Assessment of the Susceptibility Status of Aedes aegypti (Diptera: Culicidae) Populations to Pyriproxyfen and Malathion in a National Wide Monitoring of Insecticide Resistance in Brazil, 2017-2018.

Kauara Brito Campos
Ministerio da Saude

Ademir Jesus Martins
Instituto Oswaldo Cruz

Cynara de Melo Rodovaiho
Instituto Oswaldo Cruz

Diogo Fernandes Bellinato
Instituto Oswaldo Cruz

Luciana dos Santos Dias
Fundacao Oswaldo Cruz

Maria de Lourdes da Graça Macoris
Superintendência de Controle de Endemias

Maria Teresa Macoris Andrighetti
Superintendência de Controle de Endemias

José Bento Pereira Lima
IOC - Fiocruz - RJ

Marcos Takashi Obara
Universidade de Brasilia

Research

Keywords: Arboviruses, Aedes aegypti, Insecticide resistance, Juvenile hormones, Organophosphate insecticides

DOI: https://doi.org/10.21203/rs.3.rs-40604/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: In Brazil chemical control has been used since 1985. For the effectiveness of chemical control, it is essential to monitor the vector susceptibility to insecticides. This study aimed to describe bioassays standardization and to determine the susceptibility profile of *Ae. aegypti* populations to the products in use malathion and pyriproxyfen on national scale between 2017 and 2018, and to discuss the observed results impact in arboviruses control.

Methods: The diagnostic-doses (DD) of pyriproxyfen and malathion were determined as the double of the inhibition of adult emergence (EI) and lethal doses for 99% of the Rockefeller reference strain, respectively. For the monitoring of natural populations, collections were performed in 132 Brazilian cities, through egg traps. Colonies were raised in the laboratory for one or two generations (F1 or F2) and submitted to susceptibility tests with larvae exposed to DD of pyriproxyfen (0.03 µg/L) and adults with the malathion DD herein obtained (20 µg), in addition to the World Health Organization (WHO) indicated DD (50 µg) in bottle assay. Dose-response bioassays with pyriproxyfen were performed with populations which did not achieved 98% EI in the DD assays.

Results: Alteration of susceptibility to pyriproxyfen was recorded in 6 (4.5%) *Ae. aegypti* populations, with Resistance Ratio RR₉₅ from 1.51 to 3.58. These populations were concentrated in Bahia and Ceará states. For malathion, 73 (55.3%) populations distributed all over the country were resistant when exposed to the local DD 20µg/bottle. On the other hand, no one population was resistant, and only 10 (7.6%) populations were considered with decreased susceptibility (mortality ratio between 90 and 98%) when the WHO DD (50 µg/bottle was used). These populations are in the 8 from 27 states.

Conclusions: We evidenced the feasibility of conducting an insecticide resistance monitoring action at a national wide scale, employing standardized and strongly coordinated sampling methods and laboratory bioassays. We for the first time identified Brazilian *Ae. aegypti* populations with decreased susceptibility to pyriproxyfen. Local DD for malathion was more sensitive than the WHO DD to early detect decrease in susceptibility.

Background

In recent decades, the incidence of *Aedes*-borne diseases such as dengue, Zika, chikungunya and yellow fever has increased immensely in the world [1]. The actions against the mosquito *Aedes (Steegomyia) aegypti* (Linnæus, 1762) are mainly based on chemical and mechanical controls to reduce infestation, in addition to social mobilization, environmental management, and legislation protection seeking to maintain environments free of larval breeding sites.

Controlling the insect in the immature phase (egg, larva, and pupa) is more feasible, since their development occurs in specific and restricted locations, unlike the adult phase, which may be dispersed in various environments. The most effective form of vector control is environmental management involving the mechanical removal of reservoirs; however, the most practiced action to block the transmission of arboviruses is the application of chemical insecticides, aiming to rapidly reduce the mosquito populations and interrupt the arboviruses transmission [2].

For the chemical control of *Ae. aegypti*, the Brazilian Ministry of Health (MoH) provides insecticides pre-qualified by the World Health Organization (WHO) to all states. This process ensures that the whole country employs products with trusted evaluations of environmental safety, toxicity, and effectiveness [3]. In addition, the MoH evaluates the compounds under local conditions prior to purchases. The application of larvicides by public agents is recommended in domestic reservoirs that cannot be covered or eliminated, every two months. In addition, cycles of insecticide spatial applications are recommended whenever there is arbovirus transmission in a given locality [4]. Thus, the public health actions to control *Ae. aegypti* in Brazilian consume an expressive amount of insecticides yearly, considering that an average of 4,136 Brazilian municipalities registered dengue cases in the years 2014 to 2017, for instance [5].

With the intensive and continuous deployment of the same active ingredients, the resistant individuals in a population are favorably selected, possibly reaching levels where the efficacy of the insecticide is compromised. A rational chemical control strategy should be based on detailed knowledge about the vector territorial distribution, the susceptibility compounds of distinct classes and the mechanisms involved in selection of resistance in order to reduce the levels of vector infestation and consequent transmission of arboviruses [6].

In Brazil, insecticide resistance in *Ae. aegypti* was first recorded for the organophosphate (OP) larvicide temephos, in populations from Goiás and São Paulo states, in 1995 [7]. Few years later, a reduction in the persistence of temephos was detected in field studies, as well as a decrease in the susceptibility to the OP adulticides fenitrothion and malathion in several *Ae. aegypti* populations in the country [8]. In 2001, resistance to the pyrethroid (PY) adulticide cypermethrin was detected in populations from Rio de Janeiro state [9]. With this scenario, in 1999 the National Dengue Control Program (PNCD, Portuguese acronym) implemented the National Network for Monitoring the Resistance of *Aedes aegypti* to Insecticides (MoReNAa, Portuguese acronym), with the purpose of providing technical support to decisions for the management of *Ae. aegypti* chemical control. The MoReNAa Network carried out systematic insecticide resistance monitoring (IRM) of natural populations of *Ae. aegypti* from Brazil to insecticides used in governmental campaigns, from localities considered as priority or strategic for vector control interventions [10, 11].

Mosquito populations from about 80 cities, including those with the highest incidence of dengue and most populated, high mosquito infestation indexes and all state capitals, were evaluated every two years. Quantitative and qualitative bioassays for detection of larvae and adult resistance were performed according to WHO and Centers for Disease Control and Prevention (CDC) methodologies. For the identification of mechanisms of resistance, biochemical assays for quantification of enzymatic activity alterations and genotyping of kdr mutations were employed in order to investigate the molecular basis of insecticide resistance selection. The Network helped to support the technical decision about insecticide replacement until 2012, when the last monitoring round was carried out [10, 11]. Based on the increasingly detection of *Ae. aegypti* populations resistant to temephos, this compound was gradually replaced by insect growth regulators (IGR) since 2009 in the whole country, with adoption of the chitin synthesis inhibitor diflubenzuron, followed by novaluron [8].

The adoption of the IGR pyriproxyfen began in 2014 based on the intention of rotating insecticides with distinct mode of action. As a juvenile hormone analog, this product prolongs the immature stage for up to 20 days, inhibiting the development of imaginal characteristics. A complete metamorphosis is therefore compromised with mortality specially at the pupal stage or with the emergence of malformed adults [2]. There are few reports of resistance to IGR, likely
because their recent employment for Public Health purposes. Some alterations in the susceptibility to pyriproxyfen were observed in *Ae. aegypti* populations from Martinique (RR\textsubscript{50} 2.2, RR\textsubscript{95} 1.9), in 2007 [12], and *Ae. albopictus* from United States (RR\textsubscript{50} 1.8–2.4) [13]. Higher resistance however was observed in *Ae. aegypti* from Malaysia (RR\textsubscript{50} 6.1) [14] and from United States (RR\textsubscript{50} 38.7, RR\textsubscript{95} 81.5), in 2015 [15].

The OP malathion started being employed against adult mosquitoes in through ultra-low-volume (ULV) and residual spraying applications in Brazil in 1985. In 1989, it was replaced by fenitrothion for residual spraying, and continued to be used in ULV treatment in the following 10 years, when the OPs for adult control. After years without being used to control *Ae. aegypti* adults, malathion was again adopted with the introduction of IGRs for larval control throughout the country since 2009 [8]. OP’s are derived from phosphoric acid and its homologs and use the inhibition of the cholinesterase enzyme as an action mechanism [2]. Changes in the susceptibility of the *Ae. aegypti* mosquito to malathion have already been reported in countries in Caribbean and Latin America, including Brazil [16, 17].

This study was developed with the objectives of describe assay standardization and resistance monitoring of *Ae. aegypti* populations to insecticides used in public health on a national scale in Brazil between the years 2017 and 2018, as well as to discuss their results. We evidenced the feasibility of coordinating the collections and bioassays of more than 140 populations within one year, and with technical reports continuously presented to the MoH.

Methods

Study populations

Sampling points considered diverse areas in the Brazilian national territory, covering a large number of towns distant at shorter intervals, in urban conglomerates with high population density, as suggested by Chediak et al (2016) [18], and preferentially in sites previously evaluated during the 12-year period MoReNAA Network effort, as described by Valle et al. (2019) [8]. This proposal was adjusted also considering the operational capacity of the municipal sampling teams, in a way that 146 cities were selected for *Ae. aegypti* collections in the course of one year (Table 1). Field populations of *Ae. aegypti* were collected by the Endemic Control Agents of each town, using between 100 to 300 oviposition traps (ovitraps) in each city, according to their number of houses and following the methodology indicated by the MoReNAA Network in 2008 [19]. Sampling was carried out throughout the national territory.

The traps were installed in the grounds of houses evenly distributed with full coverage of the urban territory. As attractant to gravid females, we used a 0.04% yeast extract solution. In order to facilitate the preparation of this solution in the field, the agents were provided with a 50 mL conical tube containing 6 g of a commercial yeast extract (Arma Zen®). During the trap installation the tubes were filled with tap water to the mark of 50 mL and homogenized. With the aid of plastic Pasteur pipette, 1 mL of this solution was added to the trap, then filled with tap water to the mark of 300 mL. The traps were maintained in the households for 15 days, with one change of the paddles and the attractive solution at the end of the first week. The paddles containing the eggs were air-dried during 2 to 3 days prior to be sent to the laboratories.

The collection of samples occurred between August 2017 and December 2018, following a staggered schedule so as not to overload the laboratories. The field-collected samples were initially sent to a central entomology laboratory in their respective state, which then confirmed the correct registration of sampling in the origin sites and adequate storage of the paddles. The paddles were then shipped to Laboratório de Fisiologia e Controle de Artrópodes Vetores (LAFICAVE), Oswaldo Cruz Institute (IOC/Fiocruz), Rio de Janeiro/RJ, where arrival was registered, forms were stored and populations labeled with a code only known by the director of the study, in order to keep confidentiality of their origin. Half of the populations remained at LAFICAVE and the other half was sent to Laboratório de Entomologia Aplicada (LeNA), Superintendência de Controle de Endemias (SUCEN), Marília/SP. The sorting of *Ae. aegypti* specimens, maintenance of colonies and conduction of bioassays were performed by those two laboratories: LAFICAVE and LeNA.

Mosquito rearing

Paddles with eggs were submerged in dechlorinated water and hatched larvae were transferred to basins containing 1 L of dechlorinated water and 100 mg of fish food (TetraMin®, Tetra Marine Granules) added every three days. The resulting adult mosquitoes were identified to species and gender, sorting 500 females and 500 males *Ae. aegypti* to be kept in carton cages (33 × 24 × 8 cm), where a 10% sucrose solution was offered *ad libitum*. When the number of females were insufficient for producing a F1 generation (less than 100 females), new field collections were requested.

In order to produce eggs for the next generation, females were additionally fed on blood using guinea pig (*Cavia porcellus* - Linnaeus, 1758) after three days post-emergence (Fiocruz Ethics Committee on the Use of Animals authorizations LW-20/14 and L-004/2018). Alternatively, females were offered to feed on citrated rabbit blood through the membrane feeder Hemotek reservoir (Discovery Workshops, Accrington, UK), containing 6 mL of blood covered with a parafilm membrane, sealed with a rubber ring, under 37°C for 1 hour.

Mosquitoes from F1 generation were usually employed in the bioassays, however a F2 generation was required whenever the number of F1 generation to perform all larvae and adult assays was insufficient. For each population, a minimum of 960 and 1,760 larvae were required to four repetitions of dose-response and DD assays, respectively. In addition, 1,000 adult females were necessary to perform four repetitions of malathion susceptibility tests.

Insectaries were maintained under controlled temperature (26 ± 2°C) and humidity (70 ± 10%) following Fiocruz biosafety manual for vector insectaries and infectories [20]. About 50 male specimens of the parental generation were cryopreserved for the creation of a DNA bank for future genetic analyses. The Rockefeller [21] reference strain for insecticide susceptibility and vigor under laboratory conditions was employed for determination of diagnostic-doses (DD), and it was exposed in parallel, in each assay, as a quality control for the assay. For biological tests with adults and larvae, standardization was performed using this susceptible strain.
DD estimation in bioassays

Before the evaluation of susceptibility of *Ae. aegypti* field populations, it was estimated the DD for pyriproxyfen and malathion, respectively in larvae and adults, under our local conditions. It is worth noting that there is no reference from WHO for DD to pyriproxyfen. The locally established DDs were obtained by dose-response assays with the Rockefeller strain, a reference strain of susceptibility and vigor in the laboratory. The Rockefeller colony maintained in LEnA was used for the tests in both laboratories.

DD estimation for pyriproxyfen

Larval bioassays were conducted with the IGR pyriproxyfen analytical standard (Sigma Pestanal®), pre dissolved in acetone (Sigma Aldrich®) and further diluted in ethanol (Merck®). Following procedures described in the WHO Guidelines for larvicide bioassays with few modifications [22], third stage larvae (L3 stage) were submitted to a gradient of 13 product concentrations (0.0667 to 0.2337 µg/L), from which the percentage of the inhibition of adult emergence (EI) was evaluated at the end of 7 to 10 days, when all control larvae had emerged into adults. Four replicates, with 10 L3 larvae each, were prepared for each concentration, and an equal number of controls were prepared using only ethanol. The larvae were fed with 10 mg of fish food (TetraMin®, Tetra Marine Granules) on the first day and 5 mg on the third day after initial exposure of the larvae. The assays were read daily until the complete emergence of adults in the control group.

An assay would be discarded if the EI of the control group was > 10%, otherwise corrected by Abbott’s formula when there was some EI between 5% and 10% [22]. Four tests were performed at different times. When pupae started to arise, the cups were covered with a mesh to avoid eventual adult scaping. The mortality as well as the emergence of adults was recorded when all the specimens in control condition had emerged as adults. We considered as live adults those totally free of their exuviae and able to fly when gently touched. The EI were calculated using Probit (Polo-PC, LeOra Software, Berkeley, CA) and logistic regression analysis [23]. Finally, the DD of pyriproxyfen was determined as twice the dose that inhibited the emergence of adults in 99% (EI99) of Rockefeller larvae exposed to the compound.

DD estimation for malathion

To perform the bioassays, aliquots of OP stock solutions at a concentration of 3000 mg/L were prepared from malathion analytical standard (Sigma Pestanal®) and solvent acetone (Sigma Aldrich®) and stored in the freezer −80 °C. 250 mL glass bottles (Wheaton) were impregnated with 1 mL of malathion dissolved in acetone solution, in four concentrations (12, 15, 18 and 20 µg/bottle) prepared from the stock solution 24 h before the test. Two bottles per concentration and one control (impregnated with 1 mL of acetone only) were employed for each test, each bottle containing 25 females 3 to 5 days old.

Six tests with each dose were performed, in distinct days. Mosquitoes were exposed to the insecticide for up to 30 min, with mortality recorded every 10 min.

The dose that caused 100% mortality in 30 min, WHO recommended time, was considered the DD [22]. The DD tests with field populations consisted of 25 females 3 to 5 days old gently blown with a Castor aspirator inside the bottles: four bottles impregnated with the malathion DD and two controls containing only acetone. Addition tests were conducted with the WHO recommended DD (50 µg/bottle) [24]. Three independent assays were performed for each population and with both labs determined and WHO recommended DDs.

Evaluation of pyriproxyfen susceptibility in larvae of *Ae. aegypti* field populations

First screening with DD

Once the DD for pyriproxyfen was obtained, larvae of field population (16 replicates of 10 larvae, total of 160 larvae) were exposed to the IGR DD, in addition to 80 larvae (8 replicates of 10 larvae) as the negative control (ethanol only). In parallel, 80 Rockefeller larvae (8 replicas of 10 larvae) were also exposed to the DD, as an internal quality control of the assay. The IGRs solutions were prepared from pyriproxyfen analytical standard (Sigma Pestanal®) and solvent acetone (Sigma Aldrich®) and further diluted in ethanol (Merck®). Aliquots containing 15 µL of IGR at a concentration of 100,000 mg/L were prepared and stored in the freezer −80 °C. These aliquots were used to prepare 5 mL stock solutions at a concentration of 300 mg/L and stored in the refrigerator for 30 days. From these stock solutions, a new dilution was prepared in the same day of the tests, at a final concentration from which 1 mL would result in the desired DD in the 250 mL test cups. Each population was tested in four independents times. The EI result of the control group had to be between 5% and 10% [22].

Estimation of Resistance Ratio

Field populations not susceptible to pyriproxyfen (EI < 98%) in DD assays were submitted to a dose-response assay in order to quantify their levels of resistance, following the above procedures for the DD obtention. Larvae were exposed to a range of 10 concentrations (0.008–0.45 µg/L) in four replicates, with 10 L3 larvae each, four replicates of controls using only ethanol. Rockefeller was run in parallel, in 4 replicates, with larvae exposed to the DD only. Mortality and metamorphosis were recorded until the emergence of all adults in the control condition.

The inhibition of adult emergence concentrations 50% and 95% (EI50 and EI95) of each population were obtained by Probit analysis [25]. Resistance ratios were obtained by dividing the EI (50 and 95) of each population by the equivalent EI of the reference Rockefeller strain. Populations were classified as suggested by Mazzari and Georgiou [26] with low, moderate, or high resistance respectively for RR95 < 5, between 5.0 and 10.0, and > 10.0.

Evaluation of malathion susceptibility in adults
The *Ae. aegypti* field populations were tested using adult females, three to five days post emergence and not blood-fed, from F1 or F2 generations. Each test consisted of exposure of groups of 20 to 25 females per bottle, with four bottles impregnated with each DD (the herein evaluated and 50 µg/bottle) in addition to two bottles impregnated with acetone only, as a negative control. Rockefeller was run in parallel with two bottles impregnated with each DD. The mortality records were taken every 15 min, and mosquitoes that could not stand were considered dead. Mortality of the replicas of each DD was calculated at the diagnostic time (30 min) in each assay. The total of four bioassays were performed for each population, whereas the final result considered their mean mortality.

Diagnostic-dose and dose-response assays for both IGR and adulticide compounds were performed under the test-insectary conditions, with controlled temperature (26 ± 2°C) and humidity (60–80%).

Insecticides, population and dengue cases data

Details of the formulations and concentrations of insecticides distributed by MoH specifically for *Ae. aegypti* control in Brazil were requested to the agency through the Electronic System of the Citizen Information Service (Protocol 25820000829202031). Regarding pyriproxyfen and malathion, it was also requested the quantities distributed for each state, since the beginning of their use. Brazilian state population was obtained from the website of the Brazilian Institute of Geography and Statistics (IBGE, Portuguese acronym).

Data analysis

The percentage of the inhibition of adult emergence, lethal doses (LD), their respective confidence intervals (IC 95%) and the population slope were calculated by the software Polo-PC, employing a Probit analysis [25]. Resistance rations (RR) were obtained by the quotient between the LD of a population with Rockefeller's. Maps were constructed with the softwares QGIZ version 2.18.6 and GIMP version 2.10.14 [19, 23].

Results

In order to evaluate the susceptibility/resistance of *Ae. aegypti* from Brazil to the insecticides current employed in official national campaigns in the whole country, we selected 146 urban cities (Table 1, Fig. 1) based on a geographical representation proposal. We preferentially chose the State capitals, international borders and those cities with previous insecticide resistance data. From these localities, 140 (95.9%) were able to appropriately collect the eggs and send them to the laboratory. Eggs from 14 (9.6%) of these, however, did not hatch or the number of resulting larvae were insufficient for producing a F1 generation (less than 100 female), and therefore new collections were requested. Six localities sent back new samplings, in four localities even after second collection the female number remained low and F1 *Ae. aegypti* colonies were raised with less than 100 F0 females: Parintins (Amazonas State), Irecê (Bahia State), Quixadá (Ceará State) and Salgueiro (Pernambuco State). In the end, we evaluated 132 *Ae. aegypti* populations (94.3% of the initially planned point collections). The number of mosquitoes *Ae. aegypti* obtained by population varied from 48 to 2438 females and from 54 to 2563 males. For the records, *Ae. albopictus* was present in 59.8% (78/132) populations, rendering 1 to 419 females and 1 to 455 males.

Table 2 presents information regarding the geographical origins, number of total and positive paddles (paddles with eggs), total number of eggs, mean of eggs for positive paddles, total of resulting adults of both *Ae. aegypti* and *Ae. albopictus* species, together with the inhibition of adult emergence (EI) to the IGR larvicide and mortality to the organophosphate adulticide.

The dose-diagnostic (DD) obtained for pyriproxyfen was 0.015 µg/L (Table 3). Among 132 populations, six (4.5%) presented EI < 98%, thus indicating suggested resistance to the IGR pyriproxyfen. These six populations were all from Brazilian Northeastern cities: Itabuna, Brumado and Serrinha (Bahia State), Quixadá, Icó, and Juazeiro do Norte (Ceará State) (Table 2, Fig. 2). Resistance ratios (RR₉₅ and RR₅₀) were small in these populations, ranging from 1.07 to 1.97 (RR₅₀) or 1.51 to 3.58 (RR₉₅) (Table 4), therefore classified as with low resistance.

The DD obtained for malathion under our laboratory conditions was 20 µg/bottle (Fig. 3), 2.5x lower than the WHO indicated DD (50 µg/bottle). In the 20 µg/bottle DD tests, 28 populations (21.4%) presented mortality above 98% (susceptible), 30 (22.9%) had mortality between 90 and 98% (suggested resistance) and 73 populations (55.7%) had mortality below 90% (confirmed resistance). On the other hand, when exposed to 50 µg/bottle, most of the populations (121, 92.4%) were considered susceptible, and the remaining (10, 7.6%) as with "suggested resistance", with mortality between 90 and 98%.”. As can be observed in the map of Fig. 4b, although the localities with populations where resistance to 20 µg/bottle malathion was suggested are spread all over the country, the north region concentrates 71.9% of these populations.

Discussion

Here we presented a national wide surveillance for evaluating the susceptibility of *Ae. aegypti* to the IGR pyriproxyfen and the OP malathion in Brazil, insecticides currently employed by the General Coordination of Arboviruses Surveillance - formerly PNCD. This monitoring was promoted by the Brazilian MoH and was the broadest evaluation ever carried out in a country of continental dimensions, resulting in the evaluation of populations from 132 cities in the time span of one year, in which a total of 137,280 larvae and 131,000 adults were tested. To the top of our knowledge, it is also globally the largest surveillance round recorded of insecticide resistance monitoring in *Ae. aegypti*.

We evidenced the feasibility of conducting an insecticide resistance monitoring action in a standardized and strongly coordinated manner, in a model that could be of assistance to the implementation of national monitoring plans in other countries. A systematic literature review covering insecticide resistance
data in *Ae. aegypti* field populations from Latin America showed that less than half of the countries in this continent have published some bioassay data between 2008 and 2018. Also, the number of populations representing each national surveillance was generally rather small [26].

The monitoring of susceptibility to temephos and deltamethrin carried out between 1999 and 2011 by the previous “National Network for Monitoring the Resistance of *Ae. aegypti* to Insecticides” generally used to evaluate between 25 and 74 populations, in every two years [16]. This time we were able to increase the number of tested populations due to at least three main factors.

Firstly, an increased funding for vector surveillance and control actions with the advent of Zika virus outbreak in 2015 and 2016, reserved the amount of around US$ 501,700 specifically for IR monitoring purposes. This financial resource was enough to supply all collection material to the municipalities, to temporarily hire laboratory technicians, to cover laboratory expenses with mosquito rearing and bioassays, to organize one workshop with participation of representatives from the 26 Brazilian States and to produce didactic material with instructions for collections. This awareness and training of at least two health agents of each State was crucial for a homogenous sampling, maintenance and registration of the paddles with eggs, and a correct shipment to the central laboratory, according to standardized procedures. This task was not trivial, especially in a country such as Brazil, whose geographic dimensions and organization complexity are enormous.

In addition to the presential meeting with State representatives, an instructional video was made available on the institutional webpages of the MoH and IOC/Fiocruz [27]. Overall, these aspects contributed for the success of egg collection (96% of the selected cities collected eggs appropriately), from which 94% of the samples were good enough to perform the bioassays.

The third aspect that made it possible to evaluate this high number of populations was that we employed diagnostic-dose tests for a screening of insecticide resistant populations. These assays require a smaller number of insects reared, space and time spent in colonies maintenance and tests execution, compared to dose-response tests. We are aware that in order to obtain a robust profile of a population, dose-response assays are more informative, since by performing a quantitative test it is possible to inform about the resistance ratios and the homogeneity of tested populations. However, as the last official data on IR monitoring occurred in 2013, and there was no record about pyriproxyfen and malathion carried out on a large scale throughout the country, it was preferred to obtain at least the qualitative status of susceptibility/resistance to the current used insecticides in a broader territorial distribution as possible. Population here classified as resistant to pyriproxyfen, were finely investigated with dose-response tests to assess larvicide resistance [24]. In the case of malathion, where two DDs were employed, at least ten populations were not considered as susceptible even when exposed to the higher dose. This suggests that these populations might present the higher levels of resistance among the 132 evaluated *Ae. aegypti* populations. In the Brazilian *Aedes* control program routine, the OP larvicide temephos was alternatively replaced by the benzo-phenyl urea (BPU) chitin synthesis inhibitors diflubenzuron (wettable powder 25%) and novaluron (emulsifiable concentrate 10%) between 2009 and 2014, after almost 30 years of use (starting in the 1980’s). In an attempt to reduce selective pressure on BPU, the Brazilian MoH introduced another class IGR, with a mode of action distinct from chitin synthesis inhibitors: the juvenile hormone analogue pyriproxyfen, applied at potable water reservoir tanks at 0.01 mg of active ingredient/liter [28]. The amount of pyriproxyfen and malathion distributed by the Brazilian MoH specifically for *Ae. aegypti* control between 2014 and 2019 are listed in supplementary file "Additional file 1: Table S1".

Out of all *Ae. aegypti* populations herein evaluated, 99.3% were classified as susceptible to the IGR pyriproxyfen. The six resistant populations were from the same geographic region (Northeast), in the States of Bahia (Itabuna, Brumado, Serrinha) and Ceará (Quixadá, Icó, Juazeiro do Norte), suggesting the emergence of resistance to pyriproxyfen, with a regionalized distribution. Interestingly some of these populations exhibited discrepant RR\(_{50}\) and RR\(_{95}\) values in some populations, suggesting a heterogeneous response within the population, as represented by their low slope values of their dose-response Probit analyses. These populations are likely experiencing an initial process of selection where only few individuals are resistant so far. The pyriproxyfen RR\(_{50}\) was low, when compared to those previously reported for temephos: Itabuna reported RR\(_{50}\) of 18.6 and 55.8 in 2004 and 2013, respectively; Serrinha had 254.9 in 2012 and Juazeiro do Norte showed RR\(_{50}\) of 10.4 in 2003 and 17.5 in 2004 [29, 3]. This regionalization should be related with differences in operational applications and quantity of insecticides used, but also with peculiarities in the genetic background of populations. Likewise, *Ae. aegypti* populations from the Northeast presented the highest levels of resistance to temephos in Brazil [8]. On the other hand, this same region presented the lowest levels of resistance to pyrethroids [8], accompanied by the lowest frequencies of *kdr* alleles [30].

Here we evidenced that the lowest concentration of malathion that killed 100% of Rockefeller females in 30 min was 20 μg/bottle, dose 2.5 times lower than that recommended by WHO in bottle assays (50 μg) [24]. We did not observe any populations resistant to malathion (mortalities less than 90%) when the WHO DD 50 μg/bottle was employed, while 73 populations (55.8% of the total evaluated) was classified as resistant under 20 μg/bottle exposition. The WHO-suggested DD is based on tests performed in reference laboratories and estimated from a variety of susceptible strains for resistance detection, seeking ease of testing and reliability. This DD should be considered as a guide that can be refined for the local situation whenever it is possible [31]. The local DD was more sensitive in early discriminating resistant individuals. This has an interesting approach in the sense of identifying decrease in susceptibility before it has reached levels that may mean loss of effectiveness of the insecticide in the field. The resistance monitoring program in Brazil seeks to detect changes in susceptibility early so that the product used can be changed in a timely manner. The early detection also permits management approaches in time that resistance is not so high that would be of difficult reversal.

The meaning of the laboratory observed resistance in correlation with effectiveness of the product under field conditions should be studied. Studies conducted two decades ago had already reported resistance of *Ae. aegypti* to malathion in Northeastern Brazilian populations, when OP was used to control both the larval phase (temephos) and the adult vector (malathion) [16].

The election of insecticides against *Ae. aegypti* in Brazil followed criteria established by the WHO, also indicating that change of the product should occur in places with a high RR (> 10.0) and with confirmed lack of efficacy in simulated field tests [10]. However, the substitution of an insecticide takes an average of two years to happen [2], since it depends on series of bureaucratic processes. Therefore, the time spent between the first detection of resistance in laboratory
bioassays and the effective change of the compound in the field was not effective for precluding insecticide resistance to spread. In order to avoid reduction in the effectiveness of the insecticides in the field, a most sensitive criterion for its replacement was adopted since 2006. Management has started to be indicated in localities where mosquito populations presented mortality rates below 70% in DD assays or with RR\textsubscript{50} > 3.0 [10]. Results obtained in São Paulo State were the basis of this arrangement, where simulated field trials with temephos and PY’s, demonstrated failures in the control of \textit{Ae. aegypti} in populations with RR > 5.0, and acceptable with RR < 3.0. PY’s were ineffective in simulated field trials against populations with mortality rates below 70% to the DD in laboratory bioassays [32].

Most of the \textit{Ae. aegypti} populations from Latin America tested for DDT showed resistance to this compound (86.7%). High frequencies of resistant populations were also observed for temephos and deltamethrin (75.7 and 33%, respectively). These patterns could be explained by the long and frequent use of these insecticides in the continent [26]. Considering that the pyriproxyfen larvicide has been used on a large scale in Brazil for more than six years, independently of the resistance status the necessity of discontinuity of its use is already evident, according to the insecticide rotation strategy adopted in this country.

Other larvicides allowed for use in water for human consumption with WHO pre-qualification are, in addition to the OP temephos, the IGRs novaluron and diflubenzuron, the biological \textit{Bacillus thuringiensis}, a formulation of \textit{B. thuringiensis} associated with \textit{B. sphaericus}, and spinosad [33]. It is also worth considering the possibility of the return of temephos use since it has not been applied for about 11 years, and there are indications of a reduction in resistance in some locations evaluated [8].

In relation to adulticides, the situation is alarming, since there is just one alternative to PY’s and to the OP malathion, the association of prallethrin with imidacloprid [33]. In the most recent national evaluation for PY’s (2011 and 2012) high RRs to deltamethrin were indicated throughout the country [7]. Also, in São Paulo, localities with higher numbers of dengue incidence were those with higher levels of resistance to PY’s, although these compounds were no longer being applied by governmental campaigns against \textit{Ae. aegypti}. This was correlated with the excessive use of insecticides by household, especially during arbovirus epidemic seasons and with PY’s application on other urban vectors, as it was the case in a locality where there was an intense campaign against vectors of \textit{Leishmania} [34]. Herein we showed resistance to malathion in most of the populations evaluated with the 20 µg/bottle DD. Therefore, the chemical control against \textit{Ae. aegypti} is crucially threatened in most of the country, as long as no other alternative compound is available.

Emerging resistance to all the main classes of neurotoxic insecticide (CA, OP, IGRs) has been detected in \textit{Ae. aegypti} from Americas, Africa, and Asia [29]. The occurrence of resistance to the IGR, most recently adopted class of insecticides, reinforces the importance of using integrated tools that can contribute to reducing the need for chemical vector control, modifying the determinants of arbovirus transmission in a sustainable manner, such as environmental management and education [35]. Consequently, lower use of chemical insecticides reduces the risk of factors associated such as ecological imbalance, outbreak of secondary pests, harmful effects to human health and to other non-target animals [36].

In line with the Vector Integrated Management Strategy, biological control acts on target species through the use of their natural predators or parasites, in the most target-specific manner [37]. The \textit{Bacillus thuringiensis} var \textit{israelensis} (BT) is for long been referred as a promising \textit{Ae. aegypti} larvicide alternative to neurotoxic compounds. However, the large-scale production of BT under formulations sufficiently persistent in environmental conditions, especially in containers exposed to sunlight, is an important limitation [38, 39]. This avoids BT to be a strategic option to be adopted in the routine of \textit{Ae. aegypti} control in Brazil at a national scale. Even if implemented, biological control must be usedrationally just as it is required for chemical insecticides. Despite the believed unlike emergence of resistance to BT due to its multiple modes of toxicity, some mechanisms of resistance to this compound were described in laboratory selected strains [29, 40].

Still seeking to reduce the need for chemical vector control, national and local campaigns of vector control have to reinforce measures to improve sanitary infrastructure and to strengthen community engagement in the destruction or correct treatment of possible larval breeding sites. In parallel, new alternative methods of vector surveillance and control endorsed by WHO should be implemented and monitored, considering regional peculiarities, as is the case of \textit{Wolbachia}. Sterile insect technique SIT, Release of insects with dominant lethality (RIDL), toxic sugar baits, autodissemination of IGRs, spacial repellents [1, 2, 41].

Finally, an alert should be made about the high frequency of populations with the presence of \textit{Ae. albopictus} mosquitoes (59.8%). Our collections were performed in the grounds of houses at urban territory, evidencing the high expansion of that species in the country, since its first record in 1986 in rural areas [42]. Further studies are recommended to better understand the role of \textit{Ae. albopictus} in the transmission of arboviruses in Brazil. In parallel, the monitoring of insecticide resistance of \textit{Ae. aegypti} should also consider \textit{Ae. albopictus} populations.

Conclusions

The challenge posed by the resistance of vectors to different active ingredients available for their chemical control reinforces the importance of implementing Integrated Management Strategies, which prioritize mechanical control and educational actions for the reduction of breeding sites [1, 2]. A well-structured system of insecticide resistance monitoring in mosquitoes is essential for a sustainable, integrated and effective plan based on chemical vector control strategies.

Here we describe the sampling and standardization activities of the monitoring tests and standardization and resistance monitoring of insecticide resistance in \textit{Ae. aegypti} from 132 Brazilian localities between 2017 and 2018 and discuss their results in the light of the acquired knowledge since the first monitoring round, back in 1999. We currently recommend the immediate substitution of pyriproxyfen to an alternative class of larvicide in order to preserve the efficacy in most of the territory, nevertheless not before testing alternative compounds in populations from distinct regions. In regard to the adulticides, there is currently only one recommended compound alternative to PY’s and the OP malathion.
Abbreviations

Ae. aegypti: Aedes aegypti; Ae. albopictus: Aedes albopictus; BPU: benzo-phenyl urea; Bti: Bacillus thurigiensis; CA: carbamate; CDC: Centers for Disease Control and Prevention; DD: diagnostic-dose; EI: inhibition of adult emergence; F1: first-generation; F2: second-generation; FIOCRUZ: Oswaldo Cruz Foundation; IGR: insect growth regulator; IOC: Oswaldo Cruz Institute; IR: insecticide resistance; LAFICAVE: Laboratory of Physiology and Arthropod Control Vectors; LD: lethal dose; LEnA: Laboratory of Applied Entomology; MoH: Ministry of Health; MoReNAa: National Network for Monitoring the Resistance of Aedes aegypti to Insecticides; PNCD: National Dengue Control Program; OP: organophosphate; PY: pyrethroid; RIDL: Release of insects with dominant lethality; RR: Resistance Ratio; SIT: Sterile insect technique; SUCEN: Endemic Control Superintendence; WHO: World Health Organization; WP: wettable powder.

Declarations

Acknowledgments

We want to thank the municipal teams involved in the collection of samples for the performance of bioassays, the state teams involved in coordination, the teams of laboratories that conducted the tests and the Ministry of Health for the availability of data for this study.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Datasets required to reproduce analyzes and results presented in this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

General Coordination of Arboviruses Surveillance/Ministry of Health (Brasília, DF, Brazil) provided financial support for the survey through Agreement/TED/Commitment Term No. 105/2016 (National Health Fund), process number 25030,000852/2016-46. Oswaldo Cruz Foundation provided funding for the publication. The funders had no role in the design of the study, data collection and analysis, decision to publish or preparation of the manuscript.

Author's contribution

Conceptualization, funding acquisition: JBPL and KBC. Supervision: JBPL, MLGM and MTMA. Writing, original draft: KBC. Formal analysis, methodology: DFB. Project administration: JBPL and CMR. Quality management: CMR and DFB. Writing, review & editing: MTO, JBPL, MLGM, MTMA, AJM, DFB, CMR and LSD. All authors read and approved the final manuscript.

References

1. Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis. 2018;12(12): e0006845. https://doi.org/10.1371/journal.pntd.0006845.
2. Valle D, Belinato TA, Martins AJ. Controle químico de Aedes aegypti, resistência a inseticidas e alternativas. In: Valle D, Pimenta DN, Cunha RV, editors. Dengue: Teorias e Práticas. Rio de Janeiro: Fiocruz; 2015. p. 93-126.
3. Lima EP, Paiva MH, da Araújo AP, da Silva EV, da Silva UM, de Oliveira LN et al. Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Par & Vect. 2011;4:5. https://doi.org/10.1186/1756-3305-4-5.
4. MS/SVS. Diretrizes nacionais para prevenção e controle de epidemias de dengue. Brasília: Ministério da Saúde/Secretaria de Vigilância em Saúde; 2009. http://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_nacionais_prevencao_controle_dengue.pdf. Accessed 10 Feb 2020.
5. SINAN Online/MS. Sistema de Informação de Agravos de Notificação/Ministério da Saúde. Brasília: Ministério da Saúde.
6. Roush RT. Designing resistance management programs: how can you choose? Pestic. Sci. 1989;26:423-441.
7. Macoris MLG, Camargo MF, Silva IG, Takaku L, Andrighetti MTM. Modificação da susceptibilidade de Aedes(Stegomyia) aegypti temefós. Rev Pat Trop. 1995;24(1):31-40. https://revistas.ufg.br/iptsp/article/view/19878. Accessed 02 Dec 2019. https://doi.org/10.5216/rpt.v24i1.19878.

8. Valde D, Bellinato DF, Viana-Medeiros PF, Lima JBP Jr, Andrijeth MTM. Resistência a temephos e deltametrin em Aedes aegypti de Cruz, entre 1985 e 2017. Mem Inst Oswaldo Cruz. 2019;114:e180544. https://www.ncbi.nlm.nih.gov/pubmed/3103854. Accessed 02 Dec 2019. https://doi.org/10.1590/0074-02760180544. ISSN: 1678-8060.

9. da-Cunha MP, Lima JBP, Brogdon WG, Moya GE, Valde D. Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Mem Inst Oswaldo Cruz. 2005;100(4):441-4.

10. MS/SVS/GPNCD. Reunião Técnica para Discussão de Status de Resistência de Aedes aegypti. Rio de Janeiro: Ministério da Saúde/Secretaria de Vigilância em Saúde. Coordenação Geral do Programa Nacional de Controle da Dengue; 2006.

11. Braga IA, Valde D. Aedes aegypti: Surveillance, resistance monitoring, and control alternatives in Brazil. Epidemiol. Serv. Saúde. 2007;16(4):295-302. http://dx.doi.org/10.5123/S1679-49742007000400007.

12. Marcombe S, Dariet F, Agnew P, Etienne M, Yp-Tcha MM, Yebakima A, e al. Field efficacy of new larvicides for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies). Am J Trop Med Hyg. 2011;84:1118-12.

13. Marcombe S, Farajolla A, Healy SP, Clark GG, Fonseca DM. Insecticide resistance status of United States populations of Aedes albopictus and mechanisms involved. PLoS ONE. 2014;9(7):e101992. https://doi.org/10.1371/journal.pone.0101992.

14. Lau KW, Chen CD, Lee HL, Norma-Rashid Y, Sofyan-Azirun M. Evaluation of Insect Growth Regulators Against Field-Collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia. J Med Entomol. 2015;52(2):199-206.

15. Su T, Thieme J, Luna T, Cheng ML, Brown MQ. Susceptibility profile of Aedes aegypti (Diptera: Culicidae) from Montclair, California, to commonly used pesticides, with note on resistance to pyriproxyfen. J Med Entomol. 2019;56(4):1047-54. https://doi:10.1093/jme/jiz019.

16. Macoris MLG, Andrijeth MTM, Oterra VCG, Carvalho LR, Júnior ALC, Brogdon WG. Association of insecticide use and alteration on Aedes aegypti susceptibility status. Mem Inst Oswaldo Cruz. 2007;102(8):895-900.

17. Goinin D, Delannay C, Gelasse A, e al. Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infectious Diseases of Poverty. 2017;6:38.

18. Chediak M, G Pimenta Jr F, Coelho GE, Braga IA, Lima JBP, Cavalcante KRLJ, e al. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti. Mem. Inst. Oswaldo Cruz. 2016;111(5):311-321.

19. MS/SVS. Metodologia de amostragem de Aedes aegypti por meio de armadilhas de postura (ovitrampas). Documento da Rede Nacional de Monitoramento da Resistência de Aedes aegypti Inseticidas (MoReNAa). Brasília: Ministério da Saúde/Secretaria de Vigilância em Saúde; 2008.

20. Adegas MG, Barroso-Krause C, Lima JBP, e al. Parâmetros de Biossegurança para Insetícidos e Infectórios de Vetores: aplicação e adaptação das normas gerais para laboratórios definidas pela Comissão Técnica de Biossegurança da Fiocruz. Rio de Janeiro: Fiocruz, 2005.

21. Kuno G. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains. J Med Entomol. 2010;47(6):957-71.

22. WHO. Monitoring and managing insecticide resistance in Aedes mosquito populations. Interim guidance for entomologists. Switzerland: World Health Organization; 2016. https://apps.who.int/iris/handle/10665/10665/204588. Accessed 02 Dec 2019.

23. Raymond M. Presentation d'une programme d'analyse logprobit pour microordinateur. Cah. ORSTOM. Ser Ent Med Parasitol. 1985;22:117–121. https://scholar.google.com/scholar?cluster=7819082733735503667&hl=pt-BR&as_sdt=0,5. Accessed 02 Dec 2019.

24. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2nd ed. Switzerland: World Health Organization; 2016. https://apps.who.int/iris/handle/10665/250677. Accessed 02 Dec 2019. ISBN: 9789241511575.

25. Finney DJ. Probit analysis. London: Cambridge University; 1971.

26. Mazzari MB, Georghiou GP. Characterization of resistance to organophosphates, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Control Assoc. 1995;11:315-322. https://www.ncbi.nlm.nih.gov/pubmed/8551300. Accessed 02 Dec 2019. PMID: 8551300.

27. Guedes RNC, Beins K, Navarro Costa D, Coelho GE & Bezerra HSdS. Patterns of insecticide resistance in Aedes aegypti populations in Martinique (French West Indies). PLoS Negl Trop Dis. 2017;11(7):e0005625.

28. Linss JGB, Brito LP, Garcia GA, Araki AS, Bruno RV, Lima JBP, et al. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit Vectors. 2014;7:25.

29. Macoris MLG, Andrijeth MTM, Nalon KCR, Garbeloto VC & Caldas Jr AL. Standardization of Bioassays for Monitoring Resistance to Insecticides in Aedes aegypti. Deng Bul. 2005;29:176-182. ISSN:0250-8362. https://apps.who.int/iris/handle/10665/160400.

30. Macoris MLG, Andrijeth MTM, Wanderley DMV, Ribolla PEM. Impact of insecticide resistance on the field control of Aedes aegypti in the State of São Paulo. Rev Soc Bras Med Trop. 2014;47(5):573–578.

31. WHO. Prequalification Vector Control. Prequalified Products 11 Apr 2019. https://www.who.int/pq-vector-control/prequalified-lists/en/. Accessed 02 Dec 2019.
35. Macoris MLG, Martins AJ, Andrighetti MTM, Lima JBP, Valle D. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil. PLoSNegl Trop Dis. 2018;12(3).e0006390. https://doi.org/10.1371/journal.pntd.0006390.

36. Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoSNegl Trop Dis. 2020;14(1):e0007831. https://doi.org/10.1371/journal.pntd.0007831.

37. Carson R. Silent Spring. Boston, MA, USA: Houghton Mifflin; 1962.

38. Parra JRP & Coelho Junior A. Applied Biological Control in Brazil: From Laboratory Assays to Field Application. J Insect Sci. 2019;19(2):1–6. https://doi:10.1093/jisesa/iey112.

39. Lima JBP, Rosa-Freitas MG, Rodovalho CM, Braga IA. Field and semi-field evaluation of Bacillus thuringiensis var. israelensis versus Temephos® in Aedes aegypti control. J. Health Biol. Sci. 2016;4(2):65-74. https://doi:10.12662/2317-3076jhs.v4i2.695.p.65-74.2016.

40. Lima JBP, Melo NV & Valle D. Persistence of Vectobac WDG and Metoprog S-2G against Aedes aegypti larvae using a semi-field bioassay in Rio de Janeiro, Brazil. Rev. Inst. Med. Trop. S. Paulo. 2005;47(1):7-12. https://dx.doi.org/10.1590/S0036-46522005000100002.

41. Melo ALD, Soccol VT, Soccol CR. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crf Rev Biotechnol. 2016;36(2):317-26. https://doi.org/10.3109/07388551.2014.960793. PMID: 25264571.

42. Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng L, et al. Alternative strategies for mosquito-borne arbovirus control. PLoSNegl Trop Dis. 2019;13(1):e0006822. doi: 10.1371/journal.pntd.0006822. Erratum in: PLoSNegl Trop Dis. 2019;13(3):e0007275. PMID: 30605475; PMCID: PMC6317787.

43. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013;29(9):460–8. https://doi.org/10.1016/j.pt.2013.07.003. PMID: 23916878.

Tables
Table 1 Brazilian towns participating in the 2017-2018 monitoring round of susceptibility to pyriproxyfen and malathion in *Aedes aegypti*

Nº	Latitude	Longitude	Region	State	Town	Nº	Latitude	Longitude	Region	State	Town
1	-7.363	-72.673	N	AC	Cruzeiro do Sul	74	-13.535	-48.224	MW	GO	Minaçu
2	-9.978	-67.811	N	AC	Rio Branco	75	-14.088	-46.362	MW	GO	Posse
3	-11.016	-68.748	N	AC	Brasília	76	-16.769	-47.607	MW	GO	Cristalina
4	-2.627	-56.736	N	AM	Parintins	77	-16.673	-49.256	MW	GO	Goiânia
5	-0.136	-67.084	N	AM	São Gabriel da	78	-16.440	-51.120	MW	GO	Iporã
					Cachoeira						
6	-7.512	-63.027	N	AM	Humaitá	79	-17.886	-51.721	MW	GO	Jataí
7	-4.232	-69.946	N	AM	Tabatinga	80	-17.735	-49.110	MW	GO	Morrinhos
8	-4.084	-63.142	N	AM	Coari	81	-19.006	-57.649	MW	MS	Corumbá
9	-3.135	-60.023	N	AM	Manaus	82	-22.227	-54.811	MW	MS	Dourados
10	0.039	-51.057	N	AP	Macapá	83	-20.789	-51.710	MW	MS	Três Lagoas
11	3.851	-51.831	N	AP	Olapoque	84	-18.508	-54.758	MW	MS	Coxim
12	2.497	-50.945	N	AP	Calçoenne	85	-22.486	-55.711	MW	MS	Ponta Porã
13	-2.436	-54.719	N	PA	Santarém	86	-20.458	-54.616	MW	MS	Campo Grande
14	-7.102	-49.943	N	PA	Xinguara	87	-15.570	-56.073	MW	MT	Cuiabá
15	-1.460	-48.488	N	PA	Belém	88	-16.470	-54.634	MW	MT	Rondonópolis
16	-1.691	-50.481	N	PA	Breves	89	-10.641	-51.571	MW	MT	Confresa
17	-5.353	-49.142	N	PA	Marabá	90	-9.872	-56.922	MW	MT	Alta Floresta
18	-3.206	-52.214	N	PA	Altamira	91	-14.049	-52.159	MW	MT	Água Boa
19	-4.264	-55.990	N	PA	Itaituba	92	-15.230	-59.338	MW	MT	Pontes e Lacerda
20	-3.767	-49.667	N	PA	Tucuruí	93	-11.422	-58.762	MW	MT	Juina
21	-8.028	-50.030	N	PA	Redenção	94	-15.889	-52.260	MW	MT	Barra do Garças
22	-11.434	-61.443	N	RO	Cacoal	95	-11.858	-55.501	MW	MT	Sinop
23	-10.436	-62.476	N	RO	Jaru	96	-20.850	-41.112	SE	ES	Cachoeiro do Itapemirim
24	-8.769	-63.831	N	RO	Porto Velho	97	-20.320	-40.322	SE	ES	Vitória
25	-10.774	-65.324	N	RO	Guajará-Mirim	98	-18.713	-40.402	SE	ES	Nova Venécia
26	-12.741	-60.139	N	RO	Vilhena	99	-19.823	-40.276	SE	ES	Aracruz
27	0.937	-60.425	N	RR	Rorainópolis	100	-23.009	-44.320	SE	RJ	Angra dos Reis
28	2.817	-60.671	N	RR	Boa Vista	101	-21.752	-41.330	SE	RJ	Campos dos Goytacazes
29	-11.625	-46.820	N	TO	Dianópolis	102	-22.510	-44.094	SE	RJ	Volta Redonda
30	-10.163	-48.351	N	TO	Palmas	103	-22.877	-43.228	SE	RJ	Rio de Janeiro
31	-11.730	-49.071	N	TO	Gurupi	104	-19.938	-43.926	SE	MG	Belo Horizonte
32	-7.191	-48.209	N	TO	Araguaína	105	-18.853	-41.947	SE	MG	Governador Valadares
33	-9.661	-35.702	NE	AL	Macéio	106	-21.761	-43.349	SE	MG	Juiz de Fora
34	-9.756	-36.657	NE	AL	Arapiraca	107	-16.723	-43.865	SE	MG	Montes Claros
35	-9.385	-37.999	NE	AL	Delmiro Gouveia	108	-19.714	-47.984	SE	MG	Uberaba
36	-11.303	-41.859	NE	BA	Irecê	109	-17.863	-41.510	SE	MG	Teófilo Otoni
37	-13.015	-38.848	NE	BA	Salvador	110	-19.525	-42.624	SE	MG	Coronel Fabriciano
38	-17.538	-39.745	NE	BA	Teixeira de Freitas	111	-21.557	-45.432	SE	MG	Varginha
39	-14.789	-39.273	NE	BA	Itabuna	112	-18.593	-46.516	SE	MG	Patos de Minas
40	-14.205	-41.667	NE	BA	Brumado	113	-21.185	-47.805	SE	SP	Ribeirão Preto
41	-11.660	-39.008	NE	BA	Serrinha	114	-22.123	-51.387	SE	SP	Presidente Prudente
42	-3.724	-38.590	NE	CE	Fortaleza	115	-23.499	-47.458	SE	SP	Sorocaba
43	-3.688	-40.349	NE	CE	Sobral	116	-20.813	-49.381	SE	SP	São José do Rio Preto
44	-5.177	-40.668	NE	CE	Crateús	117	-23.807	-45.403	SE	SP	São Sebastião
45	-4.964	-39.012	NE	CE	Quixadá	118	-23.567	-46.570	SE	SP	São Paulo
46	-6.403	-38.863	NE	CE	Icó	119	-25.542	-54.587	S	PR	Foz do Iguaçu
47	-7.211	-39.317	NE	CE	Juazeiro do Norte	120	-23.312	-51.163	S	PR	Londrina
48	-6.763	-38.230	NE	PB	Sousa	121	-23.082	-52.462	S	PR	Paranavaí
49	-7.149	-34.873	NE	PB	João Pessoa	122	-23.422	-51.940	S	PR	Maringá
50	-7.221	-35.884	NE	PB	Campina Grande	123	-26.078	-53.056	S	PR	Francisco Beltrão
51	-7.037	-35.634	NE	PB	Alagoa Grande	124	-27.867	-54.478	S	RS	Santa Rosa
52	-8.063	-34.889	NE	PE	Recife	125	-29.946	-50.991	S	RS	Gravatá
53	-8.071	-39.121	NE	PE	Salgueiro	126	-28.262	-52.407	S	RS	Passo Fundo
54	-8.889	-36.493	NE	PE	Garanhuns	127	-29.686	-53.809	S	RS	Santa Maria
55	-9.397	-40.500	NE	PE	Petrolina	128	-30.383	-56.454	S	RS	Quaraí
56	-8.679	-35.588	NE	PE	Palmares	129	-26.726	-53.519	S	SC	São Miguel do Oeste
57	-7.578	-40.502	NE	PE	Araripina	130	-26.875	-52.405	S	SC	Xanxerê
58	-7.955	-36.204	NE	PE	Santa Cruz do Capibaribe	131	-26.907	-48.657	S	SC	Itajaí
59	-6.770	-43.021	NE	PI	Floriano	132	-27.107	-52.617	S	SC	Chapecó
60	-5.086	-42.805	NE	PI	Teresina	133	-10.943	-69.563	N	AC	Assis Brasil
61	-2.903	-41.778	NE	PI	Paraíba	134	-9.065	-68.656	N	AC	Sena Madureira
62	-7.081	-41.469	NE	PI	Picos	135	0.777	-51.947	N	AP	Pedra Branca do Amapari
63	-9.015	-42.692	NE	PI	São Raimundo Nonato	136	-0.856	-52.539	N	AP	Laranjal do Jari
64	-5.751	-35.252	NE	RN	Natal	137	-9.372	-37.245	NE	AL	Santana do Ipanema
65	-6.115	-38.203	NE	RN	Pau dos Ferros	138	-12.145	-45.004	NE	BA	Barreiras
66	-6.586	-36.775	NE	RN	Jardim do Seridó	139	-4.567	-37.773	NE	CE	Aracati
67	-5.194	-37.357	NE	RN	Mossoró	140	-4.232	-44.782	NE	MA	Bacabal
68	-2.532	-44.298	NE	MA	São Luís	141	-7.531	-46.039	NE	MA	Balsas
69	-10.907	-37.048	NE	SE	Aracaju	142	-5.508	-45.239	NE	MA	Barra do Corda
70	-10.216	-37.420	NE	SE	Nossa Senhora da Glória	143	-5.527	-47.480	NE	MA	Imperatriz
71	-10.686	-37.427	NE	SE	Itabiania	144	-22.286	-42.533	SE	RJ	Nova Friburgo
72	-10.915	-37.666	NE	SE	Lagarto	145	-17.220	-46.875	SE	MG	Paracatu
73	-15.794	-47.888	MW	DF	Brasília	146	-27.588	-48.548	S	SC	Florianópolis

Notes: Underlined: State capitals. Regions acronyms: N: North, NE: Northeast, CW: Mid-West, SE: South-East, S: South. States acronyms: AC: Acre, AM: Amazonas, AP: Amapá, PA: Pará, RO: Rondônia, RR: Roraima, TO: Tocantins, AL: Alagoas, BA: Bahia, CE: Ceará, PB: Paraíba, PE: Pernambuco, PI: Piauí, RN: Rio Grande do Norte, MA: Maranhão, SE: Sergipe, DF: Distrito Federal, GO: Goiás, MS: Mato Grosso do Sul, ES: Espírito Santo, RJ: Rio de Janeiro, MG: Minas Gerais, SP: São Paulo, PR: Paraná, RS: Rio Grande do Sul, SC: Santa Catarina.
Number	Region	State	Town	total	positive	total	paddles (mean for pp)	Ae. aegypti	Ae. albopictus	Insecticide	Pyriproxifen (Ae. aegypti larvae)			
1	N	AC	Cruziero do Sul	196	72	5281	73.3	601	793	0	0.94			
2	N	AC	Rio Branco	294	188	15747	83.8	2377	2533	0	1.61			
3	N	AC	Brasílêia	100	43	2912	67.7	734	814	0	0.31			
4	N	AM	Parintins	196	39	2709	69.5	90	54	91	0.94			
5	N	AM	São Gabriel da Cachoeira	200	46	4680	101.7	423	383	0	3.25			
6	N	AM	Humaitá	200	67	1933	28.9	696	690	0	1.88			
7	N	AM	Tabatinga	172	50	3217	64.3	472	504	0	0.00			
8	N	AM	Coari	196	70	Wi	Wi	253	216	0	0.63			
9	N	AM	Manaus	512	207	10092	48.8	1021	187	98	1.50			
10	N	AP	Macapá	265	79	2571	32.5	296	209	0	0.31			
11	N	AP	Oiapoque	200	28	928	33.1	Wi	Wi	Wi	2.81			
12	N	AP	Calçoene	74	14	634	45.3	207	178	0	1.56			
13	N	PA	Santarém	302	87	3804	43.7	362	382	102	78			
14	N	PA	Xinguara	202	35	3744	107.0	515	501	0	0.94			
15	N	PA	Belém	600	361	19844	55.0	1751	1787	419	342			
16	N	PA	Breves	202	26	2645	101.7	516	512	4	7			
17	N	PA	Marabá	300	96	7394	77.0	503	500	1	2.75			
18	N	PA	Altamira	304	103	6893	66.9	526	503	4	28			
19	N	PA	Itaituba	200	102	9813	96.2	426	392	416	280			
20	N	PA	Tucuruí	198	93	7384	79.4	504	501	219	158			
21	N	PA	Redenção	200	29	2571	88.7	384	321	1	1			
22	N	RO	Cacoal	196	52	1521	29.3	329	414	0	8			
23	N	RO	Jaru	200	85	7.81	91.9	1843	1607	141	72			
24	N	RO	Porto Velho	300	116	6269	54.0	1222	1042	257	167			
25	N	RO	Guajará-Mirim	194	58	2575	44.4	1248	1374	0	0.31			
26	N	RO	Vilhena	200	79	4513	57.1	1457	1583	0	0.00			
27	N	RR	Rorainópolis	39	39	2124	54.5	352	198	0	0.62			
28	N	RR	Boa Vista	300	166	13007	78.4	2293	2428	1	6			
29	N	TO	Dianópolis	204	31	902	29.1	206	249	0	0			
30	N	TO	Palmas	288	92	7152	77.7	578	262	12	32			
31	N	TO	Gurupi	208	35	1054	30.1	240	251	0	0.63			
32	N	TO	Araguaína	344	129	5893	45.7	501	500	1	1			
33	NE	AL	Maceló	386	102	6212	60.9	496	395	41	20			
34	NE	AL	Arapiraca	296	92	7382	80.2	1128	1007	0	0			
35	NE	AL	Delmiro Gouveia	184	87	3287	37.8	523	309	0	5.00			
36	NE	BA	Itacé	210	23	396	17.2	48	59	0	0.63			
37	NE	BA	Salvador	878	327	21715	84.7	2264	2349	140	173	0.31	100.0	NN
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
38	NE	BA	Teixeira de Freitas	220	83	4299	51.8	503	502	0	0	3.44	98.8	NN
39	NE	BA	Itabuna	349	155	9828	63.4	505	606	0	2	0.94	96.5	NN
40	NE	BA	Brumado	220	90	3904	43.4	289	322	1	1	1.56	91.6	NN
41	NE	BA	Serrinha	204	99	4656	47.0	500	500	0	0	0.63	85.8	NN
42	NE	CE	Fortaleza	696	269	18059	67.1	1491	1829	80	92	1.94	100.0	NN
43	NE	CE	Sobral	300	97	6864	70.8	872	927	0	0	1.88	99.8	NN
44	NE	CE	Crateús	100	WI	4624	871	1011	0	0	2.25	99.3	NN	
45	NE	CE	Quixadá	192	34	2527	74.3	76	64	0	0	3.75	97.7	NN
46	NE	CE	Icó	200	131	9283	70.9	1919	1997	27	0	3.43	96.1	NN
47	NE	CE	Juazeiro do Norte	300	138	24587	178.2	502	500	0	1	1.56	95.3	NN
48	NE	PB	Sousa	200	63	1889	29.9	405	426	0	0	3.44	100.0	NN
49	NE	PB	João Pessoa	388	239	12014	50.3	1756	1816	34	31	0.63	100.0	NN
50	NE	PB	Campina Grande	300	91	3945	43.4	1007	1013	0	0	1.25	98.6	NN
51	NE	PB	Alagoa Grande	200	88	2733	31.1	510	508	0	0	0.63	98.1	NN
52	NE	PE	Recife	891	455	30800	66.1	731	730	87	68	0.00	100.0	NN
53	NE	PE	Salgueiro	224	18	413	22.9	86	127	0	0	0.31	100.0	NN
54	NE	PE	Garanhuns	219	47	1064	22.6	274	297	0	0	0.94	100.0	NN
55	NE	PE	Petrolina	300	29	544	18.8	126	138	0	0	0.62	100.0	IS
56	NE	PE	Palmares	198	90	6715	74.6	962	877	102	71	0.31	99.8	NN
57	NE	PE	Araripina	WI	107	5235	48.9	881	834	0	0	1.88	99.8	NN
58	NE	PE	Santa Cruz do Capibaribe	303	144	10095	70.1	511	566	0	0	2.19	98.9	NN
59	NE	PI	Floriano	190	56	1722	20.9	757	736	54	29	2.75	100.0	NN
60	NE	PI	Tenesse	414	125	5505	44.0	915	1034	360	273	2.00	99.8	NN
61	NE	PI	Parnaíba	251	190	14090	78.3	1950	2191	77	63	0.25	99.6	NN
62	NE	PI	Picos	100	29	1587	54.7	307	299	0	0	6.87	98.4	98.3
63	NE	PI	São Raimundo Nonato	100	23	462	20.1	165	191	0	0	2.58	98.3	NN
64	NE	RN	Natal	400	277	18294	66.0	1761	1847	144	188	0.00	100.0	NN
65	NE	RN	Pau dos Ferros	238	45	2660	59.1	806	854	0	0	0.83	100.0	NN
66	NE	RN	Jardim do Seridó	100	62	4592	74.1	507	507	0	3	3.44	100.0	NN
67	NE	RN	Mossoró	298	205	16114	78.6	2012	1858	0	0	1.00	99.9	NN
68	NE	MA	São Luís	406	154	8925	58.0	1882	2148	152	102	1.56	100.0	NN
69	NE	SE	Aracaju	416	196	15406	78.6	2438	2563	32	41	0.31	100.0	NN
70	NE	SE	Nossa Senhora da Glória	214	84	7944	94.6	500	502	0	7	3.75	99.7	NN
71	NE	SE	Itabaiana	324	139	6187	44.5	504	503	0	2	1.25	98.4	NN
72	NE	SE	Lagarto	328	192	15021	78.2	508	500	0	2	4.00	98.2	NN
73	MW	DF	Brasília	291	35	1778	50.8	454	526	6	8	1.25	100.0	NN
74	MW	GO	Minaçu	100	33	955	28.9	174	86	215	178	2.19	100.0	NN
75	MW	GO	Posse	200	81	3693	45.6	564	535	237	203	1.25	100.0	NN
76	MW	GO	Cristalina	WI	98	5308	54.2	1003	930	0	0	0.31	99.8	NN
77	MW	GO	Goiânia	604	222	12933	58.3	2211	2129	84	60	3.44	99.4	NN
78	MW	GO	Iporá	200	133	10943	82.3	508	509	0	8	0.50	99.1	NN
79	MW	GO	Jataí	214	121	9349	43.7	513	502	0	0	0.75	98.3	NN
80	MW	GO	Morrinhos	WI	98	8672	88.5	1375	593	1	0	0.94	98.1	NN
81	MW	MS	Corumbá	200	70	3163	45.2	802	1099	0	0	0.00	100.0	NN
82	MW	MS	Dourados	300	126	7404	58.8	1921	2104	6	7	0.00	100.0	NN
83	MW	MS	Três Lagoas	274	80	4961	62.0	919	962	12	13	0.63	100.0	NN
84	MW	MS	Coxim	188	43	1257	29.2	172	165	15	30	3.13	100.0	NN
85	MW	MS	Ponta Porã	189	46	1979	43.0	455	453	0	0	4.69	100.0	NN
86	MW	MS	Campo Grande	408	67	2988	44.6	663	611	0	0	0.31	99.1	NN
87	MW	MT	Cuiabá	394	28	2075	74.1	2399	2369	62	88	0.31	100.0	NN
88	MW	MT	Rondonópolis	900	158	8213	52.0	1207	1300	23	13	0.63	100.0	NN
89	MW	MT	Confresa	108	69	7673	111.2	1581	1715	103	121	2.19	100.0	NN
90	MW	MT	Alta Floresta	118	56	4670	83.4	1394	1411	246	170	2.18	100.0	NN
91	MW	MT	Água Boa	202	WI	3566	WI	518	510	3	7	1.25	99.8	NN
92	MW	MT	Pontes e Lacerda	208	WI	1536	WI	534	544	0	0	1.88	99.8	NN
93	MW	MT	Juina	132	93	6773	72.8	735	1006	0	0	1.25	99.1	NN
94	MW	MT	Barra do Garças	200	101	5987	59.3	503	503	7	34	1.88	98.7	NN
95	MW	MT	Sinop	150	17	523	30.8	102	85	2	0	0.94	98.7	NN
96	SE	ES	Cachoeiro do Tapajós	286	163	9949	61.3	1846	1925	248	293	1.88	100.0	NN
97	SE	ES	Vitória	448	233	20108	86.3	278	291	9	4	3.00	99.5	NN
98	SE	ES	Nova Venécia	192	93	6833	73.5	506	503	17	39	3.44	99.4	NN
99	SE	ES	Aracruz	202	WI	9243	WI	500	531	2	13	1.24	98.1	NN
100	SE	RJ	Angra dos Reis	323	107	3433	32.1	425	391	119	118	1.25	100.0	NN
101	SE	RJ	Campos dos Goytacazes	330	119	5693	47.8	1386	1242	14	8	0.00	100.0	NN
102	SE	RJ	Volta Redonda	296	183	16123	88.1	2140	2235	344	455	4.38	100.0	NN
103	SE	RJ	Rio de Janeiro	612	306	18861	61.6	2399	2260	90	82	1.75	100.0	NN
104	SE	MG	Belo Horizonte	1.766	935	63893	68.3	2360	2175	93	96	1.25	100.0	NN
105	SE	MG	Governador Valadares	288	230	13853	60.2	1731	1916	95	114	2.50	100.0	NN
106	SE	MG	Juiz de Fora	404	37	1005	27.2	218	244	46	20	0.00	100.0	NN
107	SE	MG	Montes Claros	396	68	1422	20.9	131	136	0	0	0.94	100.0	NN
108	SE	MG	Uberaba	94	53	1902	35.9	273	289	0	0	0.31	100.0	NN
109	SE	MG	Teófilo Otoni	296	110	3275	29.8	502	502	55	45	4.38	100.0	NN
110	SE	MG	Coronel Fabriciano	264	WI	3245	WI	107	103	0	0	1.25	99.2	NN
111	SE	MG	Varginha	292	39	758	19.4	210	191	6	3	4.38	98.4	NN
112	SE	MG	Patos de Minas	297	WI	2981	WI	510	504	10	2	0.94	98.1	NN

Page 15/19
Table 3 Dose-response bioassay to determine the pyriproxyfen diagnostic dose for *Aedes aegypti*, Rockefeller strain

EI50 (µg/L)\(^a\)	CI50 (µg/L)\(^b\)	EI99 (µg/L)\(^a\)	CI99 (µg/L)\(^b\)	Slope
0.06205	0.06012 - 0.06394	0.15589	0.14655 - 0.16733	5.8164

Notes: \(\text{EI}50\) and \(\text{EI}99\): pyriproxyfen concentrations needed to inhibition of 50% and 99% adults emergence, respectively. \(\text{CI}\): confidential intervals.
Table 4 Dose-response bioassays with *Aedes aegypti* populations from Brazil resistant to pyriproxyfen, 2017 - 2018

Region	State	Population/ City	EI₅₀ (µg/L)² (CI)	EI₉₅ (µg/L)² (CI)	RR₅₀ᵇ	RR₉₅ᵇ	Slope	Resistance level	Notes
		Rockefeller	0.0621 (0.0620-0.0639)	0.1190 (0.1137-0.1253)	1.00	1.00	5.81	-	
Northeast	Bahia	Serrinha	0.1207 (0.0312-0.4665)	0.4257 (0.1711-1.0595)	1.95	3.58	3.00	Low	
		Itabuna	0.1223 (0.0942-0.1588)	0.4056 (0.2776-0.5927)	1.97	3.41	3.16	Low	
		Brumado	0.0666 (0.0510-0.0871)	0.3160 (0.2699-0.3699)	1.07	2.66	2.43	Low	
Ceará		Juazeiro do Norte	0.0835 (0.0498-0.1399)	0.2495 (0.1884-0.3304)	1.35	2.10	3.46	Low	
		Quixadá	0.0900 (0.0800-0.0900)	0.2200 (0.2000-0.2400)	1.45	1.85	4.31	Low	
		Icó	0.0700 (0.0600-0.0800)	0.1800 (0.1500-0.2200)	1.13	1.51	4.25	Low	

Notes: ¹EI₅₀ and EI₉₅: pyriproxyfen concentrations needed for inhibition of adult emergence of 50% and 95% of larvae, respectively. CI: confidence intervals. ²RR₅₀ and RR₉₅: resistance ratios. ³Resistance level: RR₉₅<5.0: low; RR₉₅ between 5.0 and 10.0: moderate; RR₉₅>10.0: high (Mazzari & Georghiou 1995)

Figures

Figure 1

Brazilian map showing the municipalities participating in the 2017-2018 monitoring round of susceptibility to pyriproxyfen and malathion in *Aedes aegypti*. The numbers in red represent State capitals. The continuous lines in Brazilian territory indicate the different States of the country.
Figure 2

Brazil's map displaying the results of the resistance evaluation to the IGR pyriproxyfen in Aedes aegypti populations, 2017-2018. Green circles or orange diamonds represent localities from which populations were susceptible or had suggested resistance (IE<98%), respectively. The states of Bahia (BA) and Ceará (CE) were highlighted and the municipalities with suggested resistance populations were shown.

Figure 3

Determination of the diagnostic-dose (DD) of malathion in Aedes aegypti, Rockefeller strain. A - Mortality over time of exposure to bottles impregnated with different doses. B - Three additional independent trials only with DD set to 20 µg/mL, showing 100% mortality in 30 minutes. The red arrow highlights the time of 30 minutes.
Figure 4

Brazil's map displaying the results of the resistance evaluation to the organophosphate malathion in Aedes aegypti populations, 2017-2018. Diagnostic-dose tests employed the (a) 20 µg/bottle or (b) 50 µg/bottle dose. Green circles, orange diamonds or red triangles represent localities from which populations were considered susceptible, with suggested resistance or with confirmed resistance, respectively.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TabS1.xlsx