Supporting Information

The formation of sesquiterpenoid presilphiperfolane and cameroonane metabolites in the BcBot4 null mutant of Botrytis cinerea.

Gabriel Franco dos Santos,1,2# Javier Moraga,1# Jacqueline A. Takahashi,2 Muriel Viaud,3 Rosario Hernández Galán,1 James R. Hanson,4 Isidro G. Collado1*

1Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz. Spain.
2Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte-MG, Brazil, 3UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.
4Department of Organic Chemistry, University of Sussex, Brighton, Sussex, BN1 9QJ, United Kingdom.

Table of contents:

Spectroscopy constant Tables.. S2-S7

1H and 13C-NMR spectra .. S8-S25
Table S1. NMR Spectroscopic data of presilphiperfolan-8α,10β,14-triol (16) (1H at 500 MHz, 13C at 125 MHz).

Position	Proton	δ_1H (Hz)	δ_13C	NOESY	HMBC
1	H-1α	1.45 (1H, m)	44.9	H-2β, H-3α	C-2, C-9, C-10, C-11, C-15
2	H-2α	1.94 (1H, m)	34.3	H-2α, H-3β, H-9β	C-1, C-3, C-9, C-10, C-11
	H-2β	2.36 (1H, m)			
3	H-3α	1.94 (1H, m)	34.1	H-2α, H-3β	C-1, C-3
	H-3β	1.15 (1H, m)			C-4, C-8, C-12
4	-	-	57.9	-	
5	H-5α	2.04 (1H, d, J=12.1 Hz)	43.5	H-5β, H-14	C-3, C-4, C-6, C-12, C-13, C-14, C-15
	H-5β	1.03 (1H, d, J=12.1 Hz)		H-5α, H-12, H-13	C-4, C-6, C-7, C-8, C-12, C-13
6	-	-	54.4	-	
7	H-7α	1.88 (1H, m)	45.9	H-11α, H-14	C-4, C-6, C-8, C-10, C-11, C-13, C-14
8	-	-	95.3	-	
9	H-9β	1.43 (1H, m)	47.6	-	
10	H-10α	3.25 (1H, ddd, J=11, 9.4, 3.4, Hz)	76.3	H-7α, H-15	C-7, C-9, C-11, C-15
11	H-11α	1.84 (1H, m)	36.9	H-12, H-13	C-6, C-7, C-8, C-10
	H-11β	1.61 (1H, ddd, J = 12, 11 Hz)			
12	H-12	1.36 (3H, s)	29.0	H-13	C-3, C-4, C-5, C-8
13	H-13	1.18 (3H, s)	22.8	H-12	C-5, C-6, C-7, C-14
14	H-14	3.35 (2H, d superimposed, J = 10 Hz)	72.5	H-5α, H-7α	C-5, C-6, C-7, C-13
15	H-15	0.99 (3H, d, J = 5.9 Hz)	18.0	H-1α, H-10α, H-14	C-1, C-9, C-10, C-11

S2
Table S2. NMR Spectroscopic data of 8α,14-dihydroxypresilphiperfolan-10-one (17) (\(^1\)H at 600 MHz, \(^{13}\)C at 150 MHz).

Position	Proton	\(\delta^1\)H (Hz)	\(\delta^{13}\)C	NOESY	HMBC
1	H-1\(\alpha\)	1.71 (1H, m)	48.09		
2	H-2	2.05 (1H, m)	34.9		
	H-2'	2.50 (1H, m)			
3	H-3	1.98 (1H, m)	32.7		
	H-3'	1.26 (1H, m)			
4	-		57.8		
5	H-5\(\alpha\)	2.17 (1H, d, \(J = 12.1\) Hz)	41.7		
	H-5\(\beta\)	1.14 (1H, d, \(J = 12.1\) Hz)		H-13	
6	-		54.0		
7	H-7\(\alpha\)	2.20 (1H, m)	46.2		
8	-		92.4		
9	H-9\(\beta\)	2.43 (1H, dq, \(J = 12.4, 6.3\) Hz)	48.13		
10	H-10		213.7		
11	H-11\(\alpha\)	2.34 (1H, dd, \(J = 13.1, 8.7\) Hz)	42.2		
	H-11\(\beta\)	2.52 (1H, dd, \(J = 13.1\) Hz)		H-11, H-2\(\beta\)	C-7, C-9, C-8, C-10
12	H-12	1.54 (3H, s)	28.14		
13	H-13	1.14 (3H, s)	22.5		
14	H-14	3.44 (2H, s(br))	71.5	H-13	
15	H-15	0.98 (3H, d, \(J = 6.4\) Hz)	13.5		
Position	Proton	δ^1H (Hz)	$\delta^{13}C$	NOESY	HMBC
----------	--------	----------------	-------------	------	------
1			148.7		
2	H-2	4.94 (1H, dd, $J = 2.5, 2.1$ Hz)	116.2	C-3, C-4, C-8	
3	H-3	2.40 (1H, dd, $J = 17, 2.1$ Hz)	50.25	C-1, C-2, C-4, C-8, C-12	
	H-3'	2.25 (1H, dt, $J = 17, 2.5$, Hz)		C-1, C-2, C-4, C-5, C-12	
4			47.1		
5	H-5	1.87 (1H, d, $J = 13.3$ Hz)	53.43	C-3, C-6, C-12, C-13, C-14	
	H-5'	1.56 (1H, d, $J = 13.3$ Hz)			
6			46.4		
7	H-7\(\alpha\)	1.36 (1H, m)	53.4	C-6, C-8, C-11, C-13	
8			93.5		
9	H-9\(\beta\)	2.46 (1H, m)	39.7		
10	H-10	3.18 (1H, ddd, $J = 10, 8.7, 5.3$ Hz)	79.8	C-15	
11	H-11	1.94 (1H, m)	30.5	C-7, C-8, C-10	
	H-11'	1.86 (1H, m)		C-7, C-8, C-9, C-10	
12	H-12	1.11 (3H, s)	29.7	C-3, C-4, C-5, C-8	
13	H-13	1.07 (3H, s)	18.9	C-5, C-6, C-14	
14	H-14	3.33 (2H, d(br), $J = 4$ Hz)	71.0	C-5, C-6, C-13	
15	H-15	1.20 (3H, d, $J = 6.5$ Hz)	14.15	C-1, C-9, C-10	
Table S4. NMR Spectroscopic Data of cameroonan-7α, 10β, 14-triol (19) (\(^1\)H at 500 MHz, \(^{13}\)C at 125 MHz).

Position	Proton	\(\delta_{\text{H}}\) (Hz)	\(\delta_{\text{C}}\)	NOESY	HMBC
1	H-1α	2.17 (1H, t, \(J = 9.0\) Hz)	47.85	H-14, H-15	C-2, C-4, C-7, C-8, C-9, C-11, C-13, C-15
2	H-2	1.34 (1H, m)	28.62		C-4, C-8, C-9
	H-2’	1.80 (1H, m)	38.93		C-1, C-3, C-9
3	H-3	1.49 (2H, m)			C-2, C-4, C-12
	H-3’	-	48.47		
4	-	-	48.47		
5	H-5	1.27 (1H, d superimposed)	47.42		C-3, C-4, C-6, C-7, C-8, C-12, C-13, C-14
	H-5’	1.39 (1H, d \(J = 14.5\) Hz)	47.42		C-3, C-4, C-6, C-7, C-12, C-13, C-14
6	-	-	42.35		
7	H-7β	3.89 (1H, s)	91.52	H-9β, H-11b, H-12	C-1, C-6, C-8, C-11, C-14, C-13
8	-	-	62.85		
9	H-9β	1.22 (1H, m)	49.96		
10	H-10α	3.72 (1H, ddd, \(J = 11, 9.7, 6.0\) Hz)	77.45	H-11a, H-11b, H-15	C-9, C-15
11	H-11	1.65 (1H,dd, 12.2, 11 Hz)	44.83	H-10α	C-4, C-7, C-8, C-10
	H-11’	1.73 (1H, dd, \(J = 12.2, 6\) Hz)		H-7β, H-10α	C-1, C-7, C-8, C-9
12	H-12	1.00 (3H, s)	25.03	H-9β, H-11a, H-3	C-1, C-3, C-8
13	H-13	1.20 (3H, s)	27.39	H-7β, H-14α	C-5, C-6, C-7, C-14
14	H-14	3.21 (1H, d, \(J = 10.9\) Hz)	69.61	H-9β, H-5, H-14b	C-5, C-6, C-7, C-13
	H-14’	3.82 (1H, d, \(J = 10.9\) Hz)		H-1, H-5, H-2, H-14a	C-5, C-6, C-7, C-13
15	H-15	1.05 (3H, d, \(J = 6.5\) Hz)	16.36	H-1α, H-10α	C-1, C-9, C-10
Table S5. NMR Spectroscopic Data of cameroonan-2α, 3β, 7α-triol (20) \((^1\text{H at 500 MHz, } ^{13}\text{C at 125 MHz})\).

Position	Proton	δ_H (Hz)	δ^{13}C	NOESY	HMBC
1	H-1α	2.10 (1H, dd, \(J = 8.6, 3.7 \text{ Hz}\))	54.8		C-2, C-7, C-8, C-11, C-15
2	H-2β	3.49 (1H, dd, \(J = 9.1, 8.6 \text{ Hz}\))	82.9	H-12, H-9	C-3, C-9
3	H-3α	3.81 (1H, db, \(J = 9.1 \text{ Hz}\))	86.5	H-1, H-5α, H-14	C-2, C-5, C-12
4	-		49.8		
5	H-5α	1.83 (1H, d, \(J = 13.5 \text{ Hz}\))	52.85	H-5β, H-3	C-7, C-3, C-8, C-4, C-6, C-13, C-14, C-12
	H-5β	1.29 (1H, d, \(J = 13.5 \text{ Hz}\))			C-7, C-3, C-8, C-4, C-6, C-13, C-14, C-12
6	-		43.7		
7	H-7β	3.33 (1H, s)	90.4	H-11β, H-13	C-4, C-5, C-11, C-13, C-14
8	-		64.10	H-10, H-11, H-12	
9	H-9β	1.94 (1H, m)	38.61		C-2, C-8, C-11, C-15
10	H-10α	1.34 (1H, m)	34.9		C-1, C-8, C-9, C-11, C-15
	H-10β	1.73 (1H, m)			C-1, C-8, C-9, C-11, C-15
11	H-11α	1.90 (1H, m)	35.7		C-10, C-9, C-7, C-4, C-1
	H-11β	1.55 (1H, m)			C-10, C-9, C-7, C-4, C-1
12	H-12	0.95 (3H, s)	20.0		C-4, C-5, C-8, C-3
13	H-13	1.03 (3H, s)	29.4		C-5, C-6, C-7, C-14
14	H-14	1.03 (3H, s)	24.3		C-5, C-6, C-7, C-13
15	H-15	1.01 (1H, d, \(J = 6.9 \text{ Hz}\))	20.3	H-1, H-10α	C-10, C-9, C-1

S6
Table S6. NMR Spectroscopic Data of 7-α-hydroxycameroonan-14,15-dioic acid 14-7-lactone (21) (¹H at 500 MHz, ¹³C at 125 MHz).

Position	Proton	\(\delta_\text{H} \) (Hz)	\(\delta_\text{C} \)	NOESY	HMBC
1	H-1α	3.01 (1H, dt, J 6.7, 8.3 Hz)	50.71		C-2, C-4, C-7, C-8, C-9, C-11, C-15
2	H-2	1.52 (1H, m)	32.50		C-1, C-3, C-9
	H-2’	2.14 (overlap)			
3	H-3α	1.90 (1H, m)	42.63		C-2, C-4, C-5, C-12
	H-3β	1.64 (1H, dd, J 12.7, 6.7 Hz)	42.63		C-1, C-2, C-4, C-8, C-12
4	-	-	54.83		
5	H-5α	2.28 (1H, d, J 14.4 Hz)	45.09	H-12, H-13	C-3, C-4, C-6, C-8, C-14
	H-5β	1.37 (1H, d, J 14.4 Hz)	45.09		
6	-	-	62.26		
7	H-7β	4.27 (1H, s)	93.64	H-13	C-4, C-5, C-8, C-11, C-13, C-14
8	-	-	65.33		
9	H-9β	2.52 (1H, dt, J 6.7, 8.3 Hz)	51.66	H-10β	C-1, C-2, C-8, C-10, C-11, C-15
10	H-10α	2.14 (overlap)	32.95		
	H-10β	2.04 (1H, m)	32.95		C-1, C-8, C-9, C-11, C-15
11	H-11α	1.44 (1H, dd, J 13.2, 6.4 Hz)	31.12		C-1, C-4, C-7, C-8, C-9, C-10
	H-11β	1.80 (1H, m)	31.12		C-4, C-7, C-8, C-9, C-10
12	H-12	1.07 (3H, s)	25.14	H-3β, H-5β, H-11β	C-3, C-4, C-5, C-8
13	H-13	1.40 (3H, s)	18.00	H-5β, H-7β	C-5, C-6, C-7, C-14
14	-	-	175.74		
15	-	-	180.62		
1H-NMR spectrum of presilphiperfolan-8α,10β,14-triol (16) (CD$_3$OD at 500 MHz).
13C-NMR spectrum of presilphiperfolan-8α,10β,14-triol (16) (CD$_3$ OD, at 125 MHz).
1H-NMR spectrum of 10β,14-Diacetoxyresilphiperfolan-8α-ol (16a) (CDCl$_3$ at 500 MHz).
13C-NMR spectrum of 10β,14-Diacetoxypresilphiperfolan-8α-ol (16a) (CDCl$_3$ at 125 MHz).
1H-NMR spectrum of 8α,14-dihydroxypresilphiperfolan-10-one (17) (CDCl$_3$ at 600 MHz).
13C-NMR spectrum of 8α,14-dihydroxypresilphiperfolan-10-one (17) (CDCl$_3$ at 150 MHz).
1H-NMR spectrum of $8\alpha,10\beta,14$-trihydroxypresilphiperfol-1-ene (18) (CDCl$_3$ at 600 MHz).
13C-NMR spectrum of 8α,10β,14-trihydroxyresilphiperfol-1-ene (18) (CDCl$_3$ at 150 MHz).
1H-NMR spectrum of cameroonan-7α,10β,14-triol (19) (CDCl$_3$ at 500 MHz).
13C-NMR spectrum of cameroonan-7α,10β,14-triol (19) (CDCl$_3$ at 125 MHz).
1H-NMR spectrum of 7α, 10β, 14-triacetoxycameroonane (19a) (CDCl$_3$ at 500 MHz).
13C-NMR spectrum of 7α, 10β, 14-triacetoxycameroonane (19a) ($CDCl_3$ at 125 MHz).
1H-NMR spectrum of cameroonan-2α, 3β, 7α-triol (20) (CDCl$_3$ at 500 MHz).
13C-NMR spectrum of cameroonan-2α, 3β, 7α-triol (20) (CDCl$_3$ at 125 MHz).
1H-NMR spectrum of 2α, 3β, 7α-triacetoxycameroonane (20a) (CDCl$_3$ at 400 MHz).
13C-NMR spectrum of 2α, 3β, 7α-triacetoxycameroonane (20a) (CDCl$_3$ at 100 MHz).
1H-NMR spectrum of 7-α-hydroxycameroonan-14,15-dioic acid 14-7-lactone (21) (CDCl$_3$ at 500 MHz).
13C-NMR spectrum of 7-α-hydroxycameroonan-14,15-dioic acid 14-7-lactone (21) (CDCl$_3$ at 500 MHz).