Article

A-Statistical Convergence Properties of Kantorovich Type λ-Bernstein Operators Via \((p, q)\)-Calculus

Liang Zeng 1, Qing-Bo Cai 2,* and Xiao-Wei Xu 3

1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; zengliang0409@aliyun.com
2 School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362000, China
3 School of Computer and Data Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; lampminket263.net
* Correspondence: qbcai@126.com; Tel.: +86-150-6079-5559

Received: 12 January 2020; Accepted: 14 February 2020; Published: 21 February 2020

Abstract: In the present paper, Kantorovich type \(\lambda\)-Bernstein operators via \((p, q)\)-calculus are constructed, and the first and second moments and central moments of these operators are estimated in order to achieve our main results. An \(A\)-statistical convergence theorem and the rate of \(A\)-statistical convergence theorems are obtained according to some analysis methods and the definitions of \(A\)-statistical convergence, the rate of \(A\)-statistical convergence and modulus of smoothness.

Keywords: \(A\)-statistical convergence; \(A\)-Bernstein operators; \((p, q)\)-calculus; modulus of continuity; rate of convergence

MSC: 41A10; 41A25; 41A36

1. Introduction

As we know, one of the simplest and most elegant ways to prove the famous Weierstrass Approximation Theorem was given by S. N. Bernstein [1] in 1912 by constructing a sequence of polynomials which were defined as follows,

\[B_n(f; x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f \left(\frac{k}{n} \right) \]

for \(f \in C[0,1] \) and \(x \in [0,1] \). These polynomials are called Bernstein operators or Bernstein polynomials. Due to the fine properties of approximation, Bernstein operators play a significant role in Approximation Theory and Computer Aided Geometric Design (CAGD).

In 2016, Mursaleen et al. [2] defined the following \((p, q)\)-analogue of Bernstein operators:

\[B_{n,p,q}(f; x) = \sum_{k=0}^{n} b_{n,k}(x; p, q) f \left(\frac{\lfloor k/p \rfloor}{p^{k-n} \lfloor n/p \rfloor} \right), \quad x \in [0,1], \] (1)

where \(b_{n,k}(x; p, q) \) \((k = 0, 1, \ldots, n)\) are \((p, q)\)-Bernstein basis functions and defined as

\[b_{n,k}(x; p, q) = \frac{1}{p^{\lfloor (n-1)/2 \rfloor}} \binom{n}{k} p^{k-1} x^{\lfloor (n-1)/2 \rfloor} \prod_{s=0}^{\lfloor (n-1)/2 \rfloor} (p^s - q^s x), \quad x \in [0,1]. \] (2)

Then, there are many papers mention about the approximation properties of \((p, q)\)-type positive linear operators, such as [2–22].
Very recently, Cai et al. [23] proposed the following positive linear λ-Bernstein operators based on (p, q)-integers as

$$B_{n,p,q}^\lambda(f;x) = \sum_{k=0}^{n} b_{n,k}^\lambda(x;p,q)f \left(\frac{[k]_{p,q}}{p^{k-n}[n]_{p,q}} \right), \quad x \in [0,1],$$

where

$$
\begin{cases}
 b_{n,0}^\lambda(x;p,q) = b_{0,0}(x;p,q) - \frac{\lambda}{p^{1-n}[n]_{p,q}+1} b_{n+1,1}(x;p,q), \\
 b_{n,k}^\lambda(x;p,q) = b_{n,k}(x;p,q) + \lambda \left(\frac{p^{1-n}[n]_{p,q}-2p^{1-k}[k]_{p,q}+1}{p^{k-2n}[n]_{p,q}+1} b_{n+1,k}(x;p,q) \\ - \frac{p^{1-n}[n]_{p,q}-2p^{1-k}[k]_{p,q}+1}{p^{k-2n}[n]_{p,q}+1} b_{n+1,k+1}(x;p,q) \right), \\
 b_{n,n}^\lambda(x;p,q) = b_{n,n}(x;p,q) - \frac{\lambda}{p^{1-n}[n]_{p,q}+1} b_{n+1,n}(x;p,q),
\end{cases}
$$

$b_{n,k}(x;p,q)$ $(k = 0, 1, \ldots, n)$ are defined in Equation (2), $\lambda \in [-1,1]$, $n \geq 2$, $x \in [0,1]$ and $0 < q < p \leq 1$.

Inspired by the above research, based on Equation (3), we introduce Kantorovich type A-Bernstein operators via (p, q)-calculus as

$$K_{n,p,q}^A(f;x) = [n+1]_{p,q} \sum_{k=0}^{n} b_{n,k}^A(x;p,q) p^{-k} \int_{[k]_{p,q}}^{[k+1]_{p,q}} f \left(p^{-k} u \right) d_{p,q} u,$$

where $x \in [0,1]$, $0 < q < p \leq 1$ and $b_{n,k}^A(x;p,q)$ $(k = 0, 1, \ldots, n)$ are defined in Equation (4).

Firstly, we give some definitions of (p, q)-integers, which can be referred to [24–28]. For any fixed real number $p > 0$ and $q > 0$, $[n]_{p,q}$ are defined by $[n]_{p,q} = \begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = \begin{cases} [n]_{p,q} [n-1]_{p,q} \cdots [1]_{p,q}, & n = 1, 2, \ldots; \\ 1, & n = 0, \\ \frac{n!}{[n]_{p,q} ![n-k]_{p,q}}, & n \geq 1. \end{cases}$

The (p, q)-power basis $(x \oplus t)_p^n$ and $(x \ominus t)_p^n$ are defined by

$$(x \oplus t)^n_{p,q} = (x+t)(px+q^2t) (p^2x+q^4t) \cdots (p^{n-1}x+q^{2n-2}t)$$

and

$$(x \ominus t)^n_{p,q} = (x-t)(px-q^2t) (p^2x-q^4t) \cdots (p^{n-1}x-q^{2n-2}t).$$

We also give the fundamental theorem of (p, q)-calculus, say, if $F(x)$ is an anti-derivative of $f(x)$ and $F(x)$ is continuous at $x = 0$, then $\int_a^b f(x) d_{p,q} x = F(b) - F(a)$ holds, where $0 \leq a < b \leq \infty$ and $F(x)$ is given by the formula

$$F(x) = (p-q)x \sum_{j=0}^{\infty} \frac{q^j}{p^{j+1}} f \left(\frac{q^j}{p^{j+1}} x \right) + F(0),$$

the infinite series here converges.

The main goal of the present work is to study the rate of A-statistical convergence of Kantorovich type λ-Bernstein operators based on (p, q)-integers by means of modulus of continuity. The rest of this
paper are mainly organized as follows: in Section 2, some moments and central moments of \(K_{\lambda,p,q}(f;x) \) are estimated; in Section 3, we prove \(K_{\lambda,p,q}(f;x) \) is \(A \)-statistically convergent to \(f(x) \) and investigate the rate of \(A \)-statistical convergence by means of the first and second modulus continuity.

2. Some Preliminary Results

In the sequel, consider sequences of functions \(e_i(x) = x^i \) \((i = 0, 1, 2)\), and \(\phi_j(t,x) = (t - x)^j \) \((j = 1, 2)\), \(x, t \in [0, 1] \). Before we give our main theorems, we need the following lemmas.

Lemma 1. The following statements are true:

\[
\int_{[\lambda+1,p,q]}^{[k+1,p,q]} d_{p,q}u = \frac{p^k}{n+1}_{p,q},
\]

(6)

\[
\int_{[\lambda+1,p,q]}^{[k+1,p,q]} p^{-k}u d_{p,q}u = 2q[k]_{p,q} + \frac{p^k}{2}_{p,q|n+1}_{p,q}^2,
\]

(7)

\[
\int_{[\lambda+1,p,q]}^{[k+1,p,q]} (p^{-k}u)^2 d_{p,q}u = \frac{3p^{-k}q^2[k]_{p,q}^2 + 3q[k]_{p,q} + p^k}{3}_{p,q|n+1}_{p,q}.
\]

(8)

Proof. By the fundamental theorem of \((p,q)\)-calculus given in Section 1, we have

\[
\int_{[\lambda+1,p,q]}^{[k+1,p,q]} d_{p,q}u = \frac{(p-q) \cdot k+1}{p_{n+1} q_{p,q}} \sum_{j=0}^{\infty} q^j \frac{-q}{p_{n+1}} + (p-q) \frac{-q}{p_{n+1}} \sum_{j=0}^{\infty} q^j \frac{-q}{p_{n+1}} = \frac{p^k}{n+1}_{p,q}.
\]

Similarly,

\[
\int_{[\lambda+1,p,q]}^{[k+1,p,q]} p^{-k}u d_{p,q}u = \frac{p^{-k}k+1}{p_{n+1} q_{p,q}} \sum_{j=0}^{\infty} q^j \frac{-q}{p_{n+1}} + (p-q) \frac{-q}{p_{n+1}} \sum_{j=0}^{\infty} q^j \frac{-q}{p_{n+1}} = \frac{2q[k]_{p,q} + p^k}{2}_{p,q|n+1}_{p,q}.
\]

Finally,

\[
\int_{[\lambda+1,p,q]}^{[k+1,p,q]} (p^{-k}u)^2 d_{p,q}u = \frac{p^{-2k}k+1}{p_{n+1} q_{p,q}} \sum_{j=0}^{\infty} q^j \frac{-q}{p_{n+1}} + (p-q) \frac{-q}{p_{n+1}} \sum_{j=0}^{\infty} q^j \frac{-q}{p_{n+1}} = \frac{3p^{-k}q^2[k]_{p,q}^2 + 3q[k]_{p,q} + p^k}{3}_{p,q|n+1}_{p,q}.
\]

Lemma 1 is proved. □
Lemma 2. Let $\lambda \in [-1, 1]$, $x \in [0, 1]$ and $0 < q < p \leq 1$, for the operators $K_{n,p,q}^{\lambda}(f; x)$, we have

\[K_{n,p,q}^{\lambda}(e_1; x) = 1, \]

\[K_{n,p,q}^{\lambda}(e_2; x) = \frac{2x}{[2]_{p,q} p^n} + \frac{1 - 2x}{[2]_{p,q}[n + 1]_{p,q}} + 2\lambda \left(\frac{2q}{[2]_{p,q}} \left(1 - \frac{q}{p} \right)x^2 \left(1 - x^{n-1} \right) - \frac{1 - \frac{q}{p}}{[2]_{p,q}} \left(p [n]_{p,q} + p^n \right) \right) - 2^{p^n - 1} \left(0, 1 \right)^2 \left(p^n [n]_{p,q} \right) \] \[- \frac{2^{p^n - 1} \left(0, 1 \right)^2 \left(p^n [n]_{p,q} \right) \left(p^n [n]_{p,q} - p^n \right) - \left(0, 1 \right)^2 \left(p^n [n]_{p,q} \right) \left(p^n [n]_{p,q} - p^n \right) \right) \] \[\leq \frac{\Theta^\lambda_{p,q}(n, x)}{[2]_{p,q} p^n} \right) \] \[\leq \frac{\Theta^\lambda_{p,q}(n, x)}{[2]_{p,q} p^n} \right). \]

Proof. We get Equation (9) easily by Equations (5) and (6) and [23]. From Equations (5), (7), (8) and (2), we have

\[K_{n,p,q}^{\lambda}(e_1; x) = \left[n + 1 \right]_{p,q} \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{[n]_{p,q}} \right)^k \frac{1}{[n]_{p,q}^{k+1}} \frac{1}{[n]_{p,q}^{k+1}} \] \[- \frac{x^k}{[n]_{p,q}^{k+1}} \frac{1}{[n]_{p,q}^{k+1}} \] \[- \frac{1}{[n]_{p,q}^{k+1}} \frac{1}{[n]_{p,q}^{k+1}} \] \[- \frac{x^k}{[n]_{p,q}^{k+1}} \frac{1}{[n]_{p,q}^{k+1}} \] \[- \frac{1}{[n]_{p,q}^{k+1}} \frac{1}{[n]_{p,q}^{k+1}} \] \[\leq \frac{\Theta^\lambda_{p,q}(n, x)}{[2]_{p,q} p^n} \right) \] \[\leq \frac{\Theta^\lambda_{p,q}(n, x)}{[2]_{p,q} p^n} \right) \] \[\leq \frac{\Theta^\lambda_{p,q}(n, x)}{[2]_{p,q} p^n} \right). \]

Therefore, Equations (11) and (12) can be obtained by Equations (12), (14), [23] and some tedious computations, here we omit those processes.

Lemma 3. Let $\lambda \in [-1, 1]$, $x \in [0, 1]$ and $0 < q < p \leq 1$, we have the following inequalities for the operators $K_{n,p,q}^{\lambda}(f; x)$.

\[K_{n,p,q}^{\lambda}(e_1; x) \leq \frac{2 - [2]_{p,q} p^n}{[2]_{p,q} p^n} + \frac{1}{[2]_{p,q}[n + 1]_{p,q}} + \frac{4}{[2]_{p,q} \left(p [n]_{p,q} + p^n \right)} + \frac{5}{[2]_{p,q}[n + 1]_{p,q} \left(p [n]_{p,q} + p^n \right)} \]
\[\text{Mathematics} \ 2020, \ 8, \ 291 \]

By Equations (9) and (11), we can get

\[\leq \Theta(p, q; n), \]

\[K_{n,p,q}^\lambda (q_2(t, x); x) \leq \frac{3[2p_{n,q} - 4\cdot 3p_{n,q}P^n + 3p_{n,q}2P^{2n}]}{8} \]

\[+ \frac{10}{4} \frac{1}{[2p_{n,q} | n+1 | p_{n,q}]} + \frac{16}{4} \frac{1}{[2p_{n,q} | n+1 | p_{n,q}]} + \frac{16}{4} \frac{1}{[2p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^n) \]

\[+ \frac{6}{18} \frac{1}{[2p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^{2n}) + \frac{3p_{n,q}P^{n-1} | n+1 | p_{n,q}]}{18} (p_{n,q}^n | n+1 | p_{n,q} - p^{2n}) \]

\[\leq \Phi(p, q; n). \]

Proof. By Equations (9) and (11), we can get

\[K_{n,p,q}^\lambda (q_1(t, x); x) \]

\[= K_{n,p,q}^\lambda (e_1; x) - x \]

\[= \left(\frac{2}{[2p_{n,q}P^n - 1]} \right) x + \frac{1 - 2x}{[2p_{n,q} | n+1 | p_{n,q}]} + \lambda \left\{ \begin{array}{ll}
\frac{4}{p} \frac{1 - \frac{2}{p}}{2} x^2 (1 - x^{n-1}) - \frac{2}{[2p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^n) \\
\frac{4}{p} \frac{1 - \frac{2}{p}}{2} x^2 (1 - x^{n-1}) + \frac{2}{[2p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^n) \\
\frac{4}{p} \frac{1 - \frac{2}{p}}{2} x^2 (1 - x^{n-1}) - \frac{2}{[2p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^n) \\
\end{array} \right. \]

\[\leq \lambda \left\{ \begin{array}{ll}
2 - \frac{2}{[2p_{n,q}P^n] - 1} + \frac{1}{[2p_{n,q} | n+1 | p_{n,q}]} + \frac{4}{[2p_{n,q} | n+1 | p_{n,q}]} + \frac{5}{[2p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^n) \\
2 - \frac{2}{[2p_{n,q}P^n] - 1} + \frac{1}{[2p_{n,q} | n+1 | p_{n,q}]} + \frac{4}{[2p_{n,q} | n+1 | p_{n,q}]} + \frac{5}{[2p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^n) \\
2 - \frac{2}{[2p_{n,q}P^n] - 1} + \frac{1}{[2p_{n,q} | n+1 | p_{n,q}]} + \frac{4}{[2p_{n,q} | n+1 | p_{n,q}]} + \frac{5}{[2p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^n) \\
\end{array} \right. \]

Similarly, by Lemma 2, we have

\[K_{n,p,q}^\lambda (q_2(t, x); x) = K_{n,p,q}^\lambda (e_2; x) - 2xK_{n,p,q}^\lambda (e_1; x) + x^2K_{n,p,q}^\lambda (e_0; x) \]

\[= \left(\frac{3}{[3p_{n,q}P^{2n}] + 1} \right) x^2 + \frac{3x - 6x^2 + 3\frac{4}{p} x(1 - x)}{[3p_{n,q}P^n | n+1 | p_{n,q}]} - 2x(1 - 2x) + \frac{1 - 3x(1 - x)}{[3p_{n,q} | n+1 | p_{n,q}]} + \frac{1 - 3x(1 - x)}{[3p_{n,q} | n+1 | p_{n,q}]} (p_{n,q}^n - p^n) \]

\[+ \lambda \left\{ \begin{array}{ll}
\frac{3}{3} \frac{1 - \frac{2}{p}}{2} x^2 (1 - x^{n-2}) - \frac{1}{[3p_{n,q}P^n | n+1 | p_{n,q}]} \frac{8}{p} (1 - \frac{2}{p}) x^3 (1 - x^{n-1}) \\
\frac{3}{3} \frac{1 - \frac{2}{p}}{2} x^2 (1 - x^{n-2}) - \frac{1}{[3p_{n,q}P^n | n+1 | p_{n,q}]} \frac{8}{p} (1 - \frac{2}{p}) x^3 (1 - x^{n-1}) \\
\frac{3}{3} \frac{1 - \frac{2}{p}}{2} x^2 (1 - x^{n-2}) - \frac{1}{[3p_{n,q}P^n | n+1 | p_{n,q}]} \frac{8}{p} (1 - \frac{2}{p}) x^3 (1 - x^{n-1}) \\
\end{array} \right. \]
\[+ 4 \left(1 - \frac{2}{3}\right) x^2 (1 - x^n) + 3 \left(\frac{3}{2} - 1\right) x (1 - x^n) + 8p^{n-1} q \left[x^2 (1 - x) + \frac{2}{3} x^3 (1 - x^{n-1})\right] \]
\[- 4x (1 - x^{n+1}) \]
\[+ \frac{3}{2} x - 6x^2 + \frac{3y}{2} x (1 - x) \]
\[+ 2x (1 - 2x) \]
\[- \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]
\[+ \frac{2}{3} p \left[p^n [n]_{p,q} + p^n\right] \]
\[+ \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[+ \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]
\[+ \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]
\[+ \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]
\[+ \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]

Next, we will discuss in two cases:

Case 1: for \(\lambda \in [0, 1] \), we have

\[K_{\lambda}^n (p^n [n]_{p,q} + p^n) + \frac{1}{4} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[= \frac{3}{2} x - 6x^2 + \frac{3y}{2} x (1 - x) + \frac{2}{3} p \left[p^n [n]_{p,q} + p^n\right] + \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]
\[+ \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]

Case 2: for \(\lambda \in [-1, 0] \), we have

\[K_{\lambda}^n (p^n [n]_{p,q} + p^n) + \frac{1}{4} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[= \frac{3}{2} x - 6x^2 + \frac{3y}{2} x (1 - x) + \frac{2}{3} p \left[p^n [n]_{p,q} + p^n\right] + \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]
\[+ \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]

\[+ \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]
\[+ \frac{1}{3} \left(1 + \frac{3}{p}\right) x (1 - x) \]
\[- \frac{2}{3} p \left(p^n [n]_{p,q}^2 - p^{2n}\right) \]
\[
\begin{align*}
&\left\{ 16p^n x^n_\theta (1 - x^n) \right. \\
&\left. + \frac{4}{3[p,q][n+1][p,q]} \left(p^2 [n]_{p,q}^2 - p^{2n} \right) \right\} \\
&\leq \frac{3}{3[p,q]p^{2n}} - \frac{4}{2[p,q]p^n} + 1 + \frac{4}{3[p,q]p^n[n+1][p,q]} + \frac{4}{2[p,q][n+1][p,q]} + \frac{1}{3[p,q][n+1]\sqrt{p}} \\
&+ \frac{3}{3[p,q]p^n} \left(p[n]_{p,q} + p^n \right) + \frac{2}{2[p,q]} \left(p[n]_{p,q} - p^n \right) + \frac{3}{3[p,q][n+1][p,q]} \left(p[n]_{p,q} - p^n \right) \\
&+ \frac{2}{2[p,q][n+1][p,q]} \left(p^{1-n}[n]_{p,q} - 1 \right) + \frac{3}{3[p,q][n+1][p,q]} \left(p[n]_{p,q} + p^n \right) + \frac{12}{3[p,q]} \left(p^2 [n]_{p,q}^2 - p^{2n} \right) \\
&+ \frac{6}{3[p,q][n+1][p,q]} \left(p^2 [n]_{p,q}^2 - p^{2n} \right) + \frac{12}{3[p,q][n+1][p,q]} \left(p^2 [n]_{p,q}^2 - p^{2n} \right).
\end{align*}
\]

Combining Equations (17) and (18), we obtain

\[
K_{\ell,\alpha}^3 (\phi_2(t,x); x)
\]

\[
\leq \frac{3}{3[p,q]p^{2n}} - \frac{4}{2[p,q]p^n} + 1 + \frac{4}{3[p,q]p^n[n+1][p,q]} + \frac{4}{2[p,q][n+1][p,q]} + \frac{1}{3[p,q][n+1]\sqrt{p}} \\
+ \frac{4}{2[p,q]p^n} \left(p[n]_{p,q} + p^n \right) + \frac{2}{2[p,q]} \left(p[n]_{p,q} - p^n \right) + \frac{4}{2[p,q][n+1][p,q]} \left(p[n]_{p,q} - p^n \right) \\
+ \frac{15}{3[p,q][n+1][p,q]} \left(p[n]_{p,q} + p^n \right) + \frac{3}{3[p,q][n+1][p,q]} \left(p^2 [n]_{p,q}^2 - p^{2n} \right) \\
+ \frac{18}{3[p,q][n+1][p,q]} \left(p^2 [n]_{p,q}^2 - p^{2n} \right) \\
\leq \frac{3}{3[p,q]p^{2n}} - \frac{4}{2[p,q]p^n} + 1 + \frac{10}{3[p,q]p^n[n+1][p,q]} + \frac{4}{2[p,q][n+1][p,q]} + \frac{16}{3[p,q][n+1]\sqrt{p}} \\
+ \frac{8}{2[p,q]} \left(p[n]_{p,q} - p^n \right) + \frac{4}{2[p,q]} \left(p^{n-1}[n]_{p,q} - 1 \right) + \frac{2}{2[p,q][n+1][p,q]} \left(p[n]_{p,q} - p^n \right) \\
+ \frac{6}{3[p,q][n+1][p,q]} \left(p^2 [n]_{p,q}^2 - p^{2n} \right) + \frac{18}{3[p,q][n+1][p,q]} \left(p^2 [n]_{p,q}^2 - p^{2n} \right) \tag{17}
\]

with the fact that

\[
\frac{1}{[p]_{p,q} + p^n} \leq \frac{1}{[p]_{p,q} + p^n} = \frac{1}{[p]_{p,q} + 1}. \]}

Thus, Lemma 3 is proved. \(\square\)

3. A-Statistical Convergence Properties

Let \(C[0,1]\) be the space of all real-valued continuous bounded functions \(f\) on \([0,1]\), endowed with the norm \(\|f\|_{C[0,1]} = \sup_{x\in[0,1]} |f(x)|\). In this section, we will give some A-statistical convergence properties for positive linear operators \(K_{\alpha}^a(f; x)\) by the following definition of A-statistical convergence and the first and second modulus of continuity.

Definition 1. (See [29]) For a given non-negative infinite summability matrix \(A = (a_{nk}), n, k \in \mathbb{N}\), A-transform of \(x\) denoted by \(Ax := \{ (Ax)_n \}\) is defined as \((Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k\) provided the series converges for each \(n\). We say that \(A\) is regular if \(\lim_n (Ax)_n = L\) whenever \(\lim x = 1\). Assume that \(A\) is non-negative regular summability matrix, a sequence \(x = \{ x_k \}\) is called A-statistically convergent to \(L\) provided that for every \(\epsilon > 0\), \(\lim_n \sum_{k: |x_k - L| \geq \epsilon} a_{nk} = 0\). We denote this limit by \(st_A - \lim x = L\).
As we know, A-statistical convergence becomes ordinary statistical convergence when $A = (C_1)$, the Cesaro matrix of order one, and it becomes classical convergence when $A = I$, the identity matrix. There is also a conclusion, every convergent sequence is statistically convergent to the same limit but not conversely.

We need the following Korovkin theorem via the conception of A-statistical convergence to prove our main results.

Theorem 2. (See [29]) Let $A = (a_{nk})$ be a non-negative regular summability matrix and $L_n(f; x)$ be positive linear operators over $C[a, b]$. Then the following two statements are equivalent:

(i) $\lim_{n \to \infty} ||L_n(f) - f||_{C[a, b]} = 0$ for $f \in C[a, b]$;

(ii) $\lim_{n \to \infty} ||L_n(e_i) - e_i||_{C[a, b]} = 0$ for $i = 0, 1, 2$.

Consider sequences $p := \{p_n\}$, $q := \{q_n\}$ for $0 < q_n < p_n \leq 1$ satisfying the following conditions

$$\lim_{n \to \infty} p_n = \lim_{n \to \infty} q_n = \lim_{n \to \infty} p_n^2 = 1.$$ \hspace{1cm} \text{(18)}

We now give main results related to statistical convergence of operators in Equation (5).

Theorem 3. Let $A = (a_{nk})$ be a weighted non-negative regular summability matrix for $n, k \in \mathbb{N}$, $\lambda \in [-1, 1]$, $x \in [0, 1]$ and $0 < q < p \leq 1$. For any $f \in C[0, 1]$, we have

$$\lim_{n \to \infty} ||K_{n,p,q}^\lambda (f) - f||_{C[0,1]} = 0.$$ \hspace{1cm} \text{(19)}

Proof. According to Theorem 2, it is sufficient fo satisfy

$$\lim_{n \to \infty} ||K_{n,p,q}^\lambda (e_i) - e_i||_{C[0,1]} = 0, \; i = 0, 1, 2.$$ \hspace{1cm} \text{(20)}

From Lemma 2, it is clear that Equation (20) is true for $i = 0$. For $i = 1$, by Equation (15), we have

$$\left|\left|K_{n,p,q}^\lambda (e_1) - e_1\right|\right|_{C[0,1]} = \sup_{x \in [0,1]} |K_{n,p,q}^\lambda (\Phi (t, x); x)| \leq \Theta (p, q; n)$$

$$= \frac{2 - [2]_{p,q} p^n}{[2]_{p,q} p^n} + \frac{1}{[2]_{p,q} p^n} \left([2]_{p,q} [n + 1]_{p,q} + \frac{4}{[2]_{p,q} (p[n]_{p,q} - p^n)} + \frac{5}{[2]_{p,q} [n + 1]_{p,q} (p[n]_{p,q} - p^n)} \right) + \frac{2}{[2]_{p,q} p^{n-1}} \left({n-1} \right) [n + 1]_{p,q} \left(p[n]_{p,q} - p^n \right).$$

Given $\epsilon > 0$, we define the following sets:

$$D = \left\{ n : \left|\left|K_{n,p,q}^\lambda (e_1) - e_1\right|\right|_{C[0,1]} \geq \epsilon \right\}, \; D_1 = \left\{ n : \frac{2 - [2]_{p,q} p^n}{[2]_{p,q} p^n} \geq \frac{\epsilon}{5} \right\},$$

$$D_2 = \left\{ n : \frac{1}{[n + 1]_{p,q}} \geq \frac{[2]_{p,q} \epsilon}{5} \right\}, \; D_3 = \left\{ n : \frac{1}{p[n]_{p,q} - p^n} \geq \frac{[2]_{p,q} \epsilon}{20} \right\},$$

$$D_4 = \left\{ n : \frac{1}{[n + 1]_{p,q} (p[n]_{p,q} - p^n)} \geq \frac{[2]_{p,q} \epsilon}{25} \right\},$$

$$D_5 = \left\{ n : \frac{1}{p^{n-1} [n + 1]_{p,q} (p[n]_{p,q} - p^n)} \geq \frac{[2]_{p,q} \epsilon}{10} \right\}.$$
Then it is clear that $D \subseteq D_1 \cup D_2 \cup D_3 \cup D_4 \cup D_5$. Hence, for every $l \in \mathbb{N}$, we have

$$
\sum_{n \in D} a_n \leq \sum_{n \in D_1} a_n + \sum_{n \in D_2} a_n + \sum_{n \in D_3} a_n + \sum_{n \in D_4} a_n + \sum_{n \in D_5} a_n.
$$

Letting $j \to \infty$, we get $s_{t_A} - \lim \frac{1}{n+1} [\sum_{n \in D} a_n] = 0$ with the help of Equation (18) and

$$
st_A - \lim_n \frac{1}{n+1} [\sum_{n \in D} a_n] = 0, \quad st_A - \lim_n \frac{1}{n} [\sum_{n \in D} a_n] = 0.
$$

For $i = 2$, by Lemma 2, we have

$$
\left| \left| K^\lambda_{n,q} e_2 - e_2 \right| \right|_{C([0,1])} = \sup_{x \in [0,1]} \left| \frac{3 - [3]_{p,q} p^{2n}}{[3]_{p,q} p^{2n}} x^2 + \frac{3x - 6x^2 + \frac{3n}{2n} x(1 - x)}{[3]_{p,q} p^{2n} p^{n}} + \frac{1 - \frac{4}{n}}{[3]_{p,q} p^{n+1}} x(1 - x) \right| + \frac{\left(\frac{q - 1}{p} \right) x(1 - x^n)}{[3]_{p,q} p^{n+1} p^n}
$$

$$
\leq \frac{3 - [3]_{p,q} p^{2n}}{[3]_{p,q} p^{2n}} + \frac{15}{2[3]_{p,q} p^{n+1} p^n} + \frac{6}{[3]_{p,q} p^{n+1} p^n} + \frac{7}{[3]_{p,q} p^{n+1} p^n} + \frac{2}{[3]_{p,q} p^{n+1} p^n}.
$$

For a given $\epsilon > 0$, let us define the following sets:

$$
U = \left\{ n : \left| K^\lambda_{n,q} e_2 - e_2 \right|_{C([0,1])} \geq \epsilon \right\}, \quad U_1 = \left\{ n : \frac{3 - [3]_{p,q} p^{2n}}{[3]_{p,q} p^{2n}} \geq \frac{\epsilon}{6} \right\},
$$

$$
U_2 = \left\{ n : \frac{1}{p^n [n + 1]_{p,q}} \geq \frac{[3]_{p,q} \epsilon}{45} \right\}, \quad U_3 = \left\{ n : \frac{1}{p^n [n + 1]_{p,q}} \geq \frac{[3]_{p,q} \epsilon}{36} \right\},
$$

$$
U_4 = \left\{ n : \frac{1}{[n + 1]_{p,q} (p^n [n + 1]_{p,q} - p^n)} \geq \frac{[3]_{p,q} \epsilon}{42} \right\},
$$

$$
U_5 = \left\{ n : \frac{1}{[n + 1]_{p,q} (p^n [n + 1]_{p,q} - p^n)} \geq \frac{[3]_{p,q} \epsilon}{36} \right\},
$$

$$
U_6 = \left\{ n : \frac{1}{p^n [n + 1]_{p,q} (p^n [n + 1]_{p,q} - p^n)} \geq \frac{[3]_{p,q} \epsilon}{12} \right\}.
$$
It is obvious that \(U \subseteq U_1 \cup U_2 \cup U_3 \cup U_4 \cup U_5 \cup U_6 \), then we obtain
\[
\sum_{n \in U} a_{jn} \leq \sum_{n \in U_1} a_{jn} + \sum_{n \in U_2} a_{jn} + \sum_{n \in U_3} a_{jn} + \sum_{n \in U_4} a_{jn} + \sum_{n \in U_5} a_{jn} + \sum_{n \in U_6} a_{jn}.
\] (21)

Letting \(j \to \infty \) in Equation (21), using Equation (18) and
\[
st_A - \lim_{n} \frac{1}{|n+1|_{p,q}} = 0, \quad st_A - \lim_{n} \frac{1}{p^{n} - p^n} = 0.
\]

We obtain \(st_A - \lim_{n} \left\| K_{n,p,q}^A(\varepsilon_2) - \varepsilon_2 \right\|_{C[0,1]} = 0 \). Therefore, Equation (20) is proved, which yields the result of Theorem 3. \(\square \)

We now need the following definitions to estimate the rate of \(A \)-statistical convergence of \(K_{n,p,q}^A(f; x) \).

Definition 4. (See [29]) Let \(A = (a_{nk}) \) be a non-negative regular summability matrix and let \((u_n) \) be a positive non-increasing sequence. The sequence \(x = \{ x_k \} \) is \(A \)-statistically convergent to the number \(L \) with the rate of \(o(u_n) \) if for every \(\varepsilon > 0 \),
\[
\lim_{n} \frac{1}{u_n} \sum_{k: |x_k - L| \geq \varepsilon} a_{nk} = 0.
\]

In this case we write \(x_k - L = st_A - o(u_k) \) as \(k \to \infty \).

Definition 5. (See [30]) Let \(f \in C[0,1] \), Peetre’s K-functional is defined by
\[
K_2(f; \delta) = \inf_{g \in C^2[0,1]} \left\{ \| f - g \|_{C[0,1]} + \delta \| g'' \|_{C[0,1]} \right\},
\]
where \(\delta > 0 \) and \(C^2[0,1] = \{ g \in C[0,1] : g', g'' \in C[0,1] \} \). The second order modulus of smoothness of \(f \in C[0,1] \) is defined by
\[
\omega_2(f; \delta) = \sup_{0 < h \leq \delta} \sup_{x \in [0,1]} |f(x + 2h) - 2f(x + h) + f(x)|.
\]

There exist an absolute constant \(C > 0 \) such that \(K_2(f; \delta) \leq C \omega_2 \left(f; \sqrt{\delta} \right) \). We also denote the usual of modulus of continuity by
\[
\omega(f; \delta) = \sup_{0 < h \leq \delta} \sup_{x \in [0,1]} |f(x + h) - f(x)|.
\]

Theorem 6. Let \(A = (a_{jn}) \) be a non-negative regular summability matrix. Assume that \(\omega \left(f; \sqrt{\Phi(p,q,n)} \right) = st_A - o(u_n) \), where \(\Phi(p,q,n) \) is defined in Equation (16). Then for \(f \in C[0,1] \), we have
\[
\left\| K_{n,p,q}^A(f) \right\|_{C[0,1]} = st_A - o(u_n).
\]

Proof. Since
\[
|f(t) - f(x)| \leq \omega(f; |t - x|) \leq \left(1 + \frac{|t - x|}{\delta} \right) \omega(f; \delta).
\]
Applying $K_{n,p,q}^λ(f; x)$ to both ends and using Cauchy–Schwarz inequality, we have
\[\left| K_{n,p,q}^λ(f; x) - f(x) \right| \leq K_{n,p,q}^λ(|f(t) - f(x)|; x) \leq \left(1 + \sqrt{K_{n,p,q}^λ(\phi_2(t,x))} \right) \omega(f; \delta) \]
\[\leq \left(1 + \sqrt{K_{n,p,q}^λ(\phi_2(t,x))} \right) \omega(f; \delta) \]

Letting $\delta = \sqrt{K_{n,p,q}^λ(\phi_2(t,x))}$, we get
\[\left| K_{n,p,q}^λ(f; x) - f(x) \right| \leq 2\omega \left(f; \sqrt{K_{n,p,q}^λ(\phi_2(t,x))} \right) \leq 2\omega \left(f; \sqrt{\Phi(p,q;n)} \right) , \]
where $\Phi(p,q;n)$ is defined in Equation (16). Taking supremum over $[0,1]$ on both sides, we obtain
\[\left\| K_{n,p,q}^λ(f; x) - f(x) \right\|_{C[0,1]} \leq 2\omega \left(f; \sqrt{\Phi(p,q;n)} \right) . \]

For a given $\epsilon > 0$, consider following sets
\[V = \left\{ n : \left\| K_{n,p,q}^λ(f; x) - f(x) \right\|_{C[0,1]} \geq \epsilon \right\}, \quad V_1 = \left\{ n : \omega \left(f; \sqrt{\Phi(p,q;n)} \right) \geq \frac{\epsilon}{2} \right\} . \]

Obviously, we have $V \subseteq V_1$ and we also can obtain
\[\frac{1}{u_j} \sum_{n \in V} a_{jn} \leq \frac{1}{u_j} \sum_{n \in V_1} a_{jn} . \]

Thus, let $j \to \infty$, by hypothesis we are led to the fact that $\left\| K_{n,p,q}^λ(f) - f \right\|_{C[0,1]} = st_A - o(u_n)$. Theorem 6 is proved. \[\Box \]

Theorem 7. Let $A = (a_{jn})$ be a non-negative regular summability matrix. Assume that $\omega \left(f; \Theta(p,q;n) \right) = st_A - o(a_n), \quad \omega_2 \left(f; \sqrt{\Phi(p,q;n)} + \Theta(p,q;n)^2/2 \right) = st_A - o(b_n)$, where $\Theta(p,q;n)$ and $\Phi(p,q;n)$ are defined in Equations (15) and (16). Then for $f \in C[0,1]$, we have
\[\left\| K_{n,p,q}^λ(f) - f \right\|_{C[0,1]} = st_A - o(\max\{a_n, b_n\}) . \]

Proof. Let’s define the following auxiliary operators
\[\tilde{K}_{n,p,q}^λ(f; x) = K_{n,p,q}^λ(f; x) - f \left(\theta_{p,q}^λ(n,x) \right) + f(x) , \]
where $x \in [0,1], \theta_{p,q}^λ(n,x)$ is defined in Equation (11). Thus, we get
\[\tilde{K}_{n,p,q}^λ(\phi_1(t,x); x) = 0 \]
by Lemma 2. Letting $g \in C^2_{[0,1]}, t \in [0,1]$, by Taylor’s expansion, we have
\[g(t) = g(x) + g'(x)(t-x) + \int_x^t (t-u)g''(u)du . \]
Applying $\hat{K}_{n,p,q}^\lambda$ on both sides for Equation (24) and using Equation (23), we obtain

$$\hat{K}_{n,p,q}^\lambda(g; x) = g(x) + \hat{K}_{n,p,q}^\lambda \left(\int_x^t (t-u)g''(u) du; x \right).$$

Therefore, by Equations (22), (15) and (16), we have

$$\left| \hat{K}_{n,p,q}^\lambda(g; x) - f(x) \right| \leq K_{n,p,q}^\lambda \left(\int_x^t (t-u)g''(u) du; x \right) + \int_x^f \theta_{p,q}^\lambda(n,x) \left(\theta_{p,q}^\lambda(n,x) - u \right) g''(u) du,$$

$$\leq K_{n,p,q}^\lambda \left(\int_x^t g''(u) du; x \right) + \int_x^f \theta_{p,q}^\lambda(n,x) \left(\theta_{p,q}^\lambda(n,x) - u \right) g''(u) du,$$

$$\leq \left(\Phi(p,q;n) + \Theta(p,q;n)^2 \right) \left\| g'' \right\|_{C[0,1]}.$$

(25)

Besides, by Equations (22) and (9), we get

$$\left| \hat{K}_{n,p,q}^\lambda(f; x) \right| \leq ||f||_{C[0,1]} K_{n,p,q}^\lambda(e_0;x) + 2 ||f||_{C[0,1]} = 3 ||f||_{C[0,1]}.$$

(26)

By Equations (22), (26) and (25), we have

$$\left| K_{n,p,q}^\lambda(f; x) - f(x) \right| = \left| K_{n,p,q}^\lambda(f - g; x) - (f - g)(x) + \hat{K}_{n,p,q}^\lambda(g; x) - g(x) + f \left(\theta_{p,q}^\lambda(n,x) \right) - f(x) \right|,$$

$$\leq \left| K_{n,p,q}^\lambda(f - g; x) - (f - g)(x) \right| + \left| \hat{K}_{n,p,q}^\lambda(g; x) - g(x) \right| + \left| f \left(\theta_{p,q}^\lambda(n,x) \right) - f(x) \right|,$$

$$\leq 4 ||f - g||_{C[0,1]} + \left(\Phi(p,q;n) + \Theta(p,q;n)^2 \right) \left\| g'' \right\|_{C[0,1]} + \omega(f; \Theta(p,q;n)).$$

Taking infimum on the right hand side over all $f \in C^2_{[0,1]}$, we obtain

$$\left| K_{n,p,q}^\lambda(f; x) - f(x) \right| \leq 4K_2 \left(f; \left(\Phi(p,q;n) + \Theta(p,q;n)^2 \right) / 4 \right) + \omega(f; \Theta(p,q;n)).$$

Hence, we get

$$\left| K_{n,p,q}^\lambda(f; x) - f(x) \right| \leq C\omega_2 \left(f; \sqrt{\Phi(p,q;n) + \Theta(p,q;n)^2} / 2 \right) + \omega(f; \Theta(p,q;n)).$$

Taking supremum over $[0,1]$ on both sides, we have

$$\left\| K_{n,p,q}^\lambda(f) - f \right\|_{C[0,1]} \leq C\omega_2 \left(f; \sqrt{\Phi(p,q;n) + \Theta(p,q;n)^2} / 2 \right) + \omega(f; \Theta(p,q;n)).$$

For a given $\epsilon > 0$, set

$$M = \left\{ n : \left\| K_{n,p,q}^\lambda(f) - f \right\|_{C[0,1]} \geq \epsilon \right\},$$

$$M_1 = \left\{ n : \omega_2 \left(f; \sqrt{\Phi(p,q;n) + \Theta(p,q;n)^2} / 2 \right) \geq \frac{\epsilon}{2C} \right\},$$

$$M_2 = \left\{ n : \omega(f; \Theta(p,q;n)) \geq \frac{\epsilon}{2} \right\}.$$
Then we have $M \subseteq M_1 \cup M_2$ and

$$\frac{1}{\max\{a_j, b_j\}} \sum_{j \in M} a_{jn} \leq \frac{1}{b_j} \sum_{j \in M_1} a_{jn} + \frac{1}{a_j} \sum_{j \in M_2} a_{jn}.$$

According to the assumptions of Theorem 7, we have

$$\lim_{j \to \infty} \frac{1}{b_j} \sum_{j \in M_1} a_{jn} + \lim_{j \to \infty} \frac{1}{a_j} \sum_{j \in M_2} a_{jn} = 0.$$

Thus,

$$\lim_{j \to \infty} \frac{1}{\max\{a_j, b_j\}} \sum_{j \in M} a_{jn} = 0.$$

Therefore, we get the desire result of Theorem 7.

4. Conclusions

In this paper, we introduced a kind of Kantorovich type λ-Bernstein operators $K_{n,p,q}^{\lambda}(f; x)$ via (p, q)-calculus, we estimated the moments and central moments and used these results to obtain an A-statistical convergence theorem and the rate of A-statistical convergence of $K_{n,p,q}^{\lambda}(f; x)$ to $f(x)$. In the future research work, we will continue to investigate some approximation properties of Durrmeyer type λ-Bernstein operators via (p, q)-calculus.

Author Contributions: All authors contribute equally to this article. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant No. 11601266), the Project for High-level Talent Innovation and Entrepreneurship of Quanzhou (Grant No. 2018C087R), the Program for New Century Excellent Talents in Fujian Province University and Sponsoring Agreement for Overseas Studies in Fujian Province.

Acknowledgments: We thank Fujian Provincial Key Laboratory of Data-Intensive Computing, Fujian University Laboratory of Intelligent Computing and Information Processing and Fujian Provincial Big Data Research Institute of Intelligent Manufacturing of China.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Bernstein, S.N. Démonstration du théorème de Weiserstrass fondée sur le calcul des probabilités. Commun. Kharkov Math. Soc. 1912, 13, 1–2.
2. Mursaleen, M.; Ansari, J.A.; Khan, A. On (p, q)-analogue of Bernstein operators. Appl. Math. Comput. 2015, 266, 874–882; Erratum in 2016, 278, 70–71. [CrossRef]
3. Mursaleen, M.; Ansari, J.A.; Khan, A. Some approximation results by (p, q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402; Corrigendum in 2015, 269, 744–746. [CrossRef]
4. Mursaleen, M.; Nasiruzzaman, M.; Ansari, K.J.; Alotaibi, A. Generalized (p, q)-Bleimann-Butzer-Hahn operators and some approximation results. J. Inequal. Appl. 2017, 310. [CrossRef]
5. Mursaleen, M.; AL-Abied, A.; Ansari, K.J. Rate of convergence of Chlodowsky type Durrmeyer-Jakimovski-Leviatan operators. Tbilisi Math. J. 2017, 10, 173–184. 10.1515/tmj-2017-0036. [CrossRef]
6. Mursaleen, M.; Alotaibi, A.; Ansari, K.J. On a Kantorovich variant of (p, q)-Szász-Mirakjan operators. J. Funct. Space 2016, 1035253. [CrossRef]
7. Mursaleen, M.; Nasiruzzaman, M.; Khan, A.; Ansari, K.J. Some approximation results on Bleimann-Butzer-Hahn operators defined by (p, q)-integers. Filomat 2016, 30, 639–648. [CrossRef]
8. Mursaleen, M.; Nasiruzzaman, M. Some approximation properties of bivariate Bleimann-Butzer-Hahn operators based on (p, q)-integers. Boll. Unione Mat. Ital. 2017, 10, 271–289. [CrossRef]
9. Mursaleen, M.; Naaz, A.; Khan, A. Improved approximation and error estimations by King type \((p, q)\)-Szász-Mirakjan Kantorovich operators. *Appl. Math. Comput.* **2019**, *348*, 175–185. [CrossRef]

10. Ansari, K.J.; Ahmad, I.; Mursaleen, M.; Hussain, I. On some statistical approximation by \((p, q)\)-Bleimann, Butzer and Hahn operators. *Symmetry* **2018**, *10*, 731. [CrossRef]

11. Cai, Q.-B.; Zhou, G. On \((p, q)\)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. *Appl. Math. Comput.* **2016**, *276*, 12–20. [CrossRef]

12. Shu, L.-T.; Zhou, G.; Cai, Q.-B. On the convergence of a family of Chlodowsky type Bernstein-Stancu-Schurer operators. *J. Funct. Space* **2018**, *2018*, 6385451. [CrossRef]

13. Cai, Q.-B.; Xu, X.-W. A basic problem of \((p, q)\)-Bernstein operators. *J. Inequal. Appl.* **2017**, *140* doi:10.1186/s13660-017-1413-0. [CrossRef]

14. Cheng, W.-T.; Zhang, W.-H.; Cai, Q.-B. \((p, q)\)-Gamma operators which preserve \(x^2\). *J. Inequal. Appl.* **2019**, *108* doi:10.1186/s13660-019-2053-3. [CrossRef]

15. Acar, T. \((p, q)\)-Generalization of Szász-Mirakyan operators. *Math. Methods Appl. Sci.* **2016**, *39*, 2685–2695. [CrossRef]

16. Acar, T.; Aral, A.; Mohiuddine, S.A. On Kantorovich modification of \((p, q)\)-Baskakov operators. *J. Inequal. Appl.* **2016**. [CrossRef]

17. Acar T.; Aral, A.; Mursaleen, M. Approximation by Baskakov-Durrmeyer operators based on \((p, q)\)-integers. *Math. Slovaca* **2018**. [CrossRef]

18. Acar, T.; Agrawal, P.; Kumar, A. On a modification of \((p, q)\)-Szász-Mirakyan operators. *Complex Anal. Oper. Theory* **2016**. [CrossRef]

19. Ilarslan, H.; Acar, T. Approximation by bivariate \((p, q)\)-Baskakov-Kantorovich operators. *Georgian Math. J.* **2016**. [CrossRef]

20. Gupta, V. \((p, q)\)-Baskakov-Kantorovich operators. *Appl. Math. Inf. Sci.* **2016**, *10*, 1551–1556. [CrossRef]

21. Malik, N.; Gupta, V. Approximation by \((p, q)\)-Baskakov-Beta operators. *Appl. Math. Comput.* **2017**, *293*, 49–56. [CrossRef]

22. Khan, K.; Lobiyal, D.K. Bézier curves based on Lupas \((p, q)\)-analogue of Bernstein functions in CAGD. *J. Comput. Appl. Math.* **2017**, *317*, 458–477. [CrossRef]

23. Cai, Q.-B.; Cheng, W.-T. Convergence of \(\lambda\)-Bernstein operators based on \((p, q)\)-integers. *J. Inequal. Appl.* **2020**, *35*, 1–17. [CrossRef]

24. Hounkonnou, M.N.; Désiré, J.; Kyemba, B. \(R(p, q)\)-calculus: Differentiation and integration. *SUT J. Math.* **2013**, *49*, 145–167.

25. Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In Proceedings of the International Conference on Number Theory and Mathematical Physics, Kumbakonam, India, 20–21 December 2005; pp. 20–21.

26. Katriel, J.; Kibler, M. Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers. *J. Phys. A Math. Gen.* **1992**, *24*, 2683–2691. [CrossRef]

27. Sadjang, P.N. On the fundamental theorem of \((p, q)\)-calculus and some \((p, q)\)-Taylor formulas. *arXiv* **2015**, arXiv:1309.3934v1.

28. Sahai, V.; Yadav, S. Representations of two parameter quantum algebras and \(p, q\)-special functions. *J. Math. Anal. Appl.* **2007**, *335*, 268–279. [CrossRef]

29. Duman, O.; Khan, M.K.; Orhan, C. \(A\)-Statistical convergence of approximating operators. *Math. Inequal. Appl.* **2003**, *6*, 689–699. [CrossRef]

30. DeVore, R.A.; Lorentz, G.G. *Constructive Approximation*; Springer: Berlin, Germany, 1993.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).