Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.

Introduction

One of the most notable analogies used in cellular signaling is the 'writer–reader–eraser' toolkit to describe the network of kinases, adaptors, and phosphatases [1]. The designation of phosphatases as 'erasers' has led to the widespread misconception that this protein family is only responsible for turning off signaling pathways. This is far from being true, and phosphatases are now recognized as being active regulators of signaling networks in their own right, playing a critical role in physiological and pathological conditions, making them promising targets for therapeutic intervention. Over 20 enzyme families are known to

Abbreviations

DUSP, dual-specificity phosphatase; PTP, protein tyrosine phosphatase; RPTP, receptor-linked protein tyrosine phosphatase; SCF complex, Skp, Cullin, F-box containing complex; STYX, serine/threonine/tyrosine-interacting protein.
contain pseudoenzyme members [2,3] and approximately 14% of all phosphatases are pseudophosphatases (26 out of 189). A pseudophosphatase is a protein that belongs to one of the phosphatase families and contains a mutation that predicts an impairment or loss of its catalytic activity. Thus, the designation of a protein (or protein subdomain) as pseudophosphatase is done purely bioinformatically. Whether this protein is enzymatically active or not is irrelevant to its designation as a pseudoenzyme. As will be shown below, there are enzymatically active and inactive pseudophosphatases. A general introduction into pseudoenzymes has been provided recently explaining the general definition and providing a global overview of pseudoenzymes across all major enzyme families [3].

Using the eraser analogy, then pseudophosphatases would be pseudoerasers, raising the question of what biological roles they might have. We have previously defined general modes of action of any pseudoenzyme [4] as follows (Fig. 1): (a) substrate binding competitors that modulate the biologic effects of active enzymes, (b) allosteric modulators of active enzymes, (c) spatial anchors or substrate traps, and (d) signal integrators. Moreover, moonlighting enzymes, which have acquired additional functions in evolution, can teach us lessons about the biology of pseudoenzymes. For instance, the bacterial pseudokinase SidJ and the ubiquitous pseudokinase SelO were shown to catalyze protein polyglutamylation and AMPylation, respectively [5,6]. In this review, we will provide an overview of pseudoenzymes in major phosphatase families and discuss their biologic functions referring to the four basic modes of action illustrated above.

Classification and origin of pseudophosphatases

Understanding the origin of pseudophosphatases is more complicated than of pseudokinases [7]. The catalytic domains of protein kinases consist mostly of a single protein structural fold implying that they originated from an ancestral kinase [8]. On the contrary, protein phosphatases exhibit different folds and catalytic mechanisms [9,10], often exhibiting other hydrolase activities such as phosphonatases, dehalogenases, and sugar phosphomutases. Two systematic attempts have been made to classify phosphatases based on sequence and structure. The classification by the Köhn group was based on 254 human phosphatase domains and grouped the phosphatome into 7 CATH classes [11–13]. A more recent analysis by the Manning group used 1425 phosphatases from nine organisms to classify phosphatases into 10 folds, 21 families and 178 subfamilies, of which 101 subfamilies are present in humans [9]. This led to identification of 189 known or predicted human protein phosphatases. The 10 major phosphatase folds are as follows: cysteine-based class 1-3 (CC1-3), PPP-like, histidine phosphatases, alkaline phosphatases, metal-dependent protein phosphatases (PPM), haloacid dehalogenase-like (HAD), protein histidine phosphatase (PHP), and regulator of transcription 1 (RTR1). The majority of human protein phosphatases belong to the CC1 fold, which has the largest share of pseudophosphatase domains in humans (Fig. 2). Pseudophosphatases have been so far identified in all families except in the PPP-like family. A possible reason for this is that this family of phosphatases is characterized by binding to a wide range of regulatory units that regulate targeting and biologic activity of these phosphatases, which has limited the selective advantage of pseudophosphatases that might adopt such functions. As outlined above, the definition of a pseudophosphatase is currently based on sequence and does not require the demonstration of catalytic impairment. As the number of studies increases, contradictory reports of pseudophosphatase catalytic activity are appearing, adding to the challenge of understanding these proteins. Several pseudophosphatases have been reported to be catalytically active, such as PTPN23 (HD-PTP) [14] and PHLPP1/2 [9,15], but as stated above, catalytic inactivity is not a criterion to define pseudoenzymes. We will provide a systematic summary of the current literature for each pseudophosphatase (Table 1).

Pseudoenzymes within the CC1-fold phosphatase family

The CC1-fold class is the largest group of phosphatases comprising 106 members, including 20 pseudophosphatases [9]. Furthermore, additional fourteen pseudophosphatase domains are present in proteins with another phosphatase domain (twelve receptor protein tyrosine phosphatases and two CDC14s). The smaller CC2 and CC3 classes have only 2 and 3 members, respectively, and no pseudophosphatases identified. CC1-fold phosphatases contain several core catalytic motifs, such as the HCX₃R motif, that are mutated in several pseudophosphatases of this class. The HCX₃R motif is found in the phosphate-binding loop (P loop), where the cysteine is essential for the formation of a cysteinyl-phosphate intermediate with the phosphorylated substrate [16,17]. The conserved arginine participates in the generation of an environment with a low pKa around the catalytic cysteine. This allows the cysteine to be present as a thiolate...
anion at physiological pH. The unprotonated cysteine acts as a nucleophile and forms a thiol phosphate intermediate. Based on this, any phosphatase that lacks the cysteine or the arginine, or both, ought to lose its catalytic activity. In many but not all protein tyrosine phosphatases (PTPs) an aspartate present in the conserved WPD loop assists in this step, serving as a general acid by donating a proton to the tyrosyl-leaving group of the substrate [18,19]. Subsequently, the aspartate acts as a general base to facilitate the hydrolysis of the cysteinyl-phosphate intermediate. As will be discussed below, these core motifs are degenerated in many members of the CC1 class. The CC1 group contains the PTPs, dual-specificity phosphatases (DUSPs), myotubularins, and PTENs (phosphatase and tensin homolog). Aspartate-containing PTPs of the EyA (eyes absent) family belong to the HAD fold and will be discussed later. A graphic representation of all pseudophosphatases within the CC1 family is shown in Fig. 2.

Pseudophosphatases within the DUSP family

STYX (serine/threonine/tyrosine-interacting protein)

The archetypal pseudophosphatase, STYX, was originally discovered in a search for new protein tyrosine phosphatases by screening expressed sequence tags from mouse testis [20]. STYX is an inactive atypical DUSP (Fig. 2). A mutation of the catalytically essential cysteine to a glycine (HGX3R) renders it inactive. Back mutation of the glycine to a cysteine restores its catalytic activity shown by the ability to hydrolyze the generic phosphatase substrate para-nitrophenylphosphate (pNPP) and recombinant phospho-ERK [20,21]. The ability of the back-mutated STYX to dephos-
phorylate ERK suggested a role for this pseudophosphatase in MAPK signaling. There are several possibilities for how a pseudophosphatase could modulate kinase activity. The most obvious would be competition with an active phosphatase. Due to its similarity to DUSPs, one would expect competition with one of the active DUSPs that dephosphorylate members of the MAPK family. This was experimentally verified by showing that STYX competes with DUSP4 for binding to ERK [21]. Therefore, depletion of STYX should increase the access of active phosphatase, resulting in more dephosphorylated ERK. Surprisingly, the opposite was observed as knockdown of STYX increased ERK phosphorylation [21]. The key to understanding this counterintuitive result came through a combination of computational modeling and experimental data, and through the observation that STYX largely localizes to the nucleus. STYX acts as a nuclear anchor for ERK1/2 and competes with DUSP4 for ERK, thereby changing the nucleocytoplasmic cycling kinetics of ERK1/2. Depletion of STYX results in more rapid cycling of ERK1/2 between the nucleus and the cytosol, allowing faster phosphorylation and reactivation by the cytosolic upstream kinases MEK1/2. Typically, active phosphatases bind their substrates transiently, as the interaction is lost due to

Fig 2. Phylogenetic tree of human phosphatases with CC1 fold. Pseudophosphatases are colored in red. The tree was created using the phosphatome visualization tool CORALP, http://phanstiel-lab.med.unc.edu/coralp.
dephosphorylation. STYX has retained the binding capability of its catalytically active relatives, but the interaction is prolonged due to the absence of hydrolysis meaning STYX is a putative substrate trap.

The catalytic inactivity of many pseudophosphatases often provokes the question of whether they have evolved to regulate biological processes beyond phosphorylation-based signaling. An example for a function for STYX outside the paradigm of kinase–phosphatase signaling came from the suggestion that it regulates spermatogenesis by binding to the mRNA binding phosphoprotein Carhsp24 [22]. Whether this interaction indeed regulates spermatogenesis and whether it does not involve kinase signaling remain to be demonstrated.

In order to identify additional functions for STYX, its interactome was mapped, which led to the identification of numerous F-Box proteins [23,24]. F-Box proteins are parts of the SCF-family of Cullin1 RING ubiquitin ligases [25]. They bind to their substrates (often upon phosphorylation of a so-called phosphodegron) and bring them into the SCF complex using the F-Box domain to interact with SKP1, which then binds to Cullin1. Among the F-box proteins that interacted with STYX was FBXW7, an important tumor suppressor that is altered in over 2.5% of all malignancies [26], and higher among specific cancers such as colorectal cancer (over 13%). Strikingly, STYX interacts with FBXW7 via the F-Box domain, thereby competing with binding to SKP1. This prevents incorporation of FBXW7 into the SCF complex and therefore inhibits degradation of FBXW7 substrates. Several of these substrates are proteins that control cell growth and survival such as c-myc, cyclin E1, and MCL1 [24]. Accordingly, STYX overexpression protected cells from chemotherapy-induced apoptosis by counteracting FBXW7 function [24]. Furthermore, we found that breast cancer patient survival inversely correlated with low FBXW7 and high

Table 1. List of pseudophosphatases, the families they belong, and their biologic functions

Fold and Subfamily	Name	Function and mode of action
CC1/ DUSP	STYX	Nuclear anchor for ERK1/2 and modulator of F-box proteins
CC1/ DUSP	MK-STYX	Stress granule formation. Interaction with and modulation of the activity of the mitochondrial phosphatase PTPMT1
CC1/ DUSP	DUSP27	Unknown
CC1/PTP	PTPRU D1	Competes for substrates with its active paralogs: PTPRK, PTPRM, and PTPRT
CC1/PTP	D2 domains of PTPRC, PTPRD, PTPRF, PTPRS, PTPRK, PTPRM, PTPRT, PTPRU, PTPRA, PTPRE, PTPRG, and PTPRZ	Redox sensing, substrate recognition, and modulation of the activity of the catalytically intact D1 domains.
CC1/PTP	PTPRN	Regulation of exocytosis of secretory granules. Modulates activity of PTPRA. Regulation of glucose tolerance
CC1/PTP	PTPRN2	Regulation of glucose tolerance. Regulation of fertility in female mice
CC1/PTP	PTPN23	Regulation of FYN, Src, and FAK possibly by dephosphorylation. Regulation of ESCRT-mediated endosomal sorting
CC1/PTP	PTPN14	Regulation of YAP, β-catenin, p130Cas, and Roquin2 possibly by dephosphorylation
CC1/PTP	PTPN21	Regulation of KIF1C
CC1/PTEN	GAK	Uncoating of clathrin by binding to phospholipids
CC1/PTEN	Tensin-1	Localizes to focal adhesions and regulates cell migration
CC1/PTEN	Tensin-2	Dephosphorylation of IRS1 and regulation of insulin receptor signaling
CC1/MTM	MTMR5, MTMR9, MTMR10, MTMR11, MTMR12, and MTMR13	Bind to active MTMRs and modulate their activity.
PPM	TAB1	Allosteric activator of TAK1 and regulates MAPK signaling
PPM	PP2D1	Unknown

Table 1. (Continued).

Fold and Subfamily	Name	Function and mode of action
PPM	PHLPP1&2	Regulation of Akt signaling
HP	PIP5K1&2	Regulation of inositol pyrophosphate metabolism
HAD	TIM50	Translocation through the inner mitochondrial membrane
The relevance of the STYX-FBXW7 crosstalk in cancer has been recently validated by an independent group for colon cancer [27]. Besides the biomedical implications of this finding, it demonstrated for the first time that the assembly of an SCF complex is regulated by a direct protein–protein interaction. Several other F-box proteins were found to interact with STYX [23,24] suggesting a more general function for STYX in the regulation of SCF complexes, which has to be explored in future studies. When analyzing the evolution of STYX, it appears that it has always been a pseudophosphatase, even in evolutionarily distant species [28]. The notable exception is fungi, where the STYX homologs appear to retain the catalytic cysteine in the CX₅R motif. Why this is the case is currently unclear, and we can only speculate that this is related to the lack of canonical tyrosine kinases in fungi [29,30]. It is possible that the STYX ancestor has acquired an inactivating mutation that allowed it to adopt a new cellular role. In support of this hypothesis is the observation that around 50% of all human phosphatases interact with components of the SCF complex [23]. Altogether, the pseudophosphatase STYX appears to have adopted more than one mode of action of pseudoenzymes, namely mode 1 (substrate competition) and mode 3 (spatial anchor). STYX might also potentially fit to mode 4 (signal integrator) as it has the potential to link kinase/phosphatase signaling to ubiquitin.

MK-STYX/STYXL1/DUSP24

The inactive MK-STYX (also known as STYXL1) was originally discovered by a database search for additional STYX family members [31]; however, despite the similar name it is more related to DUSPs, or MAPK phosphatases (MKP), than it is to STYX. It has a longer catalytic domain compared to STYX and also lacks the cysteine and preceding histidine in the HCX₅R motif. Back mutation of these residues reactivated MK-STYX, which was able to dephosphorylate a phosphorylated poly(Glu-Tyr) substrate [32]. Although MK-STYX shows high similarity to MKPs, there is no evidence to date that it functions in the MAPK signaling pathways, a phenomenon that remains poorly understood. In contrast to STYX, which is largely nuclear, MK-STYX localizes to mitochondria and the cytosol. The best understood interaction partner of MK-STYX is the RNA binding protein G3BP-1 that plays a role in stress granule formation [33]. Overexpression of MK-STYX reduced the formation of G3BP-positive stress granules in arsenite-treated cells in a manner independent on the phosphorylation status of G3BP [32].

Another cellular role of MK-STYX is the sensitization toward apoptosis-inducing agents [34,35]. Cells without MK-STYX are unable to release cytochrome c from mitochondria and are thus more resistant to apoptosis induced by chemotherapeutics [34]. A subsequent proteomic screen identified the mitochondrial phosphatase PTPMT1 as an interaction partner for MK-STYX [36]. PTPMT1 seems to be mediator of the chemoresistance acquired by MK-STYX knockdown. Double knockdown of PTPM1 and MK-STYX restored cytochrome c release upon chemotherapeutic treatment and strongly reduced cell viability upon paclitaxel treatment. MK-STYX reduces PTPMT1 phosphatase activity in vitro, but the mechanism behind this is not yet clear. This might occur either by allosteric modulation or by preventing PTPMT1 from binding to its substrate [36]. Based on this, MK-STYX would adopt either mode 1 or mode 2 of the aforementioned modes of action of pseudoenzymes. High MK-STYX levels appear to be a favorable condition for tumor cells. In accordance with this, the chimeric protein EWS-FLI1 in Ewing’s sarcoma family tumors was shown to drive MK-STYX expression (37). It still needs to be determined whether this phenomenon is a driver in Ewing sarcoma.

Beside its role in tumors, MK-STYX was recently also found to be associated with cognitive disorders and epilepsy in a consanguineous Asian family bearing a homozygous missense mutation [38]. This suggests a role of MK-STYX in neural development. Interestingly overexpression of MK-STYX was sufficient to induce neurite outgrowth in rat pheochromocytoma PC12 cells [39] and in primary hippocampal neurons [40]. Whether and how this is linked to neural development remains to be determined.

DUSP27

DUSP27 belongs to the group of atypical DUSPs, and it lacks the cysteine of the CX₅R motif that is replaced by a serine (as in MK-STYX). There is some confusion about DUSP27 in the literature as there are two proteins called DUSP27: the pseudophosphatase DUSP27 (Q5VZP5, Uniprot) and the active phosphatase DUPD1/DUSP27 (Q68J44, Uniprot) [41]. This unfortunate situation has made it difficult to assess whether the pseudophosphatase DUSP27 lacks catalytic activity. To the best of our knowledge, this has so far not been tested thoroughly. Very little is known about this pseudoenzyme. DUSP27 was found to be upregulated in the tonsils of patients suffering from...
immunoglobulin A nephropathy (IgAN) [42], but it is not clear what functional relevance this overexpression bears. An intron variant of DUSP27 was associated with heroin addiction in a cohort of African American people, but not in a cohort of Caucasian people [43]. It is difficult to deduce the biologic function of DUSP27 based on the available literature, and it remains to be determined in future which of the four basic modes of action for pseudoenzymes DUSP27 adopts.

Pseudophosphatases within the PTP family

Members of the PTP family (Fig. 2) possess four critical catalytic motifs that can be degenerated in pseudophosphatases, including a more constrained version of the HCX₅R motif, which is typically HCSAGXGR. The KNRY loop is a defining feature as it forms a deep pocket giving selectivity toward phosphotyrosine. The WPD motif aspartic acid acts as a general acid/base catalyst during dephosphorylation. Finally, the Q loop coordinates the water molecule required for hydrolysis [44]. Numerous sequence variants are present in these otherwise highly conserved motifs and define the pseudophosphatases within the PTP family.

D2 domains of receptor-linked protein tyrosine phosphatases (RPTPs)

In humans, twelve RPTPs contain tandem phosphatase domains with one membrane proximal D1 catalytically active domain and a distal D2 pseudophosphatase domain (Fig. 3A). This arrangement was proposed to derive from a single common ancestor first seen in the unicellular choanoflagellate Monosiga [9], which is consistent with the phylogenetic clustering of D1 domains away from D2 domains (Fig. 2) [9,11]. Paralogous receptors are grouped based on features of their extracellular domains. R1 refers to PTPRC/CD45; R2A to PTPRD, PTPRF, and PTPRS; R2B to PTPRK, PTPRM, PTPRT, and PTPRU; R4 to PTPRA and PTPRE; and R5 to PTPRG and PTPRZ. The D1 domains of these receptors are almost all catalytically active, with the recently reported exception of PTPRU (see below), while the D2 domains are pseudophosphatases. Curiously, all D2 domains retain a HCX₅R motif except PTPRC, PTPRG, and PTPRZ (Figs 3 and 4). Otherwise, they are designated as pseudophosphatases because of variants in their WPD, KNRY, or Q-loop motifs that are common to all PTPs (Fig. 3B). Interestingly, the intact HCX₅R motif appears to have been maintained throughout animal evolution with a few exceptions, for example, in sponges where lineage-specific duplications can be seen (Fig. 4).

This intriguing arrangement of active and inactive domains is reminiscent of the Janus kinase family, where a pseudokinase domain plays a negative regulatory role toward an active kinase domain [45,46]. However, a common role for these RPTP pseudophosphatase domains remains elusive. To date, RPTP D2 domains have been implicated in redox sensing, substrate recognition, and regulation of D1 catalytic activity. It is entirely possible that context- or family-dependent functions exist. For example, the PTPRG and PTPRZ domains are unlikely to play a role in redox sensing as they have lost the D2 ‘catalytic’ cysteine.

Part of the challenge in understanding RPTP function has been the absence of a clear-cut ligand-mediated signaling mechanism, akin to the receptor tyrosine kinases [47]. However, ligands for the R5 RPTP family members PTPRG and PTPRZ have been described, including contactin [48,49] and pleiotrophin [50]. Structural studies on the intracellular domains of these receptors have revealed a head-to-toe dimer arrangement [51,52], and further work in vitro and in cells suggests that, at least for PTPRZ, activity is regulated by pleiotrophin ligand-dependent dimerization and occlusion of the D1 domain active site by an opposing D2 domain [52]. A similar mechanism has been suggested for the human R2A family and the *Drosophila* ortholog LAR, whereby interactions with heparan sulfate proteoglycans regulate monomer–dimer conformations [53,54]. Furthermore, it has been suggested that R2A family D2 domains can inhibit R2A D1 domains heterotypically [55]. However, unlike PTPRG and PTPRZ, the crystal structures of R2A intracellular domains did not reveal a blocked dimer conformation [56], so further work is required to understand how extracellular interactions regulate R2A phosphatase activity. Homo- and heterodimerization of PTPTA has also been proposed [57], and although inactive homodimers have been observed in cells [58], the signaling consequences remain to be determined. Finally, various reports have suggested both positive and negative effects of the presence of the D2 domain on D1 catalytic activity, most likely reflecting conformational and stability changes caused by interdomain interactions that are evident in several RPTP intracellular domain structures [56,59,60].

In addition to a regulatory role, the D2 domains of several RPTPs have been implicated in substrate recognition. The D2 domain of the hematopoietic receptor CD45 recognizes several proposed substrates including the T-cell receptor zeta chain [61], Lck [62],
and JAK2 [63]. More recently, the PTPRK and PTPRM D2 domains were shown to be required for the selective dephosphorylation of PARD3 and PKP3 [64]. Furthermore, chimeric recombinant proteins revealed that the PTPRK D2, but not PTPRM D2, is necessary and sufficient for the recognition of a further substrate Afadin, in a phosphorylation-independent manner [64]. Interestingly, a pocket formed between the D1 and D2 domains of CD45 has been identified as a predicted allosteric site to inhibit receptor activity and targeted with a small molecule [65]. Thus, identifying the features of D1 and D2 binding sites involved in substrate recognition is an important future question.

It remains to be determined why these receptors have evolved D2 pseudophosphatases for functional regulation and substrate recognition and why most have a conserved and apparently redundant catalytic cysteine. Some insight into the latter comes from studies that have demonstrated a redox sensing function of certain RPTP D2 domains, particularly PTPRA, through this cysteine. It is now widely appreciated that reactive oxygen species (ROS) function beyond oxidative stress as highly selective signaling molecules that are sensed by specific cysteine residues on certain proteins [66]. The classical PTPs are well-established cellular targets of ROS, and multiple studies have demonstrated varying levels of oxidation of their catalytic domain cysteines and D2 domain cysteines [67,68]. Previous structural studies on active PTP domains have identified several reversible oxidative modifications of catalytic cysteines including a sulfenic acid in the PTPRS D1 domain [59], a sulfenamide in PTP1B (PTPN1) [69], and a disulfide in SHP2 (PTPN11) [70]. The major impact of PTP oxidation in the cell is reversible catalytic inactivation, which in turn promotes kinase signaling [71,72]. Therefore, the redox sensing capability of the catalytically inactive D2 domains opens up new functional possibilities in redox signaling. The best studied example is PTPRA, where a structural study showed reversible oxidation of the D2 domain cysteine through formation of a sulfenamide, between the cysteiny1 sulfur and peptide backbone amide [73]. Interestingly, the PTPRA D1
and D2 domains show differential sensitivity to oxidation in vitro [74]. The formation of intermolecular disulfide bonds between receptors has been reported as another potential regulatory mechanism [75]. Limited proteolysis and fluorescence resonance energy transfer (FRET) experiments have demonstrated oxidation-dependent conformational changes in several RPTPs, including PTPRA and LAR, that were linked to the D2 catalytic cysteines [76]. Moreover, redox-dependent conformational changes in PTPRA have been suggested to promote rotational coupling, transmitting changes across the cell membrane to the extracellular domain, as measured by epitope tag masking, indicating a potential ‘inside-out’ signaling mechanism [77]. In combination, there is clearly compelling evidence for a redox sensing function of RPTP D2 domains; however, many outstanding questions remain including identification of the physiological function of redox sensing and whether the observed differential sensitivity of D1 and D2 domains in vitro reflects distinct modes of regulation in cells.

The D2 pseudophosphatase domains are critical for the function of these twelve RPTPs; however, further studies are required to understand their mechanism(s) of action in the context of receptor signaling. The data so far support two modes of pseudoenzyme action, serving as allosteric modulators (mode 2) and as mediators of substrate recognition (mode 4).

PTPRU (PTPλ/φ, PCP-2)
PTPRU, otherwise known as PCP-2, PTPλ, or PTPφ, is part of the R2B homophilic receptor family. It was first identified from a human pancreatic adenocarcinoma cDNA library and shown to localize to cell–cell contacts [78]. It has been implicated as both a tumor suppressor [79] and oncogene [80], and plays a role in development [81–84]. However, unlike its paralogs it was recently determined to be unique among the RPTP family in possessing two pseudophosphatase domains [85]. Although it has an intact HCX5R motif, it shows sequence variation in the KNRY loop,
usually involved in recognition of phosphotyrosine, and possesses a WPE rather than WPD motif (Fig. 3B). Recombinant PTPRU was found to be inactive against several model substrates including pNPP. Structural studies revealed an unusually disordered KNRY-loop region compared with all previous PTP structures, and occlusion of the active site by a kink in the PTP loop bringing a unique threonine in the PTP loop into proximity of the catalytic cysteine (HCSAGTGR). A similar PTP-loop kink has previously been observed in the oxidized crystal structure of PTP1B [69]. Indeed, PTPRU spontaneously oxidized revealing a disulfide bond between the catalytic cysteine and a ‘backdoor’ cysteine. Thus, in addition to the PTPRA D2 domain, PTPRU is another example of a redox-sensitive pseudophosphatase. A model is proposed where PTPRU competes for substrates with its active paralogs, PTPRK, PTPRM, and PTPRT [85] and, thus, adopts mode 1 of the general modes of action of pseudophosphatases.

PTPRN (IA-2) and PTPRN2 (Phogrin)

PTPRN, which is also known as IA-2 (islet cell autoantigen 2), belongs to the RPTP family, but it does not have a tandem phosphatase domain, instead having a single phosphatase domain [86] that appears to be a pseudophosphatase and clusters phylogenetically with the RPTP D2 domains (Fig. 2). In mammals and in most examined species, both the KNRY and WPD are altered. The same is true for PTPRN2 (also known as phogrin) (Fig. 3B). So far, to the best of our knowledge, no substrate (protein or nonprotein) has been identified for PTPRN. As for PTPRN2, it was proposed that it might act as a phosphoinositide phosphatase [87].

PTPRN was originally discovered by screening for genes expressed in pancreatic islets [88,89]. PTPRN is also expressed in the central nervous system and neuroendocrine cells, where it associates with neurosecretory granules [90]. It was shown to be a major autoantigen in type 1 diabetes [91,92]. The WPD loop in PTPRN is mutated to WPA, but back mutation of the alanine to aspartate had only a very minor catalytic activity. PTPRN contains an aspartate residue close to the cysteine (H908DGAGR915), in a position that would normally be alanine in the canonical classical PTP loop. The case of PTPRN shows that a positively charged amino acid appears to disrupt the function of this motif. Mutation of the aspartate in PTPRN to alanine (D911A) restores catalytic activity toward pNPP and tyrosine-phosphorylated MBP significantly [93].

The biological roles of PTPRN have been well investigated and provide another strong case for how pseudophosphatases have adopted new cellular roles beyond dephosphorylation. Targeted disruption of the PTPRN gene in mice resulted in impaired glucose-mediated insulin secretion [94], whereas overexpression of PTPRN in an insulinoma cell line resulted in increased insulin secretion [95]. After synthesis and transport to the Golgi, PTPRN is cleaved by a furin-like convertase resulting in a mature transmembrane fragment (TMF) that localizes to secretory granules [90,96]. Upon stimulation with insulin, PTPRN-TMF is delivered to the plasma membrane where it undergoes proteolytic cleavage by calpain-1 [90,97], which releases a cytosolic fragment (PTPRN-CCF) that translocates to the nucleus to regulate transcription of insulin [97]. The CCF binds to STAT5 in the nucleus and prevents its tyrosine dephosphorylation, by competing with nuclear phosphatases (mode 1 of pseudoenzymes modes of action) [98]. The cytoplasmic domain of PTPRN-TMF interacts with β1V-spectrin [99] and β2-syntrophin [100], implying that PTPRN might regulate the coupling of secretory granules to the actin cytoskeleton and therefore the exocytosis of their content [101,102]. Furthermore, knockout of PTPRN in mouse islet cells showed a downregulation of villin, another actin binding protein [103]. It remains to be shown whether PTPRN really associates with actin filaments and whether this is important for exocytosis of secretory vesicles.

PTPRN was also shown to interact with PTPRA and to reduce its activity toward pNPP by 20% [104]. However, it is not clear whether this is due to an allosteric effect of PTPRN on PTPRA or whether PTPRN binds to the substrate and protects it from dephosphorylation by the phosphatase domain of PTPRA. Thus, PTPRN adopts mode 1 of the general modes of action of pseudophosphatases as it competes with active phosphatases for substrate binding. In addition, it adopts mode 2 by acting as an allosteric modulator and it has new roles that are beyond the kinase-phosphatase signaling paradigm.

PTPRN2 (phogrin) is very closely related to PTPRN, sharing 74% sequence similarity to the intracellular domain [105]. PTPRN2 is expressed in pancreas β-cells, in the brain, and in neuroendocrine cells. PTPRN2 was discovered by several groups almost at the same time. It was identified as another autoantigen in type 1 diabetes mellitus [105,106], as a new component of dense core granules [107] in a screen for new phosphatases [108], and as a new putative signaling protein in rat olfactory cells [109].

The sequence alterations in PTPRN2 are similar to those of PTPRN with the presence of an aspartate
close to the cysteine in the HCX₃R motif. In addition, PTPRN2 has a mutation in the WPD loop (Fig. 3B). Cui et al. [108] display some catalytic activity of phosphatase toward pNPP, but it was lower than what is normally seen with active phosphatases. In addition, this activity was observed only at a pH of 4.5, which raises questions about its functional relevance. Mutation of the aspartate in the HCX₃R motif to alanine increases catalytic activity but only at pH 5.6 [109]. It is very unlikely that the cytosolic portion of PTPRN2 encounters such pH conditions in vivo, making these findings physiologically questionable.

PTprn2 knockout mice show a very similar phenotype to Ptprn knockout mice. They also exhibit impaired glucose tolerance and impaired glucose-induced insulin secretion. However, knockout of PTPRN2 alone was not sufficient to prevent the development of diabetes [110]. The sequence similarity between PTPRN and PTPRN2 implies some level of redundancy. Effects on the neuroendocrine system were thus observed only in double knockout mice. Female mice show infertility due to problems in secretion of the pituitary hormones LH and FSH [111]. It is unclear why this effect is only observed in female mice, whereas male knockout mice showed normal LH and FSH secretion and also normal fertility.

Pseudophosphatases within the nonreceptor PTPs

The human genome encodes 17 nonreceptor PTPs, three of which contain a single PTP domain that not only have an intact HCX₃R motif but also contain mutations in the KNRY and WPD loops. PTPN14, PTPN21, and HD-PTP/PTPN23 thus diverge from the amino acid consensus observed among catalytically active PTPs and are thus bona fide pseudophosphatases. The purified catalytic domain of each of these proteins was indeed shown to be inactive in vitro toward the synthetic substrate DiFMUP and against a panel of 38 different phosphopeptides [51,112]. However, a growing body of evidence suggests that PTPN14, PTPN21, and HD-PTP/PTPN23 might not be totally inactive, but would perhaps display a weak activity for some specific substrates.

HD-PTP/PTPN23

The HD-PTP/PTPN23 protein is found throughout the Holozoa clade, and although its members contain a highly conserved HCX₃R motif, they exhibit at least one substitution in the KNRY or WPD loops. The human PTPN23 also contains a catalytic domain that differs from the consensus of active PTPs. The tyrosine located within the KNRY motif is indeed replaced by a histidine, and the aspartic acid in the WPD loop is replaced with a glutamic acid. Even though PTPN23 harbors an intact HCX₃R motif, it contains a unique serine located near the catalytic cysteine (HCSSGVGR), at a position generally occupied by an alanine in active tyrosine phosphatases [9]. This single residue was found to strongly inhibit the catalytic activity of PTPN23. The substitution of this serine into an alanine was sufficient to confer to PTPN23 a weak catalytic activity toward the synthetic substrate DiFMUP [112].

Some studies have shown that PTPN23 is involved in epithelial cell migration via its interaction with FAK and Src kinases [113,114]. Whether or not PTPN23 is a direct phosphatase for these proteins has been debated [113,115]. It is clear however that the depletion of PTPN23 exerts an effect on cell motility and favors epithelial–mesenchymal transition (EMT) by affecting the phosphorylation status of Src, E-cadherin, and β-catenin [115]. Similarly, the overexpression of PTPN23 was found to decrease the phosphorylation of these proteins and receptors and signaling effectors such as EGFR, c-MET, and ERK1/2 [116]. The phosphatase activity of PTPN23 was demonstrated in vitro toward the kinase FYN and was abolished by the mutation of the catalytic cysteine. On the other hand, residues from the catalytic domain of PTPN23 can be mutated to match the consensus sequence of active phosphatases, thereby significantly increasing the dephosphorylation of Fyn. These data indicate that PTPN23 might exert a weak phosphatase activity toward Fyn. Substrate-trapping experiments further showed that this activity could be specific to Fyn, as closely related kinases such as Src and Yes were unable to bind PTPN23 in the same conditions [14]. The mechanistic details of how PTPN23 evolved to be Fyn-specific remain to be elucidated.

In addition to its role in cell signaling, PTPN23 binds several ESCRT (endosomal sorting complexes required for transport) proteins and participates in the endosomal sorting of receptors and the formation of multivesicular bodies (MVB) prior to their lysosomal delivery [117]. The depletion of PTPN23 in murine fibroblasts was shown to affect the sorting and degradation of PDGFRβ. Ligand-induced PDGFRβ accumulated into large aberrant intracellular compartments upon silencing of PTPN23 [118]. Moreover, the depletion of PTPN23 inhibited the degradation of ligand-stimulated α5β1 integrin receptors in HeLa cells. Silencing PTPN23 therefore increased recycling and the number of receptors present at the cell surface. As a result, the depletion of PTPN23 was shown to impact integrin signaling and to promote a pro-
migratory and pro-invasive phenotype [119]. Similarly, PTPN23 was shown to be crucial for the efficient endosomal sorting and degradation of EGFR. Interestingly, the catalytic activity of PTPN23 is dispensable for this function, as the expression of a truncated PTPN23 lacking its phosphatase domain was sufficient to restore the trafficking of activated EGFRs [120,121].

In agreement with an important role in receptor trafficking and signaling, PTPN23 was further shown to be an essential gene. The homozygous knockout of the Ptpn23 gene in mice led to embryonic lethality [122]. Consistent with its crucial function, no homozygous deletions were observed in humans. However, some patients were shown to have alterations in the PTPN23 gene, resulting in a similar phenotype characterized by neurodevelopmental delays and brain abnormalities [123]. PTPN23 also acts as a haploinsufficient tumor suppressor. The heterozygous loss of Ptpn23 predisposes mice to sporadic lung adenoma and B-cell lymphoma, and promotes Myc-driven lymphomagenesis. Interestingly, the heterozygous deletion of PTPN23 is observed in several types of human cancers and often correlates with poor survival [124]. Further support for a tumor suppressor function of PTPN23 has been obtained in various tumors such as breast cancer, colorectal carcinoma, and hepatocellular carcinoma [14,116]. It is difficult to link PTPN23 to a mode of action for pseudoenzymes. Its combined effect on Src-family kinases and its role within the ESCRT complex would fit to mode 4 (signal integrator). However, to definitively draw this conclusion, we would need to determine whether different pools of PTPN23 contribute to the various effects, or whether it is the same pool.

PTPN14

Human nonreceptor PTPN14 possesses a phosphatase domain with an intact PTP HCX5R motif and WPD loop. However, it harbors a RSRI motif instead of the classical KNRY sequence [9]. This divergence suggested that PTPN14 is catalytically inactive, which was supported by the absence of in vitro activity toward a synthetic substrate and against a panel of phosphopeptides [51]. However, a few substrates have since been identified including YAP, β-catenin, p130Cas, and Roquin2 [125–128].

PTPN14 is best known for its role in the hippo signaling pathway via the negative regulation of YAP [127]. Although it was proposed that PTPN14 acts as a phosphatase of YAP, we consider the evidence for its phosphatase activity as very weak. In fact, others have reported that the phosphatase domain of PTPN14 is not required for the negative effect on YAP activity [129]. Thus, while there is agreement that PTPN14 is a negative regulator of YAP, the mechanism of action remains unclear. PTPN14 was further shown to be part of a tumor-suppressive p53-PTPN14-YAP axis involved in pancreatic cancer. PTPN14 is thus required for p53 tumor suppressor activity by negatively controlling the activity of YAP and its impact on cell survival, proliferation, and migration [130]. PTPN14 was also found to control the phosphorylation of YAP in gastric cancer [131–133]. In addition, PTPN14 was found to regulate the phosphorylation of p130Cas in colorectal cancer [126]. The depletion of PTPN14 also induced the growth and metastasis of breast cancer xenografts. Interestingly, breast cancer cells expressing a catalytically inactive PTPN14 secreted more growth factors and cytokines and also displayed elevated levels of cell-surface EGFRs [134]. In light of the uncertainty around the mechanistic mode of action of PTPN14, it is difficult to assign this pseudophosphatase to any of the general modes of action for pseudoenzymes.

PTPN21

The phosphatase domain of the human PTPN21 contains a canonical PTP HCX5R motif and overall resembles PTPN14. PTPN21 has a RNRF motif instead of the conserved KNRY sequence for active PTPs. The aspartic acid residue from the WPD loop is also replaced with a glutamic acid for PTPN21 [9]. Thus, PTPN21 is a pseudophosphatase and these sequence alterations were considered to abolish its catalytic activity. However, HD-PTP displays the same WPE loop and might retain a weak phosphatase activity [14,51,131].

PTPN21 is localized at adhesion sites, along with actin filaments. Together with Src and FAK, PTPN21 was shown to promote cell adhesion and motility. An intact catalytic domain was required for PTPN21-mediated stabilization of actin filaments and its impact on cell migration [135]. Interestingly, PTPN21 is highly expressed in tumor samples from patients diagnosed with bladder carcinoma. Although PTPN21 did not interact directly with EGFR, it was shown to colocalize with the receptors along the endocytic pathway and to affect their stability. The expression of a catalytically inactive mutant in PTPN21-depleted cells was also shown to inhibit the growth and migration of bladder cancer cells [136]. On the other hand, PTPN21 was shown to regulate podosome formation and neuronal cargo transport via activation of KIF1C,
independent of its catalytic activity [137]. Recently, a Ptpn21 knockout mouse model demonstrated its role in hematopoietic stem cell (HSC) homeostasis. The loss of PTPN21 was found to decrease the stiffness and increase the motility of HSCs. This mechanism specifically involves the catalytic activity of PTPN21 and the dephosphorylation of the cytoskeleton-associated protein Septin1, although PTPN21-mediated dephosphorylation has not been demonstrated directly [138].

Pseudophosphatases in the PTEN family

In humans, two auxilin family members exist, GAK and DNAJC6, both of which are considered pseudophosphatases. GAK (cyclin-G-associated kinase) is a kinase that is associated with cyclin G and CDK5 and that has (adjacent to its kinase domain) a tensin-type phosphatase domain. The phosphatase domain of GAK is likely to be catalytically inactive due to the lack of the arginine in the HCX5R motif that is replaced by an alanine (HCMDGRAA). In the case of tensins, tensin-1 lacks the cysteine (HNNKGNRGR), while tensin-2 lacks the arginine (YCKGNKKGK). Whether these phosphatase domains are ‘dead’ remains to be rigorously tested, as, for instance, the depletion of GAK was shown to increase phosphorylation of Rab10 [139]. Generally, the pseudophosphatase domain is thought to retain the ability to bind to phospholipids, without hydrolyzing them [140]. A purified version of the pseudophosphatase domain of GAK was found to bind to phosphatidylinositol monophosphates (PI(3)P, PI(4)P, and PI(5)P) and to lesser extent to PI(4,5)P2 [141]. This was suggested to mediate recruitment of GAK to clathrin-coated pits where it is required for uncoating [141]. Thus, GAK fits to the fourth general mode of action (signal integration) of pseudoenzymes as it uses its pseudophosphatase domain to bring other parts of the protein into action. The pseudophosphatase domain of tensin-1 was reported to interact with PP1α (PP1CA) and to therefore mediate localization to focal adhesions and regulate cell migration [142,143]. Thus, tensin-1 adopts mode 3 of action of pseudoenzymes by acting as a spatial anchor. The absence of the cysteine in the HCX5R motif makes it very unlikely that tensin-1 is active, but clear demonstration of its inactivity is missing to the best of our knowledge. Tensin-2 retains the cysteine residue, but lost the histidine and arginine residues. There is evidence that tensin-2 might be catalytically active, as it was shown to bind to PI(3,4,5)P3, which was shown to increase its ability to dephosphorylate IRS1 and to regulate insulin receptor signaling [144,145]. Thus, tensin-2 is potentially a catalytically active pseudophosphatase.

Pseudophosphatases within the Myotubularin family

Myotubularins comprise a family of phosphoinositide phosphatases that were shown to dephosphorylate the D-3 position on phosphatidylinositol 3-phosphate (PI3P) and PI(3,5)P2 and therefore produce PI and PI5P [146]. Because phosphoinositides provide landmarks for binding of the membrane trafficking machinery, myotubularins play an important role in the regulation of various endomembrane processes, but are also involved in a lot of other processes such as cell proliferation, differentiation, survival, or cytoskeleton [146,147]. The myotubularin family comprises 14 members in humans, six of which are considered pseudophosphatases, which are MTMR5, MTMR9, MTMR10, MTMR11, MTMR12, and MTMR13. As shown in Fig. 3A, the HCX5R motif in these proteins is completely degenerated, lacking both the cysteine and arginine residues. Myotubularins are different in that they do not have a WPD loop, but instead, the catalytic aspartate residue is located within the HCX5R loop. It is notable that this aspartic acid residue is also remarkably conserved in the pseudophosphatase members of the myotubularin family (Fig. 5A). Nevertheless, in the absence of a cysteine that can form a nucleophilic attack on the D-3 phosphate, the myotubularin family pseudophosphatases cannot act as lipid phosphatases.

A common feature of all myotubularin family members is the formation of hetero- and homodimers. Although MTMR11 (a pseudophosphatase) has not been shown directly to form dimers, a recent systematic approach mapping the interactome of all phosphatases found that MTMR11 interacts with MTM1 and MTMR2 [23]. In Fig. 5B, we have extracted from databases (BioGRID and STRING) and from the literature [147] the interactomes of the myotubularin family and show that the pseudophosphatase members act as heterodimeric partners for the active members of the family. Interestingly, a phylogenetic analysis (Fig. 5C) shows that active and inactive Myotubularin-like proteins coexisted before the origin of Metazoans (note Capsaspora and Salpingoeoca, the unicellular eukaryotes, related to common ancestors of metazoans and fungi). Also, plants and fungi appear to have only active Myotubularin-like proteins. In general, the inactive myotubularins allosterically increase allosterically the activity of active members [147–149]. Thus, these pseudophosphatases fit to the second
MTMR9 was shown to localize to the intermediate compartment and to the Golgi and to recruit MTMR7 and MTMR8 to these sites to regulate trafficking from the endoplasmic reticulum to the Golgi and the structural integrity of the Golgi apparatus [150]. Thus, these pseudophosphatases might also fit to the third general mode of action (spatial anchoring) proposed for pseudoenzymes.

Pseudophosphatases within the PPM fold family

PPM phosphatases are Ser/Thr phosphatases that require Mg$^{2+}$ or Mn$^{2+}$ for their catalytic activity. Their catalytic core is composed of the following sequence elements: DGH---DG---DN/D, which all play a role in metal binding and catalysis of dephosphorylation [9,151]. These elements are not fully conserved in all PPM family members, making it difficult to define which members of this family are pseudophosphatases. According to the general definition of pseudoenzymes [2–4], any enzyme family member with alteration of conserved sequence motifs is a pseudoenzyme regardless of its catalytic activity. Based on this, we consider PHLPP1 and PHLPP2 as pseudophosphatases because their DGH motif is mutated to a DGD and the DG motif is completely degenerated. However, PHLPP1&2 have been shown to dephosphorylate Akt, which has led to some confusion about their status as pseudoenzymes, because of the misconception that pseudoenzymes ought to be catalytically inactive. Catalytically active pseudoenzymes are not without precedent such as the abovementioned tensin-2 or the pseudokinase WNK1, for which we understood the basis for its catalytic activity only after having solved its structure [152]. A crystal structure for PHLPP1&2 is not available, but homology modeling of PHLPP2 based on PP2Cα suggests that the intactness of the two aspartic acid residues in the DGD and the DS motif is...
sufficient to ensure coordination of the metal ion [153]. Thus, PHLPP1&2 are catalytically active pseudophosphatases. PHLPP1&2 have been reported to be deleted in cancer, which led to their designation as a potential tumor suppressors, which is mainly attributed to their ability to regulate Akt signaling and therefore cell survival [153,154]. Whether PHLPP1&2 adopt any of the general modes of action of pseudophosphatases has not been directly tested and remains to be determined.

TAB1 is accepted to be a pseudophosphatase, and it has been experimentally demonstrated to be catalytically inactive [155]. This is mainly attributed to the fact that its DGH motif is totally degenerated (Fig. 6). TAB1 is one of the regulatory subunits of TAK1, a protein kinase that is upstream of several pro-inflammatory kinase cascades, namely the p38 MAPK, the JNK1/2, and the NFkB pathway. TAB1 activates TAK1 kinase activity and, by binding to other cellular proteins, serves not only as a regulator of TAK1, but also as a signal integrator (mode 2 and mode 4).

The other predicted pseudophosphatase is PP2D1 (Fig. 6), but we do not have experimental evidence whether it truly lacks catalytic activity. Very little is known about this pseudophosphatase, and its only known interaction partner based on the BioGRID (https://thebiogrid.org) database is amyloid protein Aβ.

Pseudophosphatases within the histidine phosphatase (HP) family

HP family phosphatases are a group of enzymes that are characterized by a key histidine residue that becomes transiently phosphorylated during dephosphorylation. Among proteins with HP domains, only three have been identified to be pseudophosphatases, namely diphosphoinositol pentakisphosphate kinase (PPIP5K)1&2 and phosphofructokinase 3 (PFKFB3).

The three catalytic signature motifs of the HP family are as follows: RHGXRXP, R581, and HD. Human PPIP5K1 and PPIP5K2 have an altered HD motif (replaced by HV) and are thus pseudophosphatases and predicted to be inactive. In fact, purified PPIP5K1 (from bacterial cells) was shown to lack catalytic activity against several phosphoinositides (Ins(1,3,4,5,6)P5, InsP6, PP-InsP5, nor (PP)2-InsP4) and is thus a bona fide catalytically dead pseudophosphatase [156]. Similarly, PPIP5K2 was also experimentally demonstrated to be inactive [157]. One report claimed that human PPIP5K1 tagged with BioEase and purified using biotin pulldown displays some catalytic activity [158]. However, it is possible that this is due to a contaminant, although mutating the arginine of the RHGXRXP motif abolished phosphatase activity. Thus, whether PPIP5K1&2 are inactive or active pseudophosphatases remains to be conclusively demonstrated. The biological significance of the catalytically dead phosphatase domain remains to be determined, but is likely to be involved in inositol pyrophosphate metabolism [159] or to mediate binding to InsP6 [157]. Thus, these pseudophosphatases fit to mode 1 (substrate competition) of the general modes of action of pseudoenzymes.

PFKFB3 exhibits a loss of the R motif (mutated to S), which is expected to alter its fructose-2,6-bisphosphatase activity. However, there is experimental evidence that PFKFB3 has at least some enzymatic activity [157] and might thus still act in glucose/fructose metabolism.

Pseudophosphatases within the HAD family

The DXDXT motif is important for the catalytic activity of HAD family phosphatases. So far, the only
Conclusions and outlook

A decade ago, pseudoenzymes were a largely ignored area of research, and since then, the number of papers focusing on pseudokinases, pseudophosphatases, or pseudoenzymes increased by almost fivefold. Assuming that this trend will continue, we may expect transformative changes in this field that will be fueled by an increasing use of bioinformatic tools to compare pseudoenzymes across diverse species. The increased interest in this research area is reflected by two international meetings on pseudoenzymes organized in the past three years. This gave researchers an arena to discuss the biology of pseudoenzymes and their roles in diseases. As far as pseudophosphatases are concerned, we believe that some of the most transformative changes in the field of pseudophosphatases will be made here. Contrary to many other enzyme families, phosphatases do not possess a single fold and the catalytic motifs are highly divergent. This makes the analysis of the evolution and degeneration of catalytic motifs more complex and increases the chance that pseudophosphatases have evolved other functions. The elucidation of these new roles of pseudophosphatases will require the combination of multi-omics approaches and computational tools.

As discussed above, while some pseudophosphatases show no detectable catalytic activity, others display some residual activity or are fully active. This challenge of defining catalytic inactivity is reflected by the designation of pseudoenzymes with terms such as ‘zombie enzymes’. What is clearly needed in the field of pseudophosphatases is a gold standard assay, but there is at the moment no consensus on this. Activity against artificial substrates is a low bar for phosphatase activity but might be a poor proxy for biological activity. Certainly, demonstration of direct dephosphorylation is a compelling proof that a pseudophosphatase is not ‘dead’. However, caution should be used when interpreting such assays without appropriate controls, such as a mutation that removes the essential catalytic cysteine residue where it is conserved in CC1 phosphatases, in order to exclude contaminating phosphatase activity. As a follow-up, important insights to provide an explanation for catalytic activity will be gained from structural studies. Understanding the structure–function relationship of pseudophosphatases could help tackle another important challenge in this field, namely the development of strategies to pharmacologically target pseudophosphatases. This challenge is further complicated by the fact that active phosphatases themselves are hard to target using drugs [162]. This is partially due to the presence of positive charge around the active site, which resulted in screening efforts mainly identifying negatively charged molecules that do not cross the plasma membrane. However, pseudophosphatases have often lost these charged residues, thus providing new opportunities for pharmacologic modulation. In addition, many pseudophosphatases act as allosteric modulators, and thus, they could be targeted not via the active site, but by molecules that target their ability to bind active phosphatases. Another possibility is to make use of the PROTAC technology to target overexpressed pseudophosphatases for proteasomal degradation [163]. Alternatively, linker compounds could be developed to link pseudophosphatases to LC3 and therefore target them for lysosomal destruction. Our comprehensive summary highlights the need for increased molecular understanding of pseudophosphatase modes of action in order to fully determine their roles in physiology and disease, and to potentially exploit them therapeutically.

Acknowledgement

HJS is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (109407). AP was financed by grants from the Canadian Institutes of Health Research (CIHR) [PJТ-152966] and the Canadian Cancer Society Research Institute (CCSRI) [705376]. G.D. was supported by a postdoctoral training award from the Fonds de recherche du Québec—Santé (FRQS). KP was supported by the Polish National Agency for Scientific Exchange scholarship PPN/BEK/2018/1/00431. HF is supported by grants from the Norwegian Cancer Society (182815), and the Norwegian Research Council (262717) and from the Rakel og Otto-Kristian Bruun legat.
Author contributions

All authors discussed the concept and structure of the review and wrote the review together. KP performed the phylogenetic tree analysis.

Conflict of interest

The authors declare no conflict of interest.

References

1 Lim WA & Pawson T (2010) Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142, 661–667.
2 Murphy JM, Farhan H & Eyers PA (2017) Bio-Zombie: the rise of pseudoenzymes in biology. Biochem Soc Trans 45, 537–544.
3 Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM & Eyers PA (2019) Emerging concepts in pseudenzyme classification, evolution, and signaling. Sci Signal 12, eaat9797.
4 Reiterer V, Eyers PA & Farhan H (2014) Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Trends Cell Biol 24, 489–505.
5 Black MH, Osinaki A, Gradowski M, Servage KA, Pawlowski K, Tomchick DR & Tagliabracci VS (2019) Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the Sde-family ubiquitin ligases. Science 364, 787–792.
6 Sreelatha A, Yee SS, Lopez VA, Park BC, Kinch LN, Pilch S, Servage KA, Zhang J, Jiou J, Karasiewicz-Urbańska M et al. (2018) Protein AMPylation by an evolutionarily conserved pseudokinase. Cell 175, 809–821.e819.
7 Shrestha S, Byrne DP, Harris JA, Kannan N & Eyers PA (2020) Cataloguing the dead: breathing new life into pseudokinase research. FEBS J. 287, 4150–4169.
8 Manning G, Whyte DB, Martinez R, Hunter T & Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298, 1912–1934.
9 Chen MJ, Dixon JE & Manning G (2017) Genomics and evolution of protein phosphatases. Sci Signal 10, eaag1796.
10 Andersen JN, Jansen PG, Echwald SM, Mortensen OH, Fukada T, Del Vecchio R, Tonks NK & Möller NPH (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J 18, 8–30.
11 Li X, Wilmanss M, Thornton J & Köhn M (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6, rs10-rs10.
12 Knudsen M & Wiuf C (2010) The CATH database. Hum Genomics 4, 207–212.
13 Damle NP & Köhn M. (2019) The human DEPhOsphorylation Database DEPOD: 2019 update. Database 2019.
14 Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE & Tonks NK (2017) Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev.
15 Brognaard J, Sieriecki E, Gao T & Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25, 917–931.
16 Denu JM, Stuckey JA, Saper MA & Dixon JE (1996) Form and function in protein dephosphorylation. Cell 87, 361–364.
17 Denu JM, Lohse DL, Vijayalakshmi J, Saper MA & Dixon JE (1996) Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci 93 (6), 2493–2498.
18 Tautz L, Critton DA & Grotegut S (2013) Protein tyrosine phosphatases: structure, function, and implication in human disease. In Phosphatase Modulators (Millán JL, ed), pp. 179–221. Humana Press, Totowa, NJ.
19 Tonks NK (2013) Protein tyrosine phosphatases – from housekeeping enzymes to master regulators of signal transduction. 280, 346–378.
20 Wishart MJ, Denu JM, Williams JA & Dixon JE (1995) A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J Biol Chem 270, 26782–26785.
21 Reiterer V, Fey D, Kolch W, Kholodenko BN & Farhan H (2013) Pseudophosphatase STYX modules cell-fate decisions and cell migration by spatiotemporal regulation of ERK1/2. Proc Natl Acad Sci 110 (31), E2934–E2943.
22 Wishart MJ & Dixon JE (2002) The archetype STYX/dead-phosphatase complexes with a spermatid mRNA-binding protein and is essential for normal sperm production. Proc Natl Acad Sci USA 99, 2112–2117.
23 St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Veri AO, Knight JDR, Rajendran D, Couzens AL, Currie KW, Tkach JM et al. (2016) Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators. Cell Rep 17, 2488–2501.
24 Reiterer V, Figueras-Puig C, Le Guerroue F, Confalonieri S, Vecchi M, Jalapothu D, Kanse SM, Deshaies RJ, Di Fiore PP, Behrends C et al. (2017) The pseudophosphatase STYX targets the F-box of FBXW7 and inhibits SCFFBXW7 function. The EMBO journal 36, 260–273.
25 Skaar JR, Pagan JK & Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14, 369.
26 Yeh C-H, Bellon M & Nicot C (2018) FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 17, 115.
27 He D, Ma Z, Fang C, Ding J, Yang W, Chen P, Huang L, Wang C, Yu Y, Yang L et al. (2019) Pseudophosphatase STYX promotes tumor growth and metastasis by inhibiting FBXW7 function in colorectal cancer. Cancer Lett 454, 53–65.
28 Reiterer V, Pawlowski K & Farhan H (2017) STYX: a versatile pseudophosphatase. Biochem Soc Trans 45, 449–456.
29 Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G & Ruiz-Trillo I (2012) Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal 5, ra35-ra35.
30 Kosti I, Mandel-Gutfreund Y, Glaser F & Horwitz BA (2010) Comparative analysis of fungal protein kinases and associated domains. BMC Genom 11, 133.
31 Wishart MJ & Dixon JE (1998) Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci 23, 301–306.
32 Hinton SD, Myers MP, Roggero VR, Allison LA & Tonks NK (2010) The pseudophosphatase MK-STYX interacts with G3BP and decreases stress granule formation. Biochem J 427, 349–357.
33 Potter DSW & Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26, 668–679.
34 Niemi NM, Lanning NJ, Klomp JA, Tait SW, Xu Y, Dykema KJ, Murphy LO, Gaither LA, Xu HE, Forge KA et al. (2011) STYX, a Catalytically Inactive Phosphatase Regulating Mitochondrially Dependent Apoptosis. Mol Cell Biol 31, 1357–1368.
35 MacKeigian JP, Murphy LO & Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7, 591–600.
36 Niemi NM, Sacomano JL, Westrate LM, Gaither LA, Lanning NJ, Martin KR & MacKeigian JP (2014) The pseudophosphatase MK-STYX physically and genetically interacts with the mitochondrial phosphatase PTPMT1. PLoS One 9, e93896.
37 Siligan C, Ban J, Bachmaier R, Spahn L, Kreppeil M, Schafer K-L, Poremba C, Aryee DNT & Kovar H (2005) EWS-FLI1 target genes recovered from Ewing’s sarcoma chromatin. Oncogene 24, 2512–2524.
38 Isrie M, Zamani Esteki M, Peeters H, Voet T, Van Houdt J, Van Paesschen W & Van Esch H (2015) Homozygous missense mutation in STYXL1 associated with moderate intellectual disability, epilepsy and behavioural complexities. Eur J Med Genet 58, 205–210.
39 Flowers BM, Rusnak LE, Wong KE, Banks DA, Muniykwa MR, McFarland AG & Hinton SD (2014) The pseudophosphatase MK-STYX induces neurite-like outgrowths in PC12 cells. PLoS One 9, e114535.
40 Banks DA, Dahal A, McFarland AG, Flowers BM, Stephens CA, Swack B, Gugss A, Anderson WA & Hinton SD (2017) MK-STYX alters the morphology of primary neurons, and outgrowths in MK-STYX Overexpressing PC-12 cells develop a neuronal phenotype. Frontiers in molecular biosciences 4, 76.
41 Friedberg I, Nika K, Tautz L, Saito K, Cerignoli F, Friedberg I, Godzik A & Mustelin T (2007) Identification and characterization of DUSP27, a novel dual-specific protein phosphatase. FEBS Lett 581, 2527–2533.
42 Iio K, Nagasawa Y, Iwatani H, Yamamoto R, Hori A, Okuzaki D, Furumatsu Y, Inohara H, Nojima H, Imai E et al. (2010) Microarray analysis of tonsils in immunoglobulin A nephropathy patients. Biochem Biophys Res Comm 393, 565–570.
43 Nielsen DA, Ji F, Yuferov V, Ho A, He C, Ott J & Kreek MJ (2010) Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet 20, 207–214.
44 Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK & Møller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21, 7117–7136.
45 Saharinen P, Takalouma K & Silvennoinen O (2000) Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 20, 3387–3395.
46 Silvennoinen O, Ungureanu D, Niranjan Y, Hammaren H, Bandaranayake R & Hubbard Stevan R (2013) New insights into the structure and function of the pseudokinase domain in JAK2. Biochem Soc Trans 41, 1002–1007.
47 Lemmon MA & Schlessinger J (2010) Cell Signaling by receptor tyrosine kinases. Cell 141, 1117–1134.
48 Bouyain S & Watkins DJ (2010) The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci 107, 2443.
49 Nikolaenko RM, Hammel M, Dubreuil V, Zalma R, Hall DR, Mehzabeen N, Karuppan SJ, Harroch S, Stella SL & Bouyain S (2016) Structural basis for interactions between contactin family members and protein-tyrosine phosphatase receptor type G in neural tissues. J Biol Chem 291, 21335–21349.
50 Meng K, Rodriguez-Peña A, Dimitrov T, Chen W, Yamin M, Noda M & Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through inactivation of the intrinsic catalytic activity
of the receptor-type protein tyrosine phosphatase βζ. Proc Natl Acad Sci 97, 2603.
51 Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S & Knapp S (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136, 352–363.
52 Fujikawa A, Sugawara H, Tanga N, Ishii K, Kuboyma K, Uchiyama S, Suzuki R & Noda M (2019) A head-to-toe dimerization has physiological relevance for ligand-induced inactivation of protein tyrosine receptor type Z. J Biol Chem 294, 14953–14965.
53 Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, Marcu O, Heslip TR, Marsh JL, Schwarz TL et al. (2006) The HSPGs syndecan and dallylike bind the receptor phosphatase lar and exert distinct effects on synaptic development. Neuron 49, 517–531.
54 Sakamoto K, Ozaki T, Ko Y-C, Tsai C-F, Gong Y, Morozumi M, Ishikawa Y, Uchimura K, Nanadaka S, Kitagawa H et al. (2019) Glycan sulfation patterns define autophagy flux at axon tip via PTPRα-cortactin axis. Nat Chem Biol.
55 Wallace MJ, Fladd C, Batt J & Rotin D (1998) The Second Catalytic Domain of Protein Tyrosine Phosphatase δ (PTPδ) Binds to and Inhibits the First Catalytic Domain of PTPζ. Mol Cell Biol 18, 2608–2616.
56 Nam H-J, Poy F, Krueger NX, Saito H & Frederick CA (1999) Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97, 449–457.
57 Blanchetot C, Tertoolen LG, Overvoorde J & den Hertog J (2002) Intra- and intermolecular interactions between intracellular domains of receptor protein-tyrosine phosphatases. J Biol Chem 277, 47263–47269.
58 Jiang G, den Hertog J & Hunter T (2000) Receptor-like protein tyrosine phosphatase alpha homodimerizes on the cell surface. Mol Cell Biol 20, 5917–5929.
59 Jeon TJ, Chien PN, Chun H-J & Ryu SE (2013) Structure of the catalytic domain of protein tyrosine phosphatase sigma in the sulfenic acid form. Mol Cells 36, 55–61.
60 Nam H-J, Poy F, Saito H & Frederick CA (2005) Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med 201, 441–452.
61 Kashio N, Matsumoto W, Parker S & Rothstein DM (1998) The second domain of the CD45 protein tyrosine phosphatase is critical for interleukin-2 secretion and substrate recruitment of TCRζζ in vivo. J Biol Chem 273, 33856–33863.
62 Felberg J, Lefebvre DC, Lam M, Wang Y, Ng DHW, Birkenhead D, Cross JL & Johnson P (2004) Subdomain X of the kinase domain of Lck binds CD45 and facilitates dephosphorylation. J Biol Chem 279, 3455–3462.
63 Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardsson CD, Aitken K et al. (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349.
64 Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang W-C, Martinez-Martin N, Lin W, Deane JE & Sharpe HJ (2019) The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell–cell adhesion. eLife 8, e44597.
65 Perron MD, Chowdhury S, Aubry I, Purisima E, Tremblay ML & Saragovi HU (2014) AllostERIC noncompetitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol Pharmacol 85, 553.
66 Veal EA, Day AM & Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26, 1–14.
67 Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain Jonathan R, Jin Lily L, Harris Isaac S, Mori J, Mak Tak W, Senis Yotis A et al. (2011) Global Proteomic Assessment of the Classical Protein-Tyrosine Phosphatome and “Redoxome”. Cell 146, 826–840.
68 van der Reest J, Lilla S, Zheng L, Zanivan S & Gottlieb E (2018) Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat Commun 9, 1581.
69 Salmeen A, Andersen JN, Myers MP, Meng T-C, Hinks JA, Tonks NK & Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769.
70 Muchado LESF, Critton DA, Page R & Peti W (2017) Redox regulation of a gain-of-function mutation (N308D) in SHP2 noonan syndrome. ACS Omega 2, 8313–8318.
71 Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194, 7.
72 Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667–670.
73 Yang J, Groen A, Lemeer S, Jans A, Slijper M, Roe SM, den Hertog J & Barford D (2007) Reversible oxidation of the membrane distal domain of receptor PTPs is mediated by a cyclic sulfenamide. Biochemistry 46, 709–719.
74 Groen A, Lemeer S, van der Wijk T, Overvoorde J, Heck AJR, Ostman A, Barford D, Slijper M & den Hertog J (2005) Differential oxidation of protein-tyrosine phosphatases. J Biol Chem 280, 10298–10304.
75 van der Wijk T, Overvoorde J & den Hertog J (2004) H2O2-induced intermolecular disulfide bond formation
between receptor protein-tyrosine phosphatases. *J Biol Chem* **279**, 44355–44361.

76 Groen A, Overvoorde J, van der Wijk T & den Hertog J (2008) Redox regulation of dimerization of the receptor protein-tyrosine phosphatases RPTPα, LAR, RPTPμ and CD45. The FEBS Journal **275**, 2597–2604.

77 van der Wijk T, Blanchetot C, Overvoorde J & den Hertog J (2003) Redox-regulated rotational coupling of receptor protein-tyrosine phosphatase α dimers. *J Biol Chem* **278**, 13968–13974.

78 Wang H, Lian Z, Lerch MM, Chen Z, Xie W & Ulrich A (1996) Characterization of PCP-2, a novel receptor protein tyrosine phosphatase of the MAM domain family. *Oncogene* **12**, 2555–2562.

79 Gu J, Zhang Z, Lang T, Ma X, Yang L, Xu J, Tian C, Han K & Qiu J (2019) PTPRU, as a tumor suppressor, inhibits cancer stemness by attenuating Hippo/YAP signaling pathway. *Onco Targets Ther* **12**, 8095–8104.

80 Liu Y, Zhu Z, Xiong Z, Zheng J, Hu Z & Qiu J (2014) Knockdown of protein tyrosine phosphatase receptor U inhibits growth and motility of gastric cancer cells. *International Journal of Clinical and Experimental Pathology* **7**, 5750–5761.

81 Aerne B & Ish-Horowicz D (2004) receptor tyrosine phosphatase γ is required for Delta/Notch signalling and cyclic gene expression in the presomitic mesoderm. *Development* **131**, 3391.

82 Aerne B, Stoker A & Ish-Horowicz D (2003) Chick receptor tyrosine phosphatase Ψ is dynamically expressed during somitogenesis. *Gene Expr Patterns* **3**, 325–329.

83 Badde A, Bumsted-O’Brien KM & Schulte D (2005) Chick receptor protein tyrosine phosphatase λ/γ (cRPTPα/cRPTPγ) is dynamically expressed at the midbrain–hindbrain boundary and in the embryonic neural retina. *Gene Expr Patterns* **5**, 786–791.

84 Badde A & Schulte D (2008) A role for receptor protein tyrosine phosphatase λ in midbrain development. *The Journal of Neuroscience* **28**, 6152.

85 Hay IM, Fearnley GW, Rios P, Köhn M, Sharpe HJ & Deane JE (2019) The receptor PTPRU is a redox sensitive pseudophosphatase. *bioRxiv*, 805119.

86 Streuli M, Krueger NX, Thai T, Tang M & Saito H (1990) Distinct functional roles of the two intracellular phosphatase domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. *The EMBO journal* **9**, 2399–2407.

87 Caromile LA, Oganesian A, Coats SA, Seifert RA & Bowen-Pope DF (2010) The neurosecretory vesicle protein phogrin functions as a phosphatidylinositol phosphatase to regulate insulin secretion. *J Biol Chem* **285**, 10487–10496.

88 Rabin DU, Plesic SM, Palmer-Crocker R & Shapiro JA (1992) Cloning and expression of IDDM-specific human autoantigens. *Diabetes* **41**, 183–186.

89 Lan MS, Lu J, Goto Y & Notkins AL (1994) Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. *DNA Cell Biol* **13**, 505–514.

90 Solimena M, Dirkx R Jr, Hermel JM, Pleasic-Williams S, Shapiro JA, Caron L & Rabin DU (1996) ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. *The EMBO journal* **15**, 2102–2114.

91 Lan MS, Wassermann C, Maclaren NK & Notkins AL (1996) IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. *Proc Natl Acad Sci USA* **93**, 6367–6370.

92 Bonifacio E, Lampasona V & Bingley PJ (1998) IA-2 (Islet Cell Antigen 512) is the primary target of humoral autoimmunity against type 1 diabetes-associated tyrosine phosphatase autoantigens. *J Immunol* **161**, 2648–2654.

93 Magistrelli G, Toma S & Isacchi A (1996) Substitution of two variant residues in the protein tyrosine phosphatase-like PTP35/IA-2 sequence reconstitutes catalytic activity. *Biochem Biophys Res Comm* **227**, 581–588.

94 Saeki K, Zhu M, Kubosaki A, Xie J, Lan MS & Notkins AL (2002) Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. *Diabetes* **51**, 1842–1850.

95 Harashima S, Clark A, Christie MR & Notkins AL (2005) The dense core transmembrane vesicle protein IA-2 is a regulator of vesicle number and insulin secretion. *Proc Natl Acad Sci USA* **102**, 8704–8709.

96 Hermel J-M, Dirkx R Jr & Solimena M (1999) Post-translational modifications of ICA512, a receptor tyrosine phosphatase-like protein of secretory granules. *Eur J Neurosci* **11**, 2609–2620.

97 Trajkovski M, Miziaut H, Altkrüger A, Ouwendijk J, Knoch K-P, Müller S & Solimena M (2004) Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in β-cells. *J Cell Biol* **167**, 1063–1074.

98 Miziaut H, Trajkovski M, Kersting S, Ehninger A, Altkrüger A, Lemaître RP, Schmidt D, Saeger H-D, Lee M-S, Drechsel DN et al. (2006) Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5. *Nat Cell Biol* **8**, 435–445.

99 Berghs S, Aggujaro D, Dirks R, Maksmimova E, Stabach P, Hermel J-M, Zhang J-P, Phliebrick W, Slepen V, Ort T et al. (2000) βIV Spectrin, a New Spectrin Localized at Axon Initial Segments and
Nodes of Ranvier in the Central and Peripheral Nervous System. J Cell Biol 151, 985–1002.

Ort T, Maksimova E, Dirix R, Kachinsky AM, Berghs S, Frohner SC & Solimena M (2000) The receptor tyrosine phosphatase-like protein ICA512 binds the PDZ domains of β2-syntrophin and nNOS in pancreatic β-cells. Eur J Cell Biol 79, 621–630.

Schubert S, Knoch KP, Ouwendijk J, Mohammed S, Bodrov Y, Jager M, Altkrüger A, Wegbrod C, Adams ME, Kim Y et al. (2010) beta2-Syntrophin is a Cdk5 substrate that restrains the motility of insulin secretory granules. PLoS One 5, e12929.

Trajkovski M, Mziaut H, Schubert S, Kalaizidizis Y, Altkrüger A & Solimena M (2008) Regulation of Insulin Granule Turnover in Pancreatic β-Cells by Cleaved ICA512. J Biol Chem 283, 33719–33729.

Mziaut H, Mulligan B, Hoboth P, Otto O, Ivanova A, Herbig M, Schumann D, Hildebrandt T, Dehghany J, Sönmez A et al. (2016) The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512. Molecular Metabolism 5, 656–668.

Gross S, Blanchetot C, Schepens J, Albet S, Lammers R, den Hertog J & Hendriks W (2002) Multimerization of the Protein-tyrosine Phosphatase (PTP)-like Insulin-dependent Diabetes Mellitus Autoantigens IA-2 and IA-2β with Receptor PTPs (RPTPs): INHIBITION OF RPTPs ENZYMATIC ACTIVITY. J Biol Chem 277, 48139–48145.

Lu J, Li Q, Xie H, Chen ZJ, Borovitskaya AE, Maclaren NK, Notkins AL & Lan MS (1996) Identification of a second transmembrane protein tyrosine phosphatase, IA-2β, as an autoantigen in insulin-dependent diabetes mellitus: precursor of the 37-kDa tryptic fragment. Proc Natl Acad Sci 93, 2307–2311.

Notkins AL, Zhang B, Matsumoto Y & Lan MS (1997) Comparison of IA-2 with IA-2β and with Six Other Members of the Protein Tyrosine Phosphatase Family: Recognition of Antigenic Determinants by IDDM Sera. J Autoimmun 10, 245–250.

Wasmiejer C & Hutton JC (1996) Molecular Cloning of Phogrin, a Protein-tyrosine Phosphatase Homologue Localized to Insulin Secretory Granule Membranes. J Biol Chem 271, 18161–18170.

Cui L, Yu W-P, DeAizpurua HJ, Schmidti RS & Pullen CJ (1996) Cloning and Characterization of Islet Cell Antigen-related Protein-tyrosine Phosphatase (PTP), a Novel Receptor-like PTP and Autoantigen in Insulin-dependent Diabetes. J Biol Chem 271, 24817–24823.

Fitzgerald LR, Walton KM, Dixon JE & Largent BL (1997) PTP NE-6: A Brain-Enriched Receptor-Type Protein Tyrosine Phosphatase with a Divergent Catalytic Domain. J Neurochem 68, 1820–1829.

Kubosaki A, Gross S, Miura J, Saeki K, Zhu M, Nakamura S, Hendriks W & Notkins AL (2004) Targeted disruption of the IA-2β gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice. Diabetes 53, 1684–1691.

Kubosaki A, Nakamura S, Clark A, Morris JF & Notkins AL (2006) Disruption of the transmembrane dense core vesicle proteins IA-2 and IA-2β causes female infertility. Endocrinology 147, 811–815.

Gingras M-C, Zhang YL, Kharitidi D, Barr AJ, Knapp S, Tremblay ML & Pause A (2009) HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One 4, e5105.

Mariotti M, Castigliano S, Garcia-Manteiga JM, Beguinot L & Maier JAM (2009) HD-PTP inhibits endothelial migration through its interaction with Src. Int J Biochem Cell Biol 41, 687–693.

Castigliano S, Maier JAM & Mariotti M (2007) The tyrosine phosphatase HD-PTP: A novel player in endothelial migration. Biochem Biophys Res Comm 364, 534–539.

Lin G, Aranda V, Muthuswamy SK & Tonks NK (2011) Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the ‘PTP-ome’. Genes Dev 25, 1412–1425.

Jariwala N, Mendoza RG, Garcia D, Lai Z, Subler MA, Windle JJ, Mukhopadhyay ND, Fisher PB, Chen Y & Sarkar D (2019) Posttranscriptional Inhibition of Protein Tyrosine Phosphatase Nonreceptor Type 23 by Staphylococcal Nuclease and Tudor Domain Containing 1: Implications for Hepatocellular Carcinoma. Hepatol Commun 3, 1258–1270.

Desrochers G, Kazan JM & Pause A (2019) Structure and functions of His domain protein tyrosine phosphatase in receptor trafficking and cancer (1). Biochem Cell Biol 97, 68–72.

Ma H, Wardega P, Mazaud D, Klosowska-Wardega A, Jurek A, Engström U, Lennartsson J & Heldin C-H (2015) Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation. Cell Signal 27, 2209–2219.

Kharitidi D, Apaja PM, Manteghi S, Suzuki K, Malitskaya E, Roldan A, Gingras M-C, Takagi J, Lukacs GL & Pause A (2015) Interplay of Endosomal Ubiquitination, Endocytic Sorting, and Cell Migration. Cell Rep 13, 599–609.

Doyotte A, Mironov A, McKenzie E & Woodward P (2008) The Bro1-related protein HD-PTP/PTP23 is required for endosomal cargo sorting and
multivesicular body morphogenesis. Proc Natl Acad Sci USA 105, 6308–6313.

121 Ali N, Zhang L, Taylor S, Mironov A, Urbé S & Woodman P (2013) Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr Biol 23, 453–461.

122 Gingras M-C, Kharitidi D, Chénard V, Uetani N, Bouchard M, Tremblay ML & Pause A (2009) Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP). Int J Dev Biol 53, 1069–1074.

123 Bend R, Cohen L, Carter MT, Lyons MJ, Niyazov D, Gingras M-C, Kharitidi D, Chénard V, Uetani N, Bouchard M, Tremblay ML & Pause A (2009) Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP). Int J Dev Biol 53, 1069–1074.

124 Manteghi S, Gingras M-C, Kharitidi D, Galarneau L, Marques M, Yan M, Cenic C, Robert F, Paquet M, Witcher M et al. (2016) Haploinsufficiency of the ESCRT Component HD-PTP Predisposes to Cancer. Cell Rep 15, 1893–1900.

125 Wadhams, Gamble JR, Vadas MA & Khew-Goodall Y (2003) The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates beta-catenin. Mol Biol Cell 14, 2520–2529.

126 Zhang P, Guo A, Possenato A, Wang C, Beard L, Carlin C, Markowitz SD, Polakiewicz RD & Wang Z (2013) Identification and functional characterization of p130Cas as a substrate of protein tyrosine phosphatase nonreceptor 14. Oncogene 32, 2087–2095.

127 Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH & Zhang J (2013) PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32, 1266–1273.

128 Choi J, Saraf A, Florens L, Washburn MP & Busino L (2018) PTPN14 regulates Roquin2 stability by tyrosine dephosphorylation. Cell Cycle 17, 2243–2255.

129 Michaloglou C, Lehmann W, Martin T, Delaunay C, Hueber A, Barys L, Niu H, Billy E, Wartmann M, Ito M et al. (2013) The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS One 8, e61916.

130 Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClelland J, Bieging-Rolett KT, Lee J, Ivanochko D, Kozak MM et al. (2017) A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancratic Cancer. Cancer Cell 32, 460–473.e466.

131 Chen K-E, Li M-Y, Chou C-C, Ho M-R, Chen G-C, Meng T-C & Wang AHJ (2015) Substrate specificity and plasticity of FERM-containing protein tyrosine phosphatases. Structure 23, 653–664.

132 Chen G, Yang Z, Feng M & Wang Z (2020) microRNA-217 suppressed epithelial-to-mesenchymal transition through targeting PTPN14 in gastric cancer. Biosci Rep 40, BSR20193176.

133 Han X, Sun T, Hong J, Wei R, Dong Y, Huang D, Chen J, Ren X, Zhou H, Tian W et al. (2019) Nonreceptor tyrosine phosphatase 14 promotes proliferation and migration through regulating phosphorylation of YAP of Hippo signaling pathway in gastric cancer cells. J Cell Biochem 120, 17723–17730.

134 Belle L, Ali N, Lonic A, Li X, Paltridge JL, Roslan S, Herrmann D, Conway JRW, Gehling FK, Bert AG et al. (2015) The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Sci Signal 8, ra18-ra18.

135 Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento EV, Gottesman M, Garbi C & Feliciello A (2008) Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem 283, 10919–10929.

136 Carlucci A, Porpora M, Garbi C, Galgani M, Santoriello M, Masclo M, di Lorenzo D, Altiere V, Quarto M, Terracciano L et al. (2010) PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J Biol Chem 285, 39260–39270.

137 Siddiqui N, Zwetsloot AJ, Bachmann A, Roth D, Hussain H, Brandt J, Kaverina I & Straube A (2019) PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport. Nat Commun 10, 6293.

138 Ni F, Yu W-M, Wang X, Fay ME, Young KM, Qiu Y, Lam WA, Sulcheck TA, Cheng T, Scadden DT et al. (2019) Ptpn21 controls hematopoietic stem cell homeostasis and biomechanics. Cell Stem Cell 24, 608–620.e606.

139 Berndsen K, Lies P, Yeshaw WM, Wavro PS, Nirajogi RS, Wightman M, Macartney T, Doward M, Knobel A, Tonelli F et al. (2019) PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. eLife 8, e50416.

140 Haynie DT & Ponting CP (1996) The N-terminal domains of tensin and auxilin are phosphatase homologues. Protein Sci 5, 2643–2646.

141 Lee D-W, Wu X, Eisenberg E & Greene LE (2006) Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J Cell Sci 119, 3502–3512.

142 Eto M, Kirkbride J, Elliott E, Lo SH & Brautigan DL (2007) Association of the tensin N-terminal protein-tyrosine phosphatase domain with the alpha isoform of protein phosphatase-1 in focal adhesions. J Biol Chem 282, 17806–17815.

143 Hall EH, Daugherty AE, Choi CK, Horwitz AF & Brautigan DL (2009) Tensin1 requires protein
phosphatase-1alpha in addition to RhoGAP DLC-1 to control cell polarization, migration, and invasion. J Biol Chem 284, 34713–34722.

144 Koh A, Lee MN, Yang YR, Jeong H, Ghim J, Noh J, Kim J, Ryu D, Park S, Song P et al. (2013) C1-Ten is a protein tyrosine phosphatase of insulin receptor substrate 1 (IRS-1), regulating IRS-1 stability and muscle atrophy. Mol Cell Biol 33, 1608–1620.

145 Kim E, Kim DH, Singaram I, Jeong H, Koh A, Lee J, Mochizuki Y & Majerus PW (2003) Characterization of C1-Ten/Tensin2 SH2 domain. Cell Signal 15, 130–138.

146 Hnia K, Vaccari I, Bolino A & Laporte J (2012) Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol Med 18, 317–327.

147 Raess MA, Friant S, Cowling BS & Laporte J (2017) WANTED - Dead or alive: Myotubularins, a large disease-associated protein family. Adv Biol Regul 63, 49–58.

148 Mochizuki Y & Majerus PW (2003) Characterization of myotubularin-related protein 7 and its binding partner, myotubularin-related protein 9. Proc Natl Acad Sci 100, 9768–9773.

149 Kim S-A, Vacratsis PO, Firestein R, Cleary ML & Dixon JE (2003) Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci USA 100, 4492–4497.

150 Doubravská I, Dostál V, Knop F, Libusová L & Macůrková M (2019) Human myotubularin-related protein 9 regulates ER-to-Golgi trafficking and modulates WNT3A secretion. Exp Cell Res 11 11709.

151 Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139, 468–484.

152 Min X, Lee BH, Cobb MH & Goldsmith EJ (2004) Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12, 1303–1311.

153 Newton AC & Trotman LC (2014) Turning off AKT: PHLPP as a drug target. Annu Rev Pharmacol Toxicol 54, 537–558.

154 Grzechnik AT & Newton AC (2016) PHLPPing through history: a decade in the life of PHLPP phosphatases. Biochem Soc Trans 44, 1675–1682.

155 Conner SH, Kular G, Peggie M, Shepherd S, Schüttelkopf AW, Cohen P & Van Aalten DMF (2006) TAK1-binding protein 1 is a pseudophosphatase. Biochem J 399, 427–434.

156 Choi JH, Williams J, Cho J, Falck JR & Shears SB (2007) Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem 282, 30763–30775.

157 Gokhale NA, Zaremba A & Shears SB (2011) Receptor-dependent compartmentalization of PIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochem J 434, 415–426.

158 Wang H, Nair VS, Holland AA, Capolicchio S, Jessen HJ, Johnson MK & Shears SB (2015) Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2 +) cluster which inhibits inositol pyrophosphate 1-phosphatase activity. Biochemistry 54, 6462–6474.

159 Randall TA, Gu C, Li X, Wang H & Shears SB (2020) A two-way switch for inositol pyrophosphate signaling: Evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Adv Biol Regul 75, 100674.

160 Geissler A, Chacinska A, Trusscott KN, Wiedemann N, Brandner K, Sickmann A, Meyer HE, Meisinger C, Pfanner N & Rehling P (2002) The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111, 507–518.

161 Guo Y, Cheong N, Zhang Z, de Rose R, Deng Y, Farber SA, Fernandes-Alnemri T & Alnemri ES (2004) Tim50, a component of the mitochondrial translocator, regulates mitochondrial integrity and cell death. J Biol Chem 279, 24813–24825.

162 Stanford SM & Bottini N (2017) Targeting tyrosine phosphatases: time to end the stigma. Trends Pharmacol Sci 38, 524–540.

163 Paiva S-L & Crews CM (2019) Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol 50, 111–119.