Effects of Disorder in $\text{Mg}_{1-x} \text{Ta}_x \text{B}_2$ Alloys using Coherent-Potential Approximation

P. Jiji Thomas Joseph and Prabhakar P. Singh

Department of Physics, Indian Institute of Technology, Powai, Mumbai- 400076, India

Abstract

Using Korringa-Kohn-Rostoker coherent-potential approximation in the atomic-sphere approximation (KKR-ASA CPA) method for taking into account the effects of disorder, Gaspari-Gyorffy formalism for calculating the electron-phonon coupling constant λ, and Allen-Dynes equation for calculating T_c, we have studied the variation of T_c in $\text{Mg}_{1-x} \text{Ta}_x \text{B}_2$ alloys as a function of Ta concentration. Our results show that the T_c decreases with the addition of Ta for up to 40 at% and remains essentially zero from 60 at% to 80 at% of Ta. We also find TaB_2 to be superconducting, albeit at a lower temperature. Our analysis shows that the variation in T_c in $\text{Mg}_{1-x} \text{Ta}_x \text{B}_2$ is mostly dictated by the changes in the $B\text{p}$ density of states with the addition of Ta.

The experimental [1–4] and theoretical [5–12] efforts aimed at understanding the nature of superconductivity in MgB_2 have made substantial progress since the discovery of superconductivity in it [1]. With an enhanced understanding of superconductivity in MgB_2, attempts are now being made to understand the changes in the electronic structure and the superconducting properties of MgB_2 upon alloying with various elements. Such efforts provide an opportunity to explore the possibility of obtaining MgB_2 alloys with improved superconducting properties.

The changes in the superconducting properties of MgB_2 due to substitution of various elements such as Be, Li, C, Al, Na, Zn, Zr and others have been studied experimentally [4,13–18]. Some theoretical work has also been reported within the rigid-band model. The main effects of alloying are seen to be (i) a decrease in transition temperature, T_c, with increasing concentration of the alloying elements except for Zn (and possibly Li) where T_c is seen to increase somewhat, (ii) changes in lattice parameters a and c, and (iii) a change in crystal structure.
With a view to understand the changes in the electronic structure and the superconducting properties as well as to clarify the reported superconductivity in TaB2 [19,20], we have carried out an ab initio study of Mg$_{1-x}$Ta$_x$B$_2$ alloys. We have used Korringa-Kohn-Rostoker coherent-potential approximation [21] within the atomic-sphere approximation (KKR-ASA CPA) method for taking into account the effects of disorder, Gaspari-Gyorffy formalism for calculating the electron-phonon coupling constant λ, and Allen-Dynes equation for calculating T_c in Mg$_{1-x}$Ta$_x$B$_2$ alloys as a function of Ta concentration. Such an attempt allows us to examine the possibility of superconductivity in TaB$_2$, given the superconductivity in MgB$_2$. We have analyzed our results in terms of the changes in the total density of states (DOS), in particular the changes in the B p contribution to the total DOS, as a function of Ta concentration.

Based on our calculations, described below, we find that in Mg$_{1-x}$Ta$_x$B$_2$ alloys (i) the T_c decreases with the addition of Ta for upto 40 at%, remains essentially zero from 60 at% to 80 at%, and then rises to \sim 1.8 K for TaB$_2$, (ii) the T_c for TaB$_2$ is much lower than reported earlier [19], and (iii) the variation in T_c is mostly dictated by the changes in the B p densities of states as more and more Ta are added. Before we describe our results, we outline some of the computational details.

The charge self-consistent electronic structure of Mg$_{1-x}$Ta$_x$B$_2$ alloys as a function of x has been calculated using the KKR-ASA CPA method [22]. We have used the CPA rather than a rigid-band model because CPA has been found to reliably describe the effects of disorder in metallic alloys. We parametrized the exchange-correlation potential as suggested by Perdew-Wang [23,24] within the generalized gradient approximation. The Brillouin zone (BZ) integration was carried out using 1215 k-points in the irreducible part of the BZ. For DOS calculations, we added a small imaginary component of 2 mRy to the energy and used 3887 k-points in the irreducible part of the BZ. The lattice constants for MgB$_2$ and TaB$_2$ were taken from experiments while for other compositions we used the Vegard’s law. The Wigner–Seitz radii for Mg and Ta were slightly larger than that of B. The sphere overlap, which is crucial in ASA, was less than 10% and the maximum l used was $l_{max} = 3$.

The electron-phonon coupling constant λ was calculated using Gaspari-Gyorffy [25] formalism with the charge self-consistent potentials of Mg$_{1-x}$Ta$_x$B$_2$ obtained with the KKR-ASA CPA method. Subsequently, the variation of T_c as a function of Ta concentration was calculated using Allen-Dynes equation [26]. The average values of phonon frequencies ω_{ln} for TaB$_2$ and MgB$_2$ were taken from Refs. [27] and [28] respectively. For intermediate concentrations, we took ω_{ln} to be the concentration-weighted average of MgB$_2$ and TaB$_2$.

2
The main results of our calculations are shown in Fig. 1, where we have plotted the variation in T_c of $Mg_{1-x}Ta_xB_2$ alloys as a function of Ta concentration. The calculations were carried out as described earlier with the same value of $\mu^* = 0.09$ for all the concentrations. The T_c for MgB_2 is equal to $\sim 30\,K$, which is consistent with the results of other works [28] with similar approximations. The corresponding λ is equal to 0.73. As a function of Ta concentration we find that the T_c decreases rapidly and goes to zero at around 40 at\% of Ta as shown in Fig. 1. The T_c remains essentially zero until around 75 – 80 at\% of Ta, thereafter rising to 1.8 K for TaB_2 with $x = 1$. The corresponding λ for TaB_2 is equal to 0.38..
Fig. 2. The total density of states for $Mg_{1-x}Ta_xB_2$ as a function of Ta concentration x, calculated with the charge self-consistent KKR-ASA CPA method, as described in the text. Note that in (f), the vertical scale is different from the rest of the figures. The vertical line denotes the Fermi energy.

In order to get further insight into the variation of T_c as a function of Ta concentration in $Mg_{1-x}Ta_xB_2$ alloys, we have analyzed the total DOS as well as the contribution of B p-electrons to the total DOS. In Figs. 2(a) – (f), we show the total DOS of $Mg_{1-x}Ta_xB_2$ alloys for Ta concentration ranging from $x = 0$ to $x = 1$, calculated using the KKR-ASA CPA method as described earlier. The DOS for MgB_2 and TaB_2, as shown in Figs. 2(a) and 2(f) are similar to previous calculations [28,29]. With small addition of Ta the Fermi energy, E_F, moves outward to accommodate the additional electrons resulting in a decrease in the total DOS at E_F for $Mg_{1-x}Ta_xB_2$ alloys, leading to a decrease in T_c. Further addition of Ta allows E_F to be pinned in a valley around 50 – 60 at% of Ta, resulting in a decreased donor ability of the metallic
plane \((Mg - Ta)\) with the increase in the number of \(d\) electrons. Thus the overall contribution of \(B\) electronic states decreases as the concentration of \(Ta\) is increased up to around 80 at\% of \(Ta\). Starting with around 80 at\% of \(Ta\) the \(B\) contribution rises and so does the \(T_c\) as shown in Fig. 1. To substantiate these qualitative observations we have listed in Table I the total DOS and the \(B_p\) DOS at \(E_F\). In addition, in Fig. 3, we show the \(B_{px}\) and \(p_z\) partial DOS as a function of concentration. It is clear from Table I and Fig. 3 that the \(B_p\) DOS is responsible for the variation in \(T_c\) of \(Mg_{1-x}Ta_xB_2\) alloys, and the possible loss of superconductivity in these alloys at around 60 at\% of \(Ta\) can be attributed to a very small \(B_{px,y}\) DOS at \(E_F\). In Table I, we have also listed the lattice constants used in our calculations.

In conclusion, we have studied the variation of \(T_c\) in \(Mg_{1-x}Ta_xB_2\) alloys as a function of \(Ta\) concentration. We have used the KKR-ASA CPA method for taking into account the effects of disorder and Gaspari-Georffy formalism for calculating the electron-phonon coupling constant \(\lambda\). The \(T_c\) is then calculated using the Allen-Dynes equation. Our results show that the \(T_c\) decreases with the addition of \(Ta\) for up to 40 at\%, thereafter remains essentially zero up to 80 at\% of \(Ta\). We find \(TaB_2\) to be superconducting, albeit at a low temperature. We have also shown that the variation in \(T_c\) is mostly dictated by the changes in the \(B_p\) density of states.

We would like to thank Dr. I. A. Abrikosov for providing a copy of his locally self-consistent Green’s function code.
Fig. 3. $B\, p$ partial DOS showing p_x (full line) and p_z (dashed line) for $Mg_{1-x}Ta_xB_2$. The vertical line denotes the Fermi energy. Note that for $x = 1$ the vertical scale is different from the rest of the plots.

References

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature, 410, 63 (2001).

[2] S. L. Bud’ko, C. Petrovic, G. Lapertot, C. E. Cunningham, P. C. Canfield, M. H. Jung, A. H. Lacerda, cond-mat/0102413.

[3] W. N. Kang, C. U. Jung, Kijooh H. P. Kim, Min-Seok Park, S. Y. Lee, Hyeong-Jin Kim, Eun-Mi Choi, Kyung Hee Kim, Mun-Seog Kim, and Sung-Ik Lee, cond-mat/0102313.

[4] Cristina Buzea and Tsutomu Yamashita, cond-mat/0108265; and references therein.
[5] M. An and W. E. Pickett, cond-mat 0102391.
[6] J. E. Hirsch, cond-mat/0102115.
[7] K. D. Belashchenko, M. van Schilfgaarde, and V. P. Antropov, cond-mat/0102290.
[8] M. Imada, cond-mat/0103006.
[9] J. E. Hirsch and F. Marsiglio, cond-mat/0102479.
[10] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, cond-mat/0101463.
[11] Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, cond-mat/0102499.
[12] Prabhakar P. Singh, cond-mat/0104580.
[13] Israel Felner, cond-mat/0102508.
[14] J. S. Slusky, N. Rogado, K. A. Regan, M. A. Hayward, P. Khalifah, T. He, K. Inumaru, S. Loureiro, M. K. Haas, H. W. Zandbergen, and R. J. Cava, cond-mat/0102262.
[15] S. M. Kazakov, M. Angst, and J. Karpinski, cond-mat/0103350.
[16] S. Suzuki, S. Higai, and K. Nakao, cond-mat/0102484.
[17] Y. G. Zhao, X. P. Xang, P. Y. Qiao, H. T. Zhang, S. L. Jia, B. S. Cao, M. H. Zhu, Z. H. Han, X. L. Wang and B. L. Gu, cond-mat/0104063.
[18] Y. Morotomo and Sh Xu, cond-mat/0104568.
[19] D. Kaczorowski, A. J. Zaleski, O. J. Zogal, and J. Klamut, cond-mat/0103571.
[20] L. Layarovska and E. Layarovski, J. Less Common Met 67, 249 (1979).
[21] J. S. Faulkner, Prog. Mat. Sci 27, 1 (1982); and references therein.
[22] Prabhakar P. Singh and A. Gonis, Phys. Rev. B 49, 1642 (1994).
[23] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[24] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[25] G. D. Gaspari and B. L. Gyorffy, Phys. Rev. Lett. 28, 801 (1972).
[26] P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
[27] H. Rosner and W. E. Pickett, cond-mat/0100092 (2001).
[28] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, L. L. Boyer, cond-mat/0101446.
[29] Prabhakar P. Singh, cond-mat/0104563.