Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals

Deming Liu1, Xiaoxue Xu1,2, Yi Du3, Xian Qin4, Yuhai Zhang5, Chenshuo Ma1, Shihui Wen1,2, Wei Ren1,2, Ewa M. Goldys1, James A. Piper1, Shixue Dou3, Xiaogang Liu4,5 & Dayong Jin1,2

The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA−) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA− to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom-up scalable approach.
Nanocrystal engineering, design and fabrication of nanocrystals with desirable size, shape1–6, surface properties7 and composition8,9 is attracting growing interest due to its essential role in fundamental research and commercial relevance. Rare-earth-doped upconversion nanocrystals have recently emerged as the new generation of functional nanomaterials, because they exhibit exceptional optical, magnetic and chemical properties underpinning their diverse applications. In particular, alkaline rare-earth fluoride (AREF\textsubscript{4}) nanocrystals10–12, including hexagonal-phase β-NaYF\textsubscript{4}, β-NaGdF\textsubscript{4}, β-NaNdF\textsubscript{4} or β-NaLuF\textsubscript{4} are used in full-colour displays12,13, photovoltaics14, security inks15, forensic science16, autofluorescence-free biomolecular sensing17–19, multimodal in vivo bio-imaging (fluorescence, magnetic resonance imaging, X-ray, SPECT and so on.)20 and theranostics17,21–23. A trial-and-error approach is frequently used to produce nanoparticles with spherical, rod-like or other shapes24–26 by varying dopant concentrations and/or constituent materials27, reaction time and temperature28–31. This random sampling of vast, multidimensional parameter space, needs to be done rationally, with proper understanding of the underpinning growth mechanisms.

Here we find that oleate anions (OA−), the dissociated form of oleic acid molecules (OAH), have variable, dynamic roles in mediating the growth of AREF\textsubscript{4} nanocrystals. This allows us to introduce a molecular approach to tailoring the shape and composition of AREF\textsubscript{4} nanocrystals. This new method is based on a selective epitaxial core–shell growth process in the presence of oleic acid, commonly used as a surfactant during the synthesis of β-AREF\textsubscript{4} nanocrystals32. Drawing inspiration from the recently discovered co-existence of oleic acid molecules (OAH) and their dissociated form, oleic acid ions (OA−) in the binary systems of PbS33 and PbSe nanocrystals34, we hypothesize that the change in the ratio of OA− to OAH could influence the interaction of these ligands with the particle surface and hence the resulting morphology. Our computational modelling (Fig. 1, Supplementary Figs 1–6, Supplementary Notes 1 and 2 and Supplementary Table 1) and experimental results (Figs 2–4, Supplementary Figs 7–35, Supplementary Tables 2 and 3 and Supplementary Notes 3–18) demonstrate that the preferential affinity of OAH and OA− to different crystalline facets dictates the formation of nanocrystals of different shape. Importantly, we demonstrate that the precise control over the shell thickness and the particle shape can be achieved by deliberately switching the passivation, additive and subtractive roles of these surfactants.

Results

Computational modelling.

To quantify the surface coordination chemistry between β-NaYF\textsubscript{4} surface and OAH and OA− ligands, we performed first-principles calculations based on density functional theory using CASTEP (CAmbridge Serial Total Energy Package)35. As shown in Fig. 1b and Supplementary Fig. 1, we treated the (001) and (100) planes of the β-NaYF\textsubscript{4} nanocrystals terminated with specific atomic arrangement as the most stable facets according to the calculated surface energies. Considering that the oxygen moiety in the ligands has a strong binding affinity to Y3+ ions at the particle surface36, we modelled the interactions between the OAH and OA− molecules and the Y3+ ions under a number of conditions, such as different adsorption configurations (Supplementary Figs 2 and 3 and Supplementary Note 1), ligand chain length and ligand coverage (Supplementary Figs 4 and 5 and Supplementary Note 2). The key conclusion from these simulations is that OA− preferentially binds to RE3+ ions exposed on the (100) facet of the hexagonal fluoride nanocrystal, with a much higher binding energy (-35.4 eV) than on the (001) facet (-21.8 eV). It should be noted that the OAH molecule binds with a higher probability to the (001) facet than the (100) facet and has relatively small binding energies of -9.4 eV and -4.6 eV, respectively, on each of these facets (Supplementary Table 1). Our charge analysis (Supplementary Fig. 6) further indicates that such selective binding is attributed to the difference in the atomic arrangements of these two facets (Fig. 1b), giving rise to different charge transfer paths between the ligands and the surface ions.

![Preferred molecular bonding models of OA− and OAH.](image)

Figure 1 Preferred molecular bonding models of OA− and OAH. (a) The schematic shape of a β-NaYF\textsubscript{4} nanocrystal chosen as the core for directional epitaxial growth in this work. The hexagonal cylinder consists of the (001) facets at the ends and identical (100) and (010) facets around the cylinder sides. (b) The Y3+ arrangements and binding energies (see insert table) of OAH and OA− on the most stable (001) and (100) facets. The Y3+ atoms form equilateral triangles with a length of 6 Å in the relaxed (001) surface, while rectangles are observed in the (100) surface with a shorter length of 3.51 or 3.69 Å; (c) SEM characterization of submicron-sized nanocrystals synthesized using the hydrothermal route (detailed synthesis is included in the method; scale bar, 500 nm).
Controlled epitaxial growth direction. The binding preferences of OAH and OA⁻ molecules to different facets were first used to induce longitudinal epitaxial growth. We demonstrated (Fig. 1c) that sub-micrometre-sized NaYF₄ nanoparticles prepared by a co-precipitation method. Figure 2a,b show that high concentration of NaOH leads to longitudinal growth, because of a large concentration of passivating OA⁻ ions on the (100) facets (Supplementary Figs 8–10). The zeta potential of NaYF₄ nanocrystals after the removal of ligands (Supplementary Fig. 11) shows that the RE³⁺ cations are more abundant on the crystal surfaces than the F⁻ ions. We further systematically studied other possible factors that could influence the epitaxial shell growth (experimental details in Supplementary Methods), including the reaction temperature (Supplementary Figs 12 and Supplementary Note 3), the oleic acid concentration (Supplementary Figs 13 and Supplementary Note 4), the F⁻ ion concentration (Supplementary Figs 14 and Supplementary Note 5) and the Na⁺ concentration (Supplementary Figs 15 and Supplementary Note 6). From these results, we confirm that the ratio of OA⁻/OAH is a key factor that determines the epitaxial shell growth direction. However, other parameters also have an effect on the growth speed or can change the OA⁻/OAH ratio that indirectly affects the direction of growth. To rule out the effect of OH⁻ on longitudinal growth, we added sodium oleate in place around the NaYF₄ core. Interestingly, subtractive growth (dissolution) is observed from their side (100) surfaces. This results in concurrent decrease of the core width from 26 to 18 nm, thus producing dumbbell-shaped nanocrystals (Supplementary Note 8).

Moreover, we found that the addition of KOH further accelerates longitudinal growth rate (Supplementary Fig. 19 and Supplementary Note 9) due to a higher dissociation constant of KOH than NaOH, which increases the dissociation of OAH producing more OA⁻. With the aid of KOH, heterogeneous ‘bamboo-shaped’ nanorods (NRs) with sharp edges were formed in a stepwise manner with a width of up to 173 nm (Fig. 2b, Supplementary Fig. 21 and Supplementary Note 10). The interesting one-dimension architecture of ‘bamboo-shaped’ NRs suggests that integrated multiple functionalities can be built. Thus our new platform enables rational design and facile synthesis of multiple sections of rare-earth-doped heterogeneous materials and investigation of their interactions and functions within a single integrated rod. We were also able to induce transversal epitaxial growth by increasing the amount of OAH and reducing the amount of NaOH. At a reaction temperature of 290 °C, the transversal growth was observed and NaGdF₄ rings of 7-nm-thick around the NaYF₄ cores formed without a measurable change in the longitudinal direction (Fig. 2c, Supplementary Figs 23 and 24 and Supplementary Note 11). Notably, the dissolution of the (100) facets of the cores took place as well, and the width of the core was, again, reduced from 49 to 30 nm at both ends. The observed dissolution always occurred on the (100) facets in both cases of longitudinal and transversal growth. This is consistent with the strong chelating character of OA⁻ on the (100) facet, with the fact that NaYF₄ is dissolved faster than NaGdF₄ because NaYF₄ is comparably less energetically stable than NaGdF₄.
between core and shell materials in presence of OA$^-$ which leads to higher binding strength on the side surfaces. By comparing growth of NaTbF$_4$ as shell or NaYbF$_4$ as shell on a NaYF$_4$ core (Supplementary Fig. 25), we demonstrate that the dissolution of the core requires the shell materials to have higher thermal stability than the core material. Larger difference of thermal stability between core and shell result in a higher dissolution rate.

Controlled migration growth. By combining the approaches of longitudinal and transversal growth and selective dissolution with consideration of lattice mismatch (Supplementary Tables 2 and 3), we synthesized a variety of three-dimensional (3D) hybrid nanostructures (Supplementary Figs 26–34). Figure 3 shows a typical example of real-time evolution of morphology and composition of the NaYF$_4$/NaGdF$_4$/NaNdF$_4$ NCs, including the dissolution process of the NaYF$_4$/NaGdF$_4$ nanocrystals and subsequent longitudinal growth of NaNdF$_4$. The dissolution of NaYF$_4$/NaGdF$_4$ is initiated by the OA$^-$ adsorbed on the surface of the nanocrystals. The concomitant depletion of dissolved F$^-$ ions used for longitudinal growth of NaNdF$_4$ in the presence of high concentration of OA$^-$ facilitates the dissolution of NaYF$_4$/NaGdF$_4$ nanocrystals and this, in turn, promotes longitudinal growth of NaNdF$_4$. Following the dissolution of the Y$^{3+}$ and Gd$^{3+}$ ions from the surface of NaYF$_4$/NaGdF$_4$ nanocrystals, these ions then participate in the epitaxial growth of NaNdF$_4$ nanocrystals, as evidenced by the elemental mapping (Fig. 3h). Moreover, our real-time sampling transmission electron microscope data further confirmed the underpinning mechanism (Fig. 3a–g, Supplementary Figs 26–28). The size of nanocrystal core decreased significantly in the first 5 min, indicating that the dissolution rate of the nanocrystals is faster than their growth rate. After 15 min, new material started to form at the top and at the bottom ends of the core with simultaneous decrease of the nanocrystal core width. This observation rules out ‘surface mobility’ (‘atom diffusion’) as the possible driving force behind the formation of the final shell, otherwise it is expected that the dissolution of NaYF$_4$ and growth of NaNdF$_4$ would occur at the same time. The only mechanism which explains the shape of this nanocrystal is that the absence of F$^-$ source exceeds a certain threshold.

Our control experiments (Supplementary Fig. 29 and Supplementary Note 15) further support the mechanism of OA$^-$ induced dissolution in which a firm bonding of the surfactant OA$^-$ to the surface RE$^{3+}$ cations is the main factor responsible for the removal of the surface crystalline layers (experimental details in Supplementary Methods). As shown in Supplementary Fig. 29, we applied transversal growth approach to first grow a layer of NaGdF$_4$ on the side surfaces of NaYF$_4$ core. We see that smaller mismatch of NaGdF$_4$ versus NaNdF$_4$ compared with the NaYF$_4$ versus NaNdF$_4$ fails to direct the transversal migration growth of the NaNdF$_4$ on the side surfaces of NaGdF$_4$. Instead, dissolution occurs in the first 10 min of the reaction (Supplementary Fig. 29a,b) and both dissolution from...
the side surfaces and epitaxial growth of NaNdF₄ on the end surfaces of NaGdF₄/NaYF₄ cores result in a thinner and longer nanocrystal.

Guided by the principle that the ratio of OA⁻ / OAH controls the direction of epitaxial shell growth, we further demonstrated (as shown in Supplementary Fig. 30 and Supplementary Note 16) that a low ratio of OA⁻ / OAH at a lower temperature directs the migration growth along transverse direction. This enables the formation of heterogeneous NaYF₄/NaGdF₄/NaNdF₄ nanocrystals in the shape of a flower, although in this case the dissolution process on the side surfaces of nanocrystals is much less efficient because there are too few OA⁻ ligands bound to RE³⁺ cations on the (100) facet. Two additional experiments (Supplementary Note 17) demonstrate that well established parameters, such as reagent concentration, can be further applied to fine-tune our programmable protocols for other types of heterogeneous nanocrystals. During the formation of hourglass-shaped nanocrystals, the decrease in the amount of Nd³⁺ source is found to hinder the migration growth process and yield sharper tips (Supplementary Fig. 31), whereas a supply of additional F⁻ ions in the reaction increases the diameter of dumbbell ends with round tips (Supplementary Fig. 32). Such level of fine tuning to grow progressively sharper tips may suggest future rational methods, for example to optimize tip-sensitive physical and biochemical properties of NRs.

Figure 4 shows an array of heterogeneous NaREF₄ nanostructures synthesized by precisely specifying OA⁻ / OAH ratios. To the best of our knowledge, these sub-50 nm nanoparticles are the smallest 3D objects prepared by a bottom–up additive and subtractive process. To illustrate the application of this novel method we designed and synthesized multifunctional NaYF₄/NaLuF₄/NaGdF₄ heterogeneous nanocrystals with two NaGdF₄ rings on a NaLuF₄/NaYF₄ NRs (Supplementary Figs 33 and 34 and Supplementary Note 18). The hexagonal-phase NaYF₄ nanocrystal is an efficient luminescence upconversion material. The addition of NaLuF₄ enables X-ray computed tomography, whereas using NaGdF₄ enables magnetic resonance imaging. To the best of our knowledge, this work presents the first controlled fabrication of sub-50 nm 3D shaped heterogeneous nanocrystals logically programmed by the combinational approaches of OA⁻-assisted longitudinal growth, transversal growth and selective crystalline facet dissolution with consideration of crystallographic mismatch rates.

Discussion

The nanoscale engineering capability presented in this work enables quantitative studies which are virtually impossible by conventional approaches. We anticipate that optical properties of these nanostructures can be designed to precisely promote or inhibit inter-particle energy transfer. Similarly, magnetic properties may be optimized to enhance magnetic resonance imaging by correlating the morphology with the surface distribution of magnetic signals. In addition, such hybrid nanomaterials may be used as a platform for transporting biologically important molecules across cell membranes. Furthermore, access to a new library of precisely controlled shapes of nanoparticles provide a novel approach for the targeted delivery in nanomedicine where optimized morphologies of these nanoscale molecular carriers will yield greater efficiencies. This
process could be further facilitated by harnessing the anisotropic properties of different types of nanoparticles that permit diverse surface functionalizations and multi-modal bio-conjugations. The concept presented in this work may further advance our current capabilities of nanoscale programmable and reproducible engineering of new classes of heterogeneous materials in scalable quantities. Our findings may lead to a new class of multifunctional nanomaterials and provide the groundwork for developing previously unforeseen applications of nanoparticles with complex programmable shapes and surface properties.

Methods

Hydrothermal synthesis of NaYF4 crystal. The β-NaYF₄ disks were synthesized via a slightly modified hydrothermal reaction. In a typical experiment, NaOH (3.75 mmol) was first dissolved into 1.5 mL of double distilled water, followed by the addition of OA (7.5 mmol) and ethanol (2.5 mL) while undergoing vigorous stirring. Thereafter, an aqueous solution of NaF (0.5 M; 2 mL) was added to form a turbid mixture. Subsequently, a 1.2 mL aqueous solution of YCl₃ (1.5 mmol/10 mL) was added and the solution was stirred for 20 min. The resulting mixture was then transferred into a 14 mL Teflon-lined autoclave and heated to 220 °C and the temperature maintained for 12 h. After cooling down to room temperature, the reaction product was isolated by centrifugation and washed with ethanol. In this work, different amounts of NaOH were added to adjust the ratio of OA/OH⁻ by its reaction with OAH to form OA⁻.

NaYF₄ nanocrystal cores. In a typical procedure, 4 mL of methanol solution of YCl₃ (2.0 mmol) was magnetically mixed with OA (38 mmol) and ODE (93 mmol) in a 100-mL three-neck round-bottom flask. The mixture was then degassed under the Ar flow and then heated to 150 °C for 30 min to form a clear solution, before cooling to room temperature. 15 mL of methanol solution containing NH₄F (8 mmol) and NaOH (5 mmol) was added to the solution of YCl₃, OA and ODE and stirred for 60 min. The mixture solution was slowly heated to 110 °C and kept at 110 °C for 30 min to completely remove methanol and any residual water. The mixture solution was then quickly heated to the reaction temperature of 300 °C and aged for 1 h. After the solution was left to cool down to room temperature, ethanol was added to precipitate the nanocrystals. The product was then washed with cyclohexane, ethanol and methanol for at least 4 times, before the final NaYF₄ nanocrystals were re-dispersed in 10 mL cyclohexane in preparation for their further use.

Longitudinal growth of NaYF₄ NRs. YCl₃ (0.2 mmol) in 1 mL methanol solution was magnetically mixed with OA (9.5 mmol) and ODE (25 mmol) in a 50-mL three-neck round-bottom flask. The mixture was then degassed under Ar flow and heated to 150 °C for 30 min to form a clear solution, and then cooled to room temperature. Methanol solution (5 mL) containing NH₄F (0.8 mmol) and NaOH (0.5 mmol) was added and stirred for 60 min. The solution was slowly heated to 110 °C and kept at 110 °C for 30 min to completely remove methanol and residual water. The solution was then injected with 0.2 mmol NaYF₄ nanocrystals in cyclohexane and the mixture kept at 110 °C for another 10 min to evaporate the cyclohexane. Then, the reaction mixture was quickly heated to 310 °C and aged for 1 h.

NaGdF₃/NaYF₄ nano-dumbbells. GdCl₃ (0.2 mmol) in 1 mL methanol solution was magnetically mixed with OA (9.5 mmol) and ODE (25 mmol) in a 50-mL three-neck round-bottom flask. The mixture was degassed under Ar flow and heated to 150 °C for 30 min to form a clear solution, and then cooled to room temperature. Methanol solution (4 mL) containing NH₄F (0.8 mmol) and NaOH (0.5 mmol) was added to the OA and ODE solution and stirred for 60 min. The solution is slowly heated to 110 °C and kept at 110 °C for 30 min to remove methanol and the remaining water completely. Then, 0.2 mmol of NaYF₄ core nanocrystals in cyclohexane was injected into the reaction mixture. After holding the reaction temperature at 110 °C for further 10 min to evaporate all cyclohexane, the reaction mixture was quickly heated to 310 °C and aged for 1 h.

NaGdF₃/NaYF₄ NRs by adding KOH. GdCl₃ (0.2 mmol) in 1 mL of methanol solution was magnetically mixed with OA (9.5 mmol) and ODE (25 mmol) in a 50-mL three-neck round-bottom flask. The mixture was degassed under Ar flow and heated to 150 °C for 30 min to form a clear solution, before cooling to room temperature. Methanol solution (5 mL) containing NH₄F (0.8 mmol), KOH (0.4 mmol) and NaOH (0.5 mmol) was added into the OA and ODE solution and stirred for 60 min. The solution was slowly heated to 110 °C and kept at 110 °C for 30 min to remove the methanol and water completely. The reaction mixture was then injected with 0.2 mmol of NaYF₄ core nanocrystals in cyclohexane, into the reaction solution. After holding the reaction mixture at 110 °C for further 10 min to evaporate all cyclohexane, the mixture was heated rapidly to 310 °C before aging for 1 h at this temperature.
2. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the programming of matter. *Nature Nanotech.* **10**, 237–242 (2015).

3. Ramaswamy, P. & Kim, J. Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells. *Chem. Commun.* **50**, 879–881 (2014).

4. Lu, Y. Q. et al. Tunable lifetime multiplexing using luminescent nanocrystals. *Nat. Photon.* **8**, 33–37 (2014).

5. Wang, J. et al. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. *Angew. Chem. Int. Ed.* **52**, 1642–1646 (2013).

6. Huang, P. et al. Lanthanide-doped LiLuF₄ upconversion nanoprobes for the detection of disease biomarkers. *Angew. Chem. Int. Ed.* **53**, 1252–1257 (2014).

7. Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. *Nat. Nanotechnol.* **8**, 729–734 (2013).

8. Gargas, D. J. et al. Engineering bright sub-10 nm upconverting nanocrystals for single-molecule imaging. *Nano Lett.* **9**, 300–305 (2014).

9. Liu, Q. et al. F-18-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. *ACS Nano* **5**, 3146–3157 (2011).

10. Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. *Nat. Med.* **18**, 1580–1585 (2012).

11. Wang, C. et al. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. *Theranostics* **3**, 317–330 (2013).

12. Kang, X. J. et al. Lanthanide-doped hollow nanomaterials as theranostic agents. *Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.* **6**, 80–101 (2014).

13. Mai, H. X., Zhang, Y. W., Sun, L. D. & Yan, C. H. Highly efficient multicolor upconversion emissions and their mechanisms of monodisperse NaYF₄: Yb,Er core and core-shell-structured nanocrystals. *J. Phys. Chem. C* **111**, 13728–13729 (2007).

14. Shen, J. et al. Tunable near infrared to ultraviolet upconversion luminescence enhancement (in alpha-NaYF₄:Yb,Tm) at GaF₂ core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. *Small* **9**, 3213–3217 (2013).

15. Wen, H. et al. Upconverting near infrared light through energy management in core-shell-shell nanoparticles. *Angew. Chem. Int. Ed.* **52**, 13419–13423 (2013).

16. Johnson, N. J. & van Veggel, F. C. Lanthanide-based hetero-epitaxial core-shell nanosstructures: the compressive vs. tensile strain asymmetry. *ACS Nano* **8**, 10517–10527 (2014).

17. Zhang, C. & Lee, J. Y. Prevalence of anisotropic shell growth in rare earth ion doped shell upconversion nanocrystals. *ACS Nano* **7**, 4393–4402 (2013).

18. Johnson, N. J. J. & van Veggel, F. C. J. M. Sodium lanthanide fluoride core-shell nanocrystals: a general perspective on epitaxial shell growth. *Nano Res.* **6**, 547–561 (2013).

19. Xia, X., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? *Angew. Chem. Int. Ed.* **48**, 60–103 (2009).

20. Zhuang, Z., Peng, Q. & Li, Y. Controlled synthesis of semiconductor nanocrystals in the liquid phase. *Chem. Soc. Rev.* **40**, 5492–5513 (2011).

21. Wang, F., Deng, R. R. & Liu, X. G. Preparation of core-shell NaGdF₄ nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. *Nat. Protoc.* **9**, 1634–1644 (2014).

22. Zherebetskyy, D. et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. *Science* **344**, 1380–1384 (2014).

23. Bealing, C. R., Baumgardner, W. J., Choi, J. J., Hanrath, T. & Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. *ACS Nano* **6**, 2118–2127 (2012).

24. Clark, S. J. et al. First principles methods using CASTEP. *Z. Kristallogr.* **220**, 567–570 (2005).

25. Sui, Y. Q., Tao, K., Tian, Q. & Sun, K. Interaction between Y₃⁺ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF₄ nanocrystals. *J. Phys. Chem. C* **116**, 1732–1739 (2012).

26. Zhang, W. et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. *Chem. Soc. Rev.* **44**, 1379–1415 (2015).

27. Yu, H. et al. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. *Nano Lett.* **5**, 379–382 (2005).

28. Lu, Y. Q. & van Veggel, F. C. Lanthanide-based hetero-epitaxial core-shell nanosstructures: the compressive vs. tensile strain asymmetry. *ACS Nano* **8**, 10517–10527 (2014).

29. Zherebetskyy, D. et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. *Science* **344**, 1380–1384 (2014).

30. Bealing, C. R., Baumgardner, W. J., Choi, J. J., Hanrath, T. & Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. *ACS Nano* **6**, 2118–2127 (2012).

31. Clark, S. J. et al. First principles methods using CASTEP. *Z. Kristallogr.* **220**, 567–570 (2005).

32. Sui, Y. Q., Tao, K., Tian, Q. & Sun, K. Interaction between Y₃⁺ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF₄ nanocrystals. *J. Phys. Chem. C* **116**, 1732–1739 (2012).

33. Zhang, W. et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. *Chem. Soc. Rev.* **44**, 1379–1415 (2015).

34. Yu, H. et al. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. *Nano Lett.* **5**, 379–382 (2005).

35. Lu, Y. Q. & van Veggel, F. C. Lanthanide-based hetero-epitaxial core-shell nanosstructures: the compressive vs. tensile strain asymmetry. *ACS Nano* **8**, 10517–10527 (2014).

36. Zherebetskyy, D. et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. *Science* **344**, 1380–1384 (2014).

37. Bealing, C. R., Baumgardner, W. J., Choi, J. J., Hanrath, T. & Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. *ACS Nano* **6**, 2118–2127 (2012).

38. Clark, S. J. et al. First principles methods using CASTEP. *Z. Kristallogr.* **220**, 567–570 (2005).

39. Sui, Y. Q., Tao, K., Tian, Q. & Sun, K. Interaction between Y₃⁺ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF₄ nanocrystals. *J. Phys. Chem. C* **116**, 1732–1739 (2012).

40. Zhang, W. et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. *Chem. Soc. Rev.* **44**, 1379–1415 (2015).

41. Yu, H. et al. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. *Nano Lett.* **5**, 379–382 (2005).

42. Lu, Y. Q. & van Veggel, F. C. Lanthanide-based hetero-epitaxial core-shell nanosstructures: the compressive vs. tensile strain asymmetry. *ACS Nano* **8**, 10517–10527 (2014).

43. Zherebetskyy, D. et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. *Science* **344**, 1380–1384 (2014).

44. Bealing, C. R., Baumgardner, W. J., Choi, J. J., Hanrath, T. & Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. *ACS Nano* **6**, 2118–2127 (2012).

45. Clark, S. J. et al. First principles methods using CASTEP. *Z. Kristallogr.* **220**, 567–570 (2005).
Scholarship Council CSC scholarships (no.201206170136, D.L., C.M.) and the Agency for Science, Technology and Research (A*STAR; grant no. 1231AFG028, X.L.).

Author contributions

D.J. and X.L. conceived the project and supervised the research; X.X., D.L., D.J. and X.L. designed the experiments; D.L., C.M., Y.Z. and S.W. conducted synthesis; X.Q. and X.X. conducted crystallography analysis and computational modelling; D.L., Y.D., S.D., W.R. and X.X. conducted characterizations and analysis; D.L., X.X., X.Q. and Y.Z. prepared figures and supplementary information sections; D.J., D.L., X.X., E.M.G., X.Qin. and X. Liu wrote the manuscript. All authors contributed to data analysis, discussions and manuscript preparation.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Liu, D. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. *Nat. Commun.* 7:10254 doi: 10.1038/ncomms10254 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/