Quantitative Trait Locus Analysis in Avocado: The Challenge of a Slow-maturing Horticultural Tree Crop

Vanessa E.T.M. Ashworth5
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521

Haofeng Chen1 and Carlos L. Calderón-Vázquez2
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697

Mary Lu Arpaia
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521

David N. Kuhn3
USDA-ARS Subtropical Horticulture Research Station, Miami, FL 33158

Mary L. Durbin3 and Livia Tommasini4
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697

Elizabeth Deyett and Zhenyu Jia
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521

Michael T. Clegg3
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697

Philippe E. Rolshausen5
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521

ADDITIONAL INDEX WORDS. Persea americana, β-sitosterol, candidate gene, linkage map, marker-assisted selection, vitamin E

ABSTRACT. The glossy, green-fleshed fruit of the avocado (Persea americana) has been the object of human selection for thousands of years. Recent interest in healthy nutrition has singled out the avocado as an excellent source of several phytonutrients. Yet as a sizeable, slow-maturing tree crop, it has been largely neglected by genetic studies, owing to a long breeding cycle and costly field trials. We use a small, replicated experimental population of 50 progeny, grown at two locations in two successive years, to explore the feasibility of developing a dense genetic linkage map and to implement quantitative trait locus (QTL) analysis for seven phenotypic traits. Additionally, we test the utility of candidate-gene single-nucleotide polymorphisms developed to genes from biosynthetic pathways of phytonutrients beneficial to human health. The resulting linkage map consisted of 1346 markers (1044.7 cM) distributed across 12 linkage groups. Numerous markers on Linkage Group 10 were associated with a QTL for flowering type. One marker on Linkage Group 1 tracked a QTL for β-sitosterol content of the fruit. A region on Linkage Group 3 tracked vitamin E (α-tocopherol) content of the fruit, and several markers were stable across both locations and study years. We argue that the pursuit of linkage mapping and QTL analysis is worthwhile, even when population size is small.
conferred by three main groups of compounds: β-sitosterol, carotenoids, and vitamin E.

Most of these phenotypic traits are inherited in a quantitative fashion; i.e., they are controlled by many genes of small effect and are typically under strong environmental influence. Yet only the genetic component of a phenotype will respond to breeding. Two studies in avocado (Calderón-Vázquez et al., 2013; Chen et al., 2007) used quantitative genetics to tease apart the genetic and the environmental components of the phenotypic value of a suite of quantitative traits. Chen et al. (2007) demonstrated for the progeny of cultivar Gwen that major growth-related traits, such as plant height and trunk- and canopy diameter, were under genetic control and showed sufficient heritability to respond to selection. Similarly, Calderón-Vázquez et al. (2013) showed for a ‘Gwen’ × ‘Fuerte’ experimental population—a subset of the population studied by Chen et al. (2007)—that β-sitosterol, carotenoids, and vitamin E of the fruit are likely to respond to breeding.

On theoretical grounds, therefore, breeding avocado for growth-related traits and enhanced levels of fruit nutrients is feasible. However, breeding in this long-lived tree crop is frustrated by an outcrossing breeding system, high heterozygosity, long generation times (up to 15 years [Bergh and Lahav, 1996]), and the need for costly field trials to accommodate tree size and a protracted maturation (Van Nocker and Gardiner, 2014). Moreover, controlled pollination is impracticable (Degani et al., 2003; Lammerts, 1942) owing to a profusion of tiny flowers and immature fruitlets—most of which are shed prematurely, and conventional breeding populations (e.g., doubled haploids, recombinant inbred lines) do not exist. At this time, avocado breeders have no option but to use phenotypic selection, which is associated with slow breeding advance. A move toward molecular breeding is a promising alternative to accelerate selection progress and to reduce costs associated with the maintenance of breeding populations.

When designing large-scale experiments leading to molecular breeding, the problem of high land and labor costs loom large, so genetic mapping populations tend to be small and poorly replicated, predisposing data to low statistical power. Yet many horticultural tree crops produce high-value fruit for which the genetic dissection of phenotypic traits is of considerable interest, raising the question whether mapping and quantitative trait locus studies may nonetheless be worthwhile, given adequate precautions. With the advent of next-generation technologies, the costs associated with developing abundant genetic markers have declined significantly, and a shortage of markers no longer represents a constraint. We explore the possibility of generating a linkage map and of estimating QTLs for seven phenotypic traits collected in a mapping population of 50 trees using over 5000 molecular markers. We ask whether a modestly sized mapping population can be used to estimate significant QTL loci and whether these loci are likely to be sufficiently robust.

Materials and Methods

Mapping Population. The experimental population of avocado trees consisted of the full-sib progeny of a ‘Gwen’ (G) × ‘Fuerte’ (F) cross. The G × F progeny is a subset of a larger population of open-pollinated trees raised from the fruit of a ‘Gwen’ maternal tree. Each progeny tree was screened using 10 simple sequence repeat (SSR) markers (Ashworth et al., 2004) to verify the origin of the pollen source. Of more than 200 progeny genotypes analyzed, 50 were the result of the cross G × F and were set aside for the mapping project. The remainder consisted of about 50 individuals each of G × ‘Bacon’, G × ‘Zutano’, and a miscellaneous group of largely unidentified pollen origin (Chen et al., 2007) that are not considered further here.

Four clonal replicates of each G × F progeny tree were grafted on ‘Duke 7’ rootstock and planted at two sites in southern California: two of the four replicate trees were grown in a randomized block design at a coastal location [University of California (UC) South Coast Research and Extension Center, Irvine, CA] and the other two replicate trees at an inland location (Agricultural Operations, UC Riverside campus, Riverside, CA), also in a randomized block layout. Each location, therefore, contained two replicates of 50 tree genotypes (100 trees). All trees were planted in the ground between Fall 2001 and Spring 2003.

Trees were spaced at 6.1 m between rows and at 4.6 m between trees within the same row. At the coastal site, fertilizer was applied at 0.45 kg/tree as a granular formulation of 15N–6.5P–12.5K in late March/early April. At the inland site, a 32N–0P–0K fertilizer solution was introduced into the irrigation water at 284.24 L ha⁻¹ in January. At both locations, the fertilizer regime was managed to industry standard. Irrigation water was dispensed from two microsprinklers per tree following guidelines established by California Irrigation Management Information System (CIMIS, 2003). The coastal location (Irvine) differed from the inland location (Riverside) by higher average rainfall, cooler average summer temperatures, and warmer average winter temperatures (Table 1). Soils at both locations were sandy loams. The Riverside site followed a gentle hillside contour that consisted of three different sandy loam subtypes (Table 1).

Phenotypic Traits. Seven datasets were collected from the experimental trees, including one qualitative (flowering type) and six quantitative (three measures of tree dimension, and three nutrients assayed in the avocado fruit flesh). Descriptive statistics for each quantitative trait are provided in Fig. 1.

Flowering type was recorded in Apr. 2013 at the coastal location in 100 trees. Avocado flowers exhibit protogynous dichogamy, a mechanism designed to prevent self-pollination by temporally separating stigma receptivity and pollen release (Sedgley, 1985). A tree was recorded as having B-type flowering if its flowers were in the male phase in the morning and as having A-type flowering if flowers were in the female phase in the morning. In commercial orchards, optimal pollination and fruit set in cultivars with A-type flowering (e.g., ‘Hass’ and ‘Gwen’) is achieved by interplanting with B-type pollinator cultivars (e.g., ‘Fuerte’ and ‘Bacon’) (Alcaraz and Hormaza, 2009). This trait was scored as a discrete character (presence or absence), with A-type flowering recorded as “1” and B-type flowering as “2.”

Measures of tree growth were collected at both locations each year from 2003 to 2005, but only the final year’s data were used in this study because the later-planted trees were still very immature during the first two years. Three measurements of tree dimension—trunk diameter, tree height, and canopy diameter—were recorded as a way of characterizing the three-dimensional aspect of early tree growth (Chen et al., 2007). Trunk diameter was determined at 10 cm aboveground in two perpendicular orientations, with values averaged. Plant height
was measured from ground level to the tip of the tree. Canopy diameter was determined at the widest part of the canopy in two orientations: parallel to the orchard row and perpendicular to the row, with the two values averaged.

Fruit nutrient composition [α-tocopherol (the most biologically active form of vitamin E in humans), β-sitosterol, and carotenoids] was assayed in fruit collected at both locations in 2009 and 2010. Fruit preparation and chemical assays for determination of the contents of α-tocopherol, β-sitosterol, and carotenoids in fruit tissue were adapted from Jeong and Lachance (2001), Mäeorg et al. (2007), and Ryan et al. (2007) and are detailed in Calderón-Vázquez et al. (2013). For any given tree, five fruit were picked at an optimum dry weight of 20% and then allowed to ripen in the laboratory. At ripeness, the flesh from the five fruit was pooled and homogenized, and aliquots were frozen and set aside for further analyses. Total carotenoids, which include α-carotene, β-carotene, β-cryptoxanthin, lutein, and zeaxanthin, were isolated using two extractions in hexane/petroleum ether (1:1). An aliquot of the resulting aqueous phase was analyzed by taking a spectrophotometric reading at 456 nm and comparing it to a standard curve for β-carotene (C4582; Sigma-Aldrich, St. Louis, MO) according to Luterotti et al. (2006). Beta-sitosterol and α-tocopherol contents were determined by application of the organic phase fraction to thin-layer chromatographic plates. Bands were visualized by dipping in phosphomolybdic acid (02553, Sigma-Aldrich) and quantified on an AlphaImager HP System (ProteinSimple, Santa Clara, CA) using standard curves generated from reference samples [β-sitosterol (S1270, Sigma-Aldrich), α-tocopherol (T3251, Sigma-Aldrich)]. Values for the parental cultivars Gwen and Fuerte were determined in trees growing at the coastal location using the same preparation and assay conditions as for the progeny (Calderón-Vázquez et al., 2013).

Statistical analyses of the phenotypic data were performed in R version 3.4.4 (R Core Team, 2019) using a nonparametric Kruskal–Wallis test to compare datasets, followed by a Wilcoxon test for pairwise comparisons and calculation of probability values.

GENETIC MARKERS. The genetic markers implemented in this study consisted of SSRs and single-nucleotide polymorphisms (SNPs) from several sources; the bulk of markers were SNPs developed by Kuhn et al. (2019). In our map, these SNPs were used to augment the total number of markers to ensure adequate map density. The second set of SNP markers was developed in a genetic discovery effort targeting candidate genes from several biosynthetic pathways involved in fruit nutrient composition. These candidate-gene SNPs (CG-SNPs) have not previously been published and their development is described in the following two paragraphs. In addition, we used published SSR markers developed by Sharon et al. (1997), Borrone et al. (2007), and Ashworth et al. (2004), as well as 28 SSR markers available from GenBank (V.E. Ashworth, C. Calderón-Vázquez, M.L. Durbin, L. Tommasini, and M.T. Clegg, unpublished data).

SNPs by Kuhn et al. [2019 (FL-SNPs)] originated by Illumina GAII sequencing (Illumina, San Diego, CA), and the individuals of our ‘Gwen’ × ‘Fuerte’ mapping population were included on the Illumina Infinium oligonucleotide array chip that assayed each tree genotype for 5050 FL-SNP markers. Details of marker development are provided in Kuhn et al. (2019).

Nutrient-related candidate genes were identified by aligning avocado expressed sequence tag (EST)/cDNA (complementary DNA) sequences from fruit-, flower-, and other organ-specific libraries developed by Cornell University [Ithaca, NY (Floral Genome Project, 2005), HortResearch (Mt Albert, New Zealand), and CINVESTAV (Irapuato, Mexico) to sequences of functionally characterized gene sequences deposited in TAIR (2005) or NCBI (2005). Avocado mRNA sequences showing high similarity to core enzymes in the flavonoid, carotenoid, fatty acid, and B-, C-, and E-vitamin biosynthesis pathways were retained. Their relevance in determining fruit nutritional composition was further verified by comparison with sequences from an avocado cDNA library developed from the fruit of cultivar Hass. Sequence alignment allowed design of amplification primers in conserved regions. Nested sequencing primers provided about 500 base pairs of high-quality DNA sequence.

SNP discovery was performed in sequences from a panel of 10 randomly chosen ‘Gwen’ × ‘Fuerte’ progeny genotypes. SNPs were identified by standard resequencing using the Sanger method. Sequence reads were assembled using Phred/Phrap/Consed (Ewing and Green, 1998; Gordon et al., 1998), and PolyPhred was used to detect the SNP sites (Nickerson et al., 1997). A total of 83 SNPs was developed from 28 candidate genes. Avocado genomic DNA of the 10 ‘Gwen’ × ‘Fuerte’ progeny was extracted from frozen young (flushing) leaves using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA). Forward and reverse reads were generated during the sequencing phase. Sequences from the SNP phase were

Table 1. Climatic characteristics at Irvine and Riverside, CA, the two locations of the avocado mapping populations. Data are averages for 1981–2010 (U.S. Climate Data, 2018).

Climate	Irvine	Riverside
Annual high temperature (°C)	22.6	26.4
Highest monthly average temperature—August (°C)	28.3	35.0
Annual low temperature (°C)	12.4	10.8
Lowest monthly average temperature—December (°C)	8.3	5.6
Average temperature (°C)	17.5	18.6
Average annual precipitation (mm)	366.7	262.1
Soil type	San Emigdio fine sandy loam	Arlington fine sandy loam; Hanford coarse sandy loam; Ramona sandy loam
sequenced only in one direction (either 5' to 3' or 3' to 5'), either using polymerase chain reaction (PCR) amplification primers or nested primers (Supplemental Table 1). PCR amplification conditions were as follows: preheating at 94 °C for 2 min, then 35 cycles of 94 °C for 30 s, annealing at primer-specific temperatures (47 to 58 °C) for 30 s and extension at 72 °C for between 30 s and 1 min 45 s, ending with a final extension of 72 °C for 5 min. PCR products were purified using the QiAquick PCR purification kit (Qiagen) or ExoSAP-IT (USB-Affymetrix, Cleveland, OH). Sequencing products were run on a DNA sequencer (Applied Biosystems 3730xl DNA Analyzer; Thermo Fisher Scientific, Waltham, MA).

SSR markers included 53 published markers. They were sourced from Sharon et al. (1997; 1 marker), Borrone et al. (2007; 13 markers), and Ashworth et al. (2004; 39 markers). Twenty-eight new SSR markers are detailed in Supplemental Table 2; their development and assay conditions are identical to those given in Ashworth et al. (2004). SSR markers of Borrone et al. (2007) were developed from ESTs.

SSR markers originating at UC (CA-SSRs) were prefixed with AVO, AUCR, or AVD if developed from a genomic library enriched for dinucleotide repeats; a prefix of AVT denotes development from a trinucleotide-enriched genomic library (Ashworth et al., 2004). SSR markers developed by Borrone et al. (2007; FL-SSRs) are prefixed with SHRSPa (Subtropical Horticulture Research Station—Persea americana) followed by a three-digit number. AVMIX3 originated from Sharon et al. (1997). CG-SNPs are abbreviated in relation to the candidate gene name and numbered sequentially based on the SNP position within the gene sequence. The FL-SNPs (Kuhn et al., 2019) are prefixed by SHRSPaS00, followed by SNP numbers in the range 1000 to 6999. All CG-SNPs from the same candidate gene were retained unless a SNP showed strong segregation distortion or many missing data.

LINKAGE MAP CONSTRUCTION. Our linkage map [henceforth “California (CA)-map”] was generated using the regression mapping algorithm implemented in JoinMap version 4 (Van Ooijen, 2006) that allows analysis of a mixed set of marker types and segregation patterns. Population type was set to cross pollination (CP). We used regression mapping combined with the Kosambi function of transforming recombination frequencies into map units (centiMorgans). A log-odds (LOD) value of 5.0 was used for linkage group selection. MapChart version 2 (Voorrips, 2002) enabled markers to be graphically represented on their corresponding linkage group (LGs) based on the map distances determined via linkage analysis.

The chi-squared test implemented in Joinmap (Van Ooijen, 2006) was used to examine each marker for segregation distortion. Although distorted markers can be the cause of Type 1 Error (detecting false linkage), only markers with values of 8 or higher were pruned from the dataset, as modest amounts of segregation distortion are thought to contribute pertinent information (Hackett and Broadfoot, 2003; Wang et al., 2005).

Fig. 1. Variance statistics for six quantitative traits determined in an avocado mapping population growing at two locations in southern California [South Coast Research & Extension Center in Irvine, CA (SC) and Agricultural Operations of the University of California at Riverside (UCR)]. Dots represent samples, bars show means and SE. Numbers above brackets are probability values (no brackets are shown for $P > 0.05$).
To explore whether missing data may be affecting marker distribution and distances when working with small mapping populations, we developed a second map from which all markers with missing data had been removed. Additionally, we compared the CA-map to a high-density map integrated from four reciprocal mapping populations [514 progeny of ‘Tonnage’ × ‘Simmonds’, 249 of ‘Simmonds’ × ‘Tonnage’, 346 of ‘Hass’ × ‘Bacon’, and 230 of ‘Bacon’ × ‘Hass’; henceforth “FL-map” (Rendón-Anaya et al., 2019)] that included the same set of 5050 next-generation SNPs (Kuhn et al., 2019). The comparison was made using the VLOOKUP function in Excel (version 16.16.1; Microsoft, Redmond, WA) to check for marker distribution across and within linkage groups for markers common to both maps.

QTL analysis. QTL analysis was performed using both interval mapping [IM (Lander and Botstein, 1989)] and non-parametric mapping [Kruskal–Wallis (KW) test; Kruskal and Wallis (1952)] implemented in MapQTL version 5 (Van Ooijen, 2004). Under IM, QTL significance was assigned to a marker locus in relation to the LOD likelihood scores determined using 1000 permutations of the data at a significance level of $P = 0.05$. In the maximum likelihood mixture model of IM, where LOD scores are calculated using an iterative algorithm, an iteration number of 20 was used as a cut-off to declare a significant QTL, with values above 20 representing a poor fit of the data to the model (Van Ooijen, 2004). Markers exceeding the cutoff of 20 for iteration number were disregarded. The KW test evaluates each marker independently regardless of its location on the linkage map. It is recommended for data that are not normally distributed, such as qualitative data, counts, data with outliers, and truncated data probabilities (Kruglyak and Lander, 1995), and it assigns significance in relation to the test statistic K^*, with a value of $P \geq 0.005$ (denoted as **** in MapQTL) considered sufficiently stringent to declare a marker as being significantly associated with a QTL.

To verify significant QTLs, we performed an approximation of the multiple-QTL model (MQM) by manually selecting markers located close to a QTL as cofactors. The MQM model is more accurate and efficient at detecting QTLs than IM because the latter ignores the effects of other QTLs, but MQM suffers from being computationally intensive. A work-around was developed by Jansen (1993) and is implemented in MapQTL in the “rMQM” module. However, owing to the small population size and heterogeneously heterozygous population type (“CP” in MapQTL) of this dataset, we were not able to take advantage of the Automatic Cofactor Selection analysis available in MapQTL to perform backward elimination because it uses many degrees of freedom (df) and is computationally too demanding. Instead, we manually chose cofactors guided by the output from IM, sequentially selecting markers closest to a significant QTL and running rMQM. QTLs were retained if successive exclusion of cofactors did not alter the LOD values associated with the QTL.

Where multiple datasets were available, MapQTL analyses were performed for each location (coastal or inland) separately in the case of the growth-related traits (trunk diameter, plant height, and canopy diameter), as previous studies had shown significant location effects (Chen et al., 2007). For fruit nutrient content, analyses were also run on separate datasets (2 years and two locations) because Calderón-Vázquez et al. (2013) had demonstrated significant effects of harvest year on the contents of two of the three nutrients and a significant location effect on carotenoid contents, as well as interaction effects for genotype × environment (β-sitosterol and carotenoids) and genotype × year (β-sitosterol). Flowering was analyzed for a single year at the coastal location.

In all cases, we examined the output from both IM and the non-parametric KW test to declare significant QTLs, emphasizing those markers that were endorsed by both algorithms. Consideration of both the IM and KW output was deemed prudent (Kruglyak and Lander, 1995), given that the small population size ($n = 50$) may have affected the accuracy or power of the algorithms.

Results.

Phenotypic traits. Plots showing the distribution of tree measurements at both locations and of the fruit nutrient data at all four location/year combinations are presented in Fig. 1. Trees were consistently somewhat shorter at Riverside than at Irvine, averaging 1.97 ± 0.466 and 3.19 ± 0.639 m, respectively. Trees at Riverside also developed smaller canopies (2.1 ± 0.368 and 3.55 ± 0.691 m, respectively) and trunk diameters (75.13 ± 13.1 and 95.53 ± 18.0 mm, respectively).

Values of the three fruit nutrients responded differently depending on environment and year; α-tocopherol values were not significantly different for either year or location. Beta-sitosterol values were significantly different between years at the Riverside location, with higher values occurring in 2010. Differences between years at the Irvine location were not significant. Carotenoid contents were significantly different for all location/year comparisons, with values significantly higher at Riverside than at Irvine and significantly higher in 2010 than in 2009.

One genotype consistently produced fruit with the highest α-tocopherol concentrations at Irvine in both years and at Riverside in 2010 but failed to produce any fruit at Riverside in 2009, leading to a missing data point. The same genotype was also responsible for the highest β-sitosterol values at Irvine and Riverside in 2010 and the second-highest value in Irvine in 2009. In both years, almost half the progeny in Irvine exceeded α-tocopherol contents measured in the parental cultivars [19.5 and 19.0 μg·g⁻¹ FW] in ‘Gwen’ and ‘Fuerte’, respectively]. Two genotypes exceeded the value of their maternal parent more than 2-fold. Progeny values varied more than 6-fold (2009) and 8-fold (2010) at Irvine and more than 5-fold (2009) and 6-fold (2010) at UCR.

For β-sitosterol, values of the male parent (672 μg·g⁻¹ FW) consistently exceeded values in the progeny; but seven and five progeny genotypes, respectively, exceeded the value in ‘Gwen’ (469 μg·g⁻¹ FW) in 2009 and 2010. Progeny values varied more than 5-fold (2009) and 4-fold (2010) at Irvine and more than 7-fold (2009) and 4-fold (2010) at UCR.

Carotenoid contents were higher in ‘Fuerte’ (9.8 μg·g⁻¹ FW) than in ‘Gwen’ (8.37 μg·g⁻¹ FW). In 2009 and 2010, eight and 27 progeny genotypes, respectively, exceeded ‘Fuerte’ values. Values in the progeny varied 4-fold (2009) and 3-fold (2010) in Irvine and 3-fold (2009) and almost 4-fold (2010) at UCR.

Flowering type was determined at Irvine for 47 genotypes for which two replicate trees were available, 31 genotypes showing B-type flowering (as in ‘Fuerte’), and 16 showing A-type flowering (as in ‘Gwen’). All replicate pairs showed the same flowering type.
Linkage Mapping. We pre-screened 5050 FL-SNPs developed by Kuhn et al. (2019) to eliminate markers that were invariant or uninformative in the parental genotypes ‘Gwen’ and ‘Fuerte’. The remaining FL-SNP markers (2608) were then combined with 146 informative SNP and SSR markers; 83 SNPs developed to eight candidate genes of nutritional pathways and 63 SSR markers. In total, 2754 markers were imported into a JoinMap version 4.0 (Van Ooijen, 2006) data matrix for linkage mapping, of which 1346 markers (49%) placed on 12 linkage groups at a LOD value of 5.0, constituting the CA-map (Supplemental Fig. 1).

A total of 1399 markers were eliminated because of identical segregation or because of strong segregation distortion (38 markers with $\chi^2 = 8.00-31.04$, $P = 0.01-0.0000001$, df = 1–3). The placed markers consisted of 1235 FL-SNPs (91.8%), 58 CG-SNPs (4.3%), and 53 SSR markers [AVMIX3, 13 FL-SSRs, and 39 CA-SSRs (3.9%)]. Of the 1346 markers on the map, 616 (45.8%) were heterozygous in both parents, of which six segregated with four alleles (SSRs), 20 with three alleles (SSRs), and 590 with two alleles (SNPs and SSRs). Markers segregating in only one of the parents (730; 54.2%) numbered 309 in ‘Gwen’ and 421 in ‘Fuerte’.

Marker number per linkage group averaged 112, ranging from 56 loci (LG12) to 207 loci (LG2). Combined linkage group length was 1044.7 cM, ranging from 61.483 cM on LG2 to 121.125 cM on LG3, and averaging 87.06 ± 19.77 cM/linkage group. The mean number of loci/cM was 1.32. Gaps larger than 5 cM occurred on four linkage groups. The densest linkage group was LG2 (3.37 loci/cM). Sparse coverage characterized distal portions of LG7 (Supplemental Fig. 2). Supplemental Table 3 shows marker order on the 12 avocado linkage groups obtained in this study.

An exploratory map made up exclusively of markers containing no missing data closely resembled the CA-map. Also using a LOD value of 5.0 to assign markers to linkage groups, this map contained 1238 markers on 12 linkage groups with a combined length of 1036.3 cM. Linkage groups averaged 103 loci and 86.35 ± 27.44 cM. Of the 1238 placed markers, one SSR marker segregated with four alleles, four SSRs segregated with three alleles, 555 were of JoinMap segregation type hh×hh, 289 of type lm×ll, and 389 of type nn×np.

Comparison of the CA-map with the highly saturated FL-map (Rendón-Anaya et al., 2019) showed excellent agreement between the two maps, as markers common to both maps were assigned to the same linkage group and marker order was comparable (Supplemental Fig. 2). Although a few linkage groups showed inverted segments (Supplemental Fig. 2), we did not adopt the FL-map marker order. FL-map linkage groups contained ≥2.0 to 3.3 times as many marker loci as their CA-map counterparts. Overall, the number of loci on the FL-map was about 2.6 times greater than that on the CA-map, and total linkage group length (cM) of the FL-map was 1.73 times greater. The average marker density for the FL- and CA-maps was 1.97 and 1.32 markers/cM, respectively.

Of the 58 CG-SNPs assigned to a linkage group, the greatest number (13 SNPs; 22.4%) mapped to LG2. SNPs of the same candidate gene always mapped to the same linkage group. In most cases SNPs from the same candidate gene mapped in close proximity. Exceptions were the SNPs of CUT1 (12.569 cM apart), MEP (8.119 cM apart), PSY (6.731 cM apart), and VTE1_687 (6.015 cM from the nearest SNP, VTE1_573).

QTL Analysis. The number of markers showing a significant association (based on KW and IM) with each of the seven phenotypic traits is summarized in Table 2. IM failed to identify any markers associated significantly with canopy diameter, tree height, or trunk diameter at either location. KW identified five significant markers for trunk diameter and three for canopy diameter at Irvine and a single significant marker for canopy diameter and tree height at Riverside.

The content of total carotenoids in the fruit did not show significant association with any marker based on IM (Table 2). Based on KW, significant QTLs were located on LG1, 3, and 6. QTL analysis of fruit β-sitosterol content at Riverside in 2010 revealed one marker (SHRSPaS006673) at 61.087 cM on LG1 to be significantly associated using IM at a LOD of 3.72 (Fig. 2), explaining 35.6% of the variance (Table 2). This marker also achieved significance in the KW analysis in the same location and year, and at Irvine in 2009 (Table 2). Marker SHRSPaS001205 (LG1), less than 2 cM away from SHRSPaS006673, was also significantly associated with β-sitosterol content at Irvine in 2009 and Riverside in 2010, based on KW analysis. Figure 2 compares the IM LOD profiles of markers on LG1 for β-sitosterol in all four datasets (Irvine and Riverside in 2009 and 2010).

In IM analyses, markers on LG3 were significantly associated with α-tocopherol content at Irvine in both years—12 in 2009 and 15 in 2010—achieving LOD values of up to 4.52 and 4.61, respectively, and explaining up to 37.7% and 38.3% of the variance, respectively (Table 2). No marker attained significance based on IM at Riverside in 2009. Two markers, SHRSpa01282 and SHRSpa003314, were declared significant at both locations and in both years, based on IM and/or KW. Significant QTLs resided on the proximal end of LG3 at 7.968 to 18.601 cM (IM) and at 0 to 27.638 cM (KW; Fig. 2). Three HPT1 CG-SNPs were declared significant based on KW only (Supplemental Table 3). Flowering type showed significant association with many markers under IM, with LOD values far exceeding the permutation-based thresholds for significance. IM showed a significant association with 45 markers, all of which resided on LG10 (Table 2; Supplemental Table 3; Fig. 2). Twenty-four markers on LG10 exceeded the genome-wide LOD threshold of 7.1 and explained 50.4% to 100% of the variance in flowering type. Six of these markers achieved LOD scores of 99.99 in IM and explained 100% of the variance—were disregarded because they did not track phenotypic values and represented an artifact of the IM maximum likelihood algorithm applied to non-normal (discrete) data (Van Ooijen, 2009). A further 21 markers on LG10 exceeded the LG-specific LOD threshold, including the CG-SNP DXPS1_1593. All markers on LG10 declared significant at the genome-wide cutoff were located between 26.808 to 53.308 cM (Supplemental Table 3; Fig. 2). Eight of the 24 markers exceeding the genome-wide threshold under IM received no support in the KW test, including the six markers with a 99.99 LOD score. KW analysis identified 22 markers associated significantly with flowering type (Table 2), all but one also residing on LG10: a single QTL-associated marker, SHRSPaS003811, located to LG6 (Supplemental Table 3). The two highest-scoring markers in the KW test had K^* values of 38.251 (SHRSPaS001390 and SHRSPaS004380) and were declared significant at $P = 0.0001$. Their validity as QTLs was endorsed by IM, which assigned LOD values of 18.66 and 18.34, respectively. Among the markers associated significantly
Table 2. Evaluation of quantitative trait loci (QTLs) identified by interval mapping (IM) or Kruskal–Wallis analysis (KW) implemented in MapQTL version 5 (Van Ooijen, 2004) for avocado mapping populations growing at two locations in southern California (Irvine and Riverside). Comparisons are made for all markers declared to be significant under the interval mapping (IM) or Kruskal–Wallis (KW) algorithms. Column headings details are as follows. IM = the number of significant loci declared by IM; in parentheses is the percentage of the variance explained by the locus with the highest log-of-odds (LOD) score. KW = the number of significant loci with a significance of **** or higher, based on KW. LGs-IM = the number of different linkage groups (LGs) from which significant markers were drawn, based on IM. LGs-KW = the number of different LGs from which significant markers were drawn, based on KW. QTL ≥ two environments = the number of QTLs present in at least two environments (two locations and 2 years for nutrients; two locations for tree measurements).

Nutrient	Location, yr	IM [no. (%)]	KW (no.)	LGs-IM (no.)	LGs-KW (no.)	QTL ≥ two environments
Alpha-tocopherol	Irvine, 2009	12 (37.7)	21	1	3	21 (5, 2)*
	Irvine, 2010	15 (38.3)	24	1	4	
	Riverside, 2009	0 (39.5)	11	n/a	3	
	Riverside, 2010	0 (37.4)	14	n/a	1	
Beta-sitosterol	Irvine, 2009	0 (34.8)	17	n/a	1	11
	Irvine, 2010	0 (33.9)	6	n/a	1	
	Riverside, 2009	0 (35.0)	5	n/a	2	
	Riverside, 2010	1 (35.6)	12	1	3	
Carotenoids	Irvine, 2009	0 (28.5)	1	n/a	1	1
	Irvine, 2010	0 (31.4)	3	n/a	2	
	Riverside, 2009	0 (35.8)	8	n/a	1	
	Riverside, 2010	0 (35.4)	3	n/a	2	
Trunk diameter	Irvine, 2005	0 (26.6)	5	n/a	3	0
	Riverside, 2005	0 (25.3)	5	n/a	3	
Canopy diameter	Irvine, 2005	0 (26.3)	3	n/a	2	0
	Riverside, 2005	0 (34.1)	1	n/a	1	
Height	Irvine, 2005	0 (33.9)	0	n/a	n/a	0
	Riverside, 2005	0 (31.8)	1	0	1	
Flowering type	Irvine, 2013	45 (24) (100.0)	22	1	2	n/a

*In parentheses: number of QTLs shared by three and four environments, respectively.

24 QTLs for flowering type were declared significant using the genome-wide permutation threshold [18 after elimination of 6 QTLs with artifactually high LOD values (Van Ooijen, 2009)] and 45 using the linkage-group specific threshold (39 after adjusting for artificial LOD values).

Discussion

Despite the limited statistical power associated with small sample sizes, this study provided useful mapping information on two important phenotypic traits: flowering type and vitamin E (α-tocopherol) content of the fruit.

Flowering type is not a quantitative trait, and Lavi et al. (1993) suggested control by several loci with several alleles at each locus. A closer look at our data for flowering type uncovered a one-gene Mendelian model that likely governs this important trait in avocado. Using the 13 top-scoring loci on LG10 endorsed by both IM and KW, pairwise analysis showed that they were highly correlated with one another, suggesting a single causal locus with flanking loci linked through linkage disequilibrium (LD). Moreover, 29 (100%) individuals with genotype “ll” had B-type flowering, whereas—among individuals with genotype “lM”—16 (89%) individuals had A-type flowering and 2 (11%) individuals had B-type flowering. These results indicate that “M” is the dominant allele while “l” is the recessive allele. The two individuals with genotype “lM” showing the unexpected phenotype likely reflect the effect caused by a gene × environment interaction, which may reduce the penetrance of the dominant trait. This assumption is well supported by Sedgley and Annells’ findings (1981), which indicated that avocado flowering was affected by cold temperature, allowing the male and female phases of the flower to overlap. Elucidation of the genes determining flowering type would provide greater flexibility to growers in their choice of pollinator cultivars.

Alpha-tocopherol content exhibited moderate to high heritability in quantitative genetic analyses (Calderón-Vázquez et al., 2013; Chen et al., 2007) and might be expected to yield some success in breeding programs. The current mapping studies suggest that the variation underlying flowering type and α-tocopherol may be the result of mutations at a single genetic locus. A third trait (β-sitosterol content of the fruit), also with a substantial heritability (Calderón-Vázquez et al., 2013), provided promising, although not entirely consistent, evidence for a particular chromosomal location.

Not surprisingly, traits of low to moderate heritability do not give consistent results in the QTL analyses, as is the case for plant height, canopy diameter, and trunk diameter [broad-sense heritability estimates in the low- to medium range (0.266 to 0.366; Chen et al., 2007)]. Variation underlying these morphological traits is likely to be controlled by many loci throughout the genome and to be subject to substantial environmental variation. So, the failure to map variants associated with these traits is to be expected. Moreover, the high positive correlations between these three measurement traits (Chen et al., 2007) suggest that breeding for tree architecture may not be straightforward. The fact that QTL analysis for these three growth traits
revealed few significant QTLs under KW analysis (and none under IM) suggests that marker-assisted selection (MAS) for these growth-related traits is not worthwhile.

NUTRITIONAL TRAITS. Appreciable genetic determination of the fruit nutrient phenotypes was shown by Calderón-Vázquez et al. (2013), who determined broad-sense heritability for α-tocopherol, β-sitosterol, and carotenoids to be 0.76, 0.61, and 0.47, respectively. Considerably higher values than those of the tree measurements, these values are consistent with the fact that nutritional traits are the outcome of specific biochemical pathways. Additionally, correlations among the three nutritional traits were low, the highest arising between α-tocopherol and β-sitosterol at R = 32% (Calderón-Vázquez et al., 2013). Low correlation also may be due to the discrete biochemical pathways underlying the biosynthesis of these nutrients and will facilitate independent breeding. Significant genotype effects were found for all three nutritional traits (Calderón-Vázquez et al., 2013), but for the other variance components (year, location, and interaction effects), each nutrient responded differently. Combined with the current results, these findings argue that a focus on nutritional/biochemical traits can be effective, despite limited population sizes.

Among the nutrient data, few QTLs performed well across all four environments (two locations and 2 years). Significant QTLs for carotenoid and β-sitosterol contents were never shared by more than two environments (1 and 11 QTLs, respectively, were shared by 2 environments; Table 2). Of 21 QTLs for α-tocopherol that were common to at least two environments, five were present in three environments, and two were present in all four environments (Table 2). The discovery of QTL loci that tracked nutrient content across multiple environments is encouraging and presumably reflects genes with stable expression under different environmental conditions.

For β-sitosterol, the QTL achieving significance at Riverside in 2010 did not stand out in the other year/location combinations, calling into question whether this QTL will be amenable to MAS. It is worth noting, however, that this sole significant marker on LG1 was located adjacent (within 0.49 cM) to an EST-derived FL-SSR marker (SHRSPa102; Supplemental Table 3) that had a very low LOD value in most IM datasets, suggesting SHRSPa102 may not have been correctly placed on the CA-map (Van Ooijen, 2006). The position is visible as an abrupt deep incision on the LOD graph (Fig. 2). It is conceivable that the proximity of an incorrectly placed marker affected the LOD value within the interval surrounding the significant QTL.

POPULATION SIZE CONSIDERATIONS. As noted earlier in the section on QTL analysis, one aspect of this study—the small population size—clearly limited the power to generate a robust linkage map and to detect QTLs in avocado. Small population size exerts its primary effect by reducing the number of recombination events, leading to identical segregation of many markers, which results in their elimination as identicals in JoinMap (Van Ooijen, 2006) and a loss of marker information.

Fig. 2. Plots charting the log-of-odds (LOD) values of markers significantly associated with avocado fruit α-tocopherol contents on linkage group (LG) 3, β-sitosterol contents on LG1, and flowering type on LG10. For β-sitosterol and α-tocopherol, separate LOD plots are shown for each of 2 years and two locations studied [South Coast Research & Extension Center in Irvine, CA (SC) and Agricultural Operations of the University of California at Riverside (UCR)]. X-axes show map positions (cM).
A paucity of recombination events also results in relatively large chromosomal segments. This result, in turn, will tend to reduce the accuracy of QTL markers identified by the mapping algorithms, because the markers may be at some distance from the functional gene. Scarcie recombination events may also make mapping and QTL analysis more sensitive to the stochastic nature of allelic segregation, potentially leading to the underestimation of marker distances. In outbreeding full-sib families (CP population type in JoinMap; Van Ooijen, 2006), the mapping algorithm estimates the consensus map by averaging the positions of anchor markers segregating in both parents. However, because “hk” genotypes cannot be used (in heterozygotes sharing the same two alleles, it is impossible to tell from which parent respective alleles originated), the number of informative recombination events is thus further reduced from an already small segregation pool. Segregation type will also affect QTL estimation via the IM algorithm where flanking markers are used in the calculation of LOD values for markers with uninformative segregation. While any population size will contain a proportion of markers with uninformative segregation, small populations are likely to be more heavily impacted. Because the CA-map and QTL analyses were based on the same segregating population, errors in the calculation of QTL probabilities due to a mismatch in these two components can be ruled out (Van Ooijen, 2009).

Segregation distortion (SD), a phenomenon describing loci whose alleles do not segregate according to Mendelian expectations, affects recombination between marker loci (Wang et al., 2005) and often is accused of leading to the detection of false linkage. We chose to exclude strongly SD-affected markers before generating the linkage map, though they represented <3% of the total number of markers. This exclusion may have inadvertently removed potential QTLs, because distorted regions are as—or more—likely to contain QTLs as SD-free regions (Wang et al., 2005; Xu, 2008). In particular, SD markers are thought to be linked to loci for viability selection (Vogl and Xu, 2000), including those causing inbreeding depression, a phenomenon common to outbreeding species such as avocado. While we cannot be sure that QTLs may have been missed, the loss of power arising from ignoring distorted markers is negligible in dense maps (Xu, 2008).

Candidate gene analysis. It is disappointing that the SNPs we developed from candidate genes did not show more significant association with the nutrient phenotypes whose production the causative genes are assumed to control. One reason may be that the shortage of recombination events in our mapping population failed to detect signal. However, other factors may also be responsible. Tabor et al. (2002) argued that the candidate gene approach relies on a priori hypotheses about the role of candidate genes that may not be supported by a sufficient body of knowledge. Moreover, assumptions of gene function are generally based on studies in model organisms or major crops; yet the information may not be pertinent in avocado, an early-diverging angiosperm lineage. Further factors may be modulating effects exerted by genes outside the candidate gene pathways. Studies in Arabidopsis thaliana (Gilliland et al., 2006) and maize (Zea mays; Wang et al., 2018) identified QTLs controlling seed tocopherol content that were not part of known vitamin E pathways. In our study, CG-SNPs developed to the gene encoding the enzyme homogentisate phytlyl transferase (HPT1), the first committed gene in the tocopherol VTE2 biosynthetic pathway, were located in close proximity to markers significantly associated with α-tocopherol content and were identified as significant under KW at both locations in 2010 but at neither location in 2009. Insufficient map resolution or uninformative segregation in the flavanking markers may be responsible for the failure of IM to declare significance for the HPT1 CG-SNPs.

The only other CG-SNPs showing significant association with a phenotype (flowering type) was DXPAS1, a SNP developed to a candidate gene from the vitamin B complex, that controls synthesis of a thiamine-dependent enzyme involved in cell metabolism.

Vitamin E, which consists of α-tocopherol and several other tocopherol isomers, has been targeted by breeders pursuing crop biofortification in barley (Hordeum vulgare), maize, rapeseed (Brassica napus), rice (Oryza sativa), soybean (Glycine max), and tomato (Solanum lycopersicum) (reviewed in Fritsche et al., 2017). Peraza-Magallanes et al. (2017) found considerable variation for α-tocopherol content in avocado germplasm from Sinaloa, Mexico. Aside from the nutritional benefits arising from elevated vitamin E levels in crops, α-tocopherol has also been associated with enhanced tolerance of salinity and drought stress in rice and tobacco (Nicotiana tabacum) (Munne-Bosch, 2007; Ouyang et al., 2011).

Experimental populations. Avocado is a large tree that requires significant space, water, and labor resources. It takes 5 to 8 years to become productive (Lahav and Lavi, 2009), and its breeding system is very difficult to experimentally manipulate (Degani et al., 2003; Lammerts, 1942). Such cost and time considerations make it difficult and expensive to create and maintain large experimental populations and, in turn, favor working with small preexisting populations. In this regard, the UC populations used here have several strengths: 1) replication of progeny genotypes on a single clonal rootstock provides an estimate of within-genotype error variances; 2) replication in two locations provides a measure of location effects; and 3) multiple-year measurements provide a measure of temporal variance. These design features help identify important sources of environmental variance and point to important management considerations.

The current data were generated for a ‘Gwen’ × ‘Fuerte’ progeny array, and findings may not be fully transferrable to other cultivars and germplasm. However, ‘Gwen’—a grandchild of ‘Hass’—is central to the existing UC Riverside Breeding Program, making the QTL data relevant for MAS in the future. A crucial question to be confronted is whether QTL studies on a difficult tree crop justify the cost of land, time, and labor resources. More advanced technologies such as transformation and clustered, regularly interspaced short palindromic repeats (CRISPR)-CAS9 are appealing; but basic information about potential target genes is deficient, so for the time being MAS seems like the most practical alternative to relatively inefficient phenotypic selection. We believe that our results will encourage expanded QTL studies to guide the breeding of future cultivars in California and elsewhere, and that our findings will bring into focus the role of fruit nutritional traits with the long-term goal of breeding high-value/nutritionally enhanced cultivars achieving a market premium.

Literature Cited

Alcaraz, M.L. and J.I. Hormaza. 2009. Selection of potential pollinizers for ‘Hass’ avocado based on flowering time and male–female overlapping. Scientia Hort. 121:267–271.
Ashworth, V.E.T.M., M.C. Kobayashi, M. de la Cruz, and M.T. Clegg. 2004. Microsatellite markers in avocado (Persea americana Mill.). Developing dinucleotide and trinucleotide markers. Scientia Hort. 101:255–267.

Bergh, B.O. and E. Lahav. 1996. Avocados, p. 113–166. In: J. Janick and J.N. Moore (eds.). Fruit breeding, vol. I: Tree and tropical fruits. Wiley, New York, NY.

Borraine, J.W., R.J. Schnell, H.A. Violi, and R.C. Ploetz. 2007. Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol. Ecol. Notes 7:439–444.

Calderón-Vázquez, C., M.L. Durbin, V.E.T.M. Ashworth, L. Tommasini, K.K.T. Meyer, and M.T. Clegg. 2013. Quantitative genetic analysis of three important nutritive traits in the fruit of avocado. J. Amer. Soc. Hort. Sci. 138:283–289.

Chen, H., V.E.T.M. Ashworth, S. Xu, and M.T. Clegg. 2007. Quantitative genetic analysis of growth rate in avocado. J. Amer. Soc. Hort. Sci. 132:691–696.

California Irrigation Management Information System. 2003. CIMIS: California Irrigation Management Information System. 17 June 2019. <https://cimis.water.ca.gov/Resources.aspx>.

Destefani, S.M. 2007. Phytonutrients: A more natural approach toward cancer prevention. Semin. Cancer Biol. 17:345–346.

Degani, C., E. Lahav, R. El-Batsri, and S. Gazit. 2003. Caging single avocado trees with a beehive does not guarantee exclusive formation of selfed progeny. HortScience 38:1433–1434.

D’Ambrosio, S.M. 2007. Phytotrienols: A more natural approach toward cancer prevention. Semin. Cancer Biol. 17:345–346.

Ewing, B. and P. Green. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8:186–194.

Fiori, A.S. 2007. Persea americana Miller (avocado): expressed sequence tags. Mol. Ecol. Notes 7:439–444.

Jeong, W.S. and P.A. Lachance. 2001. Phytosterols and fatty acids in Ficus carica, var. Mission) fruit and tree components. J. Food Science 66:278–281.

Kruglyak, L. and E.S. Lander. 1995. Nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428.

Kruskal, W.H. and W.A. Wallis. 1952. Use of ranks in one-criterion variance analysis. J. Amer. Stat. Assn. 47:583–621.

Lamer, E.S. and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199.

Latorre, H., K.N. Risch, and R.M. Myers. 2002. Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nat. Rev. Genet. 3:391–397, doi: 10.1038/nrg796.

Lopez-Ledesma, R., A.C. Frati-Munari, B.C. Hernandez-Dominguez, S. Cervantes-Montalvo, M.H. Hernandez-Luna, C. Juarez, and S. Moran-Lira. 1996. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 27:519–523.

Luterotti, S., D. Bicanic, and R. Pozgaj. 2006. New simple spectro-photometric assay of total carotenes in margarines. Anal. Chin. Acta 573–574:466–473.

Macleod, E., P. Lääniite, J. Joudu, and U. Määg. 2007. Some important aspects of sterol analysis of vegetable oils. Proc. Estonian Acad. Sci. Chem. 56:59–66.

Munné-Bosch, S., E.W. Weiler, L. Alegre, M. Müller, P. Dütch, and J. Falk. 2007. α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 225:681–691.

National Center for Biotechnology Information. 2005. NCBI: National Center for Biotechnology Information. 17 June 2019. <http://www.ncbi.nlm.nih.gov>.

Nickerson, D.A., V.O. Tobe, and S.L. Taylor. 1997. PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25:2745–2751.

Ouyang, S., S. He, P. Liu, W. Zhang, J. Zhang, and S. Chen. 2011. The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci. China Life Sci. 54:181–188.

Peraza-Magallanes, A., M.A. Perea-Camacho, E. Sandoval-Castro, S. Medina-Godoy, M. Valdez-Morales, M.T. Clegg, and C.L. Calderón-Vázquez. 2017. Exploring genetic variation, oil and alpha-tocopherol content in avocado (Persea americana) from northwestern Mexico. Genet. Resources Crop Evol. 64:443–449, doi: 10.1007/s10722-016-0478-9.

R Core Team. 2019. R: A language and environment for statistical computing. 5 Apr. 2019. <http://www.R-project.org>.

Rendón-Anaya, M., E. Ibarra-Laclette, A. Méndez Bravo, T. Lan, C. Zheng, L. Carretero-Paulet, C.A. Perez-Torres, A. Chacón-López, G. Hernandez-Guzmán, T.H. Chang, K.M. Farr, W.B. Barbazuk, S. Chamala, M. Mutwil, D. Shihvare, D. Alvarez-Ponce, N. Mutter, A. Hayward, S. Fletcher, J. Rozas, A. Sánchez Gracia, D. Kuhn, A.F. Barrientos-Priego, J. Salojárvi, P. Librado, D. Sankoff, A. Herrera-Estrella, V.A. Albert, and L. Herrera-Estrella. 2019. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1822192116.

Ryan, E.K., K. Galvin, T.P. O’Connor, A.R. Maguire, and N.M. O’Brien. 2007. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 62:85–91.

Sedgley, M. 1985. Some effects of daylength and flower manipulation on the floral cycle of two cultivars of avocado (Persea americana Mill., Lauraceae), a species showing protogynous dichogamy. J. Expt. Bot. 36:823–832.

Sedgley, M. and C.M. Amnells. 1981. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass’. Scientia Hort. 14:27–33.

Sharon, D., P.B. Cregan, S. Mhameed, M. Kusharska, J. Hillel, E. Lahav, and U. Lavi. 1997. An integrated genetic linkage map of avocado. Theor. Appl. Genet. 95:911–921.

Sharon, D., P.B. Cregan, S. Mhameed, M. Kusharska, J. Hillel, E. Lahav, and U. Lavi. 1997. An integrated genetic linkage map of avocado. Theor. Appl. Genet. 95:911–921.

U.S. Climate Data. 2018. U.S. Climate Data. 17 June 2019. <https://www.usclimatedata.comclimate/>.

U.S. Department of Agriculture. 2018. Noncitrus fruits and nuts 2017 summary, June 2018. 17 June 2019. <http://usda.mannlib.cornell.edu/usda/current/NoncFruitNu/NoncFruitNu-06-26-2018.pdf>.

Van Nocker, S. and S.E. Gardiner. 2014. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hort. Res. 1:14022, doi: 10.1038/hortres.2014.22.
Van Ooijen, J.W. 2004. MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma, Wageningen, The Netherlands.

Van Ooijen, J.W. 2006. JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma, Wageningen, The Netherlands.

Van Ooijen, J.W. 2009. MapQTL® 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma, Wageningen, The Netherlands.

Vogl, C. and S. Xu. 2000. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics 155:1439–1447.

Voorrips, R.E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93:77–78.

Wang, C., C. Zhu, H. Zhai, and J. Wan. 2005. Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet. Res. 86:97–106.

Wang, H., S. Xu, Y. Fan, N. Liu, W. Zhan, H. Liu, Y. Xiao, K. Li, Q. Pan, W. Li, M. Deng, J. Liu, M. Jin, X. Yang, J. Li, Q. Li, and J. Yan. 2018. Beyond pathways: Genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol. J. 16:1464–1475.

Xu, S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208.
Supplemental Fig. 1. Dot plots showing map positions [cM] of all single nucleotide polymorphism (SNP) markers shared between the avocado ‘Gwen’ × ‘Fuerte’ California (CA)-map (x axis) (this study) and the integrated consensus linkage map of a ‘Simmonds’ × ‘Tonnage’ and ‘Hass’ × ‘Bacon’ reciprocal cross [Florida (FL)-map] (y axis) (Rendón-Anaya et al., 2019). All shared markers located to the same avocado linkage group, but marker arrangements differed in some cases.
Supplemental Fig. 2. Avocado linkage map generated using JoinMap version 4 (Van Ooijen, 2006) and displayed with MapChart (Voorrips, 2002).
Supplemental Table 1. Parameters used for single nucleotide polymorphism (SNP) discovery from candidate genes in avocado. Details are presented in the order (1) abbreviation used on the linkage map, (2) full name of enzyme encoded by the candidate gene, (3) functionally characterized gene accession found in the public databases of the National Center for Biotechnology Information (NCBI) (with the organismal source of the sequence, where given) showing the highest similarity, (4) similarity score, (5) probability of being the same gene (E-value), (6) number of SNPs detected in the gene, (7) amplifying primer (forward), (8) amplifying primer (reverse), (9) sequencing primer, annealing temperatures listed in same order as the three primers, if different.

Carotenoids

B1: Beta-carotene hydroxylase 1; At4G25700.1, 78.8%, 9e-18, 1, GAA CGA TGT TTT TGC GAT CA (B1-F147), AAC AGC CGG TAT GGC ACT C (B1-R443), CGT ATG GCA CTC CAT TGA A (B1-nest509F), 64, 65, 62

LUT5: Carotene beta-ring hydroxylase, cytochrome P450-type monoxygenase; AT1G31800.1, 71.6%, 1e-15, 1, ACG GTG GTA GTC CTC GTG AT (LUT-F58), TTT TTC TCT GTG TGG ATT GGA (LUT-R473), ACG GTG GTA GTC CTC GTG AT (LUT-F58), 64, 63, 64 PSY: Phytoene synthase (PSY), geranylgeranyl-diphosphate geranylgeranyltransferase, At5G17230.1, 158%, 1, GCC GTG TCA GGA TTA GGA AT (PSY-F22), TTT CGA CCA TGA ATC GCA (PSY-R-GAA), GGG GAT TTT ATT AGA AAA TGA (PSY-nest658R), 64, 60, 56

ZDS: Zeta-carotene desaturase (ZDS), [Citrus sinensis mRNA for zeta-carotene desaturase]; emb|AJ319762.1, 89.7%, 5e-14, 1, TCC TCC AGG ACC TGA GCA CT (ZDS-F372), GGT TGT TGT AGC AGC CAA A (ZDS-R-GGT), CAC ATG CAG CTC CAT TAC A (ZDS-R-CAC), 64, 61, 63

Darkening-related

Symbols: DXPS1, Vitamin B1 (thiamine), 1-deoxy-D-xylulose-5-phosphate synthase (DXPS1); gi|311337316|gb|HQ380894.1| [Nelumbo nucifera polyphenol oxidase mRNA], 470, 1.00E-128, 1, ACC AGC TGC TTG TTT TCA TC TC 5093, CCC TCC CAT GGT TCT TAC CT 5094, CCC TCC CAT GGT TCT TAC CT (5094), 54

Fatty acid pathway

CUT1: Acyltransferase, Cuticular 1 (CUT 1); AT1G68530.1, 289, 2e-81, 2, CAT GGT GAT AGC TGG TGA CG, (CUT1-F27), TCT GGG ACA GAT AGG GGA TG (CUT1-R554), CATGGTAGACTGGTACG (CUT1-F27), 64

Flavonoid, anthocyanin & phenylpropanoid pathways

Caf3: Caffeoyl-CoA O-methyltransferase (caff3); Os09g30360[2009.02714] [unspliced-genomic caffeoyl-CoA O-methyltransferase 1, putative, expressed], 91.5%, 8e-22, 5, TGC GCA GAA GGA CAA CTA CA (caff3-F50), CCA TGA TGC CTC CAT CTC TAG CA (caff3-R483), CCA AAT ATC AGA AAC AG (caff3-nest658R), 64, 65, 60

OMT1: Flavonol 3’-O-methyltransferase 1 (OMT1); gb|GU324973.1| [Eucalyptus camaldulensis caffeic O-methyltransferase1 (COMT1) gene], 66.2%, 8e-07, 7, GCA GAT TTC CTA AGG GAA TTT CGC (OMT1-F103), GGT CGA CCT ACA ATG TGC G (OMT1-R568), GAT CAC TTT CTT ATG CCG (OMT1-nest70F), 61, 62, 61

PAL2: Phenylalanine ammonia-lyase 2 (PAL2); At3G3260.1, 702, 0.0, 2, CAG ATG GAA TGG CAC ACT TCC AA (PAL2-F17), AGC AAA TGG GAA TAG GAG CA (PAL2-R1065), CAT GGT GAT AGC TGG TGA CG (CUT1-R554), CATGGTAGACTGGTACG (CUT1-F27), 64

Isoprenoid & sitosterol

CYP: cycloeucalenol cycloisomerase; gi|225456279|ref|XM_002283523.1| [predicted: Vitis vinifera cycloeucalenol cycloisomerase-like (LOC100262783), mRNA], 659, 0, 5, GCT TCA TAC ACC TTT CCG TCA 6163, CAT GAT GCC TCA GCA ATC C 6162, TAG GCA TTA CGG AGT TGC AG 2130, 53

FPS: farnesyl diphosphate synthase; gi|212960745|gb|FJ415102.1| Chimonanthus praecox farnesyl pyrophosphate synthase (FPS) mRNA, complete cds, 690, 0, 1, TGG GTT GGT GTG GAT GAA ACC TC 634, TTG CCC AAG AAA GAC TTT AGC 737, TTG GAT GGT GTA GAC AGC TC 634, 53

MCR: 24-dehydrocholesterol reductase; gi|359473656|ref|XM_002271810.2| [predicted: Vitis vinifera delta(24)-sterol reductase-like (LOC100258158), mRNA], 592, 1.00E-165, 3, GGA AAG GTA TGC TCC CAA GG 20, TGT GAA GTT CAT ATA ACG AAT AGT CA 7963, TTG GCC TCA ATT TAG CTG 3878, 53

SQS: squalene synthase (SQS1); gi|359475094|ref|XM_002266114.2| [predicted: Vitis vinifera squalene synthase-like (LOC100265798), mRNA], 682, 0, 4, TGA AAG GTA TGG CAC ACT TCC AA (PAL2-F17), AGC AAA TGG GAA TAG GAG CA (PAL2-R1065), CAT GGT GAT AGC TGG TGA CG (CUT1-R554), CATGGTAGACTGGTACG (CUT1-F27), 64

Vitamin B complex

atrans, Vitamin B9 (folic acid), Aminotransferase class IV family (atrans), Aminotransferase class IV family (atrans); AT5G57850.1 | Symbols: | aminotransferase class IV family protein, 66.2%, 5e-14, 2, 6, CAT GAT CG CAG CCA CAA TGA TA (atrans-F-12), ACC ATG GGA GGC TTC ATT GG (atrans-R-457), TGA CAC TGC ATC TAT (atrans-R-457-ic-TGA), 64, 66, 51

BCAT3, Vitamin B5 (pantothenic acid), Branched-chain aminotransferase 3 (BCAT3), Branched-chain aminotransferase 3 (BCAT3); gb|EU194916.1| Nicotiana benthamiana branched-chain aminotransferase (BCAT) mRNA, 181%, 1e-41, 1, CAA GGT AAA ACA TCC TAG ATC (BCAT3-F6), ACC CTT TAC TGG TGT GGC CG (BCAT3-R-ACC), GAA CCA GAA AAG CAG CAG (BCAT3-nest513F), 57, 63, 61

DXPS1, Vitamin B1 (thiamine), 1-deoxy-D-xylulose-5-phosphate synthase (DXPS1), 1-deoxy-D-xylulose-5-phosphate synthase (DXPS1); At3G21500.1 | Symbols: DXPS1 | DXPS1; 1-deoxy-D-xylulose-5-phosphate synthase, 239%, 6e-66, 5, CAG GGT AAA ACA TCC TAG ATC (DXPS1-F34), AAG CAG CAC CCA AGC AGC TT (DXPS1-R-AAAG), AAA TGC ATC ATA TTT TAG GAA (DXPS1-F34-R389), 57, 69, 55

PDX1, Vitamin B6, Pyridoxin biosynthesis 1 (PDX1); gi|356543999|ref|XM_003542937.1| PREDICTED: Glycine max pyridoxal biosynthesis protein PDX1-like (LOC100816306), mRNA, 589, 1.00E-164, 4, CAC ACC CAA GCT GCA TCA 787, AAA TCA AGG AGG CCG TCA C 789, CAC ACC CAA GCT GCA TCA 787, 59

Continued next page
Supplemental Table 1. Continued.

PDX2, Vitamin B6, Pyridoxin biosynthesis 2 (PDX2); gi[359478338]ref[XM_002285059.2] PREDICTED: Vitis vinifera pyridoxal biosynthesis protein PDX2-like (LOC100267348), mRNA, 100, 2.00E-17, 1, AAA CAG GGA AAC CTG TGT GG 779, GCC TGG TGG AAC AGC ATA AT 784, AAA CAG GGA AAC CTG TGT GG 779, 54

Vitamin C
MEP: GDP-mannose-3',5'-epimerase, gi[359487867]ref[XM_002279341.2] PREDICTED: Vitis vinifera GDP-mannose-3',5'-epimerase (LOC100233034), mRNA, 437, 3.00E-119, 2, TGC TGG CAT ATA CCC AGA GTT 8889, AAG GAT TGT GGC AGA CC 3058, AAG GAT TGT GGC AGA CC 3058, 54
PGI: phosphoglucose isomerase, gi[225458304]ref[XM_002282738.1] PREDICTED: Vitis vinifera glucose-6-phosphate isomerase (LOC100252335), mRNA, 515, 1.00E-142, 4, TGA TAC TGG GAA AAT ACA TGA AAA CA 3881, TAA AGC CCT CAA CTG GTT CC 870, TGA TAC TGG GAA AAT ACA TGA AAA CA 3881, 54

VTC1: GDP-mannose pyrophosphorylase (VITAMIN C DEFECTIVE 1), gi[224038261]gb[FJ643600.1] Actinidia latifolia GDP-D-mannose pyrophosphorylase (GMP) mRNA, complete cds, 614, 4.00E-172, 3, GAA ACC GAG CCT CTA GGA AC 738, AGA AGC CCG GTA AGA CCA T 740, AGA AGC CCG GTA AGA CCA T 740, 54

VTC2: GDP-L galactose phosphorylase (VITAMIN C DEFECTIVE 2), gi[319739580]gb[HQ224948.1] Citrus unshiu putative GDP-L-galactose-pyrophosphatase mRNA, complete cds, 246, 2.00E-61, 3, AAA ATC AAG CAT TCG CAG AG 340, CAG GCT CTT GGA GAG GTG AG 5859, AAA ATC AAG CAT TCG CAG AG 340, 54

Vitamin E
HPT1: Homogentisate phytyltransferase (VTE2), gi[219842165]dbj[AB376091.1] Hevea brasiliensis hpt mRNA for homogentisate phytlytransferase, complete cds, 347, 7.00E-92, 3, AGG CCA TGG ATA TTC GCA AC 9827, GAA ACC AAT CCC ATC ACC AC 9825, AGG CCA TGG ATA TTC GCA AC 9827, 54

PDS1: 4-hydroxyphenylpyruvate dioxygenase (PHYTOENE DESATURASE 1), gi[359485346]ref[XM_002283239.2] PREDICTED: Vitis vinifera 4-hydroxyphenylpyruvate dioxygenase-like (LOC100248785), mRNA, 558, 3.00E-155, 3, GCT GGA AAT GTG ACT GA 991, TCC CAT GTC TTC ATT GAC 7960, GCT GGA AAT GTG ACT GA 991, 53

VTE1: Tocopherol cyclase (VITAMIN E DEFECTIVE 1, VTE1), gi[255550999]ref[XM_002516502.1] Ricinus communis Tocopherol cyclase, chloroplast precursor, putative, mRNA, 91.5, 2.00E-14, 5, GGG CAG TGC AAG AAT ATA ACT G 6564, CTC CAA GAT GGC AGA ATG AG 996, GGG CAG TGC AAG AAT ATA ACT G 6564, 54

VTE3: MPBQ/MSBQ methyltransferase (VTE3), gi[219842171]dbj[AB376094.1] Hevea brasiliensis mmgbqmt mRNA for 2-methyl-6-geranylgeranylbenzoquinone methyltransferase, complete cds, 814, 0, 2, TGG CTT CAA TGC TCA AT 350, GCA TAA TCA TGT GGG AAT GG 5758, TGG CTT CAA TGC TCA AT 350, 54

VTE4: Gamma-tocopherol methyltransferase (VTE4), gi[219842175]dbj[AB376096.1] Hevea brasiliensis gamma-tmt mRNA for gammatocopherol methyltransferase, complete cds, 381, 2.00E-102, 5, GAA CAC CAA GCC GGA AGA AT 3026, GAG AGC ACA TGC TCA ATA AA 996, GAA CAC CAA GCC GGA AGA AT 3026, 54
Supplemental Table 2. Information on simple sequence repeat (SSR) markers of avocado, featuring marker name, source, fragment sizes in cultivars Gwen and Fuerte, distorted segregation (if applicable), forward primer, 5’ to 3’, reverse primer, 3’ to 5’, nucleotide repeat unit, annealing temperature [°C], and GenBank accession number.

Marker Name	Year	Frag Sizes	Distorted Segregation	Forward Primer, 5’ to 3’	Reverse Primer, 3’ to 5’	Nucleotide Repeat Unit	Annealing Temp [°C]	GenBank Accession
AUCR008b	new	268/278, 268/268	CTT CCG TAT CTC ATC AAA TA, AAA TCA GAC TCA AAT CAG TG, (CT)22, 56	KC768707				
AUCR017	new	363/370, 363/376	AAA AAG GAG TTC CAC AGT AGT A, TTC AAG TCA GAA ACC CAC TAT T, (TC)4,(AC)6, 58	KC768708				
AUCR050	new	323/329, 329/329	GCA GAC CTG GGT GAT ATT GA, TTA GCA GCC TAT TAC TAC GAT G, (TG)18, 60	KC768709				
AUCR053	new	245/257, 245/265	AGG TTA AAT AAA GGA TGG AAA ACC AGA, GCA GGG CTA CCC TTA ACC CT, (CT)6,(TC)11, 61	KC768710				
AUCR089	new	229/292, 265/265	TTC TGG GAT ATT GTG TTG CT, GGC TTT ATT CTC CCC CCT AT, (TG)5,(TG)8,(GA)10, 61	KC768711				
AUCR181	new	173/183, 173/206	AGA TAA TGA AGG TCG ATG ATG AGA TTT, (GA)9, 55	KC768715				
AUCR202	new	170/184, 184/184	GGG TTA AGC AAG AGA AAG A, ATG GCA CAA GGA AGT TC, (AG)18, 65	KC768716				
AVD010	new	323/329, 329/329	GCA GAC CTG GGT GAT ATT GA, TTA GCA GCC TAT TAC TAC GAT G, (TG)18, 60	KC768709				
AVD032	new	323/329, 329/329	GCA GAC CTG GGT GAT ATT GA, TTA GCA GCC TAT TAC TAC GAT G, (TG)18, 60	KC768709				
AVD036	new	119/119, 125/125	CTT CTC TCT TTG TTC ACC CA, TTA GAC TTC CTC ACC AT, (CA)3,(GA)15,(CT)8,(AA)12, 62	KC768718				
AVD044	new	311/313, 302/313	CTG TCG TAT GGT GTG GAT GAC, CCA GAC GCA ATG TGA GGC TCT C, (CT)6,(TC)11, 61	KC768719				
AUCR050	new	186/193, 183/186	CCA AAG TAA CTC ACC AAC CT, CTC TCA GAC TCG TGA CTC ATC, (GA)26, 59	KC768721				
AVD065	new	133/135, 133/135	CCA TAA ACC CTC TCT ACC ATC, CGT GGG GAT GAT CCA AAA TG, (TG)7, 67	KC768722				
AVD082	new	113/128, 113/120	GAC CTA CTT GGA TGA GTC CT, TTG TTA TAT TGA TCT CTT, (AT)5,(GT)14, 57	KC768723				
AVD095	new	256/266, 256/269	CCT GCG TCA TCT CTC GTC CTC, TAA AAG GGG TTT GTG TTA CCA TC, (GT)13, 60	KC768724				
AVD103	new	181/197, 197/197	TTC CGT TAT CTT TAA TCC CC, GTT TCG CAA AAG GCT TTT AT, (CT)20, 58	KC768725				
AVD104	new	190/221, 190/221	**, TGA ACG AAA TGG AAA CAT AT, ATT TTA AAT GGT GGT, (CG)4,(TG)15,(AG)22, 58	KC768726				
AVD106	new	183/191, 183/186	GGA CAC ATC AGT CTT AAA TG, TGC TAC AGG GAC AAC TTA AA, (TG)15,(AG)8, 61	KC768727				
AVD116	new	209/217, 193/217	ACA AAT GTG TGG TGA CAT CAG A, ATT TCC AAG TGT CAC AAA T, (TG)12,(GA)13, 59	KC768728				
AVD117	new	231/231, 239/241	CGA AAG ATA GCA GGT GAG TG, GCA GTA AAG GTA TGG AAG AAT C, (GA)22, 60	KC768729				
AVD120	new	192/206, 196/206	TTC ACT ATT TTT CTT GTG GAC, AAC CAG ATG TTT CTA CAG AGA, (AG)14, 57	KC768730				
AVO109	new	152/154, 143/154	AAC TGG CTT TCA TCT CTC ATT C, GGT GGG GAA CTT GGT TAG T, (TC)22, 59	KC768731				
AVT005b	new	184/188, 184/188	TTA GCA GCA GCA GCA GGG AGG TG, (GA)26, 59	KC768732				
AVT020gat	new	158/162, 158/168	CAT ATG AGG TCT TTTTT ATT TCA CTG AAG, (AG)6,(AT)5, 63, KC768734					
AVT106	new	126/136, 126/132	CCA TCA CTC GCG GTG GTG AT, TAT GTA TGA TGC TTA GAA CC, (ATC)8, 65	KC768735				
AVT158	new	313/313, 313/313	ACG AAG TTA GGA GAA AGG AAC, GCA AAG GAG CCG GTG TTA AG, (GA)7, 62	KC768736				

Continued next page
GenBank Accession	Date	Forward/Reverse	Primer Sets	Predicted Segments	Gene ID	ORF Size	Predicted Segments	Notes
Supplemental Table 2. Continued.								

AVT191, 2004, 215/218, 215/218, TCC ACA ACT TCT ACA GGG TCG T, GGA AGA TAA CGC ACC TTG AGT TC, (ATG)7(TGG)4, 69, KC795708

AVT226, 2004, 298/304, 294/298, GGC TGA TTT TTA TAG TCG ATG T, TCC GAT TGA CAG TGG ATT GTT, (TCA)6..(CTT)4, 60, KC795709

AVT386, 2004, 229/229, 219/229, ACA ACC CAA ACA ATG CT, AAT AGA GGT CAT CGA CC, (TGA)8, 60, KC795710

AVT436, 2004, 149/152, 139/149, ***, ACT AAA ATG AGG GGA GAC TAG, GAG TGT ATG GAG GAG TTT GG, (ATG)9, 56, KC795711

AVT448, 2004, 193/193, 183/193, ACG GTG TTT GGA AGA AGA TG, GCA CTT CAA CTA ATG CTT AC, (GAT)8, 60, KC795712

AVT517, 2004, 229/229, 219/229, AAT CCT TCC ACT CAG AAA CT, TAC ACA AAC GAC AAC AAT GG, (GAT)6, 59, KC795713

AVMIX03, 2009, 145/174, 145/174, GAT ATT CCT GTT GTC ACT GC, AAT GTT CCC CAT GAA AGT CTC C, (TG)16, (AG)20, 56

SHRSPa043, 2009, 160/180, 164/180, TCA CTG CTC TCT TCT TGC CC, ATC TAT TGC CCT CTT GTA CTC ACT, (ATG)2GCA(TCA)14(TG)2N6(CAAA)2, 56

SHRSPa044, 2009, 174/181, 175/175, GCC AAC GAG GGT CAT ATC AA, CGC AAA CCA ACC GCA GA, (CTT)3(TTTAT)4, 56

SHRSPa055, 2009, 108/123, 117/137, TCT CTT CAT CAA CTC GAC TGC, AAC GGT ATC CAA ACG CTA AT, CC(TTCT)2(TTA)2CAA(CT)16TT(T)2, 56

SHRSPa073, 2009, 123/125, 125/125, CTG CTT TTC CCA CTG CTC, CCA GAA CAA ACT GAA CCA CAA, (AG)7AA(AG)2, 56

SHRSPa081, 2009, 218/218, 218/220, GGG CTT CAA TTC AAT CCA ATC C, TCT TCA GCA CGC CAC GAG TCT, (C)2(GA)7, 56

SHRSPa099, 2009, 79/79, 79/94, TCA TCC CAA TTC CCA CTC TC, AGC GGA GCA TTT TAG CG, (AG)9AA(AG)2, 56

SHRSPa102, 2009, 95/113, 113/119, GCC ACA AAT CTT CAA AAT ACC A, TCT TCT TGA GTG GCA GCA GC, A(GAA)6AG, 56

SHRSPa107, 2009, 151/165, 151/177, CGC AGT CTT CAA TAC CA, CCC CTC TTC ACT TCC AA, (AT)4N4(AC)3Ta(AC)2(CT)2(TG)2(AGA)2AA(TG)2TAT(CT)8, 56

SHRSPa197, 2009, 164/178, 164/164, CTC TCT CTA GCA GTG CTC GC, GGA ATT CCG CAC AGT AGC AT, (CT)10CAC(CTT)3CTG(TC)2(CTT)2, 56

SHRSPa203, 2009, 111/117, 109/111, ATG GTT ACA AGA ATT GGC CG, ATG AGT GCA AAA GGA CCC TG, (TA)2(CATA)3(TA)4, 56

SHRSPa212, 2009, 304/310, 304/304, ATT CTT CCT TCT GTC CCA AA, TGT GCC ATT AAA GAC GAC GA, (TC)5N30(CAG)2N10(GA)2(AGAGAA)3AGA(AGC)2, 56

SHRSPa243, 2009, 260/264, 260/264, ACA GAT GAC GGT TTT CTC GC, CTC TCA GCA TCG ACC CTT TT, (ATGATT)2CAA(AG)8, 56

SHRSPa245, 2009, 149/151, 149/150, CCA TGA CGG AGG TTT TTT GT, GCC AAT GGC GAT TCA GTA AT, (GT)7(T)4A(AT)3(T)5(AG)3, 56

SHRSPa249, 2009, 272/276, 270/274, CCA GAA GCT GGC AAT CTA GC, CCA AAC GGG TTG TAA TGG TA, (TA)3TT(TA)9, 56

SHRSPa262, 2009, 192/195, 192/192, GGG GAA TCC ACG GCA T, TGG AGG GGA TTC TCC TCC TT, (CTT)3(CTC)4CTGCT(TCC)3, 56

SHRSPa274, 2009, 132/139, 139/139, GTG AGT CTG TAA CGC GCA GA, GCT ACA AGA TGC AGC AAC AA, (TC)21TT(T)2, 56

SHRSPa285, 2009, 255/264, 255/256, ACC GGT CTG TCG GAA ATC AG, GCC AAC AGT ACA TTC CCC AT, (AT)2(AGG)7(AAG)6, 56

6 J. Amer. Soc. Hort. Sci. 144(5):1–18. 2019.
Supplemental Table 3. Position of genetic markers on the twelve avocado linkage groups. Quantitative trait loci (QTLs) are highlighted in bold if inferred by Interval Mapping and underlined if inferred by Kruskal-Wallis analysis. Phenotypic traits are abbreviated to A (alpha-tocopherol), B (beta-sitosterol), C (carotenoids), CP (canopy diameter), H (tree height), T (trunk diameter), F (flowering type).

| group 1 |
|-----------------|-----------------|
| AVD028 | 0 |
| SHRSPaS003949 | 1.496 |
| SHRSPaS004383 | 1.782 |
| SHRSPaS001411 | 2.956 |
| SHRSPaS006205 | 3.596 |
| SHRSPaS002267 | 3.596 |
| SHRSPaS001479 | 4.75 C |
| SHRSPaS005923 | 4.817 C |
| SHRSPaS003997 | 4.879 |
| SHRSPaS003077 | 7.016 |
| SHRSPa212 | 7.442 |
| SHRSPaS001835 | 7.905 |
| SHRSPaS003122 | 7.905 |
| SHRSPaS003937 | 9.59 |
| SHRSPaS001255 | 11.981 |
| SHRSPaS003341 | 14.167 |
| SHRSPaS002400 | 14.425 |
| SHRSPaS001497 | 14.46 |
| SHRSPaS001760 | 15.963 |
| SHRSPaS001015 | 16.878 |
| SHRSPaS002216 | 16.981 |
| SHRSPaS002070 | 17.657 |
| SHRSPaS004066 | 18.294 |
| SHRSPaS003503 | 19.677 |
| SHRSPaS004945 | 21.771 |
| SHRSPaS001118 | 22.436 |
| SHRSPaS002191 | 24.148 |
| SHRSPaS003028 | 24.637 |
| SHRSPaS004904 | 26.288 |
| SHRSPaS002246 | 26.591 |
| SHRSPaS005298 | 28.294 |
| SHRSPaS002150 | 28.862 |
| SHRSPaS002075 | 32.832 |
| SHRSPaS003332 | 34.45 |
| SHRSPaS003987 | 34.69 |
| SHRSPaS001253 | 35.563 |
| SHRSPaS002125 | 35.592 |
| SHRSPaS003741 | 35.592 |
| SHRSPaS002478 | 36.73 |
| SHRSPaS003445 | 37.667 |
| SHRSPaS001353 | 38.098 |
| SHRSPaS004287 | 38.391 |
| SHRSPaS001130 | 38.614 |
| SHRSPaS004019 | 39.033 |
| SHRSPaS006916 | 39.476 |
| SHRSPaS003156 | 39.839 |
| SHRSPaS001286 | 40.345 |
| SHRSPaS006979 | 40.706 |
| SHRSPaS002056 | 41.216 |
| SHRSPaS005224 | 41.435 |
| SHRSPaS002667 | 41.923 |

Continued next page
Gene ID	Log2 Fold Change
SHRSPaS003632	11.658
SHRSPaS006670	12.004
SHRSPaS002703	12.4
SHRSPaS001771	12.549
SHRSPaS001999	12.869
SHRSPaS001453	12.909
SHRSPaS004553	13.206
SHRSPaS002686	13.738
SHRSPaS003305	13.743
SHRSPaS001552	13.994
SHRSPaS004994	14.025
SHRSPaS003599	14.239
SHRSPaS003086	14.474
SHRSPaS006435	14.68
SHRSPaS003810	15.109
SHRSPaS003496	15.362
SHRSPaS002286	16.009
SHRSPaS003528	16.178
SHRSPaS001530	16.293
SHRSPaS002014	16.946
SHRSPaS003513	16.959
SHRSPaS003206	17.12
SHRSPaS003090	17.361
SHRSPaS002731	17.361
SHRSPaS001831	17.825
SHRSPaS001883	17.895
SHRSPaS002026	18.202
SHRSPaS002140	18.202
SHRSPaS001464	18.265
SHRSPaS001404	18.436
SHRSPaS004250	19.154
SHRSPaS004471	19.467
SHRSPaS002018	19.777
SHRSPaS001343	20.195
SHRSPaS003209	20.195
SHRSPaS002961	20.242
SHRSPaS005301	20.242
SHRSPaS004677	20.43
SHRSPaS001669	20.444
SHRSPaS004053	20.788
SHRSPaS005014	20.788
SHRSPaS004298	20.8
SHRSPaS004502	20.845
SHRSPaS004944	21.024
SHRSPaS004999	21.264
SHRSPaS004772	21.264
SHRSPaS003366	21.641
CYP890	21.732
SHRSPaS006206	21.773
SHRSPaS003501	22.025
SHRSPaS004303	22.36
SHRSPaS002021	22.534
SHRSPaS001199	22.712
CYP967	22.764
SHRSPaS001408	22.862
SHRSPaS004868	22.99
SHRSPaS002009	23.043
SHRSPaS002890	23.065
SHRSPaS001306	23.151
SHRSPaS000235	84.028
SHRSPaS001196	84.155
SHRSPaS001842	84.331
SHRSPaS001214	84.751
SHRSPaS004934	85.315
SHRSPaS004517	85.652
SHRSPaS003315	86.869
SHRSPaS002266	88.035
SHRSPaS003269	89.143
SHRSPaS001164	90.035
SHRSPaS001330	91.25
SHRSPaS001955	93.466
AVD104	93.897
SHRSPaS006607	94.461
SHRSPaS002221	94.967
SHRSPaS003054	95.261
SHRSPaS002061	97.05
SHRSPaS004896	98.516
SHRSPaS002904	98.832
SHRSPaS002076	99.926
SHRSPaS003187	99.953
SHRSPaS001229	100.777
SHRSPaS001526	101.82
SHRSPaS002118	101.82
SHRSPaS001587	102.876
SHRSPaS001873	102.887
SHRSPaS002800	103.034
SHRSPaS003802	103.911
SHRSPaS003920	104.432
PDX2_549	106.045
SHRSPaS003269	107.05
SHRSPaS001164	108.035
SHRSPaS001330	109.25
SHRSPaS001955	110.466
AVD104	111.897
SHRSPaS006607	112.034
SHRSPaS002221	113.911
SHRSPaS003054	114.432
SHRSPaS002061	115.045
SHRSPaS004896	116.516
SHRSPaS002904	117.832
SHRSPaS002076	118.926
SHRSPaS003187	119.953
SHRSPaS001229	120.777
SHRSPaS001526	121.82
SHRSPaS002118	122.876
SHRSPaS001587	123.876
SHRSPaS001873	124.887
SHRSPaS002800	125.034
SHRSPaS003802	126.911
SHRSPaS003920	127.432
PDX2_549	128.045

Continued next page

Continued next page
Gene ID	Value
SHRSPaS005940	23.23
SHRSPaS002450	23.33
SHRSPaS002909	23.71
CYP1085	23.85
SHRSPaS006613	24.45
SHRSPaS006065	24.58
AVT191	24.72
SHRSPaS002171	25.03
SHRSPaS002428	25.03
SHRSPaS001615	25.04
SHRSPaS00262	25.48
SHRSPaS001822	25.57
SHRSPaS004881	25.85
SHRSPaS006379	25.99
SHRSPaS004176	26.26
SHRSPaS002196	26.67
SHRSPaS006718	26.69
SHRSPaS002374	26.72
SHRSPaS008201	27.08
SHRSPaS002787	27.08
SHRSPaS002203	27.50
SHRSPaS001976	27.60
SHRSPaS003472	28.41
SHRSPaS002183	28.70
SHRSPaS001998	28.90
SHRSPaS001078	29.18
SHRSPaS001037	29.27
SHRSPaS003743	29.49
SHRSPaS002313	30.26
SHRSPaS002762	30.34
SHRSPaS004715	30.52
SHRSPaS002561	30.52
SHRSPaS005503	30.92
SHRSPaS001768	30.99
SHRSPaS001593	31.30
SHRSPaS006845	31.54
SHRSPaS001184	31.85
SHRSPaS004000	31.89
SHRSPaS002134	31.89
SHRSPaS001029	31.91
SHRSPaS002659	31.94
SHRSPaS005876	32.28
SHRSPaS003751	32.42
SHRSPaS003433	32.82
SHRSPaS001661	32.90
SHRSPaS003294	33.23
SHRSPaS001769	33.47
SHRSPaS003627	33.58
SHRSPaS003776	33.60
AVD006	33.66
SHRSPaS004324	34.07
SHRSPaS006019	34.31
SHRSPaS006959	34.35
SHRSPaS002611	34.62

Continued next page
Supplemental Table 3. Continued.

Accession	Value
SHRSPaS005346	55.582
AUCR418	56.929
SHRSPaS001523	57.267
SHRSPaS001418	58.203
SHRSPaS002539	58.75
SHRSPaS006032	59.165
SHRSPaS004951	60.469
SHRSPaS003425	60.742
SHRSPaS003554	61.27
SHRSPaS004422	61.483

Group 3

Accession	Value
SHRSPaS003453	0.82
SHRSPaS001761	2.938
HRPT1_551	4.297
HPT1_514	5.196
SHRSPaS002447	7.242
SHRSPaS002426	7.968 A
SHRSPaS001620	7.968 A
SHRSPaS003259	8.562 A
SHRSPaS003589	8.847 A
SHRSPaS001705	10.078 A
SHRSPaS00245	12.359 A
SHRSPaS006564	12.736 A
SHRSPaS004209	12.998 A
SHRSPaS003314	13.349 A
SHRSPaS002204	14.43 A
SHRSPaS002658	14.63 A
SHRSPaS004388	15.363 A
SHRSPaS005529	15.648 A
SHRSPaS003787	16.304 A
SHRSPaS004634	16.304 A
SHRSPaS001323	16.785 A
SHRSPaS001365	17.332 A
SHRSPaS004338	18.601 A
SHRSPaS005013	19.334
SHRSPaS001566	20.682 A
SHRSPaS006054	24.144 B
SHRSPaS003561	25.5 A
SHRSPaS004954	26.428
SHRSPaS003645	27.638 A
SHRSPaS002817	28.082
SHRSPaS003120	29.223
SHRSPaS006371	29.223
SHRSPaS001781	31.467
SHRSPaS004933	33.176
SHRSPaS003760	35.949
SHRSPaS003017	37.112
SHRSPaS005275	37.112
SHRSPaS004350	38.714
SHRSPaS005919	40.402
SHRSPaS003739	42.778
SHRSPaS005977	42.778
SHRSPaS004018	43.234
SHRSPaS006088	43.779
SHRSPaS002393	43.793

Continued next page
Gene	Value
SHRSpaS002825	92.984
SHRSpaS001043	93.063
SHRSpaS002042	94.008
SHRSpaS001688	94.008
SHRSpaS003869	94.203 C
SHRSpaS005910	94.666
SHRSpaS003959	94.996
SHRSpaS003708	94.996
AVT020gat	95.543
SHRSpaS004268	95.871
SHRSpaS002912	96.08
SHRSpaS001297	96.08
SHRSpaS001349	96.114
SHRSpaS003557	96.609
SHRSpaS005922	97.148
SHRSpaS003149	97.155
SHRSpaS005725	97.867
AVD107	98.297 B
SHRSpaS003161	98.297 B
SHRSpaS003012	98.538 C
SHRSpaS002578	99.379
SHRSpaS004446	99.379
SHRSpaS001881	99.906
SHRSpaS003582	100.455
SHRSpaS001316	100.455
SHRSpaS001570	100.782
SHRSpaS002153	102.052
SHRSpaS004129	102.14
SHRSpaS002786	102.494
SHRSpaS001036	102.995
SHRSpaS004561	103.711
SHRSpaS005938	103.959
SHRSpaS004802	104.375
SHRSpaS002129	104.575
SHRSpaS004329	104.764
SHRSpaS004025	105.067
SHRSpaS001908	105.659
SHRSpaS001734	105.849
SHRSpaS003405	106.226
SHRSpaS001569	106.226
SHRSpaS004323	106.98
SHRSpaS006755	107.221
SHRSpaS002047	107.833
SHRSpaS003165	108.257
AVD026	108.567
SHRSpaS003582	108.602
SHRSpaS004906	109.305
SHRSpaS004540	109.725
SHRSpaS005002	109.725
SHRSpaS003623	110.087
SHRSpaS002610	110.49
cafl3_SNP745	110.505
SHRSpaS003705	111.025
SHRSpaS003191	111.782
SHRSpaS001121	111.782
SHRSpaS001298	111.813
SHRSpaS004145	111.991
SHRSpaS001695	112.477

Group 4

Gene	Value
SHRSpaS003316	112.658
SHRSpaS004215	112.867
SHRSpaS004550	112.905
SHRSpaS003378	114.667
cafl3_SNP1012	115.113
cafl3_SNP850	116.291
cafl3_SNP1099	118.125
ZDS_SNP_228	119.741
cafl3_SNP814	121.125
SHRSpaS004274	0
SHRSpaS003489	3.71
SHRSpaS002201	4.519
SHRSpaS003694	5.476
SHRSpaS001086	5.505
SHRSpaS002947	5.505
SHRSpaS001428	6.431
SHRSpaS001224	6.431
SHRSpaS002527	6.487
SHRSpaS003560	7.928
SHRSpaS002713	9.719
SHRSpaS002073	10.118
SHRSpaS003412	10.492
SHRSpaS00249	12.654
SHRSpaS002293	13.388
SHRSpaS005507	15.622
SHRSpaS004673	15.622
SHRSpaS005574	17.487
SHRSpaS003761	17.487
SHRSpaS001966	18.916
SHRSpaS001856	20.868
SHRSpaS003225	23.349
SHRSpaS002296	24.762
SHRSpaS004699	27.68
SHRSpaS001416	28.68
SHRSpaS001734	29.556
SHRSpaS005878	30.148
SHRSpaS004065	30.5
SHRSpaS004400	32.508
SHRSpaS005892	33.172
SHRSpaS003174	33.727
SHRSpaS004731	34.796
SHRSpaS002860	34.796
SHRSpaS002120	35.133
SHRSpaS003670	35.165
SHRSpaS003904	35.947
SHRSpaS003418	36.926
SHRSpaS001309	37.139
SHRSpaS004865	38.006
SHRSpaS002697	38.573
SHRSpaS003963	38.573
SHRSpaS001020	38.656
SHRSpaS002062	40.595
SHRSpaS002151	42.569
SHRSpaS0081	47.675 A
SHRSpaS003355	49.264
SHRSpaS003210	49.264
Supplemental Table 3. Continued.

Gene ID	Value
SHRSaP004354	23.46
SHRSaP002409	24.309
SHRSaP002124	24.309
SHRSaP002253	28.261
SHRSaP003370	30.437
SHRSaP00285	30.495
SHRSaP002479	32.822
SHRSaP001305	33.132
SHRSaP0003250	33.132
SHRSaP002167	33.944
AUCR053	35.318
SHRSaP006160	35.832
SHRSaP002639	36.965
SHRSaP002219	36.965
SHRSaP001192	37.198
SHRSaP004357	37.198
SHRSaP003290	37.962
SHRSaP002399	37.962
SHRSaP002862	38.557
SHRSaP002756	39.973
SHRSaP001387	40.935
SHRSaP003744	41.2
SHRSaP003177	41.2
SHRSaP0004646	42.222
SHRSaP001843	42.222
SHRSaP001847	43.704
SHRSaP003699	44.482
SHRSaP001168	44.892
SHRSaP004331	45.536
SHRSaP004636	46.567
SHRSaP003340	46.567
SHRSaP001068	46.994
SHRSaP003950	47.079
SQS913	47.547
SHRSaP001953	47.574
SQS843	47.689
SQS769	47.689
SHRSaP003345	47.886
SHRSaP003134	47.886
SHRSaP002676	48.351
SHRSaP002297	48.351
SHRSaP001405	49.074
SHRSaP005955	49.712
SHRSaP00107	50.306
SHRSaP003308	51.546
SHRSaP001104	51.922
SHRSaP002300	52.798
SHRSaP001993	53.855
SHRSaP001046	54.152
SHRSaP003944	54.152
SHRSaP003738	55.035
SHRSaP001246	55.99
SHRSaP004482	57.458
SHRSaP003457	57.458
58	
SHRSaP002060	58.814
SHRSaP002532	59.919
SHRSaP002792	60.217
SHRSaP002430	62.505

Continued next page
Gene	AUCR
SHRSPaS003998	63.551
AUCR008b	64.489
SHRSPaS003800	64.817
SHRSPaS002350	65.429
SHRSPaS003637	66.141
SHRSPaS003184	66.141
SHRSPaS002416	66.886
SHRSPaS003803	67.856
AUCR181	68.798
SHRSPaS003585	68.814
SHRSPaS004203	69.545
SHRSPaS003155	71.195
SHRSPaS006171	73.836
SHRSPaS00171	74.913
SHRSPaS006026	77.238
SHRSPaS002520	77.238
SHRSPaS002837	79.158
SHRSPaS001935	79.307
SHRSPaS005098	79.552
SHRSPaS001372	79.961
SHRSPaS001711	79.995
SHRSPaS001743	80.872
SHRSPaS003297	81.644
SHRSPaS0061195	81.644
SHRSPaS001950	81.685
SHRSPaS002905	82.637
SHRSPaS003239	82.796
AVDO82	83.12
SHRSPaS003595	83.44
SHRSPaS001779	83.561
SHRSPaS004622	84.326
SHRSPaS001654	84.624
SHRSPaS003881	85.174
SHRSPaS003415	85.174
SHRSPaS001468	85.277
SHRSPaS001671	85.662
SHRSPaS005580	86.313
SHRSPaS002714	86.313
SHRSPaS001783	86.831
SHRSPaS001267	87.253
SHRSPaS002631	87.314
SHRSPaS002235	87.937
SHRSPaS005804	87.937
SHRSPaS004575	87.942
SHRSPaS001350	88.51
SHRSPaS001306	89.121
SHRSPaS001099	89.578
SHRSPaS001478	90.057
SHRSPaS006151	90.292
SHRSPaS002783	90.798
SHRSPaS002894	90.839
SHRSPaS001683	91.68
SHRSPaS001287	91.805
SHRSPaS003098	92.094
SHRSPaS002282	94.01
SHRSPaS003136	94.101
SHRSPaS005970	94.101

Continued next page
Gene	Value
SHRSPaS001538	43.101 C
SHRSPaS003598	44
SHRSPaS004251	44
SHRSPaS001664	44.722
SHRSPaS001503	45.129
SHRSPaS001454	46.13 C
SHRSPaS004712	46.891
SHRSPaS003733	47.914
SHRSPaS001664	47.914
SHRSPaS001162	48.38 C
SHRSPaS001501	49.827
SHRSPaS003639	49.827
SHRSPaS003569	50.771
SHRSPaS001329	50.771
SHRSPaS004252	51.504
SHRSPaS003085	52.282
SHRSPaS001536	53.217 C
SHRSPaS002728	53.586
SHRSPaS002154	54.131
SHRSPaS004713	54.717 C
SHRSPaS006785	55.63
SHRSPaS006696	56.019
SHRSPaS002669	57.187
SHRSPaS002346	57.548 C
SHRSPaS004674	57.642
SHRSPaS002735	57.657
SHRSPaS005679	58.06
SHRSPaS002031	58.214
SHRSPaS001544	58.819
SHRSPaS003653	59.557
SHRSPaS004439	59.557
AVT517	60.034
SHRSPaS003264	60.159
SHRSPaS002852	60.758 C
SHRSPaS004639	61.419
LUT5_SNP_1351	63.284
SHRSPaS005466	64.024
SHRSPaS001710	66.054
SHRSPaS002169	66.054
SHRSPaS001516	66.303
SHRSPaS001022	67.002
SHRSPaS004093	67.613
SHRSPaS002543	68.008
SHRSPaS003514	68.611
SHRSPaS003812	71.592
SHRSPaS003990	71.716
SHRSPaS002744	71.959
VTE4_1035	73.171
VTE4_1257	73.181
SHRSPaS006514	74.199
SHRSPaS001676	76.112
VTE4_1068	76.567
group 7	
SHRSPaS002765	0
SHRSPaS003542	0
SHRSPaS002055	0
SHRSPaS002341	1.43

Continued next page
Gene ID	Value
SHRSPaS004243	66.458
SHRSPaS001165	66.64
SHRSPaS001155	67.112
SHRSPaS003943	68.947
SHRSPaS004825	70.072
SHRSPaS004855	70.072
SHRSPaS002421	71.113
SHRSPaS002768	71.113
SHRSPaS001397	71.324
SHRSPaS003943	73.063
SHRSPaS004942	73.206
SHRSPaS001685	74.199
SHRSPaS004326	75.207
SHRSPaS001273	75.207
SHRSPaS005004	75.407
SHRSPaS003537	76.283
SHRSPaS003087	76.323
SHRSPaS004064	76.814
SHRSPaS001334	77.288
SHRSPaS005939	77.71
SHRSPaS002405	82.25
SHRSPaS002440	84.516
SHRSPaS001561	87.923
SHRSPaS003426	92.232
SHRSPaS003665	93.013
SHRSPaS002041	96.47
SHRSPaS006248	100.563
SHRSPaS001417	102.78

Gene ID	Value
SHRSPaS002313	18.26
SHRSPaS003358	18.412
SHRSPaS004398	19.77
AVT038	20.061
SHRSPaS004095	20.379
SHRSPaS003107	21.122
SHRSPaS004942	23.729
SHRSPaS004328	24.552
SHRSPaS006517	24.818
SHRSPaS001081	26.287
SHRSPaS006531	27.54
SHRSPaS001685	74.199
SHRSPaS004326	75.207
SHRSPaS001273	75.207
SHRSPaS005004	75.407
SHRSPaS003537	76.283
SHRSPaS003087	76.323
SHRSPaS004064	76.814
SHRSPaS001334	77.288
SHRSPaS005939	77.71
SHRSPaS002405	82.25
SHRSPaS002440	84.516
SHRSPaS001561	87.923
SHRSPaS003426	92.232
SHRSPaS003665	93.013
SHRSPaS002041	96.47
SHRSPaS006248	100.563
SHRSPaS001417	102.78

Gene ID	Value
SHRSPaS001273	29.771
SHRSPaS002782	29.727
SHRSPaS003537	30.736
SHRSPaS004064	32.272
SHRSPaS002211	36.536
SHRSPaS001334	39.587
SHRSPaS005939	42.546
SHRSPaS002082	42.557
SHRSPaS001674	43.082
SHRSPaS001178	43.098
SHRSPaS002529	43.098
SHRSPaS001549	43.958
SHRSPaS002812	43.958
SHRSPaS001936	43.958
SHRSPaS002812	43.958
SHRSPaS003140	44.416
SHRSPaS001561	44.416
SHRSPaS003426	44.416
SHRSPaS003665	44.416
SHRSPaS002041	46.3
SHRSPaS006248	46.998
SHRSPaS001417	47.706
SHRSPaS001549	49.552
SHRSPaS001561	49.552
SHRSPaS003420	49.552
SHRSPaS0002405	50.838
SHRSPaS004543	50.838
SHRSPaS0002405	52.642
SHRSPaS0002405	53.02
SHRSPaS0002405	53.441
SHRSPaS0002405	53.859
SHRSPaS0002405	54.435
SHRSPaS0002405	54.094
SHRSPaS0002405	56.834
SHRSPaS0002405	56.834
SHRSPaS0002405	57.098
SHRSPaS0002405	57.935
SHRSPaS0002405	58.62
SHRSPaS0002405	59.001
SHRSPaS0002405	59.554
SHRSPaS0002405	60.417
SHRSPaS0002405	60.885
SHRSPaS0002405	61.085
SHRSPaS0002405	62.094
SHRSPaS0002405	62.606
SHRSPaS0002405	63.012
SHRSPaS0002405	63.921
SHRSPaS0002405	65.152
SHRSPaS0002405	66.105
SHRSPaS0002405	68.303

Continued next page
SHRS001638	90.057
SHRS001646	91.135
SHRS001672	92.098
SHRS004539	92.928
SHRS001021	92.986
SHRS001139	92.986
SHRS006403	96.073

group 9

SHRS001638	0
SHRS0243	2.563
SHRS002814	4.658
SHRS005406	5.705
SHRS003487	7.177
SHRS001914	9.174
SHRS003251	9.174
SHRS001580	9.501
SHRS004956	11.214
SHRS001421	11.636
SHRS003573	12.287
SHRS004831	12.287
SHRS003344	13.353
SHRS005963	13.487
SHRS001237	13.826
SHRS004520	15.419
SHRS002439	15.419
SHRS002709	16.501
SHRS005735	18.52
SHRS002538	21.062
FPS1135	21.199
SHRS003427	22.533
SHRS006483	22.753
SHRS001395	23.351
SHRS001013	23.351
SHRS002574	24.633
SHRS001284	24.888
SHRS001364	28.945
SHRS002012	28.996
SHRS005992	30.586
SHRS002544	33.984
PDH1_775	34.29
PDH1_1001	34.316
PDH1_941	34.412
SHRS003093	36.045

group 10

SHRS001638	0
SHRS002439	0.664
SHRS002777	0.773
SHRS005151	2.409
SHRS001785	3.195
SHRS004226	4.397
SHRS001911	4.891
SHRS001463	7.541
SHRS004821	8.803 F
SHRS001692	9.796 F
SHRS001876	11.626 F
SHRS005289	15.671 F
SHRS001228	17.08 F
SHRS004991	18.179 F
SHRS001648	19.193 F
SHRS006707	19.909 F
SHRS002720	23.273 F

Continued next page
SHRSPaS002034	24.112 F	SHRSPaS002034	15.75
DXPS1_SNP1593	25.756 F	SHRSPaS001709	15.75
SHRSPaS002337	25.91 F	SHRSPaS001235	16.485
SHRSPaS002152	26.808 F	SHRSPaS001977	18.371
DXPS1_SNP1328	26.876	SHR006118	19.875
SHRSPaS002994	30.261 F	SHRSPaS001494	20.982
SHRSPaS001393	31.674 F	SHRSPaS004272	21.992 CP
SHRSPaS000395	32.854 F	SHRSPaS002263	23.552
SHRSPaS003892	33.914 F	SHRSPaS004983	24.169
SHRSPaS001500	35.058 F	SHRSPaS00261	24.275
SHRSPaS002920	35.434 F	AVD116	25.043
SHRSPaS001512	36.688 F	SHRSPaS004232	25.151 CP
SHRSPaS004112	36.71 F	VTCI_1121	26.8
SHRSPaS002197	37.499 F	VTCI_1084	27.267
SHRSPaS001256	37.532 F	VTCI_1187	28.072
SHRSPaS001931	38.485 F	SHRSPaS001665	29.627
SHRSPaS003940	40.615 F	SHRSPaS001649	29.65
SHRSPaS003414	42.421 F	SHRSPaS002491	29.789
SHRSPaS002815	44.139 F	SHRSPaS003895	30.222
SHRSPaS004380	44.68 F	SHRSPaS002621	30.634
AVD010	45.094 F	SHRSPaS001260	30.855
SHRSPaS006391	45.452 F	SHRSPaS006777	31.904
SHRSPaS002938	45.511 F	SHRSPaS003138	32.112
SHRSPaS002466	45.617 F	SHRSPaS006702	32.209
SHRSPaS002742	46.511 F	SHRSPaS001151	32.761
SHRSPaS001577	47.115 F	SHRSPaS004039	32.761
SHRSPaS004654	47.196 F	SHRSPaS002602	33.055 A
SHRSPaS001390	47.349 F	M1022	34.256
SHRSPaS001445	47.949 F	SHRSPaS002545	34.413 A
SHRSPaS004170	48.06 F	SHRSPaS003786	34.81
SHRSPaS004995	50.098 F	SHRSPaS001352	34.984 A
SHRSPaS002997	50.098 F	SHRSPaS003977	37.506
SHRSPaS002903	51.317 F	SHRSPaS004049	37.609
SHRSPaS004214	53.308 F	SHRSPaS001989	38.343
SHRSPaS004955	53.308 F	SHRSPaS002813	38.474
SHRSPaS001432	55.544 F	SHRSPaS003082	39.352
SHRSPaS002875	59.658 F	SHRSPaS003374	40.396 A
SHRSPaS006283	63.9	SHRSPaS001213	41.746
SHRSPaS002351	65.464	SHRSPaS005008	42.21
SHRSPaS003095	67.268	SHRSPaS002803	42.863
SHRSPaS004747	68.473	SHRSPaS002011	43.178 A
SHR001122	15.593	SHRSPaS002403	45.033
SHRSPaS003442	0	SHRSPaS001789	46.037
AVD022	3.311	SHRSPaS001429	46.57
SHRSPaS003135	4.039	SHRSPaS00122	47.204
SHRSPaS002683	6.661	SHRSPaS001120	47.655
AVT448	6.884	SHRSPaS002895	49.289
SHRSPaS003783	8.863	SHRSPaS003304	49.913
SHRSPaS002750	9.273	SHRSPaS001234	54.212
SHRSPaS001233	10.35	SHRSPaS002438	54.212
SHRSPaS004529	10.421	SHRSPaS001317	55.615
SHRSPaS002839	11.257	SHRSPaS002265	55.849
SHRSPaS004285	12.698	SHRSPaS002328	56.457
SHRSPaS004920	13.306	SHRSPaS002588	57.347
SHRSPaS005726	14.805	SHRSPaS002038	57.903
			57.913
Supplemental Table 3. Continued.

Gene Symbol	Value 1	Value 2
SHRSPaS002609	58.345	
SHRSPaS001388	58.538	
SHRSPaS003428	58.719	
AVT001	59.309	
SHRSPaS004508	59.726	
SHRSPaS004295	60.143	
SHRSPaS004625	60.53	
SHRSPaS003479	61.856	
SHRSPaS003327	62.278	
SHRSPaS003317	63.21	
SHRSPaS001802	63.21	
SHRSPaS001650	64.337	
SHRSPaS001745	64.852	
SHRSPaS001270	65.225	A
PSY_SNPs29or945	67.225	B
SHRSPaS003100	67.335	
SHRSPaS001623	69.225	
SHRSPaS002303	70.506	
SHRSPaS003888	71.047	
SHRSPaS001863	71.71	
SHRSPaS001328	72.389	
SHRSPaS003180	72.64	
SHRSPaS001815	73.147	
PSY_SNPs37or686	73.956	
SHRSPaS001643	75.612	
SHRSPaS000656	78.049	
SHRSPaS000327	80.349	

group 12

Gene Symbol	Value 1	Value 2
SHRSPaS003393	0	
SHRSPaS003248	2.081	
AVDO117	2.89	
SHRSPaS002662	4.505	
SHRSPaS003402	4.505	
SHRSPaS003265	6.588	
SHRSPaS001356	8.656 B	
SHRSPaS001322	10.728 B	
SHRSPaS000517	12.781 B	
SHRSPaS003368	14.855 B	
SHRSPaS002902	14.855 B	
AVT386	16.374 B	
SHRSPaS003965	17.445	
SHRSPaS003179	19.447	
SHRSPaS002003	19.447	
SHRSPaS000313	21.643 H	
SHRSPaS002592	24.593	
SHRSPaS006852	25.916	
SHRSPaS005416	25.966	
SHRSPaS002243	26.645	
SHRSPaS003434	27.133	
SHRSPaS001655	27.961	
SHRSPaS004584	28.702	
SHRSPaS002624	29.09	
SHRSPaS005587	29.971	
SHRSPaS003320	30.136	

Continued next page