Morphological Variation of Castor Bean (*Ricinus communis* L.) on Peatland Area in Kepulauan Meranti Riau Indonesia

Ninik Nihayatul Wahibah*, Fitmawati, Vanda Julita Yahya, Muhammad Agung Perdana, Rahmat Budiono

Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau.
Kampus Bina Widya Km 12.5 Simpang Baru Pekanbaru Indonesia

*Corresponding email: nnwahibah@gmail.com

Abstract. Castor (*Ricinus communis* L.) has been reported as source of raw material for various products, including biofuel, cosmetic and pharmaceutical industries. This plant is known as an adaptive plant which perform well-growth and development in unfertile soil. We observed that castor plants grow and develop in Kepulauan Meranti, Riau Province, Indonesia where peatland mostly dominates. Objective of the study was to evaluate genetic diversity of castor bean germplasm in Kepulauan Meranti grown in fired-peatland area based on morphological characters. Sampled plants were tagged and parts of plant were photographed and characterized. Some plant organs such as leaves and fruits were taken for more identification. We observed 12 castor accessions showing distinctive phenotypes. Morphological characters that varied among genotypes were plant architecture; stem anthocyanin; stem wax; stem color; adaxial leaf surface; fruit wax; form of racemic; main seed coloration; secondary coloration of seed; and type of secondary coloration of seed. All genotypes showed prickle existence on fruit surface. The result indicates that castor germplasm in Kepulauan Meranti serve diverse genetic variability. Further studies including assessment based on agronomic, biochemical and molecular approaches are still required for supporting castor breeding program to develop new cultivars particularly that adaptive to peat soil area.

1. Introduction
Castor bean or castor oil plant (*Ricinus communis* L.) belongs to Euphorbiaceae family with diploid chromosome 2n = 2x = 20 [1]. Castor is an important source of renewable energy with a wide range utilization in industry, pharmaceutical and agricultural sectors [2][3]. This plant has been reported being tolerant to different types of soil and pH [4].

Kepulauan Meranti is an archipelago in Riau Province Indonesia predominantly by peatland area and prone to land and forest fire [5]. Peatland fires had been occurred since the 1980s and recurs almost every year. Peatland fire delivers notorious impacts including ecological and economic problems [6]. Indonesia government establish a specific program called 3R or Revegetation, Revitalitation, Rewetting to conserve peatland area [7]. Agroforestry system is one of forest management system to integrate crops and woody perennial for mitigating deforestation and natural resources management delivering to social, economic and ecological improvement [8] [9] [10]. For this reason, castor plant provides promising alternative for agroforestry commodity in Kepulauan Meranti region. This plant is likely suitable for revegetation fired land to restore soil fertility, prevent further fires and an alternative source of economic income for the local communities. Therefore, genetic diversity of castor germplasm is an important analysis to understand the width of genetic differences as a basic database for further various studies.
Currently, various techniques have been available to study plant genetic diversity. Morphological technique offers several advantages such as [11][12]. Understanding the diverse genetic background of the germplasm will serve database for the generating of new cultivars and future genetic improvement programme of castor, restoration of fired-peatland and fired-peat forest particularly in Riau Province [12] [13]. Objective of this study was to characterize genetic variability of castor plant germplasm in Kepulauan Meranti based on several phenotypic traits.

2. Materials and Method
This study was conducted from July to August 2020. The study population was at fired-peatland area in Tanjung Peranap, Kepulauan Meranti, Riau Province. This area is part of agroforestry fields managed by Forest Management Unit or Kesatuan Pengelolaan Hutan (KPH) Tebing Tinggi and Koperasi Peranap Agro Bertuah collaborating with PT. Meranti Energi Alam (MEA). We tagged and made documentation for sampled-plants by taking photographs and several plants organs for characterization. We morphologically characterized based on several descriptors as described by [14] [15][16].

3. Result and Discussion
Forest fire was occurred almost every year in the sampling location of this study (Figure 1). This post fired-land was then utilized for agroforestry area by KPH Tebing Tinggi and PT MEA. Since then, this area is free of land and forest fire, The areas are situated at 102° 29’ 11.462” E; 0° 53’ 46.488” N and 102° 29’ 20.147” E; 0° 51’ 54.745” N. Jarak kepyar is one of agroforestry commodities planted in this fired-peatland without soil modification treatment.

![Figure 1](image1.png)

Figure 1. Sampling sites of castor bean germplasm in Tanjung Peranap Kepulauan Meranti Riau Indonesia

Variation on anthocyanin pigmentation in the hypocotyl was found among castor germplasm in Kepulauan Meranti (Figure 2). This figure depicts two types of hypocotyl namely with and without pigmentation indicated by presence or absence of pinkish coloration. We observed that anthocyanin staining showed different intensity among plants. This results is similar to [17]. According to [17], low concentration of anthocyanin may lead to absence of strong pigmentation.
In addition, we also observed anthocyanin coloration and presence of wax layer of castor stem (Figure 3) which showed diversity among individual plants. According to [18] stem coloration is inherited in monogenic manner in that green colour is encoded by recessive alleles over dominant red pigmentation. This phenotype has been reported to be related to resistance to Fusarium wilt disease [18][19]. Thus, this castor population provides valuable genetic resources for further castor genetic improvement particularly to generate new cultivars resistant against wilt disease caused by Fusarium oxysporum f.sp. ricini.

Another leaf descriptor that we observed on castor bean germplasm in Kepulauan Meranti is curvature of adaxial surface of leaf blade. The study castor population comprised three classes namely flat, slightly concave and concave leaf blade. While shape of the raceme showed three types, i.e. conical, cylindrical, and globose (Figure 4). Flat leaf and conical shape of raceme have been reported to be dominant over concave type and cylindrical raceme, respectively according to [20].
This work determined number of genotypes mainly based on result of seed morphological observation (Figure 5). We identified 12 distinct castor genotypes and named them from Mea-1 to Mea-12. Variation on seed phenotypes were indicated by main seed coloration; secondary coloration of seed; and type of secondary coloration of seed (painted vs cracked).

Table 1 showed five descriptors (plant architecture, stem anthocyanin, presence of stem wax, stem coloration and type of adaxial leaf surface) that diverse among 12 castor germplasm. Table 2 depicts qualitative morphological traits of fruit (fruit wax) and seed (main seed coloration; secondary coloration of seed; type of secondary coloration) were varied among 12 castor germplasm. All castor bean germplasm in Tanjung Peranap produce fruit with prickle. However, size of prickle was visually varied in size. Presence of prickle of the fruit has been reported to be inherited partially dominant over non-spininess [20].

As explained above, castor plant germplasm grown in Tanjung Peranap Kepulauan Meranti exhibit genetic diversity revealed by several morphological traits. This genetic resources play an important role as genetically diverse sources for improving castor genotype through breeding programmes. Wide range of variation in castor plant identified in this study could be resulted from mode of reproduction in which outcrossing as a predominant mode in castor plant. Results of present study remain needs further investigation including evaluation based on agronomic, biochemical and molecular approaches. Genetic improvement on castor to develop new cultivars that adaptive to peat soil area will contribute to improvement several aspects including preventing region from fire-land, revitalizing peatland, and improving socio-economy of local communities.
Table 1. Diversity of qualitative morphological characters of plant and stem among various castor genotypes in Kepulauan Meranti Riau Indonesia

Genotypes	Plant architecture	Stem anthocyanin	Stem wax	Stem coloration	Adaxial leaf surface
Mea-1	Semi erect	Absent	Present	Medium Green	Concave
Mea-2	Semi erect	Absent	Present	Medium Green	Slightly Concave
Mea-3	Erect	Present	Absent	Medium Green	Flat
Mea-4	Erect	Present	Absent	Medium Green	Flat
Mea-5	Semi erect	Present	Absent	Pinkish Green	Flat
Mea-6	Erect	Absent	Present	Medium Green	Slightly Concave
Mea-7	Semi erect	Absent	Present	Medium Green	Concave
Mea-8	Semi erect	Present	Present	Medium Green	Slightly Concave
Mea-9	Erect	Absent	Present	Medium Green	Flat
Mea-10	Erect	Absent	Present	Medium Green	Slightly Concave
Mea-11	Semi erect	Absent	Absent	Medium Green	Slightly Concave
Mea-12	Erect	Present	Absent	Green	Flat

Table 2. Diversity of qualitative morphological characters of fruit and seed among various castor genotypes in Kepulauan Meranti Riau Indonesia

Genotypes	Fruit wax	Presence of the prickles on the fruits	Main seed coloration	Secondary coloration of seed	Type of secondary coloration
Mea-1	Present	Present	Light Brown	Dark Brown	Cracked
Mea-2	Present	Present	Light Brown	Black	Cracked
Mea-3	Present	Present	Dark Brown	Light Brown	Painted
Mea-4	Absent	Present	Greyish	Dark Brown	Painted
Mea-5	Present	Present	Dark Brown	Greyish	Cracked
Mea-6	Present	Present	Greyish	Dark Brown	Painted
Mea-7	Present	Present	Pinkish Brown	Greyish	Cracked
Mea-8	Present	Present	Greyish	Dark Brown	Cracked
Mea-9	Present	Present	Greyish	Dark Brown	Cracked
Mea-10	Present	Present	Pinkish Brown	White	Painted
Mea-11	Present	Present	Dark Brown	White	Painted
Mea-12	Present	Present	Dark Brown	Light Brown	Cracked

References
[1] Gupta N and Singh A 2015 A Review on Ricinus communis Linn Int. Ayurvedic Med. J 3(2) 491–495 [Online]. Available: http://iamj.in/posts/images/upload/491_495.pdf
[2] Jena J and Gupta A K 2014 Ricinus communis linn: A phytopharmacological review January 2012
[3] Kiran B R, Narasimha M and Prasad V 2017 Ricinus communis L . (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation 1(2) doi: 10.24190/ISSN2564-615X/2017/02.01
[4] Salihu B Z, Gana A K and Apuyor B O 2014 Castor Oil Plant (Ricinus communis L .): Botany , Ecology and Uses Int. J. Sci. Res 3(5) 1333–1341
[5] Ishihara M I, Firdaus R and Nakagoshi N 2017 Peatland Fires in Riau , Indonesia , in Relation
to Land Cover Type, Land Management, Landholder, and Spatial Management 1312–1332
doi: 10.4236/jep.2017.811081
[6] Wasis B and Putra E I 2019 Impacts of peat fire on soil flora and fauna, soil properties and environmental damage in Riau Province, Indonesia doi: 10.13057/biodiv/d200639
[7] Harrison M E 2020 Tropical forest and peatland conservation in Indonesia Challenges and directions October 2019 4–28 doi: 10.1002/pan3.10060
[8] Mayrowani H and Ashari N 2016 Pengembangan Agroforestry untuk Mendukung Ketahanan Pangan dan Pemberdayaan Petani Sekitar Hutan Forum Penelit. Agro Ekon 29(2) 83 doi: 10.21082/fac.v29n2.2011.83-98
[9] Gebru B M, Wang S W, Kim S J and Lee W K 2019 Socio-ecological niche and factors affecting agroforestry practice adoption in different agroecologies of southern Tigray, Ethiopia Sustain 11(13) 1–19 doi: 10.3390/su11133729
[10] Leakey R R B 2017 Definition of Agroforestry Revisited Multifunct. Agric February 5–6 doi: 10.1016/b978-0-12-805356-0.00001-5
[11] Kanti M, Anjani K, Kiran B U and Vivekananda K 2015 Agromorphological and molecular diversity in castor (Ricinus communis L.) germplasm collected from Andaman and Nicobar Islands, India Czech J. Genet. Plant Breed 51(3) 96–109 doi: 10.17221/205/2014-CJGPB
[12] Govindaraj M, Vettriventhal M and Srinivasan M 2015 Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives December 2014 doi: 10.1155/2015/431487
[13] Carvalho Y G S, Vitorino L C and De Souza U J B 2019 Recent Trends in Research on the Genetic Diversity of Plants: Implications for Conservation 1–21
[14] Khasanah H 2018 Pendugaan Jarak Genetik Berdasarkan Karakter Agromorfologi Genotip Jarak Kepyar Hasil Penerapan Kolkisin Generasi Ke-4 The Estimation Genetic Distance Based on Agromorphological Character Of Castor Bean Genotypes 4th Generation Colchicine Treatment 3(2) 116–123
[15] Da Silva A R 2019 Characterization and performance of castor bean lineages and parents at the UFRB germplasm bank PLoS One 14(1) 1–15 doi: 10.1371/journal.pone.0209335
[16] Introduction G 2002 International union for the protection of new varieties of plants 1–26
[17] Da Silva A R et al 2019 Characterization and performance of castor bean lineages and parents at the UFRB germplasm bank PLoS One 14(1) 1–15 doi: 10.1371/journal.pone.0209335
[18] Shankar V G, Ramana V and Puram R 2010 Inheritance of certain morphological characters and Fusarium wilt resistance in castor, Ricinus communis L
[19] Lyons R, Stillier J, Powell J, Rusu A, Manners J M and Kazan K 2015 Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana PLoS One 10(4) 1–23 doi: 10.1371/journal.pone.0121902
[20] Panera A and Virani H B 2018 Inheritance of Fusarium Wilt Resistance and Certain Morphological Characters in Castor (Ricinus communis L.) 7 November 30–35