EXAMINING SUBGRID MODELS OF SUPER MASSIVE BLACK HOLES IN COSMOLOGICAL SIMULATION

P. M. SUTTER and P. M. RICKER

1 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080, USA; psutter2@illinois.edu
2 Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; pmricker@illinois.edu
3 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Received 2010 April 15; accepted 2010 September 7; published 2010 October 20

ABSTRACT

Although supermassive black holes (SMBHs) play an important role in galaxy and cluster evolution, at present they can only be included in large-scale cosmological simulation via subgrid techniques. However, these subgrid models have not been studied in a systematic fashion. Using a newly developed fast, parallel spherical overdensity halo finder built into the simulation code FLASH, we perform a suite of dark matter-only cosmological simulations to study the effects of subgrid model choice on relations between SMBH mass and dark matter halo mass and velocity dispersion. We examine three aspects of SMBH subgrid models: the choice of initial black hole seed mass, the test for merging two black holes, and the frequency of applying the subgrid model. We also examine the role that merging can play in determining the relations, ignoring the complicating effects of SMBH-driven accretion and feedback. We find that the choice of subgrid model can dramatically affect the black hole merger rate, the cosmic SMBH mass density, and the low-redshift relations to halo properties. We also find that it is possible to reproduce observations of the low-redshift relations without accretion and feedback, depending on the choice of subgrid model.

Key words: black hole physics – cosmology: theory – dark matter – galaxies: evolution – large-scale structure of universe – methods: numerical

1. INTRODUCTION

Supermassive black holes (SMBHs) play a number of roles in the evolution and dynamics of galaxies and clusters of galaxies. These black holes, with masses of at least a million solar masses, and their associated accretion disks drive quasars at high redshift (Fan 2006), regulate star formation in galaxies (Hopkins et al. 2010), inject thermal energy into the intracluster medium via powerful jets (Gu et al. 2009), and may even play a large role in establishing kiloparsec-scale microgauss magnetic fields in clusters (Carilli & Taylor 2002).

Of particular interest are the correlations discovered between SMBH mass and other observed quantities of galaxies. The first discovered relationship between SMBH mass and bulge stellar luminosity (Magorrian et al. 1998) was intriguing but suffered from large scatter. Subsequent searches found a tight correlation between SMBH mass and bulge velocity dispersion \(\sigma \) (Tremaine et al. 2002; Gultekin et al. 2009), although comparable improvements have also been made in the correlations to stellar luminosity (Graham 2007). Most recently, black hole mass has been linked to dark matter halo mass \(M_{\text{tot}} \), both indirectly by measuring galactic circular velocities (Ferrarese 2002) and by direct estimates of halo mass via gravitational lensing (Bandara et al. 2009). The latter measurements agree well with theoretical predictions of the relationship between halo virial mass and galactic circular velocity (Croton 2009).

These relationships imply a correlation between the growth of SMBHs and that of their host galaxies. Since structures form in the universe via hierarchical clustering of smaller objects (Baugh 2006), black holes carried along with their hosts should tend to merge as well (Hopkins et al. 2005). This may provide a simple and direct scaling between halo and black hole mass, especially at low redshift (Volonteri et al. 2003). However, feedback processes driven by accretion disk systems may also contribute to the observed correlations: greater accretion can lead to larger feedback events, thereby reducing the accretion rate and coupling the black hole mass to the surrounding system (Cattaneo & Teyssier 2007).

Attempts to explain the observed relations via cosmological simulations require large volumes (to gather enough objects) and high resolution (to capture galaxy-sized structures). However, even with current computing resources, large-volume simulations are unable to capture all the intricate physical processes that dominate in the formation, merging, and feedback of black holes. Hence, these processes must be added in post-processing as semi-analytic models (e.g., Micic et al. 2007) or included in situ as subgrid models (e.g., Booth & Schaye 2009; Sijacki et al. 2007; Di Matteo et al. 2008).

Many processes have been proposed to explain the formation of seed SMBHs in the early universe, including remnants of Population III stars (Madau & Rees 2001; Wise & Abel 2005), direct collapse of gas in central bulges (Koushiappas et al. 2004; Begelman et al. 2006), and merging of smaller black holes (Islam et al. 2004). Merging black holes are difficult systems to study, since they interact with their gaseous environment (Mayer et al. 2007), emit gravitational radiation (Sesana et al. 2004), and can suffer kicks due to merging (Baker et al. 2008). Additionally, the self-regulating feedback processes emerging from accretion onto black holes and the subsequent formation of jets and bubbles are not fully understood (Vernaleo & Reynolds 2006), especially when considering the effects of magnetic fields (Ruszkowski et al. 2007) and turbulence (Brüggen & Scannapieco 2009). Consequently, subgrid models must make many simplifying assumptions in treating these processes.

The variety of plausible scenarios for forming and merging black holes and applying feedback processes allows modelers great latitude in developing and adjusting models to fit observations. Universally, all aspects of the formation and evolution of SMBHs are combined in the same simulation. However, we believe that subgrid models of the initial seeding and merging of SMBHs (which are linked in subgrid models to the properties of the surrounding dark matter) should be separated from models of accretion and feedback (which depend on the local
gas physics). This way, we can better understand the role that merging alone plays in developing the $M_{bh} - \sigma$ and $M_{bh} - M_{tot}$ relations and the effects of changing subgrid models on those same relations.

Thus, in this paper we examine dark matter-only simulations of the growth of structure in a cosmological volume including subgrid models to track the formation and merging of SMBHs. By comparing the results of several plausible scenarios for models against observed relations, we will determine how many of those relations are due to low-redshift and large-scale evolution of SMBHs, and how these models may affect the final outcomes, independent of any gas accretion or feedback.

To follow our dark matter halos, we have developed a new, parallel, fast halo finder built directly into the simulation code FLASH v2.5. FLASH is an adaptive-mesh refinement (AMR) code for astrophysics and cosmology (Fryxell 2000). FLASH solves the N-body potential problem with a particle-mesh multigrid fast Fourier transform method (Ricker 2008). It uses smoothed cloud-in-cell mapping (P. M. Ricker et al. 2010, in preparation) for interpolating between the mesh and particles (Hockney & Eastwood 1988) and a second-order leapfrog integration scheme for variable time step particle advancement.

In the following section, we discuss the precision and valid mass ranges for our new halo finder. In Section 3, we outline the numerical aspects of our approach and the black hole formation and merging subgrid models employed. Finally, in Section 4 we compare our results to observations of the $M_{bh} - \sigma$ and $M_{bh} - M_{tot}$ relations to test the validity of the models. Additionally, we provide a discussion and analysis of the performance and parallel scalability of our halo finder in the Appendix.

2. THE HALO FINDING METHOD

We base the halo finder in FLASH on a spherical-overdensity (SO) technique. Throughout, we will identify our new halo finder by “pSO,” for parallel spherical overdensity. In this approach, halos are defined by spherical regions within which the mean density is greater than some defined threshold. We begin by mapping particles onto the simulation mesh with smoothed cloud-in-cell mapping and identifying peaks by finding zones with densities greater then all surrounding zones and greater than $\Delta_{peak,cr}$. Here and throughout, ρ_{crit} refers to the comoving critical density of the universe,

$$\rho_{crit} = \frac{3H_0^2}{8\pi G}[\Omega_{M,0} + \Omega_{\Lambda,0}(1+z)^{-3}],$$

where subscripts of 0 here and throughout refer to present-day values. The zone midpoints serve as centers of potential halos. Using a binary search, we compare the average density within the current search radius to $\Delta_{search,cr}$, selecting new search radii appropriately. Initially, search radii are doubled until the enclosed density is below the threshold. Only then does the binary procedure begin. When two successive search radii differ by no more than a chosen amount, defined by the parameter ΔR_{stop}, we stop the search. If, during the search, a radius falls below a cutoff value, ΔR_{small}, we then abort the search and disregard the halo. Finally, we remove any finished halos that have radii smaller than ΔR_{min} from the catalog. We also remove satellite halos whose centers fall within the radii of larger companions. This leads to a more consistent mass function and conserves halo mass (White 2002). We may also optionally remove satellite halos which intersect larger neighbors. While this must be done to strictly conserve halo mass, many authors include these satellite halos, since it is sometimes useful to identify satellite structures (see the comparison in Evrard et al. 2008 for a discussion of this decision). Table 1 lists the parameters controlling our halo finder and our chosen values. In the table and throughout, Δx is the grid resolution. Note that for simulations in which the halos may span an adaptively refined mesh level, Δx will refer to the highest-resolution uniformly refined mesh level.

For this work, we chose $\Delta_{peak} = \Delta_{search} = 200$. However, other values may be chosen for other uses of the halo finder. For example, $\Delta_{search} = 500$ would be appropriate for generating mock observations of X-ray cores for comparison to observations (Evrard et al. 1996), while a smaller value might be useful for triggering refinement.

To evaluate our halo finder, we performed dark matter-only simulations in a cubic $128 h^{-1}$ Mpc box with 2563, 5123, and 10243 zones, giving resolutions of $\Delta x = 500$, 250, and $125 h^{-1}$ kpc, respectively. All runs used 2563 particles, giving a mass resolution of $1.3 \times 10^7 M_\odot$. For these tests, we chose cosmological parameter values of $\Omega_{M,0} = 0.26$, $\Omega_{\Lambda,0} = 0.74$, and $H_0 = 100 h = 71$ km s$^{-1}$ Mpc$^{-1}$ for comparison to runs used in previous works. We compared our pSO halos against spherically overdense regions drawn from a friends-of-friends (FOFs) halo finder with a linking length of 0.2 (see Lukić et al. 2009 for an analysis of SO halos drawn from an FOF catalog). The halos drawn from the FOF catalog used the most-linked particle as the halo center. Halo radii in the FOF catalog were determined by starting with a large radius and moving inward at very small increments (much smaller than the ΔR_{stop} used in pSO) until the interior density exceeded the same threshold as used by the pSO halo finder. This approach is more precise, but much slower, than the binary search technique used in pSO. We use a linear search here since with such high precision a binary technique may not complete the search.

We thus have several possible sources of differences between the SO and FOF halo catalogs: (1) pSO chooses the zone midpoints as the halo centers, while FOF halos use the most-linked particles, (2) the incremental search radii when finding spherical overdense regions in the FOF catalog are much smaller than those used in pSO, (3) FOF tends to find more small halos than the grid-based peak finding in pSO, since smaller halos may be irregularly shaped, and (4) FOF will tend to bridge two nearby halos, even if they have distinct spherically overdense regions.

Figure 1 demonstrates both the problem of selecting a halo center and that of pSO counting more satellite halos than FOF. Shown is a $10^{14} h^{-1} M_\odot$ halo drawn from the run with $250 h^{-1}$ kpc resolution. This halo is undergoing a merger with a smaller satellite, and thus FOF is bridging two distinct spherical regions into a single halo. In agreement with the findings of

Parameter	Description	Value
Δ_{peak}	Overdensity for identifying a halo center	200ρ_{crit}
Δ_{search}	Overdensity for defining a halo	200ρ_{crit}
ΔR_{stop}	Criterion for completing a radius search	0.2Δx
ΔR_{small}	Criterion for aborting a radius search	0.5Δx
ΔR_{min}	Minimum resolvable halo radius	1.0Δx

Notes. Δx is the uniform grid resolution.
Evrard et al. (2008), we find roughly $\sim 15\%$ of our halos are satellites. While the most-linked particle approximates the potential minimum well, the pSO halo center, which is simply the zone midpoint, is within a zone radius of this point. The bridging effect leaves the smaller pSO halo unmatched.

We match halos in the pSO and FOF catalogs by finding intersections. Any halos from the two catalogs that overlap such that they contain each other’s centers are considered a match. Due to the ambiguity of halos with very few particles, we only compare halos with more than 100 particles. With this procedure alone, about 15% of the pSO halos remained unmatched. To determine if this was due to the FOF bridging effect, we removed from consideration any pSO halo that was within a linking length of an already matched FOF halo. This accounted for all the unmatched pSO halos.

To account for the effects of choice of halo center, we recomputed overdensities in the FOF catalog using the potential minimum halo centers found in the matching pSO catalog. Note that we found that the differences between halo centers were always smaller than a zone spacing. There may be some cases, however, where a large asymmetry will separate the most-linked particle and the maximum density peak further than a zone spacing, especially at very high resolutions. Here, asymmetries will manifest themselves in a higher relative error between matched halos. Figure 2 shows errors in the matched halos in the $125 h^{-1} \text{kpc}$ catalog at $z = 0$ before and after recentering. We define the errors as the difference in mass divided by the sum of the 1σ uncertainties in the halo mass:

$$E \equiv \frac{|M_1 - M_2|}{\sigma_{M_1} + \sigma_{M_2}}.$$ \hspace{1cm} (2)

We estimate the halo mass uncertainty by assuming an uncertainty in the halo radius of $0.5\Delta x$. Thus, assuming constant halo density, the mass uncertainty is

$$\sigma_M = \frac{3}{2} \frac{M}{R} \Delta x \propto M^{2/3},$$ \hspace{1cm} (3)

where M and R refer to the halo mass and radius, respectively. For halos above $10^{14} M_\odot$ in mass, this leads to $\sigma_M/M \approx 0.1$, which agrees with the estimates of Bhattacharya et al. (2010). While most matched halos have small error, a few differ by as much as 0.7, especially at lower masses. However, most of this is due to the bridging effect’s having moved the most-linked particle away from the potential minimum. After recentering, errors for all halos larger than a zone radius drop to below 0.1. The small gap in halo sizes near $R_{200}/R_{\text{zone}} = 0$ is due to our choice of ΔR_{stop} and the binary search procedure.

Also from Figure 2 we find that even after recentering, halos smaller than a zone do not match well to FOF halos. Thus, we set the parameter ΔR_{min} to $1.0\Delta x$ and reject any halo smaller than this. Given a resolution, this sets our minimum resolvable halo mass. Note that this criterion is consistent with the estimate for minimum resolvable mass for FOF halos as defined by (Lukić et al. 2007)

$$n_{h, \text{min}} = \frac{\Delta(1.61n_p/n_g)^3}{\Omega_{M,0}(1 + z)^3 \Omega_{0,0}(1 + z)^3 \Omega_{\Lambda,0}},$$ \hspace{1cm} (4)

where n_g and n_p are the number of zones and particles per side, respectively, and $\Delta = 200$ is our chosen overdensity.

Figure 3 shows maximum and average errors after recentering for each of 10 mass bins at $z = 0$ for each simulation resolution. With our approach, we are able to maintain average errors of less than 0.04 for all resolvable halos, while a small number ($< 5\%$) of halos have maximum errors of up to 0.12. Although the average error stays consistent across all masses, the maximum error varies as much as 0.04 for adjacent bins, and it rises with decreasing mass. This behavior is due to a small number of irregularly shaped halos. Also, since smaller halos have smaller uncertainties, the errors tend to become larger with smaller halo mass.

Figure 4 shows errors after recentering at various redshifts in the $\Delta x = 125 h^{-1} \text{kpc}$ run. Across all resolvable masses and redshifts from $z = 0$ to 2, we are able to maintain average errors of less than 0.05. However, maximum errors in the smallest mass bins reach as high as 0.18. Again, the variability of the maximum errors is due to a small number of halos.
By adjusting ΔR_{stop}, we are able to reduce both the average and maximum errors. However, at smaller values we found that the binary search procedure had difficulty converging on a value for some halos, and the halo finder ran for an unacceptable amount of time. Larger values produced unacceptably high errors. For the value we chose, after accounting for different choices of halo center, the halos produced by our new pSO halo finder were statistically indistinguishable from matched halos drawn from a traditional FOFs halo finder.

Figure 5 shows the mass function for the pSO halo catalogs at the three resolutions compared to SO halos drawn from an FOF catalog with a resolution of 125 h^{-1} kpc and compared to the mass function obtained by Warren et al. (2006). As expected, pSO captures more halos as the resolution increases. However, pSO captures fewer halos near the resolvability limit than FOF does. The procedure for mapping and smoothing tends to lower the central density, especially with halos near the resolvability limit. Thus, our criterion for selecting a peak, $\Delta R_{\text{peak}} = 200$, may be too stringent. We found that lowering this value captures more halos, but at the expense of identifying too many potential halos that end up below the resolvability limit. Even at values as low as 100, we still could not replicate the FOF mass function at these masses, while adding roughly four times as many candidate halos that were ultimately rejected.

Finally, to speed up processing we may increase ΔR_{small}. However, the binary search may briefly fall below this threshold before settling on a larger, and correct, radius. Thus, we want to pick the largest possible value that does not cause us to remove resolved halos. We found that at any values above 0.5Δx we began to reject valid halos before their search had completed.

3. SUBGRID MODELS

We identified three areas in which subgrid models may differ: the initial mass of seed black holes, the prescription for determining if two black holes merge, and the frequency of finding halos, creating black holes, and checking for mergers. For each of these aspects, we studied two possibilities: a “pessimistic” and an “optimistic” scenario. This leads to a total of eight combinations of models.

For the initial mass of seed black holes, authors who have performed calculations similar to ours (e.g., Booth & Schaye 2009; Sijacki et al. 2007; Di Matteo et al. 2008) typically choose a constant seed mass of $10^5 M_\odot$, and this is the value we will choose for this model. The value chosen is typically motivated by the desire not to violate constraints on the observed black hole mass density (Shankar et al. 2004), especially when black holes are allowed to accrete a significant portion of their final mass.

However, this approach may have several weaknesses. First, black holes with masses as high as $10^8 M_\odot$ are inferred to exist from quasar activity at $z \sim 6$ (Fan 2006). Second, depending on the frequency of halo finding, when halos are initially detected they may not have identical masses, and if whatever physical processes which create the observed relations are already present, then the seed black holes should scale with halo mass. Finally, at lower redshifts the halo-finding algorithm may spuriously merge two halos. If we instantly merge black holes, and in the following step the halo finder identifies two separate halos, one will be without its black hole. It may be inappropriate to re-seed the halo with a low-mass black hole.

Alternatively, we may derive the seed black hole mass from a form of the observed $M_{\text{bh}} - \sigma$ relation. This approach may seem tautological; however, accretion and feedback processes may dominate at high redshift and at scales below which we can resolve (Shankar 2009; Merloni et al. 2010). The observed $M_{\text{bh}} - \sigma$ relation at $z = 0$ may then simply be a consequence of pure merging at late times and large scales. Also, this
approach may be useful in testing other SMBH-related processes and relations in groups and clusters. However, this approach is complicated by the fact that calculations of σ directly in simulations suffer from high scatter, especially at high redshift when halos first form and at low redshift when satellite halos may be contaminated by hot particles belonging to a larger neighbor. Fortunately, we may seed halos by relating the black hole mass directly to the halo mass through the observed relation (Bandara et al. 2009):

$$\log \left(\frac{M_{bh}}{M_\odot} \right) = (8.18 \pm 0.11) + (1.55 \pm 0.31) \log \left(\frac{M_{200}}{10^{13} M_\odot} \right).$$ \hspace{1cm} (5)

This relation comes from observations at $z = 0.2$ of bulge velocity dispersions and halo masses using gravitational lensing. These measurements are linked to black hole mass by assuming the $M_{bh} - \sigma$ relation of Gultekin et al. (2009):

$$\log \left(\frac{M_{bh}}{M_\odot} \right) = (8.12 \pm 0.11) + (4.24 \pm 0.31) \log \left(\frac{\sigma}{\sigma_0} \right),$$ \hspace{1cm} (6)

where $\sigma_0 = 200 \text{ km s}^{-1}$. We will assume the relation in Equation (5) holds to high redshift.

Figure 6 shows velocity dispersion as measured in one of our runs (detailed below) as a function of mass at $z = 0.2$. While we agree with observations and the best fit from a suite of simulations described by Evrard et al. (2008), there is significant scatter, especially at low mass. Note that since we are performing dark matter-only simulations, we do not directly measure the velocity dispersion of the galactic central bulge; instead we measure that of the dark matter in the entire halo, defined by

$$\sigma_{\text{DM}}^2 = a(t)^2 \frac{1}{3N_p} \sum_{i=1}^{N_p} \sum_{j=1}^{3} (v_{i,j} - \bar{v}_j)^2,$$ \hspace{1cm} (7)

where $a(t)$ is the scale factor, N_p is the number of particles in the halo, $v_{i,j}$ is the jth velocity component of the ith particle, and \bar{v}_j is the jth component of the center-of-mass velocity. Note that velocities in the simulation are comoving quantities. This plot and other results (as summarized by Croton 2009) indicate that σ_{DM} and σ_{bulge} agree to within a factor of order unity, so we may substitute one for the other.

Next, we may change the prescription for testing black hole mergers. Most approaches to studying the growth of SMBHs rely on halo merger histories derived from simulations (Mitic et al. 2007) or Press–Schechter models (Menou et al. 2001; Volonteri et al. 2008). These approaches assume that each halo contains a single SMBH, and whenever two halos merge their respective black holes instantly merge as well. While this approach is highly optimistic, it does provide an upper limit to predicted merger rates, an important constraint on upcoming gravitational wave experiments (Amaro-Seoane et al. 2007). It is also easy to implement and provides a simple way to compare results from simulations to approaches based on merger trees. However, this approach can lead to spurious black hole mergers, since halos may temporarily intersect without merging. We will include this scenario in our study.

Subgrid models used directly in simulations (e.g., Booth & Schaye 2009) have used a more sophisticated approach in merging black holes. In these simulations, SMBHs only merge when they are within some defined distance (for Lagrangian codes, this is typically the softening length) and have relative velocities below some threshold. This is to avoid merging black holes that are only passing by each other and are not part of a true coalescing system. The velocity threshold varies by author, but it is usually taken to be the local gas sound speed or the circular velocity near the larger black hole of the merging pair. However, we found this test to be overly restrictive; without gas to slow down black holes in cluster cores, merging times inferred from these criteria are larger than the Hubble time and hence almost no black holes merge using this model. Since observations indicate that black holes do merge (Merritt & Milosavljevic 2005), we must apply a less stringent test.

Simulations of merging galaxies suggest that the time for black holes to move from kiloparsec to parsec scales is typically ~ 10 Myr (Dotti et al. 2007). This assumption was used in the merger-tree analysis of Micic et al. (2008). When applying this test, we will ignore the effects of gravitational recoil (Bogdanovic et al. 2007) and the “final parsec problem” (Berczik et al. 2006). Thus, in this merging test we will only merge black holes if they are both within the same halo and are within two grid zones of each other, and their relative velocity times 10 Myr is less than that same distance. This approach allows black holes to pass near each other without merging if they are not part of a truly merging system and accounts for the time needed for the black holes to merge below our resolvable scales.

Finally, we may alter the frequency of performing our subgrid analysis. One common approach is to check for new black holes and allow mergers such that the interval between successive checks is evenly spaced in the log of the expansion factor. Booth & Schaye (2009) employ the shortest such interval, such that $\Delta a_{\text{next}} = 1.02 \Delta a_{\text{current}}$. This approach requires roughly 1/6 the number of halo searches compared to searching every time step. Since our halo finder is designed to be inexpensive, we may perform checks at every time step. This may cause spurious formation and merging of black holes, especially with small halos near the resolvability limit. However, with infrequent checks we may miss the formation and merging of new small halos, underestimating both the amount of black hole mass and the merger rate in the simulation. We will study checking both every time step and at an interval of $\Delta \log a = \log 1.02$.

Table 2 summarizes the aspects of the subgrid model we are studying, our choices for modifying each aspect, and a shortened name that we will use to identify the models in plots and tables. For example, a model that uses a constant initial seed mass,
merges black holes instantly, and performs a check at every time step would be identified by “con,halo,dt.” We note that the most commonly used model in the literature uses a combination of uniform initial mass, velocity tests at every time step for merging, and seeding new black holes evenly in log expansion factor. For our study, we have combined merging tests and seeding in the same step. This is closer to the approach used in merger-tree analysis, where analysis can only take place on seeding in the same step. This is closer to the approach used.

For our study, we have combined merging tests and seeding new black holes evenly in log expansion of uniform initial mass, velocity tests at every time step for most commonly used model in the literature uses a combination time step would be identified by “con,halo,dt.” We note that the merges black holes instantly, and performs a check at every time step would be identified by “con,halo,dt.”

We assume σ_8 from a ΛCDM cosmology. We used the GRAFIC2 code (Bertschinger 2001) to generate these initial conditions. All computations started at a redshift of $z = 56.8$.

Using our halo finder, our minimum resolvable halo mass is $\sim 10^{10} M_\odot$. To help avoid spurious mergers, we do not include satellite halos (halos that intersect a larger neighbor) in the halo catalog used by the seeding and merging models. We seed black holes in any resolvable halo by creating a black hole particle in the simulation with a dynamical mass equal to the mass of the black hole and velocity equal to the center-of-mass velocity of the parent halo. When we merge black holes, we remove the smaller of the pair and add its mass to the larger of the pair. The larger SMBH maintains its position and velocity. We do not re-center black holes on halo potential minima.

While re-positioning black holes at potential minima reduces ejections due to scattering, this process may artificially promote merger rates. With our SMBH setup, we do indeed see a large ejection rate. Fortunately, this is not an issue for our analysis: the vast majority of ejections are of unmerged black holes from low-mass halos at high redshift. Consequently, small black holes are simply replaced by another small black hole, and the merger rates and relations remain unaffected. Obviously, this would pose a problem for models that include accretion. The ideal solution in this case would be to initialize on halos well above the minimum resolvable halo mass and to adequately smooth the gravitational potential near the SMBH so that it does not experience significant two-body effects. Also, by using the black hole mass as the dynamical mass, we may underestimate the dynamical friction. However, we have found that almost all black holes lie within a zone of their host’s potential minimum, so this does not affect the merger rate.

We compare the results of our simulations to the known $M_{bh} - \sigma$ relation at $z = 0$ (Equation (6)) in Figure 7 and to the observed $M_{bh} - M_{tot}$ relation at $z = 0.2$ (Equation (5)) in Figure 8. We have arranged these plots such that the most “pessimistic” combinations of models—constant initial mass, distance and velocity tests for mergers, and new halo and merger checks evenly spaced in $\log a$—are located in the lower-left portions of the plots, while the most “optimistic” scenarios are in the upper right. Our choice of model can greatly affect a number of aspects of SMBH relations, including the scaling of SMBH mass with σ and M_{tot}, the maximum mass of an SMBH, and the amount of scatter in the produced relations.

Models with instant SMBH mergers produce relations with somewhat lower scatter, especially at higher masses, and generate higher maximum black hole mass than models with distance and velocity checks for mergers. For “prox” models, larger halos may contain several unmerged SMBHs, and spurious halo mergers do not lead to mergers of the black holes. These cause

![Figure 7. Comparison of models (shown as points) against the observed $M_{bh} - \sigma$ relation at $z = 0$ (solid line). Dashed lines indicate 1σ uncertainty bounds in the observed relation.](image)}
even the most massive halos to host relatively small black holes. Additionally, the difference in the total merger rate can be very dramatic, as shown in Figure 9. The merger rate is defined as

$$\frac{d^2N}{dzdt} \approx \frac{\Delta N}{\Delta z \Delta V} 4\pi c(1+z)^2d_A(z),$$

where ΔN is the number of mergers in the redshift interval Δz, ΔV is our simulated volume, $d_A(z)$ is the angular diameter distance, and c is the speed of light. The difference between models is especially significant at low redshift, where “prox” models can reduce the peak merger rate by a factor of 2. The difference is negligible at high redshift, since the merger rate here is driven mostly by collisions of smaller halos, and the differences between “prox”- and “halo”-based merging are the smallest. For all cases, our measured merger rate is less than rates found by merger trees (e.g., Micic et al. 2008; Menou et al. 2001) since those works can include SMBH masses below those which we can resolve.

The frequency of merger checks can have a moderate impact on the slope of the final relations and a significant impact on the maximum black hole mass. However, changing this portion of the model does not significantly alter the scatter for models with constant initial mass. Checking for mergers every time step raises the maximum SMBH mass by roughly half an order of magnitude and allows smaller halos ($<10^{12} M_\odot$) to host black holes fitting the observed relations. We can explain these results by studying the merger rate in Figure 9. Here, we see that merger checks at every time step can increase the merger rate by an order of magnitude relative to merger checks evenly spaced in $\log a$. This is largely due to an increased number of seed black holes: by checking at every time step, we may capture halos as soon as they become resolvable, and before they encounter their first merger event. Indeed, we seed roughly twice as many SMBHs in the “dt” models relative to the “log” models, even though they both end up with roughly the same number of black holes at $z = 0$. Also, we capture more mergers at late times: in “log” models, we may skip the formation of small halos and their merging onto an already formed larger neighbor, missing the SMBH mass associated with the smaller halo. This occurs regardless of seeding method. Spurious re-seeding also contributes somewhat, but this does not dominate because we see the same relative numbers of seeded and final black holes in both the “prox” and “halo” models.

Using an initial seed based on early $M_{bh} - \sigma$ relations produces broad scatter in the final relations. This is especially evident in the “m-s,halo,log” combination in which there appear to be two distinct populations of SMBHs: one population along the observed relation and another at lower mass. This behavior is due to the fact that halos are seeded in two scenarios: when the halo first becomes resolvable in the simulation, and if the halo merges with another halo, loses its black hole, and later separates. Figure 10 illustrates this by showing the initial seed mass as a function of redshift. Note that seed black holes are never larger than $\sim 10^{-5}$ of the host halo mass. Small halos continue to appear throughout the evolution of the simulation and are seeded with $\sim 10^4 M_\odot$ black holes. However,
occasionally a larger halo loses its black hole and must be re-seeded with a correspondingly larger SMBH. Thus, we may be left with two populations: halos with their original SMBHs that evolve to relations similar to halos with constant initial mass, and halos that are re-seeded at lower redshifts with black hole masses closer to the observed relation. This distinction is largely eliminated by applying the merger tests at every time step and merging black holes instantly on halo mergers. This results in higher masses due to increased mergers and in increased merger rate promoting the masses of all black holes. However, the majority of black holes evolve without re-seeding at late times, so that the differences between “m-s,dt” and “m-s,log” models at intermediate masses are largely due to the increased merger rate promoting the masses of all black holes. Note that the earlier discovery of halos by checking at every time step does not play a significant role here, since halos discovered later are simply initialized with larger black holes (which was one of the objects of this model).

We may also understand these results by examining the cosmic SMBH mass density, as in Figure 11. Following Shankar et al. (2004), we only count black holes that are matched to a halo and have masses $10^6 < M_{\text{bh}} / M_\odot < 5 \times 10^9$ when computing the mass density. All the SMBH densities produced by our models are well below the observed $z = 0$ density of $4.3 \times 10^5 M_\odot \text{Mpc}^{-3}$ (Shankar et al. 2004). Despite the fact that the smallest halos in the “m-s” runs started with $10^4 M_\odot$ seed black holes, re-seeding and merging at low redshift causes the largest black holes to reach $10^9 M_\odot$ and the cosmic mass density to reach nearly $1/10$ of the observed value.

Even though the re-seeding artificially creates all the SMBHs larger than $10^7 M_\odot$, and half the black holes above $10^7 M_\odot$, the majority of black holes are not re-seeded and have masses lower than that of the relation. Thus, even though we can reproduce the m-sigma relation at high masses (albeit with high scatter) there are not enough black holes with sufficient mass to reach the observed cosmic mass density. Similarly, the higher merger rates produced by instant merging models promote more black holes above the minimum mass threshold for inclusion in the density calculation. The frequency of merger checks has a dramatic impact on the $z = 0$ density: here there is up to a factor of 5 difference between models. This is largely due to the increased rate of discovering early halos in models with constant initial mass, thereby adding more SMBH mass to the simulation at early times. However, the extra mass added when checking “m-s” models at every time step is largely due to increased re-seeding.

We quantify our comparisons by fitting our resulting $M_{\text{bh}} - \sigma$ and $M_{\text{bh}} - M_{\text{tot}}$ relations to a straight line in log space. Since the “prox” models are obviously poor fits to power laws, we will not include them. To mimic observations, we only include black holes with masses greater than $10^6 M_\odot$. Tables 3 and 4 describe the differences between fits to our models and the observed relations. We assume the halo mass uncertainty of Equation (3); however, since it is difficult to quantify all the uncertainties for σ generated in cosmological simulations, we will ignore them in computing fits. While this is an admittedly crude procedure, it does give us some estimate of the ability to distinguish these models from observations and from each other. We define the error in the tables to be the difference between the result of the model in the simulation and the observed quantity divided by the sum of their respective 1σ uncertainties.

We see that, in general, models with constant initial mass are indistinguishable from each other, while these models are, as a group, significantly different from models with varying initial mass. None of the constant-mass models produces enough black hole mass to match the observed relations, as seen in the low
normalization values, and they do not produce enough high-mass SMBHs in the largest halos, as seen in the low slope.

In contrast, seeding halos with black holes with masses from an early $M_{bh} - \sigma$ relation match observations well at low redshift. While these models fit the observed relations well, the total mass density of SMBHs is still well below the observed value.

Surprisingly, we see marginally steeper slopes in the “log” models than in the “dt” models. Even though “dt” models have higher merger rates and produce more massive black holes, they also generate a large population of moderate-mass black holes hosted in small halos. This skews the fits to flatter slopes despite the higher maximum black hole mass. However, these differences are not statistically significant, except for the constant initial mass combined with instant merging scenarios, where the low scatter produces small uncertainties.

Generally, the difference between a particular model and the $M_{bh} - \sigma$ relation is matched by the difference between that same model and the $M_{bh} - M_{tot}$ relation. However, the models are more indistinguishable from the $M_{bh} - M_{tot}$ relation, mostly due to the larger uncertainties in the observed relation.

5. CONCLUSION

We have developed a new, fast, parallel halo finder for inclusion in cosmological simulations with the simulation code FLASH. Using SO halo finding techniques, we are able to produce halo catalogs in good agreement with traditional post-processing halo finders. Since our halo finder is designed to be fast, we are able to perform halo finding operations at every time step in the simulation, allowing us to perform a detailed analysis of SMBH subgrid models.

While merging alone cannot generate enough total mass in SMBHs to match the observed cosmic mass density or generate high enough maximum black hole mass in the largest halos to match the observed $M_{bh} - \sigma$ and $M_{bh} - M_{tot}$ relations, it can play a large role in developing the slope of the relations, especially at intermediate mass ranges. Thus, merging should not be totally discounted in considering the processes that provide the correlations between black hole mass and bulge, galaxy, and halo properties. However, since none of our considered models can account for the observed cosmic mass density, there is still a significant role for accretion and feedback processes in the evolution of SMBHs. Also, since the choice of models can greatly affect the cosmic SMBH mass density, accretion and feedback models must be chosen carefully to match observations.

The choice of subgrid models can dramatically impact the merging rate of black holes. Since the merger rate has a large influence on the performance of upcoming gravitational wave detectors, halo finding operations in simulations should be done as frequently as possible in order to accurately capture this rate. We do not believe that the inclusion of gas will significantly affect these relative differences, since they are largely driven by the ability to find more black holes at early times. However, the choice of merging test does not greatly affect the predicted rate, except at low redshift.

While we have bracketed the possible subgrid models with “optimistic” and “pessimistic” scenarios, models best matching insights from theory and observations are usually in between those extremes. While seeding black holes with a uniform initial mass for black holes may well model high-redshift behavior, it is not clear that this is a useful strategy for re-seeding low-redshift halos. Most re-seeding is certainly an artifact of the halo finder and the lack of an in-code merger tree to determine when halos have truly merged. However, there are some plausible scenarios where re-seeding may be needed: for example, when three-body or gas interactions strip an SMBH from a central galaxy. Also, when this approach is coupled with infrequent halo finding operations, it may deposit too little mass in the seed SMBHs. While instant merging is too optimistic, our current lack of understanding of SMBH mergers implies that we cannot entirely specify this portion of the subgrid model, and we must rely on a bracketing procedure.

Future examination of these subgrid models must be done in a cosmological simulation involving gas evolution, accretion onto the black holes, and feedback from active galactic nuclei. However, since models of these processes carry with them their own assumptions and adjustable parameters, care must be taken to fully separate the effects of black hole seeding and merging. It may be possible that, due to the self-regulating nature of feedback, the differences among these models may disappear; however, the differences in merger rate and peak black hole mass suggest significant variances may remain. Only once all aspects of these subgrid models are analyzed, understood, and compared to our observational understanding can we confidently combine them into an integrated model.

The authors acknowledge support under a Presidential Early Career Award from the US Department of Energy, Lawrence Livermore National Laboratory (contract B532720). Additional support was provided by a DOE Computational Science Graduate Fellowship (DE-FG02-97ER25308) and the National Center for Supercomputing Applications. The software used in this work was in part developed by the DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract no. DE-AC05-00OR22725. The authors thank Brian O’Shea, Tiziana Di Matteo, and many others for useful conversations at the tenth Great Lakes Cosmology Workshop.

APPENDIX

PERFORMANCE AND PARALLEL SCALABILITY

In order to minimize communication among processors, we divide potential halos into two lists. For every potential halo, we compute the overdensity at the largest possible on-processor radius. If the next search radius is larger than this, the halo is added to a list that must be communicated. Thus, all on-processor halos are processed concurrently with no communication. Since the volume of communication is very small, we send all other halos to every processor. However, since this approach is not scalable to very large halo catalogs or

Model	Slope	Error	Normalization	Error
con, halo, log	0.89 ± 0.01	-2.0	6.8 ± 0.2	-4.9
con, halo, dt	0.87 ± 0.01	-2.1	7.2 ± 0.2	-3.4
m-s, halo, log	2.1 ± 0.2	1.0	7.0 ± 1.0	-1.0
m-s, halo, dt	1.70 ± 0.05	0.4	7.9 ± 0.4	-0.6

Notes: Error is defined in the text.
numbers of processors, we switch to a buffered communication pattern if we cannot allocate a global halo catalog. In the buffered approach, halo lists are only communicated to the nearest processors one at a time. The list is communicated until all blocks within the volume of the processor’s halos have been searched. While slower than the all-to-all approach, the amount of storage per processor required stays fixed as the number of processors and number of halos grow. In either case, communication continues until all halos are fully searched. For this study, we will use the all-to-all approach.

Figure 12(a) shows the strong scaling of the pSO halo finder as a fraction of the total wall clock time in a single FLASH time step. We show three different uniform problem sizes: 2563, 5123, and 10243 particles and zones. We restarted each simulation at a representative redshift, $z = 0.25$, and ran for five time steps. These times do not include optional portions of the halo finder routine, such as writing the halo catalog to disk or tagging particles within halos. We performed these calculations on jaguar, a Cray XT5 system at Oak Ridge National Laboratory. Jaguar consists of 16,688 dual six-core AMD Opteron nodes with 16 GB of memory per node and has a peak performance of 2.332 petaflops. Our approach offers good strong scaling behavior: we are able to beat or match the scaling performance of FLASH at all problem sizes. At larger core counts, FLASH has difficulty scaling the Poisson solver, whereas the halo finder maintains good scalability. However, we can infer that we have poor weak scaling: the halo finding steps require ever larger wall clock time as the problem size grows.

The poor weak scaling is due to several factors. First, since these are uniform grid calculations, at low redshift the particle distribution among processors becomes highly unbalanced. FLASH is block based and uses a Morton curve the distribute these blocks among the processors. Thus, while each processor has roughly the same number of blocks, those blocks in highly dense regions will contain many more particles than those in voids. Since our halo finder scans through particles, there is a lack of concurrency due to this imbalance. At small problem sizes, this is not an issue, but with 10243 particles all processors must wait for the few heavily loaded processors to complete searching. There is an imbalance in halos as well, since highly overdense regions contain more halos than underdense regions. Note that this is a bigger problem for box sizes smaller than 200 Mpc. We found that the 2563 run placed a maximum of 15 halos on a single processor, the 5123 run had up to 33 halos on a single processor, and the 10243 run mapped up to 80 halos on a single processor. Figure 12(b) shows the effects of the imbalanced load due to an increased maximum number of halos on the weak scaling behavior. We compute the effects by maintaining no more than 15 halos per processor. We performed this test by ignoring halos past this limit. We see that halo imbalance explains a significant part of the weak scaling results.

Second, as we increase the resolution, we greatly increase the number of resolvable halos. Since smaller halos are much more numerous than larger ones (see Figure 5), for every doubling of the resolution we get roughly 10 times the number of halos. However, the number of particles and zones only increases by a factor of 8. This means that even if we devote eight times the number of processors to the problem, we will spend a larger fraction of a time step finding all the halos.

Finally, as we increase the resolution, we require more steps in the binary search procedure to meet the stopping criterion. At 2563 zones, we require roughly 35 steps to identify the halos. At 5123 zones, we require 45 steps on average. Finally, for 10243 zones, we average 55 steps. This increases the serial runtime of the halo finder, regardless of the degree of concurrency.

These calculations were performed with only dark matter. As we perform runs with more physics included, such as hydrodynamics and radiative cooling, the fraction of time spent in halo finding will decrease, even for high-resolution runs. Also, we expect AMR runs to alleviate the problems of poor particle load balancing, since in cosmological simulations we typically refine on overdense regions. We are currently preparing a manuscript detailing the performance of the halo finder with different box sizes, combinations of resolutions of particles and zones, additional physics, and different AMR refinement schemes.

REFERENCES

Amaro-Seoane, P., Gair, J. R., Freitag, M., Miller, M. C., Mandel, I., Cutler, C. J., & Babak, S. 2007, Class. Quantum Grav., 24, 113
Baker, J. G., Bours, W. D., Centrella, J., Kelly, B. J., McWilliams, S. T., Miller, M. C., & van Meter, J. R. 2008, ApJ, 682, L29
Bandara, K., Crampton, D., & Simard, L. 2009, ApJ, 704, 1135
Baugh, C. M. 2006, Rep. Prog. Phys., 69, 3101
Begelman, M. C., Volonteri, M., & Rees, M. J. 2006, MNRAS, 370, 289
Berczik, P., Merritt, D., Spurzem, R., & Bischof, H. P. 2006, ApJ, 642, L21
Bertschinger, E. 2001, ApJS, 137, 1
Bhattacharya, S., Heitmann, K., White, M., Lukić, Z., Wagner, C., & Habib, S. 2010, arXiv:1005.2239
Bogdanovic, T., Reynolds, C. S., & Miller, M. C. 2007, ApJ, 661, L147
Booth, C. M., & Schaye, J. 2009, MNRAS, 398, 5374
Brüggen, M., & Scannapieco, E. 2009, MNRAS, 398, 548
Carilli, C. L., & Taylor, G. B. 2002, ARA&A, 40, 319348
Cattaneo, A., & Teyssier, R. 2007, MNRAS, 376, 1547
Croton, D. J. 2009, MNRAS, 394, 1109
Di Matteo, T., Colberg, J., Springel, V., Hernquist, L., & Sijacki, D. 2008, ApJ, 676, 33
Dotti, M., Colpi, M., Haardt, F., & Mayer, L. 2007, MNRAS, 379, 956
Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494
Evrard, A. E., et al. 2008, ApJ, 672, 122
Fan, X. 2006, New Astron. Rev., 50, 665
Ferrarese, L. 2002, ApJ, 578, 90
Fryxell, B., et al. 2000, ApJS, 131, 273
Graham, A. W. 2007, MNRAS, 379, 711
Gu, M., Cao, X., & Jiang, D. R. 2009, MNRAS, 396, 984996
Gultekin, K., et al. 2009, ApJ, 698, 198
Hockney, R. W., & Eastwood, J. W. 1988, Computer Simulation Using Particles (Bristol: Hilger)
Hopkins, P. F., Hernquist, L., Cox, T. J., Matteo, T. D., Martini, P., Robertson, B., & Springel, V. 2005, ApJ, 630, 705
Hopkins, P. F., Younger, J. D., Hayward, C. C., Narayanan, D., & Hernquist, L. 2010, MNRAS, 402, 1693
Islam, R. R., Taylor, J. E., & Silk, J. 2004, MNRAS, 354, 427
Koushiappas, S. M., Bullock, J. S., & Dekel, A. 2004, MNRAS, 354, 292
Lukić, Z., Heitmann, K., Habib, S., Bashinsky, S., & Ricker, P. M. 2007, ApJ, 671, 1160
Lukić, Z., Reed, D., Habib, S., & Heitmann, K. 2009, ApJ, 692, 217
Madau, P., & Rees, M. J. 2001, ApJ, 551, L27
Magorrian, J., et al. 1998, AJ, 115, 2285
Mayer, L., Kazantzidis, S., Madau, P., Colpi, M., Quinn, T., & Wadsley, J. 2007, Science, 316, 1874
Menou, K., Haiman, Z., & Narayanan, V. K. 2001, ApJ, 558, 535
Merloni, A., et al. 2010, ApJ, 708, 137
Merritt, D., & Milosavljevic, M. 2005, Living Rev. Rel., 8, 8
Micic, M., Holley-Bockelmann, K., & Sigurdsson, S. 2008, MNRAS, submitted (arXiv:0805.3154)
Micic, M., Holley-Bockelmann, K., Sigurdsson, S., & Abel, T. 2007, MNRAS, 380, 1533
Ricker, P. M. 2008, ApJS, 176, 293
Ruszkowski, M., Ensslin, T. A., Brüggen, M., Heinz, S., & Pfommer, C. 2007, MNRAS, 378, 662
Sesana, A., Haardt, F., Madau, P., & Volonteri, M. 2004, ApJ, 611, 623
Shankar, F. 2009, New Astron. Rev., 53, 57
Shankar, F., Salucci, P., Granato, G. L., De Zotti, G., & Danese, L. 2004, MNRAS, 354, 1020
Sijacki, D., Springel, V., Matteo, T. D., & Hernquist, L. 2007, MNRAS, 380, 677900
Tremaine, S., et al. 2002, ApJ, 574, 740
Vernaleo, J. C., & Reynolds, C. S. 2006, ApJ, 645, 83
Volonteri, M., Haardt, F., & Madau, P. 2003, ApJ, 582, 559
Volonteri, M., Lodato, G., & Natarajan, P. 2008, MNRAS, 383, 1079
Warren, M. S., Abazajian, K., Holz, D. E., & Teodoro, L. 2006, ApJ, 646, 881
White, M. 2002, ApJS, 143, 241
Wise, J. H., & Abel, T. 2005, ApJ, 629, 615