Chalcomoracin prevents vitreous-induced activation of AKT and migration of retinal pigment epithelial cells

Haote Han1,2,3,4 | Yanhui Yang5 | Bing Liu6 | Jingkui Tian1,2 | Lijun Dong7 | Hui Qi7 | Wei Zhu1,2 | Jiantao Wang7 | Hetian Lei7

1Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
2College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
3Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
4Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
5School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
6Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
7Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China

Correspondence
Hetian Lei, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, 18 Zetian Road, Futian District, Shenzhen, Guangdong Province, China.
Email: leihetian18@hotmail.com

Funding information
National Natural Science Foundation of China, Grant/Award Number: 81872973 and 82070989; Sanming Project of Medicine in Shenzhen, Grant/Award Number: SZSM202011015; China Scholarship Council, Grant/Award Number: 201806320148; National Science and Technology Major Project of China, Grant/Award Number: 2019ZX09301004

Abstract
Retinal pigment epithelial (RPE) cells are the major cell type in the epiretinal membranes in the pathogenesis of proliferative vitreoretinopathy (PVR), which is a blinding fibrotic eye disease and still short of effective medicine. The purpose of this study is to demonstrate whether Chalcomoracin (CMR), a novel purified compound from fungus-infected mulberry leaves, is able to inhibit vitreous-induced signalling events and cellular responses intrinsic to PVR. Our studies have revealed that the CMR IC50 for ARPE-19 cells is 35.5 μmol/L at 72 hours, and that 5 μmol/L CMR inhibits vitreous-induced Akt activation and p53 suppression; in addition, we have discovered that this chemical effectively blocks vitreous-stimulated proliferation, migration and contraction of ARPE-19 cells, suggesting that CMR is a promising PVR prophylactic.

KEYWORDS
Akt, chalcomoracin, contraction, migration, p53, proliferation, proliferative vitreoretinopathy, vitreous
OPEN EYE TRAUMA: AN IMPORTANT CAUSE OF BLINDNESS

HAN ET AL.

INTRODUCTION

Open eye trauma is a type of mechanical eye trauma (the other type is closed eye trauma), which is caused by the penetration of foreign sharp instrument or blunt force to make the full thickness of the eyeball wall open. Rhegmatogenous retinal detachment (RRD), an open eye trauma, is an important cause of blindness, occurring due to a full-thickness break in the neurosensory retina. In the United States, approximately 55,000 people suffer from RRD, and there are approximately 203,000 open eye injuries worldwide each year. Proliferative vitreoretinopathy (PVR) is the most common cause of recurrent retinal detachment after retinal detachment repair, following RRD and occurs in 5%-11% of patients. PVR is still the main reason for failure after RRD surgery, and since the initial description, no relevant progress has been made in clinical management. In addition, so far, there is no effective drug to prevent the formation of PVR. Therefore, pharmacological approaches for PVR treatment are urgently demanded.

Proliferative vitreoretinopathy was characterized by retinal detachment and membrane growth. Retinal pigment epithelial cells (RPEs) are considered to be important and central roles in the pathogenesis of PVR. When the retina is detached by contraction, retinal cells (eg RPEs) form the epiretinal or subretinal membranes undergoing a series of responses including proliferation and migration. Hypothesis has been made that an eclectic range of chemical factors present within the vitreous fluid could be mitogenic to RPEs. This hypothesis was supported by the observation showing that vitreous aspirated from patients with PVR was able to stimulate the migration of RPEs. Moreover, vitreous fluid was shown to have an effect on cell proliferation which appeared to be mediated through TGF-β. Therefore, the vitreous-treated RPEs can be applied to in vitro studies of PVR.

MATERIALS AND METHODS

2.1 Major reagents

As determined by HPLC/UV-visible, 98.5% pure Chalocomoracin (CMR; MW: 648.69; structure, Figure 1C) is a major secondary metabolite produced by fungus-infected mulberry leaves that protects the leaves by suppressing fungal germination. Recently, CMR has been reported to have a broad spectrum of biological activities against rhinovirus, methicillin-resistant Staphylococcus aureus (MRSA) and human cancer cell lines, but there has not yet been any thorough investigation into its effects on PVR. Herein, we show that CMR inhibits vitreous-stimulated activation of Akt and abrogates vitreous-induced p53 suppression, proliferation, migration and contraction of ARPE-19, suggesting CMR is a promising medicine for prevention of PVR.

FIGURE 1 Vitreous induces activation of Akt and reduction of p53 in ARPE-19.

A, Serum-starved ARPE-19 cells were treated with RV for 15 min, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h and 24 h. Their lysates were subjected to Western blotting analysis using indicated antibodies. RV: experimental-rabbit PVR vitreous diluted 1:3 in DMEM/F12. B, C, Quantitation of the intensity of bands resulted from Western blot. The intensity of the p53, p-Akt and Akt bands in (A) was first normalized to that of the corresponding Hsp90α bands and then the ratio of p-Akt/Akt were calculated. The bar graphs are mean ± SD of three independent experiments. The data were analysed using one-way ANOVA followed by the Tukey HSD post hoc test. **P < .01 vs 0, ***P < .001 vs 0.
Primary antibodies against p-Akt, Akt and p53 were purchased from Cell Signaling Technology, and β-Actin was ordered from Santa Cruz Biotechnology. Horseradish peroxidase-conjugated mouse anti-rabbit IgG, and goat anti-mouse IgG were ordered from Santa Cruz Biotechnology. Enhanced chemiluminescent substrate to detect horseradish peroxidase was purchased from Thermo Scientific.

ARPE-19 cells (American Type Culture Collection) was cultured in Dulbecco’s modified Eagle’s medium/nutrient mixture (DMEM/F-12, Invitrogen) supplemented with 10% foetal bovine serum (FBS). Cells were cultured in a humidified incubator at 37°C and 5% CO₂.

Detailed protocols of Western blot, cell proliferation assay, cell migration assay and collagen contraction assay were described in our previous report.32

2.2 Preparation of rabbit vitreous

Rabbit vitreous was prepared from frozen rabbit eyeballs as described previously.33 In short, the vitreous was cut out from the eyeball while it was still frozen, transformed into melting and then centrifuged at 13,000 g at 4°C for 2 minutes. The resulting supernatant was used.

2.3 Western blot

Briefly, when cultures reached 90% confluence in 24-well plates, they were serum-starved overnight followed by treatment with vitreous (0-24 hours) from rabbits with PVR (RV, diluted 1:3 in DMEM/F12) or with CMR (5 μmol/L) for 8 hours. After being rinsed twice with ice-cold phosphate-buffered saline (PBS), cell lysates were harvested by sample buffer which was diluted with extraction buffer (10 mmol/L Tris-HCl, pH 7.4, 5 mmol/L EDTA, 50 mmol/L NaCl, 50 mmol/L NaF, 1% Triton X-100, 20 μg/mL aprotonin, 2 mmol/L Na3VO4, and 1 mmol/L phenylmethylsulfonyl fluoride) from 5 x protein sample buffer [(25 mmol/L EDTA (pH 7.0), 10% sodium dodecyl sulphate (SDS) (Sigma-Aldrich Corp.), 500 mmol/L dithiothreitol, 50% sucrose, 500 mmol/L TrisHCl (pH 6.8) and 0.5% bromophenol blue)]. Then, we boiled samples for 5 minutes and centrifuged them for 5 minutes at 13,000 g. Subsequently, proteins in samples were separated by 10% SDS-PAGE, transferred to polyvinylidene difluoride membranes and subjected to Western blot analyses. Experiments were repeated at least three times. Signal intensity was determined by densitometry with ImageJ software.33

2.4 Cell viability assay

Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT, Solarbio, M8180).

ARPE-19 cells were seeded into 96-well plates containing their respective medium supplemented with 10% FBS and incubated for 24 hours. The cells were then exposed to a range of concentrations of CMR (0, 5, 10, 20 and 40 μmol/L) dissolved in DMSO in 5% FBS-supplemented medium for 24-72 hours. Following this, the medium was removed and replaced with 200 μL of 0.5 mg/mL MTT in 10% FBS-containing medium, and the cells were incubated in the 5% CO₂ incubator at 37°C for 1 hour. Supernatants were removed from the wells, and the MTT dye was solubilized in 200 μL/well DMSO (Sigma, 67-68-5). Absorbance was measured at 570 nm on a plate reader. Each condition was performed with 6 replicates, and all assays were performed in triplicate, and the results of assays were presented as mean ± SD.

2.5 Phase contrast imaging

ARPE-19 cells were seeded into a 24-well plate containing their respective medium supplemented with 10% FBS and incubated for 24 hours. The cells were then exposed to a range of concentrations of CMR (0, 5, 10, 20 and 40 μmol/L) dissolved in DMSO in 5% FBS-supplemented medium for 24-72 hours. The morphology of ARPE-19 was detected by EVOS Cell Imaging System.

2.6 Cell proliferation assay

ARPE-19 were plated into 24-well plates at a density of 3 x 10⁴ cells/well in DMEM/F12 with 10% FBS. After attachment, cells were treated with RV (1:3 dilution in DMEM/F12) in addition to CMR (5 μmol/L). 24 hours later, ARPE-19 were digested and counted in a light microscope. This experiment was conducted at least three times.

2.7 Cell migration assay

Briefly, when cells grew to confluence in 24-well plates, autoclaved 200 μL pipet tips were used to scratch the cells across the wells. Cells were treated with RV (1:3 dilution in DMEM/F12) plus or minus CMR (5 μmol/L) after rinsing with PBS. The scratched areas were photographed at 0 and 24 hours. As mentioned earlier, the data were analysed using Image J and Adobe Photoshop CS4 software. Three independent experiments were conducted at least.

2.8 Collagen contraction assay

ARPE-19 were re-suspended in 1.5 mg/mL of neutralized PureCol type I bovine collagen solution (Advanced BioMatrix) (pH 7.2) on ice at a density of 1 x 10⁶. Then, the cells in collagen solution were
transferred into 5 mg/mL bovine serum albumin (BSA)/PBS pre-incubated 24-well plates and incubated at 37°C for 90 minutes for polymerization. Subsequently, 0.5 mL DMEM/F12 or RV (1:3 dilution in DMEM/F12) with or without CMR (5 μmol/L) was added into the plates. Take photographs of the plates on day 3. The gel area was calculated using a formula $3.14 \times r^2$, where r is the radius of the gel.

2.9 | Statistics

Data were analysed as described previously. At least three independent experiments were analysed using ordinary one-way ANOVA followed by the Tukey honest significant difference (HSD) post hoc test. A P value less than 0.05 was considered significantly different.

3 | RESULTS

3.1 | Vitreous induces activation of AKT and reduction of p53 in ARPE-19

Based on the previous reports, vitreous can promote the formation of PVR. We used vitreous from PVR rabbits to establish a model in vitro. ARPE-19 were seeded into the 24-well plates, and
they were serum-starved overnight followed by treatment with vitreous (0-24 hours) from rabbits with PVR (RV, diluted 1:3 in DMEM/F12). Then, cells were collected and performed Western blot. In terms of the activation of AKT, we found that RV (1:3 dilution in DMEM/F12) can significantly promote the phosphorylation of AKT at 30 minutes, and this process can be maintained for 8 hours, but the highest level achieves at 4 hours (Figure 1A, B). We mentioned earlier period during the formation of PVR, the expression of p53 was suppressed. Our results indicated that, in ARPE-19 treated with RV, obvious inhibition effect of p53 was observed after 1 hour followed by the lowest level at 8 hours. Therefore, we chose 8 hours-treatment of RV in ARPE-19 for the following experiments.

3.2 | CMR prevents vitreous-induced activation of AKT and reduction of p53

To find the potential effect of CMR for preventing PVR pathogenesis, we investigated the cytotoxicity of CMR to ARPE-19. Thus, we treated cells with serially increasing concentrations: 5, 10, 20 and 40 μmol/L. The results showed that 40 μmol/L CMR became obviously toxic to ARPE-19 cells indicated by morphology (eg cells shrinking and cell numbers) (Figure 2A). In these cells, MTT assay (Figure 2B) demonstrated that the IC$_{50}$ of CMR was 35.5 μmol/L at 72 hours. However, 5 μmol/L CMR did not show obvious toxicity to ARPE-19 cells, which was assessed by morphology and MTT assay (Figure 2).
To examine the impacts of CMR on the AKT/p53 pathway, we monitored phosphorylation of AKT at serine 473 as an indirect measure of activation of AKT. Based on previous study (Figures 1, 2), we treated ARPE-19 cells with CMR (5 μmol/L) in addition to RV for 8 hours. Western blot analysis of their lysates showed that CMR at 5 μmol/L significantly blocked vitreous-induced activation of AKT (Figure 3A, B) and suppressed vitreous-inhibited impact on p53 expression.

3.3 | CMR prevents vitreous-induced proliferation of ARPE-19

PI3K/Akt signalling transduction can trigger cellular responses such as cell proliferation. In addition, another study has proved that CMR can inhibit the proliferation of breast cancer cells MDA-MB-231 (Figure S1). Thus, we examined whether CMR could block vitreous-mediated cell proliferation, a characteristic of the pathogenesis of PVR. As shown in Figure 4, RV stimulated (1.6 ± 0.2 fold) proliferation of ARPE-19, and CMR completely abrogated the RV-mediated cell proliferation.

3.4 | CMR blocks vitreous-induced migration of ARPE-19

In PVR, RPEs have better migration and proliferation ability under the stimulation of growth factors. We found that CMR has a good effect on inhibiting the migration and invasion of MDA-MB-231 cells at the concentration of 2 μmol/L and 4 μmol/L (Figure S2, S3).
Therefore, we next investigated whether CMR could inhibit RV-induced cell migration. As shown in Figure 5, RV promoted migration of ARPE-19 in a wound-healing assay (Figure 5A), and CMR significantly prevented this RV-induced cellular event through a dose-dependent way (Figure 5B).

3.5 | CMR blocks vitreous-induced contraction of ARPE-19

In the pathogenesis of PVR, another characteristic of PVR is contraction which causes a retinal re-detachment. So, we attempted to apply the collagen gel contraction test to simulate this clinical event to find drugs that may prevent the pathogenesis of PVR. As predicted, CMR completely blocked the vitreous-induced ARPE-19 contraction (Figure 6A, B). Taken together, our findings indicate that CMR is a potent PVR prophylactic.

4 | DISCUSSION

Our results herein show that RV triggers the pathway of Akt/P53 in ARPE-19 cells, and that this pathway is critical for RV-stimulated cellular responses (e.g., proliferation, migration and contraction). More importantly, these experiments demonstrate that CMR inhibits vitreous-induced Akt activation and p53 suppression in ARPE-19 cells, and prevents vitreous-stimulated cell proliferation, migration, and contraction of ARPE-19 cells in the pathogenesis of PVR. In this study, we used ARPE-19, which is a spontaneously arising RPE cell line derived from the normal eyes of a 19-year-old male donor, because these cells still express RPE specific markers including cellular retinaldehyde-binding protein (CRALBP) and RPE 65 kD protein (RPE65). Based on the idea that cellular proliferation is the main feature of PVR, many researchers have tried to solve this problem by inhibiting the proliferation of cells, but this...
problem remains unsolved. So, we can now focus on other mechanisms involved in PVR with the aim of developing a pharmacological approach for PVR treatment.

In our previous study, antioxidants were found to prevent intracellular signalling events that are essential for experimental PVR. For example, N-acetyl-cysteine (NAC) was shown to be capable of protecting rabbits from PVR and prevented the vitreous-driven PDGFRα activation and the inherent cellular response of PVR (collagen gel contraction and cell proliferation), but the effect dose of NAC is too high (10 mM/L). Another report showed that idelalisib, a specific inhibitor of PI3Kδ, specifically inhibited vitreous-induced Akt activation in RPE cells from epiretinal membranes from patients with PVR, as well as prevented vitreous-stimulated cell proliferation, migration and contraction of RPEs. Idelalisib at 1 μmol/L completely inhibited vitreous-induced activation of Akt, but it did not block Erk activation at its 10 μmol/L concentration, suggesting that idelalisib specifically blocked vitreous-stimulated activation of Akt. Given that the formation of PVR is a complicated process, here we revealed for the first time that, as a natural compound, CMR has the advantage of effective, multi-target and low toxicity, in terms of blocking vitreous-induced cellular responses contributes to PVR. CMR has been shown as a broad spectrum of biological activities, but there has not yet been any thorough investigation into the molecular mechanisms of CMR involved in different diseases except human reproductive system cancer. In our previous study, CMR induced paraptosis in combination with the mitophagy pathway in prostate and breast cancer cell lines without influencing the normal cells. Then, we found that CMR could inhibit cell proliferation, invasion and migration of MDA-MB-231 cells (Figure S1, S2, S3). Therefore, we hypothesize that CMR can inhibit vitreous, which is closely related to proliferation and migration of RPEs. As predicted, in the current study, we found an inhibitory effect of CMR on Akt activation and p53 inactivation that was stimulated by vitreous in our study model (Figure 7) and that CMR repressed the vitreous-induced proliferation, migration and contraction of ARPE-19 cells (Figures 4, 5, 6). These data demonstrate that CMR prevents the PVR pathogenesis focussing on inhibiting activation of AKT and suppression of p53, which is main molecular mechanism detected in PVR. In Figure 3, CMR treatment alone can reduce p-Akt and softly inhibit the expression of p53. Based on the in fact, CMR itself has the effect of inhibiting cancer cell proliferation, and the regulation may be a multi-target pathway. Therefore, CMR treatment alone has an impact on Akt signalling pathway. In this study, we examined the treatment of vitreous with CMR, which simulated an intervention process in the incomplete or early stage of PVR, so CMR can be used as a preventive treatment for PVR. Other treatment methods of CMR need to be studied in the future.

PDGF-BB has been reported to be capable to induce the underlying pathways of Erk, p38, JNK activation in PVR, on the other hand, TGFβ induces epithelial mesenchymal transition (EMT) in RPEs. Thus, many signalling pathways are activated in PVR pathogenesis, of which especially Akt/MDM2/p53 among those signals is hyperactive in the vitreous environment. These data demonstrate that CMR prevents the PVR pathogenesis, of which especially Akt/MDM2/p53 among those signals is hyperactive in the vitreous environment.

5 | CONCLUSIONS

Our data were clearly evident that CMR at 5 μmol/L completely blocked vitreous-induced activation of Akt, and p53 attenuation, however, whether it can suppress the activation of Erk, p38 or JNK induced by vitreous remains unknown. Furthermore, the impacts of CMR on vitreous-induced EMT also need further investigation. Overall, our work indicates CMR can act as a potential PVR prophylactic, addressing a currently unmet clinical need.

ACKNOWLEDGEMENTS

This research was supported by China Scholarship Council (201806320148) to HH, the National Science and Technology Major Project of China (2019ZX09301004) to JT, National Natural Science Foundation of China (81872973, 82070989) to JT and HL, respectively, Sanming Project of Medicine in Shenzhen (SZSM202011015) to HL.

CONFLICT OF INTEREST

HH, JT and WZ have a patent with CMR, and all other authors declare that they have no conflicts of interest with the contents of this article.

AUTHOR CONTRIBUTIONS

Haote Han: Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead). Yanhui Yang: Data curation (equal); Formal analysis (equal). Bing Liu: Data curation (equal). Jingkui Tian: Funding acquisition (equal). Lijun Dong: Investigation (equal); Methodology (equal); Validation (equal). Hui Qi: Investigation (equal); Methodology (equal); Validation (equal). Wei Zhu: Data curation (equal); Funding acquisition (equal). Jiantao Wang: Funding acquisition; Project administration (equal). Hetian Lei: Funding acquisition; Project administration (equal).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Haote Han https://orcid.org/0000-0003-4177-5235
Hetian Lei https://orcid.org/0000-0003-4091-1936

REFERENCES

1. Winthrop SR, Cleary PE, Minckler DS, Ryan SJ. Penetrating eye injuries: a histopathological review. Br J Ophthalmol. 1980;64:809-817. https://doi.org/10.1136/bjo.64.11.809
2. Wong SC, Ramkisson YD, Charteris DG. Rhexis-related retinal detachment. Encycl Eye. 2010;37:129-138. https://doi.org/10.1016/B978-0-12-374203-2-00265-7
3. Hilton G, Macherer R, Michels R, Okun E, Schepens C, Schwartz A. The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology. 1983;90:121-125. https://doi.org/10.1016/S0161-6420(83)34588-7
4. Pennock S, Kim D, Mukai S, et al. Ranibizumab is a potential prophylaxis for proliferative vitreoretinopathy, a nonangiogenic
blinding disease. *Am J Pathol.* 2013;182:1659-1670. https://doi.org/10.1016/j.ajpath.2013.01.052

5. Morescalchi F, Duse S, Gambicorti E, Romano MR, Costagliola C, Semeraro F. Proliferative vitreoretinopathy after eye injuries: an overexpression of growth factors and cytokines leading to a retinal neovessel. *Mediators Inflamm.* 2013;2013:269787. https://doi.org/10.1155/2013/269787

6. Speicher MA, Fu AD, Martin JP, Fricken MA. Primary vitrectomy alone for repair of retinal detachments following cataract surgery. *Retina.* 2000;20:459-464. https://doi.org/10.1097/00000698-200009000-00005

7. Pennock S, Haddock LJ, Elliott D, Mukai S, Kazlauskas A. Is neutralizing vitreous growth factors a viable strategy to prevent proliferative vitreoretinopathy? *Prog Retinal Eye Res.* 2014;40:16-34. https://doi.org/10.1016/j.pretereyes.2013.12.006

8. Assi A, Khoeur Z, Helou C, Fakhoury H, Cherfan G. Intracocular application of Mitomycin C to prevent proliferative vitreoretinopathy in perforating and severe intraocular foreign body injuries. *Eye (Lond).* 2019;33:1261-1270. https://doi.org/10.1038/s41433-019-0408-0

9. Sohn EH, Strohbehn A, Stryjewski T, et al. Posteriorly inserted vitreous base: preoperative characteristics, intraoperative findings, and outcomes after vitrectomy. *Retina.* 2019;40(5):943-950. https://doi.org/10.1097/IAE.0000000000002482

10. Wang HF, Ma JX, Shang QL, An JB, Chen HT, Wang C. Safety, pharmacokinetics, and prevention effect of intraocular crocetin in proliferative vitreoretinopathy, *Biomed Pharmacother.* 2019;109:1211-1220. https://doi.org/10.1016/j.biopharm.2018.10.193

11. He H, Kuriyan AE, Su CW, et al. Inhibition of proliferation and epithelial mesenchymal transition in retinal pigment epithelial cells by heavy chain-hyaluronan/pentraxin 3. *Sci Rep.* 2017;7:43736. https://doi.org/10.1038/s41598-016-01104

12. Schill L, Boles NC, Fernandes M, Nachmani B, Gentile R, Blenkinsop TA. P38 inhibition reverses TGFbeta1 and TNFalpha-induced contraction in a model of proliferative vitreoretinopathy. *Commun Biol.* 2019;2:162. https://doi.org/10.1038/s42003-019-0406-6

13. Anderson DH, Stern WH, Fisher SK, Erickson PA, Borgula GA. The onset of pigment epithelial proliferation after retinal detachment. *Invest Ophthalmol Visual Sci.* 1981;21:10-16.

14. Campochiaro PA, Jerdan JA, Glaser BM, Cardin A, Michels RG. β 1-0-1-9-0-4-0-8-0

15. Parapuram SK, Chang B, Li L, et al. Differential effects of TGFβ on AKT and suppression of p53. *Cell. 1981;21:10-16.* https://doi.org/10.1016/0092-8674(93)90404-E

16. Vanhasebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. *Nat Rev Mol Cell Biol.* 2012;13:195-203. https://doi.org/10.1038/nrm3290

17. Songyang Z, Shoelson SE, Chaudhuri M, et al. SH2 domains recognize specific phosphopeptide sequences. *Cell.* 1993;72:767-778. https://doi.org/10.1016/0092-8674(93)90404-E

18. Manning BD, Toker A. AKT/PKB signaling: navigating the network. *Cell.* 2017;169:381-405. https://doi.org/10.1016/j.cell.2017.04.001

19. Vivanco I, Sawyer CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. *Nat Rev Cancer.* 2002;2:489-501. https://doi.org/10.1038/nrc839

20. Luo J, Manning BD, Cantley LC. Targeting the PI3K-AKT pathway in human cancer: rationale and promise. *Cancer Cell.* 2003;4:257-262. https://doi.org/10.1016/s1535-6108(03)00248-4

21. Rojas J, Fernandez I, Pastor JC, et al. A strong genetic association between the tumor necrosis factor locus and proliferative vitreoretinopathy: the retina 4 project. *Ophthalmology.* 2010;117:2417-2423. https://doi.org/10.1016/j.jophtha.2010.03.059

22. Pastor-Idoate S, Rodríguez-Hernández I, Rojas J, et al. The p53 codon 72 polymorphism (rs1042252) is associated with proliferative vitreoretinopathy: the Retina 4 Project. *Ophthalmology.* 2013;120:623-628. https://doi.org/10.1016/j.jophtha.2012.08.019

23. Lei H, Velez G, Kazlauskas A. Pathological signaling via platelet-derived growth factor receptor alpha involves chronic activation of Akt and suppression of p53. *Mol Cell Biol.* 2011;31:1788-1799. https://doi.org/10.1128/MCB.01321-10

24. Lei H, Rheume MA, Cui J, et al. A novel function of p53: a gatekeeper of retinal detachment. *Am J Pathol.* 2012;181:866-874. https://doi.org/10.1016/j.ajpath.2012.05.036

25. Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K. Chalconarocin, a natural Diels-Alder adduct from dulseful berry. *Chem Lett.* 1980;9:1573-1576. https://doi.org/10.1246/cl.1980.1573

26. Nomura T. Phenolic compounds of the mulberry tree and related plants. *Prog Chem Org Nat Prod.* 1993;57:87-201. https://doi.org/10.1007/978-3-7091-8979-0_2

27. Fukui T, Kaitou K, Terada S. Antimicrobial activity of 2-arylbensofurans from Morus species against methicillin-resistant Staphylococcus aureus. *Fitoterapia.* 2005;76:708-711. https://doi.org/10.1016/j.fitote.2005.06.012

28. Fukui T, Oku Y, Hano Y, Terada S. Antimicrobial activities of hydrophobic 2-arylbensofurans and an isofoavone against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. *Planta Med.* 2004;70:685-687. https://doi.org/10.1055/s-2004-827196

29. Zhang QJ, Tang YB, Chen RY, Yu DQ. Three new cytotoxic diels-alder -type adducts from Morus australis. *Chem Biodiversity.* 2007;4:1533-1540. https://doi.org/10.1002/cbdv.200790133

30. Han H, Chou CC, Li R, et al. Chalconarocin is a potent anticancer agent acting through triggering oxidative stress via a mitophagy-and paraaptosis-dependent mechanism. *Sci Rep.* 2018;8:1-14. https://doi.org/10.1038/s41598-018-27724-3

31. Chen N, Hu Z, Yang Y, Han H, Lei H. Inactive Cas9 blocks vitreous-induced expression of Mdm2 and proliferation and survival of retinal pigment epithelial cells. *Exp Eye Res.* 2019;186:107716. https://doi.org/10.1016/j.exer.2019.107716

32. Lei H, Qian CX, Lei J, Haddock LJ, Mukai S, Kazlauskas A. RasGAP promotes autophagy and thereby suppresses platelet-derived growth factor receptormediated signaling events, cellular responses, and pathology. *Mol Cell Biol.* 2015;35:1673-1685. https://doi.org/10.1128/MCB.01248-14

33. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. *Exp Eye Res.* 1996;62:155-169. https://doi.org/10.1006/exer.1996.0020

34. Samuel W, Jaworski C, Postnikova OA, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. *Mol Vision.* 2017;23:60-89.

35. Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences. *Prog Retinal Eye Res.* 2016;51:125-155. https://doi.org/10.1016/j.preteyeres.2015.07.005

36. Lei H, Velez G, Cui J, et al. N-acetylcysteine suppresses retinal detachment in an experimental model of proliferative
vitreoretinopathy. Am J Pathol. 2010;177:132-140. https://doi.org/10.2353/ajpath.2010.090604

38. Xin T, Han H, Wu W, et al. Idelalisib inhibits vitreous-induced Akt activation and proliferation of retinal pigment epithelial cells from epiretinal membranes. Exp Eye Res. 2020;190:107884. https://doi.org/10.1016/j.exer.2019.107884

39. Han H, Chen N, Huang X, Liu B, Tian J, Lei H. Phosphoinositide 3-kinase δ inactivation prevents vitreous-induced activation of AKT/MDM2/p53 and migration of retinal pigment epithelial cells. J Biol Chem. 2019;294:15408-15417. https://doi.org/10.1074/jbc.RA119.010130

40. Zhang H, Shang Q, An J, Wang C, Ma J. Crocetin inhibits PDGF-BB-induced proliferation and migration of retinal pigment epithelial cells. Eur J Pharmacol. 2019;842:329-337. https://doi.org/10.1016/j.ejphar.2018.11.001

41. Takahashi E, Fukushima A, Haga A, et al. Effects of mechanical stress and vitreous samples in retinal pigment epithelial cells. Biochem Biophys Res Commun. 2016;470:569-574. https://doi.org/10.1016/j.bbrc.2016.01.104

42. Heffer AM, Proaño J, Roztocil E, et al. The polyether ionophore salinomycin targets multiple cellular pathways to block proliferative vitreoretinopathy pathology. PLoS One. 2019;14:e0222596. https://doi.org/10.1371/journal.pone.0222596

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Han H, Yang Y, Liu B, et al. Chalcomoracin prevents vitreous-induced activation of AKT and migration of retinal pigment epithelial cells. J Cell Mol Med. 2021;25:9102-9111. https://doi.org/10.1111/jcmm.16590