Optimization of process parameter variations for 16nm DG-FinFET using Response Surface Methodology-Central Composite Design

Ameer F Roslan¹, F Salehuddin¹, A S M Zain¹, K E Kaharudin¹, I Ahmad², H Hazura¹, A R Hanim¹, S K Idris¹, Afifah Maheran A Hamid¹

¹MiNE, CeTRI, Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
²Department of Electronics & Communication Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43009 Kajang, Selangor

ameerfarhan@aol.com

Abstract. A 16 nm double-gate FinFET (DG-FinFET) designed are optimized with a mathematical modelling using a response surface method-central composite design (RSM-CCD), with the relationship between parameters and output responses are investigated and examined. The threshold voltage (V_{TH}), drive current (I_{ON}), leakage current (I_{OFF}) and subthreshold swing (SS) ramifications towards the adjustment of six process parameter that integrates polysilicon doping dose, polysilicon doping tilt, Source/Drain doping dose, Source/Drain doping tilt, V_{TH} doping dose and V_{TH} doping tilt is studied using the RSM-CCD using half-factorial of 86 experimental runs, which totals to 52 runs, consisting of 8 centre points, 12 axial points, and 32 factorials. Ultimately, the V_{TH} after the result is optimized with RSM-CCD showcased an improvement at 0.1785 V, with I_{OFF} achieved at 958.71 pA/μm despite performing less favourably after optimized. That said, an improvement towards I_{ON}/I_{OFF} ratio at 2.049×10^6 compared to 1.666×10^6 proves that both optimization techniques have met the predictions of International Technology Roadmap for Semiconductors (ITRS) 2013.

1. Introduction

The utilization of electronic devices have been broadly purposed in terms of commercialization and with the advancement of smart electrical appliances, would imply that the application of Complementary Metal Oxide Semiconductor (CMOS) technology has turned to become an obligation so as to perform the obligatory tasks. This shows changes in CMOS technology demand compared to conventional electrical appliances over a century, whereby today these appliances are embedded with CMOS modules in order to put up with more programmable features. The prime instances of a CMOS component being the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with copious types of MOSFETs are due to plenty of researches made over the course of its existence of many years [1-7]. The Silicon-on-insulator, Trigate and Fin-shaped field-effect Transistor (FinFET) are amongst the types of multi-gate FET (MuGFET) introduced and also applied in order to satisfy the requirement and also demands in fabricating further miniaturized devices that also outputting pronounced performance through scaling validation process while meeting the observation predicted in Moore’s Law [8]. The scaling for chips that are smaller has been highly possible due to the technology that encourages more effective cost in production than it was, while improved in its speed as well as reduced in physical attributes. Regardless,
the increment in process parameter variation against the fabrication of wafer has caused drawbacks and challenges to the transistor downscaling. All things considered, challenges might be prevailed in succeeding the downscaling drawbacks such as the short channel effect (SCE), the threshold voltage (V_{TH}) roll-off and drain induced barrier leakage (DIBL). The performance of the transistor can be elevated as the downscaling procedure is furthered by choosing FinFET as it consents the SCEs issues to be overcome while also decreasing the leakage current and subthreshold swing (SS) [9-10]. Comprehension of process variation as well as its manufacturing modelling is vital as it allows the device characteristics to be estimated, with the performance of the fabrication process’ allowing ample information towards the minimization effects to the parameters as well as the yield in performance [11-12].

In this Double-gate FinFET (DG-FinFET) structure, the depth of the silicon depletion has been reduced as the gate oxide thickness is considered based on the gate length. Moreover, with the impact of the parameter variation apposite to the V_{TH} value, the parameters of process variation can be controlled to enhance both the off-state leakage current (I_{OFF}) and SS performances. Delineating the electrical characterization from the process parameters have proven to be challenging [13]. So as to improve the sturdiness of the transistor designs, various statistical methods have been verified to supplement the optimization towards different types of designs especially for Polysilicon/Silicon Dioxide (PolySi/SiO$_2$)-based DG-FinFET [14-19]. In addition to Taguchi methods, an empirical model can be developed by purposing the Response Surface Method (RSM) by combining multiple of statistical techniques for which allows the yields to be optimized in a shorter time as well as smaller costs. Responses are predicted precisely given that the model is well established. That said, the fundamental techniques for quantitative parameters include either linear (first-order function) and quadratic (second-order function) in forecasting one or multiple output responses. Central composite design (CCD) is one method that allows a second-order design [21] whereby its advantage is known in that it is capable of incomplete block execution. Therefore, in this study, Stat-Ease Design Expert (SEDE) software is used to analyze the aforementioned RSM-CCD due to its practicality in optimizing process developments as well as its specialized function in desirability function that is representing multiple response method in SEDE.

2. Methodology

2.1. Device fabrication

The fabrication of 16 nm DG-FinFET has been materialized by assigning both ATHENA and ATLAS modules from Silvaco International for every one of modules to allow physical construction and also electrical properties to be extracted for analysis to be done prior to the actual fabrication. This method enables the construction of the device to be more cost-effective due to potential in small adjustments to be made several times for each parameter until the desired design with favourable output responses is attained. Five geometrical properties are elected due to its inclination in prompting the effects on output responses as minor variations in alteration is done as shown in Table 1. Since the process parameters fluctuate against local parameter variations for which, studies have demonstrated to be 30% from overall, for which eventually initiating the variation [22].

Parameters	Value (nm)
Gate Length, L_G	16
SiO2 Thickness, T_{OX}	3.25
Main substrate (silicon) length, L_C	35
Polysilicon Length, L_{4M}	17.3
Silicon Thickness, T_{FIN}	18.7
The construction of the device has been physically commenced with a P-type main substrate that acts as oxide layer with silicon bulk with <100> orientated as this functions as mask following the implantation of P-well. 1x10^{17} atom/cm^3 of Boron is then infused into the silicon substrate preceding the implementation of dry oxygen to the gate oxygen for 875°C to a Hydrochloric acid (HCl) of 3%. V_{TH} value meanwhile has been controlled by 1.95x10^{13} atom/cm^3 dose of Boron that is employed alongside 5keV of energy. The alterations with dose have been done in a small amount since the changes can occur across the gate concentration may be significant despite small adaptations being made. The parameter variations are elected based on the most significant variations acquired with small modifications being made. The adaptation of polysilicon meanwhile follows from the deposition of polycrystalline silicon as the multi-layered structure took its shape. The implantation of indium that is doped at 1.17x10^{13} atom/cm^3 with 1 keV of energy is then trailed with the formation of the sidewall spacer on the surface of silicon and polysilicon by a layer of Silicon Nitride (Si_{3}N_{4}). With the construction of the sidewall spacer formed, the SCEs subsequently is minimized after an n-type S/D areas doped to the sides of the p-type substrate. The reduction in the side capacitance has proceeded as the compensate implantation formed, alongside the 22x10^{18} atom/cm^3 of Arsenic for the implantation towards the S/D. Aluminium was lastly deposited and patterned afterwards from the contact window’s initial formation within the S/D region as the device fabrication is finalized with the metallization process.

2.2. Design of Experiment with Response Surface Methodology-Central Composite Design (RSM-CCD)

The CCD is the first order (2^N) designs that contain both axial points and additional centre that forecasts the tuning parameters of a second-order model subsequently. Through sequential experimentation for which the centre points, n_c is at the origin with axial runs distance of the centre. That said the quadratic terms efficient prediction could be obtained with the assistance of additional axial points, given that the curvature of the surface is significant. Figure 1 shows the layout of CCD for $q = 2$ factors.

![Figure 1: Central Composite Design (CCD) for $q = 2$.](image)

Blockage on CCD may occur and still can be prevented by selecting both a and n_c. A rotatable design offers equal precision of surface in all directions, where the design is identified to be rotatable only if it is rotated at the centre. In this study, a half-fractional of CCD for which can be obtained through Equation 1, rather than full-factorial as in Equation 2.

\[
\alpha = 2^{q/4} \quad \text{(1)}
\]

\[
\alpha = 2^{q-1/4} \quad \text{(2)}
\]
Therefore, by using SEDE software, the regression coefficient can be acquired in conjunction with the development of the second-order models. This is due to the fact that the first-order models’ problems are less predictable. Four output responses were obtained in V_{TH}, I_{ON}, I_{OFF} and SS that may be dependent towards the variations of six process parameters considered in V_{TH} doping dose, V_{TH} doping tilt, Polysilicon doping dose, Polysilicon doping tilt, Source/Drain (S/D) doping dose and S/D doping tilt. RSM-CCD analysis is conducted due to its ability to optimize multiple characteristics at one time as opposed to Taguchi that focuses on only one characteristic, other than its desirability function for multi-response optimization. The process parameters and its variation of levels are listed as in Table 2.

Sym.	Process Parameters	Units	Low	High	[-alpha]	[+alpha]
A	V_{TH} Doping Dose	Atom cm$^{-3}$	3.83E+13	3.85E+13	3.81E+13	3.86E+13
B	V_{TH} Doping Tilt	Deg.	3	5	1.62159	6.37841
C	Polysilicon Doping Dose	Atom cm$^{-3}$	2.08E+14	2.1E+14	2.07E+14	2.11E+14
D	Polysilicon Doping Tilt	Deg.	-22	-20	-23.3784	-18.6216
E	S/D Doping Dose	Atom cm$^{-3}$	1.18E+18	1.2E+18	1.17E+18	1.21E+18
F	S/D Doping Tilt	Deg.	70	72	1.29E+10	1.85E+10

A half-factorial CCD is used for 52 experiments run that consist of 32 factorials, 12 axial points and 8 centre points. The aforementioned experiments are arrayed and listed wherein subsequent to that, the device characteristic responses obtained, for which generates axial points of factor A, B, C, D, E, and F grounded on $-\alpha$ and $+\alpha$. The α is set based on the number of factors for which consequently is set as 2.37841 where the axial points for factor A were 3.8112159 $\times 10^{13}$ atom/cm$^{-3}$ and 3.8587841 $\times 10^{13}$ atom/cm$^{-3}$ for both respective $-\alpha$ and $+\alpha$.

3. Results

3.1. Analysis of Variance (ANOVA)

The adequacy of models developed that were tested through the analysis of variance (ANOVA) whereby the sum of squares (SSQ), degree of freedom, mean squares, F-value, and P-value were amongst the parameters that were consisted in the ANOVA conducted as shown in Tables 3, 4, 5 and 6 for the analysis of the respective V_{TH}, I_{ON}, I_{OFF}, and SS.

Source	Sum of Squares	DF	Mean Square	F-value	p-value
Model	0.0003	6	4.7082E-05	1.29035	0.2810
A-V_{TH} Doping Dose	0.0002	1	0.0002	6.19586	0.0166
B-V_{TH} Doping Tilt	3.5495E-06	1	3.5495E-06	0.09727	0.7566
C-Polysilicon Doping Dose	4.192E-09	1	4.192E-09	0.00012	0.9915
D-Polysilicon Doping Tilt	5.2865E-05	1	5.2864E-05	1.44881	0.2350
E-S/D Doping Dose	1.6336E-09	1	1.6335E-09	4.48E-05	0.9946
F-S/D Doping Tilt	1.0972E-09	1	1.0972E-09	3.01E-05	0.9956
Residual	0.0016	45	3.6488E-05		
Lack of Fit	0.0016	38	4.3209E-05		
Pure Error	0	7	0		
Cor Total	0.0019	51			
Table 4. Analysis of variance (ANOVA) for I_{ON}

Source	Sum of Squares	DF	Mean Square	F-value	p-value
Model	1993524.3	27	73834.2334	13.4122	5.9938E-09
A-VTH Doping Dose	2742.1981	1	2742.1981	0.4981	0.4871
B-VTH Doping Tilt	6027.9112	1	6027.9112	1.0949	0.3058
C-Polysilicon Doping Dose	4480.8663	1	4480.8663	0.8139	0.3759
D-Polysilicon Doping Tilt	1510749.799	1	1510749.799	274.4329	1.2258E-14
E-S/D Doping Dose	5741.1847	1	5741.1846	1.0429	0.3173
F-S/D Doping Tilt	5787.3290	1	5787.3290	1.0513	0.3154
Residual	132119.7054	24	5504.9877		
Lack of Fit	132119.7054	17	7771.7474		
Pure Error	0	7	0		
Cor Total	2125644.006	51			

Table 5. Analysis of variance (ANOVA) for I_{OFF}

Source	Sum of Squares	DF	Mean Square	F-value	p-value
Model	1913844.226	6	318974.0377	10.9707	1.67841E-07
A-VTH Doping Dose	107341.8871	1	107341.8871	3.691911	0.0610
B-VTH Doping Tilt	1585.6627	1	1585.6628	0.054537	0.8164
C-Polysilicon Doping Dose	173.8328	1	173.8328	0.005979	0.9387
D-Polysilicon Doping Tilt	1804739.468	1	1804739.468	62.07212	5.1809E-10
E-S/D Doping Dose	3.1550	1	3.1550	0.000109	0.9917
F-S/D Doping Tilt	0.2204	1	0.2204	7.58E-06	0.9978
Residual	1308369.721	45	29074.8827		
Lack of Fit	1308369.721	38	34430.7821		
Pure Error	0	7	0		
Cor Total	3222213.947	51			

Table 6. Analysis of variance (ANOVA) for SS

Source	Sum of Squares	DF	Mean Square	F-value	p-value
Model	11.7852	27	0.4365	1.2068	0.3227
A-VTH Doping Dose	0.0186	1	0.0186	0.0513	0.8226
B-VTH Doping Tilt	2.10455E-05	1	2.1045E-05	5.82E-05	0.9939
C-Polysilicon Doping Dose	0.00074	1	0.0007	0.002054	0.9642
D-Polysilicon Doping Tilt	3.52196	1	3.5219	9.73726	0.0046
E-S/D Doping Dose	1.2987E-06	1	1.2987E-06	3.59E-06	0.9985
F-S/D Doping Tilt	2.0836E-06	1	2.0836E-06	5.76E-06	0.9981
Residual	8.68079	24	0.3617		
Lack of Fit	8.68079	17	0.5106		
Pure Error	0	7	0		
Cor Total	20.46603	51			
Based on Tables 3, 4, 5 and 6, the developed model was statistically significant when the P-value achieves 0.05 and lower, for which is equivalent to 95% confidence level, whereby the model is termed significant in its noise in the F-value model with a probability of 0.01%, and that “Probability > F” is lower than 0.05 or 5%. Therefore, factor A is considered significant based on the ANOVA made on V_{TH}, whereby its P-value scores less than 0.05. Meanwhile, factor D is considered significant towards the subthreshold swing, scoring 0.004653177. Overall, the multiple regression for each of V_{TH}, I_{ON}, I_{OFF}, and SS were obtained at 0.146792, 0.937845, 0.593953 and 0.575843 respectively as in Table 7 for which implying that the variations are able to be comprehended by the second-order models. In addition to that, the model validation can be determined by measuring the SNR via adeq precision. The SNR values for the respective V_{TH}, I_{ON}, I_{OFF}, and SS are measured at 4.90352, 18.5436, 15.52048 and 6.667497 for which indicates that all of the SNR provides an adequate signal, being valued at greater than 4.

Table 7. Analysis for a better predictor than the current model

Factors	V_{TH}	I_{ON}	I_{OFF}	SS
Std. Dev.	0.0060	74.1956	170.5136	0.6014
Mean	0.1752	1853.03	909.0159	94.5875
C.V. %	3.4477	4.0040	18.7580	0.6358
R²	0.1468	0.9378	0.5939	0.5758
Adjusted R²	0.0330	0.8679	0.5398	0.0986
Predicted R²	-0.1842	0.5811	0.4368	-1.4917
Adeq Precision	4.9035	18.5453	15.5204	6.6675

Subsequently, the coefficient estimate is measured, as shown in Table 8. The expected change per in y per unit change in x after all remaining factors were fixed to constant. Therefore, the mean for the measured response data are the interceptions of the respective V_{TH}, I_{ON}, I_{OFF}, and SS. Coded units were formed to express the model coefficients for factor A, B, C, D, E, and F where a comparison is made between the relative magnitudes against other estimates relative effect coefficient.

Table 8. Coefficient Estimate for V_{TH}, I_{ON}, I_{OFF}, and SS

Factors	V_{TH}	I_{ON}	I_{OFF}	SS
Intercept	0.1752	1921.608	909.0159	94.5380
A-V$_{TH}$ Doping Dose	0.0023	7.9567	-49.782	-0.02072
B-V$_{TH}$ Doping Tilt	-0.0003	11.7969	6.0505	-0.0007
C-Polysilicon Doping Dose	9.84E-06	-10.1711	2.0033	0.0041
D-Polysilicon Doping Tilt	-0.0011	186.76	204.1243	0.2851
E-S/D Doping Dose	6.14E-06	11.5129	-0.2699	-0.00017
F-S/D Doping Tilt	-5E-06	-11.5592	0.0713	-0.00022

3.2. Confirmation based on point prediction of RSM-CCD

Finally, a confirmation as shown in Table 9 is succeeded where the predicted mean is generated at 0.1773 V, 2017.96 μA/μm, and 958.71 pA/μm, for the respective V_{TH}, I_{ON}, and I_{OFF}, followed by 94.74 mV/dec for the SS. The point prediction is obtained for which factor A is at 3.865×1013 atom/cm3, followed by 5°, 2.11982×1014 atom/cm3, -20.5292$^\circ$, 1.22×1018 atom/cm3 and 72.0064$^\circ$ for factor B, C, D, E and F respectively.
4. Conclusion

The response surface methodology-central composite design (RSM-CCD) has been implemented towards a 16nm PolySi/SiO₂ based DG-FinFET towards multiple responses in V_{TH}, I_{ON}, I_{OFF}, and SS. It is observed that the V_{TH} achieved after it is optimized using the mathematical model which is at 0.1785V, achieved the closest to the targeted value from ITRS 2013 prediction, which is 0.179V which is marginally 99.7% closer as opposed to the predicted and before it is optimized. Through RSM-CCD, other advantages can be observed in that it allows multiple analysis to be completed compared to the Taguchi method, despite requiring more experimental runs on a single experimental array. Despite, the I_{ON} performing better before it is optimized, the value is shown to be within the range targeted, in addition to the post-RSM-CCD results the shows its I_{OFF} to have significantly improved by 20.45% at 958.73 pA/μm for which brings much lower I_{ON}/I_{OFF} ratio to achieve better output at 2.049×10⁶ compared to 1.666×10⁶ obtained prior to the optimization process with RSM-CCD which signals an improvement towards power efficiency of the device. The results have proved that the RSM-CCD are capable of obtaining desired results by optimizing multiple responses simultaneously while conformed to the prediction made by ITRS 2013 for the year 2015.

Acknowledgement

The authors would like to thank the Ministry of Higher Education (MOHE) for sponsoring this work under project (FRGS/1/2017/TK04/FKEKK-CeTRI/F00335) and CeTRI, Faculty of Electronics and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka for the moral support throughout the project.

References

[1] Zeng K, Sasaki K, Kuramata A, Masui T and Singisetti U 2016 Depletion and enhancement mode fl-Ga2O3 MOSFETs with ALD SiO2 gate and near 400 V breakdown voltage 74th Annual Device Research Conference (DRC)
[2] Ma J and Matioli High performance tri-gate GaN power MOSHEMTs on silicon substrate 2017 IEEE Electron Device Letters 38 pp 367-370
[3] Li X, Jiang J, Huang AQ, Guo S, Deng X, Zhang B and She X 2017 A SiC Power MOSFET loss model suitable for high-frequency applications IEEE Transactions on Industrial Electronics 64 pp 8268-8276
[4] Dasgupta A, Das R., Chakraborty S, Dutta A., Kundu A and Sarkar C K 2016 Comparisons between dual and tri material gate on a 32 nm double gate MOSFET Nano 11 pp 1650117
[5] Luc Q H, Yang K S, Lin J W, Chang C C, Do H B, Huynh S H and Chang E Y 2018 In0.53Ga0.47As FinFET and GAA-FET with remote-plasma treatment IEEE Electron Device Letters 39 pp 339-342
[6] Xu Y, Sun H, Shin E Y, Lin Y F, Li W and Noh Y Y 2016 Planar-Processed Polymer Transistors Advanced Materials 28 pp 8531-8537
[7] Ahmed M Dinar Mohd Zain A S and Salehuddin F 2018 Utilizing of CMOS ISFET sensors in
DNA applications detection: a systematic review *Jour of Adv Research in Dynamical & Control Systems* **10** pp 569-583

[8] Mallik A, Ryckaert J, Merchia A, Verkest D, Ronse K and Thean A 2015 Maintaining Moore’s law: enabling cost-friendly dimensional scaling *Proc. SPIE 9422, Extreme Ultraviolet (EUV) Lithography VI* 94221N

[9] Nagy D, Indalecio G, Garcia-Loureiro A J, Elmessaryy M A, Kalna K and Seoane N 2018 FinFET versus gate-all-around nanowire FET: performance, scaling, and variability. *IEEE Journal of the Electron Devices Society* **6** pp 332-340 (2018).

[10] Gill A, Madhu C and Kaur P 2015 Investigation of short channel effects in Bulk MOSFET and SOI FinFET at 20nm node technology *Annual IEEE India Conference (INDICON)* **2015**

[11] Saxena S, Member S, Hess C, Karbasi H, Rossoni A, Tonello S, Mcnamara P, Lucherini S Minehane S, Dolainski C and Quarantelli M 2008 Variation in transistor performance and leakage in nano-scale technologies *IEEE Trans. Electron Devices* **55** pp 131-144

[12] Chang R D and Lin P H 2016 Simulation study of implantation angle variation and its impact on device performance *International Conference on Ion Implantation Technology* **21**

[13] Elgomati H A, Burhanuddin Yeop Majlis, Ahmad I, Salehuddin F, Hamid F A, Azami Zaharim, Mohamad T Z and Apte P R 2011 Statistical optimization for process parameters to reduce variability of 32 nm PMOS transistor threshold voltage *International Journal of the Physical Science* **6** pp 2372-2379

[14] Kaharudin K E, Salehuddin F, Zain A S M and Aziz M N I A 2016 taguchi modelling with the interaction test for higher drive current in WSIx/TIO2 channel vertical double gate NMOS device *Journal of Theoretical and Applied Information Technology* **90** pp 185-193

[15] Kaharudin K E, Hamidon A H and Salehuddin F 2014 Design and optimization approaches in double gate device architecture *International Journal of Engineering and Technology (IJET)* **6**

[16] Mei S, Raghavan N, Bosman M and Pey K L 2018 Stochastic modeling of FinFET degradation based on a resistor network embedded metropolis Monte Carlo method *IEEE Transactions on Electron Devices* **65** pp 440-447

[17] Abdul Hamid A H, Menon P S, Ahmad I and Shaari S 2014 Optimisation of process parameters for lower leakage current in 22 nm n-type MOSFET device using Taguchi method *Jurnal Teknologi* **68**

[18] Chaudhuri S, Mishra P and Jha N K 2012 Accurate leakage estimation for FinFET standard cells using the Response Surface Methodology *International Conference on VLSI Design* **25**

[19] Donetti L, Sampedro C, Ruiz F G, Godoy A and Gamiz F 2018 Multi-subband ensemble Monte Carlo simulations of scaled GAA MOSFETs *Solid-State Electronics* **143** pp 49-55

[20] Kaharudin K E, Salehuddin F, Zain A S M, Aziz M N I A, Manap Z, Salam N A A and Saad W H M 2016 Multi-response optimization in vertical double gate PMOS device using Taguchi method and grey relational analysis *IEEE International Conference on Semiconductor Electronics (ICSE)* **2016**

[21] Myers R H and Montgomery D C 2002 *Response Surface Methodology: Product and Process Op-timization Using Designed Experiments*. Vol 2, ed John Wiley & Sons (New York)