\(\phi\)-meson photoproduction from nuclei

A. Sibirtsev, H.-W. Hammer, U.-G. Mei\ss{}ner, and A.W. Thomas

1 Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany
2 Institut für Kernphysik (Theorie), Forschungszentrum Jülich, D-52425 Jülich, Germany
3 Jefferson Lab, 12000 Jefferson Ave., Newport News, VA 23606, USA

Received: date / Revised version: date

Abstract. We study coherent and incoherent \(\phi\)-meson photoproduction from nuclei. The available data are analyzed in terms of single and coupled channel photoproduction. It is found that the data on coherent photoproduction can be well reproduced within a single channel optical model and show only little room for \(\omega - \phi\) mixing. These data indicate a normal distortion of the \(\phi\)-meson in nuclei, which is compatible with the results obtained through the vector meson dominance model. The data on incoherent \(\phi\)-meson photoproduction show an anomalous \(A\)-dependence resulting in a very strong \(\phi\)-meson distortion. These data can be explained by a coupled channel effect through the dominant contribution from the \(\omega \rightarrow \phi\) or \(\pi \rightarrow \phi\) transition or, more speculative, through the excitation of a cryptoexotic \(B_{\phi^-}\) baryon.

PACS. 11.80.Gw Multichannel scattering – 12.40.Vv Vector-meson dominance – 13.60.-r Photon and charged-lepton interactions with hadrons – 25.20.Lj Photoproduction reactions

1 Introduction

The renormalization of the meson spectral function in nuclear matter (for some early references, see \[\text{1,2,3,4,5,6}\] and a recent review is \[\text{7}\]) attracted substantial interest in connection with the measurements of the di-lepton invariant mass spectra from heavy ion collisions \[\text{8,9,10}\]. Recently experimental results on \(\omega\) and \(\phi\) meson modification at normal nuclear densities have been reported in experiments involving photon and proton beams \[\text{11,12,13,14,15,16}\]. The most remarkable result obtained in all these experiments is the anomalous \(A\)-dependence of the \(\omega\)-meson production from nuclear targets. At the same time the \(A\)-dependence of the \(\omega\)-meson production both in \(\gamma A\) and \(pA\) interactions can be well understood.

At the threshold of elementary \(\phi\)-meson production, its momentum in the laboratory system, i.e. with respect to nuclear matter, is quite high and a substantial fraction of the \(\phi\)-mesons decay outside the nucleus. Only that small fraction which decays inside the nucleus would indicate a probable pole shift of the spectral function. Therefore one could not expect to observe a significant in-medium modification of the \(\phi\)-meson mass by measuring the di-leptonic or \(K^+K^-\) invariant mass spectra. However, it is very plausible to study the modification of the \(\phi\)-meson width, since at low densities it is related to the imaginary part of the forward \(\phi N\) scattering amplitude \[\text{17,18,19}\]. The latter determines the \(\phi\)-meson distortion in the nucleus, which can be studied by measuring the \(A\)-dependence of the \(\phi\)-meson production.

Such ideas motivated experiments on \(\phi\)-meson production from nuclei at the KEK-PS \[\text{15}\], SPRING-8 \[\text{20}\] and at COSY \[\text{21}\]. Here we analyze recent results on incoherent \(\phi\)-meson photoproduction from nuclei collected at SPRING-8 \[\text{20}\], which indicate a substantial distortion of the \(\phi\)-meson in finite nuclei. For consistency, we also analyze data on coherent \(\phi\)-meson photoproduction collected at Cornell some time ago \[\text{22}\]. We investigate the role of single and coupled channel effects in \(\phi\)-meson photoproduction and provide a possible explanation of the observed anomaly.

The manuscript is organized as follows. In Sec. 2, we analyze the elementary amplitudes \(\gamma p \rightarrow \phi p\) and \(\gamma p \rightarrow \omega p\) in terms of the vector meson dominance model and compare to data taken at Cornell, ELSA and SPRING-8. In Sec. 3, we study coherent and incoherent \(\phi\)-meson photoproduction off nuclear targets in a single channel optical model and show that such an approach is not capable of describing the new data from SPRING-8. Coupled channel scattering is considered in Sec. 4 and it is in particular shown that the \(A\)-dependence of the SPRING-8 data can be understood in a two-step model, including \(\omega - \phi\) mixing and coupling to an intermediate pion. We also add some speculations about the excitation of cryptoexotic baryons with hidden strangeness. Sec. 5 contains our conclusions.

2 Vector Dominance Model

2.1 Data evaluation

Considering quark-anti-quark fluctuations of the photon, the Vector Dominance Model (VDM) assumes that intermediate hadronic \(q\bar{q}\) states are entirely dominated by the neutral vector mesons. In that sense the hadron-like photon \[\gamma\] is a superposition of all possible vector meson states. The \(\gamma N \rightarrow \phi N\)
reaction can be decomposed into the transition of the photon to a virtual vector meson V followed by the elastic or inelastic vector meson scattering on the target nucleon. The invariant reaction amplitude follows as \[M_{\gamma N \rightarrow \phi N} = \sum_{V} \frac{\sqrt{\alpha}}{\gamma_V} M_{V N \rightarrow \phi N}, \] where the summation is performed over vector meson states, α is the fine structure constant, γ_V is the photon coupling to the vector meson V and $M_{V N \rightarrow \phi N}$ is the amplitude for the $V N \rightarrow \phi N$ transition.

A direct determination of γ_V is possible through vector meson decay into a lepton pair \[\Gamma(V \rightarrow l^+ l^-) = \frac{\pi \alpha^2}{3 \gamma_V} \sqrt{m_V^2 - 4 m_l^2} \left[1 + \frac{2 m_l^2}{m_V^2} \right], \] where m_V and m_l are the masses of vector meson and lepton, respectively. Taking the di-electron decay width from Ref. \[27\], the photon coupling to the lightest vector mesons is given as

\[\gamma_\rho \approx \gamma_\omega \approx \gamma_\phi = 2.48 \pm 0.53 \pm 0.69. \]

Although the couplings γ_V can be determined experimentally, Eq. (1) does not indicate whether non-diagonal, i.e. $\rho N \rightarrow \phi N$ and $\omega N \rightarrow \phi N$, or diagonal $\phi N \rightarrow \phi N$ processes dominate the ϕ-meson photoproduction on the nucleon, since the $M_{V \phi}$ amplitudes cannot be measured. Furthermore, VDM suggests that the virtual vector meson stemming from the photon becomes real through the four-momentum t transferred to the nucleon, which in general requires the introduction of a form-factor in the interaction vertices \[28, 29, 30\].

The next step in the VDM analysis is to consider only the diagonal transition or elastic $V N \rightarrow V N$ scattering. The imaginary part of the amplitude $f_{\phi N}(0)$ in the center of mass for forward elastic $\phi N \rightarrow \phi N$ scattering is related to the ϕN total cross section, $\sigma_{\phi N}$, by an optical theorem as

\[\Im f_{\phi N}^\ast (\phi, \theta=0) = \frac{q_\phi}{4 \pi} \sigma_{\phi N}, \]

where q_ϕ and θ are the ϕ-meson momentum and scattering angle in the ϕN center of mass system, respectively. The amplitude $f_{\phi N}$ is related to the Lorentz invariant scattering amplitude as

\[M_{\phi N \rightarrow \phi N} = -8 \pi s f_{\phi N}^\ast (q_\phi, \theta), \]

with s the invariant collision energy squared. The $\gamma N \rightarrow \phi N$ differential cross section is given in terms of the Lorentz invariant amplitude as

\[\frac{d\sigma_{\gamma N \rightarrow \phi N}}{dt} = \frac{|M_{\gamma N \rightarrow \phi N}|^2}{64 \pi s q_\phi^2}, \]

where q_γ is the photon momentum in the center of mass system. By introducing the ratio of the real to the imaginary part of the forward ϕN scattering amplitude as α_ϕ, the $\gamma N \rightarrow \phi N$ differential cross section at $t=0$ can be written as

\[\frac{d\sigma_{\gamma N \rightarrow \phi N}}{dt}_{t=0} = \frac{\alpha_\phi}{16 \gamma^\ast} \frac{q_\phi^2}{q_\gamma^2} (1 + \alpha_\phi^2) \sigma_{\phi N}^2. \]

\[1\] It is clear that this formalism holds for the photoproduction of any vector meson $V = \rho, \omega, \phi, J/\Psi, \ldots$. Note that the q_γ^2 / q_ϕ^2 ratio was not included in most of the VDM analyses reviewed in Ref. \[24\]. While this simplification might be applicable at high energies, that is not the case for most of the data available at $E_\gamma < 10$ GeV, as is illustrated by Fig. 2.
The forward \(\gamma p \to \omega p \) differential cross section as a function of photon energy. The data are collected in Ref.[29]. The lines show the calculations based on Eq. (7) with \(\alpha_\omega = 0 \) and for different values of \(\sigma_{\omega N} \).

Fig. 3. The forward \(\gamma p \to \omega p \) differential cross section as a function of photon energy. The data are collected in Ref.[29]. The lines show the calculations based on Eq. (7) with \(\alpha_\omega = 0 \) and for different values of \(\sigma_{\omega N} \).

Again, both the ratio \(\alpha_\phi \) and the total \(\phi N \) cross section are unknown. Thus VDM analysis of photoproduction data requires additional assumptions.

It is believed that at high energies the hadronic forward scattering amplitudes are purely imaginary. The data available [27] for the \(pp, p\bar{p}, \pi^+ p, \pi^- p, K^+ p \) and \(K^- p \) reactions indicate that the ratios of the real to imaginary parts of the forward scattering amplitudes are \(\approx 0.1 \) at \(\sqrt{s} > 20 \) GeV. The \(\alpha_\phi \) ratio was measured \[31\] through the interference between the \(\phi \to e^+ e^- \) decay and the Bethe-Heitler production of electron-positron pairs and it was found that \(\alpha_\phi = -0.48 \pm 0.33 \) at photon energies \(6 < E_{\gamma} < 7.4 \) GeV. This result is too uncertain to be used in the further analysis. To estimate the maximum value of \(\sigma_{\phi N} \), we apply \(\alpha_\phi = 0 \). It is clear that any non-vanishing ratio \(\alpha_\phi \) would result in a reduction of the \(\phi N \) cross section that will be evaluated from the data in what follows.

Now Fig. [31] shows the available data \[32,33,34,35,36,37,38,39,40,41\] on the forward \(\gamma p \to \phi p \) differential cross section as a function of the photon energy. The lines are the results using Eq. (7) obtained with \(\alpha_\phi = 0 \) and for different values of the total \(\phi N \) cross section. Only one experimental point at high energy \[39\] needs a large \(\sigma_{\phi N} \), although within experimental uncertainty this measurement is in agreement with the data at photon energies below 10 GeV, which are also shown in Fig. [31].

Note that a large part of the data shown in Fig. [31] is in reasonable agreement with calculations done with \(\sigma_{\phi N} \approx 11 \) mb.

Fig. [31] demonstrates the disagreement between the most recent measurements from SAPHIR \[40\] and SPRING-8 \[41\], which are shown by the solid circles and the solid triangles, respectively. Note that both sets of data contradict the VDM predictions. Although this discrepancy requires special investigation we would like to make the following comments relevant to the present study and VDM analysis of the data.

2.2 Comments

Let us discuss the observed discrepancy between the data and the VDM description at low energies through inspection of the forward \(\gamma p \to \omega p \) differential cross section, shown in Fig. [3] as a function of the photon energy. The different symbols indicate the data collected in Ref.[42], while the solid lines show the VMD calculations based on Eq. (7) with the ratio \(\alpha_\omega = 0 \) and for different values of \(\sigma_{\omega N} \), respectively. The data at \(E_{\gamma} > 10 \) GeV are in good agreement with the VDM assuming that \(20 < \sigma_{\omega N} < 30 \) mb. The low energy \(\gamma p \to \omega p \) data indicate an excess with respect to VDM that is well understood in terms of the non-diagonal \(\rho N \to \omega N \) transition given by Eq. [4]. More precisely, this can be explained by a \(\pi \)-meson exchange contribution \[24,43\]. Indeed, the dominant \(\omega \)-meson decay mode is \(\pi^+ \pi^- \pi^0 \), which in general is described in terms of the transition \(\omega \to \rho \pi \), followed by the \(\rho \to \pi \pi \) decay. Therefore it is natural to expect that the non-diagonal \(\rho N \to \omega N \) transition plays a substantial role in (low-energy) \(\omega \)-meson photoproduction.

Most of the results on the forward photoproduction cross section are determined through an extrapolation of the differential \(d\sigma/dt \) cross section over a certain range of \(t \), not to the maximal accessible value, but rather to the point \(t = 0 \), by applying a fit of the form \(d\sigma/dt = A \exp(bt) \). This is the reason why the \(t = 0 \) differential cross sections at low photon energies, shown in Fig. [3] do not vanish even though they are clearly dominated by \(\pi \)-meson exchange. The extrapolation to different \(t \) might explain the difference between the SAPHIR \[40\] and SPRING-8 \[41\] results and data available at higher energies.

Indeed, within the Born approximation the \(\pi \)-meson exchange contribution vanishes \[42,43,44,45\] at \(t = 0 \). Here the minimal and maximal value of \(t \) is given by

\[
t^\pm = m_V^2 - \frac{s-m_N^2}{2s} \left(s + m_V^2 - m_N^2 \right)
+ \left[(s-m_V^2 - m_N^2)^2 - 4m_V^2 m_N^2 \right]^{1/2},
\]

with \(m_V \) and \(m_N \) the masses of the vector meson and nucleon, respectively. At threshold, \(\sqrt{s} = m_V + m_N \), the four-momentum transfer squared is

\[
t^\pm = -\frac{m_N m_V^2}{m_N + m_V},
\]

With increasing energy, \(\sqrt{s} \gg m_V + m_N \),

\[
t^- \simeq m_V^2 - \frac{(s - m_N^2 - m_V^2)}{s},
\]

and \(t^- \) approaches zero.

It is not obvious whether the extrapolation should be done to \(t = 0 \) or to \(\theta = 0 \), as is explicitly shown by Eq. [4]. Note that for elastic scattering \(t^- = 0 \). Actually the differential \(\gamma p \to \phi p \) cross sections measured by SAPHIR \[40\] and SPRING-8 \[41\] shown
in Fig. 2 were extrapolated to $t=t^-$ and the $t=0$ correction in that case is $\exp(-t^-)$, which accounts for a factor of ≈ 1.61 at the ϕ-meson photoproduction threshold.

Keeping that in mind one might conclude that similar to the $\gamma p \rightarrow \phi p$ data the forward $\gamma p \rightarrow \phi$ differential cross section indicates some enhancement with respect to the diagonal VDM. This enhancement might stem from non-diagonal transitions. Apparently that problem requires additional investigation, which is beyond the scope of the current study.

Moreover the discrepancy between the SAPHIR [40] and SPRING-8 [41] results can be partially explained by the different range of t used for the $t=t^-$ extrapolation. SPRING-8 explored the range $t-t^->0.4$ GeV2, while the SAPHIR measurements were used to fit $\frac{d\sigma}{dt}$ over a larger range and at maximum photon energy $t-t^->-2$ GeV2. For that reason it is worthwhile to reanalyze the SAPHIR data by fitting the differential cross section with the sum of a soft and a hard component.

Finally, keeping in mind the uncertainty of the analysis of low energy data on the forward $\gamma p \rightarrow \phi p$ differential cross section we conclude that VDM yields the upper limit of the total ϕp cross section about 11 mb. If the ratio of the real to imaginary forward scattering amplitude, i.e. α_ϕ, is not equal to zero, then $\sigma_{\phi p}$ can be even smaller, as indicated by Eq. (7).

\section*{3 Single channel optical model}

Consider a nuclear reaction as a succession of collisions of the incident particle with individual nucleons of the target. If the nucleus is sufficiently large the reaction can be formulated in terms of the optical model through replacement of the multiple individual interactions by an effective potential interaction with nuclear matter. Within the so-called $t\rho$ approximation that is valid at normal nuclear densities, $\rho=0.16$ fm$^{-3}$, the optical potential is given by the product of the density and forward two-body scattering amplitude. Similarly, the Glauber theory expresses the cross section for reactions on nuclear target in terms of elementary two body interactions [46,47,48].

Conversely, by measuring the nuclear cross sections it might be possible to study the elementary interactions [24]. The realization of Drell and Trefil [49] and Margolis [50] that such a formalism could be used to study the interaction of unstable particles with the nucleon by producing them in a nucleus with hadronic or electromagnetic beams, stimulated enormous experimental activity [24]. This method was first applied [49,50,51] for the evaluation of the ρN interaction from coherent and incoherent ρ-meson photoproduction off nuclei. Coherent photoproduction has the advantage that the produced particle must have quantum numbers similar to those of the photon.

\subsection*{3.1 Coherent photoproduction}

An extensive study of coherent ϕ-meson photoproduction on a variety of nuclear targets was done at the Cornell 10 GeV electron synchrotron [22]. One might expect [50,51] the A-dependence of coherent photoproduction at high energies to be proportional to A^2 if the ϕ-meson does not interact in nuclei, i.e. if it is not distorted by final state interactions (FSI). By fitting the forward ϕ-meson photoproduction cross section [22] with a function $\sim A^\alpha$, one obtains the slope $\alpha=1.37\pm0.08$ at the photon energy of 6.4 GeV and $\alpha=1.53\pm0.05$ at $E_\gamma=8.3$ GeV. The shaded boxes in Fig. 4 show these results, which indicate a strong deviation from a dependence on A^2.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{The slope α of the A^α dependence of the forward ϕ-meson photoproduction cross section as a function of the total ϕN cross section. The shaded boxes indicate the results at photon energies 6.4 and 8.3 GeV obtained at Cornell [22]. The lines show the calculations by Eq. (4) with different longitudinal momenta $q_l=0$ (solid), 63 (dashed) and 82 MeV/c (dotted), which are fixed to the photon energy by Eq. (12). The calculations were done for the ratio $\alpha_c=0$.}
\end{figure}

Note, however, that the forward photoproduction cross section contains both coherent and incoherent contributions. In the absence of the FSI distortion, the incoherent photoproduction cross section is proportional to A. Therefore one might argue that the A-dependence results from a mixture of coherent and incoherent ϕ-meson photoproduction. In order to verify such a possibility, an additional experiment with linearly polarized photons with average energy of 5.7 GeV was performed [52]. The measured polarization asymmetry for the forward ϕ-meson photoproduction from a carbon target was found to be consistent with the assumption of coherent photoproduction.

In order to evaluate the ϕN interaction from coherent photoproduction one can apply the method proposed in Refs. [50,51] and express the amplitude for coherent ϕ-meson photopro-
duction from nuclei as \[\mathcal{J}_{\gamma A\to\phi A}(t, A) = \mathcal{J}_{\gamma N\to\phi N}(t) \int_0^\infty d^2b J_0(q_t b) \]
\[\times \int dq b(z) \exp[iq z] \times [1 - i\chi\phi(b, z)]^{A-1}, \] \[(11) \]
where \(\mathcal{J}_{\gamma N\to\phi N} \) is the elementary photoproduction amplitude on a nucleon, an integration is performed over the impact parameter \(b \), the \(z \) coordinate is along the beam direction and \(\rho(r=\sqrt{b^2+z^2}) \) is the nuclear density function normalized to the number of the nucleons in the nucleus. Here, \(t \) is the four-momentum transferred to the nucleus and \(-t = q_t^2 + q_z^2 \), with \(q_t \) and \(q_z \) being the longitudinal and transverse component, respectively, given by
\[q_t = k - \cos\theta\sqrt{k^2 - m_\phi^2}, \quad q_z = \sin\theta\sqrt{k^2 - m_\phi^2}, \] \[(12) \]
where \(k \) is the photon momentum, \(m_\phi \) is the pole mass of the \(\phi \)-meson and \(\theta \) is the emission angle of the produced \(\phi \)-meson. In Eq. (11) \(J_0 \) is the zero order Bessel function. The last term of Eq. (11) accounts for the distortion of the \(\phi \)-meson through an effective interaction with \(A-1 \) nuclear nucleons and \(\chi\phi \) is the corresponding nuclear phase shift. Here we neglect the distortion of the photon. The phase shift \(\chi\phi \) can be well approximated within the impulse approximation by \[\chi\phi(b, y) = -2\pi f_{\phi N}(p_\phi, \theta=0) \int z \rho(b, y) dy, \] \[(13) \]
where \(f_{\phi N} \) is the complex amplitude for the forward \(\phi N \) elastic scattering amplitude, \(\alpha_\phi \), the cross section for coherent \(\phi \)-meson photoproduction from nuclei is finally given as
\[\frac{d\sigma_{\gamma A\to\phi A}}{dt} = \frac{d\sigma_{\gamma N\to\phi N}}{dt} \int_0^\infty d^2b J_0(q_t b) \int_\infty^{-\infty} dz \rho(b, z) \]
\[\times \exp[iq z] \exp \left[\frac{\sigma_{\phi N}(i\alpha_\phi - 1)}{2} \int z \rho(b, y) dy \right]^2. \] \[(14) \]

The general features of the coherent photoproduction are as follows. The \(t \)-dependence is given by the elementary \(\gamma N\to\phi N \) photoproduction amplitude as well as by the nuclear form factor. The differential cross section has a diffractive structure due to the \(J_0(q_t b) \) dependence. However, up to now this structure was not observed experimentally, since it is non–trivial to isolate coherent from incoherent photoproduction, which dominates at large \(|t| \). The forward coherent \(\gamma A\to\phi A \) photoproduc-

Fig. 5. The forward \(\gamma A\to\phi A \) differential cross section as a function of the mass number. The symbols show the data collected at Cornell \[22 \] at photon energies 6.4 GeV (circles) and 8.3 GeV (squares). The lines are the calculations with the total \(\phi N \) cross section of 10 (solid), 30 (dashed) and 50 mb (dotted) and with the ratio \(\alpha_\phi=0 \). Both experimental results and calculations are divided by \(A \). The calculations are normalized at the \(A=12 \) point.

Indeed if the distortion of the \(\phi \)-meson is negligible and \(q_t=0 \) the coherent photoproduction cross section is proportional to \(A^2 \) as is given by Eq. (14). Furthermore, to analyze the Cornell data and for completeness, we specified the density distribution function \(\rho(r) \) used in Eq. (14) as
\[\rho(r) = \frac{\rho_0}{1 + \exp[(r-R)/d]}, \] \[(15) \]
with parameters
\[R=1.28A^{1/3} - 0.76 + 0.8A^{1/3} \text{ fm,} \quad d = \sqrt{3/\pi} \text{ fm,} \] \[(16) \]
for the nuclei with \(A>16 \). For light nuclei we adopt \[28, 59 \]
\[\rho(r) = (R\sqrt{\pi})^{-3} \left[4 + \frac{2(A-4)r^2}{3R^2} \right] \exp[-r^2/R^2], \] \[(17) \]
with \(R=\sqrt{2} \) fm.
We note that the results on forward photoproduction are not sensitive to the variation of the ratio α_ϕ, as can be seen from Eq. (14) and is known from the analyses of ρ-meson photoproduction \cite{24} and hadronic elastic scattering \cite{57}.

Finally, the lines in Fig. 4 are the calculations based on Eq. (14) with momentum $q_l = 82$ (dashed) and 63 (dotted), related to the photon energy by Eq. (12). The results are shown as a function of the total ϕN cross section. The calculations for $q_l=0$ MeV/c correspond to the high energy limit, i.e. $k \gg m_\phi$, and for $\sigma_{\phi N}=0$ actually match the A^2 point. To get the slope α we fit our calculation with the function cA^α with c a constant and using the set of nuclear targets corresponding to the experimentals. Fig. 4 illustrates that the q_l correction already introduces a substantial departure from the A^2-dependence. Although the uncertainties in the $\sigma_{\phi N}$ extraction from the data are large, the data are in very good agreement with the calculations with a total ϕN cross section of ≈ 10 mb.

Fig. 5 shows the forward $\gamma A \rightarrow \phi A$ differential cross section as a function of the target mass number A. The circles and squares are the experimental results obtained at Cornell for photon energies of 6.4 and 8.3 GeV, respectively. The lines show the calculations for different $\sigma_{\phi N}$ and for the ratio $\alpha_\phi=0$. Both data and calculations are divided by A. Obviously the shape of the A-dependence is different for the calculation for the various $\sigma_{\phi N}$. The experimental results are in perfect agreement with the calculations using $\sigma_{\phi N}=10$ mb.

Finally, one can as well extract the elementary $\gamma N \rightarrow \phi N$ forward differential cross section using Eq. (14) and compare the results with the results obtained by direct measurement. The calculations with $\sigma_{\phi N}=10$ mb can be well fitted to the data with an elementary $\gamma N \rightarrow \phi N$ forward differential cross section around $2.2 - 2.6 \mu b/\text{GeV}^2$, which is in good agreement with the results collected in Fig. 4.

3.2 Incoherent photoproduction

Recently incoherent ϕ-meson photoproduction at photon energies $1.5 < E_\gamma < 2.4$ GeV was studied by the SPRING-8 Collaboration \cite{20}. The data were published with arbitrary normalization and provide the A dependence fitted by the function A^α with slope $\alpha=0.72\pm0.07$.

The optical model expression for the incoherent photoproduction including only the excitation of the single nucleon and neglecting the Pauli principle, which suppresses the cross section at small t, is given by \cite{24}

$$
\frac{d\sigma_{\gamma A \rightarrow \phi A}}{dt} = \frac{d\sigma_{\gamma N \rightarrow \phi N}}{dt} \int_0^\infty \int_{-\infty}^\infty \int_0^\infty d^2b dz \rho(b,z) \exp\left[-\sigma_{\phi N} \int_0^\infty \rho(b,y) dy\right]. \quad (18)
$$

Now if $\sigma_{\phi N} = 0$, the forward cross section is proportional to A. The shaded box in Fig. 6 shows the result from SPRING-8, while the line indicates the calculations based on Eq. (18) for different values of the total ϕN cross section. Again, we fit our results by the function cA^α and use the set of nuclear targets from experiment\cite{6}. It is clear that the experimental results favor $23 < \sigma_{\phi N} < 63$ mb. This is in agreement with the experimental finding \cite{20} of $\sigma_{\phi N} = 35_{-11}^{+17}$ mb. The Pauli blocking corrections make almost no change to the A-dependence and only suppress the absolute value of the forward photoproduction cross section \cite{24,60}.

Clearly this result differs substantially from the total ϕN cross section extracted from coherent ϕ-meson photoproduction. There are no available explanations why the distortion of the incoherently produced ϕ-meson is so extremely strong. Furthermore, the calculations \cite{60,61} which include the in-medium modification of the ϕ-meson cannot account for such strong distortion.

4 Coupled channel scattering

Since ϕ and ω mesons have the same quantum numbers, these two states should mix with each other - see e.g. \cite{62,65,64}. Therefore the ϕ-meson might be produced indirectly, i.e. through the photoproduction of the ω-meson followed by the $\omega \rightarrow \phi$ transition. Furthermore, there can in principle occur an arbitrary number of $\omega + \phi$ transitions. Moreover, these transitions can

\footnotesize
\begin{itemize}
 \item[5] Although in view of Eq. (14) it is more natural to divide the results on coherent photoproduction by A^2, it turns out that A^{-1} representation is more illustrative in case of the observed moderate A-dependence of the data and therefore is very frequently used.
 \item[6] The A^α function is not the dependence given by Eq. (18) and only provides a useful representation of the data. Indeed the slope α depends on the set of target numbers A used in the calculations. Therefore it is necessary to simulate the experimental conditions explicitly.
\end{itemize}
occur either due to the \(\omega \) and \(\phi \) mixing, \textit{i.e.} similar to oscillations, or because of the \(\omega N \rightarrow \phi N \) interaction. This is illustrated in Fig. 7. Since both \(\omega \) and \(\phi \) mesons are strongly interacting particles, their final state interaction in any nuclear target would cause distortions. The coupled channel scattering apparently depends on the strength of the \(\omega \rightarrow \phi \) transition. However, one expects the \(\phi \)-meson distortion to be considerable because of the interference effect. Even a small amount of an \(\omega \rightarrow \phi \) admixture might have a considerable effect on \(\phi \)-meson production from complex nuclei. First discussed by Ross and Stodolsky [53, 62], this effect has subsequently been largely overlooked in the literature [24].

Here we consider coherent and incoherent \(\phi \)-meson photoproduction from nuclei within the coupled channel approach.

4.1 Coherent photoproduction

The generalization of the single channel amplitude of for the two coupled channel scattering can be done by introducing the \(2 \times 2 \) matrix instead of the last term of Eq. (11) as

\[
\begin{pmatrix}
1 - \sigma_{\omega N} \int_{\infty}^{\rho(b, y)} \rho(b, z) dz \exp[iq_0 y] & \sigma_{\phi N} \int_{\infty}^{\rho(b, y)} \rho(b, z) dz \\
-\sigma_{\omega N} \int_{\infty}^{\rho(b, y)} \rho(b, z) dz & 1 - \sigma_{\phi N} \int_{\infty}^{\rho(b, y)} \rho(b, z) dz
\end{pmatrix}
\]

where we have used Eqs. (11, 12) and we denote by \(\Sigma \) the effective \(\omega \rightarrow \phi \) and \(\phi \rightarrow \omega \) transition cross section, which are equivalent because of time-reversal invariance. Furthermore, we neglect the real parts of the elastic and transition amplitudes, since even in the single channel analysis they could not be fixed. Furthermore, the longitudinal momentum \(q_l \) is defined as

\[
q_l \simeq \frac{m_\omega^2 - m_\phi^2}{2k}.
\]

Neglecting the off-diagonal transition, \textit{i.e.} setting \(\Sigma = 0 \), the matrix of Eq. (19) allows one to recover the single channel optical model for \(\omega \) and \(\phi \)-meson photoproduction, while taking the elementary \(T_{\gamma N} \) amplitude as a two-component vector.

Since in our case \(\Sigma \) is small, the amplitude for coherent \(\phi \)-meson photoproduction from a nucleus can be expressed in a simple form.

\[
T_{\gamma A \rightarrow \phi A}^{\text{coh}} = \int_{\infty}^{\rho(b, y)} \rho(b, z) dx \exp[iq_0 z] \]

\[
\times \left[T_{\gamma N \rightarrow \omega N} \frac{\sigma_{\omega N}}{2} \int_{\infty}^{\rho(b, y)} \rho(b, z) dz \exp[iq_0 y] \rho(b, y) dy \\
+ T_{\gamma N \rightarrow \phi N} \frac{\sigma_{\phi N}}{2} \int_{\infty}^{\rho(b, y)} \rho(b, z) dz \exp[iq_0 y] \rho(b, y) dy \\
\right]
\]

For \(\Sigma = 0 \), Eq. (21) reduces to Eq. (11) and the coherent differential cross section is given by Eq. (14). Moreover, Eq. (21)
corresponds to the first order perturbation expansion in Σ, i.e. the inclusion of only one $\omega \rightarrow \phi$ transition. If Σ is large one should consider an arbitrary number of $\omega \rightarrow \phi$ transitions, which might be done through the series expansion \[65\] of the off-diagonal elements of the matrix given by Eq. (19).

Moreover in high energy limit, i.e. when $q_l = \bar{q}_l = 0$, the integration along z can be done analytically and the coherent photoproduction amplitude is then given in a well-known form [51]

$$
T_{\gamma A \rightarrow \phi A} = \int_0^\infty d^2b \ J_0(q_t b) \left[\frac{T_{\gamma N \rightarrow \omega N} \ \Sigma}{\sigma_{\omega N} - \sigma_{\phi N} + \frac{T_{\gamma N \rightarrow \phi N}}{\sigma_{\phi N}} \left(1 - \exp \left[-\frac{\sigma_{\phi N} T(b)}{2} \right] \right)} \right],
$$

(22)

where the real parts of the scattering amplitudes were neglected and the thickness function is given as

$$
T(b) = \int_{-\infty}^\infty \rho(b, z) \ dz.
$$

(23)

Following the VDM results shown in Figs. [13] we use the elementary elastic ω and ϕ-meson photoproduction amplitude given by Eq. [2] namely as

$$
T_{\gamma N \rightarrow V N} = \frac{\sqrt{\alpha}}{4 \gamma V} \frac{q_V}{\gamma_t} \sigma_{V N},
$$

(24)

with the γ_ϕ and γ_ω coupling constants given by Eq. [3] and with $\sigma_{\phi N} = 11$ mb and $\sigma_{\omega N} = 23$ mb. Thus the absolute normalization of our calculations is fixed by VDM. Fig. 8 shows the coherent $\gamma A \rightarrow \phi A$ differential cross section as a function of the mass number calculated for different values of Σ. The data might be well reproduced by calculations with $0 \leq \Sigma \leq 0.3$ mb. Only the experimental results at $E_\gamma = 6.4$ GeV support the coupled channel effect originating from the $\omega \rightarrow \phi$ transition.

4.2 Incoherent photoproduction

Let us now consider incoherent photoproduction of ω-mesons followed by $\omega N \rightarrow \phi N$ scattering. Note that in the coupled channel description of coherent ϕ-meson photoproduction the $\omega \rightarrow \phi$ transition is not necessary due to the scattering on the target nucleon, but might be also an oscillation due to the mixing. In that sense incoherent photoproduction is given as a two step process and differential cross section can be written as [48, 67]

$$
\frac{d\sigma_{\gamma A \rightarrow \phi A}^{inc}}{dt} = \frac{d\sigma_{\gamma N \rightarrow \omega N}}{dt} \int_0^\infty \Sigma d^2b \left[\frac{1 - \exp \left[-\frac{\sigma_{\phi N} T(b)}{2} \right]}{\sigma_{\phi N}} - \frac{\exp \left[-\frac{\sigma_{\omega N} T(b)}{2} \right] - \exp \left[-\frac{\sigma_{\phi N} T(b)}{2} \right]}{\sigma_{\phi N} - \sigma_{\omega N}} \right],
$$

(25)

where the function $T(b)$ is given by Eq. (23) and it is not necessary that $\Sigma = \bar{\Sigma}$. Considering both direct and two-step ϕ-meson production, one should in principle add the contribution given by Eq. (18).

Unfortunately the data [20] on incoherent ϕ-meson photoproduction from nuclei are given with arbitrary normalization and we cannot investigate how big the possible contribution from two-step production might be, since $\bar{\Sigma}$ is unknown. However, it is possible to examine the A-dependence due to the two-step process.

Fig. 9 shows the incoherent ϕ-meson photoproduction cross section as a function of the target mass measured at SPRING-8 [20]. The dotted line shows the calculations performed within the single channel optical model using Eq. (18) with $\sigma_{\phi N} = 11$ mb and $\sigma_{\omega N} = 23$ mb. Both the data and our results are divided by A. The calculations are normalized for an $A l$ target. The single channel calculations are identical to the ones shown in Refs. [20] [60] [61] and apparently can not reproduce the data, as we already discussed in Sec. 3.2. The two-step model calculations are in reasonable agreement with experimental results - providing an A-dependence $\propto A^{0.63}$. Thus the measured A-dependence clearly indicates the dominance of the two-step process in ϕ-meson photoproduction. Unfortunately there are no data available for heavy targets, which clearly are crucial for the verification of the calculated A-dependence shown in Fig. 9.
Note that another two-step process, \(i.e., \gamma N \rightarrow \pi N \) followed by \(\pi N \rightarrow \phi N \) transition, would produce almost the same dependence, \(\propto A^{0.63} \), as shown by the dashed line in Fig.2. In the considered \(\pi - \) meson momentum range the total \(\pi N \) cross section is about \(\approx 30 \text{ mb} \) and therefore calculations were done using Eq. (25) with \(\sigma_{\pi N} = 30 \text{ mb} \). Note that both \(\pi - \) meson photoproduction and the \(\pi N \rightarrow \phi N \) transition are quite large and therefore it is possible that incoherent \(\phi - \) meson photoproduction is dominated by a two–step reaction mechanism. For instance theoretical studies \([69,70,71,72,73]\) on low energy \(\pi - \) meson production in proton nucleus collisions indicate dominance of the two-step process with intermediate \(\pi - \) mesons. This result is strongly supported by measurements of the \(A \)-dependence and two-particle correlations in \(K^+ - \) meson production from \(pA \) reactions \([71,72,75,76,77]\). Further investigations on incoherent \(\phi - \) meson photoproduction require measurement of differential cross section with absolute normalization.

It is also clear that incoherent coupled channel \(\phi - \) meson photoproduction might also proceed through coherent \(\omega - \) meson production by the photon, followed by the incoherent \(\omega \rightarrow \phi \) transition. This mechanism involves, in addition, substantial \(q - \) dependence at low photon energies similar to that of Eq. (13), which allows for freedom in description of the \(A \)-dependence.

4.3 Estimates for \(\Sigma \) and \(\bar{\Sigma} \)

It is useful to estimate the \(\Sigma \) and \(\bar{\Sigma} \) in order to understand how large the effect due to the \(\omega \rightarrow \phi \) transition might be. Our estimates are based on the amplitudes evaluated in free space, which are not necessarily the same as in nuclear matter.

Very recently the the \(\omega - \phi \) mixing amplitude \(\Theta_{\omega\phi} \) was investigated \([78]\) within the leading order chiral perturbation theory and it was found that \(\Theta_{\omega\phi} \approx (25,34 \pm 2.39) \times 10^{-3} \text{ GeV}^2 \). In our normalization \(\Sigma \) can be related to \(\Theta_{\omega\phi} \) as \([79]\)

\[
\Sigma \approx \frac{1}{m_\omega^2} \left(\frac{\Theta_{\omega\phi}^2}{(m_\phi^2 - m_\omega^2)} \right)^2 = 2.2 \mu b,
\]

where we neglect the width of the \(\omega \) and \(\phi - \) meson. Actually the effect due to the \(\omega \rightarrow \phi \) mixing is small and is as indicated by the calculations shown in Fig.8 might be supported by the Cornell data \([22]\) on coherent \(\phi - \) meson photoproduction from nuclei. However, the data itself do not really require the inclusion of the mixing amplitude and the problem still remains open.

The contribution to incoherent \(\phi - \) meson photoproduction from the two step process with an intermediate \(\pi - \) meson can be reasonably estimated since there are data available for the \(\pi N \rightarrow \phi N \) reaction collected in Refs. \([80,81]\) and parameterized as

\[
\bar{\Sigma}(\pi N \rightarrow \phi N) = \frac{18 \sqrt{s} - s_0}{1.1285 + (s - s_0)^2} \mu b,
\]

where \(s \) is the squared invariant mass of the \(\pi N \) system given in \(\text{GeV}^2 \) and \(\sqrt{s_0} = m_N + m_\phi \) is the reaction threshold. Note that at pion energies of \(\approx 2 \text{ GeV} \), which correspond to the forward \(\phi - \) meson photoproduction in the SPRING-8 experiment \([20]\) the \(\pi N \rightarrow \phi N \) cross section is about \(20 \mu b \). Furthermore, at photon energies of \(1.5 \leq \gamma \leq 2.4 \text{ GeV} \) the total cross section for the \(\gamma N \rightarrow \phi N \) reaction is in average \(\approx 0.3 \mu b \) \([82]\) while the \(\gamma N \rightarrow \pi N \) reaction accounts for \(\approx 5 \mu b \) \([83,84]\). Therefore the contribution from the two-step mechanism might be well suppressed as compared to the direct \(\phi - \) meson photoproduction. This can be clearly seen by inspecting Eqs. (18,25) and replacing the \(\omega N \) intermediate state with the \(\pi N \) one.

It is difficult to estimate reliably the contribution to incoherent \(\phi - \) meson photoproduction from a two-step process with an intermediate \(\omega - \) meson. Figs.2,5 illustrate that incoherent forward \(\omega - \) meson photoproduction dominates \(\phi - \) meson photoproduction by a factor of order 0.6. However, at the same time the \(\gamma p \rightarrow \phi p \) data collected in Fig.3 show almost no room for the non-diagonal \(\omega N \rightarrow \phi N \) transition. The data at low photon energies are well described by the VDM accounting only for elastic diagonal \(\phi N \rightarrow \phi N \) scattering. Within the experimental uncertainties of the forward \(\gamma p \rightarrow \phi p \) differential cross sections and considering the difference between data and our VDM calculations with \(\sigma_{\phi N} = 11 \mu b \) we estimate \(\bar{\Sigma} < 0.1 \mu b \). In that case the contribution from the two-step process is compatible with the direct incoherent \(\phi - \) meson photoproduction and the coupled channel effect is indeed sizable.

4.4 Speculations

Finally we would like to mention another possibility which is not related to the \(\phi - \) meson propagation in nuclear matter and the \(\Sigma \) transition but with incoherent \(\phi - \) meson photoproduction at low energies. Recently \([85]\) we investigated the role of the cryptoexotic baryon with hidden strangeness, \(B_0 = uudds \), in \(\phi - \) meson production in proton-proton collisions close to the reaction threshold. We found that the enhanced \(\phi - \) meson production observed at COSY \([21]\) can be well explained by an \(\bar{B}_0 \)-baryon excitation followed by the \(\bar{B}_0 \rightarrow \phi N \) decay. It is expected that these pentaquark baryons have a narrow width and decay preferentially into the \(\phi N \), \(KK \) or \(YK \) channels, where \(Y \) stands for ground-state or excited hyperons \([86,87]\). Experimental observations for the \(B_0 \) candidates were reported in Refs. \([88,89,90,91,92,93]\). The high-statistics study of Ref. \([93]\) of the \(Q^+K \) mass spectrum indicates two exotic states with \(M = 1807 \pm 7 \text{ MeV} \), \(\Gamma = 62 \pm 19 \text{ MeV} \) and \(M = 1986 \pm 6 \text{ MeV} \), \(\Gamma = 91 \pm 20 \text{ MeV} \).

One might expect that \(B_0 \)-baryon can be excited in photon-nucleon interaction. Because of its mass the \(\gamma p \rightarrow \phi p \) reaction would be sensitive to \(B_0 \) excitation at low photon energy. The \(B_0 \) contribution might explain the SAPHIR-8 and SPRING-8 measurements \([40,41]\) of angular spectra in the Gottfried-Jackson frame, which indicate that at low energies the \(\phi - \) meson photoproduction is not governed by pomeron exchange.

Considering coherent and incoherent \(\phi - \) meson photoproduction from nuclei we notice even more significant features. First, the coherent photoproduction at low energies should not be dominated by \(B_0 \)-baryon excitation, since in that case the residual nucleus differs from ground state. Incoherent \(\phi - \) meson photoproduction at low energies might be dominated by \(B_0 \) excitation. Since the \(B_0 \)-baryon is narrow, it decays outside the nucleus and an effective distortion of the \(\phi - \) meson is given by the distortion of \(B_0 \), which is compatible with and interaction of other baryons in nuclear matter because of the light quark
content of the B_ϕ-baryon. Therefore one should not be surprised by the result shown in Fig.6.

5 Conclusions

We have analyzed coherent and incoherent ϕ-meson photoproduction from nuclei by applying the single and coupled channel optical model.

The data on coherent ϕ photoproduction collected at Cornell [22] at photon energies of 6.4 and 8.3 GeV can be well reproduced by a single channel calculation taking into account the ϕ-meson distortion compatible with the $\phi\eta$ total cross section $\sigma_{\phi\eta}=10$ mb. This result is in good agreement with the VDM analysis of the forward $\gamma p \rightarrow \phi p$ differential cross section, which indicates that $\sigma_{\phi\eta} \geq 11$ mb. Coherent ϕ-meson photoproduction shows little room for the coupled channel effect due to the contribution from the $\omega \rightarrow \phi$ transition.

The data on incoherent ϕ-meson photoproduction off various nuclei collected at SPRING-8 [20] at photon energies from 1.5 to 2.4 GeV can be reproduced by the single channel optical model calculations only under the assumption that the ϕ-meson is substantially distorted in nuclei, which corresponds to $23 \leq \sigma_{\phi\eta} \leq 61$ mb. This result is in agreement with previous incoherent ϕ-meson photoproduction data analyses [20,60,61]. Moreover, we found that taking into account the coupled channel effects, i.e., assuming direct ω-meson photoproduction followed by the $\omega N \rightarrow \phi N$ transition as well as pion photoproduction followed by the $\pi N \rightarrow \phi N$ scattering, it is possible to reproduce the A-dependence measured at SPRING-8 [20].

Although we estimate the absolute rates for the contribution of these two different intermediate states, it is difficult to draw a final conclusion. First, the SPRING-8 data [20] are published without absolute normalization. Second, the t-dependence of these data are not given for all nuclei used in the measurements. Such knowledge is essential for the evaluation of incoherent photoproduction within the coupled channel analysis, since each of the two-step processes has an individual t-dependence, which can be used in order to distinguish the intermediate states. In that sense more precise data on incoherent ϕ-meson photoproduction are necessary for further progress.

We also discussed a very alternative (and probably speculative) scenario that might occur only in incoherent ϕ-meson photoproduction but is not accessible in the coherent reaction. The excitation of the cryptoexotic baryon with hidden strangeness, called B_ϕ, would result in an A-dependence similar to that measured by SPRING-8 [20]. However, the B_ϕ-baryon could not be exited in coherent photoproduction. Therefore measurements of the A-dependence of coherent ϕ-meson photoproduction from nuclei at low energies is crucial for identification of the possible existence of such an cryptoexotic baryon.

Acknowledgements

We would like to thank J. Haidenbauer, T. Nakano, A. Nogga for useful discussions. This work was partially supported by Deutsche Forschungsgemeinschaft through funds provided to the SFB/TR 16 “Subnuclear Structure of Matter”. This research is part of the EU Integrated Infrastructure Initiative Hadron Physics Project under contract number RII3-CT-2004-506078. A.S. acknowledges support by the JLab grant SURA-06-C0452 and the COSY FFE grant No. 41760632 (COSY-085).

References

1. T. Hatsuda and T. Kunihiro, Phys. Lett. B 185 (1987) 304.
2. V. Bernard, U.-G. Meißner and I. Zahed, Phys. Rev. Lett. 59, 966 (1987).
3. V. Bernard and U.-G. Meißner, Nucl. Phys. A 489, 647 (1988).
4. G.E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).
5. T. Hatsuda and S.H. Lee, Phys. Rev. C 46, 34 (1992).
6. G.Q. Li, C.M. Ko and G.E. Brown, Nucl. Phys. A 606, 568 (1996); [nucl-th/9506040].
7. K. Saito, K. Tsushima and A. W. Thomas, arXiv:hep-ph/0506314.
8. G. Agakichiev et al., Phys. Rev. Lett. 75, 1272 (1995).
9. M. Masera et al., Nucl. Phys. A 590, 93 (1992).
10. G. Agakichiev et al., Phys. Lett. B 422, 405 (1998).
11. K. Ozawa et al., Phys. Rev. Lett. 86, 5019 (2001); [nucl-ex/0011013].
12. D. Trnka et al., Phys. Rev. Lett. 94, 192303 (2005); [nucl-ex/0504010].
13. M. Naruki et al., Phys. Rev. Lett. 96, 092301 (2006); [nucl-ex/0504010].
14. R. Muto et al., nucl-ex/0511019.
15. T. Tabaru et al., nucl-ex/0603013.
16. G.J. Lolos, AIP Conf. Proc. 814, 608 (2006).
17. W. Lenz, Z. Phys. 56, 778 (1929).
18. C.D. Dover, J. Hüfner and R.H. Lemmer, Ann. Phys. 66, 248 (1971).
19. B. Friman, Acta Phys. Pol. B 29, 3195 (1998); [nucl-th/9808071].
20. T. Ishikawa et al., Phys. Lett. B 608, 215 (2005); [nucl-ex/0411016].
21. M. Hartmann et al., COSY Proposal 147 (2005).
22. G. McClellan et al., Phys. Rev. Lett. 26, 1593 (1971).
23. L. Stodolsky, Phys. Rev. Lett. 18, 135 (1967).
24. T.H. Bauer, R.D. Spital, D.R. Yennie and F.M. Pipkin, Rev. Mod. Phys. 50, 261 (1978).
25. E. Paul, Nucl. Phys. A 446, 203 (1985).
26. Y. Nambu and I. J. Sakurai, Phys. Rev. Lett. 8, 79 (1962).
27. Particle Data Group, Phys. Lett. B 592, 1 (2004).
28. J. Hüfner and B.Z. Kopeliovich, Phys. Lett. B 426, 154 (1998); [hep-ph/9712297].
29. A. Sibirtsev, K. Tsushima and A.W. Thomas, Phys. Rev. C 63, 044906 (2001); [nucl-th/0005041].
30. A. Sibirtsev, S. Krewald and A.W. Thomas, J. Phys. G 30, 1427 (2004); [nucl-th/0301082].
31. H. Alvensleben et al., Phys. Rev. Lett. 27, 444 (1971).
32. R. Erbe et al., Phys. Rev. 175, 1669 (1968).
33. J. Ballam et al., Phys. Rev. D 7, 3150 (1973).
34. H.J. Besch et al., Nucl. Phys. B 70, 257 (1974).
35. H.J. Behrend et al., Phys. Lett 56B, 408 (1975).
36. D.P. Barber et al., Phys. Lett. 79B, 150 (1978).
37. M. Atkinson et al., Phys. C 27, 233 (1985).
38. J. Busenitz et al., Phys. Rev. D 40, 1 (1989).
39. M. Derrick et al. Phys. Lett. B 377, 259 (1996).
40. J. Barth et al., Eur. Phys. J. A 17, 269 (2003).
41. T. Mibe et al., Phys. Rev. Lett. 95, 182001 (2005); [nucl-ex/0506015].
42. A. Sibirtsev, K. Tsushima and S. Krewald, Phys. Rev. C 67, 055201 (2003); [nucl-th/0301015].
43. B. Friman and M. Soyeur, Nucl. Phys. A 600, 477 (1996); [nucl-th/9601028].
44. S.M. Berman and S.D. Drell, Phys. Rev. 133, B791 (1964).
45. A. Sibirtsev, K. Tsushima and S. Krewald, AIP Conf. Proc. 717, 280 (2004); [nucl-th/0202085].
46. R.J. Glauber, High Energy Physics and Nuclear Structure, ed. S. Devons, Plenum, New York, 207 (1970).
47. D.R. Yennie, Hadronic Interactions of Electrons and Photons, ed. J. Cummings and H. Osborn, Academic, New York, 321 (1971).
48. G.V. Bochman, Phys. Rev. D 6, 1938 (1972).
49. S.D. Drell and J.S. Trefil, Phys. Rev. Lett. 16, 552 (1966).
50. B. Margolis, Phys. Lett. 26, 254 (1968).
51. K.S. Kölbig and B. Margolis, Nucl. Phys. B 6, 85 (1968).
52. G. McClellan et al., Phys. Rev. Lett. 180, 1379 (1969).
53. J.S. Trefil, Nucl. Phys. B 11, 330 (1969).
54. R.G. Newton, Scattering Theory of Waves and Particles, Springer-Verlag, Berlin, 605 (1982).
55. A. Sibirtsev and W. Cassing, Phys. Rev. C 61, 057601 (2000); [nucl-th/9909053].
56. O.D. Balkarov and V.A. Karmanov, Phys. Lett. B 147, 1 (1984).
57. G.D. Alkhassov, S.L. Belostotsky and A.A. Vorobyov, Phys. Rept. C 42, 89 (1978).
58. D. Cabrera, L. Roca, E. Oset, H. Toki and M.J. Vicente Vacas, Nucl. Phys. A 733, 130 (2004).
59. P. Münlich and U. Mosel, [nucl-th/0510078].
60. M. Ross and L. Stodolsky, Phys. Rev. Lett. 17, 563 (1966).
61. J.S. Trefil, Nucl. Phys. B 29, 575 (1971).
62. A.I. Sandra and A. Wijangco, Phys. Rev. D 5, 661 (1972).
63. O. Benhar, S. Fantoni, N.N. Nikolaev and B.Z. Zakharov, JETP 84, 421 (1997).
64. G.V. Bochmann and B. Margolis, Nucl. Phys. B 14, 609 (1969).
65. G. Fällert and P. Oslund, Nucl. Phys. B 87, 445 (1975).
66. E. Vercellin et al., Nuovo Cim. A 106, 861 (1992).
67. W. Cassing, G. Batko, U. Mosel, K. Niita, G. Wolf and O. Schult, Phys. Lett. B 238, 25 (1990).
68. A. Sibirtsev and M. Büscher, Z. Phys. A 347, 191 (1994).
69. M. Debowski et al., Z. Phys. A 356, 313 (1996).
70. A. Sibirtsev, W. Cassing and U. Mosel, Z. Phys. A 358, 357 (1997); [nucl-th/9607047].
71. E.Ya. Paryev, Eur. Phys. J. A 7, 127 (2000).
72. V.P. Koptev et al., JETP 94, 1 (1988).
73. A. Badala et al., Phys. Rev. Lett. 80, 4863 (1998).
74. M. Büscher et al., Phys. Rev. C 65, 014603 (2002); [nucl-ex/0107011].
75. V. Koptev et al., Eur. Phys. J. A 17, 235 (2003).
76. A. Kucurkaslan and U.-G. Meißner, Mod. Phys. Lett. A (2006) in print, [hep-ph/0603061].
77. R. Urech, Phys. Lett. B 355, 308 (1995); [hep-ph/9504238].
78. A. Sibirtsev, Nucl. Phys. A 604, 455 (1996).
79. A. Sibirtsev and W. Cassing, Eur. Phys. J. A 7, 407 (2000).
80. A. Sibirtsev, U.-G. Meißner and A.W. Thomas, Phys. Rev. D 71, 094011 (2005); [hep-ph/0503276].
81. B.H. Kellett, Nucl. Phys. B 25, 205 (1970).
82. Landolt-Börnstein, New Series 8, 285 (1973).
83. A. Sibirtsev, J. Haidenbauer and U.-G. Meißner, Eur. Phys. J. A 27, 263 (2006); [nucl-th/0512053].
84. L.G. Landsberg, Phys. Usp. 37, 1043 (1994).
85. L.G. Landsberg, Phys. Rep. 320, 223 (1999).
86. M.W. Arenton et al., Phys. Rev. D 25, 2241 (1982).
87. A.N. Aleev et al., Z. Phys. C 25, 205 (1984).
88. V.A. Dorofeev et al., Phys. At. Nuc. 57, 227 (1994).
89. V.A. Dorofeev et al., Phys. At. Nuc. 57, 238 (1994).
90. M.Ya. Balatz et al., Z. Phys C61, 223 (1994).
91. Yu.M. Antipov et al., Phys. At. Nucl. 65, 2070 (2002).