Peculiarities of communication of managing civil servants and the control area institutions in case of emergency at NPP

Pylypko V. A., Petrychenko O. O., Morozova M. M., Bondarenko I. V.

The main goal of the article is to study the peculiarities of communication of managing civil servants of various levels of government and institutions in the control area of the nuclear power plant (NPP), in case of a emergencies. The study was conducted using qualitative methods of research, such as in-depth interviews, focus groups, and group discussions. The study also used the method of content analysis of documents and reports on the emergency preparedness and response of the control area institutions to the emergency at the nuclear power plant.

The obtained results of the study show that the level of communication and interaction between the managing civil servants and the control area institutions depends on the level of government, the type of institution, and the specific situation. The study also highlights the importance of regular training and drills for managing civil servants and the control area institutions to improve their communication and cooperation in emergency situations.

The practical significance of the study is that the results can be used to improve the emergency preparedness and response of the control area institutions at the nuclear power plant, ensuring the safety and security of the population in case of an emergency.
ABSTRACT

Background. Implementing the measures to protect the control area (CA) population is ensured by Emergency Planning and Response System of “NNEGC” Energoatom” in case of accidents and emergencies at NPPs of Ukraine (EPR) as a part of the Unified State Civil Protection System (USCPS).

Purpose. Specifying the features of interaction between different management structures in the domain of radiation protection of the control area population in case of emergencies at nuclear power plants.

Materials and methods. The expert evaluation method was utilized in the research process. Five main groups of experts, responsible for the state of radiation protection of various population groups of South-Ukrainian NPP (SUNPP) control area and qualified according to the key criteria, have been formed. Semi-closed-ended and open-ended questions were used in the expert evaluations, a 5-point scale was used in closed-ended ones, and nominal ones were used for others. When processing, statistical methods designed to analyze non-numerical information were applied.

Results and discussion. In case of emergency at SUNPP, the system of alerting municipal authority executives of cities and rural settlements of the control area is “more or less” effective and can be achieved within 30 minutes. The control area population is provided with stable iodine agents, the population of Yuzhnoukrainsk is provided with individual protective gear in the best way; Voznesensk and rural settlements have a little lower levels of supply. The rural areas are characterized by the lowest level of first aid kits, protective clothing and respirators supplies. Implementing the measures to limit the consumption of food contaminated with radionuclides and to provide “clean” one, as well as to restrict the consumption of drinking water contaminated with radionuclides, and to provide “clean” one is about 3.0 points (“approximately 50% of what is needed”).

Conclusion. The analysis of expert evaluation data shows that the NPP and the State Emergency Service conduct regular training in case of emergency at NPP forming stereotypes of behavior of managing civil servants. The level of readiness to put protective measures in action in case of emergency at SUNPP varies, depending on the state service and institution as well the location of those ones in the control area. The level of readiness in the edge city is the highest; it is lower in cities and the lowest in the rural areas. The level of being equipped with key facilities is extremely low in civil protection services and primary healthcare units.

Key words:
NPP control area, expert evaluations, response and readiness.

For citation:
Prylypko VA, Petrychenko OO, Morozova MM, Bondarenko IV. Peculiarities of communication of managing civil servants and the control area institutions in case of emergency at NPP. Ukrainian journal of radiology and oncology. 2021;29(2):22–33. DOI: https://doi.org/10.46879/ukroj.2.2021.22-33

For correspondence:
Prylypko Valentina Antonivna
State Institution “National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine, Medical and Social Research Laboratory;
53, Yu. Illenko Str., Kyiv, Ukraine;
04050;
e-mail: medsocncrm@gmail.com

© Prylypko V. A., Petrychenko O. O., Morozova M. M., Bondarenko I. V., 2021

Background.

Implementing the measures to protect the control area (CA) population is ensured by Emergency Planning and Response System of “NNEGC” Energoatom” in case of accidents and emergencies at NPPs of Ukraine (EPR) as a part of the Unified State Civil Protection System (USCPS).

Purpose.

Specifying the features of interaction between different management structures in the domain of radiation protection of the control area population in case of emergencies at nuclear power plants.

Materials and methods.

The expert evaluation method was utilized in the research process. Five main groups of experts, responsible for the state of radiation protection of various population groups of South-Ukrainian NPP (SUNPP) control area and qualified according to the key criteria, have been formed. Semi-closed-ended and open-ended questions were used in the expert evaluations, a 5-point scale was used in closed-ended ones, and nominal ones were used for others. When processing, statistical methods designed to analyze non-numerical information were applied.

Results and discussion.

In case of emergency at SUNPP, the system of alerting municipal authority executives of cities and rural settlements of the control area is “more or less” effective and can be achieved within 30 minutes. The control area population is provided with stable iodine agents, the population of Yuzhnoukrainsk is provided with individual protective gear in the best way; Voznesensk and rural settlements have a little lower levels of supply. The rural areas are characterized by the lowest level of first aid kits, protective clothing and respirators supplies. Implementing the measures to limit the consumption of food contaminated with radionuclides and to provide “clean” one, as well as to restrict the consumption of drinking water contaminated with radionuclides, and to provide “clean” one is about 3.0 points (“approximately 50% of what is needed”).

Conclusion.

The analysis of expert evaluation data shows that the NPP and the State Emergency Service conduct regular training in case of emergency at NPP forming stereotypes of behavior of managing civil servants. The level of readiness to put protective measures in action in case of emergency at SUNPP varies, depending on the state service and institution as well the location of those ones in the control area. The level of readiness in the edge city is the highest; it is lower in cities and the lowest in the rural areas. The level of being equipped with key facilities is extremely low in civil protection services and primary healthcare units.

Key words:
NPP control area, expert evaluations, response and readiness.

For citation:
Prylypko VA, Petrychenko OO, Morozova MM, Bondarenko IV. Peculiarities of communication of managing civil servants and the control area institutions in case of emergency at NPP. Ukrainian journal of radiology and oncology. 2021;29(2):22–33. DOI: https://doi.org/10.46879/ukroj.2.2021.22-33

For correspondence:
Prylypko Valentina Antonivna
State Institution “National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine, Medical and Social Research Laboratory;
53, Yu. Illenko Str., Kyiv, Ukraine;
04050;
e-mail: medsocncrm@gmail.com

© Prylypko V. A., Petrychenko O. O., Morozova M. M., Bondarenko I. V., 2021
Українські та вигід Оновленої Енергетичної Стратегії до 2035 року, головним завданням держави є забезпечення високого рівня безпеки енергоблоків. Безпека на атомних електростанціях (АЕС) досягається за рахунок послідовної реалізації певних спеціальних заходів на п’яті рівнях стратегії глибокоенергетизованого захисту. Аварійна готовність і реагування – останній з п’яти рівнів реалізації стратегії глибокоенергетизованого захисту [1, 2]. Реалізація заходів цього рівня забезпечує «Систему аварійної готовності та реагування ДП «НАЕК «Енергоатом» на аварії та надзвичайні ситуації на АЕС України» (САР), яка виконує своєї функції у складі єдиної державної системи цивільного захисту (ЄДСЦЗ).

Наукові установи більшості країн світу приділяють увагу дослідженням, що стосуються безпеки АЕС та населення ЗС. За програмою Всесвітньої організації охорони здоров’я (ВООЗ) «Іонізуюче віртуалізування», «Радіаційні надзвичайні ситуації» розроблено «Спільний план радіаційного управління надзвичайними ситуаціями міжнародних організацій». Бельгійський центр ядерних здійснень (SCK CEN) проводить дослідження, пов’язані з ядерною безпечною, поводженням з відходами, захистом людини та навколишнього середовища, соціальними наслідками ядерних технологій [3]. Досліджуються проблеми, пов’язані з ризиком проживання в 10-кілометрових ЗС АЕС у Німеччині та Великобританії [4]. На сайтах діючих АЕС у Франції викладається щорічний звіт громадської інформації про основні ядерні об’єкти (Centrale nucléaire du Bugey, France). Вивчаються питання, пов’язані з ядерними та радіаційними ризиками АЕС (l’Institut de radioprotection et de sûreté nucléaire, France, Cristian Pierret). Близькі за тематикою роботи проводяться в Санкт-Петербурзькому науковому інституті радіаційної гігієни імені П.В. Рамзаєва щодо проблеми аналітичного забезпечення комунікації ризиків [5]. У Білоруському державному технологічному університеті розробляються питання радіаційної безпеки із захисту населення і об’єктів від надзвичайних ситуацій [6].

В Україні науковцями Національного наукового центру радіаційної медицини Національної академії медичних наук України (ННЦРМ НАМН України) проводяться дослідження щодо радіаційно-гігієнічних принципів обґрунтування розмірів і функціонування зон спостереження АЕС, пропозицій щодо змін у принципі обґрунтування розмірів та функціонування контрольних зон, пропозицій щодо змін в нормативах відповідно до заходів, що вимагають забезпечення безпеки населення і об’єктів від надзвичайних ситуацій, визначення нормативних документів для забезпечення безпеки населення та об’єктів від надзвичайних ситуацій [7]. Український науково-дослідний інститут цивільного захисту розробляє питання оповіщення населення про загрозу виникнення надзвичайних ситуацій з адаптацією нормативно-правових актів з урахуванням соціальних наслідків радіаційного захисту в ЗС АЕС України, які відрізняються від заходів, що використовуються в інших країнах [8, 9]. В Інституті державного управління у сфері цивільного захисту (ЦЗ) досліджено питання інформаційного забезпечення цивільного захисту в Україні та окреслено завдання щодо створення системи інформаційно-аналітичного забезпечення цивільного захисту [10]. У Національному інституті стратегічних досліджень and the requirements of the Renewed Energy Strategy till 2035, the primary goal of the state is ensuring a high level of security of power units. Safety at nuclear power plants (NPPs) is achieved through the consistent implementation of certain special measures at five levels of defense-in-depth strategy. Emergency planning and response is the last out of the five levels of defense-in-depth strategy [1, 2]. The implementation of measures of this level is ensured by Emergency Planning and Response System of “NNEGC Energoatom” for accidents and emergencies at NPPs of Ukraine (EPR), performing its functions as a part of the Unified State Civil Protection System (USCPS).

Scientific institutions in most countries of the world pay attention to research related to the safety of nuclear power plants and the control area population. Under the World Health Organization (WHO) program “Ionizing Radiation”, “Radiation Emergencies”, they developed “Joint Radiation Emergency Management Plan of the International Organizations”. The Belgian Nuclear Research Centre (SCK CEN) conducts research focused on nuclear safety, waste management, human and environmental protection, and social consequences of nuclear technology [3]. The issues related to the risk of living on 10-kilometer control areas of NPP in Germany and the United Kingdom are studied [4]. The websites of existing nuclear power plants in France publish an annual public information report on major nuclear facilities (Centrale nucléaire du Bugey, France). The issues regarding nuclear and radiation risks of nuclear power plants (l’Institut de radioprotection et de sûreté nucléaire, France, Cristian Pierret) are studied. Similar activities are being carried out at P.V. Ramzaev St. Petersburg Scientific Research Institute of Radiation Hygiene dealing with the issue of analytical support of risk communication [5]. Belarusian State Technological University is elaborating radiation safety issues to protect the population and facilities from emergencies [6].

In Ukraine, the scientists of National Research Center for Radiation Medicine of National Academy of Sciences of Ukraine (NRCRM NAS of Ukraine) conduct research related to radiation and hygienic principles of substantiation of the size and operation of NPP control areas, suggestions concerning changes in legislative and regulatory documents of Ukraine, which will regulate the requirements of the European Union [7]. Ukrainian Research Institute of Civil Defense elaborates the issue of alerting the population if there is a threat of emergencies with the adaptation of regulations, taking into account the experience of advanced countries of the European Union, the United States, Israel [8, 9]. The experts of Institute of Public Administration and Research in Civil Protection have studied the challenging issues of information assurance of civil defense of Ukraine and outlined the task of creating a system of information and analytical support of civil defense (CD) [10]. National Institute for Strategic Studies monitors the changes in Ukraine’s civil defense system in the context of modern military-political conflicts, focusing on the inconsistencies of political and managerial decisions in implementing civil defense [11].

Analysis of research data in Ukraine shows that protecting the control area population in case of emergency,
відстежуються зміни системи цивільного захисту
України в умовах сучасних військово-політичних конф-
lіктів, зосереджуючи увагу на суперечливості політико-
управлінських рішень у процесі реалізації ЦЗ [11].
Аналіз даних досліджень в Україні свідчить, що
захист населення зон спостереження на випадок
НС, залежить не лише від ДП «НАЕК «Енергоатом»,
yаке забезпечує ядерну та радіаційну безпеку і
несе відповідальність за ядерну шкоду, а, значною
мірою, від сил ЦЗ. Сьогодні в усіх країнах світу, які
використовують ядерні установки, велике значення
надається питанням роботи з громадськістю.

Мета роботи – визначення особливостей взаємодії
різних управлінських структур з питань радіаційного
захисту населення в зонах спостереження на випадок
надзвичайних ситуацій на АЕС.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ
Для оптимізації соціально-управлінської складової
ризику здоров’я населення зон спостереження АЕС
на випадок НС було проведено експертне опитування
фахівців різних управлінських структур ЗС та фахів-
cів ЮОАЕС. У процесі дослідження був застосований
метод експертного оцінювання [12]. Для проведення
експертного опитування були сформовані п’ять основ-
nих груп експертів, які несуть відповідальність за стан
радіаційного захисту різних груп населення ЗС ЮОАЕС.
До першої групи експертів увійшли управлінці органів
виконавчої влади та місцевого самоврядування (ОМС)
m. Южноукраїнськ (місто-супутник ЮОАЕС), m. Возне-
sенськ та СНП Арбузинського району. Друга група
експертів складалася із фахівців ЮОАЕС. Третя група
була сформована зі спеціалістів міського та районного
відділів управління освіти та директорів шкіл, до
четвертої групи входили управлінці медичних установ,
до п’ятої – управлінці суб’єктів господарювання.
Відбір експертів проходив за основними критеріями
компетентності: освіченість в питаннях радіаційного
захисту, стаж роботи за фахом не менше 5 років, профіль
роботи, інтенсивність роботи та посада. Середній стаж
роботи експертів склали 9,2 роки, фахівців ЮОАЕС –
19,4 роки, освітян – 5 років, медиків – 9 років, управ-
лінців суб’єктів господарювання – 23,6 роки. Групу
експертів склали 42 управлінця. Для кожної групи
експертів були розроблені анкети, у кожній з них були
окремі спільні блоки питань, які можуть порівнюватися
з відповіддю усіх груп експертів чи окремими групами.

Для отримання первинних емпірічних даних
застосовувалося проста впорядкування значень, їх
парне чи послідовне порівняння, а також процедури,
що забезпечують ідентифікацію змінної величини,
що вимірюється. При експертних оцінках у закритих
питаннях застосовувалася порядкова 5-бальна шкала
вимірювання. Були також використані напівзакриті
tа відкриті питання залежно від статусу проблеми,
що представлено до вирішення. При їх обробці
застосовувалася статистичні методи, які призначені
для аналізу нечисленної інформації.

Original research
РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Аналіз оцінок експертів-службовців органів місцевого самоврядування, як головної ланки взаємодії між населенням ЗС і державними службами на випадок НС на АЕС, і їх порівняльна оцінка з оцінками експертів суб’єктів господарювання, освіти, медичних установ і працівників АЕС дозволяє з’ясувати особливості механізму їх взаємодії за умови НС.

За оцінками експертів ЗС, виконання цільових програм захисту населення ЗС від НС як державного фінансування, так і з позабюджетного, краще реалізовано в містах Южноукраїнськ, Вознесенськ і значно гірше – на сільських територіях.

На випадок НС на АЕС, за оцінками експертів – співробітників АЕС, система оповіщення керівництва органів місцевої влади міст і СНП ЗС є «більш-менш» ефективною і може бути реалізована протягом 30 хвилин. За оцінками експертів ОМС на всіх територіях проживання на випадок НС будуть задіяні усі системи оповіщення, як локальні, що несуть мінімум необхідної інформації в перші години (сирени, гучномовці), так і загальновидавні (телекомунікаційні мережі, інтернет, мобільний зв’язок). За оцінками експертів – суб’єктів господарювання, у структурі системи оповіщення на випадок НС на об’єктах ЗС на першому місці – гучномовці і сирени, на другому – мобільний зв’язок, на третьому – телекомунікаційні мережі, на четвертому – інтернет і смс-повідомлення (рис. 1). За оцінками експертів-освітян, у структурі системи оповіщення на випадок НС на об’єктах СНП ЗС на першому місці – гучномовці і сирени (дзвінок) і гучномовці (60.0 %), місцеве радіомовлення (40.0 %) і телекомунікаційні мережі (30.0 %).

Аналіз оцінок експертів свідчить, що більш високі оцінки щодо систем оповіщення на випадок НС, надали експерти м. Южноукраїнськ, нижчі – м. Вознесенськ і найнижчі – експерти сільських територій (рис. 2). За отриманими даними, поєднання всіх систем оповіщення на випадок НС, може забезпечити 100.0 % охоплення населення за короткий проміжок часу.

RESULTS AND DISCUSSION

Analysing the evaluations of experts-employees of local government bodies, as the main link of interaction between the control area population and state services in case of emergency at NPPs, as well as comparative evaluation of those ones with scores of experts of business entities, education, medical establishments and employees of NPP makes it possible to figure out the features of the mechanism of their interaction in case of emergency.

According to the control area experts, fulfilling targeted programs to protect the NPP control area population, both state and extra-budgetary, is better implemented in the Yuzhnoukrainsk and Voznesensk while it is substantially worse in rural areas.

In case of emergency at NPP, the system of alerting municipal authority executives of cities and rural settlements of the control area is “more or less” effective and can be achieved within 30 minutes as assessed by expert-employees. According to local government experts, in all settlement areas, in case of emergency, all alerting systems will be utilized, both the local ones, providing the minimum necessary information within the first hours (sirens, speakers), and the national-level ones (telecom networks, Internet, mobile communication). According to experts of business entities, the structure of the alerting system in case of emergency on the control area objects is as follows: loudspeakers and sirens go first, mobile communication goes second, telecom networks – third, Internet and SMS – fourth (Fig. 1). According to educators, all centralized systems alerting staff and students will be utilized in case of emergency: mobile communication (80.0%) and SMS (60.0%), sirens (call) and loudspeakers (60.0%), local radio broadcasting (40.0%) and telecom networks (30.0%).

Analysis of expert assessments shows that higher scores for emergency alert systems were provided by experts from Yuzhnoukrainsk, lower ones – by Voznesensk and the lowest scores were provided by rural area experts (Fig. 2). According to the data obtained, the combination of all alert systems, in case of emergency, can cover 100.0 % of the population in a short period of time.
Проводячи порівняльну оцінку між зверненнями за інформацією на випадок НС можна стверджувати, що ОМС, залежно від місця роботи, обирають різні джерела для інформування населення, в містах Южноукраїнськ і Вознесенськ, в першу чергу, звертаються до ВП ЮУ АЕС, потім – до ДСНС, на сільських територіях – до ДСНС.

На випадок НС, за оцінками експертів ОМС, експерти – суб’єкти господарювання, найкраще засобами індивідуального захисту (ЗІЗ), для населення м. Южноукраїнськ (4,0 бали), що дещо нижче оцінки, на рівні 3,0 балів – у м. Вознесенськ і найнижчі – у СНП – частково забезпечені (2,3 бали).

За оцінками експертів-освітян, забезпеченість засобами індивідуального захисту учнів шкіл м. Южноукраїнськ складає 4,5 ± 0,50, респіраторами і протигазами – 4,2 ± 0,80, аптечками побутовими – 4,0 ± 0,70 за 5-бальною шкалою. У школах запаси препаратів стабільного йоду відсутні, але їх можна отримати, якщо потреба в них виникла, в аптеках і медичних закладах. Населення м. Южноукраїнськ забезпечено стабільним йодом (за місцем проживання всі групи населення), але необхідність в йодних прилаху інші види радіаційної захисту не передбачаються планом робіт на випадок НС на ЮУАЕС.

Штучні освітлювальні прилади і прилади радіаційної роз- відки є лише в управлінці ОМС м. Южноукраїнськ. Усі прилади є в управлінці м. Вознесенськ, у ОМС на сільських територіях дозиметричні прилади відсутні. У розпорядженні служб індивідуального захисту суб’єктів господарювання, штучні освітлювальні прилади практично відсутні на всій території ЗС, зокрема на сільських територіях.

Дозиметричні прилади є лише в управлінці ОМС м. Южноукраїнськ. Заклади освітлювання є лише в управлінці м. Вознесенськ.
Складна ситуація щодо рівня технічного оснащення служби ЦЗ у зоні спостереження. Вкрай незадовільний стан у СНП, за даними експертів ОМС сільських територій. У м. Вознесенськ 50,0 % експертів вважають, що він незадовільний, найкраща ситуація в м. Южноукраїнськ – 83,3 % експертів вважають, що оснащення ЦЗ задовільне. Середні оцінки експертів технічного оснащення служби ЦЗ у ЗС ЮУАЕС на випадок НС складають: СНП – 2,25 ± 0,48, м. Вознесенськ – 3,00±1,00, м. Южноукраїнськ – 3,83 ± 0,17 (задовільний).

Фінансування та матеріально-технічне забезпечення заходів ЦЗ, за оцінками експертів-суб'єктів господарювання, дуже низьке (1,53 бала), в основному за рахунок місцевого та власного бюджетів. Розподіл оцінок рівня технічного оснащення служби ЦЗ у зоні спостереження АЕС на випадок НС суттєво відрізняється в управлінців ОМС і фахівців АЕС (рис. 3).

Фінансування та матеріально-технічне забезпечення заходів ЦЗ, за оцінками експертів-суб'єктів господарювання, дуже низьке (1,53 бала), в основному за рахунок місцевого та власного бюджетів. Розподіл оцінок рівня технічного оснащення служби ЦЗ у зоні спостереження АЕС на випадок НС суттєво відрізняється в управлінців ОМС і фахівців АЕС (рис. 3).

За оцінками експертів-медиків, наявність на балансі МСЧ техніки і медичного майна, на випадок НС, складає 1,0 бал (відсутні), профілактичних медичних препаратів, необхідних для використання на випадок НС, складає 3,0 бали (забезпечено на 50 %). За необхідності йодної профілактики, за оцінками експертів-медиків, часовий період готовності МСЧ до її проведення серед населення оцінений у 2,6 бали. При цьому 66,6 % експертів-медиків вважають, що часовий період проведення йодної профілактики серед населення, на випадок НС, складає близько 6 годин, а 33,3 % експертів – від 6 годин до доби. На базі МСЧ створені і підготовлені спеціальні медичні формування та санітарні пости на випадок НС. Населення ЗС, за no dosimetric devices at the disposal of civil protection services of business entities and schools in the entire control area, especially in rural areas.

The level of technological infrastructure of the civil protection service in the control area is quite challenging. Extremely unsatisfactory situation is observed in rural areas, according to experts of local governments. In Vozнесенск, 50.0 % of experts believe that it is unsatisfactory, the best situation is in Yuzhnoukrainsк – 83.3 % of experts believe that the equipment of civil defense is satisfactory. The average score of the technical equipment of the civil protection service in the SUNPP control area from the experts’ perspective, in case of emergency, are: rural settlements – 2.25 ± 0.48, Voznesensk – 3.00 ± 1.00, Yuzhnoukrainsк – 3.83 ± 0.17 (satisfactory).

Financing and logistical support of civil protection measures, according to experts of business entities, is very low (1.53 points), mainly due to local and own budgets. The distribution of scores of the technical equipment level of the civil protection service in the NPP control zone, in case of emergency, was significantly different in the local government officials and NPP experts (Fig. 3).

According to medical experts, the availability of equipment and medical property in the inventory of primary healthcare units in case of emergency, is 1.0 point (absent), the availability of preventive drugs required in case of emergency is 3.0 points (supplied by 50%). If iodine preventive care is necessary, the timeframe, required by primary health care unit to be ready to provide it for the population, is 2.6 points, as evaluated by medical experts. At the same time, 66.6 % of medical experts believe that the time period required to provide iodine preventive care to the population in case of emergency is about 6 hours, while 33.3 % of experts – from 6 hours to 24 hours. At the premises of primary healthcare units, there are special medical formations and medical aid posts set up
Оригінальні дослідження акцентовані на використанні додаткових заходів до випадку НС за планом ДСНС.

Оцінки експертів ОМС щодо їх готовності до реалізації захисних заходів на випадок НС свідчать, що готовність до йодної профілактики складає 4,0–5,0 бали, а евакuaція населення – 4,0 бали. Оцінки заходів щодо обмеження споживання продуктів харчування, забруднених радіонуклідами, та забезпечення "чистотою", а також обмеження споживання питної води, забрудненої радіонуклідами, та забезпечення "чистотою", складають близько 3,0 балів (забезпечено на 50 %).

Загальний аналіз оцінок експертів по ЗС свідчить, що 49,1 % експертів вважають, що громади готові до НС на АЕС і 50,9 % вважають, що більш-менш готові. 33,0 % експертів вважають, що громади більш-менш готові до НС на інших техногених об’єктах, 58,3 % – що готові і 8,3 % – що максимально готові. Щодо НС на ГЕС, то 53,8 % експертів вважають, що громади готові, з них 25,0 % – максимально готові, а 41,7 % що більш-менш готові.

Експерти ОМС володіють інформацією про надзвичайні ситуації, які відбулися на АЕС, серед експертів – суб’єктів господарювання повністю володіють інформацією 28,6 %. На випадок НС на АЕС, План робіт для режиму НС на господарчих об’єктах був реалізований на 92,8%, 35,7% експертів вважають, що готовність до НС на ГЕС, то 53,8 % експертів вважають, що громади готові, з них 25,0 % – максимально готові, а 41,7 % що більш-менш готові.

У вихованнях, що періодично проводяться на АЕС випадок НС, задіяні ОМС, суб’єкти господарювання в ЗС як місто супутника, так і сільських територій. За оцінками експертів, основними перепонами при реалізації заходів протирадіаційного захисту на об’єктах господарювання, загалом по ЗС, є непридбільне їх матеріально-технічне забезпечення (50,0 %), недостатній рівень знань і навичок (28,6 %), відсутність об’єктів укриття на випадок НС (64,3 %).

Думки експертів-суб’єктів господарювання щодо способів сприяння вчиненню та засвоєнню знань і навичок ЦЗ на випадок НС на АЕС різняться. Для 21,4 % експертів можливими способами сприяння засвоєнню обов’язкових знань є фінансово-матеріальні, 57,1 % – пропаганда та інформування, для 50,0 % – моральна відповідальність і для 7,3 % – адміністративна відповідальність.

УЗС ЮУАЕС у школах, з метою забезпечення безпеки учнів, розроблені плани робіт для повсякденного функціонування і для режиму надзвичайної ситуації. На випадок НС на Южно-Українській АЕС, у школах ЗС відповідальні за безпеку учнів володіють інформацією хто і протягом якого часу повинен повідомити керівників шкіл про надзвичайну ситуацію. Однак на рік у школах ЗС для учнів проводяться польові навчання з дій на випадок НС на АЕС, а також районні шкільні змагання з ЦЗ, в тому числі з радіаційного захисту та безпеки життєдіяльності. and prepared for emergency cases. According to medical experts, the control area population is supplied with stable iodine agents by 100 percent. Primary health care unit employees train the population focusing on the methods of providing premedicals in case of emergency, according to the plan of actions of the State Emergency Service.

 Evaluations of local government experts on their readiness to implement protective measures in case of emergencies show that readiness for iodine prophylaxis is 4.0-5.0 points, while evacuation of the population is 4.0 points. The measures to limit the consumption of radionuclide-contaminated food and to supply "clean" one, as well as to limit the consumption of drinking water contaminated with radionuclides and to ensure "clean" one are evaluated at the level of 3.0 points (supplied by 50%).

The general analysis of expert evaluation of the control area shows that 49.1% of experts believe that the communities are ready for an emergency at the NPP while 50.9% believe that they are more or less ready. 33.0% of experts believe that communities are more or less ready for an emergency situation at other industry-related facilities, 58.3% – that they are ready and 8.3 % – that they are as ready as possible. Regarding emergencies at water-power plants, 53.8 % of experts believe that communities are ready, out of those: 25.0 % are as ready as possible, while 41.7 % are more or less ready.

Experts of local government bodies have information about emergencies that occurred at nuclear power plants, among experts-business entities 28.6% fully possess information. In case of emergency at a nuclear power plant, the Work Plan for the emergency situation at economic facilities will be fulfilled by 92.8%. 35.7% of experts believe that it will be completely, 51.1 % – partially. For the majority of business entities of the control area, in case of emergency the functions are fixed: transport (21.4%), medical (28.6%), energy (14.3 %).

The training, which are periodically conducted at the NPP in case of an emergency, involve local governments, business entities in the control zone of the edge city as well as rural areas. According to experts, the main obstacles in the implementation of radiation protection measures at facilities, generally on the control area, are inadequate logistics (50.0 %), insufficient level of knowledge and skills (28.6 %), lack of shelters in case of emergency (64.3 %).

Opinions of business experts regarding the ways to promote the study and master knowledge and skills of civil defense, in case of an emergency at a nuclear power plant, differ. For 21.4% of experts, the possible ways to promote absorbing mandatory knowledge are financial and material ones, for 57.1 % – outreach and informing, for 50.0 % – moral responsibility and for 7.3 % – administrative responsibility.

At schools located in the SUNPP control area, in order to ensure the safety of students, they develop work plans for day-to-day operation and for the emergency regime. In case of emergency at South-Ukrainian NPP, the staff who are responsible for safety of students at the control area schools have information on who and during what time should inform school principals about the emergency. Once a year, at schools located on the control area, students...
1. Про призначення експлуатуючої організації ЮУ АЕС і, значно гірше, в СНП. Населення ЗС АЕС краще реалізовано в місті-супутнику випадок НС серед населення (до 6 годин) оцінений в разі необхідності додаткову йодну профілактику на 50 %». Часовий період готовності МСЧ провести ними для використання на випадок НС, «забезпечені майна, на випадок НС, складає 1,0 бал (відсутні). Наявність на балансі МСЧ техніки і медичного забезпечення заходів ЦЗ дуже низьке (1,53 бали). Оцінка рівня забезпеченості аптечками, захисним одягом і дещо нижче – м. Вознесенськ та СНП. Найнижчий рівень готовності реалізації захисних заходів на випадок НС, «більш-менш» ефективно i може бути реалізована протягом 30 хвилин. Рівень готовності реалізації захисних заходів в громадських установах зазнає змін в залежності від регіональної установ. На випадок НС в установах відсутні захистні відбійники, захисні одяг і респіратори – на сільських територіях. Реалізація заходів щодо обмеження споживання продуктів харчування, забруднених радіонуклідами, характеризуєсь як незадовільна. Боротьба з забрудненнями води – незадовільна, а в містах на рівні Стан технічного оснащення служб ЦЗ в СНП складає 4.67 ± 0.33 за 5-бальною шкалою. дії службами АЕС і ДСНС проводяться періодичні тренування системи аварійного реагування, на випадок аварійної ситуації, як ефективні та повностю ефективні (33.3 % і 66.7 % відповідно), загальна оцінка складає – 4,67 ± 0,33 за 5-бальною шкалою.

ВИСНОВКИ
1. Аналіз даних експертних оцінок свідчить, що службами АЕС і ДСНС проводяться періодичні навчання на випадок НС на АЕС, що формує стереотипи поведінки управлянців державних служб і установ. На випадок НС на АЕС система оповіщення керівників органів місцевої влади міст і СНП ЗС є «більш-менш» ефективно i може бути реалізована протягом 30 хвилин. Рівень готовності реалізації захисних заходів на випадок НС різний. Управлінці державних служб і установ готові до реалізації йодної профілактики і евакуації населення. В умовах сьогодення населення ЗС АЕС забезпечено препаратами стабільного йоду. Засобами індивідуального захисту найкраще забезпечене населення м. Южноукраїнськ, децо нижче – м. Вознесенськ та СНП. Найнижчий рівень забезпеченості антиметами, захисним одягом і респіраторами – на сільських територіях. Реалізація заходів щодо обмеження споживання продуктів харчування, забруднених радіонуклідами, характеризується як незадовільна, а також обмеження споживання питної води, забрудненої радіонуклідами, та забезпечення «чистою», складає близько 3,0 балів («близько 50 % від необхідного»).
2. Рівень оснащення служб ЦЗ і МСЧ низький. Стаціонарного оснащення служби ЦЗ у СНП зони спостереження – незадовільний, а в містах на рівні зовнішнього охорони, а в містах на рівні зовнішнього зони спостереження забезпечено. Фінансування та матеріально-технічне забезпечення заходів ЦЗ дуже низьке (1,53 бали). Наявність на балансі МСЧ техніки і медичного майна, на випадок НС, складає 1,0 бал (відсутні). Профілактичними медичними препаратами, необхідними для використання на випадок НС, «забезпечени на 50 %». Часовий період готовності МСЧ провести в разі необхідності забезпеченням йоду профілактику на випадок НС серед населення (до 6 годин) оцінений у 2,6 бали. Виконання цільових програм захисту населення ЗС АЕС краще реалізовано в місті-супутнику ЮУАЕС і, значно гірше, в СНП.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ
1. Про призначення експлуатуючої організації (оператора) ядерних установ: Постанова Кабінету Міністрів України від 08.06.1998 р. № 830 у редакції постанови КМУ від 17.11.2001 р.

REFERENCES
1. On appointment of an operating organization (operator) of nuclear installations: Resolution of the Cabinet of Ministers of Ukraine of June 8, 1998 № 830 as amended by the Resolution of the Cabinet
1. № 1532. URL: https://zakon.rada.gov.ua/laws/show/830-98-%D0%BF#Text

2. Про використання ядерної енергії та радіаційну безпеку: Закон України від 8.02.1995 р. № 39/95-ВР. Верховна Рада України. URL: https://zakon.rada.gov.ua/laws/show/39/95-%D0%B2%D1%80#Text

3. Perko T., van Gorp B., Turcanu C., Thijsen P., Carle B. Communication in nuclear emergency preparedness: A closer look at information reception. Risk Analysis. 2013. Vol. 33. № 11. P. 1987–2001.

4. Gordelier S. Allemagne Grande Bretagne: Le risque de leucémie croît à proximité de centrales nucléaires. L’Université de Mayence en collaboration avec le registre allemand des cancers infantiles, 15 décembre 2011. URL: http://www.lexpress.fr/actualite/sciences/sante/habiter-pres-d-une-centrale-nuclaire-favoriserait-la-leucemie-chez-l-enfant_1070801.html

5. Рехтина Л. С., Соколов Н. В., Библин А. М., Репин Л. В., Ахматдинов Р. Р. Проблемы аналитического обеспечения коммуникации рисков: обоснование подходов к разработке исследовательских баз данных по вопросам радиационной безопасности и социальных рисков. Радиационная гигиена. 2017. № 4. С. 44–52.

6. Дулинець Л., Мартыченко Е. Мониторинг общественного мнения по развитию ядерной энергетики в Беларуси: итоги и оценка специалистов. Беларуское телеграмное агенство. URL: http://atom.belta.by/ru/conf_ru/view/monitoring-obschestvennogo-mnenija-po-razvitiju-jadernoj-energetiki-v-belarusi-itogi-i-otsenka-spetsialistov-359-359-359-359-359-359-359-359

7. Bonchuk YuV. Sanitary protection zones of NPPs and radiation-hygienic requirements for their purpose. Radiation safety and social risks. Radiation hygiene. 2017;4:44–52. (In Russian).

8. PulagutaS.B., Kovalenko V.B., Moitylencheno V.V., Korepanova N. V. Шляхи побудови сучасних систем оповіщення про загрозу або виникнення надзвичайних ситуацій. Науковий вісник: Цивільний захист та пожежна безпека. 2017. № 1(3). С. 4–10.

9. Калиненко Л. В., Кимаковська Н. О. Аварійна готовність та аварійне реагування у випадку радіаційної аварії. Науковий вісник: Цивільний захист та пожежна безпека. 2018. № 2(6). С. 51–58. URL: https://doi.org/10.33269/nvcz.2018.2.51-58

10. Баряло О. Г. Проблеми питання інформаційного забезпечення цивільного захисту України. Електронний журнал «Державне управління: усноконення та розвиток». 2017. № 8. URL: http://www.dy.nayka.com.ua/?op=1&z=1112

11. Лещенко О. Я. Трансформація системи цивільного захисту України в умовах сучасних воннокосмічних конфліктів гібридного типу: автореф. дис. … канд. політ. наук: 21.01.01. Національний інститут стратегічних досліджень. Київ, 2020. 21 с. of Ministers of November 17, 2001 № 1532. (In Ukrainian). URL: https://zakon.rada.gov.ua/laws/show/830-98-%D0%BF#Text

2. On the use of nuclear energy and radiation safety: Law of Ukraine of February 8, 1995 № 39/95-VR. (In Ukrainian). URL: https://zakon.rada.gov.ua/laws/show/39/95-%D0%B2%D1%80#Text

3. Perko T., van Gorp B., Turcanu C., Thijsen P., Carle B. Communication in nuclear emergency preparedness: A closer look at information reception. Risk Analysis. 2013;33(11):1987–2001. (In English). DOI: https://doi.org/10.1111/risa.12048

4. Gordelier S. Allemagne Grande Bretagne: Le risque de leucémie croît à proximité de centrales nucléaires. L’Université de Mayence en collaboration avec le registre allemand des cancers infantiles, 15 décembre 2011. (In English). URL: http://www.lexpress.fr/actualite/sciences/sante/habiter-pres-d-une-centrale-nuclaire-favoriserait-la-leucemie-chez-l-enfant_1070801.html

5. Rekhtina LS, Sokolov NV, Biblin AM, Repin LV, Akhmatdinov RR. Problems of analytical support of risk communication: substantiation of approaches to the development of research databases on radiation safety and social risks. Radiation hygiene. 2017;4:44–52. (In Russian).

6. Dulinets L., Martishchenkova E. Monitoring of public opinion on the development of nuclear energy in Belarus: results and evaluation of specialists. Belarusian Telegram Agency. (In Russian). URL: http://atom.belta.by/ru/conf_ru/view/monitoring-obschestvennogo-mnenija-po-razvitiju-jadernoj-energetiki-v-belarusi-itogi-i-otsenka-spetsialistov-359-359-359-359-359-359-359-359

7. Bonchuk YuV. Sanitary protection zones of NPPs and radiation-hygienic requirements for their purpose. Radiation safety and social risks. Radiation hygiene. 2017;4:44–52. (In Russian).

8. Palaguta SV, Kovalenko VV, Mogilnichenko VV, Korepanova NV. Ways to build modern warning systems about the threat or occurrence of emergencies. Scientific Bulletin: Civil Protection and Fire Safety. 2017;1(3):4–10. (In Ukrainian).

9. Kalinenko LV, Kimakovskaya NO. Emergency preparedness and emergency response in case of radiation accident. Scientific Bulletin: Civil Protection and Fire Safety. 2018;2(6):51–8. (In Ukrainian). URL: https://doi.org/10.33269/nvcz.2018.2.51-58

10. Baryl’o OG. Problematic issues of information support of civil defense of Ukraine. Electronic journal “Public Administration: Improvement and Development”. 2017;8. (In Ukrainian). URL: http://www.dy.nayka.com.ua/?op=1&z=1112

11. Leshchenko OYa. Transformation of the system of civil defense of Ukraine in the conditions of modern military-political conflicts of hybrid type [dissertation]. National Institute for Strategic Studies. Kyiv, 2020;21. (In Ukrainian).
Prospects for further research
Up to date, in all countries of the world that use nuclear facilities, the issues of radiation safety and radiation protection of the population living near nuclear power plants is of great importance. In Ukraine, with the extension of the service life of power units at all nuclear power plants, the issues of radiation protection of the population in everyday life and in case of emergencies at nuclear power plants will remain relevant.

Conflict of interest
The authors of the manuscript deliberately state no actual or potential conflict of interest regarding the results of this paper with National Energy Company “Energoatom” and the scientific institutions of Academy of Medical Sciences of Ukraine.

Funding information
Financed by the State Budget of Ukraine.

Acknowledgements
We truly thank the Head of the Information and Public Relations Department of SUNPP Pelyukha O.O. and Deputy Head of the Radiation Safety Department of RNPP Romanenko O.O. for assistance in organizational matters of research in the control area.

INFORMATION ABOUT THE AUTHORS

Prylypko Valentyna Antonivna – Doctor of Medical Science, Professor, Head of Medical and Social Research Laboratory of State Institution “National Research Center for Radiation Medicine of National Academy of Medical Sciences of Ukraine”, 53, Yu. Ilyenko Str., Kyiv, Ukraine, 04050;
e-mail: medsocncrm@gmail.com, basepril@i.ua
ph: + 38 (067) 233-09-72

Author’s contribution: adjustment of work performed, analysis of the results and writing an article.

Petryuchenko Oleksandr Oleksandrovych – Doctor of Medical Science, Deputy Head of Medical and Organizational Department of the Presidium of National Academy of Sciences of Ukraine, Senior Research Fellow of National Academy of Medical Sciences of Ukraine; 53, Yu. Ilyenko Str., Kyiv, Ukraine, 04050;
e-mail: medlu@ukr.net
ph: + 38 (095) 575-51-46

Author’s contribution: organizational issues of the study.
Морозова Марина Миколаївна – науковий співробітник лабораторії медико-соціальних досліджень Державної установи «Національний науковий центр радіаційної медицини Національної академії медичних наук України України»; вул. Юрія Іллєнка, буд. 53, м. Київ, Україна, 04050;
e-mail: medsocncrm@gmail.com
моб.:+38 (093) 776-42-16

Внесок автора: збір інформації та статистична обробка даних, оформлення матеріалів.

Бондаренко Ірина Валентинівна – молодший науковий співробітник лабораторії медико-соціальних досліджень Державної установи «Національний науковий центр радіаційної медицини Національної академії медичних наук України України»; вул. Юрія Іллєнка, буд. 53, м. Київ, Україна, 04050;
e-mail: medsocncrm@gmail.com
моб.:+38 (093) 608-96-30

Внесок автора: збір інформації та статистична обробка даних.

Морозова Maryna Mykolayivna – Researcher of Medical and Social Research Laboratory of State Institution “National Scientific Center of Radiation Medicine of National Academy of Medical Sciences of Ukraine”; 53, Yu. Ilyenko Str., Kyiv, Ukraine, 04050;
e-mail: medsocncrm@gmail.com
ph: +38 (093) 776-42-16

Author’s contribution: collecting information and statistical data processing, registration of materials.

Bondarenko Iryna Valentynivna – Junior Researcher of Medical and Social Research Laboratory of State Institution “National Scientific Center of Radiation Medicine of National Academy of Medical Sciences of Ukraine”; 53, Yu. Ilyenko Str., Kyiv, Ukraine, 04050;
e-mail: medsocncrm@gmail.com
ph: +38 (093) 608-96-30

Author’s contribution: collecting information and statistical data processing.