The usefulness of the Multidimensional Health Locus of Control Form C (MHLC-C) for HIV+ subjects: An Italian study

A. Ubbiali, D. Donati, C. Chiorri, V. Bregani, E. Cattaneo, C. Maffei, and R. Visintini

Clinical Psychology and Psychotherapy Unit, Department of Clinical Neurosciences II San Raffaele Turro, Milan, Italy; Vita-Salute San Raffaele University, School of Psychology, Milan, Italy; Psychology Unit of Department of Anthropological Sciences, University of Genova, Genoa, Italy

(Received 20 August 2007; final version received 12 December 2007)

In the last few years, highly active antiretroviral therapy (HAART) has resulted in a remarkable decrease in HIV-related morbidity and mortality (Hogg et al., 1998; Palella et al., 1998, 2003). Nevertheless, it’s widely believed that adherence is a key factor in determining whether or not the patient will derive sustained benefit from the antiretroviral therapy (Paterson et al., 2000).

Many studies on adherence have limited themselves to dealing with the subjects’ ‘manifest behaviour’ only, therefore assessing the association between evident variables and the subjects’ adherence to the treatment prescribed. They have tended to neglect other features of the subjects, such as psychological and interpersonal styles, which are, instead, closely linked to the adherence phenomenon (Ironson et al., 2005). On the other hand, it seems essential to take into account a person’s beliefs regarding his/her own health status-beliefs, which are likely to influence both treatment-linked behaviours and quality of life, too (Penedo et al., 2003).

In particular, Locus of Control, a construct derived from social learning theory (Rotter, 1954), has proved to be helpful in predicting and explaining specific health-related behaviours (Strudler-Wallston & Wallston, 1978).

According to this approach, individuals can be divided into two main groups: those who believe that their state of health (or sickness) is a result of their own behaviour (“health-internals”) and those who consider that the factors that determine their health are generally such things as chance or powerful others, factors over which they have poor control (“health-externals”) (Wallston, Wallston, Kaplan, & Maides, 1976).

Wallston and colleagues later demonstrated the importance of assessing beliefs concerning the influence of chance and of powerful others separately (Wallston, Wallston, & DeVellis, 1978). More recently, Wallston, Stein and Smith (1994) have shown that it is also useful to discriminate between expectancies related to doctors and those related to other significant people (e.g., relations, friends, etc.) within the powerful others construct.

They thus developed the Multidimensional Health Locus of Control scale-Form C (MHLC-C), an 18-item self-administered questionnaire, useful for assessing Locus of Control beliefs with any medical- or health-related condition. Items are rated on a six-point

Keywords: locus of control; health-related beliefs; relational style; MHLC-C

Introduction

In the last few years, highly active antiretroviral therapy (HAART) has produced a remarkable decrease in HIV-related morbidity and mortality (Hogg et al., 1998; Palella et al., 1998, 2003). Nevertheless, it’s widely believed that adherence is a key factor in determining whether or not the patient will derive sustained benefit from the antiretroviral therapy (Paterson et al., 2000).

Many studies on adherence have limited themselves to dealing with the subjects’ ‘manifest behaviour’ only, therefore assessing the association between evident variables and the subjects’ adherence to the treatment prescribed. They have tended to neglect other features of the subjects, such as psychological and interpersonal styles, which are, instead, closely linked to the adherence phenomenon (Ironson et al., 2005). On the other hand, it seems essential to take into account a person’s beliefs regarding his/her own health status-beliefs, which are likely to influence both treatment-linked behaviours and quality of life, too (Penedo et al., 2003).

In particular, Locus of Control, a construct derived from social learning theory (Rotter, 1954), has proved to be helpful in predicting and explaining specific health-related behaviours (Strudler-Wallston & Wallston, 1978).

According to this approach, individuals can be divided into two main groups: those who believe that their state of health (or sickness) is a result of their own behaviour (“health-internals”) and those who consider that the factors that determine their health are generally such things as chance or powerful others, factors over which they have poor control (“health-externals”) (Wallston, Wallston, Kaplan, & Maides, 1976).

Wallston and colleagues later demonstrated the importance of assessing beliefs concerning the influence of chance and of powerful others separately (Wallston, Wallston, & DeVellis, 1978). More recently, Wallston, Stein and Smith (1994) have shown that it is also useful to discriminate between expectancies related to doctors and those related to other significant people (e.g., relations, friends, etc.) within the powerful others construct.

They thus developed the Multidimensional Health Locus of Control scale-Form C (MHLC-C), an 18-item self-administered questionnaire, useful for assessing Locus of Control beliefs with any medical- or health-related condition. Items are rated on a six-point
Likert scale, where 1 = strongly disagree and 6 = strongly agree. The MHLC-C provides scores of four subscales: Internality, which measures an individual’s tendency to believe that health outcomes are due mainly to his/her own behaviour (6 items); Chance, which measures the extent to which one believes that health/illness is a matter of fate or luck (6 items); Doctors, which measures an individual’s beliefs about the degree of control doctors have over condition-specific outcomes (3 items); and Other People, which measures how far an individual expects that ‘powerful others’ such as relations or friends may contribute to his/her health condition outcome (three items).

Since the Italian version of MHLC-C has never been reliably validated, we first needed to assess its psychometric properties (i.e., factor structure, reliability, etc.). Moreover, two more samples of chronic patients (from the fields of Cardiac Surgery and Cancer) were given the test, for the specific purpose of characterizing the MHLC-C profile of the HIV+ patients. To test the differences between groups, the critical assumption is that the scales should measure the same traits in all of them (e.g., Borsboom, 2006). If such an assumption holds, then comparisons and analyses of scale scores are acceptable and yield meaningful interpretations.

Starting from these premises, and by using the MHLC-C, the main goal of this study was to try and add to our knowledge of how HIV+ patients view, understand and think about their complex health condition, focusing specifically on their individual beliefs. The resulting profile is then compared to those of other types of patients.

Method

Wallston’s MHLC-C was administered to 478 HIV+ subjects (%F = 28.5), ranging from 18 to 50 years of age (M = 38.9 ± 6.1) and from 5 to 18 years in formal education (M = 11.8 ± 3.6). In terms of marital status, most subjects were single (54.8%) and a lower percentage married (21.8%). Adherent subjects (56.1%) were identified on the grounds of the Patterson (Paterson et al., 2000) cut-off criterion of 95% of correct therapy taking during the past month. Factor structure was investigated by means of Principal Axes Factor Analysis (PAF) with Promax Axes Rotation. The number of underlying dimensions was assessed by means of Scree-test (ST, Cattell, 1966), Parallel Analysis (PA, Horn, 1965) and the Minimum Average Partial (MAP) Correlation statistic (Velicer, 1976). Cronbach’s Alpha was used to evaluate internal consistency of MHLC-C subscales. The fit of two-, three- and four-factor models was assessed through Maximum Likelihood Confirmatory Factor Analyses (ML-CFA). Having determined the best fitting model, its factor structure invariance (i.e., generalizability) across different subsamples (defined by being adherent or not to anti-retroviral therapy, by gender and by random splitting) was then tested through the same statistical method. For this purpose, pattern coefficients (i.e., factor loadings) and factor variances and covariances were subsequently constrained to be equal across groups. Differences between all these nested models were again assessed through ML-CFA.

In order to correct for substantive non-normal multivariate distribution of item scores, Satorra-Bentler’s scaled Chi-Square statistics (SB-χ^2) (Satorra & Bentler, 1988) were used to evaluate model fit and differences in fit between nested models. Given that the relatively large sample size would be too likely to lead to a statistical rejection of the hypothesized models, a number of widely used descriptive indices for assessing model fit were used: the SB-χ^2 to degrees of freedom (df) ratio (Schermelleh-Engel, Moosbrugger, & Müller, 2003), the Root Mean Square Error of Approximation (RMSEA) (Steiger, 1990), the robust estimates (Satorra & Bentler, 1988) of Non-Normed Fit Index (NNFI*) and Comparative Fit Index (CFI*) (Bentler, 1990), and the Standardized Root Mean Square Residual (SRMR) (Bentler, 1995). Hu and Bentler’s (1999) cutoff values for optimal fit were used. Both standardized residuals and modification indices were consulted for identifying model misspecification in the process of establishing the baseline model for each group. A difference of 0.01 in the value of NNFI* and CFI* between the baseline and the constrained models was considered as the index of substantial difference in fit (Cheung & Rensvold, 2002; Marsh, 1994; Vandenberg & Lance, 2000).

In order to give an accurate picture of the HIV+ patients’ MHLC-C profile, the scale was also administered to 70 cardiac surgery patients (%F = 27.1, mean age 55.9 ± 12.0 years, mean education 10.5 ± 4.2 years) and 108 cancer patients (%F = 66.3, mean age 54.3 ± 13.4 years, mean education 10.7 ± 3.9 years). Factor structure generalizability across the three groups of patients was assessed through the same ML-CFA procedure described above. This procedure was used to provide evidence that the scales measured the same traits in all of the groups, thus enabling a reliable comparison of group means.

To test differences between groups in mean scale scores, a Mixed Factorial Analysis of Covariance (mixed ANCOVA) was performed, taking into account scale mean scores as repeated measure factor, gender and diagnosis as between-subjects factors and age and education as covariates. In order to test differences in subscale scores, given the different
number of items in the MHLC-C scales, each subscale score was computed as the mean of item scores. Statistical analyses were carried out through SPSS 10.0 (SPSS, 1999) and LISREL 8.52 (Jöreskog & Sörbom, 2002).

Results

ST and PA indicated that four latent dimensions could adequately represent systematic inter-item covariation. PAF showed that a four-factor solution accounted for 47.523% of total variance. All items loaded on the expected factor, with factor loadings ranging from 0.302 to 0.839. Low to moderate correlations were observed among the factors. The MAP statistic suggested a two-factor solution, in which items defining Others were compared to the three-factor solution, in which items defining Others loaded on the expected factor, with factor loadings accounted for 47.523% of total variance. All items ranged from 0.302 to 0.839. Low to moderate correlations were observed among the factors. The PAF showed that a four-factor solution mostly due to a difference in the Internality and Chance scales of cardiac males, who have higher scores than cardiac females on the former scale (Bonferroni-adjusted $t = 2.27$, $p = 0.024$), and lower on the latter (Bonferroni-adjusted $t = 2.78$, $p = 0.006$). Table 2 shows the details of Bonferroni-adjusted post-hoc tests performed for the total sample on the scale levels, for each diagnostic group on the scale levels and for each scale on the diagnosis levels.

These results highlighted the distinctive profile of HIV+ patients, which differed from that of Cancer and Cardiac patients.

Discussion

The clinical purpose of this research project has been to try and gain a better knowledge of how HIV+ patients view their condition and the factors they see as crucial for them to influence it.

The scientific literature has stressed how radically the introduction of HAART has modified the life expectancy of HIV+ subjects, but less emphasis has been placed on how this new circumstance (i.e. the need to follow treatment scrupulously) can influence their whole life from a psychological point of view.

Consequently, we try and identify a typical profile of HIV+ patients, in terms of how their health-related beliefs influence the organization of their daily life and their lifestyle in the light of this new state of affairs.

The use of an anonymous, self-administered questionnaire seemed well suited to this purpose, since it became possible to attenuate the subjects’ concern about social desirability, at the same time allowing some of their intimate beliefs concerning their pathology to emerge.

A first observation that emerges from our results concerns the HIV+ subjects’ high scores on the Internality subscale, which are the highest of all the groups examined.

Discussion: The clinical purpose of this research project has been to try and gain a better knowledge of how HIV+ patients view their condition and the factors they see as crucial for them to influence it.

The scientific literature has stressed how radically the introduction of HAART has modified the life expectancy of HIV+ subjects, but less emphasis has been placed on how this new circumstance (i.e. the need to follow treatment scrupulously) can influence their whole life from a psychological point of view.

Consequently, we try and identify a typical profile of HIV+ patients, in terms of how their health-related beliefs influence the organization of their daily life and their lifestyle in the light of this new state of affairs.

The use of an anonymous, self-administered questionnaire seemed well suited to this purpose, since it became possible to attenuate the subjects’ concern about social desirability, at the same time allowing some of their intimate beliefs concerning their pathology to emerge.

A first observation that emerges from our results concerns the HIV+ subjects’ high scores on the Internality subscale, which are the highest of all the groups examined.

As shown in several previous studies (Strudler-Wallston & Wallston, 1978), subjects with high scores on this subscale are generally skilled at controlling
Table 1a. Testing for measurement invariance of MHLC-C for HIV+ gender and adherent vs non-adherent groups.

Invariance Hypothesis	HIV+ adherent and non-adherent subjects	HIV+ gender groups													
	SB-χ^2 (\DeltaSB-χ^2)*	df (\Deltadf)*	SB-χ^2/df	RMSEA	NNFI*	CFI*	SRMR	SB-χ^2 (\DeltaSB-χ^2)*	df (\Deltadf)*	SB-χ^2/df	RMSEA	NNFI*	CFI*	SRMR	
Common 4-factor structure	351.73	267	1.32	0.04	0.95	0.96	0.08	330.03	266	1.24	0.03	0.96	0.96	0.08	
Pattern coefficients															
All	25.33	14	1.33	0.04	0.95	0.96	0.08	23.92	14	1.25	0.03	0.95	0.96	0.09	
Only INT	1.64	5	1.31	0.04	0.96	0.96	0.08	1.34	5	1.23	0.03	0.96	0.96	0.08	
Only CHA	14.76	5	1.33	0.04	0.95	0.96	0.08	12.11	5	1.25	0.03	0.96	0.96	0.08	
Only DOC	4.97	2	1.32	0.04	0.95	0.96	0.08	41.35	2	1.26	0.03	0.95	0.96	0.08	
Only OTH	12.46	2	1.33	0.04	0.95	0.96	0.08	0.50	2	1.24	0.03	0.96	0.96	0.08	
Variances/covariances															
All variances/ covariances	20.20	10	1.34	0.04	0.95	0.96	0.09	7.98	10	1.23	0.03	0.96	0.96	0.08	
Only variances	1.89	4	1.31	0.04	0.96	0.96	0.08	23.19	4	1.25	0.03	0.96	0.96	0.08	
Only covariances	16.88	6	1.34	0.04	0.95	0.96	0.09	4.45	6	1.23	0.03	0.96	0.96	0.08	
Individual variance	INT	0.29	1	1.31	0.04	0.95	0.96	0.08	0.33	1	1.24	0.03	0.96	0.96	0.08
	CHA	0.01	1	1.31	0.04	0.95	0.96	0.08	4.38	1	1.24	0.03	0.96	0.96	0.08
	DOC	0.92	1	1.32	0.04	0.95	0.96	0.08	1.46	1	1.25	0.03	0.95	0.96	0.08
	OTH	0.38	1	1.32	0.04	0.95	0.96	0.08	0.22	1	1.24	0.03	0.96	0.96	0.08
Individual covariance	INT/CHA	2.94	1	1.32	0.04	0.95	0.96	0.08	2.07	1	1.24	0.03	0.96	0.96	0.08
	INT/DOC	2.62	1	1.32	0.04	0.95	0.96	0.08	0.48	1	1.24	0.03	0.96	0.96	0.08
	INT/OTH	0.85	1	1.32	0.04	0.95	0.96	0.08	0.83	1	1.24	0.03	0.96	0.96	0.08
	CHA/DOC	42.54	1	1.34	0.04	0.95	0.96	0.09	1.12	1	1.24	0.03	0.96	0.96	0.08
	CHA/OTH	0.24	1	1.31	0.04	0.95	0.96	0.08	0.11	1	1.24	0.03	0.96	0.96	0.08
	DOC/OTH	0.01	1	1.31	0.04	0.95	0.96	0.08	0.19	1	1.24	0.03	0.96	0.96	0.08

Note. NNFI* = SB-adjusted Non-Normed Fit Index; CFI* = SB-adjusted Comparative Fit Index; INT = internality; CHA = chance; DOC = doctors; OTH = other people. *Only for baseline models these are model SB-f statistic and model df; for all others, the entries are ΔSB-f (the increase of ΔSB-f statistic relative to the baseline model due to the additional invariance constraints) and Adf (df difference between the two models).
Table 1b. Testing for measurement invariance of MHLC-C for HIV+ random samples and pathological groups (HIV+, cardiac surgery patients and cancer patients).

Invariance Hypothesis	HIV+ random subsamples	Three patients’ groups												
	SB-χ^2	df (Δdf)*	SB-χ^2/df	RMSEA	NNFI*	CFI*	SRMR	SB-χ^2	df (Δdf)*	SB-χ^2/df	RMSEA	NNFI*	CFI*	SRMR
Common 4-factor structure	377.68	263	1.44	0.04	0.93	0.94	0.07	523.38	410	1.28	0.04	0.95	0.96	0.13
Pattern coefficients														
All	23.22	14	1.45	0.04	0.93	0.94	0.07	1159.99	28	1.48	0.05	0.91	0.92	0.13
Only INT	1.54	5	1.42	0.04	0.93	0.94	0.07	90.02	10	1.37	0.04	0.93	0.94	0.14
Only CHA	25.05	5	1.47	0.04	0.93	0.94	0.07	44.78	10	1.30	0.04	0.95	0.95	0.13
Only DOC	1.18	2	1.43	0.04	0.93	0.94	0.07	39.95	4	1.31	0.04	0.94	0.95	0.13
Only OTH	5.76	2	1.44	0.04	0.93	0.94	0.07	120.37	4	1.33	0.04	0.94	0.95	0.11
Variances/covariances	19.61	10	1.45	0.04	0.93	0.94	0.07	192.82	20	1.33	0.04	0.94	0.94	0.12
All Variances/ covariances	6.64	4	1.44	0.04	0.93	0.94	0.07	186.16	8	1.34	0.04	0.94	0.94	0.12
Only variances	11.04	6	1.44	0.04	0.93	0.94	0.07	235.82	12	1.32	0.04	0.94	0.95	0.12
Only covariances														
Individual variance	3.53	1	1.44	0.04	0.93	0.94	0.07	0.03	2	1.27	0.04	0.95	0.96	0.13
INT	0.29	1	1.43	0.04	0.93	0.94	0.07	58.50	2	1.30	0.04	0.95	0.95	0.13
CHA	0.02	1	1.43	0.04	0.93	0.94	0.07	8.69	2	1.32	0.04	0.94	0.95	0.11
DOC	7.88	1	1.45	0.04	0.93	0.94	0.07	3.39	2	1.28	0.04	0.95	0.96	0.13
Individual covariance	1.68	1	1.44	0.04	0.93	0.94	0.07	3.14	2	1.28	0.04	0.95	0.96	0.13
INT/CHA	12.37	1	1.45	0.04	0.93	0.94	0.07	60.80	2	1.29	0.04	0.95	0.95	0.12
INT/DOCT	4.77	1	1.44	0.04	0.93	0.94	0.07	11.55	2	1.28	0.04	0.95	0.95	0.13
CHA/DOCT	0.84	1	1.43	0.04	0.93	0.94	0.07	8.23	2	1.28	0.04	0.95	0.95	0.13
CHA/OTH	3.90	1	1.44	0.04	0.93	0.94	0.07	10.05	2	1.29	0.04	0.95	0.95	0.13
DOC/OTH	0.14	1	1.43	0.04	0.93	0.94	0.07	5.00	2	1.28	0.04	0.95	0.95	0.12

Note. NNFI* = SB-adjusted Non-Normed Fit Index; CFI* = SB-adjusted Comparative Fit Index; INT = internality; CHA = chance; DOC = doctors; OTH = other people. *Only for baseline models these are model SB-f statistic and model df; for all others, the entries are ΔSB-f (the increase of SB-f statistic relative to the baseline model due to the additional invariance constraints) and Δdf (df difference between the two models).
their pathology and can modify their behaviour patterns, in order to improve their state of health.

It is therefore not surprising to find that HIV+ subjects obtain lower scores on the Chance scale, stressing that HIV+ subjects tend to attribute less significance to ‘fate and destiny’ in determining the course of their pathology.

Together, these two results seem to suggest that the HIV+ subjects would define themselves as informed and aware of the specific ‘commitment rules’ related to HIV-pathology and, therefore, skilled at exercising due control over it.

A second comment can be made about the higher mean score obtained by HIV+ subjects on the Doctor subscale. This result would seem to suggest that HIV+ subjects believe that their clinicians play a crucial role in improving their state of health.

The above result seems to confirm the idea that HIV+ subjects have appropriate beliefs concerning the management of their condition.

Nevertheless, and quite unexpectedly, the results of the study also show that the HIV+ subjects do not seem to attribute such importance to ‘meaningful others’ in the management of their pathology, as underlined by their lower scores in the Other People scale, which are significantly different from those obtained by the other two diagnostic groups (see Table 2).

To sum up, the final overall profile of the HIV+ subjects obtained from the results of the study raises some problems. It is likely that the HIV+ patients not only see the time available for interpersonal relationships as being reduced by their complex therapeutic regime, but mistakenly believe that interpersonal relationships are not strictly necessary for managing their condition. Despite the wide ranging efforts by specialists in this area over the years to overcome the initial social stigma linked to HIV infection, and although the scientific literature has underlined the relevance of interpersonal relations in HIV-pathology management, it seems that HIV+ subjects still have deep-seated difficulties in placing trust in others. Of course, other factors may affect this attitude. Since the multi-group confirmatory analyses showed that the MHLC-C scales measure the same traits in all of the subsamples considered,

Table 2. Means and standard deviations on subscales of MHLC-C by diagnostic groups.

Diagnostic group	a. HIV+	b. Cardiac	c. Cancer	Total Sample					
Subscale	M	SD	M	SD	M	SD	Post-hoc*		
1. Internality	3.85	1.01	3.67	0.99	3.31	0.95	3.74	1.02	a = b > c
2. Chance	3.07	1.15	2.89	1.24	3.64	1.17	3.14	1.18	a = b < c
3. Doctors	5.14	0.93	5.16	0.80	4.60	0.99	5.05	0.95	a = b > c
4. Other People	3.18	1.12	4.12	1.15	3.93	1.28	3.41	1.20	a < b = c
Post-hoc*	$3 > 1 > 2 = 4$	$3 > 4 > 1 > 2$	$3 > 4 = 2 > 1$	$3 > 2 > 1 = 4$					

Note. *Post-hoc comparison tested with Bonferroni correction, with $p < 0.05$.

Figure 1. Scale by pathology by gender interaction plot (estimated marginal means).
meaningful comparisons of mean scores across gender- and adherence-defined subgroups of patients are legitimate. We have addressed this issue elsewhere (Ubbiali et al., 2008, this issue) and found significant differences between non-adherent vs. adherent males and non-adherent vs. adherent females. Specifically, the psychological profile of non-adherent males seemed to focus less on relational aspects and on the perceived relevance of physicians and of ‘significant other people’, while that of non-adherent females seemed more relation-oriented.

As a final result, the study confirms the importance of looking beyond manifest behaviour and making an in-depth investigation of the beliefs held by HIV+ subjects, so that appropriate socio-psychological action can be taken. It is not only a question of improving adherence to antiretroviral therapies, but also of enhancing the overall quality of the patients’ life and relationships.

Acknowledgements

The authors wish to express their sincere thanks to Prof. Kenneth Wallston for his kind support and guidance in some aspects of the study.

Note

1. For a more detailed description of this procedure, see Yin and Fan (2003).

References

Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.

Bentler, P.M. (1995). EQS Structural Equations Program Manual. Encino, CA: Multivariate Software.

Borsboom, D. (2006). When does measurement invariance matter? Medical Care, 44(11), Supplement 3, S176–S181.

Cattell, R.B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276.

Cheung, G.W., & Rensvold, R.B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255.

Hogg, R.S., Health, K.V., Yip, B., Craib, K.J., O’Shaugnessy, M.V., Schechter, M.T., et al. (1998). Improved survival among HIV-infected individuals following initiation of antiretroviral therapy. Journal of the American Medical Association, 279, 450–454.

Horn, J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185.

Hu, L., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

Ironson, G., O’Cleirigh, C., Fletcher, M.A., Laurenceau, J.P., Balbin, E., Klimax, N., Schneiderman, N., & Solomon, G. (2005). Psychosocial factors predict CD4 and viral load change in men and women with human immunodeficiency virus in the era of highly active antiretroviral treatment. Psychosomatic Medicine, 67(6), 1013–1021.

Jöreskog, K.G., & Sörbom, D. (2002). LISREL 8.52 [Computer software]. Chicago: Scientific Software International, Inc.

Marsh, H.W. (1994). Confirmatory factor analysis models of factorial invariance: A multifaceted approach. Structural Equation Modeling: A Multidisciplinary Journal, 1(1), 5–34.

Palella, F.J., Jr., Delaney, K.M., Moorman, A.C., Loveless, M.O., Fuhrer, J., Satten, G.A., Aschman, D.J., & Holmberg, S.D. (1998). Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. New England Journal of Medicine, 338(13), 853–860.

Palella, F.J., Jr., Deloria-Knoll, M., Chmiel, J.S., Moorman, A.C., Wood, K.C., Greenberg, A.E., & Holmberg, S.D. (2003). Survival benefit of initiating antiretroviral therapy in HIV-infected persons in different CD4+ cell strata. Annals of Internal Medicine, 138(8), 620–626.

Paterson, D.L., Swindells, S., Mohr, J., Brester, M., Vergis, E.N., Squier, C., Wagener, M.M., & Singh, N. (2000). Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Annals of Internal Medicine, 133, 21–30.

Penedo, F.J., Gonzalez, J.S., Dahm, J.R., Antoni, M., Malow, R., Costa, P., & Schneiderman, N. (2003). Personality, quality of life and HAART adherence among men and women living with HIV/AIDS. Journal of Psychosomatic Research, 54(3), 271–278.

Rotter, J.B. (1954). Social learning and clinical psychology. Englewood Cliffs, NJ: Prentice-Hall.

Satorra, A., & Bentler, P.M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. In American Statistical Association 1988 Proceedings of the Business and Economic Sections (pp. 308–313). Alexandria, VA: American Statistical Association.

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Test of significance and descriptive goodness-of-fit measures. Methods of Psychological Research-Online, 8, 23–74.

SPSS. (1999). Statistical Package for the Social Sciences (Version 10.0) [Computer software]. Chicago, IL: SPSS, Inc.

Steiger, J.H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180.

Strudler-Wallston, B., & Wallston, K.A. (1978). Locus of Control and Health: A review of literature. Health Education Monograph, 6, 107–117.

Ubbiali, A., Donati D., Chiotti C., Bregani V., Cattaneo E., Maffei, C., & Visintini R. (2008). Prediction of
adherence to antiretroviral therapy: can patients’ gender play some role? An Italian pilot study. *AIDS Care*, (this issue).

Vandenberg, R.J., & Lance, C.E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. *Organizational Research Methods, 3*, 4–70.

Velicer, W.F. (1976). Determining the number of components from the matrix of partial correlations. *Psychometrika, 41*, 321–327.

Wallston, K.A., Stein, M.J., & Smith, C.A. (1994). Form C of MHLC scales: A Condition-Specific Measure of Locus of Control. *Journal of Personality Assessment, 63*(3), 534–553.

Wallston, B.S., Wallston, K.A., Kaplan, G.D., & Maides, S.A. (1976). Development and validation of the health locus of control (HLC) scale. *Journal of Consulting and Clinical Psychology, 44*, 580–585.

Wallston, K. A, Wallston, B.S., & DeVellis, R. (1978). Development of the Multidimensional Health Locus of Control (MHLC) scales. *Health Education Monographs, 6*, 161–170.

Yin, P., & Fan, X. (2003). Assessing the factor structure invariance of self-concept measurement across ethnic and gender groups: findings from a national sample. *Educational and Psychological Measurement, 63*(2), 296–318.