Nr4a1-Dependent Ly6Clow Monocytes Monitor Endothelial Cells and Orchestrate Their Disposal

Leo M. Carlin,1,2,7 Efstathios G. Stamatiades,1,2,7 Cedric Auffray,4,8 Richard N. Hanna,5 Leanne Glover,3 Gema Viscay-Barrena,3 Catherine C. Hedrick,6 H. Terence Cook,6 Sandra Diebold,2 and Frederic Geissmann1,2,4,∗

1Centre for Molecular and Cellular Biology of Inflammation
2Peter Gorer Department of Immunobiology
3Centre for Ultrastructural Imaging
King’s College London, London SE1 1UL, UK
4Institut National de la Santé et de la Recherche Médicale (INSERM) U838, Institut Necker, Paris Descartes University, 75015 Paris, France
5Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
6Centre for Complement and Inflammation Research, Imperial College London, London W12 0NN, UK
7These authors contributed equally to this work
8Present address: CNRS UMR8104, INSERM U1016, Institut Cochin, Paris Descartes University, 75014 Paris, France

*Correspondence: frederic.geissmann@kcl.ac.uk
http://dx.doi.org/10.1016/j.cell.2013.03.010
Open access under CC BY license.

SUMMARY

The functions of \textit{Nr4a1}-dependent Ly6Clow monocytes remain enigmatic. We show that they are enriched within capillaries and scavenge microparticles from their luminal side in a steady state. In the kidney cortex, perturbation of homeostasis by a TLR7-dependent nucleic acid “danger” signal, which may signify viral infection or local cell death, triggers
\textit{Gαi}-dependent intravascular retention of Ly6Clow monocytes by the endothelium. Then, monocytes recruit neutrophils in a TLR7-dependent manner to mediate focal necrosis of endothelial cells, whereas the monocytes remove cellular debris. Prevention of Ly6Clow monocyte development, crawling, or retention in \textit{Nr4a1}−/−, \textit{Il10}−/−, and \textit{Tir7}host−/−BM+/+ and \textit{Cx3cr1}−/− mice, respectively, abolished neutrophil recruitment and endothelial killing. Prevention of neutrophil recruitment in \textit{Tir7}host+/+BM−/− mice or by neutrophil depletion also abolished endothelial cell necrosis. Therefore, Ly6Clow monocytes are intravascular housekeepers that orchestrate the necrosis by neutrophils of endothelial cells that signal a local threat sensed via TLR7 followed by the instigation phagocytosis of cellular debris.

INTRODUCTION

Monocytes are a heterogeneous population of blood phagocytic leukocytes that differentiate in the bone marrow. Inflammatory signals, such as chemokines, promote leucocyte diapedesis into damaged and infected tissues in order to recruit neutrophils within a few hours and “inflammatory” lymphocyte antigen 6c (Ly6C+ monocytes 1 day later, herein initiating a cellular immune response (Auffray et al., 2009b; Serbina et al., 2008). Ly6C+ monocytes exit the bone marrow and extravasate into peripheral inflamed tissues, partly in response to chemokines that signal via C-C chemokine receptor type 2 (CCR2) (Serbina and Pamer, 2006; Tsou et al., 2007). They differentiate into inflammatory macrophages and dendritic cells (DCs) that produce tumor necrosis factor (TNF), inducible nitric oxide synthase, and reactive oxygen species in response to bacterial and parasitic infection (Narni-Mancinelli et al., 2011; Robben et al., 2005; Serbina and Pamer, 2006; Serbina et al., 2003b) and can stimulate naive T cells (Geissmann et al., 2003; Serbina et al., 2003a). Ly6C− monocytes are also directly recruited to draining lymph nodes via the high endothelial venules (Palframan et al., 2001). They can produce type 1 interferons in response to viruses via a toll-like receptor 2-dependent pathway (Barbalat et al., 2009). It is also believed that Ly6C− monocytes play a role in chronic inflammation, such as the formation of the atherosclerotic plaque, because Ccr2-deficient mice on low density lipoprotein receptor- or apolipoprotein E-deficient backgrounds and a high-fat diet have decreased atherosclerosis (Boring et al., 1998; Dawson et al., 1999).

A second population of blood major histocompatibility complex (MHC) class II− myeloid cells, which lack the Ly6C antigen (and, thus, are termed Ly6Clow or Gr1low monocytes), represents a distinct monocyte subset. They develop normally in \textit{Rag2}−/−\textit{Il2rg}−/− mice, which lack lymphoid cells (Auffray et al., 2007). They are characterized by high expression of the C-X3-C chemokine receptor 1 (CX3CR1) and require the transcription factor \textit{Nr4a1} for their development from proliferating bone marrow precursors (Geissmann et al., 2003; Hanna et al., 2011). They crawl along the endothelium of blood vessels in a steady state, express a full set of Fcγ receptors, and mediate IgG-dependent effector functions in mice (Auffray et al., 2007; Barbalat et al., 2009).
RESULTS

CX3CR1^{high} CD11b⁺ Ly6C^{low} Monocytes Are Enriched in the Microvasculature of the Skin and Kidney in a Steady State

Monocytes that adhere to the luminal side of the endothelium of dermal and heart capillaries, cremaster, mesenteric vessels, and glomeruli in the steady state have been identified by intravital microscopy as CX3CR1^{high} CD11b⁺ (αM integrin) F4/80⁺ leucocytes (Auffray et al., 2007; Hanna et al., 2011; Li et al., 2012; Sumagin et al., 2010). Crawling CD11b⁺ CX3CR1^{high} monocytes are also present in the vascular network that ramifies around renal tubules in the kidney cortex (Figures 1A and 1B; Movie S1 available online). Analysis of monocyte tethering and adhesion in vivo indicated that crawling Ly6C^{low} monocytes are in constant exchange between the bloodstream and the endothelium, having an average dwell time of 9 min in the kidney microvasculature (Figure 1C; Movies S2 and S3; also see Figure 3). Intravital imaging combined with intravenous (i.v.) immunolabeling of monocytes confirmed that all monocytes that crawled on the endothelium in a steady state expressed CD11b and CX3CR1 and lacked detectable Ly6C staining (Figure 1D; Movies S2, S4, and S5). To investigate the extent of the association of monocytes with the endothelium of the microvasculature in a steady state, we compared the number of monocytes per µl volume in the peripheral blood, the vasculature of the mesentery, and the capillaries of the dermis (ear) and kidney cortex. The number of crawling of Ly6C^{low} CD11b⁺ CX3CR1^{high} monocytes/µl was at least one order of magnitude higher in the dermal and kidney cortex capillaries (10³ to 10⁴ monocytes/µl) than the number of Ly6C^{low} CD11b⁺ CX3CR1^{high} monocytes in the peripheral blood (10² monocytes/µl) (Figure 1A). Antibody blockade of αL integrin (CD11a) detached monocytes from the vessel wall in vivo (Auffray et al., 2007), which resulted in a 50% increase in the proportion of circulating Ly6C^{low} over control monocytes (Figure S1), suggesting that the number of cells adherent at any time represent one-third of the total Ly6C^{low} pool that circulate in the peripheral blood.

Crawling CX3CR1^{high} CD11b⁺ Ly6C^{low} Monocytes Survey the Lumenal Side of “Resting” Endothelial Cells and Scavenge Microparticles Attached to It

The characteristic slow motion (10–16 μm/min) and complex tracks, which include U-turns and spirals, of Ly6C^{low} monocytes crawling along the endothelium suggested that they survey the endothelium (Auffray et al., 2007). Intravital microscopy, image deconvolution, and transmission electron microscopy (TEM) indicated that the crawling monocytes extended numerous and mobile filopodia-like structures in contact with the endothelium in the dermal and kidney cortex blood vessels of Cx3cr1^{gfp/+-}; Il2rg^{-/-}; Rag2^{-/-}; Il2rg^{-/-} mice (Figures 1E, 1H, and 1I; Movies S1 and S6). These filopodia or “dendrites” were also observed on human CD14^{dim} monocytes spreading in vitro and stained positively for LFA1 and filamentous actin (Figure S1). Crawling monocytes scavenged 0.2 μm and 2 μm beads that attach to the capillary endothelium in the kidney cortex following i.v. injection, as well as high-molecular-weight dextran (2 MDa; Figures 1F and 1G; Movie S7). Uptake was not followed by their immediate detachment or extravasation. Rather, they can be seen crawling, or patrolling, on the endothelium while carrying their cargo for an extended period of time (e.g., >25 min in Movie S7). Consistently, mononuclear cells with the round or bean-shaped nuclei and granule-poor cytoplasm typical of Ly6C^{low} monocytes (Geissmann et al., 2003) were observed in steady-state kidney capillaries by TEM. These cells were monocytes, not lymphoid, given that they were present in Rag2^{-/-}; Il2rg^{-/-} mice. Pseudopodia that attached to the endothelium, and large endosomes that contained endogenous debris/microparticles were evident (Figures 1H and 1I). Thus, Ly6C^{low} monocytes scan the luminal side of “resting” endothelial cells and uptake submicrometric and micrometric particles.

LFA1 and ICAM1 and/or ICAM2 Are Absolutely Required for the Crawling of Nr4a1-Dependent MHCII^{lo} Monocytes, but Chemokine Receptors Are dispensable

Consistent with antibody blockade of LFA1 (Auffray et al., 2007), monocyte attachment to the endothelium was reduced to 1% of wild-type (WT) in Itgα^{-/-} mice, whereas monocyte subsets were normally present in the peripheral blood (Figures 2A and 2B). Track analysis of intravital imaging experiments (Figure 2B;
Figure 1. Characterization of Ly6C^{low} Patrolling Monocytes in a Steady State

(A) Left, isovolume-rendered blood vessels (TRITC dextran, magenta) and monocytes (GFP) from the dermis (ear), kidney, and mesentery. The scale bar represents 100 μm. Right, number of crawling CX3CR1^{high} Ly6C⁺ monocytes per μl in the dermal (ear), kidney, and mesentery blood vessels (left) and circulating CX3CR1^{high} Ly6C⁺ monocytes per μl (right). Geometric mean, 95% confidence interval, n = 10 fields over ≥ 6 mice per condition.

(B) Crawling monocytes (GFP) in a kidney peritubular capillary (left) labeled with CD11b PE Ab (inset) and a glomerulus (right). Capillaries are magenta (TRITC-labeled 70 kD dextran). Shown in the right inset is the TRITC channel alone. The scale bars represent 10 μm.
and crawling Ly6Clow monocytes (Auffray et al., 2007; Auffray reported to moderately decrease the numbers of circulating pertussis toxin (PT), a potent inhibitor of Gαi signaling controls the adhesion of Ly6Clow monocytes to the endothelium (Figure 2G). Thus, it is unlikely that PT-sensitive chemokine receptor signaling. To evaluate the response of the patrolling monocytes to TLR-mediated signal in vivo, we painted the kidney capsule of Cx3cr1^{gfp/+} mice with R848 (Resiquimod, a selective ligand for TLR7 in mouse), Lipopolysaccharide (LPS), or PBS as a control (Figure S2). After R848 painting, the tracks of crawling monocytes inside capillaries increased in length, and their velocity decreased slightly (Figures 3A and 3B; Movie S8). The duration of their attachment to the endothelium, or dwell time, increased 2- to 3-fold (Figure 3C). This resulted in a rapid, sustained, time- and TLR7-dependent increase in their number within the peritubular capillaries, which was very significantly different from the slight increase observed 3 hr after PBS painting (the latter possibly being due to phototoxicity) (Figure 3D).

Retention of crawling monocytes inside capillaries was dependent on local TLR7 signaling, because there was no monocyte retention in Cx3cr1^{gfp/+};Tlr7^{−/−} mice in comparison to Cx3cr1^{gfp/+};Tlr7^{+/+} controls (Figures 3A–3D), although steady-state crawling itself was TLR7-independent (Figures 3A–3D; Movie S8), and because there was no significant monocyte retention in kidney capillaries after i.v. injection of R848 (Figure 3D). In addition, LPS painting did not increase the number of crawling monocytes, in comparison to PBS control (R848-positive control is also shown for clarity; Figure 3D). I.v. injection of labeled antibodies against CD11b 4.5 hr after R848 painting indicated that crawling GFP⁺ CD11b⁺ cells were located inside capillaries (Figure 3E; Movie S9). Moreover, the increase in GFP⁺ cells during the 4.5 hr of the experiment could be wholly accounted for by CD11b-labeled cells, indicating that the crawling monocytes had remained within the vascular lumen (Figure 3F).

Additional analysis indicated that Cx3cr1^{hig} Ly6C^{low} CD11b⁺ I-A[−] (MHCI^{II}) monocytes were, in fact, virtually absent from the blood and from the endothelium of Nra41^{−/−} mice (Figures 2H and 2I). The remaining 5%–10% of Ly6C^{low} CD11b⁺ cells in the blood have a distinct phenotype in addition to being Nra41 independent; they express I-A and intermediate levels of Cx3cr1 and may represent a previously unrecognized subset of blood myeloid cells independent of both Ccr2 and Nra41 (Figure 2J, also see Figure S1), which will not be discussed further in this report.

Patrolling Monocytes Are Retained within Kidney Capillaries in TLR7-Mediated Inflammation

Thus, Nra41-dependent monocytes scavenge the luminal side of the endothelium in a steady state via a process that requires LFA1 with ICAM1 or ICAM2 interaction but not chemokine-receptor signaling. To evaluate the response of the patrolling monocytes to TLR-mediated signal in vivo, we painted the kidney capsule of Cx3cr1^{gfp/+} mice with R848 (Resiquimod, a selective ligand for TLR7 in mouse), Lipopolysaccharide (LPS), or PBS as a control (Figure S2). After R848 painting, the tracks of crawling monocytes inside capillaries increased in length, and their velocity decreased slightly (Figures 3A and 3B; Movie S8). The duration of their attachment to the endothelium, or dwell time, increased 2- to 3-fold (Figure 3C). This resulted in a rapid, sustained, time- and TLR7-dependent increase in their number within the peritubular capillaries, which was very significantly different from the slight increase observed 3 hr after PBS painting (the latter possibly being due to phototoxicity) (Figure 3D).

Retention of crawling monocytes inside capillaries was dependent on local TLR7 signaling, because there was no monocyte retention in Cx3cr1^{gfp/+};Tlr7^{−/−} mice in comparison to Cx3cr1^{gfp/+};Tlr7^{+/+} controls (Figures 3A–3D), although steady-state crawling itself was TLR7-independent (Figures 3A–3D; Movie S8), and because there was no significant monocyte retention in kidney capillaries after i.v. injection of R848 (Figure 3D). In addition, LPS painting did not increase the number of crawling monocytes, in comparison to PBS control (R848-positive control is also shown for clarity; Figure 3D). I.v. injection of labeled antibodies against CD11b 4.5 hr after R848 painting indicated that crawling GFP⁺ CD11b⁺ cells were located inside capillaries (Figure 3E; Movie S9). Moreover, the increase in GFP⁺ cells during the 4.5 hr of the experiment could be wholly accounted for by CD11b-labeled cells, indicating that the crawling monocytes had remained within the vascular lumen (Figure 3F).

(C) CX3CR1-GFP monocytes in a mesenteric blood vessel (top) and Gr1Ab staining (top, bottom); the white arrow follows a CX3CR1⁺ GR1⁺ cell. Time, min:s. The scale bar represents 40 μm.

(D) Fluorescence signal summed over time in the mesenteric blood vessels for CX3CR1-GFP, CD11b Ab, and Gr1Ab. The scale bar represents 100 μm. Data are representative of n = 6 mice.

(E) Deconvolved intravital imaging of CX3CR1-GFP-labeled monocyte in a dermal blood vessel (TRITC-dextran; magenta). Data are representative of >10 mice.

(F) Intravital imaging of 2 μm latex beads (TRITC, magenta) uptake in peritubular capillaries. The bead associates with endothelium (dotted circle) and is phagocytosed by CX3CR1^{hig} monocyte. The scale bar represents 20 μm; time, min:s.

(G) Uptake of 2 MDa dextran by a crawling monocyte (GFP) in a kidney peritubular capillary. The bottom shows an isovolume rendering of the same cell. The scale bars represent 10 μm.

(H and I) Representative transmission electron micrograph (TEM) of a mononuclear cell (black arrow) in peritubular capillaries in a Cx3cr1^{hig};Rag2^{−/−};Il2rg^{−/−} mouse. The black arrows in (I) indicate endosomes. The scale bars represent 1 μm. Also see Figure S1 and Movies S1–S7.
Figure 2. CCR2-Independent, NR4A1-Dependent Ly6C^{low} Monocytes Require LFA1 and ICAM1 or ICAM2, but Not G_{ai} or CX3CR1, for Intravascular Crawling in a Steady State

(A) Number and percentages of circulating monocyte subsets per ml of blood in Itgal^{+/+} and Itgal^{-/-} littermates quantified by flow cytometry. Mean ± SEM, n = 3 mice per genotype.

(B) Number and representative tracks and vectors of crawling monocytes per hour per field in the mesenteric blood vessels of Itgal^{+/+} and Itgal^{-/-} littermates. Mean ± SEM; *, p < 0.05; n = 4 mice per genotype. The scale bars represent 60 μm. Blue arrows indicate blood flow direction.

(C) Data idem as in (B) for Icam1^{-/-}, Icam2^{-/-}, and Icam1^{-/-} Icam2^{-/-} mice.
A Chemokine Receptor Switch Is Responsible for Intravascular Monocyte Retention

These data indicated that crawling monocytes are retained within the capillaries of the kidney cortex in response to a local nucleic acid signal. To eliminate the possibility that lymphoid cells are involved, the experiment was repeated in Cx3cr1gfp/+; Rag2-/-;Il2rg-/- mice, and the results were identical (Figures 4A and 4B). TLR7 is expressed ubiquitously, including in endothelial cells (Gunzer et al., 2005). After painting with R848, quantitative PCR (qPCR) analysis indicated that the expression of

Figure 3. Retention of Crawling Monocytes in the Kidney Vasculature in Response to TLR7 Agonist

(A) Representative monocyte tracks and vectors in the kidney cortex after painting with PBS or R848 in Tlr7+/+ and Tlr7-/- mice over 5 hr. n = 3 or 4 mice per condition. The scale bar represents 40 μm.

(B) Track length and speed for monocytes from the experiments described in (A). *, p ≤ 0.05; mean ± SEM.

(C) Mean track duration, track displacement, and confinement ratio of crawling monocytes from the experiments described in (A). *, p ≤ 0.05; mean ± SEM.

(D) Left, cumulative number of crawling monocytes per frame from experiments described in (A). Middle and right, the same experiment split over two graphs for clarity after PBS, LPS, R848 painting, or i.v. injection of PBS or R848. Data points for the R848 painting are shown twice. *, p ≤ 0.05; n = 3-5 mice per condition.

(E and F) Intravital imaging of peritubular capillaries in Cx3cr1+/-GFP mice after i.v. injection of CD11b-PE (magenta), 4.5 hr after R848 painting, and quantification of GFP+ cells in the kidney cortex and capillaries at t0 and 4.5 hr after R848 painting. n = 4, mean ± SEM. The scale bar represents 10 μm.

Also see Figure S2 and Movies S8 and S9.

(D and E) Circulating and crawling monocyte subsets and PMNs in Ccr2+/+ and Ccr2-/- mice. *, p ≤ 0.05; mean ± SEM; n = 3 mice per genotype.

(F) Representative tracks, vectors, and confocal micrograph of crawling monocytes in mesenteric blood vessels of Cx3cr1-/- and Cx3cr1+/+ mice (white, CX3CR1-GFP; magenta, TRITC-70kD dextran). The scale bars represent 10 μm. n = 5 mice.

(G) Data idem as in (B) for mice treated with pertussis toxin (PT) 100 μg i.v. Mean ± SEM, n = 2 mice per condition.

(H and I) Data idem as in (D) for Nr4a1+/+ and Nr4a1-/- mice. Mean ± SEM, n = 6 mice per genotype.

(J) Schematic representation of the monocyte subsets. The x axis represents I-A expression, and the y axis represents Ly6C expression divided by Nr4a1 and Ccr2 requirement.

Also see Figure S1 and Movie S4.
fractalkine (CX3CL1) in the kidney cortex is rapidly upregulated in a TLR7-dependent manner and independently of leucocyte adhesion (Figure 4C). I.v. injection of PT inhibited, in a dose-dependent manner, the increase in track length and displacement in response to R848 painting and the resulting accumulation of monocytes inside kidney capillaries (Figures 4A, 4B, and 4D). Thus, fractalkine was upregulated in the kidney, and Gαi chemokine-receptor signaling was required to retain monocytes in the capillaries by preventing their detachment from the endothelium. One obvious candidate to mediate this effect was the fractalkine receptor CX3CR1. Indeed, Cx3cr1 deficiency prevented monocyte retention inside kidney capillaries in response to R848 (Figures 4A–4D). In a steady state, crawling monocytes are present, though they are less abundant in the vasculature of Cx3cr1−/− mice (Auffray et al., 2007)(Figures 4D). In addition, Mac1 (αMβ2 integrin) blockade with neutralizing antibodies, which does not affect “steady-state” crawling behavior (Auffray et al., 2007) (Figure 4D), also prevented the accumulation of monocytes inside kidney capillaries (Figure 4D). Therefore, although Gαi signaling is dispensable for monocyte adhesion in...
In a steady state, it is required in response to R848 in order to prevent the detachment of crawling monocytes and promote their intravascular retention, at least in part via fractalkine and CX3CR1 and \(\alpha \)M integrin.

Intravascular Retention of Monocytes Is CCR2 Independent and Causes Neutrophil Recruitment

Although we did not reproducibly detect crawling granulocytes in the kidney capillaries of WT mice in a steady state by intravitral microscopy or TEM, the above experiments documented independent from laser damage. Similar observations were made in Ccr2-deficient mice (Figure 4G), indicating that CCR2 is largely dispensable for the retention of crawling monocytes and the recruitment of neutrophils. However, both monocyte and neutrophil recruitment were severely decreased in \(\text{Itgal}^{-/-} \), \(\text{Cx3cr1}^{-/-} \), and \(\text{Nr4a1}^{-/-} \)-deficient mice (Figure 4G). Given that neutrophils do not express CX3CR1 and are present in normal numbers in \(\text{Nr4a1}^{-/-} \)-deficient mice, these data provided genetic evidence suggesting that monocytes recruit neutrophils after their retention in the microvasculature of the kidney.
Intravascular Monocytes Orchestrate the Rapid Necrosis and Disposal of Endothelial Cells

TEM indicated that the endothelium of the tubular capillaries was undergoing severe focal damage at sites where monocytes, and neutrophils were retained after TLR7 stimulation. Endothelium thickness was increased (Figures 5 and 6A), and endothelial cells were markedly swollen with rarefaction of the cytoplasm, blebbing from the plasma membrane of cytoplasmic fragments, loss of plasma membrane integrity, and release of cellular debris and damaged organelles, such as mitochondria, whereas the
morphology of nuclei remained largely unchanged (Figures 5 and 6B). In addition, extracellular fluids accumulated in the subendothelial space, separating the endothelial cells from the basal lamina (Figure 6B). In some cases, endothelial cells were detached from the basal lamina and a monocyte was seen in contact with the basal lamina (Figures 6B and S3). Endothelial cell damage was limited to cells adjacent to a monocyte or a neutrophil, and the basal lamina was always preserved (Figure 5A). Monocytes adjacent to the damaged endothelial cells could be observed phagocytosing cellular debris and organelles such as altered mitochondria (Figures 5A and S3). These features corresponded to a “textbook” description of necrosis and also suggested a safe disposal of the endothelial cells debris and organelles by monocytes. Similar features were observed in Ccr2-deficient mice (Figures 5B, 6A, and 6B). In contrast, endothelial damage was absent in Itgal-/-, Cx3cr1-/-, and Nr4a1-/- deficient mice after kidney painting with either PBS or R848 (Figures 5C, 6A, and 6B). Therefore, focal necrosis of endothelial cells and phagocytosis of cellular debris required the presence of leucocytes on the endothelium and was Cx3cr1- and Nr4a1-dependent but largely Ccr2-independent. Altogether, these data indicate that patrolling Nr4a1-dependent monocytes orchestrate and are required for endothelial cell death and scavenging the resulting cellular debris in situ.

The Kidney Endothelium Retains Monocytes, which, In Turn, Recruit Neutrophils that Kill Endothelial Cells

We investigated the signals responsible for monocyte and neutrophil recruitment by TEM and intravitral analysis of TLR7-deficient bone marrow chimeric mice (Figure 6C). Expression of TLR7 on the host, but not on monocytes, was required for their recruitment in the kidney vasculature (Figures 6D and 6E). This indicated that the kidney endothelium recruits monocytes in response to a nucleic acid signal sensed via TLR7, consistent with fractalkine induction by R848 and fractalkine- and CX3CR1-dependent recruitment of monocytes (see Figure 4). However, the efficient recruitment of neutrophils required TLR7 expression on both the host and bone-marrow-derived cells (Figures 6D and 6E). Expression of TLR7 by the kidney and the retention of TLR7-deficient monocytes by the endothelium were not sufficient to recruit neutrophils. These data characterize a sequence of events and the successive requirement of TLR7 on the kidney for the accumulation of monocytes on the endothelium and on hematopoietic cells for the recruitment of neutrophils.

Endothelial cell necrosis was reduced to background levels in Tlr7^{host+/+;BM}−/− mice despite the presence of monocytes (Figure 7A), suggesting either that monocytes require TLR7 to kill endothelial cells or that neutrophils are responsible for endothelial necrosis. Therefore, we selectively depleted neutrophils (by 90%) but not monocytes by intraperitoneal injection of an antibody against Ly6G 1A8 8 hr before R848 painting (Figure 7B). Neutrophil depletion from the periphery resulted in the severe reduction of neutrophils in the kidney, whereas monocytes were still retained (Figure 7C), and mostly abolished endothelial necrosis (Figures 7D and 7E). Therefore, the endothelium recruits monocytes, monocytes recruit neutrophils, and the neutrophils are, in turn, required for endothelial killing.

Consistent with a role of monocytes in recruiting neutrophils in a TLR7-dependent manner, fluorescence-activated cell sorting (FACS)-sorted Ly6C^{low} monocytes displayed a strong MEK-dependent proinflammatory chemokine and cytokine response to R848 in vitro, characterized by the production of the chemokine KC (C-X-C chemokine ligand 1; CXCL1), known to contribute to neutrophil recruitment, as well as several other proinflammatory mediators such as interleukin 1β (IL-1β), TNF, C-C chemokine ligand 3 (CCL3; macrophage inflammatory protein 1α), and interleukin 6 (IL-6) (Figure 7F). Notably, this response appears to be relatively specific, or at least preferential, for TLR7, given that Ly6C^{low} monocytes responded very poorly to LPS stimulation both in vitro and in vivo (Figure S2), which is in contrast to Ly6C⁺ monocytes (Figure 7F) and consistent with data in humans (Cros et al., 2010).

DISCUSSION

A Multistep Process Controls Intravascular Scavenging of the Endothelium and Removal of Endothelial Cells

Our data indicate that intravascular patrolling, mediated by LFA1-ICAM1 interactions and independent of chemokine signaling, represents the first step of monocyte surveillance of the endothelium from its luminal side. TLR7-dependent sensing of a “danger” signal by the kidney cortex then triggers the expression of fractalkine and intravascular retention of Ly6C^{low} monocytes by the endothelium. This process is Gα_i-dependent and requires the fractalkine receptor CX3CR1 expressed by Ly6C^{low} monocytes and the αMβ2 integrin Mac1 (Figure 7G). The subsequent recruitment of neutrophils requires the prior retention of Ly6C^{low} monocytes and the expression of TLR7 by hematopoietic cells. Altogether, our data suggest that the activation of intravascular monocytes via TLR7 in prolonged contact with the endothelium is the mechanism that recruits neutrophils via the production of KC or other proinflammatory mediators. In the last steps, neutrophils, in turn, mediate the focal necrosis of the endothelial cells, and monocytes scavenge cellular debris, all from within the capillary lumen. Phagocytosis of cellular debris suggests the safe disposal of endothelial cells at the site of necrosis. Therefore, Ly6C^{low} monocytes behave as “housekeepers” of the vasculature.

Earlier observations that Ly6C^{low} monocytes crawl on endothelia (Auffray et al., 2007; Hanna et al., 2011; Li et al., 2012; Sumagin et al., 2010) and do not contribute to the pool of inflammatory monocytes that extravasate to give inflammatory macrophages and DCs in response to listeria infection in vivo (Auffray et al., 2007; Geissmann et al., 2003; Serbina et al., 2003b) are consistent with their intravascular function. Their MEK-dependent preferential response to TLR7 agonists is reminiscent of our earlier observation that CD14^{dim} human monocytes selectively respond to viruses and nucleic acids via a TLR7-8 MEK pathway (Cros et al., 2010) and further suggests that Ly6C^{low} and CD14^{dim} monocytes share a common function in mice and humans, respectively.

Neutrophils damage endothelial cells when activated (Villanueva et al., 2011; Westlin and Gimbrone, 1993). There has been recent recognition that apoptosis was not the only mechanism underlying programmed or regulated cell death and that
Figure 7. Neutrophils Kill Endothelial Cells

(A) Endothelial cell microscopic features of chimeric mice described in Figure 6D expressed as the percentage of mononuclear cells (mono) or PMN-containing fields that present with the indicated lesions.

(B) Representative FACS dot plots of peripheral blood cells of mice treated 8 hr earlier with Ly6G-depleting Ab (1A8) or isotype control (2A3). The arrow in the FSC/SSC panel indicates granulocytic cells, the percentage of Lin-CD115+ granulocytes are indicated in red. n = 3 mice per group, mean ± SEM.

(C) Presence of intravascular mononuclear (left) and polymorphonuclear cells (right) as quantified by TEM in mice treated with 1A8 or 2A3 8 hr before kidney painting with R848. n = 3 mice per group, mean ± SEM.

(D) Endothelial cell microscopic features of granulocyte-depleted and control mice. n = 3 mice per group, mean ± SEM.

(E) Representative peritubular capillary containing a monocyte from a 1A8-treated mouse.

(legend continued on next page)
necrotic cell death can occur in vivo (Edinger and Thompson, 2004; Galluzzi and Kroemer, 2008; Green, 2011; Kroemer et al., 2009). Indeed, our data demonstrate that neutrophils can mediate endothelial cell death by necrosis in vivo. Activated neutrophils produce a variety of soluble and membrane-bound mediators that can contribute to necrosis, and additional investigation should explore the exact mechanisms responsible for neutrophil-mediated necrosis of endothelial cells.

Possible Relevance to Vascular Inflammation and Tissue Damage
The several steps that allow Ly6C^{low} monocytes to orchestrate endothelial cell death indicate a tight control of endothelial cell necrosis, which may be useful in avoiding excessive damage. However, as outlined above, it is easy to conceive that this process might become detrimental, particularly if the danger signal persists in situations such as atherosclerosis or systemic lupus erythematosus (SLE). For example, TLR7 is involved in several steps of the pathogenesis of SLE (Barrat et al., 2007; Deane et al., 2007; Vollmer et al., 2005), and subendothelial deposits of nucleic acids in immune complexes are a feature of a proportion of SLE patients (Hill et al., 2001; Hill et al., 2000). Activation of Ly6C^{low} monocytes and their human equivalent was reported in murine models of SLE and human patients (Amano et al., 2005; Nakatani et al., 2010; Santiago-Raber et al., 2009; Cros et al., 2010; Yoshimoto et al., 2007), and CX3CR1 blockade was proposed to reduce monocyte recruitment to the kidney and inflammation (Inoue et al., 2005; Nakatani et al., 2010). Collectively, this literature raises the possibility that, although Ly6C^{low} monocytes would be expected to protect the endothelium, they could also paradoxically contribute to vascular and tissue damage in genetically susceptible individuals.

Revising the Leucocyte Diapedesis Model
Extravasation of leucocytes into inflamed tissues by the means of chemotaxis is a hallmark of inflammation, and it is unclear why monocytes and neutrophils did not extravasate in response to the local TLR7-mediated signal. It is possible that additional signals are needed. However, the accumulation of crawling leucocytes inside blood vessels may not always lead to extravasation (Geissmann et al., 2005; Devi et al., 2013). Metchnikoff (1893)’s description of diapedesis 120 years ago in his ninth lecture on the comparative pathology of inflammation insisted that the accumulation and ameboid locomotion of leucocytes inside blood vessels was not always followed by extravasation. Intravascular leucocytes retained both ameboid motility and chemotaxis, and Metchnikoff (1893) proposed that they sensed and obeyed signals from the inflamed tissues to stay inside blood vessels, a process called “negative chemotaxis.” Whether nucleic acids represent such a negative chemotactic factor in vivo is an interesting hypothesis that could have practical implications. The “choice” between extravasation and intravascular “retention” may also correspond to distinct properties of different leucocyte cell types. It is clear from the present study that the Ly6C^{low} subset of monocytes specializes in surveying the endothelium. Therefore, we suggest that interactions between leucocyte and endothelium may be best described by a revised model that takes into account subset-specific functions, time, and the response to individual stress signals, as opposed to the leucocyte extravasation model alone.

EXPERIMENTAL PROCEDURES

Mice
Mouse strains are described in Extended Experimental Procedures.

Antibodies and Reagents
Antibody clones and reagent manufacturers are described in Extended Experimental Procedures.

Intravital Microscopy and Image Analysis of the Ear, Mesentery, and Kidney
Intravital confocal microscopy of monocytes in the ear and mesentery was performed as previously described (Auffray et al., 2007) with LSM510 Zeiss and SPS Leica inverted microscopes. For intravital imaging of the kidney, we induced anaesthesia with a combination of ketamine, xylazine, and acepromazine, and the kidney was surgically exposed without removing the renal capsule or interrupting the blood flow and placed against a coverslip. Anesthesia was maintained by the inhalation of isoflurane in oxygen, and the animal was imaged for up to 5 hr (see Extended Experimental Procedures). Cells in blood vessels were tracked and analyzed as described in Extended Experimental Procedures.

Transmission Electron Microscopy
The full methods for TEM are described in Extended Experimental Procedures. In brief, kidneys were prepared as for intravital imaging but not illuminated. Instead, after 5 hr, the animal was euthanized and the kidney tissue was fixed in 2.5% gluteraldehyde overnight at 4°C. Samples were processed and sectioned to reveal superficial peritubular capillaries and glomeruli. Mononuclear and polymorphonuclear cells were counted for each grid square imaged. Endothelial thickness was measured from the outer edge of the nearest basal lamina to the lumen of the vessel to the outer edge of the lumenal side of the endothelial cell. We were careful to measure equivalent areas in all vessels. Oncocytic endothelial cells and the related features of subendothelial swelling, basal membrane exposure, mitochondrial abnormality, and phagocytosis were quantified and normalized per image and leucocyte.

Statistical Tests
In the figures, the asterisk represents p ≤ 0.05 in an unpaired Student’s t test. Otherwise, p values from unpaired Student’s t test are indicated.

Flow Cytometry
Flow cytometry was performed as described in Extended Experimental Procedures.

Multiplexed ELISA for In Vitro Cytokine Production
Multiplexed ELISA for in vitro cytokine production was performed as described in Extended Experimental Procedures.

(F) Proinflammatory cytokine production in vitro by sorted Ly6C^{low} and Ly6C⁺ monocytes after 24 hr stimulation with medium alone or R848 (top) in the absence or presence of a MEK inhibitor (PD) or for medium alone or LPS (bottom) in the absence or presence of the MEK inhibitor (PD) (bottom). Multiplexed ELISA, n = 3 mice per condition.

(G) Schematic representation of the molecular and cellular features of the interaction of Ly6C^{low} monocytes with the endothelium in a steady state and TLR7-mediated endothelial “safe disposal.”

Also see Figure S3.
Animal Experiments

Animal experiments were performed in strict adherence to our United Kingdom Home Office project license issued under the Animals (Scientific Procedures) Act 1986.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, three figures, and ten movies and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2013.03.010.

ACKNOWLEDGMENTS

I. Charo, B. Engelhardt and J.V. Stein, and R. Alon kindly provided Ccr2

ICAM1−/− and *ICAM2*−/− mice, respectively. The authors are also indebted to G. Burn and A. Fischer for helpful discussions, to C. Trouillet for the management of the Geissmann lab, and to A. McGuigan and her colleagues from the Biological Service Unit at King’s College London, Guy’s Campus, for support with mouse husbandry. E.G.S. is supported by a PhD fellowship from the Oliver Bird Rheumatism Programme, Nuffield Foundation, UK. Work was supported by grants to F.G. from the Medical Research Council, UK (MR/G0900867), the European Research Council (ERC-2010-StG-261299 MPS2010), and the European Science Foundation (ERC EURYI Award).

Received: September 21, 2012
Revised: January 14, 2013
Accepted: March 5, 2013
Published: April 11, 2013

REFERENCES

Amano, H., Amano, E., Santiago-Raber, M.L., Moll, T., Martinez-Soria, E., Fossati-Jimack, L., Iwamoto, M., Rezzo, S.J., Kotzin, B.L., and Izui, S. (2005). Selective deletion of a monocye subset expressing the CD11c dendirtic cell marker in the Yaa model of systemic lupus erythematosus. Arthritis Rheum. 52, 2790–2798.

Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., Sarnacki, S., Cumanu, A., Lauvau, G., and Geissmann, F. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670.

Auffray, C., Fogg, D.K., Nami-Mancinelli, E., Senechal, B., Trouillet, C., Saderup, N., Leemput, J., Bigot, K., Campisi, L., Abitbol, M., et al. (2009a). CX3CR1+ CD11b+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med. 206, 595–606.

Auffray, C., Sieweke, M.H., and Geissmann, F. (2009b). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692.

Barbalat, R., Lau, U., Locksley, R.M., and Barton, G.M. (2009). Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat. Immunol. 10, 1200–1207.

Barrat, F.J., Meeker, T., Chan, J.H., Guiducci, C., and Coffman, R.L. (2007). Treatment of lupus-prone mice with a dual inhibitor of TLi7 and TLi8 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37, 3582–3586.

Biburger, M., Aschermann, S., Schwab, I., Lux, A., Albert, H., Danzer, H., Woigk, M., Dudziak, D., and Nimmerjahn, F. (2011). Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo. Immunity 35, 932–944.

Boring, L., Gosling, J., Cleary, M., and Charo, I.F. (1998). Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897.

Bos, J.M., Cagnard, N., Woollard, K., Patay, N., Zhang, S.Y., Senechal, B., Puel, A., Biswas, S.K., Moshous, D., Picard, C., et al. (2010). Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLi7 and TLi8 receptors. Immunity 33, 375–386.

Dawson, T.C., Kuziel, W.A., Osahor, T.A., and Maeda, N. (1999). Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 143, 205–211.

de Fougerolles, A.R., Klickstein, L.B., and Springer, T.A. (1993). Cloning and expression of intercellular adhesion molecule 3 reveals strong homology to other immunoglobulin family counter-receptors for lymphocyte function-associated antigen 1. J. Exp. Med. 177, 1187–1192.

Deane, J.A., Pitkun, P., Barrett, R.S., Feigenbaum, L., Town, T., Ward, J.M., Flavell, R.A., and Bolland, S. (2007). Control of toll-like receptor 7 expression is essential to restrict autoimmune and dendritic cell proliferation. Immunity 27, 801–810.

Devi, S., Li, A., Westhorpe, C.L., Lo, C.Y., Abeynaike, L.D., Snelgrove, S.L., Hall, P., Ooi, J.D., Sobey, C.G., Kitching, A.R., and Hickey, M.J. (2013). Multi-photon imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat. Med. 19, 107–112.

Donnelly, D.J., Longbrake, E.E., Shawler, T.M., Kigerl, K.A., Lai, W., Tovar, C.A., Ransohoff, R.M., and Popovic, P.G. (2011). Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6C0/IOS+ macrophages. J. Neurosci. 31, 9910–9922.

Edinger, A.L., and Thompson, C.B. (2004). Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 683–689.

Galluzzi, L., and Kroemer, G. (2008). Necroptosis: a specialized pathway of programmed necrosis. Cell 135, 1161–1163.

Geissmann, F., Jung, S., and Littman, D.R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82.

Geissmann, F., Cameron, T.O., Sidobre, S., Manlongat, N., Kronenberg, M., Briskin, M.J., Dustin, M.L., and Littman, D.R. (2005). Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113.

Green, D.R. (2011). The end and after: how dying cells impact the living organism. Immunity 35, 441–444.

Gunzer, M., Riemann, H., Basoglu, Y., Hillmer, A., Weishaupt, C., Balkow, S., Benninghoff, B., Ernst, B., Steinert, M., Schoelen, A., et al. (2005). Systemic administration of a TLi7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion. Blood 106, 2424–2432.

Hamers, A.A., Vos, M., Rassam, F., Marinikovic, G., Kurakula, K., van Gorp, P.J., de Winthor, M.P., Gijbels, M.J., de Waard, V., and de Vries, C.J. (2012). Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ. Res. 110, 428–438.

Hanna, R.N., Carlin, L.M., Hubbeling, H.G., Nackiewicz, D., Green, A.M., Punt, J.A., Geissmann, F., and Hedrick, C.C. (2011). The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C+ monocytes. Nat. Immunol. 12, 778–785.

Hanna, R.N., Shaked, I., Hubbeling, H.G., Punt, J.A., Wu, R., Herrley, E., Zaugg, C., Pei, H., Geissmann, F., Ley, K., and Hedrick, C.C. (2012). Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ. Res. 110, 416–427.

Hill, G.S., Delahousse, M., Nochy, D., Tomkiewicz, E., Rémy, P., Mignon, F., and Méry, J.P. (2000). A new morphologic index for the evaluation of renal biopsies in lupus nephritis. Kidney Int. 58, 1160–1173.

Hill, G.S., Delahousse, M., Nochy, D., Rémy, P., Mignon, F., and Méry, J.P. (2000). A new morphologic index for the evaluation of renal biopsies in lupus nephritis. Kidney Int. 58, 1160–1173.

Inoue, A., Hasegawa, H., Kohno, M., Ito, M.R., Terada, M., Imai, T., Yoshie, O., Nose, M., and Fujita, S. (2005). Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis Rheum. 52, 1522–1533.

Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, P., Green, D.R., et al.; Nomenclature Committee on Cell Death 2009. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 5–11.
Nimmerjahn, F., Verbeek, J.S., Ravetch, J.V., Takasaki, Y., et al. (2009). J. Exp. Med.

Robben, P.M., LaRegina, M., Kuziel, W.A., and Sibley, L.D. (2005). Recruit-

D.R., Rollins, B.J., Zweerink, H., Rot, A., and von Andrian, U.H. (2001).

Palframan, R.T., Jung, S., Cheng, G., Weninger, W., Luo, Y., Dorf, M., Littman,

Ostermann, G., Weber, K.S., Zernecke, A., Schro¨ der, A., and Weber, C. (2002).

Serbina, N.V., Jia, T., Hohl, T.M., and Pamer, E.G. (2008). Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421–452.

Serbina, N.V., Kuziel, W., Flavell, R., Akira, S., Rolls, B., and Pamer, E.G. (2003a). Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19, 891–901.

Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A., and Pamer, E.G. (2003b). TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70.

Serbina, N.V., and Pamer, E.G. (2006). Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317.

Sumagin, R., Prizant, H., Lomakina, E., Waugh, R.E., and Sarelius, I.H. (2010). LFA-1 and Mac-1 define characteristically different intraluminal crawling and emigration patterns for monocytes and neutrophils in situ. J. Immunol. 185, 693–706.

Tsou, C.L., Peters, W., Si, Y., Slaymaker, S., Aslanian, A.M., Weisberg, S.P., Mack, M., and Charo, I.F. (2007). Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117, 902–909.

Varol, C., Landsman, L., Fogg, D.K., Greenshtein, L., Gildor, B., Margalit, R., Kalchenko, V., Geissmann, F., and Jung, S. (2007). Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180.

Villanueva, E., Yalavarthi, S., Berthier, C.C., Hodgkin, J.B., Khandpur, R., Lin, A.M., Rubin, C.J., Zhao, W., Olsen, S.H., Klinker, M., et al. (2011). Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immuno-stimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552.

Vollmer, J., Tluk, S., Schmitz, C., Hamm, S., Jurk, M., Forsbach, A., Akira, S., Kelly, K.M., Reeves, W.H., Bauer, S., and Krieg, A.M. (2005). Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585.

Westlin, W.F., and Gimbrone, M.A., Jr. (1993). Neutrophil-mediated damage to human vascular endothelium. Role of cytokine activation. Am. J. Pathol. 142, 117–128.

Yoshimoto, S., Nakatani, K., Iwano, M., Asai, O., Samejima, K., Sakan, H., Terada, M., Harada, K., Akai, Y., Shikiz, H., et al. (2007). Elevated levels of fractalkine expression and accumulation of CD16+ monocytes in glomeruli of active lupus nephritis. Am. J. Kidney Dis. 50, 47–58.