Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms

Raucci, Federica; Mansour, Adel Abo; Casillo, Gian Marco; Saviano, Anella; Caso, Francesco; Scarpa, Raffaele; Mascolo, Nicola; Iqbal, Asif Jilani; Maione, Francesco

DOI: 10.1016/j.autrev.2020.102572

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Citation for published version (Harvard):
Raucci, F, Mansour, AA, Casillo, GM, Saviano, A, Caso, F, Scarpa, R, Mascolo, N, Iqbal, AJ & Maione, F 2020, 'Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms', Autoimmunity Reviews. https://doi.org/10.1016/j.autrev.2020.102572

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?).
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms.

Federica Raucci1,#, Adel Abo Mansour2,3,#, Gian Marco Casillo1, Anella Saviano1, Francesco Caso4, Raffaele Scarpa4, Nicola Mascolo1, Asif Jilani Iqbal2,1,* and Francesco Maione1,*.

1ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.

2Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.

3Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Guraiger, Abha 62529, Saudi Arabia.

4Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy.

#These authors share first co-authorship

*Author for correspondence: Asif J Iqbal, Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK. E-mail: A.J.Iqbal@bham.ac.uk; Francesco Maione, ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy. Phone: (+39)081678429. E-mail: francesco.maione@unina.it
Keywords: COVID-19, IL-17A, platelet, thrombus, vascular diseases.

Abbreviations: COVID-19, Coronavirus disease 2019; DIC, disseminated intravascular coagulation; DVT, deep vein thrombosis; EC, endothelial cells; ERK-2, extracellular signal regulated kinase-2; HUVECs, human umbilical vein endothelial cells; IL-, interleukin-; IVIG, intravenous immunoglobulin; LMWH, low molecular weight heparin; SARS, severe acute respiratory syndrome; SEPSIS-3, Third International Consensus Definitions for Sepsis; TF, tissue factor; Th-, T-helper; TNF-α, tumor necrosis factor-α; WHO, World Health Organization.
Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome (SARS) which first appeared in Wuhan, China, December 2019, and has since spread globally [1]. To date, official figures released by World Health Organization (WHO), indicate over 3 million cases worldwide with over 200,000 deaths. However, the number of newly diagnosed patients has started to decline, suggesting that the rate of transmission is beginning to be controlled by countries [2]. Although most patients have mild symptoms and good prognosis after infection, some develop severe symptoms and die due to multiple organ failure [3,4,5]. Based on the published literature and clinical observations, researchers and clinicians around the world have postulated about the pathogenesis of this viral infection in humans. We know that the virus has the capacity to cross mucous membranes (especially nasal and larynx mucosa), and in severe cases leads to multiple systemic manifestations and pneumonia requiring mechanical ventilation [6].

Interestingly, COVID-19 disease prognosis is strongly correlated to clinical characteristics of patients, with high risk associated to those with a concomitance of cardiovascular risk factors, primarily obesity, hypertension, and diabetes mellitus [4,7]. In the context of COVID-19-associated cardiovascular manifestations, more recent studies report that the disease is commonly complicated with coagulopathy linked to disseminated intravascular coagulation (DIC) and/or thrombotic and thromboembolic disease [4,8,9]. For these reasons, many patients with severe COVID-19 meet the Third International Consensus Definitions for Sepsis (SEPSIS-3) [10].

Moreover, we must consider that the development of thrombotic and thromboembolic disease could be a direct consequence of the systemic inflammatory process related to interleukin (IL)-6 and IL-17A up-regulation [11,12,13,14]. This clinical scenario has prompted the use of intravenous immunoglobulin (IVIG) and low molecular weight heparin (LMWH) anticoagulant therapy as early as possible, particularly when circulating T and B cells numbers decrease, and inflammatory
cytokines and D-Dimer (a non-specific parameter of thrombi formation) increase abnormally [15,16,17]. While IVIG has shown efficacy in the treatment of patients with influenza and SARS, more clinical data is required, for both IVIG and LMWH, to confirm significant efficacy in COVID-19 patients [18,19,20].

IL-17A and COVID-19-related thrombotic and vascular mechanisms

Viral infection and subsequent systemic and/or local inflammation is a common cause of DIC [21,22,23] due to increased synthesis of cytokines such as tumor necrosis factor-α (TNF-α), IL-1β, IL-6, IL-17A and IL-18 [24].

IL-17A (commonly known as IL-17) is the most studied member of the IL-17 cytokine family. It is produced by T-helper (Th)-17 lymphocytes, and by innate cellular components [25,26]. This “unique” pro-inflammatory cytokine, highly produced and modulated in patients with chronic inflammatory-based diseases, also plays a role in the cardiovascular system, and more specifically, it is involved in the cardiovascular complications associated to autoimmune and inflammatory-based diseases [27].

Indeed, in the attempt to find a link between inflammatory markers and endothelial dysfunction, Marder et al., [28] demonstrated that elevated IL-17A levels strongly correlated with vascular dysfunction in subjects affected by rheumatoid arthritis. Furthermore, it has been shown that, human umbilical vein endothelial cells (HUVECs), treated with IL-17A, synergistically with TNF-α, induces tissue factor (TF) expression and modulates thrombomodulin [29] and thrombosis formation [30, 31].

In addition to IL-17A role on the vascular endothelium, data, from our research group and others has also highlighted a role for this cytokine in platelet biology. We previously reported IL-17A ability to increase, in both mouse and human, platelet activation [32] and to modulate, in vivo,
arterial thrombus formation [33] through the extracellular signal-regulated kinase-2 (ERK-2) signaling pathway [34]. Moreover a study from Ding et al., [35] investigated the role of IL-17A in mouse and human deep vein thrombosis (DVT) formation, and found that this cytokine promotes DVT pathogenesis by enhancing platelet activation/aggregation, neutrophil infiltration, and endothelial cell (EC) activation. Collectively, these data suggest that the use of an anti-IL-17A monoclonal antibody may be useful for DVT-related syndromes.

Discussion

Taken together all these various pieces of evidence (albeit minimal) we have, we would like to hypothesize that in COVID-19 patients, IL-17A could potentially promote a pro-thrombotic state in the vascular system. Indeed, the increasing level of this cytokine related to COVID-19 infection would not be, per se, a stimulus for thrombogenesis but, most likely, enhance platelet aggregates at sites of vascular injury (Figure 1). Based on these assumptions, it would be fascinating to characterize IL-17 levels in bronchoalveolar lavage fluid (BALF) and plasma/serum samples of mild- and severe-infected COVID-19 patients, and potentially go on to test the efficacy of antibodies targeting IL-17A (alone or in a sequential therapy with anti-IL-6 agents) for the treatment of thrombotic, as well respiratory and systemic manifestations of severe COVID-19. These could be useful not only for new therapeutic strategies but also for improving our understanding of the etiopathogenesis and genetic susceptibility of COVID-19 infection.
Conflict of interest

This article has been conducted and written in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author contributions

FR, AAM, GMC and AS drafted the manuscript. FC, RS, NM, AJI and FM wrote and revised the manuscript. All Authors gave final approval to the publication.

Acknowledgments

This work was in part supported by MIUR (PRIN 2017; 2017A95NCJ/2017A95NCJ_002, “Stolen molecules - Stealing natural products from the depot and reselling them as new drug candidates”). AJI is supported by Birmingham Fellowship and AAM by a Saudi Government/KKU scholarship.
References

[1] Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S, et al. Exerts Anti-Viral and Anti-Inflammatory Activity Against Novel Coronavirus (SARS-CoV-2). Pharmacol Res 2020; 104761. https://doi.org/10.1016/j.phrs.2020.104761

[2] World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 73, https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-covid-19.pdf?sfvrsn=5ae25bc7_4; 2020 [Accessed 14 April 2020]

[3] Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission Routes of 2019-nCoV and Controls in Dental Practice. Int J Oral Sci 2020; 12. https://dx.doi.org/10.1038%2Fs41368-020-0075-9

[4] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020; 395:507-13. https://doi.org/10.1016/s0140-6736(20)30211-7

[5] Shoenfeld Y. Corona (COVID-19) time musings: Our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev 2020; 102538. https://doi.org/10.1016/j.autrev.2020.102538

[6] Rivellese F, Prediletto E. ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia. Autoimmun Rev 2020; 102536. https://doi.org/10.1016/j.autrev.2020.102536

[7] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229):1054-62. https://doi.org/10.1016/s0140-6736(20)30566-3 Epub 2020 Mar 11. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. Lancet. 2020 Mar 28;395(10229):1038
[8] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5

[9] Tang N, Li D, Wang X, Sun Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4):844-47. https://doi.org/10.1111/jth.14768

[10] Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315(8):801–10. https://doi.org/10.1001/jama.2016.0287

[11] Caso F, Costa L, Ruscitti P, Navarini L, Del Puente A, Giacomelli R, et al. Could Sars-covornavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun Rev 2020; 19(5):102524. https://doi.org/10.1016/j.autrev.2020.102524

[12] McGonagle D, Sharif K, O'Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev 2020; 102537. https://doi.org/10.1016/j.autrev.2020.102537

[13] Feng Y, Yu M, Zhu F, Zhang S, Ding P, Wang M. IL-9 Promotes the Development of Deep Venous Thrombosis by Facilitating Platelet Function. Thromb Haemost 2018; 118(11):1885-94. https://doi.org/10.1055/s-0038-1673614

[14] Casillo GM, Mansour AA, Raucci F, Saviano A, Mascolo N, Iqbal AJ, et al. Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome? This paper is dedicated to Sofia Maione born during COVID-19 outbreak. Pharmacol Res 2020; 104791. https://doi.org/10.1016/j.phrs.2020.104791
[15] Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, Resta M, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020. https://doi.org/10.1111/jth.14854

[16] Alger HM, Williams IV JH, Walchok JG, Bolles MM, Fonarow GC, Rutan C. The Role of Data Registries in the Time of COVID-19. Circ Cardiovasc Qual. Outcomes 2020. https://doi.org/10.1161/circoutcomes.120.006766

[17] Atri D, Siddiqi HK, Lang J, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: A Current Review of the Virology, Clinical Epidemiology, Cardiac and Other Clinical Manifestations and Potential Therapeutic Strategies. JACC Basic Transl Sci 2020. https://doi.org/10.1016/j.jacbts.2020.04.002

[18] Thachil J. The versatile heparin in COVID-19. J Thromb Haemost 2020. https://doi.org/10.1111/jth.14821

[19] Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID-19. Am J Hematol 2020. https://doi.org/10.1002/ajh.25829

[20] Yin S, Huang M, Li D, Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J Thromb Thrombolysis 2020. https://doi.org/10.1007/s11239-020-02105-8

[21] Samad F, Ruf W. Inflammation, obesity, and thrombosis. Blood 2013; 122(20):3415-22. https://doi.org/10.1182/blood-2013-11-462432

[22] Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123(18):2759-67. https://dx.doi.org/10.1182%2Fblood-2013-
[23] Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133 (9), 906-918. https://doi.org/10.1182/blood-2018-11-882993

[24] Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 2009; 27:621-68. https://dx.doi.org/10.1146%2Fannurev.immunol.25.022106.141627

[25] D’Acquisto F, Maione F, Pederzoli-Ribeil M. From IL-15 to IL-33: the never-ending list of new players in inflammation. Is it time to forget the humble aspirin and move ahead? Biochemical Pharmacology 2010; 79(4):525-34. https://doi.org/10.1016/j.bcp.2009.09.015

[26] Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011; 34(2):149-62. https://doi.org/10.1016/j.immuni.2011.02.012

[27] Maione F. Commentary: IL-17 in Chronic Inflammation: From Discovery to Targeting. Front Pharmacol 2016; 7:250. https://doi.org/10.3389/fphar.2016.00250

[28] Marde W, Khalatbari S, Myles JD, Hench R, Yalavarthi S, Lustig S, et al. 17 as a novel predictor of vascular function in rheumatoid arthritis. Annals of the Rheumatic Diseases 2011; 70(9):1550-5. https://dx.doi.org/10.1136%2Fard.2010.148031

[29] Hot A, Lenief V, Miossec P. Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells. Annals of the Rheumatic Diseases 2012; 71(5):768-76. https://doi.org/10.1136/annrheumdis-2011-200468

[30] Bouchnita A, Miossec P, Tosenberger A, Volpert V. Modeling of the effects of IL-17 and TNF-α on endothelial cells and thrombus growth. C. R. Biol 2017; 340(11-12):456-73. https://doi.org/10.1016/j.crvi.2017.10.002

[31] de Boer OJ, Li X, Teeling P, Mackaay C, Ploegmakers HJ, van der Loos CM, et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of
thrombi in acute myocardial infarction. Thromb Haemost 2013; 109(2):290-97.

https://doi.org/10.1160/th12-06-0425

[32] Maione F, Cicala C, Liverani E, Mascolo N, Perretti M, D'Acquisto F. IL-17A increases ADP-induced platelet aggregation. Biochem Biophys Res Commun 2011; 408(4):658-62.

https://doi.org/10.1016/j.bbrc.2011.04.080

[33] Maione F, Parisi A, Caiazzo E, Morello S, D'Acquisto F, Mascolo N, et al. Interleukin-17A Exacerbates Ferric Chloride-Induced Arterial Thrombosis in Rat Carotid Artery. Int J Inflamm 2014

https://doi.org/10.1155/2014/247503

[34] Zhang S, Yuan J, Yu M, Fan H, Guo ZQ, Yang R, et al. IL-17A facilitates platelet function through the ERK2 signaling pathway in patients with acute coronary syndrome. PLoS One 2012; 7(7):e40641. https://doi.org/10.1371/journal.pone.0040641

[35] Ding P, Zhang S, Yu M, Feng Y, Long Q, Yang H, et al. IL-17A promotes the formation of deep vein thrombosis in a mouse model. Int Immunopharmacol 2018; 57:132-38.

https://doi.org/10.1016/j.intimp.2018.02.006
Figure 1: Schematic representation of inflammatory pathways (left part) involved in the COVID-19-related respiratory syndrome. The inflammatory scenario induced by COVID-19 has cardiovascular implications (right part, top panel) in terms of Th-1/Th-17/T-reg balance that favors the production of IL-17A. The overproduction of this cytokine (right part, bottom panel) amplifies platelet hyper-reactivity and thrombus formation.