Model of Organizational Behavior in a Hierarchical Structure

I A Smarzhevskiy¹, D B Solovev²,³

¹Peoples’ Friendship University of Russia (RUDN), Moscow, Russia
²Far Eastern Federal University, Engineering school, Vladivostok, Russian Federation
³Vladivostok Branch of Russian Customs Academy, Vladivostok, Russian Federation

E-mail: ivsmrudn@yandex.ru

Abstract. Interaction between persons performing operational activities within hierarchical organizational structures depends upon their mutual perception. Since certain aspects of mutual perception are poorly measurable, it is required to apply simulation methods. The purpose of this study is to elaborate an agent-based model of the hierarchical structure involving persons, whose behavior is described in the concept of mutual perception previously formulated by the author, but also to carry out a simulation exercise that determines the correlation between mutual perception of agents and group productivity of operational activities.

The simulation exercise also concluded that provisions of the concept of mutual perception within the hierarchy remain valid, namely, those stipulating that behavior of agents is consistent with phenomena specific to organizational behavior: if operational commands are being issued on the basis of mutually positive relationships between superiors and subordinates, group productivity increases.

The tool developed (an agent-based model with its code and documents that are publicly available) can be used in further studies on organizational behavior within hierarchical structures.

1. Introduction

Research into the problems of interpersonal compatibility and interaction within minor groups is conducted in the following studies: (Tajfel, 1972), (Abric, 2008). Building upon this theoretical framework and the findings of the studies on social influence phenomenon (basic works here are: (Tajfel, 1972), (Tajfel & Turner, 1986), (Turner & Oakes, 1986), (Turner & Oakes, 1989), (Worchel, 1998a), (Worchel, 1998b), (Bales, 1999)), as well as upon the empirical methods of observation of certain organizational hierarchy structures belonging to both private sector and public administration, the studies (Smarzhevsky, 2018a), (Smarzhevsky, 2019) formulated theoretical assumptions explaining the substance of mutual individual perception within the hierarchy. The essence of the concept is as follows: person that holds a position within the hierarchy reflects in his or her mind or, in other words, perceives other persons that occupy positions in the same hierarchy. At the same time, a considerable part of perceptions of person B intrinsic to person A are exhaustively covered by three aspects: individual (personal) perception, social perception and professional perception. These aspects can't be reduced to one another.
The purpose of this study is to carry out a simulation exercise and to analyze its results, while elaborating an agent-based model that describes the hierarchical structure performing operational activities. Positions in this structure are held by persons (agents), whose behavior is described by the concept of mutual perception. The experiment examines the behavior of individuals and groups, while establishing a linkage between mutual perception of agents and group productivity of operational activities.

2. Materials and method

The reason why the research uses simulation methods lies in the fact that values of social and psychological characteristics of persons and their mutual perceptions are poorly measurable. The natural way of research is to reproduce the processes of interaction between persons that hold positions in the hierarchy using various technical means. Such means are those of simulation modeling.

General approaches to agent-based modeling are contained in the following papers: (Furian, et al., 2015) (a conceptual approach to agent-based modeling on the basis of tools representing hierarchically organized control systems), (Garcia-Magariño, et al., 2017) that describes techniques of simulation modeling and on-line systems of decision-making under conditions of uncertainty, (Xiong & Pu, 2019) that involves model building on the basis of agent-action diagrams. The latter is close to the Agent-based model Analysis using Causal Discovery presented in (Janssen, et al., 2019). This study develops the algorithm of constructing an integrated causal graph of model parameters, which makes it possible to find emergent characteristics of models being analyzed.

Simulation models of managerial decision-making in an organization are described in the following publications: (Takahashi, 1997),(Ashworth & Louie, 2002),(Bendor, et al., 2001),(Fioretti & Lomi, 2008),(Troitzsch, 2008),(Inamizy, 2009a),(Inamizy, 2009b),(Fioretti & Lomi, 2010),(Thorbjorn, et al., 2012). These works reproduce the process of decision-making in a situation when there is an incoming stream of "problems" characterized by a quantitative attribute, the value of which defines the complexity of addressing those problems, and when associations of decision-makers are unstable. The main outcome of these studies was to confirm the fact, that the type of organizational structure has a significant impact on types of managerial solutions.

Research on communication and administration styles within an organizational structure is carried out in the following model: (Bela, et al., 2018). Individual characteristics contained in the Big Five model and their impact on adaptation of businesses on the market are described by the model presented in the following research paper: (Bajwa, et al., 2017). Group dynamics within teams of individuals united by strategic goals are examined in (Penagos-Londoño & Ruiz-Moreno, 2019). The work (Farsi, et al., 2019) uses modular hybrid simulation techniques to develop a model that would describe behavior within complex production systems.

The agent-based model presented in this study was developed by means of the NetLogo simulation modeling environment (Wilensky, 1999). Initial data for the present study were provided by the concept of individual mutual perceptions of people (Smarzhevsky, 2018a), but also by methodological and instrumental principles of simulation modeling within an operating hierarchy where staffing decisions are made (Smarzhevsky, 2018b).

To develop a new scientific knowledge, the study used the methods of algorithm development and coding in the NetLogo programming language. Besides, simulation exercise and analysis of its results were carried out.

3. Results

The "world" of the model (Fig. 1) represents a two-level hierarchical structure consisting of positions of heads and operators. Agents operating within the model are persons that hold the above-mentioned positions. Persons have a certain level of operational productivity and their mutual, but in this case individual, perceptions. The value of mutual perception of agents is given as a normally distributed random value, the parameters of which are set by means of interface controls.
Positive perception of person B by person A corresponds to a positive numerical value, while negative perception is in line with a negative value, expressed in specific units on a scale from sympathy to antipathy. Values of perceptions are put in order, which means that agent's A numerical value equal to +2 stands for a more positive perception of the agent B than the numerical value equal to +1.

![Figure 1. Environment (world) of the model objects.](image)

Existing in the world of the model that represents the space of perceptions, agents implement two strategies: getting close to agents perceived positively and retreating from those who are perceived negatively. The model allows agents to implement both, one or none of the strategies, which fixes the agent in the space of perceptions. Strategies of getting close/retreating are implemented in respect of other agents within the radius of agent's perception specified by the PerRadius variable.

Heads on the upper hierarchy level build up their own teams (groups) of operators that hold lower positions in the hierarchy. Operational productivity of each group (calculated as the sum of weighed individual productivities of operators belonging to the group on the basis of the distance between operators and group's head) varies according to agent's position in space. Individual productivity is given as an evenly distributed random value on the scale from 0 to 100. At any given time period, an operator can be a part of only one head's group.

At every moment of the modeled time in the course of simulation exercise, the head can form a group in different ways: 1) from agents within the reach of the manager at a given time (the radius is specified by the value of the Op_Radius variable), 2) from agents that are not subordinate to other heads, 3) and from those who are perceived negatively or/and positively by the head. In the model,
it is possible to implement both, one or none of the rules indicated in paragraph 3), which would mean that heads refuse to build up teams. Heads aim at maximizing overall productivity of their groups.

Showing their individual dispositions, operators are able to withdraw from their head's group if their attitude towards the head is negative. It might be done with a certain probability specified by the value of the PrbltyOfDecisn% variable. Heads are trained during simulation exercise: they remember operators who were included in their groups, but then withdrew. Such subordinates appear on the list of "not allowed" and are no longer included in the group. If the group consists of at least two operators, heads tend to exclude from it operators with the lowest individual productivity, and then they try to find another one with a better productivity.

The model provides an opportunity to change the values of perception and reachability radii in the course of the exercise, update individual perception values of the totality of agents, invert agent's perception by adjacent agents within the radius of perception and change the values of probability of operator's decision to withdraw from the group. It is also possible to change the set of relocation and enrollment strategies through interface tools. There is an opportunity to add the chance factor in relocation of agents using the Stoch_Motion_Speed variable. Model controls are presented in the Figure 2.

The existence of other agents currently perceived by each of them is shown by gray links, operators are indicated by blue figures, heads - by red ones. Their belonging to each other is shown by red links.

Figure 2. Model controls. Variation in the number of agents or heads, changes in radii or speed of random relocations, choice of behavior and group formation strategies or probability of exclusion of the least productive operator are shown in the left part of the figure. Probability of operator's withdrawal from the group, parameters of normal distribution, update and inversion buttons for the values of perceptions are shown in the right part of the figure.

Model, its code and accompanying documents are published and publicly available on the website www.comses.net (Smarchevskiy, Organizational behavior in the hierarchy model" (Version 1.1.0).)

Simulation exercise is intended to carry out research into the dynamics of changes in the composition of groups and to establish a linkage between quantitative perception indicators and total group productivity.

4. Discussion
Simulation exercise revealed that, given certain values of normally distributed parameters of mutual perception (N = -2, -3), there is an emergence of cyclical structures. They represent spatial arrangements of agents with variations in coordinates of some of the agents and in group productivity of separate groups (Fig. 3, Fig. 4). Appearance of such structures precedes a complete
stabilization. Otherwise, in case when the value of mutual perception radius exceeds a certain level increasing in line with growing number of agents within the model, volatility might persist for an unlimited period.

Stabilization occurs in the period of time from 200 to approximately 2000 units of modeled time. Time for stabilization depends on the number of agents, perception and reachability radii, but also on the speed of relocations of agents when implementing their individual strategies.

Figure 3. Stabilization in the form of cyclical movement (left circle) and of oscillation along a straight line (right oval). 53 operators, 7 heads, medium perception value is equal to -2, and standard deviation is of 8 points.

Figure 4. Dynamics of group productivity for the exercise from the Fig. 3.
Simulation exercise concluded that provisions of the concept of mutual perception within a hierarchy performing operational activities remain valid: values of mutual perceptions represent factors defining the composition of groups and the value of group productivity under equilibrium conditions.

5. Conclusion
The results obtained confirm the validity of the mutual perception concept: behavior of agents is corresponding to phenomena observed in organizational behavior: if operational commands are being issued on the basis of mutually positive relationships between superiors and subordinates, group productivity increases.

Besides, the results obtained scale up the approach used to study both the types of interaction among employees of service companies that perform operational activities and their impact on organizational behavior. The approach was presented in the following papers: (Gwinner, et al., 2005), (Mathwick & Mosteller , 2016),(Sumaneeva, et al., 2018) and (Zizhen, et al., 2018).

The tool developed might be used in further research into organizational behavior within a hierarchy under the concept of mutual perception. The model, when modified, allows including of social and professional aspects of mutual perception, reproducing the process of operational activity with these factors in mind, as well as creating a matrix of mutual perceptions (Smarzhevsky, 2019), thus setting initial operating conditions for the hierarchy.

In so doing, the results of the study and the above proposed scientific tool (ABM) can be considered as scientific novelty and might be used for further research into organizational behavior within hierarchical structures.

References
[1] Abric J-C 2008 Psychologie de la communication: théories et methods 3 ed. Paris: Armand Colin
[2] Ashworth M & Louie M 2002 Alignment of the Garbage Can and NK Fitness Models: A virtual Experiment in the Simulation of Organizations, Pittsburgh: Carnegie Mellon University working paper
[3] Bajwa S, Shahzad K & Aslam H 2017 Exploring Big Five personality traits and gender as predictors of entrepreneurs ’cognitive adaptability Journal of Modeling in Management 12(1) pp 143-161
[4] Bales R F 1999 Social interaction systems: Theory and measurement (Piscataway, NJ) US: Transaction Publishers
[5] Bela R, Smirnov V & Wait A 2018 Managing change: Communication, managerial style and change in organizations Economic Modeling 69 pp 1-12
[6] Bendor J, Moe T M & Shotts K W 2001 Recycling the Garbage Can: An Assessment of the Research Program The American Political Science Review 95(1) pp 169-190
[7] Farsi M, Erkoyuncu J A, Steenstra D & Roy R 2019 A modular hybrid simulation framework for complex manufacturing system design Simulation Modeling Practice and Theory 94 pp 14-30
[8] Fioretti G & Lomi A 2008 An Agent-Based Representation of the Garbage Can Model of Organizational Choice Journal of Artificial Societies and Social Simulation <http://jasss.soc.surrey.ac.uk/11/1/1.html> 11(11)
[9] Fioretti G & Lomi A 2010 Passing the Buck in the Garbage Can Model of Organizational Choice G Fioretti and A Lomi: Passing the Buck in Computational and Mathematical Organization Theory Issue 16 (2) pp 113-143
[10] Furian N et al 2015 A conceptual modeling framework for discrete event simulation using hierarchical control structures Simulation Modeling Practice and Theory 56 pp 82-96
[11] Garcia-Magariño I Palacios-Navarro G & Lacuesta R 2017 TABSAOND: A technique for developing agent-based simulation apps and online tools with nondeterministic decisions
[12] Gwinner K P, Bitner M J, Brown S W & Kumar A 2005 Service Customization Through Employee Adaptiveness Journal of Service Research 8(2) pp 131-148

[13] Inamizy N 2009a Inside the garbage can: An orderly decision-making process in disorderly organization structure Manufacturing Management Research Center, University of Tokyo Discussion papers series vol 264

[14] Inamizy N 2009b Garbage can paradox: A disorderly decision-making process in orderly organization organization Manufacturing Management Research Center, University of Tokyo Discussion papers series vol 265

[15] Janssen S, Sharpanskykh A, Curran R & Langendoen K 2019 Using causal discovery to analyze emergence in agent-based models Simulation Modeling Practice and Theory vol 96 pp 1019-40

[16] Mathwick C & Mosteller J 2016 Online Reviewer Engagement: A Typology Based on Reviewer Motivations 2016 Journal of Service Research 20(2) pp 204-218

[17] Penagos-Londoño G & Ruiz-Moreno F 2019 Identifying dynamics in strategic groups Journal of Modeling in Management 14 (2) pp 408-429

[18] Smarzhevskiy I 2019 Organizational behavior in the hierarchy model "(Version 1.1.0) https://doi.org/10.25937/1dwe-cj42

[19] Smarzhevsky I 2018a The concept of mutual perception of persons occupying positions in a hierarchical structure Economics and Entrepreneurship 12(101) pp 1120-1124

[20] Smarzhevsky I 2018b Methodological and instrumental principles for constructing an agent model for making personnel decisions in hierarchical structures Economics and Management: Problems, Solutions 11(7 (83)) pp 40-44

[21] Smarzhevsky I 2019a Development of the concept of mutual perception of persons in a hierarchical structure: dynamics of perceptions Economics and Entrepreneurship vol 1 pp 830-833

[22] Sumaneeva K A Avci T & Eluwole K K 2018 Cross-Functional Training of Front-Line Hotel Employees, In-Role and Extra-Role Job Performance, Customer Satisfaction, and Customer Loyalty: A conceptual Model Proposal Journal of Environmental Management and Tourism 9(6) pp 1183-1189

[23] Tajfel H & Turner J 1986 The social identity theory of intergroup behavior In: S. Worchel, ed. Psychology of intergroup relations 2nd edn. ed. (Chicago: Nelson-Hall) pp 7-24

[24] Takahashi N 1997 A Single Garbage Can Model and the Degree of Anarchy in Japanese Firms (Human Relations) Issue 50 pp 91-108

[25] Thorbjørn K Massimo W & Sangyoon Y 2012 Garbage Can in the Lab In: J. R. H. Alessandro Lomi ed. The Garbage Can Model of Organizational Choice: Looking Forward at Forty (Research in the Sociology of Organizations vol 36 Emerald Group Publishing Limited pp 189-227

[26] Troitzsch K 2008 The Garbage Can Model of Organizational Behavior: A Theoretical Reconstruction of Some of Its Variants Simulation Modeling Practice and Theory vol 16 pp 218-230

[27] Turner J & Oakes P 1986 The significance of the social identity concept for social psychology with reference to individualism, interactionism and social influence British Journal of Social Psychology vol 25 pp 237–252

[28] Turner J & Oakes P 1989 Self-categorization theory and social influence In: P. Paulus, ed. The psychology of group influence (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 233-275

[29] Wilensky U 1999 Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL http://ccl.northwestern.edu/netlogo/

[30] Worchel S 1998a A developmental view of the search for group identity In: S. Worchel, ed. Social identity: international perspectives 1 Sage Publication pp 53–74

[31] Worchel S 1998b Social identity and individual productivity within groups Brit. J. of Soc. Psych. vol 37 pp 389-413
[32] Xiong L W & Pu X Z 2019 Agent action diagram: Toward a model for emergency management system Simulation Modeling Practice and Theory 94 pp 66-99
[33] Zizhen G et al 2018 Motivating service employee creativity: regulatory focus and emotional labor Journal of Service Theory and Practice 28(2) pp 228-249
[34] Tajel H 1972 Experiments in a vacuum The context of Social Psychology: a critical assessment (London and New York) pp 33-41