Elective Surgical Experience During COVID Pandemic at a Tertiary Cancer Care Centre in India: A Retrospective Analysis

Raj Nagarkar · Sirshendu Roy · Rajendra Dhondge · Aditya Adhav · Aditya Manke · Lalit Banswal · Manish Upwanshi · Nayanu Kulkarni · Ravindra Tandale · Yogesh Bang · Lalitha Shankar Pasumarthi · Anuraag Subramaniam · Kamil N. Rajpari · Pranay Yajurvedi · Shoeb Ansari · Bhushan Wankhede · Yasam Venkata Ramesh

Received: 28 August 2020 / Accepted: 27 July 2021 / Published online: 16 August 2021
© Indian Association of Surgical Oncology 2021

Abstract
To analyse and identify possible outcomes of elective cancer surgeries performed at a tertiary cancer centre during COVID19 pandemic. This is a retrospective study including patients that underwent surgery at HCG Manavata cancer centre, Nashik, Maharashtra, India, from 15 March 2020 to 15 June 2020. Among the 458 patients that underwent elective surgeries, 54% were male and 46% were female, with a median age of 50.57 years. The most common sites of cancer distribution were head and neck (24.67%), colorectal (11.57%), gynaecological (11.35%), and breast (10.26%). Of the included patients, 92% were of American Society of Anaesthesiologists (ASA) II with comorbidities such as hypertension, and 64% underwent major surgeries with a mortality rate of 1.52% (n = 7). Average duration of surgery and hospital stay was observed to be 168.43 min and 4.4 days, respectively. Post-operatively, 7 patients were tested COVID positive and their recovery was uneventful. Despite the difficulty that set in because of COVID19 pandemic, it was proven from our study that elective cancer care surgeries can be successfully performed by following all the set guidelines.

Keywords Elective cancer surgery · Cancer care · COVID19 · Pandemic · Tertiary cancer care · Retrospective analysis

Introduction
The outbreak of novel coronavirus disease 2019 (COVID-19) is of international concern deeming the World Health Organisation (WHO) to declare it as pandemic on 11 March 2020 [1]. By the end of 10 November 2020, India has reported 8,591,730 cases, of which 7,963,457 cases were cured and 127,059 were dead [2]. In 2018, around 2.25 million people were estimated to have cancer in India with more than 11 lakh new cases every year with an estimated death rate of > 7.5 lakh patients per year [3].

In general, immune system of an individual with cancer is often weak and fragile, placing them at an increased risk to other conditions [3]. No age is immune for malignant disease but majority of the cancer patients belong to elderly age group, prevalence of other comorbidities makes them more susceptible for contracting infectious diseases. Administration of chemotherapeutic drugs to an individual suffering from cancer also diminishes/alters their immune response, making them much more susceptible to infections [4].

India has grown as a top healthcare destination for patients around the world seeking world-class treatment at an economical price [4]. The strict lockdown, travel restrictions and increase in COVID cases over the months have created a panic situation in both domestic and international cancer patients. In view of COVID19 transmission, hospitals have limited their surgical procedures to a larger extent except for the selective emergency procedures, posing a high risk in non-critically ill cancer patients [5]. To regulate and avoid any serious consequences in view of COVID pandemic and national lockdowns, various national and international cancer societies and national
authorities such as American Society of Clinical Oncology (ASCO), American college of surgeons (ACS), British Association of Surgical Oncology (BASO), European society of surgical oncology (ESSO), National Comprehensive Cancer Network (NCCN), and society of surgical oncology (SSO) have recommended multiple changes in surgical procedures and treatment strategies [6–12]. Cancer hospitals around the world started following a triage system for handling patients waiting for cancer surgeries [13]. Elective surgical procedures were prioritised and performed as decided by a multidisciplinary team (MDT) on a case-to-case basis, which will impart greater benefit for patients [14].

The aim of the present study was to analyse and identify the possible outcomes of such elective cancer resections performed during the pandemic in a classified red zone (Maharashtra, India) [15]. Our secondary aim was to identify the possible complications and consequences followed by these elective cancer surgeries for better understanding of surgeons and health care workers working around the world in cancer care.

Material and Methods

Patient Screening and Selection

In this retrospective study, data of patients who underwent elective cancer surgeries at HCG Manavata cancer centre from 15 March 2020 to 15 June 2020 was collected and analysed. All the patients underwent elective surgeries on a priority basis depending on their age, stage of cancer, Eastern Cooperative Oncology Group (ECOG) status, American Society of Anesthesiologists (ASA) classification [16], comorbidities, and potentiality to cure. Preoperative COVID test was mandated following any of the methods recommended by the Indian Council of Medical Research (ICMR), India [17].

Data Collection and Analysis

The patient’s information such as socio-demographic profile, clinical history, perioperative and postoperative parameters were collected, classified, and categorised retrospectively from the hospital’s telephonic and electronic medical records. The institutional ethical committee has cleared study from all the required ethical approvals. Descriptive statistical analysis was performed to present the data using Statistical Package for the Social Sciences version 22 (IBM SPSS Statistics version 22.0, IBM Corp., USA).

Results

Of the 458 patients that underwent elective surgeries, 54% were male and 46% were female with a mean age of 50.75 years. The mean duration of surgery and stay in hospital were 168.43 min and 4.40 days, respectively. Most of the patients in our study were of ASA grade II (92%), and 93 patients had pre-existing comorbid condition/disease such as hypertension (53.76%), diabetes mellitus (21.50%), and hypertension with diabetes mellitus (15.05%) as shown in Table 1. Two ninety-two patients underwent major surgeries and organ site distribution is depicted in Fig. 1, where head and neck cancer constituted 24.67% followed by colorectal (11.57%), gynaecological (11.35%), breast (10.26%) and urological (9.60%; Fig. 1).

As shown in Fig. 2, 41 out of 458 patients had unexpected postoperative events, which were major (56%) as per Clavien–Dindo classification. Using Clavien–Dindo grades, the severity of postoperative complications were classified as grade I [13 (32%)], grade II [10 (24%)], grade IIIA and IIIB [7 (17%)], grade IV [4 (10%)] and grade V [7 (17%)] [18]. Post-surgery, 7 patients and 2 surgical ward staffs who were in contact with patients were tested positive for COVID.

Table 1 Patients sociodemographic characteristics, clinical classification, surgical categorisation, and comorbidities (n = 458)

Gender	247	211
Male		
Female		
Age (years in average)	50.74	
ASA classification		
II	423	
III	35	
Surgical category		
Major	292	
Minor	166	
Duration of surgery (Average time in min)	168.43	
Hospital stay (Average in days)	4.40	
Comorbidities		
HTN	50	
DM	20	
HTN with DM	14	
IHD	4	
HTN IHD	2	
Parkinsonism with DM	2	
PEM	1	

ASA Physical Status Classification System II and III – A patient with mild and severe systemic disease (14); HTN, hypertension; DM, diabetes mellitus; IHD, ischemic heart disease; PEM, protein energy malnutrition
Major complications in age group <60 years and >60 years were found to be 2.76% and 7.6% ($P=0.026$), respectively. The mortality rate between the two age groups <60 years and >60 years was found to be 4% and 3%, respectively. Though morbidity was higher in age group >60 years but no statistical difference was found in mortality rate between both age groups. Due to COVID19, multiple changes were made in standard operating procedures (SOPs) for resumption of elective surgeries (Fig. 3) and along with them multiple protocol changes were done for the safety of patients, surgeons, and anaesthesiologists involved (Fig. 4).

Discussion

Cancer is a semi-emergency condition, where any delay in treatment may affect the patients overall survival. Its progression does not stop until and unless an intervention is sought. As COVID pandemic does not seem to halt in near future, considering the risk benefit analysis of cancer patients, we have continued our services by following all the recommendations and guidelines laid by the Government of India. However, we have restricted and
Fig. 3 SOPs followed during COVID19 crisis to perform elective surgeries

© Springer
streamlined the patients’ inflow by performing elective resections, telecommunication, remote care, and e-health. In a study conducted by Liang et al., results have shown that patients with cancer were more susceptible to infections with poor prognosis compared to non-cancer patients [19]. Cancer patients are also at higher risk of infection by COVID-19. Surgical intervention in such cancer patients is critical and important to limit the disease progression, metastasis, and improve patients overall survival. Very few studies were conducted and limited data is available to assess the level of elective cancer surgeries safety during a pandemic [19–22]. Ji et al. had performed 621 elective cancer care surgeries safely without showing any risk of COVID infection in high risk patients. Results from the study have also reiterated that by taking standard precautions and following stringent pre-operative measures, any critical risks related to surgeries can be minimised at large without harming the patients [5].

Overall change in protocols due to COVID19

For patient	For Surgeons	For Anesthesiologists
• Change in visitor policy (no visitors/attendants)	• Additional checklist for restarting elective surgical services	• Extra safety measures and protection guidelines for team members
• Limiting adjoining caregivers	• Multi disciplinary team decisions in surgery prioritization protocols	• Dedicated Operation Theatres (if patient tested positive for COVID19)
• Procedure prioritization and triage introduction	• Increased safety considerations and risk assessment	• Avoiding pre-medication room
• Additional safety measures (face masks, sanitization, etc.)	• Improved safety protocols pre-peri-operatively	• Use of separate/isolated corridors to the OT
• Pre and post operative viral tests	• Working with minimum numbers of team members	• Maintenance of negative pressure in OT
• Added risk in consent for surgery	• Revising existing job plans, scheduled OT duties, and revising clinicians’ job plans	• Laminar flow and the functional high Efficiency filters are preferable
• Isolation issues after surgery	• Opting for highly efficient care pathways and protocols	• Use of PPE included one piece special gown, properly fitted N95/N99 mask, eye shield and double gloves
• Financial burden due to extra charges for pre and post-operative COVID-19 tests/PPEs/disposables/sanitization, etc.	• PPEs to protect both patients and members of the surgical team to avoid aerosol risks during surgery	• Prefer regional anaesthesia
For OR		• Cleaning/sterilization of anesthesia equipment
• New SOPs, workflows were created for use of the OTs	• Minimal use of energy equipment and electrosurgery units should be set to the lowest possible settings for the desired effect	• Extra care during maximum exposure to high aerosol procedures
• All OTs and their doors were all the time closed and maintained at negative pressure	• Using a closed circuit with smoke evacuation device with high efficiency particle air (HEPA) filter or best available equivalent substitute	Use of mechanical ventilation with proper filtration for exhaled air/gasses
• Strictly restricting the access of individuals entering and exiting	• Use of low pneumotaxic pressures	• For general anaesthesia, pre-oxygenate for five minutes with 100% oxygen.
• Provision of ante room for intubation and extubation	• Pre and post COVID tests every alternate day to all the OT staff	• Use of low gas flows and closed circuits
• All the necessary equipment and spares necessary for surgery were kept available in OT itself	• Continued adherence to universal precautions (handwashing, social distancing, unnecessary movements, donning and doffing, face mask, eye shields and gloves, etc.)	• Prophylactic administration of anti-emetic drug
• Disposable equipment were encouraged to avoid any chance of cross-contamination	• Compliance with surgery checklists regarding COVID 19 and being aware of changing guidelines	• Compliance with new anaesthesia checklists regarding COVID 19

For Hospital management

For Hospital management
• Separate wards/floor for COVID19 patients
• Worries about community's COVID19 numbers, diagnostic testing availability, surgical/ICU beds, care surgery facilities, sanitization of all areas, sterilization of all un-disposable material, availability of ancillary staff and material for surgery
• Assessing anticipated surgical workload
• Availability and quality of PPEs, face shields, eye protection, N95 masks, gloves, disposable cap, and gown
• Additional financial burden of new infrastructure/equipment/disposables in wards and ORs
• Monitor all staff for signs and symptoms of COVID-19 infection
• Regular testing staff working in high infection prone areas and floors
• Planning of staff rota/contingency planning if staff gets infected
• Ensuring issues like ventilation in wards and ORs
• Creation of multidisciplinary review/governance committee for real-time governance, decisions (prioritization of surgery/ resources), and monitoring of quality control
• Support for well-being, post-traumatic stress/moral health issues, and work hours of staff
• Improving telemedicine consultations and routing scheduled patient influx
• Staff quarantine facilities
• Collection/analysis of new data

OT or OR - Operation theatre/room, PPE - Personal protective equipment, ICU - Intensive care unit, SOP - Standard operating procedure.

Fig. 4 Change in protocols due to COVID19 for the safety of patients, surgeons, anaesthesiologists, and hospital management
a study by Shrikhande et al., 494 elective cancer surgeries were performed and overall, 6 patients were tested COVID positive postoperatively. However, all the COVID positive patients were treated and recovered well without any further complications. The study also confirmed that by combining administrative and scientific rationale, elective cancer care surgeries can be performed safely without any delay [21]. In accordance with the previous studies, the present study also found the safety of elective surgeries and 7 patients were tested COVID positive post-operatively.

The most important thing which has a considerable value for such successful elective cancer surgeries were the efforts taken by MDT (Fig. 3) on taking a multidisciplinary decision on patient's condition, timing of surgery, and the guidelines to be followed throughout the procedure [16]. In view of this, MDT team at our centre was given a free hand in deciding the criteria for patient selection for elective surgery and treatment decisions to be taken on a case-by-case basis, depending on the patients age, stage of cancer, ECOG status, ASA classification, comorbidities, the potentiality to cure, risk of tumour spread, metastasis, risk of nosocomial contamination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), morbidity, and mortality if untreated [23, 24]. A major consideration was the risk of morbidity, mortality if untreated and chances of survival in case of infected by COVID.

In our study, most of the patients who underwent surgery were male, ASA II categorised, with multiple comorbidities. No surgical restrictions were imposed; varied elective cancer surgeries were performed depending on the severity. Unexpected postoperative events were found to be very low. Only 7 patients and 2 staff have developed COVID postoperatively and recovered well without many complications.

In an international cohort study conducted by COVID-Surg Collaborative in 24 countries, the mortality rate was found to be 23.8% [25], while our study has demonstrated the lowest risk of post-operative COVID infections without any mortality. This might be attributed to the MDT decisions, strict guidelines related to post-operative isolation, experienced surgeons, adopting best surgical practices and treatment strategies followed. However, the promotion of non-operative treatment strategies and postponement of non-urgent surgical procedures was strictly followed in all the patients for their safety, especially in patients aged > 70 years [27–31]. Major complications in our study were observed in patients > 60 years, but it doesn’t affect our treatment policies and elective surgical practices. However, no statistical significance was found on comparison of morbidity and mortality rate between the two (< 60 years and > 60 years) age groups.

New SOPs, workflows (Fig. 4) were created for use of the operating theatres (OTs) and their importance was also emphasised in multiple studies [14, 23, 26, 28–33]. After each surgery, OT was completely disinfected as per disinfection guidelines [34]. The staff involved in the surgery were also encouraged to sanitise before resuming the next surgery or normal activities. Post-surgery, patients were shifted to isolation ward through pre-designated access doors and all the security measures were taken 30 min prior to discharge as per institutional protocols.

After the declaration of COVID as a global pandemic [1], many studies have confirmed the phenomenon of psychological and mental health burden in patients and doctors. To shun any such burden, psychological intervention teams were set up at our centre and regular counselling sessions were done to deal with these challenges and promising results were observed.

To the best of our knowledge, this is the second-largest study on elective cancer surgeries conducted during COVID-19 pandemic from a single cancer centre. Data from this study can be early evidence on surgical management during this COVID pandemic, which can be useful to support different surgical strategies.

At the same time, retrospective and single study institution design could be a limitation for the analysis, but the feasibility of a multicentre prospective study in this pandemic period should be considered in future studies. Other limitations include missing data during the initial days of pandemic and the data represented here is of only three months without a longitudinal follow-up. Even after pre-operative testing, few cases turned out to be COVID positive and symptomatic; there is also a high chance of missing data in asymptomatic carriers.

Conclusion

The data from the present study has shown some promising results with positive outcomes without much complication in conducting elective surgical procedures during pandemic conditions like COVID. Results from the present study can also serve as guidance for other cancer centres around the world, where the dilemma of delaying surgeries is prevalent in view of widespread COVID-related infections.

Additional Contributions

Great appreciation is owed to all of the participants who contributed to our work.

Acknowledgements The authors would like to thank Dr. Yasam Venkata Ramesh from HCG Manavata Cancer Centre, Centre for Difficult Cancers (CDC), Nashik, India, for his medical writing assistance.
Great appreciation is owed to all surgeons, anaesthesiologists, operating room nursing staff, technicians, and attendants—without whom surgeries could not have been possible.

Author Contribution Concept—R.N., Y.B., Y.V.R.; Design—R.N., Y.B., Y.V.R.; Supervision—R.N.; Materials—R.N., S.R., R.D., A.A., A.M., L.B., M.U., N.K., R.T., Y.B., L.S.P., A.S., K.N.R., P.Y., S.A., B.W.; Data Collection and/or Processing—Y.B., L.S.P., A.S., K.N.R., P.Y., S.A., B.W., Y.V.R.; Analysis and/or Interpretation—R.N., Y.B., Y.V.R.; Literature Search—Y.V.R.; Writing Manuscript—Y.V.R.; Critical Review—R.N., Y.B., Y.V.R.

Data Availability The data analyzed during the current study are not publicly available. They are available from the corresponding author on reasonable request.

Declarations

Ethics Approval and Consent to Participate Ethics committee approval was received for this study from the Ethics Committee of Manavata Clinical Research Institute, India (ESECO19). All patients had consented for the proposed surgery. This is a retrospective analysis of prospectively maintained database which does not necessitate consenting for analysis.

Consent for Publication All authors have consented for publication.

Conflict of Interest The authors declare no competing interests.

Financial Disclosure The authors declared that this study has received no financial support.

References

1. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 4 Aug 2020
2. MoHFW | Home. https://www.mohfw.gov.in/. Accessed 11 Nov 2020
3. Yeoh CB, Lee KJ, Rieth EF et al (2020) COVID-19 in the cancer patient. Anesth Analg 131:16-23. https://doi.org/10.1213/ane.00000000000054884
4. Hwang ES, Balch CM, Balch GC et al (2020) Surgical oncologists and the COVID-19 pandemic: guiding cancer patients effectively through turbulence and change. Ann Surg Oncol. https://doi.org/10.1245/s10434-020-08673-6
5. Ji C, Singh K, Luther AZ, Agrawal A (2020) Is elective cancer surgery safe during the COVID-19 pandemic?. World J Surg 44(10):3207–3211. https://doi.org/10.1007/s00268-020-05720-x
6. Cancer Services Prioritization Guidelines for COVID-19. https://www.nccn.org/covid-19/pdf/Cancer_Services_Patient_Prioritization_Guidelines.pdf. Accessed 4 Jul 2020
7. ESSO :: ESSO. https://www.essoweb.org/. Accessed 4 Jul 2020
8. BASO–ACS annual conference - BASO – The Association For Cancer Surgery. https://baso.org.uk/. Accessed 4 Jul 2020
9. COVID-19 Resources | Society of Surgical Oncology. https://www.surgonet.org/resources/covid-19-resources/. Accessed 4 Jul 2020
10. COVID-19 Guidelines for Triage of Cancer Surgery Patients. https://www.facs.org/covid-19/clinical-guidance/elective-case/cancer-surgery. Accessed 4 Jul 2020
11. American Society of Clinical Oncology | ASCO. https://www.asco.org/. Accessed 4 Jul 2020
12. Home - IASO India. https://iasoindia.in/. Accessed 4 Jul 2020
13. Bartlett DL, Howe JR, Chang G et al (2020) Management of cancer surgery cases during the COVID-19 pandemic: Considerations. Ann Surg Oncol 27(6):1717–1720
14. Deo SVS, Kumar S, Kumar N et al (2020) Guiding principles for cancer surgery during the COVID-19 pandemic. Indian J Surg Oncol. https://doi.org/10.1007/s13193-020-01082-x
15. MoHFW | Home. https://www.mohfw.gov.in/. Accessed 4 Jul 2020
16. ASA Physical Status Classification System | American Society of Anesthesiologists (ASA). https://www.asahq.org/standards-and-guidelines/asa-physical-status-classification-system. Accessed 30 Jul 2020
17. Guidelines for COVID-19 testing in private laboratories in India. https://www.mohfw.gov.in/pdf/NotificationonICMguidelinesforCOVID19testinginprivate laboratoriesinIndia.pdf. Accessed 25 Jul 2020
18. Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213
19. Liang W, Guan W, Chen R et al (2020) Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 21:335–337
20. Ji C, Singh K, Luther AZ, Agrawal A (2020) Is elective cancer surgery safe during the COVID-19 pandemic? World J Surg 44:3207–3211. https://doi.org/10.1007/s00268-020-05720-x
21. Shrikhande SV, Pai PS, Bhandare MS et al (2020) Outcomes of elective major cancer surgery during COVID 19 at Tata Memorial Centre. Ann Surg 272:e249–e252. https://doi.org/10.1097/sla.000000000004116
22. Glasbey JC, Nepogodiev D, Simoes J et al (2021) Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: AnInternational, Multicenter, Comparative Cohort Study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 39(1):66–78
23. Soltany A, Hammad M, Ghzawi A et al (2020) A scoping review of the impact of COVID-19 pandemic on surgical practice. Ann Med Surg 5:24–36
24. Zarrintan S (2020) Surgical operations during the COVID-19 outbreak: should elective surgeries be suspended? Int J Surg 78:5–6
25. COVIDSurg Collaborative (2020) Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an International Cohort Study. Lancet 396(10243):27–38
26. Givi B, Schiff BA, Chinn SB et al (2020) Safety recommendations for evaluation and surgery of the head and neck during the COVID-19 pandemic. JAMA Otolaryngol - Head Neck Surg 146:579. https://doi.org/10.1001/jamaoto.2020.0780
27. Raymond E, Thieblemont C, Alran S, Favier S (2020) Impact of the COVID-19 outbreak on the management of patients with cancer. Target Oncol 15:249–259
28. Liu Z, Zhang Y, Wang X et al (2020) Recommendations for surgery during the novel coronavirus (COVID-19) epidemic. Indian J Surg 82:124–128. https://doi.org/10.1007/s12262-020-02173-3
29. Flemming S, Hankir M, Ernestus RI et al (2020) Surgery in times of COVID-19—recommendations for hospital and patient management. Langenbeck’s Arch Surg 405:359–364. https://doi.org/10.1007/s12028-020-00192-x
30. Wong J, Goh QY, Tan Z et al (2020) Preparing for a COVID-19 pandemic: a review of operating room outbreak response measures in a large tertiary hospital in Singapore. Can J Anesth 67:732–745
31. Tan Z, Phoon P, Zeng LA (2020) Response and operating room preparation for the COVID-19 outbreak: A perspective from the
32. Ti LK, Ang LS, Foong TW, Ng BSW (2020) What we do when a COVID-19 patient needs an operation: operating room preparation and guidance. Can J Anesth 67:756–758

33. Coimbra R, Edwards S, Kurihara H et al (2020) European Society of Trauma and Emergency Surgery (ESTES) recommendations for trauma and emergency surgery preparation during times of COVID-19 infection. Eur J Trauma Emerg Surg 46:505–510. https://doi.org/10.1007/s00068-020-01364-7

34. Malhotra N, Bajwa S, Joshi M et al (2020) COVID Operation Theatre- Advisory and Position Statement of Indian Society of Anaesthesiologists (ISA National). Indian J Anaesth 64:355–362. https://doi.org/10.4103/ija.IJA_454_20

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.