Pancreatogastrostomy vs pancreatojejunostomy after pancreaticoduodenectomy: An updated meta-analysis of RCTs and our experience

Yun Jin, Yang-Yang Feng, Xiao-Gang Qi, Geng Hao, Yuan-Quan Yu, Jiang-Tao Li, Shu-You Peng

ORCID number: Yun Jin (0000-0002-3073-4043); Yang-Yang Feng (0000-0003-0596-8727); Xiao-Gang Qi (0000-0002-9040-5815); Hao Geng (0000-0001-7267-9540); Yuan-Quan Yu (0000-0002-1109-1652); Jiang-Tao Li (0000-0001-7538-2910); Shu-You Peng (0000-0003-3989-3056).

Author contributions: Li JT and Peng SY conceived and designed the study; Jin Y, Feng YY, and Hao G performed data extraction and statistical analysis; Jin Y, Feng YY, and Qi XG wrote the paper; Yu YQ, Li JT, and Peng SY reviewed and edited the manuscript; all authors read and approved the manuscript.

Supported by Training Project of Health High Level Talents in Zhejiang Province (2014).

Conflict-of-interest statement: We declare that we have no conflict of interest to this work.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Abstract

BACKGROUND
Pancreatoduodenectomy (PD) is one of the most important operations in hepatobiliary and pancreatic surgery.

AIM
To evaluate the advantages and disadvantages of pancreaticojejunoanostomy (PJ) and pancreatogastrostomy (PG).

METHODS
This meta-analysis was performed using Review Manager 5.3. All clinical randomized controlled trials, in which patients underwent PD with pancreatico-digestive tract reconstruction via PJ or PG, were included.

RESULTS
The search of PubMed, Wanfang Data, EMBASE, and the Cochrane Library provided 125 citations. After further analysis, 11 trials were included from nine counties. In all, 909 patients underwent PG and 856 underwent PJ. Meta-analysis showed that pancreatic fistula (PF) was a significantly lower morbidity in the PG group than in the PJ group (odds ratio [OR] = 0.67, 95% confidence interval [CI]: 0.53-0.86, P = 0.002); however, grades B and C PF was not significantly different between the two groups (OR = 0.61, 95% CI: 0.34-1.09, P = 0.09). Postoperative hemorrhage showed a significantly lower morbidity in the PJ group than in the PG group (OR = 1.47, 95% CI: 1.05-2.06, P = 0.03). Delayed gastric emptying was not significantly different between the two groups (OR = 1.09, 95% CI: 0.83-1.41, P = 0.54).

CONCLUSION
There is no difference in the incidence of grades B and C PF between the two groups.
groups. However, postoperative bleeding is significantly higher in PG than in PJ. Binding PJ or binding PG is a safe and secure technique according to our decades of experience.

Key words: Pancreaticojejunostomy; Pancreaticogastrostomy; Systematic review; Meta-analysis

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Pancreatico-digestive tract anastomosis after pancreaticoduodenectomy is still controversial. This systematic review and meta-analysis aimed to further evaluate the role and importance of pancreaticojejunostomy and pancreaticogastrostomy. We compared the complications of these two surgical procedures, including pancreatic fistula, delayed gastric emptying, and hemorrhage.

Citation: Jin Y, Feng YY, Qi XG, Hao G, Yu YQ, Li JT, Peng SY. Pancreatogastrostomy vs pancreaticojejunostomy after pancreaticoduodenectomy: An updated meta-analysis of RCTs and our experience. World J Gastrointest Surg 2019; 11(7): 322-332
URL: https://www.wjgnet.com/1948-9366/full/v11/i7/322.htm
DOI: https://dx.doi.org/10.4240/wjgs.v11.i7.322

INTRODUCTION

Pancreatoduodenectomy (PD) is the main treatment procedure for benign and malignant tumors of the pancreatic head, lower common bile duct, and ampulla[1]. The incidence of complications after PD is still high, with some large pancreatic centers reporting an incidence of approximately 10-45%. The incidence of pancreatic fistula (PF), delayed gastric emptying (DGE), and gastrointestinal or abdominal hemorrhage has been reported to be 3-45%, 5%-61%, and 1%-8%, respectively. Other complications include abdominal empyema, incision infection, and pulmonary infection[2].

Since the establishment of PD, pancreatico-digestive tract reconstruction has been a highly valued research area, which is considered to be closely related to the success/failure of the surgery[3]. In general, pancreatico-digestive tract reconstruction includes pancreaticojejunostomy (PJ) and pancreaticogastrostomy (PG). Unlike gastrointestinal anastomosis, these two types of reconstruction after pancreatic surgery are diverse, with different results and evaluations. Therefore, there is still room for improvement in PJ and PG, and these procedures are still the focus of future research in PD.

This systematic review and meta-analysis aimed to further evaluate the role and importance of pancreatico-digestive tract anastomosis. Further, the advantages and disadvantages of PJ and PG were compared to provide a valuable reference for a more reasonable and safe choice of pancreatico-digestive tract reconstruction in the future.

MATERIALS AND METHODS

Eligibility criteria

All clinical randomized controlled trials, in which patients underwent PD with pancreatico-digestive tract reconstruction via PJ or PG, were included.

Information sources

Studies were identified by searching electronic databases and scanning reference lists of articles. No limits were applied for languages and foreign papers were translated to English. The search was applied to Medline, Wanfang Data, EMBASE, Science Citation Index Expanded, and the Cochrane Library. The last search was run on March 15, 2019.

Search

We used the following search terms to search all trial registers and databases: Pancreatoduodenectomy or Pancreatoduodenectomies or Duodenopancreatectomy or
Duodenopancreatectomies or Pancreaticoduodenectomy or Whipple or PD or Whipple procedure or Pancreatoduodenal resection or Pancreaticoduodenal resection, Pancreaticojunostomy or Pancreaticojejunostomies or Pancreatojejunostomy or Pancreatojejunal anastomosis or Pancreatojejunal anastomosis or Pancreateoenteric anastomosis or Pancreateojejunal anastomosis or Pancreatojejunostomy or Pancreaticoduodenectomy or Whipple procedure or Pancreaticoduodenal resection.

Study selection
Eligibility assessment was performed independently in an unblinded standardized manner by two reviewers. Disagreements between reviewers were resolved by discussion.

Data collection process
One review author extracted the following data from the included studies and the second author checked the extracted data. Disagreements were resolved by discussion between the two review authors; if no agreement could be reached, a third author would take the decision.

Data items
Data were extracted from each included trial on: (1) Characteristics of trial participants including age, disease, and number of patients; (2) Intervention with PG vs PJ; (3) Type of outcome measures including the definition and occurrence of PF, DGE, and other postoperative complications.

Risk of bias in individual studies
To ascertain the validity of eligible randomized trials, two independent reviewers with adequate reliability determined the adequacy of randomization, concealment of allocation, blinding of patients, healthcare providers, data collectors, and outcome assessors.

Statistical analysis
The meta-analysis was performed using Review Manager 5.3. The Chi-square test was used to test heterogeneity among studies. The heterogeneity level was judged according to I^2. Relative risk (RR), weighted mean difference (WMD), standardized mean difference (SMD), and 95%CI (confidence interval) were used.

For data with clinical heterogeneity, it is not easy to merge effect quantities. First, we tested heterogeneity among studies. Then subgroup analysis or meta-regression analysis was conducted according to heterogeneity. If data were insufficient or heterogeneity cannot be found, a random-effects model was used. The homogeneity of data was tested by the χ^2 test, and the homogeneity was quantitatively analyzed by the I^2 test. If there was no statistical heterogeneity, a fixed-effects model was used. When statistical analysis showed heterogeneity, a random-effects model was used. The significance level of the hypothesis test was set at $P < 0.05$.

To assess the risk of bias across studies, we plotted the effect by the inverse of its standard error for each trial. The symmetry was assessed both visually, and formally by the Egger’s test.

RESULTS
A total of 11 studies involving 11 trials were identified for inclusion in the review[14-24]. The search of PubMed, Wanfang Data, Embase, and the Cochrane Library provided 125 citations. Of the total 125 citations, 29 studies were discarded because they did not meet the inclusion criteria. Nine additional studies were discarded because full texts for these were not available. The full texts of the remaining 65 citations were examined in further detail. Following this, 51 studies were found not to meet the inclusion criteria as described, and three were repeat studies from the same institute at different time points (we chose the latest study in this case). Finally, 11 studies met the inclusion criteria and were included in the systematic review. Figure 1 shows the flow diagram of study selection (Figure 1).

From 1995 to 2016, 11 trials were included from nine counties. In all, 909 patients underwent PG and 856 underwent PJ. PF was defined and classified following the International Study Group on Pancreatic Fistula (ISGPF) consensus guidelines in seven trials[15,17-22] (Table 1). The quality of these 11 trials is presented in Figure 2.

PF data were available for all 11 trials randomizing 1765 patients and reporting data for them. In the meta-analysis, there was no significant heterogeneity between these studies ($I^2 = 20\%$); therefore, a fixed-effects model was applied. PF showed a significantly lower morbidity in the PG group than in the PJ group (odds ratio [OR] =
DISCUSSION

PF is one of the most common complications after PD. PF not only causes serious complications such as abdominal bleeding but also increases the length of hospital stay and cost for patients. Our study showed that PG anastomosis can reduce the incidence of all grades of PF than PJ anastomosis. In 2005, the ISGPF defined PF and divided it into three levels\(^\text{[25]}\). In 2016, the group adjusted the classification of PF and defined grade A PF as a biochemical fistula\(^\text{[8]}\). Therefore, in this study, we considered the incidence of grades B/C PF in subgroup analysis. We believe that this statistical analysis has more clinical value and significance. We found no statistical difference in grades B/C PF between the two groups (OR = 1.09, 95% CI: 0.83-1.41, \(P = 0.54\)) (Figure 6).

Nine trials including 780 PG and 738 PJ patients were included for the analysis of DGE. In the meta-analysis, there was no significant heterogeneity between these studies (\(I^2 = 47\%\)), and therefore a fixed-effects model was applied. DGE was not significantly different between the two groups (OR = 1.09, 95% CI: 0.83-1.41, \(P = 0.54\)) (Figure 6).

Figure 1 Study flow diagram.

0.67, 95% CI: 0.53-0.86, \(P = 0.002\)) (Figure 3). Grade A PF did not affect the disease outcome; therefore, we further analyzed the incidence of grades B and C PF. Seven trials with 603 PG and 581 PJ patients were included. In the meta-analysis, there was a significant difference in heterogeneity between these studies (\(I^2 = 61\%\)); accordingly, a random-effects model was applied. Grades B and C PF was not significantly different between the two groups (OR = 0.61, 95% CI: 0.34-1.09, \(P = 0.09\)) (Figure 4).

Nine trials with 788 PG and 734 PJ patients were included for analyzing postoperative hemorrhage. In the meta-analysis, there was no significant heterogeneity between these studies (\(I^2 = 0\%\)); accordingly, a fixed-effects model was applied. Postoperative hemorrhage showed a significantly lower morbidity in the PJ group than in the PG group (OR = 1.47, 95% CI: 1.05-2.06, \(P = 0.03\)) (Figure 5).

 Nine trials including 780 PG and 738 PJ patients were included for the analysis of DGE. In the meta-analysis, there was no significant heterogeneity between these studies (\(I^2 = 47\%\)), and therefore a fixed-effects model was applied. DGE was not significantly different between the two groups (OR = 1.09, 95% CI: 0.83-1.41, \(P = 0.54\)) (Figure 6).
Table 1 Characteristic of included trials

Author	Year	Country	Study type	Number of PG	Number of PJ	Definition of PF
Yeo et al[14]	1995	United States	Single blind, controlled randomized, single center trial	73	72	PF was defined as drainage of greater than 50 mL of amylase-rid fluid on or after postoperative day 10
Duffas et al[23]	2005	France	Single blind, controlled randomized, multicenter trial	81	68	Fluid obtained through drains or percutaneous aspiration, containing at least 4 times normal serum values of amylase for 3 day
Bassi et al[25]	2005	Italy	Single blind, controlled randomized, single center trial	69	82	Any clinically significant output of fluid, rich in amylase, confirmed by fistulography
Bassi et al[8]	2008	Spain	Single blind, controlled randomized, single center trial	53	55	ISGPF definition
Wellner et al[13]	2012	Germany	Single blind, controlled randomized, single center trial	59	57	ISGPF definition
Wang et al[9]	2012	China	Single blind, controlled randomized, multicenter trial	83	53	ISGPF definition
El Nakeeb et al[20]	2013	Egypt	Single blind, controlled randomized, single center trial	45	45	ISGPF definition
Topal et al[18]	2013	Belgium	Single blind, controlled randomized, single center trial	162	167	ISGPF definition
Figueras et al[22]	2013	Spain	Single blind, controlled randomized, multicenter trial	65	58	ISGPF definition
Greendar et al[24]	2015	Canada	Single blind, controlled randomized, single center trial	48	50	Either radiologically proven anastomotic leak or continued drainage (via drain, enterocutaneous fistula, or wound) of lipase-rich fluid on postoperative day 10
Keck et al[19]	2016	Germany	Single blind, controlled randomized, multicenter trial	171	149	ISGPF definition

PG: Pancreaticogastrostomy; PJ: Pancreaticojejunostomy; PF: Postoperative pancreatic fistula.

anastomotic site, thus preventing the leakage of pancreatic juice from the pinholes, to fundamentally eliminate the possibility of PF. At present, BPJ has been applied in more than a thousand of cases, which has a significant effect on the prevention of PF after surgery[7]. In 2010, Buc, a French scholar, named BPJ procedure as Peng’s PJ and reported that BPJ was a safe and secure technique[28]. In 2008, Peng created the binding pancreaticogastrostomy (BPG), which simplified the operation steps of the previous pancreas-stomach anastomosis[29]. After continuous improvement, only the bundled method was used in the posterior wall of the stomach, avoiding the suture of pancreas parenchyma and thus greatly shortening the surgical time and preventing anasto-
Figure 2 Quality of the included trials.

motic leakage. BPG not only solves the problem of excessive pancreatic stump but also reduces the harm of bile leakage because the biliary-jejunal anastomosis is not in the same channel as PG anastomosis[27]. The mid-term results of the randomized controlled study showed that the incidence of PF in BPG and BPJ was acceptable[17].

In recent years, with the continuous development of laparoscopic technology, laparoscopic PD has gradually become an alternative method, used as a routine treatment in some pancreatic surgeries[30-32]. Thus, laparoscopic pancreatico-gastrointestinal anastomosis has become a new focus for research. Owing to the limitation of the laparoscopic visual field, pancreatic duct to mucosa anastomosis is the first choice of procedure under laparoscopy[30].

The attempt of various methods makes the technique of PJ dazzling. However, the basic content cannot be separated from pancreas-jejunal (stomach) anastomosis or pancreatic duct-jejunal (stomach) anastomosis. The objective of evaluation should be as simple as possible. Moreover, the lower the incidence of pancreatic leakage compared with classical anastomosis, the better. As long as these principles are followed, sample enlargement and randomized controlled trials should be conducted...
Figure 3 Forest plot of the incidence of all grades of postoperative pancreatic fistula. PG: Pancreaticogastrostomy; PJ: Pancreaticojejunostomy; PF: Postoperative pancreatic fistula.

to find the best method.
Figure 4
Forest plot of the incidence of grade B/C postoperative pancreatic fistula. PG: Pancreaticogastrostomy; PJ: Pancreaticojejunostomy; PF: Postoperative pancreatic fistula.

Study or subgroup	PG Events	Total	PJ Events	Total	Weight	M-H, fixed, 95%CI	Odd ratio
El Nakeeb A 2013	7 45	45	2 53	55	1.11%	1.89 [0.51, 6.97]	
Fernandez-Cruz L 2008	7 65	65	1 65	66	6.9%	0.18 [0.04, 0.85]	
Figueras J 2013	7 65	65	1 65	66	15.0%	0.25 [0.10, 0.65]	
Grendar J 2015	8 48	48	1 48	49	12.8%	1.47 [0.47, 4.59]	
Keck T 2016	34 71	71	3 74	77	20.8%	0.87 [0.51, 1.50]	
Topal B 2013	13 62	62	1 63	64	18.8%	0.35 [0.18, 0.70]	
Wellner UF 2012	6 59	59	1 59	60	12.6%	0.81 [0.25, 2.57]	
Subtotal (95%CI)	**603**	**581**	**100.0%**	20.0%	0.61 [0.34, 1.09]		
Total events			77	112			
Heterogeneity: Tau² = 0.34; Chi² = 15.33, df = 6 (P = 0.02); I² = 61%							
Test for overall effect: Z = 1.67 (P = 0.09)							
Test for subgroup differences: Not applicable							

Figure 5
Forest plot of the incidence of postoperative hemorrhage. PG: Pancreaticogastrostomy; PJ: Pancreaticojejunostomy.

Study or subgroup	PG Events	Total	PJ Events	Total	Weight	M-H, fixed, 95%CI	Odd ratio
Bassi C 2005	3 69	69	1 69	70	9.3%	0.58 [0.14, 2.39]	
Cheung 2012	3 83	83	1 84	85	4.2%	0.96 [0.15, 5.92]	
Duffas JP 2005	13 81	81	1 82	83	14.6%	1.25 [0.50, 3.14]	
El Nakeeb A 2013	1 45	45	2 47	49	1.7%	1.00 [0.06, 16.50]	
Fernandez-Cruz L 2008	1 53	53	2 55	57	1.7%	1.04 [0.06, 17.04]	
Figueras J 2013	13 65	65	1 66	67	10.5%	1.82 [0.67, 4.93]	
Keck T 2016	36 171	171	1 172	173	25.5%	2.07 [1.11, 3.87]	
Topal B 2013	21 162	162	1 163	164	25.9%	1.31 [0.67, 2.59]	
Wellner UF 2012	6 59	59	1 60	61	6.5%	1.50 [0.40, 5.62]	
Total (95%CI)	**788**	**734**	**100.0%**	100.0%	**1.47 [1.05, 2.06]**		
Total events			97	64			
Heterogeneity: Chi² = 3.56, df = 8 (P = 0.89); I² = 0%							
Test for overall effect: Z = 2.23 (P = 0.03)							
Figure 6 Forest plot of the incidence of delayed gastric emptying. PG: Pancreaticogastrostomy; PJ: Pancreaticojejunostomy; PF: Postoperative pancreatic fistula.

ARTICLE HIGHLIGHTS

Research background
Pancreatoduodenectomy (PD) is one of the most important operations in hepatobiliary and pancreatic surgery. Pancreatico-digestive tract reconstruction includes pancreaticojejunostomy (PJ) and pancreaticogastrostomy (PG). Unlike gastrointestinal anastomosis, these two types of reconstruction after pancreatic surgery are diverse, with different results and evaluations. Therefore, there is still room for improvement in PJ and PG, and these procedures are still the focus of future research in PD.

Research motivation and objectives
This systematic and meta-analysis aimed to evaluate the role and importance of pancreatico-digestive tract anastomosis. Advantages and disadvantages of PJ and PG were compared to provide a valuable reference and safe choice in the future.

Research methods
This search was applied to Medline, Wanfang Data, Embase, Science Citation Index Expanded, and the Cochrane Library. The last search was run on March 15, 2019. All clinical randomized controlled trials, in which patients underwent PD with pancreatico-digestive tract reconstruction via PJ or PG, were included. The Chi-square test was used to test heterogeneity among studies. The heterogeneity level was judged according to I^2, relative risk (RR), weighted mean difference (WMD), standardized mean difference (SMD), and 95%CI were used.

Research results
In the meta-analysis of postoperative hemorrhage, there was no significant heterogeneity between these studies ($I^2 = 0$%); accordingly, a fixed-effect model was applied. Postoperative hemorrhage showed a significantly lower morbidity in the PJ group than in the PG group (OR = 1.47, 95%CI: 0.48-4.49, $P = 0.03$). In the meta-analysis of DGE, there was no significant heterogeneity between these studies ($I^2 = 47$%), and therefore a fixed-effects model was applied. DGE was not significantly different between the two groups (OR = 1.09, 95%CI: 0.83-1.41, $P = 0.54$).

Research conclusions
Our group has studied the anastomosis of the pancreas and digestive tract for more than 20 years, and has accumulated some experiences. We established the binding pancreaticojejunostomy (BPF) and binding pancreaticogastrostomy (BPG). The mid-term results of the randomized controlled study showed that the incidence of PF in BPG and BPF was acceptable.

Research perspectives
Laparoscopic pancreaticogastrointestinal anastomosis has become a new focus for research. The objective of evaluation should be as simple as possible. Moreover, the lower the incidence of pancreatic leakage compared with classical anastomosis, the better. As long as these principles are followed, sample enlargement and randomized controlled trials should be conducted to find the best method.
REFERENCES

1. Whipple AO, Parsons WB, Mullins CR. TREATMENT OF CARCINOMA OF THE AMPULLA OF VATER. Ann Surg 1935; 102: 763-779 [PMID: 1785666 DOI: 10.1097/00000658-193510000-00023]

2. Giuliani K, Fjaja A, Ie J. Technical aspects of pancreaticoduodenectomy and their outcomes. Chin Clin Oncol 2017; 6: 64 [PMID: 29156878 DOI: 10.21037/ccio.2017.05.14]

3. McMillan MT, Allegrini V, Asbun HJ, Ball CG, Bassi C, Bean JE, Behrmann SW, Berger AC, Bloomston M, Callery MP, Christide JD, Dickson E, Dixon E, Drebis JA, Fernandez-Del Castillo C, Fisher WE, Fong ZV, Havaei E, Holllis RH, House MG, Hughes SJ, Jamieson NB, Kent TS, Kowalsky SJ, Kunstman JW, Maileo G, McElhany AL, Salem RR, Soares KC, Sprys MH, Valero V, Watkins AA, Wolfgang CL, Zureikat AH, Vollmer CM. Incorporation of Procedure-Specific Risk Into the ACS-NSQIP Surgical Risk Calculator Improves the Prediction of Morbidity and Mortality After Pancreaticoduodenectomy. Ann Surg 2017; 265: 978-986 [PMID: 27232260 DOI: 10.1097/sla.0000000000001796]

4. Reyna-Sepulveda F, Muñoz-Maldonado G, Pérez-Rodríguez E, Hernández-Trejo F, Guevara-Charles A, Hernández-Guevara M. Prognostic factors for survival and surgical complications in Whipple’s pancreaticoduodenectomy during a 10-year experience. Cir Cir 2019; 87: 205-210 [PMID: 30768068 DOI: 10.24875/cir.18000526]

5. Brown EG, Yang A, Canter RJ, Bold RJ. Outcomes of pancreaticoduodenectomy: where should we focus our efforts on improving outcomes? JAMASurg 2014; 149: 694-699 [PMID: 24849180 DOI: 10.1001/jamasurg.2014.151]

6. Büchler MW, Wagner M, Schmied BM, Uhl W, Fries H, Zgraggen K. Changes in mortality after pancreatic resection: toward the end of completion pancreatectomy. Arch Surg 2003; 138: 1310-4; discussion 1315 [PMID: 14662530 DOI: 10.1001/archsurg.138.12.1310]

7. Peng SY, Wang JW, Lai WY, Cai XJ, Mos VP, Liu YB, Li JF. Conventional versus binding pancreaticojejunostomy after pancreaticoduodenectomy: a randomized controlled trial. Ann Surg 2007; 245: 692-698 [PMID: 17457161 DOI: 10.1097/01.sla.0000255588.50964.5d]

8. Bassi C, Marchegiani G, Derervis C, Sarr M, Abu Hilal M, Adham M, Allen P, Andersson R, Asbun HJ, Besselelik MG, Conlon K, Del Chiaro M, Falconi M, Fernandez-Cruz L, Fernandez-Del Castillo C, Fingerhut A, Friess H, Gouma DJ, Hacken T, Izbicki JR, Roux MG, Schulick R, Shrikhande SV, Takada T, Takaori K, Traverso W, Vollmer CR, Wolfgang CL, Yeo C, Salvia R, Buchler M; International Study Group on Pancreatic Surgery (ISGPS). The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017; 161: 584-591 [PMID: 28040257 DOI: 10.1016/j.surg.2016.11.014]

9. Eisenberg JD, Rosato EL, Lax H, Yeo CJ, Winter JM. Delayed Gastric Empting After Pancreatoduodenectomy: an Analysis of Risk Factors and Cost. J Gastrointest Surg 2015; 19: 1572-1580 [PMID: 26170145 DOI: 10.1007/s11605-015-2865-5]

10. Wente MN, Bassi C, Derervis C, Fingerhut A, Gouma DJ, Izbicki JR, Neoptolemos JP, Padbury RT, Sarr MG, Traverso LW, Yeo CJ, Büchler MW. Delayed gastric emptying (DGE) after pancreatic surgery: a suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007; 142: 761-768 [PMID: 17981197 DOI: 10.1016/s1095-9643(07)00505-9]

11. Wente MN, Veit JA, Bassi C, Derervis C, Fingerhut A, Gouma DJ, Izbicki JR, Neoptolemos JP, Padbury RT, Sarr MG, Yeo CJ, Büchler MW. Postpancreatectomy hemorrhage (PPH): an International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007; 142: 20-25 [PMID: 17629996 DOI: 10.1016/j.surg.2007.02.001]

12. Lessing Y, Pencovich N, Nevo N, Lubczyk Y, Goykham Y, Nakache R, Lahat G, Klauser JM, Nachmany I. Early reoperation following pancreaticoduodenectomy: impact on morbidity, mortality, and long-term survival. World J Surg Oncol 2019; 17: 26 [PMID: 30704497 DOI: 10.1186/s12957-019-1569-9]

13. Cameron JL, Je H. Two thousand consecutive pancreaticoduodenectomies. J Am Coll Surg 2012; 215: 530-536 [PMID: 22572406 DOI: 10.1016/j.jamcollsurg.2014.12.031]

14. Yeo CJ, Cameron JL, Maher MM, Sauter PK, Zahiruk ML, Talian MI, Lillemoe KD, Pitt HA. A prospective randomized trial of pancreaticogastrostomy versus pancreaticojejunostomy after pancreaticoduodenectomy. Ann Surg 1995; 222: 580-588; discussion 588-592 [PMID: 7574936 DOI: 10.1097/00000658-199510000-00014]

15. Wellner U, Sick O, Olsheswki M, Adam U, Hopt UT, Keck T. Randomized controlled single-center trial comparing pancreaticogastrostomy versus pancreaticojejunostomy after partial pancreatoduodenectomy. J Gastrointest Surg 2012; 16: 1680-1695 [PMID: 22744638 DOI: 10.1007/s11605-012-1940-4]

16. Bassi C, Falconi M, Molinari F, Salvia R, Butturini G, Sartori N, Mantovani W, Pedrizzoli P. Reconstruction by pancreaticojejunostomy versus pancreaticogastrostomy following pancreatectomy: results of a comparative study. Ann Surg 2005; 242: 767-771; discussion 771-773 [PMID: 16327486 DOI: 10.1097/01.sla.0000189124.47589.6d]

17. Jian C. Comparison of clinical effect between Binding Pancreaticojejunostomy and Binding Pancreatogastrostomy-Multi-center Prospective Randomized Controlled Trial Study (Mid-term Data Analysis). Medical college of Zhejiang University. 2012

18. Topal B, Fleuvs S, Aerts R, Weerts J, Feryn T, Roeyen G, Bertrand C, Hubert C, Janssens M, Cloosset J; Belgian Section of Hepatobiliary and Pancreatic Surgery. Pancreaticojejunostomy versus pancreaticogastrostomy reconstruction after pancreaticoduodenectomy for pancreatic or periampullary tumours: a multicentre randomised trial. Lancet Oncol 2013; 14: 655-662 [PMID: 23643190 DOI: 10.1016/s1470-2045(13)70126-8]

19. Keck T, Wellner UF, Bahra M, Klein F, Sick O, Niedergethmann M, Wilhelm TJ, Parkas SA, Börner T, Bruns C, Klessepekia, Kleele J, Malhotra AL, Uhl W, Chronomik F, Fendrich V, Heeger K, Hopt UT, Hecker A, Neumann UP, Junge K, Kalff JC, Glöswik TR, Werner J, Knobloch MJ, Pizzitelli G, Malghiva K, Izbicki J, Vashist Y, Bronnert P, Brügger T, Limprecht R, Dierens MK, Rossien I, Wegener I, Hopt UT. Pancreatogastrostomy Versus Pancreaticojejunostomy for RECONstruction After PANCreatoduodenectomy (RECOPANC, DRKS 00000767): Perioperative and Long-term Results of a Multicenter Randomized Controlled Trial. Ann Surg 2016; 263: 440-449 [PMID: 26135690 DOI: 10.1097/01.sla.0000000000001240]

20. El Nakheeb A, Hamdy E, Sultan AM, Sadek T, Askar W, Zekk H, Said M, Zeid MA, Abdallah T. Isolated Roux loop pancreaticojejunostomy versus pancreaticogastrostomy after pancreaticoduodenectomy: a prospective randomized study. HPB (Oxford) 2014; 16: 713-722 [PMID: 24467711 DOI: 10.1111/hpb.12210]
21 Fernández-Cruz L, Rosa C, Blanco L, López-Beado MA, Astudillo E. Pancreatogastrostomy with gastric partition after pylorus-preserving pancreaticoduodenectomy versus conventional pancreatojejunostomy: a prospective randomized study. Ann Surg 2008; 248: 930-938 [PMID: 19092337 DOI: 10.1097/SLA.0b013e318166c57]

22 Figueras J, Sabater L, Planellas P, Muñoz-Forner E, Lopez-Ben S, Fulgueras L, Sala-Palau C, Albíol M, Ortega-Serrano J, Castro-Gutierrez E. Randomized clinical trial of pancreatogastrostomy versus pancreatojejunostomy on the rate and severity of pancreatic fistula after pancreaticoduodenectomy. Br J Surg 2013; 100: 1597-1605 [PMID: 24264781 DOI: 10.1002/bjs.9252]

23 Dufas JP, Suc B, Muka S, Fourtanier G, Muscari F, Hay JM, Fingerhut A, Millat B, Radovanovic A, Fagniez PL; French Associations for Research in Surgery. A controlled randomized multicenter trial of pancreatogastrostomy or pancreatojejunostomy after pancreaticoduodenectomy. Am J Surg 2005; 189: 720-729 [PMID: 15910726 DOI: 10.1016/j.amjsurg.2005.03.015]

24 Grenand J, Ouettel JT, Sutherland FR, Bathe OF, Ball CG, Dixon E. In search of the best reconstructive technique after pancreaticoduodenectomy: pancreatojejunostomy versus pancreatogastrostomy. Can J Surg 2015; 58: 154-159 [PMID: 25799130 DOI: 10.1503/cjs.010014]

25 Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, Izbicki J, Neoptolemos J, Sarr M, Traverso W, Buchler M; International Study Group on Pancreatic Fistula Definition. Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery 2005; 138: 8-13 [PMID: 16003309 DOI: 10.1016/j.surg.2005.05.001]

26 Peng SY, Wang JW, Li JT, Mou YP, Liu YB, Cai XJ. Binding pancreaticojejunostomy—a safe and reliable anastomosis procedure. HPB (Oxford) 2004; 6: 154-160 [PMID: 18333069 DOI: 10.1080/136518204100016598]

27 Peng SY, Wang JW, Hong DF, Liu YB, Wang YF. Binding pancreaticocenteric anastomosis: from binding pancreatojejunostomy to binding pancreatogastrostomy. Updates Surg 2011; 63: 69-74 [PMID: 21442343 DOI: 10.1007/s13304-011-0067-6]

28 Buc E, Flamein R, Goffler C, Dubois A, Nagarajan G, Fatier E, Pezet D. Peng's binding pancreatojejunostomy after pancreaticoduodenectomy: a French prospective study. J Gastrointest Surg 2010; 14: 705-710 [PMID: 20554660 DOI: 10.1007/s11605-009-1125-y]

29 Peng SY, Hong DF, Liu YB, Tan ZJ, Li JT, Tao F. [Binding pancreaticogastrostomy]. Zhonghua Wai Ke Za Zhi 2009; 47: 139-142 [PMID: 19563012 DOI: 10.3760/cma.j.issn.0529-5815.2009.02.019]

30 Wang M, Peng B, Liu J, Yin X, Tan Z, Liu R, Hong D, Zhao W, Wu H, Chen R, Li D, Huang H, Miao Y, Liu Y, Li R, Wang W, Cai Y, Xing Z, Cheng W, Zhong S, Zhao Z, Zhang J, Yang Z, Li G, Shao Y, Lin G, Jiang K, Wu P, Jia B, Ma T, Jiang C, Peng S, Qin R. Practice Patterns and Perioperative Outcomes of Laparoscopic Pancreaticoduodenectomy in China: A Retrospective Multicenter Analysis of 1029 Patients. Ann Surg 2019 [PMID: 30672792 DOI: 10.1097/sla.0000000000004190]

31 Palanivelu C, Jani K, Senthilnathan P, Parthasarathi R, Rajapandian S, Madhankumar MV. Laparoscopic pancreaticoduodenectomy: technique and outcomes. J Am Coll Surg 2007; 205: 222-230 [PMID: 17660068 DOI: 10.1016/j.jamcollsurg.2007.04.004]

32 Kendrick ML, van Hilst J, Boggi U, de Rooij T, Walsh RM, Zeh HJ, Hughes SJ, Nakamura Y, Vollmer CM, Kooby DA, Asbun HJ; Minimally Invasive Pancreatic Resection Organizing Committee. Minimally invasive pancreaticoduodenectomy. HPB (Oxford) 2017; 19: 215-224 [PMID: 28317658 DOI: 10.1016/j.hpb.2017.01.023]
