A randomised phase II trial of preoperative chemotherapy of cisplatin–docetaxel or docetaxel alone for clinical stage IB/II non-small-cell lung cancer: results of a Japan Clinical Oncology Group trial (JCOG 0204)

Preoperative chemotherapy is a promising strategy in patients with early-stage resectable non-small-cell lung cancer (NSCLC); optimal chemotherapy remains unclear. Clinical (c-) stage IB/II NSCLC patients were randomised to receive either two cycles of docetaxel (D)–cisplatin (P) combination chemotherapy (D 60 mg m$^{-2}$ and P 80 mg m$^{-2}$ on day 1) every 3–4 weeks or three cycles of D monotherapy (70 mg m$^{-2}$) every 3 weeks. Thoracotomy was performed 4–5 weeks (DP) or 3–4 weeks (D) after chemotherapy. The primary end point was 1-year disease-free survival (DFS). From October 2002 to November 2003, 80 patients were randomised. Chemotherapy toxicities were mainly haematologic and well tolerated. There were two early postoperative deaths with DP (one intraoperative bleeding and one empyema). Pathologic complete response was observed in two DP patients. Docetaxel–cisplatin was superior to D in terms of response rate (45 vs 15%) and complete resection rate (95 vs 87%). Both DFS and overall survival were better in DP. Disease-free survival at 1, 2 and 4 years were 78, 65 and 57% with DP, and were 62, 44 and 36% with D, respectively. Preoperative DP was associated with encouraging resection rate and DFS data, and phase III trials for c-stage IB/II NSCLC are warranted.

British Journal of Cancer (2008) 99, 852–857. doi:10.1038/sj.bjc.6604613 www.bjcancer.com
Published online 26 August 2008
© 2008 Cancer Research UK

Keywords: cisplatin; docetaxel; lung cancer; non-small cell; preoperative chemotherapy; stage IB/II

Surgery is the standard of care for clinical (c-) stage IB/II non-small-cell lung cancer (NSCLC), but the treatment outcome remains poor, with 5-year survival rates of 50% or less (Mountain, 1997; Goya et al, 2005). The majority of post-surgical relapse occurs as distant metastases (Pisters and Le Chevalier, 2005); therefore, effective systemic therapy is necessary. Recently, a series of postoperative adjuvant chemotherapy trials reported modest but significant improvement in survival, mainly in patients with pathological stage II or IIIA NSCLC (Arriagada et al, 2004; Scagliotti, 2005; Winton et al, 2005; Douillard et al, 2006). Compliance to the chemotherapy remains a problem (Arriagada et al, 2004; Scagliotti, 2005; Winton et al, 2005; Douillard et al, 2006).

On the other hand, previous small phase III trials had reported that preoperative chemotherapy was better than surgery alone in stage III NSCLC (Rosell et al, 1994; Roth et al, 1994). Recent trials of preoperative platinum-based chemotherapy have reported promising results in c-stage IB/II NSCLC (Pisters et al, 2000; Depierre et al, 2002; Rosell et al, 2002). One advantage of the preoperative chemotherapy is better tolerability and compliance. No data are available, however, as to the optimal preoperative therapy strategy for early-stage NSCLC. Although platinum-based ‘standard’ combination chemotherapy regimens have widely been used and reported to be generally safe, results of randomised trials...
reported nonsignificant but modest excess of post-surgical morbidity and mortality (Delpero et al, 2002; Pisters et al, 2007). Monotherapy with an active agent is associated with lower response rate, but less toxicity (Delbaldo et al, 2004); it might well be favourable for preoperative therapy in early stage, when surgery must not be compromised by adjuvant therapy.

Docetaxel (D) is a semisynthetic taxoid derived from the European yew Taxus baccata. It is active against NSCLC either in monotherapy (D)(Fossella et al, 1994; Francis et al, 1994; Kunitoh et al, 1996) or in combination with cisplatin (DP) (Zalcberg et al, 1998; Fossella et al, 2003). In advanced NSCLC, DP was reported to be better than P–vinca combination (Fossella et al, 2003; Kubota et al, 2004), one of the 'standard' adjuvant therapies. The DP combination was also reported to be active and promising as preoperative chemotherapy in c-stage III NSCLC (Bötticher et al, 2006).

Docetaxel monotherapy, on the other hand, was reported to be not inferior to DP, with better tolerability in advanced NSCLC (Georgoulas et al, 2004). For stage III NSCLC, Mattson et al (2003) reported the results of D as preoperative chemotherapy; it was active, and did not compromise surgery.

On the basis of this rationale, we undertook a randomised phase II trial of DP vs D in resectable, c-stage IB/II NSCLC. The objectives of the study were to evaluate the safety and efficacy of the preoperative chemotherapy and to select promising one for future phase III trials. The primary end point was the disease-free survival (DFS) rate at 1 year.

PATIENTS AND METHODS

Patient eligibility criteria

Patients with untreated, histologically or cytologically documented NSCLC with clinical stage IB (c-T2N0M0), IIA (c-T1N1M0) or IIB (c-T2N1M0 or T3N0M0) were eligible for study entry. Each patient was required to meet the following criteria: 20–74 years of age, Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0 or 1; measurable disease; and adequate organ function (leukocyte count ≥4000/µl and ≤12 000/µl, neutrophil count ≥2000/µl, platelet count ≥105/µl, haemoglobin ≥10.0 g dl⁻¹, serum creatinine ≤the upper limit of the institutional normal range (ULN), creatinine clearance calculated by the Cockcroft–Gault formula ≥60 ml min⁻¹, serum bilirubin ≤ULN, serum ALT and AST ≤2 × ULN and PaO₂ ≥70 mm Hg). Women who were pregnant or lactating were excluded from the study. Other exclusion criteria included patients with active infection, unstable angina or a history of myocardial infarction within 6 months, interstitial pneumonitis or active lung fibrosis, uncontrolled diabetes or hypertension, systemic use of corticosteroid or active concomitant malignancy. Patients with tumour invading the first rib or more superior chest wall (Pancoast type) were also excluded. All mediastinal nodes measuring 1.0 cm or more in size on computed tomographic (CT) scans were required to be biopsied to be histologically benign before patient entry.

Patient eligibility was confirmed by the Japan Clinical Oncology Group Data Centre before registration. The study protocol was approved by the institutional review boards at each participating centre, and all patients provided written informed consent.

Treatment plan

This was an open-label, randomised trial. Patients were randomly assigned to one of two treatment arms. Dosages of the chemotherapy were based on the regulatory notes and clinical data in Japan (Kubota et al, 2004). In the DP combination arm, patients received D at 60 mg m⁻² as a 1-h intravenous infusion followed by P at 80 mg m⁻² as a 2-h infusion on day 1. Two cycles of the chemotherapy were repeated at an interval of 4 weeks. The interval was permitted to be shortened to 3 weeks, if the patient was judged to have adequately recovered enough from the first cycle. Surgery (lobectomy or pneumonectomy with systematic lymph node dissection) was performed 4–5 weeks after completion or early termination of the chemotherapy. Patients in the D monotherapy arm received D at 70 mg m⁻² as a 1-h intravenous infusion on day 1. Three cycles of the chemotherapy were repeated at 3 weeks intervals. Surgery in the D arm was performed 3–4 weeks after completion or early termination of chemotherapy. The preoperative periods were thus set at 8–10 weeks in each arm, which was designed to be easier to accept for the patients and the surgeons.

In each arm, when chemotherapy was judged to be ineffective with >10% unidirectional tumour growth, or when the patient experienced unacceptable toxicity (such as, grade 3 neurotoxicity, grade 2 pulmonary toxicity, grade 3 cardiac toxicity or other grade 4 non-haematological toxicities), chemotherapy was discontinued and the patient was taken up for surgery as clinically indicated. With minor toxicities, such as uncomplicated grade 4 haematologic or grade 3 non-critical, non-haematological toxicities, dosages of subsequent chemotherapy courses were reduced (P by 20 mg m⁻² and D by 10 mg m⁻²).

No protocol therapy was predetermined for those with unsectable tumours, either during chemotherapy or at operation, and those with microscopically or macroscopically incompletely resected tumours. Those who underwent curative resection were observed until recurrence without additional therapy.

Chemotherapy was supported with routine premedication for hypersensitivity and antiemetics. For the DP arm, ample hydration was ensured. Recombinant human granulocyte colony-stimulating factor was administered when grade 4 neutropaenia or neutropaenic fever occurred.

Patient evaluation and follow-up

Before study enrolment, a complete medical history and physical examination, blood cell count determinations, biochemistry testing, chest X-ray, ECG, CT scan of the chest and CT scan or ultrasound of upper abdomen were conducted for each patient. Whole-brain CT or magnetic resonance imaging (MRI) or isotope bone scanning was performed if clinically indicated. Positron emission tomography (PET) was not widely available in Japan at the time of the protocol activation and was not routinely used for staging. Blood cell counts, differential WBC counts and biochemistry testing were performed weekly during each course of chemotherapy.

Toxicity of the chemotherapy was evaluated with the National Cancer Institute Common Toxicity Criteria Tumour (NCI-CTC; version 2.0). Tumour responses were assessed radiographically according to the RECIST guideline (Therasse et al, 2000). Response confirmation at 4 weeks or longer intervals was not necessitated. Response was assessed by the attending physicians in each participating institution, and no central confirmation was performed. Chest X-ray was taken at each course, and when suggested for even minor tumour growth (>10%), confirmatory chest CT was performed to decide on the continuation of chemotherapy.

After curative resection, the patients were followed up with periodic reevaluation. This included chest CT every 6 months for the first 2 years and annually thereafter, until 5 years or tumour recurrence.

Statistical considerations

This trial was designed as a randomised phase II selection design. Therefore, formal statistical hypothesis testing of the differences between the arms, including the calculation of P-values, was not to be performed. The aim was to select the 'preferable' preoperative chemotherapy arm for a future definitive phase III trial, with the DFS rate at 1 year as primary end point. The DFS was calculated
from the date of enrolment by the Kaplan–Meier method, as was
the overall survival (OS). The 'events' for the determination of the
DFS included tumour relapse after curative surgery, death from
any cause and non-curative operation. Those with non-curative
operation include patients without surgery and those with
incomplete resection, either microscopically or macroscopically.
Non-curative operation was to be counted as an event on the date
of registration, not on that of surgery. The sample size was
determined to provide sufficient probability to choose the
'preferable' arm (Simon et al, 1985). Assuming DFS rates at 1
year of 70 and 80%, 40 patients per arm were required to correctly
select the arm that is not inferior with the probability of 84.9%.
The 'minimal' DFS rate of 70% was assumed with the prior report
et al (6), 852–857.

RESULTS

Patient characteristics

From October 2002 to October 2003, 80 patients from 18
institutions were enroled and randomised. After 40 patients were
randomised, an interim analysis was carried out. Following the
JCOG Data and Safety Monitoring Committee's review, the study
was continued. One patient in the D arm was found to be ineligible
because of the wrong histology (sarcoma). All 80 patients were
analysed for characteristics and chemotherapy toxicity, and the 79
eligible patients were analysed for the clinical and pathological
response to chemotherapy, surgical results, DFS and OS.

Table 1 lists the characteristics of the patients, which were well
balanced between the arms.

Chemotherapy delivery and toxicity

Table 2 summarises the chemotherapy delivery, and
Table 3 summarises toxicity in the subject group. Only 60% in
the D arm completed the planned chemotherapy courses, mainly
arising from the clinical ineffectiveness of the therapy. On the
other hand, compliance was very good in the DP arm, and the
toxicity was not greater. Hyponatraemia, probably due to
hydration with P administration, was an unexpected toxicity in
the DP arm, but it was clinically silent and transient in all the cases.
All patients recovered without any particular management, with no
clinically relevant sequelae. Other toxicities were mainly haema-
tologic, and both chemotherapy arms were generally well tolerated
by the patients.

Clinical response and pathological results

Table 4 shows the clinical responses to the chemotherapy. The
overall response rates, 45% in the DP arm and 15% in the D arm,
were compatible with earlier reports for each of the chemotherapy
regimen in patients with NSCLC.

Thoracotomy was performed in 39 of the 40 patients in the DP
arm, and in 37 of the 39 patients in the D arm. The tumour was
surgically resected in 39 (98%) patients in the DP arm, including
pneumonectomy in 3 cases, bi-lobectomy in 2 cases and lobectomy
in 34 cases. Tumour resection was performed in 35 (90%) patients
of the D arm, including pneumonectomy in 1 case, bi-lobectomy in
4 cases and lobectomy in 30 cases. Five patients, including four in
the DP arm and one in the D arm, suffered from massive (>11)
intraoperative bleeding; due to severe adhesion in three cases (two
in DP and one in D arm), to incomplete suture of the autostapler
resulting in injury of pulmonary artery in one case (DP arm) and
accidental injury to the aorta in one case (DP arm). None was
judged to be related to preoperative therapy. The postoperative
complications included one patient with empyema and another
with pulmonary oedema, both in the DP arm. There were two
surgical deaths, both in the DP arm; one died on postoperative
day 59 because of empyema, and another on postoperative day 2
because of massive intraoperative bleeding resulting from surgical
injury to the aorta.

Pathological complete resection (R0), without residual tumour
found either macroscopically or microscopically, was achieved in
38 (95%) cases in the DP arm, and 34 (87%) cases in the D arm.
On pathological examination, 23% of the 75 patients who underwent surgery were found to have N2 or N3 status. Pathologic CR was achieved in two patients, both in the DP arm. Clinical N-stage was poorly correlated to pathological nodal status (Table 5).

DFS and OS

The DFS and OS were updated in November 2007. The DFS rates at 1, 2 and 4 years were 78, 65 and 57% in the DP arm, and were 62, 44 and 36% in the D arm, respectively (Figure 1). Table 6 summarises the outcome at 1 year, the primary end point of the study. The DFS rate at 1 year was 78% (31 out of 40) in the DP arm, which was consistent with the study assumption that it would be 80% in the ‘better’ arm, whereas it was a disappointing 62% (24 out of 39) in the D arm. The 16% difference was more than presumed in the protocol.

The OS rates at 1, 2 and 4 years were 88, 83 and 75% in the DP arm, and were 87, 72 and 57% in the D arm, respectively (Figure 2). Both the DFS and the OS rates were better in the DP arm. The OS was better in the DP arm in both adenocarcinoma and non-adenocarcinoma histological subtypes.

DISCUSSION

As compared with post-surgical adjuvant therapy, preoperative chemotherapy has several practical as well as theoretical advan-

Table 3 Toxicity of chemotherapy

Arm	Cisplatin–docetaxel	Docetaxel alone
N	40	40
Grade	2/3/4 (% grade 3+4)	2/3/4 (% grade 3+4)
Haematological		
Leukopaenia	18/14/1 (38)	12/15/2 (43)
Neutropaenia	5/16/17 (83)	5/10/21 (78)
Anaemia	4/0/0 (0)	7/0/0 (0)
Thrombocytopenia	1/0/0 (0)	0/0/0 (0)
Nonhaematological		
Total bilirubin	4/0/0 (0)	0/0/0 (0)
Serum AST	0/0/0 (0)	3/1/0 (3)
Serum ALT	5/0/0 (0)	5/1/0 (3)
Serum creatinine	3/0/0 (0)	0/0/0 (0)
Hypoxia	0/0/0 (0)	3/0/0 (0)
Hypercalcaemia	0/0/0 (0)	0/1/0 (3)
Hyponatraemia	−6/0 (15)	−1/0 (3)
Hypersensitivity	0/0/0 (0)	0/1/0 (3)
Fatigue	3/1/0 (3)	0/0/0 (0)
Constipation	4/1/0 (3)	5/0/0 (0)
Diarrhea	3/3/0 (8)	2/0/0 (0)
Nausea	9/7/− (18)	0/0/0 (0)
Vomiting	5/1/0 (3)	0/0/0 (0)
Febrile neutropaenia	−1/0/0 (3)	−0/0/0 (0)
Infection with neutropaenia	−2/0 (5)	−3/0/0 (8)
Infection without neutropaenia	1/0/0 (0)	4/2/0 (5)
Neupathy	0/0/0 (0)	1/0/0 (0)
Any grade 3/4 toxicity	35 (88%)	32 (80%)
Any grade 3/4	15 (38%)	9 (23%)

Table 4 Clinical response to chemotherapy based on RECIST

Arm	Cisplatin–docetaxel	Docetaxel alone
N	40	39
Completed chemotherapy	38 (95%)	24 (62%)
CR	1	0
PR	17	6
CR+PR	18	6
SD	18	23
PD	4	10
NE	0	0
ORR	45% (95% confidence interval)	15% (95% confidence interval)

CR = complete response; NE = not evaluable; ORR = overall response rate; PD = progressive disease; PR = partial response; RECIST = Response Evaluation Criteria in Solid Tumor; SD = stable disease.

On pathological examination, 23% of the 75 patients who underwent surgery were found to have N2 or N3 status. Pathologic CR was achieved in two patients, both in the DP arm. Clinical N-stage was poorly correlated to pathological nodal status (Table 5).

Table 5 Pathological results

Arm	Cisplatin–docetaxel	Docetaxel alone
c-N stage		
N0	26	14
N1	17	6
Total	40	23
p-N0	17	6
p-N1	1	5
Total	18	11
p-N2	5	2
p-N3	1	1
Total	6	3
Not assessable	1	1
Proportion		

Table 6 Outcome at 1 year

Arm	Cisplatin–docetaxel	Docetaxel alone	Total
Number of cases	40	39	79
Alive, disease-free	31	24	55
Alive with disease	4	11	15
Dead, due to cancer	3	2	5
Dead, treatment-related	2	0	2
Dead, other causes	0	2	2

Figure 1 Disease-free survival.

Figure 2 Overall survival.
Clinical Studies

Of historical data, subsequent S9900 trial (Pisters et al. defining the ineffectiveness as the high PD rate is unknown. In addition, we tried to minimise the setting; an unexpectedly high progression rate led to an early assumption.

In this randomised phase II study, we evaluated DP combination chemotherapy and D monotherapy as preoperative treatment for early stage NSCLC. Although the DFS assumptions of the protocol, 70 vs 80% at 1 year, were rough and arbitrary due to lack of historical data, subsequent S9900 trial (Pisters et al., 2007) showed DFS rate of 68% in the surgery alone group and 69% in those with preoperative carboplatin – paclitaxel therapy, consistent with our assumption.

Our results showed that single-agent D was inadequate in this setting; an unexpectedly high progression rate led to an early chemotherapy termination rate of as high as 40%. The reason for the high PD rate is unknown. In addition, we tried to minimise the disadvantage of continuation of ineffective chemotherapy by defining the ineffectiveness as $\geq 10\%$ tumour size increase instead of $\geq 20\%$ in the RECIST guideline (Therasse et al., 2000). This subtle decision rule might require centralised confirmation. The DFS rate in the D arm was disappointing and was, in fact, very similar to that in the surgery-alone arm in the S9900 study in the United States (Pisters et al., 2007).

On the other hand, both the DFS and OS rates of the DP arm were promising. Disease-free survival at 1 year of 78% was fully consistent with the estimation in the study protocol. Although our data do not refute other platinum-based chemotherapy as candidates of preoperative treatment, it would be justified to conclude that DP was active and promising, regardless of disappointing data of D monotherapy. One might argue that DFS at 1 year was too premature as an end point. Because the DFS and OS curves of the DP arm seem to have reached to plateau at 2 years, DFS at 2 years might be a more appropriate end point.

The number of chemotherapy courses of the DP combination was one, whereas previous studies used three courses. In the North American trials with carboplatin and paclitaxel, three preoperative courses appeared to have no advantage when compared with two courses (Pisters et al., 2000; Pisters, 2003). Although patients with ‘two preoperative courses’ were to have two courses after the operation, compliance to the post-surgical courses was very poor anyway (Pisters et al., 2000). But, as the majority of the patients appeared fit enough after two courses of DP and a major operation, we could consider the addition of a couple of postoperative chemotherapy cycles at least for responders.

One of the major disadvantages of preoperative therapy is the inaccuracy of the clinical staging, as reported by Depierre et al. (2002). In our trial, 23% of the 74 patients who underwent thoracotomy were found to have p-N2/N3 disease. In Japan, mediastinoscopy for patients with mediastinal nodes measuring 1 cm or less in size on CT is not performed as a routine clinical practise, and nor was it in our study. Although the introduction of PET may improve the accuracy of the clinical staging, it would still be unlikely to be comparable to surgical staging (Lardinois et al., 2003; Cerfolio et al., 2004; Shim et al., 2005). This would inevitably lead to heterogeneity of the patient population, necessitating a sophisticated study design and large sample size for any future trial on preoperative therapy.

We conclude that the DP combination regimen is active and well tolerated as preoperative chemotherapy, with highly promising survival data. Future clinical trials are warranted based on our results.

ACKNOWLEDGEMENTS

We thank Ms Mieko Imai for the data management, and Mr Takashi Asakawa and Dr Naoki Ishizuka for the statistical analyses. This study was supported by the Grant-in-Aid for Cancer Research (114S-2, 14S-4, 17S-2, 17S-5) and Health Sciences Research Grant from the Ministry of Health, Labour and Welfare of Japan. Presented in part at the 40th Annual Meeting of the American Society of Clinical Oncology, 5–8 June 2004, New Orleans, LA, and at the 11th World Conference on Lung Cancer, 3–6 July 2005, Barcelona, Spain. Registered in http://www.clinicaltrials.gov. ClinicalTrials.gov number, NCT00132639.

Conflict of interest

Hideo Kunitoh, Masahiro Tsuboi, Yukiko Ichinose and Nagahiro Saito have received honoraria from Sanofi-Aventis.

REFERENCES

Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J (2004) Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 350: 351 – 360
Betticher DC, Hsu Schmitz SF, Totsch M, Hansen E, Joss C, von Briel C, Schmid RA, Pless M, Habicht J, Roth AD, Spiliopoulos A, Stahel R, Weder W, Stupp R, Egli F, Furrer M, Honegger H, Wernli M, Cerny T, Ris HB (2006) Prognostic factors affecting long-term outcomes in patients with resected stage IIIA/PN2 non-small-cell lung cancer: 5-year follow-up of a phase II study. Br J Cancer 94: 1099 – 1106
Cerfolio RJ, Ojha B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA (2004) The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg 78: 1017 – 1023; discussion 1017 – 1023
Delbaldo C, Michiels S, Syu N, Soria JC, Le Chevalier T, Pignon JP (2004) Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: a meta-analysis. JAMA 292: 470 – 484
Depierre A, Milleron B, Moro-Sibilot D, Chevet S, Quoix E, Lebeau B, Braun D, Breton JL, Lemarie E, Gouva S, Paillot N, Brechot JM, Janicot H, Lebas FX, Terrioux P, Clavier J, Foucher P, Monchatre M, Coetmeur D, Level MC, Leclerc P, Blanchon F, Rodier JM, Thiberville L, Villeuneuve A, Westeel V, Chastang C (2002) Preoperative chemotherapy followed by surgery compared with primary surgery in resectable stage I (except T1NO), II, and IIIa non-small-cell lung cancer. J Clin Oncol 20: 247 – 253
Douillard JY, Rosell R, De Lena M, Carpagno F, Ramalero C, Gonzales-Larriba JL, Grozzi T, Pereira JR, Le Grouellec A, Lorouso V, Clary C, Torres AJ, Dahabreh J, Souquet PJ, Astudillo J, Fournel P, Artal-Cortes A, Jassem J, Koubkova L, His P, Riggi M, Hurteloup P (2006) Adjuvant vinorelbine plus cisplatin in observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association (ANITA)): a randomised controlled trial. Lancet Oncol 7: 719 – 727
Fossella F, Pereira JR, von Pawel J, Pluzanska A, Gorbounova V, Kaukel E, Mattson KV, Ramalero C, Szczesna A, Fidias P, Millward M, Belani CP (2003) Randomized, multinational, phase III study of docetaxel plus platinum combinations vs vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group. J Clin Oncol 21: 3016 – 3024
Fossella FV, Lee JS, Murphy WK, Lippman SM, Calayag M, Pang A, Chason M, Shin DM, Glisson B, Benner S et al. (1994) Phase II study of docetaxel for recurrent or metastatic non-small-cell lung cancer. J Clin Oncol 12: 1238 – 1244

British Journal of Cancer (2008) 99 (6), 852 – 857 © 2008 Cancer Research UK
Francis PA, Rigas JR, Kris MG, Pisters KM, Orazi J, Woolley KJ, Heelan RT (1994) Phase II trial of docetaxel in patients with stage III and IV non-small-cell lung cancer. J Clin Oncol 12: 1232 – 1237

Georgoulis V, Ardanavis A, Agelidou A, Agelidou M, Chandrinos V, Tsaroucha E, Tombisis M, Kouroussis C, Syrigos K, Polyzos A, Samaras N, Papakotoulas P, Christofilakis C, Ziras N, Alegakis A (2004) Docetaxel vs docetaxel plus cisplatin as front-line treatment of patients with advanced non-small-cell lung cancer: a randomized, multicenter phase III trial. J Clin Oncol 22: 2602 – 2609

Goya T, Asamura H, Yoshimura H, Kato H, Shimokata K, Tsuchiya R, Sohara Y, Miya T, Miyaoe E (2005) Prognosis of 6644 resected non-small cell lung cancers in Japan: a Japanese lung cancer registry study. Lung Cancer 50: 227 – 234

Kubota K, Watanabe K, Kunitoh H, Noda K, Ichinose Y, Katakami N, Sugiuira T, Kawahara M, Yokoyama A, Yokota S, Yoneda S, Matsui K, Kudo S, Shibuya M, Isobe T, Segawa Y, Nishiwaki Y, Ohashi Y, Niitani H (2004) Phase III randomized trial of docetaxel plus cisplatin vs vindesine plus cisplatin in patients with stage IV non-small-cell lung cancer: the Japanese Taxotere Lung Cancer Study Group. J Clin Oncol 22: 254 – 261

Kunitoh H, Watanabe K, Onoshi T, Furuse K, Niitani H, Taguchi T (1996) Neoadjuvant chemotherapy for radically treatable stage III non-small-cell lung cancer. Lung Cancer 16: 111 – 122

Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, von Schulthess GK, Steinitz HC (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348: 2500 – 2507

Mattson KV, Abratt RP, ten Velde G, Krofta K (2003) Docetaxel as neoadjuvant therapy for radically treatable stage III non-small-cell lung cancer: a multinational randomised phase III study. Ann Oncol 14: 116 – 122

Mountain CF (1997) Revisions in the International System for Staging Lung Cancer. Chest 111: 1710 – 1717

Pisters KM (2003) Induction chemotherapy in early-stage non-small-cell lung cancer. Curr Oncol Rep 5: 307 – 308

Pisters K, Vallieres E, Bunn Jr PA, Crowley J, Chansky K, Ginsberg RJ, Giroux DJ, Putnam Jr JB, Kris MG, Johnson DH, Roberts JR, Mault J, Crowley J, Bunn Jr PA (2000) Induction chemotherapy before surgery for early-stage lung cancer: a novel approach. Bimodality Lung Oncology Team. J Thorac Cardiovasc Surg 119: 429 – 439

Pisters KM, Le Chevalier T (2005) Adjuvant chemotherapy in completely resected non-small-cell lung cancer. J Clin Oncol 23: 3270 – 3278

Rosell R, Gomez-Codina J, Camps C, Maestre J, Padille J, Canto A, Mate JL, Li S, Roig J, Olazabal A, Canela M, Ariza A, Skacel Z, Morera-Prat J, Abad A (1994) A randomized trial comparing preoperative chemotherapy plus surgery with surgery alone in patients with non-small-cell lung cancer. N Engl J Med 330: 153 – 158

Rosell R, Lord RV, Taron M, Reguart N (2002) DNA repair and cisplatin resistance in non-small-cell lung cancer. Lung Cancer 38: 217 – 227

Roth JA, Fossella F, Komaki R, Ryan MB, Putnam Jr JB, Lee JS, Dhingra H, De Caro L, Chassen M, McGavran M, Atkinson EN, Hong WK (1994) A randomized trial comparing perioperative chemotherapy and surgery with surgery alone in resectable stage IIIA non-small-cell lung cancer. J Natl Cancer Inst 86: 673 – 680

Scagliotti GV (2005) The ALPI Trial: the Italian-European experience with adjuvant chemotherapy in resectable non-small lung cancer. Clin Cancer Res 11: 5011s – 5016s

Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, Choi YJ, Kwon OJ, Shim YM, Kim S (2005) Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology 236: 1011 – 1019

Simon R, Wittes RE, Ellenberg SS (1985) Randomized phase II clinical trials. Cancer Treat Rep 69: 1375 – 1381

Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205 – 216

Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C, Cormier Y, Goss G, Inculet R, Vallieres E, Fry W, Bethune D, Ayoub J, Ding K, Seymour L, Graham B, Tsao MS, Gandara D, Kesler D, Demmy T, Shepherd F (2005) Vinorelbine plus cisplatin vs observation in resected non-small-cell lung cancer. N Engl J Med 352: 2589 – 2597

Zalcberg J, Millward M, Bishop J, McKeage M, Zimet A, Toner G, Friedlander M, Barter C, Rischin D, Loret C, Bougan N, Reville J (1998) Phase II study of docetaxel and cisplatin in advanced non-small-cell lung cancer. J Clin Oncol 16: 1948 – 1953

Appendix

The following institutions and investigators participated in the trial:

Tohoku University Hospital (Takashi Kondo and Akira Sakurada), Tochigi Cancer Center (Haruhisa Matsuguma), Saitama Cancer Center (Hirohiko Aikeyama), National Cancer Center Hospital East (Kenji Nagai, Junji Yoshida and Nagahiro Saijo), National Cancer Center Hospital (Hisao Asamura, Kenji Suzuki and Hideo Kunitoh), Kyorin University School of Medicine (Tomoyuki Goya and Yoshihiko Koshishi), Tokyo Medical University (Harubumi Kato and Masahiro Tsuboi), Cancer Institute Hospital (Ken Nakagawa and Yukitohi Satoh), Yokohama Munipical Citizens’ Hospital (Koshiro Watanabe and Jun-ichi Nitadori), Niigata Cancer Center Hospital (Teruaki Koike and Yasushi Yamato), Aichi Cancer Center Hospital (Tetsuya Mitsudomi and Shoshi Mori), Osaka Prefectural Hospital Organization Osaka Medical Center for Cancer and Cardiovascular Diseases (Ken Kodama and Masahiko Higashiyama), Osaka Prefectural Hospital Organization Osaka Prefectural Medical Center for Respiratory and Allergic Disease (Mitsunori Ota), Osaka City General Hospital (Hirohito Tada and Ryo Yamamoto), Hyogo Cancer Center (Morihiro Okada, Masahiro Yoshimura and Koichiro Iwanaga), National Hospital Organization Shikoku Cancer Center (Motohiro Yamashita), National Kyushu Cancer Center (Yukito Ichinose and Koji Yamazaki), Nagasaki University School of Medicine (Takeshi Nagayasu and Tsutomu Tagawa).