OPTICAL STUDY OF THE HYPER-LUMINOUS X-RAY SOURCE 2XMM J011942.7+032421

CARLOS M. GUTIÉRREZ1,2 AND DAE-SIK MOON3

1 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain; cg@iac.es
2 Departamento de Astrofísica, Universidad de la Laguna, E-38206 Tenerife, Spain
3 Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada

Received 2014 September 3; accepted 2014 November 1; published 2014 November 24

ABSTRACT

We present the identification and characterization of the optical counterpart to 2XMM J011942.7+032421, one of the most luminous and distant ultra-luminous X-ray sources (ULXs). The counterpart is located near a star-forming region in a spiral arm of the galaxy NGC 470 with u, g, and r magnitudes of 21.53, 21.69, and 21.71 mag, respectively. The luminosity of the counterpart is much larger than that of a single O-type star, indicating that it may be a stellar cluster. Our optical spectroscopic observations confirm the association of the X-ray source and the optical counterpart with its host galaxy NGC 470, which validates the high, $\gtrsim 10^{41}$ erg s$^{-1}$, X-ray luminosity of the source. Its optical spectrum is embedded with numerous emission lines, including H recombination lines, metallic forbidden lines, and more notably the high-ionization He ii ($\lambda 4686$) line. That line shows a large velocity dispersion of ≈ 410 km s$^{-1}$, consistent with the existence of a compact (<5 AU) highly ionized accretion disk rotating around the central X-ray source. The $\sim 1.4 \times 10^{37}$ erg s$^{-1}$ luminosity of the He ii line emission makes the source one of the most luminous ULXs in that emission. This, together with the high X-ray luminosity and the large velocity dispersion of the He ii emission, suggests that the source is an ideal candidate for more extensive follow-up observations for understanding the nature of hyper-luminous X-ray sources, a more luminous subgroup of ULXs, and more likely candidates for intermediate-mass black holes.

Key words: black hole physics – galaxies: individual (NGC 470) – ISM: bubbles – ISM: kinematics and dynamics – X-rays: general

Online-only material: color figures

1. INTRODUCTION

Stellar black holes, which are remnants of massive stars, have masses of up to $\sim 30 M_\odot$, typically radiating at luminosities of $\sim 10^{37}$ erg s$^{-1}$ and occasionally up to $\sim 10^{39}$ erg s$^{-1}$ (see McClintock & Remillard 2006). Supermassive black holes, which are located at the centers of galaxies, on the other hand, have typical masses in the range of 10^6–$10^9 M_\odot$ and luminosities of 10^{41}–10^{45} erg s$^{-1}$. Between the two lie putative intermediate-mass black holes (IMBHs) of 10^2–$10^4 M_\odot$ which have been proposed as an explanation for the high X-ray luminosities of 10^{39}–10^{42} erg s$^{-1}$ from ultra-luminous X-ray sources (ULXs). ULXs are bright off-nuclear X-ray point sources mostly found near star-forming regions in spiral galaxies (e.g., Liu & Bregman 2005). The IMBH interpretation of ULXs is particularly compelling for the more luminous subset of ULXs of $\gtrsim 10^{41}$ erg s$^{-1}$. For these ULXs, other explanations for their nature, such as those based on beamed emission or super-Eddington accretion onto compact objects (e.g., Ohsuga & Mineshige 2011; Moon & Eikenberry 2001; Moon et al. 2003), have hitherto been unable to provide plausible scenarios. This is consistent with the recent results from X-ray population studies (Swartz et al. 2011) that separate such luminous, i.e., $\gtrsim 10^{41}$ erg s$^{-1}$, ULXs from the population of stellar-mass X-ray sources in the local universe, bolstering the case for the IMBH interpretation.

Although ULXs have been studied mostly in the X-ray waveband, identification and characterization of ULXs in the optical, where one can study their stellar counterparts, accretion disks, and/or extended nebular emission—particularly the high-ionization He ii ($\lambda 4686$; 54 eV ionization potential) emission from X-ray photo-ionization—is essential for understanding the nature of these sources (e.g., van der Marel 2004; Gutiérrez 2006, 2013; López-Corredoira & Gutiérrez 2006; Moon et al. 2011). Here, we present a study on 2XMM J011942.7+032421 (Sutton et al. 2012; Gladstone 2013), one of the most luminous ULXs located at $\sim 33\;\text{°}$ (or ~ 5.3 kpc at 33.5 Mpc) from the center of the SAb(rs)b galaxy NGC 470, in the optical waveband. Located at the host galaxy NGC 470, as confirmed in this study (see Section 2), the maximum X-ray luminosity in the 0.2–12 keV range of the ULX is $\sim 1.53 \times 10^{44}$ erg s$^{-1}$ (Sutton et al. 2012), and its X-ray spectra can be fit either by absorbed power-law emission or absorbed multicolor-disk emission of a ~ 1 keV inner disk temperature with a mass of $\gtrsim 1900 M_\odot$.

The source has exhibited an order of magnitude decrease of its X-ray luminosity in power-law emission, and there is some evidence for the existence of a short-term, i.e., $\lesssim 1$ hr, variability, indicating accretion onto a massive compact object. The host galaxy NGC 470 forms a pair with NGC 474 at $\sim 5''$ away, and the pair shows clear signs for early interactions with one another (Rampazzo et al. 2006).

The high, $\gtrsim 10^{41}$ erg s$^{-1}$ X-ray luminosity of 2XMM J011942.7+032421 places it in the aforementioned group of more luminous ULXs, dubbed "hyper-luminous" (or sometimes "extreme") ULXs (e.g., Soria et al. 2010; Gladstone et al. 2013). Among these, only two other sources of M82 X-1 and ESO 243–49 HLX-1 have been studied with their counterparts in the optical waveband to the best of our knowledge. M82 X-1 was identified as associated with a stellar cluster (Portegies Zwart et al. 2004), but a recent study showed that the position of the optical counterpart may have a significant offset, $\gtrsim 0:65$ (or 3σ level), from its X-ray position (Voss et al. 2011). The optical counterpart to ESO 243–49 HLX X-1 has an intrinsic brightness of $M_R \approx -11$, comparable to that of a massive globular cluster.
2. OBSERVATIONS AND RESULTS

Our inspection of Sloan Digital Sky Survey (SDSS) images and catalogs4 at the location of the ULX 2XMM J011942.7+032421 reveals the presence of a point source (ID 1237678620110880953) at (R.A., decl.) = (01\textdegree 19\textquoteleft 42\textquoteleft 77, +03\textdegree 24\textquoteprime 22\textquoteprime 6) (J2000) near the Chandra X-ray position (01\textdegree 19\textquoteprime 42\textquoteprime 8, +03\textdegree 24\textquoteprime 22\textquoteprime) of the ULX reported in Sutton et al. (2012). (Note that no archival Hubble Space Telescope image for the region around the ULX is available.) We measure its more precise X-ray position using the same Chandra data in Sutton et al. to be (R.A., decl.) = (01\textdegree 19\textquoteprime 42\textquoteprime 76, +03\textdegree 24\textquoteprime 22\textquoteprime 3). This is consistent with the previous measurement and is ~0.3\textquoteprime away from the optical point source in the SDSS data, which is well within the positional uncertainty resident in matching the Chandra and SDSS astrometry. The u, g, and r magnitudes of the optical point source are 21.53 ± 0.13, 21.69 ± 0.06, and 21.71 ± 0.08 mag, respectively, while its i and z magnitudes have rather large uncertainties and are excluded from further analyses (see below). Based on the position and also on the spectroscopic information presented below, we identify this object as the optical counterpart to the ULX 2XMM J011942.7+032421.

Spectroscopic observations of the optical counterpart were made with the OSIRIS spectrograph5 on the 10.4 m GTC6 in La Palma (Spain) using its service observing mode on 2012 September 14. Three consecutive 900 s long-slit spectra of the R100B grism were obtained at the parallactic angle of each exposure under ~1\textquoteprime seeing condition around ~1.2 arcsec. The slit width and length were 1\textquoteright and 8\textquoteright, respectively, while the pixel spatial sampling was 0.25. The spectra were analyzed following the standard procedure using IRAF,7 which comprises bias subtraction, flat-field correction, co-addition of the three single exposures, wavelength calibration, and spectral extraction. The flat-field correction was made only in the red (≥6300 Å) part of each spectrum due to the low response of the calibration lamp in the blue part. Spectral calibration was conducted using 32 He–Ar and Ne arc lines that we obtained at the beginning of the night in the wavelength range λ = 4000–7500 Å, and the rms uncertainty in the wavelength calibration was ~0.06 Å. The FWHM of the lines, which is equivalent to the intrinsic spectral resolution of the OSIRIS spectrograph, increases from ~0.6 Å at 4000 Å to ~7.6 Å at 7500 Å. The spectroscopic standard star Ross 640 (Oke 1990) was observed for photometric calibration.

The top panel in Figure 1 is a raw 20 s acquisition image of the field obtained by ORSIRIS just prior to taking spectra, showing the location of the source, which is indicated by a white arrow, overlaid on the slit projection; the bottom panel shows part of a two-dimensional (2D) dispersed image of the obtained OSIRIS spectrum including the wavelength range of Hβ (4861 Å; extended emission around continuum sources) and He II (4686 Å; indicated by a white arrow). Lines as in Figure 1, in addition to 2XMM J011942.7+032421, spectra of three more sources lying on the slit were obtained: 2 at ~29′4 and 16′2 away from 2XMM J011942.7+032421 on the left-hand side and 1 at ~5′90 away in the right-hand side. All the three sources show extended H recombination lines with relative velocities of ~–78, ~38, and ~19 km s^{-1}, respectively, to 2XMM J011942.7+032421. Note that only 2XMM J011942.7+032421 shows the He II emission line at 4686 Å. Hodge & Kennicutt (1983) identified 51 H II regions in the spiral arms of NGC 470, 18 of them within 1° distance from 2XMM J011942.7+032421 including the H II region 46 inside the positional uncertainty of the ULX. It is, therefore, highly likely that all four sources in Figure 1 are H II regions or at least associated with H II regions in the spiral arms of the host galaxy NGC 470.

According to Sutton et al. (2012), the best-fit X-ray spectra of 2XMM J011942.7+032421 give an H column density of 1.0–1.4 × 10^{21} cm^{-2} for an absorbed power-law model and <9 × 10^{20} cm^{-2} for an absorbed multi-component disk blackbody model in the host galaxy, additionally to the value of 3.1 × 10^{20} cm^{-2} in the Galaxy toward the source. We take the lower limit of 1 × 10^{21} cm^{-2} from the absorbed power-law model fits as the H column density toward the source and this gives AV ≤ 0.70 mag inclusive of the Galactic contribution. This estimation agrees with the extinction AV = 0.56±0.21 deduced from the empirical Hα/Hβ ratio (Calzetti et al. 2000) where the quoted uncertainty includes contributions from those in line intensity measurement and dust models.

Figure 2 shows the spectrum of the counterpart 2XMM J011942.7+032421 which is wavelength rest-framed and also extinction corrected. The spectrum is dominated by numerous emission lines, including H Balmer series, He lines (both He I and He II) and forbidden lines of heavy elements, which overlie blue continuum emission. Table 1 contains a list of the emission lines identified in our spectrum. The velocity of the Hα line is c_{\text{helio}} ≃ 2370 km s^{-1} and is consistent with the value of 2374 ± 1 km s^{-1} obtained as the radial velocity of NGC 470 in H I observations (e.g., Huchra et al. 1999). The rms velocity shift of other lines with respect to the Hβ emission is 7.2 ± 14.8 km s^{-1} which is insignificantly small. No meaningful velocity offset between the He II (λ4686) line and the other lines is identified as the former shows a ~9.8 ± 5.3 km s^{-1} shift from the Hβ line, confirming that the ULX counterpart is indeed located in the host galaxy NGC 470 and, consequently, validating the X-ray luminosity measurement of the ULX (see Section 1). The 9.0 ± 0.6 Å FWHM of the He II line is significantly larger than those of the other isolated lines which have an average FWHM of 6.4 ± 0.9 Å. In order to investigate the large line width of the He II line further, we measure it in all three of the individual 900 s exposures to be 11.9 ± 3.7, 13.0 ± 2.7, and 16.0 ± 5.2 Å, consistently larger than those of the other lines. The increased uncertainties caused by the faintness of the signal in the individual exposures, however, make it impossible to check if the central velocity of the He II line changes during the three exposures. Note that all the isolated lines other than the He II line have an FWHM compatible with the intrinsic spectral resolution of the OSIRIS spectrograph (see above). Excluding the instrumental line width of 6.3 Å measured in an arc line at 4400 Å, the FWHM of the He II line corresponds to a velocity dispersion of ≥410 km s^{-1}. The de-reddened line intensity ratios are 85

4 http://skyserver.sdss3.org/dr10/en/home.aspx
5 http://www.gtc.iac.es/instruments/osiris/osiris.php
6 http://www.gtc.iac.es
7 IRAF is the Image Reduction and Analysis Facility, written and supported by the IRAF programming group at the National Optical Astronomy Observatories (NOAO) in Tucson, AZ.
and $\simeq 1.4$ for $([\text{N} \text{ II}](6548 \ \text{Å})+\text{[N II]}(6583 \ \text{Å})]/\text{[N II]}(5755 \ \text{Å})$
and $\text{[S II]}(6716 \ \text{Å})/\text{[S II]}(6713 \ \text{Å})$, respectively, indicate the
temperature and electron density of $\simeq 1.1 \times 10^4 \ \text{K}$ and
$\simeq 30 \ \text{cm}^{-3}$, respectively (Osterbrock and Ferland 2006), whereas
$\simeq 11.5$ for the ratio of $((\text{O II})(3727 \ \text{Å})+\text{[O III]}(4959+5007 \ \text{Å}))/\text{H} \beta$
does subsolar metallicity of the source (Kewley & Dopita 2002).

We use the continuum emission in Figure 2 to obtain its
g and r magnitudes of 21.8 and 22.1 mag, respectively, after
removing the line emission in the bands. The g band magnitude
is comparable to that from the SDSS photometry, whereas the
r band magnitude is larger than the SDSS result. We attribute
this discrepancy in the r band magnitudes to the contribution
from the strong Hα emission of the source and also to the
uncertainty residing in photometric calibration of spectroscopic
observations. The de-reddened absolute magnitudes of the
optical counterpart in the g and r bands are -11.7 and -11.1 mag,
respectively, after correction for the $A_V = 0.7$ mag extinction.

The absolute magnitudes of the optical counterpart of 2XMM
J011942.7+032421 are approximately 100 times brighter than
a single O-type star (Zombeck 1990) and are comparable to
those of a more evolved star such as a Wolf–Rayet (WR) star
or a luminous blue variable (e.g., Hainich et al. 2014), or more
likely an unresolved stellar cluster.

3. DISCUSSION AND CONCLUSIONS

As described in Section 2, 2XMM J011942.7+032421 is
located close to an H II region in NGC 470 with small velocity
offsets from other nearby H II regions in spiral arms—which is
indicative that it is related to star formation activities therein—and
also from the nucleus of the host galaxy. This makes it
highly unlikely that the source is a product of disruption of a
satellite galaxy by the host galaxy or a merge of satellite galaxies.
intensity in the unit of 10$^{-17}$ erg s$^{-1}$ cm$^{-2}$. The values in the parentheses represent 1σ uncertainty level.

* Contaminated by an unidentified nearby feature.

As observed in Cygnus X-3 and NGC 300 X-1 (Lommen et al. 2005; Binder et al. 2011), WR stars accreting onto a compact object have shown high X-ray luminosities up to $\sim 10^{38}$ erg s$^{-1}$, and Liu et al. (2013) suggested that M101 ULX-1 is a binary system of a WR star and a black hole of 20–30 M_\odot. However, it is less likely that the optical counterpart of 2XMM J011942.7+032421 is a WR star accreting onto a compact object since we do not see any spectral signature, e.g., broad emission lines indicating significant mass loss, of a WR star (Figure 2). Other possibilities for the origin of the optical continuum emission of 2XMM J011942.7+032421 include an unresolved stellar cluster or irradiated disk emission as often found in other ULXs.

One notable feature in the spectrum of the source is the He ii $\lambda 4686$ line which is known to be produced often by strong X-ray photoionization, including those from ULXs (e.g., Moon et al. 2011). The presence of the He ii emission also supports that it is a real optical counterpart to 2XMM J011942.7+032421. At a distance of 33.5 Mpc, the de-reddened luminosity of the He ii emission is $\sim 1.4 \times 10^{37}$ erg s$^{-1}$, corresponding to an X-ray (0.1–12 keV) He ii luminosity ratio of $\sim 5.7 \times 10^5$. This makes 2XMM J011942.7+032421 one of the most luminous ULXs observed in He ii emission. Figure 3, which compares the spatial distribution of the He ii emission with that of the nearby Hβ emission, shows that the former is a bit more centrally concentrated than the latter—the FWHM of the He ii emission is ~ 1.2, whereas that of Hβ is ~ 1.7. The size of the He ii emission is substantially greater than the seeing size (~ 2). However, it is less likely that the optical counterpart of 2XMM J011942.7+032421 is a WR star accreting onto a compact object since we do not see any spectral signature, e.g., broad emission lines indicating significant mass loss, of a WR star (Figure 2). Other possibilities for the origin of the optical continuum emission of 2XMM J011942.7+032421 include an unresolved stellar cluster or irradiated disk emission as often found in other ULXs.

One notable feature in the spectrum of the source is the He ii $\lambda 4686$ line which is known to be produced often by strong X-ray photoionization, including those from ULXs (e.g., Moon et al. 2011). The presence of the He ii emission also supports that it is a real optical counterpart to 2XMM J011942.7+032421. At a distance of 33.5 Mpc, the de-reddened luminosity of the He ii emission is $\sim 1.4 \times 10^{37}$ erg s$^{-1}$, corresponding to an X-ray (0.1–12 keV) He ii luminosity ratio of $\sim 5.7 \times 10^5$. This makes 2XMM J011942.7+032421 one of the most luminous ULXs observed in He ii emission. Figure 3, which compares the spatial distribution of the He ii emission with that of the nearby Hβ emission, shows that the former is a bit more centrally concentrated than the latter—the FWHM of the He ii emission is ~ 1.2, whereas that of Hβ is ~ 1.7. The size of the He ii emission is substantially greater than the seeing size (~ 2). However, it is less likely that the optical counterpart of 2XMM J011942.7+032421 is a WR star accreting onto a compact object since we do not see any spectral signature, e.g., broad emission lines indicating significant mass loss, of a WR star (Figure 2). Other possibilities for the origin of the optical continuum emission of 2XMM J011942.7+032421 include an unresolved stellar cluster or irradiated disk emission as often found in other ULXs.

One notable feature in the spectrum of the source is the He ii $\lambda 4686$ line which is known to be produced often by strong X-ray photoionization, including those from ULXs (e.g., Moon et al. 2011). The presence of the He ii emission also supports that it is a real optical counterpart to 2XMM J011942.7+032421. At a distance of 33.5 Mpc, the de-reddened luminosity of the He ii emission is $\sim 1.4 \times 10^{37}$ erg s$^{-1}$, corresponding to an X-ray (0.1–12 keV) He ii luminosity ratio of $\sim 5.7 \times 10^5$. This makes 2XMM J011942.7+032421 one of the most luminous ULXs observed in He ii emission. Figure 3, which compares the spatial distribution of the He ii emission with that of the nearby Hβ emission, shows that the former is a bit more centrally concentrated than the latter—the FWHM of the He ii emission is ~ 1.2, whereas that of Hβ is ~ 1.7. The size of the He ii emission is substantially greater than the seeing size (~ 2). However, it is less likely that the optical counterpart of 2XMM J011942.7+032421 is a WR star accreting onto a compact object since we do not see any spectral signature, e.g., broad emission lines indicating significant mass loss, of a WR star (Figure 2). Other possibilities for the origin of the optical continuum emission of 2XMM J011942.7+032421 include an unresolved stellar cluster or irradiated disk emission as often found in other ULXs.

One notable feature in the spectrum of the source is the He ii $\lambda 4686$ line which is known to be produced often by strong X-ray photoionization, including those from ULXs (e.g., Moon et al. 2011). The presence of the He ii emission also supports that it is a real optical counterpart to 2XMM J011942.7+032421. At a distance of 33.5 Mpc, the de-reddened luminosity of the He ii emission is $\sim 1.4 \times 10^{37}$ erg s$^{-1}$, corresponding to an X-ray (0.1–12 keV) He ii luminosity ratio of $\sim 5.7 \times 10^5$. This makes 2XMM J011942.7+032421 one of the most luminous ULXs observed in He ii emission. Figure 3, which compares the spatial distribution of the He ii emission with that of the nearby Hβ emission, shows that the former is a bit more centrally concentrated than the latter—the FWHM of the He ii emission is ~ 1.2, whereas that of Hβ is ~ 1.7. The size of the He ii emission is substantially greater than the seeing size (~ 2). However, it is less likely that the optical counterpart of 2XMM J011942.7+032421 is a WR star accreting onto a compact object since we do not see any spectral signature, e.g., broad emission lines indicating significant mass loss, of a WR star (Figure 2). Other possibilities for the origin of the optical continuum emission of 2XMM J011942.7+032421 include an unresolved stellar cluster or irradiated disk emission as often found in other ULXs.

One notable feature in the spectrum of the source is the He ii $\lambda 4686$ line which is known to be produced often by strong X-ray photoionization, including those from ULXs (e.g., Moon et al. 2011). The presence of the He ii emission also supports that it is a real optical counterpart to 2XMM J011942.7+032421. At a distance of 33.5 Mpc, the de-reddened luminosity of the He ii emission is $\sim 1.4 \times 10^{37}$ erg s$^{-1}$, corresponding to an X-ray (0.1–12 keV) He ii luminosity ratio of $\sim 5.7 \times 10^5$. This makes 2XMM J011942.7+032421 one of the most luminous ULXs observed in He ii emission. Figure 3, which compares the spatial distribution of the He ii emission with that of the nearby Hβ emission, shows that the former is a bit more centrally concentrated than the latter—the FWHM of the He ii emission is ~ 1.2, whereas that of Hβ is ~ 1.7. The size of the He ii emission is substantially greater than the seeing size (~ 2). However, it is less likely that the optical counterpart of 2XMM J011942.7+032421 is a WR star accreting onto a compact object since we do not see any spectral signature, e.g., broad emission lines indicating significant mass loss, of a WR star (Figure 2). Other possibilities for the origin of the optical continuum emission of 2XMM J011942.7+032421 include an unresolved stellar cluster or irradiated disk emission as often found in other ULXs.

One notable feature in the spectrum of the source is the He ii $\lambda 4686$ line which is known to be produced often by strong X-ray photoionization, including those from ULXs (e.g., Moon et al. 2011). The presence of the He ii emission also supports that it is a real optical counterpart to 2XMM J011942.7+032421. At a distance of 33.5 Mpc, the de-reddened luminosity of the He ii emission is $\sim 1.4 \times 10^{37}$ erg s$^{-1}$, corresponding to an X-ray (0.1–12 keV) He ii luminosity ratio of $\sim 5.7 \times 10^5$. This makes 2XMM J011942.7+032421 one of the most luminous ULXs observed in He ii emission. Figure 3, which compares the spatial distribution of the He ii emission with that of the nearby Hβ emission, shows that the former is a bit more centrally concentrated than the latter—the FWHM of the He ii emission is ~ 1.2, whereas that of Hβ is ~ 1.7. The size of the He ii emission is substantially greater than the seeing size (~ 2). However, it is less likely that the optical counterpart of 2XMM J011942.7+032421 is a WR star accreting onto a compact object since we do not see any spectral signature, e.g., broad emission lines indicating significant mass loss, of a WR star (Figure 2). Other possibilities for the origin of the optical continuum emission of 2XMM J011942.7+032421 include an unresolved stellar cluster or irradiated disk emission as often found in other ULXs.
range of $10^{10}-1000 M_\odot$, which is in fact much smaller than the seeing size. Note that the H\Large{\beta} emission does not show any apparent velocity dispersion (Section 2), and it is in a different dynamic motion from He\Large{\beta}. We thus conclude that the linear size of the H\Large{\beta} emission is 260 pc corresponding to 1.6, while the He\Large{\beta} emission is unresolved. This is consistent with what has been observed in other ULXs where large ($\gtrsim 100$ pc) emission nebulae show more extended emission in H\Large{\beta} than He\Large{\beta} (Moon et al. 2011). In particular, the ULX Ho IX X-1 at 3.6 Mpc shows an unresolved central He\Large{\beta} emission of $\gtrsim 370$ km s$^{-1}$ velocity dispersion surrounded by diffuse He\Large{\beta} emission as well as by strong unevenly distributed H\Large{\beta} emission. At a distance about 10 times larger, the He\Large{\beta} emission of Ho IX X-1 may appear like that of 2XMM J011942.7+032421 presented in this study.

2XMM J011942.7+032421 is one of the most luminous ULXs with its X-ray luminosities reaching up to $\sim 1.5 \times 10^{41}$ erg s$^{-1}$. Using the SDSS data, we discovered its optical counterpart near an H\Large{\beta} region in a spiral arm of the host galaxy NGC 470, and our optical spectrum of the source shows a blue continuum embedded with numerous emission lines such as H recombinations, forbidden transitions, and most notably, high-ionization He\Large{\beta} lines at the same velocity of the host galaxy, validating the high X-ray luminosity of the ULX and confirming its optical counterpart. The absence of any significant dynamic motion, other than the large velocity dispersion of the He\Large{\beta} emission, of the source identified in the optical spectrum indicates that it is less likely associated with disruption or merging of satellite galaxies or motion of a supermassive black hole. The unresolved He\Large{\beta} emission of $\gtrsim 410$ km s$^{-1}$ velocity dispersion, which is consistent with what has been observed in other ULXs, most likely represents a compact (< 5 AU) photoionized accretion disk rotating the central X-ray source. The large optical luminosity suggests that the source may be an unresolved stellar cluster.

Based on observations made with the Gran Telescopio Canarias (GTC) installed in the Spanish Observatorio del Roque de los Muchachos del Instituto de Astrofísica de Canarias on the island of La Palma. We have used the following online databases: the Sloan Digital Sky Survey (http://www.sdss.org/) and the NED (NASA Extragalactic Database, http://nedwww.ipac.caltech.edu). C.M.G. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under the 2011 Severo Ochoa Program MINECO SEV-2011-0187.

References

Bauer, F. E., Alexander, D. M., Brandt, W. N., et al. 2004, ApJ, 128, 2048
Bellovary, J. M., Governato, F., Quinn, T. R., et al. 2010, ApJL, 721, L148
Binder, B., Williams, B. F., Eracleous, M., et al. 2011, ApJ, 742, 128
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Gladstone, J. C. 2013, MmSAI, 84, 629
Gladstone, J. C., Copperwheat, C., Heinke, C. O., et al. 2013, ApJS, 206, 14
Gutiérrez, C. M. 2006, ApJL, 640, L17
Gutiérrez, C. M. 2013, A&A, 549, A81
Hainich, R., Rühling, U., Todt, H., et al. 2014, A&A, 565, 27
Hodge, P. W., & Kennicutt, R. C. Jr. 1983, AJ, 88, 296
Hornschemeier, A. E., Brandt, W. N., Garmire, G. P., et al. 2001, ApJ, 554, 742
Hucho, J. P., Vogeley, M. S., & Geller, M. J. 1999, ApJS, 121, 287
Kewley, L. J., & Dopita, M. A. 2002, ApJS, 142, 35
Komossa, S., Zhou, H., & Lu, H. 2008, ApJL, 678, L81
Liu, J.-F., & Bregman, J. N. 2005, ApJL, 517, 59
Liu, J.-F., Bregman, J. N., Bai, Y., Justham, S., & Crowther, P. 2013, Natur, 503, 500
Lommen, D., Yungelson, L., van den Heuvel, E., Nelemans, G., & Portegies Zwart, S. 2005, A&A, 443, 231
López-Corredoira, M., & Gutiérrez, C. M. 2006, A&A, 454, 77
McClintock, J. E., & Remillard, R. A. 2006, in Compact Stellar X-ray Sources, ed. W. Lewin & M. van der Klis (Cambridge Astrophysics Series, No. 39; Cambridge: Cambridge Univ. Press), 157
Moon, D.-S., & Eikenberry, S. S. 2001, ApJL, 552, 135
Moon, D.-S., Eikenberry, S. S., & Wasserman, I. M. 2003, ApJ, 586, 1280
Moon, D.-S., Harrison, F. A., Cenko, S. B., & Shariff, J. A. 2011, ApJL, 731, L32
Oke, J. B. 1990, AJ, 99, 1621
Oshuga, K., & Mineshige, S. 2011, ApJ, 736, 2
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (2nd. ed.; Sausalito, CA: University Science Books)
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W. 2004, Natur, 428, 724
Rampazzo, R., Alexander, P., Carignan, C., et al. 2006, MNRAS, 368, 851
Soria, R., Hau, G. K. T., Graham, A. W., et al. 2010, MNRAS, 405, 870
Soria, R., Hakala, P. J., Hau, G. K. T., Gladstone, J. C., & Kong, A. K. H. 2012, MNRAS, 420, 3599
Sutton, A. D., Roberts, T. P., Walton, D. J., Gladstone, J., & Scott, A. E. 2012, MNRAS, 423, 1154
Swartz, D. A., Soria, R., Tennant, A. F., & Yukita, M. 2011, ApJ, 741, 49
van der Marel, R. P. 2004, in Carnegie Observatories Centennial Symposia, Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Cambridge: Cambridge University Press), 37
Voss, R., Nielsen, M. T. B., Nelemans, G., Fraser, M., & Smartt, S. J. 2011, MNRAS, 418, L124
Wiersema, K., Farrell, S. A., Webb, N. A., et al. 2010, ApJL, 721, L102
Zombeck, M. V. 1990, Handbook of Space Astronomy and Astrophysics (2nd ed.; Cambridge: Cambridge Univ. Press)