The Reductive Subgroups of G_2

David I. Stewart

Abstract. Let $G := G_2(K)$ be a simple algebraic group of type G_2 defined over an algebraically closed field K of characteristic $p > 0$. Let σ denote a standard Frobenius automorphism of G such that $G_{\sigma} \cong G_2(q)$ with $q \geq 4$. In this paper we find all reductive subgroups of G and quasi-simple subgroups of G_{σ} in the defining characteristic. Our results extend the complete reducibility results of [13, Thm 1].

1 Introduction

Recall that G_2 has maximal rank subgroups of type $A_1 \tilde{A}_1$ and A_2 (also \tilde{A}_2 generated by all short root groups of G when $p = 3$). When $p = 2$ we define Z_1 to be the subgroup of type A_1 obtained from the embedding

$$A_1(K) \to A_1(K) \circ A_1(K) \leq G; \quad x \mapsto (x, x).$$

Also when $p = 2$, we define Z_2 to be the subgroup of type A_1 obtained from the embedding

$$A_1(K) \to A_2(K) \leq G$$

where $A_1 \cong PSL_2(K)$ embeds in A_2 by its action on the three-dimensional space $\text{Sym}^2 V$ for V the standard module for $SL_2(K)$. It is shown later that these subgroups are contained in the long root parabolic of G, that is, $P = \langle B, x_{-r}(t) : t \in K \rangle$ where r is the long simple root associated with the choice of Borel subgroup B.

Let \bar{L}, (resp. \bar{L}) denote the standard Levi subgroup of the standard long root (resp. short root) parabolic subgroup of G containing the Borel subgroup B. Let \bar{L}_0 (resp \bar{L}_0) denote the subgroup of \bar{L} (resp \bar{L}) generated by the unipotent elements. Observe that $\bar{L}_0 \cong \bar{L}_0 \cong A_1$.

1
The main theorem is:

Theorem 1. Let $X \cong A_1(K)$ be a subgroup of a parabolic subgroup in $G = G_2(K)$.

If $p > 2$ then X is conjugate to precisely one of \bar{L}_0 and \tilde{L}_0.

If $p = 2$ then X is conjugate to precisely one of \bar{L}_0, \tilde{L}_0, Z_1 and Z_2.

Recall Serre’s notion of G-complete reducibility \cite{17}. A subgroup is said to be G-completely reducible or G-cr if, whenever it is a subgroup of a parabolic subgroup of G, it is contained in a Levi subgroup of that parabolic subgroup.

Corollary 2. All connected reductive subgroups of G are G-cr unless $p = 2$, in which case there are precisely two classes of non G-cr subgroups.

This extends the result \cite[Thm 1]{13} which states that all subgroups of G are G-cr provided $p > 3$.

Corollary 3. Let X denote a closed, connected semisimple subgroup of G. Then up to conjugacy, $(X, p, V_7 \downarrow X)$ is precisely one entry in the following table where $V_7 \downarrow X$ denotes the restriction of the seven-dimensional Weyl module $W_G(\lambda_1)$ to X.

X	p	$V_7 \downarrow X$
A_2	any	$10 \oplus 01 \oplus 0$
\tilde{A}_2	$p = 3$	11
A_1A_1	any	$1 \otimes 1 \oplus 0 \otimes \tilde{W}(2)$
\bar{L}_0	any	$1 \oplus 1 \oplus 0^3$
\tilde{L}_0	any	$1 \oplus 1 \oplus W(2)$
Z_1	$p = 2$	$T(2) \oplus W(2)$
Z_2	$p = 2$	$W(2) \oplus W(2)^* \oplus 0$
$A_1 \hookrightarrow A_1\tilde{A}_1$; $x \mapsto (x^{(p^r)}, x^{(p^s)})$ $r \neq s$	any	$(1^{(p^r)} \otimes 1^{(p^s)}) \oplus W(2)^{(p^r)}$
$A_1 \hookrightarrow A_2$, irreducible	$p > 2$	$2 \oplus 2 \oplus 0$
A_1, max	$p \geq 7$	6

The subgroup denoted \tilde{A}_2 exists only when $p = 3$ and is generated by the short root subgroups of G. (The above table appears not to contain the
irreducible $A_1 \leq \tilde{A}_2$. It is shown later that this subgroup is conjugate to the subgroup $A_1 \hookrightarrow A_1 \tilde{A}_1$ where $r = 1, s = 0$.)

Some remarks on notation. In the above table and elsewhere we refer to an irreducible module by its high weight λ. When X is of type A_1, λ is given as an integer; by a module ab for a group of type A_2 we mean the irreducible module with high weight $a \lambda_1 + b \lambda_2$ where λ_i is the fundamental dominant weight corresponding to the simple root α_i. By $V^{(p^r)}$ we mean the Frobenius twist of the module V induced by the Frobenius morphism $x \mapsto x^{(p^r)}$. The notation $\mu_1 | \mu_2 | \cdots | \mu_n$ indicates a module with the same composition factors as the module $\mu_1 \oplus \mu_2 \oplus \cdots \oplus \mu_n$. The notation $\mu_1/\mu_2/\cdots/\mu_n$ indicates an indecomposable module with composition factors of high weights μ_i for some dominant weights μ_i and is given in the order in which the factors occur so that there is a submodule $\mu_i/\cdots/\mu_n$ and a quotient $\mu_1/\cdots/\mu_{i-1}$. By $W(2)$ we denote the Weyl module for A_1 of high weight 2; when $p > 2$ this is irreducible and when $p = 2$ it is indecomposable of type $1^{2(2)}/0$. Lastly when $p = 2$ we denote by $T(2)$ the four-dimensional tilting module for A_1 which is indecomposable of type $0/1^{2(2)}/0$.

Now let σ denote a standard Frobenius automorphism of G such that $G_\sigma = G_2(q)$ with $q \geq 4$. We use the proof of Theorem 1 and its corollaries to prove a result about the quasi-simple subgroups of Lie type of G_σ in the defining characteristic. (A quasi-simple group of Lie type is a perfect central extension of a simple group of Lie type.)

Theorem 2. Let $X(q_0) \leq G_\sigma$ where $X(q_0)$ is a quasi-simple group of Lie type over \mathbb{F}_{q_0}, a field of the same characteristic as \mathbb{F}_q. Then there exists a σ-stable simple algebraic subgroup \bar{X} of G of the same type as $X(q_0)$ containing $X(q_0)$.

Remark 1.1. Using [10, 5.1], it follows that $X(q_0)$ is unique up to conjugacy in \bar{X}. Since Corollary 3 determines \bar{X}, it follows that we have found, up to G_σ-conjugacy, all quasi-simple subgroups of Lie type of G_σ with the same defining characteristic as G.

Remark 1.2. The only non-simple semisimple subgroups of G_σ are of the form $SL_2(q_1) \circ SL_2(q_2)$ with $q_1, q_2 \geq 4$, since any such group must have rank 2. Since we have found all the quasi-simple groups using the above theorem, we have also found all semisimple subgroups of Lie type of G_σ in the defining characteristic. (A semisimple subgroup of Lie type, H is a subgroup such
that \(H' = H \) and \(H/Z(H) \) is a direct product of simple subgroups of Lie type.)

\section{Preliminaries}

Let \(X \cong A_1(K) \) with \(|K| \geq 4 \) finite or \(K \) algebraically closed of characteristic \(p > 0 \). Let \(V := V_X(\lambda) \) denote an irreducible rational \(KX \)-module of high weight \(\lambda \). To prove Theorem 1 we require some information about \(H^1(X, V) \), the first cohomology group of \(X \) with coefficients in \(V \). We recall that \(H^1(X, V) \) is a \(K \)-vector space and is in bijection with the \(V \)-classes of closed complements to \(V \) in the semidirect product \(XV \). Recall also the standard fact that \(H^1(X, V) \cong \text{Ext}_X^1(K, V) \) (see \cite[p50]{9}).

\begin{lemma}
\text{Ext}_X^1(K, V_X(\lambda)) \text{ is non-zero if and only if } \lambda \text{ is a Frobenius twist of the module } (p-2) \otimes 1^{(p)}. \text{ When it is non-zero it is one-dimensional unless } |K| = 9 \text{ and } V_X(\lambda) = 1 \otimes 1^{(3)} \text{ where it is two-dimensional.}
\end{lemma}

\textbf{Proof.} This follows from setting \(\mu = 0 \) in \cite[4.5]{2} with the small correction given in \cite[1.2]{15}.

Recall that a parabolic subgroup \(P \) has a decomposition as a semidirect product \(LQ \) of a Levi subgroup \(L \) with unipotent radical \(Q \). We employ the above result to investigate complements to \(Q \) in \(P \). The next result shows how \(Q \) admits a filtration by \(KL \)-modules. We recall the notions of height, shape and level of a root from \cite{1}. Take a root system \(\Phi \) for \(G(K) \) with fixed base of simple roots \(\Pi \). Let \(J \subset \Pi \) be a subset of the simple roots and define the parabolic subgroup \(P_J \) by \(P_J = \langle B, x_{-\alpha}(t) : \alpha \in J \rangle \). Let \(\Phi_J = ZJ \cap \Phi \). Fix a root \(\beta \in \Phi^+ - \Phi_J \). We write \(\beta = \beta_J + \beta'_J \) where \(\beta_J = \sum_{\alpha_i \in J} c_i \alpha_i \) and \(\beta'_J = \sum_{\alpha_i \in \Pi - J} d_i \alpha_i \). Define

\begin{align*}
\text{height}(\beta) &= \sum c_i + \sum d_i \\
\text{shape}(\beta) &= \beta'_J \\
\text{level}(\beta) &= \sum d_i.
\end{align*}

Now define \(Q(i) := \langle x_{\beta}(t) : t \in K, \text{level}(\beta) \geq i \rangle \) and define \(V_S = \langle x_{\beta}(t) : t \in K, \text{shape}(\beta) = S \rangle \).
Lemma 2.2. Let $G(K)$ be a split Chevalley group. For each $i \geq 1$, $Q(i)/Q(i + 1)$ has the structure of a KL-module with decomposition $Q(i)/Q(i + 1) = \prod V_S$, the product over all shapes S of level i. Furthermore, each V_S is a KL-module with highest weight β where β is the unique root of maximal height and shape S.

Proof. This is the main result of [1], noting the Remark 1 at the end of the paper which gives the result even in the case $G(K)$ is special. \qed

Throughout the paper we will need the restrictions $V_7 \downarrow X$ of the seven-dimensional Weyl module $V_7 := W_{G_2}(\lambda_1)$ to various subgroups X of $G = G_2(K)$. We calculate these now.

Lemma 2.3. The entries in the table following Corollary 3 have the restrictions $V_7 \downarrow X$ as stated.

Proof. The restriction $V_7 \downarrow X$ for the maximal A_1 when $p \geq 7$ is well known and is listed in [19, Main Theorem].

Consider G_2 embedded in D_4 as the fixed points of the triality automorphism. We consider the restriction of the natural 8-dimensional module V_8 for D_4. Recall that $V_8 \downarrow G_2 = 0/V_7$. For $p = 2$, V_7 becomes reducible and $V_8 \downarrow G_2 = 0/V_6/0$.

Recall that \tilde{L}_0, \bar{L}_0 are the simple, connected subgroups of the long and short Levi subgroups respectively. We first consider $V_7 \downarrow \tilde{L}_0, \bar{L}_0$ and $A_1\tilde{A}_1$.

We can see that $A_1\tilde{A}_1 \leq A^4_1 \leq D_4$. It is clear that the A^4_1 subsystem in D_4 is realised as $A_1 \otimes A_1 \perp A_1 \otimes A_1 \cong SO_4 \perp SO_4$. Take the long A_1 to be the first of the four and the short A_1 to be embedded diagonally in the other three.

Now it follows that we have $V_8 \downarrow \tilde{L}_0 = 0^2 \otimes 1 \perp 1 \otimes 1 = 1 \oplus 1 \perp T(2)$ for $p = 2$ and $1 \oplus 1 \perp 2 \oplus 0$ for $p > 2$. This gives $V_7 \downarrow \bar{L}_0 = 1 \oplus 1 \perp W(2)$ for $p = 2$ and $V_7 \downarrow \bar{L}_0 = 1 \oplus 1 \perp 2$ for $p > 2$.

We also have $V_8 \downarrow \bar{L}_0 = 1 \otimes 0^2 \perp 0^2 \otimes 0^2 = 1 \oplus 1 \perp 0^4$. Hence $V_7 \downarrow L_0 = 1 \oplus 1 \perp 0^3$. It follows also that $V_7 \downarrow A_1\tilde{A}_1 = 1 \otimes \bar{1} \oplus 0 \otimes \bar{W}(2)$.

Next we establish $V_7 \downarrow A_2$. As the A_2 is a subsystem subgroup of G_2, it is in a subsystem of the D_4. It is therefore contained in an A_3. We can see

5
easily that λ_1 for D_4 restricts to A_3 as $\lambda_1 + \lambda_3 = \lambda_1 + \lambda_1^*$ (see e.g. [13.3.4]). Since A_2 sits inside A_3 such that the natural module for A_3 restricts to A_2 as $\lambda_1 \oplus 0$ we see that $V_7 \downarrow A_2 = \lambda_1 + \lambda_1^* \oplus 0$.

Using this we can restrict to the irreducible $A_1 \leq A_2$ for $p > 2$, and to $Z_2 \leq A_2$, when $p = 2$. In this case the natural module for A_2, $\lambda_1 \downarrow A_1 = 2$ for $p > 2$ and $\lambda_1 \downarrow Z_2 = W(2)$. Hence $V_7 \downarrow A_1 = 2 \oplus 2 \oplus 0$ and $V_7 \downarrow Z_2 = W(2) \oplus W(2)^* \oplus 0$.

Now we compute $V_7 \downarrow X$ for $X := A_1 \hookrightarrow A_1 \tilde{A}_1$ twisted by p^r on the first factor and p^s on the second. Using the decomposition above, we read off $V_7 \downarrow X = 1^{(p^r)} \otimes 1^{(p^s)} \oplus 2^{(p^s)}$. For $s = r = 0$ when $p = 2$, this gives $V_7 \downarrow Z_1 = T(2) \oplus 2/0$.

Lastly let $X = \tilde{A}_2$ ($p = 3$). One checks that a base of simple roots $\{\beta_1, \beta_2\}$ for G is expressed in terms of the roots of D_4 as $\frac{1}{3}(\alpha_1 + \alpha_3 + \alpha_4), \alpha_2\}$. On these two elements, the weight λ_1 for D_4 has $\lambda_1(\beta_1) = 1$ and $\lambda_1(\beta_2) = 1$ implying $V_8 \downarrow \tilde{A}_2$ has composition factors $11|00$ so that $V_7 \downarrow \tilde{A}_2 = 11$.

3 Complements in parabolics: proof of Theorem 1

Let $G = G_2(K)$ with K algebraically closed of characteristic p and let $X \cong A_1(K)$ be a subgroup of G contained in a parabolic subgroup $P = LQ$ of G. Then X is a complement to Q in L_0Q, where L_0 denotes the simple subgroup of L generated by the unipotent elements. In the cases we are considering $L_0 = L'$.

Lemma 3.1. If X is not conjugate to L_0, then $p = 2$ and X is contained in the long root parabolic subgroup of G.

Proof. Using 2.2, for the short root parabolic one calculates that there are two levels in Q and they have the structure of KL_0 modules with high weights 0 and 3 respectively. For $p > 3$ they are restricted and thus irreducible. For $p = 3$ they are the modules 0 and $1^{(3)}/1$; for $p = 2$ they are 0 and $1^{(2)}/1$.

6
For the long parabolic one calculates that there are three levels with high weights 1, 0, and 1 respectively. These are restricted and irreducible for all characteristics.

As \(\breve{L}_0 \) (resp. \(\check{L}_0 \)) has some odd weights on the modules in \(Q \), it is simply connected and hence admits a morphism \(\phi \) to \(X \). Composing this with the projection \(\pi \) to the Levi factor, we have the morphism \(\pi \circ \phi : L_0 \to L_0 \). It follows that \(\pi \circ \phi \) is an isogeny. We may assume that this is the standard Frobenius morphism corresponding to \(x \mapsto x^{(q)} \), say. This has the effect of twisting the modules found for \(\breve{L}_0 \) or \(\check{L}_0 \) above. Comparing these weights with \(2.1 \), we see that none of the modules admitting a non-trivial \(H^1 \) is present unless \(p = 2 \), \(q \) is non-trivial, and \(X \) is in the long parabolic, a complement to \(Q \) in \(\breve{L}_0 \).

From this point we assume that \(p = 2 \), \(X \leq P \) the long root parabolic, a complement to \(Q \) in \(\breve{L}_0 \) and \(X \) is not conjugate to \(\breve{L}_0 \). As \(H^1(X,1^{(q)}) \) is 1-dimensional for all \(q > 1 \) we may assume that \(q = 2 \), observing that we can obtain any other complement to \(Q \) by applying a Frobenius map to an appropriate complement we get for \(q = 2 \).

Some notation is necessary for the next part of the paper. Recall the notation from \([4]\) which uses \(x_r(t) \) to refer to the root element with parameter \(t \) corresponding to the root \(r \). Since we are working entirely within \(G \), we will use \(x_i(t) \) for \(i \in \{ \pm 1, \ldots, \pm 6 \} \). If we write \((a,b)\) for \(a\alpha_1 + b\alpha_2 \) with \(\alpha_1 \) the short fundamental root and \(\alpha_2 \) the long fundamental root of \(G \), then

\[
[x_1, x_2, x_3, x_4, x_5, x_6] = [x_{(1,0)}, x_{(0,1)}, x_{(1,1)}, x_{(2,1)}, x_{(3,1)}, x_{(3,2)}]
\]

Under this notation and that of Lemma \(2.2\)

\[
Q = Q(1) = \langle x_i(t) : i \in \{1, 3, 4, 5, 6\} \rangle
\]
\[
Q(2) = \langle x_i(t) : i \in \{4, 5, 6\} \rangle
\]
\[
Q(3) = \langle x_i(t) : i \in \{5, 6\} \rangle.
\]

We see then that \(Q/Q(2) \), \(Q(2)/Q(3) \) and \(Q(3) \) are modules for \(X \) of high weights 2, 0 and 2, respectively.

Lemma 3.2. Let \(k, l \in K \). The groups \(X_{k,l} \) generated by

\[
x_+(t) = x_2(t^2)x_3(kt)x_6(k^3t + lt) \quad \text{and} \quad x_-(t) = x_2(t^2)x_1(kt)x_5(lt)
\]
for all \(t \in K \) are closed complements to \(Q \) in \(\bar{L}_0 Q \).

Proof. We certainly have \(X_{k,l} Q = \bar{L}_0 Q \) as \(\bar{L}_0 Q \) is generated by \(\{ x_i(t) \} \) for \(i \in \{ 1, 2, 3, 4, 5, 6, -2 \} \). It remains to show that \(X_{k,l} \) is isomorphic to \(A_1(K) \), and it follows that \(X_{k,l} \cap Q = \{ 1 \} \) as required.

To show this we will check the generators and relations given in [4, 12.1.1 & Rk. p198], leaving us to show the following three statements hold:

(i) \(x_\pm(t_1)x_\pm(t_2) = x_\pm(t_1 + t_2) \),
(ii) \(h_+(t)h_+(u) = h_+(tu) \) and
(iii) \(n_+(t)x_+(t_1)n_+(t)^{-1} = x_-(-t^{-2}t_1) \),

for all \(t_1, t_2 \in K \) and \(t, u \in K^\times \) where \(n_+(t) = x_+(t)x_-(t^{-1})x_+(t) \) and \(h_+(t) = n_+(t)n_+(-1) \). We will abbreviate \(n_{\alpha_i}(t) \) to \(n_i(t) \), similarly for \(h_{\alpha_i}(t) \).

Using the commutator relations for \(G_2 \) given in [4, 5.2.2] we show that these relations hold.

Write

\[
\begin{bmatrix} \alpha \\ t \end{bmatrix} := x_i(t).
\]

Firstly, item (i) is easily checked: no positive linear combination of roots \(\alpha_2 \), \(\alpha_3 \) and \(\alpha_6 \) is a root except for the roots themselves, so

\[
\begin{bmatrix} 2 \\ t^2 \end{bmatrix}, \begin{bmatrix} 3 \\ kt \end{bmatrix} \text{ and } \begin{bmatrix} 6 \\ k^3t + lt \end{bmatrix},
\]

all commute with each other. The same argument follows for \(x_-(t) \).

For (ii), we first calculate \(n_+(t) \). So we must simplify

\[
\begin{bmatrix} 2 \\ t^2 \end{bmatrix} \begin{bmatrix} 3 \\ kt \end{bmatrix} \begin{bmatrix} 6 \\ k^3t + lt \end{bmatrix} \begin{bmatrix} -2 \\ t^{-2} \end{bmatrix} \begin{bmatrix} 1 \\ kt^{-1} \end{bmatrix} \begin{bmatrix} 5 \\ lt^{-1} \end{bmatrix} \begin{bmatrix} 2 \\ t^2 \end{bmatrix} \begin{bmatrix} 3 \\ kt \end{bmatrix} \begin{bmatrix} 6 \\ k^3t + lt \end{bmatrix}
\]

We will move all \(\pm \alpha_2 \) root elements to the left. The result of this calculation is

\[
n_+(t) = \begin{bmatrix} 2 \\ t^2 \end{bmatrix} \begin{bmatrix} -2 \\ t^{-2} \end{bmatrix} \begin{bmatrix} 2 \\ t^2 \end{bmatrix} \begin{bmatrix} 4 \\ k^2 \end{bmatrix} = n_2(t^2)x_4(k^2).
\]
Now it is easy to write down $h_+(t)$. Since $x_{\pm 2}(t)$ commute with $x_4(u)$ as $\alpha_4 \pm \alpha_2$ are not roots we have

$$h_+(t) = \begin{bmatrix} 2 & -2 \\ t^2 & t^{2} \end{bmatrix} \begin{bmatrix} 2 & 4 \\ t^2 & k \end{bmatrix} \begin{bmatrix} 2 & -2 \\ t^2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ t^2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ t^2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ t^2 & 1 \end{bmatrix} = n_2(t^2)n_2(1) = h_2(t^2).$$

It is then immediate that (ii) follows, since it holds for $h_2(t)$. Part (iii) is similar. \square

Notice that $X_{0,0} = \bar{L}_0$ and so X is not conjugate to $X_{0,0}$ by our standing assumption. The next two lemmas are necessary to show that the groups $X_{k,l}$ exhaust all closed complements to Q in \bar{L}_0Q.

Lemma 3.3. The groups $X_{k,0}Q(2)$ are distinct up to $Q/Q(2)$-conjugacy in $XQ/Q(2)$ and so form a space isomorphic to $H^1(XQ(2)/Q(2), Q/Q(2))$.

Proof. $X_{k,0}Q(2)/Q(2)$ is generated by root groups $x_{+,k}(t) = x_2(t^2)x_3(kt)Q(2)$ and $x_{-,k}(t) = x_{-2}(t^2)x_1(kt)Q(2)$. Take a fixed, arbitrary element of $Q/Q(2)$, $g := x_1(c_1)x_3(c_2)Q(2)$. Conjugating $x_{+,k}(t)$ by g we get

$$x_{+,k}(t)^g = x_2(t^2)x_3(c_1t^2 + kt)Q(2)$$

and accordingly for $x_{-,k}(t)^g$. Suppose these generate $X_{k',0}Q(2)/Q(2)$. Then we have an automorphism of $X_{k',0}Q(2)/Q(2) \cong PSL_2(K)$ extending the map $x_{+,k}(t) \to x_{+,k}(t) \to x_{+,k}(t)^g$. This is an inner automorphism. So we must have both root groups $x_{+,k'}(t)$ and $x_{+,k}(t)^g$ conjugate, say

$$x_{+,k'}(t)^{hQ(2)} = (x_2(t^2)x_3(k't)Q(2))^{hQ(2)} = x_2(t^2)x_3(c_1t^2 + kt)Q(2) = x_{+,k}(t)^g$$

for some $hQ(2) \in X_{k',0}Q(2)/Q(2)$. In particular they are conjugate modulo Q in $X_{k',0}Q/Q$ by hQ. Then since $x_{+,k'}(t)Q = x_{+,k}(t)^gQ = x_2(t^2)Q$, hQ must centralise $x_2(t^2)Q$ in $X_{k',0}Q/Q$. It follows that

$$hQ = x_2(u_1)Q \quad (\ast)$$
Now, using the canonical form of any element of \(X_{k,0}\) is uniquely expressible as either
\[
h = x_{+,(k')}(v_1)h_2(v_2)Q(2) \quad \text{or} \quad h = x_{+,(k')}(v_1)h_2(v_2)n_2x_{+,(k')}(v_3)Q(2)
\]
where \(n_2\) is a representative of the non-identity element of the Weyl group of \(X_{k',0}\). In the latter case, observe that modulo \(Q\) we have \(h = x_2(u_1^2)h_2(u_2)n_2x_2(u_3^2)Q\) which does not centralise \(x_2(t^2)\) as it is not of the (unique) form (**) - a contradiction. In the former case, observe that \(v_2 = 1\) by (**) and so \(hQ(2)\) centralises \(x_{+,(k')}(t)\). So \(c_1t^2 + kt = k't\) for all \(t \in K\). As there are at least four elements \(t \in K\) this is impossible unless \(c_1 = 0\) and \(k = k'\).

Lastly, to see that these complements form a space isomorphic to the space \(H^1(X_{Q(2)}, Q/Q(2))\), observe that \(X_{k,0}\) is the closed complement corresponding to a rational cocycle \(\gamma_k\), and we can define an addition \(\gamma_k + \gamma_{k'} = \gamma_{k+k'}\) which is evidently well-defined on equivalence classes making the collection into a one-dimensional vector space as required.

Lemma 3.4. The group \(X_{k,l}\) is not conjugate to \(X_{k,l'}\) by \(Q(3)\) for \(l \neq l'\). Thus for a fixed \(k\), the groups \(X_{k,l}\) form a space isomorphic to \(H^1(X, Q(3))\).

Proof. The proof is similar to that of the previous lemma.

Proposition 3.5. \(X\) is \(Q\)-conjugate to \(X_{k,l}\) for some \(k, l \in K\), \(k, l\) not both 0.

Proof. Firstly, observe that \(XQ(2)/Q(2)\) must also be a complement to \(Q/Q(2)\) in \(XQ/Q(2)\). As \(Q/Q(2)\) is a module for \(X\) of high weight 2, \(H^1(X, Q/Q(2)) = K\) and \(XQ/Q(2)\) admits a one-dimensional collection of complements to \(Q/Q(2)\). By 3.3 these are represented by \(X_{k,0}\). Replace \(X\) by a \(Q\)-conjugate to have \(XQ(2) = X_{k,0}Q(2)\).

Now observe \(XQ(3)/Q(3)\) is a complement to \(Q(2)/Q(3)\) in \(X_{k,0}Q(2)/Q(3)\). As \(Q(2)/Q(3)\) is a trivial module for \(X\), we have \(H^1(X, Q(2)/Q(3)) = 0\) and we may replace \(X\) by a \(Q\)-conjugate to have \(XQ(3) = X_{k,0}Q(3)\).
Finally, observe that X is a complement to $Q(3)$ in $X_{k,0}Q(3)$. As $Q(3)$ is a module for X of high weight 2, $H^1(X, Q(3)) = K$ and $X_{k,0}Q(3)$ admits a one-dimensional collection of complements to $Q(3)$. By 3.4 these are represented by $X_{k,l}$. Thus we may replace X by a Q-conjugate to have $X = X_{k,l}$.

Now, if $k = l = 0$ then visibly $X_{k,l} \leq \bar{L}_0$ which we had earlier assumed was not the case.

Lemma 3.6. The group $X_{k,l}$ is P-conjugate to one of $X_{1,0}$ or $X_{0,1}$.

Proof. If $k \neq 0$, we can conjugate the generators of $X_{k,l}$ by the fixed element $x_4(l/k)$ by repeated use of Chevalley’s commutator formula to get that

$$x_4(l/k)X_{k,l}x_4(l/k)^{-1} = X_{k,0}.$$

For instance,

$$x_4(l/k)x_+(t)x_4(l/k)^{-1} = x_4(l/k)x_2(t^2)x_3(kt)x_6(k^3t + lt)x_4(l/k)$$

$$= x_2(t^2)x_3(kt)x_6(kt^2 + lt)$$

$$= x_2(t^2)x_3(kt)x_6(k^3t),$$

and the analogous calculation holds for the negative root group. Similarly we calculate that

$$h_4(k)^{-1}X_{k,0}h_4(k) = X_{1,0}.$$

If $k = 0$, and $l \neq 0$, again a calculation on the generators shows

$$h_4(c)^{-1}X_{0,l}h_4(c) = X_{0,1},$$

where c is any cube root of l.

Lemma 3.7. The groups $X_{1,0}$ and $X_{0,1}$ are conjugate to Z_1 and Z_2 respectively. The subgroups Z_1, Z_2 and \bar{L}_0 are pairwise non-conjugate in G.

Proof. The construction of Z_2 as a subgroup of A_2 acting on the symmetric square representation allows us to calculate its root groups in terms of those of A_2. As the A_2 is a subsystem of G it is easy to write these generators in terms of the root groups of G. Choosing the embeddings appropriately, one sees that $X_{0,1}$ has precisely the same generators, hence is conjugate to Z_2.

11
Next, for $p = 2$, the module $V_7 = W(\lambda_1)$ for G is reducible and has a trivial submodule, so $V_7 = V_6/0$ with $G \leq Sp(V_6)$. From the restriction $V_6 \downarrow Z_1 = W(2) \oplus W(2)^*$ in 2.3 we see that Z_1 stabilises a 1-space of V_6. Since the stabiliser of a 1-space is parabolic, and G acts transitively on all such by [12 Thm B], it follows that Z_1 is in a parabolic subgroup of G. Since it has a different restriction to \tilde{L}_0 it follows that from 3.1 that it is in the long parabolic of G.

Now examine all the restrictions $V_7 \downarrow Z_1, Z_2$ and \tilde{L}_0 given by 2.3. One sees that they are all distinct. It follows that they are all distinct up to G-conjugacy. It now follows from 3.1 that $X_{1,0}$ is in a long parabolic, not conjugate to Z_2 or \tilde{L}_0 and so must be conjugate to Z_1. \[\square\]

In conclusion we have established that a complement X to Q in \tilde{L}_0Q must be conjugate to precisely one of the subgroups Z_1, Z_2 or \tilde{L}_0. Together with 3.1, this completes the proof of Theorem 1, and Corollary 2.

4 Classification of semisimple subgroups of G_2: proof of Corollary 3

In the proof of Corollary 3 we need the classification of maximal subgroups of the algebraic group $G = G_2(K)$, from [14].

Lemma 4.1. Let M be a maximal closed connected subgroup of G. Then M is one of the following:

(i) a maximal parabolic subgroup;

(ii) a subsystem subgroup of maximal rank;

(iii) A_1 with $p \geq 7$.

Proof of Corollary 3:

Firstly, a semisimple subgroup in a parabolic of G_2 must be of type A_1 and we have determined these by Theorem 1. Secondly, the subsystem subgroups of G_2 are well known and can be determined using the algorithm of Borel-de
Siebenthal. They are A_2, $A_1\tilde{A}_1$ and \tilde{A}_2 ($p = 3$) where the \tilde{A}_2 is generated by the short roots of G_2.

Subgroups of maximal rank are unique up to conjugacy so to verify Corollary 3 it remains to check that we have listed all subgroups of type A_1 in subsystem subgroups in the table. If $X \cong A_1$ is a subgroup of A_2 or \tilde{A}_2 it must be irreducible or else it is in a parabolic; we have listed these in the table in Corollary 3. If $X \leq A_1\tilde{A}_1$, let the projection to the first (resp. second) factor be an isogeny induced by a Frobenius morphism $x \to x^{(p^r)}$ (resp. $x \to x^{(p^s)}$).

We note some identifications amongst these subgroups:

When $p \neq 2$ and $r = s$ (without loss of generality $r = s = 0$), $V_7 \downarrow X = 2 \oplus 2 \oplus 0$ which is the same as $V_7 \downarrow Y$ where $Y := A_1 \hookrightarrow A_2$ where Y acts irreducibly on the natural module for A_2. Indeed these are conjugate since G acts transitively on non-singular 1-spaces (see [12, Thm B]). When $p = 2$ we get the subgroup Z_1. When $r = s + 1$ and $p = 3$, we have $V_7 \downarrow X$ is a twist of $V_7 \downarrow Y$ where Y is similarly irreducible in \tilde{A}_2, and we have actually X conjugate to Y up to twists: the long word in the Weyl group w_0 induces a graph automorphism on \tilde{A}_2 and it is easy to see that we can arrange the embedding $Y \leq \tilde{A}_2$ such that $Y \leq C_G(w_0)$. Now $C_G(w_0) = A_1\tilde{A}_1$ as there is only one class of involutions in G when $p \neq 2$ by [7, p288]. The restriction $V_7 \downarrow X, Y$ then gives the identification required.

Finally one can see that all other subgroups listed in the table of Corollary 3 are pairwise non-conjugate as the restrictions of V_7 in the table are all distinct.

This proves Corollary 3.

5 Quasi-simple subgroups of $G_2 = G_2(q)$: proof of Theorem 2

Let $X(q_0)$ be a finite quasi-simple subgroup of $G_\sigma = G(q)$, defined over a field of the same characteristic as G, where $q, q_0 \geq 4$. We classify all such $X(q_0)$. For this we use the classification of maximal subgroups of G_σ. The following table is obtained from [10, 1.3A] for $p > 2$ and [5] for $p = 2$.

Lemma 5.1. Let M be a maximal subgroup of $G_\sigma = G_2(q)$ where $q = p^n \geq 4$.

13
Then M is conjugate to one of the following groups.

ID	Group	Structure	Remarks
(i)	P_a	$[q^5] : GL_2(q)$	parabolic
(ii)	P_b	$[q^5] : GL_2(q)$	parabolic
(iii)	$C_G(s_2)$	$SL_2(q) \circ SL_2(q). (q - 1, 2)$	involution centraliser
(iv)	I	$2^3.L_3(2)$	$q = p$, odd
(v)	K_+	$SL_3(q) : 2$	long
(vi)	K_+	$SL_3(q) : 2$	$p = 3$, short
(vii)	K_-	$SU_3(q) : 2$	long
(viii)	K'_-	$SU_3(q) : 2$	$p = 3$, short
(ix)	$C_G(\phi)$	$G_2(q_1)$	$q = q_1^\alpha$, α a prime
(x)	$C_G(\phi)$	$2G_2(q)$	$p = 3$, n odd
(xi)	$PGL_2(q)$		
(xii)	$L_2(8)$		
(xiii)	$L_2(13)$		$p \neq 13$, $GF(q) = GF(p)[\sqrt{13}]$ or $q = 4$
(xiv)	$G_2(2)$		$q = p \geq 5$
(xv)	J_1		$q = 11$
(xvi)	J_2		$q = 4$.

Proof of Theorem 2:

If $X(q_0)$ has rank 2 then it is $2G_2(q_0)$, $G_2(q_0)$ or $A_2(q_0)$ and one can see that $X(q_0) \leq M$ where M has ID (v)-(x) of the same type as $X(q_0)$: it is obvious for $X(q_0)$ of rank 2, M cannot be as in cases (i)-(iv) and (xi); for cases (xii)-(xvi) one checks the appropriate pages in the Atlas [6]. Such subgroups are unique up to G_σ-conjugacy by [16, 5.1]. Therefore we have $X(q_0) \leq X$ a σ-stable subgroup of G of the same type.

We now consider the case where $X(q_0)$ has rank 1. Here $X(q_0) \cong A_1(q_0)$. We show that each of these is contained in a σ-stable connected subgroup of type $A_1 \leq G$. Let $X(q_0) \leq M$, a maximal subgroup of G_σ. Firstly, if M is case (i) or (ii), $X(q_0) \leq P_a$ or P_b and we can use the proof of Theorem 1 to show that $X(q_0)$ is conjugate to a subgroup of a Levi or, when $p = 2$, to a subgroup of one of the σ-stable subgroups $X_{k,l} \cong A_1$ defined above: 2.1 implies the groups $H^1(X, V)$ are still the same for all q and V being considered, 2.2 still
applies for finite groups, and so 3.5 goes through to show that \(X(q_0) \leq X_{k,l}\), a \(\sigma\)-stable subgroup of \(G\) as required.

If \(M\) is as in case (iii), \(X(q_0)\) is embedded in \(SL_2(q) \circ SL_2(q)\), twisted by \(p^r\) on the first factor and \(p^s\) on the second. We may assume \(p^r, p^s < q\). Since \(\sigma\) commutes with the twists on each factor, we have \(X(q_0) \leq A_1\) where \(A_1 \hookrightarrow A_1\tilde{A}_1; x \mapsto (x^{p^r}, x^{p^s})\) and is clearly \(\sigma\)-stable.

If \(X(q_0) \leq M\) where \(M\) has ID (iv) then \(X(q_0) = L_2(7) \cong L_3(2)\). Checking [6, p60] one sees that the subgroup \(2^3.L_3(2)\) is a non-split extension with normal subgroup \(2^3\) so does not contain a subgroup of type \(L_3(2)\).

We cannot have \(X(q_0) \leq M\) if \(M\) has ID (xii) or (xiii) as these do not contain subgroups of type \(A_1(q_0)\), which is easily seen using [6, p6 and p8].

If \(M\) has ID (xi), an \(A_1(q_0) = L_2(q_0)\) in the \(\text{PGL}_2(q)\) above is unique up to conjugacy and thus in the \(\sigma\)-stable maximal \(A_1\).

Lemma 5.2. Let \(M\) have ID (xiv) or (xv). Then \(X(q_0) = L_2(7)\) or \(L_2(11)\) respectively and it is conjugate to the subgroup \(L_2(7) \leq \text{PGL}_2(7)\) or \(L_2(11) \leq \text{PGL}_2(11)\) respectively with ID (xi) in the above list.

Proof. Pages 36 and 60 respectively of the Atlas substantiate the fact that we must have \(X(q_0) = L_2(7)\) or \(L_2(11)\) (rather than \(L_2(7^2)\) or \(L_2(11^2)\) for example). Examining the 7-dimensional Brauer characters in the Modular Atlas [8] of \(L_2(7) \leq G_2(2)\) and \(L_2(7) \leq \text{PGL}_2(7)\) one sees that they are irreducible and therefore conjugate in \(\text{GL}_7(7)\). Similarly, the Brauer characters of \(L_2(11) \leq J_1\) and \(L_2(11) \leq \text{PGL}_2(11)\) in \(G_2(11)\) are the same irreducible representation and therefore conjugate in \(\text{GL}_7(11)\). The result [10, 1.5.11] then implies that they are conjugate in \(G(q_0)\). Thus in each case, the subgroup \(X(q_0)\) is in the \(\sigma\)-stable maximal \(A_1\) of \(G\).

Lemma 5.3. Let \(M\) have ID (v)-(viii). If \(X(q_0)\) is a subgroup of \(SL_3(q)\) or \(SU_3(q)\) and is distinct from those already considered, then \(q_0\) is odd and \(X(q_0)\) is irreducible on the standard modules in each case. Moreover, each is contained in a \(\sigma\)-stable subgroup of \(\tilde{A}_1 \leq G\).

Proof. The action of \(A_1(q_0)\) on the standard module \(V\) for \(SL_3(q)\) or \(SU_3(q)\) must be irreducible or else it is in a parabolic and already considered. It follows that \(q_0\) is odd.
The fact that $A_1(q_0)$ is irreducible gives the restriction of the three-dimensional standard module as a high weight 2. Thus it is unique up to conjugacy in $GL_3(q)$ (or $GU_3(q)$) by [11, 2.10.4(iii)]. Hence it is contained in a σ-stable $A_1 \leq A_2$.

Lemma 5.4. Let M have ID (xvi). Then $X(q_0) = L_2(4)$ and $X(q_0)$ is contained in a subsystem subgroup and is thus already considered.

Proof. Checking the maximal subgroups of J_2 in the Atlas, one establishes that $A_1(q_0) = L_2(4) \cong A_5$. A simple Magma [3] calculation in $G_2(4)$ shows all of these lie within subsystem subgroups.

Observe finally that if $X(q_0) \leq M$ for M with ID (ix) or (x) then $X(q_0)$ is in $G_2(q_0)$ or $^2G_2(q_0)$. It is thus in one of its maximal subgroups and has already been considered, completing the proof of Theorem 2 and this paper.

Acknowledgements. This paper was prepared towards the author’s PhD qualification under the supervision of Prof. M. W. Liebeck, with financial support from the EPSRC. We would like to thank Prof Liebeck for setting the problem and for his immeasurable assistance in its production. We would also like to acknowledge the anonymous referee for his or her helpful comments and corrections to this paper.

References

[1] H. Azad, M. Barry and G. Seitz, On the structure of parabolic subgroups *Comm. Algebra* 18 (1990), 551-562.

[2] H. Andersen, J. Jørgensen and P. Landrock, The projective indecomposable modules of $SL(2,p^n)$, *Proc. London Math. Soc. (3)* 46 (1983), no.1, 38-52.

[3] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language. *J. Symbolic Comput.* 24 (1997), no. 3-4, 235-265.

[4] R. W. Carter, Simple groups of Lie type, *Wiley-Interscience*, London, 1972.

[5] B. N. Cooperstein, Maximal subgroups of $G_2(2^n)$, *J. Algebra* 70 (1981), 23-26.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray Oxford University Press, Eynsham, (1985).

[7] N. Iwahori, Centralizers of involutions in finite Chevalley groups, Lecture Notes in Math. 131, Springer, Berlin, (1970).

[8] C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, London Mathematical Society Monographs. New Series, Vol. 11, Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, (1995).

[9] J. C. Jantzen, Representations of algebraic groups. Second edition. Mathematical Surveys and Monographs 107, American Mathematical Society, Providence, RI, (2003).

[10] P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, of the Ree groups $^2G_2(q)$, and of their automorphism Groups. J. Algebra 117 (1988), 30-71.

[11] P. B. Kleidman and M. W. Liebeck. The Subgroup Structure of the Finite Classical Groups, LMS Lecture Note Series 129, Cambridge Univ. Press (1990).

[12] M. W. Liebeck, J. Saxl, and G. M. Seitz, Factorizations of simple algebraic groups, Trans. Amer. Math. Soc. 348 (1996), no. 2, 799822.

[13] M.W. Liebeck and G.M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121 (1996), no. 580.

[14] M.W. Liebeck and G.M. Seitz, The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Amer. Math. Soc. 169 (2004), no. 802.

[15] M.W. Liebeck and G.M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (1998), 3409-3482.

[16] M.W. Liebeck and G.M. Seitz, Subgroups generated by root elements in groups of Lie type, Annals of Math. 139 (1994), 293-361.

[17] J.-P. Serre, Moursund Lectures, University of Oregon Mathematics Department, (1998), arXiv:math/0305257v1.
[18] G. M. Seitz, The maximal subgroups of classical algebraic groups, *Mem. Amer. Math. Soc.* **67** (1987), no. 365.

[19] D. M. Testerman, Irreducible subgroups of exceptional algebraic groups, *Mem. Amer. Math. Soc.* **75** (1988), no. 390.

David Stewart, Department of Mathematics, Imperial College, London, SW7 2AZ, UK.
Email: dis20@cantab.net