INTRODUCTION

The genus *Pythium* as defined by Pringsheim in 1858 was divided by Lévesque & de Cock (2004) into 11 clades based on molecular systematic analyses. These clades are generally well supported by morphological features. In particular, *Pythium* species belonging to clade K were observed to be phylogenetically distinct from the rest of the species belonging to clade K were observed to be phylogenetically and as a separate phylogenetic entity. *Phytophthora* is morphologically intermediate between the genera *Pythium* and *Phytophthora*. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. The formal transfer of clade K species to *Phytophthora* and a comparison with morphologically similar species of the genera *Pythium* and *Phytophthora* is presented. A new species is described, *Phytophthora miripenurens*.

MATERIALS AND METHODS

Morphological studies

The strains used for the phylogenetic study were morphologically examined to verify their identity and to find the characteristic features of the group. The methods used for cultivation of the strains for study of morphology and zoospore development are the same as described by de Cock & Lévesque (2004).

DNA extraction, amplification and sequencing

Almost 300 strains of *Pythium*, *Phytophthium*, *Phytophthora*, *Halophytophthora* and *Albugo* were used in this study (Table 1). DNA was extracted using the protocols as described in Bala et al. (2010a). PCR amplifications for the rDNA LSU and ITS1-5.8S-ITS2 regions and mitochondrial DNA COI were done using the protocols and primer sequences as provided in Robideau et al. (2011). The LSU region was amplified using forward primer NS1 (5'-TAGTGCATATGCTTGTCC-3') (White et al. 1990) and reverse primer OomLo5.8S47B (3'-CGCATTACG-TATCGCACTTCGAC-5') (Mazzola et al. 2002), with an internal denaturation at 95 °C for 3 min, 35 cycles of denaturation at 95 °C for 30 s, primer annealing at 55 °C for 45 s, elongation at 72 °C for 2 min and final elongation at 72 °C for 8 min. Sequencing primers used for the LSU region were NS1, NS2 (5'-GGCT-GCTGCGACCACTTGCG-3'), NS3 (5'-GCAAATGCGTGCC-CAGCCAGCC), NS4 (5'-CTTCGCTCAATCTTTAAG-3'), NS5
Species	Strain Number	Clade	SSU,ITS	SSU	COI	LSU	ITS	
Albugo candida	AC2V	Clade 1						
Phytophthora								
Ph. avicenniae	CBS158.85	Clade 4	HQ708184	HQ656549				
Ph. cerea	CBS241.83	Clade 8	HQ656549	HQ656549				
Ph.distinctica	CBS5680.84	Clade 9	HQ708183	HQ656505				
Ph. macrochlamydospora	P10564	Clade 7						
Ph. allii	P16503	Clade 4						
Ph. cornelliae	P13660	Clade 1						
Ph. cornelliae	CBS305.62	Clade 4	HQ708219	HQ656514				
Ph. c. aureae	P16040	Clade 8						
Ph. c. balearenkensis	CBS679.84	Clade 6	HQ708220	HQ656528				
Ph. c. b. biehnii	P10117	Clade 2						
Ph. c. b. bohmeriae	CBS291.29	Clade 10	HQ708221	HQ656519				
Ph. c. bulbosa	P1257	Clade 10						
Ph. c. clavata	P6950	Clade 10						
Ph. c. botryosa	P1044	Clade 2						
Ph. c. brassicae	CBS178.87	Clade 8	HQ708225	HQ656514				
Ph. c. brassicae	P10155	Clade 6						
Ph. c. clavata	P3273	Clade 8						
Ph. c. cactorum	CBS108.09	Clade 1						
Ph. c. cinicala	P7014	Clade 1						
Ph. c. clavata	P10365	Clade 1						
Ph. c. capiscii	CBS554.88	Clade 2						
Ph. c. capitata	P6522	Clade 2						
Ph. c. cinnamomi	CBS144.22	Clade 7	HQ708257	HQ656512				
Ph. c. cinnamomi var. parvispora	CBS411.96	Clade 7	HQ708268	HQ656521				
Ph. c. cinnamomi var. robiniae	P16351	Clade 7						
Ph. c. cinnamomi	CBS221.88	Clade 2	HQ708269	HQ656516				
Ph. c. citrophthora	CBS950.87	Clade 7	HQ708272	HQ656530				
Ph. c. c. clavata	P1212	Clade 2						
Ph. c. c. clavata	P3942	Clade 2						
Ph. c. c. clavata	P6102	Clade 2						
Ph. c. c. cryptogea	P16165	Clade 8						
Ph. c. drechleri	CBS468.81	Clade 8	HQ708276	HQ656528				
Ph. c. drechleri	P10331	Clade 8						
Ph. c. drechleri	P1087	Clade 8						
Ph. c. ebracteptica	CBS129.23	Clade 8	HQ708286	HQ665121				
Ph. c. eupaea1	P10324	Clade 7						
Ph. c. falax	P10722	Clade 9						
Ph. c. foliorum	P10969	Clade 8	HQ261307	EU709704				
Ph. c. fragaria1	CBS209.46	Clade 7	HQ708294	HQ656519				
Ph. c. fragaria1	P1435	Clade 7						
Ph. c. frigida	P16051	Clade 2						
Ph. c. goranopodiinae	CBS363.79	Clade 6	HQ708297	HQ656526				
Ph. c. goranopodiinae	CBS554.87	Clade 6						
Ph. c. goranopodiinae	P10337	Clade 6						
Ph. c. goranopodiinae	P3700	Clade 6						
Ph. c. hedranda	CBS118732	Clade 1	HQ708300					
Ph. c. heveae	PDA331	Clade 1						
Ph. c. heveae	CBS296.29	Clade 5	HQ708301	HQ656194				
Ph. c. hibernalis	P10167	Clade 5						
Ph. c. himalayensis	CBS357.59	Clade 6						
Ph. c. himalayensis	CBS200.81	Clade 6						
Ph. c. idaei	P3826	Clade 6						
Ph. c. idaei	P3909	Clade 3						
Ph. c. infestans	CBS366.51	Clade 1						
Ph. c. insolita	P6703	Clade 9						
Ph. c. inostata	CBS215.85	Clade 6	HQ708311	HQ656154				
Ph. c. loamella	P8478	Clade 6						
Ph. c. ipomoeae	P10225	Clade 1						
Ph. c. iranicum	CBS374.72	Clade 1						
Ph. c. katsuriae	CBS557.85	Clade 5						
Ph. c. katsuriae	P10187	Clade 5						
Ph. c. kemania	P10613	Clade 8						
Ph. c. kemania	P10958	Clade 10	HQ708324	HQ656159				
Ph. c. lateralis	CBS168.42	Clade 8						
Ph. c. lateralis	Lev1213	Clade 8	HQ708320					
Ph. c. macrochlamydospora	P1026	Clade 9						
Ph. c. medicaginis	CBS219.88	Clade 2						
Ph. c. megakarya	P8072	Clade 8						
Ph. c. megakarya	P1672	Clade 4	HQ708235					
Ph. c. metarhizina	P1672	Clade 4						
Ph. c. metarhizina	P6516	Clade 4						
Ph. c. megasperma	CBS402.72	Clade 6	HQ708329	HQ665228				
Species	Strain Number	Clade	SSU,ITS_28S	SSU,ITS	SSU	COI	LSU	ITS
-------------------------------	---------------	-------	-------------	---------	-----	-----	-----	-----
Phytopythium megaspermum	P10340	Clade 6						
Phytopythium melonis	CBS552.69	Clade 7						
Phytopythium menglei	P10139	Clade 2						
Phytopythium mirabilis	CBS577.85	Clade 1						
Phytopythium multivesiculata	CBS545.96	Clade 2						
Phytopythium multivora	P1233	Clade 2						
Phytopythium nemorosa	P10288	Clade 3						
Phytopythium nicotianae	CBS303.29	Clade 1						
Phytopythium palivora	CBS528.29	Clade 4						
Phytophthora parisiensis	P21281	Clade 9						
Phytophthora pinifolia	P16100	Clade 6						
Phytophthora polonica	P15004	Clade 9						
Phytophthora porri	CBS567.86	Clade 9						
Phytophthora phaseoli	CBS556.88	Clade 1						
Phytophthora phaseoli	P10145	Clade 1						
Phytophthora pinifolia	P16100	Clade 6						
Phytophthora polonica	P15004	Clade 9						
Phytophthora primulae	P10220	Clade 8						
Phytophthora primulae	P10333	Clade 8						
Phytophthora pseudosyringae	P10443	Clade 3						
Phytophthora pseudosyringae	P16355	Clade 3						
Phytophthora pseudosyringae	P10218	Clade 1						
Phytophthora quercetorum	P15555	Clade 4						
Phytophthora quercetorum	P0113	Clade 4						
Phytophthora quercina	P10334	Clade 4						
Phytophthora quinoa	CBS407.48	Clade 9						
Phytophthora ramorum	CBS101553	Clade 8						
Phytophthora roseaearum	P8048	Clade 6						
Phytophthora roseaearum	P8049	Clade 6						
Phytophthora rubi	CBS967.95	Clade 7						
Phytophthora sambaeana	P3163	Clade 8						
Phytophthora sambaeana	CBS557.88	Clade 7						
Phytophthora sambaeana	P15122	Clade 2						
Phytophthora sexigera	CBS382.61	Clade 7						
Phytophthora sexigera	P15880	Clade 6						
Phytophthora sexigera	P16355	Clade 3						
Phytophthora sexigera	P10301	Clade 8						
Phytophthora sexigera	P2876	Clade 8						
Phytophthora sexigera	P8048	Clade 6						
Phytophthora sexigera	P8049	Clade 6						
Phytophthora sexigera	P10456	Clade 9						
Phytophthora sexigera	P10456	Clade 9						
Phytophthora sexigera	P15506	Clade 6						
Phytophthora sexigera	P10506	Clade 4						
Phytophthora sexigera	P11555	Clade 6						
Phytophthora sexigera	P3036	Clade 6						
Phytophthora syringae	CBS132.23	Clade 8						
Phytophthora syringae	P10330	Clade 8						
Phytophthora tabaci	CBS305.29	Clade 1						
Phytophthora tentaculata	CBS552.96	Clade 7						
Phytophthora tentaculata	P10363	Clade 1						
Phytophthora thermophilum	P1896	Clade 9						
Phytophthora trifoli	P1482	Clade 8						
Phytophthora tropicalis	CBS543.91	Clade 2						
Phytophthora tropicalis	P10329	Clade 2						
Phytophthora uliginosa	P10328	Clade 7						
Phytophthumum boreale	CBS551.88	Clade 7						
Phytophthumum boreale	CBS11254	Clade 7						
Phytophthumum carnicum	CBS529.30	Clade 9						
Phytophthumum carnicum	CBS119171	Clade 7						
Phytophthumum delawarrense	CBS5212304	Clade 1						
Phytophthumum delawarrense	CBS286.31	Clade 1						
Phytophthumum delawarrense	CBS131.91	Clade 1						
Phytophthumum delawarrense	CBS119360	Clade 7						
Phytophthumum delawarrense	CBS12262	Clade 6						
Phytophthumum delawarrense	A89 (GENBANK)	Clade 6						
Phytophthumum delawarrense	CBS122443	Clade 6						
Phytophthumum delawarrense	CBS124523	Clade 6						
Phytophthumum delawarrense	CBS124524	Clade 6						

Table 1 (cont.)
Table 1 (cont.)

Species	Strain Number	Clade	SSU_ITS_28S	SSU_ITS	SSU	COI	LSU	ITS
Phytophthora								
Phytopythium montanum	CBS111349	A						
Phytopythium oedochilum	CBS292.37	A						
Phytopythium o squidoceras	CBS768.73	D						
Phytopythium sindthum	CBS124518	A						
Phytopythium vexans	CBS119.80	A						
Phytium abapressorum	CBS110198	F						
Phytium acanthicum	CBS377.34	D						
Phytium acanthophorum	CBS337.29	E						
Phytium acropygium	CBS549.88	E						
Phytium adhaerens	CBS520.74	B						
Phytium amasculus	CBS552.88	D						
Phytium anantheridum	CBS285.31	C						
Phytium anisoporum	CBS252.74	A						
Phytium aphanidermatum	CBS118.80	A						
Phytium apiculatum	CBS120945	E						
Phytium apiculatum	CBS772.81	B						
Phytium aquatilis	CBS215.80	B						
Phytium atriplex	DADC320338	F						
Phytium buismiaae	CBS288.31	J						
Phytium camuranum	CBS124096	E						
Phytium canispora	CBS112353	G						
Phytium capillorum	CBS222.94	D						
Phytium carolinianum	CBS122659	E						
Phytium catalanum	CBS842.68	B						
Phytium chondroica	CBS203.85	A						
Phytium coloratum	CBS154.64	C						
Phytium coniochlorum	CBS223.88	B						
Phytium contiglashum	CBS221.94	J						
Phytium coryloclavella	CBS119731	A						
Phytium cylindrosporum	CBS216.94	F						
Phytium cytophages	CBS675.85	J						
Phytium debaryanum	CBS752.96	F						
Phytium delense	CBS314.33	A						
Phytium dicilium	CBS664.79	B						
Phytium dimorphium	CBS406.72	H						
Phytium distilicoica	CBS153.64	J						
Phytium dissotocum	CBS166.68	B						
Phytium echinulatum	CBS281.64	C						
Phytium eumoneuseum	BR479	F						
Phytium erinaceus	CBS550.80	E						
Phytium flevoense	CBS234.72	B						
Phytium fuscsulcicola	CBS228.81	B						
Phytium glomeratum	CBS120914	C						
Phytium graminicola	CBS327.62	D						
Phytium grandisporangium	CBS286.79	C						
Phytium helicandrum	CBS393.54	H						
Phytium heterotrophospora	CBS450.87	I						
Phytium hydroporospora	CBS253.60	D						
Phytium hypogyonum	CBS234.94	C						
Phytium infulatum	CBS168.68	B						
Phytium insulosa	ATCC 58643	C						
Phytium intermedium	CBS574.85	C						
Phytium irregolare	CBS250.26	F						
Phytium iswamaei	CBS156.64	G						
Phytium kashmirensae	ADO819	–						
Phytium kuenningense	CBS122908	B						
Phytium longisporangium	CBS122646	E						
Phytium lucens	CBS113342	F						
Phytium lutariu	CBS222.88	B						
Phytium lycuriici	CBS122909	D						
Phytium macrospororum	CBS574.80	F						
Phytium marsipium	CBS773.81	E						
Phytium mastophorium	CBS375.72	J						
Phytium megacarpum	CBS113051	A						
Phytium milladonii	CBS552.74	E						
Phytium minus	CBS122657	E						
Phytium monospermum	CBS158.73	A						
Phytium multisporum	CBS470.50	A						
Phytium myrtifolia	CBS254.70	B						
Phytium nagais	CBS779.90	G						
Phytium neglectum	CBS10274	C						
Phytium nunn	CBS806.96	J						
Phytium okanogense	CBS315.81	G						
Phytium oligarum	CBS362.34	D						
Phytium oopapillum	BR632	B						
Phytium omnacarpum	CBS113250	E						
Table 1 (cont.)

Species	Strain Number	Clade	SSU/ITS_28S	SSU/ITS_28S	SSU/ITS_28S	COI	LSU	ITS
Pythium ornatum	CBS12265	D						
Pythium orthogonon	CBS376.72	J						
Pythium pachycaule	CBS227.88	B						
Pythium paddicum	CBS698.83	G						
Pythium parvocaudum	CBS157.64	F						
Pythium parvum	CBS225.88	E						
Pythium pectinolyticum	CBS12243	C						
Pythium peritrichum	CBS169.68	B						
Pythium peritrichum	CBS285.31	D						
Pythium pleasirificum	CBS674.85	J						
Pythium plentilicium	CBS776.81	E						
Pythium plutostrorum	CBS100530	C						
Pythium polymastum	CBS811.70	J						
Pythium porphyrae	CBS369.79	A						
Pythium proletum	CBS845.68	H						
Pythium pyriforme	CBS158.64	B						
Pythium radiosus	CBS217.94	E						
Pythium rhizooryzae	CBS119169	C						
Pythium rhizoscacharum	CBS112356	E						
Pythium rostratilvensis	CBS115464	E						
Pythium rostratum	CBS533.74	E						
Pythium salpingophorum	CBS471.50	B						
Pythium scrobiculosum	CBS294.37	C						
Pythium segnitium	CBS112354	A						
Pythium senticulum	CBS122490	H						
Pythium sp balticum	CBS122649	D						
Pythium sp	CBS113341	F						
Pythium sp CAL-201a	CBS122647	D						
Pythium sp CAL-201e	CBS122648	E						
Pythium sp CAL-201f	CBS101187	J						
Pythium spicum	CBS122645	D						
Pythium spinosum	CBS275.67	C						
Pythium splendens	CBS462.48	I						
Pythium stenli								
Pythium sutoria	CBS1100030	D						
Pythium sylvaticum	CBS453.67	F						
Pythium takaayamanum	CBS122491	E						
Pythium terrestris	CBS112352	F						
Pythium torulosum	CBS316.33	C						
Pythium trachephyllum	CBS323.65	B						
Pythium ultimum var. sporangiferum	CBS219.65	I						
Pythium ultimum var. ultimum	CBS396.51	I						
Pythium uniculatum	CBS518.77	J						
Pythium undulatum	CBS157.69	H						
Pythium vanterpolii	CBS295.37	C						
Pythium viniferum	CBS119168	F						
Pythium violae	CBS132.37	G						
Pythium volutum	CBS159.64	G						
Pythium zingibers	CBS699.83	B						
Pythium zingibers	CBS216.82	B						

(‘-AACCTAAAGAAGAATTGACGAGAAG’ and NS8 (‘-TCCGCA-GTCTCCACTCAGGAAG’) (White et al. 1990) as well as Oom_Lo-5.8547 (‘-ATTACGTATCGCAGTTGCCAGA’) (Man in’t Veld et al. 2002) for full bidirectional coverage. Sequencing reactions were prepared using the Big Dye Terminator (BdT) v. 2 protocols (Applied Biosystems, Foster City, CA). Sequencing of the PCR product was performed in an Applied Biosystems Prism Genetic Analyzer model 3130XL.

Phylogenetic analyses

Sequences were edited manually using the DNAsStar Lasergene 9 Suite (Bioinformatics Pioneer DNAStar, Inc., WI) or Geneious v. 6.1.6 (Biomatters http://www.geneious.com/). Multiple alignments of each gene region were generated using MAFFT (Katoh et al. 2005). The genera included in the phylogenetic analyses were Albúgo, Halophytophthora, Phytophthora, Pythiomyum and Pythium. Isolates of Albúgo candida from the order Albuginales were included as an outgroup.

In order to include the maximum molecular data for clade K *Pythium* the invalid species *Pythium sterile* and *Pythium megacarpum* as well as two strains of the novel species *Phytophthium mirpurense* are considered in a cladogram generated based on ITS sequence data. *Pythium ultimum* from clade I and *Pythium dimorphum* from clade H are outgroups in these analyses and representatives of *Phytophthora*, *P. infestans*, *P. ramorum* and *P. sojae* are included. The aligned data matrix from 23 strains contained 1 096 characters from the ITS1, ITS2 and the 5.8S gene.

The aligned data matrices were assessed to find the best-fit model of substitution using jMODELTEST (Posada 2008). In each case this was identified as General Time Reversible (GTR+I+G). Redundant sequences were identified and those with 100 % identity to other included taxa were removed from the analyses. These duplicates are catalogued in Table 2. The aligned data matrices contained 1 374 bp of D1–D3 regions of LSU with 176 strains, 1 724 bp of SSU rRNA with 159 strains and 680 bp of COI with 174 strains. The sequence alignments were subjected to maximum likelihood analysis using the GTR+I+G substitution model and the Best option for tree topology search with PhyML v. 3.0 (Guindon & Gascuel 2003) to obtain ML trees which were rooted to *Albúgo* (LSU, COI and SSU) or *Pythium* (ITS). Nonparametric ML bootstrap calculations were calculated with 1 000 bootstrap replicates. Bayesian inferences (BI) were generated using MrBayes v. 3.2.1 (Ronquist & Huelsenbeck 2003) with Markov Chain Monte Carlo (MCMC) methodology to calculate posterior probabilities of the phylo-
Species Strain	Clade	GenBank	Identical sequences not included in phylogenies				
SSU							
Phytophthora allicola	P16053	Clade 4	JN635264	Phytophthora frigida	P16051	Clade 2	JN635162
Phytophthora asparagi	P10707	Clade 6	JN635226	Phytophthora roseae	P6048	Clade 6	JN635062
Phytophthora cactorum	P0714	Clade 1	JN635210	Phytophthora cactorum	P10365	Clade 1	JN635194
Phytophthora capsici	P10719	Clade 9	JN635227	Phytophthora capsici	P10720	Clade 9	JN635229
Phytophthora cryptogea	P16165	Clade 8	JN635259	Phytophthora pseudosyringae	P16355	Clade 3	JN635257
Phytophthora eryotheospora	P1693	Clade 8	JN635249	Phytophthora gonapodyides	P17097	Clade 6	JN635141
Phytophthora richardiae	CBS876	Clade 1	JN635254	Phytophthora richardiae	P3876	Clade 8	JN635045
Phytophthora sansomea	CBS163	Clade 8	JN635047	Phytophthora infolia	P1462	Clade 6	JN635065
Phytophthora viniferum	P10328	Clade 7	JN635175	Phytophthora uliginosa	P10413	Clade 7	JN635202
Phytophthora lagioriana	CBS220	Clade 9	JN635085	Phytophthora lagioriana	P8223	Clade 9	JN635086
Phytophthora palmivora	P0113	Clade 4	JN635188	Phytophthora palmivora	P0555	Clade 4	JN635186
Phytophthora primulae	P10220	Clade 8	JN635180	Phytophthora primulae	P10333	Clade 8	JN635187
Pythium flevense CBS23472 Clade B AY598691	Pythium pectinoliticum CBS12643 Clade B HQ643739						
Pythium minus CBS22688 Clade E AY598698	Pythium plicaticlum CBS776.81 Clade E AY598642						
LSU							
Phytophthora arecae CBS30562 Clade 4 HQ665200	Phytophthora palmivora CBS29829 Clade 4 HQ665195						
Phytophthora boehmeriae CBS29129 Clade 10 HQ665190	Phytophthora boehmeriae P6950 Clade 10 EU80166						
Phytophthora brassicace CBS17787 Clade 8 HQ665144	Phytophthora brassicace CBS178.87 Clade 8 HQ665144						
Phytophthora eryotheospora CBS12923 Clade 8 HQ665121	Phytophthora hialumlaysia CBS53579 Clade 8 HQ665215						
Phytophthora fragariae CBS20946 Clade 7 HQ665150	Phytophthora rubi CBS65795 Clade 7 HQ665306						
Phytophthora gonapodyides CBS55467 Clade 6 HQ665265	Phytophthora gonapodyides CBS36379 Clade 6 HQ665216						
Phytophthora inundata P8478 Clade 6 EU79946	Phytophthora humicola CBS20081 Clade 6 HQ665148						
COI							
Phytophthora arecae CBS30562 Clade 4 HQ708218	Phytophthora primulae CBS29829 Clade 4 HQ665195						
Pythium amasculinum CBS55288 Clade D HQ709481	Pythium lycopersicum CBS122909 Clade D HQ643863						
Pythium conidiphorum CBS22388 Clade B HQ708555	Pythium salpingophorum CBS47150 Clade B HQ643768						
Pythium debaryanum CBS75296 Clade F HQ708565	Pythium viniferum CBS19168 Clade B HQ643956						
Pythium diclinum CBS66479 Clade B HQ708570	Pythium lutanum CBS22288 Clade B HQ643862						
Pythium erinaceus CBS55080 Clade E HQ708578	Pythium ornacum CBS112350 Clade E HQ643721						
Pythium folliculosum CBS22094 Clade B HQ708584	Pythium torulosum CBS31633 Clade B HQ643859						
Pythium minus CBS12657 Clade E HQ708739	Pythium plicaticlum CBS77618 Clade E HQ643748						
Pythium myriotylum CBS25470 Clade B HQ708745	Pythium zingiberis CBS21682 Clade B HQ643973						

Statistical analyses of pairwise distances

The alignments of COI, LSU and SSU used for phylogeny were also used to generate pairwise distance as was done for DNA barcode analyses (Robideau et al., 2011, Schoch et al., 2012). Statistical analyses and plots were performed with R (R Development Core Team, 2011). All pairwise distances involving a species against every 1 of evolution for each gene. The first 25 % of the iterations were discarded as burn-in and every 1 000th iteration was sampled from the remainder. The trees were considered to be fully converged when the average standard deviation of split frequencies reached a level less than 0.01. FigTree v. 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/) was used to view and edit ML and Bayesian phylogenetic trees. Consensus trees were generated using the 50 % majority rule tree criteria and rooted to Albugo (LSU, COI and SSU) or Pythium (ITS).
as variables. Plots were generated with `ggplot` for R. The 0.05 confidence interval for 60 multiple comparisons was adjusted using the Bonferroni method. The average pairwise distance by marker was normalised to remove the bias from the difference in number of species between *Pythium* and *Phytophthora*.

Isolation and identification of Phytopythium mirpurens

Stagnant water was collected and immediately brought to the laboratory for the isolation of oomycetous fungi by the baiting technique of Harvey (1925). Grass blades, dicot leaves, hemp seeds, sesame seeds, lemon leaf and young cucumber stems were used as baits. Plates were incubated at room temperature, between 22–25 °C. Hyphae were observed on the baits after 5–8 days of incubation. The baits were rinsed in sterilised water to remove excess contaminants and transferred to fresh plates half-filled with sterile water. New fresh baits were then added and monitored daily for colonisation by oomycetes. After 2 d of incubation, the baits colonised by oomycetous fungi were transferred onto corn-meal agar (CMA) medium for purification by hyphal tip transfer. To obtain a pure culture a small disc of the CMA culture was placed into the centre of water agar plates. After 15–24 h growing apical hyphae were cut with the aid of a microscope in the laminar flow hood and transferred onto the surface of a fresh plate containing culture media.

For the assessment of cardinal temperatures, the isolates from this study were sub-cultured in two replicates on CMA in 90 mm Petri plates, and incubated at 10, 15, 20, 25, 30, 35 and 40 °C for 5 d. Radial growth was measured daily along

Fig. 1 Sporangia of Phytopythium species. a. *P. sindhum*, four stages of sporangium development showing a young, globose sporangium, a mature, papillate sporangium, internal proliferation and pythium-like zoospore development; b. *P. vexans*, subglobose, non-papillate sporangia; c–g. *P. citrinum*: c. normal sporangia; d. outgrowing papillae; e. outgrowing and branching papilla; f. empty sporangium with internal proliferation and short discharge tube; g. empty sporangium with internal proliferation and long discharge tube (arrow indicating tip); h–j. *P. helicandrum*: h. sessile, globose, papillate sporangium; i. outgrowing papilla; j. empty sporangium with intermediate sized discharge tube (arrow indicating tip). — Scale bars = 20 µm.
RESULTS AND DISCUSSION

Morphological comparison of Phytopythium with Phytophthora and Pythium

Most species in the genus *Phytopythium* produce papillate, internally proliferating sporangia (Fig. 1). The shape of the sporangia is more or less similar to the shape of papillate *Phytophthora* sporangia: (sub-)globose to ovoid and papillate (Fig. 1). However, in *Phytophthora* the papillate sporangium type never shows internal proliferation. The combination of internal proliferation and papillulation (Fig. 1) is unique to sporangia of *Phytopythium* and some *Pythium* species (see below). Also, the papillae in *Phytopythium* are different from the papillae in *Phytophthora* sporangia. In *Phytopythium* the sporangia are initially non-papillate, and the papillae develop at maturity and do not consist of a hyaline ‘apical thickening’ as in *Phytophthora* (Blackwell 1949). They may grow out to form a shorter or larger discharge tube (Fig. 1d, f, g, i, j), which does not occur in *Phytophthora*. In some species the papilla is not the place where the plasma flows out, rather one or more discharge tubes are formed more basally of the sporangium. In some species the papilla grows out and develops branches (Fig. 1e). Another difference with *Phytophthora* is the zoospore discharge which is pythium-like in *Phytopythium*: the plasma flows out of the sporangium through a discharge tube to form a plasma-filled vesicle at the tip. Zoospores are developed outside the sporangium, within the vesicle membrane and are released after rupture of the membrane (Fig. 1a). According to Marano et al. (2014), *Phytopythium kandeliae* has zoospore release mostly like *Pythium* and occasionally in between *Pythium* and *Phytophthora*: zoospores developed (partly) inside a sporangium and partly in a vesicle.

Another unique characteristic of *Phytopythium* is the shape of the antheridium (Fig. 2). In most species the antheridia are elongate, cylindrical, often with constrictions. The fertilisation tube is mostly not apical but in ‘navel position’ (Fig. 2a–d, arrows). Occasionally club-shaped antheridia with apical attachment occur. In *P. vexans*, the antheridia are often very broadly attached to the oogonium and lobed (Fig. 2e, f).

Papillate sporangia with internal proliferation also occur in a small number of *Pythium* species: three members of clade E (*P. marsipium, P. middletonii, P. multisporum*), one member of clade G (*P. nagaii*) and clade C (*P. grandisporangium*) and all members of clade H (*P. anandrum, P. dimorphum, P. helicandrum, P. prolatum, P. undulatum*). However, none of these species except three has elongate, cylindrical or lobate antheridia. Only *P. helicandrum* has elongate antheridia, however, this species has ornamented oogonia and much bigger sporangia than any of the species in *Phytopythium*. *Pythium marsipium* has bell-shaped antheridia as they occur in *Phytopythium vexans*, however, its sporangia are utriform instead of ovoid. *Pythium grandisporangium* has lobate antheridia but this is a marine species with extremely large sporangia with a tapering neck rather than a distinct papilla.

Phylogenetic position of Phytopythium

Maximum likelihood analyses of nuclear (LSU and SSU) and mitochondrial DNA (COI) with Bayesian probability values mapped onto the trees are shown (Fig. 3A–C). These cladograms place all the strains belonging to the genus *Phytopythium* as a monophyletic group with bootstrap support (85–100 %) and high probabilities (0.99–1.00). Phylogenetic trees of the LSU

Fig. 2 Oogonia and antheridia of *Phytopythium* species. a. *P. sindhum*, slightly elongated antheridium; b–c. *P. oedochilum*, long cylindrical antheridia; d. *P. mironpurense*, elongate antheridium with slight constriction; e–f. *P. vexans*: e. elongate antheridium with distinct constrictions; f. antheridium with two lobes. Arrows indicate the fertilisation tube in navel position (a–d). — Scale bars = 10 µm.
and COI regions support this group as intermediary between Phytopythium and Pythium. There is phylogenetic support with two of the genes to group Phytopythium with Phytophthora (95% / 1.00 for LSU and 79% / 0.99 for COI). The SSU tree has Pythium clades A–D as grouping closer to Phytophthora and Halophytophthora, with very low bootstrap support and probabilities (≤ 50% / 0.65). This suggests that given the SSU dataset, the major clades are unresolved in relation to the outgroup.

Our results from phylogenetic analysis of nuclear (LSU and SSU) and mitochondrial (COI) genes with all available species of Pythium and Phytophthora support that Phytopythium is a distinct genus. Its placement as intermediate between Pythium and Phytophthora is supported by two of these datasets. In the three gene trees, this new genus clade was strongly supported by both ML bootstrap replicates and Bayesian probability values, which unambiguously confirmed the status of Phytopythium as a novel monophyletic genus. The maximum likelihood and Bayesian analyses did not clearly delineate the relationships between the different groups in the part of the oomycete evolutionary tree we focused on. Inclusion of some of the more basal groups such as the Salisapiliaceae (Hulvey et al. 2010) and additional markers in future analyses would likely lead to greater resolution of these relationships.

The ITS tree (Fig. 4) shows that the two strains of species P. mirpurense are both well embedded within Phytopythium with strong support (91% / 0.96) and demonstrated the close relationships between P. litorale and Pythium sterile (100 / 1) as well as Phytopythium boreale and Pythium megacarpum (99 / 1).

Statistical analyses of pairwise distances

Markers, genera and clades as well as interactions between them all had a significant effect on pairwise distances of Phytophthora against Pythium and Phytophthora species (p < 10^-16). The average pairwise distance of all Phytophthora species against all Phytopythium species using COI was 13.7% whereas it was 14.5% for all Pythium species against all Phytopythium, showing that Phytopythium is significantly closer to Phytophthora than Pythium (p < 10^-16). For LSU, these differences were 10.4% and 10.9%, respectively, and were also significant (p < 10^-16). For SSU, the trend was reversed, still significant, with the average pairwise distance between Pythium and Phytopythium being 2.5% whereas the average between Phytophthora and Phytopythium was 2.7%. The clade effect was significant, including a significant interaction with markers; therefore, the results are presented by clades and markers in Fig. 5. Each clade is compared against Phytophthora to show clades that have a significant difference from the average pairwise distance. The significant trend of Phytophthora being closer to Phytophthora clades than Pythium clades can be seen with COI and LSU whereas it is more difficult to visualise the reverse trend in SSU. With all markers, Pythium clades H and I were significantly closer to Phytophthora than were the other Pythium clades but for SSU there were three additional clades (B, F and G) that were significantly closer to Phytopythium than were the other clades.
Strains used in circumscription of the genus

There are two invalid species that were investigated for the sake of examining the complete range of *Pythium* species from clade K, namely *Pythium megacarpum* and *P. sterile*. *Pythium megacarpum* is an invalid species because no type was indicated at the time of publication. Lévesque & de Cock (2004) placed it as potentially synonymous with *Phytopythium boreale* and in the barcode analyses of Robideau et al. (2011) these two species were only distinguishable through COI sequence data analysis, not by ITS. *Pythium sterile* is an invalid taxon based on the nomination of two herbarium specimens as the type of this species; this contravenes Art. 40.3 of the Melbourne convention (McNeill et al. 2012). *Pythium sterile* possesses identical ITS sequences to *Phytopythium litorale*. Other sequences from this organism could not be compared since no strain of *Pythium sterile* is available. Both species do not produce sexual stages. A more extensive study of these pairs of species, namely, *Phytopythium boreale / Pythium megacarpum* and *Phytopythium litorale / Pythium sterile* including more isolates and more DNA regions should reveal whether *P. sterile* and *P. megacarpum* should be validated as legitimate species.

There were some clade K species which were not included in the phylogenetic analyses presented here. In the studies by Lévesque & de Cock (2004) and Robideau et al. (2011) the species *Pythium indigoferae* appeared in clade K, which is now the genus *Phytopythium*. In stark contrast to the other species in clade K, *Pythium indigoferae* produces filamentous sporangia according to its original description (Butler 1907). The strain of *Pythium indigoferae* in the study of Lévesque & de Cock (2004) was the strain CBS 261.30 which was used by
van der Plaats-Niterink (1981) in her publication ‘Monograph of the genus Pythium’, as the ex-type strain was no longer available. However, CBS 261.30 is also no longer viable. Under observation by van der Plaats-Niterink and more recently while it was still culturable, this strain did not sporulate. The identity of this strain can therefore not be confirmed. Other strains with DNA sequences very close to CBS 261.30 have been identified (unpubl. data) which produced, however, subglobose, proliferating, papillate sporangia. These findings agree with Spies et al. (2011) who suggested that this strain be re-identified as *Pythium vexans*. CBS 261.30 and related strains are clearly part of a *Pythium vexans* complex that needs to be resolved through further phylogenetic study. This *P. vexans* complex also contains the invalid taxon *Pythium cucurbitacearum*, which was not included in our analyses. This taxon is invalid as it is missing a Latin diagnosis and based on Art. 36 of the Melbourne convention (McNeill et al. 2012). The representative strain of *P. cucurbitacearum* CBS 748.96 is no longer viable. The ITS sequence of this strain was reported by Spies et al. (2011), to be related yet distinct from a novel strain isolated from *Acacia* which was very different among the isolates in the monophyletic *Pythium vexans* complex studied. Most likely strain CBS 748.96 represents a distinct species from the *P. vexans* complex, which as of yet is not validly described. Once this complex is resolved it is likely that it will represent a number of new species for the genus *Pythium*.

Two other *Pythium* species not included in the phylogenetic analyses are *P. palingenes* and *P. polytylum*. Because no living strains of these species are available, they could not be included in the DNA studies. Morphological data for *P. palingenes* and *P. polytylum* show the typical characters of *Phytophthorum*: ovoid, papillate, internally proliferating sporangia and cylindrical antheridia. Therefore we consider *P. palingenes* and *P. polytylum* as members of *Phytophthorum*.

A new species of *Phytophthorum* was isolated from water samples collected in District MirpurKhas of Sindh province, Pakistan. It is described and illustrated here as *P. mirpurens* (see section New Species). Genetically, *Phytophthorum mirpurens* is shown to nestle within the genus *Phytophthorum*, in all of the phylogenetic trees presented. The most obvious morphological characters of this new species are the proliferating, subglobose sporangia, terminal and intercalary oogonia, antheridia with lengthwise application to oogonia over their entire length, aplerotic to nearly plerotic oospores, and high optimum temperature for growth. These characters are shared with many other members of *Phytophthorum*. The main differentiation of this species is shown through the molecular analyses of DNA sequences and the phylogenetic trees (Fig. 3, 4).

Halophytophthorum s.l. is a heterogenous, polyphyletic genus (Hulvey et al. 2010) with species of marine origin. Two species of this genus clustered within the clade of *Phytophthorum*: *H. operculata* (originally described as *Phytophthorum operculata*) and *H. kandelae*. Further, only species of *Halophytophthorum* s.str. (Hulvey et al. 2010) show some morphological similarity to *Phytophthorum*. However, their sporangia are in average two or more times the size of sporangia in the *Phytophthorum* species (length av. 64–117 µm, resp. 20–40 µm). They develop zoospores inside the sporangium and not in a vesicle like *Pythium*, though the formation of a vesicle may be part of the release process. Moreover, no internal proliferation was observed in these species. *Halophytophthorum kandelae* was previously transferred to *Phytophthorum* (Marano et al. 2014, Thines 2014). The strains of *Halophytophthorum kandelae* used in barcode analyses of ITS and COI regions were CBS 111.91 and CBS 113.91 and they were both found to be associated with the *Phytophthorum* clade (Robideau et al. 2011). However, neither of these strains is the type strain of this species. Marano et al. (2014) have published...
the ITS sequence of the type strain of *H. kandeliae* from ATCC and this sequence was identical to that of CBS 111.91 and 113.91. We have then included data from strain CBS 113.91 in our analyses here and are certain that it well represents the systematic placement of *Pythium kandeliae*. There are some difficulties with *Halophytophthora operculata*’s lack of fit in this clade by morphological measures and we have decided not to rename it at this time. This marine species has zoospore development fully within the sporangium; no vesicle occurs. Zoospore discharge is unique, via an operculum at the apex of the sporangium and no internal proliferation was observed. The size of the sporangium is significantly much larger than those of the *Pythium* species (up to 175 μm). The strain CBS 241.83, which is the ex-type strain of *H. operculata*, did not sporulate during our investigations, so the identity of the strain could not be confirmed. However the current molecular data available about this strain, the sequence data presented here and the organisation of the SS gene family as reported by Bedard et al. (2006), does indicate that it belongs in a monophyletic circumscription of *Pythium*. More investigation of this species is clearly required in order to confirm its identity.

New combinations were deposited in MycoBank (see below in section Taxonomic and Nomenclatural Changes; Crous et al. 2004).

CONCLUSIONS

The genus *Phytophthium* was first proposed to the community in 2008 (see www.phytophthoradb.org/pdf/O8LevesquePM.pdf) and it was formally published in June 2010 (Bala et al. 2010b), with *Pythium sindhium* as the type species. In 2010, Uzuhashi et al. (2010) proposed another name *Ovatisporangium* for clade K using a partial sampling of *Pythium* and *Phytophthora* species and published their findings in September of 2010. Comparison of their circumscription of the genus *Ovatisporangium* to our molecular analyses clearly shows that the type of *Pythium*, *P. sindhium* is a member of the group described as *Ovatisporangium* (Fig. 1, 2). *Ovatisporangium* is thus recognised as a synonym of *Pythium*.

We demonstrated with three different phylogenetic markers that all species belonging to *Pythium* clade K represent a monophyletic genus that includes the type species of the previously described genus *Phytophthium*. The taxonomic circumscription of other *Pythium* clades remains unresolved. The species with filamentous and globose sporangia are well separated as reported before in many studies, however, both LSU and COI suggest that clades A–J could be divided into subgroups but provide no support for any particular arrangement. The inclusion of species from other genera closely related to *Pythium* such as *Pythiogeton*, *Lagenidium* or *Mycocytispora* can change these conclusions but clade support remains very low (Schroeder et al. 2013, Hyde et al. 2014). Therefore, we recommend avoiding any further changes in the generic status of *Pythium* Pringsheim species belonging to clade A–J until better phylogenetic markers are found and multigene phylogenies are available with the closely related genera.

TAXONOMIC AND NOMENCLURAL CHANGES

Phytophthium Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, Persoonia 24: 137. 2010

Type species. *Phytophthium sindhium*, Lodhi, Shahzad & Lévesque, Persoonia 24: 137. 2010.

Etymology. Named after combined features of the genera *Phytophthora* and *Pythium*.

Common morphological characteristics of the species of *Phytophthium* are globose to ovoid shape of sporangia, often with a more or less distinct papilla or non-papillate and often proliferating internally like those in *Phytophthora* with non-papillate sporangia. Zoospore discharge is like *Pythium*. Most species have large, smooth oogonia, thick-walled oospores, and 1–2 elongate or lobate antheridia, laterally applied to the oogonium. Cultures are mostly homothallic, occasionally sterile.

Notes — *Phytophthium* (Bala et al. 2010b) is emended to include species of *Pythium* in clade K from Lévesque & de Cock (2004) and described after that. It is morphologically and phylogenetically between *Pythium* and *Phytophthora*.

NEW COMBINATIONS

Phytophthium boreale (R.L. Duan) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563326

Basionym. *Pythium boreale* R.L. Duan, Acta Mycol. Sin. 4: 1. 1985 (as ’borealis’) (MB105742).

≡ *Ovatisporangium boreale* (R.L. Duan) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517560).

Representative strain — CHINA, soil under Brassica caulis, CBS 551.88 (ex-type strain not available).

Phytophthium carbonicum (B. Paul) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563328

Basionym. *Pythium carbonicum* B. Paul, FEMS Microbiol. Lett. 219: 270. 2003 (MB489329).

≡ *Ovatisporangium carbonicum* (B. Paul) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517561).

Representative strain — FRANCE, soil on top of soil heap, CBS 112544 (ex-type strain).

Phytophthium chamaehyphon (Sidersis) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563329

Basionym. *Pythium chamaehyphon Sidersis, C.P, Mycologia 24: 33. 1932 (as ’chamaehyphon’) (MB260414).

≡ *Ovatisporangium chamaehyphon* (Sidersis) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517562).

Representative strain — USA, Hawaii, Carica papaya, CBS 259.30 (ex-type strain).

Phytophthium citrinum (B. Paul) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563330

Basionym. *Pythium citrinum* B. Paul, FEMS Microbiol. Lett. 234: 273. 2004 (MB368597).

≡ *Ovatisporangium citrinum* (B. Paul) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517563).

Representative strain — FRANCE, Marsaunay la cote, vineyard soil, CBS 119171 (ex-type strain).

Phytophthium delawarense (Broders, P.E. Lipps, M.L. Ellis & Dorrance) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB807542

Basionym. *Pythium delawarense* Broders, P.E. Lipps, M.L. Ellis & Dorrance, Mycologia 104: 789. 2012 (MB563353).

Representative strain — USA, Ohio, Delaware county, Glycine max, CBS 123040 (ex-type strain).
Phytopythium helicoides (Drechsler) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563332

Basionym. *Pythium helicoides* Drechsler, J. Wash. Acad. Sci. 20: 413. 1930 (MB266912).
≡ *Ovatisporangium helicoides* (Drechsler) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517559).
≡ *Phytophthora fagopyri* S. Takim. ex S. Ito & Tokun., Trans. Sapporo Nat. Hist. Soc. 14: 15. 1935 (MB472184).

Representative strain — **USA**. Phaseolus vulgaris, CBS 286.31 (authentic strain).

Phytopythium litorale (Nechw.) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563335

Basionym. *Pythium litorale* Nechw., FEMS Microbiol. Lett. 255: 99. 2006 (MB521454).
≡ *Ovatisporangium litorale* (Nechw.) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517566).

Representative strain — **GERMANY**. Lake Konstanz, rhizosphere soil (*Phragmites australis*), CBS 118360 (ex-type strain).

Phytopythium mercuriale (Belbahri, B. Paul & Lefort) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563337

Basionym. *Pythium mercuriale* Belbahri, B. Paul & Lefort, FEMS Microbiol. Lett. 284: 20. 2008 (MB511433).
≡ *Ovatisporangium mercuriale* (Belbahri, B. Paul & Lefort) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517568).

Representative strain — **SOUTH AFRICA**. Limpopo Province, ex rhizosphere *Macadamia integrifolia*, CBS 122443 (ex-type strain).

Phytopythium montanum (Nechw.) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563338

Basionym. *Pythium montanum* Nechw., Mycol. Progr. 2: 79. 2003 (MB373239).
≡ *Ovatisporangium montanum* (Nechw.) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517569).

Representative strain — **GERMANY**. Bavarian Alps, wet soil under *Picea abies*; CBS 111349 (ex-type strain).

Phytopythium oedochilum (Drechsler) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563339

Basionym. *Pythium oedochilum* Drechsler, J. Wash. Acad. Sci. 20: 414. 1931 (MB272763).
≡ *Ovatisporangium oedochilum* (Drechsler) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (as ‘oedochilum’) (MB517570).

Representative strain — **USA**. CBS 292.37 (authentic strain).

Phytopythium ostracodes (Drechsler) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563340

Basionym. *Pythium ostracodes* Drechsler, Phytopathology 33: 286. 1943 (MB290364).
≡ *Ovatisporangium ostracodes* (Drechsler) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517571).

Representative strain — **SPAIN**. clay soil, CBS 768.73 (strain used by van der Plaats-Niterink (1981), ex-type strain not available).

Phytopythium palingenes (Drechsler) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB807543

Basionym. *Pythium palingenes* Drechsler, J. Wash. Acad. Sci. 20: 416. 1930 (MB272364).

Representative strain — None available.

Phytopythium polytylum (Drechsler) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB807544

Basionym. *Pythium polytylum* Drechsler, J. Wash. Acad. Sci. 20: 415. 1930 (MB275012).

Representative strain — None available.

Phytopythium vexans (de Bary) Abad, De Cock, Bala, Robideau, Lodhi & Lévesque, comb. nov. — MycoBank MB563322

Basionym. *Pythium vexans* de Bary, J. R. Agric. Soc. 12 (Ser. 2): 255. 1876 (MB174427).
≡ *Ovatisporangium vexans* (de Bary) Uzuhashi, Tojo & Kakish., Mycologia 51: 360. 2010 (MB517573).
≡ *Pythium compositum* M. Braun, J. Agric. Res. 29: 415. 1924 (MB261556).
≡ *Pythium allantocladon* Sideris, Mycologia 24: 27. 1932 (MB256394).
≡ *Pythium ascosphallon* Sideris, Mycologia 24: 29. 1932 (MB257476).
≡ *Pythium polycladon* Sideris, Mycologia 24: 32. 1932 (MB274913).
≡ *Pythium euthephyphon* Sideris, Mycologia 24: 34. 1932 (MB536649).
≡ *Pythium piperinum* Dastur, Proc. Indian Acad. Sci., B 1, 11: 803. 1935 (MB274563).

Representative strain — **IRAN**. soil, CBS 119.80 (strain used by van der Plaats-Niterink (1981) ex-type strain not available).

NEW SPECIES

Phytopythium mirpurense Lodhi, De Cock, Lévesque & Shahzad, sp. nov. — MycoBank 809691; Fig. 6

Etymology. Name refers to the District MirpurKhas of Sindh province, Pakistan from where this species was frequently isolated.

Main *hyphae* up to 6 μm wide. *Sporangia* papillate, proliferating, subglobose, limoniform, ovoid or ovoid 20–25 μm diam. Discharge tube short 5–8 × 5–6 μm diam. *Oogonia* large smooth globose, terminal, intercalary, occasionally unilaterally intercalary, (27–)34–37–(40) (av. 34) μm diam. *Antheridia* 1–3 per oogonium, mostly monoclinous or distantly monoclinous, occasionally clinous. Oogonia and antheridial stalk originate from same hyphae. Antheridia apply lengthwise to the oogonium producing lateral or occasionally apical fertilisation tubes. *Oospores* aplerotic or nearly plerotic (22–)29–32–(34) (av. 29.45) μm diam. Oospore wall thickness is 2.5–3 (av. 2.8) μm.

The optimum growth occurred at 30 °C. Daily growth at 20 °C. Maximum growth temperature was 35 °C. The colony colour was cream on PDA and CMDA, on PCA produces profuse white cottony growth on PDA and CMDA, on PCA submerged without any patterns, and on CMA with a rosette pattern. The optimum growth occurred at 30 °C. Daily growth at 25 °C on PDA 19 mm, PCA 20 mm, CMA 23.5 mm and CMDA 26 mm. The maximum growth temperature was 35 °C.

Material examined. **PAKISTAN.** Sindh, District MirpurKhas, MirWah, N25°25'23'E69°02', stagnant water, 12 Jan. 2006, A.M. Lodhi (holotype CBS 124523, maintained in inactive state. Culture ex-type also deposited as DAOM 238991 in CCFC).

Additional material examined. **PAKISTAN.** Sindh, from water pond at Sindhri, District MirpurKhas (DAOM 238992, CBS124524) (N25°37' E69°12').
Acknowledgements We thank Nicole Désaulniers for assistance in maintaining Phytophthium cultures, Rafik Assabgui and Julie Chapados from Agri-culture and Agri-Food Canada, Ottawa for sequencing these strains. Strains were received from Anne Dorrance from The Ohio State University, Food, Agri-cultural, and Environmental Sciences, Plant Pathology, Columbus, OH, USA. We thank Marjan Vermaas for composing the photo plates. This research was supported through funding to the Consortium for the Barcode of Life Network (CBOL) from Genome Canada (through the Ontario Genomics Institute), NSERC and other sponsors listed at http://www.BOLNET.ca.

REFERENCES

Bala K, Robideau GP, Désaulniers N, et al. 2010a. Taxonomy, DNA barcoding and phylogeny of three new species of Pythium from Canada. Persoonia 25: 22–31.

Bala K, Robideau GP, Lévesque CA, et al. 2010b. Phytophthium Abad de Cock, Bala, Robideau, Lodhi & Lévesque, gen. nov. and Phytophthium sindhun Lodhi, Shahzad & Lévesque, sp. nov. Fungal Planet 49. Persoonia 24: 136–137.

Bedard JE, Schurko AM, Cock AWAM de, et al. 2006. Diversity and evolution of 5S rRNA gene family organization in Pythium. Mycological Research 110: 86–95.

Blackwell E. 1949. Terminology in Phytophthora. Mycological Papers 30: 1–24.

Briard M, Dutertre M, Rouxel F, et al. 1995. Ribosomal RNA sequence divergence within the Pythiaceae. Mycological Research 99: 1119–1127.

Butler EJ. 1907. An account of the genus Pythium and some Chytridiaceae. Memoirs of the Department of Agriculture, Botanical Series 1: 1–162.

Cock AWAM de, Lévesque CA. 2004. New species of Pythium and Phytophthora. Studies in Mycology 50: 481–487.

Cooke DEL, Drenth A, Duncan JM, et al. 2000. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology 30: 17–32.

Crous PW, Gams W, Stalpers JA, et al. 2004. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22.

Crous PW, Verkley GJM, Groenewald JZ, et al. 2009. Fungal Biodiversity. CBS Laboratory Manual Series 1. CBS-KNAW Fungal Biodiversity Centre, The Netherlands.

Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.
Harvey JV. 1925. A study of the water molds and pythiums occurring in the soil of Chapel Hill. Journal of the Elisha Mitchell Scientific Society 41: 151–164.

Hulvey J, Telle S, Nigrelli L, et al. 2010. Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia 25: 109–116.

Hyde KD, Nilsson RH, Alias SA, et al. 2014. One stop shop: backbones trees for important phytopathogenic genera. I. Fungal Diversity 87: 21–125.

Katoh K, Kuma K, Toh H, et al. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511–518.

Lévesque CA, Cock AWAM de. 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research 108: 1363–1383.

Man in't Veld WA, Cock AWAM de, Ilieva E, et al. 2002. Gene flow analysis of Phytophthora pinn has reveals a new species: Phytophthora brassicae sp. nov. European Journal of Plant Pathology 108: 51–62.

Marano AV, Jesus AL, Souza JI de, et al. 2014. A new combination in Phytopythium: P. kandeliae (Oomycetes, Straminipila). Journal of Fungal Biology 5: 510–522.

Mazzola M, Andrews PK, Raganold JP, et al. 2002. Frequency, virulence, and metalaxyl sensitivity of Pythium spp. isolated from apple roots under conventional and organic production systems. Plant Disease 86: 669–675.

McNeill J, Barrie FR, Buck WR, et al. 2012. International code of nomenclature for algae, fungi and plants (Melbourne code): adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Koeltz Scientific Books, International Association for Plant Taxonomy, Königstein, Germany.

Plaats-Niterink AJ van der. 1981. Monograph of the genus Pythium. Studies in Mycology 21: 1–242.

Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

Pringsheim, N. 1858. Beiträge zur Morphologie and Systematik der Algen. 2. Die Saprolegnieen. Jahrbücher für Wissenschaftliche Botanik 1: 284–306.

R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Robideau GP, Cock AWAM de, Coffey MD, et al. 2011. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources 11: 1002–1011.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19: 1572–1574.

Schoch CL, Seifert KA, Huhndorf S, et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241–6246.

Schroeder KL, Martin FN, Cock AWAM de, et al. 2013. Molecular detection and quantification of Pythium species – evolving taxonomy, new tools and challenges. Plant Disease 9: 4–20.

Shahzad S, Coe R, Dick MW. 1992. Biometry of oospores and oogonia of Pythium (Oomycetes): the independent taxonomic value of calculated ratios. Botanical Journal of the Linnean Society 108: 143–165.

Spies CF, Mazzola M, Botha WJ, et al. 2011. Oogonial biometry and phylogenetic analyses of the Pythium vexans species group from woody agricultural hosts in South Africa reveal distinct groups within this taxon. Fungal Biology 115: 157–168.

Thines M. 2014. Phylogeny and evolution of plant pathogenic oomycetes – a global overview. European Journal of Plant Pathology 138: 431–447.

Uzuhashi S, Tojo M, Kakishima M. 2010. Phylogeny of the genus Pythium and description of new genera. Mycoscience 51: 337–365.

Villa NO, Kageyama K, Asano T, et al. 2006. Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and beta-tubulin gene sequences. Mycologia 98: 410–422.

White TJ, Bruns T, Lee S, et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. (eds), PCR protocols, a guide to methods and applications: 315–322. Academic Press, San Diego.