CuFeO$_2$-NiFe$_2$O$_4$ hybrid electrode for lithium-ion batteries with ultra-stable electrochemical performance

Jun Young Cheong a, Seokwon Lee b, Jiyoung Lee a, Haeseong Lima, Su-Ho Choa, Doh C. Lee b and Il-Doo Kim a

a Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea

b Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea

*Email address: idkim@kaist.ac.kr (I. D. Kim)
Fig. S1. SEM-EDS analysis of (a) CFO and (b) CFO-Ni (0.4).
Fig. S2. XPS spectrum for (a) Cu, (b) Fe, and (c) Ni for CFO-Ni (0.4).
Fig. S3. Charge and discharge profile of CFO in the formation cycle.
Fig. S4. Charge and discharge profile of CFO in the 2nd, 10th, 50th, and 100th cycle.
Fig. S5. *Ex situ* XRD patterns of (a) CFO and (b) CFO-Ni (0.4) after cycling.
Table S1. Comparison of electrochemical performance for Co$_3$O$_4$ NPs by fast formation cycling with previously reported Co$_3$O$_4$-based electrodes.

Sample	Capacity (mAh g$^{-1}$)	Current Density (mA g$^{-1}$)	Cycles	References
CuFeO$_2$@rGO	587	200	100	[1]
CuFeO$_2$/graphene	670	141.6	100	[2]
CuFeO$_2$ (650 °C)	475	354	100	[3]
CFO-Ni (0.4)	147	5000	800	This Work
CFO-Ni (0.4)	500	500	100	This Work
References

[1] J. Wang, Q. Deng, M. Li, K. Jiang, J. Zhang, Z. Hu, J. Chu, Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications, Sci. Rep. 7 (2017) 8903.

[2] Y. Dong, C. Cao, Y.-S. Chui, J.A. Zapien, Facile hydrothermal synthesis of CuFeO$_2$ hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries, Chem. Commun. 50 (2014) 10151-10154.

[3] L. Lu, J.-Z. Wang, X.-B. Zhu, X.-W. Gao, H.-K. Liu, High capacity and high rate capability of nanostructured CuFeO$_2$ anode materials for lithium-ion batteries, J. Power Sources 196 (2011) 7025-7029.