese analogue significantly. The cheese analogue with the highest colour was obtained from treatment A2B2 (20% VCO and Tween 80), with a value of 4.11 (whitish-yellow); the lowest colour was obtained from A2B3 and A3B3 treatment with a value of 3.82 (white yellowish) (figure 8). The main factor affecting the yellow colour of the cheese analogue was sweet corn, which was the main material and contains anthocyanin pigment compounds (anthocyanidin, aglycone, glucoside) and carotenoids [22].

![Figure 8](image-url)

Figure 8. Sensory characteristics of corn milk-based cheddar cheese analogue according to emulsifier and VCO concentration combinations.

The colour of the cheese analogue was also influenced by the combination of VCO concentration and emulsifier. Tween 80 is a yellow oil and Span 80 is a thick yellow liquid [23], while VCO is almost transparent [17]. Mixing VCO and the emulsifier mixture into an emulsion produces a white, turbid emulsion [24]. Mixing these ingredients with corn milk will produce a yellow colour due to the presence of anthocyanin and carotenoid pigments [25].

The combination of VCO concentration and emulsifier type also affected the aroma of the cheese analogue significantly. Product A1B2 (15% VCO and Tween 80) had the highest aroma of 4.37 (little
typical of cheese), while product A2B1 (20% VCO and Span 80) produced the lowest aroma with a value of 3.55 (rather typical of cheese). The aroma of cheese is sour, sweet, boiled potato, butter-like and caramel, which is produced by acetic acid, butyric acid, methionyl, diacetyl, and homofuraneol [26]. According to Abd El-Salam [13], cheese analogues containing coconut oil can have a distinctive aroma because it contains high ethanol, dietan butan and acetic acid levels. VCO has an acidic, nutty and rancid aroma, where the sour aroma is produced by acetic acid during fermentation [17].

Besides VCO, the aroma of the cheese analogue was influenced by the aroma of the whey protein concentrate. Whey protein concentrate contains volatile compounds consisting of butanoic acid, 2-acetyl-1-pyrroline, 2-methyl-3-ranthiol, 2,5-dimethyl-4-hydroxy-3-furanone, 2-nonenal, 2,6-nonadienal, and 2,4-decadienal, which each produces a specific aroma, such as cheesy, popcorn, brothly, maple, fatty, cucumber, and fatty/oxidized [13].

The combination of VCO concentration and emulsifier type had a significant effect on the taste of the cheese analogue. Product A1B2 (15% VCO and Tween 80) had the highest taste value of 5.59 (slightly salty), while product A1B3 (VCO 15% and Span 80 plus Tween 80) produced a taste value of 4.02 (neutral). VCO produces sweet and nutty tastes [17], while Tween 80 is bitter [27]. The main influencing factor of the taste of the cheese analogue was the combination of VCO concentration with emulsifier, because the VCO emulsion and emulsifier mixture can be used as a flavour carrier system. According to [28], who formulated microemulsions using aqua demineralization, a mixture of non-ionic surfactants (Tween 80 and Span 80) and VCO can be used as a system to produce strawberry, orange, or mint flavours. Therefore, the salt taste in cheese analogues can be produced by the taste of other additives, namely the salt bound by the VCO emulsion with the emulsifier mixture. The difference in the VCO concentration and the emulsifier type influences the character of the system, which affects the amount of bound salt and ultimately the taste. Another additive that can affect the taste of cheddar cheese analogue is whey protein concentrate. Whey protein concentrate has mild dairy flavoured such as milky, and sweet aromatic and non-dairy flavours such as cardboard [29].

The combination of VCO concentration and emulsifier type had a significant effect on the texture of the cheese analogue. Product A1B2 (15% VCO and Tween 80) had the highest texture value of 3.00 (slightly hard), while product A3B1 (25% VCO and Span 80) had the lowest texture value of 2.45 (not hard). The texture of the cheese analogue was influenced by VCO concentration and protein content. According to [30], water can break down protein tissue and yield a smoother, softer texture to the cheese analogue. In addition, higher water content leads to a smoother texture. In the present study, higher VCO concentrations yielded softer textures.

The combination of VCO concentration and emulsifier type affected preference for the cheese analogue significantly. Product A3B3 (25% VCO and Span 80 plus Tween 80) had the highest preference score of 4.40 (rather preferable), while product A2B1 (20% VCO and Span 80) had the lowest score of 3.59 (slightly preferable). Panelists’ levels of preference for the cheese analogue were influenced by factors such as colour, aroma, taste and texture. In general, all treatment combinations of the cheese analogue were received by the panelists.

3.2. Characteristics of the best product

Based on the total index of effectiveness, we concluded that the best treatment combination is A3B2: a cheese analogue containing 25% VCO and Tween 80. The A3B2 treatment had a yield value of 59.93% bb, fat content of 19.96%, dissolved protein level of 11.51% bk, colour sensory value of 3.84 (yellowish white), aroma value of 4.07 (slightly typical of cheese), taste value of 5.48 (slightly salty), texture value of 2.55 (not hard) and preference value of 4.38 (rather preferable).

The yield, fat content and dissolved protein content of the cheese analogue were lower than that of the cheese containing olive oil emulsion produced by [31]. That cheese analogue had a yield value of 139.58 g/L, fat content in the range of 41.36% and dissolved protein content in the range of 39.25%. Using cow milk as the basic ingredient yielded fat content of 15.65 g/L and dissolved protein content of 33.92 g/L. This is higher than the fat and protein content of corn milk.
The cheese analogue had higher yield and fat content, but lower protein content than that of Lobato-Calleros [21]. According to Lobato-Calleros et al [21], cheese made from cow milk and containing canola oil and whey protein concentrate at a ratio of 0.17:0.66:0.17 had a yield value of 14.8%, 13.4% fat content and 16.2% protein content.

Compared to the topical cheese analogue made from corn extract produced by Aini [6], the yield value of the topical analogue was lower than that of the present cheese analogue (17.512%), as well as lower fat content (6.976%). However, it contained higher dissolved protein levels than the present cheese analogue (19.837%). Despite this, both cheese analogues had similar sensory properties: yellowish-white colour, distinctive cheese aroma, and texture that was neither hard nor soft.

In the present study, the fat content and dissolved protein levels of the cheese analogue did not differ significantly from the optimal results of Tallaga cheese containing 50% sunflower oil and 25% whey protein concentrate in the study by Abd El-Salam [13]. The fat content of the cheese analogue and Tallaga cheese was 19.96% bk and 20% bk, respectively, and the protein content was 11.51% and 12%, respectively.

4. Conclusion

Increasing the VCO concentration from 15% to 25% in the cheese analogue production increases the fat and water content while at the same time reducing the sensory properties. The addition of various emulsifier types does not significantly influence the physicochemical variables and sensory properties of the cheese analogue. The best cheese analogue was produced with treatment A3B2:25% VCO and Tween 80. This treatment produced a yield value of 59.93% bb, fat content of 19.96% db and dissolved protein content of 11.51% db with the following sensory properties: colour value of 3.84 (yellowish white), aroma value of 4.07 (slightly typical of cheese), taste value of 5.48 (slightly salty), texture value of 2.55 (not hard) and the favourite value is 4.38 (rather preferable).

References

[1] Tuntragul S, Surapat S and Hongsprabhas P 2010 Influence of rice bran oil and rice flours on physicochemical properties of a Mozzarella cheese analog Kasetsart J. Nat. Sci. 44 924–34
[2] Riordan E D, Duggan E, Sullivan M O and Noronha N 2011 Production of analogue cheeses Processed Cheese and Analogues 2011 219–44
[3] Mohamed A G and Shalaby S M 2016 Texture, chemical properties and sensory evaluation of a spreadable processed cheese analogue made with apricot pulp (Prunus armeniaca L.) Int. J. Dairy Sci. 11 61–8
[4] Ferrão L L, Silva E B, Silva H L A, Silva R, Mollakhalili N, Granato D, Freitas M Q, Silva M C, Raices R S L, Padilha M C, Zacarchenco P B, Barbosa M I M J, Mortazavian A M and Cruz A G L L 2016 Strategies to develop healthier processed cheeses: Reduction of sodium and fat contents and use of prebiotics Food Res. Int. 86 93–102
[5] Kassem J M, Abbas H M, Mohamed A G, Bahgaat W K and El-Messery T M 2017 Sweet processed cheese spread analogue as a novel healthy dairy product Int. J. Dairy Sci. 12 331–8
[6] Aini N, Prihananto V, Sustriawan B, Romadhon D and Ramadhan R N 2019 The formulation of cheese analogue from sweet corn Extract Int. J. Food Sci. 2019 1–8
[7] Aini N, Sustriawan B, Prihananto V and Heryanti T 2019 IOP Conf. Ser. Earth Environ. Sci. 255 012016
[8] Lawal O S and Adebowale K O 2005 Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch Carbohydr. Polym. 60 331–8
[9] Dhanraj P, Jana A, Modha H and Aparnathi K D 2017 Influence of using a blend of rennet casein and whey protein concentrate as protein source on the quality of Mozzarella cheese analogue J. Food Sci. Technol. 54 822–31
[10] Aini N, Prihananto V, Wijonarko G, Astuti Y, Maulina M R and Muthmainah M 2017 Quality deterioration and shelf life estimation of corn yogurt was packaged by glass bottle Adv. Sci. Lett. 23 5796–8
[11] Shao Y and He Y 2009 Food Bioprocess. Technol. 2 229–33
[12] AOAC 2005 Official methods of analysis of the association of official Agricultural Chemists International J. Assoc. Off. Agric. Chem. 41 12
[13] Abd El-Salam B A 2015 Effect of milk fat replacement with vegetable oil and/or whey protein concentrate on microstructure, texture and sensory characteristics of fresh soft cheese Int. J. Dairy Sci. 10 117–25
[14] Tcholakova S, Denkov N D and Lips A 2008 Comparison of solid particles, globular proteins and surfactants as emulsifiers Phys. Chem. Phys. 10 1608
[15] Stankey J A, Yanjie L, Abdelmoneim A, Govindasamy-Lucey S, John J, Bente M, Kenneth P T and Andersen C B 2017 Low-fat cheddar cheese made using microparticulated whey proteins: Effect on yield and cheese quality Int. J. Dairy Technol. 70 481–91
[16] Felfoul I, Bornaz S, Hmida S W B, Sahli A and Attia H 2013 Effect of milk fat substitution of rennet milk induced coagulation on physico-chemical properties J. Chem. 2013 1–8
[17] Villarino B J, Dy L M and Lizada M C C 2007 Descriptive sensory evaluation of virgin coconut oil and refined, bleached and deodorized coconut oil LWT - Food Sci. Technol. 40 193–9
[18] Lima C J B, Coelho L F and Conterio J 2010 The use of response surface methodology in optimization of lactic acid production: Focus on medium supplementation, temperature and pH control Food Technol. Biotechnol. 48 175–81
[19] Ramel P R. and Marangoni A G 2018 Processed cheese as a polymer matrix composite: A particle toolkit for the replacement of milk fat with canola oil in processed cheese Food Res. Int. 107 110–8
[20] Hou W and Papadopoulos K D 1997 W1/O/W2 and O1/W/O2 globules stabilized with Span 80 and Tween 80 Colloids Surfaces A Physicochem. Eng. Asp. 125 181–7
[21] Lobato-Calleros C, Reyes-Hernández J, Beristain C I, Hornelas-UrIBE Y, Sánchez-García J E and Vernon-Carter E J 2007 Food Res. Int. 40 529–37
[22] Aim N, Prihananto V, Sustriawan B, Astuti Y and Maulina M R 2018 Quality evaluation of polypropylene packaged corn yogurt during storage IOP Conference Series: Earth and Environmental Science 2018 012049
[23] Donsì F and Ferrari G 2016 Essential oil nanoemulsions as antimicrobial agents in food J. Biotecnol. 233 106–20
[24] Vitová E, Loupancová B, Sklenářová K and Divišová R 2012 Identification of volatile aroma compounds in processed cheese analogues based on different types of fat VERSITA 66 907–13
[25] Hanáková Z, Buňka F, Pavlinek V, Hudečková L and Janíř R 2013 The effect of selected hydrocolloids on the rheological properties of processed cheese analogues made with vegetable fats during the cooling phase Int. J. Dairy Technol. 66 484–9
[26] Villalobos-Chaparro S, Salas-Muñoz E, Gutiérrez-Méndez N and Nevárez-Moorillón G V 2018 Sensory profile of Chihuahua Cheese manufactured from raw milk Int. J. Food Sci. 2018 1–7
[27] Pérez-Rosés R, Risco E, Vila R, Peñalver P and Cañigueral S 2015 Antioxidant activity of Tween-20 and Tween-80 evaluated through different in-vitro tests J. Pharm. Pharmacol. 67 666–72
[28] Guichard E 2002 Interactions between flavor compounds and food ingredients and their influence on flavor perception Food Rev. Int. 18 49–70
[29] Perreault V, Morin P, Pouliot Y and Britten M 2017 Effect of denatured whey protein concentrate and its fractions on rennet-induced milk gels Int. Dairy J. 64 48–55
[30] Masotti F, Cattaneo S, Stuknytė M and De Noni I 2018 Status and developments in analogue cheese formulations and functionalities Trends Food Sci. Technol. 74 158–69
[31] Felfoul I, Sahli A, Samet-Bali O, Attia H and Bornaz S 2016 Comparative study of whita brined cheese obtained from whole milk and milk-olive oil emulsion: physicochemical and sensory properties Mljekarstvo 66 304–11
Acknowledgements
This study was supported by Jenderal Soedirman University under Riset Unggulan Terapan in 2019 grant number 267/UN23.14/PN/2019.