GETTING IN AND OUT FROM CALNEXIN/CALRETICULIN CYCLES

Julio J. Caramelo and Armando J. Parodi

From the Fundación Instituto Leloir and IIBBA-CONICET, Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina

The quality control of glycoprotein folding. An overview

The N-glycan-dependent quality control mechanism of glycoprotein folding was initially proposed by Ari Helenius and co-workers several years ago. With a few minor modifications it is still valid today (Fig. 1) (1-3). Glycan processing starts immediately after its transfer from a dolichol-P-P derivative to Asn residues in nascent polypeptide chains entering the lumen of the endoplasmic reticulum (ER). Removal of the outermost and following glucoses by the successive action of glucosidases I and II (GI and GII) exposes the Glc1Man9GlcNAc2 epitope (Fig. 2). This structure is then recognized by two ER resident lectins (calnexin, CNX and calreticulin, CRT) that specifically bind monoglucosylated polymannose glycans. This is followed by removal of the innermost glucose by GII, thus liberating the glycoprotein from the lectin anchor. The protein-linked glycan is then reglucosylated by the soluble ER enzyme UDP-Glc:glycoprotein glucosyltransferase (GT) only if the protein moiety displays non native 3-D structures, as this enzyme behaves as a conformational sensor. Cycles of glycoprotein-CNX/CRT binding and liberation, catalyzed by the opposing activities of GT and GII, are terminated once glycoproteins attain their native structures. Glucose-free glycoproteins continue then their transit through the secretory pathway. Alternatively, permanently misfolded glycoproteins may be then transported to the cytosol for proteasomal degradation. Lectin-glycoprotein association not only thwarts Golgi exit of folding intermediates and irreparably misfolded glycoproteins but also enhances folding efficiency by preventing aggregation and promoting proper disulfide bonding. The latter is catalyzed by an oxidoreductase of the PDI family (ERp57) that exclusively acts on glycoproteins as it is loosely associated to CNX/CRT.

GT is the only component of the quality control mechanism that senses protein conformations as it recognizes hydrophobic amino acid patches exposed in molten globule-like conformers (4, 5). GT may also glucosylate glycoproteins in not fully assembled oligomeric complexes because it also recognizes hydrophobic surfaces exposed as a consequence of the absence of subunit components (6).

The aim of this review is to give an overview of recent reports dealing with entrance and exit of glycoproteins from CNX/CRT cycles.

Getting in. GII is not what it was thought to be

The first step in the pathway leading to the entrance of glycoproteins into CNX/CRT cycles is the removal of the outermost glucose unit from the glycan by the membrane enzyme GI. This reaction occurs almost simultaneously with glycan transfer. The rapid GI-mediated deglucosylation of the protein-linked glycan, as well as the apparent inability of the enzyme to remove in vivo (but not in vitro) the glucose from the dolichol-P-P-linked glycan strongly suggests the existence of a supercomplex formed by the oligosaccharyltransferase, GI and the dolichol derivative, with a very precise orientation of the components.
It was assumed that the sole role of GII was that of removing glucose residues \(I \) and \(n \) (Fig. 2). Recent work, however, has suggested a regulatory role for this enzyme. GII is a soluble dimeric protein, from yeast to mammals. The \(\alpha \) subunit displays the catalytic activity and no ER retaining/retrieval sequence, and the \(\beta \) subunit bears a KDEL-like sequence at its C-terminus, from yeasts (Schizosaccharomyces pombe but not Saccharomyces cerevisiae) to mammals (7-9). This subunit has also a sequence stretch with high homology to the mannose binding domain of the mannose 6-P receptor (10). Disruption of the \(\beta \) subunit-encoding gene in the fission yeast results in an almost complete loss of activity, probably as a consequence of a mislocalization of the \(\alpha \) subunit. It has been shown for the rat liver enzyme that the \(\beta \) subunit is not required for activity (8, 11). Remarkably, disruption of the \(\beta \) subunit gene in \(S. \) cerevisiae did not affect the enzymatic activity or the ER localization of the catalytic component but resulted in the exclusive \textit{in vivo} production of monoglucosylated protein-linked \(N \)-glycans (9). Thus, the \(\beta \) subunit appears to be required for the complete removal of glucose in the budding yeast enzyme. In the case of the mammalian enzyme apparently two \(N \)-glycans in the same glycoprotein are required for the formation of monoglucosylated \(N \)-glycans \textit{in vivo} but not for the deglucosylation of these last compounds (12). For both the \(S. \) cerevisiae and mammalian GII it was hypothesized that an interaction of the mannose 6-P receptor-like domain of the \(\beta \) subunit with \(N \)-glycans was responsible for results mentioned above (9, 12). Furthermore, in the case of the mammalian enzyme it was proposed that, as both bonds to be successively cleaved (Glc\(\alpha \)1,3Glc, Glc\(\alpha \)1,3Man, Fig. 2) are differently oriented in space, a transient separation between GII single catalytic site and the \(N \)-glycan occurs after the first cleavage. This separation probably allows recognition of the monoglucosylated epitope by CNX/CRT (12). There is an apparent contradiction between results obtained with \(S. \) cerevisiae and mammalian cells as in the former case the \(\beta \) subunit is apparently required for the second cleavage but not for the first one, whereas according to the mechanism proposed for mammalian GII, the same subunit would intervene only in the first cleavage. Furthermore, glycoproteins bearing only one diglucosylated glycan were efficiently completely deglucosylated by purified mammalian GII (13). The putative regulation of the entrance of glycoproteins into CNX/CRT cycles by GII certainly merits further studies.

What happens once glycoproteins are in CNX/CRT cycles?

Although most glycoproteins studied so far interact with the lectins, apparently not all of them are reglucosylated by GT as some of them may complete their folding processes taking advantage of the initial binding triggered by the partial deglucosylation of the transferred glycan. GT is not required for the viability of single yeast or mammalian cells grown under normal conditions and even for that of certain multicellular organisms as plants but disruption of its encoding gene was found to be embryonically lethal for mice (14-16). These results, together with the strict requirement of the enzyme for the viability of \(S. \) pombe only when grown under severe ER stress conditions indicates that a restricted set of glycoproteins absolutely require GT for attaining their proper folding with acceptable efficiency (17). There are alternative quality control and folding efficiency enhancement mechanisms in the ER lumen besides the \(N \)-glycan dependent one. Deficiencies in the latter trigger the upregulation of the former ones.

According to their rates of release from CNX/CRT association, glycoproteins expressed in fibroblasts derived from GT minus mouse embryos...
could be classified in three classes: in the first one the observed rates were similar to those of wild type cells (18). Glycoproteins in this class represent those with only one cycle of association with the lectins triggered by partial deglucosylation of the transferred glycan. In the second class glycoproteins heavily dependent on GT-mediated association with CNX/CRT for folding showed an accelerated release from the lectins. GT absence resulted, as expected, in a lower folding efficiency. The most intriguing case was that of glycoproteins in the third class as they showed a prolonged association with CNX/CRT. It was speculated that the observed results could be due to a protein-protein association between the lectins and glycoproteins, or alternatively to the fact that a seleno-cysteine-containing oxidoreductase (Sep15) that forms a 1:1 complex with GT could play a role in assessing and refining the disulfide bond content of glycoproteins in this class (18, 19).

Although Glc\textsubscript{3}Man\textsubscript{9}GlcNAc\textsubscript{2} displays the same affinity for CNX and CRT, it has been known for several years that the set of glycoproteins interacting with one or other of the lectins only partially overlap. The difference observed was at least partially related both to the membrane-bound or soluble status of CNX or CRT, respectively, and to the vicinity of the N-glycans to the membranes (20). The use of CNX or CRT deficient cells revealed some unexpected results (21): expression of viral and cellular glycoproteins in CRT null mouse embryo fibroblasts and in CNX deficient human T lymphoblastoid cells showed that loss of either CNX- or CRT-glycoprotein interaction or both (by addition of glucosidase inhibitors to wild type cells) affected the process and outcome of glycoprotein production as well as the fidelity of quality control in a variety of ways. Effects were seen in the folding rate (which was accelerated particularly when CRT was absent), in the folding efficiency (which was generally reduced), and in the retention of incompletely folded glycoproteins in the ER (which was affected only when association with both lectins was abolished). CNX seemed to be more important than CRT as folding assistant. Loss of CRT had, in fact, only marginal consequences, while loss of CNX resulted in a dramatic impairment of influenza virus HA folding and in a more substantial elevation of other alternative ER resident chaperones, a symptom of ongoing ER stress.

Totally unexpected results were obtained on studying the interaction of CNX/CRT and other chaperones with cellular and viral glycoproteins expressed in cells lacking a functional CNX (22). Three variants of the same cellular glycoprotein differing in their folding competence, the number of glycans and their solubility status, that in wild type cells were CNX substrates, failed to interact with CRT when expressed in CNX null fibroblasts. Instead, they more strongly interacted with BiP. On the contrary, four viral glycoproteins (Semliki forest virus E1 and p62, vesicular stomatitis virus G and influenza virus HA) gave different results. The first two glycoproteins normally interact with both CNX and CRT, but in CNX minus cells they interacted more abundantly with CRT and their maturation proceeded normally. In the case of HA, a glycoprotein deeply dependent on CNX for successful maturation that normally interacts with both CNX and CRT, absence of the former lectin resulted in a persistent interaction with CRT. The most surprising result was obtained with G protein that normally interacts only with CNX. Infection of CNX deficient fibroblasts with VSV (viral infection was also used to express E1, p62 and HA) resulted in the interaction of G protein with CRT. As transfection of G protein failed to trigger its interaction with CRT, it was suggested that viral infection somehow subverted the normal glycoprotein recognition by the ER lectins. This result may explain why total inactivation of CNX/CRT cycles affects viral replication and infectivity but not viability of mammalian
cells. Additional expression of individual glycoproteins, both of cellular and viral origin and in this last case as a result of both viral infection and transfection must be studied to substantiate this very interesting finding.

Getting out. ERAD components that recognize glycoproteins

Exit of properly folded glycoproteins from CNX/CRT cycles poses no conceptual problems as their conformations do not allow GT-mediated reglucosylation. But, how do cells recognize that glycoproteins are irreparably misfolded or that multimeric complexes are definitively unable to complete their oligomeric structures, and pull them out from futile CNX/CRT cycles to allow proteasomal degradation to proceed? Although intensive work has been dedicated to this issue in recent years and substantial progress has been made, the picture that now emerges is rather complex and no clear answer to the question is yet available.

The observation that addition to mammalian cells of mannose analogs (behaving as ER mannosidase I and/or as polymannose lectin inhibitors) delayed degradation of misfolded glycoproteins prompted the suggestion that a “mannose removal time clock” regulated disposal. As mannose removal is slower than that of glucose by GI and GII it was proposed that demannosylation of glycoproteins staying in the ER for relatively long periods as irreparably misfolded glycoproteins do was a tag identifying molecules to be driven to degradation.

There are at least two proteins in ERAD (ER associated degradation) that may interact with polymannose chains for pulling misfolded glycoproteins out from CNX/CRT cycles: ER α-mannosidase I and EDEM. Both mammalian and yeast cells ER mannosidase I are membrane proteins that convert Man₉GlcNAc₂ to Man₉GlcNAc₂ isomer B (M₈B, Fig. 2) but they are not as specific as initially thought because the recombinant species were able to further degrade M₈B to smaller glycans. However, high enzyme concentrations not thought to occur in vivo were employed in the assays (23). Nevertheless, glycans smaller than M₈B have been detected in glycoproteins forced to stay in the ER for rather long time periods as happens with irreparably misfolded and ER resident glycoproteins (24-26). The enzymatic activities responsible for further degradation of Man₉GlcNAc₂ glycans in the ER have not been unequivocally identified yet and they might not even be ER resident proteins. It is known that irreparably misfolded glycoproteins may cycle between the ER and Golgi before being driven to degradation both in yeast and mammalian cells (27-32). Unlike the S. cerevisiae Golgi, that is devoid of mannosidase activities, mammalian cell cis Golgi cisternae display three α-mannosidase activities able to degrade Man₉GlcNAc₂ to Man₅GlcNAc₂ (residues a-e, h and j, Fig. 2) (33, 34). Furthermore, mammalian cells, but not yeast ones, have an ERGIC-cis Golgi endomannosidase that yields M₈A (Fig. 2) and GlcMan as degradation products of Glc₃Man₉GlcNAc₂.

Genome analysis revealed that there are three ER α-mannosidase I homologues in mice and only one in either S. pombe or S. cerevisiae (35-40). They were called EDEM (for endoplasmic reticulum degradation enhancing α-mannosidase-like proteins) in mammalian cells and Htm1p or Man1p in yeasts. EDEMs were first thought to be membrane bound but recent work showed them to be soluble proteins (41, 42). EDEMs display a 450-residue domain that shares 35 % sequence identity with the catalytic domain of ER α-mannosidase I. It was first proposed that EDEMs behaved as lectins and not as enzymes as they lack a particular disulfide bond thought to be required for hydrolytic activity, but further sequencing work detected several active fungal mannosidases lacking that particular bond. It has been reported that overexpression of EDEMs enhances
misfolded protein degradation by pulling those species out from CNX/CRT cycles whereas a decrease in EDEM amounts, derived from the use of RNAi, resulted in a degradation delay (35, 40).

Mechanisms proposed for misfolded glycoprotein escape from CNX/CRT cycles

Based on a report indicating that absence of mannose residues \(i\) or \(\ell\) and \(k\) (Fig. 2) (that is, leaving intact the 3’ branch to which Glc is added by GT) decreased GT-mediated glucosylation rate (43), a first proposal assumed that impeded reglucosylation of Man\(_8\)GlcNAc\(_2\) or Man\(_7\)GlcNAc\(_2\) glycans following GII glucose removal would liberate misfolded glycoproteins from CNX/CRT cycles (44). However, as an earlier report had shown that GII displayed a similar rate trend as GT concerning N-glycan composition (45), according to this proposal misfolded glycoprotein degradation would have to be the outcome of a delicate balance between specificities for glycans and relative amounts of GII and GT. A more recent communication, however, reported similar GII-mediated deglucosylation rates for \(G_1\)Man\(_9\)GlcNAc\(_2\) and the monoglucosylated derivative of M8B (13). Further studies on the GII specificity for glycans are required for elucidating this discrepancy. Nevertheless, it was shown that even glycoproteins bearing the Man\(_5\)GlcNAc\(_2\) structure (residues \(a\)–\(g\), Fig. 2) were good GT substrates in vivo and the resulting glucosylated glycoproteins interacted with CNX (46).

A second proposal was based on the observation that EDEMs interacted with totally deglucosylated misfolded glycoproteins, whereas CNX associated with monoglucosylated species, and suggested that EDEMs, behaving as lectins, physically interacted with the glycans, thus hindering GT mediated reglucosylation (41, 47). This proposal implies that EDEMs should be lectins with an extremely broad specificity spectrum as even glycoproteins synthesized in cells transferring Glc\(_3\)Man\(_5\)GlcNAc\(_2\) (residues \(a\)–\(g\) and \(l\)–\(n\), Fig. 2) participate in CNX/CRT cycles (46). Finally, a third proposal based on the observation that ER \(\alpha\)-mannosidase I overexpression accelerated misfolded glycoprotein degradation (48), assumed that extensive demannosylation, and specifically removal of residue \(g\) (Fig. 2), that is, the residue to which GT adds the glucose unit, would prevent GT-mediated reglucosylation and thus CNX/CRT glycoprotein interaction. The enzymatic activity(ies) responsible for such demannosylation has not been unequivocally identified yet but several possibilities have been advanced: a) ER mannosidase I concentrated in specific subcellular sites together with misfolded glycoproteins (25). Such concentration was recently observed for a HA-tagged version of ER \(\alpha\)-mannosidase I expressed in mammalian cells (49). Confirmation of such concentration for the native enzyme is necessarily required; b) it was recently proposed that EDEMs might display enzymatic activity as overexpression of EDEM1 and EDEM3 (EDEM2 has not been tested yet) (35, 50) results in a more extensive demannosylation of misfolded glycoproteins. Moreover, EDEM mutants defective in amino acids known to be essential for ER \(\alpha\)-mannosidase I activity failed to increase demannosylation. The main objection to this proposal is that EDEMs have not been purified to homogeneity yet, thus precluding assaying the enzymatic activity of the native species and, additionally, no mannosidase activity could be detected in recombinant EDEMs 1, 2 or 3, although the expression of the homologous lumenal portion of ER \(\alpha\)-mannosidase I gave positive results. Furthermore, the inability of mutant EDEMs to promote extensive N-glycan demannosylation might not be a conclusive evidence for the enzymatic activity of the \(\alpha\)-mannosidase homologues as for instance, mutations might abolish a
putative lectin activity responsible for hindering GT-mediated reglucosylation and c) cis Golgi mannosidases, that as mentioned above are able to convert Man₉GlcNAc₂ to Man₅GlcNAc₂ (Fig. 2), and/or ERGIC-cis Golgi endomannosidase that yields M₈A, an isomer lacking residue g (Fig. 2) (33, 34). A recent paper showed that not only overexpression of ER α-mannosidase I and EDEMs but also that of Golgi α-mannosidases IA, IB or IC resulted in an enhancement of misfolded glycoprotein demannosylation and degradation (32). It was not shown, however, if the overexpressed proteins localized exclusively to the Golgi or if they were present in the ER as well.

The second proposal for a misfolded glycoprotein escape mechanism from CNX/CRT cycles (see above) is probably the only one applicable to S. pombe, a displaying a quality control mechanism similar to that occurring in mammalian cells and in which disruption of the EDEM-encoding gene drastically decreased the degradation rate of misfolded glycoproteins (51). No Man₉GlcNAc₂ demannosylation was observed in mutants lacking a functional ER α-mannosidase I encoding gene, thus suggesting that the yeast single EDEM homologue has no α-mannosidase activity. Also, there are no ERGIC-cis Golgi endomannosidase or cis Golgi α-mannosidase activities in S. pombe. Finally, even after an extremely long residence in the ER, Man₇GlcNAc₂ in misfolded glycoproteins was minimally degraded, Man₇GlcNAc₂ being the smallest glycan detected. This last compound still had mannose residue g (Fig. 2) (51).

The absence of monoglucosylated glycans is not an absolute condition for glycoprotein degradation: Glc,Man₉GlcNAc (residues b-g and l, Fig. 2) was found to be a cytosolic byproduct of the degradation of misfolded glycoproteins synthesized by Chinese hamster ovary mutant cells known to transfer Man₉GlcNAc₂ in protein N-glycosylation (52). The glycan came from cytosolic degradation of Glc,Man₉GlcNAc₂ and Glc,Man₈GlcNAc₂, the species that determined CNX/CRT recognition of folding intermediates in those cells. These results show that diversion to degradation of misfolded glycoproteins cannot be solely ascribed to their liberation from CNX/CRT anchors caused by hindering formation of monoglycosylated N-glycans.

Do CNX/CRT behave also as classical chaperones?

Although binding of most known substrates to CRT and CNX appears to be mediated exclusively by the glycan moiety, in some cases the lectins may apparently display a behavior more akin to that observed in classic chaperones (53). For instance, under mild cell lysis conditions some proteins remain associated with CNX/CRT even in the presence of glucosidase inhibitors (54-56). In addition, thermally induced aggregation of nonglycosylated proteins may be suppressed in vitro by both CNX and CRT (57, 58). In addition, CNX mutants devoid of lectin activity may associate in vivo with class I histocompatibility molecules (59). Interestingly, CRT displays a marked preference for hydrophobic peptides in in vitro binding assays (60). The absence of any obvious binding site for hydrophobic domains in the structure of CNX constitutes a major drawback for the occurrence of polypeptide-based interactions. Nevertheless, the static picture captured in the crystal may hinder alternative conformations unfavorable under the crystallization conditions but able to bind proteins displaying non native conformations. For instance, upon heat shock or calcium depletion both CRT and CNX undergo conformational changes that induce their oligomerization and increase their ability to bind nonglycosylated substrates (61, 62). ATP provides the energy required for binding and unbinding cycles of
classical chaperones and the role of the nucleotide is played by UDP-Glc in CNX/CRT lectin based cycles described in this review. Whether similar binding-unbinding cycles (and their energy purveyor) occur in the putative role of CNX/CRT as classical chaperones is presently unknown.

REFERENCES

1. Hammond, C., Braakman, I. and Helenius, A. (1994) Proc. Natl. Acad. USA, 91, 913-917
2. Parodi, A. J. (2000) Annu. Rev. Biochem. 69, 69-93
3. Helenius, A. and Aebi, M. (2004) Annu. Rev. Biochem. 73, 1019-1049
4. Sousa, M. and Parodi, A. J. (1995). EMBO J. 14, 4196-41203
5. Caramelo, J. J., Castro, O. A., Alonso, L.G., de Prat-Gay, G. and Parodi, A. J. (2003) Proc. Natl. Acad. Sci. USA, 100, 86-91
6. Keith, N., Parodi, A.J. and Caramelo, J. J. (2005) J. Biol. Chem. 280, 18138-18141
7. Trombetta, E. S., Simons, J. F. and Helenius, A. (1996) J. Biol. Chem. 271, 27509-27516
8. D’Alessio, C., Fernández, F., Trombetta, E. S. and Parodi, A. J. (1999) J. Biol. Chem. 274, 25899-25905
9. Wilkinson, B. M., Purswani, J. and Stirling, C. J. (2005) J Biol Chem 281, 6325-6333
10. Munro, S. (2001) Curr. Biol. 11, R499-R501
11. Trombetta, E. S., Fleming, K. G. and Helenius, A. (2005) Biochemistry 40, 10717-10722
12. Deprez, P., Gautschi, M. and Helenius, A. (2005) Mol. Cell 19, 183-195
13. Totani, K., Ihara, Y., Matsuo, I. and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508
14. Fernández, F., Jannatipour, M., Hellman, U., Rokeach, L. and Parodi, A. J. (1996) EMBO J. 15, 705-713
15. Jin, H., Yan, Z., Nam, K. H. and Li, J. (2007) Mol. Cell 26, 821-830
16. Molinari, M., Galli, C., Vanoni, O., Arnold, S. M., Kaufman, R. J. (2005) Mol Cell 20, 503-512.
17. Fanchiotti, S., Fernández, F., D’Alessio, C. and Parodi, A. J. (1998) J. Cell Biol. 143, 625-635
18. Solda, T., Galli, C., Kaufman, R. J. and Molinari, M. (2007) Mol. Cell 27, 238-249
19. Labunskyy, P. A., Hatfield, D. L. and Gladyshev, V. N. (2007) IUBMB Life, 59, 1-5
20. Hebert, D. N., Zhang, J. X., Chen, W., Foellmer, B. and Helenius, A. (1997) J. Cell Biol. 139, 613-623
21. Molinari, M., Eriksson, K. K., Calanca, V., Galli, C., Cresswell, P., Michalak, M. and Helenius, H. (2004) Mol. Cell 13, 125-135
22. Pieren, M., Galli, C., Denzel, A. and Molinari, M. (2005) J. Biol. Chem. 280, 28265-28271
23. Herscovics, A., Romero, P. A. and Tremblay, L. O. (2002) Glycobiology 11, 14G-15G
24. Weng, S. and Spiro, R. G. (1993) J. Biol. Chem. 268, 25656-25663
25. Frenkel, Z., Gregory, W., Kornfeld, S. and Ledekremer, G. (2003) J. Biol. Chem. 278, 34119-34124
26. Bischoff, J., Liscum, L. and Kornfeld, R. (1986) J. Biol. Chem. 261, 4766-4774
27. Vashist, S., Kim, W., Belden, W. J., Spear, E. D., Barlowe, C. and Ng, D. T. (2001) J. Cell Biol. 155, 355-368
28. Taxis, C., Vogel, F., and Wolf, D. H. (2002) Mol. Biol. Cell 13, 1806-1818
29. Kincaid, M. M. and Cooper, A. A. (2007) Mol. Biol. Cell 18, 455-463
30. Hammond, C and Helenius A. (1994) J. Cell Biol. 126, 41-52
31. Yamamoto, K, Fujii, R., Toyofuku, Y., Saito, T., Koseki, H., Hsu, V. W. and Aoe, T. (2001) EMBO J., 20, 3082-3091
32. Hosokawa, N., You, Z., Tremblay, L. O., Nagata, K. and Herscovics, A. (2007) Biochem. Biophys. Res. Commun. 362, 626-632
33. Lal, A., Pang, P., Kalelkar S., Romero, P. A., Herscovics, A. and Moremen, K. W. (1998) Glycobiology 8, 981-995
34. Tremblay, L. O. and Herscovics, A. (2000) J. Biol. Chem. 275, 31655-31660
35. Hirao, K., Natsuka, Y., Tamura, T., Wada, I., Morito, D., Natsuka, S., Romero, P., Slénö, B., Tremblay, L. O., Herscovics, A., Nagata, K. and Hosokawa, N. (2006) J. Biol. Chem. 281, 9650-9658
36. Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A. and Nagata, K. (2001) EMBO Rep. 2, 415-422
37. Jakob, C. A., Bodmer, D., Spirig, U., Batig, P., Marcil, A., Dignard, D., Bergeron, J. M., Thomas, D. Y. and Aebi, M. (2001) EMBO Rep. 2, 423-430
38. Mast, S. W., Diekman, K., Karaveg, K., Davis, A., Sifers, R. N. and Moremen, K. W. (2005) Glycobiology 15, 421-436
39. Nakatsukasa, K., Nishikawa, S., Hosokawa, N., Nagata, K. and Endo, T. (2001) J. Biol. Chem. 276, 8635-8638
40. Olivari, S., Galli, C., Alanen, H., Ruddock, L. and Molinari, M. (2005) J. Biol. Chem. 280, 2424-2428
41. Oda, Y., Hosokawa, N., Wada, I. and Nagata, K. (2003) Science 299, 1394-1397
42. Zuber, C., Cormier, J. H., Guhl, B., Santimaria, R., Hebert, D. N. and Roth, J. (2007) Proc. Natl. Acad. Sci. USA 104, 4407-4412
43. Sousa, M., Ferrero-García, M. A. and Parodi, A. J. (1992) Biochemistry 31, 97-105
44. Cabral, C. M., Liu, Y and Sifers, R. N. (2001) TIBS, 26, 619-624
45. Grinna, L. S., and Robbins, P. W. (1980) J. Biol. Chem. 255, 2255-2258
46. Ermonval, M., Kitzmuller, C., Mir, A. M., Cacan, R. and Ivessa, N. E. (2001) Glycobiology 7, 565-576
47. Molinari, M., Calanca, V., Galli, C., Lucca, P. and Paganetti, P. (2003) Science 299, 1397-1400
48. Hosokawa, N., Tremblay, L. O., You, Z., Herscovics, A., Wada, I. and Nagata, K. (2003) J. Biol. Chem. 278, 26287-26294
49. Avezov, E., Frenkel, Z, Ehrlich, M., Herscovics, A. and Lederkremer, G. Z. (2007) Mol. Biol. Cell (in press)
50. Olivari, S., Cali, T., Salo, K. E., Paganetti, P., Ruddock, L. W. and Molinari, M. (2006) Biochem. Biophys. Res. Commun. 349, 1278-1284
51. Movsichoff, F., Castro, O. A. and Parodi, A. J. (2005) Mol. Biol. Cell 16, 4714-4724
52. Cacan, R., Duvet, S., Labiau, O., Verbert, A. and Krag, S. S. (2001) J. Biol. Chem. 276, 22307-22312
53. Williams, D. B. (2006) J. Cell Sci. 119, 615-623
54. Danilczyk, U. G., and Williams, D. B. (2001) J. Biol. Chem. 276, 25532-25540
55. Mizrachi, D., and Segaloff, D. L. (2004) Mol. Endocrinol. 18, 1768-1777
56. Wanamaker, C. P., and Green, W. N. (2005) J. Biol. Chem. 280, 33800-33810
57. Saito, Y., Ihara, Y., Leach, M. R., Cohen-Doyle, M. F., and Williams, D. B. (1999) EMBO J. 18, 6718-6729
58. Ihara, Y., Cohen-Doyle, M. F., Saito, Y., and Williams, D. B. (1999) Mol. Cell 4, 331-341
59. Leach, M. R., and Williams, D. B. (2004) J. Biol. Chem. 279, 9072-9079.
60. Sandhu, N., Duus, K., Jørgensen, C. S., Hansen, P. R., Bruun, S. W., Pedersen, L. Ø., Højrup, P., and Houen, G. (2007) Biochim. Biophys. Acta 1774, 701-713
61. Thammavongsa, V., Mancino, L., and Raghavan, M. (2005) J. Biol. Chem. 280, 33497-33505
62. Rizvi, S. M., Mancino, L., Thammavongsa, V., Cantley, R. L., and Raghavan, M. (2004) Mol. Cell 15, 913-923

Acknowledgments
Financial support by the Howard Hughes Medical Institute and NIH (Grant GM44500) is gratefully acknowledged.

Footnotes

¹To whom correspondence should be addressed. E-mail: aparodi@leloir.org.ar

²The abbreviations used are: CNX, calnexin; CRT, calreticulin; EDEM, endoplasmic reticulum degradation enhancing α-mannosidase-like proteins; ER, endoplasmic reticulum; ERGIC, endoplasmic reticulum-Golgi intermediate compartment; ERAD, endoplasmic reticulum associated degradation; GI, glucosidase I; GII, glucosidase II; GT, UDP-Glc:glycoprotein glucosyltransferase; M8A, M8B and M8C stand for Man₈GlcNAc₂ isomers A, B and C.

³References 2, 3, 19 and 53 are review articles

Legends to Figures

Fig. 1. Model proposed for the quality control of glycoprotein folding. Proteins entering the ER are N-glycosylated by the oligosaccharyltransferase (OST) as they emerge from the translocon. Two glucoses are removed by the sequential action of GI and GII to generate monoglucosylated species that are recognized by CNX and/or CRT (only CNX is shown), that are associated with ERp57. The complex between the lectins and folding intermediates/misfolded glycoproteins dissociates upon removal of the last glucose by GII, and is reformed by GT activity. Once glycoproteins have acquired their native conformations, either free or complexed with the lectins, GII hydrolyzes the remaining glucose residue and releases the glycoproteins from the lectin anchors. These species are not recognized by GT and are transported to the Golgi. Glycoproteins remaining in misfolded conformations are retrotranslocated to the cytosol where they are deglycosylated and degraded by the proteasome. One or more mannose residues may be removed during the whole folding process.

Fig. 2. Structure of glycans. Lettering (a-n) follows the order of addition of monosaccharides in the synthesis of Glc₃Man₅GlcNAc₂-P-P-dolichol. GI removes residue n and GII residues l and m. GT adds residue l to residue g. M8A lacks residues g and l-n. M8B formed by mammalian cell or yeast ER α-mannosidase I lacks residues i and l-n and M8C residues k and l-n. The smallest glycan formed in S. pombe ER (Man₇GlcNAc₂) lacks residues i, k and l-n.
FIGURE 1

mRNA → OST → SEC61 → CNX → FOLDING → UDP → GT → UDP → H₂O → FOLDING → KDEL → DEGRADATION → GOLGI

LEGEND:
- Glc
- Man
- GlcNAc
- Folded protein
- Misfolded protein
- Dolichol-PP-GlcNAc₂-Man₃-Glc₃
FIGURE 2

α₁,6 β₁,4 α₁,3 β₁,4 α₁,3 α₁,6 α₁,6 α₁,2 α₁,2 α₁,2

GlcNAc Man Glc

Glucosidase II Glucosidase I ER mannosidase I
Getting in and out from calnexin/calreticulin cycles
Julio J. Caramelo and Armando J. Parodi

J. Biol. Chem. published online February 26, 2008

Access the most updated version of this article at doi: 10.1074/jbc.R700048200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts