Streptococcus pneumoniae isolated from the nasal carriage and its antibiotic susceptibility profiles in children

Received: 16/5/2018 Accepted: 6/9/2018

Abstract

Background and objective: The prevalence of Streptococcus pneumoniae and resistance to antibiotics have become a public health problem in different countries of the world. This study aimed to investigate the occurrence of Streptococcus pneumoniae nasal carriage among children, and their antibiotics susceptibility profiles.

Methods: A nasal swab was obtained from 1092 healthy children aged from 6 to 13 years in Erbil Parks, Kurdistan region, Iraq. The swabs were cultured on appropriate culture media to isolate Streptococcus pneumoniae and to examine their susceptibility to antibiotics. The antibiotic susceptibility testing was performed using the standard disk-diffusion method.

Results: Streptococcus pneumoniae was isolated from 224 (20.51%) of the specimens; 57.59%, and 56.25% of isolates were resistant to penicillin and ampicillin, respectively, while 3.57% and 4.46% were resistant to clarithromycin and moxifloxacin, respectively. None of the isolates had resistant to vancomycin.

Conclusion: There is a high prevalence of penicillin and another β-lactam drug resistance among isolates of Streptococcus pneumoniae from the nasal carriage of children in our region.

Keywords: Streptococcus pneumoniae; Antibiotic susceptibility; Nasal carriage; Penicillin resistance.

Introduction

Streptococcus pneumoniae (S. pneumoniae) is a significant bacterial pathogen worldwide, causing serious illness, such as meningitis, bacteremia, acute otitis media, and pneumonia. An estimated one million children less than 5 years old die each year from S. pneumoniae caused pneumonia. S. pneumoniae is a part of the normal microbial flora of the nose and pharynx, particularly among young children, and are easily transmitted, usually by droplet secretions, from person to person. The nasal mucosa is the first line of defense against pathogenic bacteria and permits a large and diverse community of bacterial species to asymptomatically colonies the upper respiratory tract. The colonization of S. pneumoniae in the nasopharynx is believed to be an important reservoir for community spread of this pathogen and a key factor preceding pneumococcal diseases. S. pneumoniae asymptptomatically colonizes nasal of children and it is a frequent cause of otitis media. S. pneumoniae is a common nasal colonizer capable of causing life-threatening human diseases worldwide. In the individual host, the colonization mainly depends on age. Several studies have shown that age younger than two years is associated with the highest carriage rate. The rate declines thereafter to a stable and low prevalence in adolescents. There were few data focused on pneumococcal carriage in both pediatric and adult population. For many

1 Department of Basic Sciences, College of Nursing, Hawler Medical University, Erbil, Iraq.
2 Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Iraq.
* Correspondence: aza.taha@hmu.edu.krd
A total of 1092 healthy children were enrolled in this study, of whom 612 (56.04%) were boys, and the majority of the children (67.03%) were living in urban environments (Table 1). The percentage of S. pneumoniae carriage among total children was 20.51%. According to age groups, the high percentage of S. pneumoniae carriage was 30.36% (68 children out of 291) among children in the age group 6 to 7 years (Table 2). The rate of S. pneumoniae carriage was 21.73% among boys, and it was 18.96% among girls (Table 3).
Table 1: Characteristics of studied children.

Characteristics	No.	%
Age (years)		
6-7	291	26.65
8-9	297	27.20
10-11	245	22.44
12-13	259	23.72
Gender		
Boys	612	56.04
Girls	480	43.96
Residency		
Urban	732	67.03
Rural	360	32.97
Total	1092	100

Table 2: Distribution of children with *S. pneumoniae* carriage according to age.

Age (years)	Number of children examined	*S. pneumoniae* carriage	P value	
		No.	%	
6-7	291	68	30.36	
8-9	297	63	28.13	
10-11	245	50	22.32	0.265
12-13	259	43	19.20	
Total	1092	224	20.51	

Table 3: *S. pneumoniae* carriage and gender.

Genders	Number of children examined	*S. pneumoniae* carriage	P value	
		No.	%	
Boys	612	133	21.73	
Girls	480	91	18.96	0.359
Total	1092	224	20.51	
The high percentage of antibiotics resistance was 57.59% to penicillin and 56.25% to ampicillin, followed by cefuroxime (48.21%), cefotaxime (46.88%), and ceftriaxone (45.09%). All \textit{S. pneumoniae} were sensitive to vancomycin (Table 4). Children from the rural area were more likely to carry \textit{S. pneumoniae} isolates resistance to penicillin (62.30%), ampicillin (60.66%), and cefotaxime (62.30%) but less likely to carry an isolate resistance to moxifloxacin and azithromycin (1.64%) and clindamycin (3.28%). All \textit{S. pneumoniae} isolated were sensitive to clarithromycin in the rural area, whereas only 4.91% were resistant in urban (Table 5).

Table 4: Antibiotics susceptibility of \textit{S. pneumoniae} isolated from nasal carriage.

Antibiotics (concentrations)	Total number of isolated tested=224	Sensitive	Resistance	P value	
	No.	%	No.	%	
Penicillin G (10 units)	95	42.41	129	57.59	0.107
Ampicillin (10 µg)	98	43.75	126	56.25	0.185
Cefuroxime (30 µg)	116	51.79	108	48.21	0.705
Cefotaxime (30 µg)	119	53.13	105	46.88	0.508
Ceftriaxone (30 µg)	123	54.91	101	45.09	0.298
Ciprofloxacin (5 µg)	192	85.71	32	14.29	<0.001
Moxifloxacin (5 µg)	214	95.54	10	4.46	<0.001
Erythromycin (15 µg)	189	84.38	35	15.63	<0.001
Azithromycin (15 µg)	197	87.95	27	12.05	<0.001
Clarithromycin (15 µg)	216	96.43	8	3.57	<0.001
Clindamycin (2 µg)	209	93.30	15	6.70	<0.001
Vancomycin (30 µg)	224	100	0	0	ND

ND = Not done

Table 5: Antibiotics resistance of \textit{S. pneumoniae} isolated from urban and rural.

Antibiotics (concentrations)	Urban ($n=163$)	Rural ($n=61$)	Total ($n=224$)	P value			
	No.	%	No.	%			
Penicillin G (10 units)	91	55.83	38	62.30	129	57.59	0.654
Ampicillin (10 µg)	89	54.60	37	60.66	126	56.25	0.669
Cefuroxime(30 µg)	81	49.69	27	44.26	108	48.21	0.666
Cefotaxime (30 µg)	67	41.10	38	62.30	105	46.88	0.986
Ceftriaxone (30 µg)	75	46.01	26	42.62	101	45.09	0.777
Ciprofloxacin (5 µg)	24	14.72	8	13.11	32	14.29	0.790
Moxifloxacin (5 µg)	9	5.52	1	1.64	10	4.46	0.227
Erythromycin (15 µg)	23	14.11	12	19.67	35	15.63	0.388
Azithromycin (15 µg)	26	15.95	1	1.64	27	12.05	0.007
Clarithromycin (15 µg)	8	4.91	0	0	8	3.57	0.856
Clindamycin (2 µg)	13	7.98	2	3.28	15	6.70	0.237
Vancomycin (30 µg)	0	0	0	0	0	0.00	ND

ND = Not done
Colonization of nasal is a dynamic process with a turnover of new strains of S. pneumoniae. The percentage of nasal carriage of S. pneumoniae in children as reported in this study was lower than the study reported in Vietnamese children. The percentage of nasal carriage of S. pneumoniae varied from 9% in Singapore to 43% in India among children. Accordingly, it has been reported that the anterior nasal swabs are easier to do in younger children and the method was to be as sensitive as a nasopharyngeal aspiration but, might affect lower carriage rates in some countries. In the present study, the high rate of nasopharyngeal carriage of S. pneumoniae was observed among children aged 6 to 7 years than other age groups. The immunological developments of cellular and humoral responses to S. pneumoniae capsular polysaccharide contribute towards a much lower incidence of pneumococcal disease in older children than in young children. On the other hand, the study was observed that the rate of S. pneumoniae carriage more common in boys compared to the girls; this may be due to the boys in our culture is more exposed to the external environment. The prevalence of antibiotics resistance has been studied in different countries in the world. In the present study, the high rate of penicillin and ampicillin resistance was observed among S. pneumoniae nasal carriage isolates that lower than reported in Taiwan, Korea, Sri Lanka, Vietnam, and Saudi Arabia (50%). Moreover, it has been detected that S. pneumoniae is a naturally transformable organism, selective pressure of any antibiotic may facilitate incorporation of extrachromosomal DNA encoding various antibiotic resistance mechanisms. Therefore, penicillin resistance in clinical isolates of S. pneumoniae has become an important problem, and strategies to prevent the emergence of clinically significant diseases caused by S. pneumoniae resistance to antibiotics in this region will be needed. Penicillin and ampicillin are widely used in our region and are available over the counter at a suitable price, particularly in subclinical pharmacy that used randomly without physician prescription may contribute to increasing penicillin resistance among S. pneumoniae strains. Furthermore, it has been found that the S. pneumoniae strains with both penicillin and other β-antibiotics resistance appear to be increasing worldwide, although rates may vary depending on the location. With limited use of new antibiotics such as azithromycin, clarithromycin, clindamycin, and vancomycin for treatment of S. pneumoniae, the study reported a low level of resistance to these antibiotics. The rate of urban children to penicillin and ampicillin resistance of S. pneumoniae isolates was significantly lower than the rate obtained in children of the rural area; this was in agreement with a study has been reported in Southern Vietnam of which the use of the antibiotic in rural children was lower than in urban children. The increase of antibiotic resistance in S. pneumoniae is attributed to several factors, including socio-cultural and economic factors and differences in regulatory practices, particularly antibiotic consumption. European studies have shown that variations of antibiotic consumption are well correlated to S. pneumoniae rates at the country level. Therefore, antibiotic consumption should be considered according to the volume and the pattern use. It has been found that the emergence of antibiotics resistant clones of S. pneumoniae appears to be delayed in rural areas compared with urban areas, but clonal spread, combined with the use of antibiotics, is likely to account for carriage rates of antibiotics resistant strains that were similar to urban areas.

Conclusion

The high rate of S. pneumoniae nasal
carriage among children that could serve as reservoirs for the transmission to the community and cause disease. Meanwhile, the high rate of *S. pneumoniae* antibiotics susceptibility was observed for vancomycin, clarithromycin, moxifloxacin, and clindamycin. There are still a number of other factors contributing to the spread of resistant *S. pneumoniae*. Therefore, further studies of antibiotics resistance will be needed.

Competing interests

The authors declare no competing interests.

References

1. Benbachir M, Elmdaghir N, Belabbes H, Haddioui G, Benzaid H, Zaki B. Eleven-year surveillance of antibiotic resistance in *Streptococcus pneumoniae* in Casablanca (Morocco). Microb Drug Resist 2012; 18(2):157–60.

2. Parry CM, Diep TS, Wain J, Hoa NTT, Gainsborough M, Nga D, et al. Nasal carriage in Vietnamese children of *Streptococcus pneumoniae* resistant to multiple antimicrobial agents. Antimicrob Agents Chemother 2000; 44(3):484–8.

3. O'BRIEN KL, Nohynek H, Group WPVTCW. Report from a WHO Working Group: standard method for detecting upper respiratory carriage of *Streptococcus pneumoniae*. Pediatr Infect Dis 2003; 22(2):e1–11.

4. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011; 184(8):957–63.

5. Petraitiene S, Alasevicius T, Staceviciene I, Vaiciuniene D, Kacergius T, Usonis V. The influence of *Streptococcus pneumoniae* nasopharyngeal colonization on the clinical outcome of the respiratory tract infections in preschool children. BMC Infect Dis 2015; 15:403.

6. Abdullahi O, Karani A, Tigoi CC, Mugo D, Kungu S, Wanjiru E, et al. The prevalence and risk factors for pneumococcal colonization of the nasopharynx among children in Kilifi District, Kenya. PLoS One 2012; 7(2):e30787.

7. Lauffer AS, Metlay JP, Gent JF, Fennie KP, Kong Y, Pettigrew MM. Microbial communities of the upper respiratory tract and otitis media in children. MBio 2011; 2(1):e00245–10.

8. Bogaert D, de Groot R, Hermans P. *Streptococcus pneumoniae* colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004; 4(3):144–54.

9. Trzcinski K, Li Y, Weinberger DM, Thompson CM, Cordy D, Bessolo A, et al. Effect of serotype on pneumococcal competition in a mouse colonization model. M Bio 2015; 6(6):e00902–15.

10. Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rümke H, et al. Colonisation by *Streptococcus pneumoniae* and *Staphylococcus aureus* in healthy children. Lancet 2004; 363(9424):1871–2.

11. Regev-Yochay G, Raz M, Dagan R, Porat N, Shainberg B, Pinco E, et al. Nasopharyngeal carriage of *Streptococcus pneumoniae* by adults and children in community and family settings. Clin Infect Dis 2004; 38(5):632–9.

12. Wright AK, Ferreira DM, Gritzfeld JF, Wright AD, Armitage K, Jambo KC, et al. Human nasal challenge with *Streptococcus pneumoniae* is immunising in the absence of carriage. PLoS Pathog 2012; 8(4):e1002622.

13. Magalhães APGdO, Pinto AdS. Antimicrobial resistance and serotyping of *Streptococcus pneumoniae* isolated from pediatric patients in Belo Horizonte, MG, Brazil. BJM 2003; 34(3):210–2.

14. Alainis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Invest Med 2005; 36(6):697–705.

15. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antimicrobial resistance—the need for global solutions. Lancet Infect Dis 2013; 13(12):1057–98.

16. Weber FT, Dias C, Costa Md. Antimicrobial susceptibility of *Streptococcus pneumoniae* and genotypic characterization of erythromycin-resistant strains in Porto Alegre, Brazil. BJM 2010; 41(4):697–705.

17. Naba MR, Araj GF, Baban TA, Tabbarah ZA, Awad GN, Kanj SS. Emergence of fluoroquinolone-resistant *Streptococcus pneumoniae* in Lebanon: a report of three cases. J Infect Public Health 2010; 3(3):113–7.

18. Hortal M, Lovgren M, De la Hoz F, Agudelo C, Brandileone M, Camou T, et al. Antibiotic resistance in *Streptococcus pneumoniae* in six Latin American countries: 1993-1999 surveillance. Microb Drug Resist 2001; 7(4):391–401.

19. El Ashkar S, Osman M, Rafei R, Mallat H, Achkar M, Dabboussi F, et al. Molecular detection of genes responsible for macrolide resistance among *Streptococcus pneumoniae* isolated in North Lebanon. J Infect Public Health 2017; 10(6):745–8.

20. Schultsz C, Campbell JI, Chau NVV, Diep TS, Hoang NVM, Nga TTT, et al. Changes in the nasal carriage of drug-resistant *Streptococcus pneumoniae* in urban and rural Vietnamese schoolchildren. Trans R Soc Trop Med Hyg 2007; 101(5):484–92.
21. Villanova P. Performance standards for antimicrobial disk susceptibility tests. NCCLS Approved Standard 7th ed NCCLS 2000; 20:M2–A7.

22. Lee NY, Song J-H, Kim S, Peck KR, Ahn K-M, Lee S-I, et al. Carriage of antibiotic-resistant pneumococci among Asian children: a multinational surveillance by the Asian Network for Surveillance of Resistant Pathogens (ANSORP). Clin Infect Dis 2001; 32(10):1463–9.

23. Kellogg JA, Bankert DA, Elder CJ, Gibbs JL, Smith MC. Identification of Streptococcus pneumoniae revisited. J Clin Microbiol 2001; 39(9):3373–5.

24. Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology 11th ed. Washington, DC: ASM Press; 2015. P. 1253–73.

25. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. CID 2009; 49(11):1749–55.

26. Margolis E, Yates A, Levin BR. The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host's immune response. BMC Microbiol 2010; 10(1):1.

27. Syrjänen RK, Kilpi TM, Kajalainen TH, Herva EE, Takala AK. Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J Infect Dis 2001; 184(4):451–9.

28. van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 2009; 374(9700):1543-56.

29. Johnston C, Caymanis S, Zomer A, Bootsma HJ, Prudhomme M, Granadel C, et al. Natural genetic transformation generates a population of merodiploids in Streptococcus pneumoniae. PLoS Genet 2013; 9(9):e1003819.

30. Ma X, Zhao R, Ma Z, Yao K, Yu S, Zheng Y, et al. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates causing invasive diseases from Shenzhen Children’s Hospital. PloS One 2013; 8(6):e67507.

31. Warda K, Ouadou K, Zahnle K, Bouskraoui M. Antibiotic resistance and serotype distribution of nasopharyngeal isolates of Streptococcus pneumoniae from children in Marrakech region (Morocco). J Infect Public Health 2013; 6(6):473–81.

32. Quagliarello A, Parry CM, Hien TT, Farrar JJ. Factors associated with carriage of penicillin-resistant Streptococcus pneumoniae among Vietnamese children: a rural-urban divide. J Health Popul Nutr 2003; 21(4):316–24.

33. Thummeepak R, Leerach N, Kunthalert D, Tangchaissuayita U, Thanwisal A, Sitthisaks. High prevalence of multi-drug resistant Streptococcus pneumoniae among healthy children in Thailand. J Infect Public Health 2015; 8(3):274–81.

34. Harbarth S, Albrich W, Brun-Buisson C. Outpatient antibiotic use and prevalence of antibiotic-resistant pneumococci in France and Germany: sociocultural perspective. Emerg Infect Dis 2002; 8(12):1460–7.

35. Taha AB, Hama KH, Ismail IB. Assessment of Antibiotics Misuse among People in Erbil City. Kufa Journal for Nursing Sciences 2014; 4(3):23–35.

36. Ehara N, Fukushima K, Kakeya H, Mukae H, Akamatsu S, Kagayama A, et al. A novel method for rapid detection of Streptococcus pneumoniae antigen in sputum and its application in adult respiratory tract infections. J Med Microbiol 2008; 57(7):820–6.

37. Garcia-Rey C, Aguilar L, Baquero F, Casal J, Dal-Ré R. Importance of local variations in antibiotic consumption and geographical differences of erythromycin and penicillin resistance in Streptococcus pneumoniae. J Clin Microbiol 2002; 40(1):159–64.

38. Coenen S, Ferech M, Haaijer-Ruskamp FM, Butler CC, Vander Stichele RH, Verheij TJ, et al. European Surveillance of Antimicrobial Consumption (ESAC): quality indicators for outpatient antibiotic use in Europe. Qual Saf Health Care 2007; 16(6):440–5.