Evidence That the Histone Methyltransferase Dot1 Mediates Global Genomic Repair by Methyllating Histone H3 on Lysine 79*

Received for publication, March 21, 2011, and in revised form, March 29, 2011 Published, JBC Papers in Press, April 1, 2011, DOI 10.1074/jbc.M111.241570

Danielle Tatum and Shisheng Li

From the Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803

Global genomic repair (GGR) and transcription coupled repair (TCR) are two pathways of nucleotide excision repair (NER) that differ in the damage recognition step. How NER factors, especially GGR factors, access DNA damage in the chromatin of eukaryotic cells has been poorly understood. Dot1, a histone methyltransferase required for methylation of histone H3 lysine 79 (H3K79), has been shown to confer yeast cells with resistance to DNA-damaging agents and play a role in activation of DNA damage checkpoints. Here, we show that Dot1 and H3K79 methylation are required for GGR in both nucleosomal core regions and internucleosomal linker DNA, but play no role in TCR. H3K79 trimethylation contributes to but is not absolutely required for GGR, and lower levels of H3K79 methylation (mono- and dimethylation) also promote GGR. Our results also indicate that the roles of Dot1 and H3K79 methylation in GGR are not achieved by either activating DNA damage checkpoints or regulating the expression of the GGR-specific factor Rad16. Rather, the methylated H3K79 may serve as a docking site for the GGR machinery on the chromatin. Our studies identified a novel GGR-specific NER factor and unveiled the critical link between a covalent histone modification and GGR.

Nucleotide excision repair (NER) is a highly conserved DNA repair mechanism that removes a wide variety of bulky, helix-distorting lesions that generally obstruct transcription and replication, such as UV-induced cyclobutane pyrimidine dimers (CPDs) (1). Transcription-coupled repair (TCR) is a specialized NER pathway that is dedicated to rapid repair in the transcribed strand (TS) of active genes and is believed to be initiated by an RNA polymerase stalled at a lesion in the TS (2). The genome-wide NER, which includes repair in the nontranscribed strand (NTS) of actively transcribed genes, is termed global genomic repair (GGR) to be distinguished from TCR. The two NER pathways share most of the common repair factors and differ only in the damage recognition step (1).

In the budding yeast Saccharomyces cerevisiae, Rad7, Rad16, and Elc1 are specifically required for GGR (3, 4). The exact roles of these proteins in GGR are not yet clear. The Rad7-Rad16 complex may act as an ATP-dependent motor that translocates along the DNA in search of damage, and upon encountering a lesion, the complex is stalled, which may remodel and open damaged chromatin, thereby facilitating recruitment of other NER factors (5). Elc1 has been shown to be a component of a ubiquitin ligase that contains Rad7 and Rad16 (6). It has also been suggested that Elc1 is a component of another ubiquitin ligase complex, which contains Ela1, Cul3, and Roc1 but not Rad7 and Rad16 (7). The role of Elc1 in GGR does not seem to be subsidiary to that of Rad7 and Rad16 (3).

The molecular basis of chromatin dynamics during NER in eukaryotic cells is still not well understood (8, 9). The basic repeating component of chromatin is the nucleosome, which comprises 146 bp of DNA wrapped around an octomer of the four core histone proteins H2A, H2B, H3, and H4 (10). Histones are subject to a multitude of post-translational modifications, including acetylation, methylation, phosphorylation, sumoylation, and ubiquitination (11). Some of these modifications may modulate the NER process (8, 9). However, the effects of histone modifications on NER in living cells documented so far are generally quite modest and are most likely due to the alteration of chromatin compaction and/or stability. It has been unknown whether the NER, especially GGR, machinery relies on a specific histone modification to gain access to a lesion in the chromatin.

Dot1 is a histone methyltransferase required for methylation of histone H3 lysine 79 (H3K79) (12). dot1 mutants are sensitive to UV light (13) and have a defect in activation of DNA damage checkpoints (14). In this paper, we present evidence that Dot1, by methylating H3K79, plays a pivotal role in GGR but is entirely dispensable for TCR. Our studies identified a novel GGR-specific NER factor and unveiled the critical link between a covalent histone modification and GGR.

EXPERIMENTAL PROCEDURES

Yeast Strains and Plasmids—Wild-type yeast strains used were Y452 (MATα ura3-3·52 his3-1 leu2-3·112) and BY4741 (MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0). bre1Δ cells (MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 bre1::kan) were from Open Biosystems. Cells expressing mutant H3K79A and H2BK123A and their isogenic wild-type strains YBL574 and FY406 (15) were kindly provided by Dr. Ali Shilatifard (Stowers Institute for Medical Research). DOT1 and RAD16 deletions were created using procedures described previously (16).

* This work was supported by National Science Foundation Grant MCB-0745229.

1 To whom correspondence should be addressed. Tel.: 225-578-9102; Fax: 225-578-9895; E-mail: shli@vetmed.lsu.edu.

2 The abbreviations used are: NER, nucleotide excision repair; CPD, cyclobutane pyrimidine dimer; GGR, global genomic repair; H2BK123, histone H2B lysine 123; H3K79, histone H3 lysine 79; NTS, nontranscribed strand; TCR, transcription-coupled repair; TS, transcribed strand.
pGAL-RAD16, a plasmid encoding 3×myc-tagged Rad16 under the control of the GAL1 promoter, was created using vector pESC-URA (Stratagene). Two consecutive myc tag sequences were inserted in-frame downstream of the native single myc sequence of the vector. The RAD16 gene coding sequence was inserted in-frame upstream of the 3×myc sequences. The plasmid can complement the deletion of the genomic RAD16 gene for GGR, indicating that the plasmid-encoded Rad16 is functional.

UV Irradiation, Repair Incubation, and Genomic DNA Isolation—Yeast cells were grown at 30 °C in minimal medium containing 2% glucose or 2% galactose (to induce the gene of the control of the GAL1 promoter) to late log phase (A 400 \approx 1.0), washed twice with ice-cold water, resuspended in ice-cold 2% glucose (for glucose cultures) or 2% galactose (for galactose cultures), and irradiated with 80 J/m² of 254-nm UV light. One-tenth volume of a stock solution containing 10% yeast extract and 20% peptone was added to the irradiated cell suspension. The cells were incubated at 30 °C in the dark to allow them to repair their DNA, and aliquots were collected at different time points. Genomic DNA was isolated from the cells as described previously (16).

NER Analysis of UV-induced CPDs at Nucleotide Resolution—To measure the induction and repair of CPDs at individual sites in each strand of the RPB2 gene, we used the method that allows for strand-specific “fishing out” and labeling of a DNA fragment of interest (17–19). Briefly, \sim 1 \mu g of each of the total genomic DNA samples was digested with Dral to release the RPB2 gene fragment of 1144 bp, which bears the 197-bp sequence upstream and the 947-bp sequence downstream of the transcription start site of the gene. The CPDs induced (in samples of 0-h repair) or remaining (in samples of different times of repair incubation) were converted to single-strand breaks by treatment with an excess amount of T4 endonuclease V, which specifically cleaves the DNA at CPD sites (20). Two biotinylated oligonucleotides were then used to specifically fish out and label the TS and NTS of the RPB2 gene fragment, respectively. One pmol of one of the oligonucleotides was mixed with each of the samples. The mixtures were heated at 95 °C for 5 min to denature the DNA and then cooled to an annealing temperature of approximately 50 °C, to hybridize one strand of the RPB2 fragment to the respective biotinylated oligonucleotide. One hundred \mu g of streptavidin magnetic beads (Dynabeads M-280 Streptavidin; Invitrogen) was added to each of the mixtures to capture the strand of the RPB2 fragment hybridized to the biotinylated oligonucleotide. The other unwanted genomic DNA fragments were washed away by incubating the beads in TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) at the annealing temperature (50 °C). The fragments captured on the magnetic beads were 3’ end-labeled with [α-32P]dATP and Sequenase Version 2 (US Biochemicals). The labeled fragments were eluted from the magnetic beads with a DNA sequencing gel loading buffer at 50 °C and resolved on sequencing gels. The gels were dried and exposed to a PhosphorImager screen (Bio-Rad). The signal intensities at gel bands corresponding to CPD sites were quantified by using Quantity One software (Bio-Rad). The percent CPDs remaining at individual sites after different times of repair incubation were calculated, and the times required for repairing 50% of CPDs (t 1/2) were obtained by either linear or second-order polynomial regression.

RESULTS

Dot1 Is Required for GGR—It has been established that NER rates in the NTS of an active gene reflect GGR (1). In theory, NER in either strand of an absolutely repressed gene may also reflect GGR. However, “noise” transcription commonly occurs in both strands of supposedly repressed genes in eukaryotic cells (21). The noise transcription cannot be detected by traditional ways but may be able to initiate a certain level of TCR, which can be confused with GGR (22). Active transcription from the TS of a gene may prevent noise transcription from the NTS. Therefore, NER in the NTS of an actively transcribed gene may reflect GGR better than that in either strand of a repressed gene. Our previous studies have shown that NER in the NTS of the constitutively transcribed RPB2 gene is absolutely dependent on the GGR-specific factors Rad7, Rad16, and Elc1, and therefore appears to exclusively reflect GGR (3, 22).

To determine the role of Dot1 in GGR, we measured repair of UV-induced CPDs in the NTS of the RPB2 gene in wild-type and dot1Δ cells. A nucleotide resolution method that uses streptavidin magnetic beads and biotinylated oligonucleotides to facilitate isolation and strand-specific end-labeling of DNA fragments of interest was used for the measurement (17–19). The yeast cells were cultured to late log phase, UV-irradiated, and incubated in a repair medium for various lengths of time. Total genomic DNA was isolated, digested with a restriction enzyme to release the RPB2 fragment, and incised at the UV-induced CPDs with an excess amount of T4 endonuclease V (20). The NTS of the restricted RPB2 gene fragment was fished out, radioactively labeled at the 3’ end, and resolved on a DNA sequencing gel. The band intensities in the gel lane of 0 time repair indicate the yields of CPDs at these sites, and a decrease in band intensities at respective sites indicates repair of the damage (Fig. 1).

In wild-type cells, CPDs were repaired at different rates at different sites in the NTS of the RPB2 gene (Figs. 1A and 2). The repair rates correlated generally well with nucleosome positioning, being slowest in the central regions of nucleosomal core DNA and fastest in the internucleosomal linker regions (Figs. 1A and 2). This indicates that a nucleosome structure inhibits GGR, in agreement with previous reports (e.g. Refs. 23, 24). In dot1Δ cells, no obvious repair can be seen in the same sequence in the period of 4 h (Figs. 1B and 2), indicating that Dot1 plays an important role in GGR throughout the NTS, including the internucleosomal linker regions. A longer time of repair incubation was not carried out because (i) most NER events in the yeast occur in the initial hours of repair incubation, and (ii) significant cell growth may occur after 4 h of repair incubation, which may obscure the fraction of repaired DNA in the samples.

Methylation of H3K79 Is Also Required for GGR—Dot1 has been shown to be required for methylation of H3K79 (12). To determine whether the role of Dot1 in GGR is accomplished by methylating H3K79, we measured GGR in cells whose genomic histone H3 genes (HHT1 and HHT2) were deleted and complemented with a plasmid encoding the K79A mutant histone H3.
Like dot1Δ cells, the H3K79A mutant cells showed no repair in any sites of the NTS of the RPB2 gene (Figs. 1C and 2), indicating that Dot1 may mediate GGR by methylating H3K79.

Bre1 and Histone H2B Lysine 123 (H2BK123) Ubiquitination Are Partially Required for GGR—Dot1 catalyzes mono-, di-, and trimethylation of H3K79 (12). Monoubiquitination of H2BK123, which is catalyzed by the ubiquitin E3 ligase Bre1, has been shown to be partially required for dimethylation and absolutely required for trimethylation but is dispensable for monomethylation of H3K79 (25, 26). To determine whether the methylation states of H3K79 affect GGR, we analyzed bre1Δ cells and those whose genomic histone H2B genes (HTB1 and HTB2) were deleted and complemented with a plasmid encoding the K123A mutant histone H2B (H2BK123A) (15). As can be seen in Figs. 3, A and B, and 4, GGR was still apparent but significantly compromised in these mutant cells. These results indicate that (i) trimethylation of H3K79 may contribute to but is not absolutely required for GGR, and (ii) lower levels of methylation (mono- and dimethylation) at the lysine 79 also promote GGR.

Overexpression of Rad16 Does Not Restore GGR in Cells Expressing H3K79A or H2BK123A Mutant Histones—Loss of Dot1 or H3K79 methylation has been shown to have no or only a very minor effect on genome-wide transcription levels (27). Also, histone H3 K4R and K79R mutations (H3K4R/K79R), which prevent methylation at both lysine 4 and 79, do not affect expression of all NER genes tested (28). However, there was a 50% decrease in the RAD16 mRNA in the H3K4R/K79R mutant cells after UV irradiation compared with ~2-fold increase in wild-type cells (28). To address the possibility that the deficient
GGR we observed was due to lower levels of Rad16, we transformed H3K79A and H2BK123A cells with a plasmid bearing the RAD16 gene (pGAL-RAD16) tagged with 3' myc under the control of the GAL1 promoter. Upon galactose induction, the Rad16 protein was overexpressed more than 10-fold. However, the overexpression did not affect GGR (Figs. 3 and 4), indicating that the effects of H3K79 methylation and H2BK123 ubiquitination on GGR are not caused by lower levels of Rad16.

Dot1 and H3K79 Methylation Do Not Play Significant Roles in TCR—To determine whether Dot1 and H3K79 methylation also play roles in TCR, we measured repair of CPDs in the TS of the RPB2 gene in rad16Δ cells lacking Dot1 or expressing the H3K79A mutant. The reason for using rad16Δ cells is that these cells are deficient in GGR (4), so that TCR can be unambiguously determined. Following restriction digestion to release the RPB2 fragment and incision at the CPDs with T4 endonuclease V, the TS of the RPB2 gene fragment was fished out, radioactively labeled at the 3' end, and resolved on a DNA-sequencing gel. As can be seen in Figs. 5 and 6, rapid TCR, which initiates ~40 nucleotides upstream of the transcription start site of the RPB2 gene, occurred in rad16Δ, rad16Δ dot1Δ and rad16Δ H3K79A cells, indicating that Dot1 and H3K79 methylation do not play a significant role in TCR. In agreement with previous reports (e.g. Refs 23, 24), TCR in these cells was not significantly modulated by nucleosome positioning (Fig. 5).

DISCUSSION

In this paper, we present evidence that Dot1 and H3K79 methylation are required for GGR but dispensable for TCR. Dot1 and H3K79 methylation have been shown to be required for important aspects of DNA damage checkpoint activation (14). The roles of Dot1 and H3K79 methylation in GGR are unlikely to be achieved indirectly by activating the DNA damage checkpoint. First, dot1Δ strains largely share the checkpoint defects of bre1Δ strains, implying that the checkpoint role of Bre1 (through monoubiquitination of H2BK123) is mostly manifested through its ability to permit di- and trimethylation of H3K79, although deleting SET1 (and thus blocking histone H3K4 methylation) as well as DOT1 is required to replicate the full checkpoint defect of bre1Δ strains (14). However, although compromised, GGR is still apparent in bre1Δ and H2BK123A mutant cells, indicating that di- and trimethylation of H3K79 contributes to but is not absolutely required for GGR. Second,
cells lacking MEC1, which plays the most important role in the checkpoint activation in the yeast (29), have little defect in GGR (data not shown). However, introduction of mutations to mec1Δ cells that disrupt H2BK123 ubiquitination or H3K79 methylation significantly decrease or abolish GGR, respectively (not shown), indicating that the histone modifications play much more important roles in GGR than the checkpoint activation.

Although chromatin structures can restrict the NER machinery from accessing sites of DNA damage, limited pieces of evidence have emerged recently that chromatin metabolism may also play an active role in the repair process (9). For example, acetylation of histone H3K9 and/or H3K14 by the acetyltransferase Gcn5 facilitates GGR (30, 31). Also, SWI/SNF, an ATP-dependent chromatin-remodeling complex, has been shown to be recruited to UV-damaged chromatin DNA (32). However, the effects of chromatin modifications/remodeling on NER in living cells documented so far are generally quite modest. In sharp contrast, H3K79 methylation by Dot1 appears to play a pivotal role in GGR. Lysine 79 of the two histone H3 molecules contained in a nucleosome are located at the top and bottom surfaces of the nucleosome disc and most likely regulate interactions with exogenous proteins (33). The lysine 79 with methyl moieties may serve as a docking site for the GGR machinery on the chromatin. In the absence of the methyl moieties, the GGR machinery may be excluded from the chromatin, including the vicinities of internucleosomal linker regions. Indeed, all GGR-specific factors identified so far, including Rad7, Rad16 (22, 34), Elc1 (3), and Dot1, are required not only for repair in nucleosome core regions but also in internucleosomal linker DNA.

Lesion processing by NER factors has been shown to be required for activation of the checkpoints in response to UV radiation (35). It is therefore reasonable to suggest that the roles of Dot1 and H3K79 methylation in the DNA damage checkpoint activation (14) may be indirectly achieved by their mediation of GGR. This explanation agrees with the observation that Dot1 and H3K79 methylation in the DNA damage checkpoint (mec1Δ) and unveiled a critical link between a histone modification (H3K79 methylation) and the GGR process. These findings may open up new avenues of research regarding the fascinating mechanisms of how chromatin is actively engaged in NER.

Acknowledgment—We thank Dr. Ali Shilatifard for supplying yeast strains expressing mutant H3K79A and H2BK123A.

REFERENCES

1. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., and Ellenberger, T. (2006) DNA Repair and Mutagenesis, 2nd Ed., pp. 227–315, American Society for Microbiology Press, Washington D. C.
2. Hanawalt, P. C., and Spivak, G. (2008) Nat. Rev. Mol. Cell Biol. 9, 958–970
3. Lejeune, D., Chen, X., Ruggiero, C., Berryhill, S., Ding, B., and Li, S. (2009) DNA Repair 8, 40–50
4. Verhage, R., Zeeman, A. M., de Groot, N., Gleig, F., Bang, D. D., van de Putte, P., and Brouwer, J. (1994) Mol. Cell. Biol. 14, 6135–6142
5. Guzder, S. N., Sung, P., Prakash, L., and Prakash, S. (1998) J. Biol. Chem. 273, 6292–6296
6. Gillette, T. G., Yu, S., Zhou, Z., Waters, R., Johnston, S. A., and Reed, S. H. (2006) EMBO J. 25, 2529–2538
7. Ribar, B., Prakash, L., and Prakash, S. (2007) Mol. Cell. Biol. 27, 3211–3216
8. Gong, F., Kwon, Y., and Smerdon, M. J. (2005) DNA Repair 4, 884–896
9. Waters, R., Teng, Y., Yu, Y., Yu, S., and Reed, S. H. (2009) DNA Repair 8, 146–152
10. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Nature 389, 251–260
11. Kouzardies, T. (2007) Cell 128, 693–705
12. van Leeuwen, F., Gafken, P. R., and Gottschling, D. E. (2002) Cell 109, 745–756
13. Bostelman, L. J., Keller, A. M., Albrecht, A. M., Arat, A., and Thompson, J. S. (2007) DNA Repair 6, 383–395
14. Giannattasio, M., Lazzaro, F., Plevani, P., and Muiz-Falconi, M. (2005) J. Biol. Chem. 280, 9879–9886
15. Nakayashi, S., Sanderson, B. W., Delventhal, K. M., Bradford, W. D., Staehling-Hampton, K., and Shilatifard, A. (2008) Nat. Struct. Mol. Biol. 15, 881–888
16. Li, S., and Smerdon, M. J. (2002) EMBO J. 21, 5921–5929
17. Li, S., and Waters, R. (1996) Carcinogenesis 17, 1549–1552
18. Li, S., and Waters, R. (1997) J. Mol. Biol. 271, 31–46
19. Li, S., Waters, R., and Smerdon, M. J. (2000) Methods 22, 170–179
20. Lloyd, R. S. (2005) Mutat. Res. 577, 77–91
21. Struhl, K. (2007) Nat. Struct. Mol. Biol. 14, 103–105
22. Li, S., Ding, B., Lejeune, D., Ruggiero, C., Chen, X., and Smerdon, M. J. (2007) DNA Repair 6, 1596–1606
23. Li, S., and Smerdon, M. J. (2004) J. Biol. Chem. 279, 14418–14426
24. Wellinger, R. E., and Thoma, F. (1997) EMBO J. 16, 5046–5056
25. Shabbazian, M. D., Zhang, K., and Grunstein, M. (2005) Mol. Cell 19, 271–277
26. Lévesque, N., Leung, G. P., Fok, A. K., Schmidt, T. I., and Kohor, M. S. (2010) J. Biol. Chem. 285, 35113–35122
27. Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R.,
Armour, C. D., Bennett, H. A., Coffey, E., Dai, H., He, Y. D., Kidd, M. J.,
King, A. M., Meyer, M. R., Slade, D., Lum, P. Y., Stepaniants, S. B., Shoe-
maker, D. D., Gachotte, D., Chakraburty, K., Simon, J., Bard, M., and
Friend, S. H. (2000) Cell 102, 109–126
28. Chaudhuri, S., Wyrick, J. J., and Smerdon, M. J. (2009) Nucleic Acids Res.
37, 1690–1700
29. Siede, W., Allen, J. B., Elledge, S. J., and Friedberg, E. C. (1996) J. Bacteriol.
178, 5841–5843
30. Teng, Y., Liu, H., Gill, H. W., Yu, Y., Waters, R., and Reed, S. H. (2008)
EMBO Rep. 9, 97–102
31. Yu, Y., Teng, Y., Liu, H., Reed, S. H., and Waters, R. (2005) Proc. Natl.
Acad. Sci. U.S.A. 102, 8650–8655
32. Gong, F., Fahy, D., and Smerdon, M. J. (2006) Nat. Struct. Mol. Biol. 13,
902–907
33. White, C. L., Suto, R. K., and Luger, K. (2001) EMBO J. 20, 5207–5218
34. Lettieri, T., Kraehenbuehl, R., Capiaghri, C., Livingstone-Zatchej, M., and
Thoma, F. (2008) DNA Repair 7, 734–743
35. Giannattasio, M., Lazzaro, F., Longhese, M. P., Plevani, P., and Muzi-
Falconi, M. (2004) EMBO J. 23, 429–438
36. Ng, H. H., Ciccone, D. N., Morshed, K. B., Oettinger, M. A., and Struhl, K.
(2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1820–1825
37. Pokholok, D. K., Harbison, C. T., Levine, S., Cole, M., Hannett, N. M., Lee,
T. I., Bell, G. W., Walker, K., Rolfe, P. A., Herboldsheimer, E., Zeitlinger, J.,
Lewitter, F., Gifford, D. K., and Young, R. A. (2005) Cell 122, 517–527
38. Rochette, P. J., and Brash, D. E. (2010) PLoS Genetics 6, e1000926
39. Capiaghri, C., Ho, T. V., and Thoma, F. (2004) Mol. Cell. Biol. 24,
6907–6918
40. Jiang, C., and Pugh, B. F. (2009) Genome Biol. 10, R109

Dot1 and H3K79 Methylation in Global Genomic Repair

MAY 20, 2011 • VOLUME 286 • NUMBER 20 • JOURNAL OF BIOLOGICAL CHEMISTRY 17535