Recent Developments in Coatings for Orthopedic Metallic Implants

Muzamil Hussain 1,†, Syed Hasan Askari Rizvi 2,†, Naseem Abbas 3,*, Uzair Sajjad 4, Muhammad Rizwan Shad 5, Mohsin Ali Badshah 6,* and Asif Iqbal Malik 7,*

1 Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal 57000, Pakistan; muzamilhussain833@gmail.com
2 School of Mechanical Engineering, Chung-Ang University, Seoul 06974, Korea; hasanaskari@cau.ac.kr
3 Nano-Biofluignostic Research Center, Korea University, Seoul 02841, Korea
4 Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; energyengineer01@gmail.com
5 Department of Mechanical Engineering, University of Central Punjab, Lahore 54000, Pakistan; dr.rizwan@ucp.edu.pk
6 Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA
7 Department of Hotel and Tourism Management, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea
* Correspondence: naseem@korea.ac.kr (N.A.); badshahm@uci.edu (M.A.B.); ai.asifiqbalmalik@gmail.com (A.I.M.)
† These authors contributed equally to this work.

Abstract: Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized. Different effective coating techniques, coating materials, and additives have been summarized. The results are useful to produce the coating with optimized properties.

Keywords: biomaterials; coatings; orthopedic implants; biocompatibility; biodegradability

1. Introduction

Many materials including polymers, metals, alloys, ceramics, and composites are used in orthopedic applications [1–5]. These materials are required to have excellent physical, mechanical, and tribological properties and must be non-toxic, biocompatible, and corrosion-resistant [6,7]. The most widely used materials for orthopedic applications are listed in Table 1. The problems with these conventional materials are their least biodegradability, biological inertness, similarity in properties to the bone, long-term stability, wear, and corrosion resistance [8–17]. The other issues related to these implant materials are stress shielding, secondary infections, metal ion release, etc [18–25]. Therefore, in most cases, multiple revisions are required in case of failure of implants. Moreover, the implants made of non-degradable materials often remain in the body up to their need. Hence, the non-degradability and long healing time demand revision surgery to replace or remove the implant after healing [26–29].
The fabrication of coatings on implant materials has become a topic of major interest to enhance the biological, tribological, antibacterial, and mechanical properties of orthopedics. The most important objective of implant material is to improve biocompatibility. The coating of bioactive material improves biocompatibility, prevents ion release from the metallic substrate which results in reduced mechanical failure. A high-quality coating should exhibit sufficient adhesion strength (50 MPa approved by US-FDA), high hardness of the final coat, excellent osseointegration, and osteoconduction properties, reduced cracks among the coating, and free of inclusions [30]. Another important feature is the degree of crystallinity which affects the solubility of the bioactive coating in the human body [30]. This article aims to review the impacts of coatings on the implant materials for the orthopedic prosthesis. The relative comparison of different coatings on metallic implant materials is reviewed systematically to choose the optimized coating properties.

Table 1. Most common biomaterials for orthopedic implants.

Material	Uses	Advantages	Disadvantages	Challenges
Titanium alloys	Femoral hip stems, Shoulder stems, Fracture fixation plates, Pedicle screws and rods for spines	Lightweight, Less biological response, Biocompatible, High corrosion resistance	Poor bonding ductility, Poor wear resistance, Expensive, High modulus	Biodegradable, Biological inertness, Antibacterial, Stability in mechanical properties, Wear reduction
Stainless steel alloys	Plates, screws, pins, sliding hip screws, Flexible and intramedullary nails, Carriage cables	Widely available, High ductility, Accepted toughness, Accepted biocompatibility	Very high modulus, Aluminum toxicity, Stress shielding effect, Poor wear resistance	Corrosion resistance, Wear reduction, Biological inertness
Cobalt-chrome Molybdenum	Bearing surface in metal, Plates and wires, Short-term implants	Long term biocompatibility, High corrosion resistance, High wear resistance, High impact durability	Stress shielding effect, Biological toxicity due to release of Ni	Wear reduction, Metallic fretting, Biological inertness
Polyethylene/UHMWPE	Bearing surfaces	Biocompatibility, Wear resistance	Wear debris, Lower mechanical properties, Joint infections	Fatigue life, Lower mechanical properties, Joint infections
Alumina/ Zirconia composites	Bearing surfaces	High-smoothness, Biocompatibility	High fracture rate	Brittleness

2. Coating Techniques

To enhance the efficacy of biomedical implants huge research has been carried out with a prime focus on developing techniques for coating or depositing bioactive materials on metallic substrates. Nowadays, researchers around the world are performing research on coating techniques to find the optimum processing parameters. There is further need for investigation on optimum adhesion between coating and substrate, development of methods for multilayers deposition to achieve different characteristics, and use of novel materials. The most common techniques that are recently used for coating metallic implant materials are listed in Table 2.

The physical vapor deposition (PVD) method includes different surface modifications such as evaporation, ion plating, and sputtering. The core idea behind these techniques is that a material is coated on a metal surface by initially vaporizing the material then letting it condense on a metal surface [41]. In orthopedics, sputtering is the most used method for coating metallic implant materials. Sputtering is usually carried out in the argon-rich environment in which gaseous argon is turned into positively charged vapors. These positively charged argon ions then collide with the metal substrate, generating reactive metal molecules. That bombard into metal and create a coating layer. In magnetron sputtering close magnetic field is used to control the ionization rate [42,43]. PVD is used to develop high purity and high dense bioactive coatings on implant materials with good adhesion strength. However, PVD is a time-consuming and expensive technique and produces a low crystalline layer that may be dissolved in the human body. Hence, further studies are needed to study the influence of PVD processing parameters on the crystallinity, porosity, and stability of bioactive coatings.
Table 2. Most common coating techniques for implant material coatings.

Coating Method	Method Classification	Advantages	Disadvantages
Physical vapor deposition (PVD) [44–53]	Cathodic arc deposition	Coat complex geometries with ease	Delamination
	RF magnetron sputtering	High dense	Expensive
	DC reactive magnetron sputtering	High purity	Time-consuming
	Close field magnetron sputter ion plating	Increased wear resistance	
	Cathode plasma immersion ion implantation deposition		
	Planar magnetron sputtering		
	Electron beam evaporation		
Chemical vapor deposition (CVD) [54–56]	Atomic layer deposition	Coat complex geometries with ease	Delamination
	Plasma assisted chemical vapor deposition	Increased wear resistance	Expensive
Electrochemical deposition [57–63]	Electrophoretic co-deposition	Low temperature	Expensive
		Increased wear resistance	Thin layer
Sol-gel [64–70]	Dip coating	Coat complex geometries	Low wear resistance
		High homogeneity	Low permeability
		High purity	Delamination
		Low temperature	Low mechanical stability
		Low cost	Thin layer
		Rapid deposition rate	
		Long life span	
Plasma spraying [71–75]		Low cost	Low adhesion
		Rapid deposition rate	Cracks
		Long life span	Microstructure change
Micro arc oxidation [76–80]		Low cost	Porosities formation
		Eco friendly	Cracks
		Multifunctional coatings	Delamination

In the Chemical vapor deposition (CVD) technique, high temperature, high pressurized reactant gas is placed in a reactor which reacts with the metal surface to produce a thin coating on it [81,82]. CVD is capable to produce complex geometries, but a high initial cost is required for specialized equipment. Furthermore, the thickness and morphology of the coating can be changed by altering the precursor temperature in CVD. However, the coating produced by CVD showed delamination because of low adhesion and stability. Hence, comprehensive studies are needed to analyze the delamination or degradation mechanism of coatings before the application on orthopedic devices. In the electrochemical deposition process, a tightly adherent and thin coating of oxide, salt, or metal is deposited onto the substrate surface by electrolysis of a solution containing the metal ion or its chemical complex.

In the sol-gel method, a substrate is dipped into a colloidal suspension, and a gel layer is deposited onto the substrate surface. Then the excess liquid is removed by a drying process [83]. This method is widely used to create complex thin coating geometries with high homogeneity and purity. This method is used to coat metallic implant materials to enhance corrosion resistance. In addition, the sol-gel process is low-cost, which is used to maintain the parent mechanical properties of substrate because of the sol-gel nature and low processing temperature. However, this method has disadvantages as high permeability, low wear resistance, and cracking. The sol-gel process is sensitive to the coating material and the delamination occurs due to the difference in properties of substrate and coating material. Hence, further research is needed on substrate materials as the difference in thermal properties between the coating and the substrate cause delamination of coating and process failure. Hence, further research is needed to improve the degree of crystallinity and adhesion strength.

Plasma spraying is used to produce deposition rapidly with low thermal degradation as compared to other thermal coating techniques [84]. Presently, plasma-sprayed HA is the only coating approved by FDA [85]. Although this technique is effective to deposit HA coating on a metallic surface, it showed low crystallinity as increasing temperature disrupts the apatite layer. Moreover, this technique exhibits low adhesion strength and
cracks may be developed. However, more research is required to improve the quality of coating with better adhesion and durability. The research trend is to showcase improved efficacy, performance, and durability of biomedical implants because the contemporary technique is still not able to meet the desired goals.

A relatively plausible option for manufacturing a micro-porous, rough, and hard coating on metal substrates is micro-arc-oxidation (MAO). This method is inviting some serious attention as it could ensure significant adhesive characteristics between the coating and substrate. Secondly, researchers see it as a promising technique regarding the formation of a good crystalline coating with morphologies having a porous exterior. Furthermore, the said process is easy to operate, cost-effective, and environment-friendly. Fortunately, this method can produce multifunctional well as protective coatings by adjusting the processing parameters. However, this process and the characteristics of its final product depend on several factors. Most importantly, those factors include electric parameters, electrolyte composition, substrate material used, and geometry of the electrolytic cell. The complex interdependence of these factors makes this technique quite challenging. At the current level of our research, it would be unwise to draw some conclusions with certainty regarding the feasibility of MAO to produce hydroxyapatite coating without subsequent treatment. Furthermore, it has been observed that this process leads to the formation of porosities which can lead to corrosion and delamination. In addition, this method is not suitable to coat bioactive materials on metallic implants. So, further investigations are needed to resolve complications.

3. Coatings for Metallic Implants

3.1. Coatings for Titanium

The most used titanium alloys for biomedical applications are Ti6Al4V and Ti6Al7Nb. These alloys are widely used in orthopedic applications because of their good corrosion resistance, high impact, fatigue strength, low density, inherent toughness, and lightness. However, their biological inertness shows some negative responses to cell and tissue behavior. So, both the new bone tissues and osteoblasts cannot grow well. Therefore, the bonding between host tissues and implants are not formed easily, which leads to poor osteointegration. As a result, Ti-based implant is detached from the host tissue in long-term implantation [86]. Another important cause of implant failure is an infection, which is caused by improper surgery, or bacterial activity in a physiological environment [87]. Hence, the ideal implant should be able to promote osteointegration, deter bacterial adhesion, and minimize prosthetic infections [88].

Several coating materials have been suggested for surface modifications of Ti implant material to enhance biocompatibility. Calcium phosphate-based biocompatible materials such as hydroxyapatite (HA), bioactive glass (BG), and biphasic calcium phosphate (BCP) are widely used for the replacement or repair of different implants due to their excellent biocompatibility, osteoconductivity, and osteointegration.

To enhance the biocompatibility of titanium, Behera et al. [86] deposited the BCP coating on Ti-6Al-4V and studied the influence of coating thickness on bioactivity, wettability, and mechanical properties. In vitro bioactivity of samples was evaluated by the formation of the apatite layer after immersion in SBF. The apatite film deposited on the surface of coated titanium provides the required surface chemistry for cell proliferation and adherence. Surface analysis confirms the formation of small elliptical and globular-like structures of apatite film on the coated titanium surface. Further, the wt.% of apatite layer enhances with the immersion time. The results of the study in terms of wt. % of HA and β-TCP over coated substrates before the immersion and after the immersion for 14 days are presented in Figure 1. Moreover, the phase analysis confirms the presence of HA peaks with no β-TCP phases. Therefore, it can be concluded that BCP-coated titanium samples exhibit good bioactivity due to the growth of apatite precipitation.
The undesirable bioactivity on the titanium surface such as lack of osteoinduction is a major contributing factor for the failure of implants. Li et al. [89] proposed that the incorporation of strontium (Sr) in calcium silicates and calcium phosphates can further improve the osteoinduction of orthopedic implants. The Sr-incorporated calcium phosphate (P-Sr) and Sr-incorporated calcium silicate (Si-Sr) on Ti alloy were prepared by micro-arc oxidation (MAO) and the biological properties of the two coatings were compared. The results in terms of cell adhesion and cell proliferation are presented in Figure 2. The cell number and OD values of coated and uncoated samples increased with incubation time. The results indicate that both coatings are effective to enhance corrosion resistance and promoting osteogenic differentiation ability. Both coatings not only can enhance the corrosion resistance and hydrophilic state of titanium (TC4) substrates but also promote bioactivity and osteogenic differentiation ability. In comparison to both coatings Si-Sr coating exhibit better biocompatibility.

Li et al. [90] prepared the chitosan/HA coating on the titanium surface to improve the biological and antibacterial properties of titanium implants. First, the micro-nano structured HA coating was prepared on the titanium surface by micro-arc oxidation (MAO), and then the antibacterial agent of chitosan was loaded on the HA surface through the dip-coating method. The results showed that the obtained chitosan/HA composite coating accelerated the formation of apatite layer in SBF solution, enhanced cell adhesion, spreading, and proliferation, and it also inhibited the bacterial growth, showing improved biological and antibacterial properties. Although, with the increased amount of chitosan, the coverage of HA coating would be enlarged, resulting in depressed biological property, however, the antibacterial property was improved.
An antibacterial study is a necessary condition for an implant material because infectious adulteration is a prime source of concern during implant surgery. Hussein et al. [91] analyzed the antibacterial, biocorrosion, and mechanical performance of TiN coating on the titanium surface. Antibacterial activity was performed on TiN-coated titanium substrates against bacteria. The TiN-coated samples showed improved antibacterial properties as compared to uncoated samples due to the change in surface characteristics. The Ti surface exhibits higher sensitivity to bacterial adhesion due to the dissolution of oxide/passive films. The TiN coated surface exhibit antibacterial activity due to physical obstruction to the bacterial adhesion. The results of the study are presented in Figure 3.

![Figure 3. Bacterial viable cell count (a) gram -ve bacteria (E. coli) (b) gram +ve bacteria (B. Subtilis).](image-url)

Reprinted with permission from [91].

To improve the overall performance of orthopedic implants, it is essential to consider the other performance parameters including mechanical properties, corrosion, and wear behavior. The use of multi-coating materials can be effective to achieve the desired properties. And the investigation of these properties is essential in determining the implant performance. To improve the corrosion resistance with cytocompatibility and bioactivity, Sun et al. [92] deposited the multifunctional hybrid layer of BCP/Tantalum pentoxide (Ta$_2$O$_5$) on the titanium surface. First, the Ta$_2$O$_5$ layer was deposited on the titanium surface by the hydration condensation process. Then an electrochemical deposition method was used to deposit the BCP layer on the coated substrates. The results indicate that the Ta$_2$O$_5$ improves the corrosion resistance while the BCP layer promotes surface bioactivity, hydrophilicity, and bone cell adhesion. In vitro electrochemical potentiodynamic polarization test was performed to evaluate the corrosion behavior of the coating surface. The results of corrosion tests are presented in Figure 4. The results show that the coated samples show lower corrosion potential as compared to untreated samples. The corrosion current densities of test samples were in following order: BCPs/Ta$_2$O$_5$/titanium (0.2 μA/cm2) < Ta$_2$O$_5$/titanium (1.2 μA/cm2) < titanium (3.5 μA/cm2). These results show that the presence of amorphous Ta$_2$O$_5$ coating film decreased the current density of the titanium by approximately 65%, and the presence of crystalline BCP layer further decreased the current density of the Ta$_2$O$_5$/titanium by approximately 80%. Hence decreased current density and ion release due to the inner Ta$_2$O$_5$ and outer BCPs layer of the titanium surface indicate the enhanced corrosion resistance.
Several coatings have been produced on the titanium surface to enhance the wear resistance of the implant. Cui et al. [93] proposed the TiN coating for wear performance enhancement. The monolayer and graded TiN coatings were deposited on the titanium surface by DC reactive magnetron sputtering. The elastic modulus and hardness of coating specimens were measured under nano-indentation tests. The continuous and smooth curve suggests that the TiN coating exhibits good crack resistance. The results of the study are presented in Figure 5a. The ball-on-disc tests were performed to evaluate the wear performance of specimens in Hank’s solution under the load of 10 N. The change of coefficient of friction (COF) with time under the sliding abrasion test is shown in Figure 5b. A 50% reduction in COF was observed for graded TiN coating as compared to monolayer TiN coating.

The adhesion strength and degradation behavior of coatings are important influencing parameters for performance analysis. Cao et al. [94] compared the four coating groups including Poly lactide-L-lactide-ε-caprolactone (PLC) coatings, PLC coating with antibiotics, micro-arc oxidation (MAO)/PLC double coating, and MAO/PLC double coating with antibiotics on titanium surface. The result shows that the use of MAO coating is very effective to increase the adhesion strength and load to failure of coating at the interface. The degradation test shows that the addition of antibiotics causes the loss of coating mass. The results of the study are presented in Figure 6. The study concludes that
the MAO/PLC double coating has a good potential for reducing the severity and incidence of implant-related early infections.

![Figure 6](image-url)

Figure 6. (a) Adhesion performance of various coating groups (b) degradation rate of coating of PLC coating. Adapted with permission from [94].

To minimize the stress shielding effect of titanium implants, the use of porous titanium implants instead of fully dense titanium implants has been reported in the literature. Moriche et al. [95] reported that porous titanium substrates exhibit lower mechanical properties, closer to those of human bones as compared to fully dense titanium substrates. Torres et al. [96] fabricated the porous titanium substrates and deposited the gelatin coatings on these substrates to improve the biocompatibility. Silver nanoparticles have been described to damage bacterial cells via prolonged release of Ag\(^+\) ions as a mode of action when immobilized on a surface [97]. To improve the antibacterial properties, Gaviria et al. [98] deposited the therapeutic Ag nanoparticles coatings on porous titanium substrates. The results showed that the coated porous titanium substrates exhibit lower antibacterial activity as compared to fully dense titanium substrates. As bioactive glass coating on titanium surface offers improved bioactivity and mechanical properties. So, Moriche et al. [95] evaluated the potential of bioactive glass coatings on porous titanium substrates. The results showed that bioactive glass-coated porous substrates exhibit improved mechanical properties with higher bioactivity due to the formation of a hydroxyapatite layer. Beltran et al. [99,100] coated porous titanium substrates with a bilayer of bioactive glasses to overcome the problems associated with titanium implants such as poor osseointegration and stress shielding.

The results of few recent studies are summarized in Table 3 and many other studies are reviewed to conclude the influence of coatings on titanium surface for orthopedic applications. Calcium phosphate-based coatings such as HA and BCP have been shown to induce bone formation and promote bone-implant integration [101–106]. The coated titanium become bioactive and biocompatible because of their surface characteristics due to the formation of the apatite layer. Unfortunately, poor mechanical performance has hindered these from becoming favorable coating materials. Most present studies have focused on incorporating different elements into HA or BCP coatings to improve mechanical or corrosion properties [107–113]. Few studies showed that the incorporation of tantalum (Ta), chitosan, Graphene-oxide (GO), and biodegradable metals, and TiO\(_2\) in HA or BCP is effective to achieve the required properties. Similarly introducing the inner layer is also effective to achieve the multifunction’s of hybrid coatings [114–116]. The results show that these composites or multifunctional hybrid coatings are effective to improve biocompatibility, biocorrosion, and mechanical properties with the compromise of surface roughness and friction properties. Another challenge associated with these coatings is the adhesion strength which limits the use of these coatings on an industrial scale. Introducing the interface or seed layer can be helpful to improve the surface roughness and adhesion strength of calcium phosphate-based coatings [117].
The results in Table 3 show that many coating techniques have been employed to coat metal implant materials. Physical vapor deposition techniques including magnetron sputtering and cathodic arc physical deposition have been used effectively to achieve uniform distribution of bioactive glass, and TiN coatings with good adhesion strength and scratch resistance [86,93]. The grain size and microstructure of coatings can be controlled by controlling processing parameters. The processing parameters such as temperature, pressure, power, etc., are important to control the coating quality. Further optimization of these processing parameters can be effective to achieve high-quality coatings.

In comparison to HA and BCP coatings, TiN coatings showed improved corrosion, tribological, mechanical, antibacterial, and biological properties. The significant enhancement in all-determining parameters can be easily observed from tabular data for TiN coated specimens. Particularly, TiN coating is beneficial to enhance the mechanical properties up to 3 to 7 times. As per the data of two studies the hardness increased above 7 times as compared to the uncoated titanium surface. As another study showed that the hardness increased 4 times for TiN coated specimens. The data of these three studies showed that the elastic modulus of TiN coated specimens increased 2 to 4 times as compared to uncoated specimens. The corrosion tests showed that the corrosion current density of TiN coated specimens is very low as compared to uncoated specimens. The mean TiN coating showed good corrosion resistance. The tribological results showed a significant reduction in (up to 50%) COF and wear rate for TiN coated specimens. The biocompatibility tests show that the TiN coatings are biocompatible to some extent and better than uncoated titanium specimens. The bacterial studies show that the TiN coating exhibit antibacterial properties. Hence the results showed that the TiN coatings fulfill the required criteria for orthopedic applications. But before the use of these coatings, degradation studies are needed to be conducted for the long-term time. Further, the durability of TiN coating is needed to be investigated in long-term vitro and vivo studies. The studies on other coating materials including diamond-like carbon, Polylactide-L-lactide-ε-caprolactone (PLC), TiTaHfNbZr, etc. are still insufficient, and results of such coatings are not attractive to perform more studies on these coating materials.
Table 3. Summary of results for coatings on titanium surface.

Ref.	Coating Material	Thickness	Coating Method	Biocompatibility/Antibacterial Properties	Corrosion/Degradation Behavior	Mechanical Results	Tribological Results	
[86]	Biphasic calcium phosphate (BCP)	1000 nm	RF magnetron sputtering	wt.% of HA—86.76%, Enhancement in wt.% of apatite layer show bioactivity	---	Microhardness—455 HV (140%)	Roughness—153 nm (168%)	Higher scratch resistance
[92]	BCP/Ta$_2$O$_5$	1 μm /700 nm	Electrochemical deposition/Hydration condensation	Spherical apatite layer formation in immersion test show bioactivity	Corrosion current density—0.2 μA/cm2 (5.7%)	---	---	
[94]	Micro-arc oxidation & Polylactide-L-lactide-CO-ε-caprolactone (PLC)	5.4 μm	Micro-arc oxidation/dip coating	---	Mass loss—24.8%	Adhesion strength—13 MPa	---	
[118]	Ti-TiN-TiAlN	2.52 μm	Close field magnetron sputter ion plating	---	Corrosion current density—1.74 × 10$^{-3}$ μA/cm2 (7.5%)	Hardness—37.2 GPa (775%)	COF—0.23 (50%)	
[93]	TiN	5.8 μm	DC reactive magnetron sputtering	Relative growth rate of cells—90%, OD values and Hemolysis ratio show good biocompatibility	---	Elastic modulus—281 GPa (339%)	Wear rate—3.73 × 10$^{-5}$ mm3/Nm (7.53%)	
[91]	TiN	5 μm	Cathodic arc-physical deposition	Antibacterial inhabitation efficiency rates—138.2%	Corrosion current density—3.21 × 10$^{-2}$ μA/cm2 (0.35%)	Hardness—38.3 GPa (726%)	COF—0.2	
[89]	Sr incorporate calcium phosphate	5-8 μm	Micro-arc oxidation	Better cell adhesion and cell proliferation	---	---	---	
[119]	Bioactive glass (BGF18)	---	Micro-arc oxidation	Similar cell adhesion	---	---	Surface roughness—3.96 nm (1320%)	
[120]	TiTaHfNbZr	---	RF magnetron sputtering	---	---	Hardness—3.46 GPa	Roughness—2.78 nm (327%)	
[121]	Flourine doped diamond-like-carbon/Si	1.6 μm	Cathode plasma immersion ion implantation deposition	---	---	Hardness—18.3 GPa	Roughness—7.8 nm	COF—0.11
3.2. Coatings for Stainless Steel

Stainless steel is the most used material because of its low cost and high mechanical properties. Therefore, it is still used for making many orthopedic implant components like fixation screws, bone plates, etc. However, stainless steel is the least biocompatible and anticorrosive, and it does not integrate with bone naturally and might release some toxic ions and corrosion products. The metal implant encapsulated by body tissues released ions into the body which can become the cause of loosening and failure of the implant. A coating of bioactive materials on the stainless steel is a practical solution to induce osteointegration by decreasing or suppressing the released products. In addition, these coatings should be antibacterial. Several bioactive and antibacterial coatings have been used for stainless steel implants. Many investigations have been carried out to improve the biocompatibility, biocorrosion, and antibacterial properties of stainless steel by depositing BG or composites coatings containing BG [122–128]. BG-coated stainless-steel implants provide better integration to the body tissues by forming apatite at the coated metal surface. Furthermore, they can inhibit or regulate corrosion in the physiobiological environment [129]. To improve the further biocompatibility, antibacterial, and corrosion properties various materials including silane, chitosan, silica, gelatin, polyether ether ketone (PEEK), Zein, a natural fibroblast and copper, etc. have been added in BG to make composites coatings. Cuevas et al. [130] prepared the HA-loaded BG coated stainless steel substrates, and then evaluated their bioactivity in SBF solution. The thickness of the apatite layer and released ions concentration in the immersion test were observed for coated specimens. The results show that the addition of HA in BG is effective to increase the thickness of the apatite layer. The thickness formation rate at the start of soaking was higher, while a significant reduction in growth rate was observed after the 5 days of soaking. Furthermore, ion release behavior in the immersion test was the same for all types samples. Al-Rashidy et al. [131] used the electrophoretic co-deposition technique to coat stainless steel with three different BG compositions and studied the corrosion behavior. The achieved coatings were homogenous, uniform, and crack-free. The pH change and the concentration of calcium ions were measured in the immersion test. The decrease in pH and increase in released Ca ions were observed due to the formation of HA crystals on the substrate surface. The results shown in Figure 7 showed that all the BG coating layers have a better ability to form HA crystal on their surface.

![Figure 7](image-url) (a) pH change (b) Ca ion concentration in SBF solution for different compositions of BG coatings on stainless steel. Reprinted with permission from [131].

The deposition of the HA layer on stainless steel is also effective to enhance the bioactivity and corrosion resistance of stainless-steel implant materials. Rezaei et al. [132] deposited the HA-10wt.%Mg and HA-30wt.%Mg coating on the stainless steel for biomedical implants. The objective of the intermediate layer was to improve corrosion resistance...
while Mg particles were added to improve the osseointegration process by forming porosities in the physiological environment. The results of the study are presented in Figure 8. The results show that the HA-coated samples exhibit lower corrosion current densities and higher cell viability as compared to uncoated samples.

![Figure 8](image_url)

Figure 8. (a) Corrosion potential (b) Cell viability. Reprinted with permission from [132].

The results of different coatings on stainless steel are summarized in Table 4. The studies revealed that the HA and BG both are suitable coating materials to enhance the corrosion, bioactivity, and antibacterial characteristics. Such coatings exhibit weaker adhesion and still, there is needed to improve the adhesion strength. Poor adhesion between metallic and coating interface leads to failure and unsuitable for high load-bearing applications. Poor crystalized formation on metallic implant material caused the coating to dissolve and decrease adherence to a metallic surface. The failure occurs at the interface in case of long-term use. Therefore, the stability of HA and BG coatings are the most important factors to determine the success of steel implants. Several additive materials such as gelatin, PEEK, polyvinyl alcohol (PVA), etc. have been added in BG to improve the adhesion. So, there is needed to improve the adhesion stability and degradation behavior of coatings.

3.3. Coatings for Cobalt-Chrome Molybdenum (CoCrMo) Alloys

CoCrMo alloys exhibit favorable bioactivity with good corrosion and mechanical properties. Therefore, these alloys are widely used in orthopedic applications, especially for manufacturing knee and hip implants. Many methods have been employed to improve biocompatibility and other properties. Despite the high corrosion resistance of CoCrMo alloys due to the presence of thin oxide film, dangerous ions like Ni, Co, Cr are released in the body from CoCrMo prosthesis components. The elevated concentration of these ions may lead to the inflammatory response and implant failure after the joint implantation.
Table 4. Summary of results for stainless steel.

Ref.	Coating Material	Thickness	Coating Method	Biocompatibility/Antibacterial Properties	Corrosion/Degradation Behavior	Mechanical Results	Tribological Results
[131]	Bioactive glass-chitosan	143 µm	Electrophoretic co-deposition	——	pH—7.4–7.9		
Ca ion concentration—20 × 10⁻² mmol/l							
Corrosion current density—20.93 µA/cm²							
Corrosion rate—0.02 mmm/h	Roughness—170 µm (2.9%)						
[133]	Bioactive glass/silane	2/0.6 µm	Dip coating	Optical density—0.2	Corrosion current density—354 µA/cm²	Show no detachment	
[134]	HA-3SiC	45 µm	Electrophoretic deposition	——	Corrosion potential—0.041	Elastic modulus—728 MPa	
Bonding strength—1.61 MPa							
[135]	Bioactive glass/silane	1.2 µm	Dip coating	——	Improvement in corrosion resistance but show degradation in immersion test	——	
[132]	HA-10wt.%Mg	100 µm	Plasma spraying	Cell viability—96.7% (132%)	Mg ion concentration—71 ppm		
Corrosion potential—0.250							
Corrosion current density—0.12 µA/cm²	——						
[136]	Carbon nano tubes (CNTs)	80 µm	FEM	——	——	Static stress—87.574 MPa (181%)	
[137]	Chitosan-20 Polyvinyl alcohol (PVA)-BG	——	Electrophoretic deposition	HA forming ability show best bioactivity	Corrosion potential—0.7265	Optimum adhesive strength for 20 wt. % PVA coating	
[138]	ZNO	220 nm	Atomic layer deposition	——	Corrosion potential—0.131		
Corrosion current density—0.04 µA/cm²	Indenter load to failure—0.85 N	Surface roughness—0.40 µm					
[139]	Amorphous carbon: Niobium	2 µm	Planar magnetron sputtering	Enhancement in corrosion protection	Hardness—16.5 GPa		
Young modulus—44 GPa	COF—0.10						
[140]	5 Ag-Sr-Chitosan-Gelatin	——	Electrophoretic deposition	Suitable proliferation of osteoblast cells	——	Suitable adhesion strength	
[141]	Ag-CaSZ nanocomposites	——	E-beam evaporation	Hemocompatible			
Calcite precipitation | Improved corrosion resistance | —— | |
Leonberger et al. [142] performed the surface modifications on a CoCrMo alloy surface to improve the biocompatibility of these alloys. Five different CoCrMo substrates including uncoated, TiN coated, polished, porous polished, and pure Titanium (cpTi) coated were compared in terms of cytotoxicity and cell viability, and their osteoblast potential was evaluated. The cell viability test showed the evenly spread of cells on all the modified surfaces. All modified samples showed increased cell viability and the highest cell viability was observed for TiN coated alloy as shown in Figure 9a. The cytotoxicity test showed no significant changes as shown in Figure 9b. Lactate dehydrogenase (LDH) is released from the disrupted membranes. The membrane is disrupted in necrotic cells and LDH is released from the cell. The LDH release remained stable for all substrates. Hence, the TiN coatings showed good compatibility and prevent the CoCrMo surface from encountering the tissues. Furthermore, TiN coated specimens showed good corrosion resistance and reduced the released ions from CoCrMo base material.

Doring et al. [143] deposited the TiN, ZrN, and diamond-like carbon (DLC) coatings on CoCrMo alloy and performed the friction and wear studies. The lower values of coefficient of friction (COF) were recorded for TiN coated substrate as shown in Figure 10. The low COF of about 0.094 is attributed to the very smooth surface achieved by cathodic arc deposition.

The results of different studies are summarized in Table 5. The results showed that HA, TiN, and TiSIN coatings exhibit better performance as compared to other listed coatings.
Table 5. Summary of results for CoCrMo alloys.

Ref.	Coating Material	Thickness	Coating Method	Biocompatibility/Antibacterial Properties	Corrosion/Degradation Behavior	Mechanical Results	Tribological Results
[144]	HA/oxide	12.73/51.03 µm	Sol-gel dip coating	---	---	Adhesion strength—8.63 N Increases by increasing sintering temperature.	---
[142]	TiN	5.5 µm	Physical vapor deposition	Osteoblast viability—145.6%	---	Tensile strength—22 MPa Shear strength—20 MPa	Roughness—50 µm
[145]	Fluorohydroxyapatite	6.22 µm	Sol-gel procedure	Corrosion potential—0.264 V Corrosion density—3.7 × 10⁻³ µA/cm²	---	Show high adhesion	Roughness—0.477 µm
[146]	Tantalum	1.5 µm	Magnetron sputtering	---	---	Multilayered Ta film shows best adhesion	---
[147]	TiSIN	1.89 µm	Cathodic arc evaporation	Reduction in fretting volume—1000 times Reduction in Co ion release—90%	Elastic modulus—396 GPa Hardness—41.6 GPa Residual stress—8.00 GPa Critical load—0.329 N	Roughness—0.0406 µm	
[147]	ZrN	2.37 µm	Cathodic arc evaporation	Reduction in fretting volume—10 times Reduction in Co ion release—90%	Elastic modulus—409 GPa Hardness—29.3 GPa Residual stress—8.00 GPa Critical load—0.175 N	Roughness—0.0134 µm	
[148]	Graphene	5.76 µm	Chemical vapor deposition	Improved cell proliferation	---	Adhesion strength—1152 µN	---
[143]	TiN	1.7 µm	Cathodic arc evaporation	---	---	Hardness—30 GPa Penetration modulus—514 GPa Critical load—10 N	Roughness—0.0045 µm COF—0.094 Wear rate—4 × 10⁻¹⁵ m³/mN
[143]	Diamond-like carbon	0.7 µm	Cathodic arc evaporation	---	---	Hardness—74 GPa Penetration modulus—680 GPa Critical load—3 N	Roughness—0.0285 µm COF—0.023
[149]	TiNbN	3–6 µm	Physical vapor deposition	Viability—above 100%	Reduction in Co/Cr/Mo ion released—80.1/62.5/48%	---	---
[150]	TiN	2 µm	Plasma assisted chemical vapor deposition	---	Corrosion rate—0.793 µm/y	---	---
4. Conclusions

Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized.

Many coating techniques such as physical vapor deposition, chemical vapor deposition, electrochemical deposition, sol-gel, plasma spraying, and micro-arc oxidation have been used in recent years to coat metallic implants. Among these techniques physical vapor deposition techniques including cathodic arc deposition, DC reactive magnetron sputtering, close field magnetron sputter ion plating, etc. are effective techniques to produce the coating with improved biocompatibility, corrosion resistance, and mechanical properties. A significant enhancement in performance is reported for several coating materials including HA, BG, and TiN. However, the stability, adhesion, and degradation performance of these coatings are challenges and limiting the use of these coatings on an industrial scale. Many recent studies showed that the incorporation of tantalum (Ta), chitosan, Graphene-oxide (GO), and biodegradable metals, and TiO$_2$ in HA or BCP is effective to achieve the required properties. Similarly introducing the inner layer is also effective to achieve the multifunction’s of hybrid coatings. The results show that these composites or multifunctional hybrid coatings are effective to improve biocompatibility, bio-corrosion, and mechanical properties. In comparison to HA and BCP coatings, TiN coatings showed improved corrosion, tribological, mechanical, antibacterial, and biological properties.

Author Contributions: Methodology, M.H. and M.A.B.; data curation, M.H., S.H.A.R., N.A., M.R.S. and M.A.B.; formal analysis, S.H.A.R. and U.S.; investigation, N.A. and M.A.B.; supervision, N.A. and M.A.B.; writing—original draft, M.H. and N.A.; resources, M.R.S.; funding acquisition, A.I.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brach del Prever, E.M.; Costa, L.; Piconi, C.; Baricco, M.; Massè, A. Biomaterials for total joint replacements. In Biomechanics and Biomaterials in Orthopedics, 2nd ed.; Springer: London, UK, 2016; pp. 59–70.
2. Krishnakumar, S.; Senthilvelan, T. Polymer composites in dentistry and orthopedic applications-a review. Mater. Today Proc. 2020. [CrossRef]
3. Goswami, C.; Patnaik, A.; Bhat, I.K.; Singh, T. Mechanical physical and wear properties of some oxide ceramics for hip joint application: A short review. Mater. Today Proc. 2021. [CrossRef]
4. Jones, L.C.; Timmie Topoleski, L.D.; Tsao, A.K. Biomaterials in orthopaedic implants. In Mechanical Testing of Orthopaedic Implants; Elsevier: Amsterdam, The Netherlands, 2017; pp. 17–32. ISBN 9780081002865.
5. Sharma, A.; Sharma, G. Biomaterials and their applications. In AIP Conference Proceedings; American Institute of Physics Inc.: Melville, NY, USA, 2018; Volume 1953, p. 080041.
6. Radha, R.; Sreekanth, D. Insight of magnesium alloys and composites for orthopedic implant applications—A review. J. Magnes. Alloy. 2017, 5, 286–312. [CrossRef]
7. Ali, M.; Hussein, M.A.; Al-Aqeeli, N. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. J. Alloy. Compd. 2019, 792, 1162–1190. [CrossRef]
8. Song, M.S.; Zeng, R.C.; Ding, Y.F.; Li, R.W.; Easton, M.; Cole, I.; Birbilis, N.; Chen, X.B. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review. *J. Mater. Sci. Technol.* 2019, 35, 535–544. [CrossRef]

9. Jaiswal, S.; Dubey, A.; Lahiri, D. In Vitro Biodegradation and Biocompatibility of Mg-HA-Based Composites for Orthopaedic Applications: A Review. *J. Indian Inst. Sci.* 2019, 99, 303–327. [CrossRef]

10. Shahin, M.; Munir, K.; Wen, C.; Li, Y. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. *Acta Biomater.* 2019, 96, 1–19. [PubMed]

11. Xia, L.; Xie, Y.; Fang, B.; Wang, X.; Lin, K. In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al4V implants. *Chem. Eng. J.* 2018, 347, 711–720. [CrossRef]

12. Gobbi, S. Wear Resistance of Metallic Orthopedic Implants—Mini Review. *Biomed. J. Sci. Tech. Res.* 2018, 12. [CrossRef]

13. Xu, W.; Yu, A.; Lu, X.; Tamaddon, M.; Ng, L.; Dilawer Hayat, M.; Wang, M.; Zhang, J.; Qu, X.; Liu, C. Synergistic interactions between wear and corrosion of Ti-6Al4V orthopedic alloy. *J. Mater. Res. Technol.* 2020, 9, 9996–10003. [CrossRef]

14. Xu, W.; Lu, X.; Tian, J.; Huang, C.; Chen, M.; Yan, Y.; Wang, L.; Qu, X.; Wen, C. Microstructure, wear resistance, and corrosion performance of Ti35Zr25Nb alloy fabricated by powder metallurgy for orthopedic applications. *J. Mater. Sci. Technol.* 2020, 41, 191–198. [CrossRef]

15. Priyadarshini, B.; Rama, M.; Chetan; Vijayalakshmi, U. Bioactive coating as a surface modification technique for biocompatible metallic implants: A review. *J. Asian Ceram. Soc.* 2019, 7, 397–406. [CrossRef]

16. Saad, M.; Akhtar, S.; Srivastava, S. Composite Polymer in Orthopedic Implants: A Review. In *Proceedings of the Materials Today: Proceedings*; Elsevier: Amsterdam, The Netherlands, 2018; Volume 5, pp. 20224–20231.

17. Xia, C.; Ma, X.; Zhang, X.; Li, K.; Tan, J.; Qiao, Y.; Liu, X. Enhanced physicochemical and biological properties of C/Cu dual ions implanted medical titanium. *Bioscat. Mater.* 2020, 5, 377–386. [CrossRef]

18. Al-Tamimi, A.A.; Peach, C.; Fernandes, P.R.; Cseke, A.; Bartolo, P.J.D. Topology Optimization to Reduce the Stress Shielding Effect for Orthopedic Applications. In *Procedia CIRP*; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 65, pp. 202–206.

19. Limmahakun, S.; Oloyede, A.; Sittisiripratip, K.; Xiao, Y.; Yan, C. Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction. *Mater. Des.* 2017, 114, 633–641. [CrossRef]

20. Zhang, L.; Song, B.; Choi, S.-K.; Shi, Y. A Topology Strategy to Reduce Stress Shielding of Additively Manufactured Porous Metallic Biomaterials. *Int. J. Mech. Sci.* 2017, 197, 106331. [CrossRef]

21. Vijayavenkataraman, S.; Gopinath, A.; Lu, W.F. A new design of 3D-printed orthopedic bone plates with auxetic structures to mitigate stress shielding and improve intra-operative bending. *Bio-Des. Mater.* 2020, 3, 98–108. [CrossRef]

22. Raffa, M.L.; Nguyen, V.; Hernigou, P.; Flouzat-Lachaniette, C.; Haiat, G. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio. *J. Orthop. Res.* 2020, 39, 1174–1183. [CrossRef]

23. Ait Moussa, A.; Fischer, J.; Yadav, R.; Khandaker, M. Minimizing Stress Shielding and Cement Damage in Cemented Femoral Component of a Hip Prosthesis through Computational Design Optimization. *Adv. Orthop.* 2017. [CrossRef]

24. Lam, R.R.; Kondiah, V.V.; Noidabuab, Y.; Dampala, R.; Ratna Sunil, B. Effect of Crack Angle on Stress Shielding in Bone and Orthopedic Fixing Plate Implant: Design and Simulation. In *Lecture Notes in Mechanical Engineering*; Springer: Berlin/Heidelberg, Germany, 2021; pp. 785–792.

25. Hosseinitabatabaei, S.; Ashjaae, N.; Tahani, M. Introduction of Maximum Stress Parameter for the Evaluation of Stress Shielding Around Orthopedic Screws in the Presence of Bone Remodeling Process. *J. Med. Biol. Eng.* 2017, 37, 703–716. [CrossRef]

26. Kraus, T.; Fischerauer, S.; Treichler, S.; Martinelli, E.; Eichler, J.; Myrissa, A.; Zötsch, S.; Uggowitzer, P.J.; Löffler, J.F.; Weinberg, A.M. The influence of biodegradable magnesium implants on the growth plate. *Acta Biomater.* 2018, 66, 109–117. [CrossRef]

27. JadHAV, P.; BongAle, A.; Kumar, S. Schematic review of plasma arc oxidation process for Mg Alloy Bio Implants. *IOP Conf. Ser. Mater. Sci. Eng.* 2021, 1017, 012011. [CrossRef]

28. Camrani, S.; Fleck, B. Biodegradable magnesium alloys as temporary orthopaedic implants: A review. *BioMetals* 2019, 32, 185–193. [CrossRef]

29. Korhonen, L.; Perhomaa, M.; Kyrö, A.; Pokka, T.; Serlo, W.; Merikanto, J.; Sinikumpu, J.P. Intramedullary nailing of forearm shaft fractures by biodegradable compared with titanium nails: Results of a prospective randomized trial in children with at least two years of follow-up. *Biomaterials* 2018, 185, 383–392. [CrossRef]

30. Ibrahim, M.Z.; Sarhan, A.A.D.; Yusuf, F.; Hamdi, M. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants—A review article. *J. Alloy. Compd.* 2017, 714, 636–667. [CrossRef]

31. Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. *Mater. Sci. Eng. C* 2019, 102, 844–862. [CrossRef] [PubMed]

32. Quinn, J.; McFadden, R.; Chan, C.W.; Carson, L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Surface Compatibility and Prevent Bacterial Biofilm Formation. *iScience* 2020, 23, 101745. [CrossRef] [PubMed]

33. Čapek, J.; Stehlíková, K.; Michalcová, A.; Msallamová, Š.; Vojtěch, D. Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe-2 wt% X (X = Pd, Ag and C) alloys. *Mater. Chem. Phys.* 2016, 181, 501–511. [CrossRef]

34. Kraus, T.; Moszner, F.; Fischerauer, S.; Fiedler, M.; Martinelli, E.; Eichler, J.; Witte, F.; Willbold, E.; Schinhammer, M.; Meischel, M.; et al. Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. *Acta Biomater.* 2014, 10, 3346–3353. [CrossRef] [PubMed]

35. Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghanl, S.A.C.; Kurniawan, T.; Ismail, M.H.; Ibrahim, M.H.I. Study of corrosion in biocompatible metals for implants: A review. *J. Alloy. Compd.* 2017, 701, 698–715. [CrossRef]
36. Hussain, M.; Naqvi, R.A.; Abbasi, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. *Polymers* 2020, 12, 323. [CrossRef]

37. Hussain, M.; Sufyan, M.; Abbasi, N.; Ahmad, H.; Joyia, F.M.F.M.; Noman, M.; Ahsan, M.M.M.M.; Raza, M.N.M.N.; Razaq, A.; Zulqernain, M.; et al. Influence of laser processing conditions for texturing on ultra-high-molecular-weight-polyethylene (UHMWPE) surface. *Case Stud. Therm. Eng.* 2019, 14, 100491. [CrossRef]

38. Sufyan, M.; Hussain, M.; Ahmad, H.; Abbasi, N.; Ashraf, J.; Zahra, N. Bulge micro-textures influence on tribological performance of ultra-high-molecular-weight-polyethylene (UHMWPE) under phosphatidylycholine (Lipid) and bovine serum albumin (BSA) solutions. *Biomed. Phys. Eng. Express* 2019, 5, 035021. [CrossRef]

39. Sequeira, S.; Fernandes, M.H.; Neves, N.; Almeida, M.M. Development and characterization of zirconia–alumina composites for orthopedic implants. *Ceram. Int.* 2017, 43, 693–703. [CrossRef]

40. Gopal, V.; Manivasagam, G. Zirconia-alumina composite for orthopedic implant application. In *Applications of Nanocomposite Materials in Orthopedics*; Elsevier: Amsterdam, The Netherlands, 2018; pp. 201–219. ISBN 9780128137574.

41. Baptista, A.; Silva, F.; Porteiro, J.; Miguez, J.; Pinto, G. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. *Coatings* 2018, 8, 402. [CrossRef]

42. Jiang, X.; Yang, F.C.; Chen, W.C.; Lee, J.W.; Chang, C.L. Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering. *Surf. Coat. Technol.* 2017, 320, 138–145. [CrossRef]

43. Tang, J.F.; Lin, C.Y.; Yang, F.C.; Tsai, Y.J.; Chang, C.L. Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering. *Surf. Coat. Technol.* 2020, 386, 125484. [CrossRef]

44. Geyao, L.; Yang, D.; Wanglin, C.; Chengyong, W. Development and application of physical vapor deposited coatings for medical devices: A review. In *Procedia CIRP*; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 89, pp. 250–262.

45. Hussein, M.A.; Adesina, A.Y.; Kumar, A.M.; Sorour, A.A.; Ankhah, N.; Al-Aqeli, N. Mechanical, in-vitro corrosion, and tribological characteristics of TiN coating produced by cathodic arc physical vapor deposition on Ti$_{30}$Nb$_{13}$Zr alloy for biomedical applications. *Thin Solid Films.* 2020, 709, 138183. [CrossRef]

46. Esmaeili, M.M.; Mahmoody, M.; Imani, R. Tantalum carbide coating on Ti$_6$Al$_4$V by electron beam physical vapor deposition method: Study of corrosion and biocompatibility behavior. *Int. J. Appl. Ceram. Technol.* 2017, 14, 374–382. [CrossRef]

47. Bobzin, K.; Brögelmann, T.; Kalscheuer, C.; Liang, T. Post-annealing of (Ti,Al,Si)N coatings deposited by high speed physical vapor deposition (HS-PVD). *Surf. Coat. Technol.* 2019, 375, 752–762. [CrossRef]

48. Azar, G.T.P.; Yelkarasi, C.; Ürgen, M. The role of droplets on the cavitation erosion damage of TiN coatings produced with cathodic arc physical vapor deposition. *Surf. Coat. Technol.* 2017, 322, 211–217. [CrossRef]

49. Kiliaraj, G.S.; Kamalan, K.K.; Alagarsamy, K.; Vishwakarma, V. Silver-nera stabilized zirconia composite coatings on titanium for potential implant applications. *Surf. Coat. Technol.* 2019, 368, 224–231. [CrossRef]

50. Qadir, M.; Li, Y.; Wen, C. Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review. *Acta Biomater.* 2019, 89, 14–32. [CrossRef] [PubMed]

51. Abbasi, N.; Hussain, M.; Zahra, N.; Ahmad, H.; Mehdi, S.M.Z.; Amer, U.S.; Zain Mehdi, S.M.; Sajjad, U.; Amer, M. Optimization ofCr Seed Layer Effect for Surface Roughness of As-Deposited Silver Film using Electron Beam Deposition Method. *J. Chem. Soc. Pak.* 2020, 42, 23.

52. Abbasi, N.; Shad, M.R.; Hussain, M.; Mehdi, S.M.Z.; Sajjad, U. Fabrication and characterization of silver thin films using physical vapor deposition, and the investigation of annealing effects on their structures. *Mater. Res. Express* 2019, 6, 114637. [CrossRef] [PubMed]

53. Jalil, S.A.; Ahmed, Q.S.; Akram, M.; Abbasi, N.; Khalid, A.; Khalid, M.L.; Mehar, M.M.; Diaz, R.; Mehmood, M.Q. Fabrication of high refractive index TiO$_2$ films using electron beam evaporator for all dielectric metasurfaces. *Mater. Res. Express* 2018, 5, 016410. [CrossRef]

54. Joshi, P.; Haque, A.; Gupta, S.; Narayan, R.J.; Narayan, J. Synthesis of multifunctional microdiamonds on stainless steel substrates by chemical vapor deposition. *Carbon N. Y.* 2021, 117, 739–749. [CrossRef]

55. Ullah, S.; Hasan, M.; Ta, H.Q.; Zhao, J.; Shi, Q.; Fu, L.; Choi, J.; Yang, R.; Liu, Z.; Rümmeli, M.H. Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications. *Adv. Funct. Mater.* 2019, 29, 1904457. [CrossRef]

56. Nowak, D.; Januszewicz, B.; Niedzielski, P. Morphology, mechanical and tribological properties of hybrid carbon layer fabricated by Radio Frequency Plasma Assisted Chemical Vapor Deposition. *Surf. Coat. Technol.* 2017, 329, 1–10. [CrossRef]

57. Morejón-Alonso, L.; Mochales, C.; Nascimento, L.; Müller, W.D. Electrochemical deposition of Sr and Sr/Mg-co-substituted hydroxyapatite on Ti$_{46}$Nb alloy. *Mater. Lett.* 2019, 248, 65–68. [CrossRef]

58. Chakraborty, R.; Seesala, V.S.; Manna, J.S.; Saha, P.; Dhara, S. Synthesis, characterization and cytocompatibility assessment of hydroxyapatite-polypyrrole composite coating synthesized through pulsed reverse electrochemical deposition. *Mater. Sci. Eng. C* 2019, 94, 597–607. [CrossRef]

59. Li, T.T.; Ling, L.; Lin, M.C.; Peng, H.K.; Ren, H.T.; Lou, C.W.; Lin, J.H. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. *J. Mater. Sci.* 2020, 55, 6352–6374. [CrossRef]

60. Cotrut, C.M.; Vlădescu, A.; Dinu, M.; Vranceanu, D.M. Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition. *Ceram. Int.* 2018, 44, 669–677. [CrossRef]
141. Kaliaraj, G.S.; Thukkaram, S.; Alagarsamy, K.; Kirubaharan, A.M.K.; Paul, L.K.; Abraham, L.; Vishwakarma, V.; Sagadevan, S. Silver-calcia stabilized zirconia nanocomposite coated medical grade stainless steel as potential bioimplants. *Surf. Interfaces* 2021, 24, 101086. [CrossRef]

142. Lohberger, B.; Stuendl, N.; Glaenzer, D.; Rinner, B.; Donohue, N.; Lichtenegger, H.C.; Ploszczanski, L.; Leithner, A. CoCrMo surface modifications affect biocompatibility, adhesion, and inflammation in human osteoblasts. *Sci. Rep.* 2020, 10, 1–8. [CrossRef]

143. Döring, J.; Crackau, M.; Nestler, C.; Welzel, F.; Bertrand, J.; Lohmann, C.H. Characteristics of different cathodic arc deposition coatings on CoCrMo for biomedical applications. *J. Mech. Behav. Biomed. Mater.* 2019, 97, 212–221. [CrossRef]

144. Ayu, H.M.; Izman, S.; Daud, R.; Krishnamurithy, G.; Shah, A.; Tomadi, S.H.; Salwani, M.S. Surface Modification on CoCrMo Alloy to Improve the Adhesion Strength of Hydroxyapatite Coating. In *Procedia Engineering*; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 184, pp. 399–408.

145. Romonț, D.C.; Iskra, J.; Bele, M.; Demetrescu, I.; Miloșev, I. Elaboration and characterization of fluorohydroxyapatite and fluoroapatite sol-gel coatings on CoCrMo alloy. *J. Alloy. Compd.* 2016, 665, 355–364. [CrossRef]

146. Shiri, S.; Zhang, C.; Odeshi, A.; Yang, Q. Growth and characterization of tantalum multilayer thin films on CoCrMo alloy for orthopedic implant applications. *Thin Solid Films*. 2018, 645, 405–408. [CrossRef]

147. Tsai, C.E.; Hung, J.; Hu, Y.; Wang, D.Y.; Pilliar, R.M.; Wang, R. Improving fretting corrosion resistance of CoCrMo alloy with TiSiN and ZrN coatings for orthopedic applications. *J. Mech. Behav. Biomed. Mater.* 2021, 114, 104233. [CrossRef]

148. Zhang, Q.; Li, K.; Yan, J.; Wang, Z.; Wu, Q.; Bi, L.; Yang, M.; Han, Y. Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells. *Biochem. Biophys. Res. Commun.* 2018, 497, 1011–1017. [CrossRef]

149. Ragone, V.; Canciani, E.; Biffi, C.A.; D’Ambrosi, R.; Sanvito, R.; Dellavia, C.; Galliera, E. CoCrMo alloys ions release behavior by TiNbN coating: An in vitro study. *Biomed. Microdevices* 2019, 21, 1–9. [CrossRef]

150. Jakovljević, S.; Alar, V.; Ivanković, A. Electrochemical Behaviour of PACVD TiN-Coated CoCrMo Medical Alloy. *Metals* 2017, 7, 231. [CrossRef]