4-Amidinopyridinium hexachloridostannate(IV) dihydrate

Rochdi Ghallab, a* Hassiba Bougueria b and Hocine Meraziga a

*Environmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria, and bCentre Universitaire Abdelhafid Boussouf - Mila, Algeria. *Correspondence e-mail: rochdi.ghallab@gmail.com

In the title hydrated molecular salt [systematic name: 4-[amino(iminiumyl)-methyl]pyridin-1-ium hexachloridostannate(IV) dihydrate], (C6H9N3)[SnCl6]2H2O, the tin atom lies on a crystallographic inversion centre and the organic cation shows whole-molecule disorder. Numerous N—H···Cl and O—H···Cl hydrogen bonds link the components in the crystal.

Structure description

The title hydrated molecular salt, with formula (C6H9N3)[SnCl6]2H2O, crystallizes in the triclinic space group P1. The asymmetric unit is constituted by a Sn0.5Cl3 fragment (Sn site symmetry 1), a 4-amidinopyridinium cation (twice protonated at N1 and N2) and a water molecule, as shown in Fig. 1.

The cation shows whole-molecule disorder about an inversion centre and the water molecule is disordered over adjacent positions (O···O = 1.13 Å) and there is also static disorder of two of the chloride ions of the anion. With the exception of Cl3, where the occupancy ratio is 0.67/0.33 (for Cl3A/Cl3B), each disordered atom is shared between two crystallographic sites with occupancies of 0.50. There are no abnormalities in the bond lengths and angles and they are comparable to those of similar types (Liu et al., 2011; Ghallab et al., 2020).

In the extended structure, cationic and anionic layers occur, with water molecules intercalating between them as shown in the projection of the structure onto the ac and bc planes (Figs. 2 and 3). Cohesion in the crystal is ensured by numerous hydrogen bonds (Table 1).
Projection of the crystal packing on the bc plane.

Synthesis and crystallization

Following the method of preparation described in the literature (Bouchene et al., 2018), the compound was synthesized via the aqueous technique. A millimeter-sized transparent crystal was formed after three months of slow evaporation at ambient temperature.

Figure 1
The molecular structure showing 30% displacement ellipsoids.

Figure 2
Projection of the crystal packing on the ac plane.

Figure 3
Projection of the crystal packing on the bc plane.

Table 1

Hydrogen-bond geometry (\AA, °)
D—H···A
N1—H1···O1WAi
N1—H1···O1WBb
N2—H2A···Cl2a
N3—H3A···O1WAii
N3—H3A···O1WBii
N3—H3B···Cl3ii
O1WA—H1WA···Cl2a
O1WA—H1WB···Cl3ii
O1WB—H1WC···ClAi
O1WB—H1WC···ClBi
O1WB—H1WC···ClAii
O1WB—H1WC···ClBii
C1—H1A···Cl3Aiii
C1—H1A···Cl3Biii
C5—H5···ClAiii
C5—H5···ClBiii

Symmetry codes: (i) $x-1, -y+4, z-2+1$; (ii) $x, -y+1, -z+1$; (iii) $x, y-1, z$; (iv) $-x+1, -y+2, z+2$; (v) $x, y+1, z+1$; (vi) $x, y+2, z+1$; (vii) $-x+1, -y+3, -z+2$; (viii) $-x+1, -y+2, -z+1$.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The disordered atoms were treated with constraints on distances and angles (by the SAME command and PART options). With the exception of Cl3, where the ratio is 0.67/0.33, each disordered atom is shared between two crystallographic sites with occupancy rates of 0.50.

Table 2

Experimental details.

Crystal data	(C$_6$H$_9$N$_3$)[SnCl$_6$]·2H$_2$O
M$_r$	490.58
Crystal system, space group	Triclinic, $P\bar{T}$
Temperature (K)	296
a, b, c (Å)	7.4224 (13), 7.4518 (11), 8.4986 (16)
α, β, γ (°)	105.726 (7), 97.426 (9), 112.383 (7)
V ($Å^3$)	403.85 (12)
Z	1
Radiation type	Mo Kα
μ (mm$^{-1}$)	2.57
Crystal size (mm)	0.17 × 0.13 × 0.11

Data collection

Diffractometer	Bruker APEXII CCD		
Absorption correction	Multi-scan (SADABS; Bruker, 2016)		
T_{min}, T_{max}	0.676, 0.754		
No. of measured, independent and observed $	I	>2\sigma(I)$ reflections	10469, 2442, 1889
R$_{int}$, (sin θ/λ)$_{max}$ ($Å^{-1}$)	0.028, 0.714		

Refinement

$R[F^2>2\sigma(F^2)]$, wR(F^2), S	0.046, 0.085, 1.15
No. of reflections	2442
No. of parameters	154
No. of restraints	53
H-atom treatment	H-atom parameters constrained
Δρ$_{max}$, Δρ$_{min}$ ($e Å^{-3}$)	1.22, −1.35

Computer programs: APEX2 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).
Acknowledgements

Thanks are due to DRSDT–Algeria for support.

Funding information

Funding for this research was provided by: Unité de recherche de chimie de l’environnement, moléculaire et structurale UR.CHEMS; Direction Générale de la Recherche Scientifique et du Développement Technologique DGRSDT Algérie.

References

Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206–211.
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283.
Liu, F., Zhang, F., Chen, Q. & Zhang, H. (2011). Acta Cryst. E67, o781.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
full crystallographic data

IUCrData (2022). 7, x220195 [https://doi.org/10.1107/S241431462200195X]

4-Amidinopyridinium hexachloridostannate(IV) dihydrate

Rochdi Ghallab, Hassiba Bougueria and Hocine Merazig

4-[Amino(iminiumyl)methyl]pyridin-1-ium hexachloridostannate(IV) dihydrate

Crystal data

(C6H9N3)[SnCl6]·2H2O

Z = 1

F(000) = 238

Mr = 490.58

Dm = 2.017 Mg m−3

Triclinic, P T

Mo Kα radiation, λ = 0.71073 Å

a = 7.4224 (13) Å

θ = 5.0–30.5°

b = 7.4518 (11) Å

μ = 2.57 mm−1

c = 8.4986 (16) Å

T = 296 K

α = 105.726 (7)°

Block, colourless

β = 97.426 (9)°

0.17 × 0.13 × 0.11 mm

γ = 112.383 (7)°

V = 403.85 (12) Å³

Data collection

Bruker APEXII CCD

φ and ω scans

2442 independent reflections

Absorption correction: multi-scan

1889 reflections with I > 2σ(I)

(SADABS; Bruker, 2016)

Tmin = 0.676, Tmax = 0.754

10469 measured reflections

l = −12→12

Refinement

Refinement on F²

Primary atom site location: iterative

Least-squares matrix: full

Hydrogen site location: mixed

R[F² > 2σ(F²)] = 0.046

H-atom parameters constrained

wR(F²) = 0.085

w = 1/[σ²(F²̄) + (0.0167P)² + 0.8036P]

where P = (F² + 2F̄²)/3

(Δ/σ)max < 0.001

2442 reflections

Δρmax = 1.22 e Å⁻³

154 parameters

Δρmin = −1.35 e Å⁻³

53 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso* / Ueq	Occ. (<1)
Sn1	0.000000	0.500000	0.500000	0.04673 (15)	
Cl2	-0.0563 (2)	0.39683 (16)	0.19228 (11)	0.0675 (4)	
Cl1B	0.2964 (10)	0.7987 (8)	0.5355 (8)	0.0640 (13)	0.5
Cl3B	0.2133 (9)	0.3209 (8)	0.5250 (8)	0.0607 (14)	0.33
Cl1A	0.3472 (10)	0.7539 (8)	0.5316 (7)	0.0612 (12)	0.5
Cl3A	0.1294 (5)	0.2493 (4)	0.4986 (4)	0.0711 (9)	0.67
C3	0.470 (3)	1.475 (3)	0.998 (2)	0.039 (3)	0.5
C4	0.5060 (13)	1.6621 (11)	1.1133 (9)	0.0462 (19)	0.5
H4	0.465642	1.667299	1.212925	0.055*	0.5
C5	0.5998 (16)	1.8390 (14)	1.0820 (13)	0.062 (2)	0.5
H5	0.618436	1.965008	1.157590	0.074*	0.5
N1	0.666 (2)	1.8325 (16)	0.9421 (16)	0.081 (3)	0.5
H1	0.734961	1.946420	0.927815	0.097*	0.5
C1	0.625 (3)	1.6494 (18)	0.8222 (18)	0.088 (5)	0.5
H1A	0.661958	1.646634	0.721374	0.105*	0.5
C2	0.5291 (16)	1.4684 (15)	0.8517 (10)	0.059 (2)	0.5
H2	0.504299	1.342167	0.772395	0.071*	0.5
C6	0.3621 (14)	1.2750 (14)	1.0199 (13)	0.053 (2)	0.5
N2	0.227 (2)	1.1247 (14)	0.8868 (15)	0.099 (4)	0.5
H2A	0.153059	1.008127	0.895028	0.119*	0.5
H2B	0.211066	1.142421	0.790976	0.119*	0.5
N3	0.397 (2)	1.2666 (18)	1.1621 (18)	0.089 (5)	0.5
H3A	0.329233	1.154902	1.180199	0.106*	0.5
H3B	0.488756	1.372373	1.243683	0.106*	0.5
O1WA	0.0858 (13)	1.8847 (11)	1.1795 (10)	0.069 (2)	0.5
H1WA	0.119362	1.785736	1.167388	0.103*	0.5
H1WB	0.101422	1.945036	1.284078	0.103*	0.5
O1WB	0.2372 (18)	1.8798 (12)	1.1997 (9)	0.091 (3)	0.5
H1WC	0.297336	1.913349	1.302646	0.137*	0.5
H1WD	0.110355	1.828348	1.187657	0.137*	0.5

Atomic displacement parameters (Å²)

	U₁₁	U₁₂	U₁₃	U₂₂	U₂₃	U₃₃		
Sn1	0.0750 (3)	0.02256 (16)	0.02323 (16)	0.00466 (17)	0.00409 (16)	0.00756 (12)		
Cl2	0.1091 (10)	0.0438 (5)	0.0264 (4)	0.0154 (6)	0.0077 (5)	0.0086 (4)		
Cl1B	0.064 (3)	0.046 (2)	0.0547 (17)	−0.0007 (15)	−0.0018 (17)	0.0211 (17)		
Cl3B	0.067 (4)	0.051 (3)	0.056 (2)	0.025 (2)	−0.004 (2)	0.019 (2)		
Cl1A	0.072 (3)	0.0429 (19)	0.0492 (14)	0.0061 (14)	0.0161 (18)	0.0157 (13)		
Cl3A	0.111 (3)	0.0488 (14)	0.0504 (13)	0.0290 (14)	0.0200 (16)	0.0222 (12)		
C3	0.041 (10)	0.040 (8)	0.038 (3)	0.018 (7)	0.013 (5)	0.018 (4)		
C4	0.057 (5)	0.041 (4)	0.033 (3)	0.014 (4)	0.012 (3)	0.013 (3)		
C5	0.058 (6)	0.048 (5)	0.073 (6)	0.019 (5)	0.020 (5)	0.017 (4)		
N1	0.096 (9)	0.065 (6)	0.116 (9)	0.038 (6)	0.054 (8)	0.064 (7)		
C1	0.137 (12)	0.087 (9)	0.092 (9)	0.067 (10)	0.081 (8)	0.058 (8)		
----	-----	-----	-----	-----	-----	-----	-----	-----
C2	0.083 (7)	0.075 (6)	0.039 (4)	0.053 (6)	0.023 (4)	0.017 (4)		
C6	0.049 (6)	0.045 (4)	0.064 (6)	0.019 (4)	0.018 (5)	0.020 (4)		
N2	0.120 (10)	0.042 (4)	0.094 (8)	0.009 (6)	0.017 (7)	0.005 (5)		
N3	0.094 (9)	0.045 (6)	0.092 (9)	−0.005 (6)	−0.006 (7)	0.037 (6)		
O1WA	0.094 (6)	0.049 (4)	0.053 (4)	0.014 (4)	0.029 (4)	0.023 (3)		
O1WB	0.133 (8)	0.045 (4)	0.044 (4)	−0.006 (5)	−0.005 (5)	0.018 (3)		

Geometric parameters (Å, °)

Bond/Angle	Distance/Angle
Sn1—Cl2	2.4470 (10)
Sn1—Cl2i	2.4470 (10)
Sn1—Cl1B	2.371 (6)
Sn1—Cl1Bi	2.371 (6)
Sn1—Cl1B	2.451 (7)
Sn1—Cl3B	2.451 (7)
Sn1—Cl1A	2.475 (7)
Sn1—Cl1Ai	2.475 (7)
Sn1—Cl3A	2.402 (4)
Sn1—Cl3A	2.402 (4)

Bond/Angle	Distance/Angle
Cl2—Sn1—Cl2	180.0
Cl2—Sn1—Cl3B	87.17 (16)
Cl2—Sn1—Cl3Bi	92.83 (16)
Cl2—Sn1—Cl3B	92.83 (16)
Cl2—Sn1—Cl3B	87.17 (16)
Cl2—Sn1—Cl1A	90.98 (14)
Cl2—Sn1—Cl1A	89.02 (14)
Cl2—Sn1—Cl1A	90.98 (14)
Cl2—Sn1—Cl1A	89.02 (14)
Cl2—Sn1—Cl1A	89.79 (15)
Cl2—Sn1—Cl1A	89.79 (15)
Cl2—Sn1—Cl1A	90.21 (15)
Cl2B—Sn1—Cl2	90.21 (15)
Cl2B—Sn1—Cl2	89.79 (15)
Cl2B—Sn1—Cl2	89.79 (15)
Cl2B—Sn1—Cl1B	90.21 (15)
Cl2B—Sn1—Cl1B	180.0
Cl2B—Sn1—Cl3B	87.92 (17)
Cl2B—Sn1—Cl3B	87.92 (17)
Cl2B—Sn1—Cl3B	92.08 (17)
Cl2B—Sn1—Cl3B	87.92 (17)
Cl2B—Sn1—Cl3B	92.08 (17)
Cl2B—Sn1—Cl1A	166.23 (14)
Cl2B—Sn1—Cl1A	13.77 (14)
Cl2B—Sn1—Cl1A	101.89 (14)

Bond/Angle	Distance/Angle
N1—C1—C2	−6 (3)
C1—N1—C5—C4	6 (2)
N1—C1—C2—C3	2 (3)
C1—C2—C3—C4	0 (3)

IUCrData (2022). 7, x220195
\[
\begin{array}{cccc}
C1—C2—C3—C6 & 178.1 (16) & C2—C3—C4—C5 & 0 (3) \\
C6—C3—C4—C5 & -177.7 (14) & C3—C4—C5—N1 & -3 (2) \\
\end{array}
\]

Symmetry code: (i) −x, −y+1, −z+1.

\textit{Hydrogen-bond geometry (Å, °)}

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1···O1W \text{A}^{ii}	0.86	1.96	2.760 (15)	154
N1—H1···O1W \text{B}^{ii}	0.86	1.87	2.649 (15)	149
N2—H2A···Cl2\text{A}	0.86	2.68	3.431 (11)	147
N3—H3A···O1W \text{A}^{iii}	0.86	2.13	2.961 (16)	162
N3—H3A···O1W \text{B}^{iii}	0.86	1.96	2.795 (16)	163
N3—H3B···Cl1A \text{A}^{iv}	0.86	2.69	3.093 (16)	110
N3—H3B···Cl1B \text{B}^{iv}	0.86	2.56	3.420 (16)	175
O1WA—H1WA···Cl2\text{A}	0.85	2.77	3.415 (8)	134
O1WA—H1WB···Cl3A \text{A}^{vi}	0.85	2.41	3.154 (9)	147
O1WB—H1WC···Cl1A \text{A}^{v}	0.85	2.60	3.305 (10)	142
O1WB—H1WC···Cl1B \text{B}^{v}	0.85	2.36	3.085 (10)	144
O1WB—H1WC···Cl1A \text{A}^{vii}	0.85	2.69	3.251 (12)	124
O1WB—H1WC···Cl1B \text{B}^{vii}	0.85	2.83	3.396 (13)	126
C1—H1A···Cl3A \text{A}^{vii}	0.93	2.67	3.561 (17)	161
C1—H1A···Cl3B \text{A}^{vii}	0.93	2.43	3.356 (17)	174
C5—H5···Cl1A \text{A}^{vii}	0.93	2.80	3.674 (12)	157
C5—H5···Cl1B \text{A}^{vii}	0.93	2.56	3.385 (12)	149

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+4, −z+2; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+2; (v) x, y+1, z+1; (vi) x, y+2, z+1; (vii) −x+1, −y+3, −z+2; (viii) −x+1, −y+2, −z+1.