Fife’s Theorem for $\frac{7}{3}$-Powers

Narad Rampersad
Department of Mathematics, University of Liège, Grande Traverse, 12 (Bat. B37), 4000 Liège, Belgium
narad.rampersad@gmail.com

Jeffrey Shallit
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
shallit@cs.uwaterloo.ca

Arseny Shur
Department of Algebra and Discrete Mathematics, Ural State University, Ekaterinburg, Russia
arseny.shur@usu.ru

We prove a Fife-like characterization of the infinite binary $\frac{7}{3}$-power-free words, by giving a finite automaton of 15 states that encodes all such words. As a consequence, we characterize all such words that are 2-automatic.

1 Introduction

An overlap is a word of the form $axaxa$, where a is a single letter and x is a (possibly empty) word. In 1980, Earl Fife [8] proved a theorem characterizing the infinite binary overlap-free words as encodings of paths in a finite automaton. Berstel [4] later simplified the exposition, and both Carpi [6] and Cassaigne [7] gave an analogous analysis for the case of finite words.

In a previous paper [13], the second author gave a new approach to Fife’s theorem, based on the factorization theorem of Restivo and Salemi [12] for overlap-free words. In this paper, we extend this analysis by applying it to the case of $\frac{7}{3}$-power-free words.

Given a rational number $\frac{p}{q} > 1$, we define a word w to be a $\frac{p}{q}$-power if w can be written in the form $x^n x'$ where $n = \lfloor p/q \rfloor$, x' is a (possibly empty) prefix of x, and $|w|/|x| = p/q$. The word x is called a period of w, and p/q is an exponent of w. If p/q is the largest exponent of w, we write $\exp(w) = p/q$. We also say that w is $|x|$-periodic. For example, the word alfalfa is a $\frac{7}{3}$-power, and the corresponding period is alf. Sometimes, as is routine in the literature, we also refer to $|x|$ as the period; the context should make it clear which is meant.

A word, whether finite or infinite, is β-power-free if it contains no factor w that is an α-power for $\alpha \geq \beta$. A word is β^+-power-free if it contains no factor w that is an α-power for $\alpha > \beta$. Thus, the concepts of “overlap-free” and “2^+-power-free” coincide.

2 Notation and basic results

Let Σ be a finite alphabet. We let Σ^* denote the set of all finite words over Σ and Σ^ω denote the set of all (right-) infinite words over Σ. We say y is a factor of a word w if there exist words x, z such that $w = xyz$.

If x is a finite word, then x^ω represents the infinite word $xxx\cdots$.
Theorem 1. Let $\mathcal{F}_{7/3}$ denote the set of (right-) infinite binary $\frac{7}{3}$-power-free words. We point out that these words are of particular interest, because $\frac{7}{3}$ is the largest exponent α such that there are only polynomially-many α-power-free words of length n \cite{9}. The exponent $\frac{7}{3}$ plays a special role in combinatorics on words, as testified to by the many papers mentioning this exponent (e.g., \cite{10,14,9,11,1,5}).

We now state a factorization theorem for infinite $\frac{7}{3}$-power-free words:

Theorem 1. Let $x \in \mathcal{F}_{7/3}$, and let $P = \{p_0, p_1, p_2, p_3, p_4\}$, where $p_0 = \varepsilon$, $p_1 = 0$, $p_2 = 00$, $p_3 = 1$, and $p_4 = 11$. Then there exists $y \in \mathcal{F}_{7/3}$ and $p \in P$ such that $x = p\mu(y)$. Furthermore, this factorization is unique, and p is uniquely determined by inspecting the first 5 letters of x.

Proof. The first two claims follow immediately from the version for finite words, as given in \cite{9}. The last claim follows from exhaustive enumeration of cases. \hfill \Box

We can now iterate this factorization theorem to get

Corollary 2. Every infinite $\frac{7}{3}$-power-free word x can be written uniquely in the form

$$x = p_{i_1} \mu(p_{i_2} \mu(p_{i_3} \mu(\cdots)))$$

(1)

with $i_j \in \{0, 1, 2, 3, 4\}$ for $j \geq 1$, subject to the understanding that if there exists c such that $i_j = 0$ for $j \geq c$, then we also need to specify whether the “tail” of the expansion represents $\mu^\alpha(0) = t$ or $\mu^\alpha(1) = \overline{t}$. Furthermore, every truncated expansion

$$p_{i_1} \mu(p_{i_2} \mu(p_{i_3} \mu(\cdots p_{i_{n-1}} \mu(p_{i_n}) \cdots)))$$

is a prefix of x, with the understanding that if $i_n = 0$, then we need to replace p_{i_n} with either 1 (if the “tail” represents t) or 3 (if the “tail” represents \overline{t}).

Proof. The form (1) is unique, since each p_i is uniquely determined by the first 5 characters of the associated word. \hfill \Box

Thus, we can associate each infinite binary $\frac{7}{3}$-power-free word x with the essentially unique infinite sequence of indices $i := (i_j)_{j \geq 0}$ coding elements in P, as specified by (1). If i ends in 0^ω, then we need an additional element (either 1 or 3) to disambiguate between t and \overline{t} as the “tail”. In our notation, we separate this additional element with a semicolon so that, for example, the string $000\cdots;1$ represents t and $000\cdots;3$ represents \overline{t}.

Of course, not every possible sequence of $(i_j)_{j \geq 1}$ of indices corresponds to an infinite $\frac{7}{3}$-power-free word. For example, every infinite word coded by an infinite sequence beginning $400\cdots$ has a $\frac{7}{3}$-power. Our goal is to characterize precisely, using a finite automaton, those infinite sequences corresponding to $\frac{7}{3}$-power-free words.

Next, we recall some connections between the morphism μ and the powers over the binary alphabet. Below x is an arbitrary finite or right-infinite word.

Lemma 3. If the word $\mu(x)$ has a prefix zz, then the word x has the prefix $\mu^{-1}(z)\mu^{-1}(z)$.
Proof. Follows immediately from [3] Lemma 1.7.2. □

Lemma 4. (1) For any real $\beta > 1$, we have $\exp(x) = \beta$ iff $\exp(\mu(x)) = \beta$.
(2) For any real $\beta \geq 2^+$, the word x is β-power-free iff $\mu(x)$ is β-power-free.

Proof. For (1), see [14] Prop. 1.1. For (2), see [14] Prop. 1.2] or [9] Thm. 5. □

Lemma 5. Let p be a positive integer. If the longest p-periodic prefix of the word $\mu(x)$ has the exponent $\beta \geq 2$, then the longest $(p/2)$-periodic prefix of x also has the exponent β.

Proof. Let zzz' (where $|z| = p$ and z' is a possibly empty prefix of z^0) be the longest p-periodic prefix of $\mu(x)$. Lemma 2 implies that p is even. If $|z'|$ is odd, let a be the last letter of z'. The next letter b in $\mu(x)$ is fixed by the definition of μ: $b \neq a$. By the definition of period, another a occurs p symbols to the left of the last letter of z'. Since p is even, this a also fixes the next letter b. Hence the prefix $zzz'b$ of $\mu(x)$ is p-periodic, contradicting the definition of zzz'. Thus $|z'|$ is even. Therefore x begins with the β-power $\mu^{-1}(z)\mu^{-1}(z')$ of period $p/2$.

It remains to note that if x has a $(p/2)$-periodic prefix y of exponent $\alpha > \beta$, then by Lemma 4(1), the p-periodic prefix $\mu(y)$ of $\mu(x)$ also has the exponent α, contradicting the hypotheses of the lemma. □

3 The main result

For each finite word $w \in \{0,1,2,3,4\}^*$, $w = i_1i_2 \cdots i_r$, and an infinite word $x \in \{0,1\}^\omega$, we define

$$C_w(x) = p_i \mu(p_i \mu(p_i \mu(\cdots x \cdots)))$$ and

$$F_w = \{ x \in \Sigma^\omega : C_w(x) \in \mathcal{F}_{7/3} \}.$$

Note that $F_w \subseteq \mathcal{F}_{7/3}$ for any w in view of Lemma 3(2).

Lemma 6. The sets F_w satisfy the equalities listed in Fig. 1. In particular, there are only 15 different nonempty sets F_w; they are

$$F_E, F_1, F_{11}, F_{13}, F_{130}, F_2, F_7, F_{203}, F_3, F_{31}, F_{33}, F_3, F_{40}, F_{401}.$$

Proof. Due to symmetry, it is enough to prove only the 30 equalities from the upper half of Fig. 1 and the equality $F_0 = F_E$. We first prove the emptiness of 15 sets from the upper half of Fig. 1.

Four sets: $F_{211}, F_{212}, F_{211},$ and F_{202}. consist of words that start 000.

Eight sets consist of words that contain the factor $0\mu(11) = 01010$ ($F_{14}, F_{24}, F_{133}, F_{134}, F_{130}$, and F_{1304}). its μ-image (F_{114}), or the complement of its μ-image (F_{132}).

Two sets: F_{2031} and F_{2032}, consist of words that start $00\mu^2(1)0 = 0010010$. Finally, the words from the set F_{200} have the form $00\mu^3(x)$; each of these words starts either 000 or 0010010.

Each of the 16 remaining equalities has the form $F_{w_1} = F_{w_2}$. We prove them by showing that for an arbitrary $x \in \mathcal{F}_{7/3}$, the words $u_1 = C_{w_1}(x)$ and $u_2 = C_{w_2}(x)$ are either both $\frac{2}{3}$-power-free or both not. In most cases, some suffix of u_1 coincides with the image of u_2 under some power of μ. Then by Lemma 4(2) the word u_1 can be $\frac{2}{3}$-power-free only if u_2 is $\frac{5}{2}$-power-free. In these cases, it suffices to study u_1 assuming that u_2 is $\frac{2}{3}$-power-free.

When we refer to a “forbidden” power in what follows, we mean a power of exponent $\geq \frac{2}{3}$.

$F_0 = F_E$: By Lemma 4(2), $u_1 = \mu(x)$ is $\frac{2}{3}$-power-free iff $u_2 = x$ is $\frac{5}{2}$-power-free.
Figure 1: Equations between languages F_w.

Fife's Theorem for $7/3$-Powers
\(F_{10} = F_{13} \): The word \(u_1 = 0 \mu(\mu(x)) \) contains a \(\mu^2 \)-image of \(u_2 = \mathbf{x} \). If \(\mathbf{x} \) is \(\frac{7}{3} \)-power-free, then so is \(\mu^2(\mathbf{x}) \). Hence, if \(u_1 \) has a forbidden power, then this power must be a prefix of \(u_1 \).

Now let \(\beta < 7/3 \) be the largest possible exponent of a prefix of \(\mathbf{x} \) and \(q \) be the smallest period of a prefix of exponent \(\beta \) in \(\mathbf{x} \). Write \(\beta = p/q \). Then the word \(\mu^2(\mathbf{x}) \) has a prefix of exponent \(\beta \) and of period \(4q \) by Lemma[4](1), but no prefixes of a bigger exponent or of the same exponent and a smaller period by Lemma[5]. Hence \(u_1 \) has no prefixes of exponent greater than \((4p + 1)/(4q) \). Since \(p \) and \(q \) are integers, we obtain the required inequality:

\[
\frac{p}{q} < \frac{7}{3} \implies 3p < 7q \implies 3p + \frac{3}{4} < 7q \implies \frac{4p + 1}{4q} < \frac{7}{3}.
\]

\(F_{12} = F_{2} \): The word \(u_1 = 0 \mu(00 \mu(\mathbf{x})) \) contains a \(\mu \)-image of \(u_2 = 00 \mu(\mathbf{x}) \). Suppose that \(u_2 \) is \(\frac{7}{3} \)-power-free. Then it starts 010011. Since the factor 001001 cannot occur in a \(\mu \)-image, we note that

\(* \) the word \(00 \mu(\mathbf{x}) \) has only two prefixes of exponent 2 (00 and 001001) and no prefixes of bigger exponents.

By Lemma[5], the word \(\mu(u_2) \) has only two prefixes of exponent 2 (\(\mu(00) \) and \(\mu(001001) \)) and no prefixes of bigger exponents. Thus, the word \(u_1 = 0 \mu(u_2) \) is obviously \(\frac{7}{3} \)-power-free.

\(F_{110} = F_{13} \): We have \(u_1 = 0 \mu(1 \mu(\mathbf{x})) = 0u_2 \). Suppose the word \(u_2 \) is \(\frac{7}{3} \)-power-free; then it starts 010011. A forbidden power in \(u_1 \), if any, occurs at the beginning and hence contains 0010011. But 00100 does not occur later in this word, so no such forbidden power exists.

\(F_{110} = F_{13} \): The word \(u_1 = 0 \mu(00 \mu(\mathbf{x})) = 001 \mu^3(\mathbf{x}) \) is a suffix of the \(\mu^2 \)-image of \(u_2 = 1 \mu(\mathbf{x}) \). Hence, if \(u_2 \) is \(\frac{7}{3} \)-power-free, then by Lemma[3](2) \(u_1 \) is \(\frac{7}{3} \)-power-free as well.

For the other direction, assume \(u_1 \) is \(\frac{7}{3} \)-power-free and then \(\mu(\mathbf{x}) \) is \(\frac{7}{3} \)-power-free. So, if \(u_2 \) contains some power \(\mathbf{y} \mathbf{y} \mathbf{y}' \) with \(|\mathbf{y}'| \geq |\mathbf{y}|/3 \), then this power must be a prefix of \(u_2 \). Put \(\mathbf{y} = \mathbf{z} \mathbf{z}' \) and \(\mathbf{y}' = \mathbf{z}' \). The word \(\mu(\mathbf{x}) \) starts \(\mathbf{z} \mathbf{z}' \). Hence \(\mathbf{x} \) starts \(\mu^{-1}(\mathbf{z}) \mu^{-1}(\mathbf{z}') \) by Lemma[3]. So we conclude that \(|\mathbf{z}| = |\mathbf{y}| \) is an even number. Now let \(|\mathbf{z}| = q \) and \(p = |\mathbf{y} \mathbf{y} \mathbf{y}'| \) so that \(p/q \geq 7/3 \). Thus the word \(u_1 = \mu^2(u_2) \) starts with a \((p/q)\)-power of period 4. Since \(u_1 \) is \(\frac{7}{3} \)-power-free, we have \((4p−1)/4q < 7/3\).

This gives us the inequalities \(3p \geq 7q \) and \(3p − 3/4 < 7q \). Since \(p \) and \(q \) are integers this means \(3p = 7q \) and hence \(q \) is divisible by 3. On the other hand from above \(q \) is even. So \(q \) is divisible by 6. Now \(|\mathbf{y}'| = |\mathbf{y}|/3 \) so \(|\mathbf{y}'| \) is even. But then \(\mathbf{z}' \) is odd, and begins at an even position in a \(\mu \)-image, so the character following \(\mathbf{z}' \) is fixed and must be the same character as in the corresponding position of a, say \(a \). Thus \(\mathbf{z} \mathbf{z}' a \) is a \((7/3)\)-power occurring in \(\mu(\mathbf{x}) \), a contradiction.

\(F_{111} = F_{1} \): The word \(u_1 = 0 \mu(0 \mu(0 \mu(\mathbf{x}))) = 00101101 \mu^3(\mathbf{x}) \) contains a \(\mu \)-image of \(u_2 = 0 \mu(0 \mu(\mathbf{x})) = 001 \mu^2(\mathbf{x}) \). Suppose \(u_2 \) is \(\frac{7}{3} \)-power-free but to the contrary \(u_1 = 0 \mu(\mathbf{x}) \) has a forbidden power. By Lemma[3](2), this power must be a prefix of \(u_1 \). Note that this power can be extended to the left by 1 (not by 0, because a \(\mu \)-image cannot contain 000). Hence the word \(1u_1 = \mu^3(\mathbf{x}) \) starts with a forbidden power. This induces a forbidden power at the beginning of \(1\mathbf{x} \); this power has a period \(q \) and some exponent \(p/q \geq 7/3 \). Then \(u_1 \) has a prefix of exponent \((8p−1)/8q \geq 7/3 \). On the other hand the word \(\mu(u_2) \) is \(\frac{7}{3} \)-power-free, whence \((8p−2)/q < 7/3 \). So we get the system of inequalities \(3p − 3/4 < 7q, 3p − 3/4 < 7q \). This system has no integer solutions, a contradiction.

\(F_{112} = F_{2} \): We have \(u_1 = 0 \mu(0 \mu(0 \mu(\mathbf{x}))) = 001 \mu^2(00 \mu(\mathbf{x})) = 001 \mu^2(u_2) \). In view of \((*)\), one can easily check that if \(u_2 \) is \(\frac{7}{3} \)-power-free, then so is \(u_1 \).

\(F_{113} = F_{13} \): We have \(u_1 = 0 \mu(0 \mu(1 \mu(\mathbf{x}))) = 00 \mu(u_2) \). Suppose \(u_2 \) is \(\frac{7}{3} \)-power-free. Then \(\mu^2(\mathbf{x}) \) starts 01101001. Assume to the contrary that \(u_1 \) has a forbidden power. By Lemma[3](2), this power
must be a prefix of \(u_1\). Again, this power can be extended to the left by 1, not by 0. Hence the word
\[1u_1 = \mu^2(11\mu(x))\] starts with a forbidden power, thus inducing a forbidden power at the beginning of
\(u = 11\mu(x) = 110110\cdots\). The word \(u\) has only two squares as prefixes (11 and 110110, cf. \((\ast)\)). Hence \(u\)
has the prefix 11011010 and no forbidden factors except for the \((7/3)\)-power prefix 1101101. Therefore,
the word \(u_1\) no has prefixes of exponent \(\geq 7/3\).

\[F_{131} = F_{31}: \text{ We have } u_1 = 0\mu(1\mu(0\mu(x))) = 0\mu(u_2). \text{ Suppose } u_2 \text{ is } \frac{2}{1}\text{-power-free. Then the word } u = 11\mu(0\mu(x)) \text{ is } \frac{2}{1}\text{-power-by the equality } F_{41} = F_{31}, \text{ which is symmetric to } F_{23} = F_{13} \text{ proved } \]

above. But \(u_1\) is a suffix of \(\mu(u)\), whence the result.

\[F_{204} = F_4: \text{ We have } u_1 = 00\mu(\mu(11\mu(x))) = 00\mu^2(u_2). \text{ Suppose } u_2 \text{ is } \frac{2}{3}\text{-power-free. Using the } \]

observation symmetric to \((\ast)\), we check by inspection that \(u_1\) contains no forbidden power.

\[F_{1300} = F_{130}: \text{ Neither one of the words } u_1 = 0\mu(1\mu(\mu(\mu(x)))) = 010\mu^4(x), u_2 = 0\mu(1\mu(\mu(x))) = 010\mu^3(x) \text{ contains an image of the other. The proofs for both directions are essentially the same, so we } \]
give only one of them. Let \(u_1\) be \(\frac{2}{3}\)-power-free; then the words \(\mu^4(x)\), \(x\), and \(\mu^3(x)\) are \(\frac{2}{3}\)-power-free as well, and \(x\) starts 0. A simple inspection of short prefixes of \(u_2\) shows that if this word is not \(\frac{2}{3}\)-power-

free, then some \(\beta\)-power with \(\beta \geq 2\) is a prefix of \(\mu^3(x)\). By Lemma 5, the word \(x\) also starts with a \(\beta\)-power. The argument below will be repeated, with small variations, for several identities.

\((\ast)\) Consider a prefix \(yyy'\) of \(x\) which is the longest prefix of \(x\) with period \(|y|\). Then \(|y'| < |y|/3\). By Lemma 5, the longest prefix of the word \(\mu^3(x)\) having period \(8|y|\) is \(\mu^3(yyy')\). If some word \(z\mu^3(yyy')\) also has period \(8|y|\), then \(z\) should be a suffix of a \(\mu^3\)-image of some word. Since the word 010 is not such a suffix, then \(10\mu^3(yyy')\) is the longest possible \((8|y|)\)-periodic word contained in \(u_2\). Let us estimate its exponent. Since \(|z|\) and \(|y'|\) are integers, we have

\[8|y'| < 8|y|/3 \implies 24|y'| < 8|y| \implies 24|y'| + 6 < 8|y| \implies 8|y'| + 2 < 8|y|/3,\]

whence \(\exp(10\mu^3(yyy')) < 7/3\). Since we have chosen an arbitrary prefix \(yyy'\) of \(x\), we conclude that the word \(u_2\) is \(\frac{2}{3}\)-power-free.

\[F_{1301} = F_1: \text{ The word } u_1 = 0\mu(1\mu(\mu(0\mu(x)))) = 010\mu^3(0\mu(x)) \text{ contains a } \mu^3\text{-image of } u_2 = 0\mu(x). \text{ Suppose } u_2 \text{ is } \frac{2}{3}\text{-power-free. It suffices to check that the prefix 010 of } u_1 \text{ does not complete any prefix of } \mu^3(u_2) \text{ to a forbidden power. For short prefixes, this can be checked directly, while long prefixes that can be completed in this way should have exponents } \geq 2. \text{ By Lemma 5 a prefix of period } p \text{ and exponent } \beta \geq 2 \text{ of the word } \mu^3(u_2) \text{ corresponds to the prefix of the word } u_2 \text{ having the exponent } \beta \text{ and the period } p/8. \text{ So, we repeat the argument } \ast \text{ replacing } x \text{ with } u_2 \text{ to obtain that } u_1 \text{ is } \frac{2}{3}\text{-power-free.} \]

\[F_{1302} = F_2: \text{ We have } u_1 = 0\mu(1\mu(\mu(0\mu(x)))) = 010\mu^3(00\mu(x)) = 010\mu^3(u_2). \text{ Suppose } u_2 \text{ is } \frac{2}{3}\text{-power-free. By } \ast \text{ and Lemma 5 among the prefixes of } \mu^3(u_2) \text{ there are only two squares, } \mu^3(00) \text{ and } \mu^3(001001), \text{ and no words of bigger exponent. By direct inspection, } u_1 \text{ is } (7/3)\text{-free.} \]

\[F_{2030} = F_{310}: \text{ Neither one of the words } u_1 = 00\mu(1\mu(\mu(x))) = 001001\mu^4(x) \text{ and } \]

\[u_2 = 1\mu(0\mu(\mu(x))) = 101\mu^3(x)\]

contains an image of the other. If the word \(u_1\) is assumed to be \(\frac{2}{3}\)-power-free, then the proof repeats the proof of the identity \(F_{1300} = F_{130}\), up to renaming all 0’s to 1’s and vice versa. Let \(u_2\) be \(\frac{2}{3}\)-power-

free. The words \(\mu^4(x)\) and \(x\) are also \(\frac{2}{3}\)-power-free, and \(x\) begins with 1, assuring that there are no short forbidden powers in the beginning of \(u_1\). Concerning long forbidden powers, we consider, similar to \(\ast\), a prefix \(yyy'\) of \(x\) which is the longest prefix of \(x\) with period \(|y|\). The longest possible \((16|y|)\)-periodic
word contained in \(u_1 \) is 01001\(\mu^4(yyy') \), because 001001 is not a suffix of a \(\mu^4 \)-image. As in (\(* \)), we obtain 16\(|y'| + 5 < 16\|y\|/3, implying \(\exp(01001\mu^4(yyy')) < 7/3 \). Hence the word \(u_1 \) is \(\frac{7}{3} \)-power-free.

\(F_{2033} = F_{33} \): The word \(u_1 = 00\mu(\mu(1\mu(x))) = 00\mu^3(110\mu^2(x)) \) contains a \(\mu^2 \)-image of \(u_2 = 1\mu(1\mu(x)) = 110\mu^2(x) \). Again, if the word \(u_2 \) is \(\frac{7}{3} \)-power-free, then so is \(\mu^2(u_2) \), and it suffices to check that the prefix 00 of \(u_1 \) does not complete any prefix of \(\mu^2(u_2) \) to a forbidden power. Similar to (\(* \)), consider a prefix \(yyy' \) of \(u_2 \) which is the longest prefix of \(u_2 \) with period \(|y|\). The longest possible \((4\|y|) \)-periodic word contained in \(u_1 \) is \(0\mu^2(yyy') \), because 00 is not a suffix of a \(\mu^2 \)-image. As in (\(* \)), we see that \(4\|y| + 1 < 4\|y\|/3, implying \(\exp(0\mu^2(yyy')) < 7/3 \), and conclude that the word \(u_1 \) is \(\frac{7}{3} \)-power-free.

\(F_{2034} = F_4 \): The word \(u_1 = 00\mu(\mu(1\mu(1\mu(x)))) = 001001\mu^3(11\mu(x)) \) contains a \(\mu^3 \)-image of \(u_2 = 11\mu(x) \). Suppose \(u_2 \) is \(\frac{7}{3} \)-power-free. Using (\(* \)) and Lemma 5, we conclude that among the prefixes of \(\mu^3(u_2) \) there are only two squares, \(\mu^3(11) \) and \(\mu^3(110110) \), and no words of bigger exponent. By direct inspection, \(u_1 \) is \((7/3)\)-free.

![Figure 2: Automaton coding infinite binary \(\frac{7}{3} \)-power-free words](image)

From Lemma 6 and the results above, we get

Theorem 7. Every infinite binary \(\frac{7}{3} \)-power-free word \(x \) is encoded by an infinite path, starting in \(F_\varepsilon \), through the automaton in Figure 2.

Every infinite path through the automaton not ending in \(0^\omega \) codes a unique infinite binary \(\frac{7}{3} \)-power-free word \(x \). If a path \(i \) ends in \(0^\omega \) and this suffix corresponds to a cycle on state \(F_\varepsilon \), then \(x \) is coded by either \(i;1 \) or \(i;3 \). If a path \(i \) ends in \(0^\omega \) and this suffix corresponds to a cycle on \(F_{310} \), then \(x \) is coded by \(i;3 \). If a path \(i \) ends in \(0^\omega \) and this suffix corresponds to a cycle on \(F_{130} \), then \(x \) is coded by \(i;1 \).

Remark 8. Blondel, Cassaigne, and Junger 5 obtained a similar result, and even more general ones, for finite words. The main advantage to our construction is its simplicity.
Corollary 9. Each of the 15 sets F_ε, F_1, F_2, F_3, F_4, F_{11}, F_{13}, F_{31}, F_{20}, F_{40}, F_{130}, F_{310}, F_{203}, F_{403} is uncountable.

Proof. It suffices to provide uncountably many distinct paths from each state to itself. By symmetry, it suffices to prove this for all the states labeled ε or below in Figure 2. These are as follows:

- ε: $(0+1)^\omega$
- 1: $(01+001)^\omega$
- 2: $(0402+030402)^\omega$
- 11: $(0011+00011)^\omega$
- 13: $(013+0013)^\omega$
- 20: $(4020+34020)^\omega$
- 401: $(10401+203401)^\omega$
- 130: $(0+104010)^\omega$.

Corollary 10. For all words $w \in \{0, 1, 2, 3, 4\}^*$, either F_w is empty or uncountable.

4 The lexicographically least $\frac{7}{3}$-power-free word

Theorem 11. The lexicographically least infinite binary $\frac{7}{3}$-power-free word is $001001\bar{t}$.

Proof. By tracing through the possible paths through the automaton we easily find that $2030\omega;1$ is the code for the lexicographically least sequence.

Remark 12. This result does not seem to follow directly from [2] as one referee suggested.

5 Automatic infinite binary $\frac{7}{3}$-power-free words

As a consequence of Theorem 7, we can give a complete description of the infinite binary $\frac{7}{3}$-power-free words that are 2-automatic [4]. Recall that an infinite word $(a_n)_{n \geq 0}$ is k-automatic if there exists a deterministic finite automaton with output that, on input n expressed in base k, produces an output associated with the state last visited that is equal to a_n. Alternatively, $(a_n)_{n \geq 0}$ is k-automatic if its k-kernel

$$\{(a_{k^n+i})_{n \geq 0} : i \geq 0 \text{ and } 0 \leq j < k^i\}$$

consists of finitely many distinct sequences.

Theorem 13. An infinite binary $\frac{7}{3}$-power-free word is 2-automatic if and only if its code is both specified by the DFA given above in Figure 2 and is ultimately periodic.

First, we need a lemma:

Lemma 14. An infinite binary word $x = a_0a_1a_2\cdots$ is 2-automatic if and only if $\mu(x)$ is 2-automatic.

Proof. Proved in [13].
Now we can prove Theorem 13.

Proof. Suppose the code of x is ultimately periodic. Then we can write its code as yz^ω for some finite words y and z. Since the class of 2-automatic sequences is closed under appending a finite prefix [3, Corollary 6.8.5], by Lemma 14, it suffices to show that the word coded by z^ω is 2-automatic.

The word z^ω codes a $\frac{1}{7}$-power-free word w satisfying $w = t\varphi^i(t)\varphi^{2i}(t)\cdots$. It is now easy to see that the 2-kernel of w is contained in

$$S := \{u\mu^i(v)\mu^{i+k}(v)\mu^{i+2k}(v)\cdots : |u| \leq |t| \text{ and } v \in \{t, \bar{t}\} \text{ and } 1 \leq i \leq k\},$$

which is a finite set.

On the other hand, suppose the code for x is not ultimately periodic. Then we show that the 2-kernel is infinite. Now it is easy to see that if the code for x is ay for some letter $a \in \{0, 1, 3\}$ then one of the sequences in the 2-kernel (obtained by taking either the odd- or even-indexed terms) is either coded by y or its complement is coded by y. On the other hand, if the code for x is ay with $a \in \{2, 4\}$, then y begins with 0, 1, or 3, say $y = bz$. It follows that the subsequences obtained by taking the terms congruent to 0, 1, 2, or 3 (mod 4) is coded by z, or its complement is coded by z. Since the code for x is not ultimately periodic, there are infinitely many distinct sequences in the orbit of the code for x, under the shift. By the infinite pigeonhole principle, infinitely many correspond to a sequence in the 2-kernel, or its complement. Hence x is not 2-automatic.

6 Acknowledgments

We are grateful to the referees for their helpful suggestions.

References

[1] A. Aberkane & J. D. Currie (2005): Attainable lengths for circular binary words avoiding k powers. Bull. Belg. Math. Soc. 12, pp. 525–534.

[2] J.-P. Allouche, J. Currie & J. Shallit (1998): Extremal infinite overlap-free binary words. Electron. J. Combinatorics 5(1). Available at http://www.combinatorics.org/Volume_5/Abstracts/v5i1r27.html

[3] J.-P. Allouche & J. Shallit (2003): Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press.

[4] J. Berstel (1994): A rewriting of Fife’s theorem about overlap-free words. In J. Karhumäki, H. Maurer & G. Rozenberg, editors: Results and Trends in Theoretical Computer Science, Lecture Notes in Computer Science 812, Springer-Verlag, pp. 19–29, doi:10.1007/3-540-58131-6_34

[5] V. D. Blondel, J. Cassaigne & R. M. Jungers (2009): On the number of α-power-free binary words for $2 < \alpha \leq 7/3$. Theoret. Comput. Sci. 410, pp. 2823–2833, doi:10.1016/j.tcs.2009.01.031

[6] A. Carpi (1993): Overlap-free words and finite automata. Theoret. Comput. Sci. 115, pp. 243–260, doi:10.1016/0304-3975(93)90118-D

[7] J. Cassaigne (1993): Counting overlap-free binary words. In P. Enjalbert, A. Finkel & K. W. Wagner, editors: STACS 93, Proc. 10th Symp. Theoretical Aspects of Comp. Sci., Lecture Notes in Computer Science 665, Springer-Verlag, pp. 216–225, doi:10.1007/3-540-56503-5_24

[8] E. D. Fife (1980): Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261, pp. 115–136, doi:10.1090/S0002-9947-1980-0576867-5
[9] J. Karhumäki & J. Shallit (2004): *Polynomial versus exponential growth in repetition-free binary words*. *J. Combin. Theory. Ser. A* 105, pp. 335–347, doi:10.1016/j.jcta.2003.12.004

[10] R. Kolpakov & G. Kucherov (1997): *Minimal letter frequency in n-th power-free binary words*. In I. Privara & P. Ražička, editors: *Proc. of the 22nd Symposium, Math. Found. Comput. Sci. (MFCS) 1997*, Lecture Notes in Computer Science 1295, Springer-Verlag, pp. 347–357, doi:10.1007/BFb0029978

[11] N. Rampersad (2005): *Words avoiding 7/3-powers and the Thue-Morse morphism*. *Int. J. Found. Comput. Sci.* 16, pp. 755–766, doi:10.1142/S0129054105003273

[12] A. Restivo & S. Salemi (1985): *Overlap free words on two symbols*. In M. Nivat & D. Perrin, editors: *Automata on Infinite Words*, Lecture Notes in Computer Science 192, Springer-Verlag, pp. 198–206, doi:10.1007/3-540-15641-0_35

[13] J. Shallit: *Fife’s theorem revisited*. Available at http://arxiv.org/abs/1102.3932 To appear, DLT 2011.

[14] A. M. Shur (2000): *The structure of the set of cube-free Z-words in a two-letter alphabet*. *Izv. Ross. Akad. Nauk Ser. Mat.* 64(4), pp. 201–224. In Russian. English translation in *Izv. Math.* 64 (2000), pp. 847–871.