Urban planting for mitigating adverse urbanization impacts

H Iswoyo¹, T Dariati¹, Nurfaida¹ and M V I Herdjiono²
¹Department of Agronomy, Universitas Hasanuddin, Makassar, Indonesia
²Faculty of Economic, Universitas Masamus, Merauke, Indonesia

Email: iswoyo@yahoo.com

Abstract. Urbanization is a worldwide phenomenon which poses both opportunity and problem for urban areas. Potential for development becomes more significant as the population grows, especially in developing countries. Various perspectives see the phenomenon differently. Economists might see that this development is preferable, while environmentalists and medical people see it is more problematic than beneficial. This paper presents research-based documents and literature regarding urban development with its implication on the urban environment and humans’ health. It also suggested efforts to mitigate the impact of the inevitable urbanization, i.e., urban planting. Abundant scientific evidence confirms the benefits of urban planting to humans’ health and well-being. The virtues of urban vegetation resulted in the rise of concept for urban development that accommodates the existence of greeneries with all its attributes. Among the two most popular are the green networks and ecological network

1. Introduction
As the number of people living in the world is increasing, the need for a better place to live becomes more important. Human need places not only for settling but also for procuring a better life. Over half of the world population settle in urban areas, and the proportion increases over time [1], projected to reach nearly 5 billion in 2030 [2]. Some pulling factors of cities are believed to be the reason for more people coming to urban areas, including completeness of facilities and infrastructure, education and broader job fields [3–5].

The process of urban development (known as urbanization) is a global occurrence today [6]. In more-developed countries, urbanization is occurring less rapidly than in less-developed countries, which tend to be uncontrolled. People flock to the urban centers to find work, and as a result, the cities become ‘over urbanized.’ It leads to enormous social and environmental problems. The latter mainly associated with pollution and inadequate sanitation [7]. However, both will lead to health disturbances suffered by the citizens. Social problems will cause stress and depression (mental disturbances), whereas environmental disruption results in physical disturbances.

The main contents of this paper are description and presentation of scientific results regarding the factual development of urban areas. It also discusses consequences to the urban atmosphere and environment as well as the effect it has on humans as the primary inhabitant of urban areas. Indeed, this paper also provides prescribed recommendation with sound scientific evidence by presenting scientifically confirmed benefits of urban planting in any forms such as green spaces, green corridors, and other forms of greeneries within an urban setting.
2. Urbanization

Several factors are influencing to dynamic changes in the urban environment, which includes economy, society, culture, and technology. The dynamic changes are strongly related to anthropological factors [1].

Urbanization refers to city growth with all its associating factors. Some people consider urbanization mainly relates to population number living in cities and not with the growth of the city in terms of facilities, infrastructures, and other built structures [3]. However, some cities could prove that population growth is not the single cause of urbanization. In some countries, even where the population grows slowly, the effect of urbanization is still significant. It is due to the densification of built areas that expand toward urban fringe to even rural areas. Accordingly, Foreman [8] agreed that some demands following modernization could result in urban growth even without significant population change. However, developing countries experience much faster urbanization than in developed countries [9].

3. Threatening urban development impacts

3.1. Environment related factors

3.1.1. Pollution. Urbanization is the main driver for climate change and pollution [10]. How humankind utilize their environment in modern society have arisen consequences in terms of pollutions. The term pollution itself closely associates with particulates, which cover many different types and species of pollutant, some of which are most concern regarding human health [11].

No	Environmental aspects	Description	References
1	Water quality;	the level of urbanization determined surface water quality, and it is the dominant form of land-use change that has impacts on water quality.	[12,13]
2	Micro-climate;	Local climatic condition is profoundly affected by urbanization	[10]
3	Soil surface;	urbanization and intense industrialization which occurs especially in many developing countries are responsible for heavy metal pollution in soil	[14,15]
4	Atmospheric greenhouse gases;	increased emissions of methane, CO2 in some developing countries due to high consumption of energy as part of urbanization.	[16,17]
5	Noise pollution;	Motorized vehicles which are a consistent part of urbanized areas contribute significantly to noise pollution through honking and engine noise	[18]
6	Plant diversity	Urbanization related to many built artificial greenspaces which resulted in less native plants available, thus plant diversity tends to be lower	[19]
7	Other wildlife	Sample of fish collected from urban areas has the most microplastics ingested compared to that of less urbanized areas.	[20]

Two kinds of pollution become concerns in urban areas and mainly have implications on human health; water and atmospheric pollutions. Water pollution defines as a chemical or physical change in water detrimental to the living organism. Water bodies are the primary recipient on an extensive array of wastes produced by man. These may be discharged directly into watercourses by sewers or pipes from factories [21]. An excessive amount of water pollutant in water bodies, which are the primary urban water sources in many developing countries is a severe threat to human health. Atmospheric pollution is a more common type of pollution in urban areas. The main sources of this kind of
pollution are manufactures in industrial areas, smog from vehicles, and gas-form chemical wastes from daily human activities.

A study in China confirmed the need for developing pollution prevention and strategies for reducing heavy metal pollution for areas undergoing urbanization and fast industrialization [22].

3.1.2. Effects of pollution on human health. Pollutants are considered hazardous to human health if their concentration is exceeding the value stated in the Air Quality Standard. In order to prevent more detrimental effect, some countries impose standards for air quality. Table 1 presents the European Air Quality Standards for major pollutants as an example.

Table 2. European Air Quality Standards

Pollutant	Type of value	Period	Value (µg.m⁻³)
Ozone	health protection	8-hour mean	110
	vegetation protection	1-hour mean	200
	vegetation protection	24-hour mean	65
	population information	1-hour mean	180
	population warning	1-hour mean	360
Sulfur dioxide	Limit	98% of annual daily means	350
	Guide	50% of annual daily means	120
	Guide	24-hour mean	100-150
		annual mean	40-60
Nitrogen dioxide	Limit	98% of annual hourly means	200
	Guide	98% of annual hourly means	135
	Guide	50% of annual hourly means	50
Smoke	Limit	annual mean	80
	Guide	annual mean	40
Lead compounds	Limit	annual mean	2

Source: [23]

When concentrations of pollutants mentioned above exceed the standard value, they potentially lead to some health disturbances. In most common urbanized place i.e. cities, especially in the developing world, air pollution found to be worst, thus type of pollution is known to be the leading cause of morbidity and mortality [5].

The excessive ozone in the air would result in a reduction in lung function. Sulphate and Sulphur Dioxide could induce branchial-constriction in asthmatic patients. Oxides of Nitrogen and Nitrate also have implications on lung function. Ammonia and Ammonium are less threatening in atmospheric concentrations, yet they poison water. Carbon Monoxides, which is produced during combustion by the incomplete oxidation of fuel, is responsible for the reduction in the oxygen-carrying capacity of the blood. Generally, particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illness in urban areas [23]. Additionally, according to the International Agency for Research on Cancer (IARC), when forming organic compounds, particulates are carcinogenic to humans [24].

Possibly health-threatening factor from water pollution does not always come from consuming polluted water. It might also indirectly affect human as top-level terrestrial predators when consuming products from contaminated water (Jackson, 1996). The prevalence of asthma was higher in more urbanized areas [25]. Additionally, as urbanization results in more people living within more limited an area, some diseases that transmit through respiratory and fecal-oral routes are found to be more common in crowded conditions, for example, tuberculosis [26].

3.1.3. Stratospheric Ozone Depletion. Human activity in urban areas has been responsible for an increase in the flux in the stratosphere. Stratospheric ozone absorbs ultraviolet light that is roughly
coincident with the biologists UV-B. Increased levels of UV-B are expected to harm human health. The incidence of relatively trivial complaints such as sunburn, snow blindness, and enhanced aging of the skin is expected to rise. Similarly, a range of more severe afflictions will become more common, including cataracts and eye and skin cancers. Furthermore, the skin's immune system is adversely affected by UV-B; diseases that involve the skin are expected to become more problematic. These include measles, chickenpox, malaria, and leprosy. Enhanced UV-B levels may well decrease the effectiveness of vaccination against these diseases [21].

Extensive fossil fuel burning and other emission-production activities by urban settlers have resulted in increasing sun burning UV radiation. There are eminent correlations between ozone depletion and climate change due to the increased emission of greenhouse gases [27], which are significantly anthropogenic.

3.2. Social related factors – life pressures
The fast growth of cities has demanded people to lead a competitive life that gradually leads to mental problems. Life pressures with the requirement to keep abreast equally with others in terms of economy, result in stress, depression, and other mental disturbances and instability.

Pressures of living in an area where privacy is getting more limited are proven to contribute to mental illness, the rates of intentional injuries, both suicide, and homicide [28]. An urban area with some of its attributes such as overcrowded environment, polluted environment, as well as decreased social contact and support has a higher prevalence of mental disorders by 80.6% as opposed to 48.9% in rural areas [29]. These could be seen by the enormous range of disorders such as severe mental disorder, depression, substance abuse alcoholism, crime, delinquency, family alienation and disintegration [30,31].

4. Contribution of planting in urbanized areas
A significant number of researches have been conducted in order to assess the benefit of urban planting as an effort to present greeneries within the urban setting. Contribution of vegetation through tree planting is eminent and has become the justification for regulation issues by urban authorities. Among the prominent concepts that have been introduced by developed areas are concepts for ecological improvement, which targeted at the improvement of urban spaces considering many interests [32]. The following are some of the contributions

4.1. Indirect contribution of trees planting
Trees’ planting in urban areas is related to urban forestry establishment. The term urban forestry is increasingly used to refer to the planting and management of all woodlands and trees in urban areas. Government and other agencies are promoting urban forestry as a means of improving the amenity value and appearance of the urban environment.

On the other hand, it has more critical value in terms of retaining the negative implications of Pollution:

4.1.1. Trees as sinks for air pollutants. There have been many researches concluded that trees and woodland could act as sinks for several pollutants. Trees in urban areas are actively involved in particulates deposition. Some pollutants uptake rates by several species of trees are presented in table 3.
Type of Pollutant: Ozone	Species	Cx (ppb)	Flux (Ng m⁻¹ S⁻¹)	vₑ (cm s⁻¹)
Acer platanoides	250	0.10	0.019	
Sorbus aria	250	0.13	0.024	
Betula pendula	250	0.16	0.030	
Pseudotsuga menziesii	250	0.28	0.053	
Picea abies	250	0.20	0.038	
Picea abies	300	0.72	0.112	
Picea abies	250	0.53	0.099	
Picea abies	300	0.35	0.055	
Picea abies	80	0.312	0.182	
Picea abies	100	0.576	0.269	
Pinus sylvestris	400	0.30	0.035	
Pinus nigra	250	0.171	0.032	
Phaseolus (bean)	600	2.7	0.21	
Phaseolus (bean)	380	1.67	0.21	
Lycopersicum (tomato)	160	2.5	0.73	
Alfalfa	50	3.8	0.36	
Petunia	250	0.5	0.093	
Helianthus (sunflower)	710	4.29	0.28	
Type of Pollutant: sulphur dioxide	Betula pendula	55	0.9	
Betula pendula	400	0.29	0.025	
Betula pendula	1000	2.39	0.084	
Ligustrum vulgare	1000	1.89	0.066	
Fraxinus americana	1000	1.28	0.045	
Sorbus aria	400	0.25	0.022	
Pinus sylvestris	70	0.56	0.28	
Acer rubrum	1000	2.4	0.084	
Acer platanoides	400	0.148	0.013	
Pinus nigra	400	0.290	0.025	
Pinus nigra	770	(0.11)	0.05	
Pseudotsuga menziesii	400	0.238	0.021	
Picea abies	400	0.362	0.032	
Quercus palustris	770	(0.53)	0.024	
Ulmus americana	770	(2.42)	0.11	
Type of Pollutant: Nitrogen dioxide	Picea abies	50	0.072	
Picea abies	400	0.185	0.023	
Betula pendula	400	0.164	0.020	
Betula pendula	270	1.70	0.307	
Acer platanoides	400	0.103	0.013	
Sorbus aria	400	0.181	0.022	
Pinus sylvestris (field)	97	0.13	0.65	
Pinus sylvestris (lab)	240	0.09	0.18	
Quercus myrsinaefolia	300	0.67	0.109	
Pinus taeda	770	0.252		
Quercus alba	590	0.060		
Populus nigra	300	2.0	0.325	
Pseudotsuga menziesii	400	0.171	0.021	
Pinus nigra	400	0.246	0.030	
Other studies have revealed similar conclusions. The Department of Forestry at Australian National Universities presented a case study in Canberra, Australia, about extensive tree plantings since 1911 that had delivered several benefits including aesthetic values and the amelioration of climatic extremes. Recently, the benefits might extend to pollution mitigation and the sequestration of carbon.[33]

Research by USDA Forest Service has concluded that increasing urban tree cover from 20% to 40% led to an average decrease in hourly ozone concentrations in urban areas during daylight hours of 2.4%.[34]

In addition, another previous research held by Lawrence Berkeley National Laboratory resulted in a conclusion that the net effect of increased urban vegetation is a decrease in ozone concentrations.[35]

4.1.2. Air quality improvement. With its capability in pollutants deposition, the urban forest has led to an improvement of air quality in urban areas. Based on a study conducted by Heat Island Group of Lawrence Berkeley National Library, urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog.[36] Areas perform contribution to air quality improvement are those with dominant trees. These planted areas become efficient scavengers for particulate matters, which result in higher rates of dry deposition, compared to other land use types.[37]

4.1.3. Mitigating greenhouse gases. Some human activities in urban areas such as inefficient burning of fossil fuels, excessive use of vehicles, running environmental-unfriendly factories and use of products that produce CFC have increased the amount of greenhouse gases in the atmosphere. As trees absorb CO₂—one of the greenhouse gases—and release O₂ which is vital for human, they could at least retain a factor of ozone layer depletion. However, other further actions are essential for full retention. Expansion of trees and forests area in the United States could be a case study. Investigation proved that they could have an impact upon the annual uptake of atmospheric CO₂[24], also with trees in an urban setting.[38]

4.1.4. Water conservation. Clean and healthy water shortages are a common problem in many urban areas. To help cope with increased urban water demands and low water supplies, the introducing of native and non-native landscape plants revealed as an alternative conservation method.[39]

4.2. Direct contribution

4.2.1. Turfgrasses utilization. Research by Texas A&M University portrays huge benefits of turf grasses planting for human life quality. Turfgrasses have been utilized for more than ten centuries for environmental improvement, possess some benefits which are functional, recreational, and aesthetic. Specific functional benefits include pollution control, groundwater protection, noise reduction, as well as reduction of glare and other visual pollution. The recreational benefits such as low-cost surface for outdoor leisure and sporting activities, which affect the improved physical health of participants. The aesthetic benefits include enhancement of attractiveness through beautiful soothing green color and
creation of beautiful composition of turf-flower-shrubs-tree in the landscape. These all provide a therapeutic effect for both ordinary people and those with mental health disturbance. Activity in the wide turf-covered area enhances social interaction, stability, and harmony. Overall, its existence could improve life quality, especially in urban areas where the population are dense [39,40].

4.2.2. Plants for medical treatment. As the use of herbs for therapy purposes becomes more popular, medicinal plants are familiar in both rural and urban areas. A study conducted in Brazil is presented to show that the employment of medicinal plants related to traditional practices. Their use in official public health care, however, requires more than traditional knowledge. Recent laws require that scientific evidence be brought to support the widespread use, that possible toxicity, especially when chronic use is contemplated [41].

4.2.3. Indoor air quality improvement. People in the cities spend 80 to 90 percent of their time indoors. They breathe mostly indoor air, however, until recent years, most health studies did not take this fact into account [42]. Although most air pollution derived from outdoor, it is not doubtful that indoor air quality is also significantly affected. A research in Australia has shown that selected indoor plants in test chambers can reduce concentrations of volatile indoor pollutants such as formaldehyde or benzene by up to 90 %. This study has enormous potential world-wide cross the full range of indoor environments, in which the population of modern cities spends most of their time. These include commercial, public utility (e.g., schools, hospitals), and private dwelling environments [43].

4.2.4. Other value. Still related to mental health enhancement, planting of trees in urban areas would give a feeling and experience of peacefulness, quietness, and relaxation within a hectic environment. Benefits of urban planting can also be valuing their ecosystem services. According to Brack [33], with their services in energy reduction, pollution mitigation, and carbon sequestration, planted trees in a study location in the US, are estimated to have a value of US$20–67 million during the period 2008–2012

Benefits	References
Improvement of urban climate	[44,45]
Mitigation of urban heat islands	[46,47]
Store and sequester carbon	[48]
Reduce noise pollution	[49]
Improve air quality	[50–52]
Improve water quality	[53]
Lower temperatures of parked cars	[54]
Reduce volatilization of bitumen	[55]
Reduce the consumption of electricity for heating and cooling	[36]
Reduce the need to invest in new power utilities	[50,56]
Aesthetic contribution, scenic beauty, visual amenity	[57,58]
Architectural enhancement of buildings	[33]
Improve property values	[59,60]
Increase privacy, barrier against unpleasant/stressful scenes	[33]
Control urban glare and reflection	[39,40]
Improve general livability and quality of urban life	[61,62]
Increase tourism	[63]
Provide opportunities for outdoor recreation and enjoyment	[39,40]
Attract birds and other wildlife	[64,65]

There are too many benefits of urban planting in any form of applications. Whether they are green spaces, urban forests, urban parks, neighbourhood garden, green corridors, or even simple green spots
around houses, they are potential agents for improving the environmental quality of urban areas. Table 4 provides some more scientific evidence of tree planting in the form of urban forest as retrieved from Brack [33] and has been supported by supporting references. While figure 1 shows an Illustration of the benefits of trees at different levels.

![Figure 1. Illustration of benefits of trees at different level (Source: [66])](image)

5. Conclusion
As an inevitable phenomenon in both developed and developing contexts, urbanization poses problems related to changes in demography, environment, and social structures. The changes potentially lead to disturbances for humans’ health and the quality of the environment. This simple paper provided several benefits of urban planting to overcome some of the urbanization-related factors in cities and urbanized regions. It is expected that the information will be used as a trigger to plant more trees within the urban setting and promote ideas of more green development.
References

[1] Iswoyo H, Vale P B and Bryant M 2014 An investigation of green space in a developing country city: The feasibility of creating a network of such spaces (Wellington, New Zealand: Victoria University of Wellington)

[2] Seto K C, Güneralp B and Hutyra L R 2012 Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools Proc. Natl. Acad. Sci. 109 16083–8

[3] Rukmana D 2007 Urbanization and Urban Development Jakarta Post

[4] Cohen B 2006 Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability Technol. Soc. 28 63–80

[5] Moore M, Gould P and Keary B S 2003 Global urbanization and impact on health Int. J. Hyg. Environ. Health 206 269–78

[6] Ooi G L 2007 Urbanization in Southeast Asia: Assessing Policy Process and Progress toward Sustainability J. Ind. Ecol. 11 31–42

[7] Jackson, R.W. A and M. J 1996 Environmental Science, The Natural Environment and Human Impact.

[8] Forman R T T 2008 Urban Regions: Ecology and Planning Beyond The City (Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi: Cambridge University Press)

[9] Uy P and Nakagoshi N 2007 Analyzing urban green space pattern and eco-network in Hanoi, Vietnam Landsc. Ecol. Eng. 3 143–57

[10] Grimm N B, Foster D, Groffman P, Grove J M, Hopkinson C S, Nadelhoffer K J, Pataki D E and Peters D P C 2008 The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients Front. Ecol. Environ. 6 264–72

[11] Broadmeadow, Mark S J and Freer-Smith P H 1996 Urban Woodland and Benefits for Local Air Quality

[12] Wang J, Da L, Song K and Li B-L 2008 Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China Environ. Pollut. 152 387–93

[13] Yang L, Ma K M, Guo Q H and Zhao J Z 2004 Impacts of the urbanization on waters non-point source pollution Huan jing ke xue= Huanjing kexue 25 32–9

[14] Mireles F, Davila J I, Pinedo J L, Reyes E, Speakman R J and Glasco M D 2012 Assessing urban soil pollution in the cities of Zacatecas and Guadalupe, Mexico by instrumental neutron activation analysis Microchem. J. 103 158–64

[15] Wei B and Yang L 2010 A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China Microchem. J. 94 99–107

[16] Akhmat G, Zaman K, Shukui T, Irfan D and Khan M M 2014 Does energy consumption contribute to environmental pollutants? Evidence from SAARC countries Environ. Sci. Pollut. Res. 21 5940–51

[17] Martínez-Zarzoso I and Maruotti A 2011 The impact of urbanization on CO2 emissions: evidence from developing countries Ecol. Econ. 70 1344–53

[18] Tapia Granados J A 1998 Reducing automobile traffic: an urgent policy for health promotion Rev. Panam. salud publica 3 227–41

[19] Liang Y Q, Li J W, Lee J and Valimaki S K 2008 Impact of urbanization on plant diversity: A case study in built-up areas of Beijing For. Stud. China 10 179–88

[20] Peters C A and Bratton S P 2016 Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA Environ. Pollut. 210 380–7

[21] Mottershead D 1997 Environmental science: The natural environment and human impact Appl. Geogr. 17 79–80

[22] Hu Y, Liu X, Bai J, Shih K, Zeng E Y and Cheng H 2013 Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and
urbanization Environ. Sci. Pollut. Res. 20 6150–9
[23] Beckett K P, Freer-Smith P H and Taylor G 2000 Particulate Pollution Capture by Urban Trees: Effect of Species and Wind speed Glob. Chang. Biol. 6
[24] Sampson R N 1992 Forestry opportunities in the United States to mitigate the effects of global warming Natural Sinks of CO2 (Springer) pp 157–80
[25] Lin R S, Sung F C, Huang S L, Gou Y L, Ko Y C, Gou H W and Shaw C K 2001 Role of urbanization and air pollution in adolescent asthma: a mass screening in Taiwan J. Formos. Med. Assoc. 100 649–55
[26] Antunes J L F and Waldman E A 2001 The impact of AIDS, immigration and housing overcrowding on tuberculosis deaths in São Paulo, Brazil, 1994–1998 Soc. Sci. Med. 52 1071–80
[27] McKenzie R L, Aucamp P J, Baïs A F, Björn L O, Ilyas M and Madronich S 2011 Ozone depletion and climate change: impacts on UV radiation Photochem. Photobiol. Sci. 10 182–98
[28] Krieger J and Higgins D L 2002 Housing and health: time again for public health action Am. J. Public Health 92 758–68
[29] Reddy V M and Chandrashekar C R 1998 Prevalence of mental and behavioural disorders in India: A meta-analysis Indian J. Psychiatry 40 149
[30] Srivastava K 2009 Urbanization and mental health Ind. Psychiatry J. 18 75
[31] Trivedi J K, Sareen H and Dhyanji M 2008 Rapid urbanization-Its impact on mental health: A South Asian perspective Indian J. Psychiatry 50 161
[32] Iswoyo H, Dariati T, Vale B and Bryant M 2018 Contribution of urban farms to urban ecology of a developing city IOP Conference Series: Earth and Environmental Science
[33] Brack C L 2002 Pollution mitigation and carbon sequestration by an urban forest Environ. Pollut. 116 S195–200
[34] Nowak D J, Civerolo K L, Rao S T, Sistla G, Luley C J and Crane D E 2000 A modeling study of the impact of urban trees on ozone Atmos. Environ. 34 1601–13
[35] Taha H 1996 Modeling impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin Atmos. Environ. 30 3423–30
[36] Akbari H 2002 Shade trees reduce building energy use and CO2 emissions from power plants Environ. Pollut. 116 S119–26
[37] McDonald A G, Bealey W J, Fowler D, Dragosits U, Skiba U, Smith R I, Donovan R G, Brett H E, Hewitt C N and Nemitz E 2007 Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations Atmos. Environ. 41 8455–67
[38] Nowak D J 1993 Atmospheric Carbon Reduction by Urban Trees J. Environ. Manage. 37 207–17
[39] Hip B W, Giordano C and Simpson B 1983 Water Conservation with Urban Landscape Plants (Texas Water Resources Institute)
[40] Beard J B and Green R L 1994 The role of turfgrasses in environmental protection and their benefits to humans J. Environ. Qual. 23 452–60
[41] Gilbert B, Ferreira J L P, Almeida M B S, Carvalho E S, Cascon V and Rocha L M 1997 The official use of medicinal plants in public health Ciênc. cult.(Säo Paulo) 49 339–44
[42] Turiel I 2012 Indoor Air Quality & Human Health (Routledge)
[43] Burchett M and Wood R 1994 Indoor plants and pollution reduction J. Home Consum. Hortic. 1 255–64
[44] Brown R D, Vanos J, Kenny N and Lenzholzer S 2015 Designing urban parks that ameliorate the effects of climate change Landsc. Urban Plan. 138 118–31
[45] Georgi J N and Dimitriou D 2010 The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece Build. Environ. 45 1401–14
[46] Susca T, Gaffin S R and Dell’Osso G R 2011 Positive effects of vegetation: Urban heat island
and green roofs Environ. Pollut. 159 2119–26

[47] Wendy Pyper 2004 Do greener cities mean healthier people? Natl. Year Built Environ. 9–11

[48] Nowak D J and Crane D E 2002 Carbon storage and sequestration by urban trees in the USA Environ. Pollut. 116 381–9

[49] Cohen P, Potchter O and Schnell I 2014 The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel Environ. Pollut. 195 73–83

[50] Akbari H, Pomerantz M and Taha H 2001 Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas Sol. energy 70 295–310

[51] Nowak D J, Crane D E and Stevens J C 2006 Air pollution removal by urban trees and shrubs in the United States Urban For. Urban Green. 4 115–23

[52] Yang J, McBride J, Zhou J and Sun Z 2004 The urban forest in Beijing and its role in air pollution reduction Urban For. Urban Green. 3 65–78

[53] Livesley S J, McPherson E G and Calfapietra C 2016 The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale J. Environ. Qual. 45 119–24

[54] Onishi A, Cao X, Ito T, Shi F and Imura H 2010 Evaluating the potential for urban heat-island mitigation by greening parking lots Urban For. Urban Green. 9 323–32

[55] McPherson E G and Muchnick J 2005 Effect of street tree shade on asphalt concrete pavement performance J. Arboric. 31 303

[56] Akbari H, Kurn D M, Bretz S E and Hanford J W 1997 Peak power and cooling energy savings of shade trees Energy Build. 25 139–48

[57] Georgi N 2000 The ecological, aesthetic and functional behaviour of trees in the city of Thessaloniki (Aristotle university of Thessaloniki)

[58] Price C 2003 Quantifying the aesthetic benefits of urban forestry Urban For. Urban Green. 1 123–33

[59] Tyrväinen L and Miettinen A 2000 Property prices and urban forest amenities J. Environ. Econ. Manage. 39 205–23

[60] Conway D, Li C Q, Wolch J, Kahle C and Jerrett M 2010 A spatial autocorrelation approach for examining the effects of urban greenspace on residential property values J. Real Estate Financ. Econ. 41 150–69

[61] Stigsdotter U K, Ekholm O, Schipperijn J, Toftager M, Kamper-Jørgensen F and Randrup T B 2010 Health promoting outdoor environments-Associations between green space, and health, health-related quality of life and stress based on a Danish national representative survey Scand. J. Public Health 38 411–7

[62] De Sousa C A 2006 Unearthing the benefits of brownfield to green space projects: An examination of project use and quality of life impacts Local Environ. 11 577–600

[63] Deng J, Arano K G, Pierskalla C and McNeel J 2010 A spatial autocorrelation approach for examining the effects of urban greenspace on residential property values J. Real Estate Financ. Econ. 41 150–69

[64] Iswoyo H, Mantja K, Vale B and Bryant M 2018 Birdie.. birdie.. come and let’s share our city IOP Conference Series: Earth and Environmental Science vol 203 (IOP Publishing) p 12001

[65] Bell S L, Westley M, Lovell R and Wheeler B W 2018 Everyday green space and experienced well-being: the significance of wildlife encounters Landsc. Res. 43 8–19

[66] Livesley S J, McPherson G M and Calfapietra C 2016 The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale J. Environ. Qual. 45 119