Supporting Information

Understanding selectivity in CO\textsubscript{2} hydrogenation to methanol for MoP nanoparticle catalysts using in situ techniques

Melis S. Duyar*,1,2,3, Alessandro Gallo1,2, Samuel K. Regli4, Jonathan L. Snider1,2, Joseph Singh1,2, Eduardo Valle1,2, Joshua McEnaney1,2, Stacey F. Bent1,2, Magnus Rønning4, Thomas F. Jaramillo*1,2

1 SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
2 SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
3 Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
4 Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
*Corresponding authors: m.duyar@surrey.ac.uk, jaramillo@stanford.edu

Table of Contents:

Figure S1: C-H stretching region of the ex-situ IR spectra for supported MoP catalysts with the highest and lowest loading of MoP, showing the removal of ligands after hydrogen reduction treatment (450°C, 1hour)...3

Table S1: Curve-fit results for the EXAFS data for Mo K-edge: S02 was set to 0.72 for all samples as determined by the fit of MoP standards (0.72±0.07). The data ranges used in the fit are 3.0 ≤ k ≤ 12.5 Å-1 and 1.0 Å ≤ R ≤ 3.3 Å (b1.0 Å ≤ R ≤ 2.3 Å). a Set to the crystallographic values. c set value. Uncertainties in the last digit are shown in parentheses. ..3

Figure S2: XANES difference between crystalline MoP and as-prepared colloidal nanoparticles. ..4

Figure S3: First derivative of the XANES region of the Mo K-edge for different standards and as prepared Mo NPs at room temperature. ...4

Figure S4: comparison of the FT of EXAFS signal at Mo K-edge for silica supported and unsupported Mo NPs ..5

Table S2: Surface area (reported by manufacturer), Mo and P loadings determined via ICP and Mo/P ratios for amorphous MoP nanoparticles on various metal oxide supports........5

Figure S5: Conversion and methanol selectivity of MoP nanoparticle catalysts on various supports during CO\textsubscript{2} hydrogenation. Test conditions: CO\textsubscript{2} hydrogenation, 40 bar, 250°C, H\textsubscript{2}/CO\textsubscript{2}=3, Conversion=0.3-1.8%. Data shown were collected after 7 hours on stream.6

Table S3: Conversion and activity towards alcohols. Data shown collected after 7 hours on stream. ..6

Figure S6: X-ray Photoelectron Spectroscopy (XPS) of air exposed unsupported and zirconia supported MoP nanoparticles ...7
Figure S7: Activity of ZrO$_2$ support during CO$_2$ hydrogenation. Test conditions: CO$_2$ hydrogenation, 40 bar, 250°C, H$_2$/CO$_2$=3

Figure S8: TPSR-DRIFTS full spectrum for MoP/ZrO$_2$. Spectra were normalized to initial room temperature background taken under vacuum which is why the TOP ligands (see Figure S1) can be seen as negative peaks in the C-H stretching region (ligands were removed with the reduction treatment prior to TPSR) until higher temperatures when the formates begin to form and associated C-H stretching bands become dominant.

Figure S9: TPSR-DRIFTS full spectrum for ZrO$_2$

Figure S10: TPSR-DRIFTS C-H region
Figure S1: C-H stretching region of the ex-situ IR spectra for supported MoP catalysts with the highest and lowest loading of MoP, showing the removal of ligands after hydrogen reduction treatment (450°C, 1 hour)

Table S1: Curve-fit results for the EXAFS data for Mo K-edge: S02 was set to 0.72 for all samples as determined by the fit of MoP standards (0.72±0.07). The data ranges used in the fit are 3.0 ≤ k ≤ 12.5 Å⁻¹ and 1.0 Å ≤ R ≤ 3.3 Å (b1.0 Å ≤ R ≤ 2.3 Å). a Set to the crystallographic values. c set value. Uncertainties in the last digit are shown in parentheses.

Conditions	Path	N	R (Å)	σ² (Å²)	ΔE (eV)	R-factor
MoP std	Mo-P	6ª	2.449(7)	0.0022(9)	5.8(7)	0.02
	Mo-Mo	8ª	3.212(6)	0.0042(7)		
RT, Heᵇ	Mo-O	0.5(3)	1.95(5)	0.002²	4(1)	0.009
	Mo-P	5(1)	2.43(2)	0.013(2)		
450°C, H₂	Mo-P	5.3	2.440(8)	0.006(1)	5(1)	0.013
	Mo-Mo	3(1)	3.209(9)	0.007(2)		
700°C, H₂	Mo-P	5.4	2.440(8)	0.008(1)	5(1)	0.016
	Mo-Mo	4(1)	3.22(1)	0.008(2)		
Figure S2: XANES difference between crystalline MoP and as-prepared colloidal nanoparticles.

Figure S3: First derivative of the XANES region of the Mo K-edge for different standards and as prepared Mo NPs at room temperature.
Figure S4: comparison of the FT of EXAFS signal at Mo K-edge for silica supported and unsupported Mo NPs

Table S2: Surface area (reported by manufacturer), Mo and P loadings determined via ICP and Mo/P ratios for amorphous MoP nanoparticles on various metal oxide supports.

Catalyst	Surface area for support (m²/g)	Mo loading (wt%)	P loading (wt%)	Mo/P molar ratio
MoP/Al₂O₃	185	3.13%	0.79%	1.28
MoP/ZrO₂	103	0.05%	0.01%	1.99
MoP/SiO₂	15-45	1.61%	0.51%	1.01
MoP/TiO₂	35-65	0.75%	0.28%	0.86
MoP/CeO₂	30	1.83%	0.60%	0.98
MoP/ZnO	10.8	0.33%	0.29%	0.87
Figure S5: Conversion and methanol selectivity of MoP nanoparticle catalysts on various supports during CO₂ hydrogenation. Test conditions: CO₂ hydrogenation, 40 bar, 250°C, H₂/CO₂=3, Conversion=0.3-1.8%. Data shown were collected after 7 hours on stream.

Table S3: Conversion and activity towards alcohols. Data shown collected after 7 hours on stream.

Catalyst	Conversion	g C₁OH/h gcat
MoP/Al₂O₃	1.4%	9.0x10⁻²
MoP/ZrO₂	1.4%	3.4x10⁻²
MoP/SiO₂	0.8%	0.4x10⁻²
MoP/TiO₂	0.8%	0.2x10⁻²
MoP/CeO₂	1.8%	1.1x10⁻²
MoP/ZnO	0.3%	0.4x10⁻²
Figure S6: X-ray Photoelectron Spectroscopy (XPS) of air exposed unsupported and zirconia supported MoP nanoparticles

Figure S7: Activity of ZrO$_2$ support during CO$_2$ hydrogenation. Test conditions: CO$_2$ hydrogenation, 40 bar, 250$^\circ$C, H$_2$/CO$_2$=3
Figure S8: TPSR-DRIFTS full spectrum for MoP/ZrO₂. Spectra were normalized to initial room temperature background taken under vacuum which is why the TOP ligands (see Figure S1) can be seen as negative peaks in the C-H stretching region (ligands were removed with the reduction treatment prior to TPSR) until higher temperatures when the formates begin to form and associated C-H stretching bands become dominant.
Figure S9: TPSR-DRIFTS full spectrum for ZrO\textsubscript{2}
Figure S10: TPSR-DRIFTS C-H region