Lack of Association between the *Tlr4* (*Lps^d/Lps^d*) Genotype and Increased Susceptibility to *Escherichia coli* Bladder Infections in Female C3H/HeJ Mice

Kaleigh A. Suhs,a,b Brodie R. Marthaler,a,c Rodney A. Welch,d and Walter J. Hopkinsa

Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USAa; Chicago College of Osteopathic Medicine, Downers Grove, Illinois, USAb; Medical College of Wisconsin, Milwaukee, Wisconsin, USAc; and Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USAa

ABSTRACT Toll-like receptor 4 is thought to have a primary role in host defense against *Escherichia coli* bladder colonization, based on mouse models of urinary tract infection using C3H/HeJ female mice. This strain carries a point mutation in the *Tlr4* gene, which renders the mice unresponsive to lipopolysaccharide (LPS) and thus limits the bladder inflammatory response and infection resolution. The importance of *Tlr4* as the sole genetic determinant of resistance or susceptibility can be questioned, however, by the observation that C3H/HeOuJ female mice with a functional *Tlr4* do not effectively resolve *E. coli* bladder infections. The present study further examined this inconsistency by investigating the association of *Tlr4* Lps^d/Lps^d alleles with bladder infection susceptibility by using genetic crosses of C3H/HeJ mice with *Tlr4* Lps^o/Lps^o or Lps^s/Lps^s mice. Heterozygous offspring of C3H/HeJ (Lps^o/Lps^s) × BALB/cAnN (Lps^s/Lps^s) mice successfully resolved bladder infections induced by a uropathogenic *E. coli* strain, while heterozygous mice from a C3H/HeOuJ (Lps^o/Lps^s) × C3H/HeOuJ (Lps^o/Lps^o) cross had severe infections. A backcross of C3H/HeJ (Lps^o/Lps^s) with (BALB/cAnN × C3H/HeOuJ)F₁ produced mice that were either resistant or susceptible to *E. coli* bladder infections and had Lps^o/Lps^o or Lps^s/Lps^s genotype. The Lps^o/Lps^s or Lps^s/Lps^s genotypes were present in individual mice with unresolved bladder infections, and the Lps^s/Lps^s genotype was found in infection-resistant mice. These results indicate that at least one gene other than *Tlr4* strongly influences susceptibility to *E. coli* bladder infections in C3H/HeJ mice.

IMPORTANCE We have previously demonstrated that mouse strains with either a functional or nonfunctional *Tlr4* were not able to resolve induced *Escherichia coli* bladder infections and that a chromosomal site distinct from *Tlr4* was associated with an inability to resolve bladder infections in C3H/HeJ mice. The present study has further investigated the relevance of *Tlr4* in bladder infection resolution by defining the *Tlr4* alleles present in offspring of genetic crosses of C3H/HeJ mice with infection-resistant -susceptible inbred strains. The results of these experiments showed that mice with a normal *Tlr4* on different genetic backgrounds were not able to clear *E. coli* bladder infections and that animals with a defective *Tlr4* could successfully resolve infections. These results strongly imply the presence of a gene other than *Tlr4* as an important genetic determinant of infection resistance/susceptibility in C3H/HeJ and other inbred mouse strains used in mouse models of infectious diseases.
tance of susceptibility to *E. coli* bladder infection using C3H/HeJ, BALB/cAnN, and (C3H/He/J × BALB/cAnN)F1 mice showed that infection susceptibility was a recessive trait (5). Furthermore, statistical analysis indicated that one or more genes in C3H/HeJ mice were responsible for their inability to clear bladder infections. Third, in a genetic linkage analysis using BALB/cAnN and C3H/HeJ mice, we identified a quantitative trait locus (QTL), Becis1, that was significantly associated with the inability of C3H/HeJ female mice to resolve *E. coli* infection. The location of Becis1 was estimated to be at 29.0 cM on chromosome 4, which is near the *Tlr4* locus at 29.0 cM on chromosome 4, suggesting that the *Tlr4* allele confers protection. The importance of a functional *Tlr4* can be questioned, however, by the failure of C3H/HeOuJ (Lpsn/Lpsd) mice to effectively resolve infections. Moreover, females from a cross between C3H/HeJ (Lpsd/Lpsd) and C3H/HeOuJ (Lpsn/Lpsd) mice were also not able to effectively resolve *E. coli* bladder infections within 10 days. Thus, there are very likely to be alleles of genes other than *Tlr4* that significantly lower resistance to *E. coli* bladder infection in both of these C3H strains.

The relevance of the normal and defective *Tlr4* alleles in resolution of *E. coli* bladder infections was further investigated in female mice from a backcross of C3H/HeJ with (BALB/cAnN × C3H/HeJ)F1. These backcross mice were either heterozygous for BALB/cAnN and C3H/HeJ alleles or homozygous for C3H/HeJ alleles at individual loci, including *Tlr4*. All mice were inoculated with *E. coli* and assessed for bladder CFU 10 days later as described above. The *Tlr4* genotypes of mice with less than 1,000 or greater than 100,000 CFU/mg of tissue were analyzed for associations between *Tlr4* and infection intensity. Using the single nucleotide polymorphism that distinguishes the Lpsn and Lpsd alleles (8), we genotyped 140 backcross mice for the *Tlr4* normal and defective alleles by a previously described method (9). Genomic DNA was prepared from the spleen of each mouse with the Gentra Puregene tissue kit (Qiagen). A DNA fragment covering the SNP region was generated by PCR using forward (5’ GTTTCACCTCTGCTTCA3’) and reverse (5’ATAACCTCCGCTCTTGTG3’) primers (Integrated DNA Technologies); RedTaq polymerase (Sigma, Chemical Co.); and 35 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 30 s with final extension at 72°C for 10 min. The PCR product was purified with the Wizard PCR cleanup system (Promega). To differentiate the Lpsn and Lpsd alleles, the reaction product was digested with Hsp92II restriction endonuclease (New England Biolabs), followed by electrophoresis on a 2.5% agarose gel. The restriction enzyme cleaves DNA with the Lpsn allele to yield two fragments distinguishable from the undigested DNA with the Lpsd allele. These results are presented in Table 2. Twenty-one of the backcross mice had severe bladder infections 10 days after inoculation with *E. coli*. Six of these animals were Lpsd/Lpsd heterozygous and had infection intensities

Table 1. Bladder infection intensities and *Tlr4* genotypes of female inbred mice and hybrids following intravesical inoculation with *E. coli*

Inbred mouse strain	No. of mice tested	*Tlr4* genotype	CFU in bladder
Inbred			
BALB/cAnN	10	Lpsd/Lpsd	70 (1.84 ± 0.20) ABC
C3H/HeJ	6	Lpsd/Lpsd	533,921 (5.73 ± 0.60) AD
C3H/HeOuJ	6	Lpsd/Lpsd	489,778 (5.69 ± 0.20) BD
Hybrid			
C3H/HeJ × BALB/cAnN	15	Lpsn/Lpsd	44 (1.64 ± 0.09) EC
C3H/HeJ × C3H/HeOuJ	7	Lpsn/Lpsd	248,427 (5.40 ± 0.04) E

*Female mice from specific inbred strains (BALB/cAnN, C3H/HeJ, and C3H/HeOuJ) and hybrids bred from these strains [(C3H/HeJ × BALB/cAnN) and (C3H/HeJ × C3H/HeOuJ)].

*Female mice were inoculated intravesically with 1 × 10^8 E. coli 1677 and euthanized 10 days later to assay for the total number of CFU in the bladder. Values are geometric means with mean log CFU/mg of tissue ± standard errors of the means in parentheses. Statistical analysis was conducted in two steps using SAS/STAT software, version 9.1 (SAS Institute, Inc.). The log-transformed CFU data were first analyzed by analysis of variance to estimate variability of values within and between experimental groups and then by Fisher’s protected least significant differences test to determine significant differences between groups. *P* values less than 0.05 were considered statistically significant. For comparisons between groups indicated by the letters A, B, and E, *P* is <0.001. For comparisons between groups indicated by the letters C and D, *P* is >0.05.

The results in Table 1 show clear differences in the abilities of the BALB/cAnN, C3H/HeJ, and C3H/HeOuJ strains and hybrids of these mice to resolve *E. coli* bladder infections, implying that the *Tlr4* Lpsd allele is not the primary genetic factor in infection susceptibility. Female BALB/cAnN mice (Lpsd/Lpsd) were able to effectively resolve their bladder infections by 10 days after inoculation, while C3H/HeJ (Lpsd/Lpsd) mice remained severely infected at this time point. Mice that were Lpsd/Lpsd on a background of BALB/cAnN and C3H/HeJ alleles were also resistant to infection, suggesting that the Lpsd/Lpsd allele confers protection. The importance of a functional *Tlr4* can be questioned, however, by the failure of C3H/HeOuJ (Lpsn/Lpsd) mice to effectively resolve infections. Moreover, females from a cross between C3H/HeJ (Lpsd/Lpsd) and C3H/HeOuJ (Lpsn/Lpsd) mice were also not able to effectively resolve *E. coli* bladder infections within 10 days. Thus, there are very likely to be alleles of genes other than *Tlr4* that significantly lower resistance to *E. coli* bladder infection in both of these C3H strains.

The relevance of the normal and defective *Tlr4* alleles in resolution of *E. coli* bladder infections was further investigated in female mice from a backcross of C3H/HeJ with (BALB/cAnN × C3H/HeJ)F1. These backcross mice were either heterozygous for BALB/cAnN and C3H/HeJ alleles or homozygous for C3H/HeJ alleles at individual loci, including *Tlr4*. All mice were inoculated with *E. coli* and assessed for bladder CFU 10 days later as described above. The *Tlr4* genotypes of mice with less than 1,000 or greater than 100,000 CFU/mg of tissue were analyzed for associations between *Tlr4* and infection intensity. Using the single nucleotide polymorphism that distinguishes the Lpsn and Lpsd alleles (8), we genotyped 140 backcross mice for the *Tlr4* normal and defective alleles by a previously described method (9). Genomic DNA was prepared from the spleen of each mouse with the Gentra Puregene tissue kit (Qiagen). A DNA fragment covering the SNP region was generated by PCR using forward (5’ GTTTCACCTCTGCTTCA3’) and reverse (5’ATAACCTCCGCTCTTGTG3’) primers (Integrated DNA Technologies); RedTaq polymerase (Sigma, Chemical Co.); and 35 cycles of 94°C for 30 s, 55°C for 60 s, and 72°C for 45 s with final extension at 72°C for 10 min. The PCR product was purified with the Wizard PCR cleanup system (Promega). To differentiate the Lpsn and Lpsd alleles, the reaction product was digested with Hsp92II restriction endonuclease (New England Biolabs), followed by electrophoresis on a 2.5% agarose gel. The restriction enzyme cleaves DNA with the Lpsn allele to yield two fragments distinguishable from the undigested DNA with the Lpsd allele. These results are presented in Table 2. Twenty-one of the backcross mice had severe bladder infections 10 days after inoculation with *E. coli*. Six of these animals were Lpsd/Lpsd heterozygous and had infection intensities
that were equivalent to those of either the C3H/HeJ or C3H/HeOuJ strains shown in Table 1. All of the remaining 119 backcross mice resolved their bladder infections as successfully as BALB/cAnN mice. Of these infection-resistant mice, 48 were Lpsd/Lpsd homozygous, and 71 were Lpsn/Lpsd heterozygous. The results showing successful resolution of infections in mice with two copies of the Lpsd allele are thus inconsistent with those from C3H/HeJ mice shown in Table 1.

A functional Toll-like receptor 4 receptor, as specified by the Tlr4 Lpsn allele, has been proposed to play a central role in host defense against E. coli bladder infections in inbred strains of mice through initiation of local inflammatory responses (1, 10). These studies have noted impaired infection resolution in C3H/HeJ (Lpsn/Lpsn) mice compared to successful resolution in C3H/HeN (Lpsn/Lpsd) mice. Several of the findings reported here, however, question whether Tlr4 is the gene solely responsible for determining host resistance to bladder infection. First, C3H/HeOuJ (Lpsn/Lpsd) mice are comparable to C3H/HeJ (Lpsn/Lpsn) mice in their inability to resolve E. coli bladder infections. Second, when the Tlr4 Lpsn allele was introduced into C3H/HeJ by a cross with C3H/HeOuJ, the hybrid mice are unable to clear infections. This observation is in contrast to results obtained in a cross of BALB/cAnN (Lpsn/Lpsn) mice with C3H/HeJ (Lpsn/Lpsn) mice in which the hybrid mice successfully resolved bladder infections. Third, homozygous Lpsn/Lpsn mice from a C3H/HeJ backcross to (C3H/HeOuJ × BALB/cAnN)F1 mice had severe E. coli bladder infections similar to C3H/HeJ mice or the (C3H/HeOuJ × C3H/HeJ) hybrid. Fourth, homozygous Lpsn/Lpsn backcross mice were able to successfully resolve induced E. coli bladder infections. Thus, there is strong evidence that alleles of a gene or genes other than Tlr4 strongly affect resistance or susceptibility to E. coli bladder infections in C3H/HeJ, C3H/HeOuJ, and BALB/cAnN mice.

One model to reconcile findings in this study would be one in which a UTI-associated gene with at least two alleles is present in C3H/HeJ, C3H/HeOuJ, and BALB/cAnN mice. An allele conferring resistance to E. coli bladder infections would be homozygous in the BALB/cAnN strain. An allele associated with an impaired ability to resolve infections would be homozygous in C3H/HeJ, C3H/HeOuJ, and (C3H/HeOuJ × C3H/HeJ) mice. Because heterozygous offspring of a cross between BALB/cAnN and C3H/HeJ mice were able to effectively clear induced E. coli bladder infections, infection resistance would be considered a dominant trait. The infection-susceptible allele in this model would be expected to be homozygous in C3H/HeJ backcross mice with severe bladder infections, while at least one copy of the infection-resistant allele from the BALB/cAnN parental strain would be in backcross mice who successfully resolved infections.

Although the UTI-associated gene proposed in the above model is not currently known, our previous genetic studies have identified the Becis1 QTL as significantly associated with unresolved bladder infections in C3H/HeJ mice (6). This locus maps to chromosome 4 at 29 cm, and the as yet unidentified gene inferred by the Becis1 QTL is the most likely candidate to account for the results in the present study. The Becis1 gene is very likely different from Tlr4 based on chromosome location and the inconsistent associations of the Tlr4 Lpsn allele with high bladder infection intensities. In addition, there are no currently defined genes near Becis1 that are directly involved with either innate or adaptive immune responses or appear to be related to host factors affecting bladder colonization by E. coli. The gene inferred by Becis1 will thus need to be defined and characterized.

Another candidate gene to consider in explaining the current results is Tlr11, which has been noted to play an important role in host defense against E. coli UTIs in mice (11). As currently defined, however, Tlr11 is thought to be located on chromosome 14 and does not coincide with the Becis1 QTL site. A recent report on the evolution of the Toll-like receptor gene family has proposed that mouse Tlr11 should be renamed Tlr12 based on similarities between the Tlr11 and Tlr12 sequences (12). If the two genes are identical or alleles of a single gene, then Tlr11/12 would be located at the current site of Tlr12 on chromosome 4. The Tlr12 gene has not been genetically mapped to a specific site but is syntenic on chromosome 4 (13), and physical mapping places the gene at bp 128292690 to 128295863 (13). The physical mapping would thus indicate a chromosomal location at approximately 61 cM and thus not near either Becis1 or Tlr4.

The present study has investigated the significance of Tlr4 in resolution of E. coli bladder infections in C3H/HeJ mice or mice derived from genetic crosses with C3H/HeJ mice. Although C3H/HeJ (Lpsn/Lpsn) mice have been used as a model to study host defense mechanisms against E. coli UTIs and have shown the importance of innate immune responses in infection resolution, the results presented here and in other studies support the view that Tlr4 is not the sole determinant of resistance or susceptibility to E. coli bladder infections in mice. Rather, there is good evidence that another gene on chromosome 4 has alleles that strongly influence whether an induced E. coli bladder infection will be successfully resolved.

TABLE 2 Bladder infection intensities and Tlr4 genotypes of C3H/HeJ female backcross mice following intravesical inoculation with E. coli

Backcross mice tested^a	No. of mice tested	Tlr4 genotype^b	CFU in bladder^c
(BALB/cAnN × C3H/HeJ) × C3H/HeJ	15	Lpsn/Lpsn	468,814 (5.67 ± 0.10) AB
(BALB/cAnN × C3H/HeJ) × C3H/HeJ	6	Lpsn/Lpsn	322,775 (5.51 ± 0.30) AC
(BALB/cAnN × C3H/HeJ) × C3H/HeJ	48	Lpsn/Lpsd	76 (1.88 ± 0.07) BCD
(BALB/cAnN × C3H/HeJ) × C3H/HeJ	71	Lpsn/Lpsd	32 (1.51 ± 0.06) BCD

^a Female mice from a backcross of an infection-susceptible C3H/HeJ mouse to infection-resistant BALB/cAnN mice. Of these infection-resistant mice, 48 were Lpsn/Lpsn homozygous, and 71 were Lpsn/Lpsd heterozygous. The results showing successful resolution of infections in mice with two copies of the Lpsd allele are thus inconsistent with those from C3H/HeJ mice shown in Table 1.

^b Mice were genotyped to determine if they were homozygous or heterozygous for the Tlr4-normal (Lpsn) and Tlr4-defective (Lpsd) alleles, as defined by a single nucleotide polymorphism in the alleles.

^c Female mice were inoculated intravesically with 1 × 10⁸ E. coli cells and euthanized 10 days later to assay for the total number of CFU in the bladder. Values are geometric means ± standard errors of the means in parentheses. Statistical analysis was conducted in two steps with SAS/STAT software, version 9.1 (SAS Institute, Inc.).
These studies have important implications for investigations using C3H/HeJ mice to study the role of Tlr4 in resolution of infections in organ systems other than the urinary tract. For example, comparisons between C3H/HeJ and Tlr4-normal strains have provided model systems with which to study host defense mechanisms against *Neisseria meningitidis* bacteremia (14), *Haemophilus influenzae* pulmonary infections (15), and lethal *Salmonella enterica* serovar Typhimurium infection (16). Although the defective Tlr4 likely plays a role in susceptibility to bacterial infections in models using C3H/HeJ mice, the studies reported here strongly indicate the presence of multiple genetic factors in host defense against infections caused by *E. coli* and, potentially, other types of bacteria. This view is consistent with the multigenic nature of susceptibility or resistance to infections documented in several mouse models (17). Thus, it is important to consider genes acting individually or together with *Tlr4* when using C3H/HeJ mice in models of infectious diseases.

ACKNOWLEDGMENT

This work was supported by grant DK061574 from the National Institute of Diabetes and Digestive and Kidney Diseases.

REFERENCES

1. Haraoka M, et al. 1999. Neutrophil recruitment and resistance to urinary tract infection. J. Infect. Dis. 180:1220–1229.
2. Haberg L, Hull R, McGhee JR, Michalek SM, Svanborg Eden C. 1984. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46:839–844.
3. Hopkins W, Gendron-Fitzpatrick A, McCarthy DO, Haine JE, Uehling DT. 1996. Lipopolysaccharide-responder and nonresponder C3H mouse strains are equally susceptible to an induced *Escherichia coli* urinary tract infection. Infect. Immun. 64:1369–1372.
4. Agace WW, Hedges SR, Ceska M, Svanborg C. 1993. Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J. Clin. Invest. 92:780–785.
5. Hopkins WJ, Elkawwaji JE, Heisey DM, Ott CJ. 2003. Inheritance of susceptibility to induced *Escherichia coli* bladder and kidney infections in female C3H/HeJ mice. J. Infect. Dis. 187:418–423.
6. Hopkins WJ, et al. 2009. Quantitative trait loci associated with susceptibility to bladder and kidney infections induced by *Escherichia coli* in female C3H/HeJ mice. J. Infect. Dis. 199:355–361.
7. Hopkins WJ, Hall JA, Conway BP, Uehling DT. 1995. Induction of urinary tract infection by intraurethral inoculation with *Escherichia coli*: refining the murine model. J. Infect. Dis. 171:462–465.
8. Poltorak A, et al. 1998. Defective signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in the *Tlr4* gene. Science 282:2085–2088.
9. Banus HA, et al. 2006. Host genetics of *Bordetella pertussis* infection in mice: significance of Toll-like receptor 4 in genetic susceptibility and pathobiology. Infect. Immun. 74:2596–2605.
10. Shahin RD, Engberg I, Hagberg L, Svanborg Edén C. 1987. Neutrophil recruitment and bacterial clearance correlated with LPS responsiveness in local gram-negative infection. J. Immunol. 138:3475–3480.
11. Zhang D, et al. 2004. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526.
12. Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW. 2008. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62–74.
13. Bult CJ, et al. 2008. The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res. 36:D724–D728.
14. Woods JP, Frelinger JA, Warrack G, Cannon JG. 1988. Mouse genetic locus Lps influences susceptibility to *Neisseria meningitidis* infection. Infect. Immun. 56:1950–1955.
15. Wang X, et al. 2002. Toll-like receptor 4 mediates innate immune responses to *Haemophilus influenzae* infection in mouse lung. J. Immunol. 168:810–815.
16. O’Brien AD, et al. 1980. Genetic control of susceptibility to *Salmonella typhimurium* in mice: role of the *Lps* gene. J. Immunol. 124:20–24.
17. Dietrich WF. 2001. Using mouse genetics to understand infectious disease pathogenesis. Genome Res. 11:325–331.