Listening to the coefficient of restitution and the gravitational acceleration of a bouncing ball

C. E. Aguiar* and F. Laudares†
Instituto de Física, Universidade Federal do Rio de Janeiro
Cx.P. 68528, Rio de Janeiro, 21945-970, RJ, Brasil

We show that a well known method for measuring the coefficient of restitution of a bouncing ball can also be used to obtain the gravitational acceleration.

PACS numbers: 01.50.Ht, 01.50.Lc

Three contributions to this journal have described how to measure the coefficient of restitution between a ball and a flat surface using the sound made by the collision of the ball with the surface. The procedure reported in these papers is to drop the ball vertically on a horizontal surface, allow it to bounce several times, while recording the sound produced by the impacts. Analysis of the recording gives the time intervals between successive rebounds, and from these the coefficient of restitution is obtained.

The evolution of the techniques described in these papers is a nice example of how the development of microcomputers has changed the science teaching laboratory. In 1977, Bernstein detected the sound with a microphone, amplified and filtered the signal, and fed it to a pen recorder. Smith, Spencer and Jones in 1981, connected the microphone to a microcomputer via a homemade data collection and interface circuit, and then uploaded the resulting data to a larger computer for analysis and graphical display. In 2001, Stensgaard and Lægsgaard used the microphone input of a PC sound card to make the recording, reducing the experimental equipment to basically a standard microcomputer.

To see how the coefficient of restitution is related to the time between bounces, note that if the ball is released from a known height h, then $T_0 = (8h/g)^{1/2}$, and

$$g = \frac{8h}{T_0^2}. \quad (5)$$

Thus, just as the slope parameter of Eq. (4) fixes the coefficient of restitution, the intercept parameter determines the acceleration of gravity (if the easily measured initial height h is known).

In order to check how this works in practice, we have dropped a “superball” from a measured height onto a smooth stone surface and recorded the sound produced by the successive impacts. The recording was made with the microphone and sound card of a PC running Windows, using the sound recorder program that comes with the operating system. The sampling frequency was 22,050 Hz, resulting in a time resolution of 45 μs. The audio file, stored in the binary WAV format, was converted to ASCII text format with the shareware program AWAVE audio. The recorded signal is plotted in Fig. 1.

![FIG. 1: The sound of a ball bouncing on a horizontal surface. The zero sound level corresponds to 128 in the vertical axis.](image-url)
where the pulses corresponding to individual impacts are easily recognized (only the first six collisions are shown). We have used 8-bit resolution in the recording, so that data values can only go from 0 to 255. The no-signal value corresponds to 128.

The time intervals T_n between collisions n and $n+1$ were obtained directly through inspection of the ASCII sound file. They are plotted in Fig. 2 (in logarithmic scale) as a function of n. The least-squares fit of the T_n data set to Eq. (4) gives

$$
\epsilon = 0.9544 \pm 0.0002 ,
$$

$$
T_0 = 0.804 \pm 0.001 \text{ s} .
$$

The best-fit line is also shown in Fig. 2.

The ball was released from a height $h = 79.4 \pm 0.1 \text{ cm}$ above the surface. Taking this and the adjusted T_0 into Eq. (5), we obtain for the gravitational acceleration

$$
g = 982 \pm 3 \text{ cm/s}^2 .
$$

For comparison, the value of g in Rio de Janeiro is 978.8 cm/s2.

The applicability of the method described above depends on ϵ being constant over the range of impact velocities involved in the experiment. That this condition is satisfied in the present case is seen in Fig. 3, where the coefficient of restitution for an impact at velocity v_n, $
\epsilon = \frac{v_{n+1}}{v_n} = \frac{T_{n+1}}{T_n}$, is plotted as a function of T_n (recall that $v_n \propto T_n$, see Eq. (5)). The coefficients of restitution for the different impacts are all very close to the least-squares value given in Eq. (6), indicated by the dashed line in Fig. 3.

A case in which the coefficient of restitution depends on the velocity is shown in Fig. 4 where we display the times of flight of a superball dropped from $h = 27.5 \pm 0.1 \text{ cm}$ onto a wood surface. A plot of ϵ at each collision, shown in Fig. 3 reveals a clear dependence of the coefficient of restitution on the time-of-flight (or impact velocity). Assuming a linear relation between ϵ and T, as suggested by Fig. 5,

$$
\epsilon = \epsilon_0 (1 + \alpha T) ,
$$

we obtain an extension of Eq. (5)

$$
T_n = T_0 \epsilon_0 \prod_{i=0}^{n-1} (1 + \alpha T_i) .
$$

The least-squares fit of Eq. (8) to the data shown in Fig. 4 gives

$$
\epsilon_0 = 0.921 \pm 0.001 ,
$$

$$
\alpha = 0.078 \pm 0.003 \text{ s}^{-1} ,
$$

$$
T_0 = 0.4752 \pm 0.0005 \text{ s} .
$$
FIG. 5: The coefficient of restitution $\epsilon = T_{n+1}/T_n$ as a function of T_n, for the data of Fig. 4. The dashed line is the linear relation of Eq. (7) with the adjusted parameters given in Eq. (9).

The curves corresponding to these parameters are also shown in Figs. 4 and 5. The above value for T_0 yields

$$g = 974 \pm 5 \text{ cm/s}^2$$

again a very reasonable value. Consideration of the velocity dependence of the coefficient of restitution was important in order to get an accurate result; had we assumed a constant ϵ, we would obtain $g = 935 \pm 10 \text{ cm/s}^2$.

To summarize, we have seen that the value of the gravitational acceleration is a useful by-product of experiments devised to “hear” the coefficient of restitution of a bouncing ball. The measurement of g is particularly simple if the coefficient of restitution is independent of the impact velocity, but more complicated cases can also be handled.

After this work was completed we learned of a recent paper by Cavalcante et al. in which g was measured using the sound of a bouncing ball. The analysis presented in the paper is, however, somewhat different from ours. Another related reference is the article by Guercio and Zanetti in this journal.

* Electronic address: carlos@if.ufrj.br
\† Electronic address: flaudares@hotmail.com

1 A.D. Bernstein, “Listening to the coefficient of restitution,” Am. J. Phys. 45, 41-44 (1977).
2 P.A. Smith, C.D. Spencer, and D.E. Jones, “Microcomputer listens to the coefficient of restitution,” Am. J. Phys. 49, 136-140 (1981).
3 I. Stensgaard and E. Lægsgaard, “Listening to the coefficient of restitution - revisited,” Am. J. Phys. 69, 301-305 (2001).
4 AwaveAudio (audio file format converter), FMJ-Software, http://www.fmjssoft.com
5 M.A. Cavalcante, E. Silva, R. Prado, and R. Haag, “O estudo de colisões através do som,” Revista Brasileira de Ensino de Física 24, 150-157 (2002).
6 G. Guercio and V. Zanetti, “Determination of gravitational acceleration using a rubber ball,” Am. J. Phys. 55, 59-63 (1987).