Transmission roles of symptomatic and asymptomatic COVID-19 cases: a modeling study

Authors:
Jianbin Tan†, Yang Ge†, Leonardo Martinez³, Jimin Sun⁴, Changwei Li⁵, Adrianna Westbrook⁶, Enfu Chen⁴, Jinren Pan⁴, Yang Li⁷, Wei Cheng⁴, Feng Ling⁴, Zhiping Chen‡, Ye Shen‡, Hui Huang†‡.

Author affiliations:
1 Sun Yat-Sen University, School of Mathematics, Guangzhou, China;
2 School of Health Professions, University of Southern Mississippi, Hattiesburg, Mississippi, United States;
3 Boston University, Department of Epidemiology, Boston, United States;
4 Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China;
5 Tulane University School of Public Health and Tropical Medicine, Department of Epidemiology, New Orleans, Louisiana, United States;
6 University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, Georgia, United States;
7 Renmin University of China, School of Statistics, Beijing, China.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
† Joint first authors; ‡ Joint corresponding Author.

Manuscript Word Count: 2698 words

Key words: COVID-19, SARS-CoV-2, age-dependent contact, asymptomatic case, transmission

Corresponding Author: Dr. Zhiping Chen, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China, zhpchen@cdc.zj.cn; Ye Shen, University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, Georgia, United States, yeshen@uga.ed; Dr. Hui Huang, Sun Yat-Sen University, School of Mathematics, Guangzhou, China, huangh89@mail.sysu.edu.cn;

Declarations

Ethical Approval and Consent to participate: The research protocol was approved by the institutional review board at the Zhejiang Provincial Center for Disease Control and Prevention. This study was part of surveillance during pandemics. Data was maintained by Zhejiang Provincial Center for Disease Control and Prevention and was shared with the analysis group after de-identification, as such, consent was waived by the institutional review board at the Zhejiang Provincial Center for Disease Control and Prevention. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication: Not applicable.
Availability of data and materials: The data we used in the analysis contains the age and COVID-19 symptom onset/disease confirmation dates of each case. It is possible to reveal the patients' identities by linking this individual-level information to other sources such as local media coverage or social media release. Therefore, the data were not made publicly available. However, we will provide de-identified data upon request for research purposes (Dr. Zhiping Chen, zhpchen@cdc.zj.cn).

Declaration of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding: This study was supported by the Zhejiang Basic Public Welfare Research Project (Grant No. LGF21H260003, PI: Feng Ling). Dr. Ge was supported by the Start-up Grant from the University of Southern Mississippi. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors' contributions: All authors contributed to the study’s conception and design. Material preparation and data collection were performed by Wei Cheng, Zhiping Chen, Enfu Chen, Jinren Pan, Feng Ling, Jimin Sun. Material preparation and data analysis were performed by Jianbin Tan, Yang Ge, Leonardo Martinez, Changwei Li, Adrianna Westbrook, Yang Li, Hui Huang, Ye Shen. The first draft of the manuscript was written by Jianbin Tan, Yang Ge, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Acknowledgements: Not applicable

Authors' information: Sun Yat-Sen University, School of Mathematics, Guangzhou, China: Jianbin Tan, Hui Huang; School of Health Professions, University of Southern Mississippi, Hattiesburg, Mississippi, United States: Yang Ge; University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, Georgia, United States: Adrianna Westbrook, Ye Shen; Boston University, Department of Epidemiology, Boston, United States: Leonardo Martinez; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China: Jimin Sun, Enfu Chen, Jinren Pan, Feng Ling, Wei Cheng, Zhiping Chen; Tulane University School of Public Health and Tropical Medicine, Department of Epidemiology, New Orleans, Louisiana, United States: Changwei Li; Renmin University of China, School of Statistics, Beijing, China: Yang Li.
Summary

COVID-19 asymptomatic cases are hard to identify, impeding transmissibility estimation. The value of COVID-19 transmissibility is worth further elucidation for key assumptions in further modeling studies. Through a population-based surveillance network, we collected data on 1342 confirmed cases with a 90-days follow-up for all asymptomatic cases. An age-stratified compartmental model containing contact information was built to estimate the transmissibility of symptomatic and asymptomatic COVID-19 cases. The difference in transmissibility of a symptomatic and asymptomatic case depended on age and was most distinct for the middle-age groups. The asymptomatic cases had a 66.7% lower transmissibility rate than symptomatic cases, and 74.1% (95%CI: 65.9% - 80.7%) of all asymptomatic cases were missed in detection. The average proportion of asymptomatic cases was 28.2% (95%CI: 23.0% - 34.6%). Simulation demonstrated that the burden of asymptomatic transmission increased as the epidemic continued and could potentially dominate total transmission. The transmissibility of asymptomatic COVID-19 cases is high and asymptomatic COVID-19 cases play a significant role in outbreaks.

Key words: COVID-19, SARS-CoV-2, age-dependent contact, asymptomatic case, transmission
Introduction

COVID-19, caused by the novel coronavirus (SARS-CoV-2),[1] is a great threat to human health.[2] COVID-19 patients may present and remain pre-symptomatic, asymptomatic, or symptomatic and transmission may occur at each of these disease states.[3–5] Unlike the transmission caused by symptomatic cases, pre-symptomatic and asymptomatic transmission are hard to detect and difficult to measure as many surveillance systems rely on symptom-based population screening.[3,6–8] Previous case studies suggested that asymptomatic COVID-19 individuals are less infectious than symptomatic cases.[9,10] However, asymptomatic cases may spread for a longer period due to reduced efficiency in case detection. [11] How much asymptomatic transmission had contributed to past outbreaks is challenging to quantify and not well studied. [12,13] Several studies investigated undetected transmission of SARS-CoV-2, but have presented contradictory conclusions with estimated burden ranged from 3% to 79%.[11,14,15]

Without sufficient follow-up time, asymptomatic and pre-symptomatic cases are often indistinguishable.[16] Consequently, studies using population-level data to estimate of age-specific transmission and susceptibility parameters commonly falls short of accuracy which potentially explains for the heterogeneous findings from different studies.[17–19] Common issues were modeling without data on observed asymptomatic infection[11,14,15,20] and inclusion of pre-symptomatic cases as part of an asymptomatic classification.[17–19]. Meanwhile, few studies assessing asymptomatic infectiousness and viral load with limited sample sizes fail to capture the transmission dynamics. [9,10,21–28] A comprehensive
understanding of the age-specific symptomatic and asymptomatic transmission dynamics at the population level is essential to the evaluation of an epidemic and the creation of responding health policies.

In this study, we used reliable case symptom classification, social contact measures, and susceptibility parameters at the population level to learn the transmission dynamics. We report on a longitudinal cohort of all diagnosed COVID-19 infections, between January 8th and February 23rd, 2020, from Zhejiang province, China. All patients without initial symptoms were followed by at least 90 days to distinguish between asymptomatic and pre-symptomatic cases, an essential procedure rarely implemented by previous studies to ensure reliable classification of case symptoms. We then built age-stratified compartmental models to study the age-dependent population-level transmission roles of symptomatic and asymptomatic COVID-19 cases.
Methods

Data sources
Zhejiang province is an eastern coastal province adjacent to Shanghai city with a population of approximately 54 million individuals.[29] The first and only major wave of the COVID-19 epidemic in Zhejiang began on early January, 2020 and continued until late February, 2020 after which only sporadic single-case events were observed[30,31]. We included information from all confirmed cases in this major wave (a total of 1342 cases), as well as a follow-up investigation related to all detected asymptomatic infections to distinguish between asymptomatic and pre-symptomatic cases. All COVID-19 cases were microbiologically confirmed through positive reverse transcriptase–polymerase chain reaction (RT-PCR) test results. Individual-level data related to the symptom onset of symptomatic infections, as well as COVID-19 confirmation dates and ages of both symptomatic and asymptomatic cases were collected. On January 23rd, 2020, the provincial government changed its infectious disease alert category to the highest level and, on February 1st, began a comprehensive set of interventions.[32] As of April 10th, 2020, the date in which we restricted our data for this analysis, no additional outbreak had been observed. Trained health professionals investigated each confirmed case with a predefined questionnaire by which basic health and demographic information were collected.

Definition of symptomatic and asymptomatic cases
All confirmed cases and their close contacts were isolated or quarantined after being identified through contact tracing. During the isolation/quarantine period, cases and their contacts received regular testing and daily symptom screening for fever, cough, and shortness of breath. Tests for
case confirmation were conducted using reverse transcription polymerase chain reaction (RT-PCR) or viral genome sequencing on samples from throat swabs (oropharynx and nasopharynx). If a case or contact had a positive test result but without any symptoms, they would be temporarily classified as an asymptomatic/pre-symptomatic case at the time. All cases were followed for at least 90 days after their initial positive test to distinguish between asymptomatic and pre-symptomatic cases. Among these subjects, those who developed symptoms later would receive a final classification as a symptomatic case. Others who had never developed any symptoms between their initial positive test and first subsequent negative PCR test would be classified as asymptomatic cases.

Model structure

We divided the total population of Zhejiang province into seven age groups (Figure 1). To consider transmission related to symptomatic and asymptomatic infections among different age groups, our model contained 8 compartments for the ith age group: susceptible population (S_i), exposed contacts (E_i), pre-symptomatic cases (I_{ps}^i, infected but have not yet developed symptoms), symptomatic cases (I_s^i), asymptomatic cases (I_a^i, infected but asymptomatic till confirmed/recovery), and removed/recovery groups (Rcs^i, Rca^i, Rh^i). We assumed new infections were driven by transmission from compartments of I_{ps}^i, I_s^i and I_a^i in all age groups. (See Supplementary material for further details)
Asymptomatic cases (I^a_i) were infections without typical symptoms (e.g. respiratory disease symptoms) which were often untraceable in the clinical survey and, therefore, their contribution to population-level transmission would be underestimated. To account for this, we assumed only a proportion of asymptomatic infections were detected (R^a_{ca}), while others (R^a_h) would be unconfirmed. We considered the unconfirmed cases as those infected with SARS-CoV-2 but were not detected and confirmed by tests. Besides, we were able to observe disease confirmation date but not the date of infection for the period from cases becoming infectious to the diagnosis of COVID-19 (\mathcal{A}_1) in those with confirmed asymptomatic infection. Based on the virus shedding pattern of asymptomatic infections reported in previous studies,[8,10,33,34] we assumed that this period should be less than 30 days, after which virus shedding generally ceases, and infection is no longer detectable through pathogen-specific testing.
To identify age-varying transmissibility and susceptibility,[20] we assumed a time-varying curve for the average contact numbers of \(i^{th} \) age group with \(j^{th} \) age group (\(c_{ij}^t \)) to characterize the effect of policy interventions, which is estimated with the contact matrix between age groups through surveys conducted in Shanghai.[35,36] We separate the probability of infection into two components: transmissibility (\(T \)) and susceptibility (\(s \)). We define transmissibility (\(T \)) as the infectiousness of one case. Similarly, we define susceptibility (\(s \)) as the probability of acquiring infection from an infectious case (\(T = 1 \)). Therefore, \(s = 0 \) corresponds to a situation in which the susceptible individuals are immune to the disease. We assumed that case transmissibility would depend on age and the presence of symptoms. To capture the age-dependent pattern, B splines basis functions were used to model the variability in age-varying transmissibility smoothly, conditioning on a pre-specified informative prior of susceptibility parameters. Finally, under the Bayesian framework, the compartmental model was fitted to the daily new symptomatic and asymptomatic cases in Zhejiang province (Figure S3 in Supplementary material) for each age group with Markov Chain Monte Carlo (MCMC) algorithm.

All analyses were implemented in R version 3.5.1. Packages of deSolve,[37] extraDistr,[38] and splines[39] were used for model fitting. The modeling framework, posterior distributions of some parameters, a model assessment procedure for fitting data is given in the supplementary material. Unless stated otherwise, the medians of the posterior distributions were used as the point estimators of parameters and simulated numbers. More details of the model are given in the supplementary material.
Ethics approval

The research protocol was approved by the institutional review board at the Zhejiang Provincial Center for Disease Control and Prevention. The study was based on deidentified data. All methods were carried out in accordance with relevant guidelines and regulations.

Results

Transmissibility

The estimated transmissibility presented an age-dependent difference between symptomatic and asymptomatic infections (Figure 2). While the transmission of symptomatic cases monotonically increased with increasing age, the transmissibility of asymptomatic infection remained low until age 40, after which point it significantly increased with increasing age. The age-varying ratios of the two kinds of transmissibility indicated asymptomatic cases were, on average, 66.72% lower in transmission than symptomatic cases. However, the difference between the two types of infections was not as big in those aged 0-20 and 60+ years old, but became more obvious in the middle-aged group where the ratios were as low as 24.42% and 23.38% for those aged 30-40 and 40-50 years old, respectively.
Figure 2. (A) The estimated transmissibility and 95% credible intervals for each age group; (B) The ratios of asymptomatic transmissibility to symptomatic transmissibility for seven age groups.

The proportion of asymptomatic cases

In Figure 3, the proportion of asymptomatic cases \(\frac{R_{h} + R_{ca}}{R_{h} + R_{cs} + R_{ca}} \) estimated by our model was much larger than what was observed in the data. The average proportion of asymptomatic cases was 28.22% (95%CI: 22.97% - 34.56%) of the total counts of cases in our model estimation, but was 9.24% in the observed data \(\frac{R_{ca}}{R_{cs} + R_{ca}} \). In our estimation from the empirical data, the highest proportion of asymptomatic case was among 0-10 (60.18% (95%CI: 53.61% - 66.99%)) and 10-20 (57.64% (95%CI: 47.45% – 66.98%)) years old groups. For asymptomatic cases, we further estimated the proportion of cases that failed to be detected \(\frac{R_{h}}{R_{h} + R_{ca}} \). In the posterior samples, the average proportion of unconfirmed cases in all asymptomatic infections was 74.10% (95%CI: 65.85% - 80.72%). The maximum proportion of unconfirmed cases was observed in 20-30 years old at 86.59% (95%CI: 73.64% - 92.19%).

https://doi.org/10.1017/S0950268822001467 Published online by Cambridge University Press
Figure 3. The proportion of asymptomatic infections and unconfirmed asymptomatic infections until February 22nd, 2020, for seven age groups. The estimated proportions of asymptomatic cases, the proportions of cases that failed to be detected among asymptomatic infections (unconfirmed proportions), and the observed proportions of asymptomatic cases are defined as: \(\frac{R_h^{1} + R_{ca}^{1}}{R_h^{1} + R_{cs}^{1} + R_{ca}^{1}} \), \(\frac{R_h}{R_h^{1} + R_{cs}^{1} + R_{ca}^{1}} \), and \(\frac{R_{ca}^{1}}{R_{cs}^{1} + R_{ca}^{1}} \), respectively. The 95% credible intervals for the estimated proportions of asymptomatic cases are shown for each age group.

Symptomatic and asymptomatic transmission

To explore the impact of symptomatic and asymptomatic transmission, we present several features of the estimated dynamic of the epidemic and the transmission burden caused by symptomatic and asymptomatic cases in Figure 4. The estimated number of daily new transmissions reached a peak around ten days prior to the peak of the daily reported new
confirmed cases (Figure 4A). We estimated a substantial number of undetected asymptomatic cases (109 (95%CI: 73 - 164)) were infected before the first asymptomatic case was diagnosed (January 27th) (Figure 4B). New transmissions were nearly eliminated by February 2nd, 2020 (Figure 4A), when a comprehensive set of restrictions had been implemented. The peak of the two types of transmission both occurred between January 18th to 22nd (Figure 4C). The average burden of asymptomatic transmission during the major outbreak period was estimated to be 12.86% (95%CI: 7.54% - 19.27%). The burden of asymptomatic transmission increased with time, ranging from 7.77% to 16.03% (Figure 4D). Simulation studies were conducted to investigate the dynamic changes in the transmission burden over time during a prolonged epidemic (Figure S7). When the duration of the decreasing process of the contact function (represented by “m” in Figure S1) was prolonged by two weeks and each individual’s daily contact number was increased by one person during the outbreak period, we found a slower decreasing trend in daily new cases infected by asymptomatic cases compared with that contributed by symptomatic cases (Figure S7, scenario 1). Additional scenarios were generated demonstrating the possibility of asymptomatic transmission dominating the total transmission under different conditions, especially when the duration between symptom onset and disease confirmation for symptomatic infections was shortened and the asymptomatic infections were not controlled (Figure S7, scenarios 2 and 3).
Figure 4. The estimated dynamics of the epidemic and the transmission burdens from symptomatic and asymptomatic cases. (A): The estimated numbers of daily new transmissions with 95% credible intervals and the observed numbers of daily reported new confirmed cases from January 8th to February 22nd, 2020; (B) The observed numbers of daily reported new confirmed symptomatic (R_{cs}) and asymptomatic cases (R_{ca}) and the estimated numbers of daily new cases that failed to be detected (R_h) with 95% credible intervals; (C): The estimated numbers of infected individuals caused by symptomatic and asymptomatic transmission over time, with 95% credible intervals; (D): Corresponding proportions of symptomatic and asymptomatic transmissions over different time periods.
Age-depended transmission

Within each age group, we observed heterogeneous transmission contributions during different time periods (Figure 5A). Early on in the epidemic, the transmission burden was dominated by persons of 50-60 years old (32.75% from January 8th to January 12th), but the proportion of transmission contribution from people over 60 years old significantly increased over time, surpassing the 50-60 years old and reaching 30.42% by February 1st, 2020. The proportion of transmission contribution among varying age groups was distinct between symptomatic and asymptomatic cases (Figure 5B). The majority of both symptomatic and asymptomatic transmissions were contributed by persons over 30 years old (Table S10). Individuals below 30 years old only contributed less than 5% of all symptomatic transmission and approximately 12% of all asymptomatic transmission, respectively, despite representing almost 40% of the entire population. Contributions to asymptomatic transmission among 20-30 and >60 year age groups (9.44%, and 31.73%, respectively) were substantially higher than their corresponding contributions to symptomatic transmission (3.77%, and 26.55%, respectively). To further understand possible age-dependent vaccination strategies, a simulation of seven scenarios was conducted to assess the percentage decline in different age groups if one age group were to achieve 100% immunity by vaccinations (Figure S8). The results suggested that vaccinations targeting age groups above 30 years are likely to be more effective at the population level, with the most percentage decline of cases from the entire population achieved by targeting the 50-60 years old group. Meanwhile, vaccinating those younger than 30 years old are more likely to benefit their own age groups.
Figure 5. The burden of transmission caused by different ages. (A) The estimated (contribution) ratios of new transmissions from different ages over different time periods; (B) The estimated (contribution) ratios of symptomatic and asymptomatic transmission from different ages. The contribution ratio of each age group is calculated by the proportion of the transmissions caused...
by the corresponding age group to the number of all transmissions in each transmission type, from January 8th to February 1st, 2020.

Discussion

In our study, we found that asymptomatic cases were over 60% less infectious compared to symptomatic cases. While great efforts like mass screening and strict contact tracing were conducted, our results suggested that a large proportion of asymptomatic infections were still not detected.[40] The burden of asymptomatic transmission was inferior in the early outbreak but could become higher with the continuous spread of COVID-19.

Current evidence suggests that asymptomatic COVID-19 cases are generally less infectious[9] than cases with symptoms. We found that this difference may partially be explained by patient age. Age may directly impact COVID-19 transmission through virus shedding patterns[10] as discussed in previous studies.[41] Symptoms are commonly mild in children[42] but severe in the elderly.[43] While still debatable,[44] higher severity has been associated with increased shedding of the virus.[45] In our study, symptomatic and asymptomatic cases were most infectious in individuals 60 years old or older. In contrary to the monotonic increasing association between age and transmission in symptomatic cases, there was a plateau of a low degree of transmission in young asymptomatic infections. We suspect older adults are not only the most vulnerable to succumb to COVID-19 but also may be more likely to transmit once infected, regardless of symptom status.
Similar to previous studies, our results suggest a small proportion of asymptomatic cases have been detected since the start of the COVID-19 pandemic in our setting. [46–48] Symptom-based screening has limited capability in asymptomatic case detection. [12] One meta-analysis has shown a similar result that the proportion of asymptomatic infection among all confirmed cases in Asia was about 27.58% (95% CI, 13.60% to 41.57%). [49] While mass pathogen or immunological-based testing at the population-level consumes tremendous health resources, and thus is not feasible in most settings. Considering these challenges, age-dependent screening strategies may be more practical. We found that the highest number of undetected asymptomatic cases was among young adults aged 20 to 30 years old (Table S8) and the corresponding transmission contribution was significantly higher than that of symptomatic case (Figure 5B).

The current strategy cannot identify all asymptomatic infections. Therefore, a tailored strategy for better asymptomatic infection detection is needed in the future.

Based on the estimated transmission contributions from symptomatic and asymptomatic infections, roughly 13% of infections were associated with asymptomatic transmission and that percentage continuously increased with a prolonged period. The overall burden of transmission was mainly contributed by symptomatic cases at the beginning of the epidemic, but asymptomatic infections appeared to have increasing percentages of subsequent cases later on. Additional simulations suggested that the transmission burden could even be dominated by asymptomatic transmissions under certain circumstances (Figure S7). Therefore, the spreading potential of asymptomatic cases cannot be ignored, especially in the later stages of the epidemic. Meanwhile, potential differences in transmission burden by age groups, as shown in Figure 5 and S8, supports prioritizing age-dependent prevention and control strategies when facing strained
resources. As the larger contributor to the transmission of COVID-19, the older age population is not only a highly vulnerable group but should also be the primary target for prevention strategies.

There are several limitations in this study. First, we do not have information on SARS-CoV-2 variant status of index cases. Further studies on emerging SARS-CoV-2 variants are warranted. Second, data collection likely missed potential cases of the epidemic, despite intensified efforts devoted by the local investigation team to trace contacts. Due to this, we introduced a compartment in our model (R^*_H) to adjust for poor case ascertainment and missing cases. Third, transmissibility and susceptibility were two factors related to symptomatic and asymptomatic transmission estimation and can be difficult to capture simultaneously. We used the susceptibility estimates from a previous study[20] as priors in our model to account for this parameter identification problem. The used susceptibility parameter is consistent with other observations including the Chinese population that individuals over 20 years-old are roughly twice as susceptible as those below 20 years-old.[50] Additionally, the contact survey data we used in our model were obtained in Shanghai, a city adjacent to Zhejiang province. Although the two regions share a similar culture and modes of social activities, there were potential uncertainties associated with the discrepancies in contact matrices. To address this limitation, we introduced correction parameters in our model for partially adjusting the uncertainties. However, we acknowledge that the adopted contact matrices for the analysis of the epidemic data in Zhejiang province were crucial for the parameter estimation under our modeling framework, and their uncertainties may affect the results. To assess their potential impacts, we proposed several sensitivity analyses in the supplementary material. Overall, our model was heavily driven by the contact data prior to the lockdown period, but less sensitive to the unknown structure of the
contact matrix in Zhejiang during the lockdown period. Finally, due to the limited data and sample size, we did not stratify the transmissibility rate by comorbidities and disease severity.

In summary, our results suggest individual-level transmissibility of COVID-19 increases with patient age. While asymptomatic cases are difficult to trace, the burden of asymptomatic transmission is still sizable and should not be ignored.

References

1. Guan W-J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine Massachusetts Medical Society, 2020; 382: 1708–1720.

2. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard (12/12/2020). (https://covid19.who.int). Accessed 12 December 2020.

3. Rothe C, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. The New England Journal of Medicine Massachusetts Medical Society, 2020; 382: 970–971.

4. Holshue ML, et al. First Case of 2019 Novel Coronavirus in the United States. The New England Journal of Medicine 2020; 382: 929–936.

5. Hoehl S, et al. Evidence of SARS-CoV-2 Infection in Returning Travelers from Wuhan, China. New England Journal of Medicine 2020; 382: 1278–1280.

6. Wölfel R, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581: 465–469.

7. Kronbichler A, et al. Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta-analysis. International Journal of Infectious Diseases 2020; 98: 180–186.

8. Han MS, et al. Viral RNA Load in Mildly Symptomatic and Asymptomatic Children with COVID-19, Seoul, South Korea. Emerging Infectious Diseases 2020; 26: 2497–2499.

9. Gao M, et al. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respiratory Medicine 2020; 169: 106026.

10. Kim SE, et al. Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases 2020; 95: 441–443.
11. **Moghadas SM, et al.** The implications of silent transmission for the control of COVID-19 outbreaks. *Proceedings of the National Academy of Sciences* National Academy of Sciences, 2020; **117**: 17513–17515.

12. **Gandhi M, Yokoe DS, Havlir DV.** Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. *New England Journal of Medicine* 2020; **382**: 2158–2160.

13. **Huff HV, Singh A.** Asymptomatic Transmission During the Coronavirus Disease 2019 Pandemic and Implications for Public Health Strategies. *Clinical Infectious Diseases* 2020; **71**: 2752–2756.

14. **Li R, et al.** Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). *Science (New York, N.Y.)* 2020; **368**: 489–493.

15. **Ferretti L, et al.** Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. *Science* American Association for the Advancement of Science, 2020; **368** Published online: 8 May 2020.doi:10.1126/science.abb6936.

16. **Sah P, et al.** Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. *Proceedings of the National Academy of Sciences* Proceedings of the National Academy of Sciences, 2021; **118**: e2109229118.

17. **Hu Z, et al.** Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. *Science China. Life Sciences* Nature Publishing Group, 2020; **63**: 706–711.

18. **Huang L, et al.** Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study. *The Journal of Infection* 2020; **80**: e1–e13.

19. **Meng H, et al.** CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. *The Journal of Infection* 2020; **81**: e33–e39.

20. **Davies NG, et al.** Age-dependent effects in the transmission and control of COVID-19 epidemics. *Nature Medicine* Nature Publishing Group, 2020; **26**: 1205–1211.

21. **Zhou R, et al.** Viral dynamics in asymptomatic patients with COVID-19. *International Journal of Infectious Diseases* 2020; **96**: 288–290.

22. **Berlin DA, Gulick RM, Martinez FJ.** Severe Covid-19. *The New England Journal of Medicine* Massachusetts Medical Society, 2020; Published online: 15 May 2020.doi:10.1056/NEJMcp2009575.

23. **Verity R, et al.** Estimates of the severity of coronavirus disease 2019: a model-based analysis. *The Lancet. Infectious Diseases* 2020; **20**: 669–677.
24. **CDC COVID-19 Response Team.** Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. *MMWR. Morbidity and mortality weekly report* 2020; 69: 343–346.

25. **Kong D, et al.** Pre-symptomatic transmission of novel coronavirus in community settings. *Influenza and Other Respiratory Viruses* 2020; 14: 610–614.

26. **Furukawa NW, Brooks JT, Sobel J.** Evidence Supporting Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 While Presymptomatic or Asymptomatic. *Emerging Infectious Diseases* 2020; 26: Published online: July 2020.doi:10.3201/eid2607.201595.

27. **Mizumoto K, et al.** Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. *Eurosurveillance* 2020; 25: Published online: 12 March 2020.doi:10.2807/1560-7917.ES.2020.25.10.2000180.

28. **Bai Y, et al.** Presumed Asymptomatic Carrier Transmission of COVID-19. *JAMA American Medical Association,* 2020; 323: 1406–1407.

29. **Bureau of Statistics.** Zhejiang Provincial Bureau of Statistics: Sixth Census Data. 2014(http://tjj.zj.gov.cn/art/2014/9/3/art_1530851_20980968.html). Accessed 30 July 2020.

30. **Ge Y, et al.** The impact of social distancing, contact tracing, and case isolation interventions to suppress the COVID-19 epidemic: A modeling study. *Epidemics* The Authors. Published by Elsevier B.V., 2021; 36: 100483–100483.

31. **Ge Y, et al.** COVID-19 Transmission Dynamics Among Close Contacts of Index Patients With COVID-19: A Population-Based Cohort Study in Zhejiang Province, China. *JAMA Internal Medicine* 2021; Published online: 23 August 2021.doi:10.1001/jamainternmed.2021.4686.

32. **Chong KC, et al.** Monitoring disease transmissibility of 2019 novel coronavirus disease in Zhejiang, China. *International Journal of Infectious Diseases* 2020; 96: 128–130.

33. **Long Q-X, et al.** Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. *Nature Medicine* Nature Publishing Group, 2020; 26: 1200–1204.

34. **Lee S, et al.** Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea. *JAMA Internal Medicine* 2020; 180: 1447–1452.

35. **Zhang J, et al.** Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. *Science (New York, N.Y.)* 2020; 368: 1481–1486.

36. **Zhang J, et al.** Patterns of human social contact and contact with animals in Shanghai, China. *Scientific Reports* Nature Publishing Group, 2019; 9: 15141.
37. Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in R: Package deSolve. *Journal of Statistical Software* 2010; 33: 1–25.

38. Wooldzko T, Wooldzko MT. Package ‘extraDistr’. 2017; Published online: 2017.

39. Perperoglou A, *et al.* A review of spline function procedures in R. *BMC Medical Research Methodology* 2019; 19: 46.

40. Flaxman S, *et al.* Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. *Nature* Nature Publishing Group, 2020; 584: 257–261.

41. Esposito S, Principi N. To mask or not to mask children to overcome COVID-19. *European Journal of Pediatrics* 2020; 179: 1267–1270.

42. Dong Y, *et al.* Epidemiology of COVID-19 Among Children in China. *Pediatrics* American Academy of Pediatrics, 2020; 145: e20200702.

43. Zhou F, *et al.* Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *The Lancet* 2020; 395: 1054–1062.

44. He X, *et al.* Temporal dynamics in viral shedding and transmissibility of COVID-19. *Nature Medicine* Nature Publishing Group, 2020; 26: 672–675.

45. Liu Y, *et al.* Viral dynamics in mild and severe cases of COVID-19. *The Lancet Infectious Diseases* 2020; 20: 656–657.

46. Fauci AS, Lane HC, Redfield RR. Covid-19 — Navigating the Uncharted. *New England Journal of Medicine* 2020; 382: 1268–1269.

47. García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. *Frontiers in Immunology* 2020; 11: 1441.

48. Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection : A Narrative Review. *Annals of Internal Medicine* 2020; 173: 362–367.

49. Ma Q, *et al.* Global Percentage of Asymptomatic SARS-CoV-2 Infections Among the Tested Population and Individuals With Confirmed COVID-19 Diagnosis: A Systematic Review and Meta-analysis. *JAMA Network Open* 2021; 4: e2137257–e2137257.

50. Viner RM, *et al.* Susceptibility to SARS-CoV-2 Infection Among Children and Adolescents Compared With Adults: A Systematic Review and Meta-analysis. *JAMA Pediatrics* 2020; Published online: 25 September 2020.doi:10.1001/jamapediatrics.2020.4573.