A New Class of Anisotropic Charged Compact Star

B. S. Ratanpal
Department of Applied Mathematics, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara - 390 001, India

bharatratnapal@gmail.com

and

Piyali Bhar
Department of Mathematics, Government General Degree College, Singur, Hooghly, West Bengal-712409, India

piyalibhar90@gmail.com

Received ________________; accepted ________________
ABSTRACT

A new model of charged compact star is reported by solving the Einstein-Maxwell field equations by choosing a suitable form of radial pressure. The model parameters ρ, p_r, p_\perp and E^2 are in closed form and all are well behaved inside the stellar interior. A comparative study of charged and uncharged model is done with the help of graphical analysis.

Subject headings: General relativity; Exact solutions; Anisotropy; Relativistic compact stars; Charged distribution
1. Introduction

To find the exact solution of Einstein’s field equations is difficult due to its non-linear nature. A large number of exact solutions of Einstein’s field equations in literature but not all of them are physically relevant. A comprehensive collection of static, spherically symmetric solutions are found in Stephani et al (2003) and Delgaty and Lake (1998). A large collection of models of stellar objects incorporating charge can be found in literature. Stettner (1973) proposed that a fluid sphere of uniform density with a net surface charge is more stable than without charge. An interesting observation of Krasinski (1997) is that in the presence of charge, the gravitational collapse of a spherically symmetric distribution of matter to a point singularity may be avoided. Charged anisotropic matter with linear equation of state is discussed by Thirukkanesh and Maharaj (2008). Joshi (1993) found that the solutions of Einstein-Maxwell system of equations are important to study the cosmic censorship hypothesis and the formation of naked singularities. The presence of charge affects the values for redshifts, luminosities, and maximum mass for stars. Charged perfect fluid sphere satisfying a linear equation of state was discussed by Ivanov (2002). Regular models with quadratic equation of state was discussed by Takisa and Maharaj (2013). They obtained exact and physically reasonable solution of Einstein-Maxwell system of equations. Their model is well behaved and regular. In particular there is no singularity in the proper charge density. Varela et al (2010) considered a self gravitating, charged and anisotropic fluid sphere. To solve Einstein-Maxwell field equation they have assumed both linear and nonlinear equation of state and discussed the result analytically. Feroze and Siddiqui (2011) extend the work of Thirukkanesh and Maharaj (2008) by considering quadratic equation of state for the matter distribution to study the general situation of a compact relativistic body in presence of electromagnetic field and anisotropy.

Ruderman (1972) investigated that for highly compact astrophysical objects like X-ray pulsar, Her-X-1, X-ray buster 4U 1820-30, millisecond pulsar SAX J 1804.4-3658, PSR J1614-2230,
LMC X-4 etc. having core density beyond the nuclear density ($\sim 10^{15} \text{gm/cm}^3$) there can be pressure anisotropy, i.e., the pressure inside these compact objects can be decomposed into two parts radial pressure p_r and transverse pressure p_\perp perpendicular direction to p_r.

$\Delta = p_r - p_\perp$ is called the anisotropic factor which measures the anisotropy. The reason behind these anisotropic nature are the existence of solid core, in presence of type 3A superfluid Kippenhahn and Weigert (1990), phase transition Sokolov (1980), pion condensation Sawyer (1972), rotation, magnetic field, mixture of two fluid, existence of external field etc. Local anisotropy in self gravitating systems were studied by Herrera and Santos (1997). Dev and Gleiser (2002) demonstrated that pressure anisotropy affects the physical properties, stability and structure of stellar matter. Relativistic stellar model admitting a quadratic equation of state was proposed by Sharma and Ratanpal (2013) in finch-skea spacetime. Pandya et al (2015) has generalized earlier work in modified Finch-Skea spacetime by incorporating a dimensionless parameter n. In a very recent work Bhar (2015) obtained a new model of an anisotropic superdense star which admits conformal motions in the presence of a quintessence field which is characterized by a parameter ω_q with $-1 < \omega_q < -1/3$. The model has been developed by choosing Vaidya and Tikekar (1982) ansatz. Bhar et al (2015) have studied the behavior of static spherically symmetric relativistic objects with locally anisotropic matter distribution considering the Tolman VII form for the gravitational potential g_{rr} in curvature coordinates together with the linear relation between the energy density and the radial pressure.

Charged anisotropic star on paraboloidal spacetime was studied by Ratanpal and Sharma (2016). Ratanpal et al (2016) studied anisotropic star on pseudo-spheroidal spacetime. Charged anisotropic star on pseudo-spheroidal spacetime was studied by Ratanpal et al (2015). The study of compact stars having Matese and Whitman mass function was carried out by Bhar and Ratanpal (2016). Motivated by these earlier works in the present paper we develop a model of compact star by incorporating charge. Our paper is organized as follows: In section 2, interior spacetime and the Einstein-Maxwell system is discussed. Section 3 deals with solution of field equations.
Section 4 contains exterior spacetime and matching conditions. Physical analysis of the model is discussed in section 5. Section 6 contains conclusion.

2. Interior Spacetime

We consider the static spherically symmetric spacetime metric as,

\[ds^2 = e^{\nu(r)} dt^2 - e^{\lambda(r)} dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\phi^2). \]

(1)

Where \(\nu \) and \(\lambda \) are functions of the radial coordinate ‘r’ only.

Einstein-Maxwell Field Equations is given by

\[R^j_i - \frac{1}{2} R \delta^j_i = 8\pi \left(T^j_i + \pi^j_i + E^j_i \right), \]

(2)

where,

\[T^j_i = (\rho + p) u^i u^j - p \delta^j_i, \]

(3)

\[\pi^j_i = \sqrt{3} S \left[c^i c^j - \frac{1}{2} (u^i u^j - \delta^j_i) \right], \]

(4)

and

\[E^j_i = \frac{1}{4\pi} \left(-F^{ik}F_{jk} + \frac{1}{4} F_{mn}F^{mn} \delta^j_i \right). \]

(5)

Here \(\rho \) is proper density, \(p \) is fluid pressure, \(u_i \) is unit four velocity, \(S \) denotes magnitude of anisotropic tensor and \(C^i \) is radial vector given by \(\left(0, -e^{-\lambda/2}, 0, 0 \right) \). \(F_{ij} \) denotes the anti-symmetric electromagnetic field strength tensor defined by

\[F_{ij} = \frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}. \]

(6)

that satisfies the Maxwell equations

\[F_{ij,k} + F_{jk,i} + F_{ki,j} = 0, \]

(7)
\[
\frac{\partial}{\partial x^k} \left(F^{ik} \sqrt{-g} \right) = 4\pi \sqrt{-g} J^i, \tag{8}
\]

where \(g \) denotes the determinant of \(g_{ij} \), \(A_i = (\phi(r), 0, 0, 0) \) is four-potential and

\[
J^i = \sigma u^i, \tag{9}
\]

is the four-current vector where \(\sigma \) denotes the charge density.

The only non-vanishing components of \(F_{ij} \) is \(F_{01} = -F_{10} \). Here

\[
F_{01} = -e^{\frac{\nu + \lambda}{2} r^2} \int_0^r 4\pi r^2 \sigma e^{\lambda/2} dr, \tag{10}
\]

and the total charge inside a radius \(r \) is given by

\[
q(r) = 4\pi \int_0^r \sigma r^2 e^{\lambda/2} dr. \tag{11}
\]

The electric field intensity \(E \) can be obtained from \(E^2 = -F_{01} F^{01} \), which subsequently reduces to

\[
E = \frac{q(r)}{r^2}. \tag{12}
\]

The field equations given by (2) are now equivalent to the following set of the non-linear ODE’s

\[
\frac{1 - e^{-\lambda}}{r^2} + \frac{e^{-\lambda} \lambda'}{r} = 8\pi \rho + E^2, \tag{13}
\]

\[
\frac{e^{-\lambda} - 1}{r^2} + \frac{e^{-\lambda} \nu'}{r} = 8\pi p_r - E^2, \tag{14}
\]

\[
e^{-\lambda} \left(\frac{\nu''}{2} + \frac{\nu'^2}{4} - \frac{\nu' \lambda'}{4} + \frac{\nu' - \lambda'}{2r} \right) = 8\pi p_\perp + E^2, \tag{15}
\]

where we have taken

\[
p_r = p + \frac{2S}{\sqrt{3}}, \tag{16}
\]

\[
p_\perp = p - \frac{S}{\sqrt{3}}. \tag{17}
\]

\[
8\pi \sqrt{3} S = p_r - p_\perp. \tag{18}
\]
3. Solution of Field Equations

To solve the above set of equations (13)-(15) we take the mass function of the form

\[m(r) = \frac{br^3}{2(1 + ar^2)}, \]

(19)

where ‘a’ and ‘b’ are two positive constants. The mass function given in (19) is known as Matese & Whitman Matese and Whitman (1980) mass function that gives a monotonic decreasing matter density which was used by Mak and Harko (2003) to model an anisotropic fluid star, Lobo (2006) to develop a model of dark energy star, Sharma and Maharaj (2007) to model a class of relativistic stars with a linear equation of state and Thirukkanesh and Maharaj (2008) to model a charged anisotropic matter with linear equation of state.

Using the relationship \(e^{-\lambda} = 1 - \frac{2m}{r} \) and equation (19) we get,

\[e^{\lambda} = \frac{1 + ar^2}{1 + (a - b)r^2}. \]

(20)

From equation (13) and (20) we obtain

\[8\pi \rho = \frac{3b + abr^2}{(1 + ar^2)^2} - E^2. \]

(21)

We choose \(E^2 \) of the form

\[E^2 = \frac{\alpha ar^2}{(1 + ar^2)^2}, \]

(22)

which is regular at the center of the star. Substituting the expression of \(E^2 \) into (21) we get,

\[8\pi \rho = \frac{3b + a(b - \alpha)r^2}{(1 + ar^2)^2}. \]

(23)

To integrate the equation (14) we take radial pressure of the form,

\[8\pi p_r = \frac{bp_0(1 - ar^2)}{(1 + ar^2)^2}, \]

(24)

where \(p_0 \) is a positive constant, the choice of \(p_r \) is reasonable due to the fact that it is monotonic decreasing function of ‘r’ and the radial pressure vanishes at \(r = \frac{1}{\sqrt{a}} \) which gives the radius of the
star.

From (24) and (14) we get,

\[v' = \frac{(bp_0 + b)r - a(bp_0 + a - b)r^3}{(1 + ar^2)[1 + (a - b)r^2]} . \tag{25} \]

Integrating we get,

\[v = log \left\{ \frac{C (1 + ar^2)^{\frac{2bp_0 + a}{2b}}}{[(b - a) r^2 - 1]\left[\frac{(b^2 - 2ab)p_0 + a^2 - aa}{2b^2 - 2ab} \right]} \right\} , \tag{26} \]

where \(C \) is constant of integration, and the spacetime metric in the interior is given by

\[ds^2 = \left\{ \frac{C (1 + ar^2)^{\frac{2bp_0 + a}{2b}}}{[(b - a) r^2 - 1]\left[\frac{(b^2 - 2ab)p_0 + a^2 - aa}{2b^2 - 2ab} \right]} \right\} dt^2 - \left[\frac{1 + ar^2}{1 + (a - b)r^2} \right] dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\phi^2) . \tag{27} \]

From (14), (15) and (18), we have

\[8\pi \sqrt{3} S = \frac{r^2 [A_1 + A_2r^2 + A_3r^4]}{[-4 + B_1r^2 + B_2r^4 + B_3r^6 + B_4r^8]}, \tag{28} \]

where \(A_1 = b^2p_0^2 + 14b^2p_0 - 12abp_0 + 3b^2 - 12aa \),
\[A_2 = -2ab^2p_0^2 + 8ab^2p_0 - 8a^2bp_0 - 2aabp_0 + 2ab^2 + 8aab - 16aa^2 , \]
\[A_3 = a^2b^2p_0^2 - 4a^2b^2p_0 + 4a^3bp_0 + 2a^2b^2p_0 - a^2b^2 + 4aa^2b + 4aa^3 + a^2a^2 , \]
\[B_1 = 4b - 16a, \quad B_2 = 12ab - 24a^2, \quad B_3 = 12a^2b - 16a^3 \text{ and } \quad B_4 = 4a^3b - 4a^4 . \]

From (18) we obtain,

\[8\pi p_\perp = \frac{[4bp_0 + C_1r^2 + C_2r^4 + C_3r^6]}{[4 - B_1r^2 - B_2r^4 - B_3r^6 - B_4r^8]} , \tag{29} \]

where, \(C_1 = b^2p_0^2 - 8abp_0 + 3b^2 - 12aa \),
\[C_2 = -2ab^2p_0^2 + 8ab^2p_0 - 12a^2bp_0 - 2aabp_0 + 2ab^2 + 8aab - 16aa^2 , \]
\[C_3 = a^2b^2p_0^2 + 2aa^2bp_0 - a^2b^2 + 4aa^2b - 4aa^3 + a^2a^2 . \]
4. Exterior Spacetime and Matching Condition

we match our interior spacetime (27) to the exterior Reissner-Nordström spacetime at the boundary $r = r_b$ (where r_b is the radius of the star.). The exterior spacetime is given by the line element

$$ds^2 = \left(1 - \frac{2M}{r} + \frac{q^2}{r^2}\right)dt^2 - \left(1 - \frac{2M}{r} + \frac{q^2}{r^2}\right)^{-1}dr^2 - r^2(d\theta^2 + \sin^2\theta d\phi^2).$$

(30)

By using the continuity of the metric potential g_{rr} and g_{tt} at the boundary $r = r_b$ we get,

$$e^{\nu(r_b)} = 1 - \frac{2M}{r_b} + \frac{q^2}{r^2},$$

(31)

$$e^{\lambda(r_b)} = \left(1 - \frac{2M}{r_b} + \frac{q^2}{r^2}\right)^{-1}.$$

(32)

The radial pressure should vanish at the boundary of the star, hence from equation (24) we obtain

$$a = \frac{1}{r_b^2}.$$

(33)

Using (33) & (19) we obtain

$$b = \frac{4m}{r_b^3}.$$

(34)

We compute the values of ‘a’ and ‘b’ for different compact stars which is given in table 1.

5. Physical Analysis

To be a physically acceptable model matter density (ρ), radial pressure (p_r), transverse pressure (p_\perp) all should be non-negative inside the stellar interior. It is clear from equations (22) and (24) it is clear that p_r is positive throughout the distribution. The profile of ρ and p_\perp are shown in fig. 1 and fig. 2 respectively. From the figure it is clear that all are positive inside the stellar interior.
Fig. 1.— The matter density is plotted against r for the star PSR J1614-2230.

Fig. 2.— The transverse pressure p_t is plotted against r for the star PSR J1614-2230.
The profile of $\frac{d\rho}{dr}$, $\frac{dp_r}{dr}$ and $\frac{dp_\perp}{dr}$ are shown in fig. 3, it is clearly indicates that ρ, p_r and p_\perp are decreasing in radially outward direction. According to Bondi (1999) for an anisotropic fluid sphere the trace of the energy tensor should be positive. To check this condition for our model we plot $\rho - p_r - 2p_\perp$ against r in Fig. 4. From the figure it is clear that our proposed model of compact star satisfies Bondi’s conditions.

Fig. 3.— $\frac{d\rho}{dr}$, $\frac{dp_r}{dr}$ and $\frac{dp_\perp}{dr}$ are plotted against r for the star PSR J1614-2230.

Fig. 4.— $\rho - p_r - 2p_\perp$ is plotted against r for the star PSR J1614-2230.

For a physically acceptable model of anisotropic fluid sphere the radial and transverse velocity of sound should be less than 1 which is known as causality conditions.
Where the radial velocity \((v^2_{sr})\) and transverse velocity \((v^2_{st})\) of sound can be obtained as

\[
\frac{dp_r}{dp} = \frac{bp_0(3 - ar^2)}{5b + \alpha + a(b - \alpha)r^2}.
\]
(35)

\[
\frac{dp_\perp}{dp} = \frac{(1 + ar^2)^3[D_1 + D_2r^2 + D_3r^4 + D_4r^6 + D_5r^8]}{[-10ab - 2a\alpha - 2a^2(b - \alpha)r^2][2 + E_1r^2 + E_2r^4 + E_3r^6 + E_4r^8 + E_5r^{10} + E_6r^{12}]}.
\]
(36)

where,

\[D_1 = b^2p_0^2 + 4b^2p_0 - 24abp_0 + 3b^2 - 12\alpha a,\]

\[D_2 = -6ab^2p_0^2 + 32ab^2p_0 - 24a^2b^2p_0 - 4\alpha abp_0 - 2ab^2 + 16\alpha a - 8\alpha a^2,\]

\[D_3 = 5ab^3p_0^2 - 8ab^3p_0 + 2\alpha ab^2p_0 - 12a^2b^2p_0 + 24a^3bp_0 + 6\alpha a^2bp_0 + 7ab^3 - 12a^2b^2 - 8\alpha ab^2 - 8\alpha a^2b + 24\alpha a^3 + 3\alpha^2a^2,\]

\[D_4 = 6a^3b^2p_0^2 - 6a^2b^3p_0^2 + 16a^2b^3p_0 - 40a^3b^2p_0 - 8\alpha a^2b^2p_0 + 24a^4b^3p_0 + 8\alpha a^3bp_0 + 6a^2b^3 + 8\alpha a^2b^2 - 6a^3b^2 - 32\alpha a^3b - 2\alpha^2a^2b + 24\alpha a^4 + 2\alpha^2a^3,\]

\[D_5 = a^3b^3p_0^2 - a^4b^2p_0^2 + 2\alpha a^3b^2p_0 - 2\alpha a^4b^3p_0 - a^4b^3 + a^3b^2 + 4\alpha a^3b^2 + \alpha^2a^3b - 8\alpha a^4b + 4\alpha a^5 - \alpha^2a^4,\]

\[E_1 = 12a - 4b, \quad E_2 = 2b^2 - 20ab + 30a^2, \quad E_3 = 8ab^2 - 40a^2b + 40a^3, \quad E_4 = 12a^2b^2 - 40a^3b + 30a^4, \]

\[E_5 = 8a^3b^2 - 20a^4b + 12a^5 \quad \text{and} \quad E_6 = 2a^4b^2 - 4a^5b + 2a^6.\]

Due to the complexity of the expression of \(v^2_{sr}\) we prove the causality conditions with the help of graphical representation. The graphs of \((v^2_{sr})\) and \((v^2_{st})\) have been plotted in fig. 5 and fig. 6 respectively. From the figure it is clear that \(0 < v^2_{sr} \leq 1\) and \(0 < v^2_{st} \leq 1\) everywhere within the stellar configuration. Moreover \(\frac{dp_r}{dp}\) and \(\frac{dp_\perp}{dp}\) are monotonic decreasing function of radius ‘r’ for \(0 \leq r \leq r_b\) which implies that the velocity of sound is increasing with the increase of density.

A relativistic star will be stable if the relativistic adiabatic index \(\Gamma > \frac{4}{3}\), where \(\Gamma\) is given by

\[
\Gamma = \frac{\theta + p_r \frac{dp_r}{dp}}{p_r \frac{dp}{dp}}.
\]
(37)
To see the variation of the relativistic index we plot Γ for our present of compact star which is plotted in fig. 7. The figure ensures that our model is stable.

Fig. 5.— $v_{sr}^2 = \frac{d p_r}{d \rho}$ is plotted against r for the star PSR J1614-2230.

Fig. 6.— $v_{st}^2 = \frac{d p \perp}{d \rho}$ is plotted against r for the star PSR J1614-2230.

For an anisotropic fluid sphere all the energy conditions namely Weak Energy Condition (WEC), Null Energy Condition (NEC), Strong Energy Condition (SEC) and Dominant Energy Condition (DEC) are satisfied if and only if the following inequalities hold simultaneously in every point inside the fluid sphere.
Fig. 7.— The adiabatic index Γ is plotted against r for the star PSR J1614-2230.

Compact Star	$M(M_\odot)$	Mass(km)	Radius(km)	$a(km^{-2})$	$b(km^{-2})$	u	z_s
4U 1820-30	1.58	2.33050	9.1	0.012076	0.012370	0.256099	0.431786
PSR J1903+327	1.667	2.45882	9.438	0.011226	0.011699	0.260524	0.444954
4U 1608-52	1.74	2.56650	9.31	0.011537	0.012722	0.275671	0.492941
Vela X-1	1.77	2.61075	9.56	0.010942	0.011952	0.273091	0.484428
PSR J1614-2230	1.97	2.90575	9.69	0.01065	0.012775	0.299871	0.580629
Cen X-3	1.49	2.19775	9.178	0.011871	0.011371	0.239458	0.385309
Table 2: The values of central density, surface density, central pressure and radial velocity of the sound at the origin for different compact stars are obtained.

| Compact Star | central density (ρ_0) | surface density | surface density | central pressure (p_0) | $\frac{dp_0}{dr}|_{r=0}$ |
|--------------|-----------------------------|-----------------|-----------------|--------------------------|--------------------------|
| | $gm.cm^{-3}$ | (uncharged) | (charged) | $dyne.cm^{-2}$ | (charged) |
| 4U 1820-30 | 1.994×10^{15} | 6.648×10^{14} | 6.514×10^{14} | 2.989×10^{35} | 0.295227 |
| PSR J1903+327| 1.886×10^{15} | 6.287×10^{14} | 6.153×10^{14} | 2.827×10^{35} | 0.294958 |
| 4U 1608-52 | 2.051×10^{15} | 6.837×10^{14} | 6.703×10^{14} | 3.074×10^{35} | 0.295357 |
| Vela X-1 | 1.927×10^{15} | 6.423×10^{14} | 6.289×10^{14} | 2.888×10^{35} | 0.295063 |
| PSR J1614-2230 | 2.059×10^{15} | 6.865×10^{14} | 6.731×10^{14} | 3.087×10^{35} | 0.295376 |
| Cen X-3 | 1.833×10^{15} | 6.111×10^{14} | 5.977×10^{14} | 2.748×10^{35} | 0.294815 |

Fig. 8.— The left and middle figures show the dominant energy conditions where as the right figure shows the weak null and strong energy conditions are satisfied by our model for the star PSR J1614-2230.
(i) NEC: $\rho + p_r \geq 0$ \hspace{2cm} (38)

(ii) WEC: $p_r + \rho \geq 0$, $\rho > 0$ \hspace{2cm} (39)

(iii) SEC: $\rho + p_r \geq 0$ \hspace{0.5cm} $\rho + p_r + 2p_\perp \geq 0$ \hspace{2cm} (40)

(iv) DEC: $\rho > |p_r|$, $\rho > |p_\perp|$ \hspace{2cm} (41)

Due to the complexity of the expression of p_\perp we will prove the inequality (38)-(41) with the help of graphical representation. The profiles of the L.H.S of the above inequalities are depicted in fig. 8 for the compact star PSR J1614-2230. The figure shows that all the energy conditions are satisfied by our model of compact star.

Fig. 9.— Variation of anisotropy is shown against r for the star PSR J1614-2230.

The ratio of mass to the radius of a compact star can not be arbitrarily large. Buchdahl (1959) showed that for a (3+1)-dimensional fluid sphere $\frac{2M}{r_b} < \frac{8}{9}$. To see the maximum ratio of mass to
the radius for our model we calculate the compactness of the star given by

\[u(r) = \frac{m(r)}{r} = \frac{br^2}{2(1 + ar^2)}, \]

(42)

and the corresponding surface redshift \(z_s \) is obtained by,

\[1 + z_s(r_b) = [1 - 2u(r_b)]^{-1/2} \]

Therefore \(z_s \) can be obtained as,

\[z_s(r_b) = \left[\frac{1 + (a - b)r_b^2}{1 + ar_b^2} \right]^{\frac{1}{2}} - 1. \]

(43)

The surface redshift of different compact stars are given in table [1].

Fig. 10.— The variation of electric field is shown against \(r \) for the star PSR J1614-2230.

6. Conclusion

We have obtained a new class of solution for charged compact stars having Matese and Whitman (1980) mass function. The electric field intensity is increasing in radially outward direction and the adiabatic index \(\Gamma > \frac{4}{3} \). The physical requirements are checked for the star PSR J1614-2230 and model satisfies all the physical conditions. Some salient features of the model are
(i) In present model if $\alpha = 0$, the model corresponds to Bhar and Ratanpal (2016) model.

(ii) In present model if $\alpha = 0$, $a = b = \frac{1}{R}$, where R is geometric parameter then the model corresponds to Sharma and Ratanpal (2013) model, which is stable for $\frac{1}{3} < p_0 < 0.3944$.

Acknowledgement

BSR is thankful to IUCAA, Pune, for providing the facilities and hospitality where the part of this work was done.
REFERENCES

Delgaty M. S. R and Lake K., *Comput. Phys. Commun.* **115** (1998) 395.

Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact Solutions of Einstein’s Field Equations, 2nd edn.*Cambridge Monographs on Mathematical Physics. Cambridge University Press, New York* (2003).

Stettner R., *Ann.Phys.(N.Y.)* **80** (1973) 212.

Krasinski A., Inhomogeneous cosmological models *Cambridge: Cambridge University Press* (1997).

Thirukkanesh S. and Maharaja S. D., *Class. Quant. Grav.* **25** (2008) 235001-1.

Joshi P. S., Global aspects in gravitation and cosmology *Oxford: Clarendon Press* (1993).

Ivanov B. V., *Phys. Rev. D* **65** (2002) 104001-1.

Takisa M. P. and Maharaj S. D., *Astrophys. Space Sci.* **343** (2013) 569.

Varela V., Rahaman F., Ray S., Chakraborty K. and Kalam M., *Phys. Rev. D.* **82** (2010) 044052-1.

Feroze T. and Siddiqui A. A., *Gen. Rel. Grav.* **43** (2011) 1025.

Thirukkanesh S. and Maharaj S. D., *Class. Quant. Grav.* **25** (2008) 235001-1.

Ruderman R., *Ann. Rev. Astron. Astrophys.* **10** (1972) 427.

Kippenhahn R. and Weigert A., Steller Structure and Evolution *Springer, Berlin* (1990).

Sokolov A.I., *JETP* **79** (1980) 1137.

Sawyer R.F., *Phys. Rev. Lett.* **29** (1972) 382.

Herrera L. and Santos N. O., *Phys. Rep.* **286** (1997) 53.
Dev K. and Gleiser M., *Gen. Rel. Grav.* **34** (2002) 1793.

Sharma R. and Ratanpal B.S. *Int. J. Mod. Phys. D* **22** (2013) 1350074-1.

Pandya D. M., Thomas V.O. and Sharma R., *Astrophys. Space Sci.* **356** (2015) 285.

Bhar P, *Eur. Phys. J. C* **75** (2015) 123.

Vaidya P.C., Tikekar R., *J. Astrophys. Astron* **3** (1982) 325.

Bhar P., Murad M. H. and Pant N., *Astrophys. Space Sci.* **359** (2015) 13.

Matese J. J. and Whitman P. G., *Phys. Rev. D* **11** (1980) 1270.

Mak M. K. and Harko T., *Proc. Roy. Soc. Lond. A* **459** (2003) 393.

Lobo F. S. N., *Class. Quant. Grav.* **23** (2006) 1525.

Sharma R. and Maharaj S. D., *Mon. Not. R. Astron. Soc.* **375** (2007) 1265.

Thirukkanesh S. and Maharaj S. D., *Class. Quant. Grav.* **25** (2008) 235001-1.

Bondi H., *Mon. Not. R. Astron. Soc.* **302** (1999) 337.

Buchdahl H. A., Phys. Rev. **116** (1959) 1027.

Ratanpal B. S. and Sharma J., Pramana J. Phys. **86** (2016) 527.

Ratanpal B. S., Thomas V. O. and Pandya D. M., Astrophys. Space Sci. **361** (2016) 65.

Ratanpal B. S., Thomas V. O. and Pandya D. M., Astrophys. Space Sci. **360** (2015) 53.

Bhar P. and Ratanpal B. S., Astrophys. Space Sci. **361** (2016) 217.

This manuscript was prepared with the AAS LATEX macros v5.2.