Nuclear modification factors of strange mesons measured by PHENIX

Vladislav Borisov for the PHENIX

Co-Authors: Yaroslav Berdnikov, Alexander Berdnikov, Dmitry Kotov, Iurii Mitrankov

Peter the Great St.Petersburg Polytechnic University
Motivation

- Strangeness content vs. first generation quarks in hadron production:
 - Strangeness enhancement, recombination and radial flow at moderate p_T
 - Energy loss flavor dependence at high p_T

- Pythia 8 and AMPT predictions:
 - Study from different perspectives (soft QCD, Lund Model, coalescence from QGP)

- PHENIX study different observables in a large variety of SYSTEMs
 - Minimal conditions to form a QGP and its properties
Hadrons in this talk

(hidden) strange

h	Quark content	Decay modes	BR, %	Mass, MeV
K^+/K^-	$u\bar{s} / s\bar{u}$	$\pi^0\pi^0$	~30	~498
K^0_S	$d\bar{s} - s\bar{d}$	$\sqrt{2}$		~495
K^0/\bar{K}^0	$d\bar{s} / s\bar{d}$	π^+K^-	~67	~896
φ	$0.9999 \cdot s\bar{s}$	K^+K^-	~49	~1019

light flavored

h	Quark content	Decay modes	BR, %	Mass, MeV
π^0	$\sqrt{2}/u\bar{u} - d\bar{d}$	$\gamma\gamma$	~99	~135
π^+ / π^-	$u\bar{d} / d\bar{u}$	~140		
ω	π^0	~8.4	~783	
p/\bar{p}	$uud / u\bar{u}\bar{d}$	~938		

Other Hadrons

h	Quark content	Decay modes	BR, %	Mass, MeV
η	$0.57 \cdot (u\bar{u} + d\bar{d}) + 0.60 \cdot s\bar{s}$	$\gamma\gamma$	~39	~548
Small Systems
Ratios in small systems

No strangeness enhancement

A hint of proton enhancement

Vladislav Borisov for PHENIX collaboration
Ratios in small systems

Radial flow or recombination
R_{AB} in small systems

- φ & K^0 R_{AB} follows other light mesons R_{AB}
- Protons yields are enhanced in 0-20% 3He+Au
Recombination can explain protons $R_{AB} > \varphi R_{AB}$

X Radial flow
R_{AB} in small systems

- No baryon and strangeness enhancement
R_{AB} in small systems

✓ Pythia 8 is in well agreement with R_{pAl} for φ

✗ Pythia 8 underestimates φ R_{AB} in $p/d/{}^3$He+Au

13 July 2021

Vladislav Borisov for PHENIX collaboration
\(R_{AB} \) in small systems

- \(\varphi \) \(R_{pAl} \) is well estimated by default AMPT calculations
- String melting AMPT well predicts \(\varphi \) yields in p/d/\(^3\)He+Au
R_{AB} in small systems

• Minimal conditions to form QGP may lie in between
 • $p+Al$ and $p+Au$
Large Systems
New addition from Cu+Au & U+U collisions

Cu+Au

U+U

\[R_{AB} \]

\[p_T (GeV/c) \]

\[\pi^0, 0-20\% \]
\[\eta, 0-20\% \]
\[\varphi, 0-20\% \]
\[K_0, 0-20\% \]
\[\omega, 0-20\% \]
\[\pi^+, 0-20\% \]
\[K^-, 0-20\% \]
\[(p+p)/2, 0-20\% \]
\[K^0, 0-20\% \]

\[s_{NN} = 200 \text{ GeV} \]

\[R_{AB} \]

\[p_T (GeV/c) \]

\[\pi^0, 0-20\% \]
\[\eta, 0-20\% \]
\[\varphi, 0-20\% \]
\[K_0, 0-20\% \]
\[\omega, 0-20\% \]
\[\pi^+, 0-20\% \]
\[K^-, 0-20\% \]
\[(p+p)/2, 0-20\% \]
\[K^0, 0-20\% \]

\[s_{NN} = 192 \text{ GeV} \]

Scaling uncertainty from p+p - 9.7%
New addition from Cu+Au & U+U collisions

At intermediate p_T: $(p + \bar{p})/2 \geq \varphi, K^0, \pi^0, \eta R_{AB}$

Vladislav Borisov for PHENIX collaboration
New addition from Cu+Au & U+U collisions

At intermediate p_T: Interplay of radial flow, strangeness + recombination
Flavor independent suppression at high-p_T

Vladislav Borisov for PHENIX collaboration
New addition from Cu+Au & U+U collisions

- String melting AMPT well predicts φR_{CuAu}
- Coalescence can explain φ yields enhancement
- Pythia failed at central Cu+Au
New addition from Cu+Au & U+U collisions

\[\langle R_{AB} \rangle \] of \(\phi \) meson scales with collision system size
Summary
Summary

Small systems:

Minimal conditions to from QGP may lie in between p+Al and p+Au:

✓ A hint of proton enhancement in p/d/\(^3\)He+Au
✓ String melting AMPT \(\varphi \ R_{p/d/\(^3\)He+Au}\) & Pythia and def AMPT for \(\varphi \ R_{pAl}\)

X But NO strangeness enhancement in small systems

Large systems:

No flavor dependence at high-\(p_T\) in heavy-ion collisions
Coalescence might be an answer for strangeness enhancement:

✓ String melting AMPT well predicts \(\varphi \ R_{CuAu}\)
Strange meson production scales with collision system size

13 July 2021
Vladislav Borisov for PHENIX collaboration