Cloning and phylogenetic analysis of NMDA receptor subunits NR1, NR2A and NR2B in Xenopus laevis tadpoles

Rebecca C. Ewald and Hollis T. Cline*

Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

INTRODUCTION

N-methyl-D-aspartate receptors (NMDARs) play an important role in many aspects of nervous system function such as synaptic plasticity and neuronal development. NMDARs are heteromers consisting of an obligate NR1 and most commonly one or two kinds of NR2 subunits. While the receptors have been well characterized in some vertebrate and invertebrate systems, information about NMDARs in Xenopus laevis brain is incomplete. Here we provide biochemical evidence that the NR1, NR2A and NR2B subunits of NMDARs are expressed in the central nervous system of X. laevis tadpoles. The NR1-4a/b splice variants appear to be the predominant isoforms while the NR1-3a/b variants appear to be expressed at low levels. We cloned the X. laevis NR2A and NR2B subunits and provide a detailed annotation of their functional domains in comparison with NR2A and NR2B proteins from 10 and 13 other species, respectively. Both NR2A and NR2B proteins are remarkably well conserved between species, consistent with the importance of NMDARs in nervous system function.

Keywords: NMDAR, Xenopus plasticity, NR2A, NR2B, NR1

MATERIALS AND METHODS

All chemicals were from Sigma, unless otherwise noted. PCR was done in a Mastercycler Gradient PCR machine (Eppendorf). Tadpoles were anaesthetized in 0.02% MS-222. Western Blot

All experimental procedures were approved by Cold Spring Harbor Laboratory IACUC. Whole brains of stage 47/48 tadpoles were dissected on dry ice and homogenized in lysis buffer (in mM: 10 Tris...
pH7.4, 60 octyl glucoside, 1 EGTA pH8, 0.5 DTT, 0.5 PMSF, 5 µg/ml leupeptin, 20 µg/ml soybean trypsin inhibitor, 0.1% SDS, 1% Triton X100. An equal amount of protein per lane was separated by 8% SDS-PAGE and transferred onto nitrocellulose membrane that were probed with primary antibodies at 1:100–500: α-NR1, α-NR2B (both BD PharMingen), α-NR2A (crude rabbit serum JH 1817, gift from the Huganir Lab), α-NR1-C1 (crude rabbit serum JH 2079, gift from the Huganir Lab), α-NR1-N1, α-NR1-C2 and α-NR1-C2′ (all three Novus Biologicals) and incubated with the HRP-conjugated α-goat or α-mouse secondary antibody (Bio-Rad, 1:3000).

RT-PCR ANALYSIS

Total RNA was extracted from whole brains of stage 47/48 tadpoles (TRIZOL, Invitrogen), the mRNA was prepared with the Poly(A) Quik mRNA Isolation Kit (Stratagene) and reverse transcribed with the C. therm. Polymerase (Roche). The C-terminal ends of NR1 cDNA were amplified with TaqBead Hot Start Polymerase (Promega) according to the manufacturer’s protocol with primers 5′ and 3′ to the C-terminal splice sites based on the published X. laevis NR1 sequence (GenBank accession no.: X94156), 5′ primer [CAAGGATGCCCGTAGGAAG], 3′ primer [CAAACTCAGTGGAGACTG] for 94°C 2 min, 31 cycles of [94°C 30 s, 60°C 30 s, 72°C 3 min 15 s], 72°C 5 min 30 s. In addition, the same PCR reaction was performed on three different cDNA libraries present in the lab. The PCR product included addition, the same PCR reaction was performed on three different cDNA libraries present in the lab. The PCR product included addition, the same PCR reaction was performed on three different cDNA libraries present in the lab.

RESULTS

DETECTION OF NR1, NR2A AND NR2B IN X. LAEVIS TADPOLE BRAIN

In order to provide biochemical evidence for the presence of NR1, NR2A and NR2B subunits in X. laevis brain, we performed western blots on stage 47/48 tadpoles. Since antibodies generated against X. laevis-specific NMDAR subunits are not available, we probed with antibodies generated against the rat homologs and found cross-reactive bands for X. laevis NR1 (~120 kD), NR2A (~180 kD) and NR2B (~180 kD) that run approximately at the same size as the bands found in rat whole brain lysate (Figure 1A). The X. laevis NR1 protein is slightly smaller than rat NR1. This could be due to the predominance of the smallest NR1 splice variant, NR1-4b, in X. laevis (Soloviev et al., 1996; this paper), which is less abundant in rat (Durand et al., 1992, 1993; Hollmann et al., 1993; Sugihara et al., 1992). We confirmed the cross-reactivity of the NR1 and NR2A antibodies by expressing the X. laevis NR1 (Soloviev et al., 1996) and X. laevis NR2A cDNAs in heterologous cells (Figure 1B).

This biochemical analysis together with previous electrophysiological data (Aizenman and Cline, 2007; Cline et al., 1996) indicates that NR1, NR2A and NR2B are abundantly expressed X. laevis brain.

CHARACTERIZATION OF NR1 SPLICE-VARIANTS IN X. LAEVIS

We further characterized which NR1 splice isoforms are expressed in X. laevis tadpoles and performed Western blots on whole brain extracts of stage 47 tadpoles using antibodies generated against rat NR1 isoforms containing the alternatively spliced exons N1, C1, C2 and the alternative C-terminal end C2′ (Figure 1C). We found cross-reactive bands of approximately 120 kD in size for NR1 proteins containing the N-terminal exon N1, as well as the C-terminal exons C1 and C2′, but not for the C2 cassette (Figure 1D). These results suggest that the splice variants NR1-3a, -3b, -4a and -4b (Figure 1C) are expressed in X. laevis brain.

In addition we analyzed the NR1 splice variant component in X. laevis by RT-PCR with mRNA from stage 47 tadpoles, as well as PCR from three different X. laevis cDNA libraries. To amplify all possible C-terminal variants, we used X. laevis-specific primers (Soloviev et al., 1996) targeted to the common regions 5′ and 3′ to the C-terminal splice sites. Sequencing of the subcloned...
PCR fragments showed that 26 out of 29 sequenced fragments contained only the C2′ cassette. The sequences aligned perfectly to the published *X. laevis* NR1 sequence (Figure 1E). Two sequence fragments contained full-length C1 and C2′ cassettes, which were 85% identical at the nucleotide level to rat NR1-3a (up to the stop codon; Figure 1F). Another sequence contained only a fragment of C1 and C2′ and was thus not classified. Therefore, the majority of mRNAs in *X. laevis* is either the NR1-4a or -4b splice variant.

Together, the Western blot and the RT-PCR experiments suggest that NR1-4a/b are the most abundantly expressed splice variants of NR1 in *X. laevis*, while NR1-3a/b are expressed at low levels. We were unable to detect NR1-1a/b and NR1-2a/b by western blot or RT-PCR, but we cannot rule out that they could be expressed at very low levels or at a different developmental stage. These results extend the previous findings (Soloviev et al., 1996) by demonstrating that NR1-4a/b is the most abundant splice isoform in *X. laevis* tadpoles.
CLONING OF *X. laevis* NR2A AND NR2B AND PHYLOGENETIC ANALYSIS

Sequence information on the NR2 subunits has recently been reported for the NR2B ([Schmidt and Hollmann, 2008](#)), but is still lacking for the NR2A subunit. In addition, their degree of sequence conservation between *X. laevis* and other species has not been described. To determine the sequence of *X. laevis* NR2A and NR2B we performed a cDNA library screen, using a cDNA library made from *X. laevis* tadpoles and a cocktail of probes that was specific to the entire rat cDNA sequence of each NR2A and NR2B. We obtained a 2.3- and 1.7-kb fragment for NR2A and NR2B, respectively, and completed the sequence information making use of 5' and 3' RACE. We obtained 5041 nucleotides for NR2A, 4353 of which comprise the coding sequence. This translates into 1451 amino acids, which is slightly smaller than rat NR2A, which is 1464 amino acids long. For NR2B 4952 nucleotides in total were obtained, of which 4347 are the coding sequence. The protein is therefore made up of 1449 amino acids, which is smaller than the 1482 amino acids of rat NR2B.

A phylogenetic tree was constructed with the Neighbor Joining algorithm to analyze the evolutionary relationships of 11 NR2A and 14 NR2B protein sequences from different species, and of the NR2 proteins from *C. elegans* and *D. melanogaster* (Figure 2). The invertebrates *C. elegans* and *D. melanogaster* are most distantly related to all other species and have only one type of NR2 subunit ([Xia et al., 2005](#); wormbase.org). The NR2A and NR2B subunits, in contrast, are present in all vertebrates and diverge evolutionarily as expected (Figure 2). Sequence information for fish was only available for NR2B and this group of species contains the most ancestral forms of NR2B. The fish are followed by the amphibians, *X. laevis* and *X. tropicalis*, which cluster together in a branch for both NR2A and NR2B. Chicken, as a representative of birds, splits off next followed by the marsupial opossum, and then cow and dog. The rodents,
rat and mouse, are clustered together, as well as the primate group, where human and chimp are most closely related (Figure 2).

COMPARISON OF SEQUENCE CONSERVATION OF X. LAEVIS NR2A AND NR2B

Xenopus laevis NR2A and NR2B are remarkably well conserved between species at the protein sequence level. We aligned the amino acid sequences of *X. laevis* NR2A with 10 other species (Figure 4) and *X. laevis* NR2B with 13 other species (Figure 5). *C. elegans* and *D. melanogaster* were omitted from the sequence alignment and analysis because they only have one kind of NR2 subunit.

Even though some sequences are only available as fragments for NR2A (squirrel monkey and *X. tropicalis*) and NR2B (tetraodon, fugu and *X. tropicalis*), the degree of sequence identity is striking (Figures 3–5). The number and percentage of conserved residues and domains were determined in comparison to the sequence of the species where they were characterized and are listed in Figure 3. Taking the rat and *X. tropicalis* sequences as examples for species that are, respectively, quite distantly and closely related to *X. laevis*, we find that for *X. laevis* and rat, NR2A is 73% identical and NR2B is 85% identical at the amino acid level (Figure 3). Sequence similarities are even higher at 91% for NR2A and 93% for NR2B. From the sequence that is available for *X. tropicalis*, the *X. laevis* and *X. tropicalis* protein sequences are 95% identical for NR2A and 96% identical for NR2B (Figure 3). The sequence similarity between the two frog species for both NR2A and NR2B protein is 99%.

In our detailed analysis of the NR2A sequence (Figure 4) we find that almost all residues that have been identified as important for high affinity Zn\(^{2+}\) binding (Fayyazuddin et al., 2000; Paolletti et al., 2000) are conserved. The exceptions are the first arginine, R37, changed from histidine and the last aspartate, D258, changed from glutamate. However, both changes are relatively conservative, since arginine and histidine are both basic amino acids, while aspartate and glutamate are acidic amino acids. The functional consequences of these modifications may therefore be small or negligible, and would need to be tested experimentally.

All of the residues and domains that are known to be important for the biophysical function of the receptor are conserved. The residues that are important for glutamate binding (Anson et al., 1998; Chen et al., 2005) are identical in all species. The pre-M1 segment, suggested to dynamically link ligand binding and channel gating (Krupp et al., 1998) and the four membrane-associated segments, M1–M4, are almost identical in all species. Crucial residues for the proper function of NR2A such as the asparagine and serine residues, N608 and S609 that constitute the selectivity filter, as well as the WGP signature of the pore loop, and the SYTANLAAF signature of the M3 segment are conserved (Kuner et al., 1996, 2003). Three endocytosis motifs have been identified in NR2B (Roche et al., 2001; Scott et al., 2004). In contrast to NR2A, the proximal endocytosis YXXΦ motif (Scott et al., 2004) is not conserved in either *Xenopus* species and only partially conserved in fish. However, a second endocytosis YXXΦ motif located distally has been characterized to be important for AP2-binding and clathrin-mediated endocytosis (Lavezzari et al., 2003; Roche et al., 2001) and is identical in all species. Unlike NR2A, the distal endocytosis LL motif (Roche et al., 2001) is present in most species including *Xenopus*. The CaMKII (Okumura et al., 1996), PKC (Liao et al., 2001) and Fyn kinase (Nakazawa et al., 2001) phosphorylation sites are also identical across species. The lysine, K1270, and LRRQ residues that have been identified as important for interaction with CaMKII (Strack et al., 2000) are only partially conserved as the latter is changed to LHRQ in both *Xenopus* species. Particularly, the changed arginine, R1277, was identified as an important residue for CaMKII interaction (Strack et al., 2000). Potentially the remaining residues compensate for this missing residue or *Xenopus* does not critically rely on this motif for interaction with CaMKII. Finally, the PDZ class I binding domain of NR2B, E(T/S)XY, is present in all species. As for NR2A, the PDZ binding domain is critical for receptor trafficking, interaction with the postsynaptic density and downstream signaling (Barria and Malinow, 2002; Przyborski et al., 2005; Sheng and Pak, 2000).

DISCUSSION

NR1 SPlice-VARIANTS

We found that the NR1-4a/b splice-variants are the most abundantly expressed NR1 isoforms in developing *X. laevis* brain, as previously reported for adult frog brain (Soloviev et al., 1996), and that the NR1-3a/b isoforms are expressed at lower levels. The
FIGURE 3 | Conserved residues in X. laevis NR2A and NR2B. (A) Cartoon of the annotated functional domains and residues of NR2A. (B) Table of the number and percentage of conserved residues and domains of NR2A from 11 different species. The overall amino acid identity was determined in comparison to the X. laevis NR2A protein. The number or percentage of conserved residues was determined in comparison to the sequence of the species where they were first characterized (mostly rat). Functional sites that are not conserved between all species are highlighted in gray.
developmental difference of the animals from which the cDNA libraries were generated might explain why Soloviev et al. detected only NR1-4a/b in their study of adult Xenopus. Cloning and characterization of NR1 isoforms in rat, human and chick have detected the spatial and temporal coexistence of multiple isoforms in the nervous system (Foldes et al., 1993, 1994; Laurie and Seeburg, 1994; Lee-Rivera et al., 2003; Zarain-Herzberg et al., 2005). Similar to our findings in X. laevis, studies in zebrafish and electric fish detected...
The protein sequences of *X. laevis* NR2A and 10 other species were aligned with the ClustalW algorithm. When full sequences were not available or could not be assembled by hand, incomplete sequences were used. Amino acids identical to the reference sequence are depicted as (.). Lack of sequence is symbolized by (−). A (*) below the alignment signifies amino acid identity, while (:), (.) and (|) indicate the degree of amino acid similarity. NR2A is highly conserved between species. The membrane-associated segments M1–M4, other structurally and functionally important domains and amino acids, as well as known protein–protein interaction domains and phosphorylation sites are highlighted. Descriptions in italics indicate sites that are not conserved between species.
NR1-3a/b and NR1-4a/b splice variants but not NR1-1a/b and NR1-2a/b isoforms (Bottai et al., 1998; Cox et al., 2005). In contrast to mammals, this selective expression of a subset of NR1 splice variants seems to be conserved among amphibians and fish and might well distinguish them from other species.

CONSERVATION OF NR2A AND NR2B SUBUNITS

We provided biochemical evidence that NR2A and NR2B are highly abundant in *X. laevis* brain in accordance with previous observations (Aizenman and Cline, 2007; Cline et al., 1996). The *X. laevis* NR2A and NR2B cDNA sequences demonstrate that both are...
remarkably conserved across species, including all major functional domains. This high degree of sequence conservation is found for some neuronal proteins in *X. laevis* such as CPG15, a GPI-linked protein that can regulate dendritic growth (Nedivi et al., 1998), which is 73% identical to rat (Nedivi et al., 2001), but not for others, for example *X. laevis* NOGO-A/RTN-4, a myelin-associated axon growth inhibitor, which is only 34% identical to its rat counterpart (Klinger et al., 2004).

FIGURE 5 | Protein sequence alignment of NR2B from 14 different species. The protein sequences of *X. laevis* NR2B and 13 other species were aligned with the ClustalW algorithm. When full sequences were not available or could not be assembled by hand, incomplete sequences were used. Amino acids identical to the reference sequence are depicted as (.). Lack of sequence is symbolized by (−). A (*) below the alignment signifies amino acid identity, while (.) and (.) indicate the degree of amino acid similarity. NR2B is very highly conserved between species. The membrane-associated segments M1–M4, other structurally and functionally important domains and amino acids, as well as known protein–protein interaction domains and phosphorylation sites are highlighted. Descriptions in *italics* indicate sites that are not conserved between species.
Conserved domains include the glutamate and antagonist binding sites, the membrane-associated segments and the residues that are important for ion selectivity, consistent with functional studies showing that the biophysical properties of NMDA receptors in *Xenopus* are comparable to other species (Anson et al., 1998; Chen et al., 2005; Fayazuddin et al., 2000; Kuner et al., 1996; Laube et al., 1997; Paolletti et al., 2000; Perin-Dureau et al., 2002; Schmidt and Hollmann, 2008; Wollmuth et al., 1996, 1998). Moreover, residues that determine NMDAR function as a signaling partner to the postsynaptic density are also preserved throughout evolution. However, there are some interesting differences in a few regulatory domains. Remarkably, for NR2A, the isoleucine and asparagine residues, H1274 and N1275 that have been determined in rat to weaken the interaction with CaMKII (Mayadevi et al., 2002) are conserved only in frogs and rodents, but not in other species. This implies that either the residues are not functionally relevant in vivo as biochemical experiments would suggest or regulation of the interaction with CaMKII differs between species. Alternatively CaMKII itself could be changed in a compensatory manner. In addition, there are differences in the distal LL endocytosis motif of NR2A, as the two leucines are conserved in most species but not in chicken and *Xenopus*. In both frog species, LL is replaced by tyrosine and isoleucine, Y1306 and I1307. The proximal YXXΦ endocytosis motif, in contrast, is conserved. Conversely in NR2B, the proximal YXXΦ endocytosis motif (Scott et al., 2004) is changed in both frog species from YWQΦ to FWQΦ, while the distal YXXΦ endocytosis motif (Roche et al., 2001) is conserved. These observations in both NR2A and NR2B would suggest that the *Xenopus* genus potentially utilizes one of the endocytic sites depending on the NR2 subunit or that these changes are otherwise compensated for. It remains to be investigated if there is some differential regulatory function behind this.

FUNCTIONAL ANALYSIS OF NR2A AND NR2B EXPRESSION IN XENOPUS NEURONS

A logical extension of the analysis presented here is to conduct a structure function study of the effect of expressing full-length or mutant NR2 subunits in neurons. In a previous study we overexpressed in *Xenopus* neurons the same full-length *Xenopus* NR2A or rat NR2B constructs shown in Figure 1 and found that they lengthened and shortened, respectively, the decay time of evoked synaptic NMDAR-mediated currents. Morpholino-mediated knockdown of the NR2 subunits had the opposite effects on kinetics of synaptic responses, consistent with the predicted function of the NR2A and 2B subunits on synaptic function (Ewald et al., 2008). We then carried out a functional analysis of the effect of overexpression and knockdown of NR2A and NR2B subunits on structural plasticity of *Xenopus* optic tectal neurons in vivo in an effort to identify subunit-specific effects on arbor development. Whereas the dendritic arbors of control tectal neurons have local clusters of dendritic branches, expression of either full-length NR2A or NR2B significantly decreased local branch clusters and resulted in a dispersed branching pattern. Detailed analysis of time-lapse image data indicates that neurons overexpressing NR2B are more dynamic than those overexpressing NR2A or control neurons. Our previous work has shown that a 4-h period of exposure to a simulated motion stimulus increases dendritic arbor growth rate, and that the enhanced growth rate requires glutamatergic synaptic transmission (Sin et al., 2002). Surprisingly, overexpression of either NR2A or NR2B prevented the experience-dependent structural plasticity. These data, together with a recent report in rodent barrel cortex (Espinoza et al., 2009) suggest that a highly regulated ratio of NR2A to NR2B levels underlies dendritic arbor development and experience-dependent plasticity in the CNS of the intact animal. The data further suggest that a structure function analysis of NMDAR subunits in neurons requires an appreciation of the complex nature of cellular effects of manipulating subunit expression.

In conclusion, we found that from a phylogenetic perspective both NR2A and NR2B show a high degree of evolutionary conservation, which underscores the potential importance of the NMDAR subunits in nervous system function. This suggests that the study of NMDARs in the nervous system of *X. laevis* is likely to provide important insights into the universal aspects of NMDAR function.

ACKNOWLEDGMENTS

We thank Dr Richard Huganir for generously providing the α-NR1-C1 and α-NR2A antibodies, Dr Andrew Neuwald for comments on the manuscript and members of the Cline laboratory for helpful discussions. This work was funded by NEI: EY011261.

REFERENCES

Aizenman, C. D., and Cline, H. T. (2007). Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection. *J. Neurophysiol.*, 97:2949–2957.

Anson, L. C., Chen, P. E., Wyllie, D. J., Colquhoun, D., and Schoeffer, P. (1998). Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. *J. Neurosci.*, 18, 581–589.

Barria, A., and Malinow, R. (2002). Subunit-specific NMDA receptor trafficking to synapses. *Neuron* 35, 345–353.

Bottai, D., Maler, L., and Dunn, R. J. (1998). Alternative RNA splicing of the NMDA receptor NR1 mRNA in the neurons of the teleost electroreceptive system. *J. Neurosci.*, 18, 5191–5202.

Brockie, P. J., Mellem, J. E., Hills, T., Madsen, D. M., and Marić, A. V. (2001). The *C. elegans* glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. *Neuron* 31, 617–630.

Chen, P. E., Geballe, M. T., Stansfeld, P. J., Johnston, A. K., Yuan, H., Jacob, A. L., Snyder, J. P., Traynelis, S. F., and Wyllie, D. J. (2005). Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. *Mol. Pharmacol.*, 67, 1470–1484.

Cline, H. T., Wu, G. Y., and Malinow, R. (1996). In vivo development of neuronal structure and function. *Cold Spring Harb. Symp. Quant. Biol.* 61, 95–104.

Cox, J. A., Kucenas, S., and Voigt, M. M. (2005). Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. *Dev. Dyn.* 234, 756–766.

Cull-Candy, S., Brickley, S., and Farrant, M. (2011). NMDA receptor subunits: diversity, development and disease. *Curr. Opin. Neurobiol.* 21, 327–335.

Cull-Candy, S. G., and Leszkiewicz, D. N. (2004). Role of distinct NMDA receptor subtypes at central synapses. *Sci. STKE* 2004, re16.

Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999). The glutamate receptor ion channels. *Pharmacol. Rev.* 51, 7–61.

Durand, G. M., Bennett, M. V., and Zukin, R. S. (1993). Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyanamines and protein kinase C. *Proc. Natl. Acad. Sci. USA* 90, 6731–6735.

Durand, G. M., Gregor, P., Zheng, X., Bennett, M. V., Uhl, G. R., and Zukin, R. S. (1992). Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to...
polymamines and activators of protein kinase C. Proc. Natl. Acad. Sci. USA 89, 9339–9343.

Ehlers, M. D., Tingley, W. G., and Huganir, R. L. (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science 269, 1734–1737.

Espinosa, J. S., Wheeler, D. G., Tsien, R. W., and Luo, L. (2009). Uncoupling dendritic growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62, 205–217.

Ewald, R. C., Van Keuren-Jensen, K. R., Aizenman, C. D., and Cline, H. T. (2008). Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo. J. Neurosci. 28, 830–861.

Fayyazuddin, A., Villarroel, A., Le Goff, A., Lema, J., and Neyton, J. (2000). Four residues of the extracellular N-terminal domain of NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25, 683–694.

Foldes, R. L., Rampersad, V., and Kamboj, R. K. (1993). Cloning and sequence analysis of cDNAs encoding human hippocampal N-methyl-D-aspartate receptor subunits: evidence for alternative RNA splicing. Gene 131, 293–298.

Foldes, R. L., Rampersad, V., and Kamboj, R. K. (1994). Cloning and sequence analysis of additional splice variants encoding human N-methyl-D-aspartate receptor (hNR1) subunits. Gene 147, 303–304.

Gardon, F., Bellone, C., Cattabeni, F., and Di Luca, M. (2001). Protein kinase C activation modulates alpha-calciummodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J. Biol. Chem. 276, 7609–7613.

Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G., and Heinemann, S. (1993). Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943–954.

Holmes, K. D., Mattar, P. A., Marsh, D. R., Weaver, L. C., and Dekaban, G. A. (2002). The N-methyl-D-aspartate receptor splice variant NR1-4 C-terminal domain. Deletion analysis and role in subcellular distribution. J. Biol. Chem. 277, 1457–1468.

Hua, J. Y., and Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nat. Neuroscience 7, 327–332.

Jones, M. L., and Leonard, J. P. (2005). PKC site mutations in NR2A subunits generate novel functional domains by inhibition of NMDA receptors containing NR2A or NR2B subunits. J. Neurochem. 92, 1431–1438.

Klinger, M., Diekmann, H., Heinz, D., Hirsch, C., and Hankenb von Hanwehr, S., Petrausch, B., Oertle, T., Schwab, M. E., and Stuermer, C. A. (2004). Identification of two NOGO/RTN4 genes and analysis of Nogo-A expression in Xenopus laevis. Mol. Cell. Neurosci. 25, 205–216.

Krupp, J., Vissel, B., Heinemann, S. F., and Westbrook, G. L. (1998). N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20, 317–327.

Kuner, T., Seeburg, F. H., and Guy, H. R. (2003). A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci. 26, 27–32.

Kuner, T., Wollmuth, L. P., Karlin, A., Seeburg, P. H., and Sakmann, B. (1996). Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343–352.

Laube, B., Hira, H., Sturgess, M., Betz, H., and Dale, J. (1997). Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18, 493–503.

Laurie, D. J., Bartik, I., Schoepfer, R., Naujoks, K., and Seeburg, P. H. (1997). Regional, developmental and interspecies expression of the four NR2DAR2 subunits, examined using monoclonal antibodies. Brain Res. Mol. Brain Res. 51, 23–32.

Laurie, D. J., and Seeburg, P. H. (1994). Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14, 3180–3194.

Lavezzari, G., McCallum, J., Dewey, C. M., and Roche, K. W. (2004). Subunit-specific regulation of NMDA receptor-mediated calcium/calmodulin-dependent protein kinase II phosphorylation of the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 279, 693–699.

Nedivi, E., Iavainerian, A., Cantallops, I., and Cline, H. T. (2001). Developmental regulation of CPG15 expression in Xenopus. J. Comp. Neurol. 435, 464–473.

Nedivi, E., Wu, G. Y., and Cline, H. T. (1998). Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281, 1863–1866.

Okamoto, R. V., Kiely, M. J., Rosenstein, A. J., Min, K. T., and Kennedy, M. B. (1996). Identification of a phosphorylation site for calcium/calmodulin-dependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 271, 31670–31678.

Poletti, P., Perin-Dureau, F., Fayyazuddin, A., Le Goff, A., Callebaut, I., and Neyton, J. (2000). Molecular organization of a zinc binding n-terminal modular domain in a NMDA receptor subunit. Neuron 28, 911–925.

Perin-Dureau, F., Rachline, J., Neyton, J., and Poletti, P. (2002). Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors. J. Neurosci. 22, 5955–5965.

Prybylowski, K., Chang, K., Sans, N., Kan, L., Vinici, S., and Wenthold, R. J. (2005). The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47, 435–447.

Riedel, G., Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav. Brain Res. 140, 1–47.
by the NR1 subunit. J. Neurosci. 18, 6163–6175.
Traynelis, S. F., Hartley, M., and Heinemann, S. F. (1995). Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268, 873–876.
Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., Wolfe, B. B., and Grayson, D. R. (1998). Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol. 79, 553–566.
Vissel, B., Krupp, J. J., Heinemann, S. F., and Westbrook, G. L. (2001). A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4, 587–596.
Waxman, E. A., and Lynch, D. R. (2005). N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11, 37–49.
Wollmuth, L. P., Kuner, T., and Sakmann, B. (1998). Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J. Physiol. 506 (Pt 1), 13–32.
Wollmuth, L. P., Kuner, T., Seeburg, P. H., and Sakmann, B. (1996). Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels. J. Physiol. 491 (Pt 3), 779–797.
Xia, S., Miyashita, T., Fu, T. F., Lin, W. Y., Wu, C. L., Pyzocha, L., Lin, J. R., Saitoe, M., Tully, T., and Chiang, A. S. (2005). NMDA receptors mediate olfactory learning and memory in Drosophila. Curr. Biol. 15, 603–615.
Zarain-Herzberg, A., Lee-Rivera, L., Rodriguez, G., and Lopez-Colome, A. M. (2005). Cloning and characterization of the chick NMDA receptor subunit-1 gene. Brain Res. Mol. Brain Res. 137, 235–251.
Zhang, L., Zheng, X., Paupard, M. C., Wang, A. P., Santchi, L., Friedman, L. K., Zukin, R. S., and Bennett, M. V. (1994). Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc. Natl. Acad. Sci. USA 91, 10883–10887.
Zheng, F., Gingrich, M. B., Traynelis, S. F., and Conn, P. J. (1998). Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat. Neurosci. 1, 185–191.
Zheng, X., Zhang, L., Durand, G. M., Bennett, M. V., and Zukin, R. S. (1994). Mutagenesis rescues spermine and Zn2+ potentiation of recombinant NMDA receptors. Neuron 12, 811–818.
Zukin, R. S., and Bennett, M. V. (1995). Alternatively spliced isoforms of the NMDAR1 receptor subunit. Trends Neurosci. 18, 306–313.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Received: 03 November 2008; paper pending published: 14 December 2008; accepted: 09 June 2009; published online: 11 September 2009.
Citation: Ewald RC and Cline HT (2009) Cloning and phylogenetic analysis of NMDA receptor subunits NR1, NR2A and NR2B in Xenopus laevis tadpoles. Front. Mol. Neurosci. 2:4. doi: 10.3389/neuro.02.004.2009
Copyright © 2009 Ewald and Cline. This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.