The apparent digestibility coefficients of dry matter, crude protein and energy in white fishmeal, herring meal, anchovy meal, salmon meal, sardine meal, mackerel meal, squid meal, soybean meal, corn gluten meal and wheat flour were determined for olive flounder. Digestibility coefficients were determined using a reference diet and test diets that contained 70% of the reference diet mixture and 30% test ingredients. All diets contained 0.5% chromic oxide as a digestibility indicator. The fish averaging 220 g were held in 500 L tanks at a density of 20 fish per tank. Feces were collected from three replicated groups of fish using a fecal collection column attached to a fish-rearing tank. The apparent dry matter, crude protein and energy digestibility coefficient values observed were in the ranges 29–79%, 59–95% and 45–91%, respectively, for various test ingredients. The apparent dry matter, crude protein and energy digestibility of white fishmeal, herring meal, anchovy meal, salmon meal, sardine meal, mackerel meal and squid meal were significantly higher than those of soybean meal, corn gluten meal and wheat flour.

Key words: Apparent digestibility coefficients, Feed ingredients, Olive flounder

*Corresponding author: kdkim@nfrdi.go.kr
재료 및 방법

실험사료

실험에 사용한 표준사료 (reference diet)는 단백질원으로 백색어분을 사용하였으며, 지질원으로 오징어간유를, 탄수화물원으로는 α-정분과 소맥분을 각각 사용하였다 (Table 1). 또한 소화율 측정을 위하여 산화크롬 (CrO₃)을 0.5% �가하여 소화율 지표물질로 사용하였다. 소화율 측정에 사용된 사료원료는 백색어분, 청어분, 멸치분, 연어분, 고등어분, 대두박, 콩글루텐밀 및 소맥분으로 총 10종류이 며 (Table 2), 기초사료와 각 사료원료를 7:3의 무게비율로 혼합하여 11종류의 실험사료를 제조하였다 (Table 3). 모든 실험사료는 설계된 원료들을 잘 혼합한 후 원료 100 g 당 물 40 g 내외를 첨가하여 패렛 제조기로 사료를 성형한 후 식온에서 24시간 건조하였다. 제조된 사료는 -20℃에 보관하면서 사용하였다.

실험관리 및 분 수집

자체적으로 설계한 분 수집 장치가 연결된 실험어 관리 및 분 수집 장치로 수용하여 주간 예비 사육한 후 실험사료를 오후 시에 만복에 가깝도록 공급하고 오후 시에 수조에 평균체중 110g의 넙치 육성어를 마리씩 (Fig. 1) 220 g 20마리씩 수조에 모인 분을 여과하고 샘플 수집하였다. 분 수집 기간 동안의 평균 수온은 21.0±2.8℃였다. 수집된 분은 동결 건조하여 성분 분석에 사용하였다.

Table 1. Ingredients and nutrient contents of the reference diet (%)

Ingredients	%
White fishmeal	67
α-Starch	5
Wheat flour	18
Squid liver oil	5
Vitamin premix	2
Mineral premix	2
Choline chloride	0.5
Chromic oxide	0.5

Nutrient contents (dry basis)	%
Crude protein	52.4
Crude lipid	9.9
Ash	13.0
Carbohydrate	24.7
Gross energy (cal/g)	4881

1 White fishmeal from Alaska supplied by Galim Engineering Co., Ltd., Seoul, Korea.
2 Vitamin mix contained the following amount which were diluted in cellulose (g/kg mix): L-ascorbic acid, 121.2; DL-α-tocopheryl acetate, 18.8; thiamin hydrochloride, 2.7; riboflavin, 9.1; pyridoxine hydrochloride, 1.8; niacin, 36.4; Ca-D-pantothenate, 12.7; myo-inositol, 181.8; D-biotin, 0.27; folic acid, 0.68; p-aminobenzoic acid, 18.2; menadione, 1.8; retinyl acetate, 0.73; cholecalciferol, 0.003; cyanoacobalamin, 0.003.
3 Mineral mix contained the following ingredients (g/kg mix): MgSO₄·7H₂O, 80.0; NaH₂PO₄·2H₂O, 370.0; KCl, 130.0; Ferric citrate, 40.0; ZnSO₄·7H₂O, 20.0; Ca-lactate, 356.5; CuCl, 0.2; AlCl₃·6H₂O, 0.15; KI, 0.15; NaSeO₃, 0.01; MnSO₄·H₂O, 2.0; CoCl₂·6H₂O, 1.0.
4 100-(crude protein+crude lipid+ash).

Table 2. Nutrient contents of the ingredients used to test diets

Test ingredients	Moisture (%)	Crude protein (%)	Crude lipid (%)	Ash (%)	Carbohydrate (%)	Gross energy (cal/g)
WF	8.4	69.0	6.6	15.0	1.0	4420
HM	7.2	70.8	9.7	11.7	0.6	4978
AM	7.2	69.0	9.6	13.3	0.9	4751
SMM	8.1	68.7	10.3	12.2	0.7	4785
SDM	8.2	68.1	8.3	14.3	1.1	4621
MM	8.6	61.4	10.1	18.2	1.7	4435
SQM	9.2	74.6	3.8	10.9	1.5	4533
SBM	11.7	46.8	1.6	5.8	34.1	4114
CSM	10.0	59.8	1.0	2.2	27.0	5202
WF (moisture+crude protein+crude lipid+ash)	11.6	12.5	2.0	0.9	73.0	3821

1 White fishmeal from Alaska supplied by Galim Engineering Co., Ltd., Seoul, Korea.
2 Herring meal from Denmark supplied by Galim Engineering.
3 Anchovy meal from Chile supplied by Galim Engineering.
4 Salmon meal from Chile supplied by Galim Engineering.
5 Sardine meal from Chile supplied by Suhyupfeed Co., Ltd., Uiryung, Korea.
6 Mackeral meal from Chile supplied by Suhyupfeed.
7 Squid meal from Chile supplied by Galim Engineering.
8 Soybean meal (dehulled, solvent extracted) supplied by Suhyupfeed.
9 Corn gluten meal supplied by Suhyupfeed.
10 Wheat flour supplied by Suhyupfeed.
11 100-(moisture+crude protein+crude lipid+ash).

Table 3. Nutrient contents (dry basis) of the test diets fed to flounder

Test diets (70% reference + 30% Ingredient)	Crude protein (%)	Crude lipid (%)	Ash (%)	Gross energy (cal/g)
WF	58.9	10.8	14.1	4919
HM	59.4	12.1	12.8	5047
AM	58.6	11.5	13.2	4967
SMM	59.1	11.4	12.9	4998
SDM	59.6	11.0	13.6	4919
MM	56.1	11.3	14.8	4818
SQM	61.5	9.0	12.7	4995
SBM	53.2	8.6	11.5	4907
CSM	57.2	8.7	9.6	5114
WF	43.7	8.6	9.5	4900

See Table 2.
성분분석
사료원료, 실험사료 및 분의 수분은 105℃에서 6시간 건조하여 측정하였으며, 조단백질 (N×6.25)은 Auto Kjeldahl System (Gerhardt VAP500T/TT125, Germany)을 사용하여 분석하였다. 조지방은 조지방추출기 (Velp SER148, Italy)를 사용하여 로 추출한 후 측정하였으며 조회분은 에서 시간 동안 태운 후 정량하였다.

소화율측정
실험사료 및 사료원료의 소화율은 이 사용한 아래의 공식으로 계산하였다.

\[
\text{소화율} = \frac{\text{사료소화량} - \text{대조증}}{\text{사료소화량}} \times 100\%
\]

소화율 측정 자료는 양식어종의 영양소 요구량을 충족시킬 수 있는 최저가 사료배합비를 설계하는데 필수적이다. 사료원료의 소화율은 주로 원료의 화학적 영양조성 및 대상어종의 소화 능력에 따라 달라진다. 본 연구에서는 생선을 대상으로 수행된 실험에 82-91% 는 높은 값으로 나타났다.

Table 4. Apparent digestibility coefficient of dry matter, crude protein and energy of the test ingredients in flounder

Apparent digestibility coefficient (%)	Dry matter (%)	Crude protein (%)	Energy (%)
WFM	79±0.5	96±0.3	91±0.1
HM	74±2.7	91±1.6	87±1.8
AM	76±1.9	92±1.1	87±1.3
SMV	77±3.0	94±0.3	89±0.9
SDM	67±1.2	88±1.3	82±1.4
MM	73±0.8	93±0.1	87±0.5
SQM	72±1.5	89±1.4	83±1.4
SSM	53±4.2	78±5.5	68±4.9
CPM	50±4.0	79±4.7	74±2.1
WF	29±3.9	59±2.8	45±3.4

Values (mean ± SE of three replications) in each column with different superscripts are significantly different (P<0.05).

고찰
사료 단백질원의 품질은 어류 성장에 영향을 미치는 주된 요소이며, 단백질 소화율은 어류의 단백질 이용성을 평가하기 위한 주요한 방법이다. 사료산업에 있어서 사료원료별 영양소 소화율을 측정 자료는 양식어종의 영양소 요구량을 충족시킬 수 있는 최적의 사료합성비를 설계하는데 필수적이다. 사료원료의 소화율은 주로 원료의 기화적 영양조성 및 대상어종의 소화 능력에 따라 달라진다. 수용성 니체를 대상으로 수행된 본 연구에서 어류 종류별 단백질 소화율은 88-95%였으며, 에너지 소화율은 82-91%로 높은 값을 나타내었다. 본 실험에
서 녹치의 청어분 (herring meal)에 대한 단백질 소화율은 91%로 무지개송어 (Oncorhynchus mykiss), Atlantic salmon (Salmo salar), coho salmon (Oncorhynchus kisutch), European sea bass (Dicentrarchus labrax), red drum (Sciaenops ocellatus), Atlantic cod (Gadus morhua) 및 haddock (Melanogrammus aeglefinus)과 비교하였다 (Cho and Kaushik, 1990; Anderson et al., 1992; Hajen et al., 1993; McGoogan and Reigh, 1996; Gomes and Olivas-Teles, 1998; Tibbetts et al., 2004, 2006)의 청어분 단백질 소화율은 87-98% 범위에 속하였으며, 에너지 소화율은 87%도 무지개송어, Atlantic salmon, haddock 및 European sea bass (Cho and Kaushik, 1990; Anderson et al., 1992; Gomes and Olivas-Teles, 1998; Tibbetts et al., 2004)의 84-98% 범위에 속하였다 식물성 원료인 콘글루텐밀에 대한 넙치의 단백질 소화율은 79%로 Atlantic cod, rockfish (Sebastes schlegeli) (Lee, 2002), coho salmon, haddock 및의 에 비하여 낮았으며 대두박 단백질 소화율은 95, 98%, Atlantic cod, gilthead seabream (Lupatsch et al., 1997)보다는 다소 낮았지만 무지개송어 및, Atlantic cod, coho salmon, haddock 및의 에 비해 낮았다 또한 넙치의 콘글루텐밀에 대한 에너지 소화율은 74%로무지개송어 및의 범위에 속하였다 식물성 원료인 콘글루텐밀에 대한 넙치의 단백질 소화율은 79%로 Atlantic cod, rockfish (Sebastes schlegeli) (Lee, 2002), coho salmon, haddock 및의 에 비하여 낮았으며 대두박 단백질 소화율은 95, 98%, Atlantic cod, gilthead seabream (Lupatsch et al., 1997)보다는 다소 낮았지만 무지개송어 및, Atlantic cod, coho salmon, haddock 및의 에 비해 낮았다 또한 넙치의 콘글루텐밀에 대한 에너지 소화율은 74%로무지개송어 및의 범위에 속하였다 식물성 원료인 대두박, 콘글루텐밀, 소맥분 에너지 소화율은 각각 86, 98, 52%로 보고하여 본 연구의 콘글루텐밀 및 대두박, 콘글루텐밀 및 소맥분 에너지 소화율은 전반적으로 높은 결과를 보였다 어류의 성장을 향상시키는 어분의 우수성은 여러 어종에서 이미 잘 알려져 있는데, 이는 어분의 높은 단백질 함량, 균형잡힌 아미노산 조성 및 기호성 향상 등에 의한 것이다 (Andrews and Page, 1974; Tacon and Jackson, 1985; Nandeesha et al., 1991). 그러나 어분은 가격이 높은 편이며 생산량이 제한적이라는 단점이 있으며, 양식어의 경상적인 성장을 유지하며 사료 중에 어분의 함량을 최소화 시킬 수 있는 대체 단백질원 소화율을 위한 연구는 필요하다. 본 연구에서 식물성 원료인 대두 박 및 콘글루텐밀은 여러 종류의 어류에 비하여 건물 및 에너지 소화율이 높았다 (Kim et al., 2000)은 사료의 단백질 함량으로 어류 대사 대두 박 함량을 달리한 사료로 넙치를 사육한 결과 대두 박 함량이 증가함에 따라서 성장 및 사료효율이 감소하였다고 보고하였다. 일반적으로 육식성 어류는 식물성 원료에 비하여 동물성 원료의 건물 및 에너지 이용율이 더 높을 것으로 알려져 있다 (Cho et al., 1982; Bergot and Breque, 1983; Ellis and Reigh, 1991; Reigh and Ellis, 1992; Sullivan and Reigh, 1995). 이와 같이 식물성원료에 대한 소화율이 낮은 것은 식물성 원료에 함유된 탄수화물의 함량 및 화학적 조성과 관계가 있으며, 대부분의 육식성 어류는 에너지원으로 사료 중의 탄수화물을 효율적으로 사용하지 못하는 것으로 보고되었다 (Wood, 1993). 어류는 식물성원료에 존재하는 탄수화물 인 섬유소를 에너지원으로 이용하지 못하며, 사료 중에 섬유소 의 함량이 높을 경우, 탄수화물의 소화율이 감소할 것이다 따라서 어류의 소화율 측정을 위한 분 수집 방법도 신중하게 고려하여 소화율 측정값의 정확도가 최대화되도록 하여야 할 것이다.

이의 성장을 향상시키는 어분의 우수성은 여러 어종에서 이미 잘 알려져 있는데, 이는 어분의 높은 단백질 함량, 균형잡힌 아미노산 조성 및 기호성 향상 등에 의한 것이다 (Andrews and Page, 1974; Tacon and Jackson, 1985; Nandeesha et al., 1991). 그러나 어분은 가격이 높은 편이며 생산량이 제한적이라는 단점이 있으며, 양식어의 경상적인 성장을 유지하며 사료 중에 어분의 함량을 최소화 시킬 수 있는 대체 단백질원 소화율을 위한 연구는 필요하다. 본 연구에서 식물성 원료인 대두 박 및 콘글루텐밀은 여러 종류의 어류에 비하여 건물 및 에너지 소화율이 높았다 (Kim et al., 2000)은 사료의 단백질 함량으로 어류 대사 대두 박 함량을 달리한 사료로 넙치를 사육한 결과 대두 박 함량이 증가함에 따라서 성장 및 사료효율이 감소하였다고 보고하였다. 일반적으로 육식성 어류는 식물성 원료에 비하여 동물성 원료의 건물 및 에너지 이용율이 더 높을 것으로 알려져 있다 (Cho et al., 1982; Bergot and Breque, 1983; Ellis and Reigh, 1991; Reigh and Ellis, 1992; Sullivan and Reigh, 1995). 이와 같이 식물성원료에 대한 소화율이 낮은 것은 식물성 원료에 함유된 탄수화물의 함량 및 화학적 조성과 관계가 있으며, 대부분의 육식성 어류는 에너지원으로 사료 중의 탄수화물을 효율적으로 사용하지 못하는 것으로 보고되었다 (Wood, 1993). 어류는 식물성원료에 존재하는 탄수화물 인 섬유소를 에너지원으로 이용하지 못하며, 사료 중에 섬유소 의 함량이 높을 경우, 탄수화물의 소화율이 감소할 것이다 따라서 어류의 소화율 측정을 위한 분 수집 방법도 신중하게 고려하여 소화율 측정값의 정확도가 최대화되도록 하여야 할 것이다.

본 연구는 국립수산과학원 (고효율 배합사료 개발 및 실용화 연구, RP-2010-AQ-039)의 지원에 의해 운영되었습니다.

참고문헌

Anderson JS, Jackson AJ, Matty AJ and Capper BS. 1984.
Effects of dietary carbohydrate and fiber on the tilapia Orechromis niloticus (Linn.). Aquaculture 37, 303-314.

Anderson JS, Lall SP, Anderson DM and Chandrasoma J. 1992. Apparent and true availability of amino acids from common feed ingredients for Atlantic salmon (Salmo salar) reared in seawater. Aquaculture 108, 111-124.

Andrews JW and Page JW. 1974. Growth factors in the fish meal component of catfish diets. J Nutr 104, 1091-1096.

Bergot F and Breque J. 1983. Digestibility of starch by rainbow trout: effects of the physical state of starch and of the intake level. Aquaculture 34, 203-212.

Bruce BM and Robert CR. 1996. Apparent digestibility of selected ingredients in red drum (Sciaenops ocellatus) diets. Aquaculture 141, 233-244.

Cho CY and Kaushik SJ. 1990. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). World Review of Nutrition and Dietetics 61, 132-172.

Cho CY, Slinger SJ and Bayley HS. 1982. Bioenergetics of salmonid species: energy intake, expenditure and productivity. Comp Biochem Physiol 73, 25-41.

Ellis SC and Reigh RC. 1991. Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum, Sciaenops ocellatus. Aquaculture 97, 383-394.

Falge R, Schpanof L and Jurss K. 1978. Amylase, esterase and protease activity in the intestine content of rainbow trout Salmo gairdneri Rich. after feeding with feed containing different amounts of starch and protein. J Ichthyol 18, 283-287.

Gomes da Silva J and Oliva-Teles A. 1998. Apparent digestibility coefficients of feedstujs in seabass (Dicentrarchus labrax) juveniles. Aquatic Living Resources 11, 187-191.

Hajen WE, Higgs DA, Beames RM and Dosanjh BS. 1993. Digestibility of various feedstuffs by post-juvenile chinook salmon (Oncorhynchus tshawytscha) in seawater. 2. Measurement of digestibility. Aquaculture 112, 333-348.

Jafri AK and Hassan MA. 1999. Energy digestibility coefficients of commonly used feedstuffs in different size class of Indian major carps, Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton). Asian Fish Sci 12, 155-163

Jobling M. 1981. Dietary digestibility and the influence of food components on gastric evacuation in plaice Pleuronectes platessa L. J Fish Biol 19, 29-36.

Kim KD, Kang YJ, Lee JY, Nam MM, Kim KW, Jang MS and Lee SM. 2008. Evaluation of extruded pellets and raw fish-based moist pellet for growth of sub-adult flounder Paralichthys olivaceus. J Aquacult 21, 102-106.

Kim KD, Lee SM, Park HG, Bai SC and Lee YH. 2002. Essentiality of dietary n-3 highly unsaturated fatty acids in juvenile Japanese flounder (Paralichthys olivaceus). J World Aquacult Soc 33, 432-440.

Kim KD, Kang YJ, Lee HY, Kim KW, Kim KM and Lee SM. 2006. Evaluation of extruded pellets as a growing diet for adult flounder Paralichthys olivaceus. J Aquacult 19, 173-177.

Kim YS, Kim BS, Moon TS and Lee SM. 2000. Utilization of defatted soybean meal as a substitute for fish meal in the diet of juvenile flounder (Paralichthys olivaceus). J Korean Fish Soc 33, 469-474.

Lee SM. 1997. Evaluation of the nutrient digestibilities by different fecal collection methods in juvenile and adult Korean rockfish (Sebastes schlegeli). J Korean Fish Soc 30, 62-71.

Lee SM, Seo JY, Choi KH and Kim KD. 2008. Apparent amino acid and energy digestibilities of common feed ingredients for flounder Paralichthys olivaceus. J Aquacult 21, 89-95.

Lee SM. 2002. Apparent digestibility coefficients of various feed ingredients for juvenile and grower rockfish (Sebastes schlegeli). Aquaculture 207, 79-95.

Lee SM and Kim KD. 2005. Effect of various levels of lipid exchanged with dextrin at different protein level in diet on growth and body composition of juvenile flounder Paralichthys olivaceus. Aquacult Nutr 11, 1-8.

Lee SM, Cho SH and Kim KD. 2000. Effects of dietary protein and energy levels on growth and body composition of juvenile flounder Paralichthys olivaceus. J World Aquacult Soc 31, 306-315.

Lupatsch T, Kissil GWM, Sklan D and Pfeffer E. 1997. Apparent digestibility coefficients of feed ingredients
and their predictability in compound diets for gilthead seabream, *Sparus aurata* L. Aquacult Nutr 3, 81-89.

McGoogan BB and Reigh RC. 1996. Apparent digestibility of selected ingredients in red drum (*Sciaenops ocellatus*) diets. Aquaculture 141, 233-244.

Nandeesha MC, Srikanth GK, Keshavanath P and Das SK. 1991. Protein and fat digestibility of five feed ingredients by an Indian major carp, *Catla catla* (Hamilton). In: Fish Nutrition Research in Asia, Proceedings of the Fourth Asian Fish Nutrition Workshop (ed By S.S. De Silva), Asian Fisheries Society, Manila, Philippines, 75–81.

Reigh RC and Ellis SC. 1992. Effects of dietary soybean and fish-protein ratios on growth and body composition of red drum (*Sciaenops ocellatus*) fed isonitrogenous diets. Aquaculture 104, 279-292.

Steffens W. 1989. Principles of Fish Nutrition. Ellis Harwood, Chichester, U.K., 384.

Sugiura SH, Dong FM, Rathbone CK and Hardy RW. 1998. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture 159, 177-202.

Sugiura SH, Dong FM, Rathbone CK and Hardy RW. 1998. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture 159, 177-202.

Sullivan JA and Reigh RC. 1995. Apparent digestibility of selected feedstuffs in diets for hybrid striped bass (*Morone saxatilis* ♂ × *Morone chrysops* ♀). Aquaculture 138, 313-322.

Tacon AG and Jackson AJ. 1985. Utilisation of conventional and unconventional protein sources in practical fish feeds. In Cowey CB, Mackie AM and Bell JG. (ed.) Academic Press, London, U.K., 119-145.

Tibbets SM, Lall SP and Milley JE. 2004. Apparent digestibility of common feed ingredients by juvenile haddock, *Melanogrammus aeglefinus* L. Aquaculture Research 35, 643-651.

Tibbets SM, Milley JE and Lall SP. 2006. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod, *Gadus morhua* (Linnaeus, 1758). Aquaculture 261, 1314-1327.

Wood CM. 1993. Ammonia and urea metabolism and excretion. In: D.H. Evans (Editor), The Physiology of Fishes. CRC Press, Boca Raton FL U.S.A., 379-425.