Distribution of A. modesta, A. julibrissin And M. himalayana Gamble In Pir Lasura National Park

Sher Wali Khan
Deptartment of Biological Sciences, Karakoram International University, Gilgit, Pakistan

Nafeesa Qudsia Hanif
PMAS-Arid Agriculture University, Rawalpindi, Pakistan, nafeesahanif9@gmail.com

Madeeha Manzoor
Centre for Bioresource Research (CBR), 44000, Islamabad, Pakistan

Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm

Part of the Biodiversity Commons, Biology Commons, and the Botany Commons

Recommended Citation

Khan, S. W., Hanif, N. Q., & Manzoor, M. (2018). Distribution of A. modesta, A. julibrissin And M. himalayana Gamble In Pir Lasura National Park, _Journal of Bioresource Management, 5_ (1). DOI: https://doi.org/10.35691/JBM.8102.0084

This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
DISTRIBUTION OF A. MODESTA, A. JULIBRISSIN AND M. HIMALAYANA GAMBLE IN PIR LASURA NATIONAL PARK

SHER WALI KHAN1, NAFEESA QUDSIA HANIF2*, MADEEHA MANZOOR3

1Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan
2Romer Labs, Pakistan, PMAS-Arid Agriculture University, Rawalpindi
3Centre for Bioresource Research (CBR), 44000, Islamabad, Pakistan

*Corresponding Email: nafeesahanif9@gmail.com

ABSTRACT

Pir Lasura National Park (PLNP) in Azad Jammu and Kashmir, Pakistan is located in the Kotli Forest division and spans across an area of 13,900 acres. The list obtained through this study included 46 tree species of angiosperms, out of which only 3 species belong to the family Mimosaceae; A. modesta, A. julibrissin and M. himalayana gamble. A. modesta had 1.6% constancy and belonged to class I, A. julibrissin had 3.3% relative cover and belonged to class I, whereas the relative vegetative cover of Mimosa himalayana gamble was too less to be tabulated. All the three species of the Mimosaceae family were scantily available. However, A. modesta and A. julibrissin had enough vegetative cover with respect to other species for them to be reported whereas M. himalayana gamble didn’t have any significant distribution in the selected area.

Keywords: national park, angiosperm, acacia, albizia, mimosa

Abbreviations: PLNP: Pir Lasura National Park,
database, 2018). This species can also be found in Japan and China. It is a deciduous plant with flowers that may be used for food. It has many health benefits that include pain relieving and anticancer properties, helps relieve several problems linked to the nervous system.

Mimosa himalayana gamble is a shrub belonging to the Fabaceae family. Shakoor et al. (2014) found that methanolic extracts of this species were very effective against the bacterial and fungal strains tested. Quattrocchi (2012) describes the benefits of *M. himalayana gamble* for fever, pain in teeth and urogenital issues; it is antiemetic and antirheumatic.

MATERIALS AND METHODS

Sample collection

The survey was done during June – July, 2009. A list of the species of the Mimosaceae sub-family found in field was constructed. A physical examination of the PLNP area and its associated tracts was done using Rapid Biodiversity Assessment (RBA). Attempts were made to collect/record all the plant species present under different microhabitat variation. This dataset was used to construct list of the plant species in PLNP. Hence, broad areas having reasonably similar vegetative conditions were identified using satellite imagery and physical reconnaissance of the area, and were recognized as stands for sampling of vegetation. All the stands were assigned reference numbers was and sampled using different numbers of 50 m long line transects at randomly selected locations in different parts of the stand. The plants were identified in the field. Herbarium sheets of all specimens were made and brought back to the laboratory. The field samples were then identified in the laboratory using Flora of Pakistan (Nasir and Ali, 1970-2008; Stewart, 1972; Toshiyuki and Malik, 1992, 1993) and through physical assessment with the known samples available at Herbaria of Quaid-e-Azam University Islamabad, and Pakistan Museum of Natural History, Islamabad. Data from the different quadrates was gathered to evaluate the approximate percentage of the relative vegetative cover of different plant species and total vegetative cover of stands. TWINSPAN was used to establish the variety of vegetation using stand comparisons in the vegetative composition. Distribution of different plant species was placed on the digitized map of PLNP using satellite imagery. Information regarding benefits of these species was accumulated by interviewing the locals for traditional knowledge and studying by previously published works.

The list obtained through this study included 46 tree species of angiosperms, out of which only 3 species belong to the family Mimosaceae. *A. modesta* had 1.6 % constancy and belonged to class Ⅰ, *A. julibrissin* had 3.3% relative cover and belonged to class I, whereas the relative vegetative cover of *Mimosa himalayana gamble* was too less to be tabulated.

PLNP mainly comprises of a U-shaped folded hill slopes with a narrow valley, with an entry from the western side. Natural hill ravines drain the rain or spring water into the lake. East slopes of PLNP have thicker forested vegetation and without human settlement while north east and south west human settlements. The average rainfall per annum during the study was 1500 mm. Due to degradation of biodiversity and habitat loss, the total area of the forests has been decreasing rapidly since last few decades.

Acacia modesta is native to a lot of tropical and subtropical regions and has great commercial value. The study conducted by Sher et al. (2012) found that this species is able to grow on a variety of soil types.
RESULTS AND DISCUSSION

Table 1: Vegetative biodiversity of PLNP

S #	Scientific Names	Subfamily	Remarks	Usage
	Acacia modesta Wall (Phulai) (Figure 1)	Mimosaceae	Small, medium sized deciduous tree, young shoot glabrous to sub glabrous, bark brownish or greenish grey, rough, prickles in pairs, below petiole, compressed.	Hard and durable wood, used for cane crushers, Persian wheel and agricultural implements, as fuel, gum, arbica; tender twigs for cleaning teeth.
	Albizia julibrissin Durazz	Mimosaceae	Small sized tree, dark-grey bark, young parts with yellowish brown hairs.	Bark is used to cure bruises, as a vermicide, seeds used as food for livestock, flowers good nectar source for honeybees.
	Mimosa himalayana Gamble	Mimosaceae	Large straggling deciduous, branches ribbed, densely hairy; prickles present on nodes/inter nodes, straight or hooked, 4 mm long; leaf bipinnate, rachis 10-23 cm, long, prickly, mostly hooked.	Wood for tent pegs and making gunpowder/charcoal, root, leaves and fruits are of minor medicinal importance.

Table 2: Relative vegetative cover (% ±) shared between different plant species in PLNP by Ward’s method.

S. No	Names	A (1, 3, 19, 33-35, 36, 38, 46, 47, 48, 49, 50, 56, 57, 60, 68)	B (4, 5, 7, 8, 9, 10, 12, 13, 17, 21, 22, 23, 25, 26, 29, 31, 32, 37, 40, 41, 42, 43, 44, 52, 54)	C (2, 16, 18, 28, 30, 45, 53, 59)	D (6, 11, 14, 15, 20, 24, 27, 39, 55)	Constancy (%)/class
1	*Acacia modesta*	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0.0	1.6/(I)
2	*Albizia julibrissin*	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0.0	3.3/(I)

The results obtained in this study indicate that although both *Acacia modesta* and *A. julibrissin* were noted in the field but their low relative abundance showed how scarce they were. *M. himalayana gamble*, was so scarce when compared to other species that although it was observed in field, no significant value was obtained for the relative vegetative cover.

Since these plants are readily harvested for wood, fodder and their health benefits it is possible that over exploitation has affected their density in PLNP. Especially *A. julibrissin*, which is considered as moderately invasive should naturally has a higher field coverage.
CONCLUSION.

The list obtained through this study included 46 tree species of angiosperms, out of which only 3 species belong to the family Mimosaceae. A. modesta, A. julibrissin and M. himalayana gamble. All the three species of the Mimosaceae family were scantily available. However, A. modesta and A. julibrissin had enough vegetative cover with respect to other species for them to be reported whereas M. himalayana gamble didn’t have any significant distribution in the selected area.

REFERENCES

Center for Agriculture and Bioscience International (CABI) (2018). Invasive Species Compendium: Albizia julibrissin. Retrieved from: https://www.cabi.org/isc/datasheet/4005 on January 2018.

Global Invasive Species Database (2018). Species profile: Albizia julibrissin. Retrieved from: http://www.iucngisd.org/gisd/species.php?sc=364 on January 2018.

Napar AA, Bux H, Zia MA, Iqbal A, Roomi S, Muhammad I, Shah SH (2012). Antimicrobial and antioxidant activities of Mimosaceae plants; Acacia modesta Wall (Phulai), Prosopis cineraria (Linn.) and Prosopis juliflora (Swartz). Journal of Medicinal Plants Research. Vol. 6(15), pp 2962-2970.

Nasir E, Ali SI (1970-2008). Flora of Pakistan (series 1 to 217) National Herbarium, Islamabad.

Quattrocchi U (2012). CRC World Dictionary of Medicinal and Poisonous Plants: Common names, Scientific Names, Eponyms, Synonyms, and Etymology. 1st ed, CRC Press, Florida, pp 2517.

Sher H, Aldosari A, Ahmad S (2012). Ethnoecological appraisal of Acacia modesta wall. common tree of dry ecosystem in Pakistan. African Journal of Agricultural Research. Vol. 7(36), pp. 5083-5091.

Shakoor A, Rahman A, Zaib G, Khan U, Ihtesham Y, Napar AA, Naveed M (2014). Biological screening of Albizia lebbeck L. and mimosa himalayana gamble (Mimosaceae). Journal of Medicinal Plant Research. Vol.8(20), pp 731-735.

Stewart RR (1972). Flora of West Pakistan: An Annotated Catalogue of the Vascular Plants of West Pakistan and Azad Kashmir by Nasir E, Ali SI. Fakhri Printing Press, Karachi. Pp. 1028.

Toshiyuki N, Malik S (1992). Cryptogamic Flora of Pakistan (National Science Museum, Tokyo, in collaboration with Pakistan Museum of Natural History), Islamabad. Vol I: 1-316.