Improved monogamy relations with concurrence of assistance and negativity of assistance for multiqubit \(W\)-class states

Zhi-Xiang Jin\(^1\) · Shao-Ming Fei\(^{1,2}\) · Xianqing Li-Jost\(^{2,3}\)

Received: 26 March 2018 / Accepted: 10 July 2018 / Published online: 16 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate the monogamy relations satisfied by the concurrence of assistance and the negativity of assistance for multiqubit generalized \(W\)-class states. Analytical monogamy inequalities are presented for both concurrence of assistance and negativity of assistance, which are shown to be tighter than the existing ones. Detailed examples have been presented.

Keywords Concurrence of assistance · Negativity of assistance · Monogamy relation · \(W\)-class states

1 Introduction
Quantum entanglement [1–8] is an essential feature of quantum mechanics. As one of the fundamental differences between quantum entanglement and classical correlations, a key property of entanglement is that a quantum system entangled with one of the subsystems limits its entanglement with the remaining subsystems. The monogamy relations characterize the distribution of quantum entanglement in multipartite systems. Monogamy property is also an essential feature allowing for security in quantum key distribution [9].

For a tripartite system \(A\), \(B\) and \(C\), the authors [10] show that there is a trade-off between \(A\)'s entanglement with \(B\) and its entanglement with \(C\). In [11], the authors present a simple identity which captures the trade-off between entanglement...
and classical correlation, which can be used to derive rigorous monogamy relations. They also proved various monogamous trade-off relations for other entanglement measures and correlation measures. In [12], the author proved the longstanding conjecture of Coffman, Kundu and Wootters [10] that the distribution of bipartite quantum entanglement, measured by the tangle \(\tau \), among \(n \) qubits satisfies a tight inequality:
\[
\tau \rho_{A_1A_2} + \tau \rho_{A_1A_3} + \cdots + \tau \rho_{A_1A_n} \leq \tau \rho_{A_1|A_2\ldots A_n},
\]
where \(\tau \rho_{A_1|A_2\ldots A_n} \) denotes the bipartite quantum entanglement measured by the tangle under the bipartition \(A_1 \) and \(A_2A_3\ldots A_n \).

Recently, the monogamy of entanglement for multiqubit \(W \)-class states has been investigated, and the monogamy relations for tangle and the squared concurrence have been presented in Refs. [13,14]. In Ref. [15], the general monogamy inequalities of the \(\alpha \)-th power of concurrence and entanglement of formation are presented for \(N \)-qubit states. However, the concurrence of assistance does not satisfy monogamy relations for general quantum states. Therefore, special classes of quantum states have been taken into account for monogamy relations satisfied by the concurrence of assistance. The monogamy relations for the \(x \)-power of concurrence of assistance for the generalized multiqubit \(W \)-class states have been derived in [16]. In [17], a tighter monogamy relation of quantum entanglement for multiqubit \(W \)-class states has been presented.

In this paper, we show that the monogamy inequalities for concurrence of assistance obtained so far can be further improved. We present entanglement monogamy relations for the \(x \)-th \((x \geq 2) \) power of the concurrence of assistance, which are tighter than those in [16,17] and give rise to finer characterizations of the entanglement distributions among the multipartite \(W \)-class states. Moreover, we present the general monogamy relations for the \(x \)-power of negativity of assistance for the generalized multiqubit \(W \)-class states, which are also better than that in [16,17].

2 Improved monogamy relations for concurrence of assistance

Let \(H_X \) denote a discrete finite dimensional complex vector space associated with a quantum subsystem \(X \). For a bipartite pure state \(|\psi\rangle_{AB} \) in vector space \(H_A \otimes H_B \), the concurrence is given by
\[
C(|\psi\rangle_{AB}) = \sqrt{2 \left[1 - \text{Tr}(\rho_A^2) \right]},
\]
where \(\rho_A \) is the reduced density matrix, \(\rho_A = \text{Tr}_B(|\psi\rangle_{AB}\langle\psi|) \). The concurrence for a bipartite mixed state \(\rho_{AB} \) is defined by the convex roof extension
\[
C(\rho_{AB}) = \min_{\{p_i, |\psi_i\rangle\}} \left\{ \sum_i p_i C(|\psi_i\rangle) \right\},
\]
where the minimum is taken over all possible pure state decompositions of \(\rho_{AB} = \sum_i p_i |\psi_i\rangle\langle\psi_i| \), with \(p_i \geq 0 \) and \(\sum_i p_i = 1 \) and \(|\psi_i\rangle \in H_A \otimes H_B \).

For an \(N \)-qubit state \(\rho_{A_1...B_{N-1}} \in H_A \otimes H_{B_1} \otimes \cdots \otimes H_{B_{N-1}} \), the concurrence \(C(\rho_{A|B_1...B_{N-1}}) \) of the state \(\rho_{A|B_1...B_{N-1}} \), viewed as a bipartite state under the bipartition \(A \) and \(B_1, B_2, \ldots, B_{N-1} \), satisfies [15]
\[
C^x(\rho_{A|B_1, B_2,...,B_{N-1}}) \geq C^x(\rho_{AB_1}) + C^x(\rho_{AB_2}) + \cdots + C^x(\rho_{AB_{N-1}}),
\]
for \(x \geq 2 \), where \(\rho_{AB_i} = \text{Tr}_{B_1...B_{i-1}}B_{i+1}...B_{N-1}(\rho_{A|B_1...B_{N-1}}) \). The above monogamy relation is improved such that for \(x \geq 2 \), if
\[
C(\rho_{AB_i}) \geq C(\rho_{A|B_{i+1}...B_{N-1}})
\]
for \(i =
Improved monogamy relations with concurrence of... Page 3 of 10

1, 2, ..., m, and $C(\rho_{AB_j}) \leq C(\rho_{A|B_{j+1}...B_{N-1}})$ for $j = m + 1, \ldots, N-2, \forall 1 \leq m \leq N-3, N \geq 4$, then [21],

$$C^x(\rho_{A|B_1B_2...B_{N-1}}) \geq C^x(\rho_{AB_1}) + \frac{x}{2} C^x(\rho_{AB_2}) + \cdots + \left(\frac{x}{2}\right)^{m-1} C^x(\rho_{AB_m})$$

$$+ \left(\frac{x}{2}\right)^{m+1} \left(C^x(\rho_{AB_{m+1}}) + \cdots + C^x(\rho_{AB_{N-2}})\right)$$

$$+ \left(\frac{x}{2}\right)^{m} C^x(\rho_{AB_{N-1}}).$$ \hspace{1cm} (1)

In [22], (1) is further improved such that for $x \geq 2$, one has

$$C^x(\rho_{A|B_1B_2...B_{N-1}}) \geq C^x(\rho_{AB_1}) + hC^x(\rho_{AB_2}) + \cdots + h^{m-1} C^x(\rho_{AB_m})$$

$$+ h^{m+1} \left(C^x(\rho_{AB_{m+1}}) + \cdots + C^x(\rho_{AB_{N-2}})\right)$$

$$+ h^{m} C^x(\rho_{AB_{N-1}})$$ \hspace{1cm} (2)

for all $x \geq 2$, where $h = 2^{\frac{1}{x}} - 1$.

For a tripartite pure state $|\psi\rangle_{ABC}$, the concurrence of assistance is defined by [23,24]

$$C_a(|\psi\rangle_{ABC}) = C_a(\rho_{AB}) = \max_{\{p_i, |\psi_i\rangle\}} \sum_i p_i C(|\psi_i\rangle),$$

where the maximum is taken over all possible decompositions of $\rho_{AB} = \text{Tr}_C(|\psi\rangle_{ABC}\langle\psi|) = \sum_i p_i |\psi_i\rangle_{AB}\langle\psi_i|$. When ρ_{AB} is a pure state, then one has $C(|\psi\rangle_{AB}) = C_a(\rho_{AB})$.

Different from the Coffman–Kundu–Wootters inequality satisfied by the concurrence, the concurrence of assistance does not satisfy the monogamy relations in general. However, for N-qubit generalized W-class state, $|\psi\rangle_{A_1B_1...B_{N-1}} \in H_A \otimes H_{B_1} \otimes \cdots \otimes H_{B_{N-1}}$ defined by

$$|\psi\rangle_{A_1B_1...B_{N-1}} = a|0\cdots0\rangle + b_1|01\cdots0\rangle + \cdots + b_{N-1}|00\cdots1\rangle,$$ \hspace{1cm} (3)

with $|a|^2 + \sum_{i=1}^{N-1} |b_i|^2 = 1$, one has [16],

$$C(\rho_{AB_i}) = C_a(\rho_{AB_i}), \quad i = 1, 2, ..., N-1,$$ \hspace{1cm} (4)

where $\rho_{AB_i} = \text{Tr}_{B_1...B_{i-1}B_{i+1}...B_{N-1}}(|\psi\rangle_{A_1B_1...B_{N-1}}\langle\psi|)$, and the concurrence of assistance $C_a(|\psi\rangle_{A_1B_1...B_{N-1}})$ satisfies the monogamy inequality [16],

$$C_a^x(|\psi\rangle_{A_1B_1...B_{N-1}}) \geq C_a^x(\rho_{AB_1}) + C_a^x(\rho_{AB_2}) + \cdots + C_a^x(\rho_{AB_{N-1}}),$$ \hspace{1cm} (5)
for $x \geq 2$. (5) has been further improved such that for $x \geq 2$, if $C(\rho_{AB_i}) \geq C(\rho_{AB_j})$ for $i = 1, 2, \ldots, m$, and $C(\rho_{AB_j}) \leq C(\rho_{AB_k})$ for $j = m + 1, \ldots, N - 2, \forall 1 \leq m \leq N - 3, N \geq 4$, then [17],

$$C^x_a(\langle \psi \rangle_{AB1B2\ldots B_{N-1}}) \geq C^x_a(\rho_{AB_i}) + \frac{x}{2} C^x_a(\rho_{AB_j}) + \cdots + \left(\frac{x}{2}\right)^{m-1} C^x_a(\rho_{AB_m})$$

$$+ \left(\frac{x}{2}\right)^{m+1} C^x_a(\rho_{AB_{m+1}}) + \cdots + C^x_a(\rho_{AB_{N-2}})$$

$$+ \left(\frac{x}{2}\right)^{m} C^x_a(\rho_{AB_{N-1}}).$$ \hspace{1cm} (6)

In fact, as a kind of characterization of the entanglement distribution among the subsystems, the monogamy inequalities satisfied by the concurrence of assistance can be further refined and become tighter.

Theorem 1 Let $\rho_{AB_1\ldots B_{j-1}}$ denote the m-qubit reduced density matrix of the N-qubit generalized W-class state $|\psi\rangle_{AB1\ldots B_{j-1}} \in H_A \otimes H_B \otimes \cdots \otimes H_{B_{N-1}}$. If $C(\rho_{AB_i}) \geq C(\rho_{AB_j})$ for $i = 1, 2, \ldots, t$, and $C(\rho_{AB_k}) \leq C(\rho_{AB_m})$ for $k = t + 1, \ldots, m - 2, \forall 1 \leq t \leq m - 3, m \geq 4$, the concurrence of assistance satisfies

$$C^x_a(\rho_{AB1\ldots B_{j-1}}) \geq C^x_a(\rho_{AB1})$$

$$+ h C^x_a(\rho_{AB2}) + \cdots + h^{t-1} C^x_a(\rho_{AB_{t+1}})$$

$$+ h^{t+1} \left(C^x_a(\rho_{AB_{t+2}}) + \cdots + C^x_a(\rho_{AB_{m-2}})\right)$$

$$+ h^t C^x_a(\rho_{AB_{m-1}})$$ \hspace{1cm} (7)

for all $x \geq 2$, where $h = 2^\frac{x}{2} - 1$.

Proof For the N-qubit generalized W-class states $|\psi\rangle_{AB1\ldots B_{N-1}}$, according to the definitions of $C(\rho)$ and $C_a(\rho)$, one has $C_a(\rho_{AB1\ldots B_{j-1}}) \geq C(\rho_{AB1\ldots B_{j-1}})$. When $x \geq 2$, we have

$$C^x_a(\rho_{AB1\ldots B_{j-1}}) \geq C^x(\rho_{AB1\ldots B_{j-1}}) \geq C^x(\rho_{AB_j})$$

$$+ h C^x(\rho_{AB_{j+1}}) + \cdots + h^{l-1} C^x(\rho_{AB_m})$$

$$+ h^{l+1} \left(C^x(\rho_{AB_{m+1}}) + \cdots + C^x(\rho_{AB_{m+2}})\right)$$

$$+ h^l C^x(\rho_{AB_{m-1}})$$

$$= C^x_a(\rho_{AB_j}) + h C^x_a(\rho_{AB_{j+1}}) + \cdots + h^{l-1} C^x_a(\rho_{AB_m})$$

$$+ h^{l+1} \left(C^x_a(\rho_{AB_{m+1}}) + \cdots + C^x_a(\rho_{AB_{m+2}})\right)$$

$$+ h^l C^x_a(\rho_{AB_{m-1}}),$$ \hspace{1cm} (8)

where we have used in the first inequality the relation $a^x \geq b^x$ for $a \geq b \geq 0, x \geq 2$. The second inequality is due to (2). The equality is due to (4). \hfill \Box
As for $x \geq 2$, $h^t \geq (x/2)^t$ for all $1 \leq t \leq m - 3$, comparing with the monogamy relations for concurrence of assistance (5) and (6), our formula (7) in Theorem 1 gives a tighter monogamy relation with larger lower bound. In Theorem 1, we have assumed that some $C(\rho_{AB_{ji}}) \geq C(\rho_{AB_{ji+1}...B_{jm-1}})$ and some $C(\rho_{AB_{jk}}) \leq C(\rho_{AB_{jk+1}...B_{jm-1}})$ for the N-qubit generalized W-class states. If all $C(\rho_{AB_{ji}}) \geq C(\rho_{AB_{ji+1}...B_{jm-1}})$ for $i = 1, 2, \ldots, m - 2$, then we have the following conclusion:

Theorem 2 If $C(\rho_{AB_{ji}}) \geq C(\rho_{AB_{ji+1}...B_{jm-1}})$ for $i = 1, 2, \ldots, m - 2$, we have

$$C_{a}^{x}(\rho_{A|B_{j1}...B_{jm-1}}) \geq C_{a}^{x}(\rho_{AB_{j1}}) + hC_{a}^{x}(\rho_{AB_{j2}}) + \ldots + h^{m-2}C_{a}^{x}(\rho_{AB_{jm-1}})$$

for all $x \geq 2$, where $h = 2^{x/2} - 1$.

Example 1 Let us consider the 4-qubit generalized W-class state,

$$|W\rangle_{AB1B2B3} = \frac{1}{2}(|1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle).$$

We have $C_{a}^{x}(|W\rangle_{A|B1B2B3}) = (\frac{\sqrt{3}}{2})^{x}$. From our result (7) we have $C_{a}^{x}(|W\rangle_{A|B1B2B3}) \geq \left[2 \cdot 2^{x} - 1\right] (\frac{1}{2})^{x}$, from (6) one has $C_{a}^{x}(|W\rangle_{A|B1B2B3}) \geq (x + 1)(\frac{1}{2})^{x}$, and from (5) one has $C_{a}^{x}(|W\rangle_{A|B1B2B3}) \geq 3(\frac{1}{2})^{x}$, $x \geq 2$. One can see that our result is better than that in [16,17] for $x \geq 2$, see Fig. 1.

3 Improved monogamy relations for negativity of assistance

Another well-known quantifier of bipartite entanglement is the negativity. Given a bipartite state ρ_{AB} in $H_{A} \otimes H_{B}$, the negativity is defined by [25], $N(\rho_{AB}) = (||\rho_{AB}^{T_{A}}|| - 1)/2$, where $\rho_{AB}^{T_{A}}$ is the partially transposed ρ_{AB} with respect to the subsystem A, $||X||$ denotes the trace norm of X, i.e., $||X|| = \text{Tr}\sqrt{XX^{T}}$. Negativity is a computable measure of entanglement and is a convex function of ρ_{AB}. It vanishes if and only if ρ_{AB} is separable for the $2 \otimes 2$ and $2 \otimes 3$ systems [26]. For the purpose of discussion, we use the following definition of negativity, $N(\rho_{AB}) = (||\rho_{AB}^{T_{A}}|| - 1$. For any bipartite pure state $|\psi\rangle_{AB}$, the negativity $N(\rho_{AB})$ is given by $N(|\psi\rangle_{AB}) = 2\sum_{i<j} \sqrt{\lambda_{i}\lambda_{j}} = (\text{Tr}\sqrt{\rho_{A}^{2}} - 1$, where λ_{i} are the eigenvalues for the reduced density matrix ρ_{A} of $|\psi\rangle_{AB}$. For a mixed state ρ_{AB}, the convex-roof extended negativity (CREN) is defined by

$$N_{c}(\rho_{AB}) = \min \sum_{i} p_{i} N(|\psi_{i}\rangle_{AB}),$$

where the minimum is taken over all possible pure state decompositions $\{p_{i}, |\psi_{i}\rangle_{AB}\}$ of ρ_{AB}, CREN gives a perfect discrimination of positive partial transposed bound entangled states and separable states in any bipartite quantum systems [27,28]. For
Fig. 1 \(y \) is the value of \(C_A(|W\rangle_{A|B_1 B_2 B_3}) \). Solid (red) line is the exact value of \(C_A(|W\rangle_{A|B_1 B_2 B_3}) \), dashed (blue) line is the lower bound of \(C_A(|W\rangle_{A|B_1 B_2 B_3}) \) in (7), dot dashed (green) line is the lower bound in [17], and dotted (black) line is the lower bound in [16] for \(x \geq 2 \) (Color figure online)

For a mixed state \(\rho_{AB} \), the convex-roof extended negativity of assistance (CRENOA) is defined as [29]

\[
N_a(\rho_{AB}) = \max \sum_i p_i N(|\psi_i\rangle_{AB}),
\tag{12}
\]

where the maximum is taken over all possible pure state decompositions \(\{p_i, |\psi_i\rangle_{AB}\} \) of \(\rho_{AB} \).

For an \(N \)-qubit state \(\rho_{AB_1...B_{N-1}} \in \mathcal{H}_A \otimes \mathcal{H}_{B_1} \otimes \cdots \otimes \mathcal{H}_{B_{N-1}} \), we denote \(N_c(\rho_{A|B_1...B_{N-1}}) \) the negativity of the state \(\rho_{A|B_1...B_{N-1}} \), viewed as a bipartite state under the partition \(A \) and \(B_1, B_2, \ldots, B_{N-1} \). If \(N_c(\rho_{AB_i}) \geq N_c(\rho_{A|B_1...B_{N-1}}) \) for \(i = 1, 2, \ldots, m \), and \(N_c(\rho_{AB_j}) \leq N_c(\rho_{A|B_{j+1}...B_{N-1}}) \) for \(j = m + 1, \ldots, N - 2 \), \(\forall 1 \leq m \leq N - 3, N \geq 4 \), then [17]

\[
\begin{align*}
N^x_c(\rho_{A|B_1 B_2...B_{N-1}}) & \geq N^x_c(\rho_{A|B_1}) + \frac{x}{2} N^x_c(\rho_{A|B_2}) + \cdots + \left(\frac{x}{2} \right)^{m-1} N^x_c(\rho_{A|B_m}) + \left(\frac{x}{2} \right)^m \left(N^x_c(\rho_{A|B_{m+1}}) + \cdots + N^x_c(\rho_{A|B_{N-2}}) \right) + \left(\frac{x}{2} \right)^m N^x_c(\rho_{A|B_{N-1}}),
\end{align*}
\tag{13}
\]

for all \(x \geq 2 \). Inequality (13) is further improved that for \(x \geq 2 \) [22]
\[N_c^X(\rho_{AB1B2...B_{N-1}}) \geq N_c^X(\rho_{AB1}) + h N_c^X(\rho_{AB2}) + \cdots + h^{m-1} N_c^X(\rho_{ABm}) \]
\[+ h^{m+1} N_c^X(\rho_{ABm+1}) + \cdots + N_c^X(\rho_{ABN-2}) \]
\[+ h^m N_c^X(\rho_{ABN-1}) \]
(14)

where \(h = 2^{\frac{x}{2}} - 1 \).

The negativity of assistance does not satisfy a monogamy relation in general. However, for an \(N \)-qubit generalized \(W \)-class state \(|\psi\rangle_{AB1...B_{N-1}} \in H_A \otimes H_{B1} \otimes \cdots \otimes H_{B_{N-1}} \), if \(N_c(\rho_{ABi}) \geq N_c(\rho_{AB1i+1...B_{N-1}}) \) for \(i = 1, 2, \ldots, m \), and \(N_c(\rho_{ABj}) \leq N_c(\rho_{ABji+1...B_{N-1}}) \) for \(j = m + 1, \ldots, N - 2 \), \(\forall \ 1 \leq m \leq N - 3 \), \(N \geq 4 \), then the negativity of assistance \(N_a(|\psi\rangle_{A|B1...B_{N-1}}) \) of the state \(|\psi\rangle_{AB1...B_{N-1}} \) satisfies inequality \([17]\),

\[N_a^X(|\psi\rangle_{A|B1B2...B_{N-1}}) \geq N_a^X(\rho_{AB1}) + \frac{x}{2} N_a^X(\rho_{AB2}) + \cdots + \left(\frac{x}{2} \right)^{m-1} N_a^X(\rho_{ABm}) \]
\[+ \left(\frac{x}{2} \right)^{m+1} \left(N_a^X(\rho_{ABm+1}) + \cdots + N_a^X(\rho_{ABN-2}) \right) \]
\[+ \left(\frac{x}{2} \right)^m N_a^X(\rho_{ABN-1}) \]
(15)

for all \(x \geq 2 \).

In fact, to have a better characterization of the entanglement distribution among the subsystems, the monogamy inequalities satisfied by the negativity of assistance can be further refined and become tighter. Taking into account the fact that for \(N \)-qubit generalized \(W \)-class states (3) \([17]\),

\[N_c(\rho_{ABi}) = N_a(\rho_{ABi}), \ i = 1, 2, \ldots, N - 1 \]
(16)

where \(\rho_{ABi} = \text{Tr}_{B1...B_{i-1}B_{i+1}...B_{N-1}}(|\psi\rangle_{AB1...B_{N-1}} \langle \psi|) \), we have the following relations:

Theorem 3 For the \(N \)-qubit generalized \(W \)-class states \(|\psi\rangle_{AB1...B_{N-1}} \in H_A \otimes H_{B1} \otimes \cdots \otimes H_{B_{N-1}} \), if \(N_c(\rho_{ABi}) \geq N_c(\rho_{ABi+1...B_{m}}) \) for \(i = 1, 2, \ldots, m \), and \(N_c(\rho_{ABj}) \leq N_c(\rho_{ABj+1...B_{m}}) \) for \(j = t + 1, \ldots, m - 2 \), \(\forall \ 1 \leq t \leq m - 3 \), \(m \geq 4 \), then the CRENOA satisfies

\[N_a^X(\rho_{AB1i...B_{m-1}}) \geq N_a^X(\rho_{AB1}) \]
\[+ h N_a^X(\rho_{AB2}) + \cdots + h^{t-1} N_a^X(\rho_{ABt}) \]
\[+ h^t N_a^X(\rho_{ABt+1}) + \cdots + N_a^X(\rho_{ABm-2}) \]
\[+ h^m N_a^X(\rho_{ABm-1}) \]
(17)

for all \(x \geq 2 \), where \(h = 2^{\frac{x}{2}} - 1 \).
Proof For the N-qubit generalized W-class states $|\psi\rangle_{AB_1 \cdots B_{N-1}}$, according to the definitions of $N_c(\rho)$ and $N_a(\rho)$, one has $N_a(\rho|_{B_1 \cdots B_{m-1}}) \geq N_c(\rho|_{B_1 \cdots B_{m-1}})$. When $x \geq 2$, we have

$$N_a^x(\rho|_{B_1 \cdots B_{m-1}}) \geq N_c^x(\rho|_{B_1 \cdots B_{m-1}}) \geq N_c^x(\rho|_{AB_1}) + hN_c^x(\rho|_{AB_2}) + \cdots + h^{t-1}N_c^x(\rho|_{AB_t}) + h^{t+1}(N_c^x(\rho|_{AB_{t+1}}) + \cdots + N_c^x(\rho|_{AB_{m-2}})) \geq N_c^x(\rho|_{AB_{m-1}}),$$

where we have used in the first inequality the relation $a^x \geq b^x$ for $a \geq b \geq 0$, $x \geq 2$. Due to the (14), one gets the second inequality. The equality is due to relation (16).

As for $x \geq 2$, $h^t \geq (x/2)^t$ for all $1 \leq t \leq m - 3$, comparing with the monogamy relations for CRENOA in (15), our formula (17) in Theorem 3 gives a tighter monogamy relation with larger lower bounds. In Theorem 3, we have assumed that some $N_c(\rho|_{AB_{i-1}}) \geq N_c(\rho|_{AB_{i-1} \cdots B_{m-1}})$ and some $N_c(\rho|_{AB_{i-1}}) \leq N_c(\rho|_{AB_{i+1} \cdots B_{m-1}})$ for the N-qubit generalized W-class states. If all $N_a(\rho|_{AB_{i-1}}) \geq N_c(\rho|_{AB_{i-1} \cdots B_{m-1}})$ for $i = 1, 2, \ldots, m - 2$, then we have the following conclusion:

Theorem 4 If $N_a(\rho|_{AB_{i-1}}) \geq N_c(\rho|_{AB_{i-1} \cdots B_{m-1}})$ for $i = 1, 2, \ldots, m - 2$, we have

$$N_a^x(\rho|_{AB_1 \cdots B_{m-1}}) \geq N_a^x(\rho|_{AB_1}) + hN_a^x(\rho|_{AB_2}) + \cdots + h^{m-2}N_a^x(\rho|_{AB_{m-1}})$$

for all $x \geq 2$, where $h = 2^{x/2} - 1$.

Example 2 Let us consider the N-qubit pure W-class state,

$$|W\rangle_{AB_1 \cdots B_{N-1}} = \frac{1}{\sqrt{N}}(|100 \cdots 0\rangle + |010 \cdots 0\rangle + \cdots + |000 \cdots 1\rangle). \quad (20)$$

It is straightforward to check: $N_a^x(|W\rangle_{A|B_1 \cdots B_{N-1}}) = (2^{N-1}\sqrt{N})^x$, $N_a^x(\rho|_{AB_1}) = N_a^x(\rho|_{AB_2}) = \cdots = N_a^x(\rho|_{AB_{N-1}}) = (\frac{2}{N})^x$. Let us choose $N = 5$. Then $N_a^x(|W\rangle_{A|B_1 \cdots B_4}) = (\frac{4}{5})^x$. From our result (17) we have $N_a^x(|W\rangle_{A|B_1 \cdots B_4}) \geq 3 \cdot 2^\frac{x}{2} - 2 \left(\frac{1}{2}\right)^x$, while from (15) one has $N_a^x(|W\rangle_{A|B_1 \cdots B_4}) \geq (\frac{3}{2} + 1)(\frac{1}{2})^x$, $x \geq 2$. Obviously, our result is better than that in [17] with $x \geq 2$, see Fig. 2.
Improved monogamy relations with concurrence of...

Fig. 2 y is the value of $N^x_0(\ket{W}_{A|B_1\ldots B_4})$. Solid (red) line is the exact value of $N^x_0(\ket{W}_{A|B_1\ldots B_4})$, dashed (blue) line is the lower bound of $N^x_0(\ket{W}_{A|B_1\ldots B_4})$ in (17), and dot dashed (green) line is the lower bound in [17] for $x \geq 2$ (Color figure online)

4 Conclusion

Entanglement monogamy is a fundamental property of multipartite entangled states. We have presented tighter monogamy inequalities for the x-power of concurrence of assistance $C^x_A(\rho_{A|B_{12}\ldots B_{m-1}})$ of the m-qubit reduced density matrices, $4 \leq m \leq N$, for the N-qubit generalized W-class states, when $x \geq 2$. The monogamy relations for the x-power of negativity of assistance for the N-qubit generalized W-class states have been also investigated for $x \geq 2$. These relations give rise to the restrictions of entanglement distribution among the qubits in generalized W-class states. It should be noted that entanglement of assistances like concurrence of assistance and negativity of assistance are not genuine measures of quantum entanglement. They quantify the maximum average amount of entanglement between two parties, Alice and Bob, which can be extracted given assistance from a third party, Charlie, by performing a measurement on his system and reporting the measurement outcomes to Alice and Bob. Nevertheless, similar to quantum entanglement, we see that the entanglement of assistances also satisfies certain monogamy relations.

Acknowledgements This work is supported by the NSF of China under Grant No. 11675113.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
3. Mintert, F., Küs, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)
4. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)
5. Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847 (2006)
6. Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)
7. de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)
8. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)
9. Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)
10. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
11. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)
12. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)
13. Kim, J.S.: Strong monogamy of quantum entanglement for multiqubit W-class states. Phys. Rev. A 90, 062306 (2014)
14. Kim, J.S., Sanders, B.C.: Generalized W-class state and its monogamy relation. J. Phys. A 41, 495301 (2008)
15. Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)
16. Zhu, X.N., Fei, S.M.: General monogamy relations of quantum entanglement for multiqubit W-class states. Quantum Inf Process 16, 53 (2017)
17. Jin, Z.X., Fei, S.M.: Tighter monogamy relations of quantum entanglement for multiqubit W-class states. Quantum Inf. Process. 17, 2 (2018)
18. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)
19. Rungra, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)
20. Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass Opt. 3, 223–227 (2001)
21. Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Process. 16, 77 (2017)
22. Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)
23. Laustsen, T., Verstraete, F., Van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quantum Inf. Comput. 4, 64 (2003)
24. Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)
25. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)
26. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)
27. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)
28. Dür, W., Cirac, J.I., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)
29. Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extend negativity. Phys. Rev. A 79, 012329 (2009)