DIFFERENTIAL EQUATIONS ASSOCIATED WITH
\(\lambda \)-CHANGHEE POLYNOMIALS

TAEKYUN KIM AND DAE SAN KIM

Abstract. In this paper, we study linear differential equations arising from \(\lambda \)-Changhee polynomials (or called degenerate Changhee polynomials) and give some explicit and new identities for the \(\lambda \)-Changhee polynomials associated with linear differential equations.

1. Introduction

For \(N \in \mathbb{N} \), we define the generalized harmonic numbers as follows:

\begin{equation}
H_{N,0} = 1, \quad \text{for all } N,
\end{equation}

\begin{equation}
H_{N,1} = H_N = 1 + \frac{1}{2} + \cdots + \frac{1}{N}, \quad \text{(see [3]),}
\end{equation}

\begin{equation}
H_{N,j} = \frac{H_{N-1,j-1}}{N} + \frac{H_{N-2,j-1}}{N-1} + \cdots + \frac{H_{j-1,j-1}}{j}, \quad (2 \leq j \leq N).
\end{equation}

For \(k \in \mathbb{N} \) and \(N, j \in \mathbb{N} \cup \{0\} \), we define the generalized Changhee power sums \(S_{k,j}(N) \) as follows:

\begin{equation}
S_{k,0}(N) = (N + 1)^k,
\end{equation}

\begin{equation}
S_{k,j}(N) = \sum_{l=0}^{N} S_{k,j-1}(l), \quad (j \geq 1), \quad \text{(see [3, 10]).}
\end{equation}

In particular, for \(k = 1 \), we also define \(S_{1,-1}(N) = 1 \).

As is well known, the Euler polynomials are defined by the generating function

\begin{equation}
\frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}, \quad \text{(see [1, 3, 11, 12]).}
\end{equation}

With the viewpoint of deformed Euler polynomials, the Changhee polynomials are defined by the generating function

\begin{equation}
\frac{2}{t + 2} (t + 1)^x = \sum_{n=0}^{\infty} Ch_n(x) \frac{t^n}{n!}, \quad \text{(see [3, 4, 8]).}
\end{equation}

2010 Mathematics Subject Classification : 05A19, 11B37, 34A30.

Key words and phrases: \(\lambda \)-Changhee polynomials, differential equations.
From (1.6) and (1.7), we note that

\[
\sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!} = \sum_{m=0}^{\infty} \text{Ch}_m(x) \frac{1}{m!} (e^t - 1)^m = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \text{Ch}_m(x) S_2(n, m) \right) \frac{t^n}{n!},
\]

where \(S_2(n, m)\) are the Stirling numbers of the second kind. Thus, by (1.8), we get

\[
E_n(x) = \sum_{m=0}^{n} \text{Ch}_m(x) S_2(n, m) \quad (n \geq 0).
\]

The Stirling numbers of the first kind \(S_1(n, l)\) appear in the expansion of the falling factorial

\[
(x)_0 = 1, \quad (x)_n = x (x - 1) \cdots (x - n + 1) = \sum_{l=0}^{n} S_1(n, l) x^l, \quad (n \geq 1).
\]

From (1.10), we note that the generating function of the Stirling numbers of the first kind is given by

\[
(log (1 + t))^n = n! \sum_{m=n}^{\infty} S_1(m, n) \frac{t^m}{m!}, \quad (n \geq 1).
\]

By (1.2), we easily get

\[
\sum_{n=0}^{\infty} \text{Ch}_n(x) \frac{t^n}{n!} = \sum_{m=0}^{\infty} E_m(x) \frac{1}{m!} (log (1 + t))^m = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} S_1(n, m) E_m(x) \right) \frac{t^n}{m!}.
\]

Thus, by (1.12), we have

\[
\text{Ch}_n(x) = \sum_{m=0}^{n} S_1(n, m) E_m(x), \quad (n \geq 0), \quad (see \ [17, 18]).
\]

Recently, \(\lambda\)-Changhee polynomials (or called degenerate Changhee polynomials) are defined by the generating function

\[
\frac{2\lambda}{2\lambda + \log (1 + \lambda t)} \left(1 + \frac{\log (1 + \lambda t)}{\lambda} \right)^x = \sum_{n=0}^{\infty} \text{Ch}_{n,\lambda}(x) \frac{t^n}{n!}, \quad (see \ [14]).
\]
When \(x = 0 \), \(\text{Ch}_{n,\lambda}(0) \) are called \(\lambda \)-Changhee numbers (or called degenerate Changhee numbers).

In [3], Kim-Kim gave some explicit and new identities for the Bernoulli numbers of the second kind arising from nonlinear differential equations. It is known that some interesting identities and properties of the Frobenius-Euler polynomials are also derived from the non-linear differential equations (see [10, 12]).

Recently, several authors have studied some interesting properties for the Changhee numbers and polynomials (see [1–19]).

In this paper, we develop some new method for obtaining identities related to \(\lambda \)-Changhee polynomials arising from linear differential equations. From our study, we derive some explicit and new identities for the \(\lambda \)-Changhee polynomials.

2. Some identities for the \(\lambda \)-Changhee polynomials arising from linear differential equations

First, we introduce lemma for the generalized Changhee power sum \(S_{k,j}(N) \).

Lemma 1. For \(2 \leq r \leq N \) and \(1 \leq i \leq r - 1 \), we have

\[
S_{1,i-1}(r-1-i) + S_{1,i-2}(r-i) = S_{1,i-1}(r-i).
\]

Proof. From \((1.4) \) and \((1.5) \), we have

\[
S_{1,i-1}(r-1-i) + S_{1,i-2}(r-i) = \sum_{l=0}^{r-1-i} S_{1,i-2}(l) + S_{1,i-2}(r-i).
\]

Let

\[
F = \frac{2\lambda}{2\lambda + \log(1 + \lambda t)} (1 + \lambda^{-1} \log(1 + \lambda t))^{x}.
\]

Then, by \((2.2) \), we get

\[
F^{(1)} = \frac{d}{dt} F(t,x,\lambda) = \lambda (1 + \lambda t)^{-1} \left(- (2\lambda + \log(1 + \lambda t))^{-1} + x (\lambda + \log(1 + \lambda t))^{-1}\right) F.
\]

\[
F^{(2)} = \frac{dF^{(1)}}{dt} = \lambda^2 (1 + \lambda t)^{-2} \left\{ (2\lambda + \log(1 + \lambda t))^{-1} - x (\lambda + \log(1 + \lambda t))^{-1} + 2 (2\lambda + \log(1 + \lambda t))^{-2} - 2x (2\lambda + \log(1 + \lambda t))^{-1} (\lambda + \log(1 + \lambda t))^{-1} + (x)_2 (\lambda + \log(1 + \lambda t))^{-2}\right\} F.
\]
So, we are led to put

\[(2.5)\]

\[
F^{(N)}(t; x, \lambda) = \left(\frac{d}{dt} \right)^N F(t; x, \lambda)
\]

\[= \lambda^N (1 + \lambda t)^{-N} \left(\sum_{1 \leq i+j \leq N} a_{i,j}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{-j} \right) F,
\]

where \(N = 1, 2, \ldots \), and the sum is over all nonnegative integers \(i, j \) with \(1 \leq i + j \leq N \).

On the one hand, by \(2.5\), we get

\[(2.6)\]

\[
F^{(N+1)}(t; x, \lambda) = \frac{dF^{(N)}}{dt} = \lambda^{N+1} (1 + \lambda t)^{-(N+1)}
\]

\[\times \left\{ (-N) \sum_{1 \leq i+j \leq N} a_{i,j}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{-j}
\]

\[\quad - \sum_{2 \leq i+j \leq N+1} \lambda a_{i,j-1}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{-j}
\]

\[\quad + \sum_{2 \leq i+j \leq N+1} (x - j + 1) a_{i,j}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i}
\]

\[\quad \times (\lambda + \log (1 + \lambda t))^{-j} \right\} F.
\]

On the other hand, by replacing \(N \) by \(N + 1 \) in \(2.5\), we have

\[(2.7)\]

\[
F^{(N+1)} = \lambda^{N+1} (1 + \lambda t)^{-(N+1)}
\]

\[\times \left(\sum_{1 \leq i+j \leq N+1} a_{i,j}^{(\lambda)} (N + 1, x) (2\lambda + \log (1 + \lambda t))^{-i}
\]

\[\quad \times (\lambda + \log (1 + \lambda t))^{-j} \right) F.
\]

\[(2.8)\]

Let \(i + j = r \). Then \(1 \leq r \leq N + 1 \). Comparing the terms with \(r = 1 \), we get

\[(2.9)\]

\[
a_{1,0}^{(\lambda)} (N + 1, x) = -Na_{1,0}^{(\lambda)} (N, x)
\]

\[
a_{0,1}^{(\lambda)} (N + 1, x) = -Na_{0,1}^{(\lambda)} (N, x).
\]
Comparing the terms with \(i + j = r (2 \leq r \leq N) \),

\[
(2.10) \quad \sum_{i=0}^{r} a_{i,r-i}^{(\lambda)} (N + 1, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{i-r}
\]

\[
= -N \sum_{i=0}^{r} a_{i,r-i}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{i-r}
\]

\[
- \sum_{i=1}^{r} i a_{i-1,r-i}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{i-r}
\]

\[
+ \sum_{i=0}^{r-1} (x + i - r + 1) a_{i,r-i-1}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{i-r}.
\]

Thus, by (2.10), we get

\[
(2.11) \quad a_{0,r}^{(\lambda)} (N + 1, x) = -N a_{0,r}^{(\lambda)} (N, x) + (x - r + 1) a_{0,r-1}^{(\lambda)} (N, x),
\]

\[
(2.12) \quad a_{r,0}^{(\lambda)} (N + 1, x) = -N a_{r,0}^{(\lambda)} (N, x) - ra_{r-1,0}^{(\lambda)} (N, x),
\]

and

\[
(2.13) \quad a_{i,r-i}^{(\lambda)} (N + 1, x)
\]

\[
= -N a_{i,r-i}^{(\lambda)} (N, x) - i a_{i-1,r-i}^{(\lambda)} (N, x)
\]

\[
+ (x + i - r + 1) a_{i,r-i-1}^{(\lambda)} (N, x),
\]

where \(1 \leq i \leq r - 1 \).

Comparing the terms with \(i + j = N + 1 \), we get

\[
(2.14) \quad \sum_{i=0}^{N+1} a_{i,N+1-i}^{(\lambda)} (N + 1, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{i-(N+1)}
\]

\[
= -\sum_{i=1}^{N+1} i a_{i-1,N+1-i}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{i-(N+1)}
\]

\[
+ \sum_{i=0}^{N} (x + i - N) a_{i,N-i}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{i-(N+1)}.
\]

From (2.14), we note that

\[
(2.15) \quad a_{0,N+1}^{(\lambda)} (N + 1, x) = (x - N) a_{0,N}^{(\lambda)} (N, x),
\]

\[
(2.16) \quad a_{N+1,0}^{(\lambda)} (N + 1, x) = - (N + 1) a_{N,0}^{(\lambda)} (N, x),
\]

and

\[
(2.17) \quad \lambda (1 + \lambda t)^{-1} \left(- (2\lambda + \log (1 + \lambda t))^{-1} + x (\lambda + \log (1 + \lambda t))^{-1} \right) F
\]

\[
= F^{(1)}
\]
By comparing the coefficients on both sides of (2.17), we have

\begin{equation}
(2.18) \quad a_{1,0}^{(\lambda)} (1, x) = -1, \quad a_{0,1}^{(\lambda)} (1, x) = x.
\end{equation}

From (2.16), we note that

\begin{equation}
(2.19) \quad a_{1,0}^{(\lambda)} (N + 1, x) = (-1)^{N+1} N!, \quad a_{0,1}^{(\lambda)} (N + 1, x) = (-1)^N N! x.
\end{equation}

By (2.15), we easily get

\begin{equation}
(2.20) \quad a_{N+1,0}^{(\lambda)} (N + 1, x) = (-1)^{N+1} (N + 1)!, \quad a_{0,N+1}^{(\lambda)} (N + 1, x) = (x)_{N+1}.
\end{equation}

For \(i = 1 \) in (2.16), we have

\begin{equation}
(2.21) \quad a_{1,N}^{(\lambda)} (N + 1, x) = -a_{0,N}^{(\lambda)} (N, x) + (x + 1 - N) a_{1,N-1}^{(\lambda)} (N, x)
\end{equation}

\begin{align*}
&= - (x)_{N} + (x + 1 - N) a_{1,N-1}^{(\lambda)} (N, x) \\
&= - (x)_{N} + (x + 1 - N) \left(- (x)_{N-1} + (x + 2 - N) a_{1,N-2}^{(\lambda)} (N - 1, x) \right) \\
&= -2 (x)_{N} + (x + 1 - N) (x + 2 - N) a_{1,N-2}^{(\lambda)} (N - 1, x)
\end{align*}

\[\vdots \]

\begin{align*}
&= -N (x)_{N} + (x + 1 - N) (x + 2 - N) \cdots (x + N - N) a_{1,0}^{(\lambda)} (1, x) \\
&= - (N + 1) (x)_{N} \\
&= -S_{1,0} (N) (x)_{N}.
\end{align*}

For \(i = 2 \) in (2.16), we note that

\begin{equation}
(2.22) \quad a_{2,N-1}^{(\lambda)} (N + 1, x) = -2 a_{1,N-1}^{(\lambda)} (N, x) + (x + 2 - N) a_{2,N-2}^{(\lambda)} (N, x)
\end{equation}

\begin{align*}
&= (-1)^2 2 N (x)_{N-1} \\
&\quad + (x + 2 - N) \left\{ (-1)^2 2 (N - 1) (x)_{N-2} + (x + 3 - N) a_{2,N-3}^{(\lambda)} (N - 1, x) \right\} \\
&= (-1)^2 2 \{ N + (N - 1) \} (x)_{N-1} + (x + 2 - N) (x + 3 - N) a_{2,N-3}^{(\lambda)} (N - 1, x)
\end{align*}

\[\vdots \]

\begin{align*}
&= (-1)^2 2 \{ N + (N - 1) + (N - 2) + \cdots + 2 \} (x)_{N-1} \\
&\quad + (x + 2 - N) (x + 3 - N) \cdots x a_{2,0}^{(\lambda)} (2, x) \\
&= (-1)^2 2 \{ N + (N - 1) + \cdots + 2 + 1 \} (x)_{N-1} \\
&= (-1)^2 2! S_{1,1} (N - 1) (x)_{N-1}.
\end{align*}
Let $i = 3$ in (2.16). Then we have

\begin{equation}
(2.23) \quad a_{3,N-2}^{(\lambda)} (N + 1, x) = -3a_{2,N-2}^{(\lambda)} (N, x) + (x + 3 - N) a_{3,N-3}^{(\lambda)} (N, x)
\end{equation}

\begin{align*}
= & \, (-1)^3 3! S_{1,1} (N - 2) (x)_{N-2} + (x + 3 - N) a_{3,N-3}^{(\lambda)} (N, x) \\
\vdots \\
= & \, (-1)^3 3! \{ S_{1,1} (N - 2) + \ldots + S_{1,1} (1) \} (x)_{N-2} \\
& \quad + (x + 3 - N) (x + 4 - N) \cdots a_{3,0}^{(\lambda)} (3, x)
\end{align*}

\begin{align*}
= & \, (-1)^3 3! \{ S_{1,1} (N - 2) + \ldots + S_{1,1} (1) + S_{1,1} (0) \} (x)_{N-2} \\
= & \, (-1)^3 3! S_{1,2} (N - 2) (x)_{N-2}.
\end{align*}

Continuing this process, we get

\begin{equation}
(2.24) \quad a_{i,N+i-i}^{(\lambda)} (N + 1, x) = (-1)^i i! S_{1,i-1} (N - i + 1) (x)_{N-i+1}, \quad (1 \leq i \leq N).
\end{equation}

Let $2 \leq r \leq N$. Then, by (2.11), we get

\begin{equation}
(2.25) \quad a_{0,r}^{(\lambda)} (N + 1, x) = (x - r + 1) a_{0,r-1}^{(\lambda)} (N, x) - N a_{0,r}^{(\lambda)} (N, x)
\end{equation}

\begin{align*}
= & \, (x - r + 1) a_{0,r-1}^{(\lambda)} (N, x) \\
& \quad - N \left\{ (x - r + 1) a_{0,r-1}^{(\lambda)} (N - 1, x) - (N - 1) a_{0,r}^{(\lambda)} (N - 1, x) \right\}
\end{align*}

\begin{align*}
= & \, (x - r + 1) \left\{ a_{0,r-1}^{(\lambda)} (N, x) - N a_{0,r-1}^{(\lambda)} (N - 1, x) \right\} \\
& \quad + (-1)^2 N (N - 1) a_{0,r}^{(\lambda)} (N - 1, x)
\end{align*}

\begin{align*}
\vdots \\
= & \, (x - r + 1) \sum_{i=0}^{N-r} (-1)^i (N)_i a_{0,r-1}^{(\lambda)} (N - i, x) \\
& \quad + (-1)^{N-r+1} N (N - 1) \cdots a_{0,r}^{(\lambda)} (r, x)
\end{align*}

\begin{align*}
= & \, (x - r + 1) \sum_{i=0}^{N-r+1} (-1)^i (N)_i a_{0,r-1}^{(\lambda)} (N - i, x).
\end{align*}

Now, we give an explicit expression for $a_{0,r}^{(\lambda)} (N + 1, x)$ ($2 \leq r \leq N$). For $r = 2$ in (2.25), we have

\begin{equation}
(2.26) \quad a_{0,2}^{(\lambda)} (N + 1, x) = (x - 1) \sum_{i=0}^{N-1} (-1)^i (N)_i a_{0,1}^{(\lambda)} (N - i, x)
\end{equation}

\begin{align*}
= & \, (x) (N-1) \sum_{i=0}^{N-1} (N)_i (N - i - 1)! \\
= & \, (x) (N-1) N! \sum_{i=0}^{N-1} \frac{1}{N-i}
\end{align*}
Let us consider $r = 3$ in (2.25). From (2.26), we note that

\[
\begin{align*}
 a_{0,3}^{(\lambda)} (N+1, x) &= (x-2) \sum_{i=0}^{N-2} (-1)^i (N)_i a_{0,2}^{(\lambda)} (N-i, x) \\
 &= (x-2) \sum_{i=0}^{N-2} (-1)^i (N)_i (x)_2 (-1)^{N-i-2} (N-i-1)! H_{N-i-1} \\
 &= (x)_3 (-1)^{N-2} N! \sum_{i=0}^{N-2} \frac{H_{N-i-1}}{N-i} \\
 &= (x)_3 (-1)^{N-2} N! H_{N,2}.
\end{align*}
\]

For $r = 4$ in (2.25), we have

\[
\begin{align*}
 a_{0,4}^{(\lambda)} (N+1, x) &= (x-3) \sum_{i=0}^{N-3} (-1)^i (N)_i a_{0,3}^{(\lambda)} (N-i, x) \\
 &= (x-3) \sum_{i=0}^{N-3} (-1)^i (N)_i (x)_3 (-1)^{N-i-3} (N-i-1)! H_{N-i-1,2} \\
 &= (x)_4 (-1)^{N-3} N! \sum_{i=0}^{N-3} \frac{H_{N-i-1,2}}{N-i} \\
 &= (x)_4 (-1)^{N-3} N! \left\{ \frac{H_{N-1,2}}{N} + \frac{H_{N-2,2}}{N-1} + \cdots + \frac{H_{2,2}}{3} \right\} \\
 &= (x)_4 (-1)^{N-3} N! H_{N,3}.
\end{align*}
\]

Continuing this process, we get

\[
\begin{align*}
 a_{0,r}^{(\lambda)} (N+1, x) &= (x)_r (-1)^{N-r+1} N! H_{N,r-1}.
\end{align*}
\]

For $2 \leq r \leq N$, by (2.12), we get

\[
\begin{align*}
 a_{r,0}^{(\lambda)} (N+1, x) &= -r a_{r-1,0}^{(\lambda)} (N, x) - Na_{r,0}^{(\lambda)} (N, x) \\
 &= -r \sum_{i=0}^{N-r} (-1)^i (N)_i a_{r-1,0}^{(\lambda)} (N-i, x) + (-1)^{N-r+1} N (N-1) \cdots r a_{r,0}^{(\lambda)} (r, x).
\end{align*}
\]
Let \(r = 2 \) in (2.30). Then, we have

\[
\begin{align*}
(2.31) \quad a_{2,0}^{(\lambda)}(N+1, x) &= -2 \sum_{i=0}^{N-1} (-1)^i (N)_i a_{1,0}^{(\lambda)}(N-i, x) \\
&= 2 (-1)^{N+1} \sum_{i=0}^{N+1} (N)_i (N-i-1)! \\
&= 2 (-1)^{N+1} N! \sum_{i=0}^{N-1} \frac{1}{N-i} \\
&= 2 (-1)^{N+1} N! \sum_{i=1}^{N} \frac{1}{i} \\
&= 2 (-1)^{N+1} N! H_{N,1}.
\end{align*}
\]

For \(r = 3 \) in (2.30), by (2.31), we get

\[
(2.32) \quad a_{3,0}^{(\lambda)}(N+1, x) = -3 \sum_{i=0}^{N-2} (-1)^i (N)_i a_{2,0}^{(\lambda)}(N-i, x) \\
= -3 \sum_{i=0}^{N-2} (-1)^i (N)_i 2 (-1)^{N-i} (N-i-1)! H_{N-i-1,1} \\
= 3! (-1)^{N+1} N! \sum_{i=0}^{N-2} \frac{H_{N-i-1,1}}{N-i} \\
= 3! (-1)^{N+1} N! H_{N,2}.
\]

From (2.32), by \(r = 4 \) in (2.30), we note that

\[
(2.33) \quad a_{4,0}^{(\lambda)}(N+1, x) = -4 \sum_{i=0}^{N-3} (-1)^i (N)_i a_{3,0}^{(\lambda)}(N-i, x) \\
= (-1)^{N+1} 4! N! \sum_{i=0}^{N-3} \frac{H_{N-i-1,2}}{N-i} \\
= (-1)^{N+1} 4! N! H_{N,3}.
\]

Continuing this process, we get

\[
(2.34) \quad a_{r,0}^{(\lambda)}(N+1, x) = (-1)^{N+1} N! r! H_{N,r-1}, \quad (2 \leq r \leq N).
\]

Let \(2 \leq r \leq N, \ 1 \leq i \leq r - 1 \). Then, by (2.33), we get

\[
(2.35) \quad a_{i,r-i}^{(\lambda)}(N+1, x) \\
= (x + i - r + 1) a_{i,r-i-1}^{(\lambda)}(N, x) - i a_{i-1,r-i}^{(\lambda)}(N, x) - N a_{i,r-i}^{(\lambda)}(N, x)
\]
\[
= (x + i - r + 1) \left\{ a^{(\lambda)}_{i,1,r-i-1} (N, x) - N a^{(\lambda)}_{i,r-i-1} (N-1, x) \right\} \\
- i \left\{ a^{(\lambda)}_{i-1,r-i} (N, x) - N a^{(\lambda)}_{i-1,r-i} (N-1, x) \right\} \\
+ (-1)^2 N (N-1) a^{(\lambda)}_{i,r-i} (N-1, x)
\]

\[
= (x + i - r + 1) \sum_{s=0}^{N-r} (-1)^s (N)_s a^{(\lambda)}_{i-r-i-1} (N - s, x) \\
- i \sum_{s=0}^{N-r} (-1)^s (N)_s a^{(\lambda)}_{i-1,r-i} (N - s, x) \\
+ (-1)^{N-r+1} (N)_{N-r+1} a^{(\lambda)}_{i,r-i} (r, x)
\]

\[
= (x + i - r + 1) \sum_{s=0}^{N-r} (-1)^s (N)_s a^{(\lambda)}_{i-r-i-1} (N - s, x) \\
- i \sum_{s=0}^{N-r} (-1)^s (N)_s a^{(\lambda)}_{i-1,r-i} (N - s, x) \\
+ (-1)^{N-r+1} (N)_{N-r+1} (-1)^i S_{1,1} (r-i) (x)_{r-i}.
\]

Let \(r = 2 \) in (2.35). Then \(i = 1 \). From (2.35), we note that

\[
(2.36) \quad a^{(\lambda)}_{1,1} (N + 1, x)
\]

\[
= x \sum_{s=0}^{N-2} (-1)^s (N)_s a^{(\lambda)}_{1,0} (N - s, x) \\
- \sum_{s=0}^{N-2} (-1)^s (N)_s a^{(\lambda)}_{0,1} (N - s, x) \\
+ (-1)^{N-1} N! (-1) S_{1,0} (1) x
\]

\[
= x \sum_{s=0}^{N-2} (-1)^s (N)_s (-1)^{N-s} (N - s - 1)! \\
- \sum_{s=0}^{N-2} (-1)^s (N)_s (-1)^{N-s-1} (N - s - 1)! x
\]

\[
+ 2 (-1)^N N! x
\]

\[
= 2x (-1)^N \sum_{s=0}^{N-2} (N)_s (N - s - 1)! + 2 (-1)^N N! x
\]

\[
= 2x (-1)^N N! \sum_{s=0}^{N-2} \frac{1}{N - s} + 2 (-1)^N N! x
\]

\[
= 2 (-1)^N N! x \left\{ \frac{1}{N} + \frac{1}{N-1} + \cdots + \frac{1}{2} + \frac{1}{1} \right\}
\]

\[
= 2 (-1)^N N! x H_N.
\]
Let \(r = 3 \). Then \(1 \leq i \leq 2 \). From (2.37), we note that

\[
(2.37) \quad a_{i,3-i}^{(\lambda)} (N + 1, x) = (x + i - 2) \sum_{s=0}^{N-3} (-1)^s (N)_s a_{i,2-i}^{(\lambda)} (N - s, x)
- i \sum_{s=0}^{N-3} (-1)^s (N)_s a_{i-1,3-i}^{(\lambda)} (N - s, x)
+ (-1)^{N-2} (N)_{N-2} (-1)^i i! S_{1,i-1} (3 - i) (x)_{3-i}.
\]

For \(i = 1 \) in (2.37), we have

\[
(2.38) \quad a_{1,2}^{(\lambda)} (N + 1, x)
= (x - 1) \sum_{s=0}^{N-3} (-1)^s (N)_s a_{1,1}^{(\lambda)} (N - s, x)
- \sum_{s=0}^{N-3} (-1)^s (N)_s a_{0,2}^{(\lambda)} (N - s, x)
+ (-1)^{N-2} (N)_{N-2} (-1) S_{1,0} (2) (x)_2
= (x - 1) \sum_{s=0}^{N-3} (-1)^s (N)_s 2 (-1)^{N-s-1} (N - s - 1)! H_{N-s-1,1} x
- \sum_{s=0}^{N-3} (-1)^s (N)_s (x)_2 (-1)^{N-s-2} (N - s - 1)! H_{N-s-1,1}
+ 3 (-1)^{N-1} (N)_{N-2} (x)_2
= 3 (x)_2 (-1)^{N-1} N! \sum_{s=0}^{N-3} \frac{H_{N-s-1,1}}{N - s} + 3 (x)_2 (-1)^{N-1} N! \frac{1}{2}
= 3 (x)_2 (-1)^{N-1} N! \left\{ \frac{H_{N-1,1}}{N} + \frac{H_{N-2,1}}{N-1} + \cdots + \frac{H_{2,1}}{3} + \frac{H_{1,1}}{2} \right\}
= 3 (x)_2 (-1)^{N-1} N! H_{N,2}.
\]

Let \(i = 2 \) in (2.37). From (2.38), we note that

\[
a_{2,1}^{(\lambda)} (N + 1, x) = x \sum_{s=0}^{N-3} (-1)^s (N)_s a_{2,0}^{(\lambda)} (N - s, x)
- 2 \sum_{s=0}^{N-3} (-1)^s (N)_s a_{1,1}^{(\lambda)} (N - s, x)
+ (-1)^{N-2} (N)_{N-2} (-1)^2 2! S_{1,1} (1) x
= x \sum_{s=0}^{N-3} (-1)^s (N)_s 2 (-1)^{N-s} (N - s - 1)! H_{N-s-1,1}
- 2 \sum_{s=0}^{N-3} (-1)^s (N)_s 2 (-1)^{N-s-1} (N - s - 1)! H_{N-s-1,1} x
\]
\[+ (-1)^{N-2} (N)_{N-2} \cdot (-1)^2 3!x\]
\[= 6x (-1)^N N! \sum_{s=0}^{N-3} \frac{H_{N-s-1,1}}{N-s} + 6x (-1)^N (N)_{N-2}\]
\[= 6x (-1)^N N! \left\{ \frac{H_{N-1,1}}{N} + \ldots + \frac{H_{3,1}}{3} + \frac{H_{2,1}}{2} \right\}\]
\[= 6x (-1)^N N! H_{N,2}.\]

Therefore, we obtain the following theorem.

Theorem 2. Let \(1 \leq r \leq N + 1, 0 \leq i \leq r\). Then we have
\[a_{i,r-i}^{(\lambda)} (N + 1, x) = (-1)^{N+1+i-r} i! S_{1,i-1} (r-i) N! H_{N,r-1} (x)_{r-i}.\]

Proof. We showed that it is true for \(r = 1\) and \(r = N + 1\). Assume that \(2 \leq r \leq N\). If \(i = 0\) or \(i = r\), then it is also true. So we prove the assertion by induction on \(r\) when \(2 \leq r \leq N, 1 \leq i \leq r - 1\). For \(r = 2, i = 1\), we showed that
\[a_{1,1}^{(\lambda)} (N + 1, x) = 2 (-1)^N N! H_{N,1} x.\]

Assume now that it is true for \(r - 1 (3 \leq r \leq N)\).

From (2.35) we note that
\[(2.39)\]
\[a_{i,r-i}^{(\lambda)} (N + 1, x) = (x + i - r + 1) \sum_{s=0}^{N-r} (-1)^s (N)_{s} a_{i,r-i-1}^{(\lambda)} (N-s, x)\]
\[-i \sum_{s=0}^{N-r} (-1)^s (N)_{s} a_{i-1,r-i-1}^{(\lambda)} (N-s, x)\]
\[+ (-1)^{N-r+1} (N)_{N-r+1} (-1)^i i! S_{1,i-1} (r-i) (x)_{r-i}\]
\[= (x + i - r + 1) \sum_{s=0}^{N-r} (-1)^s (N)_{s} (-1)^{N-s-1+i-r} i!\]
\[\times S_{1,i-1} (r - 1 - i) (N - s - 1)! H_{N-s-1,r-2} (x)_{r-1-i}\]
\[-i \sum_{s=0}^{N-r} (-1)^s (N)_{s} (-1)^{N-s+i-r} (i-1)! S_{1,i-2} (r-i)\]
\[\times (N - s - 1)! H_{N-s-1,r-2} (x)_{r-i}\]
\[+ (-1)^{N-r+1} (N)_{N-r+1} (-1)^i i! S_{1,i-1} (r-i) (x)_{r-i}\]
\[= (-1)^{N+1+i-r} i! N! (x)_{r-i}\]
\[\times \left\{ S_{1,i-1} (r - 1 - i) + S_{1,i-2} (r-i) \sum_{s=0}^{N-r} \frac{H_{N-s-1,r-2}}{N-s} + \frac{S_{1,i-1} (r-i)}{(r-1)!} \right\}.\]

By Lemma 1 and (2.39), we get
\[(2.40)\]
\[a_{i,r-i}^{(\lambda)} (N + 1, x) = (-1)^{N+1+i-r} i! S_{1,i-1} (r-i) N! (x)_{r-i}\]
\[
\times \left\{ \frac{H_{N-1,r-2}}{N} + \cdots + \frac{H_{r-1,r-2}}{r} + \frac{H_{r-2,r-2}}{r-1} \right\} \\
= (-1)^{N+1+i-r} i! S_{1,i-1} (r - i) N! H_{N,r-1} (x)_{r-i}. \quad \square
\]

Therefore, we obtain the following theorem.

Theorem 3. The linear differential equations

\[
F^{(N)} = \lambda^N (1 + \lambda t)^{-N} \\
\times \left(\sum_{r=1}^{N} \sum_{i=0}^{r} a_{i,r-i}^{(\lambda)} (N, x) (2\lambda + \log (1 + \lambda t))^{-i} (\lambda + \log (1 + \lambda t))^{-(r-i)} \right) F
\]

has a solution

\[
F = F (t; x, \lambda) = 2\lambda (2\lambda + \log (1 + \lambda t))^{-1} (1 + \lambda^{-1} \log (1 + \lambda t))^x,
\]

where, for \(1 \leq r \leq N\), \(0 \leq i \leq r\),

\[
a_{i,r-i}^{(\lambda)} (N, x) = (-1)^{N+i-r} i! S_{1,i-1} (r - i) (N - 1)! H_{N-1,r-1} (x)_{r-i}.
\]

Recall that the \(\lambda\)-Changhee polynomials, \(Ch_{n,\lambda} (x)\), \((n \geq 0)\), are given by the generating function

\[
(2.41) \quad F = F (t; x, \lambda) = \frac{2\lambda}{2\lambda + \log (1 + \lambda t)} \left(1 + \frac{1}{\lambda} \log (1 + \lambda t) \right)^x = \sum_{n=0}^{\infty} Ch_{n,\lambda} (x) \frac{t^n}{n!}.
\]

Thus, by (2.41), we get

\[
(2.42) \quad F^{(N)} = \left(\frac{d}{dt} \right)^N F (t; x, \lambda) = \sum_{k=0}^{\infty} Ch_{k+N,\lambda} (x) \frac{t^k}{k!}.
\]

On the other hand, by Theorem 3 we get

\[
(2.43) \quad F^{(N)} = \lambda^N \sum_{l=0}^{\infty} (-1)^l \binom{N + l - 1}{l} \lambda^l t^l \sum_{r=1}^{N} \sum_{i=0}^{r} a_{i,r-i}^{(\lambda)} (N, x) \sum_{m=0}^{\infty} (-1)^m \binom{i + m - 1}{m} \\
= (2\lambda)^{-i-m} (\log (1 + \lambda t))^{m} \sum_{n=0}^{\infty} (-1)^n \binom{r + n - i - 1}{n} \lambda^{-(r-i)-n} (\log (1 + \lambda t))^n \\
\times \sum_{s=0}^{\infty} Ch_{s,\lambda} (x) \frac{t^s}{s!}.
\]
\[= \lambda^N \sum_{i=0}^{\infty} (-1)^i (N + l - 1)_t \lambda^{t_t\over n_i}
\]
\[\times \sum_{r=1}^{N} \sum_{i=0}^{r} a_{i,r-i}^{(N,x)} \sum_{m=0}^{\infty} (-1)^m (i + m - 1)_m (2\lambda)^{-i-m}
\]
\[\times \sum_{e=0}^{\infty} S_1 (e + m, m) \lambda^{r+m} \frac{t^{e+m}}{(e + m)!} \sum_{n=0}^{\infty} (-1)^n (r + n - i - 1)_n
\]
\[\times \lambda^{i-r-n} \sum_{f=0}^{\infty} S_1 (f + n, n)
\]
\[\times \lambda^{f+n} \frac{t^{f+n}}{(f + n)!} \sum_{s=0}^{\infty} Ch_{s,\lambda} (x) \frac{t^s}{s!}
\]
\[= \lambda^N \sum_{r=1}^{N} \sum_{i=0}^{r} a_{i,r-i}^{(N,x)} \sum_{m=0}^{\infty} (-1)^m (i + m - 1)_m (2\lambda)^{-i-m} \lambda^m \frac{t^m}{m!}
\]
\[\times \sum_{n=0}^{\infty} (-1)^n (r + n - i - 1)_n \lambda^{i-r-n} \lambda^n \frac{t^n}{n!} \sum_{l=0}^{\infty} (-1)^l (N + l - 1)_l \lambda^{l_l\over n_l}
\]
\[\times \sum_{e=0}^{\infty} S_1 (e + m, m) \lambda^{r+m} \frac{t^e}{(e + m)!} \sum_{f=0}^{\infty} S_1 (f + n, n) \lambda^{f+n} \frac{t^f}{(f + n)!} \frac{t^f}{f!}
\]
\[\times \sum_{s=0}^{\infty} Ch_{s,\lambda} (x) \frac{t^s}{s!}
\]
\[= \lambda^N \sum_{r=1}^{N} \sum_{i=0}^{r} a_{i,r-i}^{(N,x)} \sum_{m=0}^{\infty} (-1)^m
\]
\[\times (i + m - 1)_m (2\lambda)^{-i-m} \lambda^m \frac{t^m}{m!} \sum_{n=0}^{\infty} (-1)^n (r + n - i - 1)_n
\]
\[\times \lambda^{i-r-n} \lambda^n \frac{t^n}{n!} \sum_{a=0}^{\infty} \left(\sum_{l+e+f+s=a} (-1)^l \lambda^{a-s} \frac{(i_r f_s)}{(e + m)!} (N + l - 1)_l S_1 (e + m, m) S_1 (f + n, n) Ch_{s,\lambda} (x) \frac{t^a}{a!}\right)
\]
\[= \lambda^N \sum_{r=1}^{N} \sum_{i=0}^{r} a_{i,r-i}^{(N,x)} \lambda^{r+2-i} \sum_{k=0}^{\infty} \left(\sum_{m+n+a=k} \binom{k}{m,n,a} \left(-\frac{1}{2}\right)^m (-1)^n (i + m - 1)_m
\]
\[\times (r + n - i - 1)_n \sum_{l+e+f+s=a} (-1)^l \lambda^{a-s} \frac{(i_r f_s)}{(e + m)!} (N + l - 1)_l
\]
\[\times (N + l - 1)_l S_1 (e + m, m) S_1 (f + n, n) Ch_{s,\lambda} (x) \frac{t^k}{k!}\]
\[= \sum_{k=0}^{\infty} \left\{ \lambda^N \sum_{r=1}^{N} \sum_{i=0}^{r} a_{i,r-i}^{(N,x)} \lambda^{r+2-i} \right\}
\[\sum_{m+n+a=k} \binom{k}{m,n,a} \left(-\frac{1}{2}\right)^m (-1)^n (i + m - 1)_m (r + n - i - 1)_n \]
\[\times \sum_{l+e+f+s=a} (-1)^l \lambda^{a-s} \binom{a}{e+f,s} \frac{(l+e+s)}{(e+m)(f+n)} (N+l-1)_l \]
\[\times S_1 (e + m, m) S_1 (f + n, n) Ch_{s,\lambda}(x) \left\{ \frac{k}{k!} \right. \]

Therefore, by comparing the coefficients on both sides of (2.42) and (2.43), we obtain the following theorem.

Theorem 4. For \(N \in \mathbb{N} \), and \(k \in \mathbb{N} \cup \{0\} \), we have

\[\text{Ch}_{k+N,\lambda}(x) = \lambda^N \sum_{r=1}^{N} \sum_{i=0}^{r} a^{(\lambda)}_{i,r-i} (N, x) \lambda^{-r} 2^{-i} \sum_{m+n+a=k} \binom{k}{m,n,a} \]
\[\times \left(-\frac{1}{2}\right)^m (-1)^n (i + m - 1)_m (r + n - i - 1)_n \]
\[\times \sum_{l+e+f+s=a} (-1)^l \lambda^{a-s} \binom{a}{e+f,s} \frac{(l+e+s)}{(e+m)(f+n)} \]
\[\times (N+l-1)_l S_1 (e + m, m) S_1 (f + n, n) Ch_{s,\lambda}(x), \]

where, for \(1 \leq r \leq N, 0 \leq i \leq r, \)
\[a^{(\lambda)}_{i,r-i} (N, x) = (-1)^{N+i-r} i! S_1, i-1 (r-i) (N-1)! H_{N-1,r-1} (x)_{r-i} . \]

References

1. A. Bayad and T. Kim, *Higher recurrences for Apostol-Bernoulli-Euler numbers*, Russ. J. Math. Phys. 19 (2012), no. 1, 1–10.
2. D. Ding and J. Yang, *Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials*, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 1, 7–21.
3. L.-C. Jang, C. S. Ryoo, J. J. Seo, and H. I. Kwon, *Some properties of the twisted Changhee polynomials and their zeros*, Appl. Math. Comput. 274 (2016), 169–177. MR 3433125
4. D. S. Kim and T. Kim, *A note on Boole polynomials*, Integral Transforms Spec. Funct. 25 (2014), no. 8, 627–633. MR 3195946
5. , *Some identities for Bernoulli numbers of the second kind arising from a nonlinear differential equation*, Bull. Korean. Math. Soc. 52 (2015), no. 6, 2001–2010.
6. , *Some identities of Korobov-type polynomials associated with p-adic integrals on \(\mathbb{Z}_p \)*, Adv. Difference Equ. (2015), 2015:282, 13. MR 3395618
7. D. S. Kim and T. Kim, T. Komatsu, and S.-H. Lee, *Barnes-type Daehee of the first kind and poly-Cauchy of the first kind mixed-type polynomials*, Adv. Difference Equ. (2014), 2014:140, 22. MR 3259855
8. D. S. Kim, T. Kim, and J. J. Seo, *A note on Changhee polynomials and numbers*, Adv. Studies Theor. Phys. 7 (2013), no. 20, 993–1003.
9. ______, A note on \(q \)-analogue of Boole polynomials, Appl. Math. Inf. Sci. 9 (2015), no. 6, 3135–3158. MR 3386346
10. T. Kim, D. S. Kim, A note on non-linear Changhee differential equations, Russ. J. Math. Phys. 23 (2016), no. 1, 1–6.
11. T. Kim, Non-Archimedean \(q \)-integrals associated with multiple Changhee \(q \)-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91–98. MR 2013106 (2004h:33034)
12. T. Kim, T. Mansour, S. H. Rim, and J. J. Seo, A note on \(q \)-Changhee polynomials and numbers, Adv. Studies Theor. Phys. 8 (2014), no. 1, 35–41.
13. H. I. Kwon, T. Kim and J. J. Seo, A note on degenerate Changhee numbers and polynomials, Proc. Jangjeon Math. Soc.18 (2015), no. 3, 295–305.
14. D. Lim and F. Qi, On the appell type–changhee polynomials, J. Nonlinear Sci. 9 (2016), 1872–1876.
15. J.-W. Park, On the twisted \(q \)-Changhee polynomials of higher order, J. Comput. Anal. Appl. 20 (2016), no. 1, 424–431.
16. S.-H. Rim, J.-W. Park, S.-S. Pyo, and J. Kwon, The \(n \)-th twisted Changhee polynomials and numbers, Bull. Korean. Math. Soc. 52 (2015), no. 3, 741–749.
17. J. J. Seo and T. Kim, \(p \)-adic invariant integral on \(\mathbb{Z}_p \) associated with the Changhee’s \(q \)-Bernoulli polynomials, Int. J. Math. Anal. (Ruse) 7 (2013), no. 41-44, 2117–2128.
18. G. Y. Sohn and J. K. Kwon, A note on twisted Changhee polynomials and numbers with weight, Appl. Math. Sci. 9 (2015), no. 31, 1517–1525.
19. N. L. Wang and L. Hailong, Some identities on the higher-order Daehlee and Changhee numbers, Pure and Applied Mathematics Journal 4 (2015), no. 5-1, 33–37.

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

E-mail address: ttkim@kw.ac.kr

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

E-mail address: dskim@sogang.ac.kr