Identification of novel HIV-1-derived HLA-E-binding peptides

Zara Hannouna,1, Zhansong Linb,1, Simon Brackenridgec,1, Nozomi Kuseb, Tomohiro Akahoshib, Nicola Borthwicka, Andrew McMichaelc, Hayato Murakoshib, Masafumi Takiguchib, Tomáš Hankea,d,*

a The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
b Center for AIDS Research, Kumamoto University, Kumamoto, Japan
c NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
d International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan

A R T I C L E I N F O

Keywords:
HLA-E binding peptides
HIV-1

A B S T R A C T

Non-classical class Ia MHC-E molecule is becoming an increasingly interesting component of the immune response. It is involved in both the adaptive and innate immune responses to several chronic infections including HIV-1 and, under very specific circumstances, likely mediated a unique vaccine protection of rhesus macaques against pathogenic SIV challenge. Despite being recently in the spotlight for HIV-1 vaccine development, to date there is only one reported human leukocyte antigen (HLA)-E-binding peptide derived from HIV-1. In an effort to help start understanding the possible functions of HLA-E in HIV-1 infection, we determined novel HLA-E binding peptides derived from HIV-1 Gag, Pol and Vif proteins. These peptides were identified in three independent assays, all quantifying cell-surface stabilization of HLA-E*01:01 or HLA-E*01:03 molecules upon peptide binding, which was detected by HLA-E-specific monoclonal antibody and flow cytometry. Thus, following initial screen of over 400 HIV-1-derived 15-mer peptides, 4 novel 9-mer peptides PM9, RL9, RV9 and TP9 derived from 15-mer binders specifically stabilized surface expression of HLA-E*01:03 on the cell surface in two separate assays and 5 other binding candidates EI9, MD9, NR9, QF9 and YG9 gave a binding signal in only one of the two assays, but not both. Overall, we have expanded the current knowledge of HIV-1-derived target peptides stabilizing HLA-E cell-surface expression from 1 to 5, thus broadening inroads for future studies. This is a small, but significant contribution towards studying the fine mechanisms behind HLA-E actions and their possible use in development of a new kind of vaccines.

1. Introduction

Human leukocyte antigen E (HLA-E) is a non-classical major histocompatibility complex (MHC) class Ia molecule, which engages natural killer (NK) and CD8+ T lymphocytes and regulates their effector activities. On NK cells, HLA-E molecules contact predominantly C-type lectin-like CD94/NKG2 receptors [1], of which CD94/NKG2A produces inhibitory [2] and CD94/NKG2C activatory [3] signals. CD8+ T lymphocytes recognize HLA-E/peptide complexes via their αβ T-cell receptor (TCR) [4], although a small subset also expresses CD94/NKG2A/C [5].

Classical HLA class Ia molecules are highly polymorphic. As of April 2018, there have been 4081 (2853), 4950 (3582) and 3685 (2550) HLA-A, -B and -C alleles (proteins) described, respectively, which help immune cells discriminate between ‘self’ and ‘foreign’ targets. In contrast, only 27 non-classical HLA-E alleles with 8 expressed proteins are known to date, of which 2 have been shown to contribute to immune function [5]. These are HLA-E*01:01 and HLA-E*01:03 and differ in having Arg and Gly in position 107 of the α2-domain outside of the peptide-binding groove, which were associated with low and high expression levels, respectively [7]. Under normal circumstances, HLA-E binds nonameric peptides VMAPRT(L/V)(V/L/I/F)L, here collectively designated VL9, derived from amino acid positions 3-11 of HLA-A, -B, -C and -G leader sequences. Some HLA-B leaders contain Thr in position 2 (p2), which caused aberrant folding, resulted in low or no HLA-E expression [8] and consequently affected engagement with the T-cell and NK receptors [1,2,9-14]. CD8+ T cells also recognized HLA-E-presented peptides derived from persistent infections with Mycobacterium tuberculosis [15,16], Salmonella enterica [17,18] hepatitis C virus [19,20], Epstein-Barr virus [21] and human cytomegalovirus

* Corresponding author at: The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.
E-mail address: tomas hanke@ndm.ox.ac.uk (T. Hanke).
1 These authors contributed equally.

https://doi.org/10.1016/j.imlet.2018.08.005
Received 26 April 2018; Received in revised form 7 August 2018; Accepted 23 August 2018
Available online 30 August 2018
0165-2478/ © 2018 The Authors. Published by Elsevier B.V. on behalf of European Federation of Immunological Societies. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
where HLA-E is upregulated to evade NK activity. In the absence of VL9, peptides bound to HLA-E were highly diverse and derived from self-proteins [23,24] with no obvious binding motif and length of up to 18 amino acids [23–25], although the true HLA-association of the very long peptide identified using tandem-mass-spectrometry workflows remains to be verified [26].

Structurally, HLA-E was suggested to be more rigid than the more polymorphic and plastic classical HLA class Ia molecules leaving its groove open in the absence of peptides in contrast to e.g. HLA-A*02:01, the groove of which without a peptide collapsed inwards. The structural analyses of both HLA-E*01:01 [1,12,27–29] and HLA-E*01:03 [30] were limited to the nonclassical VL9 peptide variants and suggested major anchor residues at positions p2, p7 and p9. While VL9 bound on the bottom of the HLA-E groove, filled all the binding pockets for hydrophobic amino acid sidechains and formed multiple hydrogen bonds to the peptide backbone [12], ‘atypical’ peptides likely bind in many different ways perhaps higher in the HLA-E groove [31], which may facilitate peptide exchange. Several longer peptides were modelled to budge in the middle part towards the effector-cell receptor [23,24]. These longer peptides required much higher concentrations than VL9 to stabilize HLA-E on the cell surface.

Unexpected MHC-E involvement was found following administration of fibroblast-adapted molecular clone 68-1 of rhesus cytomegalovirus (RhCMV)/simian immunodeficiency virus (SIV)-vectored vaccine, which induced and maintained persistent SIV-specific effector-memory T cells. When challenged, approximately 50% of vaccinated macaques controlled pathogenic SIVmac239 infection and cleared completely the challenge virus [32–34], whereby all macaques became infected and either controlled the challenge virus early or not at all. This protection has now been observed in over 130 animals and required precisely all the mutations present in the RhCMV 68-1 clone. Vaccinated animals had CD8+ T cells recognizing rhesus macaque (Macaca mulatta) MHC (Mamu) class Ii- and Mamu-E-restricted epitopes with no classical Mamu class Ia responses and no anti-Env antibodies [35]. These unusual CD8+ T-cell responses were present in all protected and unprotected animals. Although to date, there are no formally proven correlates for this vaccine protection, it is hypothesized that the broadly protected animals. Although to date, there are no formally proven correlates for this vaccine protection, it is hypothesized that the broadly protected animals.

2. Materials and methods

2.1. Cryopreserved human PBMCs

The PBMCs were collected in trial HIV–CORE 002 [43,44], which was approved by the National Research Ethics Service Committee West London (Ref: 10/H0707/52) and the UK Medicines and Healthcare products Regulatory Agency (Ref: 21584/0271/001). Volunteers 409 and 410 gave written informed consent before participation. Cryopreserved PBMC samples were stored and used in compliance with the UK Human Tissue Act 2004 and with approval from local NREC.

Cryopreserved PBMCs from 32 treatment-naive Japanese individuals chronically infected with HIV-1 subtype B were recruited from the National Center for Global Health and Medicine. All volunteers gave written informed consent before participation. The study was approved by the ethics committees of Kumamoto University and the National Center for Global Health and Medicine. Informed consent was obtained from all individuals according to the Declaration of Helsinki. Plasma and PBMCs were separated from whole blood. HLA types of the individuals were determined by standard sequence-based genotyping.

2.2. Peptides and antigens

15-mer peptides overlapping by 11 amino acids and spanning the entire first (HIVcons) and second (HIVconsX) generation conserved vaccine immunogens and designated HCXXX and CXXX, respectively, were generously provided by the International AIDS Vaccine Initiative. All 15-mer (GenScriptHK, Hong Kong) and 9-mer (Ana-Spec, San Jose, USA) peptides were at least 90% pure and were reconstituted to 10–40 μg/ml in DMSO, diluted to working stock solutions of 40 μg/ml in PBS and used in mapping studies at final concentration of 100 μg/ml unless otherwise stated.

2.3. HLA-expressing cell lines

B-lymphoblastoid cell line (LCL) 721.221 cells expressing HLA-E*01:01, E*01:03, A*30:02, B*18:01, B*57:03, C*07:01, C*18:02, A*01:01, A*03:01, B*07:02, B*08:01, C*07:01 and C*07:02 were generated by transfecting the genes into the LCL721.221 cell line and RMA-S cells expressing HLA-E*01:01 and E*01:03 were generated by transfecting the genes into the RMA-S cell line as previously described [45,46]. All cell lines were cultured in RPMI 1640 medium containing 10% FCS medium (R10) with 0.15 mg/ml hygromycin B.

2.4. Generation of short-term cell lines (STCL)

Cryopreserved PBMCs were thawed and cultures set up at 1–3 × 10^6 cells/ml in culture medium containing 1.5 μg/ml 15-mer ‘parental’ peptide and 25 ng/ml IL-7 (R & D Systems). Cultures were supplemented with 100 IU/ml IL-2 (R&D Systems) on day 3, and IL-2 plus fresh culture medium on day 7. On day 10, the cells were washed three times with culture medium, re-suspended in 1 ml of medium and placed at 37°C, 5% CO2 for 48 h to rest prior to the ICS assay.

2.5. Intracellular cytokine staining (ICS) assay

LCL 721.221 cell lines expressing a single HLA allele were pulsed with corresponding peptides, added to the STCLs in a 96-well plate at 37°C for 2 h. Then, brefeldin A at 10 μg/ml was added for 4 h, the cells were fixed with 4% paraformaldehyde, staining with aliphophycocyanin (APC)-labeled anti-CD8 mAb (Dako, Glostrup, Denmark), incubated in permeabilization buffer (0.1% saponin, 10% PBS, PBS) and stained with fluorescein isothiocyanate (FITC)-labeled anti-interferon (IFN)-γ mAb (BD Bioscience, CA). Stained cells were acquired using a CyAn ADP Analyser (Beckman Coulter) and analyzed using FlowJo (TreeStar).
2.6. HLA-E/peptide stabilization (binding) assay

LCL 721.221 or RMA-S cells transfected with individual HLA-E molecules were grown overnight at 26 °C. Cells were then incubated with the test peptides at 26 °C for 1 h and transferred to 37 °C for 3 h for ‘destaining’. VL9 peptides were incubated at 37 °C for 3 and 24 h. Cell-surface expression of HLA-E*01:01 and HLA-E*01:03 was determined by incubation with PE-conjugated anti-HLA-E antibody, washed twice with PBS and fixed in 100 μl of Cytofix (BD Biosciences). Control cultures were kept at 26 °C for over 16 h, designated ‘for ever’. For assays in Table 3, serum-free medium AIM V (Thermo Fisher Scientific) was used. Cells were acquired using a CyAn ADP Analyser (Beckman Coulter) and analyzed using FlowJo (TreeStar). The gating strategy was similar to Fig. S2, except that transfected LCL721.221 cells were used.

2.7. Single chain timer-stabilization assay

The chimeric genes coding for the single-chain peptide-β2-microglobulin-MHC-E trimers were constructed as described previously [47,48]. Briefly, the DNA fragment coding the tested peptide was inserted downstream of the fragment coding for the signal sequence of HLA-E*01:01 followed by coding sequences for a flexible linker [G4S]4, β2-microglobulin and the desired heavy chain of MHC-E. The Ala at position 84 was mutated to Tyr to accommodate for the HLA-E leader peptide and was followed by a DNA fragment coding the tested peptide, here PM9, inserted downstream of the fragment (Fig. 1B left). The corresponding flexible linker (H + L) F(ab’)2 fragment (Life Technologies), was washed before and fixed in 100 μl of Cytofix (BD Biosciences). Stained cells were acquired using a CyAn ADP Analyser (Beckman Coulter) and analyzed using FlowJo (TreeStar).

3. Results

3.1. PM9 is an optimal peptide for HLA-B*18:01 and an HLA-E*01:03 binder

The first-generation candidate T-cell vaccine against HIV-1 employing conserved regions of the HIV-1 proteome [49] was tested in HIV-1-negative adults in trial HIV− CORE 002 and induced robust HIV-1-specific T-cell responses. These responses were detected by pools of 15-mer peptides overlapping by 11 amino acids across the full length of the HIV-1-derived vaccine immunogen [50]. Following a routine mapping of stimulatory 15-mer peptides and narrowing to optimal epitopes recognized by vaccine-elicited CD8+ T lymphocytes, peptide PEIVIYDYM (PM9) was identified, which was targeted by vaccine recipient 410 (A*30:02, B*18:01, B*57:03, C*07:01, C*18:02) and presented by HLA-B*18:01 [51]. In particular, HLA restriction was determined by expanding volunteer’s PBMC with stimulatory peptide FRAQNPEIVIYQYMD (TH9) for all three employed MHC-E alleles together with human β2-microglobulin. Then, stabilization of HLA-E/PM9 and HLA-E/VL9 complexes was compared in peptide-stimulation assays using peptide concentrations ranging from 0.01 μg/ml to 100 μg/ml by growing transfected RMA-S cells overnight at 26 °C, pulsing them with peptide for 1 h and transferring them to 37 °C for 3 additional hours. Weak half-maximal effective concentrations (EC50) of over 100 μM were indicated for the interaction of PM9 with the two HLA-E*01:01 and E*01:03 molecules (Fig. 1A).

To further confirm PM9 interaction with the MHC-E molecules, we employed an assay based on cell-surface stabilization of single-chain peptide-β2-microglobulin-MHC-E trimers [47]. Briefly, a DNA fragment coding for the tested peptide, here PM9, was inserted downstream of an HLA-E leader peptide and was followed by flexible [G4S]4 linker, β2-microglobulin and Y84 A point-mutated MHC-E heavy chain, which accommodated the flexible linker (Fig. 1B left). The corresponding plasmid was transiently transfected into HEK 293T cells and a successful peptide-MHC-E interaction resulted in an increased cell-surface expression of assembled single-chain trimers. Thus, using HLA-E*01:01, HLA-E*01:03 and Mamu-E*02:04, expression of the PM9 peptide increased the mean fluorescent intensity (MFI) relative to a non-binding peptide TVCVIWCH (TH9) for all three employed MHC-E molecules. The highest increase was observed for E*01:03 and reached approximately half of the VL9 MFI (Fig. 1B). From these experiments, we concluded that the PM9 peptide bound to HLA-E molecules, and stabilized and increased the HLA-E expression on the cell surface.

3.2. HC102/HC103 overlapping peptides share HLA-A*03:01 epitope and HLA-E*01:03 binder RV9

STCL were expanded from PBMC of vaccine recipient 409 (A*01:01, A*03:01, B*07:02, B*08:01, C*07:01, C*07:02) using peptides KQVD-RMIRRTWKSILVK (HC102) and MRIRRTWKSILVHKHIL (HC103). These STCLs were then stimulated with LCL721.221

Table 1

Transgene	VL9	37 °C MFI	
		3 hours	24 hours
HLA-A*02:01	VMAPRTLVL	12.7	2.90
HLA-B*08:01	VMAPRTVLL	16.3	2.66
HLA-B*51:01	VTPARTVL	3.92	2.69
HLA-C*03:03	VMAPRTLIL	8.38	2.62
HLA-C*07:01	VMAPRALL	7.21	2.52
CD4		4.16	2.39

Table 1

Stable transfection of LCL721.221 cells with classical HLA class I molecules increased cell-surface expression of HLA-E*01:03.

a LCL721.221 cells were stably transfected with various HLA alleles or CD4 and incubated overnight at 26 °C. The cultures were then transferred to 37 °C for either 3 or 24 h and their cell surface expression of HLA-E*01:01 was assessed by mAb 3D12 using FACS analysis. The gating strategy was similar to Fig. S2, except that transfected LCL721.221 cells were used.
expressing individually all six volunteer’s HLA class I molecules and pulsed with the two ‘parental’ long peptides. The experiments indicated that peptide-pulsed LCL721.221/HLA-A*03:01 stimulated 5.31% and 13.7% of the corresponding CD8+ HC102 and HC103 STCLs, respectively. The experiments indicated that peptide-pulsed LCL721.221/HLA-A*03:01 stimulated 5.31% and 13.7% of the corresponding CD8+ HC102 and HC103 STCLs, respectively. The experiments indicated that peptide-pulsed LCL721.221/HLA-A*03:01 stimulated 5.31% and 13.7% of the corresponding CD8+ HC102 and HC103 STCLs, respectively.

Next, we decided to screen systematically 401 overlapping 15-mer peptides derived from highly conserved regions of HIV-1 proteins expressing individually all six volunteer’s HLA class I molecules and pulsed with the two ‘parental’ long peptides. The experiments indicated that peptide-pulsed LCL721.221/HLA-A*03:01 stimulated 5.31% and 13.7% of the corresponding CD8+ HC102 and HC103 STCLs, respectively. The experiments indicated that peptide-pulsed LCL721.221/HLA-A*03:01 stimulated 5.31% and 13.7% of the corresponding CD8+ HC102 and HC103 STCLs, respectively.

3.3. Identification of HIV-1-derived HLA-E-stabilizing 15-mer peptides

Next, we decided to screen systematically 401 overlapping 15-mer peptides derived from highly conserved regions of HIV-1 proteins
employed in the second-generation, conserved-region HIV-1 vaccines [53] for binding to the HLA-E*01:01 molecule on the human LCL721.221 cells and 17 candidates were identified. These 17-mer peptides were restested for specific binding to HLA-E*01:01 and E*01:03-transfected murine RMA-S cells, whereby most of the HLA-E*01:03-stabilizing peptides also increased HLA-E*01:01 expression, but their binding index was approximately 2-fold lower (Table 2).

3.4. Identification of HIV-1-derived HLA-E*01:03-stabilizing 9-mer peptides

We reasoned that HLA-E likely binds 9-mer peptides with higher affinities relative to the parental 15-mers perhaps through a better fit into the peptide-binding groove of the HLA-E molecules and, therefore, using 9-mers in the binding assay may result in more pronounced surface stabilization of the HLA-E*01:03 molecules. For these binding studies, we employed LCL721.221 cells strongly overexpressing HLA-E*01:03. The 9-mer peptides were designed based on the 15-mer results above. As positive and negative controls, we used the VL9 and no added peptide, which yielded mean ± SD HLA-E MFIs of 14265 ± 512 and 10132 ± 241, respectively. The MFI for the 32 tested HIV-1-derived 9-mers ranged from 2481 ± 93 to 10132 ± 249, 6702 ± 537, 3380 ± 10, respectively. The MFI for the 32 tested HIV-1-derived 9-mers were 2481 ± 93 to 10132 ± 241 with 7 peptides below 10132 ± 249, 6702 ± 537 with 7 peptides above 6702 ± 537 and 3380 ± 10.

All surface stabilization data are summarized in Table 3. Thus, altogether in this work, we identified 4 novel previously undescribed peptides TP9, RL9, PM9 and RV9 derived from HIV-1 capable of stabilization of HLA-E molecules on the surface of cells in both the SCT assay and over 4000 MFI in the LCL721.221-HLA-E*01:03 assay, and further 5 possible candidate binder peptides NR9, QF9, YG9, EI9 and MD9, which provided a positive stabilization signal in at least one of the two employed assays.

4. Discussion

HLA-E is a relatively understudied molecule of the immune system. It can potently inhibit NK killing by presentation of peptides derived from leader sequences of other HLA class I molecules, but much less is known about its other more subtle roles involving CD8+ T cells and indeed its peptide repertoire. Immunity is a highly efficient defence system evolved to protect higher organisms against invading microorganisms and cancer, and as such it must be very finely tuned between uncompromising protective responses and self-harm; HLA-E is likely a significant candidate component in maintaining this fine balance as suggested for example by M. tuberculosis challenge experiments in genetically modified mice [54]. In the HIV-1 vaccine field, the Mamu-E presentation got into the spotlight by its as-yet-unproven involvement in conferring protection for half of the rhesus macaques challenged with pathogenic SIVmac239 and subsequent complete clearance of SIVmac239 from the body [32–34]. By inference, HLA-E likely plays an important role in balancing the immune responses to HIV-1 infection. However, to date, there has been only one HIV-1-derived epitope AISPRTLNA (AA9) reported to bind HLA-E and inhibit NK cell attack [37]. Here, to start building a toolbox for deciphering the likely multiple intertwined roles of HLA-E in anti-HIV-1 response, we have identified 4 novel HLA-E-stabilizing epitope peptides RMYSISPSIL (RL9), PEIVIDYM (PM9), TALSEGATP (TP9) and RIRTWKSILV (RV9), and 5 other candidate HLA-E-binding peptides EKIKALVEI (EI9), MYSVPISILD (MD9), NEEAADWDR (NR9), QMAVIHINFQ (QF9) and YFSPISLDEG (YG9) positive in only one of the two assays used with the potential to provide specific signals to effector cells of the immune response.

Two identified HLA-E-binding peptides were optimal epitope peptides for other canonical HLA class I molecules. Thus, PEIVIDYM (PM9) is an optimal epitope for HLA-B*18:01 [51] and RIRTWKSILV (RV9) is restricted by HLA-A*03:01. A quick database search of HIV-1-derived CD8+ T-cell epitopes revealed that the most avidly HLA-E-binding peptide of the new HIV-1 derivatives RMYSISPSIL (RL9) is a

Table 2

Peptides derived from the second-generation conserved-region candidate HIV-1 vaccine binding HLA-E.

Name	Sequence	E*01:01	E*01:01 ± SD	E*01:01/VL9	E*01:01/PM9
VL9	VMAPRTLVL	0.25	0.373 ± 0.055	2.660	0.617
PM9	AGLVQGMLTV	0.14	0.382 ± 0.027	2.660	0.617
TP9	TALSEGATPQDLNTM	0.14	0.431 ± 0.038	2.281	0.620
RV9	YFSPISLDEG	0.12	0.398 ± 0.039	2.281	0.620
EI9	NEEAADWDR	0.12	0.419 ± 0.031	2.281	0.620
EI9	PQLLTNMLNTTVGGHQ	0.25	0.429 ± 0.037	2.281	0.620
EI9	QF9	0.12	0.419 ± 0.031	2.281	0.620
EI9	YG9	0.12	0.480 ± 0.057	2.281	0.620
EI9	MD9	0.12	0.376 ± 0.044	2.281	0.620
EI9	NR9	0.12	0.376 ± 0.044	2.281	0.620

a The immunogens of second generation of the conserved-region candidate T-cell HIV-1 vaccine were designed as a bivalent mosaic [63], which maximizes the perfect match of 9-mer potential T-cell epitopes on the vaccine with the globally circulating HIV-1 variants [53]. Thus, for each selected conserved region of the HIV-1 proteome, which was employed in the vaccine immunogens, two versions of the amino acid sequences were computed, which differed in approximately 1 to 10 amino acids (bold underlined). Exceptionally, the two peptides were identical in both bi-valent mosaic immunogens (e.g. peptide C182).

b The cell-surface stabilization index on RMA-S cells transfected with either HLA-E*01:01 or HLA-E*01:03 together with human β2-microglobulin is calculated as follows: Index = (Sample 37 °C – No peptide 37 °C) / (Sample 26 °C – No peptide 26 °C). The results for HLA-E*01:03 are shown as mean ± SD (n = 3). See Fig. S2 for the gating strategy. Table shows peptides with stronger binding that the majority of the 401 screened peptides tested on LCL721.221 (HLA-E*01:01), the cell-surface stabilization indices of which were between 0 and 0.01.

c On each experimental day, VL9 (VMAPRTLVL) and PM9 peptides were included as positive controls.
human A2 epitope [55–57], predicted to bind TAP and HLA-A*02/A*24/A*31/B*39/B*52 [58,59]. We previously reported activation of CD8+ T cells by the IHNFKRKGG (IG9) peptide in two vaccine recipients, but were unable to identify the restricting HLA class Ia element [51]; there is a possibility that, in this case, CD8+ T cells were activated through CD94/NKG2C stimulatory receptor present on about 10% of circulating CD8+ T lymphocytes [5]. As for the other identified HLA-E binders, none matched precisely as 9-mer any already known optimal epitope, although several near matches of known epitopes were found. Although similarity in peptide-binding motifs between HLA-E and A*02:01 was once suggested [25], the significance of these observations is presently unclear. For LCL721.221 cells, there is a possibility that INF-γ-production by HC092 SCTL and HC102/HC103 STCL could have been induced through the HLA-C*01:02 molecule signaling also expressed on these cells. However, this was not the case for the murine RMS-A cells, hence supporting the HLA-E involvement.

The strongest HLA-E-binding peptides VL9 are strictly 9-mers and the relatively strongly binding non-VL9 peptides are also 9-mers. With the caveat of the possibility of co-purification rather than HLA association [26], up to 17-amino acid-long self-peptides were eluted from soluble HLA-E*01:01 and HLA-E*01:03 molecules and sequenced by nanoflow liquid chromatography tandem mass spectrometry (LC–MS/MS) [23,24]. In the past, we similarly eluted longer peptides from classical HLA class Ia molecules [60–62]. In the same study above, Celik et al. found that HLA-E*01:01 and HLA-E*01:03 alleles did not share the same peptidome, nevertheless presented peptides, which were derived from pools of closely related protein subtypes such as histones and ribosomal proteins [23,24]. The MHC-E peptide-binding groove is more open relative to that on canonical class Ia molecules [47] and thus can readily accommodate longer peptides. This also concurs with our identification of 17 HLA-E-stabilizing 15-mer peptides during the initial screen for HIV-1-derived binders (Table 2). A diversity of SIV-derived 15-mer and optimal 9-mer peptides was presented by Mamu-E*02:03, –E*02:11 and –E*02:20 in RhCMV68-1/SIV-vaccinated macaques, whereby on average 4 Mamu-E-binding peptides were identified per every 100 amino acids of SIV protein length as well as ‘supertopes’ recognized by all (n = 130) vaccinated animals [47]. In the present study, the tHIVconsvX immunogens were 873 amino acids long and 9 binding 15-peptide pairs were identified (Table 2). This was approximately a 4-fold lower frequency of HLA-E binders in humans compared to RhCMV68-1/SIV vaccinated macaques, which may reflect the generally broader epitope presentation by rhesus macaques relative to humans. In the same macaque study above, search for amino acids enriched in certain 9-mer positions of 11 optimal mapped epitopes and 551 Mamu-E-eluted, LC–MS/MS sequenced peptides failed to provide any obvious binding motif. As the authors commented, this was

| Table 3 Identification of HLA-E binding 9-mer peptides. |
|---------------------------------|------------------|-----------------|---|
| Peptide | HIV-1 | Sequence | Short name | MFI | n |
| C021A | Gag p24 | TALEGATAP | TL9 | 6702 ± 537 | 3 |
| C037A | Gag p24 | INEEAEDWD | NR9 | 3418 ± 93 | 2 |
| C037B | Gag p24 | INEEAEDWDR | NR9 | 5128 ± 109 | 2 |
| C037C | Gag p24 | EEEAEDWDRY | NR9 | 3226 ± 242 | 2 |
| C070A | Gag p24 | IVRYSPSVS | RL9 | 3509 ± 354 | 2 |
| C070B | Gag p24 | IVRYSPSVSI | RL9 | 3758 ± 6 | 2 |
| C070C | Gag p24 | RMSFSVSEL | RL9 | 10132 ± 240 | 2 |
| C070D | Gag p24 | MYSPSVSILD | MD9 | 3313 ± 269 | 2 |
| C070E | Gag p24 | YSSFSVLID | MD9 | 3465 ± 253 | 2 |
| C070F | Gag p24 | SPVSPFLDIR | MD9 | 3717 ± 34 | 2 |
| C070G | Gag p24 | PYSPLDPIQ | MD9 | 3987 ± 106 | 2 |
| C182A | Pol RT | TEEKIKALV | E19 | 3163 ± 270 | 2 |
| C182B | Pol RT | EIEKIKALVE | E19 | 3437 ± 344 | 2 |
| C182C | Pol RT | EIKAIKAVL | E19 | 4056 ± 93 | 2 |
| C226A | Pol RT | YFSYPVLEOG | YG9 | 3966 ± 10 | 2 |
| C226B | Pol RT | FSVPLDEGF | YG9 | 3505 ± 266 | 2 |
| C226C | Pol RT | SVPLDEGFR | YG9 | 2481 ± 83 | 2 |
| C226D | Pol RT | VPLDEGFRK | YG9 | 2595 ± 67 | 2 |
| C226E | Pol RT | PLDEGFRKY | YG9 | 2671 ± 18 | 2 |
| C226F | Pol RT | LDEGFRKTY | YG9 | 2552 ± 136 | 2 |
| C226G | Pol RT | DEGFRKYTA | YG9 | 2636 ± 132 | 2 |
| C093R | Pol RT | PRIVLYQHM | PM9 | 6412 ± 66 | 2 |
| C352A | Pol INT | QMAVFIHNNF | QF9 | 4380 ± 170 | 2 |
| C352B | Pol INT | MAVFIHNNFK | QF9 | 2973 ± 14 | 2 |
| C352C | Pol INT | AVFIHNNFKR | QF9 | 2905 ± 135 | 2 |
| C352D | Pol INT | VIHNNFKK | QF9 | 2864 ± 209 | 2 |
| C352E | Pol INT | IFHNNFKKG | QF9 | 3050 ± 17 | 2 |
| C352F | Pol INT | IHNFKKGII | QF9 | 2993 ± 79 | 2 |
| C352G | Pol INT | HNFRRKGGI | QF9 | 2780 ± 158 | 2 |
| C102L | Vif | MRINTWKS | RV9 | 2695 ± 170 | 2 |
| C102P | Vif | RINTWKSIV | RV9 | 4514 ± 467 | 2 |
| C102M | Vif | IRINTWKS | RV9 | 2958 ± 48 | 2 |
| VL9 | HLA-G | VHAFRTLFL | VL9 | 14265 ± 512 | 2 |
| No peptide | | | | 3360 ± 10 | 2 |
unexpected given the limited polymorphism of the Mamu-E molecule [47].

So far, we were unable to confirm existence of vaccine- or natural HIV-1 infection-elicited CD8⁺ T lymphocytes recognizing HIV-1-derived peptides through their TCR and this is not for lack of trying. Our search for PM9-specific HLA-E-restricted CD8⁺ T-cell responses in natural HIV-1 infection identified one possible responder out of 32 patients with a barely detectable response (Fig. S6). Since humans infected with *M. tuberculosis* have readily detectable CD8⁺ T cells specific for HLA-E-processed *M. tuberculosis* peptides, perhaps such for search this HLA-E-restricted HIV-1-specific CD8 T cells in dually HIV-1- and *M. tuberculosis* co-infected individuals might yield some interesting results.

HIV-1 vaccine is the best solution to ending the AIDS epidemic. Induction of HLA-E-restricted protective CD8⁺ T-cell responses by vaccination has several attractions such as limited HLA-E polymorphism, which would help deal with HIV-1 global variability and immune evasion. Given the non-human primate protection and a complete clearance of an immunodeficiency virus from the body, HLA-E-specific responses may have superior efficacy to regular HLA class I-restricted T cells. Because these responses are not dominantly utilized during natural infection, HIV-1 has not adapted to them. In the present work, we have expanded the knowledge of HIV-1-derived target peptides stabilizing HLA-E cell surface expression.

Competing interests

Authors declare no competing interests.

Acknowledgements

The work was jointly funded by the Medical Research Council (MRC) UK and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreements (G1001757 and MR/N023668/1), grants-in-aid (15fk0410019h0001, 16fk0410202h0002, and 17fk0410302h0003) for AIDS Research from AMED and by grants-in-aid (26293240, 17k00121) for scientific research from the Ministry of Education, Science, Sports, and Culture, Japan. T.H. and A.J. McM. are the Jenner Institute Investigators. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.imlet.2018.08.005.

References

[1] E.J. Petrie, et al., CD94/NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence, J. Exp. Med. 205 (3) (2008) 725–735.

[2] V.M. Braud, et al., HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C, Nature 391 (6689) (1998) 795–799.

[3] N. Lee, et al., HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A, Proc. Natl. Acad. Sci. U. S. A. 95 (9) (1998) 5199–5204.

[4] A.A. Joosten, L.C. Sullivan, T.H. Ottenhoff, Characteristics of HLA-E restricted T-cell responses and their role in infectious diseases, J. Immunol. Res. 2016 (2016) 2016–2016.

[5] H.L. Hoare, et al., Structural basis for a major histocompatibility complex class I-restricted T cell response, Nat. Immunol. 7 (3) (2006) 256–264.

[6] B.K. Kaiser, et al., Structural basis for NKG2A/CD94 recognition of HLA-E, Proc. Natl. Acad. Sci. U. S. A. 105 (18) (2008) 6606–6701.

[7] R.K. Strong, et al., HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities, J. Biol. Chem. 278 (7) (2003) 5082–5090.

[8] A. van Hateren, A. Bailey, T. Elliott, Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control, F1000Res 6 (2017) 158.

[9] S.G. Hansen, et al., Immune clearance of highly pathogenic SIV by an effector memory T-cell vaccine, Nature 473 (7348) (2011) 525–527.

[10] S.G. Hansen, et al., Immune clearance of highly pathogenic SIV infection, Nature 502 (7469) (2013) 100–104.

[11] S.G. Hansen, et al., Efferector memory T cell responses are associated with protection against rhesus monkeys from mucosal simian immunodeficiency virus challenge, Nat. Med. 17 (5) (2011) 293–298.

[12] S.G. Hansen, et al., Cytomegalovirus vectors violate CD8 + T cell epitope recognition paradigms, Science 340 (6135) (2013) 1237874.

[13] H.L. Wu, et al., The Role of HMC-E in T Cell Immunity is Conserved among Humans, Rhesus Macaques, and Cynomolgus Macaques, J. Immunol. 200 (1) (2018) 49–60.

[14] J.N. Nattermann, et al., HIV-1 infection leads to increased HLA-E expression resulting in impaired function of natural killer cells, Antivir. Ther. 10 (1) (2005) 95–107.

[15] J. Lajose, et al., Genetic variants in nonclassical major histocompatibility complex class I human leukocycte antigen (HLA-E) and HLA-G molecules are associated with susceptibility to heterosexual acquisition of HIV-1, J. Infect. Dis. 193 (2) (2006) 298–301.

[16] S. Liu, K.J. Kao, Mechanisms for genetically predetermined differential quantitative expression of HLA-A and -B antigens, Hum. Immunol. 61 (8) (2000) 799–807.

[17] P.O. Flores-Villanueva, et al., Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity, Proc. Natl. Acad. Sci. U. S. A. 99 (9) (2002) 5140–5145.

[18] T.M. Welzel, et al., HLA-Bw4 alleles and HIV-1 transmission in heterosexual couples, AIDS 21 (2) (2007) 225–229.
[43] N. Borthwick, et al., Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1, Mol. Ther. 22 (2014) 464–475.

[44] E.J. Hayton, et al., Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase 1 trial, PLoS One 9 (7) (2014) e101591.

[45] H. Murakoshi, et al., Clinical control of HIV-1 by cytotoxic T cells specific for multiple conserved epitopes, J. Virol. 89 (2015) 5330–5339.

[46] K. Watanabe, et al., Identification of cross-clade CTL epitopes in HIV-1 clade A/E-infected individuals by using the clade B overlapping peptides, Microbes Infect. 15 (13) (2013) 874–886.

[47] S.G. Hansen, et al., Broadly targeted CD8(+) T cell responses restricted by major histocompatibility complex E, Science 351 (6274) (2016) 714–720.

[48] T.H. Hansen, et al., Basic and translational applications of engineered MHC class I proteins, Trends Immunol. 31 (10) (2010) 363–369.

[49] S. Letourneau, et al., Design and pre-clinical evaluation of a universal HIV-1 vaccine, PLoS One 2 (2007) e984.

[50] N. Borthwick, et al., Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1, Mol. Ther. 22 (2) (2014) 464–475.

[51] N. Borthwick, et al., Novel, in-natural-infection subdominant HIV-1 CD8+ T-cell epitopes revealed in human recipients of conserved-region T-cell vaccines, PLoS One 12 (4) (2017) e0176418.

[52] Y. Shimizu, et al., Transfer and expression of three cloned human non-HLA-A,B,C class I major histocompatibility complex genes in mutant lymphoblastoid cells, Proc. Natl. Acad. Sci. U. S. A. 85 (1) (1988) 227–231.

[53] B. Ondondo, et al., Novel Conserved-region T-cell Mosaic Vaccine With High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection, Mol. Ther. 24 (4) (2016) 832–842.

[54] Y. Bian, et al., MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection, PLoS Pathog. 13 (5) (2017) e1006384.

[55] H. Gahery-Segard, et al., Long-term specific immune responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine: characterization of CD8+ T-cell epitopes recognized, J. Virol. 77 (20) (2003) 11220–11231.

[56] X. Gong, et al., Screening for CD8 cytotoxic T lymphocytes specific for Gag of human immunodeficiency virus type 1 subtype B' Henan isolate from China and identification of novel epitopes restricted by the HLA-A2 and HLA-A11 alleles, J. Gen. Virol. 87 (Pt 1) (2006) 151–158.

[57] A. Inwoley, et al., Cross-clade conservation of HIV type 1 Nef immunodominant regions recognized by CD8+ T cells of HIV type 1 CRF02_AG-infected Ivorian (West Africa), AIDS Res. Hum. Retroviruses 21 (7) (2005) 620–628.

[58] S.H. Abidi, et al., Population-specific evolution of HIV gag epitopes in genetically diverged patients, Infect. Genet. Evol. 16 (2013) 78–86.

[59] M.R. Thakar, et al., Cytolytic T Lymphocytes (CTLs) from HIV-1 Subtype C-Infected Indian Patients Recognize CTL Epitopes From a Conserved Immunodominant Region of HIV-1 Gag and Nef, J. Infect. Dis. 192 (2005) 749–759.

[60] L. Chen, et al., Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27, J. Biol. Chem. 289 (2014) 284–294.

[61] N. Ternette, et al., Early Kinetics of the HLA Class I-Associated Peptideome of MVA.HIVconsv-Infected Cells, J. Virol. 89 (11) (2015) 5760–5771.

[62] N. Ternette, et al., Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells, Eur. J. Immunol. 46 (1) (2016) 60–69.

[63] W. Fischer, et al., Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants, Nat. Med. 13 (1) (2007) 100–106.