Investigation of annealing temperature on the synthesis of zincite doped cobalt ferrite using Rietveld refinement.

Himanshu Bedi¹, Sunil Rohilla²*, Nitika Chaudhary¹

¹Department of Physics, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu-333001, India
²Department of Physics, Chaudhary Ranbir Singh University, Jind, Haryana- 126101, India

*E-mail: sunil78rohilla@gmail.com
Phone no. +91-8295888110

Abstract. Co-precipitation technique is used for preparing the composites of CoFe₂O₄/ZnO. The effect on the variation on the size of the crystals of CoFe₂O₄ is studied by varying the annealing temperature over the range from 500°C to 900°C. The structure of composite powder obtained after annealing was studied by Rietveld refinement and XRD. The estimation of the crystalline phases of the sample is done by XRD though Rietveld refinement. The space group and structure of zinc oxide was observed as P63mc(186) and hexagonal while that for the cobalt ferrite was Fd3m(227) and cubic. The values of all R factors was calculated and the effect of annealing temperature on the size of the crystal was discussed.

1. Introduction
Ferrite forms an important class of magnetic materials; it is due to the fact that magnetic properties of these ferrites are highly dependent on the morphology and crystallite size of the nano-ferrites. The various properties of the ferrites can be controlled by different techniques of preparation as well as substitutions and doping [1]. Ferrites are of four types as Orthoferrites, Hexagonal ferrites, Garnets, and the spinel ferrites. In the recent past due to wide applications in industries like microwave, electrical and water treatment industries, the researcher have focused more on spinal ferrites [2]. The nanoparticles of metal ferrites is expressed as XFe₂O₄, where X represent divalent ion of a transition metal like cobalt, nickel, zinc, copper, iron etc. [3]. The properties like high electrical resistivity, modest saturation magnetisation, extremely high hardness, chemical stability and huge anisotropy will make cobalt ferrites a versatile ferrite. This ferrite is used in variety of applications ranging from ecological applications to the recording of high-density system [4].

D Deepali et al. prepared the nanoparticle of cobalt ferrites doped with zinc by co-precipitation method and found that when the nanoparticle sintered at 900°C then the magnetic properties like remanent magnetisation, saturation magnetisation etc. were decreased with increasing concentration of Zn²⁺[5].

Zaki H.K. et al. prepared the nano particle of Co₀.₅Cu₀.₅AlₓFe₂₋ₓO₄ by co-precipitation method and they observed that the saturation magnetisation and coercivity deceases with increasing concentration of aluminium [6].

Gangaswamy D.R.S. et al. studied that in the magnetic composite of Ni-Zn which is Ni₀.₅₇₋₀.₃₀Co₂Zn₀.₅Mg₀.₆₈Fe₂O₄ the magnetic permeability increases while the saturation magnetisation and Curie temperature decreases with increase in the concentration of cobalt [7].
Rohilla S. et al. prepared the ferrites of cobalt in the matrix of silica by co-precipitation method. They have observed that on annealing the sample the size of the nanocrystals will increase with increase in the temperature[8].

2. Experimental Details

2.1 Chemical Used
The chemical used in the preparation of the required composites uses the following compounds: Ferric chloride hexahydrate (FeCl3·6H2O; Aldrich 99.99%), Cobalt chloride hexahydrate (CoCl2·6H2O; Aldrich 99.99%), zinc chloride anhydrous (ZnCl2; Aldrich 99.99%), HCl (35%) and sodium hydroxide (NaOH; Aldrich 99.99%) and doubly distilled water.

2.2 Preparation of zincite doped Cobalt ferrite
The composite of the zincite doped with cobalt ferrite is done in three steps as discussed below:

Step 1: Suspension of CoFe2O4
The method of preparing suspension of CoFe2O4 is same as it was in our previous report [10]

Step 2: Suspension of ZnO
The suspension of ZnO was prepared in a similar way as it was in our previous report [9].

Step 3: The composite of CoFe2O4/ZnO
The mixing of the two solutions obtained in the above two steps is described [8]. As par the process the grade 5 Whatman paper was used to filter the white coloured resultant precipitate and is dried in vacuum oven for around five hours at a temperature of around 70°C once it was first washed many times using double distilled water. The precipitate of the resultant sample was crushed to microscopic form. It was finally heated to temperature range from 500°C to 900°C for a duration 2h in a preheated muffle.

3. Result and Discussion

3.1 XRD analysis of zincite doped cobalt ferrite
The investigation of the structure of the composite annealed between 500°C to 900°C were done by X-ray diffraction and the diffractogram so obtained is shown in figure 1. In the diffractogram, some of the peaks were obtained at 2θ(hkl) as 30.16(202), 35.51(311), 37.15(222), 43.13(400), 53.49(422), 57.02(511) and 62.66(404). This data reveals the structure of CoFe2O4 as cubic structure with phase space as Fd-3m and in accordance with JCPDS file number 021045.

The series of the peaks at 2θ(hkl) at 18.38(111), 35.51(311), 37.15(222), 43.13(400), 53.49(422), 57.02(511) and 62.66(404) confirms the production of the zinc oxide phase which is P63mc phase group and is matching with JCPDS card number-810792. The data mentioned in table 1 and table 2 shows the values of various required parameters and the average crystallite size of the prepared nanocomposite was obtained as 34.21 nm for CoFe2O4 and 64.33 nm for ZnO by using Scerener’s formula.

\[D = 0.9 \times \frac{\lambda}{FWHM} \times \cos \theta \]
\[\delta = \frac{1}{(\text{particle size})^2} \]
Figure 1. The XRD diffractogram of the heat-treated CoFe$_2$O$_4$/ZnO from 500°C to 900°C

Table 1. Zinc Oxide Structural parameters

S.no	2θ	d-spacing	Intensity	FWHM	Crystallite Size(nm)	Dislocation Density	(hkl)
1	18.38	4.8231	111.0	0.4400	31.90958652	9.82104377	111
2	31.54	2.8345	300.55	0.2000	72.01044228	1.928452931	-100
3	34.25	2.6163	170.44	0.2000	72.51497881	1.901711143	-002
4	36.03	2.4904	621.82	0.2000	72.87253345	1.883095144	101
5	47.36	1.9181	85.26	0.2000	75.67130903	1.746375003	012
6	56.38	1.6306	146.97	0.2400	65.52180953	2.329315058	511
7	68.87	1.3622	79.97	0.2800	60.01686105	2.776217227	201

Table 2. Cobalt ferrite structural parameters

S.no	2θ	d-spacing	Intensity	FWHM	Crystallite Size(nm)	Dislocation Density	(hkl)
1	30.16	2.9604	298.71	0.4400	32.6234368	9.39594742	202
2	35.51	2.5259	1000.0	0.4000	36.3829493	7.554473426	311
3	37.15	2.4185	72.30	0.3600	40.6157777	6.061923518	222
4	43.13	2.0955	191.09	0.4000	37.258017	7.203781435	400
5	53.49	1.7116	78.90	0.3600	43.1122224	5.380209402	422
6	57.02	1.6139	236.41	0.3200	49.28967	4.11612143	511
3.2 Rietveld Refinement of the sample

The XRD data of the at 900°C is refined and the Full-proof software was used for the Rietveld refinement of the sample and shown in figure-2. It confirms the Wyckoff position of cobalt (Co) at 16c (1/8, 1/8, 1/8); iron (Fe) at 8b (½, ½, ½) and that for oxygen atom(O) at 32e (0.257, 0.257, 0.257). The refined curve is shown in figure 2. The Rietveld refinement is used for calculating the parameters of the cell structure and values calculated are: a = b = c = 0.83814nm, α = β = γ =90° and the cell volume was calculated as 0.58878nm³. The reciprocal cell parameters are a* = b* = c* = 0.119197, α* = β* = γ* =90° and the reciprocal cell volume is 0.00169356 nm³.

![Rietveld Refine diffractogram of CoFe₂O₄/ZnO heat treated at 900°C](image)

Figure 2- Rietveld Refine diffractogram of CoFe₂O₄/ZnO heat treated at 900°C

The table-3 presents the data obtained from the Rietveld refinement of the zincite doped cobalt ferrite for the atomic and isothermal parameter and table-4 reflects the profile R-factors of the refined profile of zincite doped cobalt ferrite.

Phase	Parameter	x	y	z	Wycc
CoFe₂O₄	Co	1/2	1/2	1/2	8b
	Fe	½	½	½	8b
	O	0.257	0.257	0.257	32e
	Fe	1/8	1/8	1/8	16c
	Co	1/8	1/8	1/8	16c
ZnO	Zn	1/3	2/3	0	2b
	O	1/3	2/3	0.345	2b

Table 3. Isothermal and atomic parameters for sample CoFe₂O₄/ZnO

Phase	Goodness Factor (X²)	Profile Factor (R_p)	Weighted Factor (R_wp)	R Expected Value (R_E)	Bragg Factor (R_B)	R R_ Factor
1	0.142	0.890	1.86	4.93	3.13	2.56
2	0.142	0.890	1.86	4.93	10.4	8.24
4. Conclusion
The composite CoFe$_2$O$_4$/ZnO was prepared by the Co-precipitation method. The developed structure of cobalt ferrite is cubic while that of zinc oxide is hexagonal. The space group of cobalt ferrites was confirmed as Fd$ar{3}$m (227) while that of zinc oxide as P6$_3$mc (186). The values of R factors are small and are in sync with the data.

5. Acknowledgement
We are much obliged for the help of Asst. Librarian, Dr. Narender Chauhan GJUS&T, Hissar.

6. References
[1] Bharambe, S. S., Trimukhe, A., & Bhatia, P. (2020). Synthesis Techniques of Nickel Substituted Cobalt Ferrites – An Investigative Study Using Structural Data. Materials Today: Proceedings, 23, 373–381. doi:10.1016/j.matpr.2020.02.056
[2] Sathiya Priya, A., Geetha, D., & Kavitha, N. (2018). Effect of Al substitution on the structural, electric and impedance behavior of cobalt ferrite. Vacuum. doi:10.1016/j.vacuum.2018.12.004
[3] Tomar, D., & Jeevanandam, P. (2020). Synthesis of cobalt ferrite nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties. Journal of Alloys and Compounds, 155815. doi:10.1016/j.jallcom.2020.155815
[4] Shakil, M., Inayat, U., Arshad, M. I., Nabi, G., Khalid, N. R., Tariq, N. H., ... Iqbal, M. Z. (2019). Influence of zinc and cadmium co-doping on optical and magnetic properties of cobalt ferrites. Ceramics International. doi:10.1016/j.ceramint.2019.11.280
[5] Andhare, D. D., Patade, S. R., Kounsalye, J. S., & Jadhav, K. M. (2020). Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via Co-precipitation method. Physica B: Condensed Matter, 412051. doi:10.1016/j.physb.2020.412051
[6] Zaki, H. M., Al-heniti S., & Aljwiher, M. M. (2020). Synthesis, structural, magnetic and dielectric studies of aluminum substituted cobalt-copper ferrite. Physica B: Condensed Matter, 412382. doi:10.1016/j.physb.2020.412382
[7] Gangaswamy, D. R. S., Bharadwaj, S., Chaitanya Varma, M., Choudary, G., & Rao, K. H. (2018). Unusual increase in permeability in cobalt substituted Ni-Zn-Mg ferrites. Journal of Magnetism and Magnetic Materials, 468, 73–78. doi:10.1016/j.jmmm.2018.07.075
[8] Sunil Rohilla, SushilKumar, P.Aghamkar, S.Sunder, A.Agarwal ,Investigations on structural and magnetic properties of cobaltferrite/silica nanocomposites prepared by the coprecipitation method, Journal of Magnetism and Magnetic Materials, 323 (2011) 897–902 https://doi.org/10.1016/j.jmmm.2010.11.001
[9] Himanshu Bedi, Sunil Rohilla, Ankiya Gupta, Synthesis of nanocomposite of Franklinite (Fe$_2$O$_3$Zn) doped Zincite (ZnO) using wet chemical Coprecipitation method and Rietveld Refinement. Journal of Physics: Conference Series, Volume 1706, First International Conference on Advances in Physical Sciences and Materials 13-14 August 2020, Coimbatore, India, doi:10.1088/1742-6596/1706/1/012013
[10] Seema, & Rohilla, S. (2020). Optimization of magnetic property parameters of CoFe$_2$O$_4$/SiO$_2$ composites prepared through coprecipitation method. International Conference on Emerging Applications in Material Science and Technology: Iceamst 2020. Doi:10.1063/5.0008168