Bidirectional Phrase-based Statistical Machine Translation

Andrew Finch
NICT, Keihanna Science City,
Kyoto, 619-0288, Japan
andrew.finch@nict.go.jp

Eiichiro Sumita
NICT, Keihanna Science City,
Kyoto, 619-0288, Japan
eiichiro.sumita@nict.go.jp

Abstract

This paper investigates the effect of direction in phrase-based statistical machine translation decoding. We compare a typical phrase-based machine translation decoder using a left-to-right decoding strategy to a right-to-left decoder. We also investigate the effectiveness of a bidirectional decoding strategy that integrates both mono-directional approaches, with the aim of reducing the effects due to language specificity. Our experimental evaluation was extensive, based on 272 different language pairs, and gave the surprising result that for most of the language pairs, it was better decode from right-to-left than from left-to-right. As expected the relative performance of left-to-right and right-to-left strategies proved to be highly language dependent. The bidirectional approach outperformed the both the left-to-right strategy and the right-to-left strategy, showing consistent improvements that appeared to be unrelated to the specific languages used for translation. Bidirectional decoding gave rise to an improvement in performance over a left-to-right decoding strategy in terms of the BLEU score in 99% of our experiments.

1 Introduction

Human language production by its very nature is an ordered process. That is to say, words are written/uttered in a sequence. The current generation of phrase-based statistical machine translation (SMT) systems also generate their target word sequences according to an order. Since the generation process is symmetrical, there are two possible strategies that could be used to generate the target: from beginning to end; or from end to beginning. Generating the target in the ‘wrong’ direction (the opposite direction to the way in which humans do) is counter intuitive, and possibly as a result of this, SMT systems typically generate the target word sequence in the same order as human language production. However it is not necessarily the case that this is most effective strategy for all language pairs. In this paper we investigate the effect of direction in phrase-based SMT decoding.

For the purposes of this paper, we will refer to target word sequence generation that follows the same order as human language production as forward generation, and generation in the opposite direction to human language production as reverse generation. These are often referred ”left-to-right” and ”right-to-left” respectively in the literature, but we avoid this notation as many languages are naturally written from right-to-left.

In earlier work (Watanabe and Sumita, 2002), it was hypothesized that the optimal direction for decoding was dependent on the characteristics of the target language. Their results show that for Japanese to English translation a reverse decoding strategy was the most effective, whereas for English to Japanese translation, a forward decoding strategy proved superior. In addition they implemented a bidirectional decoder, but their results were mixed. For English to Japanese translation, decoding bidirectionally gives higher performance, but for Japanese to English translation they were unable to improve performance by decoding bidirectionally. Their experiments were performed using a decoder based on IBM Model 4 using the translation techniques developed at IBM (Brown et al., 1993).

This work is closely related to the techniques proposed in (Watanabe and Sumita, 2002), but in our case we decode within the framework of a phrase-based SMT system, rather than the IBM model. Our intention was to explore the effect of direction in decoding within the context of a more
contemporary machine translation paradigm, and
to experiment with a broader range of languages.
The underlying motivation for our studies however
remains the same. Languages have considerably
different structure, and certain grammatical con-
structs tend to occupy particular positions within
sentences of the same language, but different po-
sitions across languages. These differences may
make it easier to tackle the automatic translation
of a sentence in a given language from a partic-
ular direction. Our approach differs in that the
decoding process of a phrased-based decoder is
quite different from that used by (Watanabe and
Sumita, 2002) since decoding is done using larger
units making the re-ordering process much sim-
pler. In (Watanabe and Sumita, 2002) only one
language pair is considered, for our experiments
we extended this to include translation among 17
different languages including the Japanese and En-
lish pair used in (Watanabe and Sumita, 2002).
We felt that it was important to consider as many
languages as possible in this study, as intuition
and evidence from the original study suggests that
the effect of direction in decoding is likely to be
strongly language dependent.

The next section briefly describes the mecha-
nisms underlying phrase-based decoding. Then
we explain the principles behind the forward, re-
verse and bidirectional decoding strategies used in
our experiments. Section 3 presents the experi-
ments we performed. Section 4 gives the results
and some analysis. Finally in Section 5, we con-
clude and offer possible directions for future re-
search.

2 Phrase-based Translation

For our experiments we use the phrase-based ma-
chine translation techniques described in (Koehn,
2004) and (Koehn et al., 2007), integrating our
models within a log-linear framework (Och and
Ney, 2002).

One of the advantages of a log-linear model is
that it is possible to integrate a diverse set of fea-
tures into the model. For the decoders used in the
experiments in this paper, we included the follow-
ing feature functions:

- An n-gram language model over the target
 word sequence
 - Ensures the target word sequence is a
 likely sequence of words in the target
 language
- A phrase translation model
 - Effects the segmentation of the source
 word sequence, and is also responsible
 for the transformation of source phrases
 into target phrases.
- A target word sequence length model
 - Controls the length of the target word
 sequence. This is usually a constant
 term added for each word in the trans-
 lation hypothesis.
- A lexicalized distortion model
 - Influences the reordering of the trans-
 lated source phrases in the target word
 sequence using lexical context on the
 boundaries of the phrases being re-
 ordered.

2.1 Decoding

In a phrase-based SMT decoder, the word se-
quence of the target language is typically gener-
ated in order in a forward manner. The words
at the start of the translation are generated first,
then the subsequent words, in order until the fi-
nal word of the target word sequence is gener-
ated. As the process is phrase-based, the trans-
lation is generated in a phrase-by-phrase manner,
rather word-by-word. The basic idea is to seg-
ment the source word sequence into subsequences
(phrases), then translate each phrase individually,
and finally compose the target word sequence by
reordering the translations of the source phrases.
This composition must occur in a particular order,
such that target words are generated sequentially
from the start (or end in the case of reverse de-
coding) of the sentence. The reason that the target
needs to be generated sequentially is to allow an
n-gram language model to be applied to the partial
target word sequence at each step of the decoding
process.

This process is illustrated in Figure 1. In the
decoding for both forward and reverse decoders
the source sentence is segmented into 2 phrases:
"where is" and "the station" (although in this ex-
ample the segmentation is the same for both de-
coding strategies, it is not necessarily the case
since the search processes are different). In the
forward decoding process, first the English phrase
"the station" is translated into the Japanese phrase
"eki wa". Initially the target sequence consists
of only the start of sentence marker "⟨s⟩". This
marker only serves as context to indicate the start
of the sequence for the benefit of the language
model. The first target phrase is separated into its
component words and each word is added in order
to the target word sequence. Each addition causes
an application of the language model, hence in
Figure 1 the first term of \(P_{LM} \) is \(P(eki | ⟨s⟩) \), the
second is \(P(wa | eki, ⟨s⟩) \) and so on. For reverse de-
coding, the target sentence is generated starting
from the end of sentence marker ⟨/s⟩ with the lan-
guage model context being to the right of the cur-
cent word. For the case of bidirectional decoding,
the model probability for the hypothesis is a linear
interpolation of the scores for both forward and re-
verse hypotheses.

2.2 Direction in Decoding

Direction in decoding influences both the models
used by the decoder and the search process itself.
The direction of decoding determines the order in
which target words are generated, the source
phrases being translated in any order, therefore it
is likely to be features of the target language rather
than those of the the source language that deter-
mine the effect that the decoding direction has on
decoder performance.

2.2.1 The Language Model

The fundamental difference between the language
models of a forward decoder and that of a reverse
dcoder is the direction in which the model looks
for its context. The forward model looks back
to the start of the sentence, whereas the reverse
model looks forward to the end of the sentence.

2.2.2 The Search

Assuming a full search, a unigram language model
and no limitations on reordering, the forward and
reverse decoding processes are equivalent. When
these constraints are lifted, as is the case in the
experiments in this paper, the two search processes
diverge and can give rise to hypotheses that are
different in character.

The partial hypotheses from early in the search
process for forward decoding represent hypothe-
ses for the first few words of the target word se-
quence, whereas the early partial hypotheses of
a reverse decoder hold the last few words. This
has two consequences for the search. The first is
that (assuming a beam search as used in our ex-
periments), certain candidate word sequences in
the early stages of the search might be outside the
beam and be pruned. The consequence of this
is that sentences that start with (or end with in
the case of reverse decoding) the pruned word se-
quence will not be considered during the remain-
der of the search. The second is that word se-
quences in the partial hypotheses are used in the context of the models used in the subsequent decoding. Thus, correctly decoding the start (or end for reverse decoding) of the sentence will benefit the subsequent decoding process.

3 Experiments

3.1 Experimental Data

The experiments were conducted on all possible pairings among 17 languages. A key to the acronyms used for languages together with information about their respective characteristics is given in Table 1.

We used all of the first ATR Basic Travel Expression Corpus (BTEC1) (Kikui et al., 2003) for these experiments. This corpus contains the kind of expressions that one might expect to find in a phrase-book for travelers. The corpus is similar in character to the IWSLT06 Evaluation Campaign on Spoken Language Translation (Paul, 2006) J-E open track. The sentences are relatively short (see Table 1) with a simple structure and a fairly narrow range of vocabulary due to the limited domain.

The experiments were conducted on data that contained no case information, and also no punctuation (this was an arbitrary decision that we believe had no impact on the results).

We used a 1000 sentence development corpus for all experiments, and the corpus used for evaluation consisted of 5000 sentences with a single reference for each sentence.

3.2 Training

Each instance of the decoder is a standard phrase-based machine translation decoder that operates according to the same principles as the publicly available PHARAOH (Koehn, 2004) and MOSES (Koehn et al., 2007) SMT decoders. In these experiments 5-gram language models built with Witten-Bell smoothing were used along with a lexicalized distortion model. The system was trained in a standard manner, using a minimum error-rate training (MERT) procedure (Och, 2003) with respect to the BLEU score (Papineni et al., 2001) on held-out development data to optimize the log-linear model weights. For simplicity, the MERT procedure was performed on independently on the forward and reverse decoders for the bidirectional system, rather than attempting to tune the parameters for the full system.

3.3 Translation Engines

3.3.1 Forward

The forward decoding translation systems used in these experiments represent the baseline of our experiments. They consist of phrase-based, multi-stack, beam search decoders commonly used in the field.

3.3.2 Reverse

The reverse decoding translation systems used in these experiments were exactly the same as the forward decoding systems. The difference being that word sequences in the training, development, and source side of the test corpora were reversed prior to training the systems. The final output of the reverse decoders was reordered in a post processing step before evaluation.

3.3.3 Bidirectional

The decoder used for the bidirectional decoding experiments was modified in order to be able to decode both forward and reverse in separate instances of the decoder. Models for decoding in forward and reverse directions are loaded, and two decoding instances created. Scores for hypotheses that share the same target word sequence from the two decoders were combined at the end of the decoding process linearly using equal interpolation weights. Hypotheses that were generated by only one of the component decoders were not pruned. The scores from these hypotheses only had a contribution from the decoder that was able to generate them, the contribution from the other decoder being zero.

3.4 Decoding Constraints

The experiments reported in this paper were conducted with loose constraints on the decoding as overconstraining the decoding process could lead to differences between unidirectional and bidirectional strategies. More specifically, the decoding was done with a beam width of 100, no beam thresholding and no constraints on the reordering process. Figure 2 shows the effect of varying the beam width (stack size) in the search for forward decoder of the English to Japanese translation experiment. At the beam width of 100 used in our experiments, the gains from doubling the beam width are small (0.07 BLEU percentage points).

It is also important to note that a future cost identical to that used in the MOSES decoder...
Abbreviation	Language	#Words	Avg. sent length	Vocabulary	Order
ar | Arabic | 806853 | 5.16 | 47093 | SVO |
da | Danish | 806853 | 5.16 | 47093 | SVO |
de | German | 907354 | 5.80 | 23443 | SVO |
en | English | 970252 | 6.21 | 12900 | SVO |
es | Spanish | 881709 | 5.64 | 18128 | SVO |
fr | French | 983402 | 6.29 | 17311 | SVO |
id | Indonesian (Malay)| 865572 | 5.54 | 15527 | SVO |
it | Italian | 865572 | 5.54 | 15527 | SVO |
ja | Japanese | 1149065 | 7.35 | 15405 | SOV |
ko | Korean | 1091874 | 6.98 | 17015 | SOV |
ms | Malaysian (Malay) | 873959 | 5.59 | 16182 | SVO |
nl | Dutch | 927861 | 5.94 | 19775 | SVO |
pt | Portuguese | 881428 | 5.64 | 18217 | SVO |
ru | Russian | 781848 | 5.00 | 32199 | SVO |
th | Thai | 1211690 | 7.75 | 6921 | SVO |
vi | Vietnamese | 1223341 | 7.83 | 8055 | SVO |
zh | Chinese | 873375 | 5.59 | 14854 | SVO |

Table 1: Key to the languages, corpus statistics and word order. SVO denotes a language that predominantly has subject-verb-object order, and SOV denotes a language that predominantly has subject-object-verb order.

(Koehn et al., 2007) was also included in the scores for partial hypothesis during the decoding.

3.5 Computational Overhead

In the current implementation, bidirectional decoding takes twice as long as a mono-directional system. However, in a multi-threaded environment, each instance of the decoder is able to run on its own thread in parallel, and so this slowdown can be mitigated in some circumstances. Future generations of the bidirectional decoder will more tightly couple the two decoders, and we believe this will lead to faster and more effective search.

3.6 Evaluation

The results presented in this paper are given in terms of the BLEU score (Papineni et al., 2001). This metric measures the geometric mean of n-gram precision of n-grams drawn from the output translation and a set of reference translations for that translation.

There are large number of proposed methods for carrying out machine translation evaluation. Methods differ in their focus of characteristics of the translation (for example fluency or adequacy), and moreover anomalous results can occur if a single metric is relied on. Therefore, we also carried out evaluations using the NIST (Doddington, 2002), METEOR (Banerjee and Lavie, 2005), WER (Hunt, 1989), PER (Tillmann et al., 1997) and TER (Snover et al., 2005) machine translation evaluation techniques.

4 Results

The results of the experiments in terms of the BLEU score are given in Tables ??, 5, 3 and 3. These results show the performance of the reverse and bidirectional decoding strategies relative to the usual forward decoding strategy. The cells in the tables that represent experiments in which
	ar	da	de	en	es	fr	id	it	ja	ko	ms	nl	pt	ru	th	vi	zh
ar	-	47.8	48.8	51.7	48.8	47.3	46.5	49.2	29.8	27.8	46.9	49.0	49.0	47.8	39.7	43.0	27.8
da	58.3	-	58.7	63.0	58.6	55.7	53.5	58.5	37.5	35.1	54.4	59.6	59.0	55.4	48.1	51.7	35.2
de	53.8	55.5	-	59.4	55.9	51.9	50.3	55.3	34.2	32.0	50.8	57.0	55.9	51.2	45.7	48.9	32.7
en	63.6	65.8	64.8	-	67.0	61.0	58.4	65.8	41.1	38.7	59.1	67.6	66.7	58.7	52.8	57.7	38.6
es	57.6	58.2	58.0	65.6	-	56.6	54.2	61.1	38.3	36.4	54.3	59.6	62.6	55.1	47.6	51.3	36.0
fr	57.8	58.3	58.0	62.3	58.9	-	52.7	57.4	39.1	37.7	53.8	58.3	57.9	54.8	47.7	50.4	37.6
id	54.7	52.8	52.8	56.6	53.7	51.0	-	53.1	37.2	35.6	86.4	53.8	53.0	51.3	46.4	48.4	34.9
it	54.1	53.4	54.4	59.4	56.4	51.8	49.2	-	34.4	32.8	49.9	55.1	56.2	50.5	44.0	47.0	33.6
ja	38.2	39.2	38.6	41.9	39.9	40.2	40.7	39.5	-	69.4	40.4	39.5	39.7	37.8	37.3	37.2	52.1
ko	34.4	35.3	34.6	38.2	36.3	36.2	36.8	35.6	66.4	-	36.6	35.6	36.3	34.5	34.2	43.1	46.4
ms	54.5	52.7	52.6	56.2	53.4	50.6	82.5	53.2	36.8	34.9	-	53.6	53.4	51.3	46.7	49.2	34.8
nl	55.1	57.3	58.8	63.2	58.5	54.5	52.4	57.1	36.7	34.1	53.4	-	58.3	53.5	48.7	50.7	35.2
pt	56.8	57.7	57.6	63.8	62.0	55.5	52.7	59.7	37.8	36.4	53.4	58.7	-	54.2	47.1	50.6	35.8
ru	51.4	49.1	50.2	53.3	52.0	48.7	48.6	51.6	31.9	29.5	49.1	50.9	50.5	-	41.8	43.7	30.0
th	53.8	55.0	54.8	58.2	55.8	53.3	55.0	54.8	41.4	39.2	55.4	55.9	55.5	53.0	-	56.0	40.4
vi	53.6	53.6	54.2	57.4	54.2	51.4	52.3	53.3	37.6	35.8	53.3	54.6	54.4	51.7	50.3	-	36.2
zh	32.0	33.0	32.6	34.6	33.2	33.7	34.2	33.2	47.8	43.5	33.9	33.4	32.6	32.2	31.1	29.7	-

Table 2: Baseline BLEU scores for all systems. The figures represent the scores in BLEU percentage points of the baseline left-to-right decoding systems. Source languages are indicated by the column headers, the row headers denoting the target languages.

the forward strategy outperformed the contrasting strategy are shaded in gray. The numbers in the cells represent the difference in BLEU percentage points for the systems being compared in that cell.

It is clear from Table 3 that for most of the language pairs (67% of them for BLEU, and a similar percentage for all the other metrics except METEOR), better evaluation scores were achieved by using a reverse decoding strategy than a forward strategy. This is a surprising result because language is produced naturally in a forward manner (by definition), and therefore one might expect this to also be the optimal direction for word sequence generation in decoding.

4.1 Word Order Typography

Following (Watanabe and Sumita, 2002), to explain the effects we observe in our results we look to the word order typology of the target language (Comrie and Vogel, 2000). The word order of a language is defined in terms of the order in which you would expect to encounter the finite verb (V) and its arguments, subject (S) and object (O). In most languages S precedes O and V. Whether or not O precedes or follows V defines the two most prevalent word order types SOV and SVO (Comrie and Vogel, 2000).

Two of the target languages in this study (Japanese and Korean) have the SOV word type, the remainder having the SVO word order type. In Table 3 looking at the rows for ja and ko we can see that for both of these languages reverse decoding outperformed forward decoding in only 4 out of 12 experiments. Furthermore these two languages were the two languages that benefited the most (in terms of the number of experimental cases) from forward decoding. The two languages also agree on the best decoding direction for 12 of the 16 language pairs. This apparent correlation may reflect similarities between the two languages (word order type, or other common features of the languages).

Given this evidence, it seems plausible that word order does account in part for the differences in performance when decoding in differing directions, but this can only be part of the explanation since there are 4 source languages for which reverse decoding yielded higher performance.

It should be noted that our results differ from those of (Watanabe and Sumita, 2002) for English to Japanese translation, who observed gains when decoding in the reverse direction for this language pair. It is hard to compare our results directly with theirs however, due to the differences in the decoders used in the experiments (ours being phrase-based, and theirs based on the IBM ap-
The results were the similar in character when other MT evaluation methods were used. These results are summarized in Table 3.

4.2 Bidirectional Decoding

Table 5 shows the performance of the bidirectional decoder relative to a forward decoder. As can be seen from the table, in 269 out of the 272 experiments the bidirectional decoder outperformed the unidirectional decoder. The gains ranged from a maximum of 1.81 BLEU (translating from Thai to Arabic) points, to a minimum of -0.04 BLEU points (translating from Indonesian to Japanese) with the average gain over all experiments being 0.56 BLEU points. It is clear from our experiments that there is much to be gained from decoding bidirectionally. Our results were almost unanimously positive, and in all three negative cases the drop in performance was small.

5 Conclusion

In this paper we have investigated the effects on phrase-based machine translation performance of three different decoding strategies: forward, reverse and bidirectional. The experiments were conducted on a large set of source and target languages consisting of 272 experiments representing all possible pairings from a set of 17 languages. These languages were very diverse in character and included a broad selection of European and Asian languages. The experimental results revealed that for SVO word order languages it is usually better to decode in a reverse manner, and in contrast, for SOV word order languages it is usu-
ally better to decode in a forward direction. Our main contribution has been to show that a bidirectional decoding strategy is superior to both monodirectional decoding strategies. It might be argued that the gains arise simply from system combination. However, our systems are combined in a simple linear fashion, and gains will only arise when the second system contributes novel and useful information to the combination. Furthermore, our systems are trained on two copies of the same data, no additional data is required. The gains from decoding bidirectionally were obtained very consistently, with only loose constraints on the decoding. This can be seen clearly in Table 5 where the results are almost unanimously positive. Moreover, these gains appear to be independent of the linguistic characteristics of the source and target languages.

In the future we would like to explore the possibilities created by more tightly coupling the forward and reverse components of the bidirectional decoder. Scores from partial hypotheses of both processes could be combined and used at each step of the decoding, making the search more informed. Furthermore, forward partial hypotheses and reverse hypotheses would ‘meet’ during decoding (when one decoding direction has covered words in the source that the other has yet to cover), and provide paths for each other to a final state in the search.

Acknowledgment

This work is partly supported by the Grant-in-Aid for Scientific Research (C) Number 19500137 and "Construction of speech translation foundation aiming to overcome the barrier between Asian languages", the Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: an automatic metric for mt evaluation with improved correlation with human judgments. In ACL-2005: Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72.

P. Brown, S. Della Pietra, V. Della Pietra, and R.J. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, 19(2):263–311.

Bernard Comrie and Petra M Vogel, editors. 2000. Approaches to the Typography of Word Classes. Mouton de Gruyter, Berlin.

| ar | da | de | en | es | fr | id | it | ja | ko | ms | nl | pt | ru | th | vi | zh |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| - | 0.66| 0.51| 1.03| 0.65| 0.75| 0.59| 0.47| 0.46| 0.85| 0.59| 0.69| 0.39| 0.30| 1.81| 1.30| 0.85|
| 0.27| 0.61| 0.63| 0.38| 0.60| 0.59| 0.29| 1.04| 0.79| 0.69| 0.45| 0.89| 0.27| 1.28| 0.87| 0.47|
| 0.52| 0.51| - | 0.54| 0.44| 0.42| 0.70| 0.40| 0.74| 0.45| 0.83| 0.37| 0.28| 0.34| 0.77| 0.90| 0.84|
| 0.53| 0.01| 0.32| - | 0.23| 0.25| 0.56| 0.19| 1.11| 0.59| 0.28| 0.27| 0.45| 0.60| 0.89| 0.61| 0.58|
| 0.28| 0.48| 0.45| 0.56| - | 0.43| 0.12| 0.26| 0.57| 0.64| 0.56| 0.06| 0.04| 0.24| 1.16| 1.23| 0.68|
| 0.70| 0.33| 0.54| 0.66| 0.46| - | 0.49| 0.57| 0.24| 0.13| 0.11| 0.43| 0.33| 0.55| 0.91| 1.09| 0.57|
| 0.24| 0.32| 0.36| 0.93| 0.70| 0.65| - | 0.35| 0.75| 0.77| 0.11| 0.46| 0.69| 0.57| 0.99| 0.85| 0.47|
| 0.13| 0.55| 0.32| 0.43| 0.47| 0.51| 0.64| - | 0.65| 0.42| 0.77| 0.51| 0.51| 0.69| 0.85| 0.98| 0.58|
| 0.38| 0.62| 0.60| 0.61| 0.38| 0.73| 0.04| 0.43| - | 0.35| 0.05| 0.70| 0.30| 0.38| 0.53| 0.17| 0.02|
| 0.49| 0.62| 0.90| 0.40| 0.34| 0.57| 0.47| 0.47| 0.02| - | 0.23| 0.52| 0.20| 0.83| 0.70| 0.44| 0.83|
| 0.37| 0.57| 0.63| 0.92| 0.81| 0.75| 0.36| 0.54| 0.70| 1.31| - | 0.76| 0.35| 0.51| 1.14| 0.70| 0.35|
| 0.35| 0.14| 0.54| 0.33| 0.30| 0.46| 0.68| 0.69| 0.77| 0.63| 0.44| - | 0.42| 0.67| 0.71| 1.13| 0.55|
| 0.46| 0.21| 0.37| 0.21| 0.17| 0.49| 0.47| 0.24| 0.88| 0.45| 0.54| 0.39| - | 0.41| 0.94| 1.15| 0.90|
| 0.69| 0.63| 0.69| 0.77| 0.26| 0.50| 0.79| 0.52| 0.69| 0.90| 0.66| 0.69| 0.40| - | 1.19| 1.23| 0.47|
| 0.90| 0.49| 0.53| 0.77| 0.64| 0.38| 0.21| 0.60| 0.37| 0.96| 0.38| 0.63| 0.68| 0.72| - | 0.33| 0.45|
| 0.64| 0.61| 0.42| 1.09| 0.84| 0.63| 0.34| 0.70| 0.59| 0.39| 0.16| 0.56| 0.36| 0.50| 0.77| - | 0.53|
| 0.23| 0.48| 0.96| 0.33| 0.49| 0.32| 0.27| 0.43| 0.43| 0.69| 0.31| 0.97| 0.85| 0.23| 0.40| 0.50| - |

Table 5: Gains in BLEU score from decoding bidirectionally over a forward decoding strategy. The numbers in the cells are the differences in BLEU percentage points between the systems. Shaded cells indicate the cases where forward decoding gave a higher score. Source languages are indicated by the column headers, the row headers denoting the target languages.
G. Doddington. 2002. Automatic Evaluation of Machine Translation Quality Using N-gram Co-Occurrence Statistics. In *Proceedings of the HLT Conference*, San Diego, California.

Melvyn J. Hunt. 1989. Figures of merit for assessing connected-word recognisers. In *Proceedings of the ESCA Tutorial and Research Workshop on Speech Input/Output Assessment and Speech Databases*, pages 127–131.

G. Kikui, E. Sumita, T. Takezawa, and S. Yamamoto. 2003. Creating corpora for speech-to-speech translation. In *Proceedings of EUROSPEECH-03*, pages 381–384.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowa, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: open source toolkit for statistical machine translation. In *ACL 2007: proceedings of demo and poster sessions*, pages 177–180, Prague, Czech Republic, June.

Philipp Koehn. 2004. Pharaoh: a beam search decoder for phrase-based statistical machine translation models. In *Machine translation: from real users to research: 6th conference of AMTA*, pages 115–124, Washington, DC.

Franz Josef Och and Hermann Ney. 2002. Discriminative training and maximum entropy models for statistical machine translation. In *In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL 2002)*, pages 295–302.

Franz J. Och. 2003. Minimum error rate training for statistical machine translation. In *Proceedings of the ACL*.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001. Bleu: a method for automatic evaluation of machine translation. In *ACL ’02: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics*, pages 311–318, Morristown, NJ, USA. Association for Computational Linguistics.

Michael Paul. 2006. Overview of the iwslt 2006 evaluation campaign. In *Proceedings of the IWLST*.

Mathew Snover, Bonnie Dorr, Richard Schwartz, John Makhoul, Linnea Micciula, and Ralph Weischedel. 2005. A study of translation error rate with targeted human annotation. Technical report, University of Maryland, College Park and BBN Technologies, July.

C. Tillmann, S. Vogel, H. Ney, A. Zubiaga, and H. Sawaf. 1997. Accelerated dp based search for statistical translation. In *In European Conf. on Speech Communication and Technology*, pages 2667–2670.

Taro Watanabe and Eiichiro Sumita. 2002. Bidirectional decoding for statistical machine translation. In *Proceedings of the 19th international conference on Computational linguistics*, pages 1–7, Morristown, NJ, USA. Association for Computational Linguistics.