Investigating the antimicrobial activity of extract prepared by ultrasound against Escherichia coli isolated from poultry stool

Mahdi Doosty Moghddam1, Mohmmad Kazem Momeni2, Moharam Valizadeh3, Mehrangiz Ghaffari4 and Elham Javadian5

1Department of Biology, Infectious disease and tropical medicine research center resistant tuberculosis Institute, Iran
2Zahedan university of Medical science, Sistan and Baluchestan University, Zahedan, Iran.
3Research Center of medical plants, University of Sistan and Baluchestan, Zahedan, Iran.
4Assistant professor of pathology, Department of pathology, Zabol University of medical sciences, zabol, Iran.
5Zahedan university of Medical science, Zahedan, Iran.

*Corresponding Author: Elham Javadian, Zahedan university of Medical science, Zahedan, Iran. E. mail: Elham.Javadian1366@gmail.com

Received date: September 06, 2020; Accepted date: September 09, 2020; Published date: November 07, 2020

Citation: Mahdi D. Moghddam, Mohmmad K. Momeni, Valizadeh M., Ghaffari M., and Javadian E., (2020) Investigating the antimicrobial activity of extract prepared by ultrasound against Escherichia coli isolated from poultry stool, J. Pharmaceutics and Pharmacology Research 3(2); DOI: 10.31579/2693-7247/018

Copyright: © 2020, Elham Javadian, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The aim of this study was to investigate the antimicrobial activity of Mentha piperita and Rosmarinus officinalis extract on antibiotic resistant Escherichia coli isolated from poultry stool in Zabol city.

Materials & Methods: The extract of Mentha piperita, Rosmarinus officinalis and Withania somnifera was prepared by rotary machine. Escherichia coli strains were isolated from poultry stool samples. Minimum inhibitory concentration and minimum bactericidal concentration were determined by micro dilution method.

Results: The results of this study showed that Mentha piperita extract showed the highest inhibitory ratio compared to other extracts. The minimum inhibitory concentration was 3.1 ppm, with 5 strains inhibited at this concentration.

Discussion: The results of this study could be an effective strategy for production and preparation of medicinal plants to help treating E. coli infections.

Keywords: mentha piperita; rosmarinus officinalis; withania somnifera; antimicrobial activity; escherichia coli

Introduction

In recent decades, antibiotics have been widely used in the treatment of bacterial infections in humans and animals as well as growth promoters in agriculture [1]. Increasing the percentage of antibiotic-resistant bacterial species in different environments can lead to problems in the selective treatment of bacterial infections [2]. The most important reason for the increase in bacterial resistance to antibiotics in Iran is due to the overuse of antibiotics [3]. Escherichia coli is one of the most important members of the natural intestinal flora of warm-blooded animals. The importance of this bacteria is due to the presence of pathogenic strains that cause intestinal diseases and food poisoning for humans. Among the E. coli strains that cause diarrhea, E. coli strains producing shiga toxin (STEC) are distinguished for their ability to cause severe human diseases [4]. Infection with by bacterium can cause gastroenteritis and may be followed by manifestations such as hemorrhagic colitis (HC), hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenia purpura (TTP). Most cases of hemorrhagic colitis epidemics and hemolytic uremic syndrome are attributed to O157 STEC strains [5]. Although antibiotic treatment is not required for this bacterium, many strains of this bacterium had shown multiple resistance to various antibiotics, which can be a major health concern [6]. As the rate of resistance of this bacterium is generally increasing, different strains of this bacterium can cause diseases across the globe [7]. Mint species are scattered throughout the world, but especially in Mediterranean areas. Lavender, Thymus, Common sage (Salvia officinalis) and rosemary (Rosmarinus) are major Mediterranean plant species and are also found in the African and Indian regions [8]. In recent years there has been a great deal of research into the inhibitory effects of natural substances against microorganisms. In this regard, it is essential to use compounds that are non-toxic to humans and have no side effects. Rosmarinus officinalis is a plant of the mint family, which is made of durable small shrubs with aromatic leaves and small blue flowers. It blooms in early spring and late winter. The height of this plant varies from 50 cm to 1 m; also has woody stems, permanent bilateral green leaves with narrow, long, pointed, and rough edges [9]. Antimicrobial compounds such as phenolic compounds are abundantly found in it. Rosemary essential oil is used in cosmetics [10]. This plant contains essential oils, oleanolin and tannin. Rosemary essential oils include 1 - 8 cineol, pinene, camphor, bornyl acetate, D- limonene, borneol, myrnes, terpineol, camphene, linalool carnosyle and roсмерene. Other substances in this plant are amirine, epi-α-carnosic, carnosol, cryptothancione, epiroxmanol, isorozmanol, napin, ramadial and rosmarinic acid. The leaves contain 0.5 to 2.5% volatile oils. The main constituents of oils include monoterpenic α and β pinene hydrocarbons, camphene, limonene, camphor (10-20%), buneol, cinanol, linalool and veronyl. Rosemary actually contains varying amounts of aromatics and volatiles. Flavonoids include diosmetine, diosmin, genoquinone, luteolin, hepsidoline, and apigenin. Other terpenoids found in rosemary include oleanolic acids and ursolic acids and diterpene carnosols. Phenols in
rosemary include caffeic, chlorogenic, labiatic, neochlorogenic and rosmarinic acid. Rosemary contains large amounts of salicylates [11]. In traditional medicine, this herb is used for anti-asthmatic, digestive, sedative, headache relief [12] circulatory disorders, and increased visual acuity, anti-rheumatism and memory stimuli [13]. Various pharmacological effects have been reported for this plant including antioxidant effects, stimulation of nerve growth factor, antimicrobial and antiviral activity [14] and inhibition of hepatotoxicity [15]. Studies in China have shown that extracts of mint plants have strong antimicrobial activities. Peppermint, scientifically named *Mentha piperita* is a member of Lamiaceae family, and is one of the aromatic herbs that has many medicinal, nutritional, cosmetic, and health benefits [16]. The compounds in this plant have antioxidant, fungicidal and insecticidal properties. Its antimicrobial activity against *Escherichia coli*, *Staphylococcus aureus* and *Candida albicans* has been confirmed [17]. Antimicrobial properties of the essential oil of this plant have been studied on a large number of pathogenic microorganisms. According to the results of these studies which conducted on peppermint essential oil, its antimicrobial activity against *Staphylococcus aureus* and *Escherichia coli* has been demonstrated. The main constituents of the essential oil of this plant are menthol and menthon and have antioxidant properties and are capable of trapping free radicals. Withania is a plant with the scientific name *Withania somnifera* from the Solanaceae family [18]. This plant grows in Africa, the Mediterranean area and India and is used as an antibacterial, antioxidant, anti-inflammatory and liver diseases [19]. Much of the plant's use is roots, which contain 35 known chemical compounds. The most important of these substances are alkaloids (such as vitamin A, somnifrin, sominin and anferin), steroidal lactones (such as vitanolides and iethaphrines), saponins, and iron. Withania roots are used as a somnificient, treating hiccups, female disorders, bronchitis, rheumatism, skin infections, and skin diseases. The leaves and seeds of this plant have medicinal use. Fruits contain an enzyme that is used for clotting milk and make cheese [20]. The aim of this study was to investigate the antimicrobial activity of the extract of these herbs on antibiotic resistant *Escherichia coli* isolated from poultry stool in Zabol city.

Materials & Methods:

Extract preparation

The plant which used in this study was collected from Baluchistan region (Sistan and Baluchestan province) and dried in natural conditions in shade and then crushed. For preparing the extract, 40 grams of dried powder of herb were placed in a half-liter Erlenmeyer flask containing 300 ml of chloroform and extracted for 24 hours at room temperature using a Shaker machine (at 130 rpm) then filtered with Whatman No. 2 paper. The solvent separated from the extract by rotary apparatus using vacuum machine (at 130 rpm) then filtered with Whatman No. 2 paper. The extract was kept in the refrigerator at 4 °C until use in antimicrobial tests.

Bacteria strains

Different strains of *Escherichia coli* used in this study were isolated from urine samples of Zahedan patients and cultured on Nutrient agar medium. The purified strains were identified on artificial media using genes-specific tests.

Antibiotic activity

Ten pure strains of *Escherichia coli* were examined by Kirby-Bauer antibiogram method and their susceptibility to antibiotics was evaluated. Antibiotics used in this study included gentamicin, amoxiclav, azithromycin, and amikacin (developed by Padtan teb Company). After 24 hours of incubation at 37 °C, each zone of growth inhibition were measured and the sensitivity and resistance of the strains were determined, then their results compared with standard NCCLS table.

Determination of Minimum Inhibitory Concentration and Minimum Lethal Concentration of Medicinal Plant Extracts:

To determine the minimum inhibitory concentration of the plant extract, 100 microliters of Müller Hinton broth (Merk-German Company) was added to each well of microtiter plate. In the first well, 100 µL of the 20 mg / ml extract was added and after mixing, 100 µL was removed from the first well and added to the second well and continued to the last well. Afterward 10 microliter of each bacterial suspension (cfu = 1/5108 per ml, half McFarland) added to wells contents. DMSO was added (without extract) to the negative control well, then the microtiter plate incubated for 24 h at 37 °C. The minimum inhibitory concentration was defined as the lowest concentration needed to stop the growth of bacteria at the end of 22 h of incubation. To determine the minimum bactericidal concentration, in the end of 24 h of incubation, 10 microliter of wells contents were cultured on a Nutrient agar medium (Merk-German Company) and the plates were examined for bacterial growth after 24 hours of incubation. The lowest concentration of extract which inhibited 99.9% of bacterial growth was considered as MBC. All antimicrobial tests were repeated at least 3 times.

Results

The results of this study showed that resistance to antibiotics such as cefazidime (80%), gentamicin (20%), azithromycin (20%) and amoxiclav (10%), while sensitivity to antibiotics such as gentamicin was 70%, amoxiclav (60%), azithromycin (60%) and amikacin (30%). The results of this study showed that Rosmarinus officinalis extract was the most inhibitory. The minimum inhibitory concentration was 3.1 ppm, with 5 strains inhibited at this concentration. The highest inhibitory concentration of Rosmarinus officinalis extract was 25 ppm, which is unilaterally inhibited in this concentration (Table1).

The results of this study showed that the lowest concentration of Mentha piperita was 3.1 ppm, in which the two strain were inhibited. While the maximum inhibitory concentration was 25 ppm, one side of this concentration was inhibited (Table1). The minimum Bactericidal concentration of Rosmarinus officinalis extract was 6.25 mg / ml, which was inhibited by 5 strains. (Table2). The minimum Bactericidal concentration of Mentha piperita extract was 3.1 mg / ml, with 2 strain inhibited. (Table2)

Rosmarinus officinalis MIC	Mentha piperita MBC	Withania somnifera MBC	
1	3.1	6.25	25
2	6.25	6.25	3.1
3	3.1	12.5	25
4	6.25	3.1	12.5
5	12.5	25	6.25
6	3.1	12.5	6.25
7	6.25	3.1	12.5
8	12.5	3.1	6.25
9	6.25	12.5	3.1
10	3.1	25	12.5

Table 1: The minimum inhibitory concentration of plant extracts against Escherichia coli bacteria (MIC)
Table 2: The minimum Bactericidal concentration of plant extracts against Escherichia coli bacteria (MBC)

	Rosmarinus officinalis MBC	Mentha piperita MBC	Withania somnifera MBC
1	6.25	12.5	50
2	30	25	6.25
3	6.25	25	25
4	6.25	6.25	12.5
5	12.5	25	50
6	12.5	12.5	25
7	6.25	6.25	25
8	25	25	100
9	12.5	12.5	25
10	6.25	50	25

In another study, Seydim et al. showed the antimicrobial effects of rosemary on Gram-positive bacteria Staphylococcus aureus and Bacillus cereus [27].

Tsai et al. investigated the effects of ethanolic and aqueous extracts of rosemary extract on Streptococcus subrinis, they have determined the MIC of this plant was 42.1 mg / ml [28].

Rozman investigated the effect of rosemary extract on different Listeria species and MIC ranged from 625 to 5000 μg / ml. It was also found that the resistance of Listeria to rosemary extract depends on the selected extract, Listeria species and different concentrations of extract [29].

In a study by Yazdani that examined the antimicrobial properties of peppermint, menthol, neomentyl acetate, and menthofuran were the most important constituents of peppermint essential oil samples which collected from Marivan, respectively; The essential oil of this plant was effective on Gram-positive bacteria such as Staphylococcus epidermidis, Bacillus subtilis and Staphylococcus aureus and Gram-negative bacteria such as Shigella dysentery and Klebsiella pneumoniae. Also the essential oil of this plant had a good antioxidant activity compared to BHT standard (Butylated Hydroxyl Toluene) [30].

In the Mimica-Dukic study, menthol was identified as the main ingredient of peppermint essential oil [31].

In a study by Sujana et al., Which investigated the antimicrobial activity of peppermint leaf, the results showed that it is a potent inhibitor of Staphylococcus aureus, Bacillus subtilis and Escherichia coli [32].

In another study, the results showed that aqueous extract of peppermint was an inhibitor of Pseudomonas aeruginosa [33].

In a study by Lagoune it was shown that E. coli and Proteus mirabilis were sensitive to peppermint extract [34]. Dhiman show that acetone, methanol, ethanol and aqueous extracts inhibit Bacillus cereus bacteria [35].

In a study by Bokaian et al., Which investigated the antimicrobial activity of Withania extracts on E. coli, Antibiotic resistance to antibiotics such as erythromycin was (52.94%), tetracycline (76.47%), ceftazidime (41.17%), cefaxime (35.29%) Ampicillin (58.82%) and nalidixic acid (41.17%) were %). The highest inhibitory concentration was 200 ppm and the lowest was 50 ppm. Three strains were inhibited at this concentration [36].

In a study by Kumar et al., Which investigated the antimicrobial activity of Withania root extract on Escherichia coli, the results showed that the greatest inhibition of bacterial growth was at 1: 8 concentration [37].

In the study of Aman et al., The results showed that methanolic extract of Withania produced an inhibition zone with 38, 36, 15, 38 mm against...
Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans [38].

In the study of Aqeel et al., Which investigated the antimicrobial activity of Withania extract on E. coli, the results showed that the inhibitory zone of Withania extract against Escherichia coli was 28/15±2/39mm [39].

In the study of Khatak et al., who examined the antimicrobial activity of ethanolic extract of Withania, the results showed that at concentration of 20 mg / ml produced inhibition zone with 44, 45 and 42 mm against Pseudomonas aeruginosa, Escherichia coli and Candida albicans [26].

Conclusion

The results of the study showed that the extract of Withania plant is a strong inhibitor of Escherichia coli bacteria and can be used in the treatment of poultry infection.

Acknowledgements

The authors would like to thank Saeide Saeidi from the University of Zabol for providing the research facilities.

Footnotes

- Authors’ Contribution: All authors had an equal role in study design, work, statistical analysis, and manuscript writing.
- Conflict of Interests: The authors declare no conflict of interest.
- Patient Consent: The written informed consent was obtained.

Reference

1. Aarestrup FM. (1999) Association Between the consumption of antimicrobial agents in animal’s husbandry and the occurrence of resistant bacteria among food animals. International Journal of Antimicrobial Agents; 12(4):279-8.

2. Guardabassi L, Lo Fo Wong DMA, Dalsgaard A. (2002) The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Research; 36(8): 1955-64.

3. Nikiphotis J, Mehr-Movavheada. (1987) Antibiotic resistance of Shigella species in Iran. Iranian J Publ Health 16(1-4); 111-116.

4. Xia X, Meng J, McDermott P, Ayers S, Blykenstaff K, Tran T, et al. (2010) Presence and characterization of shiga toxinsproducing Escherichia coli and other potentially Diarrheagenic E. coli in retail meats. Appl Environ Microbiol; 10: 1-39.

5. Gomes PADP, Bentancor LV, Paccez JD, Sbrogio. (2010) Presence and characterization of stx2b subunit of EHEC O157:H7. Braz J Microbiol; 41; 333-338.

6. White DG, Zhao S, Simjee S. (2002) Antimicrobial resistance of foodborne pathogens. Microbes Infect; 4:405-12.

7. Leclere H, Mossel DA, Edberg SC, Struijk CB. (2001) Advances in the bacteriology of the coliform group: Their suitability as markers of microbial water safety. Annu Rev Microbiol; 55:201-34.

8. Dehghan Nayeri F, Mirhosseini M, Mafakheri S, Zarrabi MM. (2019) Antibacterial and antifungal effects of silver nanoparticles synthesized by the aqueous extract of sesame (Sesamum indicum L.) J of Cellular and Molecular Res; 1(31): 155-165.

9. Inouye S, Yamaguchi H, Takizawa T. (2001) Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. Journal of Infection and Chemotherapy; 7:251-254.

10. James L, Luteyn Jeffrey B, Harborne C and Williams A. (1980) A Survey of the Flavonoids and Simple Phenols in Leaves of Cavendishia (Ericaceae) Brittonia; 32: 1-16.

11. Jawetz E, Melnick JL. (1999) Medical microbiology; 11; 19th ed. 145-155.

12. Fu Y, Zu Y, Chen LY, Shi XG, Wang Z, Sun S, Effertth T. (2007) Antimicrobial activity of clove and rosemary essential oils alone and in combination Phytotherapy Research; 21: 989-994.

13. Darshan S. (2004) Patented antiinflammatory plant drug development from traditional medicine. Phytotherapy Res; 18: 343-357.

14. Kosaka K, Yokoi T (2003). Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Biological and Pharmaceutical Bulletin; 26: 1620 - 1622.

15. Larrondo JV, Agut M and Calvo T M. (1995) Antimicrobial activity of essence from labiates. Microbiosa; 82:171-172.

16. Foster S, Peppermint (1996) Mentha piperita. American Botanical Council-Botanical Series; 36: 3 - 8.

17. Yadeegarian D, Shakiba AM, Taghizadeh M, Rezaei MB, Gachkar L and Rassoli I. (2006) Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochem; 67: 1249-55.

18. Chopra RN, Dasgupta NK. (1963) A handbook of applied pharmacology and therapeutics: Including materia medica. USA: Academic Publishers. p. 331.

19. Mehrrota V, Mehrrota S, Kirar V, Shyam R, Misra K, Srivastava AK, et al. (2011) Antioxidant and antimicrobial activities of aqueous extract of Withania somnifera against methicillin-resistant Staphylococcus aureus. J Microbiol Biotechnol Res; 1:40-5.

20. Mir BA, Khazr J, Mir NA, Hasan T, Koul S. (2012) Botanical, chemical and pharmacological review of Withania somnifera (Indian ginseng): An Ayurvedic Medicinal Plant. India J Drug Dis; 1(6):147-60.

21. Hossein Tahmasby, Hassan Motmtaz, Naser Salehi, Mohammad Rafiee Dolatabadi, Fatemeh Yektaneh. (2011) Prevalence of Escherichia Coli O157:H7 in pet birds in Yazd, Iran. pajoohande; 16(5); 252-255.

22. Ramey AM, Hernandez J, Tyrlov V, Uher-Koch BD, Schmutz JA, Atterby C, Jarhult JD, Bonnedahl J. (2018) Antibiotic-Resistant Escherichia coli in Migratory Birds Inhabiting Remote Alaska. Eco health; 15(1):72-81.

23. Umar S, Maiyah AT, Shareef M, Qadhir H, Nisa Q, Abbas S. (2018) Report - Susceptibility of avian pathogenic Escherichia coli from Zoo birds in Indonesia to antibiotics and disinfectants. Pak J Pharm Sci; 32(2):593-598.

24. Radhouani H, Poeta P, Gonc A, Pacheco R, Sargo R and Igrejas G.2012) Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli from Zoo birds in Indonesia to antibiotics and disinfectants. Pak J Pharm Sci; 31(2):593-598.

25. ahmady-ashchin S, Mostafapour MJ. (2017) Anti-bacterial interactions Rosmary (Officinalis rosmaninus) and essential oils of lavender (Lavandula stoechas) on two Gram-positive and three Gram- negative bacteria in vitro. The j of cell and Mol; 2(31):177-187.

26. Khatak S, Kumar Malik D. (2014) Antimicrobial activity of Withania somnifera Gymnema sylvestre and Cannabis sativa against pathogenic bacteria. Int J Chem Sci; 12(1): 286-292.

27. Seydim AC, Sarkus G. (2006) Antimicrobial activity of whey protein based edible films in corporated with oregano, rosemary and garlic essential oils. Food Res Int; 39(5):639-44.
28. Tsai PJ, Tsai TH, Ho SC. (2007) In vitro inhibitory effects of rosemary extracts on growth and glucosyl transferase activity of *Streptococcus sobrinus*. Food Chem; 105(1):311-6.
29. Rozman T, Jersek B. (2009) Antimicrobial activity of Rosmary extracts (Rosmarinus officinalis L) against different species of Listeria. Acta Agric Slov; 93(1): 51-58.
30. Yazdani M, Jookar kashi F, Dashi zadeh Z. (2019) Evaluation of Antimicrobial and Antioxidant Activity of Essential Oil of *Mentha piperita* L. Iran J Med Microbiol; 13(3): 210-219.
31. Mimica-Dukić N, Božin B, Soković M, Mihajlović B, Matavulj M. (2003) Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta med 69(5); 413-419.
32. Sujana P, Sridhar TM, Josthna P, Naidu CV. (2013) Antibacterial activity and phytochemical analysis of *Mentha piperita* L. (peppermint) An important multipurpose medicinal plant. Am. J. Plant Sci; 4:77–83.
33. Bupesh G, Anutha C, Nandagopal S, Ganeshkumar A, Sureshkumar P, Murali KS. (2007) Antibacterial activity of *Mentha piperita* L. (peppermint) from leaf extracts–A medicinal plant. Acta Agric. Slov; 89:73–79.
34. Laggoune S, Öztürk M, Erol E, Duru ME, Abaza I, Kabouche A, Kabouche Z.(2016) Chemical composition, antioxidant and antibacterial activities of the essential oil of *Mentha spicata* L. from Algeria. J. Mater. Environ. Sci; 7: 4205–4213.
35. Dhiman R, Aggarwal N, Aneja KR, Kaur M. (2016) In vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. Int. J. Microbiol; 9015802.
36. Bokaeian M, Fakheri B A, Mahdi Nejad N, Zarei H, Saeidi S, et al. (2015) The Effect of *Withania somnifera* Extract on Drug Resistant Strains of *Escherichia coli*. Int J Infect; 2(2): e 23036.
37. Kumari M, Gupta RP (2015) *In vitro* antibacterial effect of *Withania somnifera* root extract on *Escherichia coli*. Veterinary World; 8(1): 57-60.
38. Jaina P, Varshney R. (2011) Antimicrobial activity of aqueous and methanolic extracts of *Withania somnifera* (Ashwagandha). J Chem Pharm Res; 3(3):260-3.
39. Aqeel M, Rahman I, Hussain A, Tariq Masood Khan M, Anwar E, Annwar K. (2019) A comparative study of *Withania somnifera* with gentamicin ciprofloxacin and cefotaxime against *Escherichia coli*. KJMS, 12(1).