Phase Ib SEASTAR Study: Combining Rucaparib and Sacituzumab Govitecan in Patients With Cancer With or Without Mutations in Homologous Recombination Repair Genes

Timothy A. Yap, MBBS, PhD, FCRP; Erika Hamilton, MD; Todd Bauer, MD; Ecaterina E. Dumbrava, MD; Rinath Jeselsohn, MD; Aaron Enke, BS; Sabrina Hurley, PhD; Kevin K. Lin, PhD; Jenn Habeck, MPH; Heidi Giordano, MA; and Geoffrey I. Shapiro, MD, PhD

JCO Precis Oncol 6:e2100456. © 2022 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

INTRODUCTION

Tumors characterized by homologous recombination deficiency, including BRCA1/2-mutated cancers, are sensitive to inhibition of poly(ADP-ribose) polymerases (PARPs), enzymes that regulate DNA repair.1,2 In tumor cells with mutated homologous recombination repair (HRR) genes, PARP inhibition synergizes with homologous recombination deficiency leading to synthetic lethality because of accumulated DNA damage.2,3

Rational combinations designed to increase DNA damage and reliance on HRR are promising strategies for increasing sensitivity to PARP inhibitors, although overlapping toxicities, such as myelosuppression, suggest a need for more selective and rational targeted agents.2,4-6 In human tumor cell lines, topoisomerase 1 (Topo1) inhibitors, including irinotecan and topotecan, have demonstrated synergy with PARP inhibitors.4,5 Since PARP1 is required for the clearance of Topo1-DNA cleavable complexes, PARP inhibition may augment Topo1-mediated DNA damage or delay repair.7,8 PARP inhibition has been shown to potentiate the cytotoxicity of SN-38, the active metabolite in irinotecan and topotecan, in mismatch repair-deficient and repair-proficient cell lines.9 Furthermore, combination of a PARP inhibitor with topotecan or irinotecan in early clinical studies delayed repair of Topo1-mediated DNA damage, but also demonstrated challenges with overlapping hematologic and/or gastrointestinal toxicities.10,11

The phase Ib SEASTAR study (ClinicalTrials.gov identifier: NCT03992131) was designed to evaluate the safety, tolerability, and preliminary efficacy of the PARP inhibitor rucaparib in combination with other anticancer agents. Rucaparib is approved in the United States and European Union for treatment or maintenance treatment of patients with recurrent ovarian cancer (OC).12,13 and in the United States for patients with metastatic castration-resistant prostate cancer,12 and is under investigation in patients with solid tumors harboring mutations in HRR genes.14 Arm B of the SEASTAR study investigated the combination of rucaparib with sacituzumab govitecan (SG), a conjugate of SN-38 with a humanized antibody targeting Trop-2 (trophoblast cell-surface antigen-2), a cell surface antigen overexpressed in epithelial cancers that has been linked to aggressive disease and poor prognosis. Targeted delivery of SN-38 to cancer cells through an antibody-drug conjugate (ADC) is a rational and effective strategy for combination therapy with a PARP inhibitor by potentially reducing off-target and additive toxicity.15,16 SG is approved in the United States for the treatment of patients with metastatic triple-negative breast cancer (TNBC) and urothelial cancer (UC),17 and has shown preliminary antitumor activity in other cancer types.18 Here, we report the results for six patients who received the combination of rucaparib and SG in arm B of the SEASTAR study.

METHODS

Study Design and Patients

The phase Ib open-label, parallel-arm SEASTAR study was approved by local and/or national institutional review boards and performed in accordance with the Declaration of Helsinki and Good Clinical Practice Guidelines of the International Council for Harmonisation. All patients provided written informed consent for participation. The primary aim of the study was to determine the maximum tolerated dose and recommended phase II dose; investigator-assessed objective response rate was a key secondary end point. Arm B enrolled adult patients (≥18 years) with previously treated, locally advanced or metastatic TNBC or UC; or relapsed, platinum-resistant OC. Patients with advanced, recurrent, or metastatic solid tumors with documented evidence of a deleterious alteration in BRCA1, BRCA2, PALB2, RAD51C, and/or RAD51D were also eligible. Genomic alterations were identified by local testing or through central next-generation sequencing of tumor tissue or baseline plasma by Foundation Medicine (Cambridge, MA). Prior PARP
inhibitor treatment was allowed, but patients previously treated with irinotecan, topotecan, or any derivative were excluded. Additional inclusion and exclusion criteria are included in the Protocol.

Study Treatment and Assessments

This study used a standard 3 + 3 dose escalation design, with a starting dose of 300 mg rucaparib twice a day (cohort 1) or 300 mg rucaparib once daily (cohort 2) in combination with 6 mg/kg SG administered intravenously (IV), on days 1 and 8 of a 21-day cycle. Dose-limiting toxicities (DLTs) were evaluated in cycle 1. Treatment interruptions and/or dose reductions were permitted for rucaparib (in 100-mg decrements) or SG (by 25% dose reduction) in the event of toxicity. Growth factor administration was permitted for treatment of toxicity when clinically indicated. Prophylactic administration of growth factors was allowed after the DLT evaluation period. Response was assessed per RECIST, version 1.1 (v1.1). Detailed descriptions of predefined DLTs, management of adverse events (AEs), and safety and efficacy assessments are included in the Protocol.

RESULTS

Six patients were enrolled in two dose cohorts (n = 3 each). Patients in cohort 1 received a starting dose of 300 mg rucaparib twice a day plus 6 mg/kg IV SG on days 1 and 8 of each cycle; cohort 2 received 300 mg rucaparib once daily plus 6 mg/kg IV SG on days 1 and 8 of each cycle (Table 1). All patients had metastatic solid tumors, including TNBC (n = 2), OC (n = 2), endometrial (n = 1), and UC (n = 1). Two patients had a known deleterious BRCA1 or BRCA2 gene mutation at enrollment, and one patient had a deleterious BARD1 mutation detected in circulating tumor DNA at baseline using central plasma testing. Patients received a median of 4 prior regimens (range, 3-8), with three patients previously receiving a PARP inhibitor (Fig 1).

TABLE 1. Summary of Patient Demographics, Disease History, and Best Response

Patient No.	Demographics	Tumor Type	Deleterious HRR Mutationa	No. of Prior Regimensb	Prior PARP Inhibitor (treatment duration)	Best Responsec (duration)
Cohort 1: starting dose 300 mg rucaparib twice a day plus 6 mg/kg IV SG						
1	Asian female, age 56 years	Metastatic granulosa cell OC	Not detected	5	No	SD (36.3+ weeks)
2	White female, age 60 years	Metastatic, high-grade EC	BRCA1, N1355fs*10	3	Frontline single-agent niraparib maintenancec (9.5 months)	Confirmed PR (12.0 weeks)
3	White male, age 63 years	Metastatic, transitional cell UC	BRCA2, E2846fs*22	3	No	SD (13.3 weeks)
Cohort 2: starting dose 300 mg rucaparib once daily plus 6 mg/kg IV SG						
4	White female, age 69 years	Metastatic, high-grade serous OC	Not detected	3	Second-line single-agent niraparibc (6 weeks)	Confirmed PR (17.1 weeks)
5	White female, age 57 years	Metastatic TNBC	BARD1, M584fs*7	8	Eighth-line veliparib plus dinaciclbc (5 weeks)	Confirmed PR (14.0 weeks)
6	White female, age 50 years	Metastatic TNBC	Not detected	6	No	SD (24.3 weeks)

Abbreviations: BARD1, BRCA-associated ring domain protein 1; BRCA1, BRCA1 DNA repair associated; BRCA2, BRCA2 DNA repair associated; EC, endometrial cancer; HRR, homologous recombination repair; IV, intravenous; OC, ovarian cancer; PARP, poly(ADP-ribose) polymerase; PD, progressive disease; PR, partial response; SD, stable disease; SG, sacituzumab govitecan; TNBC, triple-negative breast cancer; UC, urothelial cancer.

aGenomic alterations were identified by local testing or through central next-generation sequencing of baseline plasma or tumor tissue by Foundation Medicine (Cambridge, MA). See Supplemental Table 2 in the Data Supplement for a detailed description of local testing. The detected BRCA1/2 mutations are well-characterized germline mutations in the ClinVar database: BRCA1 N1355fs*10 and BRCA2 E2846fs*22. On the basis of the low allele frequency detected by next-generation sequencing of plasma samples, the BARD1 mutation was likely somatic in origin.

bIncludes regimens from all treatment settings (neoadjuvant, adjuvant, maintenance, and metastatic), but does not include radiotherapy.

cRECIST version 1.1.

dBest response of SD and subsequently progressed with prior PARP inhibitor therapy.

eBest response of PD with prior PARP inhibitor therapy.
FIG 1. Overview of efficacy and treatment with rucaparib plus SG. (A) Duration of treatment and best overall response. Arrowhead denotes ongoing treatment as of the August 11, 2020, data cutoff date. (B) Change in tumor volume over time for each patient. Dotted line indicates the threshold for partial response (30% decrease from baseline). Because of the COVID-19 pandemic, SG was withheld after cycle 6 for patient 1. SG was then discontinued during cycle 11 at the patient’s request. SG was withheld after cycle 4 for patient 4 because of the pandemic. BARD1, BRCA-associated ring domain protein 1; BRCA1, BRCA1 DNA repair associated; BRCA2, BRCA2 DNA repair associated; HRR, homologous recombination repair; OC, ovarian cancer; PARP, poly(ADP-ribose) polymerase; PD, progressive disease; PR, partial response; SD, stable disease; SG, sacituzumab govitecan; TNBC, triple-negative breast cancer; UC, urothelial cancer.
Two of three patients in cohort 1 experienced DLTs of grade 4 neutropenia. No DLTs were observed in cohort 2, although grade 3/4 neutropenia led to 1- to 2-week delays in starting cycle 2 in all three patients. All patients experienced at least one treatment-emergent AE (TEAE) (Table 2). The most common TEAEs were neutropenia/decreased ANC (n = 6), diarrhea (n = 5), increased ALT/AST (n = 4), and asthenia/fatigue (n = 4). Grade ≥3 TEAEs were reported in five patients; those reported in ≥2 patients were neutropenia/decreased ANC (n = 5) and decreased WBC count (n = 2), all considered treatment-related. Genotypic analysis of ABCC2, SLCO1B1, and UGT1A1 showed no clear trends relating patient genotype and toxicity (Data Supplement, Supplemental Table 1). With management of TEAEs via treatment interruption, dose reduction, and/or granulocyte colony-stimulating factor support, all patients continued treatment for ≥12 weeks, with a mean (± standard deviation) exposure of 25.7 ± 10.5 weeks for rucaparib and 22.1 ± 9.3 weeks (7.3 ± 2.9 cycles) for SG (Fig 2). As of the cutoff date of August 11, 2020, one patient with OC in cohort 1 (patient 1) remained on rucaparib for 44+ weeks (having discontinued SG after week 37 [cycle 11]).

All patients had an investigator-assessed best response of RECIST v1.1 stable disease or better (Fig 1). Three patients had a confirmed RECIST v1.1 partial response (Fig 3); all three patients were previously treated with a PARP inhibitor until disease progression (two with niraparib monotherapy, and one with veliparib plus dinaciclib), including one patient with no known deleterious HRR gene mutation (Table 1). No reversion mutations in HRR genes were identified in these three patients by central testing.

DISCUSSION

The results from this case series suggest that rucaparib plus SG has promising antitumor activity in patients with advanced solid tumors, including PARP inhibitor–exposed patients with tumors with and without HRR gene mutations. Although submaximal doses of SG and rucaparib were combined, decreases in ANC levels were observed. DLTs because of neutropenia were not unexpected, given the known toxicity profiles of Topo1 and PARP inhibitors.12,15,23-25 In a previous study in advanced epithelial cancers, 33% of patients experienced grade ≥3 neutropenia with SG monotherapy.15 Combinations of topotecan or irinotecan with olaparib or irinotecan-based

TABLE 2. TEAEs and Treatment-Related Adverse Events Reported in > 20% of Patients (≥2 patients)

TEAEs	Any Grade, No. (%)	Treatment-Related, Any Grade, No. (%)	Grade ≥ 3, No. (%)	Treatment-Related, Grade ≥ 3, No. (%)
Any TEAE	6 (100)	6 (100)	5 (83.3)	5 (83.3)
Neutropenia/ANC decreased	6 (100)	6 (100)	5 (83.3)	5 (83.3)
Diarrhea	5 (83.3)	4 (66.7)	0	0
ALT/AST increased	4 (66.7)	2 (33.3)	0	0
Asthenia/fatigue	4 (66.7)	3 (50.0)	0	0
Dyspnea	3 (50.0)	1 (16.7)	1 (16.7)	0
Hyponatremia	3 (50.0)	1 (16.7)	0	0
Nausea	3 (50.0)	3 (50.0)	0	0
Thrombocytopenia/platelet count decreased	3 (50.0)	3 (50.0)	1 (16.7)	1 (16.7)
Vomiting	3 (50.0)	3 (50.0)	0	0
Abdominal pain	2 (33.3)	0	0	0
Alopecia	2 (33.3)	2 (33.3)	0	0
Anemia	2 (33.3)	2 (33.3)	1 (16.7)	0
Constipation	2 (33.3)	0	0	0
Hypokalemia	2 (33.3)	0	0	0
Hypomagnesemia	2 (33.3)	0	0	0
Hypophosphatemia	2 (33.3)	2 (33.3)	0	0
Mucosal inflammation	2 (33.3)	2 (33.3)	0	0
Pruritus	2 (33.3)	2 (33.3)	0	0
Stomatitis	2 (33.3)	1 (16.7)	0	0
Upper respiratory tract infection	2 (33.3)	0	0	0
WBC count decreased	2 (33.3)	2 (33.3)	2 (33.3)	2 (33.3)

Abbreviations: ANC, absolute neutrophil count; TEAE, treatment-emergent adverse event.
In summary, the results from the SEASTAR study provide proof-of-concept clinical evidence supporting further development of PARP inhibitors in combination with ADCs carrying Topo1-inhibitor payloads. Importantly, recent data suggest that a pulse-dosing schedule of rucaparib plus irinotecan allows for long-term tolerability and has demonstrated encouraging efficacy in patients with tumors harboring ATM mutations. Combination of other Trop-2-directed ADCs, such as datopotamab deruxtecan, with more selective PARP inhibitors, such as the PARP1-targeted inhibitor AZD5305, may also improve tolerability. Although no optimal recommended phase II dose was established in the current study, these data suggest that combination trials are warranted to investigate intermittent dosing of PARP inhibitors together with SG or other ADCs to reduce myelosuppression and optimize antitumor efficacy; future research may also help clarify the relative contributions of each agent to the observed antitumor activity.
FIG 3. Representative computed tomography scans showing confirmed RECIST version 1.1 partial responses. Patient 2 had an overall 46.2% reduction in endometrial cancer tumor burden at day 88, including a 41.2% decrease in diameter of the small, left pelvic mesenteric nodule shown. Patient 4 experienced complete regression of a 1.4-cm serosal ovarian cancer metastatic implant in the posterior bladder wall by day 170. Patient 5 had a 68.6% reduction in diameter of the left iliac lymph node lesion shown here at day 86 and an overall best response of 47.1% reduction in triple-negative breast cancer tumor burden.

AFFILIATIONS

1The University of Texas MD Anderson Cancer Center, Houston, TX
2Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN
3Dana-Farber Cancer Institute, Boston, MA
4Clovis Oncology Inc, Boulder, CO

CORRESPONDING AUTHOR

Timothy A. Yap, MBBS, PhD, FCRP, Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX 77030; e-mail: tyap@mdanderson.org.

PRIOR PRESENTATION

Presented in part at the European Society for Medical Oncology Virtual Congress 2020, September 17, 2020.

SUPPORT

Funded by Clovis Oncology Inc and was designed by the sponsor. Medical writing and editorial support were funded by Clovis Oncology and provided by Melanie Styers and Leslie Mitchell of Verascity Science. T. A. Y. is supported by MD Anderson Cancer Center Support grant (NIH/NCI P30 CA016672), the US Department of Defense Ovarian Cancer Research Program (OC200482), and the V Foundation Clinical Scholar Program (VC2020-001). T.A.Y. and E.E.D. acknowledge support from MD Anderson Cancer Center Support Grant No. NIH/NCI P30 CA016672, Clinical Translational Science Award No. 1UL1 TR003167, Cancer Prevention Research Institute of Texas Precision Oncology Decision Support Core RP150535, and Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy. G.I.S. is supported by the Dana-Farber/Harvard Cancer Center Support Grant No. (NIH/NCI P30 CA006516). T.A.Y. also acknowledges support from the US Department of Defense Ovarian Cancer Research Program (OC200482) and the V Foundation Clinical Scholar Program (VC2020-001).

AUTHOR CONTRIBUTIONS

Conception and design: Timothy A. Yap, Erika Hamilton, Aaron Enke, Heidi Giordano, Geoffrey I. Shapiro

 Provision of study materials or patients: Timothy A. Yap, Erika Hamilton, Todd Bauer, Ecaterina E. Dumbrava, Rinath Jeselsohn, Geoffrey I. Shapiro

© 2022 by American Society of Clinical Oncology
Collection and assembly of data: Timothy A. Yap, Erika Hamilton, Todd Bauer, Ecaterina E. Dumbrava, Rinath Jeselsohn, Geoffrey I. Shapiro
Data analysis and interpretation: Timothy A. Yap, Erika Hamilton, Ecaterina E. Dumbrava, Aaron Enke, Kevin K. Lin, Jenn Habeck, Geoffrey I. Shapiro
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/po/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Timothy A. Yap
Consulting or Advisory Role: Pfizer, EMD Serono, Clovis Oncology, Ignyta, AstraZeneca, Atrin Pharmaceuticals, Aduro Biotech, Merck, Almac Diagnostics, Bayer, Bristol Myers Squibb, Calithera Biosciences, Cybrexa Therapeutics, Janssen, Kyne Therapeutics, Roche, Seattle Genetics, Axiom Biotechnologies, F-Star, Guidepoint Global, I-Mab, Repare Therapeutics, Rubius Therapeutics, Schrodinger, Varian Medical Systems, Zai Lab
Research Funding: AstraZeneca (Inst), Vertex Pharmaceuticals (Inst), Pfizer (Inst), Bayer (Inst), Tesaro (Inst), Jounce Therapeutics (Inst), Seattle Genetics (Inst), Kyowa Hakko Kirin (Inst), Constellation Pharmaceuticals (Inst), Lilly (Inst), Artios (Inst), Clovis Oncology (Inst), Cyteir (Inst), EMD Serono (Inst), Forsbius (Inst), F-Star (Inst), GlaxoSmithKline (Inst), Genentech (Inst), ImmuneSensor Therapeutics (Inst), Ipsi (Inst), Karyopharm Therapeutics (Inst), Merck (Inst), Novartis (Inst), Ribbon Therapeutics (Inst), Regeneron (Inst), Repare Therapeutics (Inst), Sanof (Inst), Scholar Rock (Inst)

Erika Hamilton
Consulting or Advisory Role: Pfizer (Inst), Genentech/Roche (Inst), Lilly (Inst), Puma Biotechnology (Inst), Daichi Sankyo (Inst), Merck (Inst), Boehringer Ingelheim (Inst), AstraZeneca (Inst), Novartis (Inst), Black Diamond Therapeutics (Inst), I-Mab (Inst), Nanobit (Inst), CytoMem (Inst), Theratech (Inst), Genetech (Inst), Seattle Genetics (Inst), Ensai (Inst), Deciphera (Inst), Arvinas (Inst), Arcus Biosciences (Inst), ITeos Therapeutics (Inst), Janssen (Inst), Loxo (Inst), Relay Therapeutics (Inst)
Research Funding: AstraZeneca (Inst), Hutchison MediPharma (Inst), OncoMed (Inst), MedImmune (Inst), Stem CellRx (Inst), Genentech/Roche (Inst), Curis (Inst), Verastem (Inst), Zymeworks (Inst), Syndax (Inst), Lycera (Inst), Rogenix (Inst), Novartis (Inst), Millenium (Inst), TapImmune Inc (Inst), Lilly (Inst), Pfizer (Inst), Tesaro (Inst), Boehringer Ingelheim (Inst), H3 Biomedicine (Inst), Merck (Inst), Seattle Genetics (Inst), Ensai (Inst), Deciphera (Inst), Arvinas (Inst), Arcus Biosciences (Inst), ITeos Therapeutics (Inst), Janssen (Inst), Loxo (Inst), Relay Therapeutics (Inst)

Todd Bauer
Consulting or Advisory Role: Ignyta (Inst), Guardant Health, Loxo, Moderna Therapeutics (Inst), Pfizer (Inst), Exelixis, Blueprint Medicines, Foundation Medicine, Bayer, AstraZeneca
Speakers’ Bureau: Bayer, Bristol Myers Squibb, Lilly
Research Funding: Daiichi Sankyo (Inst), Medpace (Inst), Incyte (Inst), Mirati Therapeutics (Inst), MedImmune (Inst), AbbVie (Inst), AstraZeneca (Inst), Leap Therapeutics (Inst), MabVax (Inst), Stemline Therapeutics (Inst), Merck (Inst), Lilly (Inst), GlaxoSmithKline (Inst), Novartis (Inst), Pfizer (Inst), Genentech/Roche (Inst), Deciphera (Inst), Merrimack (Inst), Immunogen (Inst), Millennium (Inst), Ignyta (Inst), Calithera Biosciences (Inst), Kolltan Pharmaceuticals (Inst), Principa Biopharma (Inst), Peleton (Inst), Immunocore (Inst), Roche (Inst), Aileron Therapeutics (Inst), Bristol Myers Squibb (Inst), Amgen (Inst), Moderna Therapeutics (Inst), Sanofi (Inst), Boehringer Ingelheim (Inst), Astellas Pharma (Inst), Five Prime Therapeutics (Inst), Jacobio (Inst), Top Alliance BioScience (Inst), Loxo (Inst), Janssen (Inst), Clovis Oncology (Inst), Takeda (Inst), Karyopharm Therapeutics (Inst), Onyx (Inst), Phosplatin Therapeutics (Inst), Foundation Medicine (Inst), ARMO BioSciences (Inst)

Travel, Accommodations, Expenses: Astellas Pharma, AstraZeneca, Celgene, Clovis Oncology, EMD Serono, Genentech, Lilly, Merck, Novartis, Pharmaceuticals, Sysmex, Pfizer

Ecaterina E. Dumbrava
Consulting or Advisory Role: Bolt Biotherapeutics, Catamaran Bio
Research Funding: Bayer (Inst), Immunocore (Inst), Amgen (Inst), NCI (Inst), Aileron Therapeutics (Inst), Compugen (Inst), TRACON Pharma (Inst), Unum Therapeutics (Inst), Immunomedics (Inst), Bolt Biotherapeutics (Inst), Aprea Therapeutics (Inst), Bellicum Pharmaceuticals (Inst), PMV Pharma (Inst), Triumvirae Immunologics Inc (Inst), Seattle Genetics (Inst), Mereo BioPharma 5 Inc (Inst), Sanofi (Inst), Astex Therapeutics (Inst)

Timothy A. Yap
Consulting or Advisory Role: Ignyta (Inst), Guardant Health, Loxo, Moderna Therapeutics (Inst), Pfizer (Inst), Exelixis, Blueprint Medicines, Foundation Medicine, Bayer, AstraZeneca
Speakers’ Bureau: Bayer, Bristol Myers Squibb, Lilly
Research Funding: Daiichi Sankyo (Inst), Medpace (Inst), Incyte (Inst), Mirati Therapeutics (Inst), MedImmune (Inst), AbbVie (Inst), AstraZeneca (Inst), Leap Therapeutics (Inst), MabVax (Inst), Stemline Therapeutics (Inst), Merck (Inst), Lilly (Inst), GlaxoSmithKline (Inst), Novartis (Inst), Pfizer (Inst), Genentech/Roche (Inst), Deciphera (Inst), Merrimack (Inst), Immunogen (Inst), Millennium (Inst), Ignyta (Inst), Calithera Biosciences (Inst), Kolltan Pharmaceuticals (Inst), Principa Biopharma (Inst), Peleton (Inst), Immunocore (Inst), Roche (Inst), Aileron Therapeutics (Inst), Bristol Myers Squibb (Inst), Amgen (Inst), Moderna Therapeutics (Inst), Sanofi (Inst), Boehringer Ingelheim (Inst), Astellas Pharma (Inst), Five Prime Therapeutics (Inst), Jacobio (Inst), Top Alliance BioScience (Inst), Loxo (Inst), Janssen (Inst), Clovis Oncology (Inst), Takeda (Inst), Karyopharm Therapeutics (Inst), Onyx (Inst), Phosplatin Therapeutics (Inst), Foundation Medicine (Inst), ARMO BioSciences (Inst)

Travel, Accommodations, Expenses: Astellas Pharma, AstraZeneca, Celgene, Clovis Oncology, EMD Serono, Genentech, Lilly, Merck, Novartis, Pharmaceuticals, Sysmex, Pfizer

Ecaterina E. Dumbrava
Consulting or Advisory Role: Bolt Biotherapeutics, Catamaran Bio
Research Funding: Bayer (Inst), Immunocore (Inst), Amgen (Inst), NCI (Inst), Aileron Therapeutics (Inst), Compugen (Inst), TRACON Pharma (Inst), Unum Therapeutics (Inst), Immunomedics (Inst), Bolt Biotherapeutics (Inst), Aprea Therapeutics (Inst), Bellicum Pharmaceuticals (Inst), PMV Pharma (Inst), Triumvirae Immunologics Inc (Inst), Seattle Genetics (Inst), Mereo BioPharma 5 Inc (Inst), Sanofi (Inst), Astex Therapeutics (Inst)

Rinath Jeselsohn
Consulting or Advisory Role: Luminox, Carrick Therapeutics
Research Funding: Lilly, Pfizer

Aaron Enke
Employment: Clovis Oncology
Stock and Other Ownership Interests: Clovis Oncology

Sabrina Hurley
Employment: Clovis Oncology
Stock and Other Ownership Interests: Clovis Oncology, Pfizer

Kevin K. Lin
Employment: Clovis Oncology
Stock and Other Ownership Interests: Clovis Oncology, Pfizer

Jenn Habeck
Employment: Clovis Oncology
Stock and Other Ownership Interests: Clovis Oncology

Heidi Giordano
Employment: Clovis Oncology
REFERENCES

1. Amé JC, Spenlehauer C, De Murcia G: The PARP superfamily. BioEssays 26:882-893, 2004
2. Rose M, Burgess JT, O’Byrne K, et al: PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol 8:564601, 2020
3. Ashworth A: A synthetic lethal therapeutic approach: Poly(ADP)ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26:3785-3790, 2008
4. Delaney CA, Wang LZ, Kyle S, et al: Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 6:2860-2867, 2000
5. Murali J, Zhang Y, Morris J, et al: Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J Pharmacol Exp Ther 349:408-416, 2014
6. Pilié PG, Gay CM, Syers LA, et al: PARP inhibitors: Extending benefit beyond BRCA-mutant cancers. Clin Cancer Res 25:3759-3771, 2019
7. Smith LM, Willmore E, Austin CA, et al: The novel poly(ADP-ribose) polymerase inhibitor, AG14361 sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks. Clin Cancer Res 11:8449-8457, 2005
8. Znojek P, Willmore E, Curtin NJ: Preferential potentiation of topoisomerase I poison cytotoxicity by PARP inhibition in S phase. Br J Cancer 111:1319-1326, 2014
9. Tahara M, Inoue T, Sato F, et al: The use of olaparib (AZD2281) potentiates SN-38 cytotoxicity in colon cancer cells by indirect inhibition of rad51-mediated repair of DNA double-strand break. Mol Ther Oncol 3:11700-11700, 2014
10. LoRusso PM, Li J, Burger A, et al: Phase I safety, pharmacokinetic, and pharmacodynamic study of the poly(ADP-ribose) polymerase (PARP) inhibitor veliparib (ABT-888) in combination with irinotecan in patients with advanced solid tumors. Clin Cancer Res 22:3227-3237, 2016
11. Kummar S, Chen A, Ji J, et al: Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer 71:5626-5634, 2011
12. Rubraca (Rucaparib) Tablets [prescribing information]. Boulder, CO, Clovis Oncology, 2020. https://clovisoncology.com/pdfs/RubracaUSPI.pdf
13. Rubraca (Rucaparib) Tablets [summary of product characteristics]. Swords, Ireland, Clovis Oncology Ireland, 2019. https://www.ema.europa.eu/en/documents/product-information/rubraca-epar-product-information_en.pdf
14. ClinicalTrials.gov: A study to evaluate rucaparib in patients with solid tumors and with deleterious mutations in HRR genes (LODESTAR). https://clinicaltrials.gov/ct2/show/NCT04171700
15. Ocean AJ, Standob AN, Bardia A, et al: Sacituzumab govitecan (IMMU-132), an anti-Trop-2- SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer 123:3843-3854, 2017
16. Stepan LP, Trueblood ES, Hale K, et al: Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: Potential implications as a cancer therapeutic target. J Histochem Cytochem 59:701-710, 2011
17. Trodelvy (Sacituzumab Govitecan-Hzy) Injection [prescribing information]. Morris Plains, NJ, Immunomedics, 2021. https://www.gilead.com/-/media/files/pdfs/medicines/oncology/trodelvy/trodelvy_pi.pdf
18. Bardia A: Datopotamab deruxtecan (Dato-DXd), a TROP2-directed antibody-drug conjugate (ADC), for triple-negative breast cancer (TNBC): Preliminary results from an ongoing phase 1 trial. Ann Oncol 32:560-578, 2021 (suppl 2)
19. ClinVar database: BRCA1 N1355fs*10. https://www.ncbi.nlm.nih.gov/clinvar/variation/17674/
20. ClinVar database: BRCA2 E2846fs*22. https://www.ncbi.nlm.nih.gov/clinvar/variation/52614/
21. Rhodes K, Zhang W, Yang D, et al: ABCB1, SLCO1B1 and UGT1A1 gene polymorphisms are associated with toxicity in metastatic colorectal cancer treated with first-line irinotecan. Drug Metab Lett 1:23-30, 2018
22. Innocenti F, Kroetz DL, Schuetz E, et al: Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 27:2604-2614, 2009
23. Selter K: Toxicity of the topoisomerase I inhibitors. Expert Opin Drug Saf 4:45-53, 2005
24. Shitara K, Bang Y-J, Iwasa S, et al: Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med 382:2419-2430, 2020
25. Modí S, Saura C, Yamashita T, et al: Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med 382:610-621, 2020
26. Samol J, Ranson M, Scott E, et al: Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: A phase I study. Invest New Drugs 34:450-457, 2016
27. Chen EX, Jonker DJ, Siu LL, et al: A phase I study of olaparib and irinotecan in patients with colorectal cancer: Canadian Cancer Trials Group IND 187. Invest New Drugs 34:450-457, 2016
28. Chiorean EG, Guthrie KA, Philip PA, et al: Randomized phase II study of PARP inhibitor veliparib with modified FOLFIRI versus FOLFIRI as second line treatment of metastatic pancreatic cancer: SWOG S1513. Clin Cancer Res 27:6314-6322, 2021

Stock and Other Ownership Interests: Clovis Oncology

Geoffrey I. Shapiro
Consulting or Advisory Role: G1 Therapeutics, Lilly, Pfizer, Roche, Merck Serono, Sierra Oncology, Cybrexa Therapeutics, Ipsen, Bayer, Fusion Pharmaceuticals, Bicycle Therapeutics, Almac Diagnostics, Astex Pharmaceuticals, Daiichi Sankyo, Angiex, Seattle Genetics, Artios, Boehringer Ingelheim, Concarlo, Atrin Pharmaceuticals, Syros Pharmaceuticals, Zentalis, CytomX Therapeutics, Blueprint Medicines, Kymera, ImmunoMet Therapeutics, Asana

Research Funding: Pfizer (Inst), Genentech (Inst), Bayer (Inst), Immune Design (Inst), Vertex (Inst), Millennium (Inst), Puma Biotechnology (Inst), Tensha Therapeutics (Inst), Covidien (Inst), Novartis (Inst), Cellceutix (Inst), Sanofi (Inst), Cyclacel (Inst), Mirati Therapeutics (Inst), AstraZeneca (Inst), GlaxoSmithKline (Inst), Lilly (Inst), Alieron Therapeutics (Inst), PharmaMar (Inst), PTC Therapeutics (Inst), Roche (Inst), CanBas (Inst), Tesaro (Inst), Merck Serono (Inst), Sierra Oncology (Inst), Syros Pharmaceuticals (Inst), Curis (Inst), Merck (Inst), Array BioPharma (Inst), Seattle Genetics (Inst), Clovis Oncology (Inst), Exelixis (Inst), Boehringer Ingelheim (Inst), Esperas Pharma (Inst), Amgen (Inst), Bristol Myers Squibb (Inst), AstraZeneca (Inst)

Patents, Royalties, Other Intellectual Property: Patent No.: 9872874, Title: Dosage regimen for sapacitabine and seliciclib Issue Date: January 23, 2018, Provisional Patent No.: 62/583,319, Title: Compositions and methods for predicting response and resistance to CDK4/6 inhibition, Filed: July 28, 2017

Travel, Accommodations, Expenses: Lilly, Pfizer, Bicycle Therapeutics, G1 Therapeutics, Sierra Oncology, Bayer

No other potential conflicts of interest were reported.
29. Innocenti F, Undevia SD, Iyer L, et al: Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382-1388, 2004

30. Liu X, Cheng D, Kuang Q, et al: Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: A meta-analysis in Caucasians. Pharmacogenomics J 14:120-129, 2014

31. Bardia A, Messersmith W, Kio E, et al: Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: Final safety and efficacy results from the phase II/III IMMU-132-01 basket trial. Ann Oncol 32:746-756, 2021

32. Dhawan MS, Rahimi R, Karipineni S, et al: Phase I study of rucaparib and irinotecan in advanced solid tumors with homologous recombination deficiency (HRD) mutations. J Clin Oncol 38, 2020 (15 suppl; abstr 3513)

33. Leo E, Johannes J: Discovery and first structural disclosure of AZD5305: A next generation, highly selective PARP1 inhibitor and trap. Presented at the Virtual American Association for Cancer Research annual meeting, April 10-15, 2021 (abstr ND05). https://www.abstractsonline.com/pp8/#!/9325/presentation/874