"HIDDEN" SEYFERT 2 GALAXIES IN THE CHANDRA DEEP FIELD NORTH

CAROLIN N. CARDAMONE and EDWARD C. MORAN
Astronomy Department, Wesleyan University, Middletown, CT 06459, USA

AND

LAURA E. KAY
Department of Physics and Astronomy, Barnard College, 3009 Broadway, New York, NY 10027, USA

Received 2006 November 8; accepted 2007 June 11

Abstract

We have compared the X-ray-to-optical flux ratios (F_X/F_{opt}) of absorbed active galactic nuclei (AGNs) in the Chandra Deep Field North (CDF-N) with those of nearby, optically classified Seyfert 2 galaxies. The comparison provides an opportunity to explore the extent to which the local population of absorbed AGNs can account for the properties of the distant, spectroscopically ambiguous sources that produce the hard X-ray background. Our nearby sample consists of 38 objects that well represent the local Seyfert 2 luminosity function. Integrated $UBVRI$ photometry and broadband X-ray observations are presented. Using these data, we have simulated the F_X/F_{opt} ratios that local Seyfert 2s would exhibit if they were observed in the redshift range $0.2 \leq z \leq 1.3$ as part of the CDF-N. In the simulations we account for the effects of redshift on flux measurements in fixed observed-frame bands and the way the luminosity function of a given population is sampled in a flux-limited survey like the CDF-N. Overall, we find excellent agreement between our simulations and the observed distribution of F_X/F_{opt} ratios for absorbed AGNs in the CDF-N. Our analysis has thus failed to reveal any physical differences between the local population of Seyfert 2s and CDF-N sources with similar X-ray properties. These results support the hypothesis that the nuclear emission lines of many distant hard X-ray galaxies are hidden in ground-based spectra due to a combination of observational effects: signal-to-noise ratio, wavelength coverage, and dilution by host-galaxy light.

Key words: galaxies: Seyfert — X-rays: diffuse background — X-rays: galaxies

1. INTRODUCTION

Broadband X-ray observations have revealed that many active galactic nuclei (AGNs) are heavily obscured by dense gas and dust located in their host galaxies (e.g., Awaki et al. 1991). The selective absorption caused by the obscuring medium flattens (or inverts) the intrinsically steep X-ray spectra of these AGNs, making them attractive candidates for the origin of the hard (2–10 keV) X-ray background (XRB; Setti & Woltjer 1989). Detailed models based on the observed properties of nearby AGNs have demonstrated that a distant population of obscured objects is indeed capable of accounting for the spectrum and intensity of the hard XRB (Comastri et al. 1995; Gilli et al. 2001; Moran et al. 2001). Consistent with this expectation, the X-ray colors of sources detected in extremely deep exposures with the Chandra X-Ray Observatory, which have resolved the majority of the hard XRB, indicate that obscured AGNs are the most prevalent sources at faint hard X-ray fluxes (Alexander et al. 2003).

Locally, the vast majority of obscured AGNs have the optical spectra of Seyfert 2 galaxies, which are characterized by strong, narrow emission lines. Spectroscopy of faint, hard Chandra sources should, therefore, provide a straightforward means of confirming the Seyfert 2 model for the XRB. But a different picture has emerged: follow-up studies of distant Chandra sources have instead revealed a significant population of apparently normal galaxies whose starlight-dominated optical spectra have only weak emission lines, if any (e.g., Mushotzky et al. 2000; Barger et al. 2001a, 2001b, 2002; Szokoly et al. 2004). Many such sources have the X-ray properties of Seyfert 2 galaxies, but they seem to lack the corresponding optical emission line signatures.

There are several viable explanations for the normal optical appearance of distant absorbed AGNs. One possibility is that moderately luminous AGNs in the past tend to be more heavily obscured than similar objects in the local universe (Barger et al. 2001b, 2005). A higher covering factor of the nuclear obscuration would reduce the illumination of the narrow emission line region by the ionizing continuum, resulting in weaker narrow lines. Alternatively, extranuclear dust may play a greater role in obscuring our view of the narrow emission line regions of distant objects (Rigby et al. 2006). Yet another possibility is that distant AGNs may accrete predominantly in a radiatively inefficient mode, whereby they produce significant hard X-ray emission but far less of the soft X-ray and UV flux that is chiefly responsible for the ionization of the narrow-line gas (Yuan & Narayan 2004).

As an alternative to these scenarios, Moran et al. (2002) have suggested that the limitations of ground-based observing may be the culprit. The small angular sizes of distant sources cause their ground-based spectra to be dominated by light from stars and/or $H\alpha$ regions in the host galaxy, which can mask the emission lines associated with their nuclear activity. Integrated spectra of local Seyfert 2s confirm that host-galaxy dilution would alter many of their spectroscopic classifications if they were observed at modest redshifts with ground-based facilities (Moran et al. 2002). In addition, detailed investigations have shown that some optically normal X-ray galaxies are indeed AGNs overwhelmed by host-galaxy emission (Severgnini et al. 2003). Still, the extent to which this dilution affects the demographics of the distant X-ray galaxy population has yet to be demonstrated. Ultimately, a determination of whether the optically normal appearance of distant absorbed AGNs is largely physical or observational in origin has important implications for the nature of supermassive black holes and their environments at earlier epochs.

1 Current address: Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520, USA.
Unfortunately, distant X-ray galaxies tend to be faint at all wavelengths, which limits the amount and quality of information we have about their properties. For example, over half of the X-ray sources detected in the 2 Ms Chandra Deep Field North (CDF-N; Alexander et al. 2003; Barger et al. 2003) have optical counterparts that are fainter than $R = 23$. Clearly, high-quality optical spectra can only be obtained for the small fraction of relatively bright sources in that field. On the other hand, broadband magnitudes and colors have been measured for nearly all of the CDF-N sources. X-ray-to-optical flux ratios (F_X/F_{opt}), therefore, offer one of the best handles we have on the nature of these objects. It has been shown that the F_X/F_{opt} ratio broadly discriminates between various classes of celestial X-ray sources (e.g., Stocke et al. 1991), in particular, between luminous AGNs and truly normal (or quiescent) galaxies. Thus, a comparison of the F_X/F_{opt} ratios of the optically normal, X-ray-bright objects that have turned up in the deep Chandra surveys to those of local active galaxies with similar high-energy properties could be very informative. For instance, if host-galaxy dilution is generally not a factor, we might expect the deficit of nuclear emission (line and continuum) in the absorption or accretion-mode scenarios described above to lead to systematically higher F_X/F_{opt} ratios in the distant population.

A fair comparison of the F_X/F_{opt} ratios of nearby and distant objects requires the consideration of several important factors. First, samples of local and high-redshift AGNs are typically defined in very different ways. Nearby samples contain objects recognized as AGNs for a variety of reasons (e.g., X-ray brightness, strength of their emission in some other region of the spectrum, optical emission line properties), whereas distant X-ray galaxies are usually identified on the basis of a sole property: detection as an X-ray source. In addition, the volume surveyed in flux-limited studies such as the CDF-N is a sharp function of luminosity, which leads to a deficit of low-luminosity sources and an overrepresentation of (rare) high-luminosity objects in the derived source catalogs. Thus, nearby and distant AGN samples may contain inherently different types of objects and/or similar objects that are drawn largely from different portions of the AGN luminosity function. Another complication is that different portions of the rest-frame spectra of nearby and distant galaxies fall within the fixed observed-frame bands used to establish their F_X/F_{opt} ratios. Redshift effects can have a significant impact on the perceived F_X/F_{opt} ratios of AGNs (Moran 2004; Peterson et al. 2006) and must be accounted for. And finally, only the integrated fluxes of distant sources can be measured, and the same must be obtained for local objects.

In this paper we present a comparison of the F_X/F_{opt} ratios of absorbed AGNs in the CDF-N with those of nearby galaxies classified optically as type 2 Seyferts. Our approach accounts for the observational factors described above by (1) employing a nearby sample that well represents the local Seyfert 2 luminosity function and (2) accurately simulating how the nearby objects would appear if they were observed in the CDF-N, including the effects of how pencil-beam surveys like the CDF-N sample the luminosity function of a given population. This allows us to examine in detail the extent to which nearby, well-characterized AGNs can explain the properties of distant, spectroscopically ambiguous X-ray galaxies. The criteria used to define the comparison sample of absorbed AGNs from the CDF-N are outlined in § 2. In § 3 the local Seyfert 2 sample is described, along with the integrated optical and X-ray data we have collected for the objects. Our simulations are presented in § 4, along with a discussion of how the F_X/F_{opt} ratios of Seyfert 2 galaxies are transformed by redshift and sampling effects. Our findings are summarized in § 5.
this is a nontrivial matter. The biases that result when samples
are flux-limited and defined on the basis of a particular property
(e.g., UV excess or far-infrared color) are well documented (Ho
& Ulvestad 2001). In addition, samples of Seyfert 2 galaxies
can be tainted by spectroscopic misclassifications.

To minimize the effects of selection biases and contamination
in our study, we have chosen to use objects drawn from the
distance-limited sample of Ulvestad & Wilson (1989, hereafter
UW89), which consists of all Seyfert galaxies known (at the time
of its definition) with redshifts $z < 4600$ km s$^{-1}$ (or $z < 0.0153$)
and declinations $\delta \geq -45^\circ$. Because the objects were included
on the basis of distance and not some observed property, and be-
cause their nuclear activity was noted for a variety of reasons, the
sample is free of significant selection biases. In addition, detailed
optical investigations of this sample have verified that all 31 of
the Seyfert 2s it contains are bona fide narrow-line AGNs (Moran
et al. 2000). For this study we also include the seven objects listed
by UW89 as "narrow-line X-ray galaxies" (NLXGs), despite the
fact that several of them are technically intermediate type 1 Seyferts
that display weak, broad Hα components in high-quality optical
spectra. Our analysis of \textit{ASCA} data for the NLXGs (§ 3.2) has
confirmed that all of the objects are absorbed X-ray sources, with
column densities of $\sim 10^{22}$ cm$^{-2}$ or more. Thus, over a range of
redshifts they would satisfy the spectral flatness criterion used
above to select absorbed AGNs in the CDF-N (§ 2). Including the
NLXGs, our local sample of absorbed AGNs (which we refer to
as "Seyfert 2s" for convenience) stands at 38 objects.

We note that not every galaxy within the UW89 distance and
declination limits has been searched for a Seyfert nucleus, so the
sample must be incomplete to some degree. Indeed, some Seyfert
galaxies have been discovered within the sample volume since
1989. The level of incompleteness is probably most significant at
low values of nuclear luminosity, where, in many cases, an accu-
rate emission-line classification cannot be made without careful
starlight template subtraction (Ho et al. 1997). Still, several lines
of evidence suggest that the UW89 sample, while falling short of
perfection, is nonetheless a very good one. First, the radio prop-
erties of the UW89 Seyferts are broadly consistent with those
of objects in other samples, e.g., the CfA sample (Kukula et al.
1995). Second, as Figure 3 of Lumsden & Alexander (2001) il-
lustrates, the UW89 sample extends to much lower luminosi-
ties than other well-studied collections of Seyfert 2s, such as
the CfA/12 μm (Tran 2001) and \textit{IRAS} (Lumsden et al. 2001)
samples. Thus, it contains more typical Seyfert 2s and suffers
less from an overrepresentation of high-luminosity objects than
these other samples. Finally, the X-ray luminosity density of the
Seyfert 2 population derived from the UW89 sample is able to ac-
count for both the intensity and spectral slope of the 2–10 keV

Fig. 1.—Distributions of the redshifts, $\textit{ACIS-I}$ exposure times, 2–8 keV fluxes, and observed-frame 2–8 keV luminosities of the absorbed AGNs in the CDF-N that meet the selection criteria described in § 2.
XRB (Moran et al. 2001). Taken in combination, these results suggest that the UW89 sample must represent the luminosity function of type 2 Seyfert galaxies reasonably well.

3.1. Broadband Optical Data

The fluxes measured for distant CDF-N objects reflect their integrated optical and X-ray emission; comparable data are needed for local Seyfert 2 galaxies so that we can simulate what their F_x/F_{opt} ratios would be if they were observed at modest redshift in the CDF-N. Surprisingly, although the UW89 objects are among the most well-studied Seyfert 2 galaxies, relatively little information about their integrated optical fluxes has been published. Integrated magnitudes in the blue and visual bands can be found for about 60% of the sample, and data at redder wavelengths are even more sparse. In this section we describe our $UBVRI$ observations of over half of the UW89 sample and our methods of determining integrated magnitudes for the remainder of the objects.

3.1.1. $UBVRI$ Observations

Our optical data were acquired with the 0.9 m WIYN telescope at Kitt Peak and the 1.3 m McGraw-Hill Telescope at the MDM Observatory during six separate runs between 2003 January and 2006 January. On the WIYN telescope, we used the 2048×2048 S2KB CCD, which affords an $\sim 20'' \times 20''$ field of view and an image scale of $0.6''\text{pixel}^{-1}$. At MDM we employed the 1024 \times 1024 Templeton CCD, which has an $8.5'' \times 8.5''$ field of view and a scale of $0.5'' \text{pixel}^{-1}$. Images were obtained with Harris $UBVRI$ filters on the 0.9 m, and on the 1.3 m, Harris BVR filters were used in conjunction with a Bessell U filter and an Arizona I filter. During our 2003 October, 2004 March, and 2006 January runs, we obtained photometric observations in all five bands for 21 UW89 galaxies.

We processed our images using standard IRAF procedures. In each, an integrated instrumental magnitude was measured within a circular aperture centered on the nucleus of the UW89 galaxy. The size of the aperture was initially selected to include all of the galaxy flux visible when the image was displayed with extreme settings of the contrast and dynamic range. The aperture was then resized to the point at which increasing its radius did not result in an increase of the galaxy’s flux. The flux from foreground stars was measured and subtracted from the total flux in the galaxy aperture. The sky background level was estimated within a concentric annulus placed well outside the galaxy aperture. A few of the UW89 objects have nearby companions, which have not been excluded in our measurements. Our objective is to compare the UW89 sample and distant X-ray galaxies, and the flux from companions would not be separable in observations of the latter. By including companion flux in the nearby sample we preserve the true diversity of the morphologies and integrated colors of its members, making our comparison as valid as possible. In the end, this concerns only a handful of objects: NGC 5929 is interacting with NGC 5930, a spiral galaxy of comparable brightness; NGC 262 has a minor companion, LEDA 212600, and two fainter satellite galaxies; and NGC 1667 has a single dwarf companion.

We observed equatorial standard star fields (Landolt 1992) to calibrate our instrumental magnitudes. Average extinction coefficients for each band were obtained from Landolt (1983). Following Bessell (1995), we transformed the magnitudes of the standard stars to the Johnson-Kron-Cousins system defined by Bessell (1990). The formal uncertainties in our $UBVRI$ measurements, which include the effects of photon statistics, flat-fielding accuracy, aperture size, and transformation to the standard scale, are estimated to be 0.02–0.04 mag. Table 2 lists the $UBVRI$ photometry results for the 21 objects we observed.

Table 1: Photometry Results

Galaxy	U	B	V	R	I
MCG -05-18-002	14.12	13.52	11.92	11.28	10.49
MCG -01-27-020	14.82	14.38	14.08	13.65	13.05
Mkr 3	13.88	13.60	12.39	11.64	10.96
Mkr 1066	14.50	14.17	13.19	12.56	11.83
NGC 262	13.68	13.67	12.84	12.28	11.72
NGC 591	14.15	14.00	13.18	12.62	11.96
NGC 788	13.45	13.02	12.05	11.50	10.80
NGC 1358	13.50	13.06	12.09	11.48	10.83
NGC 1667	12.90	12.79	12.03	11.46	10.82
NGC 1685	14.58	14.29	13.40	12.73	12.16
NGC 2110	14.50	13.22	11.83	11.06	10.18
NGC 2273	12.86	12.65	11.64	11.02	10.31
NGC 3081	13.22	12.96	12.05	11.51	10.87
NGC 3982	12.10	12.18	11.59	11.14	10.57
NGC 4117	14.09	13.84	13.00	12.43	11.78
NGC 4388	11.86	11.72	10.96	10.45	9.76
NGC 4941	12.03	12.06	11.15	10.60	9.86
NGC 5347	13.23	13.17	12.46	11.93	11.14
NGC 5695	13.82	13.49	12.66	12.09	11.31
NGC 5929	12.76	12.99	12.05	11.45	10.72
NGC 7672	14.95	14.76	13.94	13.40	12.50

Note.—Uncorrected for Galactic extinction.

For 12 of these galaxies, integrated photoelectric photometry in B and V (with typical uncertainties of $0.1–0.2$ mag) is published in the Third Reference Catalog of Bright Galaxies (RC3; de Vaucouleurs et al. 1991). This provides a limited opportunity to check the accuracy of our measurements. As Figure 2 (left) indicates, the differences between our V-band magnitudes and those listed in RC3 are (for 11 objects) consistent with the expected uncertainties in the two quantities (the median offset is 0.04 mag with a standard deviation of 0.10 mag). One significant discrepancy was uncovered, however: we find Mrk 3 to be brighter than the RC3 values by 0.58 mag in V and 0.43 mag in B. The problem may be related to a very bright foreground star located within the aperture we used to extract the galaxy’s flux. The star is not responsible for our flux being too high; using an aperture that completely excludes the star, we obtain a B value that is fainter by only 0.2 mag. Thus, we are confident that we have successfully removed the contribution of the star in our full-aperture data, but it is not clear how the contamination was handled in the RC3 measurement. We note that RC3 also lists values of m_B, photographic magnitudes from the Shapley-Ames catalog (Sandage & Tammann 1981) that have been reduced to the B_T system. The m_B value for Mrk 3 of 13.55 \pm 0.17 is entirely consistent with our measurement of $B = 13.60$. Thus, given the overall agreement between our measurements and those listed in RC3, we have confidence in the accuracy of our photometry.

3.1.2. Integrated Magnitudes of the Unobserved Galaxies

Information about the integrated magnitudes of the 17 (mostly southern) galaxies we did not observe is also available from RC3 (U_T, B_T, and V_T) and the ESO-Uppsala survey (B_T and R_T; Lauberts & Valentijn 1989). We have adopted photoelectric magnitudes from RC3 whenever they are available (12 galaxies) and supplemented these with photographic R_T magnitudes from the ESO catalog when B_T (ESO) agrees with B_T (RC3). Three other objects that have only m_B photographic magnitudes in RC3 have B and R measurements in the ESO catalog; the B magnitudes agree in each case, so we have adopted the ESO values for these galaxies. Only m_B data are available for the two remaining objects.
To estimate integrated magnitudes in the bands lacking published data, we have used the B/C_0V and/or B/C_0R colors of the objects to determine the most appropriate Johnson-Cousins color template from the compilation of Fukugita et al. (1995). The majority of the galaxies are best represented by an Sab template, although for several an S0 (six galaxies) or Sbc (two galaxies) template provides the closest match. For the two objects with m_B magnitudes only (and thus no integrated colors), we have adopted the Sab template. In all cases, the template we have selected is consistent with the galaxy’s morphological type listed in the NASA/IPAC Extragalactic Database (NED).

Turning once more to the 11 objects we observed that have reliable photoelectric data in RC3, we have compared the R-band magnitudes extrapolated from their V_T values to the R magnitudes that we derived from our images. As Figure 2 (right) indicates, the median difference in these magnitudes is 0.04 mag with a standard deviation of 0.11 mag. The similarity between the left and right panels of Figure 2 suggests that the application of a Fukugita et al. (1995) galaxy color template does not add an appreciable systematic error to the extrapolated magnitudes, giving us confidence that the extrapolated magnitudes for the unobserved objects are reasonably accurate. The integrated magnitudes obtained from the literature, together with those derived from application of the appropriate color template, are listed in Table 2. The final column of Table 2 indicates the bands for which published data are available and the Fukugita et al. (1995) galaxy template that was used.

3.1.3. Corrections for Galactic Extinction

 Corrections for Galactic extinction are necessary for a determination of the true optical fluxes of the UW89 Seyfert 2s and for comparisons to galaxies in other samples. We corrected our magnitudes by computing A_k for each object in each of the five bands. Values of the color excess $E(B - V)$ in the direction of each galaxy (originating from Schlegel et al. 1998) were obtained from NED. The total absorption in each band was then calculated from $A_k/E(B - V)$ using Table 6 of Schlegel et al. (1998). The final extinction-corrected magnitudes for all 38 UW89 objects are listed in Table 3. For clarity, magnitudes derived with the use

TABLE 2

Galaxy	U	B	V	R	I	Lit. Data/Template
IC 3639	13.34	13.01	12.23	11.87	11.22	BR/Sbc
MCG -05-23-016	14.49	14.07	13.29	12.44	11.83	BR/S0
NCG 424	14.18	13.76	12.91	12.38	11.77	BR/S0
NGC 1068	9.70	9.61	8.87	8.31	7.66	UBV/Sab
NGC 1386	12.42	12.09	11.23	10.76	10.15	$UBVR$/S0
NGC 2992	13.54	13.14	12.18	11.62	10.97	UBV/S0
NGC 3281	13.12	12.70	11.72	11.17	10.56	BV/S0
NGC 4507	13.05	12.92	12.07	11.70	11.05	$UBVR$/Sab
NGC 5135	13.01	12.88	12.11	11.55	10.90	UBV/Sab
NGC 5283	14.53	14.20	13.42	12.86	12.21	B/Sab
NGC 5506	13.21	12.79	11.92	11.38	10.77	BV/S0
NGC 5643	10.89	10.74	10.00	9.48	8.87	UBV/Sbc
NGC 5728	12.70	12.37	11.59	11.03	10.38	B/Sab
NGC 6090	13.14	13.01	12.25	11.57	10.92	$UBVR$/S0
NGC 7172	13.24	12.85	11.91	11.15	10.54	$UBVR$/S0
NGC 7314	11.57	11.62	11.01	10.61	9.99	$UBVR$/Sbc
NGC 7582	11.62	11.37	10.62	10.06	9.41	UBV/Sbc

Note.—Uncorrected for Galactic extinction.
of a Fukugita template are noted by asterisks in the table; other magnitudes were obtained from our observations or RC3. The Galactic latitudes of the UW89 members span a wide range, so the extinction corrections vary considerably from object to object.

3.1.4. UV Data

In the simulations described in § 4, information about the slope of the near-UV (NUV) spectra of the UW89 objects is needed to ensure that the observed-frame J-band fluxes we predict for them are accurate for all assumed redshifts up to our limit of \(z = 1.3 \). The atlas of galaxies observed with \textit{GALEX} (Gil de Paz et al. 2007) provides integrated fluxes for eight UW89 Seyfert 2s (Mrk 3 and NGC 262, 1068, 1386, 2992, 4117, 4388, and 7582) at a NUV wavelength of 2267 Å. After correcting for Galactic extinction \(A_{\text{NUV}} = 8[E(B-V)] \); Gil de Paz et al. 2007), we find that the NUV – \(U \) colors of our eight objects range from 1.64 to 3.17. For the rest of the UW89 objects, we adopt the median value of NUV – \(U = 2.12 \).

3.2. X-Ray Data

Broadband X-ray data in the \(~0.5–10\) keV energy range are available for the entire UW89 Seyfert 2 sample. Nearly all (36 out of 38) of the objects were observed with \textit{ASCA}; the two remaining galaxies (NGC 5283 and NGC 5728) were observed with \textit{Chandra}. Although several other UW89 galaxies have also been observed with \textit{Chandra}, the \textit{ASCA} data are preferred because of the consistent depth of the exposures and the fact that, due to the large \textit{ASCA} beam (\(~3'\) half-power diameter), we can be sure that they represent the total X-ray flux from the nucleus and host galaxy. The nucleus is likely to dominate in the majority of cases, at least at the higher X-ray energies, but many objects are weak and their extended X-ray emission (from supernova remnants, X-ray binaries, etc.) could be comparable to the nuclear flux.

Details of the \textit{ASCA} observations and data reduction for the UW89 sample have been described by Moran et al. (2001); a brief summary is provided here. The data were obtained from our own observations and from the HEASARC data archive at NASA’s Goddard Space Flight Center. The \textit{ASCA} exposure times of the UW89 Seyfert 2s are uniformly long (most are in the 35–45 ks range), and the targets were placed at the “1-CCD” off-axis position in most of the images. For this work we focus on data collected with the Gas Imaging Spectrometers (GIS) on board \textit{ASCA}; compared to the satellite’s Solid-state Imaging Spectrometers (SIS), the GIS have better hard X-ray sensitivity and more consistent response, and due to their larger field of view, background estimation is more straightforward with them.
The Chandra images of NGC 5283 and NGC 5728 were obtained from the data archive at the Chandra X-ray Observatory Center (CXC). The objects were observed with the ACIS-S instrument for 9.8 and 19.0 ks, respectively. Both sources are relatively weak (~0.06 counts s\(^{-1}\)), so spectral distortions resulting from photon pile-up are not a concern.

We extracted source and background events for all of the ASCA and Chandra data sets and generated response and effective area files specific to the individual observations. All 38 UW89 Seyfert 2s were detected above a signal-to-noise ratio of 4 (full band). For 25 objects, the net counts obtained were sufficient to allow spectral modeling with the XSPEC software (Arnaud 1996). We have modeled the spectra as the sum of three components: a weakly absorbed power law with a photon index \(\Gamma_1\) and associated column density of \((N_{\text{H}1})_1\), a heavily absorbed power law with slope \(\Gamma_2\) and column density \((N_{\text{H}2})_2\), and a Gaussian Fe K\(\alpha\) line of width \(\sigma_{\text{K}\alpha}\) centered at energy \(E_{\text{K}\alpha}\). In all instances but one, an acceptable fit with reasonable best-fit spectral parameters was obtained. The exception is NGC 1068, which has a far more complex broadband X-ray spectrum (Iwasawa et al. 1997; Matt et al. 1997). Table 4 lists the adopted distances to the galaxies (see Moran et al. 2001), the X-ray spectral parameters derived from our fits, and the associated X-ray fluxes in the 0.5−2 and 2−8 keV bands. We note that while our relatively simple spectral models generally afford statistically acceptable fits, they may not represent the best physical description of the X-ray emission in every case. The main purpose of our spectral analysis is to provide accurate fluxes, which it does. This is true even for NGC 1068; our approach yields soft- and hard-band fluxes that are within 10% and 1%, respectively, of those obtained using a more complex model that provides a good fit.

For the 13 weakly detected objects, X-ray fluxes were estimated from ratios of the counts detected in hard (4−10 keV) and soft (1−4 keV) bands. First, we computed the median Seyfert 2 X-ray spectrum based on the spectral fits obtained for the 25 “strong” sources above. The median spectrum is characterized by the following parameters: \(\Gamma_1 = 1.78, \Gamma_2 = 1.70\), \((N_{\text{H}1})_2 = 0\), and \((N_{\text{H}2})_2 = 2.42 \times 10^{23} \text{ cm}^{-2}\). (An Fe K\(\alpha\) component is not included, for reasons that become clear below.) The median model is similar to the composite Seyfert 2 X-ray spectrum derived from...
the summed emission of the UW89 objects (Moran et al. 2001),
despite the fact that the latter is dominated by the most luminous
sources.

To estimate the X-ray fluxes of the weak sources, we fixed the
parameters of the median model and varied the normalizations of
the two power-law components in XSPEC until the hard-to-soft
counts ratio associated with the model matched the observed
counts ratio. We then fixed the ratio of the normalizations and
scaled them until the count rate implied by the model was iden-
tical to the total observed count rate. The fluxes in the 0.5–2.0
and 2.0–8.0 keV ranges were then computed from the model. To
validate our approach, we applied the same procedure to the
"strong" sources whose spectra could be modeled directly. As
Figure 3 indicates, the 2
\(Y\)
strong sources whose spectra could be modeled directly. As
validate our approach, we applied the same procedure to the
Y
and 2.0
redshift distribution) as the distant sources. This minimizes the
effects of redshift and selection bias.

4. SIMULATIONS

4.1. Approach

A direct, fair comparison of the \(F_X/F_{opt}\) ratios of distant ab-
sorbed AGNs with those of nearby Seyfert 2 galaxies cannot be
made. First of all, the \(F_X/F_{opt}\) ratio is measured in the observed
frame, so its value for a given object varies with redshift. Second,
the ways in which samples of distant and nearby sources are as-
sembled naturally lead to different luminosity distributions in
the samples, which in turn affect the distributions of their \(F_X/F_{opt}\)
ratios. Our approach, therefore, is to take a sample of nearby
Seyfert 2s that well represents the local luminosity function and
simulate the distribution of flux ratios that would result if they
were observed under the same conditions (and with the same
redshift distribution) as the distant sources. This minimizes the
effects of redshift and selection bias.

We begin by applying the information listed in Table 4 to
determine the fluxes of each UW89 source in the observed
0.5–2 and 2–8 keV bands as a function of redshift. The lumin-
osity distances used in the calculations are based on an \(H_0 =
70\,\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}, \Omega_M = 1/3, \Omega_\Lambda = 2/3\) cosmology. The results
establish the redshift range within which each UW89 object would
be detectable if observed as part of the \(t \geq 1.5\,\text{Ms}\) portion of
the CDF-N survey. Specifically, we apply the same criteria used to
define our CDF-N sample of absorbed AGNs: a 2–8 keV flux limit
corresponding to the exposure time (1.8 \times 10^{16}\,\text{ergs}\,\text{cm}^{-2}\,\text{s}^{-1})
and an effective spectral index \(\Gamma \leq 1.5\), which corresponds to
a flux ratio \(F_{2.8}/F_{0.5-2} \geq 2\). It is interesting to note that, based
on these criteria, four UW89 galaxies would not be included in
the CDF-N (as absorbed AGNs) in the 0.2 \leq z \leq 1.3 range. The
spectra of NGC 1068, NGC 1386, and NGC 5135 are too steep to
meet the spectral flatness criterion while their 2-8 keV fluxes are
above the hard X-ray flux limit. The fourth object, NGC 4941,
falls below the flux limit before \(z = 0.2\). Only 10 objects would
be detectable in the CDF-N all the way out to our redshift limit
of \(z = 1.3\).

We use Monte Carlo methods to simulate the \(F_X/F_I\) distribu-
tion that nearby Seyfert 2 galaxies would have if observed in the
CDF-N, randomly selecting a redshift (weighted by the CDF-N
redshift distribution) and a UW89 galaxy (unweighted, since to
first order the UW89 sample is the local Seyfert 2 luminosity func-
tion). We first verify that the UW89 object would be included in
the CDF-N as an absorbed AGN at the chosen redshift. If not, an-
other galaxy is selected at the same redshift. Next, we determine
the likelihood that an object with the UW89 galaxy’s X-ray
luminosity would be included in the CDF-N. For this test, we
have combined the CDF-N flux limit and survey solid angle
(170 arcmin^2 for \(t = 1.5\,\text{Ms}\)) to estimate the volume searched
in the CDF-N as a function of minimum detectable 2–8 keV lum-
inosity. The results are plotted in Figure 4, along with the fixed
volume represented by the UW89 sample (calculated by Moran
et al. 2001). Below a luminosity of \(\sim 3 \times 10^{39}\,\text{ergs}\,\text{s}^{-1}\), the vol-
ume searched in the CDF-N is less than that of the UW89 sam-
ple. Therefore, in this \(L_X\) range, the ratio of the CDF-N volume to
the UW89 volume defines the probability that a local object of a
given luminosity would be included in the CDF-N.

If a UW89 galaxy passes all the above tests, the UBVRI
photometry reported in §3 is used to compute its integrated,
observer-frame I-band flux. The optical spectrum of the object
is approximated by converting the broadband magnitudes to
flux densities at the band centers and assuming they are joined
by power laws. The spectrum is shifted and dimmed appropri-
ately for the selected redshift; the portion falling within the ob-
server J band is then integrated over the width of the band to
give us the optical flux. As the redshift approaches $z = 1.3$, the
rest-frame UV spectrum shortward of the center of the U band
enters the observed-frame I band. The NUV data (§3.1.4) are
used to extrapolate to shorter wavelengths, although the value
of the NUV $- U$ color we adopt affects the flux by $<1\%$. Using
the derived optical flux, the F_X/F_I ratio of the object is then
calculated. The process continues until an F_X/F_I distribution
composed of 10^4 UW89 objects is obtained.

4.2. Redshift and Sampling Effects

Before presenting the results of our simulations and a com-
parison to the CDF-N, we explore the way source redshifts and
the flux-limited nature of deep surveys combine to influence the
F_X/F_{opt} ratios of a population of absorbed AGNs.

As Table 3 indicates, the intrinsic integrated optical colors of
the UW89 objects are quite red ($B - I \approx 2$). In the X-ray band,
the heavy absorption in Seyfert 2 galaxies usually hardens their
observed X-ray spectra considerably (see the composite UW89
X-ray spectrum in Fig. 1 of Moran et al. 2001). Thus, as the red-
shift of a typical Seyfert 2 galaxy increases, a brighter portion
of its rest-frame X-ray spectrum is shifted into the observed
2–8 keV band, and a fainter portion of its rest-frame optical spec-
trum is shifted into the observed J band. The observed-frame
F_X/F_{opt} ratio should therefore increase significantly with red-
shift. This effect is clearly demonstrated in Figure 5, where we
have plotted F_X, F_I, and F_X/F_I versus redshift for four UW89
Seyfert 2s spanning a wide range of intrinsic F_X/F_I ratios.
Between $z = 0$ and 1.5, the observed flux ratios of these objects
increase by factors of 15–35.

Of equal importance are the effects of sampling in a flux-limited
survey such as the CDF-N. As Figure 4 illustrates, the volume
searched for X-ray galaxies in the CDF-N is a strong function of
the observed 2–8 keV luminosity. This naturally leads to Malmquist
bias in the CDF-N source catalog, i.e., an underrepresentation
of relatively abundant sources with low X-ray luminosities and an
overrepresentation of rare, high-luminosity sources. If F_X/F_I hap-
pens to depend on L_X (and it does; see §4.3), these Malmquist
effects will be imprinted on the F_X/F_I distribution for absorbed
AGNs in the CDF-N.

In combination, the effects of redshift and sampling can dra-
matically alter the observed F_X/F_I distribution for Seyfert 2 gal-
axies. In Figure 6 we have plotted the rest-frame F_X/F_I distribu-
tion for the UW89 sample, along with the distribution obtained
by simulating CDF-N observations of the UW89 objects (as de-
scribed in the previous section). Clearly, the two distributions
bear no resemblance to each other, even though they are derived
from the same set of objects. This illustrates why a direct com-
parison of the F_X/F_{opt} ratios of nearby and distant sources would
yield misleading results. More generally, Figure 6 indicates that
F_X/F_{opt}, as an activity diagnostic, can be ambiguous. X-ray sur-
vey results are often summarized with plots that compare the
X-ray and optical fluxes of the detected sources, with diagonal
lines drawn for constant values of F_X/F_{opt} (e.g., Alexander et al.
2003; Bauer et al. 2004). Frequently, the regions on these plots
represented by $\log F_X/F_{opt} > -1$ are labeled "AGNs," while
those represented by $\log F_X/F_{opt} < -2$ are labeled "galaxies." Our
investigation of the UW89 sample reveals that Seyfert 2s

![Graphical representation of the redshift and sampling effects](image-url)
spectroscopic evidence of activity in ground-based optical observations. Most of the latter lack fundamental way, despite the fact that most of the latter lack spectroscopic evidence of activity in ground-based optical observations.

4.3. Comparison to the CDF-N

The F_X/F_1 distribution for the absorbed AGNs in the CDF-N and the results of our simulations are compared in Figure 7. As the figure indicates, the two F_X/F_1 distributions are broadly consistent with each other: they peak at the same place and have roughly the same width. The match is especially good for values of log F_X/F_1 ≥ −1. Note that the CDF-N distribution comprises just 59 objects, so there is some statistical uncertainty associated with the number of objects in each bin of the distribution. The only possible discrepancy occurs at the lowest F_X/F_1 ratios, where the simulated UW89 distribution falls consistently below the CDF-N distribution. Given the nature of the rest-frame F_X/F_1 distribution of the UW89 sample (Fig. 6), there is no chance that the good agreement between the CDF-N and simulated UW89 flux-ratio distributions is coincidental. Instead, it must be a reflection of the similarity between the nearby and distant populations of absorbed AGNs.

A more detailed comparison is provided in Figure 8, which plots the observed F_X/F_1 ratio as a function of observed 2–8 keV luminosity for the 59 CDF-N sources and a UW89 simulation consisting of 75 successful trials. Two things are immediately obvious in Figure 8: (1) the CDF-N and UW89 samples occupy similar locations in the F_X/F_1-L_X plane, and (2) F_X/F_1 scales roughly linearly with L_X for both populations, albeit with a fair amount of dispersion. The fact that UW89 and CDF-N galaxies of a certain nuclear luminosity (L_X) have about the same range of F_X/F_1 ratios indicates that they are fundamentally similar objects in terms of their optical properties. Moreover, because the slope of the “correlation” between F_X/F_1 and L_X is about unity, the median optical luminosity of the objects must be roughly constant and independent of the luminosity of the nucleus. In a statistical sense, therefore, it appears that the optical luminosities of absorbed AGNs (with observed L_X ≤ 10^{43} ergs s^{-1}) are dominated by emission from the host galaxy.

It is also evident from Figure 8 that the match between the UW89 and CDF-N samples is not perfect. In particular, there are no UW89 objects with observed hard X-ray luminosities above ∼2 × 10^{42} ergs s^{-1}, whereas the CDF-N sample extends to L_X = 10^{44} ergs s^{-1}. Also, there appear to be too few UW89 objects with L_X < 10^{42} ergs s^{-1} and log F_X/F_1 < −1, consistent with the discrepancy between the flux-ratio distributions shown in Figure 7. Although several factors can affect the exact location of an absorbed AGN in the F_X/F_1-L_X plane, the differences indicated in Figure 8 are almost certainly related to the completeness of the UW89 sample rather than physical differences between the nearby and distant sources. At the high-L_X end, the volume associated with the UW89 sample is too small to include rare, high-luminosity objects, which are in fact overrepresented in the CDF-N due to the large volume it surveys for such sources (see Fig. 4). At the low-L_X end, the incompleteness of the UW89 sample noted in §3 is probably the primary issue. Again, the nearby Seyfert 2 galaxies that are absent in the UW89 sample are likely to be objects with low-luminosity nuclei, such as those for which the Starlight template subtraction is required for an accurate emission-line classification. Having more local galaxies with low X-ray luminosities would increase the representation of low-F_X/F_1 sources in our simulations. The fact that our simulations reproduce the flux-ratio distribution of distant absorbed AGNs as well as they do implies that the shortcomings of the UW89 sample are not too severe.

4.4. Optically Normal X-Ray Galaxies in the Deep Surveys

If nearby Seyfert 2 galaxies are able to account for the relative X-ray and optical properties of distant absorbed AGNs, why do the objects detected in the Chandra deep surveys often lack emission-line evidence for nuclear activity? As Moran et al. (2002) have demonstrated, a combination of observational factors—host-galaxy dilution, signal-to-noise ratio, and wavelength coverage—are capable of making many UW89 Seyfert 2s appear “normal” in their integrated spectra. The bulk of the UW89 and CDF-N objects overlap in terms of their optical luminosities, which in both cases are dominated by host-galaxy emission, so these observational factors should affect the ground-based spectra of distant
absorbed AGNs in a similar way. It would seem, therefore, that additional hypotheses for the optically normal appearance of the CDF-N population—at least those objects that satisfy our selection criteria—are unnecessary at this time.

However, in a recent study of objects from the Chandra Deep Field South (CDF-S), Rigby et al. (2006) have argued that the absence of strong AGN-like emission lines in the ground-based spectra of distant X-ray galaxies results primarily from obscuration of the narrow-line region by extranuclear dust, rather than host-galaxy dilution. Their conclusions are based on the finding that the morphologies of optically active galaxies (with broad emission lines or high-excitation narrow lines) and optically dull galaxies (with weak and/or low-excitation emission lines) differ statistically. Optically active galaxies in the CDF-S tend to have high ratios of their semiminor and semimajor axes, b/a, whereas optically dull objects have a relatively flat distribution of b/a. Taking the measured axis ratio as a proxy for inclination, Rigby et al. suggest that the optically dull sources are missing AGN-like emission lines because extranuclear dust obscures the narrow-line region in the more inclined galaxies.

To examine the inclination hypothesis, we have compared axis ratio distributions for appropriate subsets of the Rigby et al. (2006) and UW89 samples. For the CDF-S galaxies, we have compiled the b/a distribution for those objects in the 0.5 ≤ z ≤ 0.8 subsample of Rigby et al. that satisfy our X-ray selection criteria, i.e., detection in the 2–8 keV band and a (2–8 keV)/((0.5–2 keV)) flux ratio in excess of 2. Although we have ignored their emission-line classifications, this restricted CDF-S sample of 15 objects includes just one optically active source, a narrow-line object, so any possible confusion introduced by the presence of broad-line AGNs has been eliminated. Likewise, we have limited the UW89 comparison sample to include only the 18 objects that would be detected in the CDF-S (F_{2–8} > 3 × 10^{−16} ergs cm^{-2} s^{-1}) at z ≥ 0.5. We have estimated axis ratios for the UW89 galaxies using our images or images available from NED. Our measurements, obtained both by hand and with the ellipse task in IRAF, are based on the shape of the outer, low surface brightness isophotes. The two methods yield very similar results for all objects where both could be successfully employed. In a handful of cases (e.g., interacting galaxies) the output from ellipse is suspect and we favor the values measured by hand. Our best estimates of b/a for the UW89 subsample are listed in Table 5. As Figure 9 indicates, local Seyfert 2s have a very broad distribution of b/a, implying that they are at least as inclined as the optically dull objects in the CDF-S. One caveat here is that b/a has not been measured in exactly the same way for the nearby and distant sources. However, given the coarse binning used in Figure 9, it is unlikely that a different measurement approach for the local sample would alter these results significantly. The fact that the UW89 objects have strong nuclear emission lines suggests that inclination, and the associated effects of extranuclear dust, cannot be the primary origin of the optically normal appearance of the distant, absorbed X-ray galaxies.

In a recent complementary study, Peterson et al. (2006) examined the F_X/F_{opt} ratios that nearby AGNs would have if they were observed at a redshift of z = 0.3. Their analysis revealed that many such objects would have low F_X/F_{opt} ratios and modest X-ray luminosities, similar to the optically bright, X-ray-faint sources (OBXFs; Hornschemeier et al. 2001, 2003) that have been detected in the CDF-N. Spectroscopically, the OBXFs appear to be quiescent, and Peterson et al. have reasoned that many could harbor normal Seyfert 2 nuclei if host-galaxy dilution is significant in their ground-based optical spectra. Our results support this conclusion. In Figure 5 it is clear that redshift effects on F_X/F_{opt} are slight at z = 0.3. All but a few of the UW89 objects would be detectable at z ~ 0.3 in the CDF-N, so the UW89 F_X/F_{opt} distribution at that redshift would look much like the z = 0 distribution shown in Figure 6, shifted by only about +0.3 in log F_X/F_{opt}. A significant number of the UW89 galaxies would therefore have log F_X/F_{opt} < −2, similar to the OBXFs in the CDF-N. In addition, the low-F_X/F_{opt} objects in the sample would have X-ray luminosities in the range of normal galaxies (~10^{40} ergs s^{-1} or less),

TABLE 5

Galaxy	b/a
MCG −05-23-016	0.45
Mrk 3	0.97
NCG 262	0.79
NCG 424	0.33
NCG 788	0.76
NCG 2110	0.80
NCG 2992	0.39
NCG 3081	0.57
NCG 3281	0.43
NCG 4388	0.28
NCG 4507	0.86
NCG 5283	0.91
NCG 5506	0.32
NCG 5728	0.74
NCG 5929	0.78
NCG 7172	0.52
NCG 7314	0.39
NCG 7582	0.46

NOTES.—Galaxies included here are those that would be detected as absorbed AGNs in the CDF-S at z ≥ 0.5. NGC 5929 is interacting with NGC 5930; the axis ratio listed is for NGC 5929 alone.

Fig. 9.—Distribution of host-galaxy axis ratios for subsets of the CDF-S and UW89 samples. The CDF-S sources are limited to those in the 0.5 ≤ z ≤ 0.8 subsample of Rigby et al. (2006) that meet our criteria for absorbed AGNs. The UW89 objects included here are those that would be detected as absorbed AGNs at z ≥ 0.5 in the CDF-S. The similarity of the CDF-S and UW89 axis-ratio distributions and the fact that the UW89 galaxies have strong nuclear emission lines suggest that inclination effects are not the main reason the CDF-S objects appear optically inactive in ground-based spectra.
and many would have quiescent optical spectra (Moran et al. 2002). Thus, as Peterson et al. have suggested, a number of the OBXFs could be unrecognized Seyfert 2s.

5. SUMMARY AND CONCLUSIONS

To investigate the nature of the “normal” X-ray-luminous galaxies in the CDF-N, we have obtained UBVRi photometry and broadband X-ray data for a distance-limited Seyfert 2 galaxy sample that broadly represents the local luminosity function for absorbed AGNs. From these data we have measured the integrated fluxes of the galaxies, since this is what is normally derived from multiwavelength observations of the distant objects detected in the deep X-ray surveys.

We have selected a sample of absorbed AGNs from a well-defined portion of the CDF-N for comparison to the local objects. Using the redshift distribution of the CDF-N sources, we have simulated the F_X/F_{opt} ratios that the UW89 objects would have if they were observed at modest redshifts as part of the CDF-N. By including (1) the effects of redshift on flux measurements in fixed observed-frame bands and (2) the way the luminosity function of a given population is sampled in a flux-limited survey like the CDF-N, we have shown that nearby Seyfert 2s with strong nuclear emission lines are able to account for the X-ray and optical properties of distant absorbed AGNs, despite the fact that the latter often lack optical evidence for nuclear activity in ground-based data. The integrated spectra of UW89 galaxies indicate that observational factors—host-galaxy dilution, signal-to-noise ratio, and wavelength coverage—are capable of hiding the nuclear emission lines of bona fide Seyfert 2s (Moran et al. 2002). We conclude, therefore, that the same factors provide the simplest explanation for the “normal” appearance of many absorbed AGNs in the Chandra deep surveys. Note that our arguments are statistical; it is certainly possible that some distant absorbed AGNs appear to be normal because they are located in edge-on host galaxies, or because they have unusually high amounts of nuclear obscuration. In general, however, we have been unable to identify differences between the nearby and distant populations of absorbed AGNs that cannot be attributed to host-galaxy dilution. Until we do, it seems unnecessary to invoke the existence of a significant new class of X-ray-bright, optically normal galaxies (XBONGs; Comastri et al. 2002) that differ from nearby Seyfert 2s in some fundamental way.

The problem with the X-ray-luminous “normal” galaxies may be mainly a matter of perception. In Figure 10 we have plotted the integrated spectra of two galaxies from the UW89 sample, Mrk 3 and NGC 788 (Moran et al. 2002). In most respects, these two AGNs are nearly identical: they have similar X-ray luminosities and absorption column densities; optically, their luminosities are comparable and both exhibit polarized broad emission lines; and both reside in S0 host galaxies at a distance of $d = 54$ Mpc. However, as Figure 10 illustrates, a wide range of line strengths exists among “real” Seyfert 2s. Mrk 3 would be easily recognized as an AGN at moderate redshifts, whereas NGC 788 would not. The main difficulty with the deep X-ray survey results may lie with an expectation that the average Seyfert 2 resembles Mrk 3, when in fact NGC 788 is the more typical object.

We would like to thank John Salzer for helpful discussions regarding Malmquist effects in flux-limited surveys, Seth Cohen for help with the axis ratio measurements, Eve Armstrong for obtaining the optical images of NGC 2110, Kaitlin Kratter for extensive help with the observing at the MDM 1.3 m, and Mary Hui for assistance with the WIYN 0.9 m observing. This work was supported in part by NASA through a grant for HST proposal 09869 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

REFERENCES

Alexander, D. M., et al. 2003, AJ, 126, 539
Arnaud, K. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. Jacoby & J. Barnes (San Francisco: ASP), 17
Awaki, H., Koyama, K., Inoue, H., &Halpern, J. P. 1991, PASJ, 43, 195
Barger, A. J., Cowie, L. L., Bautz, M. W., Brandt, W. N., Garmire, G. P., Hornschemeier, A. E., Ivison, R. J., & Owen, F. N. 2001a, AJ, 122, 2177
Barger, A. J., Cowie, L. L., Mushotzky, R. F., & Richards, E. A. 2001b, AJ, 121, 662
Barger, A. J., et al. 2002, AJ, 124, 1839
———. 2003, AJ, 126, 632
———. 2005, AJ, 129, 578
Bauer, F. E., et al. 2004, AJ, 128, 2048
Bessell, M. S. 1990, PASP, 102, 1181
———. 1995, PASP, 107, 672
Comastri, A., Setti, G., Zamorani, G., & Hasinger, G. 1995, A&A, 296, 1
Comastri, A., et al. 2003, ApJ, 571, 771
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Jr., Buta, R. J., Paturel, G., & Fouqué, P. 1991, Third Reference Catalog of Bright Galaxies (New York: Springer) (RC3)
Fukugita, M., Shimasaku, K., & Ichikawa, T. 1995, PASP, 107, 945
Gil de Paz, A., et al. 2007, ApJS, in press (astro-ph/0606440)
Grill, R., Salvati, M., & Hasinger, G. 2001, A&A, 366, 407
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, ApJS, 112, 315
Ho, L. C., & Ulvestad, J. S. 2001, ApJS, 133, 77
Hornschemeier, A. E., et al. 2001, ApJ, 554, 742
———. 2003, AJ, 126, 575
Iwasawa, K., Fabian, A. C., & Matt, G. 1997, MNRAS, 289, 443
Kakula, M. J., Pedlar, A., Baum, S. A., & O’Dea, C. P. 1995, MNRAS, 276, 1262
Landolt, A. U. 1983, AJ, 88, 439
———. 1992, AJ, 104, 340
Lauberts, A., & Valentijn, E. A. 1989, The Surface Photometry Catalogue of the ESO-Uppsala Galaxies (Garching: ESO)
Lumsden, S. L., & Alexander, D. M. 2001, MNRAS, 328, L32
Lumsden, S. L., Heisler, C. A., Bailey, J. A., Hough, J. H., & Young, S. 2001, MNRAS, 327, 459
Matt, G., et al. 1997, A&A, 325, L13
Moran, E. C. 2004, in Supermassive Black Holes in the Distant Universe, ed. A. J. Barger (Boston: Kluwer), 225
Moran, E. C., Barth, A. J., Kay, L. E., & Filippenko, A. V. 2000, ApJ, 540, L73
Moran, E. C., Filippenko, A. V., & Chornock, R. 2002, ApJ, 579, L71
Moran, E. C., Kay, L. E., Davis, M., Filippenko, A. V., & Barth, A. J. 2001,
ApJ, 556, L75
Mushotzky, R. F., Cowie, L. L., Barger, A. J., & Arnaud, K. A. 2000, Nature,
404, 459
Peterson, K. C., Gallagher, S. C., Hornschemeier, A. E., Muno, M. P., &
Bullard, E. C. 2006, AJ, 131, 133
Rigby, J. E., Rieke, G. H., Donley, J. L., Alonso-Herrero, A., & Pérez-González,
P. G. 2006, ApJ, 645, 115
Sandage, A., & Tammann, G. A. 1981, A Revised Shapley-Ames Catalog of
Bright Galaxies (Washington: Carnegie Inst.)
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Setti, G., & Woltjer, L. 1989, A&A, 224, L21
Severgnini, P., et al. 2003, A&A, 406, 483
Stocke, J. T., et al. 1991, ApJS, 76, 813
Szkody, G. P., et al. 2004, ApJS, 155, 271
Tran, H. D. 2001, ApJ, 554, L19
Ulvestad, J. S., & Wilson, A. S. 1989, ApJ, 343, 659 (UW89)
Yuan, F., & Narayan, R. 2004, ApJ, 612, 724