The Impact of Proteolytic Pork Hydrolysate on Microbial, Flavor and Free Amino Acids Compounds of Yogurt

Jinzhong Lin1,2†, Baozhen Hua1,2†, Zhiping Xu1,2, Sha Li1,2, and Chengjie Ma1,2*

1State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd., Shanghai 200436, China
2Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China

Abstract

The aim of this study was to investigate the influence of proteolytic pork hydrolysate (PPH) on yoghurt production by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Fresh lean pork was cut into pieces and mixed with deionized water and dealt with protease, then the resulting PPH was added to milk to investigate the effects of PPH on yoghurt production. The fermentation time, the viable cell counts, the flavor, free amino acids compounds, and sensory evaluation of yoghurt were evaluated. These results showed that PPH significantly stimulated the growth and acidification of the both bacterial strains. When the content of PPH reached 5% (w/w), the increased acidifying rate occurred, which the fermentation time was one hour less than that of the control, a time saving of up to 20% compared with the control. The viable cell counts, the total free amino acids, and the scores of taste, flavor and overall acceptability in PPH-supplemented yoghurt were higher than the control. Furthermore, the contents of some characteristic flavor compounds including acids, alcohols, aldehydes, ketones and esters were richer than the control. We concluded that the constituents of PPH such as small peptide, vitamins, and minerals together to play the stimulatory roles and result in beneficial effect for the yoghurt starter cultures growth.

Keywords: yoghurt, proteolytic pork hydrolysate, viable cell count, flavor compound, free amino acids compound

Introduction

Yoghurt made by the starter culture that mainly composed of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (hereafter L. bulgaricus) is considered as a safe and healthy food (Ashraf and Shah, 2011). It is popularly consumed throughout the world, because of except for the health benefit of the live microorganisms, its favorable flavors and abundant nutrients are important factors for consumer acceptability (Zare et al., 2011). In general, maintaining a high lactic acid bacteria (LAB) survival counts in the industrial processes and products is important, which are beneficial to progression of fermentation and are of industrial interest for yoghurt fermentation. There are plenty of studies proved that microbial growth during fermentation can be greatly influenced by the addition of food ingredients. Zare et al. (2011) investigated the impact of lentil flour on some characteristics of the yoghurt and found that high ration of lentil flour would increase the counts of LAB, improve the physical and rheological properties and enhance the sensory properties. Ye et al. (2012) found that the addition of hawk tea in yoghurt would significantly increase the number of LAB and some characteristic volatile flavor compounds. Cruz et al. (2012) explored the effect of glucose oxidase on postacidification, survival of probiotic microorganisms, productions of aroma compounds in yoghurt.

In China, pork owns the largest share of meat protein consumption (Zhang et al., 2014). As the analyses of the National Health and Nutrition Examination Survey conducted in the United States found that fresh pork is a good source of dietary protein, some essential vitamins and minerals including phosphorous, potassium, zinc, selenium, riboflavin, niacin, thiamine, pyridoxine (vitamin B6), and cobalamin (vitamin B12) (Murphy et al., 2011). Murphy et al. (2012) showed that regular pork consumption improved
body composition and had no change in a selection cardiovascular of risk factors. Furthermore, Nolan-Clark et al. (2013) found that pork stimulated the secretion of the gut hormone peptide YY which increases the feeling of fullness, thus pork is beneficial in the maintenance of healthy weight compared with other protein sources.

In this study, proteolytic pork hydrolysate (PPH) was added to milk to investigate the effects of PPH on yoghurt production. The fermentation time, the viable cell counts, the flavor, the free amino acids compounds, and the sensory evaluation of yoghurt were evaluated.

Material and Methods

Preparation of proteolytic pork hydrolysate

Fresh lean pork (*Sus domesticus*, Wal-Mart supermarket, China) was cut into pieces and dealt with colloidal mill, then added deionized water with a rate of 4:1 (w/w) and incubated at 95°C for 10 min. After cooled, the protease (extracted from stomach of pig, enzyme activity 50,000 U/g, supplemented with 10,000 U per 100 g broth, Shanghai Jinsui bio-technology Co., Ltd, China) was added and incubated at 45°C for 6 h, and then heated at 95°C for 10 min again to denature the protease. The partial chemical components of the PPH, including minerals, vitamins and peptides were analyzed by Qingdao Scistd Testing research institute Co., Ltd, China, using atomic absorption spectrophotometry and high performance liquid chromatography (HPLC) (Gentili et al., 2013; Jon, 1980; Tzong-Hsien et al., 2008), respectively.

Preparation of fermented milk

The fermented milk was prepared according to Lucey (2004) with slight modifications. PPH [4.1% (w/v) protein, 1.2% (w/v) Fat] was added into fresh cow milk with 0%, 1%, 5% and 10% (w/w), and skim milk power (34.0% protein, 0.8% fat) and anhydrous milkfat (99.8% fat), respectively, were added into the samples to standardize the levels of protein and fat. The four samples were sheared by a high shear emulsifier (FM300, Fluko, Germany) at 10,000 rpm for 15 min at 40°C, then all the samples (each sample of two replicates) were homogenized under high pressure (20 MPa) at 65°C and pasteurized by high-temperature short-time (HTST) at 95°C for 5 min immediately. After cooled to 42°C, all samples were inoculated with 0.05% (w/v) YB 0925-B yoghurt starter culture (Danisco, Denmark). A set of samples were maintained at 37°C in an MIR-253 incubator (Sanyo, Japan). Another set of samples were monitored automatically (recorded every 5 min) for pH using a Cinac system (Alliance Instruments, France), and the corresponding sample were removed to terminate fermentation until a pH of 4.50±0.03 (the pH end point) was reached. After stirred at 500 rpm for 5 min, they were stored at 4°C.

Enumeration of viable cell counts

A standard plate count was used to enumerate viable microbiological cells according to Settachaimongkon et al. (2014) with slight modifications. *L. bulgaricus* and *S. thermophilus* were grown in de Man, Rogosa, and Sharpe (MRS) medium (Merck, Germany) and M17 medium (Oxoid, UK) supplemented with 0.5% (w/v) lactose (LM 17) at 42°C, respectively. Yoghurt samples were serially diluted using sterilized normal saline to achieve 30 to 300 colonies on proper agar plates, and then cultured under anaerobic conditions (Bugbox Anaerobic System, Ruskinn, UK) with a mixture of 95% (v/v) N$_2$ and 5% CO$_2$ at 37°C for 48 h.

Determination of free amino acid

The yoghurt samples were pre-treated to remove proteins, and free amino acids were extracted as described by Simova et al. (2006). The amino acid content of the samples was analysed using HPLC fitted with a sodium cation exchange amino acid analysis column (4×150 mm, Pickering, USA) and an o-phthaladehyde post-column derivation system (Pickering, USA). The equipment was coupled with a Waters 510 pump, a 7725i manual injector and a 363-fluorescence detector (Varian Inc, USA). The operating conditions used a flow rate of 1.7 mL/min. Elution was performed by applying a linear gradient of 100% solution A over 1 min, followed by 0-100% solution B over the subsequent 48 min (solution A, 0.2 mol/L sodium citrate, pH = 3.0; solution B, 0.2 mol/L sodium borate, pH = 9.8). The excitation and emission wavelengths were 338 nm and 425 nm, respectively.

Determination of volatile compounds

Headspace solid-phase micro-extraction (SPME) was used to extract the volatile compounds of the yoghurt samples according to Ye et al. (2012). The fiber used for manual extraction was DVB/CAR/PDMS (Supelco, USA).

The samples were prepared for extraction by weighting 10 g of yoghurt into a 20 mL crimp-seal sample vial. The vials were sealed with an aluminum crimp-seal containing a poly-tetrafluoroethylene silicone septum, and then were placed in a 60°C stirring water bath for 30 min. Then the prepared fiber was inserted through the septum and
fully exposed to the headspace for 15 min. The exposed fiber was removed and inserted into the gas chromatography-mass spectrometer (GC-MS) where the volatiles were thermally desorbed.

Analysis of the volatile compounds was performed using an Agilent 7890 (II) gas chromatograph (Agilent Technologies, USA) coupled to an Agilent 5975 series mass selective detector. The SPME fiber was inserted into the injection port that was held at 250°C and the compounds were thermally desorbed for 4 min under the split conditions (1:10), a DB-Wax column 30 m × 0.25 mm (0.25 μm) (Agilent Technologies, USA) was used to separate the volatile compounds. The temperature of the column was held at 45°C for 5 min, ramped at 10°C/min to 80°C and then further heated to 240°C at the rate of 5°C/min. The carrier gas was helium (1 mL/min). The mass spectrometer was run in the electron impact mode at 70 eV. The mass scan range was 25 to 400 m/z.

Sensory test
Sensory profiling of the yogurt samples was conducted by a trained panel, using conventional profiling. Ten judges from the staff members of technology center of Bright Dairy & Food Co., Ltd. were selected who had successfully passed standardized tests for olfactory and taste sensitivities. The panellists were given a hedonic questionnaire to test taste, texture, color, flavor and overall acceptability of random coded yoghurt samples. Water was used for rinsing between samples. A small period of several minutes was required between samples. They were scored on a scale of 1-5 (1 = poor, 2 = fair, 3 = good, 4 = very good, and 5 = excellent). Each attribute was evaluated in triplicate and the values were then averaged.

Statistical analysis
All physicochemical experiments were carried out in triplicate and all data were reported as the means or means ± standard deviation (SD). The data was analyzed with ANOVA using SPSS Statistics 19 software (IBM, USA). The comparison between means was carried out using the Tukey’s significant difference test (p<0.05).

Results and Discussion
Characterization of proteolytic pork hydrolysate
Partial chemical components of the PPH were determined and the results were shown in Table 1. PPH is rich in some minerals, vitamins especially vitamin B group and small peptides, the rate of peptides which molecular weight below 1450 Da is 66.95% and 31.72% below 330 in total soluble protein.

Table 1. Partial chemical components and molecular weight distribution of peptides of the PPH

Components	Minerals	Vitamins	Molecular weight (Da)	Peak area ratio (%) (λ_{220nm})
Items	Contents (µg/100g)	Items	Contents (µg/100g)	Contents (µg/100g)
---------	------------------	---------	-----------------	-----------------
K	17667±8200	Zn	1260±46	
P	102400±3330	Fe	580±28	
Na	26930±1230	Cu	51.7±2.4	
Mg	13170±513	Se	6.5±0.8	
Ca	1960±112	Mn	6.4±0.3	

Effects of proteolytic pork hydrolysate addition on acidification activity
The acidification-graphs of samples during fermentation were shown in Fig. 1. With low levels (1%) of PPH addition, there was no significant increase in acidification rate. However, when the content of PPH reached 5%, the increased acidifying rate occurred, which the fermentation time was one hour less than that of the control, a time saving of up to 20% compared with the control. This result showed that addition of PPH into fresh cow milk exerted a stimulatory effect on fermentation.

A possible explanation for the stimulatory effect was that the yoghurt starter cultures possessed the ability to utilize compounds supplied by PPH during growth, such as small peptide, vitamins, and minerals. Pork is rich in protein, amino acids, vitamins, minerals, and other constituents (Reig et al., 2013). Smith et al. (1975) investigated the growth of starter cultures in milk was stimulated by amino acids, vitamins and minerals. Liepke et al. (2003) reported that the small peptides of proteolytic human milk proteins are effective growth factors for bifidobacteria. In this study, pork protein was hydrolyzed into small peptides and amino acids by the protease, which both are reasonably considered important factors together with min-
oxidase, which scavenge superoxide radicals and hydrogen peroxide, respectively, and thus prevent the formation of the hydroxyl radical to avoid damage (Talwalkar and Kailasapathy, 2003). Other way is adding antioxidant compounds, such as flavonoid constituents, antioxidant phenolic constituents, which could increase the antioxidant capacity of medium to improve the LAB viability during cold storage. Shah et al. (2010) found that antioxidant such as green tea, grape extract and vitamin C improved the stability of L. rhamnosus, Bifidobacterium lactis and L. paracasei in model fruit juices. Najgebauer-Lejko (2014) reported that green tea which is rich in antioxidant phenolic constituents that are considered important contributing factors to protect L. acidophilus during milk fermentation. Hervert-Hernández et al. (2009) found polyphenols possessing antioxidant functions had a stimulatory effect on stability of L. acidophilus. Our works demonstrated that although the PPH contained some small peptide, vitamins, and minerals and other constituents had positive effects on the growth (Fig. 1) but lack of some effective constituents which was working a function on maintenance of the both bacteria viability during storage.

Volatile flavor compounds

The volatile compounds detected in raw milk (RM), the raw milk with 5% PPH (RMP) and their fermented samples were given in Table 3. In RM, 11 volatile components were identified, including alcohols, aldehydes, ketones and esters. In RMP, besides the above 11 volatile components were identified, five esters were also detected (Table 3), which should attributed to the PPH addition. The main flavor compounds in yoghurt can be categorized into alcohols, aldehydes, ketones and acids. Acids are considered as the major components causing the sour taste in yoghurt (Fayed, 2015). The amounts of propanoic acid,
butanoic acid, hexanoic acid, octanoic acid, and decanoic acid in fermented milk supplemented with 5% PPH (FMP) were significantly higher than that in the control yoghurt (fermented milk supplemented without PPH; FMNP) \(p < 0.05\). The content of disulfide dimethyl which is rich in pork, was detected in FMP with the metabolism of thiamine (Masuda et al., 2012). Dimethyl sulfide that detected in FMP was also contributed to the aroma of the end product, however, which was not detected in FMNP that was different from the results of Molimard and Spinnler (1996). That would be due to that the starter culture which was the most important factor of flavor was different or the concentration of disulfide dimethyl in FMNP was too low to be identified (Al-Attabi et al., 2014).

The amounts of hexanal, octanal, decanal, benzaldehyde, 2-heptanone, nonanone, 2-undecanone, 2-hexadecanone were not significantly difference between FMP and FMNP \(p > 0.05\). Alcohol, Aldehyde and diacetyl are also important to the flavor of yoghurt (Cheng, 2010). There were more contents of alcohol and diacetyl in FMP compared with FMNP, but the aldehyde content was the opposite: more was found in FMNP. Aldehyde is labile and has a high level of activity, which part of the aldehyde might have been reduced to alcohol or other compounds. In short, adding PPH into milk increased the volatile compounds for FMP, thus gave an enhanced flavor in the end product.

Table 3. Peak area values as determined by GC-MS for flavor compounds

Compounds	RM	RMP	FMNP	FMP
Acetaldehyde	ND	10.9±0.9	52.1±3.4	66.7±4.2
Hexanal	21.9±1.7	24.8±1.6	30.1±2.0	32.1±2.2
Octanal	ND	3.5±0.3	3.4±0.3	3.6±0.3
Diacetyl	ND	5.8±0.4	78.2±6.8	89.7±5.1
Decanal	ND	5.4±0.5	5.2±0.4	5.5±0.4
Benzaldehyde	24.0±1.6	25.7±1.9	36.5±2.2	36.7±2.2
2-Heptanone	83.4±3.2	102.9±3.5	115.1±3.4	120.1±3.1
Nonanol	9.9±1.1	10.5±1.3	12.1±1.7	12.9±1.5
2-Undecanone	4.0±0.8	6.6±1.1	10.1±1.6	11.2±1.8
2-Hexadecanone	1.4±0.3	1.6±0.5	2.1±0.5	2.5±0.6
Octenol	4.5±0.9	10.2±1.1	5.0±0.7	11.3±1.2
1-Heptanol	2.9±1.0	3.2±0.8	3.9±0.4	4.4±0.5
Octanol	1.4±0.6	1.6±0.7	2.6±1.0	2.9±0.9
Hexanol	2.3±0.8	2.5±0.9	4.9±0.7	5.8±0.8
2-Butanol	5.9±0.9	6.1±1.0	7.6±1.2	8.3±1.1
1-Pentanol	ND	8.3±0.9	ND	9.2±1.3
Butyric acid, decyl ester	ND	ND	8.1±1.0	14.1±1.4
Butyric acid	ND	ND	29.0±2.4	53.8±3.5
Hexanoic acid	ND	ND	62.9±2.4	141.1±7.3
Octanoic acid	ND	ND	19.6±1.9	67.8±6.2
Decanoic acid	ND	ND	6.2±1.7	12.5±1.9
2-Amino-5-methyl benzoic acid	ND	ND	ND	290.7±10.2
Butanoic ester	ND	1.6±0.5	ND	2.0±0.4
Butanoic acid, decyl ester	ND	1.4±0.5	ND	3.9±1.3
4-benzoic acid,2-butyl ester	206.7±9.3	207.6±9.0	223.0±8.7	290.7±9.8
Formic acid,methyl ester	ND	2.4±1.0	ND	3.3±0.8
Disulfide, dimethyl	ND	1.8±0.8	ND	7.1±1.4
Hexadecanoic acid, methyl ester	ND	3.7±0.8	6.7±1.0	

Averaged peak area (×10000)

Different lowercase letters in the same row indicates significant difference \(p < 0.05\) between means; ND, not detected; RM, raw milk; RMP, raw milk containing 5% proteolytic pork hydrolysate (PPH); FMNP, fermented milk without PPH; FMP, fermented milk containing 5% PPH.
that is able to scavenge O$_2$ in relation to the metabolism of pyruvate and sources for LAB growth (Toit, 2008; Irisher, 2010; Irmler et al., 2008), thus the free methionine is considered important contributing factor to antioxidant activity for LAB viability. Furthermore, amino acids are major precursors for volatile aroma compounds in fermented dairy products. Through various pathways, amino acids are decarboxylated (to amines and CO$_2$), deaminated (to α-keto acids and ammonia), transaminated (to new amino acids) and desulfated (to form various sulfur compounds), and further metabolized into a range of branched- and short-chain fatty acids, esters, aldehydes and other constituents. For example, LAB has the capacity to generate aldehydes from alanine, and cysteine gives rise to volatile sulfur compounds (Cheng, 2010). With the activity of threonine aldolase, threonine could be translated to acetaldehyde (Chaves et al., 2002). With the increase of the free amino acids, the higher content of flavor compounds was obtained in FMP.

Sensory evaluation

The sensory scores of FMP and FMNP are shown in Table 5. The scores of taste, flavor and overall acceptability of FMP were higher than those of FMNP (p<0.05), which should attributed to the PPH supplemented to improve the fermentation metabolism of *L. bulgaricus* and *S. thermophilus*, thus enhanced the contents of free amino acids and volatile flavor compounds. There were no significant difference observed for texture and color tested.

In generally, protein hydrolysate prepared by protease had extremely bitter taste. However, the bitter taste of FMP was no significant difference compared with FMNP. This was probably due to that there are some affinity between the bitter peptides and milk protein (Tamura et al., 2002). With the increase of the free amino acids, the higher content of flavor compounds was obtained in FMP.

Table 4. Change in free amino acids after fermentation with and without PPH

Amino acids	Concentrations of free amino acids before and after fermentation (mg/kg)	Increment	RMP	FMP	Increment		
	RM	FMNP			RMP	FMP	
Aspartic	0.08±0.01	3.70±0.09a	3.62	13.5±0.08	19.6±0.12b	6.10	
Threonine	0.20±0.02	2.55±0.03a	2.35	0.41±0.07	3.06±0.06a	2.65	
Serine	0.15±0.03	1.24±0.03a	1.09	0.81±0.06	3.37±0.06b	2.56	
Glutamic	0.77±0.03	1.81±0.04a	1.04	5.44±0.09	18.1±0.11b	12.66	
Proline	0.18±0.01	2.18±0.05a	2.00	2.14±0.04	2.78±0.08b	0.64	
Glycine	0.14±0.02	1.98±0.04a	1.84	0.31±0.01	2.41±0.08a	2.10	
Alanine	0.31±0.02	3.43±0.04a	3.12	2.73±0.08	5.09±0.09b	2.36	
Cystine	0.13±0.01	0.74±0.03a	0.61	0.51±0.01	3.91±0.07b	3.40	
Valine	0.45±0.06	4.63±0.05a	4.18	3.73±0.08	6.05±0.08b	2.32	
Methionine	0.96±0.05	0.04±0.01a	-0.92	3.59±0.08	2.33±0.05b	-1.26	
Isoleucine	23.80±0.15	32.0±0.16b	8.21	28.8±0.18	42.1±0.19b	13.30	
Leucine	0.11±0.01	3.60±0.08a	3.49	18.2±0.07	24.6±0.12b	6.40	
Tyrosine	0.04±0.01	2.08±0.06a	2.04	2.10±0.03	3.51±0.09b	1.41	
Phenylalanine	0.01±0.01	2.05±0.05a	2.04	2.45±0.02	3.06±0.09b	0.61	
Lysine	0.32±0.04	0.83±0.02a	0.51	10.4±0.09	12.7±0.11b	2.30	
Histidine	0.77±0.05	1.89±0.07a	1.12	4.93±0.07	4.99±0.09b	0.06	
Arginine	0.66±0.05	1.25±0.06a	0.59	3.03±0.06	3.41±0.06b	0.38	
Total amino acids	29.08	66.01	36.93	103.08	160.87	57.79	

Different lowercase letters in the same row indicates significant difference (p<0.05) between means; ND, not detected; Control, milk or fermented milk without proteolytic pork hydrolysate (PPH); PPH$_{5\%}$, milk or fermented milk containing 5% PPH; RM, raw milk; RMP, raw milk containing 5% proteolytic pork hydrolysate (PPH); FMNP, fermented milk without PPH; FMP, fermented milk containing 5% PPH.
tion of bitter peptides.

Conclusions

LAB is fastidious microorganisms that require an exogenous source of amino acids or peptides. In this study, the PPH was added to cow milk to investigate the influence of PPH on yoghurt production by L. bulgaricus and S. thermophilus. These results indicated that the PPH significantly stimulated the growth and acidification of the both bacterial strains. The less fermentation time was achieved. The viable cell counts, the contents of essential and total free amino acids, the scores of taste, flavor and overall acceptability in PPH-supplemented yoghurt were higher than those of the control. Furthermore, the contents of some characteristic compounds including acids, aldehydes, ketones and esters which the important flavor substances in yoghurt were richer as a result of PPH supplementation. These results suggested that the PPH harbors a great potential application in yoghurt industrial process.

Acknowledgements

This work was supported by the National Key Technologies Program of China (2013BAD18B01) during the 12th Five-Year Plan Period, and the Capacity building projects of Shanghai (16DZ2280600).

References

1. Abreu, I. A. and Cabelli, D. E. (2010) Superoxide dismutases-A review of the metal-associated mechanistic variations. Biochim. Biophys. Acta 1804, 263-274.
2. Al-Attahi, Z., D’Arcy, B. R., and Deeth, H. C. (2014) Volatile sulfur compounds in pasteurised and UHT milk during storage. Dairy Sci. Technol. 94, 241-253.
3. Ashraf, R. and Shah, N. P. (2011) Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt - A review. Int. J. Food Microbiol. 149, 194-208.
4. Aubes-Dafou, I., Capdevielle, J., Seris, J. L., and Combes, D. (1995) Bitter peptide from hemoglobin hydrolysate: Isolation and characterization. FEBS Lett. 364, 115-119.
5. Chaves, A. C. S. D., Fernandez, M., Lenayer, A. L. S., Mierau, I., Kleerebezem, M., and Hugenholtz, J. (2002) Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol. 68, 5656-5662.
6. Cheng, H. F. (2010) Volatile flavor compounds in yogurt: A review. Food Sci. Nutr. 50, 938-950.
7. Cruz, A. G., Castro, W. F., Faria, J. A. F., Lollo, P. C. B., Amaya-Farfan, J., Freitas, M. Q., Rodrigues, D., Oliveira, C. A. F., and Godoy, H. T. (2012) Probiotic yogurts manufactured with increased glucose oxidase level: Postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds. J. Dairy Sci. 95, 2261-2269.
8. Donkor, O. N., Henriksson, A., Vasiljevic, T., and Shah, N. P. (2006) Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int. Dairy J. 16, 1181-1189.
9. Fayed, A. E. (2015) Health benefits of some physiologically active ingredients and their suitability as yoghurt fortifiers. J. Food Sci. Technol. 52, 2512-2521.
10. Gentili, A. and Caretti, F. (2013) Chapter 18 - Analysis of Vitamins by Liquid Chromatography. In: Liquid Chromatography. Elsevier, Amsterdam, pp. 477-517.
11. Hervert-Hernández, D., Pintado, C., Rotger, R., and Göñi, I. (2009) Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int. J. Food Microbiol. 136, 119-122.
12. Irmler, S., Raboud, S., Beisert, B., Rauhut, D., and Berthoud, H. (2008) Cloning and characterization of two Lactobacillus casei genes encoding a cystathionine lyase. Appl. Environ. Microbiol. 74, 99-106.
13. Jon, C. V. L. (1980) Determination of metal compounds. In: Analytical Atomic Absorption Spectroscopy. Academic Press, NY, pp. 295-311.
14. Liepke, C., Adermann, K., Raida, M., Magert, H. J., Forssmann, W. G., and Zucht, H. D. (2003) Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur. J. Biochem. 269, 712-718.
15. Lucey, J. A. (2004) Cultured dairy products: An overview of their gelation and texture properties. Int. J. Dairy Technol. Res. 20, 23-29.
16. Masuda, M., Ide, M., Utsumi, H., Niiro, T., Shimamura, Y., and Murata, M. (2012) Production potency of folate, vitamin B (12), and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci. Biotechnol. Biochem. 76, 2061-2067.
17. Molimard, P. and Spinnler, H. E. (1996) Compound involved in the flavor of surface mold-ripened cheeses: Origins and properties. J. Dairy Sci. 79, 169-184.
18. Murphy, K. J., Thomson, R. L., Coates, A. M., Buckley, J. D., and Howe, P. R. C. (2012) Effects of eating fresh lean pork on
cardiometabolic health parameters. *Nutrients* **4**, 711-723.
19. Murphy, M. M., Spungen, J. H., Bi, X. Y., and Barraj, L. M. (2011) Fresh and fresh lean pork are substantial sources of key nutrients when these products are consumed by adults in the United States. *Nutr. Res.** **31**, 776-783.
20. Najgebauer-Lejko, D. (2014) Effect of green tea supplementation on the microbiological, antioxidant, and sensory properties of probiotic milks. *Dairy Sci. Technol.* **94**, 327-339.
21. Nolan-Clark, D. J., Neale, E. P., and Charlton, K. E. (2013) Processed pork is the most frequently consumed type of pork in a survey of Australian children. *Nutr. Res.* **33**, 913-921.
22. Reig, M., Aristoy, M. C., and Toldra, F. (2013) Variability in the contents of pork meat nutrients and how it may affect food composition databases. *Food Chem.* **140**, 478-482.
23. Serra, M., Trujillo, A. J., Guamis, B., and Ferragut, V. (2009) Proteolysis of yogurts made from ultra-high-pressure homogenized milk during cold storage. *J. Dairy Sci.* **92**, 71-78.
24. Settachaimongkon, S., Robert, N. M. J., Antunes, F. E. C., Hettinga, K. A., van Hooijdonk, T. C. M., Zwietering, M. H., Smid, E. J., and van Valenberg, H. J. F. (2014) Influence of different proteolytic strains of *Streptococcus thermophilus* in co-culture with *Lactobacillus delbrueckii* subsp. *bulgaricus* on the metabolite profile of set-yoghurt. *Int. J. Food Microbiol.* **177**, 112-123.
25. Shah, N. P., Ding, W. K., Fallourd, M. J., and Leyer, G (2010) Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. *J. Food Sci.* **75**, M278-M282.
26. Simova, E., Simov, Z., Beshkova, D., Frengova, G., Dimitrov, Z., and Spasov, Z. (2006) Amino acids profiles of lactic acid bacteria, isolated form kefir grains and kefir starter made from them. *Int. J. Food Microbiol.* **107**, 112-123.
27. Smith, J. S., Hillier, A. J., and Lees, G J. (1975) The nature of the stimulation of the growth of *Streptococcus lactis* by yeast extract. *J. Dairy Res.* **42**, 123-128.
28. Talwalkar, A. and Kailasapathy, K. (2003) Metabolic and biochemical responses of probiotics bacteria in oxygen. *J. Dairy Sci.* **86**, 2537-2546.
29. Tamura, M., Mori, N., Miyoshi, T., Koyama, S., Kohri, H., and Okai, H. (1990) Practical debittering using model peptides and related compounds. *Agric. Biol. Chem.* **54**, 41-51.
30. Toit, M., Engelbrecht, L., Lerm, E., and Krieger-Weber, S. (2011) *Lactobacillus*: the next generation of malolactic fermentation starter cultures-an overview. *Food Bioprocess Technol.* **4**, 876-906.
31. Tzong-Hsien, L. and Marie-Isabel, A. (2008) High performance liquid chromatography (HPLC) of peptides and proteins. In: Molecular Bioremediation Handbook. Humana Press, NY, pp. 767-792.
32. Ye, M., Liu, D., Zhang, R., Yang, L., and Wang, J. (2012) Effect of hawk tea (*Litsea coreana*) on the numbers of lactic acid bacteria and flavour compounds of yoghurt. *Int. Dairy J.* **23**, 68-71.
33. Zare, F., Boye, J. I., Orsat, V., Champagne, C., and Simpson, B. K. (2011) Microbial, physical and sensory properties of yoghurt supplemented with lentil flour. *Food Res. Int.* **44**, 2482-2488.
34. Zhang, J. H., Li, Z. M., Kong, F. T., Dong, X. X., Chen, W., and Wang, S. W. (2014) Prediction of pork prices based on SVM. Proceeding of 2013 World Agricultural Outlook Conference, Beijing, China, pp. 173-178.