Shedding New Light on the Language of the Dark Web

Youngjin Jin¹ Eugene Jang² Yongjae Lee² Seungwon Shin¹ Jin-Woo Chung²*

¹KAIST, Daejeon, South Korea
²S2W Inc., Seongnam, South Korea
¹{ijinjin,claude}@kaist.ac.kr
²{genesith,lee,jwchung}@s2w.inc

Abstract

The hidden nature and the limited accessibility of the Dark Web, combined with the lack of public datasets in this domain, make it difficult to study its inherent characteristics such as linguistic properties. Previous works on text classification of Dark Web domain have suggested that the use of deep neural models may be ineffective, potentially due to the linguistic differences between the Dark and Surface Webs. However, not much work has been done to uncover the linguistic characteristics of the Dark Web. This paper introduces CoDA, a publicly available Dark Web dataset consisting of 10000 web documents tailored towards text-based Dark Web analysis. By leveraging CoDA, we conduct a thorough linguistic analysis of the Dark Web and examine the textual differences between the Dark Web and the Surface Web. We also assess the performance of various methods of Dark Web page classification. Finally, we compare CoDA with an existing public Dark Web dataset and evaluate their suitability for various use cases.

1 Introduction

The World Wide Web contains a vast, non-indexed part of the Internet (known as the Deep Web) which is hidden from traditional web search engines. The Dark Web, which refers to the small portion of the non-indexed pages that require specific routing protocols such as Tor¹ for access, has become a safe haven for users wanting to conceal their identity and preserve their anonymity.

A consequence of the properties of the Dark Web (limited methods of access and the volatility of its onion services) is that it is difficult to grasp the general topology and the overall content of the Dark Web. A number of past academic studies have tried to unravel the Dark Web through methods such as page classification (Al Nabki et al., 2017; Ghosh et al., 2017; He et al., 2019; Choshen et al., 2019) and content analysis (Biryukov et al., 2014; Avarikioti et al., 2018). However, not much work has been done on the linguistic analysis of the Dark Web (Choshen et al., 2019).

In addition, the Dark Web has been studied and analyzed in the security research community to uncover malicious activities including phishing (Yoon et al., 2019), illicit online marketplace activity (Soska and Christin, 2015), terrorism (Chen, 2011), cryptocurrency abuse (Lee et al., 2019), and ransomware ecosystems (Meland et al., 2020). We believe that the lack of a comprehensive work on the language of the Dark Web from the NLP community mainly stems from the lack of Dark Web datasets publicly available for research. Therefore, a new dataset on the Dark Web may prove to be very useful not only for the NLP community, but also for other research communities devoted to cybersecurity and cybercrime investigation through methods such as page classification and malicious activity detection.

To the best our knowledge, the only currently publicly available Dark Web dataset is DUTA (Al Nabki et al., 2017), which has been extended to hold over ten-thousand unique onion addresses as DUTA-10K (Al-Nabki et al., 2019). DUTA has become a baseline dataset for many Dark Web related works such as Choshen et al. (2019), which investigates the characteristics of language used in various illegal and legal onion services.

Nevertheless, DUTA has its shortcomings. For example, the category distribution of DUTA is highly skewed, with some categories such as human trafficking accounting for only 3 out of 10367 total onion services. In addition, the use of DUTA as a means of language analysis may not be ideal as it contains many duplicate data, with only 51% of the texts being unique (Al-Nabki et al., 2019).

*Corresponding author

¹Tor Project: https://www.torproject.org/

We will refer to the DUTA-10K dataset from here on as DUTA, unless otherwise specified.
To provide a better understanding of the Dark Web (and thus motivate more research on the Dark Web), we introduce CoDA \(^3\) (Comprehensive Darkweb Annotations), a text corpus of 10,000 web documents from the Dark Web (primarily in English) which have been manually classified according to their topic into ten categories. To ensure that the quality of the classification is not overlooked, we develop detailed annotation / tagging guidelines (Section 3) to guide our annotators. Using CoDA, we conduct a thorough text-based data analysis (Section 4) to uncover some of the linguistic properties of the Dark Web, and gain insight into differences in how language is used in the Surface Web and the Dark Web. We build several text classifier models and train them using CoDA, and verify which classification methods perform particularly well with the Dark Web (Section 5). Finally, to evaluate the use of CoDA compared to DUTA, we introduce use cases and compare the performances of classifiers trained on each dataset (Section 6).

2 Related Work

The Dark Web is commonly crawled using Tor, which relies on onion routing to enable encrypted communications over a computer network (McCoy et al., 2008). Several works use Dark Web search engines such as Ahmia\(^4\) and web directories such as The Hidden Wiki to recursively search for content on the Dark Web (Guitton, 2013; Al Nabki et al., 2017; He et al., 2019). This method of crawling works surprisingly well as the visible part of the Dark Web is suggested to be well-connected via hyperlinks (Sanchez-Rola et al., 2017; Avarikioti et al., 2018).

To facilitate the research on Dark Web content analysis, a text-based, manually labeled dataset collected from the active domains in the Tor network called DUTA was made publicly available by Al Nabki et al. (2017). In a subsequent work, the original DUTA dataset was extended to 10367 unique domains with minor changes to the labeling procedure (Al-Nabki et al., 2019). To the best of our knowledge, DUTA is the first and only publicly available Dark Web text dataset.

Past works have analyzed the Dark Web through topical classification of texts in onion services. Many have approached text-based page classification with machine learning methods such as SVM (Support Vector Machine), NB (Naive Bayes), and LR (Logistic Regression) (Moore and Rid, 2016; Al Nabki et al., 2017; Ghosh et al., 2017; Avarikioti et al., 2018; He et al., 2019) using various information retrieval weighting schemes like TF-IDF (Term Frequency-Inverse Document Frequency) and BOW (Bag-of-Words) (Al Nabki et al., 2017; Ghosh et al., 2017; Choshen et al., 2019; He et al., 2019).

Choshen et al. (2019) have suggested that deep neural models may fare poorly with Dark Web classification as language in the Dark Web is lexically and syntactically different compared to that of the Surface Web. Their work demonstrated that representation methods such as GloVe (Pennington et al., 2014) and contextualized pre-trained language representations such as ELMo (Peters et al., 2018) resulted in a subpar performance compared to traditional machine learning methods, suggesting that the small size of training data and the specialized vocabulary in the Dark Web domain may not be suitable with such methods. Nevertheless, transformer-based pre-trained language models like BERT (Devlin et al., 2019) showed promising results in text classification tasks, although it is not often the case that such models adapt with ease in the Dark Web domain (Ranaldi et al., 2022).

3 The CoDA Corpus

In this section, we introduce our categorization approach and the methods used to construct our Dark Web dataset, CoDA.

3.1 CoDA Category Set

CoDA is comprised of ten categories (described in detail in Section 3.5) as shown in Table 1. We arrive at our ten categories through an extended discussion with the dataset annotators (see Section 3.4) on a suitable method to categorize the various activities in the Dark Web and refer to the high-level taxonomy from Moore and Rid (2016). Unlike DUTA, we do not subdivide each category into legal and illegal (or normal and suspicious as labeled in DUTA) activities because in many cases it is difficult to clearly distinguish between categories using only the surface information available from websites. For example, while human annotators easily agreed that most ‘counterfeit money’ services are highly likely to be illegal, they found it difficult to determine the legality of ‘bitcoin wallet’

\(^3\)CoDA is available upon request at https://s2w.linc/resources/coda.
\(^4\)https://ahmia.fi/
services. This also applies to the *drugs* category, as the sale of certain drugs may be illegal in some countries, but can be legal in others. Moreover, unlike DUTA, we exclude non-topical categories such as *forum* and *marketplace* as they are orthogonal to topical categories; e.g., hacking forums, which frequently appear in the Dark Web, can be categorized as both *forum* and *hacking*. We argue that such categories are more relevant to the structure of webpages rather than topics, and thus need to be annotated independently of topical categories. We leave this for future work, and do not further split our ten categories into sub-categories. Nonetheless, our category set still covers a wide range of activities on the Dark Web.

Finally, we point out that about 30% of data is categorized into *others*. During data collection, we observed that many webpage documents contain various pages not related to the categorized activities (such as blogs, news sites, search engines, wiki pages, etc.). Since the content of such pages is not necessarily attributed to a specific activity, we categorize them into *others*.

3.2 Data Collection

We collected onion addresses from Ahmia and repositories of onion domain lists\(^5\). Starting from these seed addresses, we crawled the Dark Web and extracted unseen onion addresses from crawled webpage documents to gradually expand our onion address list.

The Dark Web contains large amounts of nearly identical websites since no expense is required for maintenance due to free hosting services such as “Freedom Hosting” (now defunct) (Al-Nabki et al., 2019). These cloned website farms serve to provide stable services for illegal activities (Al-Nabki et al., 2019), or to attract users and deceive them into disclosing sensitive information (Yoon et al., 2019). In order to construct a quality corpus, we analyze the content of each document and refrain from collecting redundant webpages (i.e., keeping only one copy of such pages), using the document similarity measure described in Section 4.2.3.

3.3 Data Size and Language Distribution

Using the crawled HTML webpage documents, we compiled a Dark Web corpus consisting of exactly 10K web documents from a total of 7101 onion services. The user statistics for Tor shows that clients connect to the Dark Web from various countries\(^6\), which is reflected in the language distribution of CoDA (as seen in Table 2). We observe that about 88% of documents in CoDA is in English. This is

\(^5\)Including but not limited to https://github.com/alecmuffett/real-world-onion-sites

\(^6\)https://metrics.torproject.org/userstats-bridge-table.html
in line with the language distribution of DUTA in which 84% of the samples are in English (Al-Nabki et al., 2019). We argue that the dataset reflects the various biases of the Dark Web, which should be taken into account for future research.

3.4 Annotation

We recruited 10 annotators from a cyber threat analytics company specializing in the Dark Web for manual page-level annotation, i.e., assigning a single category to each webpage document from one of the ten categories achieving an inter-annotator agreement Fleiss’ Kappa of 0.887. This is in contrast to DUTA, which concatenates multiple pages from a single onion domain into one document to assign a category (Al Nabki et al., 2017). Since onion services such as wikis and forums usually contain discussions on a wide range of topics across different pages, page-level annotation was deemed to be the most suitable choice for our category set. We leveraged Prodigy8 for an efficient annotation process.

3.5 Annotation Guidelines

A set of comprehensive annotation guidelines was constructed for the annotators to consult when labeling each document to ensure the quality of labels. While the annotation guidelines are extensive with illustrative examples and methods to deal with borderline cases, we present a brief summary of our guidelines in Table 1. Each category is determined based solely on the topic of page content, and not by its type (marketplaces, services, forums, news, blogs, wikis, search results, etc.).

Note that webpages sometimes cover more than one specific topic on a single page (such as a marketplace selling drugs and weapons at the same time). We exclude such multi-topic pages from our corpus and leave multi-label datasets and classification for future work. Finally, we also exclude webpages that contain malicious information on personally identifiable individuals.9

No	Mask ID	Description (example)
1	ID_IP_ADDRESS	IPv4 address (xxx.xxx.xxx.xxx)
2	ID_EMAIL	Email address (xxx@yyy.zzz)
3	ID_ONION_URL	Onion URL
4	ID_NORMAL_URL	Non-onion URL
5	ID_BTC_ADDRESS	Bitcoin address
6	ID_ETH_ADDRESS	Ethereum address
7	ID_LTC_ADDRESS	Litecoin address
8	ID_GENERAL_MONEY	Fiat money (10 USD, 500)
9	ID_CRYPTO_MONEY	Cryptocurrency (0.01 BTC, 10 mBTC)
10	ID_WEIGHT	Weight (10kg, 10lbs)
11	ID_LENGTH	Length (10cm, 10mm)
12	ID_VOLUME	Volume (10ml, 5L)
13	ID_TIME	Widely used date/time format (2000-01-01 09:00:00, 01-Jan-2020)
14	ID_PERCENTAGE	Percentage (50%)
15	ID_FILENAME	File names with popular extensions (xxx.zip, yyy.pdf)
16	ID_FILESIZE	File size (10MB, 16GB)
17	ID_VERSION	Version names (version 5.0, v1.0.0)
18	ID_NUMBER	All the other number tokens

Table 3: Mask identifiers in CoDA

3.6 Additional Processing & Text Masking

As the Dark Web contains webpages in various languages, we label each of the documents in CoDA with the language of its content using fastText (Joulin et al., 2016a; Joulin et al., 2016b). To generalize unnecessary details and anonymize sensitive information in the Dark Web, we process each document by masking appropriate information with mask identifiers. A total of 18 types of mask identifiers are used to mask each document, as shown in Table 3. We utilize simple keywords, regular expressions, and a cryptocurrency address detection library10 to detect such phrases for masking. This prevents personal information such as email addresses from being included in our public dataset. Finally, to filter out noisy data and optimize text for linguistic analysis, we remove punctuations and words that are over 50 letters long, lemmatize words, and convert all text to lowercase.

4 Data Analysis

To assess the linguistic properties of the Dark Web, illustrate the characteristics of textual content in each category, and better understand the differences in the use of language in the Dark / Surface Web, we conduct an in-depth exploratory data analysis. We analyze the text data of CoDA and compare measurements with that of the other datasets (see Section 4.1) as shown in Table 4.11

7 All annotators participated in a training session to reach agreement with a small set of documents and annotation guidelines. The detailed process is described in Appendix A.
8 https://prodi.gy/
9 Ransomware and extortionware cybercriminals deliberately publish private and harmful information of victims to demand a ransom for its removal. We did not find such content in our dataset, possibly because our data only collects texts without downloading files or media.
10 https://pypi.org/project/cryptoaddress/
11 Some detailed methods and results obtained from our analyses are provided in Appendix D.
Table 4: List of data analysis methods/statistics and comparisons between datasets. Some analyses are presented in the Appendix.

4.1 Datasets for Comparison

We compare CoDA with DUTA to look for any significant differences between the two Dark Web corpora, and use documents labeled as English for our analysis. We also aggregate three existing text datasets in English with Surface Web content (we consider each of these datasets as a single sub-category within the aggregate Surface Web data) from here on to compare between the Dark / Surface Web domains. These categories are chosen to encompass the various topics and language styles (formal / informal) used throughout the Surface Web.

The aggregate Surface Web dataset consists of the following categories: the IMDb Large Movie Review Dataset (Maas et al., 2011), the Wikitext-2 Dataset (Merity et al., 2016), and the Reddit Corpus (Chang et al., 2020), to represent review texts, wiki articles, and online forum discussions, respectively. To match the size of the dataset with its Dark Web counterparts, the aggregate Surface Web dataset is trimmed by randomly sampling a portion of documents from each category. The total raw word count of each dataset is shown in Table 5.

It is worth noting that we use raw text data instead of the masked data for some analyses to reduce bias; for example, the Surface Web aggregate dataset is not masked, so we use the non-masked versions of the Dark Web datasets for some comparisons.

4.2 Analysis Methods & Results

4.2.1 In-vocab / Out-of-vocab Word Analysis

It is known that Dark Web users intentionally use obscure slangs and words to refer to specific items (Harviainen et al., 2020; Zhang and Zou, 2020). To verify if this behavior affects the types of words seen in the Dark Web, we analyze the in-vocabulary and out-of-vocabulary words by building a list of unique words in each dataset and determining the presence of each word in a spellchecker library. Words not listed in the library’s dictionary are defined to be out-of-vocabulary. Note out-of-vocab words do not necessarily correspond to incorrect or nonexistent words; for example, there are many abbreviations that are out-of-vocab but are widely used online.

The results are shown in Table 5. Due to the limited number of in-vocab words in the dictionary, it follows that in-vocab word ratio decreases with higher total word counts. Therefore, not much can be said about the lexical characteristics of the Dark Web from the ratios. To see which out-of_vocab words frequently appear in each corpus, we rank them by their frequency. In the Surface Web, common abbreviations, well-known companies, and celebrity names rank high in the list, while explicit slangs, malicious activity-specific abbreviations, and misspellings (cannibalism, pedophilia, school) manifest the Dark Web. A sample comparison of abbreviations found in each web domain is shown in Table 6. The Surface Web mainly exhibits commonly used abbreviations such as measurement units, household products, and colloquial Internet language, while the Dark Web exhibits abbreviations related to financial services, drugs, and pornography.

4.2.2 Word Frequency Distribution

It is well known that large text corpora tend to follow Zipf’s law (Piantadosi, 2014), which states that the word frequency distribution is proportional to a power law of the form:

\[f(r) \propto r^{-\alpha} \]

12https://github.com/barrust/pyspellchecker
Table 6: Some common abbreviation examples of CoDA and Surface Web Aggregate. These abbreviations do not show up on pyspellchecker’s dictionary and are marked as out-of-vocab words.

CoDA (Dark Web)	Surface Web
btc cp cvc	btw dwd idk
cvv hd irc	imo km lmao
lsd mg pthc	mph pc st
ssn vpn xxx	tv vs wtf

for $\alpha \approx 1$, where r is the frequency rank of the word (most frequent word has $r = 1$ and so on) and $f(r)$ is the frequency of a word with rank r. To verify whether the characteristics of language used in the Dark Web affect the power law distribution of words, we compare the word frequency distribution between Dark and Surface Web corpora. We aggregate all texts in each category into a single file, lemmatize each word using spaCy\(^{13}\), and use scikit-learn\(^{14}\) (Pedregosa et al., 2011) to retrieve the word frequency per category.

We find that, as far as word frequency distribution is concerned, there is no significant difference between the Dark Web and the Surface Web\(^{15}\). As the Dark Web contains many phishing sites which are near identical copies of each other (Yoon et al., 2019), we believed that some words may have abnormally high frequencies, which would affect the overall distribution. However, the results suggest that word frequency distribution is largely domain-invariant.

4.2.3 Document Similarity

As mentioned in Section 1, about half of DUTA’s documents contain duplicate data. CoDA addresses this problem by crawling web pages whose textual content is less similar to one another. To this end, we measure the document similarity between the two Dark Web corpora to validate the uniqueness of documents in CoDA. Through manual inspection, we find that some pages share the same exact content but with slight variations in details such as numbers. To prevent such differences from affecting the document similarity, we mask and preprocess documents in DUTA in the same manner as CoDA and convert each document into a bag of lowercase words. The similarity is measured by taking the Jaccard distance on the bags of words, with distance of 1 indicating complete similarity between two documents.

To illustrate the amount of overlapping content in CoDA and DUTA, we compare each document with all other documents from the same corpus, and denote the maximum Jaccard distance as its maximum similarity. As shown in Figure 1, more than half of the documents in DUTA share almost completely overlapping content, whereas CoDA exhibits much lower similarities overall. Although DUTA consists of data from 10367 onion services which is larger than the number of onion services collected for use in CoDA, this shows that the data in CoDA is more uniquely varied and thus has higher information density.

4.2.4 Mask ID Distribution and TF-IDF

To gain insight into some of the lexical characteristics of each category in the Dark Web, we evaluate the mask ID distribution and TF-IDF (term frequency-inverse document frequency) for CoDA. The mask ID distribution is calculated by dividing the frequency of a particular mask ID (listed in Table 3) in a document by the number of all mask IDs in that document (we exclude ID_NUMBER in our data for this analysis as it accounts for the majority of all masks in every category). This is done for every document, and we take the average distribution by category. Similar methods are used for TF-IDF using scikit-learn (Pedregosa et al., 2011). We exclude English stopwords as defined in NLTK (Bird et al., 2009), but preserve the mask IDs to capture

\(^{13}\)https://spacy.io/

\(^{14}\)https://scikit-learn.org/stable/

\(^{15}\)Word frequency distribution is shown in Figure 4.
important mask IDs in each category.

We find that some mask IDs are particularly representative in some categories. For example, the drugs category has a high proportion of ID_WEIGHT, which is reasonable as webpages in drugs usually specify the weight of the drug in their listings. The TF-IDF measurements also show some interesting results\(^1\); for example, the majority of terms with the highest TF-IDF in the electronics category are related to Apple products (iPhones, iPads, MacBooks, etc.) which may suggest a high popularity of these products in the Dark Web.

5 Classification Experiments

5.1 Setup

We build several classifiers to investigate the performance of existing classification models on Dark Web text. Although deep neural network models are widely used today (Minaee et al., 2021), simple machine learning models such as SVM and naïve Bayes (NB) have been reported to perform reasonably well on Dark Web texts, often outperforming deep models (Choshen et al., 2019). Therefore, we evaluate both types of models to see which is adequate for Dark Web text classification. We split CoDA into training and test sets (7:3 ratio) after stratified random shuffling with the same random seed for all experiments. The preprocessing method used for document similarity (Section 4.2.3) is applied here as it empirically works best across models.\(^2\)

Multi-class SVM: We train a multi-class SVM classifier with TF-IDF features, and tune its hyperparameters by grid search. We build our classifier using TfidfVectorizer, LinearSVC, and GridSearchCV classes in scikit-learn.

CNN: Convolutional Neural Networks have been established as one of the popular choices for text classification for the ability to recognize position-invariant patterns such as text phrases (Minaee et al., 2021). Using PyTorch, we build a CNN model with a GloVe embedding layer (6B.300d), 2D convolution layers, and a fully-connected layer (Pennington et al., 2014).

BERT: To benefit from contextual representations and transfer learning, we use BERT (Devlin et al., 2019), a state-of-the-art language model widely adopted across many NLP and machine learning tasks. We use the pretrained bert-base-uncased model in the PyTorch version of the HuggingFace library (Wolf et al., 2020) with a fully-connected classification layer on top of the [CLS] token.

5.2 Results

Table 7 summarizes the performance of the three classifiers on CoDA. BERT exhibits the best results possibly due to its capability to model unknown words and utilize contextual information, despite the lexical differences of the Dark Web as shown in Section 4.2. SVM produces comparable results, suggesting that the relatively simple bag-of-words approach is still very effective at modeling topics of such domain-specific text. In contrast, CNN fares relatively worse, which is likely due to the specialized vocabulary of the Dark Web being poorly covered by the pretrained word embedding as seen in Choshen et al. (2019).

Table 8 shows the detailed results of classification using BERT. The classifier works relatively well for categories that exhibit a smaller specialized vocabulary such as arms, electronics, and gambling, whereas it performs worse for categories that cover diverse subtopics such as cryptocurrency and financial. We also observe that the classifier often confuses hacking with cryptocurrency or financial especially when documents contain phrases such as “hacked PayPal” or “hacked Bitcoin wallets”, which are not categorized in the hacking category by our guidelines (the hacking category relates to hacking services and professional hacking techniques).

6 Use Cases

In this section, we elaborate on the use cases of our corpus and the classifiers trained on CoDA and DUTA.

(1) Synonym Inference: Dark Web users tend to use words differently from their original meaning to conceal or disguise their intents. For example, we observed that car company names (e.g., Tesla, BMW, Mercedes-Benz, Audi) are replaced with synonyms such as “Tesla Motors,” “Mercedes Benz,” “BMW,” etc. To handle this, we use synonym sets obtained from WordNet (Fellbaum, 1998) and replace these synonyms with their respective original names in order to improve the classification accuracy.

\(^{16}\)Detailed measurements are provided in Appendix E.

\(^{17}\)Detailed training configurations of each classifier are provided in Appendix B.
Table 8: Per-category performance of BERT on CoDA

Category	Precision	Recall	F1-score
Arms / Weapons	96.70	97.78	97.24
Cryptocurrency	90.45	87.28	88.84
Drugs	93.90	92.29	93.08
Electronics	94.66	96.88	95.75
Financial	90.71	94.02	92.33
Gambling	99.15	98.31	98.72
Hacking	87.50	89.74	88.61
Pornography	94.20	94.46	94.33
Violence	93.15	93.79	93.47
Others	90.45	89.73	90.09

Weighted avg. 92.51 92.50 92.49

Table 9: Classification performance of the BERT-based classifier on the benchmark dataset

Model	Category	# pages	Precision	Recall	F1-score
CoDA	Drugs	936	99.87	83.44	90.92
	Weapons	674	100.00	98.37	99.18
	Finance	626	96.96	76.36	85.43
	All	2236	99.09	85.96	91.87
DUTA	Drugs	936	99.46	78.74	87.90
	Weapons	674	99.84	94.96	97.34
	Finance	626	98.89	71.09	82.71
	All	2236	99.42	81.48	89.29

(2) Topic Classification: We assess the efficacy of CoDA and DUTA in classifying document categories in the Dark Web. For this scenario, we manually compile a list of 34 forum / marketplace websites on the Dark Web across three different topics: drugs, weapons, and finance, and create an extra benchmark dataset consisting of 2236 webpages from the list. To remove possible overlap between the CoDA / DUTA corpora and the benchmark dataset, we exclude any documents crawled from the same URL as those from the benchmark dataset, or documents that mention any of the names from the benchmark websites in their content. This excludes 246 and 220 documents from CoDA and DUTA, respectively. We then train a BERT-based classifier for each Dark Web corpus on the remaining documents with the same configuration used in the classification experiments, and evaluate them on the benchmark dataset.19

Table 9 shows the classification performance measured on the benchmark dataset, in which the CoDA-trained classifier consistently outperforms the DUTA-trained classifier. We conjecture that this is because CoDA contains less duplicate text with more diverse domain-specific words in the same number of documents, allowing the trained classifier to generalize better to unseen documents.

7 Conclusion

In this work, we introduced CoDA, a Dark Web text corpus collected from various onion services divided into topical categories. Using CoDA, we conducted a thorough analysis of the linguistic properties of the Dark Web and found that there are clear lexical differences from the Surface Web including abbreviations and lexical structure such as PoS distribution. We also found lexical characteristics of categories through mask ID distribution and TF-IDF.

Our text classification results showed that SVM and BERT perform well in the Dark Web domain, even with the language differences that the Dark Web exhibits compared to that of the Surface Web. Finally, we have demonstrated the practicality of CoDA through two use cases with NLP methods. We speculate that the lack of duplicate content in

19Since DUTA uses a different category set, we employ the following category mapping: counterfeit-credit-cards, counterfeit-money, and counterfeit-personal-identification to finance, and drugs and violence to drugs and weapons categories, respectively.
CoDA compared to DUTA may aid in the performance of such applications. We hope that our dataset and our work motivates further research in the field of language-based Dark Web analysis.

Ethical Considerations

Masking Sensitive Information
Due to the nature of anonymous networks such as Tor, raw data posted on the Dark Web may contain private or illegal information. Such information includes (but is not limited to) Bitcoin addresses, credit card information, and social security numbers. Since CoDA was compiled by randomly selecting web documents from the Dark Web, the dataset may contain such information. Therefore, it is important that a public Dark Web dataset such as CoDA addresses ethical issues regarding sensitive information.

To prevent the use of CoDA for malicious purposes such as the extraction of sensitive information, we identify types of potentially sensitive data (such as email, IP, URL, crypto addresses, and social security numbers) which are subsequently masked (refer to Section 3.6 for the detailed description on mask identifiers used). These identifiers are matched using regular expressions and each page has been manually double-checked on whether such content has been properly masked by the authors. During this time, the authors did not find sensitive content outside of the masked information.

As mentioned in Section 4, some data analysis methods are conducted with unmasked versions of the Dark Web to prevent bias. However, we only use the unmasked version of CoDA for a fair analysis between the Dark and the Surface Web data, and do not utilize or disclose information found in the unmasked data in any way.

Handling Illegal Content
A significant portion of the Dark Web deals with explicit, pornographic content (violence, child pornography, torture, etc.). The act of accessing or viewing such media is illegal by law in many parts of the world. To prevent the access of such media, we collect crawled Dark Web pages in the form of HTML and parse HTML tags to retrieve only the text data. In addition, URL addresses and onion addresses that may link to such illegal media are also masked as previously mentioned (note that all URL addresses and onion addresses have been masked, regardless of their content). Consequently, the authors and the annotators do not have access to media that are illegal by law.

It is worth noting that CoDA still contains texts of various activities that occur in the Dark Web, some of which are illegal in nature (drug trade, counterfeit products, etc.). However, the inclusion of text in the dataset that describes potentially illegal activities is not of ethical concern. Therefore, we do not censor text data that correspond to illegal activities.

Ethics on Annotation
Dark Web content often contains sensitive and illicit activities. Dealing with such content during the annotation process may be unsettling for some people, so we chose annotators who are experienced with the Dark Web and has given consent to being exposed to such content. The annotators recruited for classifying CoDA were specialists who work at a cyber threat data analytics & intelligence company specializing in Dark Web data. To ensure that the annotation process is fair, each of the ten annotators handled the same number of pages and were given equal compensations.

Preventative Measures to Discourage Non-Academic Use of CoDA
The content of CoDA includes text descriptions of various Dark Web activities. A potential harm of releasing this dataset is bringing increased attention to these activities. We strongly believe that our research should be used for scientific purposes only and discourage non-academic use of CoDA. We take a preventative approach by only permitting access to CoDA to researchers with research purposes that abide by the ACL Code of Ethics. The terms of use agreement can be found at https://s2w.inc/resources/coda.

Acknowledgements
This research was supported by the Engineering Research Center Program through the National Research Foundation of Korea (NRF) funded by the Korean Government MSIT (NRF-2018R1A5A1059921).

References
Mhd Wesam Al-Nabki, Eduardo Fidalgo, Enrique Alegría, and Laura Fernández-Robles. 2019. Torank:
Identifying the most influential suspicious domains in the tor network. Expert Systems with Applications, 123:212–226.

Mhd Wesam Al Nabki, Eduardo Fidalgo, Enrique Alegría, and Ivan de Paz. 2017. Classifying illegal activities on tor network based on web textual contents. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 35–43, Valencia, Spain. Association for Computational Linguistics.

Ron Artstein. 2017. Handbook of linguistic annotation. Springer, Dordrecht.

Georgia Avarikioti, Roman Brunner, Aggelos Kiayias, Roger Wattenhofer, and Dionysis Zindros. 2018. Structure and content of the visible darknet.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with Python: analyzing text with the natural language toolkit. O’Reilly Media, Inc.

Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Weinmann. 2014. Content and popularity analysis of tor hidden services. In 2014 IEEE 34th International Conference on Distributed Computing Systems Workshops (ICDCSW), pages 188–193.

Jonathan P. Chang, Caleb Chiam, Liye Fu, Andrew Wang, Justine Zhang, and Cristian Danescu-Niculescu-Mizil. 2020. ConvoKit: A toolkit for the analysis of conversations. In Proceedings of the 21st Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 57–60, 1st virtual meeting. Association for Computational Linguistics.

Hsinchun Chen. 2011. Dark web: Exploring and data mining the dark side of the web, volume 30. Springer Science & Business Media.

Leshem Choshen, Dan Eldad, Daniel Hershovich, Elior Sulem, and Omri Abend. 2019. The language of legal and illegal activity on the Darknet. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4271–4279, Florence, Italy. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Shalini Ghosh, Ariyam Das, Phil Porras, Vinod Yegneswaran, and Ashish Gehani. 2017. Automated categorization of onion sites for analyzing the darkweb ecosystem. KDD ’17, page 1793–1802, New York, NY, USA. Association for Computing Machinery.

Clement Guittion. 2013. A review of the available content on tor hidden services: The case against further development. Computers in Human Behavior, 29(6):2805–2815.

J. Tuomas Harviainen, Ari Haasio, and Lasse Hämäläinen. 2020. Drug traders on a local dark web marketplace. AcademicMindtrek ’20, page 20–26, New York, NY, USA. Association for Computing Machinery.

Siyu He, Yongzhong He, and Mingzhe Li. 2019. Classification of illegal activities on the dark web. In Proceedings of the 2019 2nd International Conference on Information Science and Systems, ICISS 2019, page 73–78, New York, NY, USA. Association for Computing Machinery.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hervé Jégou, and Tomáš Mikolov. 2016a. Fasttext.zip: Compressing text classification models. CoRR, abs/1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomás Mikolov. 2016b. Bag of tricks for efficient text classification. CoRR, abs/1607.01759.

J. Richard Landis and Gary G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics, 33(1):159–174.

Seunghyeon Lee, Changhoon Yoon, Heedo Kang, Yeonkeun Kim, Yongdae Kim, Dongsu Han, Sool Son, and Seungwon Shin. 2019. Cybercriminal minds: An investigative study of cryptocurrency abuses in the dark web. In 26th Annual Network and Distributed System Security Symposium (NDSS 2019).

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA. Association for Computational Linguistics.

Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. 2008. Shining light in dark places: Understanding the tor network. In Privacy Enhancing Technologies, pages 63–76, Berlin, Heidelberg. Springer Berlin Heidelberg.

Per Håkon Meland, Yara Fareed Fahmy Bayoumy, and Guttorm Sindre. 2020. The ransomware-as-a-service economy within the darknet. Computers & Security, 92:101762.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016. Pointer sentinel mixture models.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Naries Nikzad, Meysam Chenaghlu, and Jianfeng Gao. 2021. Deep learning–based text classification: A comprehensive review. ACM Comput. Surv., 54(3).

Daniel Moore and Thomas Rid. 2016. Cryptopolitik and the darknet. Survival, 58(1):7–38.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Steven T Piantadosi. 2014. Zipf’s word frequency law in natural language: A critical review and future directions. Psychonomic bulletin & review, 21(5):1112–1130.

Leonardo Ranaldi, Aria Nourbakhsh, Arianna Patrizi, Elena Sofia Ruzzetti, Dario Onorati, Francesca Falucchini, and Fabio Massimo Zanzotto. 2022. The dark side of the language: Pre-trained transformers in the darknet.

Radim Rehurek and Petr Sojka. 2010. Software framework for topic modelling with large corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50.

Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos. 2017. The onions have eyes: A comprehensive structure and privacy analysis of tor hidden services. In Proceedings of the 26th International Conference on World Wide Web, WWW ’17, page 1251–1260, Republic and Canton of Geneva, CHE. International World Wide Web Conferences Steering Committee.

Kyle Soska and Nicolas Christin. 2015. Measuring the longitudinal evolution of the online anonymous marketplace ecosystem. In 24th USENIX Security Symposium (USENIX Security 15), pages 33–48, Washington, D.C. USENIX Association.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online. Association for Computational Linguistics.

Changhoon Yoon, Kwanwoo Kim, Yongdae Kim, Seungwon Shin, and Sooel Son. 2019. Doppelgängers on the dark web: A large-scale assessment on phishing hidden web services. In The World Wide Web Conference, WWW ’19, page 2225–2235, New York, NY, USA. Association for Computing Machinery.

Hengrui Zhang and Futai Zou. 2020. A survey of the dark web and dark market research. In 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pages 1694–1705.
A Inter-Annotator Agreement

To obtain high-quality annotations, we ran a training session with the first 150 documents in three 50-document intervals. Each stage, we asked 10 annotators to annotate the same documents with the guidelines, and measured inter-annotator agreements using Fleiss’ Kappa coefficient (Landis and Koch, 1977; Artstein, 2017). After each interval, we held a discussion session to resolve disagreements and revised the guidelines to accommodate feedback from the annotators. For each interval, the agreement coefficients were 0.67, 0.72, and 0.88. Note that the coefficients greater than 0.60 and 0.80 can be interpreted as “substantial” and “almost perfect” agreements, respectively (Landis and Koch, 1977). This suggests that the training sessions helped the annotators gradually reach a common consensus and familiarize themselves with the guidelines. We then assigned the remaining documents so that each document is assigned to a single annotator to speed up the annotation. The whole process took about three months, including one month of the training session.

B Experimental Details

The data analysis experiments were performed on a machine with Intel Xeon E5-2630 v4 CPU @ 2.2 GHz (with no GPU usage), and the classification experiments were performed on a machine with Intel Xeon Gold 6258R CPU @ 2.70 GHz and Nvidia GeForce RTX 3090.

SVM: To fine-tune the parameters, we exhaustively generated all the candidate combinations of the two parameter pairs: tolerance and regularization. From a grid of their values, we applied 10-fold cross validation and found that the model with tolerance of 0.1 and regularization of 1.0 work best when we used ‘balanced_accuracy’ as the scoring strategy. Since this model is a multi-class classifier, we used the OVR (one-versus-rest) multi-class strategy.

CNN: The model consists of one GloVe embedding layer (6B.300d), three 2-dimensional convolutions (Conv2d), and one fully-connected layer. The kernel sizes of the three convolution layers are 3, 4, and 5, respectively. We applied the ReLU activation function and 1-dimensional max pooling after each convolution layer. We also used the SGD optimizer and ran 10 training epochs with cross-entropy loss; the learning rate was 1.5, and the batch size was set to 32.

BERT: We used the Adam optimizer and ran 10 training epochs with cross-entropy loss, a learning rate of 2e-5, a linear schedule with no warmup step, a batch size of 32, and gradient norm clipping of 1.0. We also limited the maximum sequence length to 256 tokens, assuming that the leading part of text is indicative of topics. All the other settings are the same as those used in the original BERT paper.

C Language Distribution

We present the language distribution of CoDA in the following table:

Language	Document count	Language	Document count	Language	Document count
English	8855	Persian	7	Basque	1
Russian	542	Swedish	7	Egyptian Arabic	1
German	129	Ukrainian	7	Georgian	1
French	100	Turkish	6	Greek	1
Spanish	61	Catalan	5	Gujarati	1
Portuguese	54	Hungarian	5	Hindi	1
Chinese	38	Cebuano	3	Ido	1
Italian	28	Esperanto	3	IlokO	1
Japanese	27	Indonesian	3	Kurdish	1
Dutch	14	Latin	3	Marathi	1
Finnish	14	Lithuanian	3	Punjabi	1
Korean	12	Norwegian	3	Slovak	1
Czech	11	Bengali	2	Tamil	1
Polish	10	Galician	2	Thai	1
Bulgarian	9	Romanian	2	Urdu	1
Arabic	7	Serbian	2	Vietnamese	1
Hebrew	7	Slovenian	2	Welsh	1

Table 10: Language distribution of documents in CoDA
D Additional Data Analysis Methods & Results

Some additional details and figures of results collected from various data analyses methods in Section 4 are presented here.

D.1 PoS Distribution & Content Word / Function Word Ratio

Choshen et al. (2019) demonstrated that legal and illegal texts in the Dark Web can be distinguishable through their lexical structure, that is, through part-of-speech (PoS) tags and distribution of content and function words. We analyze the PoS distribution and the distribution of content and function words in each dataset to see if there is a meaningful difference in the lexical structures of Dark / Surface Web contents. To obtain the universal PoS of words in the dataset, we utilize the PoS tagger in spaCy. Following Choshen et al. (2019), we define content words as words tagged by spaCy into one of the following PoS tags:

\[
\{\text{ADJ}, \text{ADV}, \text{NOUN}, \text{PROPN}, \text{VERB}, \text{X}, \text{NUM}\}
\]

and define all other words as function words. Since text length varies widely for each document in the Dark Web, we analyze the mean PoS ratio and the mean content word / function word ratio (CF ratio) for each category for both Dark and Surface Webs. The mean CF ratio \(\bar{r}_{cf}(C)\) for some category \(C\) is given by

\[
\bar{r}_{cf}(C) = \frac{1}{|C|} \sum_{d \in C} \frac{N_c(d)}{N_f(d)}
\]

where \(|C|\) denotes the number of documents (text files) in category \(C\), and \(N_c(d)\), \(N_f(d)\) denote the total number of content words and function words in some document \(d\), respectively.

The results for the PoS distribution and CF ratio are shown in Figures 2 and 3. It is evident that Dark Web categories generally have a much higher CF ratio compared to that of the Surface Web. From our PoS distribution analysis, we find that the Dark Web documents have a very high ratio of proper nouns (PROPN) and numerals (NUM) compared to the Surface Web documents, both of which are PoS tags of content words. Moreover, the Surface Web documents have a higher ratio of determiners (DET) compared to that of the Dark Web. Since function words serve as critical components of sentence structures, this result implies that language used in the Dark Web may contain a higher proportion of non-sentence structures. For example, texts in the drugs category mostly consist of a list of drugs with their price and weight.

D.2 Discussion

The use of spaCy for the comparison of PoS distribution and CF ratios may raise questions as spaCy has not been pretrained on Dark Web content, which may yield a higher error rate on the Dark Web results. However, this is not an issue for our work as the main purpose of this analysis is to show that there are linguistic differences between the Dark Web and the Surface Web. If the result of the analysis is heavily skewed by the presence of Dark Web content and additional training is necessary for the pretrained spaCy model, then this implies that there are meaningful lexical differences in the Dark Web. On the other hand, if the result is not particularly affected by the Dark Web content, then it shows that there are clear differences between the two domains. In either case, it is observable that the results suggest the existence of lexical differences between the Dark Web and the Surface Web.

However, there is one possible limitation in our analysis in that the aggregate Surface Web dataset may not encompass the complete representation of the Surface Web. This is evident from observing that a significant portion of the aggregate dataset (IMDb, Wikitext) consists of text content that is comprised of complete sentences. For example, the inclusion of marketplace content such as eBay or Amazon could affect the PoS distribution and the CF ratio of the aggregate Surface Web data. For future work, we may attempt additional analysis through boilerplate removal of noisy, non-structural texts in CoDA and the aggregate Surface Web data along with the augmentation of a broader diversity of Surface Web content and examine if this approach significantly affects the results obtained in Section D.1.

\[^{20}\text{Words that modify nouns or noun phrases such as articles}\]
Figure 2: PoS distribution of categories in CoDA and Surface Web aggregate data

Figure 3: Mean content word / function word (CF) ratio (\bar{r}_{cf}) of categories in CoDA and Surface Web aggregate data
Figure 4: Log-log plot of word frequency distribution of CoDA and Surface Web aggregate data by category. We exclude DUTA as it contains too many categories to be presented in the figure.

Figure 5: Mask token distribution by category (excluding ID_NUMBER)
E TF-IDF Measurements

A table of TF-IDF measurements (as mentioned in Section 4.2.4) showing the relevant words and phrases of selected categories in CoDA is listed here.

Crypto

Rank	Term	Financial TF-IDF
1	ID_NUMBER	0.684
2	ID_CRYPTO_MONEY	0.418
3	bitcoin	0.354
4	ID_TIME	0.233
5	ID_BTC_ADDRESS	0.227
6	btc	0.110
7	use	0.071
8	wallet	0.069
9	address	0.068
10	buy	0.068
11	transaction	0.061
12	get	0.060
13	blockchain	0.057
14	invest	0.049
15	ID_GENERAL_MONEY	0.048
16	coin	0.046
17	service	0.046
18	make	0.045
19	ID_PERCENTAGE	0.042
20	double	0.041

Drugs

Rank	Term	Financial TF-IDF
1	ID_NUMBER	0.883
2	ID_WEIGHT	0.255
3	ID_GENERAL_MONEY	0.249
4	id_filesize	0.184
5	weed	0.101
6	pot	0.089
7	pill	0.084
8	online	0.080
9	coke	0.073
10	cannabis	0.068
11	lsd	0.057
12	buy	0.051
13	drug	0.050
14	watch	0.050
15	id_general_money	0.049
16	case	0.049
17	id_general_money	0.046
18	card	0.046
19	id_filename	0.046
20	id_normal_url	0.045

Electronics

Rank	Term	Financial TF-IDF
1	ID_NUMBER	0.799
2	ID/general_money	0.291
3	id_phone	0.279
4	id_filesize	0.184
5	apple	0.142
6	pro	0.111
7	spad	0.110
8	macbook	0.092
9	credit	0.089
10	buy	0.086
11	order	0.079
12	get	0.073
13	id_time	0.071
14	id_number	0.057
15	id_time	0.057
16	id_general_money	0.055
17	id_general_money	0.052
18	change	0.051
19	id_normal_url	0.050
20	id_number	0.049

Gambling

Rank	Term	Financial TF-IDF
1	ID_NUMBER	0.593
2	casino	0.396
3	game	0.256
4	br	0.190
5	online	0.177
6	slot	0.173
7	play	0.161
8	ID_TIME	0.103
9	bet	0.098
10	win	0.096
11	poker	0.094
12	page	0.094
13	get	0.093
14	free	0.089
15	money	0.087
16	time	0.087
17	card	0.083
18	player	0.081
19	good	0.077
20	roulette	0.075

Hacking

Rank	Term	Financial TF-IDF
1	ID_NUMBER	0.792
2	hack	0.364
3	facebook	0.262
4	id_time	0.167
5	account	0.162
6	hacker	0.092
7	password	0.087
8	use	0.070
9	id_general_money	0.068
10	service	0.059
11	email	0.058
12	software	0.052
13	Cock	0.050
14	cp	0.070
15	young	0.045
16	get	0.044
17	free	0.040
18	instagram	0.039
19	attack	0.039
20	app	0.038

Pornography

Rank	Term	Financial TF-IDF
1	ID_NUMBER	0.605
2	porn	0.557
3	porn	0.272
4	free	0.220
5	anonymous	0.154
6	girl	0.125
7	teen	0.123
8	murder	0.109
9	like	0.099
10	one	0.091
11	get	0.083
12	get	0.073
13	kill	0.071
14	hitman	0.057
15	id_filename	0.051
16	use	0.050
17	use	0.049
18	one	0.047
19	canadian	0.040
20	get	0.040

Violence

Rank	Term	Financial TF-IDF
1	ID_NUMBER	0.915
2	ID_TIME	0.173
3	kill	0.074
4	anonymous	0.066
5	hitman	0.066
6	id_filename	0.065
7	murder	0.064
8	like	0.063
9	one	0.056
10	get	0.052
11	get	0.052
12	one	0.051
13	one	0.054
14	one	0.052
15	site	0.043
16	comment	0.043
17	get	0.042
18	get	0.041
19	say	0.040
20	get	0.040

Table 11: Terms with the highest TF-IDF for selected categories in CoDA
F Forum & Marketplace Benchmark Dataset

Category	Website title	Onion URL	# of pages
Drugs	Ang**********	ang**********.onion	377
Drugs	Glo**********	ny4**********.onion	307
Drugs	Opi**********	opi**********.onion	215
Drugs	Pot****	pot**********.onion	19
Drugs	Eu****	wge**********.onion	13
Drugs	Kam**********	bey**********.onion	5
Financial	Wal*********	z2h**********.onion	241
Financial	Tor*****	tor**********.onion	71
Financial	Cov*********	cov**********.onion	62
Financial	Fin**********	fin**********.onion	51
Financial	Cas******	hsj**********.onion	35
Financial	Cat******	cat**********.onion	25
Financial	Imp**********	srv**********.onion	16
Financial	Lig******	sw**********.onion	14
Financial	Kin**********	kin**********.onion	13
Financial	Cou**********	cou**********.onion	12
Financial	Cas**********	maf**********.onion	11
Financial	Kry**********	kry**********.onion	10
Financial	Th***********	nap**********.onion	9
Financial	Pru**********	hbl**********.onion	8
Financial	Hor**********	hor**********.onion	8
Financial	Ban***	bap**********.onion	7
Financial	Tor***********	vrm**********.onion	7
Financial	net***	net**********.onion	6
Financial	Bla**********	bla**********.onion	6
Financial	LAR**********	fiw**********.onion	5
Financial	eax**********	eax**********.onion	3
Financial	CHE**********	o6k**********.onion	3
Financial	PAY**********	ity**********.onion	3
Weapons	Glo**********	glo**********.onion	266
Weapons	Alp**********	alp**********.onion	219
Weapons	Exc**********	5zk**********.onion	181
Weapons	Eur******	hy**********.onion	4
Weapons	UK***********	tun**********.onion	4

Total Drugs	936
Total Financial	626
Total Weapons	674
All	2236

Table 12: Source of our forum & marketplace benchmark dataset as described in Section 6. To follow ethical guidelines, we mask the website titles and onion addresses.