The *Escherichia coli* serS gene promoter region overlaps with the *rarA* gene

Kanika Jain*, Tyler H. Stanage, Elizabeth A. Wood*, Michael M. Cox

Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America

* kjain5@wisc.edu

Abstract

Deletion of the entire gene encoding the RarA protein of *Escherichia coli* results in a growth defect and additional deficiencies that were initially ascribed to a lack of RarA function. Further work revealed that most of the effects reflected the presence of sequences in the *rarA* gene that affect expression of the downstream gene, *serS*. The *serS* gene encodes the seryl aminoacyl-tRNA synthetase. Decreases in the expression of *serS* can trigger the stringent response. The sequences that affect *serS* expression are located in the last 15 nucleotides of the *rarA* gene.

Introduction

When a replication fork encounters roadblocks, such as DNA lesions, template strand breaks, or DNA-bound proteins, it can stall. Outcomes may include fork collapse and replisome disassociation [1–11]. These events can have catastrophic consequences for genomic integrity and cell viability, if left unrepaired. In bacteria, estimates vary, but replication forks may stall as often as once per cell generation during normal growth conditions [2,12–20]. Most of the adverse replication fork encounters are resolved using a variety of pathways that do not introduce mutations [2,3,7,9–13,21–26]. Sometimes, a fork skips over the lesion and re-initiates downstream, leaving the lesion behind in what is called as a post-replication gap [4,8,13,27–31]. There appear to be three major paths for filling post-replication gaps in bacteria: (a) RecA-mediated homologous recombination [32–35], (b) translesion DNA synthesis [1,36,37], and (c) a RecA-independent template switching process [38–41]. The *Escherichia coli* RarA protein is required for most of this RecA-independent recombination [41]. More prominently, the RarA protein is involved in the resolution of recombination intermediates as part of an expanded RecFOR pathway for the amelioration of post-replication gaps [66].

The *Escherichia coli* RarA protein is an ATPase in the AAA+ superfamily [42,43]. The *rarA* gene encodes a 447-amino-acid polypeptide with a predicted monomeric mass of 49594 kDa. The protein is part of a highly conserved family. It is absent in archaea but highly conserved from bacteria through eukaryotes, sharing about 40% identity and 56–58% similarity with its *Saccharomyces cerevisiae* (Mgs1) and Homo sapiens (WRNIP1) homologs [42,43]. In *E. coli*, RarA shares 25% amino acid identity with two other proteins: RuvB, a Holliday Junction helicase, and DnaX, a subunit of DNA polymerase III replisome. DnaX encodes for Tau (τ) and
Gamma (γ) components of DNA polymerase III clamp loader complex, placing RarA in the clamp loader AAA+ clade [42,43].

In *E. coli* chromosome, the *rarA* gene is located at 20.21 centisomes (location 937,994→939,337). The *rarA* gene is immediately upstream of an essential gene, *serS*, a serine-tRNA ligase, located at 20.24 centisomes. SerS is among the 20 aminoacyl-tRNA synthetases (aaRSs) or tRNA-ligases present in the cell. aaRSs are the charging portals of tRNAs. They generate a covalent linkage between an amino acid and its cognate tRNA to form an aminoacyl-tRNA complex. The Ribosome acts on this charged tRNA complex and transfers its attached amino acid onto the growing peptide chain—thereby fostering the translation process in the cell. SerS aminoacylates tRNA_{Ser} and tRNA_{Sec} with serine [44,45]. *serS* is mainly regulated by its promoter (serSp1) with a transcription start located at 939,365th position after the end of *rarA* gene [46] (Fig 1).

aaRSs manage the growth and the stringent response in the cell by directly controlling the two interdependent cellular processes: (1) the flux of protein synthesis, and (2) the levels of uncharged tRNAs. The first process—the flux of protein synthesis—is directly dependent on the amount of tRNA aminoacylated by aaRSs. Modifications in aaRSs production impedes cell growth [47,48]. Globally, high levels of uncharged tRNA slow translation kinetics and thereby slow cell growth—both in bacteria and eukaryotes [49–51]. In bacteria, these high levels of uncharged tRNA are detected by the (p)ppGpp synthetase—RelA—which in response induces a stringent response and affects the cell growth [52–54].

Fig 1. Identification of possible promoter/regulatory sequence of *serS* within the *rarA* sequence. Representation of predicted promoter sequences and their location in the last 40 amino acids region of *rarA*.

https://doi.org/10.1371/journal.pone.0260282.g001
SerS is notable as it is inhibited by serine hydroxamate, a small molecule often used by investigators to induce the stringent response [55]. We have found that the complete deletion of the rarA gene slows cell growth, impedes SOS induction, and rescues DNA damage sensitivity of several repair-deficient cells, effects we initially attributed to a lack of RarA function. This initial conclusion was in error. All of these phenotypes disappear when a slightly more modest rarA deletion is used that deletes more than 90% of the coding sequence, all but the last 41 codons. This suggests that regulatory sequences that affect serS expression may be embedded in the rarA coding sequence. Keeping a small portion of the rarA gene, that which encodes C-terminal of RarA, is vital for optimal growth of the E. coli cell. A –35 segment of the serS promoter or some equivalent regulatory sequence appears to be located in the last 15 nucleotides of the rarA gene.

Materials and methods

Strain construction

All strains are E. coli MG1655 derivatives and are listed in Table 1. Some of the rarA strains (rarAN406, rarAN430, rarAN437 and rarAN442) were made using galK+ recombineering method. ΔrarA (EAW98) and all other strains were constructed using Lambda red recombination as described by Datsenko and Wanner [56]. Kanamycin resistance of these strains was removed using FLP recombinase when required [57]. All chromosomal mutations were confirmed using Sanger sequencing. Standard transformation protocols were used to generate strains harboring the indicated plasmids as listed in Table 1.

Plasmid construction

All plasmids were sequenced to confirm the correct mutation(s)/insertion(s) following their construction. pBAD-serS is a pBAD/myc-His A Nde + wt serS. pEAW1176 was constructed by amplifying the wildtype serS gene containing NdeI and BamHI restriction cut sites from the E. coli MG1655 genome in a PCR. pBAD/myc-His A Nde was cut with NdeI and BglII enzymes (BglII creates compatible sticky ends with BamHI), while the PCR product was cut with NdeI and BamHI enzymes. The PCR product was ligated into the pBAD/myc-His A.

Table 1. List of strains used in this study.

Strain	Genotype	Parent strain	Source/Technique
MG1655	rarA+ recA+ exoI+ recF+ recO+ recR+ polB+ dinB+ umuDC+	MG1655	George Weinstock
EAW98	ΔrarA Kan+	MG1655	Lambda RED recombination
EAW974	rarAN406	MG1655	Gal K+ recombineering with no antibiotic markers
EAW968	rarAN430	MG1655	Gal K+ recombineering with no antibiotic markers
EAW1449	rarAN437	MG1655	Gal K+ recombineering with no antibiotic markers
EAW1450	rarAN442	MG1655	Gal K+ recombineering with no antibiotic markers
EAW629	ΔrecF	MG1655	Transduction of MG1655 with P1 grown on ΔrecF
EAW114	ΔrecO	MG1655	Lambda RED recombination
EAW18	ΔdinB	MG1655	Lambda RED recombination
EAW573	ΔrecO ΔrarA	EAW98	Transduction of EAW98 with P1 grown on ΔrecO
THS130	ΔrecF ΔrarA	EAW98	Transduction of EAW98 with P1 grown on ΔrecF
THS13	ΔdinB ΔrarA	EAW98	Transduction of EAW98 with P1 grown on ΔdinB
EAW984	ΔrecO rarAN406	EAW974	Transduction of EAW974 with P1 grown on ΔrecO
EAW989	ΔrecF rarAN406	EAW974	Transduction of EAW974 with P1 grown on ΔrecF
EAW979	ΔdinB rarAN406	EAW974	Transduction of EAW974 with P1 grown on ΔdinB

https://doi.org/10.1371/journal.pone.0260282.t001
a derivative of pRC7 plasmid (a lac+ mini-F low copy derivative of pFZY1) that expresses a WT copy of the \textit{rarA} gene. All plasmid sequences are provided in the S1 File.

Growth curve

A single colony of each indicated strain was inoculated into 3 mL of LB media (10 g L\(^{-1}\) tryptone, 5 g L\(^{-1}\) yeast extract, 10 g L\(^{-1}\) sodium chloride, and 1.1 mL 1N NaOH), which was incubated overnight for 16 h at 37 \(^{\circ}\)C with the orbital shaking at 200 rpm. Overnight cultures were diluted 1:100 in LB medium. In total, 30 \(\mu\)L of the overnight culture was used to inoculate 3 mL of fresh LB. 100 \(\mu\)L of each culture was poured in a clear bottom 96 well plate (Corning). Cultures were grown at 37 \(^{\circ}\)C with continuous orbital shaking at 205 cpm in a BioTek Synergy 2 plate reader. OD\(_{600}\) values were taken every 10 minutes for over the course of 800 minutes. OD\(_{600}\) values were normalized by subtracting out the OD\(_{600}\) value of only LB media. All growth curves represent averaged values from the three biological replicate experiments.

Growth competition assays

Growth competition assays were conducted as previously described \cite{58} using a method originally described by Lenski \cite{59}. The \(\Delta\text{araBAD} \Delta\text{ParaB}\) marker was included on either wild type (MG1655) or mutant (\(\Delta\text{rarA}\)) in separate experiments to control for any effect the marker may have had on cell fitness.

Drug sensitivity assay

Overnight cultures of indicated strains (WT, \(\Delta\text{recO}\), \(\Delta\text{recF}\), \(\Delta\text{dinB}\), \(\Delta\text{rarA}\), \(\Delta\text{rarA}\Delta\text{N406}\), \(\Delta\text{rarA}\Delta\text{recO}\), \(\Delta\text{rarA}\Delta\text{recF}\), \(\Delta\text{rarA}\Delta\text{recO}\)) were diluted 1:100 in fresh LB medium. Cultures were grown at 37 \(^{\circ}\)C with aeration and shaking until the OD\(_{600}\) measured 0.2. 1 mL aliquots were taken from each culture and were serially diluted in 1X PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na\(_2\)HPO\(_4\), 1.8 mM KH\(_2\)PO\(_4\), 1 mM CaCl\(_2\) and 0.5 mM MgCl\(_2\)) to \(10^{-6}\). 10 \(\mu\)L of each dilution were spot plated on LB agar plates containing the indicated drug, NFZ, at the indicated concentrations. For UV sensitivity, cells were exposed to shortwave light (254 nm) using a Spectrolinker XL-1000 UV crosslinker (Spectronics Corp) after spot plating. Plates were incubated overnight at 37 \(^{\circ}\)C and imaged the following day using a FOTO/Analyst Apprentice Digital Camera System (Fotodyne, Inc.). All experiments were conducted at least three times.

SOS induction assay

Plasmid expressing the Green Fluorescent Protein (GFP) under the regulation of \textit{recN} promoter (pEAW903) was used in this assay. First, either empty vector (pQBi63) or pEAW903 was transformed into the appropriate strains (WT, \(\Delta\text{rarA}\), or \(\Delta\text{rarA}\Delta\text{N406}\)) and the transformants were selected on Amp100 (100 \(\mu\)g/ml) plates. The transformants were then grown in 3 ml of LB + Amp100 medium overnight at 37 \(^{\circ}\)C. The next day, the cultures were diluted in 1:1000 ratio in LB + Amp100 broth and 150 \(\mu\)L of sample were poured into each well of a 96-well plate (Corning Incorporated/Costar) and put into the plate reader (Synergy H1 Hybrid Reader by BioTek). The samples were allowed to grow for 1000 mins at 37 \(^{\circ}\)C, with OD\(_{600}\) and GFP fluorescence (488/515 nm) recorded at every 10 minutes. Relative fluorescence was calculated by normalizing the fluorescence reading to the OD\(_{600}\) of the culture.

Analysis of cell shape: Bright field microscopy

All cells were grown overnight at 37 \(^{\circ}\)C and the saturated culture diluted in 1:100 ratio and grown in LB media till O.D. reaches 1.0. 200 \(\mu\)L of culture were then pelleted down,
resuspended in 1XPBS buffer and incubated with 2 μl of FM-64 dye (0.33 M) on ice for at least 30 mins. For imaging, 2 μl of this mixture were loaded onto 0.16 mm thick borosilicate glass made coverslips (Azer scientific) and sandwiched with 1% agarose gel pad. For all measurements of cell size and filamentation, wide-field microscopy was conducted on a STORM/TIRF inverted microscope ECLIPSE Ti-E (Nikon) (100× objective). Images using DIA and dsRed filters were collected on an ORCA Flash 4.0 Hamamatsu camera. A bright-field and dsRed image (at 100 ms and 50 ms exposure respectively) were taken at multiple fields of view to determine the cell shape and length. For analysis, all images were imported into MicrobeJ, an ImageJ plugin, to outline cells. Selected cells were manually filtered for any outliers. All strains were imaged in triplicates and the cell size of each strain is averaged compiling each repeat.

Results

It is well documented that RarA-family proteins are involved in the maintenance of genome stability in cells from bacteria to human, but the precise function of these proteins and mechanism of action remains an enigma. To identify the phenotypic contribution of RarA in bacterial cells, we created a MG1655 derivative carrying a full deletion of the rarA allele. No growth or viability phenotype has previously been ascribed to strains with a rarA gene deletion [42,43,60–62]. Previous work has focused on a modified rarA gene in which a chloramphenicol cassette has replaced either the first 600 nucleotides of the rarA gene [42,43,60,61] or codons 113–349 [62], both in an E. coli AB1157 background. As most of our constructs are based on E. coli strain MG1655, we constructed a complete rarA gene deletion in the MG1655 background using Datsenko and Wanner method [56] (Fig 2A), and then studied the effect of this deletion on cell fitness. In the following discussion, ΔrarA refers to the complete deletion of the gene encoding RarA protein.

Complete deletion of rarA causes a growth defect and reduced cell size of MG1655 E. coli cells

Using a plate reader, we noted and compared the growth of the ΔrarA strain to wild type cells at 37˚C every 10 mins for 18hrs. The ΔrarA cells grew more slowly than wild type cells. (Fig 2B). To document the growth defect of the ΔrarA mutant with a different and more sensitive method, we carried out a direct competition assay between the wild type strain and the ΔrarA strain, using an approach developed by Lenski and colleagues [59]. (Fig 2C). Wild type or mutant cells were modified to carry a neutral Ara–mutation (which confers a red color on colonies when grown on tetrazolium arabinose (TA) indicator plates) to permit color-based scoring of mixed populations. Overnight cultures of the ΔrarA strain were mixed in a 50/50 ratio with isogenic wild type cells carrying the Ara–mutation, or vice versa. The mixed culture was then diluted and grown up again on successive days, with plating to count red and white colonies occurring once each day. Earlier work [59,63] demonstrated that the Ara–mutation does not affect growth rates by itself. We found that the wild type cells outgrew the ΔrarA cells and dominated the mixed cultures almost completely within 24 hours (Fig 2C). We further investigated the phenotypic dissimilarities between ΔrarA and WT cells using bright field microscopy. We observed that ΔrarA cells were substantially smaller than rarA+ cells (1.58 μm [SEM = 0.01] versus 2 μm [SEM = 0.01] in length) (Fig 2D). RarA is well documented as a vital player in the DNA recombination and repair process. Suppressing the DNA repair system exerts stress response in the cell. With the data collected above, we presumed that the complete deletion of rarA impedes the damage tolerance capability of the cells that results in a significant growth impact.
Fig 2. Complete deletion of rarA (ΔrarA) causes a growth defect in E. coli cell. (A) Schematic of a complete deletion of rarA via a FLP recombinase method in E. coli chromosome. The rarA gene segment is replaced by a Kan cassette. (B) Growth curve: Deletion of complete rarA gene exhibit growth defect. (C) Growth competition: ΔrarA is outcompeted by WT cells. (D) Average cell size of ΔrarA cells decreases compared to WT cells. (E) Addition of pRC7-rarA, carrying WT rarA copy, in ΔrarA cell does not rescue its growth defect. (F) Overexpression of serS using pBAD vector rescues the growth defect of ΔrarA cells (blue line). Error bars on the graph and in reported doubling times represent the standard deviation of at least three independent repeats carried out on the same day in the same microtiter plate. Each experiment was also repeated on three different days (each time in triplicate) with consistent results to confirm the phenotype.

https://doi.org/10.1371/journal.pone.0260282.g002
Phenotypic defects of ΔrarA cells are attributed to lower expression of the serS gene

For further affirmation of the results obtained above, we performed a complementation test. The pRC7 plasmid carrying a wild type copy of rarA along with ampicillin marker is employed in this study. We incorporated this plasmid into a ΔrarA strain and tested its growth rate. Surprisingly, we observed no rescue of the growth defect even in the presence of wild-type copy of rarA on the plasmid (Fig 2E). This observation signals that the growth defect observed earlier is not directly associated with the absence of rarA but might be an outcome of that deletion on other growth-related genes.

Based on the genomic location position of rarA, we hypothesized that the growth defect might be ascribed to the defect in the closest downstream essential gene—serS. It is well documented that the addition of SHX (serine hydroxamate), an inhibitor of the serRS gene, causes growth defects in E. coli cells even under the nutrient rich conditions [55]. Changes in the levels of serS are expected to alter the levels of charged to uncharged tRNA ratios and thereby the cell growth. Decreased cell viability of a ΔrarA strain could be a result of the decreased serS levels in the cell. To test this hypothesis, we incorporated a plasmid overexpressing serS in ΔrarA cells. Overproduction of serS rescued the growth defect of ΔrarA cells (Fig 2F). This result signals the presence of promoter element/regulatory sequence for the serS gene within the coding region of a rarA gene. Removal of that segment impacts the level of SerS in the cell.

Using the multi-genome browser of Ecocyc, we next searched for the orthologs of rarA in a broad range of organisms and then mapped the extent to which those orthologs have maintained their genetic context relative to E. coli. It revealed that the positioning of the serS gene—right downstream of the rarA gene locus—exists only in γ-proteobacteria class of the Proteobacteria phylum (Fig 3). Conservation of this proximity between rarA and serS genes across this class indicates their possible interconnection in other organisms of this class as well.

Fig 3. Multiple genome sequence alignment to identify orthologs of rarA, and the conservation of its genetic context in other organisms. Conservation of proximity between rarA and serS genes in γ-proteobacteria class was identified.

https://doi.org/10.1371/journal.pone.0260282.g003
Identification of promoter/regulatory sequence for *serS* gene in *rarA* sequence

We next aimed to identify the segment within the *rarA* gene that is controlling the *serS* expression under normal conditions. We constructed various *rarA* mutations differing in the number of nucleotides deleted from the N-terminus of the *rarA* to figure out the minimum region of *rarA* required to remain intact to mitigate the growth defect of Δ*rarA* cells. The GalK + recombineering method was used instead of the Datensko Warner method to avoid any effect of the kanamycin cassette sequence on the *serS* expression. We created four variants—rarAΔN406, rarAΔN430, rarAΔN437, and rarAΔN442, leaving 41, 17, 10, and 5 C-terminal codons intact respectively, and studied their growth and cell morphology profiles (Fig 4A). Interestingly, none of these mutants showed any growth adversity like Δ*rarA* (Fig 4B and 4C). However, the creation of complete deletion of *rarA* via galK recombineering method failed.

Fig 4. Analysis of the effect of various *rarA* deletion (rarAΔN406, rarAΔN430, rarAΔN437, and rarAΔN442) on the growth and cell size. (A) Schematic of *rarA* gene, highlighting the possible promoter regions and positions of different deletions made. (B) Growth curve: ΔrarAΔN406, ΔrarAΔN430, ΔrarAΔN437, ΔrarAΔN442 does not exhibit a growth defect (C) Cell size: rarAΔN406, rarAΔN430, rarAΔN437, rarAΔN442 has cell morphology comparable to WT.

https://doi.org/10.1371/journal.pone.0260282.g004
This indicates that there exists a possible promoter or regulatory sequence for serS within the last 5 codons of rarA—deletion of which hampers the serS expression and thereby the growth of the cell. The serS gene is mainly regulated by its promoter (serSp1) with a transcription start located at 28 nucleotides downstream from the end of rarA gene [46,64]. Tracing back its possible promoter region, we suspected that the –10 region for this serSp1 is located at ~14 nucleotide from the rarA gene end. This overlaps with the previously identified σ70 promoter of serS [64]. No information about the -35 region of this promoter has been presented previously. The most likely -35 hexamer sequence for serSp1 was analyzed using the Salis lab promoter calculator [65]. We suspected that the –35 is located (although there is no good consensus –35 there) within the last ~15 nucleotides of the rarA gene (Fig 1). A –35 segment of the serS promoter or some equivalent regulatory sequence within this last segment of rarA gene makes the complete deletion of rarA an infeasible option in the E. coli cell.

Consequences of ΔrarA on the damage sensitivity of cells compromised with defects in other DNA repair systems

We tested the drug sensitivity of ΔrarA cell alone and it in combination with other repair systems. The absence of a complete rarA sequence itself does not increase the cell sensitivity to DNA damaging agents like UV or NFZ. Removal of a RecA-loading system like RecF or RecO, however, increases cells’ sensitivity to UV irradiation, as observed previously [66–70]. Interestingly, deletion of rarA in a ΔrecF or ΔrecO background rescues their damage sensitivity. Complete deletion of rarA in Δpol IV background also decreases the sensitivity of pol IV- cells to both UV and NFZ induced damages (S1 Fig). Moreover, we observed that the SOS response is also induced in ΔrarA cells, both with and without external damaging conditions (UV treatment). The induction was much higher than a WT cell (S2 Fig). Interestingly, none of these results were replicated when the ΔrarA N406 background was used instead of ΔrarA.

With all these observations, we confirmed that the phenotype observed upon the complete deletion of rarA is attributed to the decreased levels of serS in the cell. A decreased level of serS could cause a stringent response which activates the level of ppGpp. High levels of ppGpp act by rescuing the stalled RNA polymerases. The rescue of Δpol IV/ΔrecF/ΔrecO cells’ drug sensitivity upon deletion of ΔrarA may be due to the rescue of stalled RNA polymerases, an outcome of the action of high levels of ppGpp in ΔrarA cells. High SOS levels could also be a repercussion of this same phenomenon. Deletion of all but the last 41 codons of rarA eliminates all these phenotypes.

Discussion

The major conclusion of this work is straightforward. Genetic elements affecting the expression of the serS gene are embedded in the final five codons of the upstream rarA gene. Upon complete deletion of rarA, we had documented a variety of phenotypic effects (supplementary data) that we initially attributed to a loss of rarA function. These disappeared when we made use of rarA deletions that encompasses most but not all of the gene. We now attribute the effects to changes in serS expression, possibly reflecting some aspect of a stringent response.

The serS promoter element that is within the rarA gene has not been identified precisely. The region in question is positioned so as to potentially include a –35 region for the promoter. However, no –35 consensus is evident.

Supporting information

S1 Fig. Consequence of complete deletion of rarA on DNA damage sensitivity of the cell. (A) Complete deletion of rarA is able to rescue the sensitivity of ΔrecF and ΔrecO to UV and
ΔdinB to NFZ. (B) Incorporation of ΔrarAN406 does not rescue the sensitivity of ΔrecF and ΔrecO to UV and ΔdinB to NFZ.

(TIFF)

S2 Fig. SOS induction is highly induced on UV exposure in cells carrying complete deletion of rarA from the cell. Complete deletion of rarA induces SOS response more than WT cell, in presence and absence of UV exposure.

(TIFF)

S1 File. Sequences of all plasmids (pEAW1012, pEAW1176, and pEAW903) used.

(DOCX)

S2 File. List of possible TSS, -10 hexamer, and -35 hexamer sites for serS in the last 100 nucleotides of rarA and the following 100 nucleotides downstream of rarA gene, predicted via a Salis lab promoter calculator.

(XLSX)

Author Contributions

Conceptualization: Kanika Jain, Tyler H. Stanage, Michael M. Cox.

Data curation: Kanika Jain.

Formal analysis: Kanika Jain.

Funding acquisition: Michael M. Cox.

Investigation: Kanika Jain, Tyler H. Stanage, Elizabeth A. Wood.

Methodology: Kanika Jain, Tyler H. Stanage, Elizabeth A. Wood.

Project administration: Kanika Jain, Michael M. Cox.

Resources: Michael M. Cox.

Supervision: Michael M. Cox.

Validation: Kanika Jain, Tyler H. Stanage, Elizabeth A. Wood, Michael M. Cox.

Visualization: Kanika Jain.

Writing – original draft: Kanika Jain, Michael M. Cox.

Writing – review & editing: Kanika Jain, Tyler H. Stanage, Elizabeth A. Wood, Michael M. Cox.

References

1. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ. The importance of repairing stalled replication forks. Nature. 2000; 404(6773):37–41. https://doi.org/10.1038/35003501 PMID: 10716434

2. Cox MM. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annual Review of Genetics. 2001; 35:53–82. https://doi.org/10.1146/annurev.genet.35.102401.090016 PMID: 11700277

3. Kowalczykowski SC. Initiation of genetic recombination and recombination-dependent replication. Trends in Biochemical Sciences. 2000; 25:156–65. https://doi.org/10.1016/s0968-0004(00)01569-3 PMID: 10754547

4. Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiology & Molecular Biology Reviews. 1999; 63(4):751–813. https://doi.org/10.1128/MMBR.63.4.751-813.1999 PMID: 10585965
5. Kuzminov A. Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98(15):8241–6. https://doi.org/10.1073/pnas.1013769100

6. Michel B. Replication fork arrest and DNA recombination. Trends in Biochemical Sciences. 2000; 25:173–8. https://doi.org/10.1016/s0968-0004(00)01560-7 PMID: 10754549

7. Michel B, Boubakri H, Baharoug Z, LeMasson M, Lestini R. Recombination proteins and rescue of arrested replication forks. DNA Repair. 2007; 6(7):967–80. https://doi.org/10.1016/j.dnarep.2007.02.016 PMID: 17395553

8. Heller RC, Marians KJ. Replication fork reactivation downstream of a blocked nascent leading strand. Nature. 2001; 412(6846):557–61. https://doi.org/10.1038/35087613 PMID: 11484058

9. Klein HL, Kreuzer KN. Replication, recombination, and repair: going for the gold. Molecular Cell. 2002; 9(3):471–80. https://doi.org/10.1016/s1097-2765(02)00493-8 PMID: 11931756

10. Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature. 2001; 412(6846):557–61. https://doi.org/10.1038/35087613 PMID: 11484058

11. Merrikh H, Zhang Y, Grossman AD, Wang JD. Replication-transcription conflicts in bacteria. Nature Reviews Microbiology. 2012; 10(7):449–58. https://doi.org/10.1038/nrmicro2800 PMID: 22669220

12. Cox MM. Recombinational DNA repair in bacteria and the RecA protein. Progress in Nucleic Acids Research and Molecular Biology. 2000; 63:311–66.

13. Cox MM. The nonmutagenic repair of broken replication forks via recombination. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis. 2002; 510(1–2 Special Issue SI):107–20. https://doi.org/10.1016/s0027-5107(02)00256-7 PMID: 12459447

14. Kuzminov A. Collapse and repair of replication forks in Escherichia coli. Molecular Microbiology. 1995; 16(3):373–84. https://doi.org/10.1111/j.1365-2958.1995.tb02403.x PMID: 7565099

15. McCool JD, Long E, Petrosino JF, Sandler HA, Rosenberg SM, Sandler SJ. Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Molecular Microbiology. 2004; 53(5):1343–57. https://doi.org/10.1111/j.1365-2958.2004.04225.x PMID: 15387814

16. Michel B, Flores MJ, Vigueras E, Grompone G, Seigneur M, Bidnenko V. Rescue of arrested replication forks by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98(15):8181–8. https://doi.org/10.1073/pnas.11008798 PMID: 11459951

17. Michel B, Grompone G, Flores MJ, Bidnenko V. Multiple pathways process stalled replication forks. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(35):12783–8. https://doi.org/10.1073/pnas.0401586101 PMID: 15328417

18. Syeda AH, Hawkins M, McGlynn P. Recombination and Replication. Cold Spring Harbor Perspectives in Biology. 2014; 6(11). https://doi.org/10.1101/cshperspect.a016550 PMID: 25341917

19. Mangiameli SM, Veit BT, Merrikh H, Wiggins PA. The Replisomes Remain Spatially Proximal throughout the Cell Cycle in Bacteria. PLoS Genetics. 2017; 13(1):e006582.

20. Courcelle J, Wendel BM, Livingstone DD, Courcelle CT. RecBCD is required to complete chromosomal replication: implications for double-strand break frequencies and repair mechanisms. DNA Repair. 2015; 32:86–95. https://doi.org/10.1016/j.dnarep.2015.04.018 PMID: 26003632

21. Kuzminov A. DNA replication meets genetic exchange: Chromosomal damage and its repair by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98(15):8461–6. https://doi.org/10.1073/pnas.1519808101 PMID: 11459990

22. Kuzminov A, Stahl FW. Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes & Development. 1999; 13(3):345–56. https://doi.org/10.1101/gad.13.3.345 PMID: 9990858

23. Michel B, Recchia GD, Penel-Colin M, Ehrlich SD, Sherratt DJ. Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Molecular Microbiology. 2000; 37(1):180–91. https://doi.org/10.1046/j.1365-2958.2000.01989.x PMID: 10931315

24. Heller RC, Marians KJ. Replication fork reactivation downstream of a blocked nascent leading strand. Nature. 2006; 439(7076):557–62. https://doi.org/10.1038/nature04329 PMID: 16452972

25. Mirkin EV, Mirkin SM. Replication fork stalling at natural impediments. Microbiology and Molecular Biology Reviews. 2007; 71(1):13–35. https://doi.org/10.1128/MMBR.00030-06 PMID: 17394717

26. Aguilera A, Garcia-Muse T. Causes of genome instability. Annual Review of Genetics. Vol. 47. 2013; 47:1–32. https://doi.org/10.1146/annurev-genet-111212-133232 PMID: 23909437
27. Branzei D, Szakal B. Building up and breaking down: mechanisms controlling recombination during replication. Critical Reviews in Biochemistry and Molecular Biology. 2017; 52(4):381–94. https://doi.org/10.1080/10409238.2017.1304355 PMID: 28325102

28. Rothman RH, Clark AJ. Defective excision and postreplication repair of UV-damaged DNA in a recL mutant strain of E. coli K-12. Molecular & General Genetics. 1977; 155(3):267–77.

29. Goodman MF. The discovery of error-prone DNA polymerase V and its unique regulation by RecA and ATP. The Journal of biological chemistry. 2014; 289(39):26772–82. https://doi.org/10.1074/jbc.X114.607374 PMID: 25160630

30. Umezu K, Chi NW, Kolodner RD. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proceedings Of The National Academy Of Sciences Of The United States Of America. 1993; 90(9):3875–9. https://doi.org/10.1073/pnas.90.9.3875 PMID: 8483906

31. Umezu K, Kolodner RD. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem. 1994; 269(47):30005–13. PMID: 7962001

32. Bork JM, Cox MM, Inman RB. The RecOR proteins modulate RecA protein function at 5’ ends of single-stranded DNA. EMBO Journal. 2001; 20(24):7313–22.

33. Fuchs RP. Tolerance of lesions in E. coli. Chronological competition between translesion synthesis and damage avoidance. DNA Repair. 2016; 44:51–8. https://doi.org/10.1016/j.dnarep.2016.05.006 PMID: 27321147

34. Grompone G, Sanchez N, Ehrlich SD, Michel B. Requirement for RecFOR-mediated recombination in priA mutant. Molecular Microbiology. 2004; 52(2):551–62. https://doi.org/10.1111/j.1365-2958.2004.03997.x PMID: 15066040

35. Kuzminov A. RuvA, RuvB and RuvC proteins: cleaning-up after recombinational repairs in E. coli. EMBO Journal. 2001; 20(24):7313–22.

36. Keleser IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, et al. EcoCyc: a comprehensive database of Escherichia coli/biology. Nucleic Acids Res. 2011; 39 (Database issue):D583–90. https://doi.org/10.1093/nar/gkq1143 PMID: 21097882
47. Bremer H, Dennis PP. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates. EcoSal Plus. 2008; 3(1). https://doi.org/10.1128/ecosal.5.2.3 PMID: 26443740

48. Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, et al. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol. 2016; 2:16231. https://doi.org/10.1038/nmicrobiol.2016.231 PMID: 27941827

49. Hinnebusch AG. TRANSLATIONAL REGULATION OF GCN4 AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology. 2005; 59(1):407–50. https://doi.org/10.1146/annurev.micro.59.031805.133833 PMID: 16153175

50. Potrykus K, Cashel M. (p)ppGpp: Still Magical? Annual Review of Microbiology. 2008; 62(1):35–51. https://doi.org/10.1146/annurev.micro.62.081307.162903 PMID: 18456429

51. Srivatsan A, Wang JD. Control of bacterial transcription, translation and replication by (p)ppGpp. Current Opinion in Microbiology. 2008; 11(2):100–5. https://doi.org/10.1016/j.mib.2008.02.001 PMID: 18359660

52. Gourse RL, Chen AY, Gopalakrishnan S, Sanchez-Vazquez P, Myers A, Ross W. Transcriptional Responses to ppGpp and DksA. Annual Review of Microbiology. 2018; 72(1):163–84. https://doi.org/10.1146/annurev-micro-090817-062444 PMID: 30200857

53. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nature Reviews Microbiology. 2015; 13(5):298–309. https://doi.org/10.1038/nrmicro3448 PMID: 25853779

54. Liu KQ, Bittner AN, Wang JD. Diversity in (p)ppGpp metabolism and effectors. Current Opinion in Microbiology. 2015; 24:72–9. https://doi.org/10.1016/j.mib.2015.01.012 PMID: 25636134

55. Tosa T, Pizer Lewis I. Effect of Serine Hydroxamate on the Growth of Escherichia coli. Journal of Bacteriology. 1971; 106(3):966–71. https://doi.org/10.1128/jb.106.3.966-971.1971 PMID: 4934071

56. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97(12):6640–5. https://doi.org/10.1073/pnas.120163297 PMID: 10829079

57. Huang LC, Wood EA, Cox MM. Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system. Journal of Bacteriology. 1997; 179(19):6076–83. https://doi.org/10.1128/jb.179.19.6076-6083.1997 PMID: 9324255

58. Kim T, Chitteni-Pattu S, Cox BL, Wood EA, Sandler SJ, Cox MM. Directed evolution of RecA variants with enhanced capacity for conjugal recombination. PLoS Genet. 2015; 11(6):e1005278. https://doi.org/10.1371/journal.pgen.1005278 PMID: 26047498

59. Lenski RE. Quantifying fitness and gene stability in microorganisms. Biotechnology. 1991; 15:173–92. https://doi.org/10.1038/nmicrobiol.2016.231 PMID: 27941827

60. Lestini R, Michel B. UvrD controls the access of recombinational proteins to blocked replication forks. EMBO J. 2007; 26(16):3804–14. https://doi.org/10.1038/sj.emboj.7601804 PMID: 17641684

61. Michel B, Sinha AK. The inactivation of rfaP, rarA or sspA gene improves the viability of the Escherichia coli DNA polymerase III holD mutant. Molecular Microbiology. 2017; in press. https://doi.org/10.1111/mmi.13677 PMID: 28342235

62. Shibata T, Hishida T, Kubota Y, Han YW, Iwasaki H, Shinagawa H. Functional overlap between RecA and MgsA (RarA) in the rescue of stalled replication forks in Escherichia coli. Genes to Cells. 2005; 10(3):181–91. https://doi.org/10.1111/j.1365-2443.2005.00831.x PMID: 15743409

63. Byrne RT, Chen SH, Wood EA, Cabot EL, Cox MM. Surviving extreme exposure to ionizing radiation: Escherichia coli genes and pathways. Journal of Bacteriology. 1996; 196:3534–45. https://doi.org/10.1128/JB.01589-14 PMID: 25049088

64. Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, et al. Genome-Wide Identification of Transcription Start Sites, Promoters and Transcription Factor Binding Sites in E. coli. PLOS ONE. 2009; 4(10):e7526. https://doi.org/10.1371/journal.pone.0007526 PMID: 19838305

65. Fleur TL, Hossain A, Salis HM. Automated Model-Predictive Design of Synthetic Promoters to Control Transcriptional Profiles in Bacteria. bioRxiv. 2021;2021.09.01.458661.

66. Jain K, Wood EA, Cox MM. The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG and recQ. PLOS Genetics. 2021; 17(12): e1009972. https://doi.org/10.1371/journal.pgen.1009972 PMID: 34936656

67. Bihan MA, Sandler SJ, Armengod ME, Ream LW, Clark AJ. Molecular analysis of the recF gene of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 1984; 81 15:4622–6. https://doi.org/10.1073/pnas.81.15.4622 PMID: 6379647

68. Courcelle J, Hanawalt PC. Participation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination. Proceedings of the National Academy
of Sciences of the United States of America. 2001; 98(15):8196–202. https://doi.org/10.1073/pnas.121008898 PMID: 11459953

69. Keller KL, Overbeck-Carrick TL, Beck DJ. Survival and induction of SOS in *Escherichia coli* treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination. Mutat Res. 2001; 486(1):21–9. https://doi.org/10.1016/s0921-8777(01)00077-5 PMID: 11356333

70. Lloyd RG, Porton MC, Buckman C. Effect of *recF, recJ, recN, recO* and *ruv* mutations on ultraviolet survival and genetic recombination in a *recD* strain of *Escherichia coli* K12. Molecular And General Genetics. 1988; 212(2):317–24. https://doi.org/10.1007/BF00334702 PMID: 2841571