Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) – Part 2 with Recommendations for the Therapy of Primary, Recurrent and Advanced Breast Cancer

Interdisziplinäre Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms. Leitlinie der DGGG und DKG (S3-Level, AWMF-Registernummer 032/045OL, Dezember 2017) – Teil 2 mit Empfehlungen zur Therapie des primären, rezidivierten und fortgeschrittenen Mammakarzinoms

Authors
Achim Wöckel1, Jasmin Fest1, Tanja Stüber1, Katharina Brust1, Mathias Krockenberger1, Peter U. Heuschmann2, Steffi Jirí-Hillmann2, Ute-Susann Albert2, Wilfried Budach4, Markus Follmann5, Wolfgang Janni5, Ina Kopp3, Rolf Kreienberg6, Thorsten Kühn7, Thomas Langer8, Monika Nothacker8, Anton Scharl3, Ingrid Schreer9, Hartmut Link10, Jutta Engel11, Tanja Fehm12, Joachim Weis13, Anja Welt14, Anke Steckelberg15, Petra Feyer16, Klaus König17, Andrea Hahne18, Traudl Baumgartner18, Hans-H. Kreipe19, Wolfram Trudo Knöefel20, Michael Denkinger21, Sara Brucker22, Diana Lüftner23, Christian Kubisch24, Christina Gerlach25, Annette Lebeau26, Friederike Siedentopf27, Cordula Petersen28, Hans Helge Bartsch29, Rüdiger Schulz-Wendtland30, Markus Hahn31, Volker Hunsmüller31, Markus Müller-Schimpfle32, Ulla Henschker33, Renza Roncarati34, Alexander Katalinic35, Christoph Heitmann36, Christoph Honegger37, Kerstin Paradies38, Vesna Bjelic-Radisic39, Friedrich Degenhardt40, Frederik Wenz41, Oliver Rick42, Dieter Hölzel43, Matthias Zais44, Gudrun Kemper44, Volker Budach45, Carsten Denkert46, Bernd Gerber47, Hans Tesch48, Susanne Hirsmüller49, Hans-Peter Sinn50, Jürgen Dunst51, Karsten Münstedt52, Ulrich Bick53, Eva Fallenberg53, Reina Tholen54, Roswita Hung55, Freerk Baumann56, Matthias W. Beckmann57, Jens Blümcke58, Peter Fasching59, Michael P. Lux60, Nadja Harbeck61, Peyman Hadji62, Hans Hauner63, Sylvia Heywang-Köbrunner64, Jens Huber65, Jutta Hübner66, Christian Jackisch67, Sibylle Loy68, Hans-Jürgen Lück69, Gunter von Minckwitz70, Volker Möbus71, Volkmar Müller72, Ute Nothlings73, Marcus Schmidt74, Rita Schmutzler75, Andreas Schneweiss76, Florian Schütz77, Elmar Stickeler78, Christoph Thomssen79, Michael Untch75, Simone Wesselmann76, Arno Bückler77, Andreas Buck78, Stephanie Stangl77

Affiliations
1 Universitätsfrauenklinik Würzburg, Universität Würzburg, Würzburg, Germany
2 Institut für Klinische Epidemiologie und Biometrie (IKE-B), Universität Würzburg, Würzburg, Germany
3 AWMF-Institut für Medizinisches Wissensmanagement, Marburg, Germany
4 Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
5 Office des Leitlinienprogrammes Onkologie, Berlin, Germany
6 Universitätsfrauenklinik Ulm, Ulm, Germany
7 Frauenklinik, Klinikum Esslingen, Esslingen, Germany
8 Frauenklinik, Klinikum St. Marien Amberg, Amberg, Germany
9 Diagnostische Radiologie, Hamburg-Eimsbüttel, Germany
10 Praxis für Hämatologie und Onkologie, Kaiserslautern, Germany
11 Tumorregister München, Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, München, Germany
12 Universitätsfrauenklinik Düsseldorf, Düsseldorf, Germany
13 Stiftungsprofessur Selbsthilfeforschung, Tumorzentrum/CCC Freiburg, Universitätsklinikum Freiburg, Freiburg, Germany
14 Innere Klinik (Tumorforschung), Westdeutsches Tumorzentrum, Universitätsklinikum Essen, Essen, Germany

Wöckel A et al. Interdisciplinary Screening, Diagnosis, ... Geburtsh Frauenheilk 2018; 78: 1056–1088
Guideline Information

Guidelines program of the DGGG, OEGGG and SGGG

Information on the guidelines program is available at the end of the guideline.

Guidelines. They were combined with reviews of evidence compiled using PICO (Patients/Interventions/Control/Outcome) questions and with the results of a systematic search of literature databases followed by the selection and evaluation of the identified literature. The interdisciplinary working groups took the identified materials as their starting point and used them to develop suggestions for recommendations and statements, which were then modified and graded in a structured consensus process procedure.

Recommendations Part 2 of this short version of the guideline presents recommendations for the therapy of primary, recurrent and metastatic breast cancer. Loco-regional therapies are de-escalated in the current guideline. In addition to reducing the safety margins for surgical procedures, the guideline also recommends reducing the radicality of axillary surgery. The choice and extent of systemic therapy depends on the respective tumor biology. New substances are becoming available, particularly to treat metastatic breast cancer.

ZUSAMMENFASSUNG

Ziele Das Ziel dieser offiziellen Leitlinie, die von der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) und der Deutschen Krebsgesellschaft (DKG) publiziert und koordiniert wurde, ist es, die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms zu optimieren.

Methode Der Aktualisierungsprozess der S3-Leitlinie aus 2012 basierte zum einen auf der Adaptation identifizierter Quellleitlinien und zum anderen auf Evidenzübersichten, die nach Entwicklung von PICO-Fragen (PICO: Patients/Interventions/Control/Outcome), systematischer Recherche in Literaturdatenbanken sowie Selektion und Bewertung der gefundenen Literatur angefertigt wurden. In den interdisziplinären Arbeitsgruppen wurden auf dieser Grundlage Vorschläge für Empfehlungen – und Statements erarbeitet, die im Rahmen von strukturierten Konsensusverfahren modifiziert und graduiert wurden.

Empfehlungen Teil 2 dieser Kurzversion der Leitlinie zeigt Empfehlungen zur Therapie des primären, rezidivierten und metastasierten Mammakarzinoms: Die lokoregionären Therapien erfahren in der aktuellen Leitlinie eine Deeskalation. Neben einer Verringerung des Sicherheitsabstandes bei den operativen Verfahren gibt die Leitlinie auch Empfehlungen zu einer reduzierten Radikalität bei axillären Interventionen. Die Systemtherapie richtet sich nach den tumorbio logischen Eigenschaften, neue Substanzen stehen insbesondere beim metastasierten Mammakarzinom zur Verfügung.

I Guideline Information

Guidelines program of the DGGG, OEGGG and SGGG

Information on the guidelines program is available at the end of the guideline.

Citation format

Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/0450L, December 2017) – Part 2 with Recommendations for the Therapy of Primary, Recurrent and Advanced Breast Cancer. Geburtsh Frauenheilk 2018; 78: 1056–1088
Guideline documents

The complete long version together with a summary of the conflicts of interest of all the authors and a short version of the guideline are available in German on the AWMF homepage under: http://www.awmf.org/leitlinien/detail/ll/032-045OL.html or www.leitlinienprogramm-onkologie.de

Guideline authors

The German Society for Gynecology and Obstetrics (DGGG), working together with the German Cancer Society (DKG), was the lead professional organization behind this guideline. The updated guideline presented here was supported by German Cancer Aid in the context of their oncology guidelines program (OL program). The working groups for this guideline consisted of members of the guideline steering group (Table 1), specialists nominated by participating professional societies and organizations (Table 2), and experts invited to participate by the steering committee (Table 3), and they are the authors of this guideline. Only mandate holders nominated by participating professional societies and organizations were eligible to vote on a chapter-by-chapter basis during the voting process (consensus process) after they had disclosed and excluded any conflicts of interest. The guideline was compiled with the direct participation of four patient representatives.

Table 1 Steering committee.

Name	City
1 Prof. Dr. Ute-Susann Albert	Marburg
2 Prof. Dr. Wilfried Budach	Düsseldorf
3 Dr. Markus Follmann, MPH, MSc	Berlin
4 Prof. Dr. Wolfgang Janni	Ulm
5 Prof. Dr. Ina Kopp	Marburg
6 Prof. Dr. Rolf Kreienberg	Landshut
7 PD Dr. Mathias Krockenberger	Würzburg
8 Prof. Dr. Thorsten Kühn	Esslingen
9 Dipl.-Soz. Wiss. Thomas Langer	Berlin
10 Dr. Monika Nothacker	Marburg
11 Prof. Dr. Anton Scharl	Amberg
12 Prof. Dr. Ingrid Schreer	Hamburg-Eimsbüttel
13 Prof. Dr. Achim Wöckel (Leitlinienkoordination)	Würzburg

Methodological consulting: Prof. Dr. P. U. Heuschmann, University of Würzburg

Table 2 Participating professional societies and organizations.

Professional societies	1st mandate holder	2nd mandate holder (deputy)
Radiological Oncology Working Group [AG Radiologische Onkologie (ARO)]	Prof. Dr. Wilfried Budach, Düsseldorf	Prof. Dr. Frederik Wenz, Mannheim
Supportive Measures in Oncology, Rehabilitation and Social Medicine Working Group [AG Supportive Maßnahmen in der Onkologie, Rehabilitation und Sozialmedizin (ASORS)]	Prof. Dr. Hartmut Link, Kaiserslautern	Prof. Dr. Oliver Rick, Bad Wildungen
Association of German Tumor Centers [Arbeitsgemeinschaft Deutscher Tumorzentren e. V. (ADT)]	Prof. Dr. Jutta Engel, Munich	Prof. Dr. Dieter Hölzel, Munich
German Society of Gynecological Oncology [Arbeitsgemeinschaft für gynäkologische Onkologie (AGO)]	Prof. Dr. Tanja Fehm, Düsseldorf	Prof. Dr. Anton Scharl, Amberg
Prevention and Integrative Oncology Working Group [AG Prävention und Integrative Onkologie (PRIO)]	Prof. Dr. Volker Hanf, Fürth	Prof. Dr. Karsten Münstedt, Offenburg
Psycho-oncology Working Group of the German Cancer Society [Arbeitsgemeinschaft für Psychoonkologie in der Deutschen Krebsgesellschaft e. V. (PSO)]	Prof. Dr. Joachim Weis, Freiburg	
Internal Oncology Working Group [Arbeitsgemeinschaft Internistische Onkologie (AIO)]	Dr. Anja Welt, Essen	Dr. Matthias Zais, Freiburg
Women’s Health Work Group [Arbeitskreis Frauengesundheit (AKF)]	Prof. Dr. Anke Steckelberg, Halle	Gudrun Kemper, Berlin
Professional Association of German Radiation Therapists [Berufsverband Deutscher Strahlentherapeuten e.V. (BVDST)]	Prof. Dr. Petra Feyer, Berlin	Prof. Dr. Volker Budach, Berlin
Professional Association of German Gynecologists [Berufsverband für Frauenärzte e.V.]	Dr. Klaus König, Steinbach	
BRCA Network [BRCA-Netzwerk e.V.]	Andrea Hahne, Bonn	Traudl Baumgartner, Bonn
German Society for Pathology [Deutsche Gesellschaft für Pathologie]	Prof. Dr. Hans H. Kreipe, Hanover	Prof. Dr. Carsten Denkert, Berlin

Continued next page
Table 2 Participating professional societies and organizations. (continued)

Professional societies	1st mandate holder	2nd mandate holder (deputy)
Surgical Oncology Working Group [Chirurgische AG für Onkologie (CAO-V)]	Prof. Dr. Wolfram Trudo Knoefel, Düsseldorf	
German Society of Geriatrics [Deutsche Gesellschaft für Geriatrie (DGG)]	Prof. Dr. Michael Denkinger, Ulm	
German Society of Gynecology and Obstetrics [Deutsche Gesellschaft für Gynäkologie und Geburtshilfe (DGHe)]	Prof. Dr. Sara Brucker, Tübingen	Prof. Dr. Bernd Gerber, Rostock
German Society of Hematology and Oncology [Deutsche Gesellschaft für Hämatologie und Onkologie (DGHO)]	Prof. Dr. Diana Lüftner, Berlin	Prof. Dr. Hans Tesch, Frankfurt
German Society of Nuclear Medicine [Deutsche Gesellschaft für Nuklearmedizin (DGN)]	Prof. Dr. Andreas Buck	
German Society of Human Genetics [Deutsche Gesellschaft für Humangenetik e. V. (GfH)]	Prof. Dr. Christian Kubes, Hamburg	
German Society for Palliative Medicine [Deutsche Gesellschaft für Palliativmedizin (DGp)]	Dr. Christina Gerlach, MSc, Mainz	Dr. Susanne Hirsmüller, MSc, Düsseldorf
Professional Association of German Pathologists [Bundesverband Deutscher Pathologen e. V.]	Prof. Dr. Annette Lebeau, Hamburg	Prof. Dr. Hans-Peter Sinn, Heidelberg
German Society of Psychosomatic Obstetrics and Gynecology [Deutsche Gesellschaft für psychosomatische Frauenheilkunde und Geburtshilfe (DGPG)]	PD Dr. Friederike Siedentopf, Berlin	
German Society for Radiation Oncology [Deutsche Gesellschaft für Radioonkologie (DEGRO)]	Prof. Dr. Cordula Petersen, Hamburg	Prof. Dr. Jürgen Dunst, Kiel
German Society for Rehabilitation Sciences [Deutsche Gesellschaft für Rehabilitationswissenschaften (DGWR)]	Prof. Dr. Hans Helge Bartsch, Freiburg	
German Society for Senology [Deutsche Gesellschaft für Senologie (DGs)]	Prof. Dr. Rüdiger Schulz-Wendtland, Erlangen	
German Society for Ultrasound in Medicine [Deutsche Gesellschaft für Ultraschall in der Medizin e. V. (DEGUM)]	Prof. Dr. Markus Hahn, Tübingen	
German Roentgen Society [Deutsche Röntgengesellschaft e. V.]	Prof. Dr. Markus Müller-Schimpfle, Frankfurt	Till 31.12.16: Prof. Dr. Ulrich Bick, Berlin from 01.01.17: PD Dr. E. Fallenberg, Berlin
German Physiotherapy Society [Deutscher Verband für Physiotherapie e. V. (ZVK)]	Ulla Henschel, Hanover	Reina Tholen, Cologne
Self-help group for women after cancer [Frauenselbsthilfe nach Krebs]	Dr. Renza Roncarati, Bonn	Roswita Hung, Wolfsburg
Association of Epidemiological Cancer Registries in Germany [Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (GERID)]	Prof. Dr. Alexander Katalinic, Lübeck	
German Society of Plastic, Reconstructive and Aesthetic Surgery [Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgie (DGPRAC)]	Prof. Dr. Christoph Heitmann, Munich	
Swiss Society of Gynecology and Obstetrics [Gynécologie Suisse (SSGG)]	Dr. Christoph Honegger, Baar	
Conference of Oncological Nursing and Pediatric Nursing [Konferenz Onkologischer Kranken- und Kinderkrankenpflege (KOK)]	Kerstin Paradies, Hamburg	
Austrian Society of Gynecology and Obstetrics [Österreichische Gesellschaft für Gynäkologie und Geburtshilfe (OEGGG)]	Prof. Dr. Vesna Bjelic-Radisic, Graz	
Ultrasound Diagnosis in Gynecology and Obstetrics [Ultraschalldiagnostik in Gynäkologie und Geburtshilfe (ARGUS)]	Prof. Dr. med. Dr. h. c. Friedrich Degenhardt, Hanover	
Abbreviations of the S3 Breast Cancer Guideline

Abbreviation	Description
ADH	atypical (intra) ductal hyperplasia
AI	aromatase inhibitor
AML	acute myeloid leukemia
APBI	accelerated partial breast irradiation
ASCO	American Society of Clinical Oncology
ADL	activities of daily living
AUC	area under the curve
BAK	German Medical Association (Bundesärztekammer)
BCT	breast-conserving therapy
BI-RADS	breast imaging reporting and data system
BMI	body mass index
BPM	bilateral prophylactic mastectomy
BPSO	bilateral prophylactic salpingo-oophorectomy
BRCA1/2	breast cancer-associated gene 1/2
CAM	complementary and alternative methods
CAP	College of American Pathologists
CD	cognitive dysfunction
CDLT	complex/complete decongestive lymphatic therapy
CGA	comprehensive geriatric assessment
CHF	chronic heart failure
CIPN	chemotherapy-induced peripheral neuropathy
CISH	chromogenic in situ hybridization
CM	contrast media
CNB	core needle biopsy
CNS	central nervous system
CT	computed tomography
DCIS	ductal carcinoma in situ
DBT	digital breast tomosynthesis
DFS	disease-free survival
DGS	German Society for Senology (Deutsche Gesellschaft für Senologie)
DKG	German Cancer Society
DMP	disease management program
EC	expert consensus
ECE	extracapsular tumor extension
EIC	extensive intraductal component
ER	estrogen receptor
ESA	erythropoiesis-stimulating agents
ESAS	Edmonton Symptom Assessment Scale
ET	estrogen therapy
FEA	flat epithelial atypia
FISH	fluorescent in situ hybridization
FN	febrile neutropenia
FNA	fine needle aspiration
FNB	fine needle biopsy
G-CSF	granulocyte colony-stimulating factor
GnRHa	gonadotropin-releasing hormone agonist
HADS	Hospital Anxiety and Depression Scale
HER2	human epidermal growth factor receptor 2
HT	hormone therapy
IARC	International Agency for Research on Cancer
IBC	inflammatory breast cancer
IHC	immunohistochemistry
IMRT	intensity-modulated radiotherapy
IORT	intraoperative radiation therapy

Table 3 Experts contributing in an advisory capacity and other contributors.

Name	City
Experts contributing in an advisory capacity	
PD Dr. Freerk Baumann	Cologne
Prof. Dr. Matthias W. Beckmann	Erlangen
Prof. Dr. Jens Blohmer	Berlin
Prof. Dr. Peter Fasching	Erlangen
Prof. Dr. Nadia Harbeck	Munich
Prof. Dr. Peyman Hadji	Frankfurt
Prof. Dr. Hans Hauner	Munich
Prof. Dr. Sylvia Heywang-Köbrunner	Munich
Prof. Dr. Jens Huober	Ulm
Prof. Dr. Jutta Hübnner	Jena
Prof. Dr. Christian Jackisch	Offenbach
Prof. Dr. Sibylle Loibl	Neu-Isenburg
Prof. Dr. Hans-Jürgen Lück	Hanover
Prof. Dr. Michael P. Lux	Erlangen
Prof. Dr. Gunter von Minckwitz	Neu-Isenburg
Prof. Dr. Volkmar Müller	Frankfurt
Prof. Dr. Ute Nöthlings	Hamburg
Prof. Dr. Marcus Schmidt	Mainz
Prof. Dr. Rita Schmutzler	Cologne
Prof. Dr. Andreas Schneeweiss	Heidelberg
Prof. Dr. Florian Schütz	Heidelberg
Prof. Dr. Elmar Stickeler	Aachen
Prof. Dr. Christoph Thomassen	Halle (Saale)
Prof. Dr. Michael Untch	Berlin
Dr. Simone Wesselmann, MBA	Berlin
Dr. Barbara Zimmer, MPH, MA (Oncology Competence Center, MDK [Medical Service of the Health Insurance Funds] North-Rhine, not listed as an author at the explicit request of the MDK)	Düsseldorf
Other contributors	
Katharina Brust, BSc (guideline secretariat)	Würzburg
Dr. Jasmin Festl (guideline assessment, selection of relevant publications)	Würzburg
Steffi Hillmann, MPH (search for and assessment of guidelines)	Würzburg
PD Dr. Mathias Krockenberger (selection of relevant publications)	Würzburg
Stephanie Stangl, MPH (selection of relevant publications)	Würzburg
Dr. Tanja Süber (selection of relevant publications)	Würzburg

Wöckel A et al. Interdisciplinary Screening, Diagnosis, ... Geburtsh Frauenheilk 2018; 78: 1056–1088
Purpose and objectives

The most important reason to update this interdisciplinary guideline was the epidemiological impact of breast cancer and its associated burden of disease, both of which are still high. This is the context in which the impact of new management concepts and their implementation needed to be evaluated.

Targeted areas of patient care

The guideline covers outpatient, inpatient and rehabilitative care.

Target patient groups

The recommendations of the guideline are aimed at all women and men who develop breast cancer as well as their relatives.

Target user groups/Target audience

The recommendations of the guideline are addressed to all physicians and professionals who provide screening services for women or care for patients with breast cancer (gynecologists, general practitioners, human geneticists, radiologists, pathologists, radio-oncologists, hemato-oncologists, psycho-oncologists, physiotherapists, nursing staff, etc.).

Adoption of the guideline and period of validity

This guideline is valid from December 1, 2017 through to November 30, 2022. Because of the contents of this guideline, this period of validity is only an estimate. It may become necessary to update the guideline because of new scientific evidence and knowledge as well as new developments affecting the methodology used for these guidelines. It is also necessary to edit and revise the guideline’s contents and re-evaluate and revise the key statements and recommendations of the guidelines at regular intervals.

III Methodology

Basic principles

The method used to prepare this guideline was determined by the class to which this guideline was assigned. The AWMF Guidance Manual (version 1.0) has set out the respective rules and regulations for the different classes of guidelines. Guidelines are differentiated into lowest (S1), intermediate (S2) and highest class (S3). The lowest class is defined as a set of recommendations for action compiled by a non-representative group of experts. In 2004, the S2 class was subdivided into two subclasses: a systematic evidence-based subclass (S2e) and a structural consensus-based subclass (S2k). The highest class (S3) combines both approaches. This guideline is classified as: S3.
Grading of evidence

This guideline used the 2009 version of the system of the Oxford Centre for Evidence-based Medicine (levels 1–5) to classify the risk of bias in identified studies. This system classifies studies according to various clinical questions (benefit of therapy, prognostic value, diagnostic validity). For more detailed information, abbreviations and notes, see: https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/

Grading of recommendations

While the classification of the quality of the evidence (strength of evidence) serves as an indication of the robustness of the published data and therefore expresses the extent of certainty/uncertainty regarding the data, the classification of the level of recommendation reflects the results of weighing up the desirable and adverse consequences of alternative approaches. This guideline shows the level of evidence for the underlying studies as well as the strength of the recommendation (level of recommendation) for all evidence-based Statements and Recommendations. This guideline differentiates between three levels of recommendation (Table 4). The levels reflect the strength of the respective recommendation and are also mirrored in the terms used to formulate the recommendation.

Level of recommendation	Description	Syntax
A	strong recommendation, highly binding	must/may not
B	recommendation, moderately binding	should/should not
0	open recommendation, not binding	may/may not

Statements

Statements are expositions or explanations of specific facts, circumstances or problems with no direct recommendations for action. Statements are adopted after a formal consensus process using the same approach as that used when formulating recommendations and can be based either on trial results or expert opinions.

Expert consensus

As the expression implies, this term refers to consensus decisions taken specifically with regard to Recommendations/Statements without a previous systematic search of the literature (S2k) or when evidence is lacking (S2e/S3). The term “Expert Consensus” (EC) used here is synonymous with terms such as “Good Clinical Practice” (GCP) or “Clinical Consensus Point” used in other guidelines. The level of recommendation is graded as previously described in the Chapter “Grading of recommendations”, but the grading is only presented semantically (“must”/“must not” or “should”/“should not” or “may”/“may not”) without the use of symbols.

Guideline report

To edit and update the various topic areas, an adaptation of existing guidelines was planned for around 80% of Statements and Recommendations in accordance with the AWMF Guidance Manual. To do this, a systematic search was carried out for source guidelines developed specifically for women with breast cancer and published after 2013. Findings were compared with the IQWiG guideline report No. 224 (Systematische Leitlinienrecherche und -bewertung sowie Extraktion relevanter Recommendationen für das DMP Brustkrebs [Systematic guideline search and appraisal as well as extraction of relevant recommendations for a breast cancer DMP]). A further inclusion criterion was compliance with methodological standards. Guidelines were included if they complied with at least 50% of Domain 3 (Rigour of Development) of the AGREE II instrument. A corresponding search and evidence assessment was specified in accordance with AWMF guidelines (systematic search, selection, compilation of evidence tables) for those recommendations which could not be adapted or had to be newly created. For newly developed Recommendations and Statements, appropriate key questions were formulated and a systematic search was carried out using aggregated sources of evidence (meta-analyses, systematic reviews, etc.) as well as individual publications in specific cases. A suitable list of titles and abstracts up to and including the identification of the full text were selected by two independent raters. After the search and selection processes were completed, the necessary evidence tables which formed the basis for the consensus conferences were compiled by the Methods group (financial support was provided and allowed a researcher to be specifically hired for this purpose). The classification system of the Oxford Centre for Evidence-based Medicine (version 2009) was used to grade the evidence. To update this guideline, Recommendations and Statements were adopted and levels of recommendation (Table 4) were determined during two structured consensus conferences which were preceded by a preliminary online ballot.

The guideline report provides an overview of the search strategies and selection processes used to select the literature and to formulate and grade the recommendations.
IV Guideline

1 Treatment of primary breast cancer

1.1 Surgical treatment for invasive carcinoma

1.1.1 General recommendations

Randomized clinical studies have shown that if certain clinical and histological parameters are taken into account, breast-conserving therapy achieves identical survival rates to those of mastectomy.

No.	Recommendations/ Statements	EG	LoE	Sources
4.19.	a) The basic therapy for all non-advanced breast cancers is complete resection of the tumor (R0 status).	A	1a	[1, 2]
	b) The resection margin status has a prognostic effect on invasive breast cancer. There is a significant association between resection margin status (positive vs. negative) and local rate of recurrence.	A	1a	[3]

1.1.2 Breast-conserving therapy

Randomized clinical studies have shown that if certain clinical and histological parameters are taken into account, breast-conserving therapy achieves identical survival rates to those of mastectomy.

No.	Recommendations/ Statements	EG	LoE	Sources
4.20.	a) The goal of surgical therapy is complete removal of the tumor. Breast-conserving therapy (BCT) followed by full breast radiotherapy is equivalent to mastectomy alone in terms of survival rates.	A	1a	[4 – 10]
	b) All appropriate patients, whether or not they have previously had primary systemic therapy, must be informed about the possibility of breast-conserving therapy (BCT) and about mastectomy with the options of primary or secondary reconstruction.	EC		

1.1.3 Mastectomy

No.	Recommendations/ Statements	EG	LoE	Sources
4.21.	a) Mastectomy must be performed if any of the following indications are present:			
- Incomplete removal of the tumor (incl. any intraductal component), even after secondary resection
- Inflammatory breast cancer (generally even in cases with pathological complete remission)
- When follow-up radiation of the breast after breast-conserving therapy is contraindicated but radiation is absolutely indicated
- at the request of the patient who has been fully informed about her range of options | A | 2b | [11 – 13] |
| | b) If the resection margins are tumor-free, mastectomy may also be performed as a skin-sparing procedure with or without preservation of the NAC. | 0 | 2a | [14 – 17] |
| | c) Depending on the tumor location and tumor size, mastectomy may be necessary in individual cases, even if multiple cancers are present. | 0 | 2a | [18 – 25] |
| | d) Contralateral prophylactic mastectomy to reduce the risk of contralateral breast cancer should not be carried out in non-mutation carriers or patients with no evidence of high familial risk. | B | 2b | [26 – 28] |

1.1.4 Reconstructive plastic surgery procedures

No.	Recommendations/ Statements	EG	LoE	Sources
4.22.	Every patient scheduled for mastectomy must be informed about the options of having immediate or subsequent breast reconstruction or the option of forgoing reconstructive procedures; these patients should be offered the opportunity to contact other similarly affected people and self-help groups or organizations.	A	2b	[16, 29, 30]
1.1.5 Axillary surgery

No.	Recommendations/Statements	EG	LoE	Sources
4.23	a) Axillary staging is an essential part of the surgical therapy of invasive breast cancer.	EC		
	b) Staging must include sentinel lymph node biopsy (SLNB) even if the lymph node status is unremarkable on palpation and ultrasound.	A	1a	[30–32]
	c) Clinically significant lymph nodes that are negative on biopsy should also be resected during SLNB.	B	2b	[30, 33]
	d) Patients with pT1–pT2/cN0 tumors who undergo breast-conserving surgery followed by percutaneous radiation by tangential opposing fields (tangential radiation therapy) and who have one or two positive sentinel lymph nodes should not undergo axillary dissection.	B	1b	[31]
	e) Patients who have mastectomy or to whom the above-listed criteria do not apply should undergo axillary dissection or receive axillary radiotherapy.	B	1b	[31, 34]
	f) Targeted therapy of the lymph drainage areas (surgery, radiotherapy) must not be carried out if the patient only has micro-metastasis.	B	1b	[35, 36]
	g) Patients treated with primary systemic therapy (PST) and whose lymph node status on palpation and ultrasound is negative prior to treatment should undergo SLN after PST.	B	2b	[37, 38]
	h) Patients treated with primary systemic therapy (PST) whose nodal status on punch biopsy is positive (cN1) prior to treatment but whose nodal status after PST is clinically negative (yCN0) should undergo axillary dissection.	B	2b	[38, 39]
	i) Patients treated with primary systemic therapy (PST) who have a positive nodal status before and after PST must undergo axillary dissection.	EC		
	j) Patients must not undergo axillary staging if there is evidence of distant metastasis.	EC		

1.2 Adjuvant radiation therapy for breast cancer

No.	Recommendations/Statements	EG	LoE	Sources
4.36	After breast-conserving surgery for invasive carcinoma the affected breast must be treated with radiotherapy. Provided the resection margins were tumor-free, patients with a clearly limited life expectancy (< 10 years) and a small (pT1), node-negative (pN0), hormone receptor-positive HER2-negative tumor and endocrine adjuvant therapy may avoid radiation therapy and accept the increased risk of local recurrence after receiving individual counselling.	A	1a	[40–47]
	Note for all Recommendations: all single positions are OR conjunctions. AND conjunctions are represented by “and”.			
4.37	Radiotherapy of the breast should be administered in hypofractionated doses (total dose: approx. 40 Gy in approx. 15–16 fractions over approx. 3 to 5 weeks) or may be administered as a standard fractionated regimen (total dose: approx. 50 Gy in approx. 25–28 fractions over approx. 5–6 weeks).	B/0	1a	[48–54]
4.38	Local dose escalation (boost radiotherapy) of the tumor bed reduces the local rate of recurrence in the breast without achieving a significant survival benefit. Boost radiotherapy - must therefore be carried out in all patients aged ≤ 50 years and should only be carried out in patients aged > 51 years if they have an increased risk of local recurrence (G3, HER2-positive, triple-negative, >T1).	A/B	1a	[55–58]
4.39	Partial breast irradiation alone (as an alternative to secondary whole breast irradiation) may be carried out in patients with a low risk of recurrence.	0	1a	[59–64]
4.40	Postoperative radiotherapy of the thoracic wall after mastectomy reduces the risk of loco-regional recurrence and improves the survival of patients with locallyadvanced, node-positive breast cancer.	A	1a	[65]
4.41	Radiation of the thoracic wall after mastectomy is indicated in the following situations:	A	1a	[65–79]
	• pT4			
	• pT3 pN0 R0 when additional risk factors are present (lymph node invasion (L1), G3 grading, premenopausal, age < 50 years)			
	• R1/R2 resection and no possibility of a second curative resection aa) Post-mastectomy radiation must be carried out as a standard procedure if more than 3 axillary lymph nodes are affected.			
	b) If 1–3 axillary lymph nodes show tumor involvement, post-mastectomy radiation must be carried out if the patient has an increased risk of recurrence (e.g. HER2-positive, triple-negative, G3, L1, Ki-67 > 30%, > 25% of excised lymph nodes show tumor involvement; age ≤ 45 years with additional risk factors such as medial tumor location or tumor size > 2 cm, or ER-negative).			
	c) PMRT should not be carried out if 1–3 axillary lymph nodes show tumor involvement and the tumor has a low risk of local recurrence (pT1, G1, ER-positive, HER2-negative, at least 3 characteristics must apply).			
	d) For all other patients with 1–3 axillary lymph nodes with tumor involvement, the individual indication for treatment must be decided on by an interdisciplinary board.			
4.42. After primary (neoadjuvant) systemic therapy, the indication for post-mastectomy radiotherapy must be based on the clinical staging prior to treatment; for pCR (ypT0 and ypN0) the indication for treatment must be decided on by an interdisciplinary tumor board and depends on the patient’s individual risk profile.

Pretreatment	Post-treatment	RT-BCT	PMRT	RT-LAW
locally advanced	pCR/no pCR	yes	Yes	yes
cT1/2 cN1+	ypT1+ o. ypN1+ (no pCR)	yes	yes	yes
cT1/2 cN1+	ypT0/is ypN0 (SLNE ≥ 3 LN)	yes	cases with high risk	
cT1/2 cN0 (US obligatory)	ypT0/is ypN0 (SLNE ≥ 3 LN)	yes	no	no

1 with standard tangential treatment
2 if the patient underwent a mastectomy
3 together with PMRT or RT because of BCT

Criteria for a high risk of recurrence:
pN0 premenopausal, high risk: central or medial location, and (G2–3 and ER/PgR-negative)
pN1a high risk: central or medial location and (G2–3 or ER/PgR-negative) or premenopausal, lateral location and (G2–3 or ER/PgR-negative)

4.43. Adjuvant irradiation of regional lymph drainage areas improves disease-free survival and overall survival rates in a subgroup of patients.

4.44. a) Irradiation of the supra-/infraclavicular lymph nodes may be an option for patients with pN0 or pN1mi stage disease under the following circumstances if all of the following conditions are met:
 - premenopausal and central or medial tumor location and G2–3 and ER/PgR-negative.

b) Irradiation of the supra-/infraclavicular lymph nodes should be carried out in patients with 1–3 affected lymph nodes in the following circumstances:
 - central or medial location and (G2–3 or ER/PgR-negative)
 - premenopausal, lateral location and (G2–3 or ER/PgR-negative)

c) Irradiation of the supra-/infraclavicular lymph nodes must be generally carried out in all patients with > 3 affected axillary lymph nodes.

4.45. a) Irradiation of the internal thoracic artery lymph nodes may be carried out in patients without or with minimal axillary involvement (pN0 or pN1mi) in the following circumstances:
 - premenopausal and central or medial location and G2–3 and ER/PgR-negative

b) Irradiation of the internal thoracic artery lymph nodes should be carried out in patients with 1–3 affected lymph nodes in the following circumstances:
 - central or medial location and (G2–3 or ER/PgR-negative)
 - premenopausal, lateral location and (G2–3 or ER/PgR-negative)

c) Irradiation of the internal thoracic artery lymph nodes should be carried out in patients with > 3 affected axillary lymph nodes in the following circumstances:
 - G2–3 or ER/PgR-negative

d) If tumor involvement of the internal thoracic artery lymph nodes is confirmed, they should be treated with radiotherapy.

e) If patients have an increased cardiac risk or are receiving treatment with trastuzumab, the decision whether or not to irradiate the internal thoracic artery lymph nodes must be made on an individual basis by an interdisciplinary tumor board.

4.46. Expanded axillary radiation may be used to treat patients with 1–2 affected axillary sentinel lymph nodes if no axillary dissection is carried out or if the interdisciplinary tumor board agrees that no further local axillary therapy should be carried out (analogous to ACOSOG Z0011). The decision about the appropriate approach must be taken by an interdisciplinary tumor board.

4.47. Radiotherapy of lymph drainage areas should be administered in standard fractions (5 × week 1.8 to 2.0 Gy, total dose: approx. 50 Gy over a period of approx. 5–6 weeks) or in hypofractionated doses (total dose: approx. 40 Gy in approx. 15–16 fractions over a period of approx. 3 to 5 weeks).

4.48. Treatment of patients with primary inoperable or inflammatory cancer must consist of primary systemic therapy followed by surgery and postoperative radiotherapy or, if the cancer continues to be inoperable, radiotherapy alone or preoperative radiotherapy.
1.3 Systemic adjuvant therapy (endocrine therapy, chemotherapy, antibody therapy)

1.3.1 Choice of adjuvant therapy and classification of risk

The 2009 St. Gallen Recommendations have pointed out the significance of endocrine sensitivity and the 2011 Recommendations have highlighted the importance of molecular subtypes as the decisive criteria whether adjuvant chemotherapy is indicated or not [106]. The markers ER, PgR, HER2 and Ki-67, which are identified by immunohistochemistry, are considered surrogate parameters for different molecular subtypes [106]. ER-positive and/or PgR-positive, HER2-negative tumors with low proliferation rates are classified as luminal A; if the proliferation rates are high, they are classified as luminal B. It should be noted that there is currently no validated threshold value for Ki-67 (e.g. for classifying a tumor as luminal B or to confirm the decision for/against adjuvant chemotherapy).

Indications for adjuvant chemotherapy:

- simultaneous anti-HER2 therapy with trastuzumab over a period of 1 year combined with (neo-) adjuvant chemotherapy is the standard approach for HER2-positive tumors
- non-endocrine-sensitive tumors (ER- and PgR-negative)
- tumors which may not be endocrine-sensitive
- node-positive tumors (studies are currently being carried out to evaluate whether patients with low numbers of affected lymph nodes [1–3 affected LN] and favorable tumor biology [luminal A] may not need adjuvant chemotherapy)
- G III
- young age at onset (< 35 years)

Chemotherapy is always indicated if the individual expected benefit is higher than potential side effects and long-term negative effects. This requires careful, in-depth counselling and discussions with the patient, particularly if the expected benefit is minimal.

1.3.2 Endocrine therapy

No.	Recommendations/Statements	EG	LoE	Sources
4.49	a) Postoperative chemotherapy and radiotherapy must be administered sequentially. Note: No specific sequence (chemotherapy first or radiotherapy first) has been confirmed as superior. The sequence of chemotherapy followed by radiotherapy is the established sequence in clinical practice.	A	1b	[98–101]
	b) If only RT is administered, treatment with RT should commence within a period of 8 weeks postoperatively.			[102, 103]
	c) Adjuvant endocrine therapy can be started independently of any radiotherapy. (1a) Therapy with trastuzumab may be continued during radiotherapy. If the patient is receiving simultaneous irradiation of the internal thoracic artery lymph nodes, the appropriate approach must be decided on by an interdisciplinary tumor board. (4)			[91, 92, 104, 105]

No.	Recommendations/Statements	EG	LoE	Sources
4.50	a) Patients with estrogen and/or progesterone receptor-positive* invasive tumors must receive endocrine therapy.	A	1a	[30, 107–110]
	b) Endocrine therapy must only be started after chemotherapy has been completed but it can be administered in parallel to radiotherapy.	A	1a	[30, 45, 107–110]
4.51	After 5 years of tamoxifen the decision whether or not to continue endocrine therapy must be re-evaluated in every patient with ER+ breast cancer. When considering whether or not to continue endocrine therapy, the risk of recurrence and the therapy-related side effects (toxicity, decreased adherence) should be weighed up. The patient's current menopausal status must be taken into account when selecting the appropriate endocrine therapy.	A/B	Adapt. from guideline	[111]
4.52	Premenopausal patients must receive tamoxifen therapy for at least 5 years. Antiestrogen therapy with tamoxifen 20 mg per day must be administered for a period of 5–10 years depending on the risk of recurrence or until recurrence occurs. Whether or not expanded therapy is indicated depends on the risk of recurrence and the patient's wishes.	A	1a	[107, 108, 112–114]
4.53	a) High-risk patients with ER+ breast cancer who are still premenopausal after completing chemotherapy may be treated with an aromatase inhibitor after suppressing ovarian function.	EC		
	b) Suppression of ovarian function alone can be considered in premenopausal women with ER+ breast cancer who cannot receive tamoxifen or do not want to be treated with tamoxifen; suppression can be achieved either by administering a GnRHa or by oophorectomy.	EC		
	c) Suppression of ovarian function (by GnRHa or bilateral oophorectomy) in addition to tamoxifen or an aromatase inhibitor must only be considered in patients with a high risk of recurrence who are premenopausal after receiving adjuvant chemotherapy. Suppression of ovarian function is mandatory when treatment consists of administering aromatase inhibitor.	A	Adapt. from guideline	[115]
4.54	Adjuvant endocrine therapy for postmenopausal patients with ER+ breast cancer should include an aromatase inhibitor.	B	1b	[115]

* ≥ 10% progesterone-receptor-positive tumor cell nuclei
1.3.3 Adjuvant chemotherapy

No.	Recommendations/Statements	EG	LoE	Sources
4.55.	a) Adjuvant chemotherapy is indicated for:			
• HER2-positive tumors (from pT1b, N0; pT1a, N0 if additional risks are present: e.g., G3, ER/PR-negative, high Ki67 levels)
• Triple-negative tumors (ER- and PgR-negative, HER2-negative)
• Luminal-B tumors with a high risk of recurrence (high Ki-67 levels, G3, high-risk multigene assay, young age at onset, lymph nodes show tumor involvement)

b) Chemotherapy must be administered in the recommended doses.
Under-dosing or reducing the number of cycles risks reducing the efficacy of chemotherapy. | B | 1a | [4, 11, 116–119] |
| 4.56. | Cytostatic agents may be administered simultaneously or sequentially (according to the evidence-based protocols).
Dose-dense therapies should be used to treated suitable patients with a high tumor-related risk of mortality. | B | 1b | [125–130] |
| 4.57. | Adjuvant chemotherapy should include a taxane and an anthracycline.
6 cycles of TC (docetaxel/cyclophosphamide) may be an alternative in patients with moderate clinical risk (≤ 3 affected lymph nodes).
Standard adjuvant chemotherapy must take 18–24 weeks. | B | 1a | [116, 126, 131–139] |

1.3.4 Neoadjuvant therapy

No.	Recommendations/Statements	EG	LoE	Sources
4.58.	a) Neoadjuvant (primary, preoperative) systemic therapy is considered the standard treatment for patients with locally advanced, primary inoperable or inflammatory breast cancer in the context of a multimodal therapy concept.			
b) Neoadjuvant systemic therapy should be preferred if the same postoperative adjuvant chemotherapy is indicated.	EC			
4.59.	a) If chemotherapy is indicated, it can be administered prior to surgery (neoadjuvant) or after surgery (adjuvant). Both approaches are equivalent with regard to overall survival. Neoadjuvant therapy may lead to a higher rate of breast-conserving therapies.			
b) The effect (pathohistological remission) is greatest for hormone receptor-negative cancers.				
c) Resection within the new tumor margins is possible if R0 resection can be achieved.	1a	[140–142]		
4.60.	a) Postmenopausal patients with endocrine-sensitive breast cancer, for whom surgery or chemotherapy is not possible or who do not want surgery or chemotherapy, may be treated with primary endocrine therapy.			
b) Neoadjuvant endocrine therapy is not a standard therapy; neoadjuvant endocrine therapy may be considered in special situations (inoperable cancer, multiple morbidities).	EC			
4.61.	a) If a neoadjuvant chemotherapy combination is used, it should include an anthracycline and a taxane. Preoperative therapy should take 18–24 weeks.			
HER2-positive tumors for which neoadjuvant chemotherapy is indicated should be treated with trastuzumab. High-risk (clinical/sonographic findings or N+ on punch biopsy, tumor size > 2 cm) HER2-positive patients should additionally receive pertuzumab.				
b) Platinum salts increase the complete remission rate (pCR rate) in patients with triple-negative breast cancer (TNBC) irrespective of their BRCA status. The benefit for progression-free survival (PFS) and overall survival has not yet been conclusively confirmed. The toxicity is higher.	EC			
4.62.	If anthracycline-taxane-based neoadjuvant chemotherapy is adequate, no additional adjuvant chemotherapy is recommended for tumor residues in the breast and/or lymph nodes. Post-neoadjuvant chemotherapy treatment should only be carried out in the context of clinical trials.	EC		
1.3.5 Antibody therapy

1.3.6 Bone-targeted therapy

1.3.6.1 Therapy and prevention of cancer treatment-induced bone loss

The risk of bone density loss with destruction of bone structure and the risk of therapy-related osteoporosis followed by an increased risk of fractures is significantly higher in patients with malignant disease [146]. Apart from such commonly reported changes as immobilization and changes in lifestyle (e.g. discontinuation of estrogen therapy), it is primarily drug therapies that are responsible for osseous changes. Supportive therapies (e.g. corticosteroid preparations) are as likely to damage bones as cytotoxic or endocrine drugs. This issue is becoming increasingly important following the high curative rates for many solid tumors, particularly for breast cancer.

In premenopausal women with hormone receptor-positive breast cancer, ovarian function suppression (e.g. using GnRH analogs) alone or in combination with tamoxifen or an aromatase inhibitor and treatment with tamoxifen alone leads to a loss of bone density and an increased incidence of osteoporosis compared to healthy control populations [147–149]. The combination of ovarian function suppression with an aromatase inhibitor led to the greatest decrease in bone density [147].

In postmenopausal women, treatment with aromatase inhibitors also leads to a loss of bone density and an increased incidence of fractures compared to women treated with tamoxifen [150–153].

Chemotherapies can also result in a significant loss of bone density [154, 155].

The indication for preventive treatment depends on the patient’s gender, age and bone density and should take the patient’s history and lifestyle into account. Primary prevention of cancer therapy-induced bone loss should be considered if patients present with a special combination of risks [156, 157]. These include advanced age, low body mass index, nicotine abuse, therapy with aromatase inhibitors, familial disposition, long-term corticoste

No.	Recommendations/Statements	EG	LoE	Sources
4.63	a) Patients with HER2-overexpressing tumors with a diameter ≥ 1 cm (immunohistochemical score 3+ and/or IISH-positive) must receive (neo) adjuvant treatment with an anthracycline followed by a taxane in combination with trastuzumab. Trastuzumab must be administered over a total period of one year.	A	1b	[16,29,30]
	b) Adjuvant treatment with trastuzumab should preferably be started at the same time as the taxane phase of adjuvant chemotherapy.	B	2a	[145]
	c) If chemotherapy is indicated to treat HER2+ tumors ≤ 5 mm, trastuzumab should be additionally administered. Six cycles of TCH (docetaxel, carboplatin, trastuzumab) every 3 weeks may also be recommended as an adjuvant treatment. The cardiotoxicity of this approach is lower than after treatment with anthracyclines			
1.3.6.1.1 Therapy for cancer therapy-induced osteoporosis

1.3.6.2 Adjuvant therapy to improve bone metastasis-free survival and overall survival

According to the “seed and soil” hypothesis, luminal breast cancer cells are particularly prone to metastasize in bone where they are then detected in the form of disseminated tumor cells [160–162]. Bisphosphonates and probably also denosumab appear to have a therapeutic effect with regard to the persistence of these cells and thus on the incidence of secondary bone metastasis [163].

Two meta-analyses evaluated studies on the adjuvant use of different bisphosphonates. Ben-Aharon and colleagues found a positive effect on survival in postmenopausal patients with breast cancer (HR 0.81 [0.69–0.95]) [164]. In their meta-analysis, Coleman and colleagues reported a significant positive effect on bone metastasis-free survival of 34% and on overall survival of 17% for postmenopausal patients (including premenopausal patients with ovarian function suppression from GnRH analogs; ABCSG-12) [165].

The meta-analyses found no significant benefit for premenopausal patients (without ovarian function suppression from GnRH analogs) with regard to disease-free survival, bone metastasis-free survival, and overall survival. No effect on prognosis was detected in an evaluation of a secondary endpoint carried out in a subpopulation of premenopausal patients (the majority of whom did not have suppression of ovarian function), despite the high therapy density at the start of treatment (AZURE trial [158]).

To date, no bisphosphonate has been approved for use in adjuvant therapy in the European Union, meaning that treatment can currently only be carried out as an off-label use.

1.3.6.3 Bone-targeted therapy for patients with bone metastasis

The most common metastases of breast cancer occur in bone marrow. Luminal tumors have a particular affinity to the skeleton. The most common complications of bone metastases are pain, pathological fractures, vertebral compression syndrome, and hypercalcemia [166]. If the aforementioned symptoms (with the exception of pain) occur, then morbidity is significantly increased. A number of different measures can be initiated to prevent these serious complications.

The interdisciplinary AWMF S3 guideline 032-054OL “Supportive Therapy for Oncology Patients” provides a detailed discussion of the diagnosis and therapy of bone metastases [167]).

1.3.7 Lifestyle factors which can be influenced

No.	Recommendations/Statements	EG	LoE	Sources
4.71	It is important to exclude bone metastasis if a bone fracture occurs which was not caused by sufficiently powerful trauma.	EC		

No.	Recommendations/Statements	EG	LoE	Sources
4.72	Adjuvant bisphosphonate therapy prolongs bone metastasis-free survival and overall survival in postmenopausal patients with breast cancer and in premenopausal patients with ovarian function suppression (off-label use).	A	1	[164, 165]
4.73	It is currently not possible to recommend the adjuvant use of bisphosphonates or denosumab for premenopausal patients with suppression of ovarian function.	0	1b	[158, 164, 165]

No.	Recommendations/Statements	EG	LoE	Sources
4.74	Patients must go to the dentist before starting adjuvant osteoprotective therapy. The Recommendations of the S3 guideline on “Antiresorptive drug-related necrosis of the jaw” apply.	EC		

No.	Recommendations/Statements	EG	LoE	Sources
4.75	Patients must be motivated to carry out physical exercise and to normalize their body weight (if their BMI is high). Patients should receive support and assistance. It is particularly recommended that patients: a) avoid physical inactivity and return to normal daily activities as early as possible after diagnosis (LoE 2a) b) work towards achieving the goal of 150 minutes of moderate or 75 minutes of strenuous physical activity per week (LoE 1a)	A	2a/1a	[168–171]
4.76	Patients should be offered weight training programs, particularly when they are undergoing chemotherapy and hormone therapy.	B	1b	[172–175]
4.77	Patients should be advised and taught to do regular sports activities and physical exercise to treat breast cancer-associated fatigue.	B	1a	[176–179]
1.4 Breast cancer during pregnancy and lactation, pregnancy after breast cancer, fertility preservation

1.4.1 Pregnancy after breast cancer

No.	Recommendations/Statements	EG	LoE	Sources
7.1	Patients who have had breast cancer must not be counselled against becoming pregnant. This applies irrespective of their hormone status.	A	3a	[190, 191]
7.2	a) The interval until becoming pregnant after breast cancer is not correlated with a poorer prognosis.	A	3a	[190]
	b) The risk of recurrence depends on the tumor biology and the stage of disease. This must be discussed during counselling for any subsequent pregnancy.	EC		
7.3	The longer the endocrine therapy, the better the chances for a cure (see Chapter 4.7.2 Endocrine therapy). If the patient wished to become pregnant before completing endocrine therapy, then endocrine therapy should be continued after the patient has given birth and stopped breastfeeding.	EC		
7.4	a) Patients can try to become pregnant after breast cancer with the help of reproductive medical procedures.	0	4	[192–194]
	b) The chances of success (i.e. an intact pregnancy or baby) are lower for breast cancer patients when autologous eggs are used compared to women without breast cancer.	2c		[195]

1.4.2 Breast cancer during pregnancy

No.	Recommendations/Statements	EG	LoE	Sources
7.5	a) Treatment (systemic therapy, surgery, RT) for breast cancer (in pregnant patients) during pregnancy must be as similar as possible to treatment administered to younger, non-pregnant patients with breast cancer.	EC		
	b) Standard chemotherapy with anthracyclines and taxanes may be administered in the 2nd and 3rd trimester of pregnancy.	0	2b	[196–200]
	c) Anti-HER2 therapy must not be administered during pregnancy.	A	3a	[196, 197, 199]
	d) Endocrine therapy must not be administered during pregnancy.	EC		
	e) Surgery may be carried out in the same way as in non-pregnant patients.	EC		
1.4.3 Fertility preservation

No.	Recommendations/Statements	EG	LoE	Sources
7.6	a) Patients of childbearing age with breast cancer must receive counselling about fertility and preserving fertility before starting cancer treatment.	EC		200–206
	b) The administration of a GnRH analog before starting chemotherapy may be considered in all women who wish to preserve their ovarian function/fertility.	0	1b	

1.5 Breast cancer in older patients

1.5.1 General comments

No.	Recommendations/Statements	EG	LoE	Sources
8.1	Therapeutic decisions for older patients should be based on current standard recommendations but also take account of the patient’s biological age, life-expectancy and preferences; the benefits and risks of such therapy must be weighed up.	EC		

1.5.2 Geriatric patients

No.	Recommendations/Statements	EG	LoE	Sources
8.2	Patients who are older than 75 years should have a geriatric assessment or screening using a geriatric assessment algorithm, particularly if chemotherapy or surgery requiring a general anesthetic is planned, with the aim of improving therapy adherence, tolerance of chemotherapy and possibly survival.	B	2a	207–210
8.3	Geriatric assessment and management should cover therapy-relevant geriatric domains (particularly functionality-related parameters such as activities of daily living, mobility, cognition, falls, and morbidity-related parameters such as multiple medication, nutrition, fatigue, and number of comorbidities) in order to adapt the choice of therapy accordingly and start supportive measures.	B	2a	30,211–214

1.5.3 Local therapy

No.	Recommendations/Statements	EG	LoE	Sources
8.4	a) Surgical therapy to treat older patients is basically no different from the surgical therapy used to treat younger patients.	EC		
	b) Patients with ER/PR-positive breast cancer: primary endocrine therapy should be started if surgery is not carried out because of the patient’s frailty (e.g., comorbidities and higher anesthetic risk) or because the patient rejects surgery. When deciding on the appropriate therapy, any drug-related specific side effects, particularly the risk of thrombosis/embolism (tamoxifen) and the risk of bone fractures (aromatase inhibitors), must be taken into consideration.	B	1b	215
	c) Patients with ER- and PR-negative breast cancer: If surgery under general anesthesia is not carried out because of the patient’s frailty (e.g., comorbidities and increased surgical risk) or because the patient rejects surgery, surgery under local anesthesia, primary radiotherapy or purely palliative medical treatment may be considered.	EC		

1.5.4 Adjuvant endocrine therapy

No.	Recommendations/Statements	EG	LoE	Sources
8.5	Endocrine therapy is recommended for patients with hormone receptor-positive disease. Endocrine therapy may be dispensed with in individual cases (i.e., when treating patients with very low-grade tumors or very favorable tumor biology or if the patient is very frail).	0	2b	213, 216
1.5.5 Adjuvant chemotherapy

No.	Recommendations/Statements	EG	LoE	Sources
8.6	As patients become frailer with increasing age, their reduced physical reserves and changes in their pharmacokinetics may lower the tolerability of chemotherapy and increase the rate of side effects requiring treatment.	EC		
8.7	Chemotherapy may be associated with a significant reduction in cognitive performance in older women aged > 70 years.	2b		[217, 218]
8.8	Preference should be given to anthracycline and/or taxane-based combinations or sequential regimens. The increased risk of cardiotoxicity and of MDS/AML associated with anthracyclines must be taken into consideration.	B	2a	[219–227]

1.5.6 Anti-HER2 therapy

No.	Recommendations/Statements	EG	LoE	Sources
8.10	Treatment is analogous to the treatment administered to younger patients and consists of trastuzumab combined sequential anthracycline-taxane-based chemotherapy.			
It is important to be aware of the increased risk of cardiotoxicity associated with this approach. (EC)				
An anthracycline-free combination consisting of carboplatin-docetaxel or docetaxel-cyclophosphamide may be used. (1b)	EC/1b		[214, 228–230]	
8.11	Paclitaxel administered weekly (over 12 weeks) with trastuzumab may be used to treat T1–2 (up to 3 cm) pN0 tumors.	0	2b	[231, 232]

1.6 Breast cancer in men

Breast cancer in men should be diagnosed and treated by an interdisciplinary group of specialists. Because of the type of tumor biology and the similarities to breast cancer in women, specialists for gynecologic oncology must also be involved when treating breast cancer in men. An interdisciplinary cooperation between breast centers, gynecologists, urologists and andrologists is particularly advisable when treating sexual disorders caused by therapy with tamoxifen, men with BRCA mutations [233] who have an increased associated risk of prostate cancer, and men with breast cancer who must be treated for benign prostate syndrome [234].

No.	Recommendations/Statements	EG	LoE	Sources
9.1	a) Patients must be encouraged to ask for medical counselling early on and provided with information about disease, particularly about symptoms and changes in the breast; they must be encouraged to monitor themselves.			
b) If there is a suspicion of malignancy, the initial investigation must include taking the patient’s history, clinical examination, mammography, and ultrasound examination of the breast and of the lymphatic drainage areas.				
There are no data on the diagnostic use of CM-MRI.				
c) If there are malignant findings in the breast and axilla, further examinations with staging/investigation into the extent and spread of disease must be carried out in accordance with the recommendations made for women in the same situation, although there are no data on the diagnostic use of CM-MRI.	EC			
9.2	a) The aim of surgery is complete resection of the tumor. Surgery should consist of a mastectomy.			
Breast-conserving surgery should be considered if the tumor is small enough.				
b) If the axilla are clinically unremarkable (cN0), sentinel lymph node resection must be carried out, with the same rules applying as for women.	EC			
9.3	Irrespective of surgery, adjuvant radiotherapy of the thoracic wall and, if necessary, of the lymphatic drainage areas (the indications for this are the same as for women) must be carried out to treat large tumors (≥ 2 cm) and axillary lymph node involvement if the hormone receptor status is negative.	EC		
9.4	When deciding whether adjuvant chemotherapy and antibody therapy (anti-HER2) are indicated, the same rules apply as for women and the same therapy must be carried out.	EC		
9.5	Patients with hormone receptor-positive breast cancer must receive adjuvant endocrine therapy with tamoxifen, usually over a period of 5 years. There are no data available about treatment for more than 5 years. It may be considered in individual cases in the same way it would be considered when treating women.	EC		
9.6	a) Metastatic disease should be treated according to the same rules as those used to treat women.			
b) It is not clear whether aromatase inhibitors are sufficiently effective in men without suppression of testicular function. Aromatase inhibitors should therefore be administered together with suppression of testicular function. | EC | | |
Table 5 Risk factors for men to develop breast cancer.

Risk Factor	Description
Age	Unimodal age distribution; the highest incidence is in the 71st year of life
Ethnicity	Increased risk for men of African or Caribbean descent, who usually also have an advanced stage of disease when they are first diagnosed
Germline mutations	If the patient’s family has a positive history of germline mutations for both sexes, they have a 2.5-fold higher risk of disease; BRCA-2 mutations were confirmed in 4–40% of all cases; RAD51B gene modifications increase the risk by 50%
Endocrine causes	Exposure to exogenous estrogen, e.g. hormone therapy for transsexuals, treatment of prostate cancer, professional exposure. Increased endogenous estrogen synthesis: Klinefelter syndrome, obesity. Decreased levels of androgen: orchietomy, undescended testicle, mumps orchitis, cirrhosis of the liver
Environment	Lifestyle: obesity, lack of exercise, excessive consumption of alcohol. Exposure to radiation: nuclear weapons, radiotherapy, diagnostic radiology. Professional exposure: high temperatures, petroleum, exhaust gases

2 Therapy (Recurrence/Metastasis)

2.1 Therapy for local/loco-regional recurrence

2.1.1 Local (intramammary) recurrence

No.	Recommendations/Statements	EG	LoE	Sources
5.7	a) If there is a suspicion of loco-regional recurrence, the first step must be histological verification including repeat determination of ER, PR and HER2/neu status and complete re-staging to exclude metastasis and make it possible to plan an interdisciplinary therapy strategy.	EC		
	b) The highest level of local tumor control in patients with intramammary recurrence (DCIS/invasive carcinoma) is achieved by secondary mastectomy.	EC		
	c) If the initial situation is favorable (e.g. DCIS or invasive carcinoma with a lengthy recurrence-free interval and no skin involvement), then breast-conserving surgery can be carried out again after careful counselling of the patient.	0	4a	[235 – 238]
	d) Prior to carrying out another breast-conserving surgery, the possibility of carrying out repeat radiotherapy (partial breast irradiation) should be investigated and discussed by an interdisciplinary tumor conference; if necessary, the patient should have an appointment with a radiotherapist.	EC		
	e) After breast-conserving surgery, the patient must be informed about the increased risk of repeat intramammary recurrence.	EC		

2.1.2 Local recurrence after mastectomy

No.	Recommendations/Statements	EG	LoE	Sources
5.8	Any isolated recurrence in the thoracic wall must be completely resected (R0) where possible. If the main site of recurrence is the ribs/intercostal muscles, the decision for therapy should be taken after interdisciplinary consultation with a specialist for thoracic surgery.	EC		
5.9	Local therapy (surgical intervention, radiotherapy) may be considered for symptomatic local recurrence (e.g. ulceration, pain) to reduce symptoms, even if the patient has distant metastasis.	EC		
2.1.3 Axillary lymph node recurrence

No.	Recommendations/Statements	EG	LoE	Sources
5.10	In the event of axillary lymph node recurrence, local recurrence of disease should be controlled by repeat surgical axillary intervention, if need be with radiotherapy. Thoracic CT should be done preoperatively to identify the extent of LN metastasis.	EC		

2.1.4 Drug therapy

No.	Recommendations/Statements	EG	LoE	Sources
5.11	Systemic therapy after R0 resection of loco-regional recurrence must be considered to prolong the disease-free interval and overall survival.	EC		

2.1.5 Radiotherapy

No.	Recommendations/Statements	EG	LoE	Sources
5.12	a) The question whether radiation is indicated after surgery for recurrence must be discussed and decided by an interdisciplinary tumor board. Postoperative radiotherapy should be carried out if no radiotherapy was carried out previously or if the local recurrence was not radically resected (R1–2).	EC		
	b) Palliative radiotherapy, if necessary in combination with chemotherapy, may be used to treat inoperable local recurrence and control symptoms.	EC		
	c) If there is intramammary recurrence or recurrence in the thoracic wall after breast-conserving surgery (R0) or mastectomy (R0) which was not followed by radiotherapy, the decision whether adjuvant radiotherapy is indicated must follow the recommendations for primary disease.	EC		
	d) If intramammary recurrence occurs after breast-conserving surgery (R0) followed by radiotherapy, the question whether adjuvant radiotherapy is indicated must be discussed by an interdisciplinary tumor board. Radiotherapy may be indicated for patients who did not experience serious late sequelae after the 1st radiotherapy.	EC		
	e) In the event of recurrence in the thoracic wall after mastectomy (R0) followed by radiotherapy, the question whether repeat radiotherapy is indicated for local control should be discussed by an interdisciplinary tumor board.	EC		
	f) In the event of recurrence in the thoracic wall after primary mastectomy without subsequent radiotherapy, adjuvant radiotherapy should be carried out after resection of the recurrence (R0) if additional risk factors are present (very small resection margins, rpN+, G3, lymph node invasion).	EC		
	g) In the event of recurrence in the thoracic wall after primary mastectomy without subsequent radiotherapy, the question whether repeat adjuvant radiotherapy is indicated after resection of the recurrence (R0) when additional risk factors are present (very small resection margins, rpN+, G3, lymph node invasion) should be discussed by an interdisciplinary tumor board. Radiotherapy may be indicated for patients who did not experience serious late sequelae after the 1st radiotherapy.	EC		
	h) Additional radiotherapy must be recommended if recurrence occurs in an area which was not previously irradiated, the recurrence was not completely resected (R1/R2), and the risk associated with complete surgical resection (R0) cannot be justified.	EC		
	i) An interdisciplinary tumor board must decide whether repeat radiotherapy is indicated when recurrence occurs after prior radiotherapy, the recurrence was not completely resected (R1/R2), and the risk associated with complete surgical resection (R0) cannot be justified. Radiotherapy may be indicated in patients who did not experience serious late sequelae after the 1st radiotherapy.	EC		

2.2 Distant metastases

2.2.1 Systemic therapy for metastatic breast cancer

No.	Recommendations/Statements	EG	LoE	Sources
5.13	Endocrine therapy ± targeted therapy is the therapy of choice for patients with hormone receptor-positive and HER2-negative cancer. Endocrine therapy is not indicated in patients for whom rapid remission is important to avoid pronounced symptoms in the affected organ.	A	1b	[30, 239 – 243]
2.2.2 Chemotherapy for metastatic breast cancer

In summary, higher rates of remission and an improved PFS (but no survival benefit) have been reported for additional therapy with bevacizumab, which seems to indicate that combination therapy is the appropriate treatment for patients in urgent need of remission and no combination of risk factors predisposing them to side effects (no previous history of uncontrolled arterial hypertension, cerebrovascular ischemia and deep vein thrombosis). See the long version for more details.
2.2.2 Regimens
Specific information on the regimens are available in the long version of this guideline (in German).

No.	Recommendations/Statements	EG	LoE	Sources
5.25	Possible monotherapies can consist of the following substances: alkylating agents, anthraquinones, anthracyclines (also in liposomal form), eribulin, fluoropyrimidine, platinum complexes, taxanes, and vinorelbine. These substances can be combined with each another or with further substances for polychemotherapy. However, patients should only be treated with combinations that have previously been investigated in trials.	EC		

2.2.3 Metastatic HER2-positive breast cancer

No.	Recommendations/Statements	EG	LoE	Sources
5.26	Systemic therapy after R0 resection of loco-regional recurrence must be considered to prolong the disease-free interval and overall survival.	B	1a	[262, 263]
5.27	First-line therapy for metastasized HER2-positive breast cancer should consist of a dual blockade with trastuzumab/ pertuzumab and a taxane.	B	1b	[262]
5.28	Second-line therapy for metastasized HER2-positive breast cancer should consist of therapy with T-DM1.	B	1b	[262]

2.2.4 Specific locations of metastases
2.2.4.1 Basic approach for distant metastasis

No.	Recommendations/Statements	EG	LoE	Sources
5.29	The decision whether distant metastases should be treated with surgery or local ablation should be made on an individual basis by an interdisciplinary tumor board.	EC		

2.2.4.2 Special treatment for skeletal metastases
For the diagnosis and therapy of skeletal metastasis, please refer to the S3 guideline on Supportive Therapy for Oncology Patients (http://leitlinienprogramm-onkologie.de/Supportive-Therapie.95.0.html).

2.2.4.2.1 Indications for radiotherapy

No.	Recommendations/Statements	EG	LoE	Sources
5.30	Indications for local percutaneous radiotherapy for bone metastasis are: local pain, limited mobility, reduced stability (danger of fractures), s/p surgical stabilization, impending or existing neurological symptoms (e.g. compression of the spinal cord).	EC		

2.2.4.2.2 Indications for surgical therapy

No.	Recommendations/Statements	EG	LoE	Sources
5.31	Indications for the surgical therapy of osseous manifestations may be: myeloid compression with neurological symptoms, pathological fracture, impending fracture (risk of fracture, e.g. based on Mirels' scoring system, the Spinal Instability Neoplastic Scale [SINS]), solitary late metastasis, osteolysis which does not respond to radiotherapy, pain which does not respond to treatment.	EC		

2.2.4.3 Osteoprotective therapy

No.	Recommendations/Statements	EG	LoE	Sources
5.32	Osteoprotective therapy with bisphosphonates/denosumab should be carried out to prevent complications from osseous manifestations.	EC		

Wöckel A et al. Interdisciplinary Screening, Diagnosis, ... Geburtsh Frauenheilk 2018; 78: 1056–1088
2.2.4.3 Treatment for brain metastasis

5.26. Single or solitary brain metastases should be resected if the patient has an otherwise favorable prognosis and the metastasis is in a location which permits its resection, and the risk of postoperative neurological deficits resulting from resection is low. Local fractionated radiotherapy or radiosurgery of the tumor bed should be subsequently carried out.

- Radiosurgery represents an alternative to resection for patients with single metastases if the metastases are not larger than 3 cm and there is no midline shift with symptoms of intracranial compression.
- Primary treatment of infratentorial metastasis consists of resection, which should be carried out to prevent imminent occlusive hydrocephalus.
- If the patient only has a limited number of brain metastases (between 2–4) and their total volume can be treated with targeted radiation, initial radiosurgery is preferable to whole brain radiation therapy because of the lower negative impact on neurocognition, the shorter treatment time, and the better control rates. If surgery or radiosurgery cannot be carried out because of other negative prognostic criteria, the patient must receive whole brain radiation therapy alone. Whole brain radiation therapy alone must be used to treat patients with multiple brain metastases.
- A combination of resection or radiosurgery with whole brain radiation therapy improves the brain-specific progression-free survival compared to surgery or radiosurgery alone but does not improve overall survival. However, this approach can be considered in individual cases.
- It is not necessary to combine whole brain radiation therapy with radiosensitizing drugs.

5.34. If cerebral metastasis is present, the patient should also receive systemic therapy (chemotherapy/endocrine therapy/anti-HER2 therapy) in addition to local therapy (surgery/radiotherapy).

2.2.4.4 Treatment for liver metastases

5.35. If the patient has liver metastases, resection or another form of local therapy (RFA, TACE, SBRT, SIRT) may be indicated in individual cases; the preconditions for this are:
- no disseminated metastases
- controlled extrahepatic metastasis

2.2.4.5 Treatment for lung metastases

5.36. Resection or another local therapy (RFA, stereotactic radiotherapy) may be indicated to treat individual patients with lung metastases; the preconditions for this are:
- no disseminated metastases
- controlled extrapulmonary metastasis

2.2.4.5.1 Malignant pleural effusion

5.37. Patients with pleural carcinosis and symptomatic pleural effusions must be offered pleurodesis.

2.2.4.6 Skin and soft tissue metastasis

5.34. Surgical excision or another form of local therapy (e.g. radiotherapy) can be considered to treat skin and soft tissue metastasis.

Conflict of Interest

See https://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/
[37] Classe JM, Bordes V, Campion L et al. Sentinel lymph node biopsy after neoadjuvant chemotherapy for advanced breast cancer: results of Ganglion Sentinelle et Chimiotherapie Neoadjuvante, a French prospective multicentric study. J Clin Oncol 2009; 27: 726–732

[38] Boughey JC, Suman VJ, Mittendorf EA et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. JAMA 2013; 310: 1455–1461

[39] Kuehn T, Bauerfeind I, Fehrm T et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol 2013; 14: 609–618

[40] Clarke M, Collins R, Darby S et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 366: 2087–2106

[41] Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Darby S, McGale P, Correa C et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 2011; 378: 1707–1716

[42] Pötter R, Gnant M, Kwasny W et al. Lumpectomy plus tamoxifen or anastrozole with or without whole breast irradiation in women with favorable early breast cancer. Int J Radiat Oncol Biol Phys 2007; 68: 334–340

[43] Hughes KS, Schnaper LA, Bellon JR et al. L umpectomy plus tamoxifen with or without irradiation in women aged 70 years or older with early breast cancer: long-term follow-up of CALGB 9343. J Clin Oncol 2013; 31: 2382–2387

[44] Kunkler IH, Williams LJ, Jack WJ et al. Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): a randomised controlled trial. Lancet Oncol 2015; 16: 266–273

[45] Blamey RW, Bates T, Chetty U et al. Radiotherapy or tamoxifen after conservative surgery for breast cancers of excellent prognosis: British Association of Surgical Oncology (BASO) II trial. Eur J Cancer 2013; 49: 2294–2302

[46] Fyles AW, McCready DR, Manchul LA et al. Tamoxifen with or without breast irradiation in women 50 years of age or older with early breast cancer. N Engl J Med 2004; 351: 963–970

[47] Kauer-Dorner D, Pötter R, Resch A et al. Partial breast irradiation for locally recurrent breast cancer within a second breast conserving treatment: alternative to mastectomy? Results from a prospective trial. Radiother Oncol 2012; 102: 96–101

[48] Owen JR, Ashton A, Bliss JM et al. Effect of radiotherapy fraction size on tumour control in patients with early-stage breast cancer after local tumour excision: long-term results of a randomised trial. Lancet Oncol 2006; 7: 467–471

[49] Haviland JS, Owen JR, Dewar JA et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol 2013; 14: 1086–1094

[50] Whelan TJ, Pignol JP, Levine MN et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med 2010; 362: 513–520

[51] Yamold J, Ashton A, Bliss J et al. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer; long-term results of a randomised trial. Radiother Oncol 2005; 75: 9–17

[52] START Trialists’ Group; Bentzen SM, Agrawal RK, Aird EG et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol 2008; 9: 331–341

[53] START Trialists’ Group, Bentzen SM, Agrawal RK, Aird EG et al. The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet 2008; 371: 1098–1107

[54] Shaitelman SF, Schlembach PJ, Arzu i et al. Acute and Short-term Toxic Effects of Conventionally Fractionated vs. Hypofractionated Whole Breast Irradiation: A Randomized Clinical Trial. JAMA Oncol 2015; 1: 931–941

[55] Antonini N, Jones H, Horiost JC et al. Effect of age and radiation dose on local control after breast conserving treatment: EORTC trial 22881-10882. Radiother Oncol 2007; 82: 265–271

[56] Bartelink H, Maigong P, Poortmans P et al. Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol 2015; 16: 47–56

[57] Vrielin C, van Werkhoven E, Maigong P et al. Prognostic Factors for Local Control in Breast Cancer After Long-term Follow-up in the EORTC Boost vs. No Boost Trial: A Randomized Clinical Trial. JAMA Oncol 2017; 3: 42–48

[58] Romestaining P, Lehingue Y, Carrie C et al. Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol 1997; 15: 963–968

[59] Polgár C, Van Limbergen E, Pötter R et al. Patient selection for accelerated partial breast irradiation (APBI) after breast-conserving surgery: recommendations of the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother Oncol 2010; 94: 264–273

[60] Polgár C, Fodor J, Major T et al. Breast-conserving therapy with partial or whole breast irradiation: ten-year results of the Budapest randomized trial. Radiother Oncol 2013; 108: 197–202

[61] Veronesi U, Orecchia R, Maisonneuve P et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): a randomised controlled equivalence trial. Lancet Oncol 2013; 14: 1269–1277

[62] Vaidya JS, Wenz F, Bulsara M et al. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. Lancet 2014; 383: 603–613

[63] Strnad V, Ott OJ, Hildebrandt G et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet 2016; 387: 229–238

[64] Polgár C, Ott OJ, Hildebrandt G et al. Late side-effects and cosmetic results for accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: 5-year results of a randomised, controlled, phase 3 trial. Lancet Oncol 2017; 18: 259–268

[65] EBCTCG (Early Breast Cancer Trialists’ Collaborative Group); McGale P, Taylor C, Correa C et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014; 383: 2127–2135

[66] Gradishar WJ, Anderson BO, Balassanian R et al. Invasive breast cancer version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2016; 14: 324–354

[67] Wang H, Kong L, Zhang C et al. Should all breast cancer patients with four or more positive lymph nodes who underwent modified radical mastec tomy be treated with postoperative radiotherapy? A population-based study. Oncotarget 2016; 7: 75492–75502

[68] Elmore L, Deshpande A, Daly M et al. Postmastectomy radiotherapy in T3 node-negative breast cancer. J Surg Res 2015; 199: 90–96
Francis SR, Frandsen J, Kokeny KE et al. Outcomes and utilization of post-mastectomy radiotherapy for T3N0 breast cancers. Breast 2017; 32: 156–161

Karlsson P, Cole BF, Chua BH et al. Patterns and risk factors for locoregional failures after mastectomy for breast cancer: an International Breast Cancer Study Group report. Ann Oncol 2012; 23: 2852–2858

Kydell M, Overgaard M, Nielsen HM et al. High local recurrence risk is not associated with large survival reduction after postmastectomy radiotherapy in high-risk breast cancer: a subgroup analysis of DBCG 82 b/c. Radiother Oncol 2009; 90: 74–79

Nagao T, Kinoshiba T, Tamura N et al. Locoregional recurrence risk factors in breast cancer patients with positive axillary lymph nodes and the impact of postmastectomy radiotherapy. Int J Clin Oncol 2013; 18: 54–61

Danish Breast Cancer Cooperative Group; Nielsen HM, Overgaard M, Grau C et al. Study of failure pattern among high-risk breast cancer patients with or without postmastectomy radiotherapy in addition to adjuvant systemic therapy: long-term results from the Danish Breast Cancer Cooperative Group DBCG 82 b and c randomized studies. J Clin Oncol 2006; 24: 2268–2275

Recht A, Comen EA, Fine RE et al. Postmastectomy Radiotherapy: An American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Focused Guideline Update. J Clin Oncol 2016; 34: 4431–4442

Wang H, Zhang C, Kong L et al. Better survival in PMRT of female breast cancer patients with >5 negative lymph nodes: A population-based study. Medicine (Baltimore) 2017; 96: e5998

Headon H, Kasem A, Almukbel R et al. Improvement of survival with postmastectomy radiotherapy in patients with 1–3 positive axillary lymph nodes: A systematic review and meta-analysis of the current literature. Mol Clin Oncol 2016; 5: 429–436

Valli MC. Controversies in loco-regional treatment: post-mastectomy radiation for pt2–pt3N0 breast cancer arguments in favour. Crit Rev Oncol Hematol 2012; 84 (Suppl. 1): e70–e74

Overgaard M, Hansen PS, Overgaard J et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med 1997; 337: 949–955

Overgaard M, Jensen MB, Overgaard J et al. Postoperative radiotherapy in high-risk premenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet 1999; 353: 1641–1648

Rusthoven CG, Rabinovitch RA, Jones BL et al. The impact of postmastectomy and regional nodal radiation after neoadjuvant chemotherapy for clinically lymph node-positive breast cancer: a National Cancer Database (NCDB) analysis. Ann Oncol 2016; 27: 818–827

Mamounas EP, Anderson SJ, Dignam JJ et al. Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J Clin Oncol 2012; 30: 3960–3966

Kishan AJ, McCloskey SA. Postmastectomy radiation therapy after neoadjuvant chemotherapy: review and interpretation of available data. Ther Adv Med Oncol 2016; 8: 85–97

Kantor O, Pesce C, Singh P et al. Post-mastectomy radiation therapy and overall survival after neoadjuvant chemotherapy. J Surg Oncol 2017; 115: 668–676. doi:10.1002/jso.24551

Poortmans PM, Collette S, Kirkove C et al. Internal mammary and mediastinal supraclavicular irradiation in breast cancer. N Engl J Med 2015; 373: 317–327

Thorsen LB, Offersen BV, Dane H et al. DBCG-MN: A Population-Based Cohort Study on the Effect of Internal Mammary Node Irradiation in Early Node-Positive Breast Cancer. J Clin Oncol 2016; 34: 314–320

Whelan TJ, Olivotto IA, Parulekar WR et al. Regional nodal irradiation in early-stage breast cancer. N Engl J Med 2015; 373: 307–316

Hennequin C, Bossard N, Servaig-Vernet S et al. Ten-year survival results of a randomized trial of irradiation of internal mammary nodes after mastectomy. Int J Radiat Oncol Biol Phys 2013; 86: 860–866

Budach W, Bölke E, Kammers K et al. Adjuvant radiation therapy of regional lymph nodes in breast cancer – a meta-analysis of randomized trials– an update. Radiat Oncol 2015; 10: 258

Recht A, Edge SB, Solin LJ et al. Postmastectomy radiotherapy: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2001; 19: 1539–1569

Yates I, Kirby A, Crichton S et al. Risk factors for regional nodal relapse in breast cancer patients with one to three positive axillary nodes. Int J Radiat Oncol Biol Phys 2012; 82: 2093–2103

Caussa L, Kirova YM, Gault N et al. The acute skin and heart toxicity of a concurrent association of trastuzumab and locoregional breast radiotherapy including internal mammary chain: a single-institution study. Eur J Cancer 2011; 47: 65–73

Shaffer R, Tyldesley S, Rolles M et al. Acute cardiotoxicity with concurrent trastuzumab and radiotherapy including internal mammary chain nodes: a retrospective single-institution study. Radiother Oncol 2009; 90: 122–126

Donker M, van Tienhoven G, Straver ME et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC10981–22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol 2014; 15: 1303–1310

Gruber G, Cole BF, Castiglione-Gertsch M et al. Extirpation tumor spread and the risk of local, axillary and supraclavicular recurrence in node-positive, premenopausal patients with breast cancer. Ann Oncol 2008; 19: 1393–1401

Jagi R, Chadha M, Moni J et al. Radiation field design in the ACOSOG Z0011 (Alliance) Trial. J Clin Oncol 2014; 32: 3600–3606

Bartelink H, Rubens RD, van der Schueren E et al. Hormonal therapy prolongs survival in irradiated locally advanced breast cancer: a European Organization for Research and Treatment of Cancer Randomized Phase III Trial. J Clin Oncol 1997; 15: 207–215

Scotti V, Desideri I, Meattini I et al. Management of inflammatory breast cancer: focus on radiotherapy with an evidence-based approach. Cancer Treat Rev 2013; 39: 119–124

Bellon JR, Come SE, Gelman RS et al. Sequencing of chemotherapy and radiation therapy in early-stage breast cancer: updated results of a prospective randomized trial. J Clin Oncol 2005; 23: 1934–1940

Hickey BE, Francis D, Lehman MH. Sequencing of chemotherapy and radiation therapy for early breast cancer. Cochrane Database Syst Rev 2006; (4): CD005212

Hickey BE, Francis DP, Lehman M. Sequencing of chemotherapy and radiotherapy for early breast cancer. Cochrane Database Syst Rev 2013; (4): CD005212

Pinnarö P, Rambone R, Giordano C et al. Long-term results of a randomized trial on the sequencing of radiotherapy and chemotherapy in breast cancer. Am J Clin Oncol 2011; 34: 238–244

Chen Z, King W, Pearcey R et al. The relationship between waiting time for radiotherapy and clinical outcomes: a systematic review of the literature. Radiat Oncol 2008; 87: 3–16

Huang J, Barbera L, Brouwers M et al. Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J Clin Oncol 2003; 21: 555–563

Halyard MY, Pisansky TM, Dueck AC et al. Radiotherapy and adjuvant trastuzumab in operable breast cancer: tolerability and adverse event data from the NCCTG Phase III Trial N9831. J Clin Oncol 2009; 27: 2638–2644

Wöckel A et al. Interdisciplinary Screening, Diagnosis, ... Geburtsh Frauenheilk 2018; 78: 1056–1088
[105] Li Y, Chang L, Li WH et al. Radiotherapy concurrent versus sequential with endocrine therapy in breast cancer: A meta-analysis. Breast 2016; 27: 93–98

[106] Goldhirsch A, Wood WC, Coates AS et al. Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011; 22: 1736–1747

[107] Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 1998; 352: 930–942

[108] Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Davies C, Godwin J, Gray R et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011; 378: 771–784

[109] Fisher B, Dignam J, Wolmark N et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 1997; 89: 1673–1682

[110] The International Breast Cancer Study Group; Thürlimann B, Price KN, Castiglione M et al. Randomized controlled trial of ovarian function suppression plus tamoxifen versus the same endocrine therapy plus chemotherapy: Is chemotherapy necessary for premenopausal women with node-positive, endocrine-responsive breast cancer? First results of International Breast Cancer Study Group Trial 11-93. The Breast 2001; 10: 130–138

[111] Burstein HJ, Ternim S, Anderson H et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer; American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol 2014; 32: 2255–2269

[112] Davies C, Pan H, Godwin J et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 2013; 381: 805–816

[113] Gray RG, Rea D, Handley K. aTTom: Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer. J Clin Oncol 2013; 31: 18_suppl, 5-5

[114] Rea DW, Gray RG, Bowden SJ. Overall and subgroup findings of the aTTom trial: A randomised comparison of continuing adjuvant tamoxifen to 10 years compared to stopping after 5 years in 6953 women with ER positive or ER untested early breast cancer. Eur J Cancer 2013; 49: 5402

[115] Eisen A, Fletcher GG, Gandhi S et al. Optimal Systemic Therapy for Early Female Breast Cancer. Toronto (ON): Cancer Care Ontario; 2014 Sep 30. Program in Evidence-Based Care Evidence-Based Series No.: 1–21

[116] Ferguson T, Wilcken N, Vagg R et al. Taxanes for adjuvant treatment of early breast cancer. Cochrane Database Syst Rev 2007; (4): CD004421

[117] Sparano JA, Zhao F, Martin S et al. Long-Term Follow-Up of the E1199 Phase III Trial Evaluating the Role of Taxane and Schedule in Operable Breast Cancer. J Clin Oncol 2015; 33: 2353–2360

[118] Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Peto R, Davies C, Godwin J et al. Comparisons between different polychemotherapy regimens for early breast cancer; meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012; 379: 432–444

[119] EBM Reviews. Multi-agent chemotherapy for early breast cancer. Cochrane Database Syst Rev 2003

[120] Budman DR, Berry DA, Cirrincione CT et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J Natl Cancer Inst 1998; 90: 1205–1211

[121] Fisher B, Anderson S, Wickerham DL et al. Increased intensification and total dose of cyclophosphamide in a doxorubicin-cyclophosphamide regimen for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-22. J Clin Oncol 1997; 15: 1858–1869

[122] French Adjuvant Study Group. Benefit of a high-dose epirubicin regimen in adjuvant chemotherapy for node-positive breast cancer patients with poor prognostic factors: 5-year follow-up results of French Adjuvant Study Group 05 randomized trial. J Clin Oncol 2001; 19: 602–611

[123] Fumoleau P, Kerbrat P, Romestaing P et al. Randomized trial comparing six versus three cycles of epirubicin-based adjuvant chemotherapy in premenopausal, node-positive breast cancer patients: 10-year follow-up results of the French Adjuvant Study Group 01 trial. J Clin Oncol 2003; 21: 298–305

[124] Swain SM, Jeong JH, Geyer CE jr. et al. Longer therapy, iatrogenic amenorrhea, and survival in early breast cancer. N Engl J Med 2010; 362: 2053–2065

[125] Bonadonna G, Zambetti M, Valagussa P. Sequential or alternating doxorubicin and CMF regimens in breast cancer with more than three positive nodes. Ten-year results. JAMA 1995; 273: 542–547

[126] Citron ML, Berry DA, Cirrincione C et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741. Cancer and Leukemia Group B Trial 9741. J Clin Oncol 2003; 21: 1431–1439

[127] Eiermann W, Pienkowski T, Lueck HJ et al. Intense dose-dense sequential chemotherapy with epirubicin, paclitaxel, and cyclophosphamide compared with conventionally scheduled chemotherapy in high-risk primary breast cancer: mature results of an AGO phase III study. J Clin Oncol 2010; 28: 2874–2880

[128] Del Mastro L, De Placido S, Bruzzi P et al. Fluorouracil and dose-dense chemotherapy: Is chemotherapy necessary for premenopausal women with early breast cancer. J Clin Oncol 2010; 28: 2360

[129] Moebus V, Jackisch C, Beck J et al. Intense dose-dense sequential chemotherapy with epirubicin, paclitaxel, and cyclophosphamide compared with conventionally scheduled chemotherapy in high-risk primary breast cancer: mature results of an AGO phase III study. J Clin Oncol 2010; 28: 2874–2880

[130] Del Mastro L, De Placido S, Bruzzi P et al. Fluorouracil and dose-dense chemotherapy in adjuvant treatment of patients with early-stage breast cancer: an open-label, 2 x 2 factorial, randomised phase 3 trial. Lancet 2015; 385: 1863–1872

[131] Bria E, Nistico C, Cuppone F et al. Benefit of taxanes as adjuvant chemotherapy for early breast cancer: pooled analysis of 15,500 patients. Cancer 2006; 106: 2337–2344

[132] Claverezza M, Del Mastro L, Venturini M. Taxane-containing chemotherapy in the treatment of early breast cancer patients. Ann Oncol 2006; 17 (Suppl. 7): vii22–vii26

[133] Estévez LG, Muñoz M, Alvarez I et al. Evidence-based use of taxanes in the adjuvant setting of breast cancer. A review of randomized phase III trials. Cancer Treat Rev 2007; 33: 474–483

[134] Henderson IC, Berry DA, Demetri GD et al. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 2003; 21: 976–983

[135] Mamounas EP, Lembersky B et al. Results from NSABP B-3696. J Clin Oncol 2006; 24: 5664–5671

[136] Roché H, Fumoleau P, Spielmann M et al. Sequential or concurrent anthracycline and docetaxel: Breast International Group 02-98 randomized trial. J Natl Cancer Inst 2008; 100: 121–133

[137] Blum JL, Flynn P, Yothors G et al. Anthracyclines in Early Breast Cancer: The ABC Trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol 2017; 35: 2647–2655
Cortazar P, Zhang L, Untch M et al. Pathological complete response
Wöckel A et al. Interdisciplinary Screening, Diagnosis, ... Geburtsh Frauenheilk 2018; 78: 1056–1088

[138] Ejlertsen B, Tuxen MK, Jakobsen EH et al. Adjuvant Cyclophosphamide and Doxorubicin With or Without Epirubicin for Early TOP2A-Normal Breast Cancer: DBCG 07-READ, an Open-Label, Phase III, Randomized Trial. J Clin Oncol 2017; 35: 2639–2646. doi:10.1200/JCO.2017.72.3494

[139] Harbeck N, Gluz O, Clemens MR et al. Prospective WSG phase III Plan8 trial: Final analysis of adjuvant 4xEC–4x doc vs. 6x docetaxel/cyclophosphamide in patients with high clinical risk and intermediate-to-high genomic risk HER2-negative, early breast cancer. J Clin Oncol 2017; 35:15_suppl, 504-504

[140] von Minckwitz G, Untch M, Nüesch E et al. Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat 2011; 125: 145–156

[141] Cortazar P, Zhang L et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014; 384: 164–172

[142] Kaufmann M, Hortobagyi GN, Goldhirsch A et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol 2006; 24: 1940–1949

[143] Bear HD, Anderson S, Smith RE et al. Sequential preoperative or post-operative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 2006; 24: 2019–2027

[144] von Minckwitz G, Blohmmer JU, Raab G et al. In vivo chemosensitivity-adapted preoperative chemotherapy in patients with early-stage breast cancer: the GEPARTRO pilot study. Ann Oncol 2005; 16: 56–63

[145] Petrelli F, Barni S. Meta-analysis of concomitant compared to sequential chemotherapy plus endocrine therapy in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol 2014; 15: 997–1006

[146] Frost SA, Nguyen ND, Center JR et al. Timing of repeat BMD measurements: development of an absolute risk-based prognostic model. J Bone Miner Res 2009; 24: 1800–1807

[147] Coleman R, Cameron D, Dodwell D et al. Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol 2014; 15: 997–1006

[148] Col NF, Hirota LK, Orr RK et al. Hormone replacement therapy after breast cancer: a systematic review and quantitative assessment of risk. J Clin Oncol 2001; 19: 2357–2363

[149] Kalder M, Hans D, Kyvernitakis I et al. Effects of Exemestane and Tamoxifen on Bone Health within the Tamoxifen Exemestane Adjuvant Multinational (TEAM) Trial: a meta-analysis of the US, German, Netherlands, and Belgian sub-studies. J Cancer Res Clin Oncol 2011; 137: 1015–1025

[150] Hadiji P, Ziller M, Maskow C et al. The influence of chemotherapy on bone mineral density, quantitative ultrasonometry and bone turnover in pre-menopausal women with breast cancer. Eur J Cancer 2009; 45: 3205–3212

[151] Hadji P, Ziller M, Maskow C et al. The influence of chemotherapy on bone mineral density, quantitative ultrasonometry and bone turnover in pre-menopausal women with breast cancer. Eur J Cancer 2009; 45: 3205–3212

[152] Kanis JA, Oden A, Johnell O et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007; 18: 1033–1046

[153] Wilson C, Holen I, Coleman RE. Seed, soil and secreted hormones: potential interactions of breast cancer cells with their endocrine/paracrine microenvironment and implications for treatment with bisphosphonates. Cancer Treat Rev 2012; 38: 877–889

[154] Kalder M, Hans D, Kyvernitakis I et al. Effects of Exemestane and Tamoxifen on Bone Health within the Tamoxifen Exemestane Adjuvant Multinational (TEAM) Trial: a meta-analysis of the US, German, Netherlands, and Belgian sub-studies. J Cancer Res Clin Oncol 2011; 137: 1015–1025

[155] Ben-Aharon I, Vidal L, Rizel S et al. Bisphosphonates in the adjuvant setting of breast cancer therapy – effect on survival: a systematic review and meta-analysis. PLoS One 2013; 8: e70044

[156] Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 2015; 386: 1353–1361

[157] Coleman R, Body JJ, Aapro M et al. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 2014; 25 (Suppl. 3): iii124–iii137

[158] Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). Supportive Therapie bei onkologischen PatientInnen-Konsultationsfassung, Langversion, 2016, AWMF Registernummer: 032–0540L, 2016. Online: http://leitlinienprogramm-onkologie.de/Supportive-Therapie.95.0.html; last access: 13.10.2016

[159] Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). Supportive Therapie bei onkologischen PatientInnen-Konsultationsfassung, Langversion, 2016, AWMF Registernummer: 032–0540L, 2016. Online: http://leitlinienprogramm-onkologie.de/Supportive-Therapie.95.0.html; last access: 13.10.2016

[160] Voskuil DW, van Nes JG, Junggeburt JM et al. Maintenance of physical activity guidelines for cancer survivors. CA Cancer J Clin 2012; 62: 2101–2101

[161] Rock CL, Doyle C, Demark-Wahnefried W et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin 2012; 62: 243–274

[162] Cheema BS, Kilbreath SL, Fahey PP et al. Safety and efficacy of progressive resistance training in breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2014; 148: 249–268
[173] Courneya KS, McKenzie DC, Mackey JR et al. Subgroup effects in a randomised trial of different types and doses of exercise during breast cancer chemotherapy. Br J Cancer 2014; 111: 1718–1725

[174] Irwin ML, Carstel B, Gross CP et al. Randomized exercise trial of aromatase inhibitor-induced arthralgia in breast cancer survivors. J Clin Oncol 2015; 33: 1104–1111

[175] Steindorf K, Schmidt ME, Klassen O et al. Randomized, controlled trial of resistance training in breast cancer patients receiving adjuvant radiotherapy: results on cancer-related fatigue and quality of life. Ann Oncol 2014; 25: 2237–2243

[176] Furmaniak AC, Menig M, Markes MH. Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Database Syst Rev 2016; (9):CD005001

[177] Meneses-Echavez JF, Gonzalez-Jimenez E, Ramirez-Velez R. Effects of supervised exercise on cancer-related fatigue in breast cancer survivors: a systematic review and meta-analysis. BMC Cancer 2015; 15: 77

[178] Bower JE, Bak K, Berger A et al. Screening, assessment, and management of fatigue in adult survivors of cancer: an American Society of Clinical Oncology clinical practice guideline adaptation. J Clin Oncol 2014; 32: 1840–1850

[179] Carayol M, Bernard P, Boiché J et al. Psychological effect of exercise in women with breast cancer receiving adjuvant therapy: what is the optimal dose needed? Ann Oncol 2013; 24: 291–300

[180] Mishra SJ, Scherer RW, Geigle PM et al. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev 2012; (8):CD007566

[181] Streicmann F, Kneis S, Leifert JA et al. Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann Oncol 2014; 25: 493–499

[182] Kellani M, Hasenoehr T, Neubauer M et al. Resistance exercise and secondary lymphedema in breast cancer survivors – a systematic review. Support Care Cancer 2014; 20: 1907–1916

[183] Nelson NL. Breast Cancer-Related Lymphedema and Resistance Exercise: A Systematic Review. J Strength Cond Res 2016; 30: 2656–2665

[184] Bok SK, Jeon Y, Hwang PS. Ultrasonographic Evaluation of the Effects of Resistance Training in Breast Cancer Patients Receiving Adjuvant Radiotherapy. Am J Phys Med Rehabil 2014; 93: 751–759; quiz 760–761

[185] Cormie P, Galvão DA, Spry N et al. Prognostic impact of pregnancy after breast cancer according to estrogen receptor status: a multicenter retrospective study. J Clin Oncol 2013; 31: 73–79

[186] Cormie P, Kroman N, Pecatori FA et al. Pregnancy following breast cancer using assisted reproduction and its effect on long-term outcome. Eur J Cancer 2015; 51: 1490–1496

[187] Lamberthini M, Del Mastro L, Pescio MC et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med 2016; 14: 1

[188] Genitori A, Costa M, Puntoni M et al. Breast cancer incidence after hormonal treatments for infertility: systematic review and meta-analysis of population-based studies. Breast Cancer Res Treat 2015; 150: 405–413

[189] Luke B, Brown MB, Missmer SA et al. Assisted reproductive technology use and outcomes among women with a history of cancer. Hum Reprod 2016; 31: 183–189

[190] Loibl S, Han SN, von Minckwitz G et al. Treatment of breast cancer during pregnancy: an observational study. Lancet Oncol 2012; 13: 887–896

[191] Loibl S, Schmidt A, Gentilini O et al. Breast Cancer Diagnosed During Pregnancy: Adapting Recent Advances in Breast Cancer Care for Pregnant Patients. JAMA Oncol 2015; 1: 1145–1153

[192] National Toxicology Program. NTP Monograph: Developmental Effects and Pregnancy Outcomes Associated With Cancer Chemotherapy Use During Pregnancy. NTP Monogr 2013; (2): 1–214

[193] Zagouri F, Sargentini TN, Chrysikos D et al. Trastuzumab administration during pregnancy: a systematic review and meta-analysis. Breast Cancer Res Treat 2013; 137: 349–357

[194] Del Mastro L, Rossi G, Lamberthini M et al. New insights on the role of luteinizing hormone releasing hormone agonists in postmenopausal early breast cancer patients. Cancer Treat Rev 2016; 42: 18–23

[195] Vitek WS, Shaye M, Hoeger K et al. Gonadotropin-releasing hormone agonists for the preservation of ovarian function among women with breast cancer who did not use tamoxifen after chemotherapy: a systematic review and meta-analysis. Fertil Steril 2014; 102: 808–815.e1

[196] Moore HC, Unger JM, Phillips KA et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N Engl J Med 2015; 372: 923–932

[197] Del Mastro L, Boni L, Michelotti A et al. Effect of the gonadotropin-releasing hormone analogue triptorelin on the occurrence of chemother-apy-induced early menopause in premenopausal women with breast cancer: a randomized trial. JAMA 2011; 306: 269–276

[198] Del Mastro L, Boni L, Michelotti A et al. Ovarian Suppression With Triptorelin During Adjuvant Breast Cancer Chemotherapy and Long-term Ovarian Function, Pregnancies, and Disease-Free Survival: A Randomized Clinical Trial. JAMA 2015; 314: 2632–2640

[199] Gerber B, von Minckwitz G, Stehle H et al. Gonadotropin-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: the GBG 37 ZORO study. J Clin Oncol 2011; 29: 2334–2341

[200] Munster PN, Moore AP, Ismail-Khan R et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol 2012; 30: 533–538

[201] Kahi T, Babic-illiman G, Ross P et al. The impact of comprehensive geriatric assessment interventions on tolerance to chemotherapy in older people. Br J Cancer 2015; 112: 1435–1444

[202] Hall DE, Arya S, Schmid KK et al. Association of a Frailty Screening Initiative With Postoperative Survival at 30, 180, and 365 Days. JAMA Surg 2017; 152: 233–240

[203] Le Saux O, Ripamonti B, Brays A et al. Optimal management of breast cancer in the elderly patient: current perspectives. Clin Interv Aging 2015; 10: 157–174

[204] Decoster L, Van Puyvelde K, Mohile S et al. Screening tools for multidimensional health problems warranting a geriatric assessment in older cancer patients: an update on SIOG recommendations. Ann Oncol 2015; 26: 288–300
[211] Clough-Gorr KM, Stuck AE, Thwin SS et al. Older breast cancer survivors: geriatric assessment domains are associated with poor tolerance of treatment adverse effects and predict mortality over 7 years of follow-up. J Clin Oncol 2010; 28: 380–386

[212] Mislang AR, Biganzoli L. Adjuvant Systemic Therapy in Older Breast Cancer Women: Can We Optimize the Level of Care? Cancers (Basel) 2015; 7: 1191–1214

[213] Biganzoli L, Wildiers H, Oakman C et al. Management of elderly patients with breast cancer: updated recommendations of the International Society of Geriatric Oncology (SIOG) and European Society of Breast Cancer Specialists (EUSOMA). Lancet Oncol 2012; 13: e148–e160

[214] Thavarajah N, Menják I, Trudeau M et al. Towards an optimal multidisciplinary approach to breast cancer treatment for older women. Can Oncol Nurs J 2015; 25: 384–408

[215] Morgan J, Wylde L, Collins KA et al. Surgery versus primary endocrine therapy for operable primary breast cancer in elderly women (70 years plus). Cochrane Database Syst Rev 2014; (5): CD004272. doi:10.1002/14651858.CD004272.pub3

[216] Christiansen P, Bjørke K, Ejlertsen B et al. Mortality rates among early-stage hormone-receptor-positive breast cancer patients: a population-based cohort study in Denmark. J Natl Cancer Inst 2011; 103: 1363–1372

[217] Lange M, Heutte N, Rigal O et al. Decline in Cognitive Function in Older Adults With Early-Stage Breast Cancer After Adjuvant Treatment. Oncologist 2016; 21: 1337–1348. doi:10.1634/theoncologist.2016-0014

[218] Ono M, Ogilvie JM, Wilson JS et al. Cardiac Outcomes of Patients Receiving Adjuvant Weekly Paclitaxel and Trastuzumab for Node-Negative, ERBB2-Positive Breast Cancer. JAMA Oncol 2016; 2: 29–36

[219] Dall P, Lenzen G, Göhler T et al. Trastuzumab in the treatment of elderly patients with early breast cancer: Results from an observational study in Germany. J Geriatr Oncol 2015; 6: 462–469

[220] Brollo J, Curigliano G, Disalvatore D et al. Adjuvant trastuzumab in elderly with HER-2 positive breast cancer: a systematic review of randomized controlled trials. Cancer Treat Rev 2013; 39: 44–50

[221] Jones SE, Savin MA, Holmes FA et al. Phase III trial comparing doxorubicin plus cyclophosphamide with doxetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol 2006; 24: 5381–5387

[222] Dang C, Guo H, Najita J et al. Cardiac Outcomes of Patients Receiving Adjuvant Weekly Paclitaxel and Trastuzumab for Node-Negative, ERBB2-Positive Breast Cancer. JAMA Oncol 2016; 2: 29–36

[223] Tolaney SM, Barry WT, Dang CT et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N Engl J Med 2015; 372: 134–141

[224] Castro E, Cohn G, Olmos D et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013; 31: 1748–1757

[225] Deutsch M. Repeat high-dose external beam irradiation for in-breast tumor recurrence after previous lumpectomy and whole breast irradiation. Int J Radiat Oncol Biol Phys 2002; 53: 687–691

[226] Haferty BG, Reiss M, Beinfeld M et al. Ipsilateral breast tumor recurrence as a predictor of distant disease: implications for systemic therapy at the time of local relapse. J Clin Oncol 1996; 14: 52–57

[227] Kurtz JM, Jacquemier J, Amalic R et al. Is breast conservation after local recurrence feasible? Eur J Cancer 1991; 27: 240–244

[228] Whelan T, Clark R, Roberts R et al. Ipsilateral breast tumor recurrence postlumpectomy is predictive of subsequent mortality: results from a randomized trial. Investigators of the Ontario Clinical Oncology Group. Int J Radiat Oncol Biol Phys 1994; 30: 11–16

[229] Fossati R, Confalonieri C, Torri V et al. Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31,510 women. J Clin Oncol 1998; 16: 3439–3460

[230] Stockler M, Wilckien N, Ghersi D, Simes RJ. The management of advanced breast cancer: systematic reviews of randomised controlled trials regarding the use of cytotoxic chemotherapy and endocrine therapy. Woolloomooloo: NHMRC National Breast Cancer Centre; 1997

[231] Stockler M, Wilckien NR, Ghersi D et al. Systematic reviews of chemotherapy and endocrine therapy in metastatic breast cancer. Cancer Treat Rev 2000; 26: 151–166

[232] Rugo HS, Rumble RB, Macrae E et al. Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2014; 32: 3307–3329

[233] Prat PD, Boggia C, Zanetti R et al. Comparison of chemotherapy with hormonal therapy as first-line therapy for metastatic, hormone-sensitive breast cancer: An Eastern Cooperative Oncology Group study. J Clin Oncol 2000; 18: 262–266

[234] Klijn JG, Blamey RW, Boccardo F et al. Combined tamoxifen and luteinizing hormone-releasing hormone (LHRH) agonist versus LHRH agonist alone in premenopausal advanced breast cancer: a meta-analysis of four randomized trials. J Clin Oncol 2001; 19: 343–353
Robert NJ, Diéras V, Glaspy J et al. RIBBON

[246] National Breast and Ovarian Cancer Centre. Recommendations for follow-up of women with early breast cancer. SurryHills, NSW: National Breast and Ovarian Cancer Centre; 2010. Online: https://guidelines.canceraustralia.gov.au/guidelines/early_breast_cancer/

[247] Taylor CW, Green S, Dalton WS et al. Multicenter randomized clinical trial of goserelin versus surgical ovariectomy in premenopausal patients with receptor-positive metastatic breast cancer: an intergroup study. J Clin Oncol 1998; 16: 994–999

[248] Loibl S, Turner NC, Ro J et al. Palbociclib (PAL) in combination with fulvestrant (F) in pre-/peri-menopausal (ProM) women with metastatic breast cancer (MBC) and prior progression on endocrine therapy – results from Paloma-3. J Clin Oncol 2016; 34: (Suppl.): Abstr. 524

[249] Ellis M, Hayes D, Lippman M. Treatment of metastatic breast cancer. Cancer 2000; 2000: 749–797

[250] Hayes DF, Henderson IC, Shapiro CL. Treatment of metastatic breast cancer: present and future prospects. Semin Oncol 1995; 22: (2 Suppl. 5): 5–19; discussion 19–21

[251] Mouridsen H, Gershaniovich M, Sun Y et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 2001; 19: 2596–2606

[252] Mouridsen H, Sun Y, Gershniovich M et al. First-line therapy with letrozole (femara®) for advanced breast cancer prolongs time to worsening of Karnofsky Performance Status compared with tamoxifen. Breast Cancer Res Treat 2001; 69: 185. doi:10.1016/S0921-6934(01)00779-1

[253] Christensen SG, Blichert-Toft M, Sorensen H et al. Predictive value of letrozole as first-line therapy for postmenopausal women with advanced breast cancer: results of a randomized phase III trial. J Clin Oncol 2008; 26: 2489–2496

[254] Miller K, Wang M, Gralow J et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007; 357: 2666–2676

[255] Gray R, Bhattacharya S, Bowden C et al. Independent review of E2100: – with metastatic breast cancer. J Clin Oncol 2003; 21: 588–592

[256] Sledge GW, Neuberg D, Bernardo P et al. Phase III trial of doxorubicin, paclitaxel, and combination of doxorubicin and paclitaxel as frontline chemotherapy for metastatic breast cancer: an intergroup trial (E1193). J Clin Oncol 2003; 21: 588–592

[257] Kocher M, Soffietti R, Abacioglu U et al. The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-oncol 2010; 96: 33–43

[258] Cardia S, Parikh P, Wilcken N et al. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev 2005; (2): CD003372

[259] Giordano SH, Temin S, Kishner JJ et al. Systemic therapy for patients with advanced human epidermal growth factor receptor 2-positive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 2014; 32: 2078–2099

[260] Buzdugi S, Mantarro S, Guarneri V et al. Trastuzumab-containing regimens for metastatic breast cancer. Cochrane Database Syst Rev 2014; (6): CD006242

[261] Kalkanis SN, Kondziolka D, Gaspar LE et al. The role of surgical ressection for metastatic brain tumors: a systematic review and evidence-based clinical practice guideline. J Neuro-oncol 2010; 96: 33–43

[262] Patchell RA, Tibbs PA, Walsh JW et al. A randomized trial of surgery for isolated brain metastases. N Engl J Med 1990; 322: 494–500

[263] Vecht CJ, Haaxma-Reiche H, Noordijk EM et al. Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol 1993; 33: 583–590

[264] Patchell RA, Tibbs PA, Regine WF et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 1998; 280: 1485–1489

[265] Kondziolka D, Patel A, Lunsford LD et al. Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 1999; 45: 427–434

[266] Andrews DW, Scott CB, Sperduto PW et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomized trial. Lancet 2004; 363: 1665–1672

[267] Aoyama H, Shirato H, Tago M et al. Stereotactic radiosurgery plus whole brain radiation therapy vs. stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 2006; 295: 2483–2491

[268] Chang EL, Wefel JS, Hess KR et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomized controlled trial. Lancet Oncol 2009; 10: 1037–1044

[269] Kocher M, Soffietti R, Abacioglu U et al. Adjuvant whole-brain radiation therapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 2011; 29: 134–141

[270] Brown PD, Jaekle K, Ballman KV et al. Effect of Radiosurgery Alone vs. Radiosurgery With Whole-Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA 2016; 316: 401–409

[271] Li XP, Meng ZQ, Guo WJ et al. Treatment for liver metastases from breast cancer: results and prognostic factors. World J Gastroenterol 2005; 11: 3782–3787

[272] Mariani P, Servois V, De Rycke Y et al. Liver metastases from breast cancer (MBC) and prior progression on endocrine therapy: An intergroup study. J Clin Oncol 1998; 16: 994

[273] Mariani P, Servois V, De Rycke Y et al. Liver metastases from breast cancer (MBC) and prior progression on endocrine therapy: An intergroup study. J Clin Oncol 1998; 16: 994

[274] Kocher M, Soffietti R, Abacioglu U et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 2011; 29: 134–141

[275] Brown PD, Jaekle K, Ballman KV et al. Effect of Radiosurgery Alone vs. Radiosurgery With Whole-Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA 2016; 316: 401–409

[276] Li XP, Meng ZQ, Guo WJ et al. Treatment for liver metastases from breast cancer: results and prognostic factors. World J Gastroenterol 2005; 11: 3782–3787

[277] Mariani P, Servois V, De Rycke Y et al. Liver metastases from breast cancer (MBC) and prior progression on endocrine therapy: An intergroup study. J Clin Oncol 1998; 16: 994

[278] Mariani P, Servois V, De Rycke Y et al. Liver metastases from breast cancer (MBC) and prior progression on endocrine therapy: An intergroup study. J Clin Oncol 1998; 16: 994

[279] Mariani P, Servois V, De Rycke Y et al. Liver metastases from breast cancer (MBC) and prior progression on endocrine therapy: An intergroup study. J Clin Oncol 1998; 16: 994
[280] Ruiz A, Castro-Benitez C, Sebagh M et al. Repeat Hepatectomy for Breast Cancer Liver Metastases. Ann Surg Oncol 2015; 22 (Suppl. 3): S1057–S1066

[281] Zhou JH, Rosen D, Andreou A et al. Residual tumor thickness at the tumor-normal tissue interface predicts the recurrence-free survival in patients with liver metastasis of breast cancer. Ann Diagn Pathol 2014; 18: 266–270

[282] Polistina F, Costantin G, Febbraro A et al. Aggressive treatment for hepatic metastases from breast cancer: results from a single center. World J Surg 2013; 37: 1322–1332

[283] van Walsum GA, de Ridder JA, Verhoef C et al. Resection of liver metastases in patients with breast cancer: survival and prognostic factors. Eur J Surg Oncol 2012; 38: 910–917

[284] Abbott DE, Brouquet A, Mittendorf EA et al. Resection of liver metastases from breast cancer: estrogen receptor status and response to chemotherapy before metastasectomy define outcome. Surgery 2012; 151: 710–716

[285] Spolverato G, Vitale A, Bagante F et al. Liver Resection for Breast Cancer Liver Metastases: A Cost-utility Analysis. Ann Surg 2017; 265: 792–799. doi:10.1097/SLA.0000000000001715

[286] Fan J, Chen D, Du H et al. Prognostic factors for resection of isolated pulmonary metastases in breast cancer patients: a systematic review and meta-analysis. J Thorac Dis 2015; 7: 1441–1451

[287] Meimarakis G, Rüttinger D, Stemmler J et al. Prolonged overall survival after pulmonary metastasectomy in patients with breast cancer. Ann Thorac Surg 2013; 95: 1170–1180

[288] Kydler W, Laski P. Surgical approach to pulmonary metastases from breast cancer. Breast J 2012; 18: 52–57

[289] Garcia-Yuste M, Cassivi S, Paleru C. Pulmonary metastasectomy in breast cancer. J Thorac Oncol 2010; 5: S170–S171

[290] Yhim HY, Han SW, Oh DY et al. Prognostic factors for recurrent breast cancer patients with an isolated, limited number of lung metastases and implications for pulmonary metastasectomy. Cancer 2010; 116: 2890–2901

[291] Clive AO, Jones HE, Bhatnagar R et al. Interventions for the management of malignant pleural effusions: a network meta-analysis. Cochrane Database Syst Rev 2016; (5): CD010529
Guideline Program

Editors
Leading Professional Medical Associations

German Society of Gynecology and Obstetrics (Deutsche Gesellschaft für Gynäkologie und Geburtshilfe e.V. [DGGG])
Head Office of DGGG and Professional Societies
Hausvogteiplatz 12, DE-10117 Berlin
info@dggg.de
http://www.dggg.de/

President of DGGG
Prof. Dr. Anton Scharl
Direktor der Frauenkliniken
Klinikum St. Marien Amberg
Mariahilfbergweg 7, DE-92224 Amberg
Kliniken Nordoberpfalz AG
Söllnerstraße 16, DE-92637 Weiden

DGGG Guidelines Representatives
Prof. Dr. med. Matthias W. Beckmann
Universitätsklinikum Erlangen, Frauenklinik
Universitätsstraße 21–23, DE-91054 Erlangen

Prof. Dr. med. Erich-Franz Solomayer
Universitätsklinikum des Saarlandes
Geburtshilfe und Reproduktionsmedizin
Kirrberger Straße, Gebäude 9, DE-66421 Homburg

Guidelines Coordination
Dr. med. Paul Gaß, Christina Meixner
Universitätsklinikum Erlangen, Frauenklinik
Universitätsstraße 21–23, DE-91054 Erlangen
fk-dggg-leitlinien@uk-erlangen.de
http://www.dggg.de/leitlinienstellungnahmen

Austrian Society of Gynecology and Obstetrics (Österreichische Gesellschaft für Gynäkologie und Geburtshilfe [OEGGG])
Innrain 66A, AT-6020 Innsbruck
stephanie.leutgeb@oeggg.at
http://www.oeggg.at

President of OEGGG
Prof. Dr. med. Petra Kohlberger
Universitätsklinik für Frauenheilkunde Wien
Währinger Gürtel 18–20, AT-1180 Wien

OEGGG Guidelines Representatives
Prof. Dr. med. Karl Tamussino
Universitätsklinik für Frauenheilkunde Graz
Auenbruggerplatz 14, AT-8036 Graz

Prof. Dr. med. Hanns Helmer
Universitätsklinik für Frauenheilkunde Wien
Währinger Gürtel 18–20, AT-1090 Wien

Swiss Society of Gynecology and Obstetrics (Schweizerische Gesellschaft für Gynäkologie und Geburtshilfe [SGGG])
Gynécologie Suisse SGGG
Altenbergstraße 29, Postfach 6, CH-3000 Bern 8
sekretariat@sggg.ch
http://www.sggg.ch/

President of SGGG
Dr. med. David Ehm
FMH für Geburtshilfe und Gynäkologie
Nägeligasse 13, CH-3011 Bern

SGGG Guidelines Representatives
Prof. Dr. med. Daniel Surbek
Universitätsklinik für Frauenheilkunde Geburtshilfe und feto-maternale Medizin
Inselspital Bern
Effingerstraße 102, CH-3010 Bern

Prof. Dr. med. René Hornung
Kantonsspital St. Gallen, Frauenklinik
Rorschacher Straße 95, CH-9007 St. Gallen