Global distribution and conservation of avian diet specialization

Federico Morelli1,2 | Yanina Benedetti1 | Jeffrey O. Hanson3 | Richard A. Fuller4

1 Community Ecology and Conservation, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Institute of Biological Sciences, University of Zielona Gora, Zielona Gora, Poland
3 CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
4 School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia

Correspondence
Federico Morelli, Community Ecology and Conservation, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic.
Email: fmorellius@gmail.com

Funding information
Czech Science Foundation GAČR,
Grant/Award Number: 18–16738S

Abstract
Ecologically specialist species are more prone to extinction than generalist species, yet the global distribution and conservation of ecological specialism is poorly understood. Here, we show that the global distribution of avian dietary specialization is roughly congruent with overall bird species richness for resident and breeding species, as well as for non-breeding species. However, some areas harbor a higher number of diet specialist birds than expected given overall species richness (e.g. the Amazon, Gabon and Cameroon in Central Africa, extensive parts of Indonesia and some parts of northern Eurasia, Baltic cost and Mediterranean areas for resident and breeding birds, and tropical zone and south part of subtropical zone in South America for non-breeding birds). These areas represent hotspots of avian specialization that need to carefully be considered in conservation strategies. We found that overall, 49.6% of resident and breeding species and 45.5% of non-breeding diet specialist species are adequately represented by the global protected area system, but that this percentage is lower for the most threatened species. Policies that modify conservation planning approaches to include measures of specialization alongside other more traditional metrics of biodiversity could improve the protection of biodiversity in the face of rapidly accelerating anthropogenic threats.

KEYWORDS
avian specialization, biodiversity conservation, bird community, diet, extinction risk, geographic distributions, protected areas network

1 | INTRODUCTION

Threats to global biodiversity are rapidly accelerating (Steffen et al., 2015), signalling an urgent need to increase and expand biodiversity conservation efforts (Butchart et al., 2015). Since habitat destruction is the main cause of biodiversity decline (Maxwell et al., 2016), the global network of protected areas constitutes a cornerstone of these efforts (Watson & Herring, 2012), and hotspots of species richness, endemism, wilderness and rare species have variously been used to guide strategies for the placement of protected areas (Lascelles et al., 2012; Woodwell et al., 2006). The central role of protected areas is to buffer samples of
biodiversity (species, communities, ecosystems) from threatening processes, most notably habitat loss and overexploitation (Margules & Pressey, 2000). Protected areas currently cover about 14.9% (20.0 million km\(^2\)) of the planet’s terrestrial and inland water surface (UNEP-WCMC, IUCN & NGS, 2018).

In the last few decades, policies to identify priority locations for protected areas have focused mainly on locations characterized by high species richness or that contribute to representing a target proportion of species’ geographic distributions (Maes et al., 2005; Fleishman et al., 2006). Yet species differ enormously in the extent to which they are vulnerable to threats, and full incorporation of this issue into conservation planning is still in its infancy. A useful starting point might be consideration of species’ functional characteristics (Kosman et al., 2019). For example the degree of specialization of the species in a community could profoundly affect their resilience to threats, and thus influence the return on investment of protecting them. A species-trait approach focused on functional aspects of biodiversity could be adapted to evaluate specialization in communities for this purpose, and a conservation policy based on a multi-dimensional assessment of species assemblages, considering not only the number of species but also their functional traits, could be much more reliable than using simple metrics of species occurrences alone (Kosman et al., 2019).

Ecologically specialist species can be defined as those with a narrow niche, or using a restricted range of resources, whereas ecologically generalist species can in contrast exploit a broad variety of available resources (Irshick et al., 2005). Data on the breadth of resource exploitation in different species have become increasingly available over the last few decades, especially for birds (Reif et al., 2010; Clavero et al., 2011), and new tools for measuring specialization have been developed that can integrate multiple dimensions of species’ traits, yielding a continuous index of specialization (Morelli et al., 2019).

Specialist species are more prone to extinction than generalist species (Sekercioglu et al., 2004; Colles et al., 2009; Clavel et al., 2011). Generalism can predict a species’ capacity to respond to rapid environmental change, and adapt to disturbance (Hammond et al., 2018). Conversely, specialization leads to an increased dependence on a specific and limited range of resources (Begon et al., 2006), making the species more prone to conservation risks should there be natural or anthropogenic variability in the availability of those resources (Balisi et al., 2018; Chichorro et al., 2019). In the specific, some studies in mammals suggested that dietary specialization is associated with a higher risk of extinction, reducing species durations (Balisi et al., 2018). This negative relationship was attributed to a lower dispersion capacity of the most dietary specialized species (Balisi et al., 2018). Additionally, studies in bats and insects also found a higher risk of local extinction for dietary specialists species (Biesmeijer et al., 2006; Boyles & Storm, 2007). Dietary specialists should be more sensible than generalists species to the loss of prey (Sierro & Arlettaz, 1997). For the same reasons, in birds, we can expect that dietary specialization and ecological plasticity could be associated to the extinction risk of species (Owens & Bennett, 2000; Sekercioglu, 2007; Ducatez et al., 2020).

Incorporating ecological specialization into IUCN Red List assessments has been proposed (Morelli et al., 2019), but not yet implemented. However, consistent estimates of specialization for all species in any taxon are not yet available, and – most important – very little is known about the spatial distribution of specialization and how well existing protected areas are representing specialist species.

Here, we map avian diet specialization globally and assess the extent to which diet specialists are represented in the global protected area system. We (i) develop an index of diet specialization for the world’s bird species, (ii) map the global distribution of avian diet specialization and (iii) assess how representation in protected areas varies along the gradient of diet specialization.

2 METHODS

2.1 Global distribution of birds and protected areas

We created a 30 × 30 km\(^2\) grid over the Earth (World Cylindrical Equal Area coordinate system, SR-ORG:8287), and overlaid polygons delineating the global distribution of 11,120 bird species (BirdLife International & Handbook of the Birds of the World, 2016). We removed uncertain, possibly extinct and extinct distributions, and additionally excluded passage, uncertain seasonal distributions from analyses, resulting in a set of 10,933 species for analysis. We created separate maps of the distribution of avian species using locations where species are (i) present year-round as resident and/or during the breeding season, and (ii) during the non-breeding season (the species is known or thought very likely to occur regularly during the non-breeding season; BirdLife International & Handbook of the Birds of the World, 2016).

Data on protected area boundaries were obtained from the World Database on Protected Areas (https://www.protectedplanet.net; Figure S1). Following standard procedures for cleaning the protected area dataset (e.g. Butchart et al., 2015), (i) sites with unknown or proposed designations were omitted, (ii) UNESCO Biosphere Reserves were omitted (Coetzee et al., 2014), (iii) sites represented as point localities were buffered to their reported area, (iv)
boundaries were dissolved to prevent issues due to overlapping areas, and (v) slivers were removed (code available at https://github.com/jeffreyhanson/global-protected-areas). Protected area data cleaning was completed using the World Behrman Equal Area coordinate system (ESRI:54017). Protected area data were then overlaid with a 30 × 30 km² grid covering the Earth. All spatial data processing was completed using ArcMap (version 10.3.1; ESRI, 2012), Python (version 2.7.8) and the R statistical computing environment (version 3.5.3; R Development Core Team, 2019) with the following R packages ‘sf’, ‘raster’, and ‘fasterize’.

2.2 Mapping avian diet specialization

We derived a set of species traits describing diet specialization for each bird species (Table S1), expressing the composition of diet using percentages of 10 major food items (invertebrates, vertebrates (endotherm), vertebrates (ectotherm), vertebrates (fish), vertebrates (unknown), scavenger, frugivore, nectarivore, granivore, folivore), founded on data provided in a relatively recent publication (Wilman et al., 2014). For determining the diet of each bird species, the diet proportions were scored from secondary literature based on word order in sentences describing the diet. Thus, the diet data are based on semi-quantitative information assessing the relative importance of each item for the whole life history, characterizing a large portion of the ‘Eltonian’ niches of species (see more details in Wilman et al. (2014)). A similar type of data were used in a recent study focusing on bird trophic niche (Pigot et al., 2020).

Following Morelli et al. (2019), we estimated the degree of diet specialization of each species using the Gini index of inequality. This index is a measure of statistical dispersion that ranges between 0 and 1, representing low to high specialization (respectively). Developed by Corrado Gini in 1921, it is probably the best single measure of inequality (Gastwirth, 1972), commonly used in studies of economic health of nations and recently adopted also in ecology and conservation studies (Barr et al., 2011; Morelli et al., 2019; Roeland et al., 2019). The Gini coefficient is estimated with the following formula:

\[
G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} [x_i - x_j]}{2n^2x'},
\]

where 'x' is an observed value, 'n' is the number of values observed and 'x' is the mean value.

In the specific case of avian diet traits used in this study, if every diet component has the same value, the index is 0, indicating the maximum degree of generalization possible. At the other extreme, a Gini coefficient of 1 indicates perfect inequality in the use of resources (i.e. high diet specialization), in which a species has a diet represented by just a single component.

The geographical data and the available trait data used different underlying taxonomies, and to minimise the loss of species in the merged dataset, we sourced up to three synonyms for each species to facilitate matching. Using the diet specialization index for each bird species, we estimated two quantities to describe the avian community present in each 30 × 30 km². Firstly, we estimated the richness of diet specialist species (‘specialist richness’) in the community by counting the number of bird species with a Gini diet specialization of 1 (species exploiting only a single type of item in the diet). Secondly, we calculated the ‘community diet specialization index’ (DSI) or mean diet specialization of the community as the sum of all diet specialization indices divided by species richness.

For the visualisation of each variable in the maps of resident and breeding, and non-breeding birds, we used the Jenks optimisation method based on natural breaks classification criteria.

2.3 Statistical analyses

We explored associations among diet specialist richness, DSI and overall species richness of resident and breeding, and non-breeding bird communities using spatially explicit Mantel tests (Valcu & Kempenaers, 2010). The Mantel test compares distance matrices among variables, using permutations of N rows and columns of each dissimilarity matrix. We compared distance matrices with differences between each variable among 30 × 30 km squares, by applying Monte Carlo permutations with 999 randomizations. Mantel tests were performed separately for each continent, using the package ‘ade4’ in R.

Because the number of diet specialist species in a community is correlated with overall species richness, to reduce any effect associated with this spatial association, we used the residuals of a regression of specialist richness on overall species richness, a tool commonly used to highlight spatial patterns in ecology (Jetz & Rahbek, 2002; Caro, 2010). We ran a generalized linear mixed model between both variables, introducing continent as a random effect to account for possible consistent regional differences. Models were fitted by maximum likelihood using the package ‘lme4’ in R. The residuals of the regression indicate the areas where there are more or fewer specialists than expected by chance, considering the total number of species. Positive residuals indicate the number of diet specialist species above the expected, whereas negative values indicate areas where specialist richness is lower than expected considering overall bird species richness.
We assessed how well diet specialist bird species are represented by existing protected areas, considering the distribution of resident and breeding, and non-breeding birds. We compared the percentage of each species’ distribution currently covered by protected areas to a target threshold percentage. First, we calculated the proportion of distribution range of each species for each category of threat, overlapped with the worldwide protected area network. Then, following standard practices (Ven ter et al., 2014; Butchart et al., 2015), targets for species with distributions smaller than 1,000 km² were set as 100% of their geographic range size, targets for species with ranges larger than 250,000 km² were set as 10% of their geographic range size and targets for species with intermediate range sizes were log-linearly interpolated between these two thresholds. Additionally, targets for species with geographic range size larger than 10,000,000 km² were capped at 1,000,000 km² (Butchart et al., 2015). After calculating the targets, we identified species that are inadequately represented by existing protected areas by comparing the percentage of their distribution covered by protected areas to their species-specific coverage target. In other words, if the proportion of a species’ distribution covered by protected areas was smaller than its representation target, it was considered inadequately represented by existing protected areas. Antarctica was excluded from all coverage statistics following standard practices. Because the percentage of conservation target met did not fulfil the normality and homoscedasticity requirements for parametric tests, we used a Wilcoxon test to compare whether the level of coverage by the network of protected areas is similar for diet specialist and non-specialist species.

All statistical tests were performed with R statistical programming environment version 3.6.0 (R Development Core Team, 2019).

3 | RESULTS

Resident and breeding bird species richness peaked in South America (mean = 305 species per 30 x 30 km squares), Eastern, Middle, Southern and Western Africa (mean = 235, 225, 202 and 147 species, respectively) and Southeast Asia (mean = 189 species). In Oceania, bird species richness peaked in Australia and New Zealand, and Melanesia, with mean values of 135 and 132 species, respectively. Central America harboured a mean of 134 species (Table 1, Figure 1a). On the other hand, richness of non-breeding bird species peaked in Central America (mean = 78 species), Southeast Asia and Southern Asia (mean = 61 species for both areas), followed by Eastern, Western and Middle Africa (mean = 58, 46 and 43 species, respectively; Table 2 and Figure 2a).

Of the 9,993 bird species assessed (those species that matched between maps of the global distribution and the dataset of traits), approximately one-third (34.16%) were classified as diet specialists, consuming only a single type of item. Diet specialization among the non-specialist species showed a wide range of variation, with a central tendency around 0.47, and SD = 0.19 (Table S1 and Figure S2). The spatial distribution of diet specialization at the global scale broadly corresponds with that of overall bird species richness (compare for example resident and breeding birds in Figures 1a and 3a), and diet specialist richness was spatially correlated with the overall species richness in all continents, for both resident and breeding, and non-breeding species (Table S2). Yet the pattern of residuals of the regression of diet specialist species on overall species richness highlighted some areas where there are more diet specialist species than expected from the total number of species, for both resident and breeding, and non-breeding species (Figures 1b and 2b). Areas with elevated diet specialist species richness for resident and breeding birds included the Amazon Basin, parts of Central Africa (e.g. Gabon and Cameroon), Southeast Asia (e.g. extensive parts of Indonesia) and some parts of the Northern Hemisphere (e.g. northern Eurasia, Baltic cost and some portion of the Mediterranean areas; Figure 1b). For non-breeding birds, the areas with a higher concentration of diet specialists than expected from overall species richness were located mainly in the tropics and the austral subtropics (e.g. in South America; Figure 2b).

DSI was spatially congruent with overall species richness and number of diet specialist species in the resident and breeding communities in all continents, with the exception of Oceania (Table S2 and Figure 1a–c). A different pattern of spatial correlation was observed for non-breeding birds, with spatial incongruence mainly between the metrics of richness (overall and diet specialist species) and DSI in Europe and North America (Table S2 and Figure 2a–c). For resident and breeding birds, there was particularly high diet specialization (community DSI) in the far north (Arctic), in central America, New Guinea, Australia, some areas of sub-Saharan Africa and more comprehensively across South America than expected from specialist richness (Figure 1c). The percentage of diet specialist species in the resident and breeding avian communities showed in Figure S3 is complementary to the information about community diet specialization and is independent of the total richness of species in each spatial unit mapped. For non-breeding birds, the hotspots of high diet specialization are more clustered in some parts of northern Eurasia and North America (Figure 2c).

The proportion of the geographic range overlapping with protected areas, for diet specialist and non-specialist species, is showed separately for resident and breeding,
Table 1

Mean avian diet specialist richness, community diet specialization index (DSI) and overall species richness, maximum values and standard deviation for the resident and breeding distributions of species. Values are estimated for continent and subregion, using a grid of 30 \times 30 km squares (N).

Continent/subregion	Diet specialist richness (mean)	Diet specialist richness (max)	Diet specialist richness (SD)	Community DSI (mean)	Community DSI (max)	Community DSI (SD)	Overall species richness (mean)	Overall species richness (max)	Overall species richness (SD)	N
Africa	40.385	164	31.200	0.551	1.000	0.092	166.821	516	120.883	13,598
Eastern Africa	56.859	164	27.472	0.587	0.750	0.027	235.859	516	111.111	3420
Middle Africa	58.405	164	27.871	0.592	0.791	0.050	225.453	516	94.511	2825
Northern Africa	9.407	59	13.074	0.454	0.779	0.128	42.467	230	56.069	3127
Southern Africa	39.522	85	16.546	0.563	0.602	0.018	202.665	372	77.568	1266
Western Africa	37.246	110	30.234	0.553	1.000	0.090	147.134	347	111.327	2960
Antarctica	2.866	13	2.608	0.507	0.791	0.058	5.270	25	4.306	976
Asia	30.859	129	26.013	0.504	1.000	0.082	127.190	406	85.949	15,308
Central Asia	22.828	41	8.070	0.396	1.000	0.068	134.408	226	40.322	1967
Eastern Asia	27.746	119	18.206	0.494	0.619	0.048	125.237	406	69.914	5297
Southeast Asia	58.481	129	36.401	0.615	0.747	0.029	189.428	404	116.730	2597
Southern Asia	33.592	129	22.577	0.514	1.000	0.054	132.932	397	75.512	3200
Western Asia	9.419	38	9.112	0.494	0.786	0.083	45.414	194	47.418	2244
Europe	19.289	206	13.994	0.458	0.760	0.061	116.066	551	63.302	11,625
Eastern Europe	19.627	47	10.205	0.461	0.695	0.062	123.819	246	88.900	8746
Northern Europe	13.514	30	8.582	0.458	0.760	0.046	81.559	191	58.087	1235
Southern Europe	15.323	33	8.996	0.434	0.558	0.047	80.478	149	49.145	966
Western Europe	31.091	206	39.284	0.464	0.694	0.068	129.621	551	97.244	678
North America	15.289	87	12.726	0.487	1.000	0.112	87.344	330	58.379	115,28
Caribbean	10.671	82	10.667	0.496	0.602	0.039	48.991	268	49.881	225
Central America	34.257	87	19.727	0.574	0.722	0.043	134.353	330	74.754	1230
Northern America	13.077	36	9.278	0.473	1.000	0.115	82.511	184	53.258	10,064
Oceania	24.416	80	13.217	0.550	0.792	0.045	128.326	291	63.899	3998
Australia and New Zealand	24.085	62	10.142	0.540	0.792	0.036	135.334	291	57.842	3485
Melanesia	41.977	80	28.396	0.605	0.766	0.035	131.935	254	86.097	261
Micronesia	8.692	14	3.708	0.596	0.665	0.028	24.298	35	7.309	104
Polynesia	12.284	14	1.710	0.645	0.681	0.032	30.041	43	2.558	148
Seven seas (open ocean)	9.260	20	7.036	0.574	0.770	0.108	22.896	36	9.624	77
South America	108.877	221	52.671	0.674	0.805	0.041	305.099	559	147.733	8119
Continent/subregion	Diet specialist richness (mean)	Diet specialist richness (max)	Diet specialist richness (SD)	Community DSI (mean)	Community DSI (max)	Community DSI (SD)	Overall species richness (mean)	Overall species richness (max)	Overall species richness (SD)	N
---------------------	-------------------------------	-------------------------------	-------------------------------	---------------------	---------------------	---------------------	-------------------------------	-------------------------------	-------------------------------	---
Africa	9.096	26	6.119	0.580	0.756	0.098	43.264	116	26.582	13,598
Eastern Africa	12.240	26	5.581	0.601	0.673	0.055	58.630	107	23.964	3420
Middle Africa	10.321	22	4.150	0.627	0.726	0.047	42.804	90	16.562	2825
Northern Africa	3.902	19	4.516	0.504	0.756	0.120	26.110	116	27.282	3127
Southern Africa	8.855	18	3.196	0.624	0.723	0.051	38.436	63	12.285	1266
Western Africa	9.887	24	7.191	0.575	0.756	0.111	46.135	106	29.465	2960
Antarctica	0.000	0	0.000	0.529	0.593	0.052	4.136	13	2.369	976
Asia	6.628	39	8.127	0.519	1.000	0.103	36.656	159	34.777	15,308
Central Asia	0.735	10	0.901	0.431	0.744	0.071	11.051	50	5.992	1967
Eastern Asia	3.673	30	5.756	0.494	1.000	0.117	23.183	159	30.392	5297
Southeast Asia	13.995	39	10.237	0.618	1.000	0.064	61.067	130	35.389	2597
Southern Asia	11.280	31	7.877	0.538	0.768	0.073	61.069	132	34.599	3200
Western Asia	3.431	15	2.327	0.504	0.669	0.065	27.017	97	15.489	2244
Europe	0.920	9	1.169	0.601	1.000	0.236	7.869	75	8.762	11,625
Eastern Europe	0.735	7	0.829	0.660	1.000	0.245	5.074	66	5.257	8746
Northern Europe	0.814	6	0.976	0.478	1.000	0.147	9.337	47	7.459	1235
Southern Europe	2.120	9	1.799	0.426	0.602	0.069	21.566	75	12.956	966
Western Europe	1.555	9	2.127	0.433	0.747	0.097	18.730	55	8.964	678
North America	3.438	22	4.262	0.554	1.000	0.119	28.396	142	31.094	11,528
Caribbean	3.729	11	4.413	0.553	0.610	0.021	34.333	76	29.130	225
Central America	10.240	22	4.562	0.543	1.000	0.047	78.436	142	29.644	1230
Northern America	2.358	19	3.038	0.556	1.000	0.128	20.332	128	22.866	10,064
Oceania	1.993	9	1.503	0.549	0.775	0.065	17.014	60	8.684	3998
Australia and New Zealand	2.139	8	1.386	0.557	0.775	0.062	17.364	50	8.236	3485
Melanesia	1.969	9	2.206	0.526	0.594	0.036	21.345	60	11.974	261
Micronesia	0.010	1	0.098	0.477	0.579	0.049	7.721	14	1.841	104
Polynesia	0.000	0	0.000	0.445	0.533	0.033	7.649	11	1.016	148
Seven seas (open ocean)	0.182	4	0.556	0.493	0.605	0.050	8.688	25	3.365	77
South America	9.164	20	4.019	0.701	1.000	0.074	27.620	81	12.623	8119
and non-breeding birds in Figures S4 and S5. Overall, 49.6% of resident and breeding species and 45.5% of non-breeding species classified as diet specialist were adequately represented by the existing protected area system (Figures S6 and S7), but this percentage is much lower for the most threatened species. In resident and breeding areas, only six of the 40 diet specialist species classified by the IUCN Red List as Critically Endangered (CR) are adequately covered by the global network of protected areas: *Carpococcyx viridis*, *Gyps africanus*, *Hapalopsittaca fuertesi*, *Neophema chrysogaster*, *Pterodroma magenta* and *Troglodytes monticolae* (Table S3). For non-breeding birds, only one of the seven diet specialist species classified as CR resulted adequately covered by the global network of protected areas:
Figure 2 Global distribution of non-breeding bird species richness (a), residuals of the regression model between diet specialist richness versus overall bird species richness (b) and community ‘diet specialization index’ (DSI) (c). The values are presented in a coloured gradient from lower (dark blue), moderate (light yellow) to higher (red), with the ranges for each category based on a Jenks classification. The spatial unit is a grid of 30×30 km squares.

Gyps africanus (Table S3). On the other hand, overall, the geographic distribution of 20 diet specialist species classified as CR remains completely outside the global network of protected areas (Table S3). Additionally, our results showed that resident and breeding specialist bird species most efficiently covered by the current global network of protected areas are the species classified as a lower threat (e.g. Near Threatened and Least Concern; IUCN & BirdLife International, 2017; Figure 3), with a similar pattern found for non-specialist bird species (Wilcoxon test statistic $= 14$, $P = 0.834$; Figure 3). Among non-breeding specialist birds, a high proportion of those classified as Near Threatened and Least Concern met their conservation target (Figure 3), and diet specialist birds classified as
Endangered were actually more effectively covered by the global network of protected areas than non-specialist species in their non-breeding distribution (Figure 3).

4 | DISCUSSION

Based on a diet-trait characterization of species, we found that approximately one-third of the world’s bird species can be classified as diet specialist, and thus potentially at higher risk facing an environmental change. Functional traits are especially useful for arranging species and communities along a specialization gradient, because such traits are the consequence of a series of diversification process of adaptive radiation (Castiglione et al., 2017). For this reason, the level of specialization of single species and overall species assemblages can provide an indication of the capacity of communities to deal with sudden climatic or ecological changes (Clavero et al., 2011; Cooke et al., 2019). Additionally, the degree of diet specialization is a measure that could be positively associated with other levels of ecological specialization in birds (Morelli et al., 2019).

The main novelty of this study is the map of the global richness of diet specialist birds, highlighting a number of areas of high avian diet specialization, which could merit further consideration in the development of conservation policies. Globally, areas with high overall bird species richness of resident and breeding birds were in South America, some regions of Africa, Southeast Asia, Australia and New Zealand and Melanesia. However, the areas characterized by relatively high number of non-breeding bird species were in Central America, Southeast Asia and Southern Asia, followed by Eastern, Western and Middle Africa. This fact highlights the importance of considering separately the different stages of the annual cycle of migratory birds (Runge et al., 2015).
Regarding the spatial distribution of avian diet specialist species, our results agreed with previous studies despite a different strategy for classifying diet specialization (Bellmaker et al., 2012). Diet specialist species richness is rather congruent with overall species richness, and this spatial correlation is higher for non-breeding species. However, exploring cases where the number of specialists is higher than expected from overall species richness, we were able to highlight some areas characterized by unusually high avian diet specialization (Figures 1b and 2b). Some areas (e.g. the Amazon, parts of Central Africa and Southeast Asia) are already recognized areas of conservation importance, but other regions identified in the analysis that harbour relatively high diet specialist species richness, especially those with relatively low overall species richness, suggest some important additional conservation priorities (e.g. some areas of the Northern Hemisphere in Europe, and Australasia for resident and breeding birds, and some areas in the tropics and south of the subtropical zone for non-breeding birds). Ecological specialization could be integrated directly into approaches for identifying additions to protected area systems, for example by modifying estimates of the benefit of protecting candidate planning units to include ecological specialization as well as more traditional biodiversity metrics based on the occurrence or abundance of species.

Areas with high diet specialization in avian communities were not necessarily the same as areas characterized by a high species richness (see Table 1 and Figures 1a–c and 2a–c). This fact implies that the number of species in a community is not necessarily a good proxy for the level of specialization of a given community, and again highlights the need to explicitly incorporate specialization into conservation planning policy. For example the mismatch between overall species richness and DSI is relatively high in some north parts of the Northern Hemisphere, meridional areas of the Southern Cone, Madagascar and Australia for resident and breeding birds (Figure 1a–c), a result confirmed by the spatial correlations (Table S3). Similar discrepancies between overall species richness and DSI were found also for non-breeding species (Figure 2a–c and Table S3). All these differences in the spatial distribution of avian specialization need to carefully be assessed when considering the establishment of a natural sanctuary or a protected area. In Figure S8, we provide two examples of areas characterized by a high mismatch between the overall species richness and the total number of diet specialist species in the bird communities, overlapped with the network of protected areas. Clearly, decisions around protected area designation could usefully incorporate information on hotspots of specialization.

A second novelty of this study is the assessment of whether diet specialist species are better covered by the protected area network than non-specialist birds. Specialist birds have fewer ecological options, so they arguably need greater protection. The fact that diet specialist richness was correlated with overall bird species richness across all continents is a first suggestion that the network of protected areas, which was built mainly based on the distribution of species richness or simply situated in remote areas, incidentally offers substantial protection to avian specialists. However, the most threatened species have relatively little protected area coverage, independent of whether they are specialist or non-specialist, and independently of whether they are resident, breeding or non-breeding species. Only six Critically Endangered diet specialist species were adequately protected by the global network of protected areas, among the resident and breeding bird species. The Magenta petrel *Pterodroma magentae* is one of the world’s rarest seabirds, with a diet mainly of squid, and threatened from predation by feral cats (Johnston et al., 2003). The Santa Marta wren *Troglodytes monticola* is a small passeriform inhabiting the upper elevations of the Santa Marta Massif in northern Colombia, with a diet characterized by invertebrates (Kroodsma et al., 2019). The last four diet specialist species are the Indigo-winged parrot *Hapalopsitta fuertesi*, a frugivorous species from Colombia (Benavidez et al., 2018), the White-backed vulture *Gyps africanus*, which is an Old-World vulture with a diet of carrion and bone fragments of ungulate carcasses in African savannahs (Phipps et al., 2013), the Orange-bellied parrot *Neophaea chrysogaster* that is a small parrot endemic to southern Australia and the Sumatran ground cuckoo *Carpococcyx viridis*, a large and very elusive species of cuckoo endemic to Indonesia (Erritzøe et al., 2012). The remaining 85% of Critically Endangered diet specialist resident or breeding species were inadequately protected, highlighting the importance of integrating ecological specialization into conservation planning policy and practice. Interestingly, the White-backed vulture was the only Critically Endangered diet specialist to meet the conservation target among the non-breeding species, with other six species failing to meet such conservation target.

Inevitably, the quality of the diet specialization index is linked to the reliability and completeness of the underlying data, and because the data quality varies from species to species, the accuracy of the index is no doubt uneven across species. Furthermore, our classification of a species as specialist when associated with only a single major diet category could be rather too coarse to reflect variation in the types of food consumed within that broad category. Underlying diet data are limited mainly by missing information or by uncertainty in the expert assessments about some species’ diet used in Wilman et al. (2014). However, missing information for a small number of can be estimated using interpolated values based on taxonomic relations among species.
species (Molina-Venegas et al., 2018). In addition, some species show strong seasonal variation in diet, for example the blackcap Sylvia atricapilla is primarily insectivorous during the breeding season and frugivorous outside this period.

We have shown that high latitude and equatorial regions are characterized by avian communities with high diet specialization, perhaps representing hitherto unrecognized conservation priorities. We suggest paying more attention to the spatial distribution of the areas where the number of specialists is above that expected from overall species richness, and where overlap with the current network of protected areas is inadequate. Designation of new or expanded protected area might be necessary to cover some of these core areas of avian diet specialization. Conserving ecological specialization is potentially more efficient than purely species-based approaches because it captures the attributes of communities that could be more sensitive to environmental change. Additionally, we highlight the need to better understand the local and regional distribution of avian specialization, as well as the ecological mechanisms determining where specialists occur.

ACKNOWLEDGEMENT
F.M. and Y.B. were financially supported by the Czech Science Foundation GAČR (project number 18–16738S).

AUTHOR CONTRIBUTIONS
F.M., Y.B. and R.A.F. conceived the idea and designed methodology. F.M., Y.B. and J.O.H. prepared the data and performed data analyses. All authors contributed critically to the drafts and gave final approval for publication.

DATA AND CODE AVAILABILITY
All data generated or analysed during this study are included in this published article (and its Supporting Information files). Code available at https://github.com/jeffreyhanson/global-protected-areas. Other codes are available from the corresponding author on reasonable request. https://github.com/jeffreyhanson/global-protected-areas

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ORCID
Federico Morelli https://orcid.org/0000-0003-1099-1357
Yanina Benedetti https://orcid.org/0000-0003-1600-2310
Jeffrey O. Hanson https://orcid.org/0000-0002-4716-6134
Richard A. Fuller https://orcid.org/0000-0001-9468-9678

REFERENCES
Balisi, M., Casey, C., & Van Valkenburgh, B. (2018). Dietary specialization is linked to reduced species durations in North American fossil canids. Royal Society Open Science, 5, 171861.
Barr, L. M., Pressey, R. L., Fuller, R. A., Segan, D. B., McDonald-Madden, E., & Possingham, H. P. (2011). A new way to measure the world’s protected area coverage. PLoS ONE, 6, e24707.
Begon, M. E., Townsend, C. R., & Harper, J. L. (2006). Ecology: From Individuals to Ecosystems. 4th ed. Oxford, UK: John Wiley & Sons.
Belmaker, J., Sekercioglu, C. H., & Jetz, W. (2012). Global patterns of specialization and coexistence in bird assemblages. Journal of Biogeography, 39, 193–203.
Benavidez, A., Palacio, F. X., Rivera, L. O., Echevarria, A. L., & Politi, N. (2018). Diet of Neotropical parrots is independent of phylogeny but correlates with body size and geographical range. IBIS, 160, 742–754.
Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A. P., Potts, S. G., Kleukers, R., Thomas, C. D., Settele, J., & Kunin, W. E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313(5785), 351–354.
BirdLife International & Handbook of the Birds of the World. (2016). Bird species distribution maps of the world. Version 6.0. Retrieved from http://datazone.birdlife.org/species/requestdis
Boyles, J. G., & Storm, J. J. (2007). The perils of picky eating: Dietary breadth is related to extinction risk in insectivorous bats. PLoS ONE, 2(7), e672.
Butchart, S. H. M., Clarke, M., Smith, R. J., Sykes, R. E., Scharlemann, J. P. W., Harfoot, M., … Burgess, N. D. (2015). Shortfalls and solutions for meeting national and global conservation area targets. Conservation Letters, 8, 329–337.
Caro, T. M. (2010). Conservation by proxy. Indicator, umbrella, keystone, flagship, and other surrogate species. Washington, DC: Island Press.
Castiglione, S., Mondanaro, A., Carotenuto, F., & Passaro, F. (2017). The many shapes of diversity: Ecological and evolutionary determinants of biodiversity through time. Evolutionary Ecology Research, 18, 25–39.
Chichorro, F., Juslén, A., & Cardoso, P. (2019). A review of the relation between species traits and extinction risk. Biological Conservation, 237, 220–229.
Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9, 222–228.
Clavero, M., Brotons, L., & Herrando, S. (2011). Bird community specialization, bird conservation and disturbance: The role of wildfires. The Journal of Animal Ecology, 80, 128–136.
Coetzee, K. L., Witkowski, E. T. F., & Erasmus, B. F. N. (2014). Reviewing Biosphere Reserves globally: Effective conservation action or bureaucratic label? Biological Reviews, 89, 82–104.
Colles, A., Liow, L. H., & Prinzinger, A. (2009). Are specialists at risk under environmental change? Neoeccological, paleoecological and phylogenetic approaches. Ecology Letters, 12, 849–863.
Cooke, R. S. C., Eigenbrod, F., & Bates, A. E. (2019). Projected losses of global mammal and bird ecological strategies. Nature Communications, 10, 1–8.
Ducatez, S., Sol, D., Sayol, F., & Lefebvre, L. (2020). Behavioural plasticity is associated with reduced extinction risk in birds. Nature Ecology & Evolution, 4, 788–793.
Erritzoe, J., Mann, C. F., Brommer, F. P., & Fuller, R. A. (2012). Cuckoos of the world. 1st ed. London, UK: Christopher Helm Publishers Ltd.

ESRI. (2012). ArcGIS Desktop: Release 10.1.

Fleishman, E., Noss, R. F., & Noon, B. R. (2006). Utility and limitations of species richness metrics for conservation planning. *Ecological Indicators*, 6, 543–553.

Gastwirth, J. (1972). The estimation of the Lorenz curve and Gini index. *Review of Economics and Statistics*, 54, 306–316.

Hammond, T. T., Palme, R., & Lacey, E. A. (2018). Ecological specialization, variability in activity patterns and response to environmental change. *Biology Letters*, 14, 20180115.

Irschick, D., Dyer, L., & Sherry, T. W. (2005). Phylogenetic methodologies for studying specialization. *Oikos*, 110, 404–408.

IUCN & BirdLife International. (2017). The IUCN Red List of Threatened Species. Version 2016-3. Retrieved from http://www.iucnredlist.org

Jetz, W., & Rahbek, C. (2002). Geographic range size and determinants of avian species richness. *Science*, 297, 1548–1551.

Johnston, R. B., Bettany, S. M., Ogle, R. M., Aikman, H. A., Taylor, G. A., & Imber, M. J. (2003). Breeding and fledging behaviour of the Chatham Taiko (Magenta Petrel) *Pterodroma magentae*, and predator activity at burrows. *Marine Ornithology*, 31, 193–197.

Kosman, E., Burgio, K. R., Presley, S. J., Willig, M. R., & Scheiner, S. M. (2019). Conservation prioritization based on trait-based metrics illustrated with global parrot distributions. *Diversity and Distribution*, 25, H16–H1165.

Kroodsma, D., Brewer, D., & Sharpe, C. J. (2019). Santa Marta wren (*Troglodytes monticola*). In J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, & E. de Juana (Eds.), *Handbook of the birds of the world*, (356–447). Barcelona, Spain: Lynx Edicions.

Lascelles, B. G., Langham, G. M., Ronconi, R. A., & Reid, J. B. (2012). From hotspots to site protection: Identifying Marine Protected Areas for seabirds around the globe. *Biological Conservation*, 156, 5–14.

Maes, D., Bauwens, D., De Bruyn, L., Anselin, A., Vermeersch, G., Van Landuyt, W., De Knijf, G., & Gilbert, M. (2005). Species richness coincidence: Conservation strategies based on predictive modelling. *Biodiversity Conservation*, 14, 1345–1364.

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. *Nature*, 405, 243–253.

Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. *Nature*, 536(7615), 143–145.

Molina-Venegas, R., Moreno-Saiz, J. C., Castro Parga, I., Davies, T. J., Peres-Neto, P. R., & Rodríguez, M. (2018). Assessing among-lineage variability in phylogenetic imputation of functional trait datasets. *Ecography*, 41, 1740–1749.

Morelli, F., Benedetti, Y., Moller, A. P., & Fuller, R. A. (2019). Measuring avian specialization. *Ecology and Evolution*, 9, 8378–8386.

Owens, I. P. F., & Bennett, P. M. (2000). Ecological basis of extinction risk in birds: Habitat loss versus human persecution and introduced predators. *Proceedings of the National Academy of Sciences of the United States of America*, 97(22), 12144–12148.

Phipps, W. L., Willis, S. G., Wolter, K., & Naidoo, V. (2013). Foraging ranges of immature African White-backed vultures (*Gyps africanus*) and their use of protected areas in Southern Africa. *PLoS ONE*, 8, e52813.

Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G., Roll, U., … Tobias, J. A. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. *Nature Ecology & Evolution*, 4, 230–239.

R Development Core Team. (2019). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing.

Reif, J., Jiguet, F., & Šťastný, K. (2010). Habitat specialization of birds in the Czech Republic: Comparison of objective measures with expert opinion. *Bird Study*, 57, 197–212.

Roeland, S., Moretti, M., Amorim, J. H., Branquinho, C., Fares, S., Morelli, F., … Calfapietra, C. (2019). Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. *Journal of Forestry Research*, 30(6), 1981–1996.

Runge, C. A., Watson, J. E. M., Butchart, S. H. M., Hanson, J. O., Possingham, H. P., & Fuller, R. A. (2015). Protected areas and global conservation of migratory birds. *Science*, 350, 1255–1258.

Sekercioglu, C. H. (2007). Conservation ecology: Area trumps mobility in fragment bird extinctions. *Current Biology*, 17(5), R283–R286.

Sekercioglu, C. H., Daily, G. C., & Ehrlich, P. R. (2004). Ecosystem consequences of bird declines. *Proceedings of the National Academy of Sciences of the United States of America*, 101, 18042–18047.

Sierro, A., & Arlettaz, R. (1997). Barbastelle bats (*Barbastella* spp.) specialize in the predation of moths: Implications for foraging tactics and conservation. *Acta Oecologica*, 18, 91–106.

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the Anthropocene: The Great Acceleration. *Annual Review of Anthropology*, 2, 81–98.

UNEP-WCMC, IUCN and NGS. (2018). *Protected Planet Report 2018: Tracking progress towards global targets for protected areas*. Cambridge, UK; Gland, Switzerland; and Washington, DC: Author.

Valcu, M., & Kempenaers, B. (2010). Spatial autocorrelation: An overlooked concept in behavioral ecology. *Behavioral Ecology*, 21, 902–905.

Venter, O., Fuller, R. A., Segan, D. B., Carwardine, J., Brooks, T., Butchart, S. H. M., … Watson, J. E. M. (2014). Targeting global protected area expansion for imperiled biodiversity. *PLoS Biology*, 12, e1001891.

Watson, D. M., & Herring, M. (2012). Mistletoe as a keystone resource: An experimental test. *Proceedings of the Royal Society B: Biological Sciences*, 279, 3853–60.

Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. *Ecology*, 95, 2027.

Woodwell, G. M., Brooks, T. M., Mittermeier, R. A., da Fonseca, G. A. B., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D., & Rodrigues, A. S. L. (2006). On purpose in conservation. *Science*, 314, 52–54.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.
How to cite this article: Morelli F, Benedetti Y, Hanson JO, Fuller RA. Global distribution and conservation of avian diet specialization. Conservation Letters. 2021;e12795. https://doi.org/10.1111/conl.12795