Friend or foe — post-translational modifications as regulators of phase separation and RNP granule dynamics

Mario Hofweber1,2 & Dorothee Dormann1,2,3*

From the 1BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany; 2Graduate School of Systemic Neurosciences (GSN); Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany; 3Munich Cluster for Systems Neurology (SyNergy); Feodor-Lynen-Str. 17, 81377 Munich, Germany.

Running Title: Control of phase separation and RNP granule dynamics by PTMs

*To whom correspondence should be addressed: Dorothee Dormann, BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany, dorothee.dormann@med.uni-muenchen.de, Tel: +49 89 2180 75 876; Fax: +49 89 2180 75 882

Keywords: Arginine methylation, liquid liquid phase separation (LLPS), membrane-less organelle (MLO), phase transitions, phosphorylation, post-translational modification (PTM), protein aggregation, RNA-binding proteins (RBPs), RNP granules, stress granules (SGs)

ABSTRACT

Ribonucleoprotein (RNP) granules are membrane-less organelles consisting of RNA-binding proteins (RBPs) and RNA. RNA granules form through liquid–liquid phase separation (LLPS), whereby weak promiscuous interactions among RBPs and/or RNAs create a dense network of interacting macromolecules and drive the phase separation. Post-translational modifications (PTMs) of RBPs have emerged as important regulators of LLPS and RNP granule dynamics, as they can directly weaken or enhance the multivalent interactions between phase-separating macromolecules or can recruit or exclude certain macromolecules into or from condensates. Here, we review recent insights into how PTMs regulate phase separation and RNP granule dynamics, in particular arginine (R)-methylation and phosphorylation. We discuss how these PTMs regulate the phase behavior of prototypical RBPs and how, as “friend or foe”, they might influence the assembly, disassembly, or material properties of cellular RNP granules, such as stress granules or amyloid-like condensates. We particularly highlight how PTMs control the phase separation and aggregation behavior of disease-linked RBPs. We also review how disruptions of PTMs might be involved in aberrant phase transitions and the formation of amyloid-like protein aggregates as observed in neurodegenerative diseases.

In recent years, phase separation has emerged as a novel principle of cellular organization: Numerous membrane-less organelles (MLOs) in the cytoplasm or nucleus, which are supramolecular assemblies of macromolecules, assemble through the process of liquid liquid phase separation (LLPS) (1). The resulting assemblies, also called biomolecular condensates (2), concentrate certain macromolecules, while excluding others, and hence can speed up or slow down biochemical reactions or organize intracellular structures (3). Classical examples of MLOs include RNP granules, such as stress granules (SGs) and P bodies (PBs) in the cytoplasm, or nucleoli and paraspeckles in the nucleus. They consist of RNA-binding proteins (RBPs) and RNAs and often have liquid-like properties, i.e. they fuse with one another upon contact and show fast internal rearrangement and dynamic exchange of molecules with their surrounding (3-5). However, there are also cellular RNP condensates with solid-like properties, such as the Balbiani body (Bb) in oocytes, which is a large, electron-dense “aggregate” that sequesters many membranous organelles and is thought to keep them in a low activity state during oocyte dormancy (6,7).
In recent years, great advances have come from in vitro experiments that have reconstituted liquid-like RNP granules or other condensates with only one or a few components, e.g. purified RBPs or RNA (4,8-13). Such in vitro studies have demonstrated that liquid-like assemblies are metastable and can harden into viscous liquids, gels or even solid-like amyloids. Such liquid-to-solid state transitions are thought to underlie the formation of intracellular, pathological protein aggregates in the context of neurodegenerative diseases, e.g. aggregates containing the RBPs TDP-43 or FUS in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) or Tau aggregates in Alzheimer’s disease (AD) (4,14-16). In vitro reconstitution experiments also helped to establish that biological phase separation is mainly driven by weak promiscuous interactions between multivalent protein interaction domains (8) or intrinsically disordered low complexity domains (LCDs) (17). As multivalent interaction motifs and short linear motifs (SLiMs) in intrinsically disordered regions (IDRs) and LCDs are often post-translationally modified (18-21), it is not surprising that post-translational modifications (PTMs) are important regulators of phase separation (22,23). PTMs change the physicochemical properties of the modified amino acids, e.g. by altering the steric properties, charge state or bulkiness, and hence modulate interactions either positively or negatively. PTMs can alter the phase-separated state by directly weakening or enhancing the multivalent interactions between phase-separating macromolecules (Fig. 1A), or by recruiting/excluding certain macromolecules (e.g. a protein or a nucleic acid) into/from the condensate (Fig. 1B). In this fashion, PTMs can control the assembly or disassembly of condensates and MLOs, and change their composition as well as their material properties (Fig. 1).

In this review, we highlight recent examples that illustrate how phase separation of RBPs and intracellular RNP granules are regulated by PTMs, in particular arginine (R)-methylation and phosphorylation as well-studied paradigms. We discuss how these PTMs regulate the phase behavior of prototypical RBPs in vitro and how they might influence the composition, dynamics and material properties of cellular RNP granules, such as SGs or amyloid-like condensates. We place special emphasis on disease-linked RBPs that are thought to form pathological aggregates via aberrant liquid-to-solid state transitions and are linked to neurodegenerative diseases.

Key amino acids governing the phase separation behavior of RBPs are frequently post-translationally modified

Recently, a lot of progress has been made towards elucidating the molecular interactions that underlie phase separation of proteins and dictate their phase behavior. In particular, recent work by Alberti, Hyman, Pappu and colleagues has identified a sequence encoded “molecular grammar” governing phase separation of RBPs with prion-like LCDs (24). This study established that interactions between aromatic and positively charged amino acids, in particular tyrosine (Y) and arginine (R), are the key driving force for phase separation of RBPs(24). In line with these findings, several other studies have recently shown that R residues in RGG/RG or RG-FG repeat motifs are required for phase separation of FUS (25-27) or Ddx4, respectively (28,29). The material properties of RBP condensates are also determined by a specific sequence code: Glycine (G) residues enhance fluidity of condensates, whereas Glutamine (Q) and serine (S) residues promote hardening (24), possibly by promoting formation of labile cross-β-sheets (30-32).

Considering that R, Y and S are frequently post-translationally modified, e.g. by methyl-groups on R and phospho-groups on Y or S, PTMs on these residues are likely to be crucial modulators of RBP phase separation. Phosphorylation introduces a negative charge, which should tune RBP phase separation behavior either positively or negatively, depending on whether it is driven primarily by aromatic-cationic interactions or by aromatic-aromatic interactions (24). R-methylation does not alter the charge, but increases the bulkiness and alters the charge distribution, hydrophobicity and hydrogen bonding properties of the guanidinium head group (33), all of which impacts intermolecular interactions and hence could tune the phase separation behavior.

In the following paragraphs, we will discuss arginine methylation and phosphorylation
as two important control mechanisms that tune phase separation of RBPs and hence regulate the dynamic assembly and disassembly of cellular RNP granules. We contemplate whether these PTMs are “friend or foe” of RBP phase separation, i.e. whether they tend to promote or rather to suppress LLPS and RNP granule assembly/disassembly. Finally, we will briefly discuss how the interplay of R-methylation and phosphorylation with other PTMs may provide an even more complex biological regulation of phase separation and condensates.

Arginine methylation: A key regulator of RBP phase separation and RNP granule dynamics

Repetitive RGG- or RG-rich motifs are a prevalent sequence pattern in heterogeneous ribonucleoproteins (hnRNPs) and other nuclear RBPs (34). R residues located in RGG/RG motifs are the preferred sites for methylation by members of the protein arginine methyltransferase (PRMT) family (35). PRMTs catalyze the transfer of one or two methyl groups from S-adenosylmethionine (SAM) to the terminal guanidino nitrogen atoms of R, thus generating monomethyl-arginine (MMA) or symmetric or asymmetric dimethyl-arginine (SDMA or ADMA). In mammals, there are nine PRMTs (PRMT1-9), but the major enzyme responsible for the bulk of R-methylation activity is PRMT1 (36), which preferentially methylates RGG/RG motifs and generates MMA and ADMA (37).

R-methylation is thought to be a rather stable or “static” modification, although there is evidence for the existence of an R-demethylase activity (37), and JMJD6 and JmJC histone lysine demethylases have been reported to function as R-demethylases (38,39). Nevertheless, R-methylation is considered much less dynamic than other PTMs, such as phosphorylation or acetylation, (40), hence, in contrast to phosphorylation, R-methylation is unlikely to act as a rapid „switch“ that can be readily activated and deactivated in response to changes in the cellular environment.

As RGG/RG-rich motifs are highly abundant in RBPs (34) and R – aromatic interactions are a key driving force of RBP phase separation (24), it is not surprising that a vast number of recent studies have provided evidence for a critical role of RGG/RG-rich motifs in RBP phase separation (25,26,28,41-43). We summarize recent examples that have established R-methylation as a suppressor of RBP phase separation in vitro and discuss different scenarios how R-methylation may modulate RNP granule assembly/disassembly in cells.

Arginine methylation suppresses LLPS of RBPs in vitro

So far, three different examples (Ddx4, hnRNP-A2 and FUS) have demonstrated that R-methylation reduces LLPS by reducing R – aromatic (\(\pi\)) interactions that normally drive phase separation of these RBPs (Fig. 2). The first example was provided by the DEAD-box RNA helicase Ddx4, which is an essential component of germline-specific RNP granules, e.g. nuage or chromatoid bodies in mammals and P granules in C. elegans. Nott and colleagues demonstrated that the disordered, N-terminal RGG-rich domain of Ddx4 (DdxN1) undergoes LLPS \(\text{in vitro}\) and forms liquid-like compartments in cells. They furthermore established that formation of liquid DdxN1 droplets is driven by cation-\(\pi\) interactions between repeated RG and FG motifs, and is suppressed by asymmetric dimethylation, introduced by co-expression of PRMT1 with DdxN1 in \(E.\ coli\) (28). Subsequently, a structural study of the hnRNP-A2 prion-like LCD reported that asymmetric dimethylation of four RGG motifs (by \(\text{in vitro}\) methylation with purified PRMT1) causes a significant reduction of phase separation, by disrupting the interactions of R residues with aromatic residues (44). Finally, two independent studies recently reported that R-methylation suppresses phase separation of FUS, which shows extensive asymmetric dimethylation in its three RGG/RG repeat domains (45-47). The first study by our own laboratory compared unmethylated FUS purified from \(E.\ coli\) and asymmetrically dimethylated FUS obtained by \(\text{in vitro}\) methylation with purified PRMT1 (25). Compared to unmethylated FUS, methylated FUS exhibits significantly reduced liquid-liquid demixing and shows enhanced droplet dynamic, as measured by fluorescence recovery after photobleaching (FRAP) of half-bleached FUS-EGFP droplets. Moreover, when added to semi-permeabilized cells containing SGs, the methylated protein shows significantly
lower SG association than unmethylated FUS (25). The other study by Qamar et al. obtained hypomethylated FUS (HYPO-FUS) by purifying the protein from insect cells treated with AdOx, a global inhibitor of methylation (26). Compared to “normal” FUS purified from untreated insect cells, HYPO-FUS forms a larger number of liquid droplets and shows reduced sphericity and fewer fusion events, suggesting reduced dynamics (26). Using atomic force microscopy (AFM), they furthermore demonstrated that a portion of the HYPO-FUS assemblies have stiffer nanomechanical properties and show enhanced binding of an amyloidophilic dye (pFTAA), suggestive of β-sheet-rich hydrogels.

The finding that lack of R-methylation promotes LLPS and more solid-like FUS assemblies is most likely of direct pathological relevance, as hypomethylated FUS has been found in insoluble protein aggregates in brains of frontotemporal dementia (FTD) patients, whereas FUS is normally soluble and asymmetrically dimethylated in healthy brains (48,49). Given the recent findings that R-methylation suppresses LLPS of FUS and keeps the protein in a dynamic, liquid-like state (25,26), it can be speculated that loss of FUS R-methylation is a pathogenic event, promoting LLPS and liquid-to-solid state transition of FUS, eventually leading to pathological FUS aggregates. In this respect, it will be interesting to determine how loss of FUS R-methylation arises and whether other R-methylated RBPs that aggregate in neurodegenerative diseases, e.g. hnRNP-A family proteins, EWS or TAF15 (50), are also hypomethylated in patients and show enhanced LLPS and solidification upon loss of R-methylation.

So far, three different examples (Ddx4N1, hnRNP-A2 LCD and FUS) have shown a suppression of LLPS by R-methylation (25,26,28,44) and there are currently no examples where R-methylation had the opposite effect. This could indicate that R-methylation in general is a PTM that reduces R – aromatic (π) interactions (Fig. 2) and thus reduces phase separation of RBPs, in particular of RBPs with numerous R and Y residues, e.g. hnRNP-UL1, hnRNP-R, Drosha or Syncrip (24). Further experimental tests will eventually prove or disprove this hypothesis.

Arginine methylation regulates RNP granule assembly through diverse mechanisms

Methylation of R residues was not only shown to influence phase separation of RBPs in vitro, but was also found to regulate RNP granule dynamics and function in cells, although the underlying molecular mechanisms are in most cases still unknown. Studying R-methylation in cells is challenging, as “unmethyl-R” and “methyl-R” cannot be faithfully mimicked by amino acid mutations, and inhibition or overexpression of PRMTs affects a multitude of R-methylated proteins, making it impossible to attribute a certain phenotypic change to one particular R-methylated protein. Nevertheless, from the reported examples, two general principles can be extracted how R-methylation of RBPs may regulate RNP granules: (a) by altering protein-protein or protein-RNA interactions, and (b) by altering nucleocytoplasmic transport of RBPs and hence altered their concentration in the nucleus or cytoplasm (Fig. 3). Interestingly, R-methylation has not always a suppressive effect on RNP granule formation, as might be expected from its suppressive effect on RBP LLPS in vitro (see above and Fig. 2), but it can also promote RNP granule assembly, e.g. by recruiting a certain factor (protein or RNA) that in turn promotes phase separation and RNP granule formation, or by increasing the concentration of a phase-separating RBP in a particular compartment, hence promoting RBP condensation in this compartment. Thus, even though R-methylation generally tends to reduce phase separation of RBPs (25,26,28,44), it has a more complex regulatory role in the in vivo context and can affect the dynamics and functional properties of RNP granules in numerous different ways.

First evidence for a “suppression” of RNP granules by R-methylation was provided in 2006 by Dholzanskava et al., who reported that global inhibition of methylation using AdOx increases the number of cells with FRMP-containing cytoplasmic granules, which are negative for SG marker proteins (51). More recently, R-methylation has been more directly linked to the suppression of SGs, as it was shown that hypermethylation of the SG-nucleating protein G3BP1 by PRMT overexpression suppresses SG formation (52). Conversely, pharmacological
inhibition of PRMT1 or PRTM5 or AdOx treatment reduces R-methylation levels of G3BP1 and elevates the number of arsenite-induced SGs. They furthermore demonstrated that arsenite stress quickly and reversibly decreases G3BP1 methylation on three R residues, suggesting that G3BP1 demethylation might be involved in SG formation (52). A follow-up study has implicated the JmjC domain-containing histone arginine demethylase JMJD6 as G3BP1-demethylating enzyme: JmJD6 partially localizes to SGs and its overexpression promotes SG formation and demethylation of G3BP1 (53). Whether R-methylation directly affects LLPS of FMRP or G3BP1, e.g. suppressing it through reduced cation-π interactions (Fig. 2) remains to be demonstrated using in vitro methylation and in vitro phase separation experiments.

As noted above, there is also ample evidence for a “promotion” of RNP granules by R-methylation: In 2016, it was shown that the RGG domain of the symmetrically dimethylated Lsm4 protein is required for P body (PB) formation, and PRMT5 depletion strongly reduces Lsm4 methylation and PB formation (54). Similarly, RAP55A, a member of the Scd6 or Lsm14 family, is an asymmetrically dimethylated PB protein that fails to localize to PBs upon PRMT1 depletion, indicating that R-methylation stimulates PB localization of RAP55A (55). This appears to be functionally relevant, as R-methylation of the RAP55A yeast orthologue Scd6 promotes its SG localization and translation repression activity by enhancing eIF4G1 binding (56). Interestingly, a number of other translational repressors, e.g. Sbp1, Npl3 and Ded1, are R-methylated and repress translation through binding to eIF4G1 (57). Moreover, the disease-linked RBPs FMRP, ATXN-2 and hnRNP-A1 are R-methylated and play a role in translational control (58-60). Thus, it will be interesting to determine whether R-methylation is a general regulator of translational repressors, e.g. by regulating their interaction with other proteins and/or mRNAs, thus affecting their recruitment into RNP granules and controlling their activity as translational repressors.

R-methylation can not only promote the assembly of liquid-like condensates, but recently was also reported to promote the solid-like Balbiani body (Bb) in germ cells: The Bb is a large, electron-dense “aggregate” in oocytes, enriched in germline-specific mRNAs and a single protein with a prion-like LCD, called Xvelo in C. elegans or Bucky ball (Buc) in zebrafish (6,7). The C-terminus of Buc contains a tri-RG motif which is symmetrically dimethylated and is required for Bb formation: R-methylated Buc recruits the Tudor-domain containing protein Tdrd6, which regulates Buc aggregation and promotes Bb assembly and hence is essential for germ cell development (61). Other examples where R-methylation promotes RNP assembly through recruitment of the Tudor-domain containing protein SMN include the symmetrically dimethylated snRNP proteins SmD1 and SmD3 and the asymmetrically dimethylated protein FUS: Methylated SmD1 and SmD3 recruit SMN and in turn promote assembly of small nuclear ribonucleoprotein particles (snRNPs) and spliceosomes (62), whereas FUS recruits SMN via its methylated RGG domains to promote assembly of Cajal body associated nuclear structures called Gems (63,64). Together, these example demonstrate that R-methylation frequently promotes RNP granule assembly by positively affecting protein-protein interactions, e.g. with Tudor-containing proteins, which in turn trigger RNP granule assembly (Fig. 3A).

Another mechanism how R-methylation may affect RNP granule assembly or disassembly is through the regulation of nucleocytoplasmic transport and hence altered concentration of certain factors in the cytoplasm vs. nucleus (Fig. 3B). Evidence for this is so far limited, but was proposed to underlie the reduced SG localization of Cold-inducible RNA-binding protein (CIRP) and of SERPINE1 mRNA-binding protein 1 (SERBP1) upon AdOx treatment (65,66): SG recruitment of the CIRP upon oxidative stress or heat shock is abolished in AdOx-treated HeLa cells (65), potentially because nucleocytoplasmic localization of CIRP is regulated by R-methylation (67), hence unmethylated CIRP might be unable to exit the nucleus and fail to localize to cytoplasmic SGs. Similarly, SERBP1 shows reduced cytoplasmic localization upon loss of R-methylation (66) and hence may not partition into SGs upon AdOx treatment (68). How exactly nucleocytoplasmic transport of CIRP and SERBP1 is regulated by R-methylation...
remains to be established, but there are several other examples where R-methylation has been clearly shown to regulate Transportin-dependent nuclear import of RBPs, e.g. of PABPN1 or FUS (48,49,69). This additional level of regulation should be kept in mind as a further possibility how R-methylation may affect condensation of certain RBPs in the nucleus or cytoplasm and hence may control the assembly or disassembly of nuclear or cytosolic RNP granules.

In summary, numerous examples illustrate that R-methylation is a key regulatory PTM controlling RNP granules dynamics and function. The above mentioned examples illustrate that this regulation can entail different mechanisms, e.g. modulation of protein-protein interactions, or altered nucleocytoplasmic transport and hence altered protein concentrations in the nucleus or cytoplasm. The different scenarios most likely lead to altered phase separation behavior of individual RNP granule components, although this still remains to be demonstrated through in vitro phase separation experiments. A future challenge will be to combine in vitro studies (such as those described in the previous paragraph) with cellular or in vivo experiments, in order to reveal how R-methylation regulates phase separation of specific RBPs and in turn modulates RNP granule assembly and dynamics.

Other PTMs on arginine residues and their role in phase separation and RNP granule dynamics

Arginine residues in RGG/RG motifs are also subject to other types of PTMs, most notably citrullination. The conversion of R to citrulline is catalyzed by the peptidyl arginine deiminase (PAD) protein family, which convert the positively charged guanidino group of R to a neutral urea group, hence citrulline has different chemical properties than unmethylated R. RGG/RG-rich motifs are consensus sequences for PAD4-mediated citrullination and interestingly, PAD4 overexpression was recently found to competitively inhibit R-methylation and to increase the solubility of different RBPs (e.g. FUS, TAF15, EWS, hnRNP-A1) in cells (70). In line with these findings, PAD-mediated citrullination of FUS was shown to abolish LLPS of FUS in vitro (26). This suggests that citrullination reduces the multivalent R-Y interactions that drive phase separation of FUS (24,26) and hence has a similar “suppressive” effect on RBP phase separation as R-methylation. Whether citrullination of disease-linked RBPs is altered in neurodegenerative diseases with RBP aggregates remains to be examined. Interestingly, a single nucleotide polymorphism (SNP) in the PAD4 gene, associated with low PAD4 expression, is linked with a higher ALS risk and earlier disease onset (70). This could indicate that PAD4-mediated RBP citrullination is decreased in ALS patients and may contribute to aberrant phase transitions of disease-linked RBPs, e.g. FUS, TAF15, EWS and hnRNP-A1. Under which conditions PAD4-mediated citrullination occurs and what determines the relative ratios of PRMT-mediated R-methylation and PAD-mediated citrullination of RGG/RG motifs is poorly understood. Further studies are necessary to dissect the interplay between R-methylation and citrullination and to clarify their roles in phase separation and RNP granule dynamics.

Besides methylation and citrullination, several other enzymatic and non-enzymatic PTMs of R residues are known, including phosphorylation, ADP-ribosylation (71) and methylglyoxal (MGO) adducts, the latter being abundant on histones (72). Given the important role of R residues in phase separation of RBPs (24), it will be interesting to determine whether these other PTMs arise on RBPs under physiological or disease conditions and how they affect phase separation and RNP granule dynamics.

Phosphorylation: An important regulator of LLPS and membrane-less organelles

Phosphorylation is the most frequent PTM (73), and phosphorylation by kinases and dephosphorylation by phosphatases provide a major control mechanism to many fundamental processes in eukaryotic cells. In contrast to R-methylation, phosphorylation can rapidly and reversibly modify proteins and act as a rapid switch to respond to signals and quickly modulate protein function. The most frequently phosphorylated residue is serine (S, ~90%), followed by threonine (T) and tyrosine (Y) (~10%). S residues were found to affect the hardening behavior of RBPs (24) and S and Y residues are often highly enriched in prion-like LCDs that drive LLPS of RBPs (24,74). Unlike...
R-methylation, phosphorylation alters the charge of the modified amino acid side chains, i.e. it introduces two negative charges (PO$_4^{2-}$). This drastically alters their steric and chemical properties and provides novel possibilities for intra- and intermolecular electrostatic interactions (18). According to the recently established molecular grammar of RBP phase separation, this is expected to tune RBP phase separation behavior either positively or negatively, depending on whether LLPS is driven primarily by aromatic-cationic interactions or by aromatic-aromatic interactions, respectively (24). Accordingly, several recent studies have provided evidence for a critical role of phosphorylation in regulating the phase separation behavior of RBPs in vitro and the assembly or disassembly of RNP granules in cells.

Phosphorylation regulates LLPS and aggregation of disease-linked RBPs in vitro

In contrast to R-methylation, phosphorylation does not always have a suppressive effect on LLPS of RBPs in vitro, but there are examples for both negative and positive regulation of LLPS by phosphorylation.

One example is the neurodegeneration-linked protein FUS, which is phosphorylated at multiple S/T residues by DNA-dependent protein kinase (DNA-PK) (75-77). Phosphorylation with DNA-PK interferes with phase separation of the FUS LCD (30,76,78), reduces binding to FUS-LCD hydrogels (79) and abrogates phase separation of multivalent interacting proteins tethered to FUS-LCD (80). DNA-PK-mediated phosphorylation or phospho-mimetic substitutions of 12 S/T residues to acidic glutamate (E) in full-length FUS also reduce phase separation and prevent its subsequent liquid-to-solid state transition and fibril or aggregate formation (76). NMR experiments demonstrated that this was due to less frequent transient intermolecular contacts (76) and interference with hydrogen bonding and cross-β interactions (30,78). In line with these in vitro findings, phospho-mimetic FUS was less aggregation-prone when overexpressed in yeast or mammalian cells (76). Under which conditions FUS is phosphorylated in vivo is still poorly understood; so far, only the treatment of cells with DNA damage-inducing drugs, e.g. calicheamicin or calyculin-A, was found to transiently induce FUS phosphorylation on multiple S/T residues (75,77). It has been proposed that transient phosphorylation of FUS after DNA damage may occur in FTD patients with FUS aggregates, as post-mortem brains of these patients show elevated levels of γH2AX (75), a marker for DNA double strand breaks (DSBs). Whether phosphorylation of FUS (and the other members of the FET protein family, EWS and TAF15) indeed occurs in disease conditions or as a physiological stress response, and how it affects other functional properties, such as protein interactions or subcellular localization, is still a matter of debate (22,75,77) and remains to be clarified by future studies.

Another example is TDP-43 (TAR DNA binding protein of 43 kDa), which is found in cytoplasmic and nuclear aggregates in the degenerating brain regions in most ALS and FTD patients (81,82) and up to 30-50% of AD patients (83,84). A phospho-mimetic S48E substitution in the N-terminal domain (NTD) of TDP-43, a site that is constitutively phosphorylated in different cell lines (85-88), was found to reduce LLPS of TDP-43 in vitro and to form less viscous nuclear assemblies than wild-type TDP-43, indicating reduced intermolecular interactions (87). In line with previous studies reporting that oligomerization of TDP-43 via the NTD is essential for proper splicing activity (89,90), the S48E mutation impairs the splicing regulatory activity of TDP-43 (87), indicating that phase separation of TDP-43 may be important for the protein’s physiological function in splicing regulation. Interestingly, the data on S48E also demonstrate that regions outside prion-like LCDs of RBPs can regulate phase separation via PTMs, in this case phosphorylation in the globular NTD of TDP-43 (87).

Surprisingly, it has so far not been examined how phosphorylation and dephosphorylation of TDP-43 in the C-terminal LCD affects its phase separation behavior in vitro: TDP-43 is known to be abnormally phosphorylated on multiple S residues in the LCD (e.g. S379, S403, S404, S409, S410) in ALS and FTD patients (91,92), which was shown to be mediated by Casein kinase 1δ (CK1δ) (93-95), GADD34-bound casein kinase 1ε (CK1ε) (96) or
tau tubulin kinases TTBK1/2 (97,98). Dephosphorylation of TDP-43 was shown to be mediated by Protein phosphatases PP1α and PP1β (99) or the phosphatase calcineurin (100). In cells and model organisms, some studies found that CK1δ- or TTBK1/2-mediated phosphorylation or inhibition of calcineurin-mediated dephosphorylation cause aggregation of phosphorylated TDP-43 and promote toxicity and neurodegeneration (97,98,100-102). In contrast, Li et al. reported that phospho-mimicking substitutions of the C-terminal serines decrease TDP-43 aggregation and alleviate cytotoxicity in a neuronal cell line, suggesting that phosphorylation may rather serve as a compensatory mechanism antagonizing TDP aggregation (103).

In vitro LLPS experiments will hopefully be able to resolve whether C-terminal TDP-43 phosphorylation suppresses or enhances phase separation and aggregation of TDP-43. In contrast to FUS and TDP-43, where phosphorylation has a suppressive effect on LLPS, the microtubule-associated protein Tau exemplifies a protein whose phase separation is promoted by phosphorylation. Tau is a neuron-specific protein that stabilizes microtubules, but forms insoluble neurofibrillary tangles in AD and other neurodegenerative disorders (104). Although Tau is not a classical RBP, it has long been known that Tau binds RNA, and that RNA induces fibrilization of Tau in vitro (105,106). Additionally, Tau was shown to associate with SGs by binding to RBPs that are typically found in SGs, e.g. TIA-1 (107-109). More recently, Tau or its isolated microtubule binding domain were shown to undergo LLPS in vitro (15,16,110,111), and GFP-tagged Tau forms dynamic, droplet-like Tau condensates in neurons (16,108). Tau condensation appears to have an important physiological function, as Tau droplets were shown to concentrate tubulin and to nucleate microtubule bundles, suggesting that intracellular Tau condensates may locally promote microtubule polymerization, e.g. in the neuronal growth cone, at branching points or after axon injury (111).

Nonetheless, physiological Tau condensation can become pathological and give rise to aberrant Tau aggregates as seen in neurodegenerative disorders: Tau droplets rapidly transition from a liquid to a gel-like state in vitro and even mature into Thioflavin S-positive aggregates (16). Interestingly, S phosphorylation in the microtubule binding domain of Tau by MARK2 kinase promotes LLPS of Tau, indicating that the additional negative charges promote electrostatic interactions that drive Tau phase separation (15). Similar observations were made when hyperphosphorylated (insect cell-derived) Tau was compared with partially dephosphorylated (alkaline phosphatase-treated) Tau and E.coli-derived unphosphorylated Tau, demonstrating that phosphorylation promotes phase separation of full-length Tau (16). This is most likely pathologically relevant, as hyperphosphorylated Tau is found in Tau aggregates of AD and FTD patients (112-114) and the AD-risk factor ApoE4 elevates Tau phosphorylation in neurons (115). Thus, phosphorylation of Tau (e.g. by MARK2 or other kinases (116)) may drive pathological Tau aggregation by promoting LLPS and a liquid-to-solid state transition of Tau. Interestingly, Tau was shown to associate with a number of RBPs and to promote SG formation by interacting with TIA-1 (107-109). In this respect, it would be interesting to examine how phosphorylation and altered Tau LLPS behavior influence phase separation of TIA-1 and other SG-associated RBPs, e.g. using in vitro reconstitution experiments. This could reveal an interesting connection between a microtubule nucleating protein and RBP phase separation as well as RNP granule dynamics.

Phosphorylation regulates the dynamics of RNP granules, e.g. SGs, in cells

Evidence for an important role of phosphorylation in the regulation of RNP granule dynamics mainly comes from the observation that inhibition or overexpression of certain kinases leads to altered RNP granule assembly or disassembly (117-121). In many cases, the involved substrate(s) and underlying molecular mechanisms are still unclear, but there are a few examples from which we can learn about possible mechanisms how phosphorylation may modulate RNP granules: (a) by modulating LLPS of certain RBPs, thus promoting their condensation or decondensation and hence RNP granule assembly or disassembly, and (b) by promoting degradation
of certain RBPs (by the proteasome or autophagy), hence reducing their cellular concentration and altering RNP granule assembly or disassembly (Fig. 3C). Just like R-methylation, phosphorylation can have either a suppressive or a promoting effect on RNP granule formation, although in most paradigms examined so far, phosphorylation was found to promote RNP granule disassembly, i.e. to “suppress” certain RNP compartments.

The first prominent kinase that shows a suppressive effect on certain MLOs is dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3), a kinase with broad specificity that phosphorylates multiple S and T residues in unstructured domains (117,122). In 2013, DYRK3 was shown to localize to SGs via its N-terminal LCD and to regulate their dissolution via its kinase activity (117). More recently, the same group examined the role of DYRK3 during mitosis, as it has long been known that numerous cytosolic and nuclear MLOs disappear during mitosis. They found that DYRK3 acts as a “dissolvase” of multiple MLOs during mitosis (118). SILAC-based proteomics showed that DYRK3 interacts with multiple RBPs that are known components of splicing speckles, SGs and the centrosome. During mitosis, as the nuclear envelope dissolves, the DYRK3-to-substrate ratio suddenly increases for certain nuclear or cytosolic DYRK3 substrates, which drives them from a condensed state into a dispersed state and causes dissolution of the corresponding MLO (118).

Besides DYRK3, Casein kinase 2 (CK2) was recently found to cause SG disassembly, most likely via phosphorylation of the SG nucleating protein G3BP1 (119). It has long been known that phosphorylation of G3BP1 on S149 regulates the protein’s oligomerization, SG recruitment and RNase activity (123,124), but only recently CK2 was identified as the kinase that phosphorylates G3BP1 on S149 and thus promotes SG disassembly (119). Whether CK2 also acts on other key SG regulators, such as other SG nucleating RBPs or translation inhibition factors, and hence affects SG dynamics through multiple different mechanisms remains to be examined. Future research will also have to address how different kinases coordinate to regulate SG dynamics. It seems likely that at least some of them directly phosphorylate key SG nucleators (e.g. G3BP1) and regulate their phase separation behavior.

A third kinase that shows a “suppressive” effect on SGs is spleen tyrosine kinase (Syk), although this mechanism appears to involve SG degradation rather than SG disassembly: Syk is recruited to G3BP1-positive SGs, where it actively phosphorylates SG-localized proteins on Y residues and promotes SG clearance by autophagy (120). Degradation of entire RNP granules or individual RBPs could be a common theme how phosphorylation downregulates RNP granules and their cellular functions (Fig. 3C): Recently, Ime2 kinase was shown to phosphorylate the amyloid-like translational repressor Rim4 in budding yeast, causing Rim4 disassembly and rapid degradation by the proteasome (121). This mechanism is important for progression of yeast cells through meiosis, as yeast employs amyloid-like structures to mediate translational repression during pre-meiotic G1 phase, but have to release translational repression in order to progress through meiosis (125). This is achieved by phosphorylation in the LCD of Rim4, causing its decondensation and subsequent proteasomal degradation. It is tempting to speculate that clearance of amyloid-like assemblies by phosphorylation might be a general mechanism that is also used to clear disease-associated protein aggregates, e.g. Tau or TDP-43. Indeed, Tau and TDP-43 aggregates are known to be hyperphosphorylated in post-mortem brains of AD, FTD or ALS patients (82,95,112,113,126), suggesting that this could be a typical cellular response to the presence of amyloid-like aggregates. Perhaps deficiencies in certain chaperones or in proteasomal degradation in the aging brain prevents efficient disassembly or clearance of hyperphosphorylated Tau or TDP-43 aggregates, leading to their persistence.

As mentioned above, phosphorylation can not only have a negative, suppressive effect on RNP granules, but also can promote their formation (Fig. 4): Kinases that were reported to have a “promoting” effect on SGs include 5´-AMP-activated protein kinase alpha 2 (AMPK-α2), which localizes to SGs upon stress treatment of HeLa cell. Pharmacological inhibition or knockdown of AMPK-α interferes with SG formation, while pharmacological activation of
the enzyme stimulates SG assembly (127,128). Other examples are the mTOR effector kinases S6 kinase 1 and 2 (S6K1 and S6K2) that were shown to localize to SGs and to be required for SG assembly and maintenance after mild oxidative stress (129).

Taken together, phosphorylation appears to be a crucial control mechanism governing RNP granule assembly, disassembly and/or degradation (Fig. 3 and 4). For the most part, it is still unknown which exact molecular interactions are modulated by the involved kinases and whether phosphatases are also involved in the regulation. Another interesting question is how a kinase can access its phosphorylation sites within condensates, especially if phosphorylation sites are partially buried within solid-like assemblies, e.g. Rim4 aggregates. Further study of the molecules and interactions involved will hopefully uncover how phosphorylation regulates the dynamics of various RNP granules and whether it can be exploited as a promising drug target to disassemble or prevent formation of pathological RNP aggregates.

Arginine methylation and phosphorylation as regulators of LLPS and RNP granules: Friend or foe?

As discussed above, there are numerous paradigms indicating an important role of R-methylation and phosphorylation in the regulation of LLPS of RGG/RG-containing RBPs, both from in vitro studies and from studies of RNP granules in cells or model organisms (Fig. 4). Depending on the modified proteins, both PTM can have either a suppressive or a promoting effect on LLPS and RNP granule assembly, i.e. they cannot be clearly categorized as “friend” or “foe” of phase separation. However, so far there are more examples where R-methylation and phosphorylation suppress LLPS of RBPs and trigger the disassembly of RNP granules, so for the most part, they tend to negatively regulate biological phase separation.

Suppression of LLPS by R-methylation or phosphorylation may be especially relevant for aggregation-prone RBPs that get highly concentrated in cytoplasmic RNP granules and therefore are at risk of undergoing aberrant liquid-to-solid transitions and engaging in amyloid-like cross-β-sheet interactions, e.g. the highly abundant R/S/Y-rich proteins FUS, EWS, TAF15 (24). In young and healthy cells, numerous quality control mechanisms are in place to control LLPS and aberrant phase transitions of these proteins, e.g. chaperones and factors that promote degradation of misfolded proteins, such as the ubiquitin-proteasome system and autophagy (130). R-methylation could be an additional “protein quality control” mechanism that declines during aging, as several PRMTs and global R-methylation levels are reduced in aged cells or rats (131). R-methylation appears to be especially relevant in terminally differentiated and long-lived neurons, e.g. motor neurons, which show tissue-specific expression of PRMT8 and require R-methylation for a proper stress response and for maintaining motor neuron health during ageing (132). Suppression of aberrant RBP phase separation by R-methylation may be part of the protective mechanism, hence it would be interesting to examine whether loss of PRMT8 promotes pathological RBP phase transitions and alters RNP granule dynamics and function in neurons. Taken together, R-methylation may be a “friend” of protein homeostasis and quality control of liquid phase separation and hence a “friendly”, protective PTM in neurons.

Whether phosphorylation of disease-linked aggregating proteins is indeed a protective “friend” or rather a threatening “foe” still remains to be clarified, and it is likely that no general rule applies to all aggregating proteins. On the one hand, phosphorylation of amyloid-like aggregates may be an important quality control mechanism, favoring decondensation of solid assemblies and subsequent clearance by the proteasome or autophagy, as recently shown for Rim4 aggregates in yeast (121). On the other hand, phosphorylation of Tau and TDP-43 promotes their aggregation, and both proteins are known to be hyperphosphorylated in post-mortem brains of AD, FTD or ALS patients (82,95,112,113,126). Interestingly, both Tau and TDP-43 can be phosphorylated by tau tubulin kinases 1 and 2 (TTBK1/2) (97,133) and elevated levels of TTBK1/2 have been identified in brains of AD (134) as well as FTD-tau and FTD-TDP patients (98), where they co-localize with pTDP-43 (97). A phosphatase that was found to be elevated in the aging brain and cortices of ALS patients is the nuclear PP1 isoform PP1γ (Jawaid 2018),
furthermore indicating that misregulated phosphorylation and dephosphorylation events may contribute to pathological protein aggregation and neurodegeneration.

Interplay of arginine methylation and phosphorylation with other PTMs

Besides post-translational R-methylation and S/Y-phosphorylation, many other PTMs are found on RBPs, in particular in intrinsically disordered regions and short linear motifs (SLiMs) (21). RBPs can carry single or multiple PTMs, or a combination of different PTMs on the same or different amino acids, which can lead to additive, cooperative or competitive responses, providing many layers of complex biological regulation (18). How the different types of PTMs coordinately regulate phase separation of RBPs and RNP granule dynamics, is still largely undetermined. RBPs are frequently both methylated and phosphorylated, suggesting that they could cooperate or interfere with one another. For instance, for the SG nucleating protein G3BP1, it has been proposed that demethylation may cooperate with dephosphorylation to promote SG assembly and translational inhibition (52,119). Other examples could include FUS or hnRNP-A1, which are constitutively R-methylated and become phosphorylated during DNA damage, oxidative stress or heat stress, respectively (22,135).

Other PTMs that appear to cross-talk with phosphorylation are lysine (K) acetylation and O-linked N-acetylg glucosamine (O-GlcNAc) modification. K-acetylation was shown to decrease Tau LLPS and aggregation (136,137) as well as LLPS of the N-terminal IDR of DDX3X (DDX3X-IDR1) (138), and the deacetylase HDAC6 was shown to be required for SG formation (139). Interestingly, acetylation on K321 of Tau prevents phosphorylation of the downstream S324 residue, which inhibits Tau function and promotes its aggregation (136). Thus, acetylation and phosphorylation coordinately regulate Tau assembly and function. Similar mechanisms may exist for other acetylated and phosphorylated RBPs, e.g. TDP-43 (95,140). The second example is O-GlcNAcylation on S/T residues, which reversibly occurs on numerous components of the translational machinery in response to stress, and promotes SG and PB formation (141) as well as selective translation of stress mRNAs during the heat stress response (142). O-GlcNAcylation appears to be tightly interlinked with phosphorylation, as both PTMs occur on S and T residues. Mass spectrometry studies have shown that O-GlcNAcylation and phosphorylation are often found on the same proteins, and protein kinases are more extensively O-GlcNAcylated than proteins in general, demonstrating cross-talk between the two PTMs (143,144). An interesting target protein that is both phosphorylated and O-GlcNAcylated is Tau, and curiously, loss of O-GlcNAcylation in forebrain neurons induces progressive neurodegeneration, an increased production of hyperphosphorylated Tau and Tau aggregation (145). Another example is hnRNP-A1, whose nucleocytoplasmic localization is regulated by phosphorylation and O-GlcNAcylation (135,146). It will be interesting to study the role of O-GlcNAcylation on Tau and hnRNP-A1 phase separation and SG association, and how both types of PTM (and possibly other PTMs) coordinately regulate the phase separation and aggregation behavior of these disease-linked proteins.

So far, most PTMs have been studied in isolation, either through in vitro modification approaches or cellular studies exploiting chemical inhibition or silencing/overexpression of a certain modifying enzyme. Recently, advances in semi-synthetic strategies have allowed for the site-specific introduction of single or multiple different PTMs into recombinant proteins, as successfully demonstrated for K-acetylation, Y and S phosphorylation in the microtubule-binding domain of Tau (147). Such strategies provide new opportunities for investigating other types of PTMs that occur within Tau or other heavily post-translationally modified proteins. This may eventually allow us to decipher the “PTM code” of key disease-linked proteins, such as Tau, FUS or TDP-43.

Perspective

R-methylation and phosphorylation have been recognized as important regulators of LLPS and RNP granule dynamics, however they are by far not the only PTMs that have been shown to modulate phase separation and RNP granules. Several deubiquitylases as well as the small
ubiquitin-like proteins NEDD8 and SUMO were shown to regulate SG assembly and disassembly in yeast and mammalian cells (148-151). Ubiquitin and other small ubiquitin-like proteins are covalently attached to target proteins and often provide an altered binding surface and altered protein-protein interactions. Furthermore, Ubiquitin and poly(ADP-ribose) (PAR) were recently shown to influence phase separation in trans, i.e. Ubiquitin binds to the UBA domain of Ubiquilin 2 (UBQLN2) and thus disperses UBQLN2 condensates (152), whereas PAR binds to PAR-binding motifs in TDP-43 and thus promotes phase separation and SG localization of TDP-43, but prevents pathological TDP-43 phosphorylation (153). This suggests a highly complex regulation of phase separation by a multitude of different PTMs, and we are only beginning to unravel this complex puzzle.

Beyond RBPs and RNP granules, PTMs also control phase separation of key chromatin and transcription regulators (154-156) as well as signaling proteins in various signaling cascades (19,157). Hence, the control of phase separation by PTMs is not only an important principle for RBPs and RNP granules, but most likely for all phase-separating proteins and biomolecular condensates.

Acknowledgments: The authors thank Dr. Saskia Hutten for critical comments on the manuscript and figures. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Emmy Noether grant DO 1804/1-1 (to D.D.) and the Munich Cluster for Systems Neurology (EXC 1010, SyNergy) (to D.D.). The authors also acknowledge support of M.H. by the Graduate School of Systemic Neurosciences (GSN) Munich.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

References
1. Alberti, S. (2017) Phase separation in biology. Curr Biol 27, R1097-R1102
2. Banani, S. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R., and Rosen, M. K. (2016) Compositional Control of Phase-Separated Cellular Bodies. Cell 166, 651-663
3. Shin, Y., and Brangwynne, C. P. (2017) Liquid phase condensation in cell physiology and disease. Science 357
4. Patel, A., Lee, H. O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M. Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T. M., Pozniakowski, A., Poser, I., Maghelli, N., Royer, L. A., Weigert, M., Myers, E. W., Grill, S., Drechsel, D., Hyman, A. A., and Alberti, S. (2015) A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066-1077
5. Brangwynne, C. P., Eckmann, C. R., Courson, D. S., Rybarska, A., Hoege, C., Gharakhani, J., Julicher, F., and Hyman, A. A. (2009) Germplume P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729-1732
6. Boke, E., Ruer, M., Wuhr, M., Coughlin, M., Lemaitre, R., Gygi, S. P., Alberti, S., Drechsel, D., Hyman, A. A., and Mitchison, T. J. (2016) Amyloid-like Self-Assembly of a Cellular Compartment. Cell 166, 637-650
7. Woodruff, J. B., Hyman, A. A., and Boke, E. (2017) Organization and Function of Non-dynamic Biomolecular Condensates. Trends Biochem Sci
8. Li, P., Banjade, S., Cheng, H. C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J. V., King, D. S., Banani, S. F., Russo, P. S., Jiang, Q. X., Nixon, B. T., and Rosen, M. K. (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340
9. Kato, M., Han, T. W., Xie, S., Shi, K., Du, X., Wu, L. C., Mirzai, H., Goldsmith, E. J., Longgood, J., Pei, J., Grishin, N. V., Frantz, D. E., Schneider, J. W., Chen, S., Li, L., Sawaya, M. R., Eisenberg,
Control of phase separation and RNP granule dynamics by PTMs

D., Tycko, R., and McKnight, S. L. (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753-767

Mollie, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A. P., Kim, H. J., Mittag, T., and Taylor, J. P. (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133

Burke, K. A., Janke, A. M., Rhine, C. L., and Fawi, N. L. (2015) Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II. Mol Cell 60, 231-241

Saha, S., and Hyman, A. A. (2017) RNA gets in phase. J Cell Biol 216, 2235-2237

Jain, A., and Vale, R. D. (2017) RNA phase transitions in repeat expansion disorders. Nature 546, 243-247

Ramaswami, M., Taylor, J. P., and Parker, R. (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727-736

Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E., and Zweckstetter, M. (2017) Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commun 8, 275

Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K. M., Bennett, R. E., Dujardin, S., Laskowski, P. R., MacKenzie, D., Kamath, T., Commins, C., Vanderburg, C., Roe, A. D., Fan, Z., Mollie, A. M., Hernandez-Vega, A., Muller, D., Hyman, A. A., Mandelkow, E., Taylor, J. P., and Hyman, B. T. (2018) Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J.

Uversky, V. N. (2015) The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 589, 2498-2506

Bab, A., and Forman-Kay, J. D. (2016) Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. J Biol Chem 291, 6696-6705

Chong, P. A., and Forman-Kay, J. D. (2016) Liquid-liquid phase separation in cellular signaling systems. Curr Opin Struct Biol 41, 180-186

Xie, H., Vucetic, S., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Obradovic, Z., and Uversky, V. N. (2007) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6, 1917-1932

Tompá, P., Davey, N. E., Gibson, T. J., and Babu, M. M. (2014) A million peptide motifs for the molecular biologist. Mol Cell 55, 161-169

Rhoads, S. N., Monahan, Z. T., Yee, D. S., and Shewmaker, F. P. (2018) The Role of Post-Translational Modifications on Prion-Like Aggregation and Liquid-Phase Separation of FUS. Int J Mol Sci 19

Itakura, A. K., Futia, R. A., and Jarosz, D. F. (2018) It Pays To Be In Phase. Biochemistry 57, 2520-2529

Wang, J., Choi, J. M., Holehouse, A. S., Lee, H. O., Zhang, X., Jahnel, M., Maharana, S., Lemaître, R., Pozniakovsky, A., Drechsel, D., Poser, I., Pappu, R. V., Alberti, S., and Hyman, A. A. (2018) A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell

Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., Ruepp, M.-D., Simons, M., Niessing, D., Madl, T., and Dormann, D. (2018) Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 173, 706-719.e713

Qamar, S., Wang, G., Randle, S. J., Ruggeri, F. S., Varela, A. J., Lin, J. Q., Phillips, E. C., Miyashita, A., Williams, D., Ströh, F., Meadows, W., Ferry, R., Dardov, V. J., Tartaglia, G. G., Farrer, L. A., Kaminski Schierle, G. S., Kaminski, C. F., Holt, C. E., Fraser, P. E., Schmitt-Ulms, G., Kleneman, D., Knowles, T., Vendruscolo, M., and St George-Hyslop, P. (2018) FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions. Cell 173, 720-734.e715

Bogaert, E., Boeynaems, S., Kato, M., Guo, L., Caulfield, T. R., Steyaert, J., Schevveneels, W., Wilmans, N., Haeck, W., Hersmus, N., Schymkowitz, J., Rousseau, F., Shorter, J., Callaerts, P.,
Control of phase separation and RNP granule dynamics by PTMs

Robberecht, W., Van Damme, P., and Van Den Bosch, L. (2018) Molecular Dissection of FUS Points at Synergistic Effect of Low-Complexity Domains in Toxicity. Cell Rep 24, 529-537 e524

28. Nott, T. J., Petsalaki, E., Farber, P., Jervis, D., Fussner, E., Plochowietz, A., Craggs, T. D., Bazett-Jones, D. P., Pawson, T., Forman-Kay, J. D., and Baldwin, A. J. (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57, 936-947

29. Chong, P. A., Vernon, R. M., and Forman-Kay, J. D. (2018) RGG/RG Motif Regions in RNA Binding and Phase Separation. J Mol Biol

30. Murray, D. T., Kato, M., Lin, Y., Thurber, K. R., Hung, I., McKnight, S. L., and Tycko, R. (2017) Structure of FUS Protein Filbrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains. Cell 171, 615-627 e616

31. Hughes, M. P., Sawaya, M. R., Boyer, D. R., Goldschmidt, L., Rodriguez, J. A., Cascio, D., Chong, L., Gonen, T., and Eisenberg, D. S. (2018) Atomic structures of low-complexity protein segments reveal kinked beta sheets that assemble networks. Science 359, 698-701

32. Guenther, E. L., Cao, Q., Trinh, H., Lu, J., Sawaya, M. R., Cascio, D., Boyer, D. R., Rodriguez, J. A., Hughes, M. P., and Eisenberg, D. S. (2018) Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat Struct Mol Biol 25, 463-471

33. Evich, M., Stroeva, E., Zheng, Y. G., and Germann, M. W. (2016) Effect of methylation on the side-chain pKa value of arginine. Protein Sci 25, 479-486

34. Thandapani, P., O’Connor, T. R., Bailey, T. L., and Richard, S. (2013) Defining the RGG/RG motif. Mol Cell 50, 613-623

35. Bedford, M. T., and Clarke, S. G. (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33, 1-13

36. Tang, J., Frankel, A., Cook, R. J., Kim, S., Paik, W. K., Williams, K. R., Clarke, S., and Herschman, H. R. (2000) PRMT1 Is the Predominant Type I Protein Arginine Methyltransferase in Mammalian Cells. Journal of Biological Chemistry 275, 7723-7730

37. Yang, Y., and Bedford, M. T. (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13, 37-50

38. Chang, B., Chen, Y., Zhao, Y., and Bruick, R. K. (2007) JMJD6 is a histone arginine demethylase. Science 318, 444-447

39. Walport, L. J., Hopkinson, R. J., Chowdhury, R., Schiller, R., Ge, W., Kawamura, A., and Schofield, C. J. (2016) Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun 7, 11974

40. Fackelmayer, F. O. (2005) Protein arginine methyltransferases: guardians of the Arg? Trends Biochem Sci 30, 666-671

41. Boeynaems, S., Bogaert, E., Kovacs, D., Konijnenberg, A., Timmerman, E., Volkov, A., Guharoy, M., De Decker, M., Jaspers, T., Ryan, V. H., Janke, A. M., Baatsen, P., Vercruysse, T., Kolaitis, R. M., Daelemans, D., Taylor, J. P., Kedersha, N., Anderson, P., Impens, F., Sobott, F., Schymkowitz, J., Rousseau, F., Fawzi, N. L., Robberecht, W., Van Damme, P., Tompa, P., and Van Den Bosch, L. (2017) Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Mol Cell 65, 1044-1055 e1045

42. Elbaugh-Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C. C., Eckmann, C. R., Myong, S., and Brangwynne, C. P. (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci USA 112, 7189-7194

43. Saha, S., Weber, C. A., Nousch, M., Adame-Arana, O., Hoege, C., Hein, M. Y., Osborne-Nishimura, E., Mahamid, J., Jahnel, M., Jawerth, L., Pozniakovski, A., Eckmann, C. R., Julicher, F., and Hyman, A. A. (2016) Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism. Cell 166, 1572-1584 e1516

44. Ryan, V. H., Dignon, G. L., Zerze, G. H., Chabata, C. V., Silva, R., Conicella, A. E., Amaya, J., Burke, K. A., Mittal, J., and Fawzi, N. L. (2018) Mechanistic View of hnRNPA2 Low-Complexity
Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. *Mol Cell* **69**, 465-479 e467

45. Rappsilber, J., Friesen, W. J., Paukshin, S., Dreyfuss, G., and Mann, M. (2003) Detection of Arginine Dimethylated Peptides by Parallel Precursor Ion Scanning Mass Spectrometry in Positive Ion Mode. *Analytical Chemistry* **75**, 3107-3114

46. Ong, S. E., Mittler, G., and Mann, M. (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. *Nat Methods* **1**, 119-126

47. Scaramuzzino, C., Monaghan, J., Milioti, C., Lanson, N. A., Jr., Maltare, A., Aggarwal, T., Casci, I., Fackelmayer, F. O., Pennuto, M., and Pandey, U. B. (2013) Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo. *PLoS One* **8**, e61576

48. Dormann, D., Madl, T., Valori, C. F., Benttman, E., Tahiroyic, S., Abou-Ajram, C., Kremmer, E., Ansorge, O., Mackenzie, I. R., Neumann, M., and Haass, C. (2012) Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. *EMBO J* **31**, 4258-4275

49. Suarez-Calvet, M., Neumann, M., Arzberger, T., Abou-Ajram, C., Funk, E., Hartmann, H., Edbauer, D., Kremmer, E., Gobl, C., Resch, M., Bourgeois, B., Madl, T., Reber, S., Jutzi, D., Ruepp, M. D., Mackenzie, I. R., Ansorge, O., Dormann, D., and Haass, C. (2016) Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. *Acta Neuropathol* **131**, 587-604

50. Taylor, J. P., Brown, R. H., Jr., and Cleveland, D. W. (2016) Decoding ALS: from genes to mechanism. *Nature* **539**, 197-206

51. Dolzhanskaya, N., Merz, G., Aletta, J. M., and Denman, R. B. (2006) Methylation regulates the intracellular protein-protein and protein-RNA interactions of FMRP. *J Cell Sci* **119**, 1933-1946

52. Tsai, W. C., Gayatri, S., Reineke, L. C., Sbardella, G., Bedford, M. T., and Lloyd, R. E. (2016) Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly. *J Biol Chem* **291**, 22671-22685

53. Tsai, W. C., Reineke, L. C., Jain, A., Jung, S. Y., and Lloyd, R. E. (2017) Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule nucleating protein G3BP1. *J Biol Chem* **291**, 15331-15343

54. Arribas-Layton, M., Dennis, J., Bennett, E. J., Damgaard, C. K., and Lykke-Andersen, J. (2016) The C-Terminal RGG Domain of Human Lsm4 Promotes Processing Body Formation Stimulated by Arginine Dimethylation. *Mol Cell Biol* **36**, 2226-2235

55. Matsumoto, K., Nakayama, H., Yoshimura, M., Masuda, A., Dohmae, N., Matsumoto, S., and Tsujimoto, M. (2012) PRMT1 is required for RAP55 to localize to processing bodies. *RNA Biol* **9**, 610-623

56. Poornima, G., Shah, S., Vignesh, V., Parker, R., and Rajyaguru, P. I. (2016) Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. *Nucleic Acids Res* **44**, 9358-9368

57. Rajyaguru, P., She, M., and Parker, R. (2012) Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. *Mol Cell* **45**, 244-254

58. Wall, M. L., and Lewis, S. M. (2017) Methylarginines within the RGG-Motif Region of hnRNP A1 Affect Its IRES Trans-Acting Factor Activity and Are Required for hnRNP A1 Stress Granule Localization and Formation. *J Mol Biol* **429**, 295-307

59. Kaehler, C., Guenther, A., Uhlich, A., and Krobitsch, S. (2015) PRMT1-mediated arginine methylation controls ATXN2L localization. *Exp Cell Res* **334**, 114-125

60. Stetler, A., Winograd, C., Sayegh, J., Cheever, A., Patton, E., Zhang, X., Clarke, S., and Ceman, S. (2006) Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp. *Hum Mol Genet* **15**, 87-96

61. Roovers, E. F., Kaaij, L. J. T., Redl, S., Bronkhorst, A. W., Wiebrands, K., de Jesus Domingues, A. M., Huang, H. Y., Han, C. T., Riemer, S., Dosch, R., Salvenmoser, W., Grun, D., Butter, F., van
Oudenaarden, A., and Ketting, R. F. (2018) Tdrd6a Regulates the Aggregation of Buc into Functional Subcellular Compartments that Drive Germ Cell Specification. *Dev Cell* **46**, 285-301 e289

62. Friesen, W. J., Massenet, S., Paushkin, S., Wyce, A., and Dreyfuss, G. (2001) SMN, the Product of the Spinal Muscular Atrophy Gene, Binds Preferentially to Dimethylarginine-Containing Protein Targets. *Molecular Cell* **7**, 1111-1117

63. Yamazaki, T., Chen, S., Yu, Y., Yan, B., Haertlein, T. C., Carrasco, M. A., Tapia, J. C., Zhai, B., Das, R., Lalancette-Hebert, M., Sharma, A., Chandran, S., Sullivan, G., Nishimura, A. L., Shaw, C. E., Gygi, S. P., Shneider, N. A., Maniatis, T., and Reed, R. (2012) FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. *Cell Rep* **2**, 799-806

64. Sun, S., Ling, S. C., Qiu, J., Albuquerque, C. P., Zhou, Y., Tokunaga, S., Li, H., Qiu, H., Bui, A., Yeo, G. W., Huang, E. J., Eggn, K., Zhou, H., Fu, X. D., Lagier-Tourenne, C., and Cleveland, D. W. (2015) ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. *Nat Commun* **6**, 6171

65. De Leeuw, F., Zhang, T., Wauquier, C., Huez, G., Kruys, V., and Gueydan, C. (2007) The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. *Exp Cell Res* **313**, 4130-4144

66. Lee, Y. J., Hsieh, W. Y., Chen, L. Y., and Li, C. (2012) Protein arginine methylation of SERBP1 by protein arginine methyltransferase 1 affects cytoplasmic/nuclear distribution. *J Cell Biochem* **113**, 2721-2728

67. Aoki, K., Ishii, Y., Matsumoto, K., and Tsujimoto, M. (2002) Methylation of Xenopus CIRP2 regulates its arginine- and glycine-rich region-mediated nucleocytoplasmic distribution. *Nucleic Acids Res* **30**, 5182-5192

68. Lee, Y. J., Wei, H. M., Chen, L. Y., and Li, C. (2014) Localization of SERBP1 in stress granules and nucleoli. *FEBS J* **281**, 352-364

69. Fronz, K., Guttenger, S., Burkert, K., Kuhn, U., Stohr, N., Schierhorn, A., and Wahle, E. (2011) Arginine methylation of the nuclear poly(a) binding protein weakens the interaction with its nuclear import receptor, transportin. *J Biol Chem* **286**, 32986-32994

70. Tanikawa, C., Ueda, K., Suzuki, A., Iida, A., Nakamura, R., Atsuta, N., Tohnai, G., Sobue, G., Saichi, N., Momozawa, Y., Kamatani, Y., Kubo, M., Yamamoto, K., Nakamura, Y., and Matsuda, K. (2018) Citrullination of RGG Motifs in FET Proteins by PAD4 Regulates Protein Aggregation and ALS Susceptibility. *Cell Rep* **22**, 1473-1483

71. Slade, D. J., Subramanian, V., Fuhrmann, J., and Thompson, P. R. (2014) Chemical and biological methods to detect post-translational modifications of arginine. *Biopolymers* **101**, 133-143

72. Galligan, J. J., Wepy, J. A., Streeter, M. D., Kingsley, P. J., Mitchener, M. M., Wauchope, O. R., Beavers, W. N., Rose, K. L., Wang, T., Spiegel, D. A., and Marnett, L. J. (2018) Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. *Proc Natl Acad Sci U S A* **115**, 9228-9233

73. Khoury, G. A., Baliban, R. C., and Floudas, C. A. (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. *Sci Rep* **1**

74. Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. *Cell* **137**, 146-158

75. Deng, Q., Holler, C. J., Taylor, G., Hudson, K. F., Watkins, W., Gearing, M., Ito, D., Murray, M. E., Dickson, D. W., Seyfried, N. T., and Kumar, T. (2014) FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage. *J Neurosci* **34**, 7802-7813

76. Monahan, Z., Ryan, V. H., Janke, A. M., Burke, K. A., Rhoads, S. N., Zerze, G. H., O’Meally, R., Dignon, G. L., Conicella, A. E., Zheng, W., Best, R. B., Cole, R. N., Mittal, J., Shewmaker, F., and Fawzi, N. L. (2017) Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. *EMBO J* **36**, 2951-2967
Rhoads, S. N., Monahan, Z. T., Yee, D. S., Leung, A. Y., Newcombe, C. G., O'Meally, R. N., Cole, R. N., and Shewmaker, F. P. (2018) The prion-like domain of FUS is multiphosphorylated following DNA damage without altering nuclear localization. *Mol Biol Cell*, mbcE17120735

Luo, F., Gui, X., Zhou, H., Gu, J., Li, Y., Liu, X., Zhao, M., Li, D., Li, X., and Liu, C. (2018) Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. *Nat Struct Mol Biol* 25, 341-346

Han, T. W., Kato, M., Xie, S., Wu, L. C., Mirzaei, H., Pei, J., Chen, M., Xie, Y., Allen, J., Xiao, G., and McKnight, S. L. (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. *Cell* 149, 768-779

Lin, Y., Currie, S. L., and Rosen, M. K. (2017) Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. *J Biol Chem*

Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., Bruce, J., Schuck, T., Grossman, M., Clark, C. M., McCluskey, L. F., Miller, B. L., Masliah, E., Mackenzie, I. R., Feldman, H., Feiden, W., Kretzschmar, H. A., Trojanowski, J. Q., and Lee, V. M. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. *Science* 314, 130-133

Neumann, M., Kwong, L. K., Lee, E. B., Kremmer, E., Flatley, A., Xu, Y., Forman, M. S., Troost, D., Kretzschmar, H. A., Trojanowski, J. Q., and Lee, V. M. (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. *Acta Neuropathol* 117, 137-149

Arai, T., Mackenzie, I. R., Hasegawa, M., Nonoka, T., Niizato, K., Tsuchiya, K., Iritani, S., Onaya, M., and Akiyama, H. (2009) Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies. *Acta Neuropathol* 117, 125-136

Josephs, K. A., Whitell, J. J., Weigand, S. D., Murray, M. E., Tosakulwong, N., Liesinger, A. M., Petrucelli, L., Senjem, M. L., Knopman, D. S., Boeve, B. F., Ivnik, R. J., Smith, G. E., Jack, C. R., Jr., Parisi, J. E., Petersen, R. C., and Dickson, D. W. (2014) TDP-43 is a key player in the clinical features associated with Alzheimer's disease. *Acta Neuropathol* 127, 811-824

Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V., and Sullivan, M. (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. *Nucleic Acids Res* 40, D261-270

Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., and Skrzypek, E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic Acids Res* 43, D512-520

Wang, A., Conicella, A. E., Schmidt, H. B., Martin, E. W., Rhoads, S. N., Reeb, A. N., Nourse, A., Ramirez Montero, D., Ryan, V. H., Rohatgi, R., Shewmaker, F., Naik, M. T., Mittag, T., Ayala, Y. M., and Fawzi, N. L. (2018) A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. *EMBO J*

Rigbolt, K. T., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., Kassem, M., Mann, M., Olsen, J. V., and Blagoev, B. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. *Sci Signal* 4, rs3

Afroz, T., Hock, E. M., Ernst, P., Foglieni, C., Jambeau, M., Gilhespy, L. A. B., Laferriere, F., Maniecka, Z., Pluckthun, A., Mittl, P., Paganetti, P., Allain, F. H. T., and Polymenidou, M. (2017) Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. *Nat Commun* 8, 45

Zhang, Y. J., Caulfield, T., Xu, Y. F., Gendron, T. F., Hubbard, J., Stetler, C., Sasaguri, H., Whitelaw, E. C., Cai, S., Lee, W. C., and Petrucelli, L. (2013) The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. *Hum Mol Genet* 22, 3112-3122

Hasegawa, M., Arai, T., Nonaka, T., Kametani, F., Yoshida, M., Hashizume, Y., Beach, T. G., Buratti, E., Baralle, F., Morita, M., Nakano, I., Oda, T., Tsuchiya, K., and Akiyama, H. (2008)
Control of phase separation and RNP granule dynamics by PTMs

Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. *Ann Neurol* **64**, 60-70

92. Inukai, Y., Nonaka, T., Arai, T., Yoshida, M., Hashizume, Y., Beach, T. G., Buratti, E., Baralle, F. E., Akiyama, H., Hisanaga, S., and Hasegawa, M. (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. *FEBS Lett* **582**, 2899-2904

93. Salado, I. G., Redondo, M., Bello, M. L., Perez, C., Liachko, N. F., Kraemer, B. C., Miguel, L., Lecourttois, M., Gil, C., Martinez, A., and Perez, D. I. (2014) Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis. *J Med Chem* **57**, 2755-2772

94. Kametani, F., Nonaka, T., Suzuki, T., Arai, T., Dohmae, N., Akiyama, H., and Hasegawa, M. (2009) Identification of casein kinase-1 phosphorylation sites on TDP-43. *Biochem Biophys Res Commun* **382**, 405-409

95. Kametani, F., Obi, T., Shishido, T., Akatsu, H., Murayama, S., Saito, Y., Yoshida, M., and Hasegawa, M. (2016) Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. *Sci Rep* **6**, 23281

96. Goh, C. W., Lee, I. C., Sundaram, J. R., George, S. E., Yusoff, P., Brush, M. H., Sze, N. S. K., and Shenolikar, S. (2018) Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. *J Biol Chem* **293**, 163-176

97. Liachko, N. F., McMillan, P. J., Strovas, T. J., Loomis, E., Greenup, L., Murrell, J. R., Ghatti, B., Raskind, M. A., Montine, T. J., Bird, T. D., Leverenz, J. B., and Kraemer, B. C. (2014) The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43. *PLoS Genet* **10**, e1004803

98. Taylor, L. M., McMillan, P. J., Liachko, N. F., Strovas, T. J., Ghatti, B., Bird, T. D., Keene, C. D., and Kraemer, B. C. (2018) Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration. *Mol Neurodegener* **13**, 7

99. Gu, J., Wang, W., Miao, S., Chen, F., Wu, F., Hu, W., Iqbal, K., Gong, C. X., and Liu, F. (2018) Protein Phosphatase 1 dephosphorylates TDP-43 and suppresses its function in tau exon 10 inclusion. *FEBS Lett* **592**, 402-410

100. Liachko, N. F., Saxton, A. D., McMillan, P. J., Strovas, T. J., Currey, H. N., Taylor, L. M., Wheeler, J. M., Oblak, A. L., Ghatti, B., Montine, T. J., Keene, C. D., Raskind, M. A., Bird, T. D., and Kraemer, B. C. (2016) The phosphatase calcineurin regulates pathological TDP-43 phosphorylation. *Acta Neuropathol* **132**, 545-561

101. Nonaka, T., Suzuki, G., Tanaka, Y., Kametani, F., Hirai, S., Okado, H., Miyashita, T., Saitoe, M., Akiyama, H., Masai, H., and Hasegawa, M. (2016) Phosphorylation of TAR DNA-binding protein of 43 kDa (TDP-43) by Truncated Casein Kinase 1delta Triggers Mislocalization and Accumulation of TDP-43. *J Biol Chem* **291**, 5473-5483

102. Choksi, D. K., Roy, B., Chatterjee, S., Yusuff, T., Bakhour, M. F., Sengupta, U., Ambegaokar, S., Kayed, R., and Jackson, G. R. (2014) TDP-43 Phosphorylation by casein kinase epsilon promotes oligomerization and enhances toxicity in vivo. *Hum Mol Genet* **23**, 1025-1035

103. Li, H. Y., Yeh, P. A., Chiu, H. C., Tang, C. Y., and Tu, B. P. (2011) Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. *PLoS One* **6**, e23075

104. Wang, Y., and Mandelkow, E. (2016) Tau in physiology and pathology. *Nat Rev Neurosci* **17**, 5-21

105. Kampers, T., Friedhoff, P., Biernat, J., Mandelkow, E., and Mandelkow, E. (1996) RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. *FEBS Lett* **399**, 344-349

106. Wang, X., Wang, D., Zhao, J., Qu, M., Zhou, X., He, H., and He, R. (2006) The proline-rich domain and the microtubule binding domain of protein tau acting as RNA binding domains. *Protein Pept Lett* **13**, 679-685

107. Vanderweyde, T., Yu, H., Varnum, M., Liu-Yesucevitz, L., Citro, A., Ikezu, T., Duff, K., and Wolozin, B. (2012) Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. *J Neurosci* **32**, 8270-8283

18
Control of phase separation and RNP granule dynamics by PTMs

108. Vanderweyde, T., Apicco, D. J., Youmans-Kidder, K., Ash, P. E. A., Cook, C., Lummertz da Rocha, E., Jansen-West, K., Frame, A. A., Citro, A., Leszyk, J. D., Ivanov, P., Abisambra, J. F., Steffen, M., Li, H., Petrucelli, L., and Wolozin, B. (2016) Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity. Cell Rep 15, 1455-1466

109. Maziuk, B. F., Apicco, D. J., Cruz, A. L., Jiang, L., Ash, P. E. A., da Rocha, E. L., Zhang, C., Yu, W. H., Leszyk, J., Abisambra, J. F., Li, H., and Wolozin, B. (2018) RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathol Commun 6, 71

110. Zhang, X., Lin, Y., Eschmann, N. A., Zhou, H., Rauch, J. N., Hernandez, I., Guzman, E., Kosik, K. S., and Han, S. (2017) RNA stores tau reversibly in complex coacervates. PLoS Biol 15, e2002183

111. Hernandez-Vega, A., Braun, M., Scharrel, L., Jahnel, M., Wegmann, S., Hyman, B. T., Alberti, S., Diez, S., and Hyman, A. A. (2017) Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase. Cell Rep 20, 2304-2312

112. Gong, C. X., Liu, F., Grundke-Iqbal, I., and Iqbal, K. (2005) Post-translational modifications of tau protein in Alzheimer's disease. J Neural Transm (Vienna) 112, 813-838

113. Kopke, E., Tung, Y. C., Shaikh, S., Alonso, A. C., Iqbal, K., and Grundke-Iqbal, I. (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268, 24374-24384

114. Braak, H., and Braak, E. (1995) Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 16, 271-278; discussion 278-284

115. Wang, C., Najim, R., Xu, Q., Jeong, D. E., Walker, D., Balestra, M. E., Yoon, S. Y., Yuan, H., Li, G., Miller, Z. A., Miller, B. L., Malloy, M. J., and Huang, Y. (2018) Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med

116. Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, M. L., Yardin, C., and Terro, F. (2013) Tau protein kinases: involvement in Alzheimer's disease. Aging Res Rev 12, 289-309

117. Wippich, F., Bodenmiller, B., Trajkovska, M. G., Wanka, S., Aebersold, R., and Pelkmans, L. (2013) Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791-805

118. Rai, A. K., Chen, J. X., Selbach, M., and Pelkmans, L. (2018) Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559, 211-216

119. Reineke, L. C., Cheema, S. A., Dubrulle, J., and Neilson, J. R. (2018) Chronic starvation induces noncanonical pro-death stress granules. J Cell Sci 131

120. Krisenko, M. O., Higgins, R. L., Ghosh, S., Zhou, Q., Trybula, J. S., Wang, W. H., and Geahlen, R. L. (2015) Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. J Biol Chem 290, 27803-27815

121. Carpenter, K., Bell, R. B., Yunus, J., Amon, A., and Berchowitz, L. E. (2018) Phosphorylation-Mediated Clearance of Amyloid-like Assemblies in Meiosis. Dev Cell 45, 392-405 e396

122. Aranda, S., Laguna, A., and de la Luna, S. (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 25, 449-462

123. Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J. M., Bertrand, E., and Tazi, J. (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160, 823-831

124. Tourriere, H., Gallouzi, I. E., Chebli, K., Capony, J. P., Mouaike, J., van der Geer, P., and Tazi, J. (2001) RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol 21, 7747-7760

125. Berchowitz, L. E., Kabachinski, G., Walker, M. R., Carlile, T. M., Gilbert, W. V., Schwartz, T. U., and Amon, A. (2015) Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis. Cell 163, 406-418

126. Goedert, M., and Spillantini, M. G. (2011) Pathogenesis of the tauopathies. J Mol Neurosci 45, 425-431
Control of phase separation and RNP granule dynamics by PTMs

127. Mahboubi, H., Koromilas, A. E., and Stochaj, U. (2016) AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization. *Mol Pharmacol* **90**, 460-468

128. Mahboubi, H., Barise, R., and Stochaj, U. (2015) 5'-AMP-activated protein kinase alpha regulates stress granule biogenesis. *Biochim Biophys Acta* **1853**, 1725-1737

129. Sfakianos, A. P., Mellor, L. E., Pang, Y. F., Kritsiligkou, P., Needs, H., Abou-Hamdan, H., Desaubry, L., Poulin, G. B., Ashe, M. P., and Whitmarsh, A. J. (2018) The mTOR-S6 kinase pathway promotes stress granule assembly. *Cell Death Differ*

130. Alberti, S., Mateju, D., Mediani, L., and Carra, S. (2017) Granulostasis: Protein Quality Control of RNP Granules. *Front Mol Neurosci* **10**, 84

131. Hong, E., Lim, Y., Lee, E., Oh, M., and Kwon, D. (2012) Tissue-specific and age-dependent expression of protein arginine methyltransferases (PRMTs) in male rat tissues. *Biogerontology* **13**

132. Simandi, Z., Pajer, K., Karolyi, K., Sieler, T., Jiang, L. L., Kolostyak, Z., Sari, Z., Fekecs, Z., Pap, A., Patsalos, A., Contreras, G. A., Reho, B., Papp, Z., Guo, X., Horvath, A., Kiss, G., Keresztessy, Z., Vamossi, G., Hickman, J., Xu, H., Dormann, D., Hortobagyi, T., Antal, M., Nogradi, A., and Nagy, L. (2018) Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. *J Neurosci* **38**, 7683-7700

133. Sergeant, N., Bretteville, A., Hamdane, M., Caillaud-Boudin, M. L., Grognet, P., Bombois, S., Blum, D., Delacourte, A.,Pasquier, F., Vanmechelen, E., Schraen-Maschke, S., and Buee, L. (2008) Biochemistry of Tau in Alzheimer's disease and related neurological disorders. *Expert Rev Proteomics* **5**, 207-224

134. Sato, S., Cerny, R. L., Buescher, J. L., and Ikezu, T. (2006) Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. *J Neurochem* **98**, 1573-1584

135. Guil, S., Long, J. C., and Caceres, J. F. (2006) hnRNP A1 relocalization to the stress granules reflects a role in the stress response. *Mol Cell Biol* **26**, 5744-5758

136. Carlomagno, Y., Chung, D. C., Yue, M., Castaneda-Casey, M., Madden, B. J., Dunmore, J., Tong, J., DeTure, M., Dickson, D. W., Petrucelli, L., and Cook, C. (2017) An acetylation-phosphorylation switch that regulates tau aggregation propensity and function. *J Biol Chem* **292**, 15277-15286

137. Ferreon, J. C., Jain, A., Choi, K. J., Tsoi, P. S., MacKenzie, K. R., Jung, S. Y., and Ferreon, A. C. (2018) Acetylation Disfavors Tau Phase Separation. *Int J Mol Sci* **19**

138. Saito, M., Hess, D., Eglinger, J., Fritsch, A. W., Kreysing, M., Weinert, B. T., Choudhary, C., and Matthias, P. (2019) Acetylation of intrinsically disordered regions regulates phase separation. *Nat Chem Biol* **15**, 51-61

139. Kwon, S., Zhang, Y., and Matthias, P. (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. *Genes Dev* **21**, 3381-3394

140. Cohen, T. J., Hwang, A. W., Restrepo, C. R., Yuan, C. X., Trojanowski, J. Q., and Lee, V. M. (2015) An acetylation switch controls TDP-43 function and aggregation propensity. *Nat Commun* **6**, 5845

141. Ohn, T., Kedersha, N., Hickman, T., Tisdale, S., and Anderson, P. (2008) A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. *Nat Cell Biol* **10**, 1224-1231

142. Zhang, X., Shu, X. E., and Qian, S. B. (2018) O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response. *Nat Chem Biol* **14**, 909-916

143. Trinidad, J. C., Barkan, D. T., Gulledge, B. F., Thalhammer, A., Sali, A., Schoepfer, R., and Burlingame, A. L. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. *Mol Cell Proteomics* **11**, 215-229

144. Hart, G. W., Slawson, C., Ramirez-Correa, G., and Lagerlof, O. (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. *Annu Rev Biochem* **80**, 825-858
Control of phase separation and RNP granule dynamics by PTMs

145. Wang, A. C., Jensen, E. H., Rexach, J. E., Vinters, H. V., and Hsieh-Wilson, L. C. (2016) Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A 113, 15120-15125

146. Roth, S., and Khalaila, I. (2017) The effect of O-GlcNAcylation on hnRNP A1 translocation and interaction with transportin1. Exp Cell Res 350, 210-217

147. Haj-Yahya, M., and Lashuel, H. A. (2018) Protein Semisynthesis Provides Access to Tau Disease-Associated Post-translational Modifications (PTMs) and Paves the Way to Deciphering the Tau PTM Code in Health and Diseased States. J Am Chem Soc 140, 6611-6621

148. Xie, X., Matsumoto, S., Endo, A., Fukushima, T., Kawahara, H., Saeki, Y., and Komada, M. (2018) Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities. J Cell Sci 131

149. Jayabalan, A. K., Sanchez, A., Park, R. Y., Yoon, S. P., Kang, G. Y., Baek, J. H., Anderson, P., Kee, Y., and Ohn, T. (2016) NEDDylation promotes stress granule assembly. Nat Commun 7, 12125

150. Jongjitwimol, J., Baldock, R. A., Morley, S. J., and Watts, F. Z. (2016) Sumoylation of eIF4A2 affects stress granule formation. J Cell Sci 129, 2407-2415

151. Nostramo, R., Varia, S. N., Zhang, B., Emerson, M. M., and Herman, P. K. (2016) The Catalytic Activity of the Ubp3 Deubiquitinating Protease Is Required for Efficient Stress Granule Assembly in Saccharomyces cerevisiae. Mol Cell Biol 36, 173-183

152. Dao, T. P., Kolaitis, R. M., Kim, H. J., O'Donovan, K., Martyniak, B., Colicino, E., Hehnly, H., Taylor, J. P., and Castaneda, C. A. (2018) Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions. Mol Cell 69, 965-978 e966

153. McGurk, L., Gomes, E., Guo, L., Mojsilovic-Petrovic, J., Tran, V., Kalb, R. G., Shorter, J., and Bonini, N. M. (2018) Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Mol Cell 71, 703-717 e709

154. Boehning, M., Dugast-Darzacq, C., Rankovic, M., Hansen, A. S., Yu, T., Marie-Nelly, H., McSwiggen, D. T., Kokic, G., Dailey, G. M., Cramer, P., Darzacq, X., and Zweckstetter, M. (2018) RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol 25, 833-840

155. Larson, A. G., Elnatan, D., Keenen, M. M., Trnka, M. J., Johnston, J. B., Burlingame, A. L., Agard, D. A., Redding, S., and Narlikar, G. J. (2017) Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547, 236-240

156. Lu, H., Yu, D., Hansen, A. S., Ganguly, S., Liu, R., Heckert, A., Darzacq, X., and Zhou, Q. (2018) Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318-323

157. Su, X., Ditlev, J. A., Hui, E., Xing, W., Banjade, S., Okrut, J., King, D. S., Taunton, J., Rosen, M. K., and Vale, R. D. (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595-599
Figure 1: PTMs can regulate formation and material properties of condensates. (A) PTMs have the potential to promote the assembly or disassembly of liquid-like condensates as well as the transition to gel- or solid-like condensates by enhancing or disrupting weak multivalent interactions between phase-separating RBPs. (B) In a heterogeneous solution of macromolecules PTMs can regulate the recruitment or exclusion of specific protein or RNA molecules from or to MLOs.
Figure 2: Arginine methylation weakens cation-π interactions. Arginine methylation weakens cation-π interactions of arginines with aromatic amino acids (e.g. tyrosine) and thereby weakens the intermolecular interactions that drive phase separation of RBPs, causing reduced phase separation of RBPs and increased RNP granule dynamics.
Control of phase separation and RNP granule dynamics by PTMs

Figure 3: Different mechanisms how PTMs can regulate RNP granule assembly or disassembly in cells. (A) PTMs of RBPs can regulate protein-protein or protein-RNA interactions and thereby modulate RNP granules. (B) Nucleocytoplasmic localization of RBPs can be regulated by PTMs. Altered RBP concentrations in the nucleus or cytoplasm may affect the assembly/disassembly of RNP granules in the respective cellular compartment. (C) PTMs can regulate RNP granules by promoting degradation by autophagy or the proteasome. Reduced cellular concentrations of a specific RBP may affect RNP granules.
Figure 4: PTMs can have either a suppressive or a promoting effect on phase separation and RNP granule formation. Color code in legend indicates the respective PTM. For details and references see text. (A) In vitro: PTMs were shown to reduce or enhance phase separation of the indicated RBP or low complexity domain (LCD) or intrinsically disordered region (IDR). (B) In cells: PTMs can regulate the assembly, disassembly and composition of different RNP granules, e.g. stress granules (SG), P bodies (PB) and Balbiani bodies (Bb), and of amyloid-like aggregates (orange). An arrow pointing up indicates a promotion of condensate formation or RBP recruitment by the respective PTM, an arrow pointing down indicates condensate disassembly or RBP exclusion from the condensate by the respective PTM.
Friend or foe — post-translational modifications as regulators of phase separation and RNP granule dynamics
Mario Hofweber and Dorothee Dormann

J. Biol. Chem. published online December 26, 2018

Access the most updated version of this article at doi: 10.1074/jbc.TM118.001189

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts