Hemostatic powders for gastrointestinal bleeding: a review of old, new, and emerging agents in a rapidly advancing field

Authors
Shirley X. Jiang1, Daljeet Chahal2, Nabil Ali-Mohamad3,4, Christian Kastrup3,5, Fergal Donnellan6

Institutions
1 Department of Medicine, University of British Columbia, Vancouver, BC, Canada
2 Division of Gastroenterology, Mount Sinai Hospital, New York, New York, United States
3 Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
4 Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
5 Blood Research Institute, Versiti, Milwaukee, Wisconsin, United States
6 Division of Gastroenterology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada

submitted 15.1.2022
accepted 20.4.2022

Bibliography
Endosc Int Open 2022; 10: E1136–E1146
DOI 10.1055/a-1836-8962
ISSN 2364-3722
© 2022. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Corresponding author
Dr. Fergal Donnellan, Clinical Associate Professor, Division of Gastroenterology, Vancouver General Hospital, 5153-2775 Laurel St., Vancouver, BC, V5Z 1M9, Canada
Fax: 604-875-5373
Fergal.donnellan@vch.ca

ABSTRACT
Background and study aims Hemostatic powders are increasingly used to address limitations in conventional endoscopic techniques for gastrointestinal bleeding. Various agents exist with different compositions, characteristics, efficacy, and adverse events (AEs). We sought to review existing hemostatic powders, from preclinical to established agents.
Methods A literature review on hemostatic powders for gastrointestinal bleeding was undertaken through a MEDLINE search from 2000–2021 and hand searching of articles. Relevant literature was critically appraised and reviewed for mechanism of action, hemostasis and rebleeding rate, factors associated with hemostatic failure, and AEs.
Results The most established agents are TC-325 (Hemospray), EndoClot, and Ankaferd Blood Stopper (ABS). These agents have been successfully applied to a variety of upper and lower gastrointestinal bleeding etiologies, in the form of primary, combination, salvage, and bridging therapy. Few AEs have been reported, including visceral perforation, venous embolism, and self-limited abdominal pain. Newer agents include CEGP-003 and UI-EWD, which have shown results similar to those for the older agents in initial clinical studies. All aforementioned powders have high immediate hemostasis rates, particularly in scenarios not amenable to conventional endoscopic methods, but are limited by significant rates of rebleeding. Other treatments include TDM-621 (PuraStat) consisting of a liquid hemostatic agent newly applied to endoscopy and self-propelling thrombin powder (CounterFlow Powder), a preclinical but promising agent.
Conclusions Rapid development of hemostatic powders and growing clinical expertise has established these agents as a valuable strategy in gastrointestinal bleeding. Further research will continue to refine the efficacy and applicability of these agents.

Introduction
Hemostatic powders have been developed to address current limitations of conventional endoscopic treatment for gastrointestinal bleeding. Conventional management, consisting of mechanical clipping, thermocoagulation, and epinephrine injection, is estimated to fail and lead to mortality in 5% to 10% of cases [1,2]. In part, this is due to difficulty applying these methods to bleeding in anatomically challenging areas, lesions
with poor visualization, diffuse bleeding, and friable tissue. Further, the success of these techniques depends upon availability of skilled endoscopists and equipment. Hemostatic powders provide a treatment modality that has a minimal learning curve, is atraumatic, accesses anatomically difficult areas, and is broadly applicable to various etiologies of gastrointestinal bleeding. On a healthcare system level, use of hemostatic powders as rescue therapy where conventional therapy fails is projected to lead to economic savings [3]. For upper gastrointestinal bleeding, the 2021 American College of Gastroenterology (ACG) clinical guidelines conditionally recommend endoscopic hemostatic therapy for patients with actively bleeding ulcers, while the 2019 International Consensus guidelines recommend its use only as a temporizing measure toward definitive treatment [4, 5]. These evolving guidelines reflect recent advances in and research about hemostatic powders.

Given the rapid development of several hemostatic powders worldwide and addition of new agents, we provide a comprehensive clinical summary of all therapies, including those not discussed in previous reviews [6–9]. We review more established agents, TC-325 (Hemospray), EndoClot, and Ankaferd Blood Stopper (ABS) as well as newer agents, CEGP-003 and UI-EWD (NexPowder). We also review non-powder, preclinical, and alternative agents with mounting evidence. For each agent, we outline the mechanism of action, supporting clinical or preclinical studies, associated adverse events (AEs), and technical issues.

Methods

A literature search was conducted on MEDLINE from 2000–2021 for the keywords and MeSH headings “gastrointestinal bleeding,” “gastrointestinal hemorrhage,” “hemostatic powder,” “hemostasis,” “TC-325,” “EndoClot,” “polysaccharide hemostatic system,” “polysaccharide hemostatic powder,” and “Ankaferd blood stopper.” Relevant studies were reviewed for mechanism of action, rate of immediate hemostasis and re-bleeding, factors associated with hemostatic failure, and AEs.

Results

TC-325 (Hemospray)

Mechanism of action

TC-325 (Hemospray) is comprised of bentonite, an inert mineral powder that rapidly absorbs water upon contact with blood, creating an adhesive seal for mechanical tamponade, and concentrating clotting factors (Table 1) [10, 11]. The powder is then sloughed off the mucosa and passes through the gastrointestinal tract, which has been demonstrated by multiple studies finding no residue on re-look endoscopy in 24 to 72 hours [10, 12]. TC-325 is propelled by compressed air through a catheter placed in the working channel of the endoscope, allowing for non-contact and non-traumatic spray application in the bleeding area.

Table 1

TC-325 (Hemospray)	EndoClot	ABS	ui-EWD (NexPowder)	CEGP-003	
Manufacturer	Cook Medical Winston-Salem, North Carolina, USA	EndoClot Plus Santa Clara, California, USA	Ankaferd Health Products Istanbul, Turkey	Next Biomedical Incheon, South Korea	CGBio Seong-Nam, South Korea
Material	Inert mineral powder	Polysaccharides from plant starch	Five herbal extracts	Natural polymer	Natural polymer with epidermal growth factor
Mechanism of action	Forms adhesive seal over bleeding site, concentrates platelets and coagulation factors	Forms gelled matrix to seal bleeding site, causes platelet/coagulation factor concentration from rapid absorption of water, and activation of fibroblasts	Forms encapsulated protein matrix, leading to erythrocyte aggregation	Forms mucoadhesive hydrogel to create mechanical barrier on bleeding site	Forms adhesive gel to create mechanical barrier and promote local wound healing pathways
Reported clinical uses	Peptic ulcer disease, malignant GIB, varices, post-intervention, diverticular disease, portal hypertensive gastropathy/collopathy	Peptic ulcer disease, malignant GIB, varices, post-banding ulcers, post-EMR/ESD, radiation injury, lower GI bleeding	Peptic ulcer disease, malignant GIB, varices, GAVE, post-polypectomy, post-sphincterotomy, vascular lesion, radiation colitis, diverticular bleeding	Peptic ulcer, post-intervention, malignant GIB (carcinoma, GIST, lymphoma).	Peptic ulcer, post-EMR, post-ESD

GIB, gastrointestinal bleeding; EMR, endoscopic mucosal resection; ESD, endoscopic submucosal dissection; GAVE, gastric antral vascular ectasia; GIST, gastrointestinal stromal tumor.
Study	Country	Design	Intervention	Application	% Forrest la/b	Indication	Outcomes
Sung 2011	Hong Kong	PC, N = 20	TC-325	PUD	1a: 5%, 1b: 95%	Primary	I: 95%
Holster 2013	Netherlands	PC, N = 16	TC-325	UGB	1a: 25%, 1b: 25%	Primary (50%), rescue (31%)	I: 81%
Leblanc 2013	France	CS, N = 17	TC-325	UGB, post-procedure	NR	Primary (66.7%), rescue	I: 100%
Smith 2014	Europe	RC, N = 63	TC-325	UGB	1a: 17%, 1b: 25%	Primary, combination	I: 76–85%
Sulz 2014	Switzerland	CS, N = 16	TC-325	UGB, LGIB	NR	Primary	I: 94%
Yau 2014	Canada	RC, N = 19	TC-325	UGB	1a: 26%, 1b: 11%	Primary	I: 93%
Chen 2015	Germany	RC, N = 60	TC-325	UGB, LGIB	NR	Primary	I: 99%
Haddara 2016	France	PC, N = 202	TC-325	UGB	1a: 7%, 1b: 21%	Primary	I: 92–100%
Giles 2016	New Zealand	CS, N = 36	TC-325	UGB	NR	Primary	I: 100%
Hagel 2017	Germany	RC, N = 25	TC-325	UGB, LGIB	NR	Primary	I: 96%
Cahyadi 2017	Germany	RC, N = 52	TC-325	UGB	1a: 0%, 1b: 39%	Primary (44.2%), rescue	I: 98%
Arena 2017	Italy	RC, N = 15	TC-325	Malignant GIB	NR	Primary	I: 93%
Pittayanon 2018	Canada, Thailand	RC, N = 99	TC-325	Malignant GIB	1a: NR, 1b: 94%	Primary (88%), rescue (13%)	I: 98%
Ramirez-Polo 2019	Mexico	RC, N = 81	TC-325	UGB, LGIB	NR	Primary (54%), combination	I: 99%
Hookey 2019	Canada	PC, N = 50	TC-325	LGIB	NR	Primary, combination, rescue	I: 98%
Rodriguez De Santiago 2019	Spain	RC, N = 261	TC-325	UGB	1a: 25%, 1b: 64%	Primary, rescue (73.2%)	I: 94%
Ng 2019	Singapore	CS, N = 10	TC-325	Diverticular bleed	NR	Primary	I: 100%
Abzoubaidi 2020	UK, France, Germany	PC, N = 314	TC-325	UGB, LGIB	1a: 17%, 1b: 60%	Primary (38%), combination (45%), rescue (17.5%)	I: 89.5%
Chahal 2020	Canada	RC, N = 86	TC-325	UGB, LGIB	1a: 14%, 1b: 53%	Primary, combination	I: 88%
Hussein 2020	UK, US, France, Germany	PC, N = 202	TC-325	PUD	1a: 19%, 1b: 58%	Primary, combination, rescue	I: 88%
Study	Design	Country	Application	Intervention	% forrest lgb	Intention	Outcomes
---------------	--------	--------------------------------	-------------	--------------	---------------	-----------	----------
Lau 2020	RCT, N = 224	China, Hong Kong	TC-325, CHT	TC-325	NR	NR	R: 8% (30 day)
Hussein 2021	PC, N = 105	UK, US, France, Germany, Spain	TC-325, Malignant UGB	TC-325	NR	NR	R: 15% (30 day)
Becq 2021	CR, N = 152	France	TC-325, LGB	Urgent-CGB	NR	NR	R: 41%
Facciorusso 2021	CR, N = 65	Italy	TC-325, GIB	UGB	NR	NR	R: 9% (24 day)
Sinha 2016	CR, N = 20	UK	TC-325, epinephrine	Urgent-CGB	NR	NR	R: 9-25% (7 day)
Kwek 2017	PC, N = 105	Singapore	TC-325, CHT	TC-325	NR	NR	R: 33.3% (3 week)
Vitali 2019	PC, N = 154	Germany	TC-325, CHT	TC-325 (n=111), EndoClot (n=32)	NR	NR	R: 20-5% (30 day)*PUD only
Ibrahim 2019	RCT, N = 43	Belgium, Egypt	TC-325, Pharmacologic Variceal bleed	TC-325, EndoClot	NR	NR	R: 3.3% (30 day)
Barakat 2020	PC, N = 19	Brazil	TC-325, epinephrine	UGB	NR	NR	R: 0.1% (12 hour)
Chen 2020	CR, N = 105	Italy	TC-325, GIB	UGB, LGB	NR	NR	R: 0.1% (12 hour)
Prei 2016	PC, N = 70	Germany	TC-325, GIB	Urgent-CGB	NR	NR	R: 0.1% (12 hour)
Kim 2018	PC, N = 43	Korea	TC-325, GIB	EndoClot	NR	NR	R: 0.1% (12 hour)
Kurt 2010	CR, N = 26	Turkey	TC-325, LGB	EndoClot	NR	NR	R: 0% (7-48 day)

Table 2 (Continuation)
Clinical evidence

TC-325 is the most studied and widely used hemostatic powder on the market, with studies on its clinical use in many settings of gastrointestinal bleeding (Table 2). TC-325 has been successfully applied to many etiologies including peptic ulcer disease, malignant gastrointestinal bleeding, post-procedure gastrointestinal bleeding (endoscopic mucosal resection, sphincterotomy, ampullary resection, and polypectomy), variceal bleeding, portal hypertensive gastropathy/colopathy, and diverticular bleeding [12-41]. Of particular note is successful use in clinical scenarios not amenable to traditional endoscopic methods, such as malignant gastrointestinal bleeding with friable surfaces or diverticular bleeding. A study of urgent after-hours endoscopic hemostasis using TC-325 showed similar efficacy between “more” and “less” experiences endoscopists, demonstrating its ease of use [36].

Recent meta-analyses have studied use of TC-325 in both primary and secondary settings. Chahal et al. described 27 clinical studies with 1916 patients with upper gastrointestinal bleeding of various etiologies. Pooled hemostasis was 94.5% and rebleeding rate was 9.9% in 3 days, and 17.6% in 30 days. The addition of TC-325 to conventional treatment led to a higher rate of immediate hemostasis compared with conventional treatment alone with odds ratio of 4.40 [42]. Similarly, a systematic review of lower gastrointestinal bleeding, including nine studies with a total of 194 patients, observed an immediate hemostasis rate of 96.2% and a 7-day rebleeding rate of 19.5% [9]. When compared to conventional hemostatic therapy, TC-325 had similar efficacy in initial hemostasis and rebleeding rates [13-16]. When added to pharmacotherapy, TC-325 use was associated with lower rebleeding rates compared to pharmacotherapy alone [17].

While TC-325 has a high immediate hemostasis rate, particularly in scenarios unsuitable for conventional treatment, there is a significant rebleeding rate. Multiple studies have demonstrated that the risk of rebleeding is highest within the first week following TC-325 application, likely due to sloughing off the protective seal, thus limiting its efficacy in high-risk lesions that are prone to rebleeding. Multiple prognosticators for rebleeding have been identified including high-risk stigmata (Forrest 1a lesion) [8, 23, 31, 43], use as salvage therapy [8, 22, 23], and clinical indicators of more severe gastrointestinal bleeding such as syncope, hypotension, and higher Blatchford Score (Table 3).

Adverse events

As evidence for TC-325 has been accruing since 2011, there have been several reports of AEs related to its use (Table 4). Minor AEs include self-limited abdominal pain immediately after spraying, which has been attributed to visceral distension from the CO2 propellant [16, 23, 31]. Several cases of viscus perforation have been identified following use of TC-325, though in many cases it is difficult to discern whether the cause was TC-325, endoscope trauma, or friable tissue from the underlying condition [12, 21, 25, 31, 36, 39]. There has been a case of biliary obstruction when TC-325 was applied to post-sphincterotomy bleeding [44]; however, there are also cases of
leaving no residual powder on re-look endoscopy after 24 hours. The AMP are degraded by endogenous amylase and glucoamylase in the gastrointestinal tract, promoting wound healing [48]. The AMP have been shown to activate fibroblasts and growth factors to promote hemostasis [56]. Other reported mechanisms of action include inhibition of fibrinolysis and anti-coagulant pathways, as well as angiogenesis and cellular proliferation to promote wound healing [22].

EndoClot

Mechanism of action

EndoClot is composed of absorbable modified polymers (AMP) derived from plant starch. Upon contact with blood, polymers rapidly absorb water to form a protective gel matrix and concentrate coagulation factors (Table 1) [47]. EndoClot has also been shown to activate fibroblasts and growth factors to promote wound healing [48]. The AMP are degraded by endogenous amylase and glucoamylase in the gastrointestinal tract, leaving no residual powder on re-look endoscopy after 24 hours [49].

Clinical evidence

EndoClot has been studied in settings of gastrointestinal bleeding prophylaxis as well as primary, rescue, and combination treatment with conventional endoscopic methods (Table 2). Similar to TC-325, EndoClot has been applied to a variety of upper and lower gastrointestinal bleed settings, including malignant bleeding, peptic ulcer disease, varices, and radiation injury. As primary or secondary treatment, EndoClot has immediate hemostasis rates of 83% to 100% and recurrent bleeding rates of 11% to 23% [43, 50, 51].

Preventive use following high-risk endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD), including Forrest 1a lesions, showed rebleeding rates of 7.3% at 3 days [52, 53]. Rebleeding occurred after 48 hours in the post-ESD cohort, suggesting protection from the gel matrix for the duration that it resides on the mucosal surface. There was also a signal toward superior ulcer healing after using EndoClot, as re-look endoscopy showed a lower proportion of post-procedural Forrest Ia ulcers compared to other studies without use of EndoClot [52].

EndoClot has also been compared to conventional therapy and TC-325. Observational studies have shown that EndoClot had similar 30 day rebleeding rates compared to conventional treatment, in both primary and combination settings [49, 54]. Studies comparing TC-325 and EndoClot have found similar rates of hemostasis and rebleeding, though research with larger sample sizes and randomized design are lacking [39, 40]. Similar to TC-325, EndoClot also has limited residence time in the gastrointestinal tract, its application may be limited in lesions at high risk of rebleeding, as evidenced by high rates of recurrent bleeding in 24 to 72 hours.

Adverse events

No AEs were reported in reviewed clinical studies, however, there remains a theoretical risk of perforation, intestinal obstruction, embolism, and allergic reactions.

Ankaferd Blood Stopper

Mechanism of action

Developed in Turkey, ABS is composed of herbal extracts from five different plants, *Thymus vulgaris, Glycyrrhiza glabra, Vitis vinifera, Alpinia officinarum*, and *Urtica dioica* (Table 1) [55]. Upon contact with moisture, ABS forms an encapsulated protein network that facilitates erythrocyte aggregation, leading to hemostasis [56]. Other reported mechanisms of action include inhibition of fibrinolysis and anti-coagulant pathways, as well as angiogenesis and cellular proliferation to promote wound healing [22].

Clinical evidence

Several cohort studies have been conducted in cases of gastrointestinal bleeding of various etiologies treated with ABS as monotherapy or combined with conventional treatment (Table 2). Overall, the rate of immediate hemostasis ranges from 73% to 100% and rebleeding rate ranges from 0% to 33% [57–60]. In a series of 10 patients with malignant gastrointestinal bleeding, all had complete hemostasis up to 48 days until definitive management with surgery, suggesting a role as bridging therapy [58]. Case reports have also shown successful use of ABS for variceal bleeding [61–63], rectal ulcers [64], radiation colitis [65, 66], post-polypectomy [67], and diverticular bleeding [68]. ABS was also effective in a case of post-sphincterotomy bleeding with no associated complications [55]. Interestingly, in a case series of patients with gastric and rectal carcino-
ty, hypothesized to be due to inhibition of angiogenesis, suggestive of anti-tumor properties [69].

Adverse events
A single AE has been noted in the case of a patient with gastro-duodenal amyloidosis who developed duodenal perforation following ABS application, however authors concluded that it is unknown if this was due to the disease process itself [70]. There is also a risk of vascular embolization with ABS application to variceal bleeding; however, it has been successfully used in several cases reports of variceal bleeding [61–63].

CEGP-003
Mechanism of action
CEGP-003 is composed of absorbable and adhesive macromolecules of hydroxyethylcellulose with epidermal growth factor (EGF) (Table 1). Beyond forming an adhesive seal when in contact with water, the EGF component promotes wound healing by activating EGF receptors and intracellular pathways of wound healing [71].

Clinical evidence
Bang et al. conducted a randomized controlled trial comparing CEGP-003 with epinephrine injection as primary intervention for upper gastrointestinal bleeding (Table 2). Bleeding etiologies included peptic ulcer disease (20.5%), post-EMR bleeding

Table 4 Adverse events and technical issues.

Study, year	Intervention(s)	Case(s)	N (%)	Adverse events
Smith 2014	TC-325	Severe proximal portal hypertensive gastropathy	1/4 (25 %)	Perforated viscus following use of TC-325 which led to hemostasis, not candidate for surgery and died of sepsis.
Yau 2014	TC-325	UGIB	1/19 (5.3 %)	Abdominal distension and hemoperitoneum on paracentesis hours post-TC-325, suspected perforation.
Smith 2014	TC-325	UGIB, in patient admitted with tibial fracture	1/19 (5.3 %)	New onset splenic infarct on abdominal computed tomography scan after TC-325 use.
Hagel 2017	TC-325	Diffuse bleeding in gastric wall	1/27 (3.7 %)	Endoscope transiently adherent to esophageal mucosa when TC-325 was sprayed in retroflexion.
Pittayanon 2018	TC-325	Malignant GIB	1/88 (11.4 %)	Cardiac arrest of unclear cause as TC-325 was used, subsequent death 4 days later.
Rodriguez de Santiago 2019	TC-325	Esophageal ulcer secondary to GI graft vs host disease	1/261 (0.4 %)	Esophageal perforation after TC-325 use.
未知 GIB in woman with factor II prothrombotic mutation	1/261 (0.4 %)	Pulmonary thromboembolism 48 hours after TC-325 use.		
Vitali 2019	TC-325	Unknown GIB	2/154 (1.3 %)	Perforation after TC-325 use.
Becq 2021	TC-325	Deep peptic ulcer	1/152 (0.7 %)	Perforation after TC-325 use.
Beyazit 2013	ABS	Gastroduodenal amyloidosis	Case report	Perforation of duodenum after ABS application.

Technical Issues

Study, year	Intervention(s)	Case(s)	N (%)	Adverse events
Hagel 2020	EndoClot	UGIB	1/43 (2.3 %)	Occlusion of spray catheter.
Beg 2015	EndoClot	UGIB	2/21 (9.5 %)	Occlusion of spray catheter.
Smith 2014	TC-325	UGIB	3/64 (4.8 %)	Occlusion of application catheter.
			1/64 (1.6 %)	Occlusion of endoscope instrument channel.
			1/64 (1.6 %)	Malfunction of the CO₂ propellant cartridge.
Rodriguez de Santiago 2019	TC-325	GIB	5/261 (1.9 %)	Occlusion of spray catheter.
Park 2019	UI-EWD	UGIB	1/261 (0.4 %)	Occlusion of endoscope instrument channel.

UGIB, upper gastrointestinal bleeding; GIB, gastrointestinal bleeding.
areas. A distinctive blue color for improved visualization of treated ery without catheter occlusion, prevent particle scattering, and advantages include a liquid coating technology to improve delivery. As it does not require mechanical barrier to promote hemostasis. As it does not require clot formation to achieve hemostasis, UI-EWD does not require active bleeding. This provides it a potential role in prophylaxis, such as post-procedure or following primary hemostasis achieved with conventional endoscopic techniques. Other advantages include a liquid coating technology to improve delivery without catheter occlusion, prevent particle scattering, and a distinctive blue color for improved visualization of treated areas.

Adverse events
No AEs related to CEGP-003 have been reported; however, given the limited number of studies, further research is required.

UI-EWD (NexPowder)
Mechanism of action
UI-EWD (NexPowder) is composed of oxidized dextran and succinic anhydride, which is converted to an adhesive hydrogel upon contact with moisture (Table 1). The resulting hydrogel cross-links within itself and with adjacent tissue to create a mechanical barrier to promote hemostasis. As it does not require clot formation to achieve hemostasis, UI-EWD does not require active bleeding. This provides it a potential role in prophylaxis, such as post-procedure or following primary hemostasis achieved with conventional endoscopic techniques. Other advantages include a liquid coating technology to improve delivery without catheter occlusion, prevent particle scattering, and a distinctive blue color for improved visualization of treated areas.

Clinical evidence
While UI-EWD is the newest development in hemostatic powders for clinical use, initial results are promising (Table 2). Park et al. studied 17 patients with refractory gastrointestinal bleeding of various etiologies (including peptic ulcer disease, post-intervention, and malignancy), of which 12% were Forrest class 1a and 88% were Forrest class 1b. Immediate hemostasis was achieved in 94% of patients and 30-day rebleed rate was 19%. For Forrest 1a lesions, immediate hemostasis was only achieved in 50%, suggesting it is likely inadequate in the highest risk lesions similar to other hemostatic powders [74].

When used as monotherapy in upper gastrointestinal bleeding in 56 patients, rate of immediate hemostasis was 96.4% and 30-day rebleed was noted in only 3.7%. Patients in this study had similar bleeding etiologies of peptic ulcer, post-intervention, anastomotic site, and malignant bleeding; however, this population had lower-risk stigmata as Forrest 1a lesions were excluded and only 64.5% of lesions were Forrest 1b. Importantly, the hydrogel remained attached in 39% of patients after 3 days, suggesting an improvement in residence time from previous hemostatic powders [75]. Shin et al. studied UI-EWD use as monotherapy or rescue in 41 patients with malignant bleeding, including carcinoma, gastrointestinal stromal tumor, and lymphoma. Immediate hemostasis rate was high at 97.5% and rebleeding rate was 22.5% in 28 days [76].

These initial results suggest that UI-EWD has high immediate hemostasis rate and low rebleeding rate when used in less acute gastrointestinal bleeding. A particular advantage is the prolonged residence time of the hydrogel that provides a mechanical seal, which may be especially well-suited for lesions with high-risk stigmata that may rebleed. However, the initial hemostasis rate for Forrest 1a lesions was low at 50% so the role of UI-EWD in high-risk lesions remains undefined [74]. Further research is needed, particularly in comparison to conventional methods and other hemostatic powders.

Adverse events
Despite the liquid coating technology, clogging of the spray catheter was noted in 3.6% of patients, which was easily addressed with using another catheter [75]. No procedure-related AEs have been observed to date, though the number of clinical studies remains limited with this novel agent.

Other treatments
Self-propelling thrombin powder (CounterFlow Powder)
Self-propelling thrombin powder (SPTP; CounterFlow Powder) is a new hemostatic powder with unique properties to deliver the clotting factor directly to damaged bleeding vessels. Still in preclinical study, SPTP is adapted for endoscopic use from a gauze formulation that was used to successfully manage non-compressible hemorrhage [77, 78].

SPTP is composed of porous calcium carbonate microparticles loaded with thrombin and formulated with an organic acid. Protonated tranexamic acid has been included as the organic acid component for its potent anti-fibrinolytic properties. Contact with blood leads to effervescence of the powder, propelling thrombin to penetrate deep into the bleeding lesion to initiate hemostasis and stabilize clots [77]. This direct activity is demonstrated by improved hemostasis when SPTP was added to non-compression dressings in a porcine model of lethal femoral artery hemorrhage and a sheep model of turbinate bleeding [78–80].

As it has high hemostatic potential from thrombin, the mechanism of SPTP is likely well-suited to higher risk gastrointestinal bleeding with exposed vessels. In a porcine model of Forrest class 1a and 1b upper gastrointestinal bleeding, hemostasis was successfully achieved at all sites [81]. Previous non-gastrointestinal bleeding studies showed that SPTP is safe and well-tolerated with no evidence of toxicity or thromboembolism [77, 78].

TDM-621 (PuraStat)
While not a powder formulation, TDM-621 (PuraStat; 3D Matrix Europe SAS, Caluire-et-Cuire, France) is a topical hemostatic agent for surgical wounds that has been newly applied to endoscopic therapy with positive results. It is a transparent gel comprised of a specific sequence of amino acids that self-assemble into beta protein sheets upon contact with neutralizing fluid, forming a hydrogel scaffold similar to human extracellular ma-
trix [82]. As the hydrogel is transparent, visibility of the bleeding area and endoscope views remain unaffected. The gel formulation also prevents clogging of the catheter channel [83].

Compared to diathermy in a randomized controlled trial of post-ESD patients, TDM-621 had similar hemostasis and rebleeding, but superior wound healing at 4 weeks [84]. A prospective observational study was conducted using TDM-621 as primary and secondary treatment in 111 patients with gastrointestinal bleeding. The rate of immediate hemostasis was 94% and rebleeding rate was 16% at 30 days [85]. TDM-621 has also shown efficacy in refractory radiation proctopathy [86], post-EMR/ESD bleeding [87], and as rescue therapy in acute gastrointestinal bleeding [88]. No AEs or technical failures have been reported to date.

Conclusion

The last decade has shown rapid advancements in endoscopic hemostasis technology with development of several hemostatic powders. These powders have demonstrated their role for various bleeding etiologies and particularly in clinical scenarios where conventional treatment fails. Substantial rates of early rebleeding, likely due to sloughing off of the protective seal, limit their use as definitive monotherapy in current guidelines. Further, technical issues of catheter occlusion and impaired visual field are uncommon but reduce the usability of hemostatic powders. To address these challenges, iterative improvements have been made, exemplified by the design behind new agents, though further study to delineate their clinical efficacy is still underway. Ongoing research and development of hemostatic powders, as well as evolving clinical expertise to optimize their use, will propel endoscopic hemostasis into the future.

Competing interests

Dr. Kastrup is the inventor on patents and intellectual property, and Dr. Ali-Mohamad, Dr. Donnellan, and Dr. Kastrup are involved in commercialization activities related to self-propelling thrombin powder.

References

[1] Gralnek IM, Barkun AN, Bardou M. Management of acute bleeding from a peptic ulcer. N Engl J Med 2008; 359: 928–937
[2] Rosenstock SJ, Møller MH, Larsson H. Improving quality of care in peptic ulcer bleeding: nationwide cohort study of 13,498 consecutive patients in the Danish Clinical Register of Emergency Surgery. Am J Gastroenterol 2013; 108: 1449–1457
[3] Barkun AN, Adam Y, Lu Y et al. Using Hemostar improves the cost-effectiveness ratio in the management of upper gastrointestinal non-variceal bleeding. J Clin Gastroenterol 2018; 52: 36–44
[4] Laine L, Barkun AN, Saltzman JR et al. ACG Clinical Guideline: Upper Gastrointestinal and Ulcer Bleeding. Am J Gastroenterol 2021; 116: 899–917
[5] Barkun AN, Almadi M, Kuipers EJ et al. Management of nonvariceal upper gastrointestinal bleeding: guideline recommendations from the international consensus group. Ann Intern Med 2019; 171: 805
[6] Bustamante-Balén M, Plumé G. Role of hemostatic powders in the endoscopic management of gastrointestinal bleeding. World J Gastrointest Pathophysiol 2014; 5: 284–292
[7] Chen Y-I, Barkun AN. Hemostatic powders in gastrointestinal bleeding: a systematic review. Gastrointest Endosc Clin N Am 2015; 25: 535–552
[8] Facciorusso A, Straus Takahashi M, Eyleten Postula C et al. Efficacy of hemostatic powders in upper gastrointestinal bleeding: A systematic review and meta-analysis. Dig Liver Dis 2019; 51: 1633–1640
[9] Facciorusso A, Bertini M, Bertoni M et al. Effectiveness of hemostatic powders in lower gastrointestinal bleeding: a systematic review and meta-analysis. Endosc Int Open 2021; 9: E1283–E1290
[10] Sung JY, Luo D, Wu JCY et al. Early clinical experience of the safety and effectiveness of Hemospray in achieving hemostasis in patients with acute peptic ulcer bleeding. Endoscopy 2011; 43: 291–295
[11] Holster IL, Maat MDP, Ducharme R et al. Sa1671 In vitro examination of the effects of the hemostatic powder (HemosprayTM) on coagulation and thrombus formation in humans. Gastrointest Endosc 2012; 75: AB240
[12] Smith LA, Stanley AJ, Bergman JF et al. Hemospray application in non-variceal upper gastrointestinal bleeding: results of the Survey to Evaluate the Application of Hemospray in the Luminal Tract. J Clin Gastroenterol 2014; 48: e89–92
[13] Lau JWY, Pittayanon R, Kwek A et al. Comparison of a hemostatic powder and standard treatment in the control of active bleeding from upper nonvariceal lesions. Ann Intern Med 2021: doi:10.7326/M21-0975
[14] Sinha R, Lockman KA, Church NI et al. The use of hemostatic spray as an adjunct to conventional hemostatic measures in high-risk nonvariceal upper GI bleeding (with video). Gastrointest Endosc 2016; 84: 900–906.e3
[15] Baracat FI, de Moura DTH, Brunaldi VO et al. Randomized controlled trial of hemostatic powder versus endoscopic clipping for non-variceal upper gastrointestinal bleeding. Surg Endosc 2020; 34: 317–324
[16] Chen Y-I, Wyse J, Lu Y et al. TC-325 hemostatic powder versus current standard of care in managing malignant GI bleeding: a pilot randomized clinical trial. Gastrointest Endosc 2020; 91: 321–326.e1
[17] Ibrahim M, El-Mikkawy A, Abdel Hamid M et al. Early application of haemostatic powder added to standard management for oesophagogastroduodenal variceal bleeding: a randomised trial. Gut 2019; 68: 844–853
[18] Leblanc S, Vienne A, Dhooge M et al. Early experience with a novel hemostatic powder used to treat upper GI bleeding related to malignancies or after therapeutic interventions (with videos). Gastrointest Endosc 2013; 78: 169–175
[19] Holster IL, Kuipers EJ, Tjwa ETTL. Hemospray in the treatment of upper gastrointestinal hemorrhage in patients on antithrombotic therapy. Endoscopy 2013; 45: 63–66
[20] Sulz MC, Frei R, Meyenberger C et al. Routine use of Hemospray for gastrointestinal bleeding: prospective two-center experience in Switzerland. Endoscopy 2014; 46: 619–624
[21] Yau AHL, Ou G, Galorport C et al. Safety and efficacy of Hemospray® in upper gastrointestinal bleeding. Can J Gastroenterol Hepatol 2014; 28: 72–76
[22] Chen Y-I, Barkun A, Nolan S. Hemospray powder TC-325 in the management of upper and lower gastrointestinal bleeding: a two-year experience at a single institution. Endoscopy 2015; 47: 167–171
[23] Haddara S, Jacques J, Lecleire S et al. A novel hemostatic powder for upper gastrointestinal bleeding: a multicenter study (the "GRAPEH" registry). Endoscopy 2016; 48: 1084–1095
[24] Giles H, Lal D, Gerrard S et al. Efficacy and safety of TC-325 (Hemospray®) for non-variceal upper gastrointestinal bleeding at Middle
more Hospital: the early New Zealand experience. N Z Med J 2016; 129: 38–43

[25] Hagel AF, Albrecht H, Nägel A et al. The Application of Hemospray in gastrointestinal bleeding during emergency endoscopy. Gastroenterol Res Pract 2017; 2017: e3083481

[26] Cahyadi O, Bauder M, Meier B et al. Effectiveness of TC-325 (Hemospray) for treatment of diffuse or refractory upper gastrointestinal bleeding – a single center experience. Endosc Int Open 2017; 5: E1159–E1164

[27] Arena M, Macsi E, Eusebi LH et al. Hemospray for treatment of acute bleeding due to upper gastrointestinal tumours. Dig Liver Dis 2017; 49: 514–517

[28] Pittayanon R, Rerknamitr R, Barkun A. Prognostic factors affecting outcomes in patients with malignant GI bleeding treated with a novel endoscopically delivered hemostatic powder. Gastrointest Endosc 2018; 87: 994–1002

[29] Ramírez-Polo Al, Casal-Sánchez J, Hernández-Guerrero A et al. Treatment of gastrointestinal bleeding with hemostatic powder (TC-325): a multicenter study. Surg Endosc 2019; 33: 2349–2356

[30] Hookey L, Barkun A, Sultanian R et al. Successful hemostasis of active lower GI bleeding using a hemostatic powder as monotherapy, combination therapy, or rescue therapy. Gastrointest Endosc 2019; 89: 865–871

[31] Rodríguez de Santiago E, Burgos-Santamaría D, Pérez-Carazo L et al. Hemostatic spray powder TC-325 for GI bleeding in a nationwide study: survival and predictors of failure via competing risks analysis. Gastrointest Endosc 2019; 90: 581–590.e6

[32] Alzoubaidi D, Hussein M, Rusu R et al. Outcomes from an international multicenter registry of patients with acute gastrointestinal bleeding undergoing endoscopic treatment with Hemospray. Digest Endosc 2020; 32: 96–105

[33] Chahal D, Lee JGH, Ali-Mohamad N et al. High rate of re-bleeding after application of Hemospray for upper and lower gastrointestinal bleeds. Dig Liver Dis 2020; 52: 768–772

[34] Hussein M, Alzoubaidi D, Lopez M-F et al. Hemostatic spray powder TC-325 in the primary endoscopic treatment of peptic ulcer-related bleeding: multicenter international registry. Endoscopy 2021; 53: 36–43

[35] Hussein M, Alzoubaidi D, O’Donnell M et al. Hemostatic powder TC-325 treatment of malignancy-related upper gastrointestinal bleeds: International registry outcomes. J Gastroenterol Hepatol 2021; 36: 3027–3032

[36] Becq A, Hoüdeville C, Tran Minh M-I et al. Experience with the use of a hemostatic powder in 152 patients undergoing urgent endoscopy for gastrointestinal bleeding. Clin Res Hepatol Gastroenterol 2021; 45: 101558

[37] Facciorusso A, Bertini M, Bertoni M. Efficacy of hemostatic powders in lower gastrointestinal bleeding: Clinical series and literature review. Dig Liver Dis 2021; 53: 1327–1333

[38] Kwok BEA, Ang TL, Ong PLJ et al. TC-325 versus the conventional combined technique for endoscopic treatment of peptic ulcers with high-risk bleeding stigmata: A randomized pilot study. J Dig Dis 2017; 18: 323–329

[39] Vitali F, Nægel A, Atreya R et al. Comparison of Hemospray® and EndoclotTM for the treatment of gastrointestinal bleeding. World J Gastroenterol 2019; 25: 1592–1602

[40] Paoluzi OA, Cardamone C, Aucello A et al. Efficacy of hemostatic powders as monotherapy or rescue therapy in gastrointestinal bleeding related to neoplastic or non-neoplastic lesions. Scand J Gastroenterol 2021; 1–8 doi:10.1080/00365521.2021.1974088

[41] Ng JL, Marican M, Mathew R. Topical haemostatic powder as a novel endoscopic therapy for severe colonic diverticular bleeding. ANZ J Surg 2019; 89: E56–E60

[42] Chahal D, Sidhu H, Zhao B et al. Efficacy of Hemospray (TC-325) in the treatment of gastrointestinal bleeding: an updated systematic review and meta-analysis. J Clin Gastroenterol 2021; 55: 492–498

[43] Hagel AF, Raithel M, Hempen P et al. Multicenter analysis of endoclot as hemostatic powder in different endoscopic settings of the upper gastrointestinal tract. J Physiol Pharmacol 2020; doi:10.24602/jpp.2020.5.06

[44] Moosavi S, Chen YI, Barkun AN. TC-325 application leading to transient obstruction of a post-sphincterotomy biliary orifice. Endoscopy 2013; 45: E130

[45] Baracat FI, Tranquillini CV, Brunaldi VO et al. Hemostatic powder: a new ally in the management of post sphincterotomy bleeding. Video-GIE 2017; 2: 303–304

[46] Yli KSL, Chuah KH, Poh KS et al. Retained endoscope: an unexpected but serious complication of Hemospray®. Dig Dis Sci 2021; doi:10.1007/s10620-021-06835-4

[47] VitraMed. EndoClot® Polysaccharide Hemostatic System (EndoClot® PHS). EndoClot. https://www.vitramed.com/products/EndoClot/EndoClotPHS

[48] Wang Y, Xu M, Dong H et al. Effects of PerClot® on the healing of full-thickness skin wounds in rats. Acta Histochem 2012; 114: 311–317

[49] Beg S, Al-Bakir I, Bhuvu M et al. Early clinical experience of the safety and efficacy of EndoClot in the management of non-variceal upper gastrointestinal bleeding. Endosc Int Open 2015; 3: E605–E609

[50] Prei JC, Barmeyer C, Bürgel N et al. EndoClot polysaccharide hemostatic system in non-variceal gastrointestinal bleeding: results of a prospective multicenter observational pilot study. J Clin Gastroenterol 2016; 50: e95–e100

[51] Kim YJ, Park JC, Kim EH et al. Hemostatic powder application for control of acute upper gastrointestinal bleeding in patients with gastric malignancy. Endosc Int Open 2018; 6: E700–E705

[52] Hahn KY, Park JC, Lee YK et al. Efficacy of hemostatic powder in preventing bleeding after gastric endoscopic submucosal dissection in high-risk patients. J Gastroenterol Hepatol 2018; 33: 656–663

[53] Huang R, Pan Y, Hui N et al. Polysaccharide hemostatic system for hemostasis management in colorectal endoscopic mucosal resection. Digest Endosc 2014; 26: 63–68

[54] Park JC, Kim YJ, Kim EH et al. Effectiveness of the polysaccharide hemostatic powder in non-variceal upper gastrointestinal bleeding: Using propensity score matching. J Gastroenterol Hepatobiliary Sci 2017; 23: 1500–1506

[55] Beyazit Y, Kekilli M, Haznedaroğlu IC et al. Ankaferd hemostat in the management of gastrointestinal hemorrhages. World J Gastroenterol 2011; 17: 3972–3970

[56] Haznedaroğlu BZ, Haznedaroğlu IC, Walker SL et al. Ultrastructural and morphological analyses of the in vitro and in vivo hemostatic effects of Ankaferd Blood Stopper. Clin Appl Thromb Hemost 2010; 16: 446–453

[57] Kurt M, Onal IK, Akdogan M et al. Ankaferd Blood Stopper for controlling gastrointestinal bleeding due to distinct benign lesions refractory to conventional antitherapeutic measures. Can J Gastroenterol 2010; 24: 380–384

[58] Kurt M, Akdogan M, Onal IK et al. Endoscopic topical application of Ankaferd Blood Stopper for neoplastic gastrointestinal bleeding: A retrospective analysis. Digest Liver Disease 2010; 42: 196–199

[59] Gungor G, Goktepe MH, Bilgic M et al. Efficacy of ankaferd blood hemostatic powder in different endoscopic settings of the upper gastrointestinal tract. J Physiol Pharmacol 2020; doi:10.24602/jpp.2020.5.06

[60] Karaman A, Baskol M, Gursoy S et al. Endoscopic topical application of Ankaferd Blood Stopper® in gastrointestinal bleeding. J Altern Complement Med 2012; 18: 65–68
Beyazit Y, Akdogan M, Sayilir A et al. Successful topical application of Ankaferd blood stopper. Indian J Gastroenterol 2010; 29: 166–168

Tuncer I, Doganay L, Ozturk O. Instant control of fundal variceal bleeding with a folkloric medicinal plant extract: Ankaferd Blood Stopper. Gastrointest Endosc 2010; 71: 873–875

Beyazit Y, Akdogan M, Sayilir A et al. Successful topical application of Ankaferd blood stopper in a patient with life-threatening fundal variceal bleeding despite cyanoacrilate injection. Clin Res Hepatol Gastroenterol 2012; 36: e9–11

Ibis M, Kurt M, Onal IK et al. Successful management of bleeding due to slippage of elastic band during variceal ligation: successful use of Ankaferd Blood Stopper. J Altern Complement Med 2008; 14: 1073–1074

Shorbagi A, Sivri B. Successful management of a difficult case of radiation proctopathy with Ankaferd BloodStopper: a novel indication (with video). Gastrointest Endosc 2010; 72: 666–667

Ozaslan E, Purnak T, Yildiz A et al. Bleeding due to solitary rectal ulcer via topical application of Ankaferd blood stopper on severe radiation colitis. Endoscopy 2009; 41: E321–E322

Ozaslan E, Purnak T, Yildiz A et al. The effect of Ankaferd blood stopper in postpolypectomy bleeding. J Altern Complement Med 2010; 16: 1027–1028

Aslan E, Akyüz Ü, Pata C. The use of Ankaferd in diverticular bleeding: two case reports. Turk J Gastroenterol 2013; 24: 441–443

Turhan N, Kurt M, Shorbagi A et al. Topical Ankaferd Blood Stopper administration to bleeding gastrointestinal carcinomas decreases tumor vascularization. Am J Gastroenterol 2009; 104: 2874–2877

Beyazit Y, Onder FO, Torun S et al. Topical application of ankaferd hemostat in a patient with gastroduodenal amyloidosis complicated with gastrointestinal bleeding. Blood Coagul Fibrinolysis 2013; 24: 762–765

Bang BW, Lee DH, Kim HK et al. CEGP-003 Spray has a similar hemostatic effect to epiinephrine injection in cases of acute upper gastrointestinal bleeding. Dig Dis Sci 2018; 63: 3026–3032

Bang B, Lee E, Maeng J et al. Efficacy of a novel endoscopically deliverable muco-adhesive hemostatic powder in an acute gastric bleeding porcine model. PLoS One 2019; 14: e0216829

Medtronic. Nexpowder™ Endoscopic Hemostasis System. https://www.medtronic.com/covidien/en-gb/products/therapeutic-endoscopy/nexpowder-endoscopic-hemostasis-system.html

Park J-S, Bang BW, Hong SJ et al. Efficacy of a novel hemostatic adhesive powder in patients with refractory upper gastrointestinal bleeding: a pilot study. Endoscopy 2019; 51: 458–462

Park J-S, Kim HK, Shin YW et al. Novel hemostatic adhesive powder for nonvariceal upper gastrointestinal bleeding. Endosc Int Open 2019; 7: E1763–E1767

Shin J, Cha B, Park J-S et al. Efficacy of a novel hemostatic adhesive powder in patients with upper gastrointestinal tumor bleeding. BMC Gastroenterol 2021; 21: 40

Baylis JR, Yeon JH, Thomson MH et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. Sci Adv 2015; 1: e1500379 doi:10.1126/sciadv.1500379

Baylis JR, Finkelestein-Kulka A, Maicas-Valle L et al. Rapid hemostasis in a sheep model using particles that propel thrombin and tranexamic acid. Laryngoscope 2017; 127: 787–793

Baylis JR, St John AE, Wang X et al. Self-propelled dressings containing thrombin and tranexamic acid improve short-term survival in a swine model of lethal junctional hemorrhage. Shock 2016; 46: 123–128

Baylis JR, Lee MM, St John AE et al. Topical tranexamic acid inhibits fibrinolysis more effectively when formulated with self-propelling particles. J Thromb Haemost 2017; 17: 1645–1654

Ali-Mohamad N, Cau M, Baylis J et al. Severe upper gastrointestinal bleeding is halted by endoscopically delivered self-propelling thrombin powder: A porcine pilot study. Endosc Int Open 2021; 9: E693–E698

Masuhara H, Fujii T, Watanabe Y et al. Novel infectious agent-free hemostatic material (TDM-621) in cardiovascular surgery. Ann Thorac Cardiovasc Surg 2012; 18: 444–451

PuraStat®. 3-D Matrix. https://3dmatrix.com/products/purastat/

Subramaniam S, Kandiah K, Chedgy F et al. A novel self-assembling peptide for hemostasis during endoscopic submucosal dissection: a randomized controlled trial. Endoscopy 2021; 53: 27–35

Branchi F, Klingenberg-Noftz R, Friedrich K et al. PuraStat in gastrointestinal bleeding: results of a prospective multicentre observational pilot study. Surg Endosc 2022; 36: 2954–2961

White K, Henson CC. Endoscopically delivered Purastat for the treatment of severe haemorrhagic radiation proctopathy: a service evaluation of a new endoscopic treatment for a challenging condition. Frontline Gastroenterol 2021; 12: 608–613

Yoshida M, Goto N, Kawaguchi M et al. Initial clinical trial of a novel hemostat, TDM-621, in the endoscopic treatments of the gastric tumors. J Gastroenterol Hepatol 2014; 29: 77–79

de Nucci G, Reati R, Arena I et al. Efficacy of a novel self-assembling peptide hemostatic gel as rescue therapy for refractory acute gastrointestinal bleeding. Endoscopy 2020; 52: 773–779