A Lloyd-model generalization: Conductance fluctuations in one-dimensional disordered systems

J. A. Méndez-Bermúdez, 1 A. J. Martínez-Mendoza, 1, 2 V. A. Gopar, 3 and I. Varga 2

1 Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
2 Elméleti Fizika Tanszék, Fizikai Intézet, Budapesti Műszaki és Gazdaságtudományi Egyetem, H-1521 Budapest, Hungary
3 Departamento de Física Teórica, Facultad de Ciencias, and IFFI, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain

(Dated: February 27, 2018)

We perform a detailed numerical study of the conductance G through one-dimensional (1D) tight-binding wires with on-site disorder. The random configurations of the on-site energies ϵ of the tight-binding Hamiltonian are characterized by long-tailed distributions: For large ϵ, $P(\epsilon) \sim 1/\epsilon^{1+\alpha}$ with $\alpha \in (0, 2)$. Our model serves as a generalization of 1D Lloyd’s model, which corresponds to $\alpha = 1$. First, we verify that the ensemble average $\langle - \ln G \rangle$ is proportional to the length of the wire L for all values of α, providing the localization length ξ from $\langle - \ln G \rangle = 2L/\xi$. Then, we show that the probability distribution function $P(G)$ is fully determined by the exponent α and $\langle - \ln G \rangle$. In contrast to 1D wires with standard white-noise disorder, our wire model exhibits bimodal distributions of the conductance with peaks at $G = 0$ and 1. In addition, we show that $P(\ln G)$ is proportional to G^β, for $G \to 0$, with $\beta \leq \alpha/2$, in agreement to previous studies.

PACS numbers: 72.10.-d, 72.15.Rn, 73.21.Hb

I. INTRODUCTION AND MODEL

The recent experimental realizations of the so-called Lévy glasses [1] as well as “Lévy waveguides” [2] has refreshed the interest in the study of systems characterized by Lévy-type disorder (see for example Refs. [3–15]). That is, disorder characterized by random variables $\{\epsilon\}$ whose density distribution function exhibits a slowly decaying tail:

$$P(\epsilon) \sim \frac{1}{\epsilon^{1+\alpha}},$$

for large x, with $0 < \alpha < 2$ (this kind of probability distributions are known as α-stable distributions [16]). In fact, the study of this class of disordered systems dates back to Lloyd [17], who studied spectral properties of a three-dimensional (3D) lattice described by a 3D tight-binding Hamiltonian with Cauchy-distributed on-site potentials [which corresponds to the particular value $\alpha = 1$ in Eq. (1)]. Since then, a considerable number of works have been devoted to the study of spectral, eigenfunction, and transport properties of Lloyd’s model in its original 3D setup [18–27] and in lower dimensional versions [26–43].

Of particular interest is the comparison between the one-dimensional (1D) Anderson model (1DAM) [44] and the 1D Lloyd’s model, since the former represents the most prominent model of disordered wires [45]. Indeed, both models are described by the 1D tight-binding Hamiltonian:

$$H = \sum_{n=1}^{L} \epsilon_n | n \rangle \langle n | - \nu_{n,n+1} | n \rangle \langle n + 1 | - \nu_{n,n-1} | n \rangle \langle n - 1 |;$$

where L is the length of the wire given as the total number of sites n, ϵ_n are random on-site potentials, and $\nu_{n,m}$ are the hopping integrals between nearest neighbors (which are set to a constant value $\nu_{n,n\pm 1} = \nu$). However, while for the standard 1DAM (with white-noise on-site disorder $\langle \epsilon_n \epsilon_m \rangle = \sigma^2 \delta_{nm}$ and $\langle \epsilon_n \rangle = 0$) the on-site potentials are characterized by a finite variance $\sigma^2 = \langle \epsilon_n^2 \rangle$ (in most cases the corresponding probability distribution function $P(\epsilon)$ is chosen as a box or a Gaussian distribution), in the Lloyd’s model the variance σ^2 of the random on-site energies ϵ_n diverges since they follow a Cauchy distribution.

It is also known that the eigenstates Ψ of the infinite 1DAM are exponentially localized around a site position n_0 [45]:

$$|\Psi_n| \sim \exp \left(- \frac{|n-n_0|}{\xi} \right);$$

where ξ is the eigenfunction localization length. Moreover, for weak disorder ($\sigma^2 \ll 1$), the only relevant parameter for describing the statistical properties of the transmission of the finite 1DAM is the ratio L/ξ [46], a fact known as single parameter scaling. The above exponential localization of eigenfunctions makes the transmission or dimensionless conductance G exponentially small, i.e., [47]

$$\langle - \ln G \rangle = \frac{2L}{\xi};$$

thus, this relation can be used to obtain the localization length. Remarkably, it has been shown that Eq. (4) is also valid for the 1D Lloyd’s model [41] implying a single parameter scaling, see also [38].

It is also relevant to mention that studies of transport quantities through 1D wires with Lévy-type disorder, different from the 1D Lloyd’s model, have been reported. For example, wires with scatterers randomly
spaced along the wire according to a Lévy-type distribution were studied in Refs. [3, 4, 48, 49]. Concerning the conductance of such wires, a prominent result reads that the corresponding probability distribution function \(P(G) \) is fully determined by the exponent \(\alpha \) of the power-law decay of the Lévy-type distribution and the average (over disorder realizations) \(\langle -\ln G \rangle [48, 49] \); i.e., all other details of the disorder configuration are irrelevant. In this sense, \(P(G) \) shows universality. Moreover, this fact was already verified experimentally in microwave random waveguides [2] and tested numerically using the tight-binding model of Eq. (2) with \(\epsilon_n = 0 \) and off-diagonal Lévy-type disorder [50] (i.e., with \(\nu_{n,m} \) in Eq. (2) distributed according to a Lévy-type distribution).

It is important to point out that 1D tight-binding wires with power-law distributed random on-site potentials, characterized by power-laws different from \(\alpha = 1 \) (which corresponds to the 1D Lloyd’s model), have been scarcely studied; for a prominent exception see [41]. Thus, in this paper we undertake this task and study numerically the conductance though disordered wires defined as a generalization of the 1D Lloyd’s model as follows. We shall study 1D wires described by the Hamiltonian of Eq. (2) having constant hopping integrals, \(\nu_{n,n+1} = \nu = 1 \), and random on-site potentials \(\epsilon_n \) which follow a Lévy-type distribution with a long tail, like in Eq. (1) with \(0 < \alpha < 2 \). We name this setup the 1DAM with Lévy-type on-site disorder. We note that when \(\alpha = 1 \) we recover the 1D Lloyd’s model.

Therefore, in the following section we shall show that (i) the conductance distribution \(P(G) \) is fully determined by the power-law exponent \(\alpha \) and the ensemble average \(\langle -\ln G \rangle \); (ii) for \(\alpha \leq 1 \) and \(\langle -\ln G \rangle \sim 1 \), bimodal distributions for \(P(G) \) with peaks at \(G \sim 0 \) and \(G \sim 1 \) are obtained, revealing the coexistence of insulating and ballistic regimes; and (iii) the probability distribution \(P(\ln G) \) is proportional to \(G^{\beta} \), for vanishing \(G \), with \(\beta \leq \alpha/2 \).

II. RESULTS AND DISCUSSION

Since we are interested in the conductance statistics of the 1DAM with Lévy-type on-site disorder we have to define first the scattering setup we shall use: We open the isolated samples described above by attaching two semi-infinite single channel leads to the border sites at opposite sides of the 1D wires. Each lead is also described by a 1D semi-infinite tight-binding Hamiltonian. Using the Heidelberg approach [51] we can write the transmission amplitude through the disordered wires as \(t = -2i \sin(k) W^T (E - \mathcal{H}_{\text{eff}})^{-1} W \), where \(k = \arccos(E/2) \) is the wave vector supported in the leads and \(\mathcal{H}_{\text{eff}} \) is an effective non-hermitian Hamiltonian given by \(\mathcal{H}_{\text{eff}} = H - e^{ik} WW^T \). Here, \(W \) is a \(L \times 1 \) vector that specifies the positions of the attached leads to the wire. In our setup, all elements of \(W \) are equal to zero except \(W_{11} \) and \(W_{L1} \) which we set to unity (i.e., the leads are attached to the wire with a strength equal to the inter-site hopping amplitudes: \(\nu = 1 \)). Also, we have fixed the energy at \(E = 0 \) in all our calculations, although the same conclusions are obtained for \(E \neq 0 \). Then, within a scattering approach to the electronic transport, we compute the dimensionless conductance as \(G = t[2] \).

First, we present in Fig. 1(a) the ensemble average \(\langle -\ln G \rangle \) as a function of \(L \) for the 1DAM with Lévy-type disorder for several values of \(\alpha \). It is clear from this figure that \(\langle -\ln G \rangle \propto L \) for all the values of \(\alpha \) we consider here. Therefore, we can extract the localization length \(\xi \) by fitting the curves \(\langle -\ln G \rangle \) vs. \(L \) with Eq. (4); see dashed lines in Fig. 1(a). This behavior should be contrasted to the case of 1D wires with off-diagonal Lévy-type disorder [53] which shows the dependence \(\langle -\ln G \rangle \propto L^{1/2} \) when \(\alpha = 1/2 \) at \(E = 0 \) [50].

Also, we have confirmed that the cumulants \(\langle \langle (\ln G)^k \rangle \rangle \) obey a linear relation with the wire length [41, 54], i.e.,

\[
\lim_{L \to \infty} \frac{\langle \langle (\ln G)^k \rangle \rangle}{L} = 2^k c_k ,
\]

where the coefficients \(c_k \), with \(c_1 \equiv \xi^{-1} \), characterize the Lyapunov exponent of a generic 1D tight-binding wire with on-site disorder. We have verified the above relation, Eq. (5), for \(k = 1, 2, \) and \(3 \); as an example in Fig. 1(b) we present the results for \(\langle \langle (\ln G)^2 \rangle \rangle \) as a
The exponent α diagonal Lévy-type disorder

FIG. 2: (Color online) Conductance distribution $P(G)$ for the 1DAM with Lévy-type disorder (histograms). Each panel correspond to a fixed value of $\langle \ln G \rangle$: (a) $\langle \ln G \rangle = 20$, (b) $\langle \ln G \rangle = 2$, (c) $\langle \ln G \rangle = 1$, (d) $\langle \ln G \rangle = 2/3$, (e) $\langle \ln G \rangle = 1/2$, and (f) $\langle \ln G \rangle = 1/5$. In each panel we include histograms for several values of α, where α increases in the arrow direction. $E = 0$ was used. Each histogram was calculated using 10^6 disorder realizations. The red dashed lines are the theoretical predictions of $P(G)$ for the 1DAM with white noise disorder $P_{WN}(G)$ corresponding to the particular value of $\langle \ln G \rangle$ of each panel.

function of L for different values of α. The dashed lines are fittings of the numerical data (open dots) with the function $\langle \ln G \rangle \sim \ln L$, see Eq. (5), which can be used to extract the higher order coefficient c_2.

Now, in Fig. 2 we show different conductance distributions $P(G)$ for the 1DAM with Lévy-type on-site disorder for fixed values of $\langle \ln G \rangle$; note that fixed $\langle \ln G \rangle$ means fixed ratio L/ξ. Several values of α are reported in each panel. We can observe that for fixed $\langle \ln G \rangle$, by increasing α the conductance distribution evolves towards the $P(G)$ corresponding to the 1DAM with white noise disorder, $P_{WN}(G)$, as expected. The curves for $P_{WN}(G)$ are included as a reference in all panels of Fig. 2 as red dashed lines [55]. In fact, $P(G)$ already corresponds to $P_{WN}(G)$ once $\alpha = 2$.

We recall that for 1D tight-binding wires with off-diagonal Lévy-type disorder $P(G)$ is fully determined by the exponent α and the average $\langle \ln G \rangle$ [50]. It is therefore pertinent to ask whether this property also holds for diagonal Lévy-type disorder. Thus, in Fig. 3 we show $P(G)$ for the 1DAM with Lévy-type on-site disorder for several values of α, where each panel corresponds to a fixed value of $\langle \ln G \rangle$. For each combination of $\langle \ln G \rangle$ and α we present two histograms (in red and black) corresponding to wires with on-site random potentials $\{\epsilon_n\}$ characterized by two different density distributions [57], but with the same exponent α of their corresponding power-law tails. We can see from Fig. 3 that for each value of α the histograms (in red and black) fall on the top of each other, which is an evidence that the conductance distribution $P(G)$ for the 1DAM with Lévy-type on-site disorder is invariant once α and $\langle \ln G \rangle$ are fixed; i.e., $P(G)$ displays a universal statistics.

Moreover, we want to emphasize the coexistence of insulating and ballistic regimes characterized, respectively, by the two prominent peaks of $P(G)$ at $G = 0$ and $G = 1$. This behavior, which is more evident for $\langle \ln G \rangle \sim 1$ and $\alpha \leq 1$ (see Figs. 2 and 3), is not observed in 1D wires with white-noise disorder (see for example the red dashed curves in Fig. 2). This coexistence of opposite transport regimes has been already reported in systems with anomalously localized states: 1D wires with obstacles randomly spaced according to Lévy-type density distribution [48, 50] as well as in the so-called random-mass Dirac model [58].

Finally, we study the behavior of the tail of the distribution $P(\ln G)$. Thus, using the same data of Fig. 3,
in Fig. 4 we plot \(P(\ln G) \). As expected, since \(P(G) \) is determined by \(\alpha \) and \(\langle -\ln G \rangle \), we can see that \(P(\ln G) \) is invariant once those two quantities (\(\alpha \) and \(\langle -\ln G \rangle \)) are fixed (red and black histograms fall on top of each other). Moreover, from Fig. 4 we can deduce a power-law behavior:

\[
P(\ln G) \propto G^\beta
\]

for \(G \to 0 \) when \(\alpha < 2 \). For \(\alpha = 2 \), \(P(\ln G) \) displays a log-normal tail (not shown here), expected for 1D systems in the presence of Anderson localization. Actually, the behavior (6) was already anticipated in [41] as \(P(G) \sim G^{-(2-\lambda)/2} \) for \(G \to 0 \) with \(\lambda < \alpha \); which in our study translates as \(P(\ln G) \propto G^{\lambda/2} \) (since \(P(\ln G) = G P(G) \)) with \(\lambda/2 = \beta \leq \alpha/2 \). Indeed, we have validated the last inequality in Fig. 5 where we report the exponent \(\beta \) obtained from power-law fittings of the tails of the histograms of \(P(\ln G) \). In addition, we have observed that the value of \(\beta \) depends on the particular value of \(\langle -\ln G \rangle \) characterizing the corresponding histogram of \(P(\ln G) \). Also, from Fig. 5 we note that \(\beta \approx \alpha/2 \) as the value of \(\langle -\ln G \rangle \) decreases.

III. CONCLUSIONS

In this work we have studied the conductance \(G \) through a generalization of Lloyd’s model in one dimension: We consider one-dimensional (1D) tight-binding wires with on-site disorder following a Lévy-type distribution, see Eq. (1), characterized by the exponent \(\alpha \) of the power-law decay. We have verified that different cumulants of the variable \(\ln G \) decrease linearly with the length wire \(L \). In particular, we were able to extract the eigenfunction localization length \(\xi \) from \(\langle -\ln G \rangle = 2L/\xi \). Then, we have shown some evidence that the probability distribution function \(P(G) \) is invariant, i.e., fully determined, once \(\alpha \) and \(\langle -\ln G \rangle \) are fixed; in agreement with other Lévy-disordered wire models [2, 48–50]. We have also reported the coexistence of insulating and ballistic regimes, evidenced by peaks in \(P(G) \) at \(G = 0 \) and \(G = 1 \); these peaks are most prominent and commensurate for \(\langle -\ln G \rangle \sim 1 \) and \(\alpha \leq 1 \). Additionally we have shown that \(P(\ln G) \) develops power-law tails for \(G \to 0 \), characterized by the power-law \(\beta \) (also invariant for fixed \(\alpha \) and \(\langle -\ln G \rangle \)) which, in turn, is bounded from above by \(\alpha/2 \). This upper bound of \(\beta \) implies that the smaller the value of \(\alpha \) the larger the probability to find vanishing conductance values in our Lévy-disordered wires.

Acknowledgments

J.A.M.-B. and A.J.M.-M. thank F. M. Izrailev and N. M. Makarov for useful comments. J.A.M.-B. and A.J.M.-M. also thank FAPESP (Grant No. 2014/25997-0), CONACyT (Grants No. 10010-2014-246246 and No. CB-2013-220624), VIEP-BUAP (Grant No. MEBJ-EXC15-1), and PIFCA (Grant No. BUAP-CA-169) for financial support. V.A.G. acknowledges support from MINECO (Spain) under the Project number FIS2012-35719-C02-02.
[1] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, Nature 453, 495 (2008).
[2] A. A. Fernandez-Marin, J. A. Mendez-Bermudez, J. Carbonell, F. Cervera, J. Sanchez-Dehesa, and V. A. Gopar, Phys. Rev. Lett. 113, 233901 (2014).
[3] C. W. J. Beenakker, C. W. Groth, and A. R. Akhmerov, Phys. Rev. B 79, 024204 (2009).
[4] R. Burioni, L. Caniparoli, and A. Vezzani, Phys. Rev. E 81, 060101(R) (2010).
[5] A. Eisfeld, S. M. Vlaming, V. A. Malyshev, and J. Knoester, Phys. Rev. Lett. 105, 137402 (2010).
[6] J. Bertolotti, K. Vynck, L. Pattelli, P. Barthelemy, S. Lepri, D. S. Wiersma, Adv. Functional Materials 20, 965 (2010).
[7] P. Barthelemy, J. Bertolotti, K. Vynck, S. Lepri, D. S. Wiersma, Phys. Rev. E 82, 011101 (2010).
[8] M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, Phys. Rev. Lett. 108, 110604 (2012).
[9] C. W. Groth, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. E 85, 021138 (2012).
[10] R. Burioni, S. di Santo, S. Lepri, and A. Vezzani, Phys. Rev. E 86, 031125 (2012).
[11] S. M. Vlaming, V. A. Malyshev, A. Eisfeld, and J. Knoester, J. Chem. Phys. 138, 214316 (2013).
[12] R. Burioni, E. Ubaldi, and A. Vezzani, Phys. Rev. E 89, 022135 (2014).
[13] P. Bernabo, R. Burioni, S. Lepri, and A. Vezzani, Chaos Solitons Fractals 67, 11 (2014).
[14] S. S. Zakeri, S. Lepri, and D. S. Wiersma, Phys. Rev. E 91, 032112 (2015).
[15] A. G. Ardakani and M. G. Nezhadhaghighi, J. Opt. 17, 105601 (2015).
[16] V. V. Uchaikin and V. M. Zolotarev, Chance and Stability. Stable Distributions and their Applications (VSP, Utrecht, 1999).
[17] P. Lloyd, J. Phys. C 2, 1717 (1969).
[18] M. Saitoh, Phys. Lett. A 33, 44 (1970); Progr. Theor. Phys. 45, 746 (1971).
[19] A. P. Kumar and G. Baskaran, J. Phys. C 6, L399 (1973).
[20] K. Hoshino, Phys. Lett. A 56, 133 (1976).
[21] W. R. Bandy and A. J. Glick, Phys. Rev. B, 16, 2346 (1977).
[22] S. Kivelson and C. D. Gelatt, Phys. Rev. B 20, 4167 (1979).
[23] B. Simon, Phys. Rev. B 27, 3859 (1983).
[24] D. E. Rodrigues and J. F. Weisz, Phys. Rev. B 34, 2306 (1986).
[25] E. Kolley and W. Kolley, J. Phys. C 21, 6099 (1988).
[26] R. Johnston and H. Kunz, J. Phys. C 16, 4565 (1983).
[27] D. E. Rodrigues, H. M. Pastawski, and J. F. Weisz, Phys. Rev. B 34, 8545 (1986).
[28] D. J. Thouless, J. Phys. C 5, 77 (1972).
[29] K. Ishii, Suppl. Progr. Theor. Phys. 53, 77 (1973).
[30] R. Abou-Chacra and D. J. Thouless, J. Phys. C 7, 65 (1974).
[31] D. J. Thouless, J. Phys. C 16, L929 (1983).
[32] A. MacKinnon, J. Phys. C 17, L389 (1984).
[33] M. O. Robbins and B. Koiller, Phys. Rev. B 32, 4576 (1985).
[34] D. L. Shepelyansky, Phys. Rev. Lett. 56, 677 (1986).
[35] S. Fishman, R. E. Prange, and M. Grimiasty, Phys. Rev. A 39, 1628 (1989).
[36] G. Casati, I. Guarneri, F. Izrailev, S. Fischman, and L. Molinari, J. Phys.: Condens. Matter 4, 149 (1992).
[37] C. Mudry, P. W. Brouwer, B. I. Halperin, V. Gurarie, and A. Zee, Phys. Rev. B 58, 13539 (1998).
[38] L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev. Lett. 84, 2678 (2000); Phys. Rev. B 64, 224202 (2001).
[39] D. M. Gangardt and S. Fishman, Phys. Rev. B 63, 245106 (2001).
[40] C. Fuchs and R. v. Baltz, Phys. Rev. B 63, 085318 (2001).
[41] M. Titov and H. Schomerus, Phys. Rev. Lett. 91, 176601 (2003).
[42] D. Roy and N. Kumar, Phys. Rev. B 76, 092202 (2007).
[43] G. G. Kozlov, Theor. Math. Phys. 171, 531 (2012).
[44] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[45] 50 Years of Anderson Localization, E. Abrahams, ed. (World Scientific, Singapore, 2010).
[46] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 (1980).
[47] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the theory of disordered systems (Willey, New York, 1988).
[48] F. Falce and V. A. Gopar, Europhys. Lett. 92, 57014 (2010).
[49] A. A. Fernandez-Marin, J. A. Mendez-Bermudez, and V. A. Gopar, Phys. Rev. A 85, 035803 (2012).
[50] I. Amanatidis, I. Klefogianni, F. Falceto, and V. A. Gopar, Phys. Rev. B 85, 235450 (2012).
[51] C. Mahaux and H. A Weidenmuller, Shell Model Approach in Nuclear Reactions, (North-Holland, Amsterdam,1969); J. J. M. Verbaarschot, H. A. Weidenmuller, and M. R. Zirnbauer, Phys. Rep. 129, 367 (1985); I. Rotter, Rep. Prog. Phys. 54, 635 (1991).
[52] R. Landauer, IBM J. Res. Dev. 1, 223 (1957); 32, 336 (1988); M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986); IBM J. Res. Dev. 32, 317 (1988).
[53] It is pertinent to remark that the dependence $\langle\ln G\rangle \propto L^{1/2}$, when $\alpha = 1/2$ at $E = 0$, reported in [50] for 1D wires with off-diagonal Lévy-type disorder was observed when the wire length L was defined as the total sum of the hopping integrals $L = \sum_n \nu_{\alpha,n,n+1}$.
[54] H. Schomerus and M. Titov, Eur. Phys. J. B 35, 421 (2003); Phys. Rev. B 67, 100201(R) (2003).
[55] Using the results in Ref. [56], Eq. (2) of that work, $P_{\text{WS}}(G)$ is given by

$$
P_{\text{WS}}(G) = C \sqrt{\frac{\text{acosh}(1/\sqrt{G})}{G^{3/2}(1-G)}} \exp \left[-\frac{1}{s} \text{acosh}^2 \left(\frac{1}{\sqrt{G}} \right) \right],
$$

where C is a normalization constant and $s = L/\ell$, ℓ being the mean free path. The parameter s can be obtained numerically from the ensemble average $\langle\ln G\rangle = -L/\ell$.

[56] I. Klefogianni, I. Amanatidis, V. A. Gopar, Phys. Rev. B 88, 205414 (2013).

[57] We have used the particular density distributions:

$$
\rho_1(\epsilon) = \frac{1}{\Gamma(\alpha)} \left(\frac{1}{2} \right)^{\alpha} \frac{1}{\epsilon^{1+\alpha}} \exp \left(-\frac{1}{2\epsilon} \right)
$$

(8)
and
\[\rho_2(\epsilon) = \frac{\alpha}{(1 + \epsilon)^{1 + \gamma}}. \]

where \(\Gamma \) is the Euler gamma function.

[58] M. Steiner, Y. Chen, M. Fabrizio, and A. O. Gogolin, Phys. Rev. B 59, 14848 (1999).