ANALYTICITY OF POSITIVE SEMIGROUPS IS INHERITED UNDER DOMINATION

JOCHEN GLÜCK

Abstract. For positive C_0-semigroups S and T on a Banach lattice such that $S(t) \leq T(t)$ for all times t, we prove that analyticity of T implies analyticity of S. This answers an open problem posed by Arendt in 2004.

Our proof is based on a spectral theoretic argument: we apply Perron–Frobenius theory to multiplication operators that are induced by S and T on a vector-valued function space.

In a problem posed in [9], Arendt asked whether analyticity of positive semigroups is inherited under domination. The purpose of this note is to give a positive answer to this question:

Theorem 1. Let S, T be C_0-semigroups on a complex Banach lattice E such that $0 \leq S(t) \leq T(t)$ for all $t \in [0, \infty)$. If T is analytic, then so is S.

Throughout, we freely use the theory of Banach lattices (see e.g. [11]) and of C_0-semigroups (see e.g. [3]). Standard references for positive semigroups are [1, 2], and domination between semigroups is discussed in detail in [11 Section C-II.4].

We prove Theorem [11] at the end of the article, before Remark [11]. The proof is surprisingly easy if one employs two appropriate results from the literature and reformulates one of them in a slick way. We begin by stating those results in the following two propositions.

The first proposition is (a special case of) a result by Kato [7]; a simplified version of the proof of “(ii) \Rightarrow (i)” can be found in [4, Lemma 2.1].

Proposition 2 (Kato). For a C_0-semigroup T on a complex Banach space X the following assertions are equivalent:

(i) The semigroup T is analytic.

(ii) There exists a time $t_0 > 0$ and a complex number λ of modulus 1 with the following property: there is a constant $K > 0$ such that

\[\lambda \not\in \sigma(T(t)) \quad \text{and} \quad \| R(\lambda, T(t)) \| \leq K \]

for all $t \in (0, t_0]$.

Here, $\sigma(T(t))$ denotes the spectrum of $T(t)$ and $R(\lambda, T(t)) := (\lambda - T(t))^{-1}$ the resolvent of $T(t)$ at λ.

The second proposition is from the realm of Perro–Frobenius theory (i.e., spectral theory of positive operators). It was proved (under slightly more general conditions) by Räbiger and Wolff [10, Theorem 1.4]; their proof employs techniques which were introduced earlier by Lotz [8].

Proposition 3 (Räbiger–Wolff). Let $0 \leq S \leq T$ be bounded linear operators on a complex Banach lattice E and assume that T is power bounded, i.e. $\sup_{n \in \mathbb{N}_0} \| T^n \| < \infty$. If $\lambda \in \sigma(S)$ and $|\lambda| = 1$, then also $\lambda \in \sigma(T)$.

Date: May 2, 2022.

2020 Mathematics Subject Classification. 47D06; 47B65; 47A10.

Key words and phrases. Domination; positive semigroup; analytic semigroup; holomorphic semigroup; Perron–Frobenius theory; spectrum of positive operators.
In an attempt to prove Theorem \[1\] it seems natural to first try the following approach:

There is no loss of generality in assuming that the semigroup \(T\) is bounded, i.e. that we have \(\sup_{t \in [0, \infty)} \|T(t)\| < \infty\). Now let \(T\) be analytic and let \(t_0\) and \(\lambda\) be as in Proposition \[2\] ii). For each \(t \in (0, t_0]\) we then have \(\lambda \not\in \sigma(T(t))\). Since, by the boundedness of \(T\), \(T(t)\) is power-bounded, and \(0 \leq S(t) \leq T(t)\), it follows from Proposition \[3\] that \(\lambda \not\in \sigma(S(t))\). So the only difficulty is to show that the resolvent \(\mathcal{R}(\lambda, S(t))\) is uniformly bounded as \(t\) runs through \((0, t_0]\).

We may even assume that \(\|T(t)\| \to 0\) as \(t \to \infty\), which means that the spectral radius of \(T(t)\) is strictly less than 1 for each \(t > 0\). Then the Neumann series representation of the resolvent immediately yields the estimate

\[
|\mathcal{R}(\lambda, S(t))x| \leq \mathcal{R}(1, T(t)) \|x\|
\]

for all \(x \in E\). However, this does not give the desired boundedness since the spectral radius of \(T(t)\) will be close to 1 for small \(t\), and thus \(\mathcal{R}(1, T(t))\) cannot be expected to be bounded as \(t \downarrow 0\).

To solve this problem, we show now that property (ii) in Kato’s characterisation can be rephrased as a spectral property of a single operator that acts on a vector-valued function space. This reformulation is based on the following simple lemma for general families of operators.

Lemma 4. Let \(X\) be a (real or complex) Banach space, let \(I\) be a non-empty set and let \(T = (T_i)_{i \in I}\) be a norm bounded family of bounded linear operators on \(X\). Consider the operator

\[
\hat{T} : \ell^\infty(I; X) \to \ell^\infty(I; X)
\]

given by

\[
(\hat{T}f)(i) = T_i f(i)
\]

for each \(f \in \ell^\infty(I; X)\) and \(i \in I\).

Then \(\hat{T}\) is bijective if and only if each of the operators \(T_i\) is bijective and \(\sup_{i \in I} \|T_i^{-1}\| < \infty\).

This is certainly well-known among experts in operator theory, and related results can be found in different places in the literature, for instance in \[4\] Section 2 and \[5\] Section 2. We include the proof to demonstrate that it is particularly simple in the situation of Lemma \[4\].

Proof of Lemma 4

“\(\Rightarrow\)” This implication is obvious.

“\(\Leftarrow\)” Assume that \(\hat{T}\) is bijective. For every \(f \in \ell^\infty(I; X)\) and every \(i \in I\) we then have

\[
(\hat{T}^{-1} f)(i) = T_i^{-1} f(i)
\]

By substituting functions for \(f\) which are 0 at each but one position, we can thus see that every operator \(T_i\) is surjective. Similarly, we have \(f = T_i^{-1} f\) for each \(f \in \ell^\infty(I; X)\), and by again substituting vectors for \(f\) which are 0 at each but one position, we can see that every operator \(T_i\) is injective.

Since we now know that each \(T_i\) is bijective, Equation \[1\] implies

\[
T_i^{-1}(f(i)) = (\hat{T}^{-1} f)(i)
\]

for each \(f \in \ell^\infty(I; X)\) and each \(i \in I\). We once again substitute vectors for \(f\) that are 0 at each but one position, and thus see that \(\|T_i^{-1}\| \leq \|\hat{T}^{-1}\|\) for each \(i \in I\). \(\square\)
As a direct consequence of the lemma, we can reformulate Kato’s characterisation from Proposition 2. We use the following notation: for a \(C_0 \)-semigroup \(T \) on a Banach space \(X \) and for \(t_0 > 0 \) we define a bounded linear operator
\[
\hat{T}_{t_0} : \ell^\infty((0, t_0]; X) \to \ell^\infty((0, t_0]; X)
\]
by
\[
(\hat{T}_{t_0}f)(t) = T(t)f(t)
\]
for each \(f \in \ell^\infty((0, t_0]; X) \) and each \(t \in (0, t_0] \). With this notation, we now obtain immediately:

Corollary 5. For a \(C_0 \)-semigroup \(T \) on a complex Banach space \(X \) the following assertions are equivalent:

(i) The semigroup \(T \) is analytic.

(ii) There exists a time \(t_0 > 0 \) and a complex number \(\lambda \) of modulus 1 such that \(\lambda \not\in \sigma(\hat{T}_{t_0}) \).

With this formulation of Kato’s characterisation, the proof of our main result is very easy:

Proof of Theorem 1. After rescaling \(S \) and \(T \) we may, and shall, assume that \(T \) is bounded. Since \(T \) is analytic there exists, by Corollary 5, a time \(t_0 > 0 \) and a complex number \(\lambda \) of modulus 1 such that \(\lambda \not\in \sigma(\hat{T}_{t_0}) \), where we use the notation \(\hat{T}_{t_0} \) introduced before Corollary 5.

We use the same notation for \(S \) and thus have \(0 \leq \hat{S}_{t_0} \leq \hat{T}_{t_0} \) (where \(\ell^\infty(I; E) \) is ordered pointwise). Since \(\hat{T}_{t_0} \) is power bounded (due to the boundedness of the semigroup \(T \)), Proposition 4 shows that \(\lambda \not\in \sigma(\hat{S}_{t_0}) \). Hence, again by Corollary 5 the semigroup \(S \) is analytic. \(\square \)

Remark 6. Theorem 1 does not remain true if we consider domination of non-positive semigroups \(S \), i.e., if we only assume
\[
(2) \quad |S(t)x| \leq T(t) |x|
\]
for all \(x \in E \) and \(t \in [0, \infty) \) instead of \(0 \leq S(t) \leq T(t) \).

As a simple counterexample, let \(p \in [1, \infty) \) and consider the semigroup \(S \) on \(\ell^p \) given by
\[
(S(t)f)(n) = e^{i\pi n} f(n)
\]
for all \(f \in \ell^p \) and \(n \in \mathbb{N} \). This semigroup is clearly not analytic, but it satisfies the domination condition (2) for \(T(t) = \text{id} \).

However, it seems that this example cannot be directly adapted to obtain a counterexample over the real field. More generally speaking, the author does not know whether analyticity of a positive semigroup \(T \) together with (2) implies analyticity of \(S \) if \(S \) is not positive but leaves the real part of the underlying Banach lattice invariant.

References

[1] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck. *One-parameter semigroups of positive operators*, volume 1184 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.

[2] András Bátkai, Marjeta Kramar Fijavž, and Abdelaziz Rhandi. *Positive operator semigroups*, volume 257 of *Operator Theory: Advances and Applications*. Birkhäuser/Springer, Cham, 2017. From finite to infinite dimensions, With a foreword by Rainer Nagel and Ulf Schlotterbeck.
[3] Klaus-Jochen Engel and Rainer Nagel. *One-parameter semigroups for linear evolution equations*, volume 194 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

[4] Stephan Fackler. Regularity of semigroups via the asymptotic behaviour at zero. *Semigroup Forum*, 87(1):1–17, 2013.

[5] Retha Heymann. Eigenvalues and stability properties of multiplication operators and multiplication semigroups. *Math. Nachr.*, 287(5-6):574–584, 2014.

[6] A. Holderrieth. Matrix multiplication operators generating one parameter semigroups. *Semigroup Forum*, 42(2):155–166, 1991.

[7] Tosio Kato. A characterization of holomorphic semigroups. *Proc. Am. Math. Soc.*, 25:495–498, 1970.

[8] H. P. Lotz. Über das Spektrum positiver Operatoren. *Math. Z.*, 108:15–32, 1968.

[9] Rainer Nagel. Some open problems in the theory of C_0-semigroups. In S. Romanelli, R.M. Mininni, and S. Lucente, editors, *Interplay between (C_0)-semigroups and PDEs: theory and applications*, pages 193–196. Aracne, 2004.

[10] Frank Räbiger and Manfred P. H. Wolff. Spectral and asymptotic properties of dominated operators. *J. Aust. Math. Soc.*, Ser. A, 63(1):16–31, 1997.

[11] Helmut H. Schaefer. *Banach lattices and positive operators*. Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.

Jochen Glück, Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Gaußstr. 20, 42119 Wuppertal, Germany

Email address: glueck@uni-wuppertal.de