First discovery of trans-iron elements in a DAO-type white dwarf (BD−22°3467)

L. Löbling1*, M. A. Maney1,2, T. Rauch1, P. Quinet3,4, S. Gamrath3, J. W. Kruk5, and K. Werner1

1 Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, 72076 Tübingen, Germany
2 Department of Astronomy & Astrophysics, Eberly College of Science, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
3 Physique Atomique et Astrophysique, Université de Mons – UMONS, 7000 Mons, Belgium
4 IPNAS, Université de Liège, Sart Tilman, 4000 Liège, Belgium
5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Accepted 2019 November 18. Received 2019 November 11; in original form 2019 September 16

ABSTRACT

We have identified 484 lines of the trans-iron elements (TIEs) Zn, Ga, Ge, Se, Br, Kr, Sr, Zr, Mo, In, Te, I, Xe, and Ba, for the first time in the ultraviolet spectrum of a DAO-type WD, namely BD−22°3467, surrounded by the ionized nebula Abell 35. Our TIE abundance determination shows extremely high overabundances of up to five dex – a similar effect is already known from hot, H-deficient (DO-type) white dwarfs. In contrast to these where a pulse-driven convection zone has enriched the photosphere with TIEs during a final thermal pulse and radiative levitation has established the extreme TIE overabundances, here the extreme TIE overabundances are exclusively driven by radiative levitation on the initial stellar metallicity. The very low mass (0.533±0.029 M⊙) of BD−22°3467 implies that a third dredge-up with enrichment of s-process elements in the photosphere did not occur in the AGB precursor.

Key words: line: identification – planetary nebulae: individual: A66 35 – stars: abundances – stars: AGB and post-AGB – stars: atmospheres – stars: individual: BD−22°3467

1 INTRODUCTION

Trans-iron elements (TIEs) are synthesized during the asymptotic giant branch (AGB) phase of a star by the slow neutron-capture (s)-process. Depending on the initial stellar mass, its yields vary strongly (Karakas & Lugaro 2010). To become detectable, TIEs have to be transported from the helium-rich intershell region to the stellar surface. This happens, if the star experiences a third dredge-up (TDU, c.f., Herwig 2000). A scenario in which the envelope becomes mixed with the intershell region is known as the late helium-shell flash. Such a late thermal pulse (LTP) was predicted, e.g., by Iben et al. (1983). When it occurs after the star’s descent from the AGB at already declining luminosity, i.e., close to the end of nuclear burning, the H-burning shell is “off” and a pulse-driven convection zone (PDCZ) establishes between the He-burning shell and the photosphere. The remaining H is mixed into the stellar interior, becomes diluted or even burned, making the star H-deficient (c.f., Fujimoto 1977; Schönberner 1979; Iben et al. 1983; Blöcker 1995). Thus, it was – although surprising – well understandable, that lines of ten TIEs were identified (Werner et al. 2012) in the ultraviolet (UV) spectrum of the DO-type white dwarf (WD) RE 0503−289 (effective temperature Teff = 70 000 ± 2000 K, surface gravity log(g / cm s−2) = 7.5±0.1, Rauch et al. 2016b), which became an archetype for TIE search in WDs. Presently, 18 of these species are identified in RE 0503−289 (Rauch et al. submitted). Chayer et al. (2005) first succeeded in the detection of TIEs in DO WDs, namely six species in two other objects (HD 149499 B, HZ 21).

In a subsequent investigation, TIE line identification was successfully performed in three related H-deficient objects (two DO-type WDs and one PG 1159-type WD, namely WD 0111+002, PG 0109+111, and PG 1707+427, Hoyer et al. 2018). The commonality of these stars is that they are located close to the so-called PG 1159 wind limit (Unglaub & Bues 2000) that approximately separates the regions of PG 1159-type stars and DO-type WDs in the Hertzsprung-Russell diagram (HRD). Here, the stellar wind

* E-mail: loebling@astro.uni-tuebingen.de

© 2019 The Authors
is already weak enough and diffusion can establish strong TIE overabundances of up to five dex in the photosphere (Rauch et al. 2016a).

The search for TIE lines has not been restricted to He-rich WDs. Vennes et al. (2005) discovered the first TIE in WDs at all, namely Ge in three DA WDs. One of them is G191−B2B, an object that is employed as spectrophotometric flux standard for the Hubble Space Telescope (e.g., Bohlin 2007; Rauch et al. 2013). Recently, the TIEs Cu, Zn, Ga, Ge, As, Sn, and Ba were identified (Rauch et al. submitted, Rauch et al. 2014a, 2015, 2012, 2016a, 2013, 2014b). The TIE abundance pattern is similar to RE 0503−289, but at a lower absolute level probably because of the lower T_{eff} of G191−B2B ($T_{\text{eff}}=60 000$ K, Rauch et al. 2013). TIE line search and abundance analyses are also successfully performed in the field of He-rich, hot subdwarf stars. The first one was LS IV−14′116, for which extreme overabundances of Fe, Sr, Y, and Zr were detected (Naslim et al. 2011). The most recent members of the group of “heavy metal” subdwarfs are HD 127493, and Feige 46 (e.g., Dorsch et al. 2019; Latour et al. 2019), with TIE enrichment patterns similar to those in Fig. 1.

Abell 35 was discovered by Abell (1955) and characterized as homogeneous disk planetary nebula (PN, Abell 1966). Jacoby (1981) classified the visible nucleus as G8 III−IV. Later, Grewing & Bianchi (1988) classified the hot, ionizing central star as DAO-type white dwarf (WD). Shortwards of 2800 Å, the WD dominates the flux, whereas the cool companion outshines it in the optical. Herald & Bianchi (2002) analyzed the binary and found $T_{\text{eff}}=80 000$ K and $\log (g / \text{cm}^2 / \text{s}^2) = 7.7$ for the hot and $T_{\text{eff}}=50 000$ K and $\log g = 3.5$ for the cool star. Ziegler et al. (2012) corrected the surface gravity of the WD to $g = 7.2$ and Frew & Parker (2010) classified the nebula as “bow shock nebula in a photo-ionized Strömgren sphere”. Recently, a close re-inspection of the UV spectrum of the exciting star of the ionized nebula Abell 35, BD−22′3467 (WD1250−226, McCook & Sion 1999), led us to the identification of TIE absorption lines. In this work, a systematic TIE line search was performed in order to constrain abundances analogously to Hoyler et al. (2017, for RE 0503−289). It is based on the BD−22′3467 model of Ziegler et al. (2012, atmospheric parameters given in Table A1) that was calculated using the non-local thermodynamic equilibrium (NLTE) model-atmosphere code of the Tübingen NLTE Model Atmosphere Package (TMAD1, Werner et al. 2003, 2012). In Sects. 2 and 3, we briefly describe the available observations and the model atmospheres used for the spectral analysis, respectively. In Sect. 4, the process of line identification and subsequent abundance measurement is explained. Lastly, we summarize our results and conclude in Sect. 5.

2 OBSERVATIONS

Our analysis is based on high-resolution Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (HST/STIS) observations. These were obtained from the MAST2 archive. The FUSE spectrum taken

with the LWRS aperture has a resolving power of $R = \lambda / \Delta \lambda = 20 000$. Four STIS observations with grating E140M and $R = 45 800$ are available. The observation log is shown in Table B1. We convolved the synthetic spectra with Gaussians to model the respective instrument’s resolution. The signal-to-noise ratio of the STIS observations was improved by co-adding the observations. The combined spectra are the same as used by Ziegler et al. (2012). No optical observation of the DAO WD are available, since the G-star companion dominates this spectral range.

3 MODEL ATMOSPHERES AND ATOMIC DATA

The analysis was carried out using TMAD. This code assumes plane-parallel geometry and calculates chemically homogeneous NLTE atmospheres in radiative and hydrostatic equilibrium.

For the TIEs Cu, Zn, Ga, Ge, Sr, Br, Kr, Sr, Zr, Mo, In, Te, I, Xe, and Ba, we used the recently calculated data that is available via the Tübingen Oscillator Strengths Service (TOSS). For the elements with $Z \geq 20$, it is necessary to create model atoms using a statistical approach that calculates super levels and super lines (Rauch & Deetjen 2003) to take their complex atomic structure into account for the calculation. The statistics of all elements considered in our model-atmosphere calculations are summarized in Table B2.

We constructed a new classical model ion for BaVIII from the level and line data of Churilov et al. (2001) available via the National Standards and Technology Institute (NIST) Atomic Spectra Database (ASD3, Kramida et al. 2018), which was incorporated into TMAD.

For all considered elements with an atomic number $Z \leq 28$, we used the same model atoms like Ziegler et al. (2012). For $Z < 20$ these were obtained from the Tübingen Model Atom Database (TMAD, Rauch & Deetjen 2003) that was constructed as part of the German Astrophysical Virtual Observatory (GAVO). For the iron-group elements (IGEs, atomic number $20 \leq Z \leq 28$), Kurucz’s line lists4 (Kurucz 2009, 2011, 2017) were utilized.

For this analysis, we adopted the photospheric parameters of Ziegler et al. (2012) and used their final model ($T_{\text{eff}}=80 000$ K, $\log g = 7.2$, see Table A1 for the element abundances) to start our TIE analysis. To identify lines and determine abundances of the 15 TIEs (Cu, Zn, Ga, Ge, Se, Br, Kr, Sr, Zr, Mo, In, Te, I, Xe, and Ba), we performed line-formation calculations by adding each of them individually to the start model from Ziegler et al. (2012), while temperature and density structure of the atmosphere were kept fixed. To verify our method, a final model including all TIEs with their previously determined abundances was then calculated with temperature and density corrections. The deviations in the abundances were marginal.

The observed spectra are affected by reddening due to interstellar material within the line of sight. By comparing the slope of the flux calibrated observations as well as GALEX, HIPPARCOS, and 2MASS magnitudes

1 http://astro.uni-tuebingen.de/TMAP
2 http://archive.stsci.edu
3 https://physics.nist.gov/PhysRefData/ASD
4 http://kurucz.harvard.edu/atoms.html
(Bianchi et al. 2011; Perryman et al. 1997; Cutri et al. 2003) with the synthetic spectra of the central star, Ziegler et al. (2012) found a color excess $E_{B-V} = 0.02 \pm 0.02$. This value was used to apply interstellar reddening following the law of Fitzpatrick (1999, with the standard $R_V = 3.1$) to the model spectra to reproduce the observation. Absorption due to neutral interstellar hydrogen, assuming a column density of $N_{H} = 5.0 \times 10^{20}$ cm$^{-2}$ (Ziegler et al. 2012), was applied to the synthetic spectra. Furthermore, we applied the interstellar line-absorption model of Ziegler et al. (2012) that was calculated using the program OWENS (Hébrard et al. 2002; Hébrard & Moos 2003) to unambiguously identify lines of stellar and interstellar origin.

4 LINE IDENTIFICATION AND ABundance DETERMINATION

We calculated synthetic spectra from our line-formation models with each of the 15 elements added individually to the best model of Ziegler et al. (2012). The spectrum is crowded with a multitude of blended metal lines which hampers their unambiguous identification. To clearly see the contribution of the individual TIE elements, we divided the synthetic spectrum including this species by another model spectrum without it. The individual abundances were varied by small steps of 0.2 dex or smaller to derive the final values from evaluation of line-profile fits by eye. To estimate the influence of the uncertainty in T_{eff} of ±10000 K and in log g of ±0.3 for the error propagation, we redid the abundance determination for models with $T_{\text{eff}} = 90000$ K and log g = 6.9 as well as for $T_{\text{eff}} = 70000$ K and log g = 7.5. The abundances are affected by typical errors below 0.3 dex.

For Cu, a line identification was not possible with appreciable certainty. Instead, upper limits were determined by reducing the abundance until the strongest computed lines become undetectable. An equivalent width of $W_{\lambda} = 5$ mÅ was set as a detection limit. Table B3 – Table B17 list all lines of TIEs, that appear with an equivalent width above the threshold in the model spectrum. These tables include also those lines that could not be identified in the spectrum of BD−22°3467 due to, e.g., blending with other photospheric or interstellar lines to make them a useful tool for the identification of TIE lines in the spectra of other DAO-type WDs. The abundances are given in Table A1 and are illustrated in Fig. 1. The complete FUSE and STIS observations compared to our best model are shown online\(^5\) within the Tubingen VISualization tool (TVIS). The ionization fractions as well as the temperature structure and electron density in the final atmosphere model are shown in Fig. B1.

The number of identified lines per TIE ion is shown in Table 1. The observation is well reproduced by our final model with the abundances shown in Table A1 as it is illustrated in Fig. B2 to B16 for prominent lines of each of the TIEs.

\(^5\) http://astro.uni-tuebingen.de/~TVIS/objects/Abell35

5 RESULTS AND CONCLUSIONS

To identify TIE lines, the UV spectrum of BD−22°3467 was closely inspected which led to the discovery of Zn, Ga, Ge, Se, Br, Kr, Sr, Zr, Mo, In, Te, I, Xe, and Ba (Table 1). In total, 484 TIE lines were discovered.

Our spectral analysis has shown that the enrichment of TIEs in BD−22°3467 ($T_{\text{eff}} = 80000 \pm 10000$ K, log g = 7.2 ± 0.3) and RE 0503−289 ($T_{\text{eff}} = 70000 \pm 2000$ K, log g = 7.5 ± 0.1) is considerably high ($\approx 1.5 − 5$ dex, Fig. 1). The origin of the high enrichment of TIEs is diffusion, i.e., efficient radiative levitation. This was shown already for RE 0503−289 by detailed diffusion calculations (Rauch et al. 2016a). While it was possible to determine abundances for several TIEs with consecutive atomic number in RE 0503−289 and find that the odd-even shape of the solar abundance pattern seems to be reflected also by the enriched TIEs (Fig. 2, cf., Rauch et al. 2019, submitted), there is not enough information to confirm this finding based on the results for BD−22°3467.

The evolutionary difference between BD−22°3467 and RE 0503−289 is that the latter most likely experienced an LTP in which it became hydrogen-deficient. As a result, a pulse-driven convection zone, established during the flash, enriched the TIEs in the atmosphere. Their abundances were later on amplified to the observed values by radiative levitation. In contrast, the high abundances of TIEs in BD−22°3467 are possibly the result of radiative levitation on the initial stellar metallicity without previous enrichment by s-processed matter. This is because of the very low mass of BD−22°3467, (Fig. 1) which corresponds to an initial mass of below 1.0M_\odot (Cummings et al. 2018), implying that no TDU occurred on the AGB (Karaka & Lugaresi 2016). From the position in the T_{eff}−log g diagram (Fig. 3) only, a possible evolution without an AGB phase, directly from the extended horizontal branch (EHB) to the WD cooling sequence, cannot be excluded. Conversely, it is then possible that the high amount of TIEs in RE 0503−289 is solely due to diffusion, independent of the occurrence of a previous LTP. This is an interesting conclusion, because a large fraction of DOs is not initiated by an LTP but by a merger event with the so-called O(He) stars as merger products and DO precursors (Reindl et al. 2014). DOs from this evolutionary chan-

Table 1. Numbers of identified lines in the ionization stages IV-VIII of TIEs in the UV spectrum of BD−22°3467.

Element	Z	IV	V	VI	VII	VIII
Zn	30	2		141		
Ga	31	2	71	52		
Ge	32	2	32	57		
Se	34	14				
Br	35	1	7			
Kr	36	4				
Sr	38	17				
Zr	40	1	28	3		
Mo	42	2				
In	49	28				
Te	52	3				
I	53	4				
Xe	54	4				
Ba	56	3	3			
The evolution of stellar winds decreases but is still high enough to maintain the convective envelope.

Figure 1. Photospheric abundance ratios \([X] = \log(\text{mass fraction}/\text{solar mass fraction})\) of BD−22°3467 determined from detailed line profile fits. Solar values are taken from Asplund et al. (2009); Scott et al. (2015b,a); Grevesse et al. (2015). Upper limits are indicated with arrows. The black, solid line indicates solar abundances. Blue triangles represent the abundances determined by Ziegler et al. (2012), red triangles show the TIE abundances (Table A1). For comparison, the abundances determined for G191−B2B (Rauch et al. 2013, green circles) and RE 0503−289 are shown (Hoyer et al. 2017, black squares).

Figure 2. Photospheric TIE abundances in BD−22°3467 (red triangles) compared to RE 0503−289 (black squares) (Hoyer et al. 2017, Rauch et al. 2019 submitted). Solar values are shown for comparison.

nel should therefore also go through a phase with an extreme TIE enrichment by diffusion.

We have to keep in mind that diffusion-established abundance patterns do not contain anymore information about the previous stellar evolution, i.e., wherever the TIEs (or other elements) stem from, the exhibited surface abundance may be the same. Investigations on yields of the AGB s-process nucleosynthesis elements have to be performed before diffusion dominates the stellar evolution. This is the phase of just declining luminosity when the strength of the stellar wind decreases but is still high enough to maintain the original abundance ratios produced by the s-process. Spectral analyses of stars in that evolutionary phase might help to directly constrain AGB nucleosynthesis.

The formation of Abell 35-like central stars of planetary nebulae (CSPNe), i.e., binary CSPNe with a rapidly rotating late-type (sub)giant and an extremely hot companion (Bond et al. 1993), is discussed controversially in the literature. Thevenin & Jasniwicz (1997) found the companion of BD−22°3467 to be enriched in Ba indicating that this still unevolved star experienced mass transfer from a (post-) AGB star. However, this formation channel is debated since Abell 35 was found to only mimic a PN (Frew & Parker 2010) and the mass of the ionizing star was considered to be too low for a post-AGB star (Ziegler et al. 2012). As explained above, an evolution directly from the EHB to the WD cooling track is possible (Fig. 3). The peculiar ionized nebula around BD−22°3467 is not a real PN but, nevertheless, it also cannot be excluded, that the nebula material is in some way connected to the evolution of the central star. Assuming that it ejected a PN as an AGB star, the original PN might have already dispersed. The star has a high proper motion (\(\mu_\alpha = -54.566 \pm 0.226\) mas/yr and \(\mu_\delta = -10.097\pm0.187\) mas/yr, Gaia Collaboration et al. 2018) and, thus, might now be passing through the edges of the ejected former nebula material or another dense ISM region while ionizing the surrounding material. The classification of Abell 35 as a bow shock nebula in a photoionized Strömgren sphere in the ambient ISM (Frew & Parker 2010) does not necessarily include a PN but also, does not rule out the post-AGB nature of BD−22°3467. Further detailed abundance analyses of a sample of Abell 35-like CSPNe as well as their ambient nebulae and companion stars should give us a better handle on their evolution. The nebulae, if ejected from an AGB star, contain signatures of s-process elements (Madonna et al. 2017) as well as the unevolved companions, if they accreted a fraction of the ejected material. Therefore, a precise knowledge of the companion is mandatory because any accreted material would become diluted in this star’s convective envelope.

To better understand the late evolutionary phases of low-mass stars, it is highly desirable to improve the determination of \(T_{\text{eff}}\) and log g with much narrower error ranges. For
this purpose, the analysis of high-resolution optical spectra, may be helpful. Although the cool companion dominates this wavelength regime, broad lines of H and He of BD−22°3467 should be detectable like demonstrated by Aller et al. (2015) for the binary CS of NGC 1514. These lines may reduce the error and, thus, allow to better constrain the stellar mass (Fig. 3).

As a remark, we would like to mention that the discrepancy found by Ziegler et al. (2012) between the spectroscopic distance of 361±137 pc and the distance based on the HIPPARCOS parallax is still present in the era of Gaia with a distance of 124.84±2.21 pc (Bailer-Jones et al. 2018). Ziegler et al. (2012) demonstrated, that the H i lines in the FUSE range are poorly reproduced with models with log g > 7.7. This phenomenon of too large spectroscopic distances has already been reported in the literature for CSPNe (Schönberner et al. 2018; Schönberner & Steffen 2019). The argument that missing metal-line blanketing and back warming may result in too-high temperatures does not hold in our analysis, because all elements in the model calculation were considered in full NLTE computations. The objects of the mentioned studies are all located before the knee at highest temperatures in the Hertzsprung-Russell diagram. Thus, the spectroscopic mass derived from fitting of the spectral energy distribution using the parallax distance is systematically too high. In our case, the spectroscopic mass derived from the dereddened GALEX FUV flux (Bianchi et al. 2011) using the Gaia distance is unreasonably low. With the given T eff, at least a log g > 8.0 would be required to reach masses above 0.4 M⊙. In conclusion, the discrepancy remains unexplained and needs further investigation.

Following the discovery of TIE lines in BD−22°3467, we have initiated an analogous search in other DAO-type WDs. Since the FUSE and HST archives provide quite a number of high-quality UV spectra of such stars, that have not been inspected in focus of TIEs, we expect to identify TIE enrichment as a common phenomenon in many hot WDs.

ACKNOWLEDGMENTS

We thank the referee for the very useful comments that improved this paper. LL has been supported by the German Research Foundation (DFG) under grant WE1312/49−1. MAM had been supported by the DAAD RISE Germany program. The GAVO project at Tübingen had been supported by the Federal Ministry of Education and Research (BMBF) at Tübingen (05 AC 6 VTB, 05 AC 11 VTB). Financial support from the Belgian FRS-FNRS is also acknowledged. PQ is research director of this organization. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. The TIRO (http://astro-uni-tuebingen.de/”TIR0), TMAD (http://astro-uni-tuebingen.de/”TMAD), TOSS (http://astro-uni-tuebingen.de/”TOSS), and TVIS (http://astro-uni-tuebingen.de/”TVIS) tools and services used for this paper were constructed as part of the Tübingen project (https://uni-tuebingen.de/de/122430) of the German Astrophysical Virtual Observatory (GAVO, http://www.g-vo.org). This research has made use of NASA’s Astrophysics Data System and of the SIMBAD database, operated at CDS, Strasbourg, France. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

References

Abell G. O., 1955, PASP, 67, 258
Abell G. O., 1966, ApJ, 144, 259
Aller A., Miranda L. F., Olguín L., Vázquez R., Guillén P. F., Oreiro R., Ulla A., Solano E., 2015, MNRAS, 446, 317
Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Mantelet G., Andrae R., 2018, AJ, 156, 58
Bianchi L., Herald J., Efremova B., Girardi L., Zabot A., Marigo P., Conti A., Shiao B., 2011, Ap&SS, 335, 161
Blöcker T., 1995, A&A, 299, 755
Bohlin R. C., 2007, in Astronomical Society of the Pacific Conference Series, Vol. 364, Sterken C., ed, The Future of Photometric, Spectrophotometric and Polarimetric Standardization, p. 315
Bond H. E., Ciardullo R., Meakes M. G., 1993, in IAU Symposium, Vol. 155, Weinberger R., Acker A., ed, Planetary Nebulae, p. 397

MN000 000, 1−34 (2019)
APPENDIX A: PHOTOSPHERIC PARAMETERS OF BD–22°3467
Table A1. Parameters of BD–22° 3467.

Element	[X]	Mass fraction	Number fraction	ε(Fe)	[X/Fe]	
H	(a)	0.07	8.67 × 10^{-1}	9.67 × 10^{-1}	12.09	-0.00
He	(a)	-0.33	1.17 × 10^{-1}	3.29 × 10^{-2}	10.62	-0.40
C	(a)	-2.93	2.77 × 10^{-6}	2.59 × 10^{-7}	5.51	-3.00
N	(a)	-1.75	1.24 × 10^{-3}	9.99 × 10^{-7}	6.10	-1.82
O	(a)	-2.61	1.42 × 10^{-3}	9.99 × 10^{-7}	6.10	-2.68
F	(a)	≤ -0.16	≤ 5.04 × 10^{-7}	≤ 2.98 × 10^{-8}	≤ 4.57	≤ -0.07
Ne	(a)	≤ -0.00	≤ 1.26 × 10^{-3}	≤ 6.99 × 10^{-5}	≤ 7.94	≤ -0.07
Na	(a)	≤ 0.03	≤ 2.92 × 10^{-4}	≤ 1.43 × 10^{-6}	≤ 6.25	≤ -0.07
Mg	(a)	≤ 1.08	≤ 8.31 × 10^{-4}	≤ 3.84 × 10^{-4}	≤ 8.68	≤ 1.00
Al	(a)	≤ 0.02	≤ 5.65 × 10^{-5}	≤ 2.31 × 10^{-6}	≤ 6.46	≤ -0.07
Si	(a)	-2.12	5.00 × 10^{-6}	2.00 × 10^{-7}	5.40	-2.19
P	(a)	≤ -2.85	≤ 8.26 × 10^{-9}	≤ 3.00 × 10^{-10}	≤ 2.58	≤ -2.92
S	(a)	≤ -2.93	≤ 3.64 × 10^{-7}	≤ 1.27 × 10^{-8}	≤ 4.21	≤ -3.00
Ar	(a)	1.07	8.65 × 10^{-4}	2.43 × 10^{-5}	7.49	1.00
Cu	(a)	≤ 0.02	≤ 6.41 × 10^{-3}	≤ 1.80 × 10^{-6}	≤ 6.35	≤ -0.07
Sc	(a)	≤ -0.01	≤ 4.64 × 10^{-3}	≤ 1.16 × 10^{-9}	≤ 3.16	≤ -0.07
Ti	(a)	≤ 0.02	≤ 3.12 × 10^{-6}	≤ 7.31 × 10^{-8}	≤ 4.96	≤ -0.07
V	(a)	≤ 0.04	≤ 3.17 × 10^{-7}	≤ 6.99 × 10^{-9}	≤ 3.94	≤ -0.07
Cr	(a)	1.86	1.16 × 10^{-3}	2.50 × 10^{-5}	7.50	1.77
Mn	(a)	1.56	3.81 × 10^{-4}	7.80 × 10^{-6}	6.99	1.48
Fe	(a)	0.10	1.52 × 10^{-3}	3.06 × 10^{-5}	7.58	0.00
Co	(a)	2.18	1.57 × 10^{-4}	3.00 × 10^{-6}	6.58	1.50
Ni	(a)	0.70	3.39 × 10^{-4}	6.49 × 10^{-6}	6.91	0.61
Cu	≤ 1.38	≤ 1.70 × 10^{-5}	≤ 3.00 × 10^{-7}	≤ 5.85	≤ 1.30	
Zn	1.37	4.08 × 10^{-5}	7.00 × 10^{-7}	5.95	1.30	
Ga	3.77	3.11 × 10^{-4}	5.00 × 10^{-6}	6.80	3.67	
Ge	3.76	1.29 × 10^{-3}	2.00 × 10^{-5}	7.40	3.67	
Sn	4.52	4.21 × 10^{-3}	6.00 × 10^{-5}	7.88	4.45	
Br	3.19	3.13 × 10^{-3}	4.40 × 10^{-7}	5.74	3.12	
Kr	2.68	5.23 × 10^{-5}	7.00 × 10^{-7}	5.95	2.61	
Sr	5.21	6.98 × 10^{-3}	9.00 × 10^{-5}	8.05	5.10	
Zr	3.97	2.44 × 10^{-4}	3.00 × 10^{-6}	6.58	3.91	
Mo	3.68	2.57 × 10^{-5}	3.00 × 10^{-7}	5.58	3.61	
In	5.83	3.58 × 10^{-4}	3.50 × 10^{-6}	6.64	5.76	
Te	4.51	4.55 × 10^{-4}	4.00 × 10^{-6}	6.70	4.44	
I	4.24	5.66 × 10^{-3}	5.00 × 10^{-7}	5.80	4.16	
Xe	3.85	1.17 × 10^{-3}	1.00 × 10^{-6}	6.10	3.77	
Ba	3.54	6.12 × 10^{-5}	5.00 × 10^{-7}	5.80	3.53	

Notes. (a) From Ziegler et al. (2012). (b) Interpolated from post-AGB evolutionary tracks, cf., Fig. 3. (c) Interpolated from post-EHB evolutionary tracks, cf., Fig. 3. (d) Abundances ε_i = log n_i + c with ∑_i a_i n_i = 12.15 and the atomic weights a_i.
APPENDIX B: ADDITIONAL FIGURES AND TABLES.
Table B1. Observation log for BD−22°3467.

Instrument	Dataset Id	Start Time (UT)	Wavelength range (Å)	Aperture/Grating	Exposure time (s)	Resolving power $R = \lambda / \Delta \lambda$
FUSE	P1330101000	2000-05-20 20:27:37	910 – 1180	LWRS	4416	20 000
STIS	O4GT02010	1999-04-17 21:14:49	1150 – 1730	E140M	2050	45 800
STIS	O4GT02020	1999-04-17 22:37:03	1150 – 1730	E140M	2800	45 800
STIS	O4GT02030	1999-04-18 00:16:10	1150 – 1730	E140M	2740	45 800
STIS	O4GT02040	1999-04-18 01:52:54	1150 – 1730	E140M	2740	45 800

Notes. a: Far Ultraviolet Spectroscopic Explorer, b: Space Telescope Imaging Spectrograph.

Figure B1. Temperature and electron density structure and ionization fractions of all TIE ions which are considered in our final model for BD−22°3467.
Table B2. Statistics of the H – Ara and Ca – Bab model atoms used in our model-atmosphere calculations.

Ion	Levels	Lines	Ion	Super levelsc	Lines	Ion	Super levelsc	Lines
	NLTE	LTE						
H i	12	4	66	Ca iv	6	16	20291	Cu iv
He i	5	9	83	vi	6	19	114545	v
N ii	16	16	120	vii	6	21	71608	vii
C iii	6	61	12	ix	1	0	9124	Zn iv
iv	54	4	295	Sc iv	6	20	15024	vii
N iii	1	65	0	vi	6	19	237271	v
iv	16	78	30	vii	6	20	176143	vi
v	54	8	297	viii	6	21	91935	vi
O iii	3	69	0	Ti iv	6	19	1000	v
iv	18	76	39	vi	6	20	26654	vi
v	90	36	610	vii	6	19	95448	vii
Ne ii	1	33	0	ix	1	0	0	Ge ivd
iv	18	125	16	vii	6	19	35251	iv
v	12	80	0	viii	6	19	112883	v
Ca ii	1	10	0	iv	6	19	37130	vi
ii	15	91	31	v	6	20	2123	Br iii
i	12	115	16	vii	6	19	35251	iv
Ne iii	1	34	0	ix	1	0	0	vii
iv	27	37	35	Cr iv	6	20	234170	Kr iv
i	1	0	0	vi	6	20	4406	vi
v	8	42	9	ix	1	0	0	Sr iv
vi	43	10	130	Mn iv	6	20	719387	v
Mg i	1	187	0	vii	6	19	37070	vii
ii	1	237	0	viii	6	20	132221	vii
i	8	42	9	ix	1	0	0	Sr iv
Si iii	3	31	1	ix	1	0	0	Ge ivd
Al ii	1	1	0	Fe iv	6	20	310237	vi
iii	3	44	0	Cr iv	6	20	438600	v
iv	2	22	9	Fe iv	6	20	3266247	vii
Ar ii	1	340	0	Cr iv	6	20	552916	vii
iii	3	44	0	Co iv	6	20	469717	vii
iv	25	59	0	Cr iv	6	20	898484	In iii
P ii	1	9	0	vii	6	19	492913	iv
iv	15	36	9	viii	6	20	88548	v
v	18	7	12	vii	6	19	19587	Fe iv
vi	1	0	0	viii	6	20	2512561	vi
S ii	6	94	4	Ni iv	6	20	2766664	Te iv
iv	21	89	37	v	6	18	7408657	v
i	18	19	48	vi	6	18	4195381	vi
Ar iv	1	340	0	Cr iv	6	20	1473122	vi
v	32	329	38	vii	6	19	19587	Fe iv
vi	16	168	21	vii	6	18	19587	Fe iv
v	40	112	130	viii	6	20	14731223	vi
Xe iv	1	340	0	Cr iv	6	20	14731223	vi
v	32	329	38	vii	6	19	19587	Fe iv
vi	16	168	21	vii	6	18	19587	Fe iv
v	40	112	130	viii	6	20	14731223	vi
Ba v	1	340	0	Cr iv	6	20	14731223	vi
v	32	329	38	vii	6	19	19587	Fe iv
vi	16	168	21	vii	6	18	19587	Fe iv
v	40	112	130	viii	6	20	14731223	vi
Notes.	(a) classical model atoms, (b) model atoms constructed using a statistical approach (Rauch & Deetjen 2003), (c) levels treated as NLTE levels, (d) Ge iv classical model atom with 8 NLTE levels, 1 LTE level, and 8 transitions, (e) Ba viii classical model atom with 34 NLTE levels, 0 LTE level, and 44 transitions.							

MRNAS 000, 1–34 (2019)
Figure B2. Prominent computed and identified lines of Zn\textsubscript{V} (blue wavelength labels) in the FUSE (\(\lambda < 1180\) Å) and STIS observations of BD\textdegree\textcircled{69}22\textdegree\textcircled{3467}. The model was calculated with the abundances given in Table A1 (red). In addition, a model without Zn (green dashed) is shown.
Figure B3. Like Fig. B2, for Ga V (blue) and Ga VI (green).

Relative flux

\[\Delta \lambda \]

Discovery of transition elements in BD-22°3467
Figure B4. Like Fig. B2, for Ge IV (dark cyan), Ge V (blue), and Ge VI (green).

Figure B5. Like Fig. B2, for Sr V (blue).

Figure B6. Like Fig. B2, for Zr VI (blue) and Zr VII (green).
Discovery of trans-iron elements in BD−22°3467

Figure B7. Like Fig. B2, for In V (blue).

Figure B8. Like Fig. B2, for I VI (blue).

Relative flux

MNRAS 000, 1–34 (2019)
Figure B9. Like Fig. B2, for Cu VI (blue).

Figure B10. Like Fig. B2, for Se V (blue).

Figure B11. Like Fig. B2, for Br VI (blue).

Figure B12. Like Fig. B2, for Kr VI (blue).

Figure B13. Like Fig. B2, for Mo VI (blue).

Figure B14. Like Fig. B2, for Te VI (blue).

Figure B15. Like Fig. B2, for Xe VII (blue).

Figure B16. Like Fig. B2, for Ba VII (blue) and Ba VIII (green).
Discovery of trans-iron elements in BD−22\textdegree3467

Table B3: Cu lines with $\mathcal{W}_A \geq 5 \mathrm{m \AA}$ in the model spectrum of BD−22\textdegree3467.

Ion	Stage	Wavelength / \text{\AA}	Comment
Cu	vi	1060.890	too strong in the model
		1082.265	too weak in model
		1094.708	uncertain
		1098.480	uncertain
		1104.996	blend Ga v
		1115.821	uncertain
		1157.930	uncertain

Table B4: Identified Zn lines with $\mathcal{W}_A \geq 5 \mathrm{m \AA}$ in model spectrum of BD−22\textdegree3467.

Ion	Wavelength / \text{\AA}	Comment
Zn	iv	1239.119
		1261.296
Zn	v	1017.935 blend ISM
		1023.521 blend ISM
		1043.353
		1052.441 blend ISM
		1053.278 blend ISM
		1055.878 blend ISM
		1056.330 uncertain
		1058.185 blend Ga v
		1061.472 uncertain
		1061.656 blend ISM
		1063.299 blend ISM
		1063.979
		1066.547 uncertain
		1068.284
		1069.674 uncertain
		1069.764 uncertain
		1071.501 blend ISM
		1072.992 blend ISM
		1074.241 uncertain
		1075.171 too strong in model
		1076.878
		1085.290 uncertain
		1086.033 blend Ge v
		1086.739 blend ISM
		1088.709
		1090.831
		1094.088 blend ISM
		1095.797 uncertain
		1095.961 uncertain
		1098.108 blend ISM
		1102.490 uncertain
		1103.598 too weak in model
		1104.199 blend ISM
		1106.788
		1107.318
		1109.078
		1109.166
		1111.530
		1111.603
		1112.829
Ion	Wavelength / Å	Comment
---------	----------------	--------------------------
1114.482		
1115.266		
1115.680		
1116.630		too strong in model
1116.842		
1117.466		too weak in the model
1118.778		
1119.950		
1120.101		uncertain
1120.325		
1121.109		blend Cr v, Fe v1
1121.524		uncertain
1122.502		blend ISM
1123.127		blend Ga v
1124.718		
1125.019	1125.048	
1126.660		
1127.242		
1128.098		blend Ga v
1128.244		uncertain
1128.813		
1129.898		
1130.051		
1130.242		
1131.242		
1131.788		
1132.271		
1132.659		blend Co vi
1133.031		
1133.128		
1133.278		
1133.498		
1135.324		
1135.588		
1136.311		
1136.603		
1136.986		
1137.625		
1138.248		blend Co vi
1138.497		
1138.586		
1139.278		uncertain
1139.997		uncertain
1140.703		
1141.003		
1141.095		
1141.344		uncertain
1142.792		
1142.925		
1143.196		
1143.403		blend Ga v
1144.136		
1145.151		
1146.057		
1146.149		
1147.020		
1147.371		
1147.648		
Table B4: continued.

Ion	Wavelength / Å	Comment
	1148.922	
	1149.398	
	1149.486	
	1149.608	
	1149.873	blend Ni VI
	1150.743	
	1151.368	
	1151.787	uncertain
	1152.985	
	1153.160	
	1155.027	blend Fe VII
	1155.725	
	1156.394	
	1157.725	uncertain
	1158.475	blend Ga V
	1158.759	
	1160.221	
	1160.827	uncertain
	1161.971	
	1162.281	
	1162.401	uncertain
	1163.779	uncertain
	1164.090	
	1164.632	
	1165.189	blend Ge V
	1165.706	
	1165.880	too strong in model
	1168.302	uncertain
	1169.290	uncertain
	1169.301	uncertain
	1170.105	uncertain
	1170.885	uncertain
	1171.106	uncertain
	1171.422	
	1171.801	
	1171.951	
	1172.038	
	1173.366	
	1173.823	uncertain
	1173.892	too strong in model
	1174.346	
	1174.945	uncertain
	1176.122	
	1176.527	too weak in model
	1176.868 1176.911	
	1176.980 1177.016 1177.036 1177.087	
	1178.639	
	1178.759	
	1179.145	
	1179.969 1180.018	
	1182.019	uncertain
	1182.567	
	1183.041 1183.158	
	1183.314	uncertain
	1185.619 1185.645 1185.676	
	1185.898 1185.948 1185.961	
	1186.057	
	1186.447	
Table B4: continued.

Ion	Wavelength / Å	Comment
	1187.706	
	1189.072	
	1189.331	
	1190.003	
	1190.376	
	1192.014	
	1192.703	1192.755
	1193.846	
	1195.745	
	1198.795	
	1200.639	
	1201.961	
	1202.128	too strong in model
	1202.906	
	1204.391	
	1204.722	
	1205.380	too strong in the model
	1224.788	
	1230.267	
	1238.430	
	1239.108	
	1247.065	
	1262.252	
	1268.158	
	1274.197	
	1281.310	
	1295.850	too strong in model
	1302.786	
	1318.204	
	1344.241	too strong in model

Table B5: Like Table B4, for Ga.

Ion	Wavelength / Å	Comment
Ga iv	965.237 965.272	blend ISM
	981.831	blend ISM
	1003.780	blend ISM
	1004.367	blend ISM
	1005.270	blend ISM
	1009.849	blend ISM
	1010.080	blend ISM
	1014.822	uncertain
	1074.966	uncertain
Ga v	943.583	uncertain
	962.084	blend ISM
	967.324 967.404	blend Ge v1
	979.614	determinant
	980.988	determinant
	982.395	blend ISM
	984.078	determinant
	990.138	uncertain
	997.855	blend ISM
	1002.617	blend ISM
	1009.928	blend ISM
	1014.456	blend ISM
	1014.868	uncertain
Table B5: continued.

Ion	Wavelength / Å	Comment
1015.610		too strong in model
1019.711		uncertain
1032.775		blend ISM
1033.353 1033.549 1033.580		
1034.822		blend ISM
1037.334		blend ISM
1038.778		blend ISM
1040.204		blend ISM
1045.850		blend ISM
1047.504		blend ISM
1050.453		blend ISM
1053.600		blend ISM
1054.430		blend Ge v
1058.123		blend ISM
1062.677		blend ISM
1063.807		blend ISM
1065.371		blend ISM
1068.593 1068.616		too strong in model
1069.484 1069.530		too strong in model
1069.587		too strong in model
1071.123 1071.168		blend ISM
1073.791		blend ISM
1074.911		uncertain
1078.225		blend ISM
1078.795		blend ISM
1079.587 1079.599		blend ISM
1079.879 1079.925		blend ISM
1080.474		blend ISM
1080.988		blend ISM
1087.358		uncertain
1088.068		blend ISM
1091.703		blend ISM
1094.355		blend ISM
1094.739		blend ISM
1095.110		blend ISM
1100.401		uncertain
1101.613		uncertain
1102.767 1102.803		too strong in model
1103.047		too strong in model
1104.936		blend ISM
1105.253		blend ISM
1105.620		blend ISM
1107.763		blend ISM
1109.829		blend ISM
1115.561		blend ISM
1118.018		blend ISM
1118.318		blend ISM
1120.260		blend ISM
1123.154		blend ISM
1123.646		blend ISM
1126.393		blend ISM
1127.332		blend ISM
1127.726		blend ISM
1127.752		blend ISM
1128.082		blend Zn v
1128.554		blend Zn v
1129.152		blend Zn v
Table B5: continued.

Ion	Wavelength / Å	Comment
1129.956		
1131.452		
1132.054		
1132.157		
1133.247	blend Zn v	
1133.903		
1136.067		
1138.187		
1143.367		
1145.974		
1148.409	too strong in model	
1150.113		
1150.219		
1154.708	uncertain	
1155.976		
1156.511		
1157.729	uncertain	
1158.534		
1160.847	uncertain	
1161.994	uncertain	
1162.048	uncertain	
1178.967	blend Ni v	
1180.958	uncertain	
1183.110		
1183.656		
1189.329	blend Zn v	
1190.179	uncertain	
1191.029		
1193.061		
1197.633		
1265.454		
1276.911	blend Fe vi	
1283.615		
1311.389		
Ga vi	915.720	no observation
919.117	blend ISM	
929.964	blend ISM	
935.522	blend ISM	
945.329	blend ISM	
948.171	blend ISM	
953.738	blend ISM	
955.510	blend ISM	
955.616	blend ISM	
956.648	blend ISM	
957.642	blend ISM	
960.172	blend ISM	
961.262	blend ISM	
964.264	blend ISM	
964.311	blend ISM	
964.363	blend ISM	
964.569	blend ISM	
964.647	blend ISM	
964.831	blend ISM	
964.925	blend ISM	
966.130	blend ISM	
966.255	blend ISM	
966.990	blend ISM	
967.825	blend ISM	
968.107		
970.064		
974.853		
975.165		
Table B5: continued.

Ion	Wavelength / Å	Comment
975.342	975.396	blend ISM
976.133		blend ISM
977.848		blend ISM
978.897		uncertain
979.298	979.383	
979.689		
980.240		too strong in model
980.489		uncertain
980.580		blend ISM
982.066		blend ISM
983.110	983.160	uncertain
983.430	983.485	blend ISM
983.630		
984.009		blend ISM
985.273		
985.596		blend ISM
985.812		blend ISM
986.662		blend ISM
987.862		blend ISM
988.063		blend ISM
989.169		blend ISM
989.374		
990.416		blend ISM
990.639		blend ISM
992.053		blend ISM
992.709		blend ISM
993.094		
993.640	993.654	blend ISM
994.051		blend ISM
995.305		
996.027		blend ISM
996.309	996.391	uncertain
996.556		
997.065		blend ISM
999.083		blend ISM
999.673		
999.945		
1000.117		blend ISM
1000.531		too strong in model
1001.483		blend ISM
1001.821		blend ISM
1002.376		blend ISM
1002.985		uncertain
1003.127	1003.147	uncertain
1003.390	1003.427	uncertain
1003.691		uncertain
1004.170		blend ISM
1004.355		
1005.228		uncertain
1006.156		uncertain
1006.396		blend ISM
1006.894	1006.951	too strong in model
1007.264		blend Fe v
1007.511		blend Fe v
1008.086		blend ISM
1008.757		blend ISM
1008.924	1009.049	blend ISM
1009.262		
Ion Wavelength / Å	Comment	
--------------------	-----------------------	
1009.512	blend ISM	
1009.743 1009.796 1009.806	blend ISM	
1010.102	blend ISM	
1011.047	blend ISM	
1011.696 1011.698	blend ISM	
1012.260	blend ISM	
1013.620	blend ISM	
1014.434	blend ISM	
1015.598	too strong in model	
1015.782	uncertain	
1016.307	uncertain	
1017.003	uncertain	
1017.074	uncertain	
1018.785	blend ISM	
1019.083	blend ISM	
1019.206	blend ISM	
1020.741	blend ISM	
1022.008 1022.098	uncertain	
1027.809	uncertain	
1029.168	uncertain	
1030.457 1030.469	uncertain	
1037.061	blend ISM	
1037.419	blend ISM	
1038.800	blend ISM	
1042.324	blend Fe v	
1047.696	blend ISM	
1051.311	blend ISM	
1051.589	blend ISM	
1058.653	blend ISM	
1058.931	blend ISM	
1059.854 1058.931	blend ISM	
1060.387	uncertain	
1061.790	blend ISM	
1063.972	uncertain	
1066.724	blend ISM	
1071.544	blend ISM	
1073.814	blend ISM	
1076.760	blend ISM	
1077.944	blend ISM	
1078.331	blend ISM	
1089.450	blend ISM	
1099.109	blend ISM	
1101.237	blend ISM	
1105.669	blend ISM	
1106.251	blend ISM	
1121.262	uncertain	
1129.110	blend ISM	
1138.016	blend ISM	
1149.078	blend ISM	
1237.472	blend ISM	
1259.673	blend Co vi	
1288.359	blend ISM	
Table B6: Like Table B4, for Ge.

Ion	Wavelength / Å	Comment
Ge IV	936.765	blend ISM
	1189.028	
	1229.839	
	1494.889	uncertain
Ge V	942.717	blend ISM
	958.508	
	965.501	
	971.357	blend ISM
	977.455	
	984.923	blend ISM
	986.767	blend ISM
	988.132	blend ISM
	990.668	
	992.307	blend ISM
	1004.380	
	1004.938	too strong in model
	1008.122	blend ISM
	1016.667	
	1033.107	too strong in model
	1035.504	uncertain
	1038.430	
	1042.127	too strong in model
	1045.713	
	1048.318	1048.371 1048.411 uncertain
	1050.057	blend ISM
	1054.590	
	1058.932	
	1068.430	
	1069.132	too strong in model
	1069.703	
	1069.857	uncertain
	1072.495	
	1072.659	
	1080.427	1080.484 1080.586 blend ISM
	1086.653	
	1087.855	
	1089.491	1089.526
	1092.089	
	1103.185	uncertain
	1116.947	
	1123.746	too strong in model
	1125.424	
	1139.187	
	1163.400	
	1165.259	
	1176.690	uncertain
	1222.300	
Ge VI	911.098	no observation
	911.114	no observation
	914.143	no observation
	915.041	no observation
	917.352	blend ISM
	918.280	blend ISM
	919.278	blend ISM
	919.731	919.760 blend ISM
	920.510	
Ion	Wavelength / Å	Comment
-----	----------------	--------------------
921.084	blend ISM	
921.780	blend ISM	
923.486	uncertain	
925.476		
926.822	too strong in model	
928.136		
928.907		
929.428	blend ISM	
930.081	blend ISM	
933.766	blend ISM	
935.016		
936.912	blend ISM	
940.427		
942.474	blend ISM	
942.567	blend ISM	
944.851	blend ISM	
946.589	blend ISM	
947.937		
951.739		
952.415	blend ISM	
953.132		
954.504	blend ISM	
955.708	blend ISM	
957.548	blend ISM	
957.886		
958.100		
958.310	uncertain	
960.102	too strong in model	
964.813	blend ISM	
965.203	blend ISM	
965.914	blend ISM	
967.300		
968.723		
969.010	blend ISM	
969.171	blend ISM	
969.568		
970.977	blend ISM	
971.392	blend ISM	
973.353	blend ISM	
975.996		
979.258		
979.905	blend ISM	
980.431	blend ISM	
980.697	too strong in model	
981.946	blend ISM	
983.648		
988.180	too strong in model	
990.049	blend ISM	
990.848	blend Fe v	
991.519	blend ISM	
991.888	blend ISM	
992.377	blend He ii	
993.015	blend ISM	
995.489		
996.771	too strong in model	
1002.276	blend ISM	
Table B6: continued.

Ion	Wavelength / Å	Comment
1004.661	blend ISM	
1008.410	blend ISM	
1011.518	too strong in model	
1013.528	blend ISM	
1014.766	too strong in model	
1015.582	blend ISM	
1016.817	blend ISM	
1023.527	blend ISM	
1031.263	blend ISM	
1031.324	blend ISM	
1033.152	too strong in model	
1034.251	uncertain	
1039.483	too strong in model	
1039.890	too strong in model	
1047.139	too strong in model	
1047.207	too strong in model	
1051.515	blend ISM	
1053.196	too strong in model	
1061.890	too strong in model	
1062.394	too strong in model	
1064.323	too strong in model	
1080.148	too strong in model	
1080.510	too strong in model	
1088.522	too strong in model	
1102.998	too strong in model	
1103.103	too strong in model	
1106.146	too strong in model	
1113.177	uncertain	
1114.431	too strong in model	
1127.159	too strong in model	
1148.327	too strong in model	
1227.850	too strong in model	
1228.870	too strong in model	
1237.128	too strong in model	
1237.892	too strong in model	
1251.447	too strong in model	
1255.318	blend Mo v	
1257.218	too strong in model	
1292.751	too strong in model	
1300.093	too strong in model	
1305.406	too strong in model	
1391.639	too strong in model	
1500.600	blend ISM	

Table B7: Like Table B4, for Se.

Ion	Wavelength / Å	Comment
Se v	943.957	blend ISM
	964.515	blend ISM
	1030.609	blend ISM
	1047.219	too strong in model
	1059.951	uncertain
	1094.691	blend ISM
	1151.016	blend ISM
	1184.343	blend ISM
	1227.540	blend ISM
	1249.048	uncertain
Table B7: continued.

Ion	Wavelength / Å	Comment
	1264.063	blend Mn vi
	1426.676	
	1433.568	
	1445.567	
	1447.283	
	1447.408	
	1451.653	
	1454.292	
	1473.253	
1730.014	no observation	
1736.835	no observation	
1740.038	no observation	

Table B8: Like Table B4, for Br.

Ion	Wavelength / Å	Comment
Br v	945.815	blend ISM
	1069.410	
Br vi	955.883	blend ISM
	966.753	blend ISM
	969.735	blend ISM
	981.423	blend ISM
	1050.548	
	1069.382 1069.432	
	1073.708	
	1074.992	
	1230.318	
	1399.153	uncertain

Table B9: Like Table B4, for Kr.

Ion	Wavelength / Å	Comment
Kr vi	927.334	blend ISM
	944.046	uncertain
	965.093	blend ISM
	980.411	
	1002.748	
	1045.238	
	1061.064	
Kr vii	918.444	blend ISM
	960.645	blend ISM
	1197.166	uncertain

Table B10: Like Table B4, for Sr.

Ion	Wavelength / Å	Comment
Sr v	917.802	blend ISM
	927.356	blend ISM
	928.353	blend ISM
	935.509	blend ISM
Table B10: continued.

Ion	Wavelength / Å	Comment
		blend ISM
936.808		
942.943		blend ISM
946.530		blend ISM
951.044		blend ISM
951.159		blend ISM
955.369		blend Nv
957.714		blend ISM
962.378		blend ISM
969.103		blend ISM
979.150		blend ISM
985.408		blend ISM
1007.201		uncertain
1011.422		blend ISM
1013.714		blend ISM
1020.002		uncertain
1020.439		blend ISM
1030.445		too strong in model
1031.343		blend ISM
1038.990		uncertain
1041.940		blend ISM
1056.104		uncertain
1065.215		uncertain
1070.578		uncertain
1114.594		blend ISM
1114.876		uncertain
1132.353		uncertain
1141.221		uncertain
1152.104		uncertain
1154.871		blend ISM
1163.040		blend Zn v
1164.173		blend ISM
1175.115		uncertain
1200.728		blend ISM
1238.652		blend Ni v
1280.995		blend ISM
1281.911		blend ISM
1311.334		blend Fe v
1311.781		blend Fe v
1332.065		blend ISM
1387.288		blend ISM
1415.404		blend ISM
1447.665		blend ISM
1459.369		blend ISM
1472.784		blend ISM
Sr vi	912.3760	no observation

Table B11: Like Table B4, for Zr.

Ion	Wavelength / Å	Comment
Zr v	1200.802	blend ISM
Zr vi	955.500	blend ISM
	1040.904	blend ISM
	1040.995	blend ISM
	1044.483	uncertain
	1050.580	blend Br vi
	1053.548	blend ISM
Table B11: continued.

Ion	Wavelength / Å	Comment
		blend ISM
1064.818		blend ISM
1068.836		uncertain
1072.877		uncertain
1073.197		blend ISM
1074.554		uncertain
1081.130		uncertain
1083.484		blend ISM
1084.439		uncertain
1095.491		uncertain
1099.591		
1101.742		blend ISM
1113.736		uncertain
1114.481		uncertain
1118.689		too strong in model
1129.371		uncertain
1134.606		uncertain
1142.550		
1143.393		
1150.774		
1151.571		uncertain
1158.582		uncertain
1161.639		
1314.034		
1417.865		
1514.568		
1521.699		
1529.396		uncertain
1536.035		uncertain
1538.423		uncertain
1541.255		uncertain
1591.799		uncertain
1604.549		uncertain
1645.326		
1663.952		
1679.018		uncertain
1682.241		uncertain
1683.302		uncertain
1733.091		no observation
1733.937		no observation
1741.948		no observation
1749.350		no observation
Zr vii	1233.578	uncertain
	1234.964	
	1376.633	
	1469.098	uncertain

Table B12: Like Table B4, for Mo.

Ion	Wavelength / Å	Comment
Mo vi	995.806	uncertain
	1038.640	blend ISM
	1047.182	uncertain
	1479.168	
	1595.435	
Table B13: Like Table B4, for In.

Ion	Wavelength / Å	Comment
In	933.577	blend ISM
	940.079	uncertain
	942.218	uncertain
	1101.860	uncertain
	1122.517	blend ISM
	1135.588	uncertain
	1136.347	
	1137.787	
	1148.852	
	1151.723	
	1153.836	
	1156.652	
	1160.561	
	1168.056	
	1177.447	
	1181.329	
	1183.049	
	1190.489	blend ISM
	1191.583	
	1192.278	
	1192.541	
	1196.281	
	1199.170	
	1200.843	blend ISM
	1210.126	uncertain
	1228.000	uncertain
	1228.483	uncertain
	1238.448	
	1241.025	
	1241.299	
	1242.210	
	1243.632	blend Ni v
	1252.836	blend Fe v1
	1256.570	uncertain
	1276.318	uncertain
	1278.758	
	1285.468	uncertain
	1289.800	
	1290.449	
	1292.930	
	1295.035	uncertain
	1296.427	
	1315.139	
	1317.671	uncertain
	1320.468	uncertain
	1334.123	
	1339.599	
	1355.458	uncertain

Table B14: Like Table B4, for Te.

Ion	Wavelength / Å	Comment
Te	951.021	blend ISM
	1071.414	
	1242.023	uncertain
Table B14: continued.

Ion	Wavelength / Å	Comment
	1267.986	
	1313.874	

Table B15: Like Table B4, for I.

Ion	Wavelength / Å	Comment
I vi	911.192	no observation
	919.210	blend ISM
	970.448	uncertain
	987.381	blend ISM
	989.005	blend ISM
	1000.999	uncertain
	1045.423	blend ISM
	1053.389	blend ISM
	1057.530	
	1120.301	blend ISM
	1121.218	uncertain
	1137.370	uncertain
	1153.262	too strong in model
	1185.111	uncertain
	1191.601	
	1195.359	uncertain
	1395.979	

Table B16: Like Table B4, for Xe.

Ion	Wavelength / Å	Comment
Xe vi	1080.080	blend Ge vi
	1091.630	uncertain
	1136.410	uncertain
Xe vii	912.875	no observation
	920.861	blend ISM
	942.152	
	943.218	
	970.177	uncertain
	995.510	
	997.407	blend Fe v
	1071.226	uncertain
	1077.110	blend ISM
	1093.781	blend ISM
	1243.565	
	1460.856	uncertain

Table B17: Like Table B4, for Ba.

Ion	Wavelength / Å	Comment
Ba vi	937.595	blend ISM
Ba vii	924.898	blend ISM
	943.102	blend ISM
	993.411	
Table B17: continued.

Ion	Wavelength / Å	Comment
	1074.937	
	1255.520	uncertain
	1465.045	
Ba VIII	921.761	uncertain
	941.168	uncertain
	952.762	blend ISM
	961.679	blend ISM
	1013.130	blend ISM
	1039.555	
	1048.339	blend ISM
	1074.911	
	1083.072	
	1113.140	uncertain
