THE CONTRAVARIANT FORM ON SINGULAR VECTORS OF A PROJECTIVE ARRANGEMENT

MICHAEL J. FALK AND ALEXANDER N. VARCHENKO*

ABSTRACT. We define the flag space and space of singular vectors for an arrangement \mathcal{A} of hyperplanes in projective space equipped with a system of weights $\omega: \mathcal{A} \to \mathbb{C}$. We show that the contravariant bilinear form of the corresponding weighted central arrangement induces a well-defined form on the space of singular vectors of the projectivization. If $\sum_{H \in \mathcal{A}} a(H) = 0$, this form is naturally isomorphic to the restriction to the space of singular vectors of the contravariant form of any affine arrangement obtained from \mathcal{A} by dehomogenizing with respect to one of its hyperplanes.

1. INTRODUCTION

Let $\mathcal{A} = \{H_1, \ldots, H_n\}$ be an arrangement of affine hyperplanes in \mathbb{C}^ℓ. Let $f_i: \mathbb{C}^\ell \to \mathbb{C}$ be an affine linear functional with zero locus H_i, for $1 \leq i \leq n$. Let $M = M(\mathcal{A}) = \mathbb{C}^\ell - \bigcup_{i=1}^n H_i$ be the complement to the arrangement. If W is a \mathbb{C}-vector space, then W^* denotes its dual space. Let $\mathbb{C}^x = \mathbb{C} - \{0\}$.

Let $\omega_i = d\log(f_i)$ for $1 \leq i \leq n$. Denote by A the \mathbb{C}-subalgebra of the holomorphic De Rham complex of M generated by the closed forms $1, \omega_1, \ldots, \omega_n$. The algebra A is graded, $A = \oplus_{p=0}^n A^p$, and called the Arnol’d-Brieskorn-Orlik-Solomon algebra or the OS algebra of \mathcal{A}. The dual space $\mathcal{F} = \mathcal{F}(\mathcal{A}) := \oplus_{p \geq 0} \mathcal{F}^p$ of A is called the flag space of \mathcal{A}, [SV91].

Let $a = (a_1, \ldots, a_n) \in \mathbb{C}^n$ be a vector of weights. The contravariant form of the weighted arrangement (\mathcal{A}, a) is the symmetric bilinear form $S = \oplus S_p: \mathcal{F} \otimes \mathcal{F} \to \mathbb{C}$, where $S_p: \mathcal{F}^p \otimes \mathcal{F}^p \to \mathbb{C}$ is defined by

$$S_p(F, F') = \sum_J a_{J} F(\omega_J) F'(\omega_J).$$

The sum is over all sequences $J = (j_1, \ldots, j_p)$ with $1 \leq j_1 < \cdots < j_p \leq n$, $a_J = \prod_{j=1}^p a_{j_j}$, and $\omega_J = \omega_{j_1} \wedge \cdots \wedge \omega_{j_p}$, [SV91].

In particular, if $\{F_1, \ldots, F_n\} \subseteq \mathcal{F}^1$ is the basis dual to the basis $\{\omega_1, \ldots, \omega_n\}$ of $A^1 \cong \mathbb{C}^n$, then

$$S_1(F_i, F_j) = a_i \delta_{ij}.$$

The contravariant form has many remarkable properties, see [SV91] [V95] [V06] [V11]. It is a generalization of the Shapavalov form associated to a tensor product of highest weight representations of a simple Lie algebra – for this application \mathcal{A} is a discriminantal arrangement and a is determined by the representations.

The space \mathcal{F} has a combinatorially defined differential $d: \mathcal{F}^p \to \mathcal{F}^{p+1}$. The space A has a differential $\delta_a: A^p \to A^{p+1}$ defined by multiplication by $\omega_a := \sum_{i=1}^n a_i \omega_i$. The contravariant form S induces a morphism of complexes $\psi: (\mathcal{F}, d) \to (A, \delta_a)$, see [SV91] and Section 2. The pair (\mathcal{F}, d) is the flag complex of \mathcal{A}.

Let $\text{Sing}(\mathcal{F}^\ell) = \text{Sing}_a(\mathcal{F}^\ell) \subseteq \mathcal{F}^\ell$ be the annihilator of $\omega_a \wedge A^\ell-1$. It is called the subspace of singular vectors of \mathcal{F}^ℓ, relative to a. This terminology is introduced in [V06] and motivated by

*Partially supported by NSF grant DMS-1101508.
In [SV91] the subspace $\text{Sing}(\mathcal{F}^\ell)$ for a discriminantal arrangement is interpreted as the subspace of singular vectors of a tensor product of Verma modules over a Kac-Moody algebra. The inclusion $\text{Sing}(\mathcal{F}^\ell) \hookrightarrow (A^\ell)^*$ induces an isomorphism
\[
\text{Sing}(\mathcal{F}^\ell) \rightarrow (H^\ell(A, \delta_a))^* = (A^\ell/(\omega_\alpha \wedge A^{\ell-1}))^*.
\]

Let $\Phi_a = \prod_i f_i^{-a_i}$ be the master function associated with (A, a), and let \mathcal{L}_a be the rank-one local system on M whose local sections are the multiples of single-valued branches of Φ_a. The inclusion of (A, δ_{ca}) into the twisted algebraic de Rham complex of \mathcal{L}_{ca} induces an isomorphism
\[
H^*(A, \delta_{ca}) \cong H^*(M, \mathcal{L}_{ca})
\]
for generic c [SV91]. Since $\text{Sing}_{ca}(\mathcal{F}^\ell) = \text{Sing}_a(\mathcal{F}^\ell)$ for any nonzero c, this implies that $\text{Sing}_a(\mathcal{F}^\ell)$ is isomorphic to the local system homology $H_\ell(M, \mathcal{L}_{-ca})$ for generic c.

An important object is the restriction of the contravariant form S_ℓ to the subspace $\text{Sing}(\mathcal{F}^\ell)$. It relates linear and nonlinear characteristics of the weighted arrangement (A, δ) in projective hyperplanes \mathcal{A}_∞. In [SV91] the subspace $\text{Sing}(\mathcal{F}^\ell)$ is defined, and the purpose of this note is to describe objects in such a way that they will not depend on the choice of the hyperplane at infinity of the flag space \mathcal{F}.

The orbit map $q: (\text{Ann}(\tilde{\omega}_a \wedge \tilde{A}) + \text{Ann}(q^*A^1))/\text{Ann}(q^*A^1), \tilde{S}_1|_{(\text{Ann}(\tilde{\omega}_a \wedge \tilde{A}) + \text{Ann}(q^*A^1))/\text{Ann}(q^*A^1)}$ described below.

Let $[u : v]$ be homogeneous coordinates on \mathbb{P}^1, with $x = \frac{-u}{v}$. The projectivization \mathcal{A}_∞ of \mathcal{A} is the arrangement in \mathbb{P}^1 of the points $p_1 = [1 : z_1], \ldots, p_n = [1 : z_n]$ and the point $p_0 = [1 : 0]$ at infinity. The weight of p_i is a_i for $1 \leq i \leq n$ and the weight of p_0 is $a_0 = -\sum_{i=1}^n a_i$.

In our construction we use the associated central arrangement in \mathbb{C}^2, the cone $\mathring{\mathcal{A}}$ of \mathcal{A}_∞, consisting of the lines $v - z_i u = 0$ for $1 \leq i \leq n$ and the line $u = 0$. Introduce the following one-forms on \mathbb{C}^2: $\tilde{\omega}_i = d\log(v - z_i u)$ for $1 \leq i \leq n$, and $\tilde{\omega}_0 = d\log(u)$. The arrangement $\mathring{\mathcal{A}}$ is weighted with the weights $\tilde{a} = (a_0, \ldots, a_n)$. We will denote by $\tilde{M}, \tilde{A}, \tilde{F}, \tilde{\omega}, \tilde{S}$ the complement, Orlik-Solomon algebra, flag space of $\mathring{\mathcal{A}}$, special element, and the contravariant form of $(\mathring{\mathcal{A}}, \tilde{a})$, respectively.

The orbit map $q: \tilde{M} \to \tilde{M}/\mathbb{C}^\times = \mathbb{C} - \{z_1, \ldots, z_n\}$ induces an injection $q^*: A \to \tilde{A}$ whose image is the subalgebra generated by $\{\sum_{i=0}^n \lambda_i \tilde{\omega}_i \in \tilde{A}^1 \mid \sum_{i=0}^n \lambda_i = 0\} \subset \tilde{A}$. One computes
\[
q^*(\omega_i) = q^*(d\log(x - z_i)) = d\log(\frac{v}{u} - z_i) = \tilde{\omega}_i - \tilde{\omega}_0.
\]

Then the special element ω_a of A^1 is mapped by q^* to the special element $\tilde{\omega}_a = \sum_{i=0}^n a_i \tilde{\omega}_i$ of \tilde{A}^1. Identifying A^1 with q^*A^1, the flag space $\mathcal{F}^1 = (A^1)^*$ is isomorphic to the quotient of \tilde{F} by
the annihilator $\text{Ann}(q^*A^1) \subset \tilde{F}^1$ of $q^*A^1 \subset \tilde{A}^1$. The subspace $\text{Ann}(q^*A^1)$ is spanned by $\sum_{i=0}^n \tilde{F}_i$.

(Notice that in this consideration the index 0 does not play any special role.) The subspace $\text{Ann}(\tilde{w}_a \wedge \tilde{A}^0)$ of \tilde{F}^1 consists of flags $\sum_{i=0}^n c_i\tilde{F}_i$ such that $\sum_{i=0}^n c_i a_i = 0$. This subspace is orthogonal to the subspace $\text{Ann}(q^*A^1)$ relative to the contravariant form of \tilde{A}. Indeed we have $\tilde{S}_1(\sum_{i=0}^n \tilde{F}_i, \sum_{i=0}^n c_i\tilde{F}_i) = \sum_{i=0}^n c_i a_i = 0$. Thus, the contravariant form \tilde{S}_1 induces a well-defined form on the image of $\text{Ann}(\tilde{w}_a \wedge \tilde{A}^0)$ in $\tilde{F}^1/\text{Ann}(q^*A^1)$, namely, a form on

$$(\text{Ann}(\tilde{w}_a \wedge \tilde{A}^0) + \text{Ann}(q^*A^1))/\text{Ann}(q^*A^1) \cong \text{Ann}(\tilde{w}_a \wedge \tilde{A}^0)/(\text{Ann}(\tilde{w}_a \wedge \tilde{A}^0) \cap \text{Ann}(q^*A^1)).$$

The flags $\tilde{F}_1, \ldots, \tilde{F}_n$ induce a basis of $\tilde{F}^1/\text{Ann}(q^*A^1)$. Using this basis, we see that the form induced by \tilde{S}_1 on $(\text{Ann}(\tilde{w}_a \wedge \tilde{A}^0) + \text{Ann}(q^*A^1))/\text{Ann}(q^*A^1)$ corresponds to the restriction of the original form S_1 to the subspace $\text{Sing}(\tilde{F}^1)$ under the isomorphism of \tilde{F}^1 with $\tilde{F}^1/\text{Ann}(q^*A^1)$.

Notice that the form \tilde{S}_1 does not induce a well-defined form on $\tilde{F}^1 = \tilde{F}/\text{Ann}(q^*A^1)$ – the extension of $S_1|_{\text{Sing}(\tilde{F}^1)}$ defined by (1.2) depends on the choice of hyperplane at infinity.

In general, for any weighted affine arrangement (A,a) in \mathbb{C}^ℓ, we identify the pair $(\text{Sing}(\tilde{F}^\ell), S_1|_{\text{Sing}(\tilde{F}^\ell)})$ with the pair

$$\left((\text{Ann}(\tilde{w}_a \wedge \tilde{A}^{\ell-1}) + \text{Ann}(q^*A^\ell))/\text{Ann}(q^*A^\ell), \tilde{S}_\ell|_{(\text{Ann}(\tilde{w}_a \wedge \tilde{A}^{\ell-1}) + \text{Ann}(q^*A^\ell))/\text{Ann}(q^*A^\ell)}\right)$$

expressed in terms of the cone \tilde{A} of the projectivization A_∞ of A.

Our statement that the pair $(\text{Sing}(\tilde{F}^\ell), S_1|_{\text{Sing}(\tilde{F}^\ell)})$ can be constructed in terms of A_∞, without choosing a particular hyperplane at infinity, is analogous to the following fact from representation theory. Let $V_{\Lambda_i}, i = 0, \ldots, n$, be irreducible finite dimensional highest weight representations of a simple Lie algebra. Here Λ_i is the highest weight of V_{Λ_i}. Let Λ_0^\vee be the highest weight of the representation dual to V_{Λ_0}. Let S_1 be the Shapovalov form on V_{Λ_0}. Let $\text{Sing}(\otimes_{i=0}^n V_{\Lambda_i})[0] \subset \otimes_{i=0}^n V_{\Lambda_i}$ be the subspace of singular vectors of weight zero and $\text{Sing}(\otimes_{i=1}^n V_{\Lambda_i})[\Lambda_0^\vee] \subset \otimes_{i=1}^n V_{\Lambda_i}$ the subspace of singular vectors of weight Λ_0^\vee. Then the pair $(\text{Sing}(\otimes_{i=1}^n V_{\Lambda_i})[\Lambda_0^\vee], (\otimes_{i=1}^n S_i)|_{\text{Sing}(\otimes_{i=1}^n V_{\Lambda_i})[\Lambda_0^\vee]})$ is isomorphic to the pair $(\text{Sing}(\otimes_{i=0}^n V_{\Lambda_i})[0], (\otimes_{i=0}^n S_i)|_{\text{Sing}(\otimes_{i=0}^n V_{\Lambda_i})[0]})$.

2. FLAG COMPLEX AND CONTRAVARIANT FORM OF A CENTRAL ARRANGEMENT

We recall in more detail some of the theory of flag complexes from [SV91]. The following notation, which differs from the notation of [OT92] will be used throughout the rest of the paper. For general background on arrangements see [OT92].

Suppose $A = \{H_0, \ldots, H_n\}$ is a central arrangement in $\mathbb{C}^{\ell+1}$. Let $f_0, \ldots, f_n \in (\mathbb{C}^{\ell+1})^*$ with $H_i = \text{ker}(f_i)$ for $0 \leq i \leq n$. Let $\omega_i = \frac{1}{f_i}$ for $0 \leq i \leq n$, and let A be the OS algebra of A, as defined in [OT]. Let E be the graded exterior algebra over \mathbb{C} with generators e_0, \ldots, e_n of degree one. Let $\partial: E^p \to E^{p-1}$ be defined by

$$\partial(e_{j_1} \wedge \cdots \wedge e_{j_p}) = \sum_{i=1}^p (-1)^{i-1} e_{j_1} \wedge \cdots \wedge \hat{e}_{j_i} \wedge \cdots \wedge e_{j_p},$$

where $\hat{\cdot}$ denotes deletion. If $J = (j_1, \ldots, j_p)$, denote the product $e_{j_1} \wedge \cdots \wedge e_{j_p}$ by e_J. Say J is dependent if $\{f_i \mid i \in J\}$ is linearly dependent in $(\mathbb{C}^{\ell+1})^*$. Let I be the ideal of E generated by $\{\partial e_J \mid J$ is dependent\}. By [OS80], the surjection $E \to A$ sending e_i to ω_i has kernel I. We tacitly identify A with E/I. The map ∂ induces a well-defined map $\partial: A \to A$, a graded derivation of degree -1, and (A, ∂) is a chain complex.

Let $L = L(A)$ be the intersection lattice of A, the set of intersections of subcollections of A, partially-ordered by reverse inclusion. Let $\text{Flag} = \bigoplus_{p=0}^{\ell+1} \text{Flag}^p$ be the graded \mathbb{C}-vector space with
Flag\(^p\) having basis consisting of chains \((X_0 \cdots < X_p)\) of \(L\) satisfying \(\text{codim}(X_i) = i\) for \(0 \leq i \leq p\). Such a chain will be called a flag. For each ordered subset \(J = (j_1, \ldots, j_p)\) of \(\{0, \ldots, n\}\), let \(\xi(J)\) be the chain \((X_0 < \cdots < X_p)\) of \(L\), where \(X_0 = \mathbb{C}^\ell + 1\) and \(X_i = \bigcap_{k=1}^i H_{j_k}\) for \(1 \leq i \leq p\). Note that \(\xi(J)\) is a flag if and only if \(\{H_i \mid i \in J\}\) is independent in \(\mathcal{A}\). If \(\pi\) is a permutation of \(\{1, \ldots, p\}\), let \(J^\pi = (j_{\pi(1)}, \ldots, j_{\pi(p)})\). For any flag \(F \in \text{Flag}^p\) and any ordered \(p\)-subset \(J\) of \(\{1, \ldots, n\}\), there is at most one permutation \(\pi\) such that \(F = \xi(J^\pi)\).

Define a bilinear pairing
\[
\langle \cdot, \cdot \rangle: \text{Flag}^p \otimes E^p \to \mathbb{C}
\]
by
\[
\langle F, e_J \rangle = \begin{cases}
\text{sgn}(\pi) & \text{if } \xi(J^\pi) = F \\
0 & \text{otherwise}
\end{cases}
\]
for every flag \(F\) in \(\text{Flag}^p\) and ordered \(p\)-subset \(J\) of \(\{0, \ldots, n\}\).

Proposition 2.1 ([SV91]). \(\langle F, \partial e_J \rangle = 0\) for every \(F \in \text{Flag}^p\) and dependent \((p+1)\)-tuple \(J\). Moreover, if \((X_0 < \cdots < X_{i-1} < X_{i+1} \cdots X_p)\) is a chain in \(L\) with \(\text{codim}(X_j) = j\) then
\[
\left\langle \sum_{X_{i-1} < X < X_{i+1}} (X_0 < \cdots < X_{i-1} < X < X_{i+1} < \cdots X_p), e_J \right\rangle = 0,
\]
for every ordered \(p\)-subset \(J\) of \(\{0, \ldots, n\}\).

Let \(F = \oplus_{p=0}^{\ell+1} F^p\) be the quotient of \(\text{Flag}\) by the (homogeneous) subspace spanned by the sums
\[
\sum_{X_{i-1} < X < X_{i+1}} (X_0 < \cdots < X_{i-1} < X < X_{i+1} < \cdots X_p)
\]
as \((X_0 < \cdots < X_{i-1} < X_{i+1} < \cdots X_p)\) ranges over all chains in \(L\) with \(\text{codim}(X_j) = j\).

Denote the image of \((X_0 < \cdots < X_p)\) in \(\mathcal{F}^p\) by \([X_0 < \cdots < X_p]\). By Proposition 2.1, \(\langle \cdot, \cdot \rangle: \mathcal{F}^p \otimes A^p \to \mathbb{C}\)
induces a well-defined bilinear pairing \(\langle \cdot, \cdot \rangle: \mathcal{F}^p \otimes A^p \to \mathbb{C}\).

The pairing \(\langle \cdot, \cdot \rangle\) is a combinatorial model of the integration pairing of the ordinary homology and cohomology of the complement \(M\) with coefficients in \(\mathbb{C}\), see [SV91].

Theorem 2.2 ([SV91]). The pairing \(\langle \cdot, \cdot \rangle: \mathcal{F}^p \otimes A^p \to \mathbb{C}\) is nondegenerate.

Let \(\varphi: A \to \mathcal{F}^*\) be defined by \(\varphi(x) = (-, x): \mathcal{F} \to \mathbb{C}\). By Theorem 2.2, \(\varphi\) is an isomorphism. The value of \(\varphi(\omega_J)\) in terms of the canonical basis of Flag is given in [SV91] (2.3.2). Similarly, \(\varphi^*: \mathcal{F} \to A^*\) is an isomorphism, with \(\varphi^*(F) = (F, -): A \to \mathbb{C}\). \(\mathcal{F}\) is called the flag space of \(A\).

Let \(d: \text{Flag}^p \to \text{Flag}^{p+1}\) be the linear map defined by
\[
d(X_0 < \cdots < X_p) = \sum_{\text{codim}(X) = p+1} (X_0 < \cdots < X_p < X).
\]

Clearly \(d\) induces a linear map \(d: \mathcal{F}^p \to \mathcal{F}^{p+1}\). Relations (2.2) imply \(d \circ d = 0\). The pair \((\mathcal{F}, d)\) is called the flag complex of \(A\). The following result is a reformulation of Lemma 2.3.4 of [SV91].

Theorem 2.3. For any \(F \in \mathcal{F}^p\) and \(x \in A^{p+1}\),
\[
\langle F, \partial x \rangle = \langle df, x \rangle.
\]

Let \(d^*: (\mathcal{F}^p)^* \to (\mathcal{F}^{p+1})^*\) be the adjoint of \(d: \mathcal{F}^{p+1} \to \mathcal{F}^p\).

Corollary 2.4 ([SV91] Lemma 2.3.4). The map \(\varphi: (A, \partial) \to (\mathcal{F}^*, d^*)\) given by \(\varphi(x) = (-, x)\) is an isomorphism of chain complexes.
Similarly \(\varphi^* : (\mathcal{F}, d) \to (A^*, \partial^*) \) is an isomorphism of cochain complexes.

There is a decomposition of \(\mathcal{F} \) dual to the Brieskorn decomposition [OT92, Lemma 5.91] of \(A \). For \(X \in L \) let \(\mathcal{F}^p \) be the image in \(\mathcal{F} \) of the subspace of \(\text{Flag}^p \) spanned by flags that terminate at \(X \). Then by [SV91, (2.12)],

\[
\mathcal{F}^p = \bigoplus_{\text{codim}(X) = p} \mathcal{F}^p_X.
\]

Let \(a = (a_0, \ldots, a_n) \in \mathbb{C}^{n+1} \). Let \(\omega_a = \sum^n_{j=0} a_j \omega_j \) and \(\delta_a : A \to A \) with \(\delta_a(x) = \omega_a \wedge x \). Let

\[
S = \oplus S_p : \mathcal{F} \otimes \mathcal{F} \to \mathbb{C}
\]

be the contravariant form of the weighted arrangement \((\mathcal{A}, a)\), as defined in (1.1). \(S \) gives rise to the map \(\mathcal{F} \to \mathcal{F}^* \) that sends \(F \) to \(S(F, -) : \mathcal{F} \to \mathbb{C} \). By composing this map with the isomorphism \(\varphi^{-1} : \mathcal{F}^* \to A \), one obtains a map \(\psi : \mathcal{F} \to A \), characterized by the formula

\[
S_p(F, F') = \langle F, \psi(F') \rangle,
\]

for all \(F, F' \in \mathcal{F}^p \), for each \(p \). \(\psi \) is called the contravariant map.

Theorem 2.5 ([SV91, Lemma 3.2.5]). The contravariant map \(\psi : (\mathcal{F}, d) \to (A, \delta_a) \) is a morphism of cochain complexes.

Corollary 2.6. For every \(F \in \mathcal{F}^p \) and \(F' \in \mathcal{F}^{p-1} \),

\[
S(F, dF') = \langle F, \omega_a \wedge \psi(F') \rangle.
\]

3. **Projective OS algebra and flag space**

Let \(\mathcal{A} \) be a central arrangement as in [2]. Let \(\tilde{\mathcal{A}} \) denote the projectivization of \(\mathcal{A} \), consisting of the projective hyperplanes

\[
\tilde{H}_i := (H_i - \{0\})/\mathbb{C}^\times
\]

in \(\mathbb{P}^\ell = (\mathbb{C}^{\ell+1} - \{0\})/\mathbb{C}^\times \), for \(0 \leq i \leq n \). Let \(\tilde{M} = \mathbb{P}^\ell - \cup_{i=0}^\ell \tilde{H}_i \) be the complement to \(\tilde{\mathcal{A}} \) in \(\mathbb{P}^\ell \).

Definition 3.1 ([CDFV10]). The OS algebra \(\tilde{A} = A(\tilde{\mathcal{A}}) \) of the projective arrangement \(\tilde{\mathcal{A}} \) is the kernel of \(\partial : A \to A \).

Denote by \(\iota : \tilde{\mathcal{A}} \to A \) the natural imbedding. Let \((\mathcal{F}, d) \) be the flag complex of \(\mathcal{A} \).

Definition 3.2. The flag space \(\tilde{\mathcal{F}} = \mathcal{F}(\tilde{\mathcal{A}}) \) of the projective arrangement \(\tilde{\mathcal{A}} \) is the quotient \(\mathcal{F} / \text{im}(d) \).

Thus \(\tilde{\mathcal{F}} \) is obtained from \(\mathcal{F} \) by introducing the additional relations

\[
\sum_{X > X_p} (X_0 < \cdots < X_p < X) = 0,
\]

where \((X_0 < \cdots < X_p) \) ranges over all flags of length \(p \) in \(L \), for \(0 \leq p \leq \ell \).

Let \(\pi : \mathcal{F} \to \tilde{\mathcal{F}} \) be the canonical projection. For \(F \in \mathcal{F} \) we write \(\tilde{F} = \pi(F) \). Then, for instance, \(\sum_{i=0}^\ell \tilde{F}_i = 0 \), where \(\{F_0, \ldots, F_n\} \subseteq \tilde{F}^1 \) is the basis dual to \(\{\omega_0, \ldots, \omega_n\} \subseteq A^1 \).

Theorem 3.3. Let \(\rho : A^* \to A^* \) be given by restriction. Then the isomorphism \(\varphi^* : \mathcal{F} \to A^* \) induces an isomorphism \(\tilde{\varphi}^* : \tilde{\mathcal{F}} \to \tilde{A}^* \), given by the commutative diagram

\[
\begin{array}{ccc}
\mathcal{F} & \xrightarrow{\varphi^*} & A^* \\
\pi \downarrow & & \downarrow \\
\tilde{\mathcal{F}} & \xrightarrow{\tilde{\varphi}^*} & \tilde{A}^*
\end{array}
\]
Theorem 3.3 is proved below.

Lemma 3.4 ([OT92 Lemma 3.13]). The complex
\[0 \to A^\ell \xrightarrow{\partial} A^{\ell-1} \to \cdots \to A^1 \xrightarrow{\partial} A^0 \to 0 \]
is exact.

Corollary 3.5. The complex
\[0 \to \mathcal{F}^0 \xrightarrow{d} \mathcal{F}^1 \to \cdots \to \mathcal{F}^{\ell-1} \xrightarrow{d} \mathcal{F}^\ell \to 0 \]
is exact.

Corollary 3.5 also follows from [SV91, Cor. 2.8].

Proposition 3.6. \(\text{Ann}(\bar{A}) = \text{im}(d; \mathcal{F} \to \mathcal{F})\).

Proof. By Lemma 3.4, \(\bar{A} = \text{im}(\partial)\). Then \(F \in \text{Ann}(\bar{A})\) if and only if \(\langle F, \partial x \rangle = 0\) for all \(x \in A\). By Theorem 2.2, this is equivalent to the statement \(\langle dF, x \rangle = 0\) for every \(x \in A\), or \(dF = 0\) by Theorem 2.2. Then \(\text{Ann}(\bar{A}) = \ker(d)\), which equals \(\text{im}(d)\) by Corollary 3.5. □

Proof of Theorem 3.3: The assertion now follows immediately from Proposition 3.6 and Definition 3.2.

Lemma 3.4 also has the following consequence.

Corollary 3.7. \(\bar{A}\) is the subalgebra of \(A\) generated by 1 and \(\bar{A}^1 = \{\sum_{i=0}^n c_i \omega_i \mid \sum_{i=0}^n c_i = 0\}\).

Proof. By Lemma 3.4 we have \(\bar{A} = \text{im}(\partial)\). One can show by induction that \(\partial \omega_J = (\omega_{j_2} - \omega_{j_1}) \wedge \cdots \wedge (\omega_{j_p} - \omega_{j_1})\), for any ordered subset \(J = (j_1, \ldots, j_p)\) of \(\{0, \ldots, n\}\) with \(p \geq 2\). Each factor on the right-hand side lies in \((\bar{A})^1\). Since such \(\omega_J\) (along with 1) span \(\bar{A}\), the result follows. □

Remark 3.8. The algebra \(\bar{A}\) is naturally isomorphic to \(H^*(M, \mathbb{C})\) and \(\iota: \bar{A} \to A\) is identified with the homomorphism \(q^*: H^*(M, \mathbb{C}) \to H^*(\bar{M}, \mathbb{C})\) induced by the orbit map \(q: M \to \bar{M}\). The space \(\mathcal{F}\) is naturally isomorphic to the homology space \(H_*(\bar{M}, \mathbb{C})\) and the projection \(\pi: \mathcal{F} \to \bar{F}\) is identified with the homomorphism \(q_*: H^*(M, \mathbb{C}) \to H^*(\bar{M}, \mathbb{C})\).

4. Singular subspace and contravariant form for projective arrangements

Let \(\mathcal{A} = \{H_0, \ldots, H_n\}\) be a central arrangement in \(\mathbb{C}^{\ell+1}\) as above. Let \(a = (a_0, \ldots, a_n) \in \mathbb{C}^{n+1}\) and \(\omega_a = \sum_{i=0}^n a_i \omega_i \in A^1\). We identify the flag space \(\mathcal{F} = \mathcal{F}(\mathcal{A})\) with \(A^*\) via the map \(\varphi^*\) of Section 2.

Definition 4.1. The singular subspace \(\text{Sing}(\mathcal{F}^\ell) \subset \mathcal{F}^\ell\) is
\[\pi(\text{Ann}(\omega_a \wedge A^{\ell-1})) = (\text{Ann}(\omega_a \wedge A^{\ell-1}) + \text{im}(d)) / \text{im}(d) \subset \mathcal{F}^\ell / \text{im}(d) = \bar{\mathcal{F}}^\ell. \]

Let \(S: \mathcal{F} \otimes \mathcal{F} \to \mathbb{C}\) be the contravariant form of the central arrangement \(\mathcal{A}\), as defined in [1.1].

Theorem 4.2. The subspaces \(\text{Ann}(\omega_a \wedge A)\) and \(\text{im}(d)\) of \(\mathcal{F}\) are orthogonal with respect to \(S\).

Proof. In §2 we constructed the contravariant map \(\psi: \mathcal{F} \to A\) satisfying \(S_p(F, F') = \langle F, \psi(F') \rangle\) for every \(F, F' \in \mathcal{F}^p\). By Corollary 2.6, \(\psi\) satisfies \(S_p(F, dF') = \langle F, \omega_a \wedge \psi(F') \rangle\) for all \(F \in \mathcal{F}^p\) and \(F' \in \mathcal{F}^{p-1}\). Suppose \(F \in \text{Ann}(\omega_a \wedge A^{p-1}) \subset \mathcal{F}^p\). Then, for every \(F' \in \mathcal{F}^{p-1}\), \(\langle F, \omega_a \wedge \psi(F') \rangle = 0\). Then \(S_p(F, dF') = 0\) for every \(F' \in \mathcal{F}^{p-1}\). Thus \(\text{Ann}(\omega_a \wedge A)\) is orthogonal to \(\text{im}(d)\). □
Define the bilinear form
\[\bar{S}_\ell : \text{Sing}(F^\ell) \otimes \text{Sing}(F^\ell) \to \mathbb{C} \]
by \(\bar{S}_\ell(F,F') = S_F(F,F') \).

Corollary 4.3. The form \(\bar{S}_\ell : \text{Sing}(F^\ell) \otimes \text{Sing}(F^\ell) \to \mathbb{C} \) is well-defined.

5. **Dehomogenization**

Throughout this section we assume \(a \in \mathbb{C}^{n+1} \) satisfies \(\sum_{i=0}^{n} a_i = 0 \). Then \(\omega_a \in \bar{A}^1 \) and \(\omega_a \wedge \bar{A} \subseteq \bar{A} \).

Fix a hyperplane \(H_j \in \mathcal{A} \). For simplicity of notation we assume \(j = 0 \), but the index 0 will play no special role. Choose coordinates \((x_0, \ldots, x_\ell) \) on \(\mathbb{C}^{\ell+1} \) so that \(H_0 \) is defined by the equation \(x_0 = 0 \). The **decone** of \(\mathcal{A} \) relative to \(H_0 \) is an affine arrangement \(\mathcal{A} = \{dH_1, \ldots, dH_n\} \) in \(\mathbb{C}^\ell \). The affine hyperplane \(dH_i \) is defined by \(\hat{f}_i(x_1, \ldots, x_\ell) = 0 \), where \(\hat{f}_i(x_1, \ldots, x_\ell) = f_i(x_0, \ldots, x_\ell) \) and \(f_i : \mathbb{C}^{\ell+1} \to \mathbb{C} \) is a linear defining form for \(H_i \). Let \(\bar{F} = \mathbb{C}^\ell - \bigcup_{i=1}^n dH_i \), \(\hat{\omega}_i = d\log(\hat{f}_i) \), and let \(\bar{A} \) be the algebra of differential forms on \(\mathbb{C}^\ell \). We note for future reference that \(\hat{\omega}_0 \) and \(\hat{\omega}_i \) are well-defined.

Lemma 5.1. The map \(\varepsilon : \hat{A} \to \bar{A} \), \(\hat{\omega}_i \mapsto \hat{\omega}_i - \omega_0 \), is a well-defined isomorphism. Moreover, \(\varepsilon \) sends \(\hat{\omega}_a = \sum_{i=1}^n a_i \hat{\omega}_i \) to \(\omega_a \).

We note for future reference that
\[(5.1) \quad e(\omega_j) = (\omega_{j_1} - \omega_0) \wedge \cdots \wedge (\omega_{j_p} - \omega_0) = \partial \omega_{(0,j)}, \]
for any ordered p-subset \(\hat{J} = (j_1, \ldots, j_p) \) of \(\{1, \ldots, n\} \), where \((0, \hat{J}) = (0, j_1, \ldots, j_p) \).

As in \(\mathbb{2} \) the flag space \(\bar{F} = \mathcal{F}(\mathcal{A}) \) of the affine arrangement \(\mathcal{A} \) can be identified with \(\hat{A}^* \), and the singular subspace \(\text{Sing}(F^\ell) \subset F^\ell \) relative to \(\hat{a} \) is defined by \(\text{Sing}(F^\ell) = \text{Ann}(\hat{\omega}_0 \wedge \hat{A}^{\ell-1}) \). The contravariant form \(\bar{S} = \oplus \bar{S}_p \) of \(\mathcal{A} \) is given by
\[\bar{S}_p(F, F') = \sum_{j} \hat{a}_j \bar{F}(\hat{\omega}_j) \bar{F}'(\hat{\omega}_j), \]
summing over increasing \(p \)-tuples \(\hat{J} = (j_1, \ldots, j_p) \) of elements of \(\{1, \ldots, n\} \). We identify \(\bar{F} \) with \(\hat{A}^* \) via the isomorphism \(\hat{\varphi}^* \) of Theorem 3.3.

In this section we prove the following theorem.

Theorem 5.2. The map \(\varepsilon^* : \bar{F} \to \hat{F} \) restricts to an isomorphism of inner-product spaces
\[\varepsilon^* : (\text{Sing}(\hat{F}^\ell), \bar{S}_\ell|_{\text{Sing}(\hat{F}^\ell)}) \xrightarrow{\cong} (\text{Sing}(\bar{F}^\ell), \bar{S}_\ell|_{\text{Sing}(\bar{F}^\ell)}). \]

Recall that \(\bar{A} = \ker(\partial : A \to A) \). Define \(\sigma : A^{p-1} \to A^p \) by \(\sigma(x) = \omega_0 \wedge x \).

Lemma 5.3. For each \(p \), we have \(A^p = (\omega_0 \wedge \bar{A}^{p-1}) \oplus \bar{A}^p \).

Proof. By Lemma 3.4 the complex \((A, \partial) \) is exact. Hence, for each \(p \), there is a short exact sequence
\[(5.2) \quad 0 \longrightarrow \bar{A}^p \overset{i}{\longrightarrow} A^p \overset{\partial}{\longrightarrow} \bar{A}^{p-1} \longrightarrow 0. \]
This sequence splits: the map \(\sigma : \bar{A}^{p-1} \to A^p \) defined above is a section of \(\partial : A^p \to \bar{A}^{p-1} \). Indeed, \(\partial \circ \sigma(x) = \partial(\omega_0 \wedge x) = \partial \omega_0 \wedge x - \omega_0 \wedge \partial x = x \) for \(x \in \bar{A}^{p-1} \). Then \(A^p = \text{im}(\sigma) \oplus \ker(\partial) = (\omega_0 \wedge \bar{A}^{p-1}) \oplus A^p \) as claimed. \(\square \)

Recall that \(\ker(\pi) = \text{Ann}(\bar{A}) \). The map \(\pi : \bar{F}^p \to \bar{F}^{p-1} \) is the adjoint of the inclusion \(\bar{A} \to A \). Let \(\sigma^* : F^p \to F^{p-1} \) be the adjoint of \(\sigma : A^{p-1} \to A^p \).
Lemma 5.4. We have the following statements:

(i) \(\mathcal{F}^p = \ker(\sigma^*) \oplus \ker(\pi) \).

(ii) The restriction \(\pi|_{\text{Ann}(\omega_0 \wedge \bar{A}^{p-1})} : \text{Ann}(\omega_0 \wedge \bar{A}^{p-1}) \to \mathcal{F}^p \) is an isomorphism.

(iii) \(\text{Ann}(\omega_0 \wedge \bar{A}) = \text{Ann}(\omega_0 \wedge A) \).

Proof. Taking duals in (5.2), we obtain the exact sequence

\[
0 \to \mathcal{F}^{p-1} \to \mathcal{F}^p \to \pi \to 0.
\]

The map \(\sigma^* : \mathcal{F}^p \to \mathcal{F}^{p-1} \) satisfies \(\sigma^* \circ \partial^* = (\partial \circ \sigma)^* = \text{id}_{\mathcal{F}^{p-1}} \). Then \(\mathcal{F}^p = \ker(\sigma^*) \oplus \text{im}(\partial^*) \).

Statement (i) follows by exactness.

We have \(\sigma^*(F)(x) = \sigma(x) = F(\omega_0 \wedge x) \) for all \(x \in \bar{A} \). Then \(F \in \ker(\sigma^*) \) if and only if \(F \in \text{Ann}(\omega_0 \wedge \bar{A}^{p-1}) \), i.e., \(\ker(\sigma^*) = \text{Ann}(\omega_0 \wedge \bar{A}^{p-1}) \). Applying (i), we have \(\text{Ann}(\omega_0 \wedge \bar{A}^{p-1}) \cap \ker(\pi) = 0 \) and \(\mathcal{F}^p = \pi(\mathcal{F}^p) = \pi(\ker(\sigma^*)) = \pi(\text{Ann}(\omega_0 \wedge \bar{A}^{p-1})) \). This proves (ii).

For (iii), assume \(F \in \text{Ann}(\omega_0 \wedge \bar{A}) \) and \(x \in \omega_0 \wedge A \). Write \(x = \omega_0 \wedge y \) for \(y \in A \). By Lemma 5.3, we can write \(y = y_1 + y_2 \) with \(y_1 \in \omega_0 \wedge \bar{A} \) and \(y_2 \in \bar{A} \). Then \(\omega_0 \wedge y_1 = 0 \), so \(x = \omega_0 \wedge y_2 \in \omega_0 \wedge A \). Then \(F(x) = 0 \). Thus \(\text{Ann}(\omega_0 \wedge A) \subseteq \text{Ann}(\omega_0 \wedge A) \). The opposite inclusion holds because \(\omega_0 \wedge A \subseteq \omega_0 \wedge A \).

Recall the decomposition (2.5) of \(\mathcal{F} \). In this context Lemma 5.4 yields the following result, which we will consider in more detail in the next section.

Corollary 5.5. For \(0 \leq p \leq \ell \),

\[
\mathcal{F}^p \cong \bigoplus_{\text{codim}(X) = p} \mathcal{F}^p_X
\]

Proof. Using (2.7) one can check easily that \(\{X_0 < \cdots < X_p\} \in \text{Ann}(\omega_0 \wedge \bar{A}^{p-1}) \) if and only if \(H_0 \not\subseteq X_p \). Then, for each \(X \in L \) of codimension \(p \),

\[
\text{Ann}(\omega_0 \wedge \bar{A}^{p-1}) \cap \mathcal{F}^p_X = \begin{cases} 0 & \text{if } H_0 \not\subseteq X \\ \mathcal{F}^p_X & \text{if } H_0 \subseteq X \end{cases}
\]

The claim then follows from parts (ii) and (iii) of Lemma 5.4.

Lemma 5.6. We have the following statements:

(i) \(\text{Ann}(\omega_0 \wedge \bar{A}) \cap \text{Ann}(\omega_0 \wedge A) \subseteq \text{Ann}(\omega_0 \wedge A) \).

(ii) \(\text{Ann}(\omega_0 \wedge \bar{A}) = \text{Ann}(\omega_0 \wedge A) + \text{Ann}(A) \).

(iii) \(\text{Sing}(\mathcal{F}^\ell) = \pi(\text{Ann}(\omega_0 \wedge A^{\ell-1})) \).

Proof. Let \(F \in \text{Ann}(\omega_0 \wedge \bar{A}) \cap \text{Ann}(\omega_0 \wedge A) \) and \(x \in \omega_0 \wedge A \). Write \(x = \omega_0 \wedge y \) with \(y \in A \).

By Lemma 5.3, we can write \(y = y_1 + y_2 \) with \(y_1 \in \omega_0 \wedge \bar{A} \) and \(y_2 \in \bar{A} \). Write \(y_1 = \omega_0 \wedge y'_1 \) with \(y'_1 \in \bar{A} \). Since \(\omega_0 \wedge \bar{A} \subseteq \bar{A} \), \(\omega_0 \wedge y'_1 = \omega_0 \wedge (\omega_0 \wedge y'_1) = \omega_0 \wedge (-y'_1) \in \omega_0 \wedge A \). Then \(x = \omega_0 \wedge y + \omega_0 \wedge y_2 \in \omega_0 \wedge A + \omega_0 \wedge A \). Then \(F(x) = 0 \). This proves (i).

Let \(F \in \text{Ann}(\omega_0 \wedge \bar{A}) \). By part (i) of Lemma 5.4, we can write \(F = F_1 + F_2 \) where \(F_1 \in \ker(\sigma^*) = \text{Ann}(\omega_0 \wedge \bar{A}) \) and \(F_2 \in \ker(\pi) = \text{Ann}(A) \). Since \(\omega_0 \wedge \bar{A} \subseteq \bar{A} \), \(F_2 \in \text{Ann}(\omega_0 \wedge \bar{A}) \). Then \(F_1 = F - F_2 \in \text{Ann}(\omega_0 \wedge A) \). Then \(F_1 \in \text{Ann}(\omega_0 \wedge A) \cap \text{Ann}(\omega_0 \wedge \bar{A}) \). Then \(F_1 \in \text{Ann}(\omega_0 \wedge A) \) by (i). Thus \(F = F_1 + F_2 \in \text{Ann}(\omega_0 \wedge \bar{A}) + \text{Ann}(A) \). This proves \(\text{Ann}(\omega_0 \wedge \bar{A}) \subseteq \text{Ann}(\omega_0 \wedge A) + \text{Ann}(A) \). The opposite inclusion follows easily from the fact that \(\omega_0 \wedge \bar{A} \subseteq (\omega_0 \wedge A) \cap \bar{A} \). This proves (ii).

Part (iii) follows immediately from (ii).
We note the following consequence of part (iii) of Lemma 5.6 for later use. As observed earlier, \((\bar{A}, \delta_a)\) is a subcomplex of \((A, \delta_a)\).

Corollary 5.7. The inclusion \(\text{Sing}(\mathcal{F}^\ell) \hookrightarrow \mathcal{F}^\ell = (\bar{A}^\ell)^*\) induces an isomorphism

\[
\text{Sing}(\mathcal{F}^\ell) \xrightarrow{\cong} (\mathcal{H}^\ell(\bar{A}, \delta_a))^*.
\]

Proof. Lemma 3.4 implies \(\bar{A}^{\ell+1} = 0\), so \(\mathcal{H}^\ell(\bar{A}, \delta_a) = \bar{A}^\ell/(\omega_a \wedge \bar{A}^{\ell-1})\). Then \((\mathcal{H}^\ell(\bar{A}, \delta_a))^*\) is isomorphic to the annihilator of \(\omega_a \wedge \bar{A}^{\ell-1}\) in \((\bar{A}^\ell)^*\). This annihilator is equal to

\[
(\text{Ann}(\omega_a \wedge \bar{A}^{\ell-1}) + \text{Ann}(\bar{A}^\ell))/\text{Ann}(\bar{A}^\ell).
\]

By Definition 4.1, Proposition 3.6, and Lemma 5.6(iii), this is equal to \(\text{Sing}(\mathcal{F}^\ell)\). \(\square\)

Proof of Theorem 5.1. Let \(F \in \text{Ann}(\omega_a \wedge \bar{A}^{\ell-1})\), and let \(\hat{x} \in \omega_a \wedge \bar{A}^{\ell-1}\). Then \(\epsilon^*(\mathcal{F})(\hat{x}) = F(\epsilon(\hat{x}))\). Since \(\epsilon(\omega_a) = \omega_a\), \(\epsilon(\hat{x}) \in \omega_a \wedge \bar{A}^{\ell-1}\), so \(F(\epsilon(\hat{x})) = 0\). Then \(\epsilon^*(\mathcal{F})(\hat{x}) = 0\). Thus \(\epsilon^*(\text{Sing}(\mathcal{F}^\ell)) \subseteq \text{Sing}(\mathcal{F}^\ell)\).

Conversely, suppose \(\hat{F} \in \text{Sing}(\mathcal{F}^\ell)\). Write \(\hat{F} = \epsilon^*(\mathcal{F})\) with \(F \in \mathcal{F}^\ell\). Let \(x \in \omega_a \wedge \bar{A}^{\ell-1}\). Then \(x \in \bar{A}^\ell\), so \(x = \epsilon(\hat{x})\) for some \(\hat{x} \in \bar{A}\). Since \(x \in \omega_a \wedge \bar{A}^{\ell-1}\), \(\hat{x} \in \omega_a \wedge \bar{A}^{\ell-1}\). Then \(\mathcal{F}(\hat{x}) = 0\) by definition of \(\text{Sing}(\mathcal{F}^\ell)\). Then \(F(x) = F(\epsilon(\hat{x})) = \epsilon^*(\mathcal{F})(\hat{x}) = \hat{F}(\hat{x}) = 0\). This shows that \(F \in \text{Ann}(\omega_a \wedge \bar{A}^{\ell-1})\). Then \(F \in \text{Ann}(\omega_a \wedge \bar{A}^{\ell-1})\) by part (iii) of Lemma 5.6. Then \(F \in \text{Sing}(\mathcal{F}^\ell)\) by definition of \(\text{Sing}(\mathcal{F}^\ell)\). Thus \(\text{Sing}(\mathcal{F}^\ell) \subseteq \epsilon^*(\text{Sing}(\mathcal{F}^\ell))\), and \(\epsilon^*\) restricts to an isomorphism \(\text{Sing}(\mathcal{F}^\ell) \rightarrow \text{Sing}(\mathcal{F}^\ell)\).

It remains to prove that \(\hat{S}_n(\epsilon^*(\mathcal{F}), \epsilon^*(\mathcal{F}')) = \hat{S}_n(\mathcal{F}, \mathcal{F}')\) for all \(\mathcal{F}, \mathcal{F}' \in \text{Sing}(\mathcal{F}^\ell)\). By (5.1), we have

\[
\hat{S}_n(\epsilon^*(\mathcal{F}), \epsilon^*(\mathcal{F}')) = \sum_j \hat{a}_j \epsilon^*(\mathcal{F})(\omega_j) \epsilon^*(\mathcal{F}')(\omega_j) = \sum_j a_j F(\epsilon(\omega_j)) F'(\epsilon(\omega_j)) = \sum_j a_j F(\partial(\omega_{(0,j)})) F'(\partial(\omega_{(0,j)})).
\]

The sum is over increasing \(p\)-tuples \(J\) of elements of \(\{1, \ldots, n\}\). By parts (ii) and (iii) of Lemma 5.4, we may assume that \(F, F' \in \text{Ann}(\omega_0 \wedge \bar{A}^{\ell-1})\). Since \(\partial(\omega_{(0,j)}) = \omega_j - \omega_0 \wedge \partial(\omega_j)\), this implies \(F(\partial(\omega_{(0,j)})) = F(\omega_j)\) and similarly for \(F'\). Then the last sum above is equal to \(\sum_j a_j F(\omega_j) F'(\omega_j)\). This sum is equal to \(\sum_j a_j F(\omega_j) F'(\omega_j)\), summing now over all increasing \(p\)-tuples \(J\) of elements of \(\{0, \ldots, n\}\), again because \(F, F' \in \text{Ann}(\omega_0 \wedge \bar{A}^{\ell-1})\). This equals \(\hat{S}_n(\mathcal{F}, \mathcal{F}')\) by definition. \(\square\)

We close this section with a topological remark. Consider the (multi-valued) master function \(\Phi_a = \prod_{i=0}^n f_i^{-a_i}\) on \(\mathbb{C}^{n+1}\). Since \(\sum_{i=0}^n a_i = 0\), \(\Phi_a\) is invariant under the action of \(\mathbb{C}^\times\), hence induces a (multi-valued) master function \(\Phi_a\) on \(\bar{M}\). We have \(\Phi_a = \Phi_{\bar{a}} \circ h\) where \(\Phi_{\bar{a}} = \prod_{i=1}^n \bar{f}_i^{-a_i}\) is the master function of \((d\mathcal{A}, \bar{a})\) on \(\bar{M}\), and \(h:\bar{M} \rightarrow M\) is the canonical diffeomorphism. The associated rank-one local systems \(\mathcal{L}_{\bar{a}}\) on \(\bar{M}\) and \(\mathcal{L}_{\bar{a}}\) on \(\bar{M}\) then satisfy \(h^*\mathcal{L}_{\bar{a}} = \mathcal{L}_{\bar{a}}\). The inclusion of \((\bar{A}, \delta_{ca})\) in the twisted algebraic de Rham complex of \(\mathcal{L}_{\bar{a}}\) induces an isomorphism of \(H^\ell(\bar{A}, \delta_{ca})\) with \(H^\ell(\bar{M}, \mathcal{L}_{\delta_{ca}})\) for generic \(c\). As before, \(\text{Sing}_{\bar{a}}(\mathcal{F}^\ell)\) is equal to \(\text{Sing}_{\delta_{ca}}(\mathcal{F}^\ell)\) for any nonzero scalar \(c\). Then, by Corollary 5.7, we have the following corollary.

Corollary 5.8. For generic \(c\), the inclusion \(\text{Sing}_{\bar{a}}(\mathcal{F}^\ell) \hookrightarrow (\bar{A}^\ell)^*\) induces an isomorphism

\[
\text{Sing}_{\bar{a}}(\mathcal{F}^\ell) \xrightarrow{\cong} H_\ell(\bar{M}, \bar{L}_{\delta_{ca}}).
\]
This isomorphism does not involve the choice of a hyperplane at infinity. Thus we have the following commutative diagram of isomorphisms, for generic c, in which the index 0 again plays no special role:

$$
\begin{array}{ccc}
\text{Sing}_0(\mathcal{F}) & \xrightarrow{\epsilon^*} & \text{Sing}_0(\mathcal{F}) \\
\downarrow & & \downarrow \\
H_\ell(M, \bar{L}_{-c_0}) & \xrightarrow{h^*} & H_\ell(M, \bar{L}_{-c_0})
\end{array}
$$

6. Transition functions

The right-hand side of the formula in Corollary 5.5 is the decomposition of the flag space $\hat{\mathcal{F}}^p$ of the decone \mathcal{dA}, see [SV91]. It can be considered to be the dehomogenization of the projective flag space \mathcal{F} relative to H_0. The dehomogenizations relative to different hyperplanes form a set of

“affine charts” for $\hat{\mathcal{F}}$. We compute the transition functions.

For $0 \leq j \leq n$, let \hat{A}_j, \mathcal{F}_j, and $\hat{S}^{(j)}$ denote the OS algebra, flag complex, and contravariant form of the affine arrangement obtained by deconing \mathcal{A} with respect to H_j. Let $\epsilon_j: \hat{A}_j \to \hat{A}$ be the isomorphism determined by $\epsilon(\hat{\omega}_k) = \omega_k - \omega_j$, for $0 \leq k \leq n$ and $k \neq j$, as in Lemma 5.1. Let $\epsilon_j^*: \hat{\mathcal{F}} \to \hat{\mathcal{F}}_j$ be the adjoint of ϵ_j. For $0 \leq i < j \leq n$, set $\tau_{ij} = \epsilon_j^* \circ (\epsilon_i^*)^{-1}$. Then $\tau_{ij}: \mathcal{F}_i \to \mathcal{F}_j$ is an isomorphism. Theorem 5.2 has the following corollary.

Corollary 6.1. The restriction of τ_{ij} is an isomorphism of inner product spaces

$$
\tau_{ij}: (\text{Sing}(\hat{\mathcal{F}}^p), \hat{S}^{(i)}_{\mathcal{F}}|_{\text{Sing}(\hat{\mathcal{F}}^p)}) \xrightarrow{\approx} (\text{Sing}(\hat{\mathcal{F}}^p), \hat{S}^{(j)}_{\mathcal{F}}|_{\text{Sing}(\hat{\mathcal{F}}^p)}).
$$

According to Corollary 5.5, τ_{ij} can be considered to be an isomorphism

$$
\tau_{ij}: \bigoplus_{\text{codim}(X)=p \atop H_j \not\subset X} \mathcal{F}_X^p \longrightarrow \bigoplus_{\text{codim}(X)=p \atop H_j \not\subset X} \mathcal{F}_X^p.
$$

We describe this map explicitly.

In the special case $p = 1$ there is an easy formula for τ_{ij}. Let $\{F_0, \ldots, F_n\}$ be the canonical basis of \mathcal{F}^1, and suppose $k \neq i$. Then

$$
\tau_{ij}(F_k) = \begin{cases}
F_k & \text{if } k \neq j \\
- \sum_{r \neq j} F_r & \text{if } k = j.
\end{cases}
$$

To describe the general formula, we will use the following lemma.

Lemma 6.2. Let $X \in L$ with codim$(X) = p$, and let $H \in \mathcal{A}$. Then \mathcal{F}_X^p is spanned by elements $[X_0 < \cdots < X_{p-1} < X]$ satisfying $H \not\subset X_{p-1}$.

Proof. We induct on p, the case $p = 0$ being trivial. Let $p > 0$ and $[X_0 < \cdots < X_{p-1} < X] \in \mathcal{F}_X^p$. By the inductive hypothesis, we may assume $H \not\subset X_{p-2}$. (Here we rely on the fact that the assignment $[X_0 < \cdots < X_{p-1}] \mapsto [X_0 < \cdots < X_{p-1} < X]$ determines a well-defined linear map $\mathcal{F}_{X_{p-1}}^{p-1} \to \mathcal{F}_{X_p}^p$.) If $H \not\subset X_{p-1}$ we are done. Otherwise, by (2.2), we have

$$
[X_0 < \cdots < X_{p-1} < X] = \sum_{X_{p-2} < X' < X \atop X' \neq X_{p-1}} -[X_0 < \cdots < X_{p-2} < X'] < X].
$$
Since \(H \not\leq X_{p-2} \) and \(H \not\leq X_{p-1} \), \(H \not\leq X' \) for any \(X' \neq X \) satisfying \(X_{p-2} < X' \) and \(\text{codim}(X') = p-1 \). Then every flag \((X_0 < \cdots X_{p-2} < X' < X) \) that appears on the right-hand side satisfies the required condition. This completes the inductive step. \(\square \)

Theorem 6.3. Let \([X_0 < \cdots < X_p] \in \mathcal{F}^p \) with \(H_i \not\leq X_p \). If \(H_j \not\leq X_p \), then

\[
\tau_{ij}([X_0 < \cdots < X_p]) = [X_0 < \cdots < X_p].
\]

If \(H_j \leq X_p \) and \(H_j \not\leq X_{p-1} \), then

\[
\tau_{ij}([X_0 < \cdots < X_p]) = \sum_{X_{p-1} < X', X' \neq X_p} -[X_0 < \cdots < X_{p-1} < X'].
\]

Proof. By definition, \(\tau_{ij}([X_0 < \cdots < X_p]) \) is the unique element of \(\bigoplus_{\text{codim}(X) = p} \mathcal{F}^p_X \) that represents the same element of \(\bar{\mathcal{F}}^p \) as \([X_0 < \cdots < X_p] \). By (3.1), the right-hand side represents the same element of \(\mathcal{F}^p \) as \([X_0 < \cdots < X_p] \), in either case. An argument similar to the one used in the preceding lemma shows that the right-hand side lies in \(\bigoplus_{\text{codim}(X) = p} \mathcal{F}^p_X \) in either case. The claim follows. \(\square \)

By Lemma 6.2, this theorem is sufficient to determine \(\tau_{ij} \) uniquely. By Corollary 6.1, \(\tau_{ij} \) sends singular vectors of \(\hat{\mathcal{F}}^i \) to singular vectors of \(\hat{\mathcal{F}}^j \), and preserves the value of the contravariant form on such vectors.

Similarly, there is an algebra isomorphism \(\tau_{ji}^*: \hat{A}_i \to \hat{A}_j \) determined by

\[
\tau_{ji}^*(\hat{\omega}_k) = \begin{cases}
\hat{\omega}_k - \hat{\omega}_i & \text{if } k \neq i \\
-\hat{\omega}_i & \text{if } k = i.
\end{cases}
\]

As in §2 there is an isomorphism \(\hat{\mathcal{F}}^* \to \hat{A}_i \) defined by the affine version of (2.1), and the contravariant map \(\psi_i: \hat{\mathcal{F}} \to \hat{A}_i \) characterized by the formula

\[
S(\hat{F}, \hat{F}') = (\hat{F}, \psi_i(\hat{F}')).
\]

The image of \(\psi_i \) is the complex of flag forms of \(\hat{A}_i \). (It is a subcomplex of \((\hat{A}_i, \delta_{\hat{a}_i}) \).) Theorem 5.2 has the following consequence.

Corollary 6.4. The following diagram commutes:

\[
\begin{array}{ccc}
\text{Sing}(\hat{F}^i) & \xrightarrow{\psi_i} & \hat{A}_i^i \\
\tau_{ij} \downarrow & & \downarrow \tau_{ji}^* \\
\text{Sing}(\hat{F}_j) & \xrightarrow{\psi_j} & \hat{A}_j^j \\
\end{array}
\]

Acknowledgements. This research was started during the intensive research period “Configuration Spaces: Geometry, Combinatorics and Topology,” May-June, 2010, at the Centro di Ricerca Matematica Ennio De Giorgi in Pisa. The authors thank the institute, organizers, and staff for their hospitality and financial support. We are also grateful to Sergey Yuzvinsky, who took part in our initial discussions, for his helpful remarks. The second author thanks for hospitality IHES where this paper was finished.
References

[A69] V.I. Arnol’d. The cohomology ring of the colored braid group. Mat. Zametki, 5:229–231, 1969.
[B73] E. Brieskorn. Sur les groupes de tresses, Lect. Notes in Math., v. 317 , 21–44 pp. Springer-Verlag, 1973.
[CDFV10] D. Cohen, G. Denham, M. Falk, and A. Varchenko. Vanishing products of one-forms and critical points of master functions. Arrangements of Hyperplanes - Sapporo, Adv. St. Pu. Math., to appear, arXiv:1010.3743.
[D92] A. Dimca. Singularities and topology of hypersurfaces. Springer-Verlag, New York, 1992.
[OS80] P. Orlik and L. Solomon. Topology and combinatorics of complements of hyperplanes. Inv. Math., 56:167–189, 1980.
[OT92] P. Orlik and H. Terao. Arrangements of Hyperplanes. Springer-Verlag, 1992.
[S91] V.V. Schechtman and A.N. Varchenko. Arrangements of hyperplanes and Lie algebra homology. Inv. Math., 106:139–194, 1991.
[V95] A. Varchenko. Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups. Advanced Series in Mathematical Physics, 21. World Scientific, 1995. 371 pp.
[V06] A. Varchenko. Bethe Ansatz for arrangements of hyperplanes and the Gaudin model. Mosc. Math. J. 6 (2006), 195210, 223224.
[V11] A. Varchenko. Quantum integrable model of an arrangement of hyperplanes. SIGMA, 7, 032, 2011. 55 pages.

Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA
E-mail address: michael.falk@nau.edu
URL: wwwCEFNS.nau.edu/~falk

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
E-mail address: anv@email.unc.edu
URL: www.math.unc.edu/Faculty/av/