Case of a novel \textit{PAX6} mutation with aniridia and insulin-dependent diabetes mellitus

\textit{PAX6} is a transcription factor involved in ocular and neural development, and \textit{PAX6} mutations result in ocular anomalies, one of which is aniridia1. \textit{PAX6} is also expressed in the pancreas, and pancreatic islet cells showed dysplasia in a \textit{PAX6} homozygous mutation mouse model1. In humans, one patient with a \textit{PAX6} heterozygous mutation presented with aniridia and early-onset diabetes mellitus with a relatively low insulin secretory capacity2. However, most \textit{PAX6} mutations are associated with mild glucose intolerance3.

A 63-year-old man with diabetes was admitted to Osaka University Hospital, Suita, Japan. At the age of 12 years, he was diagnosed with aniridia. At the age of 31 years, his fasting plasma glucose and hemoglobin A1c levels were 279 mg/dL and 14.8%, respectively. He was diagnosed with diabetes, and biphasic insulin therapy was started immediately (12 U/day); intensive insulin therapy was started by the age of 40 years. On admission, his body mass index was 22.9 kg/m2. His hemoglobin A1c was 9.7%, and both fasting serum C-peptide level and that at 6 min after an intravenous injection of 1 mg of glucagon were undetectable. The patient was negative for antibodies against glutamic acid decarboxylase, insulinoma-associated antigen 2 and zinc transporter 8. He continued to receive basal–bolus insulin therapy and was discharged with a total daily dose of 26 units of insulin.

His eldest son also had aniridia, but was not diagnosed with diabetes until his death at the age of 26 years. His mother was diagnosed with diabetes at an older age, and she did not receive insulin therapy. His eldest daughter was diagnosed with acute-onset type 1 diabetes at the age of 35 years, her anti-glutamic acid decarboxylase antibody was positive and she is currently treated with continuous subcutaneous insulin infusion. She had been diagnosed with congenital glaucoma in childhood, but does not have any symptom nor sign suggesting aniridia now. The pedigree tree is shown in Figure 1.

The patient had a heterozygous 4-bp duplication in exon 7 of the \textit{PAX6} gene (c.483_486dupTTGG); this mutation has previously been reported4. This duplication led to a frameshift and a subsequent premature stop codon in exon 8. There were no mutations in any other exons. The patient’s eldest daughter did not have this mutation. These genetic analyses were carried out with the approval of the Clinical Genetics Unit in our hospital. Written informed consent was obtained after genetic counseling.

This is the first case of \textit{PAX6} mutation with aniridia and diabetes with the complete loss of insulin secretory capacity. The gradual decrease in insulin secretory capacity and negative islet autoimmunity suggests that the patient

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{pedigree.png}
\caption{Pedigree tree of the patient. Black arrow indicates the proband. His eldest son had also aniridia and was not diagnosed with diabetes until his death at the age of 26 years. His eldest daughter was diagnosed with congenital glaucoma when she was a child and was diagnosed with autoimmune type 1 diabetes mellitus at the age of 35 years. His mother was diagnosed with diabetes mellitus at an older age.}
\end{figure}
does not have typical type 1 diabetes. Considering that the function of PAX6 in the present case might be kept at half, though the messenger ribonucleic acid with premature stop codon is degraded by nonsense-mediated messenger ribonucleic acid decay and that heterozygous PAX6 mutations usually cause mild glucose intolerance, other genetic factors, which might have been involved in the onset of diabetes of his mother or his eldest daughter, in addition to the PAX6 mutation, might affect his insulin secretory capacity, leading to complete loss of insulin.

ACKNOWLEDGMENTS
The authors thank Dr Kishi for informing us of the medical history of the proband’s eldest daughter.

DISCLOSURE
The authors declare no conflict of interest.

Saori Motoda1, Shingo Fujita1, Junji Kozawa1, Takekazu Kimura1, Kenji Fukui3, Yasushi Ikuno2, Akihisa Imagawa1, Hiromi Iwahashi1, Iichiro Shimomura1
1Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, 2Ikuno Eye Center, Osaka City, and 3Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan

REFERENCES
1. Sander M, Neubuser A, Kalamaras J, et al. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev 1997; 11: 1662–1673.
2. Nishi M, Sasahara M, Shono T, et al. A case of novel de novo paired box gene 6 (PAX6) mutation with early-onset diabetes mellitus and aniridia. Diabet Med 2005; 22: 641–644.
3. Yasuda T, Kajimoto Y, Fujitani Y, et al. PAX6 mutation as a genetic factor common to aniridia and glucose intolerance. Diabetes 2002; 51: 224–230.
4. Winegamer A, Ole Y, Kawasaki S, et al. Novel PAX6 mutation reported in an aniridia patient. Hum Genome Var 2017; 4: 17053.

Doi: 10.1111/jdi.12902