Observational Study

Relationship between lipids and sleep apnea: Mendelian randomization analysis

Lian-Peng Zhang, Xiao-Xia Zhang

BACKGROUND
Lipids increase the risk of sleep apnea; however, the causality between them is still inconclusive.

AIM
To explore the causal relationship between serum lipids and sleep apnea using two-sample Mendelian randomization (MR) analysis.

METHODS
Single nucleotide polymorphism (SNP) data related to serum lipids were obtained from the Global Lipids Genetics Consortium study, which included 188578 individuals of European ancestry. Additionally, sleep apnea-related SNP data were collected from the United Kingdom Biobank study, which comprised 463005 individuals of European ancestry. Two-sample MR analysis was performed to assess the causality between serum lipids and sleep apnea based on the above public data.

RESULTS
Genetically predicted low-density lipoprotein (odds ratio [OR] = 0.99, 95% confidence interval [CI] = 0.99 to 1.00; \(P = 0.58 \)), high-density lipoprotein (OR = 0.99, 95% CI = 0.99 to 1.00; \(P = 0.91 \)), triglyceride (OR = 1.00, 95% CI = 0.99 to 1.00; \(P = 0.92 \)), and total cholesterol (OR = 0.99, 95% CI = 0.99 to 1.00; \(P = 0.33 \)) were causally unrelated to sleep apnea.

CONCLUSION
Our MR analysis suggests that genetically predicted serum lipids are not risk factors of sleep apnea.

Key Words: Lipid; Sleep apnea; Mendelian randomization; Single nucleotide polymorphism; Risk factor

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study had a couple of key advantages. First, compared with other observational studies, the genetic variants can be obtained from different sample of individuals, and genetic associations can be obtained from large genome-wide association studies, which can greatly improve the statistical ability to detect small effects of complex phenotypes. Second, the study excluded more confounding factors, heterogeneity and level pleiotropy, and conducted sensitivity tests to make our results more convincing.

INTRODUCTION

Snoring during sleep is accompanied by apnea and shallow breathing, resulting in intermittent hypoxemia. Sleep apnea (SA) is a complex disease complicated by cardiovascular diseases such as coronary syndrome, hypertension, congestive heart failure, arrhythmia, and pulmonary hypertension, and neuropsychiatric dysfunction such as inattention, memory, and cognitive impairment. In addition, the incidence of insulin resistance and metabolic disorder is also higher in patients with than without SA[1-5]. As reported, SA can lead to dyslipidemia, obesity, and metabolic syndrome[6].

Traditional studies believe that SA is mainly linked to the anatomical structure of the upper airway [7]. Recent epidemiological studies have demonstrated that male and obesity are the main risk factors for SA[6]. In the past, there has been discussion about how SA affects serum lipids, and several studies have shown that the levels of dyslipidemia including low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), and total cholesterol (TC) increase in patients with obstructive SA (OSA)[8-10]. Nevertheless, it is rarely discussed whether serum lipids can be risk factors for SA. Understanding the effect of serum lipids on SA may assist in reducing relevant risk factors and providing novel ideas for the intervention of SA.

The critical risk factors of OSA are obesity and high body mass index (BMI), which are both associated with abnormal lipid metabolism. However, it remains unclear whether lipids may be directly correlated with OSA. We assumed that there is a correlation between them and analyzed their correlation using the Mendelian randomization (MR) method. MR, a newly developed research method, uses genetic variants as instrumental variables to investigate whether a risk factor causally afflicts a health outcome and is possible to avoid confounding factors in observational studies and clinical trials [11,12].

In our research, LDL, HDL, TG, and TC were utilized as representative lipid markers to probe the causal relationship between lipids and SA.

MATERIALS AND METHODS

Data resources and study design

Our data were sourced from published data. The statistical data for genetically predicted LDL \((n = 1730820)\), HDL \((n = 187167)\), TG \((n = 177861)\), and TC \((n = 187365)\) were obtained from the Global Lipids Genetics Consortium study that summarized 45 studies and incorporated 188578 individuals of European ancestry[13]. The outcome data for genetically predicted SA \((n = 463010)\) were harvested from the United Kingdom Biobank study (Table 1). Afterwards, a two-sample MR analysis was conducted to investigate the causal relationship of serum lipids with SA. The complete experimental design is shown in Figure 1.

Selection of genetic instrumental variables

To select appropriate instrumental variables, assumption 1 that instrumental variables are strongly correlated with exposure was first satisfied according to our experimental design. Subsequent to
Table 1 Detailed data of Mendelian randomization

Variable	Consortium	PMID	Population	Sex
Sleep apnea	UKB	-	European	Males and females
LDL-C	GLGC	24097068	European	Males and females
HDL-C	GLGC	24097068	European	Males and females
TG	GLGC	24097068	European	Males and females
TC	GLGC	24097068	European	Males and females

GLGC: Global Lipid Genetics Consortium; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; TC: Total cholesterol; TG: Triglyceride; UKB: United Kingdom Biobank.

Figure 1 Overall design of Mendelian randomization analysis in this study. LDL: Low-density lipoprotein; HDL: High-density lipoprotein; TG: Triglyceride; TC: Total cholesterol.

Separate extraction of SNPs associated with LDL, HDL, TG, and TC with genome-wide significance ($P < 5 \times 10^{-8}$), the clumping process ($R^2 < 0.001$, window size = 10000 kb) was conducted to remove the linkage disequilibrium[14]. Second, assumption 2 was fulfilled to ensure no association between the instrumental SNPs and confounding factors (BMI, male sex, and obesity were identified as confounders [15] in this study). SNPs related to confounding factors were excluded using a website (http://www.phenoscanner.medschl.cam.ac.uk/). Last, SNPs related to outcomes were also eliminated by the aforementioned website to meet assumption 3.

Statistical analyses

An inverse variance weighted (IVW) meta-analysis was carried out to obtain an MR estimate. To enable a more reliable IVW approach, there was no evidence of targeted pleiotropy in the selected IVs (MR-Egger, $P > 0.05$)[16,17]. Other methods, including MR-Egger method, weighted median method, simple mode method, and weighted mode method, were also conducted to evaluate the stability of the results [18,19]. The weighted median method has the advantage that the results are consistent even when up to 50% of the information comes from invalid instrumental variables[18].

Sensitivity analysis

The Cochran’s Q test was utilized to assess the heterogeneity of individual genetic variability we estimated. P value less than 0.05 was regarded as significant heterogeneity. The stability of the results was evaluated using the funnel diagram. Pleiotropy was not found by MR-Egger test. The leave-one-out sensitivity analysis was performed to observe whether the results changed after each SNP was eliminated. The results are presented in Supplementary Figures 1-4. The package “two-sample-MR” (version 0.5.6; Bristol, United Kingdom) in R (version 4.1.2; Vienna, Austria) was utilized in our analysis.
RESULTS

Association of serum lipid levels with the risk of SA

In MR, the IVW method manifested that the level of serum lipids including LDL (odds ratio [OR] = 0.99, 95% confidence interval [CI] = 0.99 to 1.00, P = 0.58), HDL (OR = 0.99, 95%CI = 0.99 to 1.00, P = 0.91), TG (OR = 1.00, 95%CI = 0.99 to 1.00, P = 0.92), and TC (OR = 0.99, 95%CI = 0.99 to 1.00, P = 0.33) was not causally associated with SA. Another four approaches were also applied including MR Egger, weighted median, simple mode, and weighted mode. No obvious heterogeneity and horizontal pleiotropy was observed. The detailed results are displayed in Tables 2 and 3. There was no evidence of heterogeneity in the IVW analysis as demonstrated by funnel plots (Supplementary Figures 5-8). The effect size of SNPs on exposure (serum lipids) and outcome (SA) was found in scatter plots (Supplementary Figures 9-12). The effect of every single SNP on the outcomes is manifested in forest plots (Supplementary Figures 13-16).

DISCUSSION

This study carefully selected SNPs as effective instrumental variables and excluded known risk factors (obesity and high BMI, as well as other known risk factors including male neck circumference greater than 17 inches [43 cm], female neck circumference greater than 15 inches [38 cm], male sex, age over 50 years, and smoking[15]). MR analysis showed that genetically predicted LDL, HDL, TG, and TC had no causal relationship with SA.

Numerous studies have dissected the relationship between serum lipids and SA, but the results have been varied. Can et al[20] showed the higher levels of TC, LDL, TG, and apolipoprotein B in the OSA group than in the control group. A study of Japanese working men elucidated a positive correlation between the respiratory disorder index and TG[21]. Tan et al[22] noted that HDL was diminished and oxidized LDL was elevated in patients with OSA. In a study of patients in eastern China, the authors observed that LDL was independently associated with OSA[23]. The inconsistency of the above results may be related to the small sample size and the involvement of confounding factors.

Our results revealed that genetically predicted LDL, HDL, TG, and TC were not causally correlated with SA. This result can be explained by the following mechanisms. First, the deposition of excessive fat in the neck may increase airway resistance and resultant susceptibility to SA. Nonetheless, the study comparing the distribution of neck soft tissues and fat between normal men and women by magnetic resonance imaging elaborated that the difference of fat deposition might not substantially damage the anatomical structure of the airway[24]. Second, SA is a complex disease and not simple pathogenesis of mechanical load. The factors involved also consist of the neurohumoral and metabolic inflammatory environment[25,26]. Apneas and hypopneas are classified into obstructive or central types[27], with OSA as the most common type. In OSA, airway anatomy is critically implicated in the influence of airway collapsing pressure in patients with the hypotonic airway. However, some evidence illustrated that neuromuscular factors are a pivotal cause of airway collapse during sleep, including upper airway dilator dysfunction, increased chemical sensitivity, and low arousal threshold (premature sleep arousal contributes to unstable ventilation control)[28,29]. Dong et al[30] delved into the relationship between lipid accumulation products (LAPs) and OSA in patients with type 2 diabetes mellitus, which revealed that after the same confounding factors were adjusted, neither TG nor waist circumference, as constituents of LAPs, was signally associated with apnea-hypopnea indexes and OSA. BMI, visceral fat, and neck circumference are the principal predictors of clinical expression in OSA. After exclusion of these known risk factors, our calculated results unveiled that genetically predicted lipids did not directly correlate to SA. Multiple studies have concluded lipids as a risk factor for SA, most likely because dyslipidemia metabolism may cause obesity and obesity is the primary risk factor for OSA. However, the direct correlation between lipids and SA was discussed in our study based on big data research, not the real world. For the aforementioned reasons, there might not be a causal relationship between serum lipids and SA.

This study had several advantages. First, different from other observational studies, genetic variants can be collected from different samples of individuals and genetic associations can be attained from large genome-wide association studies, which can remarkably improve the statistical ability to detect the small effects of complex phenotypes[31]. Second, the present study excluded more confounding factors, heterogeneity and level pleiotropy, and conducted sensitivity tests to strengthen the conviction of our results.

This study also has limitations. First, the sample population included in our study was all from Europe. In this context, it cannot be confirmed that the same conclusion is obtained from non-European populations. In addition, in terms of the selection of serum lipid markers, only four markers were included in our research. It remains unknown whether other biomarkers are causally related to SA.
Table 2 Results from two sample Mendelian randomization analysis

Lipid	Method	Number of SNPs	P value	OR	95%CI
LDL and Sleep apnea	MR Egger	42	0.58	0.99	0.99-1.00
	Weighted median	42	0.97	0.99	0.99-1.00
	Inverse variance	42	0.85	1.00	0.99-1.00
	Simple mode	42	0.31	1.00	0.99-1.00
	Weighted mode	42	0.74	0.99	0.99-1.00
HDL and sleep apnea	MR Egger	55	0.91	0.99	0.99-1.00
	Weighted median	55	0.35	1.00	0.99-1.00
	Inverse variance	55	0.29	1.00	0.99-1.00
	Simple mode	55	0.22	1.00	0.99-1.00
	Weighted mode	55	0.33	1.00	0.99-1.00
TG and Sleep apnea	MR Egger	35	0.92	1.00	0.99-1.00
	Weighted median	35	0.82	0.99	0.99-1.00
	Inverse variance	35	0.57	1.00	0.99-1.00
	Simple mode	35	0.59	0.99	0.99-1.00
	Weighted mode	35	0.94	1.00	0.99-1.00
TC and Sleep apnea	MR Egger	51	0.33	0.99	0.99-1.00
	Weighted median	51	0.68	0.99	0.99-1.00
	Inverse variance	51	0.82	1.00	0.99-1.00
	Simple mode	51	0.20	1.00	0.99-1.00
	Weighted mode	51	0.70	1.00	0.99-1.00

HDL: High-density lipoprotein; LDL: Low-density lipoprotein; MR: Mendelian randomization; OR: Odds ratio; SNPs: Single nucleotide polymorphisms; TC: Total cholesterol; TG: Triglyceride.

Table 3 Heterogeneity test and level pleiotropy test

Lipid	Heterogeneity test, inverse variance weighted	Level pleiotropy test				
	Q	df	P value	Q	df	P value
LDL	33.04	41	0.807	0.459		
HDL	67.98	54	0.096	0.408		
TG	34.87	34	0.427	0.823		
TC	48.34	50	0.540	0.247		

HDL: High-density lipoprotein; LDL: Low-density lipoprotein; TC: Total cholesterol; TG: Triglyceride.

CONCLUSION

Genetically predicted LDL, HDL, TG, and TC may not have a causal relationship with SA. More pathogenesis of SA needs to be studied.

ARTICLE HIGHLIGHTS

Research background

Obstructive sleep apnea (OSA) has a negative effect on serum lipids, but the relationship between serum lipids and OSA is still uncertain.
Research motivation
We explored the direct effect of serum lipids on OSA.

Research objectives
We observed that lipids are not related to OSA, and we need to further look for other markers to predict OSA in the future.

Research methods
First, compared with other observational studies, the genetic variants can be obtained from different sample of individuals, and genetic associations can be obtained from large genome-wide association studies, which can greatly improve the statistical ability to detect small effects of complex phenotypes. Second, the study excluded more confounding factors, excluded heterogeneity and level pleiotropy, and conducted sensitivity tests to make our results more convincing.

Research results
In Mendelian randomization, the inverse variance weighted method manifested that the level of serum lipids including low-density lipoprotein (odds ratio [OR] = 0.99, 95% confidence interval [CI] = 0.99 to 1.00, \(P = 0.58 \)), high-density lipoprotein (OR = 0.99, 95%CI = 0.99 to 1.00, \(P = 0.91 \)), triglyceride (OR = 1.00, 95%CI = 0.99 to 1.00, \(P = 0.92 \)), and total cholesterol (OR = 0.99, 95%CI = 0.99 to 1.00, \(P = 0.33 \)) was not causally associated with sleep apnea (SA).

Research conclusions
Through MR analysis, this study concludes that serum lipids are not associated with SA.

Research perspectives
We need to find other markers to predict SA in the future.

FOOTNOTES

Author contributions: Zhang LP contributed to conceptualization, methodology, software, writing-review, and editing; Zhang XX contributed to formal analysis, writing-review, and editing.

Institutional review board statement: The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). All data base were from public research. No patients were participated in the design or study. Thus, ethical approval was not needed for our study.

Informed consent statement: Since this study does not involve human participation, it is not necessary to sign an informed document.

Conflict-of-interest statement: All authors have no conflicts of interest to declare.

Data sharing statement: The data used in this study are all from published materials, dataset available from https://gwas.mrcieu.ac.uk/ .

STROBE statement: The authors have read the STROBE Statement—checklist of items, and the manuscript was prepared and revised according to the STROBE Statement—checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Lian-Peng Zhang 0000-0002-7303-2244.

S-Editor: Liu JH
L-Editor: Filipodia
P-Editor: Liu JH
REFERENCES

1. Wheaton AG, Perry GS, Chapman DP, Croft JB. Sleep disordered breathing and depression among U.S. adults: National Health and Nutrition Examination Survey, 2005-2008. Sleep 2012; 35: 461–467 [PMID: 22467983 DOI: 10.1093/sleep/17.2.424]

2. Chen YH, Keller JR, Kang JH, Hsieh HJ, Lin HC. Obstructive sleep apnea and the subsequent risk of depressive disorder: a population-based follow-up study. J Clin Sleep Med 2013; 9: 417–423 [PMID: 23674930 DOI: 10.5664.jcsm.2652]

3. Peppard PE, Szloko-Coxe M, Hla KM, Young T. Longitudinal association of sleep-related breathing disorder and depression. Arch Intern Med 2006; 166: 1709–1715 [PMID: 16983048 DOI: 10.1001/archinte.166.16.1709]

4. Gonzaga C, Bertolami A, Bertolami M, Amodeo C, Calhoun D. Obstructive sleep apnea, hypertension and cardiovascular diseases. J Hum Hypertens 2015; 29: 705–712 [PMID: 25761667 DOI: 10.1111/jhuh.12157]

5. Botros N, Concato J, Mohsenin V, Selim B, Doctor K, Yaggi HK. Obstructive sleep apnea as a risk factor for type 2 diabetes. Am J Med 2009; 122: 1122–1127 [PMID: 19958890 DOI: 10.1016/j.amjmed.2009.04.026]

6. Nadeem R, Singh M, Nida M, Waheed I, Khan A, Ahmed S, Naseem J, Champeau D. Effect of obstructive sleep apnea hypopnea syndrome on lipid profile: a meta-regression analysis. J Clin Sleep Med 2014; 10: 475–489 [PMID: 24901548 DOI: 10.5664/jcsm.3690]

7. Schwab RJ, Pasiermstein M, Pierson R, Mackley A, Hackdooran R, Arens R, Maislin G, Pack AI. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 2003; 168: 522–530 [PMID: 12744251 DOI: 10.1164/rccm.200208-8606OC]

8. Barceló A, Barbé F, Llompart E, Mayoralas LR, Ladaria A, Bosch M, Agustí AG. Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am J Med 2004; 117: 118–121 [PMID: 15234468 DOI: 10.1016/j.amjmed.2004.01.025]

9. McArdle N, Hillman D, Belin L, Watts G. Metabolic risk factors for vascular disease in obstructive sleep apnea: a matched controlled study. Am J Respir Crit Care Med 2007; 175: 190–195 [PMID: 17068329 DOI: 10.1164/rccm.200602-2706OC]

10. Trakada G, Steiropoulos P, Nena E, Giokta T, Kouliatsis G, Pataki A, Sotiropoulou E, Anevlias S, Papanas N, Bouras D. Plasma viscosity levels in severe obstructive sleep apnea-hypopnea syndrome. Sleep Breath 2009; 13: 349–355 [PMID: 19536446 DOI: 10.1007/s11325-009-0254-6]

11. Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: A review. Res Synth Methods 2019; 10: 486–496 [PMID: 30861319 DOI: 10.1002/jrsm.1346]

12. Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003; 32: 1–22 [PMID: 12689998 DOI: 10.1093/ije/dyg070]

13. Wiljer DJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchovich ML, Sora S, Beckmann JS, Bragg-Gresham JL, Chang HY, Demirkiran A, Den Hertog HM, Do R, Donnelly LA, Ehret GB, Esko T, Feitosa MF, Ferreira T, Morris AP, Medland SE; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003; 32: 1–22 [PMID: 12689998 DOI: 10.1093/ije/dyg070]

14. Zhang LP et al. Relationship between lipids and sleep apnea [PMID: 25690331 DOI: 10.5664/jcsm.3690]
Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. *Nat Genet* 2012; 44: 369-375, S1 [PMID: 22426310 DOI: 10.1038/ng.2213]

17 Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. *Nat Rev Cardiol* 2017; 14: 577-590 [PMID: 28569269 DOI: 10.1038/nrcardio.2017.78]

18 Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. *J Epidemiol* 2016; 40: 304-314 [PMID: 27061298 DOI: 10.1002/gepi.21965]

19 Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. *J Epidemiol* 2017; 46: 1985-1998 [PMID: 28569269 DOI: 10.1038/nrcardio.2017.78]

20 Can M, Açikgöz S, Mungan G, Bayraktaroğlu T, Koçak E, Güven B, Demirtas S. Serum cardiovascular risk factors in obstructive sleep apnea. *Chest* 2006; 129: 233-237 [PMID: 16478836 DOI: 10.1378/chest.129.2.233]

21 Toyama Y, Chin K, Chihara Y, Takegami M, Takahashi KI, Sumi K, Nakamura T, Nakayama-Asahida Y, Minami I, Horita S, Oka Y, Wakamura SI, Mishima M, Kadozawa H. Association between sleep apnea, sleep duration, and serum lipid profile in an urban, male, working population in Japan. *Chest* 2013; 143: 720-728 [PMID: 23081691 DOI: 10.1378/chest.12-0338]

22 Tan KC, Chow WS, Lam JC, Lam B, Wong WK, Tam S, Ip MS. HDL dysfunction in obstructive sleep apnea. *Atherosclerosis* 2006; 184: 377-382 [PMID: 15975582 DOI: 10.1016/j.atherosclerosis.2005.04.024]

23 Xu H, Gu, Yi H, Zou J, Meng L, Yang X, Zhu H, Yu D, Zhou H, Su K, Wang Y, Wang J, Yin S; Shanghai Sleep Health Study Research Group. Elevated low-density lipoprotein cholesterol is independently associated with obstructive sleep apnea: evidence from a large-scale cross-sectional study. *Sleep Breath* 2016; 20: 627-634 [PMID: 26424733 DOI: 10.1007/s11325-015-1262-3]

24 Whittle AT, Marshall I, Mortimore IL, Wraith PK, Sellor RJ, Douglas NJ. Neck soft tissue and fat distribution: comparison between normal men and women by magnetic resonance imaging. *Thorax* 1999; 54: 323-328 [PMID: 10092693 DOI: 10.1136/thx.54.4.323]

25 Patil SP, Schneider H, Schwartz AR, Smith PL. Adult obstructive sleep apnea: pathophysiology and diagnosis. *Proc Am Thorac Soc* 2008; 5: 185-192 [PMID: 18250211 DOI: 10.1513/pats.200708-137MG]

26 Schwartz AR, Patil SP, Laffan AM, Polotsky Y, Schneider H, Smith PL. Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches. *Physiol Rev* 2010; 90: 47-112 [PMID: 20890226 DOI: 10.1152/physrev.00043.2008]

27 Jordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. *Lancet* 2014; 383: 736-747 [PMID: 23910433 DOI: 10.1016/S0140-6736(13)60734-5]

28 Dong L, Lin M, Wang W, Ma D, Chen Y, Su W, Chen Z, Wang S, Li X, Li Z, Liu C. Lipid accumulation product (LAP) was independently associated with obstructive sleep apnea in patients with type 2 diabetes mellitus. *BMJ Endocr Disord* 2020; 20: 179 [PMID: 33290920 DOI: 10.1186/s12902-020-00661-x]

29 Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and challenges. *Int J Epidemiol* 2016; 45: 908-915 [PMID: 27427429 DOI: 10.1093/ije/dyw127]
