Low-frequency waves produced by a package of laser plasma clouds in a magnetized background

V N Tishchenko1, A G Berezutsky1, E L Boyarintsev1, Yu P Zakharov1, I B Miroshnichenko 1,2, V G Posukh1, A G Ponomarenko1, A A Chibranov1,2 and I F Shaikhislamov1

1Institute of Laser Physics SB RAS, Akademika Lavrentieva Avenue, 15B, Novosibirsk, Russia
2Novosibirsk State Technical University, Karl Marx Avenue, 20, Novosibirsk, Russia
E-mail: tVN25@ngs.ru

Abstract. It was shown for the first time that in a laboratory experiment a train of laser plasma clouds makes it possible to increase the length of the whistler waves generated in the power tube of a magnetized medium. The intensity of waves is orders of magnitude higher than the level achieved by known methods.

1. Introduction
In laboratory experiments and simulations, it was shown that a packet of laser plasma clouds forms Alfven and slow magnetosonic waves in a magnetized medium (hereinafter referred to as the background). Such waves transfer 50% of the clouds energy in the power tube in the form of a stream of compressed, rotating plasma [1, 2]. High efficiency energy injection is achieved by fulfilling a set of dimensionless conditions (“resonance”) relating the parameters of clouds and background. The large length of the flows is the result of the mechanism of merging of waves (MMW) generated by individual clouds. Previously, MMW was proposed by the authors for gases, where periodic packets generated infra- and ultrasound.

The present work shows for the first time the possibility of pumping whistlers created by a packet of laser plasma clouds into the power tube of a magnetic field in the background. The record intensity, characterized by the ratio of the amplitude of the magnetic field of the whistlers to the external field $B_W \sim 0.1$ ÷ 0.2, is achieved when the clouds “resonate” with the background, when only the whistlers are excited. With the simultaneous generation of whistlers and the Alfven wave, the B_W value decreases by factor of ~ 5, which is associated with an additional channel for the removal of clouds energy [3, 4, 5]. The amplitude of whistlers excited by exposure to laboratory plasma with modulated radio emission is much lower [6, 7].

2. The theoretical basis of the experiment
Whistlers are formed at the stage of explosive expansion of laser plasma clouds as a result of interaction with the magnetic field and background plasma by the Lorentz force. In this case, torsion deformation of the magnetic field lines occurs, the electrons acquire azimuthal rotation around the axis of symmetry passing through the center of the cloud and oriented along the unperturbed magnetic field B_0 of the background. Whistlers contain azimuthal B_ϕ and radial
B_r magnetic field components, an electric field, and a longitudinal current. The hodogram of B_x and B_y corresponds to the right-handed polarization of the magnetic field vector. The whistler propagates along B_0 with a speed that is approximately equal to the group velocity $V_g/c = 2Ω/(1 - Ω^2)/[2Ω + Ω^2/(1 - Ω)^2]$, where $c = 3 \cdot 10^{10}$ cm/s is the speed of light in vacuum, $Ω = f/f_{ce}$ is the ratio of the whistler frequency to the cyclotron frequency of the electrons, $f_{ce} = eB_0/cm_e \approx 2.8 \cdot 10^6 B_0$, $Ω_{pe} = f_{pe}/f_{ce}$, $f_{pe} = 9 \cdot 10^3 \cdot √n_0$ is the plasma frequency of the electrons, n_0 cm$^{-3}$ is the background plasma density. The experimentally measured velocity of low-frequency whistlers $V_g \sim (4/6) \cdot 10^7$ cm/s depends on n_0 and B_0. Whistlers correspond to the frequency range of $F_1 < f < F_2 \ll f_{pe}$ [7], where $F_1 = (f_{ci} \cdot f_{ce})^{1/2} = 6.54 \cdot 10^4 B_0 \cdot √Z_0/m_0$, $F_2 = f_{ce}$, $f_{ci} = 1.53 \cdot 10^4 \cdot Z_0 \cdot B_0/m_0$ is the cyclotron frequency of the background ions. A laser plasma clouds creates only whistlers if the ratio of the ion-plasma length to the dynamic radius R_d of the cloud is:

$$L_{pi} = c/(2π f_{pi} R_d) = 3.61 \cdot 10^4 Z_0^{-1} \sqrt{m_0/n_0} \cdot B_0^3 (1 + β_0)/Q > 0.6$$

$$R_d = (8π \cdot Q/B_0^3 (1 + β_0))^{1/3} \approx 630(Q/B_0^3 (1 + β_0))^{1/3}, f_{pi} = 210 \cdot Z_0 \cdot √n_0/m_0, β_0 \sim 0.1 ± 1$$

R_d is the ratio of the background plasma pressure to pressure B_0. When values of L_{pi} are 0.05 – 0.25, the Alfven wave is formed [1, 2]. If L_{pi} is 0.25 – 0.4, form the Alfven wave and weak whistlers [3, 4, 5].

From the mention above relations, the laser plasma clouds with energy $Q \sim 20$ J used in the experiment create a whistler in the background with heavy ions, for example argon, with magnetic fields $B_0 = 50 – 200$ G in the range of plasma density $n_0 \approx (1/5) \cdot 10^{12}$ cm$^{-3}$. The whistler frequency is close to $F_1/5$ and, when using two consecutive clouds, it decreases by about two times. Clouds are created at a fixed point upon irradiation of a point target with two laser pulses with delay $τ$, which can be estimated from the characteristic time of clouds expansion $τ = R_d/V_0 \sim 5/7$ µs, where $V_0 \sim 1.5 \cdot 10^7$ cm/s is the initial thermal expansion velocity of the laser plasma. In the experiment, when the delay time $τ$ of the laser pulses is varied, the following whistler generation modes are possible: at $τ ≫ τ_d$, two successive whistlers; $τ \ll τ_d$ the length is approximately the same as from one cloud; at $τ = τ_d$, the length of the whistler wave increases by a factor of 2. From the calculations it follows that the train of periodic clouds generates a single whistler wave, the length of which linearly depends on the number of clouds used. The whistler group velocity $V_g \approx (3/6) \cdot 10^7$ is much higher than the Alfven wave velocity. One of the main characteristics of the interaction of plasma clouds with the background is that the Alfven Mach number under the experimental conditions is anomalously large: $M_A = V_0/C_A \approx 10$.

3. Experiment setup

The experimental design at the KI-1 facility is shown in figure 1. In a cylindrical vacuum chamber (length 5 m, diameter 1.2 m, pressure $2 \cdot 10^{-6}$ torr), an axial magnetic field $B_0 \sim 50–200$ G and a longitudinal stream of argon plasma (background) were created with speed $1.2 \cdot 10^6$ cm/s, temperature $T_0 \sim 10$ eV, $β_0 \sim 0.5$. The radiation from CO$_2$ lasers created one or two clouds with energies $Q \sim 20$ J upon irradiation of a polyethylene target (diameter 25 mm) located on the camera axis. Each laser pulse was previously divided into two equal parts in energy, which allowed the formation of a plasma expansion, which ensured the azimuthal symmetry of the whistler. The sensors measured the plasma concentration, longitudinal current, electric field, and magnetic field components azimuthal $B_φ$, radial B_r, and longitudinal B_z. We varied B_0, n_0, and the corresponding L_{pi} values, as well as the delay of the second pulse relative to the first laser pulse.
Figure 1. The experimental setup of KI-1 facility. 1 - vacuum chamber, 2 - background plasma flow created by the θ-pinch (3), 4 - solenoid creating an external magnetic field parallel to the axis of the chamber, 5 - emission of a CO$_2$ laser, 6 - target, 7 - focusing lenses, 8 - measuring probes placed in various sections of the chamber, 9 - a flow of plasma clouds.

4. Experimental results

Figures 2 and 3 show the azimuthal magnetic fields of whistlers generated by one and two clouds of laser plasma in a magnetized background, in which the ion-inertial length $L_{pi} = 1.3$. The hodograms characterizing the polarization of the magnetic field vector are presented in the insets. Hereinafter, the time $t = 0$ corresponds to the moment of irradiation of the target with the first laser pulse, Z is the distance from the target to the sensors. As can be seen from the hodogram, the magnetic field vector has the right-handed polarization, which is one of the properties of whistler waves. As can be seen from figure 4, the spectrum of whistlers created by two clouds of laser plasma is shifted to the region of lower frequencies in comparison with the spectrum of whistlers from a single cloud. An increase in the number of clouds, as follows from the calculations, is accompanied by a decrease in the frequency of the resulting wave. The amplitude of the whistler depends on L_{pi}. Thus, when changing the magnetic field by 2 times, the value of L_{pi} being fixed, the maximum value of B_ϕ practically does not change. With a decrease to $L_{pi} \sim 0.5$, due to an increase in the background plasma concentration, B_W decreases by factor of 4, which is consistent with experiments [3, 4, 5], where a single cloud of laser plasma generated, simultaneously with the whistlers, an Alfvén wave in helium and hydrogen plasma at $L_{pi} \sim 0.25 \div 0.38$.

Figure 2. The time variation of B_ϕ for whistlers created by one plasma cloud.

Figure 3. The time variation of B_ϕ for whistlers created by two plasma clouds.
5. Conclusion
The clouds of laser plasma, resonantly interacting with magnetized background plasma, generate intense whistlers in the power tube, the length of which linearly depends on the number of clouds. The amplitude of the whistlers reaches record values of ~ 0.2 relative to the external field.

Acknowledgments
This work was carried out as part of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic No. AAAA-A17-117021750017-0). The experiment was justified using calculation modeling of Moscow State University, NSU and the Interdepartmental Supercomputer Center of the Russian Academy of Sciences. The reported research was funded by Russian Foundation for Basic Research and the government of the region of the Russian Federation, grant No. 18-32-00029 / 19 and 18-42-543019 and the Basic Research Program of the Russian Academy of Sciences No. 56.

References
[1] Tishchenko V N, Zakharov Y P, Shaikhislamov I F, Bereutzkiy A G, Boyarintsev E, Melekhov A V, Ponomarenko A G, Posukh V G and Prokopov P A 2016 JETP letters 104 293–296
[2] Tishchenko V N, Bereutzkiy A, Boyarintsev E, Zakharov Y P, Melekhov A V, Miroshnichenko I B, Ponomarenko A G, Posukh V G and Shaikhislamov I F 2017 Quantum Electronics 47 849
[3] Vshivkov V, Dudnikova G, Zakharov Y and Orishich A 1989 Physics of space and laboratory plasma
[4] Prokopov P, Zakharov Y P, Tishchenko V, Boyarintsev E, Melekhov A, Ponomarenko A, Posukh V and Shaikhislamov I 2016 Solar-Terrestrial Physics 2 19–33
[5] Heuer P, Weidl M, Dorst R, Schaeffer D, Bondarenko A, Tripathi S, Van Compernolle B, Vincena S, Constantin C, Niemann C et al. 2018 Physics of Plasmas 25 032104
[6] Gushchin M E, Korobkov S V, Kostrov A V and Strikovskii A V 2008 JETP letters 88 720–724
[7] Gushchin M E, Korobkov S V, Kostrov A V, Odzerikho D, Priver S and Strikovskii A V 2010 JETP letters 92 85–90