Research Article

Photoelectrochemical Properties of Porous Si/TiO₂ Nanowire Heterojunction Structure

Ji Wang,¹ ² Jikai Yang,¹ Yiming Zhao,¹ and Guozheng Wang¹

¹School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, China
²Peng Cheng Laboratory, No. 2, Xingke 1st Street, Nanshan, Shenzhen 518000, China

Correspondence should be addressed to Jikai Yang; jikaiyang0625@163.com

Received 25 April 2020; Accepted 8 June 2020; Published 1 July 2020

Guest Editor: Mingyi Zhang

Copyright © 2020 Ji Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The porous silicon as substrate material was prepared by metal-assisted chemical etching (MACE) method. The TiO₂ nanowire cover layer on porous silicon was prepared by hydrothermal method. Thus, porous Si/TiO₂ nanowire heterostructure was obtained. The formation of the porous Si/TiO₂ nanowire heterostructure was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results of diffuse reflection spectra (DRS) show that porous Si/TiO₂ nanowire has the highest antireflectivity among the four tested samples. Photoelectric catalysis (PEC) and photocurrent measurement show that the porous Si/TiO₂ nanowire heterostructure has higher photoelectric catalytic and photocurrent activity than the other samples under the simulated solar light and visible light irradiation. The results showed that the construction of the porous Si/TiO₂ nanowire heterostructure improved the photoelectrochemical properties, which is attributed to the heterogeneous effect and window effect.

1. Introduction

Energy source and environment have become an urgent problem for every country all over the world, and the utilization of clean and reproducible energy becomes the important task for us especially [1–5]. In order to overcome this problem, photocatalysis has been extensively studied by researchers [6–8]. The titanium dioxide (TiO₂) has been a promising catalysis since Fujishima and Honda reported [9]. And TiO₂ shows a significant power conversion efficiency, which can degrade a wide range of organic macromolecular pollutants in water [10]. Due to the excellent chemical, physical properties [11–15] and strong capability of light harvesting effects [16–19], the nanostructured TiO₂ may serve as an ideal heterojunction structure in photoelectric catalysis applications. However, TiO₂ cannot utilize the visible spectrum effectively and has the high band gap energy (3.2 eV), which limits the absorption of the visible light. Thus, the photocatalytic performance of the TiO₂ nanowires is affected [20].

Silicon as one of the most abundant elements is a narrow gap semiconductor [21, 22]. The optical band gap of the single-crystal silicon is about 1.12 eV [23], and the single-crystal silicon has a high utilization of sunlight. However, silicon can be easily oxidized in water due to its unique photoelectric and chemical properties in photodegradation [24]. Nanostructured silicon is a prospective material which can be used to construct various types of heterojunction structure with semiconductor. And the porous Si could generate photocurrent when it was illuminated [25]. However, this photocurrent is unstable in aqueous electrolytes [26]. In the electrolyte without fluoric anion, oxides are formed on the surface of the porous silicon, and photocurrent would be shut off [27]. Therefore, the TiO₂ nanowires as a shield can protect porous Si from oxidation in the electrolyte.

Recently, Qu et al. [28] prepared porous silicon nanowires by the silver particle-assisted chemical etching method. The photocatalytic properties of porous silicon nanowires were studied, and the result shows that the porous silicon nanowires can utilize the entire spectral regime from UV to near IR range. Hwang et al. [29] studied the photoelectric
catalysis of n-SiNWs/TiO₂ nanowire heterojunction and p-SiNWs/TiO₂ nanowire heterojunction for aqueous phenol solution, and the results show that the n-SiNWs/TiO₂ nanowire heterojunction have higher photocatalysis activity compared with the p-SiNWs/TiO₂ nanowire heterojunction due to the window effect. In addition, Shi et al. [30] studied the photocurrent density of the planar Si and Si electroless etched nanowire (EENW) coated by ALD TiO₂ thin film. The results showed that SiEENW/TiO₂ has higher photocurrent than the planar Si/TiO₂ due to lower reflectance and higher surface area.

Overall, the combination of nanostructured silicon and TiO₂ nanowires can improve the photoelectrochemical activity. In this paper, we prepared porous Si/TiO₂ nanowire heterostructure with a two-step method involving hydrothermal synthesis and metal-assisted etching. The photovoltaic photocatalytic and photocurrent activity of porous Si/TiO₂ nanowire heterostructure under simulated solar light and visible light irradiation were studied. Moreover, the photocurrent and photoelectrocatalytic mechanism of porous Si/TiO₂ nanowire heterostructure were also studied.

2. Experimental

2.1. Chemicals and Instrumentation. The chemicals used in this study are as follows: n-Si <111> wafer (ρ:20–50 Ω·cm, Shunsheng Electronics Science & Technology Group, Zhejiang, China); HF, absolute ethanol, 37 wt% HCl, isopropanol [(CH₃)₂CHOH], and 97 wt% H₂SO₄ (Beijing Chemical Works, China); 66 wt% HNO₃, Na₂SO₄, and 30 wt% H₂O₂ (Xilong Chemical Co., Ltd., China); AgNO₃ (Sinopharm Chemical Reagent Co., Ltd., China); methylene blue (MB, Tianjin Guangfu Fine Chemical Research Institute, China); tetrabutyl titanate [CH₃(CH₂)₃O]₄Ti (Tianjin Guangfu Fine Chemical Research Institute, China).

The surface morphology views of the samples were observed by SEM (SNE4500M, SEC Co., Ltd., Korea) with an accelerating voltage of 30 kV. The crystallographic structures of the samples were characterized by X-ray diffractometer (XRD, Ultima IV, Rigaku Co., Ltd., Japan). The diffuse reflectance spectra (DRS) were measured using the UV-Vis-NIR spectrophotometer (Cary 5000 UV-Vis-NIR, Agilent Technologies Inc.). The photocurrent measurement was measured by the electrochemical station (LK98C, Lanlike Instrument Corp, Tianjin, China). The Xe lamp (50 W, PLS-SXE300, Perfect light Instrument Corp, Beijing, China) was used as the simulated solar light irradiation. The concentration of dyes was analyzed by the UV-Vis spectrophotometer (TU-1810, Beijing Purkinje General Instrument Co., Ltd., China).

2.2. Preparation of the Porous Si/TiO₂ Nanowire Heterostructure. We followed the methods of Chen et al. for the preparation of the porous Si/TiO₂ nanowire heterostructure [31]. The porous Si was prepared based on the two-step metal-assisted chemical etching method. The cleaning process comprises following steps. Firstly, the Si wafers were put into solution (H₂SO₄: H₂O₂ = 3:1, v/v) for 20 min. Secondly, the Si wafers were dipped into the mixed solution (H₂SO₄: H₂O₂ = 3:1, v/v) with ultrasonic bath at room temperature for 2 min (3 times). Then, the Si wafers were rinsed in the deionized water with ultrasonic bath for 2 min (3 times). Lastly, the Si wafers were dried in nitrogen flow at room temperature. Thus, the cleaned silicon wafer is obtained. The silver particles which act as catalysts assist the etching of silicon. Firstly, the silver nanoparticles (AgNPs) were deposited on the surface of the Si wafers in the plating solution (AgNO₃ = 0.01 M, HF = 4.65 M) at room temperature for 1 min. Secondly, the Si wafers covered by AgNPs were immersed in the etching solution (H₂O₂ = 0.05 M, HF = 4.65 M) for 35 min at 50°C. Then, the Si wafers were immersed in the mixed solution (HNO₃: H₂O = 2:1, v/v) for 2 h at room temperature. Lastly, the samples after the etching process were thoroughly rinsed several times in the deionized water and dried in nitrogen flow at room temperature, and the porous Si samples (area ~1 × 2 cm²) were obtained.

The preparation of the porous Si/TiO₂ nanowire heterostructure involves the hydrothermal synthesis method. Firstly, porous Si samples were dipped in the mixture of tetrabutyl titanate (0.075 M) and isopropanol for 2 min. Second, the porous Si samples were rinsed in absolute ethanol for 1 min and dried in a nitrogen gas flow, repeat these steps for five times. Finally, the porous Si samples with seed layer of TiO₂ were annealed for 2 h at 500°C. On the other hand, the tetrabutyl titanate [CH₃(CH₂)₃O]₄Ti (2 mL) was added into the mixed solution (HCL = 80 mL, deionized water = 80 mL) under magnetic stirring. Then, the precursor solution was prepared. The porous Si samples with seed layer of TiO₂ and the above-mentioned precursor solution limited to 15 mL were transferred into the autoclaves and put into a blast drying oven for 6 h at 150°C. Next, the samples were washed with deionized water and dried in a nitrogen gas flow. Finally, the samples were annealed at 450°C for 30 min, and the porous Si/TiO₂ nanowire heterostructure was obtained.

And the Si/TiO₂ nanowire heterostructure was also prepared by the above-mentioned process.

2.3. Photoelectrochemical Experiment. Photoelectrochemical measurements were carried out on a LK98C workstation. The simulated solar light irradiation was provided by a 300 W Xe lamp, and the simulated visible light irradiation was provided by a 300 W Xe lamp with a 420 nm cut-off filter. The porous Si/TiO₂ nanowires, the Si/TiO₂ nanowires, porous Si, and Si were used as working electrodes, respectively. The platinum foil and the silver chloride electrode acted as the counter electrode, and the reference electrode, respectively. The electrode was illuminated from the front side, and the exposed area was 2 cm², the incident light intensity on electrode surface was 50 Mw/cm². The photocurrent measurements of all samples were performed in 0.01 M Na₂SO₄ solution under simulated solar light irradiation (visible light irradiation). Prior to catalytic experiment, the three-electrode was immersed in the dye for 20 min to obtain a good dispersion and establish absorption/desorption equilibrium between the organic molecules and the photoanode surface. The PEC activities of all samples were evaluated by monitoring the degradation of
methylene blue (MB) solution (90 ml, MB = 6 mg/l, Na₂S₂O₄ = 0.01 M) under simulated solar light irradiation (visible light irradiation) and bias voltage at 1.5 V. At given time intervals for 10 min, the concentration of MB dye was measured by UV/Vis spectrophotometer (TU-1810) with detection wavelength of 665 nm.

3. Results and Discussion

Figure 1 shows the XRD patterns of the porous Si/TiO₂ nano-wire heterostructure. The peaks at 2θ = 23°, 33°, 37°, 54°, 64°, and 71° (JCPDF No.02-0494) correspond to rutile phase TiO₂. There are slight traces of anatase TiO₂ diffraction peaks observed (2θ = 21° and 47°; JCPDF No. 02-0406). The result shows that the porous Si/TiO₂ nanowire heterostructure has been synthesized by the combination of metal-assisted chemical etching and hydrothermal synthesis.

Figure 2 shows the SEM images of the porous Si, Si/TiO₂ nanowire, and porous Si/TiO₂ nanowire heterostructure, respectively. Figure 2(a) shows that the macropores are uniformly distributed in porous Si due to the silicon anisotropic etching. Figure 2(b) shows that the TiO₂ nanowires on the surface of Si were compact and uniform. In Figure 2(c), it clearly shows that TiO₂ nanowires were grown on the macropore structure of the porous Si, and the length of the nanowires is ca 1 μm. The results are consistent with that of XRD.

The light absorption property of heterojunction is very important for its photoelectrochemical property research. Figure 3 shows the DRS of Si wafer, porous Si, Si/TiO₂ nanowire, and porous Si/TiO₂ nanowire heterostructure, respectively. Compared with the absorption of Si wafer, the absorption of the porous Si is stronger. The porous Si owns a light trapping structure due to the gradient-index multilayer and macropores of porous Si [28], which results in the strong light absorption of the porous Si. The Si/TiO₂ nanowire and the porous Si/TiO₂ nanowire heterostructure show a stronger absorption from 300 to 400 nm, relative to the Si wafer and the porous Si. This means that the TiO₂ nanowires have preponderant absorption ability in the utilization of UV light region. The porous Si/TiO₂ nanowire heterostructure shows a stronger absorption compared with that of the Si/TiO₂ nanowire, which is attributed to the utilization of the solar spectrum in both UV and visible spectral regions.

In order to understand the photoelectrochemical performance of the porous Si/TiO₂ nanowire heterostructure, photocurrent and photoelectric catalytic activity of different samples were measured. Figure 4 shows I-V curves of porous Si/TiO₂ nanowire heterostructure, Si/TiO₂ nanowire, porous Si, and Si wafer under the simulated solar light and visible light irradiation. The photocurrents of all samples increase with the increasing of bias potential under the simulated solar light (Vis+UV) and visible light irradiation. The photocurrents of all samples increase with the increasing of bias potential under the simulated solar light (Vis+UV) and visible light (Vis) irradiation as shown in Figures 4(a) and 4(b), respectively. Obviously, the difference of dark current under the simulated solar light and the visible light irradiation is negligible. It is observed that the sequence of photocurrents under the simulated solar light and the visible light irradiation is porous Si/TiO₂ nanowire heterostructure > Si/TiO₂ nanowire > porous Si > Si wafer.

Due to the obvious difference of the photocurrent at a bias voltage 1.5 V (vs. Ag/AgCl), we chose the bias voltage 1.5 V to perform the photoelectric catalysis measurements. The photoelectric catalytic degradation efficiency (C/C₀) of porous Si/TiO₂ nanowire heterostructure, Si/TiO₂ nanowire, porous Si, and Si wafer for degradation of methylene blue (MB) under the simulated solar light (Vis+UV) and visible light (Vis) irradiation was shown in Figure 5, where C is the concentration of organic pollutants with different catalytic degradation time, and C₀ is the initial concentration of organic pollutant. We can clearly see that the Si wafer shows the lowest PEC activity that is almost no effect under the simulated solar light and the visible light irradiation. From Figure 5(a), it is observed that the sequence of PEC activities under the simulated solar light irradiation is porous Si/TiO₂...
nanowire heterostructure. The degradation efficiency of porous Si/TiO₂ nanowire is much higher than that of porous Si and Si wafer under the simulated solar light irradiation. It means that the UV light can be utilized by the porous Si/TiO₂ nanowire heterostructure and Si/TiO₂ nanowire. From Figure 5(b), it is observed that the sequence of PEC activities under the visible light is porous Si/TiO₂ nanowire heterostructure > Si/TiO₂ nanowire > porous Si > Si wafer. It is worth noting that the degradation efficiency of Si/TiO₂ nanowire is higher than the porous Si before 100 min. However, the degradation efficiency of the Si/TiO₂ nanowire and the porous Si tends to the same after 100 min. It means that the visible light can be utilized by the porous Si. Thus, porous Si/TiO₂ nanowire heterostructure shows the highest PEC activity under the simulated solar light and visible light irradiation. The results are consistent with that of photocurrent.

In order to analyze the performance of the porous Si/TiO₂ nanowire heterostructure, several experiments had been performed; all results showed that the porous Si/TiO₂ nanowire heterostructure had the highest photocurrent and PEC activity. We consider that the reasons might be as follows. Firstly, due to the window effect [32], the TiO₂ nanowires can utilize the UV light in the solar spectrum, and the porous Si can utilize the visible light in the solar spectrum as indicated by the DRS result in Figure 3. As a result, a more efficient utilization of the solar spectrum could be achieved, which improved the photocurrent and PEC activity of the porous Si/TiO₂ nanowire heterostructure. Secondly, due to the heterostructure effect, the separation efficiency of electron-hole pairs and the transmission efficiency of charge carriers have been increased by the construction of porous Si/TiO₂ nanowires heterostructure as shown in Figure 6. Under the simulated solar light irradiation, the UV spectral region can be utilized by the TiO₂ nanowires and the visible spectral region can be utilized by the porous Si, which leads to the producing of the electron-hole pairs. Holes in valence band of porous Si and electrons in conduction band of TiO₂ nanowire are recombined [29, 33, 34], which is harmful to the PEC.
activity as shown in Figure 6(a). Under the external bias potential and simulated solar light irradiation, the PEC process of the porous Si/TiO$_2$ nanowire heterostructure is shown in Figure 6(b). In PEC process, the electrons will flow from the conduction band of TiO$_2$ nanowires into the conduction band of the porous Si, and the holes will flow from the valence band of the porous Si into the valence band of TiO$_2$ nanowires through the interface. This leads to the high separation efficiency and transmission efficiency of electrons and holes in the porous Si/TiO$_2$ nanowire heterostructure. Thus, the heterostructure effect leads to the high photocurrent and PEC activity of the porous Si/TiO$_2$ nanowire heterostructure.

4. Conclusions

The porous Si/TiO$_2$ nanowire heterostructure was successfully fabricated by the MACE combined hydrothermal synthesis method. The porous Si/TiO$_2$ nanowire heterostructure shows the strong absorption under simulated solar irradiation. The porous Si/TiO$_2$ nanowire heterostructure shows the highest photocurrent and PEC activity under
simulated solar irradiation, which is attributed to the window effect and the heterostructure effect. The result presented in this work indicates that the porous Si/TiO$_2$ heterostructure supplies a high efficiency in photoelectrocatalytic process, which may offer some useful guidance for many other important domains.

Data Availability

All the data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant/award number: 51502023), Education Department project of Jilin Province (Grant/award number: JJKH20190588KJ and JJKH20200777KJ), and Science and Technology Department project of Jilin Province (Grant/award number: JJKH20190588KJ and JJKH20200777KJ), and Science and Technology Department project of Jilin Province (Grant/award number: 20200201077JC, 20180201033GX, and 20190302125GX).

References

[1] Y. Liu, Z. Y. Zhang, Y. R. Fang et al., “IR-Driven strong plasmonic-coupling on Ag nanorices/W$_{18}$O$_{46}$ nanowires heterostructures for photo/thermal synergistic enhancement of H$_2$ evolution from ammonia borane,” *Applied Catalysis B: Environmental*, vol. 252, pp. 164–173, 2019.

[2] S. Chen, M. Zhang, X. Ma, L. Li, X. Zhou, and Z. Zhang, “Asymmetric supercapacitors by integrating high content Na$^+/K^+$-inserted MnO$_2$ nanosheets and layered Ti$_3$C$_2$T$_x$ paper,” *Electrochimica Acta*, vol. 332, article 135497, 2020.

[3] D. Dong, C. Yan, J. Huang et al., “An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalyst-free highly efficient photocatalytic H$_2$ evolution,” *Journal of Materials Chemistry A*, vol. 7, no. 42, pp. 24180–24185, 2019.

[4] J. Huang, T. Liu, R. Wang et al., “Facile loading of cobalt oxide on bismuth vanadate: proved construction of p-n junction for efficient photoelectrochemical water oxidation,” *Journal of Colloid and Interface Science*, vol. 570, pp. 89–98, 2020.

[5] M. Zhang, Y. Qi, and Z. Zhang, “AgBr/BiOBr nanoheterostructure-decorated polyacrylonitrile nanofibers: a recyclable high-performance photocatalyst for dye degradation under visible-light irradiation,” *Polymers*, vol. 11, no. 1718, pp. 1–12, 2019.

[6] Y. Wang, J. Liu, Y. Wang, and M. Zhang, “CO$_2$ photoreduction to CO/CH$_4$ over Bi$_{2}$W$_{0.5}$Mo$_{0.5}$O$_6$ solid solution nanotubes under visible light,” *RSC Advances*, vol. 10, no. 15, pp. 8821–8824, 2020.

[7] K. Wang, Y. Zhang, L. Liu, N. Lu, and Z. Zhang, “BiOBr nanosheets-decorated TiO$_2$ nanofibers as hierarchical p-n heterojunctions photocatalysts for pollutant degradation,” *Journal of Materials Science*, vol. 54, no. 11, pp. 8426–8435, 2019.

[8] P. Zhang, D. Wan, Z. Zhang, G. Wang, J. Hu, and G. Shao, “RGO-functionalized polymer nanofibrous membrane with exceptional surface activity and ultra-low airflow resistance for PM$_{2.5}$ filtration,” *Environmental Science: Nano*, vol. 5, no. 8, pp. 1813–1820, 2018.

[9] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” *Nature*, vol. 238, no. 5358, pp. 37–38, 1972.

[10] W.-Q. Wu, B. X. Lei, H. S. Rao et al., “Hydrothermal fabrication of hierarchically anatase TiO$_2$ nanowire arrays on FTO glass for dye-sensitized solar cells,” *Scientific Reports*, vol. 3, no. 1, pp. 1–7, 2013.

[11] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” *Science*, vol. 293, no. 5528, pp. 269–271, 2001.
[12] J. Liao, L. Shi, S. Yuan, Y. Zhao, and J. Fang, “Solvothermal synthesis of TiO₂ Nanocrystal colloids from peroxotitanate complex solution and their photocatalytic activity,” *Journal of Physical Chemistry C*, vol. 113, no. 43, pp. 18778–18783, 2009.

[13] S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, and P. Schmuki, “Self-organized, free-standing TiO₂ Nanotube membrane for flow-through photocatalytic applications,” *Nano Letters*, vol. 7, no. 5, pp. 1286–1289, 2007.

[14] K. Lee, D. Kim, P. Roy et al., “Anodic formation of thick anatase TiO₂ nanotube arrays for high-efficiency photocatalysis,” *Journal of the American Chemical Society*, vol. 132, no. 5, pp. 1478-1479, 2010.

[15] K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO₂ nanotubes arrays,” *Nano Letters*, vol. 7, no. 1, pp. 69–74, 2007.

[16] Z. Liu, X. Zhang, S. Nishimoto et al., “Highly ordered TiO₂ nanotube arrays with controllable length for photocatalytically degradation of phenol,” *Journal of Physical Chemistry C*, vol. 112, no. 1, pp. 253–259, 2008.

[17] N. Baram and Y. Ein-Eli, “Electrochemical impedance spectroscopy of porous TiO₂ for photocatalytic applications,” *Journal of Physical Chemistry C*, vol. 114, no. 21, pp. 9781–9790, 2010.

[18] Y. Hou, X. Li, Q. Zhao, X. Quan, and G. Chen, “Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe₂O₄-modified TiO₂ nanotube array electrode under visible light irradiation,” *Environmental Science and Technology*, vol. 44, no. 13, pp. 5098–5103, 2010.

[19] Y. Chen, L. Y. Shi, S. Yuan et al., “Photocatalytic degradation of methylene blue by TiO₂ nanotube array prepared by anodic oxidation,” *Journal of Inorganic Materials*, vol. 24, no. 4, pp. 680–684, 2009.

[20] H. Yu, X. Li, X. Quan, S. Chen, and Y. Zhang, “Effective utilization of visible light (including λ > 600 nm) in phenol degradation with p-silicon Nanowire/TiO₂ Core/Shell heterojunction array cathode,” *Environmental Science and Technology*, vol. 43, no. 20, pp. 7849–7855, 2009.

[21] J. Du, X. Lai, N. Yang et al., “Hierarchically ordered macro-mesoporous TiO₂–graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities,” *ACS Nano*, vol. 5, no. 1, pp. 590–596, 2011.

[22] T. Maggos, A. Plassais, J. G. Bartzis, C. Vasilakos, N. Mousiopoulos, and L. Bonafous, “Photocatalytic degradation of NO₃⁻ in a pilot street canyon configuration using TiO₂-mortar panels,” *Environmental Monitoring and Assessment*, vol. 136, no. 1, pp. 35-44, 2007.

[23] N. Janene, A. Hajjaji, M. Ben Rabha, M. A. el Khakani, B. Bessais, and M. Gaidi, “Influence of porous silicon passivation layer and TiO₂ coating on the optoelectronic properties of multicrystalline Si substrate,” *Physica Status Solidi C*, vol. 9, no. 10-11, pp. 2141–2144, 2012.

[24] S. Y. Noh, K. Sun, C. Choi et al., “Branched TiO₂/Si nanostructures for enhanced photoelectrochemical water splitting,” *Nano Energy*, vol. 2, no. 3, pp. 351–360, 2013.

[25] P. C. Angelomê, L. Andrini, M. E. Calvo, F. G. Requejo, S. A. Bilmes, and G. J. A. A. Soler-Illia, “Mesoporous anatase TiO₂ films: Use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior,” *Journal of Physical Chemistry C*, vol. 111, no. 29, pp. 10886–10893, 2007.

[26] H. Yu, S. Chen, X. Quan, H. Zhao, and Y. Zhang, “Silicon nanowire/TiO₂ heterojunction arrays for effective photoelectrocatalysis under simulated solar light irradiation,” *Applied Catalysis B-Environmental*, vol. 90, no. 1-2, pp. 242–248, 2009.

[27] K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” *Applied Physics Letters*, vol. 92, no. 16, article 163103, 2008.

[28] Y. Qu, X. Zhong, Y. Li, L. Liao, Y. Huang, and X. Duan, “Photocatalytic properties of porous silicon nanowires,” *Journal of Materials Chemistry*, vol. 20, no. 18, pp. 3590–3594, 2010.

[29] Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO₂ core/shell nanowire arrays with enhanced photoactivity,” *Nano Letters*, vol. 9, no. 1, pp. 410–415, 2008.

[30] J. Shi, Y. Hara, C. Sun, M. A. Anderson, and X. Wang, “Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes,” *Nano Letters*, vol. 11, no. 8, pp. 3413–3419, 2011.

[31] Z. Chen, J. Yang, X. Yang et al., “Porous Si/TiO₂ nanowire photoanode for photovoltaic catalysis under simulated solar light irradiation,” *Applied Organometallic Chemistry*, vol. 32, no. 6, pp. 1–9, 2018.

[32] L. S. Yu and Y. F. Li, *Physics of Semiconductor Heterojunctions (Chinese Edition)*, Science Press, 2nd edition, 2006.

[33] H. Gerischer, “Solar photoelectrolysis with semiconductor electrodes,” in *Solar Energy Conversion. Topics in Applied Physics*, vol 31, B. O. Seraphin, Ed., pp. 115–172, Springer, Berlin, Heidelberg, 1979.

[34] S. Hinckley, J. F. McCann, and D. Haneman, “A flux analysis of multiple junction solar cells: the general equations, with computations for an n-Cds/n-GaAs photoanode,” *Solar Cells*, vol. 17, no. 2-3, pp. 317–342, 1986.