Plasma cell neoplasia after kidney transplantation: French cohort series and review of the literature

Raphaël Kormann1*, Hélène François2, Thibault Moles3, Jacques Dantal4, Nassim Kamar5, Karine Moreau6, Thomas Bachelet7, Anne-Elisabeth Heng8, Antoine Garstka9, Charlotte Colosio10, Didier Ducoux11, Johnny Sayegh12, Benjamin Savenkoff13, Denis Viglietti14, Rebecca Sberro15, Eric Rondeau1, Julie Peltier1

1 Service d’Urgences Néphropathiques et Transplantation Rénale, Hôpital Tenon, APHP, Université Pierre et Marie Curie, Paris, France, 2 Service de Néphrologie, Hôpital Bicêtre, APHP, Université Paris Sud, Paris, France, 3 Service de Néphrologie et d’Immunologie Clinique, Centre Hospitalier Universitaire de Tours, Tours, France, 4 Service de Néphrologie et d’Immunologie Clinique, Centre Hospitalier Universitaire de Nantes, Nantes, France, 5 Service de Néphrologie et Transplantation, CHU Rangueil, Toulouse, Toulouse, France, 6 Service de Néphrologie et Transplantation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France, 7 Centre de Traitement des Maladies Rénales-Clinique Saint Augustin, 96 avenue d’Arès, Bordeaux, France, 8 Service de Néphrologie—Hémodialyse, Centre Hospitalier Universitaire Gabriel-Montpied, Clermont-Ferrand, France, 9 Service de Néphrologie, Centre Hospitalier Regional Universitaire de Lille, Lille, France, 10 Service de Néphrologie—Hypertension artérielle—Hémodialyse—Transplantation, Centre Hospitalier Universitaire de Reims, Reims, France, 11 Service de Néphrologie-Dialyse, Centre Hospitalier Régional Universitaire, Hôpital Jean Minjoz, Besançon, France, 12 Service de Néphrologie—Dialyse—Transplantation, Centre Hospitalier Universitaire d’Angers, Angers, France, 13 Service de Néphrologie et Transplantation, Centre Hospitalier Universitaire de Nancy, Vandoeuvre-Les-Nancy, France, 14 Service de Néphrologie, Hôpital Saint Louis, Université Denis Diderot-Paris VII AP-HP, Paris, France, 15 Service de Transplantation, Hôpital Necker, Université Paris Descartes AP-HP, Paris, France

* raphaelkormann@gmail.com

Abstract

Although post-transplant lymphoproliferative disorder (PTLD) is the second most common type of cancer in kidney transplantation (KT), plasma cell neoplasia (PCN) occurs only rarely after KT, and little is known about its characteristics and evolution. We included twenty-two cases of post-transplant PCN occurring between 1991 and 2013. These included 12 symptomatic multiple myeloma, eight indolent myeloma and two plasmacytomas. The median age at diagnosis was 56.5 years and the median onset after transplantation was 66.7 months (2–252). Four of the eight indolent myelomas evolved into symptomatic myeloma after a median time of 33 months (6–72). PCN-related kidney graft dysfunction was observed in nine patients, including six cast nephropathies, two light chain deposition disease and one amyloidosis. Serum creatinine was higher at the time of PCN diagnosis than before, increasing from 135.7 (±71.6) to 195.9 (±123.7) μmol/l (p = 0.008). Following transplantation, the annual rate of bacterial infections was significantly higher after the diagnosis of PCN, increasing from 0.16 (±0.37) to 1.09 (±1.30) (p = 0.0005). No difference was found regarding viral infections before and after PCN. Acute rejection risk was decreased after the diagnosis of PCN (36% before versus 0% after, p = 0.004), suggesting a decreased allogeneic response. Thirteen patients (59%) died, including twelve directly related to the hematologic disease. Median graft and patient survival was 31.7 and 49.4 months, respectively.
PCN after KT occurs in younger patients compared to the general population, shares the same clinical characteristics, but is associated with frequent bacterial infections and relapses of the hematologic disease that severely impact the survival of grafts and patients.

Introduction

Risk of neoplasia is increased in solid organ transplantation [1], and post-transplant lymphoproliferative disorder (PTLD) is the second most common type of cancer, after skin cancer [2]. According to the International Society of Hematology, plasma cell neoplasia (PCN), including multiple myeloma (MM) and plasmacytoma occurring in solid organ transplantation, forms part of monoclonal PTLD.

MM is a disorder of post-germinative B-cell malignant proliferation, in which a monoclonal immunoglobulin (M-protein) is secreted. MM is consistently preceded by a pre-tumoral stage known as monoclonal gammopathy of undetermined significance (MGUS) [3,4]. After several chromosomal and genetic events, MGUS can move towards smoldering multiple myeloma (SMM), MM and eventually plasma cell leukemia [5,6].

Actual knowledge about PCN in kidney transplantation (KT) is scarce. PCN arising after KT represents only 4% of PTLD in KT in France [7]. An epidemiologic study in the United States performed in 202,600 solid organ transplant recipients between 1987 and 2009 estimated a prevalence of 0.7/1000 [8]. Although PCN occurs very rarely in KT, relative risk compared with the general population is increased two-fold in KT, and is significantly higher for plasmacytoma than for MM [8]. Relative risk is also higher in patients younger than 35 years, and Epstein-Barr virus (EBV) seronegative patients [8].

Until recently, only case reports of PCN arising after KT have been reported in the literature. Kidney graft plasmacytomas have been reported in five patients [9–13]. The tumor originated from the donor in three cases [9,10,12]. Four multiple plasmacytomas [14–16] and nine isolated plasmacytomas [16–24] located outside the graft have been described. Among 11 patients tested, EBV in situ hybridization was positive in seven cases [14–16,18,19, 21,24], suggesting the virus played a role in disease development. Thirteen patients developing MM after KT have been reported in case reports from 1983 to 2011, but no conclusion could be made about their particularities and prognosis [25–28]. Recently, Safadi et al. [29] reported seven cases of MM occurring after KT between 2001 and 2012. Most of these patients had MGUS before KT, and MM could occur at any time after transplantation. Graft failure was often related to the evolution of the hematologic disease. Median survival was 80 months [29], and comparable to the general population [30].

In the present study, we report 22 cases of PCN emerging after KT over a period of 22 years (1991 to 2013) in France.

Materials and methods

Patients

This was a multicenter, retrospective, cohort study conducted at 14 French renal transplantation centers. A questionnaire was sent to the 33 French centers involved in renal transplantation in order to recruit renal transplanted patients with PCN. Fourteen centers responded favorably and 22 patients were included after identification through the computerized records. Medical records of patients were accessed and data were analyzed anonymously. Inclusion
criterion was PCN (SMM, MM or solitary plasmacytoma) occurring after renal transplantation. MGUS non-evolving to MM was not included. The diagnosis of SMM, MM and plasma cytoma was based on the criteria of the International Myeloma Working Group [31]. Responses to treatments were classified according to the International Myeloma Working Group criteria [32].

Related-organ or tissue impairments (ROTI) were as follows: hypercalcemia defined by serum calcium > 0.25 mmol/L (>1 mg/dL) higher than the upper limit of normal or >2.75 mmol/L (>11 mg/dL), renal insufficiency defined by creatinine clearance < 40 ml/min or serum creatinine > 177 μmol/L (>2 mg/dL), anemia defined by hemoglobin value of >20 g/L below the lower limit of normal, or a hemoglobin value <100 g/L, presence of one or more osteolytic bone lesions [31].

Demographic, clinical and laboratory data were assessed for each patient before kidney transplantation (sex, previous history of non-hematologic or hematologic neoplasia, age at End Stage Renal Disease (ESRD), native kidney disease, dialysis duration, number of previous KT); at the time of renal transplantation (age at KT, type of induction therapy, initial maintenance immunosuppression); and after KT, before and after the diagnosis of PCN (serum creatinine evolution, acute or chronic graft rejection, infections (bacterial, viral and fungal), evolution of immunosuppressive treatments, transplant status, dialysis post-transplant, and graft loss and patient outcome (death)). Data about PCNs were also precisely recorded (age at diagnosis, time of diagnosis, time after KT, known monoclonal peak before KT, known monoclonal peak after KT, paraprotein at MM diagnosis, medullary plasmacytosis at diagnosis, M Spike level at diagnosis, progression of SMM to MM, Bence Jones proteinuria, type of ROTI, new types of ROTI during follow up, related plasma-cell related disorders (plasmacytomas, hyperviscosity, amyloidosis), treatments, and relapses). Progression free survival was defined as the time from the first dose of the first treatment for PCN to disease progression or death, whichever came first.

Statistical analysis

Quantitative data are presented as mean (1 standard deviation) or median (range).

The prevalence rate was calculated from the number of cases of PCN occurring between 2002 and 2013 (19 cases), and the number of patients aged over 18 receiving KT in the 14 transplantation centers during the same period. The French Biomedical Agency (ABM) provided the exact number of KTs during this period in these centers (14 551 KTs). As data before 2002 was not accurately recorded, three older cases of PCN were excluded from the calculation.

The annual rate of bacterial and viral infection was compared before and after the diagnosis of PCN, and each patient was his own control.

Serum creatinine was compared before and at the time of diagnosis of PCN. Creatinine before diagnosis was either nadir creatinine for patients with early onset of PCN <1 year after KT, or creatinine measured 1 year ± 2 months before diagnosis of PCN for patients with later PCN, > 1 year after KT.

The Wilcoxon matched-pairs signed rank test was used to compare the annual bacterial or viral infection rate before and after the diagnosis of PCN, and serum creatinine before and at the time of diagnosis of PCN.

The Mann Whitney test was used to compare the onset of PCN of patients with or without a known MGUS before KT.

The number of acute rejections before and after the diagnosis of PCN for each patient was compared using Fisher’s exact test.
Analysis of patient and graft survival uses Kaplan-Meier curves. All comparisons are two sided and a value of $p<0.05$ is considered significant.

Results

Characteristics of patients and renal transplantation

Twenty-two patients (15 men and seven women, odds ratio = 2.1), who developed PCN after KT were included. The patients were transplanted between 1986 and 2012 and PCN was diagnosed after KT between 1991 and 2013. Characteristics of patients and KT are presented in Table 1.

The calculated prevalence rate was 1.3/1000. The median age at end stage renal disease was 46.2 years (19.2–63.5; 18/22 patients). Three patients had a previous history of non-hematologic neoplasia, and one had a previous history of benign B-cell proliferation. The median age at renal transplantation was 47.5 years (27.2–71.5). Two patients were transplanted from a living donor. One patient had a dual kidney transplant, and one a combined kidney-pancreas transplant.

Characteristics of PCN after renal transplantation

General characteristics. The median age at diagnosis of PCN was 56.5 years (41.8–72.3). At diagnosis, 12 patients had MM, eight with SMM and two with solitary plasmacytoma. The occurrence of PCN appeared to be constant over time. It could be diagnosed at any time after KT, from 2 to 252 month(s), with a median time of 66.7 months (Fig 1). Only eight patients had known MGUS before renal transplantation (36%), but they did not develop PCN significantly earlier after KT compared to patients without known monoclonal peak (respectively 53.5 ± 67.9 versus 103.4 ± 83.4 months, $p = 0.18$). Moreover, one patient had IgA lambda MGUS progressing as a lambda light chain myeloma, and another patient had IgA kappa MGUS and developed IgG kappa MM, suggesting either immunoglobulin class switch recombination, or the development of a new clonal plasma cell. Among the fourteen patients with no MGUS detected before KT (64%), five had light chain monoclonal proteins.

Of the 12 MM patients, six had kidney graft failure: five had cast nephropathy, three of which were confirmed by biopsy, and one had biopsy-confirmed light chain deposition disease (LCDD). The two remaining patients were considered as having cast nephropathy because of the association of acute kidney failure and massive proteinuria, composed of large amounts of monoclonal free light chains.

Four out of the eight SMMs progressed to MM during follow-up. One patient had cast nephropathy-related kidney graft failure and one evolved to plasma cell leukemia. Progression from SMM to MM was a median of 33 months (6–72). In the four non-progressing patients, one had amyloid light chain (AL) amyloidosis related to a kappa light chain, with cardiac and kidney graft failure. One had biopsy-confirmed graft failure due to LCDD, which was related to a kappa light chain. One had hyperviscosity syndrome, with an IgA lambda protein, but no end-organ damage. SMM persisted in the last patient at the end of follow-up.

Of the two patients with plasmacytoma at diagnosis, one patient had two solitary plasmacytomas in the sternum and the sacrum, which relapsed with multiple localizations (bone, gut and brain) after treatment. The other had a solitary plasmacytoma in the thoracic spine, which relapsed as multiple plasmacytomas. There was no bone marrow involvement in either patient.

The general characteristics of patients are summarized in Table 2.

Infections. There was a particular risk of infection in the first year following the diagnosis of PCN with 19 bacterial infections in 12/22 patients, four viral infections, and two
Table 1. Characteristics of patients and kidney transplantation.

Patient	Initial diagnosis of the PCN	Sex	Native kidney disease	Dialysis (year)	Number of previous KT	Age at KT	Induction therapy	Initial Maintenance immunosuppression	Acute rejection episodes	chronic grafted dysfunction and chronic rejection	Transplant status	Dialysis post transplant	Outcome
1	Male	diabetic nephropathy	3.6	1	50.4	ATG	Ciclosporine	Imurel Prednisone	0	Failed allograft to cast nephropathy	yes	Dead (disseminated Aspergillosis)	
2	Female	toxic chronic tubulo-interstitial nephropathy	?	58.6	ATG	Ciclosporine	Imurel	0	Dead with a functional graft	no	Dead (hemorrhagic stroke)		
3	Male	unknown	13.7	46.8	ATG	Ciclosporine	Cellcept	Prednisone	1	chronic graft dysfunction	yes	Alive in hemodialysis	
4	Female	Congenital dysplasia	0.9	35.9	ATG	Ciclosporine	Imurel	1	chronic rejection	Failed allograft to chronic graft dysfuncion	yes	Dead (disease progression)	
5	Male	Autosomal Dominant Poly cystic Kidney Disease	1	48.5	?	?	1	Dead with a functional graft	no	Dead (disease progression)			
6	Male	Chronic glomerulopathy	1.5	61.8	Basiliximab	Tacrolimus	Cellcept	Prednisone	0	Failed allograft to cast nephropathy	yes	Dead (pneumoniae)	
7	Female	chronic tubulo-interstitial nephropathy	3	65.5	Basiliximab	Tacrolimus	Cellcept	Prednisone	0	Dead with a functional graft	no	Dead (disease progression)	
8	Male	unknown	5.4	68.9	ATG	Ciclosporine	Cellcept	Prednisone	0	Dead with a functional graft	no	Dead (disease progression)	
9	Male	Autosomal Dominant Poly cystic Kidney Disease	9.1	65.1	Basiliximab	Tacrolimus	Cellcept	Prednisone	0	cast nephropathy	no	DEAD	
10	Male	hypertensive nephropathy	0.7	56.5	Basiliximab	Tacrolimus	Cellcept	Prednisone	0	cast nephropathy	no	Alive	
11	Male	unknown	?	27.2	?	Ciclosporine	Cellcept	Prednisone	0	functional graft	no	Alive	
12	Female	unknown	7.2	65.2	Basiliximab	Sirolimus	Cellcept	Prednisone	0	cast nephropathy	no	Alive	
13	Male	Alport syndrome	23.6	43.2	ATG	Ciclosporine	Cellcept	Prednisone	0	cast nephropathy, Dead with a functional graft	no	Dead (pneumoniae)	
14	Female	Membranous glomerulopathy	7.8	43.3	ATG	Ciclosporine	Cellcept	Prednisone	1	Dead with a functional graft	no	Dead (disease progression)	
15	Male	Chronic glomerulopathy	6	28.6	ATG	Ciclosporine	Imurel	Prednisone	1	Dead with a functional graft	no	Dead (disease progression)	
16	Male	unknown	0.9	43.9	ATG	Ciclosporine	Cellcept	Prednisone	0	Failed allograft to LCDD	yes	Dead (sepsis)	

(Continued)
Patient	Initial diagnosis of the PCN	Sex	Native kidney disease	Dialysis duration (year)	Number of previous KT	Age at KT	Induction therapy	Initial Maintenance immunosuppression	Acute rejection episodes	Chronic graft dysfunction and chronic rejection	Transplant status	Dialysis post transplant	Outcome
17	SMM	Male	AA Amyloidosis	15	71.5	Basiliximab Tacrolimus Cellcept Prednisone	1	functionnal graft	no	Alive			
18	SMM	Male	Kimura's disease	13.3	1	41	ATG	Tacrolimus Cellcept Prednisone	1	chronic rejection	Failed allograft to chronic rejection	yes	Alive
19	SMM	Male	membranoproliferative glomerulopathy	1.5	1	46.7	ATG	Tacrolimus Cellcept Prednisone	0	chronic rejection	functionnal graft	no	Alive
20	SMM + Amyloidosis	Female	chronic tubulo-interstitial nephropathy	?	2	47	ATG	Tacrolimus Cellcept Prednisone	0	Renal Amyloidosis. Dead with a functionnal graft	no	Dead (cardiac failure)	
21	Plasmacytoma	Male	Chronic glomerulopathy	2.3	48	ATG	Ciclosporine Cellcept Prednisone	1	functionnal graft	no	Alive		
22	Plasmacytoma	Female	vesicoureteral reflux	?	35.2	?	?	Dead with a functionnal graft	0	Dead (Disease progression)	no	Dead (Disease progression)	

MM: Multiple myeloma. SMM: Smoldering myeloma. KT: kidney transplantation. ATG: anti-thymocyte globulin.

https://doi.org/10.1371/journal.pone.0179406.t001
opportunistic infections (one pulmonary aspergillosis and one candidemia). During the fol-
low-up, the most frequent bacterial infections were pneumonia and graft pyelonephritis. The
annual bacterial infection rate was significantly higher after the diagnosis of PCN, rising from
0.16 (±0.37) to 1.09 (±1.30) (p = 0.0005). Most of the bacterial and fungal infections occurred
during treatments of PCNs (36/46, 78%), including 4 of them directly related to autologous
stem cell transplant (ASCT). Data regarding bacterial infections are presented in Fig 2.
Conversely, the annual viral infection rate was not significantly different before and after
the occurrence of PCN (0.09 versus 0.11, p = 0.83). No BK virus associated-nephropathy was
observed. EBV receiver serology was positive in 16/16 patients and donor serology was positive
in 10/13 patients. Only three patients had EBV replication in blood during the follow-up,
including the two patients with plasmacytomas. In situ hybridization using EBV-encoded
RNA (EBER) was tested on the tumoral proliferation (two plasmacytomas and one bone mar-
row biopsy) in these three patients, and was only positive in the patient with multiple plasma-
cytomas localized to the gut, sternum and brain.

Impact on allograft rejections. Eight patients had an acute rejection before the diagnosis
of PCN versus none after (36% versus 0%, p = 0.004). Chronic graft dysfunction occurred in
four patients, including three biopsy-proven chronic allograft rejections, and was responsible
for graft loss in two patients.

Immunosuppressive treatment after PCN diagnosis. Except in one patient who returned
to hemodialysis, maintenance therapy was reduced in 11 patients (50%) because of severe infec-
tions (7/11) or chemotherapy (4/11). The choice to reduce the maintenance therapy in case of severe infections was always taken during or after severe bacterial, viral or fungal infections, and not preventively. The reduction of maintenance therapy alone was never chosen as an option to treat PCNs. The therapeutic adaptations were highly variable. During the first year after diagnosis, three patients had an overall decrease in their immunosuppressive doses, calcineurin inhibitors were replaced by sirolimus in four patients, and mycophenolate mofetil was stopped in one patient. During follow-up, calcineurin inhibitors were stopped in one patient, and two patients had all immunosuppressive treatments discontinued because of severe infections.

Treatment(s) for PCN. The 16 patients with symptomatic MM (12 initial MM and four
SMM evolving to MM) were treated. One patient received only dexamethasone, and severe
Patient	Initial diagnosis of the PCN	Age at PCN diagnosis	Time of diagnosis (in year)	Time after KT (in month)	Paraprotein prior to KT	Paraprotein after KT	Paraprotein at MM diagnosis	Medullary plasmacytosis at diagnosis	M Spike (g/L)	Free light chain (mg/L)	Bence Jones proteinuria	Related Organ or Tissue Impairment (ROTI) at diagnosis	New type of ROTI during follow up	Related plasma-cell related disorders
1	MM	51.6	1991	15	no	no	IgG kappa	13%	33	yes	Hypercalcemia, Bone, renal insufficiency	Bone, anemia		
2	MM	67.6	1997	107	no	IgG lambda	IgG lambda	*	35	*	Bone with medullar compression	Bone, renal insufficiency		
3	MM	53	2005	74	no	no	IgG kappa	13%	20.6	*	Bone, anemia			
4	MM	55	2006	229	no	IgG kappa	IgG kappa	51%	59	yes	Bone, anemia, renal insufficiency			
5	MM	56.8	2006	98	no	no	kappa	*	*	*	Bone			
6	MM	62.2	2006	5	IgA kappa	IgG kappa	IgG kappa	70%	54	yes	Hypercalcemia, Bone, renal insufficiency	Bone, anemia		
7	MM	66.6	2010	23	IgG kappa	IgG kappa	IgG kappa	20%	10	no	Bone			
8	MM	72.3	2010	16	IgG lambda	IgG lambda	14%	9.7	no	Bone, anemia	Bone, renal insufficiency			
9	MM	68.5	2012	40	no	no	lambda	32%	1090	yes	Anemia, renal insufficiency			
10	MM	57.4	2013	41	IgA lambda	lambda	53%	5200	yes	Hypercalcemia, Bone, renal insufficiency				
11	MM	41.8	2013	10	no	IgG lambda	IgG lambda	Bone marrow and plasmacytoma biopsies	59.6	no	Bone	Huge iliac plasmacytoma		
12	MM	66.9	2013	174	IgG lambda	IgG lambda	20%	14	yes	Renal insufficiency	Bone, anemia, renal insufficiency			
13	SMM	43.3	1996	20	IgG lambda	IgG lambda	13%	30	no	Bone, anemia, renal insufficiency	Bone, renal insufficiency			
14	SMM	48.2	2004	2	IgG kappa	IgG kappa	15%	14.7	no	Plasma cell leukemia and anemia	Bone, renal insufficiency			
15	SMM	47	2009	59	no	no	IgG kappa	10%	*	no	Bone, anemia, Frontal plasmacytoma			
16	SMM +LCDD	45.9	2010	222	no	no	kappa	16%	964	yes	Renal insufficiency	Bone, anemia		
17	SMM	71.5	2010	2	no	no	kappa	11%	1000	yes	Bone			
18	SMM	49	2011	97	no	IgA lambda	IgG lambda	*	34	yes	hyperviscosity			
19	SMM + Amyloidosis	59	2011	148	IgG lambda	IgG lambda	15%	13	no	no	Cardiac, liver and renal amyloidosis			
20	SMM + Amyloidosis	53.4	2012	76	no	no	kappa	11%	62	yes	Cardiac, liver and renal amyloidosis			
21	Plasmacytoma	61.7	2004	164	IgG lambda	0%	4	no	no	no	recurrent costal and vertebral plasmacytomas			
22	Plasmacytoma	56.2	2013	253	no	IgG lambda	IgG lambda	0%	13	no	recurrent biliary, digestive and cerebral plasmacytomas			

PCN: plasma-cell neoplasia. MM: Multiple Myeloma. SMM: Smoldering Myeloma. LCDD: Light-Chain Deposition Disease. M-Spike: Monoclonal Spike. * = unknown.

https:// doi.org/10.1371/journal.pone.0179406.t002
infection led rapidly to death before further treatment could be applied. Three patients diagnosed before 1998 were treated with melphalan-prednisone; two of the patients died shortly thereafter. Bortezomib regimen treatments were used as first-line in 10 patients. Five had no relapse at the end of follow-up, and were all alive at the end of the study, with a median follow-up of 15 months (range 11–41). Relapsing patients all died after other second-, third- or fourth-line chemotherapies, with a median survival of 32 months (range 14–98).

Among 13 patients under the age of 65 eligible for ASCT, four received this treatment after first-line chemotherapy, and one after two lines of chemotherapy. Four patients died before they received a transplant. ASCT was probably contraindicated in one patient because of graft failure. Three patients did not receive ASCT for unknown reasons. Treatments, responses and outcomes are presented in Table 3.

Outcome of patients and kidney grafts. Thirteen patients (59%) died during follow-up. Seven patients died because of severe bacterial or fungal infection, occurring during treatments for multiple myeloma in six of them, and before initiation of treatment in one patient. Four patients died because of disease progression after two or more regimen treatments. The patient with AL amyloidosis died from cardiac failure. The last death (from a stroke) was not related to PCN.

Serum creatinine was higher at the time of diagnosis of PCN than before, increasing from 135.7 (±71.6) to 195.9 (±123.7) μmol/l (p = 0.008). This impact on graft function was explained by the specific PCN-related kidney graft failure already described. Of the 15 grafts lost (68% patients), 12 (80%) were caused by PCN. Nine graft losses were linked to the patient’s death, including eight deaths directly attributable to PCN. Four graft losses were associated with specific kidney graft failure: two because of LCDD, respectively 4.4 and 1.0 years after diagnosis, and two because of cast nephropathy immediately after diagnosis. Only three graft losses were unrelated to PCN, two because of chronic graft dysfunction, respectively 9.6 and 13.7 years after renal transplantation, and one from death due to a stroke. Median progression free survival after the first treatment for PCN (20/22 patients) was 14 months [2–91]. Median graft and patient survival after KT were equal at 156.9 months. Median graft survival after the diagnosis of PCN was 31.7 months and median patient survival after the diagnosis of PCN was 49.5 months (Fig 3). Removing the three patients diagnosed before 2002 treated with Melphalan regimens gave similar results: median graft and patient survival after KT were equal at 157.3 months, median graft survival after the diagnosis of PCN was 21.1 months, and median patient survival after the diagnosis of PCN was 47.4 months (S1 Fig).

Fig 4 shows the evolution of serum creatinine after KT, combined with the occurrence of asymptomatic or symptomatic PCN, hemodialysis and death for each patient.
Patient	Date of diagnosis	Initial/Final diagnosis	1st treatment	Response to the 1st treatment	Progression free survival after the first treatment (in months)	2nd treatment	Response to the 2nd treatment	Progression free survival after the second treatment (in months)	3rd treatment	Response to the 3rd treatment	Progression free survival after the third treatment (in months)	4th treatment	Response to the 4th treatment	Progression free survival after the fourth treatment (in months)	Outcome	Cause of death	Follow up from diagnosis, in months	Follow up when symptomatic MM (if different)
1	1991	MM	MP	PR	2	Dead	Progressive disease	26	RD	SVPR	Alive		PR	Alive	Died	Aspergillosis during treatment	3	49
2	1997	MM	MP + Radiotherapy	PR	49	Dead	Progressive disease	26	RD	SD	Alive		PR	Alive	Died	Stroke	49	49
3	2005	MM	TD	PR	91	Dead	Progressive disease	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
4	2006	MM	BD + plasmacytoma	BMT + ASCT	VGPR	Dead	Progressive disease	Alive		Alive	Alive		PR	Alive	Died	96	26	48
5	2006	MM	CD + plasmacytoma	PR	14	BD	progressive disease	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
6	2006	MM	Dexamethasone	unrated	20	RD	Progressive disease	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
7	2006	MM	VMP	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	12	48
8	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	12	26	26
9	2006	MM	VTD	PR	14	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
10	2006	MM	VMP	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
11	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
12	2006	MM	VTD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
13	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
14	2006	MM	VTD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Progressive disease	14	48
15	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Sepsis during treatment and progressive disease	32	48
16	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Sepsis during treatment and progressive disease	48	48
17	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Sepsis during treatment and progressive disease	48	48
18	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Sepsis during treatment and progressive disease	48	48
19	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Sepsis during treatment and progressive disease	48	48
20	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Sepsis during treatment and progressive disease	48	48
21	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Sepsis during treatment and progressive disease	48	48
22	2006	MM	VCD	PR	12	RD	Progression free Survival	Alive		Alive	Alive		PR	Alive	Died	Sepsis during treatment and progressive disease	48	48

PCN: plasma-cell neoplasia. MM: multiple myeloma. SMM: smoldering myeloma. MP: melphalan prednisone. TD: thalidomide dexamethasone. VD: velcade dexamethasone. ASCT: autologous stem cell transplantation. VMP: melphalan prednisone, VCD: velcade cyclophosphamide dexamethasone. VTD: velcade thalidomide dexamethasone. RD: revlimid dexamethasone. VCD: melphalan prednisone, VTD: melphalan dexamethasone, VMC: melphalan cytarabine. ICE: ifosfamide cytarabine etoposide. PR: partial response. SD: stable disease. VGPR: very good partial response. CR: complete response.

https://doi.org/10.1371/journal.pone.0179406.t003
Discussion

PCNs in KT are rare. The prevalence calculated in our study was analogous to the one reported in the United States [8], around 1/1000. In the present study, MM occurred at any time after KT, and the incidence seems to be steady over time post-transplantation. Plasmacytoma

![Fig 3. Graft and patient survival. A: Progression free survival (in months) after the first treatment for PCN. Median progression free survival (20/22 patients) was 14 months. B: Survival (in months) from kidney transplantation (KT) of patients (solid) and grafts (dotted). Median graft survival after KT was 156.9 and median patient survival after KT was 156.9 months. C: Survival (in months) from the time of diagnosis of PCN of patients (solid) and grafts (dotted). Median graft and patient survival after diagnosis of PCN was 31.7 months and 49.4 months, respectively. PCN: plasma cell neoplasia.](https://doi.org/10.1371/journal.pone.0179406.g003)

Fig 3. Graft and patient survival. A: Progression free survival (in months) after the first treatment for PCN. Median progression free survival (20/22 patients) was 14 months. B: Survival (in months) from kidney transplantation (KT) of patients (solid) and grafts (dotted). Median graft survival after KT was 156.9 and median patient survival after KT was 156.9 months. C: Survival (in months) from the time of diagnosis of PCN of patients (solid) and grafts (dotted). Median graft and patient survival after diagnosis of PCN was 31.7 months and 49.4 months, respectively. PCN: plasma cell neoplasia.

![Fig 4. Evolution of serum creatinine after kidney transplantation, combined with the occurrence of asymptomatic or symptomatic PCN, hemodialysis and death for each patient.](https://doi.org/10.1371/journal.pone.0179406.g004)

Fig 4. Evolution of serum creatinine after kidney transplantation, combined with the occurrence of asymptomatic or symptomatic PCN, hemodialysis and death for each patient. Evolution of serum creatinine (μmol/l) over time (in years) after kidney transplantation, for each patient. Patients were classified in six groups, and approximate time of diagnosis of SMM (smoldering multiple myeloma), symptomatic PCN (plasma-cell neoplasia), hemodialysis and death were added. MM: Multiple Myeloma. MGRS: Monoclonal Gammapathy of Renal Significance. LCDD: Light Chain Deposition Disease.
Plasma cell neoplasia after kidney transplantation

develops later in the post-transplantation period. Although rare, PCN after KT occurs in younger patients compared to the general population, in which the median age of PCN at diagnosis is over 70 [5]. This may be mostly due to the fact that KT patients belong to a selected population, i.e., in France the median age is 55 years. Older patients, who are at risk of developing PCN, are less often transplanted. Engels et al.[8] made the same observation in their epidemiologic study in the United States regarding PCN after solid organ transplantation.

In the general population, MGUS is a premalignant plasma cell proliferative disorder with a constant risk of progression to MM. In KT, monoclonal gammopathy is 10 times more frequent than in the general population, but is not associated with a high occurrence of PCN [33–36]. Most of these MGUS are transient, and probably reflect the temporary loss of control of the B-cell lymphoid population secondary to immunosuppressive therapy [33,34,37]. There is probably no risk of these particular transient MGUS, which differ from classic MGUS, evolving to MM.

The fact that classical MGUS was often present before KT in our study does not argue in favor of PCN being classified as PTLD, but raises the question of a pre-transplant lymphoproliferative disorder for some of the cases. Onset kinetics of PCN was not influenced by presence of MGUS before KT; however, presence of light chain was not systematically screened before KT. Although it is not given in the KDIGO recommendations, such screening could be more systematic, before and after KT. At the moment, development of a clonal plasma cell may occur either before or after KT, and it is not clear that KT influences the onset of MM.

It should be noted that two patients with plasmacytomas had no MGUS before KT, developed their disease more than 10 years after KT, and thus had definitive PTLD.

A virus or immunosuppression may favor the onset of PCN after KT. The two patients with plasmacytomas had EBV replication in blood, with evidence of EBV replication in situ in one of them, and published data strongly suggest a link between plasmacytoma and EBV infection [8,14–16,18,19,21,24,38,39]. The role of EBV in onset of myeloma is less clear, and this also suggests that plasmacytoma and myeloma may have different courses of pathophysiological development.

Immunosuppressive therapy could also accelerate the development of the hematologic disease. In post-transplant lymphomas, immunosuppressive depletive treatments lead to the loss of control of the B-cell population and clearly favor the onset of hemopathy [40]. Conversely, immunosuppressive therapy may have a beneficial effect. For example, the inhibition of the mammalian target of rapaymycin/Akt pathway has been associated with an anti-tumor effect in MM cells treated with pomalidomide [41]. Mycophenolate mofetil has an anti-proliferative effect on MM in vitro [42], and cyclosporine may sensitize MMs tumoral cells to chemotherapy in vitro [43]. Nevertheless, these results are not sufficient to form a conclusion about the effects of immunosuppressive therapy on PCN in vivo in KT. Furthermore, cyclosporine had no additional effect when it was combined with vincristine doxorubicin and dexamethasone in a phase II/III clinical trial in patients with advanced refractory MM [44].

MM occurring after KT shares the same clinical characteristics as MM in the general population. SMMs often become symptomatic MMs. Bone lesions, anemia, hypercalcemia and kidney failure are the common manifestations in renal transplant patients. Progression to plasma cell leukemia was even diagnosed in one patient. The kidney graft was a potential target of the hematologic disease as it would be for native kidneys, and presented the same histological lesions, such as cast nephropathy, LCDD or AL amyloidosis.

The patients in the present study showed a substantial increase in the number of bacterial infections after the diagnosis of PCN, especially during treatments. This suggests that patients were highly immunocompromised. On the other hand, acute rejections prior to diagnosis of PCN were frequent. This suggests that immune stimulation plays a role in the development of
disease, or enhances the potentially harmful nature of the immunosuppressive therapy which was probably increased after the rejection episode. Conversely, no acute rejection occurred after the diagnosis of PCN, despite a decrease of immunosuppressive therapy in half of patients. The immunosuppressive effects of PCN certainly decrease the allogeneic response of the transplanted kidney as it reduces the response to bacterial attacks. All these facts suggest that immunosuppressive treatments should be drastically and preventively reduced in KT patients with symptomatic PCN, and even be discontinued in the case of severe infectious complications. The risk of rejection is indeed much lower than the risk of infection and most of these patients are treated with high doses of corticosteroids and bortezomib, also used in the treatment of transplant rejection.

Contrary to the recent study of seven patients by Safadi et al. [29], the present findings suggest that KT patients die early from PCN. Median progression free survival was low at 14 months, compared to 21 months in the classical association of bortezomib plus dexamethasone for the frontline treatment of multiple myeloma [45]. Median survival is almost twice as low as the current median survival in the general population [30]. This increased mortality is not explained by the long period of inclusions, because it remains when the three patients treated with melphalan are removed from the analysis. Severe bacterial or fungal infections occurring during treatments for PCNs were the principal cause of death. The conjunction of maintenance therapy for kidney graft and treatments for PCN may favor the risk of lethal infections in these patients. The control of PCN by auto-immunity may also have been compromised by the immunosuppressive therapy. In our study, PCN also had a huge impact on graft outcomes, at the time of diagnosis because of specific kidney failure, and later as a cause of the majority of graft losses. Survival of graft and patients was indeed very similar, closely dependent on the hematologic disease.

The treatments were heterogeneous, and reflected the rapid evolution of chemotherapies during the last twenty years. From 2004, the principal first-line treatment was a combination of chemotherapy using bortezomib and dexamethasone, with or without another agent (primarily, cyclophosphamide or thalidomide). MM occurring after KT should be treated with the same rigor as in the general population, according to the most recent guidelines. In particular, ASCT was not systematically proposed for all eligible patients; this treatment should be more widely applied.

There are several limitations to this study. It was retrospective in nature, and because of the rarity of the disease patients were included over a long period of time. Because hematological disease differed depending on whether it was MM, SMM or plasmacytoma, patients were heterogeneous. Immunosuppressive treatments and chemotherapy were equally diverse, and it was not possible to precisely analyze their potential multiple effects on the evolution of PCN. Further prospective studies are needed to refine the epidemiology and outcome of these patients, and to explore ways of improving the prognosis. Despite these limitations, the present study is to our knowledge the largest case series of descriptive PCN after KT, and already provides useful findings.

Supporting information

S1 Fig. Graft and patient survival after 2002. The three patients diagnosed before 2002 treated with Melphalan regimen were removed from the analysis. A: Survival (in months) from kidney transplantation (KT) of patients (solid) and grafts (dotted). Median graft survival after KT was 157.3 and median patient survival after KT was 157.3 months. B: Survival (in months) from the time of diagnosis of PCN of patients (solid) and grafts (dotted). Median graft and patient survival after diagnosis of PCN was 21.1 months and 47.4 months, respectively. PCN: plasma cell neoplasia.
Acknowledgments
We thank Professor Bertrand Arnulf for his constructive discussions in this project.

Author Contributions
Conceptualization: JP RK ER.
Formal analysis: RK.
Investigation: RK HF TM JD NK KM TB AEH AG CC DD JS BS DV RS.
Writing – original draft: RK.
Writing – review & editing: ER JP.

References
1. Penn I. Post-transplant malignancy: the role of immunosuppression. Drug Saf. 2000 Aug; 23(2):101–13. PMID: 10945373
2. Singavi AK, Harrington AM, Fenske TS. Post-transplant lymphoproliferative disorders. Cancer Treat Res. 2015; 165:305–27. https://doi.org/10.1007/978-3-319-13150-4_13 PMID: 25655616
3. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009 May 28; 113(22):5412–7. https://doi.org/10.1182/blood-2008-12-194241 PMID: 19179464
4. Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood. 2009 May 28; 113(22):5418–22. https://doi.org/10.1182/blood-2008-12-195008 PMID: 19234139
5. Faiman B. Myeloma genetics and genomics: practice implications and future directions. Clin Lymphoma Myeloma Leuk. 2014 Dec; 14(6):436–40. https://doi.org/10.1016/j.clml.2014.07.008 PMID: 25127056
6. Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 2012 Oct; 122(10):3456–63. https://doi.org/10.1172/JCI61188 PMID: 23023717
7. Caillard S, Porcher R, Provot F, Dantal J, Choquet S, Durrbach A, et al. Post-transplantation lymphoproliferative disorder after kidney transplantation: report of a nationwide French registry and the development of a new prognostic score. J Clin Oncol Off J Am Soc Clin Oncol. 2013 Apr 1; 31(10):1302–9.
8. Engels EA, Clarke CA, Pfeiffer RM, Lynch CF, Weisenburger DD, Gibson TM, et al. Plasma cell neoplasms in US solid organ transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2013 Jun; 13(6):1523–32.
9. Shustik C, Jamison BM, Altieri C, Scherer S, Loertscher R. A solitary plasmacytoma of donor origin arising 14 years after kidney allotransplantation. Br J Haematol. 1995 Sep; 91(1):167–8. PMID: 7577626
10. Grey M, Townsend N, Lappin D, Roberts I, Stanford R, Sheldon M, et al. IgA myeloma of donor origin arising 7 years after allogeneic renal transplant. Br J Haematol. 2000 Mar; 108(3):592–4. PMID: 10759718
11. Meehan SM, Domer P, Josephson M, Donoghue M, Sadhu A, Ho LT, et al. The clinical and pathologic implications of plasmacytic infiltrates in percutaneous renal allograft biopsies. Hum Pathol. 2001 Feb; 32(2):205–15. https://doi.org/10.1053/hupa.2001.21574 PMID: 11230708
12. Peri N, Kussick S, Bakhthavatsalam R, Mitsumori L, Dighe M. Postrenal transplant non-EBV multiple myeloma of donor origin. Am J Transplant Off J Am Soc Transpl Am Soc Transpl Surg. 2006 Feb; 6(2):419–22.
13. Kuppachi S, Naina HV, Self S, Fenning R. Plasmacytoma-like post-transplantation lymphoproliferative disorder confined to the renal allograft: a case report. Transplant Proc. 2013 Sep; 45(7):2791–4. https://doi.org/10.1016/j.transproceed.2013.01.065 PMID: 24034051
14. Papadaki HA, Stefanaki K, Kanavaros P, Katonis P, Papastathi H, Valatas W, et al. Epstein-Barr virus-associated high-grade anaplastic plasmacytoma in a renal transplant patient. Leuk Lymphoma. 2000 Jan; 36(3–4):411–5. https://doi.org/10.3109/10428190009148863 PMID: 10674914
15. Carbonnelle A, Mahé E, Morelon E, Varet B, Kreis H, Brousse N, et al. [EBV-associated cutaneous plasmacytoma in a renal transplant patient]. Ann Dermatol Venereol. 2004 Dec; 131(12):1081–4. PMID: 15692443
16. Trappe R, Zimmermann H, Fink S, Reinke P, Dreyling M, Pascher A, et al. Plasmacytoma-like post-transplant lymphoproliferative disorder, a rare subtype of monomorphic B-cell post-transplant lymphoproliferation, is associated with a favorable outcome in localized as well as in advanced disease: a prospective analysis of 8 cases. Haematologica. 2011 Jul; 96(7):1067–71. https://doi.org/10.3324/haematol.2010.039214 PMID: 21719885

17. Po C, Fulton J, Domingo IV, Bloom R, Naijar D, Badosa F, et al. Intramedullary plasmacytoma in an unusual location in a renal transplant patient. Am J Kidney Dis Off J Natl Kidney Found. 1996 Dec; 28(6):904–6.

18. Rees L, Thomas A, Amlot PL. Disappearance of an Epstein-Barr virus-positive post-transplant plasmacytoma with reduction of immunosuppression. Lancet Lond Engl. 1998 Sep S; 352(9130):789.

19. Au WY, Lie AKW, Chan EC, Pang A, Ma SK, Choy C, et al. Treatment of postrenal transplantation lymphoproliferative disease manifesting as plasmacytoma with normmyeloablative hematopoietic stem cell transplantation from the same kidney donor. Am J Hematol. 2003 Dec; 74(4):283–6. https://doi.org/10.1002/ajh.10417 PMID: 14635212

20. Syed SP, Chase DR, Wang J. Pathologic quiz case: a 63-year-old renal transplant recipient with a sore throat. Posttransplantation lymphoproliferative disorder, plasmacytoma type, with prominent Russell body formation. Arch Pathol Lab Med. 2004 Jun; 128(6):e76–8. https://doi.org/10.1043/1543-2165(2004)128<0076:PHQCMR>2.0.CO;2 PMID: 15163216

21. Gupta A, Shenton BK, Gok MA, Wilson C, Asher J, Hide G, et al. Plasma cell myeloma variant of post-transplantation lymphoproliferative disorder in a solid organ transplant recipient: a case report. Nephrol Dial Transplant Off Publ Eur Dial Transspol—Eur Ren Assoc. 2004 Dec; 19(12):3186–9.

22. Takahashi R, Nakano S, Namura K, Yamada N, Uchida R, Fuchida S, et al. Plasmacytoma of the urinary bladder in a renal transplant recipient. Int J Hematol. 2005 Apr; 81(3):255–7. https://doi.org/10.1532/IJH.2004.100108 PMID: 15814337

23. Komrokji RS, Oliva JL, Zand M, Felger R, Abboud CN. Mini-BEAM and autologous hematopoietic stem cell transplant for treatment of post-transplant lymphoproliferative disorders. Am J Hematol. 2005 Jul; 79(3):211–5. https://doi.org/10.1002/ajh.20334 PMID: 15981226

24. Richendollar BG, Hsi ED, Cook JR. Extramedullary plasmacytoma-like posttransplantation lymphoproliferative disorders: clinical and pathologic features. Am J Clin Pathol. 2009 Oct; 132(4):581–8. https://doi.org/10.1309/AUCPX707IHETNBRL PMID: 19762536

25. Aparicio M, de Precigout V, Reiffers J, Deminiere C, Morel D, Merville P, et al. Multiple myeloma and AL amyloidosis in a renal transplant recipient. Nephron. 1989; 53(4):373–5. PMID: 2601805

26. Brown JH, Newstead CG, Jos V, Lucas GS, Johnson RW. Multiple myeloma in a renal transplant recipient. Nephrol Dial Transplant Off Publ Eur Dial Transspol—Eur Ren Assoc. 1992; 7(5):447–9.

27. Tanenbaum ND, Howell DN, Middleton JP, Spurrey RF. Lambda light chain deposition disease in a renal allograft. Transplant Proc. 2005 Dec; 37(10):4289–92. https://doi.org/10.1016/j.transproceed.2005.10.030 PMID: 16387099

28. Taneda S, Honda K, Horita S, Koyama I, Teraoka S, Oda H, et al. Light chain deposition disease after renal transplantation. Am J Kidney Dis Off J Natl Kidney Found. 2008 Sep; 52(3):621–5.

29. Safadi S, Dispenzieri A, Amer H, Gertz MA, Rajkumar SV, Hayman SR, et al. Multiple myeloma after kidney transplantation from the same kidney donor. Am J Hematol. 2003 Dec; 74(4):283–6. https://doi.org/10.1002/ajh.10417 PMID: 14635212

30. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008 Mar 1; 111(5):2516–20. https://doi.org/10.1182/blood-2007-10-116129 PMID: 17975015

31. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M-V, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014 Nov; 15(12):e538–48. https://doi.org/10.1016/S1470-2045(14)70442-5 PMID: 25439868

32. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016 Aug; 17(8):e338–48. https://doi.org/10.1016/S1470-2045(16)30206-6 PMID: 27511159

33. Passweg J, Thiel G, Bock HA. Monoclonal gammopathy after intense induction immunosuppression in renal transplant patients. Nephrol Dial Transplant Off Publ Eur Dial Transspol—Eur Ren Assoc. 1996 Dec; 11(12):2461–5.

34. Radji J, Valentijn RM, Haaijman JJ, Paul LC. Monoclonal gammapathies in patients undergoing immunosuppressive treatment after renal transplantation. Clin Immunol Immunopathol. 1985 Oct; 37(1):98–102. PMID: 3926219

35. Naina HVK, Harris S, Dispenzieri A, Cosio FG, Habermann TM, Stegall MD, et al. Long-term follow-up of patients with monoclonal gammapathy of undetermined significance after kidney transplantation. Am J Nephrol. 2012; 35(4):365–71. https://doi.org/10.1159/000337482 PMID: 22473253
36. Cuéllar-García C, Sevillaño Ruiz-Mateos C, Mazuecos Bianca MA, Narvaez Mejia C, Fernandez Valle MC, Martín Reina V, et al. Follow-up monoclonal gammopathy of undetermined significance in kidney transplant. Transplant Proc. 2015 Feb; 47(1):78–80. https://doi.org/10.1016/j.transproceed.2014.11.021 PMID: 25645776

37. Bladé J, Rosiñol L, Cibeira MT, de Larrea CF. Pathogenesis and progression of monoclonal gammopathy of undetermined significance. Leukemia. 2008 Sep; 22(9):1651–7. https://doi.org/10.1038/leu.2008.203 PMID: 18668131

38. Ancín I, Sarrá J, Peris J, Romagosa V, Domingo-Claro A, Grañena A. Demonstration of Epstein-Barr virus in a case of multiple myeloma after renal transplantation. Haematologica. 2000 Jul; 85(7):773–4. PMID: 10897139

39. Ninan MJ, Datta YH. Post-transplant lymphoproliferative disorder presenting as multiple myeloma. Am J Hematol. 2010 Aug; 85(8):635–7. https://doi.org/10.1002/ajh.21762 PMID: 20578201

40. Morscio J, Dierickx D, Tousseyn T. Molecular pathogenesis of B-cell posttransplant lymphoproliferative disorder: what do we know so far? Clin Dev Immunol. 2013; 2013:150835. https://doi.org/10.1155/2013/150835 PMID: 23690819

41. Guglielmelli T, Giugliano E, Brunetto V, Rapa I, Cappia S, Giornelli J, et al. mTOR pathway activation in multiple myeloma cell lines and primary tumour cells: pomalidomide enhances cytoplasmic-nuclear shuttling of mTOR protein. Oncoscience. 2015; 2(4):382–94. https://doi.org/10.18632/oncoscience.148 PMID: 26097872

42. Takebe N, Cheng X, Fandy TE, Srivastava RK, Wu S, Shankar S, et al. IMP dehydrogenase inhibitor mycophenolate mofetil induces caspase-dependent apoptosis and cell cycle inhibition in multiple myeloma cells. Mol Cancer Ther. 2006 Feb; 5(2):457–66. https://doi.org/10.1158/1535-7163.MCT-05-0340 PMID: 16505121

43. Pilanski LM, Yatscoff RW, Murphy GF, Belch AR. Drug resistance in multiple myeloma: cyclosporin A analogues and their metabolites as potential chemosensitizers. Leukemia. 1998 Apr; 12(4):505–9. PMID: 9557608

44. Sonneveld P, Suciu S, Weijerman P, Bekac M, Neuwirtova R, Solbu G, et al. Cyclosporin A combined with vincristine, doxorubicin and dexamethasone (VAD) compared with VAD alone in patients with advanced refractory multiple myeloma: an EORTC-HOvON randomized phase III study (06914). Br J Haematol. 2001 Dec; 115(4):895–902. PMID: 11843823

45. Jagannath S, Durie BG, Wolf JL, Camacho ES, Irwin D, Lutzky J, et al. Extended follow-up of a phase 2 trial of bortezomib alone and in combination with dexamethasone for the frontline treatment of multiple myeloma. Br J Haematol. 2009 Sep; 146(6):619–26. https://doi.org/10.1111/j.1365-2141.2009.07803.x PMID: 19622094