The Phase-Space Noncommutativity Effect on the Large and Small Wavefunction Components Approach at Dirac Equation

Ilyas Houam*
Département de Physique, Faculté des sciences exactes,
Université Des Frères Mentouri, Constantine, Algeria

By the large and small wave-function components approach we achieved the nonrelativistic limit of the Dirac equation in interaction with an electromagnetic potential in noncommutative phase-space, and we tested the effect of the phase-space noncommutativity on it, knowing that the nonrelativistic limit of the Dirac equation gives the Schrödinger-Pauli equation.

* ilyashaouam@live.fr
I. INTRODUCTION

In the last few years there has been much interests in the study of physics in non-commutative space, knowing that the study of noncommutative geometry has a long history [1, 2], the studies of noncommutativity in phase-space and their involvement for quantum field theories play an important role in various fields of physics especially in the theory of strings, and in the matrix model of M-theory [3], also in the description of quantum gravity. The common method for studying the noncommutativity of quantum mechanics (NCQM) is the correspondence between commutative space and the noncommutative space using the method of translation which known as Bopp-shift, or using the Moyal star product [4–7]. In the quantum-mechanical description of particles, there are various relativistic or non-relativistic wave equations as the usual Schrödinger equation applies to the spin-0 particles in the non-relativistic domain, and the Klein–Gordon equation is the relativistic equation appropriate for spin-0 particles [8–10], and in regards to the spin-1/2 particles are governed by the relativistic Dirac. To move from the relativistic quantum mechanics toward the nonrelativistic one it is very necessary to pass by the nonrelativistic limit, which is to transform the physical information under the condition \(v \ll c \), we speak of the nonrelativistic limit for low speeds in front of the speed of the light or for the regime of weak or low energy in front of the mass energy \(\frac{\hbar^2}{mc^2} \ll 1 \), the nonrelativistic limit can be achieved through various ways, the most important ways are the Foldy-Wouthuysen transformation (it is only applicable to weak fields) [11, 12], and the Douglas-Kroll-Hell transformation [13–15]. This canonical transformation is an unitary transformation allows separating (block-diagonalize) Dirac hamiltonian into two parts, one part describes electrons, while the other gives rise to negative energy states, which are the so-called positronic states, and the classical approach which is the large and small wave function components approach [16, 17], in this work we investigate the nonrelativistic limit of the Dirac equation according to the large and small wave function components approach to derive directly the Schrödinger–Pauli equation [18–20], but in the case of particles with spin 1 or higher, only relativistic equations are usually considered [21], noting that the uses of the Schrödinger–Pauli equation represented on the study of the fine structure of the hydrogen atom, and various scattering problems knowing that it does not consider the spin of the particles in the studies, but it can be introduced by assuming the presence of an electromagnetic field in the Dirac equation before the extraction of the nonrelativistic equation, which describes the interaction of a spin 1/2 particle with the external electromagnetic field. It correctly predicts the spin of the particle and the gyromagnetic ratio, in fact the examples of using and applying Schrödinger–Pauli equation are many and we can not all mention them.

II. LENGTH-MOMENTUM NONCOMMUTATIVITY

At string scales (very small scales) the space does not commute anymore, so that we consider the operators of coordinates and momentum in the noncommutative phase-space \(x_i^{nc} \) and \(p_i^{nc} \) respectively, then considering a noncommutative algebra satisfying the commutation relations

\[
\begin{align*}
[x_i^{nc}, x_j^{nc}] &= i\Theta_{ij}, \\
p_i^{nc}, p_j^{nc} &= i\overline{\Theta}_{ij}, \\
x_i^{nc}, p_i^{nc} &= i\hbar c f \delta_{ij},
\end{align*}
\]

(1)

taking into account the effective Plank constant

\[
\hbar^{eff} = \hbar (1 + \frac{\Theta \overline{\Theta}}{4\hbar^2}).
\]

(2)

Where \(\Theta_{ij} = \epsilon_{ijk}\Theta_k, \Theta_k = (0, 0, \Theta), \overline{\Theta}_{ij} = \epsilon_{ijk}\overline{\Theta}_k, \overline{\Theta}_k = (0, 0, \overline{\Theta}), \Theta, \overline{\Theta} \) are antisymmetric constant matrices (noncommutative parameters) with the dimension of \((\text{length})^2\) and \((\text{momentum})^2\), respectively.

The mapping between the noncommutative phase space and the commutative one doing through the Bopp-shift linear transformations [22, 23]

\[
\begin{align*}
x^{nc} &= x - \frac{1}{2\hbar} \Theta y \\
y^{nc} &= y + \frac{1}{2\hbar} \Theta p_x \\
p_x^{nc} &= p_x + \frac{1}{2\hbar} \Theta y \\
p_y^{nc} &= p_y - \frac{1}{2\hbar} \Theta x
\end{align*}
\]

(3)
vanishing the noncommutative parameters the system will reduce to the commutative one.
With another method the noncommutativity in space can be realized using the Moyal product \((\star - product)\), [24–26]

\[
(f \star g)(x) = \exp[\frac{i}{\hbar} \theta_{ab} \partial_x \partial_y] f(x) g(x) = f(x)g(x) + \sum_{n=1}^{\infty} \left(\frac{i}{\hbar} \right)^n \theta_{a_1 b_1} \ldots \theta_{a_n b_n} \partial_{a_1} \ldots \partial_{a_n} f(x) \partial_{b_1} \ldots \partial_{b_n} g(x),
\]

in other term the noncommutative information is encoded in the star product

\[
(A, \star) \cong (A^{nc}, \cdot)
\]

III. 3. NONRELATIVISTIC LIMIT OF THE NONCOMMUTATIVE DIRAC EQUATION

A. Noncommutative Dirac Equation

Starting with Dirac equation in the noncommutative phase-space [27, 28]

\[
H(x, p) \star \psi(x) = H(x^{nc}, p^{nc}) \psi(x^{nc}) = E \psi,
\]

the Dirac equation in interaction with electromagnetic four-potential \(\{ A_{\mu} = (A_0(x), A_i(x))\}\) in commutative-space

\[
\left\{ c \alpha_i (\hat{p}_i - \frac{e}{c} A_i(x)) + e A_0(x) + \beta mc^2 \right\} \psi = E \psi,
\]

where the momentum \(\hat{p}_i\) is given by \(\hat{p}_i = -i \hbar \nabla_i\) and the matrices \(\alpha_i\) and \(\beta\) satisfy the anticommutation relations

\[
\{ \alpha_i, \alpha_j \} = 2 \delta_{ij}, \quad \{ \alpha_i, \beta \} = 0, \quad \alpha_i^2 = \beta^2 = 1.
\]

Using the Eq.(4), we achieve the noncommutativity in space \(\{ x \to x^{nc}\}\), then the Dirac equation Eq.(7) becomes

\[
\left\{ c \alpha_i (\hat{p}_i - \frac{e}{c} A_i(x)) + e A_0(x) + \beta mc^2 \right\} \star \psi(x) = E \psi^{nc},
\]

as \(A(x) = h x\) for that the derivation in the Eq.(4) will automatically stop in the first order,

\[
(f \star g)(x) = f(x)g(x) + \frac{i}{2} \Theta^{ab} \partial_a f h b g + O(\hat{\theta}^2),
\]

it means that terms upper than the first order will vanish, then the Eq.(9) transforms to

\[
(H \star \psi)(x) = H(x, p^{nc}) \psi(x) + \frac{i}{2} \Theta_{ab} \partial_a \left\{ c \alpha_i (\hat{p}_i - \frac{e}{c} A_i(x)) + e A_0(x) + \beta mc^2 \right\} \partial_b \psi(x) = E \psi^{nc},
\]

as \(\partial_a (c \alpha_i \hat{p}_i) = \partial_a (\beta mc^2) = 0\) Eq.(11) becomes

\[
H(x, p^{nc}) \psi(x) = \frac{i e}{2} \Theta_{ab} \partial_a \left(c \alpha_i (\hat{p}_i - \frac{e}{c} A_i(x)) + e A_0(x) \right) \partial_b \psi(x) = E \psi(x).
\]

after there we achieve the noncommutativity in phase \(\{ p \to p^{nc}\}\) using the Eq.(3) for finding the entire noncommutative-space Dirac equation,

\[
H_{nc}(x, p) \star \psi(x) = \left\{ c \alpha_i \left(p_i + \frac{1}{2m} \Theta_{ij} x_j - \frac{e}{c} A_i(x) \right) + e A_0(x) + \beta mc^2 \right\} \psi(x) = E \psi^{nc},
\]

we rewrite Eq.(13) in a more compact form (see Appendix)

\[
H_{nc} \psi^{nc} = \left[\frac{c}{\hbar} \left(\hat{p} - \frac{e}{c} \hat{A} \right) + e A_0 + \beta mc^2 + \frac{\sqrt{\hbar}}{\sqrt{c}} \left(\nabla \left(\frac{c}{\hbar} \frac{\hbar}{A} A_0 \right) \right) \right] \psi^{nc} = E \psi^{nc}.
\]

B. Large and Small Wave-function Components Approach

It is possible to define the nonrelativistic limit of the Dirac equation, using several ways, including that there is the Douglas-Kroll-Hell approach, it used mostly as part of relativistic quantum chemistry, and the Foldy-Wouthuysen transformation, which are both canonical transformation, and the method of development in power of \(\hbar \) [29], and the classical approach, the latter one depends on the upper two components of the Dirac wave-function \(\psi \) in the standard representation are much larger than the lower two components, using this property we can derive simply the Schrödinger-Pauli equation.

To define the nonrelativistic limit of the phase-space noncommutative Dirac equation we should firstly study the case of an electron at rest, so that without the electromagnetic interaction, \(\{ \vec{p} \psi = 0, \ A^\mu = 0 \} \) Eq.(14) becomes

\[
H_{nc} \psi_{nc} = \left\{ \frac{\beta m_0 c^2}{\hbar} + \frac{e}{\hbar} (\sigma \times \vec{A}). \vec{\Theta} \right\} \psi_{nc} = i\hbar \frac{\partial \psi_{nc}}{\partial t}.
\]

This system of equations is simply solved, and leads to the following four-solutions

\[
\psi_{nc}^1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} e^{-\frac{i}{\hbar}(m_0 c^2 + \frac{e}{\hbar} (\sigma \times \vec{A}). \vec{\Theta}) t} \quad \psi_{nc}^2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} e^{\frac{i}{\hbar}(m_0 c^2 + \frac{e}{\hbar} (\sigma \times \vec{A}). \vec{\Theta}) t} \quad \psi_{nc}^3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} e^{\frac{i}{\hbar}(m_0 c^2 + \frac{e}{\hbar} (\sigma \times \vec{A}). \vec{\Theta}) t},
\]

\[
\psi_{nc}^4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \quad \psi_{nc}^\theta = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} e^{\frac{i}{\hbar}(m_0 c^2 + \frac{e}{\hbar} (\sigma \times \vec{A}). \vec{\Theta}) t}.
\]

\(\psi_{nc}^1 \) and \(\psi_{nc}^2 \) correspond to the positive energy value and \(\psi_{nc}^3, \psi_{nc}^4 \) to the negative one.

At first therefore we restrict ourselves to solutions of positive energy. In order to show that the Dirac equation reproduces the two component Pauli equation in the nonrelativistic limit.

The nonrelativistic limit of the Eq.(14) can be most efficiently studied in the representation

\[
\psi_{nc} = \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix},
\]

where the four-component spinor \(\psi_{nc} \) is decomposed into two-two component spinors \(\varphi \) and \(\chi \), with \(\{ \vec{p} - e \vec{A} \rightarrow \vec{\Pi} \} \), the Dirac equation Eq.(14) becomes

\[
\begin{align*}
i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} &= \begin{pmatrix} c \vec{\sigma} \vec{\Pi} \varphi_{nc} \\ c \vec{\sigma} \vec{\Pi} \chi_{nc} \end{pmatrix} + eA_0 \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} + \frac{\beta m_0 c^2}{\hbar} \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} + \frac{e}{\hbar} (m_0 c^2 + \frac{e}{\hbar} (\sigma \times \vec{A}). \vec{\Theta}) \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
&+ \frac{e}{\hbar} (\sigma \times \vec{A}). \vec{\Theta} \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} + \frac{e}{\hbar} \Theta_{\sigma} \left(\frac{\varphi_{nc}}{\chi_{nc}} \right) + \frac{e}{\hbar} \Theta_{\theta} \left(\frac{\varphi_{nc}}{\chi_{nc}} \right),
\end{align*}
\]

according to the Dirac matrices

\[
\vec{\alpha} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix} \quad \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\]

and setting \(\Theta_{\sigma} = (\sigma \times \vec{A}). \vec{\Theta} \) and \(\Theta_{\theta} = (\vec{\nabla} (\sigma \times A_0) \times \vec{p}). \vec{\Theta} \) it comes

\[
\begin{align*}
i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} &= \begin{pmatrix} c \vec{\sigma} \vec{\Pi} \varphi_{nc} \\ c \vec{\sigma} \vec{\Pi} \chi_{nc} \end{pmatrix} + eA_0 \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} + m_0 c^2 \begin{pmatrix} \varphi_{nc} \\ -\chi_{nc} \end{pmatrix} \\
&+ \frac{e}{\hbar} \Theta_{\sigma} \left(\frac{\varphi_{nc}}{\chi_{nc}} \right) + \frac{e}{\hbar} \Theta_{\theta} \left(\frac{\varphi_{nc}}{\chi_{nc}} \right),
\end{align*}
\]

if the rest energy \(m_0 c^2 \), as the largest occurring energy, is additionally separated by \(\begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} = \left(\varphi_{nc} \chi_{nc} \right) e^{-\frac{\beta m_0 c^2}{\hbar} + \frac{e}{\hbar} (\sigma \times \vec{A}). \vec{\Theta}) t} \) then Eq.(20) takes the form

\[
\begin{align*}
i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} &= \begin{pmatrix} c \vec{\sigma} \vec{\Pi} \varphi_{nc} \\ c \vec{\sigma} \vec{\Pi} \chi_{nc} \end{pmatrix} + eA_0 \begin{pmatrix} \varphi_{nc} \\ \chi_{nc} \end{pmatrix} - 2m_0 c^2 \begin{pmatrix} 0 \\ \chi_{nc} \end{pmatrix} + \frac{e}{\hbar} \Theta_{\sigma} \left(\frac{\varphi_{nc}}{\chi_{nc}} \right).
\end{align*}
\]
firstly considering the lower of the above equation. Using the slow-time dependence $E_0 \gg i\hbar \frac{\partial}{\partial t}$, and the weak coupling of the electromagnetic potential $E_0 \gg eA_0$ approach, which means that the kinetic energy as well as the potential energy are small compared to the rest energy, by another term the transition to the nonrelativistic limit is realized by assuming that the momentum is small compared to the characteristic quantity mc and that the Coulomb interaction energy is weak compared to the mass energy, so that the Eq.(21) goes to

$$
\begin{pmatrix}
 c \frac{\partial}{\partial \Pi} \chi_{nc} \\
 c \frac{\partial}{\partial \Pi} \varphi_{nc}
\end{pmatrix}
- 2m_0c^2 \begin{pmatrix}
 0 \\
 \chi_{nc}
\end{pmatrix}
+ \frac{e}{\hbar} \Theta \begin{pmatrix}
 \varphi_{nc} \\
 \chi_{nc}
\end{pmatrix}
= 0. \tag{22}
$$

Using the second equation of the above system Eq.(22) then we obtain

$$
\chi_{nc} = \frac{c}{2m_0c^2 - \frac{e}{\hbar} \Theta} \varphi_{nc} \tag{23}
$$

where χ_{nc} represent the small component of the wave function ψ_{nc}. Insertion of Eq.(23) into the first equation of Eq.(21) results in a nonrelativistic wave function for φ_{nc}

$$
i\hbar \frac{\partial}{\partial t} \varphi_{nc} = \frac{(\frac{\partial}{\partial \Pi})(\frac{\partial}{\partial \Pi})}{2m_0 - \frac{e}{\hbar} \Theta} \varphi_{nc} + eA_0 \varphi_{nc} + \frac{e}{\hbar} \Theta \varphi_{nc}. \tag{24}
$$

with the help of

$$
(\frac{\partial}{\partial A})(\frac{\partial}{\partial B}) = \hat{A} \cdot \hat{B} + i \hat{A} \times (\hat{A} \times \hat{B}). \tag{25}
$$

Finally the Eq.(24) becomes

$$
i\hbar \frac{\partial}{\partial t} \varphi_{(NC)} = \left[\frac{(\frac{\partial}{\partial \Pi} - \frac{e}{c} \hat{A})^2}{2m_0 - \frac{e}{\hbar c} \Theta} - \frac{e \hbar \frac{\partial}{\partial \Pi} \hat{B}}{c(2m_0 - \frac{e}{\hbar c} \Theta)} + eA_0 + \frac{e}{\hbar} \Theta \right] \varphi_{(NC)}. \tag{26}
$$

This is as it should be, the noncommutative phase-space Schrödinger-Pauli equation, for $\theta = 0 \Rightarrow \Theta = 0$, the Eq.(26) returns to that of usual Schrödinger-Pauli equation[30, 31]

C. Gyromagnetic Factor of The Electron (g=2)

According to $\vec{B} = \vec{\nabla} \times \vec{A}$, $\vec{A} = \frac{1}{2} \vec{B} \times \vec{r}$ we have

$$
(\vec{p} - \frac{e}{c} \vec{A})^2 = (\vec{p} - \frac{e}{2c} \vec{B} \times \vec{r})^2 \approx \vec{p}^2 - \frac{e}{c} \vec{B} \cdot \vec{L}, \tag{27}
$$

where $\vec{L} = \vec{r} \times \vec{p}$ and $\vec{S} = \frac{1}{2} \hbar \vec{\sigma}$ are the operator of orbital angular momentum and the spin operator respectively. So that Eq.(26) finally takes the form of

$$
i\hbar \frac{\partial}{\partial t} \varphi_{nc} = \left[\frac{\vec{p}^2}{2m_0 - \frac{e}{\hbar c} \Theta} - \frac{e}{2m_0 - \frac{e}{\hbar c} \Theta}(\vec{L} + 2\hat{S}) \cdot \hat{B} + eA_0 + \frac{e}{\hbar} \Theta \right] \varphi_{nc}. \tag{28}
$$

while we are in very tiny space scales, so the Nc term $\Theta \ll 1$, it is possible to use the Maclaurin series, by changing the variable

$$
\frac{e}{2m_0\hbar c^2} \Theta = \Omega \tag{29}
$$

$$
\frac{1}{2m_0 \left(1 - \frac{e}{2m_0\hbar c^2} \Theta \right)} \approx \frac{1}{2m_0} \sum_{j=0}^{n} \Omega_j, \tag{30}
$$
we find that Eq.(28) goes to

$$i\hbar \frac{\partial}{\partial t} \varphi_{nc} = \left[\frac{1}{2m_0} \sum_{j=0}^{n} \left(e\Omega_j \hat{p}_j^2 - \Omega_j \left(\frac{\vec{L} + 2 \vec{S} \cdot \vec{B}}{c} \right) + eA_0 + 2m_0 c^2 \Theta_0 \right) \right] \varphi_{nc}. \tag{31}$$

The Eq.(28) represents the phase-space noncommutative Schrödinger-Pauli equation, and it contains the NC kinetic energy operator and the NC Zeeman coupling term (which had been added by hand by Pauli when we talk about the commutative term), and the term that associated with the NC diamagnetism, in the absence of magnetic field ($A = B = 0$), the Eq.(31) takes its original form without the information about the spin, which is the noncommutative Schrödinger equation as follows

$$i\hbar \frac{\partial}{\partial t} \varphi_{nc} = \left[\frac{1}{2m_0} \sum_{j=0}^{n} e\Omega_j \hat{p}_j^2 + 2m_0 c^2 \Theta_0 \right] \varphi_{nc}. \tag{32}$$

The Eq.(31) is a first order equation of 1/m, the nonrelativistic expansion of this equation allows to add potentials such the electrical potential, but also to find corrections terms if one realize the development in the second and third order of 1/m, precisely we predict that in the second order we find the Darwin interaction and Spin-Orbit coupling NC terms knowing that Darwin’s NC term is interpreted as a correction of the potential energy due to the Zitterbewegung phenomenon (the tremor movement) [32, 33], in the third order we find corrections of the kinetic energy and temporal dependence of the electric field NC terms.

IV. CONCLUSION

In conclusion the nonrelativistic limit of the Dirac equation with electromagnetic potential has been studied in noncommutative phase-space using the large and small wavefunction components approach. We find that the effect of the noncommutativity in phase on the nonrelativistic limit vanished, but the effect of the noncommutativity in space appeared widely and it reduced in the approximations we have considered. Under the condition that space-space and momentum-momentum are all commutative (namely, $\Theta = 0, \Theta = 0$) the results return to that of the usual quantum mechanics.

ACKNOWLEDGMENTS

The author would like to thank Pr Lyazid Chetouani for interesting comments and suggestions.

APPENDIX A.

calculations between moving from the relation Eq.(13) to the relation Eq.(14)

using $\eta_{ij} = \eta_{ij}$ and $\eta_k = \frac{1}{2} \epsilon_{kij} \eta_{ij}$

$$cc \frac{1}{2 \sqrt{\eta}} \eta_{ij} x_j = c \frac{1}{2 \sqrt{\eta}} \eta \epsilon_{ij}^{a} \alpha_i x_j = \frac{1}{2 \sqrt{\eta}} \eta \epsilon_{ij}^{a} \alpha_i x_j / \epsilon_{kij} = \epsilon_{ijk}$$

we know that $(u \times v)_\mu = \epsilon_{\mu\nu\lambda} u_\nu v_\lambda$ so

$$c \frac{1}{2 \sqrt{\eta}} \eta \epsilon_{kij} \alpha_i x_j = \frac{\epsilon}{\sqrt{\eta}} \left(\alpha_l \times \alpha_k \right) \mu \eta = \frac{\epsilon}{\sqrt{\eta}} \left(\alpha_l \times \alpha_k \right) . \eta$$

with the same manner we prove that

$$-ie \theta_k \epsilon_{abk} \partial_a \left(\alpha_l \vec{A} - A_0 \right) \partial_b = -ie \frac{\sqrt{\eta}}{\sqrt{\eta}} \theta_k \epsilon_{abk} \partial_a \left(\alpha_l \vec{A} - A_0 \right) = \frac{\sqrt{\eta}}{\sqrt{\eta}} \left(\alpha_l \vec{A} - A_0 \right) \times \vec{p} \right) . \vec{\theta}$$

[1] Snyder, H.S. (1946) Quantized Space-Time. Physical Review, 71, 38. https://doi.org/10.1103/PhysRev.71.38
