Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short Communication

Drug exposure may have a substantial influence on COVID-19 prognosis among residents of long-term care facilities: an exploratory analysis

Laura Soldevila, MDa,b, Lluís Valerio-Sallent, PhDb, Silvia Roure, PhDa,b, Olga Pérez-Quílez, Bscb, Miquel Àngel Mas, PhDc,d, Ramón Miralles, PhDc,d, Israel López-Muñoz, Bscb, Oriol Estrada, MDc, Xavier Vallès, PhDa,d,*

a Infectious Diseases Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
b International Health Program, Regió Sanitària Metropolitana Nord, Institut Català de la Salut, Badalona, Spain
c Direcció Clínica Territorial Metropolitana Nord, Institut Català de la Salut, Barcelona, Spain
d Geriatrics Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
* Corresponding author: Xavier Vallès, International Health Program, Regió Sanitària Metropolitana Nord and Institut per la Recerca en Ciències de la Salut Germans Trias i Pujol. C/ de les Escoles s/n, 08013, Badalona, Spain. Tel. 34-600288585. E-mail address: xvallesc.mn.ic@gercat.cat (X. Vallès).

\textbf{ABSTRACT}

\textbf{Objectives:} To explore the association between drug exposure and SARS-CoV-2 prognosis among elderly people living in long-term care facilities (LTC)

\textbf{Design:} We carried out a cross-sectional study among old people living in LTC that had a proven SARS-CoV-2 infection, including socio-demographic data, comorbidities and drug intake at the moment of the diagnosis. The study was focused on ACE2 inhibitors, ARA-II blockers, inhaled bronchodilators, oral corticoids, platelet antiaggregants, oral anti-coagulants, statins and Vitamin D.

\textbf{Results:} 1,306 individuals were included, with a mean age of 86.7 years, and 72.3% were females. The case fatality rate was 24.4%. Among the studied exposures platelet antiaggregants were the most prevalent (24.7%). After adjusting for propensity score, the intake of inhaled corticoids (OR 0.73; \(p=0.03 \)) and statins (OR 0.65; \(p=0.03 \)) were found to be protective factors of death, whereas ACE2 inhibitor showed an almost significant association (OR 0.73, \(p=0.07 \)).

\textbf{Conclusions:} Considering the high prevalence of drug intake among elderly people, drug exposure may be an important Covid-19 disease modifier in LTC residents and should be considered when exploring prognostic risk factors associated to Covid-19.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

\section*{Introduction and methods}

Older people living in long-term care (LTC) facilities have been the population hardest hit by the Covid-19 pandemic. Recent estimates suggest that as much as 47% of first-wave Covid-19 fatalities in Western countries occurred in LTC facilities. (Comas-Herrera et al., 2020) This appalling statistic is related to the combination of optimal epidemiological conditions for the spread of SARS-CoV-2 in enclosed spaces crowded with a highly vulnerable population. One feature of this population that has received scant attention in this connection is drug consumption. LTC residents tend to be poly-medicated, with some of them taking up to a dozen or more different drugs. (Slugett et al., 2020) Such drugs commonly include a wide array of pharmaceutical principles, but also anti-hypertensives, bronchodilators, anti-inflammatory drugs, psychiatric medication, anti-osteoporotic treatments, statins and oral anticoagulants, and platelet antiaggregants. To explore the relation between the prevalent types of medication in LTC facilities and Covid-19 prognosis, we carried out a cross-sectional study among LTC residents.
LTC residents with SARS-CoV-2 infection as confirmed by RT-PCR test during the first wave of the pandemic (March–June 2020). The study population has been described elsewhere. (Suñer et al., 2021) We collected data on medication being consumed at the moment of the diagnosis from the clinical records of the LTC facility. Our focus was on those drugs that aroused most interest among clinicians, those for which evidence had been gathered previously and those with a plausible association with Covid-19 prognosis such as ACE2 inhibitors, AR-A-II blockers, inhaled bronchodilators, oral corticoids, platelet antiaggregants, oral anti-coagulants, statins and Vitamin D. Participants were tested against recovery or death after adjusting for Propensity Score (PS) at day 15, day 30 and overall. PS included participant baseline clinical, autonomy and frailty scores and socio-demographic data.

Results

Data on drug intake and follow-up were recorded for 1,306 individuals, which represents 58.8% of the SARS-CoV-2-infected population living in LTC facilities from our study area (N = 2,221) during the study period. The mean age was 86.7 years (SD = 7.3, range 65–105) and 72.3% were females. The overall Case Fatality Rate of our sample was 24.4% (n = 239), being higher among males than females (32.8% vs. 21.2%, p < .001). The median number of drugs, being taken per participant was 8 (including those not at the time of SARS-CoV-2 diagnosis 381 individuals (29.2%) were consuming platelet antiaggregant, 323 (24.7%) ACE2 inhibitor, 244 (18.7%) vitamin D derivatives, 224 (17.2%) statins, 172 (13.2%) AR-A-II blockers, 195 (14.9%) anti-coagulants, 112 (8.4%) inhaled corticoids and 88 (6.7%) oral corticoids (see Table 1 for detailed description). After PS adjustment we observed a protective association for inhaled corticoids (OR 0.52; 95%CI 0.3–0.9; p = 0.03), and statins (OR 0.65; 95%CI 0.4–0.9; p = 0.03), including a close to significant protective association with ACE2-antagonist intake (OR 0.73; 95%CI 0.5–1.0, p = 0.07) at 30-day mortality after Covid-19 diagnosis (see Table 2). We did not find evidence of interaction of inhaled corticoids with other bronchodilators (long-acting β agonists and long-acting muscarinic agonists), or between the drugs studied among individuals with concomitant treatment.

Discussion and conclusions

Notwithstanding that with our study design we cannot conclude a causal effect between drugs intake and clinical prognosis, our results are consistent with most of the previously published evidence that ACE-2 antagonists, statins and inhaled corticoids may have a protective effect against severe Covid-19, (Nicolau and Bafadhel, 2020, Kurdi et al., 2020, Lee et al., 2020) but not anti-thrombotic therapy, oral corticoids, AR-A-II blockers and Vitamin D in the dosages typically given to the elderly. The most noteworthy finding, due to their potential as preventive therapy against severe Covid-19, is the protective association of inhaled corticoids. A recently published clinical trial strongly suggests this positive effect with regard to complicated Covid-19 in the general population. (Ramakrishnan et al., 2021). Considering the prevalence of drug intake and the high attack rates of the disease in the LTC population during the first wave of the pandemic, the fraction of prevented deaths attributable to consumption of these drugs may have been substantial. It is worth noting that the interaction between inhaled corticoids, ACE-2 antagonists and statins and Covid-19 is most probably mediated by their effect as inflammatory modulators, at the local level in alveolar epithelia (ACE-2 inhibitors and inhaled corticoids) or at systemic level (statins). Given that ageing is related to a more pro-inflammatory status (Casucci et al., 2020) our observations may not be strictly translated to the general population. Furthermore, the protective effect of these drugs could be due to long-term intake having caused chronic changes in the tissues targeted (i.e. lower or higher expression of ACE-2 receptor in respiratory epithelia). However, further exploration of these effects among residential populations may provide a better understanding of the physiopathology of Covid-19 as well as some clues for future therapeutic or preventive drug targets. The most important conclusion from our findings together with the previously collected evidence is that drug exposure may be an important Covid-19 disease modifier in LTC residents and should be considered when exploring prognostic risk factors.

Acknowledgements

Our heartfelt gratitude to all nursing homes teams for facilitating the collection of information required for this study, and to Yolanda García Murillo for their support during the data collection process.
Table 2
Association analysis between bad outcome and drug exposure (adjusted by PS)*,**

Drug family	Mortality at day 15		Mortality at day 30		Overall mortality	
	OR	95% CI	p	OR	95% CI	p
ACE2 inhibitor	0.78 (0.5-1.2)	0.2	0.73 (0.5-1.0)	0.07	0.74 (0.5-1.0)	0.08
Inhaled corticoids	0.61 (0.3-1.1)	0.1	0.52 (0.3-0.9)	0.03	0.58 (0.3-1.0)	0.05
Statins	0.77 (0.5-1.2)	0.2	0.65 (0.4-0.9)	0.03	0.69 (0.5-1.0)	0.06
Vitamin D derivatives	0.87 (0.6-1.3)	0.5	0.8 (0.6-1.2)	0.2	0.79 (0.6-1.1)	0.2
Platelet antiaggregants	1.14 (0.8-1.6)	0.4	1.09 (0.8-1.5)	0.6	1.09 (0.8-1.5)	0.6
Antiaggregants	0.91 (0.6-1.4)	0.7	0.78 (0.5-1.2)	0.5	0.76 (0.5-1.1)	0.2
Oral corticoids	1.27 (0.7-2.2)	0.4	1.57 (0.9-2.6)	0.08	1.68 (1.0-2.8)	0.04
ARA-II blockers	1.23 (0.7-1.7)	0.6	1.09 (0.7-1.6)	0.7	1.01 (0.7-1.5)	0.9

* PS included age, gender, respiratory, cardiovascular or cerebrovascular comorbidities, hypertension, dementia, diabetes mellitus type II, Barthel score, frailty score, size of the LTC facility in number of residents.
** Adjustments included drugs under study

Conflicts of interest
None to declare

Ethical approval
The study was approved by the Ethics Board of the Region’s reference hospital and registered under reference number PI-20-349.

Funding
No specific sources of funding were used for this study

References
Comas-Herrera A, Zalakain J, Lemmon E, et al. Mortality associated with COVID-19 outbreaks in care homes Mortality associated with COVID-19 outbreaks in care homes: early international evidence 2020. Article in LTCovid.org. International Long-Term Care Policy Network, CPEC-LSE; 2020 https://www.ontario.ca/page/how-ontario-is-responding-covid-19#section-1 (accessed May 2021).

Sluggert JK, Harrison SL, Ritchie LA, et al. High-Risk Medication Use in Older Residents of Long-Term Care Facilities: Prevalence, Harms, and Strategies to Mitigate Risks and Enhance Use. Sr Care Phar 2020;35:419–33. doi:10.1440/TCP.a.2020.419.

Sufer C, Oschi D, Max MA, et al. Risk factors for mortality of residents in nursing homes with Covid-19: A retrospective cohort study. Nature Aging. 2021. doi:10.1038/s43587-021-00079-7.

Nicolaë D, Bafadhel M. Inhaled corticosteroids in virus pandemics: a treatment for COVID-19? Lancet Respir Med 2020;8:846–7. doi:10.1016/S2213-2600(20)30314-3.

Kurdi A, Abutheraa N, Akil I, et al. A systematic review and meta-analysis of the use of renin-angiotensin system drugs and COVID-19 clinical outcomes: What is the evidence so far? Pharmacol Res Perspect 2020;8:e00666. doi:10.1002/prp2.666.

Lee KCH, Sewa DW, Phua GC. Potential role of statins in COVID-19. Int J Infect Dis 2020;96:615–17. doi:10.1016/j.ijid.2020.05.115.

Ramakrishnan S, Nicolai JR D, Langford B, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med 2021 S2213-2600(21)00160-0. doi:10.1016/S2213-2600(21)00160-0.

Casucci G, Acanfora D, Incaù RA. The Cross-Talk between Age, Hypertension and Inflammation in COVID-19 Patients: Therapeutic Targets. Drugs Aging 2020;37:779–85. doi:10.1007/s40266-020-00808-4.