Case Report

Optimizing COVID-19 testing capabilities and clinical management using pathology informatics

Srikar Chamala,1 Sherri Flax,1 Petr Starostik,1 Kartikeya Cherabuddi,2 Nicole M. Iovine,2 Siddardha Majety,3 Kimberly J. Newsom,1 Mary Reeves,4 Michael J. Joshi-Guske,1 Maggie M. Downey,4 Tanmay P. Lele,5 and Michael J. Clare-Salzler1

1Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA, 2Department of Medicine, University of Florida, Gainesville, Florida, USA, 3Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA, 4IT Applications and System Development, UF Health Shands, Gainesville, Florida, USA and 5Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA

Corresponding Author: Srikar Chamala, PhD, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, P.O. Box 100275, Gainesville, FL 32610, USA (schamala@ufl.edu)

Received 4 April 2020; Revised 27 May 2020; Accepted 5 October 2020; Editorial Decision 4 October 2020

ABSTRACT
Coronavirus disease 2019, first reported in China in late 2019, has quickly spread across the world. The outbreak was declared a pandemic by the World Health Organization on March 11, 2020. Here, we describe our initial efforts at the University of Florida Health for processing of large numbers of tests, streamlining data collection, and reporting data for optimizing testing capabilities and superior clinical management. Specifically, we discuss clinical and pathology informatics workflows and informatics instruments which we designed to meet the unique challenges of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. We hope these results benefit institutions preparing to implement SARS-CoV-2 testing.

Key words: COVID-19, medical informatics, pathology, diagnostic tests, clinical laboratory information systems

INTRODUCTION
The Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly in the United States.1 All states have reported cases, and community spread is present in a number of states, where the epidemic spread exponentially. By March 29, 2020, the state of Florida had carried out 45,045 tests with a 9.2% positive test rate.2 In the county of Alachua alone, 1252 tests had been performed by then. As the disease was in its exponential phase of spread, we anticipated that the daily number of tests performed in the state of Florida would continue to increase for the foreseeable future.

In early March 2020, the University of Florida Health (UF Health) did not have on-site capacity for performing SARS-CoV-2 testing, and tests were sent to the Florida Department of Health (DOH). These tests were also concurrently sent to the UF Emerging Pathology Institute (EPI) through a research protocol and informed consent. If these rapid tests were positive, the samples were then sent to the DOH for priority testing. As commercial laboratories developed capacity for SARS-CoV-2 testing, UF Health also started sending tests from outpatient clinics to these labs, but the increase in demand for SARS-CoV-2 testing caused a significant increase in the turnaround time from commercial labs to more than 5 days.3 To meet the clinical need, we developed on-site testing at UF Health.

To complement on-site testing at UF Health and to deal with the challenge of large anticipated volumes for testing, we developed informatics workflows and technologies to address bottlenecks in testing, reporting, and triaging procedures. We also developed a real-time tracking dashboard for specimen testing within our hospital system. Several teams working in infectious disease, pathology, and...
informatics worked together to build these informatics solutions. A timeline of major external events (grey)4,5 and internal events (red) at our institution are presented in Figure 1.

ASSESSING PATHOLOGY INFORMATICS NEEDS ACROSS UF HEALTH

By March, a large volume of COVID-19 cases was expected throughout the state of Florida.3 The sudden surge in demand for SARS-CoV-2 testing created a global shortage of all testing reagents and platforms.6 If testing platforms were diversified, then even if one part of the supply chain was blocked, testing could be diverted to other parts and continue uninterrupted. To accomplish this, we set up a coordinated effort between UF Health Pathology Laboratories, UF Health Shands Jacksonville laboratories, UF Health Villages Hospital, UF Health Leesburg Hospital, and UF Health Shands Gainesville laboratories. Representatives from these four organizations met twice daily by zoom meetings to discuss the logistics of coordinated testing. We discussed how testing platforms could be diversified at each of the four organizations and identified our individual as well as joint testing capacities.

For choosing testing platforms, we evaluated the following factors: automated analyzer type (random access vs batch analyzers), required staffing licensure, workload, turnaround time, throughput, availability of supplies and cost, availability of equipment in our facilities, impact on existing testing needs, and specimen collection kits. Preexisting testing platforms within the UF Health system and the availability of testing reagents were the two primary factors that influenced our platform choice. As a group, we decided to first build our SARS-CoV-2 testing capabilities using SARS-CoV-2 Integrated DNA Technologies (IDT) kits on the QuantStudio platform, followed by EliTech’s InGenius and Cepheid’s GeneXpert platforms.

Figure 1. Timeline major external (grey) and internal (red) events of COVID-19 test development.
A COVID-19 INFORMATICS INSTRUMENT FOR ENSURING COMPLIANCE WITH CDC GUIDELINES

Given the large number of anticipated tests, it was critical that tests were ordered with strict adherence to Centers for Disease Control and Prevention (CDC) criteria for recognizing patients at high risk for SARS-CoV-2 infection. Minimizing test wastage was particularly critical as the test capacity across the nation was not sufficient for handling large expected numbers of patients as well as challenges in acquiring reagents to perform the assays. To implement CDC guidelines, our clinicians first defined multiple COVID-19 assessment algorithms for the following patient groups: Health Care Workers, Newborns, Adults, Adults Immunocompromised, Pediatrics, and Pediatrics Immunocompromised. We initially lacked a suitable informatics instrument that could assess the extent to which CDC guidelines for hospital assessment and decision-making in the context of COVID-19 were being implemented before ordering tests (Figure 2, Step A). We therefore developed an informatics instrument (Figure 3) which ensured compliance with the assessment algorithm developed by our clinicians.

The instrument consisted of primarily two questions which allow rapid assessment. First, the clinician is asked about the patient type: emergency department, inpatient, and outpatient (Q1 in Figure 3). Next, the menu provides a series of reasons for testing which are different depending on whether the patient is an emergency department (ED) patient, inpatient, or outpatient (Q2 in Figure 3). The granularity of these questions and options ensures CDC compliance and meets our health care facility COVID-19 testing needs. Only if these two questions are answered in a compliant manner, can SARS-CoV-2 test orders be placed. The remaining questions are for tracking purposes and are not related to triage.

TRIAGING INSTRUMENT FOR COVID-19 TESTING

Because a large number of patients with COVID-19 exposure were anticipated, we next developed an instrument for triaging requests (Figure 2, Step B). The triaging was based on the responses to “Patient type” and “Reason for testing” questions listed in Figure 3 above. These responses were next mapped into specific turnaround times, testing platform, and testing laboratory. The instrument is shown in Table 1.

Some test orders are less time sensitive while others may require faster results due to the acuity of the patient’s medical condition. We therefore divided our tests into three categories based on the turnaround times—Stat (<2 h), Urgent (<7 h), and Routine (~24–36 h). An advantage of this categorization was that laboratory staff were already familiar with this terminology and their associated turnaround times expectation. These three categories were matched with testing platforms that can meet the turnaround times—Cepheid’s GeneXpert (Stat), EliTech’s InGenius (Urgent), and Thermofisher’s QuantStudio (Routine). As of May 08, 2020, we have performed 3848 tests on UFH hospital’s Elitech, 1403 tests on UFH hospital’s Cepheid, 4989 tests on UFH pathology lab’s QuantStudio, and 1216 tests on UFH pathology lab’s Cepheid platform.

The choice of a particular laboratory was made based on proximity and specimen logistics. COVID-19 tests ordered from emergency and inpatient departments were directed to the hospital laboratory. Orders from outpatient clinics and community screening were directed to our reference laboratory. All testing of patients was performed internally at UF Health as capacity permitted.
If instruments or reagents were not available at a particular laboratory, technologists were allowed to change the laboratory and instrument to minimize turnaround times. When capacity was exceeded, low priority tests were triaged to different UF Health Laboratories or an external commercial laboratory. Currently, each lab testing site reports total reagent usage on a daily basis. We also monitor inventory daily and accordingly shift test reagents to sites with greater needs on a daily basis.

The backend of our Epic EHR system was configured to automatically route to appropriate laboratory and testing platforms (as

Figure 3. Epic EHR informatics instrument for SARS-CoV-2 test ordering.
listed in Table 1) based on the responses to the questions in the order form (Figure 3). We also configured our Epic system to interface with external commercial laboratories.

INFORMATICS SUPPORT FOR ON-SITE COVID-19 TESTING

At UF Health, clinical laboratory testing instruments are typically interfaced with Epic Beaker through the Data Innovations (DI) instrument manager (Data Innovations, South Burlington, VT). The DI instrument manager is connected to the NextGen Connect Integration Engine (Formerly MirthConnect), which pushes the results into Beaker. Unfortunately, not all instruments have DI compatible software drivers. In these cases, a laboratory technologist is required to enter results manually into Beaker LIS. One such instrument without native DI connectivity support is QuantStudio 12 Flex instrument (Thermo Fisher) that we used for implementing a CDC-based RT-PCR Panel for detection of the SARS-CoV-2. Without a feature for auto interfacing results, manual entry of results is a labor-intensive process and a workflow bottleneck. 7

More importantly, this process is prone to manual entry errors. 7 We developed a custom middleware solution for automatically interfacing the results from the QuantStudio into Epic Beaker. Our overall approach is shown in Figure 4, and the middleware solution is in Figure 4, Step B.

As shown in Figure 4, Step A, as soon as SARS-CoV-2 testing is ordered and a specimen is collected, it appears on the pathology lab worklist in Epic Beaker LIS. We configured our electronic interface software Epic Bridges and NextGen Connect for simultaneously sending an order HL7 message to a network folder. Once the specimen has been analyzed for SARS-CoV-2 on the testing platform, the result is stored in an excel sheet on the instrument. The RT-qPCR assay for a SARS-CoV-2 positive sample generates positive results for two conserved targeted regions of the SARS-CoV-2 genome (N1, N2—see Figure 4, Step B). 8 All samples are also tested for human RNAse P (RNP) genes as amplification control to assess specimen quality (RP column in Figure 4, Step B). Our middleware solution automatically matches the output files to the HL7 incoming order messages and generates an outgoing HL7 result message (Figure 4, Step C). The middleware functions in two steps. First, it translates target regions and RP values for each specimen into a result value (ie Detected, Not Detected, Indeterminate, and Invalid). Second, for each specimen, it detects the correct incoming HL7 order message file based on the specimen ID, and inserts a result value into the HL7 message generating outgoing HL7 message. This outgoing HL7 message is placed on the network drive and automatically picked up by NextGen Connect and pushed into Beaker.

TEST REPORTING AND MONITORING

Monitoring and reporting every SARS-CoV-2 test and its result is crucial for clinical management of the disease and for taking necessary precautionary steps towards minimizing community transmission of the disease. The UF Health command center and leadership team required real-time updates on SARS-CoV-2 testing. Such updates inform policy decisions, clinical care, isolation precautions, personal protective equipment use, and future projections of testing needs and program development. 9

Table 1. Triaging instrument for COVID-19 tests at pathology laboratories in the UF Health system

Reason for testing	Hospital lab	Reference lab
ED patient		
To be admitted—medicine service	Cepheid Urgent	Quant-Studio Urgent
To be admitted—neurology service	Cepheid Urgent	Quant-Studio Urgent
To be admitted—to HVN or ST	Cepheid Urgent	Quant-Studio Urgent
Respiratory: anticipate discharge	Cepheid Urgent	Quant-Studio Urgent
Baker Act Medical Clearance to Psych Facility (Vista, Unit 52, Meridian)	Cepheid Urgent	Quant-Studio Urgent
Inpatient		
New onset respiratory infection/fever—aerosol generating procedure anticipated	Cepheid Urgent	Quant-Studio Urgent
New onset respiratory infection/fever—no aerosol generating procedure	Cepheid Urgent	Quant-Studio Urgent
Direct admit/same day post op admit—asymptomatic	Cepheid Urgent	Quant-Studio Urgent
Hospital to hospital transfer—surgical	Cepheid Urgent	Quant-Studio Urgent
Hospital to hospital transfer—medicine	Cepheid Urgent	Quant-Studio Urgent
Asymptomatic now requiring aerosol generating procedure	Cepheid Urgent	Quant-Studio Urgent
Psych Hospital (Vista and Unit 52)	Cepheid Urgent	Quant-Studio Urgent
L&D patients		
Transfer to subacute care—symptomatic	Cepheid Urgent	Quant-Studio Urgent
Urgent input procedure (within 24 h)—asymptomatic	Cepheid Urgent	Quant-Studio Urgent
Procedure anticipated greater than 24 h—asymptomatic	Cepheid Urgent	Quant-Studio Urgent
Transplant donors and/or recipients	Cepheid Urgent	Quant-Studio Urgent
Outpatient		
Hospital Outpatient Depts (L&D clinic, burn clinic, BMT clinic, rad onc, etc.)	Cepheid Urgent	Quant-Studio Urgent
UFP clinics—surgery tomorrow	Cepheid Urgent	Quant-Studio Urgent
Outpatient; high risk >60, Hex of respiratory disease, fever, CVD, immunosuppression, DM, HTN	Cepheid Urgent	Quant-Studio Urgent
Outpatient; Hex of respiratory illness/fever	Cepheid Urgent	Quant-Studio Urgent
Procedure anticipated greater than 24 h—asymptomatic	Cepheid Urgent	Quant-Studio Urgent
HealthCare Worker Exposure	Cepheid Urgent	Quant-Studio Urgent
Florida Recovery Center	Cepheid Urgent	Quant-Studio Urgent

*Stat: ~2 h turn around time.

†Urgent: ~7 h turn around time.

‡Routine: ~24–36 h turn around time.
patient care requirements. Our UF Health enterprise reporting team built a dashboard which automatically displays these real-time data (Figure 2, Step D). Specifically, the dashboard reports on the number of tests performed daily, the number of positive SARS-CoV-2 tests, the number of negative tests, and the number of indeterminate tests.

Pathology laboratory operations have additional data monitoring needs (Figure 2, Step D). A separate pathology dashboard was created specifically to meet pathology laboratory needs. These dashboards report on the volume of tests by hour/day/overall, health care facilities locations, and types (inpatient/outpatient/community screening) across different laboratories and testing platforms in the UF Health system. The dashboards are primarily used for allocating resources and scheduling batch testing in an optimal fashion.

Test orders with direct results interface with the UF Health system. The test results directly go to the patient chart. In contrast, results for test orders from external/nonintegrated healthcare submitters are emailed as pdf reports via NetDelivery (https://interbitdata.com) (Figure 2, Step D). Additionally, positive test results are communicated by phone.

Timely reporting of test results to public health information systems is crucial for effectively managing pandemic outbreaks. We submitted extrapolated data from the laboratory report electronically in compliance with required reporting to the DOH. All test results including positive and negative tests were submitted. The reporting was accomplished with an existing Electronic Laboratory Reporting feed from UF Health to Florida DOH (Figure 2, Step D).

CONCLUSION

In this article, we reported the development of informatics workflows at UF to assess the extent to which CDC guidelines for hospital assessment and decision making are being implemented before ordering tests. We demonstrated how we streamlined sample triage, testing, and distribution in the event that maximum testing capacity and efficiency is reached or exceeded. Our informatics instruments minimize errors in data collection, reporting to the clinician on call, analysis, and reporting these findings to patients for clinical management. We hope that our approach proves useful to other healthcare entities seeking to optimally respond to the enormous volumes of COVID-19 patients anticipated in the near future.

AUTHORS’ CONTRIBUTIONS

All authors participated in the conceptualization and design of the COVID-19 testing protocol and workflows described in this manuscript. S.C., S.M., K.N., and M.D. lead the informatics implementation efforts. S.C., S.F., and T.L. took the lead in writing the
manuscript with all authors input. All authors provided critical feedback and approved the final version.

ACKNOWLEDGMENTS
We acknowledge UF Health system pathology laboratory members Carol Fulger, Carlos Osuna, Martin Monin, Nancy Hendee, Yvette McCarter, Kenneth H Rand, Vektra Casler, Vanessa Marks, Waneska Mayor, Waleska Colon, and Yvette McCarter for helpful discussions about COVID-19 testing which shaped our efforts. We thank Ashley Chandler, Gigi Lipori, Dawn Blood, Damian Sanchez, David Dekay, Enrica A. Hughes, Greg D. Mullersman, Jennifer Myles, Ravin N. Mehta, Benjamin J. Staley, and other members from the UF Health enterprise IT services for their contributions to the rapid development of the informatics projects detailed in this article. We are also grateful to members of Association of Pathology Chairs email list-serve for sharing their experiences with developing COVID-19 tests. Additionally, we would like to acknowledge the leadership and assistance of the members of the UF COVID command center.

FUNDING
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

CONFLICT OF INTEREST STATEMENT
None declared.

REFERENCES
1. The Economist. Covid-19 is spreading rapidly in America. The country does not look ready. 2020. https://www.economist.com/united-states/2020/03/12/covid-19-is-spreading-rapidly-in-america-the-country-does-not-look-ready (accessed October 19, 2020).
2. Florida Department of Health. Florida’s COVID-19 Data and Surveillance Dashboard. 2020. https://experience.arcgis.com/experience/96dd74246212440838dcdb9b25c429 (accessed October 19, 2020).
3. Gomez A. Florida, home to millions of elderly residents, doesn’t have enough coronavirus tests. Could it be the next epicenter? USA Today. 2020. https://www.usatoday.com/story/news/nation/2020/03/26/coronavirus-tests-scarce-florida-home-millions-elderly-hospitals-scrrounging/5083283002/ (accessed October 19, 2020).
4. Secon H, Woodward A, Mosher D. A comprehensive timeline of the new coronavirus pandemic, from China’s first COVID-19 case to the present. 2020. https://www.businessinsider.com/coronavirus-pandemic-timeline-history-major-events-2020-3 (accessed October 19, 2020).
5. News4Jax. DeSantis declares emergency to battle coronavirus. 2020. https://www.news4jax.com/health/2020/03/09/desantis-declares-emergency-to-battle-coronavirus/ (accessed October 19, 2020).
6. Herper M, Branswell H. Shortage of crucial chemicals creates new obstacle to U.S. coronavirus testing. Stat. 2020. https://www.statnews.com/2020/03/10/shortage-crucial-chemicals-us-coronavirus-testing/ (accessed October 19, 2020).
7. Sinard JH, Castellani WJ, Wilkerson ML, et al. Stand-alone laboratory information systems versus laboratory modules incorporated in the electronic health record. Arch Pathol Lab Med. 2015; 139(3):311-318.
8. Centers for Disease Control. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel. 2020. https://www.fda.gov/media/134922/download%0A (accessed October 19, 2020).
9. Florida Department of Health. Update on Hospital Reporting of COVID-19. Laboratory Results to the Florida Department of Health. 2020. http://www.floridahealth.gov/diseases-and-conditions/disease-reporting-and-management/documents/hospital-reporting-covid-lab-results.pdf%0A (accessed October 19, 2020).
10. Florida Department of Health. Notice Of Emergency Rule. 2020. http://www.floridahealth.gov/diseases-and-conditions/disease-reporting-and-management/documents/emergency-rule-reporting-results.pdf (accessed October 19, 2020).