Evaluation of radiofrequency electronic system in intraoperative monitoring of surgical textiles

Adriana Marco Antonio1, Carlos Andre Pereira Vieira1
1 Centro de Experimentação e Treinamento, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.

DOI: 10.1590/S1679-45082018AO3997

Objectives: To test the performance of SurgiSafe®, a radiofrequency electronic device to detect surgical textiles during operations as compared to manual counting. Methods: Surgical sponges with radiofrequency TAGs were placed in the abdominal cavity of a pig submitted to laparotomy, in randomly distributed sites. The TAGs were counted manually and also using SurgiSafe®. Positive and negative predictive values, sensitivity, specificity and time required for counting were analyzed for both methods. Results: Through the analysis of 35 surgical cycles, SurgiSafe® immediately identified all sponges, with specificity, sensitivity, positive and negative predictive values of 100%. Although not statistically significant, the manual count had sensitivity of 99.72% and specificity of 99.90%. Conclusion: SurgiSafe® proved to be an effective device to identify surgical sponges in vivo, in real time; and its use as an adjuvant to manual counting is very helpful to increase patient’s safety.

Keywords: Textiles; Foreign bodies; Radio waves; General surgery; Technology assessment, biomedical; Secondary prevention; Surgical sponges; Radio frequency identification device

INTRODUCTION

A retenção inadvertida de corpos estranhos (RICE), um erro médico indefensável legalmente,(1) é um problema que existe desde que os humanos...
começaram a fazer procedimentos cirúrgicos, e persiste a despeito dos estabelecidos protocolos. A literatura revela frequência de uma retenção inadvertida para cada 7.000 cirurgias, sendo, em sua maioria, de têxteis.

No Brasil, 43% dos cirurgiões teriam deixado e 73% retirado corpos estranhos nos últimos anos, sendo 90% têxteis. Os pacientes foram alertados sobre a retenção em 46% das vezes e, destes, 26% processaram os médicos ou a instituição.

A RICE pode levar à morte do paciente ou produzir variadas sequelas, como otite, infecção ou sepse, perfuração visceral, gossipiboma intra-abdominal e em diversas regiões do corpo.

Os fatores predisponentes para RICE de têxteis incluem riscos associados ao processo, sendo que os mais relatados são mudanças na equipe durante a cirurgia, menor adesão às contagens pré e pós-cirúrgicas, e políticas inconsistentes sobre o uso de imagens intraoperatorias; riscos associados ao procedimento, como urgência, multiplicidade, complexidade e duração da cirurgia; e outros, que vão desde casos envolvendo pacientes obesos, perda sanguínea, além da participação de médicos residentes. A RICE está fortemente associada à contagem incorreta durante o procedimento.

O movimento mundial da segurança do paciente levou o governo brasileiro a lançar o Programa Nacional de Segurança do Paciente, o qual instituiu o Protocolo para Cirurgia Segura. No entanto, há forte incompletude no preenchimento dos checklists, nos quais a contagem de têxteis deve ser confirmada verbalmente pela equipe de enfermagem ou pelo instrumentador antes de o paciente deixar a sala de cirurgia, ou seja, o desenvolvimento de melhorias apoiadas na tecnologia é imprescindível.

OBJETIVO

Comparar o SurgiSafe com o sistema de contagem manual quanto à sensibilidade, à especificidade, ao tempo de contagem, e aos valores preditivos positivo e negativo.

MÉTODOS

O estudo foi conduzido no Centro de Experimentação e Treinamento (CETEC) do Hospital Israelita Albert Einstein (HIAE) e aprovado pelo Comitê de Ética no Uso de Animais do HIAE, sob o protocolo 2248-14.

O SurgiSafe, aparato devidamente registrado (Figura 1) e aprovado pela Agência Nacional de Vigilância...
Avaliação de sistema eletrônico por radiofrequência para monitoramento intraoperatório de têxteis cirúrgicos

Sanitária (ANVISA) para uso hospitalar, trata-se de um sistema para contabilização de têxteis por meio de identificação por radiofrequência (RFID - radiofrequency identification), concebido a partir de novembro de 2014 pela empresa Target Empreendimento Ltda., formulado para auditoria contínua de têxteis cirúrgicos em campo.

Mais do que apenas contar, o sistema integra o fluxograma de conduta em caso de discrepância. Caso a cirurgia seja encerrada com uma contagem discrepante, além do relatório descrevendo o número de série de cada têxtil utilizado, avisos institucionais via e-mail são encaminhados para as chefias médica e de enfermagem do centro cirúrgico, assim como para o diretor clínico do hospital. Do ponto de vista institucional, cria-se um sistema de identificação responsivo à radiofrequência (RFID - Radiofrequency Identification). Este emite uma resposta com o número de série. Desta forma, cada têxtil tem uma única identidade. Apesar da complexidade aparente, as TAGs RFID é composta por um chip atrelado à antena, envolvido em polímero com biocompatibilidade comprovada. RFID são encaminhadas para a equipe cirúrgica e para o circulante em campo. Os têxteis estão ligados por fios de algodão e contam manualmente sua quantidade. Os tempos necessários a cada contagem, monitorados por dois auxiliares com cronômetro digital, foram anotados. Ao final da contagem, o observador saía da sala, e o cirurgião entrava novamente para a contagem durante todo o procedimento.

Foram utilizadas compressas de gaze de tamanho 7,5cm x 7,5cm, sendo que cada compressa é identificada por uma sequência numérica extensa, codificada em um chip de identificação responsivo à radiofrequência específica. Este chip possui um invólucro isolante, que impede contato com sangue e é fixado de maneira sem gura ao têxtil cirúrgico. Os têxteis estão ligados por fios de eficiência e biocompatibilidade comprovados. Um coxim feito de compressa envolve a etiqueta de identificação por radiofrequência (TAGs RFID) de bordas curvas, para impedir que esta cause lesões em vêsceras. A TAGs RFID é composta por um chip atrelado à antena, envolvido em polímero com biocompatibilidade comprovada. Testes de bancada comprovaram sucesso para isolamento elétrico e de líquidos, assim como para temperatura da ponta do bisturi e contaminação do site operatório, com resistência ao uso corriqueiro dos instrumentais.

Para avaliação do SurgiSafe®, in vivo, foi realizado estudo, duplo-cego randomizado, utilizando um suíno Yucatan/Minnessota de 35kg. Para a cirurgia, o suíno esteve em decúbito dorsal horizontal, sob efeito de anestesia geral. Foi feita uma laparotomia mediana com sutura de zíper na linha média para acesso à cavidade. Foram implantadas as compressas de gaze equipadas com TAGs de RFID na cavidade abdominal, variando quantidade e localização. Uma planilha Excel gerou números aleatórios entre zero e quatro gazes para cada uma das regiões anatômicas principais do abdômen, agrupadas de acordo com a anatomia topográfica em nove regiões: hipocôndrio direito e esquerdo, flanco direito e esquerdo, fossa ilíaca direita e esquerda, epigástrico, mesogástrico e hipogástrico. O cirurgião instalou as gazes em quantidade e localização determinada pela randomização e recobriu a cavidade, aproximando as bordas das paredes por meio dos cruzamentos dos fios. Ele se afastou do campo, e o observador e seu auxiliar adentraram a sala. O observador retirou as compressas de gaze aparadas por fio de algodão e contou manualmente sua quantidade. Os tempos necessários a cada contagem, monitorados por dois auxiliares com cronômetro digital, foram anotados. Ao final da contagem, o observador saía da sala, e o cirurgião entrava novamente e realizava nova distribuição das TAGs de acordo com a randomização. Estes ciclos foram repetidos cem vezes. Para a contagem do SurgiSafe®, as compressas de gazes eram colocadas em blocos na mesa auxiliar para garantir a leitura. Uma vez que as compressas eram lançadas à lixeira, sua quantidade era identificada. A diferença entre as gazes da mesa auxiliar e da lixeira foi considerada em campo cirúrgico. Então, o sistema gerava automaticamente um relatório em PDF, com a quantidade e numeração das TAGs, às quais o observador não tinha acesso.

Além do SurgiSafe®, que é composto por antena tipo esteira de radiofrequência fixa, que se situa abaixo da mesa auxiliar e da lixeira da sala cirúrgica (hamper), foram também testados outros dois tipos de antenas portáteis de radiofrequência de desenhos distintos,
denominadas “varinha” e “antenna far field” (antenna FF). O observador fez o escaneamento utilizando movimentos de rotação sobre o suíno com a antenna FF e a varinha, respectivamente, para a identificação e a quantificação das TAGs na cavidade abdominal. Ao terminar o escaneamento, o observador retirou as gazes e as contou manualmente.

Os primeiros 53 ciclos foram utilizados para ajustes finos do SurgiSafe®, a fim de neutralizar quaisquer interferências que poderiam ser geradas. Já os 12 seguintes, foram para alteração de posicionamento da antenna do aparelho. Estes primeiros 65 procedimentos tiveram como objetivo ajustes de parâmetros a serem utilizados como regra para utilização do SurgiSafe® e não precisaram ser repetidos em qualquer momento de utilização do aparelho. Os demais 35 ciclos foram realizados para análise estatística de comparação de contagem de compressas manual ou pelo SurgiSafe®. As gazes foram as mesmas desde o início até o final do experimento, quando foram testadas e eram funcionando normalmente.

Para comparação entre métodos, foi utilizado o teste \(\chi^2\) em nível de 5% de probabilidade. A sensibilidade foi calculada por meio da razão entre o total de positivos corretos e a soma dos positivos corretos e falsos-negativos; a especificidade foi calculada por meio da razão entre o total de negativos corretos e a soma dos negativos corretos e falsos-positivos. O valor preditivo positivo foi calculado dividindo o número de positivos verdadeiros pela soma de verdadeiros e falsos-positivos; enquanto o valor preditivo negativo foi calculado dividindo o número de positivos verdadeiros pela soma dos verdadeiros e falsos-negativos.

A sensibilidade, a especificidade e os valores preditivos foram analisadas para o SurgiSafe® e a contagem manual, considerando 35 ciclos homogêneos de repetições, sob as mesmas condições experimentais, realizadas por um único profissional, no decorrer de 5 horas, com um total de 1.070 têxteis.

RESULTADOS

Apesar de não ter sido encontrada diferença estatística entre a contagem manual e a contagem do SurgiSafe® (\(\chi^2=0.13; p>0.98\)) quanto à sensibilidade e à especificidade, a contagem manual diferiu do valor correto quatro vezes, sendo três vezes para menos e uma vez para mais, considerando os valores absolutos. Tanto os valores preditivos positivos quanto os negativos foram de 100% (Tabela 1).

A especificidade e a sensibilidade da antena de radiofrequência do SurgiSafe® foram de 100% para um total de 1.070 gazes, não gerando nenhum falso-negativo e nenhum falso-positivo durante todo o experimento. A contagem manual apresentou sensibilidade de 99,72% e especificidade de 99,90%.

O tempo da contagem manual variou bastante, conforme o número de gazes, que, por randomização, estavam entre 8 e 42 gazes, dependendo do ciclo. A média do tempo de contagem manual das gazes foi de 3 segundos com desvio padrão de 1 segundo. O tempo de contagem do SurgiSafe® foi instantâneo, enquanto a contagem manual apresentou tendência a aumentar, conforme os ciclos foram avançando. Podemos associar esse aumento à fadiga do profissional (Figura 2).

Número do ciclo	Total de gazes	Total mesa SurgiSafe®	Total contagem manual	Tempo de contagem manual
1	23	23	23	44
2	26	26	26	52
3	30	30	30	72
4	22	22	22	51
5	31	31	31	90
6	33	33	33	109
7	34	34	33	68
8	33	33	33	101
9	38	38	38	91
10	36	36	36	100
11	30	30	29	60
12	34	34	33	91
13	31	31	31	66
14	49	49	49	134
15	26	26	26	93
16	32	32	32	84
17	42	42	42	84
18	23	23	23	43
19	18	18	18	62
20	15	15	15	29
21	35	35	35	85
22	34	34	34	87
23	35	35	35	75
24	35	35	35	91
25	33	33	33	71
26	24	24	25	60
27	31	31	31	95
28	23	23	23	101
29	34	34	34	245
30	32	32	32	104
31	35	35	35	134
32	32	32	32	85
33	42	42	42	123
34	8	8	8	14
35	31	31	31	79

[Tabela 1. Comparativa entre os resultados de contagem do SurgiSafe® (contagem instantânea) e dos resultados da contagem manual]
Para a contagem manual comparada à varinha, também não houve diferença estatística ($\chi^2=20,59; p>0,98$) quanto à sensibilidade e à especificidade, assim como quando comparada à antenna FF ($\chi^2=61,47; p>0,98$). Neste experimento, estes dois dispositivos não tiveram um desempenho satisfatório, por apresentarem desenhos que não os compatibilizavam com o uso no intraoperatório e por se tratar de método profissional dependente, inviabilizando o cálculo seguro dos valores preditivos positivos e negativos.

DISCUSSÃO

Não houve diferença estatística entre o SurgiSafe® e a contagem manual, mas esta diferiu do valor correto quatro vezes em 35 repetições. Ressalta-se que, neste estudo, a atenção do observador estava voltada exclusivamente para a contagem dos têxteis, o que é muito diferente de uma rotina cirúrgica. A contagem manual previne 82% da RICE(17) quando feita de forma correta. Em cirurgias cardíacas realizadas em Nova Iorque, há consideráveis discrepâncias de contagem, com sensibilidade da contagem de 77,2% e especificidade de 99,2%.(6) Em 739 relatos envolvendo contagem incompleta ou ausente, 62% envolviam um procedimento de emergência.(18)

Com relação ao tempo necessário para a contagem dos têxteis neste experimento, alguns fatos devem ser considerados. O fato de as compressas estarem agrupadas por fio facilitou muito a identificação delas na caviidade, e a presença física das TAGs facilitou o processo de contagem manual. Por outro lado, o fio dificultou separar cada uma das gazes. Conforme as gazes foram saturando e desdobrando, começaram a se embaraçar umas às outras, fato comum na realidade de uma cirurgia. Com o cansaço da equipe e a saturação dos têxteis, o tempo necessário para contar cada têxtil aumentou.

A literatura aponta sensibilidade, especificidade e valor preditivo positivo da esteira RF de 100% para paciente com índice de massa corpórea <40; naqueles com índice de massa corpórea >40, foi observado sensibilidade de 96,9%.(19)

Em nosso experimento os dispositivos de detecção por radiofrequência varinha e antenna FF não apresentaram um desempenho satisfatório. Apesar de a varinha de RF apresentar sensibilidade e especificidade de 100% em estudo com apenas 8 pacientes, por se tratar de mecanismo operador dependente o potencial erro humano no processo de varredura tem sido reconhecido e relatado.(20)

Contagem de têxteis com TAGs assistida por computador, juntamente da contagem manual, tem sido utilizada recentemente, com sucesso.(21,22) A tecnologia auxiliar é recomendada nos procedimentos cirúrgicos, pois, em relação às contagens manuais interpretadas como corretas, 5% são falsamente corretas.(11)

Organizações que implementaram a radiofrequência demonstraram redução de 93% na incidência de RICE em 6 anos, comparado com apenas 77% de redução em outras instituições sem radiofrequência.(18)

A análise de custo-benefício da *University HealthSystem Consortium* mostrou que as economias em raios X, tempo cirúrgico e custos médicos legais evitados superaram os gastos envolvidos no uso da tecnologia de radiofrequência.(18)

Melhoramentos associados à contagem manual e aos sistemas de contagem eletrônicos devem continuar, pois é provável que a tecnologia, sozinha, não seja infalível(20) − ao menos por enquanto.

CONCLUSÃO

No contexto de incidência significativa de casos de retenção inadvertida de corpos estranhos e sua séria lesão aos pacientes, com repercussão para a equipe cirúrgica, o hospital e as seguradoras de saúde, recomenda-se todo tipo de prevenção possível.

Os diferenciais do SurgiSafe®, que se mostrou eficaz in vivo neste experimento, incluem o tempo de contagem instantâneo e a contabilização precisa dos têxteis, com identificação numérica de cada têxtil e a geração de relatórios para a equipe e a administração hospitalar. Nossos dados suportam que seu uso como auxiliar na contagem manual é de grande valor para prevenção da retenção inadvertida de corpos estranhos e aumento da segurança do paciente.
AGRADECIMENTOS
Ao Centro de Estudos do Hospital Israelita Albert Einstein, na execução do experimento.

REFERÊNCIAS
1. Hariharan D, Lobo DN. Retained surgical sponges, needles and instruments. Ann R Coll Surg Engl. 2013;95(2):87-92. Review.
2. Stawicki SP, Evans DC, Cipolla J, Seamon MJ, Lukaszczyk JJ, Prosciak MP, et al. Retained surgical foreign bodies: a comprehensive review of risks and preventive strategies. Scand J Surg. 2009;98(1):8-17.
3. Whang G, Mogel GT, Tsai J, Palmer SL. Left behind: unintentionally retained surgically placed foreign bodies and how reduce their incidence—pictorial review. AJR Am J Roentgenol. 2009;193(6 Suppl):S79-89. Review.
4. Birolini DV, Rasslan S, Utiyama EM. Unintentionally retained foreign bodies after surgical procedures. Analysis of 4547 cases. Rev Col Bras Cir. 2016;43(1):12-7.
5. Stawicki SP, Moffard-Bruce SD, Ahmed HM, Anderson HL 3rd, Balija TM, Bernescu I, et al. Retained surgical items: a problem yet to be solved. J Am Coll Surg. 2013;216(1):15-22.
6. Egorova NN, Moskovitz A, Gelijins A, Weinberg A, Curty J, Rabin-Fastman B, et al. Managing the prevention of retained surgical instruments: what is the value of counting? Ann Surg. 2008;247(1):13-8.
7. Birolini DV. Experiência clínica de cirurgiões brasileiros com a retenção inadvertida de corpos estranhos após procedimentos operatórios [tese]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2013.
8. Campione BA. Know the risk factors for retained foreign bodies. OR Nurse. 2009;3(4):56.
9. Park CM, Choi KY, Heo SJ, Kim JS. Unilateral otitis media with effusion caused by retained surgical gauze as an unintended iatrogenic complication of orthognathic surgery: case report. Br J Oral Maxillofac Surg. 2014;52(7):e39-40.
10. Moffatt-Bruce SD, Cook CH, Steinberg SM, Stawicki SP. Risk factors for retained surgical items: a meta-analysis and proposed risk stratification system. J Surg Res. 2014;90(2):429-36.
11. Iglesias AC, Salomão RM. Gossypiboma intra-abdominal - análise de 15 casos. Rev Col Bras Cir. 2007;34(2):105-13.
12. Kim KS. Changes in computed tomography findings according to the chronicity of maxillary sinus gossypiboma. J Craniofac Surg. 2014;25(4):330-3.
13. Bakan S, Kandemirli SQ, Kuyumcu G, Erren E, Tutar O. Intrathoracic gossypiboma after spinal operation. Ann Thorac Surg. 2015;99(2):e37-9.
14. Velasco-Mata S, Díaz-Gómez M, Cova-Bianco T, Hopp-Mora E, Rodríguez-Rojas RR, Chirinos-Malave Y, et al. Duodenal gossypiboma: a case report and literature review. Invest Clin. 2015;56(3):296-300. Review.
15. Corona AR, Peniche AC. A cultura de segurança do paciente na adesão ao protocolo da cirurgia segura. Rev Socbecc. 2015;20(3):179-85.
16. Amaya MR, Maziero EC, Grittem L, Cruz EA. Análise do registro e conteúdo de checklists para cirurgia segura. Esc Anna Nery. 2015;19(2):246-51.
17. Regenbogen SE, Greenberg CC, Resch SC, Kollengode A, Cima RR, Zinner MJ, et al. Prevention of retained surgical sponges: a decision-analytic model predicting relative cost-effectiveness. Surgery. 2009;145(5):527-35.
18. Williams TL, Tung DK, Steelman VM, Chang PK, Szekendi MK. Retained surgical sponges: findings from incident reports and a cost-benefit analysis of radiofrequency technology. J Am Coll Surg. 2014;219(3):354-64.
19. Steelman VM, Alasagheir MH. Assessment of radiofrequency device sensitivity for the detection of retained surgical sponges in patients with morbid obesity. Arch Surg. 2012;147(10):955-60.
20. Macario A, Morris D, Morris S. Initial clinical evaluation of a handheld device for detecting retained surgical gauze sponges using radiofrequency identification technology. Arch Surg. 2006;141(7):659-62.
21. Rupp CC, Kagarije MJ, Nelson SM, Deal AM, Phillip S, Chadwick J, et al. Effectiveness of a radiofrequency detection system as an adjunct to manual counting protocols for tracking surgical sponges: a prospective trial of 2,285 patients. J Am Coll Surg. 2012;215(4):524-33.
22. Sakorafas GH, Sampinis D, Lappas C, Papantonis E, Christodoulou S, Mastoraki A, et al. Retained surgical sponges: what the practicing clinician should know. Langenbecks Arch Surg. 2010;395(8):1001-7. Review.