Isolation and Characterization of Monokaryotic Strains of *Lentinula edodes* Showing Higher Fruiting Rate and Better Fruiting Body Production

Byeong-Suk Ha, Sinil Kim and Hyeon-Su Ro*

Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University, Jinju 660-701, Korea

Abstract The effects of monokaryotic strains on fruiting body formation of *Lentinula edodes* were examined through mating and cultivation of the mated dikaryotic mycelia in sawdust medium. To accomplish this, monokaryotic strains of *L. edodes* were isolated from basidiospores of the commercial dikaryotic strains, Chamaram (Cham) and Sanjo701 (SJ701). A total of 703 matings (538 self-matings and 165 outcrosses) were performed, which generated 133 self-mates and 84 outcross mates. The mating rate was 25% and 50% for self-mating and outcross, respectively. The bipolarity of the outcross indicated the multi-allelic nature of the mating type genes. The mating was only dependent on the A mating type locus, while the B locus showed no effect, implying that the B locus is multi-allelic. Next, 145 selected dikaryotic mates were cultivated in sawdust medium. The self-mated dikaryotic progenies showed 51.3% and 69.5% fruiting rates for Cham and SJ701, respectively, while the fruiting rate of the outcross mates was 63.2%. The dikaryotic mates generated by mating with one of the monokaryotic strains, including A20, B2, E1, and E3, showed good fruiting performance and tended to yield high fruting body production, while many of the monokaryotic strains failed to form fruiting bodies. Overall, these findings suggest that certain monokaryotic strains have traits enabling better mating and fruiting.

Keywords Fruiting rate, *Lentinula edodes*, Mating, Monokaryotic strains

New mushroom strains have been generated by common breeding methods, including mating [1-3], protoplast fusion [4], and molecular genetic transformation [5, 6]. Mating of different mycelia, which is the most widely applied technique, involves random fusion of hyphae from two monokaryotic mycelia with different mating types. This method eventually generates dikaryotic mycelial cells, but only if both mycelia contain compatible mating type genes [2]. In the tetrapolar mating system, mushrooms form four different haploid basidiospores and their mating is regulated by mating type genes in two independent genomic loci, A and B [7-9]. Mating type locus A encodes a transcription factor containing homeodomains, while the B locus expresses pheromones and pheromone receptors [10, 11]. Successful mating requires compatible pairing of the two loci, therefore, the rate of the actual mating is only 25% [2]. When the newly formed dikaryotic mycelial strains are ready, they are cultivated to produce fruiting bodies, which are used to screen for strains with good commercial and cultivation traits. However, dikaryotic strains do not always produce fruiting bodies [12, 13]. The fruiting rate of the newly formed strain, which is the ratio of fruiting body-forming strains per total dikaryotic strains, is highly dependent on environmental conditions and mushroom species. *Lentinula edodes* in this study shows that the fruiting rate is somewhere between 50% and 70%. When combined with the mating rate, the actual fruiting rate from the total mates is at most 18%; accordingly, it is necessary to make long-term efforts for the development of new varieties of mushroom.

Diversification of genetic pools is one strategy to overcome the 25% mating rate in the tetrapolar mating system. Many studies have shown that mushroom mating type genes can be present as multiple alleles, even within the same species [10, 11, 14-16]. Sixteen and 15 alleles at loci A and B, respectively, were reported from 12 strains of *Pleurotus eryngii*, suggesting that *P. eryngii* can have at least 240 (15 × 16) different compatible mating pairs when different pairs...
of monokaryotic strains are used [3]. Random mutagenesis by chemical or physical means does not change the mating rate, but can be applied to enhance the diversity of the genetic pool [13, 17, 18]. A temperature-adapted strain of P. ostreatus and a high β-glucan producing Hypsizygus marmoreus were recently developed using a combination of mycelial mating and chemical mutagenesis [17, 19]. Therefore, diversification of the genetic pool by either mass production, including low cost, ease of environmental control, and relatively short cultivation period. Even with the sawdust cultivation method, at least 3 months of mycelial development period are required for induction of fruiting body formation. Moreover, the harvesting period can last for several months with multiple rounds of physical stimulation. Therefore, development of new cultivars of L. edodes normally takes more than a year just for the first round in the developmental procedure and is thus extremely laborious and time-consuming.

In this study, we investigated the dikaryotic mycelia of L. edodes generated by random mating of basidiospore-derived monokaryotic mycelia. The influence of the monokaryotic mycelia was then examined in terms of the mating and fruiting characteristics, and certain monokaryotic strains were found to have a tendency to generate dikaryotic strains with better fruiting rate and fruiting body production yield.

MATERIALS AND METHODS

Strains and isolation of monokaryotic mycelia. The L. edodes strains, Chamaram (Cham) and Sanjo 701 (SJ701), were obtained from the Forest Mushroom Research Center, Korea. Basidiospores were collected from the fruiting bodies of the Cham and SJ701 strains and were suspended in 1-mL potato dextrose broth (PDB; Vent Tech Bio Co., Eumseong, Korea), then spread on potato dextrose agar (PDA; Oxoid Ltd., Hampshire, England). The agar plates were subsequently incubated at 25°C for 3 days, after which 10 mL of each culture broth was inoculated onto a sterile sawdust substrate consisting of oak tree sawdust (380 g), rice bran (20 g), and water (600 mL) in a polyethylene bag. The inoculated substrate bags were capped with cotton plugs and then placed in the culture room. The substrates were incubated for 30 days at 25°C in the dark to promote vegetative growth. When the mycelia were fully propagated through the substrate, the incubation temperature was shifted to 20°C with white light irradiation and the incubation was prolonged for an additional 70 days to induce ripening and browning of the mycelia.

Induction of fruiting body production. At the end of the ripening period, production of the fruiting body was induced by soaking treatment in which the substrate was immersed in water for 12 hr at 19°C. The treated substrate was then transferred to a production room with a temperature maintained at 23°C during the day and 15°C at night and a relative humidity of 80%. The first round harvest occurred 10 to 20 days after induction. The harvest was performed three times which took an additional 30–50 days, depending on the mushroom strains. All the fruiting bodies were collected and their fruiting characteristics were examined.

RESULTS AND DISCUSSION

Mating and fruiting characteristics of the mated dikaryotic mycelia. Fast growing monokaryotic mycelial strains were selected from the germinating basidiospores of the cultivated strains. Sixteen A and 14 D monokaryotic strains for Cham and SJ701, respectively, were initially isolated. Additionally, 17 B and 19 E of Cham and SJ701 monokaryotic strains, respectively, were isolated after treatment with low level MMS. Self-mating (selfing) was performed by 272 (16 A strains × 17 B strains) and 266 (14 D strains × 19 E strains) crosses for the Cham and SJ701 strains, respectively. Outcrosses were also performed using 11 Cham-derived and 15 SJ701-derived monokaryotic strains. The mating rates of selfings for Cham and SJ701 were 24.3% and 25.2%, respectively (Table 1). Outcrosses between...
Ha et al.

Cham and SJ701 showed a mating rate of 50.9%, indicating that the bipolar mating system functions in the outcross, while the tetrapolar mating system controls the self-mating. The mated dikaryotic mycelia were cultivated to produce fruiting bodies, and the rates of fruiting body-forming strains among the mated strains (the fruiting rate) were highly dependent on the mushroom strains. Only half of the Cham strains could produce fruiting bodies with the fruiting rate of 51.3%, whereas the SJ701-derived strains showed a fruiting rate of 69.5% (Table 1). The strain-dependent difference in fruiting rates may reflect the differential effect of environmental conditions such as temperature and humidity on the fruiting process. The fruiting of the parental Cham strain has been known to be highly sensitive to light and thus should be incubated in dark condition during the mycelia propagation stage. The fruiting rate for outcrosses between these two strains was 63.2%, indicating that the fruiting rate can be enhanced through mating with better fruiting strains.

Substrate utilization and fruiting body yield. Cultivation characteristics of the fruited dikaryons were examined in terms of fruiting body yield and substrate utilization, and the results are summarized in the 'Substrate utilization' Table 1. Overall fruiting and cultivation characteristics of the mated dikaryotic strains

Mating No. of total matings	Cham × Cham (A × B)	SJ701 × SJ701 (D × E)	Cham × SJ701 (A or B) × (D or E)
Mating rate (%)	24.3	25.2	50.9
No. of the mated strains with clamp connections	66	67	84
Fruiting No. of the selected dikaryotic strains from the mating	39	59	57
Fruiting rate (%)	51.3	69.5	63.2
Substrate utilization			
Average initial substrate weight (g)	1,151.8 ± 96.6	1,052.6 ± 74.5	1,050.7 ± 37.9
Average final substrate weight (g)	513.4 ± 95.8	288.2 ± 62.0	412.3 ± 82.8
Average fruiting body weight (g)	102.1 ± 58.7	115.9 ± 51.8	118.1 ± 50.6
Fruiting body yield (%)	8.9	11.0	11.2
Unused substrate (%)	44.6	27.4	39.2
Substrate used for maintenance (%)	46.5	61.6	49.5
Total (%)	100.0	100.0	100.0

*The rate of the substrate for maintenance was estimated by the subtraction of the fruiting body weight plus the weight of the unused substrate from total substrate weight.

Cham and SJ701 showed a mating rate of 50.9%, indicating that the bipolar mating system functions in the outcross, while the tetrapolar mating system controls the self-mating. The mated dikaryotic mycelia were cultivated to produce fruiting bodies, and the rates of fruiting body-forming strains among the mated strains (the fruiting rate) were highly dependent on the mushroom strains. Only half of the Cham strains could produce fruiting bodies with the fruiting rate of 51.3%, whereas the SJ701-derived strains showed a fruiting rate of 69.5% (Table 1). The strain-dependent difference in fruiting rates may reflect the differential effect of environmental conditions such as temperature and humidity on the fruiting process. The fruiting of the parental Cham strain has been known to be highly sensitive to light and thus should be incubated in dark condition during the mycelia propagation stage. The fruiting rate for outcrosses between these two strains was 63.2%, indicating that the fruiting rate can be enhanced through mating with better fruiting strains.

Substrate utilization and fruiting body yield. Cultivation characteristics of the fruited dikaryons were examined in terms of fruiting body yield and substrate utilization, and the results are summarized in the 'Substrate utilization' Table 1.

Table 2. Selected self-mating results for the Cham strains
A3

B7
B13
B19
B4
B6
B16
B1
B5
B10
B18
B20
B2
B8
B9
B12
B15
B17

Cham, Chamaram; ×, not mated; NF, mated but no fruiting.

Monokaryotic strain number.

*Mating type of the monokaryotic strain.

*Weight of fruiting bodies (g).
section in Table 1. The progenies of Cham strains were highly inefficient at utilization of the substrate. Indeed, only 8.9% of the substrate was used for fruiting body production, while 44.6% remained in the spent media. The remaining 46.5% appeared to be utilized for the cellular maintenance. Interestingly, the self-mates of the SJ701 strain efficiently utilized the substrate with only 27.4% of the initial substrate remaining at the end of the cultivation, and 11% being used for the fruiting body production. The SJ701 strains appeared to have high metabolic activity, with 61.6% of the substrate mass being utilized for maintenance. The cultivation characteristics of the outcross strains were between those of two parental strains.

Mating and fruiting behaviors. L. edodes has a tetrapolar mating system regulated by mating genes contained in the

Table 3. Selected self-mating results for the SJ701 strains

	D13	D15	D16	D9	D10	D17	D2	D4	D5	D12	D14	D11
	A1B1	A1B2	A1B2									
E6												
E12												
E15												
E17												
E20												
E3	110	54	154	96								
E4												
E8												
E10												
E13												
E2	116	100	57	16								
E7												
E14												
E16												
E1	135	103	143	96								
E5												
E9	134	108	87	20								
E18												
E19												

SJ701, Sanjo701; ×, not mated; NF, mated but no fruiting.

Table 4. Outcrossing monokaryotic strains from the Cham and SJ701 dikaryotic strains

Monokaryotic strains from Cham	B13°	B19	B6	B16	B1	B5	B8	B15	B17
Monokaryotic strains from SJ701	A1B1	A1B2	A2B1	A2B2					
E6									
E12									
E15									
E20									
E3	A1B2								
E4									
E8									
E10									
E7	A2B1								
E14									
E16									
E9	A2B2								
E5									
E19									

Cham, Chamaram; SJ701, Sanjo701; ○, mated but not cultivated; ×, not mated; NF, mated but no fruiting.
°Monokaryotic strain number.
Monokaryotic strains from SJ701.
°Mating type of the monokaryotic strain.
Weight of fruiting bodies (g) produced from the dikaryotic mycelium by mating.
two independent multiallelic mating loci, A and B [20, 21]. Both the Cham and SJ701 strains showed typical tetrapolar mating behavior. Only a monokaryotic strain with a compatible mating type could mate with a partner monokaryotic strain during self-mating (Tables 2 and 3). The successful mates were cultivated in sawdust medium and their fruiting characteristics were examined. As described above, many of the dikaryotic mates failed to produce fruiting bodies (NF) (Tables 2 and 3), with the dikaryotic mates generated by mating with one of the monokaryotic strains, including A1, B6, B19, D17, E7, and E10, producing no fruiting bodies. However, the monokaryotic strains, including A20, B2, D13, D15, E1, E3, E5, E9, E13, and E19, always underwent successful mating with any partner monokaryotic strains. The A20, B2, E1, and E3 strains not only showed good fruiting performance, but also tended to yield high fruiting body production. These results suggest that certain monokaryotic strains have traits enabling better mating and fruiting characteristics. Moreover, these findings indicate that screening of monokaryotic strains with better traits is important and prerequisite to increase the efficiency of development of new mushroom strains.

Outcrosses between the monokaryotic strains from Cham and SJ701 showed intriguing bipolar mating behavior. Specifically, mating was only dependent on the A mating type locus, while the B locus did not show any influence (Table 4). Both mating type loci A and B of \textit{L. edodes} have been reported to be multi-allelic [10, 11]; therefore, these results imply that the B locus contains allelic variations in the mating type genes. Similar to selfing, cultivation of some of the dikaryotic mates showed that the monokaryotic strains B1 and B5 of Cham and E3, E8, E6, E12, E15, and E20 of SJ701 always had superior fruiting and production yield. Interestingly, the mating between monokaryotic strains with the A2B1 mating type from Cham and those with the A1B1 from SJ701 resulted in perfect fruiting and good production yield. It is not clear whether mating between monokaryotic strains with certain mating types always results in better fruiting characteristics in the dikaryotic strain; accordingly, additional studies for further verification are needed.

Analysis of fruiting bodies. Phenotypical characteristics of the fruiting bodies of all mates were examined and the morphology of some of the fruiting bodies is shown in Fig. 1. The cross mates, including B2 × E13, B2 × A20, B8 × A20, and B8 × E8, produced fruiting bodies with better characteristics (bigger pileus diameter and higher production yield), whereas the mates in the second and the third columns in Fig. 1 produced fruiting bodies with no commercial merits, small, underdeveloped, or deformed pileus. The characteristics of fruiting bodies produced from mating of selected monokaryotic strains are summarized in Table 5. Mates with the monokaryotic strains A20 and B5 produced fruiting bodies with commercial merits (fruiting bodies with high production yield, big pileus, short stipe length, etc.) only through selfing, whereas those with B1 and E8 produced the fruiting bodies only through outcross. The B2 and E3 strains consistently generated the dikaryotic mates producing better fruiting bodies either through selfing or outcross.

There were no correlation between the monokaryotic strain and the cultivation period, except for the B1 mates which required relatively constant 82~85 days of cultivation period. The fastest mate to the completion harvest was E8 × B15 with 48 days followed by B5 × E12 and E3 × D12 with 50 days and 53 days, respectively. Considering the production yield, however, the B5 × E12 mate would be the better choice for further exploration. Individual weight of fruiting body is an important factor deciding commercial value. Generally, the individual weight of commercial fruiting body is around 30 g for which many of our mates suffice. The dikaryotic mates with some of the monokaryotic strains, including A20, B1, E3, and E8, produced fruiting bodies with relatively constant dimension (pileus diameter × stipe length), suggesting that the genetic traits can be inherited from the monokaryotic strain.

Overall, investigation of the effects of monokaryotic strains on fruiting body formation of \textit{L. edodes} in this study demonstrates that certain monokaryotic strains have traits enabling better mating and fruiting and thus indicates that screening of monokaryotic strains with better traits is
Screening of Monokaryotic Strains of *Lentinula edodes* 29

prerequisite to increase the efficiency of development of new mushroom strains.

ACKNOWLEDGEMENTS

This research was supported by Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-1-WTH13), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA) and Korea Forest Service (KFS). HBS and SIK were supported by a scholarship from the BK 21 Plus Program, the Ministry of Education, Korea.

REFERENCES

1. Nieuwenhuis BP, Debets AJ, Aanen DK. Sexual selection in mushroom-forming Basidiomycetes. Proc Biol Sci 2011;278:152-7.
2. Kothe E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol 2001;56:602-12.
3. Ryu JS, Kim MK, Ro HS, Kang YM, Kwon JH, Kong WS, Lee HS. Identification of mating type loci and development of SCAR marker genetically linked to the B3 locus in *Pleurotus eryngii*. J Microbiol Biotechnol 2012;22:1177-84.
4. Mallick P, Sikdar SR. Production and molecular characterization of somatic hybrids between *Pleurotus florida* and *Lentinula edodes*. World J Microbiol Biotechnol 2014;30:2283-93.
5. Kuo CY, Huang CT. A reliable transformation method and heterologous expression of β-glucuronidase in *Lentinula edodes*. J Microbiol Methods 2008;72:111-5.
6. Noh W, Kim SW, Bae DW, Kim JY, Ro HS. Genetic introgression of foreign genes to *Pleurotus eryngii* by restriction

Table 5. Characteristics of fruiting bodies produced from mating of selected monokaryotic strains

Host mono	Partner mono	Cultivation period (day)	Total harvest (g)	Individual weight (g)	Cultivation method	
	B8	83	134	26.8 ± 5.6	(5.4 ± 0.5) × (2.8 ± 0.3)	5 Selving
	B15	61	176	25.1 ± 3.6	(5.2 ± 0.4) × (2.4 ± 0.2)	7
	B1	E6	84	16.7 ± 2.6	(4.3 ± 0.3) × (3.3 ± 0.3)	9 Outcross
	E12	82	183	26.1 ± 5.1	(5.1 ± 0.4) × (3.1 ± 0.2)	7
	E15	85	160	22.9 ± 4.2	(5.1 ± 0.4) × (3.0 ± 0.2)	7
	E20	82	132	33.0 ± 8.9	(5.4 ± 0.5) × (4.0 ± 0.5)	4
	B2	A5	63	61.5 ± 1.5	(8.3 ± 0.2) × (6.3 ± 0.3)	2 Selving
	A18	85	176	35.2 ± 5.1	(6.3 ± 0.5) × (3.7 ± 0.1)	5
	B20	85	208	23.1 ± 3.7	(5.0 ± 0.4) × (2.7 ± 0.2)	9
	B5	E6	64	25.3 ± 6.6	(5.4 ± 0.6) × (4.2 ± 0.6)	7 Selving
	E12	50	187	31.2 ± 4.3	(6.3 ± 0.4) × (4.2 ± 0.2)	6
	E15	89	124	31.0 ± 8.4	(5.5 ± 0.8) × (4.8 ± 1.1)	4
	E20	80	125	31.3 ± 6.7	(5.6 ± 0.5) × (4.1 ± 0.5)	4
	E3	D2	46	27.5 ± 6.8	(5.2 ± 0.5) × (2.4 ± 0.4)	4 Selving
	D5	87	140	35.0 ± 20.2	(5.6 ± 1.4) × (3.6 ± 0.9)	4
	D12	53	154	22.0 ± 6.0	(4.9 ± 0.7) × (3.2 ± 0.4)	7
	B8	50	149	29.8 ± 5.2	(5.5 ± 0.3) × (3.7 ± 0.4)	5 Outcross
	B15	79	142	28.4 ± 10.0	(5.2 ± 0.7) × (3.9 ± 0.8)	5
	B17	66	229	28.6 ± 3.7	(5.6 ± 0.5) × (3.7 ± 0.4)	8
	E8	B8	84	27.8 ± 4.4	(5.5 ± 0.3) × (3.3 ± 0.4)	6 Outcross
	B15	48	134	33.5 ± 2.7	(5.8 ± 0.3) × (3.6 ± 0.4)	4
	B17	75	179	29.8 ± 3.8	(5.5 ± 0.4) × (3.3 ± 0.4)	6
	E13	D2	51	43.5 ± 4.3	(6.8 ± 0.3) × (3.7 ± 0.6)	3 Selving
	D4	63	154	25.7 ± 4.8	(5.3 ± 0.3) × (3.6 ± 0.4)	6
	D14	64	203	50.8 ± 18.1	(7.2 ± 1.3) × (4.9 ± 0.5)	4
Underdeveloped strains						
E5	B6	87	15	5.0 ± 1.5	(1.8 ± 0.4) × (2.5 ± 0.6)	3 Outcross
D16	87	44	14.7 ± 7.2	(2.8 ± 0.8) × (2.8 ± 0.7)	3 Selving	
B16	A2	82	20	20 ± 2.3	(2.0 ± 0.2) × (7.9 ± 3.9)	9
B13	E16	64	8	3.1 ± 2.2	1 Outcross	
D11	E12	84	22	3.7 ± 1.6	(2.0 ± 0.2) × (7.9 ± 3.9)	8 Selving

Cultivation lasted for the third round harvest.

Individual weight of individual fruiting body.

Number of total harvested fruiting body.
enzyme-mediated integration. J Microbiol 2010;48:253-6.
7. Raudaskoski M, Kothe E. Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 2010;9:847-59.
8. Brown AJ, Casselton LA. Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 2001;17:393-400.
9. Casselton LA, Olesnicky NS. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 1998;62:55-70.
10. Au CH, Wong MC, Bao D, Zhang M, Song C, Song W, Law PT, Kües U, Kwan HS. The genetic structure of the A mating-type locus of Lentinula edodes. Gene 2014;535:184-90.
11. Wu L, van Peer A, Song W, Wang H, Chen M, Tan Q, Song C, Zhang M, Bao D. Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene 2013;531:270-8.
12. Ryu SR, Bak WC, Koo CD, Lee BH. Studies on breeding and cultivation characteristics of Lentinula edodes strains for sawdust cultivation. Kor J Mycol 2009;37:65-72.
13. Lee J, Kang HW, Kim SW, Lee CY, Ro HS. Breeding of new strains of mushroom by basidiospore chemical mutagenesis. Mycobiology 2011;39:272-7.
14. van Peer AF, Park SY, Shin PG, Jang KY, Yoo YB, Park YJ, Lee BM, Sung GH, James TY, Kong WS. Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One 2011;6:e22249.
15. James TY, Liou SR, Vilgalys R. The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol 2004;41:813-25.
16. Kim KH, Kang YM, Im CH, Ali A, Kim SY, Je HJ, Kim MK, Rho HS, Lee HS, Kong WS, et al. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii. PLoS One 2014;9:e104693.
17. Kim SR, Kang HW, Ro HS. Generation and evaluation of high β-glucan producing mutant strains of Sparassis crispa. Mycobiology 2013;41:159-63.
18. Teimoori BB, Pourianfar HR, Moeini MJ, Janpoor J. Chemically and physically induced mutagenesis in basidiospores of oyster mushroom Pleurotus ostreatus var. florida. Int J Adv Res 2014;2:915-21.
19. Gaitán-Hernández R, Salmones D. Obtaining and characterizing Pleurotus ostreatus strains for commercial cultivation under warm environmental conditions. Sci Hortic 2008;118:106-10.
20. Fox HM, Burden J, Chang ST, Peberdy JF. Mating-type incompatibility between commercial strains of Lentinula edodes. Exp Mycol 1994;18:95-102.
21. Kronstad JW, Staben C. Mating type in filamentous fungi. Annu Rev Genet 1997;31:245-76.