QUASILINEARIZATION APPLIED TO BOUNDARY VALUE PROBLEMS AT RESONANCE FOR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS

PAUL ELOE*

Department of Mathematics
University of Dayton
Dayton, OH 45469-2316, USA

JAGANMOHAN JONNALAGADDAA

Department of Mathematics
Birla Institute of Technology and Science Pilani
Hyderabad-500078, Telangana, India

Abstract. The quasilinearization method is applied to a boundary value problem at resonance for a Riemann-Liouville fractional differential equation. Under suitable hypotheses, the method of upper and lower solutions is employed to establish uniqueness of solutions. A shift method, coupled with the method of upper and lower solutions, is applied to establish existence of solutions. The quasilinearization algorithm is then applied to obtain sequences of lower and upper solutions that converge monotonically and quadratically to the unique solution of the boundary value problem at resonance.

1. Introduction. The method of quasilinearization was introduced by Bellman and Kalba [7, 8]. The method, as constructed here, is rather remarkable as both existence and uniqueness of solutions is established and a bilateral monotone iteration scheme is produced to approximate solutions of nonlinear problems with solutions of linear problems. Under suitable hypotheses, the sequences of approximate solutions converge quadratically to the unique solution.

Applications of quasilinearization are extensive. We cite [18, 19, 20, 23] for applications to initial value problems for ordinary differential equations and we cite [1, 2, 10, 11, 16, 21] for applications to boundary value problems for ordinary differential equations. More recently, researchers have successfully applied the method to fractional differential equations; see [6, 25, 27] for applications to initial value problems for fractional differential equations and see [9, 15] for applications to boundary value problems for fractional differential equations.

Quasilinearization, coupled with a shift method, has been shown to apply to boundary value problems at resonance. In the case of ordinary differential equations, see, for example, [5, 24, 28]. The purpose of this study is to apply the quasilinearization method, coupled with a shift method, to a boundary value problem at resonance for a fractional differential equation of Riemann-Liouville type.

2010 Mathematics Subject Classification. Primary: 26A33, 34K10; Secondary: 34A45, 47H05, 65L10.

Key words and phrases. Boundary value problem at resonance, Riemann-Liouville fractional differential equations, upper and lower solutions, quasilinearization.

* Corresponding author: Paul Webster Eloe.
Uniqueness of solutions is essential to the algorithm, and in a recent article, [3], those authors considered a problem at resonance for an ordinary differential equation in which a new argument to obtain uniqueness of solutions was produced. In this article, we consider an analogous boundary value problem for the fractional differential equation and in doing so, produce a new argument for uniqueness of solutions. We stress that uniqueness of solutions is essential in this work and so this work differs from that in [24] or [28] where multiplicity of solutions is the motivation.

In Section 2 we provide preliminary definitions and state analogues of the second derivative test for fractional derivatives obtained in [4] and in [26]. In Section 3, we introduce the two-point fractional boundary value problem at resonance that is studied in this work. The method of upper and lower solutions is employed to obtain uniqueness of solutions. A shift method is applied and a Green’s function is constructed using the Laplace transform method. Existence of solutions is then obtained through an application of the Schauder fixed point theorem. In Section 4, we apply the quasilinearization algorithm and construct a sequences of upper solutions and lower solutions that converge monotonically and quadratically to the unique solution. In Section 5, we provide a short conclusion.

2. Preliminaries.

Definition 2.1. [17] Let 0 < α and a ∈ ℝ. The αth-order Riemann-Liouville fractional integral of a function y is defined by

$$I_0^α y(t) = \frac{1}{Γ(α)} \int_a^t (t-s)^{α-1} y(s)ds, \quad a \leq t,$$

provided the right-hand side exists. For α = 0, define I_0^0 to be the identity map. Moreover, let n denote a positive integer and assume $n-1 < α \leq n$. The αth-order Riemann-Liouville fractional derivative is defined as

$$D_0^α y(t) = D^n I_0^{n-α} y(t), \quad a \leq t,$$

where D^n denotes the classical n-th-order derivative, if the right-hand side exists.

Definition 2.2. [17] Let $m ∈ \mathbb{N}_0 = \{0, 1, 2, \ldots\}$. We denote by $C^m[0, 1]$ a space of functions y which are m times continuously differentiable on [0, 1] with the norm

$$\|y\|_{C^m} = \sum_{k=0}^m \|y^{(k)}\|_C = \sum_{k=0}^m \max_{t \in [0,1]} |y^{(k)}(t)|.$$

In particular, for m = 0, $C^0[0, 1] = C[0, 1]$ is the space of continuous functions y on [0, 1] with the norm

$$\|y\|_C = \max_{t \in [0,1]} |y(t)|.$$

The following two theorems are analogues of the second derivative test and are proved (for a global minimum value) in [4] and [26]. These are important results for applications of upper and lower solutions to fractional differential equations.

Theorem 2.3. [4] Assume $y \in C^2[0, 1]$ attains its maximum value at $t_0 \in (0, 1)$. Assume $1 < α < 2$. Then

$$D_0^α y(t_0) \leq -\frac{(α - 1)}{Γ(2 - α)} t_0^{-α} y(t_0).$$

Moreover, if $y(t_0) > 0$, then $D_0^α y(t_0) < 0$.
The condition $y \in C^2[0, 1]$ is a very strong condition for applications to Riemann-Liouville fractional differential equations and so the following result has been obtained to address this difficulty.

Theorem 2.4. [26] Let $1 < \alpha < 2$. Assume that $y \in C(0, 1]$ satisfies the following conditions:

(i) $D_0^\alpha u \in C[0, 1]$;
(ii) y attains its global maximum at $t_0 \in (0, 1)$.

Then,

$$D_0^\alpha y(t_0) \leq -\frac{(\alpha - 1)}{\Gamma(2 - \alpha)} t_0^{\alpha - 1} y(t_0).$$

Moreover, if $y(t_0) > 0$, then $D_0^\alpha y(t_0) < 0$.

We state two more preliminary results that will be applied in Section 3.

Theorem 2.5. [26] Let $0 < \nu < 1$. Assume that $y \in C(0, 1]$ satisfies the following conditions:

(i) $D_0^\nu u \in C[0, 1]$;
(ii) y attains its global maximum at $t_0 \in (0, 1]$.

Then,

$$D_0^\nu y(t_0) \geq \frac{1}{\Gamma(1 - \nu)} t_0^{\nu - 1} y(t_0).$$

Moreover, if $y(t_0) > 0$, then $D_0^\nu y(t_0) > 0$.

Theorem 2.6. [12] Let m denote a positive integer and assume $m - 1 < \alpha \leq m$. Assume $y \in C^m[0, 1]$ and $D_0^\alpha y \in C[0, 1]$. Then there exists $c \in (0, t)$ such that

$$y(t) = I_0^{m - \alpha} y(0) t^{\alpha - m} + \sum_{k=1}^{m-1} \frac{D_0^{\alpha - k} y(0)}{\Gamma(\alpha - k + 1)} t^{\alpha - k} + \frac{D_0^\alpha y(c)}{\Gamma(\alpha + 1)} t^\alpha.$$

3. **Uniqueness of solutions and existence of solutions.** Let $1 < \alpha < 2$ and assume throughout that $f : [0, 1] \times \mathbb{R} \to \mathbb{R}$ is continuous. We consider the two point boundary value problem for a Riemann-Liouville fractional differential equation,

$$D_0^\alpha y(t) = f(t, y(t)), \quad 0 \leq t \leq 1, \quad y(0) = 0, \quad D_0^{\alpha - 1} y(0) = D_0^{\alpha - 1} y(1).$$

The fractional boundary value problem (3) - (4) is at resonance because constant multiples of $t^{\alpha - 1}$ satisfy the homogeneous boundary value problem

$$D_0^\alpha y(t) = 0, \quad 0 \leq t \leq 1, \quad y(0) = 0, \quad D_0^{\alpha - 1} y(0) = D_0^{\alpha - 1} y(1).$$

Throughout, we shall assume that f is increasing in the second component. In the case of second order ordinary differential equations, this monotone assumption, coupled with the second derivative test, is standard to obtain uniqueness of solutions.

Theorem 3.1. Assume $f : [0, 1] \times \mathbb{R} \to \mathbb{R}$ and $\frac{\partial f}{\partial y} = f_y : [0, 1] \times \mathbb{R} \to \mathbb{R}$ are continuous and assume that $f_y > 0$ on $[0, 1] \times \mathbb{R}$. Then, the fractional boundary value problem (3) - (4) has a unique solution in $C[0, 1]$, if it exists.
Proof. Assume for the sake of contradiction that \(y_1 \) and \(y_2 \) denote two distinct solutions of the boundary value problem (3) - (4) in \([0, 1]\). Set \(u = y_1 - y_2 \). Then, \(u \in C[0, 1], D_0^\alpha u \in C[0, 1] \) and

\[
u(0) = 0, \quad D_0^{\alpha - 1} u(0) = D_0^{\alpha - 1} u(1).
\]

Without loss of generality assume that \(u(t) \) has a positive maximum at \(t_0 \in [0, 1] \). First, assume \(t_0 \in (0, 1) \). Then, \(u(t_0) > 0 \). Apply Theorem 2.4, and

\[
D_0^\alpha u(t_0) < 0.
\]

However, \(y_1 \) and \(y_2 \) each satisfy (3), and so

\[
D_0^\alpha u(t_0) = f(t_0, y_1(t_0)) - f(t_0, y_2(t_0)) > 0,
\]

since \(f \) is increasing in \(y \). Thus, \(u(t) \) does not have a positive maximum at \(t_0 \in (0, 1) \).

We shall refer to this argument as the usual contradiction.

Second, assume \(t_0 = 0 \). Since \(u(0) = 0 \), \(u \) does not have a positive maximum at \(0 \).

Third, we assume \(t_0 = 1 \). Then, \(u(1) > 0 \). Apply Theorem 2.5, and

\[
D_0^{\alpha - 1} u(1) > 0.
\]

Now apply Theorem 2.6 with \(m = 1 \) and \(0 < \alpha \leq 1 \) so that for each \(t \in (0, 1) \) there exists \(c \in (0, t) \) such that

\[
u(t) = \frac{I_0^2 t^{-\alpha} u(0)}{\Gamma(\alpha - 1)} t^{\alpha - 2} + \frac{D_0^\alpha - 1 u(c)}{\Gamma(\alpha)} t^{\alpha - 1}.
\]

Note that \(u(0) = 0 \) implies \(\frac{I_0^2 \alpha u(0)}{\Gamma(\alpha - 1)} = 0 \) and \(D_0^{\alpha - 1} u(0) = D_0^{\alpha - 1} u(1) > 0 \). Thus, \(u(t) > 0 \), in a right neighborhood of \(0 \).

Set \(g(t) = I_0^2 \alpha u(t), t \in [0, 1] \). Then, \(g \in C^2[0, 1] \) since

\[
g^{(1)}(t) = D_0^\alpha u(t) = f(t, y_1(t)) - f(t, y_2(t))
\]

Moreover, \(g(0) = 0 \) and

\[
g^{(1)}(0) = D_0^{\alpha - 1} u(0) = D_0^{\alpha - 1} u(1) = g'(1) > 0.
\]

We argue that \(g' \) does not change sign in \((0, 1)\). For the sake of contradiction, assume \(g'(t) \) changes sign at \(\tau \in (0, 1) \) and assume \(g'(t) > 0 \) for \(0 \leq t < \tau \). Then, \(g'(\tau) = 0 \) and \(g''(\tau) \leq 0 \). If \(y_1(\tau) < y_2(\tau) \), then

\[
g''(\tau) = D_0^\alpha u(\tau) = f(\tau, y_1(\tau)) - f(\tau, y_2(\tau)) > 0,
\]

which contradicts \(g''(\tau) \leq 0 \). If \(y_1(\tau) \geq y_2(\tau) \), then \(u(\tau) \leq 0 \). Since \(u(0) = 0 \), \(u(t) > 0 \) in a right neighborhood of \(0 \) and \(u(\tau) \leq 0 \), implies \(u(t) \) has a positive global maximum at \(t_1 \in (0, \tau) \), which produces the usual contradiction with Theorem 2.4 applied on \((0, \tau]\). Thus, \(g' \) does not changes sign and \(g' > 0 \) on \([0, 1] \). Therefore, \(g \) is an increasing function on \([0, 1] \). Since \(g(0) = 0 \), this implies implies \(g > 0 \) on \([0, 1] \).

Since \(g(t) = I_0^2 \alpha u(t) > 0 \) on \([0, 1] \) and \(g'(t) = D_0^{\alpha - 1} u(t) > 0 \) on \([0, 1] \), it follows from Theorem 2.6 (applied with \(m = 1, 0 < \alpha \leq 1 \)) that for each \(t \in (0, 1) \), there exists \(c \in (0, t) \) such that

\[
u(t) = \frac{I_0^2 \alpha u(0)}{\Gamma(\alpha - 1)} t^{\alpha - 2} + \frac{D_0^\alpha - 1 u(c)}{\Gamma(\alpha)} t^{\alpha - 1}
\]

\[
= \frac{g(0)}{\Gamma(\alpha - 1)} t^{\alpha - 2} + \frac{g'(c)}{\Gamma(\alpha)} t^{\alpha - 1} = \frac{g'(c)}{\Gamma(\alpha)} t^{\alpha - 1} > 0.
\]
In particular, \(y_1(0) = y_2(0) \) and \(y_1(t) > y_2(t) \) on \((0, 1]\). Consequently,
\[
g''(t) = D_0^\alpha u(t) = f(c, y_1(t)) - f(c, y_2(t)) > 0, \quad 0 < t \leq 1,
\]
and \(g''(0) = 0 \). This implies \(g' \) is an increasing function on \([0, 1]\) and hence \(g'(0) < g'(1) \); that is,
\[
D_0^{\alpha-1}u(0) < D_0^{\alpha-1}u(1).
\]

This contradicts the second boundary condition satisfied by \(u \). Thus, \(u(t) \) does not have a positive maximum at 1 and the proof is complete. \(\square \)

Definition 3.2. We say \(w \in C[0, 1] \) is a lower solution of the fractional boundary value problem (3) - (4) if \(w(0) = 0, D_0^{\alpha-1}w(0) = D_0^{\alpha-1}w(1) \) and
\[
D_0^\alpha w(t) \geq f(t, w(t)), \quad 0 \leq t \leq 1.
\]

We say \(v \in C[0, 1] \) is an upper solution of the fractional boundary value problem (3) - (4) if \(w(0) = 0, D_0^{\alpha-1}w(0) = D_0^{\alpha-1}w(1) \) and
\[
D_0^\alpha v(t) \leq f(t, v(t)), \quad 0 \leq t \leq 1.
\]

Theorem 3.3. Assume \(f : [0, 1] \times \mathbb{R} \to \mathbb{R} \) and \(\frac{\partial f}{\partial y} = f_y : [0, 1] \times \mathbb{R} \to \mathbb{R} \) are continuous and assume that \(f_y > 0 \) on \([0, 1] \times \mathbb{R} \). Also, assume \(w \) and \(v \) are lower and upper solutions of the fractional boundary value problem (3) - (4). Then,
\[
w(t) \leq v(t), \quad 0 \leq t \leq 1.
\]

Proof. The proof of this theorem is very similar to the proof of the uniqueness theorem, Theorem 3.1. Assume \(w \) is a lower solution and \(v \) is an upper solution of the fractional boundary value problem (3) - (4), respectively. Assume for the sake of contradiction that \(w \leq v \) is false. Assume that \((w - v)(t) \) has a positive maximum at \(t_0 \in [0, 1] \).

First, assume \(t_0 \in (0, 1) \). Then, \((w - v)(t_0) > 0 \). Using Theorem 2.4, we have
\[
D_0^\alpha (w - v)(t_0) < 0.
\]

However, \(w \) and \(v \) are respectively lower and upper solutions of the fractional boundary value problem (3) - (4), and
\[
D_0^\alpha (w - v)(t_0) \geq f(t_0, w(t_0)) - f(t_0, v(t_0)) > 0,
\]
since \(f \) is increasing in the second variable. In particular, the usual contradiction applies and \((w - v)(t) \) does not have a positive maximum at \(t_0 \in (0, 1) \).

Next, we assume \(t_0 = 0 \). Since \((w - v)(0) = 0 \), \((w - v) \) doesn’t have a positive maximum at 0.

The proof for \(t_0 = 1 \) is similar to the proof of Theorem 3.1. It is simply a matter of replacing the second equality in each of (5) and (6) with the appropriate differential inequality. \(\square \)

We now address existence of solutions of the fractional boundary value problem (3) - (4). A shift argument [14] will be applied to obtain an equivalent boundary value problem that is not at resonance and then an appropriate Green’s function is constructed, employing Mittag-Leffler functions. We use definitions and properties of Mittag-Leffler functions that are commonly used and refer the reader to [22] or [13].
Definition 3.4. Let $\alpha, \beta > 0$. A two-parameter function of the Mittag-Leffler type is defined by the series expansion given by

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}.$$

Let $\mathcal{L}\{y(t); s\} = Y(s)$ denote the Laplace transform of y and let $E^{(k)}_{\alpha,\beta}(z)$ denote $\frac{d^k}{dz^k}E_{\alpha,\beta}(z)$.

Lemma 3.5. The following relations hold:

1. $\mathcal{L}\{D_0^\alpha y(t); s\} = s^\alpha Y(s) - \sum_{k=0}^{n-1} s^k D_0^{\alpha-k-1}y(0)$, where $n - 1 < \alpha \leq n$, $n \in \mathbb{N}$;
2. $\mathcal{L}\{t^{\alpha k + \beta - 1}E^{(k)}_{\alpha,\beta}(s); s\} = \frac{k! s^{\alpha k - \beta}}{(s^{\alpha} + \beta)^{k+1}}, \ \Re(s) > |a|^{\frac{1}{\alpha}}.$

To obtain existence of solutions, apply a shift argument [14]. Assume $K \neq 0$ and consider the equivalent shifted equation

$$D_0^\alpha y(t) - K^2y(t) = \hat{f}(t, y(t)) = f(t, y(t)) - K^2y(t), \quad 0 \leq t \leq 1. \quad (7)$$

The fractional boundary value problem (7) - (4) is not at resonance since Theorem 3.1 implies that $y \equiv 0$ is the only solution of the homogeneous fractional problem

$$D_0^\alpha y(t) = K^2y(t)$$

satisfying the boundary conditions, (4), for any $K \neq 0$.

Since the fractional boundary value problem (7) - (4) is not at resonance, we shall construct the corresponding Green’s function of the shifted equation. To do so, apply the Laplace transform to

$$D_0^\alpha y(t) - K^2y(t) = \hat{f}(t, y(t)) = h(t), \quad y(0) = 0, \quad D_0^{\alpha-1}y(0) = D_0^{\alpha-1}y(1) = 0,$$

to obtain

$$s^\alpha Y(s) - D_0^{\alpha-1}y(0) - sD_0^{\alpha-2}y(0) - K^2Y(s) = H(s),$$

where $\mathcal{L}\{h(t); s\} = H(s)$. Thus,

$$Y(s) = \frac{D_0^{\alpha-1}y(0)}{s^\alpha - K^2} + \frac{H(s)}{s^\alpha - K^2}. $$

Apply the inverse Laplace transform to obtain

$$y(t) = (D_0^{\alpha-1}y(0))t^{\alpha-1}E_{\alpha,\alpha}(K^2t^\alpha) + \int_0^t (t-s)^{\alpha-1}E_{\alpha,\alpha}(K^2(t-s)^\alpha)h(s)ds. \quad (8)$$

Set

$$G(t) = t^{\alpha-1}E_{\alpha,\alpha}(K^2t^\alpha) = t^{\alpha-1}\sum_{n=0}^{\infty} \frac{K^{2n}t^{\alpha n}}{\Gamma(\alpha n + \alpha)}.$$

Apply $D_0^{\alpha-1}$ to (8) and obtain

$$D_0^{\alpha-1}y(t) = (D_0^{\alpha-1}y(0))D_0^{\alpha-1}G(t) + D_0^{\alpha-1}\left(\int_0^t G(t-s)h(s)ds\right). \quad (9)$$

Note that

$$D_0^{\alpha-1}G(t) = \sum_{n=0}^{\infty} \frac{K^{2n}}{\Gamma(\alpha n + \alpha)}t^{\alpha n + \alpha - 1}$$

$$= \sum_{n=0}^{\infty} \frac{K^{2n}}{\Gamma(\alpha n + \alpha)} \frac{\Gamma(\alpha + \alpha)}{\Gamma(\alpha + 1)}t^{\alpha n} = \sum_{n=0}^{\infty} \frac{K^{2n}}{\Gamma(\alpha n + 1)} \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1)}t^{\alpha n} = E_{\alpha,1}(K^2t^\alpha),$$

where $E_{\alpha,1}(z)$ denotes the two-parameter Mittag-Leffler function of the second kind.
and
\[D_0^{-\alpha} \left(\int_0^t G(t-s)h(s)ds \right) = \int_0^t (D_0^{-\alpha}G(s))h(t-s)ds + h(t) \lim_{t \to 0^+} [I_0^{-\alpha}G(t)]. \] (11)

The property (11) is observed in [17] and [22]. For the sake of self-containment, we provide some details.

\[D_0^{-\alpha} \left(\int_0^t G(t-s)h(s)ds \right) = D I_0^{2-\alpha} \left(\int_0^t G(t-s)h(s)ds \right) \]
\[= D \int_0^t \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} \int_r^s G(s-r)h(r)dr ds \]
\[= D \int_0^t \left(\int_r^t \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} G(s-r)ds \right) h(r) dr \]
\[= D \int_0^t \left(\int_r^t \frac{(t-r-s)^{1-\alpha}}{\Gamma(2-\alpha)} G(s)ds \right) h(r) dr \]
\[= D \int_0^t (D_0^{-\alpha}G(s))h(t-s)ds + h(t) \lim_{t \to 0^+} [I_0^{-\alpha}G(t)]. \]

Note that
\[I_0^{-\alpha}G(t) = \sum_{n=0}^{\infty} \frac{K^{2n}}{\Gamma(an+\alpha)} t^{an+\alpha-1} \] (12)
\[= \sum_{n=0}^{\infty} \frac{K^{2n}}{\Gamma(an+\alpha)} \frac{\Gamma(an+\alpha)}{\Gamma(an+2)} t^{an+1} \]
\[= t \sum_{n=0}^{\infty} \frac{K^{2n}}{\Gamma(an+2)} t^{an} = t E_{\alpha,2}(K^2 t^\alpha). \]

Substitute (10) and (12) into (11) and we obtain
\[D_0^{-\alpha} \left(\int_0^t G(t-s)h(s)ds \right) = \int_0^t E_{\alpha,1}(K^2 s^\alpha)h(t-s)ds + h(t) \lim_{t \to 0^+} [t E_{\alpha,2}(K^2 t^\alpha)] \] (13)
\[= \int_0^t E_{\alpha,1}(K^2 (t-s)^\alpha)h(s)ds. \]

Now substitute (10) and (13) into (9) and we obtain
\[D_0^{-\alpha}y(t) = (D_0^{-\alpha}y(0))E_{\alpha,1}(K^2 t^\alpha) + \int_0^t E_{\alpha,1}(K^2 (t-s)^\alpha)h(s)ds. \]

Since \(D_0^{-\alpha}y(0) = D_0^{-\alpha}y(1), \)
\[D_0^{-\alpha}y(0) = \frac{1}{1 - E_{\alpha,1}(K^2)} \int_0^1 E_{\alpha,1}(K^2 (1-s)^\alpha)h(s)ds. \] (14)

Now substitute (14) into (8) to obtain
\[y(t) = \frac{G(t)}{1 - E_{\alpha,1}(K^2)} \int_0^1 E_{\alpha,1}(K^2 (1-s)^\alpha)h(s)ds + \int_0^t G(t-s)h(s)ds. \]
Define a Green’s function
\[G(K; t, s) = \begin{cases} G_1(t, s), & 0 \leq t \leq s \leq 1, \\ G_2(t, s), & 0 \leq s \leq t \leq 1, \end{cases} \tag{15} \]
where
\[G_1(t, s) = \frac{G(t)}{1 - E_{\alpha,1}(K^2)} E_{\alpha,1}(K^2(1 - s)^{\alpha}) \]
and
\[G_2(t, s) = G(t - s) + \frac{G(t)}{1 - E_{\alpha,1}(K^2)} E_{\alpha,1}(K^2(1 - s)^{\alpha}). \]
and write (8) as
\[y(t) = \int_0^1 G(K; t, s) h(s) ds. \]

We derive two standard properties of the Green’s function, \(G(K; t, s) \). First, we show that for \(K \) sufficiently small
\[G(K; t, s) \leq 0, \quad (t, s) \in [0, 1] \times [0, 1]. \]
Clearly,
\[
\lim_{K \to 0} G(t - s) = \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)}, \quad (t, s) \in [0, 1] \times [0, 1], \tag{16}
\]
\[
\lim_{K \to 0} G(t) = \frac{t^{\alpha - 1}}{\Gamma(\alpha)}, \quad t \in [0, 1], \tag{17}
\]
\[
\lim_{K \to 0} E_{\alpha,1}(K^2(1 - s)^{\alpha}) = 1, \quad s \in [0, 1], \tag{18}
\]
and
\[
\lim_{K \to 0} E_{\alpha,1}(K^2) = 1. \tag{19}
\]
Since \(G(t) > 0, E_{\alpha,1}(K^2(1 - s)^{\alpha}) > 0 \) for \((t, s) \in [0, 1] \times [0, 1] \) and \(E_{\alpha,1}(K^2) > 1 \), it follows that
\[G_1(t, s) \leq 0, \quad (t, s) \in [0, 1] \times [0, 1]. \tag{20} \]
Consider
\[
\lim_{K \to 0} \left[(E_{\alpha,1}(K^2) - 1)G_2(t, s) \right]
= \lim_{K \to 0} \left[(E_{\alpha,1}(K^2) - 1)G(t - s) \right] - \lim_{K \to 0} \left[G(t)E_{\alpha,1}(K^2(1 - s)^{\alpha}) \right]
= -\frac{t^{\alpha - 1}}{\Gamma(\alpha)} \leq 0, \quad t \in [0, 1].
\]
Then, for \(K \) sufficiently small,
\[G_2(t, s) \leq 0, \quad (t, s) \in [0, 1] \times [0, 1], \tag{21} \]
and \(G(K; t, s) \leq 0 \) for \(K \) sufficiently small and \((t, s) \in [0, 1] \times [0, 1] \).
Second, we bound
\[
\max_{t \in [0, 1]} \left[\int_0^1 |G(K; t, s)| ds \right].
\]
Note that
\[G_1(t, s) \leq G_2(t, s) \leq 0, \quad 0 \leq s \leq t \leq 1 \]
implies
\[G_1(t, s) \leq G(K; t, s) \leq 0, \quad (t, s) \in [0, 1] \times (0, 1]. \]
Thus,
\[
\max_{t \in [0,1]} \left[\int_0^1 |G(K; t, s)| ds \right] \leq \max_{t \in [0,1]} \left[\int_0^1 |G_1(t, s)| ds \right].
\]

Let
\[
A = \frac{G(t)}{E_{\alpha,1}(K^2) - 1}.
\]

Then,
\[
\int_0^1 |G_1(t, s)| ds = A \int_0^1 E_{\alpha,1}(K^2(1 - s)^\alpha) ds = A \int_0^1 \sum_{n=0}^{\infty} \frac{K^{2n}(1 - s)^{\alpha n}}{\Gamma(\alpha n + 1)} ds
\]
\[
= A \sum_{n=0}^{\infty} \frac{K^{2n}}{\Gamma(\alpha n + 1)} \int_0^1 (1 - s)^{\alpha n} ds = A \sum_{n=0}^{\infty} \frac{K^{2n}}{\Gamma(\alpha n + 1) (\alpha n + 1)}
\]
\[
= AE_{\alpha,2}(K^2).
\]

Thus,
\[
\max_{t \in [0,1]} \left[\int_0^1 |G(K; t, s)| ds \right] \leq \max_{t \in [0,1]} \left[\frac{G(t)E_{\alpha,2}(K^2)}{E_{\alpha,1}(K^2) - 1} \right] = \frac{E_{\alpha,2}(K^2)}{E_{\alpha,1}(K^2) - 1} \max_{t \in [0,1]} G(t)
\]
\[
= \frac{E_{\alpha,\alpha}(K^2)E_{\alpha,2}(K^2)}{E_{\alpha,1}(K^2) - 1}.
\]

Theorem 3.6. Assume \(f : [0,1] \times \mathbb{R} \to \mathbb{R} \) and \(\frac{\partial f}{\partial y} : [0,1] \times \mathbb{R} \to \mathbb{R} \) are continuous and assume that \(f_y > 0 \) on \([0,1] \times \mathbb{R}\). Assume \(w \) and \(v \) are lower and upper solutions of the fractional boundary value problem (3) - (4), respectively. Then, there exists a unique solution \(y \in C[0,1] \) of (3) - (4) satisfying
\[
w(t) \leq y(t) \leq v(t), \quad 0 \leq t \leq 1.
\]

Proof. Let \(K \neq 0 \) and define a truncation of \(\tilde{f}(t, y(t)) = f(t, y(t)) - K^2 y(t) \) by
\[
F(t, y(t)) = \begin{cases} f(t, v(t)) - K^2 v(t) + \frac{y(t) - v(t)}{1 + y(t) - v(t)}, & \text{if } y(t) > v(t), \\ f(t, y(t)) - K^2 y(t), & \text{if } w(t) \leq y(t) \leq v(t), \\ f(t, w(t)) - K^2 w(t) + \frac{y(t) - w(t)}{1 + w(t) - y(t)}, & \text{if } y(t) < w(t). \end{cases}
\]

Define an operator \(T : C[0,1] \to C[0,1] \) by
\[
Ty(t) = \int_0^1 G(K; t, s)F(s, y(s)) ds
\]
(23)

where \(G(K; t, s) \) is given by (15). Then, \(y \) is a solution of the fractional boundary value problem
\[
D_0^\alpha y(t) - K^2 y(t) = F(t, y(t)), \quad 0 \leq t \leq 1, \quad y(0) = 0, \quad D_0^{\alpha - 1} y(0) = D_0^{\alpha - 1} y(1),
\]
(24)

if, and only if, \(y \in C[0,1] \) and
\[
y(t) = \int_0^1 G(K; t, s)F(s, y(s)) ds, \quad 0 \leq t \leq 1.
\]

Note that \(F(t, y(t)) \in C[0,1] \) for any \(y(t) \in C[0,1] \). Moreover, \(F : [0,1] \times \mathbb{R} \to \mathbb{R} \) is bounded. So, it is a straightforward application of the Schauder fixed point
The monotone method and quadratic convergence. In this section, we briefly present the monotone method and obtain a quadratic rate of convergence; Once the uniqueness and existence results from Section 3 have been obtained, the implementation of the quasilinearization algorithm is routine.

To obtain the monotone method, assume one further condition on f, that f_{yy} exists and $f_{yy} \geq 0.$
Theorem 4.1. Assume $f : [0, 1] \times \mathbb{R} \to \mathbb{R}$ and $\partial f \partial y = f_y : [0, 1] \times \mathbb{R} \to \mathbb{R}$ are continuous and assume that $f_y > 0$ on $[0, 1] \times \mathbb{R}$. Assume in addition that f_{yy} exists and $f_{yy} \geq 0$ on $[0, 1] \times \mathbb{R}$. Also, assume w_0 and v_0 are lower and upper solutions of the fractional boundary value problem (3) - (4), respectively. Then, there exists a unique solution $y \in C[0, 1]$ of (3) - (4) satisfying

$$w_0(t) \leq y(t) \leq v_0(t), \quad 0 \leq t \leq 1.$$

Moreover, there exist sequences $\{w_n\}, \{v_n\}$ of lower and upper solutions of the fractional boundary value problem (3) - (4), respectively, each of which converges to the unique solution y of the fractional boundary value problem (3) - (4) and satisfy

$$w_n(t) \leq w_{n+1}(t) \leq y(t) \leq v_{n+1}(t) \leq v_n(t), \quad 0 \leq t \leq 1, \quad n = 0, 1, \ldots.$$

The rate of convergence of each sequence $\{w_n\}, \{v_n\}$ is quadratic.

Proof. Let w_0, v_0 denote a lower and an upper solution of (3) - (4), respectively. So, under the assumption that $f_y > 0$ on $[0, 1] \times \mathbb{R}$, we have

$$w_0(t) \leq v_0(t), \quad 0 \leq t \leq 1.$$

Define the function $h(w_0, v_0; t)$ on $[0, 1]$ by

$$h(w_0, v_0; t, y(t)) = f(t, w_0(t)) + f_y(t, v_0(t))(y - w_0(t))$$

and consider the boundary value problem for the linear non-homogeneous fractional differential equation

$$D_0^\alpha y(t) = h(w_0, v_0; t, y(t)), \quad 0 \leq t \leq 1, \quad y(0) = 0, \quad D_0^{\alpha-1} y(0) = D_0^{\alpha-1} y(1). \quad (25)$$

Note that

$$h(w_0, v_0; t, w_0(t)) = f(t, w_0(t)), \quad 0 \leq t \leq 1,$$

and so,

$$D_0^\alpha w_0(t) \geq f(t, w_0(t)) = h(w_0, v_0; t, w_0(t)), \quad 0 \leq t \leq 1. \quad (26)$$

Moreover, since

$$f(t, v_0(t)) = f(t, w_0(t)) + f_y(t, c(t))(v_0 - w_0(t)),$$

there exists $c(t)$ satisfying $w_0(t) \leq c(t) \leq v_0(t)$ such that

$$f(t, w_0(t)) + f_y(t, c(t))(v_0 - w_0(t)) \leq f(t, v_0(t)) + f_y(t, v_0(t))(v_0 - w_0(t))$$

$$= h(w_0, v_0; t, v_0(t)) \quad 0 \leq t \leq 1,$$

since f_y is increasing in y for each $t \in [0, 1]$. Thus,

$$h(w_0, v_0; t, v_0(t)) \geq f(t, v_0(t)) \geq D_0^\alpha v_0(t), \quad 0 \leq t \leq 1. \quad (27)$$

In particular, (26) and (27) imply w_0, v_0 are lower and upper solutions of (25) respectively as well. Since, h satisfies the hypotheses of Theorem 3.6, there exists a continuous solution, $w_1(t)$, of (25) satisfying

$$w_0(t) \leq w_1(t) \leq v_0(t), \quad 0 \leq t \leq 1.$$

Next, we observe that w_1 is a lower solution (3) - (4). To see this, note that there exists $w_0(t) \leq c(t) \leq w_1(t) \leq v_0(t)$ such that

$$f(t, w_1(t)) - f(t, w_0(t)) = f_y(t, c(t))(w_1(t) - w_0(t)) \leq f_y(t, v_0(t))(w_1(t) - w_0(t))$$

and so,

$$D_0^\alpha w_1(t) = h(w_0, v_0; t, w_1(t)) \geq f(t, w_1(t)), \quad 0 \leq t \leq 1.$$

Since $w_1 \in C[0, 1]$, w_1 is a lower solution (3) - (4) since $w_1 \in C[0, 1]$.

Now define the function $k(v_0; t)$ on $[0, 1]$ by
\[k(v_0; t, y(t)) = f(t, v_0(t)) + f_y(t, v_0(t))(y - v_0(t)) \]
and consider the boundary value problem for the linear nonhomogeneous fractional differential equation
\[D^\alpha_0 y(t) = k(v_0; t, y(t)), \quad 0 \leq t \leq 1, \quad y(0) = 0, \quad D^{\alpha-1}_0 y(0) = D^{\alpha-1}_0 y(1). \]
(28)

Note that
\[k(v_0; t, v_0(t)) = f(t, v_0(t)), \quad 0 \leq t \leq 1, \]
and
\[D^\alpha_0 v_0(t) \leq f(t, v_0(t)) = k(v_0; t, v_0(t)), \quad 0 \leq t \leq 1. \]

Thus, v_0 is an upper solution of (28). Note that there exists $c(t)$ satisfying $w_0(t) \leq c(t) \leq v_0(t)$ such that, for $0 \leq t \leq 1$,
\[D^\alpha_0 w_0(t) \geq f(t, w_0(t)) = f(t, v_0(t)) + f_y(t, c(t))(w_0(t) - v_0(t)) \geq f(t, v_0(t)) + f_y(t, v_0(t))(w_0(t) - v_0(t)) = k(v_0; t, w_0(t)), \]
and so, w_0 is a lower solution of (28). Since k satisfies the hypotheses of Theorem 3.6 there exists a continuous solution, $v_1(t)$, of (28) satisfying
\[w_0(t) \leq v_1(t) \leq v_0(t), \quad 0 \leq t \leq 1. \]

An application of the mean value theorem again will give,
\[k(v_0; t, v_1(t)) \leq f(t, v_1(t)), \quad 0 \leq t \leq 1. \]
Thus,
\[D^\alpha_0 v_1(t) = k(v_0; t, v_1(t)) \leq f(t, v_1(t)), \quad 0 \leq t \leq 1. \]
Again, since $v_1 \in C[0, 1]$, v_1 is an upper solution of (3) - (4).

Finally, apply Theorem 3.3 to obtain
\[w_1(t) \leq v_1(t), \quad 0 \leq t \leq 1; \]
in particular,
\[w_0(t) \leq w_1(t) \leq v_1(t) \leq v_0(t), \quad 0 \leq t \leq 1. \]

Apply Theorem 3.6 with lower and upper solutions, w_1 and v_1, respectively, and keeping in mind that the solution y obtained in Theorem 3.6 is unique, we obtain
\[w_0(t) \leq w_1(t) \leq y(t) \leq v_1(t) \leq v_0(t), \quad 0 \leq t \leq 1, \]
where y is the unique solution of the fractional boundary value problem, (3) - (4).

For the inductive step, assume the sequences $\{w_k\}^n_{k=1}$ and $\{v_k\}^n_{k=1}$ have been constructed such that for each $k = 1, \ldots, n$,
\[h(w_k, v_k; t, y(t)) = f(t, w_k(t)) + f_y(t, v_k(t))(y - w_k)(t), \]
\[k(v_k; t, y(t)) = f(t, v_k(t)) + f_y(t, v_k(t))(y - v_k)(t), \]
where w_k is the solution of the fractional boundary value problem
\[D^\alpha_0 y(t) = h(w_{k-1}, v_{k-1}; t, y(t)), \quad 0 \leq t \leq 1, \quad y(0) = 0, \quad D^{\alpha-1}_0 y(0) = D^{\alpha-1}_0 y(1), \]
v$ is the solution of the fractional boundary value problem
\[D^\alpha_0 y(t) = k(v_{k-1}; t, y(t)), \quad 0 \leq t \leq 1, \quad y(0) = 0, \quad D^{\alpha-1}_0 y(0) = D^{\alpha-1}_0 y(1), \]
and
\[w_{k-1}(t) \leq w_k(t) \leq y(t) \leq v_k(t) \leq v_{k-1}(t), \quad 0 \leq t \leq 1, \quad k = 0, \ldots, n. \]
Moreover, \(w_k, v_k, k = 1, \ldots, n \) denote lower and upper solutions, respectively of (3) - (4), and \(y \) is the unique solution of the fractional boundary value problem (3) - (4).

To complete the induction argument, consider the boundary value problem for the linear nonhomogeneous fractional differential equation

\[
D_0^\alpha y(t) = h(w_n, v_n; t, y(t)), \quad 0 \leq t \leq 1, \quad y(0) = 0, \quad D_0^{\alpha-1}y(0) = D_0^{\alpha-1}y(1).
\]

Note that

\[
h(w_n, v_n; t, w_n(t)) = f(t, w_n(t)), \quad 0 \leq t \leq 1,
\]

and

\[
h(w_n, v_n; t, v_n(t)) \geq f(t, v_n(t)), \quad 0 \leq t \leq 1.
\]

So, \(w_n, v_n \) denote a lower and an upper solution of (29) respectively as well.

Let \(y \) be the unique solution of the fractional boundary value problem (3) - (4).

The arguments above to show the existence of \(w_1(t) \) and \(v_1(t) \) and the inequalities

\[
w_0(t) \leq w_1(t) \leq y(t) \leq v_1(t) \leq v_0(t), \quad 0 \leq t \leq 1,
\]

are readily adapted to show the existence of \(w_{n+1}(t) \) and \(v_{n+1}(t) \) and the inequalities

\[
w_n(t) \leq w_{n+1}(t) \leq y(t) \leq v_{n+1}(t) \leq v_n(t), \quad 0 \leq t \leq 1.
\]

To complete the proof of monotone convergence, \(\{w_n\} \) and \(\{v_n\} \) are monotone sequences of continuous functions bounded above and below, respectively, on a compact domain. So by Dini’s theorem, each converges uniformly to continuous functions \(w \) and \(v \) respectively on \([0, 1]\).

Since

\[
k(v_n; t, v_{n+1}(t)) = f(t, v_n(t)) + f_y(t, v_0(t))(v_{n+1} - v_n)(t) \to f(t, v) \text{ as } n \to \infty,
\]

where the convergence is uniform on \([0, 1]\), and

\[
D_0^\alpha v_{n+1}(t) - K^2 v_{n+1}(t) = k(v_n; t, v_{n+1}(t)) - K^2 v_{n+1}(t), \quad 0 \leq t \leq 1,
\]

it follows that

\[
v_{n+1}(t) = Tv_{n+1}(t) = \int_0^1 G(K; t, s)(k(v_n; s, v_{n+1}(s)) - K^2 v_{n+1}(s))ds, \quad 0 \leq t \leq 1,
\]

where \(T \) is defined by (23), it follows that \(v = Tv \) and \(v \) is the unique solution, \(y \), of (3) - (4). Similarly, \(w \) is the unique solution, \(y \), of (3) - (4).

We now obtain quadratic convergence and to do so, for each \(n \), define the error \(e_n \) by

\[
e_n(t) = v_n(t) - w_n(t), \quad 0 \leq t \leq 1.
\]

So, \(0 \leq e_n(t) \) for \(0 \leq t \leq 1 \). Denote by \(\|e_n\|_C \) the error bound

\[
\|e_n\|_C = \max_{t \in [0, 1]} |e_n(t)|.
\]

Assume without loss of generality that \(K > 0 \) is sufficiently small such that

\[
f_y(t, y) \geq K^2, \quad \text{on } [0, t] \times [\min_{t \in [0, 1]} w_0(t), \max_{t \in [0, 1]} v_0(t)],
\]

and

\[
G_K(t, s) \leq 0, \quad (t, s) \in [0, 1] \times [0, 1],
\]

where \(G(K; t, s) \) is defined by (15).
Recall

\[D_0^\alpha w_{n+1}(t) = h(w_n, v_n; t, w_{n+1}(t)) = f(t, w_n(t)) + f_y(t, v_n(t))(w_{n+1}(t) - w_n(t)), \]

\[D_0^\alpha v_{n+1}(t) = k(v_n; t, v_{n+1}(t)) = f(t, v_n(t)) + f_y(t, v_n(t))(v_{n+1}(t) - v_n(t)). \]

Then

\[D_0^\alpha e_n(t) = D_0^\alpha v_{n+1}(t) - D_0^\alpha w_{n+1}(t) \]

\[= [f(t, v_n(t)) - f(t, w_n(t))] + f_y(t, v_n(t))[e_{n+1}(t) - e_n(t)]. \]

By the mean value theorem, there exists \(c(t) \) satisfying \(w_n(t) < c_n(t) < v_n(t) \) such that

\[f(t, v_n(t)) - f(t, w_n(t)) = f_y(t, c_n(t))e_n(t). \]

Thus,

\[D_0^\alpha e_{n+1}(t) = f_y(t, c_n(t))e_n(t) + f_y(t, v_n(t))e_{n+1}(t) - f_y(t, v_n(t))e_n(t) \]

\[= f_y(t, v_n(t))e_{n+1}(t) + [f_y(t, c_n(t)) - f_y(t, v_n(t))])e_n(t). \]

Employ the mean value theorem again for \(f_y(t, c_n(t)) - f_y(t, v_n(t)) \) and there exists \(\hat{c}_n(t) \) satisfying

\[c_n(t) < \hat{c}_n(t) < v_n(t) \]

such that

\[f_y(t, c_n(t)) - f_y(t, v_n(t)) = f_{yy}(t, \hat{c}_n(t))(c_n(t) - v_n(t)). \]

Then

\[D_0^\alpha e_{n+1}(t) = f_y(t, v_n(t))e_{n+1}(t) + f_{yy}(t, \hat{c}_n(t))(c_n(t) - v_n(t))e_n(t). \]

Apply the shift argument, assume \(K \neq 0 \), and

\[D_0^\alpha e_{n+1}(t) - K^2 e_{n+1}(t) = (f_y(t, v_n(t)) - K^2)e_{n+1}(t) + f_{yy}(t, \hat{c}_n(t))(c_n(t) - v_n(t))e_n(t). \]

Note that \(e_{n+1} \) satisfies the boundary conditions (4) and employ the Green’s function (15). Since

\[G(K; t, s)(f_y(s, v_n(s)) - K^2 e_{n+1}(s)) \leq 0, \quad 0 \leq s \leq 1, \]

it follows that

\[0 \leq e_{n+1}(t) \]

\[= \int_0^1 G(K; t, s)(f_y(s, v_n(s)) - K^2)e_{n+1}(s) \]

\[+ f_{yy}(s, \hat{c}_n(s))(c_n(s) - v_n(s))e_n(s) ds \]

\[\leq \int_0^1 |G(K; t, s)|f_{yy}(s, \hat{c}_n(s))(v_n(s) - c_n(s))e_n(s) ds \]

\[\leq \int_0^1 |G(K; t, s)|f_{yy}(s, \hat{c}_n(s))e_n^2(s) ds. \] \hspace{1cm} (30)

Let

\[M = \max\{ |f_{yy}(t, y(t))|, \quad w_0(t) \leq y(t) \leq v_0(t), \quad 0 \leq t \leq 1 \} \]

and recall (22)

\[\max_{t \in [0,1]} \left[\int_0^1 |G(K; t, s)| ds \right] = \frac{E_{\alpha,2}(K^2)E_{\alpha,1}(K^2)}{E_{\alpha,1}(K^2) - 1} = \Omega. \]
Then, from (30)

\[
|e_{n+1}(t)| \leq \int_0^1 |G(K; t, s)||f_{yy}(s, c_n(s))|e_n^2(s)\,ds \\
\leq M\Omega \|e_n^2\|_C,
\]

implies

\[
\|e_{n+1}\|_C \leq M\Omega \|e_n^2\|_C,
\]

and hence the rate of convergence is quadratic.

5. **Concluding discussion.** We have studied a boundary value problem at resonance for a Riemann-Liouville fractional differential equation. Under mild conditions, uniqueness of solutions is initially established by a method of upper and lower solutions. With a shift method, an equivalent boundary value problem, not at resonance, is constructed. A method of upper and lower solutions and the Schauder fixed point theorem are employed to obtain existence of solutions. With the development to obtain the uniqueness and existence of solutions, the quasilinearization method can be applied and a numerical algorithm generating sequences of lower and upper solutions converging monotonically and quadratically to a unique solution is constructed. The uniqueness and existence of solution theorem and the application of the numerical algorithm are both dependent on the existence of upper and lower solutions.

REFERENCES

[1] R. P. Agarwal, B. Ahmad and A. Alsaedi, Method of quasilinearization for a nonlocal singular boundary value problem in weighted spaces, *Bound. Value Probl.*, 261 (2013), 17 pp.

[2] E. Akin-Bohner and F. M. Atici, A quasilinearization approach for two-point nonlinear boundary value problems on time scales, *Rocky Mountain J. Math.*, 35 (2005), 19–45.

[3] J. Aljedani and P. Eloe, Uniqueness of solutions of boundary value problems at resonance, *Advances in the Theory of Nonlinear Analysis and its Application*, 2 (2018), 168–183.

[4] M. Al-Refae, On the fractional derivatives at extreme points, *Electron. J. Qual. Theory Differ. Equ.*, 2012 (2012), 5 pp.

[5] K. Alanazi, M. Alshammari and P. Eloe, *Quasilinearization and Boundary Value Problems at Resonance*, Georgian Mathematics J., 2019.

[6] V. Antony Vijesh, A short note on the quasilinearization method for fractional differential equations, *Numer. Funct. Anal. Optim.*, 37 (2016), 1158–1167.

[7] R. Bellman, *Methods of Nonlinear Analysis. Vol. II*, Mathematics in Science and Engineering, Vol. 61-II, Academic Press, New York-London, 1973.

[8] R. Bellman and R. Kalba, *Quasilinearization and Nonlinear Boundary Value Problems*, Modern Analytic and Computational Methods in Science and Mathematics, Vol. 3. American Elsevier Publishing Co., Inc., New York, 1965.

[9] P. Eloe and J. Jonnalagadda, Quasilinearization and boundary value problems for Riemann-Liouville fractional differential equations, *Electron. J. Differential Equations*, (2019), 15 pp.

[10] P. Eloe and Y. Gao, The method of quasilinearization and a three-point boundary value problem, *J. Korean Math. Soc.*, 39 (2002), 319–330.

[11] P. W. Eloe and Y. Z. Zhang, A quadratic monotone iteration scheme for two-point boundary value problems for ordinary differential equations, *Nonlinear Anal.*, 33 (1998), 443–453.

[12] P. Guo, C. P. Li and G. R. Chen, On the fractional mean-value theorem, *Internat. J. Bifur. Chaos Appl. Sci. Engrg.*, 22 (2012), 6 pp.

[13] H. J. Hauberk, A. M. Mathai and R. K. Saxena, Mittag - Leffler functions and their applications, *Journal of Applied Mathematics*, 2011 (2011), 51 pp.

[14] G. Infante, P. Pietramala and F. A. F. Tojo, Nontrivial solutions of local and nonlocal Neumann boundary value problems, *Proc. Roy. Soc. Edinburgh Sect. A*, 146 (2016), 337–309.
[15] R. A. Khan, Existence and approximation of solutions to three-point boundary value problems for fractional differential equations, *Electron. J. Qual. Theory Differ. Equ.*, 2011 (2011), 8 pp.

[16] R. A. Khan and R. Rodríguez-López, Existence and approximation of solutions of second-order nonlinear four point boundary value problems, *Nonlinear Anal.*, 63 (2005), 1094–1115.

[17] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[18] V. Lakshmikantham, S. Leela and F. A. McRae, Improved generalized quasilinearization (GQL) method, *Nonlinear Anal.*, 24 (1995), 1627–1637.

[19] V. Lakshmikantham, N. Shahzad and J. J. Nieto, Methods of generalized quasilinearization for periodic boundary value problems, *Nonlinear Anal.*, 27 (1996), 143–151.

[20] V. Lakshmikantham, S. Leela and S. Sivasundaram, Extensions of the methods of quasilinearization, *J. Optim. Theory Appl.*, 87 (1995), 379–401.

[21] J. J. Nieto, Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions, *Proc. Amer. Math. Soc.*, 125 (1997), 2599–2604, http://www.jstor.org/stable/2162028.

[22] I. Podlubny, *Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications*, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[23] N. Shahzad and A. S. Vatsala, Improved generalized quasilinearization method for second order boundary value problems, *Dynam. Systems Appl.*, 4 (1995), 79–85.

[24] N. Sveikate, Resonant problems by quasilinearization, *Int. J. Differ. Equ.*, 2014 (2014), 8 pp.

[25] J. Vasundhara Devi, F. A. McRae and Z. Drici, Generalized quasilinearization for fractional differential equations, *Comput. Math. Appl.*, 59 (2010), 1057–1062.

[26] W. Z. Xie, J. Xiao and Z. G. Luo, Existence of solutions for Riemann-Liouville fractional boundary value problem, *Abstr. Appl. Anal.*, 2014 (2014), 9 pp.

[27] A. Yakar, Initial time difference quasilinearization for Caputo fractional differential equations, *Adv. Difference Equ.*, 2012 (2012), 9 pp.

[28] I. Yermachenko and F. Sadyrbaev, Quasilinearization and multiple solutions solutions of the Emden-Fowler type equations, *Math. Model. Anal.*, 10 (2005), 41–50.

Received February 2019; revised July 2019.

E-mail address: peloe1@udayton.edu
E-mail address: j.jaganmohan@hotmail.com