SUPPLEMENTARY MATERIAL

Vibrational spectroscopic investigation and molecular structure of a 5α-reductase inhibitor: finasteride

Lin-Jie Wanga,*, \(^{\ddagger} \), William B. Zengb, and Song Gaoc

aSchool of Chemical Engineering, Shengli College, China University of Petroleum, 257000 Dongying, Shandong Province, China
bSchool of Chemical Engineering, Xiangtan University, 411105 Xiangtan, Hunan Province, China
cSchool of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610000 Chengdu, Sichuan Province, China

*\textit{e-mail: linjiewang1989@hotmail.com}
Figure 1S. The unit cell structure of finasteride
Table 1S. All of the calculated bond lengths and angles of Finasteride at different functionals in comparison with the XRD data

Parameter	Exp	Calculated with GGA/	PW91	RPBE	HCTH	PBE	BLYP
Bond Length (Å)							
C₁⁻C₂	1.329	1.343	1.349	1.338	1.345	1.346	
C₁⁻C₉	1.508	1.514	1.525	1.513	1.516	1.525	
C₂⁻C₃	1.472	1.482	1.490	1.475	1.484	1.489	
C₃⁻O₁	1.230	1.234	1.240	1.227	1.236	1.239	
C₃⁻N₁	1.343	1.377	1.387	1.367	1.379	1.387	
N₁⁻H₅₆	0.983	1.017	1.019	1.009	1.018	1.019	
N₁⁻C₄	1.472	1.461	1.472	1.451	1.462	1.476	
C₄⁻C₉	1.541	1.551	1.563	1.546	1.552	1.563	
C₄⁻C₅	1.499	1.521	1.531	1.515	1.523	1.531	
C₅⁻C₆	1.531	1.529	1.539	1.521	1.530	1.542	
C₆⁻C₇	1.541	1.535	1.546	1.528	1.536	1.547	
C₇⁻C₈	1.541	1.555	1.568	1.550	1.556	1.57	
C₇⁻C₁₃	1.527	1.530	1.544	1.525	1.531	1.543	
C₈⁻C₁₀	1.548	1.540	1.552	1.533	1.541	1.552	
C₈⁻C₉	1.562	1.561	1.577	1.563	1.562	1.577	
C₉⁻C₁₇	1.535	1.546	1.558	1.541	1.547	1.559	
C₁₀⁻C₁₁	1.532	1.538	1.548	1.530	1.539	1.55	
C₁₁⁻C₁₂	1.522	1.532	1.544	1.530	1.533	1.544	
C₁₂⁻C₁₃	1.542	1.550	1.562	1.545	1.551	1.563	
C₁₂⁻C₁₆	1.555	1.564	1.577	1.560	1.565	1.578	
C₁₂⁻C₁₈	1.519	1.538	1.551	1.534	1.539	1.551	
C₁₃⁻C₁₄	1.532	1.533	1.543	1.526	1.534	1.545	
C₁₄⁻C₁₅	1.545	1.552	1.561	1.539	1.553	1.564	
C₁₅⁻C₁₆	1.548	1.549	1.559	1.541	1.550	1.562	
C₁₆⁻C₁₉	1.525	1.529	1.544	1.530	1.531	1.541	
C₁₉⁻O₂	1.219	1.235	1.239	1.225	1.237	1.239	
C₁₉⁻N₂	1.349	1.368	1.377	1.362	1.369	1.377	
N₂⁻C₂₀	1.478	1.483	1.495	1.478	1.484	1.499	
N₂⁻H₅₅	0.952	1.014	1.015	1.004	1.016	1.015	
C₂₀⁻C₂₁	1.530	1.535	1.547	1.531	1.537	1.547	
C₂₀⁻C₂₂	1.535	1.535	1.548	1.531	1.536	1.546	
C₂₀⁻C₂₃	1.521	1.531	1.544	1.527	1.532	1.544	
Bond angle (°)							
C₂⁻C₁⁻C₉	121.519	122.131	122.312	121.816	122.147	122.317	
Bond	Distance (Å)						
------	--------------						
C1-C2-C3	121.756						
C2-C3-O1	121.457						
O1-C3-N1	123.201						
C2-C3-N1	115.312						
C3-N1-H36	113.171						
C3-N1-C4	120.898						
H36-N1-C4	125.791						
N1-C4-C9	109.732						
N1-C4-C5	110.910						
C5-C4-C9	114.197						
C4-C5-C6	109.568						
C5-C6-C7	111.067						
C6-C7-C8	111.262						
C6-C7-H8	107.527						
C8-C7-C13	108.806						
C7-C8-C9	110.445						
C7-C8-C10	112.350						
C9-C8-C10	113.168						
C1-C9-C4	105.079						
C1-C9-C8	113.289						
C1-C9-C17	106.638						
C4-C9-C8	107.200						
C4-C9-C17	112.686						
C8-C9-C17	111.847						
C8-C10-C11	113.222						
C10-C11-C12	111.152						
C11-C12-C13	107.825						
C11-C12-C16	116.225						
C11-C12-C18	110.008						
C13-C12-C16	100.112						
C13-C12-C18	113.046						
C16-C12-C18	109.381						
C12-C13-C14	103.642						
C12-C13-C7	112.861						
C14-C13-C7	118.550						
C13-C14-C15	104.203						
C14-C15-C16	106.500						
C15-C16-C12	104.056						
Bond	1st Value	2nd Value	3rd Value	4th Value	5th Value	6th Value	
-------------------	------------	------------	------------	------------	------------	------------	
C_{15}-C_{16}-C_{19}	112.109	112.947	112.918	112.962	112.944	112.967	
C_{12}-C_{16}-C_{19}	112.932	114.748	115.818	116.501	114.856	115.796	
C_{16}-C_{19}-O_{2}	122.433	122.734	122.766	122.505	122.756	122.705	
N_{2}-C_{19}-C_{16}	114.222	114.063	113.900	114.162	114.072	114.210	
N_{2}-C_{19}-O_{2}	123.264	123.180	123.325	123.330	123.147	123.078	
C_{19}-N_{2}-C_{20}	126.172	126.320	127.192	127.779	126.304	126.915	
C_{19}-N_{2}-H_{35}	117.067	117.000	116.703	116.486	117.007	116.795	
C_{20}-N_{2}-H_{35}	116.748	116.673	116.075	115.734	116.687	116.243	
N_{2}-C_{20}-C_{21}	109.896	109.788	110.002	110.365	109.846	109.965	
N_{2}-C_{20}-C_{22}	108.796	109.981	110.245	109.766	109.952	110.040	
N_{2}-C_{20}-C_{23}	105.495	106.318	106.131	106.288	106.332	106.198	
C_{21}-C_{20}-C_{22}	110.150	110.649	110.784	110.520	110.617	110.685	
C_{21}-C_{20}-C_{23}	110.145	110.082	110.006	109.969	110.045	109.966	
C_{22}-C_{20}-C_{23}	112.241	109.932	109.567	109.846	109.958	109.890	

mean absolute deviation: 0.457 0.543 0.557 0.458 0.522
Table 2S. Dihedral angles of Finasteride at different functionals in comparison with the XRD data

Dihedral angle(º)	Exp	Calculated with GGA/																															
		PW91	RPBE	HCTH	PBE	BLYP																											
C1-C2-C3-O1	162.724	167.854	169.211	167.290	167.889	169.57																											
C1-C2-C3-N1	-15.337	-9.756	-8.195	-10.962	-9.730	-8.155																											
C1-C9-C4-N1	-55.112	-53.545	-53.155	-54.066	-53.571	-52.945																											
C1-C9-C4-C3	179.658	-179.555	-179.437	179.338	-179.550	-179.290																											
C1-C9-C8-C7	-171.891	-171.865	-171.736	-171.768	-171.871	-171.984																											
C1-C9-C8-C10	61.170	60.715	60.371	59.287	60.666	60.163																											
C2-C3-N1-C4	-10.612	-18.570	-20.527	-16.388	-18.685	-19.759																											
C13-C12-C16-C19	-161.489	-164.157	-164.977	-165.140	-164.376	-164.947																											
C2-C1-C9-C4	34.582	30.637	29.754	32.078	30.563	30.473																											
C2-C1-C9-C8	151.286	147.198	145.888	148.491	147.089	146.710																											
C2-C1-C9-C17	-85.246	-89.267	-90.320	-87.809	-89.310	-89.596																											
C3-N1-C4-C5	174.566	178.416	179.944	178.071	178.527	178.889																											
C3-N1-C4-C9	47.467	52.044	53.174	50.831	52.181	52.147																											
C3-C2-C1-C9	0.050	1.109	0.994	0.309	1.172	0.219																											
N1-C4-C5-C6	176.785	175.218	174.853	176.512	175.190	175.037																											
N1-C4-C9-C17	60.611	62.915	63.088	61.830	62.795	63.554																											
N1-C4-C9-C8	-175.912	-173.747	-173.324	-174.573	-173.797	-173.059																											
C4-N1-C3-O1	171.365	163.819	162.056	165.359	163.695	162.514																											
C4-C5-C6-C7	55.174	54.816	54.419	53.480	54.927	53.997																											
C4-C9-C8-C10	176.621	176.547	175.916	174.742	176.459	175.894																											
C5-C4-N1-H36	-10.036	-29.839	-32.176	-28.802	-29.793	-32.006																											
C5-C4-C9-C8	58.858	60.243	60.394	58.831	60.225	60.596																											
C5-C4-C9-C17	-64.619	-63.095	-63.194	-64.766	-63.183	-62.791																											
C5-C6-C7-C8	-56.075	-52.708	-52.360	-52.378	-52.857	-51.757																											
C5-C6-C7-C13	-178.114	-174.570	-174.197	-174.598	-174.735	-173.654																											
C6-C5-C4-C9	-58.610	-60.003	-59.988	-57.997	-60.041	-59.874																											
C6-C7-C8-C9	57.308	53.954	53.956	54.552	54.083	53.588																											
C6-C7-C8-C10	-175.300	-177.294	-176.623	-175.037	-177.100	-177.106																											
C6-C7-C13-C14	-56.251	-53.665	-53.478	-53.308	-53.845	-53.287																											
C6-C7-C13-C12	-177.636	-177.549	-177.958	-178.739	-177.738	-177.708																											
C7-C8-C9-C17	67.511	67.419	67.556	67.578	67.418	67.248																											
C7-C8-C10-C11	50.352	53.136	52.827	50.756	53.099	52.800																											
C7-C13-C12-C11	-62.276	-60.064	-59.827	-59.585	-60.007	-59.722																											
C7-C13-C12-C16	175.796	179.111	179.597	179.922	179.189	179.713																											
C7-C13-C12-C18	59.552	62.611	62.796	62.748	62.647	62.843																											
Bond	C7-C13-C14-C15	C8-C10-C11-C12	C8-C7-C13-C12	C8-C7-C14-C14	C9-C8-C10-C11	C9-C8-C7-C13	C10-C8-C7-C13	C10-C11-C12-C13	C10-C11-C12-C18	C10-C11-C12-C16	C11-C12-C13-C14	C11-C12-C16-C15	C11-C12-C16-C19	C12-C13-C14-C15	C12-C16-C15-C14	C12-C16-C19-O2	C12-C16-C19-N2	C13-C12-C16-C15	C13-C14-C15-C16	C14-C13-C12-C16	C14-C15-C16-C19	C15-C16-C12-C18	C15-C16-C19-O2	C15-C16-C19-N2	C16-C19-N2-H35	C16-C19-N2-C20	C18-C12-C16-C19	C19-N2-C20-C21	C19-N2-C20-C22	C19-N2-C20-C23	C20-N2-C19-O2		
--------------	----------------	----------------	---------------	---------------	---------------	---------------	---------------	----------------	----------------	----------------	----------------	----------------	----------------	---------------	----------------	----------------	---------------	----------------	----------------	---------------	----------------	---------------	---------------	----------------	---------------	---------------	----------------	---------------					
	-160.911	-163.787	-164.328	-165.133	-163.765	-164.351	-53.579	58.932	-179.683	176.279	-178.080	-155.424	82.758	-34.955	19.021	90.225	-39.672	9.554	141.383	79.293	-26.938	156.234	-5.601	173.015	-42.525	61.357	-59.317	-3.783	-0.949	0.097	-2.301	-0.547	0.483
Table 3S. All of the observed and calculated vibrational frequencies of finasteride using by GGA method with different functionals

Vib. no.	Assignments	Exp	Calculated with GGA/					
			PW91	PBE	RPBE	BLYP	HCTH	
1	νN₂H₃₅	3429	3523.52	3517.12	3533.87	3503.01	3667.07	
2	νN₁H₆	3240	3517.57	3514.26	3505.29	3473.15	3634.81	
3	νC₂H₂	3201.78	3218.12	3217.38	3150.47	3126.47		
4	νC₁H₁	3116	3138.43	3146.81	3143.32	3110.35	3271.74	
5	νₙC₂₋₁,₂₂H		3119.13	3123.82	3139.69	3086.35	3247.78	
6	νₙC₂₋₁,₂₂H		3117.50	3122.25	3129.45		3247.78	
7	νₙC₁₈H₂₃-2₅		3115.47	3122.16	3125.50	3082.91	3190.46	
8	νₙC₂₃H₂₂-₂₄		3100.07	3107.15	3114.27	3066.25	3203.17	
9	νₙC₁₇H₂₁-₂₂		3096.47	3100.72	3111.17	3069.79	3184.78	
10	νₙC₁₇H₂₀-₂₂		3092.62	3096.56	3105.83	3066.20	3184.78	
11	νₙC₁₈H₂₃-2₅		3084.99	3086.91	3095.89	3057.87	3170.07	
12	νₙC₂₁,₂₂H₂₆-₂₇,₂₉-₃₁		3083.77	3085.05	3094.68	3053.07	3189.94	
13	νₙC₂₁,₂₂H₂₆-₂₇,₂₉-₃₁		3082.64	3082.34	3084.79	3053.07	3167.05	
14	νₙC₁₅H₁₇-₁₈		3079.38	3081.74	3080.78		3209.23	
15	νₙC₂₃H₃₃-₃₄		3064.71	3066.56	3076.26	3030.93	3145.59	
16	νₙC₁₄H₁₅-₁₆		3059.17	3061.99	3069.63	3038.08	3159.86	
17	νₙC₁₀H₁₀-₁₁		3053.51	3060.65	3066.55	3024.62	3194.69	
18	νₙC₆H₆-₇		3045.63	3052.07	3060.83	3022.24	3130.18	
19	νₙC₁₁H₁₂-₁₃		3035.79	3036.59	3038.54		3101.20	
20	νₙC₅H₄-₅		3033.09	3032.53	3038.05	3012.15	3086.08	
21	νₙC₁₀H₁₀-₁₁		3029.51	3029.35	3034.48		3095.65	
22	νₙC₁₈H₂₃-2₅		3025.57	3027.64	3033.28	3008.52	3086.74	
23	νₙC₁₇H₂₀-₂₂		3020.58	3022.93	3030.96	3005.47	3116.47	
24	νₙC₁₄H₁₅-₁₆		3014.43	3017.73	3027.58	2996.55	3033.56	
25	νₙC₁₀H₁₀-₁₁		3013.27	3017.05	3024.41	2999.87		
26	νₙC₂₂H₂₉-₃₁		3012.34	3014.82	3023.52	2995.81	3090.44	
27	νₙC₂₁H₂₆-₂₇; νₙC₁₅H₁₇-₁₈		3009.45	3007.99	3023.11	2989.99	2987.80	
28	νC₁₁H₆		2997.08	3000.67	3011.55	2981.95	3023.44	
29	ν₂C₂₃H₃₃-₃₄		2986	2994.88	2992.67	2994.43	2973.46	3053.52
30	ν₁C₂₃H₃₃-₃₄		2969	2972.46	2977.34	2971.53	2950.33	3074.22
31	ν₁C₆H₆-₇		2967.02	2973.26	2968.76	2946.50	3033.93	
32	ν₂C₁₁H₁₂-₁₃		2962.53	2963.08	2965.52	2955.85		
33	ν₁C₁₈H₁₉		2936	2924.59	2924.11	2955.08	2907.17	2932.14
34	ν₁C₁₃H₁₄		2904	2917.88	2917.30	2928.69	2923.26	3075.97
C4H3	2866	2888.82	2885.14	2887.32	2897.14	2945.62		
C3O2; B11H36; B2H2	1688	1698.01	1695.16	1686.55	1667.94	1775.34		
C19O2; B2H3	1668	1686.02	1693.63	1682.14	1653.36	1740.00		
C1	1600	1634.60	1635.8	1620.95	1607.62	1661.61		
δaC21,22,23H26-28-29-31-32-34;	1505	1500.91	1501.91	1514.41	1506.00	1556.08		
B2H3; δaC21,22,23H26-28-29-31-32-34;	1495.46	1499.02	1502.48	1488.60	1539.70			
δC14H15-16	1488.82	1490.38	1491.79	1493.64	1601.99			
δC10H10-11; δaC18H23-25	1482.71	1480.27	1490.61	1495.85	1576.07			
δaC21,22,23H26-28-29-31-32-34;	1480.01	1479.87	1488.31	1487.40	1529.81			
δC11H12-13, δC18H23-25	1473.83	1475.15	1481.71	1479.41	1549.98			
δaC17H20-22	1471.75	1470.6	1478.67	1480.22	1532.42			
δaC21,23H26-28-32-34	1468.06	1466.4	1476.78	1470.34	1510.52			
δaC21,22,23H26-28-29-31-32-34; δaC18H23-25	1465.01	1461.61	1476.07	1473.7	1495.66			
δaC17H20-22; δC3,6H4-5,6-7	1463.39	1460.6	1474.29	1476.47				
δC18H23-25; δC6,10H6-7,10-11	1461.70	1460.07	1472.68	1473.63	1526.51			
δC13H17-18	1461.44	1459.02	1469.73	1470.21				
δaC17H20-22; δC6H6-7	1458.86	1457.6	1465.98	1476.47				
δaC21,22,23H26-28-29-31; B2H3	1456.99	1455.36	1465.13	1455.55	1489.29			
δaC18H23-25; δC10,15H10-11,17-18	1450	1450.76	1448.03	1451.86	1462.99			
δC3H4-5; δaC17H20-22	1449.48	1440.15	1448.64	1463.92	1490.47			
δaC21,22,23H26-28-29-31-32-34;	1439.70	1436.38	1442.11	1455.97				
βC1H1; B2H3; γC6H3	1401.43	1395.65	1405.07	1399.90	1454.72			
δC21,22,23H26-28-29-31-32-34	1392	1395.47	1391.59	1402.34	1419.03			
C3H4-5; γC6H3	1385.66	1383.81	1392.84	1484.35	1409.49			
δC18H23-25; γC4,13H5,14	1383	1383.03	1382.59	1382.64	1388.30	1445.43		
δC17H20-22; βC1,2,7,13H1,2,8,14; γC10H10-11	1376.69	1370.93	1379.24	1373.12				
βC1,7,13H1,8,14; δC18H23-25;	1373.07	1368.81	1376.53	1370.15	1449.96			
δC22,23H29-31-32-34	1368.82	1364.04	1374.31	1368.42	1430.32			
δC21,22,23H26-28-29-31-32-34	1364	1363.23	1361.62	1369.55	1368.42	1428.95		
γC6H3	1358.85	1353.6	1367.68	1357.35	1421.09			
δC17H20-22	1353.85	1347.88	1360.54	1353.28	1409.49			
γC4,7,8,11,13H3,8,9,13,14; γC10H10-11; C10H10	1344.65	1341.62	1355.77	1344.04	1381.35			
γC7,13H8,14	1336.85	1333.89	1347.59	1343.46				
γC4,7,13,16H3,8,9,14,19; γC5,11H4,5,12-13;	1334.97	1330.51	1338.04	1340.40	1378.70			
γC4,6,15H3,6,17,19; γC3H4-5	1330	1331.26	1326.9	1329.08	1336.54	1364.80		
γC4,7,8,13H3,8,9,14; γC11H12-13	1328.93	1324.52	1321.96	1340.40	1381.81			
γC4,7,15,16H3,8,17,19; γC5,11H4,5,12-13;	1322.14	1318.87	1317.68	1326.74	1333.10			
βN1H6; γC4,10,11H13,11,12; γC3H4-5	1317.07	1310.21	1315.38	1323.09	1344.17			
βN1H6, C2H2; γC8H9; τC11H12-13	1306.20	1301.54	1305.83	1311.85				
75 βC₂H₅; γC₄,7,16H₃,8,19; δC₁₄H₁₅-16 1299.34 1295.94 1302.58 1300.24 1354.83
76 γC₄,6,7,8,11H₃,6,8,9,14 1291 1292.38 1288.78 1290.29 1296.93 1320.47
77 γC₈,13,16H₉,13,19; δC₁₄H₁₅-16,17,18 1290.22 1285.45 1284.93 1289.73 1305.38
78 γC₈,14,15,16H₉,15,18,19 1277 1274.40 1268.44 1274.32 1282.12 1324.15
79 δC₁₄H₁₅-16,17-18 1264.24 1262.69 1263.45 1259.41 1286.65
80 γC₇,11H₈,13; τC₁₀H₁₀-11 1257 1250.16 1247.23 1247.02 1250.71 1279.97
81 γC₈,14,15,16H₆,6C₁₅H₁₅-16; δasC₂₁,2₂H₂₆-2₈,2₉,3₁,3₂,3₄ 1245.53 1238.99 1301.04
82 γC₄,5H₃,5; τC₆H₆-7 1243.47 1239.61 1235.32 1237.10 1269.61
83 γC₈,13,16H₉,13,19; δC₁₄H₁₅-16 1230.85 1230.86 1225.76 1235.53 1257.36
84 γC₁₄H₁₆; τC₁₅H₁₇-18; δasC₂₁,2₂,2₃H₂₆-2₈,2₉,3₁,3₂,3₃,3₄ 1227.94 1227.42 1223.17 1228.25 1270.72
85 τC₁₄,1₅H₁₅-16,17-1₈ 1225 1225.56 1225.35 1217.17 1224.96
86 τC₁₄,1₅H₁₅-16,17-1₈; γC₁₆H₁₉; 1203 1220.53 1217.41 1213.03 1210.22 1237.60
87 βC₁₁H₇; τC₅H₅ 1213.14 1207.87 1205.79 1208.79
88 τC₁₀,1₄H₁₀-1₁,1₅-1₆; δC₁₆H₁₉; δasC₁₈H₂₃-2₅; 1209.11 1206.75 1202.35 1206.65 1234.82
89 γC₇,1₃H₈,1₄; τC₁₀H₁₀-1₁; βN₂H₃₅ 1191.03 1189.47 1186.67 1201.21 1224.77
90 βC₁₁H₇; βN₂H₃₅; γC₄,6,1₆H₃,7,1₉; τC₅H₄₅ 1186.76 1183.79 1180.24 1185.10 1199.03
91 βN₂H₃₅; γC₁₆H₁₉ 1168 1170.58 1167.75 1164.15 1182.65
92 βC₁₂H₁₂; τC₅,8,₁₂H₄,₉,₁₂; νC₆C₉ 1157.20 1153.71 1148.79 1154.19 1189.71
93 βC₁₂H₁₂; γC₄,₁₀H₃,₁₁; τC₁₁H₁₂-₁₃; νC₆C₉ 1150.21 1145.9 1141.19 1147.03 1254.11
94 γC₇Hₘ; νC₇C₁₃ 1143.50 1141.43 1127.24
95 βC₁₂H₁₂; 1125 1123.38 1120.32 1117.23 1124.49 1180.98
96 βC₁₂H₁₂; βN₁H₃₆; νC₄N₁ 1113.72 1110.81 1109.13 1112.38 1173.47
97 γC₇,₁₆H₈,₁₉; δasC₁₈H₂₃-2₅; C₇; C₁₂; νC₁₃C₁₄ 1103.49 1101.86 1096.05 1105.50 1148.38
98 βC₁₂H₁₂; νC₆H₆-₇; γC₁₃H₁₄; βN₁H₃₆; C₉; 1097.89 1095.59 1085.77 1092.13 1152.23
99 γC₁₁,₁₃,₁₆H₁₂,₁₄,₁₉; τC₁₄,₁₅H₁₅-1₆,1₇-₁₈ 1091.94 1088.9 1079.36 1081.57 1144.63
100 γC₄,₅,₇H₃₅,₈ 1077.42 1075.76 1066.54 1074.45 1115.73
101 γC₈H₉; τC₁₁H₁₂-₁₃ 1065 1056.01 1055.08 1058.67 1060.70 1107.54
102 δasC₂₁,₂₂,₂₃H₂₆-₂₈,₂₉,₃₁-₃₄ 1053.57 1053.43 1045.31 1047.06 1102.30
103 γC₈H₉; δC₁₀H₁₀-₁₁; δasC₂₃H₃₂-₃₄; ring relaxation vibration 1051.32 1050.28 1041.49 1039.20
104 δasC₂₁,₂₂,₂₃H₂₆-₂₈,₂₉,₃₁-₃₄ 1040.91 1039.57 1037.85 1036.09 1084.19
105 γC₁₆H₁₉; νC₁₅₁₆ 1027 1028.16 1028.04 1013.01 1032.29 1074.95
106 γC₆,₈,₁₁H₆,₉,₁₄; τC₁₄H₁₅-₁₆; νC₅C₆ 1024.14 1023.45 1011.75 1008.89 1070.43
107 γC₈,₁₁,₁₆H₉,₁₂,₁₉; βC₁₄H₁₅-₁₆; γC₁₅H₁₇-₁₈ 1021.76 1020.63 1008.26 1002.55 1050.14
108 δasC₅H₅₆; νC₅H₆ 995.65 995.97 985.95 996.92 1042.38
109 γC₄,₁₁H₃,₁₃; τC₃H₄-₅; δasC₁₈H₂₃-₂₅ 991 992.30 988.64 985.22 980.25 1036.42
110 γC₁₁H₁₃; δasC₁₇H₂₀-₂₂ 985.02 983.28 981.42 978.00
111 γC₁₂H₁₂ 976.07 978.29 971.37 971.16 1014.62
112 γC₁₁,₁₄,₁₆H₁₃,₁₆,₁₉; δasC₁₈H₂₃,₂₄,₂₅ 968 965.32 965.38 966.38 962.83
113 $\delta_{as}C_{21,22,23}H_{26-28,29-31,32-34}$ 960 960.90 957.44 951.82 957.43 1019.13
114 $\nu C_{14}C_{15}$ 952.56 951.75 942.66 945.45 987.96
115 $\gamma C_{5,7,10,14,15}H_{4-5,8,10-11,15,17}$; $\delta_{as}C_{17}H_{20-22}$ 940.40 938.4 935.43 933.02 1002.46
116 $\delta_{as}C_{17}H_{20-22}$ 937 933.86 929.97 926.18 925.07 965.39
117 $\gamma C_{6}H_{6-7}$; $\delta_{as}C_{17}H_{20-22}$ 929.04 925.62 914.51 924.00 974.00
118 $\delta_{as}C_{20,21,22,23}H_{26-28,29-31,32-33}$ 925.04 924.11 914.04 912.61
119 $\delta_{as}C_{21,22,23}H_{26-28,29-31,32-34}$ 914 914.18 914.04 907.11 909.10 952.86
120 $\rho C_{5,11}H_{4-5,12-13}$ 910.90 910.68 904.78 896.65 955.99
121 $\rho C_{6}H_{6-7}$; $\gamma C_{10,11}H_{10,12-13}$; $\delta_{as}C_{18,23}H_{23-25,32-34}$ 907.26 906.36 898.94 894.27 945.40
122 $\delta_{as}C_{23}H_{32-34}$ 898.64 899.42 886.65 892.84 927.02
123 $\beta N_{1}H_{36}$; $\gamma C_{6}H_{6-7}$; $\rho C_{10}H_{10-11}$; $\delta_{as}C_{17}H_{20-22}$ 890 881.87 881.36 873.24 873.09 915.85
124 $\gamma C_{5,14}H_{4-5,15-16}$; $\delta_{as}C_{17}H_{20-22}$ 848.71 846.64 837.69 866.70 872.74
125 $\rho C_{14}H_{15-16}$; $\gamma C_{15}H_{17-18}$ 836.93 838.37 831.66 828.59 878.75
126 $\gamma C_{11}H_{12-13}$ 833.08 838.35 819.96 813.86 831.59
127 $\gamma C_{12}H_{1,2}$ 810.02 808.83 815.5 803.72 849.33
128 $\gamma C_{1,6,16}H_{1,6-7,10-11}$ 803.48 803.96 798.23 786.95
129 $\gamma C_{13,14,16}H_{14,16-19}$; $\nu C_{20}C_{21-22}$; $\nu C_{16}C_{19}$ 786.72 786.15 776.94 776.53 820.32
130 $\rho C_{15}H_{17-18}$; $\gamma C_{16}C_{19}$ 766 765.47 766.83 764.38 752.60 759.38
131 $\gamma C_{8,15}H_{4-7}$; $\delta C_{19}O_{2}$ 761.65 763.46 754.11 753.38
132 $\nu C_{20}C_{21-23}$; 741 733.68 732.96 719.8 716.41
133 $\nu C_{20}C_{18-17}$; $\rho C_{5}H_{4-5}$ 731.66 729.54 715.3 712.00 757.08
134 $\gamma C_{1,2}H_{1,2}$ 688 694.58 695.34 698.79 685.92 716.10
135 $\rho C_{10,14,15}H_{10-11,15-16,17-18}$; $\gamma C_{18}H_{25}$; ν ring prckering vibration 676.85 678.05 665.6 666.42 668.36
136 $\gamma C_{7}H_{8}$; ring prckering vibration 649.17 647.31 638.02 642.48
137 $\gamma N_{1}H_{36}$; ring prckering vibration 613 616.65 615.8 615.23 616.40 635.34
138 $\gamma N_{1}H_{36}$; $\rho C_{15}H_{17-18}$ 600 602.30 598.19 599.96 601.32 635.34
139 $\gamma N_{1}H_{36}$; $\rho C_{5}H_{4-5}$ 572 574.28 570.03 570.06 571.82 629.93
140 $\gamma N_{1}H_{36}$; $\rho C_{5,14}H_{4-5,15-16}$ 548.78 542.55 543.11 550.72 580.23
141 $\gamma N_{1}H_{36}$; $\delta C_{18}H_{23-25}$ 536 534.64 532.88 524.35 529.12 598.24
142 $\gamma N_{1,2}H_{36,35}$ 522.00 519.78 513.74 515.76 554.08
143 $\gamma N_{1}H_{36}$; $\nu C_{2}H_{2}$ 502 498.83 496.65 495.23 498.62 544.97
144 $\gamma N_{2}H_{35}; \nu C_{6,10}H_{6-7,10-11}$ 484 488.10 488.53 486.01 484.23 522.52
145 $\delta_{as}C_{21,22,23}H_{26-28,29-31,32-34}$; νC_{19} 470.88 470.9 473.41 467.87 518.31
146 $\gamma N_{2}H_{35}$; $\gamma C_{19}O_{2}$ 463 458.40 460.74 460.29 453.19 489.16
147 $\gamma N_{1}H_{36}$; $\nu C_{4,5}H_{4}$ 448.63 445.88 449.29 447.19 444.70
148 $\gamma N_{1,2}H_{36,35}$; ring prckering vibration 432 429.69 428.79 427.73 427.43 459.89
149 $\delta_{as}C_{21,22,23}H_{26-28,29-31,32-34}$; $\gamma C_{1}H_{1}$; $\gamma N_{1}H_{36}$; $\nu C_{19}O_{2}$ 422.12 419.96 420.75 423.98 454.36
150 $\delta_{as}C_{21,22,23}H_{26-28,29-31,32-34}$; $\gamma N_{2}H_{35}$; $\nu C_{19}O_{2}$ 416.92 416.81 418.08 417.94
151 $\gamma N_{2}H_{35}; \gamma N_{1}H_{36}; \nu C_{10,11}H$ 411.62 413.59 412.34 413.78

1,10,11,15,16,17,18
| 152 γN₂H₃₅ | 402.23 | 408.27 | 409.22 | 406.07 | 403.76 |
| Mean Absolute Deviation | 14.405 | 14.846 | 16.696 | 15.632 | 61.174 |