Evaluation of Zona Pellucida Function for Sperm Penetration During In Vitro Fertilization in Pigs

Fuminori TANIHARA1,2), Michiko NAKAI2), Hiroyuki KANEKO2), Junko NOGUCHI2), Takeshi OTOI1) and Kazuhiro KIKUCHI1,2)

1)The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
2)Division of Animal Sciences, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan

©2013 by the Society for Reproduction and Development
Published online in J-STAGE: May 11, 2013
Accepted: April 15, 2013
Received: February 21, 2013

Abstract. In porcine oocytes, the function of the zona pellucida (ZP) with regard to sperm penetration or prevention of polyspermy is not well understood. In the present study, we investigated the effects of the ZP on sperm penetration during in vitro fertilization (IVF). We collected in vitro-matured oocytes with a first polar body (ZP+ oocytes). Some of them were freed from the ZP (ZP− oocytes) by two treatments (pronase and mechanical pipetting), and the effects of these treatments on sperm penetration parameters (sperm penetration rate and numbers of penetrated sperm per oocyte) were evaluated. There was no evident difference in the parameters between the two groups. Secondly, we compared the sperm penetration parameters of ZP+ and ZP− oocytes using frozen-thawed epididymal spermatozoa from four boars. Sperm penetration into ZP+ oocytes was found to be accelerated relative to ZP− oocytes. Thirdly, we evaluated the sperm penetration of ZP+ and ZP− oocytes at 1–10 h after IVF (3 h gamete co-incubation). The proportions of oocytes penetrated by sperm increased significantly with time in both groups; however, the number of penetrated sperm per oocyte did not increase in ZP− oocytes. Finally, we performed IVF using ZP− oocytes divided into control (3 h) and prolonged gamete co-incubation (5 h) groups. Greater numbers of sperm penetrated in the 5 h group than in the control group. These results suggest that the ZP and oolemma are not competent factors for prevention of polyspermy in our present porcine IVF system. However, it appears that ZP removal is one of the possibilities for reducing polyspermic penetration in vitro in pigs.

Key words: Fertilization, Oocyte, Pig, Polyspermy, Zona pellucida (J. Reprod. Dev. 59: 385–392, 2013)
Materials and Methods

Oocyte collection and in vitro maturation (IVM)

Collection and IVM of porcine oocytes were carried out as reported previously [19]. In brief, porcine ovaries were obtained from prepubertal crossbred gilts (Landrace × Large White × Duroc breeds) at a local slaughterhouse and transported to the laboratory at 35 C. Cumulus-oocyte complexes (COCs) were collected from follicles 2–6 mm in diameter in Medium 199 (M199; with Hank’s salts, Sigma-Aldrich, St Louis, MO, USA) supplemented with 5% (v/v) fetal bovine serum (Gibco, Life Technologies, Carlsbad, CA, USA), 20 mM HEPES (Dojindo Laboratories, Kumamoto, Japan), 100 IU/ml penicillin G potassium (Sigma-Aldrich) and 0.1 mg/ml streptomycin sulfate (Sigma-Aldrich). About 40 COCs were cultured in 500 µl of maturation medium for 20–22 h in 4-well dishes (Nunc1on Multidishtes; Thermo Fisher Scientific, Waltham, NA, USA). The medium employed was modified North Carolina State University (NCSU)-37 solution [20] containing 10% (v/v) porcine follicular fluid, 0.6 mM cysteine, 50 mM β-mercaptoethanol, 1 mM dibutylryl cAMP (dbcAMP; Sigma-Aldrich), 10 IU/ml eCG (Serotropin; ASKa Pharmaceutical, Tokyo, Japan) and 10 IU/ml hCG (Puberogen 500 U; Novartis Animal Health, Tokyo, Japan). The COCs were subsequently cultured for 24 h in maturation medium without dbcAMP and hormones. Maturation culture was carried out at 39 C under conditions in which CO2 and O2 were adjusted to 5%, 5% and 90% respectively (5% CO2 and 5% O2). After culture, ZP-intact and ZP-matured oocytes were examined in an in vitro stereomicroscope and used as the main source of oocytes for further experiments. Denuded oocytes with the first polar body were harvested under a stereomicroscope and used as in vitro-matured and ZP-intact oocytes (ZP+ oocytes).

Preparation of the ZP-free oocytes

We obtained ZP-free oocytes by the following two methods. 1) Matured oocytes were exposed to 0.5% (v/v) pronase (Sigma-Aldrich, P-8811) in Dulbecco’s PBS (Nissui Pharmaceutical, Tokyo, Japan) for 20–30 sec [21]. Oocytes with an expanded and deformed ZP were then transferred to M199 without pronase and freed completely from the ZP by gentle pipetting. After 1 h of incubation in IVM medium at 39 C under 5% CO2 and 5% O2, the ZP-free oocytes, termed “pZP− 1 h oocytes,” were used for further experiments. 2) The ZP was removed mechanically using a micromanipulator (MMO-204, Narishige, Tokyo, Japan) without pronase treatment, employing a modification of a method designed for mouse oocytes [22]. First, we stabbed the ZP with a glass needle and formed a slit in it. Next, we aspirated the cytoplasm into a holding pipette. These ZP-free oocytes were termed “mZP− oocytes.”

IVF and evaluation of fertilization

The oocytes in all groups were subjected to IVF, as described previously [19]. In brief, epididymides were isolated from Landrace boars, and epididymal spermatozoa were collected from them and frozen [23]. Spermatozoa were thawed and preincubated for 15 min in Medium 199 with Earl’s salts (Gibco) adjusted to pH 7.8 [24]. Oocytes were transferred to fertilization medium for 20–22 h at 35 C. Cumulus-oocyte complexes (COCs) were subsequently cultured for 24 h in maturation medium without dbcAMP and hormones. Maturation culture was carried out at 39 C under conditions in which CO2 and O2 were adjusted to 5%, 5% and 90% respectively (5% CO2 and 5% O2). After culture, cumulus cells were removed from the oocytes by treatment with 150 IU/ml hyaluronidase (Sigma-Aldrich) in M199 and gentle pipetting. Denuded oocytes were examined after addition of a single sperm lot. We fixed and evaluated. The main objective in this experiment was to compare the boar effects on sperm penetration, and to select an appropriate lot for the following experiments to check sperm penetration parameters using ZP− oocytes.

Experimental design

Experiment 1) Effects of pronase treatment of oocytes on sperm penetration: We evaluated the effects of pronase treatment of oocytes on sperm penetration. We prepared ZP-free oocytes as follows. In the first group, mZP− oocytes were incubated for 1 h in IVM medium. In the second group, we supplied pZP− 1 h oocytes. Finally, in the third group, we subsequently incubated pZP− 1 h oocytes for an additional 2 h in IVM medium, and these were supplied as “pZP− 3 h” oocytes. The oocytes in the three groups were separately subjected to IVF using a single lot of frozen-thawed epididymal spermatozoa. At 10 h after insemination, oocytes in all the groups were fixed, and their sperm penetration parameters were evaluated.

Experiment 2) Effects of ZP on sperm penetration: We evaluated the function of the ZP for in vitro sperm penetration during IVF. The ZP+ and ZP− (the same as pZP− 1 h in Experiment 1) oocytes were subjected to IVF using frozen-thawed epididymal spermatozoa from four different boars. At 10 h after insemination, oocytes in all groups were fixed and evaluated. The main objective in this experiment was to compare the boar effects on sperm penetration, and to select an appropriate lot for the following experiments to check sperm penetration parameters using ZP− oocytes.

Experiment 3) Evaluation of sperm penetration parameters by time-course monitoring: To clarify whether the ZP and/or oolemma prevents polyspermy, the sperm penetration parameters of ZP+ and ZP− oocytes were examined after addition of a single sperm lot. We evaluated sperm penetration at 1, 2, 3, 4, 5 and 10 h after insemination. In the 4, 5 and 10 h groups, after co-culture of the gametes for 3 h, the oocytes were washed gently three times and then incubated in culture medium until fixation. After fixation, we evaluated these oocytes for sperm penetration parameters.

Experiment 4) Evaluation of the possible prevention of sperm penetration by the oolemma: To examine whether or not the oolemma prevents polyspermy, we evaluated the effects of prolongation of the sperm and oocyte co-incubation period from 3 to 5 h on sperm penetration of ZP− oocytes. The ZP− oocytes were divided into two groups depending on the duration of co-incubation: a control group (co-incubation for 3 h) and a prolonged group (co-incubation for 5 h). The oocytes co-incubated with sperm were further incubated without sperm in culture medium before fixation and staining. We fixed the oocytes at 3, 5 and 10 h after insemination and then stained.
and examined them for sperm penetration parameters.

Statistical analysis

The proportions of oocytes penetrated by sperm and the average numbers of penetrated sperm per oocyte were subjected to one-way (Experiment 1) and two-way ANOVA (Experiments 2−4) using the General Linear Models procedures of the Statistical Analysis System (Ver. 9.2, SAS Institute, Cary, NC, USA). Percentage data were arcsine-transformed before the analysis.

Results

Experiment 1: Effects of pronase treatment of oocytes on sperm penetration

The proportions of sperm that penetrated mZP−, pZP− 1 h and pZP− 3 h oocytes and the average numbers of penetrated sperm per oocyte are summarized in Fig. 1A and 1B, respectively. Only oocytes penetrated by sperm were used for calculation of the average number of penetrated sperm per oocyte. After ANOVA, we found no difference between the mZP− group and the other two groups treated with pronase (pZP− 1 h and pZP− 3 h). In the next experiments, we used pZP− 1 h oocytes as zona-free oocytes (hereafter termed ZP− oocytes).

Experiment 2: Effects of ZP on sperm penetration

The combined effects of the ZP present during IVF and utilization of frozen-thawed epididymal spermatozoa from different boars from which sperm were obtained are shown in Fig. 2A and 2B. The results of ANOVA are shown in Table 1. Significant differences were evident for sperm penetration parameters in both ZP+/− groups and as well as the period from insemination. The proportion of oocytes penetrated by sperm and the average number of penetrated sperm per oocyte were better in ZP+ oocytes compared with ZP− oocytes, the sperm penetration parameters increasing with the period from insemination to fixation.

Experiment 3: Evaluation of sperm penetration parameters by time-course monitoring

The combined effects of the ZP present during IVF and the period from insemination to fixation are shown in Fig. 3A and 3B. The results of ANOVA are shown in Table 2. Significant differences were detected in both the duration of gamete co-incubation (3 and 5 h) and period from insemination. Longer gamete co-incubation (5 h) made the sperm penetration parameters (the proportion of oocytes penetrated by sperm and the average number of penetrated sperm per oocyte) better compared with the standard period (3 h) when the period from insemination to fixation was prolonged to 10 h.

Experiment 4: Evaluation of the possible prevention of extra sperm penetration by the oolemma

The combined effects of the duration of gamete co-incubation (3 and 5 h) and period from insemination to fixation (3, 5 and 10 h) are shown in Fig. 4. The results of ANOVA are shown in Table 3. Significant differences were detected in both the duration of gamete co-incubation and period from insemination. Longer gamete co-incubation (5 h) made the sperm penetration parameters (the proportion of oocytes penetrated by sperm and the average number of penetrated sperm per oocyte) better compared with the standard period (3 h) when the period from insemination to fixation was prolonged to 10 h.
The proportion of penetrated oocytes (A) and the average number of penetrated sperm per oocyte (B) in ZP+ and the ZP− oocytes fixed at 10 h after insemination (initiation of in vitro fertilization). Frozen-thawed epididymal spermatozoa from 4 different boars were used (Boars 1−4). The results of ANOVA are shown in Table 1. When the ZP was present, sperm penetration was significantly accelerated. Replicated trials were repeated three times for each group. Numbers above the bars indicate total numbers of oocytes used in the experimental groups. Means ± SEM are presented.

Table 1. ANOVA of sperm penetration parameters according to presence of the zona pellucida (ZP) and sperm origin from different boars

Source	% of penetrated oocytes	Boar 3	Interaction between ZP and Boar 3
Presence of ZP	df=1	0.925	17.43^a
Boar	df=3	1.05	19.79^a
Interaction between ZP and Boar	df=3	0.119	2.24^a

ZP: intact (ZP+) or removed (ZP−). Boar: 4 boars. df: degree of freedom. ^aP<0.01.

Fig. 3. The proportion of penetrated oocytes (A) and the average number of penetrated sperm per oocyte (B) for ZP+ and ZP− oocytes at 1, 2, 3, 4, 5 and 10 h after insemination (initiation of in vitro fertilization). We used frozen-thawed epididymal spermatozoa from one lot (Boar 3 in Fig. 2), for which a marked difference in sperm penetration was observed between the ZP+ and ZP− oocytes used in experiment 2. The results of ANOVA are shown in Table 2. Numbers above or under the plots indicate total numbers of oocytes used in the experimental groups. Replicated trials were performed five times. Means ± SEM are presented.
Recently, an in vitro production system for porcine embryos has been developed [27–29]. However, polyspermy is considered to be a very troublesome obstacle to efficient production of normal porcine embryos because although polyspermic oocytes can develop to blastocysts, their ploidy becomes abnormal [30, 31]. To establish an efficient method(s) for producing normal porcine embryos by reduction of polyspermy, it has become necessary to clarify precisely the role played by the ZP in normal fertilization. Some studies have focused on reducing polyspermy. It has been reported that exposure of gametes to oviductal epithelial cells and/or oviductal secretions can reduce polyspermy [5, 32–34]. Kim et al. [33] reported that addition of 1.0% oviductal fluid to the fertilization medium increased monospermy. Coy et al. [32] reported that exposure of oocytes to undiluted oviductal fluid (1 oocyte per microliter of fluid) for 30

Table 2. ANOVA of sperm penetration parameters according to presence of the zona pellucida (ZP) and period from insemination to fixation

Source	% of penetrated oocytes	No. of penetrated sperm				
	df	Mean square	F value	df	Mean square	F value
Presence of ZP	1	6.996	137.12\(^a\)	1	469.009	86.62\(^a\)
Period from insemination	5	1.741	34.12\(^a\)	5	64.144	11.85\(^a\)
Interaction between ZP and insemination	5	0.745	14.60\(^b\)	5	26.452	4.89\(^b\)

ZP: intact (ZP+) or removed (ZP−), Period from insemination to fixation: 1, 2, 3, 4, 5 and 10 h. df: degree of freedom. \(^a\) P<0.01.

Table 3. ANOVA of sperm penetration parameters into ZP-free oocytes according to duration of gamete co-incubation and period from insemination to fixation

Source	% of penetrated oocytes	No. of penetrated sperm				
	df	Mean square	F value	df	Mean square	F value
Duration of gamete co-incubation	1	0.114	5.96\(^a\)	1	4.511	6.50\(^a\)
Period from insemination	2	0.549	28.68\(^b\)	2	10.869	15.67\(^b\)
Interaction between co-incubation and insemination	2	0.06	3.14	2	1.336	1.93

Duration of gamete co-incubation: 3 and 5 h. Period from insemination to fixation: 3, 5 and 10 h. df: degree of freedom. \(^a\) P<0.05; \(^b\) P<0.01.

Discussion

Recently, an in vitro production system for porcine embryos has been developed [27–29]. However, polyspermy is considered to be a very troublesome obstacle to efficient production of normal porcine embryos because although polyspermic oocytes can develop to blastocysts, their ploidy becomes abnormal [30, 31]. To establish an efficient method(s) for producing normal porcine embryos by reduction of polyspermy, it has become necessary to clarify precisely the role played by the ZP in normal fertilization. Some studies have focused on reducing polyspermy. It has been reported that exposure of gametes to oviductal epithelial cells and/or oviductal secretions can reduce polyspermy [5, 32–34]. Kim et al. [33] reported that addition of 1.0% oviductal fluid to the fertilization medium increased monospermy. Coy et al. [32] reported that exposure of oocytes to undiluted oviductal fluid (1 oocyte per microliter of fluid) for 30
min before performing IVF decreased polyspermy significantly. Furthermore, Nagai et al. [34] demonstrated that 2.5 h co-culture of sperm and oviduct cells reduces polyspermy. However, the mechanism responsible for polyspermy is still not well understood, and efforts to clarify it have been limited. As mentioned above, the zona reaction is important for prevention of polyspermy in mammalian oocytes. Therefore, we evaluated the roles of the ZP during IVF to help clarify the mechanism of polyspermy in pigs.

To understand the function of the ZP in sperm penetration and blocking of multiple sperm entry, we compared sperm penetration in both ZP+ and ZP− oocytes. Usually, ZP− oocytes can be obtained easily by treatment with pronase (protease) (for example, in porcine [8, 35, 36], bovine [37, 38] and mouse [6, 39] oocytes). However, we hypothesized that this enzyme treatment might exert some negative effects on sperm penetration (or prevention of polyspermy) in porcine oocytes. Initially, therefore, we evaluated the effects of pronase treatment of oocytes on sperm penetration in Experiment 1. Using mouse oocytes, Yamagata et al. [22] succeeded in removing the ZP using a micromanipulator. Thus, in the present study, we also removed the ZP mechanically using a micromanipulator without pronase treatment and compared the sperm penetration parameters with those of ZP-denuded oocytes treated with pronase. The results revealed no significant difference in sperm penetration parameters between the pronase-treated group (pZP−) and the group without pronase treatment (mZP−). Furthermore, we checked the possibility of recovery of oocytes or disruption of their integrity after additional culture (1 h vs. 3 h), but no effect was observed in terms of sperm penetration parameters. Pronase is a protease separated from the extracellular fluid of Streptomyces griseus [40]. Wolf et al. [6] reported that the proportion of sperm penetration of zona-free mouse oocytes prepared by enzymatic treatment (using chymotrypsin and pronase) was less than that of zona-free oocytes prepared mechanically and indicated that this harmful effect was caused by proteolytic alteration of the oolemma upon exposure to these enzymes for a long period (15–30 min). Using mouse oocytes, Zuccotti et al. [39] found that short-term exposure to chymotrypsin for 10 min had little effect on sperm penetration, whereas additional exposure for 15 min reduced sperm penetration significantly. The time required for dissolution of the ZP using pronase is usually much shorter than this. Taken together, it can be suggested that pronase treatment for a shorter period (20−30 sec) has little effect on penetration of sperm into porcine oocytes.

In Experiment 2, the proportion of oocytes penetrated by sperm and the average number of sperm per oocyte (sperm penetration parameters) were significantly lower for ZP− oocytes than for ZP+ oocytes. In the present study, the sperm penetration parameters differed significantly depending upon the boar from which sperm had been obtained. This difference is one of the characteristics of porcine species and has already been reported for frozen-thawed ejaculated and epididymal spermatozoa [23, 41]. Furthermore, from these results, we suggest that when the ZP is not present, sperm penetration into oocytes cannot be accelerated. The acrosome reaction (AR) plays very important roles in sperm penetration. Acrosome-intact or partially acrosome-reacted sperm can bind to the ZP [14], and thereafter the AR is induced by the ZP [8, 9]. It is now clear that only acrosome-reacted sperm can pass through the ZP and that after ZP passage they can fuse with the oolemma [42]. On the other hand, in the present study, a certain proportion of ZP− oocytes was also penetrated. Wu et al. [8] reported that 84% of the sperm adherent to ZP-free oocytes lost their acrosome within 1 h after initiation of IVF. Frozen-thawed spermatozoa are already "capacitated" because of cryo-effects on the sperm membrane (so called "cryocapacitation") [41, 43] and are considered to lose their acrosome spontaneously during incubation in fertilization medium. Therefore, in our experiments, they were able to fuse with the oolemma of ZP− oocytes. However, as mentioned above, a much lower proportion of sperm was able to fuse with the oolemma of ZP− oocytes compared with ZP+ oocytes. This also suggests the importance of the ZP for sperm penetration.

The result of Experiment 2 suggests that the presence of the ZP accelerates sperm penetration, but the result was not enough to discuss the detailed function of the ZP and oolemma for prevention of extra sperm penetration. It seems likely that the proportion and number of penetrated sperm reach a plateau at a certain time point after insemination. In Experiment 3, therefore, to clarify whether polyspermy was prevented by the ZP and/or oolemma, we evaluated sperm penetration parameters with time after insemination. The results clearly demonstrated that sperm penetration increased significantly with time after insemination. In mammalian oocytes, the zona reaction (zona hardening) is established through a change in the form of the ZP caused by release of cortical granules [15, 44]. In porcine in vivo-matured oocytes, the zona reaction is induced during fertilization [35]. On the other hand, in in vitro-matured porcine oocytes, some researchers have reported that the zona reaction is incomplete or delayed [45–47]. Hatanaka et al. [36] reported that zona hardening occurred 12 h after insemination. Therefore, a longer time for complete zona hardening may be required in vitro than in vivo. It has been reported that the thickness of the ZP and its structure after IVF (after release of cortical granules) differ between in vivo- and in vitro-matured porcine oocytes [46]. Furthermore, the structure of the ZP and its resistance to pronase digestion may similarly differ in vivo and in vitro [35, 46]. It is possible that these factors are related to failure or delay of zona hardening. In the present study, the results of Experiments 2 and 3 using ZP+ oocytes support these hypotheses. We speculate that the presence or modification of the ZP is not effective for prevention of polyspermy during IVF of in vitro-matured porcine oocytes.

The results of Experiment 3 indicated that the number of penetrated sperm remained low in ZP− oocytes and did not increase significantly with the duration of IVF. There is a possibility that extra sperm penetration may have been blocked by the oolemma (membrane block) after the first sperm penetration. Therefore, in Experiment 4, we prolonged gamete co-incubation from 3 h (standard duration in our laboratory) to 5 h to increase the chance for encounter between the two gametes and examined in detail whether membrane block also occurs during IVF of in vitro-matured porcine oocytes. Membrane block is the main mechanism for prevention of polyspermy in nonmammalian species (i.e., frogs and several marine invertebrates) [48]. However, in mammalian oocytes, it is considered to be one of the supportive mechanisms of the zona reaction for prevention of polyspermy, but the role of the oolemma has remained unclear [49]. Among mammalian species, the mechanism of membrane block has been examined only in mice [49, 50]; however, in porcine oocytes,
no studies have investigated this issue. In the present study, the proportion of oocytes that were penetrated by sperm and the average number of penetrated sperms per oocyte were significantly higher in the prolonged IVF group than those in the control group. This suggests that sperm penetration may increase if the opportunity for oocytes to encounter sperm is prolonged. On the other hand, membrane block in mouse oocytes is reported to be functional [49]. McAvey et al. [51] reported that when ZP-free mouse oocytes were subjected to IVF, the number of sperm that fused with oocytes reached a plateau at 2 h after insemination. Other studies using ZP-free oocytes of the mouse, hamster and human have also shown reduction of the binding and fusion abilities of the oolemma after insemination [52–54]. Elevation of intracellular calcium levels (corresponding to oocyte activation) is important for the establishment of membrane block in mouse oocytes [51]. We are not sure if there is a similar mechanism for membrane block in porcine oocytes because there has been no report about this phenomenon. Our results, however, suggest that the oolemma is not effective for preventing polyspermic penetration of ZP−− oocytes or that complete membrane block is not involved in the porcine IVF system.

Another important factor(s) or mechanism(s) on the oolemma and/or in the perivitelline space may participate in sperm penetration for completion of fertilization. When the ZP is removed, this factor or mechanism may be lost upon direct exposure of the perivitelline space and/or oolemma to the IVF medium. For example, in bovine oocytes, it has been reported that fibronectin is present in the perivitelline space and that this is a factor related to sperm-oolemma binding. However, when the ZP is treated with protease, this factor may be removed from the periphery of the oocyte [55]. CD9 has also been reported to be an important factor for sperm-oolemma fusion in mouse, bovine and porcine oocytes [56–58]. Other research has indicated that mouse oocytes incubated with pronase to remove the ZP lose all their CD9 from the oolemma [59]. Our present findings support this possibility. Further studies will need to focus on the reasons for our present results.

In conclusion, the ZP and oolemma are not competent factors for prevention of polyspermy, at least in our present porcine IVF system. However, it appears that ZP removal is one of the possibilities to reduce polyspermic penetration in vitro in pigs.

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research (22380153 to KK and 21380715 to HK) from the Japan Society for the Promotion of Science (JSPS). The authors would like to thank Ms M Nagai for technical assistance.

References

1. Paz G, Yavetz H, Margalit M, Hevlin-Schwartz T, Amit A. The involvement of the zona pellucida in unexplained infertile women. Hum Reprod 2008; 147: 77–80, 93, 92. [Medline]
2. Al-Daghistani IH, Fram KM. Incidence of anti-zona pellucida and anti-sperm antibodies among infertile Jordanian women and its relation to mycoplasmas. East Med J Health J 2009; 15: 1263–1271. [Medline]
3. Szepesińska M, Skrzypek J, Kamieniecka M, Kurgisz M. Antizona and antispem antibodies in women with endometriosis and/or infertility. Fertil Steril 2001; 75: 97–105. [Medline]
4. Uleová-Gallavá Z, Babrová K, Novaková P, Micanová Z, Rokytá Z. Antizonal antibodies in ovulatory cervical mucus and in serum of patients with fertility disorders. Ceska Gynekol 2004; 69: 215–218. [Medline]
5. Wang WH, Day BN, Wu GM. How does polyspermy happen in mammalian oocytes? Microsc Res Tech 2003; 64: 315–341. [Medline]
6. Wolf DP, Inoue M, Stark RA. Penetration of zona-free mouse ova. Biol Reprod 1976; 15: 213–221. [Medline]
7. Shu Y, Peng W, Zhang J. Pregnancy and live birth following the transfer of vitrifiled-warmed blastocysts derived from zona- and corona-cell-free oocytes. Reprod Biomed Online 2010; 21: 527–532. [Medline]
8. Wu GM, Lai L, Mao J, McAuley TC, Caamaano JN, Cantley T, Rieke A, Murphy CN, Prather RS, Didion BA, Day BN. Birth of piglets by in vitro fertilization of zona-free porcine oocytes. Theriogenology 2004; 62: 1544–1556. [Medline]
9. Berger T, Turner KO, Meisel S, Hedrick JL. Zona pellucida-induced acrosome reaction in boar sperm. Biol Reprod 1989; 40: 525–530. [Medline]
10. Fazeli A, Hage WJ, Cheng FP, Voorhoost WF, Marks A, Bevers MM, Cohenrander B. Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol Reprod 1997; 56: 430–438. [Medline]
11. Bleil JD, Wassarman PM. Mammalian sperm-egg interaction: identification of a glyco-protein in mouse egg zona pellucida possessing receptor activity for sperm. Cell 1980; 20: 873–882. [Medline]
12. Canovas S, Romar R, Grulhon LA, Arvilles M, Coy P. Pre-fertilization zona pellucida hardening by different cross-linkers affects IVF in pigs and cattle and improves embryo production in pigs. Reproduction 2009: 137: 803–812. [Medline]
13. Kikuchi K, Somfai T, Nakai M, Nagai T. Appearance, fate and utilization of abnormal porcine embryos produced by in vitro maturation and fertilization. Soc Reprod Fertil Suppl 2009; 66: 135–147. [Medline]
14. Funahashi H. Polyspermic penetration in porcine IVM-IVF systems. Reprod Fertil Dev 2003; 15: 167–177. [Medline]
15. Sun QY. Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microsc Res Tech 2003; 61: 342–348. [Medline]
16. Burkart AD, Xiong B, Babiakov B, Jimenez-Movilla M, Dean J. Ovatocint, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J Cell Biol 2012; 197: 37–44. [Medline]
17. Arviles M, Juber J, Castells MT, Ballesa J, Kan FW. Modifications of carbohydrate residues and ZP2 and ZP3 glycoproteins in the mouse zona pellucida after fertilization. Biol Reprod 1997; 57: 1155–1163. [Medline]
18. Miller DJ, Gong X, Decker G, Shur BD. Egg cortical granule N-acetylglucosaminidase is required for the mouse zona block to polyspermy. J Cell Biol 1993; 123: 1431–1440. [Medline]
19. Kikuchi K, Onishi A, Kashivazaki N, Iwamoto M, Noguchi J, Kaneko H, Kita T, Nagai T. Successful piglet production after transfer of blastocysts produced by a modified in vitro procedure. Biol Reprod 2002; 66: 1033–1041. [Medline]
20. Petters RM, Wells KD. Culture of pig embryos. J Reprod Fertil Suppl 1993; 48: 61–73. [Medline]
21. Peura TT, Vajta G. A comparison of established and new approaches in ovine and bovine nuclear transfer. Cloning Stem Cells 2003; 8: 257–277. [Medline]
22. Yamagata K, Nakanhishi T, Ikawa M, Yamaguchi R, Moss SB, Okabe S. Membrane from the calegin-deficient mouse have normal abilities for binding and fusion to the egg plasma membrane. Dev Biol 2002; 250: 348–357. [Medline]
23. Kikuchi K, Nagai T, Kashivazaki N, Ikeda H, Noguchi J, Shimada A, Soltay E, Kaneko H. Cryopreservation and ensuing in vitro fertilization ability of boar spermatozoa from epididymides stored for 4 degrees C. Theriogenology 1998; 50: 615–623. [Medline]
24. Nagai T, Takahashi T, Masuda H, Shioya Y, Kuwayama M, Fukushima M, Iwasaki S, Hanada A. In-vitro fertilization of pig oocytes by frozen boar spermatozoa. J Reprod Fertil 1988; 84: 585–591. [Medline]
25. Suzuki K, Asano A, Eriksson B, Niwa K, Nagai T, Rodriguez-Martinez H. Capacitation status and in vitro fertilty of boar spermatozoa: effects of seminal plasma, cumulus-oocyte-complex-conditioned medium and hyaluronan. Int J Androl 2002; 25: 84–93. [Medline]
26. Wang WH, Niwa K, Okuda K. In-vitro penetration of pig oocytes matured in culture by frozen-thawed ejaculated spermatozoa. J Reprod Fertil 1991; 93: 491–496. [Medline]
27. Kikuchi K, Kashiwazaki N, Nagai T, Nakai M, Somfai T, Noguchi J, Kaneko H. Selected aspects of advanced porcine reproductive technology. Reprod Domest Anim 2008; 43: 401–406. [Medline]
28. Kikuchi K. Developmental competence of porcine blastocysts produced in vitro. J Reprod Dev 2004; 50: 21–28. [Medline]
29. Wheeler MB, Clark SG, Beebe DJ. Developments in in vitro technologies for swine embryo production. Reprod Fertil Dev 2004; 16: 15–25. [Medline]
30. Han YM, Abbezyera LR, Kim JH, Moon HB, Cabot RA, Day BN, Prather RS.
Growth retardation of inner cell mass cells in polyspermic porcine embryos produced in vitro. Biol Reprod 1999; 60: 1110–1113. [Medline]

31. Somfai T, Ozawa M, Noguchi J, Kaneko H, Karja NW, Fahrudin M, Nakai M, Maudsma N, Dinyes A, Nagai T, Kikuchi K. In vivo development of polyspermic porcine oocytes: Relationship between early fragmentation and excessive number of penetrating spermatozoa. Anim Reprod Sci 2008; 107: 131–147. [Medline]

32. Coy P, Canovas S, Mondejar J, Saavedra MD, Romar R, Grullon L, Matas C, Aviles M. Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc Natl Acad Sci USA 2008; 105: 15809–15814. [Medline]

33. Kim NH, Funahashi H, Abyeeda LR, Moon SJ, Prather RS, Day BN. Effects of oviductal fluid on sperm penetration and cortical granule exocytosis during fertilization of pig oocytes in vitro. J Reprod Fertil 1996; 107: 79–86. [Medline]

34. Nagai T, Moor RM. Effect of oviduct cells on the incidence of polyspermy in pig eggs fertilized in vitro. Mol Reprod Dev 1990; 26: 377–382. [Medline]

35. Kolbe T, Holz W. Differences in proteinase digestibility of the zona pellucida of in vivo and in vitro derived porcine oocytes and embryos. Theriogenology 2005; 63: 1695–1705. [Medline]

36. Hatanaka Y, Nagai T, Tobita T, Nakano M. Changes in the properties and composition of zona pellucida of pigs during fertilization in vitro. J Reprod Fertil 1992; 95: 431–440. [Medline]

37. Fulka J Jr, Pavlok A, Fulka J. In-vitro fertilization of zona-free bovine oocytes matured in culture. J Reprod Fertil 1982; 64: 495–499. [Medline]

38. Soloy E, Sresn V, Pavlok A, Hyttel P, Thomsen PD, Smith SD, Prochazka R, Kuhelka M, Hoier R, Bosth P, Motlik J, Greve T. Establishment of the block against sperm penetration in parthenogenetically activated bovine oocytes matured in vitro. J Reprod Fertil 1997; 111: 151–157. [Medline]

39. Zacchetti M, Urch UA, Yanagimachi R. Collagenase as an agent for dissolving the zona pellucida of hamster and mouse oocytes. J Reprod Fertil 1991; 93: 515–520. [Medline]

40. Nomoto M, Narashashi Y. A proteolytic enzyme of Streptomyces griseus: I. Purification of a protease of Streptomyces griseus. J Biochem 1959; 46: 653–667.

41. Ikeda H, Kikuchi K, Noguchi J, Takeda H, Shimada A, Mizokami T, Kaneko H. Effect of preincubation of cryopreserved porcine epididymal sperm. Theriogenology 2002; 57: 1309–1318. [Medline]

42. Imai H, Niwa K, Inatani A. Ultrastructural observations of boar spermatozoa penetrating zona-free hamster eggs. Biol Reprod 1980; 25: 481–486. [Medline]

43. Watson PF. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod Fertil Dev 1995; 7: 871–891. [Medline]

44. Abbott AL, Ducibella T. Calcium and the control of mammalian cortical granule exocytosis. Front Biosci 2001; 6: D792–D806. [Medline]

45. Coy P, Gadea J, Romar R, Matas C, Garcia E. Effect of in vitro fertilization medium on the acrosome reaction, cortical reaction, zona pellucida hardening and in vitro development in pigs. Reproduction 2002; 124: 279–288. [Medline]

46. Funahashi H, Ekwall H, Kikuchi K, Rodriguez-Martinez H. Transmission electron microscopy studies of the zona reaction in pig oocytes fertilized in vivo and in vitro. Reproduction 2001; 122: 443–452. [Medline]

47. Coy P, Aviles M. What controls polyspermy in mammals, the oviduct or the oocyte? Biol Rev Camb Philos Soc 2010; 85: 593–605. [Medline]

48. Gould MC, Stephano JL. Polyspermy prevention in marine invertebrates. Microsc Res Tech 2003; 61: 379–388. [Medline]

49. Gardner AJ, Evans JP. Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod Fertil Dev 2006; 18: 53–61. [Medline]

50. Gardner AJ, Williams CJ, Evans JP. Establishment of the mammalian membrane block to polyspermy: evidence for calcium-dependent and independent regulation. Reproduction 2007; 133: 383–393. [Medline]

51. McKay BA, Wortzman GR, Williams CJ, Evans JP. Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs. Biol Reprod 2002; 67: 1342–1352. [Medline]

52. Zacchetti M, Yanagimachi R, Yanagimachi H. The ability of hamster oolemma to fuse with spermatozoa: its acquisition during oogenesis and loss after fertilization. Development 1991; 112: 143–152. [Medline]

53. Horvath PM, Kemm T, Caulfield J, Boldt J. Mechanistic studies of the plasma membrane block to polyspermy in mouse eggs. Mol Reprod Dev 1993; 34: 65–72. [Medline]

54. Sengoku K, Tamate K, Horikawa M, Takaoka Y, Ishikawa M, Dukelow WR. Plasma membrane block to polyspermy in human oocytes and preimplantation embryos. J Reprod Fertil 1995; 105: 85–90. [Medline]

55. Thys M, Nauwdyck H, Maes D, Hoogewijs M, Vercauteren D, Rijsselaere T, Favoreel H, Van Soom A. Expression and putative function of fibronectin and its receptor (integrin alphai/beta1) in male and female gametes during bovine fertilization in vitro. Reproduction 2009; 138: 471–482. [Medline]

56. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y, Ban T, Ito C, Toshimori K, Nakamura A, Ito M, Miyado M, Mekada E, Umezawa A. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 2006; 105: 12921–12926. [Medline]

57. Li YH, Hou Y, Ma W, Yuan JX, Zhang D, Sun QY, Wang WH. Localization of CD9 in pig oocytes and its effects on sperm-egg interaction. Reproduction 2004; 127: 151–157. [Medline]

58. Zhou GB, Liu GS, Meng QG, Liu Y, Hou YP, Wang XX, Li N, Zhu SE. Tetraspanin CD9 in bovine oocytes and its role in fertilization. J Reprod Dev 2009; 55: 305–308. [Medline]

59. Komorowski S, Szczepanska K, Maleszewski M. Distinct mechanisms underlie sperm-induced and protease-induced oolemma block to sperm penetration. Int J Dev Biol 2003; 47: 65–69. [Medline]