Mutation Rules and the Evolution of Sparseness and Modularity in Biological Systems

Tamar Friedlander¹, Avraham E. Mayo¹, Tsvi Tlusty²,³, Uri Alon¹*†

¹ Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel, ² Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel, ³ Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, United States of America

Abstract

Biological systems exhibit two structural features on many levels of organization: sparseness, in which only a small fraction of possible interactions between components actually occur; and modularity – the near decomposability of the system into modules with distinct functionality. Recent work suggests that modularity can evolve in a variety of circumstances, including goals that vary in time such that they share the same subgoals (modularly varying goals), or when connections are costly. Here, we studied the origin of modularity and sparseness focusing on the nature of the mutation process, rather than on connection cost or variations in the goal. We use simulations of evolution with different mutation rules. We found that commonly used sum-rule mutations, in which interactions are mutated by adding random numbers, do not lead to modularity or sparseness except for in special situations. In contrast, product-rule mutations in which interactions are mutated by multiplying by random numbers – a better model for the effects of biological mutations – led to sparseness naturally. When the goals of evolution are modular, in the sense that specific groups of inputs affect specific groups of outputs, product-rule mutations also lead to modular structure; sum-rule mutations do not. Product-rule mutations generate sparseness and modularity because they tend to reduce interactions, and to keep small interaction terms small.

Introduction

Biological systems show certain structural features on many levels of organization. Two such features are sparseness and modularity [1–10]. Sparseness means that most possible interactions between pairs of components are not found. For example, less than 1% of the possible interactions are found in gene regulation networks of bacteria and yeast [11]. The second feature, modularity, is the near-decomposability of a system into modules - sets of components with many strong interactions within the set, and few significant interactions with other sets. Each module typically performs a specific biological function. Modularity is found for example in protein structure (functional domains) [12], in regulatory networks (gene modules, network motifs), and in body plans (organs, systems) - for reviews see [2,8,10,13]. While modular networks are essentially sparse – sparse networks are not necessarily modular. Even if interactions are few, they could be evenly distributed and therefore not form modules.

Computer simulations of evolution are used to understand the origin of these structural features. The simulations begin with a set of structures, the elements of the structures are mutated, the fitness of each structure is evaluated according to a given goal, and then the structures with the highest fitness are selected. The most commonly used form of mutation in these simulations is the sum-rule mutation: adding a random number to the value of each element. Such simulations typically find optimal structures which satisfy the goal. However, they generally do not yield modular or sparse structures. Even when starting with a modular solution the simulations typically drift towards non-modular solutions, which are usually much more prevalent and are sometimes better at performing given the goal [14]. This leaves open the question of how and why sparseness and modularity evolve in biology.

Several studies have addressed this question by employing different approaches. For example, neutral models suggest that duplicating parts of a network can increase its modularity (“duplication-differentiation” model [15]) or similarly that mutation, duplication and genetic drift [16] can lead to modularity. Modularity in metabolic networks was suggested to arise from a neutral growth process [17,18]. On the other hand, other studies suggest that modularity can be selected for, either indirectly or directly. Modularity has been suggested to be beneficial because it provides dynamical stability or robustness to recombination [19], improves the ability to accommodate beneficial foreign DNA [20], breaks developmental constraints [21], evolves due to selection for environmental robustness [22,23] or because the same network supports multiple expression patterns [24]. Horizontal gene transfer, together with selection for novelty can lead to modularity in the polyketide synthase system [25]. It was recently suggested by Clune, Mouret and Lipson that network sparseness and modularity can evolve due to selection to minimize connection costs, as is thought to occur for example in neuron networks [26]. Kashtan et al. [27–29] found that when goals change with time, such that goals are made of the same set of subgoals in different
Mutation-Rules and the Evolution of Modularity

Results

A simple Matrix-multiplication Model of Transcription Networks

To study the effect of the mutation rule on evolved structures, we use a standard evolutionary simulation framework [42,43]. Briefly, the evolutionary simulation starts with a population of N structures, duplicates them, and mutates each structure with some probability according to a mutation rule (the mutation rules described below will be our main focus). Fitness is evaluated for each structure in comparison to a goal. The fittest individuals are selected by a selection criterion, and the process is repeated, until high fitness evolves (Fig. 1A).

We consider, for simplicity, structures described by continuous-valued matrices. These serve as simple models for biological interactions, where the elements of the matrix A_g are the interaction strengths between components i and j in the system. Evolution entails varying the matrix elements to reach defined goals. Linear matrix models have a long history in modeling of biological systems [41,44–49]. Use of a matrix to describe gene expression is a standard approach. Several studies use matrices to reverse-engineer the underlying network [50]. Matrix models have also been used to understand developmental gene regulation, as in the pioneering work of Reinitz in Drosophila [51–53]; matrix models were recently used by De-Pace et al. to relate the strengths of regulation to the level of gene expression across fruit fly species using detailed gene expression measurements [54].

In the field of modularity, matrix models have been extensively used. Matrix models were used in the pioneering work of Lipson et al. [55] and also Wagner et al. [24]. We previously used a matrix model to analytically study a different route to modularity [14]. We evolved the matrix A to satisfy the goal $A u = v$, where u and v are vectors. The fitness is the distance to the goal, $F = ||Au-v||$ where $||.||$ denotes sum of squares of elements (related to Fisher’s geometric model [56]).

Often, biological systems have multiple layers [57] where components in one level – e.g. receptors, send signals to components in the next level, e.g. transcription factors. We model this situation using a matrix multiplication model in which we evolve two matrices A and B towards the goal $A B = G$, where G is a specified matrix that represents an evolutionary goal (Fig. 1B). The fitness in this case is $F = ||A B - G||$. Note that there is an infinite number of matrix pairs A and B that satisfy a given goal G.

As one concrete biological case, which may be kept in mind to guide the reader, the model can be interpreted in the context of a transcription network: if A is the matrix connecting transcription factor (TF) activities to gene expression, the relationship $A u = v$ means that a vector of TF activities u leads to a vector of gene expression v. The matrix element A_{ij} thus represents the regulatory strength of gene i by TF j. Similarly, if B is a matrix of interactions between external signals s and TF activities, one finds that the TF activities are $u=Bs$. The matrix element B_{ij} represents the effect of signal j on TF i. In total, the output gene expression vector that results from an input vector of signals s is $A B s = G s$, where G is
is the desired gene expression profile for input signals \(s \) (see Fig. 1B).

Product-rule Mutations Lead to Sparse Structures, Sum-rule Mutations do not

We compared sum and product mutation rules in evolving the model systems using an evolutionary simulation. The sum-rule is the commonly used addition of a normally distributed random number to a randomly chosen element of the matrices, which represents a mutation in the intensity of a single interaction between network components,

\[
\text{Sum-rule } A_{ij} \rightarrow A_{ij} + N(0,\sigma) \text{ or } B_{ij} \rightarrow B_{ij} + N(0,\sigma).
\]

We also tested product-rules, in which an element of the matrix is multiplied by a random number. We tested

\[
\text{Product-rule } A_{ij} \rightarrow A_{ij} \cdot N(\mu,\sigma) \text{ or } B_{ij} \rightarrow B_{ij} \cdot N(\mu,\sigma).
\]

We study the case of \(\mu = 1 \), and also cases in which \(\mu < 1 \) and \(\mu > 1 \). We also tested symmetric multiplication rules where the random number is log-normally distributed with \(\mu = 0 \) (see Text S1 for details), and thus has equal chance to increase or decrease the absolute strength of the interaction:

Symmetric product-rule
\[
A_{ij} \rightarrow A_{ij} \cdot 1LN(0,\sigma) \text{ or } B_{ij} \rightarrow B_{ij} \cdot 1LN(0,\sigma).
\]

All cases gave qualitatively similar results, and most of the data below is for multiplying by \(N(1,\sigma) \). We also tested other forms of mutation distributions, including long tailed distributions that describe experimental data on sizes of mutation effects [Gamma distributions [39], see also [40,58,59] and references there], and found that the results are insensitive to the type of distribution used (see Movies S1, S2). Similarly, we tested the effect of mutation size, that is the parameter \(\sigma \), which we varied between 0.01 and 3, and found that the results are insensitive to this parameter. The evolutionary simulation and parameters are described in the Methods Section below.

To demonstrate the effect of the mutation rule, we begin with a very simple model, namely a structure with two elements, \(x \) and \(y \), with fitness \(F = -(x+y-1)^2 \). The optimal solutions lie on a line in the \((x,y)\) plane, namely \(x+y=1 \) (Fig. 2A). Evolutionary simulations reach this line regardless of the mutation rule. Populations under sum-rule mutations evolve and spread out over the line. In contrast, product-rule mutations lead to solutions near the axes, either \((x=0,y=1)\) or \((x=1,y=0)\). In other words, they lead to solutions in which one of the elements is close to zero – these are the sparsest solutions that satisfy the goal (see Fig. 2A, Movies S1, S2 and Figs. S10–S11 in Text S1).
distributed between the two matrices in response to a full-rank non-zero goal matrix evolve in the matrix-multiplication model under product-rule mutations scheme was Boltzmann-like selection with Evolutionary simulation parameters were demonstrating that matrix values can be negative as well as positive. Illustrated near the intersection with the axes, i.e. near either (0, 1) or (1, 0). The solutions have achieved with both Gaussian product-rule and log-normal product-rule (see Text S1, Section 1), in excellent agreement with the simulations. The sparse solutions found with product-rule mutations have many zero terms, whose number can be computed by means of the LU decomposition theorem of linear algebra. The LU decomposition expresses a nonsingular matrix as a product of an upper triangular matrix and a lower triangular matrix (60)). The total number of zeros in A and B is the number of zero elements in the LU decomposition of G. This number can be calculated exactly: for a given full rank matrix G of dimension D with no zero elements, the maximal number of zeros in A and B together is $D^2 - D$ (for proof see Text S1). This result is found in our simulations. The zeros are distributed between A and B in various ways in the different simulations: Sometimes A and B are both (upper and lower) triangular, each with $(D^2 - D)/2$ zero elements. Other runs show one full matrix with no zeros and the other a diagonal matrix with $D^2 - D$ zeros. All other distributions of zeros are also found (Fig. 2B–C; Fig. S16 in Text S1 for comparison with sum-mutations). When G is full rank and has k zeros, the total number of zeros in the evolved matrices A and B is $D^2 - D + k$, again the maximal possible number of zeros in matrices that show optimal fitness (for proof see Text S1).

We note that there is a special situation in which sum-rule mutations can also lead to sparseness in the present models. This occurs when the models are constrained to have only non-negative terms $A_{ij}, B_{ij} \geq 0$. In this case, the sum rule, constrained to keep terms non-negative – for example, by using $A_{ij} \rightarrow \max(0, A_{ij} + N(0, \sigma))$, can also lead to sparseness. This relates to known results from non-negative matrix factorization (61). However, in general biological models, structural terms are expected to be both negative and positive, representing, for example, inhibition and activation interactions between components. Our mechanism for the evolution of sparseness and modularity is different from non-negative matrix factorization and works regardless of the sign of the interaction terms (see for examples Fig. S15 in Text S1 and Movies S1, S2).

The intuitive reason for the sparseness achieved by product-rule mutations is that once they are near a zero element, the size of the next mutation will be small (since it is a product of the element with a random number). Thus, the effective diffusion rate decreases (see Text S1). Strictly zero terms are fixed-points and near-zero terms remain small under mutations - so that the population becomes concentrated near zero elements. Sum-rule mutations, in contrast, show a constant drift rate regardless of the value of the elements. A full analytical solution of the dynamics of this simple model can be obtained by means of Fokker-Planck equations (see Text S1, Section 1), in excellent agreement with the simulations.
When the Goal is Modular, Product-rule Mutations Lead to Modular Structure; Sum-rule Mutations do not

Up to now, we considered goals \(G \) which are described by general matrices. We next limit ourselves to the case where the goals \(G \) are described by matrices which are modular, for example, diagonal or block diagonal matrices. The main result is that when the goals are modular, the evolved structures \(A \) and \(B \) are also modular if mutations are product-rule; in contrast, sum-rule mutations lead to \(A \) and \(B \) that are not modular despite the fact that the goal is modular.

We first define modular structures and modular goals in the context of the present study. Modular structures are structures that can be decomposed into sets of components, where each set shows strong interactions within the set and weak interactions with other sets \([1,2,10,62]\) (Fig. 1B). Here, modular structure means block-diagonal matrices. For ease of presentation, we first consider the case of diagonal matrices. We define modularity by \(M = 1 - \frac{\langle |m| \rangle}{\langle |d| \rangle} \) where \(\langle |m| \rangle \) and \(\langle |d| \rangle \) are the mean absolute value of the non-diagonal and diagonal terms respectively, and where we permute rows/columns to maximize modularity \(M \) (same permutation for rows of \(A \) and columns of \(B \) see Text S1). Thus, a diagonal matrix has \(M = 1 \), and a matrix with diagonal and non-diagonal terms of similar size has \(M \) close to zero.

Modular goals are goals which can be satisfied by a modular structure. Modular goals in the present models are represented by diagonal or block-diagonal goal matrices \(G \). These goals, in the biological interpretation of transcription networks (Fig. 1B), are goals in which each small set of signals affects a distinct set of genes, and not the rest of the genes. For example, the signal lactose affects the lac genes in \(E. coli \), whereas a DNA damage signal affects the SOS DNA-repair genes, with little crosstalk between these sets. Other examples for biological goals that are modular are sugar metabolism [63] and the tasks of chemotaxis and organism development (see detailed discussion in [27]). All are composed of several sub-tasks that are associated with different sets of genes.

We note that a modular goal does not necessarily lead to modular structures. For example the goal \(G = I \) is modular since \(I \) is the diagonal identity matrix. This modular goal can be satisfied by a product of infinitely many pairs of non-modular matrices \(AB \). In fact, for every invertible \(A \), the inverse \(B = A^{-1} \) satisfies the goal. As a result, the vast majority of the possible solutions are non-modular (modular solutions have measure zero among possible solutions to \(AB = G \)). In line with this observation, we find that simulations with sum-rule mutations lead to solutions with optimal fitness \((AB = G) \), but with non-modular structure \(A \) and \(B \) (Fig. 3, Fig. S16 in Text S1).

In contrast, we find that product-rule mutations lead to modular structures \(A \) and \(B \), for a wide range of parameters. For the goal \(G = I \), the evolved \(A \) and \(B \) are both diagonal matrices, with elements on the diagonal of \(A \) that are the inverse of the corresponding elements on the diagonal of \(B \). Thus \(AB = G \). Similar results are found if the goal is nearly modular (e.g. diagonal with small but nonzero off-diagonal terms): in this case, the evolved \(A \) and \(B \) are both nearly diagonal (Fig. S14 in Text S1).

We also studied block-modular goals. In this case, product-rule mutations led to block-modular matrices \(A \) and \(B \), with the same block structure as the goal matrix \(G \) (Fig. 2C). Each of the blocks in the matrices \(A \) and \(B \) had the maximal number of zeros possible so that the product of the two blocks is equal to the corresponding block in the goal matrix \(G \) (the total number of zeros is equal to
that in the LU decomposition of each block) – compared to Fig. S16 in Text S1 (block-diagonal goal with sum-rule mutations).

It is important to note that in order to observe the evolution of modularity in the present setting, the selection criteria should not be too strict, otherwise non-modular solutions cannot be escaped effectively (Text S1). In other words, overly strict selection does not allow the search in parameter space needed for product-rule mutations to reach near-zero elements. In the present simulations, we find evolution of modularity using standard selection methods including tournament, elite (truncation) and continuous Boltzmann-like selection (see Methods, and Text S1 for analysis of sensitivity to parameters).

Time to Evolve Modular Structure Increases Polynomially with Matrix Dimension

We studied the dynamics of the evolutionary process in our simulations with product-rule mutations. We found that over time, fitness and modularity both generally increase, until a solution with optimal fitness and maximal modularity is achieved. We found that the matrix multiplication model often shows plateaus where fitness is nearly constant, followed by a series of events in which fitness improves sharply (Fig. 4) [22,64]. In these events, modularity often drops momentarily. Analysis showed that the plateaus represent non-modular and sub-optimal structures. A mutation occurs which reduces modularity but allows the system to readjust towards higher fitness, and then to regenerate modularity.

We also tested the time to reach high fitness solutions, and its dependence on the dimension of the matrices D. The time to high fitness solutions depends on the settings of the simulations: initial conditions, selection criteria and mutation rates and size, and the stopping criteria of the simulations. Here we present results in which time to high fitness was measured as the median time over repeat simulations to reach within 0.01 of optimal fitness, with product mutation rule $N(1,0.1)$ and probability of mutation per element that is dimension-independent ($p = 5 \times 10^{-4}$). Initial conditions were matrices with small random elements ($U(0,0.05)$). The time to high fitness increased approximately as D^{h_1} with $h_1 = 1.40/\pm 0.01$ and the time to modularity (see Methods for definition) increased as D^{h_2} with $h_2 = 1.21/\pm 0.04$ (Fig. 5).

Discussion

We found that product-rule mutations lead evolution towards structures with the minimal number of interaction terms that still satisfy the fitness objective. Thus, product-rule mutations lead to sparseness. When the goal is modular, product-rule mutations lead to modular structure. This is in contrast to sum-rule mutations, which lead, under the same conditions, to non-sparse and non-modular solutions.

The mechanism by which product-rule mutations lead to sparseness and modularity is that near-zero interaction terms are kept small by product-rule (but not sum-rule) mutations. A second effect is mutation asymmetry, where it is more likely to reduce an interaction than increase it. However, using a symmetric product-rule (multiplying by a number drawn from a symmetric log-normal distribution) combined with selection still leads to sparseness and

Figure 4. Escape from a fitness plateau entails a temporary decrease in modularity. Mean distance from maximal fitness as a function of time in the matrix-multiplication model with product-rule mutations, towards a diagonal goal. Note the plateau in the dynamics. Matrices and their modularity drawn from the simulations at different time-points (designated by black points) are shown, with gray scale corresponding to element absolute value (white = zero). Inset: mean modularity of population (red curve), showing a sharp decrease at the time of escape from the plateau (same time points are shown). In order to escape the plateau (“break point”), the circled terms in A and B are changed. This occurs through a simultaneous increase of the new term and decrease of the old one, such that temporarily modularity is decreased (see inset). Finally, the correct arrangement of terms is attained (“escape”) and modularity increases again. Fitness reaches a value of 0.01 due to constantly occurring mutations. doi:10.1371/journal.pone.0070444.g004
modularity, because selection also breaks the symmetry. Once a parameter becomes small, product rule mutations keep it small [as opposed to sum-rule mutations]. This creates a dynamic ‘trap’ in which the steady state distribution of phenotypes is highly enriched with near zero parameters. Thus, the mutational asymmetry effect is not essential for the present conclusions (see Figs. S10–S11 in Text S1 and Section 2 in Text S1). Furthermore, in special situations a sum-rule can also lead to sparseness, namely if the structural terms in the model are constrained to be non-negative. We note that sparseness can also be enhanced in some networks due to physical constraints such as spatial/geometric limitations in networks that describe protein structure [12] or neuron wiring networks [65].

We used a simple but general model of biological systems, namely linear matrix models, and matrix multiplication models. These models have been widely used to describe gene regulation, neuronal networks, signal transduction and other systems [41,44–49,66,67]. The matrix multiplication model is a commonly used model for three layer systems, such as signals → transcription factors → genes. As in many biological models, many combinations of parameters can achieve the same goal.

We believe that the present mechanism has generality beyond the particular model used here. Consider a general map H between a coarse-grained genotype G (described as a set of biochemical parameters and interaction parameters) and phenotype P, $P = H(G)$. The optimal phenotype P^* is obtained by a manifold of different genotypes G^*. Given reasonably strong selection relative to genetic drift and mutation, evolutionary dynamics will reach close to this manifold. One can then ask how the mutation rule affects evolutionary dynamics along this manifold. Sum-rule mutations lead to a random walk on the manifold that does not prefer regions with small parameters, whereas product-rule mutations lead to solutions with the maximal number of zero (very small) parameters: once evolution comes close to a zero parameter, product-rule mutations keep that parameter small.

Product-rule is a more realistic description of the effect of cumulative genetic mutations on a biochemical parameter than sum-rule mutations, because of the nature of biological interactions. The effect of genetic mutations was also shown in several experimental studies to be asymmetric (for example [38–40]), with bias to decrease interactions, enzymatic activity [38] or body size [40]. The discussion of symmetric product rule mutations (that is - multiplying by log-normally distributed random numbers) is given here for completeness, and not because of biological relevance. Further studies can use other microscopic models for mutations (such as Ising-like models for bonds between macromolecules [41,68]), and explore the effect of mutations that set interactions to near-zero with large probability. Due to the inherent product-rule nature of biological mutations, we could not think of experimental tests that can compare sum-rule to product-rule mutations, beyond computer simulations or experiments in the realm of electronics [69,70] or mechanics [71].

The present mechanism does not exclude previous mechanisms for the evolution of modularity. In fact, it can work together with other mechanisms and enhance them. For example, in Kashtan
et al. [14,27,29,30], modularity evolved when the modular goal changed over time (MVG mechanism). In the present study, no change of the goal over time is required. Using product-rule mutations in the models of Kasthur et al. (instead of the original sum-rule mutations) is expected to enhance the range of parameters over which modularity evolves. Supporting evidence was recently provided by Clune et al. [26] that demonstrated how a different mechanism for the evolution of sparseness significantly enhances the range of parameters over which the MVG mechanism produces modular structures. Another difference from some previous studies is that modularity evolves here with no need for an explicit cost for interaction terms in the fitness function [14,27,29,30,72]. Adding such a cost, as in Clune et al., [26] would likely enhance the evolution of sparseness and modularity. It would be intriguing to search for additional classes of mechanisms to understand the evolution of sparseness, modularity, and other generic features of biological organization [73].

Materials and Methods

Evolutionary Simulation

Simulation was written in Matlab using standard framework [42,43]. All source codes, data and analysis scripts are freely available in a permanent online archive at http://dx.doi.org/doi:10.5061/dryad.75180. We initialized the population of matrix pairs by drawing their $N \cdot 2D^n$ terms from a uniform distribution. Population size was set as $N=500$. In each generation the population was duplicated. One of the copies was kept unchanged, and elements of the other copy had a probability p to be mutated – as we explain below. Fitness of all 2V individuals was evaluated by $F = -\|AB - G\|$, where $\|\|$ denotes the sum of squares of elements [56]. The best possible fitness is zero, achieved if $AB = G$ exactly. Otherwise, fitness values are negative. In the figures we show the absolute value of mean population fitness, which is the distance from maximal fitness (Fig. 3–4, Fig. S12 in Text S1), or the normalized fitness $|F|/(|G| + |AB|)$ (Fig. 5). The goal matrix was either diagonal, nearly-diagonal (diagonal matrix with small non-diagonal terms), block-diagonal or full rank with no zero elements. N individuals are selected out of the $2N$ population of original and mutated ones, based on their fitness (see below). This mutation–selection process was repeated until the simulation stopping condition was satisfied (usually when mean population fitness was within 0.01 of the optimum).

Mutation. We mutated individual elements in the matrix. We set mutation rate such that on average 10% of the population members were mutated at each generation, so the element-wise mutation rate was This relatively low mutation rate enables beneficial mutants to reproduce on average at least 10 generations before they are mutated again. In simulations where we compared dependence on matrix dimension (Fig. 5) we used the same mutation rate at all dimensions, generally the one that pertains to the highest dimension used in the simulation.

We randomly picked the matrix elements (in both A and B) to be mutated. Mutation values were drawn from a Gaussian distribution (unless otherwise stated). For sum-rule mutations, this random number was added to the mutated matrix value: $A_{ij} \rightarrow A_{ij} + N(0, \sigma)$ or $B_{ij} \rightarrow B_{ij} + N(0, \sigma)$, and for product-rule mutation, the mutated matrix element was multiplied by the random number: or $B_{ij} \rightarrow B_{ij} \cdot N(\mu, \sigma)$. Mean mutation value μ was usually taken as 1, however we also tested other values of μ (both larger and smaller than 1) and other mutation distributions (Gamma and log-normal) and results remained qualitatively similar, although the time-scales changed. In most simulations shown here we used $\sigma = 0.1$ (unless stated otherwise). Fitness convergence and its time scale depend on the mutation frequency and size, as demonstrated in our sensitivity test (Text S1).

Selection methods. We tested 3 different selection methods and all gave qualitatively very similar results with only a difference in time scales. Most results presented here were obtained with tournament selection with group size $S = 4$ (see [43] chap. 9). We also tested truncation-selection (elite) [42] and proportionate reproduction with Boltzmann-like scaling [41,55,74]. For a detailed description see Text S1.

Definition of modularity. If the goal is diagonal, we define modularity as $M = 1 - \langle |n| \rangle / \langle |d| \rangle$, where $\langle |n| \rangle$ and $\langle |d| \rangle$ are the mean absolute value of the non-diagonal and diagonal terms respectively. At each generation, the D largest elements of each matrix (both A and B), were considered as the diagonal $\langle |d| \rangle$ and the rest $D^2 - D$ terms as the non-diagonal ones $\langle |n| \rangle$. Averages were taken over matrix elements and over the population. This technique copes with the unknown location of the dominant terms in the matrices, which could form any permutation of a diagonal matrix. Thus, $0 \leq M \leq 1$: a diagonal matrix has $M = 1$, and a matrix whose terms are all equal has $M = 0$. Since we choose the largest elements to form the diagonal, negative values of M do not occur. When the goal is non-diagonal, one can use standard measures for modularity such as (49) [not used in the present study].

Calculation of time to modular structure. To estimate the time when modular structure is first obtained, we used the following approximation for fitness value with diagonal goal. Assume that A and B are D- dimensional matrices consisting of 2 types of terms: diagonal terms all with size d and non-diagonal terms all with size n and that the goal is $G = g \times I_D \times B$. The fitness then equals:

$$F = D|d^2 + (D - 1)n^2 - g|^2 + D(D - 1)(2dn + (D - 2)n^2)^2.$$

We collect terms by powers of n, and obtain a constant term and terms with powers $n^{2,3,4}$. Modular structure is obtained when the solution has the correct number of dominant terms at the right location and their size is approximately $d^2 \approx g$. At the beginning of the temporal trajectory, when non-diagonal elements are relatively large, F is dominated by the $O(n^4)$ term. When a modular structure emerges, non-diagonal elements become relatively small, and the dominant term remaining in F is $O(n^2)$. Our criterion for determining time to modular structure was the time when the $O(n^2)$ term first became dominant, i.e. when $F - n^2 \cdots < n^2 (\cdots)$.

Supplementary movies. Movies demonstrate the simulation dynamics in the problem under product-rule mutations with various distributions of mutations. All distributions converge to either of the sparse solutions.

Supporting Information

Text S1 Contains the following additional data: 1. Analytical solution and simulations of toy model, 2. Mutation properties: product vs. sum mutation, mutation symmetry, 11; 3. Evolutionary simulations – detailed description, 16; 4. Evolutionary simulation parameter sensitivity test, 18; 5. Modularity: definitions and error calculation, 20; 6. LU decomposition – proofs, 21; 7. Nearly modular - supplementary figure, 23; 8. Mutation sign and distribution – supplementary figure, 24; 9. Block diagonal goal – supplementary figure, 25. (PDF)

Movie S1 Mutations had Gamma distribution with parameters Gamma(1, 40.25). In addition, each mutation value was multiplied by –1 with probability 0.1, so that matrix values could also change their sign. * selection was used with.

(AVI)

Movie S2 Mutations had log-normal distribution with parameters LN(–0.11, 0.47). In addition, each mutation value was multiplied by –1 with probability 0.1, so that matrix values could also change their sign. * selection was used with.

(AVI)

References

1. Simon HA (1962) The architecture of complexity. Proceedings of the American philosophical society 106: 467–482.
2. Wagner GP, Pavlice M, Cheverud JM (2007) The road to modularity. Nature Reviews Genetics 8: 921–931. doi:10.1038/nrg2267.
3. Lipson H (2007) Principles of modularity, regularity, and hierarchy for scalable systems. Journal of Biological Physics and Chemistry 7: 125.
4. Carroll SB (2003) Chance and necessity: the evolution of morphological complexity and diversity. Nature 439: 1102–1109.
5. Hinch A, Adami C (2008) Evolution of complex modular biological networks. PLoS computational biology 4: e23.
6. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120: 701–722.
7. Gutinaza R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 431: 895–900.
8. Hartwell LH, Hopfield JJ, Leibler S, Murray AW, others (1999) From molecular to cellular control of gene networks. Nature 402: 494–504.
9. Alon U (2007) An Introduction to Systems Biology: Design Principles of Biological Circuits (Mathematical and Computational Biology Series vol 10). Boca Raton, FL: Chapman and Hall. Available: http://www.tau.ac.il/livet通知书.asp?ouvrage=1842587. Accessed 4 June 2013.
10. Lorenz DM, Jeng A, Deem MW (2011) The emergence of modularity in biological systems. Physics of Life Reviews 8: 129–160. doi:10.1016/j.phyrep.2011.02.003.
11. Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñoz-Rascado L, et al. (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensens Units). Nucleic Acids Research 39: D98–D105.
12. Rorick M (2012) Quantifying protein modularity and evolvability: a comparison of different techniques. Biosystems.
13. Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301: 1866–1867.
14. Kashan N, Mayo AE, Kalisky T, Alon U (2009) An Analytically Solvable Model for Rapid Evolution of Modular Structure. PLoS Comput Biol 5: e1000335. doi:10.1371/journal.pcbi.1000335.
15. Scali V, Valverde S (2008) Spontaneous Emergence of Modularity in Cellular Networks. J R Soc Interface 5: 129–133. doi:10.1098/rsif.2007.1108.
16. Force A, Cresko WA, Pickett FB, Proulx SR, Amemiya C, et al. (2005) The origin of subfunctions and modular gene regulation. Genetics 170: 433–446.
17. Takekoto K (2012) Metabolic network modularity arising from simple growth processes. Phys Rev E 86: 036107. doi:10.1103/PhysRevE.86.036107.
18. Takekoto K (2013) Does Habitat Variability Really Promote Metabolic Network Modularity? PLoS ONE 8: e61348. doi:10.1371/journal.pone.0061348.
19. Navarro JA (1955) The theory of the distribution of gene frequencies. Genetics 40: 207–219.
20. Rainey PB, Cooper TF (2004) Evolution of bacterial diversity and the origins of modularity. Research in microbioogy 152: 429–453.
21. Leroi AM (2000) The scale independence of evolution. Evolution & development 2: 67–77.
22. Ancel LW, Fontana W, others (2000) Plasticity, evolvability, and modularity in biological networks. Journal of theoretical Biology 208: 242–293.
23. He J, Sun J, Deem MW (2009) Spontaneous emergence of modularity in a model of evolving individuals and in real networks. Phys Rev E 79: 031907. doi:10.1103/PhysRevE.79.031907.
24. Espinosa-Soto C, Wagner A (2010) Specialization Can Drive the Evolution of Modularity. PLoS Comput Biol 6: e1000719. doi:10.1371/journal.pcbi.1000719.
25. Callahan B, Thatai M, Shraiman BI (2009) Emergent gene order in a model of modular polypeptide syntheses. Proceedings of the National Academy of Sciences 106: 19140–19145.
26. Chane J, Mouret J-B, Lipson H (2013) The evolutionary origins of modularity. Proc R Soc B 280: 20122863. doi:10.1098/rspb.2012.2863.
27. Kashan N, Alon U (2005) Spontaneous Evolution of Modularity and Network Motifs. PNAS 102: 13773–13778. doi:10.1073/pnas.0503610102.

Acknowledgments

We thank Yuval Hart, Adam Lampert, Omer Ramote, Hila Sheftel, Oren Shoval and Pablo Szekely for critical reading of the manuscript; and Amos Tanay, Dan Tawfik, Nadav Shnerb and Gheorghe Cruciani for useful discussions. We thank the two anonymous referees for helpful comments and suggestions that improved our manuscript.

Author Contributions

Conceived and designed the experiments: UA. Performed the experiments: TF AEM. Analyzed the data: TF AEM. Contributed reagents/materials/analysis tools: TT. Wrote the paper: TF AEM UA.
53. Reinitz J, Mjolsness E, Sharp DH (1995) Model for cooperative control of positional information in Drosophila by bicoid and maternal hunchback. Journal of Experimental Zoology 271: 47–36.
54. Wunderlich Z, Bragdon MD, Eckenrode KB, Lydiard-Martin T, Pearl-Waserman S, et al. (2012) Dissecting sources of quantitative gene expression pattern divergence between Drosophila species. Molecular Systems Biology 8. Available: http://www.nature.com/msb/journal/v8/n1/full/msb201235.html.
55. Lipson H, Pollack JB, Suh NP (2007) On the origin of modular variation. Evolution 56: 1549–1556. doi:10.1111/j.0014–3820.2002.800146.x.
56. Fisher RA (1930) The Genetical Theory of Natural Selection. 1st ed. Bennett JH, editor Oxford University Press, USA. 318 p.
57. Bray D (1995) Protein molecules as computational elements in living cells. Nature 376: 307–312.
58. Sanjuañ R, Moya A, Elena SF (2004) The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proceedings of the National Academy of Sciences of the United States of America 101: 8396–8401.
59. Good BH, Rouzine IM, Balick DJ, Hallatschek O, Desai MM (2012) Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proceedings of the National Academy of Sciences 109: 4950–4955.
60. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction To Algorithms. MIT Press. 1216 p.
61. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401: 788–791. doi:10.1038/44565.
62. Newman MEJ (1999) Neural networks: a comprehensive foundation. Prentice Hall. 872 p.
63. Lancet D, Sadowsky E, Seidemann E (1993) Probability Model for Molecular Recognition in Biological Receptor Repertoires: Significance to the Olfactory System. PNAS 90: 3715–3719.
64. Thompson A, Harvey I, Huband P (1996) Unconstrained evolution and hard consequences. In: Sanchez E, Tomassini M, editors. Towards Evolvable Hardware. Lecture Notes in Computer Science. Springer Berlin/Heidelberg, Vol. 1062. 136–165. Available: http://www.springerlink.com/content/6fm8731w5706w108/abstract/.
65. Thompson A (1997) An evolved circuit, intrinsic in silicon, entwined with physics. In: Higuchi T, Iwata M, Liu W, editors. Evolvable Systems: From Biology to Hardware. Lecture Notes in Computer Science. Springer Berlin/Heidelberg, Vol. 1259. 390–403. Available: http://www.springerlink.com/content/u734gr0822r13752/abstract/.
66. Zykov V, Mytilinaios E, Adams B, Lipson H (2005) Robotics: Self-reproducing machines. Nature 435: 163–164. doi:10.1038/435163a.
67. Pan RK, Sinha S (2007) Modular networks emerge from multiconstraint optimization. Phys Rev E 76: 045103. doi:10.1103/PhysRevE.76.045103.
68. Csete M, Doyle J (2004) Bow ties, metabolism and disease. TRENDS in Biotechnology 22: 446–450.
69. Lampert A, Thasty T (2009) Mutation as an altruistic trait in finite asexual populations. Journal of Theoretical Biology 261: 414–422. doi:10.1016/j.jtbi.2009.08.027.

Mutation-Rules and the Evolution of Modularity