The Tiny (g-2) Muon Wobble from Small-μ Supersymmetry

Sebastian Baum,1,∗ Marcela Carena,2,3,† Nausheen R. Shah,4,‡ and Carlos E. M. Wagner5,3,§

1Stanford Institute for Theoretical Physics, Department of Physics,
Stanford University, Stanford, CA 94305, USA
2Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
3Enrico Fermi Institute and Kavli Institute for Cosmological Physics,
Department of Physics, University of Chicago, Chicago, IL 60637, USA
4Department of Physics & Astronomy, Wayne State University, Detroit, MI 48201, USA
5HEP Division, Argonne National Laboratory, 9700 Cass Ave., Argonne, IL 60439, USA

Abstract

A new measurement of the muon anomalous magnetic moment, $g_\mu - 2$, has been reported by the Fermilab Muon g-2 collaboration and shows a 4.2σ departure from the most precise and reliable calculation of this quantity in the Standard Model. Assuming that this discrepancy is due to new physics, we concentrate on a simple supersymmetric model that also provides a dark matter explanation in a previously unexplored region of supersymmetric parameter space. Such interesting region can realize a Bino-like dark matter candidate compatible with all current direct detection constraints for small to moderate values of the Higgsino mass parameter $|\mu|$. This in turn would imply the existence of light additional Higgs bosons and Higgsino particles within reach of the high-luminosity LHC and future colliders. We provide benchmark scenarios that will be tested in the next generation of direct dark matter experiments and at the LHC.
I. INTRODUCTION

The Standard Model (SM) of particle physics has built its reputation on decades of measurements at experiments around the world that testify to its validity. With the discovery of the Higgs boson almost a decade ago [1, 2] all SM particles have been observed and the mechanism that gives mass to the SM particles, with the possible exception of the neutrinos, has been established. Nonetheless, we know that physics beyond the SM (BSM) is required to explain the nature of dark matter (DM) and the source of the observed matter-antimatter asymmetry. Furthermore, an understanding of some features of the SM such as the hierarchy of the fermion masses or the stability of the electroweak vacuum is lacking.

The direct discovery of new particles pointing towards new forces or new symmetries in nature will be the most striking and conclusive evidence of BSM physics. However, it may well be the case that BSM particles lie beyond our present experimental reach in mass and/or interaction strength, and that clues for new physics may first come from results for precision observables that depart from their SM expectations. With that in mind, since the discovery of the Higgs boson, we are straining our resources and capabilities to measure the properties of the Higgs boson to higher and higher accuracy, and flavor and electroweak physics experiments at the LHC and elsewhere are pursuing a complementary broad program of precision measurements. Breakthroughs in our understanding of what lies beyond the SM could occur at any time.

Recently, new results of measurements involving muons have been reported. The LHCb experiment has reported new values of the decay rate of \(B\)-mesons to a kaon and a pair of muons compared to the decay into a kaon and electrons [3], providing evidence at the 3\(\sigma\)-level of the violation of lepton universality. This so-called \(R_K\) anomaly joins the ranks of previously reported anomalies involving heavy-flavor quarks such as the bottom quark forward-backward asymmetry at LEP [4, 5], and measurements of meson decays at the LHC and \(B\)-factories such as \(R_{K^*}\) [6–8] and \(R_{D^*(\ell^+)}\) [9–14]. The Fermilab Muon \((g-2)\) experiment has just reported a new measurement of the anomalous magnetic moment of the muon, \(a_\mu \equiv (g_\mu - 2)/2\). The SM prediction of \(a_\mu\) is known with the remarkable relative precision of \(4 \times 10^{-8}\), \(a_\mu^{SM} = 116\,591\,810(43) \times 10^{-11}\) [15–35]. From the new Fermilab Muon \((g-2)\) experiment, the measured value is \(a_\mu^{exp, FNAL} = 116\,592\,040(54) \times 10^{-11}\) [36], which combined with the previous E821 result \(a_\mu^{exp, E821} = 116\,592\,089(63) \times 10^{-11}\) [37], yields a
value $a_{\mu}^{\text{exp}} = 116\,592\,061(41) \times 10^{-11}$.

An important point when considering the tension between experimental results and the SM predictions are the current limitations on theoretical tools in computing the hadronic vacuum polarization (HVP) contribution to a_{μ}^{SM}, which is governed by the strong interaction and is particularly challenging to calculate from first principles. The most accurate result of the HVP contribution is based on a data-driven result, extracting its value from precise and reliable low-energy ($e^+e^- \to \text{hadrons}$) cross section measurements via dispersion theory. Assuming no contribution from new physics to the low energy processes and conservatively accounting for experimental errors, this yields a value $a_{\mu}^{\text{HVP}} = 685.4(4.0) \times 10^{-10}$ \cite{15,20,26}, implying an uncertainty of 0.6% in this contribution. The SM prediction for the anomalous magnetic moment of the muon and the measured value then differ by 4.2 σ,

$$\Delta a_{\mu} \equiv (a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}) = (251 \pm 59) \times 10^{-11}. \quad (1)$$

It is imperative to ask what these anomalies may imply for new physics. The most relevant questions that come to mind are: Can the a_{μ} and $R_{K^{(*)}}$ anomalies be explained by the same BSM physics? Can they give guidance about the nature of DM? Are they related to cosmological discrepancies? How constrained are the possible solutions by other experimental searches? What are future experimental prospects for the possible solutions?

In Sec. II we provide a brief overview of the many models which have been previously proposed in the literature to explain the $(g_{\mu} - 2)$ anomaly and consider their impact on other possible anomalies and on unresolved questions of the SM. Then, in Sec. III we discuss a supersymmetric solution in the most simplistic supersymmetric model at hand, the Minimal Supersymmetric Standard Model (MSSM). We focus on a region of the parameter space of the MSSM where the $(g_{\mu} - 2)$ anomaly can be realized simultaneously with a viable DM candidate. We show that in the region of moderate $|\mu|$ and moderate-to-large values of $\tan \beta$, a Bino-like DM candidate can be realized in the proximity of blind spots (that require $\mu \times M_1 < 0$) for spin-independent direct detection (SIDD) experiments \cite{43}. In this way, our MSSM scenario explores a different region of parameter space than the one considered

1 The HVP contribution has recently been computed in lattice QCD, yielding a higher value of $a_{\mu}^{\text{HVP}} = 708.7(5.3) \times 10^{-10}$ \cite{38}. Given the high complexity of this calculation, independent lattice calculations with commiserate precision are needed before confronting this result with the well tested data-driven one. We stress that if a larger value of the HVP contribution were confirmed, which would (partially) explain the $(g_{\mu} - 2)$ anomaly, new physics contributions will be needed to bring theory and measurements of $(e^+e^- \to \text{hadrons})$ in agreement \cite{39,42}.

in the study of Refs. [44, 45], which considers regions of large \(\mu \) as a way to accommodate current SIDD bounds. We summarize and conclude in Sec. [IV] in Appendix [A] we give details about the LHC constraints on these scenarios.

II. \((g_{\mu} - 2)\) CONNECTIONS TO COSMIC PUZZLES AND THE LHC

In order to bridge the gap between the SM prediction and the measured value for the anomalous magnetic moment of the muon, a BSM contribution of order \(\Delta a_\mu = (20–30) \times 10^{-10} \) is needed. Taking the \(a_\mu \) anomaly as a guidance for new physics, it is natural to ask how it can be connected to other anomalies, especially those in the muon sector, or to solving puzzles of our universe’s early history. There are two broad classes of solutions to the \((g_{\mu} - 2)\) anomaly that may be considered in the light of the above:

- New relatively light particles with small couplings to muons, typically featuring particles with \(O(100) \) MeV masses and \(O(10^{-3}) \) couplings to muons. Examples of such models we will discuss here are new (light) scalars and new (light) \((Z') \) vector bosons. These new light particles may have left important clues in the cosmos.

- New heavy fermions or scalars (possibly accompanied by additional new particles), as well as leptoquark particles, with larger couplings to muons. Similar solutions appear also in supersymmetric extensions of the SM that we shall discuss separately in some detail in Sec. [III] In addition, new gauge symmetries, spontaneously broken at low energies, can induce \(Z' \) vector bosons with masses comparable to the electroweak scale and \(O(1) \) couplings to muons. These types of new particles can be sought for at the LHC and other terrestrial experiments.

The most recent LHCb measurement \[3\], \(R_K = \frac{\text{BR}(B \rightarrow K\mu^+\mu^-)}{\text{BR}(B \rightarrow Ke^+e^-)} = 0.846^{+0.044}_{-0.041} \) in the kinematic regime of \(1.1 \text{ GeV}^2 \leq q^2 \leq 6.0 \text{ GeV}^2 \) implies a violation of lepton universality and differs from the SM expectation at the 3.1 \(\sigma \) level. Since \(R_K \) also involves muons, it naturally appears related to the \((g_{\mu} - 2)\) anomaly. However, as we shall discuss, it is hard to simultaneously fit both \(R_K \) and \((g_{\mu} - 2)\).

Scalar solutions: This is perhaps the simplest scenario for the explanation of the observed \(\Delta a_\mu \). A scalar particle, with mass \(\lesssim 200 \) MeV and couplings to muons of similar size
as the corresponding SM-Higgs coupling, can lead to a satisfactory explanation of Δa_μ [46-51]. One can construct models with such a scalar particle and suppressed couplings to other leptons or quarks in a straightforward way [51]. Alternatively, one can construct models with appropriate values of the couplings of the new scalar to quarks to lead to an explanation of some flavor anomalies, for example the KOTO anomaly [52], but the constraints tend to be more severe and the model-building becomes more involved [53]. It is important to stress that it proves impossible to fully explain the R_K anomaly with scalars without violating $B_s \rightarrow \mu^+\mu^-$ measurements [54]; see, for example, Ref. [55].

A pseudoscalar particle may also lead to an explanation of Δa_μ, provided it couples not only to muons, but also to photons. The typical example are axion-like particles [56, 57], although obtaining the proper Δa_μ requires a delicate interplay between the muon and photon couplings. Alternatively, a positive contribution to a_μ can arise from a two loop Barr-Zee diagram mediated by the pseudoscalar couplings to heavier quarks and leptons [59, 60].

Fermionic solutions: Another interesting solution occurs in the case of vector-like leptons, which may induce a contribution to a_μ via gauge boson and Higgs mediated interactions [61, 62]. Note that the mixing between the SM leptons and the new heavy leptons must be carefully controlled to prevent dangerous flavor-changing neutral currents in the lepton sector. A recent analysis shows that consistency with the measured values of Δa_μ may be obtained for vector-like leptons with masses of the order of a few TeV [63].

Leptoquark solutions: This is one of the most interesting solutions to Δa_μ, since it can also lead to an explanation of the R_K anomaly; see, for example, Refs. [65-68]. A directly related and particularly attractive realization arises in R-parity violating supersymmetry, which enables the same type of interactions as a leptoquark theory; see, for example, Ref. [69]. This solution requires the scalar partner of the right-handed bottom quark to have masses of a few TeV, which may be tested at future LHC runs. Similar to the vector-like lepton scenarios, a careful choice of the leptoquark couplings is necessary to avoid flavor-changing neutral currents. This tuning is perhaps the least attractive feature of such scenarios, although it may be the result of symmetries [68].

Gauge boson solutions: New gauge bosons coupled to muons are an attractive solution

2 A similar mechanism applies for $(g_e - 2)$ in the case of the QCD axion; see, for instance, Ref. [58]

3 See Ref. [64] for an attempt to adress both a_μ and R_K^* in a vector-like lepton model with extra dimensions.
to the a_{μ} anomaly, since they can be incorporated in an anomaly-free framework that can also lead to an explanation of the $R_{K^{(*)}}$ anomalies. Of particular interest is the gauged $(L_{\mu} - L_{\tau})$ scenario \cite{70}, since it avoids the coupling to electrons.\footnote{Models with $(L_{\mu} + L_{\tau})$ give an intriguing connection to a novel mechanism of electroweak baryogenesis with CP-violation triggered in a dark sector that allows for a suitable DM candidate \cite{71, 72}. Unfortunately, solutions to $(g_{\mu} - 2)$ in this appealing scenario are ruled out by $(B \to K \mu^{+}\mu^{-})$ constraints due to contributions from the anomalous WWZ' coupling.} The $R_{K^{(*)}}$ anomalies may be explained by the addition of vector-like quarks that mix with the second and third generation SM quarks \cite{73, 75}, connecting the $(L_{\mu} - L_{\tau})$ gauge boson to baryons. A common explanation of both $R_{K^{(*)}}$ and a_{μ} is, however, strongly constrained by neutrino trident bounds on Z' bosons coupled to muons \cite{76, 78}. In addition, bounds from BaBar \cite{81} and CMS \cite{82} from $[e^{+}e^{-}/pp \to \mu^{+}\mu^{-} + (Z' \to \mu^{+}\mu^{-})]$ rule out the values of the new gauge coupling which could explain the observed value of a_{μ} for $m_{Z'} \geq 2m_{\mu} \simeq 210$ MeV. Due to these experimental constraints, explaining the Δa_{μ} anomaly with a light new gauge boson requires $m_{Z'} \lesssim 200$ MeV. Explanations of the flavor anomalies require larger gauge boson masses, preventing simultaneous explanations of $R_{K^{(*)}}$ and a_{μ}.

It is interesting to note that explanations of the $(g_{\mu}-2)$ anomaly via gauged $(L_{\mu} - L_{\tau})$ may have a relation to some of the cosmological puzzles, in particular the tensions of the late and early time determinations of the Hubble constant, H_{0} \cite{80, 83}. In the $m_{Z'} \sim 10$ MeV region, the effective number of degrees of freedom can be enhanced by $\Delta N_{\text{eff}} \approx 0.2$, alleviating the H_{0}-tension. Note that constraints from solar neutrino scattering in Borexino \cite{80, 84, 85} and ΔN_{eff} bounds \cite{83} rule out the couplings preferred by the a_{μ} anomaly for $m_{Z'} \lesssim 5$ MeV.

Before considering minimal supersymmetric scenarios for the $(g_{\mu}-2)$ anomaly in some detail, let us summarize the discussion above as follows: 1) All the above solutions, with a broad range of masses and couplings of the new particles, can readily explain the $(g_{\mu}-2)$ anomaly, but it is difficult to simultaneously accommodate the $R_{K^{(*)}}$ anomalies. This difficulty mainly arises from experimental constraints.\footnote{There are also bounds from Coherent ν-Nucleus Scattering (CEνNS), although these are not yet competitive with the bounds from neutrino trident processes \cite{79, 80}.} In the rare examples of models where both solutions can be accommodated simultaneously, it is only possible at the cost of significant tuning of the parameters. 2) In most scenarios, a DM candidate can be included in the model (with different levels of complexity). However, there does not appear to be a compelling connection offering a unique guidance for model building. On the other hand, in

\footnote{See also Refs. \cite{86, 87} for prospects of probing models addressing the $(g_{\mu}-2)$ anomaly at high energy muon colliders.}
low-energy SUSY models with R-parity conservation, an explanation of the \(g_\mu - 2 \) anomaly is naturally connected to the presence of a DM candidate and other new particles within the reach of the (HL-)LHC and future colliders. We explore this possibility in its simplest realization in the next section.

III. TINY \((g_\mu - 2)\) MUON WOBBLE WITH SMALL |\(\mu\)| IN THE MSSM

Supersymmetric extensions of the SM remain among the most compelling BSM scenarios \[\text{[88-90]}\], not least because the stability of the Higgs mass parameter under quantum corrections can be ensured. In minimal supersymmetric extensions of the SM, the SM-like Higgs is naturally light \[\text{[91-101]}\] and the corrections to electroweak precision as well as flavor observables tend to be small, leading to good agreement with observations. Supersymmetric extensions can also lead to gauge coupling unification and provide a natural DM candidate, namely the lightest neutralino.

In this section, we propose simultaneous \((g_\mu - 2)\) and DM solutions in the Minimal Supersymmetric Standard Model (MSSM) \[\text{[88-90]}\] which have not been explored before. Related recent (but prior to the publication of the Fermilab Muon (g-2) result) studies can, for example, be found in Refs. \[\text{[44, 45, 102-107]}\]. One crucial difference between our study and the very recent work in Refs. \[\text{[44, 45]}\] is that the spin-independent direct detection (SIDD) cross section is suppressed not by decoupling the Higgsino and heavy Higgs contributions, but by a partial cancellation between the amplitudes mediated by the two neutral CP-even Higgs boson mass eigenstates. This cancellation requires opposite signs of the Higgsino and the Bino mass parameters, \((\mu \times M_1) < 0\) \[\text{[43]}\]. Demonstrating that one can explain the \(a_\mu\) anomaly in this region of parameter space is non-trivial, as this combination of the Higgsino and Bino mass parameters renders the contribution of the neutralino-smuon loop to \(a_\mu\) negative, while the experimentally observed value is larger than the SM prediction. Explaining the experimental measurement is only possible if the chargino-sneutrino contribution to \(a_\mu\) is positive and has larger absolute magnitude than the neutralino-smuon contribution, and if the values of the individual contributions are such that the observed anomaly, \(\Delta a_\mu = (20 - 30) \times 10^{-10}\), can be explained. Moreover, this can only be achieved for moderate (absolute) values of the Higgsino mass parameter |\(\mu\)| \(\lesssim 500\) GeV, and values of the heavy Higgs boson masses than are not far away from the current experimental limit.
coming from direct searches.

A. \(\Delta a_\mu \) and Direct Dark Matter Detection Constraints

The MSSM contributions to \(a_\mu \) have been discussed extensively in the literature, see, for example, Refs. [106, 108–114]. The most important contributions arise via chargino-sneutrino and neutralino-smuon loops, approximately described by [106]

\[
a_{\mu}^{\tilde{\chi}^\pm-\tilde{\nu}_\mu} \approx \frac{\alpha m^2_{\mu} M_2 \tan \beta}{4\pi \sin^2 \theta_W m_{\tilde{\nu}_\mu}^2} \left[f_{\chi^\pm} \left(M_2^2 / m_{\tilde{\nu}_\mu}^2 \right) - f_{\chi^\pm} \left(\mu^2 / m_{\tilde{\nu}_\mu}^2 \right) \right], \\
a_{\mu}^{\tilde{\nu}_\mu-\tilde{\mu}} \approx \frac{\alpha m^2_{\mu} M_1 (\mu \tan \beta - A_\mu)}{4\pi \cos^2 \theta_W \left(m_{\tilde{\mu}_R}^2 - m_{\tilde{\mu}_L}^2 \right)} \left[f_{\chi^0} \left(M_1^2 / m_{\tilde{\mu}_R}^2 \right) - f_{\chi^0} \left(M_1^2 / m_{\tilde{\mu}_L}^2 \right) \right],
\]

where \(M_2 \) is the Wino mass parameter and \(m_{\tilde{f}} \) are the scalar particle \(\tilde{f} \) masses, with the loop functions

\[
f_{\chi^\pm}(x) = \frac{x^2 - 4x + 3 + 2 \ln(x)}{(1 - x)^3}, \\
f_{\chi^0}(x) = \frac{x^2 - 1 - 2x \ln(x)}{(1 - x)^3};
\]

see Refs. [111, 114] for the full (one-loop) expressions. It is interesting to note that these two contributions can be of the same order of magnitude: The chargino-sneutrino contribution is proportional to Higgsino-Wino mixing which can be sizeable, but suppressed by the smallness of the Higgsino-sneutrino-muon coupling which is proportional to the muon Yukawa coupling, \(\propto m_\mu \tan \beta / v \), with the SM Higgs vacuum expectation value \(v \). The neutralino-smuon contribution, on the other hand, arises via muon-smuon-neutralino vertices which are proportional to the gauge couplings, but is suppressed by the small smuon left-right mixing, \(\propto m_\mu (\mu \tan \beta - A_\mu) / (m_{\tilde{\mu}_R}^2 - m_{\tilde{\mu}_L}^2) \). Regarding corrections beyond one-loop [115, 116], the most relevant contribution is associated with corrections to the muon Yukawa coupling, \(\Delta_\mu \). These corrections become relevant at large values of \(\mu \tan \beta \) and can be re-summed at all orders of perturbation theory [117]. While these corrections lead to small modifications of \(a_\mu \), they do not change the overall dependence of \(\Delta a_\mu \) on the masses of the supersymmetric particles.

From Eqs. (2)–(3) we can observe that the signs of the MSSM contributions to \(a_\mu \) depend sensitively on the relative signs of the gaugino masses \(M_1 \) and \(M_2 \) and the Higgsino mass.
parameter μ. As emphasized before, a DM candidate compatible with the current null-results from direct detection experiments can be realized for $|\mu| \lesssim 500$ GeV if M_1 and μ have opposite signs. For this combination of signs, the contribution from the neutralino-smuon loop to a_μ will be negative, $a_\mu^{\tilde{\chi}_0^0 - \tilde{\mu}} < 0$. Since the measured value of a_μ is larger than the SM prediction by $\Delta a_\mu \simeq 25 \times 10^{-10}$, we require the chargino-sneutrino contribution to be positive and larger than the neutralino-smuon contribution. This can be realized if M_2 has the same sign as μ and if $|M_2|$ is of similar size as $|\mu|$ and the soft smuon masses. In the regime of moderate or large values of $\tan \beta$, and assuming all weakly interacting sparticles have masses of the same order, \tilde{m}, one obtains approximately
\[
\Delta a_\mu \simeq 1.3 \times 10^{-9} \tan \beta \times \left(\frac{100 \text{ GeV}}{\tilde{m}} \right)^2 .
\]
(6)

The factor 1.3 reduces to values closer to 1 if M_1 and M_2 have opposite signs. This implies that for values of $\tan \beta \simeq 10$, sparticles with masses $\tilde{m} \sim 200$ GeV can lead to an explanation of the observed Δa_μ anomaly, while for $\tan \beta = 60$, the characteristic scale of the weakly interacting sparticle masses may be as large as $\tilde{m} \sim 500$ GeV.

The range of $\tan \beta$ and of sparticle masses consistent with the observed Δa_μ has implications on the DM properties. We will concentrate on DM candidates with masses comparable to the weak scale, such that the thermal DM relic density reproduces the observed value. In the MSSM, DM candidates in this mass range can be realized if the lightest supersymmetric particle is an almost-pure Bino, $m_\chi \simeq |M_1|$.

For the moderate-to-large values of $\tan \beta$ required to explain the $(g_\mu - 2)$ anomaly, the SIDD amplitude for the scattering of DM with nuclei (N) is proportional to
\[
\mathcal{M}_p^{\text{SI}} \propto \frac{v}{\mu^2} \left[2 \left(\frac{M_1 + \mu \sin 2\beta}{m_h^2} - \frac{\mu \cos 2\beta}{m_H^2} \right) \tan \beta \right],
\]
(7)
where m_h and m_H are the masses of the SM-like and the new heavy neutral Higgs boson, respectively. We see that the SIDD amplitude depends in a crucial way on the sizes and signs of M_1 and μ. There are two options to lower the SIDD amplitude: For large values of $|\mu|$, the Higgsino components of the DM candidate become small and the SIDD amplitude is suppressed. Alternatively, the light and heavy CP-even Higgs contributions (first and second terms inside the brackets in Eq. (7)) may interfere destructively, leading to a suppression of the SIDD amplitude. The latter option is particularly interesting since it allows $|\mu|$ to remain of the order of the electroweak scale; see, for example Ref. [118] for a recent discussion of naturalness and the connection with direct detection bounds.
Regarding the first term in Eq. (7), if $M_1 \simeq -\mu \sin 2\beta$, the contributions of the Higgsino-up and the Higgsino-down admixtures to the $(\chi\chi h)$ interaction cancel. The second term is the contribution to the $(\chi N \rightarrow \chi N)$ amplitude arising from the t-channel exchange of the non-SM-like heavy Higgs boson H. The generalized blind spot condition for the SIDD cross section of a Bino-like DM candidate is then

$$2 \left(M_1 + \mu \sin 2\beta \right) \approx \mu \tan \beta \cos 2\beta \frac{m_h}{m_H^2}. \quad (8)$$

If the condition in Eq. (8) is satisfied, the amplitudes mediated by h and by H exchange interfere destructively, suppressing the SIDD cross section; a property that also holds at the one-loop level [119]. In general, even if one is not in the proximity of the blind spot solution, if the neutralino is mostly Bino-like, for a given value of $|\mu|$ and M_1, the cross section is suppressed (enhanced) if μ and M_1 have opposite (the same) sign.

The mass of the heavy Higgs boson plays an important role in the blind-spot cancellation. In the presence of light electroweakinos, the current LHC bounds on m_H coming from searches for heavy Higgs bosons decaying into tau-leptons [120–123] can be approximated by

$$m_H \gtrsim 250 \text{ GeV} \times \sqrt{\tan \beta} \sim 2 \frac{m_h \sqrt{\tan \beta}}{m_H}. \quad (9)$$

For values of m_H close to this bound, the SIDD amplitude is proportional to

$$\mathcal{M}_p^{SI} \propto \frac{M_1 v}{\mu^2} \left[1 + \frac{\mu}{2M_1} \left(\frac{4}{\tan \beta} + \frac{1}{4} \right) \right]. \quad (10)$$

To exemplify the relevance of the relative sign and size of μ and M_1, consider \mathcal{M}_p^{SI} for $\tan \beta = 16$. As a reference value for the SIDD amplitude, let us set $\mu \simeq -M_1$. Keeping M_1 fixed, but increasing the value of $|\mu|$ to $\mu \simeq -2M_1$, the value of \mathcal{M}_p^{SI} becomes a factor of $\approx 1/6$ smaller. Let us compare this to the situation for which μ and M_1 have the same sign. First, we can note that for $\mu = M_1$, the SIDD amplitude is almost a factor 2 larger than for $\mu = -M_1$. Furthermore, in order to obtain a reduction of \mathcal{M}_p^{SI} by a factor of 1/6, one would have to raise the value of $|\mu|$ from $\mu \sim M_1$ to $\mu \sim 4M_1$. This exemplifies that obtaining SIDD cross sections compatible with experimental limits either requires $(\mu M_1) < 0$ (blind spot solution) or, to compensate for a positive sign of this product, one must sufficiently enhance the ratio μ/M_1 (large-μ solution).

Note that $\cos(2\beta) = (1 - \tan^2 \beta)/(1 + \tan^2 \beta) \simeq -1$ for moderate-to-large values of $\tan \beta$.

\[7\]
The spin dependent (SD) interactions are instead dominated by Z-exchange, and can only be suppressed by lowering the Higgsino component of the lightest neutralino. At moderate or large values of $\tan \beta$, the amplitude for SD interactions is proportional to

$$M^{SD} \propto \left(\frac{v}{\mu}\right)^2 \cos 2\beta . \quad (11)$$

Comparison with the results from direct detection experiments \cite{124,127} leads to an approximate bound on μ,

$$|\mu| \gtrsim 300 \text{ GeV} , \quad (12)$$

with a mild dependence on M_1.

To summarize this discussion, we show the qualitative behavior of the direct detection cross sections in Figs. 1 and 2 in the $M_1-\mu$ plane. We use approximate analytic expressions for the cross sections and set the masses of the heavy Higgs boson and $\tan \beta$ to characteristic values. The values of M_2 and the slepton masses have been chosen to lead to a compressed spectrum, alleviating constraints from slepton and chargino searches at the LHC, see, for example, Refs. \cite{129,140}. The regions shaded in the different colors denote the region allowed by current direct detection constraints on the SD-proton \cite{124,127}, SD-neutron \cite{125,126}, and SI \cite{141,144} scattering cross section. We see that whereas the SD constraints provide an approximately symmetric lower bound on μ, due to the SIDD constraints, the values of $|\mu|$ need to be significantly larger for positive $\mu \times M_1$ than for negative $\mu \times M_1$. We show the region where the MSSM contribution explains the $(g_\mu - 2)$ anomaly in Figs. 1 and 2 with the gray shade bounded by the dashed black line. The shape of the region preferred by Δa_μ may be understood from the interplay between the Bino- and Wino-mediated contributions. For large values of $|\mu|$, the Bino contribution tends to be the most relevant one. If one considers positive values of $\mu \times M_1$, the Bino-smuon loop gives a positive contribution to Δa_μ which can account for the $(g_\mu - 2)$ anomaly for sufficiently large values of $\tan \beta$. However, for smaller values of $|\mu|$ and negative values of $\mu \times M_1$, as required by the blind spot solution, the Bino contribution tends to be subdominant and neither has the sign nor the magnitude to account for the $(g_\mu - 2)$ anomaly. If anything, depending on the sign of $M_1 \times M_2$, it will partially cancel the Wino contribution to Δa_μ. For smaller values of $|\mu|$, an explanation for the $(g_\mu - 2)$ anomaly requires a Wino-mediated contribution enabled by $\mu \times M_2 > 0$ and moderate values of M_2.

11
\[\tan \beta = 20; \ m_H = 1200 \text{ GeV}; \ M_2 = |M_1| + 50 \text{ GeV} \]
\[m_{\tilde{\mu}_L} = m_{\tilde{\nu}_\mu} = |M_1| + 55 \text{ GeV}; \ m_{\tilde{\mu}_R} = |M_1| + 45 \text{ GeV} \]

FIG. 1. The colored shades show approximate regions in the \(\mu-M_1 \) parameter plane allowed by current DM direct detection constraints on the spin-dependent WIMP-proton, spin-dependent WIMP-neutron, and spin-independent WIMP-nucleon cross section for \(\tan \beta = 20 \) and values of the slepton, Higgs and Wino mass parameters as indicated in the plot. In the gray areas bounded by the dashed black lines we find a MSSM contribution \(\Delta a_\mu = (25.1 \pm 5.9) \times 10^{-10} \), explaining the value observed by the Fermilab and Brookhaven Muon (g-2) experiments. The dash-dotted purple lines indicate constraints arising from tau-leptons +missing transverse energy(+jet) searches at the LHC, applicable if the mass of the lightest stau is approximately in the middle of the lightest chargino and neutralino masses \[128\].

For the LHC constraints indicated in Figs. 1 and 2 (\(|M_1| \gtrsim 240 \text{ GeV} \), shown with the purple dash-dotted line) we have assumed that the lightest stau is the next-to-lightest supersymmetric particle, with a mass such that the proper relic density is obtained by co-annihilation of the lightest stau with the lightest neutralino. In such a case, the Wino-like chargino and neutralino have sizable branching ratios into staus, increasing the stau production rate. In order to estimate the LHC limits, we use a recent analysis \[128\] searching for
tau-lepton final states, which assumed that the mass gap between the lightest chargino and neutralino is 50 GeV and the lightest stau mass lies in the middle of the lightest chargino and neutralino masses, which is close to the situation found under our assumptions. This shows that the LHC is already putting strong constraints on the realization of this scenario. Note that we chose the Wino- (M_2) and the first and second generation slepton (M_{1L}, M_{1R}) mass parameters to be approximately degenerate ($M_2 \approx M_{1L}^{1,2} \approx M_{1R}^{1,2} \approx |M_1| + 50$ GeV) such that current LHC limits for direct slepton searches are avoided for slepton masses above ~200 GeV [129-140].

Additional constraints from LHC searches with charged leptons in the final states can arise from production of the Higgsino-like neutralino and chargino states. These states decay into gauge and Higgs bosons and lighter charginos and neutralinos. If μ is large compared to M_2, Higgsino production and their decays can lead to relevant signals at the LHC despite Higgsinos having much smaller production cross section that Winos, because for such a choice of parameters, the Higgsino-decays lead to final states with much harder leptons than the leptons arising from Wino or slepton production. We have checked a number of
example points from the preferred regions of Figs. 1 and 2 (i.e., where all direct detection constraints are satisfied, where $|M_1| \gtrsim 240$ GeV, avoiding the LHC constrain indicated in the figures, and where the Δa_μ contribution explains the observed value) using checkmate2 to check that no additional LHC constraints arise from slepton and electroweakino (including Higgsino) production.

B. Benchmark Points Explaining Δa_μ, Dark Matter and Avoiding LHC Constraints

For a Bino-like DM candidate with mass in the few-hundred GeV range, the observed relic density can be realized via thermal production through different mechanisms, such as co-annihilation with sleptons or charginos [145–150], t-channel annihilation via light left-right mixed staus [151] or smuons [152], or resonant s-channel annihilation [148, 149]. In Table I we present a few benchmark scenarios which simultaneously accommodate the $(g_\mu - 2)$ anomaly and a viable DM candidate. All of them are consistent with the observed relic density, the observed value of Δa_μ, and satisfy LHC constraints as well as constraints from direct detection. For all benchmark points, we set the parameters in the squark and gluino sectors such that experimental bounds are satisfied and that the observed mass of the SM-like Higgs boson is reproduced. In general, the supersymmetric partners of the color-charged particles must have masses of the order of a few TeV to satisfy current experimental bounds (see, for instance, Refs. [153–156]). Note that in some of our benchmark scenarios, the hierarchy between the gluino and the weak gaugino masses is larger than the hierarchy induced by the running of the gaugino masses from (approximately) universal values at the Grand Unification scale. While a Grand Unified Theory (GUT) is theoretically attractive, we do not know if any GUT is realized in nature. The symmetries of the low energy theory do not impose any constraint on the hierarchy between the gluino and the weak gaugino masses. Furthermore, even in GUT models, higher order operators at the GUT scale can lead to departures from universal gaugino masses [157]. A somewhat related point is that the small-$|\mu|$ region we are interested in here tends to require particular choices for the soft supersymmetry breaking masses of the Higgs doublets. As is well known, the large stop masses required to reproduce a 125 GeV SM-like Higgs boson result in large radiative corrections to $m^2_{H_u}$. Starting from universal soft parameters $m^2_{H_u} = m^2_{H_d}$ at high
energy scales, $m_{H_u}^2$ is driven to large negative values at the electroweak scale, while $m_{H_d}^2$ receives much smaller radiative corrections. The correct electroweak symmetry breaking (and, in particular, the correct mass of the electroweak gauge bosons) is then achieved for $-m_{H_u}^2 \approx |\mu|^2 \gg m_{H_d}^2$ at the electroweak scale. We leave a dedicated investigation of the required values of the soft parameters to achieve the correct electroweak symmetry breaking pattern for future work, however, let us note that (radiative) electroweak symmetry breaking as well as the correct mass of the electroweak gauge bosons are straightforward to achieve regardless of the value of $|\mu|$ if one allows for different values of the soft supersymmetry breaking parameters $m_{H_u}^2$ and $m_{H_d}^2$ at high energy scales.

The constraints from Higgsino and Wino pair production depend on a careful consideration of the production cross sections and decay branching ratios. Here, we consider a compressed spectrum, for which the electroweakino and slepton constraints are weakened. The results for the spectrum, Δa_μ, the relic density, as well as the SI and SD cross sections have been obtained with Micromegas 5.2.7.a. We use SUSY-HIT 1.5 to compute branching ratios relevant for checking the electroweakino and slepton constraints. One problem in the analysis of the LHC limits is that, in many cases, signals can be obtained from the chain decay of many different electroweak particles, and therefore it is difficult to directly apply the bounds from LHC analyses which are typically presented in terms of simplified models. In order to solve this problem, we use checkmate2, that uses Monte Carlo event generation to compare all production and decay channels for the neutralinos, charginos and sleptons with the current LHC analyses. Although most of the relevant LHC analyses have been included in checkmate2, a few of the most recent analyses are not yet implemented in this code. In these cases, we check the compatibility of our points by using conservative estimates of the particle contributions to the different search signals, as explained in Appendix A.

The scenarios presented below correspond to different origins of the observed DM relic density and should serve as a guidance for experimental probes of the supersymmetric explanation of the muon ($g - 2$).

- **BMSM**: A DM production scenario closely related to the relatively low masses of the muon (neutrino) superpartners required to address the a_μ-anomaly is co-annihilation of the lightest neutralino with the light slepton states. The benchmark BMSM gives a
representation of this possibility, where we set the masses of the tau-lepton superpartners to be larger than those of the first and second generation sleptons. Since multiple production channels contribute to final states containing leptons at the LHC, current searches strongly constrain the presence of light electroweak interacting particles in this scenario. In order to be compatible with Δa_μ, DM phenomenology and LHC searches, BMSM features the largest values of $|\mu|$ and $\tan \beta$ of the benchmark points presented in this article.

- **BMST:** A similar solution to BMSM is associated with the co-annihilation of a light stau with the lightest neutralino. For universal soft slepton masses, this happens naturally at large values of $\tan \beta$, where the lightest stau is pushed to masses lower than those of the sneutrinos. BMST gives a representative example of this possibility.

	BMSM	BMST	BMW	BMH
m_χ [GeV]	350.2	255.3	271.4	61.0 (124.9)
$m_\tilde{\tau}_1$ [GeV]	414.4	264.2	305.3	709.5
$m_\tilde{\mu}_1$ [GeV]	362.7	323.0	352.8	751.3
$m_\tilde{\nu}_\tau$ [GeV]	496.0	313.7	344.2	747.3
$m_\tilde{\nu}_\mu$ [GeV]	354.4	313.7	344.2	747.3
m_χ^\pm [GeV]	392.3	296.2	297.9	469.6
Δa_μ [10^{-9}]	2.10	2.89	2.35	1.93
$\Omega_{DM}h^2$	0.121	0.116	0.124	0.121
σ_p^{SI} [10^{-10} pb]	0.645	1.58	1.42	0.315
σ_p^{SD} [10^{-6} pb]	1.03	5.11	4.23	3.01
σ_n^{SI} [10^{-10} pb]	0.632	1.57	1.41	0.330
σ_n^{SD} [10^{-6} pb]	0.882	4.10	3.42	2.34

TABLE I. Values of the MSSM parameters, mass spectrum and quantities relevant for DM and $(g_\mu - 2)$ for the case of Bino-like DM co-annihilating with light sleptons (BMSM), co-annihilating with a light stau (BMST), co-annihilating with a Wino (BMW) and resonant s-channel annihilation via the SM-like Higgs boson (BMH). For BMH we also provide the mass of the SM-like Higgs boson m_h between brackets.
• **BMW**: The lightest neutralino may co-annihilate with the lightest chargino. The benchmark BMW represents such a possibility.

• **BMH**: The lightest neutralino can acquire the proper relic density via resonant s-channel annihilation via the SM-like Higgs boson. BMH represents such a possibility.

Although the mechanisms controlling the relic density are different for the different benchmark points, they share many characteristics. They feature masses of weakly interacting sparticles masses lower than about 500 GeV and values of $\tan \beta$ of the order of a few 10’s, leading to values of Δa_μ in the desired range. Apart from BMH, which we will discuss further below, all benchmark points in Table I have negative values of $\mu \times M_1$ and positive values of $\mu \times M_2$.

The observed relic density for a Bino-like DM candidate may also be obtained via resonant s-channel annihilation via the heavy Higgs boson A and H. However, for the values of $\tan \beta$ necessary to enhance Δa_μ, LHC bounds on the heavy Higgs bosons become very strong, implying a heavy spectrum. Using the bound on m_H provided in Eq. (9), the approximate expression for Δa_μ in Eq. (6), and assuming that all the weakly interacting sparticles have masses close to $m_H/2$, the maximal value for Δa_μ that may be obtained is

$$\Delta a_\mu \simeq 10^{-9} \tan \beta \frac{4}{m_H^2}(100 \text{ GeV})^2 \lesssim 7 \times 10^{-10},$$

which is a factor of a few smaller than the observed anomaly. Therefore, we shall not discuss this particular solution further.

Resonant s-channel annihilation via the Z-boson presents similar characteristics to resonant annihilation mediated by the SM-like Higgs, h. Thus, we present only an example of the latter case here, BMH. For such small values of $M_1 \simeq m_h/2 = 62.5$ GeV, values of $|\mu| \sim 500$ GeV may lead to the desired suppression of the SIDD cross section for either sign of μ. This follows, for instance, from Eq. (7), where we also observe that for positive values of $\mu \times M_1$, values of m_H significantly larger than the current experimental bounds are preferred. Note that, for BMH, we chose the sleptons and the Winos to be heavy to avoid the bounds from the LHC. Hence, obtaining the proper value of Δa_μ requires relatively large values of $\tan \beta$.

17
C. Future Prospects

The benchmark points presented above are compatible with current experimental limits, but will be tested in the near future in several ways.

First, all four benchmark points will be probed by the next generation of direct detection experiments: The SIDD cross sections of all four benchmark points are within the projected sensitivities of the LZ and XENONnT experiments \[232, 233\]. More generally, for $\mu \times M_1 < 0$, and for fixed values of M_1, μ and $\tan \beta$, the smallest possible value of the SIDD cross section is associated with the smallest allowed value of the heavy Higgs mass, see Eq. (7). For masses $200 \text{ GeV} \lesssim |M_1| \lesssim 500 \text{ GeV}$, a hierarchy $1 \lesssim |\mu/M_1| \lesssim 3$, and $\tan \beta \gtrsim 20$, compatible with collider physics, muon $(g-2)$, and Dark Matter relic density constraints, the smallest possible SIDD cross section is (see Eq. (10))

$$\sigma_{p}^{\text{SI}} > \mathcal{O} \left(10^{-10}\right) \text{ pb} \times \left(\frac{M_1}{250 \text{ GeV}}\right)^2 \times \left(\frac{500 \text{ GeV}}{\mu}\right)^4.$$ \hspace{1cm} (14)

The LZ and XENONnT experiments will probe cross sections as small as $\sigma_{p}^{\text{SI}} \sim \mathcal{O} \left(10^{-12}\right) \text{ pb}$ for $|M_1| \sim 40 \text{ GeV}$, growing to $\sigma_{p}^{\text{SI}} \sim \mathcal{O} \left(10^{-11}\right) \text{ pb}$ for $|M_1| \sim 500 \text{ GeV}$, implying full coverage of this representative region of parameters.

Furthermore, the spin-dependent WIMP-neutron cross sections can be probed by LZ and XENONnT, while the next generation of the PICO experiment will probe the spin-dependent WIMP-proton cross sections \[234\]. From Eq. (11) we can see that the spin-dependent WIMP-nucleon cross sections are

$$\sigma_{n}^{\text{SD}} > \sigma_{p}^{\text{SD}} > \mathcal{O} \left(10^{-6}\right) \text{ pb} \times \left(\frac{500 \text{ GeV}}{\mu}\right)^4,$$ \hspace{1cm} (15)

with a mild dependence on M_1. The future sensitivities of LZ/XENONnT on σ_{n}^{SI} move from a few times 10^{-7} pb for $|M_1| \sim 100 \text{ GeV}$ to $\sim 10^{-6} \text{ pb}$ for $|M_1| \sim 500 \text{ GeV}$, while PICO-500 will probe $\sigma_{p}^{\text{SD}} \sim 10^{-6} \text{ pb}$ for $|M_1| \sim 100 \text{ GeV}$ and $\sigma_{p}^{\text{SD}} \sim 5 \times 10^{-6} \text{ pb}$ for $|M_1| \sim 500 \text{ GeV}$. Hence, these experiments will probe the region of parameter space where $|\mu| \lesssim 500 \text{ GeV}$. In particular, LZ, XENONnT and PICO-500 will probe the spin-dependent cross sections of the benchmark points BMST, BMW, BMH, while BMSM has spin-dependent interactions smaller than the projected sensitivities of these experiments.

Second, for all benchmark points with $M_1 \times \mu < 0$ (BMSM, BMST, and BMW), the SIDD cross section is suppressed below current experimental limits due to the destructive
interference between the amplitudes mediated by the SM-like and the heavy Higgs bosons discussed above. For this suppression to be effective, the masses of the non-SM-like Higgs bosons must be low enough to within the reach (see, for example, Ref. [235]) of future runs of the LHC: The high-luminosity LHC will be sensitive to Higgs bosons with masses of about a factor 1.5 larger than current exclusion limits (keeping all other parameters, in particular \(\tan \beta \), fixed). From the expression of the SIDD cross section, Eq. (7) we see that increasing \(m_{H} \rightarrow 1.5 m_{H} \) corresponds to a factor 2-3 increase of the SIDD cross section. Such SIDD cross sections would be in conflict with current experimental constraints, or conversely, values of the heavy Higgs mass allowed by current direct detection bounds will be efficiently probed by the high-luminosity LHC. For BMSH, on the other hand, the SIDD cross section is suppressed by a large hierarchy between the Higgsino and Bino mass parameters, \(|\mu| \gg |M_1| \). Such “large \(|\mu| \)” solutions to suppressing the SIDD cross sections allow for heavy Higgs masses beyond the projected reach of the high-luminosity LHC.

Last but not least, our benchmark scenarios are also testable in searches for electroweakly interacting particles at future runs of the LHC, see, for example, Refs. [236, 237]. We note that some of these projections have already been surpassed by innovative searches with current LHC data, like those presented in Ref. [238], further bolstering the prospects of probing our benchmark points and similar scenarios in the upcoming runs of the LHC. The extrapolation of these conclusions to the whole region of parameters analyzed in this article should be the object of an independent dedicated study, that we plan to perform but is beyond the scope of the current article. Let us also emphasize that future lepton colliders play an important role to probe sleptons and charginos, especially for (semi-)compressed spectra, see Refs. [239, 251].

IV. SUMMARY AND CONCLUSIONS

A wide range of possible extensions of the Standard Model (SM) can lead to an explanation of the value of \(\Delta a_{\mu} \) measured at the Fermilab and Brookhaven experiments. While arguably the simplest explanation is the addition of a scalar particle, one can also rely on new gauge bosons, vector-like fermions or leptoquark models. The leptoquark (or R-parity violating supersymmetry) solution seems to be interesting since it can accommodate not only the values of \(\Delta a_{\mu} \), but can also lead to an explanation of the flavor anomalies, although
at the prize of a delicate choice of the couplings of the leptoquarks.

In this work, we explore a solution based on the (R-parity conserving) Minimal Super-symmetric extension of the SM, in which, although one cannot address the flavor anomalies, one can find solutions leading to a compelling DM explanation. In particular, we discuss the conditions that are required to be consistent with the observed Δa_{μ}, existing direct dark matter (DM) detection constraints, and the bounds from the LHC on new Higgs bosons and supersymmetric particles. We look for solution in which direct DM detection constraints are fulfilled by a partial cancellation of the light and heavy CP-even Higgs mediated contributions which significantly differ from previous studies relying on very heavy Higgs and Higgsino particles. This cancellation requires negative values of $\mu \times M_1$. Since the observed value of a_{μ} is larger than the SM prediction, the Bino contribution to a_{μ}, which is proportional to $\mu \times M_1$, must be subdominant. This can only be realized for small-to-moderate values of $|\mu|$. We present corresponding benchmark scenarios associated with different DM production mechanisms to achieve the observed relic density, including co-annihilation with sleptons, or resonant s-channel annihilation mediated by the SM-like Higgs or Z bosons.

The corresponding spectra have a number of interesting consequences: 1) The relatively small values of the Higgsino mass parameter lead to a more natural model, in terms of the electroweak hierarchy problem. 2) The DM candidates have spin-independent and spin-dependent direct detection cross sections which can be probed in the next generation of direct detection experiments. 3) Explaining the anomalous magnetic moment of the muon for negative values of $\mu \times M_1$ requires light sleptons and electroweakinos, which should be probed at run 3 of the LHC, the HL-LHC, or, ultimately, at future lepton colliders. 4) The suppression of the direct detection cross section is only possible for relatively light non-SM-like Higgs bosons in the MSSM, which can be probed at run 3 of the LHC and the HL-LHC.

ACKNOWLEDGMENTS

SB is supported in part by NSF Grant PHY-2014215, DOE HEP QuantISED award #100495, and the Gordon and Betty Moore Foundation Grant GBMF7946. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. The work of CW at the University of Chicago has been also
Appendix A: LHC constraints from chargino and slepton searches

In this appendix, we discuss the constraints from chargino and slepton searches on our benchmark points presented in Table I. The most severe chargino constraints tend to stem from production of the lightest chargino ($\tilde{\chi}_1^\pm$) and the next-to-lightest neutralino ($\tilde{\chi}_2^0$) at the LHC, $pp \to \tilde{\chi}_1^\pm \tilde{\chi}_2^0$. Note that for all of our benchmark points, the lightest neutralino is Bino-like, while $\tilde{\chi}_2^0$ is Wino-like (for BMSM, BMST and BMW) or Higgsino-like (for BMH) depending on the hierarchy of $|\mu|$ and $|M_2|$. Hence, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$ will typically be mass degenerate. All the benchmark points presented in this article fulfill the current LHC constraints [168–231] implemented in checkmate2 [164–167]. We also check compatibility with very recent LHC searches which are not yet implemented in checkmate2 by using conservative estimates of the particle contribution to these search channels.

In order to gain a physical intuition of how the benchmark points avoid the LHC constraints, we provide a brief discussion of their properties.

BMSM: The lightest neutralino has a mass $m_{\tilde{\chi}_1^0} = 350$ GeV, and the Wino-like next-to-lightest neutralino and lightest chargino have masses $m_{\tilde{\chi}_2^0} = m_{\chi_1^+} = 392$ GeV. We have computed the $\tilde{\chi}_2^0 + \tilde{\chi}_1^\pm$ production cross section at the 13 TeV LHC with MadGraph5_v3.1.1 [165], finding $\sigma(pp \to \tilde{\chi}_2^0 + \tilde{\chi}_1^\pm) = 0.08$ pb. Comparing this to the upper limit from Ref. [140] $\sigma(pp \to WZ + 2\tilde{\chi}_1^0) \lesssim 0.6$ pb at these masses (this search is not yet implemented in checkmate2; we have taken the limit from the supplementary material of Ref. [140] accessible via HEPdata or the CERN Document Server), we see that this benchmark point is not constrained by this search even before taking into account that the $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$ decay branching ratios into gauge bosons are small in this scenario. For this benchmark point, however, the Wino- and Higgsino-like neutralinos and charginos can undergo cascade decays involving the light sleptons, giving rise to potentially detectable signatures in searches for
charged leptons and missing energy at the LHC. Due to BMSM’s mass spectrum, the production of the Wino-like $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$ gives rise to relatively soft leptons. The most sensitive search corresponding to this final state currently implemented in checkmate2 is Ref. [213], for which we find a signal strength of $r \sim 0.8$. The signal strength here is defined as the ratio of the number of events predicted for the model point and the observed limits on the number of events in the most constraining signal region of any given LHC search. Production of the Higgsino-like $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$, and $\tilde{\chi}_2^\pm$, on the other hand, leads to final states with much harder charged leptons and larger missing transverse energy. The most sensitive LHC search currently implemented in checkmate2 for such signatures is Ref. [231], for which we find a signal strength of $r \sim 0.8$. Regarding direct slepton searches, this benchmark point features approximately mass degenerate left- and right-handed selectrons and smuons with $m_{\tilde{\ell}^\pm} = 313$ GeV. Such compressed spectra with $m_{\tilde{\ell}^\pm} - m_{\tilde{\chi}_1^0} = 10$ GeV are not constrained by current LHC searches for direct slepton production, see, for example, Ref. [139].

BMST: The lightest neutralino has mass $m_{\tilde{\chi}_1^0} = 255$ GeV, and the Wino-like next-to-lightest neutralino and lightest chargino have masses $m_{\tilde{\chi}_2^0} = m_{\tilde{\chi}_1^\pm} = 296$ GeV. Both the next-to-lightest neutralino and the lightest chargino decay into staus for this benchmark point, $\text{BR}(\tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1^\pm + \tau^\mp) = \text{BR}(\tilde{\chi}_1^\pm \rightarrow \tilde{\tau}_1^\mp + \nu_\tau) = 100\%$ from our SUSY-HIT results. The staus in turn decay into tau-leptons, $\text{BR}(\tilde{\tau}_1^\pm \rightarrow \tau^\pm + \tilde{\chi}_1^0) = 100\%$, leading to tau-leptons + missing transverse energy final states from $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$ production at the LHC. Although the corresponding searches are quite challenging, studies with initial state radiation jets in a compressed region with chargino-neutralino mass gap $m_{\tilde{\tau}^\pm} - m_{\tilde{\chi}_1^0} \approx 50$ GeV and stau masses in the middle between the chargino and neutralino, $(m_{\tilde{\tau}^\pm} + m_{\tilde{\chi}_1^0})/2 = m_{\tilde{\tau}}$, constrain the chargino mass to $m_{\tilde{\tau}^\pm} \gtrsim 290$ GeV [128]. We have arranged the spectrum of BMST such that this bound is approximately applicable, and accordingly, we chose the masses of the Wino-like next-to-lightest neutralino and the lightest chargino to be larger than 290 GeV. Regarding the slepton searches, the selectrons and smuons have masses $m_{\tilde{\ell}^\pm} = 323$ GeV for BMST. Hence, $m_{\tilde{\ell}^\pm} - m_{\tilde{\chi}_1^0} = 68$ GeV, which is below the mass gaps excluded by current LHC searches [139]. We note that out of the searches implemented in checkmate2, BMST has the largest signal strength ($r \sim 0.3$) for the search in Ref. [214].

BMW: The lightest neutralino has mass $m_{\tilde{\chi}_1^0} = 271$ GeV, and the Wino-like next-to-lightest neutralino and lightest chargino have masses $m_{\tilde{\chi}_2^0} = m_{\tilde{\chi}_1^\pm} = 298$ GeV. For the $\tilde{\chi}_2^0 + \tilde{\chi}_1^\pm$ production cross section, we find $\sigma(pp \rightarrow \tilde{\chi}_2^0 + \tilde{\chi}_1^\pm) = 0.26$ pb. While this point is not
constrained by any of the analyses included in checkmate2, it may be constrained by the recent bounds coming from the multi-lepton final state analyses in Ref. [140], which is not yet implemented in checkmate2. Note that the dominant production mechanism of charged lepton final states from the charginos and neutralinos in BMS is via tau-leptons. In Ref. [140], however, the limits are obtained assuming decays of the charginos and neutralinos into gauge bosons and the lightest neutralinos and hence the limits are not directly applicable to this case. In order to make a conservative comparison to the upper limit $\sigma(pp \rightarrow WZ + 2\chi^0_1) \lesssim 0.9\,\text{pb}$ [140] at these masses, we can note that, including the dominant contribution coming from τ lepton decays, the total leptonic branching ratio from $\tilde{\chi}^0_2 + \tilde{\chi}^\pm_1$ production\footnote{Here, we define the leptonic branching ratio as the sum of the branching ratios of $\tilde{\chi}^0_2/\tilde{\chi}^\pm_1$ involving Z/W^\pm bosons multiplied by their leptonic branching ratios and the (stau-mediated) decays into tau-lepton(s) multiplied with the leptonic branching ratio of the taus.} for this benchmark points is 4.5%, while Ref. [140] assumed $\text{BR}(\tilde{\chi}^0_2 \rightarrow \chi^0_1 Z) = \text{BR}(\tilde{\chi}^+_1 \rightarrow \chi^0_1 W^+) = 100\%$, corresponding to a total leptonic branching ratio of 1.9%, leading to an estimate of the signal strength of $r = (0.26\,\text{pb}/0.9\,\text{pb}) \times (4.5\%/1.9\%) \sim 0.7$. Note that the true signal strength is most likely significantly lower since leptons coming from tau-lepton decays are softer than those coming from direct lepton production.

Regarding direct slepton searches, the lightest charged sleptons for this benchmark point are the staus, $m_{\tilde{\tau}_1} = 305\,\text{GeV}$, followed by the selectrons and smuons with $m_{\tilde{\ell}^\pm} = 353\,\text{GeV}$. Such mass gaps, $m_{\tilde{\ell}^\pm} - m_{\chi^0_1} = 82\,\text{GeV}$, are not constrained by current LHC bounds even under the assumption of $\text{BR}(\tilde{\ell}^\pm \rightarrow \ell^\pm + \chi^0_1) = 100\%$ for all four of the left- and right-handed selectron and smuon states, with stau bounds being even weaker. For this benchmark point, the left-handed charged sleptons decay preferentially into charginos, $\text{BR}(\tilde{\ell}^+_L \rightarrow \nu_t + \chi^+_1) = 53\%$, and have sizeable branching ratios into the next-to-lightest (Wino-like) neutralino, $\text{BR}(\tilde{\ell}^+_L \rightarrow \ell^\pm + \chi^0_2) = 28\%$. The reduced decay branching ratios into the lightest neutralino implies softer spectra of visible decay products at the LHC and hence even weaker bounds. Moreover, due to the compressed chargino and neutralino spectrum, no relevant additional constraints emerge from the decay of the sleptons into the Wino-like states.

We note that out of the searches implemented in checkmate2, BMW has the largest signal strength ($r \sim 0.4$) for the search in Ref. [214].

BMH: The lightest neutralino has mass $m_{\chi^0_1} = 61\,\text{GeV}$, and the next-to-lightest neutralino and lightest chargino have masses $m_{\chi^0_2} = m_{\chi^\pm_1} = 470\,\text{GeV}$. Unlike for all of the other benchmark points, $m_{\chi^0_2}$ and $m_{\chi^\pm_1}$ are Higgsino-like, leading to a relatively small $\tilde{\chi}^0_2 + \tilde{\chi}^\pm_1$ pro-
duction cross section of $\sigma(pp \to \tilde{\chi}_2^0 + \tilde{\chi}_1^\pm) = 0.013$ pb at the 13 TeV LHC. This is significantly below the upper limit from Ref. [140] at these masses, $\sigma(pp \to WZ + 2\tilde{\chi}_1^0) \lesssim 0.02$ pb, even before taking the branching ratios of $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$ into account [BR($\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 + h$) = 62\% and BR($\tilde{\chi}_3^0 \to \tilde{\chi}_1^0 + h$) = 34\% for this point]. The masses of the Wino-like state are $m_{\tilde{\chi}_4^0} = m_{\tilde{\chi}_3^\pm} = 745$ GeV, beyond the current limit on these states [138, 207, 252], even before accounting for the decay patterns of the heavy Winos. The Wino-like states dominantly decay into the intermediate Higgsino-like states, $\tilde{\chi}_4^0/\tilde{\chi}_2^\pm \to \tilde{\chi}_3^0/\tilde{\chi}_2^\pm + W^\pm/Z/h$. Thus, production of Wino-like states at the LHC will mostly lead to cascade decays with softer visible final states than if the Wino-like states would directly decay into the lightest neutralino, $\tilde{\chi}_4^0/\tilde{\chi}_2^\pm \to \tilde{\chi}_1^0 + W^\pm/Z/h$, complicating experimental searches. Furthermore, let us stress that the bounds on Wino production presented by the experimental collaborations assume that the squarks are decoupled, and accordingly ignore the important t-channel squark-mediated contributions to the Wino production cross section which can lower the cross section by order one factors depending on the exact squark masses [159]. These arguments apply to very recent searches for Winos in hadronic final states [238, 253] that would rule out this scenario in the absence of cascade decays and the t-channel squark contributions. Nonetheless, these impressive searches clearly show the potential of the experimental collaborations to test the regions of parameters represented by our scenarios in future runs of the LHC. Regarding the slepton searches, the lightest charged sleptons for this benchmark point are the staus, $m_{\tilde{\tau}_1} = 710$ GeV, and the selectrons and smuons have masses $m_{\tilde{\ell}^\pm} = 751$ GeV, beyond the reach of current LHC searches [139]. We note that out of the searches implemented in checkmate2, BMH has the largest signal strength ($r \sim 0.4$) for the search in Ref. [214].

[1] Georges Aad et al. (ATLAS), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1–29 (2012), arXiv:1207.7214 [hep-ex].

[2] Serguei Chatrchyan et al. (CMS), “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716, 30–61 (2012), arXiv:1207.7235 [hep-ex].

[3] Roel Aaij et al. (LHCb), “Test of lepton universality in beauty-quark decays,” (2021),
[4] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), “Precision electroweak measurements on the Z resonance,” Phys. Rept. 427, 257–454 (2006), arXiv:hep-ex/0509008.

[5] D0 DELPHI L3 OPAL SLD LEP Electroweak Working Group Tevatron Electroweak Working Group SLD Electroweak Heavy Flavour Groups ALEPH, CDF, “Precision Electroweak Measurements and Constraints on the Standard Model,” (2010), arXiv:1012.2367 [hep-ex].

[6] R. Aaij et al. (LHCb), “Test of lepton universality with $B^0 \to K^{*0} \ell^+\ell^-$ decays,” JHEP 08, 055 (2017) arXiv:1705.05802 [hep-ex].

[7] Roel Aaij et al. (LHCb), “Measurement of CP-Averaged Observables in the $B^0 \to K^{*0} \mu^+\mu^-$ Decay,” Phys. Rev. Lett. 125, 011802 (2020), arXiv:2003.04831 [hep-ex].

[8] Roel Aaij et al. (LHCb), “Angular Analysis of the $B^+ \to K^{*+} \mu^+\mu^-$ Decay,” Phys. Rev. Lett. 126, 161802 (2021), arXiv:2012.13241 [hep-ex].

[9] J. P. Lees et al. (BaBar), “Evidence for an excess of $B \to D^{(*)}\tau^-\bar{\nu}_\tau$ decays,” Phys. Rev. Lett. 109, 101802 (2012), arXiv:1205.5442 [hep-ex].

[10] Roel Aaij et al. (LHCb), “Measurement of the ratio of branching fractions $B(B^0 \to D^{+}\tau^-\bar{\nu}_\tau)/B(B^0 \to D^{*+} \mu^+\bar{\nu}_\mu)$,” Phys. Rev. Lett. 115, 111803 (2015), [Erratum: Phys.Rev.Lett. 115, 159901 (2015)], arXiv:1506.08614 [hep-ex].

[11] M. Huschle et al. (Belle), “Measurement of the branching ratio of $B \to D^{(*)}\tau^-\bar{\nu}_\tau$ relative to $B \to D^{(*)}\ell^-\bar{\nu}_\ell$ decays with hadronic tagging at Belle,” Phys. Rev. D 92, 072014 (2015), arXiv:1507.03233 [hep-ex].

[12] S. Hirose et al. (Belle), “Measurement of the τ lepton polarization and $R(D^*)$ in the decay $B \to D^*\tau^-\bar{\nu}_\tau$,” Phys. Rev. Lett. 118, 211801 (2017), arXiv:1612.00529 [hep-ex].

[13] R. Aaij et al. (LHCb), “Measurement of the ratio of the $B^0 \to D^{*-}\tau^+\nu_\tau$ and $B^0 \to D^{*-}\mu^+\nu_\mu$ branching fractions using three-prong τ-lepton decays,” Phys. Rev. Lett. 120, 171802 (2018), arXiv:1708.08856 [hep-ex].

[14] A. Abdesselam et al. (Belle), “Measurement of $R(D)$ and $R(D^*)$ with a semileptonic tagging method,” (2019), arXiv:1904.08794 [hep-ex].

[15] T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887, 1–166 (2020), arXiv:2006.04822 [hep-ph].

[16] Tatsumi Aoyama, Masashi Hayakawa, Toichiro Kinoshita, and Makiko Nio, “Complete
Tenth-Order QED Contribution to the Muon g-2,” Phys. Rev. Lett. 109, 111808 (2012), arXiv:1205.5370 [hep-ph].

[17] Tatsumi Aoyama, Toichiro Kinoshita, and Makiko Nio, “Theory of the Anomalous Magnetic Moment of the Electron,” Atoms 7, 28 (2019).

[18] Andrzej Czarnecki, William J. Marciano, and Arkady Vainshtein, “Refinements in electroweak contributions to the muon anomalous magnetic moment,” Phys. Rev. D 67, 073006 (2003) [Erratum: Phys.Rev.D 73, 119901 (2006)], arXiv:hep-ph/0212229.

[19] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, “The electroweak contributions to \((g - 2)_\mu\) after the Higgs boson mass measurement,” Phys. Rev. D 88, 053005 (2013), arXiv:1306.5546 [hep-ph].

[20] Michel Davier, Andreas Hoecker, Bogdan Malaescu, and Zhiqing Zhang, “Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon \(g - 2\) and \(\alpha(m_Z^2)\) using newest hadronic cross-section data,” Eur. Phys. J. C 77, 827 (2017), arXiv:1706.09436 [hep-ph].

[21] Alexander Keshavarzi, Daisuke Nomura, and Thomas Teubner, “Muon \(g - 2\) and \(\alpha(M_Z^2)\): a new data-based analysis,” Phys. Rev. D 97, 114025 (2018), arXiv:1802.02995 [hep-ph].

[22] Gilberto Colangelo, Martin Hoferichter, and Peter Stöferle, “Two-pion contribution to hadronic vacuum polarization,” JHEP 02, 006 (2019), arXiv:1810.00007 [hep-ph].

[23] Martin Hoferichter, Bai-Long Hoid, and Bastian Kubis, “Three-pion contribution to hadronic vacuum polarization,” JHEP 08, 137 (2019), arXiv:1907.01556 [hep-ph].

[24] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \(\alpha(m_Z^2)\),” Eur. Phys. J. C 80, 241 (2020) [Erratum: Eur.Phys.J.C 80, 410 (2020)], arXiv:1908.00921 [hep-ph].

[25] Alexander Keshavarzi, Daisuke Nomura, and Thomas Teubner, “\(g - 2\) of charged leptons, \(\alpha(M_Z^2)\), and the hyperfine splitting of muonium,” Phys. Rev. D 101, 014029 (2020), arXiv:1911.00367 [hep-ph].

[26] Alexander Kurz, Tao Liu, Peter Marquard, and Matthias Steinhauser, “Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order,” Phys. Lett. B 734, 144–147 (2014), arXiv:1403.6400 [hep-ph].

[27] Kirill Melnikov and Arkady Vainshtein, “Hadronic light-by-light scattering contribution
to the muon anomalous magnetic moment revisited,” Phys. Rev. D 70, 113006 (2004), arXiv:hep-ph/0312226.

[28] Pere Masjuan and Pablo Sanchez-Puertas, “Pseudoscalar-pole contribution to the \((g_\mu - 2)\): a rational approach,” Phys. Rev. D 95, 054026 (2017), arXiv:1701.05829 [hep-ph].

[29] Gilberto Colangelo, Martin Hoferichter, Massimiliano Procura, and Peter Stoffer, “Dispersion relation for hadronic light-by-light scattering: two-pion contributions,” JHEP 04, 161 (2017), arXiv:1702.07347 [hep-ph].

[30] Martin Hoferichter, Bai-Long Hoid, Bastian Kubis, Stefan Leupold, and Sebastian P. Schneider, “Dispersion relation for hadronic light-by-light scattering: pion pole,” JHEP 10, 141 (2018), arXiv:1808.04823 [hep-ph].

[31] Antoine Gérardin, Harvey B. Meyer, and Andreas Nyffeler, “Lattice calculation of the pion transition form factor with \(N_f = 2 + 1\) Wilson quarks,” Phys. Rev. D 100, 034520 (2019), arXiv:1903.09471 [hep-lat].

[32] Johan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez, “Short-distance constraints for the HLBL contribution to the muon anomalous magnetic moment,” Phys. Lett. B 798, 134994 (2019), arXiv:1908.03331 [hep-ph].

[33] Gilberto Colangelo, Franziska Hagelstein, Martin Hoferichter, Laetitia Laub, and Peter Stoffer, “Longitudinal short-distance constraints for the hadronic light-by-light contribution to \(g - 2\)_\mu with large-\(N_c\) Regge models,” JHEP 03, 101 (2020), arXiv:1910.13432 [hep-ph].

[34] Thomas Blum, Norman Christ, Masashi Hayakawa, Taku Izubuchi, Luchang Jin, Chulwoo Jung, and Christoph Lehner, “Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD,” Phys. Rev. Lett. 124, 132002 (2020), arXiv:1911.08123 [hep-lat].

[35] Gilberto Colangelo, Martin Hoferichter, Andreas Nyffeler, Massimo Passera, and Peter Stoffer, “Remarks on higher-order hadronic corrections to the muon \(g - 2\),” Phys. Lett. B 735, 90–91 (2014), arXiv:1403.7512 [hep-ph].

[36] B. Abi et al. (Muon g-2), “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126, 141801 (2021), arXiv:2104.03281 [hep-ex].

[37] G. W. Bennett et al. (Muon g-2), “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D 73, 072003 (2006), arXiv:hep-ex/0602035.

[38] Sz. Borsanyi et al., “Leading hadronic contribution to the muon magnetic moment from
lattice QCD,” Nature **593**, 51–55 (2021), arXiv:2002.12347 [hep-lat].

[39] Christoph Lehner and Aaron S. Meyer, “Consistency of hadronic vacuum polarization between lattice QCD and the R-ratio,” Phys. Rev. D **101**, 074515 (2020), arXiv:2003.04177 [hep-lat].

[40] Andreas Crivellin, Martin Hoferichter, Claudio Andrea Manzari, and Marc Montull, “Hadronic Vacuum Polarization: \((g-2)_{\mu}\) versus Global Electroweak Fits,” Phys. Rev. Lett. **125**, 091801 (2020), arXiv:2003.04886 [hep-ph].

[41] Alexander Keshavarzi, William J. Marciano, Massimo Passera, and Alberto Sirlin, “Muon \(g-2\) and \(\Delta \alpha\) connection,” Phys. Rev. D **102**, 033002 (2020), arXiv:2006.12666 [hep-ph].

[42] Eduardo de Rafael, “Constraints between \(\Delta \alpha_{\text{had}}(M_Z^2)\) and \((g_{\mu}-2)_{\text{HVP}}\),” Phys. Rev. D **102**, 056025 (2020), arXiv:2006.13880 [hep-ph].

[43] Peisi Huang and Carlos E. M. Wagner, “Blind Spots for neutralino Dark Matter in the MSSM with an intermediate \(m_A\),” Phys. Rev. D **90**, 015018 (2014), arXiv:1404.0392 [hep-ph].

[44] Manimala Chakraborti, Sven Heinemeyer, and Ipsita Saha, “Improved \((g-2)_{\mu}\) Measurements and Supersymmetry,” Eur. Phys. J. C **80**, 984 (2020), arXiv:2006.15157 [hep-ph].

[45] Manimala Chakraborti, Sven Heinemeyer, and Ipsita Saha, “Improved \((g-2)_{\mu}\) measurements and wino/higgsino dark matter,” Eur. Phys. J. C **81**, 1069 (2021), arXiv:2103.13403 [hep-ph].

[46] Yu-Feng Zhou and Yue-Liang Wu, “Lepton flavor changing scalar interactions and muon \(g-2\),” Eur. Phys. J. C **27**, 577–585 (2003), arXiv:hep-ph/0110302.

[47] Vernon Barger, Cheng-Wei Chiang, Wai-Yee Keung, and Danny Marfatia, “Proton size anomaly,” Phys. Rev. Lett. **106**, 153001 (2011), arXiv:1011.3519 [hep-ph].

[48] Chien-Yi Chen, Hooman Davoudiasl, William J. Marciano, and Cen Zhang, “Implications of a light “dark Higgs” solution to the \(g_{\mu}-2\) discrepancy,” Phys. Rev. D **93**, 035006 (2016), arXiv:1511.04715 [hep-ph].

[49] Brian Batell, Nicholas Lange, David McKeen, Maxim Pospelov, and Adam Ritz, “Muon anomalous magnetic moment through the leptonic Higgs portal,” Phys. Rev. D **95**, 075003 (2017), arXiv:1606.04943 [hep-ph].

[50] Hooman Davoudiasl and William J. Marciano, “Tale of two anomalies,” Phys. Rev. D **98**, 075011 (2018), arXiv:1806.10252 [hep-ph].

[51] Jia Liu, Carlos E. M. Wagner, and Xiao-Ping Wang, “A light complex scalar for the electron
and muon anomalous magnetic moments,” JHEP 03, 008 (2019) [arXiv:1810.11028 [hep-ph]]

[52] J. K. Ahn et al. (KOTO), “Study of the $K_L \to \pi^0\nu\nu$ Decay at the J-PARC KOTO Experiment,” Phys. Rev. Lett. 126, 121801 (2021) [arXiv:2012.07571 [hep-ex]]

[53] Jia Liu, Navin McGinnis, Carlos E. M. Wagner, and Xiao-Ping Wang, “A light scalar explanation of $(g - 2)_\mu$ and the KOTO anomaly,” JHEP 04, 197 (2020) [arXiv:2001.06522 [hep-ph]]

[54] Roel Aaij et al. (LHCb), “Measurement of the $B^0_s \to \mu^+\mu^-$ branching fraction and effective lifetime and search for $B^0 \to \mu^+\mu^-$ decays,” Phys. Rev. Lett. 118, 191801 (2017), arXiv:1703.05747 [hep-ex].

[55] Wolfgang Altmannshofer and Peter Stangl, “New physics in rare B decays after Moriond 2021,” Eur. Phys. J. C 81, 952 (2021) [arXiv:2103.13370 [hep-ph]]

[56] W. J. Marciano, A. Masiero, P. Paradisi, and M. Passera, “Contributions of axionlike particles to lepton dipole moments,” Phys. Rev. D 94, 115033 (2016) [arXiv:1607.01022 [hep-ph]].

[57] Martin Bauer, Matthias Neubert, Sophie Renner, Marvin Schmuel, and Andrea Thamm, “Axionlike Particles, Lepton-Flavor Violation, and a New Explanation of a_μ and a_e,” Phys. Rev. Lett. 124, 211803 (2020) [arXiv:1908.00008 [hep-ph]].

[58] Jia Liu, Navin McGinnis, Carlos E. M. Wagner, and Xiao-Ping Wang, “Challenges for a QCD Axion at the 10 MeV Scale,” JHEP 05, 138 (2021) [arXiv:2102.10118 [hep-ph]].

[59] John F. Gunion, “A Light CP-odd Higgs boson and the muon anomalous magnetic moment,” JHEP 08, 032 (2009) [arXiv:0808.2509 [hep-ph]].

[60] Lei Wang, Jin Min Yang, Mengchao Zhang, and Yang Zhang, “Revisiting lepton-specific 2HDM in light of muon $g − 2$ anomaly,” Phys. Lett. B 788, 519–529 (2019) [arXiv:1809.05857 [hep-ph]].

[61] Kristjan Kannike, Martti Raidal, David M. Straub, and Alessandro Strumia, “Anthropic solution to the magnetic muon anomaly: the charged see-saw;” JHEP 02, 106 (2012) [Erratum: JHEP 10, 136 (2012)], arXiv:1111.2551 [hep-ph].

[62] Radovan Dermisek and Aditi Raval, “Explanation of the Muon $g-2$ Anomaly with Vectorlike Leptons and its Implications for Higgs Decays,” Phys. Rev. D 88, 013017 (2013) [arXiv:1305.3522 [hep-ph]].

[63] Radovan Dermisek, Keith Hermanek, and Navin McGinnis, “Muon $g-2$ in two-Higgs-doublet models with vectorlike leptons,” Phys. Rev. D 104, 055033 (2021) [arXiv:2103.05645 [hep-ph]].
[64] Eugenio Megias, Mariano Quiros, and Lindber Salas, “$g_{\mu} - 2$ from Vector-Like Leptons in Warped Space,” JHEP 05, 016 (2017), arXiv:1701.05072 [hep-ph].

[65] Martin Bauer and Matthias Neubert, “Minimal Leptoquark Explanation for the $R_{D^{(*)}}$, R_K, and $(g - 2)_\mu$ Anomalies,” Phys. Rev. Lett. 116, 141802 (2016), arXiv:1511.01900 [hep-ph].

[66] Andreas Crivellin, Dario Mueller, and Francesco Saturnino, “Correlating $h \to \mu^+\mu^-$ to the Anomalous Magnetic Moment of the Muon via Leptoquarks,” Phys. Rev. Lett. 127, 021801 (2021), arXiv:2008.02643 [hep-ph].

[67] Andreas Crivellin, Christoph Greub, Dario Müller, and Francesco Saturnino, “Scalar Leptoquarks in Leptonic Processes,” JHEP 02, 182 (2021), arXiv:2010.06593 [hep-ph].

[68] Gudrun Hiller, Dennis Loose, and Ivan Nišandžić, “Flavorful leptoquarks at the LHC and beyond: spin 1,” JHEP 06, 080 (2021), arXiv:2103.12724 [hep-ph].

[69] Wolfgang Altmannshofer, P. S. Bhupal Dev, Amarjit Soni, and Yicong Sui, “Addressing $R_{D^{(*)}}$, $R_{K^{(*)}}$, muon $g - 2$ and ANITA anomalies in a minimal R-parity violating supersymmetric framework,” Phys. Rev. D 102, 015031 (2020), arXiv:2002.12910 [hep-ph].

[70] Julian Heeck and Werner Rodejohann, “Gauged $L_\mu - L_\tau$ Symmetry at the Electroweak Scale,” Phys. Rev. D 84, 075007 (2011), arXiv:1107.5238 [hep-ph].

[71] Marcela Carena, Mariano Quirós, and Yue Zhang, “Electroweak Baryogenesis from Dark-Sector CP Violation,” Phys. Rev. Lett. 122, 201802 (2019), arXiv:1811.09719 [hep-ph].

[72] Marcela Carena, Mariano Quirós, and Yue Zhang, “Dark CP violation and gauged lepton or baryon number for electroweak baryogenesis,” Phys. Rev. D 101, 055014 (2020), arXiv:1908.04818 [hep-ph].

[73] Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin, “Quark flavor transitions in $L_\mu - L_\tau$ models,” Phys. Rev. D 89, 095033 (2014), arXiv:1403.1269 [hep-ph].

[74] Wolfgang Altmannshofer, Marcela Carena, and Andreas Crivellin, “$L_\mu - L_\tau$ theory of Higgs flavor violation and $(g - 2)_\mu$,” Phys. Rev. D 94, 095026 (2016), arXiv:1604.08221 [hep-ph].

[75] Wolfgang Altmannshofer, Stefania Gori, Stefano Profumo, and Farinaldo S. Queiroz, “Explaining dark matter and B decay anomalies with an $L_\mu - L_\tau$ model,” JHEP 12, 106 (2016), arXiv:1609.04026 [hep-ph].

[76] Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin, “Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams,” Phys. Rev. Lett. 113, 091801 (2014), arXiv:1406.2332 [hep-ph].
[77] D. Geiregat et al. (CHARM-II), “First observation of neutrino trident production,” Phys. Lett. B 245, 271–275 (1990).

[78] S. R. Mishra et al. (CCFR), “Neutrino tridents and W Z interference,” Phys. Rev. Lett. 66, 3117–3120 (1991).

[79] Mohammad Abdullah, James B. Dent, Bhaskar Dutta, Gordon L. Kane, Shu Liao, and Louis E. Strigari, “Coherent elastic neutrino nucleus scattering as a probe of a Z’ through kinetic and mass mixing effects,” Phys. Rev. D 98, 015005 (2018), arXiv:1803.01224 [hep-ph].

[80] Dorian Warren Praia do Amaral, David G. Cerdeno, Patrick Foldenauer, and Elliott Reid, “Solar neutrino probes of the muon anomalous magnetic moment in the gauged U(1)$_{L\mu - L\tau}$,” JHEP 12, 155 (2020), arXiv:2006.11225 [hep-ph].

[81] J. P. Lees et al. (BaBar), “Search for a muonic dark force at BABAR,” Phys. Rev. D 94, 011102 (2016), arXiv:1606.03501 [hep-ex].

[82] Albert M Sirunyan et al. (CMS), “Search for an $L_{\mu} - L_{\tau}$ gauge boson using $Z \rightarrow 4\mu$ events in proton-proton collisions at $\sqrt{s} = 13$ TeV,” Phys. Lett. B 792, 345–368 (2019), arXiv:1808.03684 [hep-ex].

[83] Miguel Escudero, Dan Hooper, Gordan Krnjaic, and Mathias Pierre, “Cosmology with A Very Light $L_{\mu} - L_{\tau}$ Gauge Boson,” JHEP 03, 071 (2019), arXiv:1901.02010 [hep-ph].

[84] Roni Harnik, Joachim Kopp, and Pedro A. N. Machado, “Exploring nu Signals in Dark Matter Detectors,” JCAP 07, 026 (2012), arXiv:1202.6073 [hep-ph].

[85] S. Bilmis, I. Turan, T. M. Aliev, M. Deniz, L. Singh, and H. T. Wong, “Constraints on Dark Photon from Neutrino-Electron Scattering Experiments,” Phys. Rev. D 92, 033009 (2015), arXiv:1502.07763 [hep-ph].

[86] Wen Yin and Masahiro Yamaguchi, “Muon $g - 2$ at multi-TeV muon collider,” (2020), arXiv:2012.03928 [hep-ph].

[87] Rodolfo Capdevilla, David Curtin, Yonatan Kahn, and Gordan Krnjaic, “A No-Lose Theorem for Discovering the New Physics of $(g - 2)_\mu$ at Muon Colliders,” (2021), arXiv:2101.10334 [hep-ph].

[88] Hans Peter Nilles, “Supersymmetry, Supergravity and Particle Physics,” Phys. Rept. 110, 1–162 (1984).

[89] Howard E. Haber and Gordon L. Kane, “The Search for Supersymmetry: Probing Physics Beyond the Standard Model,” Phys. Rept. 117, 75–263 (1985).
[90] Stephen P. Martin, “A Supersymmetry primer,” Adv. Ser. Direct. High Energy Phys. 18, 1–98 (1998), arXiv:hep-ph/9709356.

[91] J. A. Casas, J. R. Espinosa, M. Quiros, and A. Riotto, “The Lightest Higgs boson mass in the minimal supersymmetric standard model,” Nucl. Phys. B 436, 3–29 (1995) [Erratum: Nucl.Phys.B 439, 466–468 (1995)], arXiv:hep-ph/9407389.

[92] Marcela Carena, J. R. Espinosa, M. Quiros, and C. E. M. Wagner, “Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM,” Phys. Lett. B 355, 209–221 (1995), arXiv:hep-ph/9504316.

[93] Marcela Carena, M. Quiros, and C. E. M. Wagner, “Effective potential methods and the Higgs mass spectrum in the MSSM,” Nucl. Phys. B 461, 407–436 (1996), arXiv:hep-ph/9508343.

[94] Howard E. Haber, Ralf Hempfling, and Andre H. Hoang, “Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model,” Z. Phys. C 75, 539–554 (1997), arXiv:hep-ph/9609331.

[95] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, “Towards high precision predictions for the MSSM Higgs sector,” Eur. Phys. J. C 28, 133–143 (2003), arXiv:hep-ph/0212020.

[96] Emanuele Bagnaschi, Gian F. Giudice, Pietro Slavich, and Alessandro Strumia, “Higgs Mass and Unnatural Supersymmetry,” JHEP 09, 092 (2014), arXiv:1407.4081 [hep-ph].

[97] Patrick Draper, Gabriel Lee, and Carlos E. M. Wagner, “Precise estimates of the Higgs mass in heavy supersymmetry,” Phys. Rev. D89, 055023 (2014), arXiv:1312.5743 [hep-ph].

[98] Gabriel Lee and Carlos E. M. Wagner, “Higgs bosons in heavy supersymmetry with an intermediate m_A,” Phys. Rev. D92, 075032 (2015), arXiv:1508.00576 [hep-ph].

[99] Javier Pardo Vega and Giovanni Villadoro, “SusyHD: Higgs mass Determination in Supersymmetry,” JHEP 07, 159 (2015), arXiv:1504.05200 [hep-ph].

[100] Henning Bahl, Sven Heinemeyer, Wolfgang Hollik, and Georg Weiglein, “Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass,” Eur. Phys. J. C78, 57 (2018), arXiv:1706.00346 [hep-ph].

[101] P. Slavich et al., “Higgs-mass predictions in the MSSM and beyond,” Eur. Phys. J. C 81, 450 (2021), arXiv:2012.15629 [hep-ph].

[102] Nobuchika Okada and Hieu Minh Tran, “125 GeV Higgs boson mass and muon g – 2 in 5D
MSSM,” Phys. Rev. D 94, 075016 (2016), arXiv:1606.05329 [hep-ph].

[103] Peter Cox, Chengcheng Han, and Tsutomu T. Yanagida, “Muon $g-2$ and dark matter in the minimal supersymmetric standard model,” Phys. Rev. D 98, 055015 (2018), arXiv:1805.02802 [hep-ph].

[104] Marcela Carena, James Osborne, Nausheen R. Shah, and Carlos E. M. Wagner, “Supersymmetry and LHC Missing Energy Signals,” Phys. Rev. D 98, 115010 (2018), arXiv:1809.11082 [hep-ph].

[105] Motoi Endo and Wen Yin, “Explaining electron and muon $g-2$ anomaly in SUSY without lepton-flavor mixings,” JHEP 08, 122 (2019), arXiv:1906.08768 [hep-ph].

[106] Marcin Badziak and Kazuki Sakurai, “Explanation of electron and muon $g-2$ anomalies in the MSSM,” JHEP 10, 024 (2019), arXiv:1908.03607 [hep-ph].

[107] Murat Abdughani, Ken-Ichi Hikasa, Lei Wu, Jin Min Yang, and Jun Zhao, “Testing electroweak SUSY for muon $g-2$ and dark matter at the LHC and beyond,” JHEP 11, 095 (2019), arXiv:1909.07792 [hep-ph].

[108] Riccardo Barbieri and L. Maiani, “The Muon Anomalous Magnetic Moment in Broken Supersymmetric Theories,” Phys. Lett. B117, 203 (1982).

[109] John R. Ellis, John S. Hagelin, and Dimitri V. Nanopoulos, “Spin 0 Leptons and the Anomalous Magnetic Moment of the Muon,” Phys. Lett. B116, 283 (1982).

[110] David A. Kosower, Lawrence M. Krauss, and Norisuke Sakai, “Low-Energy Supergravity and the Anomalous Magnetic Moment of the Muon,” Phys. Lett. B133, 305 (1983).

[111] Takeo Moroi, “The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model,” Phys. Rev. D 53, 6565–6575 (1996) [Erratum: Phys.Rev.D 56, 4424 (1997)], arXiv:hep-ph/9512396.

[112] Marcela S. Carena, G.F. Giudice, and C.E.M. Wagner, “Constraints on supersymmetric models from the muon anomalous magnetic moment,” Phys. Lett. B390, 234–242 (1997), arXiv:hep-ph/9610233 [hep-ph].

[113] Jonathan L. Feng and Konstantin T. Matchev, “Supersymmetry and the anomalous magnetic moment of the muon,” Phys. Rev. Lett. 86, 3480–3483 (2001), arXiv:hep-ph/0102146 [hep-ph].

[114] Stephen P. Martin and James D. Wells, “Muon Anomalous Magnetic Dipole Moment in Supersymmetric Theories,” Phys. Rev. D 64, 035003 (2001), arXiv:hep-ph/0103067.

[115] Schedar Marchetti, Susanne Mertens, Ulrich Nierste, and Dominik Stockinger, “Tan(beta)-
enhanced supersymmetric corrections to the anomalous magnetic moment of the muon,” Phys. Rev. D 79, 013010 (2009) arXiv:0808.1530 [hep-ph].

[116] Peter Athron, Markus Bach, Helvecio G. Fargnoli, Christoph Gnendiger, Robert Greifenhagen, Jae-hyeon Park, Sebastian Paßehr, Dominik Stöckinger, Hyejung Stöckinger-Kim, and Alexander Voigt, “GM2Calc: Precise MSSM prediction for \((g - 2)\) of the muon,” Eur. Phys. J. C 76, 62 (2016) arXiv:1510.08071 [hep-ph].

[117] Marcela Carena, David Garcia, Ulrich Nierste, and Carlos E. M. Wagner, “Effective Lagrangian for the \(\bar{b}H^+\) interaction in the MSSM and charged Higgs phenomenology,” Nucl. Phys. B 577, 88–120 (2000) arXiv:hep-ph/9912516.

[118] Manuel Drees and Ghazaal Ghaffari, “Impact of the bounds on the direct search for neutralino dark matter on naturalness,” Phys. Rev. D 104, 075031 (2021) arXiv:2103.15617 [hep-ph].

[119] Tao Han, Hongkai Liu, Satyanarayan Mukhopadhyay, and Xing Wang, “Dark Matter Blind Spots at One-Loop,” JHEP 03, 080 (2019) arXiv:1810.04679 [hep-ph].

[120] Morad Aaboud et al. (ATLAS), “Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb\(^{-1}\) of pp collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector,” JHEP 01, 055 (2018), arXiv:1709.07242 [hep-ex].

[121] Albert M Sirunyan et al. (CMS), “Search for additional neutral MSSM Higgs bosons in the \(\tau\tau\) final state in proton-proton collisions at \(\sqrt{s} = 13\) TeV,” JHEP 09, 007 (2018), arXiv:1803.06553 [hep-ex].

[122] Albert M Sirunyan et al. (CMS), “Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at \(\sqrt{s} = 13\) TeV,” JHEP 03, 065 (2020) arXiv:1910.11634 [hep-ex].

[123] Georges Aad et al. (ATLAS), “Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using \(pp\) collisions at \(\sqrt{s} = 13\) TeV,” Phys. Rev. Lett. 125, 051801 (2020) arXiv:2002.12223 [hep-ex].

[124] E. Behnke et al., “Final Results of the PICASSO Dark Matter Search Experiment,” Astropart. Phys. 90, 85–92 (2017) arXiv:1611.01499 [hep-ex].

[125] Changbo Fu et al. (PandaX-II), “Spin-Dependent Weakly-Interacting-Massive-Particle–Nucleon Cross Section Limits from First Data of PandaX-II Experiment,” Phys. Rev. Lett. 118, 071301 (2017) [Erratum: Phys.Rev.Lett. 120, 049902 (2018)], arXiv:1611.06553 [hep-ex].
[126] E. Aprile et al. (XENON), “Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T,” Phys. Rev. Lett. 122, 141301 (2019), arXiv:1902.03234 [astro-ph.CO].

[127] C. Amole et al. (PICO), “Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber,” Phys. Rev. D 100, 022001 (2019), arXiv:1902.04031 [astro-ph.CO].

[128] Albert M Sirunyan et al. (CMS), “Search for Supersymmetry with a Compressed Mass Spectrum in Events with a Soft τ Lepton, a Highly Energetic Jet, and Large Missing Transverse Momentum in Proton-Proton Collisions at $\sqrt{s} = \text{TeV}$,” Phys. Rev. Lett. 124, 041803 (2020), arXiv:1910.01185 [hep-ex].

[129] Georges Aad et al. (ATLAS), “Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at $\sqrt{s} = 8 \text{ TeV}$ with the ATLAS detector,” JHEP 05, 071 (2014), arXiv:1403.5294 [hep-ex].

[130] Georges Aad et al. (ATLAS), “Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt{s} = 13 \text{ TeV}$ pp collisions using the ATLAS detector,” Eur. Phys. J. C 80, 123 (2020), arXiv:1908.08215 [hep-ex].

[131] Albert M Sirunyan et al. (CMS), “Search for direct pair production of supersymmetric partners to the τ lepton in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$,” Eur. Phys. J. C 80, 189 (2020), arXiv:1907.13179 [hep-ex].

[132] Georges Aad et al. (ATLAS), “Search for direct stau production in events with two hadronic τ-leptons in $\sqrt{s} = 13 \text{ TeV}$ pp collisions with the ATLAS detector,” Phys. Rev. D 101, 032009 (2020), arXiv:1911.06660 [hep-ex].

[133] Georges Aad et al. (ATLAS), “Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt{s} = 13 \text{ TeV}$ pp collisions with the ATLAS detector,” Phys. Rev. D 101, 052005 (2020), arXiv:1911.12606 [hep-ex].

[134] Morad Aaboud et al. (ATLAS), “Search for the direct production of charginos and neutralinos in final states with tau leptons in $\sqrt{s} = 13 \text{ TeV}$ pp collisions with the ATLAS detector,” Eur. Phys. J. C 78, 154 (2018), arXiv:1708.07875 [hep-ex].

[135] A. M. Sirunyan et al. (CMS), “Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$,” JHEP 03, 160 (2018), arXiv:1801.03957 [hep-ex].
[136] M. Aaboud et al. (ATLAS), “Search for electroweak production of supersymmetric particles in final states with two or three leptons at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Eur. Phys. J. C 78, 995 (2018), arXiv:1803.02762 [hep-ex].

[137] Morad Aaboud et al. (ATLAS), “Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Phys. Rev. D 98, 092012 (2018), arXiv:1806.02293 [hep-ex].

[138] Morad Aaboud et al. (ATLAS), “Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Phys. Rev. D 100, 012006 (2019), arXiv:1812.09432 [hep-ex].

[139] ATLAS Collaboration, “Search for electroweak production of charginos and sleptons decaying in final states with two leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector,” Tech. Rep. ATLAS-CONF-2019-008 (CERN, Geneva, 2019).

[140] Georges Aad et al. (ATLAS), “Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector,” Eur. Phys. J. C 81, 1118 (2021), arXiv:2106.01676 [hep-ex].

[141] G. Angloher et al. (CRESST), “Results on light dark matter particles with a low-threshold CRESST-II detector,” Eur. Phys. J. C 76, 25 (2016), arXiv:1509.01515 [astro-ph.CO].

[142] P. Agnes et al. (DarkSide), “Low-Mass Dark Matter Search with the DarkSide-50 Experiment,” Phys. Rev. Lett. 121, 081307 (2018), arXiv:1802.06904 [astro-ph.HE].

[143] E. Aprile et al. (XENON), “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121, 111302 (2018), arXiv:1805.12562 [astro-ph.CO].

[144] E. Aprile et al. (XENON), “Light Dark Matter Search with Ionization Signals in XENON1T,” Phys. Rev. Lett. 123, 251801 (2019), arXiv:1907.11485 [hep-ex].

[145] John R. Ellis, Toby Falk, and Keith A. Olive, “Neutralino - Stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle,” Phys. Lett. B 444, 367–372 (1998), arXiv:hep-ph/9810360.

[146] John R. Ellis, Toby Falk, Keith A. Olive, and Mark Srednicki, “Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space,” Astropart. Phys. 13, 181–213 (2000), [Erratum: Astropart.Phys. 15, 413–414 (2001)].
[147] Matthew R. Buckley, Dan Hooper, and Jason Kumar, “Phenomenology of Dirac Neutralino Dark Matter,” Phys. Rev. D 88, 063532 (2013) [arXiv:1307.3561 [hep-ph]]

[148] Tao Han, Zhen Liu, and Aravind Natarajan, “Dark matter and Higgs bosons in the MSSM,” JHEP 11, 008 (2013) [arXiv:1303.3040 [hep-ph]]

[149] María Eugenia Cabrera, J. Alberto Casas, Antonio Delgado, Sandra Robles, and Roberto Ruiz de Austri, “Naturalness of MSSM dark matter,” JHEP 08, 058 (2016) [arXiv:1604.02102 [hep-ph]]

[150] Michael J. Baker and Andrea Thamm, “Leptonic WIMP Coannihilation and the Current Dark Matter Search Strategy,” JHEP 10, 187 (2018) [arXiv:1806.07896 [hep-ph]]

[151] Aaron Pierce, Nausheen R. Shah, and Katherine Freese, “Neutralino Dark Matter with Light Staus,” (2013), arXiv:1309.7351 [hep-ph].

[152] Keita Fukushima, Chris Kelso, Jason Kumar, Pearl Sandick, and Takahiro Yamamoto, “MSSM dark matter and a light slepton sector: The incredible bulk,” Phys. Rev. D 90, 095007 (2014) [arXiv:1406.4903 [hep-ph]]

[153] Tamas Almos Vami (ATLAS, CMS), “Searches for gluinos and squarks,” PoS LHCP2019, 168 (2019) arXiv:1909.11753 [hep-ex].

[154] Georges Aad et al. (ATLAS), “Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb\(^{-1}\) of \(\sqrt{s}\) =13 TeV pp collision data with the ATLAS detector,” JHEP 02, 143 (2021) [arXiv:2010.14293 [hep-ex]]

[155] Georges Aad et al. (ATLAS), “Search for new phenomena with top quark pairs in final states with one lepton, jets, and missing transverse momentum in pp collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector,” JHEP 04, 174 (2021) [arXiv:2012.03799 [hep-ex]].

[156] Georges Aad et al. (ATLAS), “Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at \(\sqrt{s} = 13\) TeV with the ATLAS detector,” (2021), arXiv:2101.01629 [hep-ex].

[157] Stephen P. Martin, “Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models,” Phys. Rev. D 79, 095019 (2009) [arXiv:0903.3568 [hep-ph]]

[158] Jia Liu, Navin McGinnis, Carlos E. M. Wagner, and Xiao-Ping Wang, “Searching for the Higgsino-Bino Sector at the LHC,” JHEP 09, 073 (2020) [arXiv:2006.07389 [hep-ph]]

[159] Jia Liu, Navin McGinnis, Carlos E. M. Wagner, and Xiao-Ping Wang, “The scale of su-
perpartner masses and electroweakino searches at the high-luminosity LHC,

"JHEP 12, 087 (2020), arXiv:2008.11847 [hep-ph]."

[160] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “Dark matter direct detection rate in a generic model with micrOMEGAs 2.2,” Comput. Phys. Commun. 180, 747–767 (2009), arXiv:0803.2360 [hep-ph].

[161] Geneviève Bélanger, Fawzi Boudjema, Andreas Goudelis, Alexander Pukhov, and Bryan Zaldivar, “micrOMEGAs5.0 : Freeze-in,” Comput. Phys. Commun. 231, 173–186 (2018), arXiv:1801.03509 [hep-ph].

[162] G. Bélanger, A. Mjallal, and A. Pukhov, “Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios,” Eur. Phys. J. C 81, 239 (2021) arXiv:2003.08621 [hep-ph].

[163] A. Djouadi, M. M. Muhlleitner, and M. Spira, “Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface),” Acta Phys. Polon. B 38, 635–644 (2007), arXiv:hep-ph/0609292.

[164] Daniel Dercks, Nishita Desai, Jong Soo Kim, Krzysztof Rolbiecki, Jamie Tattersall, and Torsten Weber, “CheckMATE 2: From the model to the limit,” Comput. Phys. Commun. 221, 383–418 (2017), arXiv:1611.09856 [hep-ph].

[165] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07, 079 (2014), arXiv:1405.0301 [hep-ph].

[166] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands, “An introduction to PYTHIA 8.2,” Comput. Phys. Commun. 191, 159–177 (2015), arXiv:1410.3012 [hep-ph].

[167] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi (DELPHES 3), “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” JHEP 02, 057 (2014), arXiv:1307.6346 [hep-ex].

[168] Georges Aad et al. (ATLAS), “Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \(\sqrt{s} = 8 \) TeV proton-proton collisions using the ATLAS experiment,” JHEP 10, 130 (2013), [Erratum: JHEP 01, 109 (2014)].
[169] Georges Aad et al. (ATLAS), “Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector,” JHEP 10, 189 (2013), arXiv:1308.2631 [hep-ex].

[170] Georges Aad et al. (ATLAS), “Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS,” Phys. Rev. Lett. 112, 201802 (2014), arXiv:1402.3244 [hep-ex].

[171] Georges Aad et al. (ATLAS), “Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in $\sqrt{s} = 8$TeV pp collisions with the ATLAS detector,” JHEP 04, 169 (2014), arXiv:1402.7029 [hep-ex].

[172] Georges Aad et al. (ATLAS), “Search for direct top-squark pair production in final states with two leptons in pp collisions at $\sqrt{s} = 8$TeV with the ATLAS detector,” JHEP 06, 124 (2014), arXiv:1403.4853 [hep-ex].

[173] Georges Aad et al. (ATLAS), “Search for direct top squark pair production in events with a Z boson, b-jets and missing transverse momentum in sqrt(s)=8 TeV pp collisions with the ATLAS detector,” Eur. Phys. J. C 74, 2883 (2014), arXiv:1403.5222 [hep-ex].

[174] Georges Aad et al. (ATLAS), “Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector,” JHEP 05, 071 (2014), arXiv:1403.5294 [hep-ex].

[175] Georges Aad et al. (ATLAS), “Search for supersymmetry at $\sqrt{s}=8$ TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector,” JHEP 06, 035 (2014), arXiv:1404.2500 [hep-ex].

[176] Georges Aad et al. (ATLAS), “Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using $\sqrt{s} = 8$ TeV proton–proton collision data,” JHEP 09, 176 (2014), arXiv:1405.7875 [hep-ex].

[177] Georges Aad et al. (ATLAS), “Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector,” JHEP 11, 118 (2014), arXiv:1407.0583 [hep-ex].

[178] Georges Aad et al. (ATLAS), “Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector,” Phys. Rev. D 90, 052008 (2014), arXiv:1407.0608 [hep-ex].
[179] Georges Aad et al. (ATLAS), “Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector,” Phys. Rev. D 91, 012008 (2015), [Erratum: Phys.Rev.D 92, 059903 (2015)], arXiv:1411.1559 [hep-ex].

[180] Georges Aad et al. (ATLAS), “Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector,” Eur. Phys. J. C 75, 208 (2015), arXiv:1501.07110 [hep-ex].

[181] Georges Aad et al. (ATLAS), “Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector,” Eur. Phys. J. C 75, 299 (2015), [Erratum: Eur.Phys.J.C 75, 408 (2015)], arXiv:1502.01518 [hep-ex].

[182] Georges Aad et al. (ATLAS), “Search for massive supersymmetric particles decaying to many jets using the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV,” Phys. Rev. D 91, 112016 (2015), [Erratum: Phys.Rev.D 93, 039901 (2016)], arXiv:1502.05686 [hep-ex].

[183] Georges Aad et al. (ATLAS), “Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector,” Eur. Phys. J. C 75, 318 (2015), [Erratum: Eur.Phys.J.C 75, 463 (2015)], arXiv:1503.03290 [hep-ex].

[184] Georges Aad et al. (ATLAS), “ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider,” Eur. Phys. J. C 75, 510 (2015), [Erratum: Eur.Phys.J.C 76, 153 (2016)], arXiv:1506.08616 [hep-ex].

[185] Georges Aad et al. (ATLAS), “Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector,” Phys. Rev. D 92, 072001 (2015), arXiv:1507.05493 [hep-ex].

[186] ATLAS Collaboration, Search for supersymmetry at $\sqrt{s} = 8$ TeV in final states with jets, missing transverse momentum and one isolated lepton, Tech. Rep. ATLAS-CONF-2012-104 (CERN, Geneva, 2012).

[187] ATLAS Collaboration, Search for direct production of the top squark in the all-hadronic $t\bar{t}$ + etmiss final state in 21 fb$^{-1}$ of p-p collisions at sqrt(s)=8 TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2013-024 (CERN, Geneva, 2013).

[188] ATLAS Collaboration, Search for direct-slepton and direct-chargino production in final states
with two opposite-sign leptons, missing transverse momentum and no jets in 20/ fb of pp collisions at sqrt(s) = 8 TeV with the ATLAS detector.189 Tech. Rep. ATLAS-CONF-2013-049 (CERN, Geneva, 2013).

189 ATLAS Collaboration, \textit{Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb-1 of pp collisions at sqrt(s) = 8 TeV with the ATLAS Detector.} Tech. Rep. ATLAS-CONF-2013-061 (CERN, Geneva, 2013).

190 ATLAS Collaboration, \textit{Search for strongly produced supersymmetric particles in decays with two leptons at \sqrt{s} = 8 TeV.} Tech. Rep. ATLAS-CONF-2013-089 (CERN, Geneva, 2013).

191 ATLAS Collaboration, \textit{Search for an Invisibly Decaying Higgs Boson Produced via Vector Boson Fusion in pp Collisions at \sqrt{s} = 8 TeV using the ATLAS Detector at the LHC} Tech. Rep. ATLAS-CONF-2015-004 (CERN, Geneva, 2015).

192 Serguei Chatrchyan \textit{et al.} (CMS), \textit{“Search for Supersymmetry in Hadronic Final States with Missing Transverse Energy Using the Variables \alpha_T and b-Quark Multiplicity in pp collisions at \sqrt{s} = 8 TeV,”} Eur. Phys. J. C \textbf{73}, 2568 (2013), arXiv:1303.2985 [hep-ex].

193 Vardan Khachatryan \textit{et al.} (CMS), \textit{“Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at \sqrt{s} = 8 TeV,”} Eur. Phys. J. C \textbf{75}, 235 (2015), arXiv:1408.3583 [hep-ex].

194 Vardan Khachatryan \textit{et al.} (CMS), \textit{“Search for Physics Beyond the Standard Model in Events with Two Leptons, Jets, and Missing Transverse Momentum in pp Collisions at sqrt(s) = 8 TeV,”} JHEP \textbf{04}, 124 (2015) arXiv:1502.06031 [hep-ex].

195 Vardan Khachatryan \textit{et al.} (CMS), \textit{“Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at sqrt(s) = 8 TeV,”} JHEP \textbf{06}, 121 (2015) arXiv:1504.03198 [hep-ex].

196 Vardan Khachatryan \textit{et al.} (CMS), \textit{“Search for heavy Majorana neutrinos in ee+ jets and e \mu+ jets events in proton-proton collisions at \sqrt{s} = 8 TeV,”} JHEP \textbf{04}, 169 (2016) arXiv:1603.02248 [hep-ex].

197 Morad Aaboud \textit{et al.} (ATLAS), \textit{“Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector,”} JHEP \textbf{06}, 059 (2016), arXiv:1604.01306 [hep-ex].

198 Georges Aad \textit{et al.} (ATLAS), \textit{“Search for pair production of gluinos decaying via stop and...}
sbottom in events with b-jets and large missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Phys. Rev. D 94, 032003 (2016), arXiv:1605.09318 [hep-ex].

[199] Morad Aaboud et al. (ATLAS), “Measurement of the $t\bar{t}Z$ and $t\bar{t}W$ production cross sections in multilepton final states using 3.2 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Eur. Phys. J. C 77, 40 (2017), arXiv:1609.01599 [hep-ex].

[200] Morad Aaboud et al. (ATLAS), “Search for dark matter at $\sqrt{s} = 13$ TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector,” Eur. Phys. J. C 77, 393 (2017), arXiv:1704.03848 [hep-ex].

[201] Morad Aaboud et al. (ATLAS), “Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV pp collision data with the ATLAS detector,” JHEP 09, 084 (2017) [Erratum: JHEP 08, 121 (2019)], arXiv:1706.03731 [hep-ex].

[202] Morad Aaboud et al. (ATLAS), “Search for the direct production of charginos and neutralinos in final states with tau leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector,” Eur. Phys. J. C 78, 154 (2018), arXiv:1708.07875 [hep-ex].

[203] Morad Aaboud et al. (ATLAS), “Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at \sqrt{s}=13 TeV with the ATLAS detector,” JHEP 12, 085 (2017) arXiv:1709.04183 [hep-ex].

[204] Morad Aaboud et al. (ATLAS), “Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Phys. Rev. D 97, 052010 (2018) arXiv:1712.08119 [hep-ex].

[205] Morad Aaboud et al. (ATLAS), “Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV pp collision data with the ATLAS detector,” Phys. Rev. D 97, 112001 (2018), arXiv:1712.02332 [hep-ex].

[206] Morad Aaboud et al. (ATLAS), “Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector,” Phys. Rev. D 97, 092006 (2018) arXiv:1802.03158 [hep-ex].

[207] M. Aaboud et al. (ATLAS), “Search for electroweak production of supersymmetric particles in final states with two or three leptons at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Eur. Phys. J. C 78, 995 (2018), arXiv:1803.02762 [hep-ex].

[208] Morad Aaboud et al. (ATLAS), “A strategy for a general search for new phenomena using
data-derived signal regions and its application within the ATLAS experiment," Eur. Phys. J. C 79, 120 (2019), arXiv:1807.07447 [hep-ex]

[209] Georges Aad et al. (ATLAS), “Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum,” JHEP 12, 060 (2019), arXiv:1908.03122 [hep-ex]

[210] Georges Aad et al. (ATLAS), “Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector,” Eur. Phys. J. C 80, 123 (2020), arXiv:1908.08215 [hep-ex]

[211] Georges Aad et al. (ATLAS), “Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb^{-1} of data collected with the ATLAS detector,” JHEP 06, 046 (2020), arXiv:1909.08457 [hep-ex]

[212] Georges Aad et al. (ATLAS), “Search for direct stau production in events with two hadronic τ-leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector,” Phys. Rev. D 101, 032009 (2020), arXiv:1911.06660 [hep-ex]

[213] Georges Aad et al. (ATLAS), “Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector,” Phys. Rev. D 101, 052005 (2020), arXiv:1911.12606 [hep-ex]

[214] Georges Aad et al. (ATLAS), “Search for direct production of electroweakinos in final states with missing transverse momentum and a Higgs boson decaying into photons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” JHEP 10, 005 (2020), arXiv:2004.10894 [hep-ex]

[215] Georges Aad et al. (ATLAS), “Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Eur. Phys. J. C 80, 737 (2020), arXiv:2004.14060 [hep-ex]

[216] Georges Aad et al. (ATLAS), “Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Eur. Phys. J. C 81, 600 (2021), arXiv:2101.01629 [hep-ex]

[217] Georges Aad et al. (ATLAS), “Search for supersymmetry in events with four or more charged leptons in 139 fb^{-1} of $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector,” (2021), 10.1007/JHEP07(2021)167, arXiv:2103.11684 [hep-ex]

[218] Georges Aad et al. (ATLAS), “Search for R-parity violating supersymmetry in a final state
containing leptons and many jets with the ATLAS experiment using $\sqrt{s} = 13$ TeV proton-proton collision data,” (2021). [arXiv:2106.09609 [hep-ex]]

[219] ATLAS Collaboration, *A search for Supersymmetry in events containing a leptonically decaying Z boson, jets and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, Tech. Rep. ATLAS-CONF-2015-082 (CERN, Geneva, 2015).

[220] ATLAS Collaboration, *Search for production of vector-like top quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector*, Tech. Rep. ATLAS-CONF-2016-013 (CERN, Geneva, 2016).

[221] ATLAS Collaboration, *Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, Tech. Rep. ATLAS-CONF-2016-050 (CERN, Geneva, 2016).

[222] ATLAS Collaboration, *Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector*, Tech. Rep. ATLAS-CONF-2016-054 (CERN, Geneva, 2016).

[223] ATLAS Collaboration, *Search for Supersymmetry in events with photons, jets and missing transverse energy with the ATLAS detector in 13 TeV pp collisions*, Tech. Rep. ATLAS-CONF-2016-066 (CERN, Geneva, 2016).

[224] ATLAS Collaboration, *Search for direct top squark pair production and dark matter production in final states with two leptons in $\sqrt{s} = 13$ TeV pp collisions using 13.3 fb^{-1} of ATLAS data*, Tech. Rep. ATLAS-CONF-2016-076 (CERN, Geneva, 2016).

[225] ATLAS Collaboration, *Search for supersymmetry with two and three leptons and missing transverse momentum in the final state at $\sqrt{s} = 13$ TeV with the ATLAS detector*, Tech. Rep. ATLAS-CONF-2016-096 (CERN, Geneva, 2016).

[226] ATLAS Collaboration, *Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector*, Tech. Rep. ATLAS-CONF-2017-060 (CERN, Geneva, 2017).

[227] ATLAS Collaboration, *Search for supersymmetry in final states with missing transverse momentum and multiple b-jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector*, Tech. Rep. ATLAS-CONF-2018-041 (CERN, Geneva, 2018).

[228] ATLAS Collaboration, *Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb^{-1} of $\sqrt{s} = 13$ TeV pp collision data with the ATLAS detector*.
ATLAS Collaboration, *Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector* Tech. Rep. ATLAS-CONF-2019-040 (CERN, Geneva, 2019).

ATLAS Collaboration, *Search for new phenomena in events with jets and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector* Tech. Rep. ATLAS-CONF-2020-048 (CERN, Geneva, 2020).

A. M. Sirunyan et al. (CMS), “Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV,” *JHEP* 03, 166 (2018), arXiv:1709.05406 [hep-ex].

D. S. Akerib et al. (LUX-ZEPLIN), “Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment,” *Phys. Rev. D* 101, 052002 (2020), arXiv:1802.06039 [astro-ph.IM].

E. Aprile et al. (XENON), “Projected WIMP sensitivity of the XENONnT dark matter experiment,” *JCAP* 11, 031 (2020), arXiv:2007.08796 [physics.ins-det].

C. Amole et al. (PICO), “PICASSO, COUPP and PICO - Search for Dark Matter with Bubble Chambers,” *EPJ Web Conf.* 95, 04020 (2015).

H. Bahl, P. Bechtle, S. Heinemeyer, S. Liebler, T. Stefaniak, and G. Weiglein, “HL-LHC and ILC sensitivities in the hunt for heavy Higgs bosons,” *Eur. Phys. J. C* 80, 916 (2020), arXiv:2005.14536 [hep-ph].

ATLAS Collaboration, *Prospects for searches for staus, charginos and neutralinos at the high luminosity LHC with the ATLAS Detector* Tech. Rep. ATL-PHYS-PUB-2018-048 (CERN, Geneva, 2018).

CMS Collaboration, *Searches for light higgsino-like charginos and neutralinos at the HL-LHC with the Phase-2 CMS detector* Tech. Rep. CMS-PAS-FTR-18-001 (CERN, Geneva, 2018).

Georges Aad et al. (ATLAS), “Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” (2021), arXiv:2108.07586 [hep-ex].

A. Freitas, A. von Manteuffel, and P. M. Zerwas, “Slepton production at $e^+ e^-$ and e^--linear colliders,” *Eur. Phys. J. C* 34, 487–512 (2004), arXiv:hep-ph/0310182.

Mikael Berggren, “Simplified SUSY at the ILC,” in *Community Summer Study 2013: Snowmass on the Mississippi* (2013) arXiv:1308.1461 [hep-ph].

45
[241] Keisuke Fujii et al., “Physics Case for the International Linear Collider,” (2015), arXiv:1506.05992 [hep-ex].

[242] ATLAS Collaboration, ATLAS sensitivity to winos and higgsinos with a highly compressed mass spectrum at the HL-LHC, Tech. Rep. ATL-PHYS-PUB-2018-031 (CERN, Geneva, 2018).

[243] Mingyi Dong et al. (CEPC Study Group), “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” (2018), arXiv:1811.10545 [hep-ex].

[244] R. Franceschini et al., “The CLIC Potential for New Physics,” 3/2018 (2018), 10.23731/CYRM-2018-003 arXiv:1812.02093 [hep-ph].

[245] Xabier Cid Vidal et al., “Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC,” CERN Yellow Rep. Monogr. 7, 585–865 (2019), arXiv:1812.07831 [hep-ph].

[246] Richard Keith Ellis et al., “Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020,” (2019), arXiv:1910.11775 [hep-ex].

[247] Howard Baer, Mikael Berggren, Keisuke Fujii, Jenny List, Suvi-Leena Lehtinen, Tomohiko Tanabe, and Jacqueline Yan, “ILC as a natural SUSY discovery machine and precision microscope: From light Higgsinos to tests of unification,” Phys. Rev. D 101, 095026 (2020), arXiv:1912.06643 [hep-ex].

[248] Moritz Habermehl, Mikael Berggren, and Jenny List, “WIMP Dark Matter at the International Linear Collider,” Phys. Rev. D 101, 075053 (2020), arXiv:2001.03011 [hep-ex].

[249] Mikael Berggren, “What pp SUSY limits mean for future e^+e^- colliders,” in International Workshop on Future Linear Colliders (2020) arXiv:2003.12391 [hep-ph].

[250] Sebastian Baum, Pearl Sandick, and Patrick Stengel, “Hunting for scalar lepton partners at future electron colliders,” Phys. Rev. D 102, 015026 (2020), arXiv:2004.02834 [hep-ph].

[251] Cardona Natalia, Flórez Andrés, Gurrola Alfredo, Johns Will, Sheldon Paul, and Tao cheng, “Long-term LHC Discovery Reach for Compressed Higgsino-like Models using VBF Processes,” (2021), arXiv:2102.10194 [hep-ph].

[252] Armen Tumasyan et al. (CMS), “Search for electroweak production of charginos and neutralinos in proton-proton collisions at \(\sqrt{s} = 13 \) TeV,” (2021), arXiv:2106.14246 [hep-ex].

[253] CMS Collaboration, Search for electroweak production of supersymmetric particles in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum.
Tech. Rep. CMS-PAS-SUS-21-002 (CERN, Geneva, 2021).