Efficacy of core stability and supervised hip strengthening on knee osteoarthritis: a Randomized study protocol

Sonali Guliya¹
Aksh Chahal²
Asir John Samuel³

¹Department of Musculoskeletal Physiotherapy, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana-133207. Haryana, India. sonaliguliya.24@gmail.com
²Department of Sports Physiotherapy, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana-133207. Haryana, India. drakshchalah@gmail.com
³Autor para correspondência. Department of Pediatric and Neonatal Physiotherapy, Maharishi Markandeshwar (Deemed to be University), Mullana-133207. Haryana, India. asirjohnsamuel@mmumullana.org

Abstract | Introduction: Osteoarthritis (OA) is a significant problem associated with pain; it reduces function, and hampered the quality of life. Only a few previous studies have established the comparative effect of core stability and hip strengthening exercise.

Objective: To investigate core stability and its relationship with supervised hip strengthening exercise in the management of knee OA.

Methods: This is a single centered project, two-group, pre-test, post-test, randomized clinical trial where Forty-six patients with knee OA will be randomly allocated into two groups, Group A (experimental group 1) and B (experimental group 2) will receive core stability and hip strengthening exercise on three days a week for four weeks, respectively, across twelve treatment sessions. The primary outcome measure will be Knee Injury and Osteoarthritis Outcome measure (KOOS) in both English and Hindi versions, and secondary outcome measures will be Timed Up and Go test (TUG), Chair stand test to quantity pre and post effect of the intervention.

Expected Results: This study planned to assess the efficacy and importance of core stability and hip strengthening exercise in reducing pain, improving function and quality of life in patients with knee OA.

Protocol/Trial Registration Number: CTRI/2020/06/025973

Keywords: Exercise. Knee osteoarthritis. Pain. Quality of life.

Como citar este artigo: Guliya S, Chahal A, Samuel AJ. Eficácia da estabilização central e fortealecimento supervisionado do quadril na osteoartrite de joelho: um protocolo de ensaio clínico randomizado. Rev Pesqui Fisioter. 2021;11(4):823-832. http://dx.doi.org/10.17267/2238-2704rpf.v11i4.3972

Submetido 15/07/2021, Aceito 04/10/2021, Publicado 21/10/2021

Rev. Pesqui. Fisioter., Salvador, 2021 Novembro;11(4):823-832
http://dx.doi.org/10.17267/2238-2704rpf.v11i4.3972 | ISSN: 2238-2704

Editores responsáveis: George Dias, Katia Sá
Introdução

A osteoartrite (OA) é uma condição crônico-degenerativa que afeta principalmente indivíduos na quarta e quinta décadas de vida.¹ Globalmente, 100 milhões de indivíduos que sofrem de OA de joelho e a oitava causa principal de deficiência de mobilidade.¹ Na Índia, sua prevalência é de 22% a 39% e 5,78% na área rural.²³ A OA do joelho não só prejudica a capacidade física, mas também causa impacto psicológico a longo prazo.² A fraqueza da abdução do quadril resulta em queda pélvica contralateral e deslocamento do centro de massa em direção à extremidade oscilante. Isso aumenta a força no compartimento medial da perna de apoio e a doença começa a ter sucesso. Portanto, a estabilidade lombo-pélvica é vital para suportar cargas na articulação do joelho.⁴⁵ A estabilização e o sinergismo muscular do tronco e do quadril trabalham de forma eficaz para melhorar o equilíbrio da força dos membros inferiores e prevenção de lesões.²² Apenas limitados estudos estão disponíveis no contexto do tratamento específico com a população de OA de joelho. Portanto, mais pesquisas são necessárias no campo da estabilização e exercícios de fortalecimento do quadril, juntamente com a terapia convencional como forma de tratamento na OA do joelho.

Nossa hipótese é que nenhuma diferença significativa na dor, funcionalidade e qualidade de vida geral em pacientes com OA de joelho submetidos à estabilização e exercícios de fortalecimento do quadril como hipótese nula, enquanto a diferença significativa entre eles foi considerada como hipótese alternativa. Portanto, a questão de pesquisa para este ensaio clínico randomizado foi: quais são os efeitos da estabilização e exercícios de fortalecimento do quadril na dor, função e qualidade de vida geral em pacientes com OA de joelho?

O objetivo deste estudo é determinar os efeitos da estabilização e exercícios de fortalecimento do quadril e comparar qual método de tratamento é eficaz no tratamento de pacientes com OA de joelho.
Material e métodos

Figura 1. Fluxograma do protocolo de estudo

Inscrição

Avaliada para elegibilidade após admissão para reabilitação

Randomização

Excluído
- Não atende aos critérios de inclusão
- Recusou-se a participar
- Atende aos critérios de exclusão

Alocação: Pacientes

Alocado para intervenção Grupo 1
Recebeu intervenção alocada
Não recebeu intervenção alocada (dar razões)

Alocado para intervenção Grupo 2
Recebeu intervenção alocada
Não recebeu intervenção alocada (dar razões)

Alocação: Prestadores de cuidados

Estabilidade central (exercícios de 3 séries x 10 repetições, 3 dias por semana) e terapia convencional (pacote hidrocolateral de 20 minutos e terapia interferencial de 4 pólos, 80-100 Hz por 20 minutos)

Fortalecimento do quadril (3 séries x 15 repetições, 3 dias por semana) e terapia convencional (pack hidrocolateral de 20 minutos e terapia interferencial de 4 pólos, 80-100 Hz por 20 minutos)

A intervenção seria de 3 dias por semana durante 4 semanas

Acompanhamento Pacientes

Analisado
Excluído da análise (dar razões)

Analisado
Excluído da análise (dar razões)

Análise Pacientes

O mesmo resultado pós-tratamento será reavaliado
Registro de teste

A autorização ética foi fornecida pelo comitê de ética em pesquisa institucional de Maharishi Markandeshwar (considerado uma universidade), Mullana, Haryana (MMDU / IEC / 1730). O estudo foi registrado com sucesso no Registro Internacional de Ensaios Clínicos da Organização Mundial da Saúde e obteve seu número universal de ensaio (U1111-1257-2626) e registrado no Registro de Ensaios Clínicos-INDIA com o número CTRI (CTRI / 2020/06/025973). O estudo será realizado de acordo com as Diretrizes Éticas Nacionais do Conselho Indiano de Pesquisa Médica para pesquisas biomédicas e de saúde envolvendo participantes humanos (2017) e os princípios éticos para pesquisas médicas envolvendo seres humanos declarados na Declaração de Helsínque (revisado em 2013).

Design de estudo

O estudo é um ensaio clínico randomizado de dois grupos, pré-teste e pós-teste, cego, unicêntrico, envolvendo pacientes com OA de joelho.

Recrutamento de participantes

Quarenta e seis pacientes com OA de joelho serão recrutados no estudo de acordo com os critérios de seleção mencionados na Quadro 1. Os pacientes serão encaminhados pelo ambulatório de ortopedista e fisioterapia. Os dados demográficos do paciente elegível, como código do paciente, sexo, idade, ocupação e endereço, serão registrados em uma performa que será pré-concebida. Um formulário de consentimento por escrito será obtido para cada paciente. A garantia será dada a todos os pacientes de que sua privacidade será preservada e as informações obtidas a partir deles serão usadas para fins de pesquisa com garantia de nenhum dano.

Critério de seleção

Quadro 1. Critérios de seleção para participantes

Critério de inclusão	Critério de exclusão
Homens e mulheres dispostos a participar.	Participantes com distúrbios musculoesqueléticos diferentes do joelho com OA.
Entre a faixa etária de 40-60 anos.	História de trauma grave no joelho nos últimos seis meses.
Participantes com osteoartrite de joelho grau 1, 2, 3, 4 de acordo com Kellgran e Lawrence.	Injeção intra-articular anterior de ácido hialurônico ou esteróide.
1. Grau 1- Possível lâmina osteofítica, estreitamento duvidoso do espaço articular.	Lesão do tecido meniscal ou conjuntivo
2. Grau 2- Osteófitos definitivos podem estreitar o espaço articular.	Doença sistêmica, distúrbio de hipossensibilidade / hipersensibilidade, distúrbios neurológicos.
3. Grau 3- Múltiplos osteófitos, possível estreitamento do espaço articular; Eскоре.	Indivíduos não cooperativos serão excluídos.
4. Grau 4- Grandes osteófitos marcam estreitamento do espaço articular; Eскоре grave inclui osteoartrite tibiofemoral e patelofemoral do joelho.	

Randomização

A amostragem intencional baseada em critérios será usada para distribuir aleatoriamente os pacientes em dois grupos: grupo experimental A (estabilização) e grupo experimental B (fortalecimento do quadril). Serão vinte e três pacientes em cada grupo, via randomização em bloco usando o método SNOSE (sequência de randomização, o uso de envelopes opacos lacrados, numerados sequencialmente). Os blocos terão números pares com uma matriz 4 X 12 (48), sugerindo um total de quatro blocos com 12 linhas. Os sujeitos serão então alocados em cada bloco usando uma sequência de alocação aleatória. A randomização é benéfica porque o número de indivíduos em cada grupo permanece semelhante o tempo todo, aumenta a comparabilidade entre os grupos e não haverá enviesamento na randomização dos pacientes, todos terão a mesma chance de selecionar em cada grupo.
Sempre que os pacientes com OA de joelho estiverem atribuídos ao Grupo Experimental A (estabilização e terapia convencional) e ao Grupo Experimental B (fortalecimento do quadril e terapia convencional). Os pacientes b e cegado para o grupo de intervenção.

Intervenções

Depois de concluir todas as avaliações e obter as medidas de linha de base, a intervenção será conduzida. As intervenções serão dadas a ambos os grupos, isto é, Grupo Experimental A (estabilização) e Grupo Experimental B (fortalecimento do quadril). Cada grupo receberá doze sessões de tratamento três dias por semana durante quatro semanas consecutivas. Ambos os grupos receberão terapia convencional, ou seja, bolsa térmica por 20 minutos (22,86 x 22,86 cm) e Terapia Interferencial (HMS Medical Systems, Índia) 4 pólos com frequência portadora de 4000 Hz e 3900 Hz que geram uma frequência de batimento de 100 Hz, a frequência de varredura foi 150 H, aplicada por 20 minutos. O Grupo A receberá protocolo de exercícios de estabilização que inclui rotações segmentares e sustentação oca do joelho dobrado. O Grupo B receberá exercícios supervisionados de fortalecimento do quadril, incluindo flexão em decúbito dorsal e abdução na posição deitada de lado com a caneleira no tornozelo. O peso do tornozelo utilizado será de 50% de 10 RM (para verificar 10 RM peça ao paciente para fazer o número máximo de repetições com pesos diferentes, se o paciente for capaz de fazê-lo por 10 vezes e não conseguir realizar pela 11ª vez, então 50% desse peso será usado para fortalecimento do quadril). O resumo da intervenção pode se visto no Quadro 2.

Exercícios	Posição do Paciente	Procedimento	Frequência	Número de repetições e séries	Tempo de espera	
Exercício 1 [Figura 2 (a)]	Rotação Segmental	Mantenha o abdômen contraído e, em seguida, gire lentamente ambos os membros inferiores para a esquerda, faça três respirações profundas e depois volte ao centro. Repita o movimento do lado direito.	Posição de crook-lying (deitado com os joelhos e quadrís a 45° e os pés apoiados na maca)	3 dias por semana	10 repetições x 3 séries	3-5 segundos
Exercício 2 [Figura 2 (b)]	Bent knee hollow hold (joelhos dobrados e barriga oca)	Peça ao paciente para contraer o abdômen, concentrando-se em puxar o umbigo e a caixa torácica em direção ao chão, enquanto nivelando a região lombar com o sofá, eliminando a curva lombar.	Posição de crook-lying	3 dias por semana	10 repetições x 3 séries	12 segundos
Exercício 1 [Figura 2 (c)]	Deitado de costas	Peça ao paciente para levantar a perna esticada sem dobrar o joelho	3 dias por semana	15 repetições x 3 séries	10 segundos	
Exercício 2 [Figura 2 (d)]	Deitado de lado	O paciente é colocado de lado, mantendo o joelho flexionado em direção ao peito para manter a estabilidade em contato com o sofá e, em seguida, levantar a perna acima em abdução, colocando o quadril em extensão leve e neutra para evitar rotação.	3 dias por semana	15 repetições x 3 séries	10 segundos	
Figura 2. Estabilização central e protocolo de exercícios de fortalecimento supervisionado do quadril
Medidas de resultado

As medidas de resultado serão avaliadas antes da primeira sessão de intervenção e após a execução da décima segunda sessão.

Medida de Resultado Primário

Medida de resultado de lesão e osteoartrite do joelho (KOOS): para avaliar a dor e a qualidade de vida, o KOOS é usado em pacientes com OA de joelho. KOOS é altamente responsive, confiável e válido para determinar alterações em pacientes com OA de joelho. Ele contém 5 subescalas: Qualidade de vida, Dor, Atividade da vida diária, Sintomas e Esporte / recreação. Cada subescala cobre vários itens, pontuados com 5 pontos (4 = pior função / dor extrema, 0 = função completa / sem dor). A subescala média atingida é dividida por 4; o resultado multiplicado por 100; em seguida, para descobrir a pontuação significativa da subescala, este valor é subtraído de 100. As diferenças clinicamente importantes mínimas (MCID) para o KOOS em pacientes com OA de joelho foram relatadas como sendo de 8 a 10 pontos para cada subescala. ICC (2,1) = 0,85-0,86 (versão em inglês), ICC = 0,90-0,97 (versão em hindi).

Medidas de Resultado Secundário

Teste Timed Up and Go (TUG): TUG usado para avaliar a função. É a avaliação da capacidade do paciente de se levantar da cadeira, caminhar três metros e depois virar, caminhar para trás e sentar-se no encosto da mesma cadeira. O TUG é altamente responsive e válido para determinar alterações em pacientes com OA de joelho. As diferenças mínimas clinicamente importantes (MCID) são relatadas como 0,8-1,4s para o TUG em pacientes com OA de joelho. ICC (2,1) = 0,95-0,98.

Teste da cadeira: O teste da cadeira é usado para avaliar a força. É semelhante a um teste de agachamento usado para medir a força das pernas, no qual o participante se levanta repetidamente de uma cadeira por 30 segundos. Este teste faz parte do Protocolo de Senior Fitness Test Protocol e foi desenvolvido para testar a aptidão funcional de indivíduos idosos. ICC (2,1) = 0,84-0,92.
Quadro 3. SPIRIT- (itens do protocolo padrão: recomendação para Estudos de intervenção)

	Período de estudos						
	Inscrição	Alocação	Pós-alocação (tratamento)	Finalização (avaliação)			
Período	0 semana	0 semana	1ª semana	2ª semana	3ª semana	4ª semana	No final da 4ª semana
Inscrição							
Elegibilidade					X		
Consentimento informado					X		
Avaliação clínica, inclusão e critério de exclusão					X		
Alocação		X					
Intervenções							
Estabilização com fisioterapia convencional	X	X	X	X			
Fortalecimento do quadril com fisioterapia convencional	X	X	X	X			
Avaliações							
Dados demográficos	X						
KOOS		X					X
TUG		X					X
Teste da cadeira		X					X
Segurança e resultados adversos

A Medida de Resultado de Lesões e Osteoartrite (KOOS) do joelho será usada como uma medida de resultado primário. O teste Timed Up and Go (TUG) e o teste da cadeira serão usados como uma medida de resultado secundária. Todas as medidas de resultados serão usadas no início e após a intervenção. O terapeuta que fornecerá a intervenção também registrará qualquer efeito adverso e registrará as notas e a gravidade do mesmo. O protocolo de tratamento será definido de forma que haja risco mínimo. Em qualquer caso, se o tratamento causar efeitos adversos, então terapeuta se responsabilizará. De acordo com as diretrizes da OMS para a pandemia de COVID-19, todas as medidas de segurança, como o uso de luvas e máscaras, serão seguidas. Para o tratamento, serão usadas cabine separadas e monitoramento da temperatura. A aglomeração será evitada e a higienização será feita antes e após o tratamento. A roupa de cama será trocada após cada sessão. Os pacientes serão instruídos a cuidar da higiene das mãos e a usar equipamentos de proteção individual, como máscaras faciais, etc.

Monitoramento de dados

Um pesquisador independente realizará todas as análises estatísticas e conjuntos de dados. Um fisioterapeuta responsável monitorará as sessões de tratamento em cada grupo.

Acompanhamento

O terapeuta irá encorajar os pacientes por telefone a retornarem para o acompanhamento em datas marcadas.

Estimativa do tamanho da amostra

O tamanho da amostra será de 46 pacientes com OA de joelho, que foi determinado usando o software estatístico G Power 3.1.9.4 (Heinrich-Heine-Universitat Dusseldorf, Alemanha). Nível de significância em α = 0,05 e poder do estudo foi definido como 90% (1 - β = 0,9), com o tamanho do efeito previsto de 0,8, cálculo baseado no estudo de Hoglund et al. Após o cálculo, o tamanho da amostra foi de 46 (incluindo 20% de retirada), ou seja, 23 participantes por grupo, que será então randomizado em dois grupos.

Análise de dados

O pesquisador principal irá coletar e analisar os dados. A análise dos dados será feita por meio do Statistical Package for the Social Sciences (SPSS) versão 16 (SPSS Inc, Chicago, IL). O nível de significância será estabelecido em 0,05. O teste de Shapiro-Wilk será utilizado para verificar a normalidade dos dados coletados conforme o tamanho da amostra, 46 pacientes. A estatística descritiva será expressa em média ± desvio padrão se os dados seguirem uma distribuição normal. Caso contrário, será expresso em mediana e intervalo interquartil. Dependendo da distribuição dos dados, o teste t pareado ou o teste de classificação sinalizada de Wilcoxon serão usados para comparar a pontuação pré e pós-intervenção dentro do grupo e para comparar a pontuação da intervenção entre o teste t independente do grupo ou o teste U de Mann Whitney será usado para dor, melhora da funcionalidade e questionário de qualidade de vida.

Discussão

A OA do joelho é uma condição crônico-degenerativa que leva a incapacidades graves associadas à dor, problemas nas atividades cotidianas e impactos psicológicos que comprometem a qualidade de vida. No presente estudo, os pacientes com OA de joelho serão submetidos a exercícios de estabilização e de fortalecimento supervisionado do quadril, além da fisioterapia convencional. O objetivo deste estudo foi avaliar o efeito de exercícios de ativação central e exercícios de fortalecimento do quadril para reduzir a dor, melhorar a função e acelerar a qualidade de vida em pacientes com OA de joelho. Até onde sabemos, existem poucos estudos realizados sobre a estabilização e fortalecimento do quadril em pacientes com OA de joelho, mas nenhum estudo comparativo está presente para OA de joelho para reduzir a dor, melhorar a função e a qualidade de vida. Como o exercício de fortalecimento é um tratamento geralmente aceito para joelhos OA. Estudos mostram que a estabilização melhor o equilíbrio nos membros inferiores, visto que a estabilização representa um programa de reabilitação popular e o fortalecimento do quadril
melhora a flexibilidade leva à diminuição da dor e melhora o desempenho. A limitação deste estudo será a alocação de participantes de um mesmo centro de reabilitação. O número de estudos comparando a estabilização e exercícios supervisionados de fortalecimento do quadril são limitados. Assim, o presente estudo buscará comparar os efeitos de ambos os protocolos de exercícios entre pacientes com OA de joelho e o efeito na dor, funcionalidade e qualidade de vida.

Contribuições dos autores

Todos os autores do estudo ajudaram na concepção e condução da pesquisa e o manuscrito foi aprovado por todos os autores do estudo.

Conflitos de interesses

Nenhum interesse financeiro, jurídico ou político conflitante com terceiros (governo, comercial, fundação privada, etc.) foi divulgado para qualquer aspecto do trabalho submetido (incluindo, mas não se limitando a, doações, conselho de monitoramento de dados, desenho do estudo, preparação do manuscrito, estatística análise, etc.).

Referências

1. Radha M, Gangadhar M. Prevalence of knee osteoarthritis patients in Mysore city, Karnataka. Int J Recent Sci Res [Internet]. 2015;6(4):3316–20. Disponível em: http://recentscientific.com/sites/default/files/2133.pdf

2. Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and Burden of Osteoarthritis. Br Med Bull. 2013;105(1):185–99. https://doi.org/10.1093/bmb/lds038

3. Martin DF. Pathomechanics of knee osteoarthritis. Med Sci Sports Exerc. 1994;26(12):1429–34. Citado em: PMID: 7869874

4. Xie Y, Zhang C, Jiang W, Huang J, Xu L, Pang G, et al. Quadriceps combined with hip abductor strengthening versus quadriceps strengthening in treating knee osteoarthritis: A study protocol for a randomized controlled trial. BMC Musculoskelet Disord. 2018;19(1):147. https://doi.org/10.1186/s12891-018-2041-7

5. Dabholkar T, Dabholkar A, Sachiwala D. Correlation of the core stability measures with the hip strength and functional activity level in knee osteoarthritis. Int J Ther Rehabil Res [Internet]. 2016;5(5):37–43. Disponível em: https://www.researchgate.net/profile/Tejashree-Dabholkar/publication/304454484/Correlation-of-the-core-stability-measures-with-the-hip-strength-and-functional-activity-level-in-knee-osteoarthritis/pdf

6. Iacono AD, Padulo J, Ayalon M. Core stability training on lower limb balance strength. J Sports Sci. 2016;34(7):671-8. https://doi.org/10.1080/02640414.2015.1068437

7. Hoglund LT, Pontiggia L, Kelly JD. A 6-week hip muscle strengthening and lumbopelvic-hip core stabilization program to improve pain, function, and quality of life in persons with patellofemoral osteoarthritis: A feasibility pilot study. Pilot Feasibility Stud. 2018;4(1):70. https://doi.org/10.1186/s40814-018-0262-z

8. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91. https://doi.org/10.3758/bf03193146

9. Yuenyongviwat V, Duangmanee S, Iamthanaporn K, Tuntaratatanapong P, Hongnaparak T. Effect of hip abductor strengthening exercises in knee osteoarthritis: A randomized controlled trial. BMC Musculoskelet Disord. 2020;21(1):284. https://doi.org/10.1186/s12891-020-03316-z

10. Altaş EU, Demirdal US. The effect of physical therapy and rehabilitation modalities on sleep quality in patients with primary knee osteoarthritis: A single-blind , prospective, randomized-controlled study. Turk J Phys Med Rehabil. 2020;66(1):73–83. https://dx.doi.org/10.5606%2Ftfrtrd.2020.3089

11. Hawkes AR, Draper DO, Johnson AW, Diede MT, Rigby JH. Heating Capacity of ReBound Shortwave Diathermy and Moist Hot Packs at Superficial Depths. J Athl Train. 2013;48(4):471–6. https://doi.org/10.4085/1062-6050-48.3.04

12. Eftekharasadat B, Babaei-Ghazani A, Habibzadeh A, Kolahi B. Efficacy of action potential simulation and interferential therapy in the rehabilitation of patients with knee osteoarthritis. Ther Adv Musculoskelet Dis. 2015;7(3):67–75. https://doi.org/10.1177/1759720X15575724

13. Schache MB, Mcclelland JA, Webster KE. Does the addition of hip strengthening exercises improve outcomes following total knee arthroplasty ? A study protocol for a randomized trial. BMC Musculoskelet Disord. 2016;17:259. https://doi.org/10.1186/s12891-016-1104-x

14. Bennell KL, Hunt MA, Wrigley TV, Hunter DJ, Mcmanus FJ, Hodges PW, et al. Hip strengthening reduces symptoms but not knee load in people with medial knee osteoarthritis and varus malalignment: A Randomised Controlled Trial. Osteoarthr Cartil. 2010;18(5):621–8. https://doi.org/10.1016/j.joca.2010.01.010