Bilinear pseudo-differential operators with exotic symbols, II

Akihiko Miyachi1 · Naohito Tomita2

Received: 23 January 2018 / Accepted: 24 May 2018 / Published online: 2 June 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract The boundedness from $H^p \times L^2$ to L^r, $1/p + 1/2 = 1/r$, and from $H^p \times L^\infty$ to L^p of bilinear pseudo-differential operators is proved under the assumption that their symbols are in the bilinear Hörmander class $BS^m_{\rho,\rho}$, $0 \leq \rho < 1$, of critical order m, where H^p is the Hardy space. This combined with the previous results of the same authors establishes the sharp boundedness from $H^p \times H^q$ to L^r, $1/p + 1/q = 1/r$, of those operators in the full range $0 < p, q \leq \infty$, where L^r is replaced by BMO if $r = \infty$.

Keywords Bilinear pseudo-differential operators · Bilinear Hörmander symbol classes · Hardy spaces

Mathematics Subject Classification 42B20 · 42B30 · 47G30

1 Introduction

This paper is a continuation of the paper [8]. We continue the study of the boundedness of bilinear pseudo-differential operators with symbols in the so-called exotic classes.
As for the background of this subject, see Introduction of [8]. Here we begin by recalling necessary definitions.

Let $m \in \mathbb{R}$ and $0 \leq \delta \leq \rho \leq 1$. We say that a function $\sigma(x, \xi, \eta) \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$ belongs to the bilinear Hörmander symbol class $BS_{\rho,\delta}^m = BS_{\rho,\delta}^m(\mathbb{R}^n)$ if for every triple of multi-indices $\alpha, \beta, \gamma \in \mathbb{N}_0^n = \{0, 1, 2, \ldots\}^n$ there exists a constant $C_{\alpha,\beta,\gamma} > 0$ such that

$$|\partial_\alpha^\varepsilon \partial_\beta^\eta \sigma(x, \xi, \eta)| \leq C_{\alpha,\beta,\gamma} (1 + |\xi| + |\eta|)^{m+\delta|\alpha| - \rho(|\beta| + |\gamma|)}.$$

In this paper, we consider the class $BS_{\rho,\delta}^m$ with $0 \leq \rho = \delta < 1$.

The bilinear pseudo-differential operator $T_{\sigma}, \sigma \in BS_{\rho,\rho}^m$, is defined by

$$T_{\sigma}(f, g)(x) = \frac{1}{(2\pi)^{2n}} \int_{\mathbb{R}^n \times \mathbb{R}^n} e^{i(x-(\xi+\gamma))} \sigma(x, \xi, \eta) \hat{f}(\xi) \hat{g}(\eta) \, d\xi d\eta, \quad f, g \in \mathcal{S}(\mathbb{R}^n).$$

If X, Y, Z are function spaces on \mathbb{R}^n equipped with quasi-norms $\| \cdot \|_X, \| \cdot \|_Y, \| \cdot \|_Z$ and if there exists a constant A_{σ} such that the estimate $\|T_{\sigma}(f, g)\|_Z \leq A_{\sigma} \|f\|_X \|g\|_Y$ holds for all $f \in \mathcal{S}\cap X$ and all $g \in \mathcal{S}\cap Y$, then we shall simply say that T_{σ} is bounded from $X \times Y$ to Z and write $T_{\sigma} : X \times Y \rightarrow Z$. For the function spaces X and Y, we consider the Hardy spaces $H^p, 0 < p \leq \infty$. For Z, we consider the Lebesgue spaces $L^r, 0 < r < \infty$, or BMO. Notice that $H^p = L^p$ for $1 < p \leq \infty$. The definitions of H^p and BMO are given in Sect. 2.

For $0 \leq \rho < 1$ and for $0 < p, q, r \leq \infty$ satisfying $1/p + 1/q = 1/r$, we write

$$m_{\rho}(p, q) = (1 - \rho)m_0(p, q),$$

$$m_0(p, q) = -n \left(\max \left\{ \frac{1}{2}, \frac{1}{p}, \frac{1}{q}, 1 - \frac{1}{r}, \frac{1}{r} - \frac{1}{2} \right\} \right).$$

Observe that the region of $(1/p, 1/q), 0 \leq 1/p, 1/q < \infty$, is divided into 5 regions, on each of which $m_{\rho}(p, q)$ is an affine function of $1/p$ and $1/q$ (see [8, Introduction]).

The number $m_{\rho}(p, q)$ is the critical order as the following proposition shows.

Proposition A Let $0 \leq \rho < 1, 0 < p, q, r \leq \infty$, and suppose $1/p + 1/q = 1/r$. If $r < \infty$, then

$$m_{\rho}(p, q) = \sup \{ m \in \mathbb{R} : T_{\sigma} : H^p \times H^q \rightarrow L^r \text{ for all } \sigma \in BS_{\rho,\rho}^m \}.$$

When $p = q = r = \infty$, the above equality holds if we replace $H^p \times H^q \rightarrow L^r$ by $L^\infty \times L^\infty \rightarrow BMO$.

In fact, this proposition is a conclusion of several previous works: Michalowski–Rule–Staubach [5] (for $(1/p, 1/q)$ in the triangle with vertices $(1/2, 1/2), (1/2, 0), (0, 1/2)$), Bényi–Bernicot–Maldonado–Naibo–Torres [1] (in the range $1/p + 1/q \leq 1$), and Miyachi–Tomita [7,8] (full range $0 < p, q \leq \infty$). For a proof of Proposition A, see [8, Appendix A].
It should be an interesting problem to prove the sharp boundedness, i.e., the boundedness $T_\sigma : H^p \times H^q \to L^r$, $1/r = 1/p + 1/q$, with L^r replaced by BMO if $r = \infty$, for $\sigma \in BS^m_{\rho, \rho}$ with $m = m_\rho(p, q)$.

In the case $\rho = 0$, this sharp boundedness was proved in [7].

Recently, the authors proved the following theorem, which gives the sharp boundedness in the range $1 \leq p, q, r \leq \infty$.

Theorem B ([8, Corollary 1.4]) Let $0 \leq \rho < 1$, $1 \leq p, q, r \leq \infty$, $1/p + 1/q = 1/r$, and $m = m_\rho(p, q)$. Then all bilinear pseudo-differential operators with symbols in $BS^m_{\rho, \rho}(\mathbb{R}^n)$ are bounded from $L^p(\mathbb{R}^n) \times L^q(\mathbb{R}^n)$ to $L^r(\mathbb{R}^n)$, where $L^p(\mathbb{R}^n)$ and $L^q(\mathbb{R}^n)$ should be replaced by $H^1(\mathbb{R}^n)$ if $p = 1$ or $q = 1$ and $L^r(\mathbb{R}^n)$ should be replaced by $BMO(\mathbb{R}^n)$ if $r = \infty$.

Here it should be mentioned that Theorem B with $p = q = r = \infty$ and $0 < \rho < 1/2$ was also proved by Naibo [9].

Now the purpose of the present paper is to prove the sharp boundedness in the remaining cases and establish the sharp boundedness in the full range $0 < p, q, r \leq \infty$. The following is the conclusion of the present paper.

Theorem 1.1 Let $0 \leq \rho < 1$, $0 < p, q, r \leq \infty$, $1/p + 1/q = 1/r$, and $m = m_\rho(p, q)$. Then all bilinear pseudo-differential operators with symbols in $BS^m_{\rho, \rho}(\mathbb{R}^n)$ are bounded from $H^p(\mathbb{R}^n) \times H^q(\mathbb{R}^n)$ to $L^r(\mathbb{R}^n)$, where $L^r(\mathbb{R}^n)$ should be replaced by $BMO(\mathbb{R}^n)$ if $p = q = r = \infty$.

The above theorem follows with the aid of complex interpolation and symmetry if the sharp boundedness is proved in the following 5 cases:

(i) $(p, q) = (\infty, \infty)$, $m_\rho(\infty, \infty) = -(1 - \rho)n$;
(ii) $(p, q) = (2, 2)$, $m_\rho(2, 2) = -(1 - \rho)n/2$;
(iii) $(p, q) = (2, \infty)$, $m_\rho(2, \infty) = -(1 - \rho)n/2$;
(iv) $0 < p < 1$, $q = 2$, $m_\rho(p, 2) = -(1 - \rho)n/p$;
(v) $0 < p < 1$, $q = \infty$, $m_\rho(p, \infty) = -(1 - \rho)n/p$.

(For the interpolation argument, see, e.g., [1, Proof of Theorem 2.2] or [7, Proof of the ‘if’ part of Theorem 1.1]). By symbolic calculus of $BS^m_{\rho, \rho}$ as given by Bényi–Maldonado–Naibo–Torres [2] and by duality, the cases (ii) and (iii) are essentially the same (see, e.g., [8, Section 5]). Thus Theorem 1.1 will follow if we prove (i), (ii)=(iii), (iv), and (v). Among these 4 critical cases, (i) and (ii)=(iii) are covered by Theorem B. Thus in order to prove Theorem 1.1 it is sufficient to prove (iv) and (v), which we shall state here as the following two theorems.

Theorem 1.2 Let $0 \leq \rho < 1$, $0 < p < 1$, $1/p + 1/2 = 1/r$, and $m = -(1 - \rho)n/p$. Then all bilinear pseudo-differential operators with symbols in $BS^m_{\rho, \rho}(\mathbb{R}^n)$ are bounded from $H^p(\mathbb{R}^n) \times L^2(\mathbb{R}^n)$ to $L^r(\mathbb{R}^n)$.

Theorem 1.3 Let $0 \leq \rho < 1$, $0 < p < 1$, and $m = -(1 - \rho)n/p$. Then all bilinear pseudo-differential operators with symbols in $BS^m_{\rho, \rho}(\mathbb{R}^n)$ are bounded from $H^p(\mathbb{R}^n) \times L^\infty(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$.
Here are some comments on the proofs of the theorems. First, although the case (i) (the sharp $L^\infty \times L^\infty \to BMO$ boundedness) was directly proved in [8,9], the argument of the present paper gives an alternate proof. In fact, by virtue of the symbolic calculus of $BS^m_{\rho,\rho}$ and by the duality $(H^1)' = BMO$, the sharp $L^\infty \times L^\infty \to BMO$ boundedness is equivalent to the sharp $H^1 \times L^\infty \to L^1$ boundedness and the latter follows from the cases (iii) and (v) (Theorem 1.3) by interpolation. Secondly, for the proof of the case (iv) (Theorem 1.2), the method of [7] given for $\rho = 0$ does not seem to work for $0 < \rho < 1$. Our proof of Theorem 1.2 is based on a new method, which covers $\rho = 0$ and $0 < \rho < 1$ simultaneously. Finally, the case (v) (Theorem 1.3) is rather easy. In fact, by freezing g of $T_\alpha (f, g)$ we can follow the argument used in the case of linear pseudo-differential operators.

The contents of this paper are as follows. In Sect. 2, we recall some preliminary facts. In Sects. 3 and 4, we prove Theorems 1.2 and 1.3, respectively.

2 Preliminaries

For two nonnegative quantities A and B, the notation $A \lesssim B$ means that $A \leq C B$ for some unspecified constant $C > 0$, and $A \approx B$ means that $A \lesssim B$ and $B \lesssim A$. We denote by 1_S the characteristic function of a set S, and by $|S|$ the Lebesgue measure of a measurable set S in \mathbb{R}^n.

Let $S(\mathbb{R}^n)$ and $S'(\mathbb{R}^n)$ be the Schwartz space of rapidly decreasing smooth functions and the space of tempered distributions, respectively. We define the Fourier transform $\mathcal{F} f$ and the inverse Fourier transform $\mathcal{F}^{-1} f$ of $f \in S(\mathbb{R}^n)$ by

$$
\mathcal{F} f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-ix \cdot \xi} f(x) \, dx \quad \text{and} \quad \mathcal{F}^{-1} f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} f(\xi) \, d\xi.
$$

For $m \in L^\infty(\mathbb{R}^n)$, the linear Fourier multiplier operator $m(D)$ is defined by

$$
m(D) f(x) = \mathcal{F}^{-1} [m \hat{f}](x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} m(\xi) \hat{f}(\xi) \, d\xi, \quad f \in S(\mathbb{R}^n).
$$

We recall the definitions and some properties of Hardy spaces and the space BMO on \mathbb{R}^n (see, e.g., [10, Chapters 3 and 4]). Let $0 < p \leq \infty$, and let $\phi \in S(\mathbb{R}^n)$ be such that $\int_{\mathbb{R}^n} \phi(x) \, dx \neq 0$. Then the Hardy space $H^p(\mathbb{R}^n)$ consists of all $f \in S'(\mathbb{R}^n)$ such that

$$
\| f \|_{H^p} = \| \sup_{0 < t < \infty} |\phi_t * f| \|_{L^p} < \infty,
$$

where $\phi_t(x) = t^{-n} \phi(x/t)$. It is known that $H^p(\mathbb{R}^n)$ does not depend on the choice of the function ϕ and $H^p(\mathbb{R}^n) = L^p(\mathbb{R}^n)$ for $1 < p \leq \infty$. For $0 < p \leq 1$, a function a on \mathbb{R}^n is called an H^p-atom if there exists a cube $Q = Q_\alpha$ such that

$$
\supp a \subset Q, \quad \| a \|_{L^\infty} \leq |Q|^{-1/p}, \quad \int_{\mathbb{R}^n} x^\alpha a(x) \, dx = 0, \quad |\alpha| \leq L - 1,
$$

(2.1)
where L is any fixed integer satisfying $L > n/p - n$ ([10, p. 112]). It is known that every $f \in H^p(\mathbb{R}^n)$ can be written as

$$f = \sum_{i=1}^{\infty} \lambda_i a_i \text{ in } S'(\mathbb{R}^n),$$

where $\{a_i\}$ is a collection of H^p-atoms and $\{\lambda_i\}$ is a sequence of complex numbers with $\sum_{i=1}^{\infty} |\lambda_i|^p < \infty$. Moreover,

$$\|f\|_{H^p} \approx \inf \left(\sum_{i=1}^{\infty} |\lambda_i|^p \right)^{1/p},$$

where the infimum is taken over all representations of f. The space $BMO(\mathbb{R}^n)$ consists of all locally integrable functions f on \mathbb{R}^n such that

$$\|f\|_{BMO} = \sup_Q \frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx < \infty,$$

where f_Q is the average of f on Q and the supremum is taken over all cubes Q in \mathbb{R}^n. It is known that the dual space of $H^1(\mathbb{R}^n)$ is $BMO(\mathbb{R}^n)$.

3 Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. We assume $0 \leq \rho < 1$, $0 < p < 1$, $1/p + 1/2 = 1/r$, $m = -(1 - \rho)n/p$, and $\sigma \in BS^m_{\rho, \rho}$, and prove the $H^p \times L^2 \to L^r$ boundedness of T_{σ}.

We first observe that the desired boundedness follows if we prove the following: for an H^p-atom a and an L^2-function g there exist a function \tilde{a} depending only on a and a function \tilde{g} depending only on g such that

$$|T_{\sigma}(a, g)(x)| \lesssim \tilde{a}(x)\tilde{g}(x), \quad \|\tilde{a}\|_{L^p} \lesssim 1, \quad \|\tilde{g}\|_{L^2} \lesssim \|g\|_{L^2}. \quad (3.1)$$

In fact, if this is proved, we can deduce the $H^p \times L^2 \to L^r$ boundedness of T_{σ} as follows. Given $f \in H^p$, we decompose it as

$$f = \sum_{i} \lambda_i a_i, \quad \left(\sum_{i} |\lambda_i|^p \right)^{1/p} \lesssim \|f\|_{H^p},$$

where $a_i, i \geq 1$, are H^p-atoms. Then, taking the functions \tilde{a}_i and \tilde{g} satisfying (3.1) for $a = a_i$, we have

$$\|T_{\sigma}(f, g)\|_{L^r} = \left\| \sum_{i} \lambda_i T_{\sigma}(a_i, g) \right\|_{L^r} \lesssim \left\| \left(\sum_{i} |\lambda_i a_i| \right) \tilde{g} \right\|_{L^r}.$$
\[
\leq \left\| \sum_i |\lambda_i| \tilde{a}_i \right\|_{L^p} \| \tilde{g} \|_{L^2} \lesssim \left(\sum_i |\lambda_i|^p \right)^{1/p} \| g \|_{L^2} \lesssim \| f \|_{H^p} \| g \|_{L^2}.
\]

(This argument was already used in [6]. The idea goes back to [4].)

Let \(a \) be an \(H^p \)-atom satisfying (2.1) with \(L > n/p - n \). We denote by \(c_Q \) the center of \(Q \), by \(\ell(Q) \) the side length of \(Q \), and by \(Q^* \) the cube with the same center as \(Q \) but expanded by a factor of \(2\sqrt{n} \). To obtain (3.1), we shall prove

\[
|T_\sigma(a, g)(x)|I_{\{Q^*\}}(x) \lesssim u(x)v(x), \quad \|u\|_{L^p} \lesssim 1, \quad \|v\|_{L^2} \lesssim \|g\|_{L^2}, \quad (3.2)
\]

\[
|T_\sigma(a, g)(x)|I_Q(x) \lesssim u'(x)v'(x), \quad \|u'\|_{L^p} \lesssim 1, \quad \|v'\|_{L^2} \lesssim \|g\|_{L^2}, \quad (3.3)
\]

where \(u, u' \) depend only on \(a \) and \(v, v' \) depend only on \(g \). Once (3.2) and (3.3) are proved, we can take \(u + u' \) and \(v + v' \) as \(\tilde{\sigma} \) and \(\tilde{g} \) in (3.1).

Let \(\psi_0 \in S(\mathbb{R}^d) \) be such that \(\psi_0 = 1 \) on \(\{ \zeta \in \mathbb{R}^d : |\zeta| \leq 1 \} \) and \(\text{supp} \psi_0 \subset \{ \zeta \in \mathbb{R}^d : |\zeta| \leq 2 \} \), and set \(\psi(\zeta) = \psi_0(\zeta) - \psi_0(2\zeta) \) and \(\psi_j(\zeta) = \psi(\zeta/2^j) \), \(j \geq 1 \). Then

\[
\text{supp} \psi_j \subset \{ \zeta \in \mathbb{R}^d : 2^{j-1} \leq |\zeta| \leq 2^{j+1} \}, \quad j \geq 1, \quad \sum_{j=0}^\infty \psi_j(\zeta) = 1, \quad \zeta \in \mathbb{R}^d. \quad (3.4)
\]

We also use functions \(\widetilde{\psi}_0, \widetilde{\psi} \in S(\mathbb{R}^n) \) satisfying \(\widetilde{\psi}_0 = 1 \) on \(\{ \eta \in \mathbb{R}^n : |\eta| \leq 4 \} \), \(\text{supp} \widetilde{\psi}_0 \subset \{ \eta \in \mathbb{R}^n : |\eta| \leq 8 \} \), \(\widetilde{\psi} = 1 \) on \(\{ \eta \in \mathbb{R}^n : 1/4 \leq |\eta| \leq 4 \} \), and \(\text{supp} \widetilde{\psi} \subset \{ \eta \in \mathbb{R}^n : 1/8 \leq |\eta| \leq 8 \} \), and set \(\widetilde{\psi}_\ell(\eta) = \psi(\eta/2^\ell) \), \(\ell \geq 1 \). In order to obtain (3.2) and (3.3), we decompose \(T_\sigma(a, g) \) as

\[
T_\sigma(a, g)(x) = \sum_{j=0}^\infty \sum_{\ell=0}^\infty T_{\sigma_j,\ell}(a, g)(x) = \sum_{\ell \leq j(1-\rho)+2} T_{\sigma_j,\ell}(a, g_{j,\ell})(x) \quad (3.5)
\]

with

\[
\sigma_j,\ell(x, \xi, \eta) = \sigma(x, \xi, \eta)\Psi_j(\xi, \eta)\psi_\ell(\eta/2^{j\rho})
\]

and

\[
g_{j,\ell}(x) = \widetilde{\psi}_\ell(D/2^{j\rho})g(x),
\]

where \(\Psi_j \) and \(\psi_\ell \) are as in (3.4) with \(d = 2n \) and \(d = n \) respectively, and \([j\rho] \) is the integer part of \(j\rho \). Here, we used the fact

\[
\sum_{j \geq 0} \Psi_j(\xi, \eta) = \sum_{j \geq 0} \sum_{\ell \geq 0} \Psi_j(\xi, \eta)\psi_\ell(\eta/2^{j\rho}) = 1, \quad (\xi, \eta) \in \mathbb{R}^n \times \mathbb{R}^n,
\]

in the first equality of (3.5), and the facts

\[
\Psi_j(\xi, \eta)\psi_\ell(\eta/2^{j\rho}) = 0, \quad \ell > j(1-\rho)+2,
\]
and
\[\psi_{\ell}(\eta/2^{j\rho}) = \psi_{\ell}(\eta/2^{j\rho}) \tilde{\psi}_{\ell}(\eta/2^{j\rho}), \quad \ell \geq 0, \]
in the second equality of (3.5). We write the partial inverse Fourier transform of
\(\sigma_{j,\ell}(x, \xi, \eta) \) with respect to \((\xi, \eta) \) as
\[K_{j,\ell}(x, y, z) = \frac{1}{(2\pi)^{2n}} \int_{(\mathbb{R}^n)^2} e^{i(y \cdot \xi + z \cdot \eta)} \sigma_{j,\ell}(x, \xi, \eta) \, d\xi \, d\eta, \quad x, y, z \in \mathbb{R}^n, \]
and then
\[T_{\sigma_{j,\ell}}(a, g_{j,\ell})(x) = \int_{(\mathbb{R}^n)^2} K_{j,\ell}(x, x - y, x - z)a(y)g_{j,\ell}(z) \, dydz. \]

Notice that \(\sigma_{j,\ell} \) satisfies the following:
\[
\begin{align*}
\text{supp } \sigma_{j,\ell}(x, \xi, \eta) & \subset \{|\xi| \leq 2^{j+1}, |\eta| \leq 2^{j\rho+\ell+1}\}, \\
1 + |\xi| + |\eta| & \approx 2^j \text{ on supp } \sigma_{j,\ell}(x, \xi, \eta), \\
|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma_{j,\ell}(x, \xi, \eta)| & \lesssim 2^{jm} 2^{j\rho(|\alpha| - |\beta| - |\gamma|)}.
\end{align*}
\]

Proof of (3.2) Let \(x \notin Q^* \). Using the moment condition on \(a \) and Taylor’s formula, we have
\[
T_{\sigma_{j,\ell}}(a, g_{j,\ell})(x) = \int_{(\mathbb{R}^n)^2} K_{j,\ell}(x, x - y, x - z)a(y)g_{j,\ell}(z) \, dydz
\]
\[
= \int_{(\mathbb{R}^n)^2} \left(K_{j,\ell}(x, x - y, x - z) - \sum_{|\alpha| < L} \frac{(c_Q - y)^\alpha}{\alpha!} K_{j,\ell}^{(\alpha,0)}(x, x - c_Q, x - z) \right)
\times a(y)g_{j,\ell}(z) \, dydz
\]
\[
= L \sum_{|\alpha| = L} \int_{\substack{y \in Q \, z \in \mathbb{R}^n \, \text{ s.t. } 0 < t < 1}} (1 - t)^{L-1} \frac{(c_Q - y)^\alpha}{\alpha!} K_{j,\ell}^{(\alpha,0)}(x, x - [c_Q, y]_t, x - z)
\times a(y)g_{j,\ell}(z) \, dydz \, dt,
\]
where \(K_{j,\ell}^{(\alpha,0)}(x, y, z) = \partial_y^\alpha K_{j,\ell}(x, y, z) \) and \([c_Q, y]_t = c_Q + t(y - c_Q)\). It follows from the size condition on \(a \) that
\[
|T_{\sigma_{j,\ell}}(a, g_{j,\ell})(x)| \lesssim \ell(Q)^{L-n/p}
\]
\[
\sum_{|\alpha| = L} \int_{\substack{y \in Q \, z \in \mathbb{R}^n \, \text{ s.t. } 0 < t < 1}} |K_{j,\ell}^{(\alpha,0)}(x, x - [c_Q, y]_t, x - z)g_{j,\ell}(z)| \, dydz \, dt.
\]
Let M and M' be integers satisfying $M > n/p - n/2$ and $M' > n/2$. Since $|x - [c_Q, y]_t| \approx |x - [c_Q, y]|_t$ for $x \notin Q^*$, $y \in Q$ and $0 < t < 1$, Schwarz’s inequality with respect to the z-variable gives

$$(1 + 2^{ip}|x - c_Q|)^M |T_{\sigma, j, \ell}(a, g_{j, \ell})(x)| \lesssim \ell(Q)^{L - n/p} \sum_{|\alpha| = L} \int_{y \in Q |z|_t < 1} \left(1 + 2^{ip}|x - [c_Q, y]_t|\right)^M K_{j, \ell}^{(a, 0)}(x, x - [c_Q, y], x - z) dy dz dt \leq \ell(Q)^{L - n/p} \sum_{|\alpha| = L} \int_{y \in Q |z|_t < 1} \left(1 + 2^{ip}|x - z|\right)^{M'} K_{j, \ell}^{(a, 0)}(x, x - [c_Q, y], x - z) \left(1 + 2^{ip}|x - z|\right)^{-M} g_{j, \ell}(z) dy dt.$$

Thus, by writing

$$h_{j, \ell}^{(Q, L)}(x) = 2^{-j\rho/2} \ell(Q)^{L - n/p} \sum_{|\alpha| = L} \sum_{|\beta| \leq M} \sum_{|\gamma| \leq M'} \int_{y \in Q |z|_t < 1} \left(2^{j\rho}(x - [c_Q, y])\right)^{\beta} \left(2^{j\rho}z\right)^{\gamma} K_{j, \ell}^{(a, 0)}(x, x - [c_Q, y], z) \parallel_{L^2_x} dy dt$$

and

$$\bar{g}_{j, \ell}(x) = 2^{j\rho/2} \parallel (1 + 2^{ip}|x - z|)^{-M} g_{j, \ell}(\cdot) \parallel_{L^2_x},$$

we have

$$|T_{\sigma, j, \ell}(a, g_{j, \ell})(x)| \lesssim (1 + 2^{ip}|x - c_Q|)^{-M} h_{j, \ell}^{(Q, L)}(x) \bar{g}_{j, \ell}(x).$$

We shall estimate the L^2-norm of $h_{j, \ell}^{(Q, L)}$. By Minkowski’s inequality for integrals,

$$\parallel h_{j, \ell}^{(Q, L)} \parallel_{L^2} \leq 2^{-j\rho/2} \ell(Q)^{L - n/p} \sum_{|\alpha| = L} \sum_{|\beta| \leq M} \sum_{|\gamma| \leq M'} \int_{y \in Q |z|_t < 1} \left(2^{j\rho}(x - [c_Q, y])\right)^{\beta} \left(2^{j\rho}z\right)^{\gamma} K_{j, \ell}^{(a, 0)}(x, x - [c_Q, y], z) \parallel_{L^2_{x,z}} dy dt.$$

The function in the above $\parallel \cdot \parallel_{L^2_{x,z}}$ can be written as

$$\left(2^{j\rho}(x - [c_Q, y])\right)^{\beta} \left(2^{j\rho}z\right)^{\gamma} K_{j, \ell}^{(a, 0)}(x, x - [c_Q, y], z)$$
Bilinear pseudo-differential operators with exotic symbols, II

and

which implies

\[R \]

Hence, the Calderón–Vainilacourt theorem on \(\mathbb{R}^2 \) (3.4) with \(d = n \) and we used (3.6). From (3.7) and (3.8), we see that

\[
\left\| \partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma (2j^p \partial_\xi)^\beta (2j^p \partial_\eta)^\gamma \left[\xi^\alpha \sigma_{j,\ell}(x, \xi, \eta) \right] \right\|_{L^2_x}\n\]

\[
\lesssim 2j(|\alpha|+m)(1+|\xi|+|\eta|)^\rho(|\alpha'|-|\beta'|-|\gamma'|). \]

Hence, the Calderón–Vainilacourt theorem on \(\mathbb{R}^2n \) (3.3) and Plancherel’s theorem give

\[
\left\| (2j^p (x-[c_Q,y]_r))^{\beta}(2j^p z)^\gamma K_{j,\ell}^{(\alpha,0)}(x,x-[c_Q,y]_r,z) \right\|_{L^2_{x,z}} \n\]

\[
\lesssim 2j(|\alpha|+m) \left\| e^{-i[c_Q,y]_r \cdot \xi} \psi_0(\xi/2^{j+1}) \psi_0(\eta/2j^{p+\ell+1}) \right\|_{L^2_{\xi,\eta}} \n\]

\[
\approx 2j(|\alpha|+m+n/2)2(j^{p+\ell}n/2), \]

which implies

\[
\| h_{j,\ell}^{(Q,L)} \|_{L^2} \lesssim 2^{-j^p\rho/2} \| (Q)^{-n/p} \sum_{|\alpha|=L} 2j(|\alpha|+m+n/2)2(j^{p+\ell}n/2) |Q| \]

\[
\approx (2j \ell(Q))^{-n/p+n} 2j^{\rho(1/p-1/2)}2^{(\ell-(1-\rho)n/2)}. \] (3.12)

If we do not use the moment condition on \(a \) in (3.9), a similar argument yields

\[
|T_{\sigma,j,\ell}(a,g_{j,\ell})(x)| \lesssim (1+2j^p |x-c_Q|)^{-M} h_{j,\ell}^{(Q,0)}(x) g_{j,\ell}(x) \] (3.13)

with

\[
h_{j,\ell}^{(Q,0)}(x) = 2^{-j^p\rho/2} \| (Q)^{-n/p} \sum_{|\beta|\leq M} \sum_{|\gamma|\leq M'} \int_{y \in Q} \]

\[
(2j^p (x-y))^{\beta}(2j^p z)^\gamma K_{j,\ell}(x,x-y,z) \|_{L_x^2} \]

\[
\times \left\| \left(2j^p (x-y))^{\beta}(2j^p z)^\gamma K_{j,\ell}(x,x-y,z) \right) \right\|_{L_x^2} dy \]

and

\[
\| h_{j,\ell}^{(Q,0)} \|_{L^2} \lesssim (2j \ell(Q))^{-n/p+n} 2j^{\rho(1/p-1/2)}2^{(\ell-(1-\rho)n/2)}. \] (3.14)

Combining (3.11) and (3.13), we have

\[
|T_{\sigma,j,\ell}(a,g_{j,\ell})(x)| \lesssim u_{j,\ell}(x) g_{j,\ell}(x) \]
with
\[
u_{j,\ell}(x) = (1 + 2^{j\rho}|x - c_Q|)^{-M} \min \left\{ h_{j,\ell}^{(Q,L)}(x), h_{j,\ell}^{(Q,0)}(x) \right\}.
\]

We take an \(\epsilon\) satisfying \(0 < \epsilon < n/2\) and set
\[
u(x) = \left(\sum_{\ell \leq j(1-\rho)+2} 2^{-(\ell-j(1-\rho))2\epsilon} u_{j,\ell}(x)^2 \right)^{1/2}
\]
and
\[
\tilde{v}(x) = \left(\sum_{\ell \leq j(1-\rho)+2} 2^{(\ell-j(1-\rho))2\epsilon} \tilde{g}_{j,\ell}(x)^2 \right)^{1/2}.
\]
(3.15)

(The number \(\epsilon\) can be chosen arbitrarily in the range \(0 < \epsilon < n/2\). For example \(\epsilon = n/4\) suffices.) Then Schwarz's inequality gives
\[
|T_\sigma(a, g)(x)| \leq \sum_{\ell \leq j(1-\rho)+2} |T_{\sigma_{j,\ell}}(a, g_{j,\ell})(x)| \lesssim \sum_{\ell \leq j(1-\rho)+2} u_{j,\ell}(x) \tilde{g}_{j,\ell}(x) \leq u(x)v(x)
\]
for \(x \notin Q^*\). Certainly the function \(u\) depends only on \(a\) and the function \(v\) depends only on \(g\). In the rest of the argument, we shall prove that \(\|u\|_{L^p} \lesssim 1\) and \(\|v\|_{L^2} \lesssim \|g\|_{L^2}\), which will complete the proof of (3.2).

First we shall prove \(\|u\|_{L^p} \lesssim 1\). By Hölder's inequality with \(1/p = 1/q + 1/2\) and by (3.12) and (3.14),
\[
\|u_{j,\ell}\|_{L^p} \leq \|(1 + 2^{j\rho}|x - c_Q|)^{-M}\|_{L^q} \|\min \left\{ h_{j,\ell}^{(Q,L)}, h_{j,\ell}^{(Q,0)} \right\}\|_{L^2}
\lesssim 2^{-j\rho n/q} \min \left\{ \|h_{j,\ell}^{(Q,L)}\|_{L^2}, \|h_{j,\ell}^{(Q,0)}\|_{L^2} \right\}
\lesssim 2^{(\ell-j(1-\rho))n/2} \min \left\{ \left(2^j \ell(Q)^{L-n/p+n}\right)^{L-n/p+n}, \left(2^j \ell(Q)^{-n/p+n}\right)^{-n/p+n} \right\}.
\]

Thus
\[
\|u\|_{L^p}^p = \left(\sum_{\ell \leq j(1-\rho)+2} 2^{-(\ell-j(1-\rho))2\epsilon} u_{j,\ell}^2 \right)^{1/2} \|u\|_{L^p}^p
\leq \sum_{\ell \leq j(1-\rho)+2} \left(2^{-(\ell-j(1-\rho))\epsilon} \|u_{j,\ell}\|_{L^p}\right)^p
\lesssim \sum_{j=0}^\infty \left(\min \left\{ \left(2^j \ell(Q)^{L-n/p+n}\right)^{L-n/p+n}, \left(2^j \ell(Q)^{-n/p+n}\right)^{-n/p+n} \right\} \right)^p
\]
Proof of (3.3) Take an $M' > n/2$. By Schwarz’s inequality,

$$|T_{\sigma_j,\ell}(a, g_j, \ell)(x)| \leq |Q|^{-1/p} \int_{(\mathbb{R}^n)^2} |K_j,\ell(x, x - y, x - z)g_j,\ell(z)| \, dydz$$

where the last \lesssim holds because $L - n/p + n > 0$ and $-n/p + n < 0$.

Next, to prove $\|v\|_{L^2}^2 \lesssim \|g\|_{L^2}^2$, observe that $\|g_j,\ell\|_{L^2} \approx \|g_j,\ell\|_{L^2}$. Hence

$$\|v\|_{L^2}^2 = \sum_{\ell \leq j(1-\rho)+2} 2^{(\ell-j(1-\rho))2\epsilon} \|g_j,\ell\|_{L^2}^2 \approx \sum_{j=0}^{\infty} \sum_{\ell=0}^{\infty} 2^{(\ell-j(1-\rho))2\epsilon} \|g_j,\ell\|_{L^2}^2$$

We divide the sum over ℓ into two parts $\ell = 0$ and $\ell \geq 1$. For the terms with $\ell = 0$, Young’s inequality gives $\|g_j,0\|_{L^2} \leq \|\mathcal{F}^{-1}\tilde{\varphi}_0\|_{L^1}\|g\|_{L^2} \approx \|g\|_{L^2}$ and thus

$$\sum_{j=0}^{\infty} 2^{-j(1-\rho)2\epsilon} \|g_j,0\|_{L^2}^2 \lesssim \sum_{j=0}^{\infty} 2^{-j(1-\rho)2\epsilon} \|g\|_{L^2}^2 \approx \|g\|_{L^2}^2$$

since $\rho < 1$. For the terms with $\ell \geq 1$, we have $g_j,\ell = \tilde{\varphi}(D/2^{[j\rho]+\ell})g$ and hence, by a change of variables, we have

$$\sum_{j=0}^{\infty} \sum_{\ell=1}^{[j(1-\rho)]+2} 2^{(\ell-j(1-\rho))2\epsilon} \|g_j,\ell\|_{L^2}^2$$

$$= \sum_{j=0}^{\infty} \sum_{k=[j\rho]+1}^{[j\rho]+[j(1-\rho)]+2} 2^{(k-j\rho-j(1-\rho))2\epsilon} \|\tilde{\varphi}(D/2^k)g\|_{L^2}^2$$

$$\lesssim \sum_{j=0}^{\infty} \sum_{k=1}^{j+2} 2^{(k-j)2\epsilon} \|\tilde{\varphi}(D/2^k)g\|_{L^2}^2 = \sum_{k=1}^{\infty} \sum_{j=\max(0, k-2)}^{\infty} 2^{(k-j)2\epsilon} \|\tilde{\varphi}(D/2^k)g\|_{L^2}^2$$

$$\approx \sum_{k=1}^{\infty} \|\tilde{\varphi}(D/2^k)g\|_{L^2}^2 \lesssim \|g\|_{L^2}^2,$$

where the last \lesssim follows from the fact supp $\tilde{\varphi}$ is included in an annulus. Therefore, we obtain $\|v\|_{L^2} \lesssim \|g\|_{L^2}$.

\[\square\]
\[\leq |Q|^{-1/p} \left\| (1 + 2^{j\rho}|x - y|)^{M'} (1 + 2^{j\rho}|x - z|)^{M'} K_{j,\ell}(x, x - y, x - z) \right\|_{L^2_{y,z}} \]
\[\times \left\| (1 + 2^{j\rho}|x - y|)^{-M'} (1 + 2^{j\rho}|x - z|)^{-M'} g_{j,\ell}(z) \right\|_{L^2_{y,z}} \]

For the first \(L^2_{y,z} \) norm above, we use Plancherel’s theorem, (3.8) and (3.6) to obtain
\[\left\| (1 + 2^{j\rho}|y|)^{M'} (1 + 2^{j\rho}|z|)^{M'} K_{j,\ell}(x, y, z) \right\|_{L^2_{y,z}} \approx \sum_{|\beta| \leq M'} \sum_{|\gamma| \leq M'} \left\| (2^{j\rho}\partial_\xi)^\beta (2^{j\rho}\partial_\eta)^\gamma \sigma_{j,\ell}(x, \xi, \eta) \right\|_{L^2_{\xi,\eta}} \lesssim 2^{j(m+n)/2} 2^{(j\rho+\ell)n/2} \]
for all \(x \in \mathbb{R}^n \). As for the second \(L^2_{y,z} \) norm, we have
\[\left\| (1 + 2^{j\rho}|x - y|)^{-M'} (1 + 2^{j\rho}|x - z|)^{-M'} g_{j,\ell}(z) \right\|_{L^2_{y,z}} \approx 2^{-j\rho n/2} \left\| (1 + 2^{j\rho}|x - z|)^{-M'} g_{j,\ell}(z) \right\|_{L^2_{z}} = 2^{-j\rho n} \tilde{g}_{j,\ell}(x), \]
where \(\tilde{g}_{j,\ell} \) is defined by (3.10). Thus
\[|T_{\sigma_j,\ell}(a, g_{j,\ell})(x)| \lesssim |Q|^{-1/p} 2^{j(m+n)/2} 2^{(j\rho+\ell)n/2} 2^{-j\rho n} \tilde{g}_{j,\ell}(x) = |Q|^{-1/p} 2^{-j(1-\rho)n(1/p-1)} 2^{(\ell-j(1-\rho))(n/2)} \tilde{g}_{j,\ell}(x). \] (3.16)

Since
\[\sum_{\ell \leq j(1-\rho)+2} \left(2^{-j(1-\rho)n(1/p-1)} 2^{(\ell-j(1-\rho))(n/2-\epsilon)} \right)^2 \]
\[= \sum_{j=0}^{\infty} 2^{-2j(1-\rho)n(1/p-1)} \left(\sum_{\ell=0}^{[j(1-\rho)]+2} 2^{(\ell-j(1-\rho))(n-2\epsilon)} \right) \]
\[\approx \sum_{j=0}^{\infty} 2^{-2j(1-\rho)n(1/p-1)} \approx 1, \]
the estimate (3.16) together with Schwarz’s inequality gives
\[|T_\sigma(a, g)(x)| \leq \sum_{\ell \leq j(1-\rho)+2} |T_{\sigma_j,\ell}(a, g_{j,\ell})(x)| \lesssim |Q|^{-1/p} v(x), \]
where \(v \) is the function defined by (3.15). In particular
\[|T_\sigma(a, g)(x)| 1_{Q^*}(x) \lesssim |Q|^{-1/p} 1_{Q^*}(x) v(x). \]
In Proof of (3.2), we have proved that \(\|v\|_{L^2} \lesssim \|g\|_{L^2} \). Therefore, we can take \(|Q|^{-1/p} \mathbf{1}_{Q^*} \) and \(v \) as \(u' \) and \(v' \) in (3.3). \(\square \)

4 Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3, namely the \(H^p \times L^\infty \to L^p \) boundedness of \(T_{\sigma} \), where \(0 \leq \rho < 1, 0 < p < 1, m = -(1 - \rho)n/p \), and \(\sigma \in BS^m_{\rho, \rho} \).

By the usual argument using the atomic decomposition for \(H^p \), the desired boundedness follows if we prove the estimate

\[
\|T_{\sigma}(a, g)\|_{L^p} \lesssim \|g\|_{L^\infty}
\]

for all \(H^p \)-atoms \(a \). Moreover, by virtue of the translation invariance,

\[
T_{\sigma}(a, g)(x + x_0) = T_{\sigma_{x_0}}(a(\cdot + x_0), g(\cdot + x_0))(x),
\]

where \(\sigma_{x_0}(x, \xi, \eta) = \sigma(x + x_0, \xi, \eta) \), it is sufficient to treat \(H^p \)-atoms supported in cubes centered at the origin.

Let \(g \in L^\infty \) and let \(a \) be an \(H^p \)-atom satisfying (2.1) with a cube \(Q \) centered at the origin and with \(L > n/p - n \). We divide the \(p \)th power of the \(L^p \)-norm in the left hand side of (4.1) into

\[
\|T_{\sigma}(a, g)\|_{L^p(Q^*)}^p + \|T_{\sigma}(a, g)\|_{L^p((Q^*)^c)}^p.
\]

For the former term, it follows from Theorem B with \((p, q, r) = (2, \infty, 2) \) that

\[
\|T_{\sigma}(a, g)\|_{L^p(Q^*)} \leq |Q^*|^{1/p - 1/2} \|T_{\sigma}(a, g)\|_{L^2} \lesssim |Q|^{1/p - 1/2} \|a\|_{L^2} \|g\|_{L^\infty} \leq \|g\|_{L^\infty},
\]

where we used the fact

\[
BS_{\rho, \rho}^{-(1-\rho)n/p} \subset BS_{\rho, \rho}^{-(1-\rho)n/2}.
\]

In the rest of this section, we shall estimate the latter term in (4.2). The method will be similar to the one used in Sect. 3.

Let \(\Psi_j, j \geq 0 \), be as in (3.4) with \(d = 2n \). This time we do not need a delicate decomposition such as (3.5) for the proof of Theorem 1.3 and decompose \(\sigma \) as

\[
\sigma(x, \xi, \eta) = \sum_{j \geq 0} \sigma_j(x, \xi, \eta)
\]

with

\[
\sigma_j(x, \xi, \eta) = \sigma(x, \xi, \eta)\Psi_j(\xi, \eta).
\]
We also write the partial inverse Fourier transform of $\sigma_j(x, \xi, \eta)$ with respect to (ξ, η) as

$$K_j(x, y, z) = \frac{1}{(2\pi)^{2n}} \int_{(\mathbb{R}^n)^2} e^{i(y \cdot \xi + z \cdot \eta)} \sigma_j(x, \xi, \eta) \, d\xi d\eta, \quad x, y, z \in \mathbb{R}^n,$$

and then

$$T_{\sigma_j}(a, g)(x) = \int_{(\mathbb{R}^n)^2} K_j(x, x - y, x - z)a(y)g(z) \, dydz.$$

Notice that σ_j satisfies the following:

\begin{align*}
\text{supp } \sigma_j(x, \cdot, \cdot) &\subset \{|\xi| \leq 2^{j+1}, \ |\eta| \leq 2^{j+1}\}, \\
1 + |\xi| + |\eta| &\approx 2^j \quad \text{on } \text{supp } \sigma_j(x, \cdot, \cdot), \\
|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma_j(x, \xi, \eta)| &\lesssim 2^{jm} 2^j |x - ty| |x - ty||y||\eta|^{\gamma}.
\end{align*}

Let $x \not\in Q^*$. By the same argument using the moment condition on a as in (3.9) with $c_Q = 0$, we have

$$T_{\sigma_j}(a, g)(x) = L \sum_{|\alpha| = L} \int_{y \in Q} (1 - t)^{L-1} \frac{(-y)^\alpha}{\alpha!} K_j^{(\alpha, 0)}(x, x - ty, x - z)$$

$$\times a(y)g(z) \, dydzdt,$$

where $K_j^{(\alpha, 0)}(x, y, z) = \partial_y^\alpha K_j(x, y, z)$. We take integers M and M' satisfying $M > n/p - n/2$ and $M' > n/2$. Since $|x| \approx |x - ty|$ for $x \not\in Q^*$, $y \in Q$ and $0 < t < 1$, Schwarz’s inequality with respect to the z-variable gives

\begin{align*}
(1 + 2^j |x|)^M |T_{\sigma_j}(a, g)(x)| &\lesssim \|g\|_{L^\infty} \ell(Q)^{L-n/p} \sum_{|\alpha| = L} \int_{y \in Q} \|K_j^{(\alpha, 0)}(x, x - ty, x)\|_{L^2} \, dydzdt \\
&\lesssim \|g\|_{L^\infty} 2^{-jpn/2} \ell(Q)^{L-n/p} \sum_{|\alpha| = L} \int_{y \in Q} (1 + 2^j |x - ty|)^M |K_j^{(\alpha, 0)}(x, x - ty, z)| \, dydzdt.
\end{align*}

Thus, by writing

$$h_j^{(Q, L)}(x) = 2^{-jpn/2} \ell(Q)^{L-n/p} \sum_{|\alpha| = L} \sum_{|\beta| \leq M} \sum_{|\gamma| \leq M'} \int_{y \in Q} (1 + 2^j |x - ty|)^M |K_j^{(\alpha, 0)}(x, x - ty, z)| \, dydzdt,$$
we have
\[
|T_{\sigma_j}(a, g)(x)| \lesssim (1 + 2^{j\rho} |x|)^{-M} h_j^{(Q, L)}(x) \|g\|_{L^\infty}. \tag{4.7}
\]

We shall make a slight modification on the argument (3.12) to estimate the \(L^2\)-norm of \(h_j^{(Q, L)}\). By Minkowski’s inequality for integrals,
\[
\|h_j^{(Q, L)}\|_{L^2} \leq 2^{-j\rho n/2} \ell(Q)^{L-n/p} \sum_{|\alpha| = L} \sum_{|\beta| \leq M} \sum_{|\gamma| \leq M'} \int_{0 < t < 1} \|e^{[x \cdot \xi + z \cdot \eta]} (2^{j\rho} \partial_\xi)^\beta (2^{j\rho} \partial_\eta)^\gamma \left[\xi^\alpha \sigma_j(x, \xi, \eta) \right] \|_{L^2_{\xi, \eta}} d\xi d\eta, \]
where \(\psi_0\) is as in (3.4) with \(d = n\) and we used (4.3). From (4.4) and (4.5), we see that
\[
\left| \partial_\xi^\alpha \partial_\eta^\beta \partial_\eta^\gamma (2^{j\rho} \partial_\xi)^\beta (2^{j\rho} \partial_\eta)^\gamma \left[\xi^\alpha \sigma_j(x, \xi, \eta) \right] \right| \\
\lesssim 2^j(|\alpha| + m)(1 + |\xi| + |\eta|)^\rho(|\alpha'| - |\beta'| - |\gamma'|).
\]
Hence, the Calderón–Vaillancourt theorem on \(\mathbb{R}^{2n}\) ([3]) and Plancherel’s theorem give
\[
\left\| (2^{j\rho} (x - ty))^{\beta} (2^{j\rho} z)^{\gamma} K_j^{(\alpha, 0)}(x, x - ty, z) \right\|_{L^2_{x, z}} \\
\lesssim 2^j(|\alpha| + m) \left\| e^{-ity \cdot \xi} \psi_0(\xi/2^{j+1}) \psi_0(\eta/2^{j+1}) \right\|_{L^2_{\xi, \eta}} \\
\approx 2^j(|\alpha| + m + n),
\]
which implies
\[
\|h_j^{(Q, L)}\|_{L^2} \lesssim 2^{-j\rho n/2} \ell(Q)^{L-n/p} \sum_{|\alpha| = L} 2^j(|\alpha| + m + n) |Q| \\
\approx \left(2^j \ell(Q) \right)^{L-n/p+n} 2^{j\rho n(1/p-1/2)}. \tag{4.8}
\]
If we do not use the moment condition on \(a\) in (4.6), a similar argument yields

\[
|T_{\sigma_j}(a, g)(x)| \lesssim (1 + 2^{j\rho}|x|)^{-M} h_j^{(Q,0)}(x)\|g\|_{L^\infty} \tag{4.9}
\]

with

\[
h_j^{(Q,0)}(x) = 2^{-j\rho n/2} \ell(Q)^{-n/p} \sum_{|\beta| \leq M} \sum_{|\gamma| \leq M'} \int_{y \in Q} (2^{j\rho}(x-y))^\beta (2^{j\rho}z)^\gamma K_j(x, x - y, z) dy
\]

and

\[
\|h_j^{(Q,0)}\|_{L^2} \lesssim \left(2^j \ell(Q)^{n/p+n}\right)^{-n/p+n} 2^{j\rho(1/p-1/2)} \tag{4.10}
\]

Combining (4.7) and (4.9), we have

\[
|T_{\sigma_j}(a, g)(x)| \lesssim (1 + 2^{j\rho}|x|)^{-M} \min \left\{ h_j^{(Q,L)}(x), h_j^{(Q,0)}(x) \right\} \|g\|_{L^\infty}.
\]

Using (4.8), (4.10) and Hölder’s inequality with \(1/p = 1/q + 1/2\), we have

\[
\left\| (1 + 2^{j\rho} \cdot)^{-M} \min \left\{ h_j^{(Q,L)}, h_j^{(Q,0)} \right\} \right\|_{L^p} \lesssim \left(2^j \ell(Q)^{n/p+n}\right)^{-n/p+n} \min \left\{ \left(2^j \ell(Q)^{L-n/p+n}\right), \left(2^j \ell(Q)^{-n/p+n}\right) \right\}.
\]

Therefore,

\[
\|T_{\sigma}(a, g)\|_{L^p((Q^*)^c)}^p \lesssim \sum_{j=0}^\infty \|T_{\sigma_j}(a, g)\|_{L^p((Q^*)^c)}^p
\]

\[
\lesssim \left(\sum_{2^j \ell(Q) \leq 1} \left(2^j \ell(Q)^{L-n/p+n}\right)^p \right) \|g\|_{L^\infty}^p \lesssim \|g\|_{L^\infty}^p,
\]

which is the desired estimate for the latter term in (4.2).

References

1. Bényi, Á., Bernicot, F., Maldonado, D., Naibo, V., Torres, R.: On the Hörmander classes of bilinear pseudodifferential operators II. Indiana Univ. Math. J. 62, 1733–1764 (2013)
2. Bényi, Á., Maldonado, D., Naibo, V., Torres, R.: On the Hörmander classes of bilinear pseudodifferential operators. Integral Equ. Oper. Theory 67, 341–364 (2010)
3. Calderón, A.P., Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. U.S.A. 69, 1185–1187 (1972)
4. Grafakos, L., Kalton, N.: Multilinear Calderón–Zygmund operators on Hardy spaces. Collect. Math. 52, 169–179 (2001)
5. Michalowski, N., Rule, D., Staubach, W.: Multilinear pseudodifferential operators beyond Calderón–Zygmund operators. J. Math. Anal. Appl. 414, 149–165 (2014)
6. Miyachi, A., Tomita, N.: Minimal smoothness conditions for bilinear Fourier multipliers. Rev. Mat. Iberoam. 29, 495–530 (2013)
7. Miyachi, A., Tomita, N.: Calderón-Vaillancourt type theorem for bilinear operators. Indiana Univ. Math. J. 62, 1165–1201 (2013)
8. Miyachi, A., Tomita, N.: Bilinear pseudo-differential operators with exotic symbols, To appear in Ann. Inst. Fourier (Grenoble), arXiv:1801.06744
9. Naibo, V.: On the $L^\infty \times L^\infty \to BMO$ mapping property for certain bilinear pseudodifferential operators. Proc. Am. Math. Soc. 143, 5323–5336 (2015)
10. Stein, E.M.: Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)