Supporting Information for
Selective Phonon Stimulation Mechanism to Tune Thermal Transport

Gaurav Kumar, Peter W. Chung*

Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, 20742, USA

*Email: pchung15@umd.edu

S1. IR Active Phonon Modes in RDX

Numerous experimental studies have investigated and reported the absorption of IR radiation by the molecules in RDX \(^1\text{-}^8\). The fraction of radiation energy absorbed is often reported as transmittance or absorbance, or % transmission or % absorption. In this work, we assume that the percent of energy absorbed % Absorption = (100 - % transmission), or absorbance = (1-transmittance) while neglecting any reflectance (transmittance = 1 is the same as % transmission = 100). Based on the IR spectroscopy data in the literature, fifteen IR active modes in RDX spanning the complete phonon spectrum are identified for stimulation as shown in Table S1. The optical energy input \((E_{in,\phi_z})\), the energy absorbed \((E_{abs,\phi_z})\) and the corresponding increasing in
phonon population (Δn_{Φ_s}) are shown in Table S2. An example of spectral profile of the optical pulse used for stimulation assumed in this work is shown in Figure S1.

Table S1. Fifteen IR active modes in RDX selected for stimulation, corresponding mode assignment and % absorption obtained from literature$^{1-8}$. Subscript s denotes that these modes have been selected for stimulation. Superscripts: $w =$ wag, ro = rotation, b = bending, u = umbrella, st = stretching, t = twist, sc = scissoring, rc = rocking, ax = axial, eq = equatorial, fo = folding, as = asymmetric.

IR active Mode	Frequency ω_{IR} (cm$^{-1}$)	Mode Assignment	Mode Energy, E_{Φ_s} (meV)	Equilibrium Occupation n_{Φ_s}	% Absorption n_{Φ_s}
22.74	Translation	2.82	57.1140	19.54	
43.99	Translation	5.46	29.2848	4.21	
71.25	w(all)NO$_2$	8.83	17.8920	17.14	
83.38	ro(all)NO$_2$	10.34	15.2178	33.08	
190.87	NC$_2$	23.67	6.3760	23.81	
405.03	b+60/Ring 9–11	50.22	2.7603	28.32	
503.51	b+75/Ring 9–11	62.43	2.1339	27.94	
582.36	b+75/Ring 9–11	72.21	1.7866	64.80	
786.90	wC-N+ sc(eq)NO$_2$	97.57	1.2147	50.67	
914.84	st(eq)N-N+ roCH$_2$	113.43	0.9898	30.18	
1140.67	st(eq)CH$_2$	141.44	0.7202	51.33	
1299.72	st(eq,ax)N-N+ roCH$_2$	161.16	0.5893	36.99	
1501.31	st(ax)NO$_2$	186.15	0.4661	20.69	
1739.89		215.74	0.3605	70.97	
2823.76	st(ax)CH$_2$	350.13	0.1310	23.51	
Table S2. Optical energy input (E_{in,Φ_s}), energy absorbed (E_{abs,Φ_s}) and corresponding increase in phonon population (Δn_{Φ_s}) of the 15 IR active modes in RDX selected for stimulation.

IR active Mode Frequency ω_{IR} (cm$^{-1}$)	E_{in,Φ_s} (eV)	E_{abs,Φ_s} (eV)	Δn_{Φ_s}
22.74	1.00	0.20	69.33
43.99	1.94	0.08	14.94
71.25	3.13	0.54	60.81
83.38	3.67	1.21	117.36
190.87	8.40	2.00	84.46
405.03	17.82	5.05	100.46
503.51	22.15	6.19	99.10
582.36	25.62	16.60	229.87
786.90	34.61	17.54	179.76
914.84	40.24	12.14	107.06
1140.67	50.17	25.76	182.10
1299.72	57.17	21.15	131.22
1501.31	66.03	13.66	73.40
1739.89	76.53	54.31	251.75
2823.76	124.20	29.20	83.38

Figure S1. Example of spectral profile of the optical pulse used for stimulation assumed in this work (centered at IR active mode frequency with a linewidth of 1 cm$^{-1}$). 1 eV optical energy input is used for stimulating the band at 22.74 cm$^{-1}$ and the energy input is assumed constant across the frequency band.
S2. Fermi’s Golden Rule based 3-phonon Scattering Rate

The crystal Hamiltonian can be written as

\[H = H_0 + H_3 + H_4 \ldots \] \hspace{1cm} \text{(S1)}

where \(H_0 \) is the harmonic term, \(H_3 \) and \(H_4 \) are anharmonic terms also referred to as first and second order perturbation terms, respectively. In this work, we only consider up to the first order perturbation term of the Hamiltonian. The first order perturbation term \(H_3 \) is defined as\(^{14,15}\)

\[H_3 = H_{\phi_1,\phi_2,\phi_3}^{(3)}(a_{\phi_1}^\dagger + a_{\phi_1})(a_{\phi_2}^\dagger + a_{\phi_2})(a_{\phi_3}^\dagger + a_{\phi_3}) \] \hspace{1cm} \text{(S2)}

where \(\phi \) is the phonon mode index (\(\phi_1,\phi_2,\phi_3 \) are the mode indices of the three phonons involved in scattering, \(\phi \) refers to a mode corresponding to a negative wavevector), \(H_{\phi_1,\phi_2,\phi_3}^{(3)} \) are Fourier transforms of the third order Interatomic Force Constants (IFCs), \(a_{\phi}^\dagger \) and \(a_{\phi} \) are creation and annihilation operators respectively with \(a_{\phi}^\dagger \left| n_{\phi} \right> = \sqrt{n_{\phi} + 1} \left| n_{\phi} + 1 \right> \) and \(a_{\phi} \left| n_{\phi} \right> = \sqrt{n_{\phi}} \left| n_{\phi} - 1 \right> \), and \(n_{\phi} \) is the phonon mode population given by Bose-Einstein (BE) statistics. The coefficients \(H_{\phi_1,\phi_2,\phi_3}^{(3)} \) are related to the analogous coefficients \(V_{\phi_1,\phi_2,\phi_3}^{(3)} \) defined by Born and Huang\(^{16}\). They are related by
\[H_{\phi_1, \phi_2, \phi_3}^{(3)} = \frac{\hbar^2}{6N^2} \sum_{\alpha_1, \alpha_2, \alpha_3} \sum_{b_1, b_2, b_3} \sum_{l, l_2, l_3} \Phi_{\alpha_1, \alpha_2, \alpha_3}^{b_1, b_2, b_3} e^{i k_{l_2} r_{l_2}} e^{i k_{l_3} r_{l_3}} \left(m_b, m_{b_2}, m_{b_3} \right) \]

where \(N \) is the total number of k points, \(\omega_{\phi} \) is the angular frequency of the phonon mode, Kronecker delta \(\Delta_{k_1 + k_2 + k_3} \) enforces momentum conservation, and \(V_{\phi_1, \phi_2, \phi_3}^{(3)} \) is the cubic anharmonic matrix of third order IFCs defined as

\[V_{\phi_1, \phi_2, \phi_3}^{(3)} = \sum_{\alpha_1, \alpha_2, \alpha_3} \sum_{b_1, b_2, b_3} \sum_{l, l_2, l_3} \Phi_{\alpha_1, \alpha_2, \alpha_3}^{b_1, b_2, b_3} e^{i k_{l_2} r_{l_2}} e^{i k_{l_3} r_{l_3}} \left(m_b, m_{b_2}, m_{b_3} \right) \]

where \(b \) is the index of atoms in the unitcell, \(l \) is the index of cells in a supercell, \(\alpha \) represents the three Cartesian directions, \(m_b \) is the mass of the \(b^{th} \) atom, \(\Phi_{\alpha_1, \alpha_2, \alpha_3}^{b_1, b_2, b_3} \) are the third order force constants, \(e^{\phi_{\alpha_1}} \) are the phonon mode eigenvectors, and \(\mathbf{k} \) represents the wavevector.

With the above expression for the anharmonic Hamiltonian, Maradudin and Fein formulated a method to calculate the intrinsic phonon scattering rates using the perturbation theory (Fermi’s Golden Rule or FGR)\(^{14} \). Based on FGR, the probability of transition from an initial state \(|i\rangle \) to a final state \(|f\rangle \) for the 3-phonon emission process \(\phi_1 \rightarrow \phi_2 + \phi_3 \) is given by

\[\frac{2\pi}{\hbar} |\langle f | H_3 | i \rangle|^2 \delta(E_i - E_f) \sim n_{\phi_1}(1 + n_{\phi_2})(1 + n_{\phi_3}) |H_{\phi_1, \phi_2, \phi_3}^{(3)}|^2 \]

(S5)
Similarly, the transition probability for the process $\phi_1 \leftrightarrow \phi_2 + \phi_3$ is given by

$$\frac{2\pi}{\hbar} |\langle i | H_3 | f \rangle|^2 \delta(E_i - E_f) \sim (1 + n_{\phi_1})n_{\phi_2}n_{\phi_3}|H_{\phi_1,\phi_2,\phi_3}^{(3)}|^2$$

(S6)

where E_i and E_f are energy of the initial and the final state respectively. The transition probabilities for the absorption processes $\phi_1 + \phi_2 \rightarrow \phi_3$ and $\phi_1 + \phi_2 \leftarrow \phi_3$ can be expressed in a similar manner.

The rate of change of occupation of the mode ϕ_1 can be calculated based on the transition probabilities for the 3-phonon processes as

$$\frac{\partial n_{\phi_1}}{\partial t} = - \sum_{\phi_2,\phi_3} \left\{ \frac{1}{2} n_{\phi_1}(1 + n_{\phi_2})(1 + n_{\phi_3}) - (1 + n_{\phi_1})n_{\phi_2}n_{\phi_3} \right\} L -
+ \left[(1 + n_{\phi_3})n_{\phi_1}n_{\phi_2} - n_{\phi_3}(1 + n_{\phi_1})(1 + n_{\phi_2}) \right] L^+$$

(S7)

The first two terms of the summation in Eq. (S7) account for the emission process (the difference between $\phi_1 \rightarrow \phi_2 + \phi_3$ and $\phi_1 \leftarrow \phi_2 + \phi_3$), and the last two terms account for the absorption process (the difference between $\phi_1 + \phi_2 \rightarrow \phi_3$ and $\phi_1 + \phi_2 \leftarrow \phi_3$). Using the single mode relaxation time approximation (SMRTA), which assumes that the non-equilibrium population of any mode is calculated independently of other phonon modes i.e., $n_{\phi_1} = n_{\phi_1}^0 + n'_{\phi_1}$ and $n_{\phi_2} = n_{\phi_2}^0$, $n_{\phi_3} = n_{\phi_3}^0$,

Eq. (S7) can be reduced to
\[\frac{\partial n_{\phi_1}}{\partial t} = - n'_\phi \sum_{\phi_2, \phi_3} \left\{ \frac{1}{2} \left(1 + n_{\phi_2}^0 + n_{\phi_3}^0 \right) L_- + \left(n_{\phi_2}^0 - n_{\phi_3}^0 \right) L_+ \right\} \]

(S8)

where \(n'_\phi \) is the perturbation in population of the mode \(\phi_1 \), \(n_\phi^0 \) is the equilibrium phonon population of the mode \(\phi \) given by BE statistics, and the summation on the right side is the intrinsic 3-phonon scattering rate \(\Gamma_{\phi_i} \) for mode \(\phi_1 \).

\[\Gamma_{\phi_1} = \sum_{\phi_2, \phi_3} \left\{ \frac{1}{2} \left(1 + n_{\phi_2}^0 + n_{\phi_3}^0 \right) L_- + \left(n_{\phi_2}^0 - n_{\phi_3}^0 \right) L_+ \right\} \]

(S9)

where \(L_\pm \) accounts for the conservation of crystal momentum and energy and the probability of transition from an initial state to a final state for absorption (\(- \)) and emission (\(+ \)) processes.

The expression for \(L_\pm \) is given by FGR as\(^{17} \)

\[L_\pm = \frac{\pi \hbar}{4N} \left| V^{(3)}_\pm \right|^2 \Delta \pm \frac{\delta(\omega_{\phi_1} \pm \omega_{\phi_2} - \omega_{\phi_3})}{\omega_{\phi_1} \omega_{\phi_2} \omega_{\phi_3}} \]

(S10)

where \(V^{(3)}_\pm \) is cubic anharmonic matrix of the third order IFCs,

\[V^{(3)}_\pm = \sum_{\alpha_1, \alpha_2, \alpha_3} \sum_{b_1, b_2, b_3} \frac{\phi_{\alpha_1, \alpha_2, \alpha_3} e^{i k_1 b_1 \alpha_1} e^{i k_2 b_2 \alpha_2} e^{i k_3 b_3 \alpha_3}}{m_{\phi_1} m_{\phi_2} m_{\phi_3}} e^{\pm ik_{\pm} r_{\pm}} e^{-i k_{\perp} r_{\perp}} \]

(S11)

The scattering rate \(\Gamma_{\phi_i} \) can be considered to be a product of two terms, \(\left| V^{(3)}_\pm \right|^2 \) which indicates the anharmonicity of the modes and a 3-phonon phase space volume \(P_{3,\phi_1} \) calculated as
\[P_{3, \Phi_1} = \sum_{\phi_2, \phi_3} \left\{ \frac{1}{2} \left(1 + n_{\phi_2}^0 + n_{\phi_3}^0 \right) \Delta - \frac{\delta(\omega_{\phi_1} - \omega_{\phi_2} - \omega_{\phi_3})}{\omega_{\phi_1} \omega_{\phi_2} \omega_{\phi_3}} + (n_{\phi_2}^0 - n_{\phi_3}^0) \Delta + \frac{\delta(\omega_{\phi_1}^S - \omega_{\phi_2} - \omega_{\phi_3})}{\omega_{\phi_1} \omega_{\phi_2} \omega_{\phi_3}} \right\} \] (S12)

which indicates the number of allowed three phonon scattering events that follow conservation of crystal momentum and energy.

When phonons in band \(\Phi_S \) are stimulated, the population of stimulated phonons is driven out of equilibrium and the scattering rate in Eq. (S9) can be re-written by replacing \(n_\phi^0 \) with \(n_\phi^S \) for the stimulated modes

\[\Gamma_{\phi_1}^{\Phi_S} = \sum_{\phi_2 \notin \Phi_S, \phi_3 \notin \Phi_S} \left\{ \frac{1}{2} \left(1 + n_{\phi_2}^0 + n_{\phi_3}^0 \right) L_- + (n_{\phi_2}^0 - n_{\phi_3}^0) L_+ \right\} + \sum_{\phi_2 \notin \Phi_S, \phi_3 \notin \Phi_S} \left\{ \frac{1}{2} \left(1 + n_{\phi_2}^0 + n_{\phi_3}^S \right) L_- + (n_{\phi_2}^0 - n_{\phi_3}^S) L_+ \right\} + \sum_{\phi_2 \notin \Phi_S, \phi_3 \notin \Phi_S} \left\{ \frac{1}{2} \left(1 + n_{\phi_2}^S + n_{\phi_3}^0 \right) L_- + (n_{\phi_2}^S - n_{\phi_3}^0) L_+ \right\} + \sum_{\phi_2 \notin \Phi_S, \phi_3 \notin \Phi_S} \left\{ \frac{1}{2} \left(1 + n_{\phi_2}^S + n_{\phi_3}^S \right) L_- + (n_{\phi_2}^S - n_{\phi_3}^S) L_+ \right\} \right\} \] (S13)

where \(n_\phi^S = n_\phi^0 + \Delta n_{\Phi_S} \). The resulting change in scattering rate can be calculated as Eq. (S13) - Eq. (S9)
\[\Delta \tau_{\phi_1}^{\phi_1} = \tau_{\phi_1}^{\phi_1} - \tau_{\phi_1} = \sum_{\phi_2 \in \Phi, \phi_3 \in \Phi_3} \left\{ \left(\frac{L_2 - L_1}{2} - L_1 \right) (n_{\phi_3}^e - n_{\phi_3}^0) \right\} + \sum_{\phi_2 \in \Phi_3, \phi_3 \in \Phi_3} \left\{ \left(\frac{L_2 - L_1}{2} - L_1 \right) (n_{\phi_3}^e - n_{\phi_3}^0) \right\} - n_{\phi_3}^0 + \left(\frac{L_2 - L_1}{2} + L_1 \right) (n_{\phi_2}^e - n_{\phi_2}^0), \quad (S14) \]

Next, the phonon lifetimes are calculated as

\[\tau_{\phi_1}^{\phi_1} = \left| \frac{1}{\Delta \tau_{\phi_1}^{\phi_1}} \right|, \quad (S15) \]

and the phonon mean free paths are calculated as

\[\Lambda_{\phi_1}^{\phi_1} = \left| v_{g,\phi_1} \right| \tau_{\phi_1}, \quad (S16) \]

where \(v_{g,\phi_1} \) is the phonon mode group velocity. Subsequently, the modewise diffusivity is calculated as

\[D_{\phi_1}^{\phi_1} = \left| v_{g,\phi_1} \right| \Lambda_{\phi_1}^{\phi_1}, \quad (S17) \]

the scalar thermal conductivity is calculated as

\[\kappa_s^{\phi_1} = \frac{1}{3} \sum_{\phi_1} C_{v,\phi_1} \left| v_{g,\phi_1} \right| \Lambda_{\phi_1}^{\phi_1}, \quad (S18) \]

where \(C_{v,\phi_1} \) is the phonon mode specific heat.

S3. Measures for Quantifying Effects of Phonon Band Stimulation
We quantify the effects of band stimulation by calculating average values of percent change in modewise phonon properties. Specifically, the average percent change in scattering rates (average over all modes) when phonons in band \(\Phi_s \) are stimulated is calculated as

\[
\% \Delta \Gamma^{\text{avg}, \Phi_s} = \frac{1}{\text{no. of modes}} \sum_{\phi_1} 100 \frac{\Gamma_{\phi_1}^{\Phi_s} - \Gamma_{\phi_1}}{\Gamma_{\phi_1}}, \tag{S19}
\]

Similarly, the average percent change in modewise diffusivity is calculated as

\[
\% \Delta D^{\text{avg}, \Phi_s} = \frac{1}{\text{no. of modes}} \sum_{\phi_1} 100 \frac{D_{\phi_1}^{\Phi_s} - D_{\phi_1}}{D_{\phi_1}}, \tag{S20}
\]

and the percent change in scalar thermal conductivity is calculated as

\[
\% \Delta \kappa_s^{\Phi_s} = 100 \frac{\kappa_{\phi_1}^{\Phi_s} - \kappa_s}{\kappa_s}, \tag{S21}
\]

S4. Modewise Percent Contribution to Thermal Conductivity

For each mode \(\phi_1 \), the modewise percent contribution to thermal conductivity is defined as

\[
\kappa_{\phi_1} = 100 \frac{\kappa_{\phi_1}}{\kappa_s}
\]

where \(\kappa_{\phi_1} \) is the modewise thermal conductivity defined as

\[
\kappa_{\phi_1}^{\text{PGM}} = \frac{1}{3} (C_{\phi_1} | \mathbf{v}_{g, \phi_1} | \Lambda_{\phi_1})
\]

for the Phonon Gas Model and

\[
\kappa_{\phi_1}^{\text{AF}} = (C_{\phi_1} D_{\phi_1})
\]

for the Allen-Feldman model. Here \(C_{\phi_1}, \mathbf{v}_{g, \phi_1}, \Lambda_{\phi_1} \),
and D_{ϕ_i} are the modewise specific heat, group velocity, phonon mean free path and diffusivity respectively.

![Figure S2](image_url)

Figure S2. Modewise percent contribution to thermal conductivity for PGM and AF models. Although, PGM treats all phonons as propagating carriers while neglecting the diffusive nature of transport, the modewise percent contribution of the phonons to thermal conductivity is similar for both PGM (propagating carriers) and Allen-Feldman model (diffusive carriers).

References

(1) Fan, W. H.; Burnett, A.; Upadhya, P. C.; Cunningham, J.; Linfield, E. H.; Davies, A. G. Far-Infrared Spectroscopic Characterization of Explosives for Security Applications Using Broadband Terahertz Time-Domain Spectroscopy. *Appl. Spectrosc.* 2007, 61, 638–643.

(2) Allis, D. G.; Zeitler, J. A.; Taday, P. F.; Korter, T. M. Theoretical Analysis of the Solid-State Terahertz Spectrum of the High Explosive RDX. *Chem. Phys. Lett.* 2008, 463, 84–89.

(3) Ciezak, J. A.; Jenkins, T. A.; Liu, Z.; Hemley, R. J. High-Pressure Vibrational Spectroscopy of Energetic Materials: Hexahydro-1,3,5-Trinitro-1,3,5-Triazine. *J. Phys. Chem. A* 2007, 111, 59–63.

(4) Karpowicz, R. J.; Brill, T. B. Comparison of the Molecular Structure of Hexahydro-1,3,5-Trinitro-s-Triazine in the Vapor, Solution, and Solid Phases. *J. Phys. Chem.* 1984, 88, 348–352.
(5) Karpowicz, R. J.; Sergio, S. T.; Brill, T. B. β-Polymorph of Hexahydro-1,3,5-Trinitro-s-Triazine. a Fourier Transform Infrared Spectroscopy Study of an Energetic Material. *Ind. Eng. Chem. Prod. Res. Dev.* **1983**, *22*, 363–365.

(6) Iqbal, Z.; Suryanarayanan, K.; Suryanarayana, E.; Autera, J. R. Infrared and Raman Spectra of 1,3,5-Trinitro-1,3,5-Triazacyclohexane (RDX); Picatinny Arsenal: Dover, NJ, 1972.

(7) Figueroa-Navedo, A. M.; Ruiz-Caballero, J. L.; Pacheco-Londoño, L. C.; Hernández-Rivera, S. P. Characterization of α- And β-RDX Polymorphs in Crystalline Deposits on Stainless Steel Substrates. *Cryst. Growth Des.* **2016**, *16*, 3631–3638.

(8) Elizabeth, D. C. M.; Moreira, E. D.; Diniz, M. F.; Dutra, R. C. L.; da Silva, G.; Iha, K.; Teipel, U. Characterization of Polymer-Coated RDX and HMX Particles. *Propellants, Explos., Pyrotech.* **2008**, *33*, 44–50.

(9) Ciezak, J. A.; Trevino, S. F. Inelastic Neutron Scattering Spectrum of Cyclotrimethylenetrinatrinamine: A Comparison with Solid-State Electronic Structure Calculations. *J. Phys. Chem. A* **2006**, *110*, 5149–5155.

(10) Infante-Castillo, R.; Pacheco-Londoño, L.; Hernández-Rivera, S. P. Vibrational Spectra and Structure of RDX and Its 13C- and 15N-Labeled Derivatives: A Theoretical and Experimental Study. *Spectrochim. Acta, Part A* **2010**, *76*, 137–141.

(11) Yu, G.; Zeng, Y.; Guo, W.; Wu, H.; Zhu, G.; Zheng, Z.; Zheng, X.; Song, Y.; Yang, Y. Visualizing Intramolecular Vibrational Redistribution in Cyclotrimethylene Trinitramine (RDX) Crystals by Multiplex Coherent Anti-Stokes Raman Scattering. *J. Phys. Chem. A* **2017**, *121*, 2565–2571.

(12) Werbin, A. The Infrared Spectra of HMX and RDX; California University: Livermore, USA, 1957.

(13) Torres, P.; Mercado, L.; Cotte, I.; Hernández, S. P.; Mina, N.; Santana, A.; Chamberlain, R. T.; Lareau, R.; Castro, M. E. Vibrational Spectroscopy Study of β and α RDX Deposits. *J. Phys. Chem. B* **2004**, *108*, 8799–8805.

(14) Maradudin, A. A.; Fein, A. E. Scattering of Neutrons by an Anharmonic Crystal. *Phys. Rev.* **1962**, *128*, 2589–2608.

(15) Maradudin, A. A.; Fein, A. E.; Vineyard, G. H. On the Evaluation of Phonon Widths and Shifts. *Phys. Status Solidi B* **1962**, *2*, 1479–1492.
(16) Born, M.; Huang, K.; Lax, M. Dynamical Theory of Crystal Lattices. *Am. J. Phys.* **1955**, *23*, 474–474.

(17) Feng, T.; Ruan, X. Quantum Mechanical Prediction of Four-Phonon Scattering Rates and Reduced Thermal Conductivity of Solids. *Phys. Rev. B* **2016**, *93*, 045202.