Yrast band in the heavy $N = Z$ nucleus 88Ru: α-cluster approach

Peter Mohr1,2a

1 Institute for Nuclear Research (Atomki), H-4001 Debrecen, Hungary
2 Diakonie-Klinikum, D-74523 Schwäbisch Hall, Germany

Received: date / Revised version: date

Abstract. The yrast band in the heavy $N = Z$ nucleus 88Ru is studied in the framework of the α-cluster model in combination with double-folding potentials. It is found that the excitation energies of the yrast band in 88Ru can be nicely described within the α-cluster approach using a smooth and mildly L-dependent adjustment of the potential strength. This result is similar to well-established α-cluster states in nuclei with a (magic core $\otimes \alpha$) structure. Contrary, the yrast bands in neighboring $N \neq Z$ nuclei deviate from such a typical α-cluster behavior. Finally, the α-cluster model predicts reduced transition strengths of about 10 Weisskopf units for intraband transitions between low-lying states in the yrast band of 88Ru.

PACS. 21.60.Gx Cluster models – 27.50.+e $59 \leq A \leq 89$

1 Introduction

The structure of the heaviest accessible $N = Z$ nuclei has been subject of interest over the last years, with one focus on the role of proton-neutron pairing [12]. Very recently, a detailed experimental investigation of 88Ru became available which provided the excitation energies of the yrast band up to $J^\pi = (14^+) \text{ and } E^\pi = 6949 \text{ keV}$ [6]. It was concluded that the observed yrast band in 88Ru exhibits a band crossing “that is significantly delayed compared with the expected behavior of a rotating deformed nucleus in the presence of a normal isovector ($T = 1$) pairing field ... in agreement with theoretical predictions for the presence of isoscalar neutron-proton pairing”. But such an interpretation may also be affected by shape coherence effects, and despite several detailed studies [3,6,7,9] a firm conclusion on the experimental verification of proton-neutron pairing could not yet be reached. The relevance of shape coherence has also been pointed out in large-scale shell model calculations of heavy $N = Z$ nuclei [8].

In the present work I use a completely different approach for the description of the yrast band in 88Ru which is based on the simple two-body α-cluster model. In general, α-clustering is a very well-known phenomenon in nuclear physics [9]. A lot of work has been done in the past for doubly-magic cores, i.e. 212Po = 208Pb $\otimes \alpha$, 44Ti = 40Ca $\otimes \alpha$, 20Ne = 16O $\otimes \alpha$, and 8Be = 4He $\otimes \alpha$ (see e.g. the recent review [9]), and 94Mo = 90Zr $\otimes \alpha$ was often used to fill the wide gap of missing stable doubly-magic core nuclei between $A \approx 40$ and $A > 200$ [11]. In this gap, the α-decay in the $N = Z$ system 104Te = 100Sn $\otimes \alpha$ was also under study very recently [12,13,14,15,16], and 52Ti = 48Ca $\otimes \alpha$ was investigated in [17]. A detailed introduction into the nuclear cluster model is provided in a dedicated special issue of Prog. Theor. Phys. Suppl. 132, [18] and was not detailed further.

In the last years, several successful attempts have been made to extend the α-cluster model towards semi-magic core nuclei (e.g., above $N = 50$ [20]), and α-cluster states have also been identified in non-magic 46,54Cr [21,22]. Thus, it makes sense to apply the α-cluster model to 88Ru to see whether the properties of 88Ru can also be described without explicit inclusion of proton-neutron pairing. It has to be noted that the α-cluster model and proton-neutron pairing are not completely different approaches. It was already supposed in [5] that the collaboration of the usual proton-proton and neutron-neutron pairing with enhanced proton-neutron pairing in 88Ru may lead to α-like correlations, but unfortunately this idea remained qualitative in [5] and was not detailed further.

The present study is organized as follows. Sec. 2 provides a brief introduction into the chosen model. Sec. 3 gives results for 88Ru and some neighboring $N = Z$ and $N \neq Z$ nuclei. The results are summarized in Sec. 4. Experimental data are taken from the online database ENSDF [29], except stated explicitly in the text.

2 α clustering and folding potentials

Details of the α-cluster model are described in literature (e.g., [18,19,20,21,22,23,24,25]). Exactly the same approach was used in my previous paper on 46,54Cr [25]. Here I briefly repeat important features of the model and its essential ingredients.
2.1 Folding potential

The interaction between the α particle and the core nucleus is calculated from the folding procedure with the widely used energy- and density-dependent DDM3Y interaction v_{eff}:

$$V_F(r) = \int \rho_P(r_P) \rho_T(r_T) v_{\text{eff}}(s, \rho, E_{NN}) \, d^3r_P \, d^3r_T$$

(1)

For details of the folding approach and the chosen interaction v_{eff}, see e.g. [45,46,47]. The density ρ_P of the α-particle is taken from the experimental charge density distribution [44]. Obviously, for $^{88}\text{Ru} = ^{84}\text{Mo} \otimes \alpha$ the required density of the unstable $N = Z$ nucleus ^{84}Mo is not available from experiment. It has been seen recently, that the usage of microscopic theoretical densities leads to very similar folding potentials [57]. In particular, Hartree-Fock-Bogolyubov densities using Skyrme forces were used in the present approach for all target densities ρ_T. These densities have been calculated by S. Goriely and are provided as a part of the statistical model code TALYS [10].

The total interaction potential $V(r)$ is given by

$$V(r) = V_N(r) + V_C(r) = \lambda V_F(r) + V_C(r)$$

(2)

where the nuclear potential V_N is the double-folding potential V_F of Eq. (1) multiplied by a strength parameter $\lambda \approx 1.1 - 1.3$ [11,37]. V_C is the Coulomb potential in the usual form of a homogeneously charged sphere with the Coulomb radius R_C chosen as the root-mean-square radius r_{rms} of the folding potential V_F which approximately follows $r_{\text{rms}} \approx R_0 \times A_j^{1/3}$ with $R_0 \approx 1.11 - 1.14$ fm for the nuclei under study. A_T (Z_T, N_T) will be used as the mass (charge, neutron) numbers of the “target” or core nucleus in the α-cluster model.

The strength parameter λ is adjusted to reproduce the energies of the bound states with $E < 0$ and quasi-bound states with $E > 0$ where $E = 0$ corresponds to the threshold of α emission in the compound nucleus. In general, $E = S_\alpha + E^*$ with the binding energy S_α of the α particle in the compound nucleus ($S_\alpha < 0$ for the nuclei under study) and the excitation energy E^*. The number of nodes N of the bound state wave function $u_{\text{NL}}(r)$ was derived from the Wildermuth condition

$$Q = 2N + L = \sum_{i=1}^{4} (2n_i + l_i) = \sum_{i=1}^{4} q_i$$

(3)

where Q is the number of oscillator quanta, N is the number of nodes, and L is the relative angular momentum of the α-core wave function. $q_i = 2n_i + l_i$ are the corresponding quantum numbers of the nucleons in the α cluster. Low-lying single-particle states around ^{88}Ru are dominated by the $g_{9/2}$ subshell, and thus I use $q_i = 4$, resulting in $Q = 16$. This leads to an yrast band with nine positive-parity states with $J^\pi = 0^+ \rightarrow 16^+$ for the even-even nuclei under study.

Further details on the formalism for the calculations of the folding potentials $V_F(r)$, the resulting wave functions $u_{\text{NL}}(r)$, and reduced transition strengths $B(E2)$ have been provided in earlier work [15,26,11,12,43].

2.2 Evidence for α clustering

In light nuclei (e.g., $^{8}\text{Be} = ^{4}\text{He} \otimes \alpha$ or $^{20}\text{Ne} = ^{16}\text{O} \otimes \alpha$) α-cluster states can be identified experimentally either by enhanced cross sections in α-transfer experiments like ($^6\text{Li},d$) or by large reduced widths θ_α^2 in α-induced reactions. In heavy nuclei the preformation factor P in α-decay can provide valuable information on α-clustering of the decaying parent nuclei. However, for nuclei in the $A \approx 90$ mass region, the applicability of the above methods is limited. The lightest α emitters are found slightly above the doubly-magic core ^{100}Sn [13] which obviously excludes the $A \approx 90$ nuclei from α-decay studies. Compared to light nuclei, α-transfer studies like ($^6\text{Li},d$) and the determination of reduced widths θ_α^2 are complicated for $A \approx 90$ nuclei by small cross sections because of the higher Coulomb barrier.

The well-established α-cluster states in light nuclei can be described as eigenstates in reasonably chosen nucleon potentials (like e.g. the double-folding potential). The resulting wave functions of these eigenstates can be used to calculate $E2$ transition strengths within α-cluster bands. In practice, these potentials show either a mild dependence on the angular momentum L (e.g., [42]), or very special radial shapes of the potential like the cosh potential [14] or combinations of Woods-Saxon plus cubed Woods-Saxon potentials with further modifications [45,49,47] have to be chosen. Note that a mild angular momentum dependence is expected for local effective potentials like the folding potential of the present study [17,45].

For nuclei in the $A \approx 90$ mass region, α-clustering is usually assumed as soon as the excitation energies E^* and $E2$ transition strengths for a rotational band can be described in the same way as explained for light nuclei in the previous paragraph [11,45]. Contrary, if the excitation energies of a band cannot be reproduced from reasonable α-nucleus potentials, theses states are not considered as α-clusters.

For double-folding potentials, typically a smooth decrease of the potential strength parameter λ is found with increasing excitation energy or increasing angular momentum [42,26]. For intermediate mass nuclei around $N = 50$ an almost linear decrease of λ is found for the whole ground state band [26] whereas for the lightest nuclei the decreasing trend of λ may change to an increasing λ for states above $L \approx 6$ [42].

2.3 α-cluster properties of ^{96}Ru

Most previous studies (e.g., [11,45]) in the $A \approx 90$ mass region have focused on α-cluster states in $^{94}\text{Mo} = ^{90}\text{Zr} \otimes \alpha$ with the semi-magic $N_T = 50$ core ^{90}Zr. Experimentally,
the 0⁺ ground state and 2⁺ first excited state in 94Mo were populated in the 90Zr(6Li,3d)94Mo reaction [50], thus confirming the α-cluster properties of 94Mo. Based on a theoretical study, it has been pointed out in [46] that several nuclei with a (N_T = 50) ⊕ α structure show pronounced and very similar α-clustering properties. Besides 94Mo, α-clustering is suggested for 90Sr, 92Zr, 96Ru, and 98Pd in [46]. In particular, this finding has been confirmed recently for 96Ru by an α-transfer experiment using the 92Mo(32S,25Si)96Ru reaction where the ground state band and few states of a low-lying negative-parity band in 96Ru were preferentially populated [50].

Based on the above theoretical and experimental arguments, the nucleus 96Ru will be used as a reference for α-clustering in the following. 96Ru is preferred over 94Mo because the yrast band is completely identified up to J^{π} = 16⁺ for 96Ru whereas for 94Mo levels are known only up to J^{π} = (12^+) (Note also that previous studies of 94Mo were restricted up to J^{π} = 10⁺ [15] and J^{π} = 8⁺ [11], and both studies [11,15] disagreed on the location of the J^{π} = 8⁺ state in 96Ru.

3 Results and Discussion

3.1 N = Z nucleus 88Ru = 84Mo ⊕ α and some general remarks

Results for the potential strength parameter λ of 88Ru are shown in Fig. 1 numerical values are summarized in Table 1. The obtained potential strength parameters λ show a mild, very smooth, and almost linear decrease from about λ₀ ≈ 1.27 for the 0⁺ ground state down to about 1.22 for the 14⁺ state at E∗ = 6949 keV.

For a perfect reproduction of λ(L), a 4th-order fit has been made (shown as dotted lines in Fig. 1):

\[\lambda(L) = \lambda_0 \times \left[1 + \sum_{i=1}^{4} c_i L^i \right] \tag{4} \]

Eq. 4 provides an excellent description of λ(L) for all nuclei under investigation in this work and has been used in all cases. Using Eq. 4, it is possible to extrapolate the experimentally based potential strength parameters λ of the 0⁺ to 14⁺ states to the unobserved J^{π} = 16⁺ state, leading to λ(16⁺) = 1.2156 which corresponds to an excitation energy of E∗(16⁺) ≈ 8370 keV.

It is interesting to note that the resulting volume integral J_R of the potential remains close to the recent ATOMKI-V1 global α-nucleus potential which was derived from elastic (α,α) scattering for heavy target nuclei at low energies around the Coulomb barrier [57]. This potential has also turned out to be very successful in the prediction of α-induced reaction cross sections at astrophysically relevant sub-Coulomb energies [59].

Finally, an intrinsic uncertainty for the derived potential strength parameters λ has to be briefly mentioned; fortunately, the relevance will turn out to be minor. The parameter λ₀ for the 0⁺ ground states depends on the binding energy of the α-particle in the compound nucleus. Using the latest mass tables [51,52], the uncertainties of the α binding energies may reach up to almost 500 keV for the unstable N = Z nuclei under study. Obviously, a larger binding energy is related to a larger λ value. However, a shift in energy by 500 keV corresponds only to a marginal change in λ of about 7 × 10⁻³. This minor uncertainty affects all λ(L) in the same direction and practically cancels out in the presentation and interpretation of λ/λ₀ in Fig. 1. For completeness, the α-binding energies S_α and the corresponding λ₀ are listed in Table 2 for all nuclei under investigation in the present study.

In the following, the results for the N = Z nuclei 88Ru will be compared to 96Ru with its neutron-magic (N_T = 50) core [57,Mo (Sec. 3.2), to all neighboring nuclei (N = Z) with N ± 2 or Z ± 2 (Secs. 3.3, 3.4, and 3.5), and to the lighter N = Z nuclei 84Mo (Sec. 3.6).

3.2 Nucleus 96Ru = 92Mo ⊕ α with neutron-magic core (N_T = 50)

As a first comparison, we discuss the potential strength parameters λ(L) for 96Ru which is besides 94Mo [11,15] – a well-established α-cluster nucleus with a N_T = 50 neutron-magic core in this mass region. 96Ru is preferred here because the yrast band is well-defined up to at least J^{π} = 16⁺ whereas no high-spin members of the yrast band are available for 94Mo (see also Sec. 2.3).

The calculations for 96Ru in [20] have been repeated to ensure that the results are not affected by the present
choice of the nucleon density of 92Mo (see also Sec. 3.1). In both cases, using either an average density in 10 or using the theoretical density from 10 in the present study, it is found that the potential strength parameter λ depends only mildly and almost linear on the angular momentum L. Such a finding is typically interpreted as clear evidence for α-clustering. Interestingly, the L dependence of λ is very similar for 96Ru and 88Ru, pointing also to a significant amount of α-clustering in the $N = Z$ nucleus 88Ru without magic core. Furthermore, a practically identical behavior was found for 88Pd = 94Ru \otimes α, again with a neutron-magic core $N_T = 50$ 20.

3.4 Neighboring $N = Z + 2$ nucleus 86Mo = 82Zr \otimes α

The results for the $N \neq Z$ nucleus 86Mo are practically identical to the above results for 90Ru. In particular, there is also a clear trend of increasing $\lambda(L)$ for the largest L under study. The scatter of the $\lambda(L)$ values is somewhat smaller than for 90Ru, but still above the very smooth results for 88Ru and 96Ru.

Similar to 90Ru, also the $Q = 17$ odd-parity band in 86Mo shows a trend of increasing $\lambda(L)$ for the largest L. However, because the $L = 15$ and $L = 17$ members are not known experimentally, the trend to increasing $\lambda(L)$ for large L is not as clear for 86Mo as for 90Ru.

3.3 Neighboring $N = Z + 2$ nucleus 90Ru = 86Mo \otimes α

Contrary to 88Ru and to the nuclei 96Ru and 86Pd with their neutron-magic $N_T = 50$ cores which all show an almost linear decrease of the potential strength parameter $\lambda(L)$, the $N \neq Z$ nucleus 90Ru shows a clearly different behavior. The obtained values for λ show a somewhat larger scatter, and the trend of decreasing $\lambda(L)$ changes to increasing $\lambda(L)$ for the largest $L = 14$ and 16. Interestingly, a similar trend for $\lambda(L)$ is also found for an odd-parity band in 90Ru which can be interpreted with $Q = 17$ in Eq. 3.

Both effects, a significantly larger scatter in $\lambda(L)$ and a non-monotonic behavior, are usually interpreted that the simple α-cluster model is less applicable for such cases. Such a finding is not very surprising for 90Ru which is a nucleus without a neutron-magic core.

3.5 Neighboring $N = Z - 2$ nuclei 86Ru = 82Mo \otimes α and 90Pd = 86Ru \otimes α

Unfortunately, the experimental information on these extremely neutron-deficient $N = Z - 2$ nuclei is very limited 20 because experiments with these neutron-deficient species are very difficult. In particular, it was not possible up to now to determine properties of rotational bands in these nuclei. Thus, although highly desirable, it is not possible to analyze the $N = Z - 2$ nuclei 90Pd and 86Ru in the same way as their $N = Z + 2$ mirror nuclei 90Ru (Sect. 3.3) and 86Mo (Sect. 3.4).

3.6 Neighboring $N = Z$ nucleus 84Mo = 82Zr \otimes α

At first view, the resulting potential strength parameters $\lambda(L)$ for the $N = Z$ nucleus 84Mo look very similar to the
above results for ^{88}Ru. However, the observed yrast band in ^{84}Mo is known only up to $J^\pi = (10^+)$ which does not allow a strong statement on the behavior of $\lambda(L)$ for large angular momenta L. The 4th-order fit in Eq. (4) shows a trend to increasing $\lambda(L)$ for large L, similar to the $N \neq Z$ nuclei ^{86}Mo and ^{90}Ru, but different from the neighboring $N = Z$ nucleus ^{88}Ru. A complete determination of the yrast band in ^{84}Mo up to $J^\pi = 16^+$ would be very important to answer the open question whether ^{84}Mo behaves really similar to its $N = Z$ neighbor ^{88}Ru. Unfortunately, experimental data are also very limited for the next $N = Z$ nucleus ^{92}Pd, but very recently new data became available for ^{96}Cd [53]. Interestingly, the resulting $\lambda(L)$ for the $N = Z$ nuclei ^{90}Cd also show a clear trend of increasing $\lambda(L)$ for larger angular momenta L, i.e., similar to the $N \neq Z$ nuclei ^{86}Mo and ^{90}Ru, but different to the $N = Z$ nucleus ^{88}Ru. Contrary to the $N = Z$ nucleus ^{90}Cd and ^{96}Cd, no clear conclusion is possible for the neighboring $N = Z$ nucleus ^{84}Mo. Also lighter $N \neq Z$ nuclei like ^{46}Cr and ^{54}Cr [53] show the typical $N \neq Z$ behavior of increasing $\lambda(L)$ for large L. Thus, the properties of the yrast band in ^{88}Ru seem to be somewhat extraordinary, and the interpretation of these data requires special care.

3.7 Comparison and interpretation of the results

From the above results it is obvious that the yrast band in the $N = Z$ nucleus ^{88}Ru can be nicely described within the α-cluster model. Similar to well-established α-cluster nuclei like ^{90}Ru, the resulting potential strength parameters $\lambda(L)$ behave very regularly and show a smooth and almost linear trend to decrease towards larger angular momenta L. Contrary to the $N = Z$ nucleus ^{88}Ru, the neighboring $N \neq Z$ nuclei ^{86}Mo and ^{90}Ru show a different behavior with increasing $\lambda(L)$ towards large L. Interestingly, such a behavior is also found for the heavy $N = Z$ nucleus ^{96}Cd, and no clear conclusion is possible for the neighboring $N = Z$ nucleus ^{84}Mo. Also lighter $N \neq Z$ nuclei like ^{46}Cr and ^{54}Cr [53] show the typical $N \neq Z$ behavior of increasing $\lambda(L)$ for large L. Thus, the properties of the yrast band in ^{88}Ru seem to be somewhat extraordinary, and the interpretation of these data requires special care.

The different models for ^{88}Ru, i.e., α-clustering vs. proton-neutron pairing, can be further tested by comparing their predictions for reduced $E2$ transition strengths. The α-cluster model predicts $B(E2)$ of the order of 10 Weisskopf units for inband transitions between low-lying members of the yrast band (see Table 1, and typically these predictions are in rough agreement with experiment even without the usage of effective charges and do not deviate by more than a factor of two from experimental values [23]. Contrary to the α-cluster model, various shell model approaches provide higher $E2$ strengths of 20 or even more Weisskopf units [53,55]. Very high values, even exceeding 50 Weisskopf units, were found from the consideration of proton-neutron pairing for the $B(E2, 2^+ \rightarrow 4^+)$, $B(E2, 6^+ \rightarrow 4^+)$, and $B(E2, 4^+ \rightarrow 2^+)$ transitions in the shell model [23] whereas the α-cluster model predicts almost constant $B(E2)$ for all transitions. Thus, a measurement of transition strengths could provide further insight in the applicability of the different models for ^{88}Ru. This holds in particular for transition strengths between excited states which are however extremely difficult to measure for ^{88}Ru. All present predictions of $B(E2)$ strengths from the shell model [53] and from the α-cluster model in this study lead to lifetimes far below nanoseconds in the yrast band and are thus compatible with the observation of γ-γ coincidences within the experimental nanosecond timing window of HPGe detectors [4].

4 Summary and Conclusions

The α-cluster model is able to reproduce the excitation energies of the recently measured 93 yrast band in the heavy $N = Z$ nucleus ^{88}Ru. This provides an alternative approach to previous studies which had a focus on special proton-neutron pairing in $N = Z$ nuclei which was required to describe the observed delayed band crossing, compared to neighboring $N \neq Z$ nuclei. Both approaches – the α-cluster model on the one side and the shell model in combination with proton-neutron pairing on the other side – are able to reproduce the observed excitation energies of the yrast band in ^{88}Ru.

The experimental determination of radiation widths or absolute $E2$ transition strengths could be one way to test the reliability of the predictions from the different models and the applicability to ^{88}Ru. Without a clear experimentally based preference for one of the models, any conclusion on the experimental verification of proton-neutron pairing in ^{88}Ru or on significant α-clustering in ^{88}Ru has to remain tentative.

Acknowledgments

I thank Zs. Fülöp, Gy. Gyurky, G. G. Kiss, T. Szűcs, and E. Somorjai for longstanding encouraging discussions on α-nucleus potentials. This work was supported by NKFIH (NN128072, K120666), and by the ÚNKP-19-4-DE-65 New National Excellence Program of the Ministry of Human Capacities of Hungary.

References

1. S. Frauendorf and A. O. Macchiavelli, Prog. Part. Nucl. Phys. 78, 24 (2014).
2. Y. H. Kim, M. Rejmund, P. Van Isacker, and A. Lemasson, Phys. Rev. C 97, 041302(R) (2018).
3. B. Cederwall et al., Phys. Rev. Lett. 124, 062501 (2020).
4. Liu XuDong, Shi Yue, Xu FuRong, Sci. China 54, 1811 (2011).
5. M. Hasegawa, K. Kaneko, T. Mizusaki, and S. Tazaki, Phys. Rev. C 69, 034324 (2004).
6. N. Marginean et al., Phys. Rev. C 65, 051303(R) (2002).
7. S. M. Fischer et al., Phys. Rev. Lett. 87, 132501 (2001).
8. A. F. Zuker, A. Poves, F. Nowacki, and S. M. Lenzi, Phys. Rev. C 92, 024320 (2015).
9. Zhongzhou Ren and Bo Zhou, Front. Phys. 13, 132110 (2018).
10. H. Horiiichi, K. Ikeda, K. Katô, Prog. Theor. Phys. Suppl. 192, 1 (2012).
11. S. Ohkubo, Phys. Rev. Lett. 74, 2176 (1995).
12. R. M. Clark, A. O. Macchiavelli, H. L. Crawford, P. Fallon, D. Rudolph, A. Sämark-Roth, M. Campbell, M. Cromaz, C. Morse, and C. Santamaria, Phys. Rev. C 101, 034313 (2020).
13. Shuo Yang, Chang Xu, Gerd Röpke, Peter Schuck, Zhongzhou Ren, Yasuhiro Funaki, Hisashi Horiiuchi, Akhihiro Tohsaki, Taichi Yamada, and Bo Zhou, Phys. Rev. C 101, 024316 (2020).
14. K. Auranen et al., Phys. Rev. Lett. 121, 182501 (2018).
15. P. Mohr, Europ. Phys. J. A 31, 23 (2007).
16. Chang Xu and Zhongzhou Ren, Phys. Rev. C 74, 037302 (2006).
17. S. Ohkubo, Phys. Rev. C 101, 041301(R) (2020).
18. S. Ohkubo, M. Fujiwara, P. E. Hodgson, Prog. Theor. Phys. Suppl. 132, 1 (1998).
19. F. Michel, S. Ohkubo, G. Reidemeister, Prog. Theor. Phys. Suppl. 132, 7 (1998).
20. T. Yamaya, K. Katori, M. Fujiwara, S. Kato, S. Ohkubo, Prog. Theor. Phys. Suppl. 132, 73 (1998).
21. T. Sakuda and S. Ohkubo, Prog. Theor. Phys. Suppl. 132, 103 (1998).
22. E. Uegaki, Prog. Theor. Phys. Suppl. 132, 135 (1998).
23. H. Horiuchi, Proc. Int. Conf. on Clustering Aspects of Nuclear Structure and Nuclear Reactions, Chester, UK, July 23–27, 1984, Eds. J. S. Lilley and M. A. Nagarajan, Springer Book. https://www.springer.com/de/book/9789027720023.
24. F. Michel, G. Reidemeister, and Y. Kondo, Phys. Rev. C 51, 3290 (1995).
25. H. W. Fulbright, C. L. Bennett, R. A. Lindgren, R. G. Markham, S. C. McGuire, G. C. Morrison, U. Strothbusch, J. Töke, Nucl. Phys. A284, 329 (1977).
26. M. A. Souza and H. Miyake, Europ. Phys. J. A 53, 146 (2017).
27. P. Mohr, Europ. Phys. J. A 53, 209 (2017).
28. Online database ENSDF, available at www.nndc.bnl.gov/ensdf; based on [30,31,32,33,34].
29. B. Singh, Nuclear Data Sheets 110, 2815 (2009).
30. A. Negret and B. Singh, Nuclear Data Sheets 124, 1 (2015).
31. E. Browne, Nuclear Data Sheets 82, 379 (1997).
32. D. Abriola, A. A. Sonzogni, Nuclear Data Sheets 115, 135 (2015).
33. A. J. Koning, S. Hilaire, S. Goriely, computer code TALYS, version 1.8, http://www.talys.eu; A. J. Koning, S. Hilaire, and M. C. Duijvestijn, AIP Conf. Proc. 769, 1154 (2005).
34. U. Datta et al., AIP Conf. Proc. 2038, 020020 (2018).
35. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
36. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
37. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
38. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
39. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
40. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
41. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
42. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
43. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
44. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
45. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
46. P. Mohr, At. Data Nucl. Data Tables 54, 53 (1993).
47. H. Horiuchi, Proc. Int. Conf. on Clustering Aspects of Nuclear Structure and Nuclear Reactions, Chester, UK, July 23–27, 1984, Eds. J. S. Lilley and M. A. Nagarajan, Springer Book. https://www.springer.com/de/book/9789027720023.