Addor, N., Do, H., Coxon, G., Alvarez-Garreton, C., Fowler, K., & Mendoza, P. (2019). Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges. *Hydrological Sciences Journal*. https://doi.org/10.1080/02626667.2019.1683182

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1080/02626667.2019.1683182

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Taylor and Francis at https://doi.org/10.1080/02626667.2019.1683182 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges

Nans Addor, Hong X. Do, Camila Alvarez-Garreton, Gemma Coxon, Keirnan Fowler & Pablo A. Mendoza

To cite this article: Nans Addor, Hong X. Do, Camila Alvarez-Garreton, Gemma Coxon, Keirnan Fowler & Pablo A. Mendoza (2019): Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrological Sciences Journal, DOI: 10.1080/02626667.2019.1683182

To link to this article: https://doi.org/10.1080/02626667.2019.1683182

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 03 Dec 2019.

Submit your article to this journal

Article views: 449

View related articles

View Crossmark data
Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges

Nans Addor, Hong X. Do, Camila Alvarez-Garreton, Gemma Coxon, Keirnan Fowler and Pablo A. Mendoza

ABSTRACT

Large-sample hydrology (LSH) relies on data from large sets (tens to thousands) of catchments to go beyond individual case studies and derive robust conclusions on hydrological processes and models. Numerous LSH datasets have recently been released, covering a wide range of regions and relying on increasingly diverse data sources to characterize catchment behaviour. These datasets offer novel opportunities, yet they are also limited by their lack of comparability, uncertainty estimates and characterization of human impacts. This article (i) underscores the key role of LSH datasets in hydrological studies, (ii) provides a review of currently available LSH datasets, (iii) highlights current limitations of LSH datasets and (iv) proposes guidelines and coordinated actions to overcome these limitations. These guidelines and actions aim to standardize and automatize the creation of LSH datasets worldwide, and to enhance the reproducibility and comparability of hydrological studies.

1 Introduction: from comparative hydrology to large-sample hydrology

Large-sample hydrology (LSH) makes use of datasets involving large sets of catchments to derive robust conclusions on hydrological processes and models. LSH finds its roots in the field of comparative hydrology (Kovács, 1984; Falkenmark and Chapman, 1989), whose foundations were set in the framework of the International Hydrological Programme, launched by UNESCO in 1975. The general motivation of comparative hydrology is to learn from hydrological similarities and differences between places around the world, and interpret these in terms of underlying climate-landscape-human controls (e.g. McMahon, 1982; Finlayson et al., 1986; Peel et al., 2001, 2004; Sivapalan, 2009; Troch et al., 2009; Thompson et al., 2011). At that time, a key objective was to facilitate transfer of knowledge between regions, and for instance, to determine to what extent available hydrological theories and models, which were derived mostly for temperate regions of Europe and North America, could be applied in other regions (Falkenmark and Chapman, 1989).

LSH follows similar objectives but puts a stronger emphasis on the need to establish robust principles by leveraging large sets of catchments, which led to the name “large-sample hydrology”. In this paper, we use the word “sample” more often than “set” as, in our view, the former better conveys the idea that the basins we work with are drawn from a wide range of hydrological conditions and should enable us to formulate conclusions about basins we have not sampled. Andréassian et al. (2006a) underscore that model intercomparisons should be based on a significant number of catchments to deliver robust conclusions that are not the result of chance. Similarly, Gupta et al. (2014) insist that general hydrological principles should be derived from statistically significant relationships, which are unobtainable with data from only a few catchments. This makes LSH a branch, rather than a replacement, of comparative hydrology, and thus several comparative hydrology investigations can also be classified as LSH research (e.g. Singh et al., 2014).

Alongside large-sample hydrology, large-scale hydrology has become established (e.g. Cloke and Hannah, 2011; Wood et al., 2011; Bierkens, 2015). These two fields are complementary, as they both provide generalizable knowledge on the terrestrial water cycle across a range of hydroclimatic conditions. A notable difference between them lies in the scale and spatial continuity of the area covered. A large sample of catchments can cover a vast area, but this area is made of separate catchments. In contrast, large-scale hydrology explores “spatial scales greater than a single river basin all the way up to the entire planet” to use the definition of Cloke and Hannah (2011). Further, while streamflow measurements are...
a cornerstone of catchment hydrology and LSH, at larger spatial scales, the focus is traditionally on other fluxes (e.g. evapotranspiration) and state variables (e.g. soil moisture). The gap between these two fields is however quickly reducing, with the development of gridded streamflow observations (Fekete et al. 2002, Gudmundsson and Seneviratne 2016, Ghiggi et al. 2019), ever larger domains covered by rainfall–runoff models (Beck et al. 2016), the ever finer resolution of large-scale models (Wood et al. 2011, Bierkens et al. 2015), assessments of the influence of catchment-scale processes on the performances of large-scale models (Kaufeld et al. 2016, Fang et al. 2017, Veldkamp et al. 2018, Zaherpour et al. 2018), and the inclusion of streamflow simulations from macroscale models in LSH investigations (Rakovec et al. 2016, Zink et al. 2017, Do et al. 2019).

In this paper, we focus on LSH and, more specifically, on datasets providing streamflow data for a large number of catchments. Such datasets form the foundation of a wide range of hydrological studies dedicated to catchment classification (e.g. Sawicz et al. 2011, Kuentz et al. 2017, Knoben et al. 2018), extreme events (e.g. Mallakpour and Villarini 2019), catchments. Such datasets form the foundation of a wide range of hydrological studies dedicated to catchment classification (e.g. Sawicz et al. 2011, Kuentz et al. 2017, Knoben et al. 2018), extreme events (e.g. Mallakpour and Villarini 2019), and the inclusion of streamflow simulations from macroscale models in LSH investigations (Rakovec et al. 2016, Zink et al. 2017, Do et al. 2019).

In this section, we review LSH datasets currently available, and focus on LSH datasets fulfilling two criteria, referred to below as “minimum requirements”: (a) the dataset must contain streamflow observations and (b) basic identifiers for each stream-gauge (i.e. name, catchment area, gauge coordinates) must be included. We did not set a specific number of catchments to define a sample as “large”, as the needs of each study are unique. For instance, tens of carefully selected catchments can enable insightful regional comparisons (e.g. Bennett et al. 2018, Burn and Whitfield 2018, Fowler et al. 2018), while one may argue that thousands of catchments are needed for global scale investigations (e.g. van Dijk et al. 2013, Beck et al. 2015, Do et al. 2017, Gudmundsson et al. 2019). In addition, this paper focuses on datasets available in digital form with relative ease of access. It does not cover individual national water archives, the classical data source resulting from national-scale streamflow monitoring, as some of them are only maintained in paper form or subject to strict data-distribution policies. However, these national archives form the basis of the LSH datasets described below.

2 Recent progress in the development of LSH datasets

The nature of the data covered by LSH datasets varies significantly from one dataset to the next. To facilitate the navigation and selection of LSH datasets by potential users, we classify these data into three categories: (i) streamflow observations, (ii) hydrometeorological time series and (iii) landscape and hydroclimatic attributes (Table 1).

Streamflow observations is a category on its own, since we make their availability a minimum requirement for the dataset to be considered here. Some LSH datasets complement streamflow observations with other hydrometeorological time series, such as precipitation and temperature. Further, variables characterizing the landscape of the catchments, for instance their land cover or soil, are included in some datasets. We note that the availability of hydrometeorological time series and catchment landscape attributes varies strongly among LSH datasets. The wealth of available spatial data (e.g. gridded meteorological observations or remotely sensed vegetation products) means that LSH datasets creators only select and process a subset of available datasets. As a result, different LSH datasets are best adapted to different research pursuits. For example, LSH datasets including atmospheric forcing time series for each catchment (Schaake et al. 2006, Newman et al. 2015a, Addor et al. 2017, Arsenault et al. 2016, Alvarez-Garreton et al. 2018) are well suited for hydrological modelling, whereas those
including catchment attributes representing human presence or irrigation (Do et al. 2018a, Gudmundsson et al. 2018a) are better adapted for detection and attribution studies.

In addition, some datasets provide metadata and uncertainty estimates. For example, catchment boundaries may be provided with quality flags, and time series may be subject to a homogeneity assessment to produce uncertainty estimates (Do et al. 2018a, Gudmundsson et al. 2018a). Some datasets derived meteorological time series using several data-products to reflect forcing uncertainty (Newman et al. 2015a, Alvarez-Garreton et al. 2018).

2.2 LSH datasets currently available

Table 2 provides an overview of eleven key LSH datasets. These datasets cover different parts of the world and include basins from a single country to the entire globe. The access to these datasets is unrestricted for scientific purposes. However, the licensing policies vary, with some datasets being fully available in the public domain, while others requiring data requests in written form.

At the global scale, the Global Runoff Data Base (GRDB) is arguably the main dataset used for streamflow investigations, including LSH studies. This database is maintained by the Global Runoff Data Centre (GRDC), which operates under the auspices of the World Meteorological Organization (WMO) since 1988 and holds records of daily and monthly streamflow across more than 9000 stations globally (GRDC, 2015). This global initiative is supported voluntarily by national authorities and thus, data contributions depend on the capacity of corresponding agencies. As a result, some countries are sparsely represented in GRDB, even though data of reasonable quality are available (e.g. most stations in Asia have not been updated since the 1990s; GRDC 2015). To facilitate access to streamflow data from stations across the world, the Global Streamflow Indices and Metadata (GSIM) archive was recently produced (Do et al. 2018a, Gudmundsson et al. 2018a). GSIM is an expansion of GRDB, which was produced by collating streamflow observations from 11 other publicly available databases (including three LSH datasets also described in Table 2) and publishing standardized metadata relevant to LSH research (Do et al. 2018b). To make hydrological information publicly available, even when raw data cannot be redistributed, GSIM contains time series of streamflow indices at different temporal resolutions (i.e. monthly/seasonal/yearly timestep) derived from raw daily records (Gudmundsson et al. 2018b).

At the continental scale, the European Water Archive (EWA) is one of the most comprehensive streamflow time-series archives with records of more than 3000 river gauging stations contributed by 29 European national hydrological services. The EWA is now hosted by GRDC and can be accessed under the GRDC data policy. However, EWA has not been updated since 2014 and no future updates are planned by GRDC. Since then, some national hydrological services have allowed GRDC to integrate EWA stations into GRDB, so records for these stations are now regularly updated through new releases of GRDB. EWA streamflow records were recently combined with GRDB stations and the European catchments from the Hydrological Predictions for the Environment (E-HYPE) model and

Table 1. Summary of the data potentially included in LSH datasets.
Streamflow observations and basic catchment identifiers
Minimum requirements defined in this paper
Daily or monthly streamflow records
Hydrometeorological time series
No minimum requirements
Landscape and hydroclimatic attributes
No minimum requirements
Table 2. Key LSH datasets currently available. Q: streamflow; P: precipitation; T: temperature; PET: potential evapotranspiration; SWE: snow water equivalent.

Name	No. of catchments	Location	Hydrometeorological time series	Basic catchment identifiers	Catchment attributes	Availability	DOI or URL	Reference or provider
Global Streamflow Indices and Metadata Archive (GSIM)	35 002	Global	Monthly, seasonal and annual streamflow indices	Name, gauge coordinates, catchment area and boundary	Topography, land cover, geology, irrigation, human population, soil	Freely available under Creative Commons Attribution-ShareAlike 3.0 Unported license	https://doi.org/10.1594/PANGAEA.887477	Do et al. (2018a); Gudmundsson et al. (2018a)
Global Runoff Data Base (GRDB)	9543	Global	Q	Name, gauge coordinates, catchment area	No catchment attributes available	Free and unrestricted (but identified) access. No redistribution of the data by the user.	https://www.bafg.de/GRDC/	GRDC
European Water Archive (EWA)	3731	Europe	Q	Name, gauge coordinates, catchment area	No catchment attributes available	Free and unrestricted (but identified) access. No redistribution of the data by the user.	http://www.bafg.de/GRDC/EN/04_spcltbs/42_EWA/ewa_node.html	GRDC
European catchments of Hydrological Predictions for the Environment model (E-HYPE)	35 215 catchments, 1366 river gauges	Europe	Q	Name, gauge coordinates, catchment area and boundary	Topography, climatic indices, hydrological signatures, land cover, geology, soil	Freely available under Creative Commons Attribution Share Alike 4.0 International license	https://doi.org/10.5281/zenodo.581428	Kuentz et al. (2017)
M0del Parameter Estimation Experiment (MOPEX)	438	US	P, T, Q	Name, gauge coordinates, catchment area and boundary	Topography, climatic indices, land cover, soil	Freely available	http://www.nws.noaa.gov/oh/mopex/	Schaake et al. (2006)
CANadian m0del Parameter Experiment (CANOPEX)	698	Canada	P, T, Q	Name, gauge coordinates, catchment area and boundary	No catchment attribute available	Freely available for non-commercial applications	http://canopex.etsmtl.net	Asenault et al. (2016)
Catchment Attributes and Meteorology for Large-sample Studies (CAMELS)	671	US	P, T, Q, PET	Name, gauge coordinates, catchment area and boundary	Topography, climatic indices, hydrological signatures, land cover, geology, soil	Freely available under Creative Commons Attribution 4.0 International license	https://doi.org/10.5065/D6MW2F4D	Newman et al. (2015a); Addor et al. (2017)
Catchment Attributes and Meteorology for Large-sample Studies – Chile (CAMELS-CL)	516	Chile	P, T, Q, PET, SWE	Name, gauge coordinates, catchment area and boundary	Topography, climatic indices, hydrological signatures, land cover, geology, water use	Freely available under Creative Commons Attribution 4.0 International license	https://doi.org/10.1594/PANGAEA.894885	Alvarez-Garreton et al. (2018)

(Continued)
Name	No. of catchments	Location	Hydrometeorological time series	Basic catchment identifiers	Catchment attributes	Availability	DOI or URL	Reference or provider
Regional hydrometeorological data network for the pan-Arctic Region	139	Russia (streamflow data from other pan-Arctic regions available as monthly means)	Q	Name, gauge coordinates, catchment area	No catchment attributes available	Freely available	http://www.r-arcticnet.sr.unh.edu/v4.0/index.html	The State Hydrological Institute, Russia
China Hydrology Data Project (CHDP)	163	China	Q	Name, gauge coordinates, catchment area	No catchment attributes available	Available upon request to Amanda Henck Schmidt	http://www2.oberlin.edu/faculty/aschmidt/chdp/index.html	Henck et al. (2010); Schmidt et al. (2011)
GEWEX Asian Monsoon Experiment – Tropics project (GAME)	129	Thailand	Q	Name, gauge coordinates, catchment area	No catchment attributes available	Freely available	http://hydro.iis.u-tokyo.ac.jp/GAME-T/GAIN-T/routine/id-river/index.html	University of Tokyo, Japan
used to improve the characterization and understanding of hydrologic variability across Europe through catchment classification (Kuentz et al. 2017).

Another long-standing LSH dataset is the data archive of the Model Parameter Estimation Experiment project (MOPEX; Duan et al. 2006), which includes data for 438 catchments across the USA. In addition to hydrometeorological observations, MOPEX provides attributes for catchments representing different hydroclimatic conditions and was one of the main data sources underpinning the PUB decade (Andréassian et al. 2006b). However, MOPEX hydrometeorological time series stop in 2003 and MOPEX is no longer updated.

At the national scale, several datasets have been developed with an approach similar to MOPEX. The Catchment Attributes and MEteorology for Large-sample Studies dataset (CAMELS; Newman et al. 2015a, Addor et al. 2017) uses recent datasets to provide up-to-date hydrometeorological variables and a variety of landscape attributes for 671 catchments across the contiguous United States. CAMELS also includes detailed descriptions of the methods used to derive catchment attributes and a discussion of several of data-source caveats. A similar approach was used to produce the CAMELS-Chile dataset (CAMELS-CL; Alvarez-Garreton et al. 2018), which provides an overview of regional variations in hydroclimatic conditions over Chile and an assessment of human interventions to streamflow regime across 516 catchments. Meteorological and hydrologic data for 698 catchments in Canada are available through the CANOPEX database (Arsenault et al. 2016).

3 Limitations of current LSH datasets

To guide the development of future LSH datasets, in this section, we highlight four typical limitations of LSH datasets released so far (i) the lack of common standards impedes the comparison of basins from different datasets, (ii) the lack of uncertainty estimates prevents users from assessing data reliability, (iii) the extent of human interventions is rarely characterized, and (iv) data accessibility is still limited.

3.1 The lack of common standards impedes the comparison of basins from different datasets

Comparative hydrology is only possible if the data from different catchments are consistently processed, and thus can be compared. While the comparison of catchments from the same LSH dataset is usually straightforward, comparisons across LSH datasets is often challenging because different naming conventions, data sources and methods for calculating the same variables are used from one dataset to the next. This issue is part of the wider challenge of using common standards and protocols when producing and processing environmental data (e.g. Horsburgh et al. 2009, Ceola et al. 2015), and it critically limits our ability to combine and learn from several LSH datasets.

3.2 The lack of metadata and uncertainty estimates prevents users from assessing data reliability

When using data from many catchments, assessing data errors is key, as they can bias comparisons between catchments. Yet, there is still a clear lack of uncertainty estimates accompanying LSH datasets. Uncertainties in atmospheric forcings are receiving the most attention and are increasingly characterized by relying on several datasets (e.g. Newman et al. 2015a, Alvarez-Garreton et al. 2018). In contrast, uncertainties in catchment attributes (e.g. land cover, soil characteristics) are rarely quantified, or even acknowledged, in LSH datasets.

Streamflow uncertainty estimates and metadata on gauge information are also rarely available, although the limitations and uncertainties of streamflow time series are well known (e.g. McMillan et al. 2012). Streamflow metadata are often not available due to management practices of data providers (Hannah et al. 2011), the loss of metadata during data transfers from providers to international data archives or poor upkeep of this information (Gudmundsson et al. 2018a). Further, even when metadata are available, assessing streamflow uncertainties across large samples of catchments remains a challenge, as different methods are recommended for different gauge types (Kiang et al. 2018).

3.3 The extent of human interventions is rarely characterized

LSH datasets have historically focused on physical attributes, making use of the wealth of data currently available to characterize hydrological behaviour (Tables 1 and 2). In comparison, human interventions are still poorly characterized in LSH datasets, although human alterations have large impacts on the natural water cycle (e.g. Vörösmarty et al. 2000, Hanasaki et al. 2006). These impacts may be comparable to climate change effects at the regional scale (Ferguson and Maxwell 2012) and threaten sustainability at the global scale (Jaramillo and Destouni 2015). For example, increased reservoir storage not only affects runoff seasonality but also the frequency of low/high flow events observed at the catchment outlet (e.g. Wehren et al. 2010), and changes in land cover influence the distribution of streamflow, specifically baseflow volumes and flashiness of runoff (e.g. Vertessy 2000, Brown et al. 2005, Alvarez-Garreton et al. 2019). Consequently, providing information on such alterations is critical to assess the magnitude of human impacts on hydrological behaviour (e.g. Alvarez-Garreton et al. 2018) and to incorporate human interventions in hydrological models (e.g. Payan et al. 2008, Liu et al. 2017, Veldkamp et al. 2018), thus enhancing our ability to provide reliable hydrological simulations in an increasingly human impacted environment.

3.4 LSH datasets are rarely FAIR – findable, accessible, interoperable and reusable

To advance LSH, progress is needed to make LSH datasets more FAIR (Findable, Accessible, Interoperable and Reusable, see Wilkinson et al. 2016 and the Open Data Charter 2015). Currently, many digitized datasets are stored in local repositories or data portals are unknown to data users (not “Findable”). Data accessibility is still limited for many regions of the world (not “Accessible”) biasing LSH studies towards countries with greater accessibility. LSH datasets are hosted in different locations with a range of different upkeeping practices (not “Interoperable”). The license of many hydrometeorological records does not allow users to share data in their possession (not “Reusable”).
Disparities in the availability of streamflow records worldwide are a significant barrier to the development of global LHS datasets. Figure 1 shows the varying temporal coverage across the globe, with stations in North America and Europe generally having the longest records. Importantly, "white space" still dominates in many regions of the world, as also shown in other studies (e.g. Barbarossa et al. 2018). In some cases, this can be attributed to the lack of stations, in particular in extreme environments. However, in several regions data streamflow records do exist but they are not accessible because (i) data are not available in digitized form, (ii) digitized data are hosted in a local repository and data authorities do not have the resources to process data requests, (iii) data are not made available or are subject to payable fees, and (iv) the one-station-at-a-time downloading process (mouse and keyboard interactions required) hampers data retrieval for LSH studies.

4 Guidelines for the production of LSH datasets

To overcome the limitations outlined in Section 3, we propose six simple guidelines to support the creation of future LSH datasets (presented in this Section) and four coordinated actions (presented in Section 5). The limitations, guidelines and actions are summarized graphically in Fig. 2.

The six guidelines outlined here are simple to follow and will improve the value and usability of future datasets. We consider them as minimum requirements to be satisfied by new LSH datasets, and hence suggest that they are checked by both LSH dataset creators and by reviewers of papers introducing new LSH datasets.

4.1 Provide basic data for each basin

Streamflow observations remain the cornerstone of LSH, and thus new LSH datasets should make these records available. For streamflow records subject to strict redistribution data policy, releasing streamflow indices at different temporal resolutions is an alternative (e.g. Do et al. 2018a, Gudmundsson et al. 2018a). The metadata should at least include the name, unique identifier (ID), river and geographical coordinates of each stream-gauge, as well as the catchment area and elevation information. Providing a shapefile of the catchment boundary associated with each stream-gauge (see e.g. Lehner 2012) should also be prioritized, so that users can derive additional attributes or time series from global or regional data products. Using the same digital elevation data source for all the basins is recommended, HydroSHEDS (http://www.hydrosheds.org) and Viewfinder (http://viewfinderpanoramas.org) being popular choices at the global scale.

4.2 Follow established standards when naming variables

The observance of common standards, including the use of a controlled vocabulary, is essential to ensure the consistency and comparability of environmental datasets (e.g. Horsburgh et al. 2009, Vitolu et al. 2015; Moine et al. 2014). Consistent variable names across LSH datasets should be used to make new datasets easier to utilize by the community and to facilitate inter-dataset comparisons. This is in addition to metadata, which describe the methods and data sources used to compute each variable.

The activities of the Open Geospatial Consortium (OGC), a not for profit organization working on the development of open standards for the global geospatial community, are key to progress on this front. The OGC set of standards most relevant to LSH is WATER ML-2 (http://www.waterml2.org), as it is dedicated to hydro-meteorological observations and measurements. Similar conventions also exist for climate variables (e.g. Climate and Forecast Community Metadata Standard, http://cfconventions.org). These standards form the basis of variable naming, yet they only cover a fraction of all the variables relevant to LSH. Hence, our recommendation is to build on these standards, consider naming decisions made in other LSH datasets and improve them, with the goal to create a set of variable names that can be used across LSH datasets.
4.3 Use publicly available code for data processing

To improve transparency and reproducibility (Hutton et al. 2016), the code used for the creation of LSH datasets should be publicly available, either by using already-published code (e.g. packages, Greene and Thirumalai 2019) or making the code used available (e.g. on GitHub, Easterbrook 2014). Several packages and libraries already exist to compute key attributes (especially climate indices and hydrological signatures) in different programming languages (see https://github.com/ropensci/hydrology and Slater et al. 2019 for R). Given that hydrological signatures can be particularly sensitive to their formulation, as shown for instance by Stoelzle et al. (2013) for recession coefficients, using publicly available code is essential.

Ideally, the shared code should cover more than the computation of climatic indices and hydrological signatures. It should, for instance, also include scripts to create catchment-averages from gridded products, and algorithms performing quality assurance tests of streamflow data. The goal is to create a library of scripts to perform standards LSH dataset creation tasks (such as those just mentioned), thereby increasing transparency and comparability. For instance, the scripts used to produce many attributes of the CAMELS dataset (Addor et al. 2017) are publicly available (https://github.com/naddor/camels) and have been used to produce the CAMELS-CL dataset (Alvarez-Garreton et al. 2018).

4.4 Provide uncertainty estimates for time series and catchment attributes

To allow users to assess the reliability of a LSH dataset, its quality should be evaluated and provided as metadata alongside the dataset. Quality flags from data providers and simple numerical screening techniques can be used to develop quality assurance (QA) methods (see for example Gudmundsson et al. 2018a for flow QA procedures and Blenkinsop et al. 2017, Lewis et al. 2018 for rainfall QA procedures). This should be developed in cooperation with hydro-metric agencies who often employ QA procedures before the data is released. For streamflow observations, quality flags should be available for each gauge. Such information would help hydrologists to detect outlier basins and decide whether to include them in their analysis (e.g. Boldetti et al. 2010).

The uncertainty of data products used when producing a LSH dataset should be assessed. One opportunity for large sample hydrology is to construct multiple estimates of a given variable using different products or formulations. This is already evident in many of the LSH datasets highlighted in Section 2, Alvarez-Garreton et al. (2018) for example generated daily estimates of precipitation and potential evapotranspiration from multiple products, and is becoming more viable with the increasing availability of continental/global products (e.g. Beck et al. 2017).

4.5 Include descriptors of water administration systems

Water administration descriptors should be included in LSH datasets. Ideally, the following attributes should be provided at the most detailed spatial and temporal scales possible: (i) usage type (e.g. consumption, irrigation, hydropower, groundwater recharge, extraction), (ii) location, (iii) allocated volume, and (iv) timing. The first attribute indicates whether water returns to the rivers are expected, and hence should be completed by...
additional information for attributes (ii)-(iv). Other information used as a proxy for human water use – such as catchment population, percentage of urban and agricultural land use, and the presence of dams (http://globaldamwatch.org) – are also valuable, particularly in regions where water usage data are not available.

4.6 Assess and increase the dataset FAIRness

For new LSH datasets to be findable, they should be documented in open-access, peer-reviewed journals and indexed via a DOI within publication databases. Within-agency technical reports are not sufficient to ensure findability. To be accessible, datasets should be downloadable from the internet at no cost and provide the option to download the entire dataset at once (in addition to site-by-site download). To be interoperable, the meaning of the data should be unambiguous regardless of the context. To be reusable, datasets need a licence allowing users to use, share, and build upon the existing dataset, encouraging collaboration and extension of existing datasets. We recommend to data owners to assess and increase the FAIRness of their dataset by using this online tool by the Australian National Data Service and partners (https://www.and-nectar-rds.org.au/fair-tool, ANDS et al., 2017).

5 Outlook: grand challenges and priorities for LSH

In this section, we discuss tasks that go beyond what can be expected from an individual LSH study, and require coordinated efforts from the LSH community, and in some cases, the wider geoscience community. We deliberately kept their formulation general and not prescriptive to stimulate discussion in the community. These four challenges are ranked based on their spatial scale: from the challenges requiring a global strategy to those relying on efforts at the national and regional scale.

5.1 Facilitate the creation and increase the comparability of LSH datasets by moving their production to the cloud

We propose that the production of LSH data should be progressively moved to the cloud. Currently, LSH creators download different versions of various data products and process them using different scripts. As an alternative, the relevant datasets should be available in the cloud, together with scripts necessary to process them. Users would upload shapefiles of their catchments and the extraction of hydrometeorological time series and catchment attributes would happen online. This would (i) improve inter-dataset comparability as data products and scripts would be consistent across LSH datasets, (ii) facilitate the production of time series and attributes for new catchments, and (iii) enable the simultaneous update of LSH datasets, for instance when a data product becomes available or covers a longer period. Such a system, accessible and maintained by the community instead of a few individuals, would increase the perennial nature of LSH datasets, i.e. make them easier to produce and maintain in the mid- to long-term.

We acknowledge that, due to data use restrictions, issues related to ownership, and custodian policies of data providers, some data, such as streamflow data, cannot be uploaded to the cloud. However, metadata and data products derived from these data sets could be cloud-based. Further, there is a growing number of open, global datasets covering a variety of variables relevant for LSH, which can be processed online (see for instance data products involved in Rakovec et al. 2016, Addor et al. 2017, Beck et al. 2017, Nijzink et al. 2018). These datasets include terrestrial observations, remotely sensed information, and model-based data, such as reanalyses. Several of these data products, in particular remotely sensed data, are already available on cloud computing portals such as Google Earth Engine1 and Amazon Web Services.2 Alternatively, the data processing may be arranged on a non-commercial data-sharing platform, such as Hydroshare3 or Copernicus.4 Initiatives like Pangeo,5 which aims to facilitate the use of big data in geosciences, could accelerate the development of cloud-based LSH.

5.2 Coordinate the comparison of data sources to assess their uncertainties and value for hydrological research

The global datasets mentioned above would complement national information that LSH dataset developers have access to. As these global datasets are recent, their reliability and accuracy for different regions of the world is not well characterized yet (Addor et al. 2018). Using global datasets alongside better-established regional or national datasets would help to assess their value and limitations for hydrological research and applications. Similarly, the comparison of different data products (e.g. remotely sensed products) using a common cloud-based framework would highlight their differences and uncertainties. Finally, in addition to assessing uncertainties using the spread among products, several products now provide uncertainty estimates for their own data (e.g. Newman et al. 2015b, Hengl et al. 2017, Cornes et al. 2018, Chaney et al. 2019), and recent coordinated efforts provide guidance on how to conduct streamflow uncertainty assessments in diverse environments (e.g. Kiang et al. 2018). Together, these methods will enable us to better characterize uncertainties in LSH datasets.

5.3 Sustain efforts to characterize human impacts on water systems

The level of detail and diversity of geophysical datasets is increasing rapidly, but the characterization of human impacts is progressing much slower. Although it is difficult to access reliable and consistent water use data, there is an opportunity to use recently released global datasets, such as the Global Reservoir and Dam (GRanD) database (Lehner et al. 2011),

1https://developers.google.com/earth-engine/catalog/
2https://registry.opendata.aws.
3https://www.hydroshare.org.
4https://www.copernicus.eu/.
5www.pangeo.io.
global gridded water withdrawals (Huang et al. 2018) and land cover datasets to incorporate and classify the various types of water engineering infrastructure and human-induced land changes in LSH datasets. These attributes would help for an improved understanding of human impacts on hydrological catchment functioning over time.

Several authors have stressed the need to develop indices linking water resources and society (Wada et al. 2017), indicating a threshold value to characterize the degree of water scarcity (Falkenmark 1989), the Water Exploitation Index (De Roo et al. 2012), the Blue Water Sustainability Indicator (Wada and Bierkens 2014) and a human intervention degree index (Alvarez-Garreton et al. 2018). We argue that the inclusion of these and new human intervention indices should be established and standardized, such that meaningful comparisons of human alteration effects can be achieved across catchments globally.

5.4 Increase the accessibility of hydrological data

Large-sample hydrology is a great opportunity to make hydrological research more collaborative. This relies, in particular, on increasing the accessibility of hydrological data. We encourage users to share data that they have produced for basins of LSH datasets, such as new fluxes (e.g. evapotranspiration), new catchment attributes (e.g. land cover change) and also model related data (e.g. parameter sets, model simulations and hydrological projections driven by climate models).

As discussed above, there are currently many restrictions to data sharing because of data ownership issues. This concerns many data types important for the development of LSH, the most crucial being arguably streamflow. The accessibility of streamflow data varies strongly geographically (see Fig. 1). A concerted effort is needed by hydrologists and umbrella organizations (e.g. GRDC, IAHS, WMO) to lobby for the public release of currently inaccessible streamflow datasets (see also discussion in Gupta et al. 2014 and in Viglione et al., 2010). This is particularly urgent in regions with little streamflow data readily available, such as south-eastern Asia and central Africa. Technological issues mean that historic data may only be available in hard copy or an outdated format, and resources may be unavailable locally to transcribe or convert it. Thus, financial assistance as part of international collaboration could catalyse data sharing. Furthermore, the WMO has prepared a guide for the rescue of such data, and interested agencies are directed to WMO (2014) for guidance on good practice (see also Brönnimann et al. 2018). Clear articulation of local benefits should be outlined. For example, releasing data for inclusion in large-sample datasets ensures that the geographic region is examined by future studies adopting the dataset, yielding operationally significant insights into the regional hydrology at little cost to the nation or agency. This may partially offset the perception that releasing the data means the loss of a strategic asset.

Overall, there is a need to increase the accessibility and comparability of both observed and simulated hydrological time series. The website http://camels.cr2.cl (Alvarez-Garreton et al. 2018) provides an example of LSH data provision with a high degree of user interaction. We advocate for more hydrological simulations to be shared, in order to facilitate model comparison, benchmarking and improvement (e.g. Best et al. 2015, Newman et al. 2017, Kratzert et al. 2019). The platform Catch X (https://ewgis.org/catchx-global/) provides simulated runoff across 57,646 catchments using global-scale simulations available through the eartH2Observe project (Schellekens et al. 2017). This recently launched platform also includes other hydrometeorological variables (e.g. evapotranspiration, snowfall, temperature) and land cover information, and could potentially be one of the toolsets to further bridge the gap between LSH and large-scale hydrology.

6 Conclusions

Large-sample hydrology datasets have enabled progress in multiple fields of hydrological sciences, and they are supporting the emergence of novel approaches to better understand water dynamics, relying for instance on machine learning (Section 1). The content and spatial extent of LSH datasets has significantly expanded over the last decade, and the overview provided in Section 2 and Table 2 should help users to select the datasets corresponding best to their needs. Overall, as new mechanisms are implemented to acknowledge datasets in peer-reviewed studies, the recognition of the key role played by datasets in scientific advances is improving.

Yet, we argue here that to sustain the contribution of LSH datasets to hydrological sciences and to widen the scope of LSH studies, it is essential to better coordinate the production of LSH datasets worldwide (Fig. 2). Currently, their use and interpretation is hindered by their lack of comparability, uncertainty estimates and characterization of human impacts, as well as by the still limited access to hydrological data (Section 3). To overcome these limitations, we propose a list of simple actions that can be taken today when producing or updating a LSH dataset (Section 4). Following these guidelines will increase the overall value of LSH datasets for the community. We argue that to truly overcome the challenges LSH is facing, there is also a need for community-wide, longer-term efforts (Section 5). In particular, we propose to move the production of the LSH datasets to the cloud, in order to accelerate their standardization and facilitate their future management.

Following the guidelines and addressing the grand challenges outlined in this paper has the potential to enhance the transparency and reproducibility of hydrological studies, and to lead to better structured, less fragmented LSH datasets. These datasets are necessary to refine our understanding of hydrological processes and model realism, as they enable us to rigorously test hydrological hypotheses and models across a variety of environments (Andréassian et al. 2009). LSH datasets have become an essential community resource, they are more complete and diverse than ever, thanks to the contributions of hydrologists and institutions worldwide. Using common LSH datasets, we can increase the comparability of individual studies and, thereby, enhance our ability to learn from their combined results.

Acknowledgements

This study is a contribution to the Large-sample Hydrology working group of the Panta Rhei Research Initiative of the International Association of
Hydrological Sciences (IAHS). We thank Lukas Gudmundsson and the participants of the splinter meeting ‘Large-sample hydrology: facilitating the production and exchange of datasets worldwide’ at the EGU2018 General Assembly for their inputs. Comments from Wolfgang Grabs and an anonymous reviewer are gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

NA is supported by the Swiss National Science Foundation (fellowships P2ZZHP2_161963 and P400P2_180791). HXD acknowledges support from the Australia Awards Scholarship (ST000HKE6), the University of Adelaide D R Stranks Fellowship and the University of Michigan Research Fellowship (grant number U064474). CAG is funded by FONDECYT postdoctoral grant no. 3170428 and the Center for Climate and Resilience Research (CR2, CONICYT/FONDAP/15110009). GC is supported by NERC MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity (grant NE/L010399/1). KF acknowledges the support of the Bureau of Meteorology, Australia (TP705654) and the Australian Research Council (LP170100598). PAM acknowledges support from FONDECYT postdoctoral grant No. 3170079 and CONICYT-PIA Project AFB180004.

ORCID

Nans Addor http://orcid.org/0000-0002-6057-3930

References

Addor, N., et al., 2017. The CAMELS data set: catchment attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences, 21 (10), 5293–5313. doi:10.5194/hess-21-5293-2017
Addor, N., et al., 2018. A ranking of hydrological signatures based on their predictability in space. Water Resources Research, 54, 8792–8812. doi:10.1029/2018WR022606
Alvarez-Garretón, C., et al., 2018. The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies - Chile dataset. Hydrology and Earth System Sciences, 22 (11), 5817–5846. doi:10.5194/hess-22-5817-2018
Alvarez-Garretón, C., et al., 2019. The impacts of native forests and forest plantations on water supply in Chile. Forests, 10 (6), 473. doi:10.3390/ fl10060473
Andréassian, V., et al., 2006a. Introduction and synthesis: why should hydrologists work on a large number of basin data sets? Large sample basin experiments for hydrological model parameterization: results of the Model Parameter Experiment—MOPEX. Vol. 307. CEH Wallingford, UK: IAHS Publ, 1–5
Andréassian, V., et al., Eds., 2006b. Large sample basin experiments for hydrological model parameterization: results of the Model Parameter Experiment—MOPEX. Vol. 307. CEH Wallingford, UK: IAHS Publ, 348 + iv.
Andréassian, V., et al., 2009. HESS opinions "crash tests for a standardized evaluation of hydrological models". Hydrology and Earth System Sciences Discussions, 6, 3669–3685. doi:10.5194/hessd-6-3669-2009
Andréassian, V., et al., 2014. Seeking generality in the selection of parameter sets: impact on hydrological model efficiency. Water Resources Research, 50, 8356–8366. doi:10.1002/2013WR014761
Arsenault, R., et al., 2016. CANOPEX: A Canadian hydrometeorological watershed database. Hydrological Processes, 30, 2734–2736. doi:10.1002/hyp.10880
Australian National Data Service (ANDS), Research Data Services (RDS) and the National eResearch Collaboration Tools and Resources Project (NECTAR), 2017. FAIR self assessment tool. Available from: https://www.ands-nectar-rds.org.au/fair-tool (accessed 5 Nov 2019).

Barbarossa, V., et al., 2018. FLOIK, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Scientific Data, 5. doi:10.1038/sdata.2018.78
Beck, H.E., et al., 2016. Global-scale regionalization of hydrologic model parameters. Water Resources Research, 52 (5), 3599–3622. doi:10.1002/2015WR018247
Beck, H.E., et al., 2017. Global-scale evaluation of 23 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21, 6201–6217. doi:10.5194/hess-2017-508
Beck, H.E., de Roo, A., and van Dijk, A.I.J.M., 2015. Global maps of streamflow characteristics based on observations from several thousand catchments. Journal of Hydrometeorology, 16, 1478–1501. doi:10.1175/JHM-D-14-0155.1
Bennett, B., et al., 2018. An empirical investigation into the effect of antecedent precipitation on flood volume. Journal of Hydrology, 567, 435–445. doi:10.1016/j.jhydrol.2018.10.025
Berghuijs, W.R., et al., 2017. Recent changes in extreme floods across multiple continents. Environmental Research Letters, 12 (11), 22–25. doi:10.1088/1748-9326/aa8847
Best, M.J., et al., 2015. The plumbing of land surface models: benchmarking model performance. Journal of Hydrometeorology, 16, 1425–1442. doi:10.1175/JHM-D-14-0158.1
Bierkens, M.F.P., 2015. Global hydrology: state, trends, and directions. Water Resources Research, 51 (7), 4932–4947. doi:10.1002/2015WR017173
Bierkens, M.F.P., et al., 2015. Hyper-resolution global hydrological modelling: what is next? Hydrological Processes, 29, 310–320. doi:10.1002/hip.10391
Blenkingsop, S., et al., 2017. Quality control of an hourly rainfall dataset and climatology of extremes for the UK. International Journal of Climatology, 37 (2), 722–740. doi:10.1002/joc.4735
Blöschl, G., et al., 2017. Changing climate shifts timing of European floods. Science, 357 (6351), 588–590. doi:10.1126/science.aan2506
Bolldetti, G., et al., 2010. Data-set cleansing practices and hydrological regionalization: is there any valuable information among outliers? Hydrological Sciences Journal, 55 (6), 941–951. doi:10.1080/02626667.2010.505171
Brönnimann, S., et al., 2018. A roadmap to climate data rescue services. Geoscience Data, 5 (1), 28–39. doi:10.1002/gdi.3.56
Brown, A.E., et al., 2005. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310 (1–4), 28–61. doi:10.1016/j.jhydrol.2004.12.010
Burn, D.H. and Whitfield, P.H., 2018. Changes in flood events inferred from centennial length streamflow data records. Advances in Water Resources, 121, 333–349. doi:10.1016/j.adwres.2018.08.017
Ceola, S., et al., 2015. Virtual laboratories: new opportunities for collaborative water science. Hydrology and Earth System Sciences, 19 (4), 2101–2117. doi:10.5194/hess-19-2101-2015
Chaney, N.W., et al., 2019. POLARIS soil properties: 30-meter probabilistic maps of soil properties over the contiguous United States. Water Resources Research, 2018WR022797. doi:10.1029/2018WR022797
Cloke, H.L. and Hannah, D.M., 2011. Large-scale hydrology: advances in understanding processes, dynamics and models from beyond river basin to global scale. Hydrological Processes, 25 (7), 991–995. doi:10.1002/hyp.v25.7
Cornes, R.C., et al., 2018. An ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research Atmospheres, 123 (17), 9391–9409. doi:10.1002/2017JD028200
Coron, L., et al., 2012. Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water Resources Research, 48, W05552. doi:10.1029/2011WR011721
Coxon, G., et al., 2013. Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24 UK catchments. Hydrological Processes, 28 (25), 6135–6150. doi:10.1002/hyp.10096
Coxon, G., et al., 2015. A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resources Research, 51 (7), 5531–5546. doi:10.1002/wrcr.v51.7
De Roo, A., et al., 2012. A multi-criteria optimisation of scenarios for the protection of water resources in Europe. Italy, IRC Scientific and Policy Report, JRC:75919, ISSN: 1831-9424, EC-JRC-IES. doi:10.1094/PDIS-11-11-0999-PDN
Do, H.X., et al., 2018a. The Global Streamflow Indices and Metadat...
Wada, Y. and Bierkens, M.F., 2014. Sustainability of global water use: past reconstruction and future projections. *Environmental Research Letters*, 9 (10), 104003. doi:10.1088/1748-9326/9/10/104003

Wehren, B., Schädler, B., and Weingartner, R., 2010. Human interventions. In: U. Bundi, et al., ed. *Alpine waters, the handbook of environmental chemistry*. Vol. 6. Heidelberg: Springer Verlag, 71–92.

Wilkinson, M.D., et al., 2016. The FAIR guiding principles for scientific data management and stewardship. *Scientific Data*, 3, 160018. doi:10.1038/sdata.2016.18

Wood, E.F., et al., 2011. Hyperresolution global land surface modeling: meeting a grand challenge for monitoring earth’s terrestrial water. *Water Resources Research*, 47 (5), W05301. doi:10.1029/2010WR010090

World Meteorological Organization (WMO), 2014. Guidelines for hydrological data rescue. ISBN 978-92-63-11146-3. Switzerland: Geneva 2, WMO-No. 1146. Available online: http://www.wmo.int/pages/prog/hwrp/publications/guidelines_hydrological_DR/wmo_1146_en.pdf

Zaherpour, J., et al., 2018. Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts. *Environmental Research Letters*, 13 (6), 065015. doi:10.1088/1748-9326/aac547

Zhang, L., et al., 2017. Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations. *Hydrology and Earth System Sciences*, 21, 821–837. doi:10.5194/hess-21-821-2017

Zhao, F., et al., 2017. The critical role of the routing scheme in simulating peak river discharge in global hydrological models. *Environmental Research Letters*, 12 (7). doi:10.1088/1748-9326/aa7250

Zink, M., et al., 2017. A high-resolution dataset of water fluxes and states for Germany accounting for parametric uncertainty. *Hydrology and Earth System Sciences*, 21, 1769–1790. doi:10.5194/hess-21-1769-2017