The Sum Degree Distance and the Product Degree Distance of Generalized Transformation Graphs G^{ab}

Keerthi G.Mirajkar* and Priyanka Y. B

Department of Mathematics, Karnatak Arts College, Dharwad-580 001, Karnataka, India

*keerthi.mirajkar@gmail.com, priyankaybpriya@gmail.com

Keywords: Degree distance, Transformation graph G^{ab}, Line splitting graph.

Abstract. In this contribution, we consider line splitting graph $L_s(G)$ of a graph G as transformation graph G^{++} of G^{ab}. We investigate the sum degree distance $DD_s(G)$ and product degree distance $DD_p(G)$ of transformation graph G^{ab}, which are weighted version of Wiener index. The Transformation graphs of G^{ab} are G^{++}, G^{--}, G^{-+} and G^{+-}.

1. Introduction

Throughout this paper, we consider finite, un-directed, simple, connected, r-regular graphs with vertex set $V(G) = \{v_1, v_2, v_3, ..., v_n\}$ and edge set $E(G) = \{e_1, e_2, e_3, ..., e_m\}$. For the undefined terminologies we refer[8].

The degree of vertex in a graph G is denoted by $\deg_G(v)$ or $d_G(v)$ and the distance between two vertices v_i and v_j, denoted by $dist_G(v_i, v_j)$ or $d_G(v_i, v_j)$, is the length of a shortest path between the vertices v_i and v_j in G. The shortest $v_i\sim v_j$ path is often called a geodesic. The diameter of a connected graph G is the length of any longest geodesic. The graphs considered in this construction are with $diam \leq 2$. The degree of an edge e_i in G is the number of edges adjacent to e_i and is denoted by $deg_G(e_i)$. The degree of edge in a graph G is

$$deg_G(e_i) = deg_G(uv) = deg_G(u) + deg_G(v) - 2.$$

Topological indices and graph invariants based on distances between vertices of a graph are widely used in mathematical chemistry[2], which are due to their correlations with physical, chemical and thermodynamic parameters of chemical compounds.

One of the oldest and well studied distance based graph invariant associated with a connected graph G is the Wiener number $W(G)$, also termed as Wiener index in chemical or mathematical chemistry literature, which is defined in [13] as the sum of distances over all unordered vertex pairs in G,

$$W(G) = \sum_{i<j} d(v_i, v_j) \quad (1)$$

Which was first time introduced by Wiener. Initially, the Wiener index $W(G)$ was considered as a molecular structure descriptor used in chemical applications, but soon it attracted the interest of pure mathematicians[1,3,5,14,15].

Eventually a number of modifications of the Wiener index were proposed, which are as follows.

$$DD_s(G) = \sum_{u, v \in V(G)} [deg_G(u) + deg_G(v)]d_G(u, v) \quad (2)$$

$$DD_p(G) = \sum_{u, v \in V(G)} [deg_G(u) \cdot deg_G(v)]d_G(u, v) \quad (3)$$
The graph invariants defined in (2) and (3) have all been much studied in the past. The invariant DD_+ was first time introduced by Dobrynin and Kochetova[4] and named as sum-degree distance. Later the same quantity was examined under the name "Schulz index" [7]. For mathematical research on degree distance see[9,12] and the references cited therein. A remarkable property of DD_+ is that in the case of trees of order n, the identity $DD_+=4W-n(n-1)$ holds [10].

Gutman [7] proved that the multiplicative variant of the degree distance, namely $DD_*, i.e., from (2), obeys an analogous relation: $DD_*=4W-(2n-1) (n-1)$. This latter quantity is sometimes referred to as the "Gutman index"[6], but here we call it product-degree distance.

The open neighborhood $N(e_i)$ of an edge e_i in $E(G)$ is the set of edges adjacent to e_i

$$i.e., \quad N(e_i)=\{e_i/e_i, e_j \text{ are adjacent in } G \}.$$

For each edge e_i of G, a new vertex e'_i is taken and the resulting set of vertices is denoted by $E'(G)$.

The line Splitting graph $L_s(G)$ of a graph G is defined as the graph having vertex set $E(G) \cup E'(G)$ with two vertices adjacent if they correspond to adjacent edges of G or one corresponds to an element e'_i of $E'(G)$ and the other to an element e_j of $E(G)$, and e_j is in $N(e_i)$. This concept was introduced by Kulli and Biradar in[11].

2 Generalized Transformation Graphs G^{ab}

Let $G=(V, E)$ be a graph. Let α, β and α', β' be the element of $E(G)$ and $E'(G)$ respectively. We say that the associativity of α and β is +, if they are adjacent in G otherwise is - and the associativity of α and β' or α' and β is +, if α is the neighborhood point of β or β is neighborhood point of α in G, otherwise is -.

Let ab be a 2-permutation of the set $\{+,-\}$. We say that α and β corresponds to the first term a of ab, and $\alpha, \beta \in E(G)$. Whereas α and β' or β and α' corresponds to the both first and second term of ab and $\alpha', \beta' \in E'(G)$.

The transformation graph G^{ab} of a graph G is the graph with vertex set $E(G) \cup E'(G)$. α and β or α and β' or β and α' are adjacent if and only if the following conditions holds;

* $\alpha, \beta \in E(G)$, α and β are adjacent in G if $a=+$ otherwise $a=-$.

** $\alpha, \beta \in E(G)$ and $\alpha', \beta' \in E'(G)$, if a neighborhood points of β or β is neighborhood point of α in G then $b=+$ otherwise $b=-$.

Since there are four distinct 2-permutations of $\{+,-\}$, we obtain 4-graphical transformations of G. Here we consider G^{++}, which is nothing but line splitting graph of G and the other generalized transformation graphs are G^{++}, G^{+-} and G^{-+}.

Note that, in this paper we consider graphs with $n \geq 5$ for G^{++} and G^{-+} and in particular for G^{++} and G^{-+} we consider graphs with $n > 5$ and having atleast three edges e_i, e_j and $e_w \in E(G)$; $i,j,w=1,2,3,..,m$ and $i\neq j \neq w$ such that e_i and e_j are non adjacent edges and e_w is non adjacent to e_i and e_j.

The aim of present work is to obtain the expression for the sum degree distance and product degree distance of the generalized transformation graphs G^{ab}.

3. Results

In this section we obtain the sum degree distance and product degree distance of the transformation graphs G^{ab}, which is line splitting graph i.e., G^{++}, and its generalized transformation graphs G^{++}, G^{+-}, G^{-+}.
We start by stating the following propositions and observations, needed for proving our main results.

Proposition 3.1 Let G be an \((n,m)\) graph. Then by the definition order of \(G^{ab}\) is 2m and

1. The size of \(G^{+} \) is \(-m + \frac{1}{2} nr^2 + 2m(r - 1)\).

2. The size of \(G^{-} \) is \(-m^2 + \frac{1}{2} (nr^2) - 2mr\).

3. The size of \(G^{++} \) is \(\frac{m}{2} [m + 2r - 3]\).

4. The size of \(G^{--} \) is \(\frac{3}{2} [m - 2r + 1]\).

Proof. Let G be a \((n,m)\)-graph with regular degree \(r\), then

1. \(E(G^{+}) = E(L(G)) + \sum_{i=1}^{m} \deg_{G}(e_i)\)

 \[= -m + \frac{1}{2} \sum_{i=1}^{m} d_i^2 + \sum_{i=1}^{m} \deg_{G}(e_i)\]

 \[= -m + \frac{1}{2} nr^2 + m(2r - 2) \quad [\because G \text{ is } r-\text{regular graph}]\]

 \[E(G^{+}) = -m + \frac{1}{2} nr^2 + 2m(r - 1).\]

2. \(E(G^{-}) = \sum_{(uv) \in E(G)} \text{the edges which are not incident to } u \text{ and } v \text{ in } G\)

 \[= -m + \frac{1}{2} nr^2 + m(m - 2r + 1) \quad [\because G \text{ is } r-\text{regular graph}]\]

 \[= -m + \frac{1}{2} nr^2 + m^2 - 2mr + m\]

 \[E(G^{-}) = m^2 + \frac{1}{2} nr^2 - 2mr.\]

3. \(E(G^{++}) = \frac{1}{2} \sum_{(uv) \in E(G)} \text{the edges which are not incident to } u \text{ and } v \text{ in } G + \sum_{i=1}^{m} \deg_{G}(e_i)\)

 \[= \frac{1}{2} m(m - 2r + 1) + m(\deg_{G}(u) + \deg_{G}(v) - 2)\]

 \[= \frac{1}{2} m^2 - mr + \frac{1}{2} m + m(2r - 2) \quad [\because G \text{ is } r-\text{regular graph}]\]

 \[E(G^{++}) = \frac{m}{2} [m + 2mr - 3].\]

4. \(E(G^{--}) = \frac{1}{2} \sum_{(uv) \in E(G)} \text{the edges which are not incident to } u \text{ and } v \text{ in } G + \sum_{(uv) \in E(G)} \text{the edges which are not incident to } u \text{ and } v \text{ in } G\)

 \[= \frac{1}{2} m(m - 2r + 1) + m(m - 2r + 1) \quad [\because G \text{ is } r-\text{regular graph}]\]

 \[E(G^{--}) = \frac{3}{2} m[m - 2r + 1].\]
Proposition 3.2 Let G be an (n,m) graph. Then the degree of vertices e_i and e_i' of G^{ab} are,

(i) $d_{G^{++}}(e_i) = 4(r - 1)$ and $d_{G^{++}}(e_i') = 2(r - 1)$.

(ii) $d_{G^{--}}(e_i) = (m - 1)$ and $d_{G^{--}}(e_i') = m - 2r + 1$.

(iii) $d_{G^{+-}}(e_i) = (m - 1)$ and $d_{G^{+-}}(e_i') = 2(r - 1)$.

(iv) $d_{G^{-+}}(e_i) = 2(m - 2r + 1)$ and $d_{G^{-+}}(e_i') = (m - 2r + 1)$.

Proof. Let G be a (n,m)-graph with regular degree r, then

(i) $d_{G^{++}}(e_i) = 2\deg_G(e_i) = 2(2r - 2) = 4(r - 1)$ and $d_{G^{++}}(e_i') = \deg_G(e_i) = 2r - 2 = 2(r - 1)$.

(ii) $d_{G^{--}}(e_i) = \deg_G(e_i) + (m - 2r + 1) = 2r - 2 + m - 2r + 1 = (m - 1)$ and $d_{G^{--}}(e_i') = \deg_G(e_i) = (2r - 2) = 2(r - 1)$.

(iii) $d_{G^{+-}}(e_i) = (m - 2r + 1) + \deg_G(e_i) = m - 2r + 2r - 2 = (m - 1)$ and $d_{G^{+-}}(e_i') = \deg_G(e_i) = (2r - 2) = 2(r - 1)$.

(iv) $d_{G^{-+}}(e_i) = 2($The total number of edges which are not incident to u and v in G and $uv = e_i$) $= 2(m - 2r + 1)$ and $d_{G^{-+}}(e_i') = $ The total number of edges which are not incident to u and v in G and $uv = e_i$ $= (m - 2r + 1)$.

We use Proposition 3.2 for the following observations.

Observation A.

1. G be any (n, m) graph.
 If $d_{G^{++}}(e_i, e_i') = 1$, then
 $$\sum_{(e_i, e_i') \in F(G^{++})}[\deg_{G^{++}}(e_i) + \deg_{G^{++}}(e_i')]d_{G^{++}}(e_i, e_i') \text{ in } G^{++} = 8m(r - 1)^2.$$

2. Let G be any (n, m) graph.
 If $d_{G^{++}}(e_i, e_i') = 2$, then
 $$\sum_{(e_i, e_i') \in F(G^{++})}[\deg_{G^{++}}(e_i) + \deg_{G^{++}}(e_i')]d_{G^{++}}(e_i, e_i') \text{ in } G^{++} = 16(r - 1)(m^2 + m - 2mr).$$

3. Let G be any (n, m) graph.
 If $d_{G^{++}}(e_i', e_i') = 1$, then
 $$\sum_{(e_i', e_i') \in F(G^{++})}[\deg_{G^{++}}(e_i') + \deg_{G^{++}}(e_i')]d_{G^{++}}(e_i', e_i') \text{ in } G^{++} = 12m(r - 1)^2.$$

 If $d_{G^{++}}(e_i', e_i') = 2$, then
 $$\sum_{(e_i', e_i') \in F(G^{++})}[\deg_{G^{++}}(e_i') + \deg_{G^{++}}(e_i')]d_{G^{++}}(e_i', e_i') \text{ in } G^{++} = 12m(r - 1)(m - 2r + 2).$$

 If $d_{G^{++}}(e_i', e_i') = 3$ when $r = 2$, then
 $$\sum_{(e_i', e_i') \in F(G^{++})}[\deg_{G^{++}}(e_i') + \deg_{G^{++}}(e_i')]d(e_i', e_i') \text{ in } G^{++} = 12m(r - 1).$$
Theorem 3.3. For any \((n, m)\) graph \(G\) with \(r \geq 2\),
if \(r = 2\) then
\[
DD_+(G^{++}) = 4(r - 1)[m(7m + 5 - 11r) + 3m + nr^2 + 2\sum_{k=1}^{m}(k - 1)]
\]
(*)

And if \(r > 2\) then
\[
DD_+(G^{++}) = 4(r - 1)[m(7m + 5 - 11r) + nr^2 + 2\sum_{k=1}^{m}(k - 1)]
\]
(**)

Proof. Let \(G\) be any \((n,m)\)-graph. From Proposition 3.1, \(G^{++}\) contains \(2m\) vertices and
\((-m + \frac{1}{2}nr^2 + 2m(r - 1))\) edges.

From (2), we have
\[
DD_+(G) = \sum_{u,v \in V^+(G)} [\deg_G(u) + \deg_G(v)]d_G(u,v)
\]

Therefore,
\[
DD_+(G^{++}) = \sum_{(e_i,e_j) \in E^+(G^{++})} [\deg_{G^{++}}(e_i) + \deg_{G^{++}}(e_j)]d_{G^{++}}(e_i,e_j) +
\sum_{(e_i,e'_j) \in E^+(G^{++})} [\deg_{G^{++}}(e_i) + \deg_{G^{++}}(e'_j)]d_{G^{++}}(e_i,e'_j) +
\sum_{(e'_i,e'_j) \in E^+(G^{++})} [\deg_{G^{++}}(e'_i) + \deg_{G^{++}}(e'_j)]d_{G^{++}}(e'_i,e'_j).
\]

Applying observation A to the above equation,
when \(r = 2\),
\[
DD_+(G^{++}) = 8m(r - 1)^2(-m + \frac{1}{2}nr^2) + 16m(r - 1)(m - 2r + 1) + 12m(r - 1)^2 + 12m(r - 1)
\]
\((m-2r+2)+12m(r-1)+8(r-1)\sum_{k=1}^{m}(k - 1).
\]

and \(r > 2\),
\[
DD_+(G^{++}) = 8m(r - 1)^2(-m + \frac{1}{2}nr^2) + 16m(r - 1)(m - 2r + 1) + 12m(r - 1)^2 + 12m(r - 1)
\]
\((m-2r+2)+8(r-1)\sum_{k=1}^{m}(k - 1).
\]

On simplification, we get (*) and (**)
i.e.,
\[
DD_+(G^{++}) = 4(r - 1)[m(7m + 5 - 11r) + 3m + nr^2 + 2\sum_{k=1}^{m}(k - 1)]
\]
and
\[
DD_+(G^{++}) = 4(r - 1)[m(7m + 5 - 11r) + nr^2 + 2\sum_{k=2}^{m}(k - 1)].
\]

Observation B.
1. Let \(G\) be any \((n,m)\) graph.
If \(d_{G^{++}}(e_i,e_j) = 1\), then
\[
\sum_{(e_i,e_j) \in E^+(G^{++})} [\deg_{G^{++}}(e_i) \cdot \deg_{G^{++}}(e_j)]d_{G^{++}}(e_i,e_j) \text{ in } G^{++} = 16m (r - 1)^2(-m + \frac{1}{2}nr^2).
\]

If \(d_{G^{++}}(e_i,e_j) = 2\), then
\[
\sum_{(e_i,e_j) \in E^+(G^{++})} [\deg_{G^{++}}(e_i) \cdot \deg_{G^{++}}(e_j)]d_{G^{++}}(e_i,e_j) \text{ in } G^{++} = 32 (r - 1)^2(m^2 + m - 2mr).
\]

2. Let \(G\) be any \((n,m)\) graph.
If \(d_{G^{++}}(e_i,e'_j) = 1\), then
\[
\sum_{(e_i,e'_j) \in E^+(G^{++})} [\deg_{G^{++}}(e_i) \cdot \deg_{G^{++}}(e'_j)]d_{G^{++}}(e_i,e'_j) \text{ in } G^{++} = 16m (r - 1)^3 m.
\]
If $d_G^{++}(e_i, e'_j) = 2$, then
\[
\sum_{(e_i, e'_j) \in \mathcal{P}(G^{++})} [\deg_{G^{++}}(e_i) \cdot \deg_{G^{++}}(e'_j)]d_G^{++}(e_i, e'_j) \text{ in } G^{++} = 16m (r-1)^2(m-2r+2).
\]

3. Let G be any (n,m) graph.
If $d_G^{++}(e_i, e'_j) = 2$, then
\[
\sum_{(e_i, e'_j) \in \mathcal{P}(G^{++})} [\deg_{G^{++}}(e_i) \cdot \deg_{G^{++}}(e'_j)]d_G^{++}(e_i, e'_j) \text{ in } G^{++} = 8(r-1)^2 \sum_{k=2}^m (k-1).
\]

If $d_G^{++}(e_i, e'_j) = 3$, when $r = 2$, then
\[
\sum_{(e_i, e'_j) \in \mathcal{P}(G^{++})} [\deg_{G^{++}}(e'_j) \cdot \deg_{G^{++}}(e'_j)]d_G^{++}(e_i, e'_j) \text{ in } G^{++} = 12m(r-1)^2.
\]

Theorem 3.4. For any (n,m) graph G with $r \geq 2$,

- when $r = 2$
 \[
 DD_*(G^{++}) = 8(r-1)^2[2m(3m-5r+2) + nr^2 + 3m + \sum_{k=2}^m (k-1)] \quad \text{(*)}
 \]
 and when $r > 2$
 \[
 DD_*(G^{++}) = 8(r-1)^2[2m(3m-5r+2) + nr^2 + 3m + \sum_{k=2}^m (k-1)] \quad \text{(***)}
 \]

Proof. Let G be any (n,m)-graph. From Proposition 3.1, G^{++} contains $2m$ vertices and $(-m + \frac{1}{2}nr^2 + 2m(r-1))$ edges.

From (3), we have
\[
DD_*(G) = \sum_{u,v \in G} [\deg_G(u) \cdot \deg_G(v)]d_G(u,v)
\]

Therefore,
\[
DD_*(G^{++}) = \sum_{(e_i, e'_j) \in \mathcal{P}(G^{++})} [\deg_{G^{++}}(e_i) \cdot \deg_{G^{++}}(e'_j)]d_{G^{++}}(e_i, e'_j) + \sum_{(e_i, e'_j) \in \mathcal{P}(G^{++})} [\deg_{G^{++}}(e_i) \cdot \deg_{G^{++}}(e'_j)]d_{G^{++}}(e_i, e'_j) + \sum_{(e_i, e'_j) \in \mathcal{P}(G^{++})} [\deg_{G^{++}}(e'_j) \cdot \deg_{G^{++}}(e'_j)]d_{G^{++}}(e_i, e'_j).
\]

Applying observation B to the above equation, when $r = 2$,
\[
DD_*(G^{++}) = 16(r-1)^2(-m + \frac{1}{2}) + 32(r-1)^2(m^2 + m - 2mr) + 16m(r-1)^3 + 16m(r-1)^2 \]
\[
(m-2r+2) + 12m(r-1)^2 + 8(r-1)^2 \sum_{k=2}^m (k-1).
\]

When $r > 2$
\[
DD_*(G^{++}) = 16(r-1)^2(-m + \frac{1}{2}) + 32(r-1)^2(m^2 + m - 2mr) + 16m(r-1)^3 + 16m(r-1)^2 \]
\[
(m-2r+2) + 8(r-1)^2 \sum_{k=2}^m (k-1).
\]

On simplification, we get (*) and (***)
\[
DD_*(G^{++}) = 8(r-1)^2[2m(3m-5r+2) + nr^2 + 3m + \sum_{k=2}^m (k-1)]
\]

and
\[
DD_*(G^{++}) = 8(r-1)^2[2m(3m-5r+2) + nr^2 + \sum_{k=2}^m (k-1)].
\]
Observation C.
1. Let G be any (n,m) graph.
 If $d_{G^+}(e_i,e_j)=1$, then
 \[\sum_{(e_i,e_j) \in F(G^+)} [\deg_{G^+}(e_i) + \deg_{G^+}(e_j)]d_{G^+}(e_i,e_j) \text{ in } G^+ = 2(m-1)(-m + \frac{1}{2}nr^2). \]
 If $d_{G^+}(e_i,e_j)=2$, then
 \[\sum_{(e_i,e_j) \in F(G^+)} [\deg_{G^+}(e_i) + \deg_{G^+}(e_j)]d_{G^+}(e_i,e_j) \text{ in } G^+ = 4(m-1)(m^2 + m - 2mr). \]

2. Let G be any (n,m) graph.
 If $d_{G^+}(e_i,e_j)=1$, then
 \[\sum_{(e_i,e_j') \in F(G^+)} [\deg_{G^+}(e_i) + \deg_{G^+}(e_j')]d_{G^+}(e_i,e_j') \text{ in } G^+ = 2(m-r)(m-2r+1). \]
 If $d_{G^+}(e_i,e_j)=2$, then
 \[\sum_{(e_i,e_j') \in F(G^+)} [\deg_{G^+}(e_i) + \deg_{G^+}(e_j')]d_{G^+}(e_i,e_j') \text{ in } G^+ = 8(m-r)(r-1). \]
 If $d_{G^+}(e_i,e_j)=3$, then
 \[\sum_{(e_i,e_j') \in F(G^+)} [\deg_{G^+}(e_i) + \deg_{G^+}(e_j')]d_{G^+}(e_i,e_j') \text{ in } G^+ = 6(m-r). \]

3. Let G be any (n,m) graph.
 If $d_{G^+}(e_i',e_j')=2$, then
 \[\sum_{(e_i',e_j') \in F(G^+)} [\deg_{G^+}(e_i') + \deg_{G^+}(e_j')]d_{G^+}(e_i',e_j') \text{ in } G^+ = 4(m-2r+1)\sum_{k=2}^m (k-1). \]

Theorem 3.5. For any (n,m) graph G,
\[DD_+(G^+)=2m(m^3-5)-1+mr[4m-6m-4r+8]nr^2+4(m-2r+1)\sum_{k=1}^m (k-1). \]

Proof. Let G be any (n,m)-graph. From Proposition 3.1, G^+ contains $2m$ vertices and
\[(-m^2 + \frac{1}{2}nr^2 - 2mr) \] edges.

From (2), we have
\[DD_+(G) = \sum_{u,v \in F(G)} [\deg_G(u) + \deg_G(v)]d_G(u,v) \]
Therefore,
\[DD_+(G^+) = \sum_{(e_i,e_j) \in F(G^+)} [\deg_{G^+}(e_i) + \deg_{G^+}(e_j)]d_{G^+}(e_i,e_j) + \sum_{(e_i,e_j') \in F(G^+)} [\deg_{G^+}(e_i) + \deg_{G^+}(e_j')]d_{G^+}(e_i,e_j') + \sum_{(e_i',e_j') \in F(G^+)} [\deg_{G^+}(e_i') + \deg_{G^+}(e_j')]d_{G^+}(e_i',e_j') \]

Applying observation C to the above equation, we get
\[DD_+(G^+) = 2m(m-1)(r-1) + 4(m-1)(m^2 + m - 2mr) + 2(m-r)(m-2r+1) + 8m(m-r)(r-1) + 6m(m-r) + 2(m-2r+1)\sum_{k=1}^m (k-2). \]

On simplification,
\[DD_+(G^+) = 2m[m(m-3)-1] + mr[4m-6m-4r+8]nr^2+4(m-2r+1)\sum_{k=1}^m (k-1). \]
Observation D.

1. Let G be any (n,m) graph.
 If $d_{G^+}(e_i,e_j) = 1$, then
 \[
 \sum_{(e_i,e_j) \in V(G^+)} [\deg_{G^+}(e_i) \cdot \deg_{G^+}(e_j)] d_{G^+}(e_i,e_j) \text{ in } G^+ = (m-1)^2(-m + \frac{1}{2}nr^2).
 \]
 If $d_{G^+}(e_i,e_j) = 2$, then
 \[
 \sum_{(e_i,e_j) \in V(G^+)} [\deg_{G^+}(e_i) \cdot \deg_{G^+}(e_j)] d_{G^+}(e_i,e_j) \text{ in } G^+ = 2(m-1)^2(m^2 + m - 2mr).
 \]

2. Let G be any (n,m) graph.
 If $d_{G^+}(e_i,e_j') = 1$, then
 \[
 \sum_{(e_i,e_j') \in V(G^+)} [\deg_{G^+}(e_i) \cdot \deg_{G^+}(e_j')] d_{G^+}(e_i,e_j') \text{ in } G^+ = (m^2 - 2mr + 2r - 1)\text{.}
 \]
 If $d_{G^+}(e_i,e_j') = 2$, then
 \[
 \sum_{(e_i,e_j') \in V(G^+)} [\deg_{G^+}(e_i) \cdot \deg_{G^+}(e_j')] d_{G^+}(e_i,e_j') \text{ in } G^+ = 4(m^2 - 2mr + 2r - 1)(r-1)m.
 \]
 If $d_{G^+}(e_i,e_j') = 3$, then
 \[
 \sum_{(e_i,e_j') \in V(G^+)} [\deg_{G^+}(e_i) \cdot \deg_{G^+}(e_j')] d_{G^+}(e_i,e_j') \text{ in } G^+ = 3m(m^2 - 2m + 2r - 1)\text{.}
 \]

3. Let G be any (n,m) graph.
 If $d_{G^+}(e_i',e_j') = 2$, then
 \[
 \sum_{(e_i',e_j') \in V(G^+)} [\deg_{G^+}(e_i') \cdot \deg_{G^+}(e_j')] d_{G^+}(e_i',e_j') \text{ in } G^+ = 2(m-2r+2)^2 \sum_{k=2}^{m} (k-1)^2\text{.}
 \]

Theorem 3.6. For any (n,m) graph G,

\[
DD_1(G^+) = m[m^2(3m-3) - 7(m+1)] + \frac{1}{2} nr^2(m^2 - m + 1) - 2mr[2m(3-r) + 2r - 3] + 2(m-2r+2)^2 \sum_{k=2}^{m} (k-1)^2.
\]

Proof. Let G be any (n,m)-graph. From Proposition 3.1, G^+ contains 2m vertices and

\[-m^2 + \frac{1}{2}(nr^2) - 2mr\text{ edges.}\]

From (3), we have

\[
DD_1(G) = \sum_{u,v \in V(G)} [\deg_G(u) \cdot \deg_G(v)] d_G(u,v)
\]

Therefore,

\[
DD_1(G^+) = \sum_{(e_i,e_j) \in V(G^+)} [\deg_{G^+}(e_i) \cdot \deg_{G^+(e_j)}] d_{G^+}(e_i,e_j) + \sum_{(e_i,e_j') \in V(G^+)} [\deg_{G^+}(e_i) \cdot \deg_{G^+(e_j')}] d_{G^+}(e_i,e_j') + \sum_{(e_i',e_j') \in V(G^+)} [\deg_{G^+}(e_i') \cdot \deg_{G^+(e_j')}] d_{G^+}(e_i',e_j').
\]

Applying observation D to the above equation, we get

\[
DD_1(G^+) = (m-1)^2(-m + \frac{1}{2}nr^2) + 2(m-1)^2(m^2 + m - 2mr) + (m^2 - 2mr + 2r - 1)(m - 2r + 1) + 4(m^2 - 2mr + 2r - 1)(r-1)m + 3m(m^2 - 2m + 2r - 1) + 2(m-2r+2)^2 \sum_{k=2}^{m} (k-1)^2.
\]
On simplification,
\[
DD_+(G^+) = m[m^2(3m - 3) - 7(m + 1)] + \frac{1}{2} nr^2(m^2 - m + 1) - 2mr[2m(3 - r) + 2r - 3] + 2(m - 2r + 2)^2 \sum_{k=2}^{m} (k - 1)^2.
\]

Observation E.
1. Let \(G \) be any \((n,m)\) graph.
 If \(d_{G^+}(e_i,e_j) = 1 \), then
 \[
 \sum_{(e_i,e_j) \in E(G^+)} [\text{deg}_{G^+}(e_i) + \text{deg}_{G^+}(e_j)]d_{G^+}(e_i,e_j) \text{ in } G^+ = (m-2r+1)(m-1)m.
 \]
 If \(d_{G^+}(e_i,e_j) = 2 \), then
 \[
 \sum_{(e_i,e_j) \in E(G^+)} [\text{deg}_{G^+}(e_i) + \text{deg}_{G^+}(e_j)]d_{G^+}(e_i,e_j) \text{ in } G^+ = (m-1)(r-1)m.
 \]
2. Let \(G \) be any \((n,m)\) graph.
 If \(d_{G^+}(e_i,e_j') = 1 \), then
 \[
 \sum_{(e_i,e_j') \in E(G^+)} [\text{deg}_{G^+}(e_i) + \text{deg}_{G^+}(e_j')]d_{G^+}(e_i,e_j') = 2m(m+2r-3)(r-1).
 \]
 If \(d_{G^+}(e_i,e_j') = 2 \), then
 \[
 \sum_{(e_i,e_j') \in E(G^+)} [\text{deg}_{G^+}(e_i) + \text{deg}_{G^+}(e_j')]d_{G^+}(e_i,e_j') = 2m(m+2r-3)(m-2r+2).
 \]
 If \(d_{G^+}(e_i,e_j') = 3 \), then
 \[
 \sum_{(e_i,e_j') \in E(G^+)} [\text{deg}_{G^+}(e_i) + \text{deg}_{G^+}(e_j')]d_{G^+}(e_i,e_j') = 3m(m+2r-3).
 \]
3. Let \(G \) be any \((n,m)\) graph.
 If \(d_{G^+}(e_i',e_j) = 2 \), then
 \[
 \sum_{(e_i',e_j) \in E(G^+)} [\text{deg}_{G^+}(e_i') + \text{deg}_{G^+}(e_j)]d(e_i',e_j) \text{ in } G^+ = 8(r-1)\sum_{k=2}^{m} (k - 1).
 \]

Theorem 3.7. For any \((n,m)\) graph \(G \),
\[
DD_+(G^+) = m[m(3m-2)-15] - nr[m-4r-17] + 8(r-1)\sum_{k=2}^{m} (k - 1).
\]

Proof. Let \(G \) be any \((n,m)\)-graph, from the Proposition 3.1, \(G^+ \) contains 2m vertices and \(\frac{m}{2} [m+2r-3] \) edges.

From (2), we have
\[
DD_+(G) = \sum_{u,v \in V(G)} [\text{deg}_G(u) + \text{deg}_G(v)]d_G(u,v)
\]

Therefore,
\[
DD_+(G^+) = \sum_{(e_i,e_j) \in E(G^+)} [\text{deg}_{G^+}(e_i) + \text{deg}_{G^+}(e_j)]d_{G^+}(e_i,e_j) + \sum_{(e_i,e_j') \in E(G^+)} [\text{deg}_{G^+}(e_i) + \text{deg}_{G^+}(e_j')]d_{G^+}(e_i,e_j') + \sum_{(e_i',e_j') \in E(G^+)} [\text{deg}_{G^+}(e_i') + \text{deg}_{G^+}(e_j')]d_{G^+}(e_i',e_j').
\]

Applying observation E to the above equation, we get
\[
DD_+(G^+) = (m-2r+1)(m-1)m + (m-1)(r-1)m + 2m(m+2r-3)(r-1) + 2m(m+2r-3)(m-2r+2) + 3m(m+2r-3) + 8(r-1)\sum_{k=2}^{m} (k - 1).
\]
On simplification,

\[DD_+(G^{-}) = m[m(3m - 2) - 15] - mr[m - 4r - 17] + 8(r - 1) \sum_{k=2}^{m} (k - 1). \]

Observation F.

1. Let \(G \) be any \((n,m)\) graph.
 - If \(d_{G^{-}}(e_i, e_j) = 1 \), then
 \[
 \sum_{(e_i, e_j) \in V(G^{-})}[\deg_{G^{-}}(e_i) \cdot \deg_{G^{-}}(e_j)]d_{G^{-}}(e_i, e_j) \quad \text{in} \quad G^{-} = \frac{1}{2} (m - 1)^2 (m^2 - 2mr + m). \]
 - If \(d_{G^{-}}(e_i, e_j) = 2 \), then
 \[
 \sum_{(e_i, e_j) \in V(G^{-})}[\deg_{G^{-}}(e_i) \cdot \deg_{G^{-}}(e_j)]d_{G^{-}}(e_i, e_j) \quad \text{in} \quad G^{-} = 2(m - 1)^2(r - 1)m. \]

2. Let \(G \) be any \((n,m)\) graph.
 - If \(d_{G^{-}}(e_i, e_j') = 1 \), then
 \[
 \sum_{(e_i, e_j') \in V(G^{-})}[\deg_{G^{-}}(e_i) \cdot \deg_{G^{-}}(e_j')]d_{G^{-}}(e_i, e_j') \quad \text{in} \quad G^{-} = 4m(mr - m - r + 1)(r - 1). \]
 - If \(d_{G^{-}}(e_i, e_j') = 2 \), then
 \[
 \sum_{(e_i, e_j') \in V(G^{-})}[\deg_{G^{-}}(e_i) \cdot \deg_{G^{-}}(e_j')]d_{G^{-}}(e_i, e_j') \quad \text{in} \quad G^{-} = 4m(mr - m - r - 1)(m - 2r + 2). \]
 - If \(d_{G^{-}}(e_i, e_j') = 3 \), then
 \[
 \sum_{(e_i, e_j') \in V(G^{-})}[\deg_{G^{-}}(e_i) \cdot \deg_{G^{-}}(e_j')]d_{G^{-}}(e_i, e_j') \quad \text{in} \quad G^{-} = 6m(mr - m - r + 1). \]

3. Let \(G \) be any \((n,m)\) graph.
 - If \(d_{G^{-}}(e_i', e_j') = 2 \), then
 \[
 \sum_{(e_i', e_j') \in V(G^{-})}[\deg_{G^{-}}(e_i') \cdot \deg_{G^{-}}(e_j')]d_{G^{-}}(e_i', e_j') \quad \text{in} \quad G^{-} = 8(r - 1)^2 \sum_{k=2}^{m} (k - 1). \]

Theorem 3.8. For any \((n,m)\) graph \(G \),

\[DD_+(G^{-}) = \frac{1}{2} m[m(m - 13) - 5m + 8] + mr(m(5m - 4r + 8) + 4r - 13) +
8(r - 1)^2 \sum_{k=2}^{m} (k - 1). \]

Proof. Let \(G \) be any \((n,m)\)-graph. From Proposition 3.1, \(G^{-} \) contains \(2m \) vertices and \(\frac{m}{2} \) \([m + 2r - 3]\) edges.

From (3), we have

\[DD_+(G) = \sum_{u,v \in V(G)} [\deg_G(u) \cdot \deg_G(v)]d_G(u,v) \]

Therefore,

\[DD_+(G^{-}) = \sum_{(e_i, e_j) \in V(G^{-})}[\deg_{G^{-}}(e_i) \cdot \deg_{G^{-}}(e_j)]d_{G^{-}}(e_i, e_j) +
\sum_{(e_i, e_j') \in V(G^{-})}[\deg_{G^{-}}(e_i) \cdot \deg_{G^{-}}(e_j')]d_{G^{-}}(e_i, e_j') +
\sum_{(e_i', e_j') \in V(G^{-})}[\deg_{G^{-}}(e_i') \cdot \deg_{G^{-}}(e_j')]d_{G^{-}}(e_i', e_j'). \]

Applying observation F to the above equation, we get

\[DD_+(G^{-}) = \frac{1}{2} (m - 1)^2 (m^2 - 2mr + m) + 2(m - 1)^2(r - 1)m + 4m(mr - m - r + 1)(r - 1) \]
+ 4m(mr - m - r - 1)(m - 2r + 2) + 6m(mr - m - r + 1) + 8(r - 1)^2 \sum_{k=2}^{m}(k - 1).

On simplification,

\[DD_+(G^+) = \frac{1}{2} m[m^2(13) - 5m + 8] + m[5m(m - 4r + 8) + 4r - 13] + 8(r - 1)^2 \sum_{k=2}^{m}(k - 1). \]

Observation G.

1. Let \(G \) be any \((n,m)\) graph.
 If \(d^-_G(e_i, e_j) = 1 \), then
 \[\sum_{(e_i, e_j) \in E(G^-)}[\text{deg}^-_G(e_i) + \text{deg}^-_G(e_j)]d^-_G(e_i, e_j) \]
 in \(G^- = 2m(m - 2r + 1)^2 \).
 If \(d^-_G(e_i, e_j) = 2 \), then
 \[\sum_{(e_i, e_j) \in E(G^-)}[\text{deg}^-_G(e_i) + \text{deg}^-_G(e_j)]d^-_G(e_i, e_j) \]
 in \(G^- = 8(m - 2r + 1)^2(r - 1) \).

2. Let \(G \) be any \((n,m)\) graph.
 If \(d^-_G(e_i, e'_j) = 1 \), then
 \[\sum_{(e_i, e'_j) \in E(G^-)}[\text{deg}^-_G(e_i) + \text{deg}^-_G(e'_j)]d^-_G(e_i, e'_j) \]
 in \(G^- = 3m(m - 2r + 1)^2 \).
 If \(d^-_G(e_i, e'_j) = 2 \), then
 \[\sum_{(e_i, e'_j) \in E(G^-)}[\text{deg}^-_G(e_i) + \text{deg}^-_G(e'_j)]d^-_G(e_i, e'_j) \]
 in \(G^- = 6m(2r - 1)(m - 2r + 1)^2 \).

3. Let \(G \) be any \((n,m)\) graph.
 If \(d^-_G(e'_i, e'_j) = 2 \), then
 \[\sum_{(e'_i, e'_j) \in E(G^-)}[\text{deg}^-_G(e'_i) + \text{deg}^-_G(e'_j)]d^-_G(e'_i, e'_j) \]
 in \(G^- = 4(m - 2r + 1) \sum_{k=2}^{m}(k - 1) \).

Theorem 3.9. For any \((n,m)\) graph \(G \),

\[DD_+(G^-) = m[5m^2 - 4m - 9] - 4mr[5r - 7] + 4(m - 2r + 1) \sum_{k=2}^{m}(k - 1). \]

Proof. Let \(G \) be any \((n,m)\)-graph. From proposition 3.1, \(G^- \) contains 2m vertices and \(\frac{3}{2} m[2r + 1] \) edges.

From (2), we have

\[DD_+(G) = \sum_{u,v \in V(G)}[\text{deg}_G(u) + \text{deg}_G(v)]d_G(u,v) \]

Therefore,

\[DD_+(G^-) = \sum_{(e_i, e_j) \in E(G^-)}[\text{deg}^-_G(e_i) + \text{deg}^-_G(e_j)]d^-_G(e_i, e_j) \]
\[+ \sum_{(e'_i, e'_j) \in E(G^-)}[\text{deg}^-_G(e'_i) + \text{deg}^-_G(e'_j)]d^-_G(e'_i, e'_j) \]
\[+ \sum_{e_i, e'_j \in E(G^-)}[\text{deg}^-_G(e'_i) + \text{deg}^-_G(e'_j)]d^-_G(e'_i, e'_j). \]

Applying observation G to the above equation, we get

\[DD_+(G^-) = 2m(m - 2r + 1)^2 + 8(m - 2r + 1)(r - 1) + 3m(m - 2r + 1)^2 + 6m(2r - 1)(m - 2r + 1) \]
\[+ 4(m - 2r + 1) \sum_{k=2}^{m}(k - 1) \]

\[DD_+(G^-) = m[5m^2 - 4m - 9] - 4mr[5r - 7] + 4(m - 2r + 1) \sum_{k=2}^{m}(k - 1). \]
On simplification,
\[DD_\ast (G^{-}) = m[5m^2 - 4m - 9] - 4mr[5r - 7] + 4(m - 2r + 1) \sum_{k=2}^{m} (k - 1). \]

Observation H.
1. Let \(G \) be any \((n,m)\) graph.
 If \(d_{g^-}(e_1,e_2) = 1 \), then
 \[\sum_{(e_j,e_j) \in V(G^-)} [deg_{g^-}(e_j) \cdot deg_{g^-}(e_j)]d_{g^-}(e_j,e_j) \] in
 \(G^- = 2m(m - 2r + 1)^3 \).
 If \(d_{g^-}(e_1,e_2) = 2 \), then
 \[\sum_{(e_j,e_j) \in V(G^-)} [deg_{g^-}(e_j) \cdot deg_{g^-}(e_j)]d_{g^-}(e_j,e_j) \] in
 \(G^- = 8m(m - 2r + 1)^2(r - 1). \)
2. Let \(G \) be any \((n,m)\) graph.
 If \(d_{g^-}(e_1,e_2) = 1 \), then
 \[\sum_{(e_j,e_j) \in V(G^-)} [deg_{g^-}(e_j) \cdot deg_{g^-}(e_j)]d_{g^-}(e_j,e_j) \] in
 \(G^- = 2m(m - 2r + 1)^3 \).
 If \(d_{g^-}(e_1,e_2) = 2 \), then
 \[\sum_{(e_j,e_j) \in V(G^-)} [deg_{g^-}(e_j) \cdot deg_{g^-}(e_j)]d_{g^-}(e_j,e_j) \] in
 \(G^- = 4m(m - 2r + 2)^2(2r - 1). \)
3. Let \(G \) be any \((n,m)\) graph.
 If \(d_{g^-}(e_1,e_2) = 2 \), then
 \[\sum_{(e_j,e_j) \in V(G^-)} [deg_{g^-}(e_j) \cdot deg_{g^-}(e_j)]d_{g^-}(e_j,e_j) \] in
 \(G^- = 2m(m - 2r + 1)^3 \sum_{k=2}^{m} (k - 1). \)

Theorem 3.10. For any \((n,m)\) graph \(G \),
\[DD_\ast (G^-) = 2m[m^2(2m - 3) - 5m + 6] - 4mr[3m^2 - 4r^2 + 10mr - 14m + 12r - 13] +
2(m - 2r + 1)^3 \sum_{k=2}^{m} (k - 1). \]

Proof. Let \(G \) be any \((n,m)\)-graph. From Proposition 3.1, \(G^- \) contains \(2m \) vertices and
\[\frac{3}{2} m - 2r + 1 \] edges.

From (3), we have
\[DD_\ast (G) = \sum_{u,v \in V(G)} [deg_{G}(u) \cdot deg_{G}(v)]d_{G}(u,v) \]

Therefore,
\[DD_\ast (G^-) = \sum_{(e_j,e_j) \in V(G^-)} [deg_{g^-}(e_j) \cdot deg_{g^-}(e_j)]d_{g^-}(e_j,e_j) +
\sum_{(e_j,e_j) \in V(G^-)} [deg_{g^-}(e_j) \cdot deg_{g^-}(e_j)]d_{g^-}(e_j,e_j) +
\sum_{(e_j,e_j) \in V(G^-)} [deg_{g^-}(e_j) \cdot deg_{g^-}(e_j)]d_{g^-}(e_j,e_j). \]

Applying observation H the above equation, we get
\[DD_\ast (G^-) = 2m(m - 2r + 1)^3 + 8m(m - 2r + 1)^2(r - 1) + 2m(m - 2r + 1)^3 +
4m(m - 2r + 2)^2(2r - 1) + 2(m - 2r + 1)^3 \sum_{k=2}^{m} (k - 1). \]

On simplification,
\[DD_\ast (G^-) = 2m[m^2(2m - 3) - 5m + 6] - 4mr[3m^2 - 4r^2 + 10mr - 14m + 12r - 13] +
2(m - 2r + 1)^3 \sum_{k=2}^{m} (k - 1). \]
Acknowledgement:
The Author1 thankful to University Grants Commission (UGC), Govt. of India for financial support through UGC-RGNF-2014-15-SC-KAR-75098/(SA-III/www.ugc-rgnf.nic.in).

References

\[1\] G. Caporossi, M. Paiva, D. Vukičević, M. Segatto, Centrality and betweenness: vertex and edge decomposition of the Wiener index, MATCH Commun. Math. Comput. Chem., 68 (2012) 293–302.

\[2\] M.V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova, Huntington, NY, 2001.

\[3\] A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications. Acta Appl Math, 66 (2001) 211-249.

\[4\] A.A. Dobrynin, A.A. Kochetova, Degree distance of a graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci., 34 (1994) 1082–1086.

\[5\] R.C. Entringer, D.E. Jackson, D. A. Snyder, Distance in graphs. Czechoslov Math. J., 26 (1976) 283–296.

\[6\] L. Feng, B.Liu, The maximal Gutman index of bicyclic graphs, MATCH Commun. Math. Comput. Chem., 66 (2011) 699–708.

\[7\] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci., 34 (1994) 1087–1089.

\[8\] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.

\[9\] A. Ilić', D. Stevanović', L. Feng, G. Yu, P. Dankelmann, Degree distance of unicyclic and bicyclic graphs, Discrete Appl. Math., 159 (2011) 779–788.

\[10\] D.J. Kelein , Z. Mihalić', D. Plavšić', N.Trinajstić', Molecular topological index: a relation with the Wiener index, J. Chem. Inf. Comput. Sci., 32 (1992) 304–305.

\[11\] V. R. Kulli, M. S. Biradar, The line splitting graph of a graph, Acta Ciencia Indica., XXVII, M.No. 3 (2002) 317–322.

\[12\] I. Tomescu, Ordering connected graphs having small degree distance, Discrete Appl. Math., 158 (2010) 1714–1717.

\[13\] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947) 17-20.

\[14\] H. Wiener, Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffin hydrocarbons, J. Am. Chem. Soc., 69 (1947) 2636–2638.

\[15\] H. Wiener, Influence of interatomic forces on paraffin properties, J. Chem. Phys., 15 (1947) 766–766.