Electronic Supplementary Information (ESI)

[12]aneN₃-based multifunctional compounds as fluorescent probes and nucleic acids delivering agents

Yong-Guang Gao,¹,² Shuyuan Huangfu,³ Suryaji Patil,⁴ Quan Tang,⁵ Wan Sun,⁵ Yu Li,⁵ Zhong-Lin Lu⁶ and Ai-Rong Qian⁷

¹ Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
² Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China.

* Corresponding authors, Tel.: +86-29-88460660; gaoyongguang@nwpu.edu.cn (Y.-G. Gao). Tel.: +86 10 58801804. luzl@bnu.edu.cn (Z.-L. Lu); Tel.: +86-29-88491840, qianair@nwpu.edu.cn (A.-R. Qian).
Contents

1. Spectroscopic properties of 1a-1e

2. Characterization of 1a-1e/RNA (DNA) complexes

3. Cell uptake of 1a-1e/RNA (DNA) complexes

4. Cytotoxicity

5. Spectroscopic data of compounds

6. Spectra
1. Spectroscopic properties of 1a-1e

Fig. S1 The absorption spectra (50 μM) and fluorescence (10 μM) spectra of 1a-1e in water-Tris-HCl buffer (1 mM, pH = 7.2).

Table S1 The fluorescent intensity changes of 1a-1e after addition of Cu$^{2+}$ ions

Probes	Fluorescent Intensity (F₀, before addition of Cu$^{2+}$)	Fluorescent Intensity (F, after addition of Cu$^{2+}$)	Fluorescent Changes (F₀ / F)
1a	605.86	60.91	9.95
1b	810.36	17.15	47.25
1c	339.10	57.22	5.93
1d	866.29	13.60	63.69
1e	582.98	39.97	14.59

Fig. S2 Selectivity studies of 1b with Cu$^{2+}$ in the presence of other metal ions. Blue bars represent the addition of the competing metal ion (100 μM) to the solution of the 1 (10 μM). Red bars represent the addition of Cu$^{2+}$ (30 μM) to the solution containing other metal ions.
Fig. S3 Plots of fluorescence intensity of 1a-1e as a function of [Cu$$^{2+}$$]/[I]. The standard deviations obtained by fluorescence responses of 1a-1e were determined to be σ = 1.17, 0.63, 1.08, 0.13 and 0.34 for Cu$$^{2+}$$, therefore, the detection limits were calculated by the formula (3σ/k) and given the results of 1.21×10^-8 M, 7.48×10^-9 M, 4.40×10^-8 M, 1.23×10^-9 M and 2.36×10^-9 M, respectively.
Fig. S4 Job's plot showing the 1:1 (1a-1d/Cu$^{2+}$) and 1:2 (1e/Cu$^{2+}$) complex stoichiometry, mole fraction of Cu$^{2+}$ $X = [\text{Cu}^{2+}]/([\text{Cu}^{2+}]+[1])$, $[\text{Cu}^{2+}]+[1] = 30 \mu M$ in Tris-HCl buffer.
Fig. S5 1H NMR of compound 1b upon titration of Cu(ClO$_4$)$_2$ (CD$_3$SOCD$_3$)

Fig. S6 The proposed binding modes of 1 and Cu$^{2+}$

2. Characterization of 1a-1e/RNA (DNA) complexes
Fig. S7 (A1-E1) Mean diameter and (A2-E2) zeta potential of 1a-1e/DNA complexes and 1a-1e/RNA complexes obtained at various concentrations by DLS.

3 Cell uptake of 1a-1e/RNA (DNA) complexes

Concentration	Image
10 μM	A1
15 μM	A2
20 μM	A3
25 μM	A4

Fig. S7 Fluorescence microscope images of HeLa cells transfected with Cy5-labeled siRNA (9 μg/mL) by 1b at different concentrations. A1-A4: BF, B1-B4: red channels, C1-C4: green channels.

Weight Ratio	Image
2/1	A1
5/1	A2
10/1	A3
15/1	A4

Fig. S8 Fluorescence microscope images of HeLa cells transfected with Cy5-labeled siRNA (9 μg/mL) by 25 KDa PEI at different weight ratios. A1-A4: BF, B1-B4: red channels.
Fig. S9 Fluorescence microscope images of HeLa cells transfected with Cy5-labeled siRNA (9 μg/mL) by lipofectamine 2000 at different weight ratios. A1-A4: BF, B1-B4: red channels.

Fig. S10 Fluorescence microscope images of HepG2 cells transfected with Cy5-labeled siRNA (9 μg/mL) by MFCs 1a-1e at the concentration of 20 μM, 25 kD PEI and lipofectamine 2000 as positive control. A1-E1: red channels, A2-E2: green channels.
Fig. S11 Fluorescence microscope images of U2Os cells transfected with Cy5-labeled siRNA (9 μg/mL) by MFCs 1a-1e at the concentration of 20 μM, 25 kD PEI and lipofectamine 2000 as positive control. A1-E1: red channels, A2-E2: green channels.

Fig. S12 Fluorescence microscope images of MC3T3-E1 cells transfected with Cy5-labeled siRNA (9 μg/mL) by MFCs 1a-1e at the concentration of 20 μM, 25 kD PEI and lipofectamine 2000 as positive control. A1-E1: red channels, A2-E2: green channels.
4. Cytotoxicity

![Graphs showing cell viability data](image)

Fig. S13 Cytotoxicities of the complexes of MFCs 1a-1e/DNA at different concentrations on HeLa, HepG2, U2Os and MC3T3-E1 cells.

5. Spectroscopic data of compounds

4a: 59%; 1H NMR (400 MHz, CDCl$_3$) δ 8.59 (d, J = 7.2 Hz, 1H), 8.48 (dd, J = 17.1, 8.1 Hz, 2H), 7.70 (t, J = 7.9 Hz, 1H), 7.38 (s, 2H), 7.28 - 7.09 (m, 4H), 5.45 (s, 4H), 4.15 (t, J = 7.2 Hz, 2H), 3.83 - 3.76 (m, 8H), 3.33 (s, 16H), 3.19 (s, 3H), 2.65 (s, 3H), 2.42 (s, 8H), 1.88 - 1.82 (m, 12H), 1.73 - 1.65 (m, 2H), 1.45 (s, 38H), 0.96 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 169.68, 164.15, 163.76, 155.96, 143.89, 137.52, 136.45, 132.15, 130.98, 130.44, 129.94, 127.91, 126.38, 125.16, 122.93, 115.55, 114.88, 79.07, 53.01, 49.56, 46.52, 45.30, 43.70, 41.90, 39.85, 37.62, 30.11, 28.36, 25.96, 20.22, 13.73; IR (KBr, cm$^{-1}$): 3338.86, 3127.11, 2967.17, 2931.93, 1690.36, 1649.70, 1581.93, 1416.57, 1359.64, 1245.78, 1169.88, 776.81; EI-MS calcd. For C$_{73}$H$_{109}$N$_{15}$O$_{11}$ (M+H)$^+$: 1372.8, found 1373.0.

4b: 78%; 1H NMR (400 MHz, CDCl$_3$) δ 8.57 (d, J = 7.3 Hz, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.28 (s, 1H), 7.73 (s, 2H), 7.64 (t, J = 7.9 Hz, 1H), 7.34 (s, 7H), 7.15 (s, 1H), 6.58 (d, J = 8.5 Hz, 1H), 5.52 (s, 4H), 4.19 - 4.12 (m, 2H), 3.89 (s, 2H), 3.70 (s, 4H), 3.55 (s, 2H), 3.30 - 3.24 (m, 16H), 2.39 (s, 8H), 1.90 - 1.66 (m, 14H), 1.42 (d, J = 13.1 H, 38H), 0.96 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 168.55, 164.39, 163.90, 156.20, 149.97, 144.08, 136.55, 135.81, 134.13, 130.72, 129.45, 127.07, 124.42, 122.41, 120.11, 109.37, 103.27, 79.24, 53.12, 49.65, 46.87, 45.31, 43.90, 39.73, 39.22, 30.21, 28.38, 25.84, 25.40, 20.29, 13.78; IR (KBr, cm$^{-1}$): 3379.86, 3127.11, 2967.17, 2931.93, 1690.36, 1649.70, 1581.93, 1416.57, 1359.64, 1245.78, 1169.88, 776.81; EI-MS calcd. For C$_{71}$H$_{105}$N$_{15}$O$_{11}$ (M+H)$^+$: 1344.8, found 1344.9.

4c: 57%; 1H NMR (400 MHz, CDCl$_3$) δ 8.61 (d, J = 7.1 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.40 (d, J = 8.4 Hz, 1H), 7.76 - 7.72 (m, 1H), 7.41 (s, 2H), 7.31 (s, 2H), 7.24 (d, J = 4.0 Hz, 2H), 5.56 (s, 4H), 4.31
(t, J = 6.7 Hz, 1H), 4.20 - 4.15 (m, 2H), 4.07 (s, 1H), 3.79 (s, 4H), 3.31 (s, 18H), 2.44 - 2.42 (m, 8H), 1.88 - 1.83 (m, 12H), 1.73 - 1.67 (m, 4H), 1.44 (s, 38H), 1.28 - 1.21 (m, 2H), 0.98 (d, J = 7.3 Hz, 3H);

\(^{13}\)C NMR (101 MHz, D\(_2\)O) \(\delta\) 166.26, 165.02, 161.60, 161.15, 153.66, 152.17, 141.72, 134.54, 134.26, 129.71, 129.66, 128.53, 128.27, 127.13, 126.99, 126.19, 125.60, 124.01, 123.59, 120.82, 120.26, 115.24, 112.96, 76.67, 62.88, 50.54, 50.39, 47.10, 44.28, 42.82, 41.33, 37.45, 27.93, 27.61, 25.87, 24.75, 23.46, 17.73, 16.54, 11.21, 11.08; IR (KBr, cm\(^{-1}\)) : 3343.72, 3127.11, 2969.88, 2926.51, 1690.36, 1657.83, 1590.06, 1416.57, 1365.06, 1229.52, 1161.75, 784.94;

EI-MS calcd. For C\(_{73}\)H\(_{107}\)N\(_{15}\)O\(_{11}\) (M+H): 1370.8, found 1370.8.

7d: 42%; \(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.58 (d, J = 7.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 8.25 (d, J = 8.3 Hz, 1H), 7.63 - 7.59 (m, 3H), 7.38 (s, 2H), 7.32 (s, 1H), 6.71 (d, J = 8.1 Hz, 1H), 6.61 (s, 1H), 5.76 (s, 1H), 5.52 (s, 4H), 4.16 (s, 2H), 3.74 (s, 4H), 3.58 - 3.10 (m, 20H), 2.41 (s, 8H), 1.87 - 1.39 (m, 60H), 0.97 (t, J = 6.8 Hz, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 166.36, 164.64, 164.06, 156.26, 149.89, 136.84, 136.46, 134.41, 130.93, 129.82, 126.77, 124.38, 122.88, 120.33, 109.64, 104.04, 79.31, 53.25, 49.85, 46.97, 45.39, 43.95, 43.28, 39.85, 39.71 30.28, 29.60, 29.38, 28.53, 27.88, 26.39, 26.29, 26.04, 20.36, 13.83; IR (KBr, cm\(^{-1}\)) : 3433.43, 2929.22, 1638.86, 1579.22, 1384.04, 1362.35, 1251.20, 1167.17, 1104.82, 641.2; EI-MS calcd. For C\(_{75}\)H\(_{113}\)N\(_{15}\)O\(_{11}\) (M+H): 1400.8, found 1400.6.

7e: 36%; \(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.49 (d, J = 6.3 Hz, 1H), 8.37 (d, J = 7.6 Hz, 1H), 8.17 (d, J = 6.9 Hz, 1H), 7.60 (s, 2H), 7.52 (s, 1H), 7.27 (s, 1H), 7.20 (s, 1H), 6.62 (d, J = 8.3 Hz, 2H), 5.65 (s, 1H), 5.48 (s, 2H), 4.31 (s, 2H), 4.08 (s, 2H), 3.67 (s, 2H), 3.39 - 3.32 (m, 4H), 3.21 - 3.16 (m, 8H), 2.33 (s, 4H), 1.73 (s, 8H), 1.61 (s, 4H), 1.47 (s, 2H), 1.37 (s, 20H), 0.89 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 166.61, 164.67, 164.11, 156.30, 149.72, 137.18, 136.56, 136.13, 134.39, 130.97, 129.98, 129.83, 126.41, 126.32, 126.90, 126.41, 126.48, 128.45, 123.02, 120.32, 109.92, 104.12, 79.40, 53.94, 53.48, 49.88, 47.22, 45.42, 44.05, 43.28, 39.90, 39.69, 30.30, 29.63, 29.47, 28.55, 28.45, 26.36, 26.25, 20.39, 13.83; IR (KBr, cm\(^{-1}\)) : 3438.86, 2926.51, 2099.70, 1638.86, 1579.22, 1549.40, 1384.04, 1359.64, 1248.49, 1164.46, 1115.66, 779.52; EI-MS calcd. For C\(_{53}\)H\(_{74}\)N\(_{12}\)O\(_{7}\) (M+H): 991.5, found 991.3.
6. Spectra

1H NMR spectrum of compound 4a (solvent: CDCl$_3$)

13C NMR spectrum of compound 4a (solvent: CDCl$_3$)
IR spectrum of compound 4a

Ms spectrum of compound 4a
1H NMR spectrum of compound 4b (solvent: CDCl$_3$)

13C NMR spectrum of compound 4b (solvent: CDCl$_3$)
IR spectrum of compound 4b

Ms spectrum of compound 4b (solvent: CDCl₃)
^{1}H NMR spectrum of compound 4c (solvent: CDCl$_3$)

13C NMR spectrum of compound 4c (solvent: CDCl$_3$)
IR spectrum of compound 4c

Ms spectrum of compound 4c
1H NMR spectrum of compound 7d (solvent: CDCl$_3$)

13C NMR spectrum of compound 7d (solvent: CDCl$_3$)
IR spectrum of compound 7d (solvent: CDCl₃)

Ms spectrum of compound 7d (solvent: CDCl₃)
1H NMR spectrum of compound 7e (solvent: CDCl$_3$)

13C NMR spectrum of compound 7e (solvent: CDCl$_3$)
IR spectrum of compound 7e (solvent: CDCl$_3$)

Ms spectrum of compound 7e (solvent: CDCl$_3$)
1H NMR spectrum of compound 1a (solvent: D$_2$O)

13C NMR spectrum of compound 1a (solvent: D$_2$O)
IR spectrum of compound 1a

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for I-FIT = 2

Monoisotopic Mass, Even Electron Ions

535 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-60 H: 0-80 N: 0-15 O: 0-10

GYG097.38 (0.518)

TOF MS ES+

1.16e+002

Minimum	Maximum	Mass	Calc. Mass	mDa	PPM	DBE	I-FIT	Formula
972.6427	972.6412	1.5	1.5	1.5	22.5	0.2		C53 H70 N15 O3
972.6452	-2.6	-2.6	-2.6	-2.6	-2.6	-2.6		C58 H78 N13 O0

HRMs spectrum of compound 1a
1H NMR spectrum of compound 1b (solvent: D$_2$O)

13C NMR spectrum of compound 1b (solvent: D$_2$O)
Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
671 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-80 H: 0-80 N: 0-15 O: 0-10

OYO98B 46 (0.851)
TOP MS ES+

HRMs spectrum of compound 1b
1H NMR spectrum of compound 1c (solvent: D$_2$O)

13C NMR spectrum of compound 1c (solvent: D$_2$O)
IR spectrum of compound 1c

Elemental Composition Report

Single Mass Analysis
Tolerance = 5.0 ppm / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
540 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-80 H: 0-80 N: 0-16 O: 0-10

Elemental composition calculated as C55H72N2O12

HRMs spectrum of compound 1c
1H NMR spectrum of compound 1d (solvent: D$_2$O)

13C NMR spectrum of compound 1d (solvent: D$_2$O)
IR spectrum of compound 1d

Elemental Composition Report

Single Mass Analysis
Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 2

Macromolecular Mass, Even Electron Ions
6011 formulas evaluated with 27 results within limits (up to 50 closest results for each mass)

CyC-144 (6.204)
TOF MS ES+

HRMs spectrum of compound 1d

30
1H NMR spectrum of compound 1e (solvent: D$_2$O)

13C NMR spectrum of compound 1e (solvent: D$_2$O)
IR spectrum of compound \(1e\)

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions

4915 formula(s) evaluated with 11 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-100 H: 0-120 N: 0-15 O: 0-10 I: 0-4

GVG-144S 25 (0.463)

TOF MS ES+

Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula
791.4839	791.4839	0.2	0.3	7.5	34.4	C45 H76 O3 I
791.4844	791.4844	-0.3	-0.4	5.8	87.1	C30 H72 N12 O4 I
791.4847	791.4847	-0.6	-0.8	14.5	28.6	C46 H67 N2 O9
791.4833	791.4833	0.8	1.0	20.5	28.9	C43 H59 N12 O3
791.4832	791.4832	-1.4	-1.4	7.5	76.8	C31 H63 N14 O10
791.4828	791.4828	1.3	1.6	27.5	6.1	C58 H63 O2
791.4860	791.4860	-1.9	-2.4	19.5	22.3	C47 H63 N6 O5
791.4820	791.4820	2.1	2.7	15.5	36.2	C42 H63 N8 O7
791.4842	791.4842	2.9	3.7	8.5	42.9	C41 H72 N6 O1
791.4871	791.4871	-3.0	-3.8	-0.5	74.3	C38 H76 N6 O6 I
791.4873	791.4873	-3.2	-4.0	24.5	16.9	C48 H59 N10 O

HRMs spectrum of compound \(1e\)

32