Calculation of the work of adhesion of polyisoprene on graphite by molecular dynamics simulations

M. Chiricottoa, G. Giuntaa, H. A. Karimi-Varzanehb, and P. Carbonea

aDepartment of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK; bMaterial Physics and Computational Chemistry, Continental Reifen Deutschland GmbH, Hannover, Germany

ABSTRACT

Elastomeric compounds are reinforced with fillers such as carbon-black and silica to improve mechanical, dynamical, and tribological properties. The stability and physical properties of these materials are dominated by the intermolecular interactions occurring at the polymer/particles interface that determine the magnitude of the polymer/particles adhesion. Using molecular dynamics simulations, in this work, we evaluate the solid–liquid interfacial tension and the corresponding work of adhesion for a system composed of graphite/Polyisoprene 100% cis-1,4 within a range of molar masses and temperatures. We employ a simulation strategy for estimating the surface tension of fluid/vacuum and fluid/solid interfaces that use directly the local stress fields in the Irving–Kirkwood formalism. Using such procedure, we decompose the stress field into the individual components of the stress tensor and correlate them with the values of the work of adhesion in the different systems analyzed.

Abbreviation: PI (100% 1,4); MD: molecular dynamics; P_T: lateral component of the stress; P_N: normal component of the stress.

ARTICLE HISTORY

Received 31 October 2019
Accepted 1 December 2019

KEYWORDS

Work of adhesion; polyisoprene; Carbon black; Stress Profile; graphite

Introduction

Solid/liquid interfacial properties not only govern surface wettability but also drive the development of composite materials in a broad range of industrial[1,2], biological[3–5], and medical applications[6]

In particular in polymer science, polymer (nano) composites, where (nano)fillers are added into a polymer matrix, have become popular materials thanks to the fact that their properties can be tailor-made depending on the filler’s geometry and chemical composition[7]

In the automotive industry, the main component of car and truck tyres is the prototypical polymer composite, where the polymer matrix is an elastomer (usually cis-1-4-polyisoprene (PI), but also styrenebutadiene[9] copolymer or polybutadiene can be employed[8]) and the fillers, added to improve mechanical and rheological properties, are normally either Carbon-Black (CB) or silica.[9] The physico-chemical interactions between the filler and the rubber at the interface play an important role on the dispersibility of the fillers in the polymer matrix and, therefore, the choice of the reinforcing fillers determines not only the final material properties but also the process conditions. The knowledge of the filler-polymer surface energy is of paramount importance to predict and understand the wettability of the filler by the rubber during the mixing process and the (re-)agglomeration (flocculation) of the fillers during the post-mixing stage[10,11], as well as the formation of chemical linkages between the filler and the polymers during cross-linking reactions (a process commonly known as vulcanization). The enhancement of the mechanical and tribological properties exhibited by the polymer composites is mainly governed by two factors: the individual chemical identity and composition of the filler and polymer matrix, and the polymer/filler interface that can be considered as a third component.

A useful quantity to estimate the adhesion between filler and polymer is the measure of the liquid–solid work of adhesion, W_a, defined as the reversible work required to separate a solid from a liquid up to a distance at which they no longer interact. Such work can be expressed in terms of the surface tension of the individual phases and their interfacial tension as following[12]:

CONTACT P. Carbone Paola.Carbone@manchester.ac.uk Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsfm.
\[W_a = \gamma_{sv} + \gamma_{lv} - \gamma_{sl} \]

where \(\gamma_{sv} \) is the solid–vapor surface tension, \(\gamma_{lv} \) is the liquid–vapor surface tension, and \(\gamma_{sl} \) is the solid–liquid interfacial tension. In this study, we assume that the solid is stiff enough to consider negligible its deformation when separated from the liquid. Moreover, the liquid–vapor pressure is assumed to be low such that the amount of excess vapor adsorbed on the surface is negligible.\[13,14\] Under such assumptions, the solid–liquid interfacial tension is equal to the solid–liquid interfacial free energy; hence in this work, we will use the term interfacial tension and interfacial free energy interchangeably.

The thermodynamic quantities that define the work of adhesion \(W_a \) are also linked to the contact angle \(\theta \) of the sessile drop on the solid support.

The experimental measurement of the solid–liquid surface tension and of the \(W_a \) relies on the estimation of this contact angle, but the measurements are challenging because interfacial phenomena can be hard to probe. Furthermore, such experiments are affected by the surface conditions (roughness and/or chemical heterogeneities, liquid penetration, surface deformation, underlying coated substrate) and by the effects of airborne contaminants.\[15\] For these reasons, different values of the static contact angles may be measured.\[16–18\]

Molecular modeling represents the optimal tool to investigate the solid/liquid interfacial forces and indeed it has been extensively used to evaluate the surface tension.\[13,19,20\] Over the years several methodologies have been proposed to estimate the interfacial free energies of a solid–liquid interface, \(\gamma_{sl} \). These methodologies can be roughly casted into a thermodynamic and a mechanical route.

In the thermodynamic route the surface tension is directly computed from the derivative of the free energy of the system. In this context, Leroy and Müller-Plathe have proposed an algorithm, called phantom-wall method\[19,21\], to obtain the solid–liquid surface free energy. This method has been successfully applied to study the wetting properties of Lennard-Jones (LJ) systems\[21\] and graphene/water interfaces\[22,23\]. In this approach, the solid and liquid phases are separated by a repulsive wall, which repels only the liquid. Initially the wall is within the solid substrate, and then is reversibly and perpendicularly moved toward the liquid such that it brings the liquid outside the range of interaction of the solid. The change in Gibbs free energy is associated with this transformation, and the \(W_a \) is computed by thermodynamic integration.\[13,21\] The phantom-wall approach is particularly adapted for studying rough surfaces.\[22,23\]

The same authors have developed a similar approach, mainly for smooth interfaces. In their approach, called dry-surface method\[24\], the solid–liquid separation is realized by turning off the attractive solid–liquid interactions and maintaining unchanged the solid–solid and the liquid–liquid interactions. The change in the free energy is associated with the work required to transform the actual solid–liquid interface into a repulsive interface and separates the two phases.\[24\]

Other thermodynamic methods have been proposed over the years. In the cleaving method\[25\], the solid–liquid interfacial free energy is obtained using thermodynamic integration of the reversible work per unit area required to continuously transform separate solid and melt polymer into a single system containing an interface. In the test-area method,\[26\] the surface tension is computed as a change in the free energy for an infinitesimal change in the surface area in the NVT ensemble. The difference in the energy between the perturbed and the reference states is computed and thermodynamically averaged over a large number of configurations, yielding to the estimation of the surface tension.\[24,26,27\]

The thermodynamic methods, although provide accurate results, are computationally demanding because they require a large set of simulations to be performed into the integration.

Another route to calculate the surface free energy is derived from its mechanical definition, where the surface tension is obtained from the interfacial stress anisotropy. In their seminal work, Kirkwood and Buff\[28\] were the first who explicitly expressed the component of the stress tensor as a function of the derivative of the intermolecular potential. Such approach has been extensively employed in the computation of fluid/fluid surface tension\[20,29–31\], while it results more challenging and less employed in solid/liquid systems.\[32,33\] These difficulties arise, for example, from the anisotropy of the solid, that leads to a different definition of the surface free energy and the surface stress tensor according to the Shuttleworth relationship\[34\], valid only when the interface is free from transverse stresses. As explained above, due to the assumption that in our work the solid surface is rigid, this limitation can be overcome. Additionally, the calculation of solid/liquid surface tension is strongly affected by the parameter settings of the simulations, for example finite size effects and long range interactions\[33\], as shown recently on a graphene/methane system.\[35\] In our case, electrostatic interactions are neglected since the system is free of charges. Thus, due to the efficiency of the method compared to the thermodynamics one, in
this work we follow the mechanical route according to the formalism of Irving–Kirkwood. This approach provides a local definition of the stress tensor \(\sigma(x) \) from the knowledge of interaction forces and velocities of the individual atoms.

The local stress tensor \(\sigma(x) \) is the sum of a kinetic term, \(\sigma_K(x) \), describing the flux of momentum due to internal vibrations and a potential term, \(\sigma_V(x) \), resulting from the intermolecular forces:

\[
\sigma(x) = \sigma_K(x) + \sigma_V(x) \tag{2}
\]

where \(x \) refers to the center of a three-dimensional rectangular element of the grid in which the simulation box is discretized.

In particular, the two contributions to \(\sigma(x) \) are defined as follows:

\[
\sigma_K(x) = -\left(\sum_{\alpha=1}^{N} m^\alpha v^\alpha \otimes v^\alpha \delta(r^\alpha - x) \right) \tag{3}
\]

\[
\sigma_V(x) = \left(\sum_{\alpha, \beta > \alpha} f^\alpha_\beta \otimes r^\beta \cdot \mathbf{B} \right) \tag{4}
\]

where the brackets indicate time and spatial average, the latter is calculated according to the Hardy–Murdock procedure. The term \(r^\alpha_\beta = r^\alpha - r^\beta \) is the inter-particle distance, \(f^\alpha_\beta \) is the inter-molecular force between the particles \(\alpha \) and \(\beta \) and is expressed as the sum of all the site-site forces acting between these two particles. \(P^\alpha_\beta = \sum_{\beta=1}^{N} f^\alpha_\beta \) is the total force acting on particle \(\alpha \). The \(f^\alpha_\beta \) term satisfies the relation \(f^\alpha_\beta = -f^\beta_\alpha \). Finally, \(B(r^\alpha, r^\beta; x) = \int_{s=0}^{1} w(x, 1 - s) (r^\alpha + s r^\beta) ds \), the bond function weights the contribution to the stress tensor at the grid point \(x \) from the two particle interacting, \(\alpha \) and \(\beta \). \(\mathbf{B} \) is the integral of the weight function along the line segment connecting \(\alpha \) and \(\beta \).

For a system with planar symmetry and isotropic surface, such as a planar graphite layer in contact with polymer melt, the tensor \(\sigma(x) \) can be reduced in three components: \(\sigma_{xx} \) and \(\sigma_{yy} \) are the parallel vectors to the surface and \(\sigma_{zz} \) is the perpendicular vector.

If we consider the stress profile along the perpendicular direction to the surface (\(z \)) we define \(P_N(z) = -\sigma_{zz}(z) \) which is the normal component of the pressure tensor along this direction, \(P_T(z) \) corresponds to the tangential pressure and it is given by \(P_T(z) = -\frac{1}{2} \left(\sigma_{xx}(z) + \sigma_{yy}(z) \right) \).

Hence, we can compute the interfacial tension \(\gamma \) through the calculation of the stress profile:

\[
\gamma = \int_{-L_z/2}^{L_z/2} (P_N(z) - P_T(z)) dz \tag{5}
\]

The main objective of this work is to employ a reliable simulation strategy, already used for other systems, to calculate the surface tension and the work of adhesion of PI/graphite interfacial tension. We also investigate the effect of the temperature and of the polymer Molecular Weight \((M_W) \) on the surface tension. We perform several simulations within a broad range of temperature (300–413 K) and molar masses (1022–13624 Da).

Methods and Computational Details

The systems studied in this work consist of a thick film of polysisoprene (PI) (100% cis-1,4) in contact with graphite on one side and to vacuum on the other as shown in Figure 1. The PI chains are modeled using a united-atom force field, according to which each methylene and methyl group along the main chain backbone is considered as a single Lennard–Jones (LJ) interacting site, the details of the model employed can be found in ref. 9 and 47.

The thickness of the PI film, \(L_z \), is chosen to be at least 4 times larger than the radius of gyration \(R_g \) of the chains in the melt along the \(z \) direction. This guarantees that far from the interfaces the structural, dynamic, and thermodynamic properties are identical to those of the bulk polymer.

Figure 1. MD snapshot of a thin PI melt film confined between a semi-infinite graphite (six layers) phase on its one side (bottom) and vacuum on its other side (top). The z-direction is normal to the surface. Periodic boundary conditions apply only in the \(x \) and \(y \) directions of the coordinate system, the surface area is defined by \(A = L_x \times L_y \) (with \(L_x = L_z = 51 \text{ Å} \) and \(L_z = 60 \text{ Å} \)). The different colors distinguish the several chains.
From previous studies,[43] we know that $R_g \approx 31$ Å for cis-1,4 Polyisoprene melt with 150 monomers per chain (PI-150) and $R_g \approx 42$ Å for PI-300 at $T = 413$ K, so we choose a thickness of $L_z^{\text{film}} = 120$ Å for all our systems (PI-15, PI-50, and PI-200). Such a thickness allows establishing the bulk behavior in the central region of the simulation box.

The graphite surface is defined as two-dimensional planar material, made up of six graphene sheets. We use a fully atomistic representation (see Figure 1), where the carbon atoms are placed in their crystallographic structure of a hexagonal honeycomb lattice, located at $z = 0$. The graphite slab extended for 16.75 Å along z direction. Each graphene layer has lateral dimension of $L_x = L_y = 60$ Å. All the graphene sheets are considered to be rigid, i.e., the carbon atoms are not allowed to move during the simulation runs. The distance Carbon–Carbon is fixed at 1.418 Å.

The MD simulations of the cis-1,4 PI/graphite system are performed using GROMACS (v. 2016.3)[44] simulation package in the canonical ensemble with periodic boundary conditions in all the three directions. We use a leap-frog integration algorithm[45] with a time step Δt of 1 fs. The temperature is kept constant by using the Nose–Hoover algorithm[46] with a time constant of 0.5 ps.

The initial polymer configurations are generated positioning randomly the chains in the simulation box; this step is then followed by a potential energy minimization. The locally relaxed configurations are then equilibrated for up to 200 ns in NVT ensemble and used as starting configurations in the subsequent MD production runs.

The interatomic interactions are modeled by the LJ 12–6 potential (cutoff radius 13 Å) and the long-range electrostatic forces are zero given that the carbon atoms charges are zero. The LJ parameters for the carbon–PI interactions are taken from ref. 47. The geometric mixing rules are used to produce the parameters of the PI–carbon interactions.

The following systems are simulated in this work: 210 chains of PI-15 on graphite surface, 54 chains of PI-50, and 15 chains of PI-200. All these systems are simulated in a range of temperatures above the glass transition temperature of PI (300, 350, and 413 K), at which the experiments are usually conducted.[47] The length of the production runs varies between 200 and 600 ns, depending on the polymer molecular weight and the temperature of the system (see Table 1).

Results

Density Profile of PI Melt

The local density of a polymer melt in the vicinity of a planar smooth, impenetrable solid surface exhibits an oscillatory behavior, this interfacial layering has also been observed by molecular simulations with either coarse-grained[43] or atomistic models.[48] In Figure 2, the spatial arrangement of PI is quantified through the calculation of the density profiles along the normal direction to the graphite surface. In the panel a) the dependency of the density with respect to the temperature is shown, by reporting the density profile of PI-15 at three different temperatures (413 K, 350 K, 300 K).

The local density distribution of the polymer is computed by dividing the polymer region in slabs of thickness 0.35 Å along z direction and averaged over time.

Table 1. Computational details of the systems simulated in this work.

System	No. of chains	Simulation time/ns	
	300 K	350 K	413 K
PI-15	210	200 200 200	
PI-50	54	200 200 200	
PI-200	15	200 200 1,000	

Figure 2. Density profile of PI as a function of the distance from the outer graphene layer of the graphite slab (located at $z = 0$) at various chain lengths and temperatures. (a) Shows results for PI-15 at several temperatures at 413 K (green dotted line), 350 K (red dashed line), 300 K (blue line). The inset shows the first peak in the density profile. (b) Results from PI-15 (black line), PI-50 (red dotted line), and PI-200 (blue dashed line) at 413 K.
The curve matches the result previously obtained in ref. 43 and 52: the density profiles display three consecutive PI structured-layers close to the graphite slab. For the system PI-15 at 300 K (blue line), the first peak in the density profile is located at ~4.25 Å from the outer graphene layer with a height of 1,650 kg/m³, and the second peak is located at 9.35 Å with an intensity of about 1,033 kg/m³, and the last one at 14.5 Å. As expected at the polymer/vacuum interface the melt density drops to zero, exhibiting the characteristic sigmoidal shape typical of a melt free surface. By increasing the temperature, the polymer/vacuum interface drops to zero less steeply. The slope of the linear fit of the density profile curve at the liquid–vapor interface increases from ~108.7 at 300 K to ~73.3 at 413 K. This is known in the literature and is connected to the decrease in the surface tension of the melt with increasing the temperature.

The effect of the graphite slab on the distribution of PI is propagated until about 19 Å from the outer graphene layer in the direction normal to the surface. The density at the central region of the film converges to the value of the density of the bulk PI melts, which is experimentally about 840 kg/m³ at 413 K and 910 kg/m³ at 300 K.

From Figure 2(a), we observe that the same oscillatory behavior in the interfacial region is present for the system PI-15 at different temperatures (three peaks in density at the same position), but the intensity of the peak decreases with increasing temperature. It can be noticed that, as the temperature increases, the bulk value of the density in the middle regions of the film decreases following the same trend than a bulk PI melt (see Table 2).

Figure 2(b) shows also results for the density profile of PI/Graphite as a function of molecular weight (M_W, in Da), at $T = 413$ K. We observe that at low molar mass, the bulk density, ρ_{bulk} of PI melts increases slightly with the chain length from ρ_{bulk}, PI-15 = 828 kg/m³ to ρ_{bulk}, PI-200 = 869 kg/m³ (see Table 2) while for larger molar masses the density saturates to a constant value as it shows in Figure 3.

In Figure 3, we report the results for the density of PI in the bulk as a function of M_W at three different temperatures. The open symbols in Figure 3, at low M_W (<2,000 Da) for $T = 413$ K and 350 K are extracted from Ref 52. We observe that the density increases quickly with M_W, particularly at low M_W (number of monomers <15) until it reaches the plateau value at high M_W.

In Figure 3 each curve is fitted by using the equation below:

$$\rho(T, M_W) = \frac{1}{\rho(T, \infty)} + \frac{2V_e(T)/M_W}{\rho(T, \infty)}$$

where $\rho(T, \infty)$ corresponds to the value of the density at infinite M_W and $V_e(T)$ is the excess free volume of chain ends. By fitting the density data to Eq. 6 we can estimate the temperature dependence of $\rho(T, \infty)$ and $V_e(T)$. Both parameters are function of temperature only, and they depend linearly on T.

$$1/\rho(T, M_W) = a + bT = 1.052 + 0.000719T(°C)$$

$$V_e(T) = c + dT = 14.706 + 0.10403T(°C)$$

The fitting parameters a, b, c, and d in Eqs. 7 and 8 result in very good agreement with experimental and computational data of previous studies.

Profile of the Tangential and Normal Stress Components

The calculation of the interfacial tension of PI interacting with the graphite substrate is calculated by using the mechanical route through the IK method, as described in the previous section.

To compute the local stress tensor we use the GROMACS-LS code of Vanegas et al. Through this code we obtain P_T and P_N and we define the lateral

T/K	PI-15	PI-50	PI-200
413	828.38 ± 0.54	854 ± 1.69	869.64 ± 1.29
350	871.62 ± 1.4	895 ± 1.4	904.35 ± 1.28
300	907 ± 3.34	928 ± 2.9	936.49 ± 6.54

Figure 3. The density of the cis-1,4 PI melt, in the bulk, as a function of molecular weight. The open symbols at low molecular weights ($M_W < 2000$ Da) are taken for $T = 315$ and 413 K from ref.52.

[1] M. CHIRICOTTO ET AL. (2023). *Journal of Polymer Science.* 144, 594-605.
pressure profile as $\pi(z) = P_T(z) - P_N(z)$ \cite{58,59,60} In order to compute the profiles of the normal and the tangential stress, we discretize the simulation box into a three-dimensional rectangular grid of cell size $L_{\text{grid}} = 1\,\text{Å}$ and compute the average stress over each cell of the grid.

In Figure 4 on the left axis, we show the lateral pressure profile $\pi(z)$ which arises from the local forces acting on the polymer in the direction of the graphene plane for the system of PI-15 at 413 K.

At equilibrium, due to mechanical stability, the integrated lateral pressure profile in the bulk is zero. By comparing the stress profile and the density profile on the right axis of Figure 4 we see a perfect correspondence between the peaks of $\pi(z)$ and the density profile, located, respectively, at $z = 4.25\,\text{Å}$ and $9.25\,\text{Å}$ from the graphite surface. The local stress oscillations die out within $\sim 19\,\text{Å}$ of the graphite walls in both cases.

Figure 5 shows the profile of interfacial tension obtained by IK method. The black solid line displays $(P_N(z) - P_T(z))\Delta z$ and the red dotted line the profile of the integral $\gamma(z)$ (according to Eq. 5). Statistical fluctuations of interfacial tensions are estimated using the block averages, i.e. the calculation of the interfacial tension is performed over 200,000 configurations. Standard deviations of the interfacial tensions are calculated by breaking the trajectories into 4 block averages.

The value of the solid–liquid interfacial tension, γ_{sl} for the system PI-15 at 413 K simulated here is 25.4 mN/m, in agreement with experiments of CB/rubber where γ_{sl} is in the range of 19–30 mN/m for different CB structures. \cite{8}

In order to understand what is the relative contribution of the intermolecular forces to the surface tension value, we decompose the stress profile for the system PI-15 at $T = 413$ K. In Figure 6, the components to the tangential stress, $\sigma_{xx} = \sigma_{yy}$ for symmetry), which are the main contributions to $\pi(z)$, are reported. The components include the kinetic and potential stress parts with the latter containing the contributions from pairwise non-bonded interactions (van der Waals), bond stretching, bond angle, improper, and proper dihedral (Ryckaert-Bellemans potential). From Figure 6, it appears clear that among these contributions, the improper dihedral component (red solid line), which is defined by the atoms connected through the double bond, displays the largest positive and negative values. This contribution nearly coincides with the total lateral stress profile and therefore, the other parts nearly balance each other in this region.
In Figure 7, we compare σ_{xx} from the dihedral contribution of the system PI-15 at different temperatures. We observe that by increasing the temperature, the intensity of the first peak decreases by 10% at 350 K and 17% at 413 K with respect to the highest peak at 300 K. Interestingly, we notice that at the liquid–vapor interface the peaks are shifted to the highest z values and the intensity decreases by increasing the temperature. This behavior can be correlated with the density profile at the liquid–vapor interface where the structure of the polymer is expanded at high temperatures. This result confirms that the surface tension is directly linked with the structural properties of the polymer.

In Table 3, the values of the interfacial tension for different systems at $T = 413$ K are reported.

From Table 3, we can see that by increasing the M_W, the liquid–vapor surface tension at a fixed temperature increases until it reaches a plateau at 3,406 Da (PI-50). The solid–liquid surface tension instead slightly decreases with increasing the M_W until a plateau value, again at 3,406 Da. This mild dependency on the M_W is also in agreement with the structural properties of coarse-grained and atomistic models of polyisoprene/graphite systems where it has been observed that the average length of trains (i.e. the length of the polymer chain directly adsorbed on the surface) ranges from 5 to 6 monomers independently from the M_W. This indicates that the number of the adsorbed segments does not change with the M_W and therefore, since the main contribution to the W_a is due to the dihedrals, which are strictly linked with the conformation of the adsorbed chains, we expect a similar trend for the solid–liquid surface tension.

Table 3. Surface energy values of systems with different chain length for the PI at same $T = 413$ K.

PI	L_x (Å)	L_y (Å)	γ_{tot} (mN/m)	γ_{sv} (mN/m)	γ_{sl} (mN/m)	γ_{lv} (mN/m)
PI-15	40	120	26.5 ± 1.2	46.1 ± 1.3	20.3 ± 1.3	24.8 ± 2.3
PI-15	350	120	26.5 ± 1.2	46.1 ± 1.3	20.3 ± 1.3	24.8 ± 2.3
PI-15	413	120	26.5 ± 1.2	46.1 ± 1.3	20.3 ± 1.3	24.8 ± 2.3
PI-50	40	120	25.2 ± 1.2	44.8 ± 1.9	21.5 ± 1.9	23.3 ± 1.8
PI-50	350	120	25.2 ± 1.2	44.8 ± 1.9	21.5 ± 1.9	23.3 ± 1.8
PI-50	413	120	25.2 ± 1.2	44.8 ± 1.9	21.5 ± 1.9	23.3 ± 1.8

In Tables 4 and 5, we can infer the effect of temperature on the surface tension for the systems PI-15 and PI-50 (the results obtained for the longest polymer chain of 200 monomers were affected by a high statistical error due to the long relaxation time required at low temperatures and therefore we omit them from the table). We observe that for both systems, by increasing the temperature, the surface tension solid–liquid and liquid–vapor decreases in agreement with what has been observed for polyethylene. This behavior reflects a decrease in the cohesive energy density of the polymer.

The computation of the local stress profile allows for the calculation of the interfacial free energies via Eq. 5, which can provide a deep insight into the wetting properties such as the W_a. By knowing the values of γ_{sl}, γ_{lv} and γ_{sv}, we can calculate the value of the W_a according to Eq. 1, reported in Table 6. The value of γ_{sv} has been recently measured by Perkin et al. for a single layer and few layers of graphene.

Table 4. Interfacial tensions of PI-15 at different temperatures.

T [K]	γ_{sv} (mN/m)	γ_{sl} (mN/m)	γ_{lv} (mN/m)
413	25.4 ± 1.2	46.1 ± 1.3	20.3 ± 1.3
350	26.5 ± 1.8	51.4 ± 2.1	24.9 ± 2.1
300	28.8 ± 2.3	58.2 ± 2.9	29.4 ± 2.9

Table 5. Interfacial tensions of PI-50 at different temperatures.

T [K]	γ_{sv} (mN/m)	γ_{sl} (mN/m)	γ_{lv} (mN/m)
413	25.8 ± 1.7	49.3 ± 1.8	23.5 ± 1.8
350	27.7 ± 3.4	50.4 ± 3.5	22.7 ± 3.5
300	33.4 ± 4.9	68.7 ± 6.3	35.3 ± 6.3

Summary and Conclusions

In the current work, we employ and optimize a simulation strategy for the estimation of interfacial energies and wetting properties of polymer/solid interfaces. By performing
MD simulations, we calculate the structure and surface tension of the solid–liquid graphite–polyisoprene interface. From the analysis of the density profile, we observe an oscillatory behavior in the region adjacent to the graphite. By fitting the data of density vs M_W we are able to estimate the volume of chain free ends from the free volume of the system and the density at infinite M_W which are in good agreement with experimental and computational data.\cite{48,54}

The lateral pressure profile offers an appealing way to gain an insight into the relationship between polymer chemical structure and its interfacial thermodynamics properties. We observe a perfect match in the peaks of the lateral stress and density profiles. By analyzing the different contributions to the stress profile, we find that the main influence on the tangential stress is due to the dihedral components.

Furthermore, we estimate the solid–liquid and liquid–vapor interfacial tension for the systems composed of 15 and 50 monomers at three different temperatures (413 K, 350 K, and 300 K) and we find that the surface tension decreases with increasing temperature. By increasing the molar mass, the liquid–vapor and solid–liquid surface tensions reach a plateau already for chain composed by 50 monomers. Finally, the values of the surface tensions allow for the calculation of the W_a which decreases with increasing the temperature, instead there is a negligible dependency with the M_w.

Acknowledgments

Computational facilities for this work were provided by the Computational Shared Facility (CSF) of the University of Manchester. MC, AK, and PC thank the European Union’s Horizon 2020 research and innovation programme project VIMMP under grant agreement No. 760907. GG thanks the EPSRC funded Centre for Doctoral Train “Materials for Demanding Environments” EP/L01680X/1 and Continental Tyre division for the financial support.

Funding

This work was supported by the Engineering and Physical Sciences Research Council [EP/L01680X/1]; Horizon 2020 Framework Programme [760907].

**Table 6. Values of interfacial tension and W_a for systems PI-15 and PI-50 at different temperatures, where $W_a = \gamma_{lv} + \gamma_{sl} - \gamma_{sv}$.

T [K]	γ_{sv} [mN/m]	γ_{sl} [mN/m]	γ_{lv} [mN/m]	W_a [mN/m]
413	25.4 ± 1.2	21.5 ± 1.9	111.1 ± 1.9	
350	26.5 ± 1.8	24.9 ± 2.1	113.4 ± 2.1	
300	28.8 ± 2.3	29.4 ± 2.9	115.6 ± 2.9	
413	25.8 ± 1.7	23.5 ± 1.8	112.7 ± 1.8	
350	27.2 ± 3.4	22.7 ± 3.5	110.0 ± 3.5	
300	33.4 ± 4.9	35.3 ± 6.3	116.9 ± 6.3	
413	27.2 ± 2.0	24.8 ± 2.3	112.6 ± 2.3	

References

[1] Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S.-J.; Lee, W. R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. *J. Ind. Eng. Chem.* 2015, 21, 11–25. DOI: 10.1016/j.jiec.2014.03.022.

[2] Ejenstam, L.; Ovaskainen, L.; Rodríguez-Meizoso, I.; Wågberg, L.; Pan, J.; Swerin, A.; Claesson, P. M. The Effect of Superhydrophobic Wetting State on Corrosion Protection - the AKD Example. *J. Colloid Interface Sci.* 2013, 412(2015), 56–64.

[3] Kelleher, S. M.; Habimana, O.; Lawler, J.; O’reilly, B.; Daniels, S.; Casey, E.; Cowley, A. Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features. *ACS Appl. Mater. Interfaces.* 2016, 8(24), 14966–14974.

[4] Maccallum, N.; Howell, C.; Kim, P.; Sun, D.; Friedlander, R.; Ranisau, J.; Ahanotu, O.; Lin, J. J.; Vena, A.; Hatton, B.; et al. Liquid-Infused Silicone as a Biofouling-Free Medical Material the Roles of Hydrophobicity and Hydrophilicity in Bacterial. *ACS Biomater. Sci. Eng.* 2015, 1, 43–51.

[5] Liu, M.; Wang, S.; Jiang, L. Bioinspired Multiscale Surfaces with Special Wettability. *MRS Bull.* 2013, 38 (5), 375–382.

[6] Perera, A. S.; Coppens, M. O. Re-designing Materials for Biomedical Applications: From Bionimicry to Nature-inspired Chemical Engineering. *Phil. Trans. Royal Soc. A.* 2018, 377(2138), 20180268.

[7] Mowes, M. M.; Fleck, F.; Klüppel, M. Effect of Filler Surface Activity and Morphology on Mechanical and Dielectric Properties of Nbr/Graphene Nanocomposites. *Rubber Chem. Technol.* 2014, 87(1), 70–85.

[8] Stöckelhuber, K. W.; Das, A.; Jurk, R.; Heinrich, G. Contribution of Physico-Chemical Properties of Interfaces on Dispersibility, Adhesion and Flocculation of Filler Particles in Rubber. *Polymer.* 2010, 51(9), 1954–1963.

[9] Hager, J.; Hentschke, R.; Hajdis, N. W.; Karimi-Varzaneh, H. A. Computer Simulation of Particle-Particle Interaction in a Model Polymer Nanocomposite. *Macromolecules.* 2015, 48(24), 9039–9049.

[10] Gundlach, N.; Hentschke, R.; Karimi-Varzaneh, H. A. Filler Flocculation in Elastomer Blends - an Approach Based on Measured Surface Tensions and Monte Carlo Simulation. *Soft Mater.* 2019, 17(3), 283–296.

[11] Gundlach, N.; Hentschke, R. Modelling Filler Dispersion in Elastomers: Relating Filler Morphology to Interface Free Energies via SAXS and TEM Simulation Studies. *Polymers.* 2018, 10(4), 446.

[12] Adam, N. K.; Livingston, H. K. Contact Angles and Work of Adhesion. *Nature.* 1958, 182(4628), 128.

[13] Leroy, F.; Müller-Plathe, F. Calculation of the Work of Adhesion. *Mater. Interfaces.* 2012, 4(1), 48–54.

[14] Schlangen, L. J. M.; Koopal, L. K.; Cohen Stuart, M. A.; Lyklema, J. Wettability: Thermodynamic Relationships between Vapour Adsorption and Wetting. *Colloids Surf. A Physicochem. Eng. Asp.* 1994, 89(2–3), 157–167.

[15] Van Engers, C. D.; Cousens, N. E. A.; Babenko, V.; Britton, J.; Zappone, B.; Grobert, N.; Perkin, S. Direct
Measurement of the Surface Energy of Graphene. *Nano Lett.* 2017, 17(6), 3815–3821.

[16] Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P. On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes. *J. Phys. Chem. B.* 2003, 107(6), 1345–1352.

[17] Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Noca, F.; Koumoutsakos, P. Molecular Dynamics Simulation of Contact Angles of Water Droplets in Carbon Nanotubes. *Nano Lett.* 2001, 1(12), 697–702.

[18] Good, R. J.; Contact Angle, Wetting, and Adhesion: A Critical Review. *J. Adhes. Sci. Technol.* 1992, 6(12), 1269–1302.

[19] Leroy, F.; Dos Santos, D. J. V. A.; Müller-Plathe, F. Interfacial Excess Free Energies of Solid-Liquid Interfaces by Molecular Dynamics Simulation and Thermodynamic Integration. *Macromol. Rapid Commun.* 2009, 30(9–10), 864–870.

[20] Ghoufi, A.; Malfrayt, P.; Tildesley, D. J. Computer Modelling of the Surface Tension of the Gas-Liquid and Liquid-Liquid Interface. *Chem. Soc. Rev.* 2016, 45 (5), 1387–1409.

[21] Leroy, F.; Müller-Plathe, F. Solid-Liquid Surface Free Energy of Lennard-Jones Liquid on Smooth and Rough Surfaces Computed by Molecular Dynamics Using the Phantom-Wall Method. *J. Chem. Phys.* 2010, 133(4), 44110.

[22] Leroy, F.; Müller-Plathe, F. Rationalization of the Behavior of Solid–Liquid Surface Free Energy of Water in Cassie and Wenzel Wetting States on Rugged Solid Surfaces at the Nanometer Scale. *Langmuir.* 2010, 27(2), 637–645.

[23] Frédé, F.; Leroy, F.; Müller-Plath, F. Can Continuum Thermodynamics Characterize Wenzel Wetting States of Water at the Nanometer Scale? *J. Chem. Theory Comput.* 2012, 8(10), 3724–3732.

[24] Leroy, F.; Müller-Plathe, F. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces. *Langmuir.* 2015, 31(30), 8335–8345.

[25] Laird, B. B.; Davidchack, R. L.; Yang, Y.; Asta, M. Determination of the Solid-Liquid Interfacial Free Energy along a Coexistence Line by Gibbs–Cahn Integration. *J. Chem. Phys.* 2009, 131(11), 114110.

[26] Groo, G. J.; Jackson, G.; Blas, F. J.; De Miguel, E. Test-Area Simulation Method for the Direct Determination of the Interfacial Tension of Systems with Continuous or Discontinuous Potentials. *J. Chem. Phys.* 2005, 123(13), 134703.

[27] D’Oliveira, H. D.; Davoy, X.; Arche, E.; Malfrayt, P.; Ghoufi, A. Test-Area Surface Tension Calculation of the Graphene-Methane Interface: Fluctuations and Commensurability. *J. Chem. Phys.* 2017, 146(21), 214112.

[28] Kirkwood, J. G.; Buff, F. P. The Statistical Mechanical Theory of Surface Tension. *J. Chem. Phys.* 1949, 17(3), 338–343.

[29] Ghoufi, A.; Malfrayt, P. Mesoscale Modeling of the Water Liquid-Vapor Interface: A Surface Tension Calculation. *Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.* 2011, 83(5), 1–5.

[30] Ghoufi, A.; Goujon, F.; Lachet, V.; Malfrayt, P. Expressions for Local Contributions to the Surface Tension from the Virial Route. *Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.* 2008, 77(3), 031601.

[31] Duque, D.; Vega, L. F. Some Issues on the Calculation of Interfacial Properties by Molecular Simulation. *J. Chem. Phys.* 2004, 121(17), 8611–8617.

[32] Dreher, T.; Lemarchand, C.; Pineau, N.; Bourasseau, E.; Ghoufi, A.; Malfrayt, P. Calculation of the Interfacial Tension of the Graphene-Water Interaction by Molecular Simulations. *J. Chem. Phys.* 2019, 150(1), 014703.

[33] Dreher, T.; Lemarchand, C.; Soulard, L.; Bourasseau, E.; Malfrayt, P.; Pineau, N. Calculation of A Solid/liquid Surface Tension: A Methodological Study. *J. Chem. Phys.* 2018, 148(3), 034702.

[34] Shuttleworth, R.; The Surface Tension of Solids. *Proc. Phys. Soc. Sect. A.* 1950, 63(5), 444–457.

[35] Irving, J. H.; Kirkwood, J. G. The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. *J. Chem. Phys.* 1950, 18(6), 817–829.

[36] Tamor, E. B.; Miller, R. E. Modeling Materials: Continuum, Atomistic and Multiscale Techniques; Cambridge: Cambridge University Press, 2011. DOI: 10.1017/CBO9781139003582.

[37] Vanegas, J. M.; Torres-Sánchez, A.; Arroyo, M. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations. *J. Chem. Theory Comput.* 2014, 10(2), 691–702.

[38] Marrink, S. J.; De Vries, A. H.; Mark, A. E. Coarse Grained Model for Semiquantitative Lipid Simulations. *J. Phys. Chem. B.* 2004, 108(2), 750–760.

[39] Hardy, R. J.; Formulas for Determining Local Properties in Molecular-Dynamics Simulations: Shock Waves. *J. Chem. Phys.* 1982, 76(1), 622–628.

[40] Murdoch, A. I.; The Motivation of Continuum Concepts and Relations from Discrete Considerations. *Q. J. Mech. Appl. Math.* 1983, 36(2), 163–187.

[41] Sgouros, A. P.; Vogiatzis, G. G.; Kritikos, G.; Boziki, A.; Nikolakopoulou, A.; Liveris, D.; Theodorou, D. N. Molecular Simulations of Free and Graphite Capped Polyelectrolyte Films: Estimation of the Interfacial Free Energies. *Macromolecules.* 2017, 50(21), 8827–8844.

[42] Daoulas, K. C.; Hammarandarisa, V. A.; Mavrantzas, V. G. Detailed Atomistic Simulation of a Polymer Melt/solid Interface: Structure, Density, and Conformation of a Thin Film of Polyelectrolyte Melt Adsorbed on Graphite. *Macromolecules.* 2005, 38(13), 5780–5795.

[43] Pandey, Y. N.; Brayton, A.; Burkhart, C.; Papakonstantopoulos, G. J.; Doxastakis, M. Multiscale Modeling of Polysoprene on Graphite. *J. Chem. Phys.* 2014, 140(5), 054908.

[44] Abraham, M. J.; Murtoa, T.; Schulz, R.; Päll, S.; Smith, J. C.; Hess, B.; Gromacs, L. E. High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. *SoftwareX.* 2015, 1–2, 19–25.

[45] Van Gunsteren, W. F.; Berendsen, H. J. C. A Leap-Frog Algorithm for Stochastic Dynamics. *Mol. Simul.* 1985, 83(8), 4069–4074.

[46] Sharma, P.; Roy, S.; Karimi-Varzaneh, H. A. Validation of Force Fields of Rubber through Glass-Transition
Temperature Calculation by Microsecond Atomic-Scale Molecular Dynamics Simulation. *J. Phys. Chem. B.* 2016, 120(7), 1367–1379.

[48] Doxastakis, M.; Mavrantzas, V. G.; Theodorou, D. N. Atomistic Monte Carlo Simulation of Cis-1,4 Polyisoprene Melts. I. Single Temperature End-Bridging Monte Carlo Simulations. *J. Chem. Phys.* 2001, 115(24), 11339–11351.

[49] Theodorou, D. N.; Variable-Density Model of Polymer Melt Surfaces: Structure and Surface Tension. *Macromolecules.* 1989, 22(12), 4578–4589.

[50] Wu, D. T.; Fredrickson, G. H.; Carton, J. P.; Ajdari, A.; Leibler, L. Distribution of Chain Ends at the Surface of a Polymer Melt: Compensation Effects and Surface Tension. *J. Polym. Sci. Part B Polym. Phys.* 1995, 33(17), 2373–2389.

[51] Fettes, L. J.; Lohse, D. J.; Graessley, W. W. Chain Dimensions and Entanglement Spacings in Dense Macromolecular Systems. *J. Polym. Sci. Part B Polym. Phys.* 1999, 37(10), 1023–1033.

[52] Harmandaris, V. A.; Doxastakis, M.; Mavrantzas, V. G.; Theodorou, D. N. Detailed Molecular Dynamics Simulation of the Self-Diffusion of N-Alkane and Cis-1,4 Polyisoprene Oligomer Melts. *J. Chem. Phys.* 2002, 116(1), 436–446.

[53] Turnbull, D.; Cohen, M. H. Free-Volume Model of the Amorphous Phase: Glass Transition. *J. Chem. Phys.* 1961, 34(1), 120–125.

[54] Nemoto, N.; Moriwaki, M.; Odani, H.; Kurata, M. Shear Creep Studies of Narrow-Distribution Poly (As-isoprene). *Macromolecules.* 1971, 4(2), 215–219.

[55] Vanegas, J. M.; Torres-Sánchez, A.; Arroyo, M. Computing the Local Stress Tensor in MD Simulations. 2015. http://mdstress.org/files/5914/4657/7530/Local_stress.pdf.

[56] Torres-Sánchez, A.; Vanegas, J. M.; Arroyo, M. Geometric Derivation of the Microscopic Stress: A Covariant Central Force Decomposition. *J. Mech. Phys. Solids.* 2016, 93, 224–239.

[57] Torres-Sánchez, A.; Vanegas, J. M.; Arroyo, M. Examining the Mechanical Equilibrium of Microscopic Stresses in Molecular Simulations. *Phys. Rev. Lett.* 2015, 114(25), 1–5.

[58] Ollila, O. H. S.; Risselada, H. J.; Louhivuori, M.; Lindahl, E.; Vattulainen, I.; Marrink, S. J. 3D Pressure Field in Lipid Membranes and Membrane-Protein Complexes. *Phys. Rev. Lett.* 2009, 102(7), 078101.

[59] Vanegas, J. M.; Longo, M. L.; Faller, R. Crystalline, Ordered and Disordered Lipid Membranes: Convergence of Stress Profiles Due to Ergosterol. *J. Am. Chem. Soc.* 2011, 133(11), 3720–3723.

[60] Xing, C.; Ollila, O. H. S.; Vattulainen, I.; Faller, R. Asymmetric Nature of Lateral Pressure Profiles in Supported Lipid Membranes and Its Implications for Membrane Protein Functions. *Soft Matter.* 2009, 5(17), 3258–3261.

[61] Giunta, G.; Svaneborg, C.; Karimi-varzaneh, H. A.; Carbone, P. Effects of Graphite and Plasticizers on the Structure of Highly Entangled Polyisoprene Melts. (Under Review). *ACS Applied Polymer Materials,* 2019.