Atrial fibrillation and inflammation

Mehmet Ozaydin

Mehmet Ozaydin, Department of Cardiology, School of Medicine, Suleyman Demirel University, 32040, Isparta, Turkey

Author contributions: Ozaydin M solely contributed to this paper.

Correspondence to: Mehmet Ozaydin, MD, Associate professor, Department of Cardiology, School of Medicine, Suleyman Demirel University, Kurtulus Mah, 122. Cad. Hatice Halici Apt. No: 126/15, 32040, Isparta, Turkey. mehmetozaydin@hotmail.com

Telephone: +90-532-4139528 Fax: +90-246-2180163

Received: March 3, 2010 Revised: May 6, 2010 Accepted: May 13, 2010 Published online: August 26, 2010

Abstract

Atrial fibrillation (AF) is the most common clinical arrhythmia. Recent investigations have suggested that inflammation might have a role in the pathophysiology of AF. In this review, the association between inflammation and AF, and the effects of several agents that have anti-inflammatory actions, such as statins, polyunsaturated fatty acids, corticosteroids and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, have been investigated.

© 2010 Baishideng. All rights reserved.

Key words: Atrial fibrillation; Inflammation; Statins

Peer reviewers: Nadezda Bylova, MD, PhD, Internal Disease, Russian State Medical University, 13, 25, Pavlovskaya str., Moscow, 115093, Russia; Ole Dyg Pedersen, MD, Department of Cardiology, Bispebjerg University Hospital, 2400 Copenhagen, Denmark

Ozaydin M. Atrial fibrillation and inflammation. World J Cardiol 2010; 2(8): 243-250. Available from: URL: http://www.wjgnet.com/1949-8462/full/v2/i8/243.htm DOI: http://dx.doi.org/10.4330/wjc.v2.i8.243

Epidemiology and Pathophysiology of Atrial Fibrillation

Epidemiology

AF is the most common clinical arrhythmia and affects > 2.3 million people in the United States. Its prevalence increases with age and is as high as approximately 10% by the age of 80 years. It is associated with increased risk of stroke, heart failure and mortality[1].

Pathophysiology

Conventionally, the presence of multiple re-entrant circuits that originate in the atria and rapidly firing atrial activity in the pulmonary veins have been described as potential mechanism for atrial fibrillation (AF)[1]. Recent studies have also shown that there is an association between inflammation and AF[2]. The frequent occurrence of AF in patients with inflammatory conditions such as myocarditis and pericarditis has raised the possibility that AF is associated with local inflammation[3,4]. The finding of marked inflammatory infiltrates, myocyte necrosis, and fibrosis in atrial biopsies of patients with lone AF, but not in control patients[5], and the presence of circulating autoantibodies against myosin heavy chain[6] supports this hypothesis. Further evidence on this issue has come from the increase in inflammatory markers such as C-reactive protein (CRP), high-sensitivity CRP (hs-CRP) and interleukin-6 in both paroxysmal and persistent AF, compared to control subjects[7-14]. In a multivariate analysis of The Cardiovascular Health Study that included 5806 individuals, CRP levels predicted both the presence of AF at baseline and the development of AF during follow-up, even after adjustment for potential confounding factors[7]. Moreover, longer duration of AF has been found to be associated with higher hs-CRP levels compared with shorter duration of AF, which indicates that there is a link between AF burden and systemic inflammation[8,15]. Similarly, hs-CRP has been found to be a significant predictor of early AF recurrence after cardioversion[7,16-20].

In this review, we focus on the evidence that supports systemic inflammatory mechanisms that might initiate and perpetuate AF. AF has been shown to be associated with inflammation, therefore, the question of whether anti-inflammatory agents can decrease AF rates has been raised. The effects of several agents that have anti-inflammatory actions, such as statins, polyunsaturated fatty acids (PUFAs), corticosteroids and angiotensin-converting en-
zyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), have been investigated in AF in observational and randomized studies.

STATINS AND AF

Observations
The role of inflammation on atrial electrophysiological and structural changes and the effects of atorvastatin on AF were first evaluated by Kumagai et al.[21] in a canine sterile pericarditis model. They found that the atorvastatin group had lower CRP levels, less pronounced fibrosis in the atrial myocardium, and a shorter duration of AF.

Hypotheses
Since AF has been shown to be associated with inflammation, the question of whether anti-inflammatory agents could decrease AF rates has been raised. Therefore, the effects of statins, which have anti-inflammatory actions, have been investigated in observational and randomized studies.

Small studies
In the canine pericarditis model[21], canine rapid atrial pacing model[24,25] and canine ventricular tachy-pacing model[26], treatment with statins resulted in decreased inducibility and sustainability of arrhythmia. In human studies, statins have been effective in preventing AF after electrical cardioversion[24,25], in patients with stable coronary artery disease (CAD)[26], acute coronary syndrome[27,28], and pace makers[29], and in patients undergoing coronary artery bypass surgery[30-33]. In a randomized placebo-controlled study, Patti et al.[34] have shown that atorvastatin at a dose of 40 mg significantly decreased AF rates after bypass surgery compared with placebo. Although peak CRP levels were no different between placebo and atorvastatin groups, CRP levels were higher in patients who developed AF compared to those who did not[34]. Kourliouros et al.[35] have shown that the benefits of statins on postoperative AF are dose-related.

In contrast to these findings, several studies were unable to show any positive effects of statins on AF. Tveit et al.[36] and García-Fernández et al.[37] did not find any benefit of pravastatin and atorvastatin in reducing recurrence rates of AF after electrical cardioversion. Humphries et al.[38] showed that, although there was no association with statin use and recurrence of AF, recurrence rate was significantly lower in patients who were also taking β-blockers. Richter et al.[39] were unable to show any positive effects of statins after AF ablation in a retrospective study.

Larger studies
In a retrospective large study of 4044 patients who were undergoing coronary artery bypass grafting (CABG) surgery, Virani et al.[40] showed that statins had no positive effects on the occurrence of AF. In analyses of two large randomized trials (PROVE IT-TIMI 22 and A to Z trial), McLean et al.[41] demonstrated high-dose statins did not decrease AF risk. In a large retrospective study, Adabag et al.[42] found no difference in AF incidence with statin treatment (P = 0.09) in CAD patients. However, statins decreased AF incidence in a subgroup of patients with heart failure (P = 0.04). In contrast, Hanna et al.[43] showed that statin treatment decreased AF rates in patients with left ventricular dysfunction.

Meta-analyses
Several meta-analyses have been performed to investigate the effects of statins on AF and have indicated conflicting results depending basically on the selection of studies. Fauchier et al.[44] have performed a meta-analysis that included six studies with 3557 patients. Three studies investigated the use of statins in patients with a history of paroxysmal AF (n = 1) or persistent AF undergoing electrical cardioversion (n = 2), and three investigated the use of statins in primary prevention of AF in patients undergoing cardiac surgery or after acute coronary syndrome. Overall, the use of statins was significantly associated with a decreased risk of AF compared with controls (OR = 0.39). The benefit of statins was more marked in secondary prevention of AF (OR = 0.33) than for new-onset or postoperative AF (OR = 0.60). In the meta-analysis of Liu et al.[45], six randomized and 10 observational studies with 7041 patients were analyzed. The analysis of randomized controlled trials showed no significant effect of statins on AF development, and significant heterogeneity between individual studies. Subgroup analysis revealed that differences in AF detection methodology might have been the cause of heterogeneity. The analysis of observational studies demonstrated that statin use reduced the relative risk for AF significantly without significant differences between the trials. This favorable effect was greatest in the postoperative patients. A more recent meta-analysis of seven hypothesis-generating trials with 3609 patients and 15 hypothesis-testing trials with 68 504 patients showed a 30% reduction in relative risk of AF in the hypothesis-generating trials and no effect in the hypothesis-testing trials. There was no difference in the effects of statins on primary or secondary prevention of AF[46]. Patel et al.[47] included 14 trials with 7402 patients in their meta-analysis and showed that statins decreased AF rates by 45%, new-onset AF by 32%, recurrent AF by 57%, recurrent AF after cardioversion by 42%, and postoperative AF by 58%.

Conclusion
The studies that have evaluated the benefits of statins on AF were mainly retrospective and observational, and the results are controversial. The results of meta-analyses are also controversial, depending on the selection of the studies that included different patient populations and different agents at different doses. The data are not yet sufficient to recommend these agents for the treatment of AF outside their approved indications.
Table 1 Statins and atrial fibrillation

Ref.	Study design	Subjects	Conclusion
Kumagai et al [26]	Prospective	Interventional canine sterile pericarditis model; atorvastatin	Atorvastatin group had lower CRP, shorter duration of AF, less inflammation in atrial tissues
Siu et al [27]	Retrospective	62 lone persistent AF, statin vs control	Lower recurrence rate in the statin group
Tveit et al [28]	Prospective	114 patients undergoing electrical cardioversion; pravastatin vs none	Pravastatin did not reduce the recurrence rate of AF
Young-Xu et al [29]	Prospective	449 patients with CAD were followed for 5 yr	Development of AF was lower in statin group
Ozaydin et al [30]	Prospective	48 patients undergoing cardioversion; atorvastatin vs none	81% relative risk reduction in AF recurrence
Ozaydin et al [31]	Observational	264 patients undergoing CABG surgery; any statin	Statin group had lower AF rates
Patti et al [32] (ARMYDA-3)	Prospective	200 patients undergoing CABG surgery; atorvastatin vs placebo	61% reduction in the odds of AF
García-Fernández et al [33]	Prospective	52 patients undergoing cardioversion; atorvastatin vs placebo	No significant difference in recurrence rate of AF
Ramani et al [34]	Retrospective	1526 patients with ACS; various statins	43% reduction in the odds of AF
Humphries et al [35]	Prospective, observational	625 patients undergoing cardioversion; any statin	74% reduction in the odds of AF with β-blocker; no effect alone
Hanna et al [36]	Data from a multicenter registry	25268 patients with LVEF ≤ 40%	Lipid-lowering drug use was associated with reduced odds of AF
Fauchier et al [37]	Meta-analysis	Six studies with 3557 patients	Statins were significantly associated with a decreased risk of AF (P = 0.02)
Liu et al [38]	Meta-analysis	Six randomized and 10 observational studies with 7041 patients	Benefit of statins was more marked in secondary prevention of AF
Patel et al [39]	Meta-analysis	14 trials with 7402 patients	No significant effect of statins on AF development (P = 0.09). Observational studies showed that statin use decrease the relative risk for AF by 23%. This effect was greatest in the postoperative patients
Marin et al [40]	Prospective, observational	234 patients undergoing CABG surgery; any statin	Statin decreased AF rates by 45%. Decrease was most prominent in postoperative AF
McLean et al [41]	Two large, randomized trials: PROVE IT-TIMI 22 and A to Z trial	8659 patients with ACS; low- vs high-dose statin therapy	Neither study showed decreased AF risk with high-dose statin therapy
Lertsbura et al [42]	Observational	555 patients undergoing CABG surgery; any statin	40% reduction in the odds of AF
Kourliouros et al [43]	Retrospective	680 patients undergoing CABG surgery; atorvastatin and simvastatin	Improving benefits with higher dose
Virani et al [44]	Retrospective	4044 patients undergoing CABG surgery; any statin	No effect
Adabag et al [45]	Cohort	13783 CAD patients	No difference in AF incidence with statin treatment (P = 0.09). However, AF was reduced in a subgroup of patients with congestive heart failure (P = 0.04)

AF: Atrial fibrillation; CABG: Coronary artery bypass grafting; CAD: Coronary artery disease; CRP: C-reactive protein; ACS: Acute coronary syndrome; LVEF: Left ventricular ejection fraction.

Future directions

Future large randomized, placebo-controlled clinical trials are required to clarify the effect of statins on AF. A summary of the studies that have been performed on the effects of statins on AF is given in Table 1.

PUFAs AND AF

Observations

The observation that PUFAs reduce asynchronous contractile activity in rats suggests that they have antiarrhythmic effects on atrial muscle [37].

Hypotheses

The effects of PUFAs that have anti-inflammatory actions have been investigated in several studies.

Small studies

The reports about the effects of PUFAs on AF are more controversial. Calò et al [48] showed that pretreatment of 160 patients with fish oil capsules for 5 d before bypass surgery reduced the occurrence of postoperative AF. Saravanam et al [49] showed that fish oil 2 g/d did not reduce postoperative AF burden. PUFAs supplementation in a randomized fashion in patients with implantable cardioverter defibrillators did not demonstrate any significant beneficial effect on ventricular tachyarrhythmias [50].

Larger studies

Two epidemiological studies have shown that PUFAs decrease the risk of AF [51,52]. Mozaffarian et al [53] reported that there was a negative correlation between the consumption of fish oil and risk of AF in a prospective study of 4815
Table 2 Polyunsaturated fatty acids and atrial fibrillation

Ref.	Study design	Subjects	Conclusion
Physicians’ Health	Prospective	17 679 patients (epidemiological study)	Although statistically insignificant, AF risk is higher in PUFAs group
Study[24]			
Danish study[30]	Prospective	47 949 patients (epidemiological study)	Although statistically insignificant, AF risk is higher in PUFAs group
Rotterdam study[35]	Prospective	5184 patients (epidemiological study)	Although statistically insignificant, AF risk is higher in PUFAs group
Mozaffarian et al[49]	Prospective	4815 patients (epidemiological study)	Although statistically insignificant, AF risk is higher in fried fish/fish
Calò et al[46]	Prospective	160 patients undergoing CABG surgery	Significantly, AF risk is lower in broiled/baked fish group
Saravanan et al[61]	Prospective	Patients undergoing CABG surgery	AF risk is significantly lower in PUFAs group
			AF risk is significantly lower in PUFAs group

PUFAs: Polyunsaturated fatty acids; AF: Atrial fibrillation; CABG: Coronary artery bypass grafting.

adults aged ≥ 65 years. The study of Macchia et al[52] supported these findings and showed that n-3 PUFA reduced the risk of hospitalization for AF. In contrast to these findings, the Danish Diet, Health and Cancer Study[53], Physicians’ Health Study[54], and Rotterdam study[55] were unable to show any beneficial effects of fish consumption on AF.

Conclusion
The question of whether PUFAs have beneficial effects on AF development cannot be answered with the current evidence. Therefore, the use of PUFAs in the prevention of AF cannot be supported.

Future directions
More research is needed in this area to yield clearer evidence. A summary of the studies that have been performed on the effects of PUFAs on AF is given in Table 2.

Corticosteroids and AF

Observations
The first observation of the possible relationship between corticosteroids and AF rates came from the study of Ueda et al[56].

Hypotheses
The effects of corticosteroids that have anti-inflammatory actions on AF have been investigated in several studies.

Small studies
Chaney et al[57] found no difference in the incidence of postoperative AF between the those treated and untreated with methylprednisolone. Yared et al[58] have shown that dexamethasone decreases the incidence of new-onset AF in patients undergoing heart surgery. Similarly, in a small study, low-dose methylprednisolone decreased plasma CRP levels and AF recurrence after electrical cardioversion[59]. On the other hand, a randomized double-blind study did not show any beneficial effects of corticosteroids on postoperative AF and inflammation[60]. However, in a randomized study, Halonen et al[61] showed that corticosteroids decreased the incidence of postoperative AF and serum CRP levels. In a canine sterile pericarditis model, Goldstein et al[62] found that prednisone significantly attenuated the increase in CRP, reduced neutrophil infiltration, and eliminated atrial arrhythmia inducibility.

Meta-analyses
A meta-analysis of nine randomized controlled trials has suggested positive effects of perioperative corticosteroid use on AF occurrence and on length of stay after cardiac surgery[63].

Conclusion
Data are not yet sufficient to recommend corticosteroids for the treatment of AF.

Future directions
Large randomized studies are required to clarify this issue of corticosteroid treatment of AF. A summary of the studies that have been performed on the effects of corticosteroids on AF is given in Table 3.

ACEIs AND ARBs

Observations
In an animal study, it has been shown that angiotensin II inhibitors might prevent atrial electrical remodeling[64].

Hypotheses
The effects of ACEIs and ARBs that have anti-inflammatory actions on AF have been investigated in observational and randomized studies.

Small studies
ACEIs or ARBs have been shown to decrease AF in left ventricular dysfunction[65,66] and left ventricular hypertrophy[67,68], and after cardiac surgery[67-70] and cardiovascular[71-73]. In contrast, two previous studies were unable to show any beneficial effect of ACEIs and ARBs on postoperative AF[74,75] and patients in AF rhythm control strategy[76].

Larger studies
In larger studies, ACEIs or ARBs were effective in reducing AF incidence in left ventricular dysfunction or heart failure[77-79]. In a retrospective large study of 10023 con-
Seven trials involving a total of 241 patients undergoing CABG or valve surgery. Overall, inhibition of the RAAS reduced the RR of AF by 28%. Reduction in AF was greatest in patients after CABG, CABG surgery; methylprednisolone.

Table 3 Corticosteroids and atrial fibrillation

Ref.	Study design	Subjects	Conclusion
Chaney et al^[5]	Prospective study, retrospective analysis	60 patients undergoing CABG surgery; methylprednisolone	No effects of steroids on the incidence of AF
Yared et al^[36]	Randomized	235 patients undergoing CABG or valve surgery	Dexemethasone decreased incidence of new-onset AF
Yared et al^[36]	Randomized	78 patients undergoing CABG or valve surgery	Dexemethasone did not decrease incidence of new-onset AF and inflammation
Dernellis et al^[39]	Randomized	104 patients undergoing electrical cardioversion	Methylprednisolone decreased plasma CRP levels and AF recurrence
Goldstein et al^[42]	Animal study	Canine sterile pericarditis model	Prednisone treatment decreased inflammation, and eliminated atrial arrhythmia inducibility
Halonen et al^[46]	Randomized	241 patients undergoing CABG or valve surgery	Corticosteroids decreased the incidence of postoperative AF and serum CRP levels
Baker et al^[52]	Meta-analysis	Nine studies with 990 patients undergoing CABG or valve surgery	Positive effects of perioperative corticosteroid use on AF occurrence

AF: Atrial fibrillation; CABG: Coronary artery bypass grafting; CRP: C-reactive protein.

Table 4 Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and atrial fibrillation

Ref.	Study design	Subjects	Conclusion
Murray et al^[14]	Prospective study, retrospective analysis	732 patients; AF rhythm control	No difference in AF recurrence
Madrid et al^[17]	Prospective (electrical cardioversion)	154 patients; amiodarone only vs amiodarone + irbesartan	Recurrence of AF lower in irbesartan group
Zaman et al^[20]	Prospective (electrical cardioversion)	47 patients; ACEI vs no ACEI group	Number of defibrillation attempts required for successful cardioversion was less in ACEI group
Ueng et al^[24]	Prospective (electrical cardioversion)	125 patients; amiodarone only vs amiodarone + enalapril	Trandolapril group had decreased rate of recurrence
Pedersen et al^[28]	Prospective (post-MI)	1577 patients with LV dysfunction post-MI; trandolapril vs control	Trandolapril reduces AF
SOLVD^[30]	Prospective study, but retrospective analysis (heart failure)	374 patients with depressed LV function; enalapril vs control	AF rate lower in ACEI group
Val-HeFT^[33]	Prospective study, retrospective analysis (heart failure)	4409 patients with; valsartan vs control	ARB lower incidence of AF
CHARM^[37]	Prospective study, retrospective analysis (heart failure)	5518 patients; candesartan vs control	ARB lowers incidence of AF in both normal and depressed ejection fraction
L’Allier et al^[40]	Retrospective (hypertension)	5463 patients receiving ACEI vs 5463 patients receiving CCB	The incidence of AF was lower in ACEI group
Miceli et al^[43]	Retrospective (post-CABG)	10023 patients undergoing isolated CABG; ACEI vs non-ACEI	ACEI treatment is associated with an increased risk of post-operative AF
Madrid et al^[46]	Meta-analysis	Seven trials involving a total of 24849 patients	There was a significant statistical difference in the development AF with ACEI/ARB treatment
Kalus et al^[50]	Meta-analysis	Four trials	There was a significant statistical difference in the development AF with ACEI/ARB treatment
Anand et al^[53]	Meta-analysis	Nine randomized controlled trials	The use of ACEIs and ARBs had an overall effect of 18% risk reduction in new-onset AF across the trials and 43% risk reduction in patients with heart failure
Jibrini et al^[56]	Meta-analysis	11 randomized trials	Overall, inhibition of the RAAS reduced the RR of AF by 19%. Reduction in AF was greatest in patients after electrical cardioversion and in patients with heart failure
Healey et al^[59]	Meta-analysis	11 randomized trials	Overall, ACEIs and ARBs reduced the relative risk of AF by 28%. Reduction in AF was similar between ACEI and ARB and was greatest in patients with heart failure. Overall, there was no significant reduction in AF in patients with hypertension

AF: Atrial fibrillation; CABG: Coronary artery bypass grafting; ACEI: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin receptor blocker; MI: Myocardial infarction; CCB: Calcium channel blocker; LV: Left ventricle; RAAS: Renin angiotensin aldosterone system; RR: Relative risk.

Successive patients undergoing isolated CABG (3052 of whom received preoperative ACEI), Miceli et al^[43] showed that the risk of new-onset postoperative AF (P < 0.0001) increased in patients treated with ACEI. They have stated that preoperative administration of ACEI in patients undergoing CABG might lower systemic vascular resistance and vasoplegia in the early postoperative phase, which results in hypotension and requires administration of more...
fluids and inotropic and/or vasoconstrictor drugs that might increase the risk of AF.

Meta-analyses

Meta-analyses that have evaluated the benefits of ACEIs and ARBs have shown that, although their use is associated with low AF rates, efficacy rates differ between subgroups of patients mainly due to inclusion of different studies.\(^{[81,84]}\)

Conclusion

Both ACEIs and ARBs decrease AF incidence. However, the evidence is not sufficient to recommend these agents for the treatment of AF.

Future directions

Large randomized studies are still required to clarify the beneficial effects of ACEIs and ARBs on AF. A summary of the studies that have been performed on the effects of statins on AF is given in Table 4.

REFERENCES

1. Issac TT, Dokainish H, Lakkis NM. Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data. *Am J Cardiol* 2007; 50: 2021-2028

2. Van Wagoner DR. Oxidative stress and inflammation in atrial fibrillation: role in pathogenesis and potential as a therapeutic target. *J Cardiovasc Pharmacol* 2008; 52: 306-313

3. Spodick DH. Arrhythmias during acute pericarditis. A prospective study of 100 consecutive cases. *JAMA* 1976; 235: 39-41

4. Morgera T, Di Lenarda A, Dreas L, Pinamonti B, Humar F, Bussani R, Silvestri F, Chersevani D, Camerini F. Electrocardiography of myocarditis revisited: clinical and prognostic significance of electrocardiographic changes. *Am Heart J* 1992; 124: 455-467

5. Frustaci A, Chimenti C, Bellocchi F, Morgante E, Russo M, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. *Circulation* 1997; 96: 1180-1184

6. Maixent JM, Paganelli F, Scaglione J, Lévy S. Antibodies against myosin in sera of patients with idiopathic paroxysmal atrial fibrillation. *J Cardiovasc Electrophysiol* 1998; 9: 612-617

7. Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA, Tracy RP, Van Wagoner DR, Psaty BM, Lauer MS, Chung MK. Inflammation as a risk factor for atrial fibrillation. *Circulation* 2003; 108: 3006-3010

8. Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, Carnes CA, Bauer JA, Tchou PJ, Niehauer MJ, Natale A, Van Wagoner DR. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. *Circulation* 2001; 104: 2886-2891

9. Dernellis J, Panaretou M. C-reactive protein and paroxysmal atrial fibrillation: evidence of the implication of an inflammatory process in paroxysmal atrial fibrillation. *Acta Cardiol* 2001; 56: 375-380

10. Blake GJ, Ridker PM. C-reactive protein and other inflammatory risk markers in acute coronary syndromes. *Am J Cardiol* 2003; 41: 375-425

11. Conway DS, Buggins P, Hughes E, Lip GY. Predictive value of indexes of inflammation and hypercoagulability on success of cardioversion of persistent atrial fibrillation. *Am J Cardiol* 2004; 94: 506-510

12. Conway DS, Buggins P, Hughes E, Lip GY. Relationship of interleukin-6 and C-reactive protein to the prothrombotic state in chronic atrial fibrillation. *Am J Cardiol* 2004; 43: 2075-2082

13. Sata N, Hamada N, Horinouchi T, Amatani S, Yamashita T, Moriyama Y, Miyahara K. C-reactive protein and atrial fibrillation. Is inflammation a consequence or a cause of atrial fibrillation? *Eur Heart J* 2004; 45: 441-445

14. Psychari SN, Apostolou TS, Sinos L, Hamodraka E, Liakos G, Kremastos DT. Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation. *Am J Cardiol* 2005; 95: 764-767

15. Watanabe T, Takeishi Y, Hirono O, Itoh M, Matsui M, Nakamura K, Tamada Y, Kubota L. C-reactive protein elevation predicts the occurrence of atrial structural remodeling in patients with paroxysmal atrial fibrillation. *Heart Vessels* 2005; 20: 45-49

16. Korantzopoulos P, Koletis TM, Kountouris E, Dimitroula V, Karakikis P, Pappa E, Siogas K, Goudevenos JA. Oral vitamin C administration reduces early recurrence rates after electrical cardioversion of persistent atrial fibrillation and attenuates associated inflammation. *Int J Cardiol* 2005; 102: 321-326

17. Dernellis J, Panaretou M. Relationship between C-reactive protein concentrations during glucocorticoid therapy and recurrent atrial fibrillation. *Eur Heart J* 2004; 25: 1100-1107

18. Lorochio ML, Cianfrocca R, Pianco L, Bianconi L, Auriti A, Calo I, Lamberti F, Castro A, Pandozi C, Palamara A, Santini M. Relation of C-reactive protein to long-term risk of recurrence of atrial fibrillation after electrical cardioversion. *Am J Cardiol* 2007; 99: 1421-1424

19. Malouf JF, Kanagara R, Al Atawi FO, Rosales AG, Davison DE, Murali NS, Tsang TS, Chandrasekaran K, Ammash NM, Friedman PA, Somers VK. High sensitivity C-reactive protein: a novel predictor for recurrence of atrial fibrillation after successful cardioversion. *Am J Cardiol* 2005; 96: 1284-1287

20. Wazni O, Martin DO, Marrouche NF, Shaaraoui M, Chung MK, Almahameed S, Schweikert RA, Saliba WI, Natale A. C reactive protein concentration and recurrence of atrial fibrillation after electrical cardioversion. *Heart* 2005; 91: 1303-1305

21. Kumagai K, Nakashima H, Saku K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. *Cardiovasc Res* 2004; 62: 105-111

22. Shibori-Takeshita A, Schram G, Lavoie J, Nattel S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. *Circulation* 2004; 110: 2315-2319

23. Shibori-Takeshita A, Brundel BJ, Burstein B, Leung TK, Mitamura K, Ogawa S, Nattel S. Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. *Cardiovasc Res* 2007; 74: 75-84

24. Ozaydin M, Varol E, Aslan SM, Kucuktepe Z, Dogan A, Ozturk M, Altunbas A. Effect of atorvastatin on the recurrence of atrial fibrillation after electrical cardioversion. *Am J Cardiol* 2006; 97: 1490-1493

25. Siu CW, Lau CP, Tse HF. Prevention of atrial fibrillation recurrence by statin therapy in patients with lone atrial fibrillation after successful cardioversion. *Am J Cardiol* 2003; 92: 1343-1345

26. Young-Xu Y, Jabbour S, Goldberg R, Blatt CM, Graboyts T, Bilchik B, Ravid S. Usefulness of statin drugs in protecting against atrial fibrillation in patients with coronary artery disease. *Am J Cardiol* 2003; 92: 1379-1383

27. Ramani G, Zahid M, Good CB, Macioce A, Sonel AF. Comparison of frequency of new-onset atrial fibrillation or flutter in patients on statins versus not on statins presenting with suspected acute coronary syndrome. *Am J Cardiol* 2007; 100: 404-405

28. Ozaydin M, Turker Y, Erdogan D, Karabacak M, Dogan A, Varol E, Gonul E, Altunbas A. The association between previ...
ous statin use and development of atrial fibrillation in patients presenting with acute coronary syndrome. Int J Cardiol 2010; 141: 147-150

29 Amit G, Katz A, Bar-On S, Gilutz H, Wagschal A, Ilia R, Henkin Y. Association of statin therapy and the risk of atrial fibrillation in patients with a permanent pacemaker. Clin Cardiol 2006; 29: 249-252

30 Patti G, Chello M, Candura D, Pasceri V, D’Ambrosio A, Covino E, Di Sciascio G. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (ATOR-vastatin for Reduction of Myocardial Dysrhythmia After Cardiac surgery) study. Circulation 2006; 114: 1455-1461

31 Ozaydin M, Dogan A, Varol E, Kapan S, Tuzun N, Peker O, Aslan SM, Altınbas A, Ocal A, Ibrisim E. Statin use before bypass surgery decreases the incidence and shortens the duration of postoperative atrial fibrillation. Cardiology 2007; 107: 117-121

32 Marin F, Pasqual DA, Roldán V, Arribas JM, Ahumada M, Tornel PL, Oliver C, Gómez-Plana J, Lip GY, Valdés M. Statins and postoperative risk of atrial fibrillation following coronary artery bypass grafting. Am J Cardiol 2006; 97: 55-60

33 Letsiburupa K, White CM, Kluger J, Faheem O, Hammond J, Coleman CI. Preoperative statins for the prevention of atrial fibrillation after cardiothoracic surgery. J Thorac Cardiovasc Surg 2008; 135: 405-411

34 Kourliouros A, De Souza A, Roberts N, Marciniak A, Tsiouris A, Valencia O, Camm J, Jahangir M. Dose-related effect of statins on atrial fibrillation after cardiac surgery. Ann Thorac Surg 2008; 85: 1515-1520

35 Tveit A, Grundtvig M, Gundersen T, Vanberg P, Semb AG, Holt E, Gullestad L. Analysis of pravastatin to prevent recurrence of atrial fibrillation after electrical cardioversion. Am J Cardiol 2004; 93: 780-782

36 García-Fernández A, Marin F, Mainar L, Roldán V, Martínez JG. Effect of statins on preventing recurrence of atrial fibrillation after electrical cardioversion. Am J Cardiol 2006; 98: 1299-1300

37 Humphries KH, Lee M, Sheldon R, Ramanathan K, Dorian P, Green M, Kerr CR. Statin use and recurrence of atrial fibrillation after successful cardioversion. Am Heart J 2007; 154: 908-913

38 Richter B, Dernit M, Marx M, Lercher P, Gössinger HD. Therapy with angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and statins: no effect on ablation outcome after ablation of atrial fibrillation. Am Heart J 2007; 153: 113-119

39 Virani SS, Nambi V, Razavi M, Lee VV, Elayda M, Wilson JM, Ballantyne CM. Preoperative statin therapy is not associated with a decrease in the incidence of postoperative atrial fibrillation in patients undergoing cardiac surgery. Am Heart J 2008; 155: 541-546

40 McLean DS, Ravid S, Blazing M, Gersh B, Shai A, Cannon CP. Effect of statin dose on incidence of atrial fibrillation: data from the Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE-IT-TIMI 22) and Aggrastat to Zocor (A to Z) trials. Am Heart J 2008; 155: 298-302

41 Adabag AS, Nelson DB, Bloomfield HE. Effects of statin therapy on preventing atrial fibrillation in coronary disease and heart failure. Am Heart J 2007; 154: 1140-1145

42 Hanna IR, Heeke B, Bush H, Brosius L, King-Hageman D, Dudley SC Jr, Beshai JF, Langberg JI. Lipid-lowering drug use is associated with reduced prevalence of atrial fibrillation in patients with left ventricular systolic dysfunction. Heart Rhythm 2006; 3: 881-886

43 Fauchier L, Pierre B, de Labriolle A, Grimard C, Zannad N, Babuty D. Antiarrhythmic effect of statin therapy and atrial fibrillation a meta-analysis of randomized controlled trials. J Am Coll Cardiol 2006; 51: 828-835

44 Liu T, Li L, Korantzopoulos P, Liu E, Li G. Statin use and development of atrial fibrillation: a systematic review and meta-analysis of randomized clinical trials and observational studies. Int J Cardiol 2008; 126: 160-170

45 Rahimi K, Emerson J, Agoglia P, Majoni W, Merhi A, Asselberg F, Macfarlane PW, Wanner C, Armitage J, Baigent C. Effect of statins on atrial fibrillation: a collaborative meta-analysis of randomised controlled trials (Abstract). Eur Heart J 2009; 30 Suppl 1: 2782

46 Patel AA, White CM, Shah SA, Dale KM, Kluger J, Coleman CI. The relationship between statin use and atrial fibrillation. Curr Med Res Opin 2007; 23: 1177-1185

47 Jahangiri A, Leifert WR, Patten GS, McMurchie EJ. Termination of asynchronous contractor activity in rat atrial myocytes by n-3 polysaturated fatty acids. Mol Cell Biochem 2000; 206: 33-41

48 Colò L, Bianconi L, Colivicchi F, Lamberti F, Loricchio ML, de Ruvo E, Meo A, Pandozzi C, Stalbano M, Santini M. N-3 Fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial. J Am Coll Cardiol 2005; 45: 1723-1728

49 Saravanan P, O’Neill SC, Bridgewater B, Davidson NC. Fish oils supplementation does not reduce risk of atrial fibrillation following coronary artery bypass surgery (Abstract). Heart Rhythm 2009; 6 Suppl: S283

50 Brouwer IA, Zock PL, Camm AJ, Böcker D, Hauer RN, Wever EF, Dullemeijer C, Rendon JE, Katan MB, Lubinski A, Buschler H, Schouten EG. Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators: the Study on Omega-3 Fatty Acids and Ventricular Arrhythmia (SOFA) randomized trial. JAMA 2006; 295: 2613-2619

51 Mozaffarian D, Patsy BM, Rimm EB, Lemaire RN, Burke GL, Lyles MF, LeKowitz D, Siscovick DS. Fish intake and risk of incident atrial fibrillation. Circulation 2004; 110: 368-373

52 Macchia A, Monte S, Pellegrini F, Romero M, Ferrante D, Doval H, D’Ettorre A, Maggioni AP, Tognoni G. Omega-3 fatty acid supplementation reduces one-year risk of atrial fibrillation in patients hospitalized with myocardial infarction. Eur J Clin Pharmacol 2008; 64: 627-634

53 Frost L, Vestergaard P. n-3 Fatty acids consumed from fish and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Clin Nutr 2005; 81: 50-54

54 Aizer A, Gazzano JM, Manson JE, Buring JE, Albert CM. Relationship between fish consumption and the development of atrial fibrillation in men. Heart Rhythm 2006; 3: S5

55 Brouwer IA, Heeringa J, Geleijnse JM, Zock PL, Witteman JC. Intake of very long-chain n-3 fatty acids from fish and incidence of atrial fibrillation. The Rotterdam Study. Am Heart J 2006; 151: 857-862

56 Ueda N, Yoshikawa T, Chihara M, Kawaguchi S, Niinomi Y, Yasaki T. Atrial fibrillation following methylprednisolone pulse therapy. Pediatr Nephrol 1988; 2: 29-31

57 Chaney MA, Nikolov MP, Blakeman B, Bakhos M, Slogoff S. Pulmonary effects of methylprednisolone in patients undergoing coronary artery bypass grafting and early tracheal extubation. Anesth Analg 1998; 87: 27-33

58 Yared JP, Starr NJ, Torres FK, Bashour CA, Bourdakos G, Piedmonte M, Michener JA, Davis JA, Rosenberger TE. Effects of single dose, postinduction dexamethasone on recovery after cardiac surgery. Am Thorac Surg 2000; 69: 1420-1424

59 Yared JP, Bakri MH, Ezurumun SC, Marvee CS, Laskowski DM, Van Wagoner DR, Mascha E, Thornton J. Effect of dexa- methasone on atrial fibrillation after cardiac surgery: prospective, randomized, double-blind, placebo-controlled trial. J Cardiothorac Vasc Anesth 2007; 21: 68-75

60 Halonen J, Halonen P, Järvinen O, Taskinen P, Puvinn T, Tarkka M, Hippeläinen M, Juvenon T, Hartikainen J, Hakala T. Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. JAMA 2007;
Ozaydin M. Atrial fibrillation and inflammation

297: 1562-1567

Goldstein RN, Khrestian C, Ryu K, Popoy M, Lamorgese M, Waldo AL, Van Wagoner DR. CRP levels predicts arrhythmia inducibility and neutrophil infiltration in the canine sterile model. (Abstract). Circulation 2003; 108: 323, 1522

Baker WL, White CM, Kluger J, Denowitz A, Konecny CP, Coleman CI. Effect of perioperative corticosteroid use on the incidence of postcardiothoracic surgery atrial fibrillation and length of stay. Heart Rhythm 2007; 4: 461-468

Nakashima H, Kumagai K, Urata H, Gondo N, Ideishi M, Arakawa K. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation 2000; 101: 2612-2617

Vernes E, Tardif JC, Bourassa MG, Racine N, Levesque S, White M, Guerra PG, Ducharme A. Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: insight from the Studies Of Left Ventricular Dysfunction (SOLVD) trials. Circulation 2003; 107: 2926-2931

Pedersen OD, Bagger H, Kober L, Tørp-Pedersen C. Tranolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation 1999; 100: 376-380

Wachtell K, Lehto M, Gerdts E, Olsen MH, Hornestam B, Baranchuk A, Crystal E, Morillo CA, Garfinkle J. Angiotensin-converting enzyme inhibitors as adjunctive therapy in patients with persistent atrial fibrillation. J Am Coll Cardiol 2005; 45: 712-719

Mathew JP, Fontes ML, Tudor IC, Ramsay J, Duke P, Mazer CD, Barash PG, Hsu PH, Mangano DT. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA 2004; 291: 1720-1729

Ozaydin M, Varol E, Türker Y, Peker O, Erdoğan D, Doğan A, Ibrisim E. Association between renin-angiotensin-aldosterone system blockers and postoperative atrial fibrillation in patients with mild and moderate left ventricular dysfunction. Anadolu Kardiyol Derg 2010; 10: 137-142

Ozaydin M, Turker Y, Peker O, Erdogan D, Varol E, Dogan A, Ibrisim E. Association between the use of non-antiarrhythmic drugs and postoperative atrial fibrillation. Int J Cardiol 2009; Epub ahead of print

Ozaydin M, Dede O, Varol E, Kapan S, Turker Y, Peker O, Duvrer H, Ibrisim E. Effect of renin-angiotensin aldosterone system blockers on postoperative atrial fibrillation. Int J Cardiol 2008; 127: 362-367

Madrid AH, Bueno MG, Rebollo JM, Marín I, Peña G, Bernal E, Rodríguez A, Cano L, Cano JM, Cabeza P, Moro C. Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. Circulation 2002; 106: 331-336

Ueng KC, Tsai TF, Yu WC, Tsai CF, Lin MC, Chan KC, Chen CY, Wu DJ, Lin CS, Chen SA. Use of enalapril to facilitate sinus rhythm maintenance after external cardioversion of long-standing persistent atrial fibrillation. Results of a prospective and controlled study. Eur Heart J 2003; 24: 2090-2098

Zaman AG, Kearney MT, Schecter C, Worthley SG, Nolan J. Angiotensin-converting enzyme inhibitors as adjunctive therapy in patients with persistent atrial fibrillation. Am Heart J 2004; 147: 823-827

White CM, Kluger J, Lerbsburapa K, Faheem O, Coleman CI. Effect of preoperative angiotensin converting enzyme inhibitor or angiotensin receptor blocker use on the frequency of atrial fibrillation after cardiac surgery: a cohort study from the atrial fibrillation suppression trials II and III. Eur J Cardiothorac Surg 2007; 31: 817-820

Coleman CI, Makani S, Kluger J, White CM. Effect of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers on the frequency of post-cardiothoracic surgery atrial fibrillation. Ann Pharmacother 2007; 41: 433-437

Murray KT, Rottman JN, Arbogast PG, Shemanski L, Primm RK, Campbell WB, Solomon AJ, Olgin JE, Wilson MJ, Di marco JP, Beckman KJ, Denghis N, Naccarelli GV, Ray WA. Inhibition of angiotensin II signaling and recurrence of atrial fibrillation in AFFIRM. Heart Rhythm 2004; 1: 669-675

Ducharme A, Swedberg K, Pfeffer MA, Cohen-Solal A, Granger CB, Maggioni AP, Michelson EL, McMurray JJ, Olson L, Rouleau JL, Young JB, Yusuf S. Prevention of atrial fibrillation in patients with symptomatic chronic heart failure by candesartan in the Candesartan in Heart failure: assessment of Reduction in Mortality and morbidity (CHARM) program. Am Heart J 2006; 151: 985-991

Maggioni AP, Latini R, Carson PE, Singh SN, Barlera S, Glazer R, Masson S, Cere E, Tognoni G, Cohn JN. Valsartan reduces the incidence of atrial fibrillation in patients with heart failure: results from the Valsartan Heart Failure Trial (Val-HeFT). Am Heart J 2005; 149: 548-557

L’Allier PL, Ducharme A, Keller PF, Yu H, Guertin MC, Tardif JC. Angiotensin-converting enzyme inhibition in hypertensive patients is associated with a reduction in the occurrence of atrial fibrillation. J Am Coll Cardiol 2004; 44: 159-164

Miceli A, Capoun R, Fino C, Narayan P, Bryar AJ, Angelini GD, Caputo M. Effects of angiotensin-converting enzyme inhibitor therapy on clinical outcome in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 2009; 54: 1778-1784

Madrid AH, Peng J, Zamora J, Marin I, Bernal E, Escobar C, Muñoz-Tinoco C, Rebollo JM, Moro C. The role of angiotensin receptor blockers and/or angiotensin converting enzyme inhibitors in the prevention of atrial fibrillation in patients with cardiovascular diseases: meta-analysis of randomized controlled clinical trials. Pacing Clin Electrophysiol 2004; 27: 1405-1410

Kalus JS, Coleman CI, White CM. The impact of suppressing the renin-angiotensin system on atrial fibrillation. J Clin Pharmacol 2006; 46: 21-28

Anand K, Moos AN, Hee TT, Mohiuddin SM. Meta-analysis: inhibition of renin-angiotensin system prevents new-onset atrial fibrillation. Am Heart J 2006; 152: 217-222

Jibrini MB, Mochnar J, Arora RR. Prevention of atrial fibrillation by way of abrogation of the renin-angiotensin system: a systematic review and meta-analysis. Am J Ther 2008; 15: 36-43

Healey JS, Baranchuk A, Crystal E, Morillo CA, Garfinkle M, Yusuf S, Connolly SJ. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol 2005; 45: 1832-1839

S- Editor Cheng JX L- Editor Kerr C E- Editor Zheng XM