The aim of this paper is two-fold: in probing the statistical mechanical properties of interacting quantum fields, and in providing a field theoretical justification for a stochastic source term in the Boltzmann equation. We start with the formulation of quantum field theory in terms of the Schwinger-Dyson equations for the correlation functions, which we describe by a closed-time-path master ($n = \infty P I$) effective action. When the hierarchy is truncated, one obtains the ordinary closed-system of correlation functions up to a certain order, and from the nPI effective action, a set of time-reversal invariant equations of motion. But when the effect of the higher order correlation functions is included (through e.g., causal factorization—molecular chaos—conditions, which we call 'slaving'), in the form of a correlation noise, the dynamics of the lower order correlations shows dissipative features, as familiar in the field-theory version of Boltzmann equation. We show that fluctuation-dissipation relations exist for such effectively open systems, and use them to show that such a stochastic term, which explicitly introduces quantum fluctuations on the lower order correlation functions, necessarily accompanies the dissipative term, thus leading to a Boltzmann-Langevin equation which depicts both the dissipative and stochastic dynamics of correlation functions in quantum field theory.

I. INTRODUCTION

The main result of this paper is a derivation of the Boltzmann-Langevin equation as the correct description of the kinetic limit of quantum field theory. We use for this derivation a generalized formulation of quantum field theory in terms of the Schwinger-Dyson equations but supplemented with stochastic terms which explicitly introduce the effects of quantum fluctuations on low order correlation functions.

The significance of such an inquiry is two-fold: In probing the statistical mechanical properties of interacting quantum fields, and in providing a field theoretical justification for a stochastic source term in the Boltzmann equation. The former has been investigated mainly for quantum mechanical, not field-theoretical, systems [1,2] (see however, [3,4]) and the latter primarily for a classical gas [5,6]. Extending previous studies to quantum fields is essential in the establishment of a quantum field theory of nonequilibrium processes. Previous work on this subject [7–14] showed how the Boltzmann equation can be derived from first-principles in quantum field theory and investigated its dissipative properties. In this paper we focus on the fluctuation and noise aspects in the derivation of a stochastic Boltzmann equation from quantum field theory [15–17].

Fluctuations in Composite Operators

There are a variety of problems in nonequilibrium field theory which are most naturally described in terms of the unfolding of composite operators, the familiar lowest order ones being the particle number and the energy momentum densities and their fluctuations. The usual approach to these problems assumes that these operators have small fluctuations around their expectation values, in which case they can be expressed in terms of the Green functions of the theory. However, when fluctuations are large, typically when correlations among several particles are important, this approximation breaks down.

A familiar example is critical phenomena: by choosing a suitable order parameter to describe the different phases, one can obtain a wealth of information on the phase diagram of a system. But to study the dynamics of a phase transition, especially in the regime where fluctuations get large, the single order parameter must be replaced by a locally defined field obeying a stochastic equation of motion, for example, a time-dependent
Ginzburg - Landau equation with noise (which though often put in by hand, should in theory be derived from fluctuation - dissipation considerations). The same phenomenon occurs more generally in effective field theories, where the light fields are randomized by the back reaction from the heavy fields \[18\], and in semiclassical theories, where the classical field (for example, the gravitational field in the Early Universe) is subject to random driving forces from activities in the quantum field, such as particle creation \[19\].

The influence of noise on the classical dynamics of a quantum system is discussed at length by Gell-Mann and Hartle \[20\]; the conversion of quantum fluctuations to classical noise is discussed by a number of authors \[21–25\]. This scheme was also used by us for the study of decoherence of correlation histories and correlation noise in interacting field theories \[26,27\] and related work by others using projection operators \[28\].

Therefore in the more general context illustrated by these examples, we shall explore models where the dynamics is described not in terms of the actual Green functions \[G_{ab}\] (we use closed - time - path (CTP) techniques and notation, described more fully in the Appendix \[29\]) but a stochastic kernel \[G_{ab}\], whose expectation value reduces to \[G_{ab}\], while its fluctuations reproduce the quantum fluctuations in the binary products of field operators.

More concretely, consider a theory of a scalar field \(\phi^a\) (we use a condensed notation where the index \(a\) denotes both a space - time point and one or the other branch of the time path – see Appendix). The CTP action is

\[
S = S[\phi^1] - S^*[\phi^2].
\]

Introduce the generating functional

\[
Z[K_{ab}] = e^{iW[K_{ab}]} = \int D\phi^a e^{i\left\{S + \frac{1}{2} K_{ab} \phi^a \phi^b\right\}},
\]

then

\[
G_{ab} = \langle \phi^a \phi^b \rangle = 2 \frac{\delta W}{\delta K_{ab}}|_{K=0}
\]

but also

\[
\frac{\delta^2 W}{\delta K_{ab} \delta K_{cd}}|_{K=0} = \frac{i}{4} \left\{\langle \phi^a \phi^b \phi^c \phi^d \rangle - \langle \phi^a \phi^b \rangle \langle \phi^c \phi^d \rangle\right\}
\]

This suggests viewing the stochastic kernel \(G_{ab}\) as a Gaussian process defined (formally) by the relationships

\[
\langle G_{ab} \rangle = \langle \phi^a \phi^b \rangle; \quad \langle G_{ab} G_{cd} \rangle = \langle \phi^a \phi^b \phi^c \phi^d \rangle
\]

Or else, calling

\[
G_{ab} = G_{ab} + \Delta_{ab}
\]

\[
\langle \Delta_{ab} \rangle = 0; \quad \langle \Delta_{ab} \Delta_{cd} \rangle = -4i \frac{\delta^2 W}{\delta K_{ab} \delta K_{cd}}|_{K=0}
\]

To turn the intuitive ansatz Eqs. \([14]\) and \([15]\) into a rigorous formalism we must deal with the obvious fact that we are manipulating complex expressions; in particular, it is not clear the \(\Delta\)s define a stochastic process at all. However, for our present purposes it will prove enough to deal with the propagators as if they were real quantities. The reason is that we are primarily concerned with the large occupation numbers or semiclassical limit, where the propagators do become real. We will see that this prescription will be sufficient to extract unambiguous results from the formal manipulations below.

Stochastic Boltzmann Equation

We can define the process \(\Delta_{ab}\) also in terms of a stochastic equation of motion. Consider the Legendre transform of \(W\), the so - called 2 particle irreducible (2PI) effective action (EA)

\[
\Gamma[G_{ab}] = W[K_{ab}^*] - \frac{1}{2} K_{ab}^* G_{ab}; \quad K_{ab}^* = -2i \frac{\delta \Gamma}{\delta G_{ab}}
\]

(1.7)
We have the identities
\[
\frac{\delta \Gamma}{\delta G^{ab}} = 0; \quad \frac{\delta^2 W}{\delta K_{ab} \delta K_{cd}} = -\frac{1}{4} \left[\frac{\delta^2 \Gamma}{\delta G^{ab} \delta G^{cd}} \right]^{-1}
\] (I.8)
the first of which is just the Schwinger - Dyson equation for the propagators; we therefore propose the following equations of motion for \(G^{ab} \)
\[
\frac{\delta \Gamma}{\delta G^{ab}} = -\frac{1}{2} \kappa_{ab}
\] (I.9)
where \(\kappa_{ab} \) is a stochastic nonlocal Gaussian source defined by
\[
\langle \kappa_{ab} \rangle = 0; \quad \langle \kappa_{ab} \kappa_{cd} \rangle = 4i \left[\frac{\delta^2 \Gamma}{\delta G^{ab} \delta G^{cd}} \right]^{-1}
\] (I.10)
If we linearize Eq. (I.9) around \(G \), then the correlation Eq. (I.10) for \(\kappa \) implies Eq. (I.6) for \(\Delta \). Consistent with our recipe of handling \(G \) as if it were real we should treat \(\kappa \) also as if it were a real source.

It is well known that the noiseless Eq. (I.9) can be used as a basis for the derivation of transport equations in the near equilibrium limit. Indeed, for a \(\lambda \phi^4 \) type theory, the resulting equation is simply the Boltzmann equation for a distribution function \(f \) defined from the Wigner transform of \(G^{ab} \) (details are given below). We shall show in this paper that the full stochastic equation (I.9) leads, in the same limit, to a Boltzmann - Langevin equation, thus providing the microscopic basis for this equation in a manifestly relativistic quantum field theory.

Let us first examine some consequences of Eq. (I.10). For a free field theory, we can compute the 2PI EA explicitly (derivation in Section V)
\[
\Gamma \left[G^{ab} \right] = \frac{-i}{2} \ln \left[\text{Det} G \right] - \frac{1}{2} c_{ab} \left(-\Box + m^2 \right) G^{ab} (x, x)
\] (I.11)
where \(c_{ab} \) is the CTP metric tensor (see the Appendix). We immediately find
\[
\frac{\delta^2 \Gamma}{\delta G^{ab} \delta G^{cd}} = i \left(G^{-1} \right)_{ac} \left(G^{-1} \right)_{db}
\] (I.12)
therefore
\[
\langle \Delta^{ab} \Delta^{cd} \rangle = i \left[\frac{\delta^2 \Gamma}{\delta G^{ab} \delta G^{cd}} \right]^{-1} = G^{ac} G^{db} + G^{da} G^{bc}
\] (I.13)
an eminently sensible result. Observe that the stochastic source does not vanish in this case, rather
\[
\langle \kappa_{ab} \kappa_{cd} \rangle = G^{-1}_{ac} G^{-1}_{db} + G^{-1}_{da} G^{-1}_{bc}
\] (I.14)
However
\[
\left(G^{-1} \right)_{ac} \sim -i c_{ac} \left(-\Box + m^2 \right)
\] (I.15)
does vanish on mass - shell. Therefore, when we take the kinetic theory limit, we shall find that for a free theory, there are no on - shell fluctuations of the distribution function. For an interacting theory this is no longer the case.

The physical reason for this different behavior is that the evolution of the distribution function for an interacting theory is dissipative, and therefore basic statistical mechanics considerations call for the presence of fluctuations [30]. Indeed it is this kind of consideration which led us to think about a Boltzmann - Langevin equation in the first place. This is fine if one takes a statistical mechanical viewpoint, but one is used to the idea that quantum field theories are unitary and complete with no information loss, so how could one see dissipation or noise?
In field theory there is a particular derivation of the self consistent dynamics for Green functions which resolves this puzzle, namely when the Dyson equations are derived from the variation of a nonlocal action functional, the two-particle irreducible effective action (2PI-EA). This was originally introduced \[31\] as a convenient way to perform nonperturbative resummation of several Feynman graphs. When cast in the Schwinger - Keldysh "closed time path" (CTP) formulation \[29\], it guarantees real and causal evolution equations for the Green functions of the theory. It is conceptually clear if one begins with a "master" effective action (MEA) \[27\] where all Green functions of the theory appear as arguments, and then systematically eliminate all higher-than-two point functions to arrive at the 2PI-EA.

To us, the correct approach is to view the two point functions as an open system \[32–34\] truncated from the hierarchy of correlation functions obeying the set of Schwinger-Dyson equations but interacting with an environment of higher irreducible correlations, whose averaged effect brings about dissipation and whose fluctuations give rise to the correlation noise \[27\]. This is the conceptual basis of our program.

Fluctuations and Dissipation

It has long been known in statistical physics that the equilibrium state is far from being static; quite the opposite, it is the fluctuations around equilibrium which underlie and give meaning to such phenomena as Brownian motion \[24\] and transport processes, and determine the responses (such as the heat capacity and susceptibility) of the system in equilibrium. The condition that equilibrium constantly reproduces itself in the course of all these activities means that the equilibrium state is closely related both to the structure of the equilibrium fluctuations and to the dynamical processes by which equilibrium sustains itself; these simple but deep relations are embodied in the so-called fluctuation - dissipation theorems: If a fluctuating system is to persist in the neighborhood of a given equilibrium state, then the overall dissipative processes in the system (due mainly to its interaction with its environment) are determined. Vice versa, if the dissipative processes are known, then we may describe the properties of equilibrium fluctuations without detailed knowledge of the system’s microscopic structure. This is the aspect of the fluctuation - dissipation relations which guided Einstein in his pioneering analysis of the corpuscular structure of matter \[25\], Nyquist in his stochastic theory of electric resistivity \[36\], and Landau and Lifshitz to the theory of hydrodynamical fluctuations \[37\].

These ideas apply to systems described by a few macroscopic variables, as well as to systems described by an infinite number of degrees of freedom such as a few long wavelength modes (as in hydrodynamics) or a single particle distribution function (as in kinetic theory). In this later case, the dynamics is described by a dissipative Boltzmann equation, and thereby we are to expect that there will be nontrivial fluctuations in equilibrium. The stochastic properties of the Boltzmann equation has been discussed by Zwanzig, Kac and Logan, and others \[5,38\].

The Boltzmann equation can be retrieved also as a description of the long range, near equilibrium dynamics of field theories \[10\]. In this kinetic theory regime, where there is a clear separation of microscopic and macroscopic scales the field may be described in terms of quasi-particles, whose distribution function obeys a Boltzmann equation \[13\]. Formally, the one particle distribution function is introduced as a partial Fourier transform of a suitable Green function of the field. The same arguments which lead to a fluctuating Boltzmann equation in the general case, lead us to expect fluctuations in this limiting case of field theory as well.

The end result of our investigation is a highly nonlinear, explicitly stochastic Dyson equation for the Green functions. By going to the kinetic theory limit, we derive a stochastic Boltzmann equation, and the resulting noise may be compared with that required by the fluctuation - dissipation relation. Here we see clearly this contrast between the predictions of field theory with and without statistical physics considerations.

In this paper, we shall concentrate on the issue of what kind of fluctuations may be convincingly derived from the 2PI-CTP-EA for Green functions, and how they compare to the fluctuation - dissipation noise in the kinetic theory limit. Given the complexity of the subject, we shall adopt a line of development which favors at least in the beginning ease of understanding over completeness. That is, instead of starting from the master effective action of n point functions and work our way down in a systematic way, we shall begin with the Boltzmann equation for one -particle distributions and work our way up.

In the next section, we present briefly the fluctuation - dissipation theorem in a nonrelativistic context, and use it to derive the fluctuating Boltzmann equation. The discussion, kept at the classical level, simply
reviews well established results in the theory of the Boltzmann equation. Section III reviews the basic tenets of nonequilibrium quantum field theory as it concerns the dynamics of correlations, and the retrieval of the Boltzmann equation therefrom. We refrain from using functional methods, so as to keep the discussion as intuitive as possible.

Section IV discusses how the functional derivation of the Schwinger-Dyson hierarchy suggests that these equations ought to be enlarged to include stochastic terms. By going through the kinetic limit we use these results to establish a comparison with the purely classical results of Section II.

Our investigation into the physical origin of noise and dissipation in the dynamics of the two point functions shows that in the final analysis this is an effective dynamics, obtained from averaging out the higher correlations. This point is made most explicit in the approach whereby the 2PI EA for the correlations is obtained through truncation of the master effective action, this being the formal functional whose variations generate the full Schwinger-Dyson hierarchy. In Section V, we briefly discuss the definition and construction of the master effective action, the relationship of truncation to common approximation schemes, and present explicitly the calculation leading to the dynamics of the two point functions at three loops accuracy [27,10].

In the last section we give a brief discussion of the meaning of our results and possible implications on renormalization group theory.

II. STOCHASTIC BOLTZMANN EQUATION FROM FDT

As a primer, we wish to introduce the fluctuation-dissipation theorem (FDT) or relation (FDR) in its simplest yet complete form, and apply it to derive the stochastic Boltzmann equation so as to clarify its physical content. There are many different versions [39]: It could be taken to mean the formulae relating dissipative coefficients to time integrals of correlation functions (sometimes called the “Landau-Lifshitz FDT) or the relations between the susceptibility and the space integral of the correlation function. In this paper, the fluctuation-dissipation theorem addresses the relation between the dissipative coefficients of the effective open system and the auto-correlation of random forces acting on the system, as illustrated below.

A. Fluctuation-dissipation theorem (FDT)

The simplest setting [40] for the FDT is a homogeneous system described by variables \(x^i \). The thermodynamics is encoded in the form of the entropy \(S(x^i) \). The thermodynamic fluxes are the derivatives \(\dot{x}^i \), and the thermodynamic forces are the components of the gradient of the entropy

\[
F_i = -\frac{\partial S}{\partial x^i}
\]

(II.1)

The dynamics is given by

\[
\dot{x}^i = -\gamma^{ij} F_j + j^i
\]

(II.2)

The first term describes the mean regression of the system towards a local entropy maximum, \(\gamma^{ij} \) being the dissipative coefficient or function, and the second term describes the random microscopic fluctuations induced by its interaction with an environment. Near equilibrium, we also have the phenomenological relations for linear response

\[
F_i = c_{ij} x^j
\]

(II.3)

where \(c_{ij} \) is a nonsingular matrix.

In a classical theory, the equal time statistics of fluctuations is determined by Einstein’s law

\[
\langle x^i(t) F_j(t) \rangle = \delta^i_j
\]

(II.4)

Take a derivative to find
\[0 = c_{jk} \left\{ \langle (-\gamma^{jl} F_l + j^l) x^k \rangle + \langle x^l (-\gamma^{kl} F_l + j^l) \rangle \right\} \]

(II.5)

If the noise is gaussian,

\[\langle x^i (t) j^k (t) \rangle = \int dt' \frac{\delta x^i (t)}{\delta j^j (t')} \left\{ \langle j^l (t') j^k (t) \rangle \right\} \]

and white

\[\langle j^l (t') j^k (t) \rangle = \nu^{ik} \delta (t' - t) \]

(II.6)

then

\[\langle x^i (t) j^k (t) \rangle = \frac{1}{2} \nu^{ik} \]

(II.7)

From Eq. (II.5) and (II.4) we find the noise-noise auto-correlation function \(\nu^{ik} \) is related to the symmetrized dissipative function \(\gamma^{ik} \) by

\[\nu^{ik} = \left[\gamma^{ik} + \gamma^{ki} \right] \]

(II.8)

which is the FDT in a simple classical formulation.\(^1\)

In the case of a one-dimensional system, the above argument can be simplified even further because there is only one variable \(x \), and \(\gamma, c, \nu \) are simply constants. In equilibrium, we have \(\langle x^2 \rangle = c^{-1} \). On the other hand, the late time solution of the equations of motion reads

\[x(t) = \int t du e^{-\gamma c (t - u)} j(u) \]

which implies \(\langle x^2 \rangle = \nu/2 \gamma c \). Thus \(\nu = 2 \gamma \), in agreement with Eq. (II.8).

B. Boltzmann equation for a classical relativistic gas

We shall apply the theory above to a dilute gas of relativistic classical particles.\(^6\) The system is described by its one-particle distribution function \(f(X, k) \), where \(X \) is a position variable, and \(k \) is a momentum variable. Momentum is assumed to lie on a mass shell \(k^2 + M^2 = 0 \). (We use the MTW convention, with signature \(-+++\) for the background metric) and have positive energy \(k^0 > 0 \). In other words, given a spatial element \(d\Sigma^\mu = n^\mu d\Sigma \) and a momentum space element \(d^4k \), the number of particles with momentum \(k \) lying within that phase space volume element is

\[dn = -4\pi f(X, k) \theta (k^0) \delta \left(k^2 + M^2 \right) k^\mu n_\mu d\Sigma \frac{d^4k}{(2\pi)^4} \]

(II.9)

The dynamics of the distribution function is given by the Boltzmann equation, which we give in a notation adapted to our later needs, and for the time being without the sought-after stochastic terms

\[k^\mu \frac{\partial}{\partial X^\mu} f(k) = I_{col} (X, k) \]

(II.10)

\(^1\)To be concrete, this is the FDT of the second kind in the classification of Ref. \([41]\). The FDT of the first kind is further discussed in Ref. \([42]\). Also observe that we are only concerned with small deviations from equilibrium; FDT’s valid arbitrarily far from equilibrium are discussed in Ref. \([43]\).
\[I_{\text{col}} = \frac{\lambda^2}{4} (2\pi)^3 \int \prod_{j=1}^{3} \frac{d^4 p_j}{(2\pi)^3} \theta (p_j^0) \delta \left(p_j^2 + M^2 \right) \left[(2\pi)^4 \delta (p_1 + p_2 - p_3 - k) \right] I \] (II.11)

\[I = \{ [1 + f (p_3)] [1 + f (k)] f (p_1) f (p_2) - [1 + f (p_1)] [1 + f (p_2)] f (p_3) f (k) \} \] (II.12)

The entropy flux is given by

\[S^\mu (X) = 4 \pi \int \frac{d^4 p}{(2\pi)^4} \theta (p^0) \delta \left(p^2 + M^2 \right) p^\mu \{ [1 + f (p)] \ln [1 + f (p)] - f (p) \ln f (p) \} \] (II.13)

while the entropy itself \(S \) is (minus) the integral of the flux over a Cauchy surface. Now consider a small deviation from the equilibrium distribution

\[f = f_{eq} + \delta f \] (II.14)

\[f_{eq} = \frac{1}{e^{\beta p^0} - 1} \] (II.15)

corresponding to the same particle and energy fluxes

\[\int \frac{d^4 p}{(2\pi)^4} \theta (p^0) \delta \left(p^2 + M^2 \right) p^\nu \delta f (p) = 0 \] (II.16)

\[\int \frac{d^4 p}{(2\pi)^4} \theta (p^0) \delta \left(p^2 + M^2 \right) p^\nu \delta f (p) = 0 \] (II.17)

Then the variation in entropy becomes

\[\delta S = -2 \pi \int d^3 X \int \frac{d^4 p}{(2\pi)^4} \theta (p^0) \delta \left(p^2 + M^2 \right) p^0 \frac{1}{[1 + f_{eq} (p)] f_{eq} (p)} (\delta f)^2 \] (II.18)

In the classical theory, the distribution function is concentrated on the positive frequency mass shell. Therefore, it is convenient to label momenta just by its spatial components \(\vec{p} \), the temporal component being necessarily \(\omega_p = \sqrt{M^2 + \vec{p}^2} > 0 \). In the same way, it is simplest to regard the distribution function as a function of the three momentum \(\vec{p} \) alone, according to the rule

\[f^{(3)} (X, \vec{p}) = f [X, (\omega_p, \vec{p})] \] (II.19)

where \(f \) represents the distribution function as a function on four dimensional momentum space, and \(f^{(3)} \) its restriction to three dimensional mass shell. With this understood, we shall henceforth drop the superscript, using the same symbol \(f \) for both functions, since only the distribution function on mass shell enters into our discussion. The variation of the entropy now reads

\[\delta S = - \frac{1}{2} \int d^3 X \int \frac{d^4 p}{(2\pi)^4} \frac{1}{[1 + f_{eq} (p)] f_{eq} (p)} (\delta f)^2 . \] (II.20)

From Einstein’s formula, we conclude that, in equilibrium, the distribution function is subject to Gaussian fluctuations, with equal time mean square value

\[\langle \delta f \left(t, \vec{X}, \vec{p} \right) \delta f \left(t, \vec{Y}, \vec{q} \right) \rangle = (2\pi)^3 \delta \left(\vec{X} - \vec{Y} \right) \delta \left(\vec{p} - \vec{q} \right) [1 + f_{eq} (p)] f_{eq} (p) \] (II.21)

One of the goals of this paper is to rederive this result as the kinetic theory limit of the general fluctuation formula given for the propagators in the Introduction, Eq. (I.5). For the time being, we only observe that
this fluctuation formula is quite independent of the processes which sustain equilibrium; in particular, it holds equally for a free and an interacting gas, since it contains no coupling constants.

In the interacting case, however, a stochastic source is necessary to sustain these fluctuations. Following the discussion of the FDR above, we compute these sources by writing the dissipative part of the equations of motion in terms of the thermodynamic forces

\[F(X, p) = \frac{1}{[1 + f_{eq}(p)] f_{eq}(p)} \frac{\delta f(X, p)}{(2\pi)^3} \]

(II.22)

To obtain an equation of motion for \(f(X, p) \) multiply both sides of the Boltzmann equation Eq. (II.10) by \(\theta(k^0) \delta(k^2 + M^2) \) and integrate over \(k^0 \) to get

\[\frac{\partial f}{\partial t} + \frac{\vec{k}}{\omega_k} \vec{\nabla} f = \frac{1}{\omega_k} I_{col} \]

(II.23)

Upon variation we get

\[\frac{\partial (\delta f)}{\partial t} + \frac{\vec{k}}{\omega_k} \vec{\nabla} (\delta f) = \frac{1}{\omega_k} \delta I_{col} \]

(II.24)

When we write \(\delta I_{col} \) in terms of the thermodynamic forces, we find local terms proportional to \(F(k) \) as well as nonlocal terms where \(F \) is evaluated elsewhere. We shall keep only the former, as it is usually done in deriving the “collision time approximation” to the Boltzmann equation [46] (also related to the Krook-Bhatnager-Gross kinetic equation), thus we write

\[\delta I_{col}(k) \sim -\omega_k \nu^2(X, \vec{k}) F(X, \vec{k}) \]

(II.25)

where

\[\nu^2(X, \vec{k}) = \frac{\chi^2}{4\omega_k} (2\pi)^6 \int \left[\prod_{i=1}^3 \frac{d^4 p_i}{(2\pi)^4} \theta(p_i^0) \delta(p_i^2 - M^2) \right] \left[(2\pi)^4 \delta(p_1 + p_2 - p_3 - k) \right] I_+ \]

(II.26)

\[k^0 = \omega_k, \text{ and} \]

\[I_+ = [1 + f_{eq}(p_1)] [1 + f_{eq}(p_2)] f_{eq}(p_3) f_{eq}(k) \]

(II.27)

Among other things, the linearized form of the Boltzmann equation provides a quick estimate of the relevant relaxation time. Let us assume the high temperature limit, where \(f \sim T/M \), and the integrals in Eq. (II.26) are restricted to the range \(p \leq M \). Then simple dimensional analysis yields the estimate \(\tau \sim M/\Lambda^2 T^2 \) for the relaxation time appropriate to long wavelength modes.

C. Fluctuations in the Boltzmann equation

Observance of the FDT demands that a stochastic source \(j \) be present in the Boltzmann equation Eq. (II.10) (and its linearized form, Eq. (II.24)) which should assume the Langevin form:

\[\frac{\partial f}{\partial t} + \frac{\vec{k}}{\omega_k} \vec{\nabla} f = \frac{1}{\omega_k} I_{col} + j(X, \vec{k}) \]

(II.28)

Then

\[\langle j(X, \vec{p}) j(Y, \vec{q}) \rangle = - \left\{ \frac{1}{\omega_p} \frac{\delta I_{col}(X, \vec{p})}{\delta F(X, \vec{p})} + \frac{1}{\omega_q} \frac{\delta I_{col}(Y, \vec{q})}{\delta F(Y, \vec{q})} \right\} \]

(II.29)
From Eqs. (II.25), (II.26) and (II.27) we find the noise auto-correlation
\[
\langle j(X, \vec{k}) j(Y, \vec{p}) \rangle = 2\delta^{(4)}(X - Y) \delta(\vec{k} - \vec{p}) \nu^2(X, \vec{k})
\] (II.30)
where \(\nu^2\) is given in Eq. (II.26). Eqs. (II.30) and (II.26) are the solution to our problem, that is, they describe the fluctuations in the Boltzmann equation, required by consistency with the FDT. Observe that, unlike Eq. (II.21), the mean square value of the stochastic force vanishes for a free gas.

In this discussion, of course, we accepted the Boltzmann equation as given without tracing its origin. We now want to see how the noises in Eq. (II.30) originate from a deeper level, that related to the higher correlation functions, which we call the correlation noises.

III. KINETIC FIELD THEORY, FROM DYSON TO BOLTZMANN

Our goal in this section is to show how the Boltzmann equation arises as a description of the dynamics of quasiparticles in the kinetic limit of field theory. To this end, we shall adopt the view that the main element in the description of a nonequilibrium quantum field is its Green functions, whose dynamics is given by the Dyson equations. This connects with the results of our earlier paper on dissipation in Boltzmann equations [10]. The task is to find the noise or fluctuation terms. The need to upgrade the Boltzmann equation to a Langevin form will lead to a similar generalization of Dyson’s equations, whose physical origin will be the subject of the remaining of the paper.

The discussion of propagators is simplest for a free field theory, and so, following our choice of physical clarity over formal rigor in the exposition, we shall first discuss nonequilibrium free fields. The general case follows.

A. Free fields and propagators

Let us focus on the nonequilibrium dynamics of a real scalar quantum (Heisenberg) field \(\Phi(x)\), obeying the Klein-Gordon equation
\[
(\Box - m^2) \Phi(x) = 0
\] (III.1)
and the canonical equal time commutation relations
\[
\left[\Phi(\vec{x}, t), \Phi(\vec{y}, t)\right] = -i\hbar \delta(\vec{x} - \vec{y})
\] (III.2)
(from here on, we take \(\hbar = 1\)).

We shall assume throughout that the expectation value of the field vanishes. Thus the simplest nontrivial description of the dynamics will be in terms of the two-point or Green functions, namely the expectation values of various products of two field operators. Of particular relevance is the Jordan propagator
\[
G(x, x') = \langle [\Phi(x), \Phi(x')] \rangle
\] (III.3)
which for a free field is independent of the state of the field. From the Jordan propagator we derive the causal propagators, advanced and retarded
\[
G_{\text{adv}}(x, x') = -iG(x, x') \theta(t' - t), \quad G_{\text{ret}}(x, x') = iG(x, x') \theta(t - t')
\] (III.4)
These propagators describe the evolution of small perturbations (they are fundamental solutions to the Klein-Gordon equation) but contain no information about the state. For that purpose we require other propagators, such as the positive and negative frequency ones
\[
G_+(x, x') = \langle [\Phi(x), \Phi(x')] \rangle, \quad G_-(x, x') = \langle [\Phi(x'), \Phi(x)] \rangle
\] (III.5)
Observe that $G = G_+ - G_-$. The symmetric combination gives the Hadamard propagator

$$G_1 = G_+ + G_- = \langle \{\Phi(x), \Phi(x')\} \rangle \quad (\text{III.6})$$

Note that while the Jordan, advanced and retarded propagators emphasize the dynamics, and the negative, positive frequency and Hadamard propagators emphasize the statistical aspects, two other propagators contain both kinds of information. They are the Feynman and Dyson propagators

$$G_F(x, x') = \langle T[\Phi(x)\Phi(x')] \rangle = \frac{1}{2} [G_1(x, x') + G(x, x') \text{sign}(t-t')] \quad (\text{III.7})$$

$$G_D(x, x') = \langle \tilde{T}[\Phi(x)\Phi(x')] \rangle = \frac{1}{2} [G_1(x, x') - G(x, x') \text{sign}(t-t')] \quad (\text{III.8})$$

where T stands for time-ordered product

$$T[\Phi(x)\Phi(x')] = \Phi(x)\Phi(x') \theta(t-t') + \Phi(x')\Phi(x) \theta(t'-t) \quad (\text{III.9})$$

and \tilde{T} for anti-temporal ordering

$$\tilde{T}[\Phi(x)\Phi(x')] = \Phi(x')\Phi(x) \theta(t-t') + \Phi(x)\Phi(x') \theta(t'-t) \quad (\text{III.10})$$

B. Equilibrium structure of propagators

In this subsection, we shall review several important properties of the equilibrium propagators which follow from the KMS condition [Eq. (III.12) below] \cite{47}, and general invariance properties.

In equilibrium, all propagators must be time-translation invariant, and may be Fourier transformed

$$G(x, x') = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')}G(k) \quad (\text{III.11})$$

In particular, because the Jordan propagator is antisymmetric, we must have $G(\omega, \vec{k}) = -G(-\omega, \vec{k})$. Also, since $G(x, x') = G(x', x)^* = -G(x, x')^*$, $G(k) = G(k)^*$.

The positive and negative frequency propagators are further related by the KMS condition

$$G_+[(t, \vec{x}), (t', \vec{x}')] = G_-[(t+i\beta, \vec{x}), (t', \vec{x}')] \quad (\text{III.12})$$

where β is the inverse temperature. With $G_+ - G_- = G$, we get

$$G_+(k) = \frac{G(k)}{1 - e^{-\beta k_0}} = \text{sign}(k^0) \left[\theta(k^0) + \frac{1}{e^{\beta|k^0|} - 1} \right] G(k) \quad (\text{III.13})$$

$$G_-(k) = \frac{G(k)}{e^{\beta k_0} - 1} = \text{sign}(k^0) \left[\theta(-k^0) + \frac{1}{e^{\beta|k^0|} - 1} \right] G(k) \quad (\text{III.14})$$

Adding these two equations, we find

$$G_1(k) = 2\text{sign}(k^0) \left[\frac{1}{2} + \frac{1}{e^{\beta|k^0|} - 1} \right] G(k) \quad (\text{III.15})$$

We may consider this formula as the quantum generalization of the FDT, as we shall see below. Let us stress that Eqs. (\text{III.12}) to (\text{III.15}) hold for interacting as well as free fields.
Of course, for the homogeneous solutions to the Klein-Gordon equation \((G, G_+, G_- \text{ and } G_1)\) we must have
\[
G(k) = \delta (k^2 + m^2) g(k)
\]
which leads to
\[
G_{\text{ret}}(x, x') = \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik(x-x')}}{(k^0 - i\varepsilon)^2 + \omega_k^2} \left[\frac{g(\omega_k, \vec{k})}{2\pi} \right] \tag{III.17}
\]
and to
\[
G_F(x, x') = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} \left[\frac{-i}{k^0^2 + \omega_k^2 - i\varepsilon} + \frac{2\pi \delta(k^0 - \omega_k)}{e^{\beta|k^0|} - 1} \right] \left[\frac{g(\omega_k, \vec{k})}{2\pi} \right] \tag{III.18}
\]
with similar formulae for \(G_{\text{adv}}\) and \(G_D\), respectively. It is remarkable that all propagators may be split into a vacuum and a thermal contribution, with the thermal part being the same for all propagators except \(G\), \(G_{\text{ret}}\) and \(G_{\text{adv}}\), where it vanishes. Also, we have expressed all propagators in terms of \(g\); in the language of the Lehmann decomposition, this is just the density of states \([18]\).

We shall finish this subsection by expanding our remark on Eq. (III.15) being the fluctuation dissipation theorem \([19]\). Suppose we try to explain the quantum and statistical fluctuations of the field by adding an external source \(-j(x)\) to the right hand side of the Klein-Gordon equation (III.1). The resulting field would be
\[
\Phi(x) = \int d^4x' G_{\text{ret}}(x, x') j(x')
\]
If the process is stationary
\[
\langle j(x) j(x') \rangle = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} \nu(k) \tag{III.19}
\]
we get
\[
\nu(k) = \frac{G_1(k)}{2 |G_{\text{ret}}(k)|^2}
\]
From Eqs. (III.13) and (III.17)
\[
\nu(k) = \left[1 + \frac{2}{e^{\beta|k^0|} - 1} \right] |\text{Im}G_{\text{ret}}^{-1}(k)| \tag{III.20}
\]
which is a generalized form of the FDT, including both quantum and thermal fluctuations.

So far, we have intentionally left everything expressed in terms of the density of states \(g(k)\). For a free field, we can compute this explicitly
\[
g(k) = 2\pi \text{sign}(k^0) \tag{III.21}
\]
with which we can fill in the remaining results.
C. Interacting fields and the Dyson equation

Let us now consider a weakly interacting field, obeying the Heisenberg equation

\[(\Box - m^2) \Phi(x) - \frac{\lambda}{6} \Phi^3(x) = 0\] \hspace{1cm} (III.22)

and the same equal time canonical commutation relations, Eq. (III.2). As before, we shall assume that the expectation value of the field vanishes identically, and seek to describe the dynamics in terms of the propagators introduced earlier.

In the usual approach to field theory, where one focuses on computing the S-matrix elements, rather than the causal evolution of fields, the leading role is played by the Feynman propagator, which is directly related to the S-matrix through the LSZ reduction formulae, and has a simple perturbative expansion [48,50,51]. We may obtain a dynamical equation for the Feynman propagator by noting that, from Eq. (III.9)

\[-i\hbar \frac{\partial}{\partial t} \Phi_t(x) = \mathcal{T} \int \mathcal{D}x'\frac{\hbar}{2m} \Phi(x') \Phi(x) G_F(x,x')\]

We can obtain closed dynamical equations for these four propagators. Actually there is a slight redundancy, (cfr. Eq. (III.18)). This is the Dyson equation for the propagator, relating the evolution of the Feynman propagator to higher order (in this case, four point) correlation functions.

As different from an IN-OUT matrix element of the S-matrix, in this case we have an IN - IN expectation value taken with respect to a nontrivial state defined at some initial time. Thus the perturbative expansion of the self energy term cannot be expressed in terms of the IN - IN Feynman propagator alone. We should rather have

\[\langle T \left[\Phi^3(x) \Phi(x') \right] \rangle \sim 3G_F(x,x) G_F(x,x') - i\bar{\lambda} \int d^4y \left\{ G^3_F(x,y) G_F(y,x') - G^3_F(x,y) G_+(y,x') \right\} \]

(cfr. Eq. (III.18)). This is the Dyson equation for the propagator, relating the evolution of the Feynman propagator to higher order (in this case, four point) correlation functions.

The matrix \(c_{11} = c^{11} = 1, c_{22} = c^{22} = -1, \) all others zero) keeps track of the sign inversions associated with the reverse temporal ordering of the second branch. This form of the Dyson equation is relevant to our discussion.
D. The kinetic theory limit

In equilibrium the propagators are time-translation invariant. Out of equilibrium this is no longer true. In the kinetic theory regime, however, the propagators depend mostly on the difference variable \(u = x - x' \), with the corresponding Fourier transform depending weakly on the center of mass variable \(X = (1/2) (x + x') \). As such, the propagators take the form

\[
G^{ab}(x, x') = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} G^{ab}(X, k)
\] (III.26)

The \(\Sigma \) kernel has a similar expression

\[
\Sigma^{ab}(x, x') = \int \prod_{i=1}^3 \left\{ \frac{d^4p_i}{(2\pi)^4} G^{ab}(X, p_i) \right\} \left[(2\pi)^4 \delta \left(\sum p_i - k \right) \right]
\] (III.27)

The weak dependence on \(X \) allows for the approximations (details in [10])

\[
G^{ab}(x, x) = \int \frac{d^4k}{(2\pi)^4} G^{ab}(x, k) \sim \int \frac{d^4k}{(2\pi)^4} G^{ab}(X, k)
\]

\[
\int d^4y \Sigma^{ac}(x, y) G^{db}(y, x') \sim \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} \Sigma^{ac}(X, k) G^{db}(X, k)
\]

and the equations of motion become

\[
\left[k^2 - ik^\mu \frac{\partial}{\partial X^\mu} - \frac{1}{4} \Box X + M^2(X) \right] G^{ab}(X, k) - \frac{i\lambda^2}{6} c_{cd} \Sigma^{ac}(X, k) G^{db}(X, k) = -ic^{ab}
\] (III.28)

\[
M^2(X) = m^2 + \frac{\lambda}{2} \int \frac{d^4k}{(2\pi)^4} G^{ab}(X, k)
\] (III.29)

Alternatively, we may think of the propagators as functions of \(x' \), leading to an equation of the form (cfr. Eq. (III.24))

\[
\left[-\Box' + m^2 + \frac{\lambda}{2} G_F(x', x') \right] G^{ab}(x, x') - \frac{i\lambda^2}{6} c_{cd} \{ \Sigma^{ac}(x, k) G^{db}(X, k) + G^{ac}(X, k) \Sigma^{db}(X, k) \} = -ic^{ab}
\] (III.30)

In the kinetic limit, this yields

\[
\left[k^2 + ik^\mu \frac{\partial}{\partial X^\mu} - \frac{1}{4} \Box X + M^2(X) \right] G^{ab}(X, k) - \frac{i\lambda^2}{6} c_{cd} G^{ac}(X, k) \Sigma^{db}(X, k) = -ic^{ab}
\] (III.31)

Taking the average and the difference of Eqs. (III.28) and (III.31) we get

\[
\left[k^2 - \frac{1}{4} \Box X + M^2(X) \right] G^{ab}(X, k) - \frac{i\lambda^2}{12} c_{cd} \left\{ \Sigma^{ac}(X, k) G^{db}(X, k) + G^{ac}(X, k) \Sigma^{db}(X, k) \right\} = -ic^{ab}
\] (III.32)

\[
k^\mu \frac{\partial}{\partial X^\mu} G^{ab}(X, k) + \frac{\lambda^2}{12} c_{cd} \left\{ \Sigma^{ac}(X, k) G^{db}(X, k) - G^{ac}(X, k) \Sigma^{db}(X, k) \right\} = 0
\] (III.33)
We recognize the first equation as a mass shell condition on the nonequilibrium propagator. The second equation is the kinetic equation proper, describing relaxation towards equilibrium.

To investigate further this equation, we observe that since both terms are already of second order in λ (see \([10]\)), it is enough to solve the mass shell condition to zeroth order. That is, we assume that the renormalized mass M^2 is actually position independent, and write

$$G^{ab}(X, k) = G^{ab}_0(M^2, k) + G^{ab}_{\text{stat}}(X, k) \quad (\text{III.34})$$

where the $G^{ab}_0(M^2, k)$ are vacuum propagators for a free field with mass M^2, and G^{ab}_{stat} is the non vacuum part

$$G^{ab}_{\text{stat}}(X, k) = 2\pi\delta(k^2 + M^2) f(X, k) \quad (\text{III.35})$$

which we assume is the same for all propagators involved, as in the free field case. $f(X, k)$ has the physical interpretation of a one particle distribution function for quasi particles built out of the field excitations.

Substituting Eqs. (III.34) and (III.35) into (III.33), and assuming, for example, that $k_0 > 0$ (f must be even in k, because of the symmetries of the propagators) immediately shows that the dynamics of f is given by the Boltzmann equation (II.10), (II.11) and (II.12).

E. Stochastic Dyson equations

Our derivation of kinetic theory from the Dyson equations leads to an incomplete Boltzmann equation: in addition to the usual collision integral an explicitly stochastic term ought to be in place. Moreover, fluctuation - dissipation considerations demand that this stochastic term has auto-correlation Eqs. (II.30) and (II.26). Since no manipulation of the deterministic Dyson equations will yield a stochastic term like this, we posit that when quantum field theory is viewed in the statistical mechanical context, the Dyson equations themselves are incomplete. Suppose we add a stochastic driving term F^{ab} to them (we shall justify this later):

$$\left[-\Box + m^2 + \frac{\lambda}{2}G_F(x, x)\right] G^{ab}(x, x') - \frac{i\lambda^2}{6} c_{cd} \int d^4y \Sigma^{ac}(x, y) G^{db}(y, x') = -i\epsilon^{abc} \delta(x - x') - iF^{ab}(x, x') \quad (\text{III.36})$$

$$\left[-\Box' + m^2 + \frac{\lambda}{2}G_F(x', x')\right] G^{ab}(x, x') - \frac{i\lambda^2}{6} c_{cd} \int d^4y G^{ac}(x, y) \Sigma^{db}(y, x') = -i\epsilon^{abc} \delta(x - x') - i\tilde{F}^{ab}(x, x') \quad (\text{III.37})$$

In the kinetic limit, the random forces become

$$F^{ab}(x, x') = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} F^{ab}(X, k) \quad (\text{III.38})$$

(and similarly for \tilde{F}). Leaving aside the random fluctuations of the mass shell, we find the new kinetic equation.
\[k^\mu \frac{\partial}{\partial x^\mu} G^{ab}(X, k) + \frac{\lambda^2}{12} c_{cd} \left\{ \Sigma^{ac}(X, k) G^{db}(X, k) - G^{ac}(X, k) \Sigma^{db}(X, k) \right\} = H^{ab}(X, k) \]

(III.39)

where

\[H^{ab} \equiv \frac{1}{2} \left[F - \tilde{F} \right]^{ab}(X, k) \]

(III.40)

Our problem now is to justify changing the Dyson equation to Eq. (III.36), and to expound the physical meaning of this new stochastic equation. To do this we need to use functional methods, to which we now turn.

IV. CORRELATION NOISE AND STOCHASTIC BOLTZMANN EQUATION

Our goal in this section is to show how noise terms such as those introduced above from phenomenological considerations may actually be systematically identified from an appropriate effective action. In this section we shall limit ourselves to finding a suitable recipe to identify the noise terms, and to compare the results to the phenomenological discussion above. The physical foundations of the recipe shall be discussed in the following section.

A. Fluctuations in the propagators

We shall now adapt the foregoing discussion to the study of fluctuations in the dynamics of the two point functions. The first step is to notice that this dynamics can be obtained from the variation of the 2PI action functional (we derive this formula in Section V, Eq. (V.52))

\[\delta \Gamma = \int d^4x \left(G^{ab}(x, x) \right)^2 \]

(IV.1)

The resulting equations of motion

\[\frac{-i}{2} G^{ab} - \frac{1}{2} \left[c_{ab} \left(-\Box + m^2 \right) + \lambda c_{abcd} G^{cd}(x, x) \right] \delta(x, x') + \frac{i\lambda^2}{48} c_{abcd} \int d^4x' G^{ab}(x, x') G^{cd}(x, x') \delta(x, x') = 0 \]

(IV.2)

are seen to be equivalent to the Dyson equations Eq. (III.24).

As we discussed in the Introduction, we shall incorporate quantum fluctuations in the evolution of the Green function \(G^{ab} \) by explicitly adding a stochastic source \((-1/2)\kappa_{ab}\) to the right hand side of Eq. (IV.1). Let us write \(G^{ab} = \bar{G}^{ab} + \Delta^{ab} \), and expand the 2PI CTP EA to second order (the first order term vanishes by virtue of Eq. (IV.2)),

\[\delta \Gamma = \delta_2 \Gamma \]

(IV.3)

\[\delta_2 \Gamma \left[\Delta^{ab} \right] = \frac{i}{4} \bar{G}^{-1 \cdots 1} G_{cd}^{-1} \Delta^{da} - \frac{\lambda}{8} c_{abcd} \int d^4x \Delta^{ab}(x, x) \Delta^{ab}(x, x) \]

(IV.4)

\[+ \frac{i\lambda^2}{8} c_{abcd} \int d^4x' G^{ac}(x, x') G^{bf}(x, x') \Delta^{bg}(x, x') \Delta^{dh}(x, x') \]
From now on, we shall assume that the background tadpole vanishes, and identify the mass with its renormalized value. We now have, as discussed in the Introduction

$$\langle \Delta^{ab} \Delta^{cd} \rangle = i \left[\frac{\delta^2 \Gamma}{\delta G^{ab} \delta G^{cd}} \right]^{-1}$$ \hspace{1cm} (IV.5)

To sustain these fluctuations, the noise auto-correlation must be

$$\langle \kappa_{ab} \kappa_{cd} \rangle = (4i) \left[\frac{\delta^2}{\delta \Delta^{ab} \delta \Delta^{cd} \delta^2 \Gamma} \right]_{\Delta=0}$$

That is

$$\langle \kappa_{ab} (x, x') \kappa_{cd} (y, y') \rangle = N_{abcd} (x, x', y, y') + N_{abcd}^{int} (x, x', y, y')$$ \hspace{1cm} (IV.6)

$$N_{abcd} (x, x', y, y') = G^{-1}_{da} (y', x) G^{-1}_{bc} (x', y) + G^{-1}_{ac} (x, y) G^{-1}_{db} (y', x')$$

$$N_{abcd}^{int} (x, x', y, y') = \lambda^2 \left[G^{eg} G^{fh} \right] (x, x') \delta_{acef} \delta_{bdgh} \delta (x - y) \delta (x' - y') - i \lambda c_{abcd} \delta (x - x') \delta (y - y')$$

B. Free fields

Let us begin by asking whether for free fields the quantum fluctuations Eq. (IV.5) go into anything like the classical result Eq. (II.21) in the kinetic theory limit. There is no obvious reason why it should be so, since the physical basis for either formula is at first sight totally different. As we saw in the Introduction, Eq. (IV.5) simply reproduces the full quantum fluctuations, computed in terms of the propagators themselves on the assumption that Wick theorem holds (which is an assumption on the allowed initial states of the field, see (10)).

$$\langle \Delta^{ab} \Delta^{cd} \rangle = i \left[\frac{\delta^2 \Gamma}{\delta G^{ab} \delta G^{cd}} \right]^{-1} = G^{ac} G^{db} + G^{da} G^{bc}$$ \hspace{1cm} (IV.7)

while the classical auto-correlation Eq. (II.21) has been found by applying Einstein’s formula to the phenomenological entropy eq. (II.13). The only clear point of contact between both approaches is that both assume Bose statistics.

Introducing the Wigner transform of the fluctuations

$$\Delta^{ab} (x, x') = \int \frac{d^4 k}{(2\pi)^4} e^{ik(x-x')} \Delta^{ab} (X, k); \quad X = \frac{1}{2} (x + x').$$ \hspace{1cm} (IV.8)

we observe that in this case we are not entitled to assume that the dependence of the Wigner transform on X is weak. Eq. (IV.8) has a formal inverse

$$\Delta^{ab} (X, k) = \int du e^{iku} \Delta^{ab} \left(X + \frac{u}{2}, X - \frac{u}{2} \right).$$ \hspace{1cm} (IV.9)

and from Eq. (IV.7) we get

$$\langle \Delta^{ab} (X, p) \Delta^{cd} (Y, q) \rangle = \int dudv e^{i(pu+qv)} K [X, Y, u, v],$$
where
\[K [X, Y, u, v] = G^{ac} \left(X - \frac{u}{2}, Y - \frac{v}{2} \right) G^{bd} \left(X - \frac{u}{2}, Y - \frac{v}{2} \right) + G^{ad} \left(X + \frac{u}{2}, Y + \frac{v}{2} \right) G^{bc} \left(X + \frac{u}{2}, Y + \frac{v}{2} \right). \]

The propagators in the right hand side are equilibrium ones, and so we can use the representation Eq. (III.11)
\[K [X, Y, u, v] = \int \frac{d^4r}{(2\pi)^4} \frac{d^4s}{(2\pi)^4} \int dudv e^{i(pu+qv)} K [X, Y, r, s] \]
\[K [X, Y, r, s] = e^{ir(X-Y+\frac{1}{2}(u-v))} e^{is(X-Y-\frac{1}{2}(u-v))} G^{ac} (r) G^{bd} (s) + e^{ir(X-Y-\frac{1}{2}(u+v))} e^{is(X-Y+\frac{1}{2}(u+v))} G^{ad} (r) G^{bc} (s) \]

Now integrate over \(u, v \) and \(s \)
\[\langle \Delta^{ab} (X, p) \Delta^{cd} (Y, q) \rangle = 16 \int d^4r e^{i2(r+p)(X-Y)} \left[\delta (p + q) G^{ac} (r) G^{bd} (r + 2p) + \delta (p - q) G^{ad} (r) G^{bc} (r + 2p) \right] \]

We have 16 different quantum auto-correlations to compare against a single classical result, so we can only expect real agreement in the large occupation number limit, where all propagators converge to the same expression. With this proviso in mind, we can choose any combination of indices to continue the calculation. The most straightforward choice (to a certain extent suggested by the structure of the closed time path, see [26,27]) is \(a = b = 1, c = d = 2 \); we are thus seeking the correlations among the fluctuations in the Feynman and Dyson propagators
\[\langle \Delta^{11} (X, p) \Delta^{22} (Y, q) \rangle = 16 (2\pi)^2 [\delta (p + q) + \delta (p - q)] \int d^4r e^{i2(r+p)(X-Y)} \delta \left[r^2 + M^2 \right] \delta \left[(r + 2p)^2 + M^2 \right] \]
\[\left[\theta (-r^0) + f_{eq} (r) \right] \left[\theta (-r^0 - 2p^0) + f_{eq} (r + 2p) \right] \]

The arguments of the delta functions can be simplified
\[\langle \Delta^{11} (X, p) \Delta^{22} (Y, q) \rangle = 4 (2\pi)^2 [\delta (p + q) + \delta (p - q)] \int d^4r e^{i2(r+p)(X-Y)} \delta \left[r^2 + M^2 \right] \]
\[\delta \left[rp + p^2 \right] \left[\theta (-r^0) + f_{eq} (r) \right] \left[\theta (-r^0 - 2p^0) + f_{eq} (r + 2p) \right] \]

A difference from the classical case already stands out here: in the quantum case, a fluctuation in the number of particles with momentum \(p \) correlates not only with itself, but also with the corresponding fluctuation in the number of antiparticles with momentum \(-p \). This is unavoidable, given the symmetries of the propagators in this theory.

Let us stress that we are trying to push the quasi-particle (kinetic) description of quantum field dynamics beyond the calculation of mean values (of such quantities as particle number or energy density), to account for their fluctuations. The calculation of the fluctuations of the distribution function for on-shell particles gives a crucial consistency check on such an attempt. Indeed, we know that each on-shell mode of the free field contributes an amount [cfr. Eqs. (III.13), (IV.12) and (III.21)] \(kT \sim \omega_k (1/2 + f_{eq}) \) to the mean energy density, where \(f_{eq} \) is the equilibrium distribution function Eq. (II.15). The fluctuations of this quantity at equilibrium will be given by \(\langle \delta \rho_k^2 \rangle = T^2 (\partial \rho_k / \partial T) \sim \omega_k^2 f_{eq} (1 + f_{eq}) \). So, if these fluctuations are still described by a distribution function consistent with ordinary statistical mechanics, then this distribution function must fluctuate like in Eq. (II.14). (This may in the face of it be a rather big if).

For large \(M^2 \), the condition that \(p \) is nearly on-shell means that the spatial components are much smaller than the time component, and we may approximate
\[
\delta \left[r^2 + M^2 \right] \delta \left[rp + p^2 \right] \sim \delta \left[p^2 + M^2 \right] \frac{1}{|p|^2} \delta \left(r^0 + p^0 \right)
\]

thus obtaining

\[
\langle \Delta^{11} (X, p) \Delta^{22} (Y, q) \rangle_{\text{on-shell}} = \frac{1}{2 \omega_p} (2\pi)^3 \left[\delta (p + q) + \delta (p - q) \right] f_{eq} (p) \left(1 + f_{eq} (p) \right) \delta \left[p^2 + M^2 \right] \delta \left(\vec{X} - \vec{Y} \right)
\]

To finish the comparison, assume, e. g., that \(p^0 \geq 0 \), then

\[
\delta \left(p - q \right) \delta \left[p^2 + M^2 \right] = \delta \left(q_0 - \omega_q \right) \delta \left(\vec{q} - \vec{p} \right) \delta \left[q^2 + M^2 \right] \text{ \ (IV.12)}
\]

This result suggests writing

\[
\Delta^{11} (X, p) = 2\pi \delta f \left(X, \vec{p} \right) \delta \left[p^2 + M^2 \right] + \text{off-shell terms.} \quad \text{ (IV.13)}
\]

Taking \(p^0 \) and \(q^0 \) to be positive, this yields

\[
\langle \delta f \left(t, \vec{X}, \vec{p} \right) \delta f \left(t, \vec{Y}, \vec{q} \right) \rangle = \left(2\pi \right)^3 \delta \left(\vec{q} - \vec{p} \right) \delta \left(\vec{X} - \vec{Y} \right) f_{eq} (p) \left(1 + f_{eq} (p) \right) \text{ \ (IV.14)}
\]

which is identical to Eq. (II.21). This is one of the most important results of this paper, as it gives a whole new meaning to the phenomenological entropy Eq. (II.13).

We have thus completed our proof, and obtained new independent confirmation of the validity of our scheme for introducing fluctuations in the dynamics of correlations.

C. Interacting fields and the Boltzmann - Langevin equation

The results of the previous section already imply that the full stochastic Dyson equation will go over to the Boltzmann - Langevin equation in the kinetic limit. Indeed, the structure of the fluctuations does not change drastically when interactions are switched on, and since they become identical in the classical limit, the noise in the Dyson equation necessary to sustain the fluctuations at the quantum level must go over to the noise in the Boltzmann equation, which plays the same role in the classical theory. Nevertheless, it is worth identifying exactly which part of the quantum source auto-correlation goes into the classical one in the correspondence limit.

Concretely, our aim is to begin with the stochastic Schwinger - Dyson equation

\[
-\frac{i}{2} G_{ab}^{-1} - \frac{1}{2} \left[c_{ab} \left(-\Box + m^2 \right) + \frac{\lambda}{2} c_{abcd} G^{cd} (x, x) \right] \delta (x, x') + \frac{i \lambda^2}{12} c_{ac} c_{bd} \left[G^{cd} (x, x') \right]^3 = \frac{1}{2} \kappa_{ab} \text{ \ (IV.15)}
\]

where the noise auto-correlation is given by Eq. (IV.6). We then identify the forces appearing in Eqs. (III.36) and (III.37)

\[
F^{ab} (x, x') = i \int d^4 y \ c^{ac} \kappa_{cd} (x, y) G^{db} (y, x') \quad \text{ (IV.16)}
\]

\[
\tilde{F}^{ab} (x, x') = i \int d^4 y \ G^{ac} (x, y) \kappa_{cd} (y, x') c^{db}
\]

In condensed notation,

\[
H^{ab} = \frac{1}{2} \left[F - \tilde{F} \right]^{ab} = \frac{i}{2} \left\{ c^{ac} \kappa_{cd} G^{db} - G^{ac} \kappa_{cd} c^{db} \right\} \quad \text{ (IV.17)}
\]
whose Wigner transform plays the role of random force in the kinetic equation (III.39). Restricting ourselves to on-shell fluctuations, we can compute the auto-correlation of this force and compare the result to the classical expectation Eq. (II.30).

For the same reasons as above, we shall disregard the propagator - independent terms.

We thus approximate

$$\langle \kappa_{ab} \kappa_{cd} \rangle = G^{-1}_{da} G^{-1}_{bc} + G^{-1}_{ac} G^{-1}_{db}$$ (IV.18)

leading to

$$H^{ab} = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} H^{ab}(X,k)$$ (IV.19)

$$H^{ab}(X,k) = \int d^4u e^{-iku} H^{ab} \left(X + \frac{u}{2}, X - \frac{u}{2} \right)$$

to get

$$\langle H^{ab}(X,p) H^{cd}(Y,q) \rangle = \frac{1}{4} \int d^4ud^4v e^{-i(pu+qv)} [J - K]$$, (IV.20)

where, using the translation invariance of the equilibrium propagators

$$J = \int \frac{d^4r}{(2\pi)^4} \frac{d^4s}{(2\pi)^4} \exp \left[ir \left(X - Y + \frac{u+v}{2} \right) \right] \exp \left[is \left(X - Y - \frac{u-v}{2} \right) \right] \left\{ G^{ad}(r) G^{-1bc}(s) + G^{-1ad}(r) G^{bc}(s) \right\}$$

$$K = \int \frac{d^4r}{(2\pi)^4} \frac{d^4s}{(2\pi)^4} \exp \left[ir \left(X - Y - \frac{u-v}{2} \right) \right] \exp \left[is \left(X - Y + \frac{u+v}{2} \right) \right] \left\{ G^{bd}(r) G^{-1ac}(s) + G^{-1bd}(r) G^{ac}(s) \right\}$$.

Upon integration over u and v, the K term gives a contribution proportional to $\delta^{(4)}(p+q)$. This is unrelated to the noise auto-correlation, being only a cross correlation between the positive and negative frequency components of the source, and we shall not analyze it further. We also restrict ourselves to the case where $a = b = 1$, $c = d = 2$. Using the reflection symmetry of the equilibrium propagators, obtaining the inverse propagators from Eq. (IV.2) and retaining only the dominant term in the correspondence limit, we find

19
\[\langle H^{11}(X, p) H^{22}(Y, q) \rangle \sim \frac{4\lambda^2}{3} \delta(p-q) \int d^4s \cos[2(s+p)(X-Y)] \Sigma^{12}(s+2p)G^{12}(s). \quad (IV.21) \]

An analysis of this expression shows that in the high temperature limit the correlation length is of order \(M^{-1} \). This is a microscopic scale, much smaller than the macro scales of relevance to the kinetic limit (if this limit exists). Therefore we are justified in writing

\[\langle H^{11}(X, p) H^{22}(Y, q) \rangle \sim \gamma \delta(X-Y) \quad (IV.22) \]

We compute \(\gamma \) by simply integrating Eq. (IV.21) over \(X \)

\[\gamma = \frac{\lambda^2}{12} (2\pi)^4 \Sigma^{12}(p)G^{21}(p) \delta(p-q). \quad (IV.23) \]

From Eqs. (III.27) and (II.26) we get

\[\gamma = \omega_p (2\pi)^2 \delta(p-q) \delta(p^2+M^2) \nu^2 \quad (IV.24) \]

Assuming \(p^0, q^0 \geq 0 \), this is

\[\gamma = 2\omega_p^2 (2\pi)^2 \delta(\vec{p}-\vec{q}) \delta(q^2+M^2) \delta(p^2+M^2) \nu^2 \quad (IV.25) \]

So, writing

\[H(X, k) = 2\pi \omega_k \delta(k^2+M^2) j(X, \vec{k}) + \text{off-shell} \quad (IV.26) \]

we get the final result

\[\langle j(X, \vec{p}) j(Y, \vec{q}) \rangle = 2\delta(\vec{p}-\vec{q}) \delta(X-Y) \nu^2, \quad (IV.27) \]

which agrees with the classical result, Eq. (II.30).

We have shown that there is a piece of the full quantum noise which can be identified with the classical source \(j \). Clearly \(j \) does not account for the full quantum noise, the difference being due among other things to the role of negative frequency in the quantum theory.

Finally, we note that Abe et al. [15] have given a nonrelativistic derivation of the Boltzmann - Langevin equation, while ours is fully relativistic, being also immune to the reservations expressed by Greiner and Leupold [17].

V. MASTER EFFECTIVE ACTION

So far in the paper we have referred several times to the possibility of conceiving the low order correlations of a quantum field as the field variables of an open quantum system, interacting with the environment provided by the higher correlations. The goal of this final section is to present a formalism, the master effective action, built on this perspective. In particular, in this formalism the usual Dyson equations are seen to emerge from the averaging over higher correlations. As a simple consequence and illustration, we derive Eq. (IV.1).

A. The low order effective actions

The simplest application of functional methods in quantum field theory concerns the dynamics of the expectation value of the field [53]. The expectation value or mean field may be deduced from the generating functional \(W[J] \)
\[
\exp \{ iW[J] \} = \int D\Phi \exp \left\{ iS[\Phi] + i \int d^4x \ J(x) \ \Phi(x) \right\} \tag{V.1}
\]

\[
\phi(x) = \left. \frac{\delta W}{\delta J} \right|_{J=0} \tag{V.2}
\]

We obtain the dynamics from the effective action, which is the Legendre transform of \(W \)

\[
\Gamma[\phi] = W[J] - \int d^4x \ J(x) \ \phi(x) \tag{V.3}
\]

The physical equation of motion is

\[
\frac{\delta \Gamma}{\delta \phi} = 0 \tag{V.4}
\]

In a causal theory, we must adopt Schwinger’s CTP formalism. The point \(x \) may therefore lie on either branch of the closed time path, or equivalently we may have two background fields \(\phi^a(x) = \phi(x^a) \). The classical action is defined as

\[
S[\Phi^a] = S[\Phi^1] - S[\Phi^2]^* \tag{V.5}
\]

which automatically accounts for all sign reversals. We also have two sources

\[
\int d^4x \ J_a(x) \ \Phi^a(x) = \int d^4x \ \left[J^1(x) \ \Phi^1(x) - J^2(x) \ \Phi^2(x) \right]
\]

and obtain two equations of motion

\[
\frac{\delta \Gamma}{\delta \phi^a} = 0 \tag{V.6}
\]

However, these equations always admit a solution where \(\phi^1 = \phi^2 = \phi \) is the physical mean field, and after this identification, they become a real and causal equation of motion for \(\phi \).

The functional methods we have used so far to derive the dynamics of the mean field may be adapted to investigate more general operators. In order to find the equations of motion for two-point functions, for example, we add a nonlocal source \(K_{ab}(x,x') \) \[31,10\]

\[
\exp \{ iW[J_a,K_{ab}] \} = \int D\Phi^a \exp \left\{ iS[\Phi^a] + \int d^4x J_a \Phi^a + \frac{1}{2} \int d^4x d^4x' \ K_{ab} \Phi^a \Phi^b \right\} \tag{V.7}
\]

It follows that

\[
\frac{\delta W}{\delta K_{ab}(x,x')} = \frac{1}{2} [\phi^a(x) \phi^b(x') + G^{ab}(x,x')]
\]

Therefore the Legendre transform, the so-called 2PI effective action,

\[
\Gamma[\phi^a,G^{ab}] = W[J_a,K_{ab}] - \int d^4x J_a \phi^a - \frac{1}{2} \int d^4x d^4x' \ K_{ab} \left[\phi^a \phi^b + G^{ab} \right] \tag{V.8}
\]

generates the equations of motion

\[
\frac{\delta \Gamma}{\delta \phi^a} = -J_a - K_{ab} \phi^b; \quad \frac{\delta \Gamma}{\delta G^{ab}} = -\frac{1}{2} K_{ab} \tag{V.9}
\]

The goal of this section is to show these two examples as just successive truncations of a single object, the master effective action.
B. Formal construction

In this section, we shall proceed with the formal construction of the master effective action, a functional of the whole string of Green functions of a field theory whose variation generates the Dyson - Schwinger hierarchy. Since we are using Schwinger - Keldish techniques, all fields are to be defined on a closed time path. Also we adopt DeWitt's condensed notation [54].

We consider then a scalar field theory whose action

\[S[\Phi] = \frac{1}{2} S_2 \Phi^2 + S_{\text{int}}[\Phi] \]

(V.10)

decomposes into a free part and an interaction part

\[S_{\text{int}}[\Phi] = \sum_{n=3}^{\infty} \frac{1}{n!} S_n \Phi^n \]

(V.11)

Here and after, we use the shorthand

\[K_n \Phi^n \equiv \int d^d x_1 \ldots d^d x_n K_{n a_1 \ldots a_n} (x_1, \ldots x_n) \Phi^{a_1} (x_1) \ldots \Phi^{a_n} (x_n) \]

(V.12)

where the kernel \(K \) is assumed to be totally symmetric.

Let us define also the 'source action'

\[J[\Phi] = J_1 \Phi + \frac{1}{2} J_2 \Phi^2 + J_{\text{int}}[\Phi] \]

(V.13)

where \(J_{\text{int}}[\Phi] \) contains the higher order sources

\[J_{\text{int}}[\Phi] = \sum_{n=3}^{\infty} \frac{1}{n!} J_n \Phi^n \]

(V.14)

and define the generating functional

\[Z[\{J_n\}] = e^{iW[\{J_n\}]} = \int D\Phi \ e^{iS_t[\Phi, \{J_n\}]} \]

(V.15)

where

\[S_t[\Phi, \{J_n\}] = J_1 \Phi + \frac{1}{2} (S_2 + J_2) \Phi^2 + S_{\text{int}}[\Phi] + J_{\text{int}}[\Phi] \]

(V.16)

We shall also call

\[S_{\text{int}}[\Phi] + J_{\text{int}}[\Phi] = S_t \]

(V.17)

As it is well known, the Taylor expansion of \(Z \) with respect to \(J_1 \) generates the expectation values of path-ordered products of fields

\[\frac{\delta^n Z}{\delta J_{1 a_1} (x_1) \ldots \delta J_{1 a_n} (x_n)} = \langle P \{ \Phi^{a_1} (x_1) \ldots \Phi^{a_n} (x_n) \} \rangle \equiv P_{n a_1 \ldots a_n} (x_1, \ldots x_n) \]

(V.18)

while the Taylor expansion of \(W \) generates the ‘connected’ Green functions (‘linked cluster theorem’ [4])

\[\frac{\delta^n W}{\delta J_{1 a_1} (x_1) \ldots \delta J_{1 a_n} (x_n)} = \langle P \{ \Phi^{a_1} (x_1) \ldots \Phi^{a_n} (x_n) \} \rangle_{\text{connected}} \equiv C_{n a_1 \ldots a_n} (x_1, \ldots x_n) \]

(V.19)
Comparing these last two equations, we find the rule connecting the \(F \)'s with the \(C \)'s. First, we must decompose the ordered index set \((i_1, \ldots, i_n)\) \((i_k = (x_k, a^k))\) into all possible clusters \(P_n\). A cluster is a partition of \((i_1, \ldots, i_n)\) into \(N_{P_n}\) ordered subsets \(p = (j_1, \ldots, j_r)\). Then
\[
F_{n\cdots n} = \sum_{P_n} \prod_p C_r^{j_1 \cdots j_r} \quad \text{(V.20)}
\]

Now from the obvious identity
\[
\frac{\delta Z}{\delta J_{n_1\cdots n_n}} \equiv \frac{1}{n!} \frac{\delta^n Z}{\delta J_{1,\ldots, J_n}} \quad \text{(V.21)}
\]
we obtain the chain of equations
\[
\frac{\delta W}{\delta J_{n_1\cdots n_n}} \equiv \frac{1}{n!} \sum_{P_n} \prod_p C_r^{j_1 \cdots j_r} \quad \text{(V.22)}
\]

We can invert these equations to express the sources as functionals of the connected Green functions, and define the master effective action (MEA) as the full Legendre transform of the connected generating functional
\[
\Gamma_\infty[\{C_r\}] = W[\{J_n\}] - \sum_n \frac{1}{n!} J_n \sum_{P_n} \prod_p C_r \quad \text{(V.23)}
\]
The physical case corresponds to the absence of external sources, whereby
\[
\frac{\delta \Gamma_\infty[\{C_r\}]}{\delta C_s} = 0 \quad \text{(V.24)}
\]
This hierarchy of equations is equivalent to the Dyson-Schwinger series.

C. The background field method

The master effective action just introduced becomes more manageable if one applies the background field method (BFM) approach. We first distinguish the mean field and the two point functions
\[
\begin{align*}
C_1^i & \equiv \phi^i \\
C_2^{ij} & \equiv G^{ij}
\end{align*} \quad \text{(V.25)}
\]

We then perform the Legendre transform in two steps: first with respect to \(\phi\) and \(G\) only, and then with respect to the rest of the Green functions. The first (partial) Legendre transform yields
\[
\Gamma_\infty[\phi, G, \{C_r\}] \equiv \Gamma_2[\phi, G, \{J_n\}] - \sum_{n \geq 3} \frac{1}{n!} J_n \sum_{P_n} \prod_p C_r \quad \text{(V.27)}
\]
Here \(\Gamma_2\) is the two particle-irreducible (2PI) effective action
\[
\Gamma_2[\phi, G, \{J_n\}] = S[\phi] + \frac{1}{2} C^{jk} S_{jk} + \frac{i}{2} \ln \text{Det } G + J_{\text{int}}[\phi] + \frac{1}{2} G^{jk} J_{\text{int},jk} + W_2 \quad \text{(V.28)}
\]
and \(W_2\) is the sum of all 2PI vacuum bubbles of a theory whose action is
\[
S'[\varphi] = \frac{i}{2} G^{-1} \varphi^2 + S_Q[\varphi] \quad \text{(V.29)}
\]
\[S_Q[\varphi] = S_I[\phi + \varphi] - S_I[\phi] - S_I[\phi], \varphi - \frac{1}{2} S_{[\Phi],ij} \varphi^i \varphi^j \] (V.30)

where \(\varphi \) is the fluctuation field around \(\phi \), i.e., \(\Phi = \phi + \varphi \). Decomposing \(S_Q \) into source-free and source-dependent parts, and Taylor expanding with respect to \(\varphi \), we may define the background-field dependent coupling and sources where

\[
\sigma_{n_1 \ldots i_n} = \sum_{m \geq n} \frac{1}{(m-n)!} S_{m_1 \ldots i_n,j_{n+1} \ldots j_m} \varphi^{j_{n+1}} \ldots \varphi^{j_m}
\] (V.31)

\[
\chi_{n_1 \ldots i_n} = \sum_{m \geq n} \frac{1}{(m-n)!} J_{m_1 \ldots i_n,j_{n+1} \ldots j_m} \varphi^{j_{n+1}} \ldots \varphi^{j_m}
\] (V.32)

Now, from the properties of the Legendre transformation, we have, for \(n > 2 \),

\[
\frac{\delta W}{\delta J_n|_{J_1,J_2}} = \frac{\delta \Gamma_\infty}{\delta J_n}|_{\phi,G}
\] (V.33)

Computing this second derivative explicitly, we conclude that

\[
\frac{\delta W}{\delta J_n|_{J_1,J_2}} \equiv \frac{1}{n!} \phi^n + \frac{1}{2 (n-2)!} G\phi^{n-2} + \sum_{m=3}^n \frac{\delta \chi_m}{\delta J_n} \frac{\delta W_2}{\delta \chi_m}
\] (V.34)

Comparing this equation with

\[
\frac{\delta W}{\delta J_{n_1 \ldots i_n}} \equiv \frac{1}{n!} \sum_{P_n} \prod_p C_r^{j_1 \ldots j_r}
\] (V.35)

we obtain the identity

\[
\frac{\delta W_2}{\delta \chi_{n_1 \ldots i_n}} \equiv \frac{1}{n!} \sum_{P_n} \prod_p C_r^{j_1 \ldots j_r}
\] (V.36)

where the * above the sum means that clusters containing one element subsets are deleted. This and

\[
\sum_{n \geq 3} \frac{1}{n!} J_n \sum_{P_n} \prod_p C_r = J_{int}[\phi] + \frac{1}{2} G_{ij} \frac{\delta J_{int}[\phi]}{\delta \phi^i \delta \phi^j} + \sum_{n \geq 3} \frac{1}{n!} \chi_n \sum_{P_n} \prod_p C_r
\] (V.37)

allow us to write

\[
\Gamma_\infty[\phi,G,\{C_r\}] \equiv S[\phi] + \frac{1}{2} G_{ij} \frac{\delta S[\phi]}{\delta \phi^i \delta \phi^j} - \frac{i}{2} \ln \det G
\]

\[
+ \{W_2[\phi,\chi_n]\} - \sum_{n \geq 3} \frac{1}{n!} \chi_n \sum_{P_n} \prod_p C_r
\] (V.38)

This entails an enormous simplification, since it implies that to compute \(\Gamma_\infty \) it is enough to consider \(W_2 \) as a functional of the \(\chi_n \), without ever having to decompose these background dependent sources in terms of the original external sources.
D. Truncation and Slaving: Loop Expansion and Correlation Order

After obtaining the formal expression for Γ_∞, and thereby the formal hierarchy of Dyson - Schwinger equations, we should proceed with it much as with the BBGKY hierarchy in statistical mechanics [46], namely, truncate it and close the lower-order equations by constraining the high order correlation functions to be given (time-oriented) functionals of the lower correlations. Truncation proceeds by discarding the higher correlation functions and replacing them by given functionals of the lower ones, which represent the dynamics in some approximate sense [3]. The system which results is an open system and the dynamics becomes an effective dynamics.

It follows from the above that truncations will be generally related to approximation schemes. In field theory we have several such schemes available, such as the loop expansion, large N expansions, expansions in coupling constants, etc. For definiteness, we shall study the case of the loop expansion, although similar considerations will apply to any of the other schemes.

Taking then the concrete example of the loop expansion, we observe that the nonlocal χ sources enter into W_2 in as many nonlinear couplings of the fluctuation field ϕ. Now, W_2 is given by a sum of connected vacuum bubbles, and any such graph satisfies the constraints

$$\sum nV_n = 2i$$

$$i = \sum V_n = l - 1$$

where i, l, V_n are the number of internal lines, loops, and vertices with n lines, respectively. Therefore,

$$l = 1 + \sum \frac{n - 2}{2} V_n$$

we conclude that χ_n only enters the loop expansion of W_2 at order $n/2$. At any given order l, we are effectively setting $\chi_n \equiv 0$, $n > 2l$. Since W_2 is a function of only χ_3 to χ_{2l}, it follows that the C_r's cannot be all independent. Indeed, the equations relating sources to Green functions

$$\frac{\delta W_2}{\delta \chi_{n_1 \ldots n_n}} = \frac{1}{n!} \sum_{P_n} \prod_{p} C_{r_p}^{j_1 \ldots j_r}$$

have now turned, for $n > 2l$, into the algebraic constraints

$$\sum_{P_n} \prod_{p} C_{r_p}^{j_1 \ldots j_r} \equiv 0$$

In other words, the constraints which make it possible to invert the transformation from sources to Green functions allow us to write the higher Green functions in terms of lower ones. In this way, we see that the loop expansion is by itself a truncation in the sense above and hence any finite loop or perturbation theory is intrinsically an effective theory.

Actually, the number of independent Green functions at a given number of loops is even smaller than $2l$. It follows from the above that W_2 must be linear on χ_n for $l + 2 \leq n \leq 2l$. Therefore the corresponding derivatives of W_2 are given functionals of the χ_m, $m \leq l + 1$. Writing the lower sources in terms of the lower order Green functions, again we find a set of constraints on the Green functions, rather than new equations defining the relationship of sources to functions. These new constraints take the form

$$\sum_{P_n} \prod_{p} C_{r_p}^{j_1 \ldots j_r} = f_n(G, C_3, \ldots C_{l+1})$$
for $l + 2 \leq n \leq 2l$. In other words, to a given order l in the loop expansion, only ϕ, G and C_r, $3 \leq r \leq l + 1$, enter into Γ_∞ as independent variables. Higher correlations are expressed as functionals of these by virtue of the constraints implied by the loop expansion on the functional dependence of W_2 on the sources. However, these constraints are purely algebraic, and therefore do not define an arrow of time. The dynamics of this lower order functions is unitary. Irreversibility appears only when one makes a time-oriented ansatz in the form of the higher correlations, such as the ‘weakening of correlations’ principle invoked in the truncation of the BBGKY hierarchy [2]. This is done by substituting some of the allowed correlation functions at a given number of loops l, by solutions of the l-loop equations of motion. Observe that even if we use exact solutions, the end result is an irreversible theory, because the equations themselves are only an approximation to the true Dyson - Schwinger hierarchy.

To summarize, the truncation of the MEA in a loop expansion scheme proceeds in two stages. First, for a given accuracy l, an l-loop effective action is obtained which depends only on the lowest $l + 1$ correlation functions, say, $\{\phi, G, C_3, \ldots C_{l+1}\}$. This truncated effective action generates the l-loop equations of motion for these correlation functions. In the second stage, these equations of motion are solved (with causal boundary conditions) for some of the correlation functions, say $\{C_k, \ldots C_{l+1}\}$, and the result is substituted into the l loop effective action. (We say that $\{C_k, \ldots C_{l+1}\}$ have been slaved to $\{\phi, G, C_3, \ldots C_{k-1}\}$) The resulting truncated effective action is generally complex and the mean field equations of motion it generates will come out to be dissipative, which indicates that the effective dynamics is stochastic.

E. Example: the three-loop 2PI EA

We shall conclude this paper by explicitly computing the 2PI CTP EA for a $\lambda \phi^4$ self interacting scalar field theory, out of the corresponding MEA. We carry out our analysis at three loops order, this being the lowest order at which the dynamics of the correlations is nontrivial, in the absence of a symmetry breaking background field [11].

To this accuracy, we have room for four nonlocal sources besides the mean field and the two point correlations, namely χ_3, χ_4, χ_5, and χ_6. However, the last two enter linearly in the generating functional. Thus the three- loop effective action only depends nontrivially on the mean field and the two, three and four point correlations. By symmetry, there must be a solution where the mean field and the three point function remain identically zero, which we shall assume.

Our first step is to compute Eq. (V.36), which now reads

$$\Gamma_4[G, C_4] \equiv \left(-\frac{1}{2} \right) c_{ij} \left(-\Box + M^2 \right) G_{ij} - \frac{i}{2} \ln \det G$$

$$+ W_2[\phi, \{\chi_n\}] - \frac{1}{24} \chi_{ijkl} \left[C_{ijkl}^4 + G_{ij} G_{kl} + G_{ik} G_{jl} + G_{il} G_{jk} \right]$$

where W_2 denotes the sum of 2PI vacuum bubbles of a quantum field theory with quartic self interaction and a coupling constant $\lambda - \chi_4$ (see eqs. (V.28) and (V.30)) up to three loops

$$W_2 = \left(-\frac{1}{8} \right) \left(\lambda - \chi_4 \right) \delta_{ijkl} G^{ij} G^{kl}$$

$$+ \left(\frac{i}{48} \right) \left(\lambda - \chi_4 \right) \delta_{ijkl} \left(\lambda - \chi_4 \right) G_{pqrs} G^{pq} G^{qr} G^{ks} G^{ls}$$

Eq. (V.36) yields

$$C_{ijkl}^4 = -i \left(\lambda - \chi_4 \right) G_{pqrs} G^{pq} G^{qr} G^{ks} G^{ls}$$

Inverting and substituting back in Eq. (V.46), we obtain
\[\Gamma_4[G, C_4] \equiv \left(-\frac{1}{2} \right) c_{ij} \left(-\Box + M^2 \right) G^{ij} - \frac{i}{2} \ln \text{Det} \ G \\
- \left(\frac{1}{8} \right) \lambda_{ijkl} G^{ij} G^{kl} - \left(\frac{1}{24} \right) \lambda_{ijkl} C_{ijkl}^{ijkl} \\
+ \left(\frac{i}{48} \right) \lambda_{ijkl} C_{ijkl}^{ijkl} \left[G^{-1}_{ip} G^{-1}_{jq} G^{-1}_{kr} G^{-1}_{ls} \right] C_{pqrs}^{pqrs} \] (V.49)

This functional generates the self consistent, time reversal invariant dynamics of the two and four particle Green functions to three loop accuracy. To reduce it further to the dynamics of the two point functions alone, we must slave the four point functions. Consider the three loops equation of motion for \(C_4 \)

\[\left[G^{-1}_{ip} G^{-1}_{jq} G^{-1}_{kr} G^{-1}_{ls} \right] C_{pqrs}^{pqrs} = -i \lambda_{ijkl} \] (V.50)

Solving for this equation with causal boundary conditions yields

\[C_{ijkl}^{ijkl} = -i \lambda_{pqrs} G^{ip} G^{jq} G^{kr} G^{ls} \] (V.51)

(in other words, \(\chi_4 = 0 \)) and substituting back in Eq. (V.49) we obtain

\[\Gamma[G] \equiv \left(-\frac{1}{2} \right) c_{ij} \left(-\Box + M^2 \right) G^{ij} - \frac{i}{2} \ln \text{Det} \ G \\
- \left(\frac{1}{8} \right) \lambda_{ijkl} G^{ij} G^{kl} \\
+ \left(\frac{i}{48} \right) \lambda_{ijkl} G^{ip} G^{jq} G^{kr} G^{ls} \lambda_{pqrs} \] (V.52)

which is seen to be equivalent to Eq. (IV.1). This effective action leads to a dissipative and, as we have seen, also stochastic dynamics, which results from the slaving of the four point functions.

VI. DISCUSSIONS

In this paper we have introduced a new object, the stochastic propagator \(G \), whose expectation value reproduces the usual propagators, but whose fluctuations are designed to account for the quantum fluctuations in the binary product of fields. We have introduced the dynamical equation for \(G \) which takes the form of an explicitly stochastic Schwinger - Dyson equation, and showed that in the kinetic limit, both the fluctuations in \(G \) become the classical fluctuations in the one particle distribution function, and the dynamic equation for \(G \)'s Wigner transform becomes the Boltzmann - Langevin equation. Each of these results has interest of its own. A priori, there is no simple reason why the fluctuations derived from quantum field theory should have a physical meaning corresponding to a phenomenological entropy flux and Einstein’s relation.

The notion that Green functions (and indeed, higher correlations as well) may or even ought to be seen as possessing fluctuating characters (when placed in the larger context of the whole hierarchy) with clearly discernable physical meanings is likely to have an impact on the way we perceive the statistical properties of field theory. For example, we are used to fixing the ambiguities of renormalization theory by demanding certain Green functions to take on given values under certain conditions (conditions which should resemble the physical situation of interest as much as possible, as discussed by O’Connor and Stephens [55]). If the Green functions themselves are to be regarded as fluctuating, then the same ought to hold for the renormalized coupling constants defined from them, and to the renormalization group (RG) equations describing their scale dependence.

While the application of renormalization group methods to stochastic equations is presented in well-known monographs [56], our proposal here goes beyond these results in at least two ways. First, in our approach the noise is not put in by hand or brought in from outside (e.g., the environment of an open system), as in the usual Langevin equation approach, but it follows from the (quantum) dynamics of the system itself.
Actually, the possibility of learning about the system from the noise properties (whether it is white or coloured, additive or multiplicative, etc.) – unraveling the noise, or treating noise creatively – is a subtext in our program. Second, our result suggests that stochasticity may, or should, reside beyond the level of equations of motion, and appear at the level of the RG equations, as they describe the running of quantities which are themselves fluctuating.

Indeed, the possibility of a nondeterministic renormalization group flow is even clearer if we think of the RG as encoding the process of eliminating irrelevant degrees of freedom from our description of a system \([57]\). These elimination processes lead as a rule to dissipation and noise, the noise and dissipation in the influence action and the CTP-effective action are but a particular case. If the need for such an enlarged RG has not been felt so far, the groundbreaking work on the dynamical RG by Ma, Mazenko, Hohenberg, Halperin, and many significant others notwithstanding, it is probably due to the fact that the bulk of RG research has been focused on equilibrium, stationary properties rather than far-from-equilibrium dynamics \([58]\).

Acknowledgements EC is supported in part by CONICET, UBA and Fundación Antorchas. BLH is supported in part by NSF grant PHY98-00967 and their collaboration is supported in part by NSF grant INT95-09847. A preliminary version of this work was presented at the RG2000 meeting in Taxco (Mexico), Jan. 1999. We wish to thank the organizers for this excellent meeting and their lavish hospitality, especially Denjoe O’Connor and Chris Stephens, with whom we enjoyed many close discussions over the years. We also appreciate the interest expressed by David Huse and exchanges with Michael Fisher and Jean Zinn-Justin during the meeting on noise in nonequilibrium renormalization group theory.

VII. APPENDIX: CLOSED TIME PATH CONVENTIONS

The closed time path (CTP) or Schwinger-Keldysh technique \([29]\) is a bookkeeping device to generate diagrammatic expansions for true expectation values (as opposed to IN-OUT matrix elements) of certain quantum operators. The basic idea is that any expectation value of the form

\[
\langle \text{IN} | \hat{T} [\phi(x_1)...\phi(x_n)] | \text{IN} \rangle
\]

where \(|\text{IN}\rangle\) is a suitable initial quantum state, \(x_1\) to \(x_n\) are space time points, \(\phi\) is the field operator, \(\hat{T}\) stands for time ordering and \(\hat{T}\) for anti time ordering, may be thought of as a path ordered expectation value on a closed time path ranging from \(t = -\infty\) to \(\infty\) and back. These path ordered products are generated by path integrals of the form

\[
\int D\phi^1 D\phi^2 \left[\phi^2(x_1)...\phi^2(x_n) \phi^1(x_{n+1})...\phi^1_m \right] e^{i(S(\phi^1) - S^*(\phi^2))}
\]

(VII.2)

where \(\phi^1\) is a field configuration in the forward leg of the path, and \(\phi^2\) likewise on the return leg. These configurations match each other on a spacelike surface at the distant future. The boundary conditions at the distant past depend on the initial state \(|\text{IN}\rangle\); for example, if this is a vacuum, then we add a negative imaginary part to the mass. We shall not discuss these boundary conditions further, except to note that we assume the validity of Wick’s theorem (see \([10]\)).

In general we shall use a latin index \(a, b,\ldots\) taking values 1 or 2 to denote the CTP branches. Where the space time position is not specified, it must be assumed that it has been subsummed within the CTP upper index. Also we shall refer to the expression \(S(\phi^a) = S(\phi^1) - S^*(\phi^2)\) as the CTP action. We always use the Einstein sum convention, and if not explicit, integration over space time must be understood as well.

It is convenient to introduce a CTP metric tensor \(c_{ab} = \text{diag}(1, -1)\) to keep track of sign inversions. Thus

\[c_{ab}J^a\phi^b = J^a\phi^1 - J^2\phi^2.\]

In general, we write an expression like this as \(J_a\phi^a\), where \(J_a = c_{ab}J^b\); the index \(a\) has been lowered by means of the metric tensor. The opposite operation of raising an index is accomplished with the inverse metric tensor \(c^{ab} = (c^{-1})^{ab} = \text{diag}(1, -1)\). Thus \(J^a = c^{ab}J_b\).
and J. M. Cornwall, Ann. Phys. (NY) 91, 106 (1975).

[32] See, e.g., E. B. Davies, *The Quantum Theory of Open Systems* (Academic Press, London, 1976); K. Lindenberg and B. J. West, *The Nonequilibrium Statistical Mechanics of Open and Closed Systems* (VCH Press, New York, 1990); U. Weiss, *Quantum Dissipative Systems* (World Scientific, Singapore, 1993).

[33] A. O. Caldeira and A. J. Leggett, Physica B21A, 587 (1983); Ann. Phys. (NY) 149, 374 (1983). H. Grabert, P. Schramm and G. L. Ingold, Phys. Rep. 168, 115 (1988). B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev. D45, 2843 (1992); D47, 1576 (1993); B. L. Hu and A. Matsuura, Phys. Rev. D49, 6612 (1994).

[34] R. Feynman and F. Vernon, Ann. Phys. (NY) 24, 118 (1963). R. Feynman and A. Hibbs, *Quantum Mechanics and Path Integrals*, (McGraw - Hill, New York, 1965). H. Kleinert, *Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics* (World Scientific, Singapore, 1990).

[35] A. Einstein, Ann. Phys. (4), 19, 371 (1906), reprinted in *Investigations on the theory of the Brownian movement*, edited by R. Fürth (Dover, New York, 1956); A. Einstein, Phys. Zs. 18, 121 (1917) (reprinted in *Sources of Quantum Mechanics*, edited by B. van der Waerden (Dover, New York, 1967).

[36] H. Nyquist, Phys. Rev. 32, 110 (1928).

[37] L. Landau and E. Lifshitz. J. Exptl. Theoret. Phys. (USSR) 32, 618 (1957) (Engl. Trans. Sov. Phys. JETP 5, 512 (1957)); L. Landau and E. Lifshitz, *Fluid Mechanics* (Pergamon Press, Oxford, 1959).

[38] R. Fox and G. Uhlembeck, Phys. Fluids 13, 1893, 2881 (1970); M. Bixon and R. Zwanzig, Phys. Rev. 187, 267 (1969).

[39] J. P. Boon and S. Yip, *Molecular Hydrodynamics* (Dover, New York, 1991).

[40] L. Landau, E. Lifshitz and L. Pitaevsky (1980)

[41] R. Kubo, M. Toda and N. Hashitsume, *Statistical Physics II: Nonequilibrium statistical mechanics* (Springer, Berlin, 1995).

[42] U. Dekker and F. Haake, Phys. Rev. A11, 2043 (1975); L. Cugliandolo, D. Sean and J. Kurchan, Phys. Rev. Lett. 79, 2168 (1997); L. Cugliandolo, J. Kurchan and L. Peliti, Phys. Rev. E55, 3898 (1997)

[43] G. Gallavotti and E. Cohen, Phys. Rev. Lett. 74, 2694 (1995); J. Stat. Phys. 80, 931 (1995); Phys. Rev. Lett. 77, 4334 (1996); J. Kurchan, J. Phys. A31, 3719 (1998).

[44] W. Israel, Ann. Phys. (NY) 100, 310 (1976); W. Israel and J. Stewart, Gen. Rel. Grav. 2, 491 (1980)

[45] C. W. Misner, K. S. Thorne and J. A. Wheeler, *Gravitation* (Freeman, San Francisco, 1973)

[46] S. Chapman and T. Cowling, *The Mathematical Theory of Nonuniform Gases* (Cambridge University Press, Cambridge (England),1939) (reissued 1990); C. Cercignani, *Mathematical Methods in Kinetic Theory* (MacMillan, London (1969)); K. Huang, *Statistical Mechanics*, 2nd Ed. (John Wiley, New York, 1987); R. Liboff, *Kinetic Theory* (2nd Ed.) (John Wiley, New York, 1998).

[47] R. Kubo, “Statistical Mechanical Theory of Irreversible Processes I”, J. Phys. Soc. Japan 12, 570 (1957); P. C. Martin and J. Schwinger, “Theory of Many Particle Systems I”, Phys. Rev 115, 1342 (1959).

[48] J. D. Bjorken and S. D. Drell, *Relativistic Quantum Fields* (Mc Graw - Hill, New York, 1965).

[49] See also E. Wang and U. Heinz, e-print hep-th/9809016

[50] C. Itzykson and B. Zuber, *Quantum Field Theory* (McGraw Hill, New York, 1980).

[51] P. Ramond, *Field Theory, a Modern Primer* (Benjamin, New York, 1981).

[52] E. Calzetta and B. L. Hu, Phys. Rev. D35, 495 (1987).

[53] R. Jackiw, Phys. Rev. D9, 1686 (1974); J. Iliopoulos, C. Itzykson and A. Martin, Rev. Mod. Phys. 47, 165 (1975).

[54] B. DeWitt, in *Relativity, Groups and Topology*, edited by B. and C. DeWitt (Gordon and Breach, New York, 1964).

[55] D. O’Connor and C. R. Stephens, Int. J. Mod. Phys. A9, 2805 (1994); Phys. Rev. Lett 72, 506 (1994); M. Van Eijk, D. O’Connor and C. R. Stephens, Int. J. Mod. Phys. A10, 3343 (1995); C. R. Stephens, preprint hep-th/9610162.

[56] J. Zinn – Justin, *Field Theory and Critical Phenomena* (Oxford University Press, Oxford, 1989); K. Kawasaki and J. Gunton, Phys. Rev. B33, 4658 (1976); D. Forster, D. Nelson and M. Stephen, Phys. Rev. A16, 732 (1977).

[57] S. A. Ma, *Modern Theory of Critical Phenomena* (Benjamin, London, 1976); J. Zinn-Justin, *Statistical Field Theory* (John Wiley, New York, 1989); E. Brezin, J. C. le Guillou and J. Zinn-Justin Field Theoretical Approach to Critical Phenomena in *Phase Transitions and Critical Phenomena* edited by C. Domb and M. S. Green (Academic Press, London, 1976); M. Fisher, Rev. Mod. Phys. 70, 653 (1998).

[58] P. Hohenberg and B. Halperin, Rev. Mod. Phys. 49, 435 (1977); J. Cardy, *Scaling and Renormalization in Statistical Physics* (Cambridge University Press, Cambridge, 1996); M. Peskin and D. Schroeder, *Quantum Field Theory* (Addison - Wesley, New York, 1995)