Thermal Treatment Effect on CO and NO Adsorption on Fe(II) and Fe(III) Species in Fe₃O-Based MIL-Type Metal–Organic Frameworks: A Density Functional Theory Study

Jenny G. Vitillo* and Laura Gagliardi*

ABSTRACT: The properties of metal–organic frameworks (MOFs) based on triiron oxo-centered (Fe₃O) metal nodes are often related to the efficiency of the removal of the solvent molecules and the counteranion chemisorbed on the Fe₃O unit by postsynthetic thermal treatment. Temperature, time, and the reaction environment play a significant role in modifying key features of the materials, that is, the number of open metal sites and the reduction of Fe(III) centers to Fe(II). IR spectroscopy allows the inspection of these postsynthetic modifications by using carbon monoxide (CO) and nitric oxide (NO) as probe molecules. However, the reference data sets are based on spectra recorded for iron zeolites and oxides, whose structures are different from the Fe₃O one. We used density functional theory to study how the adsorption enthalpy and the vibrational bands of CO and NO are affected upon dehydration and reduction of Fe₃O metal nodes. We obtained a set of theoretical spectra that can model the modification observed in previously reported experimental spectra. Several CO and NO bands were previously assigned to heterogeneous Fe(II) and Fe(III) sites, suggesting a large defectivity of the materials. On the basis of the calculations, we propose an alternative assignment of these bands by considering only crystallographic iron sites. These findings affect the common description of Fe₃O-based MOFs as highly defective materials. We expect these results to be of interest to the large community of scientists working on Fe(II)- and Fe(III)-based MOFs and related materials.

1. INTRODUCTION

Metal–organic frameworks (MOFs) based on a triiron oxo-centered cluster (Fe₃O)¹,² are important materials for several applications, including gas storage and separation,³⁻⁵ heat pump applications,⁶⁻¹⁰ catalysis,¹¹⁻¹⁵ and drug delivery.¹⁶⁻¹² The most representative of this class of MOFs are MIL-100(Fe)² and MIL-101(Fe) (MIL = Materials Institute Lavoisier).¹³ In the as-synthesized material, the metal node has the formula [Fe³⁺₃(μ₃-O)(X)(Z)]₆⁺ (Figure 1a), where Z is a solvent molecule (e.g., water) and X is a counteranion.³ The anion originates from the reagents used in the MOF synthesis (e.g., −OH from NaOH or KOH, −F from HF, and −Cl from iron chloride salts). More than one kind of X and Z can be present in the same material.

Upon heating of the material in a vacuum or in a flow of inert gas, both the X and Z species can be removed from the metal node, creating an open iron site that can coordinate an adsorbate.⁸ The oxidation state of the iron centers does not change upon the removal of Z. The removal of X, instead, causes the reduction of one Fe(III) to Fe(II). This means that upon increasing the temperature we can go from the as-synthesized sample, having all of the nodes with the formula [Fe³⁺₃(μ₃-O)(X)(Z)]₆⁺ (Figure 1a), to a fully activated MOF with [Fe²⁺Fe³⁺₂(μₓ-O)]₆⁺ metal nodes (Figure 1b). At intermediate temperatures, clusters with different compositions coexist, having the general formula [Fe²⁺ₓFe³⁺₃(μ₃-O)(X)(Z)]₆⁺, with x = 0 and 1, y = 3 − x, I = 1 − x; 0 ≤ n ≤ 2 + x. The presence of open iron centers and, in particular Fe(II) sites, has been considered to be one of the reasons for the successful performance of Fe₃O-based MOFs in catalysis⁶⁻⁵ and gas separation.¹⁶⁻⁻⁸⁻⁻¹⁵ It is then important to evaluate the efficiency of the possible postsynthetic protocols in order to tailor the number of open Fe(II) and Fe(III) species for the different purposes. Vibrational and Mössbauer spectroscopies⁴⁻⁻⁵,⁹⁻⁻¹⁴ and microcalorimetry⁴ are commonly used to optimize postsynthetic protocols involving the iron centers as the thermal treatment of these materials and the grafting of guest species.¹⁵ IR spectroscopy using nitric oxide (NO) and carbon monoxide (CO) as molecular probes is particularly suitable for the characterization of iron-based materials because the stretching frequency of these molecules is shifted to different spectral regions if they are coordinated to Fe(II) or Fe(III) centers.¹⁶⁻⁻¹⁷
IR spectroscopy of CO and NO is an efficient diagnostic tool to determine the iron oxidation state in MOF materials. Previous spectroscopic studies on MIL-100(Fe) suggested the presence of heterogeneous Fe(II) and Fe(III) sites. Nevertheless, no explanation of the origin of this heterogeneity was provided besides its possible correlation with the presence of an unreacted linker in the material and the presence of defects. In fact, the only data that can be used for the assignment of the NO and CO frequency of CO and NO in Fe3O-based materials. The effect of free and bonded water at 150°C on Fe3O-based MOFs was determined experimentally in previous studies. Moreover, this model has been used by Mavrandonakis et al. to predict the adsorption enthalpies and vibrational frequencies of different adsorbates in trivalent oxo-centered MOFs. This model has shown results similar to those reported for a cluster coordinated to benzene instead of formate groups in reactivity and in adsorption studies.

2. COMPUTATIONAL METHODS

DFT calculations were performed using the M06-L functional in its unrestricted formalism (U) in combination with the def2-TZVP basis sets as implemented in the Gaussian 16 program. Previous investigations showed that this level of theory correctly reproduces the electronic properties of iron centers in MOFs, in particular Fe3O, when benchmarked versus multireference calculations. The Fe3O model has been previously employed to describe NO reactivity on MIL-100. Moreover, this model has been used by Mavrandonakis et al. to predict the adsorption enthalpies and vibrational frequencies of different adsorbates in trimetal oxo-centered MOFs. This model has shown results similar to those reported for a cluster coordinated to benzene instead of formate groups in reactivity and in adsorption studies.

Geometry optimizations were carried out by means of the Berry optimization algorithm with an analytical gradient. A (99, 390) pruned grid was used (i.e., 99 radial points and 390 angular points per radial point). The Gaussian 16 default convergence thresholds were set for optimization. All of the energetic data were corrected for basis set superposition error (BSSE) following the a posteriori method proposed by Boys and Bernardi, as implemented in Gaussian 16. The energy and enthalpy of adsorption for the complex with (n+1) L molecules are defined as

\[\Delta Y^* = Y_{Y_{(n+1)L/cluster}} - Y_{Y_{L/cluster}} - Y_L \]

The BSSE-corrected values, indicated by a c superscript, were obtained from the computed Y values as

\[Y^* = Y + \text{BSSE} \]

Unscaled harmonic frequencies were obtained analytically. Enthalpies and Gibbs free energies were calculated at 1 atm and 298 K using the scheme proposed by De Moor et al., whereby low-lying frequency modes (<50 cm⁻¹) were replaced by a cutoff value (50 cm⁻¹) in the calculation of the vibrational partition functions. Charge and spin densities were obtained using Charge Model S (CMS) and Hirshfeld population analysis, respectively. Spin densities are expressed as the difference between the α and β electron densities.

3. RESULTS AND DISCUSSION

The dependence on the temperature of the water and X (or Fe(II)) content in Fe3O-based MOFs was determined experimentally in previous studies. We summarize prior results to guide the reader in a comparison between our computational results and the experimental ones. Leclerc et al. treated MIL-100(Fe) (X = 81% F, OH, trimates) in a dynamic vacuum in the 25–300°C range: they observed the complete removal of free and bonded water at 150°C, with the formation of only a small fraction of Fe(II). Above 150°C, the concentration of Fe(II) increases with the temperature: Yoon et al. reported a maximal removal of 40% of the initial Fe−X sites at 260°C. Above 260°C, the sample starts to decompose. A slightly different behavior was reported by Wuttke et al. using a helium flow: at 150°C, they observed only the removal of physisorbed water, while the water directly bonded to the Fe3O clusters was fully desorbed at 200°C. Moreover, the removal of X is far less effective in a helium flow than in dynamic vacuum. Also X plays a role in the thermal behavior of Fe3O samples: the removal of only 4–5% of Fe−X was reported at 250°C for a MIL-100(Fe) (X = 20% Cl, OH, trimates) sample. Different
clusters have to be adopted to model MIL-100(Fe) treated at different temperatures T in degrees Celsius [in the following MIL-100(Fe)-TC] because the type and number of adsorbed species (X and Z) on the metal node are different. Considering the information reported in refs 4 and 5, we have used Fe$_3$O-Cl, 2H$_2$O, Fe$_3$O-OH-2H$_2$O, and Fe$_3$O-3H$_2$O to model MIL-100(Fe) samples treated at $T \leq 100$ °C, Fe$_3$O-Cl-1H$_2$O, Fe$_3$O-OH-1H$_2$O, and Fe$_3$O-2H$_2$O have been used for MIL-100(Fe)-120C. For MIL-100(Fe) treated at 150, 200, and 250 °C, the models used have been the same (Fe$_3$O-Cl, Fe$_3$O-OH, and Fe$_3$O), with only the proportion of the species being different (e.g., Fe$_3$O represents 2% of all of the metal nodes in MIL-100(Fe)-150C and 40% of the metal nodes in MIL-100(Fe)-250C treated in a dynamic vacuum for 40 h).

The ground-state electronic configuration for all of the systems has the three iron centers in high spin states. However, the most stable configuration for the Fe$_3$O-Cl, Fe$_3$O-OH, and Fe$_3$O is not the highest possible spin state for the cluster (HS) but the “broken-symmetry” solution (BS) where two high-spin Fe(III) centers couple antiferromagnetically. Although the BS energetics would be more accurate, the corresponding wave function is not a spin eigenfunction nor does it have the correct spin density. Moreover, the BS solution is strongly dependent on the initial guess, hindering both the reproducibility of the BS results and the comparison among different studies. Following a common strategy, we modeled all of the clusters considering the Fe$_3$O node in HS. In general, the difference in energy between the HS and BS is 20−30 kJ mol$^{-1}$. For details on this choice, see the discussion reported in previous studies.

Coordination of the adsorbates can cause a change in the ground spin state of the iron centers. This has been evaluated for a range of spin states starting from the HS value of the bare triiron oxo-centered clusters to determine the most stable spin state.

The calculations indicate that each iron center can coordinate only one adsorbate molecule: when more than one molecule is adsorbed on one metal node, each molecule is coordinated to a different metal site of the metal node. The highest coverage corresponds to filling of the position left free by X and Z (marked with green spheres in Figure 1a). This agrees with the available IR experiments on CO and NO adsorption that show the formation of monocarbonyls and mononitrosyls only. Only in the NO case, forcing the formation of a Fe⋯2NO complex brings displacement of the carboxylate groups. This complex is a local minimum, but it is less stable than the mononitrosyl complex by 10 kJ mol$^{-1}$. Such a displacement is possible in a cluster model where no geometrical constraints were used in the optimization, while it is unlikely to happen in the MOF structure because of the framework constraints and because of the large cluster distortion, at least at subatmospheric NO pressures considered in the experiments.

Accordingly, the experimental spectra do not show the formation of dinitrosyls. The water adsorption on Fe$_3$O, Fe$_3$O-OH, and Fe$_3$O-Cl clusters was studied by increasing the number of water molecules until all of the open iron sites are coordinated. The results are reported in Table 1, Figure 2, and Table S6.
Table 2. CO Adsorption on Fe₃O Clusters

model	$2S + 1$	d (Fe−C(CO))	\angleFe−C−O	ΔE_{CO}	ΔH_{CO}	ΔG_{CO}	ΔV_{CO}	
Fe₃O								
1CO	15	2.316	178	−46.5	−49.6	−45.3	−7.8	29
2CO	15	2.385	178	−43.4	−46.4	−41.9	−3.5	45
3CO	15	2.412	179	−41.8	−44.8	−40.2	−1.7	48
4CO	16	2.408	179	−43.9	−46.9	−42.3	−2.3	51
1CO	15	2.383	178	−46.4	−49.6	−45.3	−7.8	29
2CO	15	2.416	179	−43.4	−46.4	−41.9	−3.5	45
3CO	15	2.412	179	−41.8	−44.8	−40.2	−1.7	48
4CO	16	2.408	179	−43.9	−46.9	−42.3	−2.3	51
1CO	15	2.426	180	−39.9	−43.0	−37.2	5.0	44
2CO	16	2.428	180	−39.0	−43.0	−37.2	5.0	44
3CO	16	2.451	179	−39.0	−43.0	−37.2	5.0	44
1CO	16	2.462	180	−38.7	−42.8	−36.9	5.0	44
2CO	16	2.425	180	−38.4	−42.1	−36.5	5.0	44
3CO	16	2.445	179	−38.4	−42.1	−36.5	5.0	44
4CO	16	2.445	179	−38.4	−42.1	−36.5	5.0	44

“*All of the values refer only to the iron sites coordinating a CO molecule. Clusters were optimized at the UM06-L/def2-TZVP level in their ground spin state (S). The distance of the reacting iron from the C of the CO molecule [d(Fe−C(CO)) in angstroms] and the Fe−C−O angle (\\angleFe−C−O, in degrees) are also reported. The stretching frequency shift (\$\Delta^{c_{CO}}$ in reciprocal centimeters) is calculated from the gas-phase values (\v_{CO} = 2202 cm\(^{-1}\)). The BSSE-corrected adsorption energy ΔE_{CO}, adsorption enthalpy ΔH_{CO}, and adsorption Gibbs free energy ΔG_{CO} are reported in kilojoules per mole. The value not corrected for the BSSE is also shown for the energy (ΔE_{CO}). H and G have been calculated at 1013.25 mbar and 25 °C. Vibration involving only one CO molecule (made explicit only for the 2CO and 3CO complexes)."
The heat of adsorption increases to 38−40 kJ mol$^{-1}$ for MIL-100(Fe)-150C5 while for MIL-100(Fe)-250C, it goes from −50.2 kJ mol$^{-1}$ (at 0.047 CO per Fe$_3$O) to −39.5 kJ mol$^{-1}$ (at 0.26 CO per Fe$_3$O). This dependence was explained by the removal of an increasing number of X and Z from the clusters, and the present calculations support this hypothesis. In MIL-100(Fe)-100C, both X and Z are still coordinated to the Fe$_3$O nodes (see section 3). Accordingly, these values are closer to the calculated ΔH_{CO} for all of the Fe$_3$O-X-nH$_2$O clusters and for Fe$_3$O-2H$_2$O (Table 2). In MIL-100(Fe)-150C, Z is fully removed: CO can interact with open Fe$^{3+}$ sites. 7 The ΔH_{CO} values for CO complexes with Fe$_3$O-X clusters are close to the experimental values. In MIL-100(Fe)-250C, Z and X are desorbed from the metal nodes, allowing the formation of divalent iron centers. 4,5 This explains the higher heat of adsorption measured for this sample: Fe(II) sites stabilize the adsorbed CO by π interaction, in addition to the σ-donor interaction with the Fe$^{3+}$ sites. 5 The calculated ΔH_{CO} values for the adsorption of the first CO molecule on Fe$_3$O and Fe$_3$O-1H$_2$O are the closest values to the heat measured for CO adsorption on MIL-100(Fe)-250C.

CO adsorption on MIL-100(Fe) has been investigated by means of IR spectroscopy in previous works. 4,5,14 The experimental studies have discussed only the changes observed in the CO stretching frequency region. Additional bands associated with vibrational modes involving CO (e.g., the bending mode of Fe···CO) are expected in the spectral region below 800 cm$^{-1}$. The description of theoretical spectra in this range is reported in Figure S1. Yoon et al. 14 and Wuttke et al. 14 have studied it at room temperature in a flow of 10% CO in helium (Table 3) to determine how the CO surface species formed at a certain CO partial pressure change with the treatment temperature. Leclerc et al. 5 have investigated how the CO bands change with the coverage up to CO condensation: this allowed them to characterize all of the adsorption sites present on the MIL surface. Leclerc et al. 5 have recorded the spectra on MIL-100(Fe)-150C and MIL-100(Fe)-250C at −173 °C in static conditions and by increasing the pressure up to 0.53 mbar (Table 3).

The CO spectra reported in refs 4 and 14 show three bands, whose intensity changes with the treatment temperature: a band at 2189 cm$^{-1}$ is present also after treatments at $T < 150$ °C, associated with CO on Fe(III) sites, and two bands at 2182 (or 2185) and 2173 cm$^{-1}$ gain significant intensity only after the reduction of Fe(III) to Fe(II). The intensity of the signals is slightly different in refs 4 and 14 likely because of a different thermal history of the two samples. In particular, the band at 2173 cm$^{-1}$ is dominant in the spectra of MIL-100-250C reported in ref 4, while in ref 14, the bands at 2173 and 2182 cm$^{-1}$ share the same intensity. Because these bands appear only after the formation of Fe(II) sites and they are not removed after prolonged outgassing at room temperature, they have been associated in refs 4, 5, and 14 with two different Fe(II) sites. In the crystallographic cell of MIL-100, all of the Fe(II) sites are equivalent: the presence of more than one Fe(II) site was explained by the presence of defects in the material. However, no signals typically associated with defects in MOFs 10 are visible in

Figure 3. CO complexes on Fe$_3$O clusters. (a) Optimized structure of 3CO/Fe$_3$O. The color code is as in Figure 1. Results were obtained at the UM06-L/def2-TZVP level and are reported in Table 2. (b) CO vibrational shifts on Fe$_3$O, Fe$_3$O-OH, and Fe$_3$O-Cl for different degrees of hydration of the metal node. The colors differentiate different loadings of CO per metal node, and then the CO species that can be formed at different pressures. Color code: light blue, 1CO complexes; blue, 2CO; dark blue, 3CO. In all of the complexes, the minimum geometries show the formation of only monocarbonyl species. The formation of dicarboxyl or tricarbonyl is not allowed. The data in ref 5 for ~\sim0 (light-gray lines), low-to-middle (gray), and high (black) pressures, as in Table 3, for MIL-100(Fe)-150C and MIL-100(Fe)-250C are also reported. The asterisks indicate the bands that are also associated with the ~0 (light gray) or low-to-middle (gray) coverage. (c) Enthalpy of adsorption on Fe$_3$O clusters, ΔH, as a function of the coverage on models for the fully dehydrated MOFs (treatment temperature ≥ 150 °C): Fe$_3$O, blue squares; Fe$_3$O-Cl, violet triangles; Fe$_3$O-OH, violet circles. (d) Dependence of the CO stretching frequency shift $\Delta \nu_{\mathrm{CO}}$ on the adsorption enthalpy ΔH_{CO} for the clusters modeling Fe$_3$O-based materials treated at temperature lower (black triangles) or higher (blue squares, Fe$_3$O-Cl and Fe$_3$O-OH; red circles, Fe$_3$O) than 150 °C. Complexes with lower adsorption enthalpies correspond to species formed at lower equilibrium pressures and at higher temperatures in the experiments (Table 3).
the spectral regions typical of −OH stretching frequencies and of carboxylate absorption.5

The set of spectra recorded at −173 °C is used to follow CO adsorption up to the filling of all of the open iron sites (Table 3).5 The description of the bands for the intermediate coverage is the same as that reported at room temperature: the main difference is associated with the position of the bands, shifted of about −6 cm⁻¹ as an effect of the temperature.44,45 At the highest CO coverage, when all of the open metal sites are coordinated, the CO spectrum is composed of a large single band centered at 2173 cm⁻¹ (ΔvCO = 38 cm⁻¹) for MIL-100(Fe)-150C, while it is shifted to 2166 cm⁻¹ (ΔvCO = 31 cm⁻¹) for MIL-100(Fe)-250C.

The calculations can reproduce the evolution of CO spectra with the coverage and differences observed with different treatment temperatures in the experiments. On the basis of the DFT results, we expect that, with increasing CO pressure in MIL-100(Fe)-150C/200C/250C, the first sites to be occupied by CO molecules will be the Fe(II) sites, followed by the Fe(III) sites in [Fe²Fe³(μ₃-O)]⁺ metal nodes, while Fe(III) in [Fe³⁺X(μ₃-O)]⁺ will be coordinated only at the highest pressures (Table 2 and Figure 3d). The calculated CO adsorption enthalpy of the Fe(III) sites in Fe₂O-X nodes is less exothermic by 10 kJ mol⁻¹ than that for Fe(III) sites in a reduced metal node. Moreover, the adsorption of a second (and of a third) CO on 1CO/Fe₂O is expected to start before all 1CO/Fe₂O species are formed because 1CO/Fe₂O and 2CO/Fe₂O have similar ΔHCO values. The calculated ΔvCO for 1CO complexes is significantly diferent if the metal node is fully activated (Fe₂O₃, +29 cm⁻¹) or if it is coordinating the counteranion (Fe₂O-Cl or Fe₂O-OH, −30 cm⁻¹) and/or a water molecule (−45 cm⁻¹). These shifts are close to those observed for the spectra recorded at the lowest coverage on samples degassed at different T values (Table 3). In particular, the models are able to reproduce the ΔvCO values for both Fe(II)····CO and Fe(III)····CO complexes observed experimentally (35 and 50 cm⁻¹, respectively). The results obtained for Fe₂O-Cl and Fe₂O-OH are fully comparable, suggesting that the IR spectra of CO cannot help to distinguish between clusters with different X.

Table 3. Review of Experimental CO Stretching Frequencies (ΔvCO) Recorded for CO Adsorption in MIL-100(Fe) Samples by IR spectroscopy.

material	treatment	TIR	PIR	ΔvCO	original assignment
MIL-100(Fe)⁴	100 °C, 12 h	25	100⁰	2190(l)	47 Fe(III)····CO
	150 °C, 12 h	25	100⁰	2189(l)	46 Fe(III)····CO
	200 °C, 12 h	25	100⁰	2189(l)	46 Fe(III)····CO
	250 °C, 12 h	25	100⁰	2182(s)	39 Fe(III)····CO
MIL-100(Fe)²⁺	100 °C, 12 h	25	100⁰	2189(l)	46 Fe(III)····CO
	150 °C, 12 h	25	100⁰	2189(l)	46 Fe(III)····CO
	200 °C, 12 h	25	100⁰	2189(l)	46 Fe(III)····CO
	250 °C, 12 h	25	100⁰	2182(s)	39 Fe(III)····CO
	150 °C, 12 h	25	100⁰	2182(s)	39 Fe(III)····CO
MIL-100(Fe)²⁺	250 °C, 12 h	−173	~0.0	2175(s)	40 Fe(III)····CO
	250 °C, 12 h	−173	~0.0	2169(l)	34 Fe(III)····CO
	250 °C, 12 h	−173	~0.0	2169(l)	34 Fe(III)····CO

The treatment protocol and the temperature (TIR) and pressure (PIR) conditions used in the IR measurements are reported. For each frequency, the assignment reported in the original paper is also shown. Reference values for CO in the gas phase in a microporous matrix used for the calculation of the CO stretching frequency shift (ΔvCO): 2135 cm⁻¹ at −173 °C (ref 44) and 2143 cm⁻¹ at 25 °C (ref 45). Frequencies (cm⁻¹), temperatures (°C), pressures (mbar).5 The description of the bands for the intermediate coverage is the same as that reported at room temperature: the main difference is associated with the position of the bands, shifted of about −6 cm⁻¹ as an effect of the temperature.44,45 At the highest CO coverage, when all of the open metal sites are coordinated, the CO spectrum is composed of a large single band centered at 2173 cm⁻¹ (ΔvCO = 38 cm⁻¹) for MIL-100(Fe)-150C, while it is shifted to 2166 cm⁻¹ (ΔvCO = 31 cm⁻¹) for MIL-100(Fe)-250C.

The set of spectra recorded at −173 °C is used to follow CO adsorption up to the filling of all of the open iron sites (Table 3). The description of the bands for the intermediate coverage is the same as that reported at room temperature: the main difference is associated with the position of the bands, shifted of about −6 cm⁻¹ as an effect of the temperature.44,45 At the highest CO coverage, when all of the open metal sites are coordinated, the CO spectrum is composed of a large single band centered at 2173 cm⁻¹ (ΔvCO = 38 cm⁻¹) for MIL-100(Fe)-150C, while it is shifted to 2166 cm⁻¹ (ΔvCO = 31 cm⁻¹) for MIL-100(Fe)-250C.

The calculations can reproduce the evolution of CO spectra with the coverage and differences observed with different treatment temperatures in the experiments. On the basis of the DFT results, we expect that, with increasing CO pressure in MIL-100(Fe)-150C/200C/250C, the first sites to be occupied by CO molecules will be the Fe(II) sites, followed by the Fe(III) sites in [Fe²Fe³(μ₃-O)]⁺ metal nodes, while Fe(III) in [Fe³⁺X(μ₃-O)]⁺ will be coordinated only at the highest pressures (Table 2 and Figure 3d). The calculated CO adsorption enthalpy of the Fe(III) sites in Fe₂O-X nodes is less exothermic by 10 kJ mol⁻¹ than that for Fe(III) sites in a reduced metal node. Moreover, the adsorption of a second (and of a third) CO on 1CO/Fe₂O is expected to start before all 1CO/Fe₂O species are formed because 1CO/Fe₂O and 2CO/Fe₂O have similar ΔHCO values. The calculated ΔvCO for 1CO complexes is significantly diferent if the metal node is fully activated (Fe₂O₃, +29 cm⁻¹) or if it is coordinating the counteranion (Fe₂O-Cl or Fe₂O-OH, −30 cm⁻¹) and/or a water molecule (−45 cm⁻¹). These shifts are close to those observed for the spectra recorded at the lowest coverage on samples degassed at different T values (Table 3). In particular, the models are able to reproduce the ΔvCO values for both Fe(II)····CO and Fe(III)····CO complexes observed experimentally (35 and 50 cm⁻¹, respectively). The results obtained for Fe₂O-Cl and Fe₂O-OH are fully comparable, suggesting that the IR spectra of CO cannot help to distinguish between clusters with different X.
For intermediate coverage, the experimental spectra show the presence of a doublet, where only the relative intensity of the peaks is dependent on T, while the position of the peaks is independent. The two peaks have been assigned to Fe(II)…CO ($\Delta v_{CO} = 31$ cm$^{-1}$) and Fe(III)…CO (41 cm$^{-1}$). The calculations suggest an alternative assignment for the higher-frequency band of the doublet. When two CO molecules are adsorbed on the same metal node, each vibrational mode in the CO spectral region is associated with the combination of the modes of the two CO molecules, that is, to the asymmetric or the symmetric stretching of the two CO molecules. For 3CO/Fe$_3$O, the three modes are associated with the symmetric stretching of all of the CO molecules ($\Delta v_{CO} = 46$ cm$^{-1}$), the asymmetric C–O stretching of the two Fe…CO moieties (47 cm$^{-1}$), and the C–O stretching of Fe…CO (48 cm$^{-1}$), respectively. The predicted shift for modes associated with the 2CO and 3CO complexes is 45 cm$^{-1}$, independent of the metal node. This value is very close to the higher-frequency peak of the doublet (41 cm$^{-1}$) that we assign, based also on the discussion above, to the formation of 2CO complexes on [FeII(μ$_{-}$O)$_2$(μ$_{+}$O)]$^{6+}$ metal nodes. The band at 31 cm$^{-1}$ is assigned to 1CO complexes on the same nodes (Fe$_3$O).

The calculations predict that the shifts on the different Fe$_3$O nodes become more and more similar with increasing coverage: all of the IR bands should evolve toward a single band at higher pressure reported in ref 5. The larger shift obtained in the experimental one (48–44 vs 38–35 cm$^{-1}$), the models catch correctly the evolution of the CO spectra with the pressure reported in ref 5. The larger shift obtained in the calculations is associated with a similar description of the three Fe–CO in 3CO/Fe$_3$O (Table 2 and Figure 3a). The three CO–Fe distances are very similar, and the three iron sites have similar partial charges, which is not surprising because DFT tends to delocalize the electronic density.

NO Adsorption

Relevant electronic, structural, and energetic parameters of the NO complexes on Fe$_3$O, Fe$_3$O–OH, and Fe$_3$O–Cl, considering different degrees of hydration, are reported in Tables 4, S3, and S4. NO adsorbs on Fe$_3$O clusters with a bent geometry in most of the cases (see Figure 4a and $\Delta v_{Fe–N–O}$ values in Table 4). The calculated enthalpy of NO adsorption, ΔH_{NO}, is strongly

Table 4. NO Adsorption on Fe$_3$O Clusters Optimized at the UM06-L/def2-TZVP Level in Their Ground Spin State (S)a

model $2S + 1$	d (Fe–N$_{NO}$)	ΔFe–N–O	ΔE_{NO}	ΔH_{NO}	ΔG_{NO}	Δv_{NO}	
						cm$^{-1}$	
1NO 14	1.802	179	−119.1	−113.7	−108.3	−68.7	−57
2NO 13	1.807	167	−62.2	−58.3	−54.5	−13.8	−71b
3NO 12	1.810	163	−56.3	−52.5	−48.6	−8.8	−82b
2NO 16	2.284	123	−113.2	−110.7	−105.5	−66.4	−73
1NO 14	1.809	164	−101.6	−99.2	−93.6	−52.7	−90
2NO 13	1.814	160	−56.1	−52.3	−48.9	−9.9	−85
2NO 12	1.775	178	−28.5	−25.6	−20.2	26.9	5
2NO 14	1.775	178	−28.5	−25.6	−20.2	26.9	5
1NO 14	1.817	156	−101.6	−99.2	−93.6	−52.7	−90
2NO 14	1.774	169	−5.7	−2.7	0.6	41.1	6
2NO 12	1.775	178	−28.5	−25.6	−20.2	26.9	5
1NO 15	2.296	123	−58.8	−54.9	−50.6	−9.5	3
1NO 15	2.269	124	−63.4	−59.4	−55.4	−15.2	4
2NO 16	2.277	123	−26.9	−23.1	−19.1	17.3	3b
2NO 14	2.670	126	−5.0	0.9	4.1	45.5	−1
2NO 12	2.316	124	−28.1	−22.2	−17.0	31.3	8
1NO 15	2.298	123	−57.1	−53.2	−49.0	−9.6	2
optimized structure of 3NO/Fe3O. Color code: red, oxygen; gray, carbon; blue, nitrogen; orange, iron; white, hydrogen. (b) NO vibrational shifts on Fe3O-Cl-based MOFs showing a larger amount of NO delivered immediately, followed by a slow desorption due to the gradual substitution of NO by water. MOFs showing a larger affinity for NO than for H2O have also been suggested for the environmental removal of NO. 47 The treatment temperature will have an important effect also on NO capture: Fe3O-based MOFs treated at ≤150 °C have ΔGH2O NO ΔGH2O NO ΔGH2O NO greater than water for the second NO. The calculated Δf NO is strongly dependent on the oxidation state of iron (Table 4 and Figure 4d), unlike CO, for which ΔH CO is independent of the coverage and only slightly decreasing with the reduction of the metal node (Table 2 and Figure 3c). ΔHNO for 1NO complexes spans a range from −108 to −94 kJ mol−1 on the reduced clusters, while for the oxidized cluster, it is halved (−64 kJ mol−1 for Fe3O-Cl and −51 kJ mol−1 for Fe3O-OH), similar to that calculated for water for the reduced clusters, while for the oxidized cluster, it is halved (−64 kJ mol−1 for Fe3O-Cl and −51 kJ mol−1 for Fe3O-OH). The adsorption of a second NO is by far less exothermic for NO adsorption on Fe3O clusters, ΔHH NO as a function of the coverage, as obtained on clusters modeling the fully dehydrated MOFs (treatment temperature ≥150 °C): Fe3O-OH, red squares; Fe3O-Cl, orange circles; and Fe3O-OH, orange triangles. (d) Dependence of the shift of the NO stretching frequency ΔνNO on the adsorption enthalpy ΔHH NO for the clusters modeling Fe3O-based materials treated at temperature lower (black triangles) or higher than 150 °C (blue squares, Fe3O-Cl; red circles, Fe3O). Complexes with lower adsorption enthalpies correspond to species formed at lower equilibrium pressures and higher temperature in the experimental spectra (Table 5).
Table 5. Review of the Experimental Stretching Frequencies Recorded for NO Adsorbed in Different Fe₃O-Based MOFs by IR Spectroscopy (v_{NO})^a

material	treatment	T_{IR}	P_{IR}	v_{NO}	Δv_{NO}	original assignment
MIL-100(Fe)^24	150 °C	25	25	1897	21	Fe(III)--NO
MIL-100(Fe)^24	250 °C	25	25	1893(w)	17	Fe(III)--NO
MIL-127(Fe) or PCN-250^24	250 °C	25	25	1818	58	Fe(II)--NO
MIL-100(Fe)^24	100 °C, 12 h	25	10°	1901	25	Fe(III)--NO
MIL-100(Fe)^24	250 °C, 3 h	unknown	1850(s)	25	Fe(III)--NO	
MIL-100(Fe)^24	250 °C, 12 h	25	unknown	1850(s)	25	Fe(III)--NO
MIL-88(Fe)A and MIL-88(Fe)-2OH^20	150 °C	25	1–67	1898	22	Fe(III)--NO
MIL-88(Fe)B^49	80 °C, 3 h	25	1–67	1898	22	Fe(III)--NO
MIL-88(Fe)B-NO₃^50	150 °C	25	1–1000	1853(w)	23	physisorbed NO

^a The treatment protocol and the temperature (T_{IR}) and pressure (P_{IR}) conditions at which the band appears during the IR measurement are reported. For each frequency, the assignment reported in the original paper is also shown. Reference value for NO in the gas phase: 1876 cm⁻¹. Frequencies (cm⁻¹), temperatures (°C), and pressures (mbar). ^w = weak, (s) = shoulder, (l) = large. °1% NO in a helium flow.

Clusters, where each mode involves both NO molecules (asymmetric and symmetric stretching modes). In 3NO/Fe₃O complexes (Figure 4a), the three IR bands are associated with the symmetric and asymmetric stretching of the two NO in Fe(III)--NO (3 and −11 cm⁻¹, respectively) and to the N−O stretching in Fe(II)--NO (−82 cm⁻¹). This can be explained with the lower similarities of the Fe···NO species in Fe₃O than in Fe₂O-Cl clusters because of the presence of Fe(II) species in the former able to engage a stronger interaction with NO species than Fe(III) sites.

Several IR studies reported NO adsorption on Fe₃O-based MOFs (see refs 14, 24, 48, and 49). Their results are summarized in Table 5. The experimental Δv_{NO} assigned to NO···Fe(II) complexes in MIL-100(Fe)-250C agrees with the value calculated for 1NO/Fe₃O: −55 versus −57 cm⁻¹, respectively. The shift calculated for the adsorption of the first NO molecule on the oxidized cluster is very small (3−5 cm⁻¹), that is, almost indistinguishable from the gas-phase value. The signal of Fe(III)--NO complexes is associated with bands at ~1895 cm⁻¹ (+20 cm⁻¹), a shift larger than the one predicted in the calculations. Nevertheless, there is a contradiction between the experimental results reported for IR and volumetric experiments. IR experiments either failed to detect NO adsorption on fully oxidized materials [e.g., MIL-100(Fe)-150C] at room temperature or obtained signals with very small intensity at ~1895 cm⁻¹, a symptom of a small interaction energy of NO with Fe(III) sites. Volumetric measurements indicate a large NO adsorption on the same materials under the same conditions. Moreover, the volumetric measurements showed that NO can only be partially desorbed, indicating a strong interaction with the material that cannot be explained only by the presence of 2% Fe(II) sites. The results reported in Table 4 explain this apparent contradiction. The Q band of NO in the gas phase is present in the experimental IR spectrum. The detection of bands slightly shifted from the gas-phase value is then difficult because these bands can be hidden behind the gas-phase absorption. The signals associated with 1NO/Fe₃O-Cl complexes, if not too intense, can be confused with the gas-phase absorption.
signals in the experimental spectrum. This can also be the reason why none of the experimental shifts reported in Table 5 are close to zero. This observation can be useful also for the IR characterization of other materials using NO as a probe molecule, in order to avoid that signals associated with Fe(III) sites go unnoticed. The signal at 20 cm\(^{-1}\) associated with a general Fe(III)--NO complex is assigned based on the present calculations to the second adsorbed molecule in 2NO/Fe\(_3\)O-Cl clusters, having 2S+1=16. The bands observed in the −24 to −34 cm\(^{-1}\) range were previously assigned to physisorbed NO\(^{49}\) or the Fe(II)--NO complex.\(^{14}\) The calculations suggest an alternative assignment, namely, the N=O stretching frequency of the second adsorbed molecule in 2NO/Fe\(_3\)O-Cl clusters, having 2S+1=12.

No experimental spectra for the full coverage of iron sites by NO molecules have been reported, and they cannot thus be used to benchmark the evolution of the spectra predicted by the calculations. These results suggest that the NO spectra on MOFs treated at ≥150 °C are composed of three families of bands associated with 3NO/Fe\(_3\)O and 2NO/Fe\(_3\)O-Cl complexes (Figure 4b). Unlike CO, characterized by a single broad band at higher CO/Fe coverage, NO can differentiate the different Fe\(_3\)O nodes even at NO/Fe ~ 1 and is thus a more suitable molecular probe to verify the efficacy of thermal treatments of Fe\(_3\)O-based MOFs.

4. CONCLUSIONS

Post-synthesis thermal treatments are effective ways to modify the performance of Fe\(_3\)O-based MOFs in most applications. We have used DFT to study the CO and NO adsorption on metal nodes of Fe\(_3\)O-based MOFs, subject to thermal treatments of different efficacy. The calculations allowed us to characterize how the adsorption of small molecules on Fe\(_3\)O-based clusters evolves with the coverage and how the desorption of chemisorbed species (water molecules and counteranions) affects the interaction of the clusters with adsorbates. We compared the simulated IR bands of CO and NO with experimental spectra reported in the literature. The calculations reproduce the changes observed in the spectra. NO showed a larger sensitivity to the presence of adsorbed species than CO at all coverages, and it is then a more suitable molecular probe for quick quality control checks. On the basis of the calculations, we propose to reassign some of the bands previously inaccurately assigned because of the absence of reference data on systems with a structure close to the Fe\(_3\)O structure. Several experimental bands were formerly associated with a large concentration of defects. These bands are here reassigned by considering only crystallographic sites. These findings help in changing the common belief that MILs are highly defective with Fe\(_3\)O-based MOFs playing a role in important MOF applications like drug delivery\(^{1,4,11,12,21−23}\) and gas mixture purification.\(^{19,4,26}\) Future studies should be aimed at enlarging the set of theoretical IR spectra of adsorbates on Fe\(_3\)O-based MOFs, including common probe molecules such as pyridine.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01044.

Additional energetic and electronic parameters for all of the clusters and Cartesian coordinates of all of the optimized structures (PDF)

AUTHOR INFORMATION

Corresponding Authors

Jenny G. Vitillo — Department of Science and High Technology and INSTM, University of Insubria, 22100 Como, Italy; Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States; orcid.org/0000-0002-6213-2039; Email: jg.vitillo@gmail.com

Laura Gagliardi — Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States; orcid.org/0000-0001-5227-1396; Email: lgagliardi@uchicago.edu

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01044

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Inorganicmetallic Catalyst Design Center, an EFRC funded by the Department of Energy, Office of Basic Energy Sciences (DE-SC0012702). The authors acknowledge the Minnesota Supercomputing Institute at the University of Minnesota for providing computational resources.

Aditya Bhan, Matthew C. Simons, and Connie C. Lu are acknowledged for useful discussions.

REFERENCES

(1) Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem., Int. Ed. 2006, 45 (36), 5974−5978.

(2) Horcajada, P.; Surble, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-S.; Greneche, J.-M.; Margioliaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun. 2007, No. 27, 2820−2822.

(3) Yoon, J. W.; Chang, H.; Lee, S.-J.; Hwang, Y. K.; Hong, D.-Y.; Lee, S.-K.; Lee, J. S.; Jang, S.; Yoon, T.-U.; Kwac, K.; Jung, Y.; Pillai, R. S.; Faucher, F.; Vimont, A.; Daturi, M.; Férey, G.; Serre, C.; Maurin, G.; Bae, Y.-S.; Chang, J.-S. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ions. Nat. Mater. 2017, 16 (5), S26−S31.

(4) Yoon, J. W.; Seo, Y.-K.; Hwang, Y. K.; Chang, J.-S.; Leclerc, H.; Wutcke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E.; Llewellyn, P. L.; Serre, C.; Horcajada, P.; Greneche, J.-M.; Rodrigues, A. E.; Férey, G. Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angew. Chem., Int. Ed. 2010, 49 (34), 5949−5952.

(5) Leclerc, H.; Vimont, A.; Lavallee, J.-C.; Daturi, M.; Wiersum, A. D.; Llewellyn, P. L.; Horcajada, P.; Férey, G.; Serre, C. Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO.
CO₂, propane, and propyne in the mesoporous metal-organic framework MIL-100. *Phys. Chem. Chem. Phys.* 2011, 13 (24), 11748–11756.

(6) Jeremias, F.; Khutia, A.; Henninger, S. K.; Janiak, C. MIL-100(Al,Fe) as water adsorbents for heat transformation purposes-a promising application. *J. Mater. Chem.* 2012, 22 (20), 10148–10151.

(7) Al-Dadah, R.; Mahmoud, S.; Elsayed, E.; Youssef, P.; Al-Mousawi, F. Metal-organic framework materials for adsorption heat pumps. *Energy* 2020, 190, 116356.

(8) Vitillo, J. G.; Bhan, A.; Cramer, C. J.; Lu, C. C.; Gagliardi, L. Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal-Organic Frameworks for the Oxidation of Methanol and Ethane to Ethanol. *ACS Catal.* 2019, 9 (4), 2870–2879.

(9) Simons, M. C.; Vitillo, J. G.; Babucci, M.; Hoffman, A. S.; Boubnov, A.; Beauvais, M. L.; Chen, Z.; Cramer, C. J.; Chapman, K. W.; Bare, S. R.; Bates, B. C.; Lu, C. C.; Gagliardi, L.; Bhan, A. Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal-Organic Framework. *J. Am. Chem. Soc.* 2019, 141 (45), 18142–18151.

(10) Gue, K.; Cauby, C. A. D.; Mayoral, Á.; Díaz-García, M.; Díaz, I.; Sánchez-Sánchez, M. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. *Cryst. Growth Des.* 2017, 17 (4), 1806–1813.

(11) Agostoni, V.; Chalati, T.; Horcajada, P.; Willaime, H.; Anand, R.; Semiramith, N.; Baït, T.; Hall, S.; Maurin, G.; Chacun, H.; Bouchenkal, K.; Martinez, C.; Taulelle, F.; Couvreur, P.; Rogez-Kreuz, C.; Clayette, P.; Monti, S.; Serre, C.; Gref, R. Towards an Improved anti-HIV Activity of NRTI via Metal-Organic Frameworks Nanoparticles. *Advs. Healthcare Mater.* 2013, 2 (12), 1630–1637.

(12) Marquez, A. G.; Hidalgo, T.; Lana, H.; Cunha, D.; Blanco-Prieto, M. J.; Alvarez-Lorenzo, C.; Boissiere, C.; Sanchez, C.; Serre, C.; Horcajada, P. Biocompatible polymer-metal-organic framework composite patches for cutaneous administration of cosmetic molecules. *J. Mater. Chem. B* 2016, 4 (43), 7031–7040.

(13) Santiago-Portillo, A.; Navalón, S.; Cirujano, F. G.; Xenoma, F. X. L. i; Alvaro, M.; Garcia, H. MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzyl Hydrocarbons in the Absence of Additional Oxidizing Reagents. *ACS Catal.* 2015, 5 (6), 5216–5224 and references cited therein.

(14) Wutke, S.; Băzăin, P.; Vimont, A.; Serre, C.; Seo, Y.-K.; Hwang, Y. K.; Chang, J.-S.; Férey, G.; Daturi, M. Discovering the Active Sites for Oxidizing Reagents. *Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks.* Situated in the Nodes of a Metal-Organic Framework. *CrystEngComm* 2015, 3 (7), 11823.

(15) Hoth, J.; Hoffmann, J.; Pal, R.; Horcajada, P. Biocompatible polymer-metal-organic framework composite patches for cutaneous administration of cosmetic molecules. *J. Mater. Chem. B* 2016, 4 (43), 7031–7040.

(16) Santiago-Portillo, A.; Navalón, S.; Cirujano, F. G.; Xenoma, F. X. L. i; Alvaro, M.; Garcia, H. MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzyl Hydrocarbons in the Absence of Additional Oxidizing Reagents. *ACS Catal.* 2015, 5 (6), 5216–5224 and references cited therein.

(17) Wutke, S.; Băzăin, P.; Vimont, A.; Serre, C.; Seo, Y.-K.; Hwang, Y. K.; Chang, J.-S.; Férey, G.; Daturi, M. Discovering the Active Sites for Oxidizing Reagents. *Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks.* Situated in the Nodes of a Metal-Organic Framework. *CrystEngComm* 2015, 3 (7), 11823.

(18) Hoth, J.; Hoffmann, J.; Pal, R.; Horcajada, P. Biocompatible polymer-metal-organic framework composite patches for cutaneous administration of cosmetic molecules. *J. Mater. Chem. B* 2016, 4 (43), 7031–7040.

(19) Santiago-Portillo, A.; Navalón, S.; Cirujano, F. G.; Xenoma, F. X. L. i; Alvaro, M.; Garcia, H. MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzyl Hydrocarbons in the Absence of Additional Oxidizing Reagents. *ACS Catal.* 2015, 5 (6), 5216–5224 and references cited therein.

(20) Wutke, S.; Băzăin, P.; Vimont, A.; Serre, C.; Seo, Y.-K.; Hwang, Y. K.; Chang, J.-S.; Férey, G.; Daturi, M. Discovering the Active Sites for Oxidizing Reagents. *Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks.* Situated in the Nodes of a Metal-Organic Framework. *CrystEngComm* 2015, 3 (7), 11823.

(21) Hoth, J.; Hoffmann, J.; Pal, R.; Horcajada, P. Biocompatible polymer-metal-organic framework composite patches for cutaneous administration of cosmetic molecules. *J. Mater. Chem. B* 2016, 4 (43), 7031–7040.
convex 3···· interactions. *Phys. Chem. Chem. Phys.* **2008**, *10* (19), 2813–2818.

(37) John, M.; Alexopoulos, K.; Reyniers, M.-F.; Marin, G. B. Mechanistic insights into the formation of butene isomers from 1-butanol in H-ZSM-5: DFT based microkinetic modelling. *Catal. Sci. Technol.* **2017**, *7* (5), 1055–1072.

(38) Iley, W., III. https://github.com/william-isley-3rd/Comp-Chem-Tools (accessed 2018-06-12).

(39) Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G. Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases. *J. Chem. Theory Comput.* **2012**, *8* (2), 527–541.

(40) Ritchie, J. P.; Bachrach, S. M. Some methods and applications of electron density distribution analysis. *J. Comput. Chem.* **1987**, *8* (4), 499–509.

(41) Gaggioli, C. A.; Stoneburner, S. J.; Cramer, C. J.; Gagliardi, L. Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. *ACS Catal.* **2019**, *9* (9), 8481–8502.

(42) Gani, T. Z. H.; Kulik, H. J. Understanding and Breaking Scaling Relations in Single-Site Catalysis: Methane to Methanol Conversion by FeIV-O. *ACS Catal.* **2018**, *8* (2), 975–986.

(43) Rosen, A. S.; Notestein, J. M.; Snurr, R. Q. Structure-Activity Relationships That Identify Metal-Organic Framework Catalysts for Methane Activation. *ACS Catal.* **2019**, *9* (4), 3576–3587.

(44) Valenzano, L.; Civalleri, B.; Chavan, S.; Palomino, G. T.; Areán, C. O.; Bordiga, S. Computational and Experimental Studies on the Adsorption of CO, N₂, and CO₂ on Mg-MOF-74. *J. Phys. Chem. C* **2010**, *114* (25), 11185–11191.

(45) Vitillo, J. G.; Ricchiardi, G. Effect of Pore Size, Solvation, and Defectivity on the Perturbation of Adsorbates in MOFs: The Paradigmatic Mg₄(dobpdc) Case Study. *J. Phys. Chem. C* **2017**, *121* (41), 22762–22772.

(46) Bonino, F.; Lamberti, C.; Chavan, S.; Vitillo, J. G.; Bordiga, S. Characterization of MOFs. I. Combined Vibrational and Electronic Spectroscopies. In *Metal Organic Frameworks as Heterogeneous Catalysts*; Llabrés i Xamena, F. X., Gascon, J., Eds.; The Royal Society of Chemistry, 2013; pp 76–142.

(47) Jensen, S.; Tan, K.; Feng, L.; Li, J.; Zhou, H.-C.; Thonhauser, T. Porous Ti-MOF-74 Framework as a Strong-Binding Nitric Oxide Scavenger. *J. Am. Chem. Soc.* **2020**, *142* (39), 16562–16568.

(48) Dhakshinamoorthy, A.; Alvaro, M.; Horcajada, P.; Gibson, E.; Vishnumohan, M.; Vimont, A.; Grenèche, J.-M.; Serre, C.; Daturi, M.; Garcia, H. Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. *ACS Catal.* **2012**, *2* (10), 2060–2065.

(49) McKinlay, A. C.; Eubank, J. F.; Wuttke, S.; Xiao, B.; Wheatley, P. S.; Bazin, P.; Lavalle, J. C.; Daturi, M.; Vimont, A.; De Weireld, G.; Horcajada, P.; Serre, C.; Morris, R. E. Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal-Organic Frameworks. *Chem. Mater.* **2013**, *25* (9), 1592–1599.

(50) Ford, P. C.; Lorkovic, I. M. Mechanistic Aspects of the Reactions of Nitric Oxide with Transition-Metal Complexes. *Chem. Rev.* **2002**, *102* (4), 993–1018.