Cell biological steps and checkpoints in accessing NK cell cytotoxicity

Emily M Mace1, Prachi Dongre1, Hsiang-Ting Hsu1, Papiya Sinha1, Ashley M James2, Shaina S Mann3, Lisa R Forbes1, Levi B Watkin1 and Jordan S Orange1

Natural killer (NK) cell-mediated cytotoxicity is governed by the formation of a lytic immune synapse in discrete regulated steps, which give rise to an extensive array of cellular checkpoints in accessing NK cell-mediated cytolytic defense. Appropriate progression through these cell biological steps is critical for the directed secretion of specialized secretory lysosomes and subsequent target cell death. Here we highlight recent discoveries in the formation of the NK cell cytolytic synapse as well as the molecular steps and cell biological checkpoints required for this essential host defense process.

Immunology and Cell Biology (2014) 92, 245–255; doi:10.1038/icb.2013.96; published online 21 January 2014

Keywords: cytotoxicity; innate immunity; natural killer cell

Natural killer (NK) cells are the innate immune system's cytolytic effector cells. Their function is critical to human host defense, as described by the severe viral infection and malignancy attributed to their absence or dysfunction.1 NK cell cytotoxicity has long been described by the severe viral infection and malignancy attributed to effector cells. Their function is critical to human host defense, as described in the context of T-cell activation, the IS has now been described in many forms, and is critical for NK cell cytotoxicity, inhibition, regulation and co-stimulation (reviewed in Orange1, Barreira and Munz2 and Huse et al.3). In the case of NK cell cytotoxicity, a primary purpose of the IS is to enable the secretion of preformed lytic granules, large specialized secretory lysosomes containing lytic effector molecules. As mediators primarily of innate immunity (a discussion of NK cells adaptive properties is beyond the scope of this review but is discussed in detail elsewhere), NK cells integrate signals from germline-encoded activating and inhibitory receptors that have evolved to detect stressed, malignant or virally infected cells. Upon the detection of a susceptible target, it is eliminated swiftly through directed secretion of lytic granules. This requires the coordinated regulation of cytoskeletal elements, signaling molecules, cellular organelles and the lytic granules themselves. We have previously proposed four steps of NK cell lytic synapse formation and function.3 Recent advances in technology have resulted in an increased understanding of the molecular coordination of each regulated step of NK cell cytotoxicity. Here we redefine these steps as we now see them, in three stages (recognition, effector and termination) comprising 48 steps and potential checkpoints in accessing cytolytic function (Table 1). With a thorough understanding of this process, the understanding of NK cells in health and disease can be uniquely advanced and potentially more specifically exploited for therapeutic potential.

STAGES OF LYTIC SYNAPSE FORMATION

Recognition

The motility of NK cells in tissue or tumor microenvironment is likely driven by chemotactic signaling resulting in an approximation to key sites of interest, although NK cell motility in tumors is also driven by the expression of NKG2D ligands.9–11 Therefore, similar to a T-cell sampling dendritic cells, NK cells undergo brief, exploratory interactions with multiple cell types, which may represent their initial encounter with a target10 (Figure 1a). It is not known what molecules specifically mediate these interactions, although there are a number of candidate receptors expressed on resting or primed NK cells, including a variety of ‘tethering’ receptors as well as potentially more robust adhesion receptors. The former potentially include CD62L and PSGL-1; the latter include CD2, DNM-1, NKG2D, the natural cytotoxicity receptors and lymphocyte function associated antigen-1 (LFA-1). Unlike T cells, a subset (~10%) of freshly isolated human NK cells express the activated conformation of LFA-1 at rest, which presumably allows adhesion to a target before the engagement of other activating receptors.12 The transmission of a second activating signal through a receptor such as NKG2D, DNM-1, 2B4 (CD244) or CD2 strengthens these interactions by further activating LFA-1, resulting in firm adhesion to the target and potentially providing minimal requirements for progression to mediating cytotoxicity.12

1Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA; 2Fox Chase Cancer Center, Philadelphia, PA, USA and 3Case Western Reserve Medical School, Cleveland, OH, USA

Correspondence: Dr JS Orange, Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, 1102 Bates Ave, Houston, TX 77030, USA. E-mail: orange@bcm.edu

Received 18 October 2013; accepted 6 November 2013; published online 21 January 2014
Stage	Step	Description	Recent references	Model image (Figure 1)
Recognition	Approximation	9–11		a
	Cell tethering			
	Adhesion	12		
	Nanotube formation	13,14		
	Integrin-mediated signaling and arrest	18–22		b
	Degranulation of pre-docked granules	26,27,29		
	Dynemin motor activation	30–32		
	Minus-ended lytic granule movement	30,31		c
	Inhibitory signaling and potentially cell release	24,25,33		d
Effector	Actin polymerization	47–54		e
	Firm adhesion	12		
	Actin force generation	55,56		
	Cell shape change	2,46,57,58		
	Microcluster formation	66–69		f
	Lipid raft coalescence	73		
	Sustained activating receptor signaling	Reviewed in 74,75		
	Actin-dependent activation signaling	Reviewed in 74,75		
	Ion channel activation	81,83		g
	Lytic cleft formation	84		
	Membrane transfer	85–88		
	Granule conduit/hypodensity formation	90–92		h
	Transcription factor activation	100		i
	Gene transcription	100		
	Protein synthesis			
	Microtubule insertion	107,113		j
	MTOC polarization	54,76,104–107,110,111,112		
	Nuclear reorientation			
	Golgi polarization	115		
	Mitochondria reorientation	118		
	MTOC anchoring			
	Plus-ended lytic granule movement?	119		l
	Lytic granule diffusion/motility	92,122		
	Hypodensity identification			
	Lytic granule transit through cortex (hypodensities)			m
	Lytic granule docking	123,126		n
	Lytic granule priming	74		
	Lytic granule fusion	128–131		o
	Externalization of granule contents	124,133		p
	Force generation?	122		
	Persistence of degranulations	122		
	Lytic granule endocytosis	28,137		
Termination	Relative inactivity			q
	Granule biogenesis	26		
	Downmodulation	144,145		
	Detachment	146		r
	Serial killing	147		
	Exhaustion (granule and energy depletion)			
	Recycling	28,137		

Abbreviation: MTOC, microtubule-organizing center.

Three main stages (recognition, effector and termination) are shown with discrete steps and recent, primarily NK cell-specific references from the text. Model images refer to those shown in Figure 1.

Figure 1 Stepwise molecular progression through NK cell cytotoxicity. NK cell cytotoxicity can be broken down into three main stages: recognition (a–d), effector (d–p) and termination (q, r). During the recognition stage, the NK cell is particularly sensitive to inhibitory signaling (d). Key events include lytic granule convergence (c), the actin-dependent firm adhesion of the NK cell (e) and subsequent F-actin conduit formation (h), MTOC polarization (j) and LG fusion and exocytosis (o). This is followed by vesicle recycling (p), a period of relative inactivity (q) and detachment and subsequent serial killing (r). See text for further details.
Steps in accessing NK cell cytotoxicity

EM Mace et al

Immunity and Cell Biology

Symbol Legend:
- Nanotube
- Triggering receptor
- Inhibitory receptor
- Adhesion receptor
- Ligands
- Lytic granule
- Lytic granule contents
- Dynein/dynactin
- Activation signal
- Inhibitory signal
- Centriole
- Microtubule
- Filamentous actin
- Golgi network
- Endoplasmic reticulum
- Mitochondria
- Microcluster
- Ion channels
- DNA + transcription factor
- Nucleus
We are still learning of surprising interactions that NK cells engage in, likely in part due to the complex microenvironment that they patrol. One such unconventional form of communication is the formation of membrane nanotubes (Figure 1a). Nanotubes appear to serve as intercellular tethers formed rapidly after contact with the target cell and can help guide the NK cell to the target cell or provide traction during its initial interaction. Rather than hollow tubes that mediate free diffusion, NK cell nanotubes are heterogeneous structures that transmit signals over long distances and can even deliver lytic granules from an NK cell to a target. Importantly, their formation enhances cytotoxicity, NKG2D and downstream activation molecules including DAP10 and Vav1 accumulate at the nanotube junction, resulting in the description of this junction as a nanoscale synapse. However, blocking either LFA-1 or 2B4 does not block the nanotube junction, resulting in the description of this junction as a nanoscale synapse. However, blocking either LFA-1 or 2B4 does not reduce the frequency of nanotube formation, suggesting that this is not simply a stretched conventional lytic synapse. CD2 expression specifically increases the frequency of NK target cell nanotubes, suggesting a role for specific receptor–ligand interactions in their formation and partially explaining the observation that CD2 enhances NK cell cytotoxicity. The mechanism by which this occurs, and the prevalence of nanotubes during routine physiological NK surveillance, remains unclear.

Another example of the complex initial interaction may be the newly observed phenomenon of NK cell-derived exosomes: NK surface marker-expressing, FasL and perforin-containing nanovesicles (50–100 nm) that, upon release from NK cells, can mediate target cell killing independent of IS formation. They may also potentially transfer key ligands to target cells to enable more robust interactions in environments in which exosome concentrations are high. This concept, in concert with nanotubes, harkens to a provocative early proposal of 'harpooning' as a contributor to NK cell cytolytic function. Despite their apparent constitutive secretion by human NK cells isolated from peripheral blood, the relative contribution of exosomes to an NK-mediated cytotoxic response is poorly understood but compelling.

Following target cell contact, LFA-1 engagement initializes the first steps of IS formation, including protein tyrosine kinase activation, PIP(4,5)P2 generation and F-actin reorganization (Figure 1b). In synergy with activating receptor ligation, LFA-1 also induces an arrest signal to migrating cells, with a strong activating signal resulting in a stable radially symmetrical synapse and inhibitory signaling resulting in asymmetry and subsequent resumption of migration. Whether NK cells kill through 'kinapses', or moving synapses, as has been described in T cells, remains to be determined. LFA-1-mediated outside-in signaling for F-actin polymerization brings together all the requisite components for F-actin polymerization and initiates this process. This initial signaling also includes the phosphorylation of Vav1 by a Src family kinase, its recruitment to lipid rafts and subsequent further activation as discussed in subsequent steps below. Therefore, initial engagement of LFA-1 in concert with a second signal can help to ready an NK cell for target cell lysis. At this point the NK cell is likely still highly sensitive to a balance of activating and inhibitory signaling, and control of Vav1 phosphorylation and subsequent actin accumulation is thought to be a critical axis in the regulation of cytotoxicity. At this stage, microclusters are likely present, may be functional and are also described further below.

Despite the tightly regulated steps leading to NK cell cytotoxicity, there is evidence that pre-docked granules are present in the cell cortex and can be accessed rapidly by NK cells. Lytic granule secretion at the IS before microtubule-organizing center (MTOC) polarization has been described in primary human cytotoxic T lymphocytes (CTLs). Although it is conceivable that antigen specificity of T cells allows for the circumvention of further checkpoints to cytotoxicity, lytic granules

![Figure 2: Stepwise stages during NK cell-mediated cytotoxicity.](image-url)
are present in the cortex of resting NK cells and initial exocytosis bursts are detected (Figure 1b). Despite these observations, imaging of both NK cell lines and primary NK cells by both live and fixed cell microscopy indicates that the majority of NK cells go through the multistep, highly regulated steps to cytotoxicity (Figure 2). Therefore, it is unclear as to what the significance of the presence and potential exocytosis of pre-docked granules is. In this light, it is also still unclear how many lytic granules are required to kill specific types of target cells.

Polarization of the MTOC and lytic granules to the IS is required for NK cell cytotoxicity and occurs in the effector stage. However, preceding MTOC polarization, lytic granules rapidly move along microtubules and converge upon the MTOC (Figure 1c). This minus-ended lytic granule movement depends on dynein motor function but is independent of actin polymerization or microtubule dynamics. It also occurs whether the NK cell is conjugated to a susceptible or resistant target cell, as it is observed in the presence of an inhibitory synapse. This suggests that granule convergence is a step that precedes NK cell commitment to cytotoxicity, instead preparing the cell for it. Accordingly, ligation of CD28 or LFA-1 alone is sufficient to induce lytic granule convergence, as is activation by soluble interleukin-2. Disruption of LAMP-1 (CD107a) expression also results in impaired lytic granule motility, which corresponds with a decrease in association of the dynein component p150(glu) with lytic granules. Although this suggests that LAMP-1 itself may mediate the interaction of granules with dynein, the mechanism of this is unknown. Interestingly, MTOC polarization in LAMP-1-deficient cells is intact, suggesting that convergence is not a prerequisite for polarization.

Lytic granule convergence before MTOC polarization likely repre-sents the final juncture at which NK cells are susceptible to inhibitory signaling before a commitment to cytotoxicity. Signaling through immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors induces formation of the inhibitory synapse, which is functionally dominated by phosphatases, particularly SHP-1, leading to exclusion of the downstream signaling molecules from the contact region (Figure 1d). Inhibitory signaling acts swiftly to disrupt multiple points of activation, including conjugate formation and F-actin accumulation, activating receptor clustering at the IS and critically, Ca++ influx. Dephosphorylation of the activating phospho-tyrosine residues of Vav1 appears to be a critical molecular switch for this control but this response is likely fine-tuned by other factors. These include the adaptor protein Crk, which is also phosphorylated following inhibitory signaling and recruited to the inhibitory synapse. Crk, through its association with C3G and subsequent control of Rap1, likely has a role in the regulation of LFA-1 activation and subsequent target cell adhesion. Interestingly, inhibitory receptors also serve to 'license' NK cells during their developmental process, and NK cells that lack the recognition of MHC molecules during maturation are rendered hyporesponsive, at least partially by reduced signaling from activating receptors to LFA-1. Unlicensed cells form fewer conjugates, but those that do conjugate mediate lytic granule polarization normally. Other mechanisms by which these 'unlicensed' or 'anergic' NK cells are restrained in their cytotoxic capacity represents an unknown cellular checkpoint that will be of great value in understanding full access to lytic capacity.

Effector

At the beginning of the effector stage, the NK cell commits to cytotoxicity and proceeds toward degranulation. This stage is marked largely by significant cytoskeletal rearrangements, beginning with significant de novo F-actin polymerization and reorganization (Figure 1e). Although the importance of the F-actin cytoskeleton in NK cell cytotoxicity has been appreciated for some time, recently many new contributors to the regulation of F-actin have been highlighted. One of these is the Wiskott-Aldrich syndrome protein (WASP) homolog WAVE2. Interestingly, while both WASp and WAVE2 are expressed in T and NK cells, WAVE2 may be critical for F-actin polymerization in CTLs but is normally not accessed by NK cells. In NK cells, WASp appears to be the predominantly utilized family member. As an illustration, Wiskott-Aldrich syndrome patients who are deficient in WASp have severe NK cell functional impairment linked to an inability to rearrange F-actin. This can be overcome with interleukin-2 treatment, which activates WAVE2 in NK cells and restores F-actin rearrangement in WAS patient NK cells in vitro and in vivo. This not only offers therapeutic options for treatment of WAS but highlights an important difference between NK- and T-cell cytotoxicity. It also illustrates the potential cooperativity between adaptive and innate immunity via the ability of T cell-produced interleukin-2 to access distinct cell biology in NK cells.

The Rho GTPase Cdc42 is also critical for F-actin polymerization by Arp2/3 through direct binding and activation of WASP. Recently, a role for the Cdc42 effector DOCK8 has been described in NK cells. Patients deficient in DOCK8 have decreased NK cell function with accompanying lytic synapse assembly and function defects that we now recognize as hallmarks of defective actin polymerization, including decreased LFA-1 recruitment, loss of granule polarization and accompanying decrease in cytotoxic function. Importantly, DOCK8 deficiency does not affect overall NK cell F-actin content, but more specifically the targeted accumulation and polarization of F-actin at the synapse. This is in contrast to WASp deficiency in which NK cells have a reduced total F-actin content in addition to an inability to target actin accumulation. Loss of DOCK2 function in mouse NK cells also results in impaired Rac activation and subsequent loss of NK cell cytotoxic function, suggesting this family is an important regulator of NK cell cytotoxicity.

In addition to the WASp and WAVE/Scar family members, the Arp2/3 complex can be activated by cortactin. The hematopoietic-specific homolog of cortactin, HS1, is localized to the NK cell lytic synapse, where it is critical for signaling to and from LFA-1. In NK cells, the formin homolog hDia is not required for lytic synapse branched actin, but instead is required for NK cell cytotoxicity by targeting microtubules to the synapse and subsequent lytic granule polarization, suggesting its function as the poorly understood link between the microtubule and actin cytoskeleton.

Once F-actin polymerization has been initiated, firm adhesion to the target cell is achieved and sustained (Figure 1e). As F-actin polymerization is required for LFA-1 recruitment and maintenance at the synapse, this synergy between actin and integrins provides firm adhesion throughout the period of NK cell activation. This transmembrane linkage results in the generation of significant force, which has been measured directly through the application of single-cell force spectroscopy. Engagement of 2B4 leads to rapid, LFA-1- and actin-dependent increase in the force sufficient to disengage an NK cell from a susceptible target. Therefore, the mechanical forces generated at the synapse also have an important role in adhesion activation signaling. This observation is supported by the increased LFA-1-mediated adhesion of NK cells bound to targets in which intercellular adhesion molecule-1 (ICAM-1) is tethered and restrained, as opposed to freely diffusible.

Firm adhesion to the target cell and F-actin polymerization leads to the NK cell flattening and extending the diameter of the synapse.
platform formation. It remains to be seen whether this is also the case for a number of receptors. This process is reciprocal, as transfer of both ligand from the target cell and receptor from the NK cell is mutually required.85,88 The functional outcome of trogocytosis and intercellular signaling are proposed to account for distribution of proteins of different sizes at the synapse.84

Electron micrographs of the NK cell synapse also show significant membrane ruffling and protrusions. These synaptic membrane features may also be a source of membrane transfer (trogocytosis) between an NK cell and a target (Figure 1g), which has been defined previously.85–88 This process is reciprocal, as transfer of both ligand from the target cell and receptor from the NK cell is observed. Additional transmission electron microscopy experiments demonstrate that the target cell-derived receptors enter the NK cells in small, enclosed pits.88 Both inhibitory and activating receptor exchange occurs across the NK cell synapse, although there is controversy as to whether cognate ligand engagement is required.85,88 The functional outcome of trogocytosis and intercellular receptor transfer is unclear, although transfer of NKG2D and MICB at the synapse results in lower NK cell cytotoxic function.87

Fascinatingly, NK cells that acquire NKG2D ligand from target cells become targets themselves, and are victims of fratricide by neighboring NK cells.86 This suggests that this ligand transfer may act to both enable and even control NK cell activity during infection, again suggesting the theory of harpooning.17

Following firm adhesion and the formation of a cleft, F-actin continues to undergo substantial remodeling at the synapse. Traditionally, this remodeling was thought to result in a large, central...
clearing of F-actin to enable centrosomal docking and lytic granule secretion.58,89 Recent advances in imaging technology, namely, the adoption of super-resolution microscopy, have revealed that ligation of activating receptors creates granule-sized conduits through which granules are secreted (Figure 1b).90–92 Interestingly, viral influenza particles can also result in conduit formation, presumably through the ligation of NKP46, but this signal requires co-stimulation through LFA-1.93 Other activating receptors, such as NKG2D or CD16, can signal solely for clearance formation. Although not entirely understood, this seems to be an elegant mechanism by which an NK cell could discern a free viral particle from one bound to a target cell. Whether proteins on the granules themselves form lytic granule conduits, they are a result of the inherent dynamism at the synapse, or occur in specific hotspots of signaling remains to be determined. It seems likely, based on the presence of actin nucleating factors at the synapse, that F-actin is dynamic and is likely undergoing continual remodeling. This may contribute to conduit kinetics, as has been suggested by analyses of synaptic plane actin dynamics using total internal reflection fluorescence imaging.92

The process of remodeling and specifically breaking down as opposed to building is of particular interest as conduits in F-actin are a requirement for degranulation.91,92 Cofilin, which severs and depolymerizes F-actin, works in concert with Arp2/3 to remodel actin to enable secretion in muscle cells.94 Coronin 1A, which promotes the turnover of actin through binding to both Arp2/3 and cofilin, regulates Arp2/3 localization to the T-cell synapse, although a role for this important immune cell regulator in NK cells has yet to be defined.95,96 One appealing hypothesis is that hypodensity formation occurs at regions of high activating receptor density as a result of highly localized signaling events, such as is seen in mast cells.97 However, this is difficult to reconcile with what is likely the dynamic movement of microclusters of activating receptors themselves. An alternative explanation is that lytic granules create their own conduits, enabled by the presence of actin-remodeling proteins on their surface. This would be compatible with the observation that Myosin IIA is present on lytic granules and appears required for their penetration through F-actin.98,99 But this hypothesis has not been directly tested.

Perhaps, in preparation for potential serial killing or NK cell recycling, lytic synapse formation also activates transcription factors and gene transcription (Figure 1i). Ligation of NKP30 results in rapid translocation of nuclear factor κB to the nucleus and \textit{de novo} protein synthesis.100 Perhaps, not surprisingly, perforin and granzyme is refilled in CTL lytic granules while they kill.101,102 The newly produced perforin then reaches the synapse independently of conventional lysosomal granules and mediates cytotoxicity.103 Whether NK cells employ such a mechanism remains to be determined, as does the precise program of gene transcription that is activated during cytotoxicity.

Following the dynamic rearrangement of the actin cytoskeleton, microtubule dynamics result in a dramatic reorientation of the MTOC and associated lytic granules toward the synapse (Figure 1j). Requirements for centrosome polarization include LFA-1, Pyk2, ERK2, CIP4, the formin hDia and Vav1.54,76,104–107 However, it is important to note that F-actin polymerization is required for MTOC polarization.46,53,54,56,108,109 Therefore, any interference with F-actin dynamics will subsequently impair MTOC and granule polarization.

One consideration in MTOC polarization is the significant amount of force likely needed to generate this reorientation. It is assumed from studies in other systems that microtubule insertion and anchoring in the cell cortex lead to either pushing (microtubule growth) or pulling (microtubule shrinkage) forces that can reposition the centrosome. Dynemin may again have a role, as a minus-ended motor it can generate significant pulling forces on shrinking microtubules when anchored in the cortex, and may contribute to the fine-tuning and positioning of microtubule asters.110 Accordingly, it was recently shown that in T cells, MTOC repositioning occurs as a result of end-on capture shrinkage of microtubule focused at the center of the IS and anchored to cortical dynein.111 Interestingly, in NK cells, it appears that kinesin-1 has a role in the initial movement of the MTOC to the synapse, mediated through interactions with the small GTPase Arl8b.112 IQ motif containing GTPase-activating protein 1 (IQGAP1) may act as a linker between CLIP-170 on the plus ends of microtubule and specific regions of cortical actin. Loss of IQGAP1 results in a failure of NK cells to polarize the MTOC and degranulate.113 Cip4 has also been implicated as a link between microtubules and F-actin at the cortex.107 Although in T cells the MTOC docks in contact with the plasma membrane at the synapse, this has not been directly observed in NK cells.54,114

As the MTOC polarizes to the synapse, cellular organelles also reposition with some moving toward and others away from the synapse (Figure 1j). Reorientation of the Golgi along with microtubules toward the IS presumably aids in directed secretion of granules toward the target cell.115 In T-helper cells, the mitochondria polarize toward the synapse to maintain Ca2+ flux across the plasma membrane for T-cell activation.116,117 In NK cells, the mitochondria reposition toward the NK cell IS following NK stimulation with anti-NKG2D antibodies but not with anti-KIR2DL1 antibodies, suggesting that the mitochondrial dynamics are triggered as a result of NK cell activation.118 The polarization of these organelles is important for sufficient Ca2+ influx for signaling and granule exocytosis. It is conceivable that polarized mitochondria further serve as local sources of energy to power synaptic function, although this needs to be proven.

Following MTOC polarization to the IS and anchoring at the plasma membrane, the delivery of the polarized lytic granules to the synapse occurs (Figure 1k). In T cells, this process requires plus-ended, kinesin-1-dependent movement of lytic granules upon microtubules to the membrane.119 In NK cells, a role for kinesin-1 in this process has not been described but is conceivable. Other cellular machinery could also have a role in lytic granule movement. As mentioned above, Myosin IIA is associated with lytic granules and required for NK cell cytotoxicity.98,99,120 Whether this is through the facilitation of short runs across F-actin following MTOC polarization, the penetration of granules through the actin meshwork or the exocytosis of lytic granules121 is unclear, although obviously these scenarios are not mutually exclusive.

Following delivery to the plasma membrane, lytic granules have significant dynamic movement, which is followed by arrest, and subsequent degranulation in only a subset of granules (Figure 1l).92,122 This movement is not dependent upon F-actin dynamic rearrangement,122 but a role for microtubule dynamics has not been excluded. Granule movement may be unidirectional rolling on synaptic actin, seeking regions of hypodensity. Alternatively, it may represent the requirement for granules to find a primed fusion/tethering complex to mediate their arrest, as is suggested by high-resolution imaging of lytic granules in CTL utilizing Munc 13-4 Rab27a complexes for granule arrest and subsequent degranulation.123

At some point, lytic granules must traverse the pervasive actin network at the synapse (Figure 1m). Lytic granule may mechanistically identify areas of hypodense F-actin regions to pass through,
or directed F-actin remodeling at the activating synapse may be required for clearing the way for lytic granules to transit through minimally permissive F-actin hypodensities. However, even in the presence of F-actin clearances, it is likely that lytic granule transit through the cortex requires the generation of force as was suggested by experiments evaluating degranulation in the absence of an F-actin meshwork. Myosin IIA may mechanically facilitate lytic granule motility through the F-actin-rich area of the IS or may be involved in inducing local changes in the F-actin structure to allow polarized lytic granules access to the plasma membrane.

After polarizing to the IS and before degranulation, lytic granules dock at the IS and fuse with the plasma membrane (Figure 1n). Docking is likely mediated primarily by Munc13-4 and Rab27a, both of which are recruited to lytic granules following activating receptor ligation. In CTL, lytic granules become fully mature only at late stages of the exocytic pathway, when Munc13-4 and Rab27a associate with perforin- and granzyme-containing lysosomal components. Upon interacting with Rab27a, Munc13-4 may also regulate the interaction between vesicle and target soluble NSF Attachment Protein-Receptor (SNARE) required for lytic granule fusion with the plasma membrane. Alternatively, this may be mediated by the interaction of Syntaxin 11 and Munc18-2 with R-SNAREs (such as VAMP7) on the lytic granule membrane. Priming then occurs as a result of Munc13-4-mediated activation of Syntaxin 11 or bridging of the plasma membrane with lytic granule. Fusion occurs as a result of SNARE complex formation, and although this complex has not been defined in NK cells, mutations in the SNARE components Syntaxin 11, VAMP4 and VAMP7 prevent NK cell degranulation. In mast cells, coordinated oscillations of calcium in concert with N-WASP and PIP(4,5)P2 dynamics trigger granule fusion with the plasma membrane. Whether such localized signaling dynamics contribute to NK cell exocytosis remains to be seen, although this hypothesis would complement the localized generation of actin hypodensities. Vesicular exocytosis is also triggered by calcium flux. In addition to the global calcium reserves such as the ER and the store-operated reservoirs, local Ca2+ nanodomains created by channels on the lytic granule membrane in T cells are essential for their exocytosis. Thus, local synaptic membrane nanoregions may factor into a final step in allowing the release of lytic granule contents.

Granule exocytosis may be an additional mechanism of regulating cytotoxicity (Figure 1o). NK cell lytic granules use at least two distinct modes of fusion: (1) complete fusion where granule content is completely discharged and the contents diffuse rapidly at the plasma membrane and (2) incomplete fusion, whereby formation of a transient fusion pore at the plasma membrane is accompanied by release of some but retention of most of the granule contents. This latter form of degranulation is suggestive of alternate forms of granule fusion seen in other secretory cells such as chromaffin cells and neurons. These are descriptively named 'kiss and run', in which a granule pore is formed and resealed, preventing full release of granule contents, and 'kiss and stay', in which granules remain at the membrane and are re-acidified, presumably for rapid recycling or reuse and 'crash fusion', in which granule contents are released without stable docking and priming. The true existence and significance of these alternate forms of granule fusion in NK cells is incompletely understood, although it is conceivable that it could be a means of facilitating serial killing through the rapid recycling of granule contents. As such, two-way vesicular trafficking occurs at the NK cell synapse, and rapid Munc13-4–chlothirin mediated endocytosis of granule membrane proteins exposed at the plasma membrane is necessary for the recycling of a pool of endocytic vesicles, allowing the serial killing event (Figure 1p). F-actin dynamics may have a role in the extrusion of granule contents and the persistence of lytic granules at the membrane following exocytosis. Although this is presumably owing to force generation, the direct proof is presently unavailable.

After degranulation, a period of relative inactivity begins and is presumably required as lytic granule contents cross the lytic cleft to act upon the target cell (Figures 1o and p). The sustained presence of fused granules at the synaptic membrane, however, may serve additional functions as well. Interestingly, the exposure of LAMP-1 on the NK cell surface protects the NK cell from cytotoxicity-induced suicide, although this is likely not the only mechanism. Subsequently, uptake of lytic granule contents by the target cell initiates apoptosis and marks the end of the effector stage of cytotoxicity, as the lytic hit has been administered.

Termination

The termination stage of the synapse refers to the steps that immediately follow the release of lytic granules and up to either the reinitiating of a subsequent recognition or return to a resting state. Initially, there is a longer time of apparent relative inactivity. During this time the target cell continues its death process, primarily by apoptosis (Figure 1q). Perforin induces membrane flipping on the target cell, resulting in exposure of phosphatidylserine. Phosphatidylserine on the surface of the cell may provide signaling to the NK cell to terminate the response, as NK cells express proteins that have been shown to bind to phosphatidylserine such as the ITIM-containing molecule CD300a. A further mechanism by which the NK cell could relax its activation status is through receptor downmodulation as has been documented for CD16 and NKG2D. Perhaps, this could apply to other activating receptors and cell adhesion molecules. Ongoing is new LG biogenesis during this relatively quiet period as a likely requirement for NK cell ‘recharging’ and subsequent serial kills.

The final stage of cytotoxicity is defined by detachment from the target cell, a process that is not entirely arbitrary. Kinetic studies show that the decision to end stable contacts with target cells is made faster when killing occurs. Interestingly, detachment was sometimes seen along with the formation of nanotubes connecting the NK and target cells (Figure 1r). These connections in the context of a dying cell, however, is unclear and they may just represent the default behavior of an NK cell to tether to activating objects of interest.

Insight into the steps of the termination stage can be seen during the process of NK cell serial killing. Serial killing can demonstrate burst kinetics, with a delayed first kill followed by more rapid subsequent kills. A proposed mechanism for burst kinetics is the idea of kinetic priming, which suggests that NK target interactions depend upon recent killing events. It is proposed that kinetic priming is a continuity of signaling, as interactions with old targets remain until a new target is found. As such, lytic granule may remain converged to the MTOC following target cell lysis in preparation for subsequent kills, as previously proposed. A consequence of serial killing is a near depletion of lytic granules and cytotoxic effector molecules. This depletion can leave the NK cells in an exhausted state until they detach from the target cell that has depleted their contents. After separation, exposure to locally available activating factors such as interleukin-2 can restore their cytotoxic function. New granule biogenesis and new effector molecule synthesis presumably mediate this restoration. Interestingly, in CD8+ cytotoxic T cells, it was found that rapid upregulation of...
nongranule-restricted perforin can be transported to the IS and participate in cytotoxicity.103 As this form of perforin was identified in NK cells,103 perhaps this observation carries over to NK cells and contributes to the reacquisition of effector function after exhaustion. Although seemingly the least is known about the specifics of the termination phase of the synapse, it can be interpreted as one of the most important parts, as recycling of NK cells in vivo in diseased tissue environments is likely to be of the essence in host defense.

Summary and future thoughts

In recent years, explosive advances in technology have driven us deeper within the NK cell to better understand the mechanism of its critical function. In doing so, we have a much better understanding of the tightly regulated steps leading to cytotoxicity. There are critical and fundamental questions that remain to be answered, some of which require substantive technology development. These include, but are not limited to the following: (1) the exact number of, and temporospatial requirements for, degranulation events needed to kill particular target cells; (2) how both inhibitory signaling and ‘anergy’ restrain progression through the cell biological steps of synaptic formation; (3) the mechanism by which conduits in the cell cortex are created to enable lytic granules to reach the NK cell synaptic membrane; (4) the true purpose of lytic granule convergence to the MTOC; (5) the mechanism of delivery of lytic granules from MTOC to plasma membrane; and (6) what specifically governs the release of an NK cell from its target cell. In addition, we still have much to learn about the fine-tuning of the cytotoxic response and the subversion of it by viruses and malignant cells. These represent only a sampling of the many questions begotten by the last 15 years of discovery, the answers to which will provide the tools to manipulate and control cytotoxic host defense. Better understanding of these facets of NK cells will enable more effective harnessing of NK cell functions and therapeutic intervention.

Acknowledgements

This work was supported by NIH grant AI067946 to JSO.

1. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol 2013; 132: 515–525.
2. Wulfing C, Portac B, Klein J, Schatzle JD. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing. Proc Natl Acad Sci USA 2003; 100: 7767–7772.
3. Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol 2008; 8: 713–725.
4. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999; 285: 221–227.
5. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998; 395: 82–86.
6. Barreira da Silva R, Munz C. Natural killer cell activation by dendritic cells: balancing inhibitory and activating signals. Cell Mol Life Sci 2011; 68: 3505–3518.
7. Huse M, Catherine Milansno S, Abeyweera TP. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells. Immunol Rev 2013; 251: 143–153.
8. Rolle A, Pollianno C, Cerwenka A. Memory of infections: an emerging role for natural killer cells. PLoS Pathog 2013; 9: e1003548.
9. Deguine J, Baez M, Lemaitre F, Di SantP J, Bousso P. Intravital imaging reveals distinct dynamics for natural killer and CD8+ T cells during tumor regression. Immunity 2010; 33: 632–644.
10. Deguine J, Baez M. Dynamics of NK cell interactions in vivo. Immunol Rev 2013; 251: 154–159.
11. Gregoire C, Chasson L, Luci C, Tomasselli E, Geissmann F, Viver E et al. The trafficking of natural killer cells. Immunol Rev 2007; 220: 169–182.
12. Bryceson YT, LiJjnggen HG, Long EO. Minimal requirement for induction of natural cytotoxicity and interaction of activation signals by inhibitory receptors. Blood 2009; 114: 2657–2666.
69 Treanor B, Lanigan PM, Kumar S, Dunsby C, Munro I, Auksorius E et al. WAVE2 complex regulates T cell receptor signaling to integrins via Abi- and CrkI-C3G-mediated activation of Rap1. J Cell Biol 2008; 182: 1231–1244.

47 Orange JS, Roy-Ghanta S, Mace EM, Maru S, Rak GD, Sanborn KB et al. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function. J Clin Invest 2011; 121: 1535–1548.

Ham H, Guerrier S, Kim J, Schao RN, Andreassen EL, Hamann MJ et al. Differentially phosphorylated forms of the catenin homolog HS1 mediate distinct functions in natural killer cells. Nat Immunol 2007; 8: 887–897.

54 Butler B, Cooper JA. Distinct roles for the actin nucleators Arp2/3 and hDia1 during NK cell cytotoxicity. J Immunol 2013; 190: 3661–3669.

64 Babich A, Li S, O’Connor RS, Milone MC, Freedman BD, Burkhardt JK. F-actin filaments in natural killer cells are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 2006; 25: 117–127.

174 Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T et al. Structural basis for the functional role for proline-rich tyrosine kinase 2 in NK cell-mediated natural killing. Proc Natl Acad Sci USA 2013; 110: 15341–15346.

52 Uruno T, Liu J, Zhang P, Fan Y, Egile C, Li R. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 2001; 3: 259–266.

58 Orange JS, Harris KE, Andzelm MM, Valter MM, Geha RS, Strominger JL. The mature IL-2 receptor β chain on target cells is required for LFA-1-dependent NK cell adhesion and the subsequent expression of inhibitory killer immunoglobulin-like receptor signaling at natural killer cell immune synapses. J Immunol 2006; 176: 6932–6941.

51 Nolz JC, Nacu NG, Segovis CM, Medeiros RB, Mitchell JS, Shimizu Y et al. WAVE2 complex regulates T cell receptor signaling to integrins via Abi- and CrkI-C3G-mediated activation of Rap1. J Cell Biol 2008; 182: 1231–1244.

43 Thomas LM, Peterson ME, Long EO. Cutting edge: NK cell licensing modulates adhesion to target cells. J Immunol 2013; 191: 3981–3985.
Sanborn KB, Rak GD, Maru SY, Denes K, Diefot A, Martinetti JA et al. Myosin IIA associates with NK cell lytic granules to enable their interaction with F-actin and function at the immunological synapse. J Immunol 2009; 182: 6969–6984.

100 Pandey R, DeStefhan CM, Madge LA, May MJ, Orange JS. Nkp30 ligation induces rapid activation of the canonical NF-kappaB pathway in NK cells. J Immunol 2007; 179: 7385–7396.

101 Hersperger AR, Makedonas G, Betts MR. Flow cytometric detection of perforin upregulation in human CDB T cells. Cytochemistry A 2008; 73: 1050–1057.

102 Nace LA, S. Testar Cell Biol 2000; 12: 1256. Serial killing by cytoskeletal T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway. Eur J Immunol 1995; 25: 1071–1079.

103 Graham DB, Cella M, Giurisato E, Fujikawa K, Miletic AV, Kloeppel T et al. Rapid up-regulation and granule-independent transport of perforin to the immunological synapse define a novel mechanism of antigen-specific CDB + T cell cytotoxic activity. J Immunol 2009; 182: 5560–5569.

104 Byrceos YT, March ME, Barber DF, Ljunggren HG, Long ED. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 2005; 202: 1001–1012.

105 Graham DB, Chella M, Giarusso E, Fujikawa K, Kloeppel T et al. Controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule polarization. J Immunol 2006; 177: 2349–2355.

106 Sancho D, Nieto M, Llano M, Rodriguez-Fernandez JL, Tejedor R, Awraham S et al. The tyrosine kinase PYK2/RACFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition. J Exp Med 2010; 104: 1249–1262.

107 Baneejee PP, Pandey R, Zheng R, Suhoski MM, Monaco-Shawker L, Orange JS. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the immunological synapse. J Cell Biol 2007; 204: 2305–2320.

108 Krezewski K, Chen X, Strominger JL, HIP is essential for lytic granule polarization and NK cell cytotoxicity. Proc Nat Acad Sci USA 2008; 105: 2568–2573.

109 Krezewski K, Chen X, Orange JS, Strominger JL. Formation of a V-WIP, WAP5, actin-, and myosin IIA-containing multiprotein complex in activated NK cells and its implication by KIR inhibitory signaling. J Biol Chem 2006; 281: 121–132.

110 Lahn L, Pavi N, Hussou J, Romet-Lemonne G, van Duijn M, Lopez MP et al. Cortical dynine controls microtubule dynamics to generate pulling forces that position microtubule aster. Cell 2012; 148: 502–514.

111 Yi J, Wu X, Chung AH, Chen JK, Kapoor TM, Hammer JA. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J Biol Cell 2013; 202: 779–792.

112 Tuli A, Thiery J, James AM, Michelot X, Sharma G, Gang S et al. Art-like GTPase ArhlB regulates lytic granule polarization and natural killer cell-mediated cytotoxicity. Mol Biol Cell 2013; 24: 3721–3735.

113 Kanwar N, Wilkins JA. IQGAP1 involvement in MTOC and granule polarization. Nat Immunol 2011; 11: 2763–2773.

114 Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization is required for cytolytic granule exocytosis in human NK cells. Proc Nat Acad Sci USA 2008; 105: 7224–7228.

115 Krzewski K, Chen X, Strominger JL. Vav1 interacts with the Nck-1 and Nck-2 docking proteins. J Biol Chem 2007; 282: 3879–3889.

116 Baixauli F, Martin-Cofreces NB, Morlino G, Carrasco YR, Calabia-Linares C, Veiga E et al. Different NK cell-activating receptors preferentially recruit Rab27a or Munc13-4 to control secretory lysosomes at the NK cell immune synapse. Proc Nat Acad Sci USA 2011; 108: 7224–7229.

117 Marcet-Palacios M, Omedujiwa SO, Couchin JJ, Garofoli D, Ewen C, Davidson CE et al. Vescicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line. Biochem Biophys Res Commun 2008; 366: 617–623.

118 Krzewski K, Gil-Krzewa Z, Watts J, Stern JN, Strominger JL. VAMP4- and VAMP7-expressing vesicles are both required for cytotoxic granule exocytosis in NK cells. Eur J Immunol 2011; 41: 3323–3329.

119 Davis LC, Morgan AJ, Chen JL, Sneed CM, Buzza MS, Bird CH, Warren HS, Cameron PU, Zhang M et al. The activating NKG2D ligand NAADP induces plasma membrane phospholipid flip-flop. J Biol Chem 1996; 271: 28702–28709.

120 He L, Wu G. The debate on the kiss-and-run fusion at synapses. Trends Neurosci 2007; 30: 447–455.

121 Sudhof TC. The synaptic vesicle cycle. Ann Rev Neurosci 2004; 27: 509–547.

122 Verheg M, Sorenson JB. Vesicle docking in regulated exocytosis. Traffic 2008; 9: 1414–1424.

123 Capuano C, Paolini R, Moffettta R, Frati L, Santoni A, Galandrini R. PIP2-dependent pathway. Blood 2012; 119: 2252–2262.

124 Cohen A, Chiang SC, Stojanovic A, Schmidt H, Cluss M, Saffig P et al. Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood 2013; 122: 1411–1418.

125 Sun J, Bird CH, United States. T cell cytotoxicity. Nat Med 2002; 8: 1326–1334.

126 Metkar SS, Wang B, Catalan E, Anderluh G, Gilbert RJ, Pardo J et al. Activation of cell-surface phospholipid molecular species by cell-surface phospholipid flip-flop. J Biol Chem 2002; 277: 21511–21516.

127 Vanherberghen B, Olofsson PE, Forslund E, Sternberg-Simon M, Khorshidi MA, Cameron PU, Zhang M et al. The intracellular granyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell cytotoxicity, and its overexpression enhances CTL potency. J Immunol 2003; 170: 805–815.

128 Arneson LN, Brickshawana A, Segovis CM, Schoon RA, Dick CJ, Leibson PJ. Defective granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell cytotoxicity, and its overexpression enhances CTL potency. J Immunol 2003; 170: 805–815.

129 Marcet-Palacios M, Omedujiwa SO, Couchin JJ, Garofoli D, Ewen C, Davidson CE et al. Vescicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line. Biochem Biophys Res Commun 2008; 366: 617–623.

130 Marcet-Palacios M, Omedujiwa SO, Couchin JJ, Garofoli D, Ewen C, Davidson CE et al. Vescicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line. Biochem Biophys Res Commun 2008; 366: 617–623.