Anion inhibition studies of the Zn(II)-bound γ-carbonic anhydrase from the Gram-negative bacterium *Burkholderia territorii*

Andrea Petrenia, Viviana De Luca*b,c, Andrea Scaloni*c, Alessio Nocentini*d, Clemente Capassob, and Claudiu T. Supuran*b

aDepartment of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy; bDepartment of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy; cProteomics and Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy

ABSTRACT

Burkholderia territorii, a Gram-negative bacterium, encodes for the γ-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAγ, which was recently characterised. It acts as a good catalyst for the hydration of CO₂ to bicarbonate and protons, with a *k*ₐ₅ value of 3.0 × 10⁵ s⁻¹ and *k*₅₆/⁴ value of 3.9 × 10⁷ M⁻¹ s⁻¹. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAγ, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom γ-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (*K*ᵢ values of 6.2–94 μM), whereas diethylidithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (*K*ᵢ values of 0.71–0.94 mM). The halides (except iodide), thiocyanate, nitrate, nitrate, carbonate, bisulphite, sulphate, hydrogen sulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed *K*ᵢ values in the range of 3.1–9.3 mM.

1. Introduction

The carbonic anhydrase (CA, EC 4.2.1.1) superfamily is composed nowadays of eight genetically distinct classes, the α, β, γ, δ, ζ, η, θ, and γ-CAs, which probably may soon increase when additional families will be reported in other organisms. All of them catalyse a simple but physiologically crucial reaction, the carbon dioxide reversible hydration to bicarbonate and protons CO₂ + H₂O ↔ HCO₃⁻ + H⁺. CO₂ hydration/bicarbonate dehydration are relevant in organisms all over the phylogenetic tree, from simple to complex ones. In most cells, tissues and organs, these enzymes participate in crucial physiologic processes connected to pH regulation, metabolism, secretion of electrolytes, transport of gases and anions, and others, which are also therapeutically relevant (at least for mammalians)⁵,⁷,⁸. In fact, both CA inhibitors (CAls)⁵–⁸, and CA activators (CAAs)⁹,¹⁰ have many therapeutic applications in a variety of fields, starting with diuretics and anti-glucoma agents and ending with anticancer/antimetastatic drugs (for the inhibitors)⁵–⁸, but also including memory therapy, modulation of emotional memory and fear extinction memory activator agents⁹,¹⁰. Recently, inhibition of CAls from pathogenic organisms has also been proposed as an innovative approach to develop anti-infectives, which may target bacterial infections resistant to clinically used antibiotics⁴,¹¹–¹³, but also to treat protozoan-provoked¹⁴,¹⁵ as well as fungal infections¹⁶,¹⁷. Indeed, various classes of inhibitors were shown to be effective in a variety of models¹,¹¹–¹⁷, which inspired researchers to find novel chemotypes acting as modulators of activity as well as novel potential drug targets⁴,¹¹–¹⁷.

Very recently, a gene coding for a member of the γ-CA family has been originally described to occur in the genome of the marine diatom *Thalassiosira pseudonana*¹⁸; the corresponding enzyme has been isolated and reported preferring Mn(II) as a metal cofactor in its active site, and not Zn(II) frequently found therein in other organisms. In the same paper, it has been shown that members of the γ-CA family should be present also in bacteria, as deduced by genome analysis, although such enzymes were not characterised at that moment in such organisms. Recently, we confirmed the finding of Gontero’s group²⁰, and reported the cloning and biochemical characterisation of the first example of a bacterial γ-CA, which was observed in the Gram-negative bacterium *Burkholderia territorii* and denominated BteCAγ. The enzyme showed a significant CO₂ hydrase activity, with kinetic parameters (*k*₅₆/⁴ of 3.0 × 10⁵ s⁻¹ and *k*₅₆/⁴ of 3.9 × 10⁷ M⁻¹ s⁻¹) comparable to those of highly efficient bacterial and even mammalian isoforms, such as human (h) CA I²⁰. However, no inhibition studies have been performed so far on this enzyme, which has been demonstrated to be dimeric (by using protonography)¹⁸ and also to be a zinc- and not manganese-dependent enzyme²⁰. Here, we prove that this is indeed the case by using atomic absorption spectroscopy, and also report the first inhibition study of the enzyme, with small molecules and anions, a well-known class of CAls¹⁹.
2. Materials and methods

2.1. Chemistry

Anions and small molecules were commercially available reagents of the highest available purity from Sigma-Aldrich (Milan, Italy). Purity of tested compounds was higher than 99%.

2.2. Atomic absorption spectrometry

In various enzyme samples, the content of Zn(II) and Mn(II) was measured with a flame PinAAcle 500 Perkin Elmer instrument, located in the Interdepartmental Service Centre for Biotechnology of Agricultural, Chemical and Industrial Interest (CIBIACI), University of Florence.

2.3. Enzymology

BteCAi was a recombinant enzyme obtained in-house as described earlier.

2.4. Ca catalytic activity and inhibition assay

An Applied Photophysics stopped-flow instrument has been used for assaying the CA catalysed CO₂ hydration activity20, Phenol red (at a concentration of 0.2 mM) has been used as an indicator, working at the absorbance maximum of 557 nm, with 10–20 mM HEPES (pH 7.5) as buffers, and 20 mM NaClO₄ (for maintaining constant the ionic strength), following the initial rates of the CA-catalysed CO₂ hydration reaction for a period of 10–100 s. The CO₂ concentrations ranged from 1.7 to 17 mM for the determination of the kinetic parameters and inhibition constants. For each inhibitor, at least six traces of the initial 5–10% of the reaction were used to determine the initial velocity. The uncatalyzed rates were determined in the same manner and subtracted from the total observed rates. Stock solutions of inhibitors (10 mM) and dilutions up to 0.01 mM were prepared in distilled-deionised water. Inhibitor and enzyme solutions of concentrations ranging between 5 and 10 mM were preincubated together for 15 min, at room temperature, prior to assay, in order to allow for the E-I complex formation. The inhibition constants were obtained by non-linear least-squares methods using PRISM 3 and the Cheng-Prusoff equation, as reported earlier, and represent the mean from at least three different determinations.

3. Results and discussion

Gontorso’s group reported that the i-CA isolated from the marine diatom T. pseudonana2a is active with Mn(II) bound as a metal cofactor within its active site and not with Zn(II), such as most other CA isoforms known to date. However, it should be mentioned that γ-CAs are active with Fe(II)22 and δ-CAs with Cd(II)23 present at their active sites, as well as with Zn(II), so that the use of alternative metal ions to zinc is not improbable. Thus, we prepared the recombinant BteCAi as described earlier, both in the presence of zinc as well as manganese salts in order to assay which of the two metal ions are incorporated into the holoenzyme. As seen from Table 1, significant amounts of Zn(II) were found in all protein samples investigated, with trace quantities of Mn(II). The amount of Mn(II) was the same in both enzyme samples, even those prepared in the presence of high concentrations of Mn(II) salts (possibly due to contaminants in the buffers/reagents used to prepare the enzyme). The content of zinc ion per polypeptide chain was determined as 1:1 (within experimental error limits). Hence, unlike the diatom enzyme2a, the bacterial i-CA was proved to be a zinc-containing enzyme.

We also investigated the inhibition of the bacterial enzyme BteCA with a wide range of inorganic anions and small molecule compounds known to interact with the CA family of proteins (Table 2). Although anion inhibitors are usually not highly effective, they are relevant both for understanding in detail the inhibition mechanisms of metalloenzymes and for drug design purposes; this was the reason why many CAs belonging to various families were profiled for their inhibition with anions.

Table 1. Percentage of zinc and manganese in BteCAi as determined by atomic absorption spectroscopy.

Enzyme	Concentration (μM)	% Zn-BteCAi	% Mn-BteCAi
Zn-BteCAi – sample 1	33.5	98.30	1.70
Zn-BteCAi – sample 2	46.6	99.93	0.07
Mn-BteCAi – sample 1	20.0	97.85	2.15
Mn-BteCAi – sample 2	21.0	99.74	0.26

The buffer used for sample preparation reported 7.0 × 10⁻³ ppm of Zn and 1.1 × 10⁻² ppm of Mn.

Table 2. Anion inhibition data of BteCAi as determined by a stopped-flow CO₂ hydrase assay.

Anion	hCA i	hCA ii	E. coli i	BteCAc
	K (mM)			
F⁻	>300	>300	9.4	4.6
Cl⁻	6	200	6.7	3.1
Br⁻	4	63	3.8	4.8
I⁻	0.3	26	>50	>50
CN⁻	0.0007	0.03	0.58	0.79
SCN⁻	0.2	1.6	5.7	6.1
CN⁻	0.0005	0.02	>50	>50
N₃⁻	0.0012	1.51	>50	>50
NO₂⁻	8.4	63	4.9	8.4
NO₃⁻	7	35	2.4	6.2
HCO₃⁻	12	85	0.81	0.94
CO₃⁻	15	73	0.89	4.4
HSO₄⁻	18	89	3.7	8.4
SO₄²⁻	63	>200	1.7	5.8
HS⁻	0.0006	0.04	2.7	6.2
NH₂SO₄NH₂	0.31	1.13	0.011	0.086
NH₃SO₄H	0.021	0.39	0.0025	0.0062
PhAOSO₄H	31.7	49	0.0081	0.008
PhB(OH)₃	58.6	23	0.0028	0.005
ClO₄⁻	>200	>200	>50	>50
SO₃²⁻	0.57	0.83	0.52	0.094
SeO₄²⁻	118	112	3.1	0.73
TeO₄²⁻	0.66	0.92	0.51	0.71
OsO₄²⁻	0.92	0.95	>50	>50
P₂O₇⁻	25.8	48	>50	>50
V₂O₇²⁻	0.54	0.57	>50	>50
B₄O₇²⁻	0.64	0.95	0.25	>50
ReO₄⁻	0.11	0.75	>50	>50
RuO₄⁻	0.101	0.69	9.5	>50
S₄O₆²⁻	0.107	0.084	6.4	7.4
SeCN⁻	0.085	0.086	3.1	6.6
NH(SO₃)₂	0.31	0.76	1.5	>50
FSO₃⁻	0.79	0.46	0.83	9.3
CS₂	0.0087	0.0088	3.1	8.6
ENCS₂	0.00079	0.0031	0.084	0.81
PF₆⁻	>50	>50	>50	>50
CF₃SO₄⁻	>50	>50	>50	>50

Inhibition of the human isoforms hCA I and II, and the bacterial β-CA from Escherichia coli are also shown for comparison.

Mean from 3 different assays; by a stopped flow technique (errors were in the range of ± 5–10% of the reported values).

1From Ref. 19.
2From Ref. 24.
3This work.
The data of Table 2 show the following interesting aspects for the inhibition of this poorly investigated CA class:

i. some anions, among which iodide, cyanide, azide, perchlorate, perosmate, diphasphate, divanadate, tetraborate, perrhenate, perruthenate, mimosodisulfonate, hexafluorophosphate and trifluoromethanesulfonate, did not inhibit BteCA significantly up to 50 mM concentration of inhibitor in the assay system. This is not unexpected for anions with low affinity for complexing metal ions, such as perchlorate, hexafluorophosphate and trifluoromethanesulfonate, but it is rather surprising for iodide, cyanide, and azide, which have quite a high affinity for metal ions in solution and in the active site of many metalloenzymes. Indeed, some of these anions show a potent inhibitory action for other CAs, such as the isoform hCA I (Table 1 and Ref. 19). As no X-ray crystallographic data are available so far for i-CAs, it is impossible to rationalise these interesting and surprising data.

ii. The following inhibitors showed inhibitory action against BteCA in the millimolar range: fluoride, chloride, bromide, thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogen sulfide, peroxysulfate, selenocyanate, fluorosulfonyl anate and trithiocarbonate (KI values in the range of 3.1–9.3 mM). As above, some of these data stupefied us: sulphate, for example, is a highly inefficient inhibitor of many x-CAs (e.g. hCA I and II), but it inhibits efficiently the bacterial i- and i-CAs shown in Table 1.

iii. Even more efficient inhibitory action against BteCA was registered for the following anions: diethylidithiocarbamate, tellurate, selenate and bicarbonate and cyanate, which were submillimolar inhibitors with KI values ranging between 0.71 and 0.94 mM (Table 1). The bicarbonate high affinity is of interest, since this anion is also a substrate/reaction product of the CA – catalysed reactions.

iv. The most efficient BteCA inhibitors detected so far were stannate, sulphamic acid, phenylarsionic acid, phenylboronic acid and sulfamide, with KI values of 6.2–94 μM (Table 1). Some of these compounds, as sulfamide and sulphamic acid, act as effective inhibitors of many other CAs (for example, see the E. coli i-CA inhibition data shown in Table 1). They also inhibit the human isoforms hCA I and II (although to lower levels compared to the bacterial enzymes). The stannate data is also quite interesting. This anion is an order of magnitude better as a BteCA inhibitor compared to its inhibition level of other CAs investigated so far.

4. Conclusions

We investigated the nature of the metal ion within the active site of the first bacterial i-CA described so far, namely BteCAi, whose corresponding gene was found in the genome of the Gram-negative bacterium B. territorii. Unlike the diatom enzyme cloned from T. pseudonana, the bacterial i-CA has Zn(II) ions at its active site and not Mn(II) counterparts. We also report here the first inhibition study of BteCAi with a range of inorganic anions and small molecules known to act as CA inhibitors. The most efficient BteCAi inhibitors were stannate, sulphamic acid, phenylarsionic acid, phenylboronic acid and sulfamide, with KI values of 6.2–94 μM. Diethylidithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors, with Ks ranging between 0.71 and 0.94 mM. Fluoride, chloride, bromide, thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxysulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1–9.3 mM, whereas no inhibition was registered for iodide, cyanide, azide, perchlorate, perosmate, diphasphate, divanadate, tetraborate, perrhenate, perruthenate, mimosodisulfonate, hexafluorophosphate and trifluoromethanesulfonate. These data may be useful for designing more efficient i-CA inhibitors.

Acknowledgements

The authors are grateful to Giovanni Del Monaco (CNR-IBBR) for technical assistance.

Disclosure statement

The authors declare no conflict of interest.

ORCID

Alessio Nocentini http://orcid.org/0000-0003-3342-702X
Clemente Capasso http://orcid.org/0000-0003-3314-2411
Claudia T. Supuran http://orcid.org/0000-0003-4262-0323

References

1. (a) Supuran CT. Structure and function of carbonic anhydrases. Biochem J 2016;473:2023–32. (b) Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 2015;30:325–32. (c) Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: where are we today? Med Res Rev 2020;40:2485–565.
2. (a) Jensen EL, Clement R, Kosta A, et al. A new widespread subclass of carbonic anhydrase in marine phytoplankton. Isme J 2019;13:2094–106. (b) Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial i-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territiorii. J Enzyme Inhib Med Chem 2020;35:1060–8.
3. (a) Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem 2016;31:689–94. (b) Kikutani S, Nakajima K, Nagasato C, et al. Thylakoid luminal theta-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci U S A 2016;113:9828–33. (c) Jin S, Vullo D, Bua S, et al. Structural and biochemical characterization of novel carbonic anhydrases from Phaeodactylum tricornutum. Acta Crystallogr D Struct Biol 2020;76:676–86. (d) Del Prete S, Bua S, Supuran CT, Capasso C. Escherichia coli γ-carbonic anhydrase: characterisation and effects of simple aromatic/heterocyclic sulfonamide inhibitors. J Enzyme Inhib Med Chem 2020;35:1545–54.
4. (a) Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets 2015;19:1689–704. (b) Supuran CT, Capasso C. The eta-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin Ther Targets 2015;19:551–63. (c) Supuran CT, Capasso C. Antibacterial carbonic anhydrase...
inhibitors: an update on the recent literature. Expert Opin.
Ther Pat 2020.

5. (a) Supuran CT. Carbonic anhydrases: novel therapeutic
applications for inhibitors and activators. Nat Rev Drug
Discov 2008;7:168–81. (b) Neri D, Supuran CT. Interfering
with pH regulation in tumours as a therapeutic strategy. Nat
Rev Drug Discov 2011; 10:767–77. (c) Supuran CT. Carbonic
anhydrases and metabolism. Metabolites 2018; 8:25. (d)
Supuran CT. Exploring the multiple binding modes of inhibi-
tors to carbonic anhydrases for novel drug discovery. Expert
Opin Drug Discov 2020;15:671–86.

6. (a) Urbański LJ, Di Fiore A, Azizi L, et al. Biochemical and
structural characterisation of a protozoan beta-carbonic
anhydrase from Trichomonas vaginalis. J Enzyme Inhib
Med Chem 2020;35:1292–9. (b) Nocentini A, Supuran CT.
Advances in the structural annotation of human carbonic
anhydrases and impact on future drug discovery. Expert
Opin Drug Discov 2019; 14:1175–97. (c) Supuran CT. Struc-
ture-based drug discovery of carbonic anhydrase inhibi-
tors. J. Enzyme Inhib. Med. Chem 2012; 27:759–72. (d)
Supuran CT. How many carbonic anhydrase inhibition mech-
anisms exist? J Enzyme Inhib Med Chem 2016; 31:345–60.

7. (a) Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple
binding modes of inhibitors to carbonic anhydrases: how to
design specific drugs targeting 15 different isoforms? Chem
Rev 2012; 112:4421–68. (b) Angeli A, Carta F, Nocentini A, et
al. Carbonic anhydrase inhibitors targeting metabolism and
tumor microenvironment. Metabolites 2020;10:412. (c)
Supuran CT, Alterio V, Di Fiore A, et al. Inhibition of carbonic
anhydrase IX targets primary tumors, metastases, and cancer
stem cells: three for the price of one. Med Res Rev 2018;38:
1799–836.

8. (a) Supuran CT. Carbonic anhydrase inhibitors and their
potential in a range of therapeutic areas. Expert Opin Ther
Pat 2018;28:709–12. (b) Scuzafava A, Supuran CT, Carta F.
Antiobesity carbonic anhydrase inhibitors: a literature and
patent review. Expert Opin Ther Pat 2013; 23:725–35. (c) Di
Cesare Mannelli L, Michelì L, Carta F, et al. Carbonic anhy-
drase inhibition for the management of cerebral ischemia:
in vivo evaluation of sulfonamide and coumarin inhibitors.
Enzyme Inhib Med Chem 2016;31:894–9. (d) Supuran CT,
Altamimi ASA, Carta F. Carbonic anhydrase inhibition and
the management of glaucoma: a literature and patent
review 2013–2019. Expert Opin Ther Pat 2019; 29:781–92. (e)
Supuran CT. The management of glaucoma and macular
degeneration. Expert Opin Ther Pat 2019; 29:745–7.

9. (a) Supuran CT. Carbonic anhydrase activators. Future Med
Chem 2018;10:561–73. (b) Blandina P, Provenzi G, Passani
MB, et al. Carbonic anhydrase 5. Implications for the treat-
ment of cognitive disorders. J Enzyme Inhib Med Chem
2020;35:1206–14. (c) Nocentini A, Cuffaro D, Ciccone L, et
al. Activation of carbonic anhydrases from human brain by
alcohol amino oxime ethers: towards human carbonic anhy-
drase VII selective activators. J Enzyme Inhib Med Chem
2021;36:48–57.

10. (a) Schmidt MD, Costa A, Rani B, et al. The role of carbonic
anhydrases in extinction of contextual fear memory. Proc
Natl Acad Sci U S A 2020;117:16000–8. (b) Canto de Souza
L, Provenzi G, Vullo D, et al. Carbonic anhydrase activation
enhances object recognition memory in mice through phos-
phorylation of the extracellular signal-regulated kinase in
the cortex and the hippocampus. Neuropharmacology 2017;
118:148–56.

11. (a) Del Prete S, De Luca V, Bua S, et al. The effect of substi-
tuted benzene-sulfonamides and clinically licensed drugs on
the catalytic activity of CynT2, a carbonic anhydrase crucial
for Escherichia coli life cycle. Int J Mol Sci 2020; 21:4175. (b)
Angeli A, Ferraroni M, Pintea M, et al. Crystal structure of a
tetrameric type II \(\beta \)-carbonic anhydrase from the pathogenic
bacterium Burkholderia pseudomallei. Molecules 2020; 25:
2269. (c) Gitto R, De Luca L, Mancuso F, et al. Seeking new
approach for therapeutic treatment of cholera disease via
inhibition of bacterial carbonic anhydrases: experimental
and theoretical studies for sixteen benzenesulfonamide
derivatives. J Enzyme Inhib Med Chem 2019; 34:1186–92. (d)
Angeli A, Pintea M, Maier SS, et al. Inhibition of \(2 \nu \), \(\beta \nu \), \(\gamma \nu \),
\(\delta \nu \), \(\zeta \nu \)- and \(\eta \nu \)-class carbonic anhydrases from bacteria, fungi,
algae, diatoms and protozoans with fomtidine. J Enzyme
Inhib Med Chem 2019; 34:644–50.

12. (a) Capasso C, Supuran CT. An overview of the selectivity
and efficiency of the bacterial carbonic anhydrase inhibitors.
Curr Med Chem 2015;22:2130–9. (b) Capasso C, Supuran CT.
An overview of the carbonic anhydrases from two patho-
gens of the oral cavity: Streptococcus mutans and
Porphyromonas gingivalis. Curr Top Med Chem 2016;16:
2359–68.

13. Kaur J, Cao X, Abutaleb NS, et al. Optimization of acetazola-
mide-based scaffold as potent inhibitors of vancomycin-
resistant Enterococcus. J Med Chem 2020;63:9540–62.

14. (a) D’Ambrosio K, Supuran CT, De Simone G. Are carbonic
anhydrases suitable targets to fight protozoan parasitic dis-
eses? Curr Med Chem 2018;25:5266–78. (b) Nocentini A,
Osman SM, Almeida IA, et al. Appraisal of anti-protozoan
activity of nitroaromatic benzenesulfonamides inhibiting car-
bonic anhydrases from Trypanosoma cruzi and Leishmania
donovani. J Enzyme Inhib Med Chem 2019;34:1164–71. (c)
da Silva Cardoso V, Vermelho AB, Ricci Junior E, et al.
Antileishmanial activity of sulphonamide nonemulsions tar-
getting the \(\beta \)-carbonic anhydrase from Leishmania species.
J Enzyme Inhib Med Chem 2018;33:850–7.

15. (a) Vermelho AB, Rodrigues GC, Supuran CT. Why hasn’t
there been more progress in new Chagas disease drug dis-
cover? Expert Opin Drug Discov 2020;15:145–58. (b) Angeli
A, Etxebeste-Mitxeltorena M, Sanmartín C, et al. Tellurides
bearing sulfonamides as novel inhibitors of leishmanial car-
bonic anhydrase with potent antileishmanial activity. J
Med Chem 2020;63:4306–14. (c) Vermelho AB, da Silva Cardoso V,
Ricci Junior E, et al. Nanoemulsions of sulfonamide carbonic
anhydrase inhibitors strongly inhibit the growth of
Trypanosoma cruzi. J Enzyme Inhib Med Chem 2018;33:
139–46. (d) Vermelho AB, Capaci GR, Rodrigues IA, et al.
Carbonic anhydrases from Trypanosoma and Leishmania as
anti-protozoan drug targets. Bioorg Med Chem 2017;25:
1543–55.

16. (a) Del Prete S, Vullo D, Ghobril C, et al. Cloning, purification,
and characterization of a beta-carbonic anhydrase from
Malassezia restricta, an opportunistic pathogen involved in
dandruff and seborrheic dermatitis. Int J Mol Sci 2019;20:
2447. (b) Angeli A, Prete SD, Ghobril C, et al. Activation
studies of the \(\beta \)-carbonic anhydrases from Malassezia
restricta with amines and amino acids. J Enzyme Inhib Med
Chem 2020;35:824–30.

17. (a) Nocentini A, Vullo D, Del Prete S, et al. Inhibition of the
\(\beta \)-carbonic anhydrase from the dandruff-producing fungus
Malassezia globosa with monothiocabamates. J Enzyme
Inhib Med Chem 2017;32:1064–70. (b) Angiolella L, Carradori

S, Maccallini C, et al. Targeting *Malassezia* species for novel synthetic and natural antidandruff agents. Curr Med Chem 2017;24:2392–412. (c) Hewitson KS, Vullo D, Scozzafava A, et al. Molecular cloning, characterization, and inhibition studies of a β-carbonic anhydrase from *Malassezia globosa*, a potential antidandruff target. J Med Chem 2012;55:3513–20.

18. (a) De Luca V, Del Prete S, Supuran CT, Capasso C. Protonography, a new technique for the analysis of carbonic anhydrase activity. J Enzyme Inhib Med Chem 2015;30:277–82. (b) Del Prete S, De Luca V, Supuran CT, Capasso C. Protonography, a technique applicable for the analysis of η-carbonic anhydrase activity. J Enzyme Inhib Med Chem 2015;30:920–4. (c) Del Prete S, De Luca V, Iandolo E, et al. Protonography, a powerful tool for analyzing the activity and the oligomeric state of the γ-carbonic anhydrase identified in the genome of *Porphyromonas gingivalis*. Bioorg Med Chem 2015;23:3747–50.

19. (a) De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29. (b) Bertucci A, Moya A, Tambutté S, et al. Carbonic anhydrases in anthozoan corals – a review. Bioorg Med Chem 2013;21:1437–50.

20. Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971; 246:2561–73.

21. (a) Maresca A, Scozzafava A, Supuran C7. 8-Disubstituted-but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg Med Chem Lett 2010;20:7255–8. (b) Innocenti A, Gülçin I, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 2010;20:5050–3. (c) Supuran CT, Nicolae A, Popescu A. Carbonic anhydrase inhibitors. Part 35. Synthesis of Schiff bases derived from sulfanilamide and aromatic aldehydes: the first inhibitors with equally high affinity towards cytosolic and membrane-bound isozymes. Eur J Med Chem 1996; 31:431–8. (d) Beyza Öztürk Sankaya S, Gülçin İ, Supuran CT. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem Biol Drug Des 2010; 75:515–20.

22. (a) Tripp BC, Bell CB 3rd, Cruz F, et al. A role for iron in an ancient carbonic anhydrase. J Biol Chem 2004;279:6683–7. (b) Zimmerman SA, Ferry JG, Supuran CT. Inhibition of the archaeal β-class (Cab) and γ-class (Cam) carbonic anhydrases. Curr Top Med Chem 2007; 7:901–8.

23. (a) Xu Y, Feng L, Jeffrey PD, et al. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 2008;452:56–61. (b) Viparelli F, Monti SM, De Simone G, et al. Inhibition of the R1 fragment of the cadmium-containing zeta-class carbonic anhydrase from the diatom *Thalassiosira weissflogii* with anions. Bioorg Med Chem Lett 2010; 20:4745–8. (c) Alterio V, Langella E, Viparelli F, et al. Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom *Thalassiosira weissflogii*. Biochimie 2012; 94:1232–41.

24. Del Prete S, De Luca V, Nocentini A, et al. Anion inhibition studies of the beta-carbonic anhydrase from *Escherichia coli*. Molecules 2020;25:2564.