Supplementary Materials to:

Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation

Elise Jacquin¹, Stéphanie Leclerc-Mercier², Celine Judon³, Emmanuelle Blanchard⁴, Sylvie Fraitag², Oliver Florey¹*

Inventory of Supplementary Materials.

Supplementary Tables 1-2

Table 1. Chemical properties of drugs used in the study.
Table 2. CRISPR/Cas9 gRNAs and plasmids used in this study

Supplementary Figures 1-7

Figure 1. Analysis and validation of ATG13⁻/⁻ cells generated by CRISPR/Cas9.

Figure 2. Repeat western blots of drug induced LC3 lipidation in wild type and ATG13⁻/⁻ HEK293 cells.

Figure 3. Non-canonical autophagy induction in ATG13⁻/⁻ MCF10A cells.

Figure 4. Effect of ionophores and lysosomotropic drugs on WIPI2 puncta.

Figure 5. GABARAPL2 relocalization during non-canonical autophagy.

Figure 6. Validation of non-canonical autophagy mechanism in drug induced LC3 lipidation.

Figure 7. Effect of ionophore and lysosomotropic drugs on endomembrane damage assessed by Galectin 3 localization.
Table S1. Chemical properties of drugs used in the study.

Drug	Clinical indications	Mechanism of action	pKa	Properties	Action on autophagy	References
Amiodarone	Arrhythmia	Ca²⁺ channel blocker	9.37	Lysosomotropic	Inducer (MTOR dependent and independent)	1-5
Ammonium chloride (NH₄Cl)	Hypochloremic states, metabolic alkalosis	Converted to HCl and NH₃ by oxidation in the liver	9.25	Lysosomotropic	Flux Inhibitor	1-5
Betahistine dihydrochloride (BH)	Vertigo	Histamine H1 receptor agonist and H3 receptor antagonist	9.75	Lysosomotropic	Flux Inhibitor	6
CCCP	*	Protonophore, proton uncoupler	6	Ionophore	Mitophagy inducer, Flux inhibitor	7, 10
Choloroquine (CQ)	Malaria, cancer	Weak base, protonated and trapped in acidic compartments	10.47	Lysosomotropic	Flux Inhibitor	13
Hydroxychloroquine (HCQ)	Malaria, cancer	Weak base, protonated and trapped in acidic compartments	9.91	Lysosomotropic	Flux Inhibitor	7, 11, 12
Lidocaine hydrochloride (LH)	Local anaesthesia	Na⁺ channel blocker	7.96	Lysosomotropic	Flux Inhibitor	14
Monensin (Mon)	Veterinary use, antibiotics	Na⁺/H⁺ exchange	13.03	Ionophore	Flux Inhibitor	7, 13, 14
Nigericin (Nig)	Veterinary use, antibiotics	K⁺/H⁺ exchange	4.43	Ionophore	Flux Inhibitor	9, 10
Procainamide (ProA)	Arrhythmia	Na⁺ channel blocker	9.09	Lysosomotropic	Flux Inhibitor	12

pKa values calculated from http://www.ebi.ac.uk/chembl/.

References

1. Balgi, A.D. *et al.* Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. *PLoS One* **4**, e7124 (2009).

2. Lee, K.Y. *et al.* Activation of autophagy rescues amiodarone-induced apoptosis of lung epithelial cells and pulmonary toxicity in rats. *Toxicol Sci* **136**, 193-204 (2013).

3. Morissette, G. *et al.* Intracellular sequestration of amiodarone: role of vacuolar ATPase and macroautophagic transition of the resulting vacuolar cytopathology. *Br J Pharmacol* **157**, 1531-1540 (2009).

4. Renna, M., Jimenez-Sanchez, M., Sarkar, S. & Rubinsztein, D.C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. *The Journal of biological chemistry* **285**, 11061-11067 (2010).

5. Williams, A. *et al.* Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. *Nat Chem Biol* **4**, 295-305 (2008).

6. Morissette, G., Lodge, R., Bouthillier, J. & Marceau, F. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: possible origin of pharmacological distortions and side effects. *Toxicol Appl Pharmacol* **229**, 320-331 (2008).

7. Narendra, D., Tanaka, A., Suen, D.F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. *The Journal of cell biology* **183**, 795-803 (2008).

8. Padman, B.S., Bach, M., Lucarelli, G., Prescott, M. & Ramm, G. The protonophore CCCP interferes with lysosomal degradation of...
autophagic cargo in yeast and mammalian cells. *Autophagy* 9, 1862-1875 (2013).

9. Boya, P. *et al.* Inhibition of macroautophagy triggers apoptosis. *Mol Cell Biol* 25, 1025-1040 (2005).

10. Bawolak, M.T., Morissette, G. & Marceau, F. Vacuolar ATPase-mediated sequestration of local anesthetics in swollen macroautophagosomes. *Can J Anaesth* 57, 230-239 (2010).

11. Grinde, B. Effect of carboxylic ionophores on lysosomal protein degradation in rat hepatocytes. *Exp Cell Res* 149, 27-35 (1983).

12. Steinrauf, L.K., Czerwinski, E.W. & Pinkerton, M. Comparison of the monovalent cation complexes of monensin, nigericin, and dianemycin. *Biochem Biophys Res Commun* 45, 1279-1283 (1971).

13. Morissette, G., Lodge, R. & Marceau, F. Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: procainamide-induced autophagic cell vacuolization. *Toxicol Appl Pharmacol* 228, 364-377 (2008).
Table S2. Nucleotide sequences of the gRNA and references of the plasmids used to deplete ATG13 or ATG16L1 genes in HEK293 GFP-LC3 and MCF10A GFP-LC3 cells.

Oligonucleotide	Sequence (5’ - 3’)	Cloning plasmid	Cell line
ATG13gRNA_Fw1	TTTCTTGGCTTTATATATCTTG GAAAGGACGAAACACCAGCAGCTGCC TGCAGTCG GGA	gRNA Cloning Vector (Addgene, 41824)	HEK293 GFP-LC3
ATG13gRNA_Rev1	GACTAGCCTTTATTTTTACTTGCTAT TTCTAGCTCTAAACCCCCACTGCA GGCAGCTGTC	gRNA Cloning Vector (Addgene, 41824)	HEK293 GFP-LC3
ATG13gRNA_Fw2	CACCGGACAGCTGCCTGCAGTCGG	pSpCas9(BB)-2A-GFP (Addgene, 48138)	MCF10A GFP-LC3
ATG13gRNA_Rev2	AAACCCCCGACTGCAGGACGTGC	pSpCas9(BB)-2A-GFP (Addgene, 48138)	MCF10A GFP-LC3
ATG16gRNA_Fw	CACCGGTGGATCTCCTGTTTC	pSpCas9(BB)-2A-GFP (Addgene, 48138)	MCF10A GFP-LC3
ATG16gRNA_Rev	AAACGAACCAGGATGATCCACC	pSpCas9(BB)-2A-GFP (Addgene, 48138)	MCF10A GFP-LC3
Supplementary Figure 1

Figure S1. Analysis and validation of ATG13−/− cells generated by CRISPR/Cas9. (A) Representative western blots of ATG13, LC3 and GAPDH in wild type and ATG13−/− HEK293 cells starved with HBSS or treated with PP242 (1 µM) for 1 h. (B) Confocal imaging of GFP-LC3 in wild-type and ATG13−/− HEK293 cells transiently transfected or not with an mCherry-ATG13 expression plasmid. Cells were starved with HBSS for 1 h. Bar: 10 µm for all images. (C) Representative western blots of ATG13, LC3 and GAPDH in wild-type and ATG13−/− MCF10A cells treated with starved PP242 (1 µM) or bafilomycin A1 (Baf, 100 nM) for 1 h or starved with HBSS for 2 h in presence of Baf (100 nM) during the last hour (Baf + HBSS). (D) Confocal imaging of GFP-LC3 in wild-type and ATG13−/− MCF10A cells transiently transfected or not with an mCherry-ATG13 expression plasmid. Cells were starved with HBSS for 2 h in the presence of Baf (100 nM) during the last hour (Baf + HBSS). Bar: 10 µm for all images.
Figure S2. Repeat western blots of drug-induced LC3 lipation in wild-type and ATG13−/− HEK293 cells. Repeat representative western blots for LC3 and GAPDH in (A) wild-type and (B) ATG13−/− HEK293 cells treated with drugs at the indicated concentration for 2 h. Ratios of lipidated LC3-II:nonlipidated LC3-I were quantified and graphed.
Figure S3. Noncanonical autophagy induction in ATG13^{−/−} MCF10A cells. (A) Confocal images of GFP-LC3 and endogenous LAMP1 immunostaining in ATG13^{−/−} MCF10A cells treated with bafilomycin A₁ (Baf, 100 nM), monensin (Mon, 50 µM), nigericin (Nig, 50 µM), chloroquine (CQ, 100 µM), hydroxychloroquine (HCQ, 100 µM), NH₄Cl (10 mM), procainamide (ProA, 5 mM) or betahistine (BH, 5 mM) for 2 h. Inserts show zoomed regions highlighting colocalization of the GFP-LC3 and LAMP1 signal. Bar: 5 µm for all images. (B) Confocal images of GFP-LC3 and endogenous LAMP1 immunostaining on entotic corpse vacuoles in ATG13^{−/−} MCF10A cells treated with CCCP (100 µM) for 2 h. Arrow indicates lipidated LC3 on vacuoles. Bar: 5 µm for all images.
Figure S4. Effect of ionophores and lysosomotropic drugs on WIPI2 puncta. Confocal images of endogenous WIPI2 immunostaining in wild-type, *atg13^{−/−}* and *atg9^{−/−}* MEFs treated with (A) PP242 (1 µM), (B) bafilomycin A₁ (Baf, 100 nM), monensin (Mon, 50 µM), nigericin (Nig, 10 µM), chloroquine (CQ, 100 µM), hydroxychloroquine (HCQ, 100 µM), NH₄Cl (10 mM), betahistine (BH, 5 mM), procainamide (ProA, 5 mM) or lidocaine hydrochloride (LH, 2.5 mM) for 2 h were analyzed. The average number of WIPI2 puncta per cell (100 cells/condition) was quantified and graphed.
Figure S5. GABARAPL2 relocalization during noncanonical autophagy. Confocal images of GFP-GABARAPL2 and endogenous LAMP1 immunostaining in atg9−/− MEF cells treated with bafilomycin A1 (Baf, 100 nM), chloroquine (CQ, 100 µM) or CCCP (100 µM). Inserts show zoomed regions highlighting colocalization of the GFP-GABARAPL2 and LAMP1 signal. Scale bar: 15 µm, for all images.
Supplementary Figure 6

Figure S6. Validation of noncanonical autophagy mechanism in drug-induced LC3 lipidation. (A) Representative western blots of ATG16L1, LC3 and GAPDH in wild-type and ATG16L1−/− MCF10A GFP-LC3 cells treated with PP242 (1 µM) or Baf (100 nM) for 1 h. (B) Representative western blots of LC3 and GAPDH in wild-type and ATG16L1−/− MCF10A GFP-LC3 cells treated with the ionophore CCCP (100 µM) or the lysosomotropic drugs CQ (100 µM),...
ProA (5 mM), Lido (2.5 mM) or LH (2.5 mM) for 2 h. (C) Representative confocal images of GFP-LC3^{G120A} following treatment with CQ (100 µM), ProA (5 mM) or CCCP (100 µM) for 2 h. Bar: 10 µm for all images. (D) Representative confocal images of GFP-LC3 and endogenous ATG12 staining in ATG13^{−/−} MCF10A GFP-LC3 cells treated with CQ (100 µM), ProA (5 mM) or CCCP (100 µM) for 2 h. Bar: 10 µm for all images. (E) Representative confocal images of GFP-LC3 and endogenous ATP6V0D1 staining in ATG13^{−/−} MCF10A GFP-LC3 cells treated with CQ (100 µM), ProA (5 mM) or CCCP (100 µM) for 2 h. Bar: 5 µm for all images.
Supplementary Figure 7

Figure S7. Effect of ionophore and lysosomotropic drugs on endomembrane damage assessed by LGALS3 localization. (A) Confocal live cell imaging mCherry-LGALS3 (mCherry-Gal3) transiently expressed in ATG13^{−/−} MCF10A cells treated with glycyl-L-phenylalanine 2-naphthylamide (GPN, 500 μM) for 30 min or with monensin (50 μM), nigericin (10 μM), CCCP (100 μM), chloroquine (100 μM), hydroxychloroquine (100 μM), NH₄Cl (10 mM), amiodarone (50 μM), lidocaine hydrochloride (2.5 mM), procainamide (5 mM) or betahistine (5 mM) for 2 h. Bar: 5 μm for all images. (B) Representative confocal images of GFP-LC3 and mCherry-Gal3 in ATG13^{−/−} MCF10A cells treated with procainamide (5 mM) for 2 h showing the absence of mCherry-Gal3 recruitment onto GFP-LC3-positive vacuoles. Bar: 5 μm for all images.