Unidirectional Error Correcting Codes for Memory Systems: A Comparative Study

Muzhir AL-ANI 1 and Qeethara AL-SHAYEA 2

1 Faculty of IT, Amman Arab University
Amman, Jordan

2 MIS Department, Al-Zaytoonah University
Amman, Jordan

Abstract
In order to achieve fault tolerance, highly reliable system often require the ability to detect errors as soon as they occur and prevent the spread of erroneous information throughout the system. Thus, the need for codes capable of detecting and correcting byte errors are extremely important since many memory systems use b-bit-per-chip organization. Redundancy on the chip must be put to make fault-tolerant design available. This paper examined several methods of computer memory systems, and then a proposed technique is designed to choose a suitable method depending on the organization of memory systems. The constructed codes require a minimum number of check bits with respect to codes used previously, then it is optimized to fit the organization of memory systems according to the requirements for data and byte lengths.

Keywords: Unidirectional Error Coding, Correcting Codes Design, Error Detection and Correcting and Error Constructing Codes.

1. Introduction
In recent years, there has an increasing demand for efficient and reliable data transmission and storage systems. Fujiwara [1] insists that before designing a dependable system, we need to have enough knowledge of the system’s faults, errors, and failures of the dependable techniques including coding techniques, and of the design process for practical codes. Saitoh and Imai [2] represent codes that are capable of correcting byte and detecting multiple unidirectional bytes, but it is efficient code when b≤8. They also propose in [3] a code, but it is not efficient code for b≤8. Zhang and Tu [4] propose a systematic t-EC/AUED codes which it's encoding and decoding is relatively easy, but it is efficient in the cases of t=1 and 2 and when k≤31.

S. Al-Bassam [5] presents an improved method to construct t error-correcting and all unidirectional error detecting codes (t-EC/AUED). Umanesan and Fujiwara [6] propose a class of codes called Single t/b-error Correcting—Single b-bit byte Error Detecting codes which have the capability of correcting random t-bit errors occurring within a single b-bit byte and simultaneously indicating single b-bit byte errors.

Bose, Elmougy and Tallin [7] design some new classes of t-unidirectional error-detecting codes over Zm. Krishnan, Panigrahy and Parthasarathy [8] develop the error-correcting codes necessary to implement error-resilient ternary content addressable memories. They prove that the rate (ratio of data bits to total number of bits in the codewords) of the specialized error-correcting codes necessary for ternary content addressable memories cannot exceed 1/t, where t is the number of bit errors the code can correct.

Naydenova and Kløve [9] study codes that can correct up to t symmetric errors and detect all unidirectional errors. Biinck and van Tilborg gave a bound on the length of binary such codes. They gave a generalization of this bound to arbitrary alphabet size. This generalized Biinck-van Tilborg bound, combined with constructions, is used to determine some optimal binary and ternary codes for correcting t symmetric errors and detecting all unidirectional errors.

In computer memory, when data are stored in a byte-per-chip, byte errors may be occurring. When both one to zero and zero to one error may occur, but they do not occur simultaneously in a single byte, the errors are called a unidirectional byte error, which is a kind of byte error [10].
2. Coding Theory

The theory and practice of error-correction coding is concerned with protection of digital information against the errors that occur during data transmission or storage. Many ingenious error correcting techniques based on a vigorous mathematical theory have been developed and have many important and frequent applications. The current problem with any high-speed data communication system such as storage medium is how to control the errors that occur during storing data in storage medium. In order to achieve reliable communication, designers should develop good codes and efficient decoding algorithms [11].

There are three types of faults transient, intermittent, and permanent faults. Transient faults are likely to cause a limited number of symmetric errors or multiple unidirectional errors. Also, intermittent faults, because of short duration, are expected to cause a limited number of errors. On the other hand, permanent faults cause either symmetric or unidirectional errors, depending on the nature of the faults. The most likely faults in some of the recently developed LSI/VLSI, ROM, and RAM memories (such as the faults that affect address decoders, word lines, power supply, and stuck-fault in a serial bus, etc.) cause unidirectional errors. The number of unidirectional errors cause by the above mentioned faults can be fairly large [12].

The errors that can occur because of the noise are many and varied. However, they can be classified into three main types: symmetric, asymmetric, and unidirectional errors [7].

2.1 Error Control for Computer Main Memories

Error correcting codes have been used to enhance the reliability and data integrity of computer memory systems. The error correction can be incorporated in to the hardware. In particular the class of single error-correcting and double error-detecting (SEC-DED) binary codes has been successfully used to correct and detect errors associated with failures in semiconductor memories. The most effective organization is the so-called 1 bit per chip organization. In this organization, all bits of a code word are stored in different chips. Any type of failures in a chip can corrupt at the most 1 bit of the code word. As long as the errors do not line up in the same code word, multiple errors in the memory are correctable. Large scale integration (LSI) and very large scale integration (VLSI) memory systems offer significant advantages in size, speed, and weight over earlier memory systems.

These memories are normally packaged with multiple bit (or byte) per chip organization [13].

Coding techniques play a major role in segment the information in to m blocks each block of k-bit or it may be taken as a single block of length k (k=256, 512, 1024, 2048, 8192, 16384, 32768, 65536, 131072, 262144, 524288) according to the organized memory system in our research. BCH and RS code are two powerful approaches to error control coding in memory systems. The information segmented is the first step when information in a computer memory is written. Then this k-bit encoded in to n-bit called code word which consist of k-bit and r-bit parity check (n=k+r). This code word stored in memory.

The decoding method used to obtain the information k with no errors according to the coding technique when a code word fetched from the storage.

2.2 Reed-Solomon Codes (RS Codes)

A RS code is a class of non binary BCH codes. It is also a cyclic symbol error-correcting code. The RS code represent a very important class of algebraic error-correcting codes, which has been used for improving the reliability of compact disc, digital audio tape and other data storage systems [14]. Secure communications systems commonly use RS code as one method for protection against jamming. RS codes are also used for error control in the data storage systems, such as magnetic drums and photo digital storage systems.

A RS code is block sequence of finite field GF (2^m) of 2^m binary symbols, where m is the number of bits per symbol. This sequence of symbols can be viewed as the coefficients of code polynomial C(x)=c0+c1x+c2x^2+…+cn.x^n-1 where the field elements Ci are from GF(2^m) [10].

A t-error-correcting RS code with symbols from FG(2^m) has the following parameters:

- Code length : n=2^m-1
- Number of information : k=n-2t
- Number of parity-check digits : n-k=2t
- Minimum distance : d_{min}=2t+1

In the following, we shall consider Reed-Solomon codes with code symbols from the Galois field GF(2^m). The generator polynomial of a t-error-correcting Reed-Solomon code of length 2^m-1 is g(x)=(x+α)(x+α^2)...(x+α^2t), where α is a primitive element of GF(2^m), and the coefficients gi, 0 ≤ i ≤ 2t are also from GF(2^m). An (n,k) RS code generated by g(x) is an (n,n-2t) cyclic code whose code vectors are multiples of g(x) [14,15].

Consider RS codes with symbols from GF(2^m), where m is the number of bits per symbol.
Let \(d(x)=c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0 \) be the information polynomial and \(p(x)=c_n x^{n-k} + c_{n-k+1} x^{n-k+1} + \ldots + c_1 x + c_0 \) be the check polynomial. Then the encoded RS code polynomial is expressed by:

\[
c(x) = p(x) + d(x)
\]

where \(c_i, 0 \leq i \leq n-1 \), are field elements in \(\text{GF}(2^m) \). Thus, a vector of \(n \) symbols, \((c_0, c_1, \ldots, c_{n-1})\) is a code word if and only if its corresponding polynomial \(c(x) \) is a multiple of the generator polynomial \(g(x) \). The common method of encoding a cyclic code is to find \(p(x) \) from \(d(x) \) and \(g(x) \), which results in an irrelevant quotient \(q(x) \) and an important remainder \(y(x) \). That is,

\[
d(x) = q(x)g(x) + y(x)
\]

Substituting Eq. (1) into (2) gives:

\[
c(x) = p(x) + q(x)g(x) + y(x)
\]

If we define the check digits as the negatives of the coefficients of \(y(x) \), i.e., \(p(x) = -y(x) \), it follows that:

\[
c(x) = q(x)g(x)
\]

This ensures that the code polynomial \(c(x) \) is a multiple of \(g(x) \). Thus, the RS encoder will perform the above division process to obtain the check polynomial \(p(x) \) [14].

Theorem 1: A Reed-Solomon code is a maximum distance code, and the minimum distance is \(n-k+1 \). This tells us that for fixed \((n,k) \), no code can have a larger minimum distance than a RS code. This is often a strong justification for using RS codes. RS codes always have relatively short block length as compared to other cyclic codes over the same alphabet [16].

In decoding a RS code (or any non binary BCH code), the same three steps used for decoding a binary BCH code are required, in addition a fourth step involving calculation of the error value is required. The error value at the location corresponding to \(B_i \) is given by the following equation:

\[
e_{\text{error}} = \frac{z(pL_n)}{p_{11}}
\]

Where \(z(x) = 1 + (s_1 + \sigma_1)x + (s_2 + \sigma_1 s_1 + \sigma_2)x^2 + \ldots + (s_n + \sigma_1 s_{n-1} + \sigma_2 s_{n-2} + \ldots + \sigma_n)x^n\)

The decoding method of RS code is worth mentioning because of its considerable theoretical interest, even though it is impractical [15].

3. Byte-Per-Chip Memory Organization

In many computer memory and VLSI circuits unidirectional errors are known to be predominant protection must be against combinations of unidirectional and random errors because random byte errors also appear from intermittent faults in memories. Thus it is very important to have such codes for protection of byte organized memories. Table (1) shows the parameters of modified RS code after shortening.

This code is optimal, thus it is the only SbEC-DbEC code with three check bytes but for a given size \(b(b<16) \) there is only one or two value of information.

\(b \)	\(n \)	\(m \)	\(k \)
5	16	79	64
6	46	274	256
7	77	533	512
8	131	1048	1024
9	231	2075	2048
10	823	8222	8192
11	1493	16417	16384
12	2734	32804	32768
13	5045	65575	65536
14	9366	131114	131072
15	17480	262189	262144

Let the two codes whose \(H_0 \) matrices are denoted as \(H_v \) and \(H_w \) have minimum Hamming distance \(d_{\text{min}}=4 \) \(\text{GF}(2^b) \), let \(v_i, i=0,1,\ldots,n-1 \), denote a column vector in the matrix \(H_v \). Preserving minimum distance, matrix \(H_w \) converted to matrix \(H_w \) having all 'I' row vector. Next, this all 'I' row vector is removed from the matrix \(H_w \), whose resultant matrix is now called \(H_w \). The new code has a parity check matrix \(H_1 \) of the form that each column in it is defined by the following equation:

\[
e_{ji} \mathbf{W}_v c_i = \xi
\]

Where \(z(x) = 1 + (s_1 + \sigma_1)x + (s_2 + \sigma_1 s_1 + \sigma_2)x^2 + \ldots + (s_n + \sigma_1 s_{n-1} + \sigma_2 s_{n-2} + \ldots + \sigma_n)x^n\)

The decoding method of RS code is worthy of mention because of its considerable theoretical interest, even though it is impractical [15].
Here H_{0} as the H_{0} matrix shown in Eq. (7) is adapted. An S2EC-D2ED code, whose H_{1} matrix has five rows, can be constructed from H_{0} and $H_{w''}$. In the same manner, the SbEC-DbED codes whose H_{0} matrices have odd number are obtained in the same way. If even number of rows is required (in this example), matrix $H_{w'}$ can be shown as follows:

$$
H_{w'} = \begin{bmatrix}
1 & T^2 & T^2 & 0 & 1 & 0 \\
1 & T & T & 0 & 0 & 1 \\
T^2 & 1 & T & 0 & 0 & 1
\end{bmatrix}
$$

(8)

$$
H_{w''} = \begin{bmatrix}
1 & T^2 & T^2 & 0 & 1 & 0 \\
T^2 & 1 & T^2 & 0 & 0 & 1
\end{bmatrix}
$$

(9)

The code length N for the proposed codes is given as follows:

$$
N = (2^b + 2)^{r-3/2} \quad r: \text{odd} \geq (3)
$$

(10a)

$$
N = 2(2^b + 2)^{r-1/2} \quad r: \text{even} \geq (4)
$$

(10b)

b	r	n	k	n	k	n	k
5	3	170	155	396	378	910	889
4	5780	5755	26136	26106	11300	118265	
6	11560	11530	52272	52236	236600	236558	

Table 2: The parameters of SbEC-DbED RS codes

It is important to know that r is a parity check digits in bits, n is the code word length and k is the information length in all tables observer in this paper. The Parameters of SbEC-DbED RS codes are illustrated in table (2). When the code is shortening table (3) is obtained.

It is obvious from comparing the parameters in table (1) with the parameters in table (3) that the parameters in table (3) are more efficient than the parameters in table (1).

Theorem 2 [17]: Let H be the parity check matrix of a $(n,n-r)$ linear SbEC-DbED code over $GF(2^b)$. The $(2n, 2n-r-1)$ linear code over $GF(2^b)$ defined by the parity check matrix H':

$$
H' = \begin{bmatrix}
0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 1
\end{bmatrix}
$$

(11)

Eq. (13) is a SbEC-DbED code.

Table (4) is obtained after applying theorem 2 to the parameters in table (2). Table (5) shows the results when the parameters are shorten.

After obvious comparison between the parameters in table (1) and parameters in table (3), we observe that there is no table with the best parameters for all value of k, so for the best parameters obtained table (6) is presented.

Since the two chip failure no longer takes place at the same time, these parameters can be used. Codes for only SbEC-DbED are proposed. So these codes can not recognize all the unidirectional errors which occur in b-bit-per-chip memory organization. Wherefore code that fits memory organized in b-bit-per-chip fashion, and $4 < b < 16$ is constructed.

4. Conclusions

The most likely faults in many computer memories cause unidirectional errors, thus a detection of unidirectional errors is required. In addition, byte-error-correcting/detecting codes are useful for protection against byte errors which tend to occur when data are stored in byte-per-chip memory organization. A proposed technique for constructing SbEC-DbED codes is presented in this paper that can be practically applied to large capacity memory units. The obtained results indicate that the proposed technique is suitable and efficient for memory system to recognize unidirectional errors that occur in bit-per chip memory organization.

REFERENCES

[1] E. Fujiwara, Code Design for Development Systems: Theory and Practical Applications, John Wiley and Sons, Inc., 2006.
[2] Y. Saitoh and H. Imai, Multiple Unidirectional Byte Errors-Correcting Codes, IEEE Transactions on Information Theory, Vol. 37, No. 3, May, 1991, pp.903-908.
[3] Y. Saitoh and H. Imai, Generalized Concatenated Codes for Channels where Unidirectional Byte Errors are Predominant, IEEE Transactions on Information Theory, Vol. 39, No. 3, May, 1993, pp.1014-1022.
[4] Z. Zhang and C. Tu, On The Construction of Systematic TEC/AUED Codes, IEEE Transactions on Information Theory, Vol. 39, No. 5, Sep., 1993, pp.1662-1669.

[5] S. Al-Bassam, Another Method for Constructing t-EC/AUED Codes, IEEE Transactions on Computers, Vol. 49, No. 9, Sep., 2000, pp. 964-967.

[6] G. Umanesan and E. Fujiwara, class of Random Multiple Bits in a Byte Error Correcting and Single Byte Error Detecting (S[sub t/b]EC-S[sub b]ED) Codes, IEEE Transactions on Computers, Vol. 52, No. 7, Jul., 2003, pp. 835-848.

[7] B. Bose, S. Elmougy, and L. G. Tallini, Systematic t-Unidirectional Error-Detecting Codes over Zm, IEEE Transactions on Computers, Vol. 56, No. 7, July, 2007, pp. 876-880.

[8] S. Krishnan, R. Panigrahy and S. Parthasarathy, Error-Correcting Codes for Ternary Content Addressable Memories, IEEE Transactions on Computers, Vol. 58, No. 2, Feb., 2009, pp. 275-279.

[9] I. Naydenova and T. Kløve, Some Optimal Binary and Ternary t-EC-AUED Codes, IEEE Transactions on Computers, Vol. 55, No. 11, Nov., 2009, pp. 4989-4994.

[10] G. Fang and H. C. A. Van Tilborg, "Bounds and Constructions of Asymmetric or Unidirectional Error Code", Ablicable Algebra in Engineering Communication and Computing (AAECC), 3, 1992, pp. 269-300.

[11] M. Y. Rhee, Error Correcting Coding Theory, McGraw-Hill, New York, 1989.

[12] D. J. Lin and B. Bose, Theory and Design of t-Error Correcting and d (d>t)- Unidirectional Error Detecting (t-EC/d-UED) Codes, IEEE Transactions on Computers, Vol. 37, No. 4, Apr., 1988, pp.433-439.

[13] C. L. Chen, Error-Correcting Codes with Byte Error-Detection Capability, IEEE Transactions on Computers, Vol. C-32, No. 7, July, 1983, pp.615-621.

[14] M. Morii and M. Kasahara, Generalized Key Equation of Remainder Decoding Algorithm for Reed-Solomon Codes, IEEE Transactions on Information Theory, Vol. 38, No. 6, Nov., 1992, pp. 1801-1807.

[15] S. Lin, An Introduction to Error-Correcting Codes, Prentice-Hall, Electrical Engineering Series, New Jersey, 1970.

[16] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, 1983.

Table 3: The parameters of shortened SbEC-DbED RS codes

b=5	b=6	b=7						
r	n	k	r	n	k	r	n	k
3	47	32	3	82	64	3	149	128
3	79	64	3	146	128	3	277	256
3	143	128	3	274	256	3	533	512
4	276	256	4	536	512	4	1052	1024
5	537	512	5	1054	1024	5	2083	2048
6	1049	1024	6	2078	2048	6	4131	4096
7	2073	2048	7	4126	4096	7	8227	8192
8	4121	4096	8	8222	8192	8	16419	16384
9	8222	8192	9	16414	16384	9	32803	32768
7	16419	16384	7	32804	32768	7	65571	65536
6	32803	32768	6	65578	65536	6	131114	131072
5	65571	65536	5	131114	131072	5	262193	262144
4	131107	131072	4	262186	262144	4	524337	524288
3	262184	262144	3	524330	524288	3	1054	1024

b=8	b=9	b=10						
r	n	k	r	n	k	r	n	k
3	280	256	3	539	512	3	1054	1024
4	536	512	4	1051	1024	4	2078	2048
Table 4: The parameters of new SbEC-DbED RS codes

b=11	b=12	b=13						
r	n	k	r	n	k	r	n	K
3	2081	2048	3	4132	4096	3	8231	8192
4	4129	4096	3	8228	8192	4	16424	16384
5	16424	16384	5	32818	32768	5	65586	65536
	16424	16384		32808	32768		131122	131072
	131117	131072		131117	131072		262194	262144
	262189	262144		524338	524288		524338	524288
524328	524288		524328	524288		524328	524288	

Table 5: The parameters of shortened new SbEC-DbED RS codes

b=5	b=6	b=7						
r	n	k	r	n	K	r	n	k
16	340	324	19	792	773	22	1820	1798
21	680	659	25	1584	1559	29	3640	3611
26	11560	11534	31	52272	52241	36	236600	236564

Table 4: The parameters of new SbEC-DbED RS codes

b=8	b=9	b=10						
r	n	k	r	n	K	r	n	k
25	4128	4103	28	9252	9224	31	20520	20489
33	8256	8223	37	18504	18467	41	41040	40999

Table 4: The parameters of new SbEC-DbED RS codes

b=11	b=12	b=13						
r	n	k	r	n	k	r	n	K
34	45100	45066	37	98352	98315	40	213044	213004
45	90200	90155	49	196704	196655	53	426088	426035

Table 5: The parameters of shortened new SbEC-DbED RS codes

b=14	b=15				
r	n	k	r	n	K
43	458808	458765	46	983100	983054

Table 4: The parameters of new SbEC-DbED RS codes

b=5	b=6	b=7						
r	n	k	r	n	K	r	n	k
16	340	324	19	792	773	22	1820	1798
21	680	659	25	1584	1559	29	3640	3611
26	11560	11534	31	52272	52241	36	236600	236564

Table 4: The parameters of new SbEC-DbED RS codes

b=8	b=9	b=10						
r	n	k	r	n	K	r	n	k
25	4128	4103	28	9252	9224	31	20520	20489
33	8256	8223	37	18504	18467	41	41040	40999

Table 4: The parameters of new SbEC-DbED RS codes

b=11	b=12	b=13						
r	n	k	r	n	K	r	n	K
34	45100	45066	37	98352	98315	40	213044	213004
45	90200	90155	49	196704	196655	53	426088	426035

Table 5: The parameters of shortened new SbEC-DbED RS codes

b=14	b=15				
r	n	k	r	n	K
43	458808	458765	46	983100	983054
Table 6: Best parameters obtained

(n,k)	Table no.	(n,k)	Table no.	(n,k)	Table no.
(47,32)	(3)	(82,64)	(3)	(149,128)	(3)
(79,64)	(1,3)	(146,128)	(3)	(277,256)	(3)
(143,128)	(1,3)	(274,256)	(1,3)	(533,512)	(1,3)
(272,256)	(5)	(531,512)	(1)	(1046,1024)	(5)
(533,512)	(5)	(1049,1024)	(1)	(2077,2048)	(5)
(1049,1024)	(3)	(2078,2048)	(3)	(4131,4096)	(3)
(2073,2048)	(3)	(4126,4096)	(3)	(8227,8192)	(3)
(n,k)	Table no.	(n,k)	Table no.	(n,k)	Table no.
-------	-----------	-------	-----------	-------	-----------
(280,256)	(3)	(539,512)	(3)	(1054,1024)	(3)
(536,512)	(3)	(1051,1024)	(3)	(2078,2048)	(3)
(1048,1024)	(1,3)	(2075,2048)	(1,3)	(4126,4096)	(3)
(2073,2048)	(5)	(4123,4096)	(1,3)	(8222,8192)	(1,3)
(4121,4096)	(5)	(8220,8192)	(5)	(16415,16384)	(5)
(8225,8192)	(5)	(16421,16384)	(5)	(32809,32768)	(5)
(16424,16384)	(3)	(32813,32768)	(3)	(65586,65536)	(3)
(32808,32768)	(3)	(65581,65536)	(3)	(131122,131072)	(3)
(65576,65536)	(3)	(131117,131072)	(3)	(262194,262144)	(3)
(131112,131072)	(3)	(262189,262144)	(3)	(524338,524288)	(3)
(262184,262144)	(3)	(524333,524288)	(3)		
(524328,524288)	(3)				

(n,k)	Table no.	(n,k)	Table no.	(n,k)	Table no.
(2081,2048)	(3)	(4132,4096)	(3)	(8231,8192)	(3)
(4129,4096)	(3)	(8228,8192)	(3)	(16423,16384)	(3)
(8225,8192)	(3)	(16420,16384)	(3)	(32807,32768)	(3)
(16417,16384)	(1,3)	(32804,32768)	(1,3)	(65575,65536)	(1,3)
(32802,32768)	(5)	(65573,65536)	(5)	(131112,131072)	(5)
(65581,65536)	(5)	(131121,131072)	(5)	(262197,262144)	(5)
(131127,131072)	(3)	(262204,262144)	(3)	(524353,524288)	(3)
(262199,262144)	(3)	(524348,524288)	(3)		
(524343,524288)	(3)				

(n,k)	Table no.	(n,k)	Table no.	(n,k)	Table no.
(16426,16384)	(3)	(32813,32768)	(3)		
(32810,32768)	(3)	(65581,65536)	(3)		
(65578,65536)	(3)	(131117,131072)	(3)		
(131114,131072)	(1,3)	(262189,262144)	(3)		
(262187,262144)	(5)	(524334,524288)	(5)		
(524344,524288)	(3)				