Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro

EKATERINA V. KOZLOVA1*, SVETLANA E. MAZINA1,2 & VLADIMIR PEŠIĆ3

1 Department of Ecological Monitoring and Forecasting, Ecological Faculty of Peoples’ Friendship University of Russia, 115093 Moscow, 8-5 Podolskoye shosse, Ecological Faculty, PFUR, Russia
2 Department of Radiochemistry, Chemistry Faculty of Lomonosov Moscow State University 119991, 1-3 Leninskiye Gory, GSP-1, MSU, Moscow, Russia
3 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro

*Corresponding author: ekaterina.vi.ko@gmail.com

Received 4 January 2019 | Accepted by V. Pešić: 9 February 2019 | Published online 10 February 2019.

Abstract
The biodiversity of the entrance zones of the Montenegro caves is barely studied, therefore the purpose of this study was to assess the biodiversity of several caves in Montenegro. The samples of phototrophs were taken from various substrates of the entrance zone of 7 caves in July 2017. A total of 87 species of phototrophs were identified, including 64 species of algae and Cyanobacteria, and 21 species of Bryophyta. Comparison of biodiversity was carried out using Jacquard and Shorygin indices. The prevalence of cyanobacteria in the algal flora and the dominance of green algae were revealed. The composition of the phototrophic communities was influenced mainly by the morphology of the entrance zones, not by the spatial proximity of the studied caves.

Key words: karst caves, entrance zone, ecotone, algae, cyanobacteria, bryophyte, Montenegro.

Introduction
The subterranean karst forms represent habitats that considered more climatically stable than the surface. Generally, cave climate is characterized by the low positive temperatures, high relative humidity and lack of lighting (Vanderwolf et al. 2013). Seasonal and daily fluctuations of these parameters can be observed at the entrance zones of the caves, yet they remain more stable than on the surface (Prous et al. 2015). In the deep zones of the caves there is no natural light and ecosystems are able to function due to the introduction of organic matter from the outside or the activity of chemolithoautotrophic communities (Engel et al. 2004; Pentecost & Zhaohui 2001). The entrance areas of caves, include habitats with low levels of photon fluxes, are characterized by a light gradient that allows phototrophs to develop.

Considered close to the communities of the entrance zone of the caves, the lampenflora communities represent photosynthetic species growing in the excursion caves near the lamps. There were not enough studies on the flora in Montenegro prior to 2018, when Mazina & Kozlova (2018) have researched
lampenflora and phototrophic communities of entrance zone of Lipska Cave in the southern part of Montenegro.

The territory of Montenegro is of great interest for the study of hypogean karst formations and has both scientific and cultural significance (see Barović et al. 2018). Most of Montenegro is covered by mountain ranges, composed mainly of limestone, with well-developed surface and subterranean karst topographic forms. The largest number of biological studies is focused on the cave fauna of troglophiles and troglobionts (see Pešić et al. 2018 for an overview).

In this paper, we studied phototrophic communities of seven caves located in the southern part of Montenegro characterized by the different morphology of entrance zones. The objective of this study was to describe the biodiversity of phototrophic communities at the entrance zones of these caves and to examine the species composition of the selected caves using standard similarity indices.

Material and Methods

Seven caves in Montenegro were the objects of the study (Fig. 1). Obodska Pećina (42.352113° N, 19.005209° E) is located west of the Rijeka Crnojevića, Cetinje. Untitled cave (42. 292351° N, 18.873896° E) is located near the Bečići town, close to the natural monument of Olive tree. Golubinja Pećina (42.2518° N, 18.4757° E) is located on the territory of Lovćen National Park. The remaining caves are located near Lovćen National Park, in the village of Njeguši or near it: Veluštica Pećina (42.432866° N, 18.803783° E), Vrbka jama (42.433305° N, 18.810832° E), Jama ER-1 (42.4325° N, 18.831949° E), and Njegoš Pećina (42.43301° N, 18.83159° E).

The caves have different types of entrance zones (see Fig. 1 for photographs): large grotto-like entrances (Obodska Pećina, Golubinja Pećina), small horizontal entrances (Njegoš Pećina, Veluštica Pećina, and untitled cave), and vertical entrance areas (Vrbka jama, Jama ER-1). Obodska Pećina and untitled caves weren't functioned as a spring at the time of sampling due to drought season.

Fieldwork for the study was carried out during July 2017.

We studied the phototrophic epibiotic communities of the cave entrance zones. Samples were taken from each epibiose area: substrates (limestone, calcite, clay sediments) were sampled, bryophytes and ferns were collected and herbarized, algae and cyanobacteria (including samples from the gametogony of bryophytes) were collected into sterile vials. Phototrophs from the epibiotic communities were examined using a Leica DMLS light microscope (Germany). Specimens for examination were prepared by separating small fragments from the communities (biofilms) and placing them in water droplets. The occurrence and abundance of species in the samples were determined, and the data were extrapolated to the entire epibiose area.

Samples of soils and cave communities were incubated on selective culture media. Bristol and Gromov №6 media were used for algae and cyanobacteria. The exposure temperatures were 12 and 24°C and the illumination level was 30-40 μm × m⁻² × s⁻¹. The methods of growth slides and incubation in a liquid medium were used. For a more complete identification of the phototroph species composition from the illuminated zones, representative samples from communities were incubated in Gromov liquid medium №6. Systematics of cyanobacteria and algae used in the paper correspond to the database available at http://www.algaebase.org (Guiry & Guiry 2019). Samples were identified using several field guides: bryophytes with Ignatov & Ignatova (2004), ferns with Mayevsky (2014), and lichens with Andreev (2008). The systematics of bryophytes is given according to Ignatov & Ignatova (2004), ferns according to Cherepanov’s report (1995), the lichen according to the database available at mycobank.org. The Jacqaud floristic similarity coefficient and the Shorygin community structure similarity index (Rozenderg et al. 2000) were used to analyze the similarity of community composition and structure. Cluster analysis was carried out and tree diagrams were constructed using the Euclidean distance in the STATISTICA 7.0 program. Relative abundance was used as a basis for the determination of the dominant species; dominants were also determined in each systematic group: bryophytes, algae, and cyanobacteria.
Figure 1. Map of the studied caves in Montenegro and photographs of their entrance zones. Cave numbers correspond to numbers in Map. 1- Obodská Pečina, 2- Golubinja Pečina, 3- Njegoš Pečina, 4- Veluštica Pečina, 5- untitled cave, 6- Vrbačka jama, 7- Jama ER-1.
Results

A total of 87 species (Table 1) of phototrophs were identified in the epibiotic communities of the cave entrance zones. Sixty-four species of cyanobacteria and algae were recorded (Cyanobacteria: 5 orders, 14 families, 18 genera, 42 species; algae: 11 orders, 17 families, 21 genera, 22 species, including: Bacillariophyta: 5 orders, 6 families, 8 genera and 9 species; Chlorophyta: 5 orders, 7 families, 12 genera, 12 species; Ochrophyta: 1 order, 1 family, 1 genera, 1 species). Twenty-one species of Bryophyta were identified (5 orders, 13 families, 17 genera). Protonema of mosses was found in all of the studied caves; one species of Pteridophyta, prothallia of ferns, and one species of lichen were found in the phototroph growth zone of the Veluštica Pećina.

Table 1. The list of the documented phototrophs found in the studied Montenegrin caves.

Phylum	Class	Order	Family	Genus	Species number
Untitled cave			Aphanothecaceae	Aphanothece	1
			Chroococcales	Chroococcus	2
			Microcystaceae	Gloeocapsa	3
				Microcystis	3
			Nostocales	Stigonema	1
			Oscillatoriales	Oscillatoria	3
			Synechococcales	Phormidium	4
			Naviculales	Leptolyngbya	2
			Diadesmidaceae	Chlamydocapsa	1
			Chlamydomonadales	Chlorella	1
			Sphaeropleales	Neochloris	1
			Prasiolales	Desmococcus	1
			Tribonematales	Heterothrix	1
			Dicranales	Cynodontium	1
			Hypnales	Amblystegium	1
				Conardia	1
Njegoš Pećina			Aphanothecaceae	Aphanothece	1
			Chroococcales	Chroococcus	2
			Microcystaceae	Gloeocapsa	2
				Microcystis	1
			Nostocales	Anabaeba	1
			Bacillariales	Nitzschia	1
			Mastogloiales	Achnanthes	1
			Naviculales	Humidophila	1
			Chaetopeltidales	Floydiella	1
			Chlamydomonadales	Sphaerocystis	1
			Sphaeropleales	Bracteacoccus	1
				Chlorella	1

..continued on the next page
Table 1

Phylum	Order	Family	Genus	Species	Source
Trebouxiophyceae					
			Chlorellales	Oocystaceae	Oocystis
			Prasiolales	Prasiolaceae	Desmococcus
Hepaticae			Jungermanniales	Jungermanniales	Jungermanniales
Bryophyta	Bryopsida		Dicranales	Ditrichiaceae	Ditrichium
			Hypnales	Plagiotheciaceae	Plagiothecium
Veluštica Pećina					
Cyanobacteria					
			Chroococcales	Aphanathecae	Aphanathece
				Gloeocystaceae	Gloeothece
			Microcystaceae	Microcystis	Microcystis
			Nostocaceae	Nostoc	Nostoc
			Rivulariaceae	Calothrix	Calothrix
			Nostocales	Scytonemataceae	Scytonema
Cyanophyceae					
			Chroococcales		
			Microcystaceae		
			Nostocaceae		
			Rivulariaceae		
Polypodiopsida					
Bryophyta	Bryopsida				
Ascomycota	Lecanoromycetes				
Golubinja Pećina					
Bacillariophyta	Bacillariophyceae				
Chlorophyta	Chlorophyceae				

..continued on the next page
TABLE 1

Kingdom	Class	Order	Family	Genus	Species
Trebouxiophyceae	Chlorellales	Chlorellaceae	Muriella	1	
	Prasiolales	Prasiolaceae	Stichococcus	1	
	Bartramiales	Bartramiaceae	Plagiopterus	1	
	Dicranales	Dicracaceae	Amphidium	2	
	Bryopsida	Hypnales	Amblystegiaceae	1	
			Brachytheciacae	1	
		Vrbačka jama			
		Chroococcales	Microcystaceae	2	Gloeocapsa
			Microcystis	3	
Cyanobacteria	Cyanophyceae	Oscillatoriae	Oscillatoriaceae	2	
		Synechococcales	Leptolyngbyaceae	1	
			Synechococcaceae	1	
	Bacillariophyceae	Fragilariaceae	Fragillaria	1	
	Naviculales	Diadesmaceae	Humidophila	1	
	Trebouxiophyceae	Prasiolales	Stichococcus	1	
	Xanthophyceae	Tribonemataceae	Heterothrix	1	
		Amblystegiaceae	Campylium	1	
	Bryopsida	Hypnales	Brachytheciacae	1	
		Entodontaceae	Entodon	1	
		Pottiaceae	Tortella	1	
	Obodská Pečina				
		Aphanococcaceae	Aphanothece	1	
			Gloeothecoe	1	
	Cyanobacteria	Cyanophyceae	Chroococcaceae	1	
			Microcystaceae	2	Gloeocapsa
		Nostocales	Nostocae	2	
		Oscillatoriaae	Oscillatoriae	1	
	Bacillariophyceae	Naviculales	Diadesmaceae	2	
			Laticola	1	
		Naviculace	Navicula	1	
	Chlorophyceae	Chlamydomonadaleae	Chlorococcaceae	1	
		Sphaeroplealeae	Bracteacocccaceae	1	
		Trebouxiophyceae	Chlorellaee	1	
			Muriella	1	
		Fissidentaceae	Fissidens	1	
	Bryopsida	Dicranales	Brachytheciacae	1	
			Sciurohynnum	1	
			Pseudoleskeellaceae	1	
	Jama ER-1				
		Chroococcaceae	Microcystaceae	2	Gloeocapsa
		Nostocales	Nostocae	4	
		Oscillatoriae	Oscillatoriae	1	
		Synechococcales	Leptolyngbyaceae	1	
			Synechococcaceae	1	
	Bacillariophyceae	Naviculales	Diadesmaceae	1	
			Humidophila	1	
	Chlorophyceae	Chlamydomonadaleae	Chlorococcaceae	1	
			Muriella	1	
	Trebouxiophyceae	Chlorellaee	Chlorellaee	1	
			Stichococcus	1	

..continued on the next page
Relative abundances of identified species were calculated (Tables 2-3). Cyanobacteria Stigonema sp. and green algae Neochloris bilobata were the dominant species in the untitled cave. Cyanobacteria Chroococcus minor and green algae Bracteacoccus minor and Chlorella vulgaris were the most abundant in the Njegoš Pećina. The cyanobacteria Scytomena julianum and the green algae Chl. vulgaris were the dominants in the Veluštica Pećina. In the Golubinja Pećina, cyanobacterial species Chr. limneticus and Gloeocapsa compacta, and the green algae Chl. vulgaris were the most abundant. Cyanobacterial species Gl. compacta, Phormidium foveolarum, Leptolyngbya voronichiniana, Synechococcus elongatus, diatoms Humidophila contenta, green algae Stichococcus bacillaris and Ochrophyte Heterothrix bristoliana were the dominant species in the Vrbačka jama. Cyanobacterial species Gloeothecae palea, Gl. compacta, Nostoc commune and green algae Chl. vulgaris were the dominant species in the Obodska Pećina. In the Jama ER-1, cyanobacterial species Gl. punctata, P. foveolarum and green algae S. bacillaris were the most abundant.

Table 2. Relative abundance of cyanobacteria, algae, fern, and lichen found in investigated caves. Sampling site abbreviations: 1-untitled cave; 2- Njegoš Pećina; 3- Veluštica Pećina; 4- Golubinja Pećina; 5- Vrbačka jama; 6- Obodska Pećina; 7- Jama ER-1.

Taxon	1	2	3	4	5	6	7
Phylum Cyanobacteria							
Class Cyanophyceae							
Order Chroococcales							
Family Aphanothecaceae							
Aphanothece saxicola Nägeli 1849	4,48	4,76	3,75	4,88	-	3,23	-
Gloeothecae caldariorum (Richter) Hollerbach 1938	-	-	2,50	-	-	-	-
Gloeothecae palea (Kützing) Nägeli 1849	-	-	-	4,88	-	9,68	-
Family Chroococcales							
Chroococcus limneticus Lemmermann 1898	-	-	-	7,32	6,45	-	-
Chroococcus turgidus (Kützing) Nägeli 1849	2,99	-	-	-	-	-	-
Chroococcus lithophilus Ercegovac 1925	-	-	-	4,76	-	-	-
Chroococcus minor (Kützing) Nägeli 1849	2,99	7,14	-	-	-	-	-
Family Microcystaceae							
Gloeocapsa compacta Kützing 1847	-	-	-	7,32	10,71	9,68	5,00
Gloeocapsa ohaerens (Brébisson) Hollerbach in Elenkin 1937	-	4,76	-	-	-	-	-

..continued on the next page
TABLE 2

Species	Vignette	Vignette	Vignette	Residence	Vignette
Gloeocapsa kuetzingiana Nägeli ex Kützing 1849	2.99	-	-	-	-
Gloeocapsa minuta (Kützing) Hollerbach in Elenkin 1937	2.99	-	-	4.88	-
Gloeocapsa punctata Nägeli 1849	2.99	7.14	-	-	7.14
Gloeocapsa rupicola Kützing 1849	-	-	5.00	-	6.45
Microcystis aeruginosa (Kützing) Kützing 1846	2.99	-	-	-	7.14
Microcystis muscicola (Meneghini) Elenkin 1938	5.97	-	2.50	-	7.14
Microcystis pulvorea (H.C.Wood) Forti 1907	4.48	4.76	-	-	-
Microcystis pulvorea f. incerta (Lemmermann) Elenkin 1938	-	-	-	-	7.14

Order Nostocales

Family Nostocaceae

Species	Vignette	Vignette	Vignette	Residence	Vignette
Anabaeba sp.	-	4.76	-	-	-
Nostoc commune Vaucher ex Bornet & Flahault 1888	-	-	3.75	4.88	-
Nostoc microscopicum Carmichael ex Bornet & Flahault 1886	-	-	5.00	4.88	6.45
Family Rivulariaceae	-	-	3.75	-	-
Calothrix gypsophila (Kützing) Thuret 1875	-	-	5.00	-	-
Family Scytonemataceae	-	-	5.00	-	-
Scytonema julianum Meneghini ex B.A.Whitton 2011	4.48	-	6.25	-	-
Scytonema ocellatum Lyngbye ex Bornet & Flahault 1886	-	-	3.75	-	-
Family Stigonemataceae	-	-	2.50	-	-
Stigonema hormoides Bornet & Flahault 1886	-	-	5.00	-	-
Stigonema sp. 7.46	-	-	-	-	-
Family Tolypothrichaceae	-	-	5.00	-	-
Botryococcus rupicola (Borzi) G.De Toni 1936	-	-	5.00	-	-

Order Oscillatoriales

Family Oscillatoriaceae

Species	Vignette	Vignette	Vignette	Residence	Vignette
Oscillatoria amphibia C.Agardh ex Gomont 1892	2.99	-	-	-	5.00
Oscillatoria granulata N.L.Gardner 1927	2.99	-	-	-	-
Oscillatoria subtilissima Kützing ex Forti 1892	1.49	2.50	-	-	6.45

..continued on the next page
Table 2

| Species (Genus, Species) | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 | 2035 |
|-------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Phormidium foveolarum | 4.48 | - | - | 10.71 | - | 10.00 |
| Phormidium interruptum | 2.99 | - | - | - | - | - |
| Phormidium irriguum | 2.99 | - | - | - | - | - |
| Phormidium mucicola | 2.99 | - | 2.50 | 3.57 | - | 2.50 |
| Phormidium tenue | - | - | 2.50 | - | - | - |
| Order Spirulinales | | | | | | |
| Family Spirulinaceae | | | | | | |
| Spirulina sp. | | | | 4.88 | - | - |
| Order Synechococcales | | | | | | |
| Family Leptolyngbyaceae| | | | | | |
| Leptolyngbya leptostrichiformis | 2.99 | - | - | - | - | - |
| Leptolyngbya voronichiniana | 5.97 | - | 2.50 | 7.14 | - | 5.00 |
| Leptolyngbya boryana | - | - | 3.75 | 2.44 | - | - |
| Leptolyngbya boryana | - | - | 2.50 | - | - | - |
| Merismopedia sp. | | | | | | |
| Order Synechococcaceae | | | | | | |
| Synechococcus elongatus| 2.99 | - | - | 7.14 | - | 7.50 |
| Schizothrix vaginata | - | - | 3.75 | - | - | - |
| Phylum Bacillariophyta | | | | | | |
| Class Bacillariophyceae| | | | | | |
| Order Bacillariales | | | | | | |
| Family Bacillariaceae | | | | | | |
| Nitzschia amphibia | - | 2.38 | - | - | - | - |
| Hantzschia amphioxys | - | - | 1.25 | - | - | - |
| Order Fragilariales | | | | | | |
| Family Fragilariaceae | | | | | | |
| Fragilaria sp. | | | | | | |
| Order Mastogloiales | | | | | | |
| Family Achnanthaceae | | | | | | |
| Achnanthes sp. | - | 2.38 | - | - | - | - |

..continued on the next page
Order Naviculales	Family Diadesmidaceae	Humidophila contenta (Grunow)
	Lowe, Kociolek, J.R.Johansen,	Van de Vijver, Lange-Bertalot & Kopalová 2014
	Humidophila contenta (Grunow)	
Luticola nivalis (Ehrenberg)	D.G.Mann in Round, R.M.Crawford & D.G.Mann 1990	
Luticola mutica (Kützing)	D.G.Mann in Round, R.M.Crawford & D.G.Mann 1990	
Family Naviculaceae		
Navicula sp.	-	

Order Surirellales	Family Surirellaceae
Surirella sp.	-

Phylum Chlorophyta

Class Chlorophyceae

Order Chaetopeltidales
Family Chaetopeltidaceae

Floydiella terrestris	(R.D.Groover & A.M.Hofstetter)
Friedl & O'Kelly 2002	-

Order Chlamydomonadales
Family Chlorococcaceae

Tetracystis excentrica	R.M.Brown & Bold 1964
Chlamydocalps lobata	Broady 1977

Chlamydocapsa lobata Broady 1977
Chlamydocapsa lobata Broady 1977

Order Sphaeropleales
Family Bracteacoccaceae

Bracteacoccus minor (Schmidlex Chodat) Petrová 1931

Chlorella vulgaris (Beijerinck) 1890

Family Mychonastaceae

Mychonastes homosphaera (Skuja) Kalina & Puncochárová 1987

Family Neochloridaceae

Neochloris bilobata G.Vinatzer 1975

..continued on the next page
The following species of bryophytes were dominant in the respective caves: untitled cave – *Conardia compacta*; Njegoš Pećina – *Plagiothecium cavifolium*; Veluštica Pećina – *Sciurohypnum starkei* and *Homalia trichomanoides*; Golubinja Pećina – *Amphidium mougeotti*; Vrbačka jama – *Campylium calcareum*, *Homalothecium philippeanum*, *Entodon schleicheri*; Obodska Pećina – *Sciurohypnum plumosum* and *Pseudoleskeellaceae* sp.

Dominant species of cyanobacteria were the same in the following caves: Golubinja and Vrbačka jama (*Gl. compacta*), Vrbačka jama and Jama ER-1 (*P. foveolarum*). The diatom *S. bacillaris* was dominant in the caves Jama ER-1 and Vrbačka jama. The chlorophyte *Chl. vulgaris* was dominant in the caves Njegoš Pećina, Veluštica Pećina, Golubinja Pećina and Obodska Pećina. Bryophyte dominants were different in each cave.

We assessed the similarity of the species composition and community structure of the studied caves using standard similarity indices. We evaluated biodiversity as a whole and diversity of algal flora (algae and cyanobacteria) separately. Analyses indicated that the similarity of the cave phototrophs is low (Fig. 2). On the other hand, the cave algal flora demonstrated greater similarity. Flora of the caves, which are similar in morphology of the entrance zone (e.g., Golubinja Pećina and Obodska Pećina having a large grotto-like entrances, and Vrbačka jama and Jama ER-1 having entrances in a form of vertical wells) showed the

TABLE 2
Class Trebouxiophyceae
Order Chlorellales
Family Chlorellaceae
Muriella terrestris J.B.Petersen 1932
Family Oocystaceae
Oocystis minuta Guillard, Bold & MacEntee 1975
Order Prasiolales
Family Prasiolaceae
Desmococcus olivaceus (Persoon ex Acharius) J.R.Laundon 1985
Stichococcus bacillaris Nägeli 1849
Phylum Ochrophyta
Class Xanthophyceae
Order Tribonematales
Family Tribonemataceae
Heterothrix bristoliana Pascher 1939
Phylum Ascomycota
Class Lecanoromycetes
Order Lecanorales
Family Stereocaulaceae
Lepraria sp.
Phylum Pteridophyta
Class Polypodiopsida
Order Polypodiales
Family Aspleniaceae
Asplenium trichomanes L., 1753
Protonema of mosses
Prothallia of ferns
We predicted that the caves located close to each other would have high Jaccard and Shorygin indices, but that assumption was not confirmed.

Table 3. Relative abundance of bryophytes found in studied caves. Sampling site abbreviations: 1- untitled cave; 2- Njegoš Pećina; 3- Veluštica Pećina; 4- Golubinja Pećina; 5- Vrbačka jama; 6- Obodska Pećina; 7- Jama ER-1.

Taxon	1	2	3	4	5	6	7
Order Bartramiales							
Family Bartramiaceae							
Plagiopus oederianus (Sw.) Crum et Anderson	-	-	-	7,14	-	-	-
Order Dicraniales							
Family Dicranaceae							
Amphidium lapponicum (Hedw.) Schimp., Caroll. Bryol. Eur.	-	-	-	21,43	-	-	-
Amphidium mougeotti (B.S.G.) Schimp	-	30	-	28,57	-	-	-
Cynodontium tenellum B.S.G. (Limpr.)	-	-	-	-	-	-	40
Family Ditrichiaceae							
Ditrichium flexicaule (Schwaegr.) Hanpe	-	20	-	-	-	-	-
Cynodontium tenellum B.S.G. (Limpr.)	22,22	-	-	-	-	-	-
Family Fissidentaceae							
Fissidens taxifolius Hedw.	-	-	-	-	-	-	20
Order Hypnales							
Family Amblystegiaceae							
Amblystegium serpens (Hedw.) B.S.G.	22,22	-	-	-	-	-	-
Campylium calcareum Ochyra	-	-	-	21,43	26,67	-	-
Family Antitrichiaceae							
Conardia compacta (Drumm.) Robins	55,56	-	-	-	-	-	-
Family Brachytheciaceae							
Homalotheicum philippeanum (Spruce) B. S. G.	-	-	-	-	26,67	-	-
Sciurohypnum latifolium (Kindb.) Ignatov et Huttunen	-	-	-	21,43	-	-	-
Sciurohypnum plumosum (Hedw.) Ignatov et Huttunen	-	-	-	-	-	40	-
Sciurohypnum starkei (Brid.) Ignatov et Huttunen	-	-	-	50	-	-	-
Family Brachytheciaceae							
Entodon schleicheri Demeter	-	-	-	-	26,67	-	40
Family Neckeraeae							
Homalia trichomanoides (Hedw.) B. S. G.	-	-	50	-	-	-	-

..continued on the next page
In this study, 51 taxa of phototrophs were recorded from seven caves located in the karstic region of southern Montenegro is reported. In terms of taxonomic richness, the communities composition of studied caves was dominated by Cyanobacteria and algae (Bacillariophyta, Chlorophyta and Ochrophyta) and which is consistent with many studies. For example Mazina & Kozlova (2018) found that flora assemblage of Lipska cave include 29 phototrophic species of which 17 species belong to algae and Cyanobacteria, and 12 to Bryophyta.

Diatom *Humidophila contenta* was the only species found in all the caves and had a high score of abundance (more than 7) in the caves-wells. Green algae *Chlorella vulgaris* and *Stichococcus bacillaris* were found in most caves. It is interesting to note that, as a rule, these species dominated in the studied communities (scores of relative abundance were 7-12). However, in the case when both species were simultaneously found in the cave, their relative abundance decreased to 3-5 points.

Aerophytic algae, mainly cyanobacteria, dominate compared with other microorganisms (Czerwik-Marcinkowska 2013; Mulec et al. 2008), especially at the cave entrances, where growth conditions are the most suitable (Mulec 2005; Mulec et al. 2008).

The cyanobacterium *Aphanothece saxicola* was found in all the caves except the wells; this species is usually found in the form of biofilm on limestone and calcite. The species of the genus *Microcystis* are found in all caves, except the Golubinja Pećina. It should be noted that this cave is rich in organic matters and protonema. A similar abundance of protonema is found in the Vrbačka jama. The genus *Gleocapsa* is represented in all caves.

Aerophilous diatom *H. contenta* (formerly *Diadesmis contenta*) was registered at the entrance areas of all the studied caves. Most members of the *Humidophila* genus are considered cosmopolitan due to their wide distribution (Pouličková & Hašler 2007). *H. contenta* also had the highest occurrence in the caves of Poland (Czerwik-Marcinkowska et al. 2015); and was found in the caves of Central Moravia (Czech Republic) (Pouličková & Hašler 2007), Canada (Lauriol et al. 2006) and in the Urals (Abdullin 2007).

Species of cyanobacteria and algae that are dominant at the entrance zones are common in caves in various regions: *Gl. compacta* – in Serbia (Popović et al. 2017) and UK (Pentecost & Whitton 2012); *Chl. vulgaris* – in the Czech Republic (Pouličková & Hašler 2007), Poland (Czerwik-Marcinkowska & Mrozińska 2009) and Turkey (Selvi & Altuner 2007); *S. bacillaris* – in Slovenia (Mulec et al. 2008), Serbia (Popović et al. 2017), and the Urals (Gainutdinov et al. 2017). *P. foveolarum* is noted as one of the most frequently encountered species of cyanobacteria in European caves (Pentecost & Whitton 2012).

The largest number of bryophyte species were registered at the entrance area of the Golubinja Pećina. This is presumably due to the specific morphological structure of the entrance and the presence of a large amount of organic matter (pigeon droppings).
Figure 2. The dendrogram distribution diagram based on a comparison of all flora (A) and algal flora (B) of caves using the Jacqaud floristic similarity coefficient. The dendrogram distribution diagram based on the comparison of all flora (C) and algal flora (D) of caves using the Shorygin floristic similarity coefficient. U - Untitled cave; N - Njegoš Pećina; Ve - Veluštica Pećina; G - Golubinja Pećina; Vr - Vrbačka jama; O - Obodska Pećina; J - Jama ER-1.

The species Amblystegium serpens and Campylidium calcareum have been documented by Mulec & Kubešová (2010) as part of the lampenflora in Slovenian caves. A. serpens has also been found in the lampenflora of the caves in Italy (Castello 2014) and the Czech Republic (Kubešová 2001). Ditrichum flexicaue and Fissidens taxifolius have also been recorded Kubešová (2001) as a part of the lampenflora. Conardia compacta and Plagiopus oederianus have been registered in the lampenflora of the show caves in Abkhazia and the Krasnodar Territory (Mazina 2016). A. serpens, Tortella tortuosa and a lichen of the genus Lepraria has been registered Pentecost & Zhaohui (2001) in the flora of cave in England (North Yorkshire).

The fern Asplenium trichomanes, which we registered in the Veluštica Pećina, is widely distributed and can be found in well-lit entrance areas, as well as in the lampenflora (Castello 2014).

The results of our study showed that the spatial proximity of the investigated caves is not an indicator of assemblage similarity since we did not find any evidence that the species of neighboring caves had coincided more than in the distant ones. Probably, the assemblage similarity caused by the morphology of the entrance zones of the studied caves.

Acknowledgements

This research was supported by the project «5-100» of the Peoples’ Friendship University of Russia.
References

Abdullin, Sh.R. (2009) Cyanobacterial–algal cenoses of the Shulgan-Tash cave, *Southern Urals Russian Journal of Ecology*, 40(4), 301–303.

Andreev, M.P. (2008) Rod of Lecidoma Goth. Schneid. & Hertel in Hertel – Lecidom. Key to lichens in Russia. *Nauka*, 10, 378–380 (in Russian).

Barović, G., Spalević, V., Pešić, V. & Vujačić, D. (2018) The physical and geographical characteristics of the lake Skadar basin. In: Pešić, V., Karaman, G. & Kostianoy, A. (Eds) *The Skadar/Shkodra Lake Environment. The Handbook of Environmental Chemistry*, vol. 80, Springer, Cham, pp. 11–23.

Castello, M. (2014) Species diversity of bryophytes and ferns of lampenflora in Grotta Gigante (NE Italy). *Acta Carsologica*, 43(1), 185–193.

Cherepanov, S. N. (1995) Vascular plants of Russia and adjacent states (within the former USSR). - SPb.-992.

Czerwik-Marcinkowska, J. (2013) Observations on aerophytic cyanobacteria and algae from ten caves in the Ojców national park. *Acta Agrobotanica*, 66(1), 39–52.

Czerwik-Marcinkowska, J. & Mrozińska, T. (2009) Epilithic algae from caves of the Krakowsko-Częstochowska Upland (Southern Poland). *Acta Societatis Botanicorum Poloniorum*, 78(4), 301–309.

Czerwik-Marcinkowska, J., Wojciechowska, A. & Massalski, A. (2015) Biodiversity of limestone caves: aggregations of aerophytic algae and cyanobacteria in relation to site factors. *Polish Journal of Ecology*, 63(4), 481–499.

Engel, A.S., Stern, L.A. & Bennett, P. C. (2004) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. *Geology*, 32, 369–372.

Gainutdinov, I.A., Abdullin, Sh.R., Sharipova, M.Yu. & Dubovik, I.E. (2017) Cyanobacteria and algae in some caves of Bashkirskiyi Ural Biosphere Reserve (southern Urals, Bashkortostan Republic, Russia). *Cave and Karst Science*, 44(3), 119–126.

Guiry, M.D. & Guiry, G.M. (2019) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; accessed on 8 February 2019

Ignatov, M.S. & Ignatova, E.A. (2003) *Moss flora of the Middle European Russia*. Moscow: KMK Scientific Press Ltd, 1:1-608 pp; 2:609-960 pp. (in Russian)

Kubešová, S. (2001) Bryophyte flora at lamps in public caves in the Moravian Karst (Czech Republic). *Acta Musei Moraviae*, 86(1), 195–202.

Lauriol, B., Prévost, C. & Lacelle, D. (2006) The distribution of diatom flora in ice caves of the northern Yukon Territory, Canada: relationship to air circulation and freezing. *International Journal of Speleology*, 35(2), 83–92.

Mayevsky, P.F. (2014) *Flora of the middle zone of European part of Russia*, 11th ed. Moscow, KMK Scientific Press Ltd, 635 pp. (in Russian)

Mazina, S.E. (2016) Bryophytes and ferns as part of lamp flora caves. *South of Russia: ecology, development*, 11(3), 140-150. (in Russian).

Mazina, S.E. & Kozlova, E.V. (2018) Lampenflora of Lipska Cave, Montenegro. *Journal of Cave and Karst Science*, 45(3), 128–133.

Mulec, J. (2005) Algae in the karst caves of Slovenia. *PhD Thesis*, University of Lubljana, Ljubljana, 149 pp.

Mulec, J., Kosi, G. & Vrhovšek, D. (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigment. *Journal of Cave and Karst Studies*, 70(1), 3–12.

Mulec, J. & Kubešová, S. (2010) Diversity of Bryophytes in show caves in Slovenia and relation to light intensities. *Acta Carsologica*, 39(3), 587–596.

Pentecost, A. & Whitton, B.A. (2012) Subaerial Cyanobacteria. In: Whitton, B.A. (Ed.) *The Ecology of Cyanobacteria II*. Springer; Dordrecht, The Netherlands, pp. 291–316.

Pentecost, A. & Zhaohui, Z. (2001) The distribution of plants in Scoska Cave, North Yorkshire, and their relationship to light intensity. *International Journal of Speleology*, 30, 27–37.

Pešić, V., Karaman, G.S. & Sket, B. (2018) The diversity and endemism of aquatic subterranean fauna of the Lake Skadar/Shkodra Basin. In: Pešić, V., Karaman, G. & Kostianoy, A. (Eds) *The Skadar/Shkodra Lake Environment. The Handbook of Environmental Chemistry*, vol. 80, Springer, Cham, pp. 339–361.
Pouličková, A. & Hašler, P. (2007) Aerophytic diatoms from caves in central Moravia (Czech Republic). *Preslia*, 79, 185–204.

Popović, S., Subaković, S.G, Stupar, M., Unković, N., Krunić, O., Savić, N. & Ljajević Grbić, M. (2017) Cave biofilms: characterization of phototrophic cyanobacteria and algae and chemotrophic fungi from three caves in Serbia. *Journal of Cave and Karst Studies*, 79(1), 10–23.

Prous, X., Ferreira, L.R. & Jacobi, C.M. (2015) The entrance as a complex ecotone in a Neotropical cave. *International Journal of Speleology*, 44(2), 177–189.

Robert, V.G. & Stalpers, J. (2005) The MycoBank engine and related databases. http://www.mycobank.org; accessed on 8 February 2019.

Rozenberg, G.S., Mozgovoy, D.P. & Gelashvili, D.B. (2000) *Ecology: elements of theoretical constructions of modern ecology*. Samara: Samara Scientific Center of RAS, 396 p. (in Russian).

Selvi, B. & Altun, Z. (2007) Algae of Ballica cave (Tokat-Turkey). *International Journal of Natural and Engineering Sciences*, 1, 99–103.

Vanderwolf, K., Malloch, D., McAlpine, D.F. & Forbes, G.J. (2013) A world review on fungi, yeasts, and slime molds in caves. *International Journal of Speleology*, 42(1), 77–96.