Vs$_{30}$ Mapping and Site Classification in Surakarta City Based on Multichannel Analysis of Surface Waves Method

Muhammad Fachrul Rozi Kurniawan, Sorja Koesuma, Budi Legowo

Geophysics Laboratory, Physics Department, Universitas Sebelas Maret, Surakarta, Indonesia

E-mail: fachrulrozi29@student.uns.ac.id

Abstract. The Multichannel Analysis of Surface Waves (MASW) method is one of the non-invasive methods that can be used to determine the shear wave velocity. The shear wave velocity can be obtained from the inversion of dispersion curve of the Rayleigh wave. The surveys have been done at 10 sites in Surakarta city. Active MASW measurements are performed by using the P.A.S.I. Seismograph Mod. 16S24-P. Geophone used as many as 24 channels with threshold frequency is 4.5 Hz of the vertical component and 8 lbs hammer as an active source. Each spread is given once shot point at 5 to 10 meters from the near geophone. The measurement data as a time domain is transformed to frequency domain. The average shear wave velocity up to 30 meters depth is referred as $V_{S_{30}}$. The results show that the distribution $V_{S_{30}}$ of Surakarta between 250 – 450 m/s. Based on the National Earthquake Hazard Reduction Program (NEHRP) classification, these values are classified as C and D class. The highest $V_{S_{30}}$ values at the southwest part (Laweyan site) is 435.7 m/s and the northern part (Banjarsari site) is 411.7 m/s classified as site class C. Meanwhile, the lowest $V_{S_{30}}$ values at the northwest and southeast part (Serengan and Pasar Kliwon sites) classified as D class.

1. Introduction

Surakarta is located in Central Java Indonesia, almost never occured earthquakes disaster. It does not guarantee that Surakarta is safety from earthquake because Surakarta is located between Mount Lawu and Mount Merapi. In addition, there are three faults around Surakarta (Opak fault, Lasem fault, and Kendeng fault) with the distance less than 500 km (impact radius from an earthquake), so Surakarta has high risk potential for seismic disaster. The geology of Surakarta based on Geological Map of Surakarta - Giritontro consists of alluvium, older alluvium, and Merapi’s volcanic rocks [1,2,3,4]. The amplification of ground motion controlled by local geological conditions. In many cases, younger and softer soils has stronger amplify ground motion than older and more consolidated soils [5]. The alluvial area have a low shear wave velocity distribution [6].

In seismic exploration, surface waves are regarded as noise in any required seismic event [7]. Rayleigh wave is one of types of the surface waves that have high signal to noise ratio (S/N) when seismic waves was generated. Rayleigh wave have a retrograde motion and consist of several frequency interval, each of which has its own waves velocity. This phenomenon called dispersion and can be used as a fundamental measuring of shear wave velocity [8,9]. Early 1980 Nazarian introduced a measurement method by a pair receivers to determine the shear wave velocity (V_s), this method is called Spectral Analysis of Surface Waves (SASW). The weakness of the SASW method is difficulty in distinguishing signal and noise because it only use a pair of receiver. The multi receiver used to overcome SASW method so obtained data with the quality of the signal that more clearly, this method is known as Multichannel Analysis of Surface Waves (MASW) [7]. The Multichannel Analysis of Surface Waves
method is one of the non-invasive methods that can be used to determine the shear velocity profile [10]. The data acquisition of MASW is easy because the surface wave have high S/N than body wave [11,12].

Shear wave velocity mapping is most important for microzonation studies and earthquake geotechnical investigation [11,13]. The average velocity of shear waves up to 30 meters (V_{S30}) is an important parameter in classifying sites for recent buildings and indicator of amplification sites response (considerable influence on the ground motions) [14,15]. The United States Geological Survey (USGS) also provides global V_{S30} map, it has given more information about site conditions [16]. Therefore it is necessary to analysis a research of V_{S30} map in Surakarta city.

2. Methods
The data were collected at 10 locations in Surakarta. The acquisition of data has been performed using the P.A.S.I. Seismograph Mod. 16S24-P with 24 geophones of vertical component (threshold frequency 4.5 Hz). The geophones spacing is 4 meters in a straight line and source offset is 5 to 10 meters (dependent environment noise). The source is generated by striking hammer (8 lbs) to base – plate (metal). Every sites generated waves at one point of the source with 5 times stacking.

![Geological Map of Surakarta](image)

Figure 1. Geological map of Surakarta and locations of MASW measurements in Surakarta (modified from Surono, *et al*. [1]).

\bar{V}_s is the average shear wave velocity (upper 30 meters defined V_{S30}), h_i is a layer thickness (0 to 30 meters) and V_i is the shear waves velocity of n layers. \bar{V}_s is calculated in the equation :

$$\bar{V}_s = \frac{\sum_{i=1}^{n} h_i}{\sum_{i=1}^{n} V_i}$$

(1)
Based on the V_{s30} values, the site can be defined by The National Earthquake Hazard Reduction Program (NEHRP) classification shown in Table 1 [17]. Furthermore, spatial mapping using Krigging interpolation technique to get V_{s30} map.

Table 1. Site classification by NEHRP [17].

Soils Classification	Soils Profile	V_{s30} (m/s)
A	Hard Rock	$V_{s30} > 1500$
B	Rock	$760 < V_{s30} < 1500$
C	Soft Rock and Very Dense Soils	$360 < V_{s30} < 760$
D	Stiff Soils	$180 < V_{s30} < 360$
E	Soft Soils	$V_{s30} < 180$

3. Result and Discussion
The analysis result of dispersion curve at each site shown in Figure 4. The difference of dispersion curves is indicated the differences in the subsurface. The inversion of dispersion curves to get the 1D shear wave velocity profile. The V_{s30} calculated by Equation, values of each site shown in Table 2.
Figure 4. Dispersion curves.
Table 2. Data of result V_{S30} and sites classification based on NEHRP.

Location code	Easting (m)	Northing (m)	V_{S30} (m/s)	Site Class
A1	478774	9164182	326.4	D
A2	476346	9162757	435.7	C
A4	475780	9165057	264.8	D
B1	482546	9166292	386.2	C
B2	479024	9166376	292.9	D
B3	480050	9166212	411.7	C
B4	485264	9165108	329.3	D
C2	482458	9162811	275.7	D
C4	481524	9160582	257.4	D
C5	479078	9161850	307.2	D

Figure 5. 1D shear waves velocity profile.
The 2D shear wave velocity mapping for 10 points measurement MASW shown in Figure 5. The interval V_{S30} of Surakarta city is 250 m/s – 450 m/s. From this figure show that the highest of V_{S30} is the directions of southwest part at site A2 (Laweyan site) has 435.7 m/s and the northeast part at site B3 (Banjarsari site) and B1 (Jebres site) have 411.7 m/s and 386.2 m/s and the both of them categorized as C class site. The lowest of the west part at site A4 (Laweyan site of north part) has 264.8 m/s and the south part at site C4 (Pasar Kliwon site) has 257.4 m/s s and the both of them categorized as D class site. The high V_{S30} means that the site has thin sediment and low factor amplification, the low V_{S30} means that the site has thick sediment and high factor amplification. The distribution of site classification shown in Figure 6. Generally, sites with class D have amplification factor more strongly than class C.

![Figure 6. V_{S30} map of Surakarta based on MASW measurement.](image)

![Figure 7. Site Classification map of Surakarta by NEHRP classification.](image)
4. Conclusions

This result shows that Surakarta can be devided as two classes based on shear wave velocity by NEHRP. The highest V_{s30} values at the southwest part (Laweyan site) is 435.7 m/s and the northern part (Banjarsari site) is 411.7 m/s classified as site class C. Meanwhile, the lowest V_{s30} values at the northwest and southeast part (Serangan and Pasar Kliwon sites) classified as D class. The low V_{s30} values indicates that those locations a has higher amplification factor and the high V_{s30} values indicates that those locations a has lower amplification factor. Based on this research we have recommendation for government or related institution, every building construction must consider site classes to reduce earthquake hazard.

Acknowledgment

The authors mostly grateful to Geophysics Laboratory Universitas Sebelas Maret for supporting and aquiring data in this research. We also would like thank to Government of Surakarta City and for the reviewer of this mauscript for its valuable comments.

References

[1] Surono, Toha B and Sudarno I 1992 Peta Geologi Lembar Surakarta Giritonter, Jawa, Skala 1:100.000 (Bandung: Pusat Penelitian dan Pengembangan Geologi)
[2] Koesuma S, Ridwan M, Nugraha AD, Widiyantoro S and Fukuda Y 2017 Preliminary Estimation of Engineering Bedrock Depths from Microtremor Array Measurements in Solo, Central Java, Indonesia J. Math. Fund. Sci. 49 306 – 320
[3] Koesuma S, Pratiwi S and Legowo B 2018 Determination of Sediment Thickness by using Microtremor Method in Surakarta City Risalah Fisika 2 25 – 28
[4] Pratiwi S, Legowo B and Koesuma S 2017 Penentuan Tingkat Kerawanan Gempa Bumi Menggunakan Metode Refraksi Mikrotremor (ReMi) di Kota Surakarta Indonesian Journal of Applied Physics 7 59 – 65
[5] Maheswari R U, Boominathan A, and Dodagoudar G R 2010 Seismic Site Classification and Site Period Mapping of Chennai City Using Geophysical and Geotechnical Data Journal of Applied Geophysics 72 152–168
[6] Ismet Kanli A, Tildy P, Prónay Z, Pinar A and Hermann L 2006 V_{s30} Mapping and Soil Classification for Seismic Site Effect Evaluation in Dinar Region, SW Turkey Geophysical Journal International 165 223–235
[7] Park CB, Miller RD and Xia J 1999 Multichannel Analysis of Surface Waves Geophysics 64 800 – 808
[8] De Lucena RF and Taioli F 2014 Rayleigh Wave Modeling: A Study of Dispersion Curve Sensitivity and Methodology for Calculating an Initial Model to be Included in an Inversion Algorithm Journal of Applied Geophysics 108 140 –151
[9] Lin CP, Chang CC, and Chang TS 2004 The use of MASW Method in the Assessment of Soil Liquefaction Potential Soil Dynamics and Earthquake Engineering 24 689 – 698
[10] Satyam D N 2010 Multi Channel Analysis of Surface Wave (MASW) Testing for Dynamic Site Characterization of Delhi Region International Conferenceson Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 1 1 – 5
[11] Tokeshi K, Harutoonian P, Leo CJ and Liyanapathirana S 2013 Use of Surface Waves for Geotechnical Engineering Applications in Western Sydney Advances in Geosciences 35 37 – 44
[12] Hartanjo E and Brotopuspiro KS 2014 Comparison of 8 and 24 Channels MASW Data : Field performance. The International Conference on Physics, (icp), 97–99.
[13] Anbazhagan P and Sitharam TG 2008 Site Characterization and Site Response Studies Using Shear Wave Velocity JSEE 10 53 – 67
[14] Boore DM 2004 Estimating $V_s(30)$ (or NEHRP Site Classes) from Shallow Velocity Models (Depths < 30 m) Bulletin of the Seismological Society of America 94 591 – 597
[15] Kuo C, Wen K, Hsieh H, Chang T, Lin C and Chen C 2011 Evaluating empirical regression equations for Vs and Estimating Vs30 in Northeastern Taiwan Soil Dynamics and Earthquake Engineering 31 431 – 439

[16] Liu W, Chen Q, Wang C, Juang CH and Chen G 2017 Spatially Correlated Multiscale Vs30 Mapping and a Case Study of the Suzhou Site Engineering Geology 220 110 – 122

[17] Building Seismic Safety Council 2004 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (Fema 450) 2003 Edition (Washington DC : National Institute of Building Sciences) p 47