ON CONSTRUCTING SPECIAL LAGRANGIAN SUBMANIFOLDS BY GLUING

SEMA SALUR

Abstract. The purpose of this paper is to give an application of the gluing theorem for special Lagrangian submanifolds of a Calabi-Yau 3-fold. In [2], a gluing theorem is proved to smooth a codimension-two singularity of a particular special Lagrangian submanifold. In this paper we will show that this theorem can be applied to more general cases where different special Lagrangians are intersecting and gives a way of constructing new special Lagrangian submanifolds. As an example we will show that a smooth special Lagrangian submanifold can be obtained from five copies of \mathbb{RP}^3 intersecting pairwise in a quintic.

1. Introduction

Due to SYZ conjecture [4], one important problem in Mirror Symmetry is to find a suitable compactification of the moduli space of special Lagrangian submanifolds. In particular, one should understand the singularities of this moduli space. For this purpose, in [2], we showed that a particular special Lagrangian submanifold with an irreducible singularity can be a limit point in this space by proving the following theorem:

Theorem 1.1. [2] Given a connected immersed special Lagrangian submanifold L^3 of a Calabi-Yau manifold X^6 with a particular irreducible, orthogonal self intersection K of codimension-two (singularity of type $z_1z_2 = 0$) it can be approximated by a sequence of smooth special Lagrangian submanifolds and therefore L is a limit point in the moduli space.

In this paper we will show that Theorem 1.1 can be applied to more general cases where different special Lagrangians are intersecting and hence we can construct new special Lagrangian submanifolds nearby by gluing. In particular we will modify Theorem 1.1 as follows:

Theorem 1.2. Given a singular special Lagrangian submanifold L which is invariant under a geometric \mathbb{Z}_m action and consists of pairwise, orthogonal and cyclic intersections of special Lagrangian submanifolds $L_1, ..., L_m$ of a three dimensional Calabi-Yau manifold X, it can be approximated by a sequence of smooth special Lagrangian submanifolds.

Research supported in part by the Institute for Pure and Applied Mathematics under NSF grant DMS-9810282.
approximated by a sequence of smooth special Lagrangian submanifolds obtained by smoothing each codimension-two intersections K_i (singularity of type $z_1z_2 = 0$)

2. The Eigenvalue Estimate

In this section we will explain how Theorem 1.1 can be generalized to pairwise intersections of several special Lagrangian submanifolds.

In what follows, X will denote a 3-dimensional Calabi-Yau manifold with m different special Lagrangians $L_1, ..., L_m$ intersecting pairwise (locally $z_i \cdot \overline{z}_{i+1} = 0$ for $z_i \in L_i$, $1 \leq i \leq m - 1$) and perpendicularly with respect to the induced metric along curves K_i for each i. Moreover we will assume that L_m intersects L_1 to complete the cycle and Z_m is acting isometrically on X and the singular special Lagrangian $L = \cup L_i$ is invariant under this action.

In [2], for a given singular special Lagrangian submanifold L and a gluing parameter δ, we first construct an approximate special Lagrangian submanifold H_δ in an open ball V around the singular set K and use the Implicit Function Theorem to prove that there exists a true special Lagrangian submanifold nearby. In order to prove the existence of a true special Lagrangian we need to get a uniform estimate for the right inverse for the linearized operator D_δ. Here we need to do the same for each intersection.

Remark 2.1: Note that since we assume K is irreducible, Theorem 1.1 is not strong enough to be applied directly to the case where we glue two arbitrary special Lagrangian submanifolds. Even though we need this irreducibility condition only in proving the eigenvalue estimate for the linearized operator and that other parts of the proof do not require this condition it is a crucial restriction on the gluing model. Without this assumption Theorem 1.1 is not true. However, one can automatically obtain irreducibility requirement if singular special Lagrangian is replaced by a group of intersecting totally symmetric special Lagrangian submanifolds which complete a cycle. Totally symmetric means that Z_m acting isometrically on X and $L = \cup L_i \subset X$ is invariant under this action. Completing a cycle means that if L consists of m special Lagrangian submanifolds $L_1, ..., L_m$ then L_i intersects L_{i+1} along curves K_i for $1 \leq i \leq m - 1$ and L_m intersects L_1 along K_m.

Given the gluing parameters $\delta_1, ..., \delta_m$ we can smooth the singularities of the form $z_1z_{i+1} = 0$ for each intersection inside open neighbourhoods V_i around K_i and construct approximate special Lagrangians H_δ^i.
which agree with L_i and L_{i+1} outside a tubular neighbourhood of their intersection K_i. As before one can show that for each H^i the linearized operator for the special Lagrangian equation is also $\Psi_i \cdot \Delta^i_{\delta_i}$ for each intersection K_i where Ψ_i is a small function for small values of δ_i. Therefore it is sufficient to check the invertibility of $\Delta^i_{\delta_i}$. Also note that Z_m is acting on L isometrically and therefore it is sufficient to check the invertibility for only one intersection.

Next, we will modify the eigenvalue estimates for each Laplacian operator $\Delta^i_{\delta_i}$ which are needed in the gluing theorem [2], and in section 3 we will apply this to an example.

Lemma 2.1. There are constants $C_i > 0$ ($1 \leq i \leq m$) independent of the gluing parameters δ_i, such that for δ_i sufficiently small, the first (nonzero) eigenvalues $\lambda_1(\Delta^i_{\delta_i})$ of $\Delta^i_{\delta_i}$ are bounded below by C_i.

Proof: As in [2], we prove it by contradiction. Note that we have m Laplacian operators $\Delta^1_{\delta_1}, ..., \Delta^m_{\delta_m}$ for $H^1, ..., H^m$ and since Z_m is acting isometrically we can assume that they are all equivalent. Therefore the analysis reduces to the case where two special Lagrangian submanifolds are intersecting as before, [2].

Suppose that the lemma is not true for $\Delta^1_{\delta_1}$ in $L_1 \cup L_2$. Then we may assume that the first eigenvalue $\lambda_1(\Delta^1_{\delta_1})$ converges to zero as δ_1 tends to zero. Since we have the equivalence coming from the isometric action we can drop the index 1 in δ_1. Let ϕ_δ be the eigenfunction of $\lambda_1(\Delta^1_{\delta_1})$ satisfying

$$\int_{H^1_{\delta_1}} |\phi_\delta|^2 = 1 \text{ and } \int_{\overline{H^1_{\delta_1}}} \phi_\delta = 0 \text{ and } \Delta^1_{\delta_1} \phi_\delta = \lambda_{1,\delta} \phi_\delta .$$

where $\lambda_{1,\delta}$ determines the dependence of the first eigenvalue on the gluing parameter δ and $\overline{H^1_{\delta_1}}$ is the connected union of smoothed approximate special Lagrangians $H^1_{\delta_1}$.

For small compact sets away from singularity, the L^2_{δ} norm is uniformly equivalent to the usual L^2 norm. On these compact sets there exists a subsequence of ϕ_n that converges smoothly to a limit $\Delta \phi_0 = 0$. Following the same argument for the sequence of compact sets, and passing to a diagonal subsequence, we obtain a nonzero eigenfunction ϕ_0 as the limit defined in the complement of the singularity satisfying

$$\int |\phi_0|^2 = 1 \text{ and } \int \phi_0 = 0 .$$
We now explain why ϕ_0 cannot be zero. If $\phi_0 = 0$ then for very small δ, ϕ_δ will be very small everywhere (almost zero) which contradicts the fact that

$$||\phi_\delta||_{L^2} \leq ||\phi_\delta||_{L^\infty} \text{ and our initial assumption } ||\phi_\delta||_{L^2} = 1.$$

So we have a nonzero function ϕ_0 in the limit and since $\lambda_\delta \to 0$ we get $\Delta_0 \phi_0 = 0$. On a compact manifold the only harmonic functions are constant functions. Therefore ϕ_0 should be some nonzero constant. On one component ϕ_δ will converge to a constant and on the other component it will converge to another constant. Since Z_m is acting isometrically on L these two constants should be same and since $\int \phi_0 = 0$ this is only possible if ϕ_δ converges to zero. This contradicts the fact that ϕ_0 is nonzero.

One other possibility is the case when the eigenfunctions get trapped in the neck region and as the gluing parameter δ goes to 0 they converge to maps which are identically zero everywhere but blow up at one point. Here there is no need to study the concentration problem in the neck area because the analysis follows exactly the same way for each intersection as before [2].

Hence we can modify Theorem 1.1 as follows:

Theorem 2.2. Given a singular special Lagrangian submanifold L which is invariant under a geometric Z_m action and consists of pairwise, orthogonal and cyclic intersections of special Lagrangian submanifolds L_1, \ldots, L_m of a three dimensional Calabi-Yau manifold X (as in figure 1), it can be approximated by a sequence of smooth special Lagrangian submanifolds obtained by smoothing each codimension-two intersections K_i (singularity of type $z_1 \overline{z}_2 = 0$)

![Figure 1. $L = \bigcup L_i$](image)

Remark 2.2. Here we assumed that L_1, \ldots, L_m are intersecting orthogonally with respect to the induced metric but in the next example
we have to verify that this is true. We will do this by averaging the metric with some finite group and making it invariant under this group action.

3. The Example

In this section we will apply Theorem 2.2 to five intersecting copies of \(\mathbb{R}P^3 \), \[3\], to obtain new special Lagrangian submanifolds in a quintic.

Let \(X \) be a 3-dimensional Calabi-Yau manifold defined as a degree five hypersurface in \(\mathbb{C}P^4 \) given as follows:

\[
X = \{z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0\} \subset \mathbb{C}P^4
\]

We will first write five different anti-holomorphic involutions \(f_1, \ldots, f_5 \) on \(X \). Then we will find the fixed point sets of these involutions and call them \(F_1, \ldots, F_5 \). By a theorem of R. Bryant \[1\], \(F_1, \ldots, F_5 \) will be five different special Lagrangian submanifolds of the quintic \(X \). Each of them can be visualized as the real part of \(X \) and is diffeomorphic to \(\mathbb{R}P^3 \). In our example they also intersect pairwise as in figure 2. Moreover we will write a \(\mathbb{Z}_5 \) action on \(\mathbb{C}P^4 \) which acts isometrically on \(X \).

Next, we will justify this figure. Let \(\xi = a + ib, (a, b \in \mathbb{R}) \) be the fifth root of unity. For \(z_i = (x_i, y_i) \), let \(L_1, L_2, L_3, L_4, L_5 \) be defined as follows:

\[
L_1 = \left\{ \text{fixed point set of the involution} \begin{array}{l}
 z_0 \rightarrow \overline{z}_0, \ z_1 \rightarrow \overline{\xi z}_1, \ z_2 \rightarrow \overline{\xi^2 z}_2, \ z_3 \rightarrow \overline{\xi^3 z}_3, \ z_4 \rightarrow \overline{\xi^4 z}_4 \\
 \end{array}\right\}
= \{x_0, x_1, x_2, x_3, x_4 \mid x_0^5 + (x_1 + i\frac{1-a}{6}x_1)^5 + (x_2 + i\frac{1-a}{6}x_2)^5 + x_3^5 + x_4^5 = 0\}
\]

\[
L_2 = \left\{ \text{fixed point set of the involution} \begin{array}{l}
 z_0 \rightarrow \overline{z}_0, \ z_1 \rightarrow \overline{z}_1, \ z_2 \rightarrow \overline{\xi z}_2, \ z_3 \rightarrow \overline{\xi^2 z}_3, \ z_4 \rightarrow \overline{\xi^3 z}_4 \\
 \end{array}\right\}
\]

\[
L_3 = \left\{ \text{fixed point set of the involution} \begin{array}{l}
 z_0 \rightarrow \overline{z}_0, \ z_1 \rightarrow \overline{\xi^2 z}_1, \ z_2 \rightarrow \overline{\xi^3 z}_2, \ z_3 \rightarrow \overline{\xi^4 z}_3, \ z_4 \rightarrow \overline{\xi^5 z}_4 \\
 \end{array}\right\}
\]

\[
L_4 = \left\{ \text{fixed point set of the involution} \begin{array}{l}
 z_0 \rightarrow \overline{z}_0, \ z_1 \rightarrow \overline{\xi^3 z}_1, \ z_2 \rightarrow \overline{\xi^4 z}_2, \ z_3 \rightarrow \overline{\xi^5 z}_3, \ z_4 \rightarrow \overline{\xi^1 z}_4 \\
 \end{array}\right\}
\]

\[
L_5 = \left\{ \text{fixed point set of the involution} \begin{array}{l}
 z_0 \rightarrow \overline{z}_0, \ z_1 \rightarrow \overline{\xi^4 z}_1, \ z_2 \rightarrow \overline{\xi^5 z}_2, \ z_3 \rightarrow \overline{\xi^1 z}_3, \ z_4 \rightarrow \overline{\xi^2 z}_4 \\
 \end{array}\right\}
\]
\[\{x_0, x_1, x_2, x_3, x_4 \mid x_0^5 + x_1^5 + (x_2 + i \frac{1-a}{b} x_2)^5 + (x_3 + i \frac{1-a}{b} x_3)^5 + x_4^5 = 0 \} \]

Let \(L_3 = \left\{ \begin{array}{c}
\text{fixed point set of the involution} \\
z_0 \to \overline{z_0}, z_1 \to \overline{z_1}, z_2 \to \overline{z_2}, z_3 \to \overline{z_3}, z_4 \to \overline{z_4}
\end{array} \right\} \]

\[\{x_0, x_1, x_2, x_3, x_4 \mid x_0^5 + x_1^5 + x_2^5 + (x_3 + i \frac{1-a}{b} x_3)^5 + (x_4 + i \frac{1-a}{b} x_4)^5 = 0 \} \]

\[\{x_0, x_1, x_2, x_3, x_4 \mid (x_0 + i \frac{1-a}{b} x_0)^5 + x_1^5 + x_2^5 + x_3^5 + (x_4 + i \frac{1-a}{b} x_4)^5 = 0 \} \]

\[\{x_0, x_1, x_2, x_3, x_4 \mid (x_0 + i \frac{1-a}{b} x_0)^5 + (x_1 + i \frac{1-a}{b} x_1)^5 + x_2^5 + x_3^5 + x_4^5 = 0 \} \]

The sets of intersection are as follows:

Since

\[L_1 \cap L_2 = \left\{ \begin{array}{c}
z_0 + z_1 + z_2 + z_3 + z_4 = 0 \\
z_0 = \overline{z_0}, z_1 = \overline{z_1}, z_2 = \overline{z_2}, z_3 = \overline{z_3}, z_4 = \overline{z_4}
\end{array} \right\} \]

this implies

\[K_1 = L_1 \cap L_2 = \{ z_1 = 0, z_3 = 0, z_0^5 + z_2^5 + z_4^5 = 0 \} \cong S^1, \]

and similarly we get

\[K_2 = L_2 \cap L_3 = \{ z_2 = 0, z_4 = 0, z_0^5 + z_1^5 + z_3^5 = 0 \} \cong S^1, \]

\[K_3 = L_3 \cap L_4 = \{ z_0 = 0, z_3 = 0, z_1^5 + z_2^5 + z_4^5 = 0 \} \cong S^1, \]

\[K_4 = L_4 \cap L_5 = \{ z_1 = 0, z_4 = 0, z_0^5 + z_2^5 + z_3^5 = 0 \} \cong S^1, \]

\[K_5 = L_5 \cap L_1 = \{ z_0 = 0, z_2 = 0, z_1^5 + z_3^5 + z_4^5 = 0 \} \cong S^1, \]

and for the other pairs we get

\[L_1 \cap L_3 = \{ z_1 = 0, z_2 = 0, z_3 = 0, z_4 = 0, z_5 = 0 \} = \emptyset, \]

and similarly

\[L_1 \cap L_4 = \emptyset, L_2 \cap L_4 = \emptyset, L_2 \cap L_5 = \emptyset, \text{ and } L_3 \cap L_5 = \emptyset. \]
Next, we will describe the $\mathbb{Z}_5 = \{g_0, g_1, g_2, g_3, g_4\}$ action which keeps $L = \bigcup L_i$ invariant.

For all $i = 0, 1, ..., 4$, g_i induces a map $\tilde{g}_i : \mathbb{CP}^4 \to \mathbb{CP}^4$ defined as:

$\tilde{g}_0 = \text{id}$

$\tilde{g}_1 : (z_0, z_1, z_2, z_3, z_4) \to (z_4, z_0, z_1, z_2, z_3)$,

$\tilde{g}_2 : (z_4, z_0, z_1, z_2, z_3) \to (z_3, z_4, z_0, z_1, z_2)$

$\tilde{g}_3 : (z_3, z_4, z_0, z_1, z_2) \to (z_2, z_3, z_4, z_0, z_1)$

$\tilde{g}_4 : (z_2, z_3, z_4, z_0, z_1) \to (z_1, z_2, z_3, z_4, z_0)$ are cyclic permutations.

Since the involutions $f_i : \mathbb{CP}^4 \to \mathbb{CP}^4$ satisfy $f_i \circ \tilde{g}_i = \tilde{g}_i \circ f_{i+1}$ for all i and the quintic X is invariant under the maps \tilde{g}_i, this implies that $\tilde{g}_i : L_i = F_i \cap X \to L_{i+1} = F_{i+1} \cap X$ where F_i are the fixed point sets of the involutions f_i. One can also easily show that \tilde{g}_i will take the intersections $K_i = L_i \cap L_{i+1}$ to $K_{i+1} = L_{i+1} \cap L_{i+2}$. These will imply that $L = \bigcup L_i$ is invariant under the \mathbb{Z}_5 action.

As we mentioned in Remark 2.2 we need to verify that these special Lagrangian submanifolds intersect orthogonally with respect to the induced metric. Let \tilde{G} be the group generated by the group of antiholomorphic involutions and \mathbb{Z}_5. By construction it is a finite group and we can average the ambient metric so that it is invariant under the group action generated by \tilde{G}. This invariance and representation theory will then imply that $L_i \cap L_{i+1}$ orthogonally for each i.

Then applying Theorem 2.2 we can smooth the singularities and obtain a smooth special Lagrangian submanifold which agrees with $L_1, ..., L_5$ outside the balls $V_1, ..., V_5$.

Remark 3.1. By taking involutions appropriately in other Calabi Yau manifolds one can construct different special Lagrangian submanifolds using the same gluing process. These examples will be discussed somewhere else.

Acknowledgements.

This work was completed when the author was attending to the Conformal Field Theory program at the Institute for Pure and Applied Mathematics during Fall 2001. Many thanks to the IPAM and the mathematics department at UCLA for their support and hospitality. The author is also grateful to Paul Seidel for suggesting the example which motivated this paper at the 8th Gokova Geometry and Topology Conference, May 2001.
REFERENCES

1. Bryant, R.L. *Minimal Lagrangian submanifolds of Kähler-Einstein manifolds*, Differential geometry and differential equations (Shanghai, 1985), 1–12, Lecture Notes in Math. **1255**, Springer, Berlin-New York, 1987. MR 87a:53082

2. Salur, S. *A Gluing Theorem for Special Lagrangian Submanifolds*, math.DG/0108182

3. Seidel, P. private communication.

4. Strominger, A., Yau, S.T. and Zaslow, E., *Mirror Symmetry is T-Duality*, Nucl. Phys. **B479** (1996), 243-259

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14850

E-mail address: salur@math.cornell.edu