pH-dependent secondary structure propensity of the influenza A virus M2 cytoplasmic tail

Jolyon K. Claridge1 · Faiz Mohd-Kipli1 · Andrei Florea1 · Thomas Gate1 · Jason R. Schnell1

Received: 19 December 2019 / Accepted: 4 March 2020 / Published online: 10 March 2020
© The Author(s) 2020

Abstract
The cytoplasmic C-terminal tail of the matrix protein 2 (M2) from influenza A virus has a well conserved sequence and is involved in interactions with several host proteins as well as the influenza matrix protein 1 (M1). Whereas the transmembrane domain of M2 has been well characterised structurally and functionally, high resolution information about the distal cytoplasmic tail is lacking. Here we report the chemical shifts of the cytoplasmic tail of M2 and the chemical shift perturbations at low pH and in the presence of membrane mimetics. The cytoplasmic tail residues are mostly disordered but an extended backbone conformation is adopted by the LC3 binding motif and the putative M1 interaction site has partial helical content with a small pH-dependence. The chemical shift assignments provide a basis for further investigations into interactions of the M2 cytoplasmic tail with viral and host cell factors.

Keywords Influenza · Matrix protein 2 · M2

Biological context
Influenza A virus (IAV) is highly infectious and causes a potentially life-threatening illness. IAV is an enveloped virus that buds from host cell membranes and contains three transmembrane proteins: hemagglutinin, neuraminidase, and the matrix protein 2 (M2). M2 is required for genome uncoating upon host cell infection (Helenius 1992), maturation of newly synthesized viral proteins (Hay et al. 1985), and viral budding (Rossman et al. 2010).

M2 is a type I transmembrane protein (Fig. 1a) with a short extracellular N-terminus (~25 residues) that adopts a partially extended conformation (Liao et al. 2013; Cho et al. 2015, 2016). The transmembrane domain tetramerizes to form a proton channel targeted by adamantane-based drugs and has been well characterised functionally and structurally (Holsinger and Lamb 1991; Duff and Ashley 1992; Pinto et al. 1992; Schnell and Chou 2008; Stouffer et al. 2008; Cady et al. 2010; Sharma et al. 2010). A membrane proximal cytoplasmic region (residues ~46–97) contains a membrane-interacting amphipathic helix (APH; residues ~46–62) that is important in lipid raft targeting and virus scission (Schroeder et al. 2005; Rossman et al. 2010; Thaa et al. 2011; Martyna et al. 2017).

In contrast to the rest of the protein, the distal cytoplasmic tail (residues ~63–97) has been less well characterised but is a hub for host and viral protein interactions and its removal leads to reduced virus particle production (McCown and Pekosz 2005). Besides interactions with the viral matrix protein 1 (M1) (McCown and Pekosz 2006; Chen et al. 2008), the cytoplasmic tail M2 is also reported to interact with several host proteins including LC3 (Beale et al. 2014), annexin (Ma et al. 2012), cyclin-D3 (Fan et al. 2017), caveolin-1 (Zou et al. 2009), and TRAPPC6A (Zhu et al. 2017), and is cleaved after residue 88 under apoptotic conditions by caspases (Zhirkov and Syrtzev 2009).

Previous solid-state NMR studies are consistent with a flexible M2 cytoplasmic tail, although only limited residue-specific information is available (Liao et al. 2013; Kwon et al. 2015). Here we present essentially complete residue-specific assignments, information on flexibility and solvent accessibility, and the secondary structure propensities for the cytoplasmic tail of M2 under neutral (pH 7.2) and acidic (pH 5.5) conditions.
Methods and experiments

An M2 gene based on the ‘swine flu’ strain England/H1N1/250 and codon-optimised for E. coli expression was purchased from GeneArt and used as the template to generate an M2-APH-CT construct containing the full cytoplasmic tail (residues 44–97) fused to an N-terminal maltose binding protein with a 6-histidine tag. A BL21(DE3) pLysS E. coli strain (Invitrogen) transformed with the expression plasmid was grown at 37 °C in LB and induced with 1 mM IPTG at an OD600 of 0.6. For labelled growth, the cells were grown to an OD600 of 0.6 and then spun down at 2500×g for 10 min and resuspended in ¼ volume of M9 minimal media containing 2 g 15NH4Cl and 4 g 13C-glucose per liter. The culture was left shaking at 37 °C for 45 min and then induced with IPTG. The cells were pelleted at 4000×g for 15 min at 4 °C then resuspended using a Dounce homogenizer in 60 ml lysis buffer (50 mM Tris-base, 150 mM NaCl, pH 7.8 containing one Complete...
protease inhibitor tablet (Roche) per 50 ml. 10 mg of lysozyme was added, and the suspension was then passed through a cell disruptor at 30 kpsi at 4 °C. The resulting lysate was spun down at 27,000×g for 15 min at 4 °C. The supernatant was passed through a 5 ml HiTrap Ni²⁺-NTA column (GE HealthSciences) at 5 ml per minute and then eluted with an imidazole gradient (from 5 to 300 mM over 50 ml). The fractions containing the protein were pooled, 40 µl of 3C protease (GE) added, and the solution dialysed against 2 l of lysis buffer overnight at room temperature. The resulting cleaved product, containing the non-native N-terminal sequence GPGS in addition to the M2 residues 44–97, was passed back over the Ni–NTA column and the flow-through was concentrated to 500 µl and passed over a Superdex S75 10/300 column (GE HealthSciences) at 0.75 ml per minute in NMR buffer (20 mM NaPO₄, 20 mM Na acetate, 137 mM NaCl, 2.7 mM KCl, and pH 7.2 or pH 5.5). The fractions containing M2-APH-CT eluted between 13 and 13.5 ml. The samples were concentrated to 150–300 µM for NMR experiments.

Liposomes containing POPC:POPG (4:1) were prepared by dissolving lipids into chloroform:methanol at a ratio of 5:1 and then thin-filming the lipid mixture under a nitrogen gas stream. Films were then re-dissolved in chloroform and a new thin-film made under nitrogen. Any remaining chloroform was removed by vacuum for 2 h. The film was resuspended into NMR buffer at pH 5.5 or pH 7.2 and several freeze–thaw cycles used to form liposomes. In order to homogenise lipidosome sizes the sample was extruded back over a 0.2 µm membrane.

NMR experiments were carried out at 37 °C. Resonances were assigned using BEST versions of 3D HNCA, HNCO-CACB, and HNCO spectra (Schanda et al. 2006) at 600 MHz (1H) collected on 13C–15N labelled protein in the presence of 50 mM LMPC:LMPG micelles. T₁, T₂, heteronuclear NOE, CLEANEX (Hwang et al. 1998) experiments were collected at 600 MHz (1H) using 15N-labelled protein at pH 7.2 in the presence of POPC:POPG (4:1) liposomes. NMR data were processed using NMRPipe (Delaglio et al. 1995) and analysed using CcpNmr Analysis (Vranken et al. 2005). Proton chemical shifts were referenced to DSS and 15N and 13C chemical shifts were referenced indirectly to proton. Secondary chemical shifts were assessed with TALOS-N (Shen and Bax 2013). The backbone chemical shift assignments of M2-APH-CT at pH 7.2 and pH 5.5 have been deposited in the BioMagResBank (https://www.bmrb.wisc.edu/) with accession numbers 50113 and 50127.

Assignments and data analyses

An HMQC spectrum of M2-APH-CT is shown in Fig. 1b. Complete backbone and sidechain 13C pH assignments were made for all nonprolines in residues 65–97. Backbone amide resonances for residues 44–64 were largely missing due to chemical exchange broadening. Partial assignments could be made for residues Gly58 and Gly62, which are within the APH. HMQC spectra of the M2-APH-CT construct were acquired in the presence of 50 mM LMPC:LMPG micelles (4:1) or POPC:POPG liposomes (4:1; 17 mM total lipid) at pH 7.2 (Fig. 1b). The detectable amides of the APH residues Gly58 and Gly62 were perturbed upon addition of the membrane mimetics. By contrast, none of the detectable resonances for residues outside of the APH were perturbed upon addition of either micelles or liposomes at pH 7.2 or pH 5.5, consistent with there being no interactions of the distal cytoplasmic tail with membranes.

1H–15N heteronuclear NOEs and CLEANEX measurements of amide-water proton exchange rates were recorded in the presence of POPC:POPG (4:1) liposomes at pH 7.2. All measured heteronuclear NOEs were negative (Fig. 1c, top), indicating that the distal cytoplasmic tail was highly dynamic throughout. Most exchange rates were comparable to the theoretical values but some protection was observed in residues 62, 77–78, and 81–83 (Fig. 1c, bottom).

The strand and helix propensities were calculated from secondary chemical shifts (Fig. 2a). An extended, strand conformation was observed in residues 91–94, consistent with sequence-based predictions and its ability to bind LC3 in an extended conformation (Beale et al. 2014). Whereas sequence-based algorithms strongly predicted a helix in residues 71–76, only partial helical content was observed in these residues based on secondary chemical shifts at pH 7.2. Residues 81–82 were also found to be weakly helical.

The effect of pH on the backbone amide M2-APH-CT spectrum in the presence of LMPC:LMPG micelles and the secondary structure are shown in Fig. 2. The largest backbone amide chemical shift perturbations were observed near His90, which is the only histidine in the construct. Additional peaks appeared at low pH which we attribute to APH residues that were not observable at higher pH due to chemical exchange; however these amides could not be assigned even at low pH due to weak or absent correlations. The strand content of 91–94 and the helical content of residues 73–77 slightly increased at pH 5.5. Although the pH-dependent changes observed are small, residues 71–73 and 74–76 are known to have large effects on virus budding and M1 incorporation into virions (Chen et al. 2008) and structural changes here may fine-tune the pH-regulation of the M1-M2 interaction during the viral life cycle.

The very high degree of flexibility in the M2 cytoplasmic tail is consistent with its role as a hub for protein–protein interactions. The M2 cytoplasmic tail is also involved in membrane curvature and fission, and steric pressure from the large hydrodynamic radii of disordered cytoplasmic tails has been shown to facilitate membrane curvature (Busch et al. 2015) and fission (Snead et al. 2017). The
strongly negative charge of the M2 cytoplasmic tail would be expected to further increase this steric effect through electrostatic repulsion.

Acknowledgements This work was funded by the UK Medical Research Council (L018578). The Wellcome Trust is acknowledged for contributions to the upgrade of the 600 MHz NMR spectrometer used for data collection (WT094872MA).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F (2014) A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe 15(2):239–247

Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC (2015) Intrinsically disordered proteins drive membrane curvature. Nat Commun 6:7875

Cady SD, Schmidt-Rohr K, Wang J, Soto CS, Degrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463(7281):689–692

Chen BJ, Leser GP, Jackson D, Lamb RA (2008) The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol 82(20):10059–10070

Cho KJ, Schepens B, Seok JH, Kim S, Roose K, Lee JH, Gallardo R, Van Hamme E, Schymkowitz J, Rousseau F, Fiers W, Saelens X, Kim KH (2015) Structure of the extracellular domain of matrix protein 2 of influenza A virus in complex with a protective monoclonal antibody. J Virol 89(7):3700–3711

Cho KJ, Schepens B, Moonens K, Deng L, Fiers W, Remaut H, Saelens X (2016) Crystal structure of the conserved amino terminus of the extracellular domain of matrix protein 2 of influenza A virus gripped by an antibody. J Virol 90(7):3700–3711

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

Duff KC, Ashley RH (1992) The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology 190(1):485–489

Fan Y, Mok CK, Chan MC, Zhang Y, Nal B, Kien F, Bruzzone R, Sanyal S (2017) Cell cycle-independent role of cyclin D3 in host restriction of influenza virus infection. J Biol Chem 292(12):5070–5088

Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH (1985) The molecular basis of the specific anti-influenza action of amantadine. Embo J 4(11):3021–3024

Helenius A (1992) Unpacking the incoming influenza-virus. Cell 69(4):577–578

Holsinger LJ, Lamb RA (1991) Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 183(1):32–43

Fig. 2 a Helix and strand propensities of M2-APH-CT at pH 7.2 and pH 5.5 as determined from chemical shifts using TALOS-N. The regions 70–72 and 91–94 are shaded to indicate the presence of secondary structure in the binding sites for M1 and LC3, respectively. b Overlay of the amide spectra of M2-APH-CT at pH 5.5 and pH 7.2 in the presence of 50 mM LMPC:LMPG (4:1). The chemical shift perturbations of H90 and V92 are emphasised with dotted lines. Both spectra were recorded at 310 K.
Hwang TL, van Zijl PC, Mori S (1998) Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a fast-HSQC (FHSQC) detection scheme. J Biomol NMR 11(2):221–226
Kwon B, Tietze D, White PB, Liao SY, Hong M (2015) Chemical ligation of the influenza M2 protein for solid-state NMR characterization of the cytoplasmic domain. Protein Sci 24(7):1087–1099
Liao SY, Fritzsching KJ, Hong M (2013) Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR. Protein Sci 22(11):1623–1638
Ma H, Kien F, Maniere M, Zhang Y, Lagarde N, Tse KS, Poon LL, Nal B (2012) Human annexin A6 interacts with influenza A virus protein M2 and negatively modulates infection. J Virol 86(3):1789–1801
Martyna A, Bahsoun B, Badham MD, Srinivasan S, Howard MJ, Rossman JS (2017) Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Sci Rep 7:44695
McCown MF, Pekosz A (2005) The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J Virol 80(16):8178–8189
McCown MF, Pekosz A (2006) Distinct domains of the influenza virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate infectious virus production. J Virol 80(16):8178–8189
Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69(3):517–528
Rossman JS, Jing X, Leser GP, Lamb RA (2010) Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142(6):902–913
Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128(28):9042–9043
Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595
Schroeder C, Heider H, Moncke-Buchner E, Lin TI (2005) The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J 34(1):52–66
Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, Zhou HX, Cross TA (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330(6003):509–512
Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241
Snead WT, Hayden CC, Gadok AK, Zhao C, Lafer EM, Rangamani P, Stachowiak JC (2017) Membrane fission by protein crowding. Proc Natl Acad Sci USA 114(16):E3258–E3267
Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrrook S, DeGrado WF (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451(7178):596–599
Thao B, Levental I, Herrmann A, Veit M (2011) Intrinsic membrane association of the cytoplasmic tail of influenza virus M2 protein and lateral membrane sorting regulated by cholesterol binding and palmitoylation. Biochem J 437(3):389–397
Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionnides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696
Zhirnov OP, Syrtzev VV (2009) Influenza virus pathogenicity is determined by caspase cleavage motifs located in the viral proteins. J Mol Genet Med 3(1):124–132
Zhu P, Liang L, Shao X, Luo W, Jiang S, Zhao Q, Sun N, Zhao Y, Li J, Wang J, Zhou Y, Zhang J, Wang G, Jiang L, Chen H, Li C (2017) Host cellular protein TRAPPC6A delta interacts with influenza A virus M2 protein and regulates viral propagation by modulating M2 trafficking. J Virol 91(1):e01757
Zou P, Wu F, Lu L, Huang JH, Chen YH (2009) The cytoplasmic domain of influenza M2 protein interacts with caveolin-1. Arch Biochem Biophys 486(2):150–154

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.