The challenge of targeting Notch in hematologic malignancies

Fiorela N. Hernandez-Tejada, Jorge R. Galvez Silva and Patrick A. Zweidler-McKay *

Department of Pediatrics, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA

INTRODUCTION

"Notch" is a critical developmental pathway, which controls cell fate, differentiation, proliferation, and survival, and is critical in numerous developmental processes including neurogenesis, angiogenesis, and hematopoiesis, among others (1). The ability of Notch signaling to inhibit or induce differentiation, drive or impair proliferation, and promote survival or induce apoptosis in a cell-specific manner provides the opportunity for Notch signaling to contribute to or impede oncogenesis in multiple cell types (2).

The role of Notch has been studied in a wide variety of hematological malignancies including T and B leukemias and lymphomas as well as myeloid leukemias (3–5). However, the consequences of Notch signaling in these diseases varies significantly, and thus targeting Notch, requires understanding the biology of Notch signaling on a disease-by-disease basis (Table 1).

In this review, we will outline the roles of the Notch pathway in a wide variety of leukemias and lymphomas, describe potential targeted therapies and discuss future directions.

NOTCH PATHWAY

In mammals, the Notch signaling pathway consists of five cell membrane-based ligands [Jagged1, Jagged2, Delta-like ligand-1 (DLL1), DLL3, and DLL4], each of which bind to and activate four cell membrane-based Notch receptors (Notch1–4) present on neighboring cells. Receptor interaction with ligand classically requires cell–cell interaction and induces enzymatic cleavage of the Notch receptors at their transmembrane domain by both metalloproteinase and gamma-secretase complex enzymes, and the expression of the four Notch receptors, yielding a large number of potential variations on the Notch pathway.

NOTCH IN LYMPHOID LEUKEMIAS AND LYMPHOMAS

The normal developmental roles of the Notch pathway in lymphopoiesis have led to both similarities and contrasting findings across the range of lymphoid malignancies. For example, Notch has well-defined roles in inducing commitment, differentiation, and function in the T-cell lineage, while impairing early B-cell development, and inducing more mature marginal zone B-cell differentiation. Thus, in normal development Notch appears to generally support T-cell growth, differentiation, and survival, while effects in B cells appear to depend on the stage of differentiation, inhibiting immature B cells, and supporting at least a subset of more mature B cells (8).

T-CELL ACUTE LYMPHOBLASTIC LEUKEMIA

Aberrent Notch activation was first linked to cancer in 1991 when Notch1 was identified as part of a t(7;9)(q34;q34) translocation in patients with T-cell acute lymphoblastic leukemia (T-ALL) (9). This translocation leads to high levels of truncated, constitutively active intracellular Notch1 (ICN1), implicating Notch as a T-cell oncogene. However, this translocation was subsequently found in <1% of human T-ALL. This discovery however initiated numerous studies of Notch signaling in normal T-cell development and...
Table 1 | The Notch pathway by cancer type.

LYMPHOID CANCERS	Oncogene vs. tumor suppressor	Genetic lesions	Evidence
T-cell acute lymphoblastic leukemia	Oncogene	>50% Notch1 HD/PEST activating mutations, 15% FBXW7 mutations	T-cell oncogene in mice, Notch inhibition impairs T-ALL growth and survival. Some clinical responses to Notch inhibitors.
T-cell non-Hodgkin lymphoma	Oncogene	50% Notch1 HD/PEST activating mutations, 20% FBXW7 mutations	Notch inhibition induces apoptosis
B-cell acute lymphoblastic leukemia	Tumor suppressor	Methylation of Notch target genes, no activating mutations	Notch activation impairs B-ALL growth and survival
Chronic lymphocytic leukemia	Oncogene	5–15% Notch1 PEST activating mutations	Notch inhibition induces apoptosis
Hodgkin lymphoma	Oncogene	none	Notch activation induces growth and survival
B-cell non-Hodgkin lymphoma	Oncogene*	5–20% Notch1/2 PEST activating mutations	Notch inhibition impairs growth but may promote survival in some

MYELOID CANCERS	Tumor suppressor	Genetic lesions	Evidence
Chronic myelomonocytic leukemia	Tumor suppressor	12% Notch pathway inhibiting mutations	Notch loss induces CML-like disease in mice
Acute myeloblastic leukemia	Tumor suppressor*	Methylation of Notch target genes, no activating mutations	Notch activation impairs AML growth and survival, Notch inhibition promotes AML in vivo
Chronic myelocytic leukemia	Unclear	None	Notch aids blast crisis in mice, but is decreased in humans. Notch activation impairs CML growth and survival

*Contrasting evidence.

leukemogenesis, where Notch was found to be a critical T-cell pathway and a potent T-cell oncogene in mice (10, 11). Over a decade later, it was shown that >50% of T-ALL cases have activating mutations in the Notch1 gene, revealing Notch1 mutation as the most common oncogenic lesion in T-ALL (12). Activation of Notch1 is found in all subtypes of T-ALL, including TAL1, HOX11, HOX11L2, LYL1, MLL-ENL, and AF10-CALM, suggesting that Notch1 activation is a fundamental event in T-cell transformation. Interestingly, two major mutational hot spots were characterized in T-ALL, with missense mutations in the heterodimerization (HD) domain in 30–45% of T-ALL cases, leading to lower protection from cleavage of Notch, resulting in potent Notch activation, and nonsense or missense mutations in the proline–glutamate–serine–threonine-rich (PEST) degradation domain in 20–25% of T-ALL, allowing for prolonged but less potent Notch signaling. In addition, Notch signaling is aberrantly activated through mutation of the Notch1-targeting E3 ligase FBXW7 in 10–15% of T-ALL cases, which leads to prolonged Notch activation through a similar mechanism to PEST domain mutation (13, 14). The relative strength of Notch signaling induced by the different mutations may provide insight into oncogenic mechanisms and may potentially be useful in selecting patients for Notch inhibitor therapies.

In patients with T-ALL, Notch1 and FBXW7 mutations have generally been associated with favorable prognosis and lower minimal residual disease (MRD) levels (15–17). However, Notch mutations have also been associated with higher rates of CNS relapse and poor outcome in Notch mutated patients with high end-induction MRD (18). Another study suggested that Notch/FBXW7 mutations predict better outcome only in the absence of RAS or PTEN alterations (19). Interestingly, Notch1 mutations occur at lower frequency in early thymic progenitor (ETP) T-ALL (20), suggesting alternate mechanisms of Notch activation, or distinct leukemogenic mechanisms. Given the overall high frequency of Notch activating lesions, inhibiting Notch in T-ALL has been an attractive therapeutic opportunity.

T-CELL NON-HODGKIN LYMPHOMA

Similar to T-ALL, T-NHL can carry activating Notch1 and/or inhibiting FBXW7 mutations in up to 50% (7/14) of cases (21), though the frequency may be lower in more mature T-NHL (22). Interestingly Notch1 is frequently expressed in anaplastic large cell lymphoma (ALCL) cells (23), and Notch signaling appears to induce proliferation and survival (24).
B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA
The role of Notch signaling in B-cell acute lymphoblastic leukemia (B-ALL) is less clear. In B-ALL, a disease of immature B-precursor cells, no Notch mutations have been found, and although Notch receptors are expressed, Notch signaling does not appear to be constitutively activated, in contrast to T-ALL (25, 26). Methylation studies reveal that several of the Notch pathway target genes are silenced in B-ALL, and re-expression inhibits growth and survival (27). Several studies have shown that induced activation of the Notch pathway in human B-ALL cells leads to growth arrest and apoptosis, suggesting a tumor suppressor role for Notch (26–28). In contrast, another report suggests that Notch signaling supports B-ALL in the bone marrow niche (29). Although the roles for Notch signaling in B-ALL are not yet fully defined, there may be an opportunity to pharmacologically induce Notch signaling in B-precursor ALL as a therapeutic approach.

CHRONIC LYMPHOCYTIC LEUKEMIA
Chronic lymphocytic leukemia is a disease of mature B cells, which occurs in older adults. Recent sequencing data revealed that 5–15% of CLL samples carry apparent activating mutations in Notch1 (30–33). These were enriched in chemo-refractory disease (21%) and in patients whose CLL had undergone Richter’s transformation (31%) (33). These mutations occur almost exclusively in the PEST domain of Notch1, not the HD domain as seen in T-ALL, and >80% are a single recurrent 2-bp deletion (7544-7545delCT), suggesting a related but distinct mutational profile to Notch1 mutations in T-ALL. In vitro, Notch signaling appears to prevent CLL apoptosis (34). In patients, Notch1 mutation is associated with poor outcome and resistance to fludarabine treatment (30, 31, 35, 36).

HODGKIN LYMPHOMA
Expression of Notch1 and ligand Jagged1 were shown in classical HL Reed-Sternberg cells (37). Activation of Notch signaling in vitro induced proliferation and survival in HL cells (24). Conversely, Notch inhibition led to decrease in NF-kB activity, supporting an oncogenic role for Notch in HL (38). Interestingly, it has been suggested that Notch signaling in HL leads to the loss of B-cell markers through repression of critical B-cell genes E2A and EBF (39).

B-CELL NON-HODGKIN LYMPHOMA
In B-cell NHL, evidence for Notch activation occurs in a subset of lymphoma subtypes. Mutations are found either in Notch1 or Notch2, and occur in the PEST domain, but not the HD domain, similar to CLL, but in contrast to T-ALL. In typically MYC-driven Burkitt lymphoma, 7% (5/70) carry Notch1 mutations (40), 8% (5/63) of BCL2-associated diffuse large B-cell lymphoma (DLBCL) carry similar PEST mutations of Notch2, and 6% (2/35) had amplification of the Notch2 locus (41). Marginal zone lymphomas also carry 5% (2/41) to 20% mutated Notch2, in addition to rare Notch1, SPEN, and DTX1 mutations (42, 43). Finally, >12% Notch1 mutations were found in mantle cell lymphomas and were associated with poor survival (44). Notably, Notch activating mutations have not been found in B-cell lymphoblastic and follicular lymphomas. These studies reveal that subsets of several mature B-NHLs carry Notch1/2 PEST mutations, suggesting an oncogenic role for Notch in these cancers.

NOTCH IN MYELOID LEUKEMIAS
In myeloid cells, Notch may have a range of effects including inhibiting or promoting differentiation and stimulating or impairing growth and survival, depending on the cell type studied. Importantly, genetic inhibition of Notch signaling in murine models can lead to increased myeloid cells and myeloproliferation, suggesting that Notch may generally inhibit myeloid development (45–47). However, the roles of Notch in different myeloid leukemias have not been fully characterized.

CHRONIC MYELOMONOCYTIC LEUKEMIA
Chronic myelomonocytic leukemia is a rare myeloproliferative and myelodysplastic leukemia, which typically occurs in older adults. However, a recent study found that inactivation of Notch signaling in murine bone marrow led to a myeloproliferative disease, and identified inactivating mutations in Notch pathway genes (NCSTN, APH1, MAML1, and NOTCH2) in 12% (5/42) CMML patient samples, implicating a tumor suppressor role for Notch in this disease (48).

ACUTE MYELOBLASTIC LEUKEMIA
With the unclear roles of Notch in myelopoiesis, murine models were used to investigate whether loss of Notch would alter myeloid leukemogenesis. Indeed loss of Notch in combination with loss of the myeloid tumor suppressor TET2 led to an AML-like disease in mice, suggesting a formal tumor suppressor role for Notch in AML (49). Consistent with this, human AML samples do not carry activating mutations in Notch pathway genes, except in rare cases of recurrent T-myeloid leukemias, which can carry Notch1 activating mutations from the initial T-ALL. AML cells do express Notch receptors on their surface, however, they lack constitutive Notch signaling and demonstrate methylation Notch pathway genes, similar to B-ALL (25, 49). In some studies, activation of Notch signaling in AML cells led to growth arrest, apoptosis, and differentiation, while inhibition of Notch led to increased aggressiveness in vivo, suggesting a tumor suppressing effect in AML (49–51). The mechanism of this effect may involve Notch-mediated suppression of CEBPA, Pu.1, BCL2, and the stabilization of p53 expression. In contrast, in some studies Notch signaling has variable effects on AML growth and survival, depending on the individual AML sample (52). Finally, Notch1, Jagged1, and DLL1 expression in patient samples were associated with poor outcome though the activity of the Notch pathway was not measured (53). Thus, there is generally evidence for a tumor suppressing effect in AML, however additional studies are needed to better characterize the roles of Notch in AML.

CHRONIC MYELOGENOUS LEUKEMIA
Chronic myelogenous leukemia is a mature myeloproliferative disease driven by the expression of BCR-ABL1 as a consequence of t(9;22) translocation. BCR-ABL1 appears to enhance Notch1 expression and activation, leading to decreased MYC expression and colony formation (54). In a murine model, expression of the Notch target gene HES1 was shown to cooperate with BCR-ABL1 expression to promote CML blast crisis (55). In contrast, HES1 downregulation was associated with blast crisis in human patient samples (56). Induced activation of Notch signaling in CML-derived cell lines reveal growth inhibition, suggesting an inhibiting...
role for Notch in CML (50, 57, 58). Thus, murine leukemogenesis studies suggest an oncogenic role while human studies suggest a tumor suppressor role, leaving the role of Notch in CML unclear.

NOTCH TARGETING THERAPEUTICS

Given the emerging data demonstrating roles for Notch signaling in a wide variety of leukemias and lymphomas, targeting the Notch pathway either with inhibitors or activators is a very compelling therapeutic possibility. However, caution should be used when targeting this pathway as disease-specific responses to Notch modulation may be counter-therapeutic. Several Notch inhibiting strategies are being tested in clinical trials, while Notch activators are still in the early pre-clinical stage (Figure 1).

NOTCH INHIBITING STRATEGIES

GAMMA-SECRETASE INHIBITORS

Interaction between Notch ligands and receptors induces a conformational change in the Notch receptors’ HD domain, which allows for enzymatic access to the transmembrane region. Following ligand interaction, the receptors are cleaved by ADAM/TACE metalloproteinases, and subsequently cleaved again by the gamma-secretase complex, which is a crucial step in the activation of Notch signaling. It is this step, which is targeted by GSIs [reviewed in Ref. (59)].

The potent role of Notch signaling in T-cell leukemogenesis and >50% presence of activating Notch1 gene mutation in T-ALL has prompted the testing of GSIs in multiple clinical trials, though most results are unpublished, BMS-906024 (NCT01363817), RO4929097 (NCT01088763), MK0752 [NCT00100152 (60)], PF03084014 (NCT00878189), and LY3039478 (NCT01158404). However, early trials were hampered by excessive toxicity from on-target effects on the intestinal epithelial differentiation, resulting in dose-limiting diarrhea (60, 61). Alternative schedules and dosing have been sought to ameliorate these symptoms with some success. One attractive combination is the use of glucocorticoids and GSI. In a murine study, it was demonstrated that steroids can ameliorate the GSI-induced gut toxicity *in vivo*, protecting the animals from developing intestinal goblet cell metaplasia (62). In addition, GSI treatment induces glucocorticoid receptor expression and restores steroid sensitivity (63). As single agent Phase 1 trials continue to address toxicity and activity, multiple mechanisms of resistance have been identified. For example, PTEN loss has been associated with GSI resistance (64). Also, GSI resistant cells appear to have distinct epigenetic status, and BRD4-inhibiting JQ1 has been shown to synergize with GSI (65). For future trials several classes of agents, including PI3K/mTOR, histone deacetylase, and proteasome inhibition, have been shown to enhance GSI effects in T-ALL (66–68).

The use of GSI in T-cell NHL, including ALK+ ALCL, has shown some pre-clinical promise inducing growth inhibition and caspase-mediated apoptosis with downregulation of cyclin D1, Bcl-XL, and XIAP (23, 69). Similarly, GSIs show pre-clinical promise for CLL, demonstrating decreased NF-kB, XIAP, c-IAP2 levels (34), though some data suggest Notch-independent mechanisms (70). GSIs have also been effective in two mantle cell lymphoma lines (44) and one DLBCL line without Notch mutations (71).

FIGURE 1 | Targeting Notch. Multiple strategies for either activating or inhibiting Notch have been described. Notch activators (green, left) and Notch inhibitors (red, right) will allow modulation of Notch depending on oncogenic or tumor suppressor roles in a given cancer type. Soluble ligands can either activate or inhibit Notch signaling.
In contrast, pre-clinical testing of GSIs in some B-NHLs has shown a lack of efficacy and even perhaps pro-survival effects (72). And while some data suggest pre-clinical efficacy of GSIs in AML (73), other studies found that GSIs unexpectedly increased HES1 expression in GSI-sensitive B-NHL and AML lines (74), calling into question the rationale and mechanism for GSI effects in these diseases.

MONOClonAL ANTIBodies

Another class of agents under development is the mAb targeted against Notch receptors or ligands, or the gamma-secretase complex. The anti-receptor antibodies inhibit the production of cleaved “activated” Notch receptors, e.g., Notch1 OMP52M51 (75), Notch2 OMP-59R5, Aveo anti-Notch1 or Notch3 (76), and Genentech anti-Notch1 or Notch2 (77). Experimental evidence demonstrates that Notch inhibition by either mAb against Notch1 or Notch2 appears to have anti-tumor and anti-angiogenic effects with limited gastrointestinal toxicities while simultaneous inhibition of Notch1 and 2 lead to gastrointestinal toxicity, as seen with many GSIs (77–79). Anti-ligand antibodies targeting DLL4 (REGN421, OMP-21M18), which block the ability of ligand to activate Notch receptors, have been shown to induce disorganized angiogenesis, reduce perfusion, and impair solid tumor growth while sparing intestinal toxicities in vivo (80, 81). Finally, an antibody against the gamma-secretase complex (A5226A) has shown pre-clinical activity against T-ALL (82).

It is hoped that this category of drugs could reduce or spare some of the toxicities associated with pan-Notch inhibition by GSIs, though this has not yet been confirmed clinically. These antibodies have not all been tested in hematologic cancers.

DECOYS

Additional approaches to inhibit Notch signaling come from the use of proteins, fragments, or peptides, which inhibit Notch signaling. First, soluble Notch pathway proteins have been shown to inhibit Notch signaling through saturation of the Notch receptors with soluble ligand DLL4-Fc (81, 83), Jagged1 (84), DLK1 (85), EGFL7 (86), or through binding of ligands through soluble Notch1 receptor extracellular domain (87). Another decoy approach that has been developed is a Mastermind inhibiting peptide, which mimics the critical interaction domain of Mastermind-like1 (MAML1) blocking the interaction of MAML with the Notch intracellular domain (88). The success of these therapies may rely on the specific biology of a given tumor and the breadth and potency of Notch inhibition achieved. Although, these approaches may provide more options to inhibit Notch signaling, their protein/peptide structure makes them somewhat difficult to transform into a reliable clinical therapeutics.

NOTCH ACTIVATING STRATEGIES

LIGAND-MIMICKING PROTEINS/PEPTIDES

Soluble Notch ligands are generally thought to inhibit Notch receptor cleavage, however, several studies have demonstrated the feasibility of using such Notch ligands and ligand-mimicking proteins as agonists, e.g., clustered DLL1 extracellular domains (89), DLL1 DSL domain (90), Jagged1 DSL peptide (50, 91, 92), DNER (93), TSP2 (94), CCN3 (95), YB-1 (96), NB-3 (97), and periostin (98). Although, all of these proteins have been shown to activate Notch signaling in at least one model system, the role of most of these Notch agonists in cancer remains to be evaluated. Importantly, a Jagged1 DSL peptide has been shown to be effective in vitro against B-ALL (28) and AML (50), suggesting potential of Notch agonists as cancer therapeutics depending on tumor type.

NOTCH RECEPTOR ACTIVATING ANTIBODIES

Monoclonal antibodies have been developed, which are capable of specifically inducing cleavage of the Notch2 and Notch3 receptors (99, 100). These activating antibodies have the advantage of selectively inducing cleavage of one of the Notch receptors, allowing one to choose the best target in a given disease and avoiding global Notch activation, when desired. Notch receptor activating antibodies have not all been evaluated in cancer models.

INDUCERS OF NOTCH

In addition to targeted agents, which induce Notch signaling through Notch ligands or receptors, epigenetic modifiers, e.g., histone deacetylase inhibitors and DNA methyltransferase inhibitors, can induce Notch signaling in cancers where Notch plays a tumor suppressor role (27, 101–103).

FUTURE DIRECTIONS

Currently, several different GSIs and Notch inhibiting antibodies are in clinical trials, with additional Notch inhibiting approaches in near clinical development. With these agents, our greatest challenges are to overcome the gastrointestinal toxicity caused by continuous Notch inhibition, identify patients who are likely to respond to Notch inhibition, and determine what combinations hold the most promise for diseases where the oncogenic role of Notch is fairly clear, i.e., T-ALL, CLL, and T-NHL, some mature B-NHL, perhaps HL. Looking toward the future, we hope to have Notch activators in clinical trial in the next few years so that we may target Notch in diseases where Notch is likely a tumor suppressor, i.e., CMML, AML, and B-ALL.

The Notch pathway is complex and the wide range of consequences in different cancer subtypes makes targeting this pathway challenging. However, as we learn more about the mechanisms and consequences of Notch signaling in the range of leukemia and lymphoma subtypes, we will be able to target Notch signaling to specifically impair the growth, survival, and/or differentiation of that disease while reducing the toxicities. With a growing number of Notch modulating therapeutic agents, we may have the tools to customize Notch targeting in the near future.

REFERENCES

1. Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. *Semin Cell Dev Biol* (2012) 23(4):450–7. doi:10.1016/j.semcdb.2012.01.010
2. Ntziachristos P, Lim JS, Sage I, Aifantis I. From fly wings to targeted cancer therapies: a centennial for Notch signaling. *Cancer Cell* (2014) 25(3):318–34. doi:10.1016/j.ccr.2014.02.018
3. Lobry C, Oh P, Mansour MR, Look AT, Aifantis I. Notch signaling: switching an oncogene to a tumor suppressor. *Blood* (2014) 123(16):2451–9. doi:10.1182/blood-2013-08-355819
4. Miranda L, Comi P, Cobos E, Kast WM, Chiriva-Internati M, Chiaramonte R. Notch-1 from T-cell to B-cell lymphoid malignancies. *Cancer Lett* (2011) 308(1):1–13. doi:10.1016/j.canlet.2011.05.009
5. Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. *J Pathol* (2011) 222(2):262–73. doi:10.1002/path.2799

6. Guruharsa KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. *Nat Rev Genet* (2012) 13(9):654–66. doi:10.1038/nrg3272

7. Kopan R, Ilagan MX. The canonical Notch signalling pathway: unfolding the activation mechanism. *Cell* (2009) 137(2):216–33. doi:10.1016/j.cell.2009.03.045

8. Radtke F, MacDonald HR, Tachinomi-Cottier F. Regulation of innate and adaptive immunity by Notch. *Nat Rev Immunol* (2013) 13(6):427–37. doi:10.1038/nri3445

9. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. *Cell* (1991) 66(4):649–61. doi:10.1016/0027-5805(91)90111-B

10. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S, et al. Notch1 expression in early lymphopoesis influences B versus T lineage determination. *Immunity* (1999) 11(3):299–308. doi:10.1016/S1074-7613(00)80105-3

11. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, et al. Exclusion of NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome expressing activated Notch alleles. *J Exp Med* (2006) 198(3):2283–91. doi:10.1084/jem.198.3.2283

12. Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukaemia. *Science* (2004) 306(5694):269–71. doi:10.1126/science.1102160

13. O’Neil J, Grini L, Strack P, Rao S, Tibbouts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. *J Exp Med* (2007) 204(8):1813–24. doi:10.1084/jem.20070876

14. Thompson BJ, Buonomani S, Sulis ML, Palermo T, Villamas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. *J Exp Med* (2007) 204(8):1825–33. doi:10.1084/jem.20070872

15. Beint S, Stanulla M, Flohr T, Schrappe M, Ludwig WE, Tolle G, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. *Blood* (2006) 108(4):1151–7. doi:10.1182/blood-2005-12-4956

16. Bedard PW, Clerin V, Sushkova N, Tchernychev B, Antrilli T, Resmini C, et al. Characterization of the novel P-selectin inhibitor PSI-697 [2-(4-chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[h]quinoline-4-carboxylic acid] in vitro and in rodent models of vascular inflammation and thrombosis. *J Pharmacol Exp Ther* (2008) 324(2):497–506. doi:10.1124/jpet.107.128124

17. Asnafi V, Buryn A, Le Noir S, Baleydier F, Simon A, Beldjord K, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. *Exp Ther Med* (2013) 137(3):299–308. doi:10.3892/etm.2013.1372

18. Kannan S, Song W, Song G, Mullighan CG, Hammitt R, McMurray J, et al. Notch-HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression. *Blood* (2011) 117(10):2891–900. doi:10.1182/blood-2009-12-253419

19. Nwabo Kamdje AH, Mosna F, Bifari F, Lisi V, Bassi G, Malpeli G, et al. Notch-3 and Notch-4 signaling rescue from apoptosis in human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. *Blood* (2011) 118(2):380–9. doi:10.1182/blood-2010-12-326694

20. Sportoletti P, Baldoni S, Cavalli L, Del Papa B, Bonifacio E, Ciurrelli R, et al. NOTCH1/PDGFRA double mutation is an adverse prognostic factor in B-CLL. *Br J Haematol* (2010) 151(4):404–6. doi:10.1111/j.1365-2141.2010.07888.x

21. Di Lanni M, Baldoni S, Rosati E, Ciurrelli R, Cavalli L, Martelli MF, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. *Br J Haematol* (2009) 146(6):689–91. doi:10.1111/j.1365-2457.2009.07816.x

22. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. *Nature* (2011) 475(7354):101–5. doi:10.1038/nature10113

23. Fabбри G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, et al. Analysis of the chronic lymphocytic leukaemia coding genome: role of NOTCH1 mutational activation. *J Exp Med* (2011) 208(7):1389–401. doi:10.1084/jem.20110921

24. Rossi E, Sabatini B, Rampino G, Tabino A, Di Lanni M, Fettuciani K, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. *Blood* (2009) 113(4):856–65. doi:10.1182/blood-2008-02-139725

25. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. *Blood* (2012) 119(2):521–9. doi:10.1182/blood-2011-09-379966

26. Oscier DG, Rose-Zerilli MJ, Winkelmann N, Gonzalez de Castro D, Gomez B, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. *Blood* (2009) 113(4):856–65. doi:10.1182/blood-2008-02-139725

27. Kuang SQ, Fang Z, Zweidler-McKay PA, Yang H, Wei Y, Gonzalez-Cervantes EA, et al. Epigenetic inactivation of Notch-Hes pathway in human B-cell acute lymphoblastic leukaemia. *PloS One* (2013) 8(4):e61807. doi:10.1371/journal.pone.0061807

28. Jundt F, Anagnostopoulos I, Forster R, Mathias S, Stein H, Dorken B. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. *BLOOD* (2002) 99(9):3398–403. doi:10.1182/blood.V99.9.3398

29. Hernandez Tejada et al. Targeting Notch in hematologic malignancies.
42. Troen G, Woldarska I, Warsame A, Hernandez Llolla S, De Wolf-Peeters C, Delabie J. NOTCH2 mutations in marginal zone lymphoma. *Haematologica* (2008) 93(7):1107–9. doi:10.3324/haematol.11365
43. Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. *J Exp Med* (2012) 209(9):1537–51. doi:10.1084/jem.20120904
44. Kriedel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock R, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. *Blood* (2012) 119(9):1963–71. doi:10.1182/blood-2011-11-391474
45. Zhou L, Li LW, Yan Q, Petryniak B, Man Y, Su C, et al. Notch-dependent control of myelopoiesis is regulated by fusocysolation. *Blood* (2008) 112(2):308–19. doi:10.1182/blood-2007-11-115204
46. Yao D, Huang Y, Huang X, Wang W, Yan Q, Wei L, et al. Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions. *Blood* (2011) 117(21):5362–62. doi:10.1182/blood-2010-12-326074
47. Yan Q, Yao D, Wei LL, Huang Y, Mylers J, Zhang L, et al. O-fucose modulates Notch-controlled blood lineage commitment. *Am J Pathol* (2010) 176(6):2921–34. doi:10.2353/ajpath.2010.090702
48. Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S, et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. *Blood* (2009) 113(24):6172–81. doi:10.1182/blood-2008-02-136762
49. Shepherd C, Banerjee L, Cheung CW, Mansour MR, Jenkinson S, Gale RE, et al. PI3K/mTOR inhibition upregulates NOTCH-MYC signaling leading to an impaired cytotoxic response. *Leukemia* (2013) 27(3):580–60. doi:10.1038/leu.2012.285
50. Hajdu M, Kopper L, Sebestyen A. Notch-regulation upon Dll4-stimulation of TGFβ-induced apoptosis and gene expression in human B-cell non-Hodgkin lymphoma cell line and promotes the phosphorylation of the Rb protein. *Mol Cell Biochem* (2013) 380(1–2):27–37. doi:10.1007/s11010-012-1873-4
51. Samon JB, Castillo-Martin M, Hadler M, Ambesi-Impiombato A, Paietta E, et al. An epigenetic mechanism of resistance to targeted therapy in T-cell acute lymphoblastic leukemia. *Nat Genet* (2014) 46:364–70. doi:10.1038/ng.2913
52. Sengupta A, Banerjee D, Chandra S, Banerji SK, Ghosh R, Roy R, et al. Deregulation of the PTEN/AKT pathway and mutated Notch1 receptors. *Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.* *Nature* (2010) 467(7314):964–70. doi:10.1038/nature09094
53. Aste-Amezaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M, et al. Therapeutic antibody targeting of individual Notch receptors. *Preclinical analysis of the gamma-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia.* *Mol Cancer Ther* (2012) 11(7):1565–75. doi:10.1158/1535-7163. MCT-11-0938
54. Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. *Cell Cycle* (2008) 7(8):965–70. doi:10.4161/cc.7.8.5753
55. Zhou L, Li LW, Yan Q, Petryniak B, Man Y, Su C, et al. Notch-dependent control of myelopoiesis is regulated by fusocysolation. *Blood* (2008) 112(2):308–19. doi:10.1182/blood-2007-11-115204
56. Sengupta A, Banerjee D, Chandra S, Banerji SK, Ghosh R, Roy R, et al. Deregulation of the PTEN/AKT pathway and mutated Notch1 receptors. *Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.* *Nature* (2010) 467(7314):964–70. doi:10.1038/nature09094
57. Yang Z, Yang C, Zhang S, Li Y, Chen J. Notch2 inhibits proliferation of chronic myeloid leukemia cell line K562. *Leukemia* (2009) 23(8):1374–7. doi:10.1038/leu.2009.75
58. Samon JB, Castillo-Martin M, Hadler M, Ambesi-Impiombato A, Pajetta E, Racevskis J, et al. Preclinical analysis of the gamma-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. *Mol Cancer Ther* (2012) 11(7):1565–75. doi:10.1158/1535-7163. MCT-11-0938
59. Aste-Amezaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M, et al. Therapeutic antibody targeting of individual Notch receptors. *Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.* *Nature* (2010) 467(7314):964–70. doi:10.1038/nature09094
60. Kneechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T-cell acute lymphoblastic leukemia. *Nat Genet* (2014) 46:364–70. doi:10.1038/ng.2913
61. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. *Nature* (2005) 435(7044):964–8. doi:10.1038/nature03589
62. Real PJ, Ferrando AA. NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. *Leukemia* (2009) 23(8):1374–7. doi:10.1038/leu.2009.75
63. Aste-Amezaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M, et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. *PloS One* (2010) 5(2):e9209. doi:10.1371/journal.pone.0009209
64. Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. *Cell Cycle* (2008) 7(8):965–70. doi:10.4161/cc.7.8.5753
65. Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. *Cell Cycle* (2008) 7(8):965–70. doi:10.4161/cc.7.8.5753
66. Racevskis J, et al. Preclinical analysis of the gamma-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. *Mol Cancer Ther* (2012) 11(7):1565–75. doi:10.1158/1535-7163. MCT-11-0938
67. Kneechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T-cell acute lymphoblastic leukemia. *Nat Genet* (2014) 46:364–70. doi:10.1038/ng.2913
68. Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. *Cell Cycle* (2008) 7(8):965–70. doi:10.4161/cc.7.8.5753
69. Real PJ, Ferrando AA. NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. *Leukemia* (2009) 23(8):1374–7. doi:10.1038/leu.2009.75
80. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, et al. Blockade of DLL4 inhibits tumour growth by promoting non-productive angiogenesis. Nature (2006) 444(7122):1032–7. doi:10.1038/nature05313
81. Hayashi I, Takatori S, Urano Y, Miyake Y, Takagi J, Sakata-Yanagimoto M, et al. Neutralization of the gamma-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene (2012) 31(6):787–98. doi:10.1038/onc.2011.265
82. Liu R, Li X, Tulpule A, Zhou Y, Schnebt JS, Zhang S, et al. KSHV-induced Notch components render endothelial and mural cell characteristics and cell survival. Blood (2010) 115(4):887–95. doi:10.1182/blood-2009-08-236745
83. Sanchez-Solana B, Nueda ML, Ruvira MD, Ruiz-Hidalgo MJ, Monsalve EM, Rivero S, et al. The EGF-like proteins DLK1 and DLK2 function as inhibitory non-canonical ligands of NOTCH1 receptor that modulate each other’s activities. Biochim Biophys Acta (2011) 1813(6):1153–64. doi:10.1016/j.bbamcr.2011.03.004
84. Schmidt MH, Bicker F, Nikolic I, Meister J, Babuke T, Picuric S, et al. Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat Cell Biol (2009) 11(7):873–80. doi:10.1038/ncb1896
85. Tkatchenko TV, Moreno-Rodriguez RA, Comway SL, Molkentin JD, Markwald RR, Tkatchenko AV. Lack of peristin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiol Genomics (2009) 39(3):160–8. doi:10.1152/physiogenomics.00078.2009
86. Xiao Y, Gong D, Wang W. Soluble JAGGED1 inhibits pulmonary hypertension by attenuating Notch signaling. Arterioscler Thromb Vasc Biol (2013) 33(12):2733–9. doi:10.1161/ATVBAHA.113.303062
87. Funahashi Y, Hernandez SL, Das I, Ahn A, Huang J, Vorontchikhina M, Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Zhao XC, Dou GR, Wang L, Liang L, Tian DM, Cao XL, et al. Inhibition of Notch3/jagged1 signaling. J Biol Chem (2009) 284(12):7866–74. doi:10.1074/jbc.M803650200
88. Rauen T, Raffetseder U, Frye BC, Djudjaj S, Muhlenberg PJ, Eitner F, et al. YB-1 acts as a ligand for Notch-3 receptors and modulates receptor activation. J Biol Chem (2009) 284(39):26928–40. doi:10.1074/jbc.M109.046599
89. Cui XY, Hu QD, Tekaya M, Shimoda Y, BT, Nie DY, et al. NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes. J Biol Chem (2004) 279(24):23858–65. doi:10.1074/jbc.M315505200
90. Dumont AG, Nolo R, Fang W, Stewart J, Garcia-Manero G, Zweidler-McKay PA. Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr Blood Cancer (2012) 58(3):482–9. doi:10.1002/pbc.23262
91. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res (2008) 10(6):R605–15. doi:10.1186/bcr2190
92. Moellinger RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Divakaruni AS, Yang Y, Reynoso D, Katz D, Trent JC, Hughes DP. Anti-tumor effects of the Notch pathway in gastrointestinal stromal tumors. Cancer Gene Therapy (2012) 19(9):674–83. doi:10.1039/c2cgt00021c
93. Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, et al. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci (2005) 8(10):842–55. doi:10.1038/nn1492
94. Meng H, Zhang X, Hankenson KD, Wang MM. Thrombomodulin 2 potentiates Notch3/jagged1 signaling. J Biol Chem (2009) 284(12):7866–74. doi:10.1074/jbc.M803650200
95. Sakamoto K, Yamaguchi S, Ando R, Miyawaki A, Kabasawa Y, Takagi M, et al. The nephroblastoma overexpressed gene (N0V/ven) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. J Biol Chem (2002) 277(33):29399–405. doi:10.1074/jbc.M203727200
96. Rauen T, Raffetseder U, Frye BC, Djudjaj S, Muhlenberg PJ, Eitner F, et al. NB-3 and affects neural stem cell renewal. Nat Commun (2014) 5:3926. doi:10.1038/ncomms4296
97. Cui XY, Hu QD, Tekaya M, Shimoda Y, BT, Nie DY, et al. NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes. J Biol Chem (2004) 279(24):23858–65. doi:10.1074/jbc.M315505200
98. Tkatchenko TV, Moreno-Rodriguez RA, Comway SL, Molkentin JD, Markwald RR, Tkatchenko AV. Lack of peristin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiol Genomics (2009) 39(3):160–8. doi:10.1152/physiogenomics.00078.2009
99. Tanaka E, Asanuma K, Kim E, Sasaki Y, Oliva Trejo JA, Seki T, et al. Notch2 activation ameliorates nephrosis. Nat Commun (2014) 5:3926. doi:10.1038/ncomms4296
100. Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem (2008) 283(12):8046–54. doi:10.1074/jbc.M800170200
101. Zage PE, Nolo R, Fang W, Stewart J, Garcia-Manero G, Zweidler-McKay PA. Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr Blood Cancer (2012) 58(3):482–9. doi:10.1002/pbc.23262
102. Dumont AG, Yang Y, Reynoso D, Katz D, Trent JC, Hughes DP. Anti-tumor effects of the Notch pathway in gastrointestinal stromal tumors. Cancer Gene Therapy (2012) 19(9):674–83. doi:10.1039/c2cgt00021c
103. Franko-Jobin LG, Mackey LV, Huang W, Song X, Jin B, Luo J, et al. Notch1-mediated tumor suppression in cervical cancer with the involvement of SST signaling and its application in enhanced SST-targeted therapeutics. Oncol Lett (2012) 17(2):220–32. doi:10.14333/onclett.2011.0269

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 24 March 2014; accepted: 21 May 2014; published online: 10 June 2014.
Citation: Hernandez Tejada FN, Galvez Silva JR and Zweidler-McKay PA (2014) The challenge of targeting Notch in hematologic malignancies. Front. Pediatr. 2:54. doi: 10.3389/fped.2014.00054
This article was submitted to Pediatric Oncology, a section of the journal Frontiers in Pediatrics.