Interwining quantum order and non-trivial topology is at the frontier of condensed matter physics\(^1\text{-}^4\). A charge-density-wave-like order with orbital currents has been proposed for achieving the quantum anomalous Hall effect\(^5\text{-}^6\) in topological materials and for the hidden phase in cuprate high-temperature superconductors\(^7\text{-}^8\). However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy to discover an unconventional chiral charge order in a kagome material, KV\(_3\)Sb\(_5\), with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2 \(\times\) 2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2 \(\times\) 2 charge modulation exhibits an intensity reversal in real space, signalling charge ordering. At the impurity-pinning-free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral charge density wave in the frustrated kagome lattice, which can not only lead to a large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.

The interdependence of geometry, correlations and topology is pivotal to many vexing questions of condensed matter. Advances in pushing this frontier forward directly contribute to our fundamental understanding of quantum matter and the application of quantum materials such as in quantum information science and energy relevant technology. Owing to the unusual lattice geometry, electrons in kagome lattice systems can experience a non-trivial energy spectrum and experimental mysteries suggest a striking yet unknown order phase. Here we perform STM experiments on KV\(_3\)Sb\(_5\), at 4.2 K to observe a CDW order with an unusual magnetic field response.

KV\(_3\)Sb\(_5\) has a layered structure with the stacking of a K\(_1\) hexagonal layer, Sb\(_1\) honeycomb lattice, V\(_3\)Sb\(_1\) kagome lattice and Sb\(_2\) honeycomb lattice. The structure consists of a K\(_1\) hexagonal layer, Sb\(_1\) honeycomb lattice, V\(_3\)Sb\(_1\) kagome lattice and Sb\(_2\) honeycomb lattice. The measured step height from topographic data is 2.3 Å, which is close to the bulk structural distance between the K and Sb layers. According to the crystalline symmetry, at a monolayer atomic step edge between the K and Sb layers, the upper step will be K while the lower is the Sb layer. Owing to the bonding length and geometry, the V and Sb layers can have stronger chemical bonding, and the material tends to cleave between the K and Sb layers. According to the crystalline symmetry, a monolayer atomic step edge between the K and Sb layers, the upper step will be K while the lower is the Sb layer. Owing to the bonding length and geometry, the V and Sb layers can have stronger chemical bonding, and the material tends to cleave between the K and Sb layers. According to the crystalline symmetry, a monolayer atomic step edge between the K and Sb layers, the upper step will be K while the lower is the Sb layer. Owing to the bonding length and geometry, the V and Sb layers can have stronger chemical bonding, and the material tends to cleave between the K and Sb layers.

\(^{1}\)Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, USA. \(^{2}\)Department of Physics, University of Zurich, Zurich, Switzerland. \(^{3}\)Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, CA, USA. \(^{4}\)Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, China. \(^{5}\)Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen, Switzerland. \(^{6}\)Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA. \(^{7}\)Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore. \(^{8}\)Department of Physics, Boston College, Chestnut Hill, MA, USA. \(^{9}\)Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany. \(^{10}\)Lawrence Berkeley National Laboratory, Berkeley, CA, USA. \(^{11}\)Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ, USA. \(^{12}\)Quantum Science Center, Oak Ridge, TN, USA. \(^{13}\)These authors contributed equally: Yu-Xiao Jiang, Jia-Xin Yin, M. Michael Denner, Nana Shumiya, Brenden R. Ortiz, Gang Xu. \(^{14}\)e-mail: jiaxiny@princeton.edu; mzhasan@princeton.edu
that have hexagonal and honeycomb surfaces. To study the nature of the 2×2 modulation, we focus on the Sb surface, which has a strong bonding with a kagome lattice and features large defect-free areas. We measure these areas at 4.2 K (Fig. 1d) and 80 K (Fig. 1d), which is just above the critical temperature of the speculated electronic ordering. It is clear that the 2×2 modulation disappears at 80 K. Through the Fourier transform of the Sb topographic data, we further visualize the existence of 2×2 modulation vector peaks at 4.2 K in Fig. 1f and their disappearance at 80 K in Fig. 1g.

For an electronic order, the states in the vicinity of the Fermi level involved in its formation can produce an energy gap, such as in the classic Peierls mechanism for CDW order. In our dI/dV data (I is the tunnelling current and V is the bias voltage), measuring the local density of states, we observe a gap-like feature on the Sb surface in Fig. 2a. This energy gap extends from −23 meV to +29 meV, with additional shoulders around ±10 meV, which could be due to the multi-orbital, multi-Fermi-surface nature of the material or anisotropy of the underlying order parameter. Moreover, we find this gap also disappears at 80 K in our measurement, attesting to a close relationship with the observed 2×2 modulation. Our first-principles calculation reveals that the low-energy states are from V 3d orbitals. Furthermore, the formation of V hexamers and trimers in the kagome lattice (as illustrated in the inset of Fig. 2b) with slightly reduced bond lengths than the original ones can reduce the total energy of the system by 32 meV, rendering it a promising candidate for the 2×2 superlattice modulation. Our calculation of the local density of states of the energy-optimized 2×2 superlattice structure also reveals an energy gap (Fig. 2b) around the Fermi level, which is of the same order of magnitude as the experimentally observed value. We further perturb the gap spectra by applying a magnetic field along the c axis up to 6 T, but we do not detect a strong field response of the gap structure (Fig. 2c). This observation is also consistent with a CDW gap.

For a CDW gap, it is also expected that across the energy gap, there should be an intensity reversal of the charge modulation. In the classic Peierls CDW scenario, negative voltage bias shows enhanced intensity over charge accumulation regions, whereas images of the same atomic area at positive bias show enhanced intensity over charge depleted regions. The dI/dV imaging in Fig. 2d,e shows that the maximum charge intensity at −30 meV turns to the lowest charge intensity at +30 meV despite the additional complexity of the modulation patterns. This observation thus demonstrates a type of charge intensity reversal. The charge modulation vector peaks are sharply evident in the Fourier transform of the spectroscopic imaging in Fig. 2f. This modulation vector (2×2) is non-dispersive within our momentum resolution, as revealed by the energy-resolved Fourier transform of the spectroscopic imaging in Fig. 2g. The non-dispersive feature demonstrates a static electronic order. The topography and spectroscopic imaging taken together strongly support a CDW order.

A further inspection of our high-resolution charge modulation vector peaks in the low-energy spectroscopic data reveals pronounced intensity anisotropy along different directions, as shown in Fig. 3a. We take the data at a surface defect-free region to study the intrinsic behaviour of CDW, as defects, particularly those inducing standing waves, can backscatter electrons and pin (the phase of) the CDW order. The observed anisotropy can be due to a chiral CDW order as observed and discussed in certain transition-metal dichalcogenides and high-temperature superconductors. The chirality can be defined as the counting direction (clockwise or anticlockwise) from the lowest to highest vector peaks. In the TiSe system, the chirality of the order can be manipulated by an optical field, which does not break time-reversal symmetry. In the current case, we find the chirality at the same atomic area can be switched by the magnetic field applied along the c axis for opposite directions, as shown in Fig. 3b,c. We have repeatedly observed the field switching effect at low energies (relevant to the CDW gap) for different samples. Data taken at certain high energies do not show the switching effect. It is possible that this is due to additional contributions in this multi-orbital material, which deserves future study. The magnetic field switching effect suggests a time-reversal symmetry breaking of the CDW order, which is also supported by our recent muon spin spectroscopy measurement. Under similar magnetic fields, muon spin spectroscopy measurement reveals a sharp enhancement of...
magnetic response below the charge ordering temperature, which will be published elsewhere.

We try to understand the origin of this unconventional CDW order. The low-energy band structure of KV$_3$Sb$_5$ consists of three nearly independent features (Fig. 4a): a quasi-two-dimensional electron pocket around the Γ point formed by p_z orbitals from Sb; a band exhibiting a van Hove singularity at the M point, formed by the d_{xy} orbitals of V; and a pair of Dirac-cone-like bands near the M point, formed by the d_{xz}/d_{yz} orbitals of V. The band at van Hove filling stemming from V d_{xz}/d_{yz} orbitals can be most vital to the formation of the charge ordering.

Fig. 2 | Charge modulation observed via spectroscopic imaging. a. Spatially averaged dI/dV spectra for Sb surface taken at 4.2 and 80 K. The data is averaged over a defect-free area of 10 nm x 10 nm. b. First-principles calculation of the bulk local density of states considering the 2 x 2 superlattice modulation. The inset illustrates the charge order in the underlying V-based kagome lattice based on first-principles calculation, which forms hexamers and trimers (dark lines). c. Magnetic field perturbation of the dI/dV spectra showing no detectable response. d,e. Atomically resolved dI/dV imaging for the same Sb surface at energy $E = -30$ meV and $E = +30$ meV, respectively. The inset shows the underlying ordered kagome lattice inferred from the simultaneously obtained topographic image. f. The inset is the Fourier transform of the dI/dV imaging at -30 meV, showing both charge order and lattice Bragg peaks. The main panel shows the intensity distribution along the Bragg peak direction. a = 5.5 Å is the in-plane lattice constant. g. Energy dependence of the charge order vector and lattice Bragg peaks, showing the non-dispersive nature of the charge order vector.

Fig. 3 | Magnetic response of the chiral charge order. a-c. Spectroscopic 2 x 2 vector peaks taken at magnetic field $B = 0$ T, $+2$ T and -2 T, respectively. Data are taken on defect-free regions. The images are Fourier transforms of spectroscopic maps acquired on an Sb surface that is 30 nm x 30 nm in size at 10 mV. A circular region of the full Fourier-transformed image is shown for clarity, highlighting the six 2 x 2 vector peaks. The top and bottom panels are three-dimensional and two-dimensional presentations of the data. The chirality can be defined as the counting direction (clockwise or anticlockwise) from the lowest to highest pair vector peaks.
of CDW order, since the vector of the 2×2 superlattice charge modulation connects the van Hove singularities at M points and matches with the Fermiology of the $d_x^2-d_y^2$ band $^{33-35}$. Moreover, the kagome lattice at van Hove filling exhibits nested Fermi level eigenstates with unequal predominant sublattice occupancy 33 (Fig. 4a). Based on this sublattice interference mechanism 34, the predicted instability is a CDW order with relative angular momentum 35, which is consistent with a chiral charge order. Accordingly, we consider a triplet of chiral CDW order parameters $^{35} \Delta_{\sigma_1}, \Delta_{\sigma_2}$ and Δ_{σ_3} where $\Delta_{\sigma_i}, n = 1, 2$ and 3, are complex numbers whose absolute value approximately corresponds to the observed peak heights in Fig. 3 (Fig. 4a for more details). The observed magnetic field response suggests that the time-reversal symmetry is broken by the CDW order parameters. This is typically achieved if degenerate order parameter components acquire a complex relative phase. Under reversal of time, such a phase changes sign, and thus, if it is not 0 or π, the state breaks time-reversal symmetry. One of the natural phase choices for the triplet order parameters is then $\arg(\Delta_{\sigma_i}) = 2\pi n/3$. Applying this experimentally motivated choice of order parameters to a kagome model for the V d_{xy} bands yields the energy gap and chiral charge ordering pattern as shown in Fig. 4b.

We further discuss the implications of the unconventional chiral CDW in light of the topological fermions and superconducting ground state of the system. As the Dirac bands of the V d_{xy}/d_{yz} orbitals are also near M points, such an unconventional CDW order will open a topological energy gap 36 at the Dirac cones, thereby introducing a large Berry curvature (Fig. 4c-d). As a consequence, the system would exhibit an anomalous Hall effect. A k_z (vertical momentum) integrated model estimation detailed in the Supplementary Information gives rise to a non-zero Berry curvature, the integration of which produces a giant anomalous Hall effect (right panel). The right panel plots the anomalous Hall conductance σ_y as a function of energy E at $k_z = 0$. σ_y has a unit of e^2/h, where e is the elemental charge and h is Planck’s constant.

Fig. 4 | Impact of time-reversal broken chiral charge order on the electronic structure. a, Schematic of Fermi surfaces in the hexagonal Brillouin zone at $k_z = 0$. The wave vectors of the unconventional CDW are indicated, as well as the location at which Dirac nodal lines slightly above the Fermi energy cut the $k_z = 0$ plane. The V d_{xy} Fermi surface, which is nested by the ordering wave vectors, has weight on distinct sublattices at each M point, giving rise to the sublattice interference mechanism. b, Two-dimensional model calculation of the impact of unconventional chiral CDW on the V d_{xy} bands. The orange (blue) density of states is without (with) the CDW order parameter Δ, which splits the van Hove singularity. The inset image shows the chiral charge pattern and associated orbital currents. The shaded area in the inset marks the 2 unit cell. c, Effective band structure of the nodal lines formed by the d_{xy}/d_{yz} pattern and associated orbital currents. The shaded area in the inset marks the 2 unit cell. d, The introduction of a chiral time-reversal breaking CDW order parameter opens a topological gap around the Fermi level (left panel). This gap gives rise to a non-zero Berry curvature, the integration of which produces a giant anomalous Hall effect (right panel). The right panel plots the anomalous Hall conductance σ_y as a function of energy E at $k_z = 0$. σ_y has a unit of e^2/h, where e is the elemental charge and h is Planck’s constant.
NATURE MATERIALS

Notes added in proof: With the acceptance of this work, we note that a similar chiral charge order is observed in RbV$_3$Sb$_5$ (ref. 38) and CsV$_3$Sb$_5$ (ref. 39), suggesting the ubiquitous chiral charge order in this family of kagome superconductor.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41563-021-01034-y.

Received: 15 January 2021; Accepted: 6 May 2021; Published online: 10 June 2021

References
1. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).
2. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Theory of intertwined orders on kagome lattices. Phys. Rev. Lett. 100, 156401 (2008).
3. Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).
4. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the kagome lattice. Phys. Rev. B 63, 094503 (2001).
5. Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs$_2$LiMn$_3$F$_{12}$. Phys. Rev. Lett. 115, 186802 (2015).
6. Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn$_2$Sn$_2$. Nature 562, 91–95 (2018).
7. Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046501 (2020).
8. Zhang, S. S. et al. Spin–orbit quantum impurity in a topological magnet. Nat. Commun. 11, 4415 (2020).
9. Xing, Y. et al. Localized spin–orbit polaron in magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$. Nat. Commun. 11, 5613 (2020).
10. Mielke, C. Nodeless kagome superconductivity in LaRu$_3$Si$_5$. Phys. Rev. Mater. 5, 034803 (2021).
11. Ortiz, B. R. New kagome prototype materials: discovery of KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$. Phys. Rev. Mater. 3, 094407 (2019).
12. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV$_3$Sb$_5$. Sci. Adv. 6, eabb6003 (2020).
13. Ortiz, B. R. et al. Superconductivity in the Z$_2$ kagome metal KV$_3$Sb$_5$. Phys. Rev. Mater. 5, 034803 (2021).
14. Günther, G. Density Waves in Solids (Addison-Wesley, 1994).
15. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).
16. Monecau, P. Electronic crystals: an experimental overview. Adv. Phys. 61, 325–581 (2012).
17. Spera, M. et al. Insight into the charge density wave gap from contrast inversion in topographic STM images. Phys. Rev. Lett. 125, 267603 (2020).
18. Yin, J.-X. et al. Orbital selectivity of layer resolved tunneling on iron-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2$. Phys. Rev. B 102, 054515 (2020).
19. Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).
20. Xu, S. Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).
21. Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa$_2$Cu$_3$O$_{6+x}$ superconductor: evidence for broken symmetry near the pseudogap region. Phys. Rev. Lett. 100, 127002 (2008).
22. Houss, P., Kapitulnik, A., Kivelson, S., Orenstein, J. & Raghu, S. Kerr effect as evidence of gyrotropic order in the cuprates. Phys. Rev. B 91, 039908 (2015).
23. Kiesel, M. L. & Thomale, R. Sublattice interference in the kagome Hubbard model. Phys. Rev. B 86, 121105R (2012).
24. Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).
25. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).
26. Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).
27. Fominov, G. E. Quantized Hall effect in superfluid helium-3 films. Phys. Lett. A 128, 277–279 (1988).
28. Shishido, Y. et al. Tunable chiral charge order in kagome superconductor RbV$_3$Sb$_5$. Preprint at https://arxiv.org/abs/2105.00550 (2021).
29. Wang, Z. et al. Anomalous transport and chiral charge order in kagome superconductor CsV$_3$Sb$_5$. Preprint at https://arxiv.org/abs/2105.04542 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021.
Methods

Single crystals were grown with the same methods discussed ref. 23. Single crystals with size up to 2 mm × 2 mm were cleaved mechanically in situ at 77 K in ultra-high vacuum conditions, and then immediately inserted into the microscope head, already at 4He base temperature (4.2 K). More than 20 crystals were cleaved and studied in this research. For each cleaved crystal, we explore surface areas over 5 µm × 5 µm to search for atomic flat surfaces. Topographic images in this work were taken with the tunnelling junction set-up \(V = 100 \text{ mV} \) and \(I = 0.05 \text{ nA} \) for exploration of areas typically 400 nm × 400 nm. When we found atomically flat and defect-free areas, we took topographic images with the tunnelling junction set-up \(V = 100 \text{ mV} \) and \(I = 0.5 \text{ nA} \) to resolve the atomic lattice structure as demonstrated in the main paper. Tunnelling conductance spectra were obtained with an Ir/Pt tip using standard lock-in amplifier techniques with a lock-in frequency of 997 Hz and a junction set-up of \(V = 50 \text{ mV} \) and \(I = 0.5 \text{ nA} \), and a root mean square oscillation voltage of 0.3 mV. Tunnelling conductance maps were obtained with a junction set-up of \(V = 50 \text{ mV} \) and \(I = 0.5 \text{ nA} \), and a root mean square oscillation voltage of 5 mV. The magnetic field was applied with a zero-field cooling method. For field-dependent tunnelling conductance spectra, we ramped the field continuously from 0 T to 6 T with a 1 T per hour ramp rate, while simultaneously compensating the field-induced spatial drift of the tip position on the sample. For the field-dependent tunnelling conductance map, we first withdrew the tip away from the sample, and then slowly ramped the field to 2 T or −2 T. Then we reapproached the tip to the sample, found the same atomic area and then performed spectroscopic mapping at this magnetic field. In the main paper, we focus our study on clean regions away from impurities inducing standing waves.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

Acknowledgements

We thank Q. Wang for stimulating discussions. Experimental and theoretical work at Princeton University was supported by the Gordon and Betty Moore Foundation (GBMF4547 and GBMF4961, M.Z.H.). The material characterization is supported by the US Department of Energy through the Basic Energy Sciences programme (grant no. DOE/BES-DE-FG-02-05ER46200), S.D.W. and B.R.O. acknowledge support from the University of California Santa Barbara Quantum Foundry, funded by the National Science Foundation (NSF DMR-1906325). Research reported here also made use of shared facilities of the Materials Research Science and Engineering Center (MRSEC) at University of California Santa Barbara (NSF DMR-1720256). B.R.O. also acknowledges support from the California Nanosystems Institute through the Elings fellowship programme. R.T. is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) through project ID 258499086 – SFB 1178 and through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter (ct.qmat) project ID 390858490 – EXC 2147. T.N. acknowledges supports from the European Union’s Horizon 2020 research and innovation programme (ERC-StG-Neupert-757867-PARATOP). Work at Boston College was supported by the US Department of Energy, Basic Energy Sciences grant number DE-FG02-99ER45747. T.A.C. was supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1656466. Research conducted at the Center for High Energy X-ray Sciences is supported by the National Science Foundation under award DMR-1829070. G.C. would like to acknowledge the support of the National Research Foundation, Singapore under its Fellowship Award (NRF-NRFI13-2021-0010) and the Nanyang Assistant Professorship grant from Nanyang Technological University. G.X. was supported by the National Key Research and Development Program of China (2018FA0367000) and the National Natural Science Foundation of China (11874022).

Author contributions

Y.-X.J., J.-X.Y. and N.S. conducted the STM experiments in consultation with M.Z.H.; B.R.O. and S.D.W. synthesized samples; B.R.O., J.R. and L.K. performed X-ray measurements; M.M.D., J.H., X.L., G.C., G.X., Z.W., R.T. and T.N. carried out the theoretical analysis in consultation with J.-X.Y. and M.Z.H.; Z.G., J.R., L.K., S.S.Z., I.B., Q.Z., M.S.H., T.A.C., D.M., M.L., Z.-J.C. and X.P.Y. contributed to the calibration of the measurement; Y.-X.J., J.-X.Y. and M.Z.H performed the data analysis and figure development and wrote the paper with contributions from all authors; M.Z.H. supervised the project. All authors discussed the results, interpretation and conclusion.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41563-021-01034-y.

Correspondence and requests for materials should be addressed to J.-X.Y. or M.Z.H.

Peer review information Nature Materials thanks Marcel Franz, Erik van Heumen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.