Spin splitting spectroscopy of heavy quark antiquark systems

Hesham Mansour*, Ahmed Gamal and M. Abolmahasen

Physics Department, faculty of science, Cairo University, Giza, Egypt
Correspondence, Ahmed Gamal, Department of Physics, Cairo University, Giza, Egypt.
E-mail: alnabolci2010@gmail.com
* FInstP

Abstract
Phenomenological potentials describe the quarkonium systems like Charmonia, Bottomonia and \(B_c \) Meson. They give a good accuracy for the mass spectra. In the present work we extend one of our previous works in the central case by adding spin dependent terms to allow for relativistic corrections. By using non-central terms, we get better accuracy than other previous theoretical calculation. In the present work, the mass spectra of the bound states of heavy quarks are studied within the framework of the nonrelativistic Schrödinger’s equation. First, we solve Schrödinger’s equation by Nikiforov Uvarov (NU) method. The energy eigenvalues are presented using a non-central potential. The results obtained are in good agreement with the experiment and are better than previous theoretical estimates.

I. Introduction
In the twenty’s century, quarkonium systems have been discovered. Theorists have been trying to explain some aspects of those systems like mass spectra and decay modes properties, …etc.. [1][2][3][4][5]. Some of them used lattice quantum chromodynamics view [6] [7] [8] [9][10][11][12], effective filed theory[13], relativistic potential models [14][15], semi-relativistic potential models [16] and non-relativistic potential models[17][18][19] which have shared in common the Coulomb and linear potentials. There are other groups which use confinement power potential \(r^n \) [20][21][22], the Bethe-Salpeter approach[23][24][25]. In the present work we use mixed potential; nonrelativistic potential models (Coulomb + linear) and confinement power potentials plus spin dependent splitting terms as a correction. Schrödinger’s equation is solved by the Nikiforov-Uvarov (NU) method, which gives asymptotic expressions for the eigenfunctions and eigenvalues of the Schrödinger’s equation.
II. Methodology

In the quarkonium system which deals with quark and antiquark interaction in the center of mass frame, the masses of the quark and antiquark are bigger than chromodynamics scaling i.e. \(M_{q,\bar{q}} \gg \Lambda_{QCD} \). So this allows for non-relativistic treatment and is considered as a heavy bound systems. By using Schrödinger equation of two-body system in spherical symmetric potential.

\[
\frac{d^2 Q(r)}{dr^2} + \left[\frac{2\mu}{\hbar^2} (E - V_{tot}(r)) - \frac{l(l + 1)}{r^2} \right] Q(r) = 0
\]

Where \(\mu \) is reduced mass, \(E \) is energy eigenvalue, \(l \) is orbital quantum number, \(V_{tot}(r) \) is total potential of the system, \(Q(r) = rR(r) \) and \(R(r) \) is a radial wavefunction solution of Schrödinger's equation. Our radial potential is taken as:

\[
V(r) = -\frac{b}{r} + ar + dr^2 + pr^4
\]

Also, we use spin dependent splitting terms: spin-spin interaction, spin-orbital interaction and tensor interaction respectively[26][27][28][29][30][31][32][33][34].

\[
V_{s-l-T}(r) = V_{s-s}(r) + V_{s-l}(r) + V_T(r)
\]

Where

\[
V_{s-s}(r) = \frac{2}{3m_q m_{\bar{q}}} \nabla^2 V_V(r) \left[\vec{S}_q \cdot \vec{S}_{\bar{q}} \right]
\]

\[
V_{s-l}(r) = \frac{1}{2m_q m_{\bar{q}}} \left[\frac{3}{r} \frac{dV_V(r)}{dr} - \frac{dV_V(r)}{dr} \right] \left[\vec{L} \cdot \vec{S} \right]
\]

\[
V_T(r) = \frac{1}{12m_q m_{\bar{q}}} \left[\frac{1}{r} \frac{dV_V(r)}{dr} - \frac{d^2V_V(r)}{dr^2} \right] \left[6 \left(\vec{S}_q \cdot \frac{\vec{r}}{|r|} \right) \left(\vec{S}_{\bar{q}} \cdot \frac{\vec{r}}{|r|} \right) - 2 \vec{S}_q \cdot \vec{S}_{\bar{q}} \right]
\]

\(V_V \) is a vector potential term and \(V_s \) is a scalar potential term.

So, the total potential becomes

\[
V_{tot}(r) = V(r) + V_{s-l-T}(r)
\]

\[
V_{tot}(r) = \frac{4a_v}{3m_q m_{\bar{q}}} v(ss) + \frac{v(ls)}{m_q m_{\bar{q}}} \left[\frac{3a_v - a_s}{2r} + \frac{3b}{2r^3} - d - 2pr^2 \right] + \frac{v(T)}{12m_q m_{\bar{q}}} \left[\frac{a_v}{r} + \frac{3b}{r^3} \right]
\]

\[
-\frac{b}{r} + ar + dr^2 + pr^4
\]

Where \(v(ss) = \left[\vec{S}_q \cdot \vec{S}_{\bar{q}} \right] \), \(v(ls) = \left[\vec{L} \cdot \vec{S} \right] \), \(v(T) = -2 \left[\vec{S}_q \cdot \vec{S}_{\bar{q}} - 3 \left(\vec{S}_q \cdot \frac{\vec{r}}{|r|} \right) \left(\vec{S}_{\bar{q}} \cdot \frac{\vec{r}}{|r|} \right) \right] \).
\[a_s + a_v = a \]

By substituting in equation (1), we get

\[
\frac{d^2 Q}{dr^2} + \left[\varepsilon - \frac{B}{r^3} - \frac{l(l+1)}{r^2} - \frac{C}{r} - \frac{Ar - Fr^2 - Pr^4}{r^4} \right] Q = 0 \tag{8}
\]

Where

In natural units

\[
\varepsilon = 2\mu E + \frac{2\mu d\nu(\ell s)}{m_q m_q}, \quad B = \frac{\mu b[6\nu(\ell s) + \nu(t)]}{2m_q m_q} \tag{9}
\]

\[
A = 2\mu a, \quad F = \frac{2\mu}{m_q m_q}[-2p\nu(\ell s) + dm_q m_q] \tag{10}
\]

\[
C = \frac{\mu[16a_v v(ss) + 6(3a_v - a_s)\nu(\ell s) + a_v\nu(T) - 12m_q m_q b]}{6m_q m_q}, \quad P = 2\mu p \tag{11}
\]

Let \(x = \frac{1}{r} \) and by substituting in equation (8), we obtain

\[
\frac{d^2 Q}{dx^2} + \frac{2}{x} \frac{dQ}{dx} + \frac{1}{x^2} \left[\varepsilon - \frac{Bx - C}{x} - \frac{l(l+1)}{x^3} - \frac{A}{x^4} - \frac{F}{x^5} - \frac{P}{x^6} \right] Q = 0 \tag{12}
\]

In equation (12), one can use the Nikiforov-Uvarov method (NU) to get eigenvalue and eigenfunction equations[35][36][37][38][39][40][41][42][43]. Due to the singularity point in equation (12), let \(y + \delta = x \), and using the Taylor’s series to expand to second order terms, one obtains

\[
\frac{d^2 Q}{dx^2} + \frac{2}{x} \frac{dQ}{dx} + \frac{1}{x^2} [-q + wx - zx^2] Q = 0 \tag{13}
\]

Where

\[
- \frac{6\varepsilon}{\delta^2} + \frac{3C}{\delta} + l(l+1) + \frac{10A}{\delta^3} + \frac{15F}{\delta^4} + \frac{28P}{\delta^6} = q \tag{14}
\]

\[
- \frac{8\varepsilon}{\delta^3} - B + \frac{3C}{\delta^2} + \frac{15A}{\delta^4} + \frac{24F}{\delta^5} + \frac{48P}{\delta^7} = w \tag{15}
\]

\[
- \frac{3\varepsilon}{\delta^4} + \frac{C}{\delta^3} + \frac{6A}{\delta^5} + \frac{10F}{\delta^6} + \frac{21P}{\delta^8} = z \tag{16}
\]

We get

\[
z = \left[\frac{w}{2n + 1 + 2\sqrt{q + \frac{1}{4}}} \right]^2 \tag{17}
\]
By substituting equations (14-16) in equation (17) and arrange it, we get
\[
\epsilon = \frac{C\delta}{3} + \frac{2A}{\delta} + \frac{10F}{3\delta^2} + 7P + \frac{8E}{\delta} - B\delta^2
\]
\[
- \frac{1}{3} \left[\frac{3C}{\delta^2} + \frac{15A}{\delta^3} + \frac{24F}{\delta^4} + \frac{48P}{\delta^5} - \frac{8\epsilon}{\delta} - B\delta^2 \right]^2
\]
(18)

We substitute equations (9-11) into equation (18), to obtain the energy eigenvalue equation
\[
\epsilon = \frac{[16a_v(\tau) + 6(b_v - a_v)\psi(\tau) + a_v(\tau) - 12m_m\mu)]}{\delta^{3/2}} + 2a_0 + \frac{10}{3\mu\mu_q}[2\psi(\tau) + \delta m_m\mu] - 20\alpha_r + 30\mu\mu_q [2\psi(\tau) + \mu\mu_q m_m\mu] - 56\mu_r^2 - 6\mu_r^2 [2E + 2E(\tau)]
\]
\[
\left[\frac{[16a_v(\tau) + 6(b_v - a_v)\psi(\tau) + a_v(\tau) - 12m_m\mu)]}{\delta^{3/2}} + 2a_0 + \frac{10}{3\mu\mu_q}[2\psi(\tau) + \delta m_m\mu] - 20\alpha_r + 30\mu\mu_q [2\psi(\tau) + \mu\mu_q m_m\mu] - 56\mu_r^2 - 6\mu_r^2 [2E + 2E(\tau)] \right]^{1/2}
\]
(19)

Where \(\delta = \frac{1}{r_0} \)

Knowing that
\[
M(q\bar{q}) = E + m_q + m_q \quad \rightarrow \quad E = M(q\bar{q}) - (m_q + m_q)
\]
(20)

So, the mass spectra equation becomes,
\[
M(q\bar{q}) = \left[\frac{[16a_v(\tau) + 6(b_v - a_v)\psi(\tau) + a_v(\tau) - 12m_m\mu)]}{\delta^{3/2}} + 2a_0 + \frac{10}{3\mu\mu_q}[2\psi(\tau) + \delta m_m\mu] - 20\alpha_r + 30\mu\mu_q [2\psi(\tau) + \mu\mu_q m_m\mu] - 56\mu_r^2 - 6\mu_r^2 [2E + 2E(\tau)] \right]^{1/2}
\]
(21)

The eigenfunction equation is
\[
Q(r) = N_{nls} \frac{1}{r^{3/2}} \sqrt{\left(\frac{q+2}{2}\right)} e^{-\frac{\sqrt{2}}{r}} L_n^2 \left(\frac{q+1}{2}\right) \left(\frac{2\sqrt{2}}{r}\right)
\]
(22)

Where \(L_n^2 \left(\frac{q+1}{2}\right) \left(\frac{2\sqrt{2}}{r}\right) \) is the Rodrigues’s formula of the associated Laguerre polynomial and \(N_{nls} \) is a normalization constant.

So, the radial wavefunction solution of Schrödinger’s equation is given by
\[
R(r) = N_{nls} r^{-\frac{1}{2}} \sqrt{\left(\frac{q+1}{2}\right)} e^{-\frac{\sqrt{2}}{r}} L_n^2 \left(\frac{q+1}{2}\right) \left(\frac{2\sqrt{2}}{r}\right)
\]
(23)
The energy eigenvalue equation (19) has spin-orbital-tensor coefficients $v(ss), v(sl), v(T)$ and those can be given from references [26][27][28]. Also, it has potential parameters (a_s, a_v, b, d, p) and r_0 due to the expansion, so we have six parameters of the eigenvalue equation which can be obtained from the experimental data[44] by best fitting.

III. Numerical Results and Discussions

In table (1), potential parameters are shown for each system. It is noticed that the values of these parameters are different for different systems and this is due to the properties of those systems like energy scale, decay mode...etc. We use spectroscopic notation for the levels $(n^{2S+1}L_J)$.

S is total spin of the system, L is the orbital quantum number, n is the principal quantum number, J is the total (orbital + spin) quantum number.

By using equation (21) and table (1), we get the mass spectra of different quantum states as shown in the tables (2-7). Previously, we used the phenomenological potential in equation (2) without spin dependent corrections(central dependent potential) [45]. The results obtained were good in comparison with the experimental data.

Table 1. Parameter values of each system

Systems	m_q	$m_{\bar{q}}$	r_0	as	av	b	d	p
cc system	1.317	1.317	12.82	-0.0796	-0.7349	0.009	0.10686	-0.000184
bb system	4.584	4.584	7.23795	0.0505	2.5771	15.02	-0.07969	-0.00102
bc system	4.584	1.317	11.434	-2.5549	1.5369	0.039	0.11453	-0.00018438

Table 2. Charmonia mass spectrum of S and P-wave in MeV

Level	Present	[24]	[46]	[28]	[47]	[48]	[15]	[49]	[31]	[50]	[51]	[44]	
1^3S_0	3.0326	2.93	2.981	2.984	2.989	2.979	2.980	2.982	3.088	2.979	2.984		
1^3S_1	3.1257	3.11	3.096	3.097	3.094	3.097	3.097	3.097	3.168	3.096	3.097		
2^5S_0	3.6657	3.68	3.635	3.637	3.602	3.623	3.597	3.633	3.630	3.669	3.600	3.639	
2^5S_1	3.7006	3.68	3.685	3.679	3.681	3.673	3.685	3.690	3.672	3.707	3.680	3.686	
	3^1S_0	4.1580	--	3.989	4.004	4.058	3.991	4.014	3.992	4.043	4.067	4.011	--
------	--------	--------	----	--------	--------	--------	--------	--------	--------	--------	--------	--------	----
3^3S_1	4.0549	3.80	4.039	4.030	4.129	4.022	4.095	4.030	4.072	4.094	4.077	4.039	
4^1S_0	4.4145	--	4.401	4.264	4.448	4.250	4.433	4.244	4.384	4.398	4.397	--	
4^3S_1	4.4146	--	4.427	4.281	4.514	4.273	4.477	4.273	4.406	4.420	4.454	4.421	
5^1S_0	4.6074	--	4.811	4.459	4.799	4.446	--	4.440	--	--	--	--	
5^3S_1	4.5845	--	4.837	4.472	4.863	4.463	--	4.464	--	--	--	--	
6^1S_0	4.7543	--	5.155	--	5.124	4.595	--	4.601	--	--	--	--	
6^3S_1	4.7333	--	5.167	--	5.185	4.608	--	4.621	--	--	--	--	
1^3P_0	3.4067	3.32	3.413	3.415	3.428	3.433	3.416	3.392	3.424	3.448	3.488	3.415	
1^1P_1	3.4865	3.49	3.511	3.521	3.468	3.510	3.508	3.491	3.505	3.520	3.514	3.511	
1^3P_1	3.5023	3.43	3.525	3.526	3.470	3.519	3.527	3.524	3.516	3.536	3.536	3.525	
1^1P_2	3.5224	3.55	3.555	3.553	3.480	3.556	3.558	3.570	3.556	3.564	3.565	3.556	
2^3P_0	3.8987	3.83	3.870	3.848	3.897	3.842	3.844	3.845	3.852	3.870	3.947	3.918	
2^1P_1	3.7858	3.67	3.906	3.914	3.938	3.901	3.940	3.902	3.925	3.934	3.972	--	
2^3P_1	3.8209	3.75	3.926	3.916	3.943	3.908	3.960	3.922	3.934	3.950	3.996	--	
2^3P_2	3.9054	--	3.949	3.937	3.955	3.937	3.994	3.949	3.972	3.976	4.021	3.927	
3^3P_0	4.1202	--	4.301	4.146	4.296	4.131	--	4.192	4.202	4.214	--	--	
3^3P_1	4.1226	3.91	4.319	4.192	4.338	4.178	--	4.178	4.271	4.275	--	--	
3^3P_2	4.1642	--	4.337	4.193	4.344	4.184	--	4.137	4.279	4.291	--	--	
4^3P_2	4.1444	--	4.354	4.211	4.358	4.208	--	4.212	4.317	4.316	--	--	
4^3P_0	4.3615	--	4.698	--	4.653	--	--	--	--	--	--	--	
4^3P_1	4.3729	--	4.728	--	4.696	--	--	--	--	--	--	--	
4^3P_1	4.4195	--	4.744	--	4.704	--	--	--	--	--	--	--	
4^3P_2	4.4111	--	4.763	--	4.718	--	--	--	--	--	--	--	
5^3P_0	4.5429	--	--	--	4.983	--	--	--	--	--	--	--	

Table 3.: Charmonia mass spectrum of D and F-wave in MeV

Level	Present	[47]	[46]	[28]	[24]	[48]	[15]	[49]	[31]	[50]	[51]
1^3D_3	3.3067	3.755	3.813	3.808	3.869	3.799	3.831	3.844	3.806	3.809	3.798
1^3D_2	3.3755	3.765	3.807	3.805	3.739	3.796	3.824	3.802	3.799	3.803	3.796
1^3D_2	3.3481	3.772	3.795	3.807	3.550	3.798	3.824	3.788	3.800	3.804	3.794
1^3D_1	3.3744	3.775	3.783	3.792	--	3.787	3.804	3.729	3.785	3.789	3.792
2^1D_3	3.7972	4.176	4.220	4.112	3.806	4.103	4.202	4.132	4.167	4.167	4.425
2^1D_2	3.8359	4.182	4.196	4.108	--	4.099	4.191	4.105	4.158	4.158	4.224
2^1D_2	3.8005	4.188	4.190	4.109	--	4.100	4.189	4.095	4.158	4.159	4.223
2^1D_1	3.8002	4.188	4.105	4.095	--	4.089	4.164	4.057	4.142	4.143	4.222
3^3D_3	4.1627	4.549	4.574	4.340	--	4.331	--	4.351	--	--	--
3^3D_2	4.1763	4.553	3.549	4.336	--	4.326	--	4.330	--	--	--
3^3D_2	4.1345	4.557	4.544	4.337	--	4.327	--	4.322	--	--	--
3^3D_1	4.11298	4.555	4.507	4.324	--	4.317	--	4.293	--	--	--
4^3D_3	4.4358	4.890	4.920	--	--	--	--	4.526	--	--	--
4^3D_2	4.4293	4.892	4.898	--	--	--	--	4.509	--	--	--
4^3D_2	4.3825	4.896	4.896	--	--	--	--	4.504	--	--	--
4^3D_1	4.345	4.891	4.857	--	--	--	--	4.480	--	--	--
1^1F_2	3.4031	3.990	4.041	--	--	--	4.068	--	4.029	--	--
1^1F_3	3.3752	4.012	4.068	--	3.999	--	4.070	--	4.029	--	--
1^1F_3	3.403	4.017	4.071	--	4.037	--	4.066	--	4.026	--	--
Table 4. Bottomonia mass spectrum of S and P-wave in MeV

Level	Present	[52]	[46]	[28]	[24]	[53]	[15]	[49]	[54]	[44]							
1^3F_4	3.3152	4.036	4.093	--	--	--	4.062	--	4.021	--	--						
2^3F_2	3.81158	4.378	4.361	--	--	--	--	--	4.351	--	--						
2^3F_3	3.823	4.396	4.400	--	--	--	--	--	3.352	--	--						
2^3F_3	3.8583	4.400	4.406	--	--	--	--	--	4.350	--	--						
2^3F_4	3.814	4.415	4.434	--	--	--	--	--	4.348	--	--						
3^3F_2	4.111	4.730	--	--	--	--	--	--	--	--	--						
3^3F_3	4.152	4.746	--	--	--	--	--	--	--	--	--						
3^3F_3	4.1944	4.749	--	--	--	--	--	--	--	--	--						
3^3F_4	4.1857	4.761	--	--	--	--	--	--	--	--	--						
	61S$_1$	13P$_0$	13P$_1$	13P$_2$	23P$_0$	23P$_1$	23P$_2$	33P$_0$	33P$_1$	33P$_2$	43P$_0$	43P$_1$	43P$_2$	53P$_0$	53P$_1$	53P$_2$	
---	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	
	11.02145	9.8395	9.87509	9.88423	10.202	10.22867	10.23734	10.29912	10.33934	10.40635	10.53183	10.5711	10.5941	10.6370	10.73045	10.76889	10.79183
	11.102	9.847	9.876	9.882	10.226	10.255	10.260	10.552	10.538	10.550	10.775	10.788	10.790	10.798	11.004	11.014	11.016
	11.088	9.859	9.892	9.900	10.233	10.249	10.254	10.521	10.541	10.550	10.781	10.802	10.804	10.812	11.004	11.014	11.016
	10.988	9.864	9.903	9.909	10.220	10.120	10.154	10.490	10.515	10.528	10.732	10.753	10.757	10.767	--	--	--
	--	9.815	9.842	9.816	10.254	10.251	10.256	--	10.303	--	--	--	--	--	--	--	--
	--	9.865	9.897	9.890	10.226	10.255	10.262	--	10.524	--	--	--	--	--	--	--	--
	--	9.861	9.891	9.900	10.230	10.255	10.261	--	10.507	--	--	--	--	--	--	--	--
	10.988	9.862	9.888	9.896	10.241	10.255	10.261	--	10.513	--	--	--	--	--	--	--	--
	--	9.855	9.874	9.879	10.221	10.263	10.260	--	10.516	--	--	--	--	--	--	--	--
	10.995	9.859	9.874	9.899	10.232	10.255	10.260	--	10.521	--	--	--	--	--	--	--	--
	11.019	9.893	9.893	9.912	10.269	10.263	10.260	--	10.500	--	--	--	--	--	--	--	--

The table displays energy levels for various atomic states, with columns representing different states and rows showing the energy values for each state.
Level	Present	[52]	[46]	[28]	[24]	[53]	[15]	[49]	[54]	[44]
1^3D_3	9.84905	10.115	10.166	10.157	10.232	10.156	10.163	10.177	10.127	--
1^3D_2	9.76645	10.148	10.163	10.153	10.194	10.152	10.158	10.166	10.123	--
1^3D_2	10.09624	10.147	10.161	10.153	10.145	10.151	10.157	10.162	10.122	10.163
1^3D_1	9.6664	10.138	10.154	10.146	--	10.145	10.149	10.147	10.117	--
2^3D_3	10.1746	10.455	10.449	10.436	--	10.442	10.456	10.447	10.422	--
2^3D_2	10.0943	10.450	10.445	10.432	--	10.439	10.452	10.440	10.419	--
2^3D_2	10.0712	10.449	10.443	10.432	--	10.438	10.450	10.437	10.418	--
2^3D_1	9.99643	10.441	10.435	10.425	--	10.432	10.443	10.428	10.414	--
3^3D_3	10.4462	10.711	10.717	--	--	10.680	10.652	--	--	--
3^1D_2	10.3679	10.706	10.713	--	--	10.677	10.646	--	--	--
3^3D_2	10.3448	10.705	10.711	--	--	10.676	10.645	--	--	--
3^3D_1	10.2718	10.698	10.704	--	--	10.670	10.637	--	--	--
4^3D_3	10.6756	10.939	10.963	--	--	10.886	10.817	--	--	--
4^1D_2	10.5988	10.935	10.959	--	--	10.883	10.813	--	--	--
4^3D_2	10.5758	10.934	10.957	--	--	10.882	10.811	--	--	--
4^3D_1	10.5043	10.928	10.949	--	--	10.877	10.811	--	--	--
1^3F_2	9.64171	10.350	10.343	10.338	--	--	10.353	--	10.315	--
1^3F_3	9.75433	10.355	10.346	10.340	10.302	--	10.356	--	10.321	--
1^3F_3	9.77753	10.355	10.347	10.339	10.319	--	10.356	--	10.322	--
1^3F_4	9.89613	10.358	10.349	10.340	--	--	10.357	--	--	--
2^3F_2	9.97096	10.615	10.610	--	--	--	10.610	--	--	--
2^3F_3	10.0806	10.619	10.614	--	--	--	10.613	--	--	--
2^3F_3	10.1038	10.619	10.647	--	--	--	10.613	--	--	--
2^3F_4	10.219	10.622	10.617	--	--	--	10.615	--	--	--
Level	Present	[47]	[55]	[46]	[56]	[57]	[44]			
-------	---------	------	------	------	------	------	------			
3^3F_2	10.2457	10.850	--	--	--	--	--			
3^3F_3	10.3529	10.853	--	--	--	--	--			
3^1F_3	10.376	10.853	--	--	--	--	--			
3^3F_4	10.48872	10.856	--	--	--	--	--			

Table 6. B_c Meson mass spectrum of S and P-wave in MeV
Level	Present	[47]	[55]	[46]	[56]	[57]	
2^1P	6.845372	7.168	7.156	7.094	7.150	7.322	--
2^3P	6.916870	7.173	7.162	7.157	7.164	7.232	--
3^1P	7.2273759	7.536	7.463	7.474	--	--	--
3^3P	7.278255	7.555	7.479	7.510	--	--	--
3^P	7.287580	7.559	7.479	7.500	--	--	--
3^3P	7.3549761	7.565	7.485	7.524	--	--	--
4^1P	7.5825397	7.885	--	7.817	--	--	--
4^3P	7.630816	7.905	--	7.853	--	--	--
4^P	7.6400914	7.908	--	7.844	--	--	--
4^3P	7.703863	7.915	--	7.867	--	--	--
5^1P	7.8668871	8.207	--	--	--	--	--
5^3P	7.9129099	8.226	--	--	--	--	--
5^P	7.9221732	8.230	--	--	--	--	--

Table 7. *Bc* Meson mass spectrum of D and F-wave in MeV
IV. CONCLUSIONS

The above tables show that, spin dependent terms are important factors to give high accuracy and complete quantitative description of the quarkonium systems for the cases where experimental values are available. The theoretical work agrees with experimental data. This shows also that the Nikiforov-Uvarov method is a good method to get the energy eigenvalues for the meson spectra. The results are even better than other previous works.

References

[1] E. Eichten, S. Godfrey, H. Mahlke, and J. L. Rosner, “Quarkonia and their
transitions,” Rev. Mod. Phys., vol. 80, no. 3, pp. 1–80, 2008, doi: 10.1103/RevModPhys.80.1161.

[2] N. Brambilla et al., “Heavy Quarkonium Physics,” no. June, 2004.

[3] N. Brambilla et al., “Heavy quarkonium: Progress, puzzles, and opportunities,” Eur. Phys. J. C, vol. 71, no. 2, pp. 1–178, 2011, doi: 10.1140/epjc/s10052-010-1534-9.

[4] A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions,” Eur. Phys. J. C, vol. 76, no. 3, 2016, doi: 10.1140/epjc/s10052-015-3819-5.

[5] S. Godfrey and S. L. Olsen, “The Exotic XYZ Charmonium-Like Mesons,” Annu. Rev. Nucl. Part. Sci., vol. 58, no. 1, pp. 51–73, 2008, doi: 10.1146/annurev.nucl.58.110707.171145.

[6] J. J. Dudek, R. G. Edwards, N. Mathur, and D. G. Richards, “Charmonium excited state spectrum in lattice QCD,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 77, no. 3, 2008, doi: 10.1103/PhysRevD.77.034501.

[7] T. Burch et al., “Quarkonium mass splittings in three-flavor lattice QCD,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 81, no. 3, pp. 1–21, 2010, doi: 10.1103/PhysRevD.81.034508.

[8] T. Liu, A. A. Penin, and A. Rayyan, “Coulomb artifacts and bottomonium hyperfine splitting in lattice NRQCD,” J. High Energy Phys., vol. 2017, no. 2, 2017, doi: 10.1007/JHEP02(2017)084.

[9] S. Meinel, “Bottomonium spectrum from lattice QCD with 2+1 flavors of domain wall fermions,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 79, no. 9, pp. 1–11, 2009, doi: 10.1103/PhysRevD.79.094501.

[10] K. Nochi, T. Kawanai, and S. Sasaki, “Bethe-Salpeter wave functions of ηc (2S) and ψ (2S) states from full lattice QCD,” Phys. Rev. D, vol. 94, no. 11, pp. 1–12, 2016, doi: 10.1103/PhysRevD.94.114514.

[11] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel, and G. P. Lepage, “Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 86, no. 7, p. 074503, Oct. 2012, doi: 10.1103/PhysRevD.86.074503.

[12] J. O. Daldrop, C. T. H. Davies, and R. J. Dowdall, “Prediction of the bottomonium D-wave spectrum from full lattice QCD,” Phys. Rev. Lett., vol. 108, no. 10, pp. 4–7, 2012, doi: 10.1103/PhysRevLett.108.102003.

[13] M. Neubert, “Heavy-quark symmetry,” Phys. Rep., vol. 245, no. 5–6, pp. 259–395, 1994, doi: 10.1016/0370-1573(94)90091-4.

[14] K. M. Maung, D. E. Kahana, and J. W. Norbury, “Solution of two-body relativistic bound-state equations with confining plus coulomb interactions,” Phys. Rev. D, vol. 47, no. 3, pp. 1182–1189, 1993, doi: 10.1103/PhysRevD.47.1182.
[15] S. F. Radford and W. W. Repko, “Hyperfine splittings in the bb- system,” Nucl. Phys. A, vol. 865, no. 1, pp. 69–75, 2011, doi: 10.1016/j.nuclphysa.2011.06.032.

[16] S. N. Gupta, S. F. Radford, and W. W. Repko, “Semirelativistic Potential Model for Heavy Quarkonia,” Phys. Rev. D, vol. 34, pp. 201–206, 1986, doi: 10.1103/PhysRevD.34.201.

[17] J. N. Pandya and P. C. Vinodkumar, “Masses of S and P wave mesons and pseudoscalar decay constants using a confinement scheme,” Pramana - J. Phys., vol. 57, no. 4, pp. 821–827, 2001, doi: 10.1007/s12043-001-0031-y.

[18] J. N. Pandya, N. R. Soni, N. Devlani, and A. K. Rai, “Decay rates and electromagnetic transitions of heavy quarkonia,” Chin. Phys. C, vol. 39, no. 12, p. 123101, 2015, doi: 10.1088/1674-1137/39/12/123101.

[19] A. K. Rai, J. N. Pandya, and P. C. Vinodkumar, “Decay rates of quarkonia with NRQCD formalism using spectroscopic parameters of potential models,” Eur. Phys. J. A, vol. 38, no. 1, pp. 77–84, 2008, doi: 10.1140/epja/i2008-10639-9.

[20] A. K. Rai, R. H. Parmar, and P. C. Vinodkumar, “Masses and decay constants of heavy-light flavor mesons in a variational scheme,” J. Phys. G, vol. 28, pp. 2275–2282, 2002, doi: 10.1088/0954-3899/28/8/313.

[21] A. K. Rai, B. Patel, and P. C. Vinodkumar, “Properties of QQ mesons in nonrelativistic QCD formalism,” Phys. Rev. C - Nucl. Phys., vol. 78, no. 5, p. 055202, Nov. 2008, doi: 10.1103/PhysRevC.78.055202.

[22] B. Patel and P. C. Vinodkumar, “Properties of QQ(Q ∈ b, c) mesons in Coulomb plus power potential (CPPν),” J. Phys. G Nucl. Part. Phys., vol. 36, no. 3, 2009, doi: 10.1088/0954-3899/36/3/035003.

[23] V. Sauli, “Bethe-Salpeter study of radially excited vector quarkonia,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 86, no. 9, p. 096004, Nov. 2012, doi: 10.1103/PhysRevD.86.096004.

[24] C. S. Fischer, S. Kubrak, and R. Williams, “Spectra of heavy mesons in the Bethe-Salpeter approach,” Eur. Phys. J. A, vol. 51, no. 1, pp. 1–9, 2015, doi: 10.1140/epja/i2015-15010-7.

[25] S. Leitão, A. Stadler, M. T. Peña, and E. P. Biernat, “Linear confinement in momentum space: Singularity-free bound-state equations,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 90, no. 9, p. 096003, Nov. 2014, doi: 10.1103/PhysRevD.90.096003.

[26] W. Kwong and J. L. Rosner, “D-wave quarkonium levels of the family,” Phys. Rev. D, vol. 38, no. 1, pp. 279–297, 1988, doi: 10.1103/PhysRevD.38.279.

[27] M. B. Voloshin, “Charmonium,” Progress in Particle and Nuclear Physics, vol. 61, no. 2, pp. 455–511, 2008, doi: 10.1016/j.ppnp.2008.02.001.

[28] W. J. Deng, H. Liu, L. C. Guì, and X. H. Zhong, “Charmonium spectrum and electromagnetic transitions with higher multipole contributions,” Phys. Rev. D, vol. 95, no. 3, pp. 1–20, 2017, doi: 10.1103/PhysRevD.95.034026.
[29] P. P. D'Souza, A. P. Monteiro, and K. B. V. Kumar, “Properties of Low-Lying Charmonium States in a Phenomenological Approach,” pp. 1–10, 2017.

[30] I. Haysak, Y. Fekete, V. Morokhovych, S. Chalupka, and M. Salak, “Spin effects in two quark system and mixed states,” *Czechoslov. J. Phys.*, vol. 55, no. 5, pp. 541–554, 2005, doi: 10.1007/s10582-005-0059-1.

[31] T. Barnes, S. Godfrey, and E. S. Swanson, “Higher charmonia,” *Phys. Rev. D - Part. Fields, Gravit. Cosmol.*, vol. 72, no. 5, pp. 1–28, 2005, doi: 10.1103/PhysRevD.72.054026.

[32] O. Lakhina and E. S. Swanson, “Dynamic properties of charmonium,” *Phys. Rev. D - Part. Fields, Gravit. Cosmol.*, vol. 74, no. 1, pp. 1–18, 2006, doi: 10.1103/PhysRevD.74.014012.

[33] L. Motyka and K. Zalewski, “Mass spectra and leptonic decay widths of heavy quarkonia,” *Eur. Phys. J. C*, vol. 4, no. 1, pp. 107–114, 1998, doi: 10.1007/s100529800743.

[34] E. Eichten and F. Feinberg, “Spin-dependent forces in quantum chromodynamics,” *Phys. Rev. D*, vol. 23, no. 11, pp. 2724–2744, 1981, doi: 10.1103/PhysRevD.23.2724.

[35] C. Berkdemir, A. Berkdemir, and R. Sever, “Polynomial solutions of the Schrödinger equation for the generalized Woods-Saxon potential,” *Phys. Rev. C - Nucl. Phys.*, vol. 72, no. 2, p. 027001, Aug. 2005, doi: 10.1103/PhysRevC.72.027001.

[36] B. J. Falaye, K. J. Oyewumi, and M. Abbas, “Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov - Uvarov method,” *Chinese Phys. B*, vol. 22, no. 11, 2013, doi: 10.1088/1674-1056/22/11/110301.

[37] B. I. Ita and A. I. Ikeuba, “Solutions of the Dirac Equation with Gravitational plus Exponential Potential,” *Appl. Math.*, vol. 04, no. 10, pp. 1–6, 2013, doi: 10.4236/am.2013.410a3001.

[38] F. Yaşuk, C. Berkdemir, and A. Berkdemir, “Exact solutions of the Schrödinger equation with non-central potential by the Nikiforov-Uvarov method,” *J. Phys. A. Math. Gen.*, vol. 38, no. 29, pp. 6579–6586, 2005, doi: 10.1088/0305-4470/38/29/012.

[39] H. Karayer, D. Demirhan, and F. Büyükkılıç, “Conformable Fractional Nikiforov - Uvarov Method,” *Commun. Theor. Phys.*, vol. 66, no. 1, pp. 12–18, 2016, doi: 10.1088/0253-6102/66/1/012.

[40] A. F. Al-Jamel and H. Widyan, “Heavy Quarkonium Mass Spectra in A Coulomb Field Plus Quadratic Potential Using Nikiforov-Uvarov Method,” *Appl. Phys. Res.*, vol. 4, no. 3, pp. 94–99, 2012, doi: 10.5539/apr.v4n3p94.

[41] S. M. Ikhdair, “Approximate l -States of the Manning-Rosen Potential by Using Nikiforov-Uvarov Method,” *ISRN Math. Phys.*, vol. 2012, pp. 1–20, 2012, doi: 10.5402/2012/201525.
B. I. Ita, C. O. Ehi-Eromosele, A. Edobar-Osoh, A. I. Ikeuba, and T. A. Anake, “Solutions of the Schrödinger equation with inversely quadratic effective plus Mie-type potential using Nikiforov-Uvarov method,” in *AIP Conference Proceedings*, 2014, vol. 1629, no. November, pp. 235–238, doi: 10.1063/1.4902278.

B. Ita, P. Tchoua, E. Siryabe, and G. E. Ntamack, “Solutions of the Klein-Gordon Equation with the Hulthen Potential Using the Frobenius Method,” vol. 4, no. 5, pp. 173–177, 2014, doi: 10.5923/j.iijtmp.20140405.02.

C. Patrignani et al., “Review of particle physics,” *Chinese Physics C*, vol. 40, no. 10, 2016, doi: 10.1088/1674-1137/40/10/00001.

H. Mansour and A. Gamal, “Bound State of Heavy Quarks Using a General Polynomial Potential,” *Adv. High Energy Phys.*, vol. 2018, no. 2, 2018, doi: 10.1155/2018/7269657. See also; arXiv: 1810.07693.

D. Ebert, R. N. Faustov, and V. O. Galkin, “Spectroscopy and Regge trajectories of heavy quarkonia and Bc mesons,” *Eur. Phys. J. C*, vol. 71, no. 12, pp. 1–13, 2011, doi: 10.1140/epjc/s10052-011-1825-9.

N. R. Soni, B. R. Joshi, R. P. Shah, H. R. Chauhan, and J. N. Pandya, “QQ̅ (Q∈{b, c}) spectroscopy using the Cornell potential,” *Eur. Phys. J. C*, vol. 78, no. 7, 2018, doi: 10.1140/epjc/s10052-018-6068-6.

B. Q. Li and K. T. Chao, “Higher charmonia and X, Y, Z states with screened potential,” *Phys. Rev. D - Part. Fields, Gravit. Cosmol.*, vol. 79, no. 9, 2009, doi: 10.1103/PhysRevD.79.094004.

M. Shah, A. Parmar, and P. C. Vinodkumar, “Leptonic and digamma decay properties of S-wave quarkonia states,” *Phys. Rev. D - Part. Fields, Gravit. Cosmol.*, vol. 86, no. 3, pp. 4–7, 2012, doi: 10.1103/PhysRevD.86.034015.

O. Lakhina and E. S. Swanson, “Dynamic properties of charmonium,” *Phys. Rev. D - Part. Fields, Gravit. Cosmol.*, vol. 74, no. 1, 2006, doi: 10.1103/PhysRevD.74.014012.

S. Patel, P. C. Vinodkumar, and S. Bhatnagar, “Decay rates of charmonia within a quark-antiquark confining potential,” *Chinese Phys. C*, vol. 40, no. 5, 2016, doi: 10.1088/1674-1137/40/5/053102.

S. Godfrey and K. Moats, “Bottomonium mesons and strategies for their observation,” *Phys. Rev. D*, vol. 92, no. 5, p. 054034, Sep. 2015, doi: 10.1103/PhysRevD.92.054034.

B. Q. Li and K. T. Chao, “Bottomonium spectrum with screened potential,” *Commun. Theor. Phys.*, vol. 52, no. 4, pp. 653–661, 2009, doi: 10.1088/0253-6102/52/4/20.

J. Segovia, P. G. Ortega, D. R. Entem, and F. Fernández, “Bottomonium spectrum revisited,” *Phys. Rev. D*, vol. 93, no. 7, 2016, doi: 10.1103/PhysRevD.93.074027.

N. Devlani, V. Kher, and A. K. Rai, “Masses and electromagnetic transitions of
the Bc mesons,” *Eur. Phys. J. A*, vol. 50, no. 10, pp. 627–631, 2014, doi: 10.1140/epja/i2014-14154-2.

[56] S. Godfrey, “Spectroscopy of Bc mesons in the relativized quark model,” *Phys. Rev. D*, vol. 70, no. 5, p. 054017, Sep. 2004, doi: 10.1103/PhysRevD.70.054017.

[57] A. P. Monteiro, M. Bhat, and K. B. V. Kumar, “Cb Spectrum and Decay Properties With Coupled Channel Effects,” *Phys. Rev. D*, vol. 95, no. 5, pp. 1–12, 2017, doi: 10.1103/PhysRevD.95.054016.