Search for long-lived particles decaying into muon pairs in proton-proton collisions at $\sqrt{s} = 13$ TeV collected with a dedicated high-rate data stream

The CMS Collaboration

Abstract

A search for long-lived particles decaying into muon pairs is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2017 and 2018, corresponding to an integrated luminosity of 101 fb$^{-1}$. The data sets used in this search were collected with a dedicated dimuon trigger stream with low transverse momentum thresholds, recorded at high rate by retaining a reduced amount of information, in order to explore otherwise inaccessible phase space at low dimuon mass and nonzero displacement from the primary interaction vertex. No significant excess of events beyond the standard model expectation is found. Upper limits on branching fractions at 95% confidence level are set on a wide range of mass and lifetime hypotheses in beyond the standard model frameworks with the Higgs boson decaying into a pair of long-lived dark photons, or with a long-lived scalar resonance arising from a decay of a b hadron. The limits are the most stringent to date for substantial regions of the parameter space. These results can be also used to constrain models of displaced dimuons that are not explicitly considered in this paper.

Submitted to the Journal of High Energy Physics
1 Introduction

Cosmological evidence points to the existence of dark matter [1-4], whose origin remains one of the outstanding problems in particle physics and cosmology. Beyond gravitational interactions, dark matter is expected to interact very weakly, if at all, with standard model (SM) particles. This introduces the possibility of a hidden (dark) sector of matter [5, 6]. Particles in the dark sector would interact with the SM particles only via weakly interacting mediators.

One dark matter scenario involves a spontaneously broken dark $U(1)_D$ gauge symmetry, mediated by a dark photon, Z^D_D [6]. In this scenario, the only renormalizable interaction with SM particles is through kinetic mixing of the dark photon with the hypercharge gauge boson. In addition, if a dark Higgs mechanism is responsible for the spontaneous breaking of the $U(1)_D$ gauge symmetry, then the dark Higgs boson (H_D) has a renormalizable coupling to the 125 GeV SM-like Higgs boson (H), resulting in mixing between the two physical scalar states. Thus, the hidden sector may interact with the SM either through the hypercharge portal via the kinetic mixing coupling (denoted as e), or through the Higgs portal via the Higgs mixing (denoted as k). The dark photon Z_D^D may also mix with the SM photon (γ) and the Z boson through the hypercharge portal. In the absence of hidden-sector states below the Z_D^D mass, this mixing causes the Z_D^D to decay exclusively to SM particles, with a sizable branching fraction to leptons, with the coupling of the SM fermions to Z_D^D being proportional to e. The Z_D^D boson is expected to be long-lived if $\lesssim 10^{-4}$. In this range of parameter values, the decays $H \rightarrow ZZ_D^D$ and $H \rightarrow ZD^DZ_D^D$ through the hypercharge portal have negligible branching fractions. Diagrams in Fig. 1 illustrate the production of two Z_D^D bosons from a Higgs boson. Constraints have been placed on the visible dark photon decays by beam dump [7], fixed-target [8], e^+e^- collider [9], and rare-decay experiments [10], as well as by the LHCB [11-13] and CMS [14] experiments at the CERN LHC.

![Figure 1: Diagrams illustrating an SM-like Higgs boson (H) decay to four leptons (ℓ) via two intermediate dark photons, Z_D^D [6]: (left) through the hypercharge portal; (right) through the Higgs portal, via a dark Higgs boson (H_D).](image-url)

Other scenarios may produce a low-mass, long-lived resonance decaying into a muon pair. For instance, one of the minimal extensions to the SM adds a singlet scalar field f, which mixes with the H boson and couples to all SM fermions [15, 16]. In the hypothesis of weak coupling to SM fermions with a signal mixing angle $\lesssim 10^{-3}$, will be long-lived. Such a scalar resonance may be produced in the decay of a b hadron, $h_b \rightarrow X$, as illustrated in Fig. 2. Constraints on this model have been previously placed by the CHARM [17] and LHCB [18, 19] experiments.

This paper presents a search for narrow, long-lived dimuon resonances based on dimuon data collected with the CMS experiment during the CERN LHC Run 2 in 2017 and 2018 using a...
Figure 2: Diagram illustrating the production of a scalar resonance in a b hadron decay, through mixing with an SM-like Higgs boson (H).

A dedicated dimuon trigger stream (scouting) with low transverse momentum (p_T) thresholds, recorded at high rate by retaining a reduced amount of information. The rate of scouting triggers is higher than that of the standard triggers owing to less stringent requirements that enable dimuon resonance searches across mass and lifetime ranges that are otherwise inaccessible. The selected data correspond to a total integrated luminosity of 101 fb$^{-1}$ (41.5 fb$^{-1}$ collected in 2017 and 59.7 fb$^{-1}$ collected in 2018). Additional details on the data sets and triggers are provided in Sections 2 and 3. The search targets narrow, low-mass, long-lived resonances decaying into a pair of oppositely charged muons, where the lifetime of the long-lived particle is such that the transverse displacement (l_{xy}) of its decay vertex is within 11 cm of the primary interaction vertex (PV). The signal is expected to appear as a narrow peak on the dimuon mass continuum, with a resonance width smaller than the experimental mass resolution.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The pixel tracker consists of four concentric barrel layers at radii of 29, 68, 109, and 160 mm, and three disks on each end at distances of 291, 396, and 516 mm from the center of the detector [20]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [21].

A two-level trigger system is used to select events of potential physics interest. The first level of the CMS trigger system (L1) [22], composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events of interest in a time interval of less than 4 s. The high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to about 1 kHz, before data storage. A more detailed description of the CMS trigger system can be found in Ref. [23].

In addition to the standard HLT selection streams, a dedicated set of triggers exists that allows the exploration of otherwise inaccessible phase space. This approach is referred to as data scouting [14, 24]. The scouting trigger algorithms used in this search select events containing muon
pairs with a mass $m \gtrsim 2m$ at a rate of about 3 kHz. In order to compensate for the large rate, the event size is reduced by up to a factor of 1000 by only retaining limited information, as reconstructed at the HLT.

3 Data sets and triggers

The standard trigger streams typically select events containing at least one particle (e.g., a lepton) or jet with large p_T. Thus, such triggers are not necessarily ideal in a generic search for light narrow resonances decaying into two muons, with $m \lesssim 45 \text{ GeV}$ [14]. The scouting triggers used in this search compensate for the large trigger rate by recording only limited event information reconstructed at the HLT. For muons, which are reconstructed by combining the information from the tracker and the muon detectors, the recorded information includes for each muon its four-momentum, the number of hits left by each muon track in the tracker, the normalized $\frac{2}{c^2}$ of the muon track, and the isolation of the muon, computed as the scalar sum of the p_T of all additional tracks in a cone of size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.3$ around the muon, where ϕ is the azimuthal angle with respect to the counterclockwise beam axis. Muon tracks are required to leave a hit in at least two layers or disks of the pixel tracker and are used in pairs to form dimuon vertices, considering all possible pairs. In the following, these vertices are termed secondary vertices (SVs), and they may be displaced from the PV or not. Candidate proton-proton (pp) interaction vertices are reconstructed using any track with a hit in each layer or disk of the pixel tracker, and the candidate vertex with the largest value of summed track p_T^2 is taken to be the PV of the pp interaction. Events in the scouting data sets contain information on the normalized $\frac{2}{c^2}$ of all reconstructed vertices, together with their position with respect to the nominal interaction point. The four-momenta of jets formed by clustering calorimeter deposits using the anti-k_T algorithm [25, 26] with a distance parameter of 0.4 are also available, for jets with $p_T > 20 \text{ GeV}$ and $|\eta| < 3.0$.

Events are preselected at the L1 trigger by requiring data collected in 2017 and 2018 to pass at least one of three criteria:

- the presence of two L1 muons with opposite charges (OS), $p_T > 4 \text{ GeV}$ (for 2017 data) or 4.5 GeV (for 2018 data) and $\Delta R(\mu_1, \mu_2) < 1.2$;
- the presence of two OS L1 muons with $p_T < 1.4$ and $\Delta R(\mu_1, \mu_2) < 1.4$;
- the presence of two L1 muons with $p_T^1 > 15$ and $p_T^2 > 7 \text{ GeV}$.

Then, only the preselected events containing two OS muons with $p_T > 3 \text{ GeV}$ and $|\eta| < 2.4$ at the HLT are retained.

The efficiency of the scouting triggers is measured in data, as a function of the dimuon l_{xy} and of the minimum p_T of the pair, using events with at least two muons selected with independent standard triggers. The measured efficiency and its uncertainty are accounted for in the normalization of simulated events, as discussed in Section 4.

The resolution in p_T for muons reconstructed at the HLT is measured to be roughly 10% worse relative to muons undergoing offline reconstruction, because of differences in the calibration of the HLT and the offline reconstruction. As only a reduced amount of information is available in scouting data, no additional calibration is performed for the muons used in this search.
4 Monte Carlo simulation

The SM background is estimated directly from data as a continuum background in the m spectrum parametrized by analytical functions. Thus, the search does not rely on Monte Carlo (MC) simulation in order to estimate the background.

On the other hand, MC simulations of beyond the SM (BSM) signals are used to interpret the results of the search. Two signal models are simulated, as described in Section 1:

A model of H boson production via the dominant mode of gluon-gluon fusion, with $H \rightarrow Z_D Z_D$, where Z_D is a long-lived resonance and at least one Z_D decays to a pair of oppositely charged muons. This model is generated using the POWHEG v2.0 [27-29] generator at next-to-leading order (NLO) precision and the JHUGEN 7.4.0 [30-34] generator at leading order (LO) precision. The $JHUGEN$ generator is used to model the H boson decay, setting the properties (mass and lifetime) of the Z_D boson. The generators are interfaced with PYTHIA 8.230 [35] for the simulation of parton showering and hadronization. The simulated signal is normalized to a Higgs production cross section calculated at next-to-next-to-NLO (N3LO) in the strong coupling α_S [36]. The decays $H \rightarrow ZZ_D$ and $H \rightarrow Z_D Z_D$ through the hypercharge portal have negligible branching fractions for parameter values explored in this analysis.

A model in which a scalar resonance f is emitted in the decay of b hadrons, where f is long lived and decays to a pair of oppositely charged muons with 100% probability. The production of b hadrons is initially generated at LO precision using PYTHIA 8.2. Subsequently, a fixed-order calculation at next-to-leading log (FONLL) in α_S [37-41] is used to reweight the p_T spectrum of b hadrons decaying into f. The simulated signal is also normalized to the FONLL calculation.

The generators use the CP5 PYTHIA tune [42] and the NNPDF3.1 sets of parton distribution functions (PDFs) [43], while the detector response is simulated with a GEANT4 model [44] of the CMS detector. The products from multiple pp interactions are superimposed on those from the hard collision (pileup), and the simulated samples are reweighted such that the number of collisions per bunch crossing reflects the distribution observed in data.

The search explores a dimuon mass range from about 200 MeV (i.e., $m < 2m_\mu$) to about 50 GeV, and a transverse displacement range $0 < l_{xy} < 11$ cm from the PV. The hard cutoff in l_{xy} at 11 cm is due to the definition of the scouting trigger stream, which requires the presence of hits in at least two layers of the pixel tracker. Signal samples are generated to cover the full ranges of interest, in both the m and the c_0 (mean proper decay length) dimensions. Only masses $m < 5$ GeV can be probed in the model where a scalar resonance (f) is produced on shell in the decay of a b hadron.

5 Event selection and categorization

5.1 Event selection

The events collected using the scouting triggers (see Section 3) are further selected to contain at least one pair of OS muons associated with an SV that satisfies a number of quality criteria:

- $l_{xy} < 11$ cm;
- x coordinate uncertainty < 0.05 cm;
- y coordinate uncertainty < 0.05 cm;
z coordinate uncertainty < 0.10 cm;
\((\frac{2}{\text{dof}})_{SV} < 5\), where dof is the number of degrees of freedom.

Muons are also required to satisfy additional quality criteria: the \((\frac{2}{\text{dof}})_{\text{track}}\) of each muon track is required to be less than 3, and the track itself is required to cross at least 6 layers (pixel or strip) of the tracker.

A large fraction of events contain only one OS muon pair and an associated SV. Among those events with more than one pair of OS muons, the pairs are ordered according to increasing \(\frac{2}{SV}\) and only the first or the first two pairs are used in this search. A few of the selection criteria applied to the second muon pair are less stringent than those applied to the first pair in order to maximize the sensitivity to BSM signatures.

For the first (second) muon pair, a muon is considered isolated if the track isolation, as defined in Section 3, is less than 10 (20)% of \(p_T\), and if no jet is found within a cone of size \(\Delta R < 0.3\) around the muon itself.

As further described in Section 5.2, we explore isolated, partially isolated, and nonisolated dimuon topologies. Isolated topologies consist of events where both muons are isolated; partially isolated topologies consist of events where exactly one of the two muons fails the isolation criteria; finally, in nonisolated topologies both muons fail the isolation criteria. In events with two muon pairs, the only category considered requires all four muons to be isolated.

For a BSM signal, we expect the dimuon system transverse momentum vector, \(\vec{p}_T\), to be collinear with the SV vector, which is defined as the vector SV connecting the PV to the SV. This does not apply to a muon pair where the two muons originate from different vertices and erroneously form a common SV because of the accidental crossing of their trajectories. In order to suppress such background, we require the azimuthal angle between the two vectors \((\Delta \vec{p}_T \cdot SV)\) to be less than 0.02 (0.10) for the first (second) muon pair. Similarly, the opening angle between two muons erroneously forming a common SV tends to be very large, independently of the boost of the dimuon system. Hence, in order to further reduce the background from events with the wrong muon SV association, we also require \(\Delta (\vec{m}_1 \cdot \vec{m}_2) < 2.8\). The main goal of such selections is to suppress background where SVs are formed from cosmic ray muons, muons from pileup collisions, and muons from back-to-back quantum chromodynamics dijet events.

Muons from pileup vertices can overlap in the \(r-z\) plane despite being apart in \(r-z\) at their origin, and, as a consequence, they can be wrongly associated with a common SV. These muon pairs are characterized by a large \(\Delta (\vec{m}_1 \cdot \vec{m}_2)\) and a small \(\Delta (\vec{m}_1 \cdot \vec{m}_2)\). We exploit this feature to suppress this background contribution with the requirement \(\log_{10}(\Delta / \Delta) < 1.25\).

Additional background sources include “prompt” (i.e., nondisplaced) muons and material interaction vertices, i.e., vertices from particles produced in interactions with detector material, e.g., in the beampipe or the pixel layers. Muons from truly displaced vertices do not leave hits in the tracker layers between the interaction point and the SV. In order to suppress the background from prompt muons, we therefore require that the observed number of hits found in the pixel tracker for each muon be no larger than the number expected from the outward propagation of the muon itself from the associated SV. This requirement is applied only when \(l_{SV} > 3.5\) cm to ensure that the SV is located beyond the first pixel tracker layer. Additionally, material interaction vertices are suppressed by rejecting events with an SV located within 0.5 mm of a pixel tracker module.

In order to identify displaced vertices of interest, we also exploit the muon track transverse
impact parameter, \(d_{xy} \). To this end, we select events based on the \(d_{xy} \) significance (\(d_{xy} / \sigma_{d_{xy}} \)) and the lifetime-scaled \(d_{xy} \) (\(d_{xy} / (l_{xy}m_{mm} / p_T) \)). The first expression normalizes \(d_{xy} \) against its measurement uncertainty, while the second normalizes \(d_{xy} \) against the lifetime corresponding to the observed SV transverse displacement. This allows the same selection requirements to be used for all lifetime hypotheses. For the first (second) muon pair, we require each muon to satisfy:

\[
\frac{d_{xy}}{\sigma_{d_{xy}}} > 2 \ (1);
\]
\[
\frac{d_{xy}}{(l_{xy}m_{mm} / p_T)} > 0.10 \ (0.05).
\]

The total selection efficiency after the trigger selections typically ranges from about 55 to 75% in simulated signal events, depending on the details of the models.

5.2 Event categorization

This search targets long-lived low-mass dimuon resonances that are characterized by displaced decays into pairs of muons. Therefore, the primary feature to be exploited in order to discriminate a potential signal from the SM background is the presence in each event of at least one pair of muons and an associated SV. Most of the physics processes contributing to the SM background are more highly suppressed at increased displacement of the SV from the PV. Because the vertex position resolution along the beam (\(z \) axis) is not as precise as the one achieved in the transverse (\(xy \)) plane, we only use the \(l_{xy} \) of the SV to categorize dimuon events. The \(l_{xy} \) categorization is intended to maximize the search sensitivity to a range of potential BSM signal lifetimes, and is based on the CMS pixel tracker geometry. We define the following six \(l_{xy} \) categories:

- within beam pipe: [0.0, 0.2] cm; [0.2, 1.0] cm; [1.0, 2.4] cm;
- between beam pipe and first pixel tracker layer: [2.4, 3.1] cm;
- between first and second pixel tracker layers: [3.1, 7.0] cm;
- between second and third pixel tracker layers: [7.0, 11.0] cm.

In each \(l_{xy} \) category, we further divide dimuon events in two bins of \(p_T \) (<25 and >25 GeV). This categorization improves the sensitivity to different signal topologies since \(p_T \) tends to be low in signal models where long-lived particles arise from the decay of a \(b \) hadron, while it is expected to be larger in other models. Finally, in each \((l_{xy}, p_T) \) category, dimuon events are divided into bins of isolation (to distinguish isolated, partially isolated, and nonisolated topologies).

In each \((l_{xy}, p_T, \text{isolation}) \) bin, we define mass windows sliding along the dimuon invariant mass spectrum (see Section 6), and we perform a search for a resonant dimuon peak in each mass window. Mass regions corresponding to known resonances decaying either in dimuon pairs or in a pair of charged hadrons are not considered, i.e., they are "masked". As an example, in Fig. 3, we show the \(m_4 \) distribution in bins of \(l_{xy} \) as obtained from selected dimuon events where both muons are isolated and have \(p_T \) below (above) 25 GeV.

In events with two muon pairs each associated with an SV, we further require the difference between the two dimuon masses to be within 5% of their mean, and the four-muon mass to be consistent with the mass of the SM Higgs boson (115 < \(m_4 \) < 135 GeV). The selected four-muon events are treated as an exclusive independent category, aimed at improving the search sensitivity to models of BSM physics where an SM Higgs boson decays to a pair of \(Z_{0} \) bosons, each decaying to two muons. After applying all selection criteria, we observe zero events in
5.2 Event categorization

Figure 3: The dimuon invariant mass distribution is shown in bins of l_{xy} as obtained from selected dimuon events in data where both muons are isolated with $p_T < 25$ GeV: (upper left) $0.0 < l_{xy} < 0.2$ cm; (upper right) $0.2 < l_{xy} < 1.0$ cm; (middle left) $1.0 < l_{xy} < 2.4$ cm; (middle right) $2.4 < l_{xy} < 3.1$ cm; (lower left) $3.1 < l_{xy} < 7.0$ cm; (lower right) $7.0 < l_{xy} < 11.0$ cm. The distribution expected for a representative $h_b \rightarrow X$ signal model with $m = 2$ GeV and $c_0 = 1$ mm is overlaid. The signal event yield corresponds to a value of the branching fraction product $B(h_b \rightarrow X) B(f \rightarrow \mu \mu) = 1.2 \times 10^{-8}$, equal to the median expected exclusion limit at 95% CL set in this paper (see Section 7), and is multiplied by a factor of 100 for display purposes. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search.

In each dimuon mass window, the SM background is modeled by fitting the dimuon invariant mass distribution in data, as further described in Section 6. Finally, the dimuon mass windows in all $(l_{xy}, p_T$, isolation) bins and the single four-muon event category are used in combination as input to a final likelihood fit for the interpretation of the results, as described in Section 7. In the four-muon category, the two dimuon invariant mass distributions are not fitted separately.
Figure 4: The dimuon invariant mass distribution is shown in bins of l_{xy} as obtained from selected dimuon events in data where both muons are isolated with $p_T > 25$ GeV: (upper left) $0.0 \ l_{xy} < 0.2$ cm; (upper right) $0.2 \ l_{xy} < 1.0$ cm; (middle left) $1.0 \ l_{xy} < 2.4$ cm; (middle right) $2.4 \ l_{xy} < 3.1$ cm; (lower left) $3.1 \ l_{xy} < 7.0$ cm; (lower right) $7.0 \ l_{xy} < 11.0$ cm. The distribution expected for a representative $H \rightarrow Z_DZ_D$ signal model with $m_{Z_D} = 8$ GeV and $c_{Z_D0} = 100$ mm, corresponding to $B(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu\mu) = 1.2 \times 10^{-7}$, is overlaid. The signal event yield corresponds to a value of the branching fraction product $B(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu\mu)$ equal to the median expected exclusion limit at 95% CL set in this paper (see Section 7), and is multiplied by a factor of 100 for display purposes. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search.

6 Parametrization of the invariant mass distribution

The search is performed by fitting mass distributions in the various categories to the sum of signal plus SM background models. We target low-mass dimuon resonances whose intrinsic width is assumed to be much narrower than the detector resolution. The signal dimuon mass resolution (σ_{mass}) is estimated from simulated events to be about 1.1% of the mass, with an uncertainty of about 50%, and both are independent of the signal mass and lifetime hypotheses. The signal four-muon mass resolution is similarly estimated from simulated $H \rightarrow Z_DZ_D$ events to be about 1.1% of the Higgs boson mass, with an uncertainty of about 50%. We use the sum of a Gaussian function and a double-sided Crystal Ball function [45, 46] to model signal dimuon (four-muon) invariant mass distributions in dimuon (four-muon) events.
In each dimuon event category, the SM background is modeled in sliding windows of mass around the considered signal mass hypothesis. These windows are required to not overlap with the masked mass regions corresponding to known SM resonances (see Section 5.2). Instead, in the four-muon event category we consider a single window centered around the known Higgs boson mass ($115 < m_4 < 135 \text{ GeV}$). A number of functional forms are considered in order to model the background mass distribution. These include Bernstein polynomials, exponential functions, as well as combinations of the two. For each family of functional forms, the best order in each mass window and event category is selected by means of a Fisher test [47]. First, the lowest order (N) function is used to fit the data. Then, the next-order ($N + 1$) is used, and the difference $2\Delta\text{NLL}_{N+1} = 2 (\text{NLL}_{N+1} - \text{NLL}_N)$ (with NLL denoting the negative logarithm of the likelihood of the fit) is evaluated to determine whether the data support the need for a higher order function. This decision is based on the fact that $2\Delta\text{NLL}_{N+1}$ is asymptotically described by a χ^2 distribution with M degrees of freedom, where M is the difference in the number of free parameters in the $(N + 1)$th and Nth order functions. A p-value is calculated as $P_M(\chi^2 > 2\Delta\text{NLL}_{N+1})$, where $P_M(\chi^2_{\text{min}})$ is the χ^2 tail probability for M degrees of freedom. If the p-value is less than 0.05, the higher order function is retained, since it is determined to significantly improve the description of the data. Once the best order N for each family of functions has been determined, the corresponding functional forms are entered in an envelope then used in the discrete profiling method [48], where the choice of the background function is treated as a discrete nuisance parameter in the fit to account for the uncertainty associated with the arbitrary choice of the function. For Bernstein polynomials, we also include orders $N - 1$ and $N + 1$ in the list of suitable functions. In addition, we use a goodness-of-fit test to remove background models that do not describe the data appropriately. The test is based on a χ^2 test statistic, which is converted into a p-value through a set of pseudo-experiments. Models with $p < 0.01$ are not considered.

The background-only fit results for the selected functional forms in one of the dimuon search bins are shown in Fig. 5 together with the dimuon invariant mass distribution expected for a representative signal.

7 Results and interpretation

Binned maximum likelihood fits to the data are performed simultaneously in all search bins, under either background-only or background+signal hypotheses, using background and signal models and uncertainties described in Section 6. Additional log-normal constraint terms are used to account for the uncertainties in the signal yields, when considered (Section 7.1).

No significant peak-like structures are observed in data. The background+signal fits are used to set 95% confidence level (CL) upper limits on the branching fractions for the signal models under consideration. Limits are set using a modified frequentist approach, employing the CLs criterion [49–52]. These limits are then used, in conjunction with the theoretical cross section calculations, to exclude ranges of masses and/or lifetimes for the BSM particles of the signal models.

7.1 Systematic uncertainties in the signal yields

A systematic uncertainty in the trigger efficiency (see Section 3) is assessed that ranges between 3 and 30%, depending on the p_T and displacement of the muons. It is derived from studies of data collected with different triggers and accounts for differences between the measurement and the simulation. In order to account for potential mismodeling of the signal simulation, we also assess a systematic uncertainty in the signal yields equal to 100% of the inefficiency.
of the selection (see Section 5.1) applied after the trigger selections. The resulting systematic uncertainty in the signal yield is then between 25 and 45%, depending on the signal mass and lifetime. Additionally, we assess a systematic uncertainty in the expected signal yields arising from the uncertainty in the luminosity measurement of 2.3% [53] for 2017 and 2.5% [54] for 2018 data. Finally, we account for uncertainties resulting from the limited sizes of the simulated signal samples. Uncertainties arising from the choice of the PDF and of the renormalization and factorization scales used in the event generator are negligible compared to others. Uncertainties in the trigger efficiency and integrated luminosity are treated as correlated across search bins. Other uncertainties are taken as uncorrelated. Since we find no significant difference between 2017 and 2018 data and simulations, all uncertainties are treated as correlated across data taking periods.

7.2 Constraints on models of BSM physics

We set upper limits at 95% CL on the branching fractions for the $h_b \to \phi X$ and $H \to Z_DZ_D$ signal models. For the $h_b \to \phi X$ model, Fig. 6 shows the upper limits on the branching fraction product $B(h_b \to \phi X) B(\phi \to \mu\mu)$, as a function of the signal mass hypothesis, for a few representative lifetime hypotheses. For the $H \to Z_DZ_D$ model, the upper limits on the branching fraction product $B(H \to Z_DZ_D) B(Z_D \to \mu\mu)$, as a function of the signal mass, are shown in Fig. 7. In addition, Fig. 8 shows the upper limits on the branching fraction $B(H \to Z_DZ_D)$.
using values of \(\mathcal{B}(Z_D \rightarrow \mu \mu) \) from the model of Ref. [6]. The upper limits shown in Figs. 6 and 7 are obtained using only the combination of dimuon event categories. For the limits shown in Fig. 8, the four-muon event category is added to the combination, since in this case the relative acceptances for signal events in the dimuon and four-muon categories can be determined using the \(\mathcal{B}(Z_D \rightarrow \mu \mu) \) assumption.

Constraints for signals with mass above the \(b \) hadron mass are more stringent since the background from displaced muons from \(h_b \) decays is completely eliminated. The constraints tend to get weaker at longer lifetime because of the loss of acceptance due to decays beyond the scouting trigger acceptance, which is determined by the radial coverage of the pixel detector. We note that our limits on the model with a long-lived scalar emitted in \(h_b \) decays cannot be directly compared to similar limits from the LHCb experiment [18, 19], since our limits are on the inclusive \(h_b \rightarrow X \) branching fraction, while the LHCb limits are on the exclusive \(B^0 \rightarrow K(892)^0 \) and \(B^+ \rightarrow K^+ \) branching fractions. However, we scale our inclusive limits based on the fraction of \(B^0 \) or \(B^+ \) production from MC and thus compare our exclusive branching fraction limits to those of LHCb. Such comparisons are provided as supplemental material [55].

Observed limits at 95% CL as contours in the parameter space of signal mass and signal lifetime for both the models considered in this search are shown in Fig. 9 and Fig. 10.

In Fig. 11, we show the excluded region at 95% CL for the inflaton model [15] in the parameter space containing the signal mass \((m) \) and the square of the signal mixing angle \((\theta^2) \) using the results from the \(h_b \rightarrow X \) signal model. The signal mixing angle determines the inflaton’s coupling to the SM fields via mixing with the Higgs boson. In Fig. 12, we show the observed limits at 95% CL as contours in the parameter space containing the signal mass \((m_{Z_D}) \) and the signal kinetic mixing coupling \(g \) for the \(H \rightarrow Z_D Z_D \) signal model.
Figure 6: Exclusion limits at 95% CL on the branching fraction product $B(h_b \rightarrow \phi X) B(\phi \rightarrow \mu \mu)$, as functions of the signal mass (m_ϕ) for $c_{10}^\phi = 1$ mm (upper) and 100 mm (lower). The solid black (dashed red) line represents the observed (median expected) exclusion. The inner green (outer yellow) band indicates the region containing 68 (95)% of the distribution of limits expected under the background-only hypothesis. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search. The limits are obtained using the combination of all dimuon event categories.
Figure 7: Exclusion limits at 95% CL on the branching fraction product $B(H \rightarrow Z_DZ_D) B(Z_D \rightarrow \mu \mu)$, as functions of the signal mass (m_{Z_D}) for $c \tau_{Z_D}^0 = 1$ mm (upper) and 100 mm (lower). The solid black (dashed red) line represents the observed (median expected) exclusion. The inner green (outer yellow) band indicates the region containing 68 (95)% of the distribution of limits expected under the background-only hypothesis. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search. The limits are obtained using the combination of all dimuon event categories.
Figure 8: Exclusion limits at 95% CL on the branching fraction $B(H \rightarrow Z_DZ_D)$, as functions of the signal mass (m_{Z_D}) for $c\tau_D^0 = 1$ mm (upper) and 100 mm (lower), for the $H \rightarrow Z_DZ_D$ signal model, assuming values of $B(Z_D \rightarrow \mu\mu)$ from the model of Ref. [6]. The solid black (dashed red) line represents the observed (median expected) exclusion. The inner green (outer yellow) band indicates the region containing 68 (95)% of the distribution of limits expected under the background-only hypothesis. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search. The limits are obtained using the combination of all dimuon and four-muon event categories.
7.2 Constraints on models of BSM physics

Figure 9: Observed limits at 95% CL on the branching fraction product $B(h_b \rightarrow X) B(f \rightarrow \mu)$ as contours in the parameter space containing the signal mass (m) and the signal lifetime c_0. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search. The limits are obtained using the combination of all dimuon event categories.

Figure 10: Observed limits at 95% CL on the branching fraction $B(H \rightarrow Z_DZ_D)$ as contours in the parameter space containing the signal mass (m_{Z_D}) and the signal lifetime c_{Z_D} for the $H \rightarrow Z_DZ_D$ signal model assuming values of $B(Z_D \rightarrow \mu\mu)$ from JHEP 02 (2015) 157. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search. The limits are obtained using the combination of all dimuon and four-muon event categories.
Figure 11: Region excluded at 95% CL using this search (shown in hatched gray) for the inflaton model [15] in the parameter space containing the signal mass (m_f) and the square of the signal mixing angle (θ^2). The regions forbidden by theory and cosmological constraints are shown in green and yellow respectively. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search. The limits are obtained using the combination of all dimuon event categories.

Figure 12: Observed limits at 95% CL on the branching fraction $B(H \rightarrow Z_DZ_D)$ as contours in the parameter space containing the signal mass (m_{Z_D}) and the signal kinetic mixing parameter for the $H \rightarrow Z_DZ_D$ signal model assuming values of $B(Z_D \rightarrow \mu\mu)$ from the model of Ref. [6]. The vertical gray bands indicate mass ranges containing known SM resonances, which are masked for the purpose of this search. The white regions at the top (bottom) correspond to values of $c_{Z_D} < 0.1$ mm ($> 10^4$ mm). The limits are obtained using the combination of all dimuon and four-muon event categories.
Tabulated results are provided in the HEPData record for this analysis\cite{55}. To facilitate the reinterpretation of these results in other BSM models, we also provide upper limits at 95% CL on the number of observed events as a function of the dimuon mass in a number of signal regions characterized by different l_{xy} ranges, with and without an isolation requirement, inclusive in p_T as well as with $p_T = 25$ GeV, together with parametrizations of the event selection efficiency.

8 Summary

A search for displaced dimuon resonances has been performed using proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2017 and 2018, corresponding to an integrated luminosity of 101 fb$^{-1}$. The data sets used in this search are collected using a dedicated dimuon trigger stream with low transverse momentum thresholds, recorded at high rate by retaining a reduced amount of information, in order to explore otherwise inaccessible phase space at low dimuon mass and nonzero displacement from the primary interaction vertex. No significant excess beyond the standard model expectation is found, and the data are used to set constraints on a wide range of mass and lifetime hypotheses for models of physics beyond the standard model where a Higgs boson decays to a pair of long-lived dark photons, or where a long-lived scalar resonance arises from the decay of a b hadron. These constraints are the most stringent to date for substantial regions of the parameter space.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); Senescyt (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/In2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); INFN (Italy); MSIP and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal
References

[1] G. Bertone and J. Silk, “Particle Dark Matter: Observations, Models and Searches”. Cambridge Univ. Press, Cambridge, 2010. doi:10.1017/CBO9780511770739 ISBN 978-1-107-65392-4.

[2] J. L. Feng, “Dark matter candidates from particle physics and methods of detection”, Ann. Rev. Astron. Astrophys. 48 (2010) 495, doi:10.1146/annurev-astro-082708-101659 arXiv:1003.0904.

[3] T. A. Porter, R. P. Johnson, and P. W. Graham, “Dark matter searches with astroparticle data”, Ann. Rev. Astron. Astrophys. 49 (2011) 155, doi:10.1146/annurev-astro-081710-102528 arXiv:1104.2836.

[4] Planck Collaboration, “Planck 2015 results. XIII. Cosmological parameters”, Astron. Astrophys. 594 (2016) A13, doi:10.1051/0004-6361/201525830 arXiv:1502.01589.

[5] R. Essig et al., “Working group report: New light weakly coupled particles”, in Community Summer Study 2013: Snowmass on the Mississippi. 2013. arXiv:1311.0029.

[6] D. Curtin, R. Essig, S. Gori, and J. Shelton, “Illuminating dark photons with high-energy colliders”, JHEP 02 (2015) 157, doi:10.1007/JHEP02(2015)157 arXiv:1412.0018.

[7] A. Konaka et al., “Search for neutral particles in electron beam dump experiment”, Phys. Rev. Lett. 57 (1986) 659, doi:10.1103/PhysRevLett.57.659.
[8] APEX Collaboration, “Search for a new gauge boson in electron-nucleon fixed-target scattering by the APEX experiment”, *Phys. Rev. Lett.* **107** (2011) 191804, doi:10.1103/PhysRevLett.107.191804, arXiv:1108.2750

[9] BaBar Collaboration, “Search for dimuon decays of a light scalar boson in radiative transitions $Y \to A^0$”, *Phys. Rev. Lett.* **103** (2009) 081803, doi:10.1103/PhysRevLett.103.081803, arXiv:0905.4539

[10] SINDRUM I Collaboration, “Search for weakly interacting neutral bosons produced in p interactions at rest and decaying into e^+e^- pairs.”, *Phys. Rev. Lett.* **68** (1992) 3845, doi:10.1103/PhysRevLett.68.3845

[11] LHCb Collaboration, “Proposed inclusive dark photon search at LHCb”, *Phys. Rev. Lett.* **116** (2016) 251803, doi:10.1103/PhysRevLett.116.251803, arXiv:1603.08926

[12] LHCb Collaboration, “Search for dark photons produced in 13 TeV pp collisions”, *Phys. Rev. Lett.* **120** (2018) 061801, doi:10.1103/PhysRevLett.120.061801, arXiv:1710.02867

[13] LHCb Collaboration, “Search for $A^0 \to m^+m^-$ decays”, *Phys. Rev. Lett.* **124** (2020) 041801, doi:10.1103/PhysRevLett.124.041801, arXiv:1910.06926

[14] CMS Collaboration, “Search for a narrow resonance lighter than 200 GeV decaying to a pair of muons in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *Phys. Rev. Lett.* **124** (2020) 131802, doi:10.1103/PhysRevLett.124.131802, arXiv:1912.04776

[15] F. Bezrukov and D. Gorbunov, “Light inflaton after LHC8 and WMAP9 results”, *JHEP* **07** (2013) 140, doi:10.1007/JHEP07(2013)140, arXiv:1303.4395

[16] J. A. Evans, A. Gandrakota, S. Knapen, and H. Routray, “Searching for exotic B meson decays with the CMS L1 track trigger”, *Phys. Rev. D* **103** (2021) 015026, doi:10.1103/PhysRevD.103.015026, arXiv:2008.06918

[17] CHARM Collaboration, “Search for axion like particle production in 400 GeV proton-copper interactions”, *Phys. Lett. B* **157** (1985) 458, doi:10.1016/0370-2693(85)90400-9

[18] LHCb Collaboration, “Search for hidden-sector bosons in $B^0 \to K^0 \to m^+m^-$ decays”, *Phys. Rev. Lett.* **115** (2015) 161802, doi:10.1103/PhysRevLett.115.161802, arXiv:1508.04094

[19] LHCb Collaboration, “Search for long-lived scalar particles in $B^+ \to K^+ \left(\to m^+m^- \right)$ decays”, *Phys. Rev. D* **95** (2017) 071101, doi:10.1103/PhysRevD.95.071101, arXiv:1612.07818

[20] The Tracker Group of the CMS Collaboration, “The CMS Phase-1 Pixel Detector Upgrade”, *JINST* **16** (2021) P02027, doi:10.1088/1748-0221/16/02/P02027, arXiv:2012.14304

[21] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[22] CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JINST* **15** (2020) P10017, doi:10.1088/1748-0221/15/10/P10017, arXiv:2006.10165
[23] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020,
<doi:10.1088/1748-0221/12/01/P01020> [arXiv:1609.02366]

[24] CMS Collaboration, “Search for narrow resonances in dijet final states at \(\sqrt{s} = 8 \) TeV with the novel CMS technique of data scouting”, Phys. Rev. Lett. 117 (2016) 031802,
<doi:10.1103/PhysRevLett.117.031802> [arXiv:1604.08907]

[25] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\(k_T \) jet clustering algorithm”, JHEP 04 (2008) 063,
<doi:10.1088/1126-6708/2008/04/063> [arXiv:0802.1189]

[26] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896,
<doi:10.1140/epjc/s10052-012-1896-2> [arXiv:1111.6097]

[27] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040,
<doi:10.1088/1126-6708/2004/11/040> [arXiv:hep-ph/0409146]

[28] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070,
<doi:10.1088/1126-6708/2007/11/070> [arXiv:0709.2092]

[29] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions”, JHEP 09 (2009) 111,
<doi:10.1088/1126-6708/2009/09/111> [arXiv:0907.4076] [Erratum: doi:10.1007/JHEP02(2010)011].

[30] Y. Gao et al., “Spin determination of single-produced resonances at hadron colliders”, Phys. Rev. D 81 (2010) 075022,
<doi:10.1103/PhysRevD.81.075022> [arXiv:1001.3396]

[31] S. Bolognesi et al., “On the spin and parity of a single-produced resonance at the LHC”, Phys. Rev. D 86 (2012) 095031,
<doi:10.1103/PhysRevD.86.095031> [arXiv:1208.4018]

[32] I. Anderson et al., “Constraining anomalous HVV interactions at proton and lepton colliders”, Phys. Rev. D 89 (2014) 035007,
<doi:10.1103/PhysRevD.89.035007> [arXiv:1309.4819]

[33] A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao, “Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques”, Phys. Rev. D 94 (2016) 055023,
<doi:10.1103/PhysRevD.94.055023> [arXiv:1606.03107]

[34] A. V. Gritsan et al., “New features in the JHU generator framework: constraining Higgs boson properties from on-shell and off-shell production”, Phys. Rev. D 102 (2020) 056022,
<doi:10.1103/PhysRevD.102.056022> [arXiv:2002.09888]

[35] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159,
<doi:10.1016/j.cpc.2015.01.024> [arXiv:1410.3012]

[36] M. Cepeda et al., “Report from Working Group 2: Higgs physics at the HL-LHC and HE-LHC”, CERN Yellow Rep. Monogr. 7 (2019) 221,
<doi:10.23731/CYRM-2019-007.221> [arXiv:1902.00134]
[37] M. Cacciari, M. Greco, and P. Nason, “The p_T spectrum in heavy flavor hadroproduction”, JHEP 05 (1998) 007, doi:10.1088/1126-6708/1998/05/007 arXiv:hep-ph/9803400.

[38] M. Cacciari, S. Frixione, and P. Nason, “The p_T spectrum in heavy flavor photoproduction”, JHEP 03 (2001) 006, doi:10.1088/1126-6708/2001/03/006 arXiv:hep-ph/0102134.

[39] M. Cacciari et al., “Theoretical predictions for charm and bottom production at the LHC”, JHEP 10 (2012) 137, doi:10.1007/JHEP10(2012)137, arXiv:1205.6344.

[40] M. Cacciari, M. L. Mangano, and P. Nason, “Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at $\sqrt{s} = 7$ and 13 TeV”, Eur. Phys. J. C 75 (2015) 610, doi:10.1140/epjc/s10052-015-3814-x arXiv:1507.06197.

[41] CMS Collaboration, “Measurement of the differential inclusive B$^+$ hadron cross sections in pp collisions at $\sqrt{s} = 13$ TeV”, Phys. Lett. B 771 (2017) 435, doi:10.1016/j.physletb.2017.05.074.

[42] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, doi:10.1140/epjc/s10052-019-7499-4 arXiv:1903.12179.

[43] NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, doi:10.1140/epjc/s10052-017-5199-5 arXiv:1706.00428.

[44] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[45] M. J. Oreglia, “A study of the reactions $\gamma\gamma \to gg$”, PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236, see Appendix D.

[46] J. E. Gaiser, “Charmonium spectroscopy from radiative decays of the J/ψ and $\psi(2S)$” PhD thesis, Stanford University, 1982. SLAC Report SLAC-R-255.

[47] R. A. Fisher, “On the interpretation of χ^2 from contingency tables, and the calculation of P”, J. R. Stat. Soc 85 (1922) 87, doi:10.1098/rsta.1922.0009.

[48] P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies, “Handling uncertainties in background shapes: the discrete profiling method”, JINST 10 (2015) P04015, doi:10.1088/1748-0221/10/04/P04015 arXiv:1408.6865.

[49] A. L. Read, “Presentation of search results: The CL$_s$ technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[50] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2 arXiv:hep-ex/9902006.

[51] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0 arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].
[52] ATLAS and CMS Collaborations, “Procedure for the LHC Higgs boson search combination in summer 2011”, ATL-PHYS-PUB-2011-011, CMS NOTE-2011/005, 2011.

[53] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at $s = 13$ TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.

[54] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at $s = 13$ TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.

[55] HEPData record for this analysis, 2021. doi:10.17182/hepdata.115577
The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam, J.W. Andrejkovic, T. Bergauer, S. Chatterjee, M. Dragicevic, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, P. Paulitsch, F.M. Pitters, J. Schieck, R. Schöfbeck, D. Schwarz, S. Tempel, W. Waltenberger, C.-E. Wulz

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, T. Janssen, T. Kello, A. Lelek, H. Rejeb Sfar, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, J. D’Hondt, M. Delcourt, H. El Fahami, S. Lowette, S. Moortgat, A. Morton, D. Müller, A.R. Sahasransu, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, L. Favart, A. Grebenyuk, A.K. Kals, K. Lee, M. Mahdavikhorrami, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, M. Vanden Bemden, C. Vander Velde, P. Vanlaer, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, J. Knolle, L. Lambrecht, G. Mestdagh, M. Niedziela, C. Roskas, A. Samalan, K. Skovpcer, M. Tytgat, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Benecke, A. Bethani, G. Bruno, F. Caputo, P. David, C. Delaere, I.S. Donertas, A. Giammanco, K. Jaffel, Sa. Jain, V. Lemaitre, K. Monda, J. Prisciandaro, A. Taliercio, M. Teklishyn, T.T. Tran, P. Vischia, S. Wertz

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. Brandaon Malbouisson, W. Carvalho, J. Chinellato, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, D. Matos Figueiredo, C. Mora Herrera, K. Mota Amarilo, L. Mundim, H. Nomiga, P. Rebello Teles, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista (a), Universidade Federal do ABC (b), São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova,
G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
T. Cheng, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, C. Dozen, Z. Hu, J. Martins, Y. Wang, K. Yi

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, F. Iemmi, A. Kapoor, D. Leggat, H. Liao, Z.-A. Liu, V. Milosevic, F. Monti, R. Sharma, J. Tao, J. Thomas-Wilsker, J. Wang, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. An, Y. Ban, C. Chen, A. Levin, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, H. Okawa

Zhejiang University, Hangzhou, China, Zhejiang, China
Z. Lin, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljević, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
A. Attikis, K. Christoforou, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
H. Abdalla, S. Khalil

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, R.K. Dewanjee, K. Ehataht, M. Kastadik, S. Nandan, C. Nielsen, J. Pata, M. Raidal, L. Tani, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
S. Bharthuar, E. Brücker, F. García, J. Havukainen, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, M. Lotti, L. Martikainen, M. Myllymäki, J. Ott, H. Siikonen, E. Tuominen, J. Tuominen

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besançon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferr, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzf, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, A. Cappati, C. Charlot, O. Davignon, B. Diab, G. Falmagne, S. Ghosh, R. Granier de Cassagnac, A. Hakimi, I. Kuchel, J. Motta, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, U. Sarkar, J.B. Sauvan, Y. Siros, A. Tarabini, A. Zabi, A. Zhigiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Apparu, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, D. Darej, J.-C. Fontaine, U. Goerlach, C. Grimault, A.-C. Le Bihan, E. Nibigire, P. Van Hove

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanor, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Guzevitch, B. Ille, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, S. Perries, K. Shchablo, V. Sordin, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
I. Bagaturia, I. Lomidze, Z. Tsalalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
V. Botta, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwert, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Dodonova, D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, F. Ivone, L. Mastrolorenzo, M. Merschmeyer, A. Meyer
N. Manthos, I. Papadopoulos, J. Strologas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, K. Farkas, M.M.A. Gadallah, S. Lőkös, P. Major, K. Manda, A. Mehta, G. Pasztort, A.J. Rádl, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók, G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak, P. Saha, N. Surendranath, S.K. Swain, D. Vats

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Meena, K. Sandeep, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Dutta, B. Gomber, M. Maity, P. Palit, P.K. Rout, G. Saha, B. Sahu, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, M. Kumar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee

Indian Institute of Science Education and Research (IISER), Pune, India
K. Alpana, S. Dubey, B. Kansal, A. Laha, S. Pandey, A. Randhawa, A. Rastogi, S. Sharma
di Trento, Trento, Italy
P. Azzi, N. Bacchetta, D. Bisello, P. Bortignon, A. Bragagnolo, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, G. Grosso, S.Y. Hoh, L. Layer, E. Lusiani, M. Margoni, A.T. Meneguzzo, J. Pazzi, P. Ronchese, R. Rossin, F. Simonetto, G. Strong, M. Tosi, A. Zucchetta, G. Zumerle

INFN Sezione di Pavia, Pavia, Italy, Università di Pavia, Pavia, Italy
C. Aime, A. Braghieri, S. Calzaferri, D. Fiorina, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFN Sezione di Perugia, Perugia, Italy, Università di Perugia, Perugia, Italy
P. Asenov, G.M. Balei, D. Ciangottini, L. Fanò, P. Lariccia, M. Magherini, G. Mantovani, V. Mariania, M. Menichelli, F. Moscatelli, A. Piccinelli, M. Presilla, A. Rossi, A. Santocchia, D. Spiga, T. Tedeschi

INFN Sezione di Pisa, Pisa, Italy, Università di Pisa, Pisa, Italy, Scuola Normale Superiore di Pisa, Pisa, Italy, Università di Siena, Siena, Italy
P. Azzurri, G. Bagliesi, V. Bertacchi, L. Bianchini, T. Boccali, E. Bossini, R. Castaldi, M.A. Ciocci, V. D’Amante, R. Dell’Orso, M.R. Di Domenico, S. Donato, A. Giassi, F. Ligabue, E. Manca, G. Mandoni, A. Messineo, F. Palla, S. Parolia, G. Ramirez-Sanchez, A. Rizzi, G. Rolandi, S. Roy Chowdhury, A. Scribano, N. Shafiei, P. Spagnolo, R. Tenco, G. Tonelli, N. Turini, A. Venturi, P.G. Verdini

INFN Sezione di Roma, Rome, Italy, Sapienza Università di Roma, Rome, Italy
P. Barria, M. Campana, F. Cavallari, D. Del Re, E. Di Marco, M. Diemoz, E. Longo, P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, C. Quaranta, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, R. Tramontano

INFN Sezione di Torino, Torino, Italy, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, A. Bellora, J. Berenguer Antequera, C. Biino, N. Cartiglia, S. Cometti, M. Costa, R. Covarelli, N. Demaria, B. Kiani, F. Legger, C. Mariotti, S. Maselli, E. Migliore, E. Monteil, M. Monteno, M.M. Obertino, G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, M. Ruspa, K. Shchelina, F. Siviero, V. Sola, A. Solano, D. Soldi, A. Staiano, M. Tornago, D. Trocino, A. Vagnerini

INFN Sezione di Trieste, Trieste, Italy, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, G. Sorrentino, F. Vazzoler

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon
Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea, Seoul, Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, S. Lee, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
W. Jang, D.Y. Kang, Y. Kang, S. Kim, B. Ko, J.S.H. Lee, Y. Lee, I.C. Park, Y. Roh, M.S. Ryu, D. Song, I.J. Watson, S. Yang

Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea
M. Choi, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait, Dasman, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia
T. Torims, V. Veckalns

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Carvalho Antunes De Oliveira, A. Juodagalvicius, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, M. León Coello, J.A. Murillo Quijada, A. Sehrawat, L. Valencia Palomino

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sánchez Hernández

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck
University of Canterbury, Christchurch, New Zealand
P.H. Butler
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas
AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierck, Poland
H. Bialkowska, M. Bluś, B. Boimska, M. Górski, M. Kazana, M. Szlepert, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonard, T. Niknejad, M. Písano, J. Seixas, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, D. Budkouski, I. Golutvin, I. Gorbunov, V. Karjavine, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, M. Savina, D. Seitoa, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, B.S. Yuldashev, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, D. Kirpichnikov, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, A. Nikitenko, V. Popov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
O. Bychkova, R. Chistov, M. Danilov, A. Oskin, P. Parygin, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin
Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, A. Kozyrev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, D. Elumakhov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borshch, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Alvaro Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colinc, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. González López, S. Goy Lopez, J.M. Hernandez, M.I. José, J. León Holgado, D. Moran, Á. Navarro Tobar, C. Perez Dengra, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, L. Urda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cueva, C. Eric, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Cortezor, C. Ramón Alvarez, V. Rodríguez Bouza, A. Soto Rodriguez, A. Trapote, N. Trevisani, C. Vico Villalba

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, C. Fernandez Madrasc, P.J. Fernandez Manteca, A. Garcia Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, M. Matorras, J. Matorras Cuevas, J. Piedra Gomez, C. Prieels, T. Rodriguez, A. Ruiz-Jimenc, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
M.K. Jayananda, B. Kailasapathy, D.U.J. Sonnadara, D.D.C. Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Ararrestad, D. Abbaneo, J. Alimena, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, D. Barney, J. Bendavid, M. Bianco, A. Bocci, T. Camporesi, M. Capeans Garride, G. Cerminara, N. Chernyavskaya, S.S. Chhibra, M. Cipriano, L. Cristella, D. d’Enterra, A. Dabrowski, A. David, A. De Roeck, M.M. Defranchis, M. Deile, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emrskova, F. Fallavollita,
D. Fasanella, A. Florent, G. Franzoni, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Haranko, J. Hegeman, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, S. Laurila, P. Lecoc, A. Lintuuto, K. Long, C. Lourenço, B. Maiier, L. Malgeri, S. Mallios, M. Mannelli, A.C. Marin, F. Meijsers, S. Mersić, E. Meschi, F. Moortgat, M. Mulderen, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Piparo, M. Pitt, H. Qu, T. Quast, D. Rabady, A. Racz, G. Reales Gutiérrez, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas, S. Summers, K. Tatar, V.R. Tavolaro, D. Treille, P. Tropea, A. Tsirou, G.P. Van Onsem, J. Wanczyk, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, A. Ebrahimi, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, M. Missiroli, L. Noehte, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
K. Androsov, M. Backhaus, P. Berger, A. Calandri, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, F. Eble, K. Gedia, F. Glessgen, T.A. Gómez Espinosa, C. Graf, D. Hits, W. Lutermann, A.-M. Lyon, R.A. Manzoni, L. Marchese, C. Martin, M.T. Meinhard, F. Nessi-Tedaldi, J. Niedziela, F. Pauss, V. Perovic, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, V. Stampf, J. Steggemann, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler, P. Bärtschi, C. Botta, D. Brzhechko, M.F. Canelli, K. Cormier, A. De Wit, R. Del Burgo, J.K. Heikkila, M. Huwiler, W. Jin, A. Jofrehei, B. Kilminster, S. Leontsinis, S.P. Liechti, A. Macchiole, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, A. Reimers, P. Robmann, S. Sanchez Cruz, K. Schweiger, Y. Takahashi

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Cear, Y. Chao, K.F. Cher, F.H. Cher, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, H.y. Wu, E. Yazgan, Pr. Yu

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas, E.A. Yetkin

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, I. Dumanoglu, E. Eskut, Y. Guler, E. Gurpinar Guler, C. Isik, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Turkcapar, I.S. Zorbakir

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, I. Hos, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci, C. Zorbilmez

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
D. Anthony, E. Bhal, S. Bologna, J.J. Brooke, A. Bundock, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianou, K. Walkingshaw Pass, R. White

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, C. Cooke, K.V. Ellis, K. Harder, S. Harper, M.-L. Holmberg, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petty, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borge, S. Breeze, O. Buchmuller, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davide, M. Della Negra, S. Fayer, G. Fedi, G. Hall, M.H. Hassanshahi, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, D.G. Monk, J. Nash, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, A. Tapper, K. Uchida, T. Virdee, M. Vojinovic, N. Wardle, S.N. Webb, D. Winterbottom

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, Texas, USA
S. Abdullin, A. Brinkerhoff, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, B. McMaster, N. Pastika, M. Saunders, S. Sawant, C. Sutantawibul, J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, Alabama, USA
A. Buccilli, S.I. Cooper, D. Di Croce, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. West

Boston University, Boston, Massachusetts, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiraglia, E. Fontanesi, D. Gastler, S. May, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, A. Tsatsos, S. Yuan, D. Zou

Brown University, Providence, Rhode Island, USA
G. Benelli, B. Burkle, X. Coubez, D.C. Cutts, M. Hadley, U. Heintz, J.M. Hogan, T. KWON, G. Landsberg, K.T. Lau, D. Li, M. Lukasik, J. Ludlow, M. Narain, N. Pervan,
Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber.

University of Florida, Gainesville, Florida, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, E. Koenig, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, A. Muthirakalayil Madhu, N. Rawal, D. Rosenzweig, S. Rosenzweig, J. Rotter, K. Shi, J. Sturdy, J. Wang, E. Yigitbasi, X. Zuo.

Florida State University, Tallahassee, Florida, USA
T. Adams, A. Askew, R. Habibullah, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, O. Viazlo, R. Yohay, J. Zhang.

Florida Institute of Technology, Melbourne, Florida, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy, M. Hohlmann, R. Kumar Verma, D. Noonan, M. Rahman, F. Yumiceva.

University of Illinois at Chicago (UIC), Chicago, Illinois, USA
M.R. Adams, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, A.H. Merrit, C. Mills, G. Of, T. Roy, S. Rudrabhatla, M.B. Tonjes, N. Varelas, J. Viniikainen, X. Wang, Z. Wu, Z. Yu.

The University of Iowa, Iowa City, Iowa, USA
M. Alhusseini, K. Dilsiz, R.P. Gandrajula, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili, J. Nachtman, H. Ogul, Y. Onel, A. Penzo, C. Snyder, E. Tiras.

Johns Hopkins University, Baltimore, Maryland, USA
O. Amram, B. Blumenfeld, L. Corcodilos, J. Davis, M. Eminizer, A.V. Gritsar, S. Kyriacou, P. Maksimovic, J. Roskes, M. Swartz, T. Vámi.

The University of Kansas, Lawrence, Kansas, USA
A. Abreu, J. Anguiano, C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, Z. Flowers, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, M. Lazarovits, C. Lindsey, J. Marquez, N. Minafra, M. Murray, M. Nickel, C. Roga, C. Royon, R. Salvatico, S. Sanders, E. Schmitz, C. Smith, J.D. Tapia Takaki, Q. Wang, Z. Warner, J. Williams, G. Wilson.

Kansas State University, Manhattan, Kansas, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, K. Nam.

Lawrence Livermore National Laboratory, Livermore, California, USA
F. Rebassoo, D. Wright.

University of Maryland, College Park, Maryland, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, N.J. Hadley, S. Jabeer, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, C. Palmer, M. Seidel, A. Skuja, L. Wang, K. Wong.

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
D. Abercrombie, G. Andreassi, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Cher, M. D’Alfonso, J. Eysermans, C. Freer, G. Gomez Ceballos, M. Goncharov, P. Harris, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, C. Mironov, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, J. Wang, Z. Wang, B. Wyslouch.
A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA

B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, O. Karacheban, I. Laflotte, A. Lathi, K. Nash, M. Osherson, H. Routray, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, Tennessee, USA

H. Acharya, A.G. Delannoy, S. Fiorendi, S. Spanier

Texas A&M University, College Station, Texas, USA

O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luc, S. Malhotra, R. Mueller, D. Overton, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, Texas, USA

N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, Tennessee, USA

E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovská

University of Virginia, Charlottesville, Virginia, USA

M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, C.E. Perez Lara, B. Tannenwald, S. White, E. Wolfe

Wayne State University, Detroit, Michigan, USA

N. Poudyal

University of Wisconsin - Madison, Madison, WI, Wisconsin, USA

K. Black, T. Bose, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, F. Fienga, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-Reichert, W. Vetens

†: Deceased
1: Also at TU Wien, Wien, Austria
2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at The University of the State of Amazonas, Manaus, Brazil
7: Also at University of Chinese Academy of Sciences, Beijing, China
8: Also at Department of Physics, Tsinghua University, Beijing, China
9: Also at UFMS, Nova Andradina, Brazil
10: Also at Nanjing Normal University Department of Physics, Nanjing, China
11: Now at The University of Iowa, Iowa City, Iowa, USA
12: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
13: Also at Joint Institute for Nuclear Research, Dubna, Russia
14: Also at Cairo University, Cairo, Egypt
15: Also at Zewail City of Science and Technology, Zewail, Egypt
16: Also at Purdue University, West Lafayette, Indiana, USA
17: Also at Université de Haute Alsace, Mulhouse, France
18: Also at Ilia State University, Tbilisi, Georgia
19: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
20: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
21: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
22: Also at University of Hamburg, Hamburg, Germany
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Brandenburg University of Technology, Cottbus, Germany
25: Also at Forschungszentrum Jülich, Juelich, Germany
26: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
27: Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
28: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
29: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
30: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
31: Also at Wigner Research Centre for Physics, Budapest, Hungary
32: Also at IIT Bhubaneswar, Bhubaneswar, India
33: Also at Institute of Physics, Bhubaneswar, India
34: Also at G.H.G. Khalsa College, Punjab, India
35: Also at Shoolini University, Solan, India
36: Also at University of Hyderabad, Hyderabad, India
37: Also at University of Visva-Bharati, Santiniketan, India
38: Also at Indian Institute of Technology (IIT), Mumbai, India
39: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
40: Also at Sharif University of Technology, Tehran, Iran
41: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
42: Now at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
43: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
44: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
45: Also at Università di Napoli ‘Federico II’, Napoli, Italy
46: Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
47: Also at Riga Technical University, Riga, Latvia
48: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
49: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
50: Also at Institute for Nuclear Research, Moscow, Russia
51: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
52: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
53: Also at St. Petersburg Polytechnic University, St. Petersburg, Russia
54: Also at University of Florida, Gainesville, Florida, USA
55: Also at Imperial College, London, United Kingdom
56: Also at P.N. Lebedev Physical Institute, Moscow, Russia
57: Also at California Institute of Technology, Pasadena, California, USA
58: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
59: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
60: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
61: Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
62: Also at National and Kapodistrian University of Athens, Athens, Greece
63: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
64: Also at Universität Zürich, Zürich, Switzerland
65: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
66: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
67: Also at Şırnak University, Şırnak, Turkey
68: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
69: Also at Konya Technical University, Konya, Turkey
70: Also at Piri Reis University, Istanbul, Turkey
71: Also at Adiyaman University, Adiyaman, Turkey
72: Also at Ozyegin University, Istanbul, Turkey
73: Also at Izmir Institute of Technology, Izmir, Turkey
74: Also at Necmettin Erbakan University, Konya, Turkey
75: Also at Bozok Üniversitesi, Kastamonu, Turkey
76: Also at Marmara University, Istanbul, Turkey
77: Also at Milli Savunma University, Istanbul, Turkey
78: Also at Kafkas University, Kars, Turkey
79: Also at Istanbul Bilgi University, Istanbul, Turkey
80: Also at Hacettepe University, Ankara, Turkey
81: Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
82: Also at Vrije Universiteit Brussel, Brussel, Belgium
83: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
84: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
85: Also at IPPP Durham University, Durham, United Kingdom
86: Also at Monash University, Faculty of Science, Clayton, Australia
87: Also at Università di Torino, Torino, Italy
88: Also at Bethel University, St. Paul, Minneapolis, USA
89: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
90: Also at Ain Shams University, Cairo, Egypt
91: Also at Bingöl University, Bingöl, Turkey
92: Also at Georgian Technical University, Tbilisi, Georgia
93: Also at Sinop University, Sinop, Turkey
94: Also at Erciyes University, Kayseri, Turkey
95: Also at Texas A&M University at Qatar, Doha, Qatar
96: Also at Kyungpook National University, Daegu, Korea