A MODERN APPROACH TO THE MOMENT PROBLEM ON \mathbb{R}

MOUSSODA TOURÉ †, GANE SAMB LO ††, AND ALADJI BABACAR NIANG †††

ABSTRACT. The moment problem is an important problem in Functional Analysis and in Probability measure. It goes back to Stieltjes, around 1890. There is still an important ongoing interest in the recent literature. But, up today, the main theoretical resource (Shohat and Tamarkin, 1934) does not have the modern exposure it deserves, especially in the current development of measure theory of integration. Besides, the multivariate version is far less exploited. In this paper, a full exposure of such a theory is presented, using the latest knowledge of measure theory and functional analysis. As a result, the basis of future development is laid out and the accessibility of the theory by modern graduate students and researches is guaranteed.

Moussoda Touré †
LERSTAD, Gaston Berger University, Saint-Louis, Sénégal.
moussodatoure2014@gmail.com
† Gane Samb Lo ††
LERSTAD, Gaston Berger University, Saint-Louis, Sénégal (main affiliation).
LSTA, Pierre and Marie Curie University, Paris VI, France.
AUST - African University of Sciences and Technology, Abuja, Nigeria
gane-samb.lo@edu.ugb.sn, galo@aust.edu.ng, ganesamblo@ganesamblo.net
Permanent address : 1178 Evanston Dr NW T3P 0J9, Calgary, Alberta, Canada.

Aladji Babacar Niang †††
LERSTAD, Gaston Berger University, Saint-Louis, Sénégal.
Email: aladjibacar93@gmail.com

Keywords. moment problems; ordered Hahn-Banach theorem version; probability measures characterizations by moments; weak convergence using moments;
AMS 2010 Mathematics Subject Classification: 28Axx; 60Exx

1. INTRODUCTION

The problem of moment is an interesting topic in Functional Analysis, especially in measure theory. It has important applications in probability theory.

Although there is a significant number of research works in probability theory on this problem (see Gutt (2005), Billingsley (1995), loève (1997) and references therein, etc.), the most important source of that question, when treated in its generality, is Shohat and Tamarkin (1943). Up to our
knowledge, we did not see another full set up of that theory beyond that main reference.

We already pointed out that this problem is used in Probability Theory, but the following special form: given a probability law P_X on \mathbb{R} having moments of all orders $(m_n)_{n \geq 0}$, does the sequence $(m_n)_{n \geq 1}$ uniquely determine the probability law P_X? This is a consequence of the moment problem, which goes back to Stieltjes (see Shohat and Tamarkin (1943) for references on all particular form of that problem) formulated as follows:

Stieltjes’s problem [Around 1890, see Shohat and Tamarkin (1943) and references therein]. Given $(m_n)_{n \geq 1} \subset \mathbb{R}_+$, does it exists finite measure ρ supported by $\mathcal{V} = \mathbb{R}_+$ such that

\begin{equation}
\forall n \geq 0, \ m_n = \int_{\mathcal{V}} x^n \, d\rho(x).
\end{equation}

Of course, $m_0 = \rho(\mathbb{R}) = \rho(\mathcal{V})$. The term $m_0 \neq 0$ is the bound of ρ. Later, the same problem is set for a general sequence of real numbers and for $\mathcal{V} = \mathbb{R}$ or $\mathcal{V} = [0, 1]$ and is named after Hamburger and Hausdorff respectively.

The general solution of the problem, when the support \mathcal{V} is bounded by a closed set S_0, is given in Shohat and Tamarkin (1943). From there, we face two major concerns about the exposition of the general theory.

First, the paper of Shohat and Tamarkin (1943), in our view, is written with the Stieltjes integrals and is based on the rudimentary tools of measure theory and weak convergence of that time of 1943. During the preparation of a master degree dissertation of the second author, we find out that a lot of arguments used by Shohat and Tamarkin (1943) may be replaced by arguments that are common now and more appropriate. Essentially, the authors used the Stieltjes integration, the notion of *substantially* continuity or of *substantially* convergences, extension theorems, etc., all those tools seeming to be obsolete now.

By using the modern Lebesgue-Stieltjes integration, the modern theory of weak convergence, the extension theorems of measures on semi-algebras or on algebras, the Caratheodory theorem instead for example, in one
A MODERN APPROACH TO THE MOMENT PROBLEM ON \mathbb{R}

word, measure theory arguments, we think that this master-piece paper on the topic can be rendered into a far more readable text for mathematicians of our modern days.

Secondly, the proofs of Shohat and Tamarkin (1943) are directly given on \mathbb{R}^d, $d \geq 1$. By comparison, classical graduate textbooks in probability refer to the moment problem in one dimension and common readers are used to a multivariate approach of the problem of moments.

Based on the importance of the question and its connections to the characterizations of the weak convergence through the convergence of the moments (if they all exist), we wish to produce a general introduction to the question and entirely expose it at the light of the modern theorem under the following organization:

(1) Treating entirely the dimensional stage with the full details and address the weak convergence through the convergence of the moments (as in Billingsley (1995) and loève (1997)).

(2) By exposing the ideas of Shohat and Tamarkin (1943), our contribution is two-fold:

(2a) We provide relevant complements and variety of modern arguments that will make the text readable just after a course of Measure Theory and Probability Theory. We intend to formulate the main theorem in Shohat and Tamarkin (1943) in the frame of measure theory with the help of some well-known criteria. But, at least, we include needed the mathematical background. At the end, we hope that a graduate student will be able to read it more comfortably.

(2b) In the proofs themselves, we bring more clarity on the linear spaces on which the linear mapping is constructed (see Step 1 in page 22). In the original paper, the roles of r is ambiguous. Actually, the right space should be the class of functions bounded by finite linear combinations of functions $u \mapsto A(u_1^{2r_1} + \cdots + u_d^{2r_d}) + B$, $A \geq 0$ and $B \geq 0$ (in dimension $d \geq 1$) with non-negative coefficients.

(2c) All along the proof, the right modern tool is used, in particular the Fatou-Lebesgue theorem and the construction of the Lebesgue definition
for measurable function of constant sign.

Let us organize the paper as follows.

In the next section 2, we state the tools we are going to use on modern theory of distribution functions, Lebesgue-Stieltjes integration, limit theorems, etc.

In the Section 3, we deal with the moment problem within Probability Theory on \mathbb{R} and link it to weak convergence, following mainly Billingsley (1995).

In Section 4, we expose the full proof of Shohat and Tamarkin (1943) on \mathbb{R}.
2. Mathematical background

A - Distribution functions on \(\mathbb{R}^d, d \geq 1 \).

The properties we summarize in this Part can be found in major sources as Loève (1997), Billingsley (1968), etc. or in Lo (2017b) (Chapter 11, page 664) for the links between distribution function and Lebesgue-Stieltjes measures and in Lo (2017) for \(F \)-continuous intervals.

A1- Recalls of definitions. Let us introduce the following internal operation on \(\mathbb{R}^d \):

\[
(x, y) \ast (X, Y) = (x_1X_1, x_2X_2, ..., y_dY_d).
\]

Let us consider a real-valued function \(F \), defined as follows:

\[
\mathbb{R}^d \ni t \mapsto F(t).
\]

For any interval of \(\mathbb{R}^d \) of the form

\[
]a, b[= \prod_{i=1}^{d} [a_i, b_i]
\]

for \(a = (a_1, ..., a_d) \leq b = (b_1, ..., b_d) \), in the sense that \(a_i \leq b_i \) for all \(i \in \{1, \cdots, d\} \), we define its \(F \)-volume by

\[
\Delta F(a, b) = \sum_{\varepsilon \in \{0,1\}^d} (-1)^{s(\varepsilon)} F(b + \varepsilon \ast (a - b)),
\]

where for \(\varepsilon = (\varepsilon_1, \cdots, \varepsilon_d) \in \{0, 1\}^d \), \(s(\varepsilon) = \varepsilon_1 + \cdots + \varepsilon_d \)

An expanded version of that formula is:

\[
\Delta F(a, b) = \sum_{\varepsilon=(\varepsilon_1,\ldots,\varepsilon_d)\in\{0,1\}^d} (-1)^{s(\varepsilon)} F(b_1 + \varepsilon_1(a_1 - b_1), ..., b_d + \varepsilon_d(a_d - b_d)).
\]

Let us try to understand the formula in a progressive way.

General rule of forming \(\Delta F(a, b) \). Let \(a = (a_1, ..., a_d) \leq b = (b_1, ..., b_d) \) two points of \(\mathbb{R}^d \) and let \(F \) an arbitrary function from \(\mathbb{R}^d \) to \(\mathbb{R} \). We form \(\Delta F(a, b) \)
in this way. First consider $F(b_1, b_2, ..., b_d)$ the value of F at right endpoint $b = (b_1, b_2, ..., b_d)$ of the interval $[a, b]$. Next proceed to the replacement of each b_i by a_i by replacing exactly one of them, next two of them etc., and add the each value of F at these points with a sign plus (+) if the number of replacements is even and with a sign minus (−) if the number of replacements is odd.

We recall the definition of distribution function on \mathbb{R}.

Definition 1. A function $F : \mathbb{R}^d \to \mathbb{R}$ is a distribution function (df) on \mathbb{R}^d if and only the two following conditions hold.

(a) F assigns non-negative volumes to cuboids, that is $\Delta F(a, b) \geq 0$ for $a \leq b$.

(b) F is right-continuous.

It is a probability distribution function pr.df on \mathbb{R}^d if and only if the following three conditions are satisfied, where (c) is composed by two sub-conditions.

(a) F assigns non-negative volumes to cuboids.

(b) F is right-continuous.

(c) F satisfies

\[\lim_{\exists i, 1 \leq i \leq d, t_i \to -\infty} F(t_1, ..., t_d) = 0 \]

\[\lim_{\forall i, 1 \leq i \leq d, t_i \to +\infty} F(t_1, ..., t_d) = 1. \]

The link between df’s and Lebesgue-Stieltjes measures (LS-measures) is given by the following. We can associated to the df F a measure λ_F, called Lebesgue-Stieltjes measure associated to F, which is characterized by its values on the semi-algebra

\[S = \{ [a, b], \ a \leq b, \ (a, b) \in \mathbb{R}^d \}, \]

which are

\[\lambda_F([a, b]) = \Delta F(a, b). \]
If F is pr.df, λ_F is a probability measure. Conversely if m is a measure on \mathbb{R}^d such that

\begin{equation}
\forall x \in \mathbb{R}^d \ F_m(x) = m([-\infty, x]) < \infty,
\end{equation}

then F_m is a df (pr.df if m is a probability measure) such that $m = \lambda_{F_m}$.

A2 - Spectrum and support.

In this paper we need to introduce the notions of spectrum. First let us O as the class of all open sets in \mathbb{R}^d. We denote $\mathcal{N}(x)$ the collection of neighborhoods of $x \in \mathbb{R}^d$. The spectrum of the df F is the following set

$$s(F) = \{x \in \mathbb{R}^d, \forall O \in \mathcal{N}(x), \lambda_F(O) > 0\}.$$

The point spectrum of F is the set of atoms of λ_F, that is

$$ps(F) = \{x \in \mathbb{R}^d, \lambda_F(\{x\}) > 0\}.$$

and the support of F is the closure $\overline{ps(F)}$ of the point spectrum $ps(F)$.

A3 - Moments. Let us define the class Γ of a multi-indices in \mathbb{N}^d, that is, all the row-vectors $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_d)$ with $\alpha_i \in \mathbb{N}$ for $1 \leq i \leq d$. Define the class of multi-index of level $\ell \in \mathbb{N}$.

$$\Gamma(\ell) = \{\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_d) \in \Gamma, \ |\alpha| = \alpha_1 + \cdots + \alpha_d = \ell\}.$$

For $u = (u_1, \cdots, u_d) \in \mathbb{R}^d$, we denote

$$u^\alpha = \prod_{j=1}^{d} u_j^{\alpha_j}$$

and the function $u \to u^\alpha$ is a polynomial of degree $|\alpha|$. Now we may define the moments of a df.
Definition 2. The moment of order α of a df F on \mathbb{R}^d is the real number (whenever the integral exists) given by

$$
\mu_\alpha = \int_{\mathbb{R}^d} \prod_{j=1}^d u_j^\alpha d\lambda_F(u_1, \cdots, u_d) \equiv \int_{\mathbb{R}^d} u^\alpha d\lambda_F(u).
$$

The moment problem we face in this paper amounts to the characterization of F by all the field of moments $(\mu_\alpha)_{\alpha \in \Gamma}$, given they exist all.

A4 - F-continuous interval. First of all, a point $x = (x_1, \cdots, x_d)^t$ of \mathbb{R}^d is a discontinuity point x, that is an element of the point spectrum $ps(F)$ of F if and only if the boundary of $A_x =] - \infty, x]$ is not a λ_F-null set, i.e,

$$
(2.3) \quad \lambda_F(\partial A_x) > 0.
$$

We recall that

$$
\partial A_x = \{y = (y_1, \cdots, y_d)^t \in \mathbb{R}^d, \forall j \in \{1, \cdots, d\} \text{ y}_j \leq x_j, \exists j \in \{1, \cdots, d\} \text{ s.t. y}_j = x_j\}.
$$

Further, for any an interval

$$
(a, b) = \prod_{i=1}^d (a_i, b_i)
$$

of \mathbb{R}^d, we denote

$$
E(a, b) = \{c = (c_1, \ldots, c_d) \in \mathbb{R}^d, \forall 1 \leq i \leq d, (c_i = a_i \text{ ou } c_i = b_i)\}.
$$

By using the internal product (\cdot) defined earlier, we have a compact form of $E(a, b)$ as

$$
(2.4) \quad E(a, b) = \{b + \varepsilon * (a - b), \varepsilon = (\varepsilon_1, \ldots, \varepsilon_d) \in \{0, 1\}^d\}.
$$

By definition, the interval (a, b) is F-continuous if and only if (a, b) is bounded and each element of $E(a, b)$ is a continuity point of F, that is

$$
\forall c \in E(a, b), \lambda_F(\partial] - \infty, c[) = 0.
$$
Let $\mathcal{U}(F)$ be the class of all F-continuous intervals. A key result which is very useful in weak convergence is the following proposition.

Proposition 1. Let F be any probability distribution function on \mathbb{R}^d, $d \geq 1$. Then any open G set in \mathbb{R}^d is a countable union of F-continuous intervals of the form $]a, b]$ or $[a, b[$, where by definition, an interval (a, b) is F-continuous if and only if, for any

$$
\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_d) \in \{0, 1\}^d,
$$

the point

$$
b + \varepsilon \ast (a - b) = (b_1 + \varepsilon_1(a_1 - b_1), b_2 + \varepsilon_2(a_2 - b_2), \ldots, b_d + \varepsilon_d(a_d - b_d))
$$

is a continuity point of F.

(see Lo (2017), Proposition 18, page 82 for a proof). A final consequence of that proposition is that any point $x = (x_1, \ldots, x_d)'$ of \mathbb{N}^d is limit of sequences of continuity points of F from above and limit of sequences of continuity points of F from below.

B - An ordered version of Hahn-Banach theorem.

Let us consider a linear space E of real-valued functions x defined on some space non-empty set Ω whose elements are denoted as

$$
x : \Omega \to \mathbb{R}.
$$

Let f be an element of the dual space E' of E, that is, $f : E \to \mathbb{R}$ is a linear functional (not necessary continuous). When we endow E with the addition of functions and the external multiplication of functions by scalars and the following partial order

$$
\forall (x, y) \in E^2, (x \leq y) \iff (\forall t \in \Omega, x(t) \leq y(t)),
$$

we can see that $(E, +, \cdot, \leq)$ is an \mathbb{R}-ordered linear space, that is, $(E, +, \cdot)$ is an \mathbb{R}-linear space and the order relation is compatible with the linear structure, i.e.

$$
\forall (x, y, z) \in E^3, \ x \leq y \iff x + z \leq y + z
$$

and
\[(x, y) \in E^2, \forall \lambda \in \mathbb{R}_+ \setminus \{0\}, (x \leq y) \Leftrightarrow (\lambda x \leq \lambda y).\]

Given a non-empty subset \(\Omega_0\) of \(\Omega\) which may be equal to \(\Omega\). We have the following definition.

Definition 3. We say that \(f \in E'\) is \(\Omega\)-non-negative if and only if

\[(\forall x \in E \text{ and } (\forall t \in \Omega_0, x(t) \geq 0) \Rightarrow (f(x) \geq 0)),\]

meaning that any function \(x \in E\) which is non-negative on \(\Omega_0\) has a non-negative image by \(f\).

The following theorem is very similar to the Hahn-Banach theorem: given a linear sub-space \(E_0\) of \(E\) and given \(f_0 \in E_0'\) which is \(\Omega_0\)-non-negative, is it possible to extend \(f \in E'\) while preserving the \(\Omega_0\)-non-negativity? An affirmative response is given below.

Theorem 1. Let \(E\) be an ordered linear space of real-valued functions defined on some non-empty set \(\Omega\). Let \(\Omega_0\) a non-empty subset of \(\Omega\). Let \(E_0\) be a sub-linear space of \(E\). Let \(f_0 \in E_0'\) be \(\Omega_0\)-non-negative. Suppose that \(E_0\) has the following property:

\[(\forall x \in E, \exists (x', x'') \in E_0^2, x' \leq x \leq x'' \text{ on } \Omega_0),\]

that is

\[\forall x \in E, \exists (x', x'') \in E_0^2, (\forall t \in \Omega_0, x'(t) \leq x(t) \leq x''(t)).\]

Then \(f_0\) is extensible to a linear functional on \(E\) which is still \(\Omega_0\)-non-negative.

Proof. We closely follow the proof of Hahn-Banach theorem which, by the way, is the approach used in Shohat and Tamarkin (1943). We notice that there is nothing to if \(E = E_0\) or for \(E_0 = \{0\}, f_0 = 0\) and it is extended to \(f = 0\). So we proceed with \(f_0 \neq 0\) and \(E \neq E_0 \neq \{0\}\). So there exists \(x_0 \in E\) and \(x_0 \notin E_0\). We consider the linear space spanned by \(E_0\) and \(x_0\) which is

\[E_1 = E_0 + \mathbb{R}x_0 = \{y = x + \lambda x_0, x \in E_0, \lambda \in \mathbb{R}\}\]

We define on \(E_1\) the functional
∀y = x + λx_0 \in E_1, f_1(y) = f_0(x) + λa,

where a is arbitrary real number and is taken as f_1(x_0). For each a fixed, f_1 is linear on E_1. f_1 is a extension of f_0 from E_0 to E_1, since any y \in E_1 is uniquely written as y = x + λx_0 and then we have for λ = 0,

f_1(y) = f_0(y) + 0a = f_0(x).

Now, the problem is how to choose a = f_0(x_0) such that f_1 is Ω-non-negative. To do us, we begin by recalling the assumption

A_1 = \{x' \in E_0, x' \leq x_0 on \ Ω_0\} \neq \emptyset and A_2 = \{x'' \in E_0, x'' \geq x_0 on \ Ω_0\} \neq \emptyset.

This implies that for any (x', x'') \in A_1 \times A_2, x' \leq x_0 \leq x'' on \ Ω_0, and thus (x'' - x') \geq 0, on Ω_0. Since f_0 is Ω_0-non-negative, we have f_0(x'' - x') \geq 0 [and hence f_1(x'' - x') \geq 0], that is

∀(x', x'') \in A_1 \times A_2, f_0(x') \leq f_0(x'') on Ω_0.

Hence

∀x' \in A_1, f_0(x') \leq \inf_{x'' \in A_2} f_0(x'') on Ω_0,

Next, by taking the supremum on x', we have

C_1 =: \sup_{x' \in A_1} f_0(x') \leq \inf_{x'' \in A_2} f_0(x'') =: C_2.

Let us choose a \in [C_1, C_2]. Let us show that for a such choice, f_1 will be Ω_0- non-negative. Indeed, let

y = x + λx_0 \in E_1,

such that for t \in Ω_0, y(t) = x(t) + λx_0(t) \geq 0. We have to prove that f_1(y) \geq 0. Let us discuss on the sign of λ.

(a) Let λ = 0. Here, for all t \in Ω_0, y(t) = x(t) \geq 0. So f_0(x) = f_1(y) \geq 0.
(b) Let $\lambda > 0$. Thus $(-x/\lambda) \leq x_0$ on Ω_0. Thus $(-x/\lambda) \in A_1$. Hence

$$f_1(x_0) \geq C_1 = \sup_{x' \in A_1} f(x') \geq f_0(-\frac{x}{\lambda})$$

which leads to

$$f_1(x_0) - f_0 \left(-\frac{x}{\lambda}\right) = \frac{1}{\lambda} \left(f_0(x) + \lambda f_1(x_0) \right) = \frac{1}{\lambda} f_1(y) \geq 0$$

that is

$$f_1(y) \geq 0.$$

(c) Let $\lambda < 0$. Thus $(-x/\lambda) \geq x_0$. Thus $(-x/\lambda) \in A_2$. We use a similar argument to get

$$f_1(x_0) \leq C_2 = \inf_{x'' \in A_2} f_0(x'') \leq f_0(-x/y)$$

and this leads to

$$\frac{1}{\lambda} \left(f_0(x) + \lambda f_1(x_0) \right) = \frac{1}{\lambda} f(y) \leq 0$$

that is, since $\lambda < 0$,

$$f(y) \geq 0.$$

We conclude that for $E_0 \subset E$, we may extend f_0 to a bigger linear sub-space of at least on dimension, say E_1, as a linear and Ω_0-non-negative functional.

For the second part, let us consider the class A of extensions of f_0 preserving Ω_0-non-negativity. Let us denote them by (f, A), meaning that $f : A \to \mathbb{R}$ is linear, A subspace of E, $E_0 \subset A$ and $f|_{E_0} = f_0$ and f is Ω_0-non-negative. We say that $(f, A) \leq (f', A')$ if and only if

$$(A \subset A' \text{ and } f|_A = f).$$
Clearly, this is an order relation. Let us exploit the first part. If $E_0 \neq E$, there exists $x_0 \neq E_0$ and $f_1 : E_1 = E_0 + \mathbb{R}x_0 \to \mathbb{R}, f_1 \in \mathcal{A}$. If $E_1 \neq E$, there exists $x_1 \in E \setminus E_1$ and we set $f_1 : E_2 = E_1 + \mathbb{R}x_1$, and we get $f_2 \in \mathcal{A}$.

Either, we stop at some n with $E_n = E$, and the proof is finished or we continue infinitely. But, by construction, we have

$$(f_0, E_0) \leq (f_1, E_1) \leq (f_2, E_2) \leq \cdots \leq (f_j, E_j) \cdots$$

So the class $\{(f_j, E_j), j \geq 0\}$ is a chain. The Zorn’s lemma says that it has a maximal element. It is not difficult to see that this maximal element is (f_∞, E_∞) with

$$\begin{cases}
E_\infty = \bigcup_{j \geq 0} E_j \\
\forall x \in E_\infty, f_\infty(x) = f_j(x), \text{ for } x \in E_j
\end{cases}$$

Since the $(E_j)_{j \geq 0}$ is an increasing sequence (w.r.t to the inclusion),

$$E_\infty = \bigcup_{j \geq 0} E_j$$

is a linear sub-space of E. Let us see that the definition is coherent. Indeed, let us suppose that $x \in E_\infty$ belongs two distinct spaces E_{j_1} and E_{j_2}, $j_1 \geq 0$ and $j_2 \geq 0$. Without loss of generality, we can suppose that $j_1 < j_2$. Hence, we have

$$(f_{j_1}, E_{j_1}) \leq (f_{j_2}, E_{j_2}).$$

and thus,

$$f_{j_1}(x) = f_{j_2 \mid E_{j_1}}(x) = f_{j_2}(x).$$

We may take $f_\infty(x)$ as $f_j(x)$ for any $j \geq 1$ such that $x \in E_j$. All these values are equal by the previous formula. So, the definition of f_∞ is coherent.

The mapping f_∞ is linear since for $x \in E_\infty$, $y \in E_\infty$, there exist j_1 and j_2 (say $j_1 \leq j_2$) such that $x \in E_{j_1}$ and $y \in E_{j_2}$. So $(x, y) \in E_{j_2}$. For $(\alpha, \beta) \in \mathbb{R}^2$, $\alpha x + \beta y \in E_{j_2}$.
\[f_\infty(\alpha x + \beta y) = f_{j_2}(\alpha x + \beta y) = \alpha f_{j_2}(x) + \beta f_{j_2}(y) = \alpha f_\infty(x) + \beta f_\infty(y). \]

We have \(E_0 \subseteq E_\infty \) obviously and for all \(j \geq 0 \), for all \(x \in E_j \)

\[f_\infty(x) = f_j(x). \]

So, \(f_\infty|_{E_j}(x) = f_j(x) \) and hence \(f_\infty|_{E_0}(x) = f_0(x) \). We also have that \(f_\infty \) is \(\Omega_0 \)-non-negative. Indeed for \(x \in E_\infty, x \geq 0 \) on \(\Omega_0 \), we have for \(x \in E_j \), \(f_\infty(x) = f_j(x) \geq 0 \).

So \(f_\infty \) belongs to \(A \) and dominates all elements of \(A \). Hence

\[(f_\infty, E_\infty) = \max\{(f_j, E_j), j \geq 0\}. \]

We necessarily have \(E_\infty = E \). Indeed if \(E_\infty \subsetneq E \), we might use the first part and set \(0 \neq x_\infty \in E \setminus E_\infty \) and we obtain a greater extension \(f^*_\infty \) preserving the \(\Omega_0 \)-non-negativity, defined on \(E^*_\infty = E_\infty + \mathbb{R}x_\infty \), which is impossible. \(\blacksquare \)
3. The moment problem in Probability Theory of \(\mathbb{R} \)

Suppose that we have a probability measure \(\rho \) on \(\mathbb{R} \) having moments of all orders \((m_n)_{n\geq 1}\), with \(m_0 = 1 \), as in Formula (1.1). The question is whether the sequence characterizes the measure \(\rho \) in the following form: If \((m_n)_{n\geq 0}\), with \(m_0 = 1 \), are the moments of two measures \(\rho_1 \) and \(\rho_2 \) on \(\mathbb{R} \), do we have \(\rho_1 = \rho_2 \)? We have the particular answer as follows.

(I) - A sufficient condition for the moments to determine the probability measure.

\textbf{Theorem 2.} Let \(\rho \) be a probability measure on \(\mathbb{R} \) having moments of all orders \((m_n)_{n\geq 1}\), with \(m_0 = 1 \). Suppose that the Cauchy radius exists and is not zero, i.e.,

\[R = \lim_{n \to +\infty} \frac{|n!/m_n|^{1/n}}{1} > 0, \]

or the series \(\sum_{n=0}^{+\infty} m_n x^n / n! \) has a positive radius of convergence.

Then the moments determine \(\rho \).

The simple tool of Cauchy’s rule for convergence of functional series is used here. Let us just make a recall. Let us consider a sequence of real numbers \((a_n)_{n\geq 0}\). Suppose that \(|1/a_n|^{1/n} \to r > 0 \). Then for \(|x| < r \), such that \(0 < \varepsilon = 1 - |x/r| > 0 \). We have

\[
|a_n x^n| = \left(|x| |a_n|^{1/n} \right)^n \\
= \left(\frac{|x|}{r} \left[|r| a_n|^{1/n} \right] \right)^n.
\]

Since the term between the brackets converges to one, it is less that \((1 - \varepsilon/2)^{-1} > 1 \) for \(n \) large enough, say \(n \geq n_0 \). We get

\[|a_n x^n| \leq \left(\frac{1 - \varepsilon}{1 - \varepsilon/2} \right)^n. \]
since \(0 < (1 - \varepsilon)/(1 - \varepsilon/2) < 1\), the series \(\sum a_n x^n\) converges for all \(|x| < r\). Similarly, we prove that the series \(\sum a_n x^n\) diverges for \(|x| > r\). We are going to use that rule below based on arguments in \textit{Billingsley (1995)}, page 388.

Proof of Theorem 2. Let us denote by \(\psi\) the characteristic function of \(\rho\). The Taylor-Lagrange formula (see \textit{Valiron (1941)}, p. ??) for the complex exponential function gives: for \((x, t, h) \in \mathbb{R}^3, n \geq 1,\)

\[
e^{ihx} = \sum_{j=0}^{n} \frac{(ihx)^j}{j!} + \frac{(ixh)^{n+1}e^{i\theta x h}}{(n+1)!}, |\theta| < 1.
\]

This leads to (since \(e^{itx}\) has norm one)

\[
\left| e^{itx} \left(e^{ihx} - \sum_{j=0}^{n} \frac{(ihx)^j}{j!} \right) \right| \leq \frac{|xh|^{n+1}}{(n+1)!},
\]

which yields

\[
\left| e^{i(t+h)x} - \sum_{j=0}^{n} \frac{h^j}{j!} (ix)^j e^{itx} \right| \leq \frac{|h|^{n+1}}{(n+1)!} |x|^{n+1}.
\]

By integrating the three members of that double inequality with respect to \(\rho\) and by identifying \(\int (ix)^j e^{itx} \rho(x)\) as the derivative of \(\psi\) at \(j\), we get

\[
(3.1) \quad \left| \psi(t+h) - \sum_{j=0}^{n} \frac{h^j}{j!} \psi^{(j)}(t) \right| \leq \frac{|h|^{n+1}}{(n+1)!} |x|^{n+1} \mu_{n+1},
\]

where \(\mu_j\) is the absolute moment of order \(n \neq 1\) given by

\[
\forall j \geq 1, \quad \mu_j = \int u^j \, d\rho(u).
\]

Now, under the hypotheses, we can find \(r\) and \(s\) such that \(0 < r < s < 1\) and \(\sum_{j=0}^{+\infty} m_j s^j / j!\) converge. Hence by the properties of convergent series, \(m_j s^j / j! \to 0\) and \(m_j r^j / j! \to 0\) as \(j \to +\infty\). Further, \(2e^{\log j + (2j-1)\log(r/s)} \to -\infty\) (since \(0 < r/s < 1\)) and then \(2e^{\log j + (2j-1)\log(r/s)} < s\) for \(j\) large enough, say \(j \geq j_0\), which is
\[2j r^{2j-1} < s^{2j}, \text{ for } j \geq j_0, \]

which, combined with the inequality \(|a| r^1 \leq 1 + |a| r^2 \) valid for \(0 < r_1 \leq r_2 \), leads to

\[
\frac{|x|^{2j-1} r^{2j-1}}{(2j-1)!} \leq \frac{r^{2j-1}}{(2j-1)!} + \frac{|x|^{2j} r^{2j-1}}{(2j)!} \leq \frac{r^{2j-1}}{(2j-1)!} + \frac{|x|^{2j} s^{2j-1}}{(2j)!} \leq \frac{r^{2j-1}}{(2j-1)!} + \frac{|x|^{2j} s^{2j}}{(2j)!}.
\]

By integration with respect to \(\rho \), we get

\[
\frac{\mu_{2j-1} r^{2j-1}}{(2j-1)!} \leq \frac{r^{2j-1}}{(2j-1)!} + \frac{\mu_{2j} s^{2j-1}}{(2j)!}.
\]

So \(\mu_{2j-1} r^{2j-1}/(2j-1)! \to 0 \). We already have \(\mu_{2j} r^{2j}/(2j)! = m_{2j} r^{2j}/(2j)! \to 0 \). So, the convergence covers odd and even terms. We arrive at

\[
\mu_{n+1} r^{n+1}/(n+1)! \to 0 \text{ as } n \to 0.
\]

We apply this to the bound in Formula 3.1 to get

\[
(3.2) \quad \forall t \in \mathbb{R}, \forall |h| \leq r, \psi(t+h) = \sum_{j=0}^{+\infty} \frac{h^j}{j!} \psi^{(j)}(t).
\]

We conclude as follows. Let us suppose that another probability measure has the same moments \((m_n)_{n \geq 1} \) with characteristic function \(\psi_1 \). By taking \(t = 0 \), we get that \(\psi \) and \(\psi_1 \) coincide on \([-r, r]\). Let us show we may extend that equality to all interval \([sr, (s+1)r], s \geq 1\). We begin by preceeding for \(s = 1 \). We say that \(\psi \) and \(\psi_1 \) have the same derivative functions on \([0, r]\) and \(\psi^{(j)}(r/2) = \psi_1^{(j)}(r/2) \) for all \(j \geq 1 \) in particular. By taking \(t = r/2 \), Formula (3.2) shows that \(\psi \) and \(\psi_1 \) are equal on \([r/2, 3r/2]\) and hence \(\psi^{(j)}(r) = \psi_1^{(j)}(r) \) for all \(j \geq 1 \). Now using Formula (3.2) extends the equality on \([r, 2r]\). By proceeding so forth and by handling intervals \([-((s+1)r), -sr]\)
in the same way, we get the desired equality on \mathbb{R} by induction. ■
(II) - Application to weak convergence.

We get the following criteria of convergence.

Theorem 3. Let \(X_n : (\Omega, \mathcal{A}_n, \mathbb{P}_n) \rightarrow \mathbb{R}, \ n \geq 1, \) be a sequence of random variables and \(X_\infty : (\Omega_\infty, \mathcal{A}_\infty, \mathbb{P}_\infty) \rightarrow \mathbb{R} \) be another random variable. Let us suppose that the \(X_n \)’s and \(X_\infty \) have moments of all orders and that the probability law of \(X_\infty \) is determined by its moments and \(\forall j \geq 1, \mathbb{E}_{\mathbb{P}_n} X_n^j \rightarrow \mathbb{E}_{\mathbb{P}_\infty} X_\infty^j \) as \(n \rightarrow +\infty \).

Then \(X_n \) weakly converges to \(X_\infty \) as \(n \rightarrow +\infty \), i.e., \(X_n \rightharpoonup X_\infty \).

Proof. Since the sequence \(\mathbb{E}_{\mathbb{P}_n} X_n^2 \) converges, it is bounded, say by \(C \). For any \(\varepsilon > 0 \), for \(k > 0 \) and \(C/k^2 < \varepsilon \), we apply the Markov inequality to get

\[
\mathbb{P}_n(|X_n| \geq k) = \mathbb{P}_n(X_n^2 \geq k^2) \leq C/k^2 < \varepsilon,
\]

that is, there exists a compactum \(K = [-k, k] \) of \(\mathbb{R} \) such that

\[
\liminf_{n \rightarrow +\infty} \mathbb{P}_n(X_n \in K) > 1 - \varepsilon.
\]

So the sequence \((X_n)_{n \geq 1} \) is asymptotically tight and by Prohorov’s theorem, every sub-sequence of \((X_n)_{n \geq 1} \) contains a weakly convergent sub-sequence (see Theorem Prohorov-Helly Bray in Lo (2017), Section 3, Sub-section 3). Now let \(f : \mathbb{R} \rightarrow \mathbb{R} \) continuous and bounded. The sequence \(s_n(f) = \mathbb{E}_{\mathbb{P}_n} f(X_n) \) is bounded (by the bound of \(f \)). So, it contains converging sub-sequence \(s_{n_k}(f) \) to \(s(f) \). But, by Prohorov’s theorem, \(X_{n_k} \) contains a sub-sequence \(X_{n_k(\ell)} \) weakly converging, say to \(Z \) of probability measure \(\mu \). So

\[
s(f) = \int f \ d\mu.
\]

Let us use the Skorohod theorem (see Wichura (1996)) to have \(X_{n_k(\ell)}^* =_d X_{n_k(\ell)}^* \) and \(Z^* =_d Z \) on the same probability space with \(X_{n_k(\ell)}^* \) converges \(a.s. \) to \(Z^* \). For any \(r \geq 1 \) fixed, \(\mathbb{E}(X_{n_k(\ell)}^*)^{4r} \) is bounded and hence, for any \(r \geq 1 \), \((X_{n_k(\ell)}^*)^r \) is uniformly and continuously integrable and converges to \((Z^*)^r \). By Theorem 16.4 in Billingsley (1995), page 218 , \((Z^*)^r \) is integrable.
and $\mathbb{E}(X_{n_k(t)}^*)^r$ converges to $\mathbb{E}(Z^*)^r$. By getting back to our original random variables, we get

$$\mathbb{E}X_{n_k(t)}^r \to \mathbb{E}Z^r.$$

Since $\mathbb{E}X_{n_k(t)}^r$ converges to $\mathbb{E}X_{\infty}^r$, we get that X_{∞} and Z have the same moments (which determine the probability law of X_{∞}), we conclude that $\rho = \mathbb{P}_Z = \mathbb{P}_{X_{\infty}}$. Hence

$$s(f) = \int f \, d\mathbb{P}_{X_{\infty}}.$$

We conclude that any sub-sequence of $s_n(f)$ contains a sub-sequence converging to $s(f) = \int f \, d\mathbb{P}_{X_{\infty}}$ for any bounded and continuous function f. Thus, $X_n \Rightarrow X_{\infty}$.
4. Solution of the moment problem on \(\mathbb{R} \) and application to weak convergence

Here, we use simpler notations. Let be given the sequences \((m_n)_{n \geq 0}\) with \(m_0 = 1\). Let \(\mathcal{P} \) the linear space of all polynomials. A non-zero polynomial \(P \) is associated with coefficients \((x_n)_{n \geq 0}\), where all the \(x_n \)'s vanish beyond some integer \(d \) for which \(x_d \neq 0 \), the number \(d \) being its degree. For sake of simplicity, we use the representation \(P \equiv (x_n)_{n \geq 0} \) and use infinite sums with in mind the fact that only a finite number of the sum is non-zeros:

\[
\forall u \in \mathbb{R}, \quad P(u) = \sum_{n \geq 0} x_n u^n.
\]

We define the linear functional \(\mu \) as follows:

\[
\forall P \equiv (x_n)_{n \geq 0} \in \mathcal{P}, \quad \mu(P) = \sum_{n \geq 0} x_n m_n.
\]

That functional is well-defined and is linear. Here is the solution of the moment problem on \(\mathbb{R} \).

Theorem 4. Given a non-empty closed subset \(S_0 \) of \(\mathbb{R} \), there exists a probability measure \(\rho \) associated to a df \(F \) such that: (a) supp\((F)\) \(\subset S_0 \) and (b) for all \(n \geq 0 \),

\[
m_n = \int u^n \, d\rho(u)
\]

if and only if: (c) \(\mu \) is \(S_0 \)-non-negative, i.e., if \(\mathcal{P} \ni P \) satisfies : \(P(u) \geq 0 \) for all \(u \in S_0 \), then \(\mu(P) \geq 0 \).

Proof. We are going to provide a detailed proof.

Let us begin by proving that (a) and (b) imply (c). For any polynomial \(P = (x_n)_{n \geq 0} \) \(S_0 \)-non-negative, we have

\[
\mu(P) = \sum_{n \geq 0} x_n \left(\int u^n \, dF(u) \right) = \int \left(\sum_{n \neq 1} x_n u^n \right) \, dF(u) = \int P(u) \, dF(u),
\]

where we were able to interchange summation and integration symbols since only a finite number of terms of the summation are non-zero. But, we have
\[
\mu(P) = \int P(u)dF(u) = \int_{S_0^c} P(u)dF(u) + \int_{S_0} P(u)dF(u).
\]

But, on \(\mathbb{R}\), the support \(\text{supp}(F)\) and the spectrum \(s(F)\) coincide and since \(S_0^c \subseteq \text{supp}(F)^c\), we have
\[
\int_{S_0^c} P(u)dF(x) = 0
\]
and we get
\[
\mu(P) = \int P(u)dF(u) = \int_{S_0} P(u)dF(u).
\]

which is non-negative whenever \(P\) is \(S_0\)-non-negative.

Let us prove that (c) implies (a) and (b). Let us proceed with three steps.

Step 1. Construction of \(\rho\). Let us consider the class \(E\) of functions \(f: \mathbb{R} \rightarrow \mathbb{R}\) bounded of linear combinations of functions of the form \(Au^{2r} + B\), where \(A \geq 0, B \geq 0, r \in \mathbb{N}\). In other words \(f \in E\) if and only if it is bounded by a function of the form

\[
g = \sum_{i=1}^{p} A_i u^{2r_i} + B_i, \quad p \geq 1, \quad (A_i, B_i, r_i) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{N}.
\]

We set \(E_0 = E \cap \mathcal{P}\) as the subclass of \(E\) restricted to polynomials. It is clear that for a function \(g\) as in Formula (4.1), \(-g\) and \(g\) belong to \(E_0\) and hence :

\[
\forall f \in E, \exists (f_1, f_2) \in E_0^2, \quad f_1 \leq f \leq f_2 \text{ on } \mathbb{R}.
\]

We may apply Theorem 1 since \(E_0\) is a sub-linear space of \(E\), \(\mu\) is an \(S_0\)-non-negative linear functional defined on \(E_0\) and Condition (2.5) of Theorem is true through Formula (4.2). So \(\mu\) est extensible on \(E\) to an \(S_0\)-non-negative linear functional, still denoted by \(\mu\). For any subset \(C\) of \(\mathbb{R}\), \(f = 1_C\) is bounded by \(g = 1 = 0 \times u^2 + 1\) so that \(1_C \in E\). So define the mapping \(m\) on the class \(\mathcal{B}(\mathbb{R})\) of Borel sets of \(\mathbb{R}\) by
∀C ∈ 𝒫(ℝ), m(C) = µ(1_C).

The mapping is clearly additive. For any C ∈ 𝒫(ℝ), 1_C ≥ 0 on ℝ and thus on S₀, we have by S₀-non-negativity of µ, that µ(C) = µ(1_C) ≥ 0. As well, for (C₁, C₂) ∈ 𝒫(ℝ)^2, C₁ ⊂ C₂ implies 1_{C₁} ≤ 1_{C₂} on ℝ and hence on S₀ and by S₀ non-negativity of µ, m(C₁) ≤ m(C₂). Finally

∀C ∈ 𝒫(ℝ), m(C) ≤ µ(1_R = µ(1) = m₀ = 1.

We conclude that m is a finite and non-negative additive mapping on 𝒫(ℝ). The mapping should be a measure if we could prove that it is σ-sub-additive or continuous at 0, that is m(A_n) ↓ 0 if A_n ↓ ∅ as n ↓ +∞. But it seems very difficult to prove that. So we are going to use the same method as in Shohat and Tamarkin (1943) but in the modern frame of Measure Theory.

We define the function F₀(x) = m(]-∞, x]), x ∈ ℝ. We are not sure that it is right-continuous. So we work with

F(x) = \lim_{h \searrow 0} F₀(x + h), x ∈ ℝ.

The limits exist by the monotonicity of F₀ and the function F is right-continuous and assigns to intervals]a, b] non-negative lengths, that is ∆F(a, b) = F(b) − F(a) ≥ 0. Hence F is a distribution function. Let us denote ρ = λ_F the Lebesgue-Stieltjes measure associated with F.

It is useful to remark that F₀, as a monotone function, has at most a countable number of discontinuity, so that

\[\int 1_{[a,b]} \, dρ = F(b) − F(a) = F₀(b) − F₀(a), \]

except, eventually, for at most a countable number of pairs (a, b). Now let us check that : Any non-negative and increasing or decreasing function f ∈ E is ρ-integrable and we have

(4.3) \quad 0 \leq \int f \, dρ \leq µ(f).
Let us finish this step by proving the above claims. We suppose that \(f \) is increasing. By definition of the integral with respect to \(\rho \), the integral of \(f \) is the monotone limit of integrals of a sequence \((g_n)_{n \geq 1}\) of elementary functions, each of them having the following form

\[
g = \sum_{j=1}^{p} \alpha_j 1_{(a_j \leq f < b_j)}, \quad p > 1, \quad p \text{ finite}, \quad (\alpha_j)_{1 \leq j \leq p} \subset \mathbb{R}_+
\]

with \(0 \leq g \leq f \). But we have

\[
\int g \, d\rho = \sum_{j=1}^{p} \alpha_j \rho(a_j \leq f < b_j)
\]

\[
= \sum_{j=1}^{p} \alpha_j \rho([f^{-1}(a_j), f^{-1}(b_j)])
\]

\[
= \sum_{j=1}^{p} \alpha_j \{F(f^{-1}(b_j) + 0) - F(f^{-1}(a_j) - 0)\},
\]

where \(F(x + 0) \) and \(F(x - 0) \) are the left and the right limit of \(F \) at \(x \) respectively. The boundaries \(a_j \) and \(b_j \) can be chosen as continuity points of \(F_0 \) (which still are continuity points of \(F \)), the only requirement being that the modulii \(b_j - a_j \) be small enough. Hence

\[
\int g \, d\rho = \sum_{j=1}^{p} \alpha_j \{F_0(f^{-1}(b_j)) - F_0(f^{-1}(a_j))\}
\]

\[
= \sum_{j=1}^{p} \alpha_j m(a_j \leq f < b_j) = \mu \left(\sum_{j=1}^{p} p\alpha_j 1_{(a_j \leq f < b_j)} \right)
\]

\[
= \mu(g) \leq \mu(f).
\]

So, for all \(n \geq 1 \),

\[
0 \leq \mu(g_n) = \int g_n \, d\rho.
\]

At the limit, we have \(\int f \, d\rho \leq \mu(f) \). Hence \(f \) is \(\rho \)-integrable and its integral is bounded by \(\mu(f) \). The proof is easily adapted for \(f \) decreasing. Let us
give an example. For each function \(\ell_n(u) = u^n \), \(\ell_n^+ \) and \(\ell_n^- \) are still in \(E \) and the bound given above applies to them and we finally have

\[
\left| \int \ell_n(u) \, d\rho(u) \right| \leq \int \ell_n(u)^+ \, d\rho(u) + \int \ell_n(u)^- \, d\rho(u) \leq \mu(\ell_n^+) + \mu(\ell_n^-) = \mu(|\ell_n|),
\]

we have the following

Fact 1. For any \(n \geq 0 \), the function \(\ell_n(u) = u^n \) of \(u \in \mathbb{R} \) is \(\rho \)-integrable and

\[
(4.4) \quad \left| \int \ell_n d\rho \right| \leq \mu(|\ell_n|).
\]

Step 2. \(s(F) \subset S_0 \). Let us prove that \(S_0^c \subset s(F)^c \). Let \(x \in S_0^c \), which is an open set. So there exists an interval \(]a, b[\) such that \(x \in]a, b[\) and \(]a, b[\subset S_0^c \). The number \(a \) and \(b \) can be taken as continuity points of \(F_0 \). Since \(1_{[a,b]} = 0 \) on \(S_0 \), i.e., \(1_{[a,b]} \) is non-positive on \(S_0 \), we have \(\mu(1_{[a,b]}) \leq 0 \) and since \(\mu(1_{[a,b]}) \geq 0 \), we have

\[
0 = \mu(1_{[a,b]}) = F_0(b) - F_0(a) = F(b) - F(a) = \rho([a, b]) \geq \rho([a, b]).
\]

Since \(G =]a, b[\) is an open neighborhood of \(x \) such that \(\rho(G) = 0 \), we conclude that \(x \notin s(F) \). Let us move to the last step.

Step 3. \(\rho \) has the desired moments.

Let \(n \geq 1 \). Let us show that

\[
m_n = \int u^n \, d\rho(u).
\]

Let \(\varepsilon \in]0, 1[\) be fixed. Let \(K \) be a positive integer such that \(1/K \leq \varepsilon \) (and thus \(K \geq 1 \)). Hence for an positive integer \(r \) such that \(2r - n - 1 \geq 1 \), we have for \(u \notin]-K, K[\),

\[
|u|^n = u^{2r} \frac{1}{|u|^{2r-n}} \leq u^{2r} \frac{1}{K^{2r-n}} = \frac{u^{2r}}{K^{2r-n-1}} \leq \varepsilon u^{2r}.
\]
We conclude that for K such that $1/K \leq \varepsilon$, for $u \not\in]-K, K]$\(^\star\)

\begin{equation}
|u|^n \leq \varepsilon u^{2r} \leq u^{2r}.
\end{equation}

Now, the function $\ell_n(u) = u^n$ of $u \in \mathbb{R}$ is uniformly continuous on $I_K =]-K, K]$. Let us fix $\eta > 0$ and let us divide $]-K, K]$ into a finite number of intervals $[a_h, b_h]$ such that the variation of ℓ_n over $[a_h, b_h]$ is less than η. It is possible to choose the a_h's and the b_h's as continuity points of F_0 (and hence of F). To do that, we may divide each intervals into two at the middle and to move each a_h and b_h very slightly to be a continuity point. The variation of ℓ_n over the new intervals remain is less than η.

Let us define an elementary function $\ell_{p,n}$ by choosing $u(h)$ from each interval $[a_h, b_h]$ as follows

\[\ell_{p,n}(u) = \sum_{j=1}^{p} \ell_n(u(h))1_{[a_h, b_h]}, \quad u \in \mathbb{R}. \]

We have

\begin{equation}
\mu(\ell_{p,n}) = \sum_{j=1}^{p} \ell_n(u(h))\mu(1_{[a_h, b_h]})
= \sum_{j=1}^{p} \ell_n(u(h))(F_0(b_h) - F_0(a_h))
= \sum_{j=1}^{p} \ell_n(u(h))(F(b_h) - F(a_h))
= \int \ell_{p,n} \, d\rho.
\end{equation}

(4.7)

we notice that $\ell_{p,n}$ is null on $]-K, K[^c$. By using Formula (4.5) and the continuity modulus of ℓ_n over $]-K, K]$, we have

\[|\ell_n(u) - \ell_{p,n}(u)| \leq |\ell_n(u) - \ell_{p,n}(u)|_{]-K, K]} + |\ell_n(u) - \ell_{p,n}(u)|_{]-K, K[^c}
\leq \eta 1_{\mathbb{R}} + \varepsilon u^{2r}. \]
i.e., for all $u \in \mathbb{R}$,

\begin{equation}
\ell_{p,n}(u) - \eta - \varepsilon u^{2r} \leq \ell_n(u) \leq +\ell_{p,n}(u) + \eta + \varepsilon u^{2r}.
\end{equation}

By applying μ to that ordering on \mathbb{R} (and hence on S_0) and by using Line (4.6), we get

\begin{equation}
\int \ell_{p,n} \, d\rho - \eta \mu(1\mathbb{R}) - \varepsilon m_{2r} \leq m_n \leq \int \ell_{p,n} \, d\rho + \eta \mu(1\mathbb{R}) + \varepsilon m_{2r}.
\end{equation}

We notice that

\begin{equation}
\int \ell_{p,n} \, d\rho = \int 1_{[-K, K]} \ell_{p,n} \, d\rho.
\end{equation}

On $] - K, K]$, $\ell_{p,n} \to \ell_n$ and bounded by $|\ell_n|$ which is integrable by Fact 1. By letting $\eta \downarrow 0$, we will have $p \to +\infty$ and the dominated convergence theorem, as

\begin{equation}
\int \ell_{p,n} \, d\rho \to \int 1_{[-K, K]} \ell_n \, d\rho.
\end{equation}

and hence

\begin{equation}
\int 1_{[-K, K]} \ell_n \, d\rho - \varepsilon m_{2r} \leq m_n \leq \int 1_{[-K, K]} \ell_n \, d\rho + \varepsilon m_{2r}.
\end{equation}

For $\varepsilon > 0$ fixed, we can let $K \uparrow +\infty$, $1_{[-K, K]} \ell_n \to \ell_n$ while being dominated by the integrable function $|\ell_n|$ and hence

\begin{equation}
\int \ell_n \, d\rho - \varepsilon m_{2r} \leq m_n \leq \int \ell_n \, d\rho + \varepsilon m_{2r}.
\end{equation}

Now, we may let $\varepsilon \to 0$ to get

\[m_n = \int \ell_n \, d\rho. \]
References

Loève, Michel. (1997). *Probability Theory I*. Springer-Verlag, 4th Edition.

Lo, G. S. (2017) Measure Theory and Integration By and For the Learner. SPAS Books Series. Saint-Louis, Senegal - Calgary, Canada. Doi: http://dx.doi.org/10.16929/sbs/2016.0005, ISBN : 978-2-9559183-5-7

Lo, G.S.(2016). *A Course on Elementary Probability Theory*. SPAS Editions. Saint-Louis, Calgary, Abuja. Doi : 10.16929/sbs/2016.0003.

Lo, G.S.(2018). *Mathematical Foundation to Probability Theory*. Spas Textbooks Series.

Lo, G.S.(2018). *Weak Convergence (IA) - Sequences of Random Variables*. SPAS Book Series, Calgary, Alberta, Saint-Louis (SÃЇnÃїgal).

Shohat J.A. and Tamarkin J.D (1943) The problem of moment, Mathematical Surveys and monographs. Volume I. American Society of Mathematics (Re-edited in 1950, 1963 and 1970).

Patrick Billingsley (1995). *Probability and Measure*. Wiley. Third Edition.

Billingsley, P.(1968). *Convergence of Probability measures*. John Wiley, New-York.

(2005). Allan Gutt (2005). *Probability Theory : a graduate course*. Springer.

(1941). Valiron George (1941). *Théorie des fonctions*. Masom, Paris.

(1996).