Seismological aspects of the Varzeghan twin Earthquakes on 11 August 2012 (Mw 6.3 and Mw 6.1), in East Azerbaijan province, NW Iran

1Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: J_farahani@ut.ac.ir
2International Institute of Earthquake Engineering and Seismology, Tehran, Iran

The Varzeghan twin earthquakes occurred in the East Azerbaijan range of northeast Iran. This region is located within the seismotectonic area of Alborz – Azerbaijan, located west of the Caspian Sea, south of Caucasus thrust belt, east of Anatolia and north of Zagros mountain range. The earth’s crust in northwest of Iran is deformed within a tectonic intersection zone, which is very seismically active. The geodetic and ancient seismology data, as well as scattering patterns of active deformation events, are evidence of high seismicity potential in the East Azerbaijan ranges (Geology Survey of Iran, 2012). Active tectonic movements in this range, as in other parts of Iran, result from the convergence of Arabia and Eurasia plates.

Seismotectonic Setting

The Varzeghan twin earthquakes occurred in the East Azerbaijan range of northeast Iran. This region is located within the seismotectonic area of Alborz – Azerbaijan, located west of the Caspian Sea, south of Caucasus thrust belt, east of Anatolia and north of Zagros mountain range. The earth’s crust in northwest of Iran is deformed within a tectonic intersection zone, which is very seismically active. The geodetic and ancient seismology data, as well as scattering patterns of active deformation events, are evidence of high seismicity potential in the East Azerbaijan ranges (Geology Survey of Iran, 2012). Active tectonic movements in this range, as in other parts of Iran, result from the convergence of Arabia and Eurasia plates.

Two earthquakes occurred in the east Azerbaijan province of NW Iran with Mw 6.3 at 12:23:15.9 and Mw 6.1; 11 minutes after the first shock at 12:34:34.8 GMT time on 11 August 2012. The epicenters of the earthquakes were determined using seismograms recorded by the International Institute of Earthquake Engineering and Seismology (IIEES) broadband stations. We obtained their focal mechanisms and also calculated their seismic moments and moment magnitudes based on the source spectrum of these recordings. Other source parameters such as, stress drops, corner frequencies and $\kappa_{(ave)}$ were determined for earthquakes by the S-wave spectra using a model-fitting approach from the near stations. The maximum intensity of the earthquakes was determined as VIII+ on the EMS98 scale in Varzeghan and affected villages.

Introduction

The Tabriz region is located in the Araxes structural block of northwestern Iran, southwest of the continuation of the western Alborz Mountains toward the Caucasus. The epicenters of the twin earthquakes of 12 August 2012 are located in a region in west of Ahar, at a distance of 60 km NE Tabriz. Historical studies in Tabriz and the surrounding area show that Tabriz city has a history of destructive earthquakes. It has been devastated several times in the past. Two earthquakes occurred in 11 August 2012 NW Iran, in the Ahar region. The earthquakes approximately killed 306, injured 3037 and left 30000 people homeless, based on the Iranian health minister’s statement of 13 August 2012. We located the epicenters of the earthquakes using seismograms recorded by Broadband Iranian Network (BIN). The first event occurred at 12:23:15.9 GMT time and the second at 12:34:34.8. Table 1a shows the estimates of the hypocentral location of the two events by the Iranian Seismological Center (IRSC) and the present study.

The Iranian Seismological Center (IRSC) at the Institute of Geophysics of the University of Tehran reports earthquake magnitudes using the corrected Nuttli (1973) magnitude scale (Rezapour, 2005):

$$M_n = \log \left(\frac{\nu}{4\pi} \right) + 1.66 \log (d) - 0.1 \quad d \leq 106 \text{ km}$$

where ν is the maximum amplitude in nm s$^{-1}$, and d is the epicentral distance in km. There were 494 aftershocks in the zone with $M \geq 2.5$ recorded by Broadband Iranian Network (BIN). In the present study, we analyze the 11 August 2012 earthquakes and review the seismicity in the last century within the limits of 36.5° and 39.5° N latitude; and 45.0° and 48.5° E longitude. The earthquakes’ source parameters are obtained from spectral studies.
Instruments and data

Data for the twin earthquakes of NW Iran on 11 August 2012 (Mw 6.3 and Mw 6.1) were recorded by IIEES using Guralp CMG-3TD instruments. 16 stations of the BIN (Broadband Iranian Network) were useful, and had suitable signal to noise ratios. Coordinates of the stations used for determining the location and focal mechanism of the earthquakes are listed in Table 1b. The earthquakes were located using SEISAN software (Havskov and Ottemoller, 2005).

Causative fault

The Varzeghan earthquakes caused ground surface rupture. The causative fault is assessed to be the South Ahar fault, having an east-west trend and a length of about 60 km. The surface rupture of the Varzeghan fault was surveyed along about 4 km of ground surface by the investigating team and is located 13 km south of Varzeghan. Its Azimuth is N 245-260 degrees, as shown on Figure 1. Figures 2a, b also show the surface rupture near the Tabriz-Varzeghan road.

Focal depth

The focal depth of the earthquakes were reported to be 10 and 11 km respectively by the USGS (2012; http://www.usgs.gov) and 12.6 and 18 km by Harvard University (Harvard, 2012; http://www.globalcmt.org/CMTsearch.html). The field observations and analysis of macroseismic data indicate a shallow depth for the both the earthquakes. A preliminary analysis of the location of the recorded strong ground-motion data in the present study also suggests a focal depth of 16 and 14 km. Also, field observations from the region by Zaré (2012) in the first week after the twin main shocks supported the view that they were shallow earthquakes.

Table 1. a. Hypocentral location, b. Station Coordinates

(a) Hypocentral location	(b) Station Coordinates								
Latitude N (degrees)	Longitude E (degrees)	Magnitude	Depth (km)	Reference	Station	Latitude	Longitude	Altitude (m)	Name
38.5	46.9	6.2 (M\text{\textsubscript{L}})	10	IRSC	ASAO	3432.88N	5001.52E	2217	Ashtian
38.4	46.8	6.0 (M\text{\textsubscript{L}})	4	IRSC	BJRD	3741.98N	5724.49E	1337	Bojnoord
38.529	46.841	6.3 (M\text{\textsubscript{w}})	16	Present study	CHTH	3554.48N	5107.56E	2250	Charan
38.525	46.787	6.1 (M\text{\textsubscript{w}})	14.1	Present study	GHVR	3428.80N	5114.72E	0927	Qom
38.485	4753.63E	1300	General study	GRMI	3848.59N	4957.85E	1985	Germi	
38.529	4944.09E	1730	Maku	KHMZ	3344.38N	4957.85E	1856	Khonein	
38.529	4641.09E	1730	Maku	MAKU	3921.29N	4441.09E	1730	Maku	
38.529	5605.36E	0870	Maraveh tapeh	MBVT	3739.56N	5107.56E	0927	Maraveh	
38.529	5258.52E	2800	Naein	NASN	3247.95N	5258.52E	2800	Naein	
38.529	4848.08E	0150	Shushtar	SHGR	3206.50N	4848.08E	0150	Shushtar	
38.529	6017.46E	0837	Shah-rakht	SHRT	3338.77N	6017.46E	0837	Shah-raht	
38.529	4720.82E	1940	Sanandaj	SNGE	3505.55N	4720.82E	1940	Sanandaj	
38.529	5707.14E	0000	Tabas	TABS	3338.94N	5707.14E	0000	Tabas	
38.529	5052.73E	1795	Kavosh	THKV	3554.94N	5052.73E	1795	Kavosh	
38.529	4841.11E	2200	Zanjan	ZNIK	3640.25N	4841.11E	2200	Zanjan	

Figure 1. Surface faulting trend of the Varzeghan fault along the outcrop of South Ahar fault.
Seismic catalogue and local Mechanism

Instrumental seismicity of the region recorded in Broadband Iranian Network (BIN) shows that until 30 March 2013 more than 810 seismic events of $M \geq 2.5$ have occurred in the region. Figure 3 shows seismicity of Eastern Azerbaijan from 2012/08/11 to 2013/03/30 from these aftershocks.

The focal mechanism of the two events on 11 August 2012 in the Ahar region were obtained using recorded P-wave first motions from the IIEES seismograms and FOCMEC software (Havskov and Ottemoller, 2005). The focal mechanisms of both events show right-lateral strike-slip faulting on E-W trending fault, parallel to the aftershocks and the trend of the South Ahar fault (Figure 3). Besides, in this study, we identified a considerable reverse component for the second main shock, $Mw = 6.1$, which is consistent with a CMT solution and work at Harvard University (http://www.globalcmt.org/CMTsearch.html) and the USGS (http://www.usgs.gov). The field observations also revealed the existence of an E-W trending right-lateral strike-slip surface rupture (Figure 4). Study of records of seismicity (Table 2) shows that the historical earthquakes of this area are part of the historical earthquakes of Tabriz region, the most important of which was that of 1780 in Tabriz. In the epicentral zone of the Varzeghan twin earthquakes, no severe earthquake was reported during approximately the past 1300 years for which documentary records exist (Ambraseys and Melville, 1982).

The instrumental seismicity of the region shows that nearly 810 seismic events have been recorded during the past century. The seismicity of the region is presented in Figure 5. In addition, we present an Ahar map in Figure 6. This shows the E-W trending South Ahar fault, which seems to be the causative fault responsible for the Varzeghan earthquakes. The inferred fault zone is marked by dashed lines on a part of Ahar geological map (1:250000).

Major earthquakes in the region before 1900

The seismic history of Tabriz shows that region has experienced active seismicity since 634 A.D., but there is no macroseismic information. The earthquakes were strong enough to destroy Tabriz several times (Berberian and Arshadi, 1977). Several major destructive earthquakes have occurred in Tabriz, the most important of which occurred in 634, 1441, 1522 and 1780 (Eprikian, 1903). The Tabriz earthquake in 634 was reported by Adjemian (1937), Moazami-Goudarzi (1972) and Moazami-Goudarzi et al. (1972) [Berberian and Arshadi, 1976].

The North Tabriz Fault (NTF) is one of the active faults of NW Iran. Among the many historical earthquakes that occurred in the
Tabriz region (e.g., the 858, 1042, 1273, 1550, 1641, 1717, 1721, 1780 and 1786 earthquakes), the destructive earthquakes of 1042/11/04, 1721/04/26 and 1780/01/08 with Magnitudes of +7 were accompanied by coseismic surface faulting (Ambraseys and Melville, 1982; Berberian and Yeats, 1999). The 1780 earthquake ruptured in the northwest part of the NTF, whereas the 1721 event ruptured in the southeast part of the fault (Hessami et al, 2003).

We present the epicenters for some of the most important historical earthquakes in Figure 5. Based on the plotted seismicity for the 20th century (Figure 5), a probable seismic gap can be identified in the central part of the North Tabriz Fault (NTF) based on comparisons of events reported during historic times (pre-1900) from this part of NTF.

Intensity distribution

The two relatively large shallow earthquakes that struck NW Iran, about 60 and 50 km northwest of Tabriz city, on 11 August 2012, caused about 306 deaths, 3037 injuries and 30000 homeless people (reported by the health minister of Iran).

These events caused panic in the cities of the epicentral region (especially in the cities of Ahar, Varzezhan, Kalibar, Heris, and in Tabriz which is the largest city in NW Iran). Panic among people caused them to settle outdoors in Tabriz and the other cities mentioned. The highest number of deaths reported were in Varzezhan city and “Baj e Baj”, Gourdeh and Dino villages. The most severe damage was reported from the villages of Gourdeh, and Dino. The earthquake was also felt in other cities including Tabriz, Marand, Bostanabad, Soumahe Sara, Ardabil, Bukan, Astar, Khoy, Salmas, Parsabad Moghan, Shabestar, Meshkin Shahr, Rasht, Mahabad, Bonab, Urmia, Mamaghan, Hadishahr, Maraagheh, Meyaneh, Miandoab. Following the Varzezhan earthquakes, reconnaissance coverage of the area was made by a team from IIEES (Zaré et al, 2012). An effort was made to visit the entire region affected by the earthquake. According to results of these investigations, the maximum intensity was estimated to be VIII+ on the EMS98 scale in Varzezhan and affected villages, VII+ in Ahar city and VI+ in Heris city. The intensity of the earthquake in Tabriz was V (Figure 7). From the view point of surface geology conditions, we studied the surface ruptures and ground fissures (based on the INQUA intensity scale, Michetti et al., 2003) and observed that the iso-intensity map concords with the geological evidence as well.

We here illustrate some examples of earthquake damage to buildings in the region of Azerbaijan. We used the European macroseismic scale 1998 to classify the types of structures. Based on EMS-98, classifications of damage were applied to masonry and reinforced concrete buildings (Grunthal, 1998) in order to determine the intensity level. In this study, for the shaken area, there were several types of houses and buildings. These include very weak building structures, with inferior building materials, that are dangerous to human occupants. These buildings are poorly designed and building material is very weak, so they have little resistance to a variety of...
Figure 6. Part of the geological map (1:250000) of Ahar (Geological Survey of Iran, 2012).
vibrations. Based on observations in the region, numbers of very weak buildings existed in the macroseismic zone and, in villages, almost all buildings of this type totally collapsed (Figure 8a-8b). In these villages, most of the people were killed and others injured. Most of the buildings and houses were built of clay brick or masonry without reference to any technical standards. In these regions, the greatest damage was inflicted on traditional constructions. The main failure mode was the collapse of heavy roofs. Masonry buildings, for example in Figure 8a-8b (very weak mortar), suffered very heavy structural damage with a damage grade (based on Grunthal, 1998) of five (destruction), total or near total collapse.

In Baj e Baj (a village with 40 victims and the most demolition in the epicentral region), most of the buildings were made of bricks and arched wood beam roofs, adobe and low-quality masonry materials. Most of the weak buildings suffered total damage and, as seen in Figure 8c-8d, some of them collapsed. Some of this type of building contained heavy materials and also, their problem were poor structural connections. In types of structure with simple stone masonry such as in Figure 8c-8d, some parts of the bearing walls failed and there was collapse of the roof and floor slabs. This kind of heavy structural damage is of damage grade is 4.

Some facilities such as hospitals, universities, gas stations, roads and bridges were damaged in the earthquake-stricken area. We believe that sometimes, in such buildings, despite the advanced design of the structures, the construction and performance is usually poor.

In Heris city, a hospital was built on a hill slope one year before the 11 August 2012 earthquakes. Although, the city was located about 20 km away from the earthquake epicenter, the hospital was rendered out of service. This hospital (the main health center near the epicentral zone) was located 73 kilometers east of Tabriz, the capital city of the east Azerbaijan province (Figure 9a-9b). As a result, people in need of treatment were referred to a mobile hospital erected by the Ministry of Health or to hospitals in Tabriz. Figure 9 shows an example of damage to Heris hospital.

Moreover, there were some structures with large diagonal cracks in the walls or some cracks in the exterior wall in the twin Varzeghan earthquakes region. Figure 9c shows an example of these buildings that exhibited moderate structure damage of grade is 3. In type of structure with many vertical cracks, such as Figure 9d, slight structural damage resulted and the damage was of grade two.

Distribution of Earthquakes

We mapped seismicity in the region with 810 earthquakes of M≥2.5 and 494 aftershocks detected by the BIN network between 11 August 2012 to 30 March 2013. The aftershocks and seismicity for 1900 to 2013 in the region are shown respectively in Figures 3 and 5. The locations of the aftershocks were recorded by permanent stations of the BIN network. The figures show that the seismicity trace has a trend of nearly east-west in this area.

Figures 10a and 10b show histograms of the magnitudes of earthquakes and aftershocks in the region. The distribution of earthquakes in Figure 10 shows non-cumulative frequency of magnitudes for 110 years (Figure 10a) and for the aftershocks during 7 months (Figure 10b). This figure shows that the distribution of frequency of aftershocks is representative of a maximum magnitude of M=6 in the region. Before 1994 (when the regional seismograph

Time	Date	Latitude N (degrees)	Longitude E (degrees)	FD (km)	Magnitude mb Ms Mw ML	Reference	Region
858	11-1042-04	38.100	46.300		6.0	Am	Tabriz
18	02-1641-05	37.800	47.500		6.1	Amb	Tabriz
06	03-1717-12	38.100	46.300		6.8	Amb	Dehkharghan
07	04-1721-26	37.900	47.500		5.9	Amb	Tabriz
24	01-1780-08	38.200	46.000		7.7	Amb	Tabriz
16	05-1881-24	39.400	47.500	33	6.0	Amb	Tabriz
17	05-1883-03	37.900	47.200		6.2	Amb	Tabriz
06 17	01-1905-09	38.000	46.000		6.2	Amb	Tabriz
11 24 42	12-1960-25	39.500	47.500	45	5.0	BAN	Alikhalaj
16 09 53	02-1965-10	37.660	47.090		5.0	ISC	Alikhalaj

AMB: Ambraseys and Melville (1982), ISC: International Seismological Center, UK, BAN= BANISADR, FD = Focal Depth
Figure 8. (a and b) Examples of total collapse in very weak buildings, (c and d). Examples of demolished buildings in Varzeghan (left-c) and Baj e Baj (right-d) (Zaré, 2012).

Figure 9. (a and b). Examples of Heris Hospital, (c and d). Example of diagonal cracks in walls, and of slight structural damage in the region, respectively (Zaré, 2012).
network of Azerbaijan was established and came into service), fewer
events were recorded in the region. This might be partially related to
the lack of enough seismographic stations throughout the region, or a
partial seismic quiescence in the region. Thus, a reliable earthquake
database exists only for the last couple of decades.

Data and analysis of regional recordings

We have attempted to use a spectrum fitting method (Shi et al.,
1996, 1998) for determination of Varzeghan earthquakes source
parameters. First, for minimizing the influence of noise, for the 22
stations of the BIN (Broadband Iranian Network) we obtained their
signal to noise ratio for the whole of the signals. We selected 16
stations for examination of the first mainshock because they had good
signal-to-noise ratios whereas the rest did not (their signal-to-noise
ratio was less than 2). We also corrected instrument response. The
seismic moment was calculated from the low frequency spectral level
ωo of the displacement for the regional analysis. We assumed the
model of Brune (1970) in our analysis and estimated the source radius
ro = 2.34 v/(2πfc) from the corner frequency (fc) from the S-wave.
The static stress drop Δσ was then estimated from the standard circular
static crack solution (Eshelby, 1957; Brune, 1970), Δσ = (7/16)(M0/r3).
In our spectral analysis, we assumed Q(f) = 140f^{-0.90}, also Δσ
determined 46-51 bars, Kappa_{ave}=0.035 for twin earthquakes from
the near stations (GRMI and MAKU located in the epicentral distance
of ≤ 200 km) using trial and error. An example of this analysis is
shown in Figure 11. The original velocity recordings come from station
GRMI located 96.8 km away from the event. The left-hand figures in

Figure 11 Typical example from a three component seismogram at station GRMI with Mw=6.3 and displacement spectra with the best fit
square source at a distance of 96.8 km.
Figure 11 show the three-component ground motion recordings at this station, and the right-hand figures show displacement spectra with the best fit ω-square source. The results related to the source parameters and radiated seismic energy is listed in Table 3a.

Latitude N (degrees)	Longitude E (degrees)	Magnitude M_L	Depth (km)	M_w (N-m)	Δt (erg)	F_c (Hz)	A_0 (bar)
38.529	46.841	6.3	16	3.5E+18	1.78E+21	0.20	46
38.525	46.787	6.1	14.1	1.82E+18	8.91E+20	0.26	51

(b) Focal mechanism information of the Varzeghan earthquakes

M_a	Strike	Dip	Rake	Strike	Dip	Rake	P – axis	T – axis	Plunge	Azimuth	Plunge	Azimuth
6.3	201	60	28	96	66	147	3	149	40	56	50	56
6.1	19	64	56	256	41	139	13	133	57	243	50	50

Conclusion

A preliminary analysis of instrumental data recorded by IIEES and field observations indicate the following results for the Varzeghan 2012 twin earthquakes.

The focal mechanism of the twin earthquakes at Varzeghan on 11 August 2012 was determined using seismograms recorded by the Broadband Iranian Network (BIN) of IIEES. We also calculated the seismic moment and moment magnitude based on the source spectrum of the records. The estimated moment magnitude for these earthquakes are Mw 6.3 and Mw 6.1; the maximum intensity was estimated to be VIII+ on the EMS98 scale in Varzeghan and affected nearby villages.

Based on our analysis of the location of earthquakes, the focal depths of the first and second shocks were determined 16 and 14 km, respectively, indicating shallow earthquakes.

The South Ahar fault (Figure 6) had an E-W trend and a 60 km length. It is consistent with the focal mechanism obtained from the fault plane solutions of the causative fault of the earthquakes determined in this study and also by the USGS (www.usgs.gov) and Harvard University (www.globalcmt.org/CMTsearch.html) as shown in Figure 3. Therefore the causative fault was the South Ahar fault.

A review of the recorded seismicity for the 20th century revealed a probable seismic gap in the central part of the North Tabriz Fault (NTF) in comparison with events reported during historic time (pre-1900) from this part of NTF.

The results related to the focal mechanism and source parameters of the Varzeghan earthquakes are listed in Table 3b and Table 3a.

Data and Resources

The waveform data and catalog for earthquakes from the Broadband Iranian Network (BIN) of the International Institute of Earthquake Engineering and Seismology (IIEES) were searched using http://www.iiies.ac.ir/, (last accessed March 2013).

Acknowledgement

The authors would like to express their gratitude to the International Institute of Earthquake Engineering and Seismology for the delivery of the recorded data. Also, thanks the colleagues in IIEES for their support during the field trips (specially to Drs. E. Haghshehans, A. Ansari) as well as for Eng. B. Esmaeili.

References

Adjemian, H., 1937, Haik calendar, Tabriz, Iran (in Armenian).
Ambraseys, N.N. and Melville, C.P. 1982, A History of PersianEarthquakes, Cambridge Earth Science Series. Cambridge and New York: Cambridge University Press.
Brune, J., 1970 Tectonic stress and spectra of seismic shear waves from earthquakes. Journal Geophysical Research, v. 75, pp. 4997–5009.
Berberian, M. and Arshadi, S., 1976, On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city. Geological Survey of Iran, v. 39, pp. 397–418.
Berberian, M. and Arshadi, S., 1977, The Shibli Rift System (Sahand region, NW Iran). Geological Survey of Iran, v. 40, pp. 229–236.
Berberian, M. and Yeats, R.S., 1999, Pattern of historical earthquake rupture in the Iranian Plateau. Bulletin Seismological Society of America, v. 89, pp. 120–139.
Erikhian, H., 1903, Bnashkarik Patkerazard Bararan (Illustrated dictionary of names and places; in Armenian), Venice.
Eshelby, J., 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings Royal Society of London, Series A, v. 241(1226), pp. 376–396.
Geological Survey of Iran, 2012, Preliminary report on the 11 August 2012, Ahar earthquakes (in Farsi).
Grunthal, G., 1998, European Macroseismic Scale 1998EMS-98. Chairman of the ESC Working Group “Macroseismic Scales” GeoForschungs Zentrum Potsdam, Germany.
Harvard University, 2012, http://www.globalcmt.org/CMTsearch.html
Havskov, J. and Ottemoller L., 2005, SEISAN: the earthquake analysis software for Windows, Solaris, Linux and Mac OS X, Version 8.1, http://www.geosciencias.unam.mx/~gomez/Curso_sismo/manual_seisan_8.1.pdf.
Hessami, K.D., Pantosti, H., Tabassi, E., Shahanian, M.R., Abbassi, Feghli, K. and Solaymani, S., 2003, Paleoeartquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Annals of Geophysics, GEOPHYSICS, v. 46, pp. 903–915.
Michetti, A.M., Esposito, E., Mohammadioun, J., Mohammadioun, B., Gürpinar, A., Porfido, S., Rogozhin, E., Serva, L., Tatevosian, R., Vittori, E., Audemard, F., Comerci, V., Marco, S., McCalpin, J. and Morner, N.A., 2003, An innovative approach for assessing earthquake intensities: The proposed INQUA scale based on Seismically-Induced Ground effects in the environment. XVI INQUA Congress, Reno, July 23–30, 2003.
Moazami-Goudarzi, K., 1972, Seismology. Ministry of Higher Education, Publication No. 1, 470 p, Tehran (in Farsi).
Moazami-Goudarzi, K., Hossein-Javaheri, H. and Hafizi, M.K., 1972, Seismic zoning of Tabriz. Journal of the Earth and Space Physics, Institute of Geophysics, Tehran University, v. 1(3), pp. 71–74.
Nuttli, O.W., 1973, Seismic wave attenuation relations for eastern North America. Journal of Geophysical Research, v. 78, pp. 855–876.
Rezapour, M (2005). Magnitude scale in the Tabriz seismic network. Journal of the Earth and Space Physics, v. 31(1), pp. 13-21.
Shi, J., Kim, W.Y. and Richards, P.G., 1996, Variability of crustal attenuation in the northeastern United States from Lg waves, Journal Geophysical Research, v. 101, pp. 25231-25242.
Shi, J., Kim, W.Y. and Richards, P.G., 1998, The corner frequencies and stress drops of intraplate earthquakes in the northeastern United States, Bulletin Seismological Society of America, v. 88, pp. 531-542.
USGS (2012) http://www.usgs.gov.
Zare, M., Kalantari, A., Ansari, A., Haghshehans, E., Davoudi, M., Mostafazadeh, M., 2012, A preliminary reconnaissance report on the Varzaghan-Ahar twin earthquakes in East Azerbaijan province. International Institute of Earthquake Engineering and Seismology 1-13; http://www.iiies.ac.ir/images/stories/EQBank/EQreport/ahar/IIEES.pdf (in Farsi).
Zare M. 2012, Personal Courtesy on Vazeghan, NW Iran; 12 August 2012 Twin Earthquakes.