Prevalence and determinants of hypertension and associated cardiovascular risk factors: data from a population-based, cross-sectional survey in Saint Louis, Senegal

SOULEMANE PESSINABA, ALASSANE MBAYE, GRÂCE-À-DIEU YABETA, ADAMA KANE, CHEIKH TIDIANE NDAO, MOUHAMADOU BAMBA NDIAYE, HABIBOU HAROUNA, MALICK BODIAN, MABOURY DIAO, MÂIMOUNA NDOUR MBAYE, DIOR DIAGNE, BOUNA DIACK, MOUSSA KANE, KHADIM NIANG, JEAN-BAPTISTE SY MATHIEU, ABDOUL KANE

Abstract
Background: The incidence of cardiovascular disease is growing worldwide and this is of major public health concern. In sub-Saharan Africa, there is a lack of epidemiological data on the prevalence and distribution of risk factors of cardiovascular disease. This study aimed at assessing the prevalence of hypertension and other cardiovascular risk factors among an urban Senegalese population.

Methods: Using an adaptation of the WHO STEPwise approach to chronic disease risk-factor surveillance, we conducted a population-based, cross-sectional survey from 3 to 30 May 2010 on 1,424 participants aged over 15 years. Socio-demographic and behavioural risk factors were collected in step 1. Physical anthropometric measurements and blood pressure were documented in step 2. Blood tests (cholesterol, fasting blood glucose, and creatinine levels) were carried out in step 3.

Results: The prevalence of hypertension was 46% (95% CI: 43.4–48%), with a higher prevalence in females (47.9%) than males (41.7%) (p = 0.015), and 50% of these hypertensive were previously undiagnosed. Mean age was 53.6 years (SD: 15.8). In known cases of hypertension, the average length of its evolution was 6 years 9 months (range 1 month to 60 years). Hypertension was significantly associated with age (p = 0.001), socio-professional category (p = 0.003), dyslipidaemia (p < 0.001), obesity (p < 0.001), physical inactivity (p < 0.001), diabetes (p < 0.001) and stroke (p < 0.001).

Conclusion: We found a high prevalence of hypertension and other cardiovascular risk factors in this population. There is need of a specific programme for the management and prevention of cardiovascular disease in this population.

Keywords: hypertension, cardiovascular, Africa, risk factors, Senegal

Cardiology Department, Grand Yoff Hospital, Dakar, Senegal
SOULEMANE PESSINABA, MD, spessinaba@yahoo.fr
ALASSANE MBAYE, MD
GRÂCE-À-DIEU YABETA, MD
CHEIKH TIDIANE NDAO, MD
HABIBOU HAROUNA, MD
DIOR DIAGNE, MD
BOUNA DIACK, MD
MOUSSA KANE, MD
ABDOUL KANE, MD

Cardiology Department, Aristide Le Dantec Hospital, Dakar, Senegal
ADAMA KANE, MD
MOUHAMADOU BAMBA NDIAYE, MD
MALICK BODIAN, MD
MABOURY DIAO, MD

Internal Medicine Department, Abass NDAO Hospital, Dakar, Senegal
MÂIMOUNA NDOUR MBAYE, MD

Department of Public Health, Cheikh Anta Diop University, Dakar, Senegal
KHADIM NIANG, MD

Cardiology Department, Saint Louis Hospital, Dakar, Senegal
JEAN-BAPTISTE SY MATHIEU, MD
Ethics committee approval to undertake the survey was in accordance with national and local regulations. Written, signed consent was obtained for each of the patients included. The study was conducted in accordance with the Helsinki II Declaration.

Statistical analysis

Data recorded in the standard questionnaire were double checked by external monitor and double-entered using Epi Data software. Entered data were cleaned and analyzed by an experienced biostatistician using Epi info version 3.5.1 software.

Binary variables were described by their proportion and continuous variables by means and standard deviation (SD). Pearson and Yates (when appropriate) chi-square test were used for the comparison of qualitative variables and Student’s t-test for the comparison of quantitative variables between groups. A logistic regression model was built with variables associated with hypertension. Age and gender were forced into the final model. The results were statistically significant if \(p < 0.05 \).

Results

We recruited 1,424 participants (983 female, 69%). Mean age was 43.4 years (SD: 17.8), (range 15–96 years); 70.8% were < 55 years and 87.5% were < 65 years. Fig. 1 shows the distribution of the population by age. Table 1 shows the characteristics of the enrolled population and Table 2 shows the prevalence of various cardiovascular risk factors.

Six hundred and fifty-five participants had HTN, giving a prevalence of 46.0% (95% confidence interval: 43.4–48.6%). Among these 655 cases, 327 (50%) were previously undiagnosed. HTN was more frequent in females [47.9% (44.8–51.1%)] than in males [41.7% (37.1–46.5%), \(p = 0.015 \), OR = 1.29 (1.02–1.62)]. The mean age was significantly higher in the hypertensive participants (53.6, SD: 15.8 years) than in non-hypertensive participants (34.7 years, SD: 14.5, \(p < 0.001 \)). The prevalence of HTN increased with age (\(p = 0.001 \)) (Fig. 2). Mean duration of HTN was 6.9 years (range: 1 month – 60 years).

Among HTN participants, mean systolic BP was 136 mmHg and mean diastolic BP 88 mmHg. Grade 1 HTN was more frequent (48%) than grade II (25%) and grade III (27%). HTN tended to be more frequent in participants who had primary school level education (42.1%) than in those who had higher levels of education (28.4%, \(p = 0.18 \)). Table 3 shows the distribution of hypertension according to socio-professional category. There

Fig. 1. Distribution of study population by age (n = 1,424).
was a statistically significant relationship between hypertension and the different socio-professional categories, except for self-employed, privately employed and volunteer participants (p = 0.0031).

Diabetes was detected in 16.5% (13.8–19.6%) of the participants with HTN and in 5.2% (3.8–7.1%) of participants without HTN [p = 0.023, OR = 0.32 (0.21–0.47)]. Moreover, HTN was more frequent in participants with diabetes [73% (65.1–79.9%)] than in those without diabetes [43% (40.1–45.6%), p < 0.0001, OR = 3.59 (2.46–5.25)].

Other risk factors associated with HTN were dyslipidaemia in 71.1% (67.5–74.6%) of participants with HTN versus 59% (55.5–62.5%) in non-HTN participants (p < 0.001), physical inactivity [48.5% (43.9–52.1%) vs 40.2% (36.3–44.5%), p < 0.001] and abdominal obesity [47.3% (43.5–51.2%) vs 21.2% (18.4–24.3%), p < 0.001].

HTN was more frequent in the case of a past history of smoking (50.8%) (41.8–59.7%) than in passive exposure (44.8%) (40.9–48.8%) and cigarette users (33.7%) (23.7–44.9%). A medical history of stroke was more frequent in participants with HTN (2.7%) (1.7–4.4%) compared with those without HTN (0.5%) (0.2–1.4%) (p < 0.001). HTN was correlated with the creatinine level (p < 0.05) (Fig. 3). The mean clearance rate of creatinine gradually decreased with the duration of hypertension (Fig. 4) (p = 0.26).

Discussion

In order to gather data on the frequency of HTN and associated risk factors in urban Saint Louis residents, we carried out a population-based, cross-sectional survey with a methodology closed to the WHO STEPSwise approach. We found a significant increase in the prevalence of HTN.

A previous study performed in the same region in 1970 found a prevalence of 4.9% in a rural population, whereas the prevalence was 7% in an urban population. Even though the methodology (HTN if BP ≥ 160/95 mmHg) in this study was not similar to ours, our results suggest a significant increase in the prevalence of HTN since 1970. Moreover, Kane et al. in 1995 found a prevalence of 20.2% with a methodology very similar to ours. In the sub-Saharan African region, two studies have reported a median prevalence of 28%, with a regional variation ranging from 15 to 38.6%. Changes in lifestyle may be the major factor leading to this increasing prevalence of HTN and other cardiovascular risk factors.1–4

While we have not found significant associations between HTN and level of education, it should be noted that previous studies found such an association. The ENNS trial found that HTN was twice as frequent in people with a primary level of education than in those who had secondary or postgraduate levels of education. This difference was higher in women: the risk of HTN was four-fold higher in less-educated women than in those with higher levels of education. The same observation was made in Brazzaville, Congo.6

TABLE 1. CHARACTERISTICS OF THE STUDY POPULATION (n = 1424)

Variable	Female	Male	Total	p
Age (years), mean (SD)	44.2 (17.2)	41.7 (18.9)	43.4 (7.8)	0.016
Weight (kg), mean (SD)	71.7 (17.9)	67.6 (13.6)	70.5 (16.7)	< 0.001
Waist circumference (cm), mean (SD)	87.4 (16.5)	81.2 (46.8)	84.6 (15.9)	0.0003
Systolic BP (mmHg), mean (SD)	131.1 (28.7)	131.9 (22.3)	131.2 (27.8)	0.893
Diastolic BP (mmHg), mean (SD)	86.7 (24.5)	82.4 (22.4)	85.4 (22.4)	0.0001
BMI (kg/m²), mean (SD)	27 (7.2)	22.1 (16.2)	25.5 (6.7)	< 0.001

TABLE 2. PREVALENCE OF CARDIOVASCULAR RISK FACTORS IN THE STUDIED POPULATION (n = 1424)

Risk factors	Prevalence, % (95% CI)
Hypertension	46 (43.4–48.6)
Abdominal obesity	33.2 (30.8–35.7)
Obesity (BMI > 30 kg/m²)	23 (18.1–28.2)
Tobacco smokers	5.8 (4.7–7.2)
Physical inactivity	44.4 (40.2–49)
Diabetes	10.4 (8.9–12.1)
Raised cholesterol (> 2 g/l)	36.3 (33.8–38.9)
Raised LDL cholesterol (> 1.6 g/l)	20.6 (18.5–22.8)
Low value of HDL cholesterol	41.9 (39.4–44.5)
Metabolic syndrome	15.8 (14–17.8)

TABLE 3. PREVALENCE OF HYPERTENSION IN SOCIO-PROFESSIONAL CATEGORY

Socio-professional category	Number	Hypertension (%)	p
Official	71	36.6	1
Private	72	25	0.13
Self employed	496	48.2	0.06
Volunteer	9	22.2	0.39
Housewife	528	50.9	0.023
Student	130	10	< 0.001
Unemployed	35	57.1	0.045
Retired	83	81.9	< 0.001

Fig. 2. Prevalence of hypertension by age (n = 655).

Fig. 3. Prevalence of hypertension by creatinine clearance rate (n = 655).
The association between HTN and low socio-economic conditions is well described in studies conducted in low-income countries. The lower the socio-economic income, the higher is the probability of having HTN.1,2,3

In our population sample, women were more represented than men. This could have been related to the observation that women were more likely to be at home at the time the study team visited men, who were involved in economic activities outside the home. Additionally, men were more inclined to decline participation in the survey. This observation was noticed by other authors in this kind of population-based survey.4

We found a predominance of HTN in women. This observation was previously reported in the CONSTANT trial in Guadeloupe (37.3 vs 33%) and Tunisia (36 vs 25%).5–9 This is in contradiction with the predominance of HTN found in males, reported in many epidemiological surveys.5–14 Some authors have suggested that women are protected from HTN up to menopause.

In our study, obesity and inactivity were significantly more frequent in women than men, and females were older than males. This could explain the predominance of HTN in the women. We also noted a significantly higher diastolic blood pressure in women than in men, for which we did not find an explanation, except that the women may have had more risk factors.

Regarding other risk factors, we found that age correlated with the prevalence of HTN. This was previously noted in Algeria and France.9,10 Obesity accounted for 11 to 25% of HTN and prevention studies have reported that a decrease of 1 kg of body weight led to a decrease of 1.1/0.9 mmHg in BP.10–14 The meta-analysis of Whelton (54 randomised clinical trials) reported a decrease of 3.8/2.9 mmHg in people with regular aerobic physical activity; the highest decrease was found in hypertensive subjects (4.9/3.7 mmHg).17

Obesity and physical inactivity are known to be risk factors for the onset of diabetes, HTN and other cardiovascular diseases. The review of Sowers showed that HTN was twice as frequent in patients with diabetes than in those with normal glycaemia. Additionally, Sowers reported an increase in the risk of diabetes in HTN patients compared to non-hypertensives.18 Dussol found that HTN was present in 80% of type 2 diabetes patients.19

We noticed a lower prevalence of HTN in participants who reported tobacco smoking. Nibey et al. reported a prevalence of 23% of HTN in smokers.20 The association between tobacco usage and HTN is still controversial and a possible confounding effect of both alcohol usage and overweight is being assumed.21 The association of HTN with other cardiovascular risk factors contributes to increase the global cardiovascular risk of patients.

The results showed a higher prevalence of hypertension with worsening creatinine clearance rates. This was probably a consequence of hypertension, as shown by the decrease in creatinine clearance rate with the duration of hypertension.

Conclusion

This population-based survey is the first performed in Senegal. It was intended to serve as a baseline situation for other surveys locally or at a national level. We found a high prevalence of hypertension associated with other cardiovascular risk factors such as diabetes, obesity, inactivity and dyslipidaemia. The majority of participants were not aware of their condition.

Nationwide surveys are needed to better assess the burden of cardiovascular disease in this population. This will help authorities to formulate and implement adequate strategies to control hypertension and the emerging epidemic of non-communicable diseases.

References

1. Fourcade L, Paule P, Mafart B. Hypertension artérielle en Afrique subsaharienne: Actualité et perspectives. Med Trop 2007; 67: 559–567.

2. Godet Thibie H, Vernay M, Noukaapo, Salanave B, Malon A, de Petreti C. Niveau tensionnel moyen et prévalence de l’hypertension artérielle chez les adultes de 18 à 74 ans, ENNS 2006–2007. Bull Épidémiologique Hebdomadaire 2008; 49–50: 478–482.

3. Lopez AD, Mathers CD, Ezzati M, Jamion DT, Munay CJC. Global and regional burden of disease and risk factors 2001: systematic analysis of population health data. Lancet 2006; 367: 1747–1757.

4. Lawes CMM, Vander Hoorn S, Rodgers A, for the International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet 2008; 371: 1513–1518.

5. Kane A, Ly M, Diao M, Dia AA, Diop AK, Diop PS, Diop IB, Hane L, Sarr M, Ba SA, Diouf SM. Étude épidémiologique des maladies cardiovasculaires et des facteurs de risque en milieux rural au Sénégal. Cardioltrop 1998; 96: 103–107.

6. Organisation Mondiale de la Santé (2005). Le manuel de surveillance STEPS de l’OMS: l’approche STEPwise des maladies chroniques. Genève, Organisation Mondiale de la Santé.

7. Guidelines Sub-Committee. 1999 World Health Organization/International Society of Hypertension. Guidelines for the management of hypertension. J Hypertens 1999; 17: 151–183.

8. Sankalé M, Koaté P. Place et aspects de l’hypertension dans la pathologie cardio-vasculaire du noir au Sénégal. Med Afr Noire 1971; 18: 29–30.

9. Kimbally-Kaky G, Gombet T, Bolanda JD, Youmbo Y, Okiyi B, Ellenga-Mbolla B, et al. Prévalence de l’hypertension artérielle à Brazzaville. Cardiol Trop 2006; 32: 43–46.

10. Amah G, Levy BI. Particularités de l’hypertension artérielle du sujet noir africain. Sang Thrombose Vaissels 2007; 19: 519–525.

11. Yahia-Berrouquett A, Benyoucef M, Meguenni K, Faira B, Boumi R. Enquête sur la prévalence des facteurs de risque de maladies cardiovasculaires à Tiemcen (Algérie). Diabetes Metab 2009; 35: 42–43.

12. Attalib A, Inamo J, Lang T, Labari L, Chatellier G, Rozet JE, et al. Prévalence de l’HTA en population précaire aux Antilles: rôle majeur de l’oblitérée? Arch Mal Cœur 2007; 100: 22–27.

13. Besse B, Lellouche N. Hypertension artérielle de l’adulte. In: Cardiologie et Maladies Vasculaires. Paris: Vernazobres-Grego 2008: 137–168.

14. Merle S, Pierre-Louis K, Rosine J, Cardoso T, Inamo J, Deloumeaux J. Prévalence de l’hypertension artérielle en population générale à la Martinique. Rev Epidemiol Sante Publique 2009; 57: 17–23.

15. Attalib A, Kelly-Irving M, Inamo J, Zoumi N, Roudavets JB, Lang T. Prévalence de l’hypertension artérielle en Guadeloupe: l’enquête CONSANT. Rev Epidemiol Sante Publique 2008; 56: 302–304.

16. Wagner A, Arveiller D, Roudavets JB, Coutel D, Bongard V, Dallongeville J, Ferrières J, Amouyel P, Haas B. Etat des lieux de l’obésité? Arch Mal Cœur 2007; 100: 22–27.

17. Whelton SP, Chin A, Xin X, He J. Aerobic exercise on blood pressure: A meta-analysis of randomized controlled trials. Ann Int Med 2002; 136: 493–503.

18. Xiao-Guang T, Frommlet F, Zhou L, Zu F, Hong-Mei W, Zhi-Tao Y. L’incidence annuelle de l’obésité? Arch Mal Cœur 2008; 101: 302–304.

19. Wagner A, Arveiller D, Roudavets JB, Coutel D, Bongard V, Dallongeville J, Ferrières J, Amouyel P, Haas B. Etat des lieux de l’obésité? Arch Mal Cœur 2007; 100: 22–27.

20. Ezzati M, Henley SJ, Thun MJ, Lopez AD. Role of smoking in global and regional cardiovascular mortality. Circulation 2005; 112: 489–497.