In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2.

Sylvain Ilboudo, Edwin Fouche, Virginie Rizzati, Adama M. Toé, Laurence Payrastre, Pierre I. Guissou

To cite this version:
Sylvain Ilboudo, Edwin Fouche, Virginie Rizzati, Adama M. Toé, Laurence Payrastre, et al.. In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2.. Toxicology Reports, Elsevier, 2014, 1, pp.474-489. <10.1016/j.toxrep.2014.07.008>. <hal-01187880>
In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2

Sylvain Ilboudo a,b,c, Edwin Fouche a, Virginie Rizzati a, Adama M. Toé b, Laurence Gamet-Payrastre a,⁎, Pierre I. Guissou b,c

a INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France
b Institut de Recherche en Science de la Santé (IRSS/CNRST), 03, BP 7192, Ouagadougou, Burkina Faso
c Laboratoire de Toxicologie, Environnement et Santé; Ecole Doctorale de la Santé, Université de Ouagadougou, 03, BP 7021, Ouagadougou, Burkina Faso

A R T I C L E I N F O

Article history:
Received 13 May 2014
Received in revised form 1 July 2014
Accepted 14 July 2014
Available online 25 July 2014

Keywords:
Pesticide
Mixture
Caco-2
Oxidative stress
Locust control
Antioxidant
Cell signaling

A B S T R A C T

In Burkina Faso, as in most Sahelian countries, the failure to follow good agricultural practices coupled with poor soil and climate conditions in the locust control context lead to high environmental contaminations with pesticide residues. Thus, consumers being orally exposed to a combination of multiple pesticide residues through food and water intake, the digestive tract is a tissue susceptible to be directly exposed to these food contaminants. The aim of our work was to compare in vitro the impact of five desert locust control pesticides (Deltamethrin DTM, Fenitrothion FNT, Fipronil FPN, Lambda-cyhalothrine LCT, and Tebufenuron TBZ) alone and in combination on the human intestinal Caco-2 cells viability and function. Cells were exposed to 0.1–100 μM pesticides for 10 days alone or in mixture (MIX). Our results showed a cytotoxic effect of DTM, FNT, FPN, LCT, and TBZ alone or in combination in human intestinal Caco-2 cells. The most efficient were shown to be FPN and FNT impacting the cell layer integrity and/or barrier function, ALP activity, antioxidant enzyme activity, lipid peroxidation, Akt activation, and apoptosis. The presence of antioxidant reduced lipid peroxidation level and attenuated the pesticides-induced cell toxicity, suggesting that key mechanism of pesticides cytotoxicity may be linked to their pro-oxidative potential. A comparative analysis with the predicted cytotoxic effect of pesticides mixture using mathematical modeling shown that the combination of these pesticides led to synergistic effects rather than to a simple independent or dose addition effect.

© 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Pesticides are useful tools against desert locust in various African and other world countries and several locust invasions need intensive use of these chemicals across millions of hectares [1]. As the results of the widespread use and the lack of safe management of pesticides in developing countries [2–4], various compartments of the environment are contaminated and exposure to pesticides is a concern toward the general population [5].

Epidemiological studies often established a positive correlation between occupational exposure to pesticides and the incidence of human chronic pathologies such as cancers, diabetes, neurodegenerative and reproductive disorders, birth defects and developmental

http://dx.doi.org/10.1016/j.toxrep.2014.07.008
2214-7500/© 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
toxicity, nephropathies, and respiratory, cardiovascular and autoimmune diseases (for a review see Mostafalou and Abdollahi [6]). Moreover, pesticides are known individually to induce toxicity at the cellular level throughout oxidant-mediated responses such as apoptotic or necrotic cells death, membrane lipids peroxidation, metabolic perturbation, deregulation of several signaling pathways [7] or alteration of tight junctions [8,9].

Our previous investigations showed the presence of pesticide residues in water and plant samples from locust area in Burkina Faso several years after their use [10]. Elsewhere, pesticide residues in drinking water and plant [11–13] have been reported to be present at concentrations above Maximum Allowable Concentration (MAC) and Maximum Residue Levels (MRLs) respectively. High levels of pesticides in water and plants as sources of food commodities are a concern for consumers and may be at the onset of human health perturbations. Moreover, due to their use in a wide variety of consumer products it is likely that humans are exposed to several pesticides at any one time and it is well admitted that consumers are exposed through foodstuffs and water intake to cocktails of food contaminants. Although it was well admitted that the mixture is devoid of hazard when the concentration of each compound does not reach an health concern level, Kortenkamp et al. [14] demonstrated significant effects of combination of pesticides when present below their individual no observable adverse effect levels (NOAELs). Predicting the effects associated with simultaneous exposure to different food contaminants is often relying on two suitable assessment concepts, the concentration or dose addition (CA) and the concept of independent action (IA). CA is thought to be applicable to mixtures of chemicals that act on the same toxicological endpoint by a common mechanism of action, while IA is commonly applied to chemicals with dissimilar modes of action [15]. However, combined effects of pesticide mixtures have been assessed in various cell and animal model and results suggested that the effect of pesticide mixture cannot always be predicted from the effect of individual compounds [16–19]. It thus appears the importance of assessing mixtures in toxicological studies. This has stimulated our interest in assessing the effects associated with simultaneous exposure to pesticides both trough toxicological studies and mathematical modeling.

We aimed to study the in vitro toxicological properties of five pesticides alone or in combination (Deltamethrin DTM, Fenitrothion FNT, Fipronil FPN, Lambda-cyhalothrine LCT, and Teflubenzuron TBZ) and to compare the results to that predicted from a mathematical model in order to assess the role of modeling in predicting effects of mixture. These compounds are intensively used in Burkina Faso against the desert locust and have been identified as food contaminants found in edible plants and drinking water in this country. It is noteworthy that these insecticides are also largely used in the UE on various crops, vine and fruit farming excepted fenithrozin and diazinon which are not approved for utilization in the UE.

The oral route being the main way of consumers exposure, intestinal tract is a direct target organ of xenobiotics. Established cell lines, such as Caco-2 cells have proved to be the best model for studies of intestinal absorption and toxicity of xenobiotics [20–22]. These cells, despite their colonic origin, expressed in culture the main morphological and functional characteristics of intestinal cells [23]. The human colonic cell line Caco-2 cells was thus used as an in vitro model in our study.

2. Materials and methods

2.1. Chemicals

The pesticides deltamethrin (CAS No. 52918-63-5), fenitrothion (CAS No. 122-14-5), fipronil (CAS No. 120068-37-3), lambda-cyhalothrin (CAS No. 91465-08-6), and teflubenzuron (CAS No. 83121-18-0) were purchased from Fluka (Riedel-de-Haën®, France). Purity of each compound was ranged from 95.2 to 99.6% according to manufacturer specification. Dulbecco’s modified Eagle’s medium (DMEM), Roswell Park Memorial Institute medium (RPMI), l-glutamine, Dimethyl sulfoxide (DMSO), non essential amino acids (NEAA), Penicillin and Streptomycin, Phosphate buffer saline (PBS), Trypsin-EDTA, p-nitrophenol, p-nitrophenyl-phosphate, hydrogen peroxides (H₂O₂). Reduced glutathione, glutathione reductase, α-NADPH, 2’,7’-dichlorodihydrofluorescein diacetate (H₂DCF-DA), Hank’s balanced salt solution (HBSS), Hoechst 33342, propidium iodide (PI), thiocticuric acid (TBA), 1,1,3,3-tetramethoxyxyp propane (TMOP), and Binchoninic Acid (BCA) were purchased from Sigma–Aldrich (France). Fetal bovine serum (FBS) and the sterile material used for culture (flasks and culture plates) were from Dutscher (France). When not specified chemicals were purchased from Sigma–Aldrich (France).

2.2. Cell culture

Caco-2 cells were obtained from the American Type Culture Collection (ATCC, USA) and cultured in a humidified atmosphere of 5% CO₂ and 95% air at 37 °C. Culture medium (DMEM) was supplemented with 1% l-glutamine, 1% NEAA, 1% Penicillin/Streptomycin and 10% of heat-inactivated FBS. When the cell culture reached 80% confluence, cells were dispersed with 0.025 M trypsin-EDTA and reseeded in new flask. The passage number of the cells used in the experiments was between 25 and 39. The culture medium was replaced every 48 h.

2.3. Pesticide treatments

Pesticides concentrations assessed in our study were ranged from 0.1 to 100 μM. The chosen doses were based on the LMR values adapted to our in vitro study as follows: LMR values expressed in mg/kg of vegetables were converted into μg of active substance supposed to be present in the digestive tract by considering a total assimilation of the LMR amount of pesticide in vivo upon a dietary intake of 100 g of vegetables. LMRs for DTM, FNT, TBZ, FNT, and LCT vary respectively from 0.01 to 2; 0.05 to 6; 0.05 to 1; 0.002 to 5; and 0.02 to 3 mg/kg vegetables (according to Codex Alimentarius http://www.codexalimentarius.org/). Stock solutions
of pesticides (100 mM) were prepared in DMSO. One day after seeding, cell layers were washed with serum free medium and then incubated with 4% FBS containing medium supplemented with the indicated concentrations of pesticides. The freshly mixture solution was made by adding individual pesticides directly in medium containing 4% FBS at equimolar proportion respecting the same range concentration of single agents. Treatments with pesticides were renewed every 48 h. Control cells were exposed to 0.1% DMSO alone. Each experiment was repeated independently 3 times in quadruplicate (MTT assay) or in triplicate.

2.4. Evaluation of cell viability by MTT assay

The effects of pesticides on Caco-2 cells proliferation and viability were monitored during a 10 days-period of exposure. Reduction of the permeant tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide (MTT) was monitored as described by Mosmann [24], with modifications. Briefly, cells were seeded in 24-well plates (5 × 10⁴ cells/well). After 20 h of incubation, the cells were treated with various concentrations (0.1–100 μM) of pesticides alone and in combination. At the end of the incubation time (3, 7 and 10 days of exposure), culture medium was discarded and the monolayer washed twice with PBS. Cells were then incubated with MTT (500 μl per well at a concentration of 0.5 mg/ml) in RPMI for 4 h at 37 °C. The reaction was stopped using 500 μl of a solution containing 10% SDS and 1 N NaOH at 37 °C. Then, 200 μl of formazan solution was transferred into 96-well plates and absorbances were measured by a microplate reader (Tecan, Lyon, France) at 570 and 690 nm. The relative cell viability was expressed as the ratio (%) of the absorbance in the experimental wells to that of the control wells (cells treated with DMSO). The EC50 (cytotoxic concentration for 50% cell death) was determined from the dose-response curve.

2.5. Observation of morphologic changes

Caco-2 cells were seeded in 12-well plates at a density of 1.125 × 10⁵ cells/well and allowed to grow for 20 h in 500 μl medium. Thereafter, cells were exposed to pesticides (25 μM) for 72 h and morphological changes were analyzed using a phase contrast microscope (Olympus).

2.6. Evaluation of pesticide effects on cell monolayer integrity

2.6.1. Transepithelial electrical resistance (TEER) measurement

Cells were seeded at 2.5 × 10⁵ cells/well in 6-well Transwell culture plate coated with collagen and allowed to grow for 4 days. Then 4% FBS-supplemented medium containing pesticides (1, 5, 10, or 25 μM) or DMSO (0.1%) were introduced in both apical and basolateral compartments. Treatment was renewed every 2 days. Monolayer integrity was measured at day 0, 3, 7 and 10 using the Millicell Electrical Resistance System (Millipore, Molsheim, France). Results are expressed as electrical resistance of the monolayer (Ω cm²) and were the mean ± SEM of 3 independent experiments in which each treatment was done in triplicate.

2.6.2. Phenol red diffusion

Caco-2 cells culture conditions were the same as described above. At last day of exposure (day 10), the culture medium was discarded and apical and basolateral sides were rinsed twice with 2 ml of PBS (37 °C). Two milliliters of phenol red containing medium were introduced in apical side of monolayer. In the basolateral side, phenol red containing medium was replaced by equivalent medium without phenol red. Diffusion of phenol red from apical to basolateral (A–B) compartment was evaluated for 4 h. Quantification of phenol red in the basal side was performed by measuring medium absorbance at 560 nm and percent diffusion was calculated.

2.7. Alkaline phosphatase essay for cell differentiation

Caco-2 cells were seeded into 12-well plates (1.125 × 10⁵ cells/well). Next day cells were treated with pesticides (1, 5, 10, and 25 μM) or vehicle (DMSO 0.1%) for 10 days. Then cell layers were washed twice with 1 ml of cold NaCl 9%e and harvested by scraping with a rubber policeman in 500 μl of cold TRIS buffer (50 mM, pH = 7.5). Cell suspensions were then homogenized by five passages through a 25G needle fitted with a 1 ml syringe. Alkaline phosphatase activity, marker of enterocytess cells differentiation [25], was measured in whole cell lysates according to Walter and Schütt [26] with modifications. Briefly, ALP splits paranitrophenyl-phosphate (pNPP), liberating yellow colored p-nitrophenol (pNP) under basic condition. Quantification of p-nitrophenol (μmol/plate) was performed at 405 nm upon an incubation time of 30 min at pH 10.4 and 37 °C. Results are expressed as percent of ALP activity in treated cells compared to control. The total protein concentration was determined by BCA protein assay according to the manufacturer-suggested protocol.

2.8. Pesticide-induced oxidative stress assessment

2.8.1. Lipids peroxidation oxidative stress assessment

Caco-2 cells were seeded in 24-well plates (1.25 × 10⁵ cells/well) and were treated as described above upon a 48 h-period of exposure with the indicated concentration of pesticides. Lipid peroxidation was quantified in cell medium by using the thiobarbituric acid reactive substances (TBARS) assay [27], which measures malondialdehyde (MDA) equivalents. Briefly, 50 μl of cell medium were mixed with 5 μl of 0.5 N chlorhydric acid (HCl) and 50 μl of TBA buffer (sodium hydroxide 0.12 M TBA, pH 7). Samples were then boiled for 10 min at 95 °C. After ice-cooling in dark, 200 μl of n-butanol were added, samples were mixed and centrifuged for 10 min at 2000 rpm at 4 °C, 150 μl of supernatant from each sample were transferred into 96-well plate and the absorbance
was recorded at 532 nm. The TBARs content was calculated from a calibration curve by using TMOP as MDA precursor.

2.8.3. Enzymatic unit

From enzymatic system washed pesticides in ice. At 37 °C was anion disappearance recorded for 104 cells/well) the activity was determined by BCA protein assay kit according to the manufacturer-suggested protocol.

CAT activity was monitored according to the method described by Aebi [28]. Briefly, hydrogen peroxide enzymatic decomposition by sample catalase was measured for 30 s at 240 nm on a spectrophotometer. The GPx activity was determined according to the method developed by Lawrence and Burk [29]. Briefly, GPx reacts with H2O2 to generate glutathione disulfide (GSSG) which is reduced by glutathione reductase (GR) in the presence of NADPH. The disappearance of NADPH was monitored at 340 nm on a spectrophotometer as indirect measure of GPx activity. The SOD activity was determined following the method of Oberley and Spitz [30]. Briefly, xanthine–xanthine oxidase system in the presence of water generates the superoxide anion (O2•⁻) which reacts with Nitroblue Tetrazolium (NBT) reducing it to Formazan dye. Sample SOD and NBT compete for O2•⁻. The percent inhibition of NBT reduction for different protein concentrations of each sample was measured as the amount of SOD present in sample. One unit of SOD was defined as the amount of enzyme which inhibits by 50% the formation of formazan blue observed at 560 nm. Inhibition of NBT reduction was kinetically monitored for 5 min using Tecan® microplate reader. Specific enzymatic activities were reported as percent of activity in treated cells compared to control.

2.8.3. Intracellular ROS measurement

Intracellular ROS were measured according to the method described by Wang and Joseph [31] with or without pretreatment with several antioxidants (vitamin E, vitamin C or Trolox). Cells plated in 48-well dishes (5 × 10⁴ cells/well) were allowed to grow for 48 h in complete medium supplemented with 10% FBS. Then cell layers were washed twice with PBS and treated for 6 h at 37 °C with 25 or 100 μM of pesticides (0.025% of DMSO as control cells) in HBSS medium containing 2,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA 5 μM). At the end of the 6 h incubation, medium was removed and the cell layers washed twice with PBS. Cell fluorescence was measured using Tecan® microplate reader at the excitation and emission wavelength of 485 and 530 nm respectively.

2.9. Determination of pesticides-induced cell death mechanism

2.9.1. Detection of apoptosis and necrosis by Hoechst 33342 and PI staining

Caco-2 cells were seeded in 12-well plates at a density of 1.25 × 10⁵ cells/well. After 20 h incubation, the cells were treated with 25 μM of pesticides alone or in combination for 48 h. At the end of the treatment the culture medium was discarded and the monolayer was stained with 5 μg/ml of Hoechst 33342 and 1 μg/ml of PI solution in the dark for 30 min at 37 °C. The cell layer was then washed with PBS. The morphological features of apoptosis, such as cellular nucleus shrinkage, chromatin condensation, and nuclear fragmentation, were showed via Hoechst staining in PI negative cells using fluorescent microscope with standard excitation filters. Necrotic cells were stained in red by PI. Each experiment was repeated independently three times in triplicate. To record the number of normal, apoptotic and necrotic cells by treatment, four random microscopic fields per well were considered. Each experiment was repeated three times in triplicate.

2.9.2. Western blot analysis of Akt

Cells were seeded at a density of 1.5 × 10⁵ cells/well into 6-well plates and were exposed 20 h after incubation to 25 μM of each individual pesticide or mixture for 10 days. At the end of pesticide treatments, Caco-2 cells were washed several times in cold phosphate-buffered saline, were scraped off the plate and lysed in modified RIPA lysis buffer (50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% triton X-100, 5 mM EDTA pH 8.0) containing 1× protease inhibitor cocktail (HALT, Thermo scientific), and phosphatase inhibitor cocktail (1 mM NaVO4, 50 mM NaF), for 30 min on ice. Cell lysates were cleared by centrifugation (10,000 rpm, 15 min at 4 °C). Protein concentrations were determined using Bradford reagent (sigma). Twenty five micrograms (25 μg) samples of extracted protein were resolved on SDS-polyacrylamide gels and transferred to nitrocellulose membranes. The membranes were incubated in the presence of 1/2000 phospho-Akt ser473 (Cell signaling, 4060) or 1/1000 Akt 1/2/3 (santa cruz biotechnology, sc-8312) antibodies at 4 °C overnight. Antibody binding was detected using an infrared fluorescent dye conjugated antibodies absorbing at 800 nm (Biotium, CF 770 conjugated antibodies, 20078). Immunoblots were visualized using an Odyssey Infrared imaging scanner (Li-Cor, Science Tec, les Ulis, France). Relative fluorescence units allowed a quantitative analysis. Each experiment was done independently 3 times.

2.10. Data analysis of combined cytotoxic effects

Combined effects of pesticides were analyzed according to Takakura et al. [32]. The total concentration of mixture at which an effect is generated can be calculated on the basis of the concentration–response curves of individual pesticides using the CA concept according to the
follow equation: \[EC_{mix} = \left[\sum_{i=1}^{n} \frac{P_i}{EC_i} \right]^{-1} \]

where \(EC_{mix} \) is the total concentration of the cocktail provoking \(x \)% effect, \(EC_i \) the concentration of cocktail component \(i \) provoking the \(x \)% effect when applied singly, and \(P_i \) denotes the relative proportions of the total mixture concentrations.

The IA prediction concept is used to explicitly calculate combined effects according to:

\[E(P|C_{mix}) = 1 - \prod_{i=1}^{n} (1 - E(P_i|C_{mix})) \]

\(E(P_i|C_{mix}) \) denotes the effect provoked by the total mixture at concentration \(C_{mix} \), while \(E(P_i|C_{mix}) \) are the effects that the individual cocktail component \(i \) would cause if applied singly at the same concentration at which it is present in the cocktail.

2.11. Statistical analysis

Values are representative of the means ± SEM (standard error of the mean) of three independent experiments performed at least in triplicate. Statistical analyses were performed with GraphPad PRISM 5 (GraphPad Software Inc., San Diego, CA, USA). Comparisons have used one-way or two-way analysis of variance (ANOVA) followed respectively by Dunnett’s and Bonferroni multiple comparison posttests. The level of significance was set at \(p < 0.05 \).

3. Results

3.1. Effect of pesticides on cell proliferation and viability

Cell proliferation and viability were assessed by measuring MTT reduction assay. Overall, microscopy observations of Caco-2 cells layer revealed that exposure to pesticides for 3, 7 and 10 days led to morphological changes compared to control cells (Fig. 1). Furthermore, as shown in Fig. 2, each pesticide alone or in mixture, exerted an impact on cell viability in a time and concentration dependent manner. Their observed toxicity (EC50 values of Table 1) in Caco-2 cells could be ranked in the following decreasing order: FPN > MIX > FNT > LCT > DTM > TBZ. FNT and TBZ toxicity was observed upon a 3 days-period of exposure to 1 and 5 \(\mu \)M respectively. The impact of exposure to LCT (1 \(\mu \)M), DTM (8 \(\mu \)M) or FPN (5 \(\mu \)M) appeared later (J7).

3.2. Effect of pesticides on cell monolayer integrity

Impact of pesticides alone or in combination on the cell monolayer integrity was assessed by analyzing, along a 10 days-period of treatment, the TEER (\(\Omega \) cm\(^2\)) (Fig. 4) and the passage of phenol red across the cell monolayer (Fig. 4, inset figures). Control cells, treated with the vehicle alone, showed a continuously increase of TEER until the end of the treatment (from 420.00 ± 15.14 to 1010.30 ± 39.96 \(\Omega \) cm\(^2\)) at day 10 (Fig. 4). Our results showed that exposure to FNT or TBZ led to a net decrease of membrane resistance associated with an increase of the apparent permeability of the cell layer (Fig. 4). On the other hand, exposure of Caco-2 cells to LCT, DTM, and MIX induced a significant increase of membrane resistance associated with a decrease of membrane permeability suggesting a net reinforcement of cellular integrity. Treatment of Caco-2 cells with FPN failed to produce a clear and noticeable change in TEER values relatively to control. We next checked whether the observed changes in viability and cell layer integrity upon exposure to pesticides could be linked to a change in the cellular differentiation process of Caco-2 cells.

3.3. Effect of pesticides on alkaline phosphatase activity

Caco-2 cells differentiation was characterized by domes formation and cells polarization with apical brush border
Fig. 2. Dose response curves of the impact of pesticides on Caco-2 cells viability. Cells were treated 20 h after seeding with the indicated pesticide alone or in combination at increasing doses of 0.1–100 μM. Treatments were repeated each 48 h. MTT test was performed on 3, 7 and 10 days old cells as described in Section 2. The data are normalized to the viability of control cells (100%). Results are the mean ± SEM of quadruplets from three repeated independent experiments. Asterisk indicates level of significance at p ≤ 0.05.

Fig. 3. Comparison between the measured and predicted effects of the mixture of pesticides. The measured effects of the mixture were assessed by analyzing the dose–response curves of its cytotoxicity determined by the MTT assay after a 3, 7, and 10 days–period of treatment in Caco-2 cells as described in Section 2. Cytotoxicity is expressed as the mean ± SEM of three independent experiments in quadruplet. The combined effects of pesticides were also predicted using an independent action (IA) and a concentration addition (CA) models as described in Section 2.
Fig. 4. Effect of pesticides on cell layers integrity. Caco-2 cells were allowed to grow on permeable membrane filter supports in presence of pesticides at concentrations ranging from 1 to 25 μM for 10 days. Transepithelial electrical resistance (TEER) was measured at days 0, 3, 7, and 10 following proceeding described in Section 2 and its value is expressed as percent of control. In parallel, phenol red passage through cell layer was assessed at day 10 (inset) as described by Section 2. Both TEER and PR diffusion values are expressed in means ± SEM of 3 independent experiences done in triplicate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
bearing specific enzymes. Differentiation of non-treated Caco-2 cells was accompanied with a graduate increase of ALP activity (Fig. 5) culminating at day 10. Our results showed a clearly dose dependent perturbation of the enzyme activity upon exposure to pesticides alone or in combination. FNT and FPN exposure of Caco-2 cells led to a decreased ALP activity compared to control whereas the opposite was observed upon exposure to DTM, LCT, TBZ, or MIX.

3.4. Pesticides-induced oxidative stress in Caco-2 cells

Oxidative status in Caco-2 cells upon exposure to pesticides was investigated by measuring the activities of the main enzymes involved in the control of ROS level (CAT, GPx, and SOD). As shown in Fig. 6, a 10 days-period of treatment of Caco-2 cells with pesticides alone or in mixture (1, 5, 10, and 25 μM) induced in a dose dependent manner an increase in CAT (DTM/LCT/MIX), GPx (FNT/FPN/MIX), and SOD (FNT) activities suggesting a change in oxidative status of Caco-2 cells upon exposure to these compounds (Fig. 6A–C). The increased SOD activity upon exposure to FNT suggests a downstream production of O_2^{*-}, The activation of GPx or CAT observed upon exposure to FNT, FPN, DTM, LCT, and Mix suggested an increase in level of H$_2$O$_2$. On the other hand TBZ did not appear to induce noticeable changes in oxidative status since no change in enzyme activity was observed. In order to confirm the prooxidative activities of pesticides in Caco-2 cells we next evaluated H$_2$O$_2$ production in cells by using specific fluorescent probe. As showed in Fig. 7A, FPN, FNT, DTM, and MIX treatments induced the strongest effect on intracellular H$_2$O$_2$ generation evidenced by the increased fluorescence staining. These results were well correlated with the increased activity of CAT and GPx as described above. We also determined the lipid peroxidation status by examining the TBARS concentrations upon a short term period of exposure (48 h) to pesticides (25 and 100 μM). Results clearly indicated a significant increase of TBARS level upon exposure to each pesticide alone or in mixture. FPN and FNT were found to be the most efficient with respectively 192.45 and 167.66% with respect to control at 25 μM (Fig. 7B). Furthermore, pretreatment with 100 μM of Vitamin C for 4 h or 10 μM of Vitamin E or Trolox for 24 h before exposure of Caco-2 cells to pesticides partially reversed the production of H$_2$O$_2$ (Fig. 8A) and led to a net decrease of pesticide cytotoxicity specially in Caco-2 cells exposed to the most cytotoxic compounds DTM, FPN, FNT, LCT, and MIX (Fig. 8B). These results suggest that oxidative stress could be at least in part involved in Caco-2 cells death induced by these pesticides treatment.
Fig. 6. Effects of pesticides on the activity of antioxidant enzymes in Caco-2. Cells were exposed for 10 days to pesticides individually and in mixture at concentrations ranging from 1 to 25 μM. Catalase (A), GPx (B), and Cu/Zn SOD (C) activities were measured in cytosolic fractions of cell lysates as described in Section 2. Data are expressed as the ratio of the activity in treated cells compared to control cells (DMSO). Results are the mean ± SEM for 3 independent experiments where each treatment was done in triplicate. Statistical differences are shown as *p < 0.05, **p < 0.01, ***p < 0.001.

3.5. Pesticides-induced cell death mechanism on Caco-2 cells

To elucidate the mechanism of pesticide-induced cell death in Caco-2 cells, we performed a double staining of cell layer with Hoechst 33342 and PI followed by a microscopic observation. Cells exhibiting a condensed nuclei and no PI staining could be classified as apoptotic whereas cells stained with both Hoechst and PI could be considered as necrotic cells (Fig. 9A). Results showed an increased of cell death through both apoptotic and necrotic mechanisms (Fig. 9B and C). It is noteworthy that only FPN and mixture treatments led to a huge increased of apoptotic whereas the percentage of necrotic cells increased to a lesser extent. In order to confirm apoptosis in cells exposed to pesticides we next examine the level of expression of the active form of Akt (phospho-Akt), a key cell signaling enzyme involved in the inhibition of apoptosis and induction of cell proliferation. Results showed a reduced level of phospho-Akt in cells exposed to pesticides especially in FPN and MIX exposed cells compared to control (Fig. 10A and B) confirming the role of apoptosis at least in part in the mechanism of pesticide induced cell death in our model.

3.6. Comparison of the observed effect versus the predicted effect of pesticide mixture

The experimentally measured effect of pesticides mixture on cell viability (Fig. 1) was compared with the predicted effect calculated using CA and IA models from the
Fig. 7. Effects of pesticides exposure on lipid peroxidation and on the level of hydroxide peroxide in Caco-2. Cells were exposed for 6 and 48 h (lipid peroxidation and H$_2$O$_2$ dosage respectively) to FPN, FNT, LCT, DTM, and TBZ either alone or as a mixture of the five at 25 and 100 µM. (A) H$_2$O$_2$ production was measured using H$_2$-DCF-DA. (B) Lipid peroxidation was assessed by TBARs quantification in the incubation medium. Data are the mean ± SEM for 3 independent experiments in which each treatment were done in triplicate. Difference is statistically significant for $p \leq 0.05$ (*), $p \leq 0.01$ (**), and $p \leq 0.001$ (***)..

Impact of single pesticide. Results are presented in Table 2. The 95% CI from the measured EC$_{50}$ failed to overlap the EC$_{50}$ obtained in the predicted model at each tested dose (Table 2 and Fig. 3). These results suggest that the combined toxicological effects of the 5 pesticides resulted from complex interactions different from that observed in independent or dose addition situation.

4. Discussion

In Burkina Faso, as in most Sahelian countries, the failure to follow good agricultural practices (GAP) coupled with poor soil and climate conditions in the locust control context lead to high environmental contaminations with pesticide residues [10]. Consumers being orally exposed

Table 2
Statistical comparison between measured and predicted combined effect concentrations (EC$_{50}$). Caco-2 cells were exposed to the mixture of the five for 3, 7 and 10 days at concentrations ranging from 0.1 to 100 µM. After exposure, cell viability was assessed by MTT assay and predicted effect concentrations 50% (EC$_{50}$) were calculated according to Section 2. IA, independent action model; CA, concentration addition; CI, confidence interval.

Time (days)	Measured	IA	CA			
	Mean	95% CI	Mean	95% CI	Mean	95% CI
3	27.5	26.1–29.0	7.7	7.4–8.0	51.3	51.0–51.5
7	22.6	21.5–23.8	7.5	7.2–7.8	43.3	42.8–43.8
10	20.1	19.1–21.2	5.1	4.9–5.4	35.1	34.9–35.3
to a combination of multiple pesticide residues through food and water intake, the digestive tract is thus a tissue susceptible to be directly exposed to these food contaminants mixtures. The aim of our work was to compare in vitro the impact of five desert locust control pesticides (DTM, FNT, FPN, LCT, and TBZ) commonly found in food and water in Burkina Faso alone and in combination on the human intestinal Caco-2 cells viability and function. Pesticides concentrations ranges were chosen according to their LMR and adapted to the in vitro study as described in material and method.

Our results which are summarized in Table 3 clearly showed a cytotoxic effect of DTM, FNT, LCT, and TBZ alone or in combination in human intestinal Caco-2 cells at dose ranging from 1 to 8 μM (1 μM being equivalent to 0.7–1.3 μg/well according to the pesticide). These doses could be considered as relevant to human exposure. Indeed based on the LMR values of each compound, pesticides could be present in the digestive tract at dose ranging from 0.2 to 300 μg, when considering a total assimilation of the LMR amount of pesticide in vivo upon a dietary intake of 100 g of vegetables.

The most cytotoxic compounds were FPN and FNT that impacted the cell layer integrity, ALP activity, oxidative status, Akt activation, and apoptosis (data summarized in Table 3). These results are observed for the first time in a human intestinal cell line (excepted FPN) and are in agreement with their observed cytotoxicity in other in vitro models. Cytotoxicity of DTM was indeed observed in cortical neurons [33], in rat spermatozoa [34] and in
SH-SY5Y cells [35]. FNT was shown to exert cytotoxic effect in rat hepatocytes [36]. FPN has been shown to display toxic effect in SH-SY5Y cells [37–39], in mouse N2a neuroblastoma [40]. LCT exerted cytotoxic effect in human lymphocytes [41].

The alteration of the cell layer integrity which increased with the time of exposure to pesticides, was characterized by either a decrease in TEER with a proportional increase of the passage of PR (FNT and TBZ), or a rise in TEER with a reduced passage of PR from the apical to the basal side of the epithelium (DTM and LCT). It is well admitted that free radicals may directly damage cell membrane through the oxidation of Poly Unsaturated Fatty acids within the phospholipids structure of the membrane itself and thus alter the membrane resistance or permeability. However, the differential effect of DTM/LCT on one hand and of FPN and TBZ on the other hand on TEER in our model cannot be explained by their pro-oxidative properties because it is an almost universal property of pesticides. The differential impact between DTM and FNT on TEER may be due to their specific activity on cytoskeleton and membrane fluidity respectively. Indeed FNT is known to alter membrane fluidity and as suggested by Gonzales-Baro et al. [42] it is possible that the toxic properties of FNT could be related to an increased permeability of membranes. DTM effect on TEER may be linked to its impact on the expression of a transcriptional factor involved in the expression of genes related to the cytoskeleton organization (NFATC1/cathepsin/c-SRC) [43]. FPN treatment that induced oxidative stress in our model and the highest cytotoxicity (EC50 = 18.06 µM) led to changes in the apparent permeability to phenol red without altering the TEER. This is in agreement with the hypothesis formulated by Karczewski and Groot [44] according to which an alteration of permeability can occur without noticeable change in electrical resistance.

As suggested by Sambuy et al. [22], the alteration of the permeability and the integrity of the cell monolayer suggest perturbation of the intestinal barrier function. Modification of the epithelium integrity is considered as a critical toxicokinetic parameter that influences the fate and consequently the systemic toxicity of chemicals in the organism. Previous findings have shown the involvement of tight junction's failure and cytoskeleton disorganization in chemicals induced-cell monolayer permeability alteration [45]. Oxidative stress is also known to disturb
intestinal and renal epithelium or blood brain barrier integrity by altering tight junction molecules [8,9,46]. In the present study, pesticides-induced functional alteration of the epithelial Caco-2 cell layer was well correlated with the prooxidative activity of these chemicals.

In parallel our results showed a decreased activity of ALP in cells exposed to FPN and FNT, while exposure to DTM, LCT, and TBZ increased its activity. ALP is a marker of intestinal cell differentiation and is also involved in lipid absorption across the apical membrane of enterocytes, in regulation of duodenal surface pH, in bacterial transepithelial passage limitation, and in detoxification of intestinal lipopolysaccharide [47]. The decreased ALP activity in Caco-2 cells exposed to FPN and FNT could be correlated with their cytotoxicity. The involvement of oxidative stress in the regulation of ALP activity has also been demonstrated [48,49]. It may be indeed suggested that pesticide induced Caco-2 cells toxicity and ALP activity disturbance could be linked to their prooxidative properties.

Exposure of Caco-2 cells to individual pesticides in our model also led to a decreased adaptive capacity of cells suggested by a time dependent diminution of the EC50 values of individual compound. Moreover morphological changes as well as a reduction of cell density upon exposure to FNT, FPN, and MIX suggested that cells did not reach confluence. Although the induction of cell cycle arrest or increased susceptibility of dividing cells upon pesticide exposure has been shown in various cell models [50–52], the increased number of apoptotic and necrotic cells upon exposure to pesticides alone or in combination in our model (summarized in Table 3) supported the hypothesis that these compounds affected rather the cell viability processes than the cycle progression. Our results are in agreement with previous studies showing proapoptotic property of FPN and DTM [33,37,39]. Here we also showed that exposure to each individual pesticide is associated with a decreased level of phosphorylated Akt (Ser473), FPN and LCT leading to the greatest impact, confirming the start-up of an apoptotic mechanism [53,54] upon exposure to each compound. However from our results it appears that apoptosis was not the one mechanism involved in cell death induced by pesticides since the percent of necrotic cells was also increased. Moreover our data showed that FPN and a lesser extent TBZ and LCT were stronger apoptotic compounds than LCT and TBZ suggesting dissimilar mechanism of action of these pesticides.

From our overall data summarized in Table 3, DTM and LCT which belong to the same chemical family (pyrethroid), appeared to share the same mechanism of action in the induced Caco-2 cells toxicity, although DTM was more proapoptotic than LCT (Table 3). On the opposite FPN, FNT and TBZ showed differential impacts on Caco-2 cells compared from each other. FNT and TBZ differentially affected ALP activity, and FPN did not affect TEER and exerted clearly the strongest apoptotic effect with minor changes of necrotic cell number compared to control.

We also investigated the joint effects of the five pesticides on various cell functions by testing a mixture of pesticides in which each compound was present at equimolar concentration. Although the mixture diluted the most toxic compounds when combined, pesticides led to a higher effect than that expected regarding to the effect of each single compound suggesting a synergistic interaction of the compounds. The mixture induced a dose dependent cytotoxicity characterized by cells death according to apoptotic and necrotic mechanisms, the disturbance of TEER values, the increase of PAL activity, an alteration of oxidative stress enzymes activity, and an increased lipid
Table 3
Summary of the effect of pesticides alone or in combination on cell viability and transepithelial membrane resistance (TEER), apparent permeability (phenol red) and alkaline phosphatase activity (ALP) at J10, on lipid peroxidation and H$_2$O$_2$ production (upon 48h and 6h, respectively) and on the ratio of the percentage of apoptotic or necrotic cells in treated versus untreated cells (48h). In control cells (DMSO treated cells) the ratio of the apoptotic cell percentage versus necrotic cell percentage was equal to 0.5.

	Cell viability [J10]	TEER [J10]	Apparent permeability [J10]	ALP activity [J10]	Lipid peroxidation	H$_2$O$_2$ production	Percent of apoptosis in treated vs control cells	Percent of necrosis in treated vs control cells
Deltamethrin	8 μM	10 μM	25 μM	1 μM	100 μM	25 μM	4.3	27
Fenitrothion	5 μM	10 μM	25 μM	5 μM	25 μM	25 μM	6.3	4.4
Fipronil	5 μM	10 μM	25 μM	5 μM	25 μM	25 μM	8.6	3.2
Teflubenzuron	1 μM	25 μM	25 μM	1 μM	100 μM	100 μM	3.9	3.8
Lambda-cyhalothrin	1 μM	25 μM	25 μM	1 μM	100 μM	100 μM	3.0	2.7
Mixture	1 μM	10 μM	5 μM	1 μM	100 μM	25 μM	8.9	2.7

*p < 0.05, **p < 0.01.
the choice of CA as an assessment concept, irrespective of the finer details of molecular mechanisms of the compounds. In this case the similarity assumption of CA could not entirely be met, because of subtle differences in the ways in which the chemicals in the component mixtures interacted at the cellular and molecular level. Moreover fewer compounds can be expected to qualify for inclusion in a common mixture/effects assessment and this may lead to underestimation of the risk [15]. In the light of our results and in agreement with the conclusions of Junghans et al. [60] and Ermler et al. [15], we can make the following assumptions: (i) the mixture effect could be due to dissimilarly acting components since the toxicity of mixture assessed using IA concept is higher than the measured toxicity; (ii) in the mixture, compounds interact together leading to a mixture toxicity that is higher than the predicted effect by CA.

In conclusion, locust control that generates environmental and subsequent food commodities and water contamination with pesticides mixture is a public health concern. In our study, we clearly showed that pesticides often found in water and vegetables in Burkina Faso damage human intestinal cells in culture individually or in mixture at dose closed to the real exposure, by modifying cellular growth, survival and homeostasis suggesting subsequent disorders of the intestinal epithelium. Moreover, from the comparison of our measured and predicted results it appears clearly that CA model is the most suitable for predicting interaction of pesticide mixture in our model; however it does not correlate with the observed synergistic effect which suggests dissimilar acting substance. Our in vitro experiments serve the purpose to highlight the need for further evaluation of the in vivo toxicity of chemical mixture.

Conflict of interest

The authors declare that they do not have any conflict of interest.

Transparency document

The Transparency document associated with this article can be found in the online version.

Acknowledgment

This study was supported by a grant from the French Ministry of Foreign Affairs (Grant No. 745249G) through the SCAC (Service de Coopération et d’Action Culturelle) of French Embassy in Burkina Faso.

References

[1] M. Lecoq, Vers une solution durable au problème du criquet pèlerin? Sècheresse 15 (3) (2004) 217–224.
[2] J. Jayaratnam, Acute pesticide poisoning: a major global health problem, World Health Stat. Q. 43 (3) (1990) 139–144.
[3] M. Ouédraogo, A. TANKANO, T.Z. Ouédraogo, I.P. Guissou, Étude des facteurs de risques d’intoxications chez les utilisateurs de pesticides dans la région cotonnière de Fada N’Gourma au Burkina Faso, Environ. Risques Santé 8 (4) (2009) 343–347.
[4] A.H. Arias, N.S. Buzzi, M.T. Pereira, J.E. Marcovecchio, Pesticides reaching the environment as a consequence of inappropriate, in: M. Stoytcheva (Ed.), Agricultural Practices in Argentina, Pesticides: Formulations, Effects, InTech, 2011, ISBN: 978-953-307-532-7. Available from: http://www.intechopen.com/books/pesticides (accessed 30.05.14).
[5] A.A. Salako, O.O. Sholey, O.O. Dairo, Beyond pest control: a closer look at the health implications of pesticides usage, J. Toxicol. Environ. Health Sci. 4 (2) (2012) 37–42.
[6] S. Mostafalou, M. Abbodlahi, Pesticides and human chronic diseases: evidences, mechanisms, and perspectives, Toxicol. Appl. Pharm. 268 (2013) 157–177.
[7] O. Tébourbi, M. Sakly, K. Ben Rhouma, Molecular Mechanisms of Pesticide Toxicity Pesticides in the Modern World – Pests Control and Pesticides Exposure and Toxicity Assessment, 2011, www.researchgate.net/ (accessed 30.05.14).
[8] H.S. Lee, K. Namkoong, D.H. Kim, K.J. Kim, Y.H. Cheong, S.S. Kim, W.B. Lee, K.Y. Kim, Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells, Microvasc. Res. 68 (3) (2004) 231–238.
[9] K. Hashimoto, T. Oshima, T. Tomita, Y. Kim, T. Matsumoto, T. Joh, H. Miwa, Oxidative stress induces gastric epithelial permeability through claudin-3, Biochem. Biophys. Res. Commun. 376 (2008) 154–157.
[10] B. Ilboudo, A.M. Toe, R. Ouedraogo, M. Ouedraogo, I.P. Guissou, Ecological risk assessment of pesticide residues in water from desert locust area in Burkina Faso, Res. J. Environ. Earth Sci. 6 (4) (2014) 227–232.
[11] A. Islam, M.A. Farrukh, A. Rahman, F.A. Qureshi, S. Ahmed, Residue analysis of an organophosphate pesticide in wild plants in Lahore area, Am. Eurasian J. Agric. Environ. Sci. 9 (5) (2010) 514–518.
[12] J. Hernández-Borges, C.J. Cabrera, M.A. Rodríguez-Delgado, E.M. Hernández-Suárez, V.G. Saúco, Analysis of pesticide residues in bananas harvested in the Canary Islands (Spain), Food Chem. 113 (2009) 313–319.
[13] Z. Knezevic, M. Serdar, Screening of fresh fruit and vegetables for pesticide residues on Croatian market, Food Control 20 (2009) 419–422.
[14] A. Kortenkamp, F. Michael, S. Martin, B. Thomas, Low-level exposure to multiple chemicals: reason for human health concerns? Environ. Health Perspect. 115 (1) (2007) 106–114.
[15] S. Ermler, M. Scholze, A. Kortenkamp, The suitability of concentration addition for predicting the effects of multi-component mixtures of up to 17 anti-androgens with varied structural features in an in vitro AR antagonist assay, Toxicol. Appl. Pharm. 257 (2) (2011) 189–197.
[16] V.C. Moser, S. Padilla, J.E. Simmons, L.T. Haber, R.C. Herzberg, Impact of chemical proportions on the acute neurotoxicity of a mixture of seven carbamates in preweaning and adult rats, Toxicol. Sci. 129 (1) (2012) 126–134.
[17] P. Rouimi, N. Zucchini-Pascal, G. Dupont, A. Razpotnik, E. Fouché, G. De Sousa, R. Rahmani, Impacts of low doses of pesticide mixtures on liver cell defence systems, Toxicol. In Vitro 26 (5) (2012) 718–726.
[18] C. Demur, B. Métais, C.M. Canlet, M. Tremblay-Franco, R. Gautier, F. Blas-Y-Estrada, C. Sommer, L. Gamet-Payrastre, Dietary exposure to a low dose of pesticides alone or as a mixture: the biological metabolic fingerprint and impact on hematopoiesis, Toxicology 308 (2013) 74–87.
[19] A.F. Hernández, T. Parrón, A.M. Tsatsakis, M. Requena, R. Alarcón, O. López-Guarnido, Toxic effects of pesticide mixtures at a molecular level: their relevance to human health, Toxicology 307 (2013) 136–145.
[20] G. Eisenbrand, B. Pool-Zobel, V. Baker, M. Balls, B.J. Blaauwber, A. Boobis, et al., Methods of in vitro toxicology, Food Chem. Toxicol. 40 (2002) 193–236.
[21] F. Zucco, A.F. Barro, G. Bis, J. Chambaz, A. Chiusolo, R. Consalvo, et al., An inter-laboratory study to evaluate the effects of medium composition on differentiation and barrier function of Caco-2 cell lines, Altern. Lab. Anim. 33 (2005) 603–618.
[22] Y. embuy, I. de Angelis, G. Ronaldi, M.L. Scarnino, A. Stammati, F. Zucco, The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics, Cell Biol. Toxicol. 21 (2005) 1–26.
[23] E. Le Ferrec, C. Chesne, P. Artusson, D. Brayden, G. Fabre, P. Gires, et al., In vitro models of the intestinal barrier, The report and recommendations of ECVAM workshop 46, Altern. Lab. Anim. 29 (2001) 649–668.
[24] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods 65 (1983) 55–63.
Toxicol. Med. morphologic Akt/GSK3 energy N.S. H.

Toxicol. Med. morphologic Akt/GSK3 energy N.S. H.

Tight regulation of pesticides on DNA damage and proliferation of HepG2 cells, Environ. Mol. Mutagen. 49 (2008) 360–367.

Toxicol. Med. morphologic Akt/GSK3 energy N.S. H.

Toxicol. Med. morphologic Akt/GSK3 energy N.S. H.