Transport properties of C₆₀ thin film FETs with a channel of several-hundred nanometers

Yukitaka Matsuokaᵃᵇ,*, Nobuhito Inamiᵃᵇ, Eiji Shikohᵃᵇ, Akihiko Fujiwaraᵃᵇ

ᵃSchool of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
ᵇCREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Received 31 October 2004; revised 24 January 2005; accepted 24 January 2005
Available online 2 August 2005

Abstract

We report the transport properties of C₆₀ thin film field-effect transistors (FETs) with a channel of several-hundred nanometers. Asymmetrical drain current I_D versus source-drain voltage V_DS characteristics were observed. This phenomenon could be explained in terms of the high contact-resistance between the C₆₀ thin film and the source/drain electrodes. This device showed a current on/off ratio O₁⁰⁵.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Fullerene; C₆₀; Transport property; Field-effect transistor

1. Introduction

The miniaturization of transistors enables us to put a billion transistors on a chip operating with the clock periods of a billionth of a second. However, as transistors get smaller in size, there are many undesirable effects, such as short-channel effects and the increase of off-current, etc.; moreover, quantum effects will become significant. To overcome these effects, a device based on a new principle of operation is required, such as a single-electron transistor (SET) [1]. In recent years, C₆₀ has attracted considerable attention as the material for an island of SET because it can be regarded as an ideal quantum dot by itself. C₆₀ is a closed cage, nearly spherical molecule consisting of 60 carbon atoms with a diameter of about one nanometer. Its high symmetry results in a unique electronic structure, such as the three-fold degenerated lowest-unoccupied-molecular orbital (LUMO) and the five-fold degenerated highest-occupied-molecular orbital (HOMO) [2]. In addition, the electronic structure of a crystalline C₆₀ is closely related to that of a free C₆₀ molecule, because a crystalline C₆₀ is a nearly ideal molecular crystal with van der Waals interaction. The quantized electronic levels are conserved even when C₆₀ is in a cluster or a crystalline state.

An FET is a macroscopic system with dominant classic-mechanical effects, whereas an SET is a nano-scale system with dominant quantum-mechanical effects. The transport properties of C₆₀ thin film FETs with a channel of several-decades micrometers [3,4] and of the C₆₀ SET with an island of several nanometers [5] have been reported. In the marginal area between these systems, the mixed electronic state of a macroscopic system and a nano-scale one is expected. In this work, to clarify the C₆₀ device properties in this marginal area, we have investigated the transport properties of C₆₀ thin film FETs with a channel of several-hundred nanometers.

2. Experimental details

Fig. 1 shows the schematic cross section of the fabricated C₆₀ thin film FET with a diagram of the measurement setup. The 34/26 nm Ti/Au source and drain electrodes were fabricated on the 100 nm SiO₂ layer that was made on the surface of a heavily doped n-type silicon wafer, using an electron-beam lithography system and a lift-off technique. The doped silicon layer of the wafer was used for a gate electrode. The distance between source and drain
electrodes, i.e. the channel length, of the fabricated C$_{60}$ thin film FETs was approximately 700 nm. Commercially available C$_{60}$ (99.98%) was used for the formation of the thin films. A C$_{60}$ thin film of 12 nm thickness was formed on the SiO$_2$ layer using vacuum (10^{-4} Pa) vapor deposition at the normal deposition rate of 0.01 nm/s. The samples were annealed at 100$^\circ$C for 40 h, then at 120$^\circ$C for 12 h.

The drain and gate electrodes were biased with dc voltage sources and the source electrode was grounded. The transport properties of the samples were measured at room temperature under 10$^{-3}$ Pa before and after annealing.

3. Results and discussion

Fig. 2 shows the drain current I_D versus the source-drain voltage V_{DS} plots for various gate voltages V_G measured before annealing. The $|I_D|$ increases with increasing V_G. This result is consistent with the fact that a C$_{60}$ molecule exhibits n-type semiconducting behavior [6]. These I_D versus V_{DS} plots show asymmetry characteristics, that is, the $|I_D|$ drastically increase only for the $V_{DS} < 0$. This phenomenon can be understood in terms of the high contact-resistance (HCR) between the C$_{60}$ channel and the source/drain electrodes. Fig. 3(a) shows the model of the device circuit with the HCR; the series of HCR and relatively low resistance of the channel are assumed. Fig. 3(b) shows the model of the electric potential profile at the C$_{60}$ thin film FET for $V_{DS} > 0$ at $V_G = 0$. (c) Model of the electric potential profile for $V_{DS} < 0$ at $V_G = 0$. The vertical dotted lines indicate the edges of the source and drain electrodes.

$$V_{G_{\text{eff}}} = V_{G_0} + V_G \approx -\frac{V_{DS}}{2} + V_G. \quad (1)$$

Fig. 1. Schematic cross section of the fabricated C$_{60}$ thin film FET (700 nm channel length) with a diagram of the measurement setup.
The electric potential at the gate electrode is relatively positive to the electric potential at the C\textsubscript{60} channel, where the \(V_{G0} \) becomes positive. The \(|I_D|\) tends to be enhanced because of the effective positive-gate-voltage as the \(V_{DS} \) becomes negative. When a \(V_G \) (\(\neq 0 \)) is biased, the electric potential at the C\textsubscript{60} channel is also represented by Eq. (1).

Fig. 4 shows the \(I_D \) versus \(V_{DS} \) plots for the gate voltage \(V_G \) varying between 10 and \(-10 \) V measured after annealing. The \(|I_D|\)'s increase in contrast with those measured before annealing. In general, the \(n \)-type behavior of organic semiconductor is very sensitive to chemically and physically adsorbed O\textsubscript{2} and/or H\textsubscript{2}O molecules, which can generate traps of electrons and suppress carrier transport [7–9]. Removing these molecules from the C\textsubscript{60} channel by an annealing would cause the increase of \(|I_D|\).

In the region of \(V_{DS} > 0 \) V, for a given \(V_G \) the \(I_{D8} \) first increases linearly with increasing \(V_{DS} \), then gradually levels off, and finally approaches a saturated value. This trend is different from that for \(V_{DS} < 0 \) V, but similar to that observed in conventional FETs. In this device, it is expected that the relative electric-potential-variation for \(V_{DS} = -10 \) V at \(V_G = 0 \) V will be the same as that for \(V_{DS} = 10 \) V at \(V_G = 10 \) V. The \(|I_D|\)'s at these electric-potentials are in the range of \(10^{-8} \) A for the former case and of \(10^{-11} \) A for the latter case, whereas these values should be the same in our simple model. More factors in addition to the HCR would have to be considered. Fig. 5 shows the \(|I_D|\) versus \(V_G \) plot at \(V_{DS} = -10 \) V and \(V_{DS} = 10 \) V measured after annealing. The obtained current on/off ratios are larger than \(10^5 \) at \(V_{DS} = -10 \) V and \(10^2 \) at \(V_{DS} = 10 \) V, respectively. This difference cannot be explained only the model with HCR, because it may be resulted from additional effects. More detailed studies such as profiling the electric potential [10] and control of the contact resistance [11] will clarify these veiled characteristics in the crossover region in the channel between a macroscopic and a quantum size.

4. Conclusion

We have investigated the transport properties in short-channel C\textsubscript{60} thin film FETs. The \(I_D \) versus \(V_{DS} \) plots showed asymmetry characteristics, that is, the \(|I_D|\) drastically increased only for the \(V_{DS} < 0 \). The current on/off ratios, \(>10^3 \) at \(V_{DS} = -10 \) V and \(>10^2 \) at \(V_{DS} = 10 \) V, were estimated from the \(|I_D|\) versus \(V_G \) plots. Clarifying these properties will open a way to fabricate practical devices of a size between macroscopic and nano-scale.

Acknowledgements

The authors are grateful to Dr M. Akabori, Professor S. Yamada, and the technical staff of the Center for Nanomaterials and Technology at the Japan Advanced Institute of Science and Technology for use of the electron-beam lithography system and other facilities in the clean rooms, as well as for technical support. This work is supported in part by the Grant-in-Aid for Scientific Research (Grant Nos. 16206001) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and the NEDO Grant (Grant No. 04IT5) from the New Energy and Industrial Technology Development Organization (NEDO), and the Kurata Memorial Hitachi Science and Technology Foundation.

References

[1] H. Grabert, M.H. Devoret, Single Charge Tunneling, NATO ASI Series vol. 294, Plenum Press, New York, 1992.
[2] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, 1996.

[3] R.C. Haddon, A.S. Perel, R.C. Morris, T.T.M. Palstra, A.F. Hebard, R.M. Fleming, C_{60} thin film transistors, Appl. Phys. Lett. 67 (1995) 121–123.

[4] K. Horiuchi, K. Nakada, S. Uchino, S. Hashii, A. Hashimoto, N. Aoki, Y. Ochiai, M. Shimizu, Passivation effects of alumina insulating layer on C_{60} thin-film field-effect transistors, Appl. Phys. Lett. 81 (2002) 1911–1912.

[5] H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen, Nanomechanical oscillations in a single-C_{60} transistor, Nature 407 (2000) 57–60.

[6] S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Fabrication and characterization of C_{60} thin-film transistors with high field-effect mobility, Appl. Phys. Lett. 82 (2003) 4581–4583.

[7] A. Hamed, Y.Y. Sun, Y.K. Tao, R.L. Meng, P.H. Hor, Effects of oxygen and illumination on the in situ conductivity of C_{60} thin films, Phys. Rev. B 47 (1993) 10873–10880.

[8] B. Pevzner, A.F. Hebard, M.S. Dresselhaus, Role of molecular oxygen and other impurities in the electrical transport and dielectric properties of C_{60} films, Phys. Rev. B 55 (1997) 16439–16449.

[9] R. Könenkamp, G. Priebe, B. Pietzak, Carrier mobilities and influence of oxygen in C_{60} films, Phys. Rev. B 60 (1999) 11804–11808.

[10] K.P. Puntambekar, P.V. Pesavento, C.D. Frisbie, Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy, Appl. Phys. Lett. 83 (2003) 5539–5541.

[11] M. Chikamatsu, S. Nagamatsu, T. Taima, Y. Yoshida, N. Sakai, H. Yokokawa, K. Suito, K. Yase, C_{60} thin-film transistors with low work-function metal electrodes, Appl. Phys. Lett. 85 (2004) 2396–2398.