The impact of perioperative allogeneic blood transfusion on prognosis of hepatocellular carcinoma after radical hepatectomy

A systematic review and meta-analysis of cohort studies

Yangqin Xun, MMEda,e,†, Hongwei Tian, MMEdb,d, Lidong Hu, MMEdc, Peijing Yan, MMEdd, Kehu Yang, MD,‡,‡, Tiankang Guo, MD,§,*

Abstract

This meta-analysis aims to clarify the clinical impacts of allogeneic blood transfusion (ABT) on hepatectomy outcome in hepatocellular carcinoma (HCC) patients. A systematic literature search was performed for relevant articles in international and Chinese databases up to May 2018. Random- or fixed-effect meta-analysis was used to pool the effect estimates. Publication bias was assessed by Egger’s and Peters’s test. Heterogeneity was assessed using the I² statistic. The strength of evidence was rated by the Grading of Recommendations Assessment, Development, and Evaluation system. A total of 29 studies met the eligibility criteria. Meta-analysis showed HCC patients in ABT group had lower survival rate at 1, 3, 5, and 10 years after radical hepatectomy than those in no blood transfusion (NBT) group (RR = 0.9, 95% CI: 0.87–0.93, P < .05; RR = 0.83, 95% CI: 0.77–0.89, P < .05; RR = 0.7, 95% CI: 0.65–0.74, P < .05; RR = 0.64, 95% CI: 0.54–0.75, P < .05). Similar results were observed in disease-free survival (DFS) (respectively: RR = 0.86, 95% CI: 0.82–0.91, P < .05; RR = 0.77, 95% CI: 0.67–0.79, P < .05; RR = 0.71, 95% CI: 0.64–0.79, P < .05; RR = 0.62, 95% CI: 0.48–0.8, P < .05). Cancer recurrence rate was higher for the patients in ABT group at 1 and 3 years (RR = 1.5, 95% CI: 1–2.24, P < .05; RR = 1.27, 95% CI: 1.09–1.43, P < .05, respectively), but not statistically significant at 5 years (RR = 1.08, 95% CI: 0.98–1.19, P = .512). The HCC patients in ABT group increased postoperative complications occurrence compared with those in NBT group (RR = 1.87, 95% CI: 1.42–2.45, P < .05). This meta-analysis demonstrated that ABT was associated with adverse clinical outcomes for HCC patients undergoing radical hepatectomy, including poor survival, DFS, and complications. Surgeons should reduce blood loss during hepatectomy and avoid perioperative allogeneic blood transfusion.

Abbreviations: ABT = allogeneic blood transfusion, DFS = disease-free survival, GRADE = Grading of Recommendations Assessment, Development, and Evaluation, HCC = hepatocellular carcinoma, NBT = no blood transfusion, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analysis, RR = Relative risk.

Keywords: allogeneic blood transfusion, hepatocellular carcinoma, meta-analysis, prognosis

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the fifth most common cause of cancer-related death worldwide.¹¹ Liver transplantation is an alternative treatment for the early stage HCC patients with chronic liver dysfunction, while hepatectomy is still the primary treatment option for HCC patients due to the limited number of available donors.²¹ Improving understanding of the best surgical and perioperative management continues to decrease the perioperative morbidity and mortality of hepatectomy for HCC patients. Especially improved surgical techniques have decreased bleeding during hepatectomy and the transfusion rate has decreased from 62% to 22% over the past 2 decades.⁶ Nevertheless, blood transfusion remains necessary when excessive intraoperative bleeding occurs.

Meanwhile, transfusion could cause knownside effects, such as infectious disease, hemolytic transfusion reaction, hepatic ischemia-reperfusion injury, and transfusion-related acute lung injury. Some studies demonstrated that perioperative blood transfusion not only caused such problems, but it could affect long-term survival of HCC patients after radical hepatectomy.⁴ But others reported no significant association between perioperative blood transfusion and prognosis of HCC after radical hepatectomy.⁶ Therefore, the impact of allogeneic blood...
transfusion (ABT) on postoperative outcomes are still controversial.

In order to clarify the inconsistent issue, a meta-analysis is necessary to be performed. Our study aims to inspect the correlation between ABT and survival rate, disease-free survival (DFS), cancer recurrence, and complications of HCC patients undergoing radical hepatectomy.

2. Material and methods

2.1. Search strategy for eligible studies

We conducted this meta-analysis with adherence to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.[7] A systematic literature search was conducted in PubMed, Web of Science, Embase, and CBM for relevant articles up to May 2018, using various combinations of the keywords:

hepatocellular carcinoma, HCC, liver cancer, and blood transfusion. References cited in the relevant articles were investigated for any potential and eligible studies.

2.2. Eligibility criteria

Eligibility criteria for all included studies were as follows: evaluation of the correlation between ABT and clinical prognosis (survival rate, DFS, cancer recurrence, and postoperative complications) of HCC patients undergoing radical hepatectomy; it must be clinical studies, and the original data could be obtained; studies focused on autogenic blood transfusion or non-primary HCC were excluded.

2.3. Data extraction and quality assessment

In this meta-analysis, all patients were divided into ABT group and NBT group. ABT was defined as perioperative transfusion of allogeneic blood products, while NBT was defined as patients who did not receive any transfusion. Two authors independently extracted participants’ information including first author’s name, publication year, patients’ age and sex, number of patients included in ABT and NBT group, cancer differentiation, survival rate, DFS, cancer recurrence, and postoperative complications. Discrepancies were resolved through discussion.

The methodological quality of the included studies was assessed independently by 2 authors using the Newcastle–Ottawa scale,[8] which allocates a maximum of 9 stars each to case selection, comparability of cohorts (ABT and NBT), and outcomes assessment. A study awarded 6 or more stars was considered as a high-quality study. In addition, the strength of evidence was rated by the Grading of Recommendations Assessment, Development, and Evaluation system (GRADE system).[9]

2.4. Statistical analysis

Statistical analysis was performed using statistical software R (version 3.2.3). For studies that did not show the corresponding
3. Results

3.1. Literature search and study characteristics

The selection of studies for inclusion in the meta-analysis was shown in flow diagram (Fig. 1). Of the initial 1021 citations retrieved, 29 studies met our inclusion criteria and were included in the final meta-analysis.\cite{6,10,13,28,30,34} 5 studies\cite{12,28,27,31,34} were prospective cohort studies and 24 studies\cite{5,6,10,11,13,14,31,34,36} were retrospective cohort studies. Detailed study characteristics were shown in Table 1. Of the 29 studies with a total of 7241 participants, 2908 cases (40.2%) received ABT and 4333 cases (59.8%) were grouped as NBT. Outcomes reported in each study including survival rate (n=19), DFS (n=19), cancer recurrence (n=3), and postoperative complications (n=10). According to the Newcastle- Ottawa scale, all included studies were of high quality. Characteristics of the included studies and quality scores were listed in Table 1.

3.2. Survival rate

In this meta-analysis, there were ten studies providing 1-year survival rate,\cite{5,6,10,13,14,16,17,19,29,36} 13 studies providing 3-year survival rate,\cite{5,6,10,13,14,16,17,19,29,30,33,34,36} 19 studies providing 5-year survival rate,\cite{5,6,10,13,14,16,17,19,29,30,33,34,36} and 6 studies providing 10-year survival rate.\cite{5,6,11,12,13,24} As displayed in (Fig. 2A-D), meta-analyses demonstrated that there was a lower 1-, 3-, 5-, and 10-year survival rate for patients with ABT than those with NBT (RR: 0.89, 95% CI: 0.87–0.93, P < 0.001; RR: 0.83, 95% CI: 0.77–0.89, P < 0.001; RR: 0.79, 95% CI: 0.65–0.74, P < 0.001; RR: 0.64, 95% CI: 0.54–0.75, P < 0.001). The heterogeneity of 1-, 3-, and 10-year survival rate was > 50%, the random-effect model was used to calculate summary estimate; if not, the fixed-effect model was applied. Meanwhile, the potential impact of transfusion amount and rates, age, cancer size, and participants on the outcomes were assessed by stratified analysis. Besides, sensitivity analysis was conducted to test whether the results of the meta-analysis were sensitive to restrictions on any of the included studies. Egger’s and Peters’s tests were applied to assess publication bias.

Table 1

Characteristics of studies included in the meta-analysis.

Author	Country	Design	Participants	Sex (M/F)	Age (mean)	Liver cirrhosis	Child A/B	Cancer size, cm	TNM stage	Differentiation*	Study quality
Wada, 2017\cite{24}	Japan	RCS	ABT: 198	NBT: 44	Age: 627	Liver cirrhosis: 353/91	Child A/B: 65	Cancer size: 49.5%	TNM stage: 39%	Differentiation:	Study quality: 143/40
Yang, 2016\cite{24}	China	RCS	ABT: 234	NBT: 202	Age: 2030	Liver cirrhosis: 50.1	Child A/B: 73.5%	Cancer size: 76.5%	TNM stage: 69%	Differentiation:	Study quality: 50/111
Xu, 2016\cite{17}	China	RCS	ABT: 68	NBT: 154	Age: 51.8	Liver cirrhosis: 216/4	Child A/B: 50.2%	Cancer size: 76.7%	TNM stage: 50%	Differentiation:	Study quality: 132/20
Harada, 2015\cite{28}	Japan	PCS	ABT: 91	NBT: 388	Age: 64.4	Liver cirrhosis: 68	Child A/B: 79.1%	Cancer size: 55.7%	TNM stage: 90%	Differentiation:	Study quality: 167/51
Ye, 2012\cite{36}	China	RCS	ABT: 93	NBT: 37	Age: 47.1	Liver cirrhosis: 50.2	Child A/B: 90.3%	Cancer size: 90.0%	TNM stage: 50%	Differentiation:	Study quality: 36/57
Kuoda, 2012\cite{24}	Japan	PCS	ABT: 60	NBT: 60	Age: 50.1	Liver cirrhosis: 48/12	Child A/B: 50.0%	Cancer size: 58.3%	TNM stage: 43/17	Differentiation:	Study quality: 18/19
Okumura, 2011\cite{36}	Japan	PCS	ABT: 87	NBT: 289	Age: 303/7	Liver cirrhosis: 36	Child A/B: 61%	Cancer size: 72.4%	TNM stage: 34%	Differentiation:	Study quality: 15/9
Nanahira, 2011\cite{28}	Japan	PCS	ABT: 100	NBT: 83	Age: 65	Liver cirrhosis: 80	Child A/B: 64.4%	Cancer size: 67.3%	TNM stage: 7%	Differentiation:	Study quality: 27/95
Yang, 2011\cite{36}	China	RCS	ABT: 164	NBT: 141	Age: 29/7	Liver cirrhosis: 49	Child A/B: 62.7%	Cancer size: 76.7%	TNM stage: 76.7%	Differentiation:	Study quality: 103/9
Chen, 2011\cite{28}	Japan	RCS	ABT: 87	NBT: 79	Age: 74/13	Liver cirrhosis: 65	Child A/B: 71%	Cancer size: 77.1%	TNM stage: 71%	Differentiation:	Study quality: 5/9
Abot—Wahab, 2010\cite{28}	Egypt	RCS	ABT: 87	NBT: 72	Age: 119/4	Liver cirrhosis: 55	Child A/B: 64.3%	Cancer size: 77.1%	TNM stage: 7%	Differentiation:	Study quality: 7/7

* ABT = autologous blood transfusion, NBT = no blood transfusion, PCS = prospective cohort study, RCS = retrospective cohort study.

* Differentiation: well = moderate/poor

* well = moderate/poor.
differences \(P < .05 \), even low transfusion amount might decrease the 5-year survival rate (compared to high transfusion amount group, 5-year survival rate of low transfusion amount group decreased by about 55%). When examining differences over cancer size, we also found that cancer size had a significant impact on 5-year survival rate (subgroup differences \(P < .05 \)). Compared to studies with small cancer size, 5-year survival rate of studies with large cancer size decreased by about 45%. In the stratified analysis, we did not find that there was the association between transfusion rate and 5-year survival rate.

Figure 2. Forest plot of postoperative survival rate associated with ABT for HCC. (A) for 1-year survival rate, (B) for 3-year survival rate, (C) for 5-year survival rate, and (D) for 10-year survival rate. ABT = allogeneic blood transfusion, HCC = hepatocellular carcinoma.
Table 2
Stratified analysis for 5-year survival rate, 5-year DFS and complication.

Subgroup	No. of studies	RR (95%CI)	I²	P
5-year OS				
Transfusion amount				
>788 ml	4	0.78 (0.70, 0.87)	0.0%	<.0001
≤788 ml	4	0.30 (0.14, 0.65)	84.0%	
NA	11	0.73 (0.67, 0.79)	0.0%	
Transfusion rate				
>42.8%	12	0.70 (0.65, 0.77)	69.1%	.6495
≤42.8%	7	0.68 (0.62, 0.76)	10.7%	
Age				
>60.96 year	8	0.70 (0.66, 0.77)	16.5%	.3064
≤60.96 year	11	0.66 (0.59, 0.75)	72.4%	
Cancer size				
>4.42 cm	3	0.42 (0.20, 0.88)	74.9%	.0010
≤4.42 cm	7	0.75 (0.69, 0.81)	0.0%	
NA	9	0.64 (0.57, 0.72)	75.0%	
Participants				
>248	6	0.74 (0.68, 0.80)	0.0%	.0529
≤248	13	0.63 (0.57, 0.70)	73.3%	
Study design				
PCS	3	0.74 (0.63, 0.88)	13%	.3776
RCS	16	0.68 (0.60, 0.78)	63%	
5-year DFS				
Transfusion amount				
>876 mL	3	0.69 (0.52, 0.92)	0.0%	.8305
≤876 mL	4	0.62 (0.32, 1.20)	69.7%	
NA	12	0.73 (0.65, 0.82)	34.0%	
Transfusion rate				
>57.8%	11	0.75 (0.65, 0.86)	40.7%	.2782
≤57.8%	8	0.66 (0.56, 0.79)	30.3%	
Age				
>61.62 years	9	0.74 (0.57, 0.96)	57.0%	.9279
≤61.62 years	9	0.70 (0.59, 0.83)	0.0%	
NA	1	0.69 (0.50, 0.95)	0.0%	
Cancer size				
>4.87 cm	4	0.59 (0.32, 1.09)	67.0%	.7808
≤4.87 cm	7	0.72 (0.62, 0.85)	6.0%	
NA	8	0.75 (0.57, 0.98)	51.0%	
Participants				
>252	6	0.70 (0.61, 0.81)	0.0%	.7345
≤252	13	0.73 (0.62, 0.86)	51.1%	
Study design				
PCS	4	0.59 (0.43, 0.80)	80%	.2980
RCS	15	0.73 (0.65, 0.82)	39%	

Table 2 (continued)
Complications.

Subgroup	No. of studies	RR (95%CI)	I²	P
Complications				
Transfusion amount				
>788 mL	3	1.23 (0.98, 1.55)	0.0%	.0039
≤788 mL	5	2.15 (1.69, 2.74)	17.0%	
NA	2	2.66 (1.18, 6.00)	64.0%	
Transfusion rate				
>38.56%	6	1.61 (1.32, 1.96)	68.1%	.0089
≤38.56%	4	2.26 (1.94, 2.62)	83.1%	
Age				
>63.47 year	3	1.93 (1.71, 2.19)	39.3%	<.0001
≤63.47 year	7	1.58 (1.39, 1.8)	55.7%	
Cancer size				
>5.28 cm	4	1.59 (1.31, 1.94)	34.0%	.0086
≤5.28 cm	5	2.31 (1.50, 3.54)	78.0%	

DFS = disease-free survival, NA = not available, NO. = number, OS = overall survival, RR = relative risk.

1. Test for subgroup differences (fixed-effect model), between subgroups P value.

3.3. Disease-free survival

In this meta-analysis, there were 13 studies providing 1-year DFS,[5,6,10,12,17,20,21,24,25,29–31,36] 16 studies providing 3-year DFS,[5,6,10,12,13,17,20,21,24,25,27–31,36] 19 studies providing 5-year DFS,[5,6,10,12,13,17,19,21,23–25,27–32,36] and 4 studies providing 10-year DFS.[5,12,23,24] As displayed in (Fig. 3A-D), perioperative ABT was associated with a significant increased risk in reducing 1-, 3-, 5-, and 10-year DFS (respectively: RR = 0.86, 95% CI: 0.82–0.91, P < .05; RR = 0.77, 95% CI: 0.67–0.79, P < .05; RR = 0.71, 95% CI: 0.64–0.79, P < .05; RR = 0.62, 95% CI: 0.48–0.8, P < .05). The heterogeneity of 3-year DFS was >50%, the random-effect model was applied to calculate summary estimate; the heterogeneity of 1-, 3-, 5-, and 10-year DFS was < 50%, the fixed-effect model was used.

Results of the stratified meta-analyses for postoperative 5-year DFS were shown in Table 2. When stratified by transfusion amount, transfusion rate, age, cancer size, and sample size, we did not find that they had a significant impact on 5-year DFS (subgroup differences P > .05).

3.4. Cancer recurrence rate

The cancer recurrence data were available in 3 studies.[15,27,34] As shown in Figure 4A–C, meta-analysis demonstrated cancer recurrence rates at 1 and 3 years after radical hepatectomy for HCC patients were higher in the ABT group than in NBT group (respectively: RR = 1.5, 95% CI: 1–2.24, P < .05; RR = 1.27, 95% CI: 1.09–1.49, P < .05), but not statistically significant at 5 years (RR = 1.08, 95% CI: 0.98–1.19, P = .512).

3.5. Postoperative complication rate

Ten studies reported the relationship between ABT and postoperative complication.[5,6,12,14,16,17,22,26,29,35] Meta-analysis demonstrated that postoperative complication rate was higher in ABT group than in NBT group (RR = 1.87, 95% CI: 1.42–2.45, P < .05) (Fig. 5). Significant heterogeneity among studies was present (I² = 78%), and the random-effect model was applied.

Results of the stratified meta-analyses for postoperative complication rate were shown in Table 2. When stratified by transfusion amount, we found that the impact of transfusion amount on postoperative complication rate was significant (subgroup differences P < .05), even low transfusion amount might increase postoperative complication rate (compared to
high transfusion amount group, postoperative complication rate of low transfusion amount group increased by about 75%. Meanwhile, we also found that postoperative complication rate was associated with the transfusion rate (subgroup differences $P < .05$). Compared to studies with high-transfusion rate, postoperative complication rate of studies with low transfusion rate increased by about 40%. When examining differences over age, cancer size, and sample size, we also found that they had a significant impact on postoperative complication rate (subgroup differences $P < .05$).

Figure 3. Forest plot of postoperative DFS associated with ABT for HCC. (A) For 1-year DFS, (B) for 3-year DFS, (C) for 5-year DFS, and (D) for 10-year DFS. ABT = allogeneic blood transfusion, DFS = disease-free survival, HCC = hepatocellular carcinoma.
3.6. Quality of evidence of the primary outcomes

The GRADE system was applied to assess the evidence for the outcomes, and the quality of evidence was summarized in Table 3. As a result, the overall quality of evidence for the outcomes was low. Thus, further prospective studies are likely to have an important impact on the confidence in the effect estimate and may change the current estimate.

3.7. Sensitivity analysis

Sensitivity analysis was performed for 5-year survival rate and postoperative complication rate by excluding one study at a time and calculating the pooled RRs for the remaining studies (Supplementary Information, http://links.lww.com/MD/C569). The results demonstrated that no individual study had excessive impact on the stability of the pooled effect and that the result of this analysis was robust.

3.8. Publication bias

Publication bias was measured by the Egger’s and Peters’s test. Egger’s test for 5-year survival rate, 5-year DFS, and postoperative complication rate did not show the asymmetry typically associated with publication bias (P value: .0937, .1629, and .6988, respectively). Evidence of publication bias was also not seen with the Peters’s test of 5-year survival rate (P = .1527),
Disease-free survival was associated with poor survival rate (HR $= 1.27$).[37] similarly adverse effect of ABT on HCC patients undergoing radical hepatectomy. Meanwhile, the meta-RR for 5 years was 1.08 in this meta-analysis ($P = .512$). That is to say, patients in ABT and NBT group had a similar chance of cancer recurrence. In our analysis, postoperative complication rate was significantly higher in ABT group than in NBT group, which was speculated that immunosuppression modulated by blood transfusion induced postoperative complication rate.[38] The absolute peripheral blood lymphocyte count is significantly reduced in patients who receive ABT[23] and one study reported that the natural killer cell activity of transfused patients was reduced on postoperative day 7.[29] Our results supported the consensus that ABT induced postoperative complication rate and adversely affected the survival of HCC after radical hepatectomy.

Further, we reviewed clinical practice guidelines for liver cancer from China[39] the United States,[40] Europe,[41] Singapore,[42] and South Korea,[43] and found that only Korea’s guideline referred to intraoperative transfusion, and stated one reason why hepatic resection had recently become safer was the reduction in the case of intraoperative hemorrhage and transfusion. Korea’s guideline stated blood transfusion compromised anticancer immunologic mechanisms and increased postoperative recurrence.[43] The most commonly reported mechanisms of transfusion-related immunomodulation included decreased function of killer cells, decreased ratio of helper-to-cytotoxic T lymphocytes, decreased efficacy of antigen presentation, induced tolerance for specific antigens, and suppression of hematopoiesis.[44] Different from others, Procter and colleagues[45] reported that depletion of extracellular arginine in serum, an amino acid essential for normal immunity, might be the mechanism of the immunosuppressive effect of packed red blood cells. However, it also had been speculated that the infusion of growth factors (vascular endothelial growth factor and transforming growth factor-b) and an enhanced inflammatory response as a result of the exposure of the recipient immune system to donor microparticles could also stimulate spread and

Table 3

Strength of evidence for outcomes of HCC patients with ABT compared with NBT.

Outcomes	Relative effect RR (95%CI)	No. of participants (studies)	Quality of evidence (GRADE)
Survival rate			
1-year survival rate	0.9 (0.87 to 0.99)	2672 (10 studies)	$\oplus\oplus$
3-year survival rate	0.83 (0.77 to 0.89)	3525 (13 studies)	$\oplus\oplus$
5-year survival rate	0.7 (0.65 to 0.74)	4716 (19 studies)	$\oplus\oplus$
10-year survival rate	0.64 (0.54 to 0.75)	2014 (6 studies)	$\oplus\oplus$
Disease-free survival			
1-year DFS	0.91 (0.87 to 0.96)	3539 (13 studies)	$\oplus\oplus$
3-year DFS	0.77 (0.67 to 0.9)	4021 (16 studies)	$\oplus\oplus$
5-year DFS	0.71 (0.64 to 0.79)	4800 (19 studies)	$\oplus\oplus$
10-year DFS	0.62 (0.48 to 0.8)	1906 (4 studies)	$\oplus\oplus$
Cancer recurrence	1.08 (0.98 to 1.19)	793 (3 studies)	$\oplus\oplus$
Complication	1.87 (1.42 to 2.45)	2832 (10 studies)	$\oplus\oplus$

Assumed risk NBT (per 1000) | **Corresponding risk** ABT (per 1000)

Assumed risk	Corresponding risk
NBT (per 1000)	ABT (per 1000)
895	805 (778 to 832)
726	603 (559 to 646)
581	407 (378 to 430)
393	252 (212 to 295)
727	661 (632 to 688)
460	354 (308 to 414)
327	232 (209 to 258)
183	114 (88 to 147)
661	714 (648 to 787)
185	346 (283 to 453)

5-year DFS ($P = .1019$), and postoperative complication rate ($P = .1373$).

4. Discussion

Although perioperative ABT is very common in hepatocarcinoma, the clinical impact of ABT on HCC patients undergoing radical hepatectomy remains controversial, especially in connection to recurrence. In this meta-analysis, perioperative blood transfusion adversely affected long-term prognosis of HCC patients undergoing radical hepatectomy. Our study showed that perioperative blood transfusion of any amount correlates with poorer survival rate and disease-free survival, but not with recurrence. The pooled RR values for 5-year survival rate and 5-year DFS after radical hepatectomy all were 0.7 in this meta-analysis, which meant that 5-year survival rate and 5-year DFS of ABT group were reduced by about 30% compared to NBT group. However, there were no statistical significance between high and low transfusion rate for the survival rate and disease-free survival (subgroup differences $P > .05$); therefore, it was believed that transfusion itself mediated its effects on the survival rate and disease-free survival rather than the transfusion rate, which was consistent with Wada et al.[5] Similar adverse effect of ABT on clinical prognosis was also observed in other malignancies. For example, a recent meta-analysis performed by Cata and his team on bladder cancer demonstrated that ABT was significantly associated with poor survival rate (HR $= 1.27$).[17]

Regarding cancer recurrence, Wada et al[5] and Nanashima et al[14], reported that ABT did not promote recurrence; however, Ercolani et al[27] Asahara et al[32] and Yamamoto et al[34] reported ABT could increase the recurrence rate of HCC after radical hepatectomy. Meanwhile, the meta-RR for 5 years was 1.08 in this meta-analysis ($P = .512$). That is to say, patients in ABT and NBT group had a similar chance of cancer recurrence. In our analysis, postoperative complication rate was significantly higher in ABT group than in NBT group, which was speculated that immunosuppression modulated by blood transfusion induced postoperative complication rate.[38]
proliferation of cancer cells. Our meta-analysis was not designed to investigate these possibilities; however, our results supported the hypothesis that the perioperative administration of ABT was an independent risk factor for reduced survival rate and DFS after radical hepatectomy for HCC similar to what has been reported for other cancers such as bladder and colon.\cite{37,47}

The quality of the evidence varied for different outcomes (Table 3). The quality of the evidence of most outcomes was low and very low. The chief reason was that most of the included studies were retrospective cohort studies, although all studies were of high quality evaluated by the Ottawa–Newcastle score to grade; consequently, the risk of confounding factors was not clear. The included studies collected patients with widely varied stages of disease, including TNM I, II, III, and IV. Stage of the disease was the most important prognostic factor of recurrence and survival in HCC patients. Besides, the disease stage was a significant confounder that was hard to control in retrospective cohort studies. Moreover, the patients with advanced disease were more likely to receive adjuvant therapy, which might be another confounder. Small sample sizes resulted in wide confidence intervals for 10-year survival rate, 10-year DFS, and cancer recurrence, while other factors decreased the quality of the evidence. Future studies should measure differences in clinically important outcomes.

There were several limitations that must be taken into account in this meta-analysis. Most included studies were retrospective cohort studies, and many confounding factors cannot be eliminated, which may contribute significantly to the heterogeneity, such as staging systems, surgical techniques, surgical approach, adjuvant therapies, transfusion criteria, and supportive care, etc. Thus, the results should be explained with caution. Theoretically, a large-scale randomized clinical trial could avoid many of these limitations but would be very difficult to implement. In this situation, a randomized clinical trial would be unethical because it would be unacceptable to administer a transfusion without a clinical indication or to withhold transfusion from a patient who needed blood.

5. Conclusion

In conclusion, despite the quality of the evidence varied for different outcomes, our findings suggested that perioperative blood transfusion had an adverse effect on prognosis of HCC patients after radical hepatectomy, which might reduce the survival rate and disease-free survival, and increase postoperative complication rate. To promote long-term outcomes, surgeons should reduce bleeding during liver resection and avoid perioperative allogenic blood transfusion. Besides, the overall quality of the evidences was poor due to imprecision and risk of bias, which might weaken our confidence in these results. A prospective large-scale study, in which the confounding factors were strictly balanced, was needed.

Acknowledgments

The authors thank Jinhu Tian, Yaolong Chen (Evidence Based Medicine Center of Lanzhou University) for their help and support to the methodology and meta process.

Author contributions

Conceptualization: Kehu Yang, Tiankang Guo.
Data curation: Yangqin Xun, Lidong Hu, Peijing Yan, Kehu Yang.

Formal analysis: Tiankang Guo.
Funding acquisition: Hongwei Tian.
Investigation: Yangqin Xun, Hongwei Tian, Lidong Hu, Peijing Yan.
Methodology: Yangqin Xun, Lidong Hu, Peijing Yan.
Project administration: Kehu Yang, Tiankang Guo.
Resources: Lidong Hu, Peijing Yan.
Software: Lidong Hu.
Validation: Kehu Yang, Tiankang Guo.

Writing – original draft: Yangqin Xun, Hongwei Tian, Lidong Hu.
Writing – review & editing: Yangqin Xun, Kehu Yang, Tiankang Guo.

References

[1] Torre LA, Bray F, Siegel RL, et al. Global Cancer Statistics, 2012. CA Cancer J Clin 2015;65:87–108.
[2] Hammad A, Kaido T, Ogawa K, et al. Liver transplantation for advanced hepatocellular carcinoma in patients with Child–Pugh A and B. Surg Today 2016;46:248–54.
[3] Nanashima A, Nagayasu T. Development and clinical usefulness of the liver hanging maneuver in various anatomical hepatectomy procedures. Surg Today 2016;46:398–404.
[4] Cescon M, Vetrone G, Granz GL, et al. Trends in perioperative outcome after hepatic resection: analysis of 1500 consecutive unselected cases over 20 years. Ann Surg 2009;249:995–1002.
[5] Wada H, Eguchi H, Nagano H, et al. Perioperative allogenic blood transfusion is a poor prognostic factor after hepatocellular carcinoma surgery: a multi-center analysis. Surg Today 2017;47:1–7.
[6] Kuroda S, Tashiro H, Kobayashi T, et al. No impact of perioperative blood transfusion on recurrence of hepatocellular carcinoma after hepatectomy. World J Surg 2012;36:631–8.
[7] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9.
[8] Stang A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603–5.
[9] Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.
[10] Yang T, Lu JH, Lau WY, et al. Perioperative blood transfusion does not influence recurrence-free and overall survivals after curative resection for hepatocellular carcinoma A Propensity Score Matching Analysis. J Hepatol 2016;64:583–93.
[11] Xu LN, Xu YY, Gao DW. Impact of operative and peri-operative factors on the long-term prognosis of primary liver cancer patients undergoing hepatectomy. J Huazhong Univ Sci Technol Med Sci 2016;36:523–8.
[12] Harada N, Shirabe K, Maeda T, et al. Blood transfusion is associated with recurrence of hepatocellular carcinoma after hepatectomy in Child–Pugh class A patients. World J Surg 2015;39:1044–51.
[13] Ye XR, Liu JF, Lu R, et al. The influence of perioperative blood transfusion on the prognosis of patients with primary carcinoma of the liver. J Clin Transfus Lab Med 2013;15:128–31.
[14] Okamura Y, Takeda S, Fuji T, et al. Prognostic significance of postoperative complications after hepatectomy for hepatocellular carcinoma. J Surg Oncol 2011;104:814–21.
[15] Nanashima A, Abo T, Hamasaki K, et al. Perioperative non-tumorous factors associated with survival in HCC patients who underwent hepatectomy. Anticancer Res 2011;31:4545–51.
[16] Yang T, Zhang J, Lu JH, et al. Risk factors influencing postoperative outcomes of major hepatic resection of hepatocellular carcinoma for patients with underlying liver diseases. World J Surg 2011;35:2073–82.
[17] Chen ZY, Wei W, Guo RQ, et al. Significance of intraoperative blood transfusion for the prognosis of patients with large hepatocarcinoma. Chin J Clin Oncol 2010;37:457–66.
[18] Abdel-Wahab M, El-Husseiny TS, El Hanafi E, et al. Prognostic factors affecting survival and recurrence after hepatic resection for hepatocellular carcinoma in cirrhotic liver. Langenbecks Arch Surg 2010;395:625–32.
[19] Choi GH, Kim DH, Choi SB, et al. The preoperative positivity for serum hepatitis B e antigen did not affect overall survival after curative resection of hepatitis B virus-related hepatocellular carcinoma. J Gastroenterol Hepatol 2009;24:391–8.
[20] Wang CC, Iyer SG, Low JK, et al. Perioperative factors affecting long-term outcomes of 473 consecutive patients undergoing hepatectomy for hepatocellular carcinoma. Ann Surg Oncol 2009;16:1832–42.

[21] Sugita S, Sasaki A, Iwaki K, et al. Prognosis and postoperative lymphocyte count in patients with hepatocellular carcinoma who received intraoperative allogeneic blood transfusion: a retrospective study. Eur J Surg Oncol 2008;34:339–45.

[22] Kaibori M, Saito T, Matsu K, et al. Impact of fresh frozen plasma on hepatectomy for hepatocellular carcinoma. Anticancer Res 2008;28:1749–55.

[23] Sasaki Y, Tanaka H, Yamada T, et al. Risk of recurrence in a long-term follow-up after surgery in 417 patients with hepatitis B- or hepatitis C-related hepatocellular carcinoma. Ann Surg Oncol 2006;13:771–80.

[24] Hanazaki K, Kajikawa S, Shimozawa N, et al. Perioperative blood transfusion and survival following curative hepatic resection for hepatocellular carcinoma. Hepatogastroenterology 2005;52:524–9.

[25] Laurent C, Blanc JF, Nobili S, et al. Prognostic factors and long-term survival after hepatic resection for hepatocellular carcinoma originating from noncirrhotic liver. J Am Coll Surg 2005;201:636–62.

[26] Wei AC, Tung Ping Poon R, Fan ST, et al. Risk factors for perioperative morbidity and mortality after extended hepatectomy for hepatocellular carcinoma. Br J Surg 2003;90:33–41.

[27] Ercolani G, Grazi GL, Ravaoli M, et al. Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence. Ann Surg 2003;237:536–43.

[28] Sasaki Y, Yamamura H, Kawakami Y, et al. Expression of smooth muscle calponin in tumor vessels of human hepatocellular carcinoma and its possible association with prognosis. Cancer 2002;94:1777–86.

[29] Kwon AH, Matsui Y, Kamiyama Y. Perioperative blood transfusion in hepatocellular carcinomas: influence of immunologic profile and recurrence free survival. Cancer 2001;91:771–8.

[30] Kitagawa K, Taniguchi H, Mugi T, et al. Safety and advantage of perioperative autologous blood transfusion in hepatic resection for hepatocellular carcinoma. Anticancer Res 2001;21:3663–7.

[31] Makino Y, Yamanoi A, Kimoto T, et al. The influence of perioperative blood transfusion on intrahepatic recurrence after curative resection of hepatocellular carcinoma. Am J Gastroenterol 2000;95:1294–300.

[32] Asahara T, Katayama K, Ito T, et al. Perioperative blood transfusion as a prognostic indicator in patients with hepatocellular carcinoma. World J Surg 1999;23:676–80.

[33] Wu Y, Fan SD. Effect of Non-transfusion hepatectomy on postoperative survival of hepatocellular carcinoma patients. Natl Med J China 1999;79:515–7.