Comparative study of moisture damage performance test

Adaweiah Taib1, Fauzan Mohd Jakarni1, Muhammad Fudhail Rosli1, Nur Izzi Md Yusoff2 and Maniruzzaman Abd Aziz3

1Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia
3Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

E-mail: adaweiahtaib@gmail.com & fauzan.mj@upm.edu.my

Abstract. This paper presents a comprehensive literature on moisture damage performance tests of asphalt mixtures. Moisture damage recognized as a cause for pavement distresses. The most common forms of moisture damage are adhesive failure between bitumen and aggregates. Adhesive failure is due to bitumen coating the aggregates are completely displaced by moisture, and stripping becomes visible in the asphalt mixtures. However, both quantitative and qualitative test do not focus on measuring the fundamental properties of the asphalt mixtures related to the moisture damage mechanisms of adhesion and cohesion. The results of the quantitative tests measured quantitatively, minimize the subjective evaluations of the test results. The quantitative are Tunnicliff and Root Conditioning (ASTM D4867) and Modified Lottman (AASHTO T283) test provide evaluation of moisture susceptibility of the asphalt mixture on the basis of strength and/or modulus ratio before and after conditioning. Other tests, such as Hamburg Wheel Tracking Device (HWTD) (AASHTO T324-04) provide measurement of moisture damage in terms of permanent deformation of the specimens. This paper is a review of the effectiveness of the selected available moisture damage performance tests. The analysis was conducted based on the success rate for each moisture damage performance tests.

1. Introduction

Road users in Malaysia feel uncomfortable driving on highway cause by existence of pavement distresses especially after monsoon season. These pavement distresses mostly happen due to moisture damage. Moisture damage or moisture susceptibility in asphalt pavements remain a main concern in the pavement construction almost a few decades ago. The common term used for moisture damage in asphalt pavements is stripping which a primary cause is of distress in asphalt pavement. Stripping commonly occur when moisture infiltrates the pavement and weakening the bond between the aggregate and bitumen. Stripping cause the reduction of pavement shear strength and could lead to several distress such as raveling, rutting, fatigue cracking [1], [28] of the binder to the pavement surface, which could decrease pavement’s skid resistance.

In [1] stated that various tests had been performed to evaluate moisture-susceptible asphalt mixture since 1930s. However, these tests are still producing wavering result in evaluating moisture susceptible in asphalt mixture. Solaimanian [27] pointed out that the tests can be classify into those...
evaluating the affinity between aggregate and asphalt in loose mix condition and those accustomed to evaluate the moisture sensitivity in compacted mix condition. At present accessible moisture damage performance test that had been standardized, for example, Boiling Water test (ASTM D3625) and Static Immersion test (ASTM D1664/AASHTO T182) only depend on subjective evaluation while Modified Lottman test (AASHTO T283) and Immersion Compression Test (AASHTO T165) rely on the principle of relative assessment of mechanical properties (indirect tensile strength, resilient modulus, marshal stability or compression strength) of conditioned sample and unconditioned sample. Meanwhile, other tests such as Saturation Ageing Tensile Stiffness (SATS) test [12], Environmental Conditioning System (AASHTO TP34) and Hamburg Wheel Tracking Test are also recognized to be used in assessing moisture damage performance of asphalt mixture.

This paper discussed the selected test methods for evaluating moisture susceptibility on various combinations of asphalt mixtures.

1 Moisture damage
1.1 General background of moisture damage. Moisture damage is manifested by infiltration of moisture or water through the asphalt binder-aggregate adhesion within an asphalt mixture. This circumstance may lead to a reduction of adhesion among the asphalt binder and aggregate known as stripping and may cause some of distress in pavement such as fatigue cracking and rutting. [10] described that moisture damage is one of the main cause that lead to early rehabilitation of asphalt pavement. They also stated that thermodynamic, chemical, physical, and mechanical processes are likely involved in this action. [26] describes that it is inevitable to dismiss the fact of existing of water in asphalt pavement and found that a few factors can become significant to the existing of water in pavement. Water can penetrate the pavement from the surface through cracking of pavement as explained by [9] that the water on pavement will infiltrate through small crack at the surface of pavement, connection of the air-void mechanism, from the bottom caused by increasing of ground water table, or from the sides. Besides, heating of aggregate throughout mixing process poorly conducted may cause existing of water in pavement.

Study by [25] summarized that moisture damage is a very indescribable type of distress and symbolizes an acclimatizing phenomenon when the pavement is exposed to the water or moisture. When water or moisture is in contact with bitumen and aggregates, the asphalt mixtures will lose its structural strength and stiffness. This problem will lead to pavement distress such as ravelling, stripping, fatigue cracking, surface wear and rutting, for longer term may lead to extensive damage and the serviceability of the pavement may be reduced.

As a conclusion, even though numerous research have concluded that moisture damage of asphalt mixture is tend to the adhesive failure than the cohesive failure, the basic understanding regarding to these failure are very indescribable to illustrate and researches on these two failure are limited. Thus, moisture damage mechanisms continue to become the most complicated distress and not completely understood.

1.1.2 Moisture damage mechanism. birgis [23] found that there were a few contributing factors that known to be as the failure mechanism in asphalt mixtures include pore pressure, hydraulic scour, detachment, displacement, spontaneous emulsification, and environmental factors. [8] explained that these mechanisms may act independently or coincides with each other that lead to adhesion failure in asphalt mixtures. Moreover, their studies also describe that other possible mechanism for stripping probably due to osmotic cause by the existing of salts or salt solution in the aggregate pores that forms an osmotic pressure gradient that sucks moisture through the bitumen. Two major failure types: loss of adhesion or loss of cohesion occurs from the action of these mechanisms [9].
Table 1. Factor influencing moisture damage

Factors	Determining Characteristics	Favourable Properties	References
Aggregate Properties	Surface texture, mineralogy, porosity, surface moisture, surface chemical composition and surface coating	Rough surface texture, carbonaceous aggregate, low silica content, optimum amount of porosity, surface dry aggregate, no coating	[18], [16], [17], [11]
Bitumen Characteristics	Asphalt film thickness, viscosity, physical and chemical structure	High asphalt film thickness, High viscosity, existence of phenol and nitrogen	[18], [8], [11]
Construction Method	Compaction method, drainage system, air void mechanism,	Adequate compaction, proper drainage system, low air void percentages, adapt water resistance additives on each layer of pavement	[16], [8], [11], [21]
Environmental Condition	Climates, Environmental temperature	Warm climates, mild temperature (low rate of changing in temperature), no freeze-thaw cycles	[18], [11]
Imposed traffic load	Traffic load	Low traffic	[18]

1.2 A Review on Moisture Susceptibility Test

Development of tests to evaluate moisture susceptibility of asphalt mixtures have been started since 1930s [29]. It has been conclusively been shown that since that time, a number of tests had been implemented in order to identify the proneness of asphalt mixtures to moisture damage [4], [11]. The test procedures in the present have tried to resemble the loss of strength that possibly occurs in the pavement so that the premature distress of asphalt mixtures can be recognized prior to construction. Diab and You (2013) expressed that even though continuous improvement on moisture susceptibility tests has been made in clarifying and understanding the mechanisms of moisture damage, a reliable and practical laboratory method that can simulate moisture damage in the field is still needed for agencies such as state highway agencies.

It is generally difficult to develop a laboratory test procedure that can fully simulate the field condition such as environmental condition, traffic and construction practices. Diab and You (2013) in his research state that some efforts have been made so far to develop a test procedure that would precisely determine the susceptibility of an asphalt pavement to moisture damage, however none of the moisture susceptibility test have been accepted widely due to lack of repeatability, difficulty of the process, expensive equipment, or lack of quantitative results. In [4] described that moisture susceptibility tests have a “conditioning and “evaluation” phase. The conditioning phase is a process to simulate the deterioration action on asphalt pavement in the field including environment condition, traffic load repetition, climate condition (humid and hot climate), air void level and others. For evaluation phase, the asphalt mixtures sample will then be assessed by visual evaluation (qualitative evaluation) and physical test (quantitative evaluation). In the visual evaluation, the percentages of retained asphalt coating is then determined after the conditioning process. While, physical test evaluation consist of strength or modulus and a ratio between the result from conditioned sample by the result from un conditioned sample is computed. If the ratio is less than standardized value, the sample will be clarified as moisture susceptible.
And [13] described in [27] that moisture susceptibility tests can be divided into two categories which is test on loose mixtures (qualitative test) and test on compacted mixtures (quantitative test). Following tests are national standard that currently been used widely by public agencies including AASTHO and ASTM.

- AASHTO T 165/ASTM D 1075 Effect of Water on Compressive Strength of Bituminous Mixtures
- AASHTO T 283/ASTM D 4867 Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage
- ASTM D 3625 Effect of Water on Bituminous-Coated Aggregate using Boiling Water
- ASTM D 4867 Effect of Moisture on Asphalt Concrete Paving Mixtures
- AASHTO T 324 Hamburg Wheel-Track Testing of Compacted Hot-Mix Asphalt.

1.2.1 Test on Loose Mixture (Qualitative Test). These types of tests are conducted on bitumen-coated aggregates by immersing samples into water. Some examples of these tests are boiling test, film strip, and static/dynamic immersion tests. Benefit of these tests is they are only consuming short time and less costly to conduct comparing with tests on compacted samples. However, these tests are not able of simulate pore pressure, traffic condition, and mix design properties to justify moisture susceptibility of asphalt mixture. The results are mostly qualitative and clarification of the results tends to be subjective as it is reliant on the evaluator’s judgement and experience. Besides, correlation between these types of tests to field performance of asphalt pavement is still unreliable.

In addition, these tests are suitable to be used for comparison between different aggregate-bitumen mixtures or uses of different anti-stripping additive to evaluate compatibility, stripping and strength of adhesion of asphalt mixtures. Mixtures that not achieved required standard of these tests will be considered fail and have higher probability to strip and should not be used. Though, successful results not necessarily mean that the mix can be used, as the effects of other factors are not taken into consideration in these tests. Most popular test conducted on loose samples currently used such as Static Immersion test (AASHTO T182) and Boiling Water test (ASTM D3625). Table 2 will provide explanation on the only established standard test on loose mixture according to AASTHO and ASTM.

1.2.2 Test on Compacted Sample (Quantitative Test). Stated in [27] that this type of test are performed on laboratory-compacted samples or taken from field in the form of cores or slabs. Some of the tests that currently established as standard tests and widely used according to ASTM or AASHTO are immersion-compression test (ASTM D1075/AASHTO T165), Modified Lottman test (AASHTO T183) and Tunnicliff-Root test (ASTM D4867). Other tests such as Hamburg wheel tracking test (AASHTO T324), Environmental conditioning system (ECS) (AASHTO TP34), Simple performance test (SPT), Asphalt Pavement Analyser (APA), moisture induced sensitivity test (MIST) and saturated ageing tensile stiffness (SATS) are also taken into consideration but rarely used due to lack of standardization in the procedures used in term of sample preparation and complexity of the procedures. The main benefits of these tests is that it can assess the physical and mechanical properties while the traffic action and pore pressure effects can also be considered [27]. The results provided are measured quantitatively and this will reduce the higher variability of the test results due to visual evaluation. However, the weaknesses from these tests are it involved very expensive and complex testing equipment, take longer time to perform and demanding more laborious test procedures. Summarize for some of these tests that currently been widely used by highway authority is briefly explained in the following table 3.

1.3 Comparison of Previous Moisture Susceptibility Test on Various Asphalt Mixtures
From table 4 to table 6, it can be concluded that asphalt mixture consist of limestone aggregate will give more resistant to moisture damage. This can be seen from result shown in table 4 provided by [19], asphalt mixture consist of limestone aggregate produce the highest tensile strength ratio (TSR)
which is 61.7% compare to asphalt mixture consist of slate aggregate which is 48.6% and granite which is 58.5% with the same type of bitumen without any anti-stripping additives after conditioning by Modified Lotmann test. While in table 5 after immersion compression test, it can be seen from data provided by [21] that asphalt mixture consist of limestone give the highest Marshall stability ratio which is 98% compare to asphalt mixture consist of granite (89.1%), sandstone (87.8%) and Harwar Quartzite (86.5%). Whereas in table 6, after boiling water test being conducted on loose asphalt mixture, the result by [7] shown that asphalt mixture consist of limestone produce the highest percentage of aggregate remain coated by bitumen which is 98.7% and 98.4% compare to other asphalt mixture which consist of quartzite (59.7%), granite (84.2%) and andesite (13.5%).

Furthermore, addition of anti-stripping additive will increase asphalt mixture resistant to moisture damage exponentially. It can be seen from the research carried by [5] in table 4 that the TSR value recorded by asphalt mixture with addition of anti-stripping additives such as limestone dust is very high which is 96% compare to asphalt mixture without anti-stripping additives which is recorded to be 48% and 60% with constant type of bitumen and aggregate. This circumstance also can be seen in research by [19] that also shown high TSR ratio ranging from 72% to 95.2% in asphalt mixtures with addition of anti-stripping additives compare to without any additives which is in range of 48% to 61.7%. While in other test such as immersion compression test, addition of antistripping additive also give the same result. With respect to the table 5, it was found that with the same type of aggregate and bitumen, the TSR value for asphalt mixtures in addition of anti-stripping additives is higher than without any addition of anti-stripping additives [21]. By referring to table 6, result from boiling water test also shown the same situation. Percentage of aggregate remain coated with bitumen is higher in asphalt mixtures with the addition of anti-stripping additives compare to the asphalt mixture without any additives with the fixed aggregate and bitumen.

Table 2. Test methods on loose asphalt mixture

Test name	Measured parameter	Approach of the test	Description of test procedure
Static immersion (AASHTO T1&2)	Percentage of aggregate remain coated after static immersion in water	Focusing on adhesion bond failure	This test required a sample of asphalt mixture been immersed in a jar filled with 600 mL of distilled water after been cured for 2 hours at 60oc and cooled to room temperature. The jar is then capped left settled in a 25oc water bath for 16 to 18 hours. The degree of stripping is visually evaluated while the mixture still in the jar.
Boiling water (ASTM D3625)	Percentage of aggregate remain coated after boiling in water	Focusing on adhesion bond failure	The test involves placing loose sample of asphalt mixtures into boiling water and being stirred using glass rod. After 10 minutes, the mixture is left to cool while the stripped bitumen is detached away. Then, the mixture is removed from the water and being dried in room condition

In general, types of bitumen also have a significant impact in moisture resistant to moisture damage. Uses of modified bitumen will increase the moisture resistant towards moisture damage. This view is supported by [3] who writes that increasing of binder grade will then lead to reducing of retained stiffness of bitumen. This circumstance will result in reduction of resistant towards moisture damage on asphalt mixture.
Table 3. Test methods on compacted asphalt mixture

Test name	Measured parameter	Description of test procedure
Immersion compression test (ASTM D1075/AASHTO T165)	The ratio of average strength of conditioned specimens over controlled specimens is being used as a parameter to measure loss of strength caused by moisture damage	Core specimens are compacted with a double plunger at 3,000 psi for two minutes to achieve air void content at 6%. The procedure involves six specimens which have been divided equally into two groups known as control group and conditioned group. The control group is kept dry while the specimens in conditioned group are immersed in a water bath at 120°F (49°C) for four days or at 140°F (60°C) for one day. Then, the compressive strength of the specimens from both groups is being measured at 77°F (25°C) at a loading rate of 0.05 in./min per inch of height. So, for Marshall mix design specimen with 4 inches diameter, loading rate of 0.2 in./min will be used.
Lottman test	Ratio of test values conditioned specimen to control group specimen (tensile strength ratio, TSR) including freeze and thaw cycle	Nine compacted Marshall specimens of 100mm in diameter and 63.5mm in height which are being divided into 3 groups equally.
• Group 1: Control group, dry		
• Group 2: Vacuum saturated at 660mmHg with water for 30-minutes.		
• Group 3: Vacuum saturation followed by freeze cycle at -18°C for 15 hours and then subjected to a thaw at 60°C for 24 hours. After the conditioning procedure, the Resilient Modulus (MR) and/or Indirect Tensile Strength Test (ITS) are conducted on each specimen. The loading rate for testing at 55°F (13°C) is 0.065 in./min while 0.150 in./min are being used for testing at 73°F (23°C).		
Tunnicliff – Root Test (ASTM D4867)	Ratio of test values conditioned specimen to control group specimen (tensile strength ratio, TSR) without freeze and thaw cycle	Improvising from Lottman test
• Load rate increases to 2 in/min from 0.065 in/min		
• Test temperature increases from 55°F (12.8°C) to 77°F (25°C)		
• Presaturation of 55% -80% compared to an infinite level in Lottman test		
• Removing freeze cycle condition		
Modified Lottman Test (AASHTO T283)	Ratio of test values conditioned specimen to control group specimen (tensile strength ratio, TSR) with/without freeze and thaw cycle	The procedure combines features of both the Lottman and Tunnicliff and Root procedures. The Lottman procedure attempts to achieve a 100 percent saturation level in its specimens, while the Tunnicliff and Root procedure attempts to control the level of saturation between 55 and 80 percent. Concern that oversaturation induces damage in specimens that is not associated with moisture damage but rather with the oversaturation of the specimen, meant that for the Modified Lottman procedure the degree of saturation was decreased to between 60 to 80 percent. As the saturation level achieved by partial vacuum is primarily responsive to the magnitude of the vacuum and relatively independent of the length of time, this reduced saturation was achieved by reducing the partial vacuum from 600 mm Hg to 508 mm Hg.
Table 4. Modified Lottman test

Mixture Design	Aggregate	Bitumen	Anti-stripping additives	Strength/Criteria Ratio	References		
	Granite	Pen 60/70	Quarry dust	Min. Req. (%)	Test result (%)		
M	Granite	Pen 60/70	Ordinary Portland Cement	70	82.0	70.9	[6]
M	Granite	Pen 60/70	Polymer Modifier	70	86.2	76.7	[6]
M	L(MLDG)	Pen 60/70	Calcium Hydroxide Limestone dust	80	68		[5]
M	L(MLDG)	Pen 60/70	No additives	80	48		[5]
M	L(MLDG)	Pen 80/100	Calcium Hydroxide Limestone dust	80	60		[5]
M	L(MLDG)	Pen 80/100	No additives	80	40		[5]
SP	Granite	PG 64	Not available	80	97.3		[2]
SP	Granite	PG 70	Not available	80	94.7		[2]
M	Granite	PG 64	Not available	80	99.8		[2]
M	Granite	PG 70	Not available	80	97.3		[2]
SP	Slate	PG 64-22	No additive	80	48.6		[19]
SP	Slate	PG 64-22	Hydrated lime	80	80.8		[19]
SP	Slate	PG 64-22	Amine	80	95.2		[19]
SP	Slate	PG 64-22	Phosphate Ester	80	83.5		[19]
SP	Limestone	PG 64-22	No additive	80	61.7		[19]
SP	Limestone	PG 64-22	Hydrated lime	80	80.9		[19]
SP	Limestone	PG 64-22	Amine	80	81.2		[19]
SP	Limestone	PG 64-22	Phosphate Ester	80	72.0		[19]
SP	Granite	PG 64-22	No additive	80	58.5		[19]
SP	Granite	PG 64-22	Hydrated lime	80	85.7		[19]
SP	Granite	PG 64-22	Amine	80	81.2		[19]
SP	Granite	PG 64-22	Phosphate Ester	80	79.0		[19]
SP	L+G (less angular)	PG 64-22	No additive	80	-	69	[20]
SP	L+G (less angular)	PG 64-22	Hydrated lime	80	-	77	[20]
SP	L+G (more crushed)	PG 70-28	No additive	80	-	79	[20]
SP	L+G (more crushed)	PG 70-28	Hydrated lime	80	-	85	[20]
SP	L+G (more crushed)	PG 70-28	Fly ash	80	-	91	[20]

Note: L(MLDG)=Limestone (Mid limits of dense graded) L+G = Limestone+Gravel
Table 5. Immersion compression test

Mixture Design	Aggregate	Bitumen	Anti-stripping additives	Strength/Stability Ratio	References	
M Granite	VG 30	No additives		70	89.1	[21]
M Granite	VG 30	Hydrated lime		70	96.8	[21]
M Limestone	VG 30	No additives		70	98	[21]
M Sandstone	VG 30	No additives		70	87.8	[21]
M Sandstone	VG 30	Hydrated lime		70	97	[21]
M Harwar Quartzite	VG 30	No additives		70	86.5	[21]
M Harwar Quartzite	VG 30	Hydrated lime		70	94.5	[21]
SP Crushed stone	PG 64-16	Class C Fly Ash		70	95	[9]
SP Crushed stone	PG 64-16	Class F Fly Ash		70	112	[9]
SP Crushed stone	PG 64-16	Cement Kiln Dust		70	95	[9]
SP Crushed stone	PG 64-16	Hydrated lime		70	93	[9]
SP Crushed stone	PG 64-16	HP Plus (amine chemical)		70	97	[9]
SP Crushed stone	PG 64-16	No additives		70	97	[9]

Notes: M = Marshall, PG = Performance grade, SP = Superpave, VG = Viscosity grading

Table 6. Boiling water test

Mixture Design	Aggregate	Bitumen	Anti-stripping additives	Strength/Criteria Ratio	References	
SP Limestone+Gravel (less angular)	PG 64-22	No additive		90	85.0	[20]
SP Limestone+Gravel (less angular)	PG 64-22	Hydrated lime		90	94.0	[20]
SP Limestone+Gravel (less angular)	PG 64-22	Fly ash		90	95.0	[20]
SP Limestone+Gravel (more crushed)	PG 70-28	No additives		90	98.0	[20]
SP Limestone+Gravel (more crushed)	PG 70-28	Hydrated lime		90	99.0	[20]
SP Limestone+Gravel (more crushed)	PG 70-28	Fly ash		90	99.0	[20]
M Granite	VG 30	Hydrated lime		95	>95	[21]
M Sandstone	VG 30	Hydrated lime		95	>95	[21]
M Limestone	VG 30	Hydrated lime		95	>95	[21]
M Delhi Quartzite	VG 30	Hydrated lime		95	>95	[21]
M Harwar Quartzite	VG 30	Hydrated lime		95	>95	[21]
SP Quartzite	Pen 60/70	No additives		95	59.7	[7]
SP Quartzite	Pen 60/70	Hydrated lime		95	96.5	[7]
SP Quartzite	Pen 60/70	Zycosoil		95	98.6	[7]
SP Granite	Pen 60/70	No additives		95	84.2	[7]
2. Conclusions
This study indicates that asphalt mixtures consist of limestone aggregate, modified bitumen and addition of anti-stripping additives will provide more resistant towards moisture damage. This result supported by [22], [30] and [6] in their previous research. Hydrated lime tends to be the most popular among others anti-stripping additives because it had been proven effective in increasing resistance of asphalt mixture towards moisture. While polymer modified bitumen are most popular to be used in asphalt mix design because it can sustain moisture damage more than commonly used asphalt binder. Generally, Modified Lottman test, Immersion Compression test and Boiling Water test can be expected to be reliable test on evaluating the moisture susceptibility of asphalt mixture.

3. References
[1] Alam M, Vemuri N, Tandon V, Nazarian S and Picornell, M 1998 A Test Method For Identifying Moisture Susceptible Asphalt Concrete Mixes (Texas: The University Of Texas At El Paso)
[2] Ahmad J, Abdul Rahman M Y, Hainin M R and Hossain M 2011 Comparative evaluation of hot-mix asphalt design methods Int. J. Pavement Engineering 13 89-97
[3] Airey G, Collop A, Zoorob S and Elliott R 2008 The influence of aggregate, filler and bitumen on asphalt mixture moisture damage Construction And Building Materials 22 2015-24
[4] Al-Swailmi S H 1992 Development Of A Test Procedure For Water Sensitivity Of Asphalt Concrete Mixtures
[5] Abo-Qudai S 2007 The effects of damage evaluation techniques on the prediction of environmental damage in asphalt mixtures Building And Environment 42 288-96
[6] Aman M Y, Shahadan Z and Noh M Z M 2014 A Comparative study of anti-stripping additives in porous asphalt mixtures Jurnal Teknologi 70
[7] Amelian S, Abtahi S M and Hejazi S M 2014 Moisture susceptibility evaluation of asphalt mixes based on image analysis Construction And Building Materials 63 294-302
[8] Birgisson B, Roque R, Tia M and Masad E A 2005 Development And Evaluation Of Test Methods To Evaluate Water Damage And Effectiveness Of Antistripping Agents (Oregon State of University)
[9] Boyes A J 2011 Reducing Moisture Damage In Asphalt Mixes Using Recycled Waste Additives (San Luis Obispo: California Polytechnic State University)
[10] Caro S 2009 Coupled micromechanical model of moisture-induced damage in asphalt mixtures J. Materials In Civil Engineering 22 380-88
[11] Choi Y 2007 Case Study And Test Method Review On Moisture Damage
[12] Collop A 2004 Development of the saturation ageing tensile stiffness (SATS) test Proc. The Ice-Transport 157 pp 163-71
[13] Copeland A R 2007 Influence Of Moisture On Bond Strength Of Asphalt-Aggregate Systems (Doctoral dissertation, Vanderbilt University)
[14] Copeland A R, Youtcheff J and Shenoy A 2007 Moisture sensitivity of modified asphalt binders: factors influencing bond strength Trans. Research Record: J. The Trans. Research Board 18-28
[15] Diab A and You Z 2013 Development of a realistic conditioning and evaluation system to study moisture damage of asphalt materials Airfield And Highway Pavement 2013@ Sustainable And Efficient Pavements Asce pp 1008-17
[16] Emery J and Seddik H 1997 Moisture Damage Of Asphalt Pavements And Antistripping Additives: Background Document
[17] Hanz A, Bahia H, Kanitpong K and Wen H 2007 Test Method To Determine Aggregate/Asphalt Adhesion Properties And Potential Moisture Damage
[18] Hicks R G 1991 Moisture Damage In Asphalt Concrete Trans. Research Board
[19] Khosla N P, Birdsal B G and Kawaguchi S 2000 Evaluation of moisture susceptibility of asphalt mixtures: conventional and new methods. Trans. Research Record: J. Trans. Research Board 1728 43-51
[20] Kim Y R, Pinto I and Park S W 2012 Experimental evaluation of anti-stripping additives in bituminous mixtures through multiple scale laboratory test results Construction And Building Materials 29 386-93
[21] Kumar P and Anand P 2012 Laboratory study on moisture susceptibility of dense graded mixes J. Trans. Engineering 138 105-13
[22] Lavin P 1999 Comparison Of Liquid Antistrip Additives And Hydrated Lime Using Aashto T-283 Construction Chemicals Technical Director Arr-Maz Products
[23] Little D N and Jones D 2003 Chemical And Mechanical Processes Of Moisture Damage In Hot-Mix Asphalt Pavements Trans. Research Board National Seminar San Diego, California pp 37-70
[24] Lu Q 2005 Investigation Of Conditions For Moisture Damage In Asphalt Concrete And Appropriate Laboratory Test Methods (California : University Of California Transportation Center)
[25] Miller J S and Bellinger W Y 2003 Distress Identification Manual For The Long-Term Pavement Performance Program
[26] Santucci L 2002 Moisture Sensitivity of Asphalt Pavements Tech Topics (Ucberkley’s Institute Of Transportation Studies)
[27] Solaimanian M, Harvey J, Tahmoressi M and Tandon V 2003 Test Methods To Predict Moisture Sensitivity Of Hot-Mix Asphalt Pavements Transportation Research Board National Seminar San Diego, California pp 77-110
[28] Terrel R L and Al-Swailmi S 1994 Water Sensitivity of Asphalt-Aggregate Mixes: Test Selection
[29] Terrel R L and Shute J W 1989 Summary Report On Water Sensitivity
[30] Uddin W 2003 Viscoelastic characterization of polymer-modified asphalt binders of pavement applications Applied Rheology 13 191-99

Acknowledgments
Authors would like to thank the Ministry of Higher Education Malaysia and Universiti Putra Malaysia for the award of Fundamental Research Grant Scheme (FRGS) FRGS/1/2017/TK06/UPM/02/1 (Project Code: 03-01-17-1894FR) as well as all the people whom are directly and indirectly involved in this study.