Hybrid Neural Networks for Frequency Estimation of Unevenly Sampled Data

Roberto Tagliaferri¹, Angelo Ciaramella¹, Leopoldo Milano² and Fabrizio Barone²
¹DMI, Università di Salerno, and INFM unità di Salerno, via S. Allende, 84081 Baronissi (SA) Italia
²Dip. di Scienze Fisiche, Università di Napoli ”Federico II” and INFN, sez. Napoli, via Cintia, I-80126 Napoli Italia

Abstract

In this paper we present a hybrid system composed by a neural network based estimator system and genetic algorithms. It uses an unsupervised Hebbian nonlinear neural algorithm to extract the principal components which, in turn, are used by the MUSIC frequency estimator algorithm to extract the frequencies. We generalize this method to avoid an interpolation preprocessing step and to improve the performance by using a new stop criterion to avoid overfitting. Furthermore genetic algorithms are used to optimize the neural net weight initialization.

The experimental results are obtained comparing our methodology with the others known in literature [7], [13], [17], [14].

2. Evenly and unevenly sampled data

In what follows, we assume x to be a physical variable measured at discrete times ti. x(ti) can be written as the sum of the signal xs and random errors R: xi = x(ti) = xs(ti) + R(ti). The problem we are dealing with is how to estimate fundamental frequencies which may be present in the signal xs(t) [2], [7].

If X is measured at uniform time steps (even sampling) [1], [7] there are a lot of tools to effectively solve the problem which are based on Fourier analysis [7], [13]. These methods, however, are usually unreliable for unevenly sampled data. For instance, the typical approach of resampling the data into an evenly sampled sequence, through interpolation, introduces a strong amplification of the noise which affects the effectiveness of all Fourier based techniques which are strongly dependent on the noise level [7].

To solve the problem of unevenly sampled data, we consider two classes of spectral estimators:

Spectral estimators based on Fourier Transform (Least Squares methods):

Spectral estimators based on the eigenvalues and eigenvectors of the covariance matrix (Maximum Likelihood methods).

Classic Periodogram [7], [13], Lomb’s Periodogram [1], Scargle’s Periodogram [17], DCDFT [3] are the methods of the first class that we use, while MUSIC [6], [13] and ESPRIT [15], [14] belong to the second class.

The methods based on the covariance matrix are more recent and have great potentiality. Starting by this consideration, we develop a method based on the MUSIC
estimator. It is compared with classical methods to evidence the performance.

3. The Neural Estimator

In the last years several papers dealt with learning in PCA neural nets [1, 2, 3, 4, 5, 8] finding advantages, problems and difficulties of such neural networks. In what follows, we shall use a robust hierarchical learning algorithm because it has been experimentally shown that it is the best performing in our problem [18].

Our neural estimator (ne) can be summarized as follows:

1. Preprocessing: calculate and subtract the average pattern to obtain zero mean process with unity variance.

Interpolate input data if it is the case.

2. Train the neural network.

3. Calculate the frequencies estimation by using the frequency estimator MUSIC.

MUSIC takes as input the weight matrix columns of the neural network after the learning. The estimated signal frequencies are obtained as the peak locations of the neural network after the learning. The estimated MUSIC takes as input the weight matrix columns of PCA neural nets [11], [12], [16], [6], [1], [18] finding advantages, problems and difficulties of such neural networks.

In what follows, we shall use a robust hierarchical learning algorithm because it has been experimentally shown that it is the best performing in our problem [18].

When \(f \) is the frequency of the \(i \)-th sinusoidal component, \(f = f_i \), we have \(e = e_i \) and \(P_{MUSIC} \to \infty \). In practice we have a peak near and in correspondence of the component frequency. Estimates are related to the highest peaks.

Furthermore, to optimize the performance of the PCA neural networks, we stop the learning process when

\[
\sum_{i=1}^{P} |e^H_i w(i)|^2 < M \quad \forall f,
\]

so avoiding overfitting problems. In fact, leaving the stop condition used in the ne causes to the ne to find periodicities not present in the signal, while the new condition preserves it from this problem.

Since sometimes the weight initialisation can lead to local maxima of the objective function, here we propose to use genetic algorithms for this aim.

We use a real encoding of the net parameters in a string (chromosome), and then we run the genetic algorithms with a fitness function, which is the system objective function.

4. Experimental Results

Many experiments on synthetic and real signals were made [13], and in this paper we presents the results obtained with one specific real signal, which highlights the main features of our problem.

The signal is related to the Cepheid T Mon [10]. The sequence was obtained with the photometric technique BVRI and the sampling made from April 1977 to December 1979. The light curve is composed by 24 samples, and a period of 27.024, as shown in figure 1. In this case, the parameters of the ne are: \(N = 10, p = 2, \alpha = 5, \mu = 0.001 \). The estimated frequency interval is \([0(1/\text{JD}), 0.5(1/\text{JD})]\). The estimated frequency is 0.020 (1/\text{JD}) (see figure 2). By using the genetic algorithms (gne) we improve the system performance reaching the true frequency of 0.034 (1/\text{JD}) (see figure 3). Lomb’s Periodogram finds the correct frequency but it generates several spurious peaks (see figure 4). For what concerns DCDFT, the frequency interval must be changed because it is too much sensitive to very low frequencies (the new interval becomes \([0.01(1/\text{JD}), 0.5(1/\text{JD})]\)) (see figure 5). Finally ESPRIT does not work at all finding a frequency of 0.23 (1/\text{JD}) (see figure 6).

In conclusion, only the Lomb’s Periodogram and our gne are in agreement with the right periodicity, but the former showing several spurious peaks.

5. Concluding Remarks

In this paper we have illustrated an improved technique based on PCA neural networks and MUSIC to estimate the frequency of unevenly sampled data. It has been shown that it obtains good results on real data (here we used the Cepheid T Mon light curve) compared with other well known methods. A further improvement can be obtain by using filters to extract and identify one frequency at each time when dealing with multi-frequency
Figure 1: Light curve of T Mon

Figure 2: ne estimate of the fundamental frequency of T Mon

Figure 3: gne estimate of the fundamental frequency of T Mon

Figure 4: Lomb’s Periodogram estimate of the fundamental frequency of T Mon
signals. In [13], we used our system to detect the Milankovicic frequencies from a stratigrafic record. In that case the best performance was found when we extracted one frequency at each time and eliminating it with a FIR filtering.

Acknowledgements

The paper has been partially supported by IIASS “E. R. Caianiello” and by MURST 40%.

References

[1] T. Chen, Y. Hua, W. Y. Yan, Global Convergence of Oia’s Subspace Algorithm for Principal Component Extraction, IEEE Transaction on Neural Networks, Vol. 9, No.1, 1998.

[2] T.J. Deeming, Fourier analysis with unequally-spaced data, Astrophysics and Space Science, vol. 36, pag. 137-158, 1975.

[3] Ferraz-Mello, Estimation of periods from unequally spaced observations. The Astronomical Journal, vol. 86, pag. 619, 1981.

[4] J.H. Horne, S.L. Balius, A prespiction for period analysis of unevenly sampled time series, The Astrophysical Journal, vol. 302, pag. 757-763, 1986.

[5] L.L. Horowitz, IEEE Trans., ASSP-22, 22, 1974.

[6] J.Kharhunen, J.Joutsensalo, Representation and separation of signals using nonlinear PCA type learning. Neural Networks, vol. 7, pag. 113-127, 1994.

[7] S.M. Kay, Modern spectral estimation: Theory and application. Englewood Cliffs: Prentice-Hall, 1988.

[8] C.T. Lin and C.S.G. Lee, Neural Fuzzy Systems: a Neuro-fuzzy Synergism to Intelligent Systems, Upper Saddle River-NJ: Prentice Hall, 1996.

[9] N.R. Lomb, Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, vol. 39, pag. 447-462, 1976.

[10] T.J. Moffet, T.G. Barnes, Observational Studies of Cepheids, The Astrophysical Journal Supplement Series, vol. 44, pag. 427-450, 1980.

[11] E. Oja, A simplified neuron model as principal component analyzer, Journal of Mathematical Biology, vol. 15, pag. 267-27, 1982.
[12] E.Oja, H.Ogawa, J.Wangviwattana, Learning in nonlinear constrained Hebbian network. In T. Kohonen et al. (Eds.), Artificial neural networks, North-Holland, Amsterdam, p. 385-390, 1991.

[13] A.V. Oppenheim, R.W. Schafer, Digital Signal Processing, Prentice-Hall, 1965.

[14] J.G. Proakis, D.G. Lakis, Digital Signal Processing, Second edition.

[15] R. Roy, A. Paulray, T. Kailath, ESPRIT- A Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise. IEEE Transactions on Acoustics, Speech, and Signal

[16] T. D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward network, Neural Network, 2, 459-473, 1989.

[17] J.D. Scargle, Studies in astronomical time series analysis; statistical aspects of spectral analysis of unevenly spaced data, The Astrophysical Journal vol. 263, pag. 835-853, 1982.

[18] R.T. Tagliaferri, A. Ciaramella, L. Milano, F. Barone, G. Longo, Spectral Analysis of Stellar Light Curves by Means of Neural Networks, Astronomy and Astrophysics Supplement Series, Vol. 137, pag. 1-15, 1999.

[19] R. Tagliaferri, N. Pelosi, A. Ciaramella, G. Longo, M. Milano, F. Barone, Soft computing methodologies for spectral analysis in cyclostratigraphy, submitted for publication, 1999