LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond

Wanxu Huang1,2,3†, Hua Li4†, Qingsong Yu1, Wei Xiao3,5* and Dan Ohtan Wang1,6

Abstract
DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compelling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism in RNA-targeting drug development.

Keywords: lncRNA, DNA methylation, Non-coding RNA, DNMT, TET, Cancer

Background
DNA methylation is the methyl modification on the fifth carbon of cytosines (5-methylcytosine, 5mC) typically found in the context of symmetrical CpG dinucleotides in mammals [1, 2]. It is estimated that 70–80% of CpG sites in the mammalian genome are methylated [3], excluding specific regions called CpG islands (CGIs). CGIs are CpG-rich sequences of about 1 kilo-base (kb) in length that mostly exist in gene promoters [4]. Approximately 60% of human gene promoters contain CGIs [5].

DNA methylation is established by DNA methyltransferases (DNMTs). In the simplified but widely accepted ‘division of labor’ model, it is proposed that DNMT3A and DNMT3B are essential for de novo DNA methylation, while DNMT1 is for methylation maintenance during DNA replication [6]. Ten-eleven translocation (TET) family of enzymes (TET1, TET2, and TET3) oppose the actions of the DNMT family by oxidation of 5mC, followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair, leading to active DNA demethylation [7–9].

Genome-scale analysis revealed distinct DNA methylation patterns across different cell types, developmental stages, and in response to different stimuli [3, 10, 11]. Aberrant DNA methylation pattern is associated with diseases, including cancer [12–15]. In cancer cells, whereas the general DNA methylation levels are reduced, the CGIs are hypermethylated in a cancer-specific manner [16, 17]. These observations raised a fundamental question: how does the cell type-specific DNA methylation pattern established across the genome? It is well-demonstrated that histone modification and chromosome remodeling [18], as well as transcriptional factors, play key roles in the regulation of DNA methylation genome-wide and in site-specific manner [19–22].
another important regulator of DNA methylation, especially in cancer.

While less than 2% of the human genome encodes proteins, nearly three-quarters can be actively transcribed into non-coding RNAs [23], amongst the ones typically with length more than 200 nucleotides are cataloged as lncRNAs. According to a current statistical analysis, there are more than 173,112 annotated lncRNAs transcribed from 96,411 genomic loci [24]. It is demonstrated that lncRNAs play versatile roles in development and diseases including cancer [25–27]. In the nucleus, lncRNAs regulate chromatin remodeling and transcription; In the cytoplasm, lncRNAs regulate translation and mRNA turnover (reviewed in ref. [27]). There is accumulating evidence up to date showing that lncRNAs mediate DNA methylation via multiple manners, thereby regulating target gene expression in diverse physiological and pathological processes. In this review, we summarize our current understanding of lncRNA-mediated DNA methylation, with emphasis on the functions of this mechanism in cancer. The future direction and potential clinical application are also discussed.

LncRNAs recruit DNA methyltransferases

More than a decade ago, it was discovered that lncRNAs transcribed from the promoter of rRNA genes (rDNA) regulate DNA methylation and transcription of rDNA [28]. Later, it was demonstrated that this kind of lncRNA interacts with rDNA promoter and forms a DNA:RNA triplex, which is recognized by DNMT3B to epigenetically regulate rDNA expression [29, 30]. Although it is still unclear if this is a common model nowadays, a variety of lncRNAs have been reported to recruit DNMTs and regulate target gene expression, playing key roles in mesoderm commitment [31], muscle regeneration [32, 33], neural differentiation [34], adipogenesis [35], mental disorder [36], cardiovascular diseases [37–40], osteoarthritis [41], as well as types of cancer (Table 1).

Using an optimized RIP-seq method, Merry et al. identified 148 lncRNAs interacting with DNMT1 in colon cancer cells [56], and the following investigation showed that one of these lncRNAs, DACOR1, could recruit DNMT1 and reprogram genome-wide DNA methylation [57]. Currently, a growing number of studies suggest that lncRNA might recruit DNMTs directly to specific targets (Fig. 1a), including both protein-coding genes [43, 44, 46–50, 54, 55, 58] and non-coding genes such as miRNA [42, 51, 88]. For instance, in esophageal cancer (EC), lncRNA ADAMTS9-AS2 was reported to recruit DNMT1/3 to CDH3 promoter, inhibiting the cancer cell proliferation, invasion, and migration [49]. Two other lncRNAs, HOTAIR and LINC01270 might recruit DNMTs to the promoters of MTHFR and GSTP1 respectively, leading to chemoresistance in EC [47, 48]. In lung adenocarcinoma (LUAD), lncRNA HAGLR was identified as a tumor suppressor by recruiting DNMT1 to the promoter of E2F1 to inhibit tumor growth [55]. A recent study revealed a more complex scenario, in which the authors identified two novel variants of lncRNA LINCO0887, and showed that the short form variant suppressed Carbonic Anhydrase IX (CA9) by recruiting DNMT1 to its promoter, while the long-form variant activated CA9’s transcription via interacting with HIF1α [45]. The two variants were supposed to differentially respond to hypoxia and oppositely control the progression of tongue squamous carcinoma [45].

Meanwhile, several groups also proposed that lncRNAs could recruit DNMT indirectly through the mediation of other factors (Fig. 1b). It was previously proposed that the polycomb group (PcG) protein EZH2 (Enhancer of Zeste homolog 2) interacts with DNMT and associates with DNMT activity [89]. Studies in recent years demonstrated in diverse cancers that lncRNAs might regulate DNA methylation of target genes via association with EZH2, promoting tumor growth [75, 77], metastasis [74, 76, 78] and radio-resistance [79]. Alternatively, EZH2 might regulate DNA methylation by the formation of H3K27me3 histone modification [73], while the molecular mechanism involved in H3K27me3-induced DNA methylation is unclear. Apart from histone modifier EZH2, two transcriptional regulators, NF-κB and PHB2 were also reported to interact with DNMT3A [80, 90]. LncRNA NKILA was identified as a suppressor of NF-κB by sequestering NF-κB in cytoplasm [91]. Upon proinflammatory stimuli, NF-κB is released from the sequestration and translocated into the nucleus (Fig. 2). DNMT3A is then recruited to the promoter of KLF4 by NF-κB, repressing KLF4 transcription by DNA methylation [90]. Another study by Wang et al. reported a lncRNA called Lnc34a, which could interact with Prohibitin 2 (PHB2) and then recruit DNMT3A to miR-34a promoter, silencing miR-34a expression and promoting colorectal cancer growth [80]. PHB2 is a multi-functional protein that can shuttle between nucleus and mitochondria [92]. Interestingly, the nuclear-encoded lncRNA MALAT1 was recently discovered to be transported into mitochondria and to regulate the methylation status of mitochondrial DNA in hepatocellular carcinoma [59], yet the detailed mechanism is unclear.

While most of the reported function of lncRNA recruitment of DNMT is to target DNMT to specific genomic sites or regions, recent work from Jones et al. proposed a different model, in which the lncRNA CCDC26 specifically interacts with DNMT1 and promote its localization from the cytosol to nucleus (Fig. 2), while removal
Table 1 LncRNAs mediate DNA methylation in cancer

lncRNA	Role	Factor	Target	Function	Cancer	Ref
TINCR	Recruit	DNMT1	miR-503-5p	Regulate EGFR expression	BC	[42]
MROS-1	Recruit	DNMT3A	PRUNE2	Nodal metastases	OC	[43]
HOTAIR	Recruit	DNMT1	PTEN	Cell proliferation, invasion and migration	CML	[44]
LINC00887	Recruit	DNMT1	CA9	Suppress oncogenic CA9	TNCC	[45]
LINC0472	Recruit	DNMTs	MCM6	Inhibited tumor growth and metastasis	TSCC	[46]
LINC01270	Recruit	DNMTs	GSTP1	Promote tumorigenesis and drug resistance	EC	[47]
HOTAIR	Recruit	DNMTs	MTHFR	Chemosensitivity	EC	[48]
ADAMTS9-AS2	Recruit	DNMT1/3	CDH3	Inhibits proliferation, invasion, and migration	EC	[49]
IRAIN	Recruit	DNMT1/3	VEGFA	Suppresses tumor growth	RC	[50]
PVT1	Recruit	DNMT1	miR-18b-5p	Promotes proliferation	GBC	[51]
B2RAP1-AS1	Recruit	DNMT3b	THBS1	Promotes angiogenesis	HCC	[52]
PYCARD-AS1	Recruit	DNMT1, 9a	PYCARD	Regulates apoptosis	BC	[53]
MIR210HG	Recruit	DNMT1	CACNA2D2	Promotes proliferation and invasion	NSCLC	[54]
HAGLR	Recruit	DNMT1	E2F1	Suppresses tumor growth	LUAD	[55]
DACOR1	Recruit	DNMT1	Genome-wide	Promotes cell proliferation	GC	[56, 57]
PVT1	Recruit	DNMT1	BNIP3	Control metabolic Reprogramming	HCC	[58]
MALAT1	Recruit	DNMT1/3	Mitochondrial DNA		HCC	[59]
HOTAIR	Upregulate	DNMT3b	PTEN	Doxorubicin resistance	AML	[60]
RP11-159K7.2	Upregulate	DNMT3A		Promotes cell growth and invasion	LSCC	[61]
GASS	Down-regulate	DNMTs	miR-424	Suppresses multiple malignant phenotypes	Glioma	[62]
Inc-OIP5-AS1	Upregulate	DNMT1	pre-miR-218–1	Promote cell motility and proliferation	KS	[63]
Linc-GALH	Ubiquitinate	DNMT1	Gankyrin	Promotes metastasis	HCC	[64]
LUCAT1	Inhibits ubiquitination	DNMT1	tumor-suppressor genes	Promotes tumor formation and metastasis	ESCC	[65]
HOTAIR	Upregulate (via EZH2)	DNMT3A	miR-122	Activate Cyclin G1 and promote tumorigenicity	HCC	[66]
HOTAIR	Upregulate	DNMT1/3B	HOXA1	Multidrug resistance	SCLC	[67]
H19	Upregulate	TET3	MED12	Promotes cell proliferation	UL	[68]
DBCCR1-003	Sequestrate	DNMT1	DBCCR1	Inhibits cell growth	BCa	[69]
TTTY15	Sequestrate	DNMT3A	TBX4	Suppresses metastasis	NSCLC	[70]
HOTAIRM1	Sequestrate	G9a/EZH2/DNMTs	HOXA1	Promotes tumor growth and invasion	GBM	[71]
91H	Repel	DNMTs	H19/IGF2 locus		BC	[72]
HOTAIR	Recruit (via EZH2)	HOXA1		Promotes cell migration and invasion	SCLC	[73]
SNHG3	Recruit (via EZH2)	MED18		Promotes cell migration and invasion	GC	[74]
HOXB13-AS1	Recruit (via EZH2)	DNMT3B	HOXB13	Promotes cell proliferation	Glioma	[75]
Lnc-LALC	Recruit (via EZH2)	DNMTs	LZTS1	Liver metastasis	CRC	[76]
HOTAIR	Recruit (via EZH2)	DNMT1	miR-454-3p	Promotes tumor growth	CS	[77]
GIHCG	Recruit (via EZH2)	DNMT1	miR-200b/a/429		HCC	[78]
LINC00630	Restrict (via EZH2)	DNMT3B	BEX1	Suppresses cell apoptosis and promotes radio-resistance	CRC	[79]
Lnc34a	Recruit (via PHB2)	DNMT3A	miR-34a	Promotes cell proliferation	CRC	[80]

of CCDC26 leads to genome-wide hypomethylation, increasing double-stranded DNA breaks and inducing cell death [93]. More investigation is needed to confirm if the interaction is direct and to reveal the detailed mechanisms.
to interact with TETs and regulate DNA methylation (Table 1).

In some cases, lncRNA directly interacts with TETs and recruits them to specific targets (Fig. 1a). It was demonstrated that lncRNA Oplr16 binds to the Oct4 promoter, orchestrating the promoter-enhancer loops and then interacts with TET2 by the 3’ region of Oplr16 [95]. Similarly, Du et al. identified two motifs in lncRNA Platr10 that interact with Oct4 promoter and TET1 respectively, thus inducing TET1-mediated DNA demethylation at specific site [96]. A research by Zhou et al. suggested that lncRNA TETILA regulates TET2 subcellular localization and enzymatic activity by binding to the DSBH (double-stranded β-helix) domain of TET2 [97]. In acute myeloid leukemia, lncRNA MAGI2-AS3 recruits TET2 to LRIG1 promoter, inducing up-regulation of LRIG1 and inhibition of leukemic stem cell self-renewal [85]. Interestingly, using RNA reverse transcription-associated trap sequencing (RAT-seq) approach to profile genome-wide interaction targets for lncRNAs in mice, a recent study reported that lncRNA Pblr20 recruits TET2 to the enhancer of Pou5F1 and activates the enhancer-transcribed RNAs [98]. Whether a similar mechanism exists in humans especially in cancer development remains uninvestigated.

There is also evidence supporting an indirect model (Fig. 1c), in which lncRNAs recruit TET via GADD45A. It was first reported by Arab et al. that an antisense lncRNA from TCF21 gene locus termed TARID might recruit GADD45A (growth arrest and DNA-damage-inducible, alpha), and GADD45A then recruits TET to the promoter of its partner gene and induce its activation by DNA demethylation [99]. In the following work, the authors further showed that TARID forms an R-loop at the TCF21 promoter to recruit GADD45A [100]. It was speculated that lncRNA PCDHa-AS might function in a similar mechanism to recruit TET3 via GADD45A, driving stochastic promoter choice to establish a neuronal surface identity code for circuit assembly [101]. In colorectal cancer (CRC), lncRNA SATB2-AS1 directly recruits WDR5 and GADD45A, promoting SATB2 transcription by histone modification, as well as DNA demethylation [87], which inhibits cell metastasis and regulates the immune response in CRC. Recently, a database was created, with a comprehensive list of R-loops and their respective regulatory proteins [102], which might serve as a useful resource to identify novel lncRNAs with the potential to recruit GADD45A via formation of R-loops.

LncRNAs repel/ sequester DNA methyltransferases

While most of the current reports suggest the DNMT-recruiting role of lncRNAs, some lncRNAs are also shown to repel or sequester DNMT to negatively regulate DNA methylation (Fig. 1d and Table 1).

It was first reported by Di Ruscio et al. that a lncRNA arising from the CEBPA gene locus binds to DNMT1 and prevents CEBPA promoter methylation [103]. The lncRNA DBCCR1-003 was reported to function similarly
to suppress DBCCR1 promoter methylation by sequestering DNMT1 and eventually to inhibit cell growth in bladder cancer [69]. In non-small cell lung cancer, lncRNA TTTY15 interacts with DNMT3A and inhibits the binding of DNMT3A to TBX4 promoter, while the lower expression level of TTTY15 is associated with tumor metastasis [70]. In glioblastoma, lncRNA HOTAIRM1 was suggested to interact with several epigenetic factors including DNMT1/3A/3B to sequester them away from HOXA1 promoter [71]. In breast cancer, it was discovered that lncRNA 91H, which is transcribed from the antisense orientation of H19, promotes oncogenesis by masking methylation site on the H19 promoter, inducing the oncogenic H19 overexpression [72].

LncRNAs control SAM/SAH level to regulate DNMT activity

DNMT catalyzes transmethylation reactions using S-adenosylmethionine (SAM) as the methyl group donor, yielding S-adenosylhomocysteine (SAH) as a by-product, which is also a strong feedback inhibitor of DNMT [6]. In mammals, SAM is biosynthesized by methionine adenosyltransferase (MAT) from ATP and methionine [104], while SAH is reversibly cleaved into adenosine and homocysteine by S-adenosylhomocysteine hydrolase (SAHH, also known as AdoHcy hydrolase, AHCY), which is essential to prevent accumulation of SAH [104], thereby relieving its inhibition to DNMT (Fig. 3).

It was proposed that lncRNA H19 binds to and inhibits SAHH, leading to genome-wide methylation changes at numerous gene loci [105]. Afterward, this mechanism was verified in embryonic hematopoietic stem cell development [106], odontogenic differentiation [107], metabolic abnormality [108] and neurodegenerative diseases [109].

In breast cancer, it was demonstrated that H19 inhibits SAHH, resulting in the accumulation of SAH, which restricts DNMT3B from methylating Beclin1 promoter and inducing the upregulation of Beclin1 and subsequently initiates autophagy, contributing to tamoxifen resistance [81]. Interestingly, the interaction of H19 and SAHH might be enhanced by Benzo [α]pyrene (BaP), which is a potent carcinogen, especially in lung cancer [84].

Other than the SAH level regulated by SAHH, the SAM level regulated by MAT is another factor affecting DNMT activity (Fig. 3). MAT has several homologs and isoenzymes, among which, MAT1A is mainly expressed in adulthood, serving as a marker for the normal differentiated liver. While MAT2A is a marker for rapid liver growth and dedifferentiation, which is transcriptionally induced in hepatocellular carcinoma (HCC) [104]. It was reported that the oncogenic lncRNA SNHG6 upregulates MAT2A expression as a competitive endogenous RNA (ceRNA) to sponge miR-1297, while down-regulates MAT1A translation by suppressing nucleocytoplasmic shuttling of MAT1A mRNA, thereby causing genome-wide hypomethylation and promoting HCC [83]. Recently, the same group of investigators identified a novel lncRNA named LINC00662 that was shown to decay MAT1A mRNA by RNA–RNA interactions and degrades SAHH protein by ubiquitination [82]. These studies revealed a pathway regulating the level of SAM/SAH to further control DNMT activity, with broad functions in cancer and other diseases.

LncRNAs regulate the expression of DNMTs/TETs

There is compelling evidence showing that lncRNAs control the expression of DNMTs and TETs at diverse levels.
to regulate DNA methylation (Table 1 and Fig. 4). It was reported that lncRNAs promote or suppress DNMT expression, playing key roles in osteogenesis [110], macrophage polarization [111], as well as cell invasion in Kaposi's sarcoma [63] and chemoresistance in small cell lung cancer [67] and acute myeloid leukemia [60]. Several molecular mechanisms of lncRNA's regulatory effect on DNMTs or TETs have been elucidated (Fig. 4).

The first mechanism is to regulate the transcription, as demonstrated in malignant glioma, where IncRNA GAS5 directly interacts with EZH2 and stimulates the formation of polycomb repressive complex 2 (PRC2), thereby transcriptionally suppressing DNMT [62]. There is also a report suggesting that EZH2 is recruited by IncRNA HOTAIR to upregulate DNMT, while the mechanism is unclear [66].

The second mechanism is to regulate the stability of DNMT mRNA, where IncRNA functions as a mediator to upregulating DNMT by interaction with the stabilizing factor HuR [112], or as a ceRNA to sponge specific miRNA, thereby upregulating DNMT [61]. The latter mechanism was also discovered in TET regulation, where estradiol and progesterone upregulate IncRNA H19 to suppress miRNA Let-7 and stabilize TET3 mRNA, activating key fibroid-promoting genes in uterine leiomyomas [68]. LncRNA might also exert this effect via a more indirect manner, as demonstrated for LINC1281, which stabilizes the expression of Let-7 miRNA, thus down-regulating its targets DNMT3A/B [113].

The third mechanism is to regulate DNMT at the protein level. Current studies mainly focus on protein degradation by ubiquitination (Fig. 4). It was reported by several groups that lncRNAs serve as a protein-binding scaffold and induce ubiquitin-mediated DNMT protein degradation, epigenetically regulating target gene expression in obesity-mediated beta cell dysfunction [114], polycystic ovary syndrome [115] and hepatocellular carcinoma (HCC) [64]. The detailed mechanism involving the role of IncRNA in DNMT ubiquitination is largely unknown and warrant more deep investigation. In esophageal squamous cell carcinoma, a distinct model was proposed, in which, the IncRNA LUCAT1 binds DNMT1 to protect it from ubiquitination, while LUCAT1 knockdown promotes ubiquitination of DNMT1 through UHRF1 (Ubiquitin-Like PHD and RING Finger Domain-Containing Protein 1) [65]. However, it is well established that UHRF1 deposits dual mono- ubiquitination on the H3 histone tail and PCNA-associated factor 15 (PAF15) for direct DNMT1 recruitment and DNA methylation maintenance [116–118], while its roles in the mediation of DNMT1 ubiquitination need further validation and investigation.

Conclusions and discussions

Studies in recent years have revealed the multi-faceted role of IncRNA in regulating DNA methylation. Firstly, IncRNAs can recruit or repel DNA modifiers (DNMTs/
TETs) to specific gene targets (Fig. 1; Fig. 2); Secondly, lncRNAs can regulate DNMT activity by controlling the level of DNMT cofactor SAM/SAH (Fig. 3); Lastly, lncRNAs can regulate the expression of DNMTs/TETs per se at multiple levels (Fig. 4). All these mechanisms have been investigated in development and disease, with emphasized roles in cancer.

While most of the studies focused on the DNA methylation of the gene promoters, there is also a recent report highlighting the gene-body methylation mediated by a lncRNA by recruiting DNMT3A, which facilitates transcription of CTSG in dermamatomyositis myoideum [119]. Whether this mechanism exists in cancer needs further investigation.

Although this review mainly discussed the lncRNA function in mediating DNA methylation, another two issues should be noted. The first is that lncRNAs are in turn regulated targets of DNA methylation [120–123]; The second is that lncRNAs also mediate other epigenetic alterations such as histone modification and chromosome remodeling [124–131]. These issues provide an additional layer of gene expression regulation to form complex cross-talk between lncRNA, transcriptional factors, and various epigenetic modifications. More elaborate investigations are warranted to reveal the common mechanisms.

Perspectives

The emerging roles of lncRNAs in cancer through the mediation of DNA methylation suggest novel applications in drug development. While there are currently no drugs targeting lncRNA based exactly on this mechanism, relevant studies shed light on this field (Fig. 5).

One direction is to design lncRNA mimics to regulate the activity of their target proteins, which was recently applied in treating a rare disease of phenylketonuria, where a lncRNA HULC was identified to interact with phenylalanine hydroxylase (PAH) and to modulate the enzymatic activities of PAH. In their work, the authors constructed a lncRNA mimic that rescues PAH enzymatic activity in HULC-deficient cells and mouse models, which showed the therapeutic potential for phenylketonuria [132].

Another direction is to design small molecules directly targeting lncRNA-protein interactions [133–136]. Based on the structural insight of the interaction between lncRNA HOTAIR and EZH2, Ren et al. conducted a high-throughput virtual screening and identified a compound that selectively interrupts the lncRNA-protein interaction and inhibits cancer cell invasion and migration [137].

Owing to the fast progress of RNA structural biology and screening technologies, as well as the in-depth mechanistic studies and drug delivery technologies, it is reasonable to expect that RNA-targeting will emerge as a growing therapeutic strategy for human disorders, especially cancer.

Abbreviations

lncRNA: Long non-coding RNA; CGIs: CpG islands; DNMTs: DNA methyltransferases; TET: Ten-eleven translocation; TDG: Thymine DNA glycosylase; Pcg: Polycomb group; PRC2: Polycomb repressive complex 2; EZH2: Enhancer of Zeste homolog 2; GADD45A: Growth arrest and DNA-damage-inducible alpha; SAM: S-adenosylmethionine; SAH: S-adenosylhomocysteine; MAT: Methionine adenosyltransferase; SAHH: S-adenosylhomocysteine hydrolase; ceRNA: Competitive endogenous RNA; BC: Breast cancer; OC: Oral cancer; CML: Chronic myeloid leukemia; TSCC: Tongue squamous cell carcinoma; TNBC: Triple-negative breast cancer; EC: Esophageal cancer; PCa: Prostate cancer; RC: Renal carcinoma; GBC: Gallbladder cancer; HCC: Hepatocellular carcinoma; OSA: Osteosarcoma; NSCLC: Non-small cell lung cancer; LUAD: Lung adenocarcinoma; CRC: Colorectal cancer; GC: Gastric cancer; AML: Acute myeloid leukemia; UL: Uterine leiomyomas; GBM: Glioblastoma multiforme; CS: Chondrosarcoma.

Acknowledgements

Not applicable.

Authors’ contributions

W.H. and H.L. and Q.Y. retrieved literature; W.H. and H.L. wrote the manuscript and prepared the figures; W.X. and D.W. critically revised the manuscript. All authors have read and approved the final manuscript.
Funding
This work was financially supported by the National Natural Science Foundation of China (52000426 and 31971335) to Huang W and Wang DO; the National Key R&D Program of China (2021YFC2009302) to Li H; Special Funds for Transformation and Upgrading of Industrial Informatization of Industry and Information Technology Department of Jiangsu in 2020 to Xiao W; Xingliao Talents Program (XLYC18182007) and Department of Education of Liaoning Province (1911520092) to Wang DO.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Consent for publication
Not applicable.

Availability of data and materials
Not applicable.

Funding
This work was financially supported by the National Natural Science Foundation of China (52000426 and 31971335) to Huang W and Wang DO; the National Key R&D Program of China (2021YFC2009302) to Li H; Special Funds for Transformation and Upgrading of Industrial Informatization of Industry and Information Technology Department of Jiangsu in 2020 to Xiao W; Xingliao Talents Program (XLYC18182007) and Department of Education of Liaoning Province (1911520092) to Wang DO.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Consent for publication
Not applicable.

Availability of data and materials
Not applicable.

References
1. Greenberg MVC, Bourc'his D. The diverse roles of DNA methyla-
tion in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:590–607.
2. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76.
3. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, et al. Chart-
ing a dynamic DNA methylation landscape of the human genome. Nature. 2013;500:477–81.
4. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22.
5. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6:a019133.
6. Lyko F. The DNA methylation transferase family: a versatile toolkit for epige-
netic regulation. Nat Rev Genet. 2018;19:81–92.
7. Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–34.
8. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–50.
9. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11:607–20.
10. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methyloses at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.
11. Meissner A, Mikkelson TS, Gu H, Wernig M, Hanna J, Svishchenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70.
12. Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjostrom M, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020;52:778–89.
13. Phillips RE, Soshnev AA, Allis CD. Epigenomic Reprogramming as a Driver of Malignant Glialoma. Cancer Cell. 2020;38:647–60.
14. Sina AA, Carrascosa LG, Liang Z, Grewal YS, Wardiana A, Shiddiky MJA, et al. Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat Commun. 2018;9:4915.
15. Reddington JP, Sproul D, Meehan RR. DNA methylation reprogram-
ing in cancer: does it act by re-configuring the binding landscape of Polycomb repressive complexes? BioEssays. 2014;36:134–40.
16. Baylin SB, Jones PA. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol. 2016;8(9):a019505.
17. Nishiya A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37:1012–27.
18. Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16:519–32.
19. Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet. 2016;17:551–65.
20. Heberle E, Bardet AF. Sensitivity of transcription factors to DNA meth-
ylation. Essays Biochem. 2019;63:727–41.
21. Schubeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6.
22. Blattler A, Farrah PM. Cross-talk between site-specific transcription factors and DNA methylation states. J Biol Chem. 2013;288:34287–94.
23. Djebai S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.
24. Zhao L, Wang J, Li Y, Song T, Wu Y, Fang S, et al. NONCODEv6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 2021;49:D6165–71.
25. Huang et al. J Exp Clin Cancer Res (2022) 41:100
26. Battista Pj, Chang Hy. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298–307.
27. Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21:542–51.
28. Mayer C, Schmitz KM, Li J, Grummt I. Reintegrigenic transcripts regulate the epigenetic state of RNA genes. Mol Cell. 2006;22:351–61.
29. Bierhoff H, Schmitz K, Maas F, Ye J, Grummt I. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of riboso-
mal RNA genes. Cold Spring Harb Symp Quant Biol. 2010;75:357–64.
30. Schmitz KM, Mayer C, Postepski A, Grummt I. Interaction of noncoding RNA with the 7RNA promoter mediates recruitment of DNMT3b and silencing of RNA genes. Genes Dev. 2010;24:2264–9.
31. Frank S, Ahuja G, Bartsch D, Russ N, Yao W, Kuc J, et al. 7pYCT Defines a Class of Divergently Transcribed IncRNAs and Safeguards the T-mediated Mesodermal Commitment of Human PSCs. Cell Stem Cell. 2015;24:318–27 e8.
32. Pronnusamy M, Liu F, Zhang YH, Li RB, Zhai M, Liu F, et al. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regu-
lates Cardiomyocyte Proliferation and Cardiac Repair. Circulation. 2019;139:2668–84.
33. Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, et al. LncRNA DUM interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 2015;25:335–50.
34. Chalei V, Sanscom SN, Kong L, Lee S, Mountiel JF, Vance KW, et al. The long non-coding RNA Da1 is an epigenetic regulator of neural differentia-
tion. Elife. 2014;3:e04530.
35. Yi F, Zhang P, Wang Y, Xu Y, Zhang Z, Ma W, et al. Long non-coding RNA slncRAD functions in methylation regulation during the early stage of mouse adipogenesis. RNA Biol. 2019;16:1401–13.
36. Ni C, Jiang W, Wang Z, Wang Z, Zhang J, Zheng X, et al. LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizo-
phrenia. Mol Psychiatry. 2020;26(8):4511–28.
37. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, et al. Silencing of Long Non-coding RNA GAS5 Suppresses Neuron Cell Apoptosis and Nerve Injury in Ischemic Stroke Through Inhibiting DNMT3B-Dependent MAPK6 Methylation. Transl Stroke Res. 2020;11:950–66.
38. Xie Z, Wang Q, Hu S. Coordination of PRKCA/PRKCA-AS1 interplay facilitates DNA methylationtransferase 1 recruitment on DNA methylation to
affect protein kinase C alpha transcription in mitral valve of rheumatic heart disease. Bioengineered. 2021;12:5904–15.

39. Li H, Han S, Sun Q, Yao Y, Li S, Yuan C, et al. Long non-coding RNA CDKN2B-AS1 reduces inflammatory response and promotes cholesterol efflux in atherosclerosis by inhibiting ADAM10 expression. Aging (Albany NY). 2019;11:1695–715.

40. Wang Y, Yang X, Jiang A, Wang W, Li J, Wen J. Methylation-dependent transcriptional repression of RUNX3 by KCNQ1OT1 regulates mouse cardiac microvascular endothelial cell viability and inflammatory response following myocardial infarction. FASEB J. 2019;33:13145–60.

41. Chen H, Yang S, Zhao R. Long non-coding XIST raises expression of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther. 2019;21:271.

42. Wang Q, Liu J, You Z, Yin Y, Liu L, Yang T, et al. Depleting long non-coding RNA HOTAIR affects chemoresistance by regulating HOXA1 methylation in colon cancer cells. Gut. 2019;21:12440.

43. Su SC, Yeh CM, Lin CW, Hsieh YH, Chuang CY, Tang CH, et al. A novel melanotin-regulated IncRNA suppresses TPA-induced oral cancer cell motility through replenishing PRUNE2 expression. J Pineal Res. 2021;71:e12760.

44. Song H, Chen L, Liu W, Xu X, Zhou Y, Zhu J, et al. Depleting long non-coding RNA TET1 facilitates apoptosis in breast cancer cells and up-regulates H19/IGF2 expression through epigenetic regulation. PLoS Genet. 2019;15:e1007578.

45. Xin L, Lu H, Liu C, Zeng F, Yuan YW, Wu Y, et al. Methionine deficiency promoted mitochondrial dysfunction via IncRNA PVT1-mediated promoter demethylation of BNIP3 in gastric cancer. Int J Biochem Cell Biol. 2021;141:106100.

46. Zhou W, Xu S, Chen X, Wang C. HOTAIR suppresses PTEN via DNA methyltransferase 1 and inhibiting PTEN gene promoter methylation. Cell Death Dis. 2021;12:440.

47. Shao Q, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00142 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962–75.

48. Li N, Zhao Z, Miao F, Cai S, Liu P, Yu Y, et al. Silencing of long non-coding RNA LINC00887 variants act antagonistically to control Carbonic Anhydrase IX transcription upon hydroxy squamous carcinoma progression. BMC Biol. 2021;19:192.

49. Jin C, Zhao J, Zhang ZP, Wu M, Li J, Xiao GL, et al. Long non-coding RNA H19/IGF2R expression and stability of DNA methyltransferase 1 in esophageal squamous cell carcinoma. Cancer Lett. 2018;417:47–57.

50. Cheng D, Deng J, Zhang B, He X, Meng Z, Li G, et al. LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation. ElBioMedicine. 2018;36:159–70.

51. Fang S, Gao H, Tong Y, Yang J, Tang R, Niu Y, et al. Long non-coding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells. Lab Invest. 2016;96:60–8.

52. Cao T, Jiang Y, Wang Z, Zhang N, Al-Hendy A, Mamillapalli R, et al. H19 IncRNA identified as a master regulator of genes that drive uterine leiomyomas. Oncogene. 2019;38:5356–66.

53. Qi D, Li J, Que B, Su J, Li M, Zhang C, et al. Long non-coding DNA RBCCR1-003 regulate the expression of DBCR1 via DNMT1 in bladder cancer. Cancer Cell Int. 2016;16:81.

54. Liu LL, Chang YS, Chan WL, Lee YT, Yen JC, Yang CA, et al. Male-Specific Long Noncoding RNA TTTT15 Inhibits Non-Small Cell Lung Cancer Proliferation and Metastasis via TXN. Int J Mol Sci. 2019;20:14374.

55. Li Q, Dong C, Cui J, Wang Y, Hong X. Over-expressed IncRNA HOTAIR/M1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J Exp Clin Cancer Res. 2018;37:265.

56. Vennin C, Spruyt N, Robin YM, Chassat T, Le Bourhis X, Adriaenssens E, et al. The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett. 2017;385:198–206.

57. Fang S, Shen Y, Chen B, Wu Y, Liu J, Li Y, et al. H3K27me3 induces multigene resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the IncRNA HOTAIR. Ann Transl Med. 2018;6:440.

58. Xuan Y, Wang Y. Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell Death Dis. 2019;10:694.

59. Xiong Y, Kuang W, Xu S, Guo H, Wu M, Ye M, et al. Long non-coding RNA HOX813-AS1 regulates HOX813 gene methylation by interacting with EZH2 in glioma. Cancer Med. 2018;7:4718–28.

60. Zhang C, Wang L, Jin C, Zhou J, Peng C, Wang Y, et al. Long non-coding RNA Lnc-LALC facilitates colorectal cancer liver metastasis via epigenetically silencing L215. Cell Death Dis. 2021;12:224.

61. Bao X, Ren T, Yang H, Sun K, Wang S, Liu K, et al. Knockdown of long non-coding RNA HOTAIR increases miR-453–4p by targeting Stat3 and Agt2 to inhibit chondrosarcoma growth. Cell Death Dis. 2017;8:e2605.

62. Sui CI, Zhou YM, Shen WF, Dai BH, Lu JJ, Zhang MF, et al. Long non-coding RNA GIHCG promotes hepatocellular carcinoma progression.
through epigenetically regulating miR-200b/a/429. J Mol Med (Berl). 2016;94:1281–96.

79. Liu F, Huang W, Hong J, Cai C, Zhang W, Zhang J, et al. Long noncoding RNA LINCR00630 promotes radio-resistance by regulating BEK1 gene methylation in colorectal cancer cells. JUBMB Life. 2020;72:1404–14.

80. Wang L, Bu P, Ai Y, Srivivasan T, Chen HJ, Xiang K, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. Elife. 2016;5:e14620.

81. Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 2019;12:81.

82. Guo T, Gong C, Wu P, Battaglia-Hsu SF, Feng J, Liu P, et al. LINCR00626 promotes hepatocellular carcinoma progression via altering genomic methylation profiles. Cell Death Differ. 2020;27:2191–205.

83. Guo T, Wang H, Li P, Xiao Y, Wu P, Wang Y, et al. SNHG6 Acts as a Genome-Wide Hypomethylation Trigger via Coupling of miR-1297-Mediated S-adenosylmethionine-Dependent Positive Feedback Loops. Cancer Res. 2018;78:3894–64.

84. Fu Y, Wang W, Li X, Liu Y, Niu Y, Zhang B, et al. LncRNA H19 interacts with S-adenosylhomocysteine hydrolyase to regulate LINE-1 Methylation in human lung-derived cells exposed to Benzo(a)pyrene. Chemosphere. 2018;208:84–90.

85. Chen L, Fan X, Zhu J, Chen X, Liu Y, Zhou H. LncRNA MAG2-AS3 inhibits the self-renewal of leukemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukemia. RNA Biol. 2020;17:784–93.

86. Wang B, Zhao L, Chi W, Cao H, Cui W, Meng W. Aberrant methylation-mediated downregulation of lncRNA STRS5-AS1 promotes progression and metastasis of laryngeal squamous cell carcinoma. Epigenetics Chromatin. 2019;12:35.

87. Xu M, Xu X, Pan B, Chen X, Lin K, Zeng K, et al. LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell micro-environment in colorectal cancer by regulating SATB2. Mol Cancer. 2019;18:135.

88. Hu S, Yao Y, Hu X, Zhu Y. LncRNA DCST1-AS1 downregulates miR-29b via silencing in gastric cancer cell lines. J Cell Physiol. 2020;235:857–66.

89. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nucleic Acids Res. 2021;49:3020–32.

90. Zhu X, Zheng J, Hong H, Chen D, Deng L, Zhang X, et al. LncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. J Cell Physiol. 2020;235:8507–19.

91. Li X, Zhang Y, Pei W, Zhang M, Yang H, Zhong M, et al. LncRNA Dnm3a5os regulates Dnm3a expression leading to aberrant DNA methylation in macrophage polarization. PASEB J. 2020;34:5077–91.

92. Peng WX, Koirala P, Zhang W, Ni C, Wang Z, Yang L, et al. LncRNA RMST Enhances DNMT3 Expression through Interaction with HUFI. Mol Ther. 2020;28:9–18.

93. Li MA, Armaral EP, Cheung PB, Bergmann JH, Kinoshita M, Kalkan T, et al. A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. Elife. 2017;6:e23468.

94. Zhang FF, Liu YH, Wang DW, Liu TS, Yang Y, Guo JM, et al. Obesity-mediated CDKN1A Promoter Hypomethylation-Mediated CDKN1A Promoter Hypomethylation. Mol Ther. 2021;29:1279–93.

95. Nishiyama A, Mulholland CB, Bultmann S, Kori S, Endo A, Saeki Y, et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat Commun. 2020;11:1222.

96. Petryk N, Bultmann S, Bartke T, Defossez PA. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res. 2021;49:3020–32.

97. Qin W, Wolf P, Liu N, Link S, Smetts M, La Masta F, et al. DNA methylation requires a DNA methyltransferase and a DNA methyltransferase and a DNA methyltransferase. PNAS. 2020;117:211–16.

98. Yang Z, Xu F, Wang H, Teschendorf AF, Xie F, He Y. Pan-cancer characterization of long non-coding RNA and DNA methylation mediated transcriptional dysregulation. EBioMedicine. 2021;68:103399.
122. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-medi-ated activating of IncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28.

123. Moreno L, Chatterton Z, Ng JL, Halemba MS, Parkinson-Bates M, Mechinaud F, et al. Hypermethylation and down-regulation of DLEU2 in paediatric acute myeloid leukaemia independent of embedded tumour suppressor miR-15a/16-1. Mol Cancer. 2014;13:123.

124. Tsai MC, Manor Q, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

125. Fang H, Bonora G, Lewandowski JP, Thakur J, Filippova GN, Henikoff S, et al. Trans- and cis-acting effects of Fie1 on epigenetic features of the inactive X chromosome. Nat Commun. 2020;11:6053.

126. Liu YW, Xia R, Lu K, Xie M, Yang F, Sun M, et al. IncRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer. 2017;16:39.

127. Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 2015;14:165.

128. Hanly DJ, Esteller M, Berdasco M. Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci. 2016;371(1748):20170074.

129. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–4.

130. Gu P, Chen X, Xie R, Han J, Xie W, Wang B, et al. IncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer via Recruiting WDR5. Mol Ther. 2017;25:1959–73.

131. Xia M, Liu J, Liu S, Chen K, Lin H, Jiang M, et al. Ash1l and lnc-Smad3 coordinate Smad3 locus accessibility to modulate iTreg polarization and T cell autoimmunity. Nat Commun. 2017;8:15818.

132. Li Y, Tan Z, Zhang Y, Zhang Z, Hu Q, Liang K, et al. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science. 2021;373:662–73.

133. Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov. 2018;17:547–58.

134. Sztaba-Solinska J, Chavez-Calvillo G, Cline SE. Unveiling the druggable RNA targets and small molecule therapeutics. Bioorg Med Chem. 2019;27:2149–65.

135. Disney MD, Angelbello AJ. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence. Acc Chem Res. 2016;49:2698–704.

136. Ren Y, Wang YF, Zhang J, Wang QX, Han L, Mei M, et al. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin Epigenetics. 2019;11:29.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.