Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode *Laxus oneistus* to oxic-anoxic interfaces

Gabriela F. Paredes1, Tobias Viehboeck1,2,3, Stephanie Markert4, Michaela A. Mausz5, Yui Sato6, Manuel Liebeke6, Lena König1,7 & Silvia Bulgheresi1,7*

Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored. One such animal is the marine nematode *Laxus oneistus*. It thrives, invariably coated by its sulfur-oxidizing symbiont *Candidatus Thiosymbion oneisti*, in anoxic sulfidic or hypoxic sand. Here, transcriptomics and proteomics showed that, whether in anoxia or not, *L. oneistus* mostly expressed genes involved in ubiquitination, energy generation, oxidative stress response, immune response, development, and translation. Importantly, ubiquitination genes were also highly expressed when the nematode was subjected to anoxic sulfidic conditions, together with genes involved in autophagy, detoxification and ribosome biogenesis. We hypothesize that these degradation pathways were induced to recycle damaged cellular components (mitochondria) and misfolded proteins into nutrients. Remarkably, when *L. oneistus* was subjected to anoxic sulfidic conditions, lectin and mucin genes were also upregulated, potentially to promote the attachment of its thiotrophic symbiont. Furthermore, the nematode appeared to survive oxygen deprivation by using an alternative electron carrier (rhodoquinone) and acceptor (fumarate), to rewire the electron transfer chain. On the other hand, under hypoxia, genes involved in costly processes (e.g., amino acid biosynthesis, development, feeding, mating) were upregulated, together with the worm’s Toll-like innate immunity pathway and several immune effectors (e.g., bactericidal/permeability-increasing proteins, fungicides). In conclusion, we hypothesize that, in anoxic sulfidic sand, *L. oneistus* upregulates degradation processes, rewire the oxidative phosphorylation and reinforces its coat of bacterial sulfur-oxidizers. In upper sand layers, instead, it appears to produce broad-range antimicrobials and to exploit oxygen for biosynthesis and development.

Fluctuations that lead to a decrease in oxygen availability are common in nature. The physiological and behavioral response to oxygen deprivation has been studied in animals that naturally experience oxygen deprivation, such as frogs, goldfish, and turtles, as well as in invertebrate genetic models. When oxygen deprived, these organisms must face the challenge of a drastic drop in the production of the energy-storing metabolite adenosine.
triphosphosphate (ATP), which leads to the failure of energy-demanding processes that are crucial for maintaining cellular homeostasis. Anoxia-tolerant organisms, however, are capable of saving energy by stopping energy-costly cellular functions (e.g., protein synthesis, ion pumping, and cell cycle progression), maintaining stable and low permeability of membranes, and producing ATP by anaerobic glycolysis.

When parasitic and free-living nematodes, including the model organism *Caenorhabditis elegans*, are experimentally exposed to anoxia (< 0.001 kPa O2), the intracellular ATP/ADP ratio drops dramatically and, within 10 h, they enter a state of reversible metabolic arrest called suspended animation. Once in this state, *C. elegans* stop to eat, move, develop or lay eggs, implying that oxygen deprivation affects their growth and behavior. If these effects can be reversed upon oxygen reestablishment, the latter can also provoke a massive and sudden production of reactive oxygen species (ROS) that may overwhelm the organism's antioxidant defense, and cause its death (reviewed in¹). Of note, an increase in mitochondrial ROS production was also observed in worms under hypoxia, because of the inefficient transfer of electrons to molecular oxygen.

Because oxygen diffuses slowly through aqueous solutions, sharp concentration gradients of this electron acceptor may occur in marine environments and wet soil. It is at oxic-anoxic interfaces of marine sands that free-living nematodes coated with sulfur-oxidizing Gammaproteobacteria (Stilbonematinae) abound. However, up to this study, the molecular mechanisms allowing symbiotic nematodes to withstand anoxia, and the inherent stress it is known to inflict upon metazoans, were unknown. Here, we incubated *Laxus oneistus* in conditions resembling those it encounters in its natural environment (i.e., anoxic sulfidic or hypoxic), and applied comparative transcriptomics, proteomics and lipidomics to understand how it copes with oxygen deprivation. Contrarily to our expectations, it did not enter suspended animation. However, it upregulated genes required for ribosome biogenesis and energy generation, and for degradation pathways (e.g., ubiquitination-proteasome systems, autophagy) likely involved in recycling damaged cellular components and misfolded proteins into nutrients. Notably, under anoxic sulfidic conditions, it also upregulated putative symbiont-binding molecules such as lectins. In the presence of oxygen, on the other hand, the worm appeared to overexpress genes involved in energy-demanding processes (e.g., amino acid synthesis, development, feeding, and mating) and upregulated the synthesis of broad-range antimicrobials, likely via triggering the Toll/NF-κB pathway.

Results and discussion

The nematode *Laxus oneistus* did not enter suspended animation upon 24 h in anoxia. To survive anoxia, nematodes enter suspended animation to suppress metabolism and conserve energy. The most notorious sign of suspended animation is the arrest of motility.

Surprisingly, although the whole population of four tested nematode species, including *C. elegans*, was reported to be in suspended animation upon 10 h in anoxia, *L. oneistus* kept moving not only after 24-h-long incubations, but also upon 6-day-long incubations in anoxic seawater (three batches of 50 worms were incubated under each condition). Additionally, the symbiotic nematodes appeared morphologically normal (Supplemental Movies 1–4).

The fact that we could not observe suspended animation, led us to hypothesize that *L. oneistus* evolved unprecedented strategies to survive oxygen deprivation.

Stable transcriptional profile under hypoxic or anoxic sulfidic conditions. To understand the molecular mechanisms underlying *L. oneistus* response to oxygen, we subjected it to various oxygen concentrations. Namely, nematode batches were incubated under either normoxic (100% air saturation; O), hypoxic (30% air saturation; H) or anoxic (0% air saturation; A) conditions for 24 h. Additionally, given that *L. oneistus* thrives in reduced sand containing up to 25 µM sulfide, we also incubated it in anoxic seawater supplemented with < 25 µM sulfide (anoxic sulfidic condition; AS; see for the sulfide concentration experienced by *L. oneistus* during each incubation).

Whereas transcriptional differences of the symbiont *Candidatus Thiosybion oneistii* incubated under normoxic (O) and hypoxic (H) conditions were negligible, the expression profiles of nematode batches incubated under O conditions varied so much that they did not cluster (Fig. S1). Consequently, there was no detectable differential expression between the transcriptomes of O nematodes and any of the other transcriptomes (H, A and AS; Fig. S1B, C). We attribute the erratic transcriptional response of *L. oneistus* to normoxia to the fact that this concentration is not naturally experienced by *L. oneistus*.

As for the expression profiles of nematodes subjected to the H, A or AS conditions, replicates of each condition behaved more congruently (Fig. S1B). However, we did not find any significant difference between the A and AS nematodes and only 0.05% of the genes (8 genes; Data S1) were differentially expressed between the H and A nematodes. Moreover, even at the proteome level, there was no significant difference between the H and A incubations (t-test, Benjamini–Hochberg correction, \( p < 0.05 \); Fig. S2A, Data S1). Finally, only the comparison of the AS and H transcriptomes resulted in 4.8% of the expressed genes (787 out of 16,526) being differentially expressed, with 434 genes being upregulated under the AS condition and 353 being upregulated under the H condition (Fig. S1C, Data S1).

Collectively, our data suggests that *L. oneistus* may be ill-equipped to handle normoxic sediment, but it maintains a largely stable physiological profile under all other conditions. Before discussing the subset of biological processes differentially upregulated in AS versus H nematodes and vice versa, we will present the physiological processes the worm appears to mostly engage with, irrespective of the environmental conditions we experimentally subjected it to.
Top-expressed transcripts under all tested conditions. To gain insights on L. oneistus basal physiology, we treated all 16 transcriptomes as biological replicates (i.e., O, H, A and AS transcriptomes were pooled) and identified the 100 most abundant transcripts out of 16,526 based on functional categories extracted from the UniProt database and comprehensive literature search (Fig. 1, Data S2). Our manual classification was supported by automatic eggNOG classification (Data S2). Similarly, the H and A proteomes were pooled, and the 100 most abundant proteins out of 2,626 were detected (Fig. S2).

Based on median gene expression values of the top 100 expressed genes, we found that some of the processes L. oneistus mostly engages with were ubiquitination (ubq-1), energy generation (e.g., globin glb-1-like), cytochrome c oxidase I subunit ctc-1 (UniProtKB P24893), nduo-4-like (UniProtKB P24892), stress response and
detoxification (e.g., hsp-1, hsp-90, hsp12.2, and catalases ctl-1 and ctl-2\textsuperscript{22,23}), and immune defense (lysozyme-like proteins and lec-3) (Fig. 1, Data S2).

Lastly, 48 out of the top 100 most expressed genes, were also detected among the top 100 proteins (Fig. 1, Fig. S2, and Data S2, Supplemental material). Despite the modest Spearman correlation between transcript and protein levels ($p = 0.4$, $p$-value < 0.01) (Fig. S3A), there was an overlap in the detected biological processes (e.g., energy generation, stress response or detoxification categories, carbohydrate metabolism, cytoskeleton, locomotion, nervous system) (Figs. S2, S3B). All in all, except for those encoding for immune effectors, top-transcribed \textit{L. oneistus} genes could not be unambiguously ascribed to its symbiotic lifestyle. This differs to what has been observed for other chemosynthetic hosts, such as giant tubeworms and clams. It is perhaps because these animals acquire their endosymbionts horizontally and feed on them (as they are housed intracellularly) that they abundantly express genes involved in symbiont acquisition, proliferation control and digestion\textsuperscript{24–26}. Notably, we did observe a partial overlap of the most expressed gene categories (e.g., oxidative stress, energy generation, immune response), when \textit{L. oneistus} was compared to the marine gutless annelid \textit{Olavius algarvensis}. We ascribe the overlap to the fact that, albeit endosymbiotic, \textit{O. algarvensis} also inhabits shallow water sand (Fig. S4, Supplemental material) and, as hypothesized for \textit{L. oneistus}, it may also acquire its symbionts vertically\textsuperscript{27–29}.

To conclude, although both symbiont\textsuperscript{16} and host transcriptomics do not suggest a high degree of inter-partner metabolic dependence in the \textit{L. oneistus} ecotysymbiosis, the nematode seems well-adapted to both anoxic sulfidic (AS) and hypoxic (H) sand (Fig. 2, Data S1). The transcriptional response of the worm to these two conditions is, however, significant (Fig. 2, Data S1), and it will be reported below.

\textbf{Genes upregulated in anoxic sulfidic (AS) nematodes.} \textit{Chaperones and detoxification.} The expression of chaperone-encoding (e.g., hsp12.2, grpE, dnaJ/dnj-2, pfd-1, pfd-6\textsuperscript{30–32}) and ROS-detoxification-related genes (e.g., superoxide dismutase sod-2 and a putative glutathione peroxidase, involved in the detoxification of superoxide byproducts and hydrogen peroxide, respectively\textsuperscript{33}) were higher in AS nematodes (Figs. 2 and 3). Notably, transcripts encoding for the heme-binding cytochrome P450 \textit{cyp-13B1} were also more abundant in AS (Fig. 3), perhaps to increase the worm's capacity to cope with putative ROS formation\textsuperscript{34}. Indeed, as cells start being oxygen-depleted, mitochondrial ROS accumulate because of the inefficient transfer of electrons to molecular oxygen\textsuperscript{11,12}. Alternatively, the upregulation of antioxidant-related genes in AS worms could represent...
an anticipation response to an imminent reoxygenation. In animals alternating between anoxic and oxygenated habitats, the re-exposure to oxygen can be very dangerous, as it creates a sudden ROS overproduction that may overwhelm the oxidative defense mechanisms\(^1\). Although it has not been reported for nematodes, overexpres-
sion of ROS-counteracting genes is consistent with what has been reported for vertebrates and marine gastro-

Mitochondrial and cytoplasmic ribosome biogenesis. In the cellular stress imposed by oxygen deprivation, mito-

chondria are central to both death and survival (reviewed in7). In this scenario, calcium regulation, the scavenging of ROS or the suppression of their production, and/or inhibition of the mitochondrial permeability transition pore (MPTP) opening, might help to preserve mitochondrial function and integrity47,48. In addition, removal of specific mitochondrial components (mitochondrial-associated protein degradation, MAD), might also arise to maintain the overall mitochondrial homeostasis49. Perhaps as a response to anoxia-induced stress (reviewed in7), a gene involved in MAD (vms-1)28 was upregulated in AS worms (Fig. 4). More abundant in this condition were also transcripts encoding for mitochondrial transmembrane transporters tin-44, slc-25A26 and C16C10.1 (UniProtKB O02161, Q18934, Q09461), putatively transporting peptide-containing proteins from the inner membrane into the mitochondrial matrix, such as S-Adenosyl methionine (Fig. 6). Surprisingly, although the translation elongation factor ef-1A26 was downregulated in AS worms, not only various mitochondrial ribosome structural components (28S: mrps, 39S: mrpl)39, and mitochondrial translation-related genes (e.g., C24D10.6 and W03F8.3)39 were upregulated in AS nematodes, but also several cytoplasmic ribosome biogenesis (40S: rps, 60S: rpl)39 and subunit assembly genes (e.g., RRP7A-like)41 (Fig. 4).

Taken together, the maintenance of mitochondrial homeostasis, an anticipatory response to a potential upcoming ROS insult (see "Chaperones and detoxification" section) and/or their involvement in extra-ribosomal functions32,43 might explain the upregulation of ribosomal biogenesis-related genes in AS nematodes. Although upregulation of ribosomal proteins has also been observed in gastropods exposed to anoxia44, increased ribosomal biogenesis (which oftentimes directly correlates with an increase in protein synthesis) is not expected in animals that must repress their metabolism to cope with oxygen deprivation28.

Energy generation. Equally surprising was the upregulation of all differentially expressed genes related to energy generation in AS nematodes (Fig. 4). Namely, besides putative oxygen-binding globulin-like genes (e.g., glb-1, glb-14)21, the following were upregulated in AS nematodes: key structural genes (e.g., atp-3, atp-5)39, assembly-related genes (H+-transport ATP synthase)39 of the mitochondrial ATP synthase (complex V), genes related to complex I (lpd-5, mao-2)39,48, a subunit of the succinate dehydrogenase involved in complex II (mve-1)39, a mitochondrial cytochrome c oxidase subunit II assembly gene related to complex IV (sco-1)39, and a mitochondrial gene (coq-5), involved in the synthesis of either ubiquinone (Q, aerobic) or rhodoquinone (BQ, anaerobic) electron carriers51 (Fig. 4). This suggests that, under anoxia, the electron transfer chain (ETC) is rewired: the electrons still enter the ETC at complex I, but do not reach complex III and IV. Instead, complex II, which in aerobic conditions functions as a succinate dehydrogenase, is repurposed into a reductase, which shuts down51,52.

In short, under AS, similarly to what has been observed in other free-living and parasitic nematodes, complex I appears to be the sole proton pump in this truncated form of ETC51,52. In accordance with this hypothesis, tryptophan (Trp) degradation-related genes (acsd-1, acsd-2) and the Trp RNA ligase (wars-1)21 might be required to synthesize RO32,52 were upregulated under AS. Intriguingly, an isocitrate dehydrogenase gene (idh-1) was also upregulated. This produces reducing equivalent (NADPH) carrying electrons that may fuel complex I54,55. Energy generation.

Ubiquitin–proteasome system and proteases. Proteolysis supplies amino acids or polypeptides to the cells, while impeding the accumulation of damaged or misfolded proteins. The two main mechanisms of cellular proteolysis are the lysosome-mediated intracellular protein degradation (autophagy) and the proteasome-mediated protein degradation (ubiquitin–proteasome system, UPS). In the latter, ubiquitin–protein ligases covalently attach ubiquitin to proteins, allowing their recognition and further degradation by the proteasome47,48.

As shown in Fig. 1, transcripts encoding for polyubiquitin (ubq-1), had the highest median gene expression across all transcriptomes. However, all ubiquitination-related genes detected in the differential gene expression analysis between the AS and H conditions, were upregulated in AS worms (Fig. 2 and 3, Data S1). For example, aos-1, encoding for a subunit of the ubiquitin-activating enzyme (E1)37, two ubiquitin–protein ligases (E3s without detected cullin domains)39, and kelch-like genes (e.g., kel-8-like and kel-20). The former are BTB-domain containing proteins known to interact with E3 enzymes, with kel-8 being involved in the degradation of glutamate neuroreceptors39. Additional ubiquitination-related genes upregulated in AS were csn-2, encoding for a component of the COP9 signalosome complex48, and proteasome genes (pas-2 and pas-3)39.

Among the proteases that were upregulated in AS worms, aspartyl proteases have been involved in neurodegeneration48, whereas plasminogen and the zinc matrix metalloproteinase ZMP-2 were both reported to mediate degradation of extracellular matrix (ECM)48 (Fig. 3). C. elegans ZMP-2 was also shown to prevent the accumulation of oxidized lipoproteins39, and therefore, it may contribute to the enhanced antioxidant response observed in this condition.
Autophagy and amino acid degradation. Besides acting coordinately to withstand stress, autophagy cooperates with apoptotic UPS for the recovery and supply of nutrients when these are scarce (reviewed in63,64). Transcripts of two autophagy-related genes, bec-165 and the Ragulator complex protein LAMTOR4 (C7orf59-like) 66 were more abundant in AS nematodes (Fig. 3). While the former positively regulates autophagy65, the latter interacts with the mTOR Complex I (mTORC1), and tethers small GTPases (Rags and Rheb) to the lysosomal surface66. When amino acid levels are low, mTORC1 is not translocated to the lysosomal surface66, thereby favoring catabolic processes such as autophagy67. We propose that amino acid scarcity might result from the upregulation of genes involved in the degradation of lysin, glycin, tyrosin, cystein, leucin, isoleucin, valin or tryptophan (Fig. 3, Data S1). This would decrease mTORC1 activity and, in turn, stimulates nutrient recycling via autophagy in AS worms.

**Figure 4.** Genes involved in translation and energy generation and genes encoding for C-type lectins and mucins were predominantly expressed in AS worms. Heatmap displaying genes upregulated in AS (anoxic sulfidic) relative to H (hypoxic) worms, upon 24 h-long incubations under one of the two conditions (1.5-fold change, FDR ≤ 0.05). Expression levels are displayed as mean-centered log2TPM values (transcripts per kilobase million). Genes are ordered by function in their respective metabolic pathways. For each process, the minority of genes that were upregulated in H worms is shown in Data S1. Red denotes upregulation, and blue downregulation. Fp, family-containing protein; Cytoch. C ox. su. II: cytochrome c oxidase subunit II; Ubiq./rhodoq biosynth.: Ubiquinone or rhodoquinone biosynthesis.
Conversely, we hypothesize that in H worms, active mTORC1 interacts with the ribosomal protein S6 kinase (S6K), encoded by the rks-1 gene which is also up in H worms39 (Fig. 3). This direct interaction, upon a cascade of phosphorylation events, would stimulate translation, and ultimately cell growth and proliferation38,89.

All in all, although it is currently unclear whether increased autophagy is beneficial or detrimental, under AS conditions, the upregulation of genes involved in self-digestion might play a protective role and foster recovery from starvation37,97, from neuronal and muscular degeneration induced by oxygen deprivation35.

**Lectins and mucins.** Given that symbiont attachment may be mediated by Ca2+–dependent lectins21,22 and that, under anoxia, the symbiont appeared to proliferate more39, we expected nematode C-type lectins to be upregulated under this condition. Indeed, nine C-type lectin domain (CTLD)-containing proteins were upregulated in AS *L. oneisustus* adults and only two (*clec-78* and *clec-78-like-2*) were upregulated in the presence of oxygen (Fig. 4). In addition to CTLD-containing proteins, mucins, a class of glycoproteins with more than 50% of its mass attributable to O-glycans, were also upregulated in AS nematodes. Considering that mucin glycans are used by vertebrate gut commensals for attachment, as well as being a source of nutrients74, it is conceivable that their upregulation in anoxia (Fig. 4), together with that of CTLD-containing proteins, would foster symbiont attachment.

We hypothesize that overexpression of two classes of putative symbiont-binding molecules, lectins and mucins, under conditions favoring symbiont proliferation (i.e., AS conditions)39, may mediate bacterial coat reinforcement.

**Apoptosis.** Mitochondria play an important role in apoptosis induction34. Indeed, MPTP opening due to ROS (or the severe ATP decline imposed by the absence of oxygen) may cause cytochrome c release from mitochondria and this, in turn, triggers caspase activation1. We observed that transcripts encoding for *sco-1*, a gene needed for the synthesis and assembly of mitochondrial cytochrome c69, were more abundant in AS worms (Fig. 4). Further, we observed upregulation of Caspase-3 (*ced-3*) which belongs to a family of cysteine proteases involved in apoptosis and which is activated upon mitochondrial cytochrome c release into the cytosol65,73. Additional apoptosis-related genes that appeared to be upregulated in AS worms were: *bec-1* (Fig. 3), a gene that promotes autophagy and fine-tunes the Ced-3-mediated apoptosis65; *ftr-52*, which mediates apoptotic cell recognition prior to engulfment59; a BAG family molecular chaperone regulator 1 (BAG1-regulator); a celldeath-mediating dopamine reuptake into the presynaptic terminals was downregulated97 in AS worms (Fig. 5).

**Lipid catabolism.** Genes involved in lipid metabolism were similarly expressed between the AS and H conditions (Fig. 2, Data S1). In accordance, lipidomes of nematodes incubated in the presence or absence of oxygen were not significantly different (Fig. S5, Supplemental material). However, in line with the overall upregulation of degradation pathways, we observed upregulation of genes involved in fatty acid beta-oxidation (*kat-1*)90, in lipid digestion (the lipase *lpl-6*, UniProtKB E2S712), and lipid degradation (a peripilin-2-like protein)81. Moreover, a gene that might be involved in oxidative stress tolerance (a stearic acid desaturase *fat-7* regulating the first step of the fatty acid desaturation pathway94) was also upregulated in AS worms. Lipid degradation under anoxia might be a strategy to overcome starvation83.

Notably, we also observed an upregulation of two genes involved in phosphatidylcholine (PC) synthesis (*pmt-1, pmt-2*)94 (Fig. 5). Intriguingly, PC was more abundant in the anoxic symbiont16, although the latter cannot synthetize it. Thus, their upregulation in AS worms suggests worm-to-symbiont lipid transfer.

**GABA- and glutamate-mediated neurotransmission.** Upregulated genes related to GABA synthesis were *unc-25, unc-104* and *pdhk-1* (pyridoxal phosphate hexokinase)35–37 (Fig. 5, Data S1). Consistent with an expected increase in glutamate requirement as a direct GABA precursor38, we observed downregulation of two glutamine synthetases and a delta-1-pyruvate-5-carboxylate synthase (*glm-3* and *alh-13* respectively; Fig. 6)90,91, known to convert glutamate to glutamine or to proline, respectively. Furthermore, an *mgl-2*-like gene encoding for a glutamate receptor, which is activated in the presence of glutamate92, was up in AS worms. Note that, when oxygen is limited, glutamate may act as a neurotoxic amino acid93. Therefore, increased GABA biosynthesis might, beneficially, prevent its accumulation93.

GABA-mediated neurotransmission has been documented for facultative anaerobic animals thriving in anoxic conditions23. Due to its inhibitory nature, it contributes to avoid membrane depolymerization83. Moreover, given that it relaxes muscles, the increment of GABA may impact the movement of the animal83. Therefore, upregulation of GABA-mediated neuronal activity might explain why *L. oneisustus* did not form tight clusters in anoxia (Supplemental Movie 3).

**Dopamine-mediated neurotransmission.** A gene encoding for the tyrosine hydroxylase Cat-2 (*cat-2*), which is needed for dopamine biosynthesis95 and two putative dopamine receptors (protein-D2-like and a G_PROTEIN RECEP_F1_2 domain-containing protein (* dop-5*))96 were upregulated in AS worms. Moreover, a *dat-1*-like gene mediating dopamine reuptake into the presynaptic terminals was downregulated97 in AS worms (Fig. 5).

**Calcium-binding and -sensing proteins.** Finally, in AS worms several calcium-binding or -sensing proteins (e.g., *ncs-2, cex-2*, and a calbindin-like (*CALB1* homolog); Fig. 5)98,99, as well as calcium transporters (*cca-1*; Transport category, Fig. 6)100 were upregulated. On the one hand, we hypothesize their involvement in the inhibitory neural signaling described above (for example, Ncs-2 mediates the cholinergic and GABAergic expression of...
Figure 5. Genes involved in immune response, development and nervous system were predominantly expressed in hypoxic (H) worms. Heatmap displaying genes upregulated in H relative to AS worms, upon 24 h-long incubations under one of the two conditions (1.5-fold change, FDR ≤ 0.05). Expression levels are displayed as mean-centered log₂TPM value (transcripts per kilobase million). Genes are ordered by function in their respective metabolic pathways. For each process, the minority of genes that were upregulated in AS worms is shown in Data S1. Red denotes upregulation and blue downregulation. MN, mechanosensory neurons; Embr. body wall muscle posit.: Embryonic body wall muscle positioning; Put.; putative.
Figure 6. Genes involved in carbohydrate, lipid- and sulfur-metabolism, amino acids biosynthesis, and transport were predominantly expressed in hypoxic (H) worms. Heatmap displaying genes upregulated in H relative to AS worms, upon 24 h-long incubations under one of the two conditions (1.5-fold change, FDR ≤ 0.05). Expression levels are displayed as mean-centered log2TPM values (transcripts per kilobase million). Genes are ordered by function in their respective metabolic pathways. For each process, the minority of genes that were upregulated in AS worms is shown in Data S1. Red denotes upregulation, and blue downregulation.

C. elegans. On the other, they may protect cells against the stress inflicted by anoxia, which involves calcium overload and consequent cellular acidification.

Genes upregulated in hypoxic (H) nematodes. Innate immune pathways and effectors. Animals recognize and respond to microbes by means of immunoreceptors including Toll-like receptors, conserved from sponges to humans. We identified almost all genes belonging to this pathway, including the one encoding for the NF-kB transcription factor. This came as a surprise given that, up to now, the NF-kB has not been identified in any other nematode. Equally surprising was the fact that not only two Toll-like receptors (tol-1 and tol-1-like), but also genes encoding for antimicrobial proteins such as a peroxisome assembly factor involved in defense against Gram- (prx-11) and bactericidal/permeability-increasing proteins (BPIs) were also more abundant in H worms. BPIs may bind LPS and perforate Gram- membranes and could be adaptations to the fact that when crawling in superficial oxygenated sand, L. oneistus is not only exposed to predation by bigger animals, but also to pathogenic members of the bacterioplankton. Overexpression of broad-range antimicrobials in response to oxygen might therefore help L. oneistus to avoid colonization by potentially deleterious, fouling bacteria (e.g., vibrios, roso-bacteria and pseudoalteromonas/alteromonadales) when crawling close to the water column (M. Mussmann, personal communication).

Development. Although development-related genes were some of the most expressed under all conditions (Fig. 1), many were upregulated in H nematodes (Figs. 2 and 5). Among the development-related genes upregu-
Carbohydrate metabolism. If in AS nematodes, glycogen or starch appeared prominent carbon sources, H worms seemed to exploit trehalose and cellulose instead. Indeed, genes that degrade trehalose (tre-1) were upregulated in H worms, as well as a putative ADP-dependent glucokinase (C50D2.7) involved in glycolysis. The upregulation of these genes was supported by the overexpression of four genes encoding for sugar transporters (Slc2-A1, C35A11, K08F9.1, F53H8.3), perhaps switched on by active mTOR (see above) (Fig. 6). Additionally, L. oneistus appeared to exploit oxygen to synthesize complex polysaccharides, such as heparan sulfate (hst-1-like) and glycans (Gent3-like) (Fig. 6), as an ortholog of the N-deacetylase/N-sulfotransferase hst-1, related to heparin biosynthesis was also upregulated.

Although glycolysis seems to generate ATP in both AS and H worms, it is not clear why the latter would prefer to respire cellulose or trehalose instead of starch. Given its role as a membrane stabilizer, we speculate that AS worms might prioritize the storage of trehalose over its degradation to preserve membrane integrity (Fig. 6). Of note, based on its genome draft, the symbiont may synthesise and transport trehalose, but it may not use it. Therefore, we hypothesize symbiont-to-host transfer of trehalose under hypoxia. Consistently, the symbiont’s trehalose synthesis-related gene (otsB) and the host trehalase (tre-1; Fig. 6) were both upregulated under hypoxia and metabolomics could detect trehalose in both partners (Table S1). Metabolomics also detected sucrose in both the holobiont and the symbiont fraction (Table S1). Given that, based on transcriptomics and proteinomics, the nematode can utilize sucrose but cannot synthesize it (Data S1), whereas the symbiont can, we also hypothesize symbiont-to-host sucrose transfer.

Acetylcholine-mediated neurotransmission. Instead of upregulating genes involved in inhibitory (GABA- and dopamine-mediated) neurotransmission, hypoxic worms appeared to use excitatory acetylcholine-mediated neurotransmission as indicated by the upregulation of molo-1, acr-20, cup-4, lev-9, and siphingosine kinase sphk-1 that promotes its release (Fig. 5). On the one hand, acetylcholine-mediated neurotransmission might promote ROS detoxification in H worms. On the other hand, its downregulation in AS worms might benefit cells to synthesize ROS and thus promote cell proliferation.

Feeding, mating, mechanosensory behavior and axon guidance and fasciculation. Transcripts related to the neuronal regulation of energy-demanding activities such as feeding, mating, motion, as well as nervous system development were more abundant in H nematodes (Fig. 5, and Data S1). More precisely, upregulated genes were involved in pharyngeal pumping (nep-1, lat-2) male mating behavior and touch (pdf-1, tbb-4, ebax-1) axon guidance and fasciculation (spon-1, icm-1, ebax-1, tep-1) mechanosensory behavior (e.g., mec-12, delm-2) If we assume that L. oneistus mates in H conditions, genes involved in mechanosensory behavior may be upregulated for the male to find the female organ (vulva). Additionally, we also observed the upregulation of a gene encoding for a glutamate receptor (glt-7) possibly involved in feeding facilitation.

Amino acid biosynthesis. Transcripts of genes involved in the synthesis of glutamyl and proline (glg-3 and alh-13, respectively), aspartate (L-asparaginases) and S-adenosyl-L-methionine (SAM) (sams-4) were all upregulated in H worms (Fig. 6), as well as one encoding for the ornithine decarboxylase odc-1 which is involved in biosynthesis of the polyamine putrescine, and is essential for cell proliferation and tissue growth. Moreover, polyamines, with their high charge-to-mass ratio may protect against superoxide radicals, which, as mentioned, are mainly involved in male tail tip and vulva morphogenesis. In C. elegans, mRNA localization of genes involved in ceramide biosynthesis (e.g., nas-36, nas-38) development (e.g., teneurin-a-like), neuronal regrowth or locomotion (tep-1) and pharyngeal pumping (e.g., nephrilysin nep-1) were also more abundant in H worms. Remarkably, vav-1, which besides being involved in male tail tip and vulva morphogenesis may also regulate the concentration of intracellular calcium, was one of the few development-related genes to be downregulated in H nematodes (see previous section on Ca²⁺-binding proteins).

To sum up, and as expected, the host appears to exploit oxygen availability to undertake energetically costly processes, such as development and molting.
ABC transporters (wht-2, ppg-2, slcr-46.3, F23F12.3, hmit-1.3)\textsuperscript{171-173} and organic substance transport (F47E1.2, oct-2)\textsuperscript{174} were more abundant in H than AS worms (Fig. 6).

**Sulfur metabolism.** The mpst-7 gene, involved in organosomal response to selenium and switched on in hypoxic *C. elegans*\textsuperscript{175}, was upregulated in H nematodes (Fig. 6). Given that MPST-7 is thought to catalyze the conversion of sulfite and glutathione persulfide (GSSH) to thiosulfate and glutathione (GSH)\textsuperscript{176}, hypoxia-experiencing *L. oneistus* might express this enzyme to recharge the cells with GSH and hence, help to cope with oxidative stress\textsuperscript{177}. Also more abundant in H were transcripts encoding for the sulfatases 2 (sul-2)\textsuperscript{178} and a PAPS-producing *pps-1* (3′-phospho-adenosine-5′-phosphosulfate (PAPS), considered the universal sulfur donor)\textsuperscript{179}, as well as for the chaperones *pdi-6* and protein-disulfide-isomerase-A5-like which require oxygen to mediate correct disulfide bond formation in protein folding\textsuperscript{6,179} (Fig. 6). Conversely, a putative sulfide-producing enzyme (*mpst-1*) which protects *C. elegans* from mitochondrial damage\textsuperscript{180} was upregulated in AS nematodes, albeit together with two genes encoding for enzymes involved in its detoxification, a persulfide dioxygenase (*ethe-1*) and a cysteine dioxygenase (*cdo-1*).\textsuperscript{179} The first detoxifies sulfide by producing glutathione, while the latter catalyzes taurine synthesis via cysteine degradation. Of note, sulfate detoxification via taurine accumulation is a common strategy in chemosynthetic animals (reviewed in\textsuperscript{181}).

All in all, *L. oneistus* appeared to limit excess accumulation of free sulfide in anoxia and to free sulfate when oxygen was available.

**Conclusions**

Overall, and irrespective of the conditions it was subjected to, *L. oneistus* mostly expressed genes involved in degradation processes, energy generation, stress response and immune defense. Astonishingly, *L. oneistus* did not enter suspended animation when subjected to anoxic sulfidic conditions for days. We hypothesize that in the absence of oxygen, ATP production is supported by symbiont-derived trehalose and cellulose catabolism, and by rewiring the ETC in such way as to use RQ as electron carrier, and fumarate as electron acceptor. Moreover, the nematode activates several degradation pathways (e.g., UPS, autophagy, and apoptosis) to gain nutrients from anoxia-damaged proteins and mitochondria. Further, AS worms also upregulated genes encoding for ribosomal proteins and putative symbiont-binding proteins (lectins). Finally, as proposed for other anoxia-tolerant animals, the worm seems to upregulate its antioxidant capacity in anticipation of reoxygenation. When in hypoxic conditions (Fig. 7, left), instead, we speculate that the worm uses starch for energy generation to engage in costly developmental processes such as molting, feeding, and mating, likely relying on excitatory neurotransmitters (e.g., acetylcholine), and it upregulates the Toll immune pathway and, directly or indirectly, the synthesis of broad range antimicrobials (e.g., fungicides, BPIs).

When looking at the *Laxus-Thiosymbiont* symbiosis in light of what was recently published\textsuperscript{186}, we could identify two signs of inter-partner metabolic dependence: under anoxia, worms might transfer lipids to their symbionts, and under hypoxia, the symbionts might transfer trehalose and sucrose to their hosts.

Furthermore, we may conclude that, wherever in the sand the consortium is, one of the two partners is bound to be stressed: in anoxia, the symbiont appears to proliferate more, while its animal host engages in degradation of damaged proteins and mitochondria and in detoxification. In the presence of oxygen, the situation is inverted: the symbiont seems massively stressed, while the host can afford energy-costly biosynthetic processes to develop and reproduce (Fig. 7). It is therefore fascinating that, in spite of the dramatically different needs a bacterium and animal must have, the *Laxus-Thiosymbiont* symbiosis evolved.

**Materials and methods**

**Sample collection.** *Laxus oneistus* individuals were collected on multiple field trips (2016–2019) with cores of 60 cm length and 60 mm diameter (UWITEC, Mondsee, Austria) down to a depth of approximately 1 m depth in the sand bars off the Smithsonian Field Station, Carrie Bow Cay in Belize (16°48′11.01″N, 88°45′4.42″W). The collection of the nematodes, the incubations set up for RNA sequencing, lipidomics, proteomics and metabolomics, as well as the RNA extraction, and library preparation are in detailed described in\textsuperscript{16}. Importantly, the nematodes had a bright white appearance and replicate incubations were started simultaneously. Note that the Supplemental material describes the metabolomics and sequencing data of *Olavius algarvensis*, as well as changes from\textsuperscript{16} in the lipidomics and proteomics pipelines.

**Host transcriptome de novo assembly.** In preparation for the assembly, reads from each sample were first mapped to the symbiont as described before\textsuperscript{16}, and remaining rRNA reads from all domains of life were removed from unmapped reads using sortmerna v2.1 in combination with the SSURef_NR99_119_ LSURef_119_SILVA_A_15_07_14 databases. Further, exact duplicate reads were removed using PRINSEQ lite’s derep option. Read files free of symbiont reads, rRNA reads and exact duplicates were used as input for transcriptome sub-assembly via Trinity v2.6.6 with the strand-specific option (\texttt{--SS_lib_type F})\textsuperscript{182}. Two sub-assemblies differing in the number and type of input read files were performed: (1) 9 input read files including biological triplicates from 3 incubation conditions (O, H, A) and (2) 4 input read files including a single replicate from 4 incubation conditions (O, H, A and hyper-O). Hyper-O refers to an incubation in which air was pumped directly into the exetainers for the entire incubation period to supersaturate the seawater (300% O\textsubscript{2}). However, as this incubation condition yielded an incongruous transcriptional response by the symbiont (data not shown), these read data were only used to extend the host transcriptome’s coding repertoire. The qualities of both sub-assemblies were assessed as described below.

We then performed an intra-assembly clustering step as described in\textsuperscript{183}, during which identical transcripts were removed from the sub-assemblies using CD-HIT-EST\textsuperscript{184}. To further reduce redundant transcripts, only the
longest isoform for each ‘gene’ identified by Trinity was kept using Trinity’s get_longest_isoform_seq_per_trinity_gene.pl utility. The remaining transcripts of each sub-assembly were then concatenated to produce a merged transcriptome assembly. The final assembly was created by applying another sequence clustering using CD-HIT-EST to avoid inter-assembly redundancy. Here, the identity parameter of 80% (-c 0.8) combined with a minimal coverage ratio of the shorter sequence of 80% (-aS 0.8) and minimal coverage ratio of the longest sequence of 0.005% (-aL 0.005) yielded the best-performing assembly in terms of number of transcripts (162,455) and contiguity (N50 value of 770) (data not shown).

Assembly completeness was assessed by estimating completeness via BUSCO nematode single-copy orthologs (Simão et al. 2015). Importantly, the merged assembly yielded a higher BUSCO-based completeness compared with the two sub-assemblies; 79.2% of the BUSCO nematode single-copy orthologs were found to be present and complete in the final assembly (636 single-copy; 142 duplicated), whereas assembly (1) scored 77.8% (233 single-copy; 531 duplicated) and assembly (2) was 76.2% complete (314 single-copy; 434 duplicated). Further, assembled transcripts were filtered based on taxonomic classification. Transcripts were matched against the RefSeq protein database using blastx (E-value 1E−3), and the output was then used as input for taxonomic assignment via MEGAN v5.185. Only transcripts classified as belonging to ‘Eukarya’ were kept (MEGAN parameters: Min Score: 50, Max Expected: 1E−3, Top Percent: 2), which reduced the number of putative L. oneistus transcripts to 30,562. Assembled transcripts were also functionally annotated using Trinotate186. Briefly, predicted protein coding regions were extracted using TransDecoder (https://github.com/TransDecoder), both transcripts and predicted protein sequences were searched for protein homology via blastx and blastp, respectively, and predicted protein sequences were annotated for protein domains (hmmscan), signal peptides (signalP) and transmembrane domains (TMHMM). 85,859 transcripts exhibited at least one functional annotation. Finally, only taxonomy-filtered transcripts with at least one functional annotation were kept, thereby further reducing the number of putative host transcripts to 27,984, with 22,072 thereof predicted to contain protein coding regions. BUSCO-based completeness for this filtered host transcriptome assembly was 78.8% (635 single-copy; 139 duplicated).

**Gene expression analysis.** Raw sequencing reads quality assessment and preprocessing of data was followed as described in16. Trimmed reads were mapped to the de novo transcriptome assembly and transcript abundance was estimated using RSEM v1.3.1187 in combination with bowtie2 with default settings except for
the application of strandedness (--) strandedness forward). Read counts per transcript were used for differential expression analysis, and TPM (transcripts per kilobase million) values were transformed to log(TPM) as described in8.

Gene and differential expression analyses were conducted using R and the Bioconductor package edgeR v3.28.118,119 and as shown in16. Here, we only describe the modifications that were made to the pipeline. Genes were considered expressed if at least ten reads in at least three replicates of one of the four conditions could be assigned. Excluding the replicates of the oxic condition, we found 74.9% of all predicted nematode protein-encoding genes to be expressed (16,526 genes out of 22,072). Log2TPM were used to assess sample similarities via multidimensional scaling based on Euclidean distances (R Stats package)119 (Fig S1B), and the average of replicate log2TPM values per expressed gene and condition was used to estimate expression strength. Median gene expression of entire metabolic processes and pathways per condition was determined from average log2TPM values.

Expression of genes was considered significantly different if their expression changed 1.5-fold between two treatments with a false-discovery rate (FDR) ≤ 0.05190. Throughout the paper, all genes meeting these thresholds are either termed differentially expressed or up- or downregulated. For the differential expression analyses between the AS, H and A conditions see Data S1. Heatmaps show mean-centered log2TPM expression values to highlight gene expression change.

All predicted L. oneistus proteins were automatically annotated using eggNOG-mapper v2191 against eggNOG 5.0192 using diamond v2.0.4193. All genes that are shown and involved in a particular process were manually curated by blasting (blastp) them against both the nr database194 and the WormBase (https://wormbase.org/tools/blast blat)195. The Spearman’s rank correlation was carried out with per-gene averaged log2 TPM and orgNSAF% values over the oxic and anoxic incubations for the transcriptome and proteome, respectively, in R196.

Data availability
This Transcriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank under the accession GJNO00000000. The version described in this paper is the first version, GJNO01000000. RNA-Seq data are available at the Gene Expression Omnibus (GEO) database and are accessible through accession number GSE188619.

Received: 23 November 2021; Accepted: 13 May 2022
Published online: 13 June 2022

References
1. Hermes-Lima, M. & Zenteno-Savin, T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp. Biochem. Physiol. C 133, 537–556 (2002).
2. Hochachka, P. W., Buck, L. T., Doll, C. J. & Land, S. C. Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. U. S. A. 93, 9493–9498 (1996).
3. Hochachka, P. W. & Lutz, P. L. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B 130, 435–459 (2001).
4. Clegg, J. S. Embryos of Artemia franciscana survive four years of continuous anoxia: The case for complete metabolic rate depression. J. Exp. Biol. 200, 467–475 (1997).
5. Nystul, T. G., Goldmark, J. P., Padilla, P. A. & Roth, M. B. Suspended Animation in C. elegans Requires the Spindle-Checkpoint. Science 302, 1038–1041 (2003).
6. Teodoro, R. O. & O’Farrell, P. H. Nitric oxide-induced suspended animation promotes survival during hypoxia. EMBO J. 22, 580–587 (2003).
7. Galli, G. L. J. & Richards, J. G. Mitochondria from anoxia-tolerant animals reveal common strategies to survive without oxygen. J. Comp. Physiol. B 184, 285–302 (2014).
8. Padilla, P. A., Nystul, T. G., Zager, R. A., Johnson, A. C. M. & Roth, M. B. Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. Mol. Biol. Cell 13, 1473–1483 (2002).
9. Powell-Coffman, J. A. Hypoxia signaling and resistance in C. elegans. Trends Endocrinol. Metab. 21, 435–440 (2010).
10. Kitazume, H., Dayi, M., Tanaka, R. & Kikuchi, T. Assessment of the behaviour and survival of nematodes under low oxygen concentrations. PLoS ONE 13, e0197122 (2018).
11. Nystul, T. G. & Roth, M. B. Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 101, 9133–9136 (2004).
12. Kim, K. W. & Jin, Y. Neuronal responses to stress and injury in C. elegans. FERS Lett. 589, 1644–1652 (2015).
13. Denny, M. W. Air and Water: The Biology and Physics of Life’s Media (Princeton University Press, 1993).
14. Ott, J. A. et al. Tackling the sulfide gradient: A novel strategy involving marine nematodes and chemoautotrophic ectosymbionts. Mar. Ecol. 12, 261–279 (1991).
15. Schiemer, F., Novak, R. & Ott, J. Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms. Mar. Biol. 106, 129–137 (1990).
16. Paredes, G. F. et al. Anaerobic sulfur oxidation underlies adaptation of a chemosynthetic symbiont to oxic-anoxic interfaces. mSystems 6, 01186 (2021).
17. Ott, J. A. & Novak, R. Living at an interface: Meiofauna at the oxygen/sulfide boundary of marine sediments. Reprod. Genet. Distr. Mar. 1989, 415–422 (1989).
18. Ott, J. A., Bauer-Nebelsick, M. & Novotny, V. The genus Laxus Cobb, 1894 (Stilbonematinae:Nematoda): Description of two new species with ectosymbiotic chemosynthetic bacteria. Proc. Biol. Soc. Wash. 108, 508–527 (1995).
19. Bateman, A. et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
20. Stringham, E. G., Jones, D. & Candido, E. P. M. Expression of the polyubiquitin-encoding gene (ubq-1) in transgenic Caenorhabditis elegans. Gene 113, 165–173 (1992).
21. Geuens, E. et al. Globin-like proteins in Caenorhabditis elegans: In vivo localization, ligand binding and structural properties. BMC Biochem. 11, 17 (2010).
22. Birnby, D. A. et al. A Transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155, 85–104 (2000).
23. Chávez, V., Mohri-Shiono, A., Maadani, A., Vega, I. A. & Garsin, D. A. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176, 1567–1577 (2007).
24. Sun, J. et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat. Ecol. Evol. 1, 1–7 (2017).
25. Hinze, T. et al. Host-microbe interactions in the chemosynthetic riftia pachyptila symbiosis. MBio 10, 02243 (2019).
26. Yuen, B., Polzin, J. & Petersen, J. M. Organ transcriptomes of the lucinid clam Loripes Orbiculatus (Polj, 1791) provide insights into their specialised roles in the biology of a chemosymbiotic bivalve. *BMC Genom.* **20**, 1–14 (2019).

27. Woyke, T. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. *Nature* **443**, 950–955 (2006).

28. Wippler, J. et al. Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olavius algarensis. *BMC Genom.* **17**, 1–19 (2016).

29. Zimmermann, J. et al. Closely evolutionarily history of ecto- and endosymbionts from two distantly related animal phyla. *Mol. Ecol.* **25**, 3203–3223 (2016).

30. Nayyar, D. I., Hoogenraad, N. J. & Hej, P. B. Isolation and characterisation of a cDNA encoding rat mitochondrial GrpE, a stress-inducible nucleotide-exchange factor of ubiquitous appearance in mammalian organs. *FEBS Lett.* **396**, 181–188 (1996).

31. Lundin, V. E., Sryakyo, M., Hyman, A. A. & Leroux, M. R. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in *C. elegans*. *Dev. Biol.* **313**, 320–334 (2008).

32. Bar-Lavan, Y. et al. A differentiation transcription factor establishes muscle-specific proteostasis in *Caenorhabditis elegans*. *PLoS Genet.* **12**, e1005531 (2016).

33. Margis, R., Dunand, C., Teixeira, F. K. & Margis-Pinheiro, M. Glutathione peroxidase family: An evolutionary overview.

34. Oliveira, R. P. et al. Condition-adapted stress and longevity gene regulation by *Caenorhabditis elegans* S/NIF. *Aging Cell* **8**, 524–541 (2009).

35. Murphy, E. & Steenbergen, C. Mechanisms underlining acute protection from cardiac ischemia-reperfusion injury. *Physiol. Rev.* **88**, 581–609 (2008).

36. Heo, J., et al. A stress-responsive system of mitochondrial protein degradation. *Mol. Cell* **40**, 465–480 (2010).

37. Tullet, J. M. A. DAF-16 target identification in *C. elegans*: Past, present and future. *Biogerontology* **16**, 221–234 (2015).

38. Kaushal, P. S. et al. Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 7284–7289 (2014).

39. Sharika, R., Subbaiah, P. & Balamurugan, K. Studies on reproductive stress caused by candidate Gram positive and Gram negative bacteria using model organism, *Caenorhabditis elegans*. *Gene* **469**, 113–126 (2018).

40. Melnikov, S. et al. One core, two shells: Bacterial and eukaryotic ribosomes. *Nat. Struct. Mol. Biol.* **19**, 560–567 (2012).

41. You, K. T., Park, J. & Kim, V. N. Role of the small subunit processome in the maintenance of pluripotent stem cells. *Genes Dev.* **29**, 2004–2009 (2015).

42. Savada, R. P. & Bonham-Smith, P. C. Differential transcript accumulation and subcellular localization of Arabidopsis ribosomal proteins. *Plant Sci.* **223**, 134–145 (2014).

43. Xu, X., Xiong, X. & Sun, Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic instability. *Sci. China Life Sci.* **59**, 656–672 (2016).

44. Laredo, K., Nimiga, A. & Storey, K. B. Transcription pattern of ribosomal protein L26 during anoxia exposure in *Littorina littorea*. *J. Exp. Zool.* **290**, 759–768 (2001).

45. Xu, C. et al. Genetic inhibition of an ATP synthase subunit extends lifespan in *C. elegans*. *Sci. Rep.* **8**, 1–14 (2018).

46. Maglioni, S. & Ventura, N. C. *elegans* as a model organism for human mitochondrial associated disorders. *Mitochondrion* **30**, 117–125 (2016).

47. McKay, R. M., McKay, J. P., Avery, L. & Graff, J. M. Mitochondrial TCA cycle metabolites control physiology and disease.

48. Jackson, A. D. & McLaughlin, J. Digestion and absorption.

49. Jones, D., Crowe, E., Stevens, T. A., Peter, E. & Candido, M. Functional and phylogenetic analysis of the ubiquitylation system in *Caenorhabditis elegans*. *Mol. Cell* **59**, 560–567 (2012).

50. Brockway, H., Balukoff, N., Dean, M., Alleva, B. & Smolikove, S. The CSN/COP9 signalosome regulates synaptonemal complex assembly during meiotic prophase I of *C. elegans*. *Dev. Cell* **131–142 (2003)."

51. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels in the small subunit processome. *Nature Genet.* **46**, 113–126 (2018).

52. Thompson, A. R. & Vierstra, R. D. Autophagic recycling: Lessons from yeast help define the process in plants.

53. Howell, J. J. & Manning, B. D. MTOR couples cellular nutrient sensing to organismal metabolic homeostasis. *Trends Endocrinol. Metab.* **22**, 94–102 (2011).

54. Huber, L. A. & Teis, D. Lysosomal signaling in control of degradation pathways. *Curr. Opin. Cell Biol.* **39**, 8–14 (2016).
71. Nussbaumer, A. D., Bright, M., Baranyi, C., Beisser, C. J. & Ott, J. A. Attachment mechanism in a highly specific association between ectosymbiotic bacteria and marine nematodes. *Aquat. Microb. Ecol.*, 34, 239–246 (2004).

72. Bulgheresi, S. et al. Sequence variability of the pattern recognition receptor Mermaid mediates specificity of marine nematode symbioses. *ISME J.*, 5, 986–998 (2011).

73. Bulgheresi, S. et al. A new C-type lectin similar to the human immunoreceptor DC-SIGN mediates symbiotic acquisition by a marine nematode. *Appl. Environ. Microbiol.*, 72, 2950–2956 (2006).

74. Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. *Nat. Rev. Microbiol.*, 10, 323–335 (2012).

75. Kaufmann, S. H.

76. Chen, Y. Z., Mapes, J., Lee, E. S., Robert Sleen-Gaar, R. & Xue, D. Caspase-mediated activation of *Caenorhabditis elegans* CED-8 promotes apoptosis and phosphatidyserine externalization. *Nat. Commun.*, 4, 1–9 (2013).

77. Samejima, K. & Earnshaw, W. C. Trashing the genome: The role of nucleases during apoptosis. *Nat. Rev. Mol. Cell Biol.*, 6, 677–688 (2005).

78. Sasaki, A.

79. Hurwitz, M. E.

80. Chughtai, A. A.

81. Krivoruchko, A. & Storey, K. B. Turtle anoxia tolerance: Biochemistry and gene regulation. *Biochem. Biophys. Res. Commun.*, 390, 1402–1407 (2009).

82. Brendza, K. M.

83. Krivoruchko, A. & Storey, K. B. Turtle anoxia tolerance: Biochemistry and gene regulation. *Biochem. Biophys. Acta* 1850, 1188–1196 (2015).

84. Van Der Vos, K. E. & Coffer, P. J. Glutamine metabolism links growth factor signaling to the regulation of autophagy. *Aging Cell* 8, 1862–1864 (2012).

85. Mathews, G. C. & Diamond, J. S. Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. *J. Neurochem.* 134, 2040–2048 (2001).

86. Milton, S. L. & Lutz, P. L. Low extracellular dopamine levels are maintained in the anoxic turtle (*Chelodina longicollis*). *Appl. Environ. Microbiol.*, 66, 677–687 (1998)

87. Sanyal, S.

88. Hobert, O. Neurogenesis in the nematode *Caenorhabditis elegans*. *WormBook* https://doi.org/10.1895/wormbook.1.122.2010.

89. Sanyal, S. et al. Dopamine metabolism links growth factor signaling to the regulation of autophagy. *Autophagy* 8, 593–618 (2012).

90. Yen, C. A. & Curran, S. P. Incomplete proline catabolism drives premature sperm aging. *Aging Cell* 20, e13308 (2021).

91. Thelma, B., Burns, A. R., Roy, P. J. & Hampson, D. R. Orthosteric and allosteric drug binding sites in the *Caenorhabditis elegans* mgl-2 metabotropic glutamate receptor. *Neuropharmacology* 63, 667–674 (2012).

92. Lutz, P. L., Nilsson, G. E. & Prentice, H. M. *The Brain Without Oxygen* (Kluwer Academic Publishers, 2002).

93. Mathews, G. C. & Diamond, J. S. Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. *J. Neurosci.*, 23, 2591–2593 (2003).

94. Nordquist, S. K., Smith, S. R. & Pierce, J. T. Systematic functional characterization of human 21st chromosome orthologs in *Caenorhabditis elegans*. *G3*, 8, 967–979 (2018).

95. Martin, D. L. & Runwall, K. Regulation of y-amino butyric acid synthesis in the brain. *J. Neurochem.* 60, 395–407 (1993).

96. Van Der Vos, K. E. & Coffer, P. J. Glutamine metabolism links growth factor signaling to the regulation of autophagy. *Autophagy* 8, 1862–1864 (2012).

97. Yen, C. A. & Curran, S. P. Incomplete proline catabolism drives premature sperm aging. *Aging Cell* 20, e13308 (2021).

98. Mathews, G. C. & Diamond, J. S. Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. *J. Neurosci.* 23, 2040–2048 (2003).

99. Mizuno, S. & Lutz, P. L. Low extracellular dopamine levels are maintained in the anoxic turtle (*Trachemys scripta*) striatum. *J. Cereb. Blood Flow Metab.* 18, 803–807 (1998).

100. Sawin, E. R., Ranganathan, R. & Horvitz, H. R. C. elegans: Out on an evolutionary limb. *Immunogenet.* 60, 266–274 (2015).

101. Zhou, K., Cherra, S. J., Goncharov, A. & Jin, Y. Asynchronous cholinergic drive correlates with excitation-inhibition imbalance in *Caenorhabditis elegans*. *EMBO* J. 33, 473–482 (2004).

102. Krasity, B. C. et al. Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein. *MBio* 6, e01193-15 (2015).

103. Pijou, N. & Ewbank, J. C. *elegans*: Out on an evolutionary limb. *Neurobiol. Aging* 28, 132–139 (2007).

104. Wang, D. Epidermal barrier for nematodes against toxicity of environmental toxicants or stresses. *Target Organ Toxicol. Caenorhabditis elegans* https://doi.org/10.1007/978-981-13-6010-7_4 (2019).

105. Dravid, P., Kausahl, D. C., Saxena, J. K. & Kausahl, N. A. Isolation and characterization of endochitinase and exochitinase of *Serratia cervi*. *Parasitol. Int.* 64, 579–586 (2015).

106. Kraisty, B. C. et al. Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein. *MBio* 6, e01193-15 (2015).

107. Chen, F. et al. Bactericidal permeability-increasing proteins shape host-microbe interactions. *MBio* 8, e00417-17 (2017).

108. Brandt, J. P. & Ringstad, N. Toll-like receptor signaling promotes development and function of sensory neurons required for a *Caenorhabditis elegans* pattern avoidance behavior. *Curr. Biol.* 25, 2228–2237 (2015).

109. Pan, K. Z. et al. Inhibition of mRNA translation extends lifespan in *Caenorhabditis elegans*. *Aging Cell* 6, 111–119 (2007).
156. Li, Z. et al. Dissecting a central flip-flop circuit that integrates contradictory sensory cues in C. elegans feeding regulation. Nat. Commun. 3, 1–8 (2012).
157. Tsujii, N., Morales, T. H., Ozols, V. V., Carmody, A. B. & Chandrashekar, R. Identification of an asparagine amidohydrolase from the filarial parasite *Dirofilaria immitis*. *Int. J. Parasitol.* 29, 1451–1455 (1999).
158. Chen, C. C., Lim, C. Y., Lee, P. J., Hsu, A. L. & Ching, T. T. S-adenosyl methionine synthetase SAM5 mediates dietary restriction-induced longevity in *Caenorhabditis elegans*. *PLoS ONE* 15, e0241453 (2020).
159. Heby, O. Role of polyamines in the control of cell proliferation and differentiation. *Differentiation* 19, 1–20 (1981).
160. Gilad, G. M. & Gilad, V. H. Polyamines can protect against ischemia-induced nerve cell death in gerbil forebrain. *Exp. Neurol.* 111, 349–355 (1991).
161. Ward, J. D. et al. Defects in the *c. elegans* acyl-CoA synthase, acs-3, and nuclear hormone receptor, nhr-25, cause sensitivity to distinct, but overlapping stresses. *PLoS ONE* 9, e92552 (2014).
162. Wang, F. et al. Saturated very long chain fatty acid confers glycophospholipid for lysosome homeostasis in long-lived *C. elegans*. *Nat. Commun.* 12, 1–14 (2021).
163. Bastiani, C. A., Gharib, S., Simon, M. I. & Sternberg, P. W. *Caenorhabditis elegans* Goq regulates egg-laying behavior via a PLCβ-independent and serotonin-dependent signaling pathway and likely functions both in the nervous system and in muscle. *Genetics* 165, 1805–1822 (2003).
164. Taha, T. A. et al. Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: Modulation of sphingolipid levels and the induction of apoptosis. *FASEB J.* 20, 482–484 (2006).
165. Menuz, V. et al. Protection of *C. elegans* from Anoxia by HYL-2 ceramide synthase. *Science* 324, 381–384 (2009).
166. Watts, J. L. & Ristow, M. Lipid and carbohydrate metabolism in *Caenorhabditis elegans*. *Genetics* 207, 413–446 (2017).
167. Terao, T. et al. Magnesium excetration in *C. elegans* requires the activity of the GTL-2 TRPM channel. *PLoS ONE* 5, e9589 (2010).
168. Tsuji, N., Morales, T. H., Ozols, V. V., Carmody, A. B. & Chandrashekar, R. Identification of an asparagine amidohydrolase from *Caenorhabditis elegans*. *Anticancer Res.* 20, 1–13 (1999).
169. Wang, F. et al. Saturated very long chain fatty acid confers glycophospholipid for lysosome homeostasis in long-lived *C. elegans*. *Nat. Commun.* 12, 1–14 (2021).
170. Wang, Y. et al. Phylogenetic, expression, and functional analyses of anoctamin homologs in *Caenorhabditis elegans*. *Am. J. Physiol. Cell Physiol.* 305, 1376–1389 (2013).
171. Goh, K. Y. & Inoue, T. A large transcribed enhancer region regulates *C. elegans* bed-3 and the development of egg laying muscles. *Biochem. Biophys. Acta.* 1861, 519–533 (2018).
172. Currie, E. et al. Role of the *Caenorhabditis elegans* multidrug resistance Gene, mpr-4, in gut granule differentiation. *Genetics* 177, 1569–1582 (2007).
173. Schroeder, L. K. et al. Function of the *Caenorhabditis elegans* ABC transporter PGP-2 in the biogenesis of a lysosome-related fat storage organelle. *Mol. Biol. Cell* 18, 995–1008 (2007).
174. Kage-Nakadai, E., Uehara, T. & Mitani, S. H+/myo-inositol transporter genes, hmit-1.1 and hmit-1.2, have roles in the osmotic response in *Caenorhabditis elegans*. *Biochem. Biophys. Res. Commun.* 410, 471–477 (2011).
175. Pao, S. S., Paulsen, I. T. & Saier, M. H. Major facilitator superfamily. *Microbiol. Mol. Biol. Rev.* 62, 1–34 (1998).
176. Romanelli-Credrez, L., Doitsidou, M., Alkema, M. J. & Salinas, G. HIF-1 has a central role in Caenorhabditis elegans organismal response to selenium. *Front. Genet.* 11, 63 (2020).
177. Filipovic, M. R., Zivanovic, J., Alvarez, B. & Banerjee, R. Chemical biology of H2S signaling through persulfidation. *Chem. Rev.* 118, 1253–1337 (2018).
178. Díaz-Vivancos, P., De Simone, A., Kiddle, G. G. & Foyer, C. H. Glutathione: Linking cell proliferation to oxidative stress. *Free Radic. Biol. Med.* 89, 1154–1164 (2015).
179. Morimoto-Tomita, M., Uchimura, K., Werb, Z., Hemmerich, S. & Rosen, S. D. Cloning and characterization of two extracellular heparin-degrading endopeptidases in mice and humans *Nature*. *J. Biol. Chem.* 277, 49175–49185 (2002).
180. Rose, P., Moore, P. K. & Zhu, Y. Z. H2S biosynthesis and catabolism: New insights from molecular studies. *Cell. Mol. Life Sci.* 74, 1391–1412 (2016).
181. Qabazard, B. et al. Hydrogen sulfide is an endogenous regulator of aging in *Caenorhabditis elegans*. *Antioxid. Redox Signal.* 20, 2621–2630 (2014).
182. Cavanagh, C. M., McKiness, Z. P., Newton, I. L. G. & Stewart, F. J. Marine chemosynthetic symbioses. *Prokaryotes Prokaryotic Biol. Sympos. Asso.* 1, 579–607 (2013).
183. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29, 644–652 (2011).
184. Cerveau, N. & Jackson, D. J. Combining independent de novo assemblies optimizes the coding transcriptome for unconventional model eukaryotic organisms. *BMC Bioinform.* 17, 1–13 (2016).
185. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. *Bioinformatics* 28, 3150–3152 (2012).
186. Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. *Genome Res.* 17, 377–386 (2007).
187. Bryant, D. M. et al. A tissue-mapped azolol! De Novo transcriptome enables identification of limb regeneration factors. *Cell Rep.* 18, 762–776 (2017).
188. Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinform.* 12, 1–16 (2011).
189. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139–140 (2009).
190. R Core Team. *R: A Language and Environment for Statistical Computing* (R Foundation of Statistical Computing, 2020).
191. Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. *Genome Biol. 14*, R95 (2013).
192. Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. *Mol. Biol. Evol.* 38, 5825–5829 (2021).
193. Huerta-Cepas, I. et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.* 47, D309–D314 (2019).
194. Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. *Nat. Methods* 18, 366–368 (2021).
195. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410 (1990).
196. Harris, T. W. et al. WormBase: A modern model organism information resource. *Nucleic Acids Res.* 48, D762–D767 (2020).

**Acknowledgements**

This work was supported by the Austrian Science Fund (FWF) grant P28743 (T.V., S.B., and L.K.), the FWF DK plus grant W1257: Microbial Nitrogen Cycling (G.F.P., L.K.), the FWF DOC 69 doc.fund (T.V.). We thank Yin Chen for providing the facilities for lipidomics analysis, and Marvin Weinhold, Jana Matulla and Sebastian Grund for their excellent technical support during metabolite analysis, and protein sample preparation and MS.
analysis, respectively. The computational results of this work have been achieved using the Life Science Compute Cluster (LiSC) of the University of Vienna. We are grateful to Logan Hodgskiss for sharing his correlation scripts, and to the Carrie Bow Cay Marine Field Station, Caribbean Coral Reef Ecosystem Program, and Station Manager Zach Foltz and Scott Taylor for their continuous support during field work. We thank Nicole Dubilier for allowing access to unpublished data on *Olavius algarvensis*, and Jonathan Ewbank and Marc Mussmann for insightful comments on the manuscript. Finally, we were inspired by insightful discussions with Monika Bright and Jörg A. Ott. This is contribution number 1063 of the Carrie Bow Cay Marine Field Station, Caribbean Coral Reef Ecosystem Program.

**Author contributions**

G.F.P. sampled nematodes, planned and carried out the experimental set up, performed and analysed transcriptomics, proteomics and metabolomics, produced all the figures, tables, videos, and datasets, drafted and revised the manuscript; T.V. sampled nematodes and assisted with the experimental set up, performed the Spearman correlation and the eggNOG classification, and revised the manuscript; S.M. performed proteomics and revised the manuscript; M.M. performed lipidomics and revised the manuscript; Y.S. performed oligochaete transcriptomics and revised the manuscript; M.L. performed and analysed metabolomics and revised the manuscript; L.K., performed and analysed transcriptomics and revised the manuscript; S.B. conceived the work, acquired funding, wrote and edited the manuscript.

**Competing interests**

The authors declare no competing interests.

**Additional information**

**Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-13235-9.

**Correspondence** and requests for materials should be addressed to S.B.

**Reprints and permissions information** is available at www.nature.com/reprints.

**Publisher’s note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022