Comparison of hydrocarbons synthesis mathematical models for dimethyl ether catalytic transformation process

V. Doluda¹², E. Sulamn¹, R. Brovko¹², I. Tarasyuk², D. Filippov², O. Lefedova²

¹ Department of biotechnology and chemistry of Tver state technical university, 170026, Nab. A. Nikitina 22, Tver, Russia
² Department of physical and colloidal chemistry of Ivanovo state university of chemistry and technology, 153000, Sheremetievskiy prosp. 7, Ivanovo, Russia

e-mail: doludav@yandex.ru

Abstract. A comparison of mathematical models applicable for hydrocarbons formation process by catalytic transformation of dimethyl ether is discussed in the article. Dimethyl transformation is complex catalytic process used for aliphatic, aromatic hydrocarbons and olefins formation. The process can be realized for transformation of renewable and waste organic resources into fuel range hydrocarbons. Proper mathematical modelling for this complex process can play a driver role for process productivity intensification. A mathematical models proposed by different authors are discussed and compared to self-developed Eley-Rideal based model. Advantages and models limitations are discussed in the article.

1. Introduction

Mathematical modeling of complex chemical processes can be considered as key factor to provide process optimization and increasing of products yields [1-4]. Dimethyl ether transformation to hydrocarbons is one of the chemical engineering processes that allow to utilize biomass, wastes and other organic and inorganic carbon containing feed stocks to produce valuable hydrocarbons (Figure 1).

Figure 1. Biomass, wastes and other carbon containing feed stock processing in hydrocarbons via dimethyl ether transformation process

However process complexity does not allow wide application of this process due to different technological and economic problems [3-6]. To overcome this difficulties application of reliable process mathematical models is needed. The reaction of dimethyl ether transformation contains more than one hundred reaction species taking part in process, however, only several groups are taken in to account due to their high rate of accumulation [6]. Typically dimethyl transformation process includes following reactions: a) formation of light olefins, b) formation of benzene, toluene, xylene (BTX)
fraction c) formation of polymethylbenzenes, d) formation of polyaromatic hydrocarbons, c) formation of aliphatic hydrocarbons (Figure 2).

Figure 2. Dimethyl ether transformation scheme

Mathematic modeling of dimethyl ether transformation process typically provides by application two different models types: a) simplified models using products lumps, b) kinetics mathematical models taking into account individual reaction steps. Lumped models characterized by application simplicity and short duration of calculations, however lack of physical meaning for obtained reaction rate constants is obvious disadvantage of this model types [7-9]. From the other side large kinetics models taking in to account individual steps are more precise, however much more time needed for calculations.
The objective of this paper is to evaluate precision of most frequently used mathematical lumped models of dimethyl ether to hydrocarbons transformation processes and to compare results with self-developed lumped model using the same experimental data for experiments.

2. Methodology

2.1. Dimethyl ether transformation to hydrocarbons methodology

On the first step of the investigation catalytic dimethyl ether transformation experiments were performed. Experiments were made in laboratory fixed-bed reactor set-up presented on figure 3. Methanol was fed with a flow rate of 0.01-0.3 ml/min by pump 7 forming a vapor mixture in the mixer 6 filled with glass beads, where flow was heated to 350 °C temperature. A gas mixture of methanol and nitrogen enters the dimethyl ether forming reactor 8, also heated to 350 °C, filled with aluminum oxide (6.4 g). Dimethyl ether which was separated from water and methanol in the condenser 9 enters in the hydrocarbons synthesis reactor 10 where flow was heated to the reaction temperature (350, 400, 450, 500 °C). The reactor was filled with zeolite H-ZSM-5 (HKC corp, Hong-Kong) (6.4 g). Gas samples were taken once per hour by an automatic sampling valve and injected in chromatograph 2000M (Russia). Liquid samples were taken every 12 hours, the sample mass and hydrocarbons concentrations were determined. The analysis of liquid hydrocarbons was performed using a Shimadzu HPMS2010 gas mass spectrometer and gas chromatographs 4000M (Russia) in accordance with ISO R 52714-2007. Determined products concentrations were used for mathematic modeling.

![Figure 3. Scheme of reaction set-up for obtaining data for dimethyl ether to liquid hydrocarbons transformation.](image)

2.2. Methodology for mathematical modeling of dimethyl ether transformation

To find model parameters it is needed to solve mass conservation equation for each reaction. The mass conservation equation can be calculated according to formula 1.

\[
\frac{dX_i}{d\xi} = \frac{Z(1-\varepsilon)}{u_e} \rho \frac{RT}{pM} \frac{m_f}{m_{v}} \tau_{10} - \frac{X_i \, du}{U \, d\xi}
\]

(1)
For solving system of ordinary differential equations a Mat Lab software was used. The gas linear velocity at various reactor positions was calculated by finite $\Delta u/\Delta \xi$ increments between two very close positions in the reactor. The model calculations were provided using objective function (2) [2, 5, 6, 9].

\[
OF = \frac{\Sigma_{i=1}^{n} \Sigma_{j=1}^{\text{exp}} (x_{i,j} - x_{i,\text{calc},j})^2}{n_{\text{exp}}}
\]

Objective function was minimized as square of deviations between experimental and calculated values of lumps concentrations.

3. Results and discussion

Several models were used for mathematical modeling of dimethyl ether catalytic conversion to hydrocarbons, including the most frequently used model developed by prof. Chen and Reagan. This model of dimethyl ether transformation includes the sums of the initial oxygen-containing substances, as well as reaction products (3).

\[
\text{CH}_3\text{OCH}_3 \xrightarrow{k_1} \text{Light olefins} \xrightarrow{k_2} \text{Aromatic and aliphatic hydrocarbons}
\]

The professor Chen and Reagan model explains the increase in the rate of dimethyl ether consumption during the accumulation of hydrocarbons. This model can be expressed by the system of equations 4.

\[
\begin{align*}
A & \xrightarrow{k_1} B \\
A + B & \xrightarrow{k_2} B \\
B & \xrightarrow{k_3} C
\end{align*}
\]

Where A is the mass fraction of CH$_3$OCH$_3$, wt. %
B is the mass fraction of light olefins with the number of carbon atoms of 1-4, wt. %
C is the mass fraction of aromatic and aliphatic compounds.

The system of equations consists of two differential equations and one algebraic equation 5-6 can describe this mathematical model.

\[
\begin{align*}
\frac{dA}{dt} &= -k_1A - k_2AB \\
\frac{dB}{dt} &= k_1A - k_3AB \\
C &= 1 - A - B
\end{align*}
\]

The determination of the constants of the system of equations (Table 1) was carried out by the method described in previous section. The evaluation of the results was carried out by calculating constant deviation and plotting of the model and experiments results (Figure 5).

№	Constants	Units	Values	Value deviations
1	k_1	h$^{-1}$	15.2	±0.9
2	k_2	h$^{-1}$	137.0	±18.2
3	k_3	h$^{-1}$	16.4	±4.1
4	E_1	kJ/mol	142.4	±12.4
5	E_2	kJ/mol	182.1	±20.1
6	E_3	kJ/mol	-5.4	±45.6

To develop a more reliable model of dimethyl ether into hydrocarbons catalytic transformation process, the equations of the cycle mechanism - “hydrocarbon pool” were used. A system of equations was obtained (8). The model takes into account the following components: A - dimethyl ether and
methanol, B - ethylene, C - propylene, D - butene, E - the sum of saturated hydrocarbons with the number of carbon atoms from two to four, I - polymethylbenzenes, G - the sum of hydrocarbons with the number of carbon atoms more than four.

\[\begin{align*}
A & \xrightarrow{k_1} I \\
I & \xrightarrow{k_2} B \\
I & \xrightarrow{k_3} C \\
A + C & \xrightarrow{k_4} D \\
C & \xrightarrow{k_5} E \\
D & \xrightarrow{k_6} E \\
A + D & \xrightarrow{k_8} G \\
C + C & \xrightarrow{k_9} G \\
C + D & \xrightarrow{k_8} G \\
D + D & \xrightarrow{k_6} G
\end{align*} \]

The following system of differential equations can be formed (9-16).

\[\begin{align*}
\frac{dA}{d\tau} &= -k_1A - k_2AC - k_6AD \\
\frac{dB}{d\tau} &= \frac{k_1k_2A}{k_2 + k_3} \\
\frac{dC}{d\tau} &= \frac{k_1k_3A}{k_2 + k_3} - k_4AC - k_5C - k_6C^2 - k_6CD \\
\frac{dD}{d\tau} &= k_4AC - k_5D - k_6AD - k_6CD - k_6D^2 \\
\frac{dE}{d\tau} &= k_5C + k_5D \\
\frac{dI}{d\tau} &= k_1A - k_2I - k_3I = 0 \\
I &= \frac{k_1A}{k_2 + k_3} \\
G &= 1 - A - B - C - D - E
\end{align*} \]

The determination of equations system constants (Table 2) was carried out by the method described in previous section.

№	Constants	Units	Values	Value deviations
1	k_1	h$^{-1}$	20.4	±0.8
2	k_2	h$^{-1}$	0.7	±0.1
3	k_3	h$^{-1}$	2.1	±0.5
4	k_4	h$^{-1}$	154.3	±15.4
5	k_5	h$^{-1}$	32.5	±4.2
6	k_6	h$^{-1}$	124.3	±21.4
7	E_1	kJ/mol	175.4	±10.2
8	E_2	kJ/mol	45.2	±4.2
9	E_3	kJ/mol	87.3	±16.4
10	E_4	kJ/mol	125.6	±24.1
11	E_5	kJ/mol	79.5	±20.5
12	E_6	kJ/mol	88.9	±17.4
Self-developed model represents extended lumped kinetic model of dimethyl ether to hydrocarbons transformation process based on Eley-Rideal catalytic mechanism derivation [1]. Developed model (Figure 4) includes nineteen reactions, ten of them can take place utilizing dimethyl ether or methanol as reaction feed stock. Reaction rate constants k_1-k_6 are responsible for olefins formation rates, reaction rate constants $k_{1.1}$-$k_{8.2}$ are responsible for aliphatic hydrocarbons formation rate and k_7-k_{11} are responsible for aromatic hydrocarbons formation rates. Substrate absorbance constants Q_1-Q_6 are responsible for olefins dimethyl ether and olefins adsorption over catalysts surface over, adsorption constants $Q_{7.1}$-$Q_{8.1}$ are responsible aromatic adsorption over catalysts surface.

![Figure 4. Kinetics scheme of dimethyl ether transformation into hydrocarbons (k – reaction rates constant, Q – substrate adsorption constants)](image)

The kinetic equation for dimethyl ether transformation rate can be denoted as equation containing eleven rate and adsorption constants. Resolving of this equation can be done by numerical modeling and optimization. The kinetic equation for liquid hydrocarbons formation rate can be denoted as equation 2 containing seven rate and three adsorption constants.

\[
\frac{d(\text{Hydr. carb})}{dt} = k_5 \frac{Q_5[C_5H_{10}][CH_3OCH_3]}{1 + Q_5[C_5H_{10}]} - k'_5 \frac{Q_5[C_6H_{12}][CH_3OH]}{1 + Q_5[C_6H_{12}]}
\]

\[
+ k_{5.2} \frac{Q_5[C_5H_{10}]}{1 + Q_5[C_5H_{10}]} - k_{6.1} \frac{Q_6[C_6H_{12}]}{1 + Q_6[C_6H_{12}]} + k_{6.2} \frac{Q_6[C_6H_{12}]}{1 + Q_6[C_6H_{12}]}
\]

\[
+ k_{10} \frac{Q_{10}[C_6H_4(CH_3)_2][CH_3OCH_3]}{1 + Q_{10}[C_6H_4(CH_3)_2]} - k'_{10} \frac{Q_{10}[C_6H_4(CH_3)_2][CH_3OH]}{1 + Q_{10}[C_6H_4(CH_3)_2]} (17)
\]

Calculated rate constants and adsorption constants are presented in table 1, the relative constant deviation doesn’t exceed ten percent that can be considered as reliable value. Providing kinetics modeling for dimethyl ether to hydrocarbons transformation process in temperature range 350-500°C
allowed to calculate apparent activation energy and preexponential factors for Arrhenius equation (Table 3).

Table 3. Calculated apparent activation energies, rate, adsorption constants and their deviations for dimethyl ether transformation to hydrocarbons processes

Constant	Constant dimension	Constant value	Constant deviation	Apparent activation energy, kJ/mol	Apparent activation energy deviation
k₁	h⁻¹	359.8	17.99	46.3	2.315
k₁₁	h⁻¹	6.4	0.32	38.2	1.91
Q₁	h⁻¹	0.24	0.012	4.1	0.205
k₂	h⁻¹	21405.0	1070.25	62.6	3.13
k₂’	h⁻¹	14247.2	712.36	57.9	2.895
k₃,₁	h⁻¹	2335.6	116.78	64.1	3.205
Q₂	h⁻¹	0.16	0.008	2.3	0.115
k₃	h⁻¹	1169.9	58.495	48.6	2.43
k₃’	h⁻¹	1079.3	53.965	32.7	1.635
k₄,₁	h⁻¹	257.6	12.88	24.9	1.245
Q₃	h⁻¹	1.10	0.055	3.8	0.19
k₄	h⁻¹	3415.5	170.775	54.2	2.71
k₄’	h⁻¹	21822.4	1091.12	62.7	3.135
k₅,₁	h⁻¹	486.4	24.32	28.6	1.43
Q₄	h⁻¹	0.40	0.02	2.6	0.13
k₅	h⁻¹	11.3	0.565	24.9	1.245
k₅’	h⁻¹	1890.0	94.5	35.6	1.78
k₆,₁	h⁻¹	8336.4	416.82	42.9	2.145
k₆,₂	h⁻¹	2229.7	111.485	52.1	2.605
Q₅	h⁻¹	5.0	0.25	4.9	0.245
k₆	h⁻¹	11.3	0.565	24.9	1.245
k₆’	h⁻¹	70.49	3.5245	18.6	0.93
k₇,₁	h⁻¹	2941.2	147.06	53.7	2.685
k₇,₂	h⁻¹	3861.9	193.095	36.9	1.845
Q₆	h⁻¹	5.73	0.2865	5.2	0.26
k₇	h⁻¹	9.9	0.495	24.1	1.205
k₇’	h⁻¹	83.7	4.185	19.4	0.97
Q₇	h⁻¹	2.52	0.126	1.6	0.08
k₈,₁	h⁻¹	40.5	2.025	15.2	0.76
k₈,₂	h⁻¹	15.8	0.79	25.7	1.285
Q₈	h⁻¹	4.1	0.205	4.1	0.205
k₉	h⁻¹	719.6	35.98	46.3	2.315
k₉’	h⁻¹	807.8	40.39	31.2	1.56
Q₉	h⁻¹	3.47	0.1735	2.9	0.145
k₁₀	h⁻¹	1548.7	77.435	62.3	3.115
k₁₀’	h⁻¹	239.2	11.96	53.1	2.655
Q₁₀	h⁻¹	4.04	0.202	3.8	0.19
k₁₁	h⁻¹	1311.8	65.59	62.1	3.105
k₁₁’	h⁻¹	2156.6	107.83	35.9	1.795
Q₁₁	h⁻¹	0.25	0.0125	4.7	0.235

k – reaction rates constant, Q – substrate adsorption constants
To compare experimental data of liquid hydrocarbons formation rate on contact time of catalysts and dimethyl ether and values obtained during modeling a figure 5 was plotted.

![Figure 5. Comparison of Chen and Reagan, hydrocarbon-pool and self-developed Eley-Rideal based model for correlation of liquid hydrocarbons formation rate on contact time for catalyst and dimethyl ether.](image)

Calculated objective function for Chen and Reagan model was found to be 0.15% and showed less accuracy compare to “hydrocarbon pool” model where objective function was found to be 0.04% and Eley-Rideal based model where objective function was found to be 0.03%. Comparison of hydrocarbon pool” and Eley-Rideal based models shows that Eley-Rideal model characterized by slightly lower deviation from experimental plots. However Eley-Rideal model reaction rate and adsorption coefficients have physical meaning that can be attributed to exact reaction groups and adsorption of reaction species over surface of active sites.

4. Conclusions

Chen and Reagan, “hydrocarbon pool” and Eley-Rideal based models were compared in mathematical modeling of dimethyl ether to hydrocarbons transformation process. Sufficient reliability of compared models was found. However Eley-Rideal based model is more accurate and characterized by presence of physical meaning for found reaction rate constants. Proposed Eley-Rideal based model includes main transformation steps taking part during transformation. Application of this model allows to calculate apparent activation energy and preexponential factors values for main groups of chemical processes taking place during dimethyl ether transformation process.

5. Appendix A: Nomenclature

- M – average molecular weight of water-free products, (kg/kmol),
- P – partial pressure of water free products (Pa),
- \(r_{o} \) – hydrocarbons lump reaction rate at zero time on steam, \((g(lump \ i)g(total \ mass))/(g(Cat)g(water \ free \ products)h))\),
- R – gas constant \((J/(mol \ K))\),
- \(X_{i} \) – weight fraction of lump \(i \) on water free basis,
T – process temperature (K),

\(u \) – gas linear velocity (m/h)

\(\epsilon \) – bulk porosity

\(\xi \) – longitudinal coordinate,

\(\rho \) – catalyst density (kg/m\(^3\)),

\(\tau \) – contact time, (kg(Cat)\(*h/kg(DME)

6. Acknowledgments

Scientific investigations were founded by Russian Science Foundation (RSF) project № 18-79-10157.

References

[1] Chaudhari A, Sanders Yan C-C and Lee S-L 2005 Eley-Rideal reactions over rough surface: effect of sticking probability Chemical Physics 309 103-7

[2] Gayubo A G, Aguayo A T, Castilla M, Olazar M and Bilbao J 2001 Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction-regeneration cycles in isothermal and adiabatic fixed bed reactor Chemical Engineering Science 56 5059-71

[3] Kratzer P and Brenig W 1991 Highly excited molecules from Eley-Rideal reactions Surface Science 254 275-80

[4] Kumar P, Thybaut J W, Teketel S, Svelle S, Beato P, Olsbye U and Marin G B 2013 Single-Event MicroKinetics (SEMK) for Methanol to Hydrocarbons (MTH) on H-ZSM-23 Catalysis Today 215 224-32

[5] Liu F, Hua Y, Wu H, Lee C-f and Shi Z 2019 Experimental and kinetic studies of soot formation in methanol-gasoline coflow diffusion flames Journal of the Energy Institute 92 38-50

[6] Menges M and Kraushaar-Czarnetzki B 2012 Kinetics of methanol to olefins over AlPO4-bound ZSM-5 extrudates in a two-stage unit with dimethyl ether pre-reactor Microporous and Mesoporous Materials 164 172-81

[7] Mills A, Bingham M, O'Rourke C and Bowker M 2019 Modelled kinetics of the rate of hydrogen evolution as a function of metal catalyst loading in the photocatalysed reforming of methanol by Pt (or Pd)/TiO2 Journal of Photochemistry and Photobiology A: Chemistry 373 122-30

[8] Shahabi D and Tavakol H 2018 A DFT study on the catalytic ability of aluminum doped graphene for the initial steps of the conversion of methanol to gasoline Computational and Theoretical Chemistry 1127 8-15

[9] Wang S, Chen Y, Qin Z, Zhao T-S, Fan S, Dong M, Li J, Fan W and Wang J 2019 Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite Journal of Catalysis 369 382-95