Mesenchymal Stem Cells from Rats with Chronic Kidney Disease Exhibit Premature Senescence and Loss of Regenerative Potential

Barbara Mara Klinkhammer1, Rafael Kramann1, Monika Mallau1, Anna Makowska1, Claudia Renate van Roeyen1, Song Rong1, Eva Bettina Buecher1, Peter Boor1,2,3, Katarina Kovacova1, Stephanie Zok1, Bernd Denecke4, Esther Stuettgen1, Simon Otten1, Juergen Floege1, Uta Kunter1

1 Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany, 2 Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany, 3 Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia, 4 Interdisciplinary Centre for Clinical Research, RWTH Aachen University Hospital, Aachen, Germany

Abstract

Mesenchymal stem cell (MSC) transplantation has the potential for organ repair. Nevertheless, some factors might lessen the regenerative potential of MSCs, e.g. donor age or systemic disease. It is thus important to carefully assess the patient’s suitability for autologous MSC transplantation. Here we investigated the effects of chronic kidney disease (CKD) on MSC function. We isolated bone marrow MSCs from remnant kidney rats (RK) with CKD (CKD-RK-MSC) and found signs of premature senescence: spontaneous adipogenesis, reduced proliferation capacity, active senescence-associated-β-galactosidase, accumulation of actin and a modulated secretion profile. The functionality of CKD-RK-MSCs in vitro was tested in rats with acute anti-Thy1.1-nephritis, where healthy MSCs have been shown to be beneficial. Rats received healthy MSCs, CKD-RK-MSC or medium by injection into the left renal artery. Kidneys receiving healthy MSCs exhibited accelerated healing of glomerular lesions, whereas CKD-RK-MSC or medium exerted no benefit. The negative influence of advanced CKD/uremia on MSCs was confirmed in a second model of CKD, adenine nephropathy (AD). MSCs from rats with adenine nephropathy (CKD-AD-MSC) also exhibited cellular modifications and functional deficits in vivo. We conclude that CKD leads to a sustained loss of in vitro and in vivo functionality in MSCs, possibly due to premature cellular senescence. Considering autologous MSC therapy in human renal disease, studies identifying uremia-associated mechanisms that account for altered MSC function are urgently needed.

Introduction

As many, mostly positive, results of studies employing mesenchymal stem cell (MSC) therapy for treatment of experimental acute kidney injury (AKI) [1,2,3] have been reported, this therapeutic approach has entered clinical evaluation (see www.clinicaltrials.gov NCT00733876, NCT01275612). However, chronic kidney disease (CKD) is a growing public health issue affecting up to 10% of the general population, and once chronic renal replacement therapy becomes necessary, it also represents a massive socioeconomic burden. Nevertheless, the greatly anticipated step to extend clinical MSC studies to progressive CKD is still pending.

Non-malignant MSC maldifferentiation (adipogenic or osteogenic [4,5]) and the adverse profibrotic side effects [6] have raised concerns about MSC therapy in the setting of CKD. CKD is also relevant in the setting of AKI, as CKD is the most important risk factor for AKI. So far, however, outcomes of preclinical studies on stem and progenitor cell therapy in CKD are inconsistent [7,8,9,10]. In CKD, precise timing of therapy initiation and long-term extension of the therapeutic intervention may be required. In addition, injected, healthy donor-derived cells are suddenly exposed to an altered milieu of various stages of uremia. Besides the accumulated uremic toxins, vitamin D and erythropoietin deficiency, hypertension and acidosis may influence naïve MSCs in their new environment and cause damage that overrides their repair mechanisms.

At present, little is known about the effects of CKD on MSC function. In the present study, we have therefore investigated the potential effects of progressive CKD on MSC functionality.

Methods

Harvest, culture and labeling of MSCs

Inbred male F344 rats weighing 180 to 210 g (Harlan Winkelmann, Horst, the Netherlands; or Charles River, Erkrath,
Uremia Induces Dysfunction in MSCs

MSCs were used as donors for healthy MSCs (H-MSC). In selected experiments, healthy male R26-hPLAP rats (F344 background) that ubiquitously express human placenta alkaline phosphatase (hPLAP), served as transgenic cell donors (TG-MSC) to allow lineage tracking [11]. hPLAP was detected using a rabbit polyclonal antibody against human placental alkaline phosphatase (hPLAP), served as transgenic cell donors (TG-MSC) that ubiquitously express human placenta alkaline phosphatase (hPLAP). MSCs were labeled using the PKH26 red fluorescent cell linker kit (Sigma-Aldrich, Saint Louis, MO) as an alternative to in vivo staining in 40% ethanol (EtOH)-fixed tissue as described [11]. For enzymatic staining, tissue was incubated for 4 h at 37°C with fresh staining solution containing 0.1% x-Gal-solution (5-bromo-4-chloro-3-indolyl b-galactosidase; Sigma, Germany), 40 mM citric acid/sodium phosphate pH 6, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 40 mM citric acid/sodium phosphate pH 6, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM NaCl and 2 mM MgCl2. The cells were washed in PBS and fixed in 0.5% glutaraldehyde for 10 min. In brief, cells were seeded in 12-well plates and the initial seeding number was determined. Triplicates were then trypsinized and counted (multiparameter cell counter CASY TT, Scharfe Systems, Reutlingen, Germany) after 24, 48, 72 and 96 h. To determine cellular actin content, total cellular protein lysates were prepared and quantified as described. Four microgram of protein was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and western blotting was performed as described previously [15] for the detailed method see Supplementary File S1 using the following antibodies: anti-actin mouse monoclonal antibody (1:1000; sc-8432, Santa Cruz Biotechnology, Santa Cruz, USA) and horseradish peroxidase-conjugated horse-anti-mouse antibody (Vector Laboratories, Burlingame, CA, USA). Blots were reprobed with a mouse monoclonal antibody for glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 1:1000; sc-32233, Santa Cruz Biotechnology, Santa Cruz, USA). Stripping was necessary as the proteins of interest (actin and GAPDH) have a predicted size of 42 and 36–40 kD, respectively. Band intensities were quantified by Image software (Scion Corporation, USA), and after normalization against values determined for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the actin content in healthy control H-MSC was set as 1 and relative band intensities were calculated.

Figure 1. Classification of stages of CKD in rats. All remnant kidney rats ("RK") were sacrificed after a renal disease duration >17 weeks (mean life expectancy of a healthy lab rat ~75 weeks). All animals had elevated serum urea and serum creatinine levels at the time of sacrifice. We chose s-urea as a marker for overall uremia and calculated creatinine-clearance to divide the animals into two groups: rats with serum urea >20 mmol/l and creatinine-clearance <1.0 l/24 h (CKDsev-RK) and rats with serum urea ≤20 mmol/l and creatinine-clearance >1.0 l/24 h (CKDmod-RK). Rats with adenine nephropathy (4-week diet containing 0.75% adenine, "AD") also showed a markedly decreased renal function (CKDsev-AD).

Determination of MSC proliferation and actin expression

MSC population doublings were calculated as described [14]. In brief, cells were seeded in 12-well plates and the initial seeding number was determined. Triplicates were then trypsinized and counted (multiparameter cell counter CASY TT, Scharfe Systems, Reutlingen, Germany) after 24, 48, 72 and 96 h. To determine cellular actin content, total cellular protein lysates were prepared and quantified as described. Four microgram of protein was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and western blotting was performed as described previously [15] (for the detailed method see Supplementary File S1) using the following antibodies: anti-actin mouse monoclonal antibody (1:1000; sc-8432, Santa Cruz Biotechnology, Santa Cruz, USA). Stripping was necessary as the proteins of interest (actin and GAPDH) have a predicted size of 42 and 36–40 kD, respectively. Band intensities were quantified by Image software (Scion Corporation, USA), and after normalization against values determined for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the actin content in healthy control H-MSC was set as 1 and relative band intensities were calculated.

Senescence-associated-b-galactosidase (SA-b-gal) staining and SA-b-gal activity assay

MSCs in P2 and P3 were seeded onto chamber slides (LAB-TEK, Nalge Nunc International, Naperville, IL) at a density of 5*10^3 cells/cm² and cultured until 80–90% confluency. Cells were washed in PBS and fixed in 0.5% glutaraldehyde for 10 min. MSCs were incubated for 4 h at 37°C in fresh staining solution containing 0.1% x-Gal-solution (5-bromo-4-chloro-3-indolyl b-galactosidase; Sigma, Germany), 40 mM citric acid/sodium phosphate pH 6, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM NaCl and 2 mM MgCl2. The cells were then counterstained with eosin and mounted with Roti-Histokit (Carl Roth, Karlsruhe, Germany).

Quantification of SA-b-gal activity

Quantification of SA-b-gal activity was performed using a commercial fluorimetric cellular senescence assay kit (Cell Biolabs inc., San Diego, CA, USA). MSCs from healthy and CKDsev-RK donors in Passage 3 were harvested using the lysis buffer provided in the kit, and the assay was performed according to the manufacturer’s instructions.

Reverse transcription-quantitative PCR (RT-qPCR)

Total RNA isolation from MSCs and cDNA synthesis was performed as described [16]. Reverse transcription-quantitative polymerase chain reaction PCR (RT-qPCR) was carried out using an ABI Prism 7300 sequence detector (Applied Biosystems, Weiterstadt, Germany). In each reaction, 0.75 µl of cDNA was amplified in a 25-µl volume using the qPCR Core Kit for SYBR Green I (Eurogentec, Seraing, Belgium). The PCR conditions were 50°C for 2 min followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. Taqman primers were designed from sequences

Classification of Stages of Chronic Kidney Disease (CKD)

Stage	Description	Serum Urea [mmol/l]	Creatinine-Clearance [l/24h]
RK	Remnant kidney	>20	<1.0
AD	Adenine nephropathy	≤20	>1.0

Conditioned media (CM) were obtained by collecting supernatants from confluent MSCs in Passage 2 (P2) (ca. 0.83*10^6 cells/ml CM) after 48-h culture without fetal calf serum (FCS). VEGF concentrations in the CM were measured (839±90 pg/ml VEGF, n = 3) to ensure accumulation of MSC-secreted factors. Controls consisted of normal FCS free-growth medium [12,13].
in the GenBank database using the Primer Express software (Applied Biosystems). Primer sequences are listed in Supplementary Table S1. GAPDH cDNA amplification was used as an internal standard.

Analyses of cytokines, growth factors and carbonyl proteins in MSC culture supernatants
Supernatants of confluent MSCs were used to analyse VEGF164 and TGF-\(\beta\)1 by ELISA (Quantikine ELISA, R&D Systems, Minneapolis, MN, USA). Fresh Dulbecco’s modified media (DMEM) medium with all additives including FCS was used as control. All experiments were performed in triplicate.

Relative levels of multiple cytokines in culture supernatants of confluent MSCs in Passages 2 and 3 were measured using a commercial kit (Proteome Profiler Antibody Arrays, Rat Cytokine Array Panel A Array Kit, R&D Systems, Wiesbaden-Nordenstadt, Germany). X-ray-films were analyzed using ImageJ 1.45 software (Wayne Rasband, NIH, USA). Means for every cytokine were calculated from the duplicate spots from each sample and normalized to the positive controls provided.
Figure 3. Premature senecence in MSCs from remnant kidney rats. (A) Quantification of enzymatic staining for SA-β-gal in H-MSC (n = 7), CKDmod-RK-MSC (n = 7), CKDsev-RK-MSC (n = 8) and MSCs from healthy old donors (n = 4). Significantly more CKDsev-RK-MSC contain active SA-β-gal compared to H-MSC or MSCs from old donors (p = 0.002 and p = 0.036, respectively). Representative pictures of SA-β-gal staining in H-MSC and CKDsev-RK-MSC are shown (magnification 200×). (B) SA-β-gal activity is also significantly higher in CKDsev-RK-MSC (n = 5) than in H-MSC (n = 6) or MSCs from old donors (n = 6). (C) Expression of Gas7 mRNA (growth-arrest-specific protein 7) in H-MSC (n = 5), CKDmod-RK-MSC (n = 5) and CKDsev-RK-MSC (n = 5). CKDmod-RK-MSC produce significantly more Gas7 mRNA compared to H-MSC (p = 0.01). (D) Cell population doubling time (Passage 2) is significantly higher in all CKD-MSCs (CKDmod-RK (n = 15), CKDsev (n = 4)) than in H-MSC (n = 6), TG-MSC (n = 7) or MSCs from old donors (n = 4). (E) Western blots demonstrate that CKDmod-RK-MSC contain significantly more actin than H-MSC or MSCs from old donors (H-MSC n = 7, TG-MSC n = 4, CKDmod-RK-MSC n = 6, CKDsev-RK-MSC n = 6, healthy old controls (>9 months) n = 5). (F) CKDsev-RK-MSC in Passage 3 spontaneously differentiate into adipocytes (native cell culture image, magnification 200×). Lipid vacuoles are visualized by oil red O staining. Magnification 200×.
(G) RT-qPCR for markers of adipogenesis (adiponectin, peroxisome proliferator-activated receptor γ (PPARγ), lipoprotein lipase (LIPA)) in H-MSC (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

* p

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.

p (n = 11), CKDmod-RK-MSC (n = 6), CKDsev-RK-MSC (n = 4) and healthy MSCs from old donors (n = 6). mRNA expression of PPARγ and LIPA is significantly increased in CKDsev-RK-MSC vs. H-MSC (p = 0.008 and p = 0.03, respectively). All MSCs in Passage 3.
Figure 4. Analysis of renal function and histology on Day 4 and Day 6 of anti-Thy1.1-nephritis. (A) Experimental design. (B–D) Comparison of rats that had anti-Thy1.1-nephritis and received H-MSC (“Healthy”, n = 7), TG-MSC (“TG”, n = 8), CKDmod-RK-MSC (“CKDmod-RK”, n = 6) or control DMEM (“Medium”, n = 10) injected into the left renal artery on Day 2 after disease induction and were analysed on Day 4. (E) Experimental design. (F–H) Comparison of rats that had anti-Thy1.1-nephritis and received H-MSC (“Healthy”, n = 7), TG-MSC (“TG”, n = 7), CKDmod-RK-MSC (“CKDmod-RK”, n = 6) or control DMEM (“Medium”, n = 9) injected into the left renal artery on Day 2 after disease induction and were analysed on Day 6. * p < 0.05; ** p < 0.01; *** p < 0.001. All data: mean ± SD.
doi:10.1371/journal.pone.0092115.g004
morphology. All MSCs fulfilled the minimal criteria for mesenchymal stromal cells, that is, plastic adherence, inducible osteo- and adipogenesis and specific surface expression patterns. In R26-hPLAP MSCs (transgenic MSCs; TG-MSC), the transgenic enzyme was detectable in the BCIP reaction in vitro and in vivo as well as by immunohistochemistry for hPLAP (Supplementary Figure S1).

Donor rats with remnant kidney or adenine nephropathy show moderate to severe CKD

MSCs were isolated from the remnant kidney and adenine nephropathy rats with various degrees of CKD, as evidenced by elevated s-urea and/or a reduced creatinine-clearence (Figure 1, representative histologies are shown in Supplementary Figure S2). We arbitrarily divided the MSCs into two groups: “CKDmod” for moderate renal insufficiency and “CKDsev” for more severe uremia.

MSCs from remnant kidney rats exhibit mildly altered secretomes compared to healthy MSCs in vitro

MSCs were isolated from remnant kidney rats (CKD-RK-MSC). Secretome of CKD-RK-MSC was compared to healthy donor MSCs (H-MSC) and healthy hPLAP-transgenic MSCs (TG-MSC) and assessed in vitro.

Secretion profiles of H-MSC, TG-MSC and MSCs of remnant kidney donors with CKDmod or CKDsev were analysed in a cytokine array. All MSCs produced high amounts of VEGF164 and low levels of fractalkine, CXCL7 and TNFz. While H-MSC tended to produce the highest concentrations of all tested cytokines, a statistically significant difference was only noted for MIP-1a (H-MSC 77±58 vs. CKDsev-RK-MSC 0±18; p = 0.026) (Supplementary Figure S3).

Next we investigated growth factors with a well-established function in glomerular disease. Levels of activated TGF-β in supernatants from CKD-RK-MSC were non-significantly reduced compared to H- or TG-MSC (Figure 2A). Expression of mRNA for PDGF-A and PDGF-C in CKDsev-RK-MSC was significantly higher than in H-MSC. The CKDmod-RK-MSC expressed more PDGF-A compared to H-MSC and tended to produce higher levels of PDGF-B (Figure 2B). Quantification of VEGF164 did not show any differences (ELISA data, not shown).

Whether the above differences in secretory activity of CKD-RK-MSC might result in a pro-fibrotic phenotype of MSCs was investigated in NRK cells in vitro. Compared to H-MSC, cell culture supernatants from CKDsev-RK-MSC induced significantly higher collagen type I expression in NRK cells after 24 h of stimulation, whereas the expression of collagen type III was not altered (Figure 2C).

MSCs from remnant kidney rats exhibit cellular senescence

Active senescence-associated-β-galactosidase (SA-β-gal) is a well-known biomarker for senescent cells [22]. In CKDsev-RK-MSC, a significantly higher percentage of cells contained active SA-β-gal and higher SA-β-gal-activity compared to H-MSC or MSCs from age-matched healthy donors (Figure 3A–B). CKDmod-RK-MSC expressed significantly more Gas7 than H-MSCs (growth-arrest-specific protein 7, Figure 3C). MSCs from CKD-RK donors also exhibited a significant increase in cell population doubling time, i.e. loss of proliferating capacity, compared to H-MSC, TG-MSC and MSC from aged healthy donors (old-donor MSC; age > nine months) (Figure 3D).

Actin accumulation, i.e. stress fibers, another marker of senescence, was significantly more frequent in CKDmod-RK-MSC compared to H-MSC and healthy MSCs from old donors (Figure 3E and Supplementary Figure S4). This was no longer the case in CKDsev-RK-MSC, possibly related to their adipogenic differentiation with intracellular lipid storage (Figure 3F+G). CKD-RK-MSC spontaneously differentiated into lipid droplet-containing cells as confirmed by oil red O staining (Figure 3F and Supplementary Figure S5). RT-qPCR detected upregulation of adiponectin, PPARγ and lipoprotein lipase, all markers of adipogenesis (Figure 3G). This was statistically significant in MSCs from CKDsev-RK rats, which showed an up to 3000-fold higher expression of adiponectin mRNA compared to H-MSC in Passage 3. Lipid accumulation and high activity of SA-β-gal were both significantly increased in CKDsev-RK-MSC. A trend towards adipogenesis, but not osteogenesis, was observed in our MSCs from healthy aged donor rats (Supplementary Table S2), confirming data of others [23]. Only mRNA- levels for osteocalcin (but not for osteopontin or the transcription factor cbfa-1 (core-binding factor subunit α1) were significantly increased in CKD-MSC vs. H-MSC (Supplementary Table S2), corroborating previous findings in human MSCs under uremic conditions [24]. Nevertheless, no apparent spontaneous calcification of CKD-RK-MSC was observed in normal growth medium in vitro.

Finally, we assessed carbonyl proteins, a marker of oxidative damage to proteins in CKD-RK-MSC, as a possible cause of

Table 1. Functional parameters of rats with anti-Thy1.1-nephritis on Days 4 and 6 (2 and 4 days after treatment).

Day	Medium (n = 9)	H-MSC (n = 7)	TG-MSC (n = 7)	CKDmod-RK-MSC (n = 6)	CKDsev-AD-MSC (n = 8)
Serum urea [mmol/L]	7.5±1.7	8.1±1.5	7±0.7	8.8±1.9	
Serum creatinine [μmol/L]	52.2±4.4	50±6.6	51.1±5.4	59.3±8.9 *	
Syst. blood pressure [mmHg]	128±9	128±15	127±21	130±22	137±10
Serum urea [mmol/L]	6.0±1.0	13.5±5.7 *	11.0±0.9 *	7.9±1.0 *	8.9±1.5 *
Serum creatinine [μmol/L]	39.9±5.9	43.7±5.2	43.6±3.7	41.3±4.7	47±4.9 *
Proteinuria [mg/24 h]	40±25	24±26	9±6 *	34±16	52±21

* p < 0.05 compared to Medium group.

Comparison of rats with anti-Thy1.1 nephritis that received healthy MSCs (H-MSC), TG-MSC, CKDmod-RK-MSC, CKDsev-AD-MSC or control DMEM “medium” into the left renal artery on Day 2 after disease induction.

doi:10.1371/journal.pone.0092115.t001

MSC senescence or lipid accumulation. However, these did not exhibit significant differences between H-MSC and CKDsev-RK-MSC, which revealed spontaneous lipid accumulation in Passage 2 (supernatants from H-MSC 128 ± 692 (n = 3) vs. CKDsev-RK-MSC 177 ± 694 pmol/mg total protein (n = 6), p = 0.49).

Transplanted MSCs from remnant kidney donor rats do not accelerate healing in anti-Thy1.1-nephritis

To assess the functionality of CKD-RK-MSC in vivo, rats with anti-Thy 1.1 nephritis at Day 2 after disease induction received injections into the left renal artery of H-MSC, TG-MSC, CKDmod-RK-MSC or DMEM. We previously reported that H-MSC ameliorate histological damage and acute kidney injury in such rats [12]. PKH26-labeled MSCs were detected exclusively in the treated left kidneys up to 4 days after injection whereas the right internal control kidneys remained negative. There were no significant differences between the MSC treatment groups regarding the number of engrafted glomerular cells (Supplementary Figure S6).

On Day 4, i.e. 2 days after MSC-injection (Figure 4A), s-creatinine and s-urea levels were similar in rats receiving H-MSC, TG-MSC or DMEM injections, whereas s-creatinine of

Figure 5. In vitro characterization of MSCs from rats with adenine nephropathy. (A) CKDsev-AD-MSC have a decreased proliferation capacity (cell population doubling time 116.1 ± 57.7 h (n = 6) vs. 43 ± 8.2 h in H-MSC (n = 5); p = 0.02). (B) CKD-sev-AD-MSC (n = 8) express significantly more PDGF-A and PDGF-C than H-MSC (n = 9) (p = 0.008 and p = 0.005 respectively). CKDsev-AD-MSC contained active SA-β-gal (C) and in some cases lipid vacuoles (D). * p < 0.05; ** p < 0.01; *** p < 0.001. All data: mean ± SD.
doi:10.1371/journal.pone.0092115.g005

MSC senescence or lipid accumulation. However, these did not exhibit significant differences between H-MSC and CKDsev-RK-MSC, which revealed spontaneous lipid accumulation in Passage 2 (supernatants from H-MSC 128 ± 92 (n = 3) vs. CKDsev-RK-MSC 177 ± 94 pmol/mg total protein (n = 6), p = 0.49).

Transplanted MSCs from remnant kidney donor rats do not accelerate healing in anti-Thy1.1-nephritis
CKDmod-RK-MSC-treated rats was significantly elevated (Table 1). Only TG-MSC, but not CKDmod-RK-MSC, significantly reduced mesangiolysis (Figure 4B). Both healthy H-MSC and TG-MSC but not CKDmod-RK-MSC led to a significant increase in glomerular mitotic figures in treated kidneys (Figure 4C), paralleled by increased BrdU uptake (Figure 4D). In all MSC-treated kidneys, the number of ED-1-positive (infiltrating) cells was higher than in the contralateral kidneys, but only in the H-MSC group did this reach statistical significance (Supplementary Figure S7). None of the treatments affected the percentage of the α-SMA-positive glomerular area in the left vs. right kidneys (Supplementary Figure S7).

On Day 6, i.e. 4 days after MSC injection (Figure 4E), only few statistical differences in functional parameters persisted between the four treatment groups (Table 1), namely TG-MSC-treated rats showing the lowest proteinuria compared to controls. There were no statistically significant differences in s-creatinine but a trend towards higher s-urea in MSC-treated animals, possibly related to the reduced food intake. Consistent with our prior data [12], both H-MSC and TG-MSC treatment led to a significant reduction of mesangiolysis, mesangiolysis persisted with no trend for healing in rats receiving control medium and CKDmod-RK-MSC (Figure 4F). The three MSC groups failed to exhibit significant differences in the number of glomerular mitoses and influx of monocytes/macrophages (Supplementary Figure S7). No profibrotic action of MSC treatment was noted (α-SMA and collagen-I-positive areas, Figure 4G+H).

MSCs from rats with adenine nephropathy show alterations similar to MSCs from remnant kidney rats

MSCs were isolated from rats that received a diet supplemented with 0.75% adenine for 4 weeks (s-urea 35±12 mmol/l, creatinine clearance 0.4±0.3 l/24 h, n = 8; “CKDsev-AD-MSC”). Just as CKD-RK-MSC, CKDsev-AD-MSC expressed significantly more PDGF-A and PDGF-C than H-MSC (CKDsev-AD-MSC (n = 8) vs. H-MSC (n = 9); p = 0.008 and p = 0.005, Figure 5A) and contained significantly higher amounts of active SAβ-gal (Figure 5B). CKDsev-AD-MSC showed a significant increase in cell population doubling time compared to H-MSC (116±58 h vs. 43±8 h; p = 0.02; Figure 5C) and contained significantly more actin fibers (Figure 5D). CKDsev-AD-MSC (occasionally) exhibited spontaneous adipogenic differentiation and expressed significantly more mRNA for adipogenic markers (adiponectin, PPARγ and lipoprotein lipase, Figure 5E).

The in vivo functionality of CKDsev-AD-MSC was also analysed in rats with anti-Thy 1.1 nephritis (Figure 6A–C and Supplementary Figure S8). Rats that received CKDsev-AD-MSC had significantly higher s-creatinine than controls (Table 1).

On Day 6, i.e. 4 days after CKDsev-AD-MSC injection, neither mesangiolysis (treated vs. untreated kidney: p = 0.71) nor the influx of ED-1-positive cells (p = 0.18) were reduced in treated kidneys. CKDsev-AD-MSC did not increase glomerular mitoses (p = 0.48) or the α-SMA and collagen-I-positive glomerular areas (p = 0.08 and 0.25, respectively) in the left vs right kidneys.

Discussion

Studies on cell-based regenerative therapies employing MSCs or other progenitors from healthy donors in animal models of CKD have yielded conflicting results [7,8,9,10,25,26], the reasons remaining unclear. In this study, we assessed whether the uremic milieu itself might alter MSC function by causing premature stem cell aging, i.e. senescence. Stem cells are the longest living cells in the mammalian proliferative compartment, implicating an increased risk for the development of mutations or epigenetic changes that could lead to malignant transformation. Senescence has emerged as a mechanism to avoid potentially harmful proliferation of damaged stem cells. We therefore tested the influence of CKD on rat bone marrow-derived MSCs: phenotype, secretome, differentiation capacity and proliferation rates. In addition, to the best of our knowledge, we were the first to isolate CKD-MSCs from a large number of animals, and two different models of CKD, and to use these cells in vitro to test for their regenerative potential in acute anti Thy1.1 nephritis.

Our first major finding was that CKD-MSCs obtained from rats with two different models of CKD, namely the remnant kidney model and adenine nephropathy, in vitro do indeed exhibit many signs of premature senescence, in particular markedly reduced proliferation rates, stress fiber accumulation and spontaneous adipogenesis in vitro. The latter can, retrospectively, explain our (much discussed) observation of intraglomerular adipogenic maldifferentiation after intrarenal MSC injection in a chronic...
nephritis model [13]. In line with our observations, several abnormalities of non-MSC hematopoietic and endothelial precursor cells in CKD have been reported, including a reduced capacity for in vitro proliferation in adherent bone marrow progenitor cells [27], genomic damage to CD34+ hematopoietic progenitor cells [20], premature aging of circulating T cells [29] and functional impairment (reduced number in peripheral blood, reduced proliferation capacity in vitro) of endothelial precursor cells [30,31]. In addition, healthy bone marrow transplants have recently been shown to be more beneficial in CKD rats than bone marrow transplants from CKD donors [32]. Normal aging also affects stem cell function. Thus, transplantation of full bone marrow from young donors alleviated renal aging-associated functional impairment (reduced number in peripheral blood, reduced proliferation capacity in vitro) of endothelial precursor cells [30,31]. In addition, healthy bone marrow transplants have recently been shown to be more beneficial in CKD rats than bone marrow transplants from CKD donors [32].

Premature MSC senescence induced by CKD was “dose-dependent” in our study, i.e. MSCs from sicker animals (CKDsev-RK-MSC) exhibited senescence as early as Passage 2. This may be an important explanation for the variable effects observed in MSC-CKD studies. Given that the non-uremic cell culture conditions did not reverse the MSC phenotype after in vitro exposure to uremic conditions, it is likely that epigenetic changes, similar to those observed in aging MSCs [35], are induced by CKD. Indeed, this may represent a key mechanism of what has been termed “uremic memory” based on clinical observations [36]. Which “uremic factor(s)” (see EUTox, www.uremic-toxins.org) might cause MSC impairment? Many uremic factors have been identified, and it is widely accepted that chronic renal replacement therapy (dialysis) should eliminate these in the best way possible. Indoxyl sulfate and p-cresol decrease proliferation in mouse MSCs [34]. Other factors contributing to stem and progenitor cell damage include reactive oxygen species [37,38], proinflammatory molecules [39] and angiotensin II [40]. The setting of (successful) renal transplantation best describes a situation where all body cells undergo a sudden change from chronic uremia (comparable to CKDsev) to healthy or CKDmod, depending on graft function. We feel that our results further demonstrate the urgent need for good quality dialysis and early renal transplantation, if applicable.

MSC senescence induced by CKD in our study also altered their secretory profile. Thus, we found a, albeit non-significant, reduced secretion of osteoblast-stimulating (and profibrotic) TGF-β in CKDmod-MSC from remnant kidney rats, which is in line with the “adipogenic switch” [41]. In addition, we noted a significant upregulation of PDGF-A and -C in MSCs from severely uremic rats (RK and AD). PDGFs are key players in the development of renal fibrosis. Moreover, they stimulate MSCs to proliferate [42] but limit their multipotency through regulation of Oct4 and Nanog expression [43] with their overexpression possibly representing a compensatory mechanism given their reduced proliferation rates. Concerning their effect on fibrosis, human MSCs have been shown to ameliorate obstruction-induced renal fibrosis in rats with unilateral ureter ligation [44], but these rats still had a healthy kidney and did not develop CKD, thus the exogenous MSCs remained unaffected by uremia. Others injected healthy donor MSCs weekly into Alport mice with CKD and found no clinical improvement although there was some reduction in renal fibrosis as well as a reduction in loss of peritubular capillaries [45].

MSC preparations can differ substantially. For example, an up to 30-fold difference in the interleukin-1α expression was noted when comparing adipose tissue with bone marrow-derived rat MSC [46]. Beneficial effects of (activated) MSC preparations in highly inflammatory conditions have been tracked down to the secretion of one specific protein (TNF-α-stimulated gene 6 protein, TSG6) [47] via decreasing TLR2/NF-κB signaling. Consistent with the above, our data show considerable standard deviation in cytokine expression in MSC supernatants, confirming results in human MSCs [48]. Also, the source of the MSCs highly influences the characteristics of the cells and might explain why first tests did not detect differences between MSCs derived from adipose tissue of CKD patients and healthy donors [49].

It is conceivable that some of the above discrepancies, i.e. some studies demonstrating a benefit from RK-MSC and others showing no benefit, relate to the different therapeutic schemes and MSC dosages or other variables such as rat strains and experimental conditions. However, our data point to a new explanation, which has been neglected so far, namely the effects of CKD on MSC function:

In addition to our in vitro findings, we extended our studies to animal experiments and were the first to test the regenerative potential of CKD-MSCs vs. MSCs from healthy donors in vivo using the acute anti Thy1-nephritis model. We previously reported that, in this model, MSCs mediate repair mostly via paracrine phenomena and not by differentiation [2,12]. Senescent cells still secrete many growth factors [23,50], thus, growth arrest itself does not necessarily mean loss of regenerative potential. Our second major finding is that MSCs derived from animals with CKD (RK or AD) lost the ability to increase glomerular cell proliferation and to thereby reduce mesangiolysis, unlike cells from healthy normal or transgenic donors. Notably, CKD in one set of MSC donors (RK) was “only” moderate. Interestingly, although CKD-RK-MSC supernatants did stimulate rat kidney fibroblast collagen production in vitro much more than H-MSC supernatants, we did not find enhanced collagen accumulation in CKD-RK-MSC-treated anti-Thy 1.1 nephritic kidneys. This is in line with the literature showing both pro- and antifibrotic effects of MSCs under different conditions [51,52].

We conclude that endogenous bone marrow MSCs are functionally impaired by CKD, already in moderate stages and independent of the origin of CKD. This damage cannot be reversed after cell isolation by culture expansion in normal growth medium. Our data suggest that CKD in rat MSCs leads to complex phenotypic changes that are consistent with premature cellular senescence.

Rapid functional alteration of MSCs by CKD might explain why even repeated injections of healthy progenitor cells did not improve CKD in several published animal studies. These findings raise two important questions for translational medicine: first, does it make sense to treat CKD patients with autologous MSCs? If yes, up to which stage and/or duration of CKD? Second, what happens to MSCs from healthy donors after transplantation into a recipient with CKD? Studies to identify the in vivo mechanisms leading to MSC damage in CKD and their time course are urgently needed to identify potential protective approaches.

Supporting Information

Figure S1 Cell tracking: detection of transplanted TG-MSC in kidney tissue.

(DOC)
MSCs. Thy1.1-nephritis treated with CKDsev-AD-MSCs.

References

1. Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ennsting C, et al. (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68: 1613–1617.
2. Togel F, Hu Z, Weiss K, Isaac J, Lange C, et al. (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289: F31–F42.
3. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, et al. (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115: 1743–1753.
4. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, et al. (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110: 1362–1369.
5. Kunter U, Rong S, Boor P, Muller-Newen G, et al. (2007) Mesenchymal stem cells prevent progressive experimental renal failure but macdiffereniate into glomerular adipocytes. J Am Soc Nephrol 18: 1754–1764.
6. di Bonzo LV, Ferra ro I, Cravanzola C, Mareschi K, Rustichelli D, et al. (2008) Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 57: 225–231.
7. Choi S, Park M, Kim J, Hwang S, Park S, et al. (2009) The role of mesenchymal stem cells in the functional improvement of chronic renal failure. Stem Cells Dev 18: 521–529.
8. Cavaglioli RC, Marini D, Sogayar MC, Noroila HU. (2009) Mesenchymal stem cells delivered at the subcapsule of the kidney ameliorate renal disease in the rat remnant kidney model. Transplant Proc 41: 947–951.
9. Lee SR, Lee SY, Moon JY, Park JY, Lee D, et al. Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. Ren Fail 32: 840–848.
10. Li B, Morikoka T, Uchida M, Otsu T (2006) Bone marrow cell infusion ameliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int 69: 323–330.
11. Kisselthor BC, Breittingen NT, Loehne JK, Sandgren EP (1999) Ubiquitous expression of marker transgenes in mice and rats. Dev Biol 214: 128–138.
12. Kunter U, Rong S, Djuric Z, Boor P, Muller-Newen G, et al. (2007) Mesenchymal stem cells prevent progressive experimental renal failure but macdiffereniate into glomerular adipocytes. J Am Soc Nephrol 18: 1754–1764.
13. Kutter U, Rong S, Boor P, Muller-Newen G, et al. (2007) Mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 57: 225–231.
14. Choi S, Park M, Kim J, Hwang S, Park S, et al. (2009) The role of mesenchymal stem cells in the functional improvement of chronic renal failure. Stem Cells Dev 18: 521–529.
15. Cavaglioli RC, Marini D, Sogayar MC, Noroila HU. (2009) Mesenchymal stem cells delivered at the subcapsule of the kidney ameliorate renal disease in the rat remnant kidney model. Transplant Proc 41: 947–951.
16. Lee SR, Lee SY, Moon JY, Park JY, Lee D, et al. Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. Ren Fail 32: 840–848.
17. Boor P, Konieczny A, Villa L, Schult AL, Buccher E, et al. (2007) Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol 18: 1508–1515.
18. Neven E, D’ Haese PC (2011) Vascular calcification in chronic renal failure: what have we learned from animal studies? Circ Res 108: 249–264.
19. Ostendorf T, Kunter U, Eitner F, Loos A, Regele H, et al. (1999) VEGF(165) mediates glomerular endothelial repair. J Clin Invest 104: 913–923.
20. Eitner F, Ostendorf T, Van Roeyen C, Kihara M, Li X, et al. (2002) Expression of a novel PDGF isoform, PDGF-C, in normal and diseased rat kidney. J Am Soc Nephrol 13: 910–917.
21. Boor P, Celic P, Martin IV, Villa L, Hodosy J, et al. (2011) The peroxisome proliferator-activated receptor-alpha agonist, BAY PPI, attenuates renal fibrosis in rats. Kidney Int 80: 1102–1107.
22. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, et al. (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3: e2213.
23. Sethi S, Ertk M, Zolting A (2006) Aging of mesenchymal stem cells. Aging Res Rev 5: 91–116.
24. Kramann R, Cousin SK, Neuss S, Kunter U, Bovi M, et al. (2011) Exposure to uricemia induces a proalcaline phenotype in human mesenchymal stem cells. Arterioscler Thromb Vasc Biol 31: e45–e54.
25. Semedo P, Corvea-Matoa A, Antonio Granese M, Maria Avancini Costa Malheiro D, Antonia dos Reis M, et al. (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27: 3063–3073.
26. Yuan DA, Connelly KA, Arvani A, Liao C, Kuluzewski MA, et al. Culture-modified bone marrow cells attenuate cardiac and renal injury in a chronic kidney disease rat model via a novel anti-fibrotic mechanism. PLoS One 5: e9543.
27. Drewa T, Joachimiak R, Kaznicka A, Fialanski M, Brymora A, et al. (2008) Bone marrow progenitors from animals with chronic renal failure lack capacity of in vitro proliferation. Transplant Proc 40: 1668–1673.
28. Buemi M, Costa C, Floccari F, Coppolino G, Campo S, et al. (2010) Genomic damage in endothelial progenitor cells from uremic patients in hemodialysis. J Nephrol 23: 328–334.
29. Betges MG, Langerak AW, van der Spek A, de Wit EA, Lietsens NH (2011) Premature aging of circulating T cells in patients with end-stage renal disease. Kidney Int 80: 208–217.
30. de Groot K, Bahlimann FH, Bahlimann E, Mende J, Hailer H, et al. (2005) Kidney graft function determines endothelial progenitor cell number in renal transplant recipients. Transplantation 79: 941–945.
31. de Groot K, Bahlimann FH, Sowa J, Koenig J, Mende J, et al. (2004) Uremia causes endothelial progenitor cell deficiency. Kidney Int 66: 641–648.
32. van Kroogen A, Joles JA, Bongartz LG, van den Brand J, Reichardt HM, et al. Healthy Bone Marrow Cells Reduce Progression Of Kidney Failure Better Than Ckd Bone Marrow Cells In Rats With Established Chronic Kidney Disease. Cell Transplant.
33. Yang HC, Rossini M, Ma IJ, Zuo Y, Ma J, et al. (2011) Cells Derived from Young Bone Marrow Accelerate Renal Aging J Am Soc Nephrol.
Uremia Induces Dysfunction in MSC

34. Noh H, Yu MR, Kim HJ, Jeon JS, Kwon SH, et al. (2012) Uremia induces functional incompetence of bone marrow-derived stromal cells. Nephrol Dial Transplant.
35. Li Z, Luo C, Xie Z, Song P, Zhao RC, et al. (2011) Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6: e20526.
36. Lo IJ, Go AS, Chertow GM, McCulloch CE, Fan D, et al. (2009) Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int 76: 893–899.
37. Urish KL, Vella JB, Okada M, Deasy BM, Tobita K, et al. (2009) Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell 20: 569–580.
38. Kando Y, Himata T, Kang SW, Watanabe Y (2011) Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 89: 250–256.
39. Graham GJ, Wright EG, Hewick R, Wolpe SD, Wilkie NM, et al. (1990) Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 344: 442–444.
40. Sugawara J, Mitsui-Saito M, Hayashi C, Hoshiai T, Senoo M, et al. (2005) Decrease and senescence of endothelial progenitor cells in patients with preeclampsia. J Clin Endocrinol Metab 90: 5329–5332.
41. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3: 379–389.
42. Horn P, Bokermann G, Choledaw D, Bork S, Waleuda T, et al. (2010) Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 12: 828–838.
43. Ball SG, Shanksworth CA, Kiely CM (2012) Inhibition of Platelet-Derived Growth Factor Receptor Signaling Regulates Oct4 and Nanog Expression, Cell Shape and Mesenchymal Stem Cell Potency. Stem Cells.
44. Asanuma H, Vanderbrink BA, Campbell MT, Hile KL, Zhang H, et al. Arterially delivered mesenchymal stem cells prevent obstruction-induced renal fibrosis. J Surg Res 168: e31–59.
45. Ninichuk V, Gross O, Segerer S, Hoffmann R, Radomkova E, et al. (2006) Multipotential mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70: 121–129.
46. Nakanoishi C, Nagaya N, Olinishi S, Yamahara K, Takahatake S, et al. (2011) Gene and protein expression analysis of mesenchymal stem cells derived from rat adipose tissue and bone marrow. Circ J 75: 2260–2269.
47. Choi H, Lee RH, Bazarov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118: 330–339.
48. Montzka K, Fuhrmann T, Muller-Ehmsen J, Wolte M, Brook GA (2010) Growth factor and cytokine expression of human mesenchymal stromal cells is not altered in an in vitro model of tissue damage. Cytotherapy 12: 870–880.
49. Reeseling-van Rhijn M, Reinders ME, de Klein A, Douben H, Korevaar SS, et al. (2012) Mesenchymal stem cells derived from adipose tissue are not affected by renal disease. Kidney Int 82: 748–758.
50. Krulica A, Campisi J (2003) Integrating epithelial cancer, aging stroma and cellular senescence. Adv Gerontol 11: 109–116.
51. Salazar KD, Landford SM, Brody AR (2009) Mesenchymal stem cells produce Wnt isoforms and TGF-beta1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 297: L1002–1011.
52. Olinishi S, Sumiyoshi H, Kitamura S, Nagaya N (2007) Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBs Lett 581: 3961–3966.