Carbene Routes to Cyclopropatetrahedrane

Murray G. Rosenberg§ and Udo H. Brinker*,†,§
†Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
§Department of Chemistry, The State University of New York at Binghamton, P. O. Box 6000, Binghamton, NY, 13902-6000, United States
*E-mail: udo.brinker@univie.ac.at; ubrinker@binghamton.edu

SUPPORTING INFORMATION

PLATONIC SOLIDS ... S2
COMPUTATIONAL MODELING .. S3
MOLECULAR ENERGIES AND 3-D CARTESIAN COORDINATES S5
MOLECULAR ORBITALS OF SELECT MOLECULES S12
GEOMETRIC ANALYSIS OF INVERTED CARBON ATOMS S13
Platonic Solids

Tetrahedrane (2), hexahedrane (3; cubane), and dodecahedrane (4) are fused polycyclic hydrocarbons (Table S1). Their cage-like C-atom frameworks correspond to a regular (1) tetrahedron, (2) hexahedron (i.e., cube), and (3) dodecahedron, which are three of the five regular polyhedra that have been considered sacred since the time of the ancient Greeks. The syntheses of 3 and 4 are a remarkable achievement despite the structures’ high symmetries and total strain energies (E_s)s. However, 2 has never been prepared although polysubstituted derivatives are known. The six curved C–C “banana” bonds of 2 have high p orbital character and bow outside the C–C internuclear axes by 21 deg to relieve strain. The E_s per C–C bond value for 2 exceeds that of 3 and far exceeds that of 4.

Table S1. Comparison of Platonic-Solid-Like Hydrocarbons

	2	3	4
symmetry	T_d	O_h	I_h
faces (f)	4	6	12
C–H units (v)	4	8	20
C–C bonds (e)	6	12	30
SODAR^b	3	5	11
φ (deg)	144.74	125.26	110.91
E_s (kcal/mol):			
(a) total^c	136.18	159.99	60.45
(b) per C–C bond	22.70	13.33	2.02

^a Euler’s formula: f + n – 2 = e. ^b Sum of double bonds and rings (SODAR) for (CH)_v is [((v/2) + 1] and is equivalent to (f – 1). ^c cf. Ref. S2.
Computational Modeling

Computational Methods. Quantum chemical calculations were performed on 1, carbenes 8–11, transition states TSa–TSd, and intrinsic reaction coordinate (IRC) paths a–d using the Spartan’20 (v. 1.1.4) computer program.54 Restricted SCF wave functions of molecular equilibrium geometries and transition states were computed using a (100,434) DFT integration grid, the RSH-GGA functional ωB97X-D,55 and Dunning’s cc-pVTZ basis set. Unrestricted SCF wave functions were computed for triplet-state carbenes. Normal-mode vibrational analyses were performed at the level of geometry optimization. The harmonic frequencies were used to obtain temperature-independent zero-point vibrational energy (\(E_{ZPVE}\))56 and temperature-dependent thermal vibrational energy (\(\Delta_{vib}H\)) values. Each reaction TS had one, and only one, imaginary frequency \(v_{TS}\). Its vibration was animated to verify that the motions conformed to the elementary step. An IRC was computed to ensure that the carbene followed a direct route to 1. Single-point energy (\(E\)) values were computed using the CCSD(T)(full) coupled-cluster theory method and Dunning’s cc-pVTZ basis set. All \(E_{ZPVE}\) values were scaled by \(z = 1.3686\)57 before being added to \(E\) (\(T = 0 \text{ K}; p = 0 \text{ atm}\)). Relative energy values (\(\Delta_{rel}E\))s are specified with regard to 1 (\((\Delta_{rel}E = [0])\). Conversion of \(E\) values to enthalpy (\(H_T\)) values was done according to eq S1 (computational standard-state: \(T = 298.15 \text{ K}; p = 1 \text{ atm}; \text{ cf. Table S2}\)). All \(\Delta_{vib}H\) values were scaled by \(H = 0.956\)57 before being added to the ZPVE-corrected \(E\) values. The increase in kinetic energy, due to translations (3(½)\(RT\)) and rotations (3(½)\(RT\)), for each nonlinear molecule was then added. Finally, \(RT\) (i.e., “\(pV\) work” needed to expand one mole of ideal gas to \(V = 24.465 \text{ L at } T = 298.15 \text{ K and } p = 1 \text{ atm}\)) was added to obtain \(H_T\) (eq S1). The experimental singlet–triplet energy gap (\(\Delta E_{S–T}\)) of \(\text{CH}_2\) (eq S2)58 was used to compute the corrected \(\Delta E_{S–T}\) of carbene 8 (eq S3).
Table S2. Values Used in Computations with Equation S1

Parameter	Value
\(V \)	\(nRT/p \)
	\(= 24.465 \text{ L} \)
\(p \)	\(= 1 \text{ atm} \)
\(n \)	\(= 1 \text{ mol} \)
\(R \)	\(= 1.9872 \times 10^{-3} \text{ (kcal/mol)/K} \)
	\(= 8.2057 \times 10^{-2} \text{ (L·atm/mol)/K} \)
\(T \)	\(= 298.15 \text{ K} \)
	\(= 25 \text{ °C} \)
\(RT \)	\(= 0.592 \text{ kcal/mol} \)
\(3(\frac{1}{2})RT \)	\(= 0.889 \text{ kcal/mol} \)
1 hartree	\(= 627.5095 \text{ kcal/mol} \)

\[
H_T = [E + z(E_{ZPVE})] + H(\text{vib}) + (3(\frac{1}{2})RT)_{\text{translational}} + (3(\frac{1}{2})RT)_{\text{rotational}} + (RT)_{\text{ideal gas}} \tag{S1}
\]

\[
\Delta E_{S-T} = \Delta E_{S-T(\text{comp})} - [\Delta E_{S-T(\text{comp})} - \Delta E_{S-T(\text{exp't})}]_{\text{CH}_2} \tag{S2}
\]

\[
\Delta E_{S-T} = \Delta E_{S-T(\text{comp})} - 1.247 \text{ kcal/mol} \tag{S3}
\]
Molecular Energies and 3-D Cartesian Coordinates

All ORTEP structures are shown as 50% ellipsoids.

Methylene (1CH$_2$);
CCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}):

\[E + z(E_{ZPVE}) = -24505.30 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T = -24502.92 \text{ kcal/mol} \]

Atom	x	y	z
C	0.0000000	0.0000000	0.1820529
H	0.8612946	0.0000000	-0.5174490
H	-0.8612946	0.0000000	-0.5174490

Methanediyl (3CH$_2$);
UCCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}):

\[E + z(E_{ZPVE}) = -24502.92 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T = -24513.37 \text{ kcal/mol} \]

Atom	x	y	z
C	0.0000000	0.0000000	0.1036352
H	0.9943111	0.0000000	-0.3150600
H	-0.9943111	0.0000000	-0.3150600
Cyclopropatetrahedrane (1; tetracyclo[2.1.0.0^1,3.0^2,4]^pentane); CCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_ZPVE):

\[E + z(E_{ZPVE}) : -120693.23 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T : -120690.22 \text{ kcal/mol} \]

Atom	x	y	z
C	0.0000000	0.0000000	-1.3639010
C	0.0000000	0.8222895	-0.0944911
C	0.0000000	-0.8222895	-0.0944911
C	0.7530674	0.0000000	0.8583930
C	-0.7530674	0.0000000	0.8583930
H	1.6266535	0.0000000	1.4771491
H	-1.6266535	0.0000000	1.4771491
H	0.9145992	0.0000000	-1.9456671
H	-0.9145992	0.0000000	-1.9456671
(Tetrahedryl)carbene \((8; (\text{tricyclo}[1.1.0.0^{2,4}]\text{but-1-yl})\text{methylene})\);
CCSD(T)(full)/cc-pVTZ//\(\omega\)B97X-D/cc-pVTZ + 1.3686\(E_{\text{ZPVE}}\):

\[
E + z(E_{\text{ZPVE}}) = -120643.03 \text{ kcal/mol}
\]

\(T = 298.15 \text{ K}\)

\(H_T = -120639.55 \text{ kcal/mol}\)

Atom	\(x\)	\(y\)	\(z\)
C	0.4406085	0.0534540	0.4349542
C	-0.7894082	-0.7700605	0.3130382
C	-0.8286348	0.7593716	0.2357073
C	-0.4482145	-0.0546304	-0.8835848
C	1.7616002	0.1706280	0.0309249
H	-1.3354576	-1.6191480	0.6690817
H	-1.4240687	1.6089756	0.4977220
H	-0.2328387	-0.0911725	-1.9323936
H	2.1754413	-0.8521786	-0.0208441

(Tetrahedryl)carbene triplet \((^38; (\text{tricyclo}[1.1.0.0^{2,4}]\text{but-1-yl})\text{methanediyl}))\);
UCCSD(T)(full)/cc-pVTZ//\(U\omega\)B97X-D/cc-pVTZ + 1.3686\(E_{\text{ZPVE}}\):

\[
E + z(E_{\text{ZPVE}}) = -120637.55 \text{ kcal/mol}
\]

\(T = 298.15 \text{ K}\)

\(H_T = -120633.81 \text{ kcal/mol}\)

Atom	\(x\)	\(y\)	\(z\)
C	0.7644593	-0.4614847	0.7362688
C	0.7644593	-0.4614847	-0.7362688
C	0.7829180	0.8017868	0.0000000
C	-0.4659120	-0.0176167	0.0000000
C	-1.8368338	0.0951632	0.0000000
H	1.1310111	1.8123758	0.0000000
H	-2.6616046	-0.5976657	0.0000000
H	1.1198584	-0.9706518	1.6063754
H	1.1198584	-0.9706518	-1.6063754
Tricyclo[1.1.1.0^{1,3}]pent-2-ylidene (9); CCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}):

\[E + z(E_{ZPVE}): -120668.71 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T: -120665.41 \text{ kcal/mol} \]

Atom	x	y	z
C	0.00000000	0.00000000	-1.3697075
C	1.1249653	0.00000000	0.5209824
C	-1.1249653	0.00000000	0.5209824
C	0.00000000	0.7983562	-0.1004006
C	0.00000000	-0.7983562	-0.1004006
H	1.1642895	0.00000000	1.6035277
H	-1.1642895	0.00000000	1.6035277
H	2.0836611	0.00000000	0.0194302
H	-2.0836611	0.00000000	0.0194302

trans-Tricyclo[2.1.0^{1,3}]pent-2-ylidene (10); CCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}):

\[E + z(E_{ZPVE}): -120664.05 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T: -120660.90 \text{ kcal/mol} \]

Atom	x	y	z
C	-0.0081795	-0.4345073	0.5950044
C	0.8744954	0.6582343	0.2245362
C	1.1400068	-0.8247856	-0.1336219
C	-0.2158522	0.4282309	-0.7497125
C	-1.3596092	-0.0553002	0.1534798
H	1.3233488	1.5021016	0.7145638
H	-0.0419469	-0.0906870	-1.6957574
H	-2.0194039	-0.8153141	-0.2542960
H	-1.8474828	0.7116628	0.7430040
4-methylenebicyclo[1.1.0]but-2-ylidene (11);
CCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}):

\[E + Z(E_{ZPVE}) = -120703.26 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T = -120699.94 \text{ kcal/mol} \]

Atom	x	y	z
C	0.6417445	0.1610869	0.8283118
C	0.6417445	0.1610869	-0.8283118
C	1.6208845	-0.4673074	0.0000000
C	-0.5478140	0.0504135	0.0000000
C	-1.8565107	-0.1059036	0.0000000
H	0.8305334	0.8519009	1.6415358
H	0.8305334	0.8519009	-1.6415358
H	-2.4032176	-0.1820810	0.9276798
H	-2.4032176	-0.1820810	-0.9276798

TSa;
CCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}):

\[E + Z(E_{ZPVE}) = -120627.19 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T = -120623.84 \text{ kcal/mol} \]

Atom	x	y	z
C	-0.2272812	0.0206392	0.7878857
C	0.8303660	0.7593271	0.0778881
C	0.8690167	-0.7568780	0.2652301
C	0.0844535	-0.1404997	-0.8077560
C	-1.5153744	-0.1410754	0.2032869
H	1.4372237	1.6433148	0.0843197
H	1.5204804	-1.5928724	0.4202580
H	-1.0428854	-0.6298454	-1.0178656
H	-1.9559995	0.8378898	-0.0132471
SUPPORTING INFORMATION

TSb;
CCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}):

\[E + z(E_{ZPVE}) = -120654.53 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T = -120651.29 \text{ kcal/mol} \]

Atom	x	y	z
C	-0.2098599	0.8088502	0.0114610
C	-0.2098599	-0.8088502	0.0114610
C	-1.2373062	0.0000000	-0.7721676
C	-0.0573475	0.0000000	1.2688401
C	0.5456639	0.0000000	-0.9478803
H	1.5147359	0.0000000	-1.4153330
H	-0.3621737	0.0000000	-1.8522700
H	0.9152113	0.0000000	1.7444079
H	-0.8990640	0.0000000	1.9514810

TSc;
CCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}):

\[E + z(E_{ZPVE}) = -120660.59 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T = -120657.34 \text{ kcal/mol} \]

Atom	x	y	z
C	-0.0722746	-0.1214417	0.7605083
C	0.9097646	0.6776172	0.0553228
C	0.9431212	-0.8846241	0.0713048
C	-0.1190331	0.1966518	-0.8479002
C	-1.3549160	0.0449137	0.0761435
H	1.5715340	1.5120681	0.1769667
H	0.3800498	-1.0266014	-1.0821693
H	-1.9119569	0.9582075	0.2520532
H	-1.9603343	-0.8389315	-0.0975726
SUPPORTING INFORMATION

\[E + z(E_{ZPVE}) = -120675.45 \text{ kcal/mol} \]

\[T = 298.15 \text{ K} \]

\[H_T = -120672.11 \text{ kcal/mol} \]

Atom	\(x \)	\(y \)	\(z \)
C	0.1495165	0.7571575	-0.9634904
C	0.1495165	-0.7571575	-0.9634904
C	0.5058738	0.0000000	0.2100193
C	-0.1057233	0.0000000	1.4264178
C	-1.0685679	0.0000000	-0.6051027
H	0.4378255	1.6270523	-1.5188101
H	0.4378255	-1.6270523	-1.5188101
H	-0.2531333	0.9266041	1.9666334
H	-0.2531333	-0.9266041	1.9666334
Molecular Orbitals of Select Molecules

(a) Cyclopropane
{HOMO} \(e'_{\text{sym}} \)

(b) Cyclopropane
{HOMO} \(e'_{\text{sym}} \)

(c) Tetrahedrane (2)
{HOMO} \(e_{\text{sym}} \)

(d) Tetrahedrane (2)
{HOMO} \(e_{\text{sym}} \)

(e) (Tetrahedryl)carbene (8)
{HOMO–1}

(f) (Tetrahedryl)carbene (8)
{HOMO–1}

(g) Tetrahedrane (2)
{HOMO} \(e_{\text{asym}} \)

(h) (Tetrahedryl)carbene triplet (\(^3g \))
{HOMO}_{\alpha\text{-spin}}

Figure S1. Molecular orbitals (MOs) from select molecules are displayed above. (a, b) Cyclopropane has a high-lying C–C “banana” bond. The outwardly curved \(\sigma/\pi \) bond is a hybrid between a C–C \(\sigma \) bond and a C–C \(\pi \) bond. (c, d) Tetrahedrane (2) also has high-lying C–C “banana” bonds. (e, f) In (tetrahedryl)carbene (8), the vacant p orbital of the :CH-group attracts electron density from the vicinal C–C “banana” bond. This elongates and weakens the C1′–C4′ bond of the tetrahedryl group. (g, h) The :CH-group’s p orbital is not vacant in triplet (tetrahedryl)carbene (\(^3g \)). Its :CH-group does not bend toward the C1′–C4′ bond because a nodal plane exists between the tetrahedryl group and the singly occupied p orbital. All structures and MOs were computed using the (U)\(\omega \)B97X-D/cc-pVTZ // (U)\(\omega \)B97X-D/cc-pVTZ theoretical model. All computer-generated MOs are shown with an isosurface value of 0.110 to emphasize the cores of the electron-clouds.
GEOMETRIC ANALYSIS OF INVERTED CARBON ATOMS

Below is a straightforward procedure for determining whether the four bonds emanating from a tetracoordinate carbon atom are monohemispherical. Carbene 8 is used as an example (see the original spreadsheet file for the detailed formulas).

Example 1:

(1) Map von Baeyer atom labels to those of computed Cartesian coordinates: C1' → C1, etc.

Translate atom of interest (e.g., C1) to the origin (0, 0, 0) by subtracting its (x, y, z) coordinates from all other atoms.

(2) Calculate cross product \(\mathbf{u} \times \mathbf{v} \) (in that order) to find \(\mathbf{t} \), which is perpendicular to both \(\mathbf{u} \) and \(\mathbf{v} \).

(3) Compute \(\phi_{st} \) and \(\phi_{rt} \) from the dot products \(\mathbf{s} \cdot \mathbf{t} \) and \(\mathbf{r} \cdot \mathbf{t} \), respectively.

(4) Tetracoordinate C1 is an inverted carbon atom if \(\pi/2 < \phi_{st} < 3\pi/2 \) and \(\pi/2 < \phi_{rt} < 3\pi/2 \).

(Tetrahedryl)carbene (8; (tricyclo[1.1.0.02,4]but-1-yl)methylene);
\(\omega \text{B97X-D/cc-pVTZ}/\omega \text{B97X-D/cc-pVTZ}: \)

Atom\textsubscript{von Baeyer}	Atom\textsubscript{Cartesian}	\(x \)	\(y \)	\(z \)
C1' \(\rightarrow \) C1	0.4406085	0.0534540	0.4349542	
C2' \(\rightarrow \) C2	-0.7894082	-0.7700605	0.3130382	
C3' \(\rightarrow \) C3	-0.8286348	0.7593716	0.2357073	
C4' \(\rightarrow \) C4	-0.4482145	-0.0546304	-0.8835848	
C1 \(\rightarrow \) C5	1.7616002	0.1706280	0.0309249	
H2' \(\rightarrow \) H2	-1.3354576	-1.6191480	0.6690817	
H3' \(\rightarrow \) H3	-1.4240687	1.6089756	0.4977220	
H4' \(\rightarrow \) H5	-0.2328387	-0.0911725	-1.9323936	
H1 \(\rightarrow \) H5'	2.1754413	-0.8521786	-0.0208441	

CARBENE ROUTES TO CYCLOPROPATETRAHEDRANE

S13
Figure S2. The C1' atom of (tetrahedral)carbene (8) is an inverted carbon atom.
Example 2:

(1) Map von Baeyer atom labels to those of computed Cartesian coordinates: $C4' \rightarrow C4$, etc.

 Translate atom of interest (e.g., $C4$) to the origin $(0, 0, 0)$ by subtracting its (x, y, z) coordinates from all other atoms.

(2) Calculate cross product $u \times v$ (in that order) to find t, which is perpendicular to both u and v.

(3) Compute ϕ_{st} and ϕ_{rt} from the dot products $s \cdot t$ and $r \cdot t$, respectively.

(4) Tetracoordinate $C4$ is an inverted carbon atom if $\pi/2 < \phi_{st} < 3\pi/2$ and $\pi/2 < \phi_{rt} < 3\pi/2$.

(Tetrahedryl)carbene (8; (tricyclo[1.1.0.02,4]but-1-yl)methylene);

\[\omega B97X-D/cc-pVTZ///\omega B97X-D/cc-pVTZ: \]

Atomvon Baeyer	AtomCartesian	x	y	z
$C1'$	$C1$	0.4406085	0.0534540	0.4349542
$C2'$	$C2$	-0.7894082	-0.7700605	0.3130382
$C3'$	$C3$	-0.8286348	0.7593716	0.2357073
$C4'$	$C4$	-0.4482145	-0.0546304	-0.8835848
$C1$	$C5$	1.7616002	0.1706280	0.0309249
$H2'$	$H2$	-1.3354576	-1.6191480	0.6690817
$H3'$	$H3$	-1.4240687	1.6089756	0.4977220
$H4'$	$H5$	-0.2328387	-0.0911725	-1.9323936
$H1$	$H5'$	2.1754413	-0.8521786	-0.0208441
Figure S3. The C4' atom of (tetrahedryl)carbene (8) is not an inverted carbon atom.

Atom	x	y	z	vector	norm (Å)
C1	0.4406085	0.0534540	0.4349542	r	1.594 Å
C2	-0.7894082	-0.7700605	0.3130382	t	1.594 Å
C3	-0.8286348	0.7593716	0.2357073	s	1.435 Å
C4	-0.4482149	0.0546304	-0.8835848	u	1.435 Å
C5	1.7616002	0.1706280	0.0309249	v	1.435 Å
H2	-1.3354576	-1.6191480	0.6690817	s	1.071 Å
H3	-1.4240697	1.6089756	0.4977220	t	1.594 Å
H5	-0.2328387	-0.0911725	-1.9323936	r	1.594 Å
H5'	2.1754134	-0.8521786	-0.0208441	s	1.071 Å

Bond length check

Vector	x	y	z	norm (Å)	dot product
u	-0.3411937	-0.7154301	1.1966230	1.435	0.000000000 u • t
v	-0.3804203	0.8140020	1.1192921	1.435	0.000000000 v • t
t = u × v	-1.7748288	-0.0733243	-0.5498965	1.860	—

Perpendicularity check

Vector	x	y	z	norm (Å)	dot product
s	0.2153758	-0.0365421	-1.0488088	1.071	0.0999699 s • t
r	0.8888230	0.1080844	1.3185390	1.594	-0.7795952 r • t
	-0.7001050	-0.7001050	-0.7001050	—	—

Angle check

Angle	deg	90 < Φ < 270	Inverted C atom	by	5.7 deg
Φ_h	84.3	FALSE	—	—	—
Φ_r	141.2	TRUE	—	—	—
Φ_w	134.6	FALSE	—	—	by
sum	360.0	—	—	—	—
REFERENCES

(S1) Hoffmann, R. How Should Chemists Think? Sci. Am. 1993, 268(2), 66–73.

(S2) Karton, A.; Schreiner, P. R.; Martin, J. M. L. Heats of Formation of Platonic Hydrocarbon Cages by Means of High-Level Thermochemical Procedures. J. Comput. Chem. 2016, 37, 49–58.

(S3) (a) Maier, G. Tetrahedrane and Cyclobutadiene. Angew. Chem., Int. Ed. Engl. 1988, 27, 309–332. (b) Balci, M.; McKee, M. L.; Schleyer, P. v. R. Theoretical Study of Tetramethyl- and Tetra-tert-butyl-Substituted Cyclobutadiene and Tetrahedrane. J. Phys. Chem. A 2000, 104, 1246–1255.

(S4) Spartan ’20, version 1.1.4; Wavefunction Inc.: Irvine, CA, 2022.

(S5) Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.

(S6) Csonka, G. I.; Ruzsinszky, A.; Perdew, J. P. Estimation, Computation, and Experimental Correction of Molecular Zero-Point Vibrational Energies. J. Phys. Chem. A 2005, 109, 6779–6789.

(S7) Computational Chemistry Comparison and Benchmark Database. National Institute of Standards and Technology. http://cccbdb.nist.gov/introx.asp (accessed Aug. 22, 2022).

(S8) (a) Jensen, P.; Bunker, P. R. The Potential Surface and Stretching Frequencies of X^3B_1 Methylene (CH$_2$) Determined from Experiment Using the Morse Oscillator-Rigid Bender Internal Dynamics Hamiltonian. J. Chem. Phys. 1988, 89, 1327–1332. (b) Gaspar, P. P.; Hammond, G. S. Spin States in Carbene Chemistry. In Carbenes; Moss, R. A., Jones, M., Jr., Eds.; Wiley: New York, 1975; Vol. 2, Chapter 6, pp 207–362.

(S9) According to the (U)CCSD(T)(full)/cc-pVTZ//(U)ωB97X-D/cc-pVTZ + 1.3686(E_{ZPVE}) theoretical model.