Preparation and (TiO2- ZnO) Polyethylene for Food Preservation

Zahraa Hadi Hilal 1, Shorouq Jasim Jabbar2
1Baghdad University, College of Science for Women, Department of Biology, Baghdad, Iraq
2Ministry of Education, Baghdad-Iraq.

Email: kadjhimj1111@gmail.com

Abstract. The polymer nanocomposite was prepared using low-density polyethylene and each of (titanium oxide and zinc oxide) nanoparticles by casting method. The nanoparticles were synthesized via the UV-irradiation method. Structural properties of TiO2 and ZnO nanoparticles studied by x-ray diffractions so the grain size of nanoparticles ranged between (10-12) nm. Mechanical properties of the nanocomposites improve as the ratio of nanoparticles in polymer increased, compared to pure LDPE. Given that studies show that using this 2.5 Gy of gamma Rayes irradiated of nanocomposites improved that fantastic for use as food packaging. Besides, the polymer nanocomposites proved that antimicrobial properties against the E. coli, since it releases the nanoparticle's cations.

Keywords: Antimicrobial packaging, Polyethylene, TiO2 nanoparticles, ZnO nanoparticles, Mechanical properties.

1. Introduction
Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles are ideal semiconductor materials. That has many attractive features for instance its inexpensive materials, the stability of chemical characteristics, simplicity of preparation, environmentally friendly, in addition, that used in many applications in light-emitting diodes, transparent conductors, UV-shielding, pharmaceutical applications, and as antimicrobial applications, etc[1-3]. Polymer nanocomposites well are defined as the multi-material phases, one of this material with the nanoscale at any form, nanoparticles, nanotubes or nanorods structures[4,5]. Ignumently nanocomposites through using Low-density polyethylene (LDPE) doped with nanoparticles. It has many properties, including the potential barrier, anti-microbial materials in addition to mechanical properties, so Prioritizes to use in the production of special packages for preserving food[6,7].
(TiO2 - ZnO) / LDPE nanocomposites as uniquely antimicrobial agents and discriminate chemical and physical barrier properties can protect foods more efficiently[8-13]. Further, radurization technique Consider as the importance to reduce spoilage losses and improve Enhance food and health quality, as they contribute Protraction one-shelf life for aliments.
2. Experimental:
Titanium dioxide (TiO$_2$) and ZnO nanoparticles were prepared via the UV-irradiation method in use all of the titanium nitrite Ti(NO$_3$)$_4$, and (ZnNO$_3$)$_2$ dissolved in deionized water. It slowly under stirring into a round bottom flask putting in an ice bath about 25 minutes. Afterward, the prepared polymer nanocomposites by thawed polyethylene (LDPE) with 0.5 concentrations and mixing with 0.1% TiO$_2$ and (0.1, 0.2, 0.3)% of ZnO then mixing it well for a homogenous solution then casting the solutions in Petri dishes.

3. Results and Discussions:
Structural Properties: that examined through X-ray diffraction as shown in figure (1): TiO$_2$ X-ray in the 20 range of 10-70°. The diffraction peaks corresponding to the (1 0 1), (0 0 4), (2 0 0), (1 0 5), (2 1 1), and (2 0 4) crystal planes while X-ray of ZnO structural properties have (100) and (002) planes as illustrated in figure (1)[1,14].

3.1 Bacterial effect
For studied the bacterial effects for (TiO$_2$–ZnO) polyethylene (LDPE) nanocomposites against Escherichia coli bacteria that found in the environment, foods, and intestines of people and animals which are frequently occurring foodborne pathogenic microorganisms [8,12]. This effect illustrated in table (1).

Table 1. Statistical analytical results of E. coli counts/mL in examined.

Polymer nanocomposite	Examining samples	Total No. of samples	Positive samples	Mean ± S.E.M.
	Chicken	12	4	30.0
0.1(TiO$_2$/ZnO) -				1.9 x 104
LDPE				0.24 x 104
0.1TiO$_2$/0.2ZnO) -				2.09 x 104
LDPE				0.29 x 104
(0.1TiO$_2$/0.3ZnO) -				2.89 x 104
LDPE				0.34 x 104
0.1(TiO$_2$/ZnO) -	Mutton	12	9	61.0
LDPE				4.8 x 104
0.1TiO$_2$/0.2ZnO) -				0.9 x 104
LDPE				4.99 x 104
(0.1TiO$_2$/0.3ZnO) -				1.9 x 104
LDPE				5.08 x 104

Figure 1. X-ray of TiO$_2$ and ZnO nanoparticles.
Fecal pollution, caused by E. Coli has contributed to the food-borne epidemic disease and a beneficial or detrimental role have been assigned to foods Enterococci can survive heat processing and spoil the products and cause food infection.[15,16].

3.2 Gamma Effects on Polymer Nanocomposite

The food package that illustrated in table (2) demonstrated that the E. Lower percentage of E was mentioned in isolated coli stains. Coli in any form of meat used in testing.

Irradiation level (Mrad)	Storge time (day)	6 C percentage spoiled in Chicken	20C percentage spoiled in Chicken	6C percentage spoiled in Mutton	20C percentage spoiled in Mutton
5	19	35	18	20	90
10	19	100	20	90	0
1	15	0	0	0	0
20	0	0	0	0	0
1.5	15	0	0	0	0
2	12	12	1	9	3
20	12	19	20	18	18
2.5	38	54	30	24	30
					22

From table (2) results illustrated that in normal refrigeration temperatures (6 C). Fresh carcasses were found to be organoleptically acceptable for periods as long as 5 to 9 days At this time, the bacterial load had, in general, increased by 4 logs above the initial number figure (2). Irradiation at both (2 and 2.5) Gy Mrad resulted in an immediate reduction in bacterial numbers. Upon storage, the surviving organisms multiplied, the rate being faster on 2 Mrad- than on 2.5 Mrad-irradiated of Chicken and Mutton .results are similar to [17,18].

Figure 2. Gamma irradiation affects the on-shelf life of chicken and mutton.
3.3 Mechanical properties of food package

Table 3. Illustrated effects of addition nanoparticles ratio on hardness and impact factors

Polymer Nanocomposite	Impact factor (KJ/M²)	Hardness
LDPE	50	40.3
0.1(TiO₂/ZnO) - LDPE	85	45
0.1TiO₂/0.2ZnO - LDPE	76	59.7
(0.1TiO₂/0.3ZnO) - LDPE	60	76.6

Results from the above, obvious impact factor is increasing as their nanoparticles concentrations increase due to the stresses minutes on material consolidation. While hardness values decreased with an increase nanoparticle ratio of polymer.

4. Conclusions

The mechanical and microbiological properties of thin films prepared from (TiO₂ and ZnO) nanoparticles a little mixing ratio with PLED polymer have been enhanced. In addition, the effect of Radurization on thin films increased the validity of the storage for each chicken and mutton.

5. References

[1] Sariya D. Al-Algawi, Rashed T. Rasheed, Zeena R. Rhoomi, Structural and Optical Properties of Annealed TiO₂ Powder Synthesized by Hydrothermal Method, Iraqi Journal of Science, Vol. 58, No.3C, pp: 1683-1693, 2017.

[2] BagheriKhatibani, A., RozatiS, M. and Bargbidi, Z., Preparation, Study and Nanoscale Growth of indium oxide thin films. Physics Department, University of Guilan, 122, Rasht 41335, 2012.

[3] V. Sesha Sai Kumar, K. Venkateswara Rao, X-ray Peak Broadening Analysis and Optical Studies of ZnO Nanoparticles Derived by Surfactant Assisted Combustion Synthesis, Journal Of Nano- And Electronic Physics , 5 , 2, 02026, 6, 2013.

[4] Mithaq R. Mohammed, Israa H. Hilal, Shurooq J. Jabbar, The Influence Of (Mn) Nano - Particles On Mechanical, Physical, And Biological Properties of (PMMA/PVA-Mn) Nano - Composite Used For Denture Base, international journal of research in pharmaceutical sciences, 11,2, 2320-2325, 2020.
[5] Hilal, I. H., Mohammed, M. R., Shaker, W. A. Effect of Silver (Ag) Nanoparticles on Structural and Mechanical Properties of (PMMA) Blend and its Application for Denture Base. International Journal of Medical Research & Health Sciences, 8, 1, 154–159, 2019.

[6] Zhu, Zhi-En, Zhang Ye-Wen, An Zhen-Lian, Zheng Fei-Hu, Trap levels in low density polyethylene doped with nanoparticles by photo-stimulated discharge. Acta Physica Sinica, 61, 6, 067701. 2012

[7] Karina Rojas, Daniel Canales, Nicolas Amigo, Lissette Montoille, Alejandro Cament, Lina M. Rivas O. Gil-Castell, Pablo Reyes, Maria Zapata, Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles, Composites Part B: Engineering, 172, 173-178, 2019.

[8] Muhammad Handayani and Hesih Permawati, Gamma irradiation technology to preservation of foodstuffs as an effort to maintain quality and acquaint the significant role of nuclear Assessing the feasibility of using the heat demand-outdoor, Energy Procedia 127, 302–309, 2017.

[9] Behnoush Maherani, Farah Hossain, Paula Criado, Yosra Ben-Fadhel, Stephane Salmieri and Monique Lacroix, World Market Development and Consumer Acceptance of Irradiation Technology, Foods, 5, 79, 2016.

[10] Lusk, J. L., Roosen, J., Bieberstein, A. Consumer acceptance of new food technologies: Causes and roots of controversies. Annu. Rev. Resour. Econ, 6, 381–405, 2014.

[11] Emamifar, A., Applications of Antimicrobial PolymerNanocomposites in Food Packaging. Advances in Nanocomposite Technology, 300-318, 2011.

[12] Erkan, N., Ozden, O., Alakavuk, D.U., Yildirim, S.Y., & Lngur, M., Control of irradiation-induced lipid oxidation and volatile sulfur compounds using antioxidants in raw meat and ready-to-eat meat products. Antioxidant Measurement and Applications, 2006.

[13] Ahmed, M.K., Hasan, M.J., Alam, N., Ahsan, M., Islam, M., & Akter, M.S., Effect of gamma radiation in combination with low temperature refrigeration on the chemical, microbiological and organoleptic changes in Pampus chinensis (Euphrasen, 1788). World Journal of Zoology, 4, 1, 9–13, 2009.

[14] Zak AK, Majid WH Abd, Darroudi M, Yousefi R. Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater Lett., 65, 70–73, 2011.

[15] Lee, J.W., Kim, J.H., & Han, S.B., Effect of gamma irradiation on microbial analysis, antioxidant activity, sugar content and color of ready to use tamarind juice during storage, LWT Food Science and Technology, 2009.

[16] Issam A. Al-Khatib, Rita Giacaman, Abdallatif Hussein, Asa’d Ramlawi, Ibrahim Atiyya and Ibrahim Salem, Microbiological quality of food samples from restaurants and sweet shops in developing countries: a case study from the occupied palestinian Territory, International Journal of Environmental Health Research 14, 6, 443 – 452, 2004.

[17] Harsojo and Andini, L.S. Decontamination of Some pathogenic bacteria On Meat and Gamma Irradiation With Buffalo Entrails, Proceedings of the national workshop on the Buffalo, BATAN, Jakarta, 116 – 120, 2010.

[18] Zeinab Noori Hashemabad, Bahareh Shabanpour, Hamed Azizi, Seyed Mahdi Ojagh, Alisha, Effects of TiO2 Nanocomposite Packaging and Gamma Irradiation on the Shelf-life of Rainbow trout Stored at (+4°C), Turkish Journal of Fisheries and Aquatic Sciences 18:1387-1397, 2018.