The Time Interval between Insemination and Ovulation as Given by Ultrasound Predicts Live Birth Rate After Intrauterine Insemination with Donor Sperm (IUI-D)

XIN MU  
Northwest women's and children's hospital

HUI WANG  
Northwest women's and children's hospital

NA ZHANG  
Northwest women's and children's hospital

WEN WEN  
Northwest women's and children's hospital

QIONG WU  
Northwest women's and children's hospital

PEIJUN LIU  
The First Affiliated Hospital of Xi'an Jiaotong University

Juan-zi Shi  (muxin1984@126.com)  
https://orcid.org/0000-0001-7652-495X

Research article

Keywords: I-O interval, intrauterine insemination, donor sperm, clinical pregnancy rate, live birth rate, prognostic factor

DOI: https://doi.org/10.21203/rs.3.rs-44759/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: A proper interval from insemination to ovulation (I-O interval) may increase the chance of pregnancy. Due to lack of studies for I-O interval in IUI-D cycles, we aimed to determine whether short I-O interval would contribute to better IUI-D outcomes.

Methods: One thousand and one hundred sixty-five couples for 209 IUI-D cycles from a single public medical center participated in this retrospective analytical study. The data were collected from the medical records of couples. Generalized estimating equations (GEEs) were used to evaluate the effects of these variables on IUI outcome. Stepwise multivariate logistic analysis was used to construct a predictive model for the clinical pregnancy rate and live birth rate in independent samples.

Results: The I-O interval was the predictor for LBR. An I-O interval ≥19 hours significantly decreased CPR (odds ratio [OR], 95% confidence interval [CI] =0.285, 0.171-0.475) and LBR (OR, 95%CI =0.322, 0.189-0.549). The presence of at least two follicles ≥18mm on ovulation day significantly increased the LBR (OR, 95%CI =1.274, 1.012-1.602). Women aged 35 years and older had a significant decreased LBR (OR, 95% CI =0.607, 0.377-0.976).

Conclusion(s): The I-O interval, a new prognostic factor, combination with the women's age and number of dominant follicles, can predict the outcome after IUI-D. IUI-D is best performed within 19 hours of I-O interval for a higher probability of clinical pregnancy and live birth.

Background

Infertility is becoming a serious health problem in developed countries. It is estimated that about 8%-32% of all married couples of reproductive age suffer from infertility and sterility worldwide [1,2]. With respect to males, approximately 5%-10% of infertility is due to azoospermia [3]. Intrauterine insemination with donor sperm (IUI-D), is mainly used for couples who have severe semen deficiencies or azoospermia, lesbian couples and single women [4]. For these women, IUI-D could be a better choice because of its simplicity, low cost and fewer complications compared to other assistant reproductive technologies (ARTs) and has been widely accepted as a first-line treatment for achieving pregnancy [5].

Although the technique of IUI-D has been improving, the success rate of IUI-D is still low and unsatisfactory [6]. Many factors have been verified to influence the outcome of IUI-D, including the women’s age [7,8], an extreme body mass index, decreased ovarian reserve, primary infertility, unilateral tubal occlusion, pelvic adhesions and mild endometriosis [9-13], insemination times in a cycle [14] and semen factors (volume, motility and morphology of donor’s semen) [15-17].

The timing of insemination is a key factor affecting the outcome after IUI-D [18]. A proper interval from insemination to ovulation (I-O interval) may increase the chance of pregnancy [19]. Several studies have investigated the effects of different insemination time on the pregnancy rate (PR) but have reported inconsistent conclusions [20-22]. According to the newest global recommendation, a single IUI for an
ovarian stimulation cycle can be performed any time between 24-40h after HCG injection and the IUI for a natural cycle should be performed 1 day after the increase in LH [23]. However, these studies did not include an important covariate, the ovulation time, which is key to determining IUI timing and can potentially affect the IUI outcome. The error in the predicted ovulation time could be a confounding factor affecting the clinical outcome after IUI-D. Moreover, in the IUI-D cycle, the processed spermatozoa are injected directly into uterus cavity, which means that the time for successful pregnancy in the IUI-D cycle is shorter than that for natural conception [24]. It is plausible that the insemination time should be scheduled as close as possible to ovulation to obtain a higher PR. In the present study, we retrospectively analyzed 2,091 IUI-D cycles from 1,165 couples and used the relative exact ovulation time to calculate the I-O interval to determine whether short I-O interval would contribute to better IUI-D outcomes.

**Methods**

**Patient and study design**

We retrospectively analyzed the IUI-D cycle performed in the reproductive medicine center of Northwest Women's And Children's Hospital, China, from January 2014 to December 2016. The data were collected from the medical records of couples. The study protocol was approved by the Ethics Committee for the Clinical Application of Human Assisted Reproductive Technology of Northwest Women's and Children's Hospital. All methods were performed in accordance with the Measures for the Administration of Human Assisted Reproductive Technology.

In our center, IUI-D is performed for male factor infertility (azoospermia or severe oligospermia). Before treatment, all women underwent a detailed history and physical examination. All women had a salpingography to confirm at least single tubal patency. Both the natural cycle and stimulated cycle were included. The recorded parameters were mainly related to the woman, including age, duration of infertility, pregnancy history, number of attempts, tubal patency, Cos protocol, endometrium thickness and types, number and diameter of mature follicles on the day of insemination, I-O interval and donor semen quality.

**IUI-D Procedure and I-O Interval Evaluation**

Transvaginal ultrasound and serum LH and E2 tests were performed to monitor ovulation. For natural cycles, the ultrasound check started on the eighth day of the cycle. For ovulation stimulation cycles, the test started on the fifth day of the cycle. The COS cycle was stimulated by clomiphene citrate, gonadotropins or clomiphene citrate plus gonadotropins. The initial dose was 50 mg/day for clomiphene citrate (CC) (days 5–9) or 75 IU/day for gonadotropins and was modified according to the ovarian response. The ovulation trigger was given with an injection of 10,000 IU HCG when the follicle was ≥ 18 mm but the serum LH was <35 IU/L.

An ultrasound check was carried out between 8:00 a.m. and 9:00 a.m. every one to five days depending on the growth speed of the follicle. When the leading follicle was larger than 14 mm, the patients started the test for urinary LH; if the test was positive or the leading follicle was larger than 18 mm, serum
estrogen (E<sub>2</sub>) and LH were quantified (except for those who refused blood tests). If the serum LH was ≥35 IU/L (defined as a spontaneous LH rise), E<sub>2</sub> and LH were retested three hours later. If the serum LH was <35 IU/L, we continued to test serum LH and E2 the next day for natural cycles, but for stimulating cycles, we administered an HCG injection when the follicle was ≥18 mm. Meanwhile, we increased the frequency of the ultrasound test (Figure 1).

According to the change in E<sub>2</sub> and LH, the HCG injection time and the ultrasound results, the insemination was arranged at 4:00 p.m. or 9:00 a.m. Thus, the I-O interval could be identified according to multiple ultrasound checks and the time of insemination (Table 1). In total, there were three types of I-O intervals: ≥ +19 h (Insemination preceded ovulation by more than 19 hours), -1 h ~ +19 h (Insemination preceded ovulation by fewer than 19 hours), and -19 h ~ -1 h (Ovulation preceded insemination by 1 hour to 19 hours; Table 1).

### Processing of Donor Sperm

The donor sperm samples were supplied by Shaanxi Province Human Sperm Bank and guaranteed by the National Health and Family Planning Commission (NHFPC) of the People's Republic of China. Sperm donors were screened strictly in accordance with NHFPC standards. Generally, eligible sperm had a minimum concentration of 60 × 10<sup>6</sup> per ml, progressive motility of 60%, and normal morphology of 4%. A proper match between patients and donors in racial and ethnic features, as well as blood type, were guaranteed. Before IUI, the frozen sperm sample was thawed fully and then centrifuged at 300g for 20 minutes, using a two-step discontinuous density gradient in a 45% and 90% Pure Sperm-100 platform. The semen samples were examined after thawing as well as after optimization according to the WHO standard [25]. The volume of washed sperm sample used for insemination was 0.5 mL.

### Intrauterine Insemination and Luteal Phase Support

Insemination was performed by one of our center's gynecologists. The prepared sperm was gently inserted within 1 cm of the fundal extend of the uterine cavity using a soft catheter. The patient then rested for 10-15 minutes in a supine position. Daily treatment with 200 mg micronized progesterone or 20 mg dydrogesterone was used for 15 days after IUI-D. Some patients with a history of recurrent spontaneous abortion received an injection of 2000 IU human chorionic gonadotropin three times (every three days).

### Diagnosis of pregnancy

The serum β-hCG concentration was quantified approximately 16 days after insemination. For women who had positive serum β-hCG, ultrasound confirmation of pregnancy was carried out two weeks later. A clinical pregnancy was defined after sonographic evidence of the gestational sac was observed. Live birth was defined as a live-born delivery at least 28 weeks after IUI-D.

### Statistical Analysis
The observations of any variables were not completely independent of each other when all IUI-D cycles were included. Consequently, classical statistical analyses with the assumption that samples are independent could not be used for the entire data from all cycles. In this case, generalized estimating equations (GEEs) that allow analysis of correlated observations [26] were used to evaluate the effects of these variables on IUI outcome, as in previous studies [8,14]. The outcome measure response variable was whether pregnancy existed per cycle. The outcome measure used as a response variable was whether pregnancy existed per cycle. For independent samples, two-group comparisons were performed by two-tailed Student’s t-test or Mann-Whitney U tests for continuous variables (expressed as the means ± standard deviations (SDs)) or by the χ² test for categorical variables (expressed as frequencies and percentages). Moreover, stepwise multivariate logistic analysis was used to construct a predictive model for the clinical pregnancy rate and live birth rate in independent samples. The initial analysis included the variables shown in Tables 2-5. Variables were removed stepwise when the Wald test P-value for a given variable was over 0.05. Only statistically significant variables were included in the final model. All analyses were performed using the software Statistical Package Social Science (SPSS) 22.0. For all statistical tests, P < 0.05 defined statistical significance.

Results

A total of 2,091 IUI-D cycles from 1,165 patients were included in our analysis, comprising 909 natural, 860 gonadotropin-induced, and 322 clomiphene citrate plus gonadotropin-induced cycles. Patients underwent an average of 3.50 years of infertility (SD: 2.7) and 1.8 (SD: 0.9) treatment cycles. The mean age of the women at treatment was 27.8 years (SD: 3.8). A total of 687 pregnancies occurred among 2,091 treatment cycles, with 592 live-birth deliveries, which represents a 32.9% pregnancy rate and a 28.3% live birth rate per cycle. In addition, 648 patients were pregnant, and 578 patients had live births after IUI-D among 1,165 patients; of the patients who became pregnant, 610 had become pregnant once, 37 became pregnant twice and 1 became pregnant three times during our research period. The characteristics of the included patients are summarized in Table 2.

Univariate Analysis

Continuous variable comparison between the cycles yielding positive and negative outcomes for pregnancy

The continuous variables were compared between cycles yielding positive and negative outcomes for pregnancy (Table 2). The mean age of the women was significantly lower in cycles resulting in live birth (P = 0.01). None of the other selected factors (Table 2) significantly varied between the cycles with or without clinical pregnancy (P > 0.05).

Univariate analysis of categorical factors related to patient demographic and clinical features

We further stratified the patients by demographic and clinical features and then compared the clinical pregnancy rate (CPR) and live birth rate (LBR) among the different patient stratifications (Table 3 to Table
5). The results indicated that an interval of $\geq +19$ h was associated with a significantly decreased CPR and LBR relative to -19 h $\sim$ -1 h (13.0%, 11.6% vs. 34.7%, 29.4%; $P<0.01$ and $<0.01$) and -1 h $\sim$ +19 h intervals (13.0%, 11.6% vs. 34.1%, 29.7%; $P<0.01$ and $<0.01$). Moreover, we found that the cycles carried out in patients $\geq$ 35 years old yielded a lower CPR and LBR relative to those in patients who were younger (23.9%, 19.7% vs. 33.4%, 28.8%; $P=0.04$ and 0.03). Patients who had only one dominant follicle had a lower CPR and LBR than those who had two or more mature follicles (31.7%, 27.2% vs. 37.3%, 32.8%). There were no significant associations of CPR and LBR with the other categorical variables included in Table 3 - Table 5.

**Multiple GEEs analysis and model building**

A predictive model for the clinical pregnancy rate and live birth rate was created by GEE analysis based on all 2,091 IUI-D cycles with predictor variables with $P<0.05$, as shown in Tables 6-7. The CPR was only associated with the I-O time interval. The LBR was associated with not only the I-O interval but also the patient's age and the number of dominant follicles. Compared with the -19 h $\sim$ -1 h interval, the $\geq +19$ h I-O interval resulted in a significantly decreased CPR (OR 0.29; 95% CI 0.17-0.48; $P<0.01$) and LBR (OR 0.32; 95% CI 0.19-0.55; $P<0.01$). No significant difference was observed between the -19 h $\sim$ -1 h interval and the -1 h $\sim$ +19 h interval. We found a significant decrease in the LBR as age increased beyond 35 years (OR 0.50; 95% CI 0.36-0.69; $P<0.01$), as well as a significant increase in women with two or more dominant follicles (OR 1.27; 95% CI 1.01-1.60; $P=0.04$). No significant difference was observed in the CPR between women who were younger or older than 35 years or for women with different numbers of dominant follicles.

**Discussion**

In the present study, we correlated the live birth rate with a series of demographic and cycle-specific factors in 2,091 IUI-D cycles from 1,165 infertile couples. To the best of our knowledge, this was the first study to investigate the effect of I-O interval on the PR of IUI-D based on the ovulation prediction by ultrasound combined with the trend of LH and $E_2$ regulation or HCG injection time. The overall live birth rate of 28.3% per cycle and the clinical pregnancy rate of 32.9% per cycle are comparable to previous data reported in China [27]. These results enable us to highlight some female prognostic factors for LBR. Our data showed that the I-O interval, combined with the woman's age and number of mature follicles, can predict the LBR per cycle. The odds of having a live birth significantly decreased when the I-O interval was $\geq 19$ h.

The HCG injection time has been mostly used as a reference time point to optimize the timing of insemination in IUI [28-31]. Different studies have investigated the effects of altering the time interval from HCG administration to insemination on IUI outcome, including IUI 3–5 minutes vs. IUI 24-32 hours after HCG injection [31], IUI simultaneously with HCG injection vs. IUI 34-36 hours after HCG injection [29], and IUI 36 hours vs. IUI 24 hours after HCG injection [28]. However, even in a stimulated cycle,
spontaneous premature LH rise could occur before the dominant follicle diameter reached 18 mm[32]. Thus, IUI performed 24-36 h after HCG injection might be too late in these cycles.

Detecting spontaneous LH rise is another widely accepted way to schedule IUI-D insemination. However, this method still has some limitations. The urinary LH kit used by most studies has been reported to have a relatively high false-negative rate, which could cause high cancellations and inappropriate insemination time [19]. Only one prospective study [24] used blood samples to detect spontaneous LH rise in the IUI cycle, but the limitation of this study is its neglect of serum E\textsubscript{2} levels. Moreover, too much blood collection for serum LH measurement also decreases its clinical application.

The classic theory of ovulation indicates that the rise in estrogen levels during the late proliferative phase triggers the pre-ovulatory LH surge, which in turn is followed by ovulation [33]. In natural cycle IVF treatment, when the LH surge reaches a peak or a descending slope with a decreasing E\textsubscript{2}, oocyte retrieval is scheduled the next morning or on the same day to achieve the highest oocyte retrieval rate [34].

According to this theory, we modified our IUI procedure. Urinary LH was tested for follicles $\geq$ 14 mm until it was positive or for follicles $\geq$ 18 mm, and then serum LH and E\textsubscript{2} quantification was performed. When LH was $\geq$ 35 IU/L, we retested LH and E\textsubscript{2}. Based on the regulation trend of LH and E\textsubscript{2} or HCG injection time, insemination was scheduled. This method could minimize the frequency of blood sampling and detect premature spontaneous LH rise as early as possible. Sequential transvaginal ultrasound checks were carried out to monitor ovulation for up to three days, which allowed us to obtain a relatively more exact I-O interval. Using this protocol, we can obtain a better outcome, indicating that this method could be used in scheduling exact and better insemination times in the IUI-D cycle.

As spermatozoa have a longer survival period in the uterus than the ovulated oocyte [35], it is reasonable that the probability of conception increases when spermatozoa are available in the reproductive tract before ovulation occurs; in other words, spermatozoa wait for oocyte [36]. Interestingly, our data indicate that there is an equal probability of conception when the interval length between insemination and ovulation is $\leq$ 19 h, regardless of which one occurred first, suggesting that such an interval is long enough for both spermatozoa and oocyte to maintain their activity and complete fertilization. After 19 hours, the activity of the spermatozoa or the oocyte may sharply decrease, and the LBR would drop significantly.

Patient age was another predictor for the CPR and LBR in our study. The CPR and LBR were significantly decreased for women $\geq$ 35 years old, similar to the results of previous studies [37,38]. This could be attributed to decreasing ovarian reserves with increasing age [39]. Furthermore, women presenting with two more mature follicles on the ovulation day were more likely to achieve pregnancy than women with only one mature follicle.

The main limitations of our study include our relatively small sample size and possible sample selection bias from the retrospective analysis. Studies based on a larger sample size and prospective design should be carried out in the future to confirm these results.
Conclusions

In conclusion, our results have shown for the first time that the time interval between insemination and ovulation highly correlates with the live birth rate in IUI-D cycles. We also identified the I-O interval as a new prognostic factor for the outcome of IUI-D and highlighted that within 19 hours of ovulation is the proper time window for fertilization in the IUI-D procedure.

Abbreviations

IUI-D  Intrauterine insemination with donor sperm
I-O  Insemination to ovulation
GEEs  Generalized estimating equations
LBR  Live birth rate
CPR  Clinical pregnancy rate
OR  Odds ratio
CI  Confidence interval
ARTs  Assistant reproductive technologies
PR  Pregnancy rate
HCG  Human chorionic gonadotropin
LH  Luteinizing hormone
E2  Estradiol
COS  Controlled ovarian stimulation
CC  Clomiphene citrate
WHO  World health organization
SPSS  Statistical Package Social Science

Declarations

Ethical approval and consent to participate:
This study was approved by the Ethics Committee for the Clinical Application of Human Assisted Reproductive Technology of Northwest Women's and Children's hospital. We followed all Helsinki declaration and national ethical standards. All participants were ensured about the matter of confidentiality, and informed written consent of the participants was obtained before data collection.

**Consent to publish:**

Not applicable.

**Availability of data and materials:**

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

**Competing interests:**

The authors declare no competing interests.

**Funding:**

No funding available for this research.

**Authors’ contributions:**

XM: Data analysis, Data collection and manuscript writing. HW: Project development. NZ: Data collection. WW: Data collection. QW: Data collection. Pei-jun Liu: Project development, manuscript writing and editing. Juan-zi Shi: manuscript writing and editing. All the authors read and approved the final manuscript.

**Acknowledgements:**

We thank all the clinicians, scientists and embryologists in the Northwest Women and Children's Hospital for their assistance with data collection, and all the patients for their contribution to this study.

**Reference**

1. Vander Borght M, Wyns C (2018) Fertility and infertility: Definition and epidemiology. Clin Biochem 62:2-10. doi:10.1016/j.clinbiochem.2018.03.012

2. Craig LB, Peck JD, Janitz AE (2019) The prevalence of infertility in American Indian/Alaska Natives and other racial/ethnic groups: National Survey of Family Growth. Paediatr Perinat Epidemiol 33 (2):119-125. doi:10.1111/ppe.12538

3. Practice Committee of the American Society for Reproductive Medicine. Electronic address aao (2018) Management of nonobstructive azoospermia: a committee opinion. Fertil Steril 110 (7):1239-1245. doi:10.1016/j.fertnstert.2018.09.012
4. Kandavel V, Cheong Y (2018) Does intra-uterine insemination have a place in modern ART practice? Best Pract Res Clin Obstet Gynaecol 53:3-10. doi:10.1016/j.bpo.2018.08.003

5. Chen L, Zhu L, Cai C, Yan G, Sun H (2018) Clinical and neonatal outcomes of intrauterine insemination with frozen donor sperm. Syst Biol Reprod Med 64 (4):240-245. doi:10.1080/19396368.2018.1453563

6. De Geyter C, Calhaz-Jorge C, Kupka MS, Wyns C, Mocanu E, Motrenko T, Scaravelli G, Smeenk J, Vidakovíc S, Goossens V, European IVFmCftESoHR, Embryology (2018) ART in Europe, 2014: results generated from European registries by ESHRE: The European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod 33 (9):1586-1601. doi:10.1093/humrep/dey242

7. Mokdad C, Clavier B, Perdrix A, Roman H, Marpeau L, Rives N (2013) [Prognosis factors in donor semen insemination: a 10-years follow-up study of 188 patients]. Gynecol Obstet Fertil 41 (2):96-104. doi:10.1016/j.gyobfe.2012.07.007

8. Thijssen A, Creemers A, Van der Elst W, Creemers E, Vandormael E, Dhont N, Ombelet W (2017) Predictive value of different covariates influencing pregnancy rate following intrauterine insemination with homologous semen: a prospective cohort study. Reprod Biomed Online 34 (5):463-472. doi:10.1016/j.rbmo.2017.01.016

9. Atasever M, Kalem MN, Hatirmaz S, Hatirmaz E, Kalem Z, Kalaylioglu Z (2016) Factors affecting clinical pregnancy rates after IUI for the treatment of unexplained infertility and mild male subfertility. J Turk Ger Gynecol Assoc 17 (3):134-138. doi:10.5152/jtgga.2016.16056

10. Michau A, El Hachem H, Galey J, Le Parco S, Perdigão S, Guthauser B, Rousseau A, Dahoun M, Guillaume C, Tabchouri N, Hammoud I (2019) Predictive factors for pregnancy after controlled ovarian stimulation and intrauterine insemination: A retrospective analysis of 4146 cycles. J Gynecol Obstet Hum Reprod 48 (10):811-815. doi:10.1016/j.jogoh.2019.05.006

11. Huyghes S, Verest A, Thijssen A, Ombelet W (2017) Influence of BMI and smoking on IUI outcome with partner and donor sperm. Facts Views Vis Obgyn 9 (2):93-100

12. Isa AM, Abu-Rafea B, Alasiri SA, Binsaleh S, Ismail KH, Vilos GA (2014) Age, body mass index, and number of previous trials: are they prognosticators of intra-uterine-insemination for infertility treatment? Int J Fertil Steril 8 (3):255-260

13. Cochet T, Gatimel N, Moreau J, Cohade C, Fajau C, Lesourd F, Parinaud J, Leandri R (2017) Effect of unilateral tubal abnormalities on the results of intrauterine inseminations. Reprod Biomed Online 35 (3):314-317. doi:10.1016/j.rbmo.2017.05.018

14. Zarek SM, Hill MJ, Richter KS, Wu M, DeCherney AH, Osheroff JE, Levens ED (2014) Single-donor and double-donor sperm intrauterine insemination cycles: does double intrauterine insemination increase clinical pregnancy rates? Fertil Steril 102 (3):739-743. doi:10.1016/j.fertnstert.2014.05.018

15. Luco SM, Agbo C, Behr B, Dahan MH (2014) The evaluation of pre and post processing semen analysis parameters at the time of intrauterine insemination in couples diagnosed with male factor
infertility and pregnancy rates based on stimulation agent. A retrospective cohort study. Eur J Obstet Gynecol Reprod Biol 179:159-162. doi:10.1016/j.ejogrb.2014.05.003

16. Kohn TP, Kohn JR, Ramasamy R (2018) Effect of Sperm Morphology on Pregnancy Success via Intrauterine Insemination: A Systematic Review and Meta-Analysis. J Urol 199 (3):812-822. doi:10.1016/j.juro.2017.11.045

17. Rodriguez-Purata J, Latre L, Ballester M, Gonzalez-Llagostera C, Rodriguez I, Gonzalez-Foruria I, Buxaderas R, Martinez F, Barri PN, Coroleu B (2018) Clinical success of IUI cycles with donor sperm is not affected by total inseminated volume: a RCT. Hum Reprod Open 2018 (2):hoy002. doi:10.1093/hropen/hoy002

18. Kosmas IP, Tatsioni A, Fatemi HM, Kolibianakis EM, Tourkomenis H, Devroey P (2007) Human chorionic gonadotropin administration vs. luteinizing monitoring for intrauterine insemination timing, after administration of clomiphene citrate: a meta-analysis. Fertil Steril 87 (3):607-612. doi:10.1016/j.fertnstert.2006.10.003

19. El Hachem H, Antaki R, Sylvestre C, Lapensee L, Legendre G, Bouet PE (2017) Timing therapeutic donor inseminations in natural cycles: human chorionic gonadotrophin administration versus urinary LH monitoring. Reprod Biomed Online 35 (2):174-179. doi:10.1016/j.rbmo.2017.05.005

20. Robb PA, Robins JC, Thomas MA (2004) Timing of hCG administration does not affect pregnancy rates in couples undergoing intrauterine insemination using clomiphene citrate. J Natl Med Assoc 96 (11):1431-1433

21. Claman P, Wilkie V, Collins D (2004) Timing intrauterine insemination either 33 or 39 hours after administration of human chorionic gonadotropin yields the same pregnancy rates as after superovulation therapy. Fertil Steril 82 (1):13-16. doi:10.1016/j.fertnstert.2003.09.081

22. Lee J, Hwang S, Lee J, Yoo J, Jang D, Hwang K, Kim M (2018) Effect of insemination timing on pregnancy outcome in association with female age, sperm motility, sperm morphology and sperm concentration in intrauterine insemination. J Obstet Gynaecol Res 44 (6):1100-1106. doi:10.1111/jog.13625

23. Cohlen B, Bijkerk A, Van der Poel S, Ombelet W (2018) IUI: review and systematic assessment of the evidence that supports global recommendations. Hum Reprod Update 24 (3):300-319. doi:10.1093/humupd/dmx041

24. Blockeel C, Knez J, Polyzos NP, De Vos M, Camus M, Tourkomenis H (2014) Should an intrauterine insemination with donor semen be performed 1 or 2 days after the spontaneous LH rise? A prospective RCT. Hum Reprod 29 (4):697-703. doi:10.1093/humrep/deu022

25. Lu JC, Huang YF, Lu NQ (2010) [WHO Laboratory Manual for the Examination and Processing of Human Semen: its applicability to andrology laboratories in China]. Zhonghua Nan Ke Xue 16 (10):867-871

26. Hanley JA, Negassa A, Edwardes MD, Forrester JE (2003) Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol 157 (4):364-375. doi:10.1093/aje/kwf215
27. Zhou Z, Chen L, Wu H, Zheng D, Li R, Mol BW, Qiao J (2018) Assisted reproductive technology in Beijing, 2013-2015. Reprod Biomed Online 37 (5):521-532. doi:10.1016/j.rbmo.2018.08.002

28. Rahman SM, Karmakar D, Malhotra N, Kumar S (2011) Timing of intrauterine insemination: an attempt to unravel the enigma. Arch Gynecol Obstet 284 (4):1023-1027. doi:10.1007/s00404-011-1950-6

29. Aydin Y, Hassa H, Oge T, Tokgoz VY (2013) A randomized study of simultaneous hCG administration with intrauterine insemination in stimulated cycles. Eur J Obstet Gynecol Reprod Biol 170 (2):444-448. doi:10.1016/j.ejogrb.2013.07.022

30. Vlahos NF, Coker L, Lawler C, Zhao Y, Bankowski B, Wallach EE (2005) Women with ovulatory dysfunction undergoing ovarian stimulation with clomiphene citrate for intrauterine insemination may benefit from administration of human chorionic gonadotropin. Fertil Steril 83 (5):1510-1516. doi:10.1016/j.fertnstert.2004.11.049

31. Mostafa S. Mostafa, Ahmed M. El Huseiny, Soliman BS (2014) Effect of postponing hCG injection after intrauterine insemination on pregnancy rate. Middle East Fertility Society Journal 19 (3):4. doi:10.1016/j.mefs.2013.10.002

32. Antaki R, Dean NL, Lapensee L, Racicot MH, Menard S, Kadoch IJ (2011) An algorithm combining ultrasound monitoring and urinary luteinizing hormone testing: a novel approach for intrauterine insemination timing. J Obstet Gynaecol Can 33 (12):1248-1252. doi:10.1016/s1701-2163(16)35110-6

33. Moghissi KS (1980) Prediction and detection of ovulation. Fertil Steril 34 (2):89-98. doi:10.1016/s0015-0282(16)44888-0

34. Bodri D, Kawachiya S, Kondo M, Kato R, Matsumoto T (2014) Oocyte retrieval timing based on spontaneous luteinizing hormone surge during natural cycle in vitro fertilization treatment. Fertil Steril 101 (4):1001-1007 e1002. doi:10.1016/j.fertnstert.2014.01.016

35. Kucuk T (2008) Intrauterine insemination: is the timing correct? J Assist Reprod Genet 25 (8):427-430. doi:10.1007/s10815-008-9247-9

36. Wilcox AJ, Weinberg CR, Baird DD (1995) Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med 333 (23):1517-1521. doi:10.1056/NEJM1995120733332301

37. Vargas-Tominaga L, Alarcon F, Vargas A, Bernal G, Medina A, Polo Z (2020) Associated factors to pregnancy in intrauterine insemination. JBRA Assist Reprod 24 (1):66-69. doi:10.5935/1518-0557.20190060

38. Sicchieri F, Silva AB, Silva A, Navarro P, Ferriani RA, Reis RMD (2018) Prognostic factors in intrauterine insemination cycles. JBRA Assist Reprod 22 (1):2-7. doi:10.5935/1518-0557.20180002

39. Thijssen A, Creemers A, Van der Elst W, Creemers E, Vandormael E, Dhont N, Ombelet W (2017) Predictive factors influencing pregnancy rates after intrauterine insemination with frozen donor semen: a prospective cohort study. Reprod Biomed Online 34 (6):590-597. doi:10.1016/j.rbmo.2017.03.012
### Table 1
IUI cycle classification based on the time interval from insemination to ovulation in IUI-D course

|       | Group1  | Group2  | Group3  | Group4  |
|-------|---------|---------|---------|---------|
| **Day 1:** 8:00 a.m. | UC      | UC      | UC      | UC      |
| **Day 1:** 3:00 p.m. | UC      | UC      | UC and Ovu. | UC      |
| **Day 1:** 4:00 p.m. | Insem.  | Insem.  | Insem.  | –       |
| **Day 2:** 8:00 a.m. | –       | –       | –       | UC and Ovu. |
| **Day 2:** 9:00 a.m. | –       | –       | –       | Insem.  |
| **Day 2:** 11:00 a.m. | UC and not Ovu. | UC and Ovu. | –       | –       |
| **Interval** | ≥+19h   | -1~+19h | -8~1h   | -19~-1h |
| Interval   | Insemination preceded ovulation by more than 19 hours | Insemination preceded ovulation by fewer than 19 hours | Ovulation preceded insemination by 1 hour to 8 hours | Ovulation preceded insemination by 1 hour to 19 hours |

**Abbreviation:** UC: ultrasound check; Ovu: ovulation; Insem: insemination; I-O interval: the interval between insemination and ovulation, - means ovulation happens before insemination, + means contrary situation.

Therefore, the interval from insemination to ovulation can be classified into three types: \( ≥+19h \) (ovulation is \( ≥19h \) after insemination), \(-1~+19h\) (ovulation is \(<19h\) after insemination), \(-19~−1h\) (ovulation is \(<19h\) before insemination) (Table 1).
## Table 2: Continuous variables comparison between cycles yielding positive and negative outcomes for pregnancy

| Variables                                      | Total    | Pregnancy | No pregnancy | P-value | Live birth | No live birth | P-value |
|------------------------------------------------|----------|-----------|--------------|---------|------------|---------------|---------|
| **No. of cycles**                              | 2091     | 687       | 1404         |         | 592        | 1499          |         |
| **No. of patients**                            | 1165     | 648       | 517          |         | 578        | 587           |         |
| **Age at treatment (years)**                   | 27.8 ± 3.8 | 27.6 ± 3.4 | 27.9 ± 3.8  | 0.06    | 27.5 ± 3.6 | 28.0 ± 3.8    | 0.01    |
| **Cycle number**                               | 1.8 ± 0.9 | 1.8 ± 0.9 | 1.8 ± 0.9    | 0.16    | 1.8 ± 0.9 | 1.8 ± 0.9     | 0.40    |
| **Duration of infertility (years)**            | 3.5 ± 2.7 | 3.5 ± 2.4 | 3.5 ± 2.8    | 0.51    | 2.4 ± 0.1 | 2.7 ± 0.1     | 0.25    |
| **Diameter of leading follicle (mm)**          | 19.0 ± 1.6 | 19.0 ± 1.6 | 18.9 ± 1.6  | 0.14    | 19.0 ± 1.5 | 19.0 ± 1.6    | 0.69    |
| **Duration of COS (days)**                     | 6.0 ± 3.1 | 6.2 ± 3.1 | 6.0 ± 3.1    | 0.36    | 6.1 ± 3.1 | 6.0 ± 3.1     | 0.69    |
| **Thickness of endometrium (mm)**              | 11.0 ± 2.1 | 11.0 ± 2.1 | 10.9 ± 2.1  | 0.23    | 11.0 ± 2.0 | 10.9 ± 2.1    | 0.26    |

a Two-tailed Student’s t tests were carried out for each variable to obtain the P-values. Statistically significant results (P < 0.05) are marked in bold.

b This measure is only analyzed for the patients receiving controlled ovarian stimulation (COS) treatment (n = 1182).

c Thickness of endometrium was evaluated by ultrasound check on the day of insemination.

**Abbreviation:** No.: number; COS: controlled ovarian stimulation;
Table 3
Univariate analysis on categorical factors related to patients demographic features

| Parameter                  | Total | CPR (%)       |  𝑃-value | LBR (%)       |  𝑃-value |
|----------------------------|-------|---------------|----------|---------------|----------|
| Cycle number               |       |               |          |               |          |
| <3                         | 1658  | 32.6 (540/1658) | 0.61     | 28.5 (472/1658) | 0.77     |
| >=3                        | 433   | 34.0 (147/433)   |          | 27.7 (120/433)  |          |
| Age of patient(years)      |       |               | 0.04     | 0.03           |          |
| <35                        | 1974  | 33.4 (659/1974)  |          | 28.8 (569/1974) |          |
| >=35                       | 117   | 23.9 (28/117)    |          | 19.7 (23/117)   |          |
| Pregnancy History          |       |               | 0.58     | 0.35           |          |
| Primary infertility        | 1816  | 33.1 (601/1816)  |          | 28.7 (521/1816) |          |
| Secondary infertility      | 275   | 31.3 (86/275)    |          | 25.8 (71/275)   |          |
| Patency of fallopian tube  |       |               | 0.71     | 0.69           |          |
| Two tube                   | 1955  | 32.7 (640/1955)  |          | 28.2 (551/1955) |          |
| one tube                   | 136   | 34.6 (47/136)    |          | 30.1 (41/136)   |          |

Abbreviation: **CPR**: clinical pregnancy rate per cycle; **LBR**: live birth rate per cycle
Table 4
Univariate analysis on categorical factors related to ovarian stimulation

| Parameter                              | Total | CPR (%) | P-value | LBR (%) | P-value |
|----------------------------------------|-------|---------|---------|---------|---------|
| Method of Ovu. induction               |       |         |         |         |         |
| Natural cycle                          | 909   | 30.7    | 0.08    | 26.6    | 0.21    |
|                                       |       | (279/909) |         | (242/909) |         |
| Gn.                                    | 860   | 35.6    |         | 30.3    |         |
|                                       |       | (306/860) |         | (261/860) |         |
| CC plus Gn.                            | 322   | 31.7    |         | 27.6    |         |
|                                       |       | (102/322) |         | (89/322)  |         |
| Start time of Ovu. induction           |       |         | 1.00    | 0.72    |         |
| <D10 of menstruation                  | 878   | 34.5    |         | 29.3    |         |
|                                       |       | (303/878) |         | (257/878) |         |
| >=D10 of menstruation                 | 304   | 34.5    |         | 30.6    |         |
|                                       |       | (105/304) |         | (93/304)  |         |
| Number of dominant follicles          |       | 0.03    |         | 0.03    |         |
| 1                                      | 1667  | 31.7    |         | 27.2    |         |
|                                       |       | (529/1667) |         | (453/1667) |         |
| ≥2                                     | 424   | 37.3    |         | 32.8    |         |
|                                       |       | (158/424) |         | (139/424) |         |
| Progynova Used for endometrium growth |       | 0.34    |         | 0.19    |         |
| No drug                                | 1452  | 33.5    |         | 29.2    |         |
|                                       |       | (487/1452) |         | (424/1452) |         |
| Use drugs                              | 639   | 31.3    |         | 26.3    |         |
|                                       |       | (200/639) |         | (168/639) |         |
| Type of endometrium                    |       | 0.32    |         | 0.44    |         |
| Type A or A-B                          | 351   | 29.6    |         | 25.6    |         |
|                                       |       | (104/351) |         | (90/351)  |         |
| Type B or B-C                          | 1523  | 33.8    |         | 28.7    |         |
|                                       |       | (514/1523) |         | (437/1526) |         |
| Type C                                 | 217   | 31.8    |         | 30.0    |         |
|                                       |       | (69/217)  |         | (65/217)  |         |
| Time of HCG injection                  |       | 0.92    |         | 0.90    |         |
| No HCG                                 | 783   | 32.7    |         | 28.5    |         |
|                                       |       | (256/783) |         | (223/783) |         |
| ≤24 hours before insemin              | 968   | 32.6    |         | 27.9    |         |
|                                       |       | (316/968) |         | (270/968) |         |
| Parameter                        | Total | CPR (%) | P-value | LBR (%) | P-value |
|---------------------------------|-------|---------|---------|---------|---------|
| I-O interval (h)                |       |         |         |         |         |
| -19~1                           | 714   | 34.7 (248/714) | < 0.01 | 29.4 (210/714) | < 0.01 |
| -1~+19 h                        | 1231  | 34.1 (420/1231) |       | 29.7 (365/1231) |       |
| ≥19                             | 146   | 13.0 (19/146) |         | 11.6 (17/146) |         |
| Drug for corpus luteum support  |       |         |         |         |         |
| Progesterone only               | 2005  | 32.6 (653/2005) | 0.20   | 28.3 (567/2005) | 0.90   |
| Progesterone with HCG           | 86    | 39.5 (34/86) |         | 29.1 (25/86) |         |
| Sperm concentration (million/mL)|       |         |         |         |         |
| ≥10, ≤20                        | 284   | 29.2 (83/284) | 0.21   | 24.3 (69/284) | 0.16   |
| ≥20, ≤30                        | 1421  | 32.8 (466/1421) |       | 28.4 (403/1421) |       |
| ≥30                             | 386   | 35.8 (138/386) |         | 31.1 (120/386) |         |

**Abbreviation:** Insem: insemination; Ovu.: ovulation; Gn: Gonadotropin; CC: clomiphene citrate; HCG: human chorionic gonadotropin; CPR: clinical pregnancy rate per cycle; LBR: live birth rate per cycle

Table 5
Univariate analysis on categorical factors related to insemination

Abbreviation: h: hours; CPR: clinical pregnancy rate per cycle; LBR: live birth rate; I-O: insemination-ovulation
### Table 6
IUI-D predictive model for clinical pregnancy rate per cycle

|                        | OR  | 95%CI low | 95%CI upp | P-value |
|------------------------|-----|-----------|-----------|---------|
| (Intercept)            | 0.52| 0.44      | 0.62      | <0.01   |
| Age of patient(years)  |     |           |           |         |
| >=35                   | 0.63| 0.39      | 1.02      | 0.06    |
| I-O interval (h)       |     |           |           |         |
| -1~+19                 | 0.97| 0.80      | 1.18      | 0.77    |
| >=19                   | 0.29| 0.17      | 0.48      | <0.01   |
| Number of dominant follicles |     |           |           |         |
| ≥2                     | 1.24| 0.99      | 1.56      | 0.06    |

**Abbreviation:** OR: odds ratio; C.I.: confidential interval; I-O: insemination-ovulation

### Table 7
IUI-D predictive model for live birth rate per cycle

|                        | OR  | 95%CI low | 95%CI upp | P-value |
|------------------------|-----|-----------|-----------|---------|
| (Intercept)            | 0.41| 0.34      | 0.49      | <0.01   |
| Age of patient(years)  |     |           |           |         |
| >=35                   | 0.61| 0.38      | 0.98      | 0.04    |
| I-O interval (h)       |     |           |           |         |
| -1~+19                 | 1.01| 0.83      | 1.24      | 0.93    |
| >=19                   | 0.32| 0.19      | 0.55      | <0.01   |
| Number of dominant follicles |     |           |           |         |
| ≥2                     | 1.27| 1.01      | 1.60      | 0.04    |

**Abbreviation:** OR: odds ratio; C.I.: confidential interval; I-O: insemination-ovulation

### Figures
Figure 1

Algorithm for IUI timing combining dominant follicle diameter and luteinizing and estrogen hormone testing