On supremum of bounded quantum observable*

Liu Weihua, Wu Junde†
Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China

Abstract. In this paper, we present a new necessary and sufficient condition for which the supremum $A \vee B$ exists with respect to the logic order \preceq. Moreover, we give out a new and much simpler representation of $A \vee B$ with respect to \preceq, our results have nice physical meanings.

Keywords: Quantum observable, logic order, supremum.

PACS numbers: 02.10-v, 02.30.Tb, 03.65.Ta.

1 Introduction

There some basic notations: H is a complex Hilbert space, $S(H)$ is the set of all bounded linear self-adjoint operators on H, $S^+(H)$ is the set of all positive operators in $S(H)$, $P(H)$ is the set of all orthogonal projection operators on H, $\mathcal{B}(\mathbb{R})$ is the set of all Borel subsets of real number set \mathbb{R}. Each element in $P(H)$ is said to be a quantum event on H. Each element in $S(H)$ is said to be a bounded quantum observable on H. For $A \in S(H)$, let $R(A)$ be the range of A, $\overline{R(A)}$ be the closure of $R(A)$, P_A be the orthogonal projection on $\overline{R(A)}$, P^A be the spectral measure of A, $\text{null}(A)$ be the null space of A, and N_A be the orthogonal projection on $\text{null}(A)$.

Let $A, B \in S(H)$. If for each $x \in H$, $[Ax, x] \leq [Bx, x]$, then we say that $A \preceq B$. Equivalently, there exists a $C \in S^+(H)$ such that $A + C = B$. \preceq is a partial order on $S(H)$. The physical meaning of $A \preceq B$ is that the expectation of A is not greater than the expectation of B for each state of the system. So the order \preceq is said to be a numerical order of $S(H)$. But $(S(H), \preceq)$ is not a lattice. Nevertheless, as a well known theorem due to Kadison, $(S(\mathbb{H}), \preceq)$ is an anti-lattice, that is, for any two elements A and B in

*This project is supported by Natural Science Found of China (10771191 and 10471124).
†E-mail: wjd@zju.edu.cn
In 2006, Gudder introduced a new order \(\preceq \) on \(S(H) \): if there exists a \(C \in S(H) \) such that \(AC = 0 \) and \(A + C = B \), then we say that \(A \preceq B \) (\([2]\)).

Equivalently, \(A \preceq B \) iff for each \(\Delta \in B(\mathbb{R}) \) with \(0 \not\in \Delta \), \(P_A(\Delta) \leq P_B(\Delta) \) (\([2]\)). The physical meaning of \(A \preceq B \) is that for each \(\Delta \in B(\mathbb{R}) \) with \(0 \not\in \Delta \), the quantum event \(P_A(\Delta) \) implies the quantum event \(P_B(\Delta) \). Thus, the order \(\preceq \) is said to be a logic order of \(S(H) \) (\([2]\)). In [2], it is proved that \((S(H), \preceq) \) is not a lattice since the supremum of arbitrary \(A \) and \(B \) may not exist in general. In [3], it is proved that the infimum \(A \land B \) of \(A \) and \(B \) with respect to \(\preceq \) always exists. In [4, 5], the representation theorems of the infimum \(A \land B \) of \(A \) and \(B \) with respect to \(\preceq \) were obtained. In more recent, Xu and Du and Fang in [6] discussed the existence of the supremum \(A \lor B \) of \(A \) and \(B \) with respect to \(\preceq \) by the technique of operator block. Moreover, they gave out a sufficient and necessary conditions for the existence of \(A \lor B \) with respect to \(\preceq \). Nevertheless, their conditions are difficult to be checked since the conditions depend on an operator \(W \), but \(W \) is not easy to get. Moreover, their proof is so much algebraic that we can not understand its physical meaning.

In this paper, we present a new necessary and sufficient condition for which \(A \lor B \) exists with respect to \(\preceq \) in a totally different form. Furthermore, we give out a new and much simpler representation of \(A \lor B \) with respect to \(\preceq \), our results have nice physical meanings.

Lemma 1.1 [2]. Let \(A, B \in S(H) \). If \(A \preceq B \), then \(A = BP_A \).

Lemma 1.2 [2]. If \(P, Q \in P(H) \), then \(P \preceq Q \) iff \(P \preceq Q \), and \(P \) and \(Q \) have the same infimum \(P \land Q \) and the supremum \(P \lor Q \) with respect to the orders \(\preceq \) and \(\succeq \), we denote them by \(P \land Q \) and \(P \lor Q \), respectively.

Lemma 1.3 [7]. Let \(A, B \in S(H) \). Then \(P^A(\{0\}) = N(A) \), \(P_A = P^A(R\setminus\{0\}) \), \(P_A + N(A) = I \), \(P_A \lor P_B = I - N(A) \land N(B) \).

2 Some elementary lemmas

Let \(A, B \in S(H) \) and they have the following forms:

\[
A = \int_{-M}^{M} \lambda dA_\lambda
\]
and
\[B = \int_{-M}^{M} \lambda dB_{\lambda}, \]
where \(\{A_{\lambda}\}_{\lambda \in \mathbb{R}} \) and \(\{B_{\lambda}\}_{\lambda \in \mathbb{R}} \) be the identity resolutions of \(A \) and \(B \) ([7]), respectively, and \(M = \max(\|A\|, \|B\|) \).

If \(A \) has an upper bound \(F \) in \(S(H) \) with respect to \(\preceq \), then it follows from Lemma 1.1 that \(A = FP_{A} \). Note that \(A \in S(H) \), so \(FP_{A} = PAF \) and thus \(AF = FA \). Let \(F \) have the following form:
\[F = \int_{-G}^{G} \lambda dF_{\lambda}, \]
where \(\{F_{\lambda}\}_{\lambda \in \mathbb{R}} \) is the identity resolution of \(F \) and \(G = \max(\|F\|, M) \). Then we have
\[A = FP_{A} = (\int_{-G}^{G} \lambda dF_{\lambda})PA = \int_{-G}^{G} \lambda d(F_{\lambda}PA). \]

Lemma 2.1. Let \(A \in S(H) \) and \(F \in S(H) \) be an upper bound of \(A \) with respect to \(\preceq \). Then for each \(\Delta \in B(\mathbb{R}) \), we have
\[
P^{A}(\Delta) = \begin{cases}
P^{F}(\Delta)PA, & 0 \not\in \Delta \\
N(A), & \Delta = \{0\} \\
P^{F}(\Delta \setminus \{0\})PA + N(A), & 0 \in \Delta \end{cases}
\]

Proof. We just need to check \(P^{A}(\Delta) = P^{F}(\Delta)PA \) when \(0 \not\in \Delta \), the rest is trivial. Note that if we restrict on the subspace \(P_{A}(H) = \overline{R(A)} \), since \(AF = FA \), then \(\{F_{\lambda}PA\}_{\lambda \in \mathbb{R}} \) is the identity resolution of \(F|_{P_{A}(H)} \) ([7]). Let \(f \) be the characteristic function of \(\Delta \). Then the following equality proves the conclusion:
\[
P^{A}(\Delta) = f(A) = f(FPA) = \int_{-G}^{G} f(\lambda)d(F_{\lambda}PA) = \int_{\lambda \in \Delta} d(F_{\lambda}PA) = P^{F}(\Delta)PA.
\]

It follows from Lemma 2.1 immediately:

Lemma 2.2. Let \(A, B \in S(H) \) and \(F \in S(H) \) be an upper bound of \(A \) and \(B \) with respect to \(\preceq \). Then for any two Borel subsets \(\Delta_{1} \) and \(\Delta_{2} \) of \(\mathbb{R} \), if \(\Delta_{1} \cap \Delta_{2} = \emptyset \), \(0 \not\in \Delta_{1} \), \(0 \not\in \Delta_{2} \), we have
\[
P^{A}(\Delta_{1})P^{B}(\Delta_{2}) = P^{F}(\Delta_{1})PA P^{F}(\Delta_{2})PB = PA P^{F}(\Delta_{1}) P^{F}(\Delta_{2})PB = \theta.
\]
Lemma 2.3. Let $A, B \in S(H)$ and have the following property: For each pair $\Delta_1, \Delta_2 \in \mathcal{B}(\mathbb{R})$, whenever $\Delta_1 \cap \Delta_2 = \emptyset$ and $0 \notin \Delta_1$, $0 \notin \Delta_2$, we have $P^A(\Delta_1)P^B(\Delta_2) = \emptyset$, then the following mapping $E : \mathcal{B}(\mathbb{R}) \to P(H)$ defines a spectral measure:

$$E(\Delta) = \begin{cases}
P^A(\Delta) \lor P^B(\Delta), & 0 \notin \Delta \\
N(A) \land N(B) = I - P_A \lor P_B, & \Delta = \{0\} \\
P^A(\Delta \setminus \{0\}) \lor P^B(\Delta \setminus \{0\}) + N(A) \land N(B), & 0 \in \Delta
\end{cases}$$

Proof. First, we show that for each $\Delta \in \mathcal{B}(\mathbb{R})$, $E(\Delta) \in P(H)$. It is sufficient to check the case of $0 \in \Delta$. Since $P^A(\Delta \setminus \{0\}) \lor P^B(\Delta \setminus \{0\}) \leq P^A(\Delta \setminus \{0\}) \lor P^B(\Delta \setminus \{0\}) = P_A \lor P_B$, so it follows from Lemma 1.3 that $P^A(\Delta \setminus \{0\}) \lor P^B(\Delta \setminus \{0\}) + N(A) \land N(B) \in P(H)$ and the conclusion is hold.

Second, we have

$$E(\emptyset) = P^A(\emptyset) \lor P^B(\emptyset) = \emptyset \lor \emptyset = \emptyset,$$

$$E(R) = P^A(R \setminus \{0\}) \lor P^B(R \setminus \{0\}) + N(A) \land N(B)$$

$$= P_A \lor P_B + N(A) \land N(B) = I.$$

Third, if $\Delta_1 \cap \Delta_2 = \emptyset$, there are two cases:

(i). 0 doesn’t belong to any one of Δ_1 and Δ_2. It follows from the definition of E that $E(\Delta_1)E(\Delta_2) = (P^A(\Delta_1) \lor P^B(\Delta_1))(P^A(\Delta_2) \lor P^B(\Delta_2))$. Note that $P^B(\Delta_1)P^A(\Delta_2) = \emptyset$ by the conditions of the lemma and $P^B(\Delta_1)P^B(\Delta_2) = \emptyset$, we have $P^B(\Delta_1)(P^A(\Delta_2) \lor P^B(\Delta_2)) = \emptyset$, similarly, we have also $P^A(\Delta_1)(P^A(\Delta_2) \lor P^B(\Delta_2)) = \emptyset$, thus,

$$E(\Delta_1)E(\Delta_2) = \emptyset.$$

Furthermore, we have

$$E(\Delta_1 \cup \Delta_2) = P^A(\Delta_1 \cup \Delta_2) \lor P^B(\Delta_1 \cup \Delta_2)$$

$$= P^A(\Delta_1) \lor P^A(\Delta_2) \lor P^B(\Delta_1) \lor P^B(\Delta_2)$$

$$= (P^A(\Delta_1) \lor P^B(\Delta_1)) \lor (P^A(\Delta_2) \lor P^B(\Delta_2))$$

$$= E(\Delta_1) + E(\Delta_2).$$

That is, in this case, we proved that

$$E(\Delta_1)E(\Delta_2) = \emptyset,$$

$$E(\Delta_1 \cup \Delta_2) = E(\Delta_1) + E(\Delta_2).$$
(ii). 0 belongs to one of Δ_1 and Δ_2. Without of losing generality, we suppose that $0 \in \Delta_1$, since $\Delta_1 \cap \Delta_2 = \emptyset$, so $0 \notin \Delta_2$, thus we have

$$E(\Delta_1)E(\Delta_2) = (P^A(\Delta_1 \{0\}) \lor P^B(\Delta_1 \{0\}) + N(B) \land N(A))(P^A(\Delta_2) \lor P^B(\Delta_2))$$

$$= (P^A(\Delta_1 \{0\}) \lor P^B(\Delta_1 \{0\}))(P^A(\Delta_2) \lor P^B(\Delta_2)) = \theta,$$

$$E(\Delta_1 \cup \Delta_2) = P^A(\Delta_1 \{0\} \cup \Delta_2) \lor P^B(\Delta_1 \{0\} \cup \Delta_2) + (N(B) \land N(A))$$

$$= (P^A(\Delta_1 \{0\}) \lor P^B(\Delta_1 \{0\}) + (N(B) \land N(A))) + (P^A(\Delta_2) \lor P^B(\Delta_2))$$

$$= (P^A(\Delta_1 \{0\}) \lor P^B(\Delta_1 \{0\}) + (N(A) \land N(B))) + (P^A(\Delta_2) \lor P^B(\Delta_2))$$

$$= E(\Delta_1) + E(\Delta_2).$$

Thus, it follows from (i) and (ii) that whenever $\Delta_1 \cap \Delta_2 = \emptyset$, we have

$$E(\Delta_1)E(\Delta_2) = \theta,$$

$$E(\Delta_1 \cup \Delta_2) = E(\Delta_1) + E(\Delta_2).$$

Final, if $(\Delta_n)_{n=1}^{\infty}$ is a sequence of pairwise disjoint Borel sets in $B(\mathbb{R})$, then it is easy to prove that

$$E(\bigcup_{n=1}^{\infty} \Delta_n) = \sum_{n=1}^{\infty} E(\Delta_n).$$

Thus, the lemma is proved.

3 Main results and proofs

Theorem 3.1. Let $A, B \in S(H)$ and have the following property: For each pair $\Delta_1, \Delta_2 \in B(\mathbb{R})$, whenever $\Delta_1 \cap \Delta_2 = \emptyset$ and $0 \notin \Delta_1, 0 \notin \Delta_2$, we have $P^A(\Delta_1)P^B(\Delta_2) = \theta$. Then the supremum $A \lor B$ of A and B exists with respect to the logic order \leq.

Proof. By Lemma 2.3, $E(\cdot)$ is a spectral measure and so it can generate a bounded quantum observable K and K can be represented by $K = \int_{-M}^{M} \lambda dE_\lambda$, where $\{E_\lambda\} = E(-\infty, \lambda], \lambda \in \mathbb{R}$ and $M = \max(\|A\|, \|B\|)$. Moreover, for each $\Delta \in B(\mathbb{R})$, $P^K(\Delta) = E(\Delta)$ ([7]). We confirm that K is the supremum $A \lor B$ of A and B with respect to \leq. In fact, for each $\Delta \in B(\mathbb{R})$ with $0 \notin \Delta$, by the definition of E we knew that $P^K(\Delta) = E(\Delta) = P^A(\Delta) \lor P^B(\Delta) \geq P^A(\Delta), P^K(\Delta) = E(\Delta) = P^A(\Delta) \lor P^B(\Delta) \geq P^B(\Delta)$. So it following from the equivalent properties of \leq that $A \preceq K, B \preceq K$ ([2]). If K' is another upper bound of A and B with respect to \preceq, then for each $\Delta \in B(\mathbb{R})$ with $0 \notin \Delta$, we
have $P^A(\Delta) \leq P^{K'}(\Delta)$, $P^B(\Delta) \leq P^{K'}(\Delta)$ ([2]), so $P^A(\Delta) \lor P^B(\Delta) = E(\Delta) = P^K(\Delta) \leq P^{K'}(\Delta)$, thus we have $K \preceq K'$ and K is the supremum of A and B with respect to \preceq is proved.

It follows from Lemma 2.2 and theorem 3.1 that we have the following theorem immediately:

Theorem 3.2. Let $A, B \in S(H)$. Then the supremum $A \lor B$ of A and B exists with respect to the logic order \preceq iff for each pair $\Delta_1, \Delta_2 \in B(\mathbb{R})$, whenever $\Delta_1 \cap \Delta_2 = \emptyset$ and $0 \notin \Delta_1$, $0 \notin \Delta_2$, we have $P^A(\Delta_1)P^B(\Delta_2) = \theta$. Moreover, in this case, we have the following nice representation:

$$A \lor B = \int_{-M}^{M} \lambda dE_{\lambda},$$

where $\{E_{\lambda}\} = E(-\infty, \lambda], \lambda \in \mathbb{R}$ and $M = \max(\|A\|, \|B\|)$.

Remark 3.3. Let $A, B \in S(H)$. Note that for each $\Delta \in B(\mathbb{R})$, $P^A(\Delta)$ is interpreted as the quantum event that the quantum observable A has a value in Δ ([2]), and the conditions: $\Delta_1 \cap \Delta_2 = \emptyset$, $0 \notin \Delta_1$, $0 \notin \Delta_2$ must have $P^A(\Delta_1)P^B(\Delta_2) = \theta$ told us that the quantum events $P^A(\Delta_1)$ and $P^B(\Delta_2)$ can not happened at the same time, so, the physical meanings of the supremum $A \lor B$ exists with respect to \preceq iff for each pair $\Delta_1, \Delta_2 \in B(\mathbb{R})$, whenever $\Delta_1 \cap \Delta_2 = \emptyset$ and $0 \notin \Delta_1$, $0 \notin \Delta_2$, the quantum observable A takes value in Δ_1 and the quantum observable B takes value in Δ_2 can not happen at the same time.

References

[1]. Kadison, R. Order properties of bounded self-adjoint operators. *Proc. Amer. Math. Soc.* 34: 505-510, (1951)

[2]. Gudder S. An Order for quantum observables. *Math Slovaca.* 56: 573-589, (2006)

[3]. Pulmannova S, Vincekova E. Remarks on the order for quantum observables. *Math Slovaca.* 57: 589-600, (2007)

[4]. Liu Weihua, Wu Junde. A representation theorem of infimum of bounded quantum observables. *J Math Physi.* 49: 073521-073525, (2008)

[5]. Du Hongke, Dou Yanni. A spectral representation of infimum of self-adjoint operators in the logic order. *Acta Math. Sinica.* To appear
[6]. Xu Xiaoming, Du Hongke, Fang Xiaochun. An explicit expression of supremum of bounded quantum observables. *J Math Physi*. 50: 033502-033509, (2009)

[7]. Kadison. R. V., Ringrose J. R. *Fundamentals of the Theory of Operator Algebra*. Springer-Verlag, New York, (1983)