Complexity of Magnetic-field Turbulence at Reconnection Exhausts in the Solar Wind at 1 au

Rodrigo A. Miranda1, Juan A. Valdivia2, Abraham C.-L. Chian3,4, and Pablo R. Muñoz5

1 UnB-Gama Campus and Institute of Physics, University of Brasília, Brasília, DF 70910-900, Brazil; rmiracer@unb.br
2 Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
3 School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
4 National Institute for Space Research (INPE), São José dos Campos, SP 12227-010, Brazil
5 Department of Physics and Astronomy, University of La Serena, La Serena, Chile

Received 2021 May 5; revised 2021 October 5; accepted 2021 October 7; published 2021 December 16

Abstract

Magnetic reconnection is a complex mechanism that converts magnetic energy into particle kinetic energy and plasma thermal energy in space and astrophysical plasmas. In addition, magnetic reconnection and turbulence appear to be intimately related in plasmas. We analyze the magnetic-field turbulence at the exhaust of four reconnection events detected in the solar wind using the Jensen–Shannon complexity-entropy index. The interplanetary magnetic field is decomposed into the LMN coordinates using the hybrid minimum variance technique. The first event is characterized by an extended exhaust period that allows us to obtain the scaling exponents of higher-order structure functions of magnetic-field fluctuations. By computing the complexity-entropy index we demonstrate that a higher degree of intermittency is related to lower entropy and higher complexity in the inertial subrange. We also compute the complexity-entropy index of three other reconnection exhaust events. For all four events, the \(B_L \) component of the magnetic field displays a lower degree of entropy and higher degree of complexity than the \(B_M \) and \(B_N \) components. Our results show that coherent structures can be responsible for decreasing entropy and increasing complexity within reconnection exhausts in magnetic-field turbulence.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Space plasmas (1544); Solar wind (1534)

1. Introduction

Magnetic reconnection in plasmas refers to the process in which magnetic energy is converted to particle kinetic and thermal energy, resulting in a change of topology of the magnetic-field lines (Yamada et al. 2010; Treumann & Baumjohann 2013; Lazarian et al. 2015). The study of magnetic reconnection is key to understand the dynamics of solar flares, coronal mass ejections, rope-ropes magnetic reconnection in the solar wind, and the interaction between solar wind and planetary magnetospheres. In addition, magnetic reconnection, turbulence, and intermittency seem to be intrinsically related in plasmas in a complex manner; hence, they need to be studied in relation to each other.

The solar wind is a natural laboratory for the study of magnetic reconnection. The conversion of magnetic energy into particle kinetic energy during the reconnection process leads to the formation of magnetic exhausts. The properties of magnetic exhausts have been studied recently using observational data. For example, Enzil et al. (2014) performed a statistical survey of 418 reconnection exhausts detected by the Wind spacecraft. They showed that the magnetic flux available for reconnection and the reconnection efficiency increase with the magnetic shear angle. Mistry et al. (2015) analyzed data from different spacecraft sampling oppositely directed reconnection exhausts of three different reconnection events. They showed that bifurcated current sheets are clearly observed when the spacecraft is located at a distance greater than \(\sim 1000d_i \) from the X-line, where \(d_i \) is the ion skin depth. Chian et al. (2016) demonstrated that magnetic reconnection at the interface of two magnetic flux ropes provides an origin of intermittent magnetic-field turbulence in the solar wind. The statistics of 188 reconnection exhausts was studied by Mistry et al. (2017). They showed that the guide magnetic field within the exhaust is enhanced, and the plasma density and ion temperature at the exhaust increase as a function of the inflow plasma beta and the guide field. Numerical simulations have also been used to understand the properties of the turbulent plasma in reconnection exhausts. Pucci et al. (2017) performed three-dimensional (3D) particle-in-cell (PIC) simulations of magnetic reconnection, and showed that the turbulence at the outflows is anisotropic, and that the energy exchange and dissipation is concentrated at the interface between the ejected plasma and the ambient plasma. The outflow region has also been identified by Lapenta et al. (2018) as a source of instabilities that feeds a turbulent cascade and secondary reconnection sites in 3D PIC simulations of reconnection with a weak guide field. Adhikari et al. (2020) computed the scaling laws of energy spectra and second-order structure functions of 2.5D PIC simulations. They demonstrated that the inflow region displays a lower degree of turbulence compared to the diffusion, exhaust, separatrix, and island regions resulting from the reconnection process. Hence, there is a need to quantitatively characterize the turbulent behavior in these regions (for example, using a complex system approach), which can complement theoretical and simulation efforts.

In this respect, the Jensen–Shannon (J–S) complexity-entropy index is a statistical tool that allows to distinguish noise from chaos (Rosso et al. 2007). It has been successfully applied to data from experiments with electronic oscillators (Soriano et al. 2011), stock market data (Zunino et al. 2009), the Southern Oscillation index (Bandt 2005), and heart rate variability (Bian et al. 2012), among others. For a detailed list of applications see Riedl et al. (2013). Weck et al. (2015) computed the J–S index of the interplanetary magnetic-field
data detected by the Wind spacecraft, magnetic-field data of the
Swarthmore Spermak Experiment (SSX), and the ion
saturation current data at the edge of the Large Plasma Device
(LAPD). They showed that the Wind data displays high
entropy and low complexity, similar to stochastic signals;
whereas the SSX and the LAPD data display intermediate
entropy and high complexity, due to the lower number of
degrees of freedom of the experimental devices and the
confined nature of the experiments compared to the inter-
planetary magnetic-field data. The J–S index was also applied
to solar wind data collected by the Helios, Wind, and Ulysses
spacecraft by Weygand & Kivelson (2019). Several intervals
were selected, including slow and fast solar wind, interplani-
tary coronal mass ejections, and corotating interactions regions.
They also obtained J–S index values characteristic of stochastic
fluctuations, and showed that the complexity decreases and the
entropy increases with the distance from the Sun.

In this paper we characterize the complexity-entropy of
magnetic-field data of four reconnection exhausts detected in
the solar wind. For the first event, we show that intermittency
and multifractality are related to the degree of entropy and
complexity. By projecting the magnetic field into the LMN
coordinates (Sonnerup & Cahill 1967; Gosling & Phan 2013),
we show that the L component displays lower entropy and
higher complexity than the M and N components. Our paper is
organized as follows. Section 2 describes brieﬂy the four
magnetic reconnection events. Section 3 presents the methods
employed for the data analysis. The results are presented in
Section 4, and a discussion and conclusions are given in
Section 5.

2. Magnetic Reconnection Events

We analyze four reconnection exhausts detected at 1 au. The
timing of each interval is indicated in Table 1. Events 1 and
3 are magnetic reconnection exhausts detected by Wind at the
interior of a magnetic cloud associated with an ICME, with a
main shock arrival observed at 1:13 UT on 1997 December 30
and at 8:55 UT on 1997 November 22, respectively. Event 2 is
a magnetic reconnection exhaust detected by Wind after the
passage of an ICME with a main shock arrival observed at 7:18
UT on 1998 November 12. Event 4 is a reconnection exhaust
detected by Cluster on 2002 February 2 (Phan et al. 2006).
This exhaust is the result of the magnetic reconnection between a
small-scale interplanetary magnetic flux rope (IMFR) and an
intermediate-scale IMFR (Chian et al. 2016). We use the
magnetic-field data from Wind at a resolution of 11 Hz for
events 1, 2, and 3; whereas for event 4 we employ the data
from Cluster at a resolution of 22 Hz.

The timing of events 1, 2, and 3 is based on the supplement
table of 188 magnetic reconnection exhausts studied by Mistry
et al. (2017). These events are the longest exhaust intervals
during which the IMF experiment onboard Wind was operating
at 11 Hz, resulting in a sufﬁcient number of data points for
analysis. For event 4, we use the data from four Cluster
spacecraft and apply the curlometer technique to compute the
modulus of the current density J. Since the exhaust is bounded
by a bifurcated current sheet in the Petschek model of magnetic
reconnection (Gosling & Szabo 2008), the exhaust interval of
event 4 is deﬁned using the timing of the main peaks of | J |.
Table 1 also indicates the number of data points available from
each interval.

Table 1

Event	Interval Start (UT)	Interval End (UT)	No. Data Points
1	30-12-1997 17:15:16	30-12-1997 17:38:02	14783
2	14-11-1998 07:53:09	14-11-1998 08:12:10	11936
3	23-11-1997 12:52:22	23-11-1997 13:07:28	8834
4	02-02-2002 02:32:05	02-02-2002 02:34:34	3333

3. Methods

The vector magnetic field is projected on the LMN coordinate
system by applying the hybrid minimum variance analysis
(MVA; Gosling & Phan 2013; Mistry et al. 2015, 2017; Hietala
et al. 2018). The L component is given by the direction
of maximum variance and is related to the exhaust outflow
direction, the M direction is related to the reconnection guide
direction, and the N component is the direction of minimum
variance related to the normal of the current sheet. The N
direction can be obtained as

\[\mathbf{\hat{e}_N} = \frac{B_1 \times B_2}{|B_1 \times B_2|}, \]

where \(B_1 \) and \(B_2 \) are the magnetic-field vectors immediately
adjacent to the exhaust boundaries. The M direction is given by

\[\mathbf{\hat{e}_M} = \mathbf{\hat{e}_N} \times \mathbf{\hat{e}_{L'}}, \]

where \(\mathbf{\hat{e}_{L'}} \) is the maximum variance direction obtained from
the classical MVA (Sonnerup & Cahill 1967), and the L
direction is

\[\mathbf{\hat{e}_L} = \mathbf{\hat{e}_M} \times \mathbf{\hat{e}_N}. \]

Note that, from Equation (1), \(\mathbf{\hat{e}_N} \) and \(\mathbf{\hat{e}_{L'}} \) are not necessarily
orthogonal, whereas \(\mathbf{\hat{e}_N} \) and \(\mathbf{\hat{e}_M} \) are orthogonal. From
Equation (2), \(\mathbf{\hat{e}_L} \) is made orthogonal to \(\mathbf{\hat{e}_N} \) and \(\mathbf{\hat{e}_M} \). The hybrid
MVA is more reliable than the MVA (Knetter et al. 2004) because
the MVA can fail to separate the intermediate and minimum
variance directions properly, giving unrealistic values for the
N component (Mistry et al. 2017).

We compute the power spectral density (PSD) of the \(B_L, B_M, \)
and \(B_N \) components using the Welch method (Welch 1967),
which allows us to reduce the error of the spectrum estimate.
The compensated PSD is obtained by multiplying the original
PSD by \(f^{+5/3} \). The inertial subrange can be identiﬁed as a
frequency range in which the compensated PSD is nearly
horizontal.

The large number of data points within the exhaust interval
of event 1 allows us to compute higher \(p \)-th order structure
functions \(\zeta_p(\tau) = \langle |B_i(t + \tau) - B_i(t)|^p \rangle, \) for \(i = L, M, N \) (De
Wit 2004; Miranda et al. 2013). The scaling exponents of
structure functions can be computed from \(\zeta_p(\tau) \sim \tau^{\alpha(p)}, \) to
quantify the departure from self-similarity (i.e., multifractality).
The scaling exponents \(\alpha(p) \) can be obtained by plotting \(\zeta_p(\tau) \)
as a function of \(\tau \) in log-log scale, and applying a linear fit within
the inertial subrange. The inertial subrange is identiﬁed as the
range of scales in which \(\alpha(p = 3) = 1 \). However, the number of
scales within the inertial subrange can be small and difﬁcult
to determine, especially for short time series. Therefore, the
numerical values of \(\alpha(p) \) will be affected by a large statistical
error. For this reason we apply the extended self-similarity
(ESS) (Benzi et al. 1993) by assuming \(\zeta_p(\tau) \sim \zeta_q(\tau)^{\alpha(p)}, \) \(\zeta_q(\tau) \sim \alpha(p)/\alpha(3). \) The value of \(\zeta(q) \) can be estimated by
plotting \(S_p(\tau) \) as a function of \(S_3(p) \) in log-log scale. The ESS technique results in a larger range of scales in which \(\zeta(p = 3) = 1 \), thus reducing the statistical error and producing a more robust value for the computed scaling exponents.

We compute the J–S complexity index, in which a probability distribution function (PDF) of ordinal patterns is obtained from the magnetic-field data within the exhaust interval. This PDF represents the frequencies of occurrence of all possible ordinal patterns of length \(d \) (Bandt & Pompe 2002; Weck et al. 2015). For example, suppose that the time series of a component of the magnetic field starts with \(-2.67, 10.80, 1.72, -2.40, 11.21, \ldots\). The first \(d \)-tuple of length \(d = 3 \) is \((-2.67, 10.80, 1.72)\) and the corresponding ordinal pattern, in ascending order, is \(1, 3, 2\) because \(-2.67 < 1.72 < 10.80\). The second \(3 \)-tuple is \((10.80, 1.72, -2.40)\) and the ordinal pattern is \((3, 2, 1)\). For a time series of length \(K \), there are \(K - d + 1 \) \(d \)-tuples and \(d! \) possible permutations of a \(d \)-tuple. The PDF of ordinal patterns is obtained by counting the number of occurrences of each possible permutation of ordinal patterns within the time series

\[
p_i = \frac{\# \{ s \mid s \text{ is the } i \text{th ordinal pattern} \}}{K - d + 1},
\]

where “\#” stands for “number”, and \(K - d + 1 > d! \). The Shannon entropy is given by

\[
S(P) = -\sum_{i=1}^{d!} p_i \ln(p_i),
\]

where \(P \) represents the PDF of ordinal patterns. The Shannon entropy is equal to zero if, for any \(i, p_i = 1 \) and \(p_j = 0, j \neq i \). This case represents a completely ordered system. Conversely, the Shannon entropy is given by

\[
H(P) = \frac{S(P)}{S(P_\text{u})} = \frac{S(P)}{\ln(d!)}.
\]

Similarly, the Jensen’s divergence measures the “disequilibrium”, or the “distance” between a distribution \(P \) and the uniform distribution \(P_\text{u} \) (Martin et al. 2006; Rosso et al. 2007)

\[
Q_j(P, P_\text{u}) = Q_0 \left[S \left(\frac{P + P_\text{u}}{2} - \frac{1}{2} S(P) - \frac{1}{2} S(P_\text{u}) \right) \right],
\]

where \(Q_0 \) is a normalization constant given by Martin et al. (2006)

\[
Q_0 = -\frac{1}{2} \left[\frac{K+1}{K} \ln(K+1) - 2 \ln(2K) + \ln(K) \right].
\]

\(Q_j(P, P_\text{u})\) can be represented in a plane called the complexity-entropy (C-H) plane. This plane can be separated into three regions, namely, a low-entropy and low-complexity region corresponding to highly predictable systems, an intermediate-entropy and high-complexity region corresponding to unpredictable systems with a large degree of structure, and a high-entropy and low-complexity region corresponding to stochastic-like processes (Rosso et al. 2007).

The number of data points \(K \) needed to compute Equations (4) and (6) reliably is (Amigó et al. 2008; Riedl et al. 2013)

\[
K > 5d!.
\]

A large value of the \(d \) parameter can result in unreliable statistics, whereas a small value of \(d \) can result in an overestimated value of Equation (6) (Gekelman et al. 2014). We set \(d \) to the maximum value for which Equation (7) is satisfied for all intervals, as recommended by Amigó et al. (2008) and Riedl et al. (2013). For \(d = 5 \) we need \(K > 600 \), whereas for \(d = 6 \), \(K > 3600 \). From Table 1, all intervals have enough data points to satisfy Equation (7) with \(d = 5 \).

4. Intermittency and Complexity in Reconnection Exhusts

We start our analysis by describing the solar wind conditions around event 1. Figure 1 shows an overview of the plasma parameters observed by the MFI an SWE instruments on board Wind; namely, the modulus of the magnetic field \(|B| \) (nT); the three components of the magnetic field \(B_x, B_y, \) and \(B_z \) (nT) in the GSE coordinates; the modulus of the proton velocity \(|V_p|\) (km s\(^{-1}\)); the proton density \(n_p\) (cm\(^{-3}\)); the proton temperature \(T_p\) (eV); and the proton beta \(\beta_p = 8\pi n_p k_B T_p / |B|^2\), where \(k_B\) is the Boltzmann constant. This event is characterized by a main shock arrival detected at 1:13 UT on 1997 December 30, and a magnetic cloud from 9:35 UT on December 30 to 8:51 UT on December 31 (Nieves-Chinchilla et al. 2018). This magnetic cloud is characterized by an increase on \(|B|\), a rotation of the magnetic-field direction, and a decrease in \(T_p\) and \(\beta_p\). The horizontal lines indicate the boundaries of the ICME (black) and the magnetic cloud (violet), and the vertical dashed lines indicate the reconnection exhaust interval. Note that the value of \(\beta_p\) is low in Figure 1 outside the reconnection exhaust because this event occurs at the interior of a magnetic cloud.

Figure 2 shows a detailed view of the plasma parameters around event 1. The magnetic reconnection event is characterized by a decrease of \(|B|\), a change of the \(B_z\) magnetic-field component in the GSE coordinates, and an increase of the proton beta \(\beta_p\). The magnetic-field components in the LMN coordinates are also shown. The reconnection event is also characterized by the corresponding increases of the \(V_z\) velocity component (in GSE), \(n_p\), and \(T_p\). The reconnection exhaust interval, bounded by the two vertical dashed lines, has a duration of 1343 seconds, which gives 14,783 data points within the exhaust (as indicated in Table 1).

The time series of the \(B_L\) component shown in Figure 2 displays discontinuous “jumps” near the boundaries of the reconnection exhaust interval, associated with the magnetic-field reversal that is required for the magnetic reconnection to occur. Since the magnetic shear occurs at a scale larger than the selected interval, we apply a trend removal technique to the time series of \(B_L\). This is achieved by computing a third-order polynomial fit to the time series of \(B_L\), and removing the resulting fit from the original time series. Figure 3(a) shows the time series of \(B_L\) after detrending, represented by \(B_L^{\text{d}}\). We have also applied the same procedure to obtain the time series of the \(B_N\) and \(B_V\) components, shown in Figures 3(b) and 3(c), respectively. Hereafter, we will analyze the time series of \(B_L^{\text{d}}, B_N^{\text{d}}, \) and \(B_V^{\text{d}}\) and refer them simply as \(B_L, B_M, \) and \(B_N\), respectively.

Figure 4(a) shows the PSD of the \(B_L, B_M, \) and \(B_N\) components of the magnetic field. The dashed line in the
Figure 1. Interplanetary magnetic field and plasma data detected by the Wind spacecraft during the passage of an ICME on 1997 December 30 (Julian day 364). From top to bottom: the modulus of the magnetic field $|B|$ (nT); the three components of the magnetic field B_x, B_y, and B_z in GSE coordinates (nT); the modulus of the proton velocity $|V_p|$ (km s$^{-1}$); the three components of the proton velocity V_x, V_y, and V_z in GSE coordinates (km s$^{-1}$); the proton density n_p (cm$^{-3}$); the proton temperature T_p (eV); and the proton beta β_p. The horizontal black line in the top panel indicates the ICME interval, and the violet horizontal line indicates the magnetic cloud interval. The vertical dashed lines indicate the reconnection exhaust interval.
Magnetic reconnection exhaust (event 1) detected on 1997 December 30. From top to bottom: the modulus of the magnetic field $|B|$ (nT); the three components of B in the GSE coordinates (nT); the three components of B in the LMN coordinates (nT); the modulus of the proton velocity $|V_p|$ (km s$^{-1}$); the three components of V_p in the GSE coordinates (km s$^{-1}$); the proton number density n_p (cm$^{-3}$); the proton temperature T_p (eV); and the proton beta β_p. The exhaust interval is bounded by the two vertical dashed lines, which define B_1 and B_2, respectively.
upper panel indicates the $-5/3$ power-law scaling within the inertial subrange. This interval was obtained by plotting the compensate PSD shown in the lower panel of Figure 4(b). In this figure the range of scales in which the PSDs of B_L, B_M, and B_N are nearly horizontal is indicated by vertical dashed lines.

We compute the scaling exponents ζ of the structure functions with the ESS technique (i.e., $S_p(\tau) \sim |S_3(\tau)|^{1/p}$), within the inertial subrange identified by the compensated PSD. Figure 5 shows the structure functions before and after applying the ESS technique to the time series of the B_L component. The inertial subrange in Figure 5(a), shown as a gray background, is obtained from the compensated PSD of Figure 4(b), and coincides with the interval in which $\alpha(p = 3) = 1$. The gray background of Figure 5(b) indicates the extended interval in which the scaling exponents ζ are obtained. The horizontal black line represents the original inertial subrange. Note that the extended interval cannot include kinetic scales, which starts near the ion cyclotron frequency. From Figure 4, a spectral break marking the end of the inertial subrange occurs near $f = 0.5$ Hz, which corresponds to a scale of $\tau \sim 2$ s. This scale is outside the shaded region of Figure 5(a), and corresponds to $S_3(\tau)/S_3(T) = 238$ in the horizontal axis of Figure 5(b), which is also outside the interval used to compute the scaling exponents. We have also applied the ESS technique to the structure functions of the B_M and B_N components using the same procedure.

Figure 6 shows ζ as a function of the p-th order structure function for B_L, B_M, and B_N. The vertical bars indicate the error in the fit. Intermittency and multifractality within the inertial subrange are responsible for deviations of ζ from the linear scaling of Kolmogorov’s 1941 (hereafter K41) self-similar model. This figure shows clearly that, for higher-order statistics, the B_L component displays a stronger departure from the K41 scaling than B_M, which in turn displays a greater departure than B_N. Therefore, the B_L component displays a higher degree of multifractality and intermittency than the B_M and the B_N components.

Next, we show how the intermittency of the magnetic-field fluctuations is related to entropy and complexity for event 1. We compute the J–S index (i.e., Equations (4) and (6)) for B_L, B_M, and B_N. Figure 7 shows the $d = 5$ C-H plane. The crescent-shaped curves indicate the minimum and maximum values of C_J for a given value of H. Symbols indicate the (H, C_J) values of three chaotic maps, namely, the logistic map $x_{n+1} = rx_n(1 - x_n)$ with $r = 4$; the skew tent map

$$x/w, \quad x \in [0, w],$$

$$(1 - x)/(1 - w), \quad x \in [w, 1],$$

with $w = 0.1847$; and the Hénon map

$$x_{n+1} = 1 - ax_n^2 + y_n,$$

$$y_{n+1} = bx_n,$$

with $a = 1.4$ and $b = 0.3$. The parameter values of the chaotic maps are the same from Rosso et al. (2007) and Weck et al. (2015). Their locations on the C-H plane identify the region corresponding to deterministic chaotic behavior. The dotted curve represents the (H, C_J) values of stochastic fractional Brownian motion (fBm). This curve was computed by...
generating time series of fBm with a Hurst exponent varying within the interval [0.025, 0.925] (Maggs & Morales 2013). Smaller Hurst exponents display larger H and lower C_J values. The chaotic maps and stochastic signals allow us to illustrate the different regions of the C-H plane.

The ordinal PDFs of B_L, B_M, and B_N are computed by setting the size of the ordinal pattern to $d = 5$. We also define an embedding delay T, which means that d-tuples are sampled on a larger timescale instead of consecutive points. This allows us to relate the computed (H, C_J) values to a given timescale. We set the embedding delay $T = 110$ data points. For event 1, this value of T corresponds to a timescale of 10 s, which is within the inertial subrange (see Figure 4). Similar results were obtained for embedding delay values corresponding to

![Figure 4](image-url)

Figure 4. (a) PSD of the B_L, B_M, and B_N components of the magnetic field (event 1). (b) Compensated PSD. The dashed vertical lines indicate the inertial subrange in which the compensated PSD is nearly horizontal.
timescales $\in [5, 15]$ s. Figure 7 shows that the three magnetic-field components display (H, C_J) values close to the bottom-right region of the C-H plane, which correspond to stochastic-like processes. However, the B_L component displays a lower degree of entropy and a higher degree of complexity than the B_M component, which in turn displays lower entropy and higher complexity than the B_N component. This pattern is also observed when we choose different values of d. Setting $d = 4$,

The Astrophysical Journal, 923:132 (11pp), 2021 December 20

Miranda et al.
the \((H, C_J^S)\) values of the three magnetic-field components are slightly shifted closer to the bottom-right region of the entropy-complexity plane, while their relative positions in the C-H plane with respect to each other are maintained. For \(d = 6\), the three values are slightly shifted away from this region, also keeping their relative positions in the C-H plane, demonstrating the robustness of this result. Note that the number of data points of event 1 still satisfy Equation (7) with \(d = 6\). The numerical values of \((H, C_J^S)\) for \(d = 4, 5,\) and 6 are given in Table 2.

We apply the same analysis to events 2, 3, and 4, except for the computation of scaling exponents, because the number of data points for each of these events is insufficient to guarantee the convergence of high-order statistics. However, as stated in Section 3, the number of data points of these events satisfy Equation (7) for \(d = 5\), allowing us to compute \(H\) and \(C_J^S\). Figure 7 shows the entropy-complexity plane of the four reconnection exhausts. For all the analyzed events, the \(B_L\) component displays lower values of \(H\) and higher values of \(C_J^S\), as compared with the \(B_M\) and \(B_N\) components.

5. Discussion and Conclusions

The results shown in Figures 6 and 7 suggest that a higher degree of intermittency is related to a decrease of entropy and an increase of complexity. Intermittency is related to the presence of coherent structures in turbulent fluids and plasmas, resulting in non-Gaussian PDFs (Sorriso-Valvo et al. 2001; Chian & Miranda 2009), a finite degree of amplitude-phase synchronization (Koga et al. 2007; Chian & Miranda 2009), and multifractal scaling exponents (Bershadskii & Sreenivasan 2004; Bruno et al. 2007; Miranda et al. 2013). Coherent structures are also responsible for lower values of the Fourier power spectral entropy in 3D compressible MHD simulations of an intermittent dynamo (Rempel et al. 2009) and lower values of the spectral power and phase entropies in 3D incompressible MHD simulations of a Keplerian shear flow (Miranda et al. 2015). We have shown that the \(B_L, B_M,\) and \(B_N\) components have \(H\) and \(C_J^S\) values similar to stochastic fluctuations, in agreement with previous analyses of interplanetary magnetic-field data (Weck et al. 2015; Weygand & Kivelson 2019). Our results indicate that, within magnetic reconnection exhausts, coherent structures are responsible for decreasing entropy and increasing complexity. We note that the \(H\) and \(C_J^S\) values of the \(B_L, B_M,\) and \(B_N\) components are consistent with those of fBm with Hurst exponents 0.525, 0.425, and 0.335, respectively. These values can provide additional quantitative constraints to simulation and modeling of magnetic reconnection in plasmas.

By comparing the J–S index of the \(B_L, B_M,\) and \(B_N\) magnetic-field components we have shown that, for the four events selected, the \(B_L\) component has lower entropy and higher complexity than the \(B_M\) component, and the \(B_M\) component has lower entropy and higher complexity than the \(B_N\) component. From the analysis of event 1 it follows that the \(B_L\) component is more intermittent than \(B_M\) and \(B_N\) due to coherent structures within the inertial subrange. Coherent structures and intermittency are also related to energy dissipation in anisotropic MHD turbulence (Müller et al. 2003; Miranda et al. 2013). Our results indicate that the energy dissipation in these four magnetic reconnection exhaust events is strongest in the \(B_L\) component. For events 2, 3, and 4, high-order statistics and scaling exponents cannot be computed.
reliably due to the small number of data points. High-resolution data from instruments operating on higher cadence modes would be needed for the convergence of higher-order statistics. However, we have shown that similar results can be obtained by computing the J^2_S index. Since magnetic exhausts in the solar wind at 1 au usually have a short duration (Enz et al. 2014), the J^2_S index can be a useful tool for the analysis of the magnetic-field turbulence within exhausts.

The exhaust intervals in Table 1 were carefully defined to avoid including the strong discontinuities due to the magnetic-field reversal near the boundaries of the reconnection exhaust (see the time series of B_L in Figure 2). We have also applied a detrending technique to further remove large-scale variations of the time series (see Figure 3). Despite this, the higher degree of intermittency and complexity, and the lower degree of entropy, observed in the B_L as compared with the other components, can still be due to the field reversal that occurs at a larger scale. Previous studies have pointed out evidence of a direct coupling between large-scale fluctuations and small-scale intermittency in the solar wind (Vörös et al. 2006; Miranda et al. 2018). Therefore, the inertial-range coherent structures in the B_L component within the reconnection exhaust can have their origin on the magnetic reconnection process that occurs at a larger scale. Note that this is in agreement with the main conclusion of Chian et al. (2016).

Our analysis of the three components of the magnetic field by the hybrid MVA suggests that intermittency and complexity-entropy vary with the field direction. Other characterizations of anisotropy in magnetic-field fluctuations in the solar wind, such as spectral anisotropy, have been demonstrated by several studies (e.g., Matthaeus et al. 1990; Dasso et al. 2005; Šafránková et al. 2021). In that context, spectral anisotropy

Figure 7. The $d = 5$ C-H plane for the B_L (red plus symbol), the B_M (green cross), and the B_N (blue asterisk) components of the magnetic field during the reconnection exhaust interval of (a) event 1, (b) event 2, (c) event 3, and (d) event 4. The full black circle, open red triangle, and full gray triangle represent the chaotic time series of the logistic map, the skew tent map, and the Hénon map, respectively (see the text for parameters). The crescent-shaped curves indicate the maximum and minimum values of C^S_J for a given value of H, and the dotted line represents stochastic fractional Brownian motion.

Table 2

d	H	C^S_J	H	C^S_J	H	C^S_J
		B_L		B_M		B_N
4	0.9361 ± 0.0002	0.0725 ± 0.0002	0.9089 ± 0.0001	0.1250 ± 0.0002	0.8751 ± 0.0001	0.1951 ± 0.0004
5	0.9599 ± 0.0005	0.0470 ± 0.0005	0.9400 ± 0.0005	0.0888 ± 0.0006	0.9114 ± 0.0007	0.1644 ± 0.0009
6	0.9769 ± 0.0001	0.0292 ± 0.0002	0.9631 ± 0.0001	0.0621 ± 0.0002	0.9416 ± 0.0002	0.1178 ± 0.0008
refers to the unequal distribution of energy between the wavevectors directed parallel and perpendicular to the mean magnetic field. Energy spectra computed using single-spacecraft data displays unequal distribution of energy among magnetic-field components, which is termed variance anisotropy. However, this anisotropy observed using single-spacecraft data is not sufficient to demonstrate spectral anisotropy, and must be interpreted with caution. For example, calculated variances from single-spacecraft data can be misleadingly anisotropic even in the presence of an isotropic distribution of energy (Oughton et al. 2015). A careful analysis of the variance anisotropy displayed by the energy spectra, and the different behavior of intermittency and complexity-entropy of magnetic-field components will be the focus of a future work.

In summary, in this paper, we analyzed the LMN components of the magnetic field at the exhaust of four reconnection events detected in the solar wind at 1 au. The link between intermittency and complexity within the inertial subrange was demonstrated for the first event by computing the scaling exponents and the J–S index. For the four events, all components have H and C_J values within the stochastic region of the C-plane. The B_L component displays a higher degree of intermittency, lower entropy, and higher complexity than the B_M and the B_S components. Our results confirm that magnetic-field turbulence within reconnection exhausts are intermittent with various levels of multifractality in different directions, suggesting that nontrivial coherent structures are responsible for varying degrees of entropy and complexity. These results can contribute with additional constraints to the ongoing efforts on magnetic reconnection modeling and numerical simulation.

The authors are grateful to the reviewer for the valuable comments. R.A.M. acknowledges financial support from FAP DF (Brazil) under award number 180/2020, and DPI/DPG/UnB (Brazil). J.A.V. acknowledges funding by the National Agency for Research and Development (ANID—Chile) under FONDECYT award number 1190703, and by the Air Force Office of Scientific Research (US) under award number FA9550-20-1-0189. Numerical codes are freely available at https://gitlab.com/rmiracer.