Stein characterizations for linear combinations of gamma random variables

Benjamin Arras1, Ehsan Azmoodeh 2, Guillaume Poly3 and Yvik Swan 4

1Laboratoire Jacques-Louis Lions, Universit\'e Pierre et Marie Curie, France
2Faculty of Mathematics, Ruhr University Bochum, Germany
3Institut de Recherche Math\'ematiques, Universit\'e de Rennes 1, France
4Mathematics department, Universit\'e de Li\`ege, Belgium

Abstract

In this paper we propose a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study random variables which can be represented as linear combinations of (non necessarily independent) gamma distributed random variables. The connection with Malliavin calculus for random variables in the second Wiener chaos is detailed. An application to McKay Type I random variables is also outlined.

Keywords: Stein’s method, Second Wiener chaos, Multivariate Gamma distribution, McKay distribution.

MSC 2010: 60F05, 60G50, 60G15, 60H07

Contents

1 Introduction and overview
 1.1 On Stein’s method 1
 1.2 The Malliavin-Stein method and its extensions 3

2 Stein-type characterization and main results
 2.1 Stein operators for the second Wiener chaos 4
 2.2 A Fourier approach to Stein characterizations 6
 2.3 Stein operators for sums of independent gamma 8
 2.4 Stein operators for projections of multivariate gamma ... 10
 2.5 Application: McKay Type I and combinations of two gamma variates . 12

3 Proofs

References

1 Introduction and overview

1.1 On Stein’s method

Stein’s method is a popular and versatile probabilistic toolkit for stochastic approximation. Presented originally in the context of Gaussian CLTs with dependent summands
it has now been extended to cater for a wide variety of quantitative asymptotic results, see [7] for a thorough overview in the context of Gaussian approximation or https://sites.google.com/site/steinsmethod for an up-to-date list of references on non-Gaussian and non-Poisson Stein-type results.

Given two random objects \(F, F_\infty \), Stein’s method allows to compute fine bounds on quantities of the form

\[
\sup_{h \in \mathcal{H}} \left| \mathbb{E}[h(F)] - \mathbb{E}[h(F_\infty)] \right|
\]

with \(\mathcal{H} \) some meaningful class of functions with respect to which both \(F \) and \(F_\infty \) are integrable (Zolotarev’s integral probability metrics [33], which include e.g. the total variation distance and the Kolmogorov distance, are of the above form). The method rests on three pins:

A. a “Stein pair”, i.e. a linear operator and a class of functions \((\mathcal{A}_\infty, \mathcal{F}(\mathcal{A}_\infty)) \) such that \(\mathbb{E}[\mathcal{A}_\infty(f(F_\infty))] = 0 \) for all test functions \(f \in \mathcal{F}(\mathcal{A}_\infty) \);

B. a “Stein equation and its magic factors”, i.e. a contractive inverse operator \(\mathcal{A}_\infty^{-1} \) acting on the centered functions \(\bar{h} = h - \mathbb{E}h(F_\infty) \) in \(\mathcal{H} \) and tight bounds on \(\mathcal{A}_\infty^{-1}(\bar{h}) \) and its derivatives;

C. handles on the structure of \(F \) (such as \(F = F_n = T(X_1, \ldots, X_n) \) a \(U \)-statistic, \(F = F(X) \) a functional of an isonormal Gaussian process, \(F \) a statistic on a random graph, etc.).

Given the conjunction of these three elements one can then apply some form of transfer principle:

\[
\sup_{h \in \mathcal{H}} \left| \mathbb{E}[h(F)] - \mathbb{E}[h(F_\infty)] \right| = \sup_{h \in \mathcal{H}} \left| \mathbb{E}\left[\mathcal{A}_\infty^{-1}\left(\mathcal{A}_\infty^{-1}(\bar{h}(F))\right)\right] \right|; \quad (1.1)
\]

remarkably the right-hand-side of the above is often much more amenable to computations than the left-hand-side, even in particularly unfavourable circumstances. This has resulted in Stein’s method delivering several striking successes (see [6, 7, 23]) which have led the method to becoming the recognised and acclaimed tool it is today.

Given a target \(F_\infty \), the identification of an appropriate Stein operator \(\mathcal{A}_\infty \) is the cornerstone of Stein’s method. While historically most practical implementations relied on adhoc arguments, several general tools exist, including Stein’s density approach [31] and Barbour’s generator approach [5]. A general theory for Stein operators is available in [21]. It is easy to see that, given any sufficiently regular target \(F_\infty \), there are infinitely many admissible choices of operator \(\mathcal{A}_\infty \) and the difficulty is to identify those that shall lead to quantities useful for tackling (1.1). In many important cases, particularly Pearson or Ord random variables, these “useful” operators are first order differential operators (see [8]) or difference operators (see [22]). Higher order differential operators are sometimes necessary to characterize more complex distributions, see [15] for random variables with densities satisfying second order differential equations and [14] for random variables which can be written as the product of independent Pearson variables satisfying certain conditions.

The purpose of this paper is to add to the literature on Stein’s method by proposing a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study random variables which can be represented as linear combinations of (non necessarily independent) gamma distributed random variables. The connection with Malliavin calculus for random variables in the second Wiener chaos is detailed. An application to the study of McKay Type I random variables is also outlined.
1.2 The Malliavin-Stein method and its extensions

If F_∞ is standard Gaussian random variable then the operator is $A_\infty f(x) = f'(x) - x f(x)$ with $F(A_\infty)$ the class of all differentiable functions such that $\mathbb{E} |f'(F_\infty)| < \infty$. The simple structure of both the operator and the class, as well as the wide variety of possible choices for F, entail that all stars align beautifully well for a Gaussian target and that many paths are open for exploration. A particularly fruitful path was opened by Ivan Nourdin and Giovanni Peccati who, in [25], identified the possibility of intertwining Stein’s method with Malliavin calculus. Given a sufficiently regular centered random variable F with finite variance and smooth density, the first step in this direction is to define its Stein kernel $\tau_F(F)$ through the integration by parts formula

$$\mathbb{E}[\tau_F(F) f'(F)] = \mathbb{E}[F f(F)]$$

(see Stein’s monograph [31] for the origins of this concept and for a detailed study when F is Pearson distributed). Then, for f_h a solution to $f_h'(x) - x f_h(x) = h(x) - \mathbb{E}[h(F_\infty)]$ (i.e. $f_h = A_\infty^{-1}(h)$), we can write

$$\mathbb{E}[h(F)] - \mathbb{E}[h(F_\infty)] = \mathbb{E} [f_h'(F) - F f_h(F)] = \mathbb{E} [(1 - \tau_F(F)) f_h'(F)].$$

By Cauchy-Schwarz inequality we have

$$|\mathbb{E}[h(F)] - \mathbb{E}[h(F_\infty)]| \leq \|f_h'\| \sqrt{\mathbb{E}[(1 - \tau_F(F))^2]}$$

and at this stage two good things happen: (i) the constant $\sup_{h \in \mathcal{H}} \|f_h'\|$ (which is intrinsically Gaussian and does not depend on the law of F) is bounded for wide and relevant classes \mathcal{H}; (ii) the quantity

$$S(F \mid F_\infty) = \mathbb{E} [(1 - \tau_F(F))^2]$$

(called the Stein discrepancy) is tractable, via Malliavin calculus, as soon as F is a sufficiently regular functional of a Gaussian process because, in this case, the Stein kernel is $\tau_F(F) = \langle DF, -DL^{-1}F \rangle_\beta$, where D and L^{-1} stand for Malliavin derivative and pseudo-inverse Ornstein-Uhlenbeck operators. These two realizations spawned an entire new field of research known as “Malliavin-Stein method” or as “Nourdin-Peccati” method, see [25, 23] or the dedicated webpage https://sites.google.com/site/malliavinstein.

Extensions of the Malliavin-Stein method outside of the Gaussian framework have been studied as well. The first natural target to tackle is $F_\infty = 2G - d, d > 0$ where G has Gamma law with parameter $d/2$ (i.e. F_∞ is centered Gamma) with operator

$$A_\infty f(x) = 2(x + d)f'(x) - x f(x),$$

see [24, 2]. Mimicking the Gaussian approach outlined above, one captures the difference in law between F_∞ and some arbitrary F by considering solutions to the ODE $2(x + d)f_h'(x) - x f_h(x) = h(x) - \mathbb{E}[h(F_\infty)]$ and

$$|\mathbb{E}[h(F)] - \mathbb{E}[h(F_\infty)]| = \mathbb{E} [2(F + d)f_h'(F) - F f_h(F)] \leq \|f_h'\| \mathbb{E} [2(F + d) - \tau_F(F)].$$

Again it is necessary, for the last bound to be of interest, that f_h' be bounded and that $\tau_F(F)$ have good properties; see [25, Section 3.3] for an illustration as well as [20, 9] for further explorations for targets F_∞ belonging to the Pearson family.

Important progress in this direction is due to Robert Gaunt [13, 15]. In [14] he shows that if $F_\infty = N_1 \times N_2$ where N_1 and N_2 are two independent $\mathcal{N}(0, 1)$ random variables then its law is characterized by a second order Stein equation

$$xf''(x) + f'(x) - x f(x) = h(x) - \mathbb{E}[h(F_\infty)].$$

(1.5)
and in [15] he studies the entire family of Variance Gamma distributions (see Example 2.3 below), obtains Stein operators A_∞ and also bounds on the solutions on the resulting Stein equations $A_\infty f = h$ under smoothness assumptions on h. These results are used in [10], where Gaunt’s estimates are combined with higher order Stein kernels firstly introduced in [26] (see below, Definition 1.1) in order to extend the scope of the Nourdin-Peccati approach to targets of the form

$$F_\infty = \sum_{i=1}^{d} \alpha_{\infty,i}(N_i^2 - 1)$$

(1.6)

where the coefficients $\{\alpha_{\infty,i} : i = 1, \ldots, d\}$ are non-zero and distinct and the N_i are i.i.d. standard Gaussian (actually $d = 2$ in [10], but we shall consider the general case from here onwards).

As we shall see (e.g. in [23]), random variables of the form (1.6) are characterized by Stein operators A_∞ which are differential operators of order d. In order for Nourdin and Peccati’s approach to function for such operators one needs to introduce higher order versions of the Stein kernel (1.2), one for each degree of the operator. This is exactly the purpose of Section 2.1.

Definition 1.1 (see [23]). Let $F \in \mathbb{D}^\infty$ the class of infinitely many times Malliavin differentiable random variables (see [23] Chapter 2) for a detailed discussion). The sequence of random variables $\{\Gamma_i(F)\}_{i \geq 0} \subset \mathbb{D}^\infty$ is recursively defined as follows. Set $\Gamma_0(F) = F$ and, for every $i \geq 1$,

$$\Gamma_i(F) = \langle DF, -DL^{-1}\Gamma_{i-1}(F) \rangle_{B^\ast}.$$

Iterated Gammas from Definition 1.1 are higher order versions of the Stein kernel (1.2); by definition we have $\Gamma_1(F) = \tau_F(F)$. Also note how $\mathbb{E}[\tau_F(F)] = \text{Var}(F)$ and (see again [23]) the cumulants of the random element F and the iterated Malliavin Γ-operators are linked by the relation $\kappa_{r+1}(F) = r! \mathbb{E}[\Gamma_r(F)]$ for $r = 0, 1, \ldots$.

Targets F_∞ of the form (1.6) admit (see below) operators $A_\infty f = \sum_{j=0}^{d} a_j(x)f^{(j)}$ with a_j polynomials and $d \geq 1$. Mimicking the Gaussian and Gamma cases, a direct extension of the Nourdin-Peccati approach then consists, in principle, in writing out

$$\mathbb{E}[h(F)] - \mathbb{E}[h(F_\infty)] = \mathbb{E}\left[\sum_{j=0}^{d} a_j(F)f_h^{(j)}(F) \right] = \mathbb{E}\left[\sum_{j=0}^{d} (\bar{a}_j(F) - \Gamma_j(F))f_h^{(j)}(F) \right].$$

for f_h a solutions to the ODE $A_\infty f(x) = h(x) - \mathbb{E}[h(F_\infty)]$. In order for this approach to be useful it is necessary that both $\Gamma_j(F)$ and $f_h^{(j)}$ be tractable. So far the question of finding tight bounds on solutions to such higher order Stein equations is open; this seems to be a difficult problem to tackle in all generality.

Estimates on the derivatives of solutions to Stein equations are, however, not crucial for a version of Stein’s method to apply to variables of the form (1.6), see paragraph after Proposition 2.1 and in more details [1].

2 Stein-type characterization and main results

2.1 Stein operators for the second Wiener chaos

The aim of this section is to use the recent findings in [3] to derive "appropriate" Stein equation, i.e. differential operators of finite order with polynomial coefficients, for random elements in the second Wiener chaos. Indeed, following [27, 3], first we define two crucial polynomials P and Q as follows:

$$Q(x) = (P(x))^2 = \left(x \prod_{i=1}^{d} (x - \alpha_{\infty,i}) \right)^2.$$

(2.1)
Next, for random element F living in a finite sum of Wiener chaoses, we consider the following quantity (whose first occurrence is in [3])

$$\Delta(F, F_\infty) := \sum_{r=2}^{\deg(Q)} \frac{Q^{(r)}(0)}{r!} \frac{\kappa_r(F)}{2^{r-1}(r-1)!}. \quad (2.2)$$

Then the following result holds:

Proposition 2.1. [3, Proposition 3.2] Let F be a centered random variable living in a finite sum of Wiener chaoses. Moreover, assume that

(i) $\kappa_r(F) = \kappa_r(F_\infty)$, for all $2 \leq r \leq d+1 = \deg(P)$, and

(ii) $$E \left[\sum_{r=1}^{d+1} \frac{P^{(r)}(0)}{2^r r!} \left(\Gamma_{r-1}(F) - E[\Gamma_{r-1}(F)] \right) \right]^2 = 0.$$

Then, $F \overset{\text{law}}{=} F_\infty$, and F belongs to the second Wiener chaos.

As we shall see in Section 2.1, Proposition 2.1 leads to Stein operators for random variables belonging to the Second Wiener chaos. By analogy with the case of a Gaussian target, it appears that the quantity $\Delta(F, F_\infty)$ is the second-chaos equivalent of the (first-Wiener chaos) Stein discrepancy $S(F||F_\infty)$ [13]. Moreover we have shown, in a separate publication [11], that estimating this quantity directly (without requiring any bounds on solutions to Stein equations) leads to bounds on the 2-Wasserstein distance between the law of F and the law of F_∞.

We now show how item (ii) of Proposition 2.1 can be used to derive a Stein operator for F_∞. To this end, set

$$a_l = \frac{P^{(l)}(0)}{l! 2^{l-1}}, \quad 1 \leq l \leq d+1,$$

$$b_l = \sum_{r=l}^{d+1} a_r E[\Gamma_{r-l+1}(F_\infty)] = \sum_{r=l}^{d+1} \frac{a_r}{(r-l+1)!} \kappa_{r-l+2}(F_\infty), \quad 2 \leq l \leq d+1.$$

Now, we introduce the following differential operator of order d (acting on functions $f \in C^d(\mathbb{R})$):

$$A_\infty f(x) := \sum_{l=2}^{d+1} (b_l - a_{l-1}x) f^{(d+2-l)}(x) - a_{d+1}xf(x). \quad (2.3)$$

Then, we have the following result (see Section 3 for a proof).

Theorem 2.1. (Stein characterization). Assume that F is a general centered random variable living in a finite sum of Wiener chaoses (and hence smooth in the sense of Malliavin calculus). Then $F \overset{\text{law}}{=} F_\infty$ (equality in distribution) if and only if $E [A_\infty f(F)] = 0$ for all polynomials $f : \mathbb{R} \to \mathbb{R}$.

Example 2.1. Consider the special case of only two non-zero distinct eigenvalues λ_1 and λ_2, i.e.

$$F_\infty = \lambda_1(N_1^2 - 1) + \lambda_2(N_2^2 - 1) \quad (2.4)$$

where $N_1, N_2 \sim \mathcal{N}(0, 1)$ are independent. In this case, the polynomial $P(x) = x(x - \lambda_1)(x - \lambda_2)$. Simple calculations reveal that $P'(0) = \lambda_1 \lambda_2$, $P''(0) = -2(\lambda_1 + \lambda_2)$, and $P^{(3)}(0) = 3!$. Also, $\kappa_2(F_\infty) = E[\Gamma_1(F_\infty)] = 2(\lambda_1^2 + \lambda_2^2)$, and $\kappa_3(F_\infty) = 2E[\Gamma_2(F_\infty)] = 4(\lambda_1^3 + \lambda_2^3)$. Then, the Stein equation (2.3) reduces to

$$A_\infty f(x) = -4(\lambda_1 \lambda_2 x + (\lambda_1 + \lambda_2) \lambda_1 \lambda_2) f''(x) + 2 \left(\lambda_2^2 + \lambda_2^2 + (\lambda_1 + \lambda_2)x \right) f'(x) - x f(x). \quad (2.5)$$

We also remark that when $\lambda_1 = -\lambda_2 = \frac{1}{2}$, and hence $F_\infty \overset{\text{law}}{=} N_1 \times N_2$, the Stein’s equation (2.5) coincides with that in [14, equation (1.9)]. One has to note that for general λ_1 and λ_2, the random variables of the form (2.4) lie outside the Variance-Gamma class, see also Example 2.3.
2.2 A Fourier approach to Stein characterizations

The characteristic functions \(\phi_F(\xi) = \mathbb{E}[e^{i\xi F}] \) (we drop the indexation in \(\infty \) and write \(F \) instead of \(F_\infty, \alpha_\infty \) instead of \(\alpha_{\infty, \lambda} \) etc. from now on) of random variables of the form \([1.6]\) satisfy a simple ODE with polynomial coefficients, namely

\[
\prod_{j=1}^{d} (1 - 2i\xi \alpha_j) \phi_F'(\xi) = -2\xi \sum_{j=1}^{d} \alpha_j^2 \prod_{k \neq j} (1 - 2i\xi \alpha_k) \phi_F(\xi).
\]

(2.6)

Such are but particular cases of a wide family of variables to which the following simple lemma applies (see Section 3 for a proof).

Lemma 2.1. Let \((a_k)_{0 \leq k \leq d}\) and \((b_k)_{0 \leq k \leq d'}\) be real numbers and consider the polynomials

\[
A_d(\xi) = \sum_{k=0}^{d} a_k \xi^k \quad \text{and} \quad B_{d'}(\xi) = \sum_{k=0}^{d'} b_k \xi^k \quad \text{with} \quad d, d' \in \mathbb{N}.
\]

Suppose that the random variable \(F \) has differentiable characteristic function \(\phi_F \) such that

\[
A_d(i\xi) \phi_F'(\xi) = i B_{d'}(i\xi) \phi_F(\xi)
\]

(2.7)

for all \(\xi \in \mathbb{R} \). Let \(Y \) be a real valued random variable such that \(\mathbb{E}[|Y|] < +\infty \). Then \(Y \perp \ll F \) if and only if

\[
\mathbb{E}[F A_d f(F) - B_{d'} f(F)] = 0
\]

(2.8)

for all test functions \(f \in S(\mathbb{R}) \) the Schwartz space of smooth functions with rapid decrease, where

\[
A_d = \sum_{k=0}^{d} a_k \frac{d^k}{dx^k} \quad \text{and} \quad B_{d'} = \sum_{k=0}^{d'} b_k \frac{d^k}{dx^k}.
\]

(2.9)

The differential operator \(f \mapsto A_\infty f(x) = x A_d f(x) - B_{d'} f(x) \) is a Stein operator for \(F \) with Stein class \(S(\mathbb{R}) \).

From here onwards all test functions \(f \) are supposed to belong to \(S(\mathbb{R}) \).

Example 2.2. If \(F \) is a normal random variable with mean \(\mu \) and variance \(\sigma^2 \) then \(\phi_F(\xi) = e^{i\mu \xi - \sigma^2 \xi^2 / 2} \) so that \(\phi_F'(\xi) = i(\mu + \sigma^2 (i\xi)) \phi_F(\xi) \) and, in the notations of Lemma 2.1

\[
\mathbb{E} \left[F f(F) - (\mu f(F) + \sigma^2 f'(F)) \right] = 0
\]

(2.6)

as expected (see [7]).

Example 2.3. If \(F \) is Variance-Gamma distributed, then its cumulant generating function is, in the classical parameterization,

\[
\log \phi_F(\xi) = \mu i \xi + 2\lambda \log \gamma - \lambda \log (\alpha^2 - (\beta + i\xi)^2)
\]

so that Lemma 2.1 applies with \(d = 2, a_0 = \alpha^2 - \beta^2, a_1 = -2\beta, \) and \(a_2 = -1, d' = 2, b_0 = \mu(\alpha^2 - \beta^2) + 2\lambda \beta, b_1 = 2(\lambda - \mu \beta), \) and \(b_2 = -\mu \) so that

\[
\mathbb{E} \left[\left((\alpha^2 - \beta^2) f(F) - 2\beta f'(F) - f''(F) \right) \right.
\]

\[
- \left((\mu(\alpha^2 - \beta^2) + 2\lambda \beta) f(F) + 2(\lambda - \mu \beta) f'(F) - \mu f''(F) \right] = 0
\]

or, after simplifications,

\[
\mathbb{E} \left[(F - \mu) f''(F) + (2\beta(F - \mu) + 2\lambda) f'(F) + ((\alpha^2 - \beta^2)(F - \mu) + 2\lambda \beta) f(F) \right] = 0.
\]

This is the result obtained by [15, Lemma 3.1].
We set, by convention, \(e \) i.i.d., i.e. \(F = \sum_{i=1}^d (N_i^2 - 1) \sim \chi^2(d) \) is a centered chi-squared random variable with \(d \) degree of freedom. The CF of a chi-squared distributed random variable is \(\phi(\xi) = (1 - 2i\xi)^{-d/2} \), and so

\[
(1 - 2i\xi) \phi_F(\xi) = -2d \xi \phi_F(\xi).
\]

Hence, in the notations of Lemma 2.1 \(d = 1, a_0 = 1, a_1 = -2, d' = 1, b_0 = 0, \) and \(b_1 = 2d \) so that

\[
\mathbb{E} [F f(F)] = 2\mathbb{E} \left[(F + d) f'(F)\right].
\]

This is the same as (1.4).

Example 2.5. Random variable \(F \) follows the type I McKay distribution with parameters \(a > -(1/2), b > 0 \) and \(c > 1 \) when its PDF is proportional to the function

\[
\forall x \in \mathbb{R}_+, f_1(x) = x^a e^{-x c/b} I_a(x/b)
\]

where \(I_a(\cdot) \) denotes the modified Bessel function of the first kind and of order \(a \), see [18] for context and further references. Direct computations lead to

\[
(\log \phi_F)'(\xi) = -i \frac{(1 + 2a)bc - (1 + 2a)b^2(i\xi)}{1 - c^2 + 2cb(i\xi) - b^2(i\xi)^2}.
\]

Lemma 2.1 applies and we deduce that if \(F \) is type I McKay then

\[
\mathbb{E} \left[\left((1 - c^2)F + (1 + 2a)bc\right) f(F) + (2cbF - (1 + 2a)b^2) f'(F) - b^2 F f''(F)\right] = 0
\]

for all \(f \in S(\mathbb{R}) \).

2.3 Stein operators for sums of independent gamma

Before stating the next theorem, we need to introduce some notations. For any \(d \)-tuple \((\lambda_1, \ldots, \lambda_d)\) of real numbers, we define the symmetric elementary polynomial of order \(k \in \{1, \ldots, d\} \) evaluated at \((\lambda_1, \ldots, \lambda_d)\) by:

\[
e_k(\lambda_1, \ldots, \lambda_d) = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq d} \lambda_{i_1} \ldots \lambda_{i_k}.
\]

We set, by convention, \(e_0(\lambda_1, \ldots, \lambda_d) = 1 \). Moreover, for any \((c_1, \ldots, c_d) \in \mathbb{R}^* \) and any \(k \in \{1, \ldots, d\} \), we denote by \((\lambda c)\) the \(d \) tuple \((\lambda_1 c_1, \ldots, \lambda_d c_d)\) and by \((\lambda c)_k\) the \(d - 1 \) tuple \((\lambda_1 c_1, \ldots, \lambda_{k-1} c_{k-1}, \lambda_{k+1} c_{k+1}, \ldots, \lambda_d c_d)\).

The object of interest in this section are the following generalizations of (1.6): for \(d > 1, (m_1, \ldots, m_d) \in \mathbb{N}^d \) \((\lambda_1, \ldots, \lambda_d) \in \mathbb{R}^* \) all distinct we consider

\[
F = \sum_{i=1}^d \lambda_i (\gamma_i(m_i \alpha_i, c_i) - m_i \alpha_i c_i)
\]

where, for any \((\alpha, c) \in \mathbb{R}_+^*\), we denote by \(\gamma(\alpha, c) \) a gamma random variable with parameters \((\alpha, c)\) with density

\[
\forall x \in \mathbb{R}_+^*, \; \gamma_{\alpha,c}(x) = \frac{1}{c \Gamma(\alpha)} \left(\frac{x}{c}\right)^{\alpha-1} e^{-\frac{x}{c}}
\]

and CF

\[
\phi_{\gamma(\alpha,c)}(\xi) = (1 - i\xi\alpha)^{-\alpha}.
\]

The family \(\{\gamma_i(m_i \alpha_i, c_i), \; i = 1, \ldots d\} \) is a collection of independent random variables. Applying Lemma 2.1 we obtain the following (proof in Section 3).
Theorem 2.2. Let F be as in (2.13) and let Y be a real valued random variable such that $\mathbb{E}[|Y|] < +\infty$. Then $Y \overset{\text{law}}{=} F$ if and only if

$$
\mathbb{E}\left[(Y + \sum_{i=1}^{d} \lambda_i m_i c_i) (-1)^d \left(\prod_{j=1}^{d} \lambda_j c_j \right) f^{(d)}(Y) + \sum_{l=1}^{d-1} (-1)^l \left(Y e_l((\lambda c)) \right) + \sum_{k=1}^{d} \lambda_k m_k \alpha_k c_k (e_l((\lambda c)) - e_l((\lambda c)_{k})) \right) f^{(l)}(Y) + Y f(Y) = 0
$$

(2.14)

for all $f \in S(\mathbb{R})$.

Taking $\alpha_k = 1/2$ and $c_k = 2$ in the previous theorem implies the following straightforward corollary:

Corollary 2.1. Let $d \geq 1$, $q \geq 1$ and $(m_1, \ldots, m_d) \in \mathbb{N}^d$ such that $m_1 + \ldots + m_d = q$. Let $(\lambda_1, \ldots, \lambda_d) \in \mathbb{R}^*$ pairwise distincts and consider:

$$
F = \sum_{i=1}^{m_1} \lambda_1 (N_i^2 - 1) + \sum_{i=m_1+1}^{m_1+m_2} \lambda_2 (N_i^2 - 1) + \ldots + \sum_{i=m_1+\ldots+m_{d-1}+1}^{q} \lambda_d (N_i^2 - 1),
$$

Let Y be a real valued random variable such that $\mathbb{E}[|Y|] < +\infty$. Then $Y \overset{\text{law}}{=} F$ if and only if

$$
\mathbb{E}\left[(Y + \sum_{i=1}^{d} \lambda_i m_i c_i) (-1)^d 2^d \left(\prod_{j=1}^{d} \lambda_j \right) f^{(d)}(Y) + \sum_{l=1}^{d} 2^l (-1)^l \left(Y e_l(\lambda_1, \ldots, \lambda_d) \right) + \sum_{k=1}^{d} \lambda_k m_k (e_l(\lambda_1, \ldots, \lambda_d) - e_l((\lambda c))) f^{(l)}(Y) + Y f(Y) \right] = 0,
$$

(2.15)

for all $f \in S(\mathbb{R})$.

Example 2.6. Let $d = 1$, $m_1 = q \geq 1$ and $\lambda_1 = \lambda > 0$. The differential operator reduces to (on smooth test function f):

$$
-2\lambda(x + q\lambda)f'(x) + xf(x).
$$

This differential operator is similar to the one characterizing the gamma distribution of parameters $(q/2, 1/(2\lambda))$. Indeed, we have, for $F \overset{\text{law}}{=} \gamma(q/2, 1/(2\lambda))$, on smooth test function, f:

$$
\mathbb{E}\left[FF'(F) + \left(\frac{q}{2} - \frac{F}{2\lambda} \right) f(F) \right] = 0
$$

We can move from the first differential operator to the second one by performing a scaling of parameter $-1/(2\lambda)$ and the change of variable $x = y - q\lambda$.

Example 2.7. Let $d = 2$, $q = 2$, $\lambda_1 = -\lambda_2 = 1/2$ and $m_1 = m_2 = 1$. The differential operator reduces to (on smooth test function f):

$$
\mathcal{A}(f)(x) = 4(x + (m, \lambda)|\lambda_1 \lambda_2 f''(x) - 2|xe_1(\lambda_1, \lambda_2) + \lambda_1 m_1 (e_1(\lambda_1, \lambda_2) - e_1(\lambda_2)) \lambda_2 m_2 (e_1(\lambda_1, \lambda_2) - e_1(\lambda_1))| f'(x) + xf(x),
$$

$$
= -xf''(x) - f'(x) + xf(x),
$$

where we have used the fact that $e_1(\lambda_1, \lambda_2) = \lambda_1 + \lambda_2 = 0$, $e_1(\lambda_2) = \lambda_2 = -1/2$, $e_1(\lambda_1) = \lambda_1 = 1/2$. Therefore, up to a minus sign factor, we retrieve the differential operator associated with the random variable $F = N_1 \times N_2$.
We conclude this section by comparing the Stein-type operators defined by the Fourier approach with those obtained by the Malliavin calculus tools in (2.3) (see Section 3 for a proof).

Proposition 2.2. The Stein-type operators defined in Corollary 2.1 and in (2.3) coincide, up to some normalizing constant.

2.4 Stein operators for projections of multivariate gamma

Independence of the contributions, as required in (2.13), is not crucial. Indeed, consider all random variables of the form

\[F = \langle \Gamma - K, \lambda \rangle = \sum_{i=1}^{d} \lambda_i (\Gamma_i - k_i) \]

(2.16)

with \(K = (k_1, \ldots, k_d) \in \mathbb{R}^d \) and \(\Gamma = (\Gamma_1, \ldots, \Gamma_d) \) a \(d \)-variate gamma distributed random variable defined as follows.

Definition 2.1 ([19]). A random vector \(\Gamma = (\Gamma_1, \ldots, \Gamma_d) \) has a \(d \)-variate gamma distribution in the sense of Krishnamoorthy and Parthasarathy [19] with degree of freedom \(\nu = 2\alpha \) and covariance matrix \(C \) if its characteristic function is

\[\phi_\Gamma(t_1, \ldots, t_d) = |I_d - iCT|^{-\alpha} \]

(2.17)

with \(t_j \geq 0 \) for all \(j \), \(|\cdot| \) the determinant operator, \(I_d \) the \((d \times d)\)-identity, \(\alpha > 0 \), \(T = \text{diag}(t_1, \ldots, t_d) \), and \(C \) a symmetric positive definite \(d \times d \) matrix.

Conditions on \(C \) and \(\alpha \) under which (2.17) is a bona fide characteristic function have been thoroughly adressed in the literature, see [32, 12, 29] and references therein. In the sequel we suppose that these conditions are satisfied.

Lemma 2.2. Let \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_d) \) and \(C = (c_{ij})_{1 \leq i,j \leq d} \) a symmetric positive definite matrix. For all \(\xi \in \mathbb{R} \) we have

\[|I_d - i\xi C\Lambda| = \sum_{j=0}^{d} (-1)^j r_j(i\xi)^j \]

(2.18)

with \(r_0 = 1 \) and

\[r_j = \sum_{S \subseteq [d]: \#(S) = j} |C|_S \prod_{j \in S} \lambda_j, \]

(2.19)

(the summation in (2.19) is over all collections \(S \) of indices in \([d] = \{1, \ldots, d\}\) with cardinality \(\#(S) = j \), and \(|C|_S \) is the determinant of the matrix \((C_{ij})_{i,j \in S}\)).

Example 2.8. If \(d = 3 \) and \(C = (c_{i,j})_{1 \leq i,j \leq 3} \) then

\[
\begin{align*}
r_0 & = 1 \\
r_1 & = c_1 \lambda_1 + c_2 \lambda_2 + c_3 \lambda_3 \\
r_2 & = (c_1 c_2 - c_{12}^2) \lambda_1 \lambda_2 + (c_1 c_3 - c_{13}^2) \lambda_1 \lambda_3 + (c_2 c_3 - c_{23}^2) \lambda_2 \lambda_3 \\
r_3 & = |C| \lambda_1 \lambda_2 \lambda_3
\end{align*}
\]

(we also write \(c_j \) instead of \(c_{jj} \) for \(j = 1, 2, 3 \)).
From Lemma [2.2] we deduce the CF of linear combinations of marginals of multivariate gamma random vectors: if Γ has marginals $\Gamma_j \sim \gamma(\alpha, c_j)$ and F is as in (2.16) then, letting $\kappa = \sum_{j=1}^d \lambda_j k_j$:

$$\phi_F(\xi) = \mathbb{E} \left[e^{i\xi F} \right] = e^{-i\alpha \xi \sum_{j=1}^d \lambda_j k_j} \mathbb{E} \left[e^{i\xi \sum_{j=1}^d (\xi \lambda_j) \Gamma_j} \right] = e^{-i\alpha \xi \phi_F(\xi_1, \ldots, \xi_d)} = e^{-i\alpha \xi \left(\sum_{j=0}^d (-1)^j r_j (i\xi)^j \right) - \alpha}$$

with $(r_j)_{0 \leq j \leq d}$ given in Lemma 2.2. Taking derivatives we obtain

$$\left(\sum_{j=0}^d (-1)^j r_j (i\xi)^j \right) \phi_F'(\xi) = -i\alpha \left(\kappa \sum_{j=0}^d (-1)^j r_j (i\xi)^j + \sum_{j=1}^d (-1)^j r_j (i\xi)^j - 1 \right) \phi_F(\xi).$$

Applying Lemma 2.1 we deduce, after straightforward simplifications:

Theorem 2.3. Let F be defined in (2.16) and $(r_j)_{j=1, \ldots, d}$ as in (2.14). Set $r_{d+1} = 0$. Let Y be a real valued random variable such that $\mathbb{E}[|Y|] < +\infty$. Then Y law F if and only if

$$\mathbb{E} \left[(F + \alpha(\kappa - r_1))f(F) + \sum_{j=1}^d (-1)^j (r_j(F + \alpha \kappa) - \alpha(j + 1)r_{j+1}) f^{(j)}(F) \right] = 0 \quad (2.20)$$

for all test functions $f \in \mathcal{S}(\mathbb{R})$.

Remark 2.1. If F is of the form (2.13) with all shape coefficients identical then $F = \sum_{i=1}^d \lambda_i \sum_{j=1}^{m_i} (\gamma_j(\alpha, c_i) - \alpha c_i)$. Letting $m = \sum_{j=1}^d m_i$, then F is of the form (2.16) for Γ, a m-variate gamma random variable with $m \times m$ diagonal correlation matrix $C = \text{diag}(((c_1)_{m_1}, \ldots, (c_d)_{m_d}))$ (we write $(x)_q = (x, \ldots, x)$ a vector of length q). Applying Theorem 2.3 will lead, via (2.20), to an operator of order $m > d$ which coincides with (2.15) (and thus (2.3)) only when $m_i = 1$ for all i.

Example 2.9. If $d = 2$ then $F = \langle \Gamma - K, \lambda \rangle$ has second-order differential Stein operator

$$A f(x) = (x + \alpha(\kappa - r_1))f(x) - \{r_1 x + \alpha (r_1 \kappa - 2(c_1 c_2 - c_1^2)\lambda_1 \lambda_2) \} f'(x) + \lambda_1 \lambda_2 (c_1 c_2 - c_1^2)(x + \alpha \kappa) f''(x).$$

(recall that $\kappa = \sum_{j=1}^d \lambda_j k_j$ and $r_1 = \sum_{j=1}^d \lambda_j c_j$).

2.5 Application: McKay Type I and combinations of two gamma variates

We conclude the paper with applications of the identities in the case $d = 2$. There is interest, even in this simple situation, in obtaining handles on law of sums and differences of correlated gamma variates as these have applications in performance analysis, see e.g. [15]. Recall example 2.5 and the corresponding operator

$$A_{\text{McKay}} f(x) = \left(x + \frac{(1 + 2a)bc}{1 - c^2} \right) f(x) + \frac{2edx - (1 + 2a)b^2}{1 - c^2} f'(x) - \frac{b^2}{1 - c^2} x f''(x) \quad (2.22)$$
for type I McKay random variables with parameters \(a, b, c\) (see its pdf defined in (2.10)). From (2.12) (applied to functions of the form \(f(x) = x^n\), along with a continuity argument for extending the identity to functions not in \(\mathcal{S}(\mathbb{R})\)) we immediately deduce

\[
\mathbb{E}[F] = \frac{(1 + 2a)bc}{c^2 - 1} \\
\mathbb{E}[F^2] = \frac{(2a + 1)b^2(2(a + 1)c^2 + 1)}{(c^2 - 1)^2}
\]

(see [18] Equation (6)), as well as the formula

\[
(1 - c^2)\mathbb{E}[F^{n+1}] + bc(1 + 2(a + n))\mathbb{E}[F^n] - nb^2(1 + 2a + n - 1)\mathbb{E}[F^{n-1}] = 0 \tag{2.23}
\]

for all \(n \geq 2\).

Corollary 2.2. McKay Type I random variables can be represented as projections of bivariate Gamma random variables with degree of freedom \(2\alpha\) and covariance matrix \(C = \begin{pmatrix} c_1 & c_{12} \\ c_{12} & c_2 \end{pmatrix}\) whenever

\[
a = \alpha - 1/2 \\
b = 2\frac{c_1c_2 - c_{12}^2}{\sqrt{(c_1 + c_2)^2 - 4(c_1c_2 - c_{12}^2)}} \\
c = \frac{c_1 + c_2}{\sqrt{(c_1 + c_2)^2 - 4(c_1c_2 - c_{12}^2)}}
\]

Remark 2.2. Corollary 2.2 contains Theorems 3, 4 and 5 from [18]. In that paper they consider also the so-called McKay Type II distribution for which our method also applies; we do not perform the computations here.

Proof. Taking \(K = 0\) and \(\lambda_1 = \lambda_2 = 1\) in Example 2.9 we obtain that combinations of dependent Gamma random variables \(G_1 \sim \text{Gamma}(\alpha, c_1)\) and \(G_2 \sim \text{Gamma}(\alpha, c_2)\) with identical shape parameter and covariance \(C\) have operator

\[
A_{G_1+G_2}f(x) = (x - \alpha(c_1 + c_2))f(x) - ((c_1 + c_2)x - 2\alpha(c_1c_2 - c_{12}^2))f'(x) \\
+ (c_1c_2 - c_{12}^2)x f''(x). \tag{2.24}
\]

We identify the coefficients in (2.24) and (2.22) to get the system of 4 equations:

\[
\frac{bc}{1 - c^2}(1 + 2a) = -\alpha(c_1 + c_2), \quad 2\frac{bc}{1 - c^2} = -(c_1 + c_2) \\
\frac{b^2}{1 - c^2}(1 + 2a) = -2\alpha(c_1c_2 - c_{12}^2), \quad \frac{b^2}{1 - c^2} = -(c_1c_2 - c_{12}^2).
\]

Solving for \(a, b, c\) in terms of \(\alpha, c_1, c_2\) and \(c_{12}\) we immediately deduce that \(a = \alpha - 1/2\) is necessary, so that the system reduces to

\[
b^2 = (c_1c_2 - c_{12}^2)(c^2 - 1), \quad 2bc = (c_1 + c_2)(c^2 - 1)
\]

and the result follows.

We end this subsection by discussing infinite divisibility of the law of projections of multivariate gamma distribution. Infinite divisibility of multivariate gamma distribution has been addressed thoroughly in the literature (see [14, 11, 12]). Thanks to the previous corollary, we are able to explicit the Lévy measure of the sum of two dependent gamma random variables using the parametrization \((a, b, c)\) with \(a > -(1/2), b > 0\) and \(c > 1\). We have the following straightforward corollary.
Corollary 2.3. Let \((G_1, G_2)\) be a 2-dimensional gamma random vector of parameters \(2\alpha > 0\) and covariance matrix \(C\) such that \(c_1c_2 > c_{12}^2\) and \(c_1 + c_2 > 1\). Then, the law of \(G_1 + G_2\) is infinitely divisible and its \(\text{Lévy-Khintchine}^{\text{formula}}\) is given by:

\[
\forall t \in \mathbb{R}, \quad \phi_{G_1+G_2}(t) = \exp \left(\int_0^{+\infty} (e^{itx} - 1) \left(\frac{1}{2} + a \right)(e^{-\frac{c_{12}^2}{x}} + e^{-\frac{c_{12}^2}{x}}) \frac{dx}{x} \right),
\]

(2.25)

with

\[
a = \alpha - \frac{1}{2},
\]

\[
b = 2 \frac{c_1c_2 - c_{12}^2}{\sqrt{(c_1 + c_2)^2 - 4(c_1c_2 - c_{12}^2)}},
\]

\[
c = \frac{c_1 + c_2}{\sqrt{(c_1 + c_2)^2 - 4(c_1c_2 - c_{12}^2)}}.
\]

Moreover, we have the following identity in law:

\[
G_1 + G_2 = \gamma_1 + \gamma_2
\]

(2.26)

where \(\gamma_1\) and \(\gamma_2\) are independent gamma random variables with parameters \((a + 1/2, (c - 1)/b)\) and \((a + 1/2, (c + 1)/b)\) respectively.

Proof. Let \(a, b\) and \(c\) be as in the statement of the corollary. By Corollary 2.2, we know that \(G_1 + G_2\) has the same law as a McKay type I random variable with parameters \((a, b, c)\). Then, by (2.11), we have:

\[
(\log \phi_{G_1+G_2})'(\xi) = -i \left(\frac{1 + 2a}{1 - c^2 + 2cb(i\xi) - b^2(i\xi)^2} \right) \cdot
\]

Performing a partial fraction decomposition, we obtain straightforwardly:

\[
(\log \phi_{G_1+G_2})'(\xi) = ib \left(\frac{1}{2} + a \right) \left(\frac{1}{c - 1 - ib\xi} + \frac{1}{c + 1 - ib\xi} \right).
\]

Now, we note that:

\[
\frac{1}{c - 1 - ib\xi} = \int_0^{+\infty} \exp(-(c - 1 - ib\xi)x)dx
\]

and similarly for the other term. By standard computations, we obtain formula (2.25). The identity (2.26) follows trivially. \(\square\)

3 Proofs

Proof of Theorem 2.1. Repeatedly using the Malliavin integration by parts formulæ [23, Theorem 2.9.1], we obtain for any \(2 \leq l \leq d + 2\) that

\[
\mathbb{E} \left[F f^{(d-l+2)}(F) \right] = \mathbb{E} \left[f^{(d)}(F) \Gamma_{l-2}(F) \right] + \sum_{r=d-l+3}^{d-1} \mathbb{E} \left[f^{(r)}(F) \right] \mathbb{E} \left[\Gamma_{r+l-d-2}(F) \right].
\]

(3.1)

For indices \(l = 2, 3\), the second term in the right hand side of (3.1) is understood to be 0. Summing from \(l = 2\) up to \(l = d + 2\), we obtain that
\[
\sum_{l=2}^{d+2} a_{l-1} \mathbb{E} \left[F f^{(d-l+2)}(F) \right] = \sum_{l=2}^{d+2} a_{l-1} \mathbb{E} \left[f^{(d)}(F) \Gamma_{l-2}(F) \right] \\
+ \sum_{l=4}^{d+2} a_{l-1} \sum_{r=d-l+3}^{d-1} \mathbb{E} \left[f^{(r)}(F) \right] \mathbb{E} \left[\Gamma_{r+l-d-2}(F) \right] \\
= \sum_{l=1}^{d+1} a_l \mathbb{E} \left[f^{(d)}(F) \Gamma_{l-1}(F) \right] \\
+ \sum_{l=3}^{d+1} a_l \sum_{r=d-l+2}^{q-2} \mathbb{E} \left[f^{(r)}(F) \right] \mathbb{E} \left[\Gamma_{r+l-d-1}(F) \right] \\
= \sum_{l=1}^{d+1} a_l \mathbb{E} \left[f^{(d)}(F) \Gamma_{l-1}(F) \right] \\
+ \sum_{l=2}^{d+1} a_l \sum_{r=1}^{l-2} \mathbb{E} \left[f^{(d-r)}(F) \right] \mathbb{E} \left[\Gamma_{l-r-1}(F) \right].
\]

On the other hand,
\[
\sum_{l=2}^{d+1} b_l \mathbb{E} \left[f^{(d+2-l)}(F) \right] = \sum_{l=0}^{d-1} b_{l+2} \mathbb{E} \left[f^{(d-l)}(F) \right] \\
= \sum_{l=0}^{d-1} \left[\sum_{r=l+2}^{d+1} a_r \mathbb{E} \left[\Gamma_{r-l-1}(F) \right] \right] \mathbb{E} \left[f^{(d-l)}(F) \right] \\
= \sum_{r=2}^{d+1} a_r \sum_{l=0}^{r-2} \mathbb{E} \left[\Gamma_{r-l-1}(F) \right] \times \mathbb{E} \left[f^{(d-l)}(F) \right].
\]

Wrapping up, we finally arrive at
\[
\mathbb{E} \left[A_{\infty} f(F) \right] = -\mathbb{E} \left[f^{(d)}(F) \times \left(\sum_{r=1}^{d+1} a_r \left[\Gamma_{r-1}(F) - \mathbb{E} \left[\Gamma_{r-1}(F) \right] \right] \right) \right] \\
+ \sum_{r=2}^{d+1} a_r \sum_{l=0}^{r-2} \left\{ \mathbb{E} \left[f^{(d-l)}(F) \right] \times \left(\mathbb{E} \left[\Gamma_{r-l-1}(F) \right] - \mathbb{E} \left[\Gamma_{r-l-1}(F) \right] \right) \right\} \\
= -\mathbb{E} \left[f^{(d)}(F) \times \left(\sum_{r=1}^{d+1} a_r \left[\Gamma_{r-1}(F) - \mathbb{E} \left[\Gamma_{r-1}(F) \right] \right] \right) \right] \\
+ \sum_{r=2}^{d+1} a_r \sum_{l=0}^{r-2} \frac{\mathbb{E} \left[f^{(d-l)}(F) \right]}{(r-l-1)!} \times \left(\kappa_{r-l}(F) - \kappa_{r-l}(F) \right).
\]

We are now in a position to prove the claim. First we assume that \(F \overset{\text{law}}{=} F_{\infty} \). Then obviously \(\kappa_r(F) = \kappa_r(F_{\infty}) \) for \(r = 2, \cdots, 2d+2 \), and moreover, random variable \(F \) belongs to the second Wiener chaos. Hence, according to [3] Lemma 3, the Cauchy–Schwarz inequality, and the hypercontractivity property of the Wiener chaoses [23] Theorem 2.7.2,
we obtain that
\[
\left| \mathbb{E} [\mathcal{A}_\infty f(F)] \right| \leq \sqrt{\mathbb{E} \left[f^{(d)}(F) \right]^2} \times \sqrt{\mathbb{E} \left[\sum_{r=1}^{d+1} a_r (\Gamma_{r-1}(F) - \mathbb{E}[\Gamma_{r-1}(F)]) \right]^2}
\]
\[
= \sqrt{\mathbb{E} \left[f^{(d)}(F) \right]^2} \times \sqrt{\Delta(F, F_\infty)}
\]
\[
= \sqrt{\mathbb{E} \left[f^{(d)}(F) \right]^2} \times \sqrt{\Delta(F_\infty, F_\infty)} = 0.
\]

Conversely, assume that \(\mathbb{E} [\mathcal{A}_\infty f(F)] = 0 \) for all polynomial functions \(f \). Then relation (3.4) implies that, by choosing appropriate polynomials \(f \), we have \(\kappa_r(F) = \kappa_r(F_\infty) \) for \(r = 2, \cdots, d + 1 \). Now, combining this observation together with relation (3.4), we infer that
\[
\mathbb{E} \left[F^n \sum_{r=1}^{d+1} a_r (\Gamma_{r-1}(F) - \mathbb{E}[\Gamma_{r-1}(F)]) \right] = 0, \quad n \geq 2.
\]

Using e.g. the Malliavin integrations by parts, and similar argument as in the proof of [3, Proposition 5], the latter equation can be turned into a linear recurrent relation between the cumulants of \(F \) of order up to \(d + 1 \). Combining this with the knowledge of the \(d + 1 \) first cumulants characterise all the cumulants of \(F \) and hence the distribution \(F \). Indeed, all the distributions in the second Wiener chaos are determined by their moments/cumulants [23, Proposition 2.7.13, item 3].

\[\Box\]

Proof of Lemma 2.1. (\(\Rightarrow \)). Let us introduce two differential operators characterized by their symbols in Fourier domain. For smooth enough test functions, \(f \), we define:
\[
\mathcal{A}_d(f)(x) = \frac{1}{2\pi} \int_{\mathbb{R}} F(f)(\xi) \left(A_d(i\xi) \right) \exp(i\xi) d\xi,
\]
\[
\mathcal{B}_d(f)(x) = \frac{1}{2\pi} \int_{\mathbb{R}} F(f)(\xi) \left(B_d'(i\xi) \right) \exp(i\xi) d\xi,
\]
with \(F(f)(\xi) = \int_{\mathbb{R}} f(x) \exp(-ix\xi) dx \). Integrating against smooth test functions the differential equation satistifed by the characteristic function \(\phi_F \), we have, for the left hand side:
\[
\int_{\mathbb{R}} F(\phi)(\xi) A_d(i\xi) \frac{d}{d\xi} \left(\phi_F(\xi) \right) d\xi = \int_{\mathbb{R}} F(A_d(f))(\xi) \frac{d}{d\xi} \left(\phi_F(\xi) \right) d\xi,
\]
\[
= - \int_{\mathbb{R}} \frac{d}{d\xi} \left(F(A_d(f))(\xi) \right) \phi_F(\xi) d\xi,
\]
\[
= i \int_{\mathbb{R}} F(xA_d(f))(\xi) \phi_F(\xi) d\xi,
\]
where we have used the standard fact \(d/d\xi(\mathcal{F}(f)(\xi)) = -i\mathcal{F}(xf)(\xi) \). Similarly, for the right hand side, we obtain:
\[
\text{RHS} = \int_{\mathbb{R}} F(f)(\xi) \left(B_d'(i\xi) \right) \phi_F(\xi) d\xi = i \int_{\mathbb{R}} F(B_d'(f))(\xi) \phi_F(\xi) d\xi.
\]
Thus,
\[
\int_{\mathbb{R}} F(xA_d(f) - B_d'(f))(\xi) \phi_F(\xi) d\xi = 0
\]
for all \(f \in \mathcal{S}(\mathbb{R}) \). Going back in the space domain, we obtain the claim.
(\Leftrightarrow). We denote $S'(\mathbb{R})$ the space of tempered distributions. Let Y be a real valued random variable such that $\mathbb{E}[\|Y\|] < +\infty$ and
\[
\forall f \in S(\mathbb{R}), \quad \mathbb{E} \left[F A_d f(F) - B_d f(F) \right] = 0. \tag{3.5}
\]
Since $\mathbb{E}[\|Y\|] < +\infty$, the characteristic function of Y is differentiable on the whole real line.

Working similarly as in the first part of the proof (from space domain to Fourier domain), we denote
\[
A_d(i\cdot) \frac{d}{d\xi} (\phi_Y)(\cdot) = i B_d(i\cdot) \phi_Y(\cdot)
\]
in $S'(\mathbb{R})$. We also have $\phi_Y(0) = 1$ thus, by Cauchy-Lipschitz theorem, we have:
\[
\forall \xi \in \mathbb{R}, \quad \phi_Y(\xi) = \phi_F(\xi).
\]
This concludes the proof of the Lemma.

Proof of Theorem 2.2. Let $r_1 = \sum_{k=1}^{d} \lambda_k m_k \alpha_k c_k$. The CF of random variables as in (2.13) is
\[
\phi_F(\xi) = e^{-i\xi r_1} \prod_{j=1}^{d} \left(1 - i\xi \lambda_j c_j \right)^{-m_j \alpha_j}.
\]
Taking derivatives with respect to ξ one sees that
\[
\phi_F'(\xi) = -i \left(r_1 + \sum_{j=1}^{d} \frac{\lambda_j m_k \alpha_k c_k}{1 - i\xi \lambda_k c_k} \right) \phi_F(\xi)
\]
which, after straightforward simplifications, becomes (we denote $\nu_j = 1/(c_j \lambda_j)$ and $m\alpha = (m_1 \alpha_1, \ldots, m_d \alpha_d)$)
\[
\prod_{k=1}^{d} (\nu_k - i\xi) \phi_F'(\xi) = -i \left\{ r_1 \prod_{k=1}^{d} (\nu_k - i\xi) - \sum_{k=1}^{d} m_k \alpha_k \prod_{l=1, l \neq k}^{d} (\nu_l - i\xi) \right\} \phi_F(\xi).
\]
All that remains is to compute explicitly the coefficients of the polynomials on either side of the above, i.e. in Lemma 2.1, A_d and B_d. First of all, let us consider the following polynomial in $\mathbb{R}[X]$: \[P(x) = \prod_{j=1}^{d} (\nu_j - x) = (-1)^d \prod_{j=1}^{d} (x - \nu_j). \]

We denote by p_0, \ldots, p_d the coefficients of $\prod_{j=1}^{d} (X - \nu_j)$ in the basis $\{1, X, \ldots, X^d\}$. Vieta formula readily give:
\[
\forall k \in \{0, \ldots, d\}, \quad p_k = (-1)^{d+k} e_{d-k}(\nu_1, \ldots, \nu_d),
\]
It follows that the Fourier symbol of A_d is given by:
\[
\prod_{k=1}^{d} (\nu_k - i\xi) = P(i\xi) = \sum_{k=0}^{d} (-1)^k e_{d-k}(\nu_1, \ldots, \nu_d) (i\xi)^k.
\]
Thus, we have, for f smooth enough:
\[
A_d(f)(x) = \sum_{k=0}^{d} (-1)^k e_{d-k}(\nu_1, \ldots, \nu_d) f^{(k)}(x).
\]
Let us proceed similarly for the operator $B_{d,m,\nu}$. We denote by P_k the following polynomial in $\mathbb{R}[X]$ (for any $k \in \{1, \ldots, d\}$):

$$P_k(x) = (-1)^{d-1} \prod_{l=1, l \neq k}^d (x - \nu_l).$$

A similar argument provides the following expression:

$$P_k(x) = \sum_{l=0}^{d-1} (-1)^l e_{d-1-l}(\nu_k)x^l,$$

where $\nu_k = (\nu_1, \ldots, \nu_{k-1}, \nu_{k+1}, \ldots, \nu_d)$. Thus, the symbol of the differential operator B_d is given by:

$$\sum_{k=1}^d m_k \alpha_k \prod_{l=1, l \neq k}^d (\nu_l - i\xi) = \sum_{l=0}^{d-1} (-1)^l \left(\sum_{k=1}^d m_k \alpha_k e_{d-1-l}(\nu_k) \right) (i\xi)^l.$$

Thus, we have:

$$B_d(f)(x) = \sum_{l=0}^{d-1} (-1)^l \left(\sum_{k=1}^d m_k \alpha_k e_{d-1-l}(\nu_k) \right) f^{(k)}(x).$$

Consequently, we obtain:

$$\mathbb{E} \left[(F + r_1) \sum_{k=0}^d (-1)^k e_{d-k}(\nu_1, \ldots, \nu_d)f^{(k)}(F) - \sum_{l=0}^{d-1} (-1)^l \left(\sum_{k=1}^d m_k \alpha_k e_{d-1-l}(\nu_k) \right) f^{(k)}(F) \right] = 0.$$

Finally, it is easy to see that

$$\forall k \in \{0, \ldots, d\}, \quad \left(\prod_{j=1}^d c_j \lambda_j \right) e_k(\nu_1, \ldots, \nu_d) = e_{d-k}(\lambda_1 c_1, \ldots, \lambda_d c_d)$$

and the conclusion follows.

Proof of Proposition In order to lighten the notations, we consider the target law represented by $F = \sum_{l=1}^d \lambda_l (N^2_l - 1)$, with $\lambda_j \neq \lambda_i$ if $i \neq j$ and $\{N_1, \ldots, N_d\}$ is a collection of i.i.d. standard normal random variables. By (**1**) we have, for any smooth functions:

$$A_{\infty}f(x) := \sum_{l=2}^{d+1} (b_l - a_{l-1}x) f^{(d+2-l)}(x) - a_{d+1}xf(x).$$

By a re-indexing argument, we have:

$$A_{\infty}f(x) := \sum_{k=1}^d (b_{d+2-k} - a_{d-k+1}x) f^{(k)}(x) - a_{d+1}xf(x).$$

As a warm up, we start by computing a_{d+1} and a_{d-k+1}. We have, by definition:

$$a_{d+1} = \frac{P^{(d+1)}(0)}{(d+1)! 2^d} = \frac{1}{2^d},$$

where we have used the definition of the polynomial $P(X)$. Moreover, we have:

$$a_{d-k+1} = \frac{P^{(d+1-k)}(0)}{(d+1-k)! 2^{d-k}} = \frac{(-1)^k}{2^{d-k}} \hat{c}_k(\lambda_1, \ldots, \lambda_d),$$
where we have used the fact that $P^{(d+1-k)}(0)$ is equal to $(d + 1 - k)!$ times the $(d-k)$-th coefficient of the polynomial $\prod (X - \lambda_j)$. Now, let us compute b_{d+2-k}. We have, for $k \in \{1, \ldots, d\}$:

$$b_{d+2-k} = \sum_{r=d+2-k}^{d+1} \frac{a_r}{(r + k - d - 1)!} \left(\sum_{j=1}^{d} \lambda_j^{r+k-d}\right)$$

$$= 2^{k-d} \sum_{r=d+2-k}^{d+1} \frac{P^{(r)}(0)}{r!} \left(\sum_{j=1}^{d} \lambda_j^{r+k-d}\right)$$

$$= 2^{k-d} \sum_{r=d+2-k}^{d+1} (-1)^{d+r-1} e_{d-r+1}(\lambda_1, \ldots, \lambda_d) \sum_{j=1}^{d} \lambda_j^{r+k-d}$$

$$= (-1)^{k+1} e_{k-1}(\lambda_1, \ldots, \lambda_d) \sum_{j=1}^{d} \lambda_j^2 + \ldots + (-1)^{d} e_1(\lambda_1, \ldots, \lambda_d) \sum_{j=1}^{d} \lambda_j^d$$

$$+ e_0(\lambda_1, \ldots, \lambda_d) \sum_{j=1}^{d} \lambda_j^{k+1}.$$

Now the trick is to note that $\lambda_j e_{l-1}(\lambda_j) = e_l(\lambda_1, \ldots, \lambda_d) - e_l(\lambda_j)$. Thus, we have:

$$(-1)^{d} e_1(\lambda_1, \ldots, \lambda_d) \sum_{j=1}^{d} \lambda_j^2 + \ldots + (-1)^{d} e_1(\lambda_1, \ldots, \lambda_d) \sum_{j=1}^{d} \lambda_j^d = - \sum_{j=1}^{d} \lambda_j^d e_1(\lambda_j).$$

Using the previous equality recursively, we obtain:

$$b_{d+2-k} = 2^{k-d} \left[(-1)^{k+1} e_{k-1}(\lambda_1, \ldots, \lambda_d) \sum_{j=1}^{d} \lambda_j^2 + (-1)^{k} \sum_{j=1}^{d} \lambda_j^3 e_{k-2}(\lambda_j) \right],$$

$$= 2^{k-d} (-1)^{k} \left[\sum_{j=1}^{d} \lambda_j^2 \left(- e_{k-1}(\lambda_1, \ldots, \lambda_d) + e_{k-1}(\lambda_1, \ldots, \lambda_d) - e_{k-1}(\lambda_j) \right) \right],$$

$$= 2^{k-d} (-1)^{k+1} \sum_{j=1}^{d} \lambda_j^2 e_{k-1}(\lambda_j),$$

$$= 2^{k-d} (-1)^{k+1} \sum_{j=1}^{d} \lambda_j \left(e_k(\lambda_1, \ldots, \lambda_d) - e_k(\lambda_j) \right).$$

Wrapping everything up together, this ends the proof of the proposition. \hfill \Box

Acknowledgments

YS gratefully acknowledges support from FNRS under Grant MIS F.4539.16. We thank Céline Esser and Michel Rigo for fruitful discussions. Also, EA would like to thank the members of the Institute for Mathematical Stochastics at Otto-von-Guericke-Universität Magdeburg, and in particular, Claudia Kirch for their warm hospitality where most of this research was carried out, and to Finnish Cultural Foundation for financial support.

References

[1] Arras, B., Azmoodeh, E., Poly, G. and Swan, Y. (2017). A bound on the 2-Wasserstein distance between linear combinations of independent random variables. arXiv preprint arXiv:1704.01376.
Azmoodeh, E., Malicet, D., Mijoule, G., Poly, G. (2015) Generalization of the Nualart-Peccati criterion. *The Annals of Probability*, 44(2), 924-954.

Azmoodeh, E., Peccati, G., and Poly, G. (2014) Convergence towards linear combinations of chi-squared random variables: a Malliavin-based approach. *Séminaire de Probabilités* XLVII (Special volume in memory of Marc Yor), 339-367.

R. B. Bapat (1989) Infinite divisibility of multivariate Gamma distributions and M-matrices *Sankhya A* 51(1): 73–78.

Barbour, A.D. (1990) Stein’s method for diffusion approximations. *Probab. Theory Related Fields* 84, 297-322.

Barbour, A.D., Holst, L., and Janson, S. (1992) *Poisson approximation*. Oxford: Clarendon Press.

Chen, L.H.Y, Goldstein, L. and Shao, Q.M. (2010) *Normal approximation by Stein’s method*. Springer Science Business Media.

Döbler, C. (2015) Stein’s method of exchangeable pairs for the Beta distribution and generalizations. *Electron. J. Probab.* 20, No. 109, 1-34.

Eden, R., Viquez, J. (2015) Nourdin-Peccati analysis on Wiener and Wiener-Poisson space for general distributions. *Stoch. Proc. Appl.* 125, No. 1, 182-216.

Eichelsbacher, P., Thäle, C. (2014) Malliavin-Stein method for Variance-Gamma approximation on Wiener space. *Electronic Journal of Probability*, 20(123), 1–28.

Eisenbaum, N. and Kaspi, H. (2006) A characterization of the infinitely divisible squared Gaussian processes. *Ann. Probab.* 34(2):728–742.

Eisenbaum, N. and Kaspi, H. (2009) On permanental processes. *Stoch. Proc. Appl.* 119:1401–1415.

Gaunt, R.E. (2017) Products of normal, beta and gamma random variables: Stein characterisations and distributional theory. To appear in *Brazilian Journal of Probability and Statistics*.

Gaunt, R.E. (2017) On Stein’s method for products of normal random variables and zero bias couplings. *Bernoulli*, 23(4B), 3311-3345.

Gaunt, R.E. (2014) Variance-Gamma approximation via Stein’s method. *Electron. J. Probab.* 19(38), 1-33.

Gaunt, R.E., Mijoule, G., and Swan, Y. (2016) Stein operators for product distributions, with applications. Preprint *arXiv:1604.06819*.

R. C. Griffiths (1984) Characterization of Infinitely divisible multivariate gamma distributions *J. Multivariate Anal.* 15:13–20.

Holm, H., and Alouini, M.S. (2004). Sum and difference of two squared correlated Nakagami variates in connection with the McKay distribution. *IEEE Transactions on Communications*, 52(8), 1367-1376.

Krishnamoorthy, A.S., and Parthasarathy, M. (1951). A multivariate gamma-type distribution. *The Annals of Mathematical Statistics*, 22(4), 549-557.

Kusuoka, S., Tudor, C. A. (2012) Stein’s method for invariant measures of diffusions via Malliavin calculus. *Stoch. Proc. Appl.* 122, No. 4, 1627-1651.

Ley, C., Reinert, G., and Swan, Y. (2017) Stein’s method for comparison of univariate distributions. *Probability Surveys*, 14, 1-52.

Ley, C., Swan, Y. (2013) Local Pinsker inequalities via Stein’s discrete density approach. *IEEE Trans. Inf. Theory* 59, No. 9, 5584-5591.
[23] **Nourdin, I., Peccati, G.** (2012) *Normal Approximations Using Malliavin Calculus: from Stein’s Method to Universality*. Cambridge Tracts in Mathematics. Cambridge University.

[24] **Nourdin, I., Peccati, G.** (2009) Noncentral convergence of multiple integrals. *Ann. Probab.* 37, No. 4, 1412-1426.

[25] **Nourdin, I., Peccati, G.** (2009) Stein’s method on Wiener chaos. *Probab. Theory Related Fields*. 145, No. 1-2, 75-118.

[26] **Nourdin I., Peccati G.** (2010) Cumulants on the Wiener space. *J. Funct. Anal.*, 258(11): 3775–3791.

[27] **Nourdin, I., Poly, G.** (2012) Convergence in law in the second Wiener/Wigner chaos. *Electron. Commun. Probab.* 17, No. 36, 1-12.

[28] **Peköz, E., Röllin, A. AND Ross, N.** (2013) Degree asymptotics with rates for preferential attachment random graphs. *Ann. Appl. Prob.* 23, 1188-1218.

[29] **Royen, T.** (2016) A Note on the Existence of the Multivariate Gamma Distribution. *arXiv preprint arXiv:1606.04747*.

[30] **Stein, C.** (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. *Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability*, II, 583–602.

[31] **Stein, C.** (1986) *Approximate computation of expectations*. IMS, Lecture Notes-Monograph Series 7.

[32] **Vere-Jones D.** (1997) Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions. *New Zealand journal of mathematics* 26, 125-149.

[33] **Zolotarev, V.M.** (1983) Probability metrics. *Teoriya Veroyatnostei i ee Prime-neniya* 28(2), 264–287.

E-mail address, B. Arras arrasbenjamin@gmail.com
E-mail address, E. Azmoodeh ehsan.azmoodeh@rub.de
E-mail address, G. Poly guillaume.poly@univ-rennes1.fr
E-mail address, Y. Swan yswan@ulg.ac.be