Review on Natural Growth Promoters Available for Improving Gut Health of Poultry: An Alternative to Antibiotic Growth Promoters

Neeraj K. Sethiya
Division of Research and Development, Regen Biocarps, Gotri, Vadodara, 390021, Gujarat, India

ABSTRACT
'Gut health' is a term currently gaining much more attentions in veterinary literature especially in poultry. It covers multiple positive aspects of the gastrointestinal (GI) tract, such as the effective digestion by absorption of food, absence of GI illness, normal and stable intestinal microbiota, effective immune status and a state of well-being. Any disturbance or imbalance in above said aspects may influence the gut health. Thus it is necessary to maintain the balance of all possible associated factors related to gut health. Although till date this is being achieved in poultry farming by Antibiotic Growth Promoters (AGPs). However, the growing concern over the transmission and the proliferation of resistant bacteria in human via the food chain has led to a ban of Antibiotic Growth Promoters (AGP) in livestock feed within the European Union since, 2006. As a result, new commercial additives derived from nature have been examined as part of alternative feed strategies for the future. Such products have several advantages over commonly used commercial antibiotics since they are residue free and recognized as safe items in the food industry. Certain natural alternatives recognized by scientific community as Natural Growth Promoters (NGPs) to preserve and maintain the balance of gut microbiota in poultry are summarized in present communication. The article is also enriched with possible mechanisms of action of NGPs with relevant examples by citing research results obtained by various authors in past and current years.

Key words: Poultry, antibiotic, antimicrobial, growth promoters, antioxidant

INTRODUCTION
The term 'gut health' is currently gaining much more attentions in veterinary literature especially in poultry and has been applied to coordinate the working efficiency of gut (Cummings et al., 2004; Laudadio et al., 2012). Although, the term is restricted to gastro-intestinal (GI) tract only and does not involve other organs (Bischoff, 2011). The gut is the primary site for multitude of processes such as, digestion, fermentation, nutrient absorption, nutrient metabolism, intestinal integrity, immune recognition, immune regulation and development of immune tolerance (Sommer and Backhed, 2013). Gut is mainly composed of physical, chemical, immunological and microbiological components and acts as a selective barrier between the tissues of the bird and its luminal environment (Yegani and Korver, 2008). The gut is the most extensive exposed surface and is constantly exposed to wide variety of potentially beneficial non-infectious as well as harmful infectious agents (Lievin-Le Moal and Servin, 2006). It has been reported that exposure of gut to such harmful infectious agents or pathogens cause an imbalance, which can lead to severe productivity loss, sudden dietary changes, intestinal disease (worm infestation, coccidiosis) and...
immune suppression (McDevitt et al., 2006). It is now well established that development of antibiotic resistance result from the use of Antibiotic Growth Promoters (AGPs) in animal feed, may be compromised the efficacy of similar antibiotics in therapy for human diseases. Hence, the European Union (EU) introduced a ban on AGPs in 2006, which is now followed in most of the other nations. Before the ban, gut of poultry was highly dependent on Antibiotic Growth Promoters (AGPs) to control intestinal pathogens (Wallace et al., 2010). In view of rising concerns on the extensive loss in poultry due to GI complaints and implementation of strict laws to use of harmful synthetic drug or antibiotics, creates demand of an alternative disease control resources to enhance gut health and to reduce the use of AGPs (Mirzaei-Aghsaghali, 2012). Interest and some useful research on various Natural Growth Promoters (NGPs) such as phytobiotics (essential oils, powders, extracts and phytochemicals), probiotics, prebiotics, synbiotics, organic acid, clay minerals, egg yolk antibodies, exogenous enzymes, recombinant enzymes, nucleotides, polyunsaturated fatty acids and miscellaneous compounds has increased the impetus for revisiting to look for new, useful additives that can enhance gut health and productivity of birds. Utilization of such Natural Growth Promoters (NGPs), as an alternative to AGPs are summarised and explored in the present work by reviewing all possible updated literature till date.

NGPs in poultry gut health: Many alternative substances obtained from nature and belonging to the groups of prebiotics, probiotics, organic acids, enzymes, silicates, herbs and spices etc., have been vigorously tested and evaluated for their potential to replace AGPs in poultry diets (Panda et al., 2006; Khan et al., 2012a, b). Such, alternative substances were referred as Natural Growth Promoters (NGPs). There are a number of such investigated NGPs that are mainly utilised for providing beneficial role for improving health of poultry against various infectious diseases rather than regular nutrition. The involvement of these NGPs in improving of intestinal morphology and nutrient absorption may also encourage the scientists to include these compounds in the diet to improve gut health, promote the growth and overall performance of birds.

Characteristics of ideal NGPs for gut health: Ideally, the NGPs alternatives to AGP should have the same beneficial actions as AGP. Some of key features identified from the most well-known hypothesized mechanism of AGPs to be fulfilled by proposed NGPs (Huyghebaert et al., 2011) that favours performance of gut are: (1) Antimicrobial action, (2) Reduces the incidence and severity of subclinical infections, (3) Reduces the microbial use of nutrients, (4) Improve absorption of nutrients, (4) Reduces the amount of growth-depressing metabolites, (5) Control microbiota shifts, (6) Inhibit the production and excretion of cytokines by immune cells (macrophages) and (7) Shifting the microbiota composition towards one that is less capable of evoking an inflammatory response (Humphrey and Klasing, 2003). Based on the suggested mechanism of action of none of the non-antibiotic NGPs is likely to compensate the loss of gut health. So, it must be emphasised that some strategies will only help to compensate partially by NGPs and will work through indirect mechanisms.

NGPs and their mode of action
Phytobiotics or botanical supplements: Many plants have been reported to possess beneficial multifunctional properties and have been used as feed additives for farm animals in ancient
cultures for the same length of time as for human (Huyghebaert et al., 2011). There are many categories of plants products on the basis of physical characters and appearance viz., essential oil, crude or processed plant parts, processed extracts, mixtures of powders or extracts and phytochemicals used for the prevention and treatment of various diseases in farm animals (Sethiya et al., 2013; Dhama et al., 2015). Botanical or herbal extracts, flavours and essential oils (EO) are now fall within the scope of European Commission Regulation 1831/2003. However, unprocessed herbs are still regarded as feed materials and do not need any authorisation (Huyghebaert et al., 2011).

Essential oils: Essential oils are also known as volatile or ethereal oil, obtained from medicinal and aromatic plant materials, which have the characteristic odor or flavor of source plant and are mainly associated for essences and fragrances of plants (Stein and Kil, 2006; Tomer et al., 2010). The major actions exhibited by essential oils are: to increase the release of digestive enzymes and reduce the amount of nutrients available for the growth of bacteria in the lumen of gut (Pasteiner, 2006). The antimicrobial properties of EO have not been fully established but the majority of them shown their effect by changing in lipid solubility at the surface by hydrophobic constituents, which may rupture or disintegrate the outer membrane of bacteria (Dorman and Deans, 2000). A summary of promising EO proven to as a possible sources of NGPs have been shown in Table 1.

Botanicals powder and extracts: Plant-derived products are natural, less toxic, residue free and have been scientifically proven as ideal feed additives in food animal production due to presence of varying degree of growth promoting nutraceuticals components (Wang et al., 1998). The various research conducted to understand the proposed mechanisms by which the botanicals powder and extract mainly exert their beneficial effects are as follows: (1) Disrupt cell membrane of microbes, (2) Interfere with virulence properties of the microbes by increasing the hydrophobicity, which may influence the surface characteristics of microbial cells, (3) Stimulates and proliferate the growth of beneficial bacteria (e.g., lactobacilli and bifidobacteria) in the gut, (4) Act as an immunostimulants, (5) Protects intestine from microbial attack, (6) Stimulate the proliferation and growth of absorptive cells (villus and crypt) in the gastrointestinal tract and (7) Enhances the production and/or activity of the digestive enzymes (Jamroz et al., 2003; Vidanarachchi et al., 2006). Table 2 shows some examples of botanicals powder and extracts with their growth promoting effects on the gut.

Phytochemicals: Phytochemicals are purified single chemical compounds (primary and secondary metabolites) present in cell sap of the naturally occurring plants and may possess some biological significance (Sethiya et al., 2009). The primary mode of action of phytochemicals is to have a significant action on growth inhibition of harmful intestinal microflora in the GI tract. They likely to promote growth by stimulating function of digestive enzymes and organ, e.g., pancreas and small intestine. Changing permeability for cations such as H⁺ and K⁺ ions of microbial cell membranes of microorganisms, exhibit growth promotion by oxidation-resistant activity and improvement of the immune system are major proposed mechanisms reported by various researchers by which the phytochemicals exert their antimicrobial activity. A summary of recent update on the effect of some examples of phytochemicals on gut health, in chickens was shown in Table 3.
Essential oils and botanical sources	Major chemical constituents	Actions	References
Angelica (Angelica archangelica)	α-ρinene, 5-3-carene, α-ρhallandrene, myrcene, limonene, β-ρhallandrene, and ρ-ρymene	Effective against Necrotic Brenes and Roura (2010)	
Artemisia (Artemisia absinthium)	β-thujone, 1-8 cineol, ρ-ρymene and sabinene	Antimicrobial properties against C. perfringens type A Engberg et al. (2012)	
Basil (Ocimum basilicum)	Citronellol, linalool, myrcene, pinene, ocimene, terpineol, linalyl acetate, fenchyl acetate, trans-octimene, 1, 8-cineole, camphor, octanane, methyl eugenol, methyl chavicol, eugenol and ρ-ρycyophyllene	Active against E. coli including extended spectrum on β-lactamase positive bacteria Sienkiewicz et al. (2013)	
Bergamot (Citrus bergamia)	β-ρinene, limonene, β-ρhallandrene, -ρ-ρpinene, linalool and lynalil acetate	Have potential bactericidal properties against food-poisoning bacteria Deans and Ritchie (1987)	
Black pepper (Piper nigrum)	α-ρinene, ρ-ρinene, -ρ-ρpinene, linalool and lynalil acetate	Stimulate the digestive enzymes of pancreas, thus to enhance the digestive capacity Srinivasan (2007) and Brenes and Roura (2010)	
Caraway (Carum carvi)	Carvone, limonene, myrcene, β-ρcryophyllene, thujone, anethole and pinene	Have antiulcerogenic, antiflatulent, antibacterial antifungal and laxative properties El-Soud et al. (2014)	
Cinnamon (Cinnamomum zeylanicum)	Cinnamaldehyde, eugenol and cinnamyl acetate	Phenylpropanes, such as cinnamaldehyde bind with proteins through their carbonyl group and preventing the action of important cell enzymes such as amino decarboxylases. It has been shown to inhibit the growth of C. perfringens and B. fragilis Lee and Ahn (1998)	
Clove (Syzygium aromaticum)	Eugenol and eugenyl acetate	It inactivates C. perfringens and other bacteria Briozzo et al. (1988)	
Coriander (Coriandrum sativum)	ρ-Cymene and linalool	Significantly effects on performance and blood biochemical parameters. It has also appetizing and stimulatory effects in the digestion process Jang (2011)	
Dill (Anethum graveolens)	Limonene, dihydrocarvone, carvone and dillapiole	Antimicrobial Delaquis et al. (2002)	
Eucalyptus (Eucalyptus globulus)	Citronellal and citronellol	Improved the production performance and stimulated the immunity in laying birds Abd-El-Motaal et al. (2008)	
Garlic (Allium sativum)	Allicin, 1-propene, 3, 3′-thibis-sulfide, methyl-trans-propenyl-disulphide, di-2-propenyl tri-sulphide, methyl 2-propenyl, di-2-propenyl and diallyl tetra sulphide	Improve growth performance and beneficial gut microbial population Dieumou et al. (2009)	
Geranium (Pelargonium graveolens)	Isomenthone, citronellol, geraniol and cytronellyl formate	Antioxidant and has potential immune modulating effects on natural killer cells. It further helpful for detoxification and indigestion Saraswathi et al. (2011)	
Ginger (Zingiber officinale)	Camphene, neral, geraniol, bornyl acetate, β-ρisabedone, Ar-curcumene and ρ-ρeudesmol	Improve growth performance and beneficial gut microbial population Dieumou et al. (2009)	
Essential oils and their botanical sources	Major chemical constituents	Actions	References
---	-----------------------------	---------	------------
Laurel (Laurus nobilis)	1, 8-cineole, terpenes, terpinyl acetate, sesquiterpene, methyl-eugenol, α- and β-pinene, phellandrene, linalool, geraniol and terpineol	Antimicrobial, antiviral and beneficial to promote the gut health of chickens	Baratta et al. (1998)
Lemon (Citrus limon)	α-Pinene, camphene, β-pinene, sabine, myrcene, α-terpinene, linalool, β-bisabolene, limo-nene, trans-α-bergamotene, nerol and neral	Effects on coccidia oocyte output and the number of *Clostridium perfringens* in broiler	Lee et al. (2004)
Litsea (Litsea cubeba)	Citral, α-cis-ocimene, 3, 7-dimethyl-1, 6-octadien-3-ol and α-transnerolidol.	Help with indigestion and flatulence. It also acts as antimicrobial and antifungal	Wang et al. (1999)
Nutmeg (Myristica fragrans)	α-Pinene, β-pinene, sabine and myristicin	Antioxidant and antimicrobial	Dorman et al. (1995)
Orange (Citrus sinensis)	Carvacrol, thymol and -terpinene	Antimicrobial	Caccioni et al. (1998)
Oregano (Oreganum compactum)	Menthol, menthone and 1-8 cineol	Destroy *Eimeria oocyst* (Anticoccidiosis)	Remmal et al. (2011)
Peppermint (Mentha piperita)	1-8 cineol, α-pinene, camphor, carnosol, carnosic acid, caffeic acid, bornyl acetate and rosmarinic acid	Powerful antioxidant and improve gut health	El-Latif et al. (2013)
Rosemary (Rosmarinus officinalis)	Carvacrol, thymol and -terpinene	Antimicrobial, antifungal, insect-cidal and antioxidant	Remmal et al. (2011)
Sage (Salvia officinalis)	1-8-Cineole, α-thujone and β-thujone	Increase thickness of the mucus layer in the duodenum and number of goblet cells containing acidic and neutral mucus was significantly decreased in the duodenum and jejunum and increased in the ileum	Capkovicova et al. (2014)
Savory (Satureja khuzistanica)	Carvacrol, p-cymene, myrcene, -terpinene and terpinene-4-ol.	Effective against both gram-positive and gram-negative bacteria	Farsam et al. (2003)
Tea tree (Melaleuca alternifolia)	Terpinen-4-ol and -terpinen	Antimicrobial and active against *Staphylococcus aureus*	Cox et al. (2000)
Thyme (Thymus vulgaris)	Thymol, carvacrol and p-cimène	Monoterpene phenols, such as thymol and carvacrol, interact with the cell membrane by hydrogen bonding, rendering the membranes and mitochondria more permeable and disintegrating the outer cell membrane. They can inhibit the growth of *E. coli* O157:H7, *S. aureus*, *S. enterica*, *P. fluorescens* and *B. thermosphacta*	Di Pasqua et al. (2010)
Turmeric (Curcuma xanthorrhiza)	α-Phellandrene, 5-3-carene, eucalyptol, β-caryophyllene, β-farnesene, Ar-curcumene, β-bisabolene, sesquiphellandrene, Ar-tumerone and curlone	Caused a decrease in coliform counts in ileum and modify intestinal traits. It also inhibits the growth of *C. septicum*, *C. novyi* and *C. sporogenes*	Singh et al. (2011)
Table 2: Medicinal plants powders/extract/combinations and their role on poultry gut health

Medicinal plants and their botanical sources	Major chemical constituents	Dose (feed)	Actions	References
Intact plants/parts/powders				
Asthma plant (Euphorbia hirta)	Afzelin, quercetin, myricetin, rutin, euphorbin, β-amin, β-sitosterol, choline, camphol and quercitol	7.5 g kg⁻¹	Increased the villus height, crypt depth, ratio of villi to crypt and overall enhanced maintenance and function of the small intestine	Kumar et al. (2010), Hashemi et al. (2014)
Button mushroom (Agaricus bisporus)	Protein, carbohydrate, fat, fiber, linoleic acid and palmitic acid	10-20 g kg⁻¹	Exerted changes in intestinal microbial communities, intestinal integrity and antioxidant protective activity	Nasiri et al. (2013), Giannenas et al. (2011)
Corn (Zea mays)	β-ionone	38%	Effective against Clostridium and Eimeria species	Annett et al. (2002)
Cumin (Nigella sativa)	Cuminaldehyde, cymene and terpenoids	25-200 mg kg⁻¹	Enhanced immune responsiveness in broiler chickens against NDV vaccine	Al-Mufarrij (2014)
Edible mushroom (Pleurotus florida)	β-glucan	50-100 g t⁻¹	Immunomodulator on the innate immune responses in broiler	Ganguly (2013)
Gel (Aloe vera)	Acemannan-a mannose polymer	2%	Improve villus height, villus height to crypt depth ratio, improve immune response and improved intestinal microflora	Darabighane et al. (2011)
Ginger rhizome (Zingiber officinale)	Gingerol, shogaols, gingerdiol and gingerdione	240 ppm	Enhances nutrient digestion and absorption because of its positive effect on gastric secretion, enterokinesia and digestive enzyme activities	Khan et al. (2012)
Green tea leaves (Camellia sinensis)	Polyphenols (catechins and flavanoids), alkaloids (caffiene, theobromine, theophylline), polysaccharides, amino acids, lipids, vitamin C and minerals	0.50-1.50%	Effective against necrotic enteritis, salmonellosis, dermatitis, colibacillosis and coccidiosis	Ishihara et al. (2001), Jang et al. (2007) and Khan (2014)
Guar gum (Cyamopsis tetragonolobus)	Galactomannans and saponins.	50 g kg⁻¹	Anticoccidial effect by interfering cell membranes.	Abbas et al. (2012)
Huang Qi (Mandarin) (Astragalus membranaceus)	Polysaccharides, saponin, flavonoids, isoflavonoids, steroids, amino acids and volatile oils	9-30 g kg⁻¹	Increases the white blood cell count, mainly through the contribution of CD₇ lymphocytes	Yuan et al. (2006) and Ayemang et al. (2013)
Neem leaves (Azadirachta indica)	Nimbin, nimbabene, nimbandiol, nimbolide, ascorbic acid and nimbol	10 g kg⁻¹	Had favourable influences on immune responses of broiler chicken	Landy et al. (2011)
Olympus tea (Sideritis scardica)	Carvacrol, thymol and others	2.5-5 g kg⁻¹	Anti-inflammatory/antioxidant properties	Bozkurt et al. (2013)
Oregano (Oreganum compactum)	Carvacrol and thyme	2.5-5 g kg⁻¹	Suppression of oocyst production of E. tenella	Bozkurt et al. (2013)
Table 2: Continue

Medicinal plants and their botanical sources	Major chemical constituents	Dose (feed)	Actions	References
Papaya (Carica papaya)	Papaine	150 g kg\(^{-1}\)	Lysis of sporozoites of *E. tenella*	Bozkurt *et al.* (2013)
Peppermint (Mentha piperita)	Menthol, menthone and 1-8-Cineol	70 mg kg\(^{-1}\)	Growth promoter	Ocak *et al.* (2008)
Purple coneflower (Echinacea purpurea)	Caftaric acid, chlorogenic acid, cynarin, echinacoside and cichoric acid	2.0%	Enhance immune stimulation	Lee *et al.* (2012)
Tulsi leaves (Ocimum sanctum)	Eugenol, ursolic acid, oleanolic acid, rosmarinic acid, carvacrol, linalool, β-caryophyllene and germacrene D	10 g kg\(^{-1}\)	Activates the cell mediated immune response and therefore, creates an enhanced response to any future challenges occurred by disease organisms	Eevuri and Putturu (2013)

Extracts

Medicinal plants and their botanical sources	Major chemical constituents	Dose (feed)	Actions	References
Anise fruit (Pimpinella anisum)	Anethol, eugenol, anethole, coumarins, scopoletin, umbelliferone and estrols	200 mg kg\(^{-1}\)	Antibacterial, antifungal, digestion stimulant and overall performance Gl tract.	Shojaii and Fard (2012) and Kamel (2001)
Artemisia leaf (Artemisia annua)	Artemisin	30-300 mg kg\(^{-1}\)	Anti-inflammatory, anticoccidial and antioxidant	Abbas *et al.* (2012)
Acacia (Acacia senegal)	Arabinose, galactose, rhamnose glucuronic acid and diferulic acid	50 g kg\(^{-1}\)	Increased the number of lactobacilli and caused reduction in coliform counts in the ileum	Vidanarachchi *et al.* (2013)
Babylon willow (Salix babylonica)	Tritetracontane, octadecenoic acid and hexadecanoic acid methyl ester	100 mL day\(^{-1}\)	Improve heat tolerance, weigh gain and feed conversion rate	Salem *et al.* (2011), Al- Fataftah and Abdelqader (2013)
Black poplar (Populus nigra)	Caffeic and p-coumaric acids	100 mL day\(^{-1}\)	Improve heat tolerance, weigh gain and feed conversion rate	Dudonne *et al.* (2011), Al-Fataftah and Abdelqader (2013)
Broccoli (Brassica oleracea)	Glucoraphanin and sulfuraphane	3694 mg kg\(^{-1}\)	Improve intestinal microflora by antioxidation	Mueller *et al.* (2012)
Capsicum fruits (Capsicum annuum)	Capsaicin, fatty acids, rutin, vitamins (A and C), B-complex vitamins, minerals and proteins	1-2%	Antidiarrhoeic, anti-inflammatory, stimulant and gut health tonic	Kamel (2001) and Aziz (2010)
Cardamom seed (Elettaria cardamomum)	Cineol, α-pinene and spathulenol	0.5-1.5 g kg\(^{-1}\)	Appetite and digestion stimulant	Kamel (2001)
Celery fruits and leaves (Apium graveolens)	Polyacetylenes, apiin, apigenin and phthalides	200 mg kg\(^{-1}\)	Appetite and digestion stimulant	Kamel (2001) and Bazafkan *et al.* (2014)
Chinese Sumac (Galla Chinensis)	Pentagalloylglucose, gallotannin and gallic acid	4 - 8 μg mL\(^{-1}\)	Anti-*Escherichia coli* and antiparasitic activity	Xie *et al.* (2008) and Ho *et al.* (2013)
Cinnamon Bark (Cinnamomum zeylanicum)	Coumarin, cinnamaldehyde, 2-hydroxy cinnamaldehyde and cinnamyl acetate	0.5-3 g kg\(^{-1}\)	Appetite and digestion stimulant and antiseptic	Kamel (2001)
Clove (Syzygium aromaticum)	Eugenol	10-100 mg mL\(^{-1}\)	Destruction of *Eimeria* oocysts	Abbas *et al.* (2012)
Medicinal plants and their botanical sources	Major chemical constituents	Dose (feed)	Actions	References
---	-----------------------------	-------------	---------	------------
Coriander leaf and seed (Coriandrum sativum)	Linalol, coriandrin, γ-terpinene, α-pinene, camphor, limonene, geraniol, camphene and D-limonene	8 mg mL⁻¹	Digestion stimulant and improve gut health	Kamel (2001) and Shahwar et al. (2012)
Cumin seed (Cuminum cyminum)	Cuminaldehyde	1-2%	Digestion stimulant and improve gut health	Yılmaz et al. (2013)
Dessert banana root (Musa paradisiaca)	Anthocyanidins such as dephindin, cyanidin, petunidine, pelargonidin, peonidine, malvidin, sterols, triterpenes, polysaccharides, xylose, arabinose, galactouronic acid, galactose, rhamnose, mannose and arabinogalactan type I pectin.	1000-4000 mg kg⁻¹ b.wt.	Reduced severity of clinical symptoms and Eimeria oocyst count per gram of faeces and gradually increased packed cell volume in a dose-dependent pattern	Anosa and Okoro (2010) and Mondal (2001)
Eucalyptus leaves (Eucalyptus globulus)	Cinede, α-pinene, d-Limonene, oxyesquiterpene	100 mL day⁻¹	Wide spectrum of antimicrobial activity	Pereira et al. (2014)
False Daisy (Eclipta alba)	Coumestans, polyacetylenes, steroids, triterpenes and flavonoids	120-180 ppm	Act as therapeutic or prophylactic agent against avian coccidiosis	Kumari et al. (2006) and Michels et al. (2011)
Fenugreek seeds (Trigonella foenum-graecum)	Trigonelline, neurin, trimethylamine, biotin, minerals and vitamins (A, D)	5.33 kg ton⁻¹	Appetite stimulant and growth promoters	Kamel (2001) and Abdel-Rahman et al. (2014)
Garlic (Allium sativum)	Disulphide derivatives, allicin	35 mg kg⁻¹	Inhibition of parasite reproduction	Abbas et al. (2012)
Grape seed (Vitis vinifera)	Tannins	10–20 mg kg⁻¹	Oxidative stress	Abbas et al. (2012)
Green chirayta leaves (Andrographis paniculata)	Deoxyandrographolide, andrographolide, neoandrographolide and deoxydidehydroandrographolide	0.1-0.4 %	Reduce mortality and effective against bacterial dysentery (reduction of intestinal tract movements and diarrhoea)	Deng et al. (1978) and Gupta et al. (1990)
Long pepper (Piper longum)	α-Pinene, β-pinene, sabine,δ-3-carene, limonene, β-caryophyllene and piperine	15-30 mg kg⁻¹	Effective against necrotic enteritis, salmonellosis and coccidiosis	Griggs and Jacob (2005)
Mojave yucca or spanish dagger (Yucca schidigera)	Saponins, resveratrol, larixinol and spirobiflavonoid	50-200 ppm	Lower intestinal urease activity, enzymes involved into metabolic urea cycle, reduced intestinal and faecal urease activities	Killeen et al. (1998) and Cheeke et al. (2006)
Nutmeg seed (Myristica fragrans)	Myristicin, safrole, 4-terpineol and sabine	0.1-0.3 mL bird⁻¹	Digestion stimulant and anti diarrhoeic	Kamel (2001) and Muchtaridi et al. (2010)
Oak (Quercus infectoria)	Carbohydrates (starch), fibre, protein, sugar and soluble nutrients	25-100 g kg⁻¹	Antibacterial and growth promoter	Basri and Fan (2005) and Kutlu et al. (2001)
Medicinal plants and their botanical sources	Major chemical constituents	Dose (feed)	Actions	References
---	-----------------------------	-------------	---------	------------
Olive leaves (*Olea europaea*)	Oleanoic acid	90 mg kg⁻¹	Anti-inflammatory/antioxidant properties	Abbas et al. (2012)
Orange peel (*Citrus sinensis*)	Tannin, saponin, oxalate, flavonoids, limonene and linalool	1000 ppm	Caused a decrease in coliform counts in ileum and modify some microbial and intestinal traits	Pourhossein et al. (2014)
Parsley seeds (*Petroselinum crispum*)	Apiol and vitamins such as A, C, thiamine, riboflavin and niacin.	3 g kg⁻¹ feed	Appetite and digestion stimulant, antiseptic	Kamel (2001) and Abbas (2010)
Pine (*Pinus sabiniana*)	Condensed tannins	1000 mg mL⁻¹	Anticoccidial effect by damaging cytoplasm	Abbas et al. (2012)
Shiitake mushroom (*Lentinus edodes*)	Eritadenine, amino acid, protein and fat	100 g L⁻¹	Promoted bifidobacteria growth in the gut of broiler chickens	Willis et al. (2007)
Siberian Ginseng (*Acanthopanax senticosus*)	Triterpenoid saponins, coumarins, flavones and phenolic compounds (syringin and eleutheroside E)	0.1%	Enhances the digestion and absorption of dietary protein and amino acids	Huang et al. (2011) and Kong et al. (2009)
Sweet chestnut wood (*Castanea sativa*)	Hydrolyzable tannins (castalagin)	0.25%	Enhance digestibility, growth performance, carcass quality and N balance of broiler chick.	Schiavone et al. (2008)
Thyme (*Thymus vulgaris*)	Thymol	10-100 mg mL⁻¹	Destruction of Eimeria oocysts	Abbas et al. (2012)
Turmeric (*Curcuma longa*)	Curcumin (diferuloylmethane)	35 mg kg⁻¹	Attenuate Eimeria-induced, inflammation-mediated gut damage	Kim et al. (2013)
Whiteweed (*Ageratum conyzoides*)	Ageratochromene, β-caryophyllene, β-sinensal, β-sesquiphellandrene and τ-cadinene	500-1000 mg kg⁻¹ b.wt.	Destruction of Eimeria oocysts	Ranaa and Blazquez (2003) and Nweze and Obiwulu (2009)
Combinations		**35+35+5 mg kg⁻¹**	Enhanced innate immune responses, as measured by transcript levels of the cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-5 (IL-5), and interferon-γ (IFN-γ), at the intestinal site and produced a high level of protective immunity against *E. acervulina* infection	Lee et al. (2010)
Lentinus edodes, Tremella fuciformis and *Astragalus membranaceus*		**10+2+2 g kg⁻¹**	Stimulated the number of bifidobacteria and lactobacilli and reduced the number of the potentially harmful bacteria (*Bacteroides* spp. and *E. coli*)	Guo et al. (2004)
Use of *Agrimonia eupatoria, Echinacea angustifolia, Ribes nigrum* and *Cinchona succirubra*		**0.5-1.0 g kg⁻¹**	Exerted a coccidiostatic effect against *E. tenella*	Christaki et al. (2004)
Table 3: Phytochemicals and their role on poultry gut health

Phytochemicals and their botanical sources	Actions	References
Alkaloids sanguinarin and chelerythin (Sanguinaria canadensis)	Improved daily weight gain and feed conversion ratio	Wallace et al. (2010)
Artemisinin (Artemisia annua)	Decreased the number of oocysts in the faeces of chickens challenged with Eimeria	Arab et al. (2006)
Astaxanthin (Haematococcus pluvalis)	Inhibits C. perfringens caecal colonisation	Waldenstedt et al. (2003)
Astragalan and achyranthan Chinese herbal polysaccharides	Increased micro hem agglutination inhibition (HI), antibody titres and bursa of Fabricius index, increased IL-2 production and proliferation of splenocytes in chicken.	Chen et al. (2003)
Betaine (Beta vulgaris)	E. acervulina (and E. tenella, but less effective) invasion and development when used in combination with salinomycin	Allen and Fetterer (2002)
Caffeic acid (Coffee, tea, sweet potatoes and sunflower seeds)	Caffeic acid is a natural antioxidant phenolic acid possesses antibacterial properties	Marinova et al. (2009)
Cardamom oeleoresins (Amomum subulatum)	Antifungal and antioxidant activities	Kapoor et al. (2008)
Carvacrol (Oregano and Thyme)	Improve antioxidant enzyme activities, fatty acid composition, digestive enzyme activities and immune response	Hashemipour et al. (2013)
Chestnut tannins (Castanea sativa)	Inhibit the in vitro growth of Salmonella typhimurium, but had no effect on the excretion of the bacteria in an infection model in pigs	Van-Parys et al. (2010)
Cinnamaldehyde	Improve growth performance, nutrient digestibility, fecal microbial shedding and fecal noxious gas content	Yan and Kim (2012)
Condensed tannins (Green tea or quebracho)	Have proven to have antimicrobial activity and affect gastrointestinal bacteria colonization in chickens	Elizondo et al. (2010) and Hara (1997)
Eugenol	Improve growth performance, nutrient digestibility, fecal microbial shedding and fecal noxious gas content	Yan and Kim (2012)
Grape seed proanthocyanidin (Vitis vinifera)	Inhibit E. tenella infection and improve weight	Wang et al. (2008)
Lupulone (Humulus lupulus)	Inhibits intestinal C. perfringens.	Siragusa et al. (2008)
Maslinic acid (found in the leaves and fruits of olive tree)	Act as a natural coccidiostatic in animal infected with Eimeria tenella, decrease in lesion index and oocyst index	De-Pablos et al. (2010)
Plant extracts containing; 5% carvacrol, 5% cinnamaldehyde and 2% capsicum Thymol	Villi-related protective activity	Jamroz et al. (2003)
Tocopherol (Linum usitatissimum)	E. maxima lesions, weight gain, E. acervulina (not E. tenella) and antioxidant	Allen and Fetterer (2002)

Probiotics: Probiotics are strains of various microbial species, currently has been gained attention as a substitute of antibiotics for poultry production as growth promoters with feed additives (Ahmad, 2006). The various proposed mechanisms by which probiotics act to maintain a beneficial microbial population are: (1) Promote balance of bacteria in the gut by competitive exclusion and antagonism, (2) Involved in gut maturation and integrity, (3) Immune enhancement and preventing inflammation use (4) Improves digestive enzyme activity, (5) Improves feed intake and digestion, (6) Neutralise enterotoxins, (7) Stimulates immune response and (8) Act as growth stimulator (Jin et al., 1997; Simon et al., 2001). Table 4 summarize some examples of probiotic strains and their effects on the gut microbial population of the chicken.

Prebiotics: Prebiotic has been defined as “a non-digestible dietary supplement or feed ingredient that beneficially affects the host by selectively stimulating the growth by altering the composition and metabolism of the gut microbiota” (Gibson and Roberfroid, 1995). The proposed mechanism by which prebiotics exert their effects are: (1) Growth inhibition of harmful intestinal microbes (through competition for substrates and mucosal attachment sites), (2) Increased intestinal acidity
Table 4: Probiotics and their role on poultry gut health

Probiotics strains	Activities	References
Single strains		
Suspension of gut contents derived from	Used for protection against colonization by *Salmonella enteritidis*	Nurmi and Rantala (1973)
healthy adult chickens		
Lactobacillus acidophilus	Competed with pathogenic *E. coli* in the gut of gnotobiotic chicks, immune enhancement, balance	Sanders (1999)
	intestinal microflora and decrease fecal enzyme activity	
Salmonella gallinarum	Competed with pathogenic *Salmonella enteritidis* in the gut	Rabsch et al. (2000)
Yeast *Saccharomyces boulardii*	Used for the treatment of *Eimeria* infected chickens and prevents the recurrence of *Clostridium*	Czerucka and Rampal (2002) and Czerucka et al. (2007)
	infections and some colibacillosis. It is reported to significantly mitigate the effect of decreasing	
	haemoglobin and total protein (albumin, globulin) in chickens whose diet contained ochratoxin	
	A at levels of 0.5 ppm	
L. salivarius CTC2197	Reduced *S. enteritidis* C-114 colonization of the gut	Pascual et al. (1999)
L. salivarius	Reduced the number of *S. enteritidis* and *C. perfringens* in the gut. It also produces bacteriocins	Kizerwetter-Swida and Binek (2009) and Stern et al. (2006)
	with antagonistic activity against gram-positive bacteria and *Campylobacter jejuni*	
Lactobacillus GG	Increased serum IgA response to *Salmonella typhi* in IgA secreting cells in the intestine, prevent	Sanders (1999) and Edens (2003)
	rotavirus diarrhoea and prevent antibiotic associated diarrhoea	
L. casei Shirota	No effect on NK cell numbers, phagocytosis or cytokine production	Sanders (1999)
A protein called BIF, secreted by *B. longum*	Active agents against gram-negative bacteria and known to inhibit the interaction between *E. coli* and epithelial cell lines	Fujiwara et al. (1997)
Bifidobacterium strains (CA1 and F9)	It secretes a lipophilic compound with a strong antimicrobial activity against *S. typhimurium*	Lievin et al. (2000)
	SL1344 and *E. coli* 1845	
Bifidobacterium bifidum	Treat rotavirus diarrhoea and balance intestinal microflora	Sanders (1999) and Edens (2003)
B. lactis	Increased IgA levels	Sanders (1999) and Edens (2003)
Bacillus subtilis	Keep birds free from specific pathogens challenged with *C. perfringens*	La Ragione and Woodward (2003)
Wild mushroom, Ganoderma lucidum	Treatment of *Eimeria tenella* infected chickens.	Ogbe et al. (2009)
Lactic acid bacteria	Reduced 95% of the number of colonization of *S. heidelberg*, 4-76% of the number of colonization of *S. enteritidis* and 92-96% of *Salmonella typhimurium*	Higgins et al. (2010)
	Reduced 58% of the number of colonization of *S. heidelberg*	Knap et al. (2011)
Bacillus subtilis		
Mixtures of probiotic strains	Lowered numbers of *Coliform* and *Campylobacter* in the gut	Kharsefidi and Rahimi (2005)
L. acidophilus, L. casei, B. bifidum,	Enriched the diversity of *Lactobacillus* flora in jejunum and caecum, restored microbial balance and maintained the natural stability of indigenous bacterial microbiota in the gut	Lan et al. (2004)
Aspergillus oryzae, Streptococcus faecium	For maintenance of above bacteria in intestine	Mountzouris et al. (2007)
and fungus species like *Torulopsis*		
L. agilis JCM 1048 and *L. salivarius*		
subsp. (*salicinius* JCM 1230)		
Lactobacillus, *Bifidobacterium*,		
Enterococcus and *Pediococcus* strains		
L. reuteri C1, C10 and C16;		
L. gallinarum I16 and I26; *L. brevis* I12, I23, I25, I218 and I211 and *L. salivarius* I24		
L. acidophilus, L. casei, B. thermophilus		
and *Enterococcus faecium*		
Table 4: Continue

Probiotics strains	Activities	References
E. faecium, L. case and L. plantarum	Early use establishes a balance in microbial flora against pathogenic bacteria.	Leandro et al. (2010)
L. acidophilus, B. bifidum and S. faecalis	It stimulates the production of antitoxin α IgA from *C. perfringens* in the intestine of non-vaccinated chicks	Haghighi et al. (2006)
Yeast (S. cerevisiae) and fungi (A. oryzae)	Used to control pathogenic bacteria infection in chickens	Woo et al. (2006)
Mixture of *Bacillus mesentericus*, *E. faecalis* and *Clostridium butyricum*	Reduced the harshness of diarrhoea	Rodriguez-Fragoso et al. (2012)
Lactic acid bacteria (*Lactococcus lactis* CECT 539 and *Lactobacillus casei* CECT 4043) and their products of fermentation (organic acids and bacteriocins)	Used as a replacement for antibiotics in stimulating health and growth of broiler chickens	Fajardo et al. (2012)
Mixture obtained from crop (*Lactobacillus reuteri*, jejunum (*Enterococcus faecium*), ileum (*Bifidobacterium animalis*) and cecum (*Pedioecoccus acidilactici* and *Lactobacillus salivarius*) of healthy adult chicken	It increased integrity of the gastrointestinal tract associated with a higher surface area of the villi, resulted in improved production results and could reduce both the damage of enterocytes and the need for cell renewal in the gut	Peric et al. (2010)
Live yeast culture (*Yea Sacc1026, L. acidophilus 108 and Streptococcus faecium 108*)	Yielded positive effects on growth performance of gut	Singh et al. (2009)
L. acidophilus, B. bifidum and S. faecalis	Utilised to increase in the natural antibody production in the serum and gut for some antigens. It also induces changes in the gastrointestinal tract in terms of histological structure and regulation of mucus secretion	Deplancke and Gaskins (2001)
L. salivarius and *L. reuteri*	Increased the growth performance and improved intestinal nutrient absorption with an associated improvement intestinal architecture	Awad et al. (2010)

(through production of short-chain fatty acids), (3) Growth stimulation of intestinal absorptive cells and (4) Stimulation of the enteric immune system, thus facilitating better performance and health status of the birds (Gibson and Roberfroid, 1995; Collins and Gibson, 1999; Huyghebaert et al., 2011; Chen et al., 2014). Table 5 summarize some examples of prebiotic and their effects on the gut microbial population of the chicken.

Synbiotics: Synbiotic has been defined as “any combination, which is formed by adding both probiotics and prebiotics to provide the beneficial effects on the gut of birds” (Huyghebaert et al., 2011). This combination could improve the survival and persistence of the health-promoting organism in the gut of birds and can be utilised as alternative to AGP due to its availability as a specific substrate for fermentation and having synergistic action of both probiotics and prebiotics (Yang et al., 2009; Adil and Magray, 2012; Aziz Mousavi et al., 2015). Table 6 summarize some examples of synbiotics with their potential benefits on the intestinal microbial ecosystem of chicken.

Organic acids: Organic acids are group of organic chemicals, composed of carboxylic acid, including fatty acids and amino acids, of the general structure R-COOH (Dibner and Buttin, 2002). In recent years, the use of organic acid has been increased many fold due to its potential to reduce many pathogenic and spoilage organisms by lowering the gut pH (Huyghebaert et al., 2011). They lower the pH, at which the activity of proteases and beneficial bacteria is optimized and proliferation of pathogenic bacteria is minimised by a direct antibacterial effects destroying their
Table 5: Prebiotics and their role on poultry gut health

Prebiotics	Actions	References
Individual prebiotics		
Fructo-oligosaccharides (FOS)	Reduced intestinal colonization of *Salmonella*, *C. perfringens* and *E. coli*. It provided nutrients for the growth of beneficial bacteria in the gut and increased the population of *Bifidobacterium* and lactobacilli in the intestine. It is reported to improve body weight, FCR and larger crypts size.	Bailey et al. (1991), Williams et al. (2008) and Li et al. (2008)
Fructans	Increase mineral absorption of calcium and phosphorous and improve hardness of the egg shell and cholesterol diminishing of the yolk.	Curbelo et al. (2012)
Mannan-oligosaccharides (MOS)	Prevents adherence of pathogens to intestinal wall	Sinovec and Markovic (2005)
Bio-MOS	Increased body weight, FCR, villi lengths, RNA/DNA ratios and crypts depth	Iji et al. (2001) and Yang et al. (2008)
Oligo-fructose	Increase cecal and colonic macrophages	Gaskins et al. (1996)
Purified indigestible dextrin (5 % w/w)	Increase content of IgA-positive cells in small intestine and cecal mucosa	Kudoh et al. (1998)
Galacto-oligosaccharides (GOS)	Increased *Bifidobacterium* spp. and decreased *Campylobacter* spp. in the faecal samples	Baffoni et al. (2012)
Transgalacto-oligosaccharides (TOS)	Improve weight gains and FCR	Biggs et al. (2007)
Isomalto-oligosaccharides (IMO)	Increased the caecal populations of lactobacilli and bifidobacteria and decreased the faecal *E. coli*.	Mookiah et al. (2014)
Inulin	Improve intestinal microflora and gut morphology. Increased *Bifidobacterium* counts and decreased *E. coli* counts in faecal contents	Nabizadeh (2012)
Purified natural lactose or whey powder (70-80% lactose)	It has inhibitory effects on *Salmonella* and other pathogenic bacteria in the digestive tract of broiler chickens by production of short chain fatty acid (SCFA) and lactic acid from lactose as a substrate for host bacteria enzymes, with deep reduction in cecal pH	Szczurek (2008)
Partially hydrolysed guar gum (PHGG)	Improve both feeding behaviour and food passage from the crop in growing chicks	Hajati and Rezaei (2010)
Wheat	Increase relative amounts of bifidobacteria and lactobacilli, which may affect Fe bioavailability in long-term use	Tako et al. (2014)
β-glucan from an edible mushroom *(Pleuratus florida)*	Act as an immunomodulator on the innate immune responses	Paul et al. (2013)
Non-starch polysaccharides (NSP) from chicory	Cause changes in gut micro-environment and gut morphology	Lindberg (2014)
Combinations of prebiotics		
Mannan oligosaccharide and *Saccharomyces cerevisiae*	Significantly improves the gut health of broiler chickens	Padihari et al. (2014)
Mannan oligosaccharide (MOS) and Organic acid (OA)	Successfully reduces bacterial load in the intestine of broiler birds and increase higher villi in the jejunum	Pelicano et al. (2005)
MOS and BMD (basal metabolic diet)	Turkeys showed significantly lower *Clostridium perfringens* population in the gut	Sims et al. (2004)
FOS and *B. subtilis*	Better growth promoting effects with effects on reducing diarrhoea rate.	Li et al. (2008)
Extract from the cell walls of yeasts (β-glucans, mannan and polysaccharides) and sodium salt of n-butyric acid	Beneficial effect on microbial intestinal state and decrease of total number of the heterotrophic bacteria and the low col/lacto index was achieved	Gajewska et al. (2012)
Retrograded resistant corn starch, fibersol-2, inulin and oat β-glucan	Affect gut and the whole body health status via influencing the alkaline phosphatase detoxification	Ontario (2012)
Xylo oligosaccharides (XOS) and arabinogalactooligosacharide (AXOS) FOS and MOS	Increased *Bifidobacterium* populations	Courtin et al. (2008)
	Decrease *Clostridia* and *E. coli* populations and increase in lactobacilli populations and diversity, as well as total bacterial populations	Kim et al. (2011)
Table 6: Synbiotics and their role on poultry gut health

Synbiotics	Actions	References
Bifidobacterium-based products	Reduced C. jejuni concentration in poultry faeces.	Baffoni et al. (2012)
MOS and Saccharomyces cerevisiae	Significantly improves the gut health of broiler chickens.	Padighari et al. (2014)
IMO and Lactobacillus strains	Increased the caecal populations of lactobacilli and bifidobacteria and decreased the caecal E. coli	Mookiah et al. (2014)
FOS and E. faecum	Reduced the intestinal colonization by C. perfringens	El-Ghany (2010)
Raffinose and L. lactis	Stimulated the expression of IL-6 and IFN-	Sugiharto et al. (2014)
MOS and organic acid (OA)	Successfully reduces bacterial load in the intestine of broiler birds and increase higher villi in the jejunum	Pelicano et al. (2005)
MOS and BMD (basal metabolic diet)	Turkeys showed significantly lower Clostridium perfringens population in the gut	Sims et al. (2004)
FOS and B. subtilis	Better growth promoting effects with reducing diarrhoea rate	Li et al. (2008)
Cell walls of yeasts (β-glucans, mannan and polysaccharides) and sodium salt of n-butyric acid	Beneficial effect on microbial intestinal state and decrease of total number of the heterotrophic bacteria and the low coli/lacto index was achieved	Gajewska et al. (2012)
Lactobacillus, Bifidobacterium and oligosaccharides	Improved the antibody response	El-Sissi and Mohamed (2011)
Enterococcus faecium (DSM 3530), a prebiotic (derived from chicory) and immune modulating substances (derived from sea algea)	Shows positive effect on performance and blood parameters	Awad et al. (2008)
Bacillus subtilis and inulin	Colonization of the beneficial microflora along with increasing the villi-crypts absorptive area	Abdelqader et al. (2013)

Table 7: Organic acids and their role on poultry gut health

Organic acids and chemical formula	pKa	Actions	References
2, 3-dihydroxybutanedioic acid (tartaric)	2.93	Increases in weight gain	Vogt et al. (1982)
COOHCH(OH)CH(OH)COOH	2.93	Improve ileal digestibilities	Blank et al. (1999)
2-butenedioic acid (fumaric)	3.02	Improve ileal digestibilities	Blank et al. (1999)
COOHCH:CHCOOH	3.02	Enhance performance in respect of live weight gain, feed conversion and degrade aflatoxins in young broiler chickens	Salgado-Transito et al. (2011)
2-hydroxy-1,2,3-propanetricarboxylic acid (citric)	3.13	Improve feed efficiency	Vogt et al. (1982)
COOHCH(OH)COOH	3.13	Improve feed efficiency	Vogt et al. (1982)
Hydroxybutanedioic acid (malic)	3.40	Improve ileal digestibility of nutrients	Hernandez et al. (2006)
COOHCH(OH)COOH	3.40	Improve ileal digestibility of nutrients	Hernandez et al. (2006)
Formic acid	3.75	Increases in weight gain and feed-to-gain ratios.	Dihner and Buttin (2002)
HCOOH	3.83	Used as a source of dietary methionine in poultry nutrition and protects intestinal epithelial barrier function by increased production of taurine and reduced glutathione level	Martin-Venegas et al. (2013)
2-hydroxypropanoic acid (lactic)	3.83	Used as a source of dietary methionine in poultry nutrition and protects intestinal epithelial barrier function by increased production of taurine and reduced glutathione level	Martin-Venegas et al. (2013)
CH3CH(OH)COOH	3.86	Used as a source of dietary methionine in poultry nutrition and protects intestinal epithelial barrier function by increased production of taurine and reduced glutathione level	Martin-Venegas et al. (2013)
2-hydroxy-4-methylthio butanoic acid (HMB)	3.86	Used as a source of dietary methionine in poultry nutrition and protects intestinal epithelial barrier function by increased production of taurine and reduced glutathione level	Martin-Venegas et al. (2013)
CH3SCH3CH2CH(OH)COOH	3.86	Used as a source of dietary methionine in poultry nutrition and protects intestinal epithelial barrier function by increased production of taurine and reduced glutathione level	Martin-Venegas et al. (2013)
Acetic acid	4.76	Potent anticoccidial	Abbas et al. (2011)
CH3COOH	4.76	Potent anticoccidial	Abbas et al. (2011)
2,4- hexadecanoic acid (palmitic)	4.76	Improve intestinal absorption of fatty acids by simple or facilitated diffusion	Casanovas et al. (1994)
CH3(CH2)14COOH	4.76	Improve intestinal absorption of fatty acids by simple or facilitated diffusion	Casanovas et al. (1994)
Butanoic acid	4.82	Maintained performance, intestinal tract health, villi development, crypts depth in jejunum and carcass quality in broiler chickens	Antongiovanni et al. (2007)
CH3CH2CH2COOH	4.82	Maintained performance, intestinal tract health, villi development, crypts depth in jejunum and carcass quality in broiler chickens	Antongiovanni et al. (2007)
2-propionic acid	4.88	Reduce abdominal fats of male broilers	Izat et al. (1990)
CH3CH2COOH	4.88	Reduce abdominal fats of male broilers	Izat et al. (1990)

cell membranes (Partanen and Mroz, 1999; Chowdhury et al., 2009). Table 7 summarize some examples of organic acids and their effects on the gut microbial population of the birds.
Clay minerals: Clay minerals are natural clay formed by a net of stratified tetrahedral or octahedral layers and mainly composed by molecules of silicon, aluminum and oxygen (Vondruskova et al., 2010). Clays added to the diet can bind and immobilize toxic materials such as aflatoxins and heavy metals etc., may present in the gastrointestinal tract of chicken and thus, reduce toxicity (Owen et al., 2012). As a result of their binding properties, clay minerals have been widely used in poultry diets to improve chicken performance when diets are supposed to contain mycotoxins (Zhou et al., 2014). Some of the molecules of clay minerals such as, bentonites, zeolite, kaolin, montmorillonite, smectite, illite, kaolinite, biotic and clinoptilolite, etc., have been reported to exhibit beneficial effects on the intestinal health of chicken due to additional toxin binding action (Thacker, 2013).

Egg yolk antibodies: Egg yolks antibodies (IgY) are find its application as a potential alternative to antibiotics for growth promotion and have ability to neutralise specific pathogens of gut (Thacker, 2013). In order to produce these antibodies, hens are exposed (usually injected) to antigens of choice to induce desirable immune responses. Normally, these antibodies are then transferred to the egg yolk. Booster dose of immunisation (second exposure) is usually given at a later time to ensure the continued transfer of antibodies from hen to the egg yolk. These antibodies are then extracted from the egg yolk and further processed to be administered directly to the animal or included in the feed (Schade et al., 2005).

Exogenous enzymes: Exogenous enzymes including β-glucanase, xylanase, amylase, α-galactosidase, protease, lipase, phytase, etc., have been supplemented in poultry diets and reported to modulate the gut microbiota of birds (Adeola and Cowieson, 2011). The effects of enzymes on gut microflora were classified into two phases: an ileal phase and a caecal phase. In the ileum, enzymes simply reduce the number of bacteria by increasing the rate of digestion and limiting the amounts of substrates available to the microflora. While, in the caecal phase enzymes produce soluble, poorly absorbed sugars which feed beneficial bacteria. However, the effects of enzymes on the gut microflora may be far more than those two phases (Bedford and Cowieson, 2011).

Recombinant enzymes: The application of genetic engineering allows us to develop targeted enzymes at molecular level for specific purposes. Recently, several enzymes have been developed, which have considerable potential for animal feed application (He et al., 2010). These enzymes have special properties such as, active over a broad pH range, exhibit thermostability, resistant to pepsin and trypsin and viable under simulated gastric conditions. Some typical example includes inclusion of a recombinant carbohydrases and β-mannanase in corn soybean meal diets cause magnitude of the improvement (Pettey et al., 2002).

Nucleotides: Nucleotides are essential components of body involves in cellular metabolism and all intracellular biochemical processes such as, biosynthetic pathways, energy transfer system, as co-enzyme components and as well as biological regulators. Nucleotides alter the cellular lipid metabolism, particularly of long-chain polysaturated fatty acids and the lipoprotein synthesis. Nucleotides changes the composition of intestinal microflora that affect long-chain polysaturated fatty acids levels, as some bacteria’s possess necessary enzymes for fatty acid elongation and denaturation and also promote intestinal absorption of iron by conversion of purine nucleotides (AMP, GMP) to inosine, hypoxanthine and uric acid which increase the absorption of iron (Cosgrove, 1998).
Polyunsaturated fatty acids: Polyunsaturated fatty acids (PUFAs) are lipids in which the constituent hydrocarbon chain possesses two or more carbon-carbon double bonds, such as en-3 and n-6 fatty acids which were found to be essential components for the immune function of body’s. Fish oil and corn oil are the main source of feed additive in poultry, contain n-3 and n-6 type polysaturated fatty acids. There are various reports which reflect the utility of these oil for improving gut and overall immunity of the poultry. In another study combination of tuna oil, sunflower oil and palm oil (contain n-3 PUFAs) improves immune responses of birds, as evidenced by the increase in spleen weight, Infectious Bronchitis Disease (IBD), Newcastle Disease (ND), antibody titres, IL-2 and IFN-concentrations (Maroufyan et al., 2012). Conjugated linoleic acid (CLA) is another type of PUFA that has been used as feed supplement to poultry diets and reported for enhancing the immune response, growth of immune tissue, stimulated T-lymphocyte proliferation, elevate, antibody production and maintain the number of LAB in the gut of chicken (He et al., 2007).

Miscellaneous compounds: Many additional compounds have been tested and reported in animals such as spray-dried porcine plasma, yeast culture, bacteriophages, lysozyme, bovine colostrum, lactoferrin and seaweed extract etc. for their potential to replace AGP (Thacker, 2013).

Marketed product survey: Table 8 reported various marketed product thoroughly sold globally as replacement of AGP. Many products from extensive survey were found to full fill the need of

Marketed products	Company	Action	References
Aerocid	Herbavita Bvba, Belgium	Antibacterial and stress reducing action	Hashemi and Davoodi (2010)
Aminofree	Indian Herbs, India	Enhances the intestinal enzyme system	Hashemi and Davoodi (2010)
Anihom	Herbavita Bvba, Belgium	Stimulated the immunity system, and give beneficial for the intestinal tract	Hashemi and Davoodi (2010)
Avericox	Mercordli Belgium	Combat coccidiosis	Hashemi and Davoodi (2010)
AV/AGP/10	Ayurved, India	Improve height of intestinal villi of duodenum, ileum and jejunum	Debnath et al. (2014)
Bio-Mos®	Alltech, USA	Improve performance, small intestinal microflora and the immune response of broiler chicks. Modifying the bacterial community of the gut and promote maturation of the GI tract	Baurhoo et al. (2009)
Colinex	Mercordli Belgium	Immune stimulator and can be used successfully to prevent E. coli infections	Hashemi and Davoodi (2010)
EV-herbaqliq 100®	Möhnesee, Germany	Improve gut and immune function	Amirdahri et al. (2012)
Fermacto®	Pet Ag, USA	At a level of 1.5 g kg⁻¹ improved the apparent organic matter, digestibility and decreased serum total cholesterol and abdominal fat percentage	Grashorn (2010)
Gutsol	Regen Biocorps, India	Improve overall gut performance	No citation
Herban liquid and powder Immon®	Kelanv, Belgium	Promote poultry health	Hashemi and Davoodi (2010)
NuPro®	Alltech, USA	Rich source of nucleotides as well as amino acids including glutamic acids. Used in poultry nutrition as a functional protein source to improve gut health and found effective in reducing intestinal C. perfringens levels	Thanissery et al. (2010)
AGP in some extent. However, there is still need to set some standards for the replacement of antibiotic compounds in poultry, in terms of product type, identification of suppliers, poultry response criteria, regulatory status and veterinary definition.

CONCLUSION

The potentials of NGPs to AGPs are only of practical significance when they improve animal performance by maintaining gut health and immune functions in given time slot levels. Such thoroughly tested microbiota modulating and immunomodulatory compounds have potential to be used as feed stuff of feed additives for poultry productions. Although market is flooded with numerous products, some of them shown their potential, but at the same time there are many more objectionable products, where efficacy is still questionable. Therefore, there is an urgent need of further studies to develop larger datasets for product based mechanisms of action of each compound in a scientific way. The paper presented list of various NGPs are by no means of exhaustive and there are also many other products design and screened using these requirements day to day claiming to be of value added NGPs in gut health.

REFERENCES

Abbas, R.J., 2010. Effect of using fenugreek, parsley and sweet basil seeds as feed additives on the performance of broiler chickens. Int. J. Poult. Sci., 9: 278-282.
Abbas, R.Z., S.H. Munawar, Z. Manzoor, Z. Iqbal and M.N. Khan et al., 2011. Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with *Eimeria tenella*. Pesquisa Veterinaria Brasileira, 31: 99-103.
Abbas, R.Z., D.D. Colwell and J. Gillard, 2012. Botanicals: An alternative approach for the control of avian coccidiosis. World's Poult. Sci. J., 68: 203-215.
Abd El-Latif, A.S., N.S. Saleh, T.S. Allam and E.W. Ghazy, 2013. The effects of rosemary (*Rosmarinus officinalis*) and garlic (*Allium sativum*) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. Br. J. Poult. Sci., 2: 16-24.
Abd-El-Motaal, A.M., A.M.H. Ahmed, A.S.A. Bahakaim and M.M. Fathi, 2008. productive performance and immunocompetence of commercial laying hens given diets supplemented with eucalyptus. Int. J. Poult. Sci., 7: 445-449.
Abdel-Rahman, H.A., S.I. Fatallah, M.A. Helal, A.A. Nafeaa and I.S. Zahran, 2014. Effect of turmeric (*Curcuma longa*), fenugreek (*Trigonella foenum-graecum* L.) And/or bioflavonoid supplementation to the broiler chicks diet and drinking water on the growth performance and intestinal morphometric parameters. Global Vet., 12: 627-635.
Abdellqader, A., A.R. Al-Fataftah and G. Das, 2013. Effects of dietary *Bacillus subtilis* and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Anim. Feed Sci. Technol., 179: 103-111.
Adeola, O. and A.J. Cowieson, 2011. Board-invited review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci., 89: 3189-3218.
Adil, S. and S.N. Magray, 2012. Impact and manipulation of gut microflora in poultry: A review. J. Anim. Vet. Adv., 11: 873-877.
Agyemang, K., L. Han, E. Liu, Y. Zhang, T. Wang and X. Gao, 2013. Recent advances in *Astragalus membranaceus* anti-diabetic research: Pharmacological effects of its phytochemical constituents. Evid.-Based Comp. Alternat. Med., Vol. 2013. 10.1155/2013/654643
Ahmad, I., 2006. Effect of probiotics on broilers performance. Int. J. Poult. Sci., 5: 593-597.
Al-Fataftah, A.R. and A. Abdelqader, 2013. Effect of *Salix babylonica*, *Populus nigra* and *Eucalyptus camaldulensis* extracts in drinking water on performance and heat tolerance of broiler chickens during heat stress. Am. Eurasian J. Agric. Environ. Sci., 13: 1309-1313.
Al-Mufarrej, S.I., 2014. Immune-responsiveness and performance of broiler chickens fed black cumin (*Nigella sativa* L.) powder. J. Saudi Soc. Agric. Sci., 13: 75-80.
Allen, P.C. and R.H. Fetterer, 2002. Recent advances in biology and immunobiology of *Eimeria* species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin. Microbiol. Rev., 15: 58-65.
Amirdahri, S., H. Janmohammadi, A. Taghizadeh and A. Rafat, 2012. Effect of dietary *Aspergillus* meal prebiotic on growth performance, carcass characteristics, nutrient digestibility and serum lipid profile in broiler chick low-protein diets. Turk. J. Vet. Anim. Sci., 36: 602-610.
Annett, C.B., J.R. Viste, M. Chirino-Trejo, H.L. Classen, D.M. Middleton and E. Simko, 2002. Necrotic enteritis: Effect of barley, wheat and corn diets on proliferation of *Clostridium perfringens* type A. Avian Pathol., 31: 598-601.
Anosa, G.N. and O.J. Okoro, 2011. Anticoccidial activity of the methanolic extract of *Musa paradisiaca* root in chickens. Trop. Anim. Health Prod., 43: 245-248.
Arab, H.A., S. Rahbari, A. Rassouli, M.H. Moslemi and F. Khorasvirad, 2006. Determination of artemisinin in *Artemisia sieberi* and anticoccidial effects of the plant extract in broiler chickens. Trop. Anim. Health Prod., 38: 497-503.
Awad, W., K. Ghareeb and J. Bohm, 2008. Intestinal structure and function of broiler chickens on diets supplemented with a *Synbiotic* containing *Enterococcus faecium* and *Oligosaccharides*. Int. J. Mol. Sci., 9: 2205-2216.
Ahmad, I., 2006. Effect of probiotics on broilers performance. Int. J. Poult. Sci., 5: 593-597.
Al-Fataftah, A.R. and A. Abdelqader, 2013. Effect of *Salix babylonica*, *Populus nigra* and *Eucalyptus camaldulensis* extracts in drinking water on performance and heat tolerance of broiler chickens during heat stress. Am. Eurasian J. Agric. Environ. Sci., 13: 1309-1313.
Al-Mufarrej, S.I., 2014. Immune-responsiveness and performance of broiler chickens fed black cumin (*Nigella sativa* L.) powder. J. Saudi Soc. Agric. Sci., 13: 75-80.
Allen, P.C. and R.H. Fetterer, 2002. Recent advances in biology and immunobiology of *Eimeria* species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin. Microbiol. Rev., 15: 58-65.
Amirdahri, S., H. Janmohammadi, A. Taghizadeh and A. Rafat, 2012. Effect of dietary *Aspergillus* meal prebiotic on growth performance, carcass characteristics, nutrient digestibility and serum lipid profile in broiler chick low-protein diets. Turk. J. Vet. Anim. Sci., 36: 602-610.
Annett, C.B., J.R. Viste, M. Chirino-Trejo, H.L. Classen, D.M. Middleton and E. Simko, 2002. Necrotic enteritis: Effect of barley, wheat and corn diets on proliferation of *Clostridium perfringens* type A. Avian Pathol., 31: 598-601.
Anosa, G.N. and O.J. Okoro, 2011. Anticoccidial activity of the methanolic extract of *Musa paradisiaca* root in chickens. Trop. Anim. Health Prod., 43: 245-248.
Antongiovanni, M., A. Buccioni, F. Petacchi, S. Leeson, S. Minieri, A. Martini and R. Cecchi, 2007. Butyric acid glycerides in the diet of broiler chickens: Effects on gut histology and carcass composition. Ital. J. Anim. Sci., 6: 19-25.
Arab, H.A., S. Rahbari, A. Rassouli, M.H. Moslemi and F. Khorasvirad, 2006. Determination of artemisinin in *Artemisia sieberi* and anticoccidial effects of the plant extract in broiler chickens. Trop. Anim. Health Prod., 38: 497-503.
Awad, W., K. Ghareeb and J. Bohm, 2008. Intestinal structure and function of broiler chickens on diets supplemented with a *Synbiotic* containing *Enterococcus faecium* and *Oligosaccharides*. Int. J. Mol. Sci., 9: 2205-2216.
Awad, W.A., K. Ghareeb and J. Bohm, 2010. Effect of addition of a probiotic micro-organism to broiler diet on intestinal mucosal architecture and electrophysiological parameters. J. Anim. Physiol. Anim. Nutr., 94: 486-494.
Aziz Husdfggsein, A.A., 2010. The effect of the *Capsicum annuum* in the diet of broilers on the isolation and shedding rate of *Salmonella paratyphoid*. Kufa J. Vet. Med. Sci., 1: 28-38.
Aziz Mousavi, S.M.A., A.R. Seidavi, M. Dadashbeiki, A. Kilonzo-Nthenge, S.N. Nahashon, V. Laudadio and V. Tufarelli, 2015. Effect of a synbiotic (Biomin® IMBO) on growth performance traits of broiler chickens. Eur. Poult. Sci., 79: 1-15.
Baffoni, L., F. Gaggia, D. di Gioia, C. Santini, L. Mogna and B. Biavati, 2012. A Bifidobacterium-based synbiotic product to reduce the transmission of *C. jejuni* along the poultry food chain. Int. J. Food Microbiol., 157: 156-161.
Bailey, J.S., L.C. Blankenship and N.A. Cox, 1991. Effect of fructooligosaccharide on *Salmonella colonization* of the chicken intestine. Poult. Sci., 70: 2433-2438.
Baratta, M.T., H.J.D. Dorman, S.G. Deans, D.M. Biondi and G. Ruberto, 1998. Chemical composition, antimicrobial and antioxidative activity of laurel, sage, rosemary, oregano and coriander essential oils. J. Essent. Oil Res., 10: 618-627.
Basri, D.F. and S.H. Fan, 2005. The potential of aqueous and acetone extracts of galls of *Quercus infectoria* as antibacterial agents. Ind. J. Pharm., 37: 26-29.
Baurhoo, B., P.R. Ferket and X. Zhao, 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations and carcass parameters of broilers. Poult. Sci., 88: 2262-2272.
Bazafkan, M.H., A. Hardani, M.R.A. Zadeh, A.A. Zargar, N. Moradi and N. Jalali, 2014. The effects of aqueous extract of celery leaves (Apium graveolens) on the delivery rate, sexual ratio and litter number of the female rats. Jentashapir J. Health Res., Vol. 5. 10.17795/jjhr-23221

Bedford, M.R. and A.J. Cowieson, 2012. Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci. Technol., 173: 76-85.

Biggs, P., C.M. Parsons and G.C. Fahey, 2007. The effects of several oligosaccharides on growth performance, nutrient digestibilities and cecal microbial populations in young chicks. Poult. Sci., 86: 2327-2336.

Bischoff, S.C., 2011. Gut health: A new objective in medicine? BMC Medicine, Vol. 9. 10.1186/1741-7015-9-24

Blank, R., R. Mosenthin, W.C. Sauer and S. Hauer, 1999. Effect of fumaric acid and dietary buffering capacity on ileal and fecal amino acid digestibilities in early-weaned pigs. J. Anim. Sci., 77: 2974-2984.

Bozkurt, M., I. Giannenas, K. Kucukyilmaz, E. Christaki and P. Florou-Paneri, 2013. An update on approaches to controlling coccidia in poultry using botanical extracts. Br. Poult. Sci., 54: 713-727.

Brenes, A. and E. Roura, 2010. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Technol., 158: 1-14.

Briozzo, J., L. Nunez, J. Chirife, L. Herszage and M. D'Aquino, 1989. Antimicrobial activity of clove oil dispersed in a concentrated sugar solution. J. Appl. Bacteriol., 66: 69-75.

Caccioni, D.R.L., M. Guizzardi, D.M. Bion di, A. Renda and G. Ruberto, 1998. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int. J. Food Microbiol., 43: 73-79.

Capkovicova, A., Z. Makova, E. Piesova, A. Alves, S. Faix and Z. Faixova, 2014. Evaluation of the effects of Salvia officinalis essential oil on plasma biochemistry, gut mucus and quantity of acidic and neutral mucins in the chicken gut. Acta Vet., 64: 138-148.

Casanovas, X., X. Manteca, E. Fernandez and E. Gonalons, 1994. Effects of temperature on in vitro palmitic acid uptake by chicken and rat intestinal tissue. Archives internationales de physiologie, de Biochimie et de Biophysique, 102: 233-235.

Cheeke, P.R., S. Piacente and W. Oleszek, 2006. Anti-inflammatory and anti-arthritic effects of Yucca schidigera. J. Inflammation, Vol. 3. 10.1186/1476-9255-3-6

Chen, H.L., D.F. Li, B.Y. Chang, L.M. Gong, J.G. Dai and G.F. Yi, 2003. Effects of Chinese herbal polysaccharides on the immunity and growth performance of young broilers. Poult. Sci., 82: 364-370.

Chen, W.L., J.B. Liang, M.F. Jahromi, N. Abdullah, Y.W. Ho and V. Tufarelli, 2014. Enzyme treatment enhances release of prebiotic oligosaccharides from palm kernel expeller. BioResources, 10: 196-209.

Chowdhury, R., K.M.S. Islam, M.J. Khan, M.R. Karim, M.N. Haque, M. Khatun and G.M. Pesti, 2009. Effect of citric acid, avilamycin and their combination on the performance, tibia ash and immune status of broilers. Poult. Sci., 88: 1616-1622.

Christakia, E., P. Florou-Paneria, I. Giannenasa, M. Papazahariadoub, N.A. Botsogloua and A.B. Spaisa, 2004. Effect of a mixture of herbal extracts on broiler chickens infected with Eimeria tenella. Anim. Res., 53: 137-144.

Collins, D.M. and G.R. Gibson, 1999. Probiotics, prebiotics and synbiotics: Approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr., 69: 1052S-1057S.

Cosgrove, M., 1998. Nucleotides. Nutrition, 14: 748-751.
Courtin, C.M., K. Swennen, W.F. Broekaert, Q. Swennen and J. Buyse et al., 2008. Effects of dietary inclusion of xylooligo-saccharides, arabinoxylooligosaccha-rides and soluble arabinoxylan on the microbial composition of caecal contents of chickens. J. Sci. Food Agric., 88: 2517-2522.

Cox, S.D., C.M. Mann, J.L. Markham, H.C. Bell, J.E. Gustafson, J.R. Warmington and S.G. Wyllie, 2000. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Applied Microbiol., 88: 170-175.

Cummings, J.H., J.M. Antoine, F. Azpiroz, R. Bourdet-Sicard and P. Brandtzaeg et al., 2004. PASSCLAIM-gut health and immunity. Eur. J. Nutr., 43: ii118-ii173.

Curbelo, Y.G., M.G. Lopez, R. Bocourt, Z. Rodriguez and L. Savon, 2012. Prebiotics in the feeding of monogastric animals. Cuban J. Agric. Sci., 46: 231-236.

Czerucka, D. and P. Rampal, 2002. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes. Infect., 4: 733-739.

Czerucka, D., T. Piche and P. Rampal, 2007. Review article: Yeast as probiotics-Saccharomyces boulardii. Alimentary Pharmacol. Ther., 26: 767-778.

Darabighane, B., A. Zarei, A.Z. Shahneh and A. Mahdavi, 2011. Effects of different levels of Aloe vera gel as an alternative to antibiotic on performance and ileum morphology in broilers. Ital. J. Anim. Sci., 10: 189-194.

Davis, G.S. and K.E. Anderson, 2002. The effects of feeding the direct-fed microbial, primalac, on growth parameters and egg production in single comb white leghorn hens. Poult. Sci., 81: 755-759.

De Pablos, L.M., M.F.B. dos Santos, E. Montero, A. Garcia-Granados, A. Parra and A. Osuna, 2010. Anticoccidial activity of maslinic acid against infection with Eimeria tenella in chickens. Parasitol. Res., 107: 601-604.

Deans, S.G. and G. Ritchie, 1987. Antibacterial properties of plant essential oils. Int. J. Food Microbiol., 5: 165-180.

Debnath, B.C., K.B.D. Choudhary, K. Ravikanth, A. Thakur and S. Maini, 2014. Comparative efficacy of natural growth promoter (AV/AGP/10) with antibiotic growth promoter on overall growth performance and intestinal morphometry in broiler birds. Int. J. Pharm. Sci. Health Care, 2: 155-168.

Delaquis, P.J., K. Stanich, B. Girard and G. Mazza, 2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol., 74: 101-109.

Dibner, J.J. and P. Buttin, 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Applied Poult. Res., 11: 453-463.
Dorman, H.J.D. and S.G. Deans, 2000. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Applied Microbiol., 88: 308-316.

Dieumou, F.E., A. Teguia, J.R. Kuiate, J.D. Tamokou, N.B. Fonge and M.C. Dongmo, 2009. Effects of ginger (Zingiber officinale) and garlic (Allium sativum) essential oils on growth performance and gut microbial population of broiler chickens. Livest. Res. Rural Dev., 21: 25-34.

Dorman, H.J.D., S.G. Deans, R.C. Nob and P. Surai, 1995. Evaluation in vitro of plant essential oils as natural antioxidants. J. Essential Oil Res., 7: 645-651.

Dudonne, S., P. Poupard, P. Coutiere, M. Woillez, T. Richard, J.M. Merillon and X. Vitrac, 2011. Phenolic composition and antioxidant properties of poplar bud (Populus nigra) extract: Individual antioxidant contribution of phenolics and transcriptional effect on skin aging. J. Agric. Food Chem., 59: 4527-4536.

Edens, F.W., 2003. An alternative for antibiotic use in poultry: Probiotics. Brazil. J. Poult. Sci., 5: 75-97.

Eevuri, T.R. and R. Puttururu, 2013. Use of certain herbal preparations in broiler feeds-A review. Vet. World, 6: 172-179.

El-Ghany, W.A.A., 2010. Comparative evaluation on the Effect of Coccidiostate and Synbiotic Preparations on Prevention of Clostridium perfringens in broiler chickens. Global Vet., 5: 324-333.

El-Sissi, A.F. and S.H. Mohamed, 2011. Impact of symbiotic on the immune response of broiler chickens against NDV and IBV vaccines. Global J. Biotechnol. Biochem., 6: 186-191.

El-Soud, N.H.A., N.A. El-Lithy, G. El-Saeed, M.S. Wahby, M.Y. Khalil, F. Morsy and N. Shaffie, 2014. Renoprotective effects of Caraway (Carum carvi L.) essential oil in streptozotocin induced diabetic rats. J. Applied Pharm. Sci., 4: 27-33.

Elizondo, A.M., E.C. Mercado, B.C. Rabinovitz and M.E. Fernandez-Miyakawa, 2010. Effect of tannins on the in vitro growth of Clostridium perfringens. Vet. Microbiol., 145: 308-314.

Engberg, R.M., K. Grevsen, E. Ivarsen, X. Frette and L.P. Christensen et al., 2012. The effect of Artemisia annua on broiler performance, on intestinal microbiota and on the course of a Clostridium perfringens infection applying a necrotic enteritis disease model. Avian Pathol., 41: 369-376.

Fajardo, P., L. Pastrana, J. Mendez, I. Rodriguez, C. Fucinos and N.P. Guerra, 2012. Effects of feeding of two potentially probiotic preparations from lactic acid bacteria on the performance and faecal microflora of broiler chickens. Sci. World J. 10.1100/2012/562635

Farsam, H., M. Amanlou, M.R. Radpour, A.N. Salehinia and A. Shafiee, 2003. Composition of the essential oils of wild and cultivated Satureja khuzistanica Jamzad from Iran. Flavour Fragran. J., 19: 308-310.

Fujiwara, Y., C. Masutani, F. Hanaoka and S. Iwai, 1996. Detection, purification and characterization of a protein that binds the (6-4) photoproduct-containing DNA in HeLa cells. Nucleic Acids Symp. Ser., 37: 277-278.

Gajewska, J., J. Riedel, A. Bucka, J. Zabik and M. Michalczuk, 2012. Influence of prebiotics and butyric acid on the composition of intestinal microflora of broiler chickens. Ann. Warsaw Univ. Life Sci.-SGGW Anim. Sci, 51: 47-53.

Ganguly, S., 2013. Promising pharmaceutical effect of various biological and inorganic agents as feed supplements for livestock and poultry with discussion on research proven facts and establishment of concept: A specialized review. Int. J. Res. Pharm. Life Sci., 1: 115-120.
Gaskins, H.R., R.I. Mackie, T. May and K.A. Garleb, 1996. Dietary fructo-oligosaccharide modulates large intestinal inflammatory responses to Clostridium difficile in antibiotic-compromised mice. Microb. Ecol. Health Dis., 9: 157-166.

Giannenas, I., E. Tsalie, E. Chronis, S. Mavridis, D. Tontis and I. Kyriazakis, 2011. Consumption of Agaricus bisporus mushroom affects the performance, intestinal microbiota composition and morphology and antioxidant status of turkey poults. Animal Feed Sci. Technol., 165: 218-229.

Gibson, G.R. and M.B. Roberfroid, 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr., 125: 1401-1412.

Grashorn, M.A., 2010. Use of phytobiotics in broiler nutrition-an alternative to in feed antibiotics? J. Anim. Feed Sci., 19: 338-347.

Griggs, J.P. and J.P. Jacob, 2005. Alternatives to antibiotics for organic poultry production. J. Applied Poult. Res., 14: 750-756.

Guo, F.C., B.A. Williams, R.P. Kwakkel, H.S. Li and X.P. Li et al., 2004. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. Poult. Sci., 83: 175-182.

Gupta, S., M.A. Choudhry and J.N.S. Yadava, 1990. Antidiarrioeal activity diterpenes of Andrographis paniculata (Kalmegh) agent Escherichia coli enterotoxin in vivo models. Int. J. Crude Drug Res., 28: 273-283.

Haghighi, H.R., J. Gong, C.L. Gyles, M.A. Hayes and H. Zhou et al., 2006. Probiotics stimulate production of natural antibodies in chickens. Clin. Vaccine Immunol., 13: 975-980.

Hajati, H. and M. Rezaei, 2010. The application of prebiotics in poultry production. Int. J. Poult. Sci., 9: 298-304.

Hara, Y., 1997. Influence of tea catechins on the digestive tract. J. Cell. Biochem., 27: 52-58.

Hashemi, S.R. and H. Davoodi, 2010. Phytogenics as new class of feed additive in poultry industry. J. Anim. Vet. Adv., 9: 2295-2304.

Hashemi, S.R., I. Zulkifli, H. Davoodi, M.H. Bejo and T.C. Loh, 2014. Intestinal histomorphology changes and serum biochemistry responses of broiler chickens fed herbal plant (Euphorbia hirta) and mix of acidifier. Iran. J. Applied Anim. Sci., 4: 95-103.

Hashemipour, H., H. Kermanshahi, A. Golian and T. Veldkamp, 2013. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities and immune response in broiler chickens. Poult. Sci., 92: 2059-2069.

He, J., J. Yin, L. Wang, B. Yu and D. Chen, 2010. Functional characterisation of a recombinant xylanase from Pichia pastoris and effect of the enzyme on nutrient digestibility in weaned pigs. Br. J. Nutr., 103: 1507-1513.

He, X., H. Zhang, X. Yang, S. Zhang, Q. Dai, W. Xiao and G. Ren, 2007. Modulation of immune function by conjugated linoleic acid in chickens. Food Agric. Immunol., 18: 169-178.

Hernandez, F., V. Garcia, J. Madrid, J. Orengo, P. Catala and M.D. Megias, 2006. Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. Br. Poult. Sci., 47: 50-56.

Higgins, J.P., S.E. Higgins, A.D. Wolfenden, S.N. Henderson and A. Torres-Rodriguez et al., 2010. Effect of lactic acid bacteria probiotic culture treatment timing on Salmonella enteritidis in neonatal broilers. Poult. Sci., 89: 243-247.

Ho, T.Y., H.Y. Lo, C.C. Li, J.C. Chen and C.Y. Hsiang, 2013. In vitro and in vivo bioluminescent imaging to evaluate anti-Escherichia coli activity of Galla Chinensis. BioMedicine, 3: 160-166.
Huang, L.Z., H. Zhao, B. Huang, C. Zheng and W. Peng et al., 2011. Acanthopanax senticosus: Review of botany, chemistry and pharmacology. Pharmazie, 66: 83-97.

Humphrey, B.D. and K.C. Klasing, 2003. Modulation of nutrient metabolism and homeostasis by the immune system. Proceedings of the European Symposium on Poultry Nutrition, August 10-14, 2003, Lillehammer, Norway.

Huyghebaert, G., R. Ducatelle and F. van Immerseel, 2011. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J., 187: 182-188.

Iji, P.A., A.A. Saki and D.R. Tivey, 2001. Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. J. Sci. Food Agric., 81: 1186-1192.

Ishihara, N., D.C. Chu, S. Akachi and L.R. Juneja, 2001. Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livest. Prod. Sci., 68: 217-229.

Izat, A.L., N.M. Tidwell, R.A. Thomas, M.A. Reiber, M.H. Adams, M. Colberg and P.W. Waldroup, 1990. Effects of buffered propionic acid in diets on the performance of broiler chicken and on microflora of the intestine and carcass. Poult. Sci., 69: 818-826.

Jamroz, D., J. Orda, C. Kamel, A. Wiliczkiewicz, T. Wertelecki and J. Skorupinska, 2003. The influence of phytochemical extracts on performance, nutrient digestibility, carcass characteristics and gut microbial status in broiler chickens. J. Anim. Feed Sci., 12: 583-596.

Jang, J.P., 2011. Effect of different levels of coriander oil on performance and blood parameters of broiler chicks. Ann. Biol. Res., 2: 578-583.

Jang, S.I., M.H. Jun, H.S. Lillehoj, R.A. Dalloul, I.K. Kong, S. Kim and W. Min, 2007. Anticoccidial effect of green tea-based diets against Eimeria maxima. Vet. Parasitol., 144: 172-175.

Jin, L.Z., Y.W. Ho, N. Abdullah and S. Jalaludin, 1997. Probiotics in poultry: Modes of action. World's Poult. Sci. J., 53: 351-368.

Kamel, C., 2001. Natural Plant Extracts: Classical Remedies Bring Modern Animal Production Solutions. In: Sow Feed Manufacturing in the Mediterranean Region: Improving safety: From Feed to Food, Brufau, J. (Ed.). CIHEAM., Reus, Spain, pp: 31-38.

Kapoor, I.P.S., B. Singh, G. Singh, V. Isidorov and L. Szczepaniak, 2008. Chemistry, antifungal and antioxidant activities of cardamom (Amomum subulatum) essential oil and oleoresins. Int. J. Essential Oil Ther., 2: 29-40.

Khaksefidi, A. and S. Rahimi, 2005. Effect of probiotic inclusion in the diet of broiler chickens on performance, feed efficiency and carcass quality. Asian Aust. J. Anim. Sci., 18: 1153-1156.

Khan, R.U., S. Naz, Z. Nikousefat, V. Tufarelli and V. Laudadio, 2012a. <>: Alternative to antibiotics in poultry feed. World's Poult. Sci. J., 68: 401-408.

Khan, R.U., S. Naz, Z. Nikousefat, V. Tufarelli, M. Javidani, M.S. Qureshi and V. Laudadio, 2012b. Potential applications of ginger (Zingiber officinale) in poultry diets. World's Poult. Sci. J., 68: 245-252.

Khan, S.H., 2014. The use of green tea (Camellia sinensis) as a phytochemical substance in poultry diets. Onderstepoort J. Vet. Res., 81: 1-8.

Killeen, G.F., C.R. Connolly, G.A. Walsh, C.F. Duffy, D.R. Headon and R.F. Power, 1998. The effects of dietary supplementation with Yucca schidigera extract or fractions thereof on nitrogen metabolism and gastrointestinal fermentation processes in the rat. J. Sci. Food Agric., 76: 91-99.

Kim, D.K., H.S. Lillehoj, S.H. Lee, S.I. Jang, E.P. Lillehoj and D. Bravo, 2013. Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poult. Sci., 92: 2635-2643.
Kim, G.B., Y.M. Seo, C.H. Kim and I.K. Paik, 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora and immune response of broilers. Poult Sci., 90: 75-82.
Kizirwetter-Swida, M. and M. Binek, 2009. Protective effect of potentially probiotic Lactobacillus strain on infection with pathogenic bacteria in chickens. Pol. J. Vet. Sci., 12: 15-20.
Knap, I., A.B. Kehlet, M. Bennedsen, G.F. Mathis and C.L. Hofacre et al., 2011. *Bacillus subtilis* (DSM17299) significantly reduces *Salmonella* in broilers. Poult. Sci., 90: 1690-1694.
Kong, X.F., F.G. Yin, Q.H. He, H.J. Liu and T.J. Li et al., 2009. *Acanthopanax senticosus* extract as a dietary additive enhances the apparent ileal digestibility of amino acids in weaned piglets. Livest. Sci., 123: 261-267.
Kudoh, K., J. Shimizu, M. Wada, T. Takita, Y. Kanke and S. Innami, 1998. Effect of indigestible saccharides on B lymphocyte response of intestinal mucosa and cecal fermentation in rats. J. Nutr. Sci. Vitaminol., 44: 103-112.
Kumar, S., R. Malhotra and Dinesh Kumar, 2010. Euphorbia hirta: Its chemistry, traditional and medicinal uses and pharmacological activities. Pharmacogn Rev., 4: 58-61.
Kumari, C.S., S. Govindasamy and E. Sukumar, 2006. Lipid lowering activity of Eclipta prostrata in experimental hyperlipidemia. J. Ethnopharmacol., 105: 332-335.
Kutlu, H.R., I. Unsal and M. Gorgulu, 2001. Effects of providing dietary wood (oak) charcoal to broiler chicks and laying hens. Anim. Feed Sci. Technol., 90: 213-226.
La Ragione, R.M. and M.J. Woodward, 2003. Competitive exclusion by *Bacillus subtilis* spores of *Salmonella enterica* serotype Enteritidis and *Clostridium perfringens* in young chickens. Vet. Microbiol., 94: 245-256.
Lan, P.T., M. Sakamoto and Y. Benno, 2004. Effects of two probiotic *Lactobacillus* strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol. Immunol., 48: 917-929.
Landy, N., G. Ghalamkari and M. Toghyani, 2011. Performance, carcass characteristics and immunity in broiler chickens fed dietary neem (*Azadirachta indica*) as alternative for an antibiotic growth promoter. Livestock Sci., 142: 305-309.
Laudadio, V., A. Dambrosio, G. Normanno, R.U. Khan, S. Naz, E. Rowghani and V. Tufarelli, 2012. Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biol. Res., 5: 88-92.
Leandro, N.S.M., A.S.C. Oliveira, E. Gonzales, M.B. Cafè, L.H. Stringhini and M.A. Andrade, 2010. [Probiotic in diet or inoculated in fertilized eggs. 1. Performance of broiler chicks challenged with *Salmonella enteritidis*]. Rev. Bras. Zootecn., 39: 1509-1516.
Lee, H.S. and Y.J. Ahn, 1998. Growth-inhibiting effects of *Cinnamomum cassia* bark-derived materials on human intestinal bacteria. J. Agric. Food Chem., 46: 8-12.
Lee, K.W., H. Everts and A.C. Beynen, 2004. Essential oils in broiler nutrition. Int. J. Poult. Sci., 3: 738-752.
Lee, S.H., H.S. Lillehoj, S.I. Jang, D.K. Kim, C. Ionescu and D. Bravo, 2010. Effect of dietary curcuma, capsicum and lentinus on enhancing local immunity against *Eimeria acervulina* infection. J. Poult. Sci., 47: 89-95.
Lee, T.T., C.L. Chen, C.C. Wang and B. Yu, 2012. Growth performance and antioxidant capacity of broilers supplemented with *Echinacea purpurea* L. in the diet. J. Applied Poult. Res., 21: 484-491.
Li, X.Q., L. Qiang, Liu and C.L. Xu, 2008. Effects of supplementation of fructooligosaccharide and/or *Bacillus subtilis* to diets on performance and on intestinal microflora in broilers. Archiv. fur Tierzucht, 51: 64-70.
Lievin, V., I. Peiffer, S. Hudault, F. Rochat, D. Brassart, J.R. Neeser and A.I. Servin, 2000. *Bifidobacterium* strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 47: 646-652.

Lievin-Le Moal, V. and A.L. Servin, 2006. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides and microbiota. Clin. Microbiol. Rev., 19: 315-337.

Lindberg, J.E., 2014. Fiber effects in nutrition and gut health in pigs. J. Anim. Sci. Biotechnol., Vol. 5, No. 1. 10.1186/2049-1891-5-15

Marinova, E.M., A. Toneva and N. Yanishlieva, 2009. Comparison of the antioxidative properties of caffeic and chlorogenic acids. Food Chem., 114: 1498-1502.

Maroufyan E., A. Kasim, M. Ebrahim, T.C. Loh and M. Hair-Bejo et al., 2012. Omega-3 polyunsaturated fatty acids enrichment alters performance and immune response in infectious bursal disease challenged broilers. Lipids Health Dis., Vol. 11. 10.1186/1476-511X-11-15

Martin-Venegas, R., M.T. Brufau, A.M. Guerrero-Zamora, Y. Mercier, P.A. Geraert and R. Ferrer, 2013. The methionine precursor DL-2-hydroxy-(4-methylthio) butanoic acid protects intestinal epithelial barrier function. Food Chem., 141: 1702-1709.

McDevitt, R.M., J.D. Brooker, T. Acamovic and N.H.C. Sparks, 2006. Necrotic enteritis: A continuing challenge for the poultry industry. World's Poult. Sci. J., 62: 221-247.

Michels, M.G., L.C. Bertolini, A.F. Esteves, P. Moreira and S.C. Franca, 2011. Anticoccidial effects of coumestans from *Eclipta alba* for sustainable control of *Eimeria tenella* parasitosis in poultry production. Vet. Parasitol., 177: 55-60.

Mirzaei-Aghsaghali, A., 2012. Importance of medical herbs in animal feeding: A review. Ann. Biol. Res., 3: 918-923.

Mondal, S.K., B. Ray, S. Thakur and P.K. Ghosal, 2001. Isolation, purification and some structural features of the mucilaginous exudate from *Musa paradisiacal*. Fitoterapia, 72: 263-271.

Mookiah, S., C.C. Sieo, K. Ramasamy, N. Abdullah and Y.W. Ho, 2014. Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J. Sci. Food Agric., 94: 341-348.

Mountzouris, K.C., P. Tsirtsikos, E. Kalamara, S. Nitsch, G. Schatzmayr and K. Fegeros, 2007. Evaluation of the efficacy of a probiotic containing *Lactobacillus*, *Bifidobacterium*, *Enterococcus* and *Pediococcus* strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci., 86: 309-317.

Muchtaridi, A. Subarnas, A. Apriyantono and R. Mustarichie, 2010. Identification of compounds in the essential oil of nutmeg seeds (*Myristica fragrans* houtt.) that inhibit locomotor activity in mice. Int. J. Mol. Sci., 11: 4771-4781.

Mueller, K., M.B. Nicole, H. Kluge, R. Bauerfeind and J. Froehlich et al., 2012. Effects of broccoli extract and various essential oils on intestinal and faecal microflora and on xenobiotic enzymes and the antioxidant system of piglets. Open J. Anim. Sci., 2: 78-98.

Nabizadeh, A., 2012. The effect of inulin on broiler chicken intestinal microflora, gut morphology and performance. J. Anim. Feed Sci., 21: 725-734.

Nasiri, F., T.B. Ghiassi, A.R. Bassiri, S.E. Hoseini and M. Aminafshar, 2013. Comparative study on the main chemical composition of button mushroom's (*Agaricus bisporus*) cap and stipe. J. Food Biosci. Technol., 3: 41-48.

Nurmi, E. and M. Rantala, 1973. New aspects of *Salmonella* infection in broiler production. Nature, 241: 210-211.
Nweze, N.E. and I.S. Obiwulu, 2009. Anticoccidial effects of Ageratum conyzoides. J. Ethnopharmacol., 122: 6-9.

Ocak, N., G. Erener, F. Burak Ak, M. Sungu, A. Altop and A. Ozmen, 2008. Performance of broilers fed diets supplemented with dry peppermint (Mentha piperita L.) or thyme (Thymus vulgaris L.) leaves as growth promoter source. Czech J. Anim. Sci., 53: 169-175.

Ogbe, A.O., S.E. Atawodi, P.A. Abdu, A. Sannusi and A.E. Itodo, 2009. Changes in weight gain, faecal oocyst count and packed cell volume of Eimeria tenella-infected broilers treated with a wild mushroom (Ganoderma lucidum) aqueous extract. J. S. Afr. Vet. Assoc., 80: 97-102.

Ontario, G., 2012. Prebiotics and β-glucan in modulation of growth performance, nutrient utilization and alkaline phosphatase kinetics in the weanling pig. M.Sc. Thesis, University of Guelph, Canada.

Owen, O.J., M.B. Nodu, U.A. Dike and H.M. Ideozu, 2012. The effects of dietary kaolin (clay) as feed additive on the growth performance of broiler chickens. Greener J. Agric. Sci., 2: 233-236.

Padihari, V.P., S.P. Tiwari, T. Sahu, M.K. Gendley and S.K. Naik, 2014. Effects of mannan oligosaccharide and Saccharomyces cerevisiae on gut morphology of broiler chickens. J. World's Poult. Res., 4: 56-59.

Panda, K., S.V.R. Rao and M.V.L.N. Raju, 2006. Natural growth promoters have potential in poultry feeding systems. Feed Tech., 10: 23-35.

Partanen, K.H. and Z. Mroz, 1999. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev., 12: 117-145.

Pascual, M., M. Hugas, J.I. Badiola, J.M. Monfort and M. Garrgia, 1999. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Applied Environ. Microbiol., 65: 4981-4986.

Pasteiner, S., 2006. New natural concept for poultry gut health. Int. Poult. Prod., 14: 17-17.

Paul, I., D.P. Isore, S.N. Joardar, B. Roy, R. Aich and S. Ganguly, 2013. Effect of dietary yeast cell wall preparation on innate immune response in broiler chickens. Indian J. Anim. Sci., 83: 307-309.

Pelican, E.R.L., P.A. Souza, H.B.A. Souza, D.F. Figueiredo, M.M. Boiago and V.F. Bordon, 2005. Intestinal mucosa development in broiler chicken fed natural growth promoters. Rev. Bras. Cienc. Avic., 7: 221-229.

Pereira, V., C. Dias, M.C. Vasconcelos, E. Rosa and M.J. Saavedra, 2014. Antibacterial activity and synergistic effects between Eucalyptus globulus leaf residues (essential oils and extracts) and antibiotics against several isolates of respiratory tract infections (Pseudomonas aeruginosa). Ind. Crops Prod., 52: 1-7.

Peric, L., N. Milosevic, D. Zikic, S. Bjedov and D. Cvetkovic et al., 2010. Effects of probiotic and phytogetic products on performance, gut morphology and cecal microflora of broiler chickens. Arch. Anim. Breeding, 53: 350-359.

Pettey, L.A., S.D. Carter, B.W. Senne and J.A. Shriver, 2002. Effect of β-mannanase addition to corn-soybean meal diets on growth performance, carcass traits and nutrient digestibility of weanling and growing-finishing pigs. J. Anim. Sci., 80: 1012-1019.

Pourhossein, Z., A.A.A. Qotbi, A. Seidavi, V. Laudadio, G. Centoducati and V. Tufarelli, 2015. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens. Anim. Sci. J., 86: 105-110.

Rabsch, W., B.M. Hargis, R.M. Tsolis, R.A. Kingsley, K.H. Hinz, H. Tschape and A.J. Baumler, 2000. Competitive exclusion of Salmonella enteritidis by Salmonella gallinarum in poultry. Emerg. Infect. Dis., 6: 443-448.
Ranaa, V.S. and M.A. Blazquez, 2003. Chemical composition of the volatile oil of *Ageratum conyzoides* aerial parts. Int. J. Aromather., 13: 203-206.

Remmal, A., S. Achahbar, L. Bouddine, N. Chami and F. Chami, 2011. *In vitro* destruction of *Eimeria* oocysts by essential oils. Vet. Parasitology, 182: 121-126.

Rodriguez-Fragoso, L., A. Sandoval-Ocampo, M. Corbala-Nava, C.A. Arjona-Canul and D.L. Gomez-Galicia *et al.*, 2012. Evaluation regarding the efficacy and safety of a probiotic mixture in healthy volunteers with evacuation disorders. Food Nutr. Sci., 3: 117-122.

Salem, A.M.Z., M.Z.M. Salem, M. Gonzalez-Ronquillo, L.M. Camacho and M. Cipriano, 2011. Major chemical constituents of *Leucaena leucocephala* and *Salix babylonica* leaf extracts. J. Trop. Agric., 49: 95-98.

Salgado-Transito, L., J.C. Del Rio-Garcia, J.L. Arjona-Roman, E. Moreno-Martinez and A. Mendez-Albores, 2011. Effect of citric acid supplemented diets on aflatoxin degradation, growth performance and serum parameters in broiler chickens. Archivos de Medicina Veterinaria, 43: 215-222.

Sanders, M.E., 1999. Probiotics. Food Technolol., 53: 67-75.

Saraswathi, J., K. Venkatesh, N. Baburao and A. Roja Rani, 2011. Phytopharmacological importance of *Pelargonium* species. J. Med. Plant Res., 5: 2587-2598.

Schade, R., E.G. Calzado, R. Sarmiento, P.A. Chacana, J. Porankiewicz-Asplund and H.R. Terzolo, 2005. Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine. Altern. Lab. Anim., 33: 129-154.

Schiavone, A., K. Guo, S. Tassone, L. Gasco, E. Hernandez, R. Denti and I. Zoccarato, 2008. Effects of a natural extract of chestnut wood on digestibility, performance traits and nitrogen balance of broiler chickens. Poult. Sci., 87: 521-527.

Sethiya, N.K., S.G. Thakore and S.H. Mishra, 2009. Comparative evaluation of commercial sources of indigenous medicine shankhpushpi for anti-stress potential a preliminary study. Pharmacol. Online, 2: 460-467.

Sethiya, N.K., M.M.M. Raja and S.H. Mishra, 2013. Antioxidant markers based TLC-DPPH differentiation on four commercialized botanical sources of *Shankhpushpi* (A Medhya Rasayana): A preliminary assessment. J. Adv. Pharm. Technol. Res., 4: 25-30.

Shahwar, M.K., A.H. El-Ghorab, F.M. Anjum, M.S. Butt, S. Hussain and M. Nadeem, 2012. Characterization of coriander (*Coriandrum sativum* L.) seeds and leaves: Volatile and non volatile extracts. Int. J. Food Properties, 15: 736-747.

Shojaii, A. and M.A. Fard, 2012. Review of pharmacological properties and chemical constituents of *Pimpinella anisum*. ISRN Pharmacy, Vol. 2012. 10.5402/2012/510795

Sienkiewicz, M., M. Lysakowska, M. Pastuszka, W. Bienias and E. Kowalczyk, 2013. The potential of use basil and rosemary essential oils as effective antibacterial agents. Molecules, 18: 9334-9351.

Simon, O., A. Jadamus and W. Vahjen, 2001. Probiotic feed additives-effectiveness and expected modes of action. J. Anim. Feed. Sci., 10: 51-67.

Sims, M.D., K.A. Dawson, K.E. Newman, P. Spring and D.M. Hoogell, 2004. Effects of dietary mannan oligosaccharide, bacitracin methylene disalicylate, or both on the live performance and intestinal microbiology of Turkeys. Poult. Sci., 83: 1148-1154.

Singh, S., B. Sankar, S. Rajesh, K. Sahoo, E. Subudhi and S. Nayak, 2011. Chemical composition of turmeric oil (*Curcuma longa* L. cv. Roma) and its antimicrobial activity against eye infecting pathogens. J. Essential Oil Res., 23: 11-18.
Singh, S.K., P.S. Niranjan, U.B. Singh, S. Koley and D.N. Verma, 2009. Effects of dietary supplementation of probiotics on broiler chicken. Anim. Nutr. Feed Technol., 9: 85-90.

Sinovec, Z. and R. Markovic, 2005. Using Prebiotics in poultry nutrition. Biotech. Anim. Husbandry, 21: 235-239.

Siragusa, G.R., G.J. Haas, P.D. Matthews, R.J. Smith, R.J. Buhr, N.M. Dale and M.G. Wise, 2008. Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. J. Antimicrob. Chemother., 61: 853-858.

Sommer, F. and F. Backhed, 2013. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol., 11: 227-238.

Srinivasan, K., 2007. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit. Rev. Food Sci. Nutr., 47: 735-748.

Stein, H.H. and D.Y. Kil, 2006. Reduced use of antibiotic growth promoters in diets fed to weanling pigs: Dietary tools, part 2. Anim. Biotechnol., 17: 217-231.

Stern, N.J., E.A. Svetoch, B.V. Eruslanov, V.V. Perelygin and E.V. Mitsevich et al., 2006. Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemother., 50: 3111-3116.

Sugiharto, S., 2014. Role of nutraceuticals in gut health and growth performance of poultry. J. Saudi Soc. Agric. Sci. 10.1016/j.jssas.2014.06.001

Szczurek, W., 2008. Dried whey products and their use in diets for broilers. Nutritional and physiological aspects. Wiadomosci Zootechniczne, 4: 41-52.

Tako, E., R.P. Glahn, M. Knez and J.C. Stangoulis, 2014. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens. Nutr. J., Vol. 13.

Thacker, P.A., 2013. Alternatives to antibiotics as growth promoters for use in swine production: A review. J. Anim. Sci. Biotechnol., Vol. 4. 10.1186/2049-1891-4-35

Thanissery, R., J.L. McReynolds, D.E. Conner, K.S. Macklin, P.A. Curtis and Y.O. Fasina, 2010. Evaluation of the efficacy of yeast extract in reducing intestinal Clostridium perfringens levels in broiler chickens. Poult. Sci., 89: 2380-2388.

Tomer, K., N.K. Sethiya, A. Shete and V. Singh, 2010. Isolation and characterization of total volatile components from leaves of Citrus limon linn. J. Adv. Pharm. Technol. Res., 1: 49-55.

Van Parys, A., F. Boyen, J. Dewulf, F. Haesebrouck and F. Pasmans, 2010. The use of tannins to control Salmonella typhimurium infections in pigs. Zoonoses Public Health, 57: 423-428.

Vidanarachchi, J.K., L.L. Mikkelsen, I.M. Sims, P.A. Iji and M. Choct, 2006. Selected plant extracts modulate the gut microflora in broilers. Aust. Poult. Sci. Symp., 18: 145-148.

Vidanarachchi, J.K., L.L. Mikkelsen, C.C. Constantinoiu, M. Choct and P.A. Iji, 2013. Natural plant extracts and prebiotic compounds as alternatives to antibiotics in broiler chicken diets in a necrotic enteritis challenge model. Anim. Prod. Sci., 53: 1247-1259.

Vogt, H., S. Matthes and S. Harnisch, 1982. Effect of organic acids in rations on the performances of broilers. Arch. Geflugelkd., 46: 223-227.

Vondruskova, H., R. Slamova, M. Trckova, Z. Zraly and I. Pavlik, 2010. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Vet. Med., 55: 199-224.

Waldenstedt, L., J. Inborr, I. Hansson and K. Elwinger, 2003. Effects of astaxanthin-rich algal meal (Haematococcus pluvalis) on growth performance, caecal campylobacter and clostridial counts and tissue astaxanthin concentration of broiler chickens. Anim. Feed Sci. Technol., 108: 119-132.
Wallace, R.J., W. Oleszek, C. Franz, I. Hahn, K.H.C. Baser, A. Mathe and K. Teichmann, 2010. Dietary plant bioactives for poultry health and productivity. Br. Poult. Sci., 51: 461-487.

Wang, F., D. Yang, S. Ren, H. Zhang and R. Li, 1999. Chemical composition of essential oil from leaves of *Litsea cubeba* and its antifungal activities. Zhong Yao Cai, 22: 400-402.

Wang, M.L., X. Suo, J.H. Gu, W.W. Zhang, Q. Fang and X. Wang, 2008. Influence of grape seed proanthocyanidin extract in broiler chickens: Effect on chicken coccidiosis and antioxidant status. Poult. Sci., 87: 2273-2280.

Wang, R., D. Li and S. Bourne, 1998. Can 2000 years of herbal medicine history help us solve problems in the year 2000. Proceedings of Alltech's 14th Annual Symposium, (AAS'98), Kentucky, USA., pp: 273-291.

Williams, J., S. Mallet, M. Leconte, M. Lessire and I. Gabriel, 2008. The effects of fructooligosaccharides or whole wheat on the performance and digestive tract of broiler chickens. Br. Poult. Sci., 49: 329-339.

Willis, W.L., O.S. Isikhuemhen and S.A. Ibrahim, 2007. Performance assessment of broiler chickens given mushroom extract alone or in combination with probiotics. Poult. Sci., 86: 1856-1860.

Woo, K.C., B.Y. Jung, M.K. Lee and I.K. Paik, 2006. Effects of supplementary Safmannan (beta glucan and MOS) and World-Las (multiple probiotics) on the performance, nutrient availability, small intestinal microflora and immune response in broiler chicks. Korean J. Poult. Sci., 33: 151-158.

Xie, Q., J. Li and X. Zhou, 2008. Anticaries effect of compounds extracted from *Galla chinensis* in a multispecies biofilm model. Oral Microbiol. Immunol., 23: 459-465.

Yilmaz, S., S. Ergun and N. Soytas, 2013. Dietary supplementation of cumin (*Cuminum cyminum*) preventing streptococcal disease during first-feeding of Mozambique tilapia (*Oreochromis mossambicus*). J. BioSci. Biotech., 2: 117-124.

Yan, L. and I.H. Kim, 2012. Effect of eugenol and cinnamaldehyde on the growth performance, nutrient digestibility, blood characteristics, fecal microbial shedding and fecal noxious gas content in growing pigs. Asian-Aust. J. Anim. Sci., 25: 1178-1183.

Yang, Y., P.A. Iji, A. Kocher, L.L. Mikkelsen and M. Choct, 2008. Effects of dietary mannanoligosaccharide on growth performance, nutrient digestibility and gut development of broilers given different cereal-based diets. J. Anim. Physiol. Anim. Nutr., 92: 650-659.

Yang, Y., P.A. Iji and M. Choct, 2009. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. Worlds Poult. Sci. J., 65: 97-114.

Yegani, M. and D.R. Korver, 2008. Factors affecting intestinal health in poultry. Poult. Sci., 87: 2052-2063.

Yuan, S.L., X.S. Piao, D.F. Li, S.W. Kim, H.S. Lee and P.F. Guo, 2006. Effects of dietary *Astragalus* polysaccharide on growth performance and immune function in weaned pigs. Anim. Sci., 62: 501-507.

Zhou, P., Y.Q. Tan, L. Zhang, Y.M. Zhou, F. Gao and G.H. Zhou, 2014. Effects of dietary supplementation with the combination of zeolite and attapulgite on growth performance, nutrient digestibility, secretion of digestive enzymes and intestinal health in broiler chickens. Asian-Aust. J. Anim. Sci., 27: 1311-1318.