Terrestrial arthropods of Steel Creek, Buffalo National River, Arkansas. I. Select beetles (Coleoptera: Buprestidae, Carabidae, Cerambycidae, Curculionoidea excluding Scolytinae)

Michael Joseph Skvarla‡, Danielle M. Fisher‡, Kyle E. Schnepp§, Ashley P.G. Dowling‡

‡ University of Arkansas, Fayetteville, United States of America
§ Florida State Collection of Arthropods, Gainesville, United States of America

Abstract

Background

The Ozark Mountains are a region with high endemism and biodiversity, yet few invertebrate inventories have been made and few sites extensively studied. We surveyed a site near Steel Creek Campground, along the Buffalo National River in Arkansas, using twelve trap types – Malaise traps, canopy traps (upper and lower collector), Lindgren multifunnel traps (black, green, and purple), pan traps (blue, purple, red, white, and yellow), and pitfall traps – and Berlese-Tullgren extraction for eight and half months.
New information

We provide collection records of beetle species belonging to eight families collected at the site. Thirty one species represent new state records: (Buprestidae) *Actenodes acornis*, *Agrilus cephalicus*, *Agrilus ohioensis*, *Agrilus paracelti*, *Taphrocerus nicolayi*; (Carabidae) *Agonum punctiforme*, *Synuchus impunctatus*; (Curculionidae) *Acalles clavatus*, *Acalles minutissimus*, *Acoptus suturalis*, *Anthonomus juniperinus*, *Anametis granulata*, *Idiostethus subcalvus*, *Eudociminus mannerheimii*, *Madarellus undulatus*, *Magdalis armicollis*, *Magdalis barbita*, *Mecinus pascuorum*, *Myrmex chevrolatii*, *Myrmex myrmex*, *Nicentrus lecontei*, *Otiotrichus rugosostratus*, *Piazorhinus pictus*, *Phyllotrox ferrugineus*, *Plocamus hispidulus*, *Pseudobaris nigrina*, *Pseudopentarthrum simplex*, *Rhinoncus pericarpius*, *Sitona lineatus*, *Stenoscelis brevis*, *Tomolips quericola*. Additionally, three endemic carabids, two of which are known only from the type series, were collected.

Keywords

Anthribidae, Attelabidae, Brachyceridae, Brentidae, Buprestidae, Carabidae, Cerambycidae, Curculionidae, state record, range expansion, endemic, Interior Highlands, Boston Mountains

Introduction

The Interior Highlands is a mountainous physiogeographic division in the central United States and the only significant topographic relief between the Appalachian and Rocky Mountains (Fig. 1). The area is known to harbor high biodiversity and many endemic species but remains grossly understudied. It is comprised of two regions with different geological histories: the Ouachita Mountains, which occupy west-central Arkansas and southeastern Oklahoma, and the Ozarks, which occupy southern Missouri, northern Arkansas, and extreme southeastern Kansas (Fig. 2).

The Ouachita Mountains are east-west trending fold mountains approximately 100 km wide and 190 km long (3,237,600 ha), with elevations up to 818 m (Robison and Allen 1995). They are the largest exposure of the Ouachita orogeny, which formed during the assembly of Pangea (by ~270 Ma); other exposures of the orogeny include the Marathon Mountains in Mexico and the base of the Sierra del Carmen in Coahuila, Mexico (Flawn 1968, Spearing 1991, U.S. Geological Survey 2014). Historically, the Ouachitas were connected to the Marathon Mountains to the west and Appalachian Mountains to the east. However, the break-up of Pangea and subsequent expansion of the Western Interior Seaway during the Cretaceous eroded and covered the mountains to the west while the formation of the Mississippi embayment, which resulted from the uplifting, rapid erosion, and subsequent subsidence of the area between the Ouachita and Appalachian Mountains from the mid-Cretaceous through early Cenozoic, severed the connection to the Appalachians (Carlton...
and Cox 1990, Spearing 1991, Cox and Van Arsdale 2002, Poole et al. 2005, U.S. Geological Survey 2014).

Prior to European settlement, the Ouachita Mountains were dominated by shortleaf pine (*Pinus echinata* Mill.), pine-hardwood, and mixed oak (*Quercus* L.) forests, with diverse, fire-dependent forb and grass understories (Hedrick et al. 1999); fire return intervals averaged 10 years and tree densities averaged 420 trees per ha with a mean diameter of 29 cm (Kreiter 1992, Masters et al. 1995). However, most virgin forest was heavily logged between 1910–1940 (Smith 1986) and presently tens of thousands of hectares have been converted to loblolly pine (*Pinus taeda* L.) plantations (Hedrick et al. 1999). The understory
is dominated by woody vegetation and tree density has increased to 494–618 trees per ha while the mean diameter has decreased to 23 cm and average fire return intervals range from 40 to 1,200 years (Kreiter 1992, Masters et al. 1995).

The Ozarks, also referred to as the Ozark Mountains or Ozark Plateau, is divided into four geologic subdivisions. The Saint Francois Mountains, the oldest subdivision, is the exposed remains of a Proterozoic mountain range that formed through volcanic and intrusive activity 1485 Ma (Denison et al. 1984); it is also the smallest subdivision, covering approximately 180 square kilometers (Bretz 1965). The Salem Plateau, Springfield Plateau, and Boston Mountains are younger (Ordovician, Mississippian, and early Pennsylvanian age, respectively) plateaus that formed as the result of sedimentation and deposition along the edge of Laurentia. The Salem and Springfield Plateaus are composed largely of limestone and dolomite and are typified by karst topography, with thousands of caves and hundreds of springs documented in the region, while the Boston Mountains are composed largely of sandstone and shale (Bretz 1965, Arkansas Geological Survey 2015, Missouri Department of Natural Resources 2015, National Park Service 2015). The plateaus have been repeatedly uplifted and weathered, with the final uplift of the Ozarks occurring during the formation of the Ouachita orogeny; the region has remained exposed for the last 270 million years (Bretz 1965, Robison and Allen 1995, Guccione 2008, U.S. Geological Survey 2014).

The Salem and Springfield Plateaus rise to elevations of 450 m and 550 m, respectively, and are characterized by relatively flat plateau surfaces that form extensive plains cut into rolling, level-topped hills around rivers and other flowing water (Foti 2014). Oak/hickory forests and open woodlands are typical for the region, though extensive rocky, open glades can be common; additionally, the Springfield Plateau historically had extensive prairies, though these have largely been converted to agriculture (Foti 2014). The Boston Mountains is a highly dissected plateau, due to differential weathering of the relatively soft shale and harder sandstone, and the most rugged subdivision of the Ozarks, with an average elevation around 500 m and peaks up to 780 m. Oak/hickory forests predominate in most of the region, though drier south-facing slopes with extensive sandstone support short-leaf pine forests and moist, protected ravines support beech and sugar maple, which are uncommon elsewhere in the Ozarks (Foti 2014) For more information about the regions as they occur in Arkansas see Anderson 2006.

The Ouachita Mountains and Ozarks have never been connected as the Arkansas Valley (also called the Arkansas River Valley), which is part of the Arkoma Basin, formed as a foreland basin through downwarping along the Ouachita orogeny when the Ouachita Mountains were uplifted (Morris 1974, Wickham et al. 1976). The Arkansas River and its tributaries have increased the disconnection by eroding thousands of feet of sediment from the valley floor, which currently has an elevation of 90–150 m, and act as a physical barrier to poor-dispersing species (Carlton and Cox 1990, Foti and Bukenhofer 1998, Foti 2011). Differential erosion throughout the valley has left a few steep-sided, sandstone capped plateaus: Mount Magazine, Petit Jean Mountain, and Mount Nebo, which rise to elevations of 839 m, 741 m, and 411 m respectively (Higgins 2015, Peakery 2015).
The Interior Highlands can also be divided by ecoregion. Ecoregions, as defined by the Commission for Environmental Cooperation, are divided into three levels: Level I is the most inclusive and places the region "in context at global or intercontinental scales"; Level II regions are subdivisions of Level I regions and are "intended to provide a more detailed description of the large ecological areas nested within the level I regions"; finally, Level III has the smallest subdivisions that "enhance regional environmental monitoring, assessment and reporting, as well as decision-making" and "allow locally defining characteristics to be identified, and more specifically oriented management strategies to be formulated" (Commission for Environmental Cooperation 1997, Environmental Protection Agency 2015). At Level I, the Interior Highlands are included in the Eastern Temperate Forests, along with much of Eastern United States. At Level II the Interior Highlands are included in the Ozark, Ouachita-Appalachian Forests division, which also includes mountainous forests in the Appalachians. At Level III the Saint Francois Mountains, Salem and Springfield Plateaus are considered together as one subdivision – the Ozark Highlands – while the Boston Mountains, Arkansas Valley, and Ouachita Mountains are each considered separate subdivisions.

As may be expected with the regions inclusion in the Level I Eastern Temperate Forests ecoregion, many species found in the Interior Highlands are typical of eastern North America. However, some western species reach their eastern range limit in the Interior Highlands (e.g., Texas brown tarantula [*Aphonopelma hentzi* (Jean-Étienne Girard, 1852)], eastern collared lizard [*Crotaphytus collaris* (Say, 1823)], western diamondback rattlesnake [*Crotalus atrox* Baird & Girard, 1853]); these species likely colonized the Interior Highlands during the post-glacial Xerothermic Interval (6,000-4,000 b.p.), during which time prairies and xeric habitat similar to that in the west expanded into the Interior Highlands, and remained after the climate became more moist (Dowling 1956, Smith 1965, Trauth 1989, Trauth and Cochran 1992). Additionally, many species exhibit highly disjunct populations or are endemic to the region due to a number of factors: the abundance of caves and karst habitat support numerous localized cavernicolous species (Crandal 1998, Culver et al. 2000, Graening et al. 2003, Sarver and Lister 2004, Graening et al. 2006); rare habitats, such as xeric limestone prairies and glades, support specialized species assemblages (Baskin and Baskin 1988, Heikens 1999, Baskin and Baskin 2000, Ware 2002, Lawless 2005); previous connections to similar habitat (e.g., the Ouachitas and Appalachians, the River Valley plateaus and higher elevation habitat) have been severed for millions of years, allowing isolated populations of poor-dispersing organisms to speciate (e.g., Carlton and Cox 1990); and the Interior Highlands served as a refugia during periods of high sea levels and glaciation due to the unique geographic history discussed above (Redfearn 1986, The Nature Conservancy, Ozarks Ecoregional Assessment Team 2003).

The Nature Conservancy, Ozarks Ecoregional Assessment Team 2003 reported 58 species with highly disjunct populations in the Ozarks and a number of authors have discussed the disjunct populations of taxa in the region (birds: Selander 1965; fish: Bailey and Allum 1962; amphibians: Blair 1965; reptiles: Trauth et al. 2004; aquatic insects: Ross 1965; plants: Steyermark 1959, Redfearn 1986, Hemmerly 2002). While a comprehensive list of Interior Highland endemics is lacking, various authors have worked on geographic or
taxonomic subsets: e.g., Pringle and Witsell 2005 stated that at least 20 species of plants are endemic to the Ouachita Mountains and Zollner et al. 2005 listed 36 plants endemic to the Interior Highlands; Allen 1990 reported 68 species of endemic insects and suggested there are at least 200 endemic plant and animal species in the Interior Highlands overall; Robison and Allen 1995 recorded 117 species endemic to Arkansas, most of which were found in the highland regions, though Robison et al. 2008 later reduced the number of Arkansas endemics to 100; and The Nature Conservancy, Ozarks Ecoregional Assessment Team 2003 reported 159 endemic species in the Ozarks. Additional disjunct and endemic species continue to be found and described (Table 1), so the number of such species is likely to continue to increase for the foreseeable future.

Range status	Taxonomic category	Select references
Disjunct	lichens	Lendenmer and Harris 2007, Harris and Ladd 2008, Harris and Lendemer 2009, Barton and Lendemer 2014, Lendemer and Harris 2014
	plants	Simurda and Knox 2000, Rimer and Summers 2006, Peck 2011
	molluscs	Nekola and Coles 2001
	arthropods	Carlton and Robison 1998
	fish	Berendzen et al. 2008
Endemic	lichens	Knudsen and Lendemer 2009
	plants	Rothrock and Reznicek 2001, Pringle and Witsell 2005, Campbell 2006, Nelson 2008, Flden et al. 2009, Yatskievych et al. 2013
	arthropods	Wolfe and Harp 2003, Sokolov et al. 2004, Holsinger et al. 2006, Dillman et al. 2010, Hildebrandt and Maddison 2011, Radwell et al. 2011
	fish	Kinzinger and Wood 2010, Adams et al. 2013

Aquatic insects and crayfish have been relatively well surveyed within the Interior Highlands (Table 2). Terrestrial insects and other arthropods, however, have been poorly surveyed and represent an excellent opportunity to find new endemic and disjunct species (though see Carlton and Robison 1998 concerning litter-dwelling beetles in the Ouachitas). This manuscript is the first in a series examining the arthropod fauna at a single site at Steel Creek along the Buffalo National River in the Boston Mountains of Arkansas. In addition to the new species records and other notes included below, it is intended to serve as an in-depth introduction and reference for future papers based on data collected during the study and other surveys in the Interior Highlands.
Taxon	Select references
Ephemeroptera	McCafferty and Provonta 1978, Sarver and Kondratieff 1997, Baumgardner and Kennedy 1999, Ferro and Sites 2007
Plecoptera	Ernst et al. 1986, Poulton and Steward 1991, Ferro and Sites 2007
Trichoptera	Bowles and Mathis 1989, Mathis and Bowles 1992, Moulton and Steward 1996, Ferro and Sites 2007, Etnier 2010
Astacoidea	Williams 1954

Sampling methods

Sampling description: The following traps were maintained within the site: five Malaise traps (MegaView Science Co., Ltd., Taichung, Taiwan), twenty-five pan traps (five of each color: blue, purple, red, yellow, white) which were randomly arranged under the Malaise traps (one of each color per Malaise trap) so as to also act as intercept traps; fifteen Lindgren multi-funnel traps (ChemTich International, S.A., Heredia, Costa Rica) (five of each color: black, green, purple); four SLAM (Sea, Land, and Air Malaise) traps (MegaView Science Co., Ltd., Taichung, Taiwan) with top and bottom collectors that acted as canopy traps; and seventeen pitfall trap sets. Sixteen of the seventeen pitfall sets were placed in two transects of sets spaced every five meters centered on two Malaise traps while the final set was placed away from other traps. Additionally, ten leaf litter samples were collected for Berlese extraction when traps were serviced.

Pitfall traps were based on a design proposed by Nordlander 1987; they were made using plastic soup containers and modified from the original design by cutting three slots into the side of each container instead of circular entrances. The slots were cut 2 cm under the rim and measured 2 cm tall x 9.3 cm wide, resulting in three equidistant 1.5 cm posts and a 28 cm collecting surface. The diameter at the base of the slots is approximately 10.5 cm and the cups are 10.5 cm deep below the slots, resulting in a collecting volume of 2,988 cm³. This design allowed the matching lids to be used as rain covers instead of using separate covers, such as ceramic tiles or bent metal sheeting. Each pitfall trap set was made by burying a single cup on either side of a 30.5 cm x 15.5 cm aluminum fence; trap catch from both cups was combined and treated as a single sample.

Berlese-Tullgren samples were collected from a variety of habitats, including thin leaf litter away from objects; thick leaf litter accumulated along logs and rocks; moss; tree holes; bark from fallen, partially decayed trees; and bark and leaf litter accumulated at the base of standing, dead trees. An attempt was made to collect moist, non-desiccated litter in order to increase the number of specimens collected; this resulted in fewer samples being taken from thin leaf litter, moss, and tree bark during the hot, dry summer months. Tree holes
were sampled once each so as not to totally destroy them as potential habitat; as the number of tree holes within the site was limited, this resulted in only a handful of collections from this habitat type. Leaf litter samples were processed for four to seven days until the litter was thoroughly dry using modified Berlese-Tullgren funnels.

Trap placement began on 8 March 2013 and all traps were set by 13 March 2013, except Lindgren funnels, which were set on 1 April 2013. Traps set earlier than 13 March were reset on that date in order to standardize trap catch between traps. Traps were serviced approximately every two weeks (Table 3). The last collection of pitfall traps and pan traps occurred on 6 November 2013; Malaise, SLAM, and Lindgren funnel traps were run for an additional month, with the final collection on 4 December 2013. Berlese-Tullgren samples were not collected on 13 April, 15 May, and 6 November due to heavy rain that began during trap servicing and precluded sample collection. Berlese-Tullgren samples collected on 28 June were lost due to evaporation of ethanol in the funnel collecting cups after sample processing began. Pitfall cups were dislodged on 13 April (one set), 15 May (one set), 28 June (four sets), 17 July (five sets) due to unknown circumstances, though the pattern of litter and debris around the cups on two occasions suggested heavy rainfall and water accumulation forced the cups from the holes. In total, 1311 samples were collected (Table 4).

Collection period
13 March 2013 – 1 April 2013
1 April 2013 – 13 April 2013
30 April 2013 – 15 May 2013
15 May 2013 – 29 May 2013
29 May 2013 – 12 June 2013
12 June 2013 – 28 June 2013
28 June 2013 – 17 July 2013
17 July 2013 – 30 July 2013
30 July 2013 – 13 August 2013
13 August 2013 – 28 August 2013
28 August 2013 – 11 September 2013
11 September 2013 – 25 September 2013
25 September 2013 – 8 October 2013
8 October 2013 – 23 October 2013
Propylene glycol (Peak RV & Marine Antifreeze) (Old World Industries, LLC, Northbrook, IL) was used as the preservative in all traps as it is non-toxic and generally preserves specimens well (Skvarla et al. 2014). Insect escape was impeded by the addition of a squirt of unscented, hypoallergenic dish detergent to the propylene glycol to act as a surfactant. Trap catch was sieved in the field and stored in Whirl-Pak bags (Nasco, Fort Atkinson, WI) in 90% ethanol until sorting.

Quality control: Samples were coarse-sorted using a Leica MZ16 stereomicroscope illuminated with a Leica KL1500 LCD light source and a Wild M38 stereomicroscope illuminated with an Applied Scientific Devices Corp. Eco-light 20 fiber optic light source. After sorting, specimens were stored individually or by family in 2 mL microtubes (VWR International, LLC, Randor, PA) in 70% ethanol. Hard-bodied specimens (e.g., Carabidae, Curculionidae) were pinned or pointed as appropriate.

Specimens were identified with the use of published keys (Table 5).
Family	Genus	Reference
Anthribidae	Valentine	Valentine 1998, Valentine 1960
Attelabidae	Hamilton	Hamilton 1971, Hamilton 1989, Hamilton 2002
Brentidae		Anderson and Kissinger 2002
Buprestidae		Nelson et al. 2008, Paiero et al. 2012
Carabidae		Lindroth 1969, Ciegler 2000, Arnett and Ivie 2001, Ball and Bousquet 2001, Pearson et al. 2006
Carabidae	Abacidus	Lindroth 1969, Sadek 1982
Carabidae	Agonum	Liebherr 1994
Carabidae	Anisodactylus	Noonan 1973
Carabidae	Brachinus	Erwin 1970
Carabidae	Calathus	Ball and Negre 1972
Carabidae	Carabus	Haldeman 1852
Carabidae	Chlaenius	Bell 1960
Carabidae	Clinidium	Bell and Bell 1975, Bell 1999
Carabidae	Clivina	Ball 2001, Bousquet 2009
Carabidae	Cychrus	Gidaspow 1973
Carabidae	Cymindis	Hunting 2013
Carabidae	Dicaelus	Ball 1959
Carabidae	Dicheirus	Noonan 1973
Carabidae	Harpalus	Noonan 1991
Carabidae	Lebia	Madge 1967
Carabidae	Notiophilus	Larochelle and Lariviere 1990
Carabidae	Notobia	Noonan 1973
Carabidae	Platynus	Liebherr and Will 1996, Bousquet 2012a
Carabidae	Progaleritina	Ball and Nimmo 1983
Carabidae	Pseudophonos	Ball and Anderson 1962
Carabidae	Pterostichus	Bousquet 1992
Carabidae	Rhadinae	Barr 1974
Family	Genus	Authors
---------------------	-----------------	--
Carabidae	Scaphinotus	Van Dyke 1938, Allen and Carlton 1988
Carabidae	Stenolophus	Bousquet and Messer 2010
Carabidae	Tachyta	Erwin 1975
Cerambycidae	Yanega 1996, Lingafelter 2007	
Cerambycidae	Astyopsis	Schiefer 2000
Cerambycidae	Purpuricenus	MacRae 2000
Cerambycidae	Saperda	Schiefer and Newell 2010
Curculionidae	Cercopeus	O’Brien et al. 2010
Curculionidae	Conotrachelus	Schoof 1942
Curculionidae	Cossonus	Van Dyke 1915
Curculionidae	Curculio	Gibson 1969
Curculionidae	Dichoxenus	Sleeper 1956
Curculionidae	Eubulus	Anderson 2008
Curculionidae	Geraeus	Prena 2009
Curculionidae	Lechriops	Hespenheide 2003
Curculionidae	Linogeraeus	Prena 2009
Curculionidae	Lissorhoptrus	O’Brien and Haseeb 2014
Curculionidae	Lymanites	Sleeper 1965, Paquin and Anderson 2009
Curculionidae	Notiodes	Board 1972
Curculionidae	Oopterinus	O’Brien 1985
Curculionidae	Otiorhynchus	Warner and Negley 1976
Curculionidae	Pandeletius	Howden 1959
Curculionidae	Rhinoncus	Hoebeke and Whitehead 1980
Curculionidae	Tychius	Clark 1971
Curculionidae	Tyloderma	Wibmer 1918

The sole representative of *Lymantes* (Curculionidae) collected keys to *L. sandersoni* in Sleeper 1965. However, the character that separates *L. sandersoni* and *L. arkansasensis* is dubious, especially given that the two species are described from one and two specimens, respectively, from areas that are geographically similar and not widely separated (less than 300 km). Furthermore, R. S. Anderson, who is currently revising the
genus, believes that all Lymantes in the eastern United States (excluding Texas) belong to a single species, *L. scrobicollis* (Paquin and Anderson 2009). Considering this, we identify the specimen collected as *L. sandersoni* with the caveat that it is likely that both *L. sandersoni* and *L. arkansasensis* will be synonymized with *L. scrobicollis* in the future.

Ormiscus (Curculionidae) consists of 14 described and approximately 30 undescribed species in North America north of Mexico (Valentine 2002). Species are most easily identified by the male secondary sexual features (e.g., characters on the mid and hind tibiae), however some species appear to be parthenogenetic (B. Valentine, pers. comm., via Iowa State University 2015), though this remains unconfirmed. In summary, this genus is in need of a major revision. As two-thirds or more of the North American species remain undescribed, we have declined to assign the single specimen collected to species.

Two weevil species, *Auleutes nebulosus* and *Laemosaccus nephele* (Curculionidae), are thought to be complexes of multiple cryptic species that are in need of revision (Anderson 2002, Ciegler 2010). As a limited number of specimens (2 and 4 per species complex, respectively) were collected, it is unlikely that multiple species were collected; additionally, modern revisions are lacking and identification of putative species is impossible. Specimens were therefore identified as the nominative species with the caveat that future studies may break the species complexes up and assign specimens collected in this study to other species.

The males of nine of 17 species of *Cercopeus* (Curculionidae) in the United States, including the widespread species *C. chrysorrhoeus*, are undescribed (O’Brien et al. 2010). All female *Cercopeus* collected in this study were identified as *C. chrysorrhoeus*; we therefore assumed that the males collected, which do not conform to the nine described males, are also *C. chrysorrhoeus*.

The *Chrysobothris femorata* (Buprestidae) species group consists of a dozen species that are difficult to separate (with the exception of *C. adelpha*) as the characters used to distinguish species, including genitalia, are variable and often intermediate between species (Paiero et al. 2012). Further revision of the group is needed to positively identify species so, except for *C. adelpha*, we have chosen not to assign specimens to individual species.

All specimens have been deposited in the University of Arkansas Arthropod Museum (UAAM), with the following exceptions: 1) 1–5 exemplars of each species have been deposited in the Dowling Lab Collection at the University of Arkansas; 2) the following specimens were sent to Peter Messer for identification confirmation and have been deposited in the P. W. Messer Collection: *Agonum striatopunctatum* (MS 13-0529-072, #136215; MS 13-0612-022, #139663), *Cicindela rufiventris* (MS 13-0717-001, #134492), *Cyclotrachelus incisus* (MS 13-0413-023, #139591; MS 13-0413-019, #139592; MS 13-0413-006, #139594; MS 13-1008-075, #139596), *Cyclotrachelus parasodalis* (MS 13-0430-019, #131983; MS 13-0529-037, #135057; MS 13-1106-002, #138280), *Lophoglossus haldemanni* (MS 13-0529-066, #135053), *Pterostichus punctiventris* (MS 13-0401-018, #135065; MS 13-1023-021, #136216), *Rhadine ozarkensis* (MS 13-0529-066, #135053).
13-0925-027, #134547), *Scaphinotus fissicollis* (MS 13-1106-037, #137830), *Selenophorus ellipticus* (MS 13-0925-005, #136223), *Selenophorus opalinus* (MS 13-0813-034, #136217), *Trichotichus autumnalis* (MS 13-0730-005, #136226), *Trichotichnus vulpeculus* (MS 13-0911-027, #136218).

New Arkansas state records for Buprestidae are based on the range data given by Paiero et al. 2012; for Carabidae are based on range data given by Bousquet 2012b; and for Attelabidae and Curculionidae are based on O’Brien and Wibmer 1982 and supplemented by more recent literature (see individual species notes for specific citations). No attempt was made to assess the state record status of Cerambycidae as recent checklists and keys (e.g., Linsley 1962a, Linsley 1962b, Linsley 1963, Linsley 1964, Linsley and Chemsak 1972, Linsley and Chemsak 1976, Chemsak and Linsley 1982, Linsley and Chemsak 1984, Linsley and Chemsak 1995, Yanega 1996, Lingafelter 2007, Bezark and Monné 2013) report regional presence rather than presence by state and/or contain range maps for a few species with a limited number of records and J. A. Chemsak sadly passed before completing his "Illustrated Revision of the Cerambycidae of North America" series, which includes detailed range maps for the species treated (though see Chemsak 1996 for Parandrinae, Spondylidinae, Aseminae, and Prioninae and Chemsak 2007 for Lepturinae).

Geographic coverage

Description: The survey was conducted at 4 hectare plot established at Steel Creek along the Buffalo National River in Newton County, Arkansas, centered at approximately N 36° 02.269', W 93°20.434'. The site is primarily 80–100 year old mature second-growth Eastern mixed deciduous forest dominated by oak (*Quercus*) and hickory (*Carya*), though American beech (*Fagus grandifolia*) and eastern red cedar (*Juniperus virginiana*) are also abundant. A small (14 m x 30 m), fishless pond and glade (10 m x 30 m) with sparse grasses are present within the boundaries of the site.

Coordinates: 36.0367 and 36.0397 Latitude; -93.3917 and -93.3397 Longitude.

Taxonomic coverage

Description: All specimens of Anthribidae, Attelabidae, Brachyceridae, Brentidae, Buprestidae, Carabidae, Cerambycidae, Curculionidae excluding Scolytinae were identified to species.

Usage rights

Use license: Creative Commons CCZero
Data resources

Data package title: Steel Creek survey

Number of data sets: 1

Data set name: Steel Creek beetles

Download URL: http://dx.doi.org/10.5061/dryad.4h40n

Data format: Darwin Core Archive

Data format version: 1.0

Column label	Column description
typeStatus	Nomenclatural type applied to the record
catalogNumber	Unique within-project and within-lab number applied to the record
recordedBy	Who recorded the record information
individualCount	The number of specimens contained within the record
lifeStage	Life stage of the specimens contained within the record
kingdom	Kingdom name
phylum	Phylum name
class	Class name
order	Order name
family	Family name
genus	Genus name
specificEpithet	Specific epithet
scientificNameAuthorship	Name of the author of the lowest taxon rank included in the record
scientificName	Complete scientific name including author and year
taxonRank	Lowest taxonomic rank of the record
country	Country in which the record was collected
countryCode	Two-letter country code
stateProvince	State in which the record was collected
county	County in which the record was collected
municipality	Closest municipality to where the record was collected
locality	Description of the specific locality where the record was collected
verbatimElevation	Average elevation of the field site in meters
Additional information

Analysis

8,048 specimens representing 251 species and 188 genera were collected during this study (Table 6), with the following totals by family: Anthribidae: 15 specimens, 4 species, 4 genera; Attelabidae: 19 specimens, 3 species, 3 genera; Brachyceridae: 1 specimen, 1 species, 1 genus; Brentidae: 6 specimens, 1 species, 1 genus; Buprestidae: 375 specimens, 27 species, 9 genera; Carabidae: 1970 specimens, 62 species, 36 genera; Cerambycidae: 1885 specimens, 82 species, 57 genera; Curculionidae: 3777 specimens, 71 species, 52 genera.

Table 6.
Species collected, including total number of specimens. New state records are indicated by an an asterisk (*).

*Family	Genus	Species	Total specimens collected
Anthribidae	Euparius	Euparius marmoreus	11
Anthribidae	Eurymycter	Eurymycter fasciatus	2
Anthribidae	Omiscus		1
Anthribidae	Toxonotus	Toxonotus cornutus	1
Attelabidae	Eugnamptus	Eugnamptus angustatus	12
Attelabidae	Synolabus	Synolabus bipustulatus	1
Family	Genus	Species	Count
-------------	-----------	----------------------------------	-------
Attelabidae	Temnocerus	Temnocerus aeratus	6
Brachyceridae	Notiodes	Notiodes limatulus	1
Brentidae	Arrhenodes	Arrhenodes minutus	6
Buprestidae	Acmaeodera	Acmaeodera tubulus	70
Buprestidae	Acmaeodera	Acmaeodera pulchella	1
Buprestidae	Actenodes	Actenodes acornis*	1
Buprestidae	Agrilus	Agrilus arcuatus complex	1
Buprestidae	Agrilus	Agrilus bilineatus	35
Buprestidae	Agrilus	Agrilus cephalicus*	18
Buprestidae	Agrilus	Agrilus defectus	1
Buprestidae	Agrilus	Agrilus fallax	1
Buprestidae	Agrilus	Agrilus geminatus	1
Buprestidae	Agrilus	Agrilus lecontei	4
Buprestidae	Agrilus	Agrilus masculinus	1
Buprestidae	Agrilus	Agrilus ohioensis*	1
Buprestidae	Agrilus	Agrilus olentangyi	1
Buprestidae	Agrilus	Agrilus obsoleteoguttatus	12
Buprestidae	Agrilus	Agrilus paracelti*	3
Buprestidae	Anthaxia	Anthaxia viridifrons	6
Buprestidae	Brachys	Brachys aerosus	1
Buprestidae	Chrysobothris	Chrysobothris adelpha	60
Buprestidae	Chrysobothris	Chrysobothris femorata complex	70
Buprestidae	Chrysobothris	Chrysobothris sexsignata	7
Buprestidae	Dicerca	Dicerca divaricata	3
Buprestidae	Dicerca	Dicerca lurida	58
Buprestidae	Dicerca	Dicerca obscura	8
Buprestidae	Dicerca	Dicerca spreta	1
Buprestidae	Ptosima	Ptosima gibbicollis	5
Buprestidae	Taphrocerus	Taphrocerus gracilis	3
Buprestidae	Taphrocerus	Taphrocerus nicolayi*	2
Carabidae	Agonoleptus	Agonoleptus conjunctus	17
Family	Genus	Species	Count
------------	----------	----------------------------------	-------
Carabidae	Agonum	*Agonum punctiforme*	2
Carabidae	Agonum	Agonum striatopunctatum	3
Carabidae	Amara	Amara aenea	3
Carabidae	Amara	Amara cupreolata	14
Carabidae	Amara	Amara musculis	30
Carabidae	Anisodactylus	Anisodactylus rusticus	33
Carabidae	Apenes	Apenes sinuata	8
Carabidae	Badister	Badister notatus	3
Carabidae	Bembidion	Bembidion affine	6
Carabidae	Bembidion	Bembidion rapidum	2
Carabidae	Brachinus	Brachinus americanus	91
Carabidae	Calathus	Calathus opaculus	14
Carabidae	Calleida	Calleida viridipennis	8
Carabidae	Carabus	Carabus sylvosus	20
Carabidae	Chlaenius	Chlaenius platyderus	1
Carabidae	Chlaenius	Chlaenius tomentosus	3
Carabidae	Cicindela	Cicindela rufiventris	3
Carabidae	Cicindela	Cicindela sexguttata	32
Carabidae	Clinidium	Clinidium sculptile	1
Carabidae	Clivina	Clivina pallida	1
Carabidae	Cyclotrachelus	Cyclotrachelus incisus	797
Carabidae	Cyclotrachelus	Cyclotrachelus parasodalis	33
Carabidae	Cymindis	Cymindis americana	9
Carabidae	Cymindis	Cymindis limbata	203
Carabidae	Cymindis	Cymindis platycollis	8
Carabidae	Dicaelus	Dicaelus ambiguus	22
Carabidae	Dicaelus	Dicaelus elongatus	11
Carabidae	Dicaelus	Dicaelus sculptilis	78
Carabidae	Dromius	Dromius piceus	1
Carabidae	Elaphropus	Elaphropus granarius	1
Carabidae	Galerita	Galerita bicolor	19
Carabidae	Genus	Species	Count
----------	-----------	-----------------------------	-------
Carabidae	Galerita	Galerita janus	2
Carabidae	Harpalus	Harpalus faunus	1
Carabidae	Harpalus	Harpalus katiae	1
Carabidae	Harpalus	Harpalus pensylvanicus	5
Carabidae	Lebia	Lebia analis	1
Carabidae	Lebia	Lebia marginicollis	1
Carabidae	Lebia	Lebia viridis	37
Carabidae	Lophoglossus	Lophoglossus haldemanni	1
Carabidae	Mioptachys	Mioptachys flavicauda	12
Carabidae	Notiophilus	Notiophilus novemstriatus	67
Carabidae	Platynus	Platynus decentis	9
Carabidae	Platynus	Platynus parmarginatus	2
Carabidae	Plochionus	Plochionus timidus	2
Carabidae	Pterostichus	Pterostichus permundus	105
Carabidae	Pterostichus	Pterostichus punctiventris	11
Carabidae	Rhadine	Rhadine ozarkensis	1
Carabidae	Scaphinotus	Scaphinotus unicolor	4
Carabidae	Scaphinotus	Scaphinotus fissicollis	12
Carabidae	Scaphinotus	Scaphinotus infletus	1
Carabidae	Selenophorus	Selenophorus ellipticus	4
Carabidae	Selenophorus	Selenophorus gagatinus	8
Carabidae	Selenophorus	Selenophorus opalinus	1
Carabidae	Stenolophus	Stenolophus ochropezus	5
Carabidae	Synuchus	Synuchus impunctatus*	3
Carabidae	Tachyta	Tachyta parvicornis	3
Carabidae	Tachys	Tachys columbiensis	4
Carabidae	Tachys	Tachys oblitus	2
Carabidae	Trichotichnus	Trichotichnus autumnalis	176
Carabidae	Trichotichnus	Trichotichnus fulgens	11
Carabidae	Trichotichnus	Trichotichnus vulpeculus	1
Cerambycidae	Aegomorphus	Aegomorphus modestus	8
Family	Genus	Species	Count
---------------	----------------	--------------------------	-------
Cerambycidae	Aegormorphus	Aegormorphus quadrigibbus	1
Cerambycidae	Anelaphus	Anelaphus parallelus	162
Cerambycidae	Anelaphus	Anelaphus pumilus	4
Cerambycidae	Astyieopus	Astyieopus variegatus	1
Cerambycidae	Astylidius	Astylidius parvus	2
Cerambycidae	Astylopsis	Astylopsis macula	4
Cerambycidae	Astylopsis	Astylopsis sexguttata	1
Cerambycidae	Bellamira	Bellamira scalaris	2
Cerambycidae	Brachyleptura	Brachyleptura champlaini	5
Cerambycidae	Callimoxys	Callimoxys sanguinicollis	4
Cerambycidae	Centrodera	Centrodera sublineata	1
Cerambycidae	Clytoleptus	Clytoleptus albofasciatus	6
Cerambycidae	Cyrtinus	Cyrtinus pygmaeus	5
Cerambycidae	Cyrtophorus	Cyrtophorus verrucosus	17
Cerambycidae	Dorcaschema	Dorcaschema alternatum	2
Cerambycidae	Dorcaschema	Dorcaschema cinereum	15
Cerambycidae	Dorcaschema	Dorcaschema nigrum	2
Cerambycidae	Dorcaschema	Dorcaschema wildii	2
Cerambycidae	Eburia	Eburia quadrigeminata	7
Cerambycidae	Ecyrus	Ecyrus dasycerus	1
Cerambycidae	Elytrimitatrix	Elytrimitatrix undata	30
Cerambycidae	Elaphidion	Elaphidion mucronatum	196
Cerambycidae	Enaphalodes	Enaphalodes rufulus	1
Cerambycidae	Euderces	Euderces reichei	1
Cerambycidae	Euderces	Euderces picipes	5
Cerambycidae	Euderces	Euderces pini	3
Cerambycidae	Eupogonius	Eupogonius pauper	2
Cerambycidae	Gaurotes	Gaurotes cyanipennis	1
Cerambycidae	Graphisurus	Graphisurus despectus	8
Cerambycidae	Graphisurus	Graphisurus fasciatus	10
Cerambycidae	Heterachthes	Heterachthes quadrimaculatus	18
Family	Genus	Species	Count
------------	--------------	------------------	-------
Cerambycidae	Hyperplatys	Hyperplatys maculata	1
Cerambycidae	Knulliana	Knulliana cincta	10
Cerambycidae	Leptostylus	Leptostylus transversus	18
Cerambycidae	Lepturges	Lepturges angulatus	1
Cerambycidae	Lepturges	Lepturges confluens	9
Cerambycidae	Micranoplium	Micranoplium unicolor	3
Cerambycidae	Molorcharus	Molorcharus bimaculatus	65
Cerambycidae	Monochamus	Monochamus titillator	2
Cerambycidae	Neoclytus	Neoclytus acuminatus	60
Cerambycidae	Neoclytus	Neoclytus caprea	2
Cerambycidae	Neoclytus	Neoclytus horridus	2
Cerambycidae	Neoclytus	Neoclytus jouteli	1
Cerambycidae	Neoclytus	Neoclytus mucronatus	133
Cerambycidae	Neoclytus	Neoclytus scutellaris	129
Cerambycidae	Necydalis	Necydalis mellita	2
Cerambycidae	Oberea	Oberea ulmicola	1
Cerambycidae	Obrium	Obrium maculatum	10
Cerambycidae	Oncideres	Oncideres cingulata	2
Cerambycidae	Orthosoma	Orthosoma brunneum	7
Cerambycidae	Parelaphidion	Parelaphidion aspersum	7
Cerambycidae	Phymatodes	Phymatodes amoenus	2
Cerambycidae	Phymatodes	Phymatodes testaceus	8
Cerambycidae	Phymatodes	Phymatodes varius	4
Cerambycidae	Physocnemum	Physocnemum brevilineum	1
Cerambycidae	Prionus	Prionus imbricornis	1
Cerambycidae	Purpuricenus	Purpuricenus humeralis	1
Cerambycidae	Purpuricenus	Purpuricenus paraxillaris	13
Cerambycidae	Saperda	Saperda discoidea	9
Cerambycidae	Saperda	Saperda imitans	29
Cerambycidae	Saperda	Saperda lateralis	9
Cerambycidae	Saperda	Saperda tridentata	3
Family	Genus	Species	Abundance
-------------------	-----------	-----------------------	-----------
Cerambycidae	Saroesthes	Saroesthes fulminans	5
Cerambycidae	Stenelytrana	Stenelytrana emarginata	2
Cerambycidae	Stenocorus	Stenocorus cinnamopterus	7
Cerambycidae	Stenosphenus	Stenosphenus notatus	73
Cerambycidae	Sternidius	Sternidius alpha	6
Cerambycidae	Strangalepta	Strangalepta abbreviata	1
Cerambycidae	Strangalia	Strangalia bicolor	31
Cerambycidae	Strangalia	Strangalia luteicornis	205
Cerambycidae	Strophiona	Strophiona nitens	24
Cerambycidae	Tilloclytus	Tilloclytus geminatus	2
Cerambycidae	Trachysida	Trachysida mutabilis	2
Cerambycidae	Trigonarthris	Trigonarthris minnesotana	2
Cerambycidae	Trigonarthris	Trigonarthris proxima	3
Cerambycidae	Typocerus	Typocerus lugubris	2
Cerambycidae	Typocerus	Typocerus velutinus	46
Cerambycidae	Typocerus	Typocerus zebra	5
Cerambycidae	Urgleptes	Urgleptes querci	28
Cerambycidae	Urgleptes	Urgleptes signatus	9
Cerambycidae	Xylotrechus	Xylotrechus colonus	360
Curculionidae	Acalles	Acalles carinatus	11
Curculionidae	Acalles	Acalles clavatus*	5
Curculionidae	Acalles	Acalles minutissimus*	5
Curculionidae	Acoptus	Acoptus suturalis*	1
Curculionidae	Anthonomus	Anthonomus juniperinus*	1
Curculionidae	Anthonomus	Anthonomus nigrinus	3
Curculionidae	Anthonomus	Anthonomus rufipennis	5
Curculionidae	Anthonomus	Anthonomus suturalis	22
Curculionidae	Aphanommata	Aphanommata tenuis	9
Curculionidae	Apteromechus	Apteromechus ferratus	600
Curculionidae	Anametis	Anametis granulata*	5
Curculionidae	Auleutes	Auleutes nebulosus complex	2
Family	Genus	Species	Count
---------------	-------------	--------------------------	-------
Curculionidae	Buchananius	Buchananius sulcatus	4
Curculionidae	Canistes	Canistes schusteri	26
Curculionidae	Caulophilus	Caulophilus dubius	1
Curculionidae	Cercopoecus	Cercopoecus chrysorrhoeus	560
Curculionidae	Chalcedermus	Chalcedermus inaequicollis	1
Curculionidae	Conotrachelus	Conotrachelus affinis	9
Curculionidae	Conotrachelus	Conotrachelus anaglypticus	39
Curculionidae	Conotrachelus	Conotrachelus aratus	162
Curculionidae	Conotrachelus	Conotrachelus carinifer	56
Curculionidae	Conotrachelus	Conotrachelus elegans	44
Curculionidae	Conotrachelus	Conotrachelus naso	130
Curculionidae	Conotrachelus	Conotrachelus posticatus	979
Curculionidae	Cophes	Cophes fallax	73
Curculionidae	Cophes	Cophes obtentus	1
Curculionidae	Cossonus	Cossonus impressifrons	12
Curculionidae	Craponius	Craponius inaequalis	1
Curculionidae	Cryptorhynchus	Cryptorhynchus fusatus	6
Curculionidae	Cryptorhynchus	Cryptorhynchus tristis	168
Curculionidae	Curculio	Curculio othorhynchus	1
Curculionidae	Cyrtepistomus	Cyrtepistomus castaneus	133
Curculionidae	Dichoxenus	Dichoxenus setiger	76
Curculionidae	Dietzella	Dietzella zimmermanni	1
Curculionidae	Dryophthorus	Dryophthorus americanus	30
Curculionidae	Epacalles	Epacalles inflatus	65
Curculionidae	Eubulus	Eubulus bisignatus	28
Curculionidae	Eubulus	Eubulus obliquefasciatus	193
Curculionidae	Eudociminus	Eudociminus mannerheimii*	1
Curculionidae	Eurhoptus	Eurhoptus sp. 1	28
Curculionidae	Eurhoptus	Eurhoptus pyriformis	15
Curculionidae	Geraeus	Geraeus penicillus	1
Curculionidae	Hypera	Hypera compta	4
Family	Genus	Species	Count
-----------	------------	--------------------------	-------
Curculionidae	Hypera	Hypera meles	19
Curculionidae	Hypera	Hypera nigrirostris	1
Curculionidae	Hypera	Hypera postica	1
Curculionidae	Idiostethus	Idiostethus subcalvus*	1
Curculionidae	Laemosaccus	Laemosaccus nephele complex	3
Curculionidae	Leichrops	Leichrops oculatus	30
Curculionidae	Lymantes	Lymantes sandersoni	1
Curculionidae	Madarellus	Madarellus undulatus*	9
Curculionidae	Magdalis	Magdalis armicollis*	3
Curculionidae	Magdalis	Magdalis barbita*	5
Curculionidae	Mecinus	Mecinus pascuorum*	2
Curculionidae	Myrmex	Myrmex chevrolatii*	7
Curculionidae	Myrmex	Myrmex myrmex*	1
Curculionidae	Nicentrus	Nicentrus lecontei*	1
Curculionidae	Oopterinus	Oopterinus perforatus	17
Curculionidae	Otiorhynchus	Otiorhynchus rugosostriatus*	46
Curculionidae	Pandeletius	Pandeletius hilaris	51
Curculionidae	Piazorhinus	Piazorhinus pictus*	2
Curculionidae	Phyllotrox	Phyllotrox ferrugineus*	20
Curculionidae	Plocamus	Plocamus hispidulus*	1
Curculionidae	Pseudobaris	Pseudobaris nigrina*	9
Curculionidae	Pseudopentarthrum	Pseudopentarthrum simplex*	13
Curculionidae	Rhinoncus	Rhinoncus pericarpius*	1
Curculionidae	Sitona	Sitona lineatus*	1
Curculionidae	Stenoscelis	Stenoscelis brevis*	4
Curculionidae	Tachyerges	Tachyerges niger	1
Curculionidae	Tomolips	Tomolips quercicola*	2
Curculionidae	Tychius	Tychius prolixus	7
Curculionidae	Tyloperma	Tyloperma foveolatum	1

Thirty one species (12%) collected during this study represent new Arkansas state records: (Buprestidae) *Actenodes acornis*, *Agrilus cephalicus*, *Agrilus ohioensis*, *Agrilus paracelti*, *Taphrocerus nicolayi*; (Carabidae) *Agonum punctiforme*, *Synuchus impunctatus*;
(Curculionidae) Acalles clavatus, Acalles minutissimus, Acoptus suturalis, Anthonomus juniperinus, Amnetis granulata, Eudocimus mannerheimii, Idiostethus subcalvus, Madarellus undulatus, Madalis armicollis, Madalis barbita, Mecinus pascuorum, Myrmex chevrolatii, Myrmex myrmex, Nicentrus lecontei, Otiorhynchus rugosostriatus, Piazorhinus pictus, Phyllotrox ferrugineus, Plocamus hispidulus, Pseudobaris nigrina, Pseudopentarthrum simplex, Rhinoncus pericarpian, Sitona lineatus, Stenoscelis brevis, Tomolips quericola.

Three endemic carabids – Cyclotrachelus parasodalis, Rhadine ozarkensis, Scaphinotus infletus – were also collected.

Notes on Select Species

Agrilus ohioensis (Buprestidae) has been recorded from many eastern states, but is rarely collected. Larvae have been reported from American hornbeam, Carpinus caroliniana Walter, (Nelson and MacRae 1990, Wellso and Jackman 2006) and winged elm, Ulmus alata Michx., (Nelson et al. 1981), both of which are present at the site. One reason for their apparent rarity may be from a lack of specialized collecting. Collecting small branches of hosts and rearing specimens is a specialized technique frequently used by wood borer enthusiasts. More work of this nature with these and other hosts should yield a wider distribution for this species and many other "rare" buprestids, including Agrilus cephalicus.

Agonum punctiforme (Carabidae) occurs from North Carolina to southeastern Texas, with a record from Missouri that "needs confirmed", and Amara cupreolata has been previously recorded in Arkansas but "the record needs confirmation" (Bousquet 2012b). It is thus unsurprising these species were collected in Arkansas.

Cyclotrachelus parasodalis (Carabidae) is an Arkansas endemic which has only been reported in the literature a handful of times, including the original description and description of the larvae (Freitag 1969, Allen and Thompson 1977, Thompson 1979, Hamilton 2015). Approximately 3,000 specimens are housed in the UAAM collection, most of which coincide with the collection localities and dates given by Allen and Thompson 1977, though the authors did not provide specific label data or the number of specimens collected per site in the publication (Fig. 3). Given the abundance of specimens and apparently wide range within the state, it is surprising the species has not been recorded in Missouri or Oklahoma sections of the Interior Highlands. Additionally, two specimens collected in cotton fields in the Mississippi Alluvial Plain indicate the species is not restricted entirely to the Interior Highlands, though it may be endemic to the region immediately surrounding the Interior Highlands.

Rhadine ozarkensis (Carabidae) is previously known only from the type series collected in Fincher’s Cave, near Black Oak, Arkansas (Washington County, not Craighead County) (Barr 1960, Bousquet 2012b). This specimen represents a range expansion of over 65 km. That it was collected in a pitfall trap on the surface suggests that the species may not be restricted to caves or can move between suitable cave habitat using the karst topography of the region.
Pterostichus punctiventris (Carabidae) ranges from northern Georgia south to Alabama west to east-central Missouri, eastern Oklahoma, and Texas (Bousquet 2012b). It is apparently known from a limited number of specimens and localities; in Arkansas, it has only been collected previously in Blanchard Springs State Park in Stone County (Bousquet 1992).

Scaphinotus infletus (Carabidae) is known from only three specimens collected from three localities within 30 km of the study site (Allen and Carlton 1988, Bousquet 2012b). This specimen represents a new locality for the species and confirms its presence in the area after nearly thirty years without being collected.

Synuchus impunctatus (Carabidae) is known from Missouri and Kansas, but has not previously been recorded from Arkansas (Bousquet 2012b).

Tachys columbiensis (Carabidae) was thought to be confined to the Coastal Plain and Piedmont Plateau, ranging from southeastern Pennsylvania to southern Florida west to Mississippi and eastern Texas, though it has also been recorded from central Arkansas (Pulaski and Garland Counties) (Bousquet 2012b). These specimens represent a new northwestern range limit and a new physiogeographic region (Ozark Mountains) for the species.

Trichotichnus vulpeculus (Carabidae) is recorded from western New Brunswick south to eastern Georgia, west to Wisconsin and northern Arkansas (Bousquet 2012b). These specimens are therefore likely near the southwestern range limit for this species.

Acalles clavatus (Curculionidae) was previously known from Florida, South Carolina and Louisiana (Ciegler 2010, O’Brien and Wibmer 1982); it has been reared from small twigs of Quercus falcata Michaux (Ferro et al. 2009).
Acoptus suturalis (Curculionidae) is known from northeastern North America, from Quebec south to North Carolina and Illinois and Iowa; addition records are known from Georgia and Mexico (O'Brien and Wibmer 1982). It has been raised from the branch of an American elm (Ulmus americana L.) and may be a vector of butternut canker virus (Sirococcus clavigignenti-juglandacearum) in butternut (Juglans cinerea L.) (Hoffman 1942, Halik and Bergdahl 2002).

Anametis granulata (Curculionidae) is found in northern and eastern North America, from Newfoundland and Quebec, south to New Jersey, west to Missouri, Wyoming and Montana; additional specimens are known from Texas, New Mexico, and Mexico (O'Brien and Wibmer 1982, Ocaña 1996).

Anthonomus juniperinus (Curculionidae) is known from the eastern United States, from Massachusetts south to Florida, west to West Virginia, as well as Texas, Oregon, and Paget, Bermuda (O'Brien and Wibmer 1982, Clark and Burke 2010). It feeds on Gymnosporangium juniperi-virginianae Schwein., a fungus parasitic on Juniperus L., and juniper berries (Ciegler 2010, Clark and Burke 2010).

Buchananius sulcatus (Curculionidae) is widely distributed in the eastern and southeastern United States (O'Brien and Wibmer 1982). It has been reared from the fruiting bodies of the ascomycete fungus Trichoderma peltatum (Berk.) Samuels, Jaklitsch, and Voglmayr (Prena et al. 2014) and adults have been collected in leaf litter and under branches (Kissinger 1957).

Caulophilus dubius (Curculionidae) is known from Quebec and New York south to Georgia, west to Illinois and and Mississippi, as well as Texas (O'Brien and Wibmer 1982, Douglas et al. 2013). Adults are found beneath dead tree bark and in tree holes (Blatchley and Leng 1916, Ciegler 2010).

Eubulus bisignatus (Curculionidae) is widespread in eastern and southern North America, ranging from Ontario south to Florida, west to Nebraska, Texas, Arizona, and California; it is also recorded from Mexico and Guatamala. It was not recorded from Arkansas by O'Brien and Wibmer 1982 but was reported by Anderson 2008. Adults are frequently collected at lights and in Malaise and flight-intercept traps and have been collected from a number of hardwood species including Quercus L., Castanea Mill., Fagus L., Betula L., Carya Nutt., and Acer L. (Anderson 2008).

Eubulus obliquefasciatus (Curculionidae) is commonly collected in flight-intercept traps and at lights. Adults have been collected on dead oak and sweetgum; otherwise, nothing is known about their biology (Anderson 2008).

The Eudociminus mannerheimii (Curculionidae) specimen collected during this study was included with other specimens collected near the field site in a forthcoming publication (Skvarla et al. in press) that suggests eastern red cedar (Juniperus virginiana L.) as a possible host as it is the only species of Cupressaceae present at the site. Additionally, the specimens represented a new state record and northwestern range expansion from previous records.
Idiostethus subcalvus (Curculionidae) is found from Pennsylvania south to South Carolina, west to Illinois and Missouri (O'Brien and Wibmer 1982, Ciegler 2010). Downie 1958 reported it is "very abundant" in April and May in Indiana. It been taken on Caulophyllum thalictroides (L.) Michaux, Hydrophyllum appendiculatum Michx., Phacelia Juss. and Ranunculus hispidus Michx. var. nitidus (Chapm.) T. Duncan (Robertson 1929, Ciegler 2010, Graham et al. 2012).

Madarellus undulatus (Curculionidae) is found in eastern North America, from Quebec and Connecticut south to Florida, west to South Dakota, Kansas, and Missouri (O'Brien and Wibmer 1982). It has been collected with black pyramid traps (Bloem et al. 2002), Malaise traps, fogging (Werle 2002) and at lights (Ciegler 2010). Larvae have been reported to feed on Vitis L., Toxicodendron radicans (L.) Kuntze and Parthenocissus quinquefolia (L.) Planch. (Blatchley and Leng 1916, Bouchard et al. 2005).

Magdalis armicollis (Curculionidae) is found in the eastern United States from Connecticut south to Georgia, west to North Dakota, Montana, Nebraska, and Texas (O'Brien and Wibmer 1982, Quinn 2000). Larvae mine galleries in stressed, dying, and dead Ulmus L. and adults feed on the leaves (Blatchley and Leng 1916, Hoffinan 1942, Majka et al. 2007). Larval feeding is generally confined to branches smaller than 7.5 cm; however, in large numbers, larval and adult feeding can cause significant damage that may result in tree death (Baker 1941, Booth and Johnson 2009). Magdalis armicollis is not a vector of Dutch elm disease (Goeden and Norris 1963).

Magdalis barbita (Curculionidae) is found in North America from Connecticut and Ontario south to Georgia, west to Montana, Texas, Nevada, and California (O'Brien and Wibmer 1982). Larvae mine galleries in the branches of dead and dying Quercus, Ulmus, and Carya and adults feed on the leaves of Ulmus (Blatchley and Leng 1916, Hoffman 1942, Majka et al. 2007). Magdalis barbita is not a vector of Dutch elm disease (Goeden and Norris 1963).

Myrmex myrmex (Curculionidae) is native to the eastern United States, from Connecticut south to Florida, west to Indiana and Iowa (O'Brien and Wibmer 1982). It develops in the dead and dying wood of sycamore (Burke et al. 1975), which was present in small numbers at the site.

Notiodes limatulus (Curculionidae) is widespread in North America, ranging from New York south to Georgia, west to Idaho, Texas, and California, and into Mexico. It was not recorded in Arkansas by O'Brien and Wibmer 1982 but was reported in the state by O'Brien and Anderson 1996.

Otiorhynchus rugosoostriatus (Curculionidae) is adventive from Europe and has been established in North America since 1876; it is now widespread through the United States and Canada (O'Brien and Wibmer 1982, Mattson et al. 1994). Larvae larvae feed on roots of Rosaceae and other plants (Mattson et al. 1994).
Rhinoncus pericarpius (Curculionidae) is adventive from the Palaearctic (Majka et al. 2007). It was first recorded in northeastern North America in 1895 and the Pacific Northwest in 1913; in the east it is known from Nova Scotia south through Georgia, west to Illinois (O'Brien and Wibmer 1982, Majka et al. 2007). Rhinoncus pericarpius is reported to feed on Rumex L. and Cannabis L. and have been collected from Rheum L. and Medicago sativa L. (Harada 1930, Hoebeke and Whitehead 1980).

Stenoscelis brevis (Curculionidae) is widespread in eastern North America, from Ontario and Quebec south to Florida, west to Wisconsin, Kansas, and Mississippi (O'Brien and Wibmer 1982). Larvae bore under the bark of dead hardwood (O'Brien 1997). Adults have been collected in Lindgren multifunnel traps baited with manuka oil, from leaf litter using Berlese extraction and under the bark of dead trees (Johnson et al. 2014, Ferro et al. 2012).

Tachyerges niger (Curculionidae) was not reported from Arkansas by O'Brien and Wibmer 1982 but was recorded from the state by Sweeney et al. 2012; it is associated with Salix L.

Tychius picrostris (Curculionidae) is adventive from Europe and widely established in North America (Anderson and Howden 1994).

Discussion

It is unsurprising that few Carabidae represented new state records as carabid workers formerly associated with the University of Arkansas (e.g., R. T. Allen, C. E. Carlton, R. G. Thompson) have thoroughly surveyed the region. Conversely, nearly one in five Buprestidae (19%) and one in three Curculionidae (32%) collected during this study represent new state records. Such high percentages of unrecorded species in charismatic and diverse taxa highlights how little attention many groups have received in the state and how much basic science and natural history is left to be done in 'The Natural State'.

Buprestids are capable of flying between habitat patches and rapidly colonizing new areas, so it is unlikely that new species will be discovered even though buprestids are understudied in the Interior Highlands. However, considering the high number of endemic species that are restricted to leaf litter habitats or are poor dispersers, how relatively understudied leaf litter weevils are, and that known but undescribed species were collected during this study, it is likely that the Interior Highlands is a fruitful area for finding new and disjunct weevil species.

Acknowledgements

We thank Peter Messer for confirming the identity of Rhadine ozarkensis and other carabids; Robert Anderson for confirming the identity of Eurhoptus species; Ted MacRae for confirming new buprestid state records; and Hailey Higgins for curating and identifying cerambycid specimens. This project and the preparation of this publication was funded in part by the State Wildlife Grants Program (Grant # T39-05) of the U.S. Fish and Wildlife Service through an agreement with the Arkansas Game and Fish Commission.
Author contributions

Michael Skvarla performed all responsibilities associated with collecting the specimens, including trap maintenance and sample collection; sorted samples; identified all the majority of non-buprestid specimens; and prepared the manuscript. Danielle Fisher sorted samples, coarse-sorted specimens to higher taxa (family/genus), and identified some specimens to species. Kyle Schnepp identified the Buprestidae and commented on the manuscript prior to submission. Ashley Dowling supervised the lab in which M. Skvarla and D. Fisher performed the work, provided financial support by securing funding, and commented on the manuscript prior to submission.

References

- Adams GL, Burr BM, Day JL, Starkey DE (2013) *Cottus specus*, a new troglomorphis species of sculpin (Cottidae) from southeastern Missouri. Zootaxa 3609 (5): 484-494. DOI: 10.11646/zootaxa.3609.5.4
- Allen RT (1990) Insect endemism in the Interior Highlands of North America. Florida Entomologist 73 (4): 539-569. DOI: 10.2307/3495270
- Allen RT, Carlton CE (1988) Two new *Scaphinotus* from Arkansas with notes on other Arkansas species (Coleoptera: Carabidae: Cychrini). Journal of the New York Entomological Society 96 (2): 129-139.
- Allen RT, Thompson RG (1977) Faunal composition and seasonal activity of Carabidae (Insecta: Coleoptera) in three different woodland communities in Arkansas. Annals of the Entomological Society of America 70 (1): 31-34. DOI: 10.1093/aesa/70.1.31
- Anderson JE (Ed.) (2006) Arkansas Wildlife Action Plan. Arkansas Game and Fish Commission, Little Rock, Arkansas, 2028 pp. URL: http://www.wildlifearkansas.com/strategy.html
- Anderson R (2008) A Review of the Genus *Eubulus* Kirsch 1869 in the United States and Canada (Curculionidae: Cryptorhynchinae). The Coleopterists Bulletin 62 (2): 287-296. DOI: 10.1649/1064.1
- Anderson RS (2002) Curculionidae. In: Arnett RH, Thomas MC, Skelley PE, Franks JH (Eds) American Beetles, volume 2: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, New York, New York, 861 pp.
- Anderson RS, Howden AT (1994) *Tychius meliloti* Stephens new to Canada with a brief review of the species of *Tychius* Germar introduced into North America (Coleoptera: Curculionidae). Canadian Entomologist 126: 1363-1368. DOI: 10.4039/Ent1261363-6
- Anderson RS, Kissinger DG (2002) Brentidae. In: Arnett RH, Thomas MC, Skelley PE, Franks JH (Eds) American Beetles, volume 2: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, New York, New York, 861 pp.
- Arkansas Geological Survey (2015) Ozarks Plateaus. http://www.geology.ar.gov/education/ozark_plateaus.htm. Accession date: 2015 9 07.
- Arnett RH, Ivie MA (2001) Rhysodidae. In: Arnett RH, Thomas MC (Eds) American Beetles. Volume 1. Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia. CRC Press, New York, New York, 433 pp. [ISBN 0-8493-1925-0].
• Bailey RM, Allum MO (1962) Fishes of South Dakota. University of Michigan Museum of Zoology Miscellaneous Publications 119: 1-132.

• Baker WC (1941) Type of wood preferred by Coleoptera found in decadent parts of living elm trees. Journal of Economic Entomology 34 (3): 475-476. DOI: 10.1093/jee/34.3.475a

• Ball GE (1959) A taxonomic study of the North American Licinini with notes on the Old World species of the genus *Diplocheila* Brullé (Coleoptera). Memoirs of the American Entomological Society 16: 1-258.

• Ball GE (2001) The subgenera of *Clivina* Latreille in the Western Hemisphere, and a revision of subgenus *Antroforceps* Barr (new status), with notes about evolutionary aspects (Coleoptera: Carabidae: Clivinini). Coleopterological Society of Osaka 1: 129-156.

• Ball GE, Anderson JN (1962) The taxonomy and speciation of *Pseudophonus*. The Catholic University of America Press, Washington, D.C., 94 pp.

• Ball GE, Bousquet Y (2001) Carabidae. In: Arnett RH, Thomas MC (Eds) American Beetles. Volume 1. Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia. CRC Press, New York, New York, 443 pp.

• Ball GE, Negre J (1972) The taxonomy of the Nearctic species of the genus *Calathus*. Transactions of the American Entomological Society 98: 412-433.

• Ball GE, Nimmo AP (1983) Synopsis of the species of subgenus *Progaleritina* Jeannel, including reconstructed phylogeny and geographical history (Coleoptera: Carabidae: *Galerita* Fabricius). Transactions of the American Entomological Society 109 (4): 295-356.

• Barr TC (1960) The cavernicolous beetles of the subgenus *Rhadinia*, genus *Agonum* (Coleoptera: Carabidae). American Midland Naturalist 64: 45-65. DOI: 10.2307/2422893

• Barr TC (1974) Revision of *Rhadinia* LeConte (Coleoptera, Carabidae) I. The *subterranea* Group. American Museum Novitates 2539: 1-30. URL: http://hdl.handle.net/2246/5413

• Barton J, Lendemer JC (2014) *Micarea micrococca* and *M. prasina*, the first assessment of two very similar species in eastern North America. The Bryologist 117 (3): 223-231. DOI: 10.1639/0007-2745-117.3.223

• Baskin JM, Baskin CC (1988) Endemism in rock outcrop plant communities of unglaciated eastern United States: an evaluation of the roles of edaphic, genetic and light factors. Journal of Biogeography 15: 829-840. DOI: 10.2307/2845343

• Baskin JM, Baskin CC (2000) Vegetation of limestone and dolomite grades in the Ozarks and Midwest Regions of the United States. Annals of the Missouri Botanical Garden 87 (2): 286-294. DOI: 10.2307/2666165

• Baumgardner DE, Kennedy JH (1999) Mayflies (Insecta: Ephemeroptera) of the Kiamichi River Watershed, Oklahoma. Journal of the Kansas Entomological Society 72 (3): 297-305.

• Bell RT (1960) A revision of the genus *Chlaenius* Bonelli (Coleoptera, Carabidae) in North America. Miscellaneous Publications of the Entomological Society of America 1: 97-166.

• Bell RT (1999) Rhysodini. Wrinkled bark beetles. http://tolweb.org/Rhysodini. Accession date: 2014 1 03.
• Bell RT, Bell JR (1975) Two new taxa of Clindium (Coleoptera: Rhysodidae or Carabidae) from the Eastern U.S., with a revised key to Clindium. The Coleopterists Bulletin 29 (2): 65-68.

• Berendzen P, Simmons A, Wood R, Dowling T, Secor C (2008) Recovering cryptic diversity and ancient drainage patterns in eastern North America: Historical biogeography of the Notropis rubellus species group (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution 46 (2): 721-737. DOI: 10.1016/j.ympev.2007.07.008

• Bezark LG, Monné MA (2013) Checklist of the Oxypeltidae, Vesperidae, Disteniidae and Cerambycidae, (Coleoptera) of the Western Hemisphere. http://www.zin.ru/animalia/coleoptera/pdf/checklist_cerambycoidea_2013.pdf. Accession date: 2015 9 11.

• Blair WF (1965) Amphibian speciation. In: Wright HE, Frey DG (Eds) The Quaternary of the United States. Princeton University Press, Princeton, New Jersey.

• Blatchley WS, Leng C (1916) Rhynchophora or weevils of north eastern America. The Nature Publishing Company, Indianapolis, Indiana, 682 pp. URL: http://dx.doi.org/10.5962/bhl.title.1557 DOI: 10.5962/bhl.title.1557

• Bloem S, Mizell RF, O'Brien CW (2002) Old traps for new weevils: New records for curculionids (Coleoptera: Curculionidae), brentids (Coleoptera: Brentidae) and anthribids (Coleoptera: Anthribidae) from Jefferson Co., Florida. Florida Entomologist 85 (4): 632-644. DOI: 10.1653/0015-4040(2002)085[0632:OTFNWN]2.0.CO;2

• Board WW (1972) Taxonomy and biology of Endalus Laporte and Onychylis LeConte in America north of Mexico (Coleoptera: Curculionidae). Texas A&M University, College Station, Texas, 302 pp.

• Booth M, Johnson D (2009) Pressurized-canister trunk injection of acephate, and changes in abundance of red elm bark weevil (Magdalis armicollis) on American elm (Ulmus americana). Arboriculture & Urban Forestry 35 (3): 148-151.

• Bouchard P, Lesage L, Goulet H, Bostanian N, Vincent C, Zmudzinska A, Lasnier J (2005) Weevil (Coleoptera: Curculionoidea) diversity and abundance in two Quebec vineyards. Annals of the Entomological Society of America 98 (4): 565-574. DOI: 10.1603/0013-8746(2005)098[0565:WCCDA]2.0.CO;2

• Bousquet Y (1992) Descriptions of new or poorly known species of Gastroticta Casey, 1918 and Paraferonina Ball, 1965 (Coleoptera: Carabidae: Pterostichus Bonelli, 1810). Journal of the New York Entomological Society 100 (3): 510-521.

• Bousquet Y (2009) Rediscovery of Clivina morio Dejean with the description of Leuccocara, a new subgenus of Clivina Latreille (Coleoptera, Carabidae, Clivinini). ZooKeys 25: 37-48. DOI: 10.3897/zookeys.25.276

• Bousquet Y (2012a) Description of a new species of Platynus Bonelli from the Appalachian Mountains of eastern North America (Coleoptera, Carabidae). ZooKeys 163: 69-81. DOI: 10.3897/zookeys.163.2295

• Bousquet Y (2012b) Catalogue of Geadephaga (Coleoptera: Adephaga) of America, north of Mexico. ZooKeys 245: 1-1722. DOI: 10.3897/zookeys.245.3416

• Bousquet Y, Messer P (2010) Redescription of Stenolophus thoracicus Casey (Coleoptera, Carabidae, Harpalini), a valid species. ZooKeys 53: 25-31. DOI: 10.3897/zookeys.53.470

• Bowles DE, Mathis ML (1989) Caddisflies (Insecta: Trichoptera) of mountaneous regions in Arkansas, with new state records for the order. Journal of the Kansas Entomological Society 62 (2): 234-244.
• Bretz JH (1965) Geomorphic history of the Ozarks of Missouri. 41. Geological Survey and Water Resources, Rolla, Missouri, 174 pp.
• Bright DE (1993) The Insects and Arachnids of Canada, part 21. The Weevils of Canada and Alaska: Volume 1. Coleoptera: Curculionoidea, excluding Scolytidae and Curculionidae. Agriculture Canada, Ottawa, Ontario, 217 pp.
• Bright DE, Bouchard P (2008) The Insects and Arachnids of Canada Series, Part 25. Coleoptera, Curculionidae, Entiminae. NRC Research Press, Ottawa, Ontario, 327 pp.
• Burke HR, Clark WE, Frankie GW (1975) Observations on the Bionomics of Myrmex laevicollis (Horn) (Coleoptera: Curculionidae). Journal of the Kansas Entomological Society 48 (2): 160-169.
• Campbell JJ (2006) Two new species of Elymus (Poaceae) in the southern U.S.A. and other notes on North American Elymus species. SIDA 22 (1): 485-494.
• Carlton CE, Cox RT (1990) A new species of Arianops from Central Arkansas and biogeographic implications of the Interior Highlands Arianops species (Coleoptera: Pselaphidae). The Coleopterists Bulletin 44 (3): 365-371.
• Carlton CE, Robison HW (1998) Diversity of litter-dwelling beetles in the Ouachita Highlands of Arkansas, USA (Insecta: Coleoptera). Biodiversity and Conservation 7: 1589-1605. DOI: 10.1023/A:1008840427909
• Chemsak JA (1996) Illustrated revision of the Cerambycidae of North America. I. Subfamilies Parandrinae, Spondylidinae, Aseminae, Prioninae. Wolfgarden Books, Burbank, California, 150 pp. [ISBN 1-885850-02-6]
• Chemsak JA (2007) Illustrated Revision of the Cerambycidae of North America. Vol. II. Lepturinae. Wolfgarden Books, Burbank, California, 446 pp.
• Chemsak JA, Linsley EG (1982) Checklist of Cerambycidae. The Longhorned Beetles. Checklist of the Cerambycidae and Disteniidae of North America, Central America, and the West Indies (Coleoptera). Plexus Publishing, Medford, New Jersey, 138 pp.
• Ciegler JC (2000) Ground beetles and wrinkled bark beetles of South Carolina (Coleoptera: Geadephaga: Carabidae and Rhysodidae). Biota of South Carolina, Volume 1. Clemson University Public Service Publishing, Clemson, South Carolina, 149 pp.
• Ciegler JC (2010) Weevils of South Carolina (Coleoptera: Nemonychidae, Attelabidae, Brentidae, Ithyceridae, and Curculionidae). Biota of South Carolina, Volume 6. Clemson University Public Service Publishing, Clemson, South Carolina, 276 pp.
• Clark WE (1971) A taxonomic revision of the weevil genus Tychius Germar in America north of Mexico (Coleoptera: Curculionidae). Brigham Young University Science Bulletin, Biological Series 13 (3): 1-39.
• Clark WE, Burke HR (2010) The Anthonomus juniperinus group, with descriptions of two new species (Coleoptera: Curculionidae). Insecta Mundi 119: 1-10.
• Commission for Environmental Cooperation (1997) Ecological regions of North America: Toward a common perspective. Commission for Environmental Cooperation, Montreal, Québec, 71 pp.
• Cox RT, Van Arsdale RB (2002) The Mississippi Embayment, North America: a first order continental structure generated by the Cretaceous superplume mantle event. Journal of Geodynamics 34: 163-176. DOI: 10.1016/S0264-3707(02)00019-4
• Crandal KA (1998) Conservation phylogenetics of Ozark crayfishes: Assigning priorities for aquatic habitat protection. Biological Conservation 84: 107-117. DOI: 10.1016/s0006-3207(97)00112-2
• Creative Commons (2015) Creative Commons Attribution-ShareAlike 3.0. http://creativecommons.org/licenses/by-sa/3.0/legalcode. Accession date: 2015 9 12.

• Culver D, Master L, Christman M, Hobbs H (2000) Obligate Cave Fauna of the 48 Contiguous United States. Conservation Biology 14 (2): 386-401. DOI: 10.1046/j.1523-1739.2000.99026.x

• Denison RE, Lidiak EG, Bickford ME, Kisvarsanyi EB (1984) Geology and geochemistry of the Precambrian rocks in the Central Interior Region of the United States. Geological Survey Professional Paper 1241-C: 1-20. URL: http://pubs.er.usgs.gov/publication/pp1241C

• Dillman DB, Wagner BK, Wood RM (2010) Phylogenetic estimation of species limits in dwarf crayfishes from the Ozarks: *Orconectes macrus* and *Orconectes nana* (Decapoda: Cambaridae). Southeastern Naturalist 9 (3): 185-198. DOI: 10.1656/058.009.s309

• Douglas H, Bouchard P, Anderson RS, de Tonnancour P, Vigneault R, Webster RP (2013) New Curculionoidea (Coleoptera) records for Canada. ZooKeys 309: 13-48. DOI: 10.3897/zookeys.309.4667

• Dowling HD (1956) Geographic relations of Ozarkian amphibians and reptiles. Southwestern Naturalist 4: 174-189. DOI: 10.2307/3668999

• Downie NM (1958) Records of Indiana Coleoptera, II. Proceedings of the Indiana Academy of Science 68: 155-158.

• Environmental Protection Agency (2015) Ecoregions of North America. http://www.epa.gov/wed/pages/ecoregions/na_eco.htm#Downloads. Accession date: 2015 9 11.

• Ernst MR, Poulton BC, Stewart KW (1986) *Neoperla* (Plecoptera: Perlidae) of the southern Ozark and Ouachita Mountain Region, and two new species of *Neoperla*. Annals of the Entomological Society of America 79 (4): 645-661. DOI: 10.1093/aes/79.4.645

• Erwin T (1975) Studies of the subtribe Tachyina (Coleoptera: Carabidae: Bembidiini), Part III: Systematics, phylogeny, and zoogeography of the genus *Tachyta* Kirby. Smithsonian Contributions to Zoology 208: 1-68. DOI: 10.5479/si.00810282.208

• Erwin TE (1970) A reclassification of bombardier beetles and a taxonomic revision of the North and Middle American species (Carabidae: Brachinida). Questions Entomologicae 6: 4-215.

• Etnier D (2010) New Trichoptera records from Arkansas and Missouri. Proceedings of the Entomological Society of Washington 112 (4): 483-489. DOI: 10.4289/0013-8797.112.4.483

• Ferro M, Sites R (2007) The Ephemeroptera, Plecoptera, and Trichoptera of Missouri state parks, with notes on biomonitoring, mesohabitat associations, and distribution. Journal of the Kansas Entomological Society 80 (2): 105-129. DOI: 10.2317/0022-8567(2007)80[105:TEPATO]2.0.CO;2

• Ferro ML, Gimmel ML, Harms KE, Carlton CE (2009) The beetle community of small oak twigs in Louisiana, with a literature review of Coleoptera from fine woody debris. Coleopterists Bulletin 63 (239): 263. DOI: 10.1649/1141.1

• Ferro ML, Gimmel ML, Harms KE, Carlton CE (2012) Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA. Insecta Mundi 260: 1-80.
• Flawn PT (1968) Introduction. In: Flawn PT, Foldstein AJ, King PB, Weaver CE (Eds) The Ouachita System. 2. The University of Texas, Austin, Texas, 401 pp.
• Floden AJ, Mayfield MH, Ferguson CJ (2009) A new narrowly endemic species of Dirca (Thymelaeaceae) from Kansas and Arkansas, with a phylogenetic overview and taxonomic synopsis of the genus. Journal of the Botanical Research Institute of Texas 3 (2): 485-499.
• Foti T (2011) Arkansas Valley. http://www.encyclopediaofarkansas.net/encyclopedia/entry-detail.aspx?entryID=441. Accession date: 2015 9 10.
• Foti T (2014) Ozark Mountains. http://www.encyclopediaofarkansas.net/encyclopedia/entry-detail.aspx?entryID=440. Accession date: 2015 9 07.
• Foti TL, Bukenhofer GA (1998) A description of the sections and subsections of the Interior Highlands of Arkansas and Oklahoma. Journal of the Arkansas Academy of Science 52: 53-62.
• Freitag R (1969) A revision of the species of the genus Evarthurus LeConte (Coleoptera: Carabidae). Quaestiones Entomologicae 5: 88-211.
• Gibson LP (1969) Monograph of the genus Curculio in the New World (Coleoptera: Curculionidae). Part I. United States and Canada. Miscellaneous Publications of the Entomological Society of America 6 (5): 239-285.
• Gidaspow T (1973) Revision of ground beetles of American genus Cyclus and four subgenera of genus Scaphinotus (Coleoptera, Carabidae). Bulletin of the American Museum of Natural History 152 (2): 51-102.
• Goeden RD, Norris DM (1963) The potential of Magdalis spp. in the transmission of Ceratocystis ulmi (Buis.) Moreau. Journal of Economic Entomology 56 (2): 238-239. DOI: 10.1093/jee/56.2.238
• Graening GO, Slay ME, Tinkle KK (2003) Subterranean biodiversity of Arkansas, Part I: Bioinventory and bioassessment of caves in the Sylamore Ranger District, Ozark National Forest, Arkansas. Journal of the Arkansas Academy of Science 57: 44-58.
• Graening GO, Fenolio DB, Hobbs HH, Jones S, Slay ME, McGinnis SR, Stout JF (2006) Range extension and status update for the Oklahoma cave crayfish, Cambarus tartarus (Decapoda: Cambaridae). The Southwestern Naturalist 51 (1): 94-126. DOI: 10.1894/0038-4909(2006)51[94:REASUF]2.0.CO;2
• Graham E, Tooker J, Hanks L (2012) Floral host plants of adult beetles in Central Illinois: An historical perspective. Annals of the Entomological Society of America 105 (2): 287-297. DOI: 10.1603/an11120
• Guccione MJ (2008) Boston Mountains. http://www.encyclopediaofarkansas.net/encyclopedia/entry-detail.aspx?entryID=2389. Accession date: 2015 9 09.
• Haldeman SS (1852) Appendix C - Insects. In: Stransbury H (Ed.) Exploration and survey of the valley of the Great Salt Lake of Utah, including a reconnaissance of a new route through the Rocky Mountains. Lippincott, Grambo, & Co., Philadelphia, Pennsylvania, 487 pp.
• Halik S, Bergdahl DR (2002) Potential beetle vectors of Sirococcus clavigignentijuglandacearum on butternut. Plant Disease 86 (5): 521-527. DOI: 10.1094/pdis.2002.86.5.521
• Hamilton F (2015) The correlation between seasonality and diversity of arthropod communities in leaf litter. University of Arkansas, Fayetteville, Arkansas, 94 pp.
• Hamilton RW (1971) The genus *Pselaphorhynchites* (Coleoptera: Rhynchitidae) in America North of Mexico. Annals of the Entomological Society of America 64 (5): 982-996. DOI: 10.1093/aesa/64.5.982

• Hamilton RW (1989) A revision of the weevil genus *Eugnamptus* Schoenherr (Coleoptera: Rhynchitidae) in America north of Mexico. Transactions of the American Entomological Society 115 (4): 475-502.

• Hamilton RW (2002) Attelabidae. In: Arnett RH, Thomas MC, Skelley PE, Franks JH (Eds) American Beetles, volume 2: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, New York, New York, 861 pp.

• Harada T (1930) On the insects injurious to hemp, especially *Rhinoncus pericarpius*, L. Insect World 34: 118-123.

• Harris RC, Ladd D (2008) The lichen genus *Chrysothrix* in the Ozark Ecoregion, including a preliminary treatment for eastern and central North America. Opuscula Philolichenum 5: 29-42.

• Harris RC, Lendemer JC (2009) The *Fellhanera silicis* group in eastern North America. Opuscula Philolichenum 6: 157-174.

• Hedrick ID, Bukenhofer GA, Montague WG, Pell WF, Guldin JM (1999) Shortleaf pine-bluestem restoration in the Ouachita National Forest. Renewal & Recovery: Renewal of the shortleaf pine-bluestem grass ecosystem. Recovery of the red-cockaded woodpeckers 1: 1-6. URL: http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5261917.pdf

• Heikens AL (1999) Savanna, barrens, and glade communities of the Ozark Plateau Province. In: Anderson RC, Fralish JS, Baskin JM (Eds) Savannas, barrens, and rock outcrop plant communities of North America. Cambridge University Press, Cambridge, Massachusetts, 470 pp. [ISBN 0-521-57322-X].

• Hemmerly TE (2002) Ozark Wildflowers. University of Georgia Press, Athens, Georgia, 256 pp. [ISBN 9780820323374]

• Hespenheide HA (2002) Conoderinae. In: Arnett RH, Thomas MC, Skelley PE, Franks JH (Eds) American Beetles, volume 2: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, New York, New York, 861 pp.

• Hespenheide HA (2003) New *Lechriops* species for the United States (Coleoptera: Curculionidae: Conoderinae). Coleopterists Bulletin 57 (3): 345-352. DOI: 10.1649/580

• Higgins D (2015) Petit Jean Mountain. http://www.encyclopediaofarkansas.net/encyclopedia/entry-detail.aspx?entryID=6317. Accession date: 2015 9 10.

• Hildebrandt DA, Maddison DR (2011) A new species of *Bembidion* Latrielle 1802 from the Ozarks, with a review of the North American species of subgenus *Trichoplatus* Netolitzky 1914 (Coleoptera, Carabidae, Bembidini). ZooKeys 147: 261-275. DOI: 10.3897/zookeys.147.147872

• Hoebke ER, Whitehead DR (1980) New records Of *Rhinoncus bruchoides* (Herbst) for the Western Hemisphere and a revised key to the North American species of the genus *Rhinoncus*. Proceedings of the Entomological Society of Washington 82: 556-561.

• Hoffman CH (1942) Annotated list of elm insects in the United States. U.S. Department of Agriculture, Washington, D.C., 20 pp.

• Holsinger JR, Sawicki TR, Graening GO (2006) *Bactrurus speleopolis*, a new species of subterranean amphipod crustacean (Crangonyctidae) from caves in northern Arkansas. Proceedings of the Biological Society of Washington 119 (1): 15. DOI: 10.2988/0006-324x(2006)119[15:bsanso]2.0.co;2
• Howden AT (1959) A revision of the species of Pandeletius Schonherr and Pandeleteinus Champion of America north of Mexico (Coleoptera: Curculionidae). Proceedings of the California Academy of Science 29 (10): 361-421.

• Hunting W (2013) A taxonomic revision of the Cymindis (Pinacodera) limbata species group (Coleoptera, Carabidae, Lebiini), including description of a new species from Florida, U.S.A. ZooKeys 259: 1-73. DOI: 10.3897/zookeys.259.2970

• Iowa State University (2015) Genus Ormiscus. http://bugguide.net/node/view/257929. Accession date: 2015 8 20.

• Johnson CW, Cameron RS, Hanula JL, Bates C (2014) The attractiveness of manuka oil and ethanol, alone and in combination, to Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) and other Curculionidae. Florida Entomologist 97 (2): 861-864. DOI: 10.1653/024.097.0281

• Kinzinger AP, Wood RM (2010) Cottus immaculatus, a new species of sculpin (Cottidae) from the Ozark Highlands of Arkansas and Missouri, USA. Zootaxa 2340: 50-64.

• Kissinger DG (1957) A new name for Zaglyptus LeConte, 1876 (not Forster, 1868) and a review of the North American species (Curculionidae, Baridinae). Coleopterists Bulletin 11: 47-51.

• Knudsen K, Lendemer JC (2009) Two new species of Lecanora with gyrophoric acid from North America. Opuscula Philolichenum 7: 21-28.

• Kreiter SD (1992) Dynamics and spatial pattern of a virgin old-growth hardwood pine forest in the Ouachita Mountains, Oklahoma, from 1896 to 1994. Oklahoma State University, Stillwater, Oklahoma, 141 pp.

• Larochelle A, Lariviere MC (1990) Notiophilus palustris (Coleoptera, Carabidae), a Eurasian carabid beetle new to North America. Entomological News 101: 211-212.

• Lawless PJ (2005) Xeric limestone prairies of Eastern United States. University of Kentucky, Lexington, Kentucky, 223 pp. URL: http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1272&context=gradschool_diss

• Lendemer JC, Harris RC (2007) Lepraria normandinoides, a new widespread species from Eastern North America. Opuscula Philolichenum 4: 45-50.

• Lendemer JC, Harris RC (2014) Studies in lichens and lichenicolous fungi – No. 19: Further notes on species from the Coastal Plain of southeastern North America. Opuscula Philolichenum 13: 155-176.

• Liebherr JK (1994) Identification of New World Agonum, review of the Mexican fauna, and description of Incagonum, new genus, from South America (Coleoptera: Carabidae: Platynini). Journal of the New York Entomological Society 102 (1): 1-55.

• Liebherr JK, Will KW (1996) New North American Platynus Bonelli (Coleoptera: Carabidae), a key to species north of Mexico, and notes on species from the southwestern United States. Coleopterists Bulletin 50: 301-320.

• Lindroth CH (1969) The ground beetles (Carabidae, excl. Cicindelinae) of Canada and Alaska. Berlingska Boktryckeriet, Lund, Sweden, 1192 pp.

• Lingafelter SW (2007) Illustrated Key to the Longhorned Woodboring Beetles of the Eastern United States. Special Publication No. 3. The Coleopterists Society, North Potomac, Maryland, 206 pp.

• Linsley EG (1962a) The Cerambycidae of North America. Part III: Taxonomy and classification of the subfamily Cerambycinae, tribes Opsimini through Megaderini. University of California Publications in Entomology 20: 1-188.
• Linsley EG (1962b) The Cerambycidae of North America. Part II: Taxonomy and classification of the Parandrinae, Prioninae, Spondylinae, and Aseminae. University of California Publications in Entomology 19: 1-102.
• Linsley EG (1963) The Cerambycidae of North America. Part IV: Taxonomy and classification of the subfamily Cerambycinæ, tribes Elaphidionini through Rhinotragini. University of California Publications in Entomology 21: 1-165.
• Linsley EG (1964) The Cerambycidae of North America. Part V: Taxonomy and classification of the subfamily Cerambycinæ, tribes Callichromini through Ancylocerini. University of California Publications in Entomology 22: 1-197.
• Linsley EG, Chemsak JA (1972) The Cerambycidae of North America. Part VI, No. 1: Taxonomy and classification of the subfamily Lepturinae. University of California Publications in Entomology 69: 1-138.
• Linsley EG, Chemsak JA (1976) The Cerambycidae of North America. Part VI, No.2: Taxonomy and classification of the subfamily Lepturinae. Univeristy of California Publications in Entomology 80: 1-186.
• Linsley EG, Chemsak JA (1984) The Cerambycidae of North America. Part VII, No. 1: Taxonomy and classification of the subfamily Lamiinae, tribes Parmenini through Acanthoderini. University of California Publications in Entomology 102: 1-258.
• Linsley EG, Chemsak JA (1995) The Cerambycidae of North America. Part VII, No. 2: Taxonomy and classification of the subfamily Lamiinae, tribes Acanthocinini through Hemilophini. University of California Publications in Entomology 114: 1-292.
• Lyal CH (2010) Glossary of Weevil Characters. International Weevil Community Website. http://weevil.info/glossary-weevil-characters. Accession date: 2014 1 12.
• MacRae TC (2000) Review of the genus Purpuricenus Dejean (Coleoptera: Cerambycidae) in North America. Pan-Pacific Entomologist 76 (3): 137-169.
• Madge RB (1967) A revision of the genus Lebia Latreille in America north of Mexico (Coleoptera, Carabidae). Quaestiones Entomologicae 3: 139-242.
• Majka CG, Anderson RS, McCorquodale DB (2007) The weevils (Coleoptera: Curculionoidea) of the Maritime Provinces of Canada, II: New records from Nova Scotia and Prince Edward Island and regional zoogeography. Canadian Entomologist 139: 397-442. DOI: 10.4039/n06-021
• Masters RE, Skeen JE, Whitehead J (1995) Preliminary fire history of McCurtain County Wilderness Area and implications for Red-cockaded Woodpecker management. In: Kulhavy DL, Hooper RG, Costa R (Eds) Red-cockaded Woodpecker: Recovery, ecology and management. Center for Applied Studies, College of Forestry, Stephan F. Austin State University, Nacogdoches, Texas, 551 pp. [ISBN 0938361120].
• Mathis ML, Bowles DE (1992) A preliminary survey of the Trichoptera of the Ozark Mountains, Missouri, USA. Entomological News 103: 19-29.
• Mattson WJ, Niemela P, Millers I, Inguanzo Y (1994) Immigrant phytophagous insects on woody plants in the United States and Canada: An annotated list. North Central Forest Experiment Station, Forest Service, U.S. Department of Agriculture, St. Paul, Minnesota, 30 pp.
• McCafferty WP, Provonsha AV (1978) The Ephemeroptera of mountainous Arkansas. Journal of the Kansas Entomological Society 51 (3): 360-379.
• Missouri Department of Natural Resources (2015) Karst, Springs, Losing Streams and Caves in Missouri. http://dnr.mo.gov/env/wrc/springsandcaves.htm. Accession date: 2015 9 07.
• Morris RC (1974) Sedimentary and tectonic history of the Ouachita Mountains. Society of Economic Paleontologists and Mineralogists, Special Publication 22: 120-142. DOI: 10.2110/pec.74.22.0120
• Moulton SR, Steward KW (1996) Caddisflies (Trichoptera) of the Interior Highlands of North America. Memoirs of the American Entomological Institute 56: 1-313.
• National Park Service (2015) Cave/Karst Systems. http://www.nps.gov/ozar/learn/nature/cave.htm. Accession date: 2015 9 07.
• Nekola JC, Coles BF (2001) Systematics and ecology of Gastrocopta (Gastrocopta) rogersensis (Gastropoda: Pupillidae), a new species of land snail from the Midwest of the United States of America. The Nautilus 115 (3): 10-114.
• Nelson GH, MacRae TC (1990) Additional notes on the biology and distribution of Buprestidae (Coleoptera) in North America, part III. Coleopterists Bulletin 44 (3): 349-354.
• Nelson GH, Verity DS, Wescott RL (1981) Additional notes on the biology and distribution of Buprestidae (Coleoptera) of North America. Coleopterists Bulletin 35 (2): 129-151.
• Nelson GH, Walters GCJ, Haines RD, Bellamy CL (2008) A catalog and bibliography of the Buprestoidea of America North of Mexico. The Coleopterists Society, 274 pp.
• Nelson JB (2008) A new hedge-nettle (Stachys: Lamiaceae) from the Interior Highlands of the United States, and keys to the southeastern species. Journal of the Botanical Research Institute of Texas 2 (2): 761-769.
• Noonan GR (1973) The anisodactylines (Insecta: Coleoptera: Carabidae: Harpalini): classification, evolution and zoogeography. Quaestiones Entomologicae 9 (4): 266-480.
• Noonan GR (1991) Classification, cladistics, and natural history of native North American Harpalus Latreille (Insecta: Coleoptera: Carabidae: Harpalini), excluding the subgenera Glandodes and Pseudophonus. Thomas Say Foundation Monographs No. 13. Entomological Society of America, Lanham, Maryland, 310 pp.
• Nordlander G (1987) A method for trapping Hylobius abietis (L.) with a standardized bait and its potential for forecasting seedling damage. Scandinavian Journal of Forest Research 2: 199-213. DOI: 10.1080/02827588709382458
• O'Brien C, Haseeb M (2014) Revision of the “Rice Water Weevil” genus Lissorhoptrus LeConte (Coleoptera: Curculionidae) in North America North of Mexico. Coleopterists Bulletin 68 (2): 163-186. DOI: 10.1649/0010-065x-68.2.163
• O'Brien CW (1985) A new Oopterinus from Arkansas (Coleoptera: Curculionidae). Entomological News 96: 101-104.
• O'Brien CW (1997) A catalog of the Coleoptera of America north of Mexico. Family: Curculionidae, subfamilies: Acicnemidinae, Cossoninae, Rhytirrhininae, Molytinae, Petalochlorinae, Trypetidinae, Dryophthorinae, Tachygyninae, Thecesterninae. Agricultural Research Service, United States Department of Agriculture, Washington D.C., 48 pp.
• O'Brien CW, Anderson DM (1996) A catalog of the Coleoptera of America north of Mexico. Family: Curculionidae, subfamily Erirhininae. Agricultural Research Service, United States Department of Agriculture, Washington, D.C., 40 pp.
• O'Brien CW, Wibmer GJ (1982) Annotated checklist of the weevils (Curculionidae sensu lato) of North America, Central America, and the West Indies (Coleoptera: Curculionoidea). American Entomological Institute, Ann Arbor, Michigan, 382 pp.
• O’Brien CW, Ciegler JC, Girón JC (2010) Weevils of the genus Cercopeus Schoenherr from South Carolina, USA (Coleoptera: Curculionidae: Entiminae . Insecta Mundi 121: 1-29.

• Ocaña RO (1996) Distribución e incidencia poblacional del picudo de la yema del manzano Anametis granulatus Say (Coleoptera: Curculionidae), en la Sierra de Arteaga, Coahuila. [Population distribution and incidence of apple bud weevil Anametis granulatus Say (Coleoptera: Curculionidae) in Sierra de Arteaga, Coahuila]. Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, Mexico, 52 pp. [In Spanish].

• Paiero SM, Jackson MD, Jewiss-Gaines A, Kimoto T, Bill BD, Marshall SA (2012) Field Guide to the Jewel Beetles (Coleoptera: Buprestidae) of Northeastern North America. Her Majesty the Queen in Right of Canada (Canadian Food Inspection Agency), 411 pp.

• Paquin P, Anderson RS (2009) First troglobitic weevil (Coleoptera: Curculionidae) in North America? Description of a new eyeless species of Lymantes Schoenherr from Central Texas caves. Texas Memorial Museum Speleological Monographs. Studies on the cave and endogean fauna of North America 7 (5): 115-123.

• Peakery (2015) http://peakery.com/. Accession date: 2015 9 10.

• Pearson DL, Knisley CB, Kazilek CJ (2006) A field guide to the tiger beetles of the United States and Canada. Identification, natural history, and distribution of the Cicindelidae. Oxford University Press, New York, New York, 227 pp.

• Peck JH (2011) New and noteworthy additions to the Arkansas fern flora. Phytoneuron 30: 1-33.

• Poole FG, Perry WJ, Madrid RJ, Amaya-Martínez R (2005) Tectonic synthesis of the Ouachita-Marathon-Sonora orogenic margin of southern Laurentia: Stratigraphic and structural implications for timing and deformational events and plate-tectonic model. In: Anderson TH, Nourse JA, McKee JE, Steiner MB (Eds) The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives. Geological Society of America, 692 pp. DOI: 10.1130/2005.2393(21)

• Poulton BC, Steward KW (1991) The stoneflies of the Ozark and Ouachita Mountains (Plecoptera). Memoirs of the American Entomological Institute 38: 1-116.

• Prena J (2009) A Review of the species of Geraeus Pascoe and Linogeraeus Casey found in the continental United States (Coleoptera: Curculionidae: Baridinae). Coleopterists Bulletin 63 (2): 123-172. DOI: 10.1649/0010-065x-63.2.123

• Prena J, Steiner WE, Grebennikov W (2014) Buchananius sulcatus (Leconte) (Coleoptera: Curculionidae: Baridinae) Reared from the Fruiting Bodies of the Ascomycete Fungus Trichoderma peltatum (Berk,) Samuels, Jaklitsch, and Voglmayr in Maryland, USA. Coleopterists Bulletin 68: 399-402. DOI: 10.1649/072.068.0310

• Pringle JS, Witsell T (2005) A new species of Sabatia (Gentianaceae) from Saline County, Arkansas. SIDA 21 (3): 1249-1262.

• Quinn MA (2000) Abundance and distribution of potential arthropod prey species in a typical Golden cheeked Warbler habitat. Texas A&M University, College Station, Texas, 182 pp.

• Radwell AJ, Dowling AP, Smith IM, Kaliki V (2011) Kongsbergia robisoni, n. sp. (Arací: Hydrachnidae: Aturidae) from the Interior Highlands of North America based on morphology and molecular genetic analysis. International Journal of Acarology 37: 194-205. DOI: 10.1080/01647954.2010.548404
Redfearn PL (1986) Bryogeography of the Interior Highlands of North America: Taxa of critical importance. The Bryologist 89 (1): 32-34. DOI: 10.2307/3243074

Rimer RL, Summers JW (2006) Range and ecology of Helenium virginicum in the Missouri Ozarks. Southeastern Naturalist 5 (3): 515-522. DOI: 10.1656/1528-7092(2006)5[515:RAEOHV]2.0.CO;2

Robertson C (1929) Flowers and insects: lists of visitors of four hundred and fifty three flowers. The Science Press Printing Company, Lancaster, Pennsylvania, 221 pp.

Robison H, McAllister C, Carlton C, Tucker G (2008) The Arkansas endemic biota: An update with additions and deletions. Journal of the Arkansas Academic of Science 62: 84-96.

Robison HW, Allen RT (1995) Only in Arkansas: A study of the endemic plants and animals of the state. University of Arkansas Press, Fayetteville, Arkansas, 121 pp. [ISBN 1-55728-326-5]

Ross HH (1965) Pleistocene events and insects. In: Wright HE, Frey DG (Eds) The Quaternary of the United States. Princeton University Press, Princeton, New Jersey.

Rothrock PE, Reznicek AA (2001) The taxonomy of the Carex bicknellii Group (Cyperaceae) and new species for Central North America. Novon 11 (2): 205-228. DOI: 10.2307/3393060

Sadek LS (1982) A systematic study of the genus Abacidus (Coleoptera: Carabidae: Pterostichini). The University of Arkansas, Fayetteville, Arkansas, 48 pp.

Sarver R, Kondratieff BC (1997) Survey of Missouri mayflies with the first description of adults of Stenonema bednariki (Ephemeroptera: Heptageniidae). Journal of the Kansas Entomological Society 70 (2): 132-140.

Sarver RJ, Lister KB (2004) Surface stream occurrence and updated distribution of Allocrangonyx hubrichti Holsinger (Amphipoda: Allocrangonyctidae), and endemic subterranean amphipod of the Interior Highlands. Journal of Freshwater Ecology 19 (2): 165-168. DOI: 10.1080/02705060.2004.9664528

Schaeffer C (1907) New Rhyncophora. II. Journal of the New York Entomological Society 15 (2): 75-80.

Schiefer T (2000) A new species of Astylopsis Casey (Coleoptera: Cerambycidae: Acanthocinini) from the southeastern United States. Coleopterists Bulletin 54 (4): 533-539. DOI: 10.1649/0010-065x(2000)054[0533:ansoac]2.0.co;2

Schiefer T, Newell P (2010) A distinctive new subspecies of Saperda lateralis F. (Coleoptera: Cerambycidae) from the southeastern United States. Coleopterists Bulletin 64 (4): 329-336. URL: 10.1649/0010-065x-64.4.329

Schoof HF (1942) The genus Conotrachelus Dejean (Coleoptera, Curculionidae) in the north central United States. University of Illinois Press, Urbana, Illinois, 170 pp. URL: http://dx.doi.org/10.5962/bhl.title.50123 DOI: 10.5962/bhl.title.50123

Selander RK (1965) Avian speciation in the Quaternary. In: Wright HE, Frey DG (Eds) The Quaternary of the United States. Princeton University Press, Princeton, New Jersey.

Simurda MC, Knox JS (2000) ITS sequence evidence for the disjunct distribution between Virginia and Missouri of the narrow endemic Helenium virginicum (Asteraceae). Journal of the Torrey Botanical Society 127 (4): 316-323. DOI: 10.2307/3088650

Skvarla M et al.
• Sleeper EL (1956) The genus Dichoxenus Horn (Coleoptera, Curculionidae): 15. A contribution to knowledge of the Curculionidae. The Ohio Journal of Science 56 (3): 165-169.
• Sleeper EL (1965) On Lymantes Schoenheer (Coleoptera, Curculionidae). Bulletin of the Southern California Academy of Sciences 64: 144-152.
• Smith KL (1986) Sawmill, the story of the cutting of the last great virgin forest east of the Rockies. The University of Arkansas Press, Fayetteville, Arkansas, 246 pp.
• Smith PW (1965) Recent adjustments in animal ranges. In: Wright HE, Frey DG (Eds) The Quaternary of the United States. Princeton University Press, Princeton, New Jersey.
• Sokolov IM, Carlton C, Cornell JF (2004) Review of Anillinus, with descriptions of 17 new species and a key to soil and litter species (Coleoptera: Carabidae: Trechinae: Bembidiini). Coleopterists Bulletin 58 (2): 185-233. DOI: 10.1649/611
• Spearing D (1991) Roadside geology of Texas. Mountain Press Publishing Company, Missoula, Montana, 418 pp. [ISBN 0-87842-265-X]
• Steyermark JA (1959) Vegetational history of the Ozark forest. University of Missouri Press, Columbia, Missouri, 138 pp.
• Sweeney J, Anderson R, Webster R, Neville R (2012) First records of Orchestes Fagi (L.) (Coleoptera: Curculionidae: Curculioninae) in North America, with a checklist of the North American Rhamphini. Coleopterists Bulletin 66 (4): 297-304. DOI: 10.1649/072.066.0401
• The Nature Conservancy, Ozarks Ecoregional Assessment Team (2003) Ozarks ecoregional conservation assessment. The Nature Conservancy Midwestern Resource Office, Minneapolis, Minnesota, 52 pp.
• Thompson RG (1979) Larvae of North American Carabidae with a key to tribes. In: Erwin TL, Ball GE, Whitehead DR, Halpern AL (Eds) Carabid beetles: Their evolution, natural history, and classification. Springer, 646 pp. [ISBN 9400996306]. DOI: 10.1007/978-94-009-9628-1_11
• Trauth SE (1989) Distributional survey of the eastern collared lizard, Crotaphytus collaris collaris (Squamata: Iguanidae), within the Arkansas River Valley of Arkansas. Proceedings of the Arkansas Academy of Science 43: 101-104.
• Trauth SE, Cochran BG (1992) In search of western diamondback rattlesnakes (Crotalus atrox) in Arkansas. Bulletin of the Chicago Herpetological Society 27 (4): 89-94.
• Trauth SE, Robison HW, Plummer MV (2004) The Amphibians and Reptiles of Arkansas. University of Arkansas Press, Fayetteville, Arkansas, 440 pp. [ISBN 1557287384]
• U.S. Geological Survey (2014) Geologic Provinces of the United States: Ouachita-Ozark Interior Highlands. http://geomaps.wr.usgs.gov/parks/province/inthigh.html. Accession date: 2015 9 07.
• Valentine BD (1960) The genera of the weevil family Anthribidae north of Mexico (Coleoptera). Transactions of the American Entomological Society 86 (1): 41-85.
• Valentine BD (1998) A review of Nearctic and some related Anthribidae (Coleoptera). Insecta Mundi 12: 251-296.
• Valentine BD (2002) Anthribidae. In: Arnett RH, Thomas MC, Skelley PE, Franks JH (Eds) American Beetles, volume 2: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press, New York, New York, 861 pp. [ISBN 0-8493-0954-9].
Van Dyke EC (1915) The species of Cossonus Clairv. (Coleoptera) of America north of Mexico. Bulletin of the Brooklyn Entomological Society 10 (1): 1-23.

Van Dyke EC (1938) A review of the genus Scaphinotus, subgenus Scaphinotus DeJean (Coleoptera-Carabidae). Entomologica Americana 18: 93-133.

Ware S (2002) Rock outcrop plant communities (glades) in the Ozarks: A synthesis. The Southwestern Naturalist 47 (4): 585-597. DOI: 10.2307/3672662

Warner RE, Negley FB (1976) The genus Otiorhynchus in America north of Mexico (Coleoptera: Curculionidae). Proceedings of the Entomological Society of Washington 78: 240-262.

Wellso SG, Jackman JA (2006) A new species of Anthaxia (Haplanthaxia) Reitter (Coleoptera: Buprestidae) and new North American buprestid distributional and host records. Pan-Pacific Entomologist 82 (2): 262-268.

Werle CT (2002) Insects associated with southern magnolia (Magnolia grandiflora L.) in East Tennessee. University of Tennessee, Knoxville, Tennessee, 78 pp.

Wibmer GJ (1918) Revision of the New World weevil genus Tyloderma in America north of Mexico (Coleoptera: Curculionidae: Cryptorrhynchinae). Southwestern Entomologist Supplement 3: 1-95.

Wickham JS, Roeder D, Briggs G (1976) Plate tectonic models for the Ouachita fold belt. Geology 4: 173-176. DOI: 10.1130/0091-7613(1976)42.0.CO;2

Williams AB (1954) Speciation and distribution of the crayfishes of the Ozark Plateaus and Ouachita Provinces. University of Kansas Science Bulletin 36 (12): 803-919.

Wolfe GW, Harp GL (2003) A new species of predaceous diving beetle, Heterosternuta phoebeae (Coleoptera: Dytiscidae), from the Ozark Mountains of Arkansas. Coleopterists Bulletin 57 (2): 117-121. DOI: 10.1649/0010-065X(2003)057[0117:ANSOPD]2.0.CO;2

WTaxa, Natural History Museum (London), Museo Nacional de Ciencias Natruales (Madrid) (2012) Electronic Catalogue of Weevil names (Curculionoidea). http://wtaxa.csic.es/index.aspx. Accession date: 2015 8 21.

Yanega D (1996) Field Guide to Northeastern Longhorned Beetles (Coleoptera: Cerambycidae). Illinois Natural History Survey, Champaign, Illinois, 174 pp.

Yatskievych G, Evans RJ, Witsell CT (2013) A reevaluation of the Ozark endemic Claytonia ozarkensis (Montiaceae). Phytoneuron 50: 1-11.

Zollner D, MacRoberts M, MacRoberts B, Ladd D (2005) Endemic vascular plants of the Interior Highlands. SIDA 21: 1781-1791.