Association between OLR1 K167N SNP and Intima Media Thickness of the Common Carotid Artery in the General Population

Irene Marta Predazzi1-2-9, Giuseppe Danilo Norata3-4-9, Lucia Vecchione1, Katia Garlaschelli3, Francesca Amati1, Liliana Grigore3-5, Lucia Cutilli4, Angela Pirillo3, Simona Tramontana3, Francesco Romeo6, Giuseppe Novelli7-8, Alberico Luigi Catapano3-5

1 Department of Biopathology and Diagnostic Imaging, Section of Medical Genetics, School of Medicine, Tor Vergata University, Rome, Italy, 2 Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America, 3 Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Ospedale Bassini, Gorki, Cinisello Balsamo, Italy, 4 Department of Pharmacological Sciences, Università di Milano, Milan, Italy, 5 Multimedica IRCCS, S.S. Giovanni, 6 Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, 7 Ospedale San Pietro FBF, Rome, Italy, 8 National Agency for the Evaluation of Universities and Research, ANVUR, Rome, Italy

Abstract

Background and Purpose: The lectin-like oxidised LDL receptor-1 (OLR1) gene encodes a scavenger receptor implicated in the pathogenesis of atherosclerosis. Although functional roles have been suggested for two variants, epidemiological studies on OLR1 have been inconsistent. **Methods** - We tested the association between the non-synonymous substitution K167N (rs11053646) and intima media thickness of the common carotid artery (CCA-IMT) in 2,141 samples from the Progression of Lesions in the Intima of the Carotid (PLIC) study (a prospective population-based study).

Results: Significantly increased IMT was observed in male carriers of the minor C (N) allele compared to GC and GG (KN and KK) genotype. Functional analysis on macrophages suggested a decreased association to Ox-LDL in NN carriers compared to KN and KK carriers which is also associated with a reduced OLR1 mRNA expression. Macrophages from NN carriers present also a specific inflammatory gene expression pattern compared to cells from KN and KK carriers.

Conclusions: These data suggest that the 167N variant of LOX-1 receptor affects the atherogenic process in the carotid artery prior to evidence of disease through an inflammatory process.

Introduction

Atherosclerosis is a complex disease. Endothelial dysfunction, activation and inflammation, proteolysis, apoptosis, platelet aggregation, thrombosis and angiogenesis are the processes involved in the phases of the disease [1]. The effects of environment on these phenotypes are also impacted by underlying genetic predisposition that may not impact all endo-phenotypes in the same way. The internalization of Ox-LDL has a critical effect in both endothelial dysfunction and inflammation [2]. This process is mediated by several scavenger receptors [3], including the lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) [4]. LOX-1 is mainly expressed in macrophages, endothelial, and smooth muscle cells. Its expression is induced by pro-inflammatory stimuli, such as shear stress, TNFα, LPS and infections [5,6,7]. LOX-1 is encoded by the OLR1 gene, mapped to chromosome 12p13 [8]. A Single Nucleotide Polymorphisms (SNP) on exon 4, rs11053646 (G501C), leads to an amino acidic substitution (lysine to asparagine at position 167, K167N). Functional analyses suggested that a change on the positive isopotential surface determined by this variant could lead to a decreased binding and internalization of Ox-LDL [9].

Despite the evidence for a functional role of this polymorphism, results from epidemiological studies are equivocal [10,11,12,13,14,15]. Of note, a gender specific association has been recently described between the C [N] allele and prevalence of carotid plaque in females of Dominican-Hispanic origin [16].

A direct association between circulating Ox-LDL and Intima Media Thickness (IMT) of the Common Carotid Artery has been demonstrated in previous studies [17,18,19]. Circulating Ox-LDL and IMT resulted inversely related to anti-OxLDL antibodies titulation, suggesting that immune response to Ox-LDL could have a protective role in the early phases of the disease [17,18,19].

Citation: Predazzi IM, Norata GD, Vecchione L, Garlaschelli K, Amati F, et al. (2012) Association between OLR1 K167N SNP and Intima Media Thickness of the Common Carotid Artery in the General Population. PLoS ONE 7(2): e31086. doi:10.1371/journal.pone.0031086

Editor: Stefan Kiechl, Innsbruck Medical University, Austria

Received June 15, 2011; Accepted January 2, 2012; Published February 9, 2012

Copyright: © 2012 Predazzi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was funded by Research for Drug Development (RE.D.D., Tor Vergata University of Rome), Fondazione G. B. Bietti (ONLUS), Fondazione Umberto Veronesi per il progresso delle Scienze and Società Italiana Studio Aterosclerosi Lombardia Chapter, the Istituto Nazionale Ricerca Cardiovascolari, ASPREMARE, Istituto di Ricovero e Cura a Carattere Scientifico Multimedica and National Institutes of Health grant 2T32HL007751-16A2. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: irene.m.predazzi@vanderbilt.edu

9 These authors contributed equally to this work.
Since the N allele of rs11053646 is associated to lower levels of Ox-LDL internalization [9], we tested whether this allele is associated to CCA-IMT in the Progression of Lesions in the Intima of the Carotid Artery (PLIC) study (a prospective population-based study representative of the population of Northern Milan, Italy).

In addition, we investigated functional effects in macrophages obtained from carriers of different genotypes to test the hypothesis that N allele could have a reduced receptor activity. If this is true, that should result in a less effective Ox-LDL binding and internalization and therefore display lower levels of OLR1 RNA expression (as it is stimulated by Ox-LDL internalization itself).

Methods

Study sample

The use of human material in this study conforms to the principles outlined in the declaration of Helsinki. A cohort of 2,141 subjects attending the Atherosclerosis Centre in Bassini Hospital, Department of Pharmacological Sciences (University of Milan, Italy), was recruited for the PLIC study. This study has been previously widely described and the samples utilized in genetic studies [20,21,22,23,24,25,26].

Genotyping

Genomic DNA was extracted using the Flexigene DNA kit (Qiagen, Milan, Italy) according to the manufacturer’s instructions. SNP genotyping was performed through the Taqman Genotyping Assay (ID: C__22273024__10, Applied Biosystems, Foster City, CA) on a BioRad machine. One μL (10–200 ng) of DNA was analysed for genotyping.

A Genotype confirmation of ~50 samples was obtained through Sanger sequencing on an ABI3130 machine (Methods S1).

Statistical analysis

Group differences were determined by using Analysis of Variance (ANOVA) for continuous variables and chi-square analysis for categorical variables. Group differences with P<0.1 were considered as suggestive and P<0.05 was deemed as statistically significant. Plots were generated using Excel and data were analyzed using the SPSS Software (http://www.spss.it/) on a Windows Machine.

Peripheral blood mononuclear cell (PBMC) isolation and culture

Peripheral blood mononuclear cells (PBMCs) were obtained from two subjects carrying the CC genotype (NN) and eight CG subjects (KN and KK). These subjects were healthy and of comparable age, gender and blood lipid profiles. Blood samples diluted 1:3 in phosphate-buffered saline (PBS; 15 mL, PH 7.4) were layered onto 4 mL of Ficoll-Hypaque (Amersham, Milan, Italy) and centrifuged at 300 g for 35 min. PBMCs were removed from the interface and washed twice (10 min, 300 g) in PBS before being counted.

PBMCs were re-suspended in RPMI supplemented with antibiotics and 10% serum bovine serum albumin and plated in 6-well plates and incubated for 1 1/2 hours at 37°C. Non-adherent cells were removed by rinses of PBS (4×). For addressing the association of Ox-LDL with macrophages, 1 week after the isolation, monocyte-derived macrophages were incubated with or without TNFα (10 ng/μL) for 18 h followed by Ox-LDL (6.25 or 12.5 μg/mL) for 1 h and then processed for FACS analysis.

Expression analysis

Total RNA was extracted from circulating monocytes and from monocytes-derived macrophages cells according to manufacturer’s Trizol protocol [27] and reverse transcription was performed as described [20]. Three μL of cDNA was amplified by real-time quantitative polymerase chain reaction (PCR) with 1 × Sybr green universal PCR mastermix (Applied Biosystems, Foster City, CA). The specificity of the Sybr green fluorescence was tested by plotting fluorescence as a function of temperature to generate a melting curve of the amplicon. The melting peaks of the amplicons were as expected (data not shown). The primers used are reported in (Table S1). HPTR1 was used as internal reference. Each sample was analyzed in duplicate using the Applies Biosystems 7000 machine and each experiment was replicated twice. The PCR amplification was related to a standard curve ranging from 10⁻¹³ to 10⁻¹⁴ mol/L.

Flow cytometry

Isolation and modification of low density lipoproteins. LDLs (d = 1.019–1.063 g/mL) were isolated from fresh plasma of normolipidemic healthy volunteers by sequential ultracentrifugation [28]. Protein content was determined by the method of Lowry, using BSA as a standard [29]. Ox-LDL were generated with CaSO₄ 5 μM as described [30].

Fluorescent labeling of lipoproteins. For lipid labeling, Ox-LDL were incubated with the fluorescent dye DiO (300 μg DiO/mg OxLDL protein) in PBS for 18 h at 4 °C, passed over a PD10 column to remove unbound DiO, then centrifuged in a TL100 centrifuge at d = 1,063 g/mL for 2 h at 4 °C. DiO-labeled lipoproteins were passed through a PD10 column and protein content was determined by the method of Lowry [29].

Cell-association studies. Cells were incubated at 37°C for 1 h with the indicated concentrations of Ox-LDL labeled with DiO. Cells were then washed three times with cold PBS, detached by scraping, fixed in 1% paraformaldehyde and immediately subjected to fluorescence flow cytometry using a FACSscan (Becton Dickinson). For each sample 10,000 events were analyzed; data were processed using the CellQuest program (Becton Dickinson) [31].

Results

The relative frequencies of the three OLR1 genotypes are shown in Table 1. No deviation from Hardy Weinberg equilibrium was observed.

![Image](Image 58x24 to 76x41)

The presence of the N allele was not associated with any of the cardiometabolic variables analysed (Table 2) and the increase in IMT observed was not statistically significant (0.64±0.07 for KK, KN and NN respectively, p = n.s.). As a recent paper showed a gender related effect of the N allele, we decided to stratify the results for gender (Table 3). The N allele was associated to a higher IMT in men. In women N allele was not associated with any of the variables. The increase in IMT observed was not statistically significant (0.66±0.11 mm and 0.69±0.07 for KK, KN and NN respectively).

Table 1. Observed and expected frequencies of OLR1 K167N polymorphism in the PLIC population and comparison with those reported in dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs = 11053646).

	KK	KN	NN	p-value
Observed	1988 (87%)	283 (12%)	5 (0.02%)	0.12
Expected	1992.4 (88%)	274.1 (12%)	9.4 (0.04%)	
dbSNP frequency CEU	75%	25%	0%	

DOI:10.1371/journal.pone.0031086.t001
of disease, we confirmed in vivo that NN macrophages internalize Ox-LDL to a lower extent and found evidences suggestive for an immune reaction to circulating Ox-LDL in early phases of the disease.

Discussion

The main finding of this paper is that males from the general population with the C (N) allele of the OLR1 gene have an increased IMT. Since no other phenotype resulted associated to this variant, this suggests it to be an independent association. To date, conclusive results on the epidemiology of OLR1 gene polymorphisms were obtained. Both a protective role for MI and CAD severity [10,12,14] and a risk role for MI and hypertension [11,15] for the C (N) allele were proposed. Also, the replication of these results was rarely tested and never obtained [14], leading to the conclusion that these were spurious associations. Furthermore, a recent meta-analysis considered all studies that have been published on the relationship between OLR1 polymorphisms and MI, finding partially contrasting results and an overall effect that is non-significant when considering the K167N variation [33].

Recently, a study reported the association between the C (N) allele and carotid plaque prevalence in 167 women from a Dominican-Hispanic population [16]. We extend these findings, showing an allele’s association in 926 males from the PLIC population and analysing the molecular players and pathological responses associated with leucocytes and macrophages from NN, KN and KK subjects.

Table 3. Statistical observations on the association between OLR1 polymorphisms in males.

	K167N (rs11053646)	p-value	
	KK	KNaNN	
Systolic blood	135.83+/−0.630	133.39+/−1.47	ns
pressure (mmHg)			
Diastolic blood	84.42+/−0.34	83.17+/−0.91	ns
pressure (mmHg)			
Total cholesterol (mmol L/)	221.77+/−0.890	220.07+/−2.400	ns
HDL cholesterol (mmol L/)	56.13+/−0.340	54.07+/−0.810	ns
LDL cholesterol (mmol L/)	144.205+/−0.820	144.717+/−2.180	ns
Triglycerides (mmol L/)	108.11+/−1.420	105.58+/−3.280	ns
IMT (mm)	0.663+/−0.004	0.694+/−0.011	0.050*

doi:10.1371/journal.pone.0031086.t003

Table 2. K167N polymorphism in the PLIC population.

	K167N (rs11053646)	p-value	
Age (years)	54.33+/−0.260	54.43+/−0.680	ns
Systolic blood	133.33+/−0.420	131.23+/−1.050	0.070
pressure (mmHg)			
Diastolic blood	82.96+/−0.220	81.85+/−0.600	0.095
pressure (mmHg)			
Total cholesterol (mmol L/)	221.77+/−0.890	220.07+/−2.400	ns
HDL cholesterol (mmol L/)	56.13+/−0.340	54.07+/−0.810	ns
LDL cholesterol (mmol L/)	144.205+/−0.820	144.717+/−2.180	ns
Triglycerides (mmol L/)	108.11+/−1.420	105.58+/−3.280	ns
IMT (mm)	0.645+/−0.003	0.658+/−0.007	0.080

doi:10.1371/journal.pone.0031086.t002
population. It is known, in fact, that Hispanics have different susceptibility to cardiovascular disease, only partially explainable by environmental factors [34]. Furthermore OLR1 variants display highly different frequencies in different populations (p = 0.0001 comparing European ancestry HapMap populations and African HapMap populations, and p = 0.04 comparing European ancestry populations and Mexicans in HapMap populations. Details about analyses on HapMap samples are available upon request). Second, gene-regulation for many quantitative traits differs significantly between males and females. In particular, evidences suggested a differential genotype by sex interaction on variation of Paraoxonase-1 (PON1, a calcium dependent esterase known to have antioxidant properties) activity in Mexican American populations [35]. We tested for interaction between available functional variants on both OLR1 and PON1 from the HapMap dataset and found suggestive evidences for differences in gene-by-gender

Figure 1. Gene expression levels from Peripheral Mononuclear Cells (PBMCs) of KK, KN and NN carriers. Expression levels are measured by the log (ΔΔCt) obtained comparing each gene’s expression with that of the housekeeping gene, HPRT1. (*Nf-kB*: nuclear factor kappa-light-chain-enhancer of activated B cells, *ERK1/2*: extracellular related kinase 1/2, *IL-6*: Interleukin-6, *CD40*: cluster of designation 40, *CX3CR1*: CX3 chemokine receptor 1, *TLR-4*: Toll-like receptor 4, *MMP*: metalloproteinase). doi:10.1371/journal.pone.0031086.g001

Figure 2. OLR1 expression in KK, KN and NN in differentiated macrophages. (*Nf-kB*: nuclear factor kappa-light-chain-enhancer of activated B cells, *ERK1/2*: extracellular related kinase 1) (* p < 0.05 vs KK). doi:10.1371/journal.pone.0031086.g002
interactions in populations with different ancestry (details about analyses on HapMap samples are available upon request). Third, Wang and co-workers focused their analysis on the presence of plaque, (advanced atherosclerosis) while we focused on IMT (atherogenesis) thus suggesting a dual role for OLR1 in different phases of the atherogenic process.

Although we have to recognize some limits of our study, including the low number of NN individuals, this is the first study which was able to directly carry on functional tests on human NN PBMCs and macrophages and represents, to date, the second largest study which investigated the role of LOX-1 functional polymorphism in the onset of cardiovascular disorders. Therefore, these findings support the relevance of OLR1 in vascular disorders at epidemiological and functional level.

Supporting Information

Methods S1 Sequencing of samples: All of the CC (NN) and 50 of the CG (KN) and GG (KK) genotypes were verified through sequencing using forward primer: ATGCACGTGAGAGAACTAAGGG and reverse primer: TGGCTCTCAAACAAGAATTCC (Applied Biosystems, Foster City, CA). Two CC individuals turned out to be CG, but since for Statistical Analyses KK and KN were considered as a single group, results were not affected. All GG and CG individuals were confirmed.

Table S1 Primer sequences for Gene Expression Analysis ((Nf-kB: nuclear factor kappa-light-chain-enhancer of activated B cells, ERK1/2: extracellular related kinase 1/2, IL-6: Interleukin-6, CD40: cluster of designation 40, CX3CR1: CX3 chemokine receptor 1, TLR-4: Toll-like receptor 4, MMP: metalloproteinase).

Table S2 Gene expression levels in PBMCs obtained from KK and NN. (Nf-kB: nuclear factor kappa-light-chain-enhancer of activated B cells, ERK1/2: extracellular related kinase 1/2, IL-6: Interleukin-6, CD40: cluster of designation 40, CX3CR1: CX3 chemokine receptor 1, TLR-4: Toll-like receptor 4, MMP: metalloproteinase).

Table S3 OLR1, NF-kB and ERK1/2 expression levels in differentiated macrophages obtained from KK and NN PBMCs. (Nf-kB: nuclear factor kappa-light-chain-enhancer of activated B cells, ERK1/2: extracellular related kinase 1/2).

Table S4 OxLDL association levels to macrophages obtained from the different genotypes.

Author Contributions

Conceived and designed the experiments: IMP GDN GN ALC. Performed the experiments: IMP GDN LV KG FA LG ST LC AP. Analyzed the data: IMP GDN GA. Contributed reagents/materials/analysis tools: IMP GDN FA GN ALC. Wrote the paper: IMP GDN LV KG FA LG LC AP FR GN ALC.

References

1. Watkins H, Farrall M (2006) Genetic susceptibility to coronary artery disease: from promise to progress. Nat Rev Genet 7: 163–173.
2. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Modifications of Low-Density Lipoprotein That Increase Its Atherogenicity. The New England Journal of Medicine 320: 915–924.
3. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, et al. (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343: 331–5.
4. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, et al. (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 389: 604–7.
5. Li D, Mehta JL (2009) Intracellular signaling of LOX-1 in endothelial cell apoptosis. Circ Res 104: 566–8.
6. Dunn S, Voehr RS, Murphy JE, Homer-Vanmumkin S, Walker JH, et al. (2008) The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease. Biochem J 409: 349–55.
7. Jeannin P, Bottazzi B, Sironi M, Doni A, Russo N, et al. (2005) Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 22: 531–60.

8. Aoyama T, Sawamura T, Furutani Y, Matsuzuka R, Yoshida MC, et al. (1998) Structure and chromosomal assignment of the human lectin-like oxidised low-density-lipoprotein receptor-1 (LOX-1) gene. FEBS Lett 440: 29–32.

9. Biocca S, Falconi M, Filesi I, Baldini F, Vecchione L, et al. (2009) Functional analysis and molecular dynamics simulation of LOX-1 K167N polymorphism reveal alteration of receptor activity. PLoS One 4: e4648.

10. Mango R, Clementi F, Bortolani P, Forleo GB, et al. (2003) Association of Single Nucleotide polymorphisms in the oxidized LDL receptor 1 (OLR1) gene in patients with acute myocardial infarction. J Med Genet 40: 933–6.

11. Tatsuguchi M, Furutani M, Hinaoita J, Tanaka T, Furutani Y, et al. (2003) An oxidized low-density lipoprotein receptor gene variant is inversely associated with the severity of coronary artery disease. Clin Cardiol 27: 641–4.

12. Mentalli F, Filippi I, Fellarino M, Romeo S, Fanelli M, et al. (2006) The 3'-UTR C>T polymorphism of the oxidized LDL-receptor 1 (OLR1) gene does not associate with coronary artery disease in Italian CAD patients or with the severity of coronary disease. Nutr Metab Cardiovasc Disease 16: 345–52.

13. Knowles JW, Assimes TL, Boerwinkle E, Fornier SP, Gao A, et al. (2008) Failure to replicate an association of SNPs in the oxidized LDL receptor gene (OLR1) with CAD. BMC Med Genet 9: 23.

14. Hou XW, Wang LF, Wang N, Pang D, Hui B, et al. (2008) The G501C polymorphism of oxidized LDL receptor gene [OLR-1] is associated with the risk of myocardial infarction. Biochim Biophys Acta 1803: 237–40.

15. Ohmori R, Moniymaya Y, Nagano M, Taniguchi H, Egashira T, et al. (2004) An oxidized low-density lipoprotein receptor gene variant is inversely associated with the severity of coronary artery disease. Clin Cardiol 27: 641–4.

16. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–9.

17. Havel RJ, Driz HA, Bradin JS (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34: 1345–53.

18. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–75.

19. Cominacini L, Pasini AF, Garbin U, Davoli A, Tsetti ML, et al. (2009) Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 275: 12633–8.

20. Pelillo A, Rezzu F, Ferri N, Cubis H, Corsini A, et al. (2010) Uprgulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) by 15-lipoxygenase-modified LDL in endothelial cells. Atherosclerosis 214: 331–37.

21. Mango R, Biocca S, del Vecchio F, Clementi F, Sangiuliano F, et al. (2005) In vivo and in vitro studies support that a new splicing isoform of OLR1 gene is protective against acute myocardial infarction. Circ Res 97: 152–8.

22. Cheng Y, Wei Y, Li W, Chen J, Zhang W, et al. (2011) Associations between oxidized-lipoprotein receptor 1 G501C and 3'-UTR C>T polymorphisms and coronary artery disease: a meta-analysis. Cardiology 119: 90–5.

23. Hafif SM, Miettmann H, Stern MP, Agil A, Jalal (1996) Plasma oxidizability in Mexican Americans and non-Hispanic whites. Metabolism 45: 876–81.

24. Winner DA, Rainwater DL, Cole SA, Williams JT, Dyer TD, et al. (2007) Sex-specific QTL effects on variation in paraoxonase 1 (PON1) activity in Mexican Americans. Genet Epidemiol 31: 66–74.