Rosenbluth Separation of the π^0 Electroproduction Cross Section Off the Neutron
M. Mazouz et al. (Jefferson Lab Hall A Collaboration)
Phys. Rev. Lett. 118, 222002 — Published 1 June 2017
DOI: 10.1103/PhysRevLett.118.222002
Rosenbluth separation of the π^0 Electroproduction Cross Section off the Neutron

M. Mazouz,1* Z. Ahmed,2 H. Albataineh,3 K. Allada,4 K. A. Aniol,5 V. Bellini,6 M. Benali,7 W. Boeglin,8 P. Bertin,7,9 M. Brossard,7 A. Camsonne,9 M. Canan,10 S. Chandavar,11 C. Chen,12 J.-P. Chen,9 M. Defurne,13 C.W. de Jager,9,1 R. de Leo,14 C. Desnault,15 A. Deur,9 L. El Fassi,16 R. Ent,9 D. Flay,17 M. Friend,18 E. Fuchey,7 S. Frullani,19,† F. Garibaldi,19 D. Gaskell,9 A. Giusa,9 O. Glazazdin,20 S. Golge,21 J. Gomez,9 O. Hansen,9 D. Higginbotham,9 T. Holmstrom,22 T. Horn,23 J. Huang,4 M. Huang,24 G.M. Huber,25 C.E. Hyde,10,7 S. Iqbal,5 F. Itard,7 Ho. Kang,26 Hy. Kang,26 A. Kellerer,27 C. Keppel,9 S. Koirala,10 I. Korover,28 J.J. LeRose,9 R. Lindgren,29 E. Long,30 M. Magne,7 J. Mammel,31 D.J. Margaziotis,5 P. Markowitz,8 A. Martí Jiménez-Argüello,32,15 F. Meddi,19 D. Meekins,9 R. Michaels,9 M. Mihovilovic,33 N. Muangma,4 C. Muñoz Camacho,7,15 P. Nadel-Turonski,7 N. Nuruzzaman,12 R. Paremuzyan,15 A. Puckett,34 V. Punjabi,35 Y. Qiang,9 A. Rakhman,2 M.N.H. Rashad,10 S. Riordan,36 J. Roche,13 G. Russo,6 F. Sabeti,13 K. Saeboonruang,29,37 A. Sah,9,† B. Sawatzky,9,17 L. Selvy,30 A. Shahinyan,38 S. Sirca,33 P. Solvignon,9,† M.L. Sperduto,6 R. Subedi,39 V. Sulkosky,4 C. Sutera,6 W.A. Tobias,29 G.M. Urciuoli,40 D. Wang,29 B. Wojtsekhowski,9 H. Yao,17 Z. Ye,29 L. Zana,2 X. Zhan,41 J. Zhang,9 B. Zhao,27 Z. Zhao,29 X. Zheng,29 and P. Zhu29
(The Jefferson Lab Hall A Collaboration)

1 Faculté des Sciences de Monastir, 5000 Tunisia
2 Syracuse University, Syracuse, New York 13244, USA
3 Texas A&M University-Kingsville, Kingsville, Texas 78363, USA
4 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
5 California State University, Los Angeles, Los Angeles, California 90032, USA
6 INFN/Sezione di Catania, 95125 Catania, Italy
7 Clermont université, université Blaise Pascal, CNRS/IN2P3, Laboratoire de physique corpusculaire, FR-63000 Clermont-Ferrand, France
8 Florida International University, Miami, Florida 33199, USA
9 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
10 Old Dominion University, Norfolk, Virginia 23529, USA
11 Ohio University, Athens, Ohio 45701, USA
12 Hampton University, Hampton, Virginia 23668, USA
13 Irfa, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
14 Università di Bari, 70121 Bari, Italy
15 Institut de Physique Nucléaire CNRS-IN2P3, Orsay, France
16 Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
17 Temple University, Philadelphia, Pennsylvania 19122, USA
18 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
19 INFN/Sezione Sanità, 00161 Roma, Italy
20 Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
21 North Carolina Central University, Durham, North Carolina 27701, USA
22 Longwood University, Farmville, Virginia 23909, USA
23 The Catholic University of America, Washington, DC 20064, USA
24 Duke University, Durham, North Carolina 27708, USA
25 University of Regina, Regina, Saskatchewan S4S 0A2, Canada
26 Seoul National University, Seoul, South Korea
27 College of William and Mary, Williamsburg, Virginia 23187, USA
28 Tel Aviv University, Tel Aviv 69978, Israel
29 University of Virginia, Charlottesville, Virginia 22904, USA
30 Kent State University, Kent, Ohio 44242, USA
31 University of Massachusetts, Amherst, Massachusetts 01003, USA
32 Facultad de Física, Universidad de Valencia, Valencia, Spain
33 University of Ljubljana, 1000 Ljubljana, Slovenia
34 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
35 Norfolk State University, Norfolk, Virginia 23529, USA
36 Stony Brook University, Stony Brook, New York 11794, USA
37 Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
38 Yerevan Physics Institute, Yerevan 375036, Armenia
39 George Washington University, Washington, DC 20052, USA
40 INFN/Sezione di Roma, 00185 Roma, Italy
41 Argonne National Laboratory, Lemont, Illinois 60439, USA

(Dated: April 14, 2017)
We report the first longitudinal/transverse separation of the deeply virtual exclusive π^0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{TT}/dt$ and $d\sigma_{TL}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2=1.75$ GeV2 and $x_B=0.36$. The $e d \to ed\pi^0$ cross sections are found compatible with the small values expected from theoretical models. The $e n \to en\pi^0$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucleon. By combining these results with previous measurements of π^0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.

Understanding the internal three-dimensional structure of nucleons in terms of quarks and gluons is a major challenge of modern hadronic physics. Two complementary approaches have been used in the past in order to achieve this goal. On the one hand, nucleon form factors (FFs) measured in elastic electron scattering provide information on the transverse charge and current distributions inside the nucleon [1]. On the other hand, parton distribution functions (PDFs) measured in Deeply Inelastic Scattering (DIS) characterize the longitudinal momentum distribution of the underlying quarks and gluons [2]. Twenty years ago, FFs and PDFs were unified within the formalism of Generalized Parton Distributions (GPDs) [3–5]. GPDs are universal functions encoding a wealth of information about the nucleon internal structure such as the correlation between the transverse positions of quarks and gluons (partons) and their longitudinal momenta [6]. GPDs also provide access to the contribution of quark and gluon orbital angular momentum to the nucleon spin [4]. Eight GPDs for each quark flavor q describe nucleon structure at leading order in $1/Q$ (twist-2). They correspond to each combination of nucleon and parton helicities. The four chiral-even GPDs (H^q, E^q, H^q and E^q) conserve the helicity of the parton whereas the four chiral-odd, or transversity GPDs (H^q_2, E^q_2, H^q_2 and E^q_2), flip the parton helicity [7, 8].

GPDs parameterize the structure of the target independently of the reaction [7]. Chiral-even GPDs can be accessed experimentally via hard exclusive processes such as deeply virtual Compton scattering (DVCS) and deeply virtual meson electroproduction (DVMP) in the Bjorken limit $Q^2 \to \infty$ and $t/Q^2 \ll 1$ at fixed x_B. Recent results on DVCS show the validity of this limit at values of Q^2 as low as 1.5 GeV2 [9–11]. In the case of DVMP, the longitudinal scattering amplitude factorizes into a hard perturbative contribution and a soft convolution of the nucleon GPDs and the meson distribution amplitude (DA). The transverse virtual photo-production amplitude is proven to be suppressed by a factor of $1/Q^2$ at sufficiently high values of Q^2 [12]. In the case of π^0 electroproduction, it was suggested in [13, 14] that a large contribution to the transverse amplitude could arise from the convolution of the transversity GPDs of the nucleon with a twist-3 quark-helicity flip pion DA. Model calculations including the transversity GPDs have successfully described recent π^0 electroproduction data on a proton target, measured at Jefferson Lab (JLab) [15–18]. Measurements of π^0 electroproduction on the neutron are extremely interesting as they provide the exciting possibility to separate the individual contributions of the u and d quarks to the cross sections, when combined with measurements from a proton target at the same kinematics.

The differential cross section of deeply virtual π^0 production is given by [19]:

$$
\frac{d^4\sigma}{dQ^2 dx_B dt d\phi} = \frac{1}{2\pi} \frac{d^2\Gamma_A}{dQ^2 dx_B} \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} \right] \frac{\sqrt{2\epsilon(1+\epsilon)}}{1+\epsilon} \frac{d\sigma_{TL}}{dt} \cos \phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi \right],
$$

(1)

where ϕ is the angle between the hadronic and leptonic planes following the Trento Convention [20]. The virtual photon flux factor $d^2\Gamma_A$ and photon polarization ϵ are defined by:

$$
\frac{d^2\Gamma_A}{dQ^2 dx_B} = \frac{\alpha}{2\pi} \frac{y^2(1-x_B)}{x_B Q^2} \frac{1}{1-\epsilon},
$$

$$
\epsilon = \frac{1-y-Q^2/(2E^2)}{1+y+y^2/2+Q^2/(2E^2)^2}.
$$

(2)

Fig. 1 shows the lowest order Feynman diagram of the reaction and includes definitions of the kinematic variables. The ϕ dependence in Eq. (1) allows the extraction of the interference terms $d\sigma_{TL}/dt$ and $d\sigma_{TT}/dt$ while measure-
mumutations in the calorimeter. Fig. 2 shows the corrected variant mass, and the empirical factor \(C \) larger than the average \(\langle |M| \rangle \) as the LD2 data. Incidentals were subtracted from these spectra and the LH2 target 4-vector \(\vec{q} \) composed of a 13\(^{14}\)N decay were detected in an electromagnetic calorimeter. Scattered electrons were detected with 10\% electron scattering kinematics centered at \(t' = t_{\text{min}} - t \). A 3.1\% energy resolution at 3.16 GeV and a 0.6 ns \(\pi^0 \)-electron coincidence time resolution was achieved by means of a 1 GHz flash ADC system in each calorimeter channel. The calibration of the calorimeter was performed with elastic \(H(e,e'p) \), \(e,e'p \) data from dedicated runs in which the scattered electrons were detected in the calorimeter, with energy predictors by the kinematics of the elastic recoil proton in the HRS. The calorimeter calibration was monitored continuously \textit{a posteriori} by tracking the 2-photon invariant mass \(m_{\gamma\gamma} = \sqrt{(q_1 + g_2)^2} \) and the \(ep \to e \pi^0 X \) missing mass squared \(M_X^2 = (q + p - q_1 - q_2)^2 \). Exclusive \(\pi^0 \) electroproduction events are selected for each \((t', \phi) \) bin by applying a bidimensional cut:

\[
|m_{\gamma\gamma} - m_{\pi^0}| < 4 \sigma_{m_{\gamma\gamma}}; \\
M_X^2 = M_X^2 + C \left(m_{\gamma\gamma} - m_{\pi^0} \right) < 0.95 \text{ GeV}^2, \\
0.5 \text{ GeV}^2 < M_X^2,
\]

where \(\sigma_{m_{\gamma\gamma}} \) is the resolution of the reconstructed \(\pi^0 \) invariant mass, and the empirical factor \(C = 13 \text{ GeV} \) takes into account the natural correlation between the invariant mass and missing mass originating from energy fluctuations in the calorimeter. Fig. 2 shows the corrected missing mass squared \(M_X^2 \) obtained at \(E=4.455 \text{ GeV} \) for LH2 and LD2 data sets where \(M_X^2 \) is calculated with a target 4-vector \(p \) corresponding to a nucleon at rest. Accidental were subtracted from these spectra and the LH2 data were normalized to the same integrated luminosity as the LD2 data.

The average momentum transfer to the target \(\langle |\vec{q}| \rangle = \langle |q - q'| \rangle \) in the kinematics of this experiment is much larger than the average \(np \) relative momentum in the deuteron wavefunction \(\langle |\vec{p}_p| \rangle \). Below the threshold for the production of a second pion, the impulse approximation is expected to accurately describe the exclusive \(D(e,e'\pi^0)X \) yield, with \(X = np \oplus d \). Thus we write the cross section as the sum of the coherent elastic channel \(d(e,e'\pi^0)d \) and two incoherent quasi-elastic contributions:

\[
D(e,e'\pi^0)X = d(e,e'\pi^0)d + n(e,e'\pi^0)n + p(e,e'\pi^0)p. \quad (5)
\]

We subtract the \(p(e,e'\pi^0)p \) yield from the deuteron data by normalizing our \(H(e,e'\pi^0)X \) data to the luminosity of the LD2 data. The Fermi-momentum \(\vec{p}_F \) of bound protons inside the deuteron is statistically added to the LH2 data following the distribution given in [23] since this effect is intrinsically present in the \(M_X^2 \) spectrum of the LD2 data. The Fermi-momentum smearing increases the width of the missing mass distribution by less than 1\%. The result of the subtraction of the \(H(e,e'\pi^0)X \) data from the \(D(e,e'\pi^0)X \) yield is shown in Fig. 2. The \(d(e,e'\pi^0)d \) and \(n(e,e'\pi^0)n \) channels are \textit{in-principle} kinematically separated by \(\Delta M_X^2 = t(1 - M/M_d) \approx t/2 \) where \(M_d \) is the deuteron mass. This kinematic shift, due to the calculation of \(M_X^2 \) using \(p(\pi_N, \vec{0}) \), is exploited in the procedure described below to separate the contributions of the quasi-free neutron and coherent deuteron channels in the total \(\pi^0 \) electroproduction cross section.

Fig. 2 illustrates that the exclusive \(\pi^0 \) electroproduction events are primarily localized below the production threshold for a second pion: \(M_X^2 < (M + m_{\pi^0})^2 \approx 1.15 \text{ GeV}^2 \). However, we apply a nominal cut of \(M_X^2 < 0.95 \text{ GeV}^2 \) to minimize any contamination of inclusive events that might arise from resolution effects (see Fig. 2 in [18] for more details). The resulting events below this

![FIG. 2. Corrected missing mass squared \(M_X^2 \) for \(D(e,e'\pi^0)X \) (solid circles) and normalized Fermi-smeared \(H(e,e'\pi^0)X \) events (open circles). Bars show statistical uncertainties. The difference between the two distributions (squares) is scaled by a factor 10 for clarity. The blue and magenta bands (both scaled \(\times 10 \)) show the simulated \(n(e,e'\pi^0)n \) and \(d(e,e'\pi^0)d \) yields, respectively, fit to the data by minimizing Eq. (6). These bands include the statistical uncertainty of the fit. The total fit to the open squares distribution is shown by the solid (red) histogram.](image-url)
M_{N}^2 cut are divided into $12 \times 2 \times 5 \times 30$ bins in ϕ, E, t' and M_{N}^2 respectively. The first two variables allow the independent extraction of the four structure functions of the π^0 electroproduction cross section while the binning in M_{N}^2 enables the separation of the $d(e,e'\pi^0)d$ and $n(e,e'\pi^0)n$ contributions.

A Monte-Carlo simulation of the experimental setup is based on the GEANT4 toolkit [24]. It includes both external and real internal radiative effects based on calculations described in [25]. A comparison with the radiative calculations of [26] at our central kinematics showed agreement within 2%. The virtual internal effects are applied as a global correction factor to the extracted yield. A comparison with the radiative cross sections. The HRS acceptance is modeled by applying as a global correction factor to the extracted yield. The virtual internal effects are applied as a global correction factor to the extracted yield. The systematic uncertainty of this smearing procedure as well the asymmetric systematic uncertainty originated from the inclusive yield under the M_{N}^2 cut are evaluated by varying the cut applied around its nominal value. They are found to be bin-dependent and were added quadratically to the 3.1% normalization uncertainty listed in [18].

We fit the simulated yield to the experimental distributions for all bins in ϕ, E, t' and M_{N}^2. To wit, we minimize the χ^2:

\[
\chi^2 = \sum_{i=1}^{3600} \left(\frac{N_{i}^{\text{exp}} - N_{i}^{\text{sim}}}{\delta_i^{\text{exp}}} \right)^2, \tag{6}
\]

where N_{i}^{exp} (N_{i}^{sim}) is the number of experimental (simulated) events in bin i and δ_i^{exp} is the corresponding uncertainty. The kinematical terms appearing in Eq. (1) are convoluted with the experimental acceptance and resolution in the computation of N_{i}^{sim}. The eight cross-section structure functions $d\sigma_\Lambda^{n,d}/dt$ ($\Lambda = T, L, LT, TT$) which define N_{i}^{sim} are the free parameters of the fit for each t' bin. The minimization of Eq. (6) yields a value of $\chi^2/ndf = 0.98$.

Fig. 3 shows the measured ϕ-dependent photo-absorption cross section for both beam energies and for the lowest t' bin. The $d^2\sigma^d/dtdO$ cross section is almost independent of the beam energy indicating a dominance of the transverse response. The $d^2\sigma^d/dtdO$ cross section is found negligible within uncertainties for all ϕ bins. The fit to the M_{N}^2-distribution is shown in Fig. 2 which also illustrates that the LD2-LH2 yield is dominated by the neutron contribution in the exclusive region. In Fig. 4, we display ϕ-independent cross section $d\sigma_T + ed\sigma_L$ for the two beam energies, separated into the fitted quasi-free neutron and coherent deuteron channels. The highest t' bin is used in the analysis to treat bin migration effects and is not shown herein. The figure again shows the clear separation of the neutron signal. The coherent deuteron cross sections are found to be very small and compatible with theoretical calculations based on chiral-even deuteron GPDs, which predict cross-section values smaller than 1 nb/GeV2 in similar kinematics [28].

Fig. 5 shows the four extracted structure functions for the neutron and the deuteron as functions of t'. The neutron cross sections are dominated by $d\sigma_T^d/dt$ and $d\sigma_T^T/dt$, while the terms involving a longitudinal re-
response are compatible with zero within uncertainties and are in good agreement with previous results off a proton target at the same kinematics [18]. The neutron measurements are compared to a calculation based on both quark helicity-conserving GPDs and quark helicity-flip (transversity) GPDs [14], and show good agreement for all structure functions, with a slight overestimation of $|d\sigma^{u}_{T}/dt|$. The experimental $d\sigma^{u}_{L}/dt$ term is also compatible with the VGG model [29] based on chiral-even GPDs, which predicts $d\sigma^{u}_{L}/dt < 4 \text{ nb/GeV}^2$ for all t' bins. Together with previous measurements of $d\sigma^{u}_{T}/dt$ and $d\sigma^{u}_{TT}/dt$ on the proton [18] and extensive unseparated measurements before [15–17], these new results provide strong support to the exciting idea that transversity GPDs can be accessed via neutral pion electroproduction in the high Q^2 regime.

Within the modified factorization approach of [14], $d\sigma^{u}_{T}/dt$ and $d\sigma^{u}_{TT}/dt$ are functions of $\langle H_T \rangle$ and $\langle E_T \rangle$, which are convolutions of the elementary $\gamma^* q \rightarrow q' \pi^0$ amplitude with the transversity GPDs H_T and $E_T = 2\vec{H}_T + E_T$:

$\frac{d\sigma^{u}_{T}}{dt} = \Lambda \left[(1 - \xi^2) |\langle H_T \rangle|^2 - \frac{t'}{8M^2} |\langle E_T \rangle|^2 \right],$

(7)

$\frac{d\sigma^{u}_{TT}}{dt} = \Lambda \frac{t'}{8M^2} |\langle \vec{E}_T \rangle|^2.$

(8)

In these equations $\Lambda(Q^2, x_B)$ is a phase space factor [17] and $\xi \approx x_B/(2 - x_B)$ is the skewness variable. For a proton and a neutron target, the quark-flavor structures of $|\langle H_T \rangle|^2$ (neglecting strange quarks) are:

$|\langle H_T^{p,n} \rangle|^2 = \frac{1}{2} \frac{2}{3} \langle H_T^{u,d} \rangle + \frac{1}{3} \langle H_T^{d,u} \rangle,$

(9)

with similar equations for $|\langle \vec{E}_T \rangle|^2$. The different flavor weights of the proton and neutron targets allow us to separately determine $|\langle H_T \rangle|$ and $|\langle \vec{E}_T \rangle|$ (similarly $|\langle \bar{E}_T \rangle|$ and $|\langle \bar{H}_T \rangle|$) by combining the data we report herein and π^0 electroproduction cross sections on the proton measured at the same kinematics as in [18]. The unknown relative phase between the u and d convolutions is treated as a systematic uncertainty in the separation. The flavor-separated results assuming no relative phase between the u and d convolutions are presented in Fig. 6, with the bands indicating their variation when the phase takes all possible values between 0 and π. This phase could be resolved with exclusive $p(\gamma^*, \eta p)$ data in the same kinematics [30]. Fig. 6 shows that the magnitudes of the u-quark convolutions are larger than the d-quark convolutions for all t bins. The results in Fig. 6 also demonstrate that the

![FIG. 5. Structure functions $d\sigma_T/dt$, $d\sigma_L/dt$, $d\sigma_{T\ell}/dt$ and $d\sigma_{TT}/dt$ as a function of $t' = t_{\text{min}} - t$ for the neutron (blue) and the deuteron (red). The filled bands around the points show systematic uncertainties. The solid lines are theoretical calculations for the neutron from [14].](image-url)
u-quark nucleon helicity non-flip term $\langle \vec{E}_T^u \rangle$, is larger than the nucleon helicity flip term $\langle \vec{H}_T^u \rangle$. The comparison to the Goloskokov-Kroll model [14] shows good agreement for $\langle \vec{H}_T \rangle$ for both quark flavors but an underestimation for $\langle \vec{E}_T \rangle$. The GPD H_T parametrization is constrained in the forward limit by the transversity parton distributions. However, no similar experimental constraint is available for $\vec{E}_T - \vec{H}_T$ for both quark flavors but an underestimation for $\langle \vec{E}_T \rangle$. The constraints on \vec{E}_T are mainly taken from lattice QCD calculations [31].

In conclusion, we have separated the four unpolarized structure functions of π^0 electroproduction off the neutron at $Q^2=1.75$ GeV2 and $x_B=0.36$ in the t' range $[0, 0.2]$ GeV2. Similar measurements are obtained for coherent π^0 electroproduction off the deuteron at $x_B=0.18$. The latter are found to be very small and according to theoretical expectations. Neutron results show a dominance of the transverse response confirming the transversity GPD approach for the description of this process. By combining neutron and proton results, we have performed the first flavor decomposition of the u and d quark contributions to the cross section. Additional information from η meson electroproduction will soon help constrain the relative phase between the u and d quark contributions.

We thank P. Kroll, S. Goloskokov, M. Guidal, M. Vanderhaeghen and B. Pire for valuable information about their work and providing the results of their models. We acknowledge essential work of the JLab accelerator staff and the Hall A technical staff. This work was supported by the Department of Energy (DOE), the National Science Foundation, the French Centre National de la Recherche Scientifique, the Agence Nationale de la Recherche, the Commissariat à l’énergie atomique et aux énergies alternatives and P2IO Laboratory of Excellence. Jefferson Science Associates, LLC, operates Jefferson Lab for the U.S. DOE under U.S. DOE contract DE-AC05-06OR23177.

* mazouz@jlab.org
† Deceased

[1] R. Hofstadter and R. McAllister, Phys. Rev. 98, 217 (1955).
[2] J. I. Friedman, H. W. Kendall, and R. E. Taylor, Rev. Mod. Phys. 63, 573 (1991).
[3] D. Mueller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Horejsi, Fortschr. Phys. 42, 101 (1994), hep-ph/9812448.
[4] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249.
[5] A. V. Radyushkin, Phys. Rev. D56, 5524 (1997), hep-ph/9704207.
[6] M. Burkardt, Int. J. Mod. Phys. A18, 173 (2003).
[7] M. Diehl, Phys. Rep. 388, 41 (2003).
[8] P. Hoodbhoy and X.-D. Ji, Phys. Rev. D58, 054006 (1998), arXiv:hep-ph/9801369 [hep-ph].
[9] C. Muñoz Camacho et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 97, 262002 (2006), arXiv:nucl-ex/0607029 [nucl-ex].
[10] M. Defurne et al. (Jefferson Lab Collaboration), Phys. Rev. C89, 055202 (2015), arXiv:1504.05453 [nucl-ex].
[11] H. S. Jo et al. (CLAS), Phys. Rev. Lett. 115, 212003 (2015), arXiv:1504.02009 [hep-ex].
[12] J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev. D56, 2982 (1997), arXiv:hep-ph/9611433 [hep-ph].
[13] S. Ahmad, G. R. Goldstein, and S. Liuti, Phys. Rev. D79, 054014 (2009), arXiv:0805.3568 [hep-ph].
[14] S. Goloskokov and P. Kroll, Eur. Phys. J. A47, 112 (2011), arXiv:1106.4897 [hep-ph].
[15] E. Fuchey, A. Camsonne, C. Muñoz Camacho, M. Mazouz, G. Gavalian, et al., Phys. Rev. C83, 025201 (2011), arXiv:1003.2938 [nucl-ex].
[16] I. Bedlinskiy et al. (CLAS Collaboration), Phys. Rev. Lett. 109, 121101 (2012), arXiv:1206.6355 [hep-ex].
[17] I. Bedlinskiy et al. (CLAS), Phys. Rev. C90, 052005 (2014), arXiv:1405.0988 [nucl-ex].
[18] M. Defurne, M. Mazouz, et al., Phys. Rev. Lett. 117, 262001 (2016), arXiv:1608.01003 [hep-ex].
[19] M. Vanderhaeghen, J. M. Friedrich, D. Lhuillier, D. Marchand, L. Van Hoorebeke, and J. Van de Wiele, Phys. Rev. C62, 055501 (2000), hep-ph/0001100.
[20] A. Borcea, U. D’Alesio, M. Diehl, and C. A. Miller, Phys. Rev. D70, 117504 (2004), hep-ph/0410050.
[21] M. Mazouz et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 99, 242501 (2007), arXiv:0709.0450 [nucl-ex].
[22] J. Alcorn et al., Nucl. Instrum. Meth. A522, 294 (2004).
[23] M. Lacombe et al., Phys. Rev. C71, 861 (2005).
[24] S. Agostinelli and others (GEANT4 collaboration), Nucl. Instrum. Meth. A522, 037 (2004).
[25] S. Bedlinskiy et al. (CLAS Collaboration), Nucl. Instrum. Meth. A522, 294 (2004).
[26] M. Vanderhaeghen, J. M. Friedrich, D. Lhuillier, D. Marchand, L. Van Hoorebeke, and J. Van de Wiele, Phys. Rev. C62, 055501 (2000), hep-ph/0001100.
[27] A. Afanasev, I. Akushevich, V. Borkert, and K. Joo, Phys. Rev. D66, 074004 (2002), hep-ph/0208183.
[28] M. Rvachev, Effective Use of Hall A Spectrometers with R-Functions, Hall A Technical Note Jlab-TN-01-055 (Jefferson Lab, 2001).
[29] F. Cano and B. Pire, Eur. Phys. J. A19, 423 (2004), hep-ph/0307231.
[30] M. Vanderhaeghen, P. A. M. Guichon, and M. Guidal, Phys. Rev. D60, 094017 (1999), hep-ph/9905372.
[31] I. Bedlinskiy et al. (CLAS Collaboration), Phys. Rev. C95, 035202 (2017).
[32] M. Gockeler et al. (QCDSF Collaboration, UKQCD Collaboration), Phys. Rev. Lett. 98, 222001 (2007), arXiv:hep-lat/0612032 [hep-lat].