Weak Lensing of the Primary CMB Bispectrum

Devdeep Sarkar
Center for Cosmology, UC Irvine

in collaboration with:
Asantha Cooray and Paolo Serra

UC Irvine TASC 2008 Oct 24, 2008
\[\Theta(\hat{n}) \equiv \frac{\Delta T(\hat{n})}{T} = \sum_{lm} \Theta_{lm} Y_{lm}^m(\hat{n}) \]
\[\Theta(\hat{n}) \equiv \frac{\Delta T(\hat{n})}{T} = \sum_{lm} \Theta_{lm} Y_l^m(\hat{n}) \]

\[\langle \Theta_{lm} \Theta_{l'm'} \rangle = \delta_{l,l'} \delta_{m,m'} C_l^{\Theta \Theta} \]
\[\Theta(\hat{n}) \equiv \frac{\Delta T(\hat{n})}{T} = \sum_{lm} \Theta_{lm} Y_l^m(\hat{n}) \]

\[\langle \Theta_{l_1 m_1} \Theta_{l_2 m_2} \Theta_{l_3 m_3} \rangle = \left(\begin{array}{ccc} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{array} \right) B_{l_1 l_2 l_3}^{\Theta \Theta} \]

\[\langle \Theta_{lm} \Theta_{l'm'} \rangle = \delta_{l,l'} \delta_{m,m'} C_l^{\Theta \Theta} \]
Primordial non-Gaussianity

Primary CMB Bispectrum
Primordial non-Gaussianity

Primary CMB Bispectrum

Gaussian Quantum Fluctuation

Non-Gaussian Inflation Fluctuation

Non-Gaussian Curvature Perturbation

Non-Gaussian CMB Anisotropy
Primordial non-Gaussianity

Primary CMB Bispectrum

\[
\frac{\Delta T(x)}{T} \sim \Phi(x)
\]

\[
\Phi(x) = \Phi_L(x) + f_{NL} \left[\Phi_L^2(x) - \langle \Phi_L^2(x) \rangle \right]
\]

Non-Linear Coupling Parameter

Measurement of non-Gaussian CMB anisotropies can potentially constrain non-linearity, “slow-rollness”, and “adiabaticity” in inflation.
Primordial non-Gaussianity

Non-Gaussianity from the simplest inflation model is very small:

\[f_{NL} \sim 0.01 - 1 \]

Much higher level of primordial non-Gaussianity is predicted by:

- Models with Multiple Scalar Fields
- Non-Adiabatic Fluctuations
- Features in the Inflation Potential
- Non-Canonical Kinetic Terms
- ...

Review: N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Phys. Rep. 402, 103 (2004)
Evidence of Primordial Non-Gaussianity (f_{NL}) in the Wilkinson Microwave Anisotropy Probe 3-Year Data at 2.8σ

Amit P. S. Yadav1 and Benjamin D. Wandelt1,2

1Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, Illinois 61801, USA
2Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801, USA

We present evidence for primordial non-Gaussianity of the local type (f_{NL}) in the temperature anisotropy of the cosmic microwave background. Analyzing the bispectrum of the Wilkinson Microwave Anisotropy Probe 3-year data up to $\ell_{\text{max}} = 750$ we find $27 < f_{NL} < 147$ (95% C.L.). This amounts to a rejection of $f_{NL} = 0$ at 2.8σ, disfavoring canonical single-field slow-roll inflation. The signal is robust to variations in ℓ_{max}, frequency and masks. No known foreground, instrument systematic, or secondary anisotropy explains it. We explore the impact of several analysis choices on the quoted significance and find 2.5σ to be conservative.

FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP1) OBSERVATIONS: COSMOLOGICAL INTERPRETATION

E. Komatsu1, J. Dunkley2,3,4, M. R. Nolta5, C. L. Bennett6, B. Gold6, G. Hinshaw7, N. Jarosik2, D. Larson6, M. Limon8, L. Page2, D. N. Spergel3,9, M. Halpern10, R. S. Hill11, A. Kogut7, S. S. Meyer12, G. S. Tucker13, J. L. Weiland10, E. Wollack7, and E. L. Wright14

Submitted to the Astrophysical Journal Supplement Series

ABSTRACT

$-9 < f_{NL}^{\text{local}} < 111$ and $-151 < f_{NL}^{\text{equil}} < 253$ (95% CL)
Journey Through the “Clumpy” Universe

Weak Gravitational Lensing: Bending of light

Credit: S. Colombi (IAP), CFHT Team
Weak Lensing of the Primary Bispectrum

Credit: Vale, Amblard, White (2004)

NASA, ESA, and R. Massey (CalTech)

Credit: Vale, Amblard, White (2004)
\[\tilde{\Theta}(\hat{n}) = \Theta[\hat{n} + \hat{\alpha}] \]
\[= \Theta[\hat{n} + \nabla \phi(\hat{n})] \]
\[\approx \Theta(\hat{n}) + \nabla_i \phi(\hat{n}) \nabla^i \Theta(\hat{n}) \]
\[+ \frac{1}{2} \nabla_i \phi(\hat{n}) \nabla_j \phi(\hat{n}) \nabla^i \nabla^j \Theta(\hat{n}) \]
\[\tilde{\Theta}(\hat{n}) = \Theta[\hat{n} + \hat{\alpha}] \\
= \Theta[\hat{n} + \nabla \phi(\hat{n})] \\
\approx \Theta(\hat{n}) + \nabla_i \phi(\hat{n}) \nabla^i \Theta(\hat{n}) \\
+ \frac{1}{2} \nabla_i \phi(\hat{n}) \nabla_j \phi(\hat{n}) \nabla^i \nabla^j \Theta(\hat{n}) \]

\[\tilde{B}_{l_1 l_2 l_3}^\Theta = \sum_{m_1 m_2 m_3} \left(\begin{array}{ccc}
l_1 & l_2 & l_3 \\
m_1 & m_2 & m_3 \end{array} \right) \langle \tilde{\Theta}_{l_1 m_1} \tilde{\Theta}_{l_2 m_2} \tilde{\Theta}_{l_3 m_3} \rangle \]
The Effect of Lensing on the Bispectrum

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77, 123006 (2008)

Decrease in the Amplitude
Reduction in the S/N due to Lensing

\[\left(\frac{S}{N} \right)^2 = \sum_{l_1 l_2 l_3} \frac{(B_{l_1 l_2 l_3}^{\theta})^2}{6 C_{l_1}^{tot} C_{l_2}^{tot} C_{l_3}^{tot}} \]
Reduction in the S/N due to Lensing

\[
\left(\frac{S}{N} \right)^2 = \sum_{l_1 l_2 l_3} \frac{(B_{l_1 l_2 l_3}^{\Theta})^2}{6 C_{l_1}^{tot} C_{l_2}^{tot} C_{l_3}^{tot}}
\]

- Primary \((f_{NL}=1)\)
- Lensing

\[
[\frac{d(S/N)^2}{dl_3}]^2
\]

\(l_3\)
Bias in the non-Gaussian Parameter

\[\frac{\Delta f}{\hat{f}_{NL}} \equiv \frac{f_{true}}{\hat{f}_{NL}} - \hat{f}_{NL} \]

\[|\Delta f_{NL}| \]

\[l \]

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77, 123006 (2008)
Bias in the non-Gaussian Parameter

\[
\frac{\Delta f}{\hat{f}_{NL}} \equiv \frac{f_{true}^{NL} - \hat{f}_{NL}}{\hat{f}_{NL}}
\]

WMAP

6%
Bias in the non-Gaussian Parameter

\[\frac{\Delta f}{\hat{f}_{NL}} \equiv \frac{f_{true}^{NL} - \hat{f}_{NL}}{\hat{f}_{NL}} \]

Will you please explain the significance of the PLANCK and WMAP regions labeled in the diagram? Why are they marked with specific percentages (+) and (-)?
Bias in the non-Gaussian Parameter

\[\frac{\Delta f}{\hat{f}_{NL}} = \frac{f_{true}^{NL} - \hat{f}_{NL}}{\hat{f}_{NL}} \]

Minimum detectable value of \(f_{NL} \) is 7 (instead of 5) for Planck

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77, 123006 (2008)
Bias in the non-Gaussian Parameter

\[
\frac{\Delta f}{\hat{f}_{NL}} = \frac{f_{true}^{NL} - \hat{f}_{NL}}{\hat{f}_{NL}}
\]

Minimum detectable value of \(f_{NL}\) is 7 (instead of 5) for Planck

\[\Delta f_{NL}\]

WMAP

PLANCK

6%

(+)

30%

(−)

dsarkar.org