FRENKEL-GROSS’ IRREGULAR CONNECTION AND HEINLOTH-NGÔ-YUN’S ARE THE SAME

XINWEN ZHU

We show that the irregular connection on \mathbb{G}_m constructed by Frenkel-Gross (\cite{FG}) and the one constructed by Heinloth-Ngô-Yun (\cite{HNY}) are the same, which confirms the Conjecture 2.14 of \cite{HNY}.

The proof is simple, modulo the big machinery of quantization of Hitchin’s integrable systems as developed by Beilinson-Drinfeld (\cite{BD}). The idea is as follows. Let \mathcal{E} be the irregular connection on \mathbb{G}_m as constructed by Frenkel-Gross. It admits a natural oper form. We apply the machinery of Beilinson-Drinfeld to produce an automorphic D-module on the corresponding moduli space of G-bundles, with Hecke eigenvalue \mathcal{E}. We show that this automorphic D-module is equivariant with respect to the unipotent group $I(1)/I(2)$ (see \cite{HNY} for the notation) against the non-degenerate additive character Ψ. By the uniqueness of such D-modules on the moduli space, one knows that the automorphic D-module constructed using the Beilinson-Drinfeld machinery is the same as the automorphic D-module explicitly constructed by Heinloth-Ngô-Yun. Since the irregular connection on \mathbb{G}_m constructed in \cite{HNY} is by definition the Hecke-eigenvalue of this automorphic D-module, it is the same as \mathcal{E}.

1. RECOLLECTION OF [BD]

We begin with the review of the main results of Beilinson-Drinfeld (\cite{BD}). We take the opportunity to describe a slightly generalized (and therefore weaker) version of \cite{BD} in order to deal with the level structures.

Let G be a simple, simply-connected complex Lie group, with Lie algebra \mathfrak{g} and the Langlands dual Lie algebra $\check{\mathfrak{g}}$. Let X be a smooth projective algebraic curve over \mathbb{C}. For every closed point $x \in X$, let \mathcal{O}_x be the completed local ring of X at x and let F_x be its fractional field. Let $D_x = \text{Spec} \mathcal{O}_x$ and $D^\times_x = \text{Spec} F_x$. In what follows, for an affine (ind-)scheme T, we denote by Fun_T the (pro)-algebra of regular functions on T.

Let \mathcal{G} be an integral model of G over X, i.e. \mathcal{G} is a (fiberwise) connected smooth affine group scheme over X such that $\mathcal{G}_{\mathbb{C}(X)} = G_{\mathbb{C}(X)}$, where $C(X)$ is the function field of X. Let Bun_G be the moduli stack of G-torsors on X. The canonical sheaf ω_{Bun_G} is a line bundle on Bun_G. As G is assumed to be simply-connected, we have

Lemma 1. There is a unique line bundle $\omega_{\text{Bun}_G}^{1/2}$ over Bun_G, such that $(\omega_{\text{Bun}_G}^{1/2})^\otimes 2 \simeq \omega_{\text{Bun}_G}$.

Now we assume that Bun_G is “good” in the sense of Beilinson-Drinfeld, i.e.

$$\dim T^* \text{Bun}_G = 2 \dim \text{Bun}_G.$$

In this case one can construct the D-module of the sheaf of critically twisted (a.k.a. $\omega_{\text{Bun}_G}^{1/2}$ twist) differential operators on the smooth site $(\text{Bun}_G)_{\text{sm}}$ of Bun_G, denoted by \mathcal{D}'. Let $\mathcal{D}' = (\text{End}(\mathcal{D}'))^{\text{op}}$ be the sheaf of endomorphisms of \mathcal{D}' as a twisted D-module.

Partially supported by NSF grant DMS10-01280.
Then D' is a sheaf of associative algebra on $(\text{Bun}_G)_{sm}$ and $D' \simeq (D')^{op}$. For more details, we refer to [BD] §1.

Recall the definition of opers on a curve (cf. [BD] §3]). Let $\text{Op}_{L_\mathfrak{g}}(D^\times_x)$ be the ind-scheme of $L_\mathfrak{g}$-opers on the punctured disc D^\times_x. Then there is a natural ring homomorphism

\begin{equation}
 h_x : \text{Fun Op}_{L_\mathfrak{g}}(D^\times_x) \to \Gamma(\text{Bun}_G, D').
\end{equation}

Let us briefly recall its definition. Let $Gr_{G,x}$ be the affine Grassmannian, which is an ind-scheme classifying pairs (\mathcal{F}, β), where \mathcal{F} is a \mathcal{G}-torsor on X and β is a trivialization of \mathcal{F} away from x. Then we have $Gr_{G,x} \simeq G(F_x)/K_x$, where $K_x = \mathcal{G}(O_x)$. Let $\mathcal{L}_{\text{crit}}$ be the pullback of the line bundle $\omega^1_{\text{Bun}_G}$ on Bun_G to $Gr_{G,x}$, and let δ_e be the delta D-module on $Gr_{G,x}$ twisted by $\mathcal{L}_{\text{crit}}$. Let

$$\text{Vac}_x := \Gamma(Gr_{G,x}, \delta_e)$$

be the vacuum $\mathfrak{g}_{\text{crit},x}$-module at the critical level.

Remark 1.1. The module Vac_x is not always isomorphic to $\text{Ind}_{\text{Lie} K_x + C_1}(\text{triv})$, due to the twist by $\mathcal{L}_{\text{crit}}$. For example, if K_x is an Iwahori subgroup,

$$\text{Vac}_x = \text{Ind}_{\text{Lie} K_x + C_1}(\mathbb{C}_{-\rho}),$$

is the Verma module of highest weight $-\rho$ ($-\rho$ is anti-dominant w.r.t. the chosen K_x).

Let $\text{Bun}_{G,x}$ be the scheme classifying pairs (\mathcal{F}, β), where \mathcal{F} is a \mathcal{G}-torsor on X and β is a trivialization of \mathcal{F} on $D_x = \text{Spec} \mathcal{O}_x$. It admits a $(\mathfrak{g}_{\text{crit},x}, K_x)$ action, and $\text{Bun}_{G,x}/K_x \simeq \text{Bun}_G$. Now applying the standard localization construction to the Harish-Chandra module Vac_x (cf. [BD] §1) gives rise to

$$\text{Loc}(\text{Vac}_x) \simeq D'$$

as critically twisted D-modules on Bun_G. Recall that the center Z_x of the category of smooth $\mathfrak{g}_{\text{crit},x}$-modules is isomorphic to $\text{Fun Op}_{L_\mathfrak{g}}(D^\times_x)$ by the Feigin-Frenkel isomorphism ([BD], §3.2], [F]). The mapping h_x then is the composition

$$\text{Fun Op}_{L_\mathfrak{g}}(D^\times_x) \simeq Z_x \to \text{End}(\text{Vac}_x) \to \text{End}(\text{Loc}(\text{Vac}_x)) \simeq \Gamma(\text{Bun}_G, D').$$

If \mathcal{G} is unramified at x, then h_x factors as

$$h_x : \text{Fun Op}_{L_\mathfrak{g}}(D^\times_x) \to \text{Fun Op}_{L_\mathfrak{g}}(D_x) \simeq \text{End}(\text{Vac}_x) \to \Gamma(\text{Bun}_G, D'),$$

where $\text{Op}_{L_\mathfrak{g}}(D_x)$ is the scheme (of infinite type) of $L_\mathfrak{g}$-opers on D_x.

The mappings h_x can be organized into a horizontal morphism h of \mathcal{D}_X-algebras over X (we refer to [BD] §2.6) for the generalities of \mathcal{D}_X-algebras). Let us recall the construction. By varying x on X, the affine Grassmannian $Gr_{G,x}$ form an ind-scheme $Gr_\mathcal{G}$ formally smooth over X. Let $\pi : Gr_G \to X$ be the projection and $e : X \to Gr_G$ be the unital section given by the trivial \mathcal{G}-torsor. Let δ_e be the delta D-module along the section e twisted by $\mathcal{L}_{\text{crit}}$. Then we have a chiral algebra

$$\text{Vac}_X := \pi_!(\delta_e).$$

over X whose fiber over x is Vac_x.

Lemma 2. The sheaf Vac_X is flat as an \mathcal{O}_X-module.
For any chiral algebra \(\mathcal{A} \) over a curve, one can associate the algebra of its endomorphisms, denoted by \(\mathcal{E}nd(\mathcal{A}) \). As sheaves on \(X \),
\[
\mathcal{E}nd(\mathcal{A}) = \text{Hom}_{\mathcal{A}}(\mathcal{A}, \mathcal{A}),
\]
where \(\text{Hom} \) is taken in the category of chiral \(\mathcal{A} \)-modules. Obviously, \(\mathcal{E}nd(\mathcal{A}) \) is an algebra by composition. Less obviously, there is a natural chiral algebra structure on \(\mathcal{E}nd(\mathcal{A}) \otimes \mathcal{O}_X \) which is compatible with the algebra structure. Therefore, \(\mathcal{E}nd(\mathcal{A}) \) is a commutative \(\mathcal{D}_X \)-algebra. If \(\mathcal{A} \) is \(\mathcal{O}_X \)-flat, there is a natural injective mapping \(\mathcal{E}nd(\mathcal{A}) \rightarrow \text{End}(\mathcal{A}) \) which is not necessarily an isomorphism in general, where \(\text{End}(\mathcal{A}_x) \) is the endomorphism algebra \(\mathcal{A}_x \) as a chiral \(\mathcal{A} \)-module. However, this is an isomorphism if there is some open neighborhood \(U \) containing \(x \) such that \(\mathcal{A}|_U \) is constructed from a vertex algebra. We refer to [R] for details of the above discussion.

Let \(U \subset X \) be an open subscheme such that \(\mathcal{G}|_U \simeq G \times U \), then by the above generality, the Feigin-Frenkel isomorphism gives rise to
\[
\text{Spec} \mathcal{E}nd(\mathcal{V}ac_U) \simeq \text{Op}_{Lg}|_U,
\]
where \(\text{Op}_{Lg} \) is the \(\mathcal{D}_X \)-scheme over \(X \), whose fiber over \(x \in X \) is the scheme of \(\mathfrak{g} \)-opers on \(D_x \). Recall that for a commutative \(\mathcal{D}_U \)-algebra \(B \), we can take the algebra of its horizontal sections \(H_{\mathcal{V}}(U, B) \) (or so-called conformal blocks) [BD] \(\S 2.6 \), which is usually a topological commutative algebra. For example,
\[
\text{Spec} H_{\mathcal{V}}(U, \text{Op}_{Lg}) = \text{Op}_{Lg}(U)
\]
is the ind-scheme of \(\mathfrak{g} \)-opers on \(U \) (BD] \(\S 3.3 \)). As \(H_{\mathcal{V}}(U, \mathcal{E}nd(\mathcal{V}ac_U)) \rightarrow H_{\mathcal{V}}(X, \mathcal{E}nd(\mathcal{V}ac_X)) \) is surjective, we have a closed embedding
\[
\text{Spec} H_{\mathcal{V}}(X, \mathcal{E}nd(\mathcal{V}ac_X)) \rightarrow \text{Op}_{Lg}(U).
\]
Let \(\text{Op}_{Lg}(X)_{\mathcal{G}} \) denote the image of this closed embedding. This is a subscheme (rather than an ind-scheme) of \(\text{Op}_{Lg}(U) \).

On the other hand, as argued in [BD] \(\S 2.8 \), the mapping \(h_x \) is of crystalline nature so that it induces a mapping of \(\mathcal{D}_X \)-algebras
\[
h : \mathcal{E}nd(\mathcal{V}ac_X) \rightarrow \Gamma(\text{Bun}_{\mathcal{G}}, D') \otimes \mathcal{O}_X,
\]
which induces a mapping of horizontal sections
\[
h_{\mathcal{V}} : H_{\mathcal{V}}(X, \mathcal{E}nd(\mathcal{V}ac_X)) \rightarrow \Gamma(\text{Bun}_{\mathcal{G}}, D').
\]
Therefore, (1.3) can be rewrite as a mapping
\[
h_{\mathcal{V}} : \text{Fun} \text{Op}_{Lg}(X)_{\mathcal{G}} \rightarrow \Gamma(\text{Bun}_{\mathcal{G}}, D').
\]

We recall the characterization \(\text{Op}_{Lg}(X)_{\mathcal{G}} \).

Lemma 3. Let \(X \setminus U = \{x_1, \ldots, x_n\} \). Assume that the support of \(\mathcal{V}ac_{x_i} \) (as an \(\mathfrak{g} \)-module) is \(Z_{x_i} \subset \text{Op}_{Lg}(D_{x_i}) \) (i.e. \(\text{Fun}(\mathcal{Z}_{x_i}) = \text{Im}(\text{Op}_{Lg}(D_{x_i}) \rightarrow \text{End}(\mathcal{V}ac_x)) \)). Then
\[
\text{Op}_{Lg}(X)_{\mathcal{G}} \simeq \text{Op}_{Lg}(U) \times \prod_i \text{Op}_{Lg}(D_{x_i}) \prod Z_{x_i}.
\]
The mapping (1.4) is a quantization of a classical Hitchin system. Namely, there is a natural filtration ([BD] \(\S 3.1 \)) on the algebra \(\text{Fun} \text{Op}_{Lg}(U) \) whose associated graded is the algebra of functions on the classical Hitchin space
\[
\text{Hitch}(U) = \bigoplus_i \Gamma(U, \Omega^{d_i+1})
\]
where \(d_i \)s are the exponent of \(\mathfrak{g} \) and \(\Omega \) is the canonical sheaf of \(X \). On the other hand, there is a natural filtration on \(\Gamma(\text{Bun}_{\mathcal{G}}, D') \) coming from the order of the
Let \(E \) be a \(\mathbb{C} \)-algebra. Then \(\text{Aut}_E \) is a \(\text{Hecke-eigensheaf} \) on \(\text{Bun}_G \) with respect to \(E \) (regarded as a \(L \)-\(G \)-local system).

Remark 1.3. The statement of the above theorem is weaker than the main theorem in [BD] in two aspects: (i) if \(G \) is the constant group scheme (the unramified case), then \(\text{Op}_\ell(\mathfrak{g}) = \text{Op}_\ell(X) \) is the space of \(L \)-\(\mathfrak{g} \)-opers on \(X \). In this case, Beilinson and Drinfeld proved that

\[
\text{Fun Op}_\ell(X) \simeq \Gamma(\text{Bun}_G, D')
\]

and therefore \(\text{Aut}_E \) is always non-zero in this case; (ii) in the unramified case, the automorphic D-module \(\text{Aut}_E \) is holonomic.

The proofs of both assertions are based on the fact that the classical Hitchin map is a complete integrable system. If the level structure of \(G \) is not deeper than the Iwahori level structure (or even the pro-unipotent radical of the Iwahori group), then by the same arguments, the above two assertions still hold. However, it is not obvious from the construction that \(\text{Aut}_E \) is non-zero for the general deeper level structure, although we do conjecture that this is always the case. In addition, for arbitrary \(G \), the automorphic D-modules constructed as above will in general not be holonomic. This is the reason that we need to use a group scheme different from \(\text{Hitch}(-) \) in what follows.

2.

Now we specialize the group scheme \(\mathcal{G} \). Let \(G \) be a simple, simply-connected complex Lie group, of rank \(\ell \). Let us fix \(B \subset G \) a Borel subgroup and \(B^- \) an opposite Borel subgroup. The unipotent radical of \(B \) (resp. \(B^- \)) is denoted by \(U \) (resp. \(U^- \)). Following [HNY], we denote by \(\mathcal{G}(0, 1) \) the group scheme on \(\mathbb{P}^1 \) obtained from the dilatation of \(G \times \mathbb{P}^1 \) along \(B^- \times \{0\} \subset G \times \{0\} \) and \(U \times \{\infty\} \subset G \times \{\infty\} \). Following loc. cit., we denote \(I(1) = \mathcal{G}(0, 1)(\mathcal{O}_\infty) \).

Let \(\mathcal{G}(0, 2) \rightarrow \mathcal{G}(0, 1) \) be the group scheme over \(\mathbb{P}^1 \) so that they are isomorphic away from \(\infty \) and \(\mathcal{G}(0, 2)(\mathcal{O}_\infty) = I(2) := [I(1), I(1)] \). Then \(I(1)/I(2) \simeq \prod_{i=0}^{\ell} U_{\alpha_i} \), where \(\alpha_i \) are simple affine roots, and \(U_{\alpha_i} \) are the corresponding root groups. Let us choose for each \(\alpha_i \) an isomorphism \(\Psi_i : U_{\alpha_i} \simeq \mathbb{G}_a \). Then we obtain a well-defined morphism

\[
\Psi : I(1) \rightarrow I(1)/I(2) \simeq \prod_{i=0}^{\ell} U_{\alpha_i} \simeq \prod_{i=0}^{\ell} \mathbb{G}_a \rightarrow \mathbb{G}_a.
\]

Let \(I_\mathfrak{g} := \ker \Psi \subset I(1) \).

As explained in loc. cit., there is an open substack of \(\text{Bun}_{\mathcal{G}(0,2)} \), which is isomorphic to \(\mathbb{G}_a^{\ell+1} \). For the application of Beilinson-Drinfeld’s construction, it is
convenient to consider \(\text{Bun}_G(0, \Psi) \), where \(\mathcal{G}(0, \Psi) \rightarrow \mathcal{G}(0, 1) \) is an isomorphism away from \(\infty \) and \(\mathcal{G}(0, \Psi)(\mathcal{O}_\infty) = I_{\Psi} \subset I(1) = \mathcal{G}(0, 1) \). Then \(\text{Bun}_G(0, 2) \) is a torsor over \(\text{Bun}_G(0, \Psi) \) under the group \(I_{\Psi}/I(2) \cong \mathcal{G}_d^* \) and there is an open substack of \(\text{Bun}_G(0, \Psi) \) isomorphic to \(\mathcal{G}_a \).

Lemma 5. The stack \(\text{Bun}_G(0, \Psi) \) is good in the sense of [BD] §1.1.1.

Proof. Since \(\text{Bun}_G(0, \Psi) \) is a principal bundle over \(\text{Bun}_G(0, 1) \) under the group \(I(1)/I_{\Psi} \cong \mathcal{G}_a \), it is enough to show that \(\text{Bun}_G(0, 1) \) is good. It is well-known in this case \(\text{Bun}_G(0, 1) \) has a stratification by elements in the affine Weyl group of \(G \) and the stratum corresponding to \(w \) has codimension \(\ell(w) \) and the stabilizer group has dimension \(\ell(w) \).

Therefore \(\text{Bun}_G(0, 1) \) is good.

Let \(S_w \) denote the preimage in \(\text{Bun}_G(0, \Psi) \) of the stratum in \(\text{Bun}_G(0, 1) \) corresponding to \(w \). Then \(S_1 \cong \mathbb{A}^1 \), and for a simple reflection \(s \), \(S_1 \cup S_s \cong \mathbb{P}^1 \). In particular, any regular function on \(\text{Bun}_G(0, \Psi) \) is constant.

Let us describe \(\text{Op}_{Lg}(X)_{G(0, \Psi)}^{\infty} \) in this case.

At \(0 \in \mathbb{P}^1 \), \(K_0 = \mathcal{G}(0, \Psi)(\mathcal{O}_0) \) is the the Iwahori subgroup \(I_{\text{op}}^G \) of \(G(F_0) \), which is \(\text{ev}^{-1}(B^-) \) under the evaluation map \(\text{ev} : G(\mathcal{O}) \rightarrow G \), and

\[
\text{Vac}_0 = \text{Ind}_{L_{\text{Lie}}^I}^{\text{Lie}_{G} \times \mathbb{C}^1}(C_{-\rho}).
\]

is just the Verma module \(\mathcal{M}_{-\rho} \) of highest weight \(-\rho \) (\(-\rho \) is anti-dominant w.r.t. \(B^- \)), and it is known ([F, Chap. 9]) that \(\text{Fun} \text{Op}_{Lg}(D_{0}^{\infty}) \rightarrow \text{End}(\mathcal{M}_{-\rho}) \) induces an isomorphism

\[
\text{Fun} \text{Op}_{Lg}(D_{0}^{\infty})_{\text{ev}(0)} \cong \text{End}(\mathcal{M}_{-\rho}),
\]

where \(\text{Op}_{Lg}(D_{0}^{\infty})_{\text{ev}(0)} \) is the scheme of \(L^G \) opers on \(D_{0} \) with regular singularities and zero residue. Let us describe this space in concrete terms.

Let \(f = \sum_i X_{-\alpha_i} \) be the sum of root vectors \(X_{-\alpha_i} \) corresponding negative simple roots \(-\alpha_i \) of \(L^G \).

After choosing a uniformizer \(z \) of the disc \(D_{0} \), \(\text{Op}_{Lg}(D_{0}^{\infty})_{\text{ev}(0)} \) is the space of operators of the form

\[
\partial_z + \frac{f}{z} + L^G b([z])
\]

up to \(L^G(\mathcal{O}) \)-gauge equivalence.

At \(\infty \in \mathbb{P}^1 \), \(K_{\infty} = \mathcal{G}(0, \Psi)(\mathcal{O}_\infty) = I_{\Psi} \).

Denote

\[
\mathbb{W}_{\text{univ}} = \text{Vac}_\infty = \text{Ind}_{L_{\text{Lie}}^I}^{\text{Lie}_{G} \times \mathbb{C}^1}(\text{triv}).
\]

It is known ([FF, Lemma 5]) that \(\text{Fun} \text{Op}_{Lg}(D_{\infty}^{\infty}) \rightarrow \text{End}(\mathbb{W}_{\text{univ}}) \) factors as

\[
\text{Fun} \text{Op}_{Lg}(D_{\infty}^{\infty}) \rightarrow \text{Fun} \text{Op}_{Lg}(D_{\infty}^{\infty})_{1/h} \hookrightarrow \text{End}(\mathbb{W}_{\text{univ}}),
\]

where \(\text{Op}_{Lg}(D_{\infty}^{\infty})_{1/h} \) is the scheme of opers with slopes \(\leq 1/h \) (as \(L^G \)-local systems) and \(h \) is the Coxeter number of \(L^G \).

To give a concrete description of this space, let us complete \(f \) to an \(\mathfrak{s}_2 \)-triple \(\{e, \gamma, f\} \) with \(e \in \mathfrak{l}B \). Let \(L^G e \) be the centralizer of \(e \) in \(L^G \), and decompose \(L^G e = \bigoplus_{i=1}^{\ell} L^G g_i \) according to the principal grading by \(\gamma \). Let \(d_i = \deg(L^G g_i) \). Then after choosing a uniformizer \(z \) on the disc \(D_{\infty} \), \(\text{Op}_{Lg}(D_{\infty}^{\infty})_{1/h} \) is the space of operators of the form

\[
\partial_z + f + \sum_{i=1}^{\ell-1} z^{-d_i-1}(L^G g_i^{\infty})([z]) + z^{-d_{\ell}-2}(L^G g_{\ell}^{\infty})([z])
\]

up to \(L^G(\mathcal{O}) \)-gauge equivalence.
Therefore, $\text{Op}_{\ell_\varphi}(X)_{G(0,\psi)}$ is isomorphic to
\[
\text{Op}_{\ell_\varphi}(X)_{(0,\text{RS}), (\infty, 1/h)} := \text{Op}_{\ell_\varphi}(D_\infty)_{1/h} \times \text{Op}_{\ell_\varphi}(D_\infty^\times) \times \text{Op}_{\ell_\varphi}(G_m) \times \text{Op}_{\ell_\varphi}(D_0^\times) \times \text{Op}_{\ell_\varphi}(D_0) \times (0).
\]
As observed in [FG], $\text{Op}_{\ell_\varphi}(X)_{(0,\text{RS}), (\infty, 1/h)} \simeq \mathbb{A}^1$. Indeed, let z be the global coordinate on $\mathbb{A}^1 = \mathbb{P}^1 - \{\infty\}$. Then the space of such opers are of the form
\[
\nabla = \frac{\partial}{\partial z} + \frac{f}{z} + \lambda e_\theta,
\]
where f is the sum of root vectors corresponding to negative simple roots and e_θ is a root vector corresponding to the highest root θ.

According to [HNY] there is a ring homomorphism
\[
h_\nabla : \mathbb{C}[\lambda] \to \Gamma(\text{Bun}_{\mathcal{G}(0,\psi)}, D').
\]
Let us describe this mapping more explicitly. Recall that there is an action of $I(1)/I_\psi \simeq \mathbb{G}_a$ on $\text{Bun}_{\mathcal{G}(0,\psi)}$, and therefore the action of \mathbb{G}_a induces an algebra homomorphism
\[
a : U(\text{Lie}I(1)/I_\psi) \to \Gamma(\text{Bun}_{\mathcal{G}(0,\psi)}, D').
\]

Lemma 6. We have $h_\nabla(\lambda) = a(\xi)$ for some non-zero element $\xi \in \text{Lie}I(1)/I_\psi \simeq \mathbb{C}$.

Proof. Consider the associated graded $h^{cl} : \text{gr} \mathbb{C}[\lambda] \to \Gamma(T^*\text{Bun}_{\mathcal{G}(0,\psi)}, \mathcal{O})$, which is the classical Hitchin map. Recall that the filtration on $\mathbb{C}[\lambda]$ comes from the existence of h-opers, and therefore the symbol of λ is identified with a coordinate function on
\[
\text{Hitch}(X)_{\mathcal{G}(0,\psi)}
\]
\[
\simeq \bigoplus_{i=1}^{\ell - 1} \Gamma(\mathbb{P}^1, \Omega_i^{d_i + 1}((d_i) \cdot 0 + (d_i + 1) \cdot \infty)) \bigoplus \Gamma(\mathbb{P}^1, \Omega_{d_\ell + 1}((d_\ell) \cdot 0 + (d_\ell + 2) \cdot \infty))
\]
\[
\simeq \mathbb{A}^1.
\]

On the other hand, it is easy to identify the Hitchin map with the moment map associated to the action of $I(1)/I_\psi$ on $\text{Bun}_{\mathcal{G}(0,\psi)}$. Therefore, $h_\nabla(\lambda) = a(\xi) - c$ for some constant c. Up to normalization, we can assume that $d_\nabla(\xi) = 1$. We show that $c = 0$. Indeed, consider the automorphic D-module $\text{Aut} = \mathcal{D}'/\mathcal{D}'\lambda$ on $\text{Bun}_{\mathcal{G}(0,\psi)}$. It is $I(1)/I_\psi$-equivariant against $c\Psi$, with eigenvalue the local system on \mathbb{G}_m represented by the connection $\partial_z + \frac{\xi}{z}$ by Theorem [HNY] which is regular singular. However, if $c \neq 0$, by [HNY] Theorem 4(1)], the eigenvalue for this Aut should be irregular at ∞. Contradiction. \hfill \Box

Finally, for any $\chi \in \text{Op}_{\ell_\varphi}(X)_{(0,\text{RS}), (\infty, 1/h)}$ given by $\lambda = c$, $\text{Aut}_\varphi = \mathcal{D}'/\mathcal{D}'(\lambda - c)$ is a D-module on $\text{Bun}_{\mathcal{G}(0,\psi)}$, equivariant against $(I(1)/I_\psi, c\Psi)$. By the uniqueness of such D-modules on $\text{Bun}_{\mathcal{G}(0,\psi)}$ (same argument as in [HNY] Lemma 2.3), this must be the same as the automorphic D-module as constructed in [HNY]. We are done.

REFERENCES

[BD] Beilinson, A., Drinfeld, V.: *Quantization of Hitchin’s integrable system and Hecke eigensheaves*. Preprint, available at www.math.uchicago.edu/~mitya/langlands

[FF] Feigin, B., Frenkel, E.: *Quantization of solition systems and Langlands duality*, Exploring new structures and natural constructions in mathematical physics, 185C274, Adv. Stud. Pure Math., 61, Math. Soc. Japan, Tokyo, 2011.

[F] Frenkel, E.: *Langlands correspondence for loop groups*, Cambridge University Press, 2007.

[FG] Frenkel, E., Gross, B.: *A rigid irregular connection on the projective line*, Ann. Math., Pages 1469-1512 from Volume 170 (2009), Issue 3.
[HNY] Heinloth, J., Ngô, B.C., Yun, Z.: Kloomsterman sheaves for reductive groups, to appear in Ann. Math., arXiv:1005.2765.

[R] N. Rozenblyum: Introduction to chiral algebras, available at www.math.harvard.edu/gaitsgde/grad2009