A TROPHOBLAST-SPECIFIC β_1-GLYCOPROTEIN (TSG) (also referred to as SP-1, PAPP-C, PSBG or PSh(β) was first identified immunochemically in the serum of pregnant women and placental tissue (Tatarinov & Masyukevich, 1970; Bohn, 1971; Lin et al., 1974). Subsequently, TSG was discovered in the serum of patients with trophoblastic (Tatarinov et al., 1974) and testicular tumours (Tatarinov et al., 1975; Johnson et al., 1977) and in non-trophoblastic malignancies (Horne et al., 1976; Tatarinov & Sokolov, 1977) and the frequency of raised levels of TSG was compared with HCG in these tumour groups (Bagshawe et al., 1978; Seppala et al., 1978; Searle et al., 1978; Tatarinov et al., 1976; Johnson et al., 1977; Würz et al., 1979).

This study will present our recent data on the clinical application of TSG assays in patients with trophoblast and non-trophoblast tumours.

Sera were obtained from patients attending in three centres: Moscow Cancer Center, U.S.S.R.; International Agency for Research on Cancer, Lyon, France; and the National Cancer Institute, Bethesda, U.S.A., during the period 1973–1977. 91 patients had hydatidiform moles or gestational trophoblast tumours, 197 patients had various malignant tumours. In addition sera were obtained from 90 healthy adult blood donors (Table I).

Serum levels of TSG were measured by radioimmunoassay as described previously (Tatarinov & Sokolov, 1977). The sensitivity of the double-antibody radioimmunoassay for TSG was ~ 1 ng/ml; the lowest measurable serum level of TSG was ~ 3 ng/ml.

Monospecific antisera to TSG (anti-TSG) were prepared in rabbits as described previously (Tatarinov & Masyukevich, 1970). Donkey anti-rabbit γ-globulin (anti-RGG) was purified from commercial antisera prepared at the Gamaleya Institute of Epidemiology and Microbiology, Moscow, U.S.S.R.

TSG was isolated from pooled pregnancy sera by a combination of methods already described (Bohn, 1971; Lin et al., 1974). The protein fraction prepared by chromatography with KM-32 cellulose was purified further by isoelectrofocusing. The resulting fraction (pI 4.05) was used to prepare 125I-labelled TSG. Its purity was controlled immunologically by disc electrophoresis, using as comparison a sample of pregnancy-specific β_1-glycoprotein (SP-1; Bohn, 1971) provided by Dr Zigaret (International Agency for Research on Cancer, Lyon, France).

TSG was labelled with 125I (Tatarinov & Sokolov, 1977). 0.1 ml of 0.1 M phosphate-buffered saline (PBS, pH 7.6) containing 30 μg of TSG was added to 0.1 ml of PBS containing 0.1 mg of chloramine-T and 2 mCi carrier-free Na125I with a specific activity of 106 mCi/ml (Leningrad,
TABLE I.—Serum TSG in control donors and in patients with various trophoblastic and non-trophoblastic tumours

Diagnosis	No. patients	Serum TSG (ng/ml)	% elevated TSG
Control adult male and female	90	<10	3
Hydatidiform mole	15	10-100	100
Post-molar trophoblast tumours	28	10-100	75
Uterine choriocarcinoma	48	10-100	67
Tumour of the testis	45	10-100	15-5
Cancer of the lung	32	10-100	12-5
breast	40	10-100	7-5
digestive tract	34	10-100	3
miscellaneous	46	10-100	2
Total	398	291	30

* Mediastinal teratoma.

U.S.S.R.). The mixture was shaken and left to stand for 75 sec. Then 0·1 ml of PBS containing 0·25 ng sodium metabisulphite and 0·075 ml of 10% NaI were added. The free and bound 125I were separated by column chromatography using Sephadex G-50 (1·2 x 15 cm) equilibrated with PBS. 0·5 ml fractions were collected into glass tubes containing 0·05 ml 5% BSA. The test samples of labelled TSG were stored with 1% BSA and 0·05% sodium azide at 2°C. Labelled fractions containing 95% or more of the label in TSG were used for radioimmunoassay.

The immunoadsorbent was prepared with Sepharose 4B activated by cyanogen bromide. After washing of the activated Sepharose by 10 ml of 0·5 ml PBS at pH 8·0, purified anti-rabbit γ-globulin (anti-RGG) obtained from donkey anti-RGG was added to the activated gel in amounts of 10 mg of anti-RGG per 1 g of dry Sepharose. The mixture was mixed slowly for 16 h at 4°C. The washed immunoadsorbant was then suspended in PBS with 0-02% sodium azide and stored at 4°C. Before use it was washed twice with 0·03 ml citrate buffer (pH 2·5) and then with PBS.

Doubling dilutions of anti-TSG were prepared in PBS with 0·05% BSA in a final volume of 0·15 ml. Then, 0·05 ml of labelled TSG (32,000 ct/min) and 0·05 ml of PBS with 5% BSA were added. The tubes were incubated at 4°C for 24 h in a Rotamixer. After incubation and measurement of the total amount of radioactivity in each sample, 0·1 ml of anti-RGG diluted 1:5 in PBS was added. The anti-TSG-bound TSG was precipitated by anti-RGG. The tubes were incubated at 20°C for 4 h in a Rotamixer and centrifuged at 2000 g for 20 min. The supernatant was removed by suction. The precipitate was resuspended in 1 ml of PBS and re-centrifuged in the same manner. After removal of the supernatant, the radioactivity of the tubes was assessed. Non-specific radioactivity in control tubes was about 1–1·5%. An antibody concentration (1:32,000), precipitating 50% of the 125I-TSG, was used for the subsequent construction of inhibition curves.

The standard inhibition curve was constructed by diluting 0, 0·5, 1·0, 1·5, 3·0, 6·0, 12·0, 24·0, 48·0, 96·0, 192·0 and 384·0 ng per ml of a weighed amount of purified TSG and of known immunodiffusion TSG-positive sera in 0·15 ml of PBS containing 5% BSA. For the assay, reagents were added in the following order: (1) 0·15 ml anti-TSG appropriately diluted: e.g. 1:32,000; (2) 0·05 ml 125I-TSG dilution containing 32,000 ct/min; (3) 0·05 ml of test serum sample or standard TSG; (4) After 16 h of incubation at 20°C, 0·1 ml of immunoadsorbant containing anti-RGG was added and left to stand for 4 h in the
TABLE II.—Serum TSG levels in gestational trophoblast tumours from different countries

Country	No. patients	Serum TSG (ng/ml)	Elevated TSG (> 10 ng/ml)	Total (%)		
U.S.S.R., Moscow	35	<10	10-100	>100	25 (71)	53 (70)
France, Lyon	35	11	19	5	24 (69)	
U.S.A., Bethesda	6	2	3	1	4 (67)	
Total	76	23	41	12		

Rotamixerd; (5) 1 ml of PBS was added to the test tubes before centrifugation. The subsequent radioassay procedure was carried out as described above. All serum samples before assay were centrifuged and decomplemented by heating at 56°C for 30 min.

The methods of immuno-electrophoresis in agar, disc-electrophoresis, double immunodiffusion in agar with standard test system and immunoradioautography for identification and titration of TSG, have been reported in previous publications (Tatarinov & Masyukevich, 1970; Tatarinov & Sokolov, 1977).

The circulating levels of TSG in healthy non-pregnant female and male donors fall below 10 ng/ml in almost all cases, and in 58% were less than 3 ng/ml. Only 3% had levels between 10 and 11 ng/ml. A cut-off point of 10 ng/ml was therefore selected to mark the upper limit of normal.

Elevated serum TSG levels in the range 10,000–320,000 ng/ml were demonstrated in all 15 patients with hydatidiform moles. TSG concentrations in these patients were similar to those found in women during a normal pregnancy. Raised serum TSG levels were recorded in 75% of patients with post-molar trophoblast tumours, and in 67% of patients with uterine choriocarcinomas (Table I). Circulating TSG levels before the start of therapy ranged from 50 to 16,000 ng/ml in most patients. The incidence of pathological levels in sera from patients with trophoblast tumours in different countries is similar (Table II).

Tables I and III show the occurrence of elevated TSG levels in a variety of non-trophoblast tumours. In 8% of cases with non-trophoblast tumours, the circulating TSG level was raised, but levels higher than 100 ng/ml were rare (Tables I and III).

The detection of TSG in the sera of ~ 70% of patients with gestational trophoblast tumours, including uterine choriocarcinomas, suggests that this immunological test for TSG may have diagnostic value. The correlation of TSG and human chorionic gonadotrophin (hCG) release by gestational trophoblast tumours has been discussed by a number of authors (Tatarinov et al., 1976; Bagshawe et al., 1978; Searle et al., 1978; Seppala et al., 1978; Than et al., 1979). From these data it would be reasonable to assume that TSG assays may play an ancillary role to hCG assays for such lesions. However, assays for TSG alone have an important role in epidemiological investigations, particularly in population groups with a high
risk of trophoblast disease (Tatarinov et al., 1976).

The relationship of high serum TSG levels to the function of the various histological subtypes of both choriocarcinomas (Tatarinov et al., 1976; Zavadil, 1974) and teratomas is now under active study.

High TSG levels in non-trophoblastic tumours, particularly in breast and lung carcinomas, might have an ectopic origin. Our results agree with recent data concerning the finding of TSG in non-trophoblastic tumours with or without the chorion elements (Bagshawe et al., 1978; Johnson et al., 1977; Würz et al., 1979). TSG could be a product of an activated placental gene in malignant tissues, although this seems to occur only in a very low percentage of non-trophoblastic tumours.

In conclusion, the present test for TSG has proved to be highly specific for trophoblast tumours, and may be used in its differential diagnosis and possibly also in epidemiological studies of post-molar trophoblast disease.

The valuable help of Professor K. D. Bagshawe and Drs M. Falaleeva, G. A. Kozjaeva, R. M. Lequin, Ph. Sizaret, A. V. Sokolov and T. M. Waldmann in the collaborative study for TSG is greatly appreciated.

REFERENCES

Bagshawe, K. D., Lequin, R. M., Sizaret, Ph. & Tatarinov, Y. S. (1978) Pregnancy β1 glycoprotein and chorionic gonadotrophin in the serum of patients with trophoblastic and non-trophoblastic tumours. Eur. J. Cancer, 14, 1331.

Böhm, H. (1971) Nachweis und Charakterisierung von Schwangerschaftsproteinen in der menschlichen Placenta, sowie ihre quantitative immunologische Bestimmung in Serum schwangerer Frauen. Arch. Gynaekol., 210, 440.

Horne, C. H. W., Reid, I. N., Towler, C. M. & Milne, G. D. (1978) Production of pregnancy specific β1-glycoprotein by nontrophoblastic tumours. In: 24th Colloquium, Protides of the Biological Fluids. Ed. Peeters. Oxford: Pergamon Press, p. 507.

Johnson, S. A. N., Grudinskas, J. G., Gurdon, Y. B. & Al-Ani, A. T. M. (1977) Pregnancy-specific β1-glycoprotein in plasma and tissue extract in malignant teratomata of the testis. Br. Med. J., i, 951.

Lin, T. M., Halbert, S. P., Kiefer, D., Spellacy, W. N. & Gall, S. (1974) Characterization of four human pregnancy-associated plasma proteins. Am. J. Obstet. Gynecol., 118, 223.

Searle, F., Bagshawe, K. D., Dent, J. & Leake, B. A. (1978) Serial measurements of pregnancy-specific β1-glycoprotein (β1SP1) in patients with trophoblastic disease. Scand. J. Immunol., 8, 587.

Seppala, M., Rutanen, E.-M., Heikinheimo, M., Jalanko, H. & Enoval, E. (1978) Detection of trophoblastic tumour activity by pregnancy-specific β1-glycoprotein. Int. J. Cancer, 21, 265.

Tatarinov, Y. S. & Masuykevich, V. N. (1970) Immunological identification of new β1-globulin in the blood serum of pregnant women. Bull. Ekspl. Biol. Med., 69, 66.

Tatarinov, Y. S., Mesnyankina, N. V., Nikulina, D. M., Novikova, L. A., Toloknov, B. O. & Falaleeva, D. M. (1974) Identification immuno-chemique de la β1-globuline de la "Zone de grossesse" dans le serum de malades atteintes de tumeurs trophoblasteriques, Int. J. Cancer, 14, 548.

Tatarinov, Y. S., Falaleeva, D. M., Elgort, D. A., Novikova, L. A. & Toloknov, B. O. (1975) Immunoautoradiographic determination of β1-G-globulin on the blood serum of patients with trophoblastic tumours. Bull. Ekspl. Biol. Med., 74, 86.

Tatarinov, Y. S., Falaleeva, D. M. & Kalashnikov, V. V. (1976) Human pregnancy-specific β1-globulin and its relation to chorioepithelioma. Int. J. Cancer, 17, 626.

Tatarinov, Y. S. & Sokolov, A. V. (1977) Development of a radioimmunoassay for pregnancy-specific β1 globulin and its measurement in serum of patients with trophoblastic and non-trophoblastic tumours. Int. J. Cancer, 19, 161.

Tshin, G., Bohn, H., Csara, I., Karg, N. & Mann, V. (1979) Pregnancy-specific β1-glycoprotein in the sera of patients with trophoblastic diseases. In: Carcino-Embryonic Proteins, 11, Ed. Lehmann. The Netherlands: Elsevier/North Holland Biomedical Press, p. 481.

Würz, H., Geiwer, W., Grau, H. & Hoffmann, M. (1979) Simultaneous assays of SP1 (PSβG), SP2 (α2PAG), CEA, AFP and hCG in the serum of patients with breast cancer and other non-trophoblastic malignancies. In: Carcino-Embryonic Proteins, 11, Ed. Lehmann. The Netherlands: Elsevier/North Holland Biomedical Press, p. 487.

Zavadil, M. (1974) Trophoblastic Disease. III Chorocarcinoma and related diseases. Acta Univ. Carol. [Med] (Præha), 19, 65.