Two Pathways for the Reaction of Ethyl 4-Chloromethyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate with Thiophenolates: Ring Expansion versus Nucleophilic Substitution

Anastasia A. Fesenko, Ludmila A. Trafimova, Anatoly D. Shutalev*

Department of Organic Chemistry, Moscow State Academy of Fine Chemical Technology,
86 Vernadsky Ave., 119571 Moscow, Russian Federation
e-mail: shutalev@orc.ru

Abstract
Ethyl 4-methyl-2-oxo-7-phenylthio-2,3,6,7-tetrahydro-1H-1,3-diazepine-5-carboxylate and/or ethyl 6-methyl-2-oxo-4-(phenylthiomethyl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate were obtained in the reaction of ethyl 4-chloromethyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate with PhSNa or PhSK with or without PhSH, depending on the reagent ratio, reaction time or temperature, as a result of ring expansion and/or nucleophilic substitution. The reaction pathway was affected strongly by the basicity-nucleophilicity of the reaction media. The results obtained were confirmed by reactions of 4-mesyloxymethyl-6-methyl-5-tosyl-1,2,3,4-tetrahydropyrimidin-2-one with PhSNa/PhSH and ethyl 4-chloromethyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate with NaCN/HCN or NaCH(COOEt)2/CH2(COOEt)2.

Keywords: 1,2,3,4-Tetrahydropyrimidin-2-ones; 2,3,4,5-Tetrahydro-1H-1,3-diazepin-2-ones; Ring expansion; Nucleophilic substitution.

Introduction

Ring expansion reactions are widely used in organic chemistry, particularly in the synthesis of nitrogen-containing heterocycles. An important example of one-carbon ring expansion is the transformation of tetrahydropyrimidines 1 into tetrahydro-1,3-diazepin-2-ones 2 by treatment with nucleophilic reagents (Scheme 1).
Scheme 1. Two possible pathways for the reaction of pyrimidines 1 with nucleophilic reagents: ring expansion or nucleophilic substitution.

It was postulated\(^3\) that diazepinones 2 form via the cyclopropane-containing bicyclic intermediates 4 (Scheme 1) which result from proton abstraction from the N(1)H group under the action of nucleophiles followed by intramolecular nucleophilic substitution of chlorine in anions 3. Clearly, this reaction depends not only on nucleophilicity, but also on the basicity of the nucleophile. For example, direct nucleophilic substitution of chlorine resulting in pyrimidines 5 cannot be excluded a priori under certain reaction conditions. However, the influence of reaction conditions on the reaction of compounds 1 with nucleophiles remained unexplored.\(^3\) Therefore, study of the effect of the nucleophilicity and basicity of the nucleophile, the reagent ratio, the solvent, time and temperature on the reaction of compounds 1 with nucleophiles is interesting. In this research we used readily available pyrimidinone 6 as the starting material and PhSNa or PhSK as nucleophiles which demonstrate strong nucleophilicity and relatively low basicity.\(^4\) The nucleophiles were generated by treatment of PhSH with NaH or KOH in an appropriate solvent.

Results and Discussion

The reaction of 6 with PhSNa (1.08 equiv) in dry MeCN at rt for 7 hours yielded diazepinone 7 as the product of ring expansion (Scheme 2). According to the \(^1\)H NMR spectrum, the crude material contained 3 mol% of tetrahydropyrimidinone 8, a product of nucleophilic substitution of chlorine in 6 (Table 1, entry 1). Diazepinone 7 formed with complete selectivity under similar conditions in the reaction of 6 with PhSNa (1.10 equiv) in dry THF (rt, 7 h) (entry 2), however, 9 mol% of starting material 6 was recovered. When EtOH was used as the solvent, the rate of the reaction of 6 with PhSK (1.10 equiv) decreased
dramatically (conversion of 6 was only 8% after 7 h at rt), and the selectivity also decreased (7:8 = 7:1) (entry 3).

![Scheme 2. Reaction of pyrimidine 6 with PhSNa or PhSK.](image)

Scheme 2. Reaction of pyrimidine 6 with PhSNa or PhSK.

Table 1

Entry	Solvent	Base	Molar ratio of 6:PhSH:Base	Molar ratio of 6:PhSNa:PhSH or 6:PhSK:PhSH	Conditions	Molar ratio of products 7:8:6
1	MeCN	NaH	1.00:1.08:1.09	1.00:1.08:0	rt, 7 h	97:3:0
2	THF	NaH	1.00:1.10:1.10	1.00:1.10:0	rt, 7 h	91:0:9
3	EtOH	KOH	1.00:1.13:1.10	1.00:1.10:0.03	rt, 7.5 h	7:1:92
4	MeCN	NaH	1.00:2.02:1.10	1.00:1.10:0.92	rt, 7 h	48:43:9
5	MeCN	NaH	1.00:2.21:1.05	1.00:1.05:1.16	rt, 7.2 h	9:61:30
6	MeCN	NaH	1.00:3.00:1.10	1.00:1.10:1.90	rt, 7 h	0:35:65
7	MeCN	NaH	1.00:3.00:1.10	1.00:1.10:1.90	reflux, 7 h	15:85:0
8	MeCN	NaH	1.00:3.29:1.10	1.00:1.10:2.19	rt, 47.9 h	1:93:6
9	MeCN	NaH	1.00:3.32:1.10	1.00:1.10:2.22	rt, 72.7 h	0:97:3
10	MeCN	NaH	1.00:2.24:1.05	1.00:1.05:1.19	rt, 48.2 h	6:89:5
11	MeCN	NaH	1.00:2.20:1.10	1.00:1.10:1.10	reflux, 8 h	33:67:0
12	MeCN	NaH	1.00:3.26:1.08	1.00:1.08:2.18	reflux, 8.1 h	16:84:0
13	MeCN	NaH	1.00:4.43:1.10	1.00:1.10:3.33	reflux, 8.1 h	11:89:0
14	EtOH	KOH	1.00:2.23:1.10	1.00:1.10:1.13	rt, 7 h	16:6:78
15	MeCN	NaH	1.00:2.01:2.00	1.00:2.00:0.01	rt, 7 h	93:7:0
16	MeCN	NaH	1.00:3.31:1.10	1.00:1.10:2.21	reflux, 29 h	11:89:0

*a According to 1H NMR data of the crude products.

b 83 mol% of 7+8 and 17 mol% of bis-diazepinone 9.

Thiophenol (PhSH) strongly affected the ratio of 7:8 and the rate of the reaction. The amount of pyrimidine 8 increased with a rise in the amount of PhSH in the reaction of 6 with PhSNa (1.05-1.10 equiv) in MeCN at rt for 7 hours (entries 1, 4-6). Pyrimidine 8 formed with complete selectivity when 1.90 equivalents of PhSH were used (entry 6). However, the reaction rate decreased significantly with an increase in the amount of PhSH (entries 1, 4-6).

The extent of conversion of compound 6 in the reaction with PhSNa in the presence of PhSH (1.90-2.22 equiv) increased with reaction time or temperature. Indeed, the reaction of 6 with PhSNa (1.10 equiv) in refluxing MeCN in the presence of PhSH (1.90 equiv) was
complete in 7 hours, while the selectivity of the reaction decreased significantly (entry 7). However, the selectivity remained high at rt and over long reaction times (entries 8 and 9).

A relationship between the ratio of 7:8 and the amount of PhSH was also observed at rt and over long reaction times (entry 8 vs entry 10), refluxing the reaction mixture (entry 11 vs entry 12 vs entry 13), and when EtOH was used as the solvent (entry 3 vs entry 14).

On using a greater excess of the nucleophile PhSNa (2.00 equiv), bis-diazepinone 9\(^5\) (17 mol\%) formed along with 7 and 8 in the ratio 93:7 (entry 15).

Under the optimal conditions diazepinone 7 was obtained in the reaction of 6 with PhSNa (1.08 equiv) in MeCN at rt for 7 hours (entry 1), and pyrimidinone 8 was prepared by reaction of 6 with PhSNa (1.10 equiv) in the presence of 2.22 equivalents of PhSH in MeCN at rt for 73 hours (entry 9).

Transformation of 6 into 7 and/or 8 is kinetically controlled. In fact, heating a mixture of 6, PhSNa and PhSH in MeCN for 8 or 29 hours at reflux resulted in mixtures of 7 and 8 in similar ratios (Table 1, entry 12 vs entry 16). Moreover, reflux of 7, PhSH and PhSNa (1.0:1.9:0.1, respectively) in MeCN followed by evaporation of the solvent and aqueous work-up gave only 7 in 88\% yield.

From the results obtained we suggest that the reaction of 6 with PhSNa and PhSK proceeds via two possible mechanisms. In aprotic solvents (MeCN or THF) and a highly basic reaction media without PhSH, the thiophenolate-anion acts as a base and abstracts a proton from N(1)H to give anion 3 (R = Et, R\(^1\) = Me) (see Scheme 1), which further affords diazepinone 7. Addition of PhSH inhibits anion 3 formation and therefore causes a decrease in the amount of diazepinone 7. Probably, in this case, compound 6 reacts with PhSNa via an S\(_{N2}\) mechanism, resulting in pyrimidine 8. Since chlorine is a rather poor leaving group, the rate of reaction is low, and heating at reflux or a long reaction time is necessary for completion of the reaction. The low rate of reaction of 6 with PhSK in EtOH can be explained by the decreased basicity and nucleophilicity of PhSK in a polar protic solvent.

In continuation of this research we used 4-mesyloxymethyl-5-tosyltetrahydropyrimidine (10) as the starting material in a reaction with PhSNa in the presence of PhSH. We found that 10 readily reacted with PhSNa in MeCN to give 4-phenylthio-6-tosyltetrahydro-1,3-diazepinone (11) (Scheme 3).\(^6\) As expected, when compound 10 was reacted with PhSNa/PhSH (1:1.08:2.47) in MeCN (rt, 23.7 h), pyrimidinone 12 formed along with diazepinone 11 (12:11 = 56:44). The amount of 12 increased up to 92\% in this reaction, when a 1:1.24:3.82 ratio of the reagents was used (MeCN, rt, 42.4 h).
We also attempted to obtain products of direct nucleophilic substitution of the chlorine in the reaction of 6 with other nucleophiles. However, reaction of 6 with NaCN and HCN (1.00:1.28:2.75) in DMSO (rt, 32 h) resulted in a mixture of diazepine 13a and starting material 6 in a ratio of 41:59 (Scheme 4). Analogously, diazepinone 13b formed as a single product in the reaction of 6 with NaCH(COOEt)2/CH2(COOEt)2 (1:1.09:2.23) in MeCN (rt, 33.4 h).

Exclusive formation of the products of pyrimidine ring expansion in the reactions of 6 with NaCN/HCN or NaCH(COOEt)2/CH2(COOEt)2 versus PhSNa(PhSK)/PhSH could be explained by the higher basicity of NaCN or NaCH(COOEt)2 compared with PhSNa or PhSK.7

The structures of 7, 8 and 12 were established unambiguously from their 1H and 13C NMR spectra. The 1H NMR spectrum of 7 in DMSO-d6 demonstrated long-range couplings between N(1)H and one of the 6-H protons (4J_N(1)H,6-He = 0.9 Hz) and between 4-CH3 and the other 6-H proton (5J_4-CH3,6-Ha = 1.3 Hz). Higher values for the vicinal 3J_N(1)H,7-H and geminal 2J_6-He,6-Ha coupling constants (6.1 and 15.1 Hz, respectively) for diazepine 7 compared with the corresponding constants for pyrimidines 8 and 12 (3J_N(3)H,4-H = 3.4-4.1 Hz, 2J_CH(A),CH(B) = 13.7-13.8 Hz) were observed. In the 13C NMR spectrum of diazepine 7 we observed the chemical shift of the N-CH fragment at 61.32 ppm, while for pyrimidines 8 and 12 these occured at 49.75 and 49.85 ppm, respectively. The 2-D NMR spectral data (1H,1H-COSY, 1H,13C-HSQC, 1H,13C-HMBC) also confirmed unambiguously the structures of diazepinones 7 and 8.
Conclussion

In summary, the reaction of 5-functionalized 4-(X-CH₂)-1,2,3,4-tetrahydropyrimidin-2-ones (X = good leaving group) with nucleophilic reagents resulted in the products of ring expansion (2,3,4,5-tetrahydro-1H-1,3-diazepin-2-ones) and/or products of direct substitution of the leaving group (1,2,3,4-tetrahydropyrimidin-2-ones) depending on the reaction conditions. The outcome of the reaction was determined by the nucleophilicity-basicity of the reaction media. Diazepinones 7 and 11 formed in the reaction of 6 and 10 with strong nucleophiles PhSNa or PhSK possessing relatively low basicity (pKₐ = 10.3 in DMSO). However, the reaction of 6 and 10 with PhSNa or PhSK in the presence of their conjugate acid (PhSH) gave diazepinones 7 and 11 along with the respective pyrimidines 8 and 12. An increase in the amount of PhSH led to a significant increase in pyrimidine formation, while the rate of the conversion of starting materials into products decreased. In aprotic solvents, almost pure pyrimidines 8 and 12 were obtained when more than 2 equivalents of PhSH were used. However, the reaction of 6 with more basic nucleophiles, NaCN or NaCH(COOEt)₂ (pKₐ = 12.9 and 15.9, respectively, in DMSO) with or without their conjugate acids yielded only the diazepinones 13a,b.

We envisage that our findings may be of value for other similar one-carbon ring expansion reactions.1,2

References

1. Hesse, M. *Ring Enlargement in Organic Chemistry*; VCH: Weinheim, 1991.
2. For recent examples, see: (a) Brahma, S.; Ray, J. K. *J. Heterocycl. Chem.* 2008, 45, 311-317; (b) Manning, J. R.; Davies, H. M. L. *J. Am. Chem. Soc.* 2008, 130, 8602-8603; (c) Ferreira, M. d. R. R.; Cecere, G.; Pace, P.; Summa, V. *Tetrahedron Lett.* 2009, 50, 148-151; (d) Cochi, A.; Burger, B.; Navarro, C.; Pardo, D. G.; Cossy, J.; Zhao, Y.; Cohen, T. *Synlett* 2009, 2157-2161; (e) Cho, H.; Iwama, Y.; Sugimoto, K.; Kwon, E.; Tokuyama, H. *Heterocycles* 2009, 78, 1183-1190; (f) Tsuritani, T.; Yamamoto, Y.; Kawasaki, M.; Mase, T. *Org. Lett.* 2009, 11, 1043-1045; (g) Honda, T.; Aranishi, E.; Kaneda, K. *Org. Lett.* 2009, 11, 1857-1859; (h) Dekeukeleire, S.; D’hooghe, M.; De Kimpe, N. *J. Org. Chem.* 2009, 74, 1644-1649; (i) Koya, S.; Yamanari, K.; Yamasaki, R.; Azumaya, I.; Masu, H.; Saito, S. *Org. Lett.* 2009, 11, 5438-5441; (j) Ueda, M.; Kawai, S.; Hayashi, M.; Naito, T.;
Miyata, O. *J. Org. Chem.* **2010**, *75*, 914-921 (k) Baktharaman, S.; Afagh, N.; Vandersteen, A.; Yudin, A. K. *Org. Lett.* **2010**, *12*, 240-243.

3. (a) Ashby, J.; Griffiths, D. *J. Chem. Soc., Chem. Commun.* **1974**, 607-608; (b) Ashby, J.; Griffiths, D. *J. Chem. Soc., Perkin Trans. 1* **1975**, 657-662; (c) Bullock, E.; Garter, R. A.; Cochrane, R.; Gregory, B.; Shields, D. C. *Can. J. Chem.* **1977**, *55*, 895-905; (d) Claremon, D. A.; Rosenthal, S. A. *Synthesis* **1986**, 664-665; (e) Baldwin, J. J.; McClure, D. E.; Claremon, D. A. U.S. Patent 4,677,102, 1987; *Chem. Abstr.* **1988**, *109*, 54794.

4. Bordwell, F. G.; Hughes, D. L. *J. Org. Chem.* **1982**, *47*, 3224-3232.

5. Shutalev, A. D.; Fesenko, A. A., Cheshkov, D. A.; Goliguzov, D. V. *Tetrahedron Lett.* **2008**, *49*, 4099-4101.

6. Fesenko, A. A.; Tullberg, M. L.; Shutalev, A. D. *Tetrahedron* **2009**, *65*, 2344-2350.

7. For PhSH, HCN and CH$_2$(COOEt)$_2$ the equilibrium acidities (pK_a) in DMSO are 10.3,4 12.9,8 and 15.9,9 respectively.

8. Bordwell, F. G. *Acc. Chem. Res.* **1988**, *21*, 456-463.

9. Olmstead, W. N.; Bordwell, F. G. *J. Org. Chem.* **1980**, *45*, 3299-3305.