Theoretical spectroscopic studies of the atomic transitions and lifetimes of low-lying states in Ti IV

Subhasish Mandal¹⁵, Gopal Dixit², B K Sahoo³, R K Chaudhuri⁴ and Sonjoy Majumder²

¹ Department of Physics, Indian Institute of Technology-Madras, Chennai-600036, India
² Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur-721302, India
³ Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany
⁴ Indian Institute of Astrophysics, Bangalore-34, India

E-mail: sensation2912@gmail.com and gopaldixit@physics.iitm.ac.in

Received 7 September 2007, in final form 17 January 2008
Published 26 February 2008
Online at stacks.iop.org/JPhysB/41/055701

Abstract
The astrophysically important electric quadrupole (E2) and magnetic dipole (M1) transitions for the low-lying states of triply ionized titanium (Ti IV) are calculated very accurately using a state-of-the-art all-order many-body theory called coupled cluster (CC) method in the relativistic framework. Different many-body correlations of the CC theory has been estimated by studying the core and valence electron excitations to the unoccupied states. The calculated excitation energies of different states are in excellent agreement with the measurements. Also, we compare our calculated electric dipole (E1) amplitudes of few transitions with recent many-body calculations by others. The lifetimes of the low-lying states of Ti IV have been estimated and long lifetime is found for the first excited 3d²D₅/₂ state, which suggested that Ti IV may be one of the useful candidates for many fundamental studies of physics. Most of the forbidden transition results reported here are not available in the literature, to the best of our knowledge.

1. Introduction
With the advent of improved technologies in observational astronomy, laboratory plasma and atomic research, the study of weak signals in high resolution spectrum has become frontline research. However, in many of the cases experimental measurements are difficult, especially for forbidden transitions of stripped electronic systems. Whereas these transitions are very important in various fields of science and technology and detail requirements of their accurate transition rates are discussed in the following part of this paper.

The forbidden lines provide important clues in areas of astrophysics, because of the long lifetime of the upper state against radiative decay [1]. These lines are particularly sensitive to the collisional de-excitations and serve as indicators of electron density and temperature in the emission region in astrophysics [2, 3] and laboratory tokamak plasma [4]. Also they are commonly observed in the solar corona, quasars and gaseous nebulae with an intensity often comparable to accompanying allowed transition lines [5]. Many astrophysical phenomena such as coronal heating, evolution of chemical composition in stellar envelopes, determination of the chemistry in the envelope of planetary nebulae precursor are believed to be explained largely by these forbidden lines [6, 7].

Titanium (Ti) is observed in a variety of stellar objects, like in the Sun where Ti figures third place in terms of number of lines [8]. Various ionization stages of Ti are present in stellar plasma, for instance in the τ Sco spectrum [9]. Recently, the emission lines of triply ionized titanium (Ti IV) have been detected in Wolf-Rayet star [10]. Ti IV in oxidized form, used in dark and photo-induced decomposition of ozone in air, has also been studied [11].

5 Present Address: Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA.
Accurate estimations of the forbidden transitions of this ionized system are necessary to explain and quantify the band structure of the energy level of this system doped in crystal materials. Doping of Ti IV in crystal materials is used to build optical and polymer devices [12]. The spark spectrum [13] and patronization studies [14] of Ti IV provide the excitations energies and spontaneous transition spectrum \([13]\) and patronization studies \([14]\) of Ti IV is used to build optical and polymer devices \([12]\). The crystal materials. Doping of Ti IV in crystal materials is necessary to explain and quantify the valence electrons correlation contributions obtained from the tiny effects in fundamental physics have been considered by to study sophisticated problems \([16, 17]\) of various precise perturbative in nature and its relativistic extension has been computed forbidden transitions among the low-lying states of Ti IV using Dirac–Coulomb spin orbitals. The CC theory is non-via the valence-universal wave-operator \(\Omega\) \([24, 21]\) written in the normal ordered form as

\[
\Omega = \{\exp(\mathcal{S})\},
\]

(2.2)

where \(\mathcal{S} = \sum_{k=0}^{\infty} \sum_{l=0}^{n} S(k,l) = S^{(0,0)} + S^{(0,1)} + S^{(1,0)} + \cdots\),

(2.3)

Here \([\cdots]\) stands for the normal ordering of the creation and annihilation operators defined with respect to the Dirac–Fock (DF) wavefunction of the closed-shell system. For example, the normal ordered form of the Dirac–Coulomb Hamiltonian used here is given by

\[
\mathcal{H} = H - \langle \Phi | H | \Phi \rangle = H - E_{DF} = \sum_{ij} [\hat{a}_i^{\dagger} \hat{a}_j] \{a_i^\dagger a_j\}
\]

(2.4) where

\[
(i j || kl) = (i j) \frac{1}{r_{12}} |kl| - (i j) \frac{1}{r_{12}} |lk|.
\]

(2.5)

Here \(E_{DF}\) is the DF energy, \(f\) is the one-electron Fock operator, \(a_i^\dagger (a_i)\) is the annihilation (creation) operator (with respect to the DF state as the vacuum) for the \(i\)th electron.

At this juncture, it is convenient to single out the core-cluster amplitudes \(S^{(0,0)}\) and let us call them \(T_i\). The rest of the cluster amplitudes will henceforth be called as \(S_i\). Since \(\Omega\) corresponding to the valence orbital \(v\) is in normal order, we can rewrite equation (2.2) as

\[
\Omega = \exp(T) \{\exp(S)v\} = \Omega, \Omega_v.
\]

(2.6)

Now, if we define

\[
H_{eff} = P^{(k,l)} \Omega, P^{(k,l)},
\]

(2.7)

with the operator \(P^{(k,l)}\) being the model space projector for \(k\)-hole and \(l\)-particle, which satisfies complete model space condition. The ‘valence-universal’ wave-operator \(\Omega\) in equation (2.6) is parametrized in such a way that the states generated by its action on the reference space satisfy the Fock-space Bloch equation

\[
H \Omega P^{(k,l)} = \Omega P^{(k,l)} H_{eff} P^{(k,l)},
\]

(2.8)

To formulate the theory for direct energy differences, we premultiply equation (2.8) by \(e^{-T}\) and get

\[
\Omega (e^{S}) P^{(k,l)} = (e^{S}) P^{(k,l)} H_{eff} P^{(k,l)}, \quad (k, l) \neq (0, 0),
\]

(2.9)

where \(\Omega = e^{-T} H e^{T}\). Since \(\Omega\) can be parametrized using the Wick’s theorem into a connected operator \(\hat{H}\) and \(E_{ref gyr}\) (\(N\)-electron closed-shell reference or ground-state energy), we likewise define \(H_{eff}\) as

\[
H_{eff} = \hat{H}_{eff} + E_{ref gyr}.
\]

(2.10)

Substituting equation (2.10) into equation (2.9), we obtain the Fock-space Bloch equation for energy differences:

\[
\hat{H} (e^{S}) P^{(k,l)} = (e^{S}) P^{(k,l)} \hat{H}_{eff} P^{(k,l)}.
\]

(2.11)
Equations (2.8) and (2.11) are solved by Bloch projection method, involving the left projection of the equation with $P^{(k,t)}_{\alpha}$ and its orthogonal complement $Q^{(k,t)}_{\beta}$. To obtain the effective Hamiltonian and the cluster amplitudes, respectively.

In this work, we first solve the Fock-space CC for $k = l = 0$ to obtain the T amplitudes, which construct H_{eff}. Equation (2.11) for $k = 0, l = 1$ is solved to determine the S_e amplitudes. The Hamiltonian constructed from H, T, and S_e is then diagonalized within the model space to obtain the desired eigenvalues and eigenvectors [23].

In this paper, effects of triple excitations are included in the open-shell CC amplitudes which correspond to the correlation to the valence orbitals, by an approximation that is similar in spirit to CCSD(T) [25]. The approximate valence triple excitation amplitude is given by

$$S_{v}^{pq,r} = \frac{(VS_{2}V)_{pq,r}}{e_a + e_b + e_k - e_p - e_q - e_r}. \quad (2.12)$$

where $S_{v}^{pq,r}$ are the amplitudes corresponding to the simultaneous excitation of orbitals a, b, k to p, q, r, respectively; VS_{2} and V are the connected composites involving V and T, and V and $S^{(0,1)}$, respectively, where V is the two electron Coulomb integral and $e’s$ are the orbital energies.

3. Computational procedure

The transition matrix element due to any operator D is evaluated in the CC method by expressing it as

$$D_{fi} = \langle \Psi_f | D | \Psi_i \rangle \frac{\langle \Psi_f | (1 + \hat{S})^{1} | \Psi_i \rangle}{\sqrt{\langle \Psi_f | S | \Psi_i \rangle}}.$$ \hspace{1cm} (3.1)

Here, only consideration comes from the single power of $S^{(0,1)}$ operator with $S^{(0,1)}_1$ and $S^{(0,1)}_2$ representing single excitation operators from the valence orbital and double excitations from core-valence orbitals, respectively. Interesting correlation features of the transition operator D are found in the contraction of $\mathcal{D} = e^{\dagger}De^{\dagger}$ with $S^{(0,1)}_1$ and $S^{(0,1)}_2$, which represents single excitation operators from valence orbital and double excitations from core-valence orbitals, respectively. Since the considered system is a single valence system, only one power of the $S^{(0,1)}$ operator will contribute in the CCSD(T) calculation.

For computational simplicity, we express \mathcal{D} as effective terms using the generalized Wick’s theorem [20] as

$$\mathcal{D} = (e^{\dagger}De^{\dagger})_{1,1} + (e^{\dagger}De^{\dagger})_{1,2} + (e^{\dagger}De^{\dagger})_{2,2} + \ldots. \quad (3.2)$$

where we have used the abbreviations f.c., o.b. and t.b. for fully contracted, effective one-body and effective two-body terms, respectively. In this expansion of \mathcal{D}, the effective one-body and two-body terms are computed keeping only terms of the form

$$\mathcal{D}_{1,2} = D + T^{1}D + DT^{1}DT^{1}, \quad (3.3)$$

and

$$\mathcal{D}_{1,2} = DT_{1} + T^{1}D + DT_{2} + T^{1}DT^{1}, \quad (3.4)$$

respectively. Other effective terms correspond to higher orders in the residual Coulomb interaction and hence they are neglected in the present calculation.

The reduced matrix elements corresponding to $E1, E2$ and $M1$ transitions are given in our earlier papers [26, 27]. The emission transition probabilities $(in s^{-1})$ for the $E1, E2$ and $M1$ channels from states f to i are given by

$$A_{fi}^{E1} = \frac{2.0261 \times 10^{18}}{\lambda_{[f]}[j]} S^{E1} \quad (3.5)$$

$$A_{fi}^{E2} = \frac{1.1995 \times 10^{18}}{\lambda_{[j]}[j]} S^{E2} \quad (3.6)$$

$$A_{fi}^{M1} = \frac{2.6973 \times 10^{13}}{\lambda^{2}[j]} S^{M1}, \quad (3.7)$$

where $[j] = 2j + 1$ is the degeneracy of a f state, S is the square of the transition matrix elements of any of the corresponding transition operator D and λ (in Å) are the corresponding transition wavelength.

4. Result and discussions

Many-body calculations started with the closed-shell coupled cluster calculations of Ti V. The reference state of this closed-shell system is obtained from the Dirac–Fock (DF) calculation using the Gaussian-type orbitals (GTO) formalism [28]. The exponent of the GTO functions are obtained from the universal even tempering condition with $\alpha = 0.00825$ and $\beta = 2.73$ for all the symmetries. The number of basis functions used in this DF calculations are 32, 30, 25, 20, 20 for $l = 0, 1, 2, 3, 4$ symmetries. Number of DF orbitals corresponding to these symmetries used in the closed-shell CC calculations are 11, 9, 8, 8 and 6. Number of active orbitals for different symmetries used in these calculations are based on the convergent criteria of core correlation energies for which it satisfies the numerical completeness.

In Table 1, we have given the excitation energies obtained using the CCSD(T) method of a few low-lying excited states considering $3d_{3/2}$ as a ground state. Kingston and Hibbert [15] have also calculated few of them by using the multiconfiguration (CIV3) method. Our calculated results are in better agreement with the experimental results (obtained from National Institute of Standard and Technology (NIST) [29]) in comparison with the CIV3 results. Except for $3d_{3/2}$ state, the average deviation with the NIST results are only 0.427%, whereas in the CIV3 method it is around 1.08%. The CC-calculated fine structure splitting (FS) of $3d$ state has far better agreement than the CIV3 calculation. Also, the excellent agreement with the experiment of the FS splittings of F states indicates the accurate description of correlation in the present CC approach, especially all order considerations of core-polarization and pair-correlation effects. Though the agreement with the experiment of our FS result for $5f$ state is almost exact, but the ordering differs. The splitting energy is so
The millisecond lived excited 4s state might be plasma temperature diagnostics in stars and plasma fusion. It is worthy to do further study.

Table 1. Excitation energies (EE) in cm$^{-1}$ of different levels of Ti IV and its comparison with NIST value and CIV3 values and the fine structure splitting (FSS). Since the CIV3 results reported in the reference are in au, we have rounded them off to the integral figures in cm$^{-1}$.

States	NIST	CIV3	CC
3d$_{3/2}$	382.10	0	0
3d$_{5/2}$	388.92	439	418.02
4s$_{1/2}$	127.921	124.750	128.769
4p$_{1/2}$	128.739	125.540	128.534
4p$_{3/2}$	196.804	196.964	197.050
4d$_{3/2}$	196.889	97.050	85.69
5s$_{1/2}$	212.407	212.823	231.061
5p$_{1/2}$	230.608	228.715	231.061
5p$_{3/2}$	230.924	228.978	231.444
4f$_{5/2}$	236.135	234.882	236.217
4f$_{7/2}$	236.142	234.882	236.220
5d$_{5/2}$	258.838	259.373	259.419
5d$_{3/2}$	258.877	259.373	259.419
6s$_{1/2}$	265.847	266.256	266.256
6p$_{1/2}$	274.726	272.720	275.396
6p$_{3/2}$	274.881	272.829	275.620
5f$_{5/2}$	275.847	276.670	277.647
5f$_{7/2}$	275.861	272.675	277.633
5g$_{7/2}$	278.510	278.530	278.531
5g$_{9/2}$	278.511	278.531	278.531
6d$_{5/2}$	289.155	291.799	291.799
6d$_{3/2}$	289.206	291.829	291.829

Table 2. The lifetime (in s) of few low-lying states.

States	LifeTime
3d$_{5/2}$	1.274 x 10$^{-7}$
4s$_{1/2}$	7.531 x 10$^{-4}$
4p$_{1/2}$	4.651 x 10$^{-10}$
4p$_{3/2}$	4.563 x 10$^{-10}$

Table 3. Oscillator strengths in the length f_l and velocity f_v form for the E1 transitions and its comparison with CIV3 results [15].

Transitions	f_l(CIV3)	f_l(CIV3) f_v(CC)	f_v(CC)	
3d$_{3/2}$ → 4p$_{1/2}$	0.0765	0.0914	0.1588	0.1103
3d$_{3/2}$ → 4p$_{3/2}$	0.0154	0.0182	0.0158	0.0109
3d$_{3/2}$ → 5p$_{1/2}$	0.0080	0.0091	0.0185	0.0129
3d$_{3/2}$ → 5p$_{3/2}$	0.0016	0.0019	0.0037	0.0012
3d$_{3/2}$ → 6p$_{1/2}$	0.0030	0.0031	0.0075	0.0042
3d$_{3/2}$ → 6p$_{3/2}$	0.0006	0.0007	0.0022	0.0014
3d$_{3/2}$ → 4f$_{5/2}$	0.1248	0.1109	0.1020	0.1066
3d$_{3/2}$ → 4f$_{7/2}$	0.0925	0.1093	0.1430	0.0982
3d$_{3/2}$ → 5f$_{5/2}$	0.0011	0.0111	0.0070	0.0040
3d$_{3/2}$ → 6f$_{1/2}$	0.0038	0.0039	0.0076	0.0040
3d$_{3/2}$ → 4f$_{5/2}$	0.0600	0.0053	0.0049	0.0041
3d$_{3/2}$ → 4f$_{7/2}$	0.1200	0.1069	0.1108	0.1154

Table 4. Transition amplitudes for E2 transitions in length and velocity forms.

Transitions	Length form	Velocity form
3d$_{3/2}$ → 3d$_{3/2}$	-1.0424	-1.3694
3d$_{3/2}$ → 4d$_{3/2}$	1.5188	1.7331
3d$_{3/2}$ → 4d$_{3/2}$	1.0237	0.9783
3d$_{3/2}$ → 5g$_{7/2}$	-1.1445	-1.1284
3d$_{3/2}$ → 5g$_{7/2}$	1.9965	2.0618
3d$_{3/2}$ → 4g$_{9/2}$	0.3841	0.3787
3d$_{3/2}$ → 5g$_{7/2}$	-1.3741	-1.3381
3d$_{3/2}$ → 4d$_{3/2}$	-9.0885	-8.5152
3d$_{3/2}$ → 5d$_{3/2}$	7.5085	9.4869
3d$_{3/2}$ → 5d$_{3/2}$	7.3753	7.2191
3d$_{3/2}$ → 5g$_{7/2}$	24.1509	24.2467
3d$_{3/2}$ → 4f$_{5/2}$	-11.7963	-11.4311
3d$_{3/2}$ → 4f$_{5/2}$	5.1101	5.0902
3d$_{3/2}$ → 4f$_{5/2}$	6.5263	6.5279
3d$_{3/2}$ → 4f$_{5/2}$	-17.5349	-18.9716

Small that is why it is difficult to comment on this, whatsoever it is worthy to do further study.

Large lifetime has been estimated for the 3d$_{5/2}$ state as seen in table 2 which shows its potentiality as a candidate for plasma temperature diagnostics in stars and plasma fusion devices. The millisecond lived excited 4s state might be important in many astronomical diagnostics.

Table 3 provides the comparison of the CC-calculated electric dipole (E1) oscillator strengths (f-value) with the CIV3 [15] results in length and velocity forms. In most of the cases CIV3 underestimate the f-values, though there are cases where good agreements are seen among the results obtained.
Table 5. Transition wavelengths, transition amplitudes and transition rates of Ti IV for the electric quadrupole (E2) and magnetic dipole (M1) transitions.

Transition	λ_{CC}	E_2	M_1	A_{E2}	A_{M1}
3d_{3/2} → 3d_{3/2}	-1.0424	-1.5458	2.5881 × 10^{-10}	7.8411 × 10^{-4}	
3d_{3/2} → 4d_{5/2}	508.81	1.5188	0.0863	1.8939 × 10^{-4}	1.1808 × 10^{-3}
3d_{3/2} → 4d_{5/2}	507.48	1.0237	-0.0026	5.8116 × 10^{-5}	2.3251 × 10^{-1}
3d_{3/2} → 5d_{5/2}	384.18	0.5334	0.0443	9.5185 × 10^{-3}	2.3338 × 10^{-2}
3d_{3/2} → 5d_{5/2}	384.12	0.3738	-0.0012	3.1188 × 10^{-4}	1.2934 × 10^{-1}
3d_{3/2} → 6d_{5/2}	341.62	0.3894	0.0371	9.1246 × 10^{-5}	2.3281 × 10^{-2}
3d_{3/2} → 6d_{5/2}	341.57	0.2769	-0.0009	3.0781 × 10^{-2}	9.1375 × 10^{-4}
3d_{3/2} → 4s_{1/2}	1254.44	-2.2291	8.9573 × 10^{-3}		
3d_{3/2} → 4s_{1/2}	469.87	-0.0283	1.9581 × 10^{-3}		
3d_{3/2} → 5g_{7/2}	374.29	-0.0159	1.9271 × 10^{-3}		
3d_{3/2} → 5g_{7/2}	359.03	-1.1445	3.0738 × 10^{-4}		
3d_{3/2} → 4d_{3/2}	509.89	-1.0328	0.0012	8.6654 × 10^{-3}	7.3251 × 10^{-2}
3d_{3/2} → 4d_{3/2}	508.56	1.9965	0.0241	2.1871 × 10^{-4}	1.9851 × 10^{-1}
3d_{3/2} → 5d_{3/2}	384.80	-0.0362	-0.0009	4.2166 × 10^{-5}	9.5861 × 10^{-1}
3d_{3/2} → 5d_{3/2}	384.73	0.7004	0.1239	1.0863 × 10^{-2}	1.2118 × 10^{-3}
3d_{3/2} → 6d_{3/2}	342.11	-0.2606	0.0008	4.0575 × 10^{-4}	1.0778 × 10^{-1}
3d_{3/2} → 6d_{3/2}	342.06	0.5148	0.1035	1.0563 × 10^{-4}	1.2032 × 10^{-3}
3d_{3/2} → 4s_{1/2}	1261.05	-2.7489	1.3268 × 10^{-3}		
3d_{3/2} → 5s_{1/2}	470.79	-0.0467	5.2083 × 10^{-4}		
3d_{3/2} → 6s_{1/2}	374.85	-0.0229	3.9678 × 10^{-3}		
3d_{3/2} → 5g_{7/2}	359.57	0.3841	3.4362 × 10^{-4}		
3d_{3/2} → 5g_{7/2}	359.57	-1.1741	3.5181 × 10^{-4}		
from both the methods. The good agreement between the results of length and velocity forms indicates the accuracy of the numerical approaches employed.

In table 4, the comparison of the transition amplitudes in length and velocity forms for electric quadrupole ($E2$) transitions among various low-lying excited states is presented. In most of the cases good agreements are seen among the results obtained from both forms, which shows the robustness of numerical approaches employed.

Table 5 presents the $E2$ and $M1$ transition wavelengths, amplitudes and transition rates, respectively, for most of the low-lying states. They are all relevant to astrophysical studies. The calculated wavelengths are in good agreement for most of the cases with the results obtained from the website of NIST [29]. From physics point of view, the important forbidden transitions are the transitions among the fine structures of the 3d and 4p states. Former one falls in the infrared region, which has many applications in the plasma research and infrared laser spectroscopy [30]. The latter one falls in the optical region, which has immense prospect in different atomic physics experiments. We have not reported wavelengths for most of other fine structure transitions those fall far beyond the infrared region.

Table 5. (Continued.)

Transition	λ_{∞}	E_J	M_1	A_{E2} ($E2$)	A_{M1} ($M1$)
$5g_{7/2} \rightarrow 5g_{9/2}$	-21.7248	3.4693×10^{-12}			
$4p_{3/2} \rightarrow 4p_{5/2}$	-8.1664	-1.1466	8.0404×10^{-7}	5.3471×10^{-3}	
$3p_{3/2}$	967.38	-0.0248	9.1808×10^{-3}		
$5p_{1/2}$	964.08	-4.9577	8.2629×10^{3}	1.8068×10^{-1}	
$6p_{1/2}$	677.02	-0.0134	7.8039×10^{-1}		
$6p_{3/2}$	675.99	-4.4916	4.0016×10^{-4}	1.9647×10^{-1}	
$4p_{5/2}$	921.42	-1.7963	3.9106×10^{-4}		
$5f_{1/2}$	666.86	3.1836	1.4165×10^{-5}		
$4p_{7/2}$	975.35	5.1101	1.6566×10^{-6}	4.8896×10^{-1}	
$5p_{3/2}$	972.00	-4.7702	7.3431×10^{-3}	1.7778×10^{-2}	
$6p_{3/2}$	680.91	-2.1388	1.7501×10^{-4}	7.1813×10^{-1}	
$6p_{5/2}$	679.87	-1.8725	6.7585×10^{-5}	1.5540×10^{-2}	
$4f_{5/2}$	928.65	6.3563	1.0919×10^{-4}		
$4f_{7/2}$	928.62	-15.5656	4.9119×10^{-4}		
$5f_{5/2}$	670.63	-0.8062	8.9437×10^{-4}		
$5f_{7/2}$	670.69	2.1849	4.9245×10^{-4}		
$5p_{1/2} \rightarrow 5p_{3/2}$	282914.16	-30.1011	1.4052×10^{-7}	3.9431×10^{-4}	
$6p_{1/2} \rightarrow 6p_{3/2}$	2255.56	0.0306	1.1004×10		
$6p_{3/2}$	2244.24	17.5393	1.4709×10^{3}	7.8445×10^{2}	
$4f_{5/2}$	19396.42	-24.4364	4.0591×10^{-2}		
$5f_{5/2}$	2146.58	-35.8189	5.2545×10^{-3}		
$5p_{3/2}$	2273.69	17.8798	2.9460×10^{2}	9.0885×10^{-2}	
$6p_{3/2}$	2262.18	16.7129	1.3201×10^{2}	2.1968×10^{1}	
$4f_{5/2}$	20824.11	12.8459	7.8658×10^{-3}		
$4f_{7/2}$	20811.39	2.1849	1.7112×10^{4}		
$5f_{5/2}$	2177.12	19.3650	1.4311×10^{3}		
$5f_{7/2}$	2122.42	47.4574	7.3208×10^{3}		
$6p_{1/2}$	$6p_{3/2}$	-70.0679	-1.1435	7.9082×10^{-6}	9.8773×10^{-5}
$4f_{5/2}$	2552.37	6.9155	8.2409×10^{4}		
$5f_{5/2}$	2552.37	6.76077	3.0084×10^{4}		
$6p_{3/2}$	2537.88	-3.7780	2.5305×10^{5}		
$4f_{5/2}$	2538.11	9.2581	1.1392×10^{6}		
$5f_{5/2}$	399.86	-41.2699	$3.1101+8$		
$5f_{7/2}$	399.88	100.9901	1.3964×10^{4}		
$4f_{5/2}$	$4f_{7/2}$	-10.0372	-1.8513	3.0455×10^{-19}	2.9067×10^{-10}
$5f_{5/2}$	2413.71	-14.7715	4.9713×10^{3}		
$5f_{7/2}$	2414.52	-6.4105	7.0103×10^{3}		
$4f_{7/2}$	2413.71	6.4256	9.0069×10^{3}		
$5f_{7/2}$	2414.52	-17.3549	5.1381×10^{3}		
$5f_{5/2}$	$5f_{7/2}$	-35.759	-1.8511	9.6620×10^{-15}	3.1770×10^{-11}
$4s_{1/2}$	$4s_{3/2}$	751.27	-0.0687	1.5011×10^{2}	
$6s_{1/2}$	$6s_{3/2}$	533.41	-0.0386	1.3240×10^{3}	
$5s_{1/2}$	$5s_{1/2}$	1839.42	0.0837	1.5181×10^{2}	
few transitions among the low-lying states. The unusual strong core correlation, almost same as DF, contribution has been found for $E2$ transition among the fine structure of 4p states. Core correlation is the weakest among the three correlations presented in the table. Dominance of pair-correlation effects over the core polarization observed in all the transitions.

Similarly, the quantitative contributions from different correlation terms for few $M1$ transitions among the low-lying states are presented in Table 7. From this table, it is really interesting to see that the low correlation effects, especially core-polarization effects, are almost negligible up to the digits displayed in the table. In few cases, strong pair correlations are noticeable.

Transition	DF	Core correlation	Pair correlation	Core polarization	Norm	Total
$3d_{5/2} \rightarrow 3d_{5/2}$	-1.1938	0.0010	0.0688	0.0794	0.0223	-1.0424
$3d_{3/2} \rightarrow 3d_{3/2}$	1.5863	-0.0016	-0.1227	0.0198	-0.0234	1.5188
$3d_{3/2} \rightarrow 4d_{3/2}$	1.0364	-0.0003	-0.0477	0.0385	-0.0160	1.0237
$3d_{5/2} \rightarrow 5d_{5/2}$	0.5426	0.0025	-0.0469	0.0341	-0.0328	-2.1843
$3d_{3/2} \rightarrow 4s_{1/2}$	-2.3347	0.0050	0.1626	-0.0269	0.0328	-2.2291
$3d_{5/2} \rightarrow 5s_{1/2}$	-0.0597	0.0009	0.0076	0.0093	0.0004	-0.0263
$3d_{3/2} \rightarrow 4d_{5/2}$	-1.0433	0.0001	0.0464	-0.2254	0.0157	-1.0322
$3d_{5/2} \rightarrow 4d_{5/2}$	2.0825	-0.0001	-0.1589	0.0726	0.3562	1.9965
$3d_{5/2} \rightarrow 4s_{1/2}$	-2.8689	0.0076	0.1983	-0.0125	-0.0401	-2.7489
$4d_{5/2} \rightarrow 5d_{5/2}$	-5.1218	0.0071	0.0922	-0.0167	0.0511	-5.3540
$4d_{3/2} \rightarrow 5d_{3/2}$	10.9993	-0.0046	-1.0611	0.0319	-0.0978	9.0113
$5d_{5/2} \rightarrow 4s_{1/2}$	0.9699	-0.0051	-0.2398	-0.0268	-0.0066	0.7484
$5d_{5/2} \rightarrow 5s_{1/2}$	-25.758	0.0538	0.5885	0.0133	0.1695	-24.9925
$5d_{5/2} \rightarrow 5s_{1/2}$	-0.0753	-0.0014	0.0072	-0.0786	0.0006	0.0467
$4p_{1/2} \rightarrow 4p_{1/2}$	-8.6289	-0.0251	0.5297	0.0812	0.1789	-8.1664
$5p_{1/2} \rightarrow 4p_{1/2}$	-5.2202	0.0137	-0.1654	-0.0293	0.0335	-5.1101
$5p_{1/2} \rightarrow 5p_{1/2}$	-31.4436	0.1799	1.0952	0.0301	0.0888	-30.1611

Table 7. Explicit contributions from the MR-FSCCSD(T) calculations to the absolute magnitude of the reduced $M1$ transition matrix elements in au.

Transition	DF	Core correlation	Pair correlation	Core polarization	Norm	Total
$3d_{5/2} \rightarrow 3d_{5/2}$	-1.5489	0.0005	0.0000	0.0000	0.0333	-1.5458
$3d_{3/2} \rightarrow 4d_{3/2}$	-0.0015	-0.0000	0.0097	0.0001	0.0000	-0.0026
$3d_{5/2} \rightarrow 4d_{5/2}$	-0.0017	0.0001	-0.0099	-0.0002	0.0000	-0.0012
$3d_{3/2} \rightarrow 4d_{5/2}$	-0.0007	0.0001	0.1857	-0.0000	-0.0038	0.2407
$3d_{5/2} \rightarrow 5d_{3/2}$	-0.0001	-0.0001	-0.0061	-0.0001	-0.0000	-0.0008
$4d_{3/2} \rightarrow 4d_{3/2}$	-1.5491	0.0003	0.0000	0.0000	0.0153	-1.5485
$5d_{3/2} \rightarrow 5d_{3/2}$	-1.5492	0.0019	0.0001	0.0000	0.0147	-1.5479
$4p_{1/2} \rightarrow 5s_{1/2}$	0.0004	-0.0006	0.0560	0.0000	0.0004	0.0687
$4p_{1/2} \rightarrow 4p_{1/2}$	-1.1545	0.0059	0.0000	0.0000	0.0125	-1.1466
$4p_{1/2} \rightarrow 5p_{1/2}$	0.0000	0.0000	-0.0207	0.0000	0.0002	-0.0248
$4p_{1/2} \rightarrow 5p_{1/2}$	-0.0059	0.0108	-0.0060	0.0000	-0.0000	0.0049

In this paper, we have reported the excitation energies for a few excited states of Ti IV by using the MR-FSCCSD(T) method, which are in excellent agreement with the NIST results. Magnetic dipole and electric quadrupole transition amplitudes among the bound states of the system are important for the astronomical observations and plasma researches. Here, we have reported these results for the first time. Especially, the forbidden transitions between the fine structure 4p states may be considered for different atomic experiments of fundamental physics due to its optical transition line. Long lifetime has been observed for the first excited 3d$_{5/2}$ state and it can be used as potential metastable state for experimental physics. We have also highlighted different correlation effects arising through the MR-FSCCSD(T) method.

References
[1] Doerfert J, Trahert E and Wolf A 1996 Hyperfine Interact. 99 155
[2] Seaton M J 1954 Mon. Not. R. Astron. Soc. 114 154
[3] Seaton M J and Osterbrock D E 1957 Astrophys. J. 125 66
[4] Biemont E and Zeippen C J 1996 Comment. At. Mol. Phys. 33 29
[5] Burbidge G and Burbidge M 1967 Quasi-Stellar Objects (San Francisco, CA: Freeman)
[6] D'angelo N 1969 Sol. Phys. 7 321
[7] Cheng C-C, Doschek G A and Feldman U 1979 Astrophys. J. 227 1037
[8] Jaschek C and Jascheck M 1995 *The Behavior of Chemical Elements in Stars* (Cambridge: Cambridge University Press)

[9] Rogerson J B and Ewell N W 1985 *Astrophys. J. Suppl. Ser.* **58** 265

[10] Destombes J P, Shephard Thorn E P, Redding J H and Morzadec Kerfourn M T 1975 *Phil. Trans. R. Soc. Lond. A* **279** 243

[11] Ohtani B, Zhang S W, Nishimoto S I and Kagiya T 1992 *J. Chem. Soc. Faraday Trans.* **88** 1049

[12] Murakami S-Y, Kominami H, Kera Y, Ikeda S, Noguchi H, Uosaki K and Ohtani B 2007 *Res. Chem. Intermediates* **33** 285

[13] Ryabtsev A N, Churilov S S and Kononov É Ya 2005 *Opt. Spectrosc.* **98** (4) 519–27

[14] Schippers S et al 2004 *J. Phys. B: At. Mol. Opt. Phys.* **37** L209

[15] Kingston A E and Hibbert A 2006 *J. Phys. B: At. Mol. Opt. Phys.* **39** 2217

[16] Sahoo B K, Chaudhuri R K, Das B P and Mukherjee D 2006 *Phys. Rev. Lett.* **96** 163003

[17] Sahoo B K, Sur C, Beier T, Das B P, Chaudhuri R K and Mukherjee D 2007 *Phys. Rev. A* **75** 042504

[18] Eliav E, Kaldor U and Ishikawa Y 1995 *Phys. Rev. A* **51** 225

[19] Cizek J 1966 *J. Chem. Phys.* **45** 4256

Cizek J 1969 *Adv. Chem. Phys.* **14** 35

Paludus J, Cizek J and Shavitt I 1972 *Phys. Rev. A* **5** 50

[20] Lindgren I and Morrison J 1985 *Atomic Many-body Theory* vol 3, ed G E Lambropoulos and H Walther (Berlin: Springer)

[21] Lindgren I and Mukherjee D 1987 *Phys. Rep.* **151** 93

[22] Haque A and Mukherjee D 1984 *J. Chem. Phys.* **80** 5058

[23] Pal S, Ritthy B, Bartlett R J, Sinha D and Mukherjee D 1987 *Chem. Phys. Lett.* **137** 273

[24] Lindgren I 1978 *Int. J. Quantum Chem. Symp.* **12** 33

[25] Raghavachari K, Trucks G W, Pople J A and Head-Gordon M 1989 *Chem. Phys. Lett.* **157** 479

Urban M, Naga J, Cole S J and Bartlett R J 1985 *Chem. Phys. Lett.* **83** 4041

[26] Sahoo B K, Majumder S, Chaudhuri R K, Das B P and Mukherjee D 2004 *J. Phys. B: At. Mol. Opt. Phys.* **37** 3409

[27] Sahoo B K, Majumder S, Merlitz H, Chaudhuri R K, Das B P and Mukherjee D 2006 *J. Phys. B: At. Mol. Opt. Phys.* **39** 355

[28] Chaudhuri R K, Panda P K, Das B P, Mahapatra U S and Mukherjee D 2000 *J. Phys. B: At. Mol. Opt. Phys.* **33** 5129

[29] http://physics.nist.gov/Pubs/AtSpec/node17.html

[30] Thogersen J, Scheer M, Steele L D, Haugen H K and Wijesundera W P 1996 *Phys. Rev. Lett.* **76** 2870

[31] Majumder S, Sahoo B K, Chaudhuri R K, Das B P and Mukherjee D 2006 *Eur. Phys. J. D* e2006-00248-2