Regulation of B Cell Tolerance by 129-Derived Chromosome 1 Loci in C57BL/6 Mice

Liliane Fossati-Jimack, Josefina Cortes-Hernandez, Peter J. Norsworthy, H. Terence Cook, Mark J. Walport, and Marina Botto

Objective. Systemic lupus erythematosus is a multifactorial disease with a strong genetic component. Previous studies have shown that a 129-derived chromosome 1 interval (Sle16) on the C57BL/6 (B6) background is sufficient to induce humoral autoimmunity. The aim of the present study was to elucidate the mechanisms by which this locus contributes to the loss of peripheral tolerance.

Methods. Anti–single-stranded DNA (anti-ssDNA)–knockin transgenic mice (VH3H9R/α8R and VH3H9R) were crossed with a B6 congenic line named B6.129chr1b that carries the Sle16 locus. A parallel study of a gene-targeted animal, whose mutated gene is located within the 129chr1b interval on chromosome 1, was also performed.

Results. The combination of VH3H9R/α8R with the 129chr1b interval resulted in impaired B cell anergy, and transgenic IgM and IgG anti-ssDNA antibodies were found in the circulation. The presence of IgG2α anti-ssDNA and IgMα anti-Sm antibodies in sera indicated that the autoreactive transgenic B cells underwent class switching and epitope spreading. The 129chr1b locus appeared to have a dominant effect, since transgenic antibodies were also detected in mice carrying a single allele. The gene-targeted animals showed a similar phenotype.

Conclusion. The presence of a single 129chr1b locus on the B6 background impaired B cell anergy, prevented deletion of anti-DNA transgenic B cells, and induced receptor revision. The findings of this study also emphasize that the autoimmune phenotype observed in mice with targeted genes located on chromosome 1 may simply arise from epistatic interactions between the 129 and B6 parental strains.

Systemic lupus erythematosus (SLE) is an autoimmune disease that displays highly variable clinical features. The serologic hallmark of SLE is the production of autoantibodies directed against a wide spectrum of self antigens, especially nuclear components, such as DNA. Several lines of evidence indicate that both in humans and in animal models, SLE susceptibility is inherited as a multifactorial genetic trait (1). To identify the genetic components of SLE, linkage analyses have been performed in spontaneous lupus-prone mice, and these studies have led to the identification of several genomic intervals (2). Interestingly, a great proportion of the intervals detected are strain-specific, confirming the genetic complexity of the disease and indicating the presence of extensive heterogeneity in the genes that contribute to the pathogenesis of SLE.

However, 1 interval, located on the distal region of chromosome 1 in the mouse and on its orthologous region in humans, has shown strong linkage in several human and murine studies (3,4). One of the best characterized loci in this region is Sle1b, which was identified via linkage analysis of the lupus-prone NZM2410 mouse model (5). This locus, when expressed on the C57BL/6 genetic background (B6.Sle1b), can induce a relatively benign autoimmune disease characterized by loss of tolerance to nuclear antigens, an increase in the proportion of activated T cells and B cells, and mild splenomegaly. These features seem to be linked to a specific haplotype of the signaling lymphocytic activation molecule (SLAM)/CD2 family of genes, indicating that these genes might mediate the autoimmune phenotype associated with the Sle1b locus (6,7). However, in the same chromosome 1 region, there are several other candidate...
genes, such as Apcs, Fcgr2, Cd55, Pdcd1, and Ro antigen. All of these genes were inactivated in 129-derived embryonic stem cells, and the knockout models displayed a variable degree of autoimmunity (8–12). However, the interpretation of the autoimmune phenotype (13) observed in these gene-targeted models has recently been questioned (14).

Studies by our group and others (8,15–17) have shown that hybrid strains between 129 and C57BL/6 (B6) mice, commonly used in the generation of gene-targeted mice, are spontaneously predisposed to the development of humoral autoimmunity, with low levels of renal disease. Genome-wide linkage conducted on the 129 × B6 hybrid mice identified a strong association between a 129-derived segment on chromosome 1, now named Sle16, and the expression of autoantibodies (14,18). The autoimmune effect of this locus has recently been defined further by the study of B6 subcongenic strains carrying 129 fragments of different lengths (14,19). The analysis of these lines revealed that a 129 interval between 87.9 cM and 100 cM (D1Mit15 and D1Mit115) was sufficient to induce the autoimmune phenotype, and the congenic line carrying this fragment, named B6.129chr1b1, was selected for the present study. It is noteworthy that the B6.129chr1b1 congenic mice mirror the combination of genes created when a gene in this region is targeted on 129 embryonic stem cells and then backcrossed onto the B6 genetic background.

Immunoglobulin-transgenic models have been instrumental in understanding B cell regulation, revealing several key mechanisms including receptor editing, deletion, anergy, and ignorance (20–24). Chen et al (25) generated an anti-DNA–knockin model in which the rearranged variable heavy chain (VH) gene of an anti-DNA antibody (VH3H9) was inserted at the Igh locus. This allowed the transgenic locus to undergo normal editing, isotype switching, and somatic mutation. A variety of light chains can combine with the VH3H9 to yield anti-DNA antibodies (26), but only a few light chains are able to “silence” VH3H9 so that it no longer binds to DNA. By virtue of this characteristic, the mice expressing only the VH3H9 chain (VH3H9R mice) can generate anti-DNA specificities. When the VH3H9R mice were crossed with the knockin transgenic light chain Vκ8 mice (27), the antibody generated in the double-transgenic mice (VH3H9R/Vκ8R mice) (28) bound only single-stranded DNA (ssDNA) and not double-stranded DNA (dsDNA) (27). Previous studies with the VH3H9R mice showed that autoreactive transgenic B cells accumulated in the splenic marginal zone and were regulated by anergy in the presence of a nonautoimmune background, such as BALB/c (25,29) and B6 (30,31), but were activated in a model of chronic graft-versus-host disease (30). Similarly, the VH3H9R/Vκ8R-knockin transgenic B cells were regulated by anergy in nonautoimmune disease–prone BALB/c mice, while in autoimmune disease–prone MRL/Mp/lpr/lpr animals, transgenic B cells escaped tolerance induction and underwent class switching and affinity maturation (32).

To determine whether the Sle16 locus could influence the selection of self-reactive B cells, we bred the B6.129chr1b1 mice with the VH3H9R,B6 mice and the VH3H9R/Vκ8R,B6 mice and monitored the regulation and activation of anti-DNA–transgenic B cells over a period of 10 months. A similar analysis was also performed with mice deficient in serum amyloid P component (B6. Apcs−/−), chosen as an example of an autoimmune mouse strain with a targeted deletion of 1 of the candidate genes located within the 129chr1b region. The analysis of these mice showed that hemizygosity of the Sle16 locus was sufficient to impair B cell anergy and to induce class switching and epitope spreading. The immunologic alterations were more pronounced in mice that were homozygous for the Sle16 locus and were similar in the B6. Apcs−/− mice, indicating that the lack of serum amyloid P component had no additional effect on the loss of B cell tolerance.

MATERIALS AND METHODS

Mice. C57BL/6 mice were obtained from Harlan Olac (Bicester, UK). B6. Apcs−/− and B6.129chr1b1 mice (acknowledged name B6.129-Sle16) were generated as previously described (19,33). VH3H9R/Vκ8R,B6 mice (25,27) were kindly provided by Prof. M. Weigert (Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL). In order to generate the different cohorts of mice for study, VH3H9R/Vκ8R,B6 mice were crossed with B6. Apcs−/− mice, and the resulting VH3H9R/Vκ8R,B6.Apcs+/− mice were then crossed with B6. Apcs−/− mice to obtain VH3H9R/Vκ8R,B6.Apcs−/− animals. Likewise, VH3H9R/Vκ8R,B6 mice were crossed with B6.129chr1b1 mice, and the resulting VH3H9R/Vκ8R,B6.129chr1b1 mice were then crossed with B6.129chr1b1 mice to obtain VH3H9R/Vκ8R,B6.129chr1b1 mice. Only female animals were studied. Mice were bled at regular intervals starting from the age of 2 months and were killed at 10 months of age.

The mice were genotyped by polymerase chain reaction (PCR) analysis, using primers specific for each allele. PCR primers were as follows: for Apcs genotyping, Sap5+/9+ (5′-ATTGGTTTCCACGACAGGGG-3′), Sap8− (5′-GATCAGTTTCAGATCTTG-3′), and neo (5′-GGGGATGGATTATTTCCACGACAGGGG-3′); for VH3H9R genotyping, MW114 (5′-CTGTCAGGAACTGCAGGTAAGG-3′), and neo (5′-CAATACTAGGAGATTTACTCTCTGC-3′) (29); for Vκ8R genotyping, MW133 (5′-GGTGGATGCGAGGCTGTTTGC-3′) and MW157 (5′-AGCGCGAACTGGAGGAGG-3′) (34); and for 129chr1b genotyping, D1Mit15 and D1Mit115 (19).
Animals were maintained under specific pathogen-free conditions. All animal care and procedures were conducted according to institutional guidelines and were approved by the local ethics committee.

Immunofluorescence staining. Flow cytometry was performed using 4-color staining of cells, and the results were analyzed with a FACS Calibur instrument (Becton Dickinson, Mountain View, CA). The following antibodies were used: anti-B220 (clone RA3-6B2), anti-CD4 (clone GK1.5), anti-CD5 (clone 53-7.3), anti-CD11b (clone M1-70), anti-CD19 (clone 1D3), anti-CD23 (clone B3B4), anti-CD21/CD35 (clone 7G6), anti-CD25 (clone PC61), anti-CD69 (clone H1.2F3), anti-CD90.2 (clone 53-2.1), anti-CD138 (clone 281-2), anti-IgM (clone DS-1). All antibodies were purchased from BD PharMingen (San Diego, CA), with the exception of the anti-VH3H9 idiotype (clone 1.209), which was a kind gift from Prof. M. Weigert (35). Biotinylated antibodies were detected using an allophycocyanin-conjugated streptavidin antibody (BD PharMingen). Staining was performed in the presence of a saturating concentration of 2.4G2 monoclonal antibody (anti-FcR). Data were analyzed using WinMDI software (version 2.8; Scripps Institute and Research Foundation, La Jolla, CA).

Spleens were snap-frozen, sectioned, and fixed in acetone. Sections were stained with fluorescein isothiocyanate (FITC)–conjugated anti-CD90.2, FITC-conjugated peanut agglutinin (PNA) (both from Vector, Peterborough, UK), and biotin-conjugated anti-VH3H9 idiotype antibody 1.209, followed with streptavidin–phycoerythrin (BD PharMingen).

Serologic analyses. Anti-ssDNA, antihistone, anti-chromatin, and anti-Sm antibodies were measured by enzyme-linked immunosorbent assay (ELISA) as described previously (36). Briefly, the different antigens (DNA from Sigma-Aldrich, Dorset, UK; histone from Roche Diagnostics, Lewes, UK; chromatin from Lorne Laboratories, Reading, UK; and Sm from ImmunoVision, Springdale, AR) were coated onto microtiter plates. Serum samples were diluted appropriately. Bound antibodies were detected with biotinylated mouse anti-mouse IgMa (clone DS-1) and mouse anti-mouse IgG2a (clone 8.3), followed by a streptavidin–alkaline phosphatase conjugate (all from BD PharMingen). All autoantibody results are expressed in arbitrary ELISA units, as determined by reference to a standard curve derived from serum pools containing high titers of autoantibodies. For total IgM and IgG2a determinations, precipitated serum immunoglobulins were coated directly on the microtiter plates and detected as described above.

Renal assessment. Proteinuria was assessed using Haema-Combistix (Bayer Diagnostics, Newbury, UK). Kidneys were fixed in Bouin's solution and embedded in paraffin, and sections were stained with periodic acid–Schiff reagent. Glomerular histologic features were scored in a blinded manner, using a scale of 0–4 (where 0 = normal and 4 = severe proliferative glomerulonephritis in >90% of glomeruli), as previously described (19). FITC-conjugated goat antibody against mouse IgG (Sigma-Aldrich) and against mouse C3 (ICN Pharmaceuticals, Costa Mesa, CA) were used to stain snap-frozen sections. Staining with FITC-conjugated antibodies was quantified as previously described (37) and expressed as arbitrary fluorescence units.

Statistical analysis. The data are presented as the median and range, except where indicated otherwise. The nonparametric Mann-Whitney U test was applied throughout.

Figure 1. IgM* anti–single-stranded DNA (anti-ssDNA) at 10 months of age in B6 (●), B6.129chr1b129/129 (⧫), B6.129chr1b129/129 (⧫), and B6. Apcs−/− (○) mice carrying A, the VH3H9R/VL8R transgene or B, the VH3H9R transgene. Each symbol represents 1 mouse; bars show the median arbitrary enzyme-linked immunosorbent assay units (AEU). Levels of total IgM were similar in the VH3H9R/VL8R cohorts (median AEU 43 [range 21–112] in VH3H9R/VL8R.B6, 40 [range 16–120] in VH3H9R/VL8R.B6.129chr1b129/129, 34 [range 3–65] in VH3H9R/VL8R.B6.129chr1b129/129, and 50 [range 12–160] in VH3H9R/VL8R.B6. Apcs−/− mice) and in the VH3H9R cohorts (median AEU 67 [range 47–110] in VH3H9R.B6, 83 [range 44–102] in VH3H9R.B6.129chr1b129/129, 60 [range 20–138] in VH3H9R.B6.129chr1b129/129, and 74 [range 40–155] in VH3H9R.B6. Apcs−/− mice). P values were determined by Mann-Whitney U test.

P values less than 0.05 were considered significant. For the findings of the FACS analysis, we applied the analysis of variance Kruskal-Wallis test, followed by Dunn's multiple com-
parison test. Statistics were calculated using GraphPad Prism software, version 3.0 (GraphPad Software, San Diego, CA).

RESULTS

Defective B cell tolerance. B6.129chr1b and B6. Apcs−/− mice have been reported to develop a lupus-like disease (8,19). To determine the mechanisms underlying the loss of tolerance in these mice, the anti–DNA VH3H9R/VL8R-transgenic alleles were transferred to these mice by breeding. Vt13H9R/VLk8R.B6.129chr1b129/B6 mice carrying only 1 copy of the 129chr1b allele were also analyzed. The expression of the anti-DNA-transgenic allele was assessed by measuring the transgenic-specific immunoglobulin allotype IgHa, since the allotype of endogenous B6 immunoglobulins is IgHb (Figure 1A). As expected, no IgMa anti-ssDNA antibodies were found in the serum of VH3H9R/VL8R.B6 mice. In contrast, the majority of the VH3H9R/VL8R.B6.129chr1b129/129 and VH3H9R/VLk8R.B6. Apcs−/− mice produced significant amounts of transgenic anti-ssDNA antibodies. As a result of the gene-targeting technique, B6. Apcs−/− mice carry a 129 fragment (168.7–179.4 Mb) of a length similar to that in B6.129chr1b mice (168.7–182.3 Mb). No statistical difference was observed between these 2 groups of mice, indicating that the lack of serum amyloid P component did not contribute to the breakage of B cell tolerance. Of note, 40% of the VH3H9R/VL8R.B6.129chr1b129/B6 mice also secreted IgMa anti-ssDNA antibodies, which suggests that hemizygosity in the 129chr1b region was itself sufficient to break tolerance, although to a lesser extent.

The same analysis was performed in the VH3H9R animals. In this model, the 3H9 heavy chain can freely combine with endogenous light chains, giving rise to a limited repertoire of autoantibodies. As previously reported (31), negligible levels of anti-ssDNA antibodies were detected in the sera of VH3H9R/VLk8R.B6 mice (Figure 1B). However, the presence of the 129chr1b locus, even as a single allele, induced significant levels of IgMa anti-ssDNA antibodies. The effect of the 129chr1b locus was more marked in the homozygous VH3H9R.B6.129chr1b129/129 mice than in the VH3H9R.B6.129chr1b129/B6 animals, while the absence of serum amyloid P component had no additional effect. A similar pattern was observed when we measured IgMa antihistone antibodies (data not shown).

Isotype switching of the transgenic antibodies. The VH3H9R/VLk8R-knockin model allows the transgenic locus to undergo isotype switching, and we were therefore able to measure IgG2aα anti-ssDNA antibodies. Consistent with the results obtained with the IgMa autoantibodies, markedly increased amounts of IgG2aα anti-ssDNA antibodies were found in the VH3H9R/VLk8R.B6.129chr1b129/B6, VH3H9R/VLk8R.B6. Apcs−/−, and VH3H9R/VLk8R.B6.129chr1b129/B6 mice as compared with the VH3H9R/VLk8R.B6 controls (Figure 2A). Again, there was no statistical difference be-
tween the serum amyloid P component–sufficient congenic mice and the serum amyloid P component–deficient animals. Of note, in this assay, the $V_{H}^{3}H^{9}R/V_{L}k^{8}R.B6.129chr1b^{129/B6}$ mice had levels of IgG2a anti-ssDNA antibodies that were similar to those detected in the $V_{H}^{3}H^{9}R/V_{L}k^{8}R.B6.129chr1b^{129/129}$ mice.

Similar findings were observed in the $V_{H}^{3}H^{9}R$ transgenic mice, with significant levels of IgG2a anti-ssDNA antibodies in all groups carrying the $129chr1b$ locus ($V_{H}^{3}H^{9}R.B6.129chr1b^{129/129}$, $V_{H}^{3}H^{9}R.B6.129chr1b^{129/B6}$, and $V_{H}^{3}H^{9}R.B6.Apcs^{+/−}$) (Figure 2B). IgG2a anti-histone antibodies were found in 4 of 13 $V_{H}^{3}H^{9}R.B6.129chr1b^{129/129}$ mice and in 4 of 9 $V_{H}^{3}H^{9}R.B6.Apcs^{+/−}$ mice, but only in 1 of 17 $V_{H}^{3}H^{9}R.B6.129chr1b^{129/B6}$ mice (data not shown). None of the 7 $V_{H}^{3}H^{9}R.B6$ mice had circulating IgG2a anti-histone antibodies.

Epitope spreading of transgenic B cells. $V_{H}^{3}H^{9}R/V_{L}k^{8}R$ mice can generate only antibodies against ssDNA. However, previous studies of $V_{H}^{3}H^{9}R/V_{L}k^{8}R.MRL\text{ lpr/lpr}$ mice have shown that when tolerance is broken, $V_{H}^{3}H^{9}R/V_{L}k^{8}R$.transgenic B cells can undergo receptor editing in order to change the specificity of the transgenic B cells toward other autoantigens (32). In light of these previous observations, we measured IgM autoantibodies against different nuclear antigens at different time points in the $V_{H}^{3}H^{9}R/V_{L}k^{8}R.B6$ cohorts (Figure 3). At an early stage of the disease (age 2 months) in mice carrying the $129chr1b$ locus, IgM autoantibodies were mainly directed against ssDNA. However, at later time points (ages 5 months and 10 months), IgM against other autoantigens (Sm and chromatin) were detectable, indicating an expansion of the autoantibody repertoire.

Findings of the renal assessment. At 10 months of age, all mice were killed, and their kidneys were harvested and processed for examination by light microscopy (Table 1). Renal sections stained with periodic acid–Schiff were graded in a blinded manner using a scale of 0–4 (19). As expected, neither $V_{H}^{3}H^{9}R/V_{L}k^{8}R$ B6-transgenic nor $V_{H}^{3}H^{9}R.B6$-transgenic mice had significant signs of renal disease. Interestingly, none of the transgenic mice carrying the $129chr1b$ fragment developed severe glomerulonephritis, despite having significant titers of autoantibodies in their circulation. Of note, even in the transgenic mice lacking serum amyloid P component, which has been implicated in end-organ injury, there was no histologic evidence of severe renal damage.

We also investigated whether the high levels of circulating autoantibodies were associated with an increased deposition of immune complexes in the kidneys (Table 1). Fluorescence quantification of glomerular IgG deposition revealed a significantly higher amount in $V_{H}^{3}H^{9}R.B6.129chr1b^{129/129}$ and $V_{H}^{3}H^{9}R.B6.Apcs^{+/−}$ mice than in $V_{H}^{3}H^{9}R.B6$ mice ($P = 0.0006$ and $P = 0.0121$, respectively). Similarly, $V_{H}^{3}H^{9}R/V_{L}k^{8}R.B6.129chr1b^{129/129}$ and $V_{H}^{3}H^{9}R/V_{L}k^{8}R.B6.Apcs^{+/−}$ mice had more IgG deposited in their kidneys than did the
V13H9R/V1κ8R.B6 controls ($P = 0.0513$ and $P = 0.0140$, respectively). Despite the high levels of IgG in their kidneys, the levels of glomerular C3 deposition were similar among the cohorts (for V13H9R.B6, 129chr1B129/129 and V13H9R.B6, $Apcs^{-/-}$ versus V13H9R.B6, $P = 0.6200$ and $P = 0.0727$, respectively; for V13H9R/V1κ8R.B6, 129chr1B129/129 and V13H9R/V1κ8R.B6, $Apcs^{-/-}$ mice versus V13H9R/V1κ8R.B6, $P = 0.7308$ and $P = 0.8182$, respectively).

Findings of flow cytometric analysis of splenic B cells. In order to determine if the serologic data were accompanied by phenotype changes in T and B lymphocytes, we performed a comprehensive analysis of the splenic subpopulations (Table 2). The proportion of cells expressing the transgenic alleles was first determined by assessing the allotype of their B cell receptor (surface IgM). The great majority of the V13H9R/V1κ8R.B6 B cells (>80%) were IgM$^+$-positive, indicating that almost all B cells had used the rearranged transgenic alleles. The presence of the 129chr1B locus did not affect the proportion of transgenic-positive B cells or the level of surface IgM expression (data not shown). The different subpopulations of B cells were then examined. Apart from a significant decrease in marginal zone B cells in V13H9R/V1κ8R.B6, 129chr1B129/129, V13H9R/V1κ8R.B6, 129chr1B128/B6, and V13H9R/V1κ8R.B6, $Apcs^{-/-}$ mice as compared with the V13H9R/V1κ8R.B6 mice (Table 2), no other consistent differences were observed between these 4 experimental cohorts. Similarly, in the V13H9R.B6 mice, nearly every B cell was IgM$^+$-positive, and the presence of the 129chr1B allele had no effect on the proportion of B

Mouse strain	GN score	IgG, AFU	C3, AFU
V13H9R/V1κ8R.B6	18.3 (13.0–29.0)	35.9 (28.2–40.2)	
129chr1B129/129	24.6 (20.8–27.6)†	32.1 (21.4–40.7)	
129chr1B128/B6	ND	ND	
$Apcs^{-/-}$	30.7 (20.0–38.3)†	31.7 (28.4–47.1)	
V13H9R.B6	19.1 (9.9–26.0)	26.7 (20.4–35.6)	
129chr1B129/129	36.0 (25.2–58.8)†	27.8 (19.5–45.4)	
129chr1B128/B6	ND	ND	
$Apcs^{-/-}$	27.4 (25.8–35.8)†	40.0 (27.0–50.5)	

* Glomerulonephritis (GN) was graded on a scale of 0–4 as described elsewhere (19). Deposition of IgG and C3 in renal glomeruli was expressed in arbitrary fluorescence units (AFU). In 10-month-old B6 mice (negative controls), the median levels were 19.7 AFU (range 13.6–27.3) for IgG and 32.3 AFU (range 22.8–40.1) for C3, and in nephritic 6-month-old (NZB × NZW)F1 mice (positive controls), the median levels were 38.9 AFU (range 31.9–50.9) for IgG and 42.5 AFU (range 41.1–64.2) for C3. Values are the median (range) in 4–7 mice per group. ND = not done.

† $P < 0.05$ versus V13H9R/V1κ8R.B6 mice, by Mann-Whitney U test.

‡ $P < 0.05$ versus V13H9R.B6 mice, by Mann-Whitney U test.
cells expressing the transgenic allele. Consistent with the findings in mice of other genetic backgrounds (38), the VH3H9R.B6 mice had more marginal zone B cells compared with the VH3H9R/VL8R.B6 mice (mean SEM 25.3 ± 2.0 versus 11.7 ± 1; P = 0.0003). However, despite high titers of transgenic autoantibodies, VH3H9R.B6.129chr1b129/B6, and VH3H9R.B6.Apcs−/− mice displayed a marginal zone of similar size as that of the VH3H9R.B6 mice. No substantial differences in the percentages of activated T cells or regulatory T cells were observed in the transgenic animals.

We also explored whether the loss of tolerance was accompanied by alterations of the splenic architecture (39). As previously described in VH3H9R.B6 and VH3H9R/VL8R.B6 mice, idiotype-positive B cells remained at the border of the T cell zone (Figure 4A) (30). However, in the VH3H9R.B6.129chr1b129/B6, VH3H9R/VL8R.B6.129chr1b129/B6, VH3H9R.B6. Apcs−/−, and VH3H9R/VL8R.B6. Apcs−/− mice, some idiotype-positive B cells were found inside the T cell zone (Figure 4B). In addition, very few germinal centers were present in spleens from the VH3H9R.B6 mice (median of 2 germinal centers per section [range 1–2]) and the VH3H9R/VL8R.B6 mice (median of 1 germinal center per section [range 0–5]), and they did not have a ring of idiotype-positive B cells (Figure 4C). Instead, in the spleens of VH3H9R.B6.129chr1b129/B6 (median of 3 germinal centers per section [range 0–5]), VH3H9R/VL8R.B6.129chr1b129/B6 (median of 7 germinal centers per section [range 3–11]), VH3H9R.B6. Apcs−/− (median of 9 germinal centers per section [range 2–12]), and VH3H9R/VL8R.B6. Apcs−/− (median of 8 germinal centers per section [range 4–20]) mice, germinal centers were easily detectable (P < 0.05) and idiotype-positive B cells surrounded the PNA+ core (Figure 4D).

DISCUSSION

Multiple genetic loci are known to contribute to the development of SLE. Recently, it was shown that epistatic interactions between 129 and B6 genes, even
though neither strain is lupus-prone, can lead to the development of a spontaneous lupus-like disease (8,15–17). Genetic linkage and congenic strain analyses have confirmed that a 129-derived region on chromosome 1 (Sle16) is strongly linked to the production of high titers of autoantibodies in the context of a B6 background. In order to elucidate the pathways that contribute to this strain-specific epistasis, we turned to well-established transgenic models of B cells expressing anti-DNA antibodies, the $V_{H}3H9R/V_{L}k8R.B6$- and $V_{H}3H9R.B6$-knockin models.

Several checkpoints present during B cell ontogeny avoid the production of self-reactive autoantibodies. Centrally, most autoreactive specificities are removed by deletion and editing before entering the mature B cell compartment; however, some others are regulated by anergy and exit to the periphery, where they can be rescued (40). Serologic analysis of the $V_{H}3H9R/V_{L}k8R.B6$- and $V_{H}3H9R.B6$-transgenic mice showed that the presence of a single $129chr1b$ locus impaired B cell anergy. The anergic B cells may have been rescued by a strong cross-link of the B cell receptor. In this context, one could speculate that the defective uptake of apoptotic cells described in 129chr1b mice (19) might provide a large source of aggregated autoantigens and give a strong signal. In addition, preliminary data suggest that B6.129chr1b B cells are more susceptible to B cell receptor cross-linking.

Another time when autoreactive B cells may arise is during germinal center reactions, when somatic hypermutation occurs. At this checkpoint, B cell survival and priming depend heavily on T cell help, indicating that a considerable role in maintaining B cell tolerance in the periphery is deferred to the T cells (41). Concomitantly, somatic hypermutation occurs. At this checkpoint, B cell survival and priming depend heavily on T cell help, indicating that a considerable role in maintaining B cell tolerance in the periphery is deferred to the T cells (41). Concomitantly, B cell survival and priming depend heavily on T cell help, indicating that a considerable role in maintaining B cell tolerance in the periphery is deferred to the T cells (41). Concomitantly, B cell survival and priming depend heavily on T cell help, indicating that a considerable role in maintaining B cell tolerance in the periphery is deferred to the T cells (41).
and ref. 38). Interestingly, this expansion was comparable in all animals, including those that had broken tolerance (VH3H9R.B6.129chr1b129/129, VH3H9R.B6.129chr1b128B6, and VH3H9R.B6.Apcs−/− mice), indicating that this may reflect not only trapping of autoreactive B cells, but also some developmental blocking. In this context, it is noteworthy that other single heavy chain–transgenic models have displayed a similar phenotype (44,45).

The entry and survival of B cells through a germinal center reaction depend on T cells. Surprisingly, we failed to detect a significant increase in activated T cells in our transgenic mice. However, we analyzed only a limited number of T cell markers, and this may account for our findings. Recent studies have increasingly emphasized the importance of CD4+CD25+ regulatory T cells in autoimmune disease. In particular, a subset of regulatory T cells has been identified that localizes to the germinal center and is able to inhibit the production and survival of immunoglobulin as well as activation-induced cytidine deaminase expression by germinal center B cells (46). Moreover, regulatory T cell activity has been shown to be important for preventing DNA-specific autoantibody production that is induced by T helper cells (40). We previously reported a significant decrease in the number of CD4+CD25+ regulatory T cells in 12-month-old B6.129chr1b mice (19). In the anti-DNA–transgenic 129chr1b mice, we observed a tendency toward fewer regulatory T cells, but this did not reach statistical significance. On the other hand, we have also shown that in B6.129chr1b mice, the CD4+, CD25− T cells were resistant to suppression by regulatory T cells, which suggests a potential new mechanism for the loss of peripheral tolerance in this lupus strain (47).

Taken together, our data suggest that genes within the 129chr1b locus break B cell tolerance, induce T cells to provide help to B cells undergoing a germinal center reaction, and increase the availability of autoantigens. Interestingly, 1 copy of the 129chr1b locus was sufficient to induce all these effects, although to a lesser degree than that produced by 2 129chr1b alleles. One of the candidate genes within the Sle16 locus is Apcs, which is supported by the observation that B6. Apcs−/− mice developed a lupus-like illness with autoantibody production and nephritis. However, these mice carry a 129 fragment that is equivalent to the one present in 129chr1b mice. In our study, anti-DNA–transgenic Apcs−/− B cells had impaired induction of anergy similar to that in the transgenic 129chr1b B cells, which further supports the view that this gene is neither the primary initiator of loss of tolerance nor a modifier of humoral autoimmunity.

B6. Apcs−/− mice, in contrast to B6.129chr1b mice, have been shown to develop renal inflammation, suggesting that this gene may play a protective role in lupus nephritis (8,19). However, neither VH3H9R/VH4κ8R.B6. Apcs−/− nor VH3H9R.B6. Apcs−/− mice developed kidney disease, despite having high levels of autoantibodies. This may reflect the fact that transgenic autoantibodies are of low affinity and, despite being present in the kidneys, are unable to activate complement and induce tissue damage.

Another candidate gene located within the 129chr1b locus is Fcgr2b. Several studies have linked this gene to SLE (48,49), and Fcgr2b-deficient mice have been shown to develop a lupus-like illness (9). These mice crossed with the VH3H9R.B6 mice failed to break B cell tolerance; however, when they were bred with another anti-DNA–transgenic model (VH3H9R56R.B6), they displayed a marked increase in levels of IgG anti-DNA (31). Taken together, these observations would suggest that the Fcgr2b gene may act as a weak modifier of disease (31).

In conclusion, genes located within the 129chr1b locus on a B6 genetic background were able to rescue anergic B cells and to induce class switching and receptor revision, whereas the lack of serum amyloid P component had no additional effect. The immunologic alterations were present even in hemizygotes, indicating that the Sle16 locus plays a key role in autoimmunity. This study corroborates a note of caution in the interpretation of autoimmune features that are present in mice with targeted genes located in the telomere region of chromosome 1. Further studies will be required to identify the 129- and B6-derived genes whose interaction leads to the development of SLE.

AUTHOR CONTRIBUTIONS

Dr. Fossati-Jimack had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study design. Fossati-Jimack, Walport, Botto.

Acquisition of data. Fossati-Jimack, Cortes-Hernandez, Norsworthy, Cook.

Analysis and interpretation of data. Fossati-Jimack, Cook, Botto.

Manuscript preparation. Fossati-Jimack, Botto.

Statistical analysis. Fossati-Jimack.

REFERENCES

1. Wakeland EK, Liu K, Graham RR, Behrens TW. Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001;15: 397–408.
2. Wakeland EK, Wandstrat AE, Liu K, Morel L. Genetic dissection
of systemic lupus erythematosus. Curr Opin Immunol 1999;11:701–7.

3. Santiago-Raber ML, Laporte C, Reininger L, Izui S. Genetic basis of murine lupus. Autoimmun Rev 2004;3:33–9.

4. Tsao BP. Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 2004;16:513–21.

5. Morel L, Rudolfsy UH, Longmate JA, Schiffenbauer J, Wakeland EK. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunology 1994;1:219–29.

6. Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH, et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunology 2004;21:769–80.

7. Morel L, Blumen KR, Croker BP, Wakeland EK. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci U S A 2001;98:1787–92.

8. Bickerstaff MC, Botto M, Hutchinson WL, Herbert J, Tennent GA, Bybee A, et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 1999;5:694–7.

9. Bolland S, Ravecht JV. Spontaneous autoimmune disease in FcγRIIH-deficient mice results from strain-specific epistasis. PLoS Medicine 2003;10:277–85.

10. Miwa T, Maldonado MA, Zhou L, Sun X, Luo HY, Cai D, et al. Deletion of decay-accelerating factor (CD55) exacerbates autoimmune disease development in MRL/lpr mice. Am J Pathol 2002;161:1077–86.

11. Okazaki T, Iwai Y, Honjo T. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol 2002;14:779–82.

12. Santiago-Raber ML, Lawson BR, Dummer W, Barnhouse M, Koundouris S, Wilson CB, et al. Accelerated nephropathy in C1q-deficient mice results from strain-specific epistasis. PLoS Biol 2004;2:E243.

13. Obata Y, Tanaka T, Stockert E, Good RA. Autoimmune and lymphoproliferative disease in (B6-GIX/H11001/H11003)F1 mice–implications for autoimmunity described in gene-targeted mice. PLoS Biol 2002;10:269–78.

14. Bygrave AE, Rose KL, Cortes-Hernandez J, Warren J, Rigby RJ, Cook HT, et al. Spontaneous autoimmunity in 129 and C57BL/6 related cell surface antigens. Proc Natl Acad Sci U S A 1999;96:1787–92.

15. Heidari Y, Bygrave AE, Rigby RJ, Rose KL, Walport MJ, Cook HT, et al. Identification of chromosome intervals from 129 and C57BL/6 mouse strains linked to the development of systemic lupus erythematosus. Genes Immun 2006;7:592–9.

16. Carlucci F, Cortes-Hernandez J, Fossati-Jimack L, Bygrave AE, Walport MJ, Vye TJ, et al. Genetic dissection of spontaneous autoimmunity driven by 129-derived chromosome 1 loci when expressed on C57BL/6 mice. J Immunol 2007;178:2352–60.

17. Ferry H, Leung JC, Lewis G, Nijmik A, Silver K, Lambe T, et al. B-cell tolerance. Transplantation 2006;81:308–15.

18. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005;435:590–7.

19. Hartley SB, Crosbie J, Brink R, Kantor AB, Basten A, Goodnow CC. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 1991;353:765–9.

20. Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 1980;284:378–82.

21. Adelstein S, Pritchard-Briscoe H, Anderson TA, Crosbie J, Gammon G, Loblay RH, et al. Induction of self-tolerance in T cells but not B cells of transgenic mice expressing little self antigen. Science 1991;251:1223–5.

22. Chen C, Nagy Z, Prak EL, Weigert M. Immunoglobulin heavy chain gene replacement: a mechanism of receptor editing. Immunity 1995;3:747–55.

23. Radic MZ, Mascelli MA, Erikson J, Shan H, Weigert M. Ig H and L chain contributions to autoimmune specificities. J Immunol 1991;146:176–82.

24. Chen C, Prak EL, Weigert M. Light chain replacement: a new model for antibody gene rearrangement. J Exp Med 1995;182:541–8.

25. Chen C, Prak EL, Weigert M. Editing disease-associated autoantibodies. Immunity 2000;12:97–105.

26. Erikson J, Radic MZ, Camper SA, Hardy RR, Carmack C, Weigert M. Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature 1991;349:331–4.

27. Sekiguchi DR, Jainandunsing SM, Fields ML, Maldonado MA, Madaio MP, Erikson J, et al. Chronic graft-versus-host in Ig knockin transgenic mice abrogates B cell tolerance in anti-double-stranded DNA B cells. J Immunol 2002;168:4142–53.

28. Fossati-Jimack L, Cortes-Hernandez J, Norsworthy PJ, Walport MJ, Cook HT, Botto M. C1q deficiency promotes the production of transgenic-derived IgM and IgG3 autoantibodies in anti-DNA knock-in transgenic mice. Mol Immunol 2008;45:787–95.

29. Robson MG, Cook HT, Botto M, Taylor PR, Busso N, Salvi R, et al. Accelerated nephrotic nephritis is exacerbated in C1q-deficient mice. J Immunol 2001;166:6820–8.

30. Li Y, Li H, Weigert M. Autoreactive B cells in the marginal zone that express dual receptors. J Exp Med 1999;182:1571–8.

31. Carlucci F, Cortes-Hernandez J, Fossati-Jimack L, Bygrave AE, McBride A, et al. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med 2007;3:855–9.

32. Carmack CE, Camper SA, Mackle JJ, Gerhard WU, Weigert MG. Influence of a Vε 8 L chain transgene on endogenous rearrangements and the immune response to the HA(Sb) determinant on influenza virus. J Immunol 1999;163:2024–33.

33. Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 1993;177:999–1008.

34. Fossati-Jimack L, Cortes-Hernandez J, Norsworthy PJ, Walport MJ, Cook HT, Botto M. C1q deficiency promotes the production of transgenic-derived IgM and IgG3 autoantibodies in anti-DNA knock-in transgenic mice. Mol Immunol 2008;45:787–95.
Evidence for selection of a population of multi-reactive B cells into the splenic marginal zone. Int Immunol 1997;9:27–41.

44. Mandik-Nayak L, Racz J, Sleckman BP, Allen PM. Autoreactive marginal zone B cells are spontaneously activated but lymph node B cells require T cell help. J Exp Med 2006;203:1985–98.

45. Qian Y, Wang H, Clarke SH. Impaired clearance of apoptotic cells induces the activation of autoreactive anti-Sm marginal zone and B-1 B cells. J Immunol 2004;172:625–35.

46. Lim HW, Hillsamer P, Kim CH. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 2004;114:1640–9.

47. Monk CR, Spachidou M, Rovis F, Leung E, Botto M, Lechler RI, et al. MRL/Mp CD4+CD25+ T cells show reduced sensitivity to suppression by CD4+CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum 2005;52:1180–4.

48. Vyse TJ, Kotzin BL. Genetic susceptibility to systemic lupus erythematosus. Annu Rev Immunol 1998;16:261–92.

49. Blank MC, Stefanescu RN, Masuda E, Marti F, King PD, Redecha PB, et al. Decreased transcription of the human FCGR2B gene mediated by the −343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum Genet 2005;117:220–7.

DOI 10.1002/art.23616

Clinical Images: Latency of polyarteritis nodosa until a critical occurrence

The patient, a 53-year-old man, developed upper abdominal pain in February 2004. Laboratory studies for leukocyte, platelet, and eosinophil counts, C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), antineutrophil cytoplasmic autoantibody, hepatitis B surface antigen, and hepatitis C antibody yielded normal or negative findings. Three-dimensional computed tomographic (3-D CT) angiography performed at that time clearly showed multiple aneurysms in the branches of celiac and superior mesenteric arteries (A). The abdominal pain subsided spontaneously. In February 2007, the patient remained asymptomatic, with an ESR of 5 mm/hour and a CRP level of 0.1 mg/dl. However, 3-D CT angiography (B) revealed new aneurysms in the branches of the same arteries (arrowheads). He was treated with corticosteroids and intravenous cyclophosphamide, but developed intestinal perforation. Histologic examination revealed necrotizing arteritis consistent with polyarteritis nodosa.

Yoshinori Taniguchi, MD
Yoshitaka Kumon, MD, PhD
Kozo Hashimoto, MD, PhD
Kochi Medical School
Kochi University
Kochi, Japan
Shoichi Ozaki, MD, PhD
St. Marianna University School of Medicine
Kawasaki, Japan