Tumor lysis syndrome following ifosfamide monotherapy in metastatic osteosarcoma: a case report and review of the literature

Steven N. Luminais1, Xiao T. Chen2, Darwin Roman3, Brian Ma4, Alexander B. Christ2 and James S. Hu3*

Abstract

Background: Tumor lysis syndrome is an oncologic emergency that involves multiple metabolic abnormalities and clinical symptoms such as acute renal failure, cardiac arrhythmias, seizures, and multiorgan failure, and may be fatal if not promptly recognized. Tumor lysis syndrome occurs most often in patients with hematologic malignancies, and relatively few cases have been described in patients with sarcoma.

Case presentation: A 64-year-old male of Asian heritage presented to his primary care physician with a right lower-extremity mass and was ultimately diagnosed with widely metastatic osteosarcoma. He was treated with one cycle of cisplatin and doxorubicin that was complicated by hypervolemia and hypoxic respiratory failure. Given concerns for volume overload, therapy was changed to single-agent, dose-reduced ifosfamide. After receiving one dose of ifosfamide 1 g/m² (1.8 g total) intravenously over 1 hour, the patient developed renal failure, hyperuricemia, hyperkalemia, hyperphosphatemia, and lactic acidosis. The patient ultimately died from severe electrolyte abnormalities associated with tumor lysis syndrome.

Conclusion: This is the first instance of tumor lysis syndrome described in a patient with osteosarcoma undergoing ifosfamide monotherapy. Clinicians must be vigilant in identifying tumor lysis syndrome regardless of the malignancy type or chemotherapy regimen in order to prevent potentially fatal complications.

Keywords: Tumor lysis syndrome, Osteosarcoma, Ifosfamide, Hyperuricemia, Hyperkalemia
OS may involve radiation therapy [7] or combination chemotherapy. While there is no consensus on a gold-standard chemotherapy regimen, first-line therapy typically includes cisplatin and doxorubicin [8–10] with or without high-dose methotrexate (MAP regimen) [10–13] and/or ifosfamide [14]. Second-line therapy may include high-dose ifosfamide ± etoposide [15, 16], regorafenib [17], and sorafenib [18, 19].

TLS is a rare constellation of metabolic abnormalities that may occur spontaneously in widely metastatic malignancy or as a sequela of chemotherapy as cells lyse and release their intracellular contents into the surrounding tissue and, eventually, the systemic circulation. The majority of reported TLS cases have occurred in hematologic malignancies with rapid cellular turnover such as Burkitt’s lymphoma and various leukemias [20], though TLS has occasionally been described in mesenchymal-derived tumors. Several chemotherapy agents that have been implicated in TLS include thalidomide, bortezomib, hydroxyurea, paclitaxel, fludarabine, and etoposide [21]. Common laboratory findings include hyperuricemia, hyperkalemia, hyperphosphatemia, lactic acidosis, and hypocalcemia. TLS may result in acute renal failure, cardiac arrhythmias, seizures, multiorgan failure, and, in the most severe cases, death [22]. The mainstays of both TLS prevention and treatment include hydration for renal protection, electrolyte correction, and uric acid management with medications such as rasburicase. Clinically, TLS is a medical emergency that requires prompt recognition and immediate treatment. The current report is the first-reported case of acute TLS following ifosfamide monotherapy in a patient with metastatic intramedullary OS.

Case presentation

Prior medical history

The patient is a 64-year-old Asian male with a past medical history of hypertension and hyperlipidemia. The patient had no known family history of malignancy, though he had a personal history of high-risk prostate adenocarcinoma, which was diagnosed 7 years prior to his presentation for OS. This was staged as cT2N0M0 with a Gleason score of 4 + 5 = 9. He was treated with definitive radiation and androgen deprivation therapy (ADT) with leuprolide depot for 2 years. While off ADT, his prostate specific antigen remained less than (nadir + 2) with a nadir of 0.12.

First hospitalization

The patient presented to his primary care physician with a right-sided thigh mass. Before further workup could be completed, the patient presented to the emergency department (ED) with progressive shortness of breath and right lower-extremity edema. In the ED, he was noted to be tachycardic and hypoxic and admitted for further workup. A contrast-enhanced computed tomography (CT) of the chest was negative for pulmonary embolism but positive for innumerable pulmonary metastases up to 4.0 cm in size. A contrast CT and magnetic resonance imaging (MRI) of the abdomen and pelvis demonstrated a large, multilobulated, destructive mass of the superomedial right thigh and pelvis with associated pathologic fractures, as well as multiple hepatic lesions (Fig. 1a–c). A core biopsy of the right lower-extremity soft tissue mass was consistent with high-grade OS and stained positive for vimentin (Fig. 2a–e). The patient’s respiratory symptoms subjectively improved, and he maintained oxygen saturation on 1–2 L of supplemental oxygen; he was discharged home on supplemental oxygen as well as mechanical support for ambulation.

Second hospitalization

Approximately 1 week later, the patient was seen in an oncology clinic and noted to be tachycardic with 130 beats per minute, respiratory rate of 38 breaths per minute, and hypoxic to 87% on room air. He was admitted that same day for consideration of urgent chemotherapy given the size and number of his pulmonary metastases. CT-guided biopsy of right lung mass was consistent with high-grade OS. Orthopedic evaluation determined he was not a surgical candidate for a hemipelvectomy given the extensive lung disease and oxygen requirements. Systemic chemotherapy was initiated with a planned 28-day cycle of cisplatin (100 mg/m²) over 2 hours on day 1 and doxorubicin (25 mg/m²) over 4 hours on days 1 through 3. Prior to doxorubicin being started, the patient decompensated requiring additional supplemental oxygen support with high-flow nasal cannula (50 L, 60%). Laboratory results were not consistent with TLS; potassium and phosphorus were within reference ranges and unchanged from prior, while uric acid was slightly elevated (8.5 mg/dL, reference range upper limit of normal 8.2 mg/dL). Repeat CT scan was negative for pulmonary embolism. Given worsening bilateral lower-extremity edema and significant fluid administration with cisplatin, hypervolemia was determined to be the cause of his worsening respiratory status, and the patient was diuresed with intravenous furosemide. He developed a multifactorial acute kidney injury (AKI) (CT contrast, cisplatin), though it resolved over time without hemodialysis. As his respiratory status improved, he received 3 days of doxorubicin therapy to complete cycle 1 of cisplatin/doxorubicin. Ten days after the completion of doxorubicin, the patient was briefly transferred to the MICU for hypotension, while in the ICU he was found to have an extended spectrum beta-lactamase *Escherichia coli* bacteremia that
was treated with meropenem. The remainder of his hospital course was uncomplicated, and he was discharged home with home intravenous (IV) antibiotics and oxygen on hospital day (HD) 28.

Third hospitalization

The patient was readmitted 9 days later for scheduled cycle 2 of cisplatin/doxorubicin systemic treatment. Shortly after the cisplatin and doxorubicin infusions were started on HD 0 (34 days after initial cisplatin dose), he became more hypoxic, requiring bi-level positive airway pressure (BiPAP) support to maintain his saturation. IV fluids and chemotherapy were immediately held, and the patient was upgraded to the progressive care unit (step down). At the time, the patient was clinically volume overloaded with significant bilateral lower-extremity edema. Over the next several days, the patient was diuresed; he continued to require BiPAP support to maintain SpO\textsubscript{2} ≥ 92%.

Given persistent hypervolemia, the decision was made for a trial of reduced dose ifosfamide (1000 mg/m2) monotherapy, with the plan to give daily on days 1 through 5. The patient received his first dose of ifosfamide on HD 7. On HD 8, the patient developed worsening hypoxia and tachypnea. The patient developed worsening metabolic and respiratory acidosis, and the diagnosis of TLS was made. The patient’s laboratory values are summarized in Table 1.

The patient was treated with 4 mg of rasburicase, IV furosemide, and intravenous fluids. In accordance with patient and family wishes, the patient was not intubated for respiratory failure and hemodialysis was not offered. Overnight into HD 9, the patient continued to have worsening lactic acidosis despite maximal medical management and noninvasive ventilatory support. The patient’s sinus tachycardia decompensated to asystolic cardiac arrest on HD 9, and he was pronounced deceased.
Discussion

Prior literature on TLS in OS, and sarcomas in general, is sparse. The available data are limited to case reports, which are summarized in Table 2. While previous case reports describe TLS in multiple different sarcoma types, age groups, and chemotherapy regimens, metastatic spread was present in every patient, indicating that substantial tumor burden likely plays a role in development of TLS, even in mesenchymal tumors [29].

A literature search using PubMed including the terms “osteosarcoma” and “tumor lysis syndrome” yielded a single article by Catania et al. describing spontaneous TLS in a patient with metastatic extraskeletal OS [28].

Our patient completed only one cycle of first-line cisplatin and doxorubicin therapy during which he required supplemental oxygen and medical management of hypervolemia. He was admitted for scheduled cycle 2 of cisplatin and doxorubicin, though was not able to

Table 1 Review of tumor lysis syndrome in sarcomas

Author	Year	Patient age, years	Patient gender	Malignancy	Treatment(s)
Qian et al. [23]	2009	44	Male	Retroperitoneal soft tissue sarcoma	Cisplatin, Adriamycin, Dacarbazine
Gold et al. [24]	1993	66	Male	Gastric leiomyosarcoma	Cyclophosphamide, Autolymphocyte transfusion
Khan and Broadent [25]	1993	9	Female	Embryonal rhabdomyosarcoma	Carboplatin, Epirubicin, Vincristine
Ahmed et al. [26]	2019	71	Female	Undifferentiated endometrial stromal sarcoma	Paclitaxel, Carboplatin, Vincristine
Hiraizumi et al. [27]	2011	36	Female	Epithelioid leiomyosarcoma (with focal rhabdomyosarcomatous differentiation)	Vincristine, Actinomycin-D, Cyclophosphamide
Catania et al. [28]	2017	65	Female	Extraskeletal osteosarcoma	None (spontaneous)

Fig. 2 a–e Right lower-extremity biopsy microscopy showing hematoxylin and eosin (H&E) staining at 4× (a), 10× (b), and 20× (c) magnification showing malignant spindle cell proliferation with areas of osteoid deposition (arrows) all consistent with osteosarcoma. d 10× magnification showing negative Ck AE1/AE3 stains, ruling out carcinoma. e 10× magnification showing positive vimentin staining highlights the spindle cell portion of the tumor, demonstrating their mesenchymal origin.
receive cycle 2 given hypervolemia and hypoxia. After an extensive discussion of risks and benefits with the family, ifosfamide monotherapy at a significant initial dose reduction was given in attempt to induce a partial remission in a patient with a significant decrement in performance status. After one dose of ifosfamide, the patient had clinical and laboratory evidence of TLS, which ultimately led to cardiac arrest. TLS was an unexpected sequela of treatment given the initial 50% ifosfamide dose reduction and a lack of previous literature associating ifosfamide with TLS. Additionally, TLS is a rare occurrence in solid tumors [30] that has been described only a handful of times within patients with sarcoma [23–27] and only once in an individual with OS [28].

The incidence of TLS varies greatly across different cancer types, occurring in over 20% of hematologic cancers [31] while being so rare in sarcomas and other tumor types as to have no reported incidence [30, 32]. Multiple classification systems exist [33–35], though the commonly used standard for identifying TLS is the Cairo–Bishop classification [35], which takes into account a patient’s baseline metabolic panel and categorizes TLS as laboratory TLS (LTLS) or clinical TLS (CTLS). LTLS is defined by two or more of either absolute changes (uric acid ≥ 8.0 mg/dL, potassium ≥ 6.0 mEq/L, phosphorus ≥ 0.5 mg/dL, and/or calcium ≥ 7.0 mg/dL) or expected changes in these laboratory values >25% from baseline within a 24-hour period, 3–7 days after chemotherapy initiation. CTLS is defined by LTLS with any combination of creatinine > 1.5 times the age-adjusted upper limit, seizure, cardiac arrhythmia, or sudden death. Despite the utility of these criteria, the Cairo–Bishop classification is mostly academic. Astute observation of a patient’s clinical status and a thorough understanding of TLS pathophysiology ultimately dictates a physician’s expedient management of suspected metabolic abnormalities.

Treatments for the different components of TLS include volume expansion with intravenous fluids, diuresis with mannitol/furosemide, urinary alkalinization with sodium bicarbonate, uric acid reduction with allopurinol, febuxostat, rasburicase, and renal replacement therapy [20–22, 30, 36]. Despite these lifesaving measures, mortality rates following acute TLS are considerable, ranging from 7% to 51% [37, 38]. In a study of 63 patients by Darmon et al., AKI was the greatest predictor of death following TLS in hematologic malignancies. Patients with AKI had significantly higher ICU (31% versus 4%), in-hospital (51% versus 7%), and 6-month (66% versus 21%) mortality compared with those without AKI [38]. Given the severe consequences of delayed TLS recognition and treatment, it may be ideal to risk-stratify patients on the basis of their likelihood of developing TLS on admission. Several predictors of TLS include pre-admission renal dysfunction, hyponatremia, metastatic and/or large tumor burden, male sex, splenomegaly, and pretreatment elevations in creatinine, uric acid, and/or lactate dehydrogenase [22, 30]. Unfortunately, both the data on mortality risks and predictors of TLS derive from literature on hematologic malignancies, and more research is needed to determine which factors are useful in the risk stratification of patients with sarcoma.

Catania et al. is the only published report of TLS in a patient with OS. However, several key differences exist between this case report and that by Catania et al. First, the OS in the study by Catania et al. was extraosseous, which is a rare form that accounts for only 4% of OS [39]. Second, the TLS was spontaneous as opposed to after initiation of chemotherapy. Third, the patient underwent hemodialysis and rasburicase infusion therapy, which promptly resolved the patient’s TLS. Similarities between our case reports include the presence of large tumor burden with multiple lung metastases and osteoblastic cells on tumor histology.

The patient in this report had both clinical and laboratory TLS per Cairo–Bishop criteria [35] with increased uric acid and phosphate, the development

Table 2 Patient laboratory values during admission

Laboratory test	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8 (ifosfamide C1D1)	Day 9	Day 10
Uric acid (mg/dL)	8.5	N/A	N/A	N/A	N/A	N/A	N/A	17.1	15.7	
Creatinine (mg/dL)	0.67	1.21	1.24	1.63	1.55	1.38	1.24	1.25	1.3	1.66
Lactate (mmol/L)	2.6	2.3	N/A	2.7	2.8	2.6	2.1	2.3	2.3	3.4
Sodium (mmol/L)	138	142	144	141	142	141	144	145	150	155
Potassium (mmol/L)	4.1	3.7	4.3	4.1	4.1	3.7	3.9	3.8	42	4.7
Phosphorus (mg/dL)	4.5	N/A	5.3	3.5	2.9	2.8	3.5	3.8	4.9	5.6
Calcium (mg/dL)	8.3	8.6	8.7	7.9	8.2	8.4	8.6	8.9	8.9	8.4
of an AKI, and a fatal cardiac arrhythmia. This medical emergency was promptly recognized and treated; unfortunately, the patient died despite maximal medical therapy. This report is the first to describe TLS after ifosfamide chemotherapy in metastatic OS, the second report of TLS in OS, and one of just a few reports describing TLS in sarcomas.

Conclusion
Acute TLS is an oncologic emergency characterized by a distinct combination of laboratory findings including hyperuricemia, hyperkalemia, hyperphosphatemia, and hypocalcemia. TLS has been scarcely reported in the population of patients with sarcoma, and this is the first report of TLS after metastatic osteosarcoma was treated with ifosfamide monotherapy. In this case, delayed presentation and large tumor burden likely played a role in the development of TLS. It is important to promptly recognize and treat this potentially fatal complication regardless of the tumor etiology as delayed management may lead to permanent multigorgan damage, cardiac arrest, and, ultimately, death.

Abbreviations
OS: Osteosarcoma; TLS: Tumor lysis syndrome; ADT: Androgen deprivation therapy; ED: Emergency department; HD: Hospital day; CT: Computed tomography; MRI: Magnetic resonance imaging; BiPAP: Bi-level positive airway pressure.

Acknowledgements
Not applicable.

Author contributions
SL and XT performed a literature search and drafted the initial manuscript. BM provided the histological analysis of the biopsies and provided representative images for publication. DR, AC, and JH provided expert clinical context and made substantial revisions to the manuscript. All authors read and approved the final manuscript.

Funding
None.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations
Ethics approval and consent to participate
This retrospective case report regarding a rare complication of standard of care treatment did not require IRB approval. The deceased patient’s next of kin provided consent for publication.

Consent for publication
Written informed consent was obtained from the patient’s next of kin for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests
None.

Author details
1 Department of Internal Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA.
2 Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA, USA.
3 Department of Oncology, Keck School of Medicine of USC, Los Angeles, CA, USA.
4 Department of Pathology, Keck School of Medicine of USC, Los Angeles, CA, USA.

Received: 20 November 2021 Accepted: 26 May 2022

Published online: 28 June 2022

References
1. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Fleige S, Helmke K, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20:776–90.
2. Papandreou C, Skopelitou A, Kappes G, et al. Primary osteosarcoma of the urinary bladder treated with external radiotherapy in a patient with a history of transitional cell carcinoma: a case report. J Med Case Rep. 2010;4:70.
3. Mirabelli L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531–43.
4. Duong LM, Richardson LC. Descriptive epidemiology of malignant primary osteosarcoma using population-based registries, United States, 1999–2008. J Registry Manag. 2013;40:59–64.
5. Franchi A. Epidemiology and classification of bone tumors. Clin Cases Miner Bone Metab. 2012;9:92–5.
6. Key Statistics About Bone Cancer. American Cancer Society. 2020. https://www.cancer.org/cancer/bone-cancer/about/key-statistics.html.
7. Ciernik IF, Niemierko A, Harmon DC, Kobayashi W, Chen Y-L, Yock TL, et al. Proton-based radiotherapy for unresectable or incompletely resected osteosarcoma. Cancer. 2011;117:4522–30.
8. Bramwell VH, Burgers M, Sneath R, Souhami R, van Oosterom AT, Voûte PA, et al. A comparison of two short intensive adjuvant chemotherapy regimens in operable osteosarcoma of limbs in children and young adults: the first study of the European Osteosarcoma Intergroup. J Clin Oncol. 1992;10:1579–91.
9. Lewis JI, Nooj MA, Whelan J, Sydes MR, Grimer R, Hogendoorn PCW, et al. Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized phase III trial of the European Osteosarcoma Intergroup. J Natl Cancer Inst. 2007;99:112–28.
10. Souhami RL, Craft AW, Van der Eijken JW, Nooj M, Spooner D, Bramwell VH, et al. Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. Lancet. 1997;350:911–7.
11. Bacci G, Ferrani S, Bertoni F, Ruggieri P, Picci P, Longhi A, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the Istituto Ortopedico Rizzoli according to the Istituto Ortopedico Rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol. 2000;18:4016–27.
12. Winkler K, Beron G, Delling G, Heise U, Kabisch H, Puffurst C, et al. Neoadjuvant chemotherapy of osteosarcoma results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol. 1988;6:329–37.
13. Marina NM, Smeland S, Bielack SS, Bernstein M, Jovic G, Kralio MD, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17:1396–408.
14. Bacci G, Brocchi A, Rocca M, Ferrari S, Donati D, Longhi A, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol. 2003;14:1126–34.
15. Miser JS, Kinsella TJ, Triche TJ, Tsokos M, Jarosinski P, Forquer R, et al. Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J Clin Oncol. 1987;5:1191–8.
