ABELIAN QUOTIENTS OF THE STRING LINK MONOID

JEAN-BAPTISTE MEILHAN AND AKIRA YASUHARA

Abstract. The set $\mathcal{S}L(n)$ of n-string links has a monoid structure, given by the stacking product. When considered up to concordance, $\mathcal{S}L(n)$ becomes a group, which is known to be abelian only if $n = 1$. In this paper, we consider two families of equivalence relations which endow $\mathcal{S}L(n)$ with a group structure, namely the C_k-equivalence introduced by Habiro in connection with finite type invariants theory, and the C_k-concordance, which is generated by C_k-equivalence and concordance. We investigate under which condition these groups are abelian, and give applications to finite type invariants.

1. Introduction

For a positive integer n, let D^2 be the standard two-dimensional disk equipped with n marked points $x_1, ..., x_n$ in its interior. Let I denote the unit interval. An n-string link is a proper embedding $L : \bigsqcup_{i=1}^n I_i \hookrightarrow D^2 \times I$, of the disjoint union $\bigsqcup_{i=1}^n I_i$ of n copies of I in $D^2 \times I$, such that for each i, the image L_i of I_i runs from $(x_i, 0)$ to $(x_i, 1)$. Abusing notation, we will also denote by $L \subset D^2 \times I$ the image of the map L, and L_i is called the ith string of L. Note that each string of an n-string link is equipped with an (upward) orientation induced by the natural orientation of I. The string link $\bigsqcup_{i=1}^n \{x_i\} \times I$ is called the trivial n-string link and is denoted by 1_n, or simply by 1.

The set $\mathcal{S}L(n)$ of isotopy classes of n-string links fixing the endpoints has a monoid structure, with composition given by the stacking product and with the trivial n-string link 1_n as unit element. There is a surjective map from $\mathcal{S}L(n)$ to the set of isotopy classes of n-component links, which sends an n-string link to its closure (in the usual sense). For $n = 1$, this map is a monoid isomorphism. It is well known that the monoid $\mathcal{S}L(n)$ is not a group. In fact, it is quite far from being a group: the group of invertible elements in $\mathcal{S}L(n)$ is actually the pure braid group on n strands [11]. However, $\mathcal{S}L(n)$ becomes a group when considered up to concordance. Recall that two n-string links L, L' are concordant if there is an embedding

$$f : (\bigcup_{i=1}^n I_i) \times I \longrightarrow (D^2 \times I) \times I$$

such that $f((\bigcup_{i=1}^n I_i) \times \{0\}) = L$ and $f((\bigcup_{i=1}^n I_i) \times \{1\}) = L'$, and such that $f(\partial(\bigcup_{i=1}^n I_i) \times I) = (\partial L) \times I$. The inverse of a string link up to concordance is simply its horizontal mirror image with reversed orientation. Le Dimet showed that the group of concordance classes of n-string links is not abelian for $n \geq 3$ in [13]. The fact that this result also hold for $n = 2$ seem to have been first observed by De Campos [7], as a consequence of a result of Miyazaki for the theta-curve cobordism group [19].

1 The literature sometimes erroneously refers to [13] for the analogous fact for $n = 2$, but, as Le Dimet writes in [13] 4.5 Conclusions 2), his arguments did not allow him to conclude in the case of 2-string links.
Now, other equivalence relations are known to endow $SL(n)$ with a group structure: for each $k \geq 1$, the set $SL(n)/C_k$ of C_k-equivalence classes of n-string links is a group \cite{13}. Here, the C_k-equivalence is an equivalence relation on links generated by C_k-moves and ambient isotopies, defined in connection with the theory of finite type invariants. A C_1-move is just a crossing change, and for any integer $k \geq 2$, a C_k-move is a local move on links as illustrated in Figure 1.1. These local moves can also be defined in terms of ‘insertion’ of an element of the kth lower central subgroup of some pure braid group \cite{23}, or alternatively by using the theory of claspers (see Section 2).

In this paper, we investigate under which condition the quotient group $SL(n)/C_k$ is abelian. This is immediate, for $k = 1$ since $SL(n)/C_1$ is the trivial group. It is also well-known that, for all $n \geq 1$, the group $SL(n)/C_2$ is abelian. This essentially follows from the fact, due to Murakami and Nakanishi \cite{20}, that C_2-equivalence classes of (string) links are classified by the linking number. Another rather easy fact is the following, which uses Milnor’s triple linking number (see Section 4.3).

Proposition 1.1. The group $SL(n)/C_k$ of C_k-equivalence classes of n-string links is not abelian for any $n \geq 3$ and any $k \geq 3$.

Hence our study is reduced to the case of 2-string links. In \cite{24}, the second author showed that $SL(2)/C_k$ is not abelian for $k \geq 12$. Here we improve this result and give an almost complete answer for this ‘abelian problem’.

Theorem 1.2. (1). The group $SL(2)/C_k$ of C_k-equivalence classes of 2-string links is abelian for $k < 7$.

(2). The group $SL(2)/C_k$ is not abelian for $k > 7$.

Although the case $k = 7$ remains open so far, we show the following.

Theorem 1.3. The group $SL(2)/C_7$ is abelian if it has no 2-torsion.

Remark 1.4. Bar-Natan’s computations \cite{2} shows that 7 is the smallest degree of a finite type invariant that can detect the orientation of 2-string links. The existence of such an invariant was shown by Duzhin and Karev \cite{8}, and this result is used in Section 3.2 to prove Theorem 1.2 (2). Likewise, it would be very interesting to determine whether there exists a \mathbb{Z}_2-valued finite type invariant of degree 6 that can detect the orientation of 2-string links.

The ‘abelian problem’ addressed above is deeply related to one of the main results in the theory of finite type invariants, due to Habiro \cite{13} and Goussarov \cite{10}, independently, which gives a topological characterization of the informations contained by finite type invariants of knots.

Theorem 1.5 \cite{10, 13}. Two knots cannot be distinguished by any finite type invariant of order less than k if and only if they are C_k-equivalent.

It was indeed conjectured by both Goussarov and Habiro that, although it fails to hold for links, Theorem 1.5 may generalize to string links. One of the key ingredient of Habiro’s proof of Theorem 1.5 based on the theory of claspers, is the fact that...
the set of C_k-equivalence classes of knots forms an abelian group for all $k \geq 1$. As a matter of fact, his techniques apply to the string link case, and the fact that the group $\text{SL}(n)/C_k$ is abelian implies that the conjecture holds at the corresponding degree (see Appendix A for further explanation). Hence Theorem 1.2 (1) gives us the following.

Corollary 1.6. For any integer $k \leq 6$, two 2-string links cannot be distinguished by any finite type invariant of order less than k if and only if they are C_k-equivalent.

Remark 1.7. The Goussarov-Habiro conjecture for string links was shown to be true at low degree by various authors. It is easy to check for $k = 2$, using the linking number \cite{20}, and was proved for $k = 3$ by the first author in \cite{16}. Massuyeau gave a proof for $k = 4$, using algebraic arguments \cite{15}. In \cite{17}, the authors classified string links up to C_k-equivalence for $k \leq 5$, by explicitly giving a complete set of low degree finite type invariants, and proved the Goussarov-Habiro Conjecture for $k \leq 5$ as a byproduct.

Since we have two equivalence relations, concordance and C_k-equivalence, that provide group structures on the set of string links, it is natural to combine them to get a new group structure. We call this equivalence relation on string links generated by C_k-moves and concordance the C_k-concordance \cite{17}. The C_k-concordance is very closely related to Whitney tower concordance of order $k - 1$ studied in \cite{5} by Conant, Schneiderman and Teichner \cite{3} and to finite type concordance invariants.

In Section 4, we investigate whether the group $\text{SL}(n)/(C_k + c)$ of C_k-concordance classes of n-string links is abelian. In the knot case, it is known that $\text{SL}(1)/(C_k + c)$ is trivial for $k = 1$ or 2, and that $\text{SL}(1)/(C_k + c)$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ for $k \geq 3$ \cite{21} \cite{17}. We show the following.

Theorem 1.8. \begin{enumerate}
\item The group $\text{SL}(2)/(C_k + c)$ is abelian if and only if $k \leq 8$.
\item For $n \geq 3$, the group $\text{SL}(n)/(C_k + c)$ is abelian if and only if $k \leq 2$.
\end{enumerate}

The proof of (1) is given in Sections 4.3 and 4.5. In Section 4.3, we prove the ‘only if’ part in (2). The ‘if’ part is actually easy to see. Indeed, as mentioned above, $\text{SL}(n)/C_1$ is a trivial group and $\text{SL}(n)/C_2$ is an abelian group classified by the linking number. Since the latter is a C_2-concordance invariant, we have that $\text{SL}(n)/C_2$ and $\text{SL}(n)/(C_2 + c)$ are isomorphic.

Since two C_k-concordant string links share all finite type concordance invariants of degree less than k, and it is natural to ask, parallel to the Goussarov-Habiro conjecture, whether the converse is also true. This question was raised by the authors in \cite{17}. As in the case of the C_k-equivalence, Habiro’s arguments apply if $\text{SL}(n)/(C_k + c)$ is abelian. Hence we have the following corollary.

Corollary 1.9. For any integer $k \leq 8$, two 2-string links cannot be distinguished by any finite type concordance invariant of order less than k if and only if they are C_k-concordant.

Acknowledgments. The authors are grateful to Tetsuji Kuboyama for writing the computer program for Milnor invariants used in Section 4.5 and to Kazuo Habiro for discussions that led to Lemmas 2.9 and 2.10. The first author is supported by the French ANR research project ANR-11-JS01-00201. The second author is supported by a JSPS Grant-in-Aid for Scientific Research (C) (#23540074).

2. Claspers

We recall here the main definitions and properties of the theory of claspers, which is one of the main tools of this paper. For convenience, we restrict ourselves to the case of string links. For a general definition of claspers, we refer the reader to \cite{13}.

\footnote{These two equivalence relations are actually equivalent, as announced in \cite{5}.}
2.1. A brief review of clasper theory. Let \(L \) be a string link. An embedded surface \(g \) is called a graph clasper for \(L \) if it satisfies the following three conditions:

1. \(g \) is decomposed into disks and bands, called edges, each of which connects two distinct disks.
2. The disks have either 1 or 3 incident edges, and are called leaves or nodes respectively.
3. \(g \) intersects \(L \) transversely, and the intersections are contained in the union of the interiors of the leaves.

In particular, if a graph clasper is a simply connected, we call it a tree clasper. A graph clasper for a string link \(L \) is simple if each of its leaves intersects \(L \) at one point.

The degree of a connected graph clasper \(g \) is defined as half the number of nodes and leaves. We call a degree \(k \) connected graph clasper a \(C_k \)-graph. A tree clasper of degree \(k \) is called a \(C_k \)-tree.

Convention 2.1. Throughout this paper, we make use of the drawing convention for claspers of [13, Fig. 7], except for the following: a \(\oplus \) (resp. \(\ominus \)) on an edge represents a positive (resp. negative) half-twist. (This replaces the convention of a circled \(S \) (resp. \(S^{-1} \)) used in [13].)

Given a graph clasper \(g \) for a string link \(L \), there is a procedure to construct, in a regular neighbourhood of \(g \), a framed link \(\gamma(g) \). There is thus a notion of surgery along \(g \), which is defined as surgery along \(\gamma(g) \). There exists a canonical diffeomorphism between \(D^2 \times I \) and the manifold \((D^2 \times I)_{\gamma(g)} \) fixing the boundary, and surgery along the \(C_k \)-graph \(g \) can thus be regarded as an operation on \(L \) in the (fixed) ambient space \(D^2 \times I \). We say that the resulting string link \(L_g \) in \(D^2 \times I \) is obtained from \(L \) by surgery along \(g \). In particular, surgery along a simple \(C_k \)-tree is a local move as illustrated in Figure 2.1.

Throughout this paper, we will often define string links in terms of claspsers for the trivial string link, implicitly referring to the result of surgery along this clasper.

![Figure 2.1. Surgery along a simple C5-tree.](image)

The \(C_k \)-equivalence (as defined in the introduction) coincides with the equivalence relation on string links generated by surgeries along \(C_k \)-graphs and isotopies. In particular, it is known that two links are \(C_k \)-equivalent if and only if they are related by surgery along simple \(C_k \)-trees [13, Thm. 3.17].

This family of equivalence relations becomes finer as the index increases, that is, the \(C_k \)-equivalence implies the \(C_m \)-equivalence if \(k > m \).

A string link is called \(C_k \)-trivial if it is \(C_k \)-equivalent to the trivial string link.

2.2. Standard calculus of Claspers. In this subsection, we summarize several properties of claspers. Although similar statements hold in a more general context, it will be convenient to state these results for the trivial string link \(1 \). Proofs are omitted, since they involve the same techniques as in [13 §4], where similar statements appear.
Lemma 2.2. Let $t_1 \cup t_2$ be a disjoint union of a C_{k_1}-graph and a C_{k_2}-graph for 1. Let $t'_1 \cup t'_2$ be obtained from $t_1 \cup t_2$ by sliding a leaf of t_1 across a leaf of t_2, see Figure 2.2. Then

$$1_{t_1 \cup t_2} \sim_{C_{k_1+k_2+1}} 1_{t'_1 \cup t'_2} \cdot 1_t,$$

where t is a $C_{k_1+k_2}$-graph obtained from $t_1 \cup t_2$ by inserting a vertex v in the edge e of t and connecting v to the edge incident to f as shown in Figure 2.2.

Lemma 2.3. Let $t_1 \cup t_2$ be a disjoint union of a C_{k_1}-graph and a C_{k_2}-graph for 1. Let $t'_1 \cup t'_2$ be obtained from $t_1 \cup t_2$ by changing a crossing of an edge of t_1 with an edge of t_2. Then

$$1_{t_1 \cup t_2} \sim_{C_{k_1+k_2+2}} 1_{t'_1 \cup t'_2} \cdot 1_t,$$

where t is a $C_{k_1+k_2+1}$-graph.

Remark 2.4. By combining the two previous lemmas, we have the following. Let L_1 (resp. L_2) be a C_{k_1}-trivial (resp. C_{k_2}-trivial) n-string link, for some $n \geq 1$. Then $L_1 \cdot L_2$ is $C_{k_1+k_2}$-equivalent to $L_2 \cdot L_1$.

Lemma 2.5. Let g be a C_k-graph for 1. Let f_1 and f_2 be two disks obtained by splitting a leaf f of g along an arc α as shown in Figure 2.3. Then,

$$\begin{array}{c}
\begin{array}{c}
\text{(1n)}_g \sim_{C_{k+1}} \text{(1n)}_{g_1} \cdot \text{(1n)}_{g_2},
\end{array}
\end{array}$$

where g_i denotes the C_k-graph for 1, obtained from g by replacing f by f_i ($i = 1, 2$), see Figure 2.3.

Lemma 2.6. Let t be a C_k-graph for 1, and let t' be a C_k-graph obtained from t by adding a half-twist on an edge. Then $1_t \cdot 1_{t'} \sim_{C_{k+1}} 1$.

Claspers also satisfy relations analogous to the AS, IHX and STU relations for Jacobi diagrams [1].

Lemma 2.7. (AS). Let t and t' be two C_k-graphs for 1 which differ only in a small ball as depicted in Figure 2.4. Then $1_t \cdot 1_{t'} \sim_{C_{k+1}} 1$.

Figure 2.4. The AS, IHX and STU relations.
(IHX). Let \(t_1, t_H \) and \(t_X \) be three \(C_k \)-graphs for 1 which differ only in a small ball as depicted in Figure 2.5. Then \(1_{t_1} \cdot C_{k+1}^{l_1} \cdot 1_{t_H} \cdot 1_{t_X} \).

(STU). Let \(g_S, g_T \) and \(g_Y \) be three \(C_k \)-graphs for 1 which differ only in a small ball as depicted in Figure 2.5. Then \(1_{g_S} \cdot 1_{g_T} \cdot C_{k+1}^{l} \cdot 1_{g_Y} \).

In the rest of the paper, we will simply refer to Lemma 2.7 as the AS, IHX and STU relations.

By the IHX and STU relations, one can easily check the following.

Lemma 2.8. Let \(t \) be a \(C_k \)-graph for 1.

(1). Suppose that there exists a 3-ball which intersects \(t \) as on the left-hand side of Figure 2.5. Then \(1_{t} \cdot C_{k+1}^{l} \cdot 1_{c} \), where \(c \) is a \(C_k \)-graph as shown in the figure.

\[\text{Figure 2.5.} \]

(2). Suppose that there exists a 3-ball which intersects \(t \) as on the right-hand side of Figure 2.5. Then \(1_{t} \cdot C_{k+1}^{l} \cdot 1_{g} \), where \(g \) is a \(C_k \)-graph as shown in the figure.

2.3. Commutativity lemmas

In this section, we collect a couple extra technical, purely algebraic lemmas.

Lemma 2.9. Let \(l \) and \(k \) be positive integers (\(l < k \)). Let \(G \) be a \(C_l \)-trivial string link and let \(G' \) be the inverse of \(G \) in \(SL(n)/C_{l+1} \). If \(G \) commutes with any \(C_{l+1} \)-trivial string link in \(SL(n)/C_k \), then \(G \) and \(G' \) commute in \(SL(n)/C_k \).

Proof. Since \(G \cdot G' \) is \(C_{l+1} \)-trivial, \(G \) commutes with \(G \cdot G' \) in \(SL(n)/C_k \). Hence

\[G \cdot G' \overset{\circ}{\sim} G^{-1} \cdot (G \cdot G') \cdot G \overset{\circ}{\sim} G' \cdot G, \]

where \(G^{-1} \) denotes the inverse of \(G \) in \(SL(n)/C_k \). \(\square \)

Although seemingly very technical, the next lemma turns out to be rather natural in the proofs of our main results.

Lemma 2.10. Let \(L \) be an \(n \)-string links satisfying the following three conditions, for some integers \(p, l, m \) and \(k \) (\(l < k, l < m < k \)):

- \(L^2 \) is \(C_p \)-equivalent to a central element in \(SL(n)/C_k \).
- \(L \) commutes with any \(C_l \)-trivial string link in \(SL(n)/C_m \).
- \(L \) commutes with any \(C_m \)-trivial string link in \(SL(n)/C_k \).

Suppose, moreover, that \(SL(n)/C_k \) has no 2-torsion, and that \(C_l \)-trivial and \(C_p \)-trivial string links all commute in \(SL(n)/C_k \). Then \(L \) commutes with any \(C_l \)-trivial string link in \(SL(n)/C_k \).

Remark 2.11. Observe that a string link commutes with any \(C_l \)-trivial string link in \(SL(n)/C_k \) if and only if it commutes with \(1_t \) for any \(C_l \)-tree \(t \) with \(l < s \leq k - 1 \). Indeed, let \(T \) and \(T' \) be two \(C_l \)-equivalent string links. Since \(T \) is \(C_l \)-trivial, it is not hard to see, using Lemmas 2.2 and 2.3, that \(T' \) is \(C_k \)-equivalent to a product \(T_1 \cdot T_1 \cdot T_{k+1} \cdot \cdots \cdot T_{k-1} \) where \(T_i \) is a product of string links, each obtained from 1 by surgery along a single \(C_l \)-tree \((l < s \leq k - 1) \). In particular, each \(T_i \) is a \(C_l \)-trivial string link, and \(T_1 \cdot T_{l+1} \cdot \cdots \cdot T_{k-1} \) is thus a \(C_l \)-trivial string link.
Proof. Let G be a C_l-trivial string link. Let us show that L and G commute in $\mathcal{SL}(n)/C_k$. Since L^2 is C_p-equivalent to a central element C, we have that L^2 is C_k-equivalent to $C \cdot H$ for some C_p-trivial string link H (by an argument similar to that in Remark 2.11 above). Thus we have

$$G \cdot L^2 \overset{C_k}\cong G \cdot C \cdot H \overset{C_k}\cong C \cdot H \cdot G \overset{C_k}\cong L^2 \cdot G,$$

where the second equivalence follows from the assumption that C_l-trivial and C_p-trivial string links commute in $\mathcal{SL}(n)/C_k$. Hence

$$1_n \overset{C_k}\cong [L^2, G] \overset{C_k}\cong L[L, G]L^{-1}[L, G],$$

where $[x, y]$ denotes the commutator $xyx^{-1}y^{-1}$ of x and y. Since L and G commute in $\mathcal{SL}(n)/C_m$ (by assumption on L), the commutator $[L, G]$ is C_m-trivial. Thus L and $[L, G]$ commute in $\mathcal{SL}(n)/C_k$, and we have $1_n \overset{C_k}\cong [L, G]^2$. Since $\mathcal{SL}_{k-1}(n)/C_k$ has no 2-torsion, we have that $[L, G]$ is C_l-trivial, and hence L and G commute in $\mathcal{SL}(n)/C_k$. □

3. The group of C_k-equivalence classes of 2-string links.

In this section, we prove Theorems 1.2 and 1.3.

3.1. Abelian cases: $k \leq 6$. Since the C_k-equivalence implies the C_m-equivalence if $k > m$, it is sufficient to show that $\mathcal{SL}(2)/C_k$ is abelian. This is done in Proposition 3.3 by first providing a set of generators for this group and then by showing that any two of these generators commute in $\mathcal{SL}(2)/C_k$. (Note that it was shown by Habiro that $\mathcal{SL}(n)/C_k$ is a finitely generated group for any n and k.)

Let the 2-string links I, Y, Y', H, X, D, S_4^0 and S_2^0 ($\alpha \in S_3$) obtained from 1_2 by surgery along the tree clasper i, y, y', h, x, d, s_4^0 and s_2^0, represented in Figure 3.1 respectively.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3_1.png}
\caption{Here, when representing a clasper c with an edge marked by a $*$, we implicitly also define the clasper c^* obtained from c by inserting a \textit{negative half twist} in the $*$-marked edge. Thus, when introducing the string link C obtained from 1 by surgery along c, we implicitly also introduce the string link C^* obtained by surgery along c^*.}
\end{figure}

Let $\mathcal{SL}_i(2)$ denote the set of C_l-trivial 2-string links (i \geq 1). It is shown in [17] §4.1 to 4.3.2 that, for $i \in \{1, 2, 3, 4\}$, the group $\mathcal{SL}_i(2)/C_{i+1}$ has generating set $\mathcal{H}_i = \mathcal{H}_i^m \cup \mathcal{H}_i^l$, where

\begin{align*}
\mathcal{H}_i^m &= \{I\}, \quad \mathcal{H}_2^m = \{Y\}, \quad \mathcal{H}_3^m = \{H, D\}, \quad \mathcal{H}_4^m = \{\sigma_{1d}^1, \sigma_{12}^1, \sigma_{123}^1, \sigma_{13}^1, \sigma_{2d}^1\},
\end{align*}

and \mathcal{H}_i^l is a set of \textit{local} generators. Here, we say that an element of $\mathcal{SL}(2)$ is local if there exists a 3-ball whose boundary intersects it at only two points, such that an homotopy of this ball to a point produces the trivial 2-string link. (In other
words, local elements consists of a local knot on one strand. Clearly local elements are central in $SL(2)$.)

Let us also fix a generating set H_5 for $SL_5(2)/C_6$.

For any $L \in H_i$ ($i \leq 5$), we fix an inverse L^* in $SL_i(2)/C_{i+1}$. In particular, we use the convention of Figure 3.1 to pick inverses for elements of H_i ($i \leq 4$). We call elements of H_i and their inverses *generators of degree* i.

Before stating Proposition 3.3 we make a few simple, yet useful observations. First, notice that

Lemma 3.1. Both I and I^* are central in $SL(2)$.

Proof. This is shown in Figure 3.2 for the element I (the case of I^* is similar). Let

\[L \in SL(2). \]

Then $I \cdot L$ is as represented on the left-hand side of the figure. Rotating the two strings by 360 degrees about the vertical axis (fixing the endpoints) yields an isotopic string link, which is precisely $L \cdot I$.

\[\square \]

Next, we have

Fact 3.2. Y and Y^* are ambient isotopic to Y' and $(Y')^*$ respectively.

This is the string link version of the usual symmetry property of the Whitehead link, as illustrated in Figure 3.3 below.

\[\text{Figure 3.3. Symmetry property of the Whitehead string link.} \]

In the following, however, we will use the term ‘symmetric’ for another property. Given an n-string link L, we denote by \overline{L} its image under orientation-reversal of all its strands. The string link L is called *symmetric* if it is isotopic to \overline{L}. For example, the string links $I, I^*, Y, Y^*, Y', Y'^*, H, H^*, D$ and D^* are all symmetric. Notice that this is nicely reflected in the symmetry of the clasper defining these string links.

We can now prove the first part of Theorem 1.2.

Proposition 3.3. The group $SL(2)/C_6$ is abelian.

Proof. We use the generating sets H_i for $SL_i(2)/C_{i+1}$ specified above ($1 \leq i \leq 5$). In order to prove Proposition 3.3, it suffices to show that, for any two elements A and B in $\bigcup_{i=1}^5 H_i$, we have that A, A^*, B and B^* commute with each other in $SL(2)/C_6$.

By Remark 2.4, two generators of degree k and k' commute in $SL(2)/C_6$ if $k + k' \geq 6$. Hence all generators of degree 5 are central in $SL(2)/C_6$. Remark 2.4 also implies that H, H^*, D and D^* commute with each other. Moreover, we may safely ignore local generators, since these are central elements in $SL(2)$, as well as I and I^* (by Lemma 3.1).
So we only need to check that the generators of degree 2, \(Y\) and \(Y^*\), both commute with \(H, H^*, D\) and \(D^*\), and that \(Y\) and \(Y^*\) commute with each other.

Let us first show that \(Y\) and \(H\) commute in \(\text{SL}(2)/C_6\). The proof is given in Figures 3.4 and 3.5 as follows. Consider the product \(H \cdot Y\). By Lemmas 2.2 and 2.6, we have that \(H \cdot Y \cong G \cdot K\), where \(G\) and \(K\) are shown in Figure 3.4. Observe that \(G\) ‘locally’ contains a copy of \(Y\), so that we can use Fact 3.2 to show that \(G\) is isotopic to the string link \(G'\) represented in Figure 3.4. Now, by a second application of Lemma 2.2, \(G'\) is \(C_6\)-equivalent to the product of the two string links \(A\) and \(B\) represented on the right-hand side of the figure. Also, Lemmas 2.6 and 2.8 imply that \(K \cong C\), where \(C\) is also given in Figure 3.4.

Let us now focus on the string link \(B\). By the IHX relation and Lemma 2.4, we have \(B \cong B' \cdot B''\), as illustrated in Figure 3.5. Applying Lemmas 2.8 and 2.6 to the string link \(B'\) and \(B''\), we deduce that \(B \cong D \cdot E\), where \(D\) and \(E\) are represented on the right-hand side of Figure 3.5.

Hence we have shown that \(H \cdot Y \cong H \cdot Y = Y \cdot H\), where the equality follows from the fact that \(Y\) and \(H\) are also symmetric.

The same argument, together with Lemma 2.6, shows that \(Y\) commutes with \(H^*\) and that \(Y^*\) commutes with \(H\) and \(H^*\). Similarly, we now show that \(Y\) and \(Y^*\) commute with \(D\) and \(D^*\) as follows. Starting with the product \(D \cdot Y\) and applying Lemmas 2.2 and 2.6 twice as shown in Figure 3.6, we obtain that \(D \cdot Y \cong M \cdot N \cdot O\), where \(M, N\) and \(O\) are represented on the right-hand side of the figure. The STU relation shows that \(N \cong P \cdot Q\), where \(P\) and \(Q\) are represented in Figure 3.5. Now, by Lemmas 2.6 and 2.8 we see that \(O\) and \(P\) are both \(C_6\)-equivalent to the string link \(R\) shown in Figure 3.5. Summarizing, we have shown that

\[
D \cdot Y \cong M \cdot R^2 \cdot Q.
\]
Now, we have that $M \sim C_6$ by Lemma 2.3, and we also have $Q \sim Q'$ by Lemma 2.8(2). Hence we obtain that $D \cdot Y \sim D \cdot Y = Y \cdot D$, where the equality follows from the fact that Y and D are both symmetric.

The same argument shows that Y commutes with D^* and that Y^* commutes with D and D^*.

It only remains to prove that Y and Y^* commute. So far, we proved that Y commutes with any C_3-trivial string link in $\mathcal{SL}(2)/C_6$. Since by Lemmas 2.6 Y^* is the inverse of Y in $\mathcal{SL}(2)/C_3$, we can apply Lemma 2.9 to conclude that Y and Y^* commute in $\mathcal{SL}(2)/C_6$. □

3.2. Non-abelian case: $k \geq 8$. Denote by $A(2)$ the \mathbb{Q}-vector space of Jacobi diagrams on two strands, modulo the Framing Independence (FI) and STU relation, and denote by $A_k(2)$ the subspace generated by degree k elements (see e.g. [1] for the definitions). The stacking product \cdot endows $A(2)$ with an algebra structure.

As is well-known, $A(2)$ coincides with the space of chord diagrams on two strands modulo the FI and 4T relations [1].

In [8], Duzhin and Karev showed that $A(2)/A_8(2)$, hence $A(2)$, is noncommutative. More precisely, let $D_H \in A_3(2)$ and $D_S \in A_4(2)$ be the two Jacobi diagrams shown in Figure 3.8. Then we have that $D_H \cdot D_S \neq D_S \cdot D_H$ in $A_7(2)$ [8, Prop. 1].

We now show how this result implies that $\mathcal{SL}(2)/C_6$ is not abelian.

For $k \geq 0$, let $J_k(2)$ denote the subgroup of $\mathbb{Z}\mathcal{SL}(2)$ generated by singular 2-string links with k double points, via the Vassiliev skein relation

$$\begin{array}{c}
\begin{tikzpicture}
\draw[->] (0,0) -- (1,1);
\draw[->] (1,0) -- (0,1);
\end{tikzpicture}
\end{array} = \begin{array}{c}
\begin{tikzpicture}
\draw[->] (0,0) -- (1,1);
\draw[->] (1,0) -- (0,1);
\end{tikzpicture}
\end{array} - \begin{array}{c}
\begin{tikzpicture}
\draw[->] (0,0) -- (1,1);
\draw[->] (1,0) -- (0,1);
\end{tikzpicture}
\end{array}.
\end{array}$$

By definition, the difference of two string links is in $J_{k+1}(2)$ if and only if they cannot be distinguished by any finite type invariant of degree $\leq k$. There is a
well-known isomorphism
$$\xi_k : \mathcal{A}_k(2) \to (J_k(2)/J_{k+1}(2)) \otimes \mathbb{Q}$$
which “maps chords to double points”, with inverse given by the Kontsevich integral.

Now recall from Section 3.1 that H and S^1_{Id} denote the 2-string links obtained from 1_2 by surgery along the tree clasper h and s^1_{Id} represented in Figure 3.1 respectively. (For simplicity, we will use here the simpler notation S which “maps chords to double points”, with inverse given by the Kontsevich integral $S = D_H \cdot D_S - D_S \cdot D_H$ by ξ_7 is (up to a sign) the difference $H \cdot S - S \cdot H$ (this can be checked using a standard argument on the good behavior of the Kontsevich integral on alternate sums defined by claspers, see e.g. [22, Appendix E]). This shows that $H \cdot S$ and $S \cdot H$ can be distinguished by some degree 7 finite type invariant. Since two C_k-equivalent (string) links cannot be distinguished by any finite type invariant of degree $< k$, we deduce that $H \cdot S$ and $S \cdot H$ are not C_k-equivalent.

3.3. The case $k = 7$. In this section, we prove Theorem 1.3, hence we suppose that $\mathcal{S}(2)/C_7$ has no 2-torsion.

We proceed as in Section 3.1 using the generating sets H_i for $\mathcal{S}(2)/C_{i+1}$ ($i \leq 5$). By Remark 2.3 elements of $\mathcal{S}(2)/C_7$ are central in $\mathcal{S}(2)/C_7$, so we only need to consider these generators of degree ≤ 5. As above, we may also safely ignore local generators, as well as I and I^*. Actually, by Lemma 5.1 and Remark 2.4 we only have to check the following commutativity properties:

(3.3) Generators of degree 3 commute with each other.
(2.4) Generators of degree 4 commute with generators of degree 2.
(2.3) Generators of degree 3 commute with generators of degree 2.
(2.2) Generators of degree 2 commute with each other.

(Recall from Section 3.1 that by generator of degree k we mean any element of H_k or its fixed inverse.)

Case (3, 3): We have to show that H, H^*, D and D^* commute with each other in $\mathcal{S}(2)/C_7$. Since, by Remark 2.3 each of these elements commute with any C_4-trivial string link in $\mathcal{S}(2)/C_7$, we can apply Lemma 3.1 to show that H and H^* (resp. D and D^*) commute in $\mathcal{S}(2)/C_7$. Moreover, we have the following result, whose proof is postponed to the end of this section.

Claim 3.4. The string links D^2 and $(D^*)^2$ are both C_4-equivalent to a central element in $\mathcal{S}(2)$.

It follows from this fact and Remark 2.3 that D and D^* both fullfill the assumptions of Lemma 2.10 with $(p, l, m, k) = (4, 3, 6, 7)$. Applying the lemma then proves that D (resp. D^*) commutes with any C_3-trivial string link in $\mathcal{S}(2)/C_7$, and in particular with both H and H^*.

Case (2, 4): We have

Claim 3.5. The string links Y^2 and $(Y^*)^2$ are both C_3-equivalent to a central element in $\mathcal{S}(2)$.

(The proof of Claim 3.5 uses the exact same arguments as the proof of Claim 3.3 although it turns out to be actually significantly simpler.)

Claim 3.5 and Remark 2.3 ensure that both Y and Y^* satisfy the assumptions of Lemma 2.10 with $(p, l, m, k) = (3, 4, 6, 7)$. Applying the lemma then shows that Y and Y^* commute with any generator of degree 4 in $\mathcal{S}(2)/C_7$.

Case (2, 3): Using Case (3, 3) and Claim 3.5 we can now apply Lemma 2.10 to the string links Y and Y^* with $(p, l, m, k) = (3, 3, 5, 7)$. Applying the lemma then shows that Y and Y^* commute with any generator of degree 3 in $\mathcal{S}(2)/C_7$.

Case (2, 2): Let us show that Y and Y^* commute with each other in $SL(2)/C_7$. By Case (2, 3), we have that Y commutes with any C_3-trivial string link in $SL(2)/C_7$. Since by Lemma 2.7, Y^* is the inverse of Y in $SL(2)/C_3$, we can apply Lemma 2.9 to get the desired result.

We conclude this section with the proof of Claim 3.4.

Proof of Claim 3.4. Let us only give the proof for the 2-string link D (the proof for D^* is easily deduced). We first notice that, as a consequence of Lemma 2.8, the string link D (and likewise, D^*) has a symmetry property similar to that of the Whitehead string link Y in $SL(2)/C_4$ (see Figure 3.3):

![Figure 3.9. A Whitehead-type symmetry for the 2-string link D.](image)

Now consider the C_3-graph g for 1_2 shown on the left-hand side of Figure 3.10. Clearly, the 2-string link G obtained by surgery along g is central in $SL(2)$. By applying repeatedly Lemma 2.5, we have that G is C_4-equivalent to a product $\prod_{i=1}^{8} (1_2)_{g_i}$ of eight 2-string links, each obtained from 1_2 by surgery along a simple C_4-graph, as shown in Figure 3.10. By several isotopies, Lemma 2.6 and the symmetry property of Figure 3.9, we deduce that G is C_4-equivalent to the product $C \cdot (D^*)^2$, where $C = (1_2)_{g_1} \cdot (1_2)_{g_5}$ is clearly central in $SL(2)$ (see Figure 3.10).

![Figure 3.10.](image)

Using Lemma 2.6, we thus have that $D^2 \approx C \cdot G^{-1}$, where G^{-1} denotes the inverse of the central element G in $SL(2)$. The result follows. □

Remark 3.6. The techniques used in Section 3.1 to prove that $SL(2)/C_k$ is abelian for $k \leq 6$ can also be applied to the case $k = 7$ to some extent. More precisely, by fixing a generating set H_6 for $SL_6(2)/C_7$, one can try to show directly that, for any two elements A and B in $\bigcup_{i=1}^{6} H_i$, we have that A, A^*, B and B^* commute with each other in $SL(2)/C_7$. We can actually apply our methods, involving somewhat advanced calculus of claspers, to prove that this is indeed the case, except for one computation that remains open. Namely, the case where $A = Y$ and $B = H$ remains open so far, and is the only missing case to establish the commutativity of $SL(2)/C_7$ (without the 2-torsion assumption).

4. The Group of C_k-Concordance Classes of String Links.

In this section, we prove Theorem 1.8 and Proposition 1.1. We start with a brief review on the C_k-concordance.
4.1. \(C_k \)-concordance. Let \(k \) and \(n \) be positive integers. Two \(n \)-string links \(L, L' \) are \(C_k \)-concordant if there is a sequence \(L = L_0, L_1, ..., L_m = L' \) of \(n \)-string links such that for each \(i \geq 1 \), either \(L_i \overset{C_{k+1}}{\sim} L_{i+1} \) or \(L_i \) is concordant to \(L_{i+1} \). We denote the \(C_k \)-concordance relation by \(\overset{C_k}{\sim} \).

A string link is \((C_k + c) \)-trivial if it is \(C_k \)-concordant to the trivial string link.

It is well-known that Milnor invariants are concordance invariants \([3]\). So by [13] Thm. 7.1, Milnor invariants of length \(\leq k \) are \(C_k \)-concordance invariants. Habegger and Masbaum showed that all rational finite type concordance invariants of string links are given by Milnor invariants via the Kontsevich integral \([12]\).

It is known that surgery along graph claspsers with loops (i.e. graph claspsers that are not tree claspsers) implies concordance.

Lemma 4.1. \([6, 9]\) For any graph clasper with loop \(g \) for \(1 \), the string link \(1_g \) is concordant to \(1 \).

By combining this lemma and the STU relation, we have the following.

Lemma 4.2. Let \(g_r \) and \(g_l \) be two \(C_k \)-trees for \(1 \) which differ only in a small ball as depicted in Figure 2.4 Then \(1_{g_r} \overset{C_{k+1}}{\sim} 1_{g_l} \).

The simple algebraic argument used to prove Lemmas 2.3 also hold for \(C_k \)-concordance. That is, we have the following.

Lemma 4.3. Let \(l \) and \(k \) be positive integers (\(l < k \)). Let \(G \) be a \((C_l + c)\)-trivial string link and let \(G' \) be the inverse of \(G \) in \(\mathcal{SL}(n)/(C_{l+1} + c) \). If \(G \) commutes with any \((C_{l+1} + c)\)-trivial string link in \(\mathcal{SL}(2)/(C_k + c) \), then \(G \) and \(G' \) commute in \(\mathcal{SL}(2)/(C_k + c) \).

Likewise, there is a ‘\(C_k \)-concordance version’ of Lemma 2.10 (see Lemma 4.8 below).

4.2. The ordered index. In order to study \(C_k \)-concordance for string links, we use the notion of ordered index of a linear \(C_k \)-tree.

Let \(t \) be a simple tree clasper for a string link \(L \). We call a leaf of \(t \) an \(i \)-leaf if it intersects the \(i \)th component of \(L \). The index of \(t \) is the collection of all integers \(i \) such that \(t \) contains an \(i \)-leaf, counted with multiplicities. For example, a simple \(C_3 \)-tree of index \([2, 3^2, 5]\) for \(L \) intersects component 3 twice and components 2 and 5 once (and is disjoint from all other components of \(L \)).

For \(k \geq 3 \), a \(C_k \)-tree \(G \) having the shape of the tree clasper in Figure 2.4 is called a linear \(C_k \)-tree. (Note in particular that a linear tree clasper is always assumed to be simple.) The left-most and right-most leaves of \(G \) in Figure 2.4 are called the ends of \(G \). As a convention, any simple \(C_k \)-tree is linear for \(k \leq 2 \); the ends of a linear \(C_1 \)-tree (resp. \(C_2 \)-tree) are its two leaves (resp. a choice of any two leaves).

Let \(t \) be a linear \(C_k \)-tree with ends \(f_0, f_k \). Since \(t \) is a disk, we can travel from \(f_0 \) to \(f_k \) along \(\partial t \) so that we meet all other leaves \(f_1, ..., f_{k-1} \) in this order. If \(f_s \) is an \(i_s \)-leaf (\(s = 0, ..., k \)), we can consider two vectors \((i_0, ..., i_k)\) and \((i_k, ..., i_0)\) and may assume that \((i_0, ..., i_k) \leq (i_k, ..., i_0)\), where ‘\(\leq \)’ is the lexicographic order in \(\mathbb{Z}^{k+1} \). We call \((i_0, ..., i_k)\) the ordered index of \(t \) and denote it by \(o\)-index(\(t \)). In the following, we will simply denote by \((i_0, ..., i_k)\) an ordered index \((i_0, ..., i_k)\).

By combining Lemma 4.1 and [17] Lemma 5.1, we have the following lemma.

Lemma 4.4. (1) Let \(t \) and \(t' \) be two linear \(C_k \)-trees for \(1 \) with same ordered index.

Then either \(1_t \overset{C_{k+1} \sim}{\sim} 1_{t'} \) or \(1_t \cdot 1' \overset{C_{k+1} \sim}{\sim} 1 \).

(2) Let \(t \) be a linear \(C_k \)-tree (\(k \geq 3 \)) for \(1 \) with \(o\)-index(\(t \)) = \((i_0,...i_k)\). If \(i_0 = i_1 \) or \(i_{k-1} = i_k \), then \(1_t \overset{C_{k+1} \sim}{\sim} 1 \).
For each sequence \(I = (i_0, \ldots, i_k) \) of integers in \(\{1, 2\} \), let \(T(I) \) denote the choice of a 2-string link obtained from \(\mathbf{1}_2 \) by surgery along a linear \(C_k \)-tree with o-index \(I \). Let also \(T^*(I) \) denote the choice of a 2-string link such that \(T(I) \cdot T^*(I) \) is \(\mathbf{1}_2 \).

In particular, the 2-string links \(T(12) \), \(T(1221) \), \(T(12221) \) and \(T(21112) \) are chosen to be the string links \(I, Y, H, S_{1i}^1 \) and \(S_{1i}^2 \) introduced in Section 3.1 respectively. We note that by Lemma 1.3 (1), there are essentially two choices in \(\mathcal{S}L(2)/\langle C_k+1 \rangle \) for each sequence \(I \), namely \(T(I) \) and \(T^*(I) \).

4.3. Proofs of Proposition 1.1 and Theorem 1.8 (2). We first show why \(\mathcal{S}L(n)/\langle C_3 + c \rangle \) is not abelian for any \(n \geq 3 \).

Since the \(C_k \)-concordance implies the \(C_m \)-concordance if \(k > m \), this will imply statement (2) of Theorem 1.8 and since the \(C_k \)-equivalence implies the \(C_k \)-concordance, we will also deduce Proposition 1.1.

Let \(\sigma_1 \) and \(\sigma_2 \) be the Artin generators for the 3-braid group. Then \(\sigma_1^2, \sigma_1^{-2}, \sigma_2^2 \) and \(\sigma_2^{-2} \) are 3-string links. Since the closure of \(\sigma_1^2 \sigma_2 \sigma_1^{-2} \sigma_2^{-2} \) is a copy of the Borromean rings, \(\sigma_1^2 \sigma_2 \sigma_1^{-2} \sigma_2^{-2} \) has nontrivial Milnor invariant \(\mu(123) \) of length 3, which is a \(C_3 \)-concordance invariant. Hence \(\sigma_1^2 \sigma_2 \sigma_1^{-2} \sigma_2^{-2} \) is not \(C_3 \)-concordant to \(\mathbf{1}_3 \). This implies that \(\mathcal{S}L(3)/(C_3 + c) \) is not commutative: suppose indeed that \(\sigma_1^2 \) and \(\sigma_2^2 \) commute in \(\mathcal{S}L(3)/(C_3 + c) \), then \(\sigma_1^2 \sigma_2 \sigma_1^{-2} \sigma_2^{-2} = C_3 \)-concordant to \(\sigma_1^2 \sigma_2 \sigma_1^{-2} \sigma_2^{-2} = 1_3 \), which leads to a contradiction.

4.4. Abelian cases: \(k \leq 8 \). We now show that \(\mathcal{S}L(2)/(C_k + c) \) is abelian for \(k \leq 8 \).

Since the \(C_k \)-concordance implies the \(C_m \)-concordance for \(k > m \), it is sufficient to show that \(\mathcal{S}L(2)/(C_8 + c) \) is abelian.

We use the same strategy as in Section 3.1, where we showed that \(\mathcal{S}L(2)/C_6 \) is abelian. More precisely, we first chose generating sets for the successive quotients \(\mathcal{S}L(2)/(C_{i+1} + c) \) (\(i \leq 7 \)), where \(\mathcal{S}L_i(2) \) is the set of \((C_i + c) \)-trivial 2-string links, to obtain a set of generators for \(\mathcal{S}L(2)/(C_8 + c) \), then we show that any two of these generators commute. In this discussion, we may again ignore local generators, since they are central in \(\mathcal{S}L(2) \).

Let

\[\mathcal{H}^1_i = \{ T(12) \}, \quad \mathcal{H}^2_i = \{ T(121) \}, \quad \mathcal{H}^3_i = \{ T(1221) \}, \quad \mathcal{H}^4_i = \{ T(12221), T(21112) \} \]

and \(\mathcal{H}^5_i = \{ T(122221), T(211112), T(121221) \} \).

In [7], the authors show that \(\mathcal{H}^k_{12} \) is a generating set for \(\mathcal{S}L_{12}(2)/(C_{i+1} + c) \), \(i \leq 5 \).

We now pick a generating set for \(\mathcal{S}L_{12}(2)/(C_7 + c) \). By Lemma 1.3 (2), a string link obtained from \(\mathbf{1}_2 \) by surgery along a linear \(C_6 \)-tree with index \(\{1, 2, 6\} \) or \(\{1, 2, 6, 10\} \) is \(C_7 \)-concordant to \(\mathbf{1}_2 \). So it is enough to consider \(C_6 \)-trees with index \(\{1, 2, 6\} \), \(\{1, 2, 5\} \), \(\{1, 3, 2, 4\} \), \(\{1, 4, 2, 3\} \) or \(\{1, 5, 2, 3\} \). Furthermore, the IHX relation implies that it is sufficient to consider linear \(C_6 \)-trees.

By the IHX relation, the ends of a linear \(C_6 \)-trees with index \(\{1, 2, 6\} \) can be chosen to be the two 1-leaves, so that the only possible o-index is \((1222221) \). Similarly, we may assume that the ends of a linear \(C_6 \)-trees with index \(\{1, 5, 2, 3\} \) are both 2-leaves. Then by Lemma 1.3 (2), the o-index should be of the form \((21ijk12) \) for some \(i, j, k \in \{1, 2\} \). Since the index is \(\{1, 5, 2, 3\} \), we have three possibilities, namely \(ijk = 212, 122, \) or \(221 \). By definition, the only two possible o-indices are then \((2112212) \) and \((2121212) \). Summarizing, we may assume that (1) all linear \(C_6 \)-trees with index \(\{1, 2, 6\} \) have o-index \((1222221) \),

(2) all linear \(C_6 \)-trees with index \(\{1, 5, 2, 3\} \) have o-index \((2112212) \) or \((2121212) \),

(3) all linear \(C_6 \)-trees with index \(\{1, 4, 2, 3\} \) have o-index \((1212121) \) or \((1212212) \).

4 In [7], \(T(121212) \) is chosen instead of \(T(121221) \), but these two string links are \(C_6 \)-equivalent by the AS relation.
(4) all linear C_6-trees with index $\{1^{(5)}, 2^{(2)}\}$ have o-index (2111112).
(The last two case are deduced from the first two by exchanging 1 and 2.)

The following lemma is useful to further reduce the number of generators.

Lemma 4.5. For an integer $k \geq 5$, let t and t' be two linear C_k-trees for 1_2 whose respective o-indices are either of the form $(ijijiI)$ and $(ijijiI)$, where I is a sequence of $k-4$ integers in $\{1, 2\}$ and where $\{i, j\} = \{1, 2\}$. Then either $(1_2)_t \sim_{C_{k+1}+c} (1_2)_t'$, or $(1_2)_t \cdot (1_2)_t' \sim_{C_{k+1}+c} 1_2$.

Proof. Suppose that o-index(t) is of the form $(ijjiI)$. By Lemmas 4.2 and 2.6, we can assume without loss of generality that there is a 3-ball which intersects $1_2 \cup t$ as shown on the left-hand side of Figure 4.1. Using Lemma 2.6 again, we have that $(1_2)_t$ is C_{k+1}-equivalent to $(1_2)_t'$, where t' is shown in the figure.

By the IHX relation, $(1_2)_t'$ is C_{k+1}-equivalent to $L \cdot S$, where L and S are string links as illustrated in Figure 4.1. Notice that, by Lemma 2.6, L is C_{k+1}-equivalent to a string link obtained from 1_2 by surgery along a C_k-trees with o-index $(ijijiI)$. So, proving that S is $(C_{k+1}+c)$-trivial would imply Lemma 4.5.

Remark 4.6. The same result holds if t and t' have respective o-indices $(Iijiji)$ and $(Iijiji)$.

Using this, we can assume that all linear C_6-trees with index $\{1^{(3)}, 2^{(4)}\}$ and $\{1^{(4)}, 2^{(3)}\}$ have o-index (2122221) and (1212121), respectively. It follows that $\mathcal{H}_6^c = \{T(1222221), T(1212121), T(2121212), T(2111112)\}$ is a generating set for $S\mathcal{L}_6^c(2)/(C_7+c)$.

Similarly, we have the following generating set for $S\mathcal{L}_7^c(2)/(C_8+c)$:

$$\mathcal{H}_7^c = \left\{ T(12222221), T(21111112), T(12111121), T(21221212), T(12212212), T(12122121) \right\}.$$
In the following, we call a generator of degree \(k \) (\(k \leq 7 \)) any element \(T(I) \) of the generating set \(H_k^c \) or its inverse \(T^*(I) \) in \(SL_k^c(2)/(C_{k+1} + c) \).

In order to prove that \(SL(2)/(C_8 + c) \) is abelian, it suffices to show that any two generators of degree \(\leq 7 \) do commute in \(SL(2)/(C_8 + c) \).

By Lemma 5.1 both \(T(12) \) and \(T^*(12) \) are central in \(SL(2) \). Moreover by Remark 2.4, two generators of degrees \(k \) and \(l \) commute in \(SL(2)/(C_8 + c) \) if \(k + l \geq 8 \).

Hence it is enough to check the commutativity of generators of degrees \(k \) and \(l \) for \((k, l) = (3, 4), (2, 5), (3, 3), (2, 4), (2, 3), (2, 2)\).

In order to prove the commutativity in the case \((3, 4)\), we need the following.

Lemma 4.7. Let \(t \) be a linear \(C_k \)-tree \((k \geq 1)\) for \(1 \in_n \) with \(k \) odd. Then \((1 \in_n) t \) is \(C_{k+1} \)-concordant to its image under orientation-reversal of all strings.

A proof is easily obtained by combining Lemma 4.1 and arguments similar to those in the proof of [17, Lemma 5.1 (3)]. Here, let us only illustrate the general idea on an example. Consider the linear \(C_7 \)-tree \(t \) for \(1 \in_2 \) illustrated on the left-hand side of Figure 4.3. Let also \(t' \) be the linear \(C_7 \)-tree for \(1 \in_2 \) illustrated on the right-hand side of the figure. (Notice that both \(t \) and \(t' \) have \(\alpha \)-index \((12112221)\).)

On one hand, the two string links obtained by surgery along \(t \) and \(t' \) are obtained from one another by reversing the orientation of all strings. On the other hand, by Lemma 2.6 we have that \((1 \in_2) t \) is \(C_8 \)-equivalent to \((1 \in_2) c \), where \(c \) is the \(C_7 \)-tree shown in the figure. Let \(\tilde{c} \) be obtained by a 180-degree rotation of \(c \) around the axis \(a \) fixing the leaves, see Figure 4.3. By sliding the leaves of \(\tilde{c} \) repeatedly, we can deform it into the \(C_7 \)-tree \(c' \) shown in Figure 4.3 which only differs from \(t' \) by an even number of half-twists on its edges. By Lemmas 4.2 and 2.6, we obtain that \((1 \in_2) t \) and \((1 \in_2) t' \) are \(C_8 \)-concordant. (In the general case, the fact that the degree is odd ensures that there is an even number of half-twists.)

We can now prove the desired commutativity property in the case \((k, l) = (3, 4)\).

Case (3, 4): We first show that \(T(1221) \) and \(T(122221) \) commute in \(SL(2)/(C_8 + c) \). Since both string links are symmetric, we note that \(T(1221) \cdot T(1221) \) is obtained from \(T(1221) \cdot T(12221) \) by orientation-reversal of both strings. By Lemma 4.2, \(T(1221) \cdot T(12221) \) is \(C_8 \)-equivalent to \((1 \in_2) t \cdot s \cdot L \), where \(t \) and \(s \) are tree claspers for \(1 \in_2 \) as illustrated in Figure 4.4 and where \(L \) is a string link obtained from \(1 \in_2 \) by surgery along some \(C_7 \)-trees. Since \(L \) is \(C_8 \)-concordant to a product \(L' \) of genera-
tors of degree 7, we have that $T(1221) \cdot T(12221)$ is C_8-concordant to $(1_2)_{R,L} \cdot L'$. Hence $T(12221) \cdot T(1221)$ is C_8-concordant to the 2-string link $(1_2)_{R,L} \cdot L'$ with orientation reversed. On the other hand, by Lemma 2.3 $(1_2)_{R,L}$ is C_8-equivalent to its image under orientation-reversal, and by Lemma 4.7 each generator of degree 7 is C_8-concordant to its image under orientation-reversal. It follows that $T(1221) \cdot T(12221)$ and $T(12221) \cdot T(1221)$ are C_8-concordant.

The fact that $T(1221)$ and $T(21112)$ commute in $\mathcal{SL}(2)/(C_8 + c)$ is shown completely similarly, as well as the other cases (namely, the commutativity of $T(1221)$ with $T^*(12221)$ and $T^*(21112)$, and the commutativity of $T^*(1221)$ with $T(12221)$, $T(21112)$, $T^*(12221)$ and $T^*(21112)$).

Before we deal with the remaining cases, we make an observation. Since the group $\mathcal{SL}_7^2(2)/(C_8 + c)$ is generated by the 6 elements of H_7, and since there are 6 independent Milnor invariants of length 8 [4, Appendix B], we have that $\mathcal{SL}_7^2(2)/(C_8 + c)$ is a free abelian group with rank 6 – and in particular, has no 2-torsion. Moreover, by Claim 5.5 both $T(121)^2 (= Y^2)$ and $T^*(121)^2 (= (Y^*)^2)$ are C_7-equivalent to a central element in $\mathcal{SL}(2)$. So we get the following as an application of the ‘C_8-concordance version’ of Lemma 2.10.

Lemma 4.8. Let L be either $T(121)$ or $T^*(121)$. Suppose that L satisfies the following conditions for some integers l and m ($l < m < 8$):

- L commutes with any $(C_l + c)$-trivial string link in $\mathcal{SL}(n)/(C_m + c)$,
- L commutes with any $(C_m + c)$-trivial string link in $\mathcal{SL}(n)/(C_8 + c)$.

Suppose moreover that $(C_3 + c)$-trivial and $(C_1 + c)$-trivial string links commute in $\mathcal{SL}(n)/(C_8 + c)$. Then L commutes with any $(C_l + c)$-trivial string link in $\mathcal{SL}(n)/(C_8 + c)$.

We can now prove the desired commutativity property in the remaining cases $(k,l) = (2,5), (3,3), (2,4), (2,3), (2,2)$. From now on, let L be either (121) or $T^*(121)$.

Case (2,5): By Remark 2.4 L commutes with any C_5-trivial string link in $\mathcal{SL}(2)/C_8$ and with any C_7-trivial string link in $\mathcal{SL}(2)/C_7$. Also, any C_5-trivial string link commutes with any C_5-trivial string link in $\mathcal{SL}(2)/C_7$. By applying Lemma 4.8 for $l = 5$ and $m = 7$, we have that L commutes with any $(C_5 + c)$-trivial string link in $\mathcal{SL}(2)/(C_8 + c)$.

Case (3,3): We already showed that $T(121)$ commutes with any $(C_4 + c)$-trivial string link (Case (3,4)). Since $T(1221)$ is C_3-trivial and $T^*(1221)$ is C_4-trivial, by Lemma 4.8 we have that $T(1221)$ and $T^*(1221)$ commute in $\mathcal{SL}(2)/(C_8 + c)$.

Case (2,4): Again by Case (3,4), we know that any $(C_3 + c)$-trivial string link commutes with any $(C_4 + c)$-trivial string link in $\mathcal{SL}(2)/(C_8 + c)$. By Remark 2.4 L commutes with any C_4-trivial string link in $\mathcal{SL}(2)/C_8$, and with any C_6-trivial string link in $\mathcal{SL}(2)/C_8$. By applying Lemma 4.8 for $l = 4$ and $m = 6$, we thus have that L commutes with any $(C_4 + c)$-trivial string link in $\mathcal{SL}(2)/(C_8 + c)$.

Case (2,3): We already showed in Case (2,5) above that L commutes with any $(C_5 + c)$-trivial string link in $\mathcal{SL}(2)/(C_8 + c)$. By Remark 2.4 L commutes with any C_5-trivial string link in $\mathcal{SL}(2)/C_5$. By Case (3,3), any C_5-trivial string link commutes with any C_5-trivial string link in $\mathcal{SL}(2)/C_5$. By applying Lemma 4.8 for $l = 3$ and $m = 5$, we have that L commutes with any $(C_5 + c)$-trivial string link in $\mathcal{SL}(2)/(C_8 + c)$.

Case (2,2): Note that we already showed that $T(121)$ commutes with any $(C_3 + c)$-trivial string link (Case (2,3)). Since $T(121)$ is C_2-trivial and $T(121) \cdot T^*(121)$ is C_2-trivial, we can use Lemma 4.8 to show that $T(121)$ and $T^*(121)$ commute in $\mathcal{SL}(2)/(C_8 + c)$.
This concludes the proof that $\mathcal{SL}(2)/(C_k + c)$ is abelian for all $k \leq 8$.

4.5. **Nonabelian case.** Let A, \overline{A}, B and \overline{B} be 2-string links as illustrated in Figure 4.5. The following implies that $\mathcal{SL}(2)/(C_k + c)$ is not abelian for all $k \geq 9$.

![Figure 4.5.](image_url)

Proposition 4.9. The two string links A and B do not commute in $\mathcal{SL}(2)/(C_9 + c)$.

Proof. The proof relies on a direct computation, using a program based on the algorithm given by Milnor in [18] to compute μ-invariants. We have that the Magnus expansion of the 1st longitude of AB is

$$1 - XXYYXYYY + XXYYXXYY + 5XYYXXYYY$$

$$-6XYYXXYYX + XYYXXYYY + 6XXYYXYXY$$

$$-5XYYXXYYY - 5XXYYXYXY + XYYXXYYY + 5XYYXXYYY$$

$$-XYYXXYYYX + 5XYXXYYYY + 9XXYYXYXY - 9XXYYYYXY$$

$$+5XXYYXXYYX - 6XYXXYYXX + 6XYXXYYXY + 9XYXXYYYX$$

$$-9XYXXYYYYX - XYXXYYYYX + XYYXXYYYYX - 9XXYYYYXX$$

$$+6XYXXYYXX + 9XYXXYYXY - 5XXYYXYXX + 5XXYYXXXY$$

$$-5XXYYXXYYX + XYYXXYYXX - 6XYXXYYXX + 5XXYYXXYY$$

$$-XYYXXYYX + YXXYYYY + 6YXXYYYYY - 5YXXYYYY$$

$$-YXXYYYYY - 9YXXYYXXYY + 9YXXYYXXXY - 9YXXYYXXYY$$

$$+9YXXYYYYYYX - 5YXXYYXXYYX + 6YXYXXYYYY - 6YXYXXYYYY$$

$$-6YXXYYYYY - 6YXXYYYYX + 6YXXYYYYX - 6YXXYYYYX$$

$$+9YXXYYYYX - 9YXXYYYYY - 9YXXYYYYY + 9YXXYYYYY$$

$$+YXXYYYYYX - 6YXXYYYYXY + 5YXXYYYYY + 9YXXYYYYY$$

$$-9YXXYYYYX - XYXXYYYYX + XYYXXYYYYX + 6XYXXYYYYX$$

$$+9YXXYYYYX - 9YXXYYYYX + 9YXXYYYYX - 9YXXYYYYX$$

$$+5YXXYYYYX - 5YXXYYYYX + 5YXXYYYYX - 5YXXYYYYX$$

$$+YYXXYYYYX - 6YXXYYYYX + 5YXXYYYYX + YYXXYYYY$$

$$-YYXXYYYYX + (\text{higher degree terms}),$$

where the Magnus expansion is defined here by sending the first meridian to $1 + X$ and the second meridian to $1 + Y$. Hence some Milnor invariants of length 9 do not vanish on the string link AB. This implies that AB is not C_9-concordant to 1. Now, if A commutes with B in $\mathcal{SL}(2)/(C_9 + c)$, then AB is C_9-concordant to BA, which is concordant to 1. This is a contradiction. □

Appendix A. Proofs of Corollaries 1.6 and 1.9

In this short appendix, we briefly outline the proofs of Corollaries 1.6 and 1.9. That is, we show how the abelian group structure on the set of C_k-equivalence classes (resp. C_k-concordance classes) of 2-string links implies the Goussarov-Habiro conjecture at the corresponding degree. As explained in the introduction, this is merely an adaptation of Habiro’s argument for proving Theorem 1.5, so we do not reproduce here all the details of this proof, but give precise references.

5 This program uses the programming language Ruby, and was written by Professor Tetsuji Kuboyama.
implies that distinguished by any finite type invariant of order \(\leq k \) of degree up to \(SL \) is that the existence (ie the well-definedness) of this map relies on the fact that the latter result on the structure of the Goussarov-Vassiliev filtration \(13, \text{Prop. 6.10} \), which Habiro in the (string-)knot case in \(13, \text{Prop. 6.16} \). His argument relies on a deep result from Habiro’s paper that are used in this arguments, and emphasize the role of the commutativity of \(SL(n)/C_{k+1} \).

Now, we have that \(\phi_k \) is a finite type invariant of degree \(k \). This is proved by Habiro in the (string-)knot case in \(13, \text{Prop. 6.16} \). His argument relies on a deep result on the structure of the Goussarov-Vassiliev filtration \(13, \text{Prop. 6.10} \), which involves advanced clasper theory. But Habiro actually established the latter result not only for (string-)knots, but also for string links (and more generally for surface links). So we can freely use \(13, \text{Prop. 6.10} \) to show that \(\phi_k \) is a finite type invariant of degree \(k \). The proof of Proposition \(A.1 \) is then completed by simply following \(13, \text{Thm. 6.18} \) as follows. If two \(n \)-string links \(L \) and \(L' \) cannot be distinguished by any finite type invariant of order \(\leq k \), then \(\phi_k(L) = \phi_k(L') \). This implies that \([L]_{k+1} = [L']_{k+1} \), that is, \(L \) and \(L' \) are \(C_{k+1} \)-equivalent.

Suppose that the group \(SL(n)/C_{k+1} \) is abelian. Following Habiro’s strategy for proving Theorem \(1.5 \) (Theorem 6.18 in \(13 \)), we consider the homomorphism of abelian groups (from an additive to a multiplicative abelian group)

\[
\phi_k : \mathbb{Z}SL(n) \rightarrow SL(n)/C_{k+1}
\]

which maps an \(n \)-string link \(L \) to its \(C_{k+1} \)-equivalence class \([L]_{k+1}\) . The key point is that the existence (ie the well-definedness) of this map relies on the fact that \(SL(n)/C_{k+1} \) is abelian. Notice that \(\phi_k \) is indeed additive, since for two \(n \)-string links \(L \) and \(L' \), we have

\[
\phi_k(L \cdot L' - L - L') = [L \cdot L']_{k+1} \cdot [L]^{-1}_{k+1} \cdot [L']^{-1}_{k+1} = [1]_{k+1} = \phi_k(1).
\]

Now, we have that \(\phi_k \) is a finite type invariant of degree \(k \). This is proved by Habiro in the (string-)knot case in \(13, \text{Prop. 6.16} \). His argument relies on a deep result on the structure of the Goussarov-Vassiliev filtration \(13, \text{Prop. 6.10} \), which involves advanced clasper theory. But Habiro actually established the latter result not only for (string-)knots, but also for string links (and more generally for surface links). So we can freely use \(13, \text{Prop. 6.10} \) to show that \(\phi_k \) is a finite type invariant of degree \(k \). The proof of Proposition \(A.1 \) is then completed by simply following \(13, \text{Thm. 6.18} \) as follows. If two \(n \)-string links \(L \) and \(L' \) cannot be distinguished by any finite type invariant of order \(\leq k \), then \(\phi_k(L) = \phi_k(L') \). This implies that \([L]_{k+1} = [L']_{k+1}\), that is, \(L \) and \(L' \) are \(C_{k+1} \)-equivalent.

\[\square \]

References

1. D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423–472.
2. D. Bar-Natan, Some computations related to Vassiliev invariants (1996), available at http://www.math.toronto.edu/~drorbn/.
3. A.J. Casson, Link cobordism and Milnor’s invariant, Bull. London Math. Soc. 7 (1975), 39–40.
4. T.D. Cochran, Derivatives of link: Milnor’s concordance invariants and Massey’s products, Mem. Amer. Math. Soc. 84 (1990), No. 427.
5. J. Conant, R. Schneiderman, P. Teichner, Whitney tower concordance of classical links, Geom. Topol. 16 (2012), 1419–1479.
6. J. Conant, P. Teichner, Grope cobordism of classical knots, Topology 43 (2004), 119–156.
7. J.E.P.P. de Campos, Boundary theta curves in \(S^3 \), Tokyo J. Math. 28 (2005), no. 1, 283–288.
8. S.V. Duzhin, M.V. Karev, Detecting the orientation of string links by finite type invariants, Funct. Anal. Appl. 41, No. 3 (2007) 208–216 ; translation from Funkts. Anal. Prilozh. 41, No. 3 (2007) 48–59.
9. S. Garoufalidis, J. Levine, Concordance and 1-loop clovers, Alg. Geom. Topol. 1 (2001), 687–697.
10. M.N. Gusarov, Variations of knotted graphs. The geometric technique of n-equivalence. (Russian), Algebra i Analiz 12 (2000), no. 4, 79–125; translation in St. Petersburg Math. J. 12 (2001), no. 4, 569–604.
[11] N. Habegger, X.S. Lin, *On link concordance and Milnor’s μ-invariants*, Bull. London Math. Soc. **30** (1998), 419–428.

[12] N. Habegger, G. Masbaum, *The Kontsevich integral and Milnor’s invariants*, Topology **39** (2000), no. 6, 1253–1289.

[13] K. Habiro, *Claspers and finite type invariants of links*, Geom. Topol. **4** (2000), 1–83.

[14] J. Y. Le Dimet, *Cobordismes d’enlacements de disques*, Mem. Soc. Math. France, Vol. 32, Supplément Bull. S.M.F. **116** (1988).

[15] G. Massuyeau, *Finite-type invariants of three-manifolds and the dimension subgroup problem*, J. London Math. Soc. **75** (2007), 791–811.

[16] J.B. Meilhan, *On Vassiliev invariants of order two for string links*, J. Knot Theory Ram. **14** (2005), No. 5, 665–687.

[17] J.B. Meilhan, A. Yasuhara, *Characterization of finite type string link invariants of degree < 5*, Math. Proc. Camb. Phil. Soc. **148** (2010), 439–472.

[18] J. Milnor, *Isotopy of links*, Algebraic geometry and topology, A symposium in honor of S. Lefschetz, pp. 280–306, Princeton University Press, Princeton, N. J., 1957.

[19] K. Miyazaki, *The theta-curve cobordism group is not abelian*, Tokyo J. Math. **17** (1994), 165–169.

[20] H. Murakami, Y. Nakanishi, *On a certain move generating link-homology*, Math. Ann. **283** (1989), 75–89.

[21] K.Y. Ng, *Groups of ribbon knots*, Topology **37** (1998), 441–458.

[22] T. Ohtsuki, *Quantum Invariants*, Series on Knots and Everything **29**, World Scientific (2002).

[23] T. Stanford, *Braid commutators and Vassiliev invariants*, Pacific J. Math. **174** (1996), no. 1, 269–276.

[24] A. Yasuhara, *C_L-moves on spatial theta-curves and Vassiliev invariants*, Topology Appl. **128** (2003), 309–324.

Institut Fourier, Université Grenoble 1, 100 rue des Maths - BP 74, 38402 St Martin d’Hères , France

E-mail address: jean-baptiste.meilhan@ujf-grenoble.fr

Tokyo Gakugei University, Department of Mathematics, Koganeishi, Tokyo 184-8501, Japan

E-mail address: yasuhara@u-gakugei.ac.jp