Damage Diagnosis in Circular Structures using Cartesian Wavelet Analysis: A Comparison between Two Structural Signals

Ahmad Mahdian Parrany1, Sajjad Seifoori1,\ast, Hamid Sharifi1, Mohammad Javad Khoshgoftar2
1– Department of Mechanical Engineering, Vali–e–Asr University of Rafsanjan, Rafsanjan, Iran
2– Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, Iran
\astCorresponding Author, E-mail Address: sajjad.seifoori@vru.ac.ir

Abstract

Circular structures are used in a wide variety of engineering mechanisms and devices. In this paper, an effective algorithm on the basis of the complex mappings is proposed to identify defects in circular structures using Cartesian damage detection techniques. The efficacy of the proposed algorithm is demonstrated through damage identification in circular plates using the Cartesian wavelet analysis. The vibration and thermal responses of the structure, as two important structural signals, are imported into the proposed algorithm to evaluate the abilities of the signals in identifying the damage location and severity. Finally, two experimental tests are conducted to explore the efficacy of the proposed algorithm in real applications.

Keywords
Structural health monitoring; Non–destructive testing; Damage detection; Circular structures; Wavelet analysis

1. Introduction
Nowadays, circular structures are widely used in many engineering mechanisms and devices. Circular plates, a type of circular structures, are widespread components in many engineering structures such as diaphragms of steam turbines, nozzle covers, disks of compressors, disks of couplings and clutches, and bulkheads in submarines and airplanes. Hemispherical shells, another type of circular structures, are commonly used as end closures in pressure vessels and storage tanks. These structures are susceptible to defects, like wall–thinning or erosion, because they are usually exposed to severe environmental conditions. Therefore, finding an efficient damage diagnosis algorithm for circular structures seems essential in order to identify the damages at their early stage of development and prevent sudden failure. In recent years, only a few researchers have studied damage identification in circular structures [1–6].

Pai et al. [1] presented the analytical dynamic characteristics of a circular aluminum plate with a free outer rim and a clamped inner rim using two methods; one used the multiple–shooting method and the other used Bessel functions. The small defects in circular plates could be identified in experimental tests by the boundary effect detection method, which is a non–destructive dynamics–based method. Also, they proposed a new concept using the balance of elastic and kinetic energies within a mode cell for detecting defects in two–dimensional (2–D) structures with irregular shapes. Giurgiutiu et al. [2] developed and validated an analytical model for two–dimensional thin–wall structures that predicts the electro–mechanical impedance response at piezoelectric wafer active sensors (PWAS) terminals. The model involves flexural and axial vibrations of the structure and considers both sensor dynamics and structural dynamics. Calibration experiments on circular thin plates with centrally attached PWAS indicated that damage changes the high–frequency electro–mechanical impedance spectrum resulting in appearance of new harmonics, peak splitting, and frequency shifts. Trendafoilova et al. [3] investigated the improvement of vibration–based health monitoring methods for thin circular plates. They presented the idea of using the
nonlinear time series and large amplitude vibrations analysis for damage detection in circular plates. The proposed damage detection methodology also explored the possibility to use certain distribution characteristics of phase space points on the attractor of the system. Katunin [4] applied the polar wavelet transform to modal shapes to detect and identify external and internal damages in composite structures with circular geometry. The results of comparative study showed that damage detectability strongly depends on selecting an appropriate type of wavelet. Praisach et al. [5] investigated changes in natural frequency when damage appears in circular clamped plates. They demonstrated that the curve shape does not change by increasing the damage angle, but the frequency ratio is increased. They also showed the frequency change is insignificant at higher vibration modes, when damage is located at the center of a circular plate. Salmi et al. [6] studied damage identification in the adhesion between a metal hemisphere and a polymer base in case only the rim is accessible. They conducted a series of experiments on a 5 cm diameter metal hemisphere attached to a polymer base and could detect the damage location using a laser Doppler vibrometer and a guided ultrasonic wave (Lamb quasi–modes) generated from the rim of the shell.

The key point is that there are many effective damage detection techniques in the literature, which are suitable for rectangular structures in the Cartesian coordinates [7–12]. Most of these techniques are not directly applicable to circular structures, and it is also very difficult to extend them to the polar coordinates. Ganguli [7] introduced various methods for structural health monitoring and damage detection in aerospace, civil, and mechanical structures in the presence of model uncertainty. Modal curvature–based damage detection, wavelet–based damage detection, fractal dimension–based damage detection as well as the application of fuzzy logic and probability theory in damage detection were presented. Ghannadi et al. [9] combined Modal Test Analysis Model with artificial neural networks (ANN) to propose an effective method for damage assessment based on limited measured locations in skeletal
structures. The Modal Test Analysis Model was utilized to estimate the unmeasured degrees of freedom and unmeasured mode shapes, while an artificial neural network was trained to estimate the damage characteristics. Numerical simulations showed a high accuracy for structural damage detection. Seifoori et al. [11] studied the behavior of curved composite laminates under low-velocity impact loads. The area of the damaged zone and time history of the mid-point deflection of the laminate due to the impact were considered as two important indices and the effect of the shape of the impactor nose on the behavior of the curved composite laminate was probed. Gogolewski [13] diagnosed the surface texture of machine parts using fractional spline wavelets. Additive technology and face milling were utilized to prepare the surface profiles of samples. The effects of scaling function order and decomposition level on filtration process were examined, and a comparison between the results of fractional spline wavelet and one-dimensional discrete wavelet transform was conducted. Katunin et al. [14] applied the fractional discrete wavelet transform to the vibration mode shapes of composite plates for damage detection and localization. They used heuristic optimization algorithms to tune the values of wavelets’ parameters and improve the sensitivity of the method. Several numerical and experimental tests were conducted to assess the effectiveness of the method. More recently, Shi et al. [15] presented a damage detection strategy based on the two-dimensional directional continuous wavelet transform of mode shapes for identifying line-type damages in plate structures. They evaluated the influence of line-type damages on plate vibration behavior by an analytical long narrow notch-type damage model for simply-supported plates. Employing the excitation–response system of the Scanning laser Doppler Vibrometers and Piezoelectric Leadzirconate–Titanate, an experimental modal test on an artificially-induced notched aluminum alloy clamped plate was conducted to assess the practicability and efficiency of the presented algorithm. Hassani et al. [16] developed a novel optimization problem for defect identification of structures with
closely-spaced eigenvalues. They introduced a mode shape sensitivity-based cost function for defect assessment. Two spatial trusses with multiple damaged elements were considered as case studies, and it was shown that the proposed method has a better performance than some previous methods. Zhang et al. [17] introduced an iterative partition method based on waveform centroid in order to locate damage sites in a plate using a few sensors. The performance of the method was assessed by performing several experiments on an aluminum alloy plate using four piezoceramics to act as exciters and receivers, and the Lamb waves to scan the plate structure. Song et al. [18] used the fuzzy entropy and singular spectrum analysis to establish an innovative algorithm for damage detection in thin plates. To generate and detect the Lamb waves, the lead zirconate titanate transducers were employed. The singular spectrum analysis was used to decompose and reconstruct the sensing data, and the normalized fuzzy entropy was considered as an index for damage severity. They also designed an experimental setup for an aluminium plate to evaluate the performance of the presented algorithm. Li et al. [19] proposed a damage detection algorithm using strain mode differences, and the inverse finite element method based on a convolutional neural network. They considered the strain mode differences contaminated by random noises as the input data of the convolutional neural network, and demonstrated the acceptable efficiency of the proposed algorithm. Hu et al. [20] presented an innovative algorithm for defect identification based on the Lamb waves. The algorithm included two defect measures based on the amplitudes of low-frequency signal direct wave and high-frequency signal maximum component. Numerical simulations and experimental tests on steel plates with various defect depths showed that the algorithm is sensitive to the defect depth. Xu et al. [21] used the model updating technique and the estimation of distribution algorithm for defect identification in a single-layer cylindrical latticed shell. Numerical and experimental results demonstrated the effectiveness of the presented defect detection algorithm in the presence of
noise interference and multiple damage conditions. It was also shown that the average
detection accuracy of the numerical and experimental data is over 90% and 82%,
respectively. It is worth mentioning that all of the damage detection algorithms presented in
the above cited papers are applicable only for rectangular structures in the Cartesian
coordinates.
Meanwhile, it is well–known that the input of most of the existing damage detection
techniques is a physical signal obtained from the structure. In addition, there is a basic
principle expressing that any anomaly alters the physical characteristics of the structure
locally. In this regard, it has been proven that the vibration mode shapes and thermal
responses of the structure are two efficient signals for damage detection [22–29]. Seifoori et
al. [29] presented an experimental study on damage intensity in rectangular composite plates
under low–velocity impacts. They used infrared thermography with hot airflow, infrared
thermography with a heating element, and ultrasonic vibrothermography for damage
detection and evaluation. The wavelet analysis was employed to locate the damage in the
thermography images in which the damage was not observable. The experiments showed that
the vibrothermography method is the most promising technique for damage evaluation in
rectangular composite plates under low–velocity impacts.
The main purpose of this paper is to present an effective algorithm facilitating the application
of damage detection techniques in the Cartesian coordinates, such as the wavelet analysis, to
round structures. The other goal of this paper is to compare the damage diagnosis results
obtained from vibration mode shapes and thermal responses as two important structural
signals from damage detection points of view. The efficacy of the proposed algorithm is
evaluated through damage detection in circular plates based on vibrational and thermal
responses using the wavelet analysis as a Cartesian damage detection technique. Finally,
experimental studies are conducted to verify the effectiveness of the proposed algorithm in
real applications. The original contributions and scientific values of this paper are explained as follows. (i) There is no paper in the literature studying damage detection in circular plates using thermal analysis or active thermography. (ii) This paper establishes a general framework based on the complex mappings for damage detection in circular structures using Cartesian damage detection techniques. (iii) The damage detection algorithm presented in this paper can be easily extended and applied to other partially regular geometries and shapes.

2. Theoretical Background

Since, in this study, the surface temperature distribution and first vibration mode shape of circular plate are the reference signals for damage diagnosis, the theoretical backgrounds regarding transient thermal analysis and vibration analysis of circular plates are presented in brief. The mathematics of the wavelet analysis is discussed as well.

2.1. Thermal Analysis

The theoretical basis of transient thermal analysis for a circular plate using the heat conduction equation can be found in [30–31]. The heat conduction equation must be solved to acquire the temperature distribution of the structure. For a stationary, homogeneous, and isotropic structure, the general form of the heat conduction equation is as the following,

\[\nabla \cdot (k \nabla T) + q = \rho c_p \frac{\partial T}{\partial t} \]

(1)

in which \(k, T, q, \rho, c_p, \) and \(t \) are the thermal conductivity, temperature distribution, rate of internal heat generation, density, specific heat capacity of the structure, and time, respectively. For the circular plate depicted in Fig. 1(a) with considering no internal heat
generation and constant thermal conductivity, the heat conduction equation governing the temperature distribution of the structure is simplified as the following,

\[k \nabla^2 T = \rho c_p \frac{\partial T}{\partial t} \quad \text{in} \quad S \] \hspace{1cm} (2)

The initial and boundary conditions are considered as the following,

\[
\begin{cases}
 k \frac{\partial T}{\partial n} + hT = hT_A & \text{on} \quad A \\
 T = T_B & \text{on} \quad B \\
 T(t=0) = T_0 & \text{in} \quad S \cup B
\end{cases}
\] \hspace{1cm} (3)

with \(n, h, T_0, T_B, \) and \(T_A \) as the outward–drawn normal unit vector to the surface, convection heat transfer coefficient, initial temperature, temperature field of the bottom surface, and ambient temperature, respectively. Solving the partial differential equation given in Eq. (2) with the initial and boundary conditions of Eq. (3) yields the complete temperature distribution of the circular plate.

2.2. Vibration Analysis

The fundamentals of vibration analysis of circular plates can be found in [32]. For the homogeneous and isotropic circular plate shown in Fig. 1(b), the governing motion equation for the forced transverse vibration is expressed as the following,

\[D \nabla^4 w + \rho b \frac{\partial^2 w}{\partial t^2} = f \quad \text{in} \quad S \] \hspace{1cm} (4)

where \(D, b, \) and \(w \) denote the flexural rigidity, thickness, and displacement field of the plate, respectively. In addition, \(f \) is the distributed transverse load acting on the plate per unit area,
which must be replaced by zero in case of the natural mode shapes of the plate. The outer edge of the plate is considered to be fully clamped or fixed as shown in Fig. 1(b), so the boundary condition can be mathematically represented as the following,

$$w = 0 \quad \text{on} \quad \partial$$

(5)

Solving Eq. (4) with the boundary condition presented in Eq. (5) yields the natural vibration mode shapes of the circular plate. In this paper, the surface temperature distribution and first vibration mode shape of circular plate are acquired by employing the ABAQUS software package to develop a three–dimensional finite element model of the structure.

2.3. Wavelet Analysis

In this subsection, the mathematical formulation of the wavelet transform is briefly presented. More details can be found in [33–35]. Wavelets are localized waves which have zero mean and after a few oscillations drop to zero. They can be real or complex functions denoted by \(\psi(x, y)\). This function is known as the mother wavelet since it is possible to produce a series of wavelet functions \(\psi_{s,u,v}(x, y)\) by altering the scale \(s\) and the position of the wavelet window in the horizontal and vertical directions \((u, v)\) over the signal as the following,

$$\psi_{s,u,v}(x, y) = \frac{1}{\sqrt{s}} \psi \left(\frac{x-u}{s}, \frac{y-v}{s} \right)$$

(6)

The 2–D continuous wavelet transform (CWT) of the signal \(f(x, y)\), which belongs to the Hilbert space of measurable, square–integrable functions, is defined as the following,

$$CWT_{s,u,v} = \left\langle f, \psi_{s,u,v} \right\rangle = \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \psi^* \left(\frac{x-u}{s}, \frac{y-v}{s} \right) dx dy$$

(7)
where the scale parameter s, and the translation parameters u and v are real numbers and $s \neq 0$. Furthermore, $\psi^*(x, y)$ is the complex conjugate of the mother wavelet $\psi(x, y)$, and $CWT(s, u, v)$ is the output of the 2–D continuous wavelet transform known as the wavelet detail coefficient. It shows how well a wavelet function correlates with the signal being transformed. Any sudden or sharp discontinuity or irregularity in the signal leads the wavelet detail coefficient to have large magnitudes or local maximums, and it is exactly the fundamental idea of damage diagnosis using the wavelet analysis. In the 2–D discrete wavelet analysis, the scale and translation parameters are discretized in order to reduce data size and computational time. Although there are several ways of discretization, the most common form of the discrete wavelet analysis, known as the standard discrete wavelet transform (DWT), is formulated as the following,

$$DWT(j, k, m) = \left\{ f, \psi_{j, k, m} \right\} = \frac{1}{2^j} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \psi^* \left(\frac{x - k 2^j}{2^j}, \frac{y - m 2^j}{2^j} \right) dx dy$$ \hspace{1cm} (8)

in which j is an integer called the dilation or decomposition level, and k and m are two integers called the translation parameters in the horizontal and vertical directions, respectively. In the literature of the wavelet analysis, there is another important function called the scaling function denoted by $\phi(\cdot)$. It is also known as the father wavelet corresponding to the mother wavelet $\psi(\cdot)$. In the 2–D wavelet transform, based on the separability principle, there are three various wavelet functions as the following,

$$\begin{align*}
\psi^V(x, y) &= \phi(x) \psi(y) \\
\psi^H(x, y) &= \psi(x) \phi(y) \\
\psi^D(x, y) &= \psi(x) \psi(y)
\end{align*} \hspace{1cm} (9)$$
in which ψ^D, ψ^H, and ψ^V are the diagonal, horizontal, and vertical wavelet functions, respectively. Subsequently, the corresponding wavelet detail coefficients are extracted as the following,

\[
\begin{align*}
D^D_j (k, m) &= \langle f, \psi^D_{j,k,m} \rangle \\
D^H_j (k, m) &= \langle f, \psi^H_{j,k,m} \rangle \\
D^V_j (k, m) &= \langle f, \psi^V_{j,k,m} \rangle
\end{align*}
\]

(10)

where D^D_j, D^H_j, and D^V_j are known as the diagonal, horizontal, and vertical wavelet detail coefficients at the decomposition level of j, respectively. The wavelet detail coefficients are of great interest and importance since they contain the information necessary to detect irregularities in the signal being transformed.

It is worth mentioning that one of the most crucial shortcomings of signal processing using the wavelet analysis is border and/or boundary distortion. The cause of this issue is that common mechanical systems or civil structures such as beams, plates, and shells have definite boundaries, so their corresponding signal begins from a particular point and ends at another particular point. Since the wavelet analysis is the convolution of a wavelet with a signal of finite length, the wavelet detail coefficients will be inevitably distorted by the discontinuity of the input signal at the boundaries. In other words, there is a sudden change at the beginning and end points of the reference signal with a specific length, and the wavelet analysis will identify such variations as an abrupt change. Therefore, the wavelet detail coefficients can reach an extremely high/low value near the boundaries, where the proper identification of the damage may be seriously difficult. In recent years, researchers have introduced several techniques to overcome this issue [36–38]. In this study, the reference signal is extended beyond its original boundaries by the cubic spline extrapolation to moderate the undesirable effects of border and/or boundary distortion.
Despite the fact that the selection of an appropriate basis function for the wavelet analysis is still an open problem, there are several well-known mother wavelets which can be effectively used to identify structural anomalies, such as Haar, Daubechies, Symlet, and Bi–orthogonal wavelets. It is true that all of these wavelets are from orthogonal and bi–orthogonal classes and permit exact reconstruction of the transformed signal, but only Haar and Bi–orthogonal wavelets satisfy the symmetry property as a very desirable feature in many applications. Further information about different types of mother wavelets along with their properties, how to select a suitable mother wavelet, and the procedure of structural damage identification by the wavelet analysis has been presented in [39]. In this study, the 2–D discrete wavelet transform is utilized to identify damage location in circular plates. The first vibration mode shape and surface temperature distribution of the damaged plate are the input signals of the algorithm, and decomposed to wavelet detail coefficients using the Haar wavelet at the decomposition level of one. The damage location is indicated as a sharp peak in the graphical representation of the wavelet detail coefficients. The magnitude and location of the peak are true measures of the severity and position of the damage, respectively. The wavelet computations are performed in the MATLAB programming environment.

3. Damage Diagnosis Algorithm

In this section, the algorithm proposed for damage diagnosis in circular structures is described in detail. The main idea is to use the complex mappings. First, the vibrational and thermal signals of the circular structure, which are in the polar coordinates, are transferred into the Cartesian coordinates based on the following complex mapping,

\[x + iy = re^{i\theta} \]

(11)
where \(x-y\) are the Cartesian coordinates, \(r-\theta\) are the polar coordinates, and \(i\) is the imaginary unit. Now, the vibrational or thermal signal of the structure can be processed by the existing mathematical tools in the Cartesian coordinates, such as the 2–D discrete wavelet transform. Since then, the results of the analysis, such as 2–D wavelet detail coefficients, are turned back into the polar coordinates using the inverse mapping of Eq. (11). The plot of the wavelet detail coefficients in the polar coordinates clearly shows the damage location. Using this algorithm, the horizontal, vertical, and diagonal wavelet detail coefficients in the Cartesian coordinates correspond to the radial, angular, and coupled wavelet detail coefficients in the polar coordinates, respectively. Fig. 2 represents the flowchart of the described damage diagnosis algorithm in five steps. The most important advantage of the described damage diagnosis algorithm over the previously used ones is that it can be easily extended and applied to other regular geometries and shapes, such as elliptical structures, by redesigning the complex mapping in Eq. (11). This algorithm enables us to apply all of the existing damage diagnosis techniques in the Cartesian coordinates to circular structures. Moreover, due to the use of the wavelet analysis in the algorithm, no information regarding the intact structure is required. The numerical differentiation of the input signal is not necessary as well.

4. Numerical Studies

In this section, two case studies are conducted to evaluate the efficacy of the proposed algorithm for damage diagnosis in circular plates. In the first case study, the input signal of the algorithm is the steady–state thermal response of a damaged circular plate made of Steel. In the second case study, the first vibration mode shape of the plate is the input signal of the algorithm.
A schematic representation of the damaged circular plate under study is shown in Fig. 3. The damage is considered as a local reduction in one of the physical parameters of the plate. The circular plate is modeled in the ABAQUS numerical modeling software package and meshed as shown in Fig. 4. In the thermal and vibrational analyses, the DC3D8 and C3D8R solid finite elements with eight nodes and linear shape functions are utilized for the mesh, respectively. Table 1 lists the physical properties of the plate used in the numerical simulations.

4.1. Case Study 1: Thermal Analysis

In this case study, the steady–state thermal response of the damaged circular plate is imported to the proposed algorithm. Capturing the steady–state thermal response of the plate is very convenient using an infrared camera. In the simulation, the initial temperature of the structure is 293K, and in order to excite it thermally, the temperature of the bottom surface of the damaged plate suddenly reaches 373K as shown in Fig. 1(a). The damage is modeled as a 10 percent reduction in the thermal conductivity of the plate. The steady–state temperature distribution of the upper surface of the damaged circular plate is shown in Fig. 5. It should be noted that identifying the damage location from the steady–state temperature distribution of the plate is not possible. The idea is to apply the proposed damage diagnosis algorithm.

Now, the steady–state temperature distribution of the upper surface of the damaged circular plate is imported to the proposed algorithm. The output of the algorithm is presented in Fig. 6. It is clear that the damage location is indicated as a sudden and sharp peak in the plot of the wavelet detail coefficients. Moreover, it can be seen that the radial and coupled wavelet detail coefficients reveal the damage location much easier than the angular detail coefficient does.

4.2. Case Study 2: Vibration Analysis
In this case study, the first vibration mode shape of the damaged circular plate is considered as the input of the proposed algorithm. The reason behind choosing the first vibration mode shape is that measuring the first vibration mode shape of the plate is much easier than measuring the higher order vibration mode shapes. In the simulation, the boundary condition of the plate is defined as its outer edge to be fully clamped as shown in Fig. 1(b). The damage is modeled as a 10, 20, and 30 percent reduction in Young’s modulus of the plate. The first vibration mode shape of the damaged circular plate with the 10 percent damage is shown in Fig. 7. Similarly, identifying the damage location from the first vibration mode shape of the plate is not possible as well. The proposed damage diagnosis algorithm is applied.

Now, the first vibration mode shape of the damaged circular plate is imported to the proposed algorithm. The output of the algorithm for 10, 20, and 30 percent damages is presented in Figs. 8–10, respectively. Likewise, the algorithm reveals the location of the damage as a sudden and sharp peak in the plot of the wavelet detail coefficients. It can be seen that the angular wavelet detail coefficient is not able to clarify the damage location.

From Fig. 6 and Figs. 8–10, the following conclusions can be drawn,

(i) Comparing Fig. 6 with Fig. 8 shows that the damage location can be identified from the wavelet detail coefficients of the thermal response of the structure more easily. This implies that, under equal circumstances, the thermal response of the structure is more indicative and promising than the vibration response in terms of damage detection.

(ii) It can be seen that the radial wavelet detail coefficient reveals the damage location more accurately than the angular and coupled wavelet detail coefficients.

(iii) While the angular wavelet detail coefficient of the thermal response slightly magnifies the damage location, it is impossible to find the damage location in the angular wavelet detail coefficients of the vibration response. Therefore, it can be expressed that the angular wavelet detail coefficient is not entirely useful for damage detection in circular plates.
(iv) In case study 2 and Figs. 8–10, the maximum value of the radial wavelet detail coefficient for 10, 20, and 30 percent damages are $1.07e^{-4}$, $2.19e^{-4}$, and $3.38e^{-4}$, respectively. The trend demonstrates that the more the intensity of the damage, the more the maximum value of the radial wavelet detail coefficient. In fact, it can be concluded that the maximum value of the radial wavelet detail coefficient can be known as a promising index for evaluating the damage intensity.

(v) Overall, the wavelet detail coefficients, specifically the radial and coupled ones, reveal the damage location with high accuracy. But, they are not able to estimate the damage size, such as, depth, width, area, etc. The only decisive fact is that the maximum value of the radial wavelet detail coefficient is an acceptable relative index for evaluating the damage intensity.

5. Experimental Studies

In this section, two experimental tests are conducted to investigate the efficacy of the proposed damage detection algorithm in real applications. In the first experiment, the specimen is a circular plate made of Steel, while in the second experiment, the specimen is a circular plate made of glass fiber reinforced polymer (GFRP) composites.

5.1. Experiment 1: Steel Circular Plate

In this experimental test, the specimen is a circular plate made of Steel with a diameter of 300 mm and a thickness of 10 mm. One side of the plate is intact, while on the other side, there is square damage as wall–thinning with a depth of 2 mm as shown in Fig. 11. In order to thermally excite the specimen, the damaged side of the plate is exposed to a homogeneous source of energy, i.e. boiling water, while the temperature distribution of the intact side of the plate is captured by the infrared (IR) camera FLIR E60.
After 20 minutes of heating the specimen, the thermography image shown in Fig. 12 is recorded from the intact surface of the specimen by the infrared camera. It seems natural that it is not possible to find the damage location from the raw thermography image. Since there is no sign of the damage, the idea is to import the temperature distribution of the intact side of the specimen into the proposed damage diagnosis algorithm to magnify the damage location. In order to extract the temperature distribution of the intact surface of the specimen from the captured thermography image, the circular shape in Fig. 12 manually meshes into a grid of 20*32 elements along the radial and circumferential directions as shown in Fig. 13. Now, the temperature of the nodes generated by the meshing is manually extracted and imported into the proposed damage diagnosis algorithm. The output of the algorithm is reported in Fig. 14.

It is obvious that the plots of the radial and coupled wavelet detail coefficients reveal the damage location, but there is no clear sign of the damage location in the plot of the angular wavelet detail coefficient. This is consistent with the theoretical findings presented in the previous section. It is worth mentioning that, while the damage location is shown as a summit in the plot of the radial wavelet detail coefficient, it is depicted as a valley in the plot of the coupled wavelet detail coefficient.

5.2. Experiment 2: Composite Circular Plate

In this experimental test, the specimen is a circular plate made of glass fiber reinforced polymer (GFRP) composites with a diameter of 300 mm and a thickness of 3 mm. The composite laminate is manufactured by the hand lay–up method [40] with the configuration of [0/90]_{15}. The top and bottom [0/90]_3 laminates of the specimen are intact, while there is a circular hole with a diameter of 20 mm in the mid [0/90]_3 laminate of the specimen as shown in Fig. 15. In order to thermally stimulate the specimen, one side of the specimen is exposed.
to a homogeneous source of energy, i.e. hot airflow, while the temperature distribution of the other side of the specimen is measured by the infrared (IR) camera FLIR E60. Fig. 16 describes the designed experimental setup.

After 10 minutes of heating the specimen, the IR camera captures the thermography image shown in Fig. 17(a). Although, in this experiment, it is possible to guess the damage location from the raw thermography image as shown in Fig. 17(b), there might exist some sort of uncertainty in the location of the damage, especially for damages with lesser intensity. The proposed damage diagnosis algorithm helps to determine the damage location with higher accuracy and certainty.

The temperature distribution of the specimen is extracted by the method described in the previous subsection and then imported into the proposed damage diagnosis algorithm. The output of the algorithm is illustrated in Fig. 18.

It is evident that the plots of the wavelet detail coefficients magnify the damage location, and ensure the inspector about the location of the damage with more certainty and accuracy. As can be seen, there are a lot of fluctuations in the plot of the wavelet detail coefficients, which is mainly due to the noise. The noise level in the thermography image depends on the precision and calibration of the IR camera. It is well known that using a high-precision camera helps to process and analyze the images with more reliability.

5.3. Error Analysis

In this subsection, an error analysis is conducted to examine the precision of the employed IR camera by presenting a comparison between the numerical and experimental results. The specimen made of Steel and shown in Fig. 11 is considered again. Fig. 19(a) reports the plot of the temperature distribution along the reference axis $O–r$ drawn in Fig. 19(b). It is obvious that there is a good and acceptable agreement between the numerical and experimental
results. It is true that there is a noticeable difference between the numerical and experimental results; nevertheless, the pattern of temperature variation along the reference axis is quite similar and consistent based on the damage location. The reason behind the mentioned noticeable difference and fluctuations in the experimental plot is the noise in the thermography image. In damage diagnosis applications, it is recommended to use a high-precision and carefully-calibrated infrared (IR) camera.

6. Conclusion and Future Work

The current paper proposed a simple and efficient algorithm on the basis of the complex mappings for damage diagnosis in circular structures using Cartesian damage detection techniques. In order to demonstrate the efficacy of the proposed damage diagnosis algorithm, a damaged circular plate, as a popular type of circular structures, and the Cartesian wavelet analysis, as a powerful Cartesian damage detection technique, were utilized with the purpose of identifying the damage location in the structure. The thermal and vibrational responses of the structure were used as the inputs of the algorithm, and their abilities were compared from the damage detection point of view. It was found that, under equal circumstances, if the thermal response of the structure is imported into the algorithm, the damage location is detected with more accuracy and clarity. It was also concluded that the radial wavelet detail coefficient reveals the damage location more clearly than the angular and coupled wavelet detail coefficients. Additionally, it was shown that the maximum value of the radial wavelet detail coefficient is a promising index of the damage intensity due to the fact that more damage intensity results in more maximum value for the radial wavelet detail coefficient. Generally, the wavelet detail coefficients, especially the radial and coupled ones, reveal the damage location with high accuracy, but they are not able to estimate the damage size. Finally, some experimental tests based on the active thermography were carried out to
validate the efficacy of the algorithm in real applications. The proposed algorithm can be used for damage diagnosis in hemispherical shells as another type of circular structures. Furthermore, the algorithm is so flexible that it can be easily extended and applied to other geometries and shapes, such as elliptical structures, by only redesigning the complex mapping of the algorithm.

Nomenclature

Symbol	Description
k	Thermal Conductivity
T	Temperature Distribution
q	Rate of Internal Heat Generation
ρ	Density
c_p	Specific Heat Capacity
t	Time
n	Outward–Drawn Normal Unit Vector to Surface
T_0	Initial Temperature
T_B	Temperature Field of Bottom Surface
T_A	Ambient Temperature
h	Convection Heat Transfer Coefficient
D	Flexural Rigidity
b	Thickness
w	Plate Displacement Field
f	Distributed Transverse Load per Unit Area
$\psi(x, y)$	Mother Wavelet
u	Position of Wavelet Window in Horizontal Direction
Symbol	Description
--------	-------------
v	Position of Wavelet Window in Vertical Directions
s	Scale of Wavelet Window
$\psi^* (\xi,\omega)$	Complex Conjugate of Mother Wavelet
$CWT (s,u,v)$	Wavelet Detail Coefficients
j	Dilation or Decomposition Level
k	Translation Parameter in Horizontal Directions
m	Translation Parameter in Vertical Directions
$\phi(\cdot)$	Scaling Function or Father Wavelet
ψ^V	Vertical Wavelet Function
ψ^H	Horizontal Wavelet Function
ψ^D	Diagonal Wavelet Function
D_j^V	Vertical Wavelet Detail Coefficient at the Decomposition Level of j
D_j^H	Horizontal Wavelet Detail Coefficient at the Decomposition Level of j
D_j^D	Diagonal Wavelet Detail Coefficient at the Decomposition Level of j
x,y	Cartesian Coordinates
r,θ	Polar Coordinates
i	Imaginary Unit

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not–for–profit sectors.

References

1. Frank Pai, P., Oh, Y. and Lee, S.–Y. “Detection of defects in circular plates using a scanning laser vibrometer”, Structural Health Monitoring, 1(1), pp. 63–88 (2002).

2. Giurgiutiu, V. and Zagrai, A. “Damage detection in thin plates and aerospace structures with the electro–mechanical impedance method”, Structural Health Monitoring, 4(2), pp. 99–118 (2005).

3. Trendafoilova, I., Gorman, D.G. and Manoach, E. “An investigation on vibration–based damage detection in circular plates”, Structural Health Monitoring, 8(4), pp. 291–302 (2009).

4. Katunin, A. “Vibration–based damage identification in composite circular plates using polar discrete wavelet transform”, Journal of Vibroengineering, 15, pp. 355–363 (2013).

5. Praisach, Z.I., Micliuc, D.M., Gillich, G.R., et al. “Natural frequency shift of damaged circular plate clamped all around”, ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering, Tome XIV – Fascicule 4(November), pp. 57–62 (2016).

6. Salmi, A., Heino, O., Nieminen, H.J., et al. “Detecting defects in adhesion between a metal hemisphere and a polymer base”, IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, pp. 695–698 (2013).
7. Ganguli, R. “Structural Health Monitoring: A Non–Deterministic Framework”, Springer, Singapore (2020).

8. Ostachowicz, W. and Güemes, A. “New Trends in Structural Health Monitoring”, Springer–Verlag Wien, New York (2013).

9. Ghannadi, P. and Kourehli, S.S. “An effective method for damage assessment based on limited measured locations in skeletal structures”, Advances in Structural Engineering, 24(1), pp. 1–9 (2021).

10. Tehrani, H.A., Bakhshi, A. and Akhavat, M. “An effective approach to structural damage localization in flexural members based on generalized S–transform”, Scientia Iranica, 26(6), pp. 3125–3139 (2019).

11. Seifoori, S., Parrany, A.M. and Mirzarahmani, S. “Impact damage detection in CFRP and GFRP curved composite laminates subjected to low–velocity impacts”, Composite Structures, 0, pp. 1–15 (2021).

12. Parrany, A.M. and Mirzaei, M. “A new image processing strategy for surface crack identification in building structures under non–uniform illumination”, IET Image Processing, 16(2), pp. 407–415 (2022).

13. Gogolewski, D. “Fractional spline wavelets within the surface texture analysis”, Measurement, 179, pp. 109435 (2021).

14. Katunin, A. and Przystalka, P. “Damage assessment in composite plates using fractional wavelet transform of modal shapes with optimized selection of spatial wavelets”, Engineering Applications of Artificial Intelligence, 30, pp. 73–85 (2014).

15. Shi, B., Cao, M., Wang, Z., et al. “A directional continuous wavelet transform of mode shape for line–type damage detection in plate–type structures”, Mechanical Systems and Signal Processing, 167, pp. 108510 (2022).
16. Hassani, S., Mousavi, M. and Gandomi, A.H. “A mode shape sensitivity–based method for damage detection of structures with closely–spaced eigenvalues”, *Measurement*, 190, pp. 110644 (2022).

17. Zhang, B., Liu, H., Wang, X., et al. “Damage identification in aluminum plates based on iterative partition algorithm using waveform centroid”, *Wave Motion*, 108, pp. 102842 (2022).

18. Song, H., Xiang, M., Lu, G., et al. “Singular spectrum analysis and fuzzy entropy–based damage detection on a thin aluminium plate by using PZTs”, *Smart Materials and Structures*, 31(3), pp. 1–8 (2022).

19. Li, M., Jia, D., Wu, Z., et al. “Structural damage identification using strain mode differences by the iFEM based on the convolutional neural network (CNN)”, *Mechanical Systems and Signal Processing*, 165, pp. 108289 (2022).

20. Hu, M., He, J., Zhou, C., et al. “Surface damage detection of steel plate with different depths based on Lamb wave”, *Measurement*, 187, pp. 110364 (2022).

21. Xu, Y., Pan, Y., Wang, Y., et al. “Damage identification of single–layer cylindrical latticed shells based on the model updating technique”, *Journal of Civil Structural Health Monitoring*, pp. 1–15 (2022).

22. Avci, O., Abdeljaber, O., Kiranyaz, S., et al. “A review of vibration–based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications”, *Mechanical Systems and Signal Processing*, 147, pp. 107077 (2021).

23. Gomes, G.F., Mendez, Y.A.D., Alexandrino, P.D.S.L., et al. “A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN”, *Archives of Computational Methods in Engineering*, 26(4), pp. 883–897 (2019).
24. He, Y., Deng, B., Wang, H., et al. “Infrared machine vision and infrared thermography with deep learning: a review”, *Infrared Physics & Technology*, 116, pp. 103754 (2021).

25. Parrany, A.M. “Damage detection in circular cylindrical shells using active thermography and 2–D discrete wavelet analysis”, *Thin–Walled Structures*, 136, pp. 34–49 (2019).

26. Seifoori, S., Izadi, R. and Yazdinezhad, A.R. “Impact damage detection for small–and large–mass impact on CFRP and GFRP composite laminate with different striker geometry using experimental, analytical and FE methods”, *Acta Mechanica*, 230, pp. 4417–4433 (2019).

27. Ghannadi, P. and Kourehli, S.S. “Structural damage detection based on MAC flexibility and frequency using moth–flame algorithm”, *Structural Engineering and Mechanics*, 70(6), pp. 649–659 (2019).

28. Lashkari, A.E. and Firouzmand, M. “Developing a toolbox for clinical preliminary breast cancer detection in different views of thermogram images using a set of optimal supervised classifiers”, *Scientia Iranica*, 25(3), pp. 1545–1560 (2018).

29. Seifoori, S., Izadi, R., Liaghat, G.H., et al. “An experimental study on damage intensity in composite plates subjected to low–velocity impacts”, *Polymer Testing*, 93(106887), pp. 1–14 (2021).

30. Oosthuizen, P.H. and Naylor, D. “Introduction to Convective Heat Transfer Analysis”, WCB/McGraw Hill, New York (1999).

31. Incropera, F.P. and DeWitt, D.P. “Fundamentals of Heat and Mass Transfer”, Wiley, New York (2002).

32. Rao, S.S. “Vibration of Continuous Systems”, John Wiley & Sons, New Jersey (2007).
33. Gao, R.X. and Yan, R. “Wavelets: Theory and Applications for Manufacturing”, Springer, New York (2011).

34. Chui, C.K. “An Introduction to Wavelets”, Academic Press, San Diego (1992).

35. Newland, D.E. “An Introduction to Random Vibrations: Spectral and Wavelet Analysis”, Longman, Harlow and John Wiley, New York (1993).

36. Messina, A. “Refinements of damage detection methods based on wavelet analysis of dynamical shapes”, International Journal of Solids and Structures, 45(14–15), pp. 4068–4097 (2008).

37. Fan, W. and Qiao, P. “A 2–D continuous wavelet transform of mode shape data for damage detection of plate structures”, International Journal of Solids and Structures, 46(25–26), pp. 4379–4395 (2009).

38. Alamdari, M.M., Li, J. and Samali, B. “Damage identification using 2–D discrete wavelet transform on extended operational mode shapes”, Archives of Civil and Mechanical Engineering, 15(3), pp. 698–710 (2015).

39. Ovanesova, A.V. and Suarez, L.E. “Applications of wavelet transforms to damage detection in frame structures”, Engineering Structures, 26(1), pp. 39–49 (2004).

40. Seifoori, S., Mirzaei, M. and Afjoland, H. “Experimental and FE analysis for accurate measurement of deflection in CFRP and GFRP laminates under bending”, Measurement, 153(107445), pp. 1–8 (2020).
Figure Captions

Figure 1. Model of circular plate with (a) thermal boundary conditions, (b) vibration boundary conditions

Figure 2. Damage diagnosis algorithm for circular structures

Figure 3. Schematic representation of damaged circular plate

Figure 4. Meshed model of damaged circular plate in ABAQUS software

Figure 5. Steady–state temperature distribution of damaged circular plate

Figure 6. Output of proposed algorithm for case study 1 with 10 percent damage: (a) radial, (b) angular, (c) coupled wavelet detail coefficients

Figure 7. First vibration mode shape of damaged circular plate

Figure 8. Output of proposed algorithm for case study 2 with 10 percent damage: (a) radial, (b) angular, (c) coupled wavelet detail coefficients

Figure 9. Output of proposed algorithm for case study 2 with 20 percent damage: (a) radial, (b) angular, (c) coupled wavelet detail coefficients

Figure 10. Output of proposed algorithm for case study 2 with 30 percent damage: (a) radial, (b) angular, (c) coupled wavelet detail coefficients

Figure 11. Experimental specimen made of Steel

Figure 12. Thermography image of specimen made of Steel

Figure 13. Meshed diagram of circular shape in thermography image of specimen made of Steel

Figure 14. Output of proposed algorithm for experimental specimen made of Steel: (a) radial, (b) angular, (c) coupled wavelet detail coefficients

Figure 15. Experimental specimen made of GFRP composites

Figure 16. Experimental setup
Figure 17. Thermography image of specimen made of GFRP composites: (a) raw thermography image, (b) thermography image with damage location

Figure 18. Output of proposed algorithm for experimental specimen made of GFRP composites: (a) radial, (b) angular, (c) coupled wavelet detail coefficients

Figure 19. Error analysis on specimen made of Steel: (a) temperature distribution, (b) reference axis
Table Captions

Table 1. Physical properties
Figure 1. Model of circular plate with (a) thermal boundary conditions, (b) vibration boundary conditions
Figure 2. Damage diagnosis algorithm for circular structures
Figure 3. Schematic representation of damaged circular plate
Figure 4. Meshed model of damaged circular plate in ABAQUS software

Figure 5. Steady–state temperature distribution of damaged circular plate
Figure 6. Output of proposed algorithm for case study 1 with 10 percent damage: (a) radial, (b) angular, (c) coupled wavelet detail coefficients
Figure 7. First vibration mode shape of damaged circular plate
Figure 8. Output of proposed algorithm for case study 2 with 10 percent damage: (a) radial, (b) angular, (c) coupled wavelet detail coefficients
Figure 9. Output of proposed algorithm for case study 2 with 20 percent damage: (a) radial, (b) angular, (c) coupled wavelet detail coefficients
Figure 10. Output of proposed algorithm for case study 2 with 30 percent damage: (a) radial, (b) angular, (c) coupled wavelet detail coefficients
Figure 11. Experimental specimen made of Steel

Figure 12. Thermography image of specimen made of Steel
Figure 13. Meshed diagram of circular shape in thermography image of specimen made of Steel.
Figure 14. Output of proposed algorithm for experimental specimen made of Steel: (a) radial, (b) angular, (c) coupled wavelet detail coefficients
Figure 15. Experimental specimen made of GFRP composites

Figure 16. Experimental setup
Figure 17. Thermography image of specimen made of GFRP composites: (a) raw thermography image, (b) thermography image with damage location
Figure 18. Output of proposed algorithm for experimental specimen made of GFRP composites: (a) radial, (b) angular, (c) coupled wavelet detail coefficients
Figure 19. Error analysis on specimen made of Steel: (a) temperature distribution, (b) reference axis
Tables

Table 1. Physical properties

Parameter	Value	Parameter	Value
Density (Kg/m3)	7800	Young’s Modulus (GPa)	200
Poisson’s Ratio	0.3	Thermal Conductivity (W/m.K)	50
Specific Heat Capacity (J/Kg.K)	450	Ambient Temperature (K)	293
Convection Coefficient (W/m2.K)	10	Bottom Surface Temperature (K)	373
Initial Temperature (K)	293		
Biographies

Ahmad Mahdian Parrany received his B.Sc. degree in Mechanical Engineering from University of Sistan and Baluchestan, Zahedan, Iran, in 2010. He also received his M.Sc. degree in Mechanical Engineering from Amirkabir University of Technology, Tehran, Iran, in 2012. He is currently a Ph.D. Candidate of Mechanical Engineering in Sharif University of Technology, Tehran, Iran. His fields of research are structural health monitoring, damage detection, wavelet analysis, dynamic systems, and control.

Sajjad Seifoori received his M.Sc. and Ph.D degree from Tarbiat Modares University, Iran, in 2014, and B.S.c from Shahid Bahonar University in Mechanical Engineering. His experience includes an associate professorship at VRU University (academic staff). His fields of research are structural health monitoring, damage detection, wavelet analysis, Impact mechanics and High-speed metal forming. He has contributed about 30 papers and 1 book to the open press.

Hamid Sharifi received his B.Sc. and M.Sc. degree in Mechanical Engineering from VRU University, Iran, in 2020. His fields of research are structural health monitoring, damage detection, wavelet analysis.

Mohammad Javad Khoshgoftar received his B.Sc. degree in Mechanical Engineering from University of KASHAN, Iran. He also received his M.Sc. and Ph.D degree from Tarbiat Modares University, Iran, in 2016, in Mechanical Engineering. He is currently an academic staff at ARAK University. His fields of research are structural health monitoring, damage detection and stress analysis.