Second-order SMO-based sensorless control of IM drive: experimental investigations of observer sensitivity and system reconfiguration in postfault operation mode

Rebah Maamouri1,2 | Mohamed Trabelsi1 | Mohamed Boussak3 | Faouzi M’Sahli4

1Ecole Nationale d'Ingénieurs de Sousse (ENISo), Université de Sousse, Tunisie
2Group of Research in Electrical Engineering of Nancy (GREEN), France
3Aix Marseille Univ (AMU), Laboratoire d'Informatique et Systèmes (LIS), UMR CNRS 7020, Ecole Centrale Marseille (ECM), France
4Ecole Nationale d'Ingénieurs de Monastir (ENIM), Université de Monastir, Tunisie

Correspondence
Rebah Maamouri, Ecole Nationale d'Ingénieurs de Sousse (ENISo), Université de Sousse, Tunisia. Email: maamouri.ribeh@yahoo.com

Abstract
In normal operation mode, sensorless speed-controlled motor drives should be more reliable, less expensive and less bulky than their counterparts with a speed sensor. The sensorless drive structure allows avoiding the electromagnetic and vibratory sensitivity of the mechanical sensor, the additional connecting circuits, additional space for the sensor, its price and maintenance requirements. However, in postfault operation mode, the robustness of speed sensorless control strategies has been poorly addressed in the study. Accordingly, this study deals with an experimental study of the robustness and the availability of speed-controlled induction motor (IM) drives without speed sensor in the presence of inverter open-switches faults. For that purpose, a super twisting algorithm-based observer for motor speed estimation is proposed for experimental investigation. Experimental results are performed upon 3-kW IM drive by using dSPACE digital signal processing controller board. Experimental investigations evaluate the performances of the method used for the control without speed sensor in prefault, postfault and regeneration operation modes.

1 INTRODUCTION

Technological developments in power electronics and numerical control have made the opportunity to have increasingly complex and sophisticated industrial systems. However, the increased reliability requirements, availability and safe operation of these systems are real challenges. In fact, the implementation of speed-sensorless control and diagnostic algorithms for industrial application based on motor drives is considered as a promising solution to minimise the production cost and to improve the productivity.

Speed-sensorless control provides an attractive solution for electrical drives operating in hostile and hard environmental conditions. Replacing the physical sensor by a software part for speed sensing permits to reduce system size and complexity, improve noise immunity, and, in turn, improve the reliability and the maintenance cost. Many speed-sensorless control strategies have been addressed in the study; HF and low-frequency signal injection [1, 2], full- and reduced-order observer [3, 4], model reference adaptive system [5], Kalman filter [6, 7], sliding mode observer (SMO) [8–10] and [11–13] and adaptive full-order observer [14, 15].

Unfortunately, another topic is not well addressed in the literature concerns the machine output signals quality under electrical faults, and the robustness and limitations of the observers used by the electrical sensorless drive structures. Traditionally, sensorless control methods based on model observation require information of all phase currents and voltages, and can therefore only be applied in normal operation mode. In faulty operation mode, a disturbance in one of the observer’s input variables can lead to cumulative or multiplicative errors in the estimation of machine state variables. In the case of a closed-loop control without speed sensor, these inaccurate quantities estimated by the observer will be used as inputs into the main control loops, which would lead to errors in the estimation algorithm and then in the control of the whole system.

Regarding now fault diagnosis (FD) of motor drives, inverter fault is considered as one of the prevalent electrical faults in ac motor drives. In accordance to several statistic studies, it is concluded that the percentage of failures into variable speed drives accounts for approximately 63% of the user-experienced drive failures during the first year of operation. About 70% of them are related to power devices [16, 17],...
especially open-circuit and short-circuit faults [18–19]. Several
diagnostic methods have been proposed in the study to di-
gnose open-circuit faults and are generally classified in Table 1
as signal-based approaches [20–29, 37] and model-based
approaches [30–33]. Reference [16] lists a more comprehensive
bibliography especially for the classical sensored 3-ϕ motor
drives.

Speed-sensorless motor drives under inverter faults are
very little addressed in the study [34–36]. In [34], HF injec-
tion-based and model-based approaches for IPMSM are
analysed with respect to the robustness of sensorless-
controlled electrical drives to line disturbances and inverter
power-switches faults. Experimental results show that, under
fault conditions induced by an open-switch fault, considerable
speed ripples are observed. In turn, this results in a weakness
of the sensorless estimation algorithm. In [36], a diagnostic
approach of inverter faults in a sensorless control of an in-
duction motor (IM) has been proposed. A first-order SMO is
used for simultaneously speed estimation and open-switch fault
detection and identification. The diagnostic algorithm is
based on the fault indices derived from the error between the
measured and estimated current of the faulty inverter legs.
However, since this observer is used to realise the closed-
loop control, the high error used to diagnose the fault leads
to significant estimated speed ripples. In turn, this results in
degradation of the other estimated variables given by the
observer. These affected variables are supposed to be used as
inputs of the FDI process. As a result, conventional diagnostic
approaches may no longer be valid in the case of a speed-sensorless
drives and may result in false alarms since the FD inputs are erroneous.

The main idea of this study comes from the aforementioned
problems raised by [34–36]. Hence, for VSI supplying
a speed sensorless-controlled IM drive, the effect of the
power switches fault must be carefully studied with respect to
the robustness and the availability of the system after the
fault occurrence. Thanks to the advantages of the sliding mode
diagnostics, sensorless-controlled IM drive based on a super-twisting
observer (STO) is proposed for experimental

investigation with respect to single and multiple IGBT open-
switch faults. For that purpose, the effectiveness of the
sensorless control scheme and the ability of the observer to
overcome the induced errors in the input signals are
addressed. In addition, the ability of the system to overcome
the fast transients during the fault occurrence and the system
reconfiguration is experimentally investigated.

The rest of the study is organised as follows. Section 2
presents the IM model and the principle of the vector control.
Section 3 describes the sensorless speed control sensitivity
under IGBT OSF and sets out the involved issues. Section 4
discusses the STA-based observer design. The extensive
experimental investigation of the performances of the studied
IM speed-sensorless control scheme during prefault, postfault
and fault reconfiguration steps is presented in Section 5. Section
6 concludes the research findings.

2 | IM VECTOR CONTROL

The following nonlinear model Equation (1) is widely used to
represent the dynamics of the IM in d-q rotating reference
frame [38]. In this model, the currents i_{ds} the flux ϕ_{ds} and
the rotor speed ω_r represent the state variables. U_{dq} and ω_d
are considered as the control variables. T_L denotes the load
torque. L_s and L_r are the stator and rotor inductances,
respectively. M is the mutual inductance. R_s and R_r are the
stator and the rotor resistances, respectively. J is the motor’s
moment inertia. σ is the dispersion coefficient. τ_r and τ_s
represent, respectively, the rotor and the stator time con-
stant. n_p is the pole-pairs number.

\[
\begin{align*}
\frac{di_{ds}}{dt} &= -\gamma i_{ds} + \omega_r i_{qr} + \frac{1}{\sigma M \tau_r} \phi_{dr} + \frac{1}{\sigma M} \omega_r \phi_{qr} + \frac{1}{\sigma L_s} U_{ds} \\
\frac{di_{qr}}{dt} &= -\omega_r i_{ds} - \gamma i_{qr} + \frac{1}{\sigma M} \omega_r \phi_{dr} + \frac{1}{\sigma \tau_r} \phi_{rs} + \frac{1}{\sigma L_r} U_{dq} \\
\frac{d\phi_{dr}}{dt} &= \frac{M}{\tau_r} i_{ds} - \frac{1}{\tau_r} \phi_{dr} + \omega_d \phi_{qr} \\
\frac{d\phi_{qr}}{dt} &= \frac{M}{\tau_r} i_{ds} - \omega_d \phi_{dr} - \frac{1}{\tau_r} \phi_{qr} \\
\frac{d\omega_r}{dt} &= \frac{n_p^2 M}{J L_r} i_{d} \phi_{dr} - \frac{n_p^2 M}{J L_r} i_{d} \phi_{qr} - \frac{I_f}{J} \omega_{rs} - \frac{n_p}{J} T_i \\
\end{align*}
\]

(1)

with $\sigma = 1 - \frac{M^2}{L_s L_r} \gamma = \frac{1}{\sigma} \left(\frac{1}{\tau_r} + \frac{1}{\tau_s} \right)$
and, the electromagnetic torque is given by:

\[
T_e = \frac{n_p M}{L_r} (i_{d} \phi_{dr} - i_{d} \phi_{qr})
\]

(2)
Here, the field orientation control is used. The objective is to keep the magnitude of the rotor flux linkage constant while the position of rotor frequency changes. For this purpose, the flux component ϕ_{qr} must be equal zero ($\phi_{qr} = 0$), whereas the flux component ϕ_{ds} is kept constant ($\phi_r = \phi_{ds} + j\phi_{qr} = \phi_r$) where ϕ_r is the rotor-flux magnitude. Accordingly, the IM model is reformulated as follows:

\[
\begin{align*}
\frac{di_{ds}}{dt} &= -\gamma i_{ds} + \omega_r i_{qs} + \frac{1 - \sigma}{\sigma M r} \phi_r + \frac{1}{\sigma L_s} U_{ds} \\
\frac{di_{qs}}{dt} &= -\omega_r i_{ds} - \gamma i_{qs} - \frac{1 - \sigma}{\sigma M} \omega_r \phi_r + \frac{1}{\sigma L_i} U_{qi} \\
\frac{d\phi_{dr}}{dt} &= \frac{M}{\tau_r} i_{ds} - \frac{1}{\tau_r} \phi_{dr} \\
0 &= \frac{M}{\tau_r} i_{qs} - \omega_a \phi_r \\
d\omega_r &= \frac{n_s^2 M}{\gamma L_r} i_{qs} \phi_r - f_{\omega} \dot{\omega}_r - \frac{n_p}{f} T_l
\end{align*}
\]

Taking into account the Laplace differential operator, Equation (3) of the IM can be rewritten in $d-q$ rotating reference frame as follows:

\[
\begin{align*}
U_{ds} &= \sigma L_s (s + \gamma) i_{ds} - \sigma L_s \omega_r i_{qs} - \frac{M}{L_r \tau_r} \phi_r \\
U_{qs} &= \sigma L_s (s + \gamma) i_{qs} + \sigma L_s \omega_r i_{ds} + \frac{M}{L_r \tau_r} \phi_r
\end{align*}
\]

System Equation (4) can be simplified as the following form:

\[
\begin{align*}
U_{ds} &= U_d - E_d \\
U_{qs} &= U_q - E_q
\end{align*}
\]

where

\[
\begin{align*}
E_d &= \sigma L_s \omega_r i_{qs} + \frac{M}{L_r \tau_r} \phi_r \\
E_q &= -\sigma L_s \omega_r i_{ds} - \frac{M}{L_r \tau_r} \omega_r \phi_r
\end{align*}
\]

and

\[
\begin{align*}
U_d &= \sigma L_s (s + \gamma) i_{ds} \\
U_q &= \sigma L_s (s + \gamma) i_{qs}
\end{align*}
\]

The $d-q$ axis reference currents are derived from Equations (2) and (3) as follows:

\[
i_{ds}^* = \frac{\phi_r^*}{M} \\
i_{qs}^* = \frac{L_r}{n_p M} \phi_r T_c
\]

Finally, the vector control scheme is given in Figure 1. Classical PI controllers are used in this scheme for $d-q$ currents control. However, following Equations (5) and (6), feed-forward compensation terms are introduced into the current control loops. An IP controller is used for motor speed regulation. More details about vector control and controllers calculation can be found in [38, 39].

3 | SENSORLESS SPEED CONTROL SENSITIVITY UNDER IGBT OSF AND PROBLEM STATEMENT

The main goal of this section is to study the potentialities and characteristics of an STA-based observer for sensorless control IM drive in postfault operation mode. The considered fault is an open circuit of power switches into the VSI. A simplified block diagram of the speed sensorless control as well as the topology of the inverter are illustrated in Figure 2.

This structure regroups an IM drive, a three-phase VSI and a magnetic powder brake. The VSI consists of three-legs, and each leg consists of two IGBTs with freewheeling diodes. A software observer-based sensor is used to provide the actual rotor speed used by the vector control of the motor.

Former research studies, as in [36], investigated experimentally the behaviour of the described system based on a speed sensorless IM drive under faulty VSI. For that purpose, a first-order SMO based on the electrical part of the classic IM model, in $(\alpha\beta\gamma)$ frame, described in [36, 40] and given in Equation (10) is proposed for rotor speed estimation.

![Figure 1](image-url)
The work given here aims essentially to minimise the fault impact and ensures the stability and continuity of the electrical drive operation under inverter fault. For that purpose, a super-twisting-based observer is proposed for test. As illustrated in Figure 4, the choice of this observer is justified by the fact that the estimated rotor speed, which is considerably impacted under inverter fault, is not involved on the estimation of the currents and flux when an STA-based observer is used (Figure 4(b)). These assertions are illustrated in the sequel with some experimental results carried out on IM for healthy and faulty operation mode considering the reconfiguration steps, too.

4 | SUPER TWISTING ALGORITHM-BASED OBSERVER

The stator current and the rotor fluxes described in the conventional model in Equation (10) are strongly coupled and all depend on the rotor speed. Consequently, in unwanted conditions generated by an IGBT open-circuit fault, a disturbance in a single state variable directly affects the dynamic of the other variables of the sensorless controlled IM, resulting in estimation errors in the observation loop. These estimation errors in turn contribute to the rapid degradation of the sensorless control and to the divergence or shutdown of the motor. In order to reduce this strong coupling between state variables when designing the observation technique, the electrical part of the IM model in the stationary reference frame (α, β) in terms of stator current and rotor flux is rewritten as follows:

\[
\begin{aligned}
\dot{i}_{an} &= -\gamma i_{an} + \frac{K}{\tau_r} \phi_{ar} + \alpha_r K \beta_r + \frac{1}{\sigma L_s} v_m \\
\dot{i}_{bn} &= -\gamma i_{bn} + \frac{K}{\tau_r} \phi_{br} + \alpha_r K \beta_r + \frac{1}{\sigma L_s} v_m \\
\dot{\phi}_{ar} &= \frac{M}{\tau_r} i_{ar} - \frac{1}{\tau_r} \phi_{ar} - \omega_r \alpha_r \\
\dot{\phi}_{br} &= \frac{M}{\tau_r} i_{br} - \frac{1}{\tau_r} \phi_{br} - \omega_r \beta_r \\
\end{aligned}
\]
F I G U R E 4 Observer electrical variables dependence of estimated rotor speed: (a) model-based observer where estimated currents and flux dependent of estimated speed $\dot{\omega}$, and (b) STA-based observer where the estimated currents and flux are not dependent of estimated speed $\dot{\omega}$.

\[
\begin{align*}
\dot{i}_{as} &= -R_s i_{as} - \left(\frac{M}{\tau_r} i_{as} - \frac{1}{\tau_r} \phi_{ar} - \omega_r \phi_{br} \right) a + b v_{as} \\
\dot{i}_{bs} &= -R_s i_{bs} - \left(\frac{M}{\tau_r} i_{bs} - \frac{1}{\tau_r} \phi_{br} + \omega_r \phi_{ar} \right) a + b v_{bs} \\
\dot{\phi}_{ar} &= \frac{M}{\tau_r} i_{as} - \frac{1}{\tau_r} \phi_{ar} - \omega_r \phi_{br} \\
\dot{\phi}_{br} &= \frac{M}{\tau_r} i_{bs} - \frac{1}{\tau_r} \phi_{br} + \omega_r \phi_{ar}
\end{align*}
\] (11)

with $a = \frac{M}{\alpha L_r}$, $b = \frac{M}{\beta L_r}$.

By substituting the terms in brackets corresponding to the flux derivatives by $(\dot{\phi}_{ar}, \dot{\phi}_{br})$, the model dedicated to observation becomes:

\[
\begin{align*}
\dot{i}_{as} &= -R_s i_{as} - a \phi_{ar} + b v_{as} \\
\dot{i}_{bs} &= -R_s i_{bs} - a \phi_{br} + b v_{bs} \\
\dot{\phi}_{ar} &= \frac{M}{\tau_r} i_{as} - \frac{1}{\tau_r} \phi_{ar} - \omega_r \phi_{br} \\
\dot{\phi}_{br} &= \frac{M}{\tau_r} i_{bs} - \frac{1}{\tau_r} \phi_{br} + \omega_r \phi_{ar}
\end{align*}
\] (12)

4.2 | Design of the STA-based SMO

To apply the STA on the IM model, the following variable change has to be performed:

\[
\begin{align*}
\dot{z}_1 &= i_{as} \\
\dot{z}_2 &= i_{bs} \\
\dot{z}_3 &= -\dot{\phi}_{ar} = -\frac{M}{\tau_r} i_{as} + \frac{1}{\tau_r} \phi_{ar} + \omega_r \phi_{br} \\
\dot{z}_4 &= -\dot{\phi}_{br} = -\frac{M}{\tau_r} i_{bs} + \frac{1}{\tau_r} \phi_{br} - \omega_r \phi_{ar}
\end{align*}
\] (14)

By substituting the Equation (14) in the Equation (12), the dynamic current model becomes:

\[
\begin{align*}
\dot{z}_1 &= -R_s \dot{z}_3 + az_3 + b v_{as} \\
\dot{z}_2 &= -R_s \dot{z}_4 + az_4 + b v_{bs}
\end{align*}
\] (15)

4.1 | Super-twisting algorithm

The STA is classified among the high-order (second-order) sliding-mode algorithms, where it was introduced by Levant in 1993 [41]. It was widely used later for control in [42, 43] and for SMO in [44, 45].

\[
\begin{align*}
\dot{x}_1 &= f(x_2) + \gamma |e_1|^{0.5} \text{sign}(e_1) + \rho_1 \\
\dot{x}_2 &= \xi \text{sign}(e_1) + \rho_2
\end{align*}
\] (13)

where $e_i = x_i - \hat{x}_i$, x_i is the state variables, γ and ξ are the observation gains, ρ_1 and ρ_2 are the perturbation terms [11].

The STA can be written as follows:

The robustness and the finite-time convergence of the STA and the STA-based observer have been addressed in [45–49]. Accordingly, the stability has been proved by Lyapunov methods. In addition, since the finite-time convergence of the observer is proved, it can be designed independently of the controller [45].

By applying the STA described in Equation (13) to the current and flux model, the second-order SMO can be expressed as follows:

\[
\begin{align*}
\dot{\hat{z}}_1 &= -R_s \hat{z}_3 + az_3 + b v_{as} + \gamma_1 |e_1|^{0.5} \text{sign}(e_1) \\
\dot{\hat{z}}_3 &= \xi_1 \text{sign}(e_1) \\
\dot{\hat{z}}_2 &= -R_s \hat{z}_4 + az_4 + b v_{bs} + \gamma_2 |e_2|^{0.5} \text{sign}(e_2) \\
\dot{\hat{z}}_4 &= \xi_2 \text{sign}(e_2)
\end{align*}
\] (16)

where $e_i = (z_i - \hat{z}_i)_{i=1,2}$ are the current estimation errors, \text{sign}(\cdot) indicates the sign function. γ_i and ξ_i denote the STO gains.

According to STA in Equation (6), the perturbation terms ρ_1 and ρ_2 can be defined as:
\[
\left\{ \begin{array}{l}
\rho_1 = -R_i b z_1 + b v_{at} \\
\rho_2 = -R_i b z_2 + b v_{eb}
\end{array} \right. \quad (17)
\]

More details about the stability and the finite-time convergence of the STA can be found in [45–47]. The application and the experimental validation of the STA-based observer when the electric drive operates free of any fault can be also found in [11–13].

After applying the STA to IM model, it is important to note that the current and flux observation model in Equation (16) becomes independent of the rotor flux and estimated rotor speed. It is only expressed as a function of the stator currents (\(z_1, z_2\)), the currents errors (\(e_1, e_2\)) and the stator voltages (\(v_{ia}, v_{ib}\)). Flux derivatives are calculated through the sliding mode theory using the sign of errors between the estimated and measured currents. Since the faulty condition generated by the VSI power switch devices is related to the phase currents, then, the STO model in Equation (16) which is now free of the estimated rotor speed and rotor flux (\(\omega_r, \phi_r\)) can provide more accurate estimation outputs in degraded operating mode.

4.3 Rotor speed estimation

The estimated rotor fluxes are expressed in function of the rotor speed, then substituting the flux model Equation (12) in Equation (14) yields:

\[
\begin{align*}
\dot{z}_3 &= -\dot{\phi}_{ar} = -\frac{M}{\tau_r} i_{ar} + \frac{1}{\tau_r} \phi_{ar} + \omega_r \dot{\phi}_{br} \\
\dot{z}_4 &= -\dot{\phi}_{br} = -\frac{M}{\tau_r} i_{br} + \frac{1}{\tau_r} \phi_{br} - \omega_r \dot{\phi}_{ar}
\end{align*}
\tag{18}
\]

From the second-order SMO model Equation (16) and the rotor flux model Equation (18), the estimated rotor speed can be expressed as follows:

\[
\dot{\omega}_r = \frac{(\dot{\phi}_{br} - M i_{br}) z_3 - (\dot{\phi}_{ar} - M i_{ar}) z_4}{-\phi_{ar} - \phi_{br} - \phi_{br} M i_{br} + \phi_{ar} M i_{ar}}
\tag{19}
\]

with (\(-\dot{\phi}_{ar} = \hat{z}_3\)) and (\(-\dot{\phi}_{br} = \hat{z}_4\)).

The block diagram describing the design steps of the SMO based on STA is shown in Figure 5. The stator currents are first estimated using actual currents and voltages as inputs, then the current estimation error is used for the estimation of flux derivatives. Finally, the rotor speed is estimated through the STA-based observer outputs (\(\hat{z}_{12}, \hat{z}_{34}, \phi_{abr}\)). As the IGBT OSF is related to the inverter phase currents, it is important to note that when using the STA-based observer, the estimation of currents is totally independent of the motor variables (rotor flux and rotor speed), it depends only on the real variables provided by the current sensors for the inverter phase currents (\(z_1 = i_{ar}, z_2 = i_{br}\)) and the output block control for the stator voltages (\(v_{ia}, v_{ib}\)).

The good accuracy of the observer based on the STA to estimate the motor state under faulty operating conditions.

The finite-time convergence of the second-order SMO based on STA is proved in [45]. Thus, the observer can be designed independently of the controller. Therefore, the choice of the STA-based SMO’s gains will be studied in this section.

By making a variable change such that:

\[
\begin{align*}
z_5 &= \hat{z}_3 \\
z_6 &= \hat{z}_4
\end{align*}
\tag{20}
\]

The current and flux IM model Equation (12) can be re-expressed as follows:

\[
\begin{align*}
\dot{z}_1 &= -R_i b z_1 + a z_3 + b v_{as} \\
\dot{z}_2 &= -R_i b z_2 + a z_4 + b v_{bs} \\
\dot{z}_3 &= z_5 \\
\dot{z}_4 &= z_6
\end{align*}
\tag{21}
\]

By defining \(\hat{X}\) as the error between the actual and the estimated states:

\[
\hat{X} = [\hat{X}_1 \quad \hat{X}_2]^T
\]

with \(\hat{X}_1 = \begin{bmatrix} z_1 - \hat{z}_1 \\ z_2 - \hat{z}_2 \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}\) and \(\hat{X}_2 = \begin{bmatrix} z_3 - \hat{z}_3 \\ z_4 - \hat{z}_4 \end{bmatrix}\)

Then, error dynamics are given by:

\[
\begin{align*}
\dot{\hat{X}}_1 &= \begin{pmatrix} \hat{z}_1 - \hat{\hat{z}}_1 \\ \hat{z}_2 - \hat{\hat{z}}_2 \end{pmatrix} = a \begin{pmatrix} z_3 - \hat{z}_3 \\ z_4 - \hat{z}_4 \end{pmatrix} - \begin{pmatrix} \gamma_1 |e_1|^{\frac{1}{2}} \text{sign}(e_1) \\ \gamma_2 |e_2|^{\frac{1}{2}} \text{sign}(e_2) \end{pmatrix} \\
\dot{\hat{X}}_2 &= \begin{pmatrix} \hat{z}_3 - \hat{z}_3 \\ \hat{z}_4 - \hat{z}_4 \end{pmatrix} = \begin{pmatrix} \hat{z}_3 \\ \hat{z}_4 \end{pmatrix} - \begin{pmatrix} \gamma_1 \text{sign}(e_1) \\ \gamma_2 \text{sign}(e_2) \end{pmatrix}
\end{align*}
\tag{22}
\]
The error dynamics in Equation (22) can be rewritten in the following canonical form:

\[
\dot{\tilde{X}}_1 = a\tilde{X}_2 - \gamma_{1,2} \left| \tilde{X}_1 \right|^{\frac{1}{2}} \text{sign} \left(\tilde{X}_1 \right) \tilde{X}_2 = \tilde{F} \left(X_1, X_2, \tilde{X}_2 \right) \\
- \xi_{1,2} \text{sign} \left(\tilde{X}_1 \right) \tag{23}
\]

where \(\tilde{F} \left(X_1, X_2, \tilde{X}_2 \right) \) represents the derivatives of \(\tilde{z}_3 \) and \(\dot{\tilde{z}}_4 \). It is expressed as a function of \(X_1, X_2 \) and \(\tilde{X}_2 \).

\[
\gamma_{1,2} = \begin{pmatrix} \gamma_1 \\ 0 \\ \gamma_2 \end{pmatrix}
\]
denotes the gains related to the estimation of stator currents \((\tilde{z}_1, \tilde{z}_2) \).

\[
\xi_{1,2} = \begin{pmatrix} \xi_1 \\ 0 \\ \xi_2 \end{pmatrix}
\]
denotes the gains related to the estimation of flux derivatives \((\tilde{z}_3, \tilde{z}_4) \).

Assuming that the system states in Equation (21) are bounded, then there is a constant \(f^+ \) so that the following inequality is checked [45]:

\[
\left| \tilde{F} \left(X_1, X_2, \tilde{X}_2 \right) \right| \leq f^+
\tag{24}
\]

Therefore, this inequality must be verified for all three components \(X_1, X_2 \) and \(\tilde{X}_2 < 2\sup X_2 \).

Assuming that the Equation (24) is reached and the assumption of the state boundedness is true too, the STO’s gains in Equation (16) are chosen satisfying the following two inequalities:

\[
\begin{align*}
\gamma_{1,2} &> \sqrt{\frac{2}{\xi_{1,2} - f^+} \left(\xi_{1,2} + f^+ \right) \left(1 + c_{1,2} \right)} \\
\gamma_{1,2} &> \sqrt{\frac{2}{\xi_{1,2} - f^+} \left(\xi_{1,2} + f^+ \right) \left(1 + c_{1,2} \right)}
\end{align*}
\tag{25}
\]

where \(c_{1,2} \) are selected constants bounded as \(c_{1,2} \in [0, 1] \).

Theorem 1: Assuming that the observer parameters \((\xi_{1,2}, \gamma_{1,2}) \) are selected according to the condition in Equation (25) and that the condition in Equation (24) is valid for the system Equation (21), then, the estimated states based on the STO converge in finite-time to their corresponding real states. The proof of the convergence theorem of the STA-based observer in finite-time is treated and well explained in [45].

The block diagram of the studied electromechanical conversion chain based on IM speed sensorless control is depicted in Figure 6. This structure is based on field oriented vector control of three phase VSI. The mechanical speed sensor is substituted by an SMO based on the STA. This observer uses as inputs the stator currents and voltages (\(i_{safb}, v_{safb} \)) for the estimation of rotor speed (\(\omega_r \)). IGBT OSFs in the inverter are generated using magnetic relays controlled by Matlab/Simulink and dSPACE card.

5 EXPERIMENTAL PROTOTYPE AND RESULTS INVESTIGATION

5.1 Experimental prototype

The test bench used for the experimental evaluation is depicted in Figure 7. It regroups a 3-kW IM, a VSI, a powder brake and magnetic-relays based electronic circuit for fault injection. The parameters of the IM and the inverter used in the experiments are given in Table 2. The sensorless speed scheme is tested in a closed-loop vector control. Hence, the IFOC control and the STA-based SMO are implemented using a dSPACE system with DS1104 controller board. The 3-\(\phi \) inverter is constructed by using SEMIKRON IGBT components. The PWM-inverter is running with a switching frequency of 5 kHz. Dedicated fast analogue circuits (magnetic relays) are used for real-time open-switch fault generation into the VSI feeding the IM. Therefore, to inject an open-switch fault, these magnetic relays, by a simple command from the dSPACE controller card, keep the switching signal of the faulty transistor in ‘OFF’ state.

5.2 Experimental results

This section verifies the robustness of the control algorithm under healthy conditions and then in postfault operation modes. Three tests investigate the IM drive sensorless control using STA observer during inverter fault occurrence, isolation and reconfiguration modes:

Test 1: The first test is performed to validate the performance of the control algorithm in healthy operating conditions.
accuracy of the STA-based observer and the robustness of the speed sensorless control system in postfault operation mode.

Test 3: This test investigates the sensorless speed-control of the IM drive behaviour under fault tolerant control transition, since this step should be applied after.

5.2.1 | Test 1: Prefault operation mode

To test the effectiveness of the SMO during sudden speed change and speed reversal experimental results are presented in Figure 8. This figure shows the experimental waveforms of the reference, actual and estimated rotor speeds and the measured and estimated inverter output currents in α-β axis. In a steady state, The sensorless drive is running at 1000 rpm and at $t = 9.5$ s a step transition of the reference speed from 1000 rpm to -1000 rpm is applied.

Regarding the performance of the STO sensorless control algorithm, the estimated stator currents (i_a, i_b) depicted in Figure 8(a) follow perfectly the measured ones in steady state. However, light errors are observed in start-up and rotor speed inversion steps. In addition, as depicted in Figure 8(b), good speed estimation accuracy is obtained in steady state and during reference speed transients where the estimated speed tracks the actual speed. In conclusion, the obtained results clearly show good performance of the STA-based sensorless control of the IM in terms of trajectory tracking and estimation accuracy in prefault operation mode. The next tests investigate the sensitivity of the observer in postfault operation mode due to inverter open-circuit fault.

5.2.2 | Test 2: Postfault operation mode

This section investigates the STA-based sensorless control performance under single and multiple open-switch faults in the VSI. A first experiment is performed when IGBT T_d is opened. The time-domain waveforms of the output inverter currents, the measured and the estimated rotor speeds are illustrated in Figure 9. The performances of the sensorless control algorithm are analysed with respect to the accuracy estimation of the inverter output currents and the ripple ratio of the estimated and measured speeds in postfault condition. The ripple ratio of the actual speed $\langle \omega_r \rangle$ is given by the following relation:

$$\tau_{\omega r} = \frac{\omega_r \text{Max} - \omega_r \text{Min}}{\langle \omega_r \rangle} \times 100$$ \hspace{1cm} (26)$$

where $\langle \omega_r \rangle$ represents the average value of the actual speed around the steady state operation mode. $\omega_r \text{Max}$ and $\omega_r \text{Min}$ denote the maximum and minimum value of the velocity ripples in the positive and negative direction, respectively. A fault condition is applied to IGBT T_d at $t = 4.83s$. After the fault occurrence, the corresponding phase current i_b suddenly drops

Table 2 VSI, IM and STO parameters

VSI (IPM- SEMIKRON IGBT)	
DC-link voltage	540 V
Dead time	4 μs
PWM switching frequency	5 kHz
IM	
Rated power	3 kW
Rated speed	1430 rpm
Rated frequency	50 Hz
(R_s, R_r)	2.3 Ω, 1.55 Ω
(L_s, L_r)	0.261 H
J	0.02 kg m2
M	0.249 H
STO	
$\xi_{1,2}$	19000
$\xi_{1,2}$	4500

Note: The detection, location and isolation of the faulty inverter-leg.
to zero and flows only in the positive direction. Direct current components (dc values) are consequently added to the remaining currents corresponding to the healthy phases (i_a, i_c).

Regarding the estimation performance of the STO and based on the zoomed views of the inverter output currents in Figure 9(b), it can be observed that the estimated stator currents still follow their corresponding measured signals with good estimation accuracy.

The estimated rotor speed depicted in Figure 9(c) undergoes a relatively low disturbance but remains close to the reference speed due to the ripples. The ripples ratio τ_m of the estimated and measured speeds is relatively equal with a value about 3.5%, which demonstrates the good performance of the STO in terms of trajectory tracking and estimation accuracy under single IGBT open-circuit fault.

The dynamic behaviour of the speed sensorless IM drive under load operating condition and multiple IGBT open-circuit fault is illustrated in Figure 10. The motor operates at a reverse speed of -1000 rpm and 50% of the nominal load torque. The fault is applied to the lower and upper IGBTs, T_3 and T_6, of the second and the third inverter legs, respectively, at $t = 12.59$ s. The fault occurrence results in the loss of one current alternation of each faulty legs (i_b, i_c).

Figure 10(b) shows the experimental waveforms of measured and estimated speed and the current representing the image of the torque (stator current in dq frame i_q). It can be observed that the measured and estimated speed is disturbed following the occurrence of the fault while the estimated inverter output currents (i_a, i_b, i_c) given by the zoomed views displayed in Figure 10(a) present a good
estimation accuracy comparing to the high estimation error registered by the previous based observer methods presented in [36, 50, 51]. The estimated currents remain continuously closed to the measured ones (i_a, i_b, i_c) with a relatively small error. This confirms the contribution of the STA applied to the IM model Equation (11) to obtain an estimation of the stator currents and rotor flux in which the rotor speed is not involved in the correction term, as depicted in Figure 4 and Equation 9. So, the perturbation caused by the fault condition across the estimated speed did not reflex on the rotor flux estimation and the estimated inverter output currents. Compared to the reference speed fixed at -1000 rpm, the ripples ratio is still relatively close to 3.3% for the estimated speed and 6% for the measured one. The increase in the ripples ratio compared to the previous test (single IGBT open-circuit fault) is due to the increased load torque as well as the introduction of a multiple IGBT open-circuit fault. It is important to note that the continuity of operation of IM drive is maintained to the high robustness and performance of the used STO for the sensorless control under inverter fault conditions. This is not the case in [34–36, 50, 51] where the estimation of stator currents and/or rotor speed is hardly disturbed or completely failed.

A comparative study quantifying the current estimation error for different used model-based observers is presented in Table 3. This study shows that during the faulty operation mode generated by the occurrence of an IGBT open-circuit fault, the two SMO observers used in [36] and [50] demonstrate a failure of current estimation with a considerable error between the measured and the estimated currents. This considerable estimation error leads to cumulative errors in the estimation of the remain motor state variables and consequently to a high ripple in rotor speed, which, in addition to excessive motor overheating, can lead to sensorless control failure. In contrary, when using the STO, a good estimation accuracy of the stator currents is recorded during the appearance of the fault.

Similar to the comportment of the speed sensored IM drive (with speed sensor) in postfault operation mode, the ripples ratio of q-axis current shown in the second subplot of Figure 10(c) is relatively high, about 156%. Since the electromagnetic torque is directly dependent on this disturbed current, the recorded ripples reflect the high level of the mechanical vibrations which can lead to additional faults in the electrical drive system. Therefore, early detection and compensation of the fault are in high demand to protect the system and ensure its continuous operation under safe conditions.

In the next, the fault compensation step is investigated. Its implementation requires first and foremost the information provided by the diagnosis and isolation steps. Accordingly, the sequence including fault detection and fault isolation is implemented and uses the method addressed in [28]. This method is fast and allows detecting the fault in an early stage to achieve the isolation and reconfiguration of the electrical drive system.

Figure 10 Experimental results of the sensorless control based on ST observer under inverter fault operating mode: simultaneous IGBT OSF (T_1 and T_2) (50% Cn, -1000 rpm) (a) Real and estimated stator currents. (b) Zoomed view of the real and the estimated currents. (c) Real and the estimated speeds and indirect stator current
5.2.3 | Test 3: Fault compensation

A fault compensation technique is applied in order to analyse the sensorless control robustness during the transient states due to the fault occurrence, the fault isolation and the system reconfiguration steps. These evaluations permit to verify the immunity of the STO in postfault operation mode and its ability to reconstruct the estimated variable states. Various fault tolerant control strategies are applied in fault tolerant systems to ensure full or partial restoration of electrical drive functionality [52, 53]. The used fault compensation strategy is based on hardware redundancy as illustrated in Figure 10. An additional leg (\(T_7\), \(T_8\)), not used in prefault operation mode, is used to replace the faulty one, as depicted in Figure 11. In this topology, the triacs are used to isolate the failed leg and connect the fourth redundant leg. The open-switch fault is introduced in the upper IGBT T5. Once the fault detection step is accomplished, the inverter topology is modified so that the faulty motor winding becomes connected to the redundant leg.

The obtained experimental results of the fault tolerant sensorless control of IM drive based on the STO are illustrated in Figure 12. Experimental results show that the estimated current and speed are always closed to the measured ones in healthy operation mode. Good performances are also obtained after the fault occurrence in the VSI since the STA-based observer continues to correctly operate and confirmed its ability to overcome the disturbances caused by the occurrence and isolation phases of the fault at \(t = 6\) s and \(t = 6.013\) s, respectively, with improved system stability and good estimation accuracy. The maximum recorded error between measured and estimated speeds (sublots 2 and 3) during the transition phases is relatively small (about 3.7%), indicating the good performance of the observer for reconstructing the estimated state of the electrical drive under severe and transient operating conditions. It is also important to note that the estimated speed ripple rate \(\tau \omega\) is low (about 4.2%) in comparison to the first-order SMO investigated in [36], where the estimation of rotor flux and stator currents depends on the rotor speed (see Figure 3).

As announced in the aforementioned section, these experimental investigations aim to analyse the behaviour of the sensorless IM drive and to compare it with its homologue classical controlled structure (with speed sensor). Thus, these results are validated by comparing them to those presented in [54], where the hardware redundancy reconfiguration strategy used is applied with a conventional system based on an IM controlled by a mechanical speed sensor. In [54], after the compensation of the OSF, the system took about one second to restore its steady state operating mode with a speed ripple rate \(\tau \omega\) of about 25%. Based on the presented results, it can be concluded that sensorless control based on the STA performs comparably to a conventional system with speed sensor during the transient states due to the detection, isolation and compensation steps. This convergence of behaviours and the functional stability of the motor during these transient states are very important from FD point of view. Therefore, the diagnostic approaches developed in the

TABLE 3 Comparative study of current estimation error quantity given by different observers under faulty conditions

Type of control	Observer	Fault type	Current estimation accuracy
Speed-sensored control	SMO	OSF	Failed
Speed-sensorless control	SMO	OSF	Failed
This work Speed-sensorless control	SMO-based STA	OSF	Maintained: good estimation

FIGURE 11 Block diagram of the redundant inverter topology

FIGURE 12 Experimental waveforms of fault tolerant sensorless control based on STO under IGBT open-circuit fault
study for IM with speed sensing can remain available in the case of an STO-based speed sensorless scheme to diagnose inverter OSFs.

6 | CONCLUSIONS AND DISCUSSION

A second-order SMO based on the STA has been proposed for experimental investigation in order to analyse its robustness under healthy operating conditions and in the presence of inverter faults. The inverter faults are single and double open circuit of the power switches. To improve the reliability of the speed sensorless controlled IM drives and to assess the observer’s accuracy under transient stages, a reconfiguration strategy based on hardware redundancy has been applied. The SMO based on the STA has confirmed its best quality by maintaining good IM state estimation performance even in the postfault operation mode and during transient states. This has ensured a better operating stability of the speed sensorless motor drive and has guaranteed its continuity of operation.

This study raises prospects for further in-depth studies related to the relationship between the power asymmetry generated by the inverter switch fault and the rotor speed dependency on the stator currents estimation model. It also allows future research on fault diagnosis and monitoring of damaged drives powering motors operated in the speed-sensorless mode.

NOMENCLATURE

FD fault diagnosis
FDI fault detection identification
HF high frequency
FTC fault tolerant control
IFOC indirect field oriented control
IGBT insulated gate bipolar transistor
IM induction motor
IPMSM interior permanent magnet synchronous motor
MRAS model reference adaptive system
OSF open switch fault
SMO sliding mode observer
STA super twisting algorithm
STO super twisting observer
VSI voltage source inverter
PMSG permanent magnet synchronous generator
PWM pulse width modulation
\(i_{abc}, i_{alpf}, i_{dq}\) three phase stator currents, stator current in \(\alpha-\beta\) reference frame, stator current in \(d-q\) reference frame
\(\epsilon_i\) current estimation errors
\(v_{alpf}\) stator voltage components
\(\phi_{alfr}\) rotor fluxes
\(\omega_r, \hat{\omega}_r\) actual and estimated rotor speeds
\(\hat{x}\) the estimation state of \(\chi\)

ORCID

Rebah Maamouri © https://orcid.org/0000-0002-6502-1174
Mohamed Tvalbeli © https://orcid.org/0000-0001-6904-8756

REFERENCES

1. Leppanen, V.M., Luomi, J.: The speed-sensorless induction machine control for zero speed and frequency. IEEE Trans. Ind. Electron. (51), 1041–1047 (2004)
2. Ide, K., Ha, Jung-Ik, Sawamura, M.: A hybrid speed estimator of flux observer for induction motor drives. IEEE Trans. Ind. Electron. (53), 130–137 (2006)
3. Hinkkanen, M., Harnefors, L.: Complete stability of reduced-order and full-order observers for sensorless IM drives. IEEE Trans. Ind. Electron. 55(5), 1319–1329 (2008)
4. Hinkkanen, M., Harnefors, L.: Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives. IEEE Trans. Power Electron. 25, 1173–1183 (2010)
5. Korzzone, M., Tarchala, G., Orlowska-Kowalska, T.: Simple stability enhancement method for stator current error-based MRAS-type speed estimator for induction motor. IEEE Trans. Ind. Electron. 67(7), 5854–5866 (2020)
6. Aydogmus, O., Sürter, S.: Implementation of EKF based sensorless drive system using vector controlled PMSM fed by a matrix converter. Int. J. Electr. Power Energy Syst. 43(1), 736–743 (2012)
7. Yin, Z., et al.: A speed and flux observer of induction motor based on extended Kalman filter and markov chain. IEEE Trans. Power Electron. 32(9), 7096–7117 (Sept. 2017)
8. Lin, I., Zhang, W.: An adaptive sliding-mode observer with a tangent function-based PLL structure for position sensorless PMSM drives. Intl. J. Electr. Power Energy Syst. 88, 63–74 (2017)
9. Maamouri, R., et al.: Fault diagnosis and fault tolerant control of a three-phase VSI supplying sensorless speed controlled induction motor drive. Elec. Pow. Compo. Sys. 20, 2139–2173 (2018)
10. Zaky, M. S., et al.: A new adaptive SMO for speed estimation of sensorless induction motor drives at zero and very low frequencies. IEEE Trans. Ind. Electron. 65(9), 6901–6911 (2018)
11. Zhao, L., et al.: Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives. IEEE Trans. Ind. Electron. 61(10), 5280–5289 (2014)
12. Wang, H., Ge, X., Liu, Y.: Second-order sliding-mode MRAS observer-based sensorless vector control of linear induction motor drives for medium-low speed Maglev applications. IEEE Trans. Ind. Electron. 65(12), 9938–9952 (2018)
13. Zhang, L., et al.: Second order sliding mode observer of linear induction motor. IET Electr. Power Appl. 13(1), 38–47 (2019)
14. Orlowska-Kowalska, T., Korzzone, M., Tarchala, G.: Stability improvement methods of the adaptive full-order observer for sensorless induction motor drive—comparative study. IEEE Trans. Industr. Inform. 15(11), 6114–6126 (2019)
15. Davari, A., Khaburi, D.A.: Using full order and reduced order observers for robust sensorless predictive torque control of induction motors. IEEE Trans. Power Electron. 27, 3424–3433 (July 2012)
16. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques part I: Fault diagnosis. IEEE Trans. Ind. Electron. 62(6), 3768–3774 (2015)
17. Hanna, R.A.: Medium-voltage adjustable-speed drives-users’ and manufacturers’ experiences. IEEE Transactions on Industry Applications. 33(6), 115–123 (1997)
18. Yang, S., et al.: Condition monitoring for device reliability in power electronic converters: A review. IEEE Trans. Power Electron. 25(11), 2734–2752 (2010)
19. Ribeiro, E., Cardoso, A.J.M., Boccaletti, C.: Open-circuit fault diagnosis in interleaved De-DC converters. IEEE Trans. Power Electron. 29(6), 3091–3102 (2014)
20. Wu, F., Zhao, J.: A real-time multiple open-circuit fault diagnosis method in voltage-source-inverter fed vector controlled drives. IEEE Trans. Power Electron. 31(2), 1425–1437 (2016)
21. Ulises Campos-Delgado, D., et al.: Diagnosis of open-switch faults in variable speed drives by stator current analysis and pattern recognition. IET Electr. Power Appl. 7(6), 509–522 (2013)
22. Diallo, D., et al.: Fault detection and diagnosis in an induction machine drive: a pattern recognition approach based on concordia stator...
23. Estima, J.O., Marques Cardoso, A.J.: A new approach for real-time multiple open-circuit fault diagnosis in voltage-source inverters. IEEE Trans. Ind. Appl. 47(6), 2487–2494 (2011)

24. Trabelsi, M., Boussak, M., Benbouzid, M.: Multiple criteria for high performance real-time diagnostic of single and multiple open-switch faults in ac-motor drives: Application to IGBT-based voltage source inverter. Electr. Power Syst. Res. 144, 136–149 (2017)

25. Estima, J.O., Marques Cardoso, A.J.: A new algorithm for real-time multiple open-circuit fault diagnosis in voltage-fed PWM motor drives by the reference current errors. IEEE Trans. Ind. Electron. 60(8), 3496–3505 (2013)

26. Rodríguez-Blanco, M.A., et al.: Fault detection for IGBT using adaptive thresholds during the turn-on transient. IEEE Trans. Ind. Electron. 62(3), 1975–1983 (2015)

27. An, Q.T., et al.: Switching function model-based fast-diagnostic method of open-switch faults in inverters without sensors. IEEE Trans. Power Electron. 26(1), 119–126 (2011)

28. Trabelsi, M., Boussak, M., Gossa, M.: PWM-switching pattern-based diagnosis scheme for single and multiple open-switch damages in VSI-fed induction motor drives. ISA Trans. 51(2), 333–344 (2012)

29. Xiahou, K.S., Wu, Q.H.: Fault-tolerant control of doubly-fed induction generators under voltage and current sensor faults. Int. J. Electr. Power Energy Syst. 98, 48–61 (2018)

30. Jung, S.M., et al.: An MRAS-based diagnosis of open-circuit fault in PWM voltage-source inverters for PM synchronous motor drive systems. IEEE Trans. Power Electron. 28(5), 2514–2526 (2013)

31. Jlassi, I., et al.: Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems. IEEE Trans. Power Electron. 30(5), 2689–2702 (2015)

32. Li, Z., et al.: Fast transistor open-circuit faults diagnosis in grid-tied three-phase VSIIs based on average bridge arm pole-to-pole voltages and error-adaptive thresholds. IEEE Trans. Power Electron. 33(9), 8040–8051 (2018)

33. Consoli, A., et al.: Effects of inverter faults and line disturbances on sensorless position estimation. In: SPEEDAM 2010 – International symposium on power electronics, electrical drives, automation and motion, Pisa, pp. 1496–1501 (2010)

34. Xing, H., et al.: Detection and location of open-circuit fault for modular multilevel converter. Int. J. Electr. Power Energy Syst. 1–10 (2020)

35. Consoli, A., et al.: HF Injection-Based Sensorless Technique for Fault-Tolerant IPMSM Drives. In IEEE Energy Conversion Congress and Exposition, Atlanta, pp. 3131–3138 (2010)

36. Maamouri, R., et al.: Mixed model-based and signal-based approach for open-switches fault diagnostic in sensorless speed vector-controlled induction motor drive using sliding mode observer. IET Power Electron. 12(3), 1149–1159 (2019)

37. Salehifar, M., Moreno-Equihua, M.: Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor. ISA Trans. 60, 143–155 (2016)

38. Traore, D., et al.: Speed sensorless field-oriented control of induction motor with interconnected observers: experimental tests on low frequencies benchmark. IET Control Theory Appl. 1(6), 1681–1692 (2007)

39. Eschleih, H., et al.: Comparative study between the rotor flux oriented control and non-linear backstepping control of a five-phase induction motor drive – an experimental validation. IET Power Electron. 9(13), 2510–2521 (2016)

40. Ghanes, M., De Leon, J., Glumineau, A.: Observability study and observer-based interconnected form for sensorless induction motor. In: Proceedings of the 45th IEEE conference on decision and control, 1240–1245 December, San Diego, CA (2006)

41. Levant, A: Sliding order and sliding accuracy in sliding mode control. Int. J. Control. 58(6), 1247–1263 (1993)

42. Gennaro, S. Di., Rivera Dominguez, J., Meza, M.A.: Sensorless high order sliding mode control of induction motors with core loss. IEEE Trans. Ind. Electron. 61(6), 2678–2689 (2014)

43. Bartolini, G., et al.: On multi-input chattering-free second-order sliding mode control. IEEE Trans. Automat. Contr. 45(9), 1711–1717 (2000)

44. Solvar, S., et al.: Sensorless second order sliding mode observer for induction motor. In: Proceedings of the IEEE conference on control applications, 1993–1983, Yokohama, Japan (2010)

45. Davila, J., Fridman, I., Levant, A.: Second order sliding mode observer for mechanical systems. IEEE Trans. Automat. Contr. 50(11), 1785–1789 (2005)

46. Levant, A.: Principles of 2-sliding mode design. Automatica. 43(4), 576–586 (2007)

47. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Automat. Contr. 57(4), 1035–1040 (2012)

48. Fridman, L., Levant, A.: Higher Order Sliding Modes. In: Barbey, J.P., Perruquetti, W. (eds.) Sliding Mode Control in Engineering, pp. 53–101. Marcel Dekker, New York (2002)

49. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica. 41, 823–830 (2005)

50. Salehifar, M., et al.: Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles. IET Power Electron. 8(1), 76–87 (2015)

51. Jlassi, I., et al.: A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives. IEEE Trans. Ind. Appl. 53(3), 2894–2905 (2016)

52. Welchkov, B.A., et al.: Fault tolerant three-phase AC motor drive topologies: A comparison of features, cost, and limitations. IEEE Trans. Power Electron. 19(4), 1108–1116 (2004)

53. Zhang, E., et al.: Survey on fault tolerant techniques for power electronic converters. IEEE Trans. Power Electron. 29(12), 6319–6331 (2014)

54. Espinoza-Trejo, P.N., et al.: Fault diagnosis scheme for open-circuit faults in field oriented control induction motor drives. IET Power Electron. 6(5), 869–877 (2013)

How to cite this article: Maamouri R, Trabelsi M, Boussak M, M'Sahi F. Second-order SMO-based sensorless control of IM drive: Experimental investigations of observer sensitivity and system reconfiguration in postfault operation mode. IET Electr. Power Appl. 2021;15:811–823. https://doi.org/10.1049/elp2.12057