Observation of narrow baryon resonance in pK_s^0 mode in pA-interactions at 70 GeV/c with SVD-2 setup.

A. Kubarovsky, V. Popov
(for the SVD Collaboration)
D.V. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
1/2 Vorobyevy gory, Moscow, 119992 Russia
E-mail: alex_k@hep.sinp.msu.ru

We report on the SVD-2 experiment data analysis aimed to search for an exotic baryon state, the Θ^+-baryon, in a pK_s^0 decay mode with IHEP U-70 accelerator proton beam at 70 GeV/c. A resonant structure with $M = 1526 \pm 3(\text{stat.}) \pm 3(\text{syst.})$ MeV/c^2 and $\Gamma < 24$ MeV/c^2 was found in the pK_s^0 invariant mass spectrum, with the statistical significance of this peak estimated as 5.6σ.

Keywords: pentaquark, exotic baryons

SVD-2 EXPERIMENT

The present analysis was made in a framework of SVD-2 experiment, the main goal of which is a study of the charm hadroproduction at the near-threshold energy\[1, 2, 3\]. SVD-2 setup consists of high-precision microstrip vertex detector (beam telescope, active target and tracking detector), large aperture magnetic spectrometer, multicell threshold Cherenkov counter and Cherenkov full absorption lead glass gamma detector.

The primary vertex position determination procedure was based on well-known "tear-down" approach\[4, 5\]. Only events with a well reconstructed primary vertex were selected. After excluding the tracks that belongs to primary vertex, the secondary vertex position was determined by finding V_0-decay downstream the primary vertex. The primary vertex resolution was estimated as $70 - 120 \mu m$ for Z-coordinate and $8 - 12 \mu m$ for X(Y)-coordinates. For the two-tracks secondary vertices (K^0_s, Λ) those values were $250 \mu m$ and $15 \mu m$ respectively. The impact parameter resolution for $3 - 5$ GeV momentum tracks is about $12 \mu m$. The angular acceptance of the vertex detector averages to ± 250 mrad.

The SVD-2 setup permits obtaining the high effective mass resolution of $\sigma = 4.4$ MeV/c^2 for K_s^0 and 1.6 MeV/c^2 for Λ^0 masses (see fig.1). The momentum resolution for the track with 15 measured hits is $(0.5 \div 1.0)\%$ in the $(4 \div 20)$ GeV/c momentum range. The angular measurement error was estimated to be $0.2 \div 0.3$ mrad. The angular acceptance of spectrometer averages to ± 200 mrad for horizontal and ± 150 mrad for vertical coordinates.

![Graph 1](https://example.com/graph1.png)

FIG. 1: Left: the $(\pi^+\pi^-)$ invariant mass spectrum. A window corresponding to $\pm 2\sigma$ is shown by the vertical lines. Right: the $(p\pi^-)$ invariant mass spectrum.
The combined \((\pi^+K_s^0)\) and \((\pi^-K_s^0)\) invariant mass spectrum is shown on fig.2a. The \(K^+(892)\) peak is clearly seen on the distribution. Fig.2b shows \((\Lambda^0\pi^+)\) invariant mass spectrum. \(\Sigma^+(1385)\) peak is clearly seen. The masses of observed \(K_s^0, \Lambda^0\) and also masses and widths of \(K^+(892)\) and \(\Sigma^+(1385)\) are consistent with their PDG values.

\[
\begin{align*}
M_{eff}(K_s^0p) & \\
M_{eff}(\Lambda^0p) & \\
\end{align*}
\]

\[
\begin{align*}
\theta^+ & \\
\end{align*}
\]

\[
\begin{align*}
\Theta^+ - \text{BARYON SEARCHES} \text{ } & \text{ } \\
\Theta^+ - \text{BARYON SEARCHES} \text{ } & \text{ } \\
\end{align*}
\]

Exotic baryons with 5-quarks content (pentaquarks) and their properties have been predicted by Diakonov, Petrov, and Polyakov in the framework of the chiral soliton model, although such 5-quarks structures were proposed years ago. The lightest member of the pentaquarks antidecuplet, \(\Theta^+\)-baryon, has positive strangeness, mass \(M \sim 1530\text{ MeV}/c^2\), \(\Gamma \leq 15\text{ MeV}/c^2\), spin \(1/2\) and even parity.

Experimental evidence for \(\Theta^+\)-baryon with positive strangeness came recently from several experimental groups (LEPS, DIANA-ITEP, CLAS, SAPHIR). In those experiments \(\Theta^+\)-baryon was observed in the \(nK^+\) or \(pK_s^0\) invariant mass spectra with the mass near 1540 \(\text{MeV}/c^2\). More recently HERMES collaboration observed narrow baryon state at the mass of 1528 \(\text{MeV}/c^2\) in quasi-real photoproduction. Also ZEUS collaboration reported an evidence of the exotic baryon in \(pK_s^0\)-channel with the mass of 1527 \(\text{MeV}/c^2\).

\[
\begin{align*}
\text{EVENTS SELECTION AND } & pK_s^0\text{-SPECTRUM ANALYSIS.} \\
\text{EVENTS SELECTION AND } & pK_s^0\text{-SPECTRUM ANALYSIS.} \\
\end{align*}
\]

We were searching for the \(\Theta^+\)-baryon in the reaction \(pN \rightarrow \Theta^+ + X, \Theta^+ \rightarrow pK_s^0, K_s^0 \rightarrow \pi^+\pi^-\). The data pre-selected at the search for the charm production were used. It consisted of events with V0-candidates decayed within the vertex detector: decay length \(\leq 35\text{ mm}\) with a mean of 20 mm. The following criteria were then applied:

- Primary charged particles multiplicity \(\leq 5\). Minimizes the combinatorial background, reduces the probability of appearance of the events with rescattering on nuclei and background of \(K_s^0\)-mesons produced in the central rapidity region.

- A presence of proton as well-measured primary positive track with a momentum of \(4\text{ GeV}/c \leq P_p \leq 21\text{ GeV}/c\) leaving no hit in Cherenkov counter.

- \(490\text{ MeV}/c^2 \leq M_{\pi^+\pi^-} \leq 505\text{ MeV}/c^2\) to select well-identified \(K_s^0\).

- \(\cos(\alpha) \geq 0\), where \(\alpha\) is angle of flight of \(pK_s^0\)-system in the center mass system of the beam proton and the target nucleon(beam proton fragmentation region).
• $P_{K^0} \leq P_p$ kinematical cut: effectively destroys most of the decays of Σ^{*+}-resonances with high masses while cutting only 10% of Θ^+-peak events.

Resulting distribution is shown on fig. 3. The distribution was fitted by Gaussian function and fourth-order polynomial background. There are 50 events in the peak over 78 background events. The statistical significance for the fit inside a $45 \text{ MeV}/c^2$ mass window was calculated as $N_p/\sqrt{N_B}$, where N_B is the number of counts in the background fit under the peak and N_p is the number of counts in the peak. We estimate the significance to be of 5.6σ. It is impossible to determine the strangeness of this state in such an inclusive reaction, however there are no reported Σ^{*+}-resonances in $1500 \div 1550 \text{ MeV}/c^2$ mass area, so we interpret observed state as recently reported Θ^+-baryon with a positive strangeness.

![FIG. 3: The (pK_0^0) invariant mass spectrum in the reaction $pA \rightarrow pK_0^0 + X$. Dashed line: background obtained from FRITIOF simulations.](image)

The A-dependence analysis in the observed peak area showed no difference (within measuring errors) from the $A^{0.7}$ dependence for background inelastic events (fig. 4).

In a summary, the inclusive reaction $pA \rightarrow pK_0^0 + X$ was studied at IHEP accelerator with proton energies at 70 GeV using SVD-2 detector. With several cuts applied a narrow baryon resonance was observed with mass $M = 1526 \pm 3 \text{(stat.)} \pm 3 \text{(syst.)} \text{ MeV}/c^2$ and $\Gamma < 24 \text{ MeV}/c^2$. The width of this state is close to SVD-2 experimental resolution for pK_0^0-system and its mass and width are consistent with recently reported Θ^+-resonance Θ^{++} (uudd \bar{s}), which was predicted as an exotic pentaquark (uudd\bar{s}) baryon state.

![FIG. 4: The ratio of Θ^+ events to the total of K_0^0 events for the different target materials](image)
Acknowledgements

We thank HSQCD’04 Organizing Committee and personally V. Kim for providing the excellent, warm and stimulating atmosphere during the Conference and for the financial support. We are grateful to V. Kubarovsky, B. Levchenko and N. Zotov for useful comments and suggestions.

[1] N.S. Amaglobeli et al., Phys. At. Nucl., Vol. 64, No. 5, 2001, pp.891-901.
[2] E. Ardashev et al. Preprint N 99-28/586, SINP MSU, 1999.
[3] A. Leflat, A. Kubarovsky et al. Nucl. Phys. A. 699(2002) pp. 352-355.
[4] G. Borisov, DELPHI note 94-125/PROG 208 (1994).
[5] M. Narain, F. Stichelbaut D0 note 3560 (1999).
[6] Particle Data Group, K. Hagiwara et al., Phys. Rev. D. 66,010001 (2002).
[7] D. Diakonov, V. Petrov, and M. Polyakov, Z. Phys. A 359, 305 (1997).
[8] R.L. Jaffe, SLAC-PUB-1774 Talk presented at th Topical Conf. on Baryon Resonances, Oxford, Eng., Jul 5-9, 1976.
[9] M. Praszalowicz, in Skyrmions and Anomalies, M. Jezabeck and M. Praszalowicz, eds. World Scientific (1987).
[10] LEPS Coll., T. Nakano et al., Phys. Rev. Lett. 91, 012002 (2003); arXiv:hep-exp/0301020.
[11] DIANA Coll., V. Barmin et al., Phys. At. Nucl.,66, 1715-1718 (2003); arXiv:hep-exp/0304040.
[12] CLAS Coll., S. Stepanyan et al., arXiv:hep-ex/0307018 submitted to Phys. Rev. Lett.
[13] CLAS Coll., V. Kubarovsky and S. Stepanyan, presented at the Conference on the Intersections of Particle and Nuclear Physics (CIPANP2003), New York, NY, USA, May 19-24, 2003, arXiv:hep-ex/0307088.
[14] SAPHIR Coll., J. Barth et al., Phys. Lett., B 572 2004.
[15] A. E. Asratayn, A. G. Dolgolenko and M. A. Kubantsev, arXiv:hep-ex/0309042
[16] CLAS Coll., V. Kubarovsky et al., arXiv:hep-ex/0311046
[17] HERMES Coll., A. Airapetian et al., arXiv:hep-ex/0312044
[18] ZEUS Coll., S. Chekanov, http://www.desy.de/f/seminar/sem_schedule.html
[19] B. Levchenko, arXiv:hep-ph/0401122