A sufficient condition for the fiber of the tangent bundle of a scheme and its Zariski tangent space to be isomorphic

Colas Bardavid
IMSc — CIT Campus, Taramani
Chennai 600 113 India

January 15, 2013

Abstract — In this note, we give a simple sufficient condition for the Zariski relative tangent space and the Grothendieck relative tangent space to be isomorphic.

2000 Mathematics Subject Classification: 14A05, 13N05, 13N10

Keywords: Zariski tangent space, tangent bundle
Two notions of tangent space have been proposed in scheme theory: the Zariski tangent space $T_x^\text{Zar}(X)$ and the Grothendieck relative tangent space $T_{X/S}^{(\text{Gro})}(x)$. The relation between these two tangent spaces is known only in a very special case: in [2], Grothendieck shows that for a scheme X, when $S = \text{Spec } k$ (where k is a field) and when $x \in X$ is k-rational point of X, then these two objects coincide. The aim of this note is to compare these two tangent spaces in more general situations. After having introduced a relative tangent space in the Zariski fashion, we show that there always exists a morphism from the Grothendieck relative tangent space to the Zariski one. The main result is that this morphism is an isomorphism whenever the extension $\kappa(x)/\kappa(s)$ is algebraic and separable. We also give a counter-example showing that in general these two tangent spaces do not coincide.

The note is organized as follows: in Section 1, we introduce three different tangent spaces $T_x^\text{Zar}(X)$, $T_{X/S}^{(\text{Gro})}(x)$ and $T_{X/S}^{(\text{Zar})}(x)$. In Section 2, we prove that in general $T_{X/S}^{(\text{Gro})}(x)$ and $T_{X/S}^{(\text{Zar})}(x)$ are not isomorphic. In section 3, we construct a morphism $T_{X/S}^{(\text{Gro})}(x) \rightarrow T_{X/S}^{(\text{Zar})}(x)$. In section 4, we give a condition for this morphism to be an isomorphism. In Section 5, we prove the main result of this note: $T_{X/S}^{(\text{Gro})}(x)$ and $T_{X/S}^{(\text{Zar})}(x)$ are isomorphic whenever $\kappa(x)/\kappa(s)$ is an algebraic and separable extension.

We wish to thank David Madore for a helpful discussion on this matter.

1 Introducing the two tangent spaces

(1.1) Global notations. The Zariski tangent space. In this paragraph, we recall some very classical facts and set various notations. Let $X \rightarrow S$ be schemes and $x \in X$ an element above $s \in S$. The structure sheaf of X is denoted by \mathcal{O}_X, its stalk over x by $\mathcal{O}_{X,x}$. Its maximal ideal is denoted by \mathfrak{m}_x and $\kappa(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$. For any $f \in \mathcal{O}_{X,x}$, the image of f in $\kappa(x)$ under the canonical projection is denoted by $f(x)$. The residue field $\kappa(x)$ is viewed as an $\mathcal{O}_{X,x}$-module via $f \cdot \lambda := f(x)\lambda$. The ideal \mathfrak{m}_x is an $\mathcal{O}_{X,x}$-module and admits as a sub-$\mathcal{O}_{X,x}$-module the ideal \mathfrak{m}_x^2. The quotient $\mathcal{O}_{X,x}$-module $\mathfrak{m}_x/\mathfrak{m}_x^2$ is in fact a $\kappa(x)$-vector space. We will also denote by $[f]$ the image of $f \in \mathfrak{m}_x$ in $\mathfrak{m}_x/\mathfrak{m}_x^2$.

Definition 1.1. The Zariski tangent space of X at x is the $\kappa(x)$-vector space $T_x^\text{Zar}(X) := \text{Hom}_{\kappa(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2, \kappa(x))$.

(1.2) The Grothendieck relative tangent space. It is defined in §(16.5.13) of [2] as follows.

Definition 1.2. The Grothendieck relative tangent space of X/S at x is the $\kappa(x)$-vector space $T_{X/S}^{(\text{Gro})}(x) := \text{Hom}_{\kappa(x)}(\Omega^1_{X/S} \otimes_{\mathcal{O}_X} \kappa(x), \kappa(x))$.
Let us recall that $\Omega^1_{X/S}$ is the \mathcal{O}_X-module of 1-differentials of X/S. We don’t go further in the description of this object since Fact 1.3 will give a more handy definition of $T^{(\text{Gro})}_{X/S}(x)$.

The main advantage of this construction over the Zariski’s one is that $T^{(\text{Gro})}_{X/S}(x)$ appears as the fiber of a tangent bundle. The tangent bundle of X relatively to S is a vector bundle $T_{X/S}$ above X. By definition, the $\kappa(x)$-rational points of its fiber over x is precisely $T^{(\text{Gro})}_{X/S}(x)$. Let us give now the more handy description of $T^{(\text{Gro})}_{X/S}(x)$, which has also been noticed by Kunz in [3]:

Fact 1.3. $T^{(\text{Gro})}_{X/S}(x) \simeq \text{Der}_{\mathcal{O}_{S,x}}(\mathcal{O}_{X,x}, \kappa(x))$.

Proof. — It follows from two observations. First, as in [2], one can write

$$T^{(\text{Gro})}_{X/S}(x) = \text{Hom}_{\kappa(x)} \left(\Omega_{\mathcal{O}_{X,x}/\mathcal{O}_{S,s}} \otimes \mathcal{M}_x \cdot \Omega_{\mathcal{O}_{X,x}/\mathcal{O}_{S,s}}, \kappa(x) \right).$$

Second, if k is a ring and (A, \mathfrak{m}) a local k-algebra with residual field K, then

$$\text{Hom}_{K-\text{ev}}(\Omega_{A/k}/\mathfrak{m} \cdot \Omega_{A/k}, K) \simeq \text{Der}_k(A, K),$$

as one can easily check. Then, apply this formula with $k = \mathcal{O}_{S,s}$, $A = \mathcal{O}_{X,x}$ to conclude. ■

1.3 The Zariski relative tangent space. Let us give a definition of the relative tangent space, in the Zariski fashion. When X and S are schemes, with $f : X \rightarrow S$ sending x to s, one would like to define the differential of f in x, mapping T_xX to T_sS (or better, to $T_sS \otimes_{\kappa(s)} \kappa(x)$). Imagine there is such a $\kappa(x)$-linear map

$$T_xf : T_xX \rightarrow T_sS \otimes_{\kappa(s)} \kappa(x).$$

Then, the relative tangent space would be the kernel of this map. Intuitively, it corresponds to the tangent space of the fiber X_s at x. Actually, such a map T_xf does not exist, but we can still define a very similar morphism and, subsequently, the relative tangent space.

The morphism f induces a morphism $f^\#: \mathcal{O}_{S,s} \rightarrow \mathcal{O}_{X,x}$ that maps \mathfrak{m}_s into \mathfrak{m}_x. Hence, we get a map $i_x : \kappa(s) \rightarrow \kappa(x)$ which is an injection between fields, as well as

$$j_x : \mathfrak{m}_s/\mathfrak{m}_s^2 \rightarrow \mathfrak{m}_x/\mathfrak{m}_x^2$$

which is $\kappa(s)$-linear. So, starting with $\bar{v} \in T_xX$, one obtains a $\kappa(s)$-linear map that we will denote

$$\overline{T_xf} \bullet \bar{v} := \bar{v} \circ j_x \in \text{Hom}_{\kappa(s)}(\mathfrak{m}_s/\mathfrak{m}_s^2, \kappa(x)).$$

The application

$$\overline{T_xf} : \begin{array}{ccc}
T_xX & \longrightarrow & \text{Hom}_{\kappa(s)}(\mathfrak{m}_s/\mathfrak{m}_s^2, \kappa(x)) \\
\bar{v} & \mapsto & \overline{T_xf} \bullet \bar{v}
\end{array}$$

3
is \(\kappa(x) \)-linear. The problem to define properly the differential of \(f \) is that, in general, \(\text{Hom}_{\kappa(s)}(\mathcal{M}_s/\mathcal{M}_s^2, \kappa(x)) \) and \(T_xS \otimes_{\kappa(s)} \kappa(x) \) are not isomorphic. But here, the map \(\bar{T}_xf \) will play the role of the differential.

Definition 1.4. The Zariski relative tangent space of \(X/S \) at \(x \) is the \(\kappa(x) \)-vector space

\[
T_{X/S}^{(\text{Zar})}(x) := \ker \bar{T}_xf.
\]

(1.4) An alternative description of the Zariski relative tangent space. As intuition suggests, the relative Zariski tangent space can be described as in the following lemma. We will use later this description.

Lemma 1.5. \(T_{X/S}^{(\text{Zar})}(x) \) is isomorphic to the tangent space \(T_{X,s,x} \) at \(x \) of the fiber \(X_s \) above \(s \).

Proof. — First, let us describe \(T_{X,s,x} \). The local ring \(\mathcal{O}_{X,s,x} \) is isomorphic to \(\mathcal{O}_{X,x}/\mathcal{M}_s\mathcal{O}_{X,x} \). Its maximal ideal is \(\mathcal{M}_x/\mathcal{M}_s\mathcal{O}_{X,x} \) and the tangent space is

\[
T_{X,s,x} \simeq \text{Hom}_{\kappa(x)}\left(\frac{\mathcal{M}_x/\mathcal{M}_s\mathcal{O}_{X,x}}{\mathcal{M}_x^2/\mathcal{M}_s\mathcal{O}_{X,x}}, \kappa(x) \right).
\]

As just seen, the relative Zariski tangent space can be described as

\[
T_{X/S}^{(\text{Zar})}(x) = \text{Hom}_{\kappa(x)}\left(\frac{\mathcal{M}_x/\mathcal{M}_s^2}{\mathcal{M}_s/\mathcal{M}_s^2}, \kappa(x) \right).
\]

So, let us prove that

\[
\frac{\mathcal{M}_x/\mathcal{M}_s\mathcal{O}_{X,x}}{\mathcal{M}_x^2/\mathcal{M}_s\mathcal{O}_{X,x}} \simeq \frac{\mathcal{M}_x/\mathcal{M}_s^2}{\mathcal{M}_s/\mathcal{M}_s^2}.
\]

Clearly, there is a map

\[
\frac{\mathcal{M}_x/\mathcal{M}_s^2}{\mathcal{M}_x/\mathcal{M}_s\mathcal{O}_{X,x}} \rightarrow \frac{\mathcal{M}_x/\mathcal{M}_s\mathcal{O}_{X,x}}{\mathcal{M}_s/\mathcal{M}_s^2},
\]

whose kernel can be described as the image of \(\mathcal{M}_s \rightarrow \mathcal{M}_x/\mathcal{M}_x^2 \). To conclude, remark that this last map factors through \(\mathcal{M}_s/\mathcal{M}_s^2 \). ■

2 Grothendieck and Zariski are not isomorphic in general

At this point, it is very easy to give a counter-example. Indeed, let us consider \(k \) a field and \(X := \text{Spec} \ k(t), S := \text{Spec} \ k \) and \(x \) the unique element of \(X \). Then, \(T_xX = 0 \) and so \(T_{X/S}^{(\text{Zar})}(x) = 0 \). But,

\[
T_{X/S}^{(\text{Gro})}(x) = \text{Der}_k(k(t), k(t))
\]

which is isomorphic to \(k(t) \).
3 From Grothendieck to Zariski

Let $D \in T^{(\text{Gro})}_{X/S}(x)$, in other words, in virtue of Fact 1.3, let $D : \mathcal{O}_{X,x} \rightarrow \kappa(x)$ be a $\mathcal{O}_{S,s}$-derivation. We can associate to D an element of $T^{(\text{Zar})}_{X/S}(x)$, indeed, the restriction of D to \mathcal{M}_x factors through $\mathcal{M}_x \rightarrow \mathcal{M}_x/\mathcal{M}_x^2$, since for any $f, g \in \mathcal{M}_x$ one has

$$D(fg) = f \cdot D(g) + g \cdot D(f) = f(x) \cdot D(g) + g(x) \cdot D(f) = 0.$$

If

$$\phi_D : \mathcal{M}_x/\mathcal{M}_x^2 \rightarrow \kappa(x) \quad \begin{array}{c} \phi \\ \downarrow \end{array} \rightarrow D(\phi)$$

denotes the factored map, then let us check that $\phi_D \in T^{(\text{Zar})}_{X/S}(x)$. We have to show that the morphism

$$\mathcal{M}_x/\mathcal{M}_x^2 \cdot j_x \rightarrow \mathcal{M}_x/\mathcal{M}_x^2 \cdot \phi_D \rightarrow \kappa(x)$$

is zero. This is straightforward since D is zero on $\mathcal{O}_{S,s}$. Hence, we have defined a $\kappa(x)$-linear map

$$\Phi^{\text{X/S}} := T^{(\text{Gro})}_{X/S}(x) \rightarrow T^{(\text{Zar})}_{X/S}(x) \quad \begin{array}{c} \phi_D \\ \downarrow \end{array} .$$

4 A condition for Grothendieck and Zariski to be isomorphic

To begin with, let us construct analogs of \mathcal{M}_x and $\mathcal{M}_x/\mathcal{M}_x^2$ with a structure of $\kappa(x)$-algebra. First, let us denote

$$\tilde{\mathcal{O}}_{X/S,x} := \kappa(x) \otimes_{\mathcal{O}_{S,s}} \mathcal{O}_{X,x}$$

and point out some facts:

- Any derivation $D \in \text{Der}_{\mathcal{O}_{S,s}}(\mathcal{O}_{X,x}, \kappa(x))$ gives rise to a derivation

$$\tilde{D} \in \text{Der}_{\kappa(x)}(\tilde{\mathcal{O}}_{X/S,x}, \kappa(x)).$$

It is simply defined by $\tilde{D}(\lambda \otimes \varphi) = \lambda \otimes D(\varphi)$.

- On the ring $\tilde{\mathcal{O}}_{X/S,x}$, we still have an evaluation map. It is

$$\tilde{\mathcal{O}}_{X/S,x} \rightarrow \kappa(x) \quad \begin{array}{c} \lambda \otimes \varphi \\ \downarrow \end{array} \rightarrow \lambda \cdot \varphi(x) .$$
We then define \(\tilde{M}_{x/s} := \ker(\tilde{O}_{X/S,x} \longrightarrow \kappa(x)) \). Remark that as in classical case, we have \((\tilde{O}_{X/S,x})/(\tilde{M}_{x/s}) \cong \kappa(x) \), so that the \(\tilde{O}_{X/S,x} \)-module \(\tilde{M}_{x/s}/(\tilde{M}_{x/s})^2 \) is actually a \(\kappa(x) \)-vector space.

- If \(\ell_x : \mathcal{O}_{X,x} \longrightarrow \tilde{O}_{X/S,x} \) denotes the ring morphism that sends \(\varphi \) to \(1 \otimes \varphi \), then \(\ell_x \) maps \(M_x \) into \(\tilde{M}_{x/s} \) and so, one can consider the following

\[
\vartheta_{x/s} : M_x \longrightarrow \tilde{M}_{x/s}/(\tilde{M}_{x/s})^2
\]

which is a morphism of \(\kappa(x) \)-vector spaces. It makes the following diagram commute:

\[
\begin{array}{ccc}
\mathcal{M}_x & \xrightarrow{\ell_x} & \tilde{M}_{x/s} \\
\downarrow & & \downarrow \\
M_x/M_x^2 & \xrightarrow{\vartheta_{x/s}} & \tilde{M}_{x/s}/(\tilde{M}_{x/s})^2
\end{array}
\] (1)

- One has \(\tilde{D}(\ell_x(\varphi)) = D(\varphi) \) and, as it happens for \(D \), one can factor \(\tilde{D} \) through \(\tilde{M}_{x/s}/(\tilde{M}_{x/s})^2 \).

- We still denote by \([\varphi] \) the image of \(\varphi \in \tilde{M}_{x/s} \) in \(\tilde{M}_{x/s}/(\tilde{M}_{x/s})^2 \).

Now, let us state and prove the main lemma of this note.

Lemma 4.1. If \(\vartheta_{x/s} \) is an isomorphism, then \(\Phi_{X/S}^x \) is also one.

Proof. — Let us assume that \(\vartheta_{x/s} \) is an isomorphism. First, we construct a \(\kappa(x) \)-linear map \(\Upsilon_{X/S} : T^{(\text{Zar})}_{X/S}(x) \longrightarrow T^{(\text{Gro})}_{X/S}(x) \). Let \(\bar{v} \in T^{(\text{Zar})}_{X/S}(x) \). We associate to \(\bar{v} \) the following map

\[
D_{\bar{v}} : \mathcal{O}_{X,x} \longrightarrow \kappa(x)
\]

\[
\varphi \longmapsto \bar{v} \bullet (\vartheta_{x/s})^{-1}[1 \otimes \varphi - \varphi(x) \otimes 1].
\]

It is an \(\mathcal{O}_{S,s} \)-derivation. Indeed,

- First, if \(\varphi \in \mathcal{O}_{S,s} \) then \(1 \otimes \varphi = \varphi(x) \otimes 1 \) and so

\[
D_{\bar{v}}(f^{\#}(\varphi)) = \bar{v} \bullet (\vartheta_{x/s})^{-1}[1 \otimes \varphi - \varphi(x) \otimes 1] = \bar{v} \bullet (\vartheta_{x/s})^{-1}[\varphi(x) \otimes 1 - \varphi(x) \otimes 1] = 0.
\]

- Second, let us verify the Leibniz rule. Let \(\varphi, \psi \in \mathcal{O}_{X,x} \). In \(\tilde{M}_{x/s}/(\tilde{M}_{x/s})^2 \), one has

\[
[1 \otimes \varphi - \varphi(x) \otimes 1] \cdot [1 \otimes \psi - \psi(x) \otimes 1] = 0.
\]
and so
\[[\psi(x) \otimes \varphi] + [\varphi(x) \otimes \psi] = [1 \otimes \varphi\psi] + [\varphi(x)\psi(x) \otimes 1] \] \hspace{1cm} (2)

Then,
\[
\psi(x) \cdot [1 \otimes \varphi - \varphi(x) \otimes 1] + \varphi(x) \cdot [1 \otimes \psi - \psi(x) \otimes 1] \\
= [\psi(x) \otimes \varphi] + [\varphi(x) \otimes \psi] - 2[\varphi(x)\psi(x) \otimes 1] \\
= [1 \otimes \varphi\psi] - [\varphi(x)\psi(x) \otimes 1] \hspace{1cm} \text{by (2)}.
\]

This implies that \(D_\varphi(\varphi\psi) = \varphi(x) \cdot D_\psi(\varphi) + \psi(x) \cdot D_\varphi(\varphi). \)

Now, let us prove that \(\Upsilon_{X/S} \circ \Phi_{X/S} = \Id. \) Let \(D : \mathcal{O}_{X,x} \longrightarrow \kappa(x) \) be an \(\mathcal{O}_{S,s} \)-derivation. Let \(\varphi \in \mathcal{O}_{X,x}. \) Let us compute \(\Upsilon_{X/S} \circ \Phi_{X/S}(D)(\varphi) = \Phi_{X/S}(D) \cdot (\partial_{x/s})^{-1}[1 \otimes \varphi - \varphi(x) \otimes 1]. \)

Let \(\psi \in \mathcal{O}_{X,x} \) such that \([\psi] = (\partial_{x/s})^{-1}[1 \otimes \varphi - \varphi(x) \otimes 1]. \) \hspace{1cm} (3)

Then, by definition, one has \(\Phi_{X/S}(D) \cdot (\partial_{x/s})^{-1}[1 \otimes \varphi - \varphi(x) \otimes 1] = D(\psi). \) Applying \(\partial_{x/s} \) to (3), one gets, with (1), that
\[[1 \otimes \varphi - \varphi(x) \otimes 1] = [1 \otimes \psi]. \]

Applying \(\tilde{D} \), and since \(\tilde{D}(\varphi(x) \otimes 1) = 0 \), one obtains that
\[\tilde{D}(1 \otimes \varphi - \varphi(x) \otimes 1) = D(\varphi) = D(\psi). \]

So, we have got the required identity, \(\Upsilon_{X/S} \circ \Phi_{X/S}(D) = D. \)

Let us prove now that \(\Phi_{X/S} \circ \Upsilon_{X/S} = \Id. \) Let \(\tilde{v} : \mathfrak{M}_x/\mathfrak{M}_x^2 \longrightarrow \kappa(x) \) be a Zariski tangent vector and let \(\varphi \in \mathfrak{M}_x. \) Then,
\[
\Phi_{X/S} \circ \Upsilon_{X/S}(\tilde{v}) \cdot \varphi = \Upsilon_{X/S}(\tilde{v})(\varphi) \\
= \tilde{v} \cdot (\partial_{x/s})^{-1}[1 \otimes \varphi - \varphi(x) \otimes 1] \\
= \tilde{v} \cdot (\partial_{x/s})^{-1}[1 \otimes \varphi] = \tilde{v} \cdot ((\partial_{x/s})^{-1} \circ \partial_{x/s})(\varphi) \\
= \tilde{v} \cdot \varphi.
\]

\[\square \]

5 The main theorem

Theorem 5.1. When the extension \(i_x : \kappa(s) \longrightarrow \kappa(x) \) is algebraic and separable
\[\Phi_{X/S} : T_{X/S}^{\text{(Gro)}}(x) \longrightarrow T_{X/S}^{\text{(Zar)}}(x) \]
is an isomorphism of \(\kappa(x) \)-vector spaces.
Proof. — To begin with, remark that we can replace the relative situation $X \to S$ by the “absolute situation” $X_s \to \text{Spec } \kappa(s)$. Indeed, let us consider the following cartesian square

\[
\begin{array}{ccc}
X_s & \to & X \\
\downarrow & & \downarrow \\
\text{Spec } \kappa(s) & \to & S
\end{array}
\]

First, by Lemma 1.5, the relative Zariski tangent spaces are isomorphic one to each other in this case. For the Grothendieck tangent spaces, one can say the following:

— By (16.5.13.2) of [2], when $\Omega^1_{X/S}$ is an \mathcal{O}_X-module of finite type, the Grothendieck tangent space is invariant under base extension, and so $T^{(\text{Gro})}_{X/S}(x)$ and $T^{(\text{Gro})}_{X_s/\kappa(s)}(x)$ are isomorphic.

— But, actually, the latter is true without any condition of finiteness, as we prove it in Lemma 5.2.

So, in what follows, we will assume that $\mathcal{O}_{S,s} = \kappa(s)$. In particular, $\mathcal{O}_{X,x}$ is a $\kappa(s)$-algebra.

Now, let us apply the second fundamental exact sequence of Kähler differentials (Theorem 58 of [4]), respectively with

1) first, $k = \kappa(s)$, $A = \mathcal{O}_{X,x}$ and $\mathcal{M} = \mathcal{M}_x$

2) second, $k = \kappa(x)$, $A = \tilde{\mathcal{O}}_{X/S,x}$ and $\mathcal{M} = \tilde{\mathcal{M}}_{x/s}$

to get the following two exact sequences:

\[
\frac{\mathcal{M}_x}{\mathcal{M}_x^2} \to \Omega_{\mathcal{O}_{X,x}/\kappa(s)} \otimes_{\mathcal{O}_{X,x}} \kappa(x) \to \Omega_{\kappa(x)/\kappa(s)} \to 0 \quad (4)
\]

and

\[
\frac{\tilde{\mathcal{M}}_{x/s}/(\tilde{\mathcal{M}}_{x/s})^2}{\tilde{\mathcal{M}}_{x/s} \otimes_{\mathcal{O}_{X/S,x}} \tilde{\mathcal{O}}_{X/S,x}} \to \Omega_{\tilde{\mathcal{O}}_{X/S,x}/\kappa(x)} \otimes_{\tilde{\mathcal{O}}_{X/S,x}} \kappa(x) \to \Omega_{\kappa(x)/\kappa(x)} = 0. \quad (5)
\]

In the second one, the left-hand morphism is injective. Indeed, $\tilde{\mathcal{O}}_{X/S,x} \to \kappa(x)$ has a section and so, the criterion given by Proposition 16.12 of [4] applies. So, (5) can be written

\[
0 \to \tilde{\mathcal{M}}_{x/s}/(\tilde{\mathcal{M}}_{x/s})^2 \to \Omega_{\tilde{\mathcal{O}}_{X/S,x}/\kappa(x)} \otimes_{\tilde{\mathcal{O}}_{X/S,x}} \kappa(x) \to 0
\]

and hence gives an isomorphism. But we also know that

\[
\Omega_{\tilde{\mathcal{O}}_{X/S,x}/\kappa(x)} \simeq \Omega_{\mathcal{O}_{X,x}/\kappa(s)} \otimes_{\mathcal{O}_{X,x}} \tilde{\mathcal{O}}_{X/S,x}
\]

so that, we have

\[
\Omega_{\tilde{\mathcal{O}}_{X/S,x}/\kappa(x)} \otimes_{\tilde{\mathcal{O}}_{X/S,x}} \kappa(x) \simeq \Omega_{\mathcal{O}_{X,x}/\kappa(s)} \otimes_{\mathcal{O}_{X,x}} \kappa(x).
\]
Hence, in the exact sequence (4), we can replace the second vector space by $\widehat{M}_{x/s}/(\widehat{M}_{x/s})^2$. We get

$$M_{x}/M_{x}^2 \longrightarrow \widehat{M}_{x/s}/(\widehat{M}_{x/s})^2 \longrightarrow \Omega_{\kappa(x)/\kappa(s)} \longrightarrow 0$$

and one can check that the first arrow in this sequence is $\vartheta_{x/s}$.

By Corollary 16.13 of [1], a sufficient condition for $\vartheta_{x/s}$ to be injective is that the extension $\kappa(x)/\kappa(s)$ is separable. A sufficient condition for $\vartheta_{x/s}$ to be surjective is that $\Omega_{\kappa(x)/\kappa(s)} = 0$. Hence, if $\kappa(x)/\kappa(s)$ is separable and algebraic, by Lemma 16.15 of [1], $\vartheta_{x/s}$ is an isomorphism and so is $\Phi_{X/S}$.

Lemma 5.2. For any schemes X/S and any $x \in X$ above $s \in S$,

$$T^{(\text{Gro})}_{X/S}(x) \simeq T^{(\text{Gro})}_{X_s/\text{Spec}\kappa(s)}(x).$$

Proof. — We use the same description of the local ring of X_s at x as in Lemma 1.5. So, we want to prove that

$$\text{Der}_{\mathcal{O}_S,x}(\mathcal{O}_{X,x},\kappa(x)) \quad \text{and} \quad \text{Der}_{\kappa(s)}(\mathcal{O}_{X,x}/\mathfrak{m}_s\mathcal{O}_{X,x},\kappa(x))$$

are isomorphic. The two inverse map are the most natural ones to describe, and the check that it works is left to the reader as an exercise.

References

[1] Eisenbud, D. *Commutative algebra*, vol. 150 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[2] Grothendieck, A. *Éléments de géométrie algébrique*. IV. étude locale des schémas et des morphismes de schémas IV. *Inst. Hautes Études Sci. Publ. Math.*, 32 (1967), 361.

[3] Kunz, E. On the tangent bundle of a scheme. *Univ. Iagel. Acta Math.*, 37 (1999), 9–24. Effective methods in algebraic and analytic geometry (Bielsko-Biała, 1997).

[4] Matsumura, H. *Commutative algebra*. W. A. Benjamin, Inc., New York, 1970.