Parasitic Infestation in the Incidence of Diarrhea Among Toddlers in Jakarta, Bogor, Banjarmasin, and Makassar

Khariri1*, Magdarina Destri Agtini1, Endah Ariyanti1, Riyanti Ekowati1, Nelly Puspandari1, Masri Sembiring Maha1

1Center for Research and Development of Biomedical and Basic Health Technology, Jakarta, Indonesia
*Corresponding author. Email: arie.tegale@gmail.com

ABSTRACT
The occurrence of diarrhea in children under five years old (toddlers) is still a serious health problem because it can cause mortality and malnutrition in children. Diarrhea is one of the biggest causes of death in toddlers in the world. Data from the World Health Organization (WHO) reports that more than 10 million children under five years old die every year and around 20 percent of them die because of diarrhea. One etiology of diarrhea infection in children under five years old who often escapes attention is diarrhea caused by parasites. As a developing and tropical country, the incidence of diarrhea due to parasitic infections in Indonesia is quite high. Examination of diarrhea samples in children under five years old to identify the type of parasites that play a role in the incidence of diarrhea. Stool samples were collected from patients seeking treatment at several primary health care and hospitals in Jakarta, Banjarmasin and Makassar during 2015-2016. The stool specimens were collected in containers containing formaldehyde for microscopic examination. Blastocystis hominis was found to be the most prevalent parasite with an infection rate of 12.46% followed by Entamoeba coli 1.73%, Ascaris lumbrichoides 0.35%, Oxiuris vermicularis 0.35%, Endolomax nana 0.35%, and Hookworm (Ancylostoma sp and Necator americanus) 0.35%. Parasitic diarrhea increases susceptibility to other infections, should not be neglected, particularly in patients with chronic diarrhea. Accurate diagnosis decreases morbidity and mortality in patients with parasite infection.

Keywords: toddlers, diarrhea, parasites

1. INTRODUCTION
Diarrhea is defecation with a runny and liquid consistency and with frequency more than three times a day, while acute diarrhea is diarrhea that occurs suddenly and lasts briefly in a few hours to several days. The watery stool can be accompanied or without mucus and blood. In addition, diarrhea can also be accompanied by symptoms such as dehydration, fever, nausea and vomiting, anorexia, weakness, pale, abdominal keratin, sunken eyes, dry mucous membranes, decreased urine output, and others [1,2].

In children under five years old (toddlers), diarrhea is still one of the important health problems especially in developing countries, for instance, Indonesia. In Indonesia, diarrhea is still a major health problem because it often causes outbreak and sometimes even causes death [3]. Many risk factors that are suspected to be related to the incidence of diarrhea among children under five include hygiene, sanitation and inadequate drinking water supply, personal hygiene and improper preparation and storage of food for children. Hygiene in children under five is very much determined by their parents [4,5]. The magnitude of the problem due to diarrhea can be seen from the high morbidity and mortality rate. Many factors be a driving factor for diarrhea directly or indirectly. Diarrhea is one of the biggest causes of death in children under five in the world and malnutrition in children in developing countries [6].

World Health Organization (WHO) reports that more than 10 million children under five die every year. As many as 20 percent of them died due to diarrhea. At present the death rate caused by diarrhea is 3.8 per 1000 every year. Each year is estimated 2.5 billion incidents of diarrhea in children under five, and almost no change in the last two decades [7,8]. Based on a diarrhea morbidity survey conducted by the Diarrhea Subdit Ministry of Health's in 2010, the incidence of diarrhea in Indonesia in 2000- 2010 tends to increase. The diarrhea outbreak report from 2008 to 2016 stated that the CFR during the outbreak was still quite high (> 1%) except in 2011 the CFR when the outbreak was...
Diarrhea can be caused by infection or non-infection. Diarrhea because of infection can be caused by bacteria, viruses and parasites [11,12]. This study is a part of Identification of Enteric Pathogens, Analysis of Antimicrobial Resistance and Genotyping of Rotavirus that Cause Diarrhea in Toddlers. The research aimed to identify various types of parasites that are the source of infection in the incidence of diarrhea in children under five. The results of the study are expected to be used as a basis for diarrhea control program policies for children under five in Indonesia.

2. METHOD

This study used a non-intervention descriptive laboratory design with cross sectional research design. The subjects of the study were children under five who went to the hospitals and health centers that had been determined in Jakarta, Bogor, Banjarmasin and Makassar during July 2015-March 2016. The number of research subjects was 500 respondents for each province. Inclusion criteria in the study subjects included children under five years old, fulfilling the diarrhea case definition refer to WHO definition, as well as obtaining approval from parents or guardians to participate in the study.

The diagnosis of diarrhea is made by the doctor in charge at the selected regional health center or hospital. Data collection activities include the submission of informed consent, form filling and specimen collection by trained personnel. After obtaining approval, the officer collected data by filling out the forms provided and collected the stool samples. The samples were put into containers containing 10% formalin. All the specimens and forms are sent to Infection Disease Research Laboratory of Prof. Sri Oemijati to do microscopic identification of parasites. Examination was done by direct examination of the stool to identify leukocytes contained in the stool. Cryptosporidium identification was carried out using modified Kinyoun staining. Stools that had been added to formalin were stained using a solution of lugol’s iodine and observed under a light microscope to see the presence or absence of parasites. The data obtained was then analyzed statistically descriptively. Permission for conducting research has been obtained from the Ministry of Home Affairs. While the ethical approval was given by the Ethics Commission of National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia.

3. RESULTS AND DISCUSSION

This research targets to be able to collect 500 specimens each place so that it is expected that from 4 places 2000 specimens will be obtained. However, only 77% of stool specimens can be tested for parasites received by Prof. Infection Disease Research Laboratory. Sri Sri Oemijati. Some of the stool containers received are empty without being filled with stool specimens.

City	Hospital / Regional	Number of Specimens
DKI Jakarta	PK Padémanan	50
	PKM Jatinegara	125
	RSPI	30
	RSUD Budi Asih	45
Bogor	RSUD Cibinong	167
	PKM Cirimekar	166
	PKM Ciawi	167
Banjarmasin	PKM Kelayan Timur	70
	RS Ulin	75
	RS Ansari Saleh	60
	PKM Kuin Raya	49
Makassar	RS Sayang Rakyat	40
	PKM Sudiang	125
	PKM Kulu Bodoa	175
	RS Daya	80
Total		1424

The results of the confirmation to the officers in the field stated that the limited time of respondents while in health care facilities became a factor that could not collect stool specimens. Some patients who come to health care facilities sometimes also have received treatment that causes the frequency of diarrhea has decreased, so that when visiting health care facilities to get further treatment, feces samples expected to be research samples were difficult to obtain. Distribution of diarrhea patients who were examined can be seen in Table 2. Based on gender, diarrhea sufferers with other types of males were males than females. Meanwhile, seen from the age group, some diarrhea sufferers were aged 12-35 months.

Characteristic	Number of patients (%)
Sex	
Male	58.5
Female	41.5
Age group (month)	
<12	30.7
12-35	54.4
36-59	14.9

Microscopic examination of stool specimens found several parasites that were manifest in the incidence of diarrhea among children under five, namely Ascaris lumbricoides, Entamoeba coli, Oxiuris vermicularis, Blastocystis hominis, Endolomax nana, and Hookworm (Ancylostoma sp and Necator americanus). In some stool specimens found more than 1 type of parasitic infection. The types of parasites found can be seen in Table 3.
Ascaris lumbrichoides, Oxiuris vermicularis, Entamoeba coli, Blastocystis hominis, and Endolimax nana are parasites that can cause diarrhea. Infections with these parasites can be manifest in the form of obstruction in the small intestine with symptoms resembling acute digestive disorders. Symptoms that appear include mild abdominal pain and flatulence to acute and sometimes chronic diarrhea. The incidence of diarrhea caused by parasitic infections is higher in tropical and sub-tropical regions. Concurrent infections of these two parasites occur because of the way they are transmitted that is identical through the fecal-oral route and ingestion of cysts from contaminated water sources. These parasites are generally pathogenic in individuals with immune system disorders. Symptoms that appear include mild abdominal pain and flatulence to acute and sometimes chronic diarrhea.

Infections that occur by one type of parasite are 44% while infections that occur by two parasites are 42% with the most combination is Ascaris-lumbricoides and Oxiuris vermicularis. Infections that occur by one type of parasite are 44% while infections that occur by two parasites are 42% with the most combination is Ascaris-lumbricoides and Oxiuris vermicularis. The incidence of this infection is higher in tropical and sub-tropical regions. Concurrent infections of these two parasites occur because of the way they are transmitted that is identical through the fecal-oral route and ingestion of cysts from contaminated water sources. These parasites are generally pathogenic in individuals with immune system disorders. Symptoms that appear include mild abdominal pain and flatulence to acute and sometimes chronic diarrhea.

Research conducted on pediatric diarrhea in Iraq from 2003 to 2004 obtained data that Giardia lamblia became the most parasitic with a prevalence of 45.54% followed by Entamoeba histolytica 23.44%, Oxyurus vermicularis 12.7%, Hymenolepis nana 9.82%, Trichuris trichiura 5.4%, and Ascaris lumbricoides 2.2% [24]. Identification of the child's stool specimens in Peru also showed the most common infecting parasites were Ascaris lumbricoides 68%, Trichuris trichiura 44%, Oxyurus vermicularis 28%, Hymenolepis nana 21% and Strongyloides stercoralis 16%. Infections that occur by one type of parasite are 44% while two parasites are 42% with the most combination is Ascaris-Trichuris [25]. WHO data state that the highest incidence of diarrhea in children under five is 80% [26]. This is related to immune factors, hygiene and habits like putting something in the mouth. Something that is put into the mouth will be an intermediary for microorganisms as a source of infection that causes diarrhea [27].

A study conducted by Safrudin in 2009 obtained data that Giardia lamblia became the most parasitic with a prevalence of 45.54% followed by Entamoeba histolytica 23.44%, Oxyurus vermicularis 12.7%, Hymenolepis nana 9.82%, Trichuris trichiura 5.4%, and Ascaris lumbricoides 2.2% [24]. Identification of the child's stool specimens in Peru also showed the most common infecting parasites were Ascaris lumbricoides 68%, Trichuris trichiura 44%, Oxyurus vermicularis 28%, Hymenolepis nana 21% and Strongyloides stercoralis 16%

Table 3. Results of parasitic microscopic examination

No.	The type of parasite	Number of Specimens (%)
1.	Ascaris lumbrichoides	0.35
2.	Entamoeba coli	1.73
3.	Oxiuris vermicularis	0.35
4.	Blastocystis hominis	12.46
5.	Entamoeba coli, Blastocystis hominis	1.73
6.	Endolimax nana, Blastocystis hominis	0.35
7.	Ascaris lumbricoides, Entamoeba coli, Blastocystis hominis	0.35
8.	Hookworm	0.35
Kepil Subdistrict, Wonosobo Regency, Central Java Province which shows that one of the factors related to diarrhea in toddlers is sanitation of clean water facilities [29]. Another factor that is also dominantly a risk factor for diarrhea is the economic factor[28].

4. CONCLUSION
Based on the results of this study it is found that the incidence of parasitic diarrhea that occurs in children under five was mostly caused by Blastocystis hominis and Entamoeba coli. Diarrhea caused by a parasitic infection can increase susceptibility to other infections so that it should receive attention, especially in the incidence of chronic diarrhea. Rapid and precise diagnosis can reduce the morbidity and mortality of diarrhea sufferers due to parasitic infections.

ACKNOWLEDGMENT
This research used funds from 1Center for Research and Development of Biomedical and Basic Health Technology Ministry of Health Republic of Indonesia. Thank you to the Scientific Advisory Committee (PPI), for all input and direction. Thank you also to the Health Service involved in Jakarta, Bogor, Banjarmasin and Makassar and all the teams involved, for their cooperation in collecting data in their respective regions. Do not miss the entire research team and all parties who cannot be mentioned one by one, thank you for all your help and support in carrying out the whole series of research.

REFERENCES
[1] Ministry of Health of the Republic of Indonesia. Five Steps to Complete Diarrhea. Jakarta: The Indonesian Ministry of Health. 2011.
[2] Chang, Ju Young. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-Associated Diarrhea. J Infect Dis. 2008; 197 (3): 435-438.
[3] Kusbaryanto, Hidayati T. Overview of diarrhea outbreaks and related factors in Senden, Kulon Progo. Journal of Medicine and Health Mutiara Medika. 2008; 8 (1).
[4] Mansjoer et al. Children's Health Sciences Section FKUI. Children's Health Sciences, Volume I. Jakarta: Infomedika Jakarta: 1998. 283-8.
[5] Mafazah L. Availability of Basic Sanitation Facilities, Mother's Personal Hygiene and Diarrhea. Pack. 2013; 8 (2): 176-182.
[6] Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000–2010: an updated systematic analysis. Lancet. 2012; 379: 2151–61.
[7] Ministry of Health. Indonesia Health Profile 2018. Ministry of Health Republic of Indonesia. 2018.
[8] Solares. Impact of Rotavirus Vaccination on Diarrhea-related Hospitalizations Among Children <5 Years of Age in Mexico. Pediatric Infectious Disease Journal. 2011; 30 (1): S11-S15.
[9] Dini F, Machmud R, Rasyid R. Relationship between Environmental Factors and the Incidence of Toddler Diarrhea in the Work Area of the Kambang Health Center, Lengayang Subdistrict, Pesisir Selatan Regency in 2013. Andalas Health Journal. 2015; 4 (2): 453-461.
[10] Müller I, Yap P, Steinmann P, Damons BP, Schindler C, Seelig H., et al. Intestinal parasites, growth and physical fitness of schoolchildren in poor neighbourhoods of Port Elizabeth, South Africa: a cross-sectional survey, Parasites & Vectors, [online], diakses pada 19 Oktober 2019, dari: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-0161761-5
[11] Herbowo, Firmansyah A. Diarrhea Due to Parasitic Infection. 2003; 4 (4): 198-203.
[12] Maryanti E, Lesmana Elementary School, Mandela H, Herlina S. Profile of Children with Diarrhea in Pekanbaru Inpatient Health Centers. JIK 2014; 8 (2): 101-105.
[13] Soebagyo. Acute Diarrhea in Children. Surakarta: Sebelas Maret University Press. 2008.
[14] Soil transmitted helminths. [homepage on internet]. Geneva: World Health Organization; c11 [cited 2019 September 29]. Available from: http://www.who.int/intestinal_worms/epidemiology/en/.
[15] Dib JR, Fernández-Zenoff MV, Oquilla J, Lazarte S, González SN. Prevalence of intestinal parasitic infection among children from a shanty town in Tucuman, Argentina. Biomed Trop. 2015; 32 (2): 210-5.
[16] John DT, Markell EK, Voge M. Markell and Voge's medical parasitology. Missouri: Elsevier Health Sciences. 2006: 262-7, 270-5, 284-6.
[17] Bethony J, Brooker S, Albonico M, Geiger SM, Loukasa A, Diemert D, et al. Soil transmitted helmint infections: ascarisis, trichuriasis, and hookworm. Lancet. 2006; 367: 1521-32.
[18] Hokelek. Giardiasis. Emedicine [Serial online] [cited 2019 Sept 30].
[19] Hernández PC, Morales L, Chaparro-Olaya J, Sarmiento D, Jaramillo JF, Ordoñez GA, et al. Intestinal parasitic infections and associated factors in children of three rural schools in Colombia. A cross-sectional study. PLoS One. 2019; 14 (7): e0218681.

[20] Zavala GA, García OP, Campos-Ponce M, Ronquillo D, Caamaño MC, Doak CM, Rosado JL. Children with moderate-high infection with Entamoeba coli have a higher percentage of body and abdominal fat than non-infected children. Pediatr Obes. 2016; 11 (6): 443-449.

[21] Afrakhteh N, Marhaba Z, Mahdavi SA, Garoosian S, Mirnezhad R, Represent ME, et al. Prevalence of Enterobius vermicularis among kindergartens and preschool children in Mazandaran Province, North of Iran. J Did Parasite. 2016; 40 (4): 1332-6.

[22] Kang WH, Jee SC. Enterobius vermicularis (Pinworm) Infection. N Engl J Med. 2019; 381 (1): e1.

[23] Shaha M, Tan CB, Rajana D, Ahmed S, Subramani K, Rizvon K, Mustacchia P. Blastocystis hominis and Endolimax nana Co-Infection Resulting in Chronic Diarrhea in an Immunocompetent Male. Case Rep. Gastroenterol. 2012; 6: 358–364.

[24] AL-Kubaisy W, AL-Talib H, Al-khateeb A, Shanshal MM. Intestinal Parasitic Diarrhea among Children in Baghdad– Iraq. Tropical Biomedicine. 2014; 31 (3): 499–506.

[25] Rodriguez J an Calderon J. Intestinal parasitosis in pre-school children from Tarapoto. Rev. Gastroenterol Peru. 1991; 11 (3): 153-60.

[26] World Health Organization. Diarrhea Disease; 2009 [accessed October 2, 2019]. Available from: http://www.who.int/mediacenter/factsheets.

[27] Son of DS. Acute diarrhea in children [accessed 27 September 2019]). http://www.dr-rocky.com/layout-artikel../42-diare-acute-pada-children.

[28] Agus S, Handoyo, Widiyanti DAK. Analysis of Risk Factors Affecting The Incidence of Diarrhea in Toddlers in Puskesmas Ambal 1, Ambal District, Kebumen Regency. Scientific Journal of Nursing Health. 2009; 5 (2): 65-79.

[29] Jamaluddin. Risk Factors and Spatial Distribution of Acute Diarrhea in Toddlers in Kepil District, Wonosobo Regency, Central Java Province. Thesis of Public Health Sciences Faculty of Medicine, Gadjah Mada University. 2013.