ON A DUAL PROPERTY OF THE MAXIMAL OPERATOR ON WEIGHTED VARIABLE L^p SPACES

ANDREI K. LERNER

Abstract. L. Diening [5] obtained the following dual property of the maximal operator M on variable Lebesgue spaces $L^p(\cdot)$: if M is bounded on $L^p(\cdot)$, then M is bounded on $L^{p'}(\cdot)$. We extend this result to weighted variable Lebesgue spaces.

1. Introduction

Given a measurable function $p : \mathbb{R}^n \to [1, \infty)$, denote by $L^p(\cdot)$ the space of functions f such that for some $\lambda > 0$,
\[
\int_{\mathbb{R}^n} |f(x)/\lambda|^{p(x)} \, dx < \infty,
\]
with norm
\[
\|f\|_{L^p(\cdot)} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} |f(x)/\lambda|^{p(x)} \, dx \leq 1 \right\}.
\]

Set $p_- \equiv \text{ess inf}_{x \in \mathbb{R}^n} p(x)$ and $p_+ \equiv \text{ess sup}_{x \in \mathbb{R}^n} p(x)$.

Let M be the Hardy-Littlewood maximal operator defined by
\[
Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| \, dy,
\]
where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing the point x.

In [5], L. Diening proved the following remarkable result: if $p_- > 1$, $p_+ < \infty$ and M is bounded on $L^p(\cdot)$, then M is bounded on $L^{p'}(\cdot)$, where $p'(x) = \frac{p(x)}{p(x) - 1}$. Despite its apparent simplicity, the proof in [5] is rather long and involved.
In this paper we extend Diening’s theorem to weighted variable Lebesgue spaces L^p_w equipped with norm
$$\|f\|_{L^p_w} = \|fw\|_{L^p}.$$ We assume that a weight w here is a non-negative function such that $w(\cdot)^p$ and $w(\cdot)^{-p}$ are locally integrable. The spaces L^p_w have been studied in numerous works; we refer to the monographs [3, 6] for a detailed bibliography.

Recall that a non-negative locally integrable function v satisfies the Muckenhoupt A_r, $1 < r < \infty$, condition if
$$\sup_Q \left(\frac{1}{|Q|} \int_Q v \, dx \right) \left(\frac{1}{|Q|} \int_Q v^{-\frac{1}{r-1}} \, dx \right)^{r-1} < \infty.$$ Set $A_\infty = \cup_{r>1} A_r$.

Our main result is the following.

Theorem 1.1. Let $p : \mathbb{R}^n \to [1, \infty)$ be a measurable function such that $p_- > 1$ and $p_+ < \infty$. Let w be a weight such that $w(\cdot)^p \in A_\infty$. If M is bounded on L^p_w, then M is bounded on $L^{p'}_{w^{-1}}$.

The relevance of the condition $w(\cdot)^p \in A_\infty$ in this theorem will be discussed in Section 6 below.

Notice that $L^{p'}_{w^{-1}}$ is the associate space of L^p_w, namely, $(L^p_w)' = L^{p'}_{w^{-1}}$ (see Sections 2.1 and 2.2). Hence, it is desirable to characterize Banach function spaces X with the property that the boundedness of M on X implies the boundedness of M on X'. In Section 3, we obtain such a characterization in terms of an A_∞-type property of X.

However, a verification of this property in the case of $X = L^p_w$ is not as simple. In doing so, we use some ingredients developed by L. Diening in [5] (Lemmas 5.1 and 5.2). We slightly simplified their proofs and we give them here in order to keep the paper essentially self-contained.

2. **Preliminaries**

2.1. **Banach function spaces.** Denote by \mathcal{M}^+ the set of Lebesgue measurable non-negative functions on \mathbb{R}^n.

Definition 2.1. By a Banach function space (BFS) X over \mathbb{R}^n equipped with Lebesgue measure we mean a collection of functions f such that
$$\|f\|_X = \rho(|f|) < \infty,$$ where $\rho : \mathcal{M}^+ \to [0, \infty]$ is a mapping satisfying
(i) $\rho(f) = 0 \iff f = 0$ a.e.; $\rho(\alpha f) = \alpha \rho(f), \alpha \geq 0$;
(ii) $\rho(f + g) \leq \rho(f) + \rho(g)$;
(ii) \(g \leq f \) a.e. \(\Rightarrow \rho(g) \leq \rho(f) \);
(iii) \(f_n \uparrow f \) a.e. \(\Rightarrow \rho(f_n) \uparrow \rho(f) \);
(iv) if \(E \subset \mathbb{R}^n \) is bounded, then \(\rho(\chi_E) < \infty \);
(v) if \(E \subset \mathbb{R}^n \) is bounded, then \(\int_E f \, dx \leq c_E \rho(f) \).

Note that it is more common to require that \(E \) is a set of finite measure in (iv) and (v) (see, e.g., [1]). However, our choice of axioms allows us to include weighted variable Lebesgue spaces \(L^{p(\cdot)}_w \) (with the assumption that \(w(\cdot)^p(\cdot), w(\cdot)^{-p'(\cdot)} \in L^{1}_{loc} \)) in a general framework of Banach function spaces. Moreover, it is well known that all main elements of a general theory work with (iv) and (v) stated for bounded sets (see, e.g., [13]). We mention only the next two key properties that are of interest for us. The first property says that if \(X \) is a BFS, then the associate space \(X' \) consisting of \(f \) such that

\[
\|f\|_{X'} = \sup_{g \in X' \mid \|g\|_X \leq 1} \int_{\mathbb{R}^n} |fg| \, dx < \infty
\]

is also a BFS. The second property is the Lorentz-Luxemburg theorem saying that \(X = X'' \) and \(\|f\|_X = \|f\|_{X''} \).

The definition of \(\|f\|_{X'} \) implies that

\[
(2.1) \quad \int_{\mathbb{R}^n} |fg| \, dx \leq \|f\|_X \|g\|_{X'},
\]

and the fact that \(\|f\|_X = \|f\|_{X''} \) yields

\[
(2.2) \quad \|f\|_X = \sup_{g \in X' \mid \|g\|_{X'} \leq 1} \int_{\mathbb{R}^n} |fg| \, dx.
\]

2.2. **Variable \(L^p \) spaces.** It is well known (see [3] or [6]) that if \(p : \mathbb{R}^n \to [1, \infty) \), then \(L^{p(\cdot)} \) is a BFS. Further, if \(p_- > 1 \) and \(p_+ < \infty \), then \((L^{p(\cdot)})' = L^{p'(\cdot)} \) and

\[
(2.3) \quad \frac{1}{2} \|f\|_{L^{p'(\cdot)}} \leq \|f\|_{(L^{p(\cdot)})'} \leq 2\|f\|_{L^{p'(\cdot)}}
\]

(see [6, p. 78]).

Assume now that \(p : \mathbb{R}^n \to [1, \infty) \) and \(w \) is a weight such that \(w(\cdot)^p(\cdot) \) and \(w(\cdot)^{-p'(\cdot)} \) are locally integrable. The weighted space \(L^{p(\cdot)}_w \) consists of all \(f \) such that

\[
\|f\|_{L^{p(\cdot)}_w} = \|fw\|_{L^{p(\cdot)}} < \infty.
\]

It is easy to see that \(L^{p(\cdot)}_w \) is a BFS. Indeed, axioms (i)-(iii) of Definition 2.1 follow immediately from the fact that the unweighted \(L^{p(\cdot)} \)
is a BFS. Next, (iv) follows from that \(w(\cdot)^{p(-)} \in L^1_{loc} \). Finally, applying (2.1) with \(X = L^{p(\cdot)} \) along with (2.3) yields
\[
\int_E f \, dx \leq 2 \|fw\|_{L^{p(\cdot)}} \|w^{-1}\chi_E\|_{L^{p'(\cdot)}}.
\]
and this proves (v) with \(c_E = 2 \|w^{-1}\chi_E\|_{L^{p'(\cdot)}} < \infty \) (here we have used that \(w(\cdot)^{p(-)} \in L^1_{loc} \)).

Since \(\|fw^{-1}\|_{(L^{p(\cdot)})'} = \|f\|_{(L^{p(\cdot)})'} \), we obtain from (2.3) that if \(p_- > 1 \) and \(p_+ < \infty \), then \((L^{p(\cdot)}_w)' = L^{p'(\cdot)}_w \) and
\[
\frac{1}{2} \|f\|_{L^{p'(\cdot)}_w} \leq \|f\|_{(L^{p(\cdot)}_w)'} \leq 2 \|f\|_{L^{p'(\cdot)}_w}.
\]

Denote \(\varrho(f) = \int_{\mathbb{R}^n} |f(x)|^{p(x)} \, dx \). We will frequently use the following lemma (see [3, p. 25]).

Lemma 2.2. Let \(p : \mathbb{R}^n \to [1, \infty) \) and \(p_+ < \infty \). If \(\|f\|_{L^{p(\cdot)}} > 1 \), then
\[
\varrho(f)^{1/p_+} \leq \|f\|_{L^{p(\cdot)}} \leq \varrho(f)^{1/p_-}.
\]
If \(\|f\|_{L^{p(\cdot)}} \leq 1 \), then
\[
\varrho(f)^{1/p_-} \leq \|f\|_{L^{p(\cdot)}} \leq \varrho(f)^{1/p_+}.
\]

2.3. Dyadic grids and sparse families.

The standard dyadic grid in \(\mathbb{R}^n \) consists of the cubes
\[
2^{-k}([0,1)^n + j), \quad k \in \mathbb{Z}, j \in \mathbb{Z}^n.
\]
Following its basic properties, we say that a family of cubes \(\mathcal{D} \) is a general dyadic grid if (i) for any \(Q \in \mathcal{D} \) its sidelen\(\ell_Q \) is of the form \(2^k, k \in \mathbb{Z} \); (ii) \(Q \cap R \in \{Q, R, \emptyset\} \) for any \(Q, R \in \mathcal{D} \); (iii) for every \(k \in \mathbb{Z} \), the cubes of a fixed sidelen\(\ell^k \) form a partition of \(\mathbb{R}^n \).

Given a dyadic grid \(\mathcal{D} \), consider the associated dyadic maximal operator \(M^\mathcal{D} \) defined by
\[
M^\mathcal{D} f(x) = \sup_{Q : x, Q \in \mathcal{D}} \frac{1}{|Q|} \int_Q |f(y)| \, dy.
\]
On one hand, it is clear that \(M^\mathcal{D} f \leq Mf \). However, this inequality can be reversed, in a sense, as the following lemma shows (its proof can be found in [10, Lemma 2.5]).

Lemma 2.3. There are \(3^n \) dyadic grids \(\mathcal{D}_\alpha \) such that for every cube \(Q \subset \mathbb{R}^n \), there exists a cube \(Q_\alpha \in \mathcal{D}_\alpha \) such that \(Q \subset Q_\alpha \) and \(|Q_\alpha| \leq 6^n |Q| \).
We obtain from this lemma that for all \(x \in \mathbb{R}^n \),

\[
Mf(x) \leq 6^n \sum_{\alpha=1}^{3^n} M^{D\alpha} f(x).
\]

Given a cube \(Q_0 \), denote by \(D(Q_0) \) the set of all dyadic cubes with respect to \(Q_0 \), that is, the cubes from \(D(Q_0) \) are formed by repeated subdivision of \(Q_0 \) and each of its descendants into \(2^n \) congruent subcubes. Consider the local dyadic maximal operator \(M_{Q_0}^d \) defined by

\[
M_{Q_0}^d f(x) = \sup_{Q \ni x, Q \in D(Q_0)} \frac{1}{|Q|} \int_Q |f(y)|dy.
\]

Denote \(f_Q = \frac{1}{|Q|} \int_Q f \). The following lemma is a standard variation of the Calderón-Zygmund decomposition (see, e.g., [8, Theorem 4.3.1]). We include its proof for the reader convenience.

Lemma 2.4. Suppose \(\mathcal{D} \) is a dyadic grid. Let \(f \in L^p(\mathbb{R}^n), 1 \leq p < \infty \), and let \(\gamma > 1 \). Assume that

\[
\Omega_k = \{ x \in \mathbb{R}^n : M^\mathcal{D} f(x) > \gamma^k \} \neq \emptyset \quad (k \in \mathbb{Z}).
\]

Then \(\Omega_k \) can be written as a union of pairwise disjoint cubes \(Q_j^k \in \mathcal{D} \) satisfying

\[
|Q_j^k \cap \Omega_{k+l}| \leq 2^n (1/\gamma)^l |Q_j^k| \quad (l \in \mathbb{Z}_+).
\]

The same property holds in the local case for the sets

\[
\Omega_k = \{ x \in Q_0 : M_{Q_0}^d f(x) > \gamma^k |f|_{Q_0} \} \quad (f \in L^1(Q_0), k \in \mathbb{Z}_+).
\]

Proof. Consider the case of \(\mathbb{R}^n \), the same proof works in the local case. Let \(Q_j^k \) be the maximal cubes such that \(|f|_{Q_j^k} > \gamma^k \). Then, by maximality, they are pairwise disjoint and \(|f|_{Q_j^k} \leq 2^n \gamma^k \). Also, \(\Omega_k = \bigcup_j Q_j^k \).

Therefore,

\[
|Q_j^k \cap \Omega_{k+l}| = \sum_{Q_i^{k+l} \subset Q_j^k} |Q_i^{k+l}| < (1/\gamma)^{k+l} \int_{Q_j^k} |f| \leq 2^n (1/\gamma)^l |Q_j^k|.
\]

\(\square \)

Definition 2.5. Let \(\mathcal{D} \) be a dyadic grid, and let \(0 < \eta < 1 \). We say that a family of cubes \(\mathcal{S} \subset \mathcal{D} \) is \(\eta \)-sparse if for every cube \(Q \in \mathcal{S} \), there is a measurable subset \(E(Q) \subset Q \) such that \(\eta |Q| \leq |E(Q)| \) and the sets \(\{ E(Q) \}_{Q \in \mathcal{S}} \) are pairwise disjoint.
Lemma 2.6. Let \mathcal{D} be a dyadic grid, and let $0 < \eta < 1$. For every non-negative $f \in L^p(\mathbb{R}^n), 1 \leq p < \infty$, there exists an η-sparse family $\mathcal{S} \subset \mathcal{D}$ such that for all $x \in \mathbb{R}^n$,

$$M^\mathcal{D} f(x) \leq \frac{2^n}{1 - \eta} \sum_{Q \in \mathcal{S}} f_Q \chi_{E(Q)}(x).$$

Proof. For $k \in \mathbb{Z}$, set $\Omega_k = \left\{ x \in \mathbb{R}^n : M^\mathcal{D} f(x) > \left(\frac{2^n}{1 - \eta} \right)^k \right\}$. Then, by Lemma 2.4, $\Omega_k = \bigcup_j Q^k_j$, and $|Q^k_j \cap \Omega_{k+1}| \leq (1 - \eta)|Q^k_j|$. Therefore, setting $E(Q^k_j) = Q^k_j \setminus \Omega_{k+1}$, we obtain that $\eta|Q^k_j| \leq |E(Q^k_j)|$, and the sets $\{E(Q^k_j)\}$ are pairwise disjoint. Further,

$$M^\mathcal{D} f \leq \sum_{k \in \mathbb{Z}} (M^\mathcal{D} f) \chi_{\Omega_k \setminus \Omega_{k+1}} \leq \frac{2^n}{1 - \eta} \sum_{k \in \mathbb{Z}} \left(\frac{2^n}{1 - \eta} \right)^k \chi_{\Omega_k \setminus \Omega_{k+1}} \leq \frac{2^n}{1 - \eta} \sum_{j,k} f_Q \chi_{E(Q^k_j)},$$

which completes the proof with $\mathcal{S} = \{Q^k_j\}$. \square

2.4. A_p weights. Given a weight w and a measurable set $E \subset \mathbb{R}^n$, denote $w(E) = \int_E w dx$. Given an $A_p, 1 < p < \infty$, weight, its A_p constant is defined by

$$[w]_{A_p} = \sup_Q \left(\frac{1}{|Q|} \int_Q w dx \right) \left(\frac{1}{|Q|} \int_Q w^{-1/(p-1)} dx \right)^{p-1}. $$

Every A_p weight satisfies the reverse Hölder inequality (see, e.g., [9, Theorem 9.2.2]), namely, there exist $c > 0$ and $r > 1$ such that for any cube Q,

$$\left(\frac{1}{|Q|} \int_Q w^r dx \right)^{1/r} \leq c \frac{1}{|Q|} \int_Q w dx. \tag{2.6}$$

It follows from this and from Hölder’s inequality that for every Q and any measurable subset $E \subset Q$,

$$\frac{w(E)}{w(Q)} \leq c \left(\frac{|E|}{|Q|} \right)^{1/r'} \tag{2.7}$$

Notice also that the following converse estimate

$$\frac{w(Q)}{w(E)} \leq \left(\frac{|Q|}{|E|} \right)^p [w]_{A_p} \quad (E \subset Q, |E| > 0) \tag{2.8}$$
holds for all $p > 1$. Indeed, by Hölder’s inequality,

$$|E|^p \leq \left(\int_E w \, dx \right) \left(\int_E w^{-1/(p-1)} \, dx \right)^{p-1},$$

which along with the definition of $[w]_{A_p}$ implies (2.8).

3. Maximal operator on associate spaces

Since $(L^p_w)^{\prime} = L^{p^\prime}_{w^{-1}}$, the statement of Theorem 1.1 leads naturally to a question about conditions on a BFS X such that $M : X \to X \Rightarrow M : X^{\prime} \to X^{\prime}$. The result below provides a criterion in terms of sparse families and an A_∞-type condition. Its proof is based essentially on the theory of A_p weights.

Theorem 3.1. Let X be a BFS such that the Hardy-Littlewood maximal operator M is bounded on X. Let $0 < \eta < 1$. The following conditions are equivalent:

(i) M is bounded on X^{\prime};

(ii) there exist $c, \delta > 0$ such that for every dyadic grid \mathcal{D} and any finite η-sparse family $S \subset \mathcal{D}$,

$$\left\| \sum_{Q \in S} \alpha_Q \chi_{G_Q} \right\|_X \leq c \left(\max_{Q \in S} \frac{|G_Q|}{|Q|} \right)^{\delta} \left\| \sum_{Q \in S} \alpha_Q \chi_Q \right\|_X,$$

where $\{\alpha_Q\}_{Q \in S}$ is an arbitrary sequence of non-negative numbers, and $\{G_Q\}_{Q \in S}$ is any sequence of pairwise disjoint measurable subsets $G_Q \subset Q$.

Proof. Let us first prove (i) \Rightarrow (ii). Let $g \geq 0$ and $\|g\|_{X^{\prime}} = 1$. We use the standard Rubio de Francia algorithm [14], namely, set

$$Rg = \sum_{k=0}^{\infty} \frac{M^k g}{(2\|M\|_{X^{\prime}})^k},$$

where M^k denotes the k-th iteration of M and $M^0 g = g$. Then $g \leq Rg$ and $\|Rg\|_{X^{\prime}} \leq 2$. Also,

$$M(Rg)(x) \leq 2\|M\|_{X^{\prime}} Rg(x).$$

Therefore, $Rg \in A_1$.

Using the properties of Rg along with (2.7) and Hölder inequality (2.1), we obtain that there exist $c, \delta > 0$ such that

$$\int_{\mathbb{R}^n} \left(\sum_{Q \in S} \alpha_Q \chi_{G_Q} \right) g \, dx \leq \sum_{Q \in S} \alpha_Q \int_{G_Q} Rg \, dx \leq c \sum_{Q \in S} \alpha_Q \left(\frac{|G_Q|}{|Q|} \right)^{\delta} \int_{G_Q} Rg \, dx \leq c \left(\max_{Q \in S} \frac{|G_Q|}{|Q|} \right)^{\delta} \left\| \sum_{Q \in S} \alpha_Q \chi_Q \right\|_{X'} \cdot$$

It remains to take here the supremum over all $g \geq 0$ with $\|g\|_{X'} = 1$ and to use (2.2).

Turn to the proof of (ii) \Rightarrow (i). By (2.4), it suffices to prove that the dyadic maximal operator M^δ is bounded on X'. Let us show that there is $c > 0$ such that for every $f \in L^1 \cap X'$,

$$\|M^\delta f\|_{X'} \leq c \|f\|_{X'} \quad (3.1)$$

Notice that (3.1) implies the boundedness of M^δ on X'. Indeed, having (3.1) established, for an arbitrary $f \in X'$ we apply (3.1) to $f_N = f \chi_{\{|x| \leq N\}}$ (clearly, $f_N \in L^1 \cap X'$). Letting then $N \to \infty$ and using the Fatou property ((iii) of Definition 2.1), we obtain that (3.1) holds for any $f \in X'$.

In order to prove (3.1), by Lemma 2.6 it suffices to show that the operator

$$\mathcal{M}_S f = \sum_{Q \in S} f_Q \chi_{E(Q)}$$

satisfies

$$\|\mathcal{M}_S f\|_{X'} \leq c \|f\|_{X'}$$

for every non-negative $f \in L^1 \cap X'$ with $c > 0$ independent of f and S. Notice that here $S = \{Q^k_j\}$, and Q^k_j are maximal dyadic cubes forming the set

$$\Omega_k = \left\{ x \in \mathbb{R}^n : M^\delta f(x) > \left(\frac{2^n}{1 - \eta} \right)^k \right\}.$$

By duality, it is enough to obtain the uniform boundedness of the adjoint operator

$$\mathcal{M}_S^* f = \sum_{j,k} \left(\frac{1}{|Q^k_j|} \int_{E(Q^k_j)} f \right) \chi_{Q^k_j}$$
on X. Using the Fatou property again, one can assume that \mathcal{S} is finite. Take $\nu \in \mathbb{N}$ such that

$$2^{n\delta}c \sum_{l=\nu}^{\infty} \left(\frac{1-\eta}{2^n}\right)^{l\delta} \leq 1/2,$$

where c and δ are the constants from condition (ii). Denote $\alpha_{j,k} = \frac{1}{|Q^j_k|} \int_{E(Q^j_k)} f$. Then, using that $\bigcup_j Q^j_k \setminus \Omega_{k+\nu} = \bigcup_{l=0}^{\nu-1} \Omega_{k+l} \setminus \Omega_{k+l+1}$, we obtain

$$\mathcal{M}_S^* f \leq \sum_{j,k} \alpha_{j,k} \chi_{Q^j_k \setminus \Omega_{k+\nu}} + \sum_{j,k} \alpha_{j,k} \chi_{Q^j_k \cap \Omega_{k+l}},$$

Therefore, applying (2.5) along with condition (ii), we obtain

$$\|\mathcal{M}_S^* f\|_X \leq \nu \|Mf\|_X + \sum_{l=\nu}^{\infty} \sum_{j,k} \alpha_{j,k} \chi_{Q^j_k \cap (\Omega_{k+l} \setminus \Omega_{k+l+1})} \|\chi_{Q^j_k \cap (\Omega_{k+l} \setminus \Omega_{k+l+1})}\|,$$

Since \mathcal{S} is finite, by (iv) of Definition 2.1 we obtain that $\|\mathcal{M}_S^* f\|_X < \infty$. Hence,

$$\|\mathcal{M}_S^* f\|_X \leq 2\nu \|M\|_X \|f\|_X,$$

and this completes the proof of (ii) \Rightarrow (i).

4. PROOF OF THEOREM 1.1

Take $X = L^{p(-)}_w$ in Theorem 3.1. All we have to do is to check condition (ii) in this theorem. In order to do that, we need a kind of the reverse Hölder property for the weights $(tw(x))^p(x)$. The following key lemma provides a replacement of such a property which is enough for our purposes.

Lemma 4.1. Let $1 < p_- \leq p_+ < \infty$. Assume that $w(\cdot)^p(\cdot) \in A_\infty$ and that M is bounded on $L^{p(-)}_w$. Then there exist $\gamma > 1$ and $c, \eta > 0$, and there is a measure b on \mathbb{R}^n such that for every cube Q and all $t > 0$
such that $t\|\chi_Q\|_{L^p_w} \leq 1$ one has

$$
(4.1) \quad |Q| \left(\frac{1}{|Q|} \int_Q (tw(x))^{\gamma p(x)} dx \right)^{1/\gamma} \leq c \int_Q (tw(x))^{p(x)} dx + 2 t^{\eta b(Q)} \chi(0,1)(t),
$$

and for every finite family of pairwise disjoint cubes π, $\sum_{Q \in \pi} b(Q) \leq c$.

The proof of this lemma is rather technical, and we postpone it until the next Section. Let us see now how the proof of Theorem 1.1 follows.

Proof of Theorem 1.1. Let D be a dyadic grid, and let $S \subset D$ be a finite $\frac{1}{2}$-sparse family. Let $\{G_Q\}_{Q \in S}$ be a family of pairwise disjoint sets such that $G_Q \subset Q$. Take any sequence of non-negative numbers $\{\alpha_Q\}_{Q \in S}$ such that

$$
(4.2) \quad \left\| \sum_{Q \in S} \alpha_Q \chi_Q \right\|_{L^p_w} = 1.
$$

By Lemma 2.2 and Theorem 3.1 it suffices to show that there exist absolute constants $c, \delta > 0$ such that

$$
(4.3) \quad \sum_{Q \in S} \int_{G_Q} (\alpha_Q w(x))^{p(x)} dx \leq c \left(\max_{Q \in S} \frac{|G_Q|}{|Q|} \right)^{\delta}.
$$

It follows from (4.2) that $\alpha_Q \|\chi_Q\|_{L^p_w} \leq 1$ for every $Q \in S$. Therefore, if $\alpha_Q \geq 1$, by Lemma 4.1 and Hölder’s inequality along with (4.2) we obtain

$$
(4.4) \quad \sum_{Q \in S: \alpha_Q \geq 1} \int_{G_Q} (\alpha_Q w(x))^{p(x)} dx
$$

$$
\leq \sum_{Q \in S: \alpha_Q \geq 1} |Q| \left(\frac{|G_Q|}{|Q|} \right)^{1/\gamma'} \left(\frac{1}{|Q|} \int_Q (\alpha_Q w(x))^{\gamma p(x)} dx \right)^{1/\gamma}
$$

$$
\leq c \sum_{Q \in S: \alpha_Q \geq 1} \left(\frac{|G_Q|}{|Q|} \right)^{1/\gamma'} \int_Q (\alpha_Q w(x))^{p(x)} dx \leq c \left(\max_{Q \in S} \frac{|G_Q|}{|Q|} \right)^{1/\gamma'}.
$$

The case when $\alpha_Q < 1$ is more complicated because of the additional term on the right-hand side of (4.1). We proceed as follows. Denote

$$
S_k = \{Q \in S : 2^{-k} \leq \alpha_Q < 2^{-k+1} \} \quad (k \in \mathbb{N}).
$$

Let Q^k_i be the maximal cubes from S_k such that every other cube $Q \in S_k$ is contained in one of them. Then the cubes Q^k_i are pairwise
disjoint (for \(k \) fixed). Set
\[
\psi_{Q_i^k}(x) = \sum_{Q \in S_k: Q \subseteq Q_i^k} \chi_{G_Q}(x).
\]

Then
\[
\sum_{Q \in S: \alpha_Q < 1} \int_{G_Q} (\alpha_Q w(x))^{p(x)} \, dx = \sum_{k=1}^{\infty} \sum_{Q \in S_k} \int_{G_Q} (\alpha_Q w(x))^{p(x)} \, dx
= \sum_{k=1}^{\infty} \sum_{i} \sum_{Q \in S_k: Q \subseteq Q_i^k} \int_{G_Q} (\alpha_Q w(x))^{p(x)} \, dx
\leq 2^{p^+} \sum_{i,k} \int_{Q_i^k} (\alpha_{Q_i^k} w(x))^{p(x)} \psi_{Q_i^k}(x) \, dx.
\]

By Hölder’s inequality,
\[
\sum_{i,k} \int_{Q_i^k} (\alpha_{Q_i^k} w(x))^{p(x)} \psi_{Q_i^k}(x) \, dx
\leq \sum_{i,k} |Q_i^k| \left(\frac{1}{|Q_i^k|} \int_{Q_i^k} (\alpha_{Q_i^k} w(x))^{\gamma p(x)} \, dx \right)^{\frac{1}{\gamma'}} \left(\frac{1}{|Q_i^k|} \int_{Q_i^k} \psi_{Q_i^k}(x)^{\gamma'} \, dx \right)^{\frac{1}{\gamma'}}.
\]

Since \(S \) is \(\frac{1}{2} \)-sparse,
\[
\int_{Q_i^k} \psi_{Q_i^k}(x)^{\gamma'} \, dx = \sum_{Q \in S_k: Q \subseteq Q_i^k} |G_Q| \leq \left(\max_{Q \in S} \frac{|G_Q|}{|Q|} \right) \sum_{Q \in S_k: Q \subseteq Q_i^k} |Q| \leq 2 \left(\max_{Q \in S} \frac{|G_Q|}{|Q|} \right) |Q_i^k|.
\]

Combining this with the two previous estimates yields
\[
\sum_{Q \in S: \alpha_Q < 1} \int_{G_Q} (\alpha_Q w(x))^{p(x)} \, dx
\leq c \left(\max_{Q \in S} \frac{|G_Q|}{|Q|} \right)^{\frac{1}{\gamma'}} \sum_{i,k} |Q_i^k| \left(\frac{1}{|Q_i^k|} \int_{Q_i^k} (\alpha_{Q_i^k} w(x))^{\gamma p(x)} \, dx \right)^{\frac{1}{\gamma'}}.
\]

By Lemma 4.1 along with (4.2), and Lemma 2.2
\[
\sum_{i,k} |Q_i^k| \left(\frac{1}{|Q_i^k|} \int_{Q_i^k} (\alpha_{Q_i^k} w(x))^{p(x)} \, dx \right)^{\frac{1}{\gamma}} \leq c + 2 \sum_{i,k} \alpha_{Q_i^k}^2 b(Q_i^k).
\]
Since for every fixed k, the cubes $\{Q_i^k\}$ are pairwise disjoint,
\[\sum_{i,k} \alpha^k_i b(Q_i^k) \leq 2^n \sum_{k=1}^\infty 2^{-k\eta} \sum_i b(Q_i^k) \leq c \sum_{k=1}^\infty 2^{-k\eta} \leq c. \]
This, combined with the two previous estimates implies
\[\sum_{Q \in S; \alpha_Q < 1} \int_{G_Q} (\alpha_Q w(x))^{p(x)} dx \leq \left(\max_{Q \in S} \frac{|G_Q|}{|Q|} \right)^{1/\gamma'}, \]
which along with (4.4) proves (4.3).

\[\Box \]

5. Proof of Lemma 4.1

We split the proof of Lemma 4.1 into several pieces. Lemmas 5.1 and 5.2 below are due to L. Diening [5]. We give slightly shortened versions of their proofs for the sake of completeness. Notice that these lemmas hold for arbitrary weights w such that $w(\cdot) p(\cdot)$ is locally integrable. Lemma 5.3 is new. The assumption that $w(\cdot) p(\cdot) \in A_\infty$ is essential there. Throughout this section, we assume that $p_\oplus > 1$ and $p_\oplus < \infty$.

Lemma 5.1. Assume that M is bounded on $L^{p(\cdot)}$. Then there exist $r, c > 1$ such that for every family of pairwise disjoint cubes π and for every sequence of non-negative numbers $\{t_Q\}_{Q \in \pi}$,
\[\sum_{Q \in \pi} \int_Q (t_Q w(x))^{p(x)} dx \leq 1 \Rightarrow \sum_{Q \in \pi} |Q| \left(\frac{1}{|Q|} \int_Q (t_Q w(x))^{r p(x)} dx \right)^{1/r} \leq c. \]

Proof. Given a family π and a sequence $\{t_Q\}_{Q \in \pi}$, denote $v_Q(x) = (t_Q w(x))^{p(x)}$ and $\alpha_Q = \frac{1}{|Q|} \int_Q v_Q dx$.

By Lemma 2.4, write the set
\[\Omega_k(Q) = \{ x \in Q : M_{Q}^{\delta} v_Q(x) > (2^{n+1})^k \alpha_Q \} \quad (k \in \mathbb{N}) \]
as a union of pairwise disjoint cubes $P_j^k(Q)$ satisfying $|E_j^k(Q)| \geq \frac{1}{2} |P_j^k(Q)|$, where $E_j^k(Q) = P_j^k(Q) \setminus \Omega_{k+1}(Q)$. From this,
\[\sum_{Q \in \pi} t_Q \chi_{\Omega_k(Q)} \leq 2M \left(\sum_{Q \in \pi} t_Q \chi_{\Omega_k(Q) \setminus \Omega_{k+1}(Q)} \right), \]
and hence,
\[\left\| \sum_{Q \in \pi} t_Q \chi_{\Omega_k(Q)} \right\|_{L^{p(\cdot)}_w} \leq 2 \left\| M \right\|_{L^{p(\cdot)}_w} \left\| \sum_{Q \in \pi} t_Q \chi_{\Omega_k(Q) \setminus \Omega_{k+1}(Q)} \right\|_{L^{p(\cdot)}_w}. \]
ON A DUAL PROPERTY OF THE MAXIMAL OPERATOR 13

Setting $t'_Q = \frac{t_Q}{\| \sum_{Q \in \pi} t_Q \chi_{\Omega_k(Q)} \|_{L^p_w}}$, this inequality yields

$$1 \leq 2 \| M \|_{L^p_w} \| \sum_{Q \in \pi} t'_Q \chi_{\Omega_k(Q) \setminus \Omega_{k+1}(Q)} \|_{L^p_w}.$$

Since

$$\left\| \sum_{Q \in \pi} t'_Q \chi_{\Omega_k(Q) \setminus \Omega_{k+1}(Q)} \right\|_{L^p_w} \leq \left\| \sum_{Q \in \pi} t'_Q \chi_{\Omega_k(Q)} \right\|_{L^p_w} = 1,$$

Lemma 2.2 along with the previous estimate implies,

$$\frac{1}{(2 \| M \|_{L^p_w})^{p_+}} \leq \sum_{Q \in \pi} \int_{\Omega_k(Q) \setminus \Omega_{k+1}(Q)} (t'_Q w(x))^{p(x)} dx \leq 1 - \sum_{Q \in \pi} \int_{\Omega_{k+1}(Q)} (t'_Q w(x))^{p(x)} dx,$$

which in turn implies (again, by Lemma 2.2)

$$\left\| \sum_{Q \in \pi} t'_Q \chi_{\Omega_{k+1}(Q)} \right\|_{L^p_w} \leq \beta,$$

where $\beta = \left(1 - \frac{1}{(2 \| M \|_{L^p_w})^{p_+}}\right)^{1/p_+}$. Hence,

$$\left\| \sum_{Q \in \pi} t_Q \chi_{\Omega_{k+1}(Q)} \right\|_{L^p_w} \leq \beta \left\| \sum_{Q \in \pi} t_Q \chi_{\Omega_k(Q)} \right\|_{L^p_w},$$

and thus, $\| \sum_{Q \in \pi} t_Q \chi_{\Omega_k(Q)} \|_{L^p_w} \leq \beta^{k-1}$, which by Lemma 2.2 implies

$$\sum_{Q \in \pi} \int_{\Omega_k(Q)} (t_Q w(x))^{p(x)} dx \leq \beta^{p-(k-1)}.$$

(5.1)

Denote $\Omega_0(Q) = Q$. Then, for $\varepsilon > 0$ we have

$$\int_Q (t_Q w(x))^{(1+\varepsilon)p(x)} dx = \sum_{k=0}^{\infty} \int_{\Omega_k(Q) \setminus \Omega_{k+1}(Q)} (t_Q w(x))^{(1+\varepsilon)p(x)} dx \leq \alpha_Q \sum_{k=0}^{\infty} 2^{(n+1)(k+1)\varepsilon} \int_{\Omega_k(Q)} (t_Q w(x))^{p(x)} dx.$$
Take $\varepsilon > 0$ such that $\sum_{k=0}^{\infty} (2^{(n+1)\varepsilon p_-})^k < \infty$. Then, combining the previous estimate with (5.1) and Hölder’s inequality, we obtain

$$\sum_{Q \in \pi} |Q| \left(\frac{1}{|Q|} \int_Q (t_Q w(x))^{(1+\varepsilon)p(x)} dx \right)^{\frac{1}{1+\varepsilon}}$$

$$\leq \sum_{Q \in \pi} v_Q(Q)^{\frac{1}{1+\varepsilon}} \left(\sum_{k=0}^{\infty} 2^{(n+1)(k+1)\varepsilon} v_Q(Q) \right)^{\frac{1}{1+\varepsilon}}$$

$$\leq \left(2^{n+1}\varepsilon + \sum_{k=1}^{\infty} 2^{(n+1)(k+1)\varepsilon} \beta p_-(k-1) \right)^{\frac{1}{1+\varepsilon}} \leq c,$$

and therefore, the proof is complete.

\[\square \]

Lemma 5.2. Assume that M is bounded on $L_{w}^{p(\cdot)}$. Then there exist $r, k > 1$, and a measure b on \mathbb{R}^n such that the following properties hold: if $\int_{Q}(tw(x))^{p(x)}dx \leq 1$, then

$$|Q| \left(\frac{1}{|Q|} \int_Q (tw(x))^{rp(x)} dx \right)^{1/r} \leq k \int_Q (tw(x))^{p(x)} dx + b(Q),$$

and for every finite family of pairwise disjoint cubes π, \(\sum_{Q \in \pi} b(Q) \leq 2k.$

Proof. Let r and c be the constants from Lemma 5.1. Set $k = 2^{\frac{p_+}{r} + 1} c$.

Given a cube Q, denote by $A(Q)$ the set of $t > 0$ such that

$$\int_Q (tw(x))^{p(x)} dx \leq 1$$

and

$$|Q| \left(\frac{1}{|Q|} \int_Q (tw(x))^{rp(x)} dx \right)^{1/r} > k \int_Q (tw(x))^{p(x)} dx.$$

Let $t_Q = \sup A(Q)$ (if $A(Q) = \emptyset$, set $t_Q = 0$). Then

$$\int_Q (t_Q w(x))^{p(x)} dx < 1.$$

Indeed, if $\int_Q (t_Q w(x))^{p(x)} dx = 1$, we obtain

$$|Q| \left(\frac{1}{|Q|} \int_Q (t_Q w(x))^{rp(x)} dx \right)^{1/r} \geq k,$$
and this would contradict Lemma 5.1. Further, we have
\begin{equation}
|Q| \left(\frac{1}{|Q|} \int_Q (t_Q w(x))^{rp(x)} dx \right)^{1/r} = k \int_Q (t_Q w(x))^{p(x)} dx,
\end{equation}
since otherwise (5.3) holds with $t = t_Q$, and by continuity, using also (5.4), we would obtain that $t_Q + \varepsilon \in A(Q)$ for some $\varepsilon > 0$, which contradicts the definition of t_Q.

Set now
\[b(Q) = |Q| \left(\frac{1}{|Q|} \int_Q (t_Q w(x))^{rp(x)} dx \right)^{1/r}. \]
Then (5.2) holds trivially.

Let π be any finite family of pairwise disjoint cubes. Let $\pi' \subseteq \pi$ be a maximal subset such that $\sum_{Q \in \pi'} \int_Q (t_Q w(x))^{p(x)} dx \leq 2$ (maximal in the sense of the number of elements; this set is not necessarily unique, in general). We claim that $\pi' = \pi$. Indeed, assume that $\pi' \neq \pi$. Then we have $\sum_{Q \in \pi'} \int_Q (t_Q w(x)/2^{1/p-})^{p(x)} dx \leq 1$, and by Lemma 5.1
\begin{equation}
\sum_{Q \in \pi'} |Q| \left(\frac{1}{|Q|} \int_Q (t_Q w(x))^{rp(x)} dx \right)^{1/r} \leq 2^{\frac{p+}{p-}} c.
\end{equation}
From this and from (5.3),
\[\sum_{Q \in \pi'} \int_Q (t_Q w(x))^{p(x)} dx = \frac{1}{k} \sum_{Q \in \pi'} |Q| \left(\frac{1}{|Q|} \int_Q (t_Q w(x))^{rp(x)} dx \right)^{1/r} \leq \frac{1}{2}. \]
Therefore, if $P \in \pi \setminus \pi'$, we obtain
\[\sum_{Q \in \pi' \cup \{P\}} \int_Q (t_Q w(x))^{p(x)} dx \leq \frac{3}{2}, \]
which contradicts the maximality of π'. This proves that $\pi' = \pi$. Hence,
\[\sum_{Q \in \pi} b(Q) = k \sum_{Q \in \pi} \int_Q (t_Q w(x))^{p(x)} dx \leq 2k, \]
which completes the proof.

\begin{lemma}
Assume that $w(.)^{p(.)} \in A_\infty$ and that M is bounded on $L^{p(.)}_w$. There exist $\gamma, c > 1$ and $\varepsilon > 0$ such that if
\begin{equation}
(5.6) \quad t \in \left[\min \left(1, 1/\|\chi_Q\|_{L^{p(.)}_w}^{1+\varepsilon} \right), \max \left(1, 1/\|\chi_Q\|_{L^{p(.)}_w}^{1+\varepsilon} \right) \right],
\end{equation}
then
\begin{equation}
(5.7) \quad \left(\frac{1}{|Q|} \int_Q (tw(x))^{rp(x)} dx \right)^{1/\gamma} \leq c \frac{1}{|Q|} \int_Q (tw(x))^{p(x)} dx.
\end{equation}
\end{lemma}
Proof. By the definition of A_{∞}, there is an $s > 1$ such that $w(\cdot)^{p_{\gamma}(\cdot)} \in A_s$. By (2.6), $w(\cdot)^{p_{\gamma}(\cdot)}$ satisfies the reverse Hölder inequality with an exponent $\nu > 1$. Let $r > 1$ be the exponent from Lemma 5.1. Take any γ satisfying $1 < \gamma < \min(\nu, r)$. Set $\varepsilon = \frac{r-1}{\gamma(1+(s-1)r)}$.

For every $\alpha > 0$,
$$
\left(\frac{1}{|Q|} \int_Q (tw(x))^{\gamma p(x)} dx \right)^{1/\gamma} = \left(\frac{1}{|Q|} \int_Q t^{\gamma(p(x)-\alpha)} w(x)^{\gamma p(x)} dx \right)^{1/\gamma} t^\alpha.
$$

Next, by (5.6), for all $x \in Q$,
$$
t^{\gamma(p(x)-\alpha)} \leq 1 + \|xQ\|_{L_p^w(\cdot)}^{\gamma(1+\varepsilon)} (1/\|xQ\|_{L_p^w(\cdot)}^{1+\varepsilon}) \gamma p(x),
$$
and hence,
$$
\int_Q t^{\gamma(p(x)-\alpha)} w(x)^{\gamma p(x)} dx \leq \int_Q w(x)^{\gamma p(x)} dx
$$
$$
\quad + \|xQ\|_{L_p^w(\cdot)}^{\alpha(1+\varepsilon)} \left(\frac{1}{|Q|} \int_Q \left(\frac{w(x)}{\|xQ\|_{L_p^w(\cdot)}^{1+\varepsilon}} \right)^{\gamma p(x)} dx \right)^{1/\gamma} t^\alpha.
$$

Combining this with the previous estimates yields
$$
(5.8) \quad \left(\frac{1}{|Q|} \int_Q (tw(x))^{\gamma p(x)} dx \right)^{1/\gamma} \leq \left(\frac{1}{|Q|} \int_Q w(x)^{\gamma p(x)} dx \right)^{1/\gamma} t^\alpha
$$
$$
\quad + \|xQ\|_{L_p^w(\cdot)}^{\alpha(1+\varepsilon)} \left(\frac{1}{|Q|} \int_Q \left(\frac{w(x)}{\|xQ\|_{L_p^w(\cdot)}^{1+\varepsilon}} \right)^{\gamma p(x)} dx \right)^{1/\gamma} t^\alpha.
$$

Let $\alpha = m_p(Q)$ be a median value of p over Q, that is, a number satisfying
$$
\max \left(\frac{|\{x \in Q : p(x) > m_p(Q)\}|}{|Q|}, \frac{|\{x \in Q : p(x) < m_p(Q)\}|}{|Q|} \right) \leq \frac{1}{2}.
$$

Set $E_1 = \{x \in Q : p(x) \leq m_p(Q)\}$ and $E_2 = \{x \in Q : p(x) \geq m_p(Q)\}$.
Then $|E_1| \geq \frac{1}{2}|Q|$ and $|E_2| \geq \frac{1}{2}|Q|$.

Suppose, for instance, that $\|xQ\|_{L_p^w(\cdot)} \leq 1$. Then $t \geq 1$. Let us estimate the first term on the right-hand side of (5.8). Since $\gamma < \nu$, the reverse Hölder inequality implies
$$
\left(\frac{1}{|Q|} \int_Q w(x)^{\gamma p(x)} dx \right)^{1/\gamma} \leq c \frac{1}{|Q|} \int_Q w(x)^p dx.
$$
By (2.8) and since \(|E_2| \geq \frac{1}{2}|Q|\),
\[
\int_Q w(x)^{p(x)} dx \leq c \int_{E_2} w(x)^{p(x)} dx.
\]

Using also that \(t \geq 1\), we obtain
\[
(5.9) \left(\frac{1}{|Q|} \int_Q w(x)^{\gamma p(x)} dx \right)^{1/\gamma} t^{m_p(Q)} \leq \frac{c}{|Q|} \int_{E_2} w(x)^{p(x)} dx
\]
\[
\leq \frac{c}{|Q|} \int_Q (tw(x))^{p(x)} dx.
\]

Turn to the second term on the right-hand side of (5.8). The boundedness of \(M\) on \(L^p_w(\cdot)\) implies \(\|\chi_Q\|_{L^p_w(\cdot)} \leq c \|\chi_{E_1}\|_{L^p_w(\cdot)}\). By Lemma 2.2 (to be more precise, we use here a local version of Lemma 2.2; see [3, p. 25] for details),
\[
\|\chi_{E_1}\|_{L^p_w(\cdot)} \leq \left(\int_{E_1} w(x)^{p(x)} dx \right)^{1/p_+(E_1)} \leq \left(\int_{E_1} w(x)^{p(x)} dx \right)^{1/m_p(Q)},
\]
where \(p_+(E_1) = \text{ess sup}_{x \in E_1} p(x)\). As previously, by (2.8), \(\int_{E_1} w(x)^{p(x)} dx \leq c \int_{E_2} w(x)^{p(x)} dx\). Therefore, combining the previous estimates yields
\[
(5.10) \quad \|\chi_Q\|_{L^p_w(\cdot)} \leq c \left(\int_{E_2} w(x)^{p(x)} dx \right)^{1/m_p(Q)}.
\]

Let \(q = \frac{1+r(s-1)}{1+\gamma(s-1)}\) and \(q' = \frac{q}{q-1}\). Then \(q(1+\varepsilon)\gamma = r\) and \(q'\varepsilon\gamma = \frac{1}{s-1}\). Hence, Hölder’s inequality with the exponents \(q\) and \(q'\) along with Lemma 5.1 implies
\[
\frac{1}{|Q|} \int_Q \left(\frac{w(x)}{\|\chi_Q\|_{L^p_w(\cdot)}^{1+p(x)}} \right)^{\gamma p(x)} dx
\]
\[
\leq \left(\frac{1}{|Q|} \int_Q \left(\frac{w(x)}{\|\chi_Q\|_{L^p_w(\cdot)}} \right)^{r p(x)} dx \right)^{1/q} \left(\frac{1}{|Q|} \int_Q w(x)^{-\frac{1}{q} p(x)} dx \right)^{1/q'}
\]
\[
\leq c \frac{1}{|Q|^{\frac{r-1}{q}+1}} \left(\int_Q w(x)^{-\frac{1}{q} p(x)} dx \right)^{1/q'}.
\]

Notice that
\[
\frac{r-1}{q} + 1 = \frac{r}{q} + \frac{1}{q'} = (1+\varepsilon)\gamma + \varepsilon\gamma(s-1) = \gamma(s\varepsilon + 1).
\]
Therefore, from the previous estimate and from (5.10),

\[
\|\chi_Q\|_{L^p_w(Q)}^{m_p(Q)} \left(\frac{1}{|Q|} \int_Q \left(\frac{w(x)}{\|\chi_Q\|_{L^p_w(Q)}^{1+\varepsilon}} \right)^{\gamma p(x)} \, dx \right)^{1/\gamma}
\leq c \frac{|Q|^s}{|Q|} \left(\frac{1}{|Q|} \int_Q w(x)^{p(x)} \, dx \right)^\varepsilon \left(\frac{1}{|Q|} \int_Q w(x)^{-\frac{1}{s-1} p(x)} \, dx \right)^{\varepsilon(s-1)}
\leq c [w(\cdot)^{p(\cdot)}]_{A_s} \frac{1}{|Q|}
\]

From this, using (5.10) again, we obtain

\[
\|\chi_Q\|_{L^p_w(Q)}^{m_p(Q)(1+\varepsilon)} \left(\frac{1}{|Q|} \int_Q \left(\frac{w(x)}{\|\chi_Q\|_{L^p_w(Q)}^{1+\varepsilon}} \right)^{\gamma p(x)} \, dx \right)^{1/\gamma} t^{m_p(Q)}
\leq \frac{c}{|Q|} t^{m_p(Q)} \int_{E_2} w(x)^{p(x)} \, dx \leq \frac{c}{|Q|} \int_Q (tw(x))^{p(x)} \, dx.
\]

This along with (5.8) and (5.9) proves (5.7).

Finally, we note that the proof in the case when \(\|\chi_Q\|_{L^p_w(Q)} \geq 1 \) is the same, with reversed roles of the sets \(E_1 \) and \(E_2 \).

Proof of Lemma 4.1. Assume that \(t \|\chi_Q\|_{L^p_w(Q)} \leq 1 \). If \(t \geq 1 \), then the conclusion of Lemma 4.1 follows immediately from Lemma 5.3. Therefore, it remains to consider the case when \(t < 1 \).

We may keep all main settings of Lemma 5.3, namely, assume that \(w(\cdot)^{p(\cdot)} \in A_s \), and take the same numbers \(\gamma \) and \(\varepsilon = \frac{r-\gamma}{\gamma(1+(s-1)r)} \).

If

\[
\left(\frac{1}{|Q|} \int_Q (tw(x))^{\gamma p(x)} \, dx \right)^{1/\gamma} \leq A \frac{1}{|Q|} \int_Q (tw(x))^{p(x)} \, dx,
\]

where \(A > 0 \) will be determined later, then (4.1) is trivial. Suppose that

\[
(5.11) \quad \frac{1}{|Q|} \int_Q (tw(x))^{p(x)} \, dx < \frac{1}{A} \left(\frac{1}{|Q|} \int_Q (tw(x))^{\gamma p(x)} \, dx \right)^{1/\gamma}.
\]
As in the proof of Lemma 5.3, take \(q = \frac{1 + r(s-1)}{1 + \gamma(s-1)} \) and apply Hölder’s inequality with the exponents \(q \) and \(q' \). We obtain

\[
\left(\frac{1}{|Q|} \int_Q (tw(x))^{\gamma p(x)} dx \right)^{1/\gamma} \leq \left(\frac{1}{|Q|} \int_Q (t^{1+\varepsilon} w(x))^{p(x)} dx \right)^{\frac{1+\varepsilon}{1+\varepsilon}} \left(\frac{1}{|Q|} \int_Q w^{-\varepsilon} p(x) dx \right)^{(s-1)\varepsilon}.
\]

From this, applying Hölder’s inequality again along with (5.11) yields

\[
\left(\frac{1}{|Q|} \int_Q (t^{1+\varepsilon} w(x))^{p(x)} dx \right)^{1/r} \leq \left(\frac{1}{|Q|} \int_Q (tw(x))^{p(x)} dx \right)^{\frac{1}{1+\varepsilon}} \left(\frac{1}{|Q|} \int_Q w^{\gamma p(x)} dx \right)^{\frac{\varepsilon}{1+\varepsilon}} \left(\frac{1}{|Q|} \int_Q (t^{1+\varepsilon} w(x))^{p(x)} dx \right)^{1/r}.
\]

Further, from (5.11) and from Lemma 5.3, \(t^{1+\varepsilon} \leq \frac{1}{\|\chi_Q\|_{L^p(A)}} \) (here we assume that \(A \geq c \), where \(c \) is the constant from Lemma 5.3). Hence, by Lemma 5.2,

\[
|Q| \left(\frac{1}{|Q|} \int_Q (t^{1+\varepsilon} w(x))^{p(x)} dx \right)^{1/r} \leq k \int_Q (t^{1+\varepsilon} w(x))^{p(x)} dx + b(Q),
\]

where \(b(Q) \) is defined in the proof of Lemma 5.2. Thus, taking \(A = \max((2k)^{1+\varepsilon}[w(\cdot)^{p(\cdot)}]_{A_x}, c) \), where \(c \) is the constant from Lemma 5.3 and applying (5.12), we obtain

\[
|Q| \left(\frac{1}{|Q|} \int_Q (t^{1+\varepsilon} w(x))^{p(x)} dx \right)^{1/r} \leq 2b(Q),
\]

which implies

\[
|Q| \left(\frac{1}{|Q|} \int_Q (tw(x))^{p(x)} dx \right)^{1/r} \leq 2t^{\frac{\varepsilon}{1+\varepsilon}} - b(Q).
\]

This along with Hölder’s inequality (since \(\gamma < r \)) proves (4.1). \(\square \)
6. Concluding remarks and open questions

6.1. About the assumption $w(\cdot)^{p(\cdot)} \in A_\infty$. We start with the following question.

Question 6.1. Is it possible to remove completely the assumption $w(\cdot)^{p(\cdot)} \in A_\infty$ in Theorem 1.1?

Several remarks related to this question are in order. Denote by $\mathcal{L}_H(\mathbb{R}^n)$ the class of exponents $p(\cdot)$ with $p_- > 1, p_+ < \infty$ and such that

$$|p(x) - p(y)| \leq \frac{c}{\log(e + 1/|x - y|)} \quad \text{and} \quad |p(x) - p_\infty| \leq \frac{c}{\log(e + |x|)}$$

for all $x, y \in \mathbb{R}^n$, where $c > 0$ and $p_\infty \geq 1$. Also denote by $A_{p(\cdot)}(\cdot)$ the class of weights such that

$$\sup_Q |Q|^{-1} \|\chi_Q\|_{L^p(w)} \|\chi_Q\|_{L^{p(\cdot)}_{w^{-1}}} < \infty.$$

It was shown in [2, 4] that if $p(\cdot) \in \mathcal{L}_H(\mathbb{R}^n)$, then M is bounded on $L^p(w)$ if and only if $w \in A_{p(\cdot)}$. An important ingredient in the proof in [4] is the fact that if $p(\cdot) \in \mathcal{L}_H(\mathbb{R}^n)$ and $w \in A_{p(\cdot)}$, then $w(\cdot)^{p(\cdot)} \in A_\infty$. Since the boundedness of M on L^p_w implies the $A_{p(\cdot)}$ condition trivially, we see that if $p(\cdot) \in \mathcal{L}_H(\mathbb{R}^n)$, then the assumption that $w(\cdot)^{p(\cdot)} \in A_\infty$ in Theorem 1.1 is superfluous. However, we do not know whether this assumption can be removed (or at least weakened) in general.

It is well known (see, e.g., [3, Th. 3.16]) that if $p(\cdot) \in \mathcal{L}_H(\mathbb{R}^n)$, then M is bounded on L^p. This fact raises the following questions.

Question 6.2. Suppose that M is bounded on L^p and $w \in A_{p(\cdot)}$. Does this imply $w(\cdot)^{p(\cdot)} \in A_\infty$?

Question 6.3. Is it possible to replace in Theorem 1.1 the assumption $w(\cdot)^{p(\cdot)} \in A_\infty$ by the boundedness of M on L^p?

Question 6.3 is closely related to another open question stated in [7] and [3] p. 275: is it possible to deduce the equivalence $M : L^p_w(\cdot) \to L^p_w(\cdot) \Leftrightarrow w \in A_{p(\cdot)}$ assuming only that M is bounded on $L^p(\cdot)$?

6.2. An application. It is a well known principle that if M is bounded on a BFS X and on X', then some other basic operators in harmonic analysis are also bounded on X. Consider, for instance, a Calderón-Zygmund operator T. By this we mean that T is an L^2 bounded integral operator represented as

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy, \quad x \notin \text{supp } f,$$
with kernel K satisfying $|K(x, y)| \leq \frac{c}{|x-y|^n}$ for all $x \neq y$, and for some $0 < \delta \leq 1$,

$$|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \leq c \frac{|x - x'|^{\delta}}{|x - y|^{n+\delta}},$$

whenever $|x - x'| < |x - y|/2$. It was shown in [12] that

$$\int_{\mathbb{R}^n} |Tf(x)g(x)| \, dx \leq \int_{\mathbb{R}^n} Mf(x)Mg(x) \, dx.$$

This estimate along with (2.1) and (2.2) implies that if M is bounded on a BFS X and on X', then T is bounded on X. Hence, Theorem 1.1 yields the following corollary.

Corollary 6.4. Let $p : \mathbb{R}^n \to [1, \infty)$ be a measurable function such that $p_- > 1$ and $p_+ < \infty$. Let w be a weight such that $w(\cdot)^{p(\cdot)} \in A_\infty$. If M is bounded on $L_w^{p(\cdot)}(\mathbb{R}^n)$, then T is bounded on $L_w^{p(\cdot)}$.

As we have mentioned above, it was shown in [4] that if $p(\cdot) \in LH(\mathbb{R}^n)$ and $w \in A_{p(\cdot)}$, then $w(\cdot)^{p(\cdot)} \in A_\infty$ and M is bounded on $L_w^{p(\cdot)}$. Therefore, Corollary 6.4 implies the following less general result.

Corollary 6.5. If $p(\cdot) \in LH(\mathbb{R}^n)$ and $w \in A_{p(\cdot)}$, then T is bounded on $L_w^{p(\cdot)}$.

Notice that a closely related result was very recently proved in [11].

Acknowledgement. I am grateful to Alexei Karlovich for valuable remarks on an earlier version of this paper. Also I would like to thank the anonymous referee for detailed comments that improved the presentation.

References

[1] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, New York, 1988.

[2] D. Cruz-Uribe, L. Diening and P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal. 14 (2011), no. 3, 361-374.

[3] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis. Birkhäuser/Springer, Heidelberg, 2013.

[4] D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl. 394 (2012), no. 2, 744-760.

[5] L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657-700.

[6] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011.
[7] L. Diening and P. Hästö, *Muckenhoupt weights in variable exponent spaces*, preprint. Available at http://www.helsinki.fi/~hasto/pp/p75_submit.pdf

[8] L. Grafakos, Classical Fourier Analysis. Second edition. Graduate Texts in Mathematics, 249. Springer, New York, 2009.

[9] L. Grafakos, Modern Fourier Analysis. Second edition. Graduate Texts in Mathematics, 250. Springer, New York, 2009.

[10] T. Hytönen, M. Lacey and C. Pérez, *Sharp weighted bounds for the q-variation of singular integrals*, Bull. Lond. Math. Soc. **45** (2013), no. 3, 529-540.

[11] M. Izuki, E. Nakai and Y. Sawano, *Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent*, Ann. Acad. Sci. Fenn. Math. **40** (2015), 551–571.

[12] A.K. Lerner, *Weighted norm inequalities for the local sharp maximal function*, J. Fourier Anal. Appl., **10** (2004) no. 5, 465–474.

[13] W.A.J. Luxemburg, Banach function spaces. Thesis, Delft Institute of Technology, Assen (Netherlands), 1955.

[14] J.L. Rubio de Francia, *Factorization theory and A_p weights*, Amer. J. Math. **106** (1984), 533–547.