Convergence of a decoupled mixed FEM for miscible displacement in interfacial porous media

Buyang Li ∗, Hongxing Rui † and Chaoxia Yang ‡

Abstract

In this paper, we study the stability and convergence of a decoupled and linearized mixed finite element method (FEM) for incompressible miscible displacement in a porous media whose permeability and porosity are discontinuous across some interfaces. We show that the proposed scheme has optimal-order convergence rate unconditionally, without restriction on the grid ratio (between the time-step size and spatial mesh size). Previous works all required certain restrictions on the grid ratio except for the problem with globally smooth permeability and porosity. Our idea is to introduce an intermediate system of elliptic interface problems, whose solution is uniformly regular in each subdomain separated by the interfaces and its finite element solution coincides with the fully discrete solution of the original problem. In order to prove the boundedness of the fully discrete solution, we study the finite element discretization of the intermediate system of elliptic interface problems.

1 Introduction

Numerical computation of miscible displacement in porous media has attracted much attention in recent decades due to its applications in reservoir simulations and exploration of underground oil; see [2, 8, 10, 12, 14, 27]. The model describes the motion of a miscible fluid of two (or more) components in porous media, where the velocity of the fluid is given by Darcy’s law

$$\mathbf{u} = -\frac{k(x)}{\mu(c)} \nabla p.$$

In the last equation, p denotes the pressure of the fluid mixture, $k(x)$ denotes the permeability of the porous media, and $\mu(c)$ is the viscosity of the fluid depending on the concentration c of the first component. The incompressibility of the fluid is described by

$$\nabla \cdot \mathbf{u} = q_I - q_P,$$

where q_I and q_P are given injection and production sources. The concentration c is governed by a convection-diffusion equation

$$\Phi(x) \frac{\partial c}{\partial t} - \nabla \cdot (D(u, x) \nabla c) + \mathbf{u} \cdot \nabla c = \dot{c}q_I - cq_I.$$

∗Department of Mathematics, Nanjing University, Nanjing, 210093, China. The work of the author was supported in part by NSF of China (Grant No. 11301262) buyangli@nju.edu.cn
†Department of Mathematics, Shandong University, Jinan, China. hxrui@sdu.edu.cn
‡Department of Mathematics, China University of Petroleum, Qingdao, China. yangcx@upc.edu.cn
where $\Phi(x)$ denotes the porosity of the media and $D(u, x)$ denotes the diffusion-dispersion tensor, which is given by \[5, 6\]

$$D(u, x) = \Phi(x) \left[d_0 I + F(Pe) \left| u \right| \left(\alpha_1 I + (\alpha_2 - \alpha_1) \frac{u \otimes u}{|u|^2} \right) \right].$$

In this formula, $F(Pe) = Pe/(Pe + d_r)$ is a function of the local molecular Peclet number $Pe = d_p |u|$, where $d_0, \alpha_1, \alpha_2, d_r$ and d_p are positive constants related to the porous media. It is straightforward to verify that

$$d_1 |\xi|^2 \leq D(u, x) \xi \cdot \xi \leq (d_2 + d_3 |u|)|\xi|^2, \quad \forall \xi \in \mathbb{R}^d,$$

for some positive constants d_1, d_2 and d_3.

Existence of weak or semiclassical solutions for the miscible displacement equations was studied in \[8, 20\], and numerical analysis of the model has been done by many authors. In particular, a Galerkin FEM was studied by Ewing and Wheeler \[19\], and a Galerkin-mixed FEM was analyzed by Douglas et al \[13\], where the Galerkin method was used to solve the parabolic concentration equation and a mixed FEM was applied to solve the elliptic pressure equation. For both methods, a linearized semi-implicit Euler scheme was used for the time stepping and optimal error estimates were presented roughly under the restriction $\tau = o(h)$. In \[15\], a characteristic method was applied to the parabolic concentration equation and the mixed FEM was used to solve the elliptic pressure equation. Optimal error estimates were established under the same condition, i.e. $\tau = o(h)$. More recently, a Galerkin method combined with a post-process technique was studied in \[26\], an Euler–Lagrangian localized approximation method was studied in \[34\] and a modified method of characteristics combined with mixed FEM was studied in \[32\]. In all these works, error estimates were derived with certain restrictions on the grid ratio. To remove these restrictive conditions, a new approach was introduced in \[23, 24\] to decouple the discretization errors from the temporal and spatial directions, and optimal error estimates of a Galerkin-mixed FEM was established without restriction on the grid ratio. The methodology of \[23, 24\] was later successfully applied to other nonlinear parabolic equations, such as the nonlinear Schrödinger equation \[35\], the thermistor equations \[17\] and the Navier-Stokes equations \[31\]. However, all the analyses presented in these works rely on the global H^2 regularity of the “time-discrete solution” (the solution of the linearized PDEs), which requires the permeability and porosity to be globally smooth in the miscible displacement model.

In engineering computations, due to the existence of fault, filling-type karst caves or complex geological composition, the permeability and porosity are often discontinuous across some interfaces. It is desirable to solve the miscible displacement equations with discontinuous permeability and porosity by stable and accurate numerical methods. For this purpose, numerical methods for flow in porous media with discontinuous permeability have been studied by many authors based on linear models. For example, see \[3, 7, 18, 29\] on the approximation of the elliptic pressure equation and see \[10\] on the approximation of a parabolic pressure equation from the compressible model. Convergence of finite element methods for general linear elliptic and parabolic interface problems can also be found in \[9, 25, 30\].

In this paper, we study stability and convergence of fully discrete FEMs for the full model of miscible displacement in porous media, where the permeability and porosity are discontinuous across some interfaces. Mathematically, we assume that the domain Ω is partitioned into $\Omega = \bigcup_{m=0}^{M} \Omega_m$ separated by the interfaces Γ_m, $m = 1, \cdots, M$, as shown in Figure \[14\] and we
consider the nonlinear elliptic-parabolic interface problem

\[
\begin{align*}
\Phi(x) \frac{\partial c}{\partial t} - \nabla \cdot (D(u, x) \nabla c) + u \cdot \nabla c &= \hat{c}q_I - cq_I \quad \text{in } \Omega_m, \\
[c] &= 0, \quad [D(u, x) \nabla c \cdot n] = 0 \quad \text{on } \Gamma_m, \\
D(u, x) \nabla c \cdot n &= 0 \quad \text{on } \partial \Omega, \\
c(x, 0) &= c_0(x) \quad \text{for } x \in \Omega,
\end{align*}
\]

(1.1)

\[
\begin{align*}
\nabla \cdot u &= q_I - q_P \quad \text{in } \Omega_m, \\
u &= -\frac{k(x)}{\mu(c)} \nabla p \quad \text{in } \Omega_m, \\
[p] &= 0, \quad [u \cdot n] = 0 \quad \text{on } \Gamma_m, \\
u \cdot n &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

(1.2)

In each subdomain \(\Omega_m \), the pressure \(p \), the velocity \(u \) and the concentration \(c \) are governed by the partial differential equations, and jump conditions are specified across the interfaces. The permeability \(k(x) \) and porosity \(\Phi(x) \) are assumed to be constant in each subdomain \(\Omega_m \) but are discontinuous across the interfaces \(\Gamma_m \).

Figure 1.1: The domain and the interfaces.

Clearly, the diffusion-dispersion tensor \(D(u, x) \) is an unbounded function of \(u \). Due to this strong nonlinearity and the coupling of equations, previous error estimates presented for the linear interface problems cannot be extended here. A direct application of the traditional error estimates requires undesired restrictions on the grid ratio to control the numerical velocity. In order to avoid any restrictive conditions on the grid ratio, one has to use the error-splitting technique introduced in [23, 24]. However, due to the discontinuity of the permeability and porosity across the interfaces, the solution of (1.1)-(1.2) is not globally smooth. Instead, they are at most piecewise smooth [4], as assumed in this paper. In this case, the analysis for the Galerkin-mixed FEM presented in [24] does not work. In this paper, we show that a decoupled and linearized mixed FEM is stable for the nonlinear interface problem by proving that the time-discrete solution is piecewise smooth enough in each subdomain separated by the interfaces. Optimal error estimates are established without restriction on the grid ratio. We believe that the methodology of this paper, together with Lemma 2.1-2.2 introduced here, can also be applied to other nonlinear parabolic interface problems in engineering and physics.
2 Main results

Suppose that the smooth domain Ω is partitioned into $\Omega = \bigcup_{m=0}^{M} \Omega_m$, where Ω_m is enclosed by a smooth interface Γ_m for $m = 1, \cdots, M$, and $\Gamma_0 = \partial \Omega$. For any integer $s \geq 0$ and a subdomain Ω_m, we let $W^{s,p}(\Omega_m)$ and $H^s(\Omega_m) := W^{s,2}(\Omega_m)$ denote the usual Sobolev spaces of functions defined on the domain Ω_m; see [1]. Let L^p denote the abbreviations of $L^p(\Omega)$ and define $W^{s,p}$ as the subspace of L^p equipped with the norm

$$
\|f\|_{W^{s,p}} := \sum_{m=0}^{M} \|f\|_{W^{s,p}(\Omega_m)}.
$$

Therefore, the functions in $W^{s,p}$ are in $W^{s,p}(\Omega_m)$ for each subdomain Ω_m, but may not be continuous in the whole domain Ω. To simplify the notations, we define $H^s := W^{s,2}$, $L^p := W^{0,p}$ and

$$(f, g) = \sum_{m=0}^{M} \int_{\Omega_m} f(x)g(x)\,dx, \quad \text{for } f, g \in L^2.$$

For any Banach space X and a function $g : (0, T) \to X$, we define the norm

$$
\|g\|_{L^p((0,T);X)} = \begin{cases}
\left(\int_0^T \|g(t)\|_X^p \,dt\right)^{1/p}, & 1 \leq p < \infty, \\
\text{ess sup}_{t \in (0,T)} \|g(t)\|_X, & p = \infty.
\end{cases}
$$

Let $\{t_n\}_{n=0}^{N}$ be a uniform partition of the time interval $[0, T]$ with $\tau = T/N$ and denote

$$p^n(x) = p(x, t_n), \quad u^n(x) = u(x, t_n), \quad c^n(x) = c(x, t_n).$$

For any sequence of functions $\{f^n\}_{n=0}^{N}$, we define $D_{\tau}f^{n+1} = (f^{n+1} - f^n)/\tau$. Let π_h denote a quasi-uniform partition of $\bigcup_{m=0}^{M} \Omega_m$ into triangles (or tetrahedrons) T_j, $j = 1, \cdots, J$. For a triangle T_j with two vertices on the boundary $\partial \Omega$ or an interface Γ_m, we define \tilde{T}_j to be a triangle with one curved side which fit the boundary or the interfaces exactly, with the same vertices as T_j. Let $h = \max_{1 \leq j \leq J}\{\text{diam } T_j\}$ denote the mesh size, and let P_r denote the space of polynomials of degree $r \geq 1$. We define the discontinuous finite element space

$$S_h^r = \{w_h \in L^2(\Omega) : w_h|_{T_j} \in P_r \text{ for each element } T_j \in \pi_h \text{ and } \int_{\Omega} w_h \,dx = 0\}.$$

Let $S_h^r(\Gamma_m)$ denote the space of functions in $S_h^r(\Omega_m)$ restricted to Γ_m. To simplify the notations, we define $\Gamma_0 = \partial \Omega$, $\Gamma = \bigcup_{m=0}^{M} \Gamma_m$, and define $S_h^r(\Gamma)$ as the space of functions on Γ whose restriction to Γ_m is in $S_h^r(\Gamma_m)$. Let H^1_Γ be the space of vector-valued functions $v \in (H^1)^d$ such that $\nabla \cdot v \in L^2$, $v \cdot n = 0$ on $\partial \Omega$ and $|v \cdot n| = 0$ on Γ_m, $m = 1, \cdots, M$. Let H^1_Γ denote the Raviart–Thomas mixed finite element subspace of H^1_Γ introduced in [16, 28, 33], which coincides with an element of $P^d_r \oplus xP_r$ in each triangle T_j. Moreover, we require that the functions $v_h \in H^1_\Gamma$ satisfy the boundary condition $\int_{\tilde{e}_j} v_h \cdot n \chi_h \,ds = 0$, $\forall \chi_h \in S_h^r(\partial \Omega)$, on each boundary edge \tilde{e}_j and the jump condition $\int_{\tilde{e}_j} [v_h \cdot n] \chi_h \,ds = 0$, $\forall \chi_h \in S_h^r$, on each interface edge \tilde{e}_j. Then we have $\nabla \cdot v_h \in S_h^r$ for $v_h \in H^1_\Gamma$.
To approximate p, c, u and $w = -D(u, x)\nabla c$, we look for $P^n_h, C^n_h \in S^n_h$ and $U^n_h, W^n_h \in H^n$ which satisfy the equations

$$
\left(\frac{\mu(C^n_h)}{k(x)} U^n_h, \varphi_h \right) = \left(P^n_h, \nabla \cdot \varphi_h \right), \quad (2.1)
$$

$$
\left(\nabla \cdot U^n_h, \varphi_h \right) = \left(q^n_p - q^n_P, \varphi_h \right), \quad (2.2)
$$

$$
\left(D(U^n_h, x)^{-1} W^n_{h+1}, \varphi_h \right) = \left(C^n_{h+1}, \nabla \cdot \varphi_h \right), \quad (2.3)
$$

$$
\left(\Phi(x) D_c c_h, \varphi_h \right) + \left(\nabla \cdot W^n_{h+1}, \varphi_h \right) = \left(D(U^n_h, x)^{-1} U^n_h, W^n_{h+1}, \varphi_h \right) = \left(c_{h+1}^{n+1} q^n_{f} - C^n_{h+1} q^n_{f} + \varphi_h \right), \quad (2.4)
$$

for any $\varphi_h, \nabla \varphi_h \in H^n$ and $\varphi_h, \varphi_h \in S^n_h$, where $n = 0, 1, 2, \cdots$, and the initial data C^n_0 is chosen as the Lagrangian interpolation of c^0.

For the initial-boundary value problem (1.1)-(1.2) to be well-posed, we require the compatibility condition

$$
\int_{\Omega} q_I \, dx = \int_{\Omega} q_P \, dx, \quad (2.5)
$$

and the physical restrictions

$$
\| q_I \|_{L^\infty} + \| q_P \|_{L^\infty} \leq q_0, \quad (2.6)
$$

$$
k_0^{-1} \leq k(x) \leq k_0 \quad \text{for} \ x \in \Omega, \quad (2.7)
$$

$$
\Phi^{-1}_0 \leq \Phi(x) \leq \Phi_0 \quad \text{for} \ x \in \Omega, \quad (2.8)
$$

$$
\mu^{-1}_0 \leq \mu(s) \leq \mu_0 \quad \text{and} \ |\mu'(s)| \leq \mu_0 \quad \text{for} \ s \in \mathbb{R}, \quad (2.9)
$$

for some positive constants q_0, k_0, Φ_0 and μ_0. Moreover, we assume that the solution of the initial-boundary value problem (1.1)-(1.2) exists and possesses certain piecewise regularity such as

$$
\| p \|_{L^\infty((0, T), \mathbb{T}^{+2} \mathbb{T}^1)} + \| u \|_{L^\infty((0, T), \mathbb{T}^{+2} \mathbb{T}^1)} + \| \partial_t u \|_{L^\infty((0, T), \mathbb{T}^1)} + \| \partial_{tt} u \|_{L^2((0, T), \mathbb{T}^2)} \\
+ \| c \|_{L^\infty((0, T), \mathbb{T}^{+2} \mathbb{T}^1)} + \| \partial_t c \|_{L^\infty((0, T), \mathbb{T}^{+1} \mathbb{T}^1)} + \| \partial_{tt} c \|_{L^2((0, T), \mathbb{T}^2)} \leq C_0, \quad (2.10)
$$

for some positive constant C_0.

The main result of this paper is the following theorem.

Theorem 2.1 Under the assumptions (2.5)-(2.10), there exists a positive constant τ_{**} such that when $\tau < \tau_{**}$ the finite element system (2.1)-(2.4) admits a unique solution $(P^n_h, U^n_h, C^n_h, W^n_h)$, $n = 1, \cdots, N$, which satisfies that

$$
\max_{1 \leq n \leq N} \left(\| P^n_h - p^n \|_{L^2} + \| U^n_h - u^n \|_{L^2} + \| C^n_h - c^n \|_{L^2} \right) + \left(\sum_{n=1}^N \tau \| W^n_h - w^n \|_{L^2} \right)^{\frac{1}{2}} \leq C_{**}(\tau + h^{r+1}),
$$

where C_{**} is some positive constant independent of τ and h.

5
The proof of Theorem 2.1 is presented in Section 3. In Section 3, we introduce an intermediate problem, a system of elliptic interface problems, whose finite element solution coincides with \((P_h^n, U_h^n, C_h^n, W_h^n)\), \(n = 0, 1, 2, \cdots\). Then we prove that the solution of the system of elliptic interface problems is piecewise smooth enough in each subdomain separated by the interfaces, and the piecewise regularity is uniform with respect to \(\tau\) (as \(\tau \to 0\)). In Section 4, we present error estimates for the finite element discretization of the elliptic interface problems and prove the boundedness of the finite element solution based on the error estimates. In Section 5, we prove the error estimates in Theorem 2.1 based on the boundedness of the finite element solution. Our analysis in Section 3 relies on the following two lemmas concerning the piecewise regularity of some elliptic and parabolic interface problems, which are generalizations of the results in [4, 9, 11, 22] to problems with nonsmooth coefficients, with more precise dependence on the regularity of the coefficients. The proofs of the lemmas are given in Section 6.

Lemma 2.1 If \(A_{ij} \in \mathbb{H}^2\) satisfies that \(K^{-1}||\xi||^2 \leq \sum_{i,j=1}^{d} A_{ij}(x) \xi_i \xi_j \leq K ||\xi||^2\) for \(x \in \Omega\) and \(\xi \in \mathbb{R}^d\), and \(\phi \in H^1\) is a solution of

\[
\begin{cases}
-\nabla \cdot (A \nabla \phi) = f & \text{in } \Omega, \\
[\phi] = 0, \quad [A \nabla \phi \cdot \mathbf{n}] = g_m & \text{on } \Gamma_m, \quad m = 1, \cdots, M, \\
A \nabla \phi \cdot \mathbf{n} = 0 & \text{on } \partial \Omega,
\end{cases}
\]

(2.11)

then

\[
\|\phi\|_{H^k} \leq C \left(\|f\|_{H^{k-2}} + \sum_{m=1}^{M} \|g_m\|_{H^{k-3/2}(\Gamma_m)} \right), \quad k = 2, 3.
\]

(2.12)

where the constant \(C\) is independent of \(\tau\).

Lemma 2.2 Suppose that

\[
\max_{0 \leq n \leq N-1} \sum_{i,j=1}^{d} \left(\|A_{ij}^{n+1}\|_{\mathbb{H}^2} + d_{n,0} \|D_x A_{ij}^{n+1}\|_{L^2} \right) \leq K,
\]

\[
K^{-1}||\xi||^2 \leq \sum_{i,j=1}^{d} A_{ij}^{n+1}(x) \xi_i \xi_j \leq K ||\xi||^2, \quad \forall x \in \Omega, \quad \xi \in \mathbb{R}^d,
\]

and \(\phi^{n+1} \in H^1, \ n = 0, 1, \cdots, N-1,\) are solutions of

\[
\begin{cases}
\Phi D_x \phi^{n+1} - \nabla \cdot (A^{n+1} \nabla \phi^{n+1}) = f^{n+1} - \nabla \cdot \mathbf{g}^{n+1} & \text{in } \Omega, \\
[\phi^{n+1}] = 0, \quad [A^{n+1} \nabla \phi^{n+1} \cdot \mathbf{n}] = [\mathbf{g}^{n+1} \cdot \mathbf{n}] & \text{on } \Gamma_m, \quad m = 1, \cdots, M, \\
A^{n+1} \nabla \phi^{n+1} \cdot \mathbf{n} = 0 & \text{on } \partial \Omega, \\
\phi^0 = 0 & \text{in } \Omega.
\end{cases}
\]

(2.13)

Then we have

\[
\max_{0 \leq n \leq m} \|\phi^{n+1}\|_{H^1}^2 + \sum_{n=0}^{m} \tau \|\phi^{n+1}\|_{H^1}^2
\]

(2.14)
\[\leq C\|g^{m+1}\|_{L^2}^2 + C_\epsilon \sum_{n=0}^{m} \tau (\|f^{n+1}\|_{L^2}^2 + \|g^{n+1}\|_{H^2}^2 + \|\phi^{n+1}\|_{H^2}^2) + \epsilon \sum_{n=0}^{m} \tau \|D_\tau g^{n+1}\|_{L^2}^2 d_n, \]

where the constant \(C_\epsilon\) (dependent on \(\epsilon\)) is independent of \(\tau\), and \(d_{n,0} = \begin{cases} 0, & \text{if } n = 0, \\ 1, & \text{if } 1 \leq n \leq N - 1. \end{cases} \)

In the rest part of this paper, we denote by \(C\) a generic positive constant and by \(\epsilon\) a small generic positive constant, which are independent of \(n, \tau\) and \(h\).

3. The linearized PDEs: a system of elliptic interface problems

We introduce \((P^n, C^n), n = 0, 1, 2, \cdots\), as the solution of an iterative system of linear elliptic interface problems:

\[
\begin{cases}
-\nabla \cdot \left(\frac{k(x)}{\mu(C^n)} \nabla P^n \right) = q^n - q^p & \text{in } \Omega_m, \\
[P^n] = 0, \quad \left[\frac{k(x)}{\mu(C^n)} \nabla P^n \cdot n \right] = 0 & \text{on } \Gamma_m, \\
\frac{k(x)}{\mu(C^n)} \nabla P^n \cdot n = 0 & \text{on } \partial\Omega,
\end{cases}
\]

(3.1)

\[
\begin{cases}
\Phi(x) D_\tau C^{n+1} - \nabla \cdot (D(U^n, x) \nabla C^{n+1}) + U^n \cdot \nabla C^{n+1} = \hat{c}^{n+1} q^{n+1} - c^{n+1} q^{n+1} & \text{in } \Omega_m, \\
[C^{n+1}] = 0, \quad [D(U^n, x) \nabla C^{n+1} \cdot n] = 0 & \text{on } \Gamma_m, \\
D(U^n, x) \nabla C^{n+1} \cdot n = 0 & \text{on } \partial\Omega,
\end{cases}
\]

(3.2)

with the initial condition \(C^0 = c_0\) and the normalization condition \(\int_{\Omega_m} P^n dx = 0\). Existence and uniqueness of the solution for the linear elliptic interface problems (3.1)-(3.2) follow iteratively, and it is easy to see that \(P^0 = p^0\) and \(U^0 = u^0\) at the initial time step. With this definition, the fully discrete solution \((P^n_h, U^n_h, C^n_h, W^n_h), n = 0, 1, 2, \cdots\), defined in (2.1)-(2.4) can also be viewed as the finite element solution of (3.1)-(3.2).

In this section, we establish the uniform piecewise regularity of \((P^n, C^n)\) with respect to \(\tau\). The following proposition is the main result of this section.

Proposition 3.1 There exists a positive constant \(\tau_0\) such that when \(\tau < \tau_0\), we have

\[
\|P^n\|_{H^2}^2 + \|U^n\|_{H^2}^2 + \|C^n\|_{H^2}^2 + \|D_\tau C^n\|_{H^1}^2 + \left(\sum_{n=1}^{N} \tau \|D_\tau U^n\|_{H^2}^2 \right)^{\frac{1}{2}} + \left(\sum_{n=1}^{N} \tau \|D_\tau C^n\|_{H^2}^2 \right)^{\frac{1}{2}} \leq C.
\]

(3.3)

The importance of this proposition is that the constant \(C\) does not depend on \(\tau\), which is the key to our error estimates in the next section.
Proof of Proposition 3.1 Let \(e_p^n = P^n - p^n \), \(e_c^n = C^n - c^n \) and \(e_u^n = U^n - u^n \). Comparing (3.1) - (3.2) with (1.1) - (1.2), we see that \(e_p^n, e_c^n \) and \(e_u^n \) satisfy the equations

\[
\begin{align*}
- \nabla \cdot \left(\frac{k(x)}{\mu(C^n)} \nabla e_p^n \right) &= \nabla \cdot \left[\left(\frac{k(x)}{\mu(C^n)} \nabla p^n \right) \right], \quad \text{in } \Omega_m, \\
\left[e_p^n \right] &= 0, \quad \left[\frac{k(x)}{\mu(C^n)} \nabla e_p^n \cdot n \right] = \left[\left(\frac{k(x)}{\mu(C^n)} \nabla p^n \cdot n \right) \right] \quad \text{on } \Gamma_m, \\
\frac{k(x)}{\mu(C^n)} \nabla e_p^n \cdot n &= 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

(3.4)

\[
\begin{align*}
\Phi(x)D \tau e_c^{n+1} - \nabla \cdot (D(U^n, x) \nabla e_c^{n+1}) &= -U^n \cdot \nabla e_c^{n+1} + \nabla \cdot \left((D(U^n, x) - D(u^{n+1}, x)) \nabla e_c^{n+1} \right) \\
&\quad - (U^n - u^n) \cdot \nabla e_c^{n+1} - e_c^{n+1} q_t^{n+1} + \mathcal{E}^{n+1}, \quad \text{in } \Omega_m, \\
\left[e_c^{n+1} \right] &= 0, \quad \left[D(U^n, x) \nabla e_c^{n+1} \cdot n \right] = \left[(D(u^{n+1}, x) - D(U^n, x)) \nabla e_c^{n+1} \cdot n \right] \quad \text{on } \Gamma_m, \\
D(U^n, x) \nabla e_c^{n+1} \cdot n &= 0 \quad \text{on } \partial \Omega, \\
e_c^0 &= 0 \quad \text{in } \Omega,
\end{align*}
\]

(3.5)

and

\[
e_u^n = -\frac{k(x)}{\mu(C^n)} \nabla e_p^n - \left(\frac{k(x)}{\mu(C^n)} \nabla p^n \right), \quad \text{(3.6)}
\]

respectively, where \(\mathcal{E}^{n+1} = \Phi(\partial_t e_c^{n+1} - D \tau e_c^{n+1}) + (u^{n+1} - u^n) \cdot \nabla c^{n+1} \) denotes the truncation error due to the time discretization. From the regularity assumption for \(c \) in (2.10) we can see that

\[
\| \mathcal{E}^{n+1} \|_{L^2} \leq C \tau \left(\sum_{n=0}^{N-1} \tau \| \mathcal{E}^{n+1} \|_{L^2}^2 \right) \leq C \tau^2.
\]

(3.7)

Integrating (3.4) against \(e_p^n \), we get

\[
\| \nabla e_p^n \|_{L^2} \leq \left(\frac{k(x)}{\mu(C^n)} - \frac{k(x)}{\mu(c^n)} \right) \| \nabla p^n \|_{L^2} \leq C \| e_c^n \|_{L^2}
\]

(3.8)

which together with (3.6) gives

\[
\| e_u^n \|_{L^2} \leq C \| \nabla e_p^n \|_{L^2} + C \| e_c^n \|_{L^2} \leq C \| e_c^n \|_{L^2}.
\]

(3.9)

Then we integrate (3.5) against \(e_c^{n+1} \) and obtain

\[
D \tau \left(\frac{1}{2} \| \nabla e_c^{n+1} \|_{L^2}^2 \right) + \| D(U^n, x) \nabla e_c^{n+1} \|_{L^2}^2 \\
\leq C \| e_c^{n+1} \|_{L^2}^2 \| q_t^{n+1} \|_{L^\infty} + C \| e_u^n \|_{L^2} + C \| u^{n+1} - u^n \|_{L^2} \| \nabla e_c^{n+1} \|_{L^2} \| \nabla c^{n+1} \|_{L^\infty} \\
+ C \| e_u^n \|_{L^2} \| e_c^{n+1} \|_{L^2} \| \nabla c^{n+1} \|_{L^\infty} + C \| e_c^{n+1} \|_{L^2} \| q_t^{n+1} \|_{L^\infty} + C \| \mathcal{E}^{n+1} \|_{L^2} \| e_c^{n+1} \|_{L^2}.
\]

(3.10)
\[\leq \frac{1}{2} \| \nabla e_{c}^{n+1} \|_{L^2}^2 + C \left(\| e_{c}^{n+1} \|_{L^2}^2 + \| e_{c}^{n} \|_{L^2}^2 + \| \mathcal{C}^{n+1} \|_{L^2}^2 + \| D_{\tau} u \|_{L^2}^2 \tau^2 \right), \tag{3.10} \]

where we have used the inequality
\[\| (\mathbf{U}^n \cdot \nabla e_{c}^{n+1}, e_{c}^{n+1}) \| = \| (\nabla \cdot \mathbf{U}^n, |e_{c}^{n+1}|^2) \| \leq \| e_{c}^{n+1} \|_{L^2}^2 \| q_{T}^{n+1} - q_{P}^{n+1} \|_{L^\infty}. \]

By applying Gronwall’s inequality to (3.10), we see that there exists a positive constant \(\tau_1 \) such that when \(\tau < \tau_1 \) there holds
\[\max_{1 \leq n \leq N} \| e_{c}^{n} \|_{L^2}^2 + \sum_{n=1}^{N} \tau \| \nabla e_{c}^{n} \|_{L^2}^2 \leq C \tau^2. \tag{3.11} \]

The last inequality, together with (3.8)-(3.9), implies that
\[\max_{1 \leq n \leq N} \| D_{\tau} e_{c}^{n} \|_{L^2}^2 + \sum_{n=1}^{N} \tau \| D_{\tau} e_{c}^{n} \|_{L^6}^2 \leq C, \tag{3.12} \]
\[\max_{1 \leq n \leq N} \left(\| e_{c}^{n} \|_{L^2}^2 + \| \nabla e_{c}^{n} \|_{L^2}^2 \right) \leq C \tau. \tag{3.13} \]

Let \(d_{n,0} \) be the constant defined in Lemma 2.2. We proceed with a mathematical induction
\[\| C^n \|_{H^2}^2 + \| U^n \|_{H^2}^2 + d_{n,0} \| D_{\tau} U^n \|_{L^2} \leq \max_{0 \leq n \leq N} \left(\| C^n \|_{H^2}^2 + \| U^n \|_{H^2}^2 + d_{n,0} \| D_{\tau} U^n \|_{L^2} \right) + 1, \tag{3.14} \]
which clearly holds when \(n = 0 \) (as \(C^0 = \mathcal{C}^0 \) and \(U^0 = \mathbf{u}^0 \)). We shall assume that the above inequality holds for \(0 \leq n \leq k \) and prove that it also holds for \(n = k + 1 \).

With (3.14), we can apply Lemma 2.1 to (3.4) for \(0 \leq n \leq k \) and obtain
\[\| e_{p}^{n} \|_{H^2} \leq C \left\| \nabla \cdot \left(\frac{k(x)}{\mu(C^n)} - \frac{k(x)}{\mu(c^n)} \right) \nabla p^n \right\|_{H^{1/2}(\Gamma)} + C \left\| \left(\frac{k(x)}{\mu(C^n)} - \frac{k(x)}{\mu(c^n)} \right) \nabla p^n \right\|_{H^{3/2}(\Gamma)}, \]
\[\| e_{p}^{n} \|_{H^3} \leq C \left\| \nabla \cdot \left(\frac{k(x)}{\mu(C^n)} - \frac{k(x)}{\mu(c^n)} \right) \nabla p^n \right\|_{H^{1/2}(\Gamma)} + C \left\| \left(\frac{k(x)}{\mu(C^n)} - \frac{k(x)}{\mu(c^n)} \right) \nabla p^n \right\|_{H^{3/2}(\Gamma)} \leq C \| e_{c}^{n} \|_{H^2}, \]
and from (3.6) we see that
\[\| e_{u}^{n} \|_{H^1} \leq C \| e_{c}^{n} \|_{H^1}, \tag{3.15} \]
\[\| e_{u}^{n} \|_{H^2} \leq C \| e_{c}^{n} \|_{H^2}. \tag{3.16} \]

As a consequence, by the Sobolev embedding inequality, we have
\[\| \nabla e_{p}^{n} \|_{L^\infty} \leq C \| e_{p}^{n} \|_{H^1} \leq C \quad \text{and} \quad \| e_{u}^{n} \|_{H^2} \leq C, \quad \text{for} \quad 0 \leq n \leq k. \]

Applying the difference operator \(D_{\tau} \) to the equation (3.5), we obtain
\[\begin{cases} -\nabla \cdot \left(\frac{k(x)}{\mu(C^{n+1})} \nabla D_{\tau} e_{p}^{n+1} \right) = \nabla \cdot f^{n+1}, & \text{in} \ \Omega, \\
\left[D_{\tau} e_{p}^{n+1} \right] = 0, & \left\{ \frac{k(x)}{\mu(C^{n+1})} \nabla D_{\tau} e_{p}^{n+1} \cdot \mathbf{n} \right\} = \left[f^{n+1} \cdot \mathbf{n} \right] \quad \text{on} \ \Gamma_{m}, \tag{3.17} \\
\frac{k(x)}{\mu(C^{n+1})} \nabla D_{\tau} e_{p}^{n+1} \cdot \mathbf{n} = 0 & \text{on} \ \partial \Omega, \end{cases} \]
where
\[f^{n+1} = D_\tau \left(\frac{k(x)}{\mu(C^{n+1})} \right) \nabla e_c^n + D_\tau \left[\left(\frac{k(x)}{\mu(C^{n+1})} - \frac{k(x)}{\mu(C^{n+1})} \right) \nabla p^{n+1} \right]. \]

For \(0 \leq n \leq k \), from (3.3) and (3.5) we can derive that
\[
\|D_\tau C^{n+1}\|_{L^2} \leq C\|C^{n+1}\|_{\mathcal{H}^1} + C\|U^n\|_{\mathcal{H}^2}
\leq C\|e_c^{n+1}\|_{\mathcal{H}^2} + \|C^{n+1}\|_{L^2} + C\|\mathcal{E}^{n+1}\|_{L^2}
\leq C + C\|e_c^{n+1}\|_{\mathcal{H}^2},
\]
\[
\|D_\tau e_c^{n+1}\|_{L^2} \leq C\|e_c^{n+1}\|_{\mathcal{H}^2} + C\|e_c^n\|_{\mathcal{H}^2} + C\|\mathcal{E}^{n+1}\|_{L^2}
\leq C\|e_c^{n+1}\|_{\mathcal{H}^2} + C\|e_c^n\|_{\mathcal{H}^2} + C\|\mathcal{E}^{n+1}\|_{L^2},
\]
from (3.17) we see that
\[
\|\nabla D_\tau e_p^{n+1}\|_{L^2} \leq C\|f^{n+1}\|_{L^2}
\leq C\|D_\tau C^{n+1}\|_{L^2}\|\nabla e_p^n\|_{L^\infty} + C\|D_\tau e_c^{n+1}\|_{L^2} + C\|e_c^{n+1}\|_{L^2}\|D_\tau C^{n}\|_{L^\infty}
\leq C\|\nabla e_p^n\|_{L^\infty} + C\|e_c^{n+1}\|_{\mathcal{H}^2}\|\nabla e_p^n\|_{L^\infty} + C\|e_c^{n+1}\|_{\mathcal{H}^2} + C\|e_c^n\|_{\mathcal{H}^2} + C\|\mathcal{E}^{n+1}\|_{L^2}
\leq C\|e_c^n\|_{\mathcal{H}^2} + C\|e_c^{n+1}\|_{\mathcal{H}^2} + C\|\mathcal{E}^{n+1}\|_{L^2},
\]
and from (3.6) we derive that
\[
\|D_\tau e_u^{n+1}\|_{L^2} \leq C(\|e_c^{n+1}\|_{L^\infty}\|D_\tau e_p^{n+1}\|_{L^2} + \|D_\tau C^{n+1}\|_{L^2}\|\nabla e_p^n\|_{L^\infty})
+ C(\|e_c^{n+1}\|_{L^\infty}\|D_\tau e_c^{n+1}\|_{L^2} + \|k(x)/\mu(C^{n+1})\|_{L^\infty}\|D_\tau e_c^{n+1}\|_{L^2}\|\nabla p^{n+1}\|_{L^\infty})
+ C\|e_c^{n+1}\|_{L^\infty}\|\nabla D_\tau p^{n+1}\|_{L^2}
\leq C(\|D_\tau e_p^{n+1}\|_{L^2} + \|e_p^n\|_{\mathcal{H}^3} + \|e_c^{n+1}\|_{\mathcal{H}^2} + \|e_c^n\|_{\mathcal{H}^2} + \|D_\tau e_c^{n+1}\|_{L^2})
\leq C(\|e_c^{n+1}\|_{\mathcal{H}^2} + \|e_c^n\|_{\mathcal{H}^2} + \|\mathcal{E}^{n+1}\|_{L^2}).
\]

With (3.11)-(3.15), we let
\[
f^{n+1} = -U^n \cdot \nabla e_c^{n+1} + \nabla \cdot \left((D(U^n, x) - D(u^{n+1}, x)) \nabla e_c^{n+1} \right) - (U^n - u^n) \cdot \nabla e_c^{n+1} - e_c^{n+1} q_1^{n+1} + \mathcal{E}^{n+1},
\]
and apply Lemma 2.2 to (3.5) for \(0 \leq n \leq k \). Then we derive that, for \(0 \leq m \leq k \),
\[
\max_{0 \leq n \leq m} \|e_c^{n+1}\|_{L^2}^2 + \sum_{n=0}^m \tau \|e_c^{n+1}\|_{\mathcal{H}^2}^2
\leq C \max_{0 \leq n \leq m} \|D(U^n, x) - D(u^{n+1}, x)\|_{L^2} \|\nabla e_c^{n+1}\|_{L^2}^2
+ C \sum_{n=0}^m \tau \|D_\tau ((D(U^n, x) - D(u^{n+1}, x)) \nabla e_c^{n+1})\|_{L^2}^2 d_n,0
+ C \sum_{n=0}^m \tau \|f^{n+1}\|_{L^2}^2 + \|D(U^n, x) - D(u^{n+1}, x)) \nabla e_c^{n+1}\|_{\mathcal{H}^2}^2 + \|e_c^{n+1}\|_{\mathcal{H}^2}^2
\leq C \tau^2 + C \sum_{n=0}^m \tau \|e_c^n\|_{L^2}^2 + \|D_\tau e_u^n\|_{L^2}^2 + \|u^{n+1} - u^n\|_{L^\infty}^2 + \|D_\tau (D(u^{n+1}, x) - D(u^n, x))\|_{L^2}^2 d_n,0.
By applying Gronwall’s inequality, there exists a positive constant τ_3 such that when $\tau < \tau_3$

\[
\max_{1 \leq n \leq k} \|e_c^{n+1}\|_{H^2}^2 + \sum_{n=1}^{k} \tau \|e_c^{n+1}\|_{H^2}^2 \leq C \tau^2.
\]

(3.21)

From the last inequality we see that

\[
\max_{0 \leq n \leq k} (\|D_\tau C^{n+1}\|_{H^2}^2 + \|C^{n+1}\|_{H^2}^2) + \sum_{n=0}^{k} \tau \|D_\tau C^{n+1}\|_{H^2}^2 \leq C,
\]

(3.22)

and from (3.18) we see that

\[
\max_{0 \leq n \leq k} \|e_c^{n+1}\|_{H^2}^2 \leq C \tau^{1/2},
\]

and so

\[
\|D_\tau e_u^{k+1}\|_{L^2} \leq C(\|e_c^{k+1}\|_{H^2} + \|e_u^k\|_{H^2} + \|e^{k+1}\|_{L^2}) \leq C \tau^{1/2}.
\]

With $\max_{0 \leq n \leq k} \|C^{n+1}\|_{H^2} \leq C$ given by (3.22), we can apply Lemma 2.1 to (3.4) again and obtain

\[
\sum_{n=0}^{k} \tau \|e_p^{n+1}\|_{H^2}^2 \leq C \sum_{n=0}^{k} \tau \|e_c^{n+1}\|_{H^2}^2 \leq C \tau^2,
\]

and so

\[
\max_{0 \leq n \leq k} (\|P^{n+1}\|_{H^2}^2 + \|U^{n+1}\|_{H^2}^2) + \sum_{n=0}^{k} \tau \|D_\tau U^{n+1}\|_{H^2}^2 \leq C,
\]

(3.23)

The last five inequalities imply that there exists a positive constant τ_4 such that when $\tau < \tau_4$ we have

\[
\|e_c^{k+1}\|_{H^2}^2 + \|e_u^{k+1}\|_{H^2}^2 + \|D_\tau e_u^{k+1}\|_{L^2} \leq 1.
\]
The mathematical induction on (3.14) is completed. Thus (3.22)–(3.23) hold for \(k = N - 1 \) with the same constant \(C \), provided \(\tau < \tau_0 := \min(\tau_1, \tau_2, \tau_3, \tau_4) \).

With the regularity \(\max_{0 \leq n \leq N} \| D_\tau C^n \|_{\mathcal{P}^n} \leq C \), as shown in (3.22), by applying Lemma 2.1 to (3.2) we obtain

\[
\max_{1 \leq n \leq N} \| C^n \|_{\mathcal{P}^n} \leq C. \tag{3.24}
\]

The proof of Proposition 3.1 is completed. ■

4 Boundedness of the \(U^n_h \)

Based on the finite element discretization of the elliptic interface problems, we prove the following proposition in this section.

Proposition 4.1 There exist positive constants \(\tau_* \) and \(h_* \) such that when \(\tau < \tau_* \) and \(h < h_* \), the finite element system (2.1)–(2.4) admits a unique solution \((P^n_h, U^n_h, W^n_h, C^n_h) \), \(n = 1, \cdots, N \), such that

\[
\max_{1 \leq n \leq N} \| U^n_h \|_{L^\infty} \leq C.
\]

Before we prove this proposition, we define some notations below. Let \(L_h \) denote the piecewise linear Lagrange interpolation operator onto the finite element space \(S^r_h \). Let \(\Pi_h \) denote the \(L^2 \) projection onto the finite element space \(S^r_h \), i.e.

\[
(\phi - \Pi_h \phi, \chi_h) = 0, \quad \forall \phi \in L^2, \: \chi_h \in S^r_h
\]

and let \(\Pi^\Gamma_h \) denote the \(L^2 \) projection onto the finite element space \(S^r_h(\Gamma) \) satisfying

\[
(\phi - \Pi^\Gamma_h \phi, \chi_h)_{\Gamma} = 0, \quad \forall \phi \in L^2(\Gamma), \: \chi_h \in S^r_h(\Gamma).
\]

Let \(Q_h : H^1_\Gamma \rightarrow H^r_\Gamma \) be a projection satisfying (see [16, 33] for the construction of such a projection operator)

\[
(\nabla \cdot (v - Q_h v), \chi_h) = 0, \quad \forall \chi_h \in S^r_h, \: v \in H^1_\Gamma, \tag{4.1}
\]

\[
\int_{\bar{e}_j} (v - Q_h v) \cdot n \chi_h \, ds = 0, \quad \forall \chi_h \in S^r_h, \: v \in H^1_\Gamma, \tag{4.2}
\]

for any edge \(\bar{e}_j \) in the triangulation. Then we have

\[
\| v - Q_h v \|_{L^2} + \| v - Q_h v \|_{L^2(\Gamma)} h^{1/2} + \| \nabla \cdot (v - Q_h v) \|_{L^2} h \leq C \| v \|_{H^2} h^k, \quad k = 1, 2, \cdots
\]

Let \(W^{n+1} = -D(U^n, x) \nabla C^{n+1} \in H^1_\Gamma \) and, for any fixed integer \(n \geq -1 \), let \((\overline{C}^{n+1}_h, \overline{W}^{n+1}_h) \in S^r_h \times H^r_h \) be the finite element solution of the equation

\[
\begin{cases}
(\nabla \cdot (\overline{W}^{n+1}_h - W^{n+1}_h), \chi_h) = 0, & \forall \chi_h \in S^r_h, \\
(D(U^n, x)^{-1}(\overline{W}^{n+1}_h - W^{n+1}_h), v_h) = (\overline{C}^{n+1}_h - C^{n+1}, \nabla \cdot v_h), & \forall v_h \in H^r_h,
\end{cases} \tag{4.3}
\]
with \(\int_{\Omega} (C_{h}^{n+1} - C^{n+1}) \, dx = 0 \) for the uniqueness of solution, where we define \(U^{-1} := U^0 \). The pair \((C_{h}^{n+1}, W_{h}^{n+1})\) can be viewed as the Ritz projection of \((C^{n+1}, W^{n+1})\) by the mixed FEM.

We require \(\tau < \tau_0 \) so that Proposition 3.1 holds. With the regularity of \(C^{n+1} \) and \(W^{n+1} \) given in Proposition 3.1 by the theory of mixed FEM for linear elliptic equations [16, 33], we have

\[
\|\phi - \Pi_h \phi\|_{L^2} \leq Ch^2 \|\phi\|_{\mathcal{T}}, \quad \forall \phi \in \mathcal{T},
\]

\[
\|\phi - \Pi_h^\Gamma \phi\|_{L^2(\Gamma)} \leq Ch^{k+1/2} \|\phi\|_{H^{k+1/2}(\Gamma)}, \quad \forall \phi \in \mathcal{H}^{k+1/2}(\Gamma) \text{ with } 1 \leq k \leq r,
\]

\[
\|W^{n+1} - L_h W^{n+1}\|_{L^2} + \|W^{n+1} - W_{h}^{n+1}\|_{L^2} \leq Ch^2,
\]

\[
\|C^{n+1} - C_{h}^{n+1}\|_{L^2} \leq Ch^2.
\]

Therefore, by the inverse inequality, we have

\[
\|Q_h W^{n+1} - L_h W^{n+1}\|_{L^\infty} + \|\bar{W}^{n+1} - L_h W^{n+1}\|_{L^\infty} \leq Ch^{-d/2} \|Q_h W^{n+1} - L_h W^{n+1}\|_{L^2} \leq Ch^{2-d/2},
\]

which implies the existence of a positive constant \(h_1 \) such that when \(h < h_1 \) there holds

\[
\|Q_h W^{n+1}\|_{L^\infty} + \|\bar{W}^{n+1}\|_{L^\infty} \leq 2\|L_h W^{n+1}\|_{L^\infty} + 1 \leq C.
\]

Moreover, we need the following two lemmas in the proof of Proposition 4.1.

Lemma 4.1 Under the regularity of \(C^{n+1} \) and \(U^{n+1} \) proved in Proposition 3.1, we have

\[
\left(\sum_{n=0}^{N-1} \tau \|D_n(C^{n+1} - \bar{C}_{h}^{n+1})\|_{L^2}^2 \right)^{1/2} \leq Ch^2.
\]

Proof From (4.3), we derive that

\[
(\nabla \cdot (D_{\tau} \bar{W}_{h}^{n+1} - D_{\tau} W^{n+1}), \chi_h) = 0, \quad \forall \chi_h \in S_h^n,
\]

\[
(D(U^n, x)^{-1}(D_{\tau} \bar{W}_{h}^{n+1} - D_{\tau} W^{n+1}), \varphi_h) + (D_{\tau} D(U^n, x)^{-1} \bar{W}_{h}^{n} - W^n, \varphi_h)
\]

\[
= (D_{\tau}(\bar{C}_{h}^{n+1} - \Pi_h C^{n+1}), \nabla \cdot \varphi_h), \quad \forall \varphi_h \in H^1_h,
\]

(4.11)

where (4.11) implies that \(\nabla \cdot (D_{\tau} \bar{W}_{h}^{n+1} - Q_h D_{\tau} W^{n+1}) = 0 \). By choosing \(\varphi_h = D_{\tau} \bar{W}_{h}^{n+1} - Q_h D_{\tau} W^{n+1} \) in (4.11), we derive that

\[
\|D_{\tau} \bar{W}_{h}^{n+1} - Q_h D_{\tau} W^{n+1}\|_{L^2} \leq C\|D_{\tau} W^{n+1} - Q_h D_{\tau} W^{n+1}\|_{L^2} + C\|W^{n+1} - W_{h}^{n+1}\|_{L^2},
\]

and so, by the inverse inequality,

\[
\|\nabla \cdot (D_{\tau} \bar{W}_{h}^{n+1} - Q_h D_{\tau} W^{n+1})\|_{L^2} \leq C h^{-1}\|D_{\tau} \bar{W}_{h}^{n+1} - Q_h D_{\tau} W^{n+1}\|_{L^2} \leq C\|D_{\tau} W^{n+1}\|_{H^1} + C.
\]

Let \(v = -D(U^n, x) \nabla g \), where \(g \) is the solution of the elliptic interface problem

\[
\begin{aligned}
-\nabla \cdot (D(U^n, x) \nabla g) &= D_{\tau}(C_{h}^{n+1} - \Pi_h C^{n+1}) \quad \text{in } \Omega_m, \\
[g] &= 0, \quad [D(U^n, x) \nabla g \cdot n] = 0 \quad \text{on } \Gamma_m, \\
D(U^n, x) \nabla g \cdot n &= 0 \quad \text{on } \partial \Omega.
\end{aligned}
\]
Substituting $\mathbf{v}_h = Q_h \mathbf{v}$ into (4.1), we obtain

$$
\|D_r(C^{n+1} - \overline{C}^{n+1}_h)\|^2_{L^2} \\
= (D(U^n, x)^{-1}D_r(W_h^{n+1} - W^n), \mathbf{v}) \\
+ (D(U^n, x)^{-1}D_r(W_h^{n+1} - W^n), \mathbf{v}_h - \mathbf{v}) + (D_rD(U^n, x)^{-1}(W_h^n - W^n), \mathbf{v}_h) \\
= (\nabla : (D_rW_h^{n+1} - D_rW^n), g) - ((D_rW_h^{n+1} - D_rW^n) : \mathbf{n}), g)_{\Gamma} \\
+ (D(U^n, x)^{-1}D_r(W_h^{n+1} - W^n), \mathbf{v}_h - \mathbf{v}) + (D_rD(U^n, x)^{-1}(W_h^n - W^n), \mathbf{v}_h) \\
= (\nabla : (D_rW_h^{n+1} - D_rW^n), g - L_h g) - ((D_rW_h^{n+1} - D_rW^n) : \mathbf{n}), g - \Pi_h^r g)_{\Gamma} \\
+ (D(U^n, x)^{-1}D_r(W_h^{n+1} - W^n), \mathbf{v}_h - \mathbf{v}) + (D_rD(U^n, x)^{-1}(W_h^n - W^n), \mathbf{v}_h) \\
\leq C\|D_rW^n\|_{H^{k+1}} \|g - L_h g\|_{L^2} + C\|((D_rW_h^{n+1} - D_rW^n) : \mathbf{n})\|_{L^2(\Gamma)} \|g - \Pi_h^r g\|_{L^2(\Gamma)} \\
+ \|D_rW_h^{n+1} - D_rW^n\|_{L^2} \|\mathbf{v}_h - \mathbf{v}\|_{L^2} + \|D_rD(U^n, x)^{-1}\|_{L^\infty} \|W_h^n - W^n\|_{L^2} \|\mathbf{v}_h\|_{L^2} \\
\leq C\|D_rW^n\|_{H^{k+1}} \|g\|_{H^{k+1}2(\Gamma)}^2 + C\|((Q_hD_rW_h^{n+1} - Q_hD_rW^n) : \mathbf{n})\|_{L^2(\Gamma)} \|g\|_{H^{k+1}2(\Gamma)}^3 \\
+ C\|D_rW_h^{n+1}\|_{H^{k+1}2(\Gamma)} \|g\|_{H^{k+1}2(\Gamma)}^2 + C\|D_rU^n\|_{L^\infty} \|\mathbf{v}_h\|_{L^2} \\
\leq C\|D_rW^n\|_{H^{k+1}2(\Gamma)} \|g\|_{H^{k+1}2(\Gamma)}^2 + C\|Q_hD_rW_h^{n+1} - Q_hD_rW^n\|_{L^2} \|g\|_{H^{k+1}2(\Gamma)}^2 \\
+ C\|D_rW_h^{n+1}\|_{H^{k+1}2(\Gamma)} \|g\|_{H^{k+1}2(\Gamma)}^2 + C\|D_rU^n\|_{L^\infty} \|g\|_{H^{k+1}2(\Gamma)}^2 \\
\leq C\|D_rW^n\|_{H^{k+1}2(\Gamma)} \|g\|_{H^{k+1}2(\Gamma)}^2 + C\|Q_hD_rW_h^{n+1} - Q_hD_rW^n\|_{L^2} \|g\|_{H^{k+1}2(\Gamma)}^2 \\
+ C\|D_rW_h^{n+1}\|_{H^{k+1}2(\Gamma)} \|g\|_{H^{k+1}2(\Gamma)}^2 + C\|D_rU^n\|_{L^\infty} \|g\|_{H^{k+1}2(\Gamma)}^2 \\
\leq C\|D_rW^n\|_{H^{k+1}2(\Gamma)} \|g\|_{H^{k+1}2(\Gamma)}^2 + C\|D_rU^n\|_{L^\infty} \|g\|_{H^{k+1}2(\Gamma)}^2 \\
\leq C\|D_r(C^{n+1} - \overline{C}^{n+1}_h)\|_{L^2} \|\mathbf{v}_h\|_{L^2}^2,$$

which reduces to

$$
\|D_r(C^{n+1} - \overline{C}^{n+1}_h)\|_{L^2} \leq C\|D_rC^{n+1}\|_{H^{k+1}2} + \|D_rU^n\|_{H^{k+1}2} \|\mathbf{v}_h\|_{L^2} \|\mathbf{v}_h\|_{L^2} \|\mathbf{v}_h\|_{H^{k+1}2}.$$

The last inequality, together with Proposition 3.1 gives (4.1). □

Lemma 4.2 If $g \in \overline{H}^{k+1}$ with $1 \leq k \leq r$, then

$$
\left| \langle g - \Pi_h^r g, \mathbf{v}_h : \mathbf{n} \rangle_{\partial T} \right| + \sum_{m=1}^M \left| \langle g - \Pi_h^r g, [\mathbf{v}_h : \mathbf{n}] \rangle_{r_m} \right| \leq C\|g\|_{H^{k+1}2} \|\mathbf{v}_h\|_{L^2} \|\mathbf{v}_h\|_{L^2} \|\mathbf{v}_h\|_{H^{k+1}2}.
$$

Proof For simplicity, we only prove the 2D case. The 3D case can be proved in the same way. For a triangle T_j on the boundary (or an interface), we denote by e_j its edge with at two vertices on the boundary (or an interface) and denote by \overline{e}_j the curved edge on the boundary (or an interface). Via a rigid rotation, we assume that e_j is on the x_1-axis and \overline{e}_j is parametrized by $(x_1, y(x_1))$. Let $\chi_h \in S_h^r$ be a finite element function whose restriction to e_j coincides with $\mathbf{v}_h : \mathbf{n}$, i.e. $\mathbf{v}_h(x_1, 0) : \mathbf{n}(x_1, 0) = \chi_h(x_1, 0)$, satisfying $\|\chi_h\|_{L^2(T_j)} \leq C\|\mathbf{v}_h\|_{L^2(T_j)}$. Then we have, with $\mathbf{ds} = \sqrt{1 + |y'(x_1)|^2} \, dx_1$,

$$
\int_{\overline{e}_j} \langle g - \Pi_h^r g, \mathbf{v}_h : \mathbf{n} \rangle \mathbf{ds} \leq C\|g\|_{H^{k+1}2} \|\mathbf{v}_h\|_{L^2} \|\mathbf{v}_h\|_{L^2} \|\mathbf{v}_h\|_{H^{k+1}2}.
$$
\[
\int_{\partial\Omega} (g - \Pi_h^\tau g) \mathbf{v}_h \cdot \mathbf{n} \, ds \leq C \sum_j \| g \|_{H^{k+1}(T_j)} \| \mathbf{v}_h \|_{L^2(T_j)} h^{k+1} \leq C \| g \|_{\mathcal{P}^{k+1}} \| \mathbf{v}_h \|_{L^2} h^{k+1}.
\]

The estimate of \(\int_{\Gamma_m} (g - \Pi_h^\tau g) [\mathbf{v}_h \cdot \mathbf{n}] \, ds \) on an interface \(\Gamma_m \) is similar. \(\blacksquare \)

Proof of Proposition 3.1 Let \(\tau < \tau_0 \) so that (4.4)-(4.8) hold. The mixed weak formulation of (3.1)-(3.2) is

\[
\left(\frac{\mu(C^n_{h})}{k(x)} \mathbf{U}^n, \mathbf{v}_h \right) = \left(P^n, \nabla \cdot \mathbf{v}_h \right) - \left(P^n, \mathbf{v}_h \cdot \mathbf{n} \right)_{\partial\Omega} - \sum_{m=1}^{M} \left(P^n, [\mathbf{v}_h \cdot \mathbf{n}] \right)_{\Gamma_m}, \tag{4.12}
\]

\[
\left(\nabla \cdot \mathbf{U}^n, \varphi_h \right) = \left(q^n_l - q^n_m, \varphi_h \right), \tag{4.13}
\]

\[
\left(D(\mathbf{U}^n, x)^{-1} \mathbf{W}^{n+1}, \nabla \mathbf{v}_h \right) = \left(C^{n+1}, \nabla \cdot \nabla \mathbf{v}_h \right) - \left(C^{n+1}, \nabla \mathbf{v}_h \cdot \mathbf{n} \right)_{\partial\Omega} - \sum_{m=1}^{M} \left(C^{n+1}, \nabla \mathbf{v}_h \cdot \mathbf{n} \right)_{\Gamma_m}, \tag{4.14}
\]

\[
\left(\Phi(x) \mathbf{T}^{n+1}, \varphi_h \right) + \left(\nabla \cdot \mathbf{W}^{n+1}, \varphi_h \right) - \left(D(\mathbf{U}^n, x)^{-1} \mathbf{U}^n \cdot \mathbf{W}^{n+1}, \varphi_h \right) = \left(C^{n+1}, q^n_l - C^{n+1} q^n_m, \varphi_h \right), \tag{4.15}
\]

for any \(\mathbf{v}_h, \nabla \mathbf{v}_h \in \mathbf{H}^r_h \) and \(\varphi_h, \varphi_h \in S_h \). The above equations with the finite element system (2.1)-(2.4) imply that

\[
\left(\frac{\mu(C^n_{h})}{k(x)} \mathbf{U}^n - \frac{\mu(C^n_{h})}{k(x)} \mathbf{U}^n, \mathbf{v}_h \right) = \left(P^n_h - \Pi_h P^n, \nabla \cdot \mathbf{v}_h \right)
\]

\[
+ \left(P^n - \Pi_h^\tau P^n, \mathbf{v}_h \cdot \mathbf{n} \right)_{\partial\Omega} + \sum_{m=1}^{M} \left(P^n - \Pi_h^\tau P^n, [\mathbf{v}_h \cdot \mathbf{n}] \right)_{\Gamma_m}, \tag{4.16}
\]

\[
\left(\nabla \cdot (\mathbf{U}^n_h - Q_h \mathbf{U}^n), \varphi_h \right) = 0, \tag{4.17}
\]

\[
\left(D(\mathbf{U}^n_h, x)^{-1} \mathbf{W}^{n+1}_h - D(\mathbf{U}^n, x)^{-1} \mathbf{W}^{n+1}_h, \nabla \mathbf{v}_h \right) = \left(C^{n+1}_h - C^{n+1}_h, \nabla \cdot \nabla \mathbf{v}_h \right)
\]
As a result, there exists a positive constant \(h \) which implies that
\[
\text{we have } \| \mathbf{U}_h^n - \mathbf{U}^n \|_{L^2}^2 \leq C(h^2 + \| C_h^n - C^n \|_{L^2}^2), \quad \text{for } n = 0, 1, \cdots, N. \tag{4.20}
\]
In particular, we have
\[
\| \mathbf{U}_h^0 - L_h \mathbf{U}^0 \|_{L^2} \leq C(h^2 + \| C_h^0 - C^0 \|_{L^2}) \leq C h^2.
\]
and so, by the inverse inequality,
\[
\| \mathbf{U}_h^0 - L_h \mathbf{U}^0 \|_{L^\infty} \leq C h^{-d/2} \| \mathbf{U}_h^0 - L_h \mathbf{U}^0 \|_{L^2} \leq C h^{2-d/2}.
\]
As a result, there exists a positive constant \(h_2 \) such that when \(h < h_2 \) we have
\[
\| \mathbf{U}_h^0 \|_{L^\infty} \leq \| \mathbf{U}^0 \|_{L^\infty} + 1. \tag{4.21}
\]
Secondly, we proceed with a mathematical induction on
\[
\| \mathbf{U}_h^n \|_{L^\infty} \leq \| \mathbf{U}^n \|_{L^\infty} + 1, \tag{4.22}
\]
which is already proved for \(n = 0 \). In the following, we assume that it holds for \(0 \leq n \leq k \) and try to prove that it also holds for \(n = k + 1 \).

Taking \(\mathbf{v}_h = \mathbf{W}_h^{n+1} - \overline{\mathbf{W}}_h^{n+1} \) and \(\varphi_h = C_h^{n+1} - \overline{C}_h^{n+1} \) in (4.15)-(4.19), we obtain
\[
\begin{align*}
D_T \left(\frac{1}{2} \| \sqrt{\mu} (C_h^{n+1} - \overline{C}_h^{n+1}) \|_{L^2}^2 \right) + \left(D(\mathbf{U}_h^n, x)^{-1} (\mathbf{W}_h^{n+1} - \overline{\mathbf{W}}_h^{n+1}) , \mathbf{W}_h^{n+1} - \overline{\mathbf{W}}_h^{n+1} \right) \\
= - \left((D(\mathbf{U}_h^n, x)^{-1} - D(\mathbf{U}^n, x)^{-1}) \mathbf{W}_h^{n+1} , \mathbf{W}_h^{n+1} - \overline{\mathbf{W}}_h^{n+1} \right) \\
+ \left(D(\mathbf{U}_h^n, x)^{-1} \mathbf{U}_h^n \cdot (\mathbf{W}_h^{n+1} - \overline{\mathbf{W}}_h^{n+1}) , C_h^{n+1} - \overline{C}_h^{n+1} \right) \\
+ \left((D(\mathbf{U}_h^n, x)^{-1} \mathbf{U}_h^n - D(\mathbf{U}^n, x)^{-1} \mathbf{U}^n) \cdot \mathbf{W}_h^{n+1} , C_h^{n+1} - \overline{C}_h^{n+1} \right)
\end{align*}
\]
$$-\left((c^{n+1} - c^n)q^{n+1}, c^{n+1}_h - c^{n+1}_h\right) + \left(\Phi D_I(c^{n+1} - c^{n+1}_h), c^{n+1}_h - c^{n+1}_h\right)$$

$$+ \left(c^{n+1} - \Pi_h^{n+1}, \nabla_h \cdot n\right)_{\partial \Omega} + \sum_{m=1}^{M} \left(c^{n+1} - \Pi_h^{n+1}, |\nabla_h \cdot n|\right)_{\Gamma_m}$$

$$\leq C\|\tilde{W}^{n+1}_h\|_{L^\infty}{\|U^n_h - U^n\|}_{L^2}{\|W^{n+1}_h - \tilde{W}^{n+1}_h\|}_{L^2}$$

$$+ C\|D(U^n_h, x)^{-1}U^n_h\|_{L^\infty}(\|\tilde{W}^{n+1}_h\|_{L^2} + \|W^{n+1}_h - \tilde{W}^{n+1}_h\|_{L^2})\|c^{n+1} - c^{n+1}_h\|_{L^2}$$

$$+ C\|W^{n+1}\|_{L^\infty}{\|U^n_h - U^n\|}_{L^2}{\|c^{n+1} - c^{n+1}_h\|}_{L^2} + C\|c^{n+1} - c^{n+1}_h\|_{L^2}{\|c^{n+1} - c^{n+1}_h\|}_{L^2}$$

$$+ C\|D_r(c^{n+1} - c^{n+1}_h)\|_{L^2}\|c^{n+1} - c^{n+1}_h\|_{L^2} + C\|c^{n+1}\|_{L^2}{\|W^{n+1}_h - \tilde{W}^{n+1}_h\|}_{L^2}h^2$$

$$\leq \frac{1}{2}(D(U^n_h, x)^{-1}(W^{n+1}_h - \tilde{W}^{n+1}_h), W^{n+1}_h - \tilde{W}^{n+1}_h)$$

$$+ C(1 + \|U^n_h\|_{L^{\infty}})(\|c^{n+1} - c^{n+1}_h\|_{L^2} + \|U^n_h - U^n\|_{L^2} + \|W^{n+1}_h - \tilde{W}^{n+1}_h\|_{L^2} + \|c^{n+1} - c^{n+1}_h\|_{L^2})$$

$$\leq \frac{1}{2}(D(U^n_h, x)^{-1}(W^{n+1}_h - \tilde{W}^{n+1}_h), W^{n+1}_h - \tilde{W}^{n+1}_h)$$

$$+ C(1 + \|U^n_h\|_{L^{\infty}})(\|c^{n+1} - c^{n+1}_h\|_{L^2} + \|U^n_h - U^n\|_{L^2} + \|W^{n+1}_h - \tilde{W}^{n+1}_h\|_{L^2} + \|D_r(c^{n+1} - c^{n+1}_h)\|_{L^2}h^4)$$

Since $\|U^n\|_{L^\infty} \leq C\|U^n\|_{H^1} \leq C$, by applying (4.22) and Gronwall’s inequality, there exists a positive constant τ_4 such that when $\tau < \tau_4$ we have

$$\max_{0 \leq n \leq k} \|c^{n+1}_h - c^{n+1}_h\|_{L^2} \leq Ch^2,$$

which, together with (4.7), gives

$$\max_{0 \leq n \leq k} \|c^{n+1} - c^{n+1}\|_{L^2} \leq Ch^2. \quad (4.23)$$

From (4.20) we further derive that

$$\max_{0 \leq n \leq k} \|U^{n+1}_h - U^{n+1}\|_{L^2} \leq Ch^2, \quad (4.24)$$

which implies that

$$\|U^{k+1}_h - L_h U^{k+1}\|_{L^2} \leq Ch^2,$$

and so, by the inverse inequality,

$$\|U^{k+1}_h - L_h U^{k+1}\|_{L^\infty} \leq Ch^{-d/2}\|U^{k+1}_h - L_h U^{k+1}\|_{L^2} \leq Ch^{2-d/2}.$$

In view of the last inequality, there exists a positive constant h_3 such that when $h < h_3$ we have

$$\|U^{k+1}_h\|_{L^\infty} \leq \|U^{k+1}\|_{L^\infty} + 1. \quad (4.25)$$

The mathematical induction on (4.22) is completed, and Proposition 4.1 is proved with $\tau_\ast = \min(\tau_0, \tau_4)$ and $h_\ast := \min(h_1, h_2, h_3)$. \blacksquare
5 Proof of Theorem 2.1

In this section, we prove Theorem 2.1 based on the boundedness of the fully discrete solution proved in Proposition 4.1.

Similar as the last section, for any fixed integer \(n \geq -1 \) we introduce the Ritz projection \((\tilde{\nabla}^{n+1}_h, \tilde{\omega}^{n+1}_h) \in S_h^r \times H_h^r \) of \((c^{n+1}, w^{n+1}) \in H^1 \times H^1\) as the finite element solution of

\[
\begin{align*}
&\left\{ (\nabla \cdot (\tilde{\omega}^{n+1}_h - w^{n+1}_h), \chi_h) = 0, \quad \forall \chi_h \in S_h^r, \\
&(D(u^{n+1}_h, x)^{-1}(\tilde{\omega}^{n+1}_h - w^{n+1}_h), v_h) = (\tilde{\nabla}^{n+1}_h - c^{n+1}, \nabla \cdot v_h), \quad \forall v_h \in H_h^r,
\end{align*}
\]

(5.1)

with \(\int_{\Omega}(\tilde{c}^{n+1}_h - c^{n+1})dx = 0 \) for the uniqueness of solution. Then there exists a positive constant \(h_* \leq h \) such that when \(h < h_* \), the following inequalities hold:

\[
\|\phi - \Pi_h \phi\|_{L^2} \leq C\|\phi\|_{\mathcal{H}^{r+1}}, \quad \forall \phi \in \mathcal{H}^{r+1},
\]

(5.2)

\[
\max_{0 \leq n \leq N}(\|c^n - \tilde{c}^{n+1}_h\|_{L^2} + \|u^n - Q_h u^n\|_{L^2} + \|w^n - \tilde{w}^{n+1}_h\|_{L^2}) \leq C h^{r+1},
\]

(5.3)

\[
\max_{0 \leq n \leq N}(\|w^n\|_{L^\infty} + \|\tilde{w}^{n+1}_h\|_{L^\infty}) \leq C,
\]

(5.4)

\[
\left(\sum_{n=0}^{N-1} \tau \|D\tau (c^{n+1} - \tilde{c}^{n+1}_h)^2_{L^2}\right)^{1/2} \leq C h^{r+1}.
\]

(5.5)

Firstly, by choosing \(v_h = U^n_h \) in (2.1) and \(\varphi_h = P^n_h \) in (2.2), we derive that

\[
\|U^n_h\|^2_{L^2} \leq C\|P^n_h\|_{L^2}.
\]

(5.6)

In order to make use of (5.6), we define \(\tilde{g}_n \) as the solution of

\[
\begin{align*}
&\Delta \tilde{g}^n = P^n_h \quad \text{in } \Omega_m, \\
&[\tilde{g}^n] = 0, \quad [\tilde{g}^n \cdot n] = 0 \quad \text{on } \Gamma_m, \\
&\nabla \tilde{g}^n \cdot n = 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

and substitute \(v_h = -Q_h(\nabla \tilde{g}^n) \) into (2.1). Then we obtain

\[
\|P^n_h\|^2_{L^2} = \left(\frac{\mu(C^n_h)}{k(x)} U^n_h, v_h\right) \leq C\|U^n_h\|_{L^2}\|v_h\|_{L^2} \leq C\|U^n_h\|_{L^2}\|P^n_h\|_{L^2},
\]

which together with (5.6) implies that

\[
\|P^n_h\|_{L^2} + \|U^n_h\|_{L^2} \leq C.
\]

(5.7)

When \(h \geq h_* \), by the inverse inequality we have

\[
\|U^n_h\|_{L^\infty} \leq C h^{-d/2}\|U^n_h\|_{L^2} \leq C h^{d/2}\|U^n_h\|_{L^2} \leq C.
\]

(5.8)

Then we choose \(\bar{v}_h = \bar{w}^{n+1}_h \) in (2.3) and \(\overline{\varphi}_h = c^{n+1}_h \) in (2.4). With the boundedness of \(\|U^n_h\|_{L^\infty} \), we derive that

\[
D_\tau \left(\frac{1}{2}\|\sqrt{\phi(c^{n+1}_h)}\|^2_{L^2}\right) + D(U^n_h, x)^{-1}\|\bar{w}^{n+1}_h\|_{L^2} \leq C.
\]

18
mixed formulation of (1.1)-(1.2) gives
for any (2.1)-(2.4) imply that
Applying Gronwall’s inequality, there exists a positive constant \(\tau_5 < \tau_4 \) such that when \(\tau < \tau_5 \) and \(h \geq h_{ss} \) we have

\[
\|C_h^{n+1}\|_{L_x^2} \leq C. \tag{5.9}
\]

Secondly, we assume that \(\tau < \tau_5 \) and \(h < h_{ss} \) so that Proposition 4.1 holds. Note that the mixed formulation of (11)-(1.2) gives

\[
\left(\frac{\mu(c^n)}{k(x)} u^n, v_h \right) = \left(p^n, \nabla \cdot v_h \right) - \left(p^n, v_h \cdot n \right)_{\partial \Omega} - \sum_{m=1}^M \left(p^n, [v_h \cdot n] \right)_{\Gamma_m},
\]

\[
\left(\nabla \cdot u^n, \varphi_h \right) = \left(q^n_p - q^n_p, \varphi_h \right),
\]

\[
\left(D(u^{n+1}, x)^{-1} w^{n+1} + p^n, \nabla \cdot v_h \right) = \left(c^{n+1} - c^n, \nabla \cdot v_h \right) - \sum_{m=1}^M \left(c^{n+1}, \nabla \cdot v_h \right)_{\Gamma_m},
\]

\[
\left(\Phi(x) D_r c^{n+1}, \varphi_h \right) + \left(\nabla \cdot w^{n+1} - \nabla \cdot v_h \right) - \left(D(u^{n+1}, x)^{-1} u^n \cdot w^{n+1}, \varphi_h \right) = \left(c^{n+1} q^{n+1} - c^n q^n, \varphi_h \right) + (c^{n+1}, \varphi_h)
\]

for any \(v_h, \varphi_h \in H^r \) and \(\varphi_h, \varphi_h \in S_h \). The above equations with the finite element system (2.1)-(2.4) imply that

\[
\left(\frac{\mu(C^n_h)}{k(x)} U^n_h - \frac{\mu(c^n)}{k(x)} u^n, v_h \right) = \left(P^n_h - \Pi_h p^n, \nabla \cdot v_h \right)
\]

\[
+ \left(p^n - \Pi_h P^n, v_h \cdot n \right)_{\partial \Omega} + \sum_{m=1}^M \left(p^n - \Pi_h P^n, [v_h \cdot n] \right)_{\Gamma_m}, \tag{5.10}
\]

\[
\left(\nabla \cdot (U^n_h - Q_h u^n), \varphi_h \right) = 0, \tag{5.11}
\]

\[
\left(D(U^n_h, x)^{-1} W^{n+1} - D(u^{n+1}, x)^{-1} \omega_h^{n+1}, \nabla \right) = \left(C^{n+1} - C^n, \nabla \cdot \nabla \right)
\]

\[
+ \left(c^{n+1} - \Pi_h c^{n+1}, \nabla \cdot \nabla \right) + \sum_{m=1}^M \left(c^{n+1} - \Pi_h c^{n+1}, \nabla \cdot \nabla \right)_{\Gamma_m}, \tag{5.12}
\]

\[
\left(\Phi(x) D_r (C^{n+1} - c^{n+1}), \varphi_h \right) + \left(\nabla \cdot (W^{n+1} - \omega_h^{n}), \varphi_h \right)
\]

\[
- \left(D(U^n_h, x)^{-1} \omega_h^{n+1}, U^n_h, \varphi_h \right)
\]

\[
- \left((D(U^n_h, x)^{-1} U^n_h - u^{n+1}, x)^{-1} u^n \cdot w^{n+1}, \varphi_h \right) + \left((C^{n+1} - C^n) q^n, \varphi_h \right)
\]

\[
= - (c^{n+1}, \varphi_h). \tag{5.13}
\]
Taking \(v_h = U^n_h - Q_h u^n \) in (5.10), we get
\[
\left(\frac{\mu(C^n_h)}{k(x)} (U^n_h - Q_h u^n) + \frac{\mu(C^n_h)}{k(x)} (Q_h u^n - u^n) + \frac{\mu(C^n_h) - \mu(c^n)}{k(x)} u^n, \ U^n_h - Q_h u^n \right) = \left(p^n - \Pi^n_h p^n, (U^n_h - Q_h u^n) \cdot n \right)_{\partial \Omega} + \sum_{m=1}^M \left(p^n - \Pi^n_h p^n, ([U^n_h - Q_h u^n] \cdot n \right)_{\Gamma_m},
\]
\[
\leq C \left\| p^n \right\|_{\mathcal{W}_1} \left\| U^n_h - Q_h u^n \right\|_{L^2} h^{r+1},
\]
which implies that
\[
\left\| U^n_h - u^n \right\|_{L^2} \leq C (h^{r+1} + \left\| C^n_h - c^n \right\|_{L^2}), \quad \text{for} \quad n = 0, 1, \ldots, N. \quad (5.14)
\]
Taking \(\nabla v_h = W^{n+1}_h - W^n_h \) and \(\nabla v_h = c^{n+1}_h - c^n_h \) in (5.12)-(5.13), we obtain
\[
D_r \left(\frac{1}{2} \left\| \sqrt{\Psi} (C^{n+1}_h - \bar{c}_h^{n+1}) \right\|_{L^2}^2 \right) + \left(D(U^n_h, x)^{-1} (W^{n+1}_h - W^n_h), W^{n+1}_h - W^n_h \right) = \left(D(U^n_h, x)^{-1} - D(u^{n+1}, x)^{-1} \right) \left(W^{n+1}_h - W^n_h \right) \]
\[
+ \left(D(U^n_h, x)^{-1} U^n_h (W^{n+1}_h - W^n_h), c^{n+1}_h - c^n_h \right)
\]
\[
+ \left((D(U^n_h, x)^{-1} U^n_h - D(u^{n+1}, x)^{-1} u^n) \cdot w^{n+1}, c^{n+1}_h - c^n_h \right)
\]
\[
- \left((c^{n+1}_h - c^n) d^{n+1}, c^{n+1}_h - c^n \right) + \left(\Phi D_r (c^{n+1} - \bar{c}_h^{n+1}), c^{n+1}_h - c^n \right)
\]
\[
+ \left(c^{n+1} - \Pi^n_h c^{n+1}, \nabla v_h \cdot n \right)_{\partial \Omega} + \sum_{m=1}^M \left(c^{n+1} - \Pi^n_h c^{n+1}, [\nabla v_h \cdot n] \right)_{\Gamma_m} - \left(e^{n+1}, c^{n+1} - \bar{c}_h^{n+1} \right)
\]
\[
\leq C \left\| W^{n+1}_h \right\|_{L^\infty} \left\| U^n_h - u^n \right\|_{L^2} \left\| W^{n+1}_h - W^n_h \right\|_{L^2}
\]
\[
+ C \left\| D(U^n_h, x)^{-1} U^n_h \right\|_{L^\infty} \left(\left\| W^{n+1}_h - W^n_h \right\|_{L^2} + \left\| W^{n+1}_h - W^n_h \right\|_{L^2} \right) \left\| c^{n+1}_h - c^n \right\|_{L^2}
\]
\[
+ C \left\| w^{n+1} \right\|_{L^\infty} \left\| U^n_h - u^n \right\|_{L^2} \left\| c^{n+1}_h - c^n \right\|_{L^2} \left\| c^{n+1}_h - c^n \right\|_{L^2} + C \left\| c^{n+1}_h - c^n \right\|_{L^2}^2 + C \left\| e^{n+1} \right\|_{L^2}^2 \leq C \left(1 + \left\| U^n_h \right\|_{L^\infty} \right) \left(\left\| C^n_h - \bar{c}_h \right\|_{L^2}^2 + \left\| C^n_h - \bar{c}_h \right\|_{L^2}^2 + \left\| D_r (c^{n+1} - \bar{c}_h^{n+1}) \right\|_{L^2}^2 + h^{2r+2} + \tau^2 \right).
\]

Applying Gronwall’s inequality, there exists a positive constant \(\tau_\ast < \tau_5 \) such that, when \(\tau < \tau_\ast \) and \(h < h_\ast \), Proposition 4.1 holds and the last inequality reduces to
\[
\max_{1 \leq n \leq N} \left\| C^n_h - \bar{c}_h \right\|_{L^2} + \frac{N-1}{\tau} \left\| W^{n+1}_h - W^n_h \right\|_{L^2} \leq C (\tau + h^{r+1})^2,
\]
which together with (5.14) implies that
\[
\max_{1 \leq n \leq N} \left(\left\| C^n_h - c^n \right\|_{L^2} + \left\| U^n_h - u^n \right\|_{L^2} \right) + \left(\sum_{n=1}^N \tau \left\| W^n_h - W^n_h \right\|_{L^2} \right)^{\frac{1}{2}} \leq C (\tau + h^{r+1}). \quad (5.15)
\]

To estimate \(\| P^n_h - p^n \|_{L^2} \), we define \(g^n \) as the solution of
\[
\left\{ \begin{array}{ll}
\Delta g^n = P^n_h - \Pi^n_h p^n & \text{in} \ \Omega_n, \\
g^n = 0, & \text{on} \ \Gamma_n, \\
\nabla g^n \cdot n = 0 & \text{on} \ \partial \Omega,
\end{array} \right.
\]
and substitute \(v_h = -Q_h(\nabla g^n) \) into (5.10). Since \(\|v_h\|_{L^2} \leq C\|P^n_h - p^n\|_{L^2} \), it follows that
\[
\|P^n_h - \Pi h p^n\|_{L^2} \leq C(\|C^n_h - c^n\|_{L^2} + \|U^n_h - u^n\|_{L^2} + C\|P^n\|_{H^{r+1}})\|v_h\|_{L^2}
\]
\[
\leq C(\|C^n_h - c^n\|_{L^2} + \|U^n_h - u^n\|_{L^2} + C\|P^n\|_{H^{r+1}})\|P^n_h - \Pi h p^n\|_{L^2}
\]
which gives
\[
\max_{1 \leq n \leq N} \|P^n_h - \Pi h p^n\|_{L^2} \leq C(\tau + h^{r+1}).
\] (5.16)

Finally, when \(\tau < \tau_* \) and \(h \geq h_* \) we see that (5.7)-(5.9) give
\[
\max_{1 \leq n \leq N} (\|P^n_h - p^n\|_{L^2} + \|U^n_h - u^n\|_{L^2} + \|C^n_h - c^n\|_{L^2}) + \left(\sum_{n=1}^{N} \tau \|W^n_h - w^n\|_{L^2}^2 \right)^{1/2}
\]
\[
\leq C \leq \frac{C}{h^{r+1}} (\tau + h^{r+1}).
\] (5.17)

From (5.15)-(5.17) we see that Theorem 2.1 holds.

6 Proof of Lemma 2.1 and Lemma 2.2

In this section, we prove Lemma 2.1 and Lemma 2.2 which were used in Section 3 to prove the uniform piecewise regularity of the solution of the linearized PDEs. We shall use the notation \(x = (x', x_d) \), with \(x' = (x_1, \ldots, x_{d-1}) \).

6.1 Proof of Lemma 2.1

Before we prove Lemma 2.1, we need to introduce some lemmas below.

Lemma 6.1 Let \(S_R = \{ x \in \mathbb{R}^d : |x'| < R \) and \(|x_d| < R \}, \) \(S_R^+ = S_R \cap \{ x \in \mathbb{R}^d : 0 < x_d < R \}, \) \(S_R^- = S_R \cap \{ x \in \mathbb{R}^d : -R < x_d < 0 \} \). Let \(\Gamma = \{ x \in \mathbb{R}^d : x_d = 0 \} \) and \(\Gamma_R := S_R \cap \Gamma \). Suppose that \(A_{ij} = A_{ji} \in H^2(S_R^+) \cap H^2(S_R^-) \) satisfies the strong ellipticity condition
\[
K^{-1} |\xi|^2 \leq \sum_{i,j=1}^{d} A_{ij}(x)\xi_i\xi_j \leq K|\xi|^2 \quad \text{for } x \in S_R^+ \cap \Gamma \quad \text{and } \xi \in \mathbb{R}^d,
\]
and \(\phi \in H^3(S_R^+) \cap H^3(S_R^-) \) is a solution of
\[
\begin{cases}
-\nabla \cdot (A \nabla \phi) = f & \text{in } S_R^+ \setminus \Gamma_2,

[\phi] = 0, \quad [A \nabla \phi \cdot \mathbf{n}] = g & \text{on } \Gamma_2.
\end{cases}
\] (6.1)

Then
\[
\|\phi\|_{H^k(S_R)} \leq C_R(\|f\|_{L^2(S_R^+) \cap \Gamma_3} + \|g\|_{H^{1/2}(\Gamma_3 \cap \Gamma_2)}) + \|\phi\|_{H^k(S_R^+) \cap \Gamma_2} + \|\phi\|_{H^k(S_R^-) \cap \Gamma_2},
\] (6.2)
\[
\|\phi\|_{H^k(S_R)} \leq C_R(\|f\|_{H^{1/2}(\Gamma_3 \cap \Gamma_2)} + \|g\|_{H^{3/2}(\Gamma_2 \cap \Gamma_2)}) + \|\phi\|_{H^k(S_R^+) \cap \Gamma_2} + \|\phi\|_{H^k(S_R^-) \cap \Gamma_2},
\] (6.3)
where \(\|\psi\|_{H^k(S_R)} := \|\psi\|_{H^k(S_R^+) \cap \Gamma_2} + \|\psi\|_{H^k(S_R^-) \cap \Gamma_2} \) for any \(\psi \in H^k(S_R^+) \cap H^k(S_R^-) \) and nonnegative integer \(k \).
Proof To simplify the notations, we relax the dependence on R in the generic constant, and set $(f_1, f_2) = \int_{\Omega} f_1(x)f_2(x)\,dx$, $(g_1, g_2) = \int_{\Gamma} g_1(x')g_2(x')\,dx'$.

Differentiating the equation (6.1) with respect to x_j for some fixed $1 \leq j \leq d - 1$ and denote $\phi_j = \partial_j \phi$, we obtain that

\[
\begin{align*}
-\nabla \cdot (A \nabla \phi_j) &= \partial_j f + \nabla \cdot (\partial_j A \nabla \phi) \quad \text{in } S_{2R} \setminus \Gamma_{2R}, \\
[\phi_j] &= 0, \quad [A \nabla \phi_j \cdot n] = \partial_j g - [\partial_j A \nabla \phi \cdot n] \quad \text{on } \Gamma_{2R}.
\end{align*}
\]

(6.4)

where n denote the upward unit normal vector on Γ.

If we define ζ_R as a smooth cut-off function satisfying $0 \leq \zeta_R \leq 1$, $\zeta_R = 1$ in S_R and $\zeta_R = 0$ outside $S_{3R/2}$, then (6.4) times $\phi_j \zeta_R^2$ gives

\[
(\zeta_R^2 A \nabla \phi_j, \nabla \phi_j) + (2\zeta_R \phi_j A \nabla \phi_j, \nabla \zeta_R)
= -(f \zeta_R^2, \partial_j \phi_j) - (2\phi_j f \zeta_R, \partial_j \zeta_R) - (\zeta_R^2 \partial_j A \nabla \phi, \nabla \phi_j) - (2\zeta_R \phi_j \partial_j A \nabla \phi, \nabla \zeta_R) + (\partial_j g, \phi_j \zeta_R^2)_{\Gamma},
\]

which reduces to

\[
\|\nabla \phi_j\|_{L^2(S_R)}^2 \leq C(\|\phi_j\|_{L^2(S_{3R/2})}^2 + \|f\|_{L^2(S_{3R/2})}^2 + \|\partial_j A\|_{L^6(S_{3R})} \|\nabla \phi\|_{L^3(S_{3R/2})}^2 + \|\partial_j A\|_{L^6(S_{3R})} \|\nabla \phi\|_{L^3(S_{3R/2})}^2 + \|\partial_j g\|_{L^2(\Gamma)} \|\phi_j \zeta_R\|_{L^2(\Gamma)} + \|\partial_j (g \zeta_R)\|_{H^{-1/2}(\Gamma)} \|\phi_j \zeta_R\|_{H^{1/2}(\Gamma)})
\]

\[
\leq C(\|f\|_{L^2(S_{3R/2})}^2 + \|g\|_{H^{1/2}(\Gamma_{3R/2})} + \|\phi_j\|_{H^1(S_{3R/2})} + \|\nabla \phi\|_{L^2(S_{3R/2})}^2),
\]

and from (6.1) we see that

\[
\|\partial_{dd} \phi\|_{L^2(S_R)} = \left\| A_{dd}^{1/2} \left(\sum_{(i,j)\neq(d,d)} A_{ij} \partial_{ij} \phi + \sum_{i,j=1}^d \partial_i A_{ij} \partial_j \phi + f \right) \right\|_{L^2(S_R)}
\leq C(\|f\|_{L^2(S_{3R/2})} + \|g\|_{H^{1/2}(\Gamma_{3R/2})} + \|\phi_j\|_{H^1(S_{3R/2})} + \|\nabla \phi\|_{L^2(S_{3R/2})}^2).
\]

The last two inequalities imply (6.2).

By applying (6.2) to the problem (6.4), we derive that

\[
\|\phi_j\|_{H^2(S_R)} \leq C(\|\partial_j f\|_{L^2(S_{3R/2})} + \|\nabla \cdot (\partial_j A \nabla \phi)\|_{L^2(S_{3R/2})} + \|\partial_j g\|_{H^{1/2}(\Gamma_{3R/2})}
+ \|\partial_j A \nabla \phi \cdot n\|_{H^{1/2}(\Gamma_{3R/2})} + \|\phi_j\|_{W^{1,3}(S_{3R/2})})
\leq C(\|f\|_{H^1(S_{3R})} + \|A\|_{H^2(S_{3R})} \|\phi\|_{W^{1,\infty}(S_{2R})} + \|A\|_{W^{1,6}(S_{2R})} \|\phi\|_{W^{2,3}(S_{2R})}
+ \|g\|_{H^{3/2}(\Gamma_{2R})} + \|\partial_j A \nabla \phi \cdot n\|_{H^1(S_{2R})} + \|\phi_j\|_{W^{1,6}(S_{2R})})
\leq C(\|f\|_{H^1(S_{3R})} + \|g\|_{H^{3/2}(\Gamma_{2R})} + \|\phi\|_{W^{2,3}(S_{2R})}
+ \|A\|_{H^2(S_{3R})} \|\phi\|_{W^{1,\infty}(S_{2R})} + \|A\|_{W^{1,6}(S_{2R})} \|\phi\|_{W^{2,3}(S_{2R})})
\leq C(\|f\|_{H^1(S_{2R})} + \|g\|_{H^{3/2}(\Gamma_{2R})} + \|\phi\|_{W^{2,4}(S_{2R})}).
\]

Then from (6.1) we derive that

\[
\|\partial_{dd} \phi_d\|_{L^2(S_R)} = \left\| A_{dd}^{-1} \left(\sum_{(l,k)\neq(d,d)} A_{lk} \partial_{lk} \phi_d + \sum_{l,k=1}^d \partial_l A_{lk} \partial_k \phi_d + \partial_d f + \nabla \cdot (\partial_d A \nabla \phi) \right) \right\|_{L^2(S_R)}
\]
\[\leq C (\|f\|_{\mathcal{H}^1(S_{2R})} + \|g\|_{\mathcal{H}^{3/2}(\Gamma_{2R})} + \|\phi\|_{\mathcal{H}^{2,4}(S_{2R})}) . \]

The last two inequalities imply (6.3), and the proof of Lemma 6.1 is completed. \[\blacksquare \]

The above lemma can be easily extended to the case that \(\Gamma (\varphi) \) is a smooth surface defined by \(x_d = \varphi(x') \) for some smooth function \(\varphi : \mathbb{R}^{d-1} \to \mathbb{R} \).

Lemma 6.2 Let \(S_R(\varphi) = \{ x \in \mathbb{R}^d : |x' | < R \text{ and } \varphi(x') - R < x_d < \varphi(x') + R \}, S_R^+(\varphi) = \{ x \in \mathbb{R}^d : |x' | < R \text{ and } \varphi(x') < x_d < \varphi(x') + R \}, S_R^-(\varphi) = \{ x \in \mathbb{R}^d : |x' | < R \text{ and } \varphi(x') - R < x_d < \varphi(x') \} \), and \(\Gamma_R(\varphi) = S_R(\varphi) \cap \{ x_d = \varphi(x') \} \). Suppose that \(A_{ij} = A_{ji} \in \mathcal{H}^3(S_{2R}(\varphi)) \cap \mathcal{H}^3(S_{2R}^-(\varphi)) \) satisfies that
\[K^{-1}|\xi|^2 \leq \sum_{i,j=1}^d A_{ij}(x)\xi_i\xi_j \leq K|\xi|^2 \text{ for } x \in S_{2R}(\varphi) \setminus \Gamma_{2R}(\varphi) \text{ and } \xi \in \mathbb{R}^d, \]

and assume that \(\phi \in \mathcal{H}^3(S_{2R}^+(\varphi)) \cap \mathcal{H}^3(S_{2R}^-(\varphi)) \) is a solution of
\[\begin{align*}
-\nabla \cdot (A \nabla \phi) &= f \quad \text{in } S_{2R}(\varphi) \setminus \Gamma_{2R}(\varphi), \\
[\phi] &= 0, \quad [A \nabla \phi \cdot n] = g \quad \text{on } \Gamma_{2R}(\varphi). \tag{6.5}
\end{align*} \]

Then
\[\|\phi\|_{\mathcal{H}^2(S_R(\varphi))} \leq C_R (\|f\|_{L^2(S_{2R}(\varphi))} + \|g\|_{\mathcal{H}^{1/2}(\Gamma_{2R}(\varphi))} + \|\phi\|_{\mathcal{H}^{1,3}(S_{2R}(\varphi))}) , \tag{6.6} \]
\[\|\phi\|_{\mathcal{H}^1(S_R(\varphi))} \leq C_R (\|f\|_{\mathcal{H}^1(S_{2R}(\varphi))} + \|g\|_{\mathcal{H}^{3/2}(\Gamma_{2R}(\varphi))} + \|\phi\|_{\mathcal{H}^{2,4}(S_{2R}(\varphi))}) , \tag{6.7} \]

where \(\|\psi\|_{\mathcal{H}^k(S_R(\varphi))} = \|\psi\|_{\mathcal{H}^k(S_R^+(\varphi))} + \|\psi\|_{\mathcal{H}^k(S_R^-)} \) for any \(\psi \in \mathcal{H}^k(S_R^+(\varphi)) \cup \mathcal{H}^k(S_R^-) \) and nonnegative integer \(k \).

Proof Let \(x = \Psi(y) \) denote the coordinates transformation \(x' = y' \) and \(x_d = y_d + \varphi(y') \). Under this coordinates transformation, the problem (6.5) is converted to
\[\begin{align*}
-\nabla_y \cdot (\tilde{A}(y) \nabla_y \tilde{\phi}) &= \tilde{f}(y) \quad \text{in } S_{2R} \setminus \Gamma_{2R}, \\
[\tilde{\phi}] &= 0, \quad [\tilde{A}(y) \nabla_y \tilde{\phi} \cdot n] = \tilde{g}(y) \quad \text{on } \Gamma_{2R}, \tag{6.8}
\end{align*} \]

where \(\tilde{\phi}(y) = \phi(\Psi(y)), \tilde{A}(y) = A(\Psi(y)), \tilde{f}(y) = f(\Psi(y)) \text{ and } \tilde{g}(y) = g(\Psi(y)) \sqrt{1 + |\nabla \varphi(y')|^2} \).

By applying Lemma 6.1 to the problem (6.8), we get
\[\begin{align*}
\|\tilde{\phi}\|_{L^2(S_{2R})} + \|\tilde{\phi}\|_{\mathcal{H}^2(S_{2R})} \leq C_R (\|f\|_{L^2(S_{2R})} + \|g\|_{\mathcal{H}^{1/2}(\Gamma_{2R})} + \|\tilde{\phi}\|_{\mathcal{H}^{1,3}(S_{2R})}) ,
\|\tilde{\phi}\|_{H^3(S_{2R})} + \|\tilde{\phi}\|_{\mathcal{H}^3(S_{2R})} \leq C_R (\|f\|_{H^1(S_{2R})} + \|f\|_{\mathcal{H}^{3/2}(\Gamma_{2R})} + \|\tilde{\phi}\|_{H^3(S_{2R})}) .
\end{align*} \]

Transforming back to the \(x \)-coordinates, the last two inequalities imply (6.6)-(6.7). \[\blacksquare \]
Proof of Lemma 2.1}

Without loss of generality, we can assume that the functions \(A_{ij} \), \(f \) and \(g \) are sufficiently smooth so that the problem (2.11) has a piecewise \(H^3 \) solution [4]. If we can prove (2.12) with a constant \(C_R \) which does not depend on the extra smoothness of \(A_{ij} \), \(f \) and \(g \), then a compactness argument gives (2.12) for the nonsmooth \(A_{ij} \), \(f \) and \(g \) under the condition of Lemma 2.1.

First, multiplying the equation (2.11) by \(\phi \), it is easy to derive the basic \(H^1 \) estimate:

\[
\| \phi \|_{H^1(\Omega)} \leq C \left(\| f \|_{L^2(\Omega)} + \sum_{m=1}^{M} \| g \|_{H^{-1/2}(\Gamma_m)} \right).
\]

Secondly, by a “partition of unity”, there exist a finite number of cylinders \(S_{2R,j} \subset \Omega \), \(j = 1, \ldots, J \), such that \(\{S_{2R,j}\}_{j=1}^{J} \) covers \(\Gamma_m \), \(m = 1, \ldots, M \). Moreover, each \(S_{2R,j} \) only intersects one interface \(\Gamma_m \) and in each \(S_{2R,j} \), up to a rotation, the interface \(\Gamma_m \) can be expressed as \(x_d = \varphi_j(x') \) for some smooth function \(\varphi_j : \mathbb{R}^{d-1} \rightarrow \mathbb{R} \). Then, by applying Lemma 6.2 we derive that

\[
\| \phi \|_{H^2(S_{2R,j})} \leq C_R \left(\| f \|_{L^2(S_{2R,j})} + \| g \|_{H^{1/2}(\Gamma_m \cap S_{2R,j})} + \| \phi \|_{\mathcal{W}^{1,3}(S_{2R,j})} \right), \quad j = 1, \ldots, J,
\]

\[
\| \phi \|_{\mathcal{W}^1(S_{2R,j})} \leq C_R \left(\| f \|_{\mathcal{W}^1(S_{2R,j})} + \| g \|_{H^{1/2}(\Gamma_m \cap S_{2R,j})} + \| \phi \|_{\mathcal{W}^{2,4}(S_{2R,j})} \right), \quad j = 1, \ldots, J.
\]

Let \(D = \Omega \setminus \bigcup_{j=1}^{J} S_{R,j} \). It is well-known that, by the interior estimates of elliptic equations, there hold

\[
\| \phi \|_{H^2(D)} \leq C_R \left(\| f \|_{L^2(\Omega)} + \| \phi \|_{H^1(\Omega)} \right),
\]

\[
\| \phi \|_{H^3(D)} \leq C_R \left(\| f \|_{\mathcal{W}^1(\Omega)} + \| \phi \|_{H^1(\Omega)} \right).
\]

The last four inequalities imply that

\[
\| \phi \|_{\mathcal{W}^2(\Omega)} \leq C_R \left(\| f \|_{L^2(\Omega)} + \sum_{m=1}^{M} \| g \|_{H^{1/2}(\Gamma_m)} + \| \phi \|_{\mathcal{W}^{1,3}(\Omega)} \right)
\]

\[
\leq C_R \left(\| f \|_{L^2(\Omega)} + \sum_{m=1}^{M} \| g \|_{H^{1/2}(\Gamma_m)} + C_\epsilon \| \phi \|_{H^1(\Omega)} + \epsilon \| \phi \|_{\mathcal{W}^2(\Omega)} \right),
\]

\[
\| \phi \|_{\mathcal{W}^3(\Omega)} \leq C_R \left(\| f \|_{\mathcal{W}^1(\Omega)} + \sum_{m=1}^{M} \| g \|_{H^{3/2}(\Gamma_m)} + \| \phi \|_{\mathcal{W}^{2,4}(\Omega)} \right)
\]

\[
\leq C_R \left(\| f \|_{\mathcal{W}^1(\Omega)} + \sum_{m=1}^{M} \| g \|_{H^{3/2}(\Gamma_m)} + C_\epsilon \| \phi \|_{H^1(\Omega)} + \epsilon \| \phi \|_{\mathcal{W}^3(\Omega)} \right),
\]

where \(\epsilon \) can be arbitrarily small.

Finally, by choosing \(\epsilon \) small enough and using the basic \(H^1 \) estimate, the last two inequalities imply (2.12). □

6.2 Proof of Lemma 2.2

Integrating (2.13) against \(\phi^{n+1} \), it is easy to derive that

\[
\max_{0 \leq n \leq N-1} \| \phi^{n+1} \|_{L^2}^2 + \sum_{n=0}^{N-1} \tau \| \nabla \phi^{n+1} \|_{L^2}^2 \leq C \sum_{n=0}^{N-1} \tau \left(\| f^{n+1} \|_{L^2}^2 + \| g^{n+1} \|_{L^2}^2 \right).
\]
Then, by setting $g^0 = g^1$, integrating (2.13) against $-\frac{1}{
abla} \cdot (A^{n+1} \nabla \phi^{n+1} - g^{n+1})$ gives

$$(D_{\tau} \nabla \phi^{n+1}, A^{n+1} \nabla \phi^{n+1} - g^{n+1}) + \frac{1}{2} || \Phi^{-1/2} \cdot (A^{n+1} \nabla \phi^{n+1}) ||^2_{L^2}$$

which further reduces to

$$\frac{1}{2} || f^{n+1} ||^2_{L^2} + C \| \nabla \cdot g^{n+1} \|^2_{L^2} + C (D_{\tau} A^{n+1} \nabla \phi^{n+1} \cdot \nabla \phi^{n+1} - (\nabla \phi^{n}, D_{\tau} g^{n+1})$$

$$\leq C \| f^{n+1} \|^2_{L^2} + C \| g^{n+1} \|^2_{H^1} + C || D_{\tau} A^{n+1} ||_{L^2} \| \nabla \phi^{n} \|^2_{H^1} + \| \nabla \phi^{n} \|^2_{L^2} \| D_{\tau} g^{n+1} \|^2_{L^2} d_{n,0}$$

From Lemma [2.1] we know that

$$\| \phi \|^2_{H^1} \leq C \| \Phi^{-1/2} \cdot (A^{n+1} \nabla \phi^{n+1}) \|^2_{L^2} + C \| [g^{n+1} \cdot n] \|_{H^{1/2}(\Gamma) \leq C \| \Phi^{-1/2} \cdot (A^{n+1} \nabla \phi^{n+1}) \|^2_{L^2} + C \| g^{n+1} \|^2_{H^1}$$

The last two inequalities imply that

$$D_{\tau} \left((A^{n+1} \nabla \phi^{n+1}, \nabla \phi^{n+1}) - 2(\nabla \phi^{n+1}, g^{n+1}) \right) + C^{-1} \| \phi \|^2_{H^1}$$

$$\leq C \| f^{n+1} \|^2_{L^2} + C \| g^{n+1} \|^2_{H^1} + C \| \nabla \phi^{n} \|^2_{L^2} + \epsilon \| \nabla \phi^{n} \|^2_{L^2} + \| D_{\tau} g^{n+1} \|^2_{L^2} d_{n,0}.$$

Summing up the last inequality for $n = 0, 1, \cdots, m$, we obtain

$$\max_{0 \leq n \leq m} \| \nabla \phi^{n+1} \|^2_{L^2} + \sum_{n=0}^{m} \tau \| \phi^{n+1} \|^2_{H^1} \leq C \epsilon \sum_{n=0}^{m} \tau (\| f^{n+1} \|^2_{L^2} + \| g^{n+1} \|^2_{H^1} + \| \nabla \phi^{n} \|^2_{L^2})$$

$$+ \epsilon \sum_{n=0}^{m} \tau (\| \nabla \phi^{n} \|^2_{H^1} + \| D_{\tau} g^{n+1} \|^2_{L^2} d_{n,0}) + C \| g^{m+1} \|^2_{L^2},$$

which further reduces to (2.14). The proof of Lemma [2.2] is completed.

7 Numerical examples

In this section, we present numerical examples to support our theoretical error analysis. The computations are performed with the software FreeFEM++ [21].

We solve the problem

\begin{align}
\begin{cases}
\Phi(x) \frac{\partial c}{\partial \tau} - \nabla \cdot (D(u, x) \nabla c) + u \cdot \nabla c = f & \text{in } \Omega_0 \cup \Omega_1, \\
[c] = 0, \quad [D(u, x) \nabla c \cdot n] = 0 & \text{on } \Gamma, \\
D(u, x) \nabla c \cdot n = 0 & \text{on } \partial \Omega, \\
c(x, 0) = c_0(x) & \text{for } x \in \Omega,
\end{cases}
\end{align}

(7.1)
\[
\begin{align*}
\nabla \cdot \mathbf{u} &= g & \text{in } \Omega_0 \cup \Omega_1, \\
\mathbf{u} &= \frac{k(x)}{\mu(c)} \nabla p & \text{in } \Omega_0 \cup \Omega_1, \\
[p] &= 0, \quad [\mathbf{u} \cdot \mathbf{n}] = 0 & \text{on } \Gamma, \\
\mathbf{u} \cdot \mathbf{n} &= 0 & \text{on } \partial \Omega,
\end{align*}
\] (7.2)

in the unit ball \(\Omega = \{(x_1, x_2) : |x_1|^2 + |x_2|^2 < 1\} \) which is separated by the interface

\[
\Gamma_1 = \{(x_1, x_2) : |x_1 - 0.3|^2 + |x_2|^2 = 0.3^2\}
\]

into two subdomains

\[
\Omega_0 = \{(x_1, x_2) : |x_1 - 0.3|^2 + |x_2|^2 > 0.3^2\} \quad \text{and} \quad \Omega_1 = \{(x_1, x_2) : |x_1 - 0.3|^2 + |x_2|^2 < 0.3^2\}.
\]

For simplicity, we choose \(\mu(c) = \frac{1}{1 + e^{5c}} \), \(d_0 = d_r = d_p = \alpha_1 = \alpha_2 = 1.0 \) and choose the permeability and porosity

\[
\Phi(x) = \begin{cases}
0.6 & \text{for } x \in \Omega_0, \\
0.4 & \text{for } x \in \Omega_1,
\end{cases} \quad k(x) = \begin{cases}
0.012 & \text{for } x \in \Omega_0, \\
0.008 & \text{for } x \in \Omega_1,
\end{cases}
\]

which are smooth in each subdomain but discontinuous across the interface \(\Gamma_1 \).

Let \(\Omega_K = \{(x_1, x_2) : \sqrt{(x_1 - 0.3)^2 + x_2^2} < 0.6\} \) so that \(\Omega_1 \subset \Omega_K \subset \Omega \). The functions \(f, g \) and the initial data \(c_0 \) are chosen corresponding to the exact solution

\[
p(x, t) = \begin{cases}
100((x_1 - 0.3)^2 + x_2^2 - 0.09)(0.36 - (x_1 - 0.3)^2 - x_2^2)^4/\Phi(x), & \text{for } x \in \Omega_K, \\
0 & \text{for } x \in \Omega \setminus \Omega_K,
\end{cases}
\]

\[
c(x, t) = 0.5 + 50p(x, t) \cos(0.4x_1) \sin(0.4x_2) \sin(4t),
\]

which satisfy the jump conditions on the interface \(\Gamma_1 \) and the boundary conditions on \(\partial \Omega \), while \(\nabla p \) and \(\nabla c \) are discontinuous across the interface \(\Gamma_1 \).

![Figure 7.2: The finite element meshes with \(h = 1/32, h = 1/64 \) and \(h = 1/128 \).](image)

We partition the domain \(\Omega \) into quasi-uniform triangles with \(M \) nodes on the boundary \(\partial \Omega \) and \(M/2 \) nodes on the interface \(\Gamma \) with \(M = 32, 64, 128 \), as shown in Figure 7.2. For simplicity, we set \(h = 1/M \) and solve the system by the proposed method using the Raviart–Thomas linear finite elements up to the time \(t = 1 \). To test the convergence rate of the proposed method, we
solve the problem for different τ and h, and present the errors of the numerical solutions in Table 7.1 where the convergence rates of U_h^N and C_h^N are calculated by the formulas

\begin{align*}
\text{convergence rate of } U_h &= \ln \left(\frac{\|U_h - u\|_{L^2}}{\|U_{h/2} - u\|_{L^2}} \right) / \ln 2, \\
\text{convergence rate of } C_h &= \ln \left(\frac{\|C_h - c\|_{L^2}}{\|C_{h/2} - c\|_{L^2}} \right) / \ln 2,
\end{align*}

at the finest two meshes. From Table 7.1 we see that the convergence rate of the numerical solution is about second order, which is consistent with our numerical analysis.

Table 7.1: Errors of the linearized mixed FEM with $\tau = O(h^2)$.

τ	h	$\|U_h^N - u^N\|_{L^2}$	$\|C_h^N - c^N\|_{L^2}$
1/8	1/32	3.051E-02	1.473E-02
1/32	1/64	9.769E-03	4.280E-03
1/128	1/128	2.515E-03	1.020E-03
		convergence rate	
		1.96	2.06

To illustrate the convergence rate with respect to τ, we solve the system for fixed τ and several different h. The errors of the numerical solution are present in Table 7.2 where we can see that the error tends to a constant proportional to τ (as h decreases).

Table 7.2: Errors of the linearized mixed FEM with fixed τ and refined h.

τ	h	$\|U_h^N - u(\cdot, t_N)\|_{L^2}$	$\|C_h^N - c(\cdot, t_N)\|_{L^2}$
0.2	1/32	3.469E-02	2.955E-02
	1/64	2.942E-02	3.031E-02
	1/96	2.887E-02	3.025E-02
	1/128	2.877E-02	3.018E-02
0.1	1/32	2.840E-02	1.438E-02
	1/64	2.008E-02	1.328E-02
	1/96	1.904E-02	1.315E-02
	1/128	1.883E-02	1.308E-02
0.05	1/32	2.429E-02	1.033E-02
	1/64	1.230E-02	6.414E-03
	1/96	1.029E-02	6.100E-03
	1/128	9.848E-03	6.010E-03

8 Conclusions

We have studied the convergence of a linearized mixed FEM for a nonlinear elliptic-parabolic interface problem from the model of incompressible miscible flow in porous media. We showed that the solution of the linearized PDEs is piecewise uniformly regular in each subdomain.
separated by the interfaces if the solution of the original problem is piecewise regular, and established optimal-order error estimates for the fully discrete solution without restriction on the grid ratio. The analysis presented in this paper, together with Lemma 2.1–2.2, may be extended to other nonlinear parabolic interface problems with other time-stepping schemes.

References

[1] R.A. Adams, Sobolev spaces, New York, Academic Press, 1975.

[2] B. Amaziane and M. El Ossmani, Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods, Numer. Methods Partial Differential Eq., 24 (2008), pp. 799–832.

[3] P.F. Antonietti and L. Heltai, Numerical validation of a class of mixed discontinuous Galerkin methods for Darcy flow, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 4505-4520.

[4] I. Babuska and C. Park, The finite element method for elliptic equations with discontinuous coefficients, Computing, 5 (1970), pp. 207-213.

[5] J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, Springer-Verlag, New York, 1990.

[6] J. Bear and Y. Bachmat, A generalized theory of hydrodynamic dispersion in porous media, Symposium of Haifa, 1967, International Association of Scientific Hydrology, Publication No.72, pp. 7-16.

[7] Z. Cai, J.E. Jones, S.F. McCormick and T.F. Russell, Control-volume mixed finite element methods, Computational Geosciences, 1 (1997), pp. 289-315.

[8] Z. Chen and R. Ewing, Mathematical analysis for reservoir models, SIAM J. Math. Anal., 30 (1999), pp. 431-453.

[9] Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79 (1998), pp. 175-202.

[10] H. Chen, Z. Zhou and H. Wang, An optimal-order error estimate for an H^1-Galerkin mixed method for a pressure equation in compressible porous medium flow, Int. J. Numer. Anal. Modeling, 9 (2012), pp. 132-148.

[11] R. Denk and T. Seger, L^p-estimates for a transmission problem of mixed elliptic-parabolic type, Technical Report at Universitat Konstanz, http://nbn-resolving.de/urn:nbn:de:bsz:352-241650

[12] J. Douglas, JR., The numerical simulation of miscible displacement, Computational Methods in nonlinear Mechanics (J.T. Oden Ed.), North Holland, Amsterdam, 1980.

[13] J. Douglas, JR., R. Ewing and M.F. Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Anal. Numer., 17 (1983), pp. 249-265.
[14] J. Douglas, JR., F. Furtada, and F. Pereira, *On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs*, Comput. Geosciences, 1 (1997), pp. 155-190.

[15] R.G. Durán, *On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method*, SIAM J. Numer. Anal., 25 (1988), pp. 989-1001.

[16] R.G. Durán, *Mixed Finite Element Methods*, http://mate.dm.uba.ar/~rduran/class_notes

[17] H. Gao, *Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations*, J. Scientific Computing, 58 (2014), pp. 627-647.

[18] R.E. Ewing and J. Shen, *Superconvergent error estimates for a class of discretization methods for coupled first-order system with discontinuous coefficients*, Numer. Methods Part. Diff. Eq., 15 (1999), pp. 267-283.

[19] R.E. Ewing and M.F. Wheeler, *Galerkin methods for miscible displacement problems in porous media*, SIAM J. Numer. Anal., 17 (1980), pp. 351-365.

[20] X. Feng, *On existence and uniqueness results for a coupled system modeling miscible displacement in porous media*, J. Math. Anal. Appl., 194 (1995), 883-910.

[21] F. Hecht, *New development in freefem++*, J. Numer. Math., 20 (2012), pp. 251–265.

[22] J. Huang, *Some new a priori estimates for second-order elliptic and parabolic interface problems*, J. Differential Equations, 184 (2002), pp. 570-586.

[23] B. Li and W. Sun, *Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations*, Int. J. Numer. Anal. & Modeling, 10 (2013), pp. 622-633.

[24] B. Li and W. Sun, *Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media*, SIAM J. Numer. Anal. 51 (2013), pp. 1959-1977.

[25] J. Li, J. Melenk, B. Wohlmuth and J. Zou, *Optimal a priori estimates for higher order finite elements for elliptic interface problems*, Appl. Numer. Math., 60 (2010), pp. 19-37.

[26] S.M.C. Malta, and A.F.D. Loula, *Numerical analysis of finite element methods for miscible displacement in porous media*, Numer. Methods for Partial Differential Eq., 14 (1998), pp. 519-548.

[27] D.W. Peaceman, *Fundamentals of Numerical Reservoir Simulations*, Elsevier, Amsterdam, 1977.

[28] P.A. Raviart and J.M. Thomas, *A mixed finite element method for 2nd order elliptic problems*, Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., vol. 606, Springer-Verlag, 1977, pp. 292-315.

[29] B. Rivière, M.F. Wheeler and V. Girault, *Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I*, Computational Geosciences, 3 (1999), pp. 337-360.
[30] R.K. Sinha and B. Deka, *Optimal error estimates for linear parabolic problems with discontinuous coefficients*, SIAM J. Numer. Anal. 43 (2005), pp. 733-749.

[31] Z. Si and W. Sun, *Unconditional stability and error estimates of the modified characteristics FEM for the Navier-Stokes equations*, to appear

[32] T. Sun and Y. Yuan, *An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method*, J. Comput. Appl. Math., 228 (2009), pp. 391-411.

[33] V. Thomée, *Galerkin finite element methods for parabolic problems*, Springer-Verlag Berkub Geudekberg 1997.

[34] H. Wang, *An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow*, SIAM J. Numer. Anal., 46 (2008), pp. 2133-2152.

[35] J. Wang, *A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation*, J. Scientific Computing, DOI: 10.1007/s10915-013-9799-4.