Research Article

The Impact of Digital Technology on the Reform of Art Teaching in the Wireless Network Environment

Si Chen,1,2 Yu Gu,1 and Yubo Wang3

1Institute of International and Comparative Education, Faculty of Education, Northeast Normal University, Changchun 130024, China
2School of Media and Design, Beijing Technology and Business University, Beijing 100048, China
3Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 100011, China

Correspondence should be addressed to Si Chen; 20060756@btbu.edu.cn

Received 16 December 2021; Accepted 18 February 2022; Published 19 March 2022

With the development of computer and communication technologies, information technology in education has become fully popular, and computers, multimedia, and other teaching aids are widely used at all stages of school education. The development of learning styles follows the trajectory of digital to mobile and finally along the trajectory of ubiquitous learning (i.e., ubiquitous and available anywhere and anytime). Thus, in the context of information technology, university art education is facing the impact of foreign cultures, while the issue of national and global differences in university art education is becoming increasingly evident due to the influence of cultural pluralism. University art education has to realize the combination of nationalisation and modernisation in the informationised environment and build university art teaching content with humanistic and diverse content under the basic requirements of realism and practicality in art education. University art should innovate the education system, change the teaching methods, and improve the quality of teaching. In teaching, students are combined with the actual situation of students to cultivate their creative consciousness, innovative thinking, and innovative ability. On this basis, this article mainly studies and analyses the teaching methods and strategies of university art design under the wireless network teaching mode and focuses on the application methods and application effects of interactive teaching in art teaching. The comparative analysis shows that the introduction of WBRCCS-based formative assessment into inquiry-based teaching is significantly better than traditional inquiry-based teaching and that the WBRCCS-based formative assessment system can improve the effectiveness of inquiry-based teaching and enhances students’ motivation to learn. This shows that the use of the WBRCCS assessment system can enhance students’ understanding of science concepts and improve learning outcomes.

1. Introduction

University art teaching requires art teachers to use a variety of teaching methods to enable students to master art knowledge and skills and to enhance their aesthetic and creative awareness [1]. This article analyses the reform and innovation of university art teaching in an information-based environment, in the hope of promoting the quality of university art education [2].

Currently, the world’s culture has developed in a diversified direction, and this diversified form of culture has had a greater impact on China’s university education, and China’s university art has gradually achieved cultural diversification in order to comply with the trend of the times [3]. In the traditional university art teaching, teachers focused more on making students master the basic art knowledge and art skills. Along with the development of the times, the form of education is also undergoing continuous reform, and teachers gradually pay attention to students’ attitudes and emotions in art teaching and begin to cultivate students’ values and creative abilities. Some art teachers still teach art in the traditional way, judging students’ artwork to measure their art standards [4]. However, information technology is now widely used in university classrooms, and
teachers can show students a wide range of art resources and materials in art teaching. Students are able to choose a course that suits them according to their interests and their own learning abilities, and they can independently identify problems, understand them, and solve them, developing their own creative thinking and innovative abilities in the process [5].

Information technology in education has become widespread, with computers, multimedia, and other teaching aids widely used at all stages of schooling [6]. The development of learning methods has followed a trajectory from digital to mobile and finally along the path of ubiquitous learning (i.e., ubiquitous, anytime, and anywhere learning can be done). The process of mobile learning to ubiquitous learning requires the collaborative development of several areas; the most basic and core of which is wireless sensor network technology [7].

The use of wireless sensor networks in education makes it possible to sense the environment or context in which the learner is placed. The most important feature of ubiquitous learning is that the environment or context in which the learner is placed can be sensed and provided with adaptive support [8]. Access to contextual information is predicated on the widespread deployment of wireless sensor networks. There are many research papers on ubiquitous learning, all of which are based on the assumption that wireless sensor networks have been widely deployed and that learners’ contextual information can be perceived, thus demonstrating the important role of wireless sensor networks in education informatics [9].

Classroom and laboratory teaching based on wireless sensor network technology stimulates students’ interest in learning, helps them to think proactively, deepens their understanding of scientific concepts, enhances learning outcomes, and advances an inquiry-based approach to teaching and learning [10]. During the teaching process, each student’s behavior, emotional state, and cognitive state can be effectively analysed by teachers if this information is captured and aggregated in a timely manner. In the long run, the introduction of wireless sensor network technology in education information technology will bring more creative services (including cloud services), which will certainly promote the change of the evidence-based education model and help improve the quality of teaching and learning [11].

Information technology enables the sharing of resources, and university art teaching should combine this feature of information technology to innovate the teaching system and educational methods of university art, using information technology to break the limitations of time and space, promote communication between students and teachers, and maximize the use of information technology in teaching to improve the quality of teaching and students’ creative abilities [12, 13].

The reform of university art education is inseparable from the development of information technology [14]. University educators should pay attention to the importance of information technology in art education, combine previous experience in university art education and maximize the role of information technology in university art teaching [15]. The continuous development of information technology has promoted university online education of further reform. Universities should adhere to the scientific outlook on development, provide students with a variety of teaching resources and tools based on information technology, realise the effective combination of “nationalisation” and “modernisation” in university art teaching, and break through the existing university art teaching system [16].

2. Related Works

Cognitive computing is an overview of the characteristics of the new generation of intelligent systems. It includes systems such as Watson that have some of the cognitive capabilities of humans at a functional level and are capable of performing specific cognitive tasks well, as well as computers that have been reengineered with non-Von Neumann architecture, drawing on the structure of the human brain, to perform cognitive operations more efficiently [17]. This is represented by the BM project SYNAPSE, which aims to build a cognitive computing architecture with 1010 neurons and 1014 synapses, breaking the limits of traditional computer architecture [18].

The research on cognitive computing in China is still in its initial stage, and most of it is the introduction and summary of foreign research, mainly in the fields of philosophy, psychology, and information technology science. Although there are many studies on cognitive computing, they are generally included in the field of artificial intelligence, and the concept of cognitive computing is rarely used [19]. In September 2013, the National Natural Science Foundation of China (NSFC) announced a major research program on cognitive computing in 2013, focusing on “Understanding driverless vehicles and driving environment based on audio-visual cognitive reasoning” and “Advanced brain-computer interface and brain.” At present, China has made significant progress in the basic theoretical research of audiovisual information processing and has also made significant breakthroughs in key technologies such as computer interfaces [20].

Although cognitive computing technology has not yet matured, its closely related artificial intelligence technology has been widely used in industry, agriculture, and other social sectors and has also had a profound impact on the education sector, not only changing the traditional teaching methods but also influencing the future direction of education reform and development trends. Domestic research on artificial intelligence in education and teaching can be divided into three categories: theoretical research, technological development, and practical application. The current research hotspot is based on the development of various intelligent teaching systems and related educational systems. Intelligent teaching systems are essentially a further development of computer-assisted teaching, enabling computers to simulate human experts and implement personalized teaching for students according to their own characteristics. Other systems include intelligent agent education systems, intelligent question and answer systems, and intelligent educational decision support systems [21].
This work characterizes the 6 inquiry introductory physics curriculum using social network assessment and the Classroom Observation Protocol for Undergraduate STEM (COPUS). In Introductory Physics, Peer Instruction, Modeling Guidance, ISLE, SCALE-UP, Context-Rich Issues, and Tutorials were examined. At the start and end of every semester, students in every curriculum were provided a survey in which they were asked to self-identify colleagues with whom they had meaningful conversations in classroom. From the beginning of the period to the end of the period, each module saw a raise in the average amount of student interactions, with Modeling Instruction, SCALE-UP, and Context-Rich Issues seeing the most growth [22].

3. System Functional Requirements Analysis

The Wireless Sensor Network for Behavioral Response Analysis and Cognitive Computing Experimental Platform (WBRCCS) [22] uses information technology and neuroscience techniques to capture, transmit, analyze, and store the physiological parameters of students during teaching and learning activities in order to accurately capture their physiological and psychological state during the learning process. The main function of the system is to record data from students during the inquiry-based teaching and learning process and to process and analyze the data in order to draw the conclusions required by teachers and educational researchers, as well as other supporting functions such as storage and prompting.

The data collected should be transmitted via a wireless sensor network to a computer with accompanying processing software, designed on the basis of cognitive computing, which will analyze the input EEG signal through a series of processes to identify the student’s level of attention or behavioral patterns, for example, whether the student is thinking or distracted. The emotional response of humans has a tremendous impact on their learning procedure. Most specifically, learners will generate positive outcomes if they are focused and have happy feelings. Learners can use the online services to enroll in online courses. This teaching method adds to the difficulty of capturing a student’s attention from afar. In the human brain, brain neurons are subjective and always engaged for no apparent cause. Electromagnetic wave structures are also created by these neurons in substantial amounts. These signal patterns are then converted to EEG signals and documented by equipment with EEG capabilities. EEG signal patterns are used to study human feeling. Using EEG power spectrum assessment, they demonstrated the various emotional responses in the alpha band. The goal is to determine the physiological characteristics of individuals’ brain wave patterns. To determine the EEG power dynamics, they used independent component and time frequency assessment. With the use of event-related spectral perturbation, EEG activities in several emotion-related reactions have been discovered (ERSP). In this study, researchers looked at 5 distinct emotions: joyful, calming, sorrowful, fearful, and neutral. The signal waveforms of the 5 emotions can be observed in every one of the EEG channels. Researchers calculated the signal regularity of each channel independently for every emotion. To distinguish between emotions, five affective states were chosen: low arousal-low valence (LA LV), low arousal-high valence (LA HV), high arousal-high valence (HA HV), high arousal-low valence (HA LV), and medium arousal-middle valence (MA MV) [23].

It is envisaged that the test leader will present the scale questions to the class using a large projection screen and that each student will be equipped with a handheld terminal which will select the answers via a keyboard and transmit them in real time to the computer via a wireless network. For this purpose, the WBRCCS system is equipped with a handheld terminal for the students to answer the questions and the corresponding analysis software. The analysis of the software allows the examiners to draw conclusions about the current state of development of scientific reasoning skills and the differences in the development of these skills by grade, gender, and dimension, etc.

Formative assessment is the most appropriate form of assessment for inquiry-based science education, not only because it is used throughout the teaching and learning process but also because of its feedback role and its goal of improving teaching and learning [24].

4. General Framework of the System

According to the functional requirement analysis, the WBRCCS system consists of the following functional units: portable physiological signal acquisition and analysis module [25], ZigBee wireless node, ZigBee wireless gateway, teacher handheld controller, student handheld terminal, and embedded host computer. The information interaction between the devices is as follows: the embedded host computer and the Zigbee line gateway are connected through the USB interface; the teacher handheld controller and the Zigbee wireless gateway achieve two-way wireless communication through the wireless transceiver module; the student handheld terminal and the Zigbee wireless gateway achieve two-way wireless communication through the Zigbee wireless transceiver module. Nonbeacon mode and beacon mode are the 2 modes in which Zigbee 2-way information is transmitted. Because the coordinators and routers are constantly monitoring the active state of incoming information in beacon mode, greater power is used. When the coordinator is powered by the mains, the nonbeacon mode is preferred. Zigbee supports a variety of network topologies, including point-to-point, and has a minimal duty cycle and latency. The overall architecture of the system is shown in Figure 1.

The portable physiological signal acquisition and analysis module is encapsulated in a head-worn housing and consists mainly of a microprocessor EEG acquisition module, a wireless transceiver module, and other functional modules. The raw EEG signal is extracted from the raw EEG signal by means of existing recognized techniques to reflect the α-wave, β-wave, θ-wave, δ-wave, and γ-wave frequency bands of brain activity rhythms. The dual-conductor EEG acquisition module uses dry electrodes, the EEG signal is acquired at the prefrontal location, and the reference electrode and
The student’s handheld terminal can record each student’s behavioral response, and through ZigBee communication mechanisms and protocols, synchronize multiple behavioral responses in real time; the teacher (or master) presents the questions through a display device (e.g., projector, large screen TV, and electronic whiteboard) and controls the process of behavioral response data collection through the controller, and the student gives feedback through the handheld terminal by pressing a key. The teacher (or master) can present the results on the display device in real time as required or can store them in a database for offline analysis or tracking. At the same time, WBRCCS will record and analyze students’ physiological parameters during the lesson in real time and calculate the students’ cognitive state (e.g., attention level) during the lesson. This information will be fed back to the teacher in real time, so that the teacher can adjust the lesson process, change the teaching method and update the teaching content in real time according to the students’ cognitive state [27].

4.1. System Design

4.1.1. Design of Network Transmission Format Standards. There are three main types of frames in the ZigBee wireless network system transmission packet, namely, network command frames, node data frames, and gateway receive confirmation frames. The network command frame is to control the flow of data to each node, the data frame of each node includes the physiological parameters on the node and the behavioral response of the students (keystrokes and duration), and the gateway receive confirmation frame is the gateway to upload data spontaneously at each node and give feedback to each node to increase the accuracy and reliability of wireless communication [28].

The network command frame is responsible for controlling the flow of data to each node, which is broadcasted throughout the network. When the teacher presses the start button on the controller, the controller sends the synchronization signal for the physiological signal collection and the start command for the behavioral response record to the gateway, which then broadcasts the command to the entire network. The nodes receive the command and upload the data on their nodes in order [29].

The main function of the gateway to receive the acknowledgement frame is to make sure that the data uploaded by the node will not be lost. When the gateway broadcasts the data upload command, the gateway will receive the data uploaded from the node. Whenever a data is received, the gateway will give the node the corresponding bit in the acknowledgement frame, and after a period of data reception, the gateway will broadcast the acknowledgement frame to the whole network. In this way, it is ensured that all data from the nodes in the network is received [30].

The node data frame consists mainly of the start character (1 byte), the node number (1 byte), and the data (including physiological parameters or behavioral responses). Data frames are sent when the node receives a data upload command or when the corresponding bit in the acknowledgement frame indicates that the gateway has not received data from the node. A total of two types of data frames are sent for the node, one for normal data transmission and the other for errors only if the node has not finished uploading data after the teacher has sent the data upload command.

4.1.2. Gateway Programming. The block diagram of the gateway program design is shown in Figure 2.

The ZigBee gateway is the bridge between the ZigBee system and the Android host system. The gateway uploads data from the nodes through the serial port and is also the core of the entire ZigBee network, which establishes a wireless network that broadcasts commands sent by the controller and receives data from the nodes.

4.1.3. Nodal Programming. A block diagram of the node program design is shown in Figure 3. The ZigBee node records the student’s physiological signals and behavioral responses and uploads them to the ZigBee gateway. The application layer event loop of the ZigBee node includes the keyboard scan event and the data send event of the AF message custom event in the system event [12].

Figure 1: Experimental platform design for behavioral response analysis and cognitive computing based on wireless sensor networks.
In the node data flow control, the node is in the standby state at the beginning. After receiving the command broadcast by the gateway, the node enters the data transmission state. The keyboard is continuously scanned in the application layer cycle by constantly setting keyboard scanning events. The node does not enter the collection state until it receives and accepts the command. By setting the timer, you can stop triggering scanning events. When the set event is reached, trigger the sending event node to send the data frame. After a period of time, the node receives the confirmation frame broadcast by the gateway, and the node decides whether to continue to send the data frame according to the situation in the confirmation frame. The above is a complete answer process.

The waiting state is the state of the node after it has finished initialization and joined the ZigBee network, or the state of the node after it has completed a complete information transmission process.

When the timer is reached, the data is sent; after a period of waiting, an acknowledgement frame is received from the gateway, then the data is sent according to the content of the acknowledgement frame, and finally, the waiting state is returned.

4.1.4. Controller Programming. The block diagram of the controller program design is shown in Figure 4.

The main task of the controller program is to scan the keypad and send the network command corresponding to the key value to the ZigBee gateway map after a delay period. Unlike the node program, the controller only has a scan state and a send state. The node enters the scan state after initialization and joining the network, and the controller enters the send state when it detects that the keyboard has been pressed, immediately starting the timer and returning to the scan state when the timed time is reached to send the cached command data.

Figure 2: ZigBee gateway flow chart.
4.1.5. Embedded Upper Computer Design. The embedded host computer provides three functions: viewing real-time responses, viewing history, and recording data. As shown in Figure 5, the implementation of the system can be divided into four parts: feedback on student responses without a database, feedback on responses with a database, querying of historical data, and entering class and student information. Both modes of the Android system have a real-time feedback section for students, but the difference is whether the data is stored in the database or not.

For subsequent data analysis and processing, a historical data query function is set up, which accesses the Mysql database supported by the android platform and visualizes the results according to the user’s needs, for example, in the form of a list or curve [25]. With the historical data query function, you can track the learning of individual students and the class as a whole. The main purpose of entering class and student information is to create a data model of the class and the students in the class in the database and to provide consistent database storage of information when students answer questions. The programming language used can be divided into two layers: the serial port related c code layer and the java code layer which handles the serial port upload data.
Figure 6: Results of the formative assessment during the inquiry-based teaching and learning process.

Figure 7: Comparison of the results of the stage test between the traditional inquiry education approach and the WBRCCS-based approach.

Table 1: Statistical results of formative assessment data.

	Exploratory pretest	Inquiry posttest	Concept migration test	Differences between pretest and posttest	Explore the differences between pretest and concept transfer test	Exploring the differences between posttest and concept transfer test
Correct rate	52.055 ± 10.274	86.535 ± 5.631	71.493 ± 9.024	p ≤ 0.001	p ≤ 0.001	p ≤ 0.001
5. Effectiveness Evaluations

The data obtained during the study included (1) the performance data of the two classes before the study was conducted; (2) the formative assessment data obtained during the study, including pretest data, posttest data, and conceptual transfer test data; (3) the results of the accompanying tests conducted by the two classes at the end of each lesson during the study; (4) the final examination results of the two classes after the study was conducted; and (5) students’ attitudes and motivation towards the system and feedback from the teachers. Figures 6 and 7 and Tables 1–3 focus on the main data of the study process; through the analysis of these data, it can be determined whether the WBRCCS-based formative assessment can improve the effectiveness of inquiry-based teaching.

5.1. WBRCCS-Based Formative Assessment. Teachers follow the teaching process to develop inquiry-based teaching around core concepts. The process involved collecting and analyzing data from preinquiry tests, conducting inquiry activities, collecting and analyzing data from postinquiry tests, and collecting and analyzing data using the ET-L10 model handheld terminal and the concept to transfer tests.

In this study, teachers administered a total of 81 tests, of which 73 were actually conducted (seven of the preinquiry tests were correct by more than 75% of the students, and according to the teaching process, teachers should have skipped the learning of these concepts and moved directly to the next concept to be explored). Figure 6 and Table 1 present the formative assessment data from the 73 exploratory teaching sessions conducted by the experimental group. Figure 6 details the formative assessment data during the inquiry-based instruction, with the horizontal coordinates showing the number of inquiry-based knowledge points tested and the vertical coordinates marking the percentage of questions answered correctly by the students. As can be seen from Figure 6, students’ correct understanding of the basic knowledge points through the preinquiry test ranged from approximately 50% to 60%, indicating that the preinquiry side of the training enabled average and above average students to understand the content of the knowledge points correctly, and therefore, teachers should focus their attention on the lower to middle level students in the later inquiry-based teaching. The postinquiry test showed that the average percentage of correct answers was close to 90%, which further demonstrates that students have largely mastered the content of the knowledge points and validates the importance of the preinquiry side. To better enhance students’ true understanding of the knowledge points, a corresponding conceptual transfer test was carried out and found that students also achieved a level of understanding of over 70%. Table 1 shows the results of the weighted average statistics of the data in Figure 6, from which it is more intuitive to see the extent of students’ mastery of the knowledge points in the preinquiry, postinquiry, and concept transfer tests. Therefore, with the help of the WBRCCS-based formative assessment system, better concept transfer results can be obtained after the preinquiry and postinquiry tests (71.493 ± 9024 correct rates for the concept transfer test. This shows that the use of the WBRCCS assessment system can enhance students’ understanding of science concepts and improve learning outcomes.

5.2. Analysis of Teaching Effectiveness. In order to document and compare the educational effectiveness of traditional inquiry-based instruction with that of the WBRCCS formative assessment, a follow-up test was administered to both the control and experimental groups at the end of each lesson, using the same questions as those used for the concept transfer test in Figure 6. The results in Figure 7 show that in the majority of cases, the WBRCCS system was used to give higher correct rates than in the traditional classroom, except in a few cases where the experimental group had a slightly lower correct rate than the control. The results also showed that the WBRCCS-based inquiry-based transfer test (71.493 ± 9.024) was able to achieve better scores than the traditional inquiry-based transfer test (60.954 ± 95.55) (p ≤ 0.01), which also validates the WBRCCS-based inquiry-based teaching. The reason for this is that the teacher has a full, comprehensive, and timely understanding of the current situation of the whole class, which allows her to provide targeted and more effective support to the students.

For both the subjects and the schools, the final exam results are likely to be of greater concern, as they reflect the students’ mastery of what they have learned and are a comprehensive reflection of the efficiency and quality of the classroom. Therefore, this study focused on the analysis of the final examination results and the differences between the preinquiry and postinquiry test results during the study period.

Table 2 shows that the score is 76.28 ± 6.97, and the mean score of the control group was 70.00 ± 9.95.

The t-test for independent samples was used to obtain the test values (Physics: $p = 3.21, p = 0.002$), indicating that the difference in physics scores between the experimental and control groups was more significant, and the experimental group performed significantly better than the control group. In order to further analyze the difference between the physics scores of the experimental and control groups, the distribution of the test scores was statistically calculated, and the results are shown in Figure 8.

The percentage of students who scored less than 60 points was much higher in the control group than in the experimental group, and the ratio was about twice as high as that of the experimental group. However, the ratio between the experimental group and the control group was not much different between the scores of 8090, while the
The ratio of students in the experimental group with scores of 90-100 was much higher than that of the control group. In order to further verify that the WBRCCS-based formative assessment system for inquiry-based teaching can produce better transfer effects, the results of the two final physics exams of the experimental group before and after the experiment were analyzed, as shown in Figure 9. The graph shows that half of the students who scored less than 60 points before the experiment entered the "61-79" group after the experiment, and some students in the "61-79" group also entered the "80-89" group. The proportion of students in the "80-89" group moving up to the "90-100" group was quite high, about twice as high as before the experiment.

In order to better summarize the main results of this study, the corresponding statistics and analysis of the elements of this experiment were conducted, as shown in Table 3. The experimental group (71.493) was more than 10 points higher than the control group (60.954) in the follow-up test, and the mean score of the experimental group (76.28) was more than 6 points higher than the mean score of the control group (70.00) in the final examination. The comparative analysis of the two samples again shows that the introduction of WBRCCS-based formative assessment into inquiry-based teaching is significantly better than traditional inquiry-based teaching and that the WBRCCS-based formative assessment system can improve the effectiveness of inquiry-based teaching and enhances students’ motivation to learn. Formative assessment improves students’ learning, particularly at the lower and middle levels. Not only do students’ learning methods and outcomes change, but teachers’ competence and quality of teaching are also ensured, and data can be used to support educational reform and policy development.

6. Discussion and Recommendations

In university art teaching, teachers should make reasonable use of information technology and combine it effectively with practical teaching. Teachers need to learn more about software technology, use a variety of teaching software in teaching, enrich the teaching content with information technology, make the classroom teaching flexible and diverse, let students learn in a good environment, and enhance students’ interest in learning and efficiency. University art teachers should also improve their cultural knowledge and comprehensive ability, learn various teaching software, and be able to...
to use it skillfully in actual teaching to improve their teaching quality and teaching efficiency [25].

A sound information-based teaching system should be established in university art education, and more funds should be invested so that all art majors can realize information-based adjustments, and on this basis, art multimedia classrooms should be established and teachers should be equipped according to different art major courses.

University art teaching should use multimedia networks to centralize the art resources held by different teachers, to achieve the sharing of teaching resources and to guarantee the systematicity and diversity of art teaching. Respect the subject position of students, understand the problems arising from students’ learning as well as their needs, solve students’ problems in a timely manner, meet students’ needs in learning, promote communication, and exchange between teachers and students, so that students can have access to more art teaching resources, and also, relieve teachers’ teaching pressure [23].

In the collection of teaching resources, university art teachers can collect teaching resources through the Internet and share them within the university, integrating some teaching resources with teaching value and use into the university's resource library. Teachers can call on the teaching resources in the resource bank to collect information and teaching materials to enrich the teaching content, and students can access the resource bank to find the learning resources they need for study and research.

The use of a wireless sensor network in the classroom can fully exploit the function of formative evaluation. A study issue arises throughout the teaching process. To learn, teachers and students work in groups. Students learn individually under the supervision of teachers. Students themselves convey the research findings in real time. The research condition of every group can be seen precisely via real-time wireless network communication. Students in the group can describe them or make comments on some other groups; each response reflects the students’ own independent thinking and unique perspectives. The use of ZigBee in physics education can represent a deep integration of information technology and subject teaching, allowing teachers and students to share multimedia for educational purposes.

Further research will look into how WBRCCS and ZigBee may be used to enhance learning experiences by permitting teachers and students to harness the capabilities of ZigBee and WBRCCS to enable higher levels of involvement in learning settings.

7. Conclusions

In the context of information technology, university art education is facing the impact of foreign cultures, and at the same time, influenced by cultural pluralism, the issue of national and global differences in university art education is becoming more and more obvious. University art education has to realise the combination of nationalisation and modernisation in the informationised environment and build university art teaching content with humanistic and diverse content under the basic requirements of realism and practicality in art education. Combine the actual situation of students in teaching; cultivate students’ creative consciousness, innovative thinking, and innovative ability. Wireless Sensor Network for Behavioral Response Analysis and Cognitive Computing uses information technology and neuroscience techniques to accurately capture their physiological and psychological state during the learning process. The data is collected from the handheld devices and controller of students and teachers. Finally, it is then transferred through the ZigBee wireless gateway to analyze the student’s level of attention or behavioral patterns through the EEG signal in a best possible way. The best accuracy of analyzing the physiological and psychological state of students is assessed using WBRCCS and neuroscience techniques; hence, it is easy for teacher to adjust the lesson process, change the teaching method, and update the teaching content in real time according to the students' cognitive state. The inquiry-based learning is adopted, and the pre- and postenquiry test is conducted for the experimental and control group. The experimental group is significantly better than the control group. The results also showed that the WBRCCS-based inquiry transfer test was able to achieve better scores in the range of 71.493 ± 9.024 than the traditional inquiry-based transfer test 60.954 ± 95.55 ($p \leq 0.01$), which also validates the WBRCCS-based inquiry-based teaching. The t-test for independent samples was used to obtain the test values (Physics: $p = 3.21$, $p = 0.002$), indicating that the difference in physics scores between the experimental and control groups was more significant, and the experimental group performed significantly better than the control group. This research work has identified some issues that require further study, such as the impact of teachers’ use of wireless technologies to influence student learning, possible support of teachers organized learning communities, and the influence of the type of training and support for teachers teaching with wireless technologies. Clarifying such issues can improve the understanding of how to help teachers effectively integrate wireless technologies into their teaching. In the future, the teaching in university of art should innovate the education system, change the teaching methods, and improve the quality of teaching by integrating some other techniques to analyze the student psychological emotions in a better possible ways.

Data Availability

The data underlying the results presented in the paper are available within the article.

Disclosure

The authors confirm that the content of the manuscript has not been published or submitted for publication elsewhere.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
References

[1] A. Kirkwood and L. Price, “Adaptation for a changing environment: developing learning and teaching with information and communication technologies,” *International Review of Research in Open and Distance Learning*, vol. 7, no. 2, pp. 1–14, 2006.

[2] S. Sharma and J. S. Tara, “Seasonal abundance and effect of abiotic factors on mango leaf hopper Amritudus atkinsoni (Leth.) population on wild and different cultivators of mango in Jammu region,” *Environment Conservation Journal*, vol. 14, no. 3, pp. 161–168, 2021.

[3] D. Pan, “The impact of agricultural extension on farmer nutrient management behavior in Chinese rice production: a household-level analysis,” *Sustainability*, vol. 6, no. 10, pp. 6644–6665, 2014.

[4] E. B. Halper, S. D’Allerba, R. H. Bark, C. A. Scott, and S. R. Yool, “Effects of irrigated parks on outdoor residential water use in a semi-arid city,” *Landscape and Urban Planning*, vol. 134, pp. 210–220, 2015.

[5] N. Knight, “Reflecting on the paradox of globalisation: China’s search for cultural identity and coherence,” *China*, vol. 4, no. 1, pp. 1–31, 2006.

[6] N. Stamp, M. Bradfield, and S. L. Alexander, “Effect of competition on plant allometry and defense,” *The American Midland Naturalist*, vol. 151, no. 1, pp. 50–64, 2004.

[7] S. Ramanathan, N. Balasubramaniam, and R. Krishnadas, “Macroeconomic environment during infancy as a possible risk factor for adolescent behavioral problems,” *JAMA Psychiatry*, vol. 70, no. 2, pp. 218–225, 2013.

[8] X. Liu, L. Ren, F. Yuan et al., “Quantifying the effect of land use and land cover changes on green water and blue water in northern part of China,” *Hydrology and Earth System Sciences*, vol. 13, no. 6, pp. 735–747, 2009.

[9] K. M. Park, K. Jung, and K. C. Noh, “Strategic action and customer mobility: antecedents and consequences of strategic actions in the Korean mobile telecommunication service industry,” *Asia Pacific Journal of Management*, vol. 31, no. 1, pp. 171–193, 2014.

[10] I. R. Gutiérrez, N. Watanabe, T. Harter, B. Glaser, and M. Radke, “Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf,” *Journal of Soils and Sediments*, vol. 10, no. 3, pp. 537–544, 2010.

[11] F. Stagnari, A. Galieni, S. Speca, G. Cafero, and M. Pisante, “Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment,” *Field Crops Research*, vol. 167, pp. 51–63, 2014.

[12] A. Komoroczi, S. Abe, and J. L. Urai, “Meshless numerical modeling of brittle–viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH),” *Computational Geosciences*, vol. 17, no. 2, pp. 373–390, 2013.

[13] S. Chung and S. Park, “Effects of temperature on mechanical properties of SU-8 photore sist material,” *Journal of Mechanical Science and Technology*, vol. 27, no. 9, pp. 2701–2707, 2013.

[14] D. Wu, C. Zhang, L. Ji, R. Ran, H. Wu, and Y. Xu, “Forest fire recognition based on feature extraction from multi-view images,” *Traitement du Signal*, vol. 38, no. 3, pp. 775–783, 2021.
[29] Y. Ding, Y. Li, and L. Cheng, "Application of Internet of Things and virtual reality technology in college physical education," *IEEE Access*, vol. 8, pp. 96065–96074, 2020.

[30] Z. J. Liu, N. Tretyakova, V. Fedorov, and M. Kharakhordina, "Digital literacy and digital didactics as the basis for new learning models development," *International Journal of Emerging Technologies in Learning*, vol. 15, no. 14, pp. 4–18, 2020.