A GEL’FOND TYPE CRITERION IN DEGREE TWO

BENOIT ARBOUR AND DAMIEN ROY

1. Introduction

Let ξ be any real number and let n be a positive integer. Defining the height $H(P)$ of a polynomial P as the largest absolute value of its coefficients, an application of Dirichlet box principle shows that, for any real number $X \geq 1$, there exists a non-zero polynomial $P \in \mathbb{Z}[T]$ of degree at most n and height at most X which satisfies

$$|P(\xi)| \leq cX^{-n}$$

for some suitable constant $c > 0$ depending only on ξ and n. Conversely, Gel’fond’s criterion implies that there are constants $\tau = \tau(n)$ and $c = c(\xi, n) > 0$ with the property that if, for any real number $X \geq 1$, there exists a non-zero polynomial $P \in \mathbb{Z}[T]$ with

$$\deg(P) \leq n, \quad H(P) \leq X \quad \text{and} \quad |P(\xi)| \leq cX^{-\tau}$$

then ξ is algebraic over \mathbb{Q} of degree at most n. For example, Brownawell’s version of Gel’fond’s criterion in [1] implies that the above statement holds with any $\tau > 3n$, and the more specific version proved by Davenport and Schmidt as Theorem 2b of [4] shows that it holds with $\tau = 2n - 1$. On the other hand, the above application of Dirichlet box principle implies $\tau \geq n$. So, if we denote by τ_n the infimum of all admissible values of τ for a fixed $n \geq 1$, then we have $\tau_1 = 1$ and, in general

$$n \leq \tau_n \leq 2n - 1.$$

In the case of degree $n = 2$, the study of a specific class of transcendental real numbers in [6] provides the sharper lower bound $\tau_2 \geq \gamma^2$ where $\gamma = (1 + \sqrt{5})/2$ denotes the golden ratio (see Theorem 1.2 of [6]). Our main result below shows that we in fact have $\tau_2 = \gamma^2$ by establishing the reverse inequality $\tau_2 \leq \gamma^2$:

Theorem. Let $\xi \in \mathbb{C}$. Assume that for any sufficiently large positive real number X there exists a non-zero polynomial $P \in \mathbb{Z}[T]$ of degree at most 2 and height at most X such that

$$|P(\xi)| \leq \frac{1}{4}X^{-\gamma^2}$$

Then ξ is algebraic over \mathbb{Q} of degree at most 2.

1991 Mathematics Subject Classification. Primary 11J13; Secondary 11J82.

Work partially supported by NSERC and CICMA.
Comparing this statement with Theorem 1.2 of [6], we see that it is optimal up to the value of the multiplicative constant $1/4$ in (1). Although we do not know the best possible value for this constant, our argument will show that it can be replaced by any real number c with $0 < c < c_0 = (6 \cdot 2^{1/4})^{-1} \approx 0.253$. As the reader will note, our proof, given in Section 3 below, has the same general structure as the proof of the main result of [3] and the proof of Theorem 1a of [4].

Following the method of Davenport and Schmidt in [4] combined with ideas from [2] and [7], we deduce the following result of simultaneous approximation of a real number by conjugate algebraic numbers:

Corollary. Let ξ be a real number which is not algebraic over \mathbb{Q} of degree at most 2. Then, there are arbitrarily large real numbers $Y \geq 1$ for which there exist an irreducible monic polynomial $P \in \mathbb{Z}[T]$ of degree 3 and an irreducible polynomial $Q \in \mathbb{Z}[T]$ of degree 2, both of which have height at most Y and admit at least two distinct real roots whose distance to ξ is at most $cY^{-(3-\gamma)/2}$, with a constant c depending only on ξ.

The proof of this corollary is postponed to Section 4 below.

2. Preliminaries

We collect here several lemmas which we will need in the proof of the theorem. The first one is a special case of the well-known Gel’fond’s lemma for which we computed the optimal values of the constants.

Lemma 1. Let $L, M \in \mathbb{C}[T]$ be polynomials of degree at most 1. Then we have

$$\frac{1}{\gamma} H(L)H(M) \leq H(LM) \leq 2H(L)H(M).$$

The second result is an estimate for the resultant of two polynomials of small degree.

Lemma 2. Let $m, n \in \{1, 2\}$, and let P and Q be non-zero polynomials in $\mathbb{Z}[T]$ with $\deg(P) \leq m$ and $\deg(Q) \leq n$. Then, for any complex number ξ, we have

$$|\operatorname{Res}(P, Q)| \leq H(P)^nH(Q)^m\left(c(m, n)\frac{|P(\xi)|}{H(P)} + c(n, m)\frac{|Q(\xi)|}{H(Q)}\right)$$

where $c(1, 1) = 1$, $c(1, 2) = 3$, $c(2, 1) = 1$ and $c(2, 2) = 6$.

The proof of the above statement is easily reduced to the case where $\deg(P) = m$ and $\deg(Q) = n$. The conclusion then follows by writing $\operatorname{Res}(P, Q)$ as a Sylvester’s determinant and by arguing as Brownawell in the proof of lemma 1 of [3] to estimate this determinant.

The third lemma may be viewed, for example, as a special case of Lemma 13 of [5].
Lemma 3. Let $P, Q \in \mathbb{Z}[T]$ be non-zero polynomials of degree at most 2 with greatest common divisor $L \in \mathbb{Z}[T]$ of degree 1. Then, for any complex number ξ, we have

$$H(L)|L(\xi)| \leq \gamma (H(P)|Q(\xi)| + H(Q)|P(\xi)|).$$

Proof. The quotients P/L and Q/L being relatively prime polynomials of $\mathbb{Z}[T]$, their resultant is a non-zero integer. Applying Lemma 2 with $m = n = 1$ and using Lemma 1, we then deduce, if $L(\xi) \neq 0$,

$$1 \leq |\text{Res}(P/L, Q/L)| \leq H(P/L)|Q(L)| + H(Q/L)|P(L)| \leq \frac{H(P)}{H(L)}|Q(\xi)| + \frac{H(Q)}{H(L)}|P(\xi)|.$$

Lemma 4. Let $\xi \in \mathbb{C}$ and let $P, Q, R \in \mathbb{C}[T]$ be arbitrary polynomials of degree at most 2. Then, writing the coefficients of these polynomials as rows of a 3×3 matrix, we have

$$|\det(P, Q, R)| \leq 2H(P)H(Q)H(R)\left(\frac{|P(\xi)|}{H(P)} + \frac{|Q(\xi)|}{H(Q)} + \frac{|R(\xi)|}{H(R)}\right).$$

This above statement follows simply by observing, as in the proof ofLemma 4 of [3], that the determinant of the matrix does not change if, in this matrix, we replace the constant coefficients of P, Q and R by the values of these polynomials at ξ.

We also construct a sequence of “minimal polynomials” similarly as it is done in §3 of [3]:

Lemma 5. Let $\xi \in \mathbb{C}$ with $[Q(\xi) : \mathbb{Q}] > 2$. Then there exists a strictly increasing sequence of positive integers $(X_i)_{i \geq 1}$ and a sequence of non-zero polynomials $(P_i)_{i \geq 1}$ in $\mathbb{Z}[T]$ of degree at most 2 such that, for each $i \geq 1$, we have:

- $H(P_i) = X_i$,
- $|P_{i+1}(\xi)| < |P_{i}(\xi)|$,
- $|P_{i}(\xi)| \leq |P_{i}(\xi)|$ for all $P \in \mathbb{Z}[T]$ with $\deg(P) \leq 2$ and $0 < H(P) < X_{i+1}$,
- P_i and P_{i+1} are linearly independent over \mathbb{Q}.

Proof. For each positive integer X, define p_X to be the smallest value of $|P(\xi)|$ where $P \in \mathbb{Z}[T]$ is a non-zero polynomial of degree ≤ 2 and height $\leq X$. This defines a non-decreasing sequence $p_1 \geq p_2 \geq p_3 \geq \ldots$ of positive real numbers converging to 0. Consider the sequence $X_1 < X_2 < \ldots$ of indices $X \geq 2$ for which $p_{X-1} > p_X$. For each $i \geq 1$, there exists a polynomial $P_i \in \mathbb{Z}[T]$ of degree ≤ 2 and height X_i with $|P_i(\xi)| = p_i$. The sequences $(X_i)_{i \geq 1}$ and $(P_i)_{i \geq 1}$ clearly satisfy the first three conditions. The last condition follows from the fact that the polynomials P_i are primitive of distinct height. \qed
Lemma 6. Assume, in the notation of Lemma 4, that
\[\lim_{i \to \infty} X_{i+1} |P_i(\xi)| = 0. \]
Then there exist infinitely many indices \(i \geq 2 \) for which \(P_{i-1}, P_i \) and \(P_{i+1} \) are linearly independent over \(\mathbb{Q} \).

Proof. Assume on the contrary that \(P_{i-1}, P_i \) and \(P_{i+1} \) are linearly dependent over \(\mathbb{Q} \) for all \(i \geq i_0 \). Then the subspace \(V \) of \(\mathbb{Q}[T] \) generated by \(P_{i-1} \) and \(P_i \) is independent of \(i \) for \(i \geq i_0 \). Let \(\{P, Q\} \) be a basis of \(V \cap \mathbb{Z}^3 \). Then, for each \(i \geq i_0 \), we can write
\[P_i = a_i P + b_i Q \]
for some integers \(a_i \) and \(b_i \) of absolute value at most \(cX_i \), with a constant \(c > 0 \) depending only on \(P \) and \(Q \). Since \(P_i \) and \(P_{i+1} \) are linearly independent, we get
\[1 \leq \left| \begin{array}{cc} a_i & b_i \\ a_{i+1} & b_{i+1} \end{array} \right| = \frac{|a_i P_{i+1}(\xi) - a_{i+1} P_i(\xi)|}{|Q(\xi)|} \leq \frac{2c}{|Q(\xi)|} X_{i+1} |P_i(\xi)| \]
in contradiction with the hypothesis as we let \(i \) tend to infinity. \(\square \)

3. **Proof of the theorem**

Let \(c \) be a positive real number and let \(\xi \) be a complex number with \(|Q(\xi) : \mathbb{Q}| > 2 \). Assume that, for any sufficiently large real number \(X \), there exists a non-zero polynomial \(P \in \mathbb{Z}[T] \) of degree \(\leq 2 \) and height \(\leq X \) with \(|P(\xi)| \leq cX^{-\gamma}2 \). We will show that these conditions imply \(c \geq c_0 = (6 \cdot 2^{1/\gamma})^{-1/\gamma} > 1/4 \), thereby proving the theorem.

Let \(c_1 \) be an arbitrary real number with \(c_1 > c \). By virtue of our hypotheses, the sequences \((X_i)_{i \geq 1} \) and \((P_i)_{i \geq 1} \) given by Lemma 4 satisfy
\[|P_i(\xi)| \leq cX_{i+1}^{-\gamma}2 \]
for any sufficiently large \(i \). Then, by Lemma 4, there exists infinitely many \(i \) such that \(P_{i-1}, P_i \) and \(P_{i+1} \) are linearly independent. For such an index \(i \), the determinant of these three polynomials is a non-zero integer and, applying Lemma 4, we deduce
\[1 \leq |\det(P_{i-1}, P_i, P_{i+1})| \leq 2X_{i-1} X_i X_{i+1} \left(\frac{|P_{i-1}(\xi)|}{X_{i-1}} + \frac{|P_i(\xi)|}{X_i} + \frac{|P_{i+1}(\xi)|}{X_{i+1}} \right) \leq 2cX_i^{-\gamma} X_{i+1} + 4cX_{i+1}^{1-\gamma}. \]
Assuming that \(i \) is sufficiently large, this implies
\[X_i^\gamma \leq 2c_1 X_{i+1}. \]

(2)

Suppose first that \(P_i \) and \(P_{i+1} \) are not relatively prime. Then, their greatest common divisor is an irreducible polynomial \(L \in \mathbb{Z}[T] \) of degree 1, and Lemma 4 gives
\[H(L)|L(\xi)| \leq \gamma \left(X_i |P_{i+1}(\xi)| + X_{i+1} |P_i(\xi)| \right) \leq 2\gamma cX_{i+1}^{-\gamma}. \]

(3)
Since \(P_{i-1}, P_i \) and \(P_{i+1} \) are linearly independent, the polynomial \(L \) does not divide \(P_{i-1} \) and so the resultant of \(P_{i-1} \) and \(L \) is a non-zero integer. Applying Lemma 2 then gives

\[
1 \leq |\text{Res}(P_{i-1}, L)| \leq H(P_{i-1})H(L)^2 \left(\frac{|P_{i-1}(\xi)|}{H(P_{i-1})} + 3\frac{|L(\xi)|}{H(L)} \right)
\]

\[
\leq cX_i^{-\gamma^2}H(L)^2 + 3X_{i-1}H(L)|L(\xi)|.
\]

Combining this with (3) and with the estimate \(H(L) \leq \gamma H(P_i) \leq \gamma X_i \) coming from Lemma 4 we conclude that, in this case, the index \(\gamma \) of polynomials of degree at most 2 in \(\mathbb{R} \) and therefore their resultant is a non-zero integer. Using Lemma 2 we then find

\[
1 \leq |\text{Res}(P_i, P_{i+1})| \leq 6X_iX_{i+1} \left(cX_iX_{i+2}^{-\gamma^2} + cX_{i+1}^{-\gamma} \right) \leq 6c_1X_iX_{i+1}^{1-\gamma}
\]

since from (2), we have \(cX_i \leq (c_1 - c)X_{i+1} \) for large \(i \). Using (2) again, this implies

\[
1 \leq 6c_1(2c_1)^{1/\gamma}
\]

and thus, \(c_1 \geq c_0 = (6 \cdot 2^{1/\gamma})^{-1/\gamma} \). The choice of \(c_1 > c \) being arbitrary, this shows that \(c \geq c_0 \) as announced.

4. Proof of the corollary

Let \(\xi \) be as in the statement of the corollary and let \(V \) denote the real vector space of polynomials of degree at most 2 in \(\mathbb{R}[T] \). It follows from the theorem that there exist arbitrarily large real numbers \(X \) for which the convex body \(C(X) \) of \(V \) defined by

\[
C(X) = \{ P \in V ; |P(\xi)| \leq (1/4)X^{-\gamma^2}, |P'(\xi)| \leq c_1X \text{ and } |P''(\xi)| \leq c_1X \}
\]

with \(c_1 = (1 + |\xi|^2)^{-2} \) contains no non-zero integral polynomial. By Proposition 3.5 of [1] (a version of Mahler’s theorem on polar reciprocal bodies), this implies that there exists a constant \(c_2 > 1 \) such that, for the same values of \(X \), the convex body

\[
C^*(X) = \{ P \in V ; |P(\xi)| \leq c_2X^{-1}, |P'(\xi)| \leq c_2X^{-1} \text{ and } |P''(\xi)| \leq c_2X^{\gamma^2} \}
\]

contains a basis of the lattice of integral polynomials in \(V \).

Fix such an \(X \) with \(X \geq 1 \), and let \(\{ P_1, P_2, P_3 \} \subset C^*(X) \) be a basis of \(V \cap \mathbb{Z}[T] \). We now argue as in the proof of Proposition 9.1 of [7]. We put

\[
B(T) = T^2 - 1, \quad r = X^{-(1+\gamma^2)/2} \quad \text{and} \quad s = 20c_2X^{-1},
\]

and observe that any polynomial \(S \in V \) with \(H(S - B) < 1/3 \) admits at least two real roots in the interval \([-2, 2]\) as such a polynomial takes positive values at \(\pm 2 \) and a negative value at 0. We also note that, since \(P_i \in C^*(X) \), we have

\[
H(P_i(rT + \xi)) \leq c_2X^{-1}, \quad (i = 1, 2, 3).\]

Since \(\{P_1, P_2, P_3\} \) is a basis of \(V \) over \(\mathbb{R} \), we may write
\[
(T - \xi)^3 + sB\left(\frac{T - \xi}{r}\right) = T^3 + \sum_{i=1}^{3} \theta_i P_i(T) \quad \text{and} \quad sB\left(\frac{T - \xi}{r}\right) = \sum_{i=1}^{3} \eta_i P_i(T)
\]
for some real numbers \(\theta_1, \theta_2, \theta_3 \) and \(\eta_1, \eta_2, \eta_3 \). For \(i = 1, 2, 3 \), choose integers \(a_i \) and \(b_i \) with \(|a_i - \theta_i| \leq 2 \) and \(|b_i - \eta_i| \leq 2 \) so that the polynomials
\[
P(T) = T^3 + \sum_{i=1}^{3} a_i P_i(T) \quad \text{and} \quad Q(T) = \sum_{i=1}^{3} b_i P_i(T)
\]
are respectively congruent to \(T^3 + 2 \) and \(T^2 + 2 \) modulo 4. Then, by Eisenstein’s criterion, \(P \) and \(Q \) are irreducible polynomials of \(\mathbb{Z}[T] \). Moreover, we find
\[
H(s^{-1} P(rT + \xi) - B(T)) = s^{-1} H\left((rT)^3 + \sum_{i=1}^{3} (a_i - \theta_i) P_i(rT + \xi)\right)
\]
\[
\leq s^{-1} \ max\{r^3, 6\gamma c_2 X^{-1}\}
\]
\[
< 1/3.
\]
Then, \(P(rT + \xi) \) has at least two distinct real roots in the interval \([-2, 2]\) and so \(P \) has at least two real roots whose distance to \(\xi \) are at most \(2r \). A similar but simpler computation shows that the same is true of the polynomial \(Q \). Finally, the above estimate implies \(H(P(rT + \xi)) \leq 4s/3 \) and so \(H(P) \leq c_3 X^{\gamma^2} \) for some constant \(c_3 > 0 \), and the same for \(Q \). These polynomials thus satisfy the conclusion of the corollary with \(Y = c_3 X^{\gamma^2} \) and an appropriate choice of \(c \).

References

[1] Brownawell, W. D., Sequences of diophantine approximations, J. Number Theory 6 (1974), 11-21.
[2] Bugeaud, Y., Teulié, O., Approximation d’un nombre réel par des nombres algébriques de degré donné, Acta Arith. 93 (2000), 77-86.
[3] Davenport, H., Schmidt, W. M., Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967), 169-176.
[4] Davenport, H., Schmidt, W. M., Approximation to real numbers by algebraic integers, Acta Arith. 15 (1969), 393-416.
[5] Laurent, M., Roy, D., Criteria of algebraic independence with multiplicities and interpolation determinants, Trans. Amer. Math. Soc. 351 (1999), 1845–1870.
[6] Roy, D., Approximation to real numbers by cubic algebraic integers I, Proc. London Math. Soc., (to appear), 22 pages, [arXiv:math.NT/0210181]
[7] Roy, D., Waldschmidt, M., Diophantine approximation by conjugate algebraic integers, Compositio Math., (to appear), 31 pages, [arXiv:math.NT/0207102]