Supporting Information

High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction

Byung-Sung Kim, † Darren C. J. Neo, ‡ Bo Hou, † Jong Bae Park, †§ Yuljae Cho, † Nanlin Zhang, ‡ John Hong, † Sangyeon Pak, † Sanghyo Lee, † Jung Inn Sohn, † Hazel E. Assender, ‡ Andrew A. R. Watt, *‡ SeungNam Cha, *† and Jong Min KimΔ

†Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
‡Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
§Jeonju centre, Korea Basic Science Institute, Jeonju, Jeollabuk-do 561-180, Republic of Korea
ΔDepartment of Engineering, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA, UK

*Corresponding Authors E-mail
andrew.watt@materials.ox.ac.uk, seungnam.cha@eng.ox.ac.uk
Fig. S1 (a) X-ray diffraction patterns and HRTEM image (inset) of the PbS nanocrystal. (b) Representative SEM image of SG flakes (average lateral size of ~550 nm) homogeneously deposited on PbS QD film.

The crystallinity of the PbS QD film is examined by the XRD measurement as shown in Figure S1a. Well-defined diffraction peaks were assigned to the (111), (200), (220), and (311) planes, respectively. It clearly implies that the PbS in the solid state has a face-center-cubic (fcc) structure. The HRTEM lattice fringe image is taken from a 1.3 eV PbS QD and the diameter of the QD is approximately 2.5 nm (inset).

Fig. S2 UV-vis absorption of 1.3 eV PbS QDs capped with oleic acid in solution (peak
around 950 nm). A size distribution of the corresponding PbS QD is obtained with a mean diameter of ~ 2.5 nm.

Fig. S3 10 x 10 µm AFM images showing the surface morphologies of (a and b) PbS and (c and d) PbS/SG films. The root mean square (RMS) roughness are 13.204 and 11.641 nm, respectively. The image area is 10 x10 µm.

Fig. S4 Schematic of devices of (a) TBAI-PbS, (b) TBAI-PbS/SG (5L), and (c) TBAI-PbS/SG (9L).
PbS/SG (9L). All devices are fabricated under the same conditions and consist of 12 layers of TBAI-PbS with 0, 5, and 9 layers of SG flake. For the hybrid cell fabrication, 5 and 9 layers of SG flake were symmetrically inserted in the TBAI-PbS layers as seen in Fig. S4 (b) and (c).

Fig. S5 Schematic of (a) TBAI-PbS/EDT-PbS and (b) TBAI-PbS/SG (9L)/EDT-PbS junction solar cells. They consist of 10 layers of TBAI-PbS and 2 layers of EDT-PbS on ZnO/ITO/glass substrates. For the hybrid cell fabrication, 9 layers of SG flake were inserted in TBAI-PbS CQD layers.

Table S1 Photovoltaic performance of TBAI-PbS/EDT-PbS and TBAI-PbS/SG (9L)/EDT-PbS junction structure. Average values of each device with standard deviations were collected from four devices.

	V_{oc} (V)	FF	J_{sc} (mA/cm2)	R_s (Ω)	PCE (%)
TBAI-PbS/EDT-PbS	0.51±0.01	0.62±0.02	23.61±0.10	2.10±0.28	7.53±0.18
TBAI-PbS/SG (9L)	0.48±0	0.61±0.03	29.81±0.66	1.47±0.78	8.82±0.55
TBAI-PbS/SG (9L)	0.48	0.63	30.34	1.46	9.18

* Best performance of TBAI-PbS/SG (9L)/EDT-PbS junction device.

Table S2 Photoresponse characteristics of PbS and PbS/SG devices.
off state (pA)	on state (nA)	on-off ratio	Rise time (τ, msec)	
PbS	310	8.91	28.74	3.3
PbS/SG	272	10.6	38.97	2.1