Multi-layer atom chips for versatile atom micro manipulation

M. Trinker,1 S. Groth,2 S. Haslinger,1 S. Manz,1 T. Betz,1 I. Bar-Joseph,3 T. Schumm,1 and J. Schmiedmayer1,2

1Atominstitut, Vienna University of Technology, 1020 Vienna, Austria
2Physikalisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
3Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

(Dated: February 4, 2008)

We employ a combination of optical UV- and electron-beam-lithography to create an atom chip combining sub-micron wire structures with larger conventional wires on a single substrate. The new multi-layer fabrication enables crossed wire configurations, greatly enhancing the flexibility in designing potentials for ultra cold quantum gases and Bose-Einstein condensates. Large current densities of \(> 6 \times 10^7 \, \text{A/cm}^2 \) and high voltages of up to 65 V across 0.3 \(\mu \text{m} \) gaps are supported by even the smallest wire structures. We experimentally demonstrate the flexibility of the next generation atom chip by producing Bose-Einstein condensates in magnetic traps created by a combination of wires involving all different fabrication methods and structure sizes.

Manipulation of neutral atoms close to micro-structured surfaces has become a standard technique during recent years: so called atom chips [1, 2] combine the ability to use ultra cold atoms—a system well suited for precise quantum manipulation—and the technological capabilities of micro- and nano-fabrication. Ample techniques have been developed to trap, cool, and detect neutral atoms in micro traps [2, 3, 4, 5]. Robust quantum manipulation on the atom chip is available, both for internal atomic states [6] and the external degree of freedom [7].

Present atom chips are single layer devices [8], sometimes combined with other structures, either macroscopic [9] or built from a combination of chips fabricated on separate substrates [10, 11], limiting the freedom in designing the trapping and manipulation potentials. In this letter we present the implementation of a multi-layer atom chip (Fig. 1) combining standard millimeter scale wires for trapping and cooling with sub-micron structures for manipulation on the quantum level on one single substrate. Such a chip design offers the advantage of precise alignment of the structures given by the inherent precision of the fabrication and the drastically reduced spatial distance of the respective structures.

To implement vastly different structure sizes on a single chip we use a combination of traditional optical UV- and electron beam lithography. The new design consists of a standardized wire pattern (fabricated by UV-lithography) which provides the backbone of the atom chip with all the connections and auxiliary wires needed for trapping, cooling and positioning the ultra cold atoms (Fig. 2 left). This general structure is complemented by an e-beam written part which can be custom designed for each chip realization individually (Fig. 2 right), offering high flexibility. A third pattern created by UV-lithography above the e-beam layer adds chip wires to transport the atoms towards the e-beam structures and provides additional functionality.

The main requirements for such an atom chip are the ability to carry sizable currents of a few amps in the large structures to create deep traps, high current densities in the small structures for tight confinement, [2, 4], to allow the application of radio-frequency (RF) fields [7, 12] and the capability to tolerate sizable voltages over sub-micron gaps to enable localized manipulation by electric fields [13]. To achieve this one needs a perfectly electrically insulating layer with the capability of sufficient heat transfer from the upper wires to the substrate, which also withstands high electric fields. In our chip design we achieve this by separating the different conducting layers by an electrically insulating thin (500 nm) polyimide layer. Electrical insulation of the two layers is provided by 500 nm thick polyimide pads, visible as partially transparent layer.

FIG. 1: SEM micrograph of the central part of a multi-layer chip. 10 \(\mu \text{m} \) wide wires with a height of 1.4 \(\mu \text{m} \) cross structures created by e-beam lithography. The smallest features are 300 nm gaps between 700 nm wide and 140 nm high wires.
FIG. 2: Layout of a multi-layer atom chip. Left: General view of the chip, size 25×30 mm. Contact pads are arranged around the edge of the chip. Wires for trapping of atoms run from top to bottom (blue) on the upmost layer of the chip. Where these wires cross structures on the ground plane, polyimide pads provide insulation of the layers. For longitudinal confinement of the atoms the chip contains four additional 500 µm wide wires (dark blue) on the ground plane. Upper right: Central part of the chip (600×600 µm²), created by e-beam lithography. Lower right: Detail of this central section (100×100 µm²), similar to the region shown in Fig. 3. Three 10 µm wide wires (blue) cross sub-micron structures (light blue, smallest features: 300 nm wide gaps) separated by polyimide pads.

ers with sub-micron precision. We then fabricate the sub-micron structures in the center 600×600 µm² of the chip (Fig. 2 right). A double-layer PMMA resist (PMMA 495K and 950K) is structured by e-beam lithography followed by depositing first a Ti adhesion layer (10 nm) and then the Au layer (130 nm), both by thermal evaporation at a pressure of 10⁻⁷ mbar. Lift-off in acetone supported by ultrasound then completes fabrication of the inner sub-micron structures of the chip.

In the next step the connections to this central part, the pads for contacting the chip and all other larger support structures are fabricated. We therefor employ our standard process for high quality atom chip structures [8]: the image reversal resist AZ5214E is structured by traditional UV contact lithography followed by thermal evaporation of Ti (20 nm) and Au (400 nm in this specific example). The structures are created again by lift-off in acetone.

We then prepare the insulation which will support the crossing structures: Polyimide (Durimide (R) 7505) is spun onto the chip and structured by UV-lithography to cover only the regions where conducting structures will cross. The insulation layer is then thinned in an ozonator to about 500 nm and cured. This layer thickness proved to be sufficient to insulate the two conducting planes while providing good heat transfer and keeping the step height the top layer wires have to surmount to a minimum (Fig. 3).

The wires in the upper plane crossing the polyimide insulation pads are fabricated again by our standard UV-lithography process [8]. To enable high currents in these wires they can be evaporated to a height of up to 4 µm. This also reduces the bottleneck created by the step onto the polyimide pads (Fig. 3).

The current characteristics of the various atom chip wires are tested by a four-point measurement, monitoring heating via resistance increase with time. The cold resistance of the structures ranges from 100 Ω to 300 Ω for e-beam-written wires, and 4.5 Ω to 40 Ω for the larger structures. Similar to the situation in the actual atom chip experiments the measurements were carried out in a pulsed manner with a 10 s relaxation time.

For surface mounted wires the results are similar to what was found in our previous study on single layer atom chips [8]: the heating process of structures shows two different time scales. The flat wires (~ 100 nm) first heat up on a fast time scale of 100 ns after switching on the current, leading to a corresponding increase in wire resistance. The corresponding time scale for higher structures (> 1 µm) is considerably longer, in the range of 1 µs. On a longer timescale a slow heating process is observed over the full duration of the current pulse (Fig. 4). In accordance with the model from [8] the highest current densities were tolerated by the wires of smallest cross section, see Fig. 4. A 700 nm wide and 140 nm high wire carried currents of up to 60 mA over a maximum of 10 s, corresponding to a current density of 6×10⁷ A/cm².

For the wires crossing the polyimide insulation pads we observe a similar behavior with a reduced maximal current due to the decreased thermal conductivity to the substrate. Nevertheless large current densities of above 3×10⁶ A/cm² (2×10⁶ A/cm²) can be supported by a 10 µm (80 µm) wide wire (Fig. 4). DC Currents of up to 2.3 A are sustained by the 80 µm wide and 1.4 µm high wire.

A new crucial test for the double-layer chip structures is to which extend a current or voltage in the wires in the bottom layer influences the current limits in the wires.

FIG. 3: (a): Cross section scheme of a multi-layer area (not to scale). The step in the upper gold wire causes a bottleneck of reduced cross section. (b): SEM top view of the step. The wire runs from left to right in the upper half of the picture. In the lower right part the polyimide pad running from top to bottom is visible.
Our multi-layer atom chip combines many functionalities in a single device: the large top layer wires (10 to 80 µm width, 1.4 µm height) can carry sizable currents of above 2 A to create the magnetic traps for trapping, cooling and positioning ultra cold atom clouds or Bose-Einstein condensates (BECs) together with strong RF oscillating fields for dressed-state potentials [10]. Large bottom layer confinement wires equally enable high currents and allow adjustment of trap aspect ratio over many orders of magnitudes. The small e-beam wires allow micron-size structuring of the potentials for manipulation of the trapped atoms on a scale where tunnelling and coupling between traps can be studied.

We experimentally demonstrate the double-layer atom chip flexibility by creating Bose-Einstein condensates of Rubidium atoms in a magnetic trapping potential created by a combination of all structures described above (Fig. 5). Starting point is a reflection magneto-optical trap, using the high quality gold surfaces of the atom chip as a mirror. Macrosopic copper wire structures below the chip create the magnetic fields necessary for laser cooling, initial magnetic trapping and transport to the atom chip [8]. Atoms are then loaded into a chip trap combining magnetic fields of a top layer 80 µm trapping wire and two 500 µm bottom layer confinement wires in series, each carrying 1 A. Sending 40 mA through a 18 µm bottom layer e-beam wire locally lowers the potential, creating an adjustable magnetic dimple [16]. Efficient and robust Bose condensation is achieved by forced RF evaporation in the combined trap as shown in Fig. 5.

To summarize, we have presented fabrication, characterization and implementation of an atom chip combin-

FIG. 4: left: Temperature evolution of a 80 µm top layer trapping wire for different applied currents. After ≈6 s, an additional current of 1 A is send through two 500 µm bottom layer confinement wires, as in the experiment shown in Fig. [3] right: Temperature evolution for different current densities in various chip wires. Solid lines are theoretical predictions according to a simple dissipation model which applies to bottom layer e-beam wires in direct contact with the substrate [8]. Reduced heat dissipation reduces the current density for top layer wires, currents in the bottom layer wires lead to additional heating (dashed lines to guide the eye).

FIG. 5: (a): Magnetic trapping potential created by the combined fields of the outer 500 µm bottom layer confinement wires (dark blue), the main 80 µm top layer trapping wire (blue) and a 10 µm e-beam fabricated dimple wire (light blue), creating a local potential minimum. (b) In-situ absorption images of an atom cloud, evaporatively cooled in the combined potential. Inset: time-of-flight (TOF) absorption image after 15 ms free expansion, clearly indicating Bose-Einstein condensation.
ing structures created with traditional UV- and e-beam lithography in a multi-layer geometry. With this concept we integrated wires tolerating extreme current densities and electric fields with established structures for robust trapping of cold atoms in a single device. We have shown that the temperature evolution of the surface mounted structures agrees with a simple dissipation model. In addition, the influence of currents in the ground plane wires on the resistance of wires crossing these structures was analyzed. We experimentally demonstrate the atom chip flexibility by producing BECs in a potential involving all of the major wire structures.

We thank O. Raslin, Braun Center for Submicron Research at the Weizmann Institute of Science, for help in the fabrication. This work was supported by the European Union, contract Nos. IST-2001-38863 (ACQP), MRTN-CT-2003-505032 (Atomchips), Integrated Project FET/QIPC 'SCALA', the Deutsche Forschungsgemeinschaft, the Austrian Science Fund FWF Project P20372, and the Wittgenstein Prize of the Austrian Science Fund FWF.

[1] R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000).
[2] J. Fortagh and C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007).
[3] R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
[4] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Nature 450, 272 (2007).
[5] X. Liu, K.-H. Brenner, M. Wilzbach, M. Schwarz, T. Fernholz, and J. Schmiedmayer, Appl. Opt. 44, 6857 (2005).
[6] P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, Phys. Rev. Lett. 92, 203005 (2004).
[7] T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, Nature Physics 1, 57 (2005).
[8] S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, D. Mahalu, I. Bar-Joseph, and J. Schmiedmayer, Appl. Phys. Lett. 85, 2980 (2004).
[9] S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, Phys. Rev. A 69, 030901(R) (2004).
[10] A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, Phys. Rev. A 71, 063619 (2005).
[11] J. Esteve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, Eur. Phys. J. D 35, 141 (2005).
[12] S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer, Nature Physics 2, 710 (2006).
[13] P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, Phys. Rev. Lett. 91, 233201 (2003).
[14] P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, Phys. Rev. A 76, 063621 (2007).
[15] D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 81, 36 (1998).