Inherited Thrombophilia and the Risk of Arterial Ischemic Stroke: A Systematic Review and Meta-Analysis

Thita Chiasakul, MD, MSc; Elizabeth De Jesus, BA; Jiayi Tong, BS; Yong Chen, PhD; Mark Crowther, MD, MSc; David Garcia, MD; Chatree Chai-Adisaksopha, MD, PhD; Steven R. Messé, MD; Adam Cuker, MD, MS

Background—Inherited thrombophilias are well-established predisposing factors for venous thromboembolism, but their role in arterial thrombosis, such as arterial ischemic stroke, remains uncertain. We aimed to evaluate the association between inherited thrombophilia (factor V Leiden, prothrombin G20210A mutation, protein C deficiency, protein S deficiency, and antithrombin deficiency) and risk of arterial ischemic stroke in adults.

Methods and Results—We searched PubMed, EMBASE, and Cochrane Library Databases from inception to December 31, 2018. We included case-control or cohort studies of adults reporting the prevalence of inherited thrombophilias in those with arterial ischemic stroke and subjects without arterial ischemic stroke. Two reviewers (T.C., E.D.) independently searched the literature and extracted data. Pooled odds ratios (ORs) and 95% CIs were calculated using random-effects model. We identified 68 eligible studies, which collectively enrolled 11 916 stroke patients and 96 057 controls. The number of studies reporting factor V Leiden, prothrombin G20210A mutation, protein C deficiency, protein S deficiency, and antithrombin deficiency were 56, 45, 15, 17, and 12, respectively. Compared with controls, patients with arterial ischemic stroke were significantly more likely to have the following inherited thrombophilias: factor V Leiden (OR, 1.25; 95% CI, 1.08–1.44; I²=0%), prothrombin G20210A mutation (OR, 1.48; 95% CI, 1.22–1.80; I²=0%), protein C deficiency (OR, 2.13; 95% CI, 1.16–3.90; I²=0%), and protein S deficiency (OR, 2.26; 95% CI, 1.34–3.80; I²=8.8%). Statistical significance was not reached for antithrombin deficiency (OR, 1.25; 95% CI, 0.58–2.67; I²=8.8%).

Conclusions—Inherited thrombophilias (factor V Leiden, prothrombin G20210A mutation, protein C deficiency, and protein S deficiency) are associated with an increased risk of arterial ischemic stroke in adults. The implications of these findings with respect to clinical management of patients with ischemic stroke require further investigation. (J Am Heart Assoc. 2019;8:e012877. DOI: 10.1161/JAHA.119.012877.)

Key Words: hypercoagulopathy • stroke • stroke, ischemic • thrombosis

The inherited thrombophilias, factor V Leiden (FVL), the prothrombin G20210A mutation (PTM), protein C deficiency (PCD), protein S deficiency (PSD), and antithrombin deficiency (ATD), are well-established predisposing factors for venous thromboembolism,1,2 but their role in arterial thrombosis, such as arterial ischemic stroke, remains uncertain.

In patients with arterial ischemic stroke, inherited thrombophilia testing is often ordered to identify the cause of stroke. However, the benefit of screening for inherited thrombophilia is unknown and such practice is controversial.3,4 Indeed, the 2018 American Heart Association/American Stroke Association clinical practice guideline recommends against thrombophilia testing in patients with ischemic stroke,5 although such testing remains common in clinical practice.6

Current evidence about the association of inherited thrombophilia and the risk of ischemic stroke is conflicting.7 Individual studies carry the limitations of small sample size.

From the Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand (T.C.); Tufts University School of Medicine, Boston, MA (E.D.J.); Departments of Biostatistics and Epidemiology (J.T., Y.C.), Neurology (S.R.M.), Medicine (A.C.), and Pathology and Laboratory Medicine (A.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Medicine, McMaster University, Hamilton, Ontario, Canada (M.C.); Department of Medicine, University of Washington School of Medicine, Seattle, WA (D.G.); and Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand (C.C.-A.).

Accompanying Data S1, Tables S1 through S9, and Figures S1 through S15 are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.012877

Correspondence to: Thita Chiasakul, MD, MSc, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, Thailand 10330. E-mail: thita.c@chula.ac.th

Received April 3, 2019; accepted September 4, 2019.

© 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Inherited Thrombophilia and Ischemic Stroke Chiasakul et al

Clinical Perspective

What Is New?

- Inherited thrombophilias (factor V Leiden, prothrombin G20210A mutation, protein C deficiency, and protein S deficiency) are associated with an increased risk of arterial ischemic stroke in adults, particularly in younger adults.

What Are the Clinical Implications?

- The role of inherited thrombophilia testing in patients with ischemic stroke as well as its influence on clinical management warrant further study.

and reduced statistical power. Therefore, we conducted a systematic review and meta-analysis to evaluate the association of inherited thrombophilia (FVL, PTM, PCD, PSD, and ATD) and the risk of arterial ischemic stroke in adults.

Methods

The study protocol is registered on PROSPERO (CRD42018 090020). We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses3 and the Meta-Analysis of Observational Studies in Epidemiology guidelines.9

The data that support the findings of this study are available from the corresponding author on request.

Data Sources and Search Strategies

We searched PubMed, EMBASE, and the Cochrane Library Databases from inception to December 31, 2018. The following search terms were used: “stroke” OR “cerebrovascular accident” AND “factor V” OR “prothrombin” OR “antithrombin” OR “protein C” OR “protein S” OR “thrombophilia.” No language restriction was applied. The detailed search queries are presented in Data S1. Additional searches were performed by manual review of abstracts from the American Society of Hematology annual meeting, the Congress of the International Society on Thrombosis and Hemostasis, the American Academy of Neurology annual meeting, and the International Stroke Conference (from 2015 to 2018). Reference lists of relevant studies and review articles were screened for potentially eligible studies.

Study Selection

Two authors (T.C., E.D.) independently searched the literature, screened titles and abstracts, and reviewed full texts to identify potentially eligible studies. Disagreements were resolved by consensus or a third reviewer (A.C.) when necessary.

The primary outcome of interest was arterial ischemic stroke. Eligible studies included case-control or cohort studies of adults, aged ≥15 years, that reported the prevalence of at least one of the inherited thrombophilias of interest (FVL, PTM, PCD, PSD, or ATD) in both subjects with a history of arterial ischemic stroke and subjects without arterial ischemic stroke.

Both prospective and retrospective studies were included. Studies were required to have ≥10 subjects in each group. Studies that enrolled patients with transient ischemic attack, hemorrhagic stroke, cerebral venous sinus thrombosis, and other arterial thromboses were excluded unless data for arterial ischemic stroke could be disaggregated. Studies that included neonates or children were also excluded.

If multiple studies used the same or overlapping samples, we included only the one with the largest sample size in the quantitative analysis. Cohen’s κ coefficient was calculated to evaluate interobserver agreement for study selection.

We did not attempt to control for method used to diagnose thrombophilia, nor did we limit how the control population was constituted, assuming it appeared to be a valid comparator group.

Data Extraction

Two authors (T.C., E.D.) independently extracted data from included studies in duplicate using a standardized evidence table. Discrepancies were resolved by consensus or a third reviewer (A.C.) when necessary. The following data were collected: study period, country of study, number of cases and controls, case and control identification method, method of stroke diagnosis, matched variables for cases and controls, baseline characteristics of cases and controls (eg, age, sex, ethnicity, and cardiovascular risk factors), type(s) of thrombophilia reported, methods and timing of thrombophilia testing, and number of cases and controls testing positive and negative for each type of thrombophilia.

Quality Assessment

Methodological quality assessment was performed independently by 2 authors (T.C., E.D.) using either the National Institutes of Health–National Heart, Lung, and Blood Institute Quality Assessment of Case-Control Studies assessment tool10 or the National Institutes of Health–National Heart, Lung, and Blood Institute Quality Assessment for Observational Cohort and Cross-Sectional Studies assessment tool,11 as appropriate. Studies were categorized by their risk of bias as good, fair, or poor quality. Any differences in quality rating were resolved by consensus or adjudication by a third reviewer (A.C.).
Inherited Thrombophilia and Ischemic Stroke

Chiasakul et al

Statistical Analysis

Data analysis was performed using R, Version 3.4.4 (R Foundation for Statistical Computing, Vienna, Austria). Pooled odds ratios (ORs) and 95% CIs were calculated using the bayesian method with random-effects model. Interstudy heterogeneity was evaluated using the Cochran Q test and I^2 statistic. A Cochran Q test $P<0.05$ is considered significant for heterogeneity. An I^2 value of 0% to 25% represents insignificant heterogeneity, 26% to 50% represents low heterogeneity, 51% to 75% represents moderate heterogeneity, and >75% represents high heterogeneity. For FVL and PTM, separate analyses for homozygosity and heterozygosity were performed if studies provided stratified data by zygosity status. Prespecified subgroup analyses were performed in young patients (aged <65 years), patients with a patent foramen ovale (PFO), and patients with cryptogenic stroke, where reported. Sensitivity analyses were performed between age-matched versus non–age-matched studies and studies among different continents. Funnel plots of OR versus SE and Egger’s test for asymmetry were used to assess for the presence of publication bias. $P<0.05$ was considered statistically significant. When publication bias was detected, Copas selection model was used and adjusted pooled ORs were reported to estimate the effect of publication bias on the results.12

Results

Study Identification

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram is shown in Figure 1. A total of 1875 records were retrieved from the literature search. After screening by title and abstract, 1661 records were excluded. The remaining 214 references underwent full-text review, 68 of which met eligibility criteria and were included in the analysis. These 68 studies collectively enrolled 11,916 stroke patients and 96,057 controls. All 68 studies were case-control studies. We did not identify any cohort studies that met eligibility criteria. The complete list of included studies is provided in Supplemental References. The number of studies that reported on FVL, PTM, PCD, PSD, and ATD were 56, 45, 15, 17, and 12, respectively. There was excellent agreement between the 2 independent reviewers with respect to study selection ($\kappa=0.96$).

Study Characteristics

Characteristics of included studies are listed in Tables S1 and S2. The results from individual studies are listed in Tables S3 through S7. We included 64 case-control and 4 nested case-control studies. One study was published as a conference abstract.

The publication year of included studies ranged from 1993 to 2017. Twenty-eight studies enrolled only young and middle-aged adults, with an upper age limit ranging from 40 to 65 years. All included studies enrolled ≥20 cases and controls, with most (87% of studies) enrolling >40 subjects in each group. A few studies focused on specific subgroups with certain comorbidities, such as atrial fibrillation,13 HIV infection,14,15 and systemic lupus erythematosus.16 Most studies recruited healthy subjects in the same geographic area as controls. In 4 studies, historical controls were used, whereas the remaining 64 studies recruited contemporaneous controls. Although most studies matched cases and controls by age and sex, only 4 studies matched by ethnicity and only 1 study matched controls for the presence of cardiovascular risk factors.17 A comparison of demographic data and clinical risk factors between cases and controls in each study is listed in Table S2. Most studies did not provide detailed information about clinical risk factors in the control group. When reported, clinical stroke risk factors, such as hypertension, diabetes mellitus, and smoking, were more frequent in cases than controls in most studies.

Ischemic stroke was diagnosed by neuroimaging in most studies. In 9 studies, the method of diagnosis was not described. One epidemiologic study used self-reported history of stroke to define cases.18 Studies varied in terms of stroke subtypes included. Some exclusively enrolled cases with cryptogenic stroke,19–25 whereas in other studies, the proportion of cryptogenic stroke among cases ranged from 6% to 55% when reported. In 24 studies, only cases with first-ever ischemic stroke were included. Forty-one studies did not specify whether recurrent stroke was included, whereas 3 studies included cases of both first-ever and recurrent stroke (16%–42% of cases), but did not provide disaggregated data for the recurrent stroke group.26–28 Almost all of the included studies reported use of standard and widely accepted test methods for the diagnosis of thrombophilia (Table S3 through S7).

Quality Appraisal

Using the National Institutes of Health–National Heart, Lung, and Blood Institute Quality Assessment of Case-Control Studies tool, the included studies were rated as good (N=22), fair (N=43), and poor (N=3) quality. The studies with good, fair, and poor rating contributed 31%, 56%, and 13% of cases and 9%, 90%, and 1% of controls, respectively. Details of study quality assessment items for each study are reported in Table S8.

Studies with a good quality rating carry the least risk of bias. Studies were rated as fair quality when they were susceptible to some degree of bias. These included studies
that did not recruit cases and controls from the same population, studies that did not match controls or did not adjust for confounders, and studies that did not specify valid and reliable methods of stroke diagnosis or thrombophilia testing. Studies were rated as poor quality when the definition of cases and controls was not explicitly described.

Genetic testing was used to identify FVL and PTM, whereas functional tests were used in most studies to identify PCD, PSD, and ATD. Protein C, protein S, and antithrombin levels may be reduced in the setting of anticoagulant therapy and acute thromboembolism. Eight of the studies excluded patients receiving anticoagulants, whereas 9 studies did not specifically mention anticoagulant use. All but 2 studies required testing at a distant time from the stroke event (with time frames ranging from 2 days to 6 months) or a second confirmatory test if the first one was abnormal. Although several studies reported blinding of exposure assessor to case/control status,17,20,25,27,29–36 most did not specify whether the assessor was blinded.

Thrombophilia and Arterial Ischemic Stroke

The pooled ORs of arterial ischemic stroke for each thrombophilia are summarized in Figure 2.
Factor V Leiden

FVL was assessed in 56 studies (10,229 cases and 31,816 controls), 49 of which reported homozygosity and heterozygosity status. FVL, irrespective of zygosity status, was found in significantly more arterial ischemic stroke cases than controls, with a pooled OR of 1.25 (95% CI, 1.08–1.44). Heterogeneity among studies was insignificant (P=0.93; I^2=0%). The forest plot is shown in Figure S1.

For homozygous FVL, the pooled OR was 0.72 (95% CI, 0.39–1.34; I^2=0%) (Figure S2). Of 49 studies that tested for FVL, 33 (67%) did not identify homozygous FVL in any of the cases or controls. When such studies with zero events were excluded from the analysis, the pooled OR for homozygous FVL was 2.24 (95% CI, 1.26–4.71). For heterozygous FVL, the pooled OR was 1.23 (95% CI, 1.05–1.45; I^2=0%) (Figure S3).

A funnel plot was symmetrical (Figure S4A) and Egger’s test was nonsignificant (P=0.46), suggesting absence of publication bias.

Prothrombin G20210A mutation

PTM was assessed in 45 studies (7921 cases and 83,574 controls), 39 of which reported homozygosity and heterozygosity status. PTM, irrespective of zygosity status, was found in significantly more arterial ischemic stroke cases than controls, with a pooled OR of 1.48 (95% CI, 1.22–1.80). Heterogeneity among studies was insignificant (P=0.93; I^2=0%). The forest plot is shown in Figure S5.

For homozygous PTM, the pooled OR was 0.31 (95% CI, 0.11–0.83; I^2=35%) (Figure S6). Of 39 studies that tested for PTM, 31 (79%) did not identify homozygous PTM in any of the cases or controls. When such studies with zero events were excluded from the analysis, the pooled OR for homozygous PTM was 7.19 (95% CI, 2.47–20.94). For heterozygous PTM, the pooled OR was 1.41 (95% CI, 1.13–1.76; I^2=0%) (Figure S7).

A funnel plot was symmetrical (Figure S4B) and Egger’s test was nonsignificant (P=0.05), suggesting absence of publication bias.

Protein C deficiency

Protein C was measured in 15 studies (1676 cases and 11,895 controls). Of these studies, 7 excluded patients receiving anticoagulants, whereas 8 did not specifically mention anticoagulant use. PCD was found in significantly more arterial ischemic stroke cases than controls, with a pooled OR of 2.13 (95% CI, 1.16–3.90) (Figure S8). Heterogeneity among studies was insignificant (P=0.52; I^2=0%). A funnel plot was symmetrical (Figure S4C) and Egger’s test was nonsignificant (P=0.05), suggesting absence of publication bias.

Protein S deficiency

Protein S was measured in 16 studies (1803 cases and 6133 controls). Of these studies, 8 excluded patients receiving anticoagulants, whereas 8 did not specifically mention anticoagulant use. PS was found in significantly more arterial ischemic stroke cases than controls, with a pooled OR of 1.25 (95% CI, 0.58–2.67) (Figure S9). Heterogeneity among studies was insignificant (P=0.93; I^2=0%). A funnel plot was symmetrical (Figure S4D) and Egger’s test was nonsignificant (P=0.05), suggesting absence of publication bias.
mention anticoagulant use. PSD was found in significantly more arterial ischemic stroke cases than controls, with a pooled OR of 2.26 (95% CI, 1.34–3.80) (Figure S9). Heterogeneity among studies was insignificant (P=0.31; I²=8.8%). A funnel plot was symmetrical (Figure S4D) and Egger’s test was nonsignificant (P=0.45), suggesting absence of publication bias.

Antithrombin deficiency

Antithrombin was measured in 12 studies (1407 cases and 11,796 controls). Of these studies, 5 excluded patients receiving anticoagulants, whereas 7 did not specifically mention anticoagulant use. ATD was numerically more common in arterial ischemic stroke cases than controls, but statistical significance was not reached (pooled OR, 1.25; 95% CI, 0.58–2.67) (Figure S10). Heterogeneity among studies was insignificant (P=0.22; I²=8.8%). A funnel plot was asymmetrical (Figure S4E) and Egger’s test was significant (P=0.01), suggesting possible publication bias. The pooled OR adjusted for publication bias using the Copas selection model was 1.39 (95% CI, 0.34–5.73).

Subgroup Analyses

We conducted prespecified subgroup analyses in young patients (aged ≤65 years), patients with a PFO, and patients with cryptogenic stroke. Results of these subgroup analyses for each thrombophilia are summarized in Figure 3.

Young patients

Twenty-eight studies exclusively enrolled young patients (aged ≤65 years). In the subgroup of young patients, the association of FVL, PTM, PCD, and PSD and arterial ischemic stroke remained significant. In general, the pooled ORs for young patients were greater than the overall pooled ORs across all thrombophilias (Figure 3 and Figures S11 through S15).

Patients with PFO

Two studies exclusively enrolled patients with PFO, whereas two reported disaggregated data for cases with and without PFO. A significant association between thrombophilia and arterial ischemic stroke was not detected in the subgroups of patients with PFO, except for PTM (OR, 2.62; 95% CI, 1.11–6.16) (Figure 3 and Figures S11 through S15).

Patients with cryptogenic stroke

Seven studies exclusively enrolled patients with cryptogenic stroke. A significant association between thrombophilia and arterial ischemic stroke was not detected in the subgroups of patients with cryptogenic stroke (Figure 3 and Figures S11 through S15).

Sensitivity Analyses

We prespecified sensitivity analyses according to geographic region and whether studies used age-matched versus non–age-matched controls.

Age-matched versus unmatched controls

The number of studies with and without age-matched controls and their corresponding pooled ORs for each thrombophilia are shown in Table 1. In general, pooled ORs were similar irrespective of whether studies used age-matched or non–age-matched controls. However, significant associations were found in studies with age-matched controls only.

Geographic region

Most studies were conducted in Europe (50%), Asia (19%), and North America (17%), with a smaller number from Africa (6%), Australia (3%), and South America (3%). Results were fairly consistent across geographic regions, except for the notably higher ORs for PCD and PSD in studies conducted in Asia (Table 2).

First-ever ischemic stroke

After the analysis was restricted to the 24 studies that exclusively enrolled cases with first-ever ischemic stroke, the association with arterial ischemic stroke remained significant for PTM (OR, 1.46; 95% CI, 1.10–2.00) and PSD (OR, 3.58; 95% CI 1.12–11.42), but not for FVL (OR, 1.16; 95% CI, 0.92–1.47) or PCD (OR, 1.62; 95% CI, 0.51–5.40).

Additional sensitivity analyses

Sensitivity analyses were performed by excluding each of the following: studies with enriched case population (those who were referred for thrombophilia testing because of a clinical indication or recruited from a thrombophilia center), studies that used self-reported history of stroke rather than imaging to define cases, studies that were rated as poor quality, and studies that reported inclusion of cases of recurrent ischemic stroke (but including studies that failed to report whether recurrent ischemic stroke was included or not). After each of these exclusions, the association of FVL, PTM, PCD, and PSD with arterial ischemic stroke remained significant, with similar pooled OR to the original analysis (Table S9).

Discussion

The results from our systematic review and meta-analysis suggest that inherited thrombophilias, including FVL, PTM, PCD, and PSD, are associated with a significant but small increase in the risk of arterial ischemic stroke in adults (Figure 2), particularly in young patients (Figure 3).
studies with zero events in both groups were excluded from analysis, the association of FVL and PTM was stronger in the homozygous than in the heterozygous state, suggesting a potential dose-response relationship and a causal role for inherited thrombophilia in arterial ischemic stroke.

Arterial ischemic stroke is a multicausal disease that involves complex interactions of genetic and environmental risk factors. Several lines of evidence implicate the coagulation pathway in the pathophysiological characteristics of arterial ischemic stroke. Increased levels of clotting proteins, such as factor VIII and factor XI, have been posited as independent risk factors for ischemic stroke. Conversely, congenital deficiency of factors VIII, IX, and XI is protective against stroke and cardiovascular disease. Anticoagulants

Table: Thrombophilia and Specific Subgroups

Thrombophilia and Specific Subgroups (Number of Studies)	Pooled Odds Ratio (95%CI)
Factor V Leiden (56)	1.25 (1.08-1.44)
Young Adults (21)	1.46 (1.07-2.00)
Patients with PFO (4)	1.44 (0.66-3.15)
Cryptogenic stroke (7)	1.46 (0.75-2.86)
PT G20210A mutation (45)	1.48 (1.22-1.80)
Young Adults (21)	1.75 (1.26-2.42)
Patients with PFO (4)	2.62 (1.11-6.16)
Cryptogenic stroke (7)	1.85 (0.87-3.93)
Protein C deficiency (15)	2.13 (1.16-3.90)
Young Adults (8)	2.73 (1.22-6.08)
Cryptogenic stroke (3)	0.54 (0.03-10.14)
Protein S deficiency (17)	2.26 (1.34-3.80)
Young Adults (8)	5.27 (2.41-11.55)
Patients with PFO (1)	3.58 (0.07-178.86)
Cryptogenic stroke (3)	2.23 (0.22-22.65)
Antithrombin deficiency (12)	1.25 (0.58-2.67)
Young Adults (6)	2.49 (0.83-7.47)
Patients with PFO (1)	0.53 (0.03-10.63)
Cryptogenic stroke (3)	0.99 (0.13-7.61)

Figure 3. Forest plot showing pooled odds ratio (OR) for each thrombophilia in specific subgroups of patients. The forest plot shows the results from the prespecified subgroup analyses for each type of thrombophilia. The pooled ORs are represented by the square boxes. The horizontal lines represent the 95% CIs. PFO indicates patent foramen ovale.
reduce the risk of ischemic stroke. Compared with aspirin (the “standard of practice” in many studies for prevention of first or recurrent stroke), warfarin is noninferior for the secondary prevention of noncardioembolic ischemic stroke.47 Although rivaroxaban was not superior to aspirin in preventing recurrence after embolic stroke of undetermined source,48 the addition of rivaroxaban to aspirin reduced cardiovascular recurrence in patients with stable atherosclerosis.49 Extended-duration treatment with betrixaban for prevention of venous thrombosis among hospitalized medically ill patients reduced the risk of subsequent stroke.50

Although inherited thrombophilias have not been traditionally recognized as risk factors for arterial thrombosis,7 there are several potential mechanisms by which they could contribute to arterial ischemic stroke. First, ischemic stroke may arise in the setting of deep vein thrombosis and subsequent paradoxical embolism via a PFO. In a prespecified subgroup analysis of subjects with PFO in our study, ischemic stroke was significantly associated with PTM (OR, 11.0; 95% CI, 5.13–23.59), but not with PSD (OR, 1.49; 95% CI, 0.32–6.92) or ATD (OR, 3.29; 95% CI, 0.70–15.48).56 Genome-wide association studies have identified genetic loci associated with stroke,57,58 many of which share associations with other cardiovascular diseases, such as hypertension, atrial fibrillation, coronary artery disease, and venous thromboembolism. In the MEGASTROKE study, the weighted genetic risk score for venous thromboembolism was significantly associated with large-artery atherosclerotic stroke and cardioembolic stroke, but not small-vessel stroke.57 However, none of the inherited thrombophilias we investigated in the present study was significantly associated with stroke in genome-wide association studies. This could be, in part, because of the inadequate statistical power to detect an association with rare variants in genome-wide association studies, allelic heterogeneity inherent in certain thrombophilias (PCD, PSD, and ATD), and/or heterogeneity in stroke subtypes and ethnicity of the study populations.

Interestingly, data extracted from multiple genome-wide association studies have shown that genetic variants indicative of high protein C level were associated with lower risk of coronary artery disease/myocardial infarction,59 suggesting a potential role for natural anticoagulants in the pathogenesis of arterial thrombosis. A similar analysis for arterial ischemic stroke would be an insightful topic for future studies.

Among the studies included in our analysis, interstudy heterogeneity was low, with I^2 values ranging from 0% to 35%, suggesting that the results could appropriately be combined.

Table 1. Sensitivity Analysis of Studies That Used Age-Matched versus Non–Age-Matched Controls

Thrombophilia	Age-Matched Studies	Non–Age-Matched Studies		
	No. of Studies	Pooled OR (95% CI)	No. of Studies	Pooled OR (95% CI)
FVL	24	1.58 (1.16–2.15)	32	1.09 (0.92–1.28)
Homozygous FVL	19	1.18 (0.51–2.71)	30	0.42 (0.17–1.08)
Heterozygous FVL	19	1.69 (1.19–2.40)	30	1.07 (0.89–1.28)
PT G20210A mutation	22	1.86 (1.38–2.49)	23	1.21 (0.90–1.61)
Homozygous PTM	18	0.27 (0.06–1.11)	21	0.33 (0.08–1.42)
Heterozygous PTM	18	1.91 (1.35–2.70)	21	1.10 (0.79–1.53)
Protein C deficiency	9	2.54 (1.21–5.37)	6	1.39 (0.44–4.33)
Protein S deficiency	11	2.28 (1.21–4.33)	6	2.30 (0.95–5.59)
Antithrombin deficiency	7	1.73 (0.70–4.28)	5	0.47 (0.09–2.38)

FVL indicates factor V Leiden; OR, odds ratio; PTM, prothrombin G20210A mutation.

*Significant association.
Table 2. Sensitivity Analysis by Study Region

Thrombophilia	Africa	Asia	Australia	Europe	North America	South America						
	No. of Studies	Pooled OR (95% CI)	No. of Studies	Pooled OR (95% CI)	No. of Studies	Pooled OR (95% CI)	No. of Studies	Pooled OR (95% CI)	No. of Studies	Pooled OR (95% CI)		
FVL	1	0.00 (0.00–259.67)	11	1.68 (1.08–2.61)*	2	1.45 (0.37–5.70)	33	1.31 (1.08–1.58)*	7	0.78 (0.52–1.18)	2	1.31 (0.39–4.33)
Homozygous FVL	1	0.00 (0.00–197.19)	11	1.15 (0.37–3.61)	1	0.00 (0.00–201.44)	29	0.72 (0.35–1.50)	5	0.00 (0.00–23.31)	2	0.00 (0.00–116.06)
Heterozygous FVL	1	0.00 (0.00–678.42)	11	1.51 (0.99–2.29)	1	0.30 (0.01–6.66)	29	1.32 (1.05–1.67)*	5	0.68 (0.37–1.27)	2	1.32 (0.40–4.36)
PTM	1	2.32 (0.54–9.68)	7	0.90 (0.45–1.78)	2	2.33 (0.54–10.07)	28	1.57 (1.21–2.05)*	6	1.35 (0.77–2.37)	1	2.00 (0.39–10.23)
Homozygous PTM	1	0.00 (0.00–243.44)	7	0.18 (0.01–2.59)	1	0.00 (0.00–160.03)	24	0.34 (0.10–1.13)	5	0.36 (0.02–6.16)	1	0.00 (0.00–160.03)
Heterozygous PTM	1	2.29 (0.54–9.76)	7	0.81 (0.39–1.67)	1	8.37 (0.23–308.69)	24	1.52 (1.12–2.08)*	5	1.23 (0.64–2.37)	1	2.04 (0.40–10.36)
Protein C deficiency	2	3.91 (0.75–20.44)	4	4.94 (1.52–16.06)*	1	0.61 (0.09–4.19)	7	1.28 (0.46–3.55)	
Protein S deficiency	3	1.83 (0.69–4.83)	4	7.46 (2.43–22.93)*	1	0.73 (0.07–7.59)	7	1.96 (0.86–4.43)	1	1.05 (0.28–4.02)
Antithrombin deficiency	1	5.22 (0.91–30.00)	3	0.60 (0.06–6.21)	1	1.26 (0.29–5.44)	7	0.75 (0.22–2.51)	

FVL indicates factor V Leiden; OR, odds ratio; PTM, prothrombin G20210A mutation. *Significant association.
SOURCES OF HETEROGENEITY AMONG STUDIES INCLUDED THE FOLLOWING: STUDY POPULATION (NUMBER OF PARTICIPANTS, AGE GROUPS, GEOGRAPHIC REGION AND ETHNICITY, BASELINE CLINICAL RISK OF STROKE, AND PRESENCE OF COMORBIDITIES); OUTCOME MEASUREMENT (METHODS OF STROKE DIAGNOSIS AND TYPES OF STROKE INCLUDED); AND EXPOSURE MEASUREMENT (THROMBOPHILIA TEST METHODS, TIMING OF TESTING AFTER STROKE IN CASES, AND EXCLUSION OF PATIENTS TAKING ANTICOAGULANTS).

From our sensitivity analysis by study region, the ORs for PCD and PSD were notably higher in studies conducted in Asia than other regions (Table 2). These disparities could be, in part, because of differences in the prevalence of inherited thrombophilias in different regions. For example, PCD, PSD, and ATD have been reported to be more common in the Asian population than in whites. In one included study from Taiwan, the prevalence of these natural anticoagulant deficiencies was distinctly high, affecting 27% of the cases.

Our study has several limitations. First, because this is a meta-analysis of case-control studies, the results may be affected by biases inherent to case-control studies, including selection bias and misclassification bias. In a small number of studies, controls were not drawn from the same population as cases. For instance, cases were recruited from patients referred for clinical thrombophilia testing, whereas controls were recruited from a population without a history of thrombosis in 3 studies. In such studies, the presence of inherited thrombophilia in the cases may be overrepresented because of selection bias. In most studies in which clinical stroke risk factors were reported in both cases and controls, the risk factors were more prevalent in cases than controls. These imbalances could have confounded the results of these studies. Moreover, cases with recurrent stroke were included in a few studies, possibly resulting in overrepresentation of thrombophilia in the cases for such studies. However, a sensitivity analysis excluding these 3 studies reassuringly yielded similar results to the original analysis. Misclassification of exposure status could have arisen if the exposure assessors were not blinded or if there were confounders that influenced the results of thrombophilia testing. This is especially true in the case of natural anticoagulant deficiencies (PCD, PSD, and ATD), where thrombophilia status was defined by phenotypic assays as opposed to genetic testing. Acute thrombosis, including stroke, may cause acquired natural anticoagulant deficiencies and lead to the appearance of higher frequencies of such conditions in stroke cases. However, most studies avoided this issue by requiring repeated testing after the short-term phase to define deficiencies. The use of anticoagulants and the presence of certain medical conditions (eg, liver disease) can also cause acquired deficiencies of natural anticoagulants. Attempts to account for these factors varied between studies. Second, we were not able to perform subgroup analyses by ethnicity or stroke subtype because of a lack of disaggregated data for these variables. Finally, although we found a significant association between inherited thrombophilia and ischemic stroke, this cannot be taken as evidence of a causal relationship nor can it be considered supportive of thrombophilia testing in clinical practice. Further studies are needed to determine whether thrombophilia testing in patients with otherwise unexplained arterial ischemic stroke is beneficial and whether and how the results should influence management.

Despite its limitations, our study has several strengths. First, our meta-analysis included the largest number of studies and participants to date. Second, to minimize publication bias, our literature search included “gray literature,” such as conference abstracts and letters to editors. Third, the included studies originated from a wide range of geographic regions and the results may, therefore, be applicable to clinicians and patients around the world.

CONCLUSIONS

Our systematic review and meta-analysis demonstrates an association between multiple inherited thrombophilias and the risk of arterial ischemic stroke in adults. Further studies are needed to determine whether inherited thrombophilias have an impact on clinical outcomes, such as recurrent stroke, and whether the finding of inherited thrombophilia should influence clinical management of patients with arterial ischemic stroke.

DISCLOSURES

None.

REFERENCES

1. Middeldorp S, Meinardi JR, Koopman MM, van Pampus EC, Hamulyak K, van Der Meer J, Prins MH, Buller HR. A prospective study of asymptomatic carriers of the factor V Leiden mutation to determine the incidence of venous thromboembolism. Ann Intern Med. 2001;135:322–327.
2. Coppens M, van de Poel MH, Bank I, Hamulyak K, van der Meer J, Veeger NJ, Prins MH, Buller HR, Middeldorp S. A prospective cohort study on the absolute incidence of venous thromboembolism and arterial cardiovascular disease in asymptomatic carriers of the prothrombin 20210A mutation. Blood. 2006;108:2604–2607.
3. Omran SS, Lerario MP, Gialdini G, Merkler AE, Moya A, Chen ML, Kamel H, DeSancho M, Navi BB. Clinical impact of thrombophilia screening in young adults with ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28:882–889.
4. Kim K, Cox N, Witt DM. Stroke diagnosis associated with thrombophilia testing overutilization. Thromb Res. 2017;157:139–141.
5. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL; American Heart Association Stroke Council. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49:e46–e110.
6. Cox N, Johnson SA, Vazquez S, Fleming RP, Rondina MT, Kaplan D, Chauv S, Fontaine GV, Stevens SM, Woller S, Witt DM. Patterns and appropriateness of
Inherited Thrombophilia and Ischemic Stroke

Chiasakul et al

Inherited Thrombophilia testing in an academic medical center. J Hosp Med. 2017;12:705–709.

7. Morris JG, Singh S, Fisher M. Testing for inherited thrombophilias in arterial stroke: can it cause more harm than good? Stroke. 2010;41:2985–2990.

8. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

9. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting: meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283:2088–2012.

10. NHLBI and Research Triangle Institute International. Study quality assessment tools: quality assessment of case-control studies. 2018. Available at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed August 14, 2018.

11. NHLBI and Research Triangle Institute International. Study quality assessment tools: quality assessment tool for observational cohort and cross-sectional studies. 2018. Available at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed August 14, 2018.

12. Copas JB, Shig JG. A sensitivity analysis for publication bias in systematic reviews. Stat Methods Med Res. 2001;10:251–265.

13. Bo AS, Reed GL, Hylek EM, Phillips KA, Liu L, Henault LE, Selby JV, Singer DE. The prevalence of poor anticoagulant response to activated protein C (APC resistance) among patients suffering from stroke or venous thrombosis and among healthy adults. Thromb Res. 2012;130:720–724.

14. Belvisi R, Santamaria A, Marti-Fabregas J, Cocho D, Borrell M, Fontcuberta J, Belvisi R. Factor V Leiden and prothrombin G20210A mutations and the risk of atherothrombotic events in systemic lupus erythematosus. Clin Appl Thromb Hemost. 2004;10:233–238.

15. Eterovic D, Titlic M, Culic V, Zadro R, Primorac D. Lower contribution of factor V Leiden or prothrombin G20210A mutations to ischemic stroke in patients with cryptogenic stroke. Acta Neurol Scand. 2010;121:109–113.

16. Pullmann R Jr, Skerenova M, Lukac J, Hybenova J, Melus V, Kubisz P, Rovensky J, Pullmann R. Factor V Leiden and prothrombin G20210A mutations and the risk of atherothrombotic events in systemic lupus erythematosus. Clin Appl Thromb Hemost. 2004;10:233–238.

17. Kumar A, Misra S, Sagar R, Kumar P, Yadav A, Talwar P, Raj R, Prasad K. Relationship between factor V Leiden gene variant and risk of ischemic stroke: a case-control study. Ann Indian Acad Neurol. 2017;20:284–288.

18. They-They TP, Battas O, Slassi I, Rafai MA, Katumbay DT, Ndifsi S. Prothrombin G20210A and factor V Leiden polymorphisms in stroke. J Mol Neurosci. 2012;46:210–216.

19. De Lucia D, d’Alessio D, Pezzella S, Maisto G, Di Mauro C, Marotta R, Del Giudice V, Iacovelli L. A hypercoagulable state in activated protein C resistant patients with ischemic stroke. Int J Clin Lab Res. 1998;28:74–75.

20. Longstreth WT Jr, Rosendaal FR, Siscovich DS, Vos HL, Schwartz SM, Pauly BM, Raghunathan TE, Koepsell TD, Reitma PH. Risk of stroke in young women and two prothrombotic mutations: factor V Leiden and prothrombin gene variant (G20210A). Stroke. 1998;29:577–580.

21. Pahus SH, Hansen AT, Hvas AM. Thrombophilia testing in young patients with ischemic stroke. Thromb Res. 2016;137:108–112.

22. Petrovic D, Milanez T, Klob J, Bregar D, Potisk KP, Peterlin B. Prothrombotic gene polymorphisms and atherothrombotic cerebral infarction. Acta Neurol Scand. 2003;108:109–113.

23. Halbmayer WM, Haushofer A, Schon R, Fischer M. The prevalence of poor anticoagulant response to activated protein C (APC resistance) among patients suffering from stroke or venous thrombosis and among healthy adults. Thromb Res. 2012;130:720–724.

24. Chatterjee T, Gupta N, Choudhry VP, Behari M, Saxena R, Ashraf MZ. Prevalence of prothrombotic heritable risk factors among patients with ischemic stroke. Thromb Res. 2013;128:469–474.

25. Karttunen V, Hiltunen L, Rasi V, Vahtera E, Hillbom M. Factor V Leiden or G20210A mutations to ischemic stroke in patients with clinical foramen ovale. Thromb Res. 2010;126:1455–1462.

26. Zhang S, Zang J, Li Y, Zhang Z, Zhang Q, Wang Y, Gao L, Liu J, Li Y, Wang W, et al. The prevalence and risk assessment of prothrombotic gene variants in Chinese patients with ischemic stroke. J Thromb Haemost. 2013;11:1615–1620.

27. Wypasek E, Stepien E, Pieculiewicz M, Podolec P, Undas A. Factor XIII Val34-Leu polymorphism and ischemic stroke in patients with patent foramen ovale. Thromb Res. 2009;102:1280–1282.

28. Smiles AM, Jenny NS, Tang Z, Arnold A, Cushman M, Tracy RP. No association of plasma prothrombin concentration or the G20210A mutation with incident cardiovascular disease: results from the Cardiovascular Health Study. Thromb Res. 2002;87:614–621.

29. Szolnoki Z, Somogyvari F, Kondacs A, Szabo M, Fodor L, Bene J, Melegh B. Evaluation of the modifying effects of unfavourable genotypes on classical clinical risk factors for ischemic stroke. J Neurol Neurosurg Psychiatry. 2003;74:1615–1620.

30. Martelli I, Battaglioli T, Burgo I, Di Domenico S, Mannucci PM, Oral contraceptive use, thrombophilia and their interaction in young women with ischemic stroke. Haematologica. 2006;91:844–847.

31. Halbmayrer WM, Haushofer A, Hermann KM, Fischer M. The 20210A allele of the prothrombin gene: a risk factor for juvenile stroke? Result of a pilot study. Blood Coagul Fibrol. 1998;9:209–210.

32. Tupitsyna TV, Bondarenko EA, Kravchenko SA, Tatarsky SF, Shetova IM, Shamalov NA, Kuznetsova SH, Zul’Zhenko DV, Skvortsova VI, Slominsk PA, Livshits LA, Limbskaia SB. Comparative analysis of associations between prothrombotic variants of Fg, FV, GP1BA, and ACE genes and the risk of developing stroke in Russian and Ukrainian populations. Mol Gen Microbiol Virol. 2013;2:8–18.

33. Rodmhnbeube H, Baccouche L, Lahmar M, Mahsoub S, Manuni Z. deficiency of coagulation inhibitors in young adults with ischemic stroke. J Thromb Haemost. 2011;9:899.

34. Suri MF, Yamagishi K, Alekic N, Hannan PJ, Folsom AR. Novel hemostatic factor levels and risk of ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. Cerebrovasc Dis. 2010;29:497–502.

35. Zakai NA, Judd SE, Kissela B, Howard G, Safford MM, Cushman M. Factor VIII and protein C and cardiovascular disease risk: the reasons for geographic and racial differences in stroke study (REGARDS). Thromb Haemost. 2018;118:1305–1315.

36. Salomon O, Steinberg DM, Koren-Morag N, Tanne D, Seligsohn U. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. Blood. 2008;111:4113–4117.

37. Sood SL, Cheng D, Ragni M, Kessler CM, Quon D, Shapiro AD, Key NS, Manco-Johnson MJ, Cuker A, Kempten C, Wang TF, Eyster ME, Kuriakose P, von Drygalski A, Gill JC, Wheeler A, Koidulescu E, Escobar MA, Leissinger C, Galldzicka S, Corson M, Watson C, Konikke BA. A cross-sectional analysis of cardiovascular disease in the hemophilia population. Blood Adv. 2018;2:1325–1333.

38. Mohr JP, Thompson JL, Lazar RM, Levin B, Sacco RL, Furie KL, Kistler JP, Albers GW, Fittgiewcg LC, Adams HP Jr, Jackson CM, Pullicino P, Warfarin-Aspirin Registry: a Stroke Study Group. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med. 2000;343:1444–1451.

39. Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Kesten SJ, Gagliardi S, Borgwardt SI, Berkowitz SD, Kasel MA, Kames TEXT. doi: 10.1161/JAHA.119.012877
Inherited Thrombophilia and Ischemic Stroke Chiasakul et al

49. Eikelboom JW, Connolly SJ, Bosch J, Dagenais GR, Hart RG, Shestakovska O, Kim RJ, Becker RC. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a meta-analysis of published studies. Am Heart J 2003;146:948–957.

50. Gibson CM, Chi G, Halaby R, Korjian S, Daaboul Y, Jain P, Arbetter D, Goldhaber S, De Vries Basson MM, Hart RG, Shestakovska O, Kishch B, Sheridan P, Peters G, Pater C, Kirsch B, Sheridan P, Peters G, Weitz JI, Peacock WF, Shoamanesh A, Benavente OR, Joyner C, Themeles E, Connolly SJ; NAVIGATE ESUS Investigators. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med 2018;378:2191–2201.

51. Lichy C, Padovani A, Magoni M, Grau A, Costa P, Volonghi I, Giossi A, Zotto ED, Bornstein N, Ozturk S, O’Bereczki D, Uchiyama S, Ntaios G, Yoon BW, Brouns R, Endres M, Muir KW, Undetermined source.

52. Borissof JI, Sprong H, Heenen S, ten Cate H. Is thrombin a key player in coagulation-atherogenesis? maze? Circulation. 2017;135:648–655.

53. Martorell L, Martinez-Gonzalez J, Rodriguez C, Gentile M, Calvayrac O, Badimon L. Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb Haemost 2008;99:305–315.

54. Kim RJ, Becker RC. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and the risk of ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol. 2016;15:174–184.

55. Schooling CM, Zhong Y. Plasma levels of the anti-coagulation protein C and the risk of ischaemic heart disease. Thromb Haemost. 2011;106:585–590.

56. Miyata T, Maruyama K, Banno F, Neki R. Thrombophilia in East Asian countries: are there any genetic differences in these countries? Thromb J 2016:4(1):59.

57. Angchaisuksiri P. Venous thromboembolism in Asia—an unrecognised and under-treated problem? Thromb Haemost. 2011;106:585–590.

58. Rojnuckarin P, Settapiboon R, Akkawat B, Teocharoen S, Suksausut A, Uaprasert N. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010;121:1838–1847.
Supplemental Material
Supplemental Methods: Search Strategies

Database: MEDLINE (PubMed) (From 1946 to December 31st, 2018)

Search Strategy:

1. Stroke[MeSH] OR "brain ischemia"[Mesh] OR stroke[tiab] OR "cerebrovascular accident"[tiab] (298198)
2. Thrombophilia[MeSH] OR thrombophil*[tiab] OR "inherited thrombophilia"[tiab] (28458)
3. Factor V'[MeSH] OR "Factor V Leiden"[tiab] OR "activated protein C resistance"[MeSH](8387)
4. Prothrombin[MeSH] OR prothrombin mutation[tiab] (10665)
5. Protein C deficiency[Mesh] OR protein C deficiency[tiab] (1966)
6. Protein S deficiency[MeSH] OR protein S deficiency[tiab] (1704)
7. Antithrombin III Deficiency[MeSH] OR antithrombin deficiency[tiab] (1565)
8. 2 OR 3 OR 4 OR 5 OR 6 OR 7 (56664)
9. 1 AND 8 (2073)
10. Filters: Publication date to 2018/12/31; Humans; English; Adolescent: 13-18 years; Adult: 19+ year (1115)

MEDLINE (PubMed) Query:

(((("thrombophilia"[MeSH Terms] OR (thrombophilia[tiab] OR thrombophilia's[tiab] OR thrombophilias[tiab] OR thrombophiliac[tiab] OR thrombophilic'[tiab] OR thrombophilicity[tiab] OR thrombophilia's[tiab] OR thrombophilia[tiab]) OR "inherited thrombophilia"[tiab] OR "genetic polymorphisms"[tiab]) OR ("Factor V"[MeSH] OR "Factor V Leiden"[tiab] OR "activated protein C resistance"[MeSH])) OR ("prothrombin"[MeSH Terms] OR prothrombin mutation[tiab]) OR ("protein c deficiency"[MeSH Terms] OR "Protein C deficiency"[tiab]) OR ("protein s deficiency"[MeSH Terms] OR "protein s deficiency"[tiab])) OR ("antithrombin iii deficiency"[MeSH Terms] OR antithrombin deficiency[tiab])) AND ("stroke"[MeSH Terms] OR "brain ischemia"[Mesh] OR stroke[tiab] OR "cerebrovascular accident"[tiab]) AND ("0001/01/01"[PDAT] : "2018/12/31"[PDAT]) AND "humans"[MeSH Terms] AND English[lang] AND ("adolescent"[MeSH Terms] OR "adult"[MeSH Terms])

Database: EMBASE (From inception to December 31st, 2018)

Search Strategy:

1. 'cerebrovascular accident'/exp OR 'cerebrovascular accident':ti,ab OR 'brain ischemia'/exp OR 'brain ischemia':ti,ab OR 'stroke':ti,ab (513281)
2. 'thrombophilia'/exp OR 'thrombophilia'*:ti,ab OR 'inherited thrombophilia'/exp OR 'inherited thrombophilia':ti,ab OR 'genetic polymorphisms'*:ti,ab (45868)
3. 'blood clotting factor 5'/exp OR 'blood clotting factor 5 leiden'/exp OR 'factor v leiden':ti,ab OR 'activated protein c resistance'/exp OR 'activated protein c resistance':ti,ab (15829)
4. 'prothrombin'/exp OR (prothrombin NEAR2 mutation):ti,ab (21764)
5. 'protein c deficiency'/exp OR 'protein c deficiency':ti,ab (3310)
6. 'protein s deficiency'/exp OR 'protein s deficiency':ti,ab (3066)
7. 'antithrombin deficiency'/exp OR 'antithrombin deficiency':ti,ab (2951)
8. 2 OR 3 OR 4 OR 5 OR 6 OR 7 (75736)
9. 1 AND 8 (4356)
10. #9 AND (adolescent/lim OR [adult]/lim OR [aged]/lim OR [middle aged]/lim OR [very elderly]/lim OR [young adult]/lim AND <$1966-2018>/py AND [english]/lim NOT 'case report'/de (1300)
EMBASE Query:

('cerebrovascular accident'/exp OR 'cerebrovascular accident':ti,ab OR 'brain ischemia'/exp OR 'stroke':ti,ab)
AND ('thrombophilia'/exp OR 'thrombophili*':ti,ab OR 'inherited thrombophilia'/exp OR 'inherited
thrombophilia':ti,ab OR 'genetic polymorphis*':ti,ab OR 'blood clotting factor 5'/exp OR 'blood clotting factor 5
leiden'/exp OR 'Factor v leiden':ti,ab OR 'activated protein c resistance'/exp OR 'activated protein c
resistance':ti,ab OR 'prothrombin'/exp OR ((prothrombin NEAR/2 mutation):ti,ab) OR 'antithrombin
deficiency'/exp OR 'antithrombin deficiency':ti,ab OR 'protein c deficiency'/exp OR 'protein c deficiency':ti,ab
OR 'prothrombin mutation':ti,ab OR 'Factor V Leiden':ti,ab OR 'activated protein C resistance'[MeSH](178)
AND (adolescent/lim OR adult/lim OR aged/lim OR middle aged/lim OR very elderly/lim OR young adult/lim) AND (<1966-2018)/py AND
english/lim NOT 'case report'/de

Database: Cochrane Library (From 1946 to December 31st, 2018)

Search Strategy:

1. Stroke[MeSH] OR "brain ischemia"[MesH] OR stroke:ti,ab,kw OR "cerebrovascular accident":ti,ab,kw (52117)
2. Thrombophilia[MeSH] OR thrombophili*:ti,ab,kw OR "inherited thrombophilia*":ti,ab,kw (700)
3. Factor V'[MeSH] OR "Factor V Leiden":ti,ab,kw OR "activated protein C resistance"[MeSH](178)
4. Prothrombin[MeSH] OR "prothrombin mutation":ti,ab,kw (461)
5. Protein C deficiency[MeSH] OR "protein C deficiency":ti,ab,kw (44)
6. Protein S deficiency[MeSH] OR "protein S deficiency":ti,ab,kw (30)
7. Antithrombin III Deficiency[MeSH] OR "antithrombin deficiency":ti,ab,kw (48)
8. 2 OR 3 OR 4 OR 5 OR 6 OR 7 (1189)
9. 1 AND 8 (70)
10. 9 limit to December 2018 (54)
Table S1. Characteristics of Included Studies: Types of Thrombophilias, Numbers of Participants, and Study Population.

Reference	Country	Study period	Types of thrombophilia tested	Number of cases/controls	Study population	Control identification	Stroke diagnosis	Case-control matching for
Anadure 2017(1)	India	2010-2014	+	120/120	Hospitalized stroke ward patients, National Institute of Mental Health and Neuro Sciences, Bangalore	Unrelated healthy subjects	CT/MRI/MRA	Age, sex
					Age 15-45 Partial or complete occlusion of common carotid, internal carotid and vertebral arteries/ anterior circulation strokes/ posterior circulation stroke/ occlusive disease of the large vessels of the brain on MRA or DSA Exclude: Hemorrhagic stroke; stroke due to trauma, infection, or tumors; vessel dissection; CNS vasculitis; malignancy or blood dyscrasia; aortoarteritis; nephrotic syndrome; cardioembolic stroke; vascular malformations and aneurysms; immunocompromised patients			
Aznar 2004(2)	Spain	NR	+	49/294	Age 18-50 Unit of thrombophilia Cryptogenic stroke without signs of atherosclerosis, heart disease, foramen ovale or vessel occlusive disease	Healthy subjects from the same geographic area and ethnic background	CT/MRI	Age, geographic area, ethnicity
Belvis 2006(3)	Spain	2001-2004	+	89/150	Stroke Unit, Hospital de la Santa Creu I Sant Pau, Barcelona First-ever cryptogenic stroke by TOAST criteria	Previously published study in Barcelona population	CT/MRI	-
Bentolila 1997(4)	France	1993-1995	+	125/134	Age < 45 Non-transient arterial cerebral ischemia	Young healthy white men and women without history of thrombosis	CT	-
Biswas 2009(5)	India	NR	+	120/120	Outpatient Departments and Wards of the Departments of Neurosciences and Hematology, All India Institute of Medical Sciences, New Delhi Age <40 with acute ischemic stroke Stroke of non-cardioembolic origin Present within 4 weeks of onset Of Northern Indian origin Exclude: Cardioembolic stroke; past history of cardiovascular disease; on oral anticoagulants during the first sample collection; DM, hyperlipoproteinemia, cancer, sickle cell anemia, and liver disease	Apparently healthy hospital staffs and their relatives or from unrelated attendants of the patients	CT/MRI	Age, sex
Reference	Country	Study period	Types of thrombophilia tested	Number of cases/controls	Study population	Control Identification	Stroke diagnosis	Case-control matching for
-----------------	-----------	--------------	-------------------------------	--------------------------	---	------------------------------	----------------------------------	------------------------------
Bolaman 2009(6)	Turkey	2003-2004	+	24/53	Department of Neurology, Adnan Menderes University, Aydin Stroke from cerebral infarct	Healthy subjects	CT/MRI	-
Buyru 2005(7)	Turkey	NR	+	29/20	Neurology Clinic, Haydarpaşa Numune Hospital, Istanbul Ischemic stroke patients	Healthy subjects	CT/MRI	-
Catto 1995(8)	United Kingdom	NR	+	386/247	Four acute-care hospitals in Leeds Acute ischemic stroke by WHO definition	Leeds blood transfusion service and general practitioners WHO definition	MRI	-
Celiker 2009(9)	Turkey	2000-2003	+	162/285	Neurology Department of Baskent University Hospital Acute ischemic stroke	Previously published study	MRI	Age, sex
Chatterjee 2013(10)	India	NR	+	52/52	Stroke Clinic, Department of Neurology, All India Institute of Medical Sciences, New Delhi Age <45 with non-embolic arterial ischemic stroke	Healthy individuals	CT/MRI	Age, sex
Chen 2003(11)	Taiwan	NR	+	104/35	Non-cardiac cerebral ischemia Exclude: Cardioembolic, hemorrhagic stroke; systemic diseases (cancer, sickle cell anemia, vasculitis)	Hospital employees, family of patients, or individuals asking for neurologic examination free of medical disorders	MRI	-
Cushman 1998(12)	USA	1989-1990	+	149/482	Cardiovascular Health Study (Random sample of Medicare eligibility list) Development of stroke in participants free of baseline history of stroke	Cardiovascular Health Study	Review by committee	-
D'Amico 1998(13)	Italy	1996-1997	+	31/124	C. Besta Neurological Institute, Milan and Ospedale L. Mandic Age <65	Healthy volunteer from staff	CT/MRI	Age, sex
De Lucia 1999(14)	Italy	1994-1995	+	50/100	Ischemic stroke Age <45 with ischemic stroke	Healthy subjects	CT/MRI	Age, sex
Djordjevic 2012(15)	Serbia	NR	+	73/120	Young adults having cerebral infarcts	Healthy blood donors	MRI	-
Egan 2000(16)	USA	1997-1998	+	42/635	Oregon Health Sciences University Hospital Age <55 with an arterial stroke	Normal healthy individuals from Portland	CT/MRI	-
Erten 2015(17)	Turkey	2007-2009	+	212/238	Research and Training Hospital Neurology Clinic, Süleyman Demirel University Ischemic stroke patients	Individuals without history of stroke	MRI	Age, Sex
Reference	Country	Study period	Types of thrombophilia tested	Number of cases/controls	Study population	Control Identification	Stroke diagnosis	Case-control matching for
----------------	-------------	-----------------------	-------------------------------	--------------------------	--	---	------------------	---
Eterovic 2007(18)	Croatia	1999-2003	+ +	120/120	Department of Neurology, Clinical Hospital Split First-time acute ischemic stroke Exclude: Age >65, secondary hypercoagulability status, DM type 1, significant obstruction of carotid arteries	Persons attending regular checkups, blood donors, volunteer staffs without cerebrovascular disease	CT/MRI	Age, Sex, cardiovascular risk factors
Fan 2010(19)	USA	1991-1994	+ +	156/5817	Second phase of The Third National Health and Nutrition Examination Survey (NHANES III) Age ≥17 with self-reported stroke Age ≥65, secondary hypercoagulability status, DM type 1, significant obstruction of carotid arteries Stroke of unknown cause by TOAST criteria Exclude: Large vessel, small vessel, cardioembolic stroke; stroke from multiple etiologies; neoplasia, dementia Out-patients referred for varicose veins and/or early venous insufficiency in the legs without clinical indication of stroke Exclude: ABI≤0.9; previous coronary event; neoplasia; DVT	Same population without self-reported stroke	Interview	-
Favaretto 2012(20)	Italy	2008-2011	+ + + + + +	340/272	Angiography Unit, S. Orsola-Malpighi University Hospital Stroke of unknown cause by TOAST criteria Exclude: Large vessel, small vessel, cardioembolic stroke; stroke from multiple etiologies; neoplasia, dementia	Same cohort with no prior hospitalization for ischemic stroke	CT/MRI	-
Go 2003(21)	USA	1996-1997	+	137/214	Cohort from Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study Ambulatory adults with nonvalvular AF Patients Ischemic stroke	Same cohort with no prior hospitalization for ischemic stroke	ICD-9 with record review	Follow-up time
Haeusler 2012(22)	Germany	NR	+ +	44/282	Stroke outpatient clinic Cryptogenic stroke by TOAST criteria Exclude: Age ≥55	Healthy blood donors without vascular diseases	CT/MRI	-
Halbmayer 1998(23)	Austria	NR	+ +	20/20	Unexplained juvenile stroke	Healthy subjects	NR	Age, sex
Hamedani 2013(24)	USA	1992-1996 2001-2003 2003-2007	+	830/907	Genetics of Early Onset Stroke (GEOS) study First ischemic stroke Age 15-49 Exclude: trauma; procedure; hemorrhage; CVST; infection; vasculitis	Baltimore-Washington area Participants without history of stroke	Record review	Age, region of residence
Hankey 2001(25)	Australia	1996-1998	+ + + + + +	219/205	A university teaching hospital in Western Australia First-ever ischemic stroke	Randomly selected from the Western Australian electoral roll Sampling of primary care lists in the same geographic area Stroke-free individuals	CT/MRI	Age, sex, postal code
Jerrard-Dunne 2003(26)	England	NR	+ + + +	130/130	Stroke services in South London Age ≥65 Acute ischemic stroke	Randomly selected from the Western Australian electoral roll Sampling of primary care lists in the same geographic area Stroke-free individuals	CT/MRI	Age, sex, ethnicity
Jiang 2014(27)	USA	1992-1996 2001-2003 2003-2007	+	397/426	Genetics of Early Onset Stroke (GEOS) study First ischemic stroke Age 15-49 Exclude: trauma; procedure; hemorrhage; CVST; infection; vasculitis	Baltimore-Washington area Participants without history of stroke	Record review	Age, region of residence
Reference	Country	Study period	Types of thrombophilia tested	Number of cases/controls	Study population	Control identification	Stroke diagnosis	Case-control matching for
----------------	-------------	--------------	-------------------------------	--------------------------	---	--	------------------	---------------------------
Juul 2002(28)	Denmark	1991-1997	+	641/7907	The Copenhagen City Heart Study and Copenhagen University Hospital Age 20-95 Ischemic stroke	Control subjects from the Copenhagen City Heart Study free of MI, IS, and non-MI IHD	CT	-
Kamberl 2016(29)	Macedonia	2008-2010	+ +	39/102	Neurology Department, Clinical Hospital, Tetro Age 18-90 First-ever ischemic stroke	Healthy subjects from local residents	CT/MRI	-
Karakus 2005(30)	Turkey	NR	+ + + + + +	21/81	Age< 50 Cerebral infarction Age 15-60 Ischemic brain infarction of undetermined cause and PFO	Volunteer physicians and laboratory staff Spouse, friend , or randomly selected controls from the population register of the hospital catchment area	CT/MRI	-
Kuttunen 2003(31)	Finland	1991-1998	+ + + + + +	58/104	Age 15-60 Ischemic stroke		CT	Age, sex
Kholodkova 2015(32)	Ukraine	NR	+ +	122/40	Neurology Unit, Kyiv City Hospital Acute ischemic stroke	Healthy donors without previous history of stroke	CT/MRI	-
Krajcowiechova 2015(33)	Czech Republic	2009-2012	+ +	423/614	Thomayer Hospital or Charles University Hospital Age 18-81 First-ever acute ischemic stroke	Participants of the Czech post-MONICA study residing in Prague East and Pilsen districts Age 50-75 Free of vascular diseases	CT/MRI	-
Kumar 2017(34)	India	NR	+	250/250	All India Institute of Medical Sciences, New Delhi Age 18-85, North Indian Ischemic stroke within three years before recruitment	Spouses, relatives or patients attending neurology department for treatment other than stroke Age 18-85, North Indian No prior stroke Same cohort without stroke	CT	Age, sex
Linnemann 2008(35)	Germany	2000-2006	+ + + + + +	41/993	Patients with history of VTE registered in the MAISTHRD Database Age 17-90 with ischemic stroke King, Pierce, Snohomish counties, Washington Women age 18-44 Diagnosed of first stroke	Patients with history of VTE registered in the MAISTHRD Database Age 17-90 with ischemic stroke King, Pierce, Snohomish counties, Washington Women age 18-44 Diagnosed of first stroke	CT/MRI	-
Longstreth 1998(36)	USA	1991-1995	+ +	41/382	King, Pierce, Snohomish counties, Washington Women age 18-44 Diagnosed of first stroke	Random-digit dialing Same area Healthy women age 18-44 Healthy blood donor and hospital staff	CT/MRI	Age
Lopaciucl 2001(37)	Poland	1996-1999	+ +	100/238	Age 545 History of ischemic stroke without a cardiac embolic source	Healthy blood donor and hospital staff	CT/MRI	-
Martinelli 2006(38)	Italy	1994-2005	+ +	105/293	Referred for thrombophilia screening at Thrombosis Center, University of Milan and IRCCS Maggiore Hospital Caucasian women of fertile age	Partners and friends of patients	CT/MRI	-
Reference	Country	Study period	Types of thrombophilia tested	Number of cases/controls	Study population	Control Identification	Stroke diagnosis	Case-control matching for
--------------------	-------------	--------------	-------------------------------	--------------------------	---	--	------------------	---------------------------
Mayer 1993(39)	USA	1990-1991	+	94/94	First ischemic stroke	Caucasian women of fertile age without previous thrombosis	NR	-
					Columbia-Presbyterian Medical Center	Patients admitted to the medicine and neurology services		
					North Manhattan Stroke Study	Age >39 Postmenopausal women residing in the Zip code of northern Manhattan		
Mochan 2005(40)	South Africa	NR	+	33/33	Chris Hani Baragwanath Hospital in Soweto	Inpatients of same hospital	CT	Age, sex, CD4 count
					HIV-infected Stroke with cerebral infarction	HIV-infected No cerebral infarction		
Moskau 2010(41)	Germany	1999-2000	+	167/500	Of German descent Ischemic stroke	Blood donors of German descent	CT/MRI	-
Nagayama 1996(42)	Japan	NR		106/37	Chronic ischemic stroke	Patients with neurological diseases without vascular involvement	NR	-
Pahus 2016(43)	Denmark	2004-2012	+	377/6431	Center of Hemophilia and Thrombosis, Aarhus University Hospital	Previously published data of general western population	WHO and record review	
					Ischemic stroke Banco Municipal de Sangre, Caracas Stroke	WHO and record review		
Pestana 2009(44)	Venezuela	2005-2007	+	54/134	Ischemic stroke Banco Municipal de Sangre, Caracas Stroke	Randomly selected, unselected, and apparently healthy subjects without personal and family history of vascular, arterial, or thromboembolic diseases	CT	-
Petrovic 2003(45)	Slovenia	NR	+	96/115	Acute cerebral infarction	General population in the same region	CT/MRI	-
					Exclude: History of CVD, CHD, PAD; carotid bruit			
Pezzini 2005(46)	Italy	1997-2002	+	163/158	Department of Neurology, University of Brescia, Brescia Age <45	Staff of same hospital	CT/MRI	Age, sex
					Admitted patients with first-ever ischemic stroke	No vascular diseases		
Pezzini 2007(47)	Italy	NR	+	108/216	Department of Neurology, University of Brescia, Brescia Age <45	Women from the staff of the same hospital	CT/MRI	Age, sex
Reference	Country	Study period	Types of thrombophilia tested	Number of cases/controls	Study population	Control Identification	Stroke diagnosis	Case-control matching for
----------------	------------	--------------	-------------------------------	--------------------------	--	---	-----------------	----------------------------
Press 1996(48)	USA	NR	+	161/367	Wards and clinics at Portland Veterans Affairs Medical Center and Oregon Health Sciences University Acute ischemic stroke within 7 days of enrollment	Healthy elderly (N=54) Stroke risk group (N=116) Blood donors (N=197)	NR	-
Pullmann 2004(49)	Slovakia	NR	+	23/71	White SLE patients with thromboembolic stroke Exclude: Hemorrhage; vasculitis	SLE patients without CVA/CHD	CT/MRI	-
Ranellou 2015(50)	Greece	NR	+	51/70	Evangelismos General Hospital Age 18-50 Ischemic stroke within 24 hour of onset Native Greek Exclude: Major systemic diseases; coagulopathy; anticoagulants; trauma	Healthy blood donors from the same area without history of stroke/thrombosis	CT/MRI	Age
Ridker 1995(51)	USA	NR	+	209/704	Physicians' Health Study Apparently healthy US male physicians Age 40-84 Developed stroke during 10-year follow-up	Randomly selected participants from the same study No cardiovascular disease at the time of event in cases	CT and record review	Age, smoking status
Ridker 1999(52)	USA	NR	+	259/1774	Physicians' Health Study Apparently healthy US male physicians Age 40-84 Developed stroke during 10-year follow-up	Randomly selected participants from the same study No cardiovascular disease during follow up	CT and record review	Age, smoking status
Ripoll 1997(53)	French	NR	+	321/428	Ischemic cerebrovascular events Age >65	Age >65 No personal or familial history of CVA/CHD	NR	-
Romdhane 2011(54)	Tunisia	NR	+	20/54	First non-cardioembolic ischemic stroke Neurological Department, University of Sassari, Sardinia Ischemic stroke		NR	Age
Rubattu 2005(55)	Italy	1998-2003	+	294/286	Neurological Institute, University La Sapienza, Rome Age 15-45 First-ever ischemic stroke within the 8 weeks preceding the admission into the hospital Hospitals in the North West and Mersey Regions, Manchester Age 16-39 at the time of stroke First ischemic stroke identified by ICD-9	Healthy blood donors from the same center No drug/OCP use No family history of stroke	CT/MRI	Age
Rubattu 2005(56)	Italy	NR	+	115/180	Neurological Institute, University La Sapienza, Rome Age 15-45 First-ever ischemic stroke within the 8 weeks preceding the admission into the hospital Hospitals in the North West and Mersey Regions, Manchester Age 16-39 at the time of stroke First ischemic stroke identified by ICD-9	Healthy blood donors from the same center No drug/OCP use No family history of stroke	CT/MRI	Age
Sastry 2006(57)	United Kingdom	1993-1998	+	101/101	Neurological Institute, University La Sapienza, Rome Age 15-45 First-ever ischemic stroke within the 8 weeks preceding the admission into the hospital Hospitals in the North West and Mersey Regions, Manchester Age 16-39 at the time of stroke First ischemic stroke identified by ICD-9	Healthy blood donors from the same center No drug/OCP use No family history of stroke	CT/MRI	Age
Reference	Country	Study period	Types of thrombophilia tested	Number of cases/controls	Study population	Control Identification	Stroke diagnosis	Case-control matching for
-----------	---------	--------------	-------------------------------	--------------------------	-----------------	------------------------	-----------------	-----------------------------
Shi 2008(58)	China	2006-2007	+	97/99	Exclude: Surgery/injury within 10 weeks; malignancy Neurological department, Beijing Tiantan Hospital Age 18-45 Acute ischemic stroke	Other departments of the Tiantan Hospital Age 18-45 No cardiovascular or cerebrovascular diseases	CT/MRI	Age, sex
Slooter 2005(59)	Netherlands	1990-2001	+	193/767	Nine participating Dutch hospitals University Medical Center Utrecht Women age 18–49 Hospitalized for a first ischemic stroke Exclude: AF; hemorrhage	Random-digit dialing Women age 18–49 No history of CHD/CVD/PAD	CT/MRI	Age, residence, year of stroke
Smiles 2002(60)	USA	NR	+	182/453	Cardiovascular Health Study (Random sample of Medicare eligibility list) Age ≥65 (free of clinical CVD at baseline) Had stroke during 6-year follow up		CT	
Supanc 2014(61)	Croatia	2009-2012	+	155/150	Department of Neurology, Sestre milosrdnice University Hospital Center, Zagreb Ischemic stroke Age <55	Subjects treated at Pain Clinic of same center No history of vascular or thromboembolic disease	CT/MRI	Age, sex
Szolnoki 2003(62)	Hungary	1998-2002	+	867/743	Department of Neurology and Neurophysiology, Pandy Kalman County Hospital Consecutive Hungarian patients First acute ischemic stroke	Randomly selected from local GP registers Healthy Caucasian Hungarian No evidence of stroke on CT/MRI	MRI	Age, sex
Tatarsky 2010(63)	Ukraine	2008-2009	+	183/188	Randomly selected from different regions in Ukraine Survivor of ischemic stroke referred for rehabilitation	I: General population of Ukraine II: Healthy individuals age >65 without history of ischemic stroke	NR	-
They-They 2012(64)	Morocco	2008-2009	+	91/182	University Hospital Center, Casablanca Admitted for ischemic stroke	Presumably healthy blood donors	CT/MRI	Age, sex, ethnicity
Tupitsyna 2013(65)	Russia	NR	+	1450/817	Stroke patients from Russian and Ukrainian population	Russian and Ukrainian population	NR	-
Voetsch 2000(66)	Brazil	1996-1998	+	153/225	University Hospitals of the State University of Campinas and the University of Sao Paulo First cerebral ischemic event occurring at age 15-45 Absence of systemic disease or cancer	Randomly selected hospital staffs	CT/MRI	Age, sex
Reference, Year	Country	Study period	Types of thrombophilia tested	Number of cases/controls	Study population	Control Identification	Stroke diagnosis	Case-control matching for
-----------------	---------	--------------	-------------------------------	-------------------------	-----------------	------------------------	----------------	--------------------------
Wypasek 2009(67)	Poland	NR	FVL + PTM + PCD + PSD + ATD	100/107	PFO patients	Apparently healthy white individuals	CT/MRI	Age, sex
Zimba 2017(68)	Zambia	2014-2015	+ +	52/52	In-patients and Out-patients at University Teaching Hospital, Lusaka	Same center HIV positive patients without ischemic stroke	CT/MRI	Age, sex, ethnicity

NR, not reported; FVL, Factor V Leiden; PTM, Prothrombin G20210A Mutation; PCD, Protein C Deficiency; PSD, Protein S Deficiency; ATD, Antithrombin Deficiency; CT, computed tomography; MRI, Magnetic Resonance Imaging; MRA Magnetic Resonance Angiogram; TIA, transient ischemic attack; DM, Diabetes Mellitus; WHO, World Health Organization; SLE, systemic lupus erythematosus; APS, antiphospholipid syndrome; PFO, patent foramen ovale; VTE, venous thromboembolism; CVD, cerebrovascular disease; CHD, coronary heart disease; CVA, cerebrovascular accidents; AF, atrial fibrillation; OCP, oral contraceptive pills; PAD; peripheral arterial disease; CSVT, cerebral venous sinus thrombosis; HIV, human immunodeficiency virus.
References	Mean Age, year (Cases/Controls)	Male, % (Cases/Controls)	Cryptogenic stroke in cases, %	Ethnicity, % (Cases/Controls)	Diabetes, % Cases/Controls	Hypertension, % Cases/Controls	Dyslipidemia, % Cases/Controls	Hormonal Drug Use, % Cases/Controls	Smoking, % Cases/Controls
Anadure 2017(1)	33/35	93/93	NR	NR/NR	NR/RR	13/RR	NR/RR	33/RR	NR/RR
Aznar 2004(2)	18-50 (Range)/NR	NR/RR	100	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Belvis 2006(3)	57/48	60/45	100	NR/RR	17/2.7	36/13	38/14	NR/RR	NR/RR
Bentollia 1997(4)	41/34	58/50	44	White 100/100	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Biswas 2009(5)	NR/NR	NR/RR	Indian 100/100	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Bolaman 2009(6)	64/59	67/58	NR	NR/RR	33/32	63/60	38/36	NR/RR	21/19
Buyu 2005(7)	67/61 (Median)	NR/RR	21/11	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	10/RR
Catto 1995(8)	74/76	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Celiker 2009(9)	70/NR	54/NR	30	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Chatterjee 2013(10)	23/NR	63/63	NR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Chen 2003(11)	62/61	68/69	NR	NR/RR	28/0	70/0	NR/RR	NR/RR	NR/RR
Cushman 1998(12)	76/72	48/37	NR	NR/RR	39/16	60/34	NR/RR	NR/RR	45/50
D'Amico 1998(13)	34/33	65/32	NR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
De Lucia 1999(14)	35/45	76/45	NR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Djordjevic 2012(15)	40/39	56/70	NR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Egan 2000(16)	43/41	52/49	NR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Erten 2015(17)	56/62	52/45	51	NR/RR	30/24	61/43*	28/23	NR/RR	38/37
Eterovic 2007(18)	61/61 (Median)	NR/RR	White 100/100	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Fan 2010(19)	68/44	44/48	NR	White 82/82	30/30	56/56	NR/RR	NR/RR	NR/RR
Favaretto 2012(20)	51/52.2	PFO 49/ Non- PFO 46 /74	100	White 100/100	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Go 2003(21)	74/69*	51/62*	NR	White 80/84	20/14	66/44*	NR/RR	NR/RR	NR/RR
Haeusler 2012(22)	36/39 (Median)	41/36	100	NR/RR	5/5	223/39	36/39	NR/RR	40.9/RR
Halbmayer 1998(23)	39/39	50/50	100	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Hamedani 2013(24)	41/40*	57/55	50.4	White 56/60	17/5*	43/19*	NR/RR	16/8*	41/28*
Hankey 2001(25)	66/67	64/64	20	NR/RR	25/11*	54/33*	24/22	NR/RR	33/18*
Jerrard-Dunne 2003(26)	White 53/54	62/50	NR	White 39/39	26/10	59/39	49/42	NR/RR	40/23
Jerrard-Dunne 2003(26)	Black Caribbean 57/56	NR/RR	Black Caribbean 59/39	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Jerrard-Dunne 2003(26)	Black African 53/55	NR/RR	Black African 23/23	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Jiang 2014(27)	41/39*	63/55*	NR	White 100/100	11/2*	32/16*	NR/RR	23/11*	43/24*
Juul 2002(28)	63/56*	61/43*	NR	White >9/>9	14/3*	46/17*	NR/RR	NR/RR	80/73*
Kamberti 2016(29)	63/49*	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Karakus 2005(30)	40/42	38/52	100	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Kartunen 2003(31)	44/45	55/57	100	NR/RR	NR/RR	2/4	16/13	NR/RR	27/27
Khodskova 2015(32)	73/NR	NR/RR	0	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR	NR/RR
Krafkovicheva 2015(33)	66/61*	61/49*	36	NR/RR	30/10*	87/58*	93/86*	NR/RR	60/53*
References	Mean Age, year Cases/Controls	Male, % Cases/Controls	Cryptogenic stroke in cases, %	Ethnicity, % Cases/Controls	Diabetes, % Cases/Controls	Hypertension, % Cases/Controls	Dyslipidemia, % Cases/Controls	Hormonal Drug Use, % Cases/Controls	Smoking, % Cases/Controls
---------------------------	-------------------------------	------------------------	--------------------------------	----------------------------	----------------------------	-------------------------------	-------------------------------	----------------------------------	---------------------------
Kumar 2017(34)	51/53	81/81	NR	North Indian 100/100	32/10*	58/17*	23/6*	NR/NR	39/27*
Linnemann 2008(35)	66/48 (Median)*	56/38*	NR	NR/0	15/6*	56/25*	46/19*	NR/NR	15/21
Longstreth 1998(36)	37/38	0/0	NR	White 83/90 Black 6/2 Others 11/8	NR/NR	NR/NR	NR/NR	NR/NR	NR/NR
Lupaciuk 2001(37)	38/33	51/66	55	NR/0	20/0	NR/NR	42/0NR	NR/NR	61/27
Martinelli 2006(38)	35/35	0/0	52	White 100/100	0/0	12/3*	10/0*	NR/NR	27/21
Mayer 1993(39)	68/68	48/40	17.1	White 14/21 Black 38/37 Hispanic 46/39 Others 2/2	30/18	75/46*	NR/NR	NR/NR	48/36
Mochan 2005(40)	NR/NR	NR/NR	NR	Black 100/100	NR/NR	NR/NR	NR/NR	NR/NR	NR/NR
Moskau 2010(41)	55/33*	38/29*	17	White 100/100	NR/NR	NR/NR	NR/NR	NR/NR	NR/NR
Nagayama 1996(42)	40/55	63/18	NR	Japanese 100/100	NR/NR	NR/NR	NR/NR	NR/NR	NR/NR
Pahus 2016(43)	43/ NR	51/ NR	NR	NR/ NR	8/ NR	NR/NR	32/ NR	NR/NR	50/ NR
Pestana 2009(44)	39/39	39/39	NR	NR/ NR	2/2	13/16	NR/NR	13/16	14/21
Petrovic 2003(45)	62/63	63/57	NR	White 100/100	31/4*	66/33*	28/20*	NR/NR	44/25*
Pezzini 2005(46)	35/35	52/54	31	White 100/100	3/3	17/6*	25/11*	NR/NR	47/25*
Pezzini 2007(47)	34/35	0/0	38	White 100/100	0/0	12/4*	25/11*	NR/NR	41/13*
Press 1996(48)	64/68	91/80	NR	NR/ NR	36/21	72/64	26/30	NR/NR	41/10
Pullmann 2004(49)	37/46	4/1	NR	White 100/100	18/16	41/5	51/37	NR/NR	24/25
Ranellou 2015(50)	37/38	49/54	NR	NR/ NR	2/0	16/0*	10/3	NR/NR	35/36
Ridker 1999(51)	63/60	100/100	NR	Predominantly white/Predominantly white	13/4	36/17	12/9	NR/NR	60/58
Ridker 1999(52)	60/59	100/100	NR	Predominantly white/Predominantly white	7/3*	28/16*	12/9*	NR/NR	56/57
Ripoll 1997(53)	66/ NR	NR/ NR	NR	NR/ NR	NR/NR	NR/NR	NR/NR	NR/NR	NR/NR
Romdhane 2011(54)	37/ NR	55/ NR	NR	NR/ NR	NR/NR	<1/ NR	NR/NR	<1/ NR	<1/ NR
Rubattu 2005(55)	75/73 (Median)*	60/57	NR	NR/ NR	24/29	65/49*	22/13*	NR/NR	41/38
Rubattu 2005(56)	36/35	44/54	12	NR/ NR	2/0	22/4*	18/18	44/Excluded	57/40
Sastry 2006(57)	33/33	43/43	NR	NR/ NR	3/1	21/8*	NR/NR	16/16	47/41
Shi 2008(58)	39/39	81/81	NR	Asian 100/100	20/5*	50/13*	NR/NR	NR/NR	72/42*
Sloot 2005(59)	34/40	0/0	0	NR/ NR	4/1*	32/6*	8/3*	NR/NR	52/36*
Smiles 2002(60)	76/72	41/39	NR	White 95/94 Black 5/5 Other 0/5	24/14	53/34	NR/NR	NR/NR	45/55
Supanc 2014(61)	NR/NR	NR/NR	36	White 100/100	4/3	37/19*	63/53	NR/NR	45/24*
Szolnoki 2003(62)	61/60	53/53	NR	White 100/100	32/6*	51/18*	NR/NR	NR/NR	33/11*
Tatarsky 2010(63)	65/30*	52/45	NR	NR/ NR	19/8*	51/10*	NR/NR	NR/NR	22/7*
They-They 2012(64)	49/46	51/52	6.6	NR/ NR	18/9*	NR/NR	NR/NR	NR/NR	NR/NR
Tupitsyna 2013(65)	NR/NR	NR/NR	NR	NR/ NR	NR/NR	NR/NR	NR/NR	NR/NR	NR/NR
Voss1sch 2000(66)	33/34	41/44	NR	White 75/53 Black 25/47	5/ NR	39/ NR	31/ NR	NR/NR	52/ NR
Wypasek 2009(67)	43/44	30/32	NR	White 100/100	NR/NR	NR/NR	NR/NR	NR/NR	19/34
References	Mean Age, year Cases/Controls	Male, % Cases/Controls	Cryptogenic stroke in cases, %	Ethnicity, % Cases/Controls	Diabetes, % Cases/Controls	Hypertension, % Cases/Controls	Dyslipidemia, % Cases/Controls	Hormonal Drug Use, % Cases/Controls	Smoking, % Cases/Controls
--------------	-------------------------------	-----------------------	--------------------------------	-----------------------------	---------------------------	-------------------------------	-------------------------------	-----------------------------------	--------------------------
Zimba 2017(68)	52/46*	44/44	13	NR/NR	15/6	50/17*	8/8	Excluded/Excluded	4/4

* denotes significant difference; NR, not reported
Table S3. Results of Included Studies: Factor V Leiden.

References	Test Method	Odds Ratio (95%CI)	Number of All FVL (%)	Number of Homozygous FVL (%)	Number of Heterozyzous FVL (%)				
			Cases	Controls	Cases	Controls	Cases	Controls	
Anadure 2017(1)	PCR/RFLP	3.10 (0.61-15.7; P = .15)	6/120 (5)	2/120 (1.7)	0/120 (0)	0/120 (0)	6/120 (5)	2/120 (1.7)	
Aznan 2004(2)	PCR/RFLP	2.62 (0.43-13.95)	2/49 (4.1)	5/294 (1.7)	0/100 (0)	0/120 (0)	2/67 (3.0)	6/150 (4.0)	
Biswas 2006(3)	PCR/RFLP	10.8 (1.3-229.5; P = .005)	0/120 (0)	4/120 (3.3)	0/120 (0)	0/120 (0)	0/120 (0)		
Bolaman 2009(6)	PCR	0.431 (0.074-2.504; P > .05)	2/24 (8.3)	2/53 (3.8)	0/24 (0)	0/53 (0)	2/24 (8.3)	2/53 (3.8)	
Buyru 2005(7)	PCR/RFLP	1/29 (3.4)	0/20 (0)	1/29 (3.4)	0/20 (0)	0/20 (0)	0/20 (0)		
Catto 1995(8)	PCR/RFLP	16/39 (4.1)	14/247 (5.7)	0/386 (0)	0/247 (0)	16/386 (4.1)	14/247 (5.7)		
Cushman 1998(12)	PCR	0.76 (0.32-1.81)	8/149 (5.4)	34/482 (7.1)	0/149 (0)	0/482 (0)	8/149 (5.4)	34/482 (7.1)	
D'Amico 1999(13)	PCR	5/31 (16.1)	4/124 (3.2)	0/31 (0)	0/124 (0)	5/31 (16.1)	4/124 (3.2)		
De Lucia 1999(14)	PCR	11/50 (22)	2/100 (2)	2/50 (4)	0/100 (0)	9/50 (18)	2/100 (2)		
Djordjevic 2012(15)	PCR	1.45 (0.47-4.48)	6/73 (8.2)	7/120 (5.8)	0/100 (0)	0/100 (0)	0/100 (0)	0/100 (0)	
Enren 2015(17)	PCR/RFLP	32/212 (15.1)	21/238 (8.8)	3/212 (1.4)	0/238 (0)	29/212 (13.7)	21/238 (8.8)		
Eterovic 2007(18)	PCR/RFLP	0.82 (0.29-2.34)	0/156 (0)	262/5817 (4.5)	0/137 (0)	8/137 (5.8)	8/137 (5.8)		
Fan 2010(19)	PCR	16/340 (4.7)	14/272 (5.1)	0/340 (0)	0/137 (0)	8/137 (5.8)	8/137 (5.8)		
Favarottto 2012(20)	PCR	7/41 (17.1)	22/282 (7.8)	0/41 (0)	0/282 (0)	7/41 (17.1)	22/282 (7.8)		
Haesler 2012(22)	PCR	1/20 (5)	2/20 (10)	0/20 (0)	0/20 (0)	1/20 (5)	2/20 (10)		
Halbmayer 1998(23)	PCR	30/830 (3.6)	34/907 (3.7)	0/120 (0)	0/120 (0)	0/120 (0)	0/120 (0)		
Hammedi 2013(24)	SNP array	2.1 (0.6-6.8)	10/219 (4.6)	4/205 (2)	0/120 (0)	0/120 (0)	0/120 (0)		
Juul 2002(28)	PCR/RFLP	17/231 (7.4)	629/7907 (8)	1/231 (0.4)	17/7907 (0.2)	16/231 (6.9)	9/102 (8.8)		
Kamperi 2016(29)	PCR/ hybridization	3.39 (7.7)	9/102 (8.8)	0/39 (0)	0/102 (0)	3.39 (7.7)	9/102 (8.8)		
Karakus 2005(30)	PCR	7/8 (0.8-71.3)	4/57 (7)	1/104 (1)	0/57 (0)	0/104 (0)	4/57 (7)		
Kartunnen 2003(31)	PCR	3.114 (2.6)	0/40 (0)	0/114 (0)	0/40 (0)	3.114 (2.6)	0/40 (0)		
Kolodkova 2015(32)	PCR	44/423 (10.4)	53/614 (8.6)	2/423 (0.5)	2/614 (0.3)	42/423 (9.9)	51/614 (8.3)		
Krajcovicheva 2015(33)	PCR	1.80 (0.60-5.37; P = .29)	9/250 (3.6)	5/250 (2)	0/250 (0)	0/250 (0)	9/250 (3.6)	5/250 (2)	
Kumar 2017(34)	PCR	0.87 (0.42-1.79; P = .88)	10/41 (24.4)	278/1020 (27.3)	0/41 (0)	0/1020 (0)	10/41 (24.4)	256/1020 (25.1)	
Linnemann 2008(35)	PCR/RFLP	0.0 (0-2.5)	16/388 (4.1)	0/40 (0)	0/288 (0)	16/388 (4.1)	0/288 (0)		
Longstreth 1998(36)	PCR/RFLP	0.7 (0.2-2.6)	3/100 (3)	10/238 (4.2)	0/100 (0)	0/238 (0)	3/100 (3)	10/238 (4.2)	
Lopaciuk 2001(37)	PCR	6/105 (5.7)	7/293 (2.4)	0/105 (0)	0/293 (0)	6/105 (5.7)	7/293 (2.4)		
Martellini 2006(38)	NR ("DNA analysis")	11/167 (6.6)	30/500 (6)	1/167 (0.6)	1/500 (0.2)	10/167 (6)	29/500 (5.8)		
Moskau 2010(41)	PCR	0/106 (0)	0/37 (0)	0/106 (0)	0/37 (0)	0/106 (0)	0/37 (0)		
Nagayama 1996(42)	PCR	0/106 (0)	0/37 (0)	0/106 (0)	0/37 (0)	0/106 (0)	0/37 (0)		
References	Test Method	Odds Ratio (95%CI)	Number of All FVL (%)	Number of Homozygous FVL (%)	Number of Heterozygous FVL (%)				
------------------	-------------	--------------------	-----------------------	-----------------------------	-----------------------------				
			Cases	Controls	Cases	Controls	Cases	Controls	
Pahus 2016(43)	PCR	Homozygous 4.06 (0.86-36.51)	15/207 (7.2)	282/1488 (6.6)	1/207 (0.5)	5/4188 (0.1)	14/207 (6.8)	277/4188 (6.6)	
Pestana 2009(44)	PCR	2.60 (0.52-12.98)	4/54 (7.4)	4/134 (3)	0/54 (0)	0/134 (0)	4/54 (7.4)	4/134 (3)	
Petrovic 2003(45)	PCR	1 (0.26-3.76; P = .97)	4/96 (4.2)	5/115 (4.3)	1/96 (1)	0/115 (0)	3/96 (3.1)	5/115 (4.3)	
Pezzini 2005(46)	PCR	1.17 (0.35-3.92)	6/163 (3.7)	5/158 (3.2)	0/163 (0)	0/158 (0)	6/163 (3.7)	5/158 (3.2)	
Pezzini 2007(47)	PCR	1.10 (0.51-5.70)	10/58 (6)	6/216 (2.8)	0/108 (0)	0/216 (0)	5/108 (4.6)	6/216 (2.8)	
Press 1996(48)	PCR	NR	4/161 (2.5)	19/367 (5.2)	0/161 (0)	0/367 (0)	4/161 (2.5)	19/367 (5.2)	
Pullmann 2004(49)	PCR	NR	2/23 (8.7)	3/71 (4.2)	0/23 (0)	0/71 (0)	2/23 (8.7)	3/71 (4.2)	
Ranellou 2015(50)	PCR/ hybridization	NR (P = .20)	7/51 (13.7)	4/70 (5.7)	0/51 (0)	0/70 (0)	7/51 (13.7)	4/70 (5.7)	
Rider 1995(51)	PCR	Crude RR 0.7 (0.3-1.4; P = .3)	Multivariate adjusted RR 1.0 (0.4-2.2; P = .9)	9/209 (4.3)	42/760 (6)	0/209 (0)	0/760 (0)	9/209 (4.3)	42/760 (6)
Ripoll 1997(53)	PCR/RFLP	1.7 (0.8-3.4)	17/321 (5.3)	14/428 (3.3)	0/321 (0)	0/428 (0)	17/321 (5.3)	14/428 (3.3)	
Rubattu 2005(55)	PCR/RFLP	NR (P = .27)	5/294 (1.7)	2/296 (0.7)	0/294 (0)	0/296 (0)	5/294 (1.7)	2/296 (0.7)	
Rubattu 2005(56)	PCR/RFLP	NR	4/115 (3.5)	10/180 (5.6)	1/115 (0.9)	0/180 (0)	3/115 (2.6)	10/180 (5.6)	
Sastry 2006(57)	PCR/RFLP	NR	4/101 (4)	8/101 (7.9)					
Shi 2008(58)	PCR/RFLP	NR	0/97 (0)	0/99 (0)	0/97 (0)	0/99 (0)	0/97 (0)	0/99 (0)	
Slooter 2005(59)	PCR	Adjusted OR for age, index year, and residence: 1.8 (0.9-3.6)							
Supanc 2014(61)	PCR/RFLP	2.88 (1.0-8.20; P = .40)	14/155 (9)	5/150 (3.3)	2/155 (1.3)	0/150 (0)	12/155 (7.7)	5/150 (3.3)	
Szolnoki 2003(62)	PCR	NR	72/867 (8.3)	49/743 (6.6)	3/867 (0.3)	2/743 (0.3)	69/867 (8)	47/743 (6.3)	
Tatarksky 2010(63)	PCR/RFLP	NR	6/183 (3.3)	5/188 (2.7)	0/183 (0)	1/188 (0.5)	6/183 (3.3)	4/188 (2.1)	
They-They 2012(64)	PCR/RFLP	NR	0/91 (0)	0/182 (0)	0/91 (0)	0/182 (0)	0/91 (0)	0/182 (0)	
Tuptysna 2013(65)	PCR	Russian: 0.9 (0.50-1.76) Ukrainian: 1.9 (0.40-8.97)	42/1450 (2.9)	16/577 (2.8)	0/1450 (0)	0/577 (0)	42/1450 (2.9)	16/577 (2.8)	
Voetsch 2000(66)	PCR/RFLP	NR	5/153 (3.3)	8/225 (3.6)	0/153 (0)	0/225 (0)	5/153 (3.3)	8/225 (3.6)	
Wypasek 2009(67)	SNP analysis	NR (P = .22)	9/100 (9)	5/107 (4.7)	0/100 (0)	0/107 (0)	9/100 (9)	5/107 (4.7)	

NR, not reported; FVL, Factor V Leiden; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; OR, Odds ratio; RR, risk ratio; CI, confidence interval; SNP, Single nucleotide polymorphisms.
References	Test Method	Odds Ratio (95%CI)	Number of All PTM (%)	Number of Homozygous PTM (%)	Number of Heterozygous PTM (%)			
			Cases	Controls	Cases	Controls	Cases	Controls
Aznar 2004(2)	PCR/RFLP	3.75 (1.05-13.34)	4/49	7/294	0/89	0/201	0/89	3/201
Belotilla 1997(4)	PCR	NR	3/89	13/201	0/89	0/201	0/89	13/201
Biswas 2005(5)	PCR/RFLP	NR	8/125	5/134	0/125	0/134	0/125	5/134
Bolaman 2009(6)	PCR	NR	0/24	0/53	0/24	0/53	0/24	0/53
Celiker 2009(9)	PCR/RFLP	NR	3/162	5/182	0/162	0/182	3/162	5/182
Chatterjee 2013(10)	PCR/RFLP	1.00 (0.02-51.35;	0/52	0/52	0/52	0/52	0/52	0/52
Djordjevic 2012(15)	PCR/RFLP	1.33 (0.35-5.13)	4/73	5/120	4/73	5/120		
Egan 2000(16)	PCR	NR	0/42	13/635	0/42	6/635	0/42	13/635
Ertens 2015(17)	PCR	NR	13/212	10/238	0/212	0/238	13/212	10/238
Eterovic 2007(18)	PCR/RFLP	NR (P = .047)	3/120	0/120			3/120	
Fan 2010(19)	PCR	1.69 (0.26-10.82)	6/156	122/581	6/156	122/581		
Favaretto 2012(20)	PCR	2.97 (1.32-6.69)	29/340	9/272	0/340	0/272	29/340	9/272
Haeusler 2012(22)	PCR	NR (P = >.995)	1/38	10/282	0/38	0/282	1/38	10/282
Habmayr 1998(23)	PCR	NR (P = .46)	2/20	0/20	2/20	0/20	2/20	0/20
Hankey 2001(25)	PCR	1.9 (0.5-6.2)	8/219	4/205				
Jiang 2014(27)	PCR	2.5 (0.9-6.5; P = .07)	14/397	6/426	1/397	6/426	13/397	6/426
Kamberi 2016(29)	PCR	2.80 (0.33-23.53 P = .32)	1/39	7/102	0/39	1/102	7/102	1/102
Karakus 2003(30)	PCR	NR	1/21	1/81	1/21	1/81	1/21	1/81
Karttunen 2003(31)	PCR	1.0 (1.0-1.1)	2/57	0/104	2/57	0/104	2/57	0/104
Khodolkov 2015(32)	PCR	NR	6/114	0/40	6/114	0/40	6/114	0/40
Krajcovicca 2015(33)	PCR	Multivariate adjusted OR 2.29 (1.04-5.02; P = .04)	22/423	15/614	22/423	15/614	22/423	15/614
Linnemann 2008(35)	PCR	0.63 (0.15-2.7; P = .76)	2/41	76/930	1/41	2/930	1/41	76/930
Longstreth 1998(36)	PCR/RFLP	1.6 (0.03-13.4)	1/41	6/382	0/41	0/382	1/41	6/382
Lopaciuk 2001(37)	PCR	0.9 (0.2-5.0)	2/100	5/238	0/100	0/238	2/100	5/238
Martinelli 2006(38)	PCR	NR ("DNA analysis")	5/105	15/293	5/105	15/293	5/105	15/293
Moskau 2010(41)	PCR	NR (P = .88)	7/167	0/167	7/167	0/167	7/167	0/167
Pahus 2016(42)	PCR	Heterozygous 1.59 (0.32-4.81)	3/92	1377/6463	0/92	0/6463	3/92	1369/6463
Pazzini 2005(46)	PCR	2.68 (0.70-10.3)	9/163	1/163	0/158	1/163	0/158	1/163
Pazzini 2007(47)	PCR	6.52 (1.73-24.6)	10/108	3/216	1/108	0/216	9/108	3/216
Pullmann 2004(48)	PCR	NR	0/23	3/71	0/23	0/71	0/23	0/71
Ranelli 2015(50)	PCR	NR (P = .70)	7/51	4/70	0/51	0/70	7/51	4/70
Ridker 1999(52)	PCR	Crude RR 1.1 (0.6-2.1; P = .8)	11/259	69/1774	0/259	1/1774	11/259	68/1774

Table S4. Results of Included Studies: Prothrombin G20210A Mutation.
Study	Methodology	PCR/RFLP	PTM	Multivariate adjusted RR	RR (95% CI)				
Rubattu 2005(55)	PCR/RFLP	NR (P = .95)	1.1 (0.5-2.4; P = .7)	12/294 (4.1)	0/294 (0)	0/294 (0)	12/294 (4.2)	12/286 (4.2)	
Rubattu 2005(56)	PCR	NR	8/115 (7)	10/180 (5.6)	0/115 (0)	0/180 (0)	8/115 (7)	10/180 (5.6)	
Saeter 2006(57)	PCR	NR	2/101 (2)	0/101 (0)					
Slooter 2006(59)	PCR	NR	5/188 (2.7)	18/763 (2.4)					
Smiles 2002(60)	PCR	NR	6/182 (3.3)	0/453 (0)	6/182 (3.3)	12/453 (2.6)			
Supanc 2014(61)	PCR	NR	7/155 (4.5)	2/150 (1.3)	0/155 (0)	0/150 (0)	7/155 (4.5)	2/150 (1.3)	
Szolnoki 2003(62)	PCR	NR	5/867 (0.6)	4/743 (0.5)	0/867 (0)	0/743 (0)	5/867 (0.6)	4/743 (0.5)	
Tatarskyy 2010(63)	PCR/RFLP	NR	8/183 (4.4)	3/188 (1.6)	0/183 (0)	0/188 (0)	8/183 (4.4)	3/188 (1.6)	
They-Thy 2012(64)	PCR/RFLP	NR (P = .60)	2.3 (0.97-5.8; P = .5)	11/91 (12.1)	10/182 (5.5)	0/91 (0)	0/182 (0)	11/91 (12.1)	10/182 (5.5)
Tupitsyna 2013(65)	PCR	Russian: 0.7 (0.35-1.30)	5/229 (2.2)	0/153 (0)	0/229 (0)	7/153 (4.6)	5/229 (2.2)		
Voetsch 2000(66)	PCR/RFLP	NR	7/153 (4.6)	5/229 (2.2)	0/153 (0)	0/229 (0)	7/153 (4.6)	5/229 (2.2)	
Wypasek 2009(67)	SNP analysis	NR (P = .15)	1/100 (1)	1/107 (0.9)	0/100 (0)	0/107 (0)	1/100 (1)	1/107 (0.9)	

NR, not reported; PTM, Prothrombin G20210A Mutation; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; OR, Odds ratio; RR, risk ratio; CI, confidence interval; SNP, Single nucleotide polymorphisms.
References	Test Method	Definition of deficiency	Timing of test after stroke	Exclusion of anticoagulants	Odds Ratio (95% CI)	Number of PCD Cases (%)
Biswas 2009(5)	ELISA	<65%	3-6 months after stroke	Yes	NR	4/120 (3.3)
Chatterjee	Clot-based assay	<70%	≥4 months after stroke	NR	0.15 (0.01-1.30; P = .12)	6/52 (11.5)
Chen 2003(11)	Chromogenic assay	<70%	NR (If a first test was abnormal, a second test was done 6 weeks later; a deficiency was defined by <70% in two tests)	Yes	5.29 (NR)	14/104 (13.5)
D'Amico 1998(13)	NR	NR	2-15 days after stroke	NR	NR	0/31 (0)
De Lucia 1999(14)	NR	<76.9% (<2.5th percentile)	At 3 months after stroke	Yes	NR	2/50 (4)
Favaretto 2012(20)	Chromogenic assay	<68%	1 month after discharge	NR	NR	0/340 (0)
Hankey 2001(25)	Chromogenic assay	<70%	Within 7 days and at 3-6 months (any low level is considered deficiency)	NR	0.7 (0.2-3.1; P = .6)	3/219 (1.4)
Jerrard-Dunne 2003(26)	Chromogenic assay	<2SD of ethnic-specific controls	First test at presentation If abnormal, repeated test at ≥3 months after stroke Results of the repeated test were used	Yes	3.05 (0.60-15.39; P = .16)	6/130 (4.6)
Karakus 2005(30)	Chromogenic assay	NR	NR	NR	NR	1/21 (4.8)
Karttunen 2003(31)	Chromogenic assay	NR	>2 months after stroke	NR	NR	0/57 (0)
Linnemann 2008(35)	Chromogenic assay	<74%	NR (a deficiency was defined by repeatedly low activity)	Yes	0.98 (0.97-0.99; P =1.00)	0/31 (0)
Pahus 2016(43)	Chromogenic and clot-based assay	<0.65 U/L (both assays)	Average 2 months after stroke (Repeated in cases of deficiency)	NR	1.90 (0.04-12.55)	1/363 (0.3)
Romdhane 2011(54)	Chromogenic assay	NR	NR	2 (NR; P =.6)	2/20 (10)	
Sastry 2006(57)	Functional assay	NR	NR	Yes	NR	1/86 (1.2)
Zimba 2017(68)	Chromogenic assay	<70%	More than 48 hour, up to 1 month	Yes	NR (P =.06)	5/52 (9.6)

NR, not reported; PCD, protein C Deficiency; ELISA, enzyme-linked immunosorbent assay; CI, confidence interval.
References	Test Method	Definition of deficiency	Timing of test after stroke	Exclusion of anticoagulants	Odds Ratio (95% CI)	Number of PSD (%)	
Biswas 2009(5)	ELISA <50%	3-6 months after stroke	Yes	NR	6/120 (5)	0/120 (0)	
Chatterjee 2013(10)	Clot-based assay <65%	≥4 months after stroke	NR	0.05 (0.01-0.38; P <0.001)	15/52 (28.8)	1/52 (1.9)	
Chen 2003(11)	Chromogenic assay	<60% (If a first test was abnormal, a second test was done 6 weeks later; a deficiency was defined by <60% in two tests)	Yes	2.86 (NR)	22/10 (21.2)	3/35 (8.6)	
D’Amico 1998(13)	NR	2-15 days after stroke (Repeated at >6 months after stroke; a deficiency was defined by abnormalities in both tests)	NR	NR	2/31 (6.5)	0/124 (0)	
De Lucia 1999(14)	NR	<74.6% (<2.5th percentile)	At 3 months after stroke	3/50 (6)	1/100 (1)		
Favaretto 2012(20)	Chromogenic assay <62%	1 month after discharge	NR	NR	0/340 (0)	0/272 (0)	
Hankey 2001(25)	Immunoelectrophoresis	<55%	Within 7 days and at 3-6 months (any low level is considered deficiency)	NR	0.9 (0.1-6.7; P =.5)	2/219 (0.9)	2/205 (1)
Jerrard-Dunne 2003(26)	Immunoassay	<2SD of ethnic-specific controls	First test at presentation if abnormal, repeated test at ≥3 months after stroke Results of the repeated test were used	Yes	2.00 (0.36-11.1; P =.42)	4/130 (3.1)	2/130 (1.5)
Karakus 2005(30)	Immunoassay	NR	NR	NR	1/21 (4.8)	0/81 (0)	
Karttunen 2003(31)	Clot-based assay	>2 months after stroke	NR	1.0 (1.0-1.1)	1/57 (1.8)	0/104 (0)	
Linnemann 2008(35)	Clot-based assay	Male <70%, Female <60%	NR (a deficiency was defined by repeatedly low activity)	Yes	0.97 (0.13-7.39; P =1.00)	1/30 (3.3)	29/788 (3.6)
Mayer 1993(39)	Free protein S: Immunoelectrophoresis	Free PS <20% of normal total PS	Cases: Average 2.4 days after onset of stroke Controls: Average 5.2 days after admission	Yes	1.1 (0.5-2.2)	20/94 (21.3)	19/94 (20.2)
Mochan 2005(40)	Clot-based assay	NR	Cases: Repeated at 3 months after stroke Controls: NR	NR	11/33 (33.3)	12/33 (36.4)	
Pahus 2016(43)	Clot-based assay, ELISA	Clot-based assay: <0.65 U/L AND Free PS ELISA: <0.13 U/L (until 2005) and <0.55 U/L (from 2006)	Average 2 months after stroke (Repeated in cases of deficiency)	NR	2.32 (0.24-11.27)	2/364 (0.5)	9/3788 (0.2)
Romdhane 2011(54)	Clot-based assay	NR	NR	11.3 (NR; P =0.003)	6/20 (30)	2/54 (3.7)	
Sastry 2006(57)	Functional assay	NR	NR	Yes	NR (1.2)	1/101 (1)	
Zimba 2017(68)	Immunoassay	<60%	More than 48 hour, up to 1 month	Yes	NR (P =.42)	22/52 (42.3)	18/52 (34.6)

NR, not reported; PSD, protein S Deficiency; ELISA, enzyme-linked immunosorbent assay; CI, confidence interval.
Table S7. Results of Included Studies: Antithrombin Deficiency.

References	Test Method	Definition of deficiency	Timing of test after stroke	Exclusion of anticoagulant s	Odds Ratio (95% CI)	Number of ATD (%)
Chatterjee 2013(10)	Chromogenic assay	<75%	24 months	NR	1.00 (0.02-51.35; P = 1)	0/52 (0)
Chen 2003(11)	Chromogenic assay	<70%	NR (If a first test was abnormal, a second test was done 6 weeks later; a deficiency was defined by <70% in two tests)	Yes	0.33 (NR)	1/104 (1)
			3 months	Yes	NR	0/50 (0)
De Lucia 1999(14)	NR	NR	NR	NR	0.9 (0.1-10.5)	1/57 (1.8)
Favaretto 2012(20)	Chromogenic assay	<80%	1 month after discharge	NR	0.88 (0.12-6.60; P = .8)	0/340 (0)
Hankey 2001(25)	Chromogenic assay	82	Within 7 days and at 3-6 months (any low level is considered deficiency)	NR	1.3 (0.5-3.3; P = .6)	11/21 (5.2)
Jerrard-Dunne 2003(26)	Chromogenic assay	<2SD of ethnic-specific controls	First test at presentation If abnormal, repeated test at ≥3 months after stroke Results of the repeated test were used	Yes	NR	0/130 (0)
Karakus 2005(30)	NR	NR	NR	NR	NR	1/21 (4.8)
Karttunen 2003(31)	Chromogenic assay	NR	>2 months after stroke	NR	0.9 (0.1-10.5)	1/57 (1.8)
Linnemann 2008(35)	Chromogenic assay	<86%	NR (a deficiency was defined by repeatedly low activity)	Yes	0.88 (0.12-6.60; P = 1.00)	1/40 (2.5)
Linnemann 2010(54)	Functional assay	<0.60 x 10^3 U/L	Average 2 months (Repeated in cases of deficiency)	NR	NR	0/1288 (0)
Linnemann 2011(54)	Chromogenic assay	NR	NR	NR	5.6 (NR; P = 0.01)	7/20 (3.5)
Sastry 2006(57)	Functional assay	NR	NR	Yes	NR	3/86 (3.5)

NR, not reported; ATD, Antithrombin Deficiency; CI, confidence interval.
Table S8. Components of Quality Assessment.

References	Research question	Study population	Target population and case representation	Sample size justification	Groups recruited from the same population	Inclusion and exclusion criteria prescribed and applied uniformly	Case and control definitions	Random selection of study participants	Concurrent controls	Exposure assessed prior to outcome measurement	Exposure measures and assessment	Blinding of exposure assessors	Statistical analysis	Quality
Anadure 2017(1)	Y	Y	NR	Y	CD	CD	Y	N	N	NR	Y	NR	Good	
Aznar 2004(2)	Y	N	NR	N	Y	Y	Y	N	N	N	N	NR	Fair	
Belvis 2006(3)	Y	Y	NR	N	Y	N	N	N	N	Y	N	Y	Fair	
Bentolila 1997(4)	Y	N	NR	Y	Y	Y	Y	N	N	N	Y	N	Fair	
Biswas 2009(5)	Y	N	NR	N	Y	Y	Y	N	N	N	NR	N	Fair	
Bolaman 2009(6)	Y	Y	NR	N	Y	Y	Y	N	N	N	NR	Y	Fair	
Buryu 2005(7)	Y	N	NR	Y	Y	Y	Y	N	N	Y	Y	N	Fair	
Catto 1995(8)	Y	N	Y	CD	Y	Y	N	N	N	Y	NR	N	Fair	
Celiker 2009(9)	Y	Y	NR	N	Y	N	N	N	N	N	Y	NR	Fair	
Chatterjee 2013(10)	Y	N	NR	N	Y	Y	N	N	N	N	NR	N	Fair	
Chen 2003(11)	Y	N	NR	N	CD	Y	Y	N	N	Y	Y	Y	Fair	
Cushman 1998(12)	Y	Y	NR	N	Y	Y	Y	N	Y	Y	NR	Y	Good	
D’Amico 1998(13)	Y	Y	NR	N	Y	Y	Y	N	N	N	NR	Y	Fair	
De Lucía 1999(14)	Y	Y	NR	N	CD	Y	Y	N	N	N	Y	N	Fair	
Djordjevic 2012(15)	Y	N	NR	Y	Y	Y	Y	N	N	Y	NR	N	Fair	
Egan 2000(16)	Y	N	NR	Y	Y	CD	Y	N	N	N	NR	Y	Fair	
Erten 2015(17)	Y	Y	NR	N	Y	CD	Y	N	N	N	N	Y	Fair	
Eterovic 2007(18)	Y	Y	NR	N	Y	Y	N	N	Y	Y	Y	Y	Good	
Fan 2010(19)	Y	N	NR	Y	Y	N	NA	N	CD	Y	NR	Y	Fair	
Favaretto 2012(20)	Y	Y	NR	N	Y	N	Y	N	N	Y	NR	Y	Fair	
Go 2003(21)	Y	Y	NR	N	Y	Y	N	N	N	N	Y	Y	Good	
Haesler 2012(22)	Y	N	NR	N	N	N	Y	N	N	N	Y	N	Fair	
Halmayer 1998(23)	Y	N	NR	N	CD	CD	N	N	N	N	Y	NR	Poor	
Hamedani 2013(24)	Y	Y	NR	N	Y	Y	Y	Y	N	N	Y	NR	Fair	
Hankey 2001(25)	Y	N	NR	N	Y	Y	Y	Y	N	N	Y	NR	Good	
Jerrard-Dunne 2003(26)	Y	N	NR	Y	Y	CD	Y	Y	N	N	NR	Y	Good	
Jiang 2014(27)	Y	Y	NR	N	Y	Y	Y	Y	N	Y	NR	N	Fair	
Juul 2002(28)	Y	Y	NR	N	Y	Y	NA	N	Y	Y	NR	N	Fair	
Kamberi 2016(29)	Y	Y	NR	N	Y	Y	Y	N	N	Y	NR	N	Fair	
Karakus 2005(30)	Y	N	NR	Y	Y	Y	N	Y	N	N	NR	N	Fair	
Karttunen 2003(31)	Y	Y	NR	N	Y	Y	Y	N	N	N	Y	Y	Good	
Khloptorkova 2015(32)	Y	N	NR	N	Y	Y	Y	N	N	N	Y	NR	Fair	
Krajcovicheva 2015(33)	Y	Y	NR	Y	N	Y	N	N	N	Y	NR	Y	Fair	
Kumar 2017(34)	Y	N	NR	Y	Y	Y	Y	N	N	N	Y	Y	Good	
Linneman 2008(35)	Y	Y	NR	N	Y	Y	Y	N	N	Y	NR	Y	Good	
References	Study Quality													
-----------------------------	---------------													
Longstreth 1998(36)	Good													
Lopaciuk 2001(37)	Good													
Martinelli 2006(38)	Fair													
Mayer 1993(39)	Fair													
Mochan 2005(40)	Fair													
Moskau 2010(41)	Fair													
Nagayama 1996(42)	Fair													
Pahus 2016(43)	Fair													
Pestana 2009(44)	Good													
Petrovic 2003(45)	Good													
Pezzini 2005(46)	Good													
Pezzini 2007(47)	Good													
Press 1996(48)	Fair													
Pullmann 2004(49)	Fair													
Ranellou 2015(50)	Good													
Ridker 1995(51)	Fair													
Ridker 1999(52)	Good													
Ripoll 1997(53)	Good													
Romdhane 2011(54)	Poor													
Rubattu 2005(55)	Fair													
Rubattu 2005(56)	Fair													
Sastry 2006(57)	Fair													
Shi 2008(58)	Good													
Sloot 2005(59)	Good													
Smiles 2002(60)	Good													
Supanc 2014(61)	Good													
Szolnoki 2003(62)	Good													
Tatarksky 2010(63)	Fair													
They-They 2012(64)	Good													
Tupitsyna 2013(65)	Poor													
Voetsch 2000(66)	Fair													
Wypasek 2009(67)	Fair													
Zimba 2017(68)	Good													

Y, Yes; N, No; NR, not reported; CD, cannot determined; NA, not applicable
Table S9. Additional sensitivity analyses.

Types of studies that were excluded from the analysis	Excluded studies	Thrombophilias	Pooled OR (95%CI)	I², %
Studies with enriched case population (those who were referred for thrombophilia testing because of a clinical indication or recruited from a thrombophilia center)	Aznar 2004, Martinelli 2006, Pahus 2016	FVL	1.24 (1.07, 1.44)	0
		PTM	1.47 (1.21, 1.77)	0
		PCD	2.17 (1.15, 4.11)	0
		PSD	2.30 (1.36, 4.07)	13.2
		ATD	1.37 (0.59, 2.94)	6.8
Studies that used self-reported history of stroke rather than imaging to define cases	Fan 2010	FVL	1.26 (1.09, 1.47)	0
		PTM	1.47 (1.20, 1.80)	0
Studies that were rated as poor quality	Halbmayer 1998, Romdhane 2011, Tupitsyna 2013	FVL	1.26 (1.09, 1.48)	0
		PTM	1.53 (1.26, 1.86)	0
		PCD	2.16 (1.14, 4.09)	0
		PSD	2.01 (1.22, 3.48)	0
		ATD	0.91 (0.38, 1.97)	0
Studies that included cases of recurrent ischemic stroke	Chatterjee 2013, Kumar 2017, They-They 2012	FVL	1.24 (1.08, 1.45)	0
		PTM	1.46 (1.20, 1.78)	0
		PCD	1.93 (1.01, 3.60)	0
		PSD	1.88 (1.19, 3.20)	0
		ATD	1.33 (0.59, 2.76)	8.0

FVL, Factor V Leiden; PTM, Prothrombin G20210A Mutation; PCD, Protein C Deficiency; PSD, Protein S Deficiency; ATD, Antithrombin Deficiency; CI, confidence interval
Figure S1. Forest plot showing pooled odds ratio for Factor V Leiden.

Figure S2. Forest plot showing pooled odds ratio for Factor V Leiden (Homozygous).
Figure S3. Forest plot showing pooled odds ratio for Factor V Leiden (Heterozygous).
A. Factor V Leiden

B. Prothrombin G20210A Mutation

C. Protein C Deficiency

D. Protein S Deficiency

E. Antithrombin Deficiency

Figure S4. Funnel plot of included studies.
Figure S5. Forest plot showing pooled odds ratio for Prothrombin G20210A Mutation.

Figure S6. Forest plot showing pooled odds ratio for Prothrombin G20210A Mutation (Homzygous).
Figure S7. Forest plot showing pooled odds ratio for Factor V Leiden (Heterozygous).

Study	Experimental Events	Control Events	Odds Ratio OR (95% CI)
Bonnati 1997	8	125	1.79 [0.34, 8.46]
Longstreth 1996	1	41	0.88 [0.05, 16.34]
Halbmayer 1996	2	20	8.68 [0.21, 367.74]
Ricci 1999	11	259	1.09 [0.28, 3.93]
Voetsh 2000	7	153	2.01 [0.49, 10.18]
Egan 2000	0	42	0.00 [0.00, 35.79]
Lopucki 2001	2	100	0.70 [0.09, 6.21]
Smiles 2002	6	152	1.17 [0.26, 5.30]
Karumun 2003	2	57	9.07 [0.32, 256.72]
Szolnoki 2003	5	867	0.95 [0.17, 5.43]
Pullmann 2004	0	23	0.00 [0.00, 41.09]
Karaka 2005	0	21	0.00 [0.00, 241.48]
Pezzini 2005	4	36	5.66 [0.83, 38.50]
Rubatto 2005	12	294	0.94 [0.23, 3.80]
Rubatto 2005	8	115	1.22 [0.27, 5.44]
Rubatto 2005	3	89	0.44 [0.07, 2.61]
Martel 2006	5	105	0.84 [0.18, 4.00]
Emenec 2007	9	120	3.02 [0.54, 17.04]
Pezzini 2007	9	108	6.11 [1.10, 34.11]
Limomann 2008	1	41	0.17 [0.01, 2.58]
Biesay 2009	0	120	0.00 [0.00, 145.28]
Biesay 2009	0	24	0.00 [0.00, 484.74]
Coliar 2009	3	162	0.58 [0.09, 3.79]
Wypaek 2009	1	100	0.61 [0.02, 14.84]
Moslau 2010	7	167	2.01 [0.45, 9.05]
Tatamsky 2010	8	183	2.70 [0.47, 15.57]
Faverento 2012	12	136	2.76 [0.65, 11.72]
Hansler 2012	1	38	0.46 [0.03, 6.97]
Thwy-Thwy 2012	11	91	2.29 [0.54, 9.83]
Tuzdkyana 2013	29	1430	0.80 [0.23, 2.85]
Chatterjee 2013	0	52	0.00 [0.00, 117.51]
Supanc 2014	7	155	3.17 [0.47, 21.34]
Jiang 2014	13	397	2.29 [0.52, 10.15]
Ertem 2015	13	212	1.45 [0.56, 4.02]
Khotovlova 2015	6	114	6.80 [0.30, 247.05]
Kraycochovka 2015	21	423	2.04 [0.55, 7.59]
Ramelu 2015	7	51	2.52 [0.58, 11.10]
Pahus 2016	3	92	1.31 [0.24, 7.09]
Kemar 2016	1	39	0.21 [0.07, 0.70]

Overall Effect [I² = 0%]

0.01 0.1 1 10 100
Figure S8. Forest plot showing pooled odds ratio for protein C deficiency.

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]	
D’Amico 1998	0	31	0	124	0.00 [0.00, 346.42]
De Lucia 1999	2	50	1	100	2.99 [0.21, 41.72]
Hankey 2001	3	219	4	205	0.61 [0.06, 6.19]
Karttunen 2003	0	57	0	104	0.00 [0.00, 337.39]
Chen 2003	14	104	1	35	5.30 [0.55, 50.96]
Jernard-Dunne 2003	6	130	2	130	2.81 [0.41, 14.35]
Kanakus 2005	1	21	1	81	2.21 [0.08, 59.37]
Sastry 2006	1	86	0	101	2.44 [0.05, 118.24]
Linnemann 2008	0	31	20	817	0.00 [0.00, 22.28]
Biswas 2009	4	120	0	120	12.53 [0.50, 314.65]
Romdhane 2011	2	20	3	54	1.56 [0.15, 15.41]
Fawadito 2012	0	340	0	272	0.00 [0.00, 150.76]
Chatterjee 2013	6	52	1	52	6.03 [0.61, 60.61]
Pahu 2016	1	363	14	9648	1.05 [0.07, 16.74]
Zimba 2017	5	52	0	52	18.73 [0.72, 487.16]

Overall Effect (I^2 = 86%)

Figure S9. Forest plot showing pooled odds ratio for protein S deficiency.

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]	
Mayer 1993	20	94	19	94	1.06 [0.28, 4.01]
D’Amico 1998	2	31	0	124	20.39 [0.76, 546.78]
De Lucia 1999	3	50	1	100	5.06 [0.43, 59.48]
Hankey 2001	2	219	2	205	0.72 [0.07, 7.44]
Karttunen 2003	1	57	0	104	3.39 [0.07, 159.13]
Chee 2003	22	104	3	35	2.98 [0.53, 16.65]
Jernard-Dunne 2003	4	130	2	130	1.75 [0.23, 13.61]
Kanakus 2005	1	21	0	81	8.27 [0.16, 429.75]
Mochan 2005	11	33	12	33	0.86 [0.19, 3.98]
Sastry 2006	1	86	1	101	0.70 [0.03, 16.98]
Linnemann 2008	1	30	28	788	0.56 [0.04, 8.76]
Biswas 2009	6	120	0	120	18.63 [0.90, 384.93]
Romdhane 2011	6	20	2	54	10.89 [1.42, 83.54]
Fawadito 2012	0	340	0	272	0.00 [0.00, 110.39]
Chatterjee 2013	15	52	1	52	20.25 [2.09, 196.69]
Pahu 2016	2	364	9	3788	1.72 [0.22, 13.23]
Zimba 2017	22	52	18	52	1.30 [0.35, 5.44]

Overall Effect (I^2 = 8.8%)
Figure S10. Forest plot showing pooled odds ratio for antithrombin deficiency.

Study	Experimental Events	Control Events	Odds Ratio	OR [90% CI]
De Lucia 1999	0 50 0 100			0.00 [0.00, 207.73]
Hankey 2001	11 219 8 205			1.26 [0.29, 5.47]
Karttunen 2003	1 57 2 104			0.53 [0.03, 10.85]
Chen 2003	1 104 1 35			0.20 [0.01, 5.23]
Jerrard-Dunne 2003	0 130 0 130			0.00 [0.00, 104.22]
Karakus 2005	1 21 0 81			8.10 [0.16, 423.33]
Saxty 2006	3 86 0 101			11.39 [0.39, 334.20]
Linnemann 2008	1 40 29 983			0.51 [0.03, 7.76]
Romdhane 2011	7 26 5 54			5.26 [0.91, 30.24]
Favaretto 2012	0 340 0 272			0.00 [0.00, 109.91]
Chatterjee 2013	0 52 0 52			0.00 [0.00, 77.88]
Pahus 2016	0 288 16 989			0.00 [0.00, 119.42]
Overall Effect (I² = 88.8%)				1.21 [0.50, 2.67]
Figure S11. Subgroup Analyses: Factor V Leiden.

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]
Patients with PFO	4	57	164	6.49 [0.61, 69.10]
Pezzi 2005	6	163	5	1.11 [0.21, 5.82]
Wypasek 2009	9	100	5	1.96 [0.40, 9.70]
Favaretto 2012	16	340	14	0.91 [0.24, 3.47]
Overall Effect [95% CI]				1.44 [0.86, 2.35]
Young Patients	0	40	16	0.00 [0.00, 11.86]
Longishoom 2001	1	20	2	0.32 [0.02, 6.87]
Hämström 1998	5	31	4	5.33 [0.87, 32.47]
D'Amico 1998	5	153	8	0.85 [0.17, 4.25]
Versteeg 2000	3	100	10	0.49 [0.10, 2.37]
Lopușescu 2001	2	49	5	1.91 [0.22, 16.33]
Aznar 2004	3	21	4	2.85 [0.38, 21.20]
Karakus 2005	6	163	5	1.22 [0.56, 2.69]
Pezzi 2005	4	115	10	0.55 [0.10, 2.91]
Stroiter 2005	14	179	42	1.41 [0.39, 5.11]
Sastri 2006	4	101	8	0.44 [0.08, 2.41]
Martini 2006	6	105	7	2.30 [0.47, 11.33]
Pezzi 2007	5	108	6	1.56 [0.29, 8.33]
Sn 2008	0	97	0	0.00 [0.00, 120.47]
Blewax 2009	10	120	1	9.55 [1.04, 88.54]
Hexher 2012	7	41	22	2.31 [0.53, 10.06]
Supanc 2014	14	155	5	2.81 [0.61, 13.06]
Ranefuk 2015	7	51	4	2.52 [0.45, 14.00]
Pahus 2016	15	207	282	1.05 [0.30, 3.67]
Andraus 2017	6	120	2	2.86 [0.40, 20.42]
Kumar 2017	9	250	5	1.75 [0.36, 8.50]
Overall Effect [95% CI]				1.46 [0.87, 2.40]

Figure S12. Subgroup Analyses: Prothrombin G20210A Mutation.

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]
Patients with PFO	2	57	0	9.76 [0.31, 302.83]
Pezzi 2005	9	163	3	2.92 [0.02, 16.34]
Wypasek 2009	1	100	1	0.58 [0.02, 14.17]
Favaretto 2012	29	340	9	2.77 [0.70, 10.48]
Overall Effect [95% CI]				2.62 [1.11, 6.16]
Young Patients	8	125	5	1.70 [0.34, 8.45]
Berchi 2007	1	41	6	0.97 [0.06, 14.71]
Hämström 1998	2	20	0	8.14 [0.21, 323.14]
Versteeg 2000	7	153	5	2.02 [0.40, 10.32]
Egan 2000	0	42	13	0.00 [0.00, 51.54]
Lopușescu 2001	2	100	5	0.74 [0.09, 6.15]
Aznar 2004	4	49	7	3.24 [0.57, 18.29]
Karakus 2005	1	21	1	2.15 [0.08, 61.67]
Pezzi 2007	9	163	3	2.89 [0.51, 16.26]
Rubatto 2005	8	115	10	1.23 [0.28, 5.49]
Stroiter 2005	5	188	18	1.62 [0.22, 7.41]
Sastri 2006	2	101	0	5.86 [0.19, 183.48]
Martini 2006	5	105	15	0.86 [0.18, 4.03]
Pezzi 2007	10	108	3	6.96 [1.22, 39.79]
Blewax 2009	0	120	0	0.00 [0.00, 68.17]
Hexher 2012	1	38	10	0.44 [0.03, 4.95]
Chatterjee 2013	0	52	0	0.00 [0.09, 126.45]
Supanc 2014	7	155	2	3.28 [0.49, 22.00]
Jang 2015	14	397	6	2.50 [0.57, 10.65]
Ranefuk 2015	7	51	4	2.54 [0.46, 14.16]
Pahus 2016	3	92	1377	1.30 [0.24, 6.87]
Overall Effect [95% CI]				1.70 [1.26, 2.34]

Cryptogenic Stroke | 5 | 20 | 0 | 7.54 [0.22, 262.62] |
Kartunen 2003	2	57	0	9.24 [0.33, 268.34]
Aznar 2004	4	49	7	2.21 [0.06, 65.25]
Karakus 2005	1	21	1	0.43 [0.07, 2.55]
Belvis 2008	3	89	13	2.70 [0.70, 10.50]
Favaretto 2012	29	340	9	0.42 [0.03, 4.69]
Hexher 2012	1	38	10	1.85 [0.67, 5.39]
Figure S13. Subgroup Analyses: Protein C Deficiency.

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]
Patients with PFO				
Karttunen 2003	0	57	0	0.00 [0.00, 120.55]
Overall Effect ($I^2 = 0\%$)	0			
Young Patients				
D'Amico 1998	0	31	0	0.00 [0.00, 460.01]
Jernard-Dunne 2003	6	130	2	2.88 [0.41, 20.39]
Karakus 2005	1	21	1	2.15 [0.08, 56.46]
Sastry 2006	1	86	0	2.26 [0.05, 110.13]
Biswas 2009	4	120	0	11.41 [0.47, 275.00]
Romdhane 2011	2	20	3	1.54 [0.15, 15.79]
Chatterjee 2013	6	52	1	5.06 [0.62, 57.44]
Pahus 2016	1	363	14	1.04 [0.06, 18.17]
Overall Effect ($I^2 = 0\%$)	0			

Cryptogenic Stroke

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]
Karttunen 2003	0	57	0	0.00 [0.00, 267.25]
Karakus 2005	1	21	1	2.39 [0.10, 58.50]
Favaretto 2012	0	340	0	0.00 [0.00, 141.22]
Overall Effect ($I^2 = 37.5\%$)	0			

Figure S14. Subgroup Analyses: Protein S Deficiency.

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]
Patients with PFO				
Karttunen 2003	1	57	0	3.52 [0.08, 164.01]
Overall Effect ($I^2 = 0\%$)	3			
Young Patients				
D'Amico 1998	2	31	0	20.70 [0.70, 608.34]
Jernard-Dunne 2003	4	130	2	1.79 [0.23, 14.07]
Karakus 2005	1	21	0	8.24 [0.15, 440.50]
Sastry 2006	1	86	1	0.68 [0.03, 17.40]
Biswas 2009	6	120	0	18.92 [0.86, 416.75]
Romdhane 2011	6	20	2	10.75 [1.40, 82.33]
Chatterjee 2013	15	52	1	20.28 [2.05, 201.01]
Pahus 2016	2	364	9	1.76 [0.23, 13.41]
Overall Effect ($I^2 = 5.9\%$)	5			

Cryptogenic Stroke

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]
Karttunen 2003	1	57	0	3.71 [0.07, 193.71]
Karakus 2005	1	21	0	7.32 [0.15, 368.60]
Favaretto 2012	0	340	0	0.00 [0.00, 86.15]
Overall Effect ($I^2 = 0\%$)	2			
Figure S15. Subgroup Analyses: Antithrombin Deficiency.

Study	Experimental Events	Control Events	Odds Ratio	OR [95% CI]	
Patients with PFO					
Karttunen 2003	1	57	2	104	0.53 [0.02, 12.19]
Overall Effect [I² = 8%]					6.53 [0.83, 10.62]
Young Patients					
Jerrard-Dunne 2003	0	130	0	130	0.00 [0.00, 173.68]
Karakus 2005	1	21	0	81	8.14 [0.18, 373.91]
Sastri 2006	3	86	0	101	10.62 [0.39, 288.48]
Romdhane 2011	7	20	5	54	5.23 [0.92, 29.79]
Chatterjee 2013	0	52	0	52	0.00 [0.00, 230.43]
Palhus 2016	0	288	16	9669	0.00 [0.00, 103.67]
Overall Effect [I² = 8%]					2.49 [0.83, 7.47]
Cryptogenic Stroke					
Karttunen 2003	1	67	2	104	0.54 [0.03, 11.44]
Karakus 2005	1	21	0	81	8.60 [0.17, 423.72]
Favaribbs 2012	0	340	0	272	0.00 [0.00, 52.57]
Overall Effect [I² = 9.8%]					0.99 [0.13, 7.61]
Supplemental References:

1. Anadure RC, Nagaraja D, Narayanan C. A genetic study of Factor V Leiden (G1691A) mutation in young ischemic strokes with large vessel disease in a South Indian population. *Journal of Clinical Neuroscience*. 2017;44:346-52.

2. Aznar JM, Vaya A, Corella D, Ferrando F, Villa P, Estelles A. Factor V Leiden and prothrombin G20210A mutations in young adults with cryptogenic ischemic stroke. *Thromb Haemost*. 2004;91:1031-4.

3. Belvis RS, A.; Marti-Fabregas, J.; Cocho, D.; Borrell, M.; Fontcuberta, J.; Marti-Vilalta, J. L. Diagnostic yield of prothrombotic state studies in cryptogenic stroke. *Acta Neurol Scand*. 2006;114:250-3.

4. Bentolila SR, L.; Drouet, L.; Mazoyer, E.; Woimant, F. Thrombophilia due to 20210G--A prothrombin polymorphism and cerebral ischemia in the young. *Stroke*. 1997;28:1846-7.

5. Biswas AR, R.; Meena, A.; Akhter, S.; Sharma, V.; Yadav, B. K.; Behari, M.; Saxena, R. Prothrombotic factors and the risk of acute onset non-cardioembolic stroke in young Asian Indians. *Thromb Res*. 2009;124:397-402.

6. Bolaman ZO, A.; Kiylioglu, N.; Kadikoylu, G.; Erturk, A.; Batun, S.; Akyol, A. Hereditary thrombophilic factors in stroke due to cerebral infarct. *Am J Med Sci*. 2009;337:11-3.

7. Buyru NA, J.; Somay, G.; Ulutin, T. Factor V Leiden mutation in cerebrovascular disease. *Clin Appl Thromb Hemost*. 2005;11:339-42.

8. Catto AC, A.; Ireland, H.; Bayston, T. A.; Philippou, H.; Barrett, J.; Lane, D. A.; Grant, P. J. Factor V Leiden gene mutation and thrombin generation in relation to the development of acute stroke. *Arteriosclerosis, Thrombosis, and Vascular Biology*. 1995;15:783-5.

9. Celiker GC, U.; Verdi, H.; Yazici, A. C.; Ozbek, N.; Atac, F. B. Prevalence of thrombophilic mutations and ACE I/D polymorphism in Turkish ischemic stroke patients. *Clin Appl Thromb Hemost*. 2009;15:415-20.

10. Chatterjee TG, N.; Choudhry, V. P.; Behari, M.; Saxena, R.; Ashraf, M. Z. Prediction of ischemic stroke in young Indians: is thrombophilia profiling a way out? *Blood Coagul Fibrinolysis*. 2013;24:449-53.

11. Chen WHL, M. Y.; Chang, Y. Y.; Chen, S. S.; Liu, J. S. The prevalence of protein C, protein S, and antithrombin III deficiency in non-APS/SLE Chinese adults with noncardiac cerebral ischemia. *Clin Appl Thromb Hemost*. 2003;9:155-62.

12. Cushman MR, F. R.; Psaty, B. M.; Cook, E. F.; Valliere, J.; Kuller, L. H.; Tracy, R. P. Factor V Leiden is not a risk factor for arterial vascular disease in the elderly: results from the Cardiovascular Health Study. *Thromb Haemost*. 1998;79:912-5.

13. D'Amico DM, F.; Leone, M.; Ariano, C.; Ciusani, E.; Erba, N.; Grazzi, L.; Ferraris, A.; Schieroni, F.; Bussone, G. Genetic abnormalities of the protein C system: shared risk factors in young adults with migraine with aura and with ischemic stroke? *Cephalalgia*. 1998;18:618-21; discussion 591.

14. De Lucia DP, M. L.; Ammendola, F.; Pezzella, S.; Del Giudice, V.; Marotta, R.; Renis, V.; Di Mauro, C.; Maisto, G.; Masi, S.; Nina, P.; Franco, A.; Schisano, G. Association of elevated levels of prothrombin fragment 1+2 and Arg506 to Gln mutation in patients with a history of ischemic stroke. *J Neurosurg Sci*. 1999;43:45-50; discussion -1.

15. Djordjevic VS, M.; Brankovic-Sreckovic, V.; Rakicevic, L.; Damnjanovic, T.; Antonijevic, N.; Radojkovic, D. Prothrombotic genetic risk factors in stroke: a
possible different role in pediatric and adult patients. *Clin Appl Thromb Hemost.* 2012;18:658-61.

16. Egan RAK, J. M.; Press, R.; Lutsep, H. L. Lack of prothrombin gene mutation in young stroke patients. *Journal of Stroke and Cerebrovascular Diseases.* 2000;9:229-31.

17. Erten ND, S.; Sütçü, R. Prevalence of thrombophilic mutations in ischemic stroke patients in isparta, Turkey. *Turk Noroloji Dergisi.* 2015;21:42-8.

18. Eterovic DT, M.; Culic, V.; Zadro, R.; Primorac, D. Lower contribution of factor V Leiden or G20210A mutations to ischemic stroke in patients with clinical risk factors: pair-matched case-control study. *Clin Appl Thromb Hemost.* 2007;13:188-93.

19. Fan AZF, J.; Yesupriya, A.; Chang, M.; Kilmer, G.; House, M.; Hayes, D.; Ned, R. M.; Dowling, N. F.; Mokdad, A. H. Gene polymorphisms in association with self-reported stroke in US adults. *Application of Clinical Genetics.* 2010;3:23-8.

20. Favaretto ES, M.; Conti, E.; Legnani, C.; Palareti, G. G1691A factor V and G20210A FII mutations, acute ischemic stroke of unknown cause, and patent foramen ovale. *Thromb Res.* 2012;130:720-4.

21. Go ASR, G. L.; Hylek, E. M.; Phillips, K. A.; Liu, L.; Henault, L. E.; Selby, J. V.; Singer, D. E. Factor V Leiden and risk of ischemic stroke in nonvalvular atrial fibrillation: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. *J Thromb Thrombolysis.* 2003;15:41-6.

22. Haeusler KGH, J.; Hoppe, B.; Kasabov, R.; Malzahn, U.; Endres, M.; Koscielný, J.; Jungehulsing, G. J. Thrombophilia screening in young patients with cryptogenic stroke. Prevalence of gene polymorphisms compared to healthy blood donors and impact on secondary stroke prevention. *Hamostaseologie.* 2012;32:147-52.

23. Halbmayer WMH, A.; Hermann, K. M.; Fischer, M. The 20210A allele of the prothrombin gene: a risk factor for juvenile stroke? Result of a pilot study. *Blood Coagul Fibrinolysis.* 1998;9:209-10.

24. Hamedani AGC, J. W.; Cheng, Y.; Sparks, M. J.; O’Connell, J. R.; Stine, O. C.; Wozniak, M. A.; Stern, B. J.; Mitchell, B. D.; Kittner, S. J. Factor V leiden and ischemic stroke risk: the Genetics of Early Onset Stroke (GEOS) study. *J Stroke Cerebrovasc Dis.* 2013;22:419-23.

25. Hankey GJE, J. W.; van Bockxmeer, F. M.; Lofthouse, E.; Staples, N.; Baker, R. I. Inherited thrombophilia in ischemic stroke and its pathogenic subtypes. *Stroke.* 2001;32:1793-9.

26. Jerrard-Dunne PE, A.; McGovern, R.; Hajat, C.; Kalra, L.; Rudd, A. G.; Wolfe, C. D.; Markus, H. S. Ethnic differences in markers of thrombophilia: implications for the investigation of ischemic stroke in multiethnic populations: the South London Ethnicity and Stroke Study. *Stroke.* 2003;34:1821-6.

27. Jiang BR, K. A.; Hamedani, A.; Cheng, Y.; Sparks, M. J.; Koontz, D.; Bean, C. J.; Gallagher, M.; Hooper, W. C.; Mc Ardle, P. F.; O’Connell, J. R.; Stine, O. C.; Wozniak, M. A.; Stern, B. J.; Mitchell, B. D.; Kittner, S. J.; Cole, J. W. Prothrombin G20210A mutation is associated with young-onset stroke: the genetics of early-onset stroke study and meta-analysis. *Stroke.* 2014;45:961-7.

28. Juul KT-H, A.; Steffensen, R.; Kofoed, S.; Jensen, G.; Nordestgaard, B. G. Factor V Leiden: The Copenhagen City Heart Study and 2 meta-analyses. *Blood.* 2002;100:3-10.

29. Kamberi BK, F.; Spiroski, M. Vascular genetic variants and ischemic stroke susceptibility in Albanians from the Republic of Macedonia. *Macedonian Journal of Medical Sciences.* 2016;4:556-64.
30. Karakuş ZG, E.; Başlamişli, F.; Tanriverdi, K. Prothrombotic heritable risk factors for cerebral ischemic infarction, acute myocardial infarction and venous thrombosis in young adult Turkish patients. *Annals of Medical Sciences*. 2005;14:31-6.

31. Karttunen VH, L.; Rasi, V.; Vahtera, E.; Hillbom, M. Factor V Leiden and prothrombin gene mutation may predispose to paradoxical embolism in subjects with patent foramen ovale. *Blood Coagul Fibrinolysis*. 2003;14:261-8.

32. Kholodkova OLBV, M. K.; Torgalo, E. O.; Vovk, T. B.; Kravchenko, N. K.; Raksha, N. G.; Melnyk, V. S.; Savchuk, O. M.; Ostapchenko, L. I. FII G20210A and FV Leiden G1691A polymorphisms in patients with atherothrombotic and cardioembolic ischemic stroke from Ukraine. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*. 2015;6:1568-71.

33. Krajcoviechova AW, P.; Mayer, O., Jr.; Vanek, J.; Hajkova, J.; Hlinovsky, D.; Kvasnicka, T.; Tremblay, J.; Hamet, P.; Filipovsky, J.; Kvasnicka, J.; Cifkova, R. Tobacco smoking strongly modifies the association of prothrombin G20210A with undetermined stroke: consecutive survivors and population-based controls. *Atherosclerosis*. 2015;240:446-52.

34. Kumar AM, S.; Sagar, R.; Kumar, P.; Yadav, A.; Talwar, P.; Raj, R.; Prasad, K. Relationship between factor v leiden gene variant and risk of ischemic stroke: A case-control study. *Annals of Indian Academy of Neurology*. 2017;20:284-8.

35. Linnemann BS, M.; Zgouras, D.; Erbe, M.; Jarosch-Preusche, M.; Lindhoff-Last, E. Are patients with thrombophilia and previous venous thromboembolism at higher risk to arterial thrombosis? *Thromb Res.* 2008;121:743-50.

36. Longstreth WT, Jr.; Rosendaal, F. R.; Siscovick, D. S.; Vos, H. L.; Schwartz, S. M.; Psaty, B. M.; Raghunathan, T. E.; Koepsell, T. D.; Reitsma, P. H. Risk of stroke in young women and two prothrombotic mutations: factor V Leiden and prothrombin gene variant (G20210A). *Stroke*. 1998;29:577-80.

37. Lopaciuk SB, K.; Kwiecinski, H.; Mickielewicz, A.; Czlonkowska, A.; Mendel, T.; Kuczyńska-Zardzewialy, A.; Szegadowska, D.; Windyga, J.; Schroder, W.; Herrmann, F. H.; Jedrzejowska, H. Factor V Leiden, prothrombin gene G20210A variant, and methylenetetrahydrofolate reductase C677T genotype in young adults with ischemic stroke. *Clin Appl Thromb Hemost*. 2001;7:346-50.

38. Martinelli IB, T.; Burgo, I.; Di Domenico, S.; Mannucci, P. M. Oral contraceptive use, thrombophilia and their interaction in young women with ischemic stroke. *Haematologica*. 2006;91:844-7.

39. Mayer SAS, R. L.; Hurlet-Jensen, A.; Shi, T.; Mohr, J. P. Free protein S deficiency in acute ischemic stroke. A case-control study. *Stroke*. 1993;24(2):224-7.

40. Mochan AM, M.; Modi, G. Protein S deficiency in HIV associated ischaemic stroke: an epiphenomenon of HIV infection. *J Neurol Neurosurg Psychiatry*. 2005;76:1455-6.

41. Moskau SS, K.; Semmler, A.; Schweichel, D.; Harbrecht, U.; Muller, J.; Pohl, C.; Klockgether, T.; Linnebank, M. Common genetic coagulation variants are not associated with ischemic stroke in a case-control study. *Neurolo Res*. 2010;32:519-22.

42. Nagayama TN, M.; Tsuda, M.; Yoshii, F.; Shinohara, Y. Low prevalence of activated protein C resistance and factor V Leiden in ischemic stroke in Japan. *Cerebrovascular Diseases*. 1996;6:356-9.

43. Pahus SHH, A. T.; Hvas, A. M. Thrombophilia testing in young patients with ischemic stroke. *Thromb Res.* 2016;137:108-12.

44. Pestana CIT, A.; Blanco, S.; Rojas, M. J.; Mendez, C.; Lopez, J. L.; de Bosch, N. B.; Porco, A. Factor V Leiden and the risk of venous thrombosis, myocardial infarction,
and stroke: a case-control study in Venezuela. *Genet Test Mol Biomarkers.* 2009;13:537-42.
45. Petrovic DM, T.; Kobal, J.; Bregar, D.; Potisk, K. P.; Peterlin, B. Prothrombotic gene polymorphisms and atherothrombotic cerebral infarction. *Acta Neurol Scand.* 2003;108:109-13.
46. Pezzini AG, M.; Del Zotto, E.; Archetti, S.; Spezi, R.; Vergani, V.; Assanelli, D.; Caimi, L.; Padovani, A. Cumulative effect of predisposing genotypes and their interaction with modifiable factors on the risk of ischemic stroke in young adults. *Stroke.* 2005;36:533-9.
47. Pezzini AG, M.; Iacoviello, L.; Del Zotto, E.; Archetti, S.; Giossi, A.; Padovani, A. Inherited thrombophilia and stratification of ischaemic stroke risk among users of oral contraceptives. *J Neurol Neurosurg Psychiatry.* 2007;78:271-6.
48. Press RDL, X. Y.; Beamer, N.; Coull, B. M. Ischemic stroke in the elderly. Role of the common factor V mutation causing resistance to activated protein C. *Stroke.* 1996;27:44-8.
49. Pullmann R, Jr.; Skerenova, M.; Lukac, J.; Hybenova, J.; Melus, V.; Kubisz, P.; Rovensky, J.; Pullmann, R. Factor V Leiden and prothrombin G20210A mutations and the risk of atherothrombotic events in systemic lupus erythematosus. *Clin Appl Thromb Hemost.* 2004;10:233-8.
50. Ranellou KP, A.; Kyriazopoulos, P.; Batistatou, A.; Evangelou, A.; El-Aly, M.; Zis, P.; Tavernarakis, A.; Charalabopoulos, K. Polymorphisms in prothrombotic genes in young stroke patients in Greece: a case-controlled study. *Blood Coagul Fibrinolysis.* 2015;26:430-5.
51. Ridker PMH, C. H.; Lindpaintner, K.; Stampfer, M. J.; Eisenberg, P. R.; Miletich, J. P. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. *N Engl J Med.* 1995;332:912-7.
52. Ridker PMH, C. H.; Miletich, J. P. G20210A mutation in prothrombin gene and risk of myocardial infarction, stroke, and venous thrombosis in a large cohort of US men. *Circulation.* 1999;99:999-1004.
53. Ripoll LM, E.; Woimant, F.; Drouet, L. O. Different contribution of factor V Leiden-associated hypercoagulability to ischemic cerebrovascular disease in the elderly. *Blood Coagul Fibrinolysis.* 1997;8:253-4.
54. Romdhane NBB, H.; Lahmar, M.; Mahjoub, S.; Manai, Z. Deficiency of coagulation inhibitors in young adults with ischemic stroke. *Journal of Thrombosis and Haemostasis.* 2011;9:899.
55. Rubattu SDA, E.; Nitsch, D.; Gigante, B.; Zanda, B.; Stanzione, R.; Evangelista, A.; Pirisi, A.; Rosati, G.; Volpe, M. Polymorphisms in prothrombotic genes and their impact on ischemic stroke in a Sardinian population. *Thrombosis and Haemostasis.* 2005;93:1095-100.
56. Rubattu SS, R.; Ferrari, M.; Evangelista, A.; Beccia, M.; Stanzione, R.; Assenza, G. E.; Volpe, M.; Rasura, M. A role of TNF-α gene variant on juvenile ischemic stroke: A case-control study. *European Journal of Neurology.* 2005;12:989-93.
57. Sastry SR, G.; Morris, J.; Taberner, D.; Cherry, N.; Heagerty, A.; McCollum, C. Young Adult Myocardial Infarction and Ischemic Stroke: the role of paradoxical embolism and thrombophilia (The YAMIS Study). *J Am Coll Cardiol.* 2006;48:686-91.
58. Shi CK, X.; Wang, Y.; Zhou, Y. The coagulation factor V Leiden, MTHFRC677T variant and eNOS 4ab polymorphism in young Chinese population with ischemic stroke. *Clin Chim Acta.* 2008;396:7-9.
59. Slooter AJCR, F. R.; Tanis, B. C.; Kemmeren, J. M.; Van Der Graaf, Y.; Algra, A. Prothrombotic conditions, oral contraceptives, and the risk of ischemic stroke. *Journal of Thrombosis and Haemostasis*. 2005;3:1213-7.

60. Smiles AMJ, N. S.; Tang, Z.; Arnold, A.; Cushman, M.; Tracy, R. P. No association of plasma prothrombin concentration or the G20210A mutation with incident cardiovascular disease: results from the Cardiovascular Health Study. *Thromb Haemost*. 2002;87:614-21.

61. Supanc VS, Z.; Vukasovic, I.; Solter, V. V.; Zavoreo, I.; Kes, V. B. The role of classic risk factors and prothrombotic factor gene mutations in ischemic stroke risk development in young and middle-aged individuals. *J Stroke Cerebrovasc Dis*. 2014;23:e171-6.

62. Szolnoki ZS, F.; Kondacs, A.; Szabo, M.; Fodor, L.; Bene, J.; Melegh, B. Evaluation of the modifying effects of unfavourable genotypes on classical clinical risk factors for ischaemic stroke. *J Neurol Neurosurg Psychiatry*. 2003;74:1615-20.

63. Tatarskyy PFK, A. M.; Kravchenko, S. A.; Shulzenko, D. V.; Kuznetsova, S. M.; Livshits, L. A. Ischemic stroke in Ukrainian population: Possible involvement of the F2 G20210A, F5 G1691A and MTHFR C677T gene variants. *Biopolymers and Cell*. 2010;26:299-305.

64. They-They TPB, O.; Slassi, I.; Rafai, M. A.; Katumbay, D. T.; Nadifi, S. Prothrombin G20210A and factor V Leiden polymorphisms in stroke. *J Mol Neurosci*. 2012;46:210-6.

65. Tupitsyna TVB, E. A.; Kravchenko, S. A.; Tatarskyy, P. F.; Shetova, I. M.; Shamalov, N. A.; Kuznetsova, S. M.; Shul'Zhenko, D. V.; Skvortsova, V. I.; Slominsky, P. A.; Livshits, L. A.; Limborska, S. A. Comparative analysis of associations between polymorphic variants of the F2, F5, GP1BA, and ACE genes and the risk of developing stroke in Russian and Ukrainian populations. *Molecular Genetics, Microbiology and Virology*. 2013;28:8-14.

66. Voetsch BD, B. P.; Camargo, E. C.; Massaro, A.; Bachesci, L. A.; Scaff, M.; Annichino-Bizzacchi, J. M.; Arruda, V. R. Inherited thrombophilia as a risk factor for the development of ischemic stroke in young adults. *Thromb Haemost*. 2000;83:229-33.

67. Wypasek ES, E.; Pieculewicz, M.; Podolec, P.; Undas, A. Factor XIII Val34Leu polymorphism and ischaemic stroke in patients with patent foramen ovale. *Thromb Haemost*. 2009;102:1280-2.

68. Zimba SN, P. M.; Lakh, S.; Atadzhanov, M. HIV infection, hypercoagulability and ischaemic stroke in adults at the University Teaching Hospital in Zambia: a case control study. *BMC Infect Dis*. 2017;17:354.