Environmental Research Letters

LETTER

A global map of mangrove forest soil carbon at 30 m spatial resolution

Jonathan Sanderman, Tomislav Hengl, Greg Fiske, Kylen Solvik, Maria Fernanda Adame, Lisa Benson, Jacob J Bukoski, Paul Carnell, Miguel Cifuentes-Jara, Daniel Donato, Clare Duncan, Ebrahim M Eid, Philine zu Ermgassen, Carolyn J Ewers Lewis, Peter I Macreadie, Leah Glass, Selena Gress, Sunny L Jardine, Trevor G Jones, Eugène Ndemem Nsombo, Md Mizanur Rahman, Christian J Sanders, Mark Spalding and Emily Landis

E-mail: jsanderman@whrc.org

Keywords: blue carbon, carbon sequestration, land use change, machine learning

Supplementary material for this article is available online

Abstract

With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m⁻³). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha⁻¹ range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products...
from this work are intended to serve nations seeking to include mangrove habitats in payment-for-ecosystem services projects and in designing effective mangrove conservation strategies.

1. Introduction

Mangrove forests, occupying less than 14 million ha (Giri et al 2011), just 2.5% of the size of the Amazon rainforest, provide a broad array of ecosystem services (Barbier et al 2011). Mangroves are critical nursery habitats for fish, birds and marine mammals (Mumby et al 2004, Nagelkerken et al 2008), act as effective nutrient filters (Robertson and Phillips 1995), buffer coastal communities from storm surges (Gedan et al 2011) and support numerous rural economies (Spalding et al 2014, Temmerman et al 2013). These ecosystem service benefits have been valued at an average of 4200 US$ ha⁻¹ yr⁻¹ in Southeast Asia (Brander et al 2012). Despite these ecosystem service benefits, mangroves are highly threatened by both urban expansion and other ‘higher value’ land uses because of their close proximity to major human settlements. There are no reliable estimates of original mangrove cover, but some authors have suggested that 35% or more of original cover may have been lost and wider areas have been degraded (Valiela et al 2001, Spalding et al 2010). Loss rates have slowed dramatically in the past 10–20 years in most areas, however they remain considerable, with rates up to 3.1% annually in some countries (Hamilton and Casey 2016). The major drivers of loss are conversion for aquaculture, especially shrimp farming, agriculture and urban development (Alongi 2002, Valiela et al 2001, Spalding et al 2010, Richards and Friess 2016) but loss due to extreme climatic events are also becoming more common (Duke et al 2017).

With the growing recognition that effective action on climate change will require a combination of emissions reductions and removals (Rockström et al 2017), protecting, enhancing and restoring natural carbon sinks have become political priorities (Boucher et al 2016, Grassi et al 2017). Mangrove forests can play an important role in carbon removals; in addition to being some of the most carbon-dense ecosystems in the world (Donato et al 2011), if kept undisturbed, mangrove forest soils act as long-term carbon sinks (Breithaupt et al 2012). As such, there is strong interest in developing policy tools to protect and restore mangroves through payment for ecosystem services (Friess et al 2016, Howard et al 2017).

Mangroves can store significant amounts of carbon in their biomass (Hutchison et al 2014); however, the vast majority of the ecosystem carbon storage is typically found in the soil (Donato et al 2011, Muriyarso et al 2015, Sanders et al 2016). For example, Kauffman et al (2014) found that within the same estuary, soil carbon contributed 78% of total ecosystem carbon storage in tall mangroves but 96%–99% of total ecosystem carbon in medium and low stature mangrove stands. Importantly, Kauffman et al (2014) found that conversion of these mangrove forests to shrimp ponds resulted in the loss of 90% of this carbon from the top 3 m of soil (612–1036 Mg C ha⁻¹). In addition to avoided emissions, many mangrove forest soils are accreting as sea level rises (Krauss et al 2014), providing continual carbon sequestration on the order of 1.3–2.0 Mg C ha⁻¹ yr⁻¹ (Breithaupt et al 2012, Chmura et al 2003). Clearly, there can be a major climate benefit to halting or even slowing the rate of mangrove conversion, with a rough potential estimated to be 25–122 Tg C yr⁻¹ (Pendleton et al 2012, Siikamäki et al 2012). For nations with large mangrove holdings, protection and restoration can make major contributions to meeting climate mitigation targets (Herr and Landis 2016).

While many mangrove forests do accumulate large quantities of soil carbon, others do not. There can be significant variability in soil carbon stocks across different mangrove forests (Jardine and Siikamäki 2014) but also within the same mangrove forest (Adame et al 2015, Kauffman et al 2011). Understanding the distribution of soil carbon in mangrove forests will be very important in prioritizing protection and restoration efforts for climate mitigation. The controls on soil carbon stocks are diverse and are likely scale dependent; however, some generalizations can be made. Mangrove forests, no matter how productive, will struggle to have high soil carbon stocks in the upper meter of soil if they receive large annual sediment loads. Mangrove forests in river deltas, such as the Sundarbans (Banerjee et al 2012) and the Zambezi river delta in Mozambique (Stringer et al 2016), typically only contain a few percent organic carbon throughout the soil profile. These locations may still have very high carbon stocks, but the density of carbon is low due to the high allochthonous input of mineral sediments. Conversely, forests with moderately low productivity can accumulate large amounts of soil carbon if they are in an isolated hydrogeomorphic setting (Ezcurra et al 2016). Within the same mangrove forest there are typically steep hydrogeomorphic gradients from the seaward to landward extent of the forest which results in zonation of both vegetation (Snedaker 1982) and soil carbon storage (Kauffman et al 2011, Ouyang et al 2017, Ewers Lewis et al 2018) but not necessarily for the same reasons. Within a similar hydrogeomorphic position, forest productivity and soil edaphic conditions (e.g. redox potential, pH, salinity) driving decomposition rates are often the dominant controls on soil carbon density. Consideration of this nested
hierarchy of controls will be necessary to successfully capture the variability in soil carbon at both local and global scales.

Accurate estimates and an understanding of the spatial distribution of mangrove soil carbon stocks are a critical first step in understanding climatic and anthropogenic impacts on mangrove carbon storage and in realizing the climate mitigation potential of these ecosystems through various policy mechanisms (Howard et al. 2017). Previous global estimates (Atwood et al. 2017, Jardine and Siihamäki 2014), do not capture enough of the finer scale spatial variability that would be required to inform local decisions on siting protection and restoration projects. To close this information gap, we have: (1) compiled and published a harmonized global database of the profile distribution of soil carbon under mangroves, (2) used this database to develop a novel machine-learning based data-driven statistical model of the distribution of carbon density using spatially comprehensive data at an ∼30 m resolution, (3) projected the model results across global mangrove habitat for the year 2000 (Giri et al. 2011), and (4) overlaid estimates of mangrove forest change between 2000 and 2012 (Hamilton and Casey 2016) to estimate potential soil carbon emissions from recent forest conversion.

2. Methods

2.1. Mangrove soil carbon database
A harmonized globally representative database (available at: 10.7910/DVN/OCYUIT) was compiled from peer-reviewed literature, grey literature and from contributions of unpublished data from a number of researchers and organizations. Details of database development and a statistical summary of the data are given in the supplemental information available at stacks.iop.org/ERL/13/055002/mmedia.

2.2. Spatial modelling of soil organic carbon
In order to maximize the utilization of available soil carbon data, we developed a machine learning-based model of organic carbon density (OCD) which models OCD as a function of depth (d), an initial estimate of the 0–200 cm organic carbon stock (OCS) from the global SoilGrids 250 m model (Hengl et al. 2017), and a suite of spatially explicit covariate layers (X_p):

\[\text{OCD}(xyd) = d + \text{OCS}_{SG} + X_1(xy) + X_2(xy) + \ldots + X_p(xy) \]

where OCS_{SG} is the aggregated organic carbon stock estimated for 0–200 cm depth using global SoilGrids 250 m approach down-sampled from 250 m–30 m resolution, and xyd are the 3D coordinates northing and soil depth (measured to center of a horizon). Note here that we model spatial distribution of OCD in three dimensions (soil depth used as a predictor) using all soil horizons layers at different depths, which means that a single statistical model can be used to predict OCD at any arbitrary depth. This 3D approach to modeling OCD reduces the need for making complex assumptions about the downcore trends in OCD, and maximizes the use of collected data.

The derived spatial prediction model is then used to predict OCD at standard depths 0, 30, 100, and 200 cm, so that the organic carbon stock (OCS) can be derived as a cumulative sum of the layers down to the prediction depth for every 30 m pixel identified as having mangrove forest in the year 2000 (Giri et al. 2011). Importantly, we found that there is a spatial mismatch between the global mangrove forest distribution (GMFD) of Giri et al. (2011) and satellite imagery (figure S2). To best resolve this spatial mismatch, we have adjusted the GMFD by growing all vectors by one pixel (∼30 m) and then filtering out any pixel that falls over water by using Landsat NIR band (see SI for more details).

Environmental covariates have been compiled to represent the postulated major controls on OCS in soils generally (McBratney et al. 2003) and specifically for mangrove ecosystems (Balke and Friess 2016). Covariates included:

1. Vegetation characteristics including percent forest cover (Hansen et al. 2013) and Landsat bands 3 (red), 4 (near infrared), 5 (shortwave infrared) and 7 (shortwave infrared) for the year 2000 (Hanson et al. 2013) retrieved from http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.3.html;
2. Digital elevation data, which at or near sea-level approximately follows forest canopy height (Simard et al. 2006), from the shuttle radar topography mission (SRTM GL1; NASA, 2013) was retrieved from https://lpdaac.usgs.gov, maintained by the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) at the USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota;
3. Long-term averaged (1990–2010) monthly sea surface temperature (SST) averaged into four seasons were generated in Google Earth Engine from NOAA AVHRR Pathfinder Version 5.2 Level 3 Collated data (Casey et al. 2010) and downscaled to 30 m resolution using bicubic resampling;
4. The M2 tidal elevation amplitude product (FES2012) from a global hydrodynamic tidal model which assimilates altimetry data from multiple platforms was used to represent tidal range at each location. The FES2012 product was produced by Novelis, Legos and CLS Space Oceanography Division and distributed by Aviso, with support from Cnes (www.aviso.altimetry.fr);
5. Averaged (2003–2011) monthly total suspended matter (TSM) averaged into four seasons estimated from MERIS imagery collected by the European Space Agency’s Envisat satellite. Processed and validated TSM data was retrieved from the GloCobColour project (http://hermes.acri.fr).

6. A mangrove typology map delineating mangroves into estuaries and then either organogenic or mineralogenic based on an analysis of TSM and tidal amplitude data (Zu Ermgassen, unpublished data).

Sea surface temperature, tidal amplitude and TSM are 4 km resolution ocean products and needed to be extrapolated to each pixel containing mangrove forest. Missing values in the sea surface temperature, tidal amplitude and TSM were first filled-in using spline interpolation in SAGA GIS, then down-scaled to 30 m resolution using bicubic resampling in GDAL. Including SoilGrids and depth, there were a total of 20 covariates used in building the mangrove OCD model.

The ability of the training points to represent the entire covariate space of the global mangrove domain was assessed by conducting a principal components analysis (PCA) on 15 000 randomly selected points and the 1613 points used in the spatial model. Spatial variables were detrended and centered by subtracting the mean and dividing by the standard deviation (s.d.) before entering into the PCA analysis.

Soil carbon typically varies in highly non-linear ways with depth and across the landscape and as such the ability of standard parametric models to capture this variation is limited (Jardine and Siikamäki 2014, Hengl et al. 2017). Here we model the spatial (xyd) distribution of OCD using a machine learning random forest model implemented in the ranger package (Wright and Ziegler 2015) in the R environment for statistical computing (R Core Team 2000). Given the clustered nature of the point data, we have implemented a spatially balanced random forest model design. Model performance was assessed with a 5 fold (Leave-Location-Out) cross-validation procedure where 20% of complete locations were withheld in each model refitting (Gasch et al. 2015). The relative importance of using SoilGrids as a covariate was assessed by implementing the cross-validation procedure with and without this variable.

Finally, prediction error of OCD for 0–1 m depth was derived for ±1 s.d. based on the quantile regression approach of Meinshausen (2006) and implemented in R via the ranger package. This procedure is relatively computationally demanding so a random subset of approximately 15 000 points were selected to calculate prediction errors. All modeling was run on ISRIC High Performance Computing servers with 48 cores of 256 GB RAM.

2.3. Data analysis

Soil carbon stocks were calculated for the global extent of mangroves for the year 2000 by summing the OCS in each pixel for 1 and 2 m depths. Country level carbon stocks were also calculated for the same depths. Given the fringing nature of mangroves, a global spatial vector data layer was built that allocated the offshore area for each country where mangrove forests can be found. It was derived from the Exclusive Economic Zone for each country. This layer was then dissolved with the onshore areas for each associated country and subsequently used to quantify mangrove OCS tonnage and areal extent.

Potential loss of OCS due to mangrove habitat conversion was calculated between 2000 and 2015 by summing the OCS in mangrove forest pixels which were identified to be deforested. While this analysis cannot distinguish between natural and anthropogenic disturbance, human-driven land use change is believed to be by far the dominant driver of deforestation in mangrove ecosystems (Alongi 2002, Murdiyarso et al. 2015). We define deforestation using the Global Forest Change dataset (Hansen et al. 2013) available online from: http://earthenginepartners.appspot.com/science-2013-global-forest. We chose to use this approach for estimating deforestation instead of using the derived mangrove tree cover loss data produced by Hamilton and Casey (2016) as used by Atwood et al. (2017) because the Hamilton and Casey (2016) analysis only considered forested area as area actually covered by trees (i.e. if a 100 ha forest has 80% tree cover then it is counted as 80 ha of forest). In our opinion, this definition mischaracterizes forest area extent. Next, an estimate of the soil carbon emissions associated with land use conversion is needed. The amount of OCS lost can be highly variable and depends on the new land use (Kaufman et al. 2014, 2016b, Jones et al. 2015) and probably on soil properties. Pendleton et al. (2012) used a 25%–100% loss range. Donato et al. (2011) used a low estimate of 25% of the OCS in top 30 cm and 75% in top 30 cm + 35% from deeper layers as a high estimate. Expanding on earlier work, Kaufman et al. (2017) found that on average 54% of belowground carbon (soil + roots) to 3 m was lost after conversion to shrimp ponds and pastures. Given the limited number of studies comparing soil OCS change with land use change, in this work we adopt the same 25%–100% range as used by Pendleton et al. (2012) applied to the first meter of soil. Finally, country level statistics for OCS loss were calculated as described above. All global and country level analyses were performed on the 30 m resolution dataset in Google Earth Engine (Gorelick et al. 2017).

3. Results

3.1. Model results

The random forest model was successful in capturing the major variation in OCD across the mangrove
Figure 1. Model fitting results: the corresponding 3D Random Forest model for soil organic carbon density (a) with cross-validation results in (b), and relative variable importance plot (c). TSM = total suspended matter, SST = sea surface temperature (numbers following TSM and SST refer to quarter of the year), NIR = Near Infrared, SW1 = Short wave mid infrared.

3.2. Mangrove soil carbon storage

Projection of the mangrove OCS model to global mangrove forests revealed the distribution of soil carbon storage in these ecosystems (figure 2). The mean (±1 s.d.) OCS to 1 m depth was 361 ± 136 Mg C ha⁻¹ with a range of 86–729 Mg C ha⁻¹. At the national level (table S1), Bangladesh had the lowest per ha stocks, averaging just 127 Mg C ha⁻¹ followed by China and the nations bordering the Persian Gulf and Red Sea with an average OCS of 214 and 233 Mg C ha⁻¹, respectively. The highest per ha stocks were found in many of the pacific island nations, averaging 505 Mg C ha⁻¹ with much of Southeast Asia ranking well above the global mean.

While the national level comparisons are revealing, by modeling at a 30 m resolution much richer details of potential within forest variation in OCS are seen (figure 2). Mangrove forests dominated by sediment laden fluvial inputs typically have consistently low OCS as seen in the Sundarbans and Madagascar (figures 2(a) and (e)). In non-deltaic mangroves, the model appears to have captured the large zonal variation in OCS that is often observed in field studies (figures 2(b) and (c)).

3.3. Soil carbon loss due to habitat loss

Utilizing the Hanson et al (2013) global deforestation analysis (figure S8), we found that 278049 ha (1.67% of total) of area identified as mangrove habitat in the year 2000 was deforested resulting in the committed emission of 30.4–122 Tg C (111–447 Tg CO₂) from mangrove forest soils due to land use change between 2000 and 2015 (figure 3). The relative rank of nations in terms of loss of mangrove forest area and OCS were often not the same (table S1). Indonesia alone was responsible for 52% of this global loss with Malaysia and Myanmar representing another 25% of the global total loss (figure 3(c)). When visualized as a percent loss from year 2000 stocks, a slightly different pattern emerged (figure 3(d)). Guatemala had the highest percent loss of mangrove OCS (0.9%–6.8%) followed by several southeast Asian nations, but high percent losses were also found in several Caribbean island nations as well as the United States and several west African countries.

4. Discussion

4.1. Amount and distribution of Mangrove SOC

Our new estimate of global mangrove OCS of 6.4 Pg C in the upper meter and 12.6 Pg C to 2 m is largely consistent with past efforts to calculate this value (Donato et al 2011, Jardine and Siikamäki 2014, Sanders et al 2016). However, our estimate is double that of Atwood et al (2017) primarily due to their use of the Hamilton and Casey (2016) estimate of mangrove extent instead of Giri et al (2011). Importantly, by using an environmental covariate model,
we have been able to make plausible estimates for
regions where no sampling has taken place instead of
relying on global mean values (i.e. Atwood et al
2017).

The total amount of soil carbon was similar in
our analysis and the most comparable analysis, that
of Jardine and Siikamäki (2014), but the spatial distri-
bution of carbon-rich versus carbon-poor mangroves
varied substantially. For example, we found much
higher OCS levels in West Africa than in East African
nations (figure 2 and table S1) but the reverse was
found by Jardine and Siikamäki (2014). Large dis-
crepancies were also found for Colombia, Sri Lanka
and many of the countries bordering the Red Sea.
These differences were most likely driven by lack of
data in those regions at the time of the analysis by
Jardine and Siikamäki (2014) given that nearly half
the data in our database was collected after their
study was published. Additionally, our analysis sug-
gested a much larger range in OCS (86–729 Mg C ha$^{-1}$)
compared to 272–703 Mg C ha$^{-1}$ in the analysis of
Jardine and Siikamäki (2014). This difference in
range was likely due to the inclusion of more data
from sub-tropical and temperate mangroves (figure S3).

The depth trend analysis (figure S6) and ran-
dom forest variable importance (figure 1(b)) both
indicated that depth should be considered in calcu-
lation of OCS. For locations that were either stable
peat domes or located in estuaries receiving large
annual sediment loads, a stable OCD profile distri-
bution would be expected and this was found for many
sites (figures S6(a) and (e)). However, where man-
groves are growing in a mineral matrix that is receiving
only low sediment loads, a decline in OCD may be
expected as the carbon inputs from the productive
mangrove forest would be concentrated in the sur-
face horizons (figure S6(b)). Still in other cases (figure
S6(c)), changes in hydrologic/sediment regimes can
lead to irregular depth patterns or even an increase in
OCD with depth.
While total area of mangroves was a key determinant of total soil carbon storage, amongst the top 25 mangrove OCS holding nations, there was a nearly even split between nations with smaller area of high soil carbon density forests and those nations with lots of low soil carbon density forests (figure 4). Indonesia was the clear exception to this trend with the largest mangrove holdings which also contain rich carbon stocks resulting in Indonesia alone holding nearly 25% of the world’s mangrove OCS.

Compared to terrestrial carbon pools, mangrove forests rank low due to their limited spatial extent. For example in the upper meter of soil, permafrost affected soils are estimated to store 472 ± 27 Pg C (Hugelius et al 2014), tropical forests contain ~ 188 Pg C, and soils under permanent cropping contain ~ 150 Pg C (table 1). However, on an equal area basis, mangrove forests on average store more soil carbon than most other ecosystems (table 1). Importantly, our analysis has demonstrated mangrove soil carbon is highly variable and many mangroves actually store fairly modest amounts of carbon in the upper one or two meters of soil. While not the focus of this analysis, it is important to point out that while some mangrove forests store modest levels of OCS in the upper meter of soil, they can have high sequestration rates and conversely carbon-dense mangroves can have low annual sequestration rates (Lovelock et al 2010, MacKenzie et al 2016).

4.2. Drivers of soil carbon storage

Our spatial modelling framework, in which global predictions were combined with local high resolution images, was successful as the general patterns of carbon variation from SoilGrids 250 m were maintained, while the spatial detail was significantly improved by moving from 250 m–30 m spatial resolution. The initial SoilGrids 250 m OCS prediction (Hengl et al 2017)
Table 1. Soil organic carbon stocks (mean with 5th–95th percentile in parentheses) and total storage for different terrestrial ecosystems compared to mangrove forests.

Land cover category (IGBP code)	Area (10^6 ha)	Pg C	Mg C ha^-1
Mangrove forest	16.6	6.4	361 (94–628)
Gelisols (permafrost soils)	1878	472.0	389 (178–691)
Evergreen Needleleaf forest (1)	286	60.0	210 (121–346)
Evergreen Broadleaf forest (2)	1248	188.4	151 (65–271)
Deciduous Needleleaf forest (3)	116	29.3	253 (163–412)
Deciduous Broadleaf forest (4)	165	22.1	134 (83–223)
Mixed forest (5)	771	152.8	198 (93–343)
Closed shrublands (6)	56	6.2	110 (39–223)
Open shrublands (7)	1933	325.8	169 (49–329)
Woody savannas (8)	1179	185.8	158 (82–274)
Savannas (9)	1010	112.9	112 (52–201)
Grasslands (10)	1810	280.1	155 (56–289)
Permanent wetlands (11)	104	25.1	241 (114–474)
Croplands (12)	1177	149.6	127 (60–200)
Cropland/Natural veg. mosaic (14)	868	117.7	136 (58–238)

- Data for MODIS-based IGBP land cover classes (Friedl et al. 2010) extracted from 1 m OCS map for the year 2010 produced by Sanderman et al. (2017).
- Mangrove area and OCS data from this study.
- Permafrost area from Tarnocai et al. (2009), OCS data from Hugelius et al. (2014).
- Some overlap between class 1 (evergreen Needleleaf forest) and gelisols.
- Class 11 (permanent wetlands) likely has overlap with mangrove area.

![Image of graph](https://example.com/graph.png)

Figure 4. Rank of nations by mangrove area plotted against rank by soil carbon density for all nations containing >30 Tg C. Bubble size is proportional to total carbon stock (Tg C) within each nation.

4.3 Soil carbon loss due to land conversion (2000–2015)

Our analysis suggests that mangrove soils have lost or are at least committed to losing 30.4–122 Tg C due to the land use conversion that occurred between the...
years 2000 and 2015 (figure 3). Given that at the global level the rate of mangrove forest lost was consistent over this time period (Hamilton and Casey 2016), we estimated an annual soil carbon emission of 2.0–8.1 Tg C yr\(^{-1}\). This value is significantly lower than previous estimates (Donato et al 2011, Pendleton et al 2012) for two reasons. First, we use remote sensing-based measurements of actual mangrove loss instead of applying a large range of annual conversion rates, which are notoriously variable according to their source (Friess and Webb 2011). Second, we have summed the actual OCS values for each of the pixels where land conversion has taken place (i.e. figure S8) instead of applying a conversion rate to a mean OCS value.

The three nations of Indonesia, Malaysia and Myanmar contributed 77% of global mangrove OCS loss for this time period (figure 3). Despite similar area loss (figure 3(a)), Malaysia lost approximately twice as much soil carbon as Myanmar due to the large differences in carbon density between these two nations (mean OCS = 485 ± 57 versus 245 ± 63 Mg C ha\(^{-1}\), respectively). This comparison highlights the importance of using local OCS values for estimating carbon emissions attributed to mangrove conversion.

Not all land use conversions result in equal loss of OCS. Conversion of mangrove forest to shrimp ponds results in a rapid and near complete loss of carbon in the upper meter of soil (Kauffman et al 2014), as well as losses deeper in the soil profile (Kauffman et al 2017). Conversion to other agricultural uses such as pasture for beef production (Kauffman et al 2016b) and cereal crops (Andreetta et al 2016) also appear to result in large soil carbon emissions. However, mangrove degradation and loss due to over harvesting for fuelwood (Jones et al 2015) or due to natural disturbance (Cahoon et al 2003) likely leads to more moderate emissions as decomposition and erosion exceed new plant carbon inputs.

It is important to note that nearly all available data on OCS loss due to conversion to other land uses come from organogenic mangrove forests. In a mineral-dominated mangrove systems with only a few percent sediment OCC, we would not expect the same level of carbon loss as when peat deposits are drained or removed. In fact, reclamation of deltaic sediments for paddy rice cultivation can lead to increases in OCS (Kalbitz et al 2013), although methane emissions would be expected to increase. Additionally, if mangrove habitat is lost due to deforestation without a change in hydrologic regime, mineral-dominated mangroves can continue to accrete carbon, but at a lower rate than in a system that has additional organic matter inputs from the mangroves themselves (Pérez et al 2017).

4.4. Limitations and uncertainties
While we endeavored to ensure that the model input data was of the highest quality possible, there undoubtedly remain unknown errors in the database which are contributing to model error. Machine learning models are particularly sensitive to outlier values and extrapolation (Murphy 2012). Various research groups use different methods for determining the organic carbon concentration (OCC) of a sample with not all publications reporting whether or not results were corrected for occurrence of inorganic carbon or whether or not roots were excluded before further processing. Bulk density (BD) is a difficult parameter to measure accurately in many soils, and based on our analysis of BD versus OCC (figure S1) some reported data are unlikely to be accurate. We
developed a procedure to correct potential BD errors, but a pedotransfer function gives only an approximation of the true value. Given the importance of depth in our models (figure 1(b)), it was unfortunate that so many investigations only report OCS for large depth increments. We suggest that future studies using the common practice of collecting subsamples within larger horizon increments (e.g. Kauffman and Donato 2012, Kauffman et al 2016a) report the specific depth increment of the sample rather than that of the entire core. This additional level of transparency in the data would allow mass-preserving splines (Bishop et al 1999) to be fit through the distinct measurement intervals, resulting in unbiased estimates of OCS.

The largest uncertainty in the input data likely resulted from imperfect information on plot location. Whether, accidental or purposeful (i.e. not wanting to identify exact locations), spatially misplaced data in publications are of limited utility in geospatial applications. All of the covariate data for each mangrove point were selected from spatial layers resulting in the potential for a mismatch between the recorded OCS and the spatial predictors. In this study, we visually inspected all coordinates against Google Earth imagery and our adjusted mangrove domain, and then contacted many authors to seek further information and manually adjusted coordinates when we were confident that the adjustments lead to better spatial location. In the final analysis, 199 soil profiles had to be excluded from analysis because we could not confidently locate these plots within the adjusted mangrove spatial domain.

5. Conclusions

This work has produced three resources which we hope to be of significant value to the blue carbon research and management communities: 1) a large harmonized database of soil carbon data from mangrove ecosystems; 2) high-resolution (30 m) predictions with error of soil carbon stocks across all mangrove forests globally; 3) estimates of potential soil carbon losses due to mangrove habitat loss between 2000 and 2015. By using a statistical data-driven model, we have been able to produce credible estimates OCS for the numerous mangrove regions where no field data exist. We found that mangrove OCS is highly variable (86–729 Mg C ha⁻¹ in the top meter) but that much of the variability could be captured using spatially-comprehensive predictors in a machine-learning framework. Of the 6400 Tg C in the upper meter of soil, 30–122 Tg have likely been lost due to deforestation since the year 2000 with 77% of this loss attributed to Indonesia, Malaysia and Myanmar. These spatially-explicit estimates of mangrove soil carbon storage and loss will provide a practical first step for enabling nations to prioritize mangrove protection as part of their climate mitigation and adaptation plans.

Acknowledgments

We would like to thank A Andreetta, M Osland, J M Smoak, A DelVecchia, M E Gonneea, R K Bhomia and J Kelleway for providing additional data from their publications. S-T Kang for translating and extracting data from Chinese language papers. R K Bhomia acknowledges CIFOR SWAMP project, USFS International Program and USAID for funding. M Rahman acknowledges support from USAID for funding. PM and CJS acknowledge support from the Australian Research Council (DE130101084 and LP160100242) and (DE160100443 and DP150103286), respectively. CD acknowledges support from the Rufford Foundation and Darwin Initiative for funding. JS, TH, GF and KS were supported by an anonymous gift to The Nature Conservancy. MFA was supported by funding from the Queensland Government through the Advance Queensland Fellowship. ISRIC is a non-profit organization primarily funded by the Dutch government.

Data availability

The mangrove soil carbon database and model outputs can be downloaded from Harvard dataverse at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OCYUIT.

ORCID iDs

Jonathan Sanderman https://orcid.org/0000-0002-3215-1706
Peter I Macreadie https://orcid.org/0000-0001-7362-0882

References

Adame M F, Santini N S, Tovilla C, Vázquez-Lule A, Castro I and Guevara M 2015 Carbon stocks and soil sequestration rates of tropical riverine wetlands Biogeoosciences 12 3805–18
Alongi D M 2002 Present state and future of the world’s mangrove forests Environ. Conserv. 29 331–49
Andreetta A, Huertas A D, Lotti M and Cerise S 2016 Land use changes affecting soil organic carbon storage along a mangrove swamp rice chronosequence in the Cacheu and Oio regions (northern Guinea-Bissau) Agric. Ecosyst. Environ. 216 314–21
Atwood T B et al 2017 Global patterns in mangrove soil carbon stocks and losses Nat. Clim. Change 7 523–8
Balké T and Friess D A 2016 Geomorphic knowledge for mangrove restoration: a pan-tropical categorization Earth Surf. Process. Landforms 41 231–9
Banerjee K, Chowdhury M R, Sengupta K, Sett S and Mitra A 2012 Influence of anthropogenic and natural factors on the mangrove soil of Indian Sundarbans wetland Arch. Environ. Sci. 6 80–91
Barbier E B, Hacker S D, Kennedy C, Koch E W, Stier A C and Silliman B R 2011 The value of estuarine and coastal ecosystem services Ecol. Monogr. 81 169–93
Bishop T F A, McBratney A B and Laslett G M 1999 Modelling soil attribute depth functions with equal-area quadratic smoothing splines Geoderma 91 27–45
Boucher O, Belllassen V, Benveniste H, Ciais P, Criqui P, Guivarch C, Le Treut H, Mathy S and Séférian R 2016 Opinion: in the wake of Paris Agreement, scientists must embrace new directions for climate change research Proc. Natl Acad. Sci. USA 113 7287–90
Brander L, Wagendonk A, Hussian S, McVittie A, Verburg P H, de Groot R S and van der Ploeg S 2012 Ecosystem service values for mangroves in Southeast Asia: a meta-analysis and value transfer application Ecosyst. Serv. 1 62–9
Breithaupt J L, Smok J M, Smith T J, Sanders C J and Hoare A 2012 Organic carbon burial rates in mangrove sediments: strengthening the global budget Glob. Biogeochem. Cycles 26 GB3011
Bukowski J J, Brodhadley J S, Donato D C, Murdiyarso D and Gregoire T G 2017 The use of mixed effects models for obtaining low cost ecosystem carbon stock estimates in mangroves of the Asia Pacific PlaS One 12 e0169096
Cahoon D R, Hensel P, Rybczyk J, McKee K L, Profiti C E and Perez B C 2003 Mass tree mortality leads to mango tree peat collapse at Bay Islands, Honduras after Hurricane Mitch J. Ecol. 91 1093–105
Casey K S, Brandon T B, Cornillon P and Evans R 2010 The past, present, and future of the AVHRR pathway of forest cover change Ecol. Biogeogr. 17 1111
Donato D C, Kauffman J B, Murdiyarso D, Kurnianto S, Sïidham M and Kanninen M 2011 Mangroves among the most carbon-rich forests in the tropics Nat. Geosci. 4 239–7
Duke N C, Kovacs J M, Griffiths A D, Preece L, Hill D J E, Van Oosterzee P, Mackenzie I, Morning H S and Burrows D 2017 Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincident with an unusually extreme weather event Mar. Freshw. Res. 68 1816–29
Ewers Lewis C J, Sanderman P E, Baldock J and Macreadie P I 2018 Variability and vulnerability of coastal blue carbon stocks: a case study from Southeast Australia Ecosystems 21 263–79
Escurra P, Escurra E, Garcillán P P, Costa M T A and Aburto-Oropeza O 2016 Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage Proc. Natl Acad. Sci. 113 4404–9
Friedl M A, Sulla-Menashe D, Tan B, Schneider A, RemaKunty N, Sibley A and Huang X 2010 MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets Remote Sens. Environ. 114 168–82
Fries D A, Thompson B S, Brown B, Amir A A, Cameron C., Koldewey H J, Sasmito S D and Sidik F 2016 Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia Conserv. Biol. 30 933–49
Fries D A and Webb E L 2011 Bad data equals bad policy: how to trust estimates of ecosystem loss when there is so much uncertainty! Environ. Conserv. 38 1–5
Gauch C K, Heng L, Graler H, Magney T S and Brown D J 2015 Spatio-temporal interpolation of soil water temperature, and electrical conductivity in 3D+ T: the cook agronomy farm data set Spat. Stat. 14 70–90
Gedan K B, Kirwan M L, Wolanski E, Barbier E B and Silliman B R 2011 The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm Clim. Change 106 7–29
Giri C, Ochsner E, Tiesheng L L, Zhao Z, Singh A, Loveland T, Masek J and Duke N 2011 Status and distribution of mangrove forests of the world using earth observation satellite data Glob. Biogeochem. 20 154–9
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R 2017 Google Earth engine: planetary-scale geospatial analysis for everyone Remote Sens. Environ. 202 18–27
Grassi G, House J, Dentener F, Federici S, den Elzen M and Penman J 2017 The key role of forests in meeting climate targets requires science for credible mitigation Nat. Clim. Change 7 220–6
Hamilton S E and Casey D 2016 Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21) Glob. Ecol. Biogeogr. 25 728–39
Hansen M C et al 2013 High-resolution global maps of 21st century forest cover change Science 342 850–3
Hengl T et al 2017 SoilGrids 250 m: Global gridded soil information based on machine learning PlaS One 12 e0169748
Herr D and Landis E 2016 Coastal blue carbon ecosystems. Opportunities for Nationally Determined Contributions. Policy Brief (Gland: IUCN and Washington, DC: TNC)
Howarth J, Sutton-Grier A, Herr D, Kleyos J, Landis E, Mcleod E, Peggeon E and Simpson S 2017 Clarifying the role of coastal and marine systems in climate mitigation Front. Ecol. Environ. 15 42–50
Hugelius G et al 2014 Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps Biogeosciences 11 6573–93
Hutchinson J, Manica A, Swetnam R, Balmford A and Spalding M 2014 Predicting global patterns in mangrove forest biomass Conserv. Lett. 7 233–40
Jardine S L and Siikamäki J I V 2014 A global predictive model of carbon in mangrove soils Environ. Res. Lett. 9 104013
Jenny H 1994 Factors of soil formation: a system of quantitative pedology (Courier Corporation)
Jones T et al 2013 The dynamics, ecological variability and estimated carbon stocks of mangroves in Mahajamba Bay, Madagascar Mar. Sci. Eng. 3 793–820
Kalbitz K et al 2013 The carbon count of 2000 years of rice cultivation Glob. Change Biol. 19 1107–13
Kauffman J B, Arifanti V B, Bauski I, Kurnianto S, Novita N, Murdiyarso D, Donato D C and Warren M W 2016a Protocols for the measurement, monitoring, and reporting structure, biomass, carbon stocks and greenhouse gas emissions in tropical peat swamp forests Working paper 221 (Bogor: CIFOR)
Kauffman J B, Hernandez Trejo H, del Carmen Jesus Garcia M, Heider C and Contreras W M 2016b Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Ceniza, Mexico Wetl. Ecol. Manage. 24 203–16
Kauffman J B, Arifanti V, Trejo H, del Carmen Jesus Garcia M, Norfolk I, Hadriyanto D, Cifuentes-Jara M, Murdiyarso D and Cifuentes-Jara M 2016 The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation Front. Ecol. Environ. 15 183–8
Kauffman J B and Donato D 2012 Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests Working paper 86 (Bogor: CIFOR)
Kauffman J B, Heider C, Cole T G, Dwire K A and Donato D C 2011 Ecosystem carbon stocks of micronesuan mangrove forests Wetlands 31 543–52
Kauffman J B, Heider C, Norfolk J and Payton F 2014 Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic Ecol. Appl. 24 518–27
Krauss K W, McKee K L, Lovelock C E, Cahoon D R, Saintilan N, Reeft R and Chen I 2014 How mangrove forests adjust to rising sea level New Phytol. 202 19–34
Lovelock C E, Sorrell B K, Hancock N, Huo Q and Swales A 2010 Mangrove forest and soil development on a rapidly accreting shore in New Zealand Ecosystems 13 437–51
MacKenzie R A, Foulk P B, Klump J V, Weckerly K, Purbopinto J, Murdiyarso D, Donato D C and Nam Y N 2016 Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves Wetl. Ecol. Manage. 24 245–61
McBratney A, Mendonça Santos M and Minasny B 2003 On digital soil mapping *Geoderma* 117 3–52
Meinshausen N 2006 Quantile regression forests *J. Mach. Learn. Res.* 7 983–99
Mumby P J *et al* 2004 Mangroves enhance the biomass of coral reef fish communities in the Caribbean *Nature* 427 533–6
Murdiyarso D, Purbopuspito J, Kauffman J B, Warren M W, Sasmito S D, Donato D C, Mamuri S, Kurniawati H, Taberoma S and Kurnianto S 2015 The potential of Indonesian mangrove forests for global climate change mitigation *Nat. Clim. Change* 5 8–11
Murphy K P 2012 *Machine Learning: A Probabilistic Perspective* (Cambridge, MA: MIT)
Nagelkerken I *et al* 2008 The habitat function of mangroves for terrestrial and marine fauna: a review *Aquat. Bot.* 89 155–85
Ouyang X, Lee S Y and Connolly R M 2017 Structural equation modelling reveals factors regulating surface sediment organic carbon content and CO$_2$ efflux in a subtropical mangrove *Sci. Total Environ.* 578 513–22
Pendleton L *et al* 2012 Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems *PLoS ONE* 7 e45542
Pérez A, Machado W, Gutierrez D, Stokes D, Sanders L, Smoak J M, Santos I and Sanders C J 2017 Changes in organic carbon accumulation driven by mangrove expansion and deforestation in a New Zealand estuary *Estuar. Coast. Shelf Sci.* 192 108–16
Richards D R and Friess D A 2016 Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012 *Proc. Natl Acad. Sci.* 113 544–9
Robertson A J and Phillips M J 1995 Mangroves as filters of shrimp pond effluent: predictions and biogeochemical research needs *Hydrobiologia* 295 311–21
Rockstrom J, Gaffney O, Rogel J, Meinshausen M, Nakicenovic N and Schellnhuber H J 2017 A roadmap for rapid decarbonization *Science* 355 1269–71
Sanderman J, Hengel T and Fiske G J 2017 Soil carbon debt of 12,000 years of human land use *Proc. Natl Acad. Sci.* 114 9575–80
Sanders C I, Maher D T, Tait D R, Williams D, Holloway C, Sippo J Z and Santos J R 2016 Are global mangrove carbon stocks driven by rainfall? *J. Geophys. Res. Biogeosci.* 121 2600–9
Siikamäki J, Sanchirico J N and Jardine S L 2012 Global economic potential for reducing carbon dioxide emissions from mangrove loss *Proc. Natl Acad. Sci.* 109 14369–74
Simard M, Zhang K, Rivera-Monroy V H, Ross M S, Ruiz P L, Castañeda-Moya E, Twilley R R and Rodriguez E 2006 Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data *Photogramm Eng. Remot. Sens.* 72 299–311
Snedaker S C 1982 *Mangrove Species Zonation: Why?* (Netherlands: Springer) pp 111–25
Spalding M, Kainuma M and Collins L 2010 *World Atlas of Mangroves* (London: Earthscan)
Spalding M, McIvor A, Tonneijck F, Tol S and van Eijk P 2014 Mangroves for Coastal Defence. Guidelines for Coastal Managers and Policy Makers (Wetlands International and The Nature Conservancy)
Stringer C E, Trettin C C and Zarnoch S J 2016 Soil properties of mangroves in contrasting geomorphic settings within the Zambezi River Delta, Mozambique *Wetl. Ecol. Manage.* 24 139–52
Tarnocai C, Canadell J G, Schuur E A G, Kuhry P, Mazhitova G and Zimov S 2009 Soil organic carbon pools in the northern circumpolar permafrost region *Glob. Biogeochem. Cycles* 23 GB2023
R Core Team 2000 *R Language Definition* (Vienna: R Found. Stat. Comput.)
Temmerman S, Meire P, Bouma T J, Herman P M J, Ysebaert T and De Vriend H J 2013 Ecosystem-based coastal defence in the face of global change *Nature* 504 79–83
Valiela I, Bowen J L and York J K 2001 Mangrove forests: one of the world’s threatened major tropical environments *BioScience* 51 807–15
Wright M N and Ziegler A 2015 ranger: a fast implementation of random forests for high dimensional data in C++ and R (arXiv:1508.04409)