Low energy kaon photoproduction from nuclei

A. Sibirtsev, W. Cassing, U. Mosel

Institut für Theoretische Physik, Universität Giessen
D-35392 Giessen, Germany

We study K^+-meson production in γA interaction at energies below the reaction threshold in free space. The Thomas-Fermi and spectral function approaches are used for the calculations of the production process. It is found that the measurement of the differential spectra may allow to reconstruct the production mechanism and to investigate the dispersion relations entering the production vertex. It is shown that the contribution from secondary pion induced reactions to the total kaon photoproduction is negligible for $E_\gamma<1.2$ GeV so that strangeness production at low energies is sensitive to the nuclear spectral function.

PACS: 13.40.-f; 13.60.Le; 13.75.Yz
Keywords: Electromagnetic processes; Meson production; Kaon-Baryon interactions

1. Introduction

The description of particle production in hadron-nucleus collision can be considered relatively to an energy scale given by the binding energy of the target [1]. The impulse approximation is an appropriate basis when the projectile energy is much higher than the binding energy and the target nucleons can be taken as free particles. However, at low energies the nuclear structure plays an essential role in the production process. When the bombarding energies are below the reaction threshold in free space the production process proceeds according to the energy available from the target. Now the reaction mechanism can no longer be considered as an interaction of the projectile with a quasi-free nucleon, but instead as an interaction with the whole nucleus, which might be approximated by the sum over the interactions with one nucleon (single scattering approximation), two nucleons (two-nucleon current) and further many-body collisions [2,3].

In momentum space these many-body effects can be interpreted in terms of high momentum components of the nuclear wave function. As found in Ref. [4] these high momentum components of the nuclear wave function can be reasonably well described by short range two-nucleon correlations. In this sense the contribution from the high momentum components to particle production can be considered as a reaction mechanism due to the two-nucleon current.

Here we study the K^+-meson photoproduction from nuclei at energies below the $\gamma p \rightarrow K^+ A$ reaction threshold in free space. This reaction has a set of advantages for an in-
vestigation of the production mechanism. First, the elementary production amplitude is reasonably fixed by recent experimental results from ELSA. Furthermore, the photon illuminates the whole nucleus, so the reaction also occurs deep inside the nuclear interior, while mesonic and baryonic projectiles confine the reaction to the nuclear periphery. Moreover, K^+-mesons only weakly interact with the nuclear medium due to the strangeness conservation and thus the information about the production mechanism does not get distorted significantly. This is essential, for example, for the study of in-medium self-energies of kaons that are presently being discussed in the framework of heavy-ion collisions.

Historically, strangeness photoproduction from nuclei is considered as one of the optimal ways to study the formation of hypernuclei. The hypernuclear production in γA reactions is part of the program at the Jefferson Laboratory, as well as the study of the K^+-meson production mechanism in photo-nuclear reactions. It is the purpose of the present work to provide cross sections for the photoproduction of kaons close to threshold to support later experimental and theoretical studies of in-medium selfenergies of kaons. Since we work close to threshold we are sensitive to details of the energy-momentum distribution in nuclei. We, therefore, use as in our earlier studies for proton induced reactions state of the art nuclear dispersion relations. As a byproduct of our calculations we find that the spectral functions of nucleons can also be obtained from the four-momenta of the produced hyperon and kaon if their final state interactions are small.

2. Elementary reaction

To describe the production process in nuclear matter we need the elementary $\gamma p \rightarrow K^+\Lambda$ reaction, which can be evaluated by the first order Feynman diagrams. Following the pioneering studies by Gourdin and Dufour or Thom we include the Born terms in addition to low energy mesonic, nucleonic and hyperonic resonances, with masses and widths fixed from the PDG as listed in Table 1. We take into account the contribution from s, u and t channels, but following Refs. neglect form factors at the interaction vertices. For the current status of the kaon photoproduction operator we refer the reader to Refs. In the model of Refs. the production amplitude is obtained as function of the energies and momenta separately of the incoming nucleons. This feature will later be used to explore the off-shell dependence of the cross section.

Since we do not intend to extract the relevant coupling constants and resonance properties, but to construct simple parameterizations for the $\gamma p \rightarrow K^+\Lambda$ differential cross sections, we use the minimal set of free parameters as products of photon and kaon couplings.

We fit the free parameters to the available data on the differential $\gamma p \rightarrow K^+\Lambda$ cross section at photon energies from 0.926 GeV to 2.1 GeV. Polarization data are not included in the fit. The fitting procedure was performed by Minuit and provides a reduced $\chi^2/N=3.88$. The parameters G are listed in Table where the notation for the coupling constants is that of Ref. Fig. shows the experimental data on the differential $\gamma p \rightarrow K^+\Lambda$ cross section in the cm-system for E_γ from 0.926 to 1.45 GeV whereas the solid lines indicate our parameterization.
Table 1
The particle properties from Ref. [17] and the products of the photon and kaon coupling constants G (in the notation of Ref. [22]) used in our model. The symbols V and T denote the vector and tensor coupling, respectively.

Particle	J^P	Mass (MeV)	Width (MeV)	G
K^+	0$^-$	493.68		
Λ	$\frac{1}{2}^+$	1115.68		2.77±0.36
Σ	$\frac{1}{2}^+$	1192.64		9.23±0.44
K^*	1$^-$	891.66	50.8	-0.39±0.12V
K^*				-0.001±0.18T
K_1	1$^+$	1273	87	1.01±0.05V
K_1				3.55±0.16T
S_{11}	$\frac{1}{2}^-$	1650	150	-0.417±0.010
P_{11}	$\frac{1}{2}^+$	1710	100	-0.962±0.065
S_{01}	$\frac{1}{2}^-$	1405	50	-0.488±0.15
S_{01}	$\frac{1}{2}^-$	1670	35	17.41±0.32
S_{01}	$\frac{1}{2}^-$	1800	300	0.07±0.33

3. K^+ distortion in nuclear matter

Because of the rather weak K^+-nucleon interaction the K^+-meson is considered as a promising probe for studying the production process in nuclear matter. Experimental data [17] on K^+p and K^+n cross sections are shown in Fig. 2a-b together with the parameterizations from Ref. [23]. Note, that data are not available for the K^+n cross section at momenta below 800 MeV/c and the parameterization was constructed in line with the low energy limit from the Jülich model [24]. Within the experimental uncertainties the K^+N cross sections range from 9 to 18 mb at kaon momenta below 1 GeV/c. Therefore, at normal nuclear density the kaon mean-free-path is within the range of $\simeq 3.5 \div 7$ fm, comparable to a typical nuclear size. Because of the large mean-free-path it is expected that K^+-mesons should be only slightly distorted especially for light targets.

A measure for the final state interaction is provided by the distortion factor κ, calculated within the Glauber model as

$$\kappa = 1 - \frac{A_{eff}(\sigma_{KN})}{A_{eff}(\sigma_{KN} = 0)}. \quad (1)$$

Here A_{eff} is the effective number of nucleons participating in the production and propagation of the kaon, which in case of photoproduction is given as [25-28]

$$A_{eff}(\sigma_{KN}) = \int_0^{+\infty} \int_{-\infty}^{+\infty} d\mathbf{b} \int d\mathbf{z} \rho(\mathbf{b}, z) \exp[-\sigma_{KN} \int_0^\infty d\xi \rho(\mathbf{b}, \xi)] \int_0^\infty d\xi \rho(\mathbf{b}, \xi), \quad (2)$$
with $\rho(\mathbf{r})$ denoting the single-particle density, that was taken of Fermi type with parameters from Ref. [29]. The density function is normalized such that $A_{\text{eff}}(\sigma_{\text{KN}}=0)=A$.

Fig. 2c) shows the K^+ distortion factor κ as a function of the K^+N cross section for γC and γPb interactions. The dashed area in Fig. 2c) indicates the cross section σ_{KN} in vacuum for kaon momenta below 1 GeV/c. Even for the carbon target there is a roughly 20% probability for the K^+-meson to interact in the nuclear interior. For the Pb nucleus the K^+ distortion is quite substantial. Because of strangeness conservation there are no inelastic channels apart from the $K^+n\to K^0p$ charge exchange reaction leading to K^+ absorption. The low energy K^+N interaction is entirely due to elastic scattering such that the K^+ distortion factor provides the probability for K^+N elastic scattering in nuclear matter.

Obviously, the $K^+N\to K^+N$ scattering distorts the information about the kaon production mechanism in nuclear matter and thus heavy nuclei are not suited for a relevant study. The elastic scattering populates the low energy part of the kaon spectrum, which can be also understood in terms of a thermalization process [30]. Thus, to reconstruct the production mechanism, light nuclear targets are an optimal choice and in the following we will use ^{12}C. Moreover, since the total K^+-meson flux is almost conserved (when neglecting the small absorption due to the $K^+n\to K^0p$ charge exchange) the A-dependence of the total K^+ production cross section can deviate from a linear scaling with A only due to the production process, which is not necessarily equivalent for light and heavy nuclei.
Figure 2. Total K^+p (a) and K^+n (b) cross sections as a function of the K^+-meson momentum from Ref. [17]. The solid lines in (a,b) show the parameterizations from Ref. [23]. (c) The K^+ distortion factor κ calculated in the Glauber model for γC and γPb as a function of the K^+-nucleon cross section. The dashed area indicates σ_{KN} in vacuum for kaon momenta below 1 GeV.

4. Dispersion relation in nuclei

The $\gamma p \rightarrow K^+\Lambda$ reaction threshold is given by energy conservation as

$$(m_K + m_\Lambda)^2 = (E_\gamma + E_N)^2 - (k_\gamma + q_N)^2,$$

(3)

where in nuclear matter $q_N \neq 0$ and $E_N \neq m_N$. In principle, energy conservation provides the spectrum of nucleon momenta q_N and energies E_N available for $K^+\Lambda$ production, which depends on the photon energy. The dashed areas in Fig. 3 indicate the range of q_N and E_N that can energetically contribute to strangeness production at $E_\gamma=700$ and $E_\gamma=900$ MeV. The free dispersion relation $E_N=\sqrt{q_N^2+m_N^2}$ is shown in Fig. 3 by the solid line.

Using the free dispersion relation Fig. 3 illustrates that for $K^+\Lambda$ production at a photon energy of 700 MeV one needs nucleon momenta above ≈ 260 MeV/c, which are only barely available in the Fermi sea. Note that the Fermi momentum for nuclear matter is $q_F \approx 263$ MeV/c, which is shown in Fig. 3 by an arrow. On the other hand, at $E_\gamma=900$ MeV the K^+-meson can be produced almost with $q_N \approx 0$, which reflects the fact that the $\gamma p \rightarrow K^+\Lambda$ reaction threshold lies at a photon energy of ≈ 911 MeV in free space. The kinematical considerations shown in Fig. 3 motivate our present study of particle production at energies below the reaction threshold in vacuum. Indeed, it is clear that at photon energies below 900 MeV the $K^+\Lambda$ production becomes sensitive to nucleon mo-
Figure 3. The energetically possible range (dashed area) of nucleon momenta q_N and energies E_N for the $\gamma p \rightarrow K^+ \Lambda$ reaction at photon energies of 700 MeV and 900 MeV. The solid line indicates the dispersion relation in free space while the arrow shows the Fermi momentum for nuclear matter.

momenta $q_N > q_F$ that may be attributed to the high momentum component of the nuclear wave function.

The situation is even exciting since in nuclear matter the free dispersion relation does not hold. There are different models [4,31,32,14] providing a relation between the nucleon momentum q_N and energy E_N in nuclei, but all of them correspond to an $E_N(q_N)$ spectrum below the free dispersion relation, i.e. below the solid line shown in Fig. 3.

Furthermore, the dispersion relations used for particle production in hadron-nucleus reactions cannot be uniquely fixed by theory; we thus suggest to study this important aspect of production dynamics by $\gamma A \rightarrow K^+ \Lambda X$ reactions. To illustrate the sensitivity of observables to different dispersion relations we perform model estimates using two well-known approaches, i.e. the Thomas-Fermi approximation and the spectral function.

5. Thomas-Fermi approximation

In the noninteracting Fermi-gas model the occupation probability of states with momentum q_N is given by

$$\Phi(q_N) = \frac{3}{4\pi q_F^{3/2}} \Theta(q_F - |q_N|),$$

(4)
where q_F is the Fermi momentum; for nuclear matter it is related to the average nuclear density $\rho_0=0.16$ fm$^{-3}$ by

$$q_F = \left(\frac{3\pi^2 \rho_0}{2} \right)^{1/3}. \tag{5}$$

Figure 4. a) The single-nucleon potential at $\rho=0.16$ fm$^{-3}$ as a function of the nucleon momentum q_N. The results for nuclear matter are shown by the dashed [33] and the dotted line [41]. The solid line shows the potential for 12C calculated by Eq. (7) with $q_F=221$ MeV/c. The arrow indicates the Fermi momentum for nuclear matter. b) The dispersion relation $E_N(q_N)$ for 12C. The solid line shows the relation (6) with the potential (1), the dash-dotted line is the free dispersion relation $E_N=\sqrt{q_N^2+m_N^2}$ while the long-dashed line shows the calculation with the spectral function. The squares display the result for the correlated part of the spectral function calculated by the model proposed in Ref. [4].

The Fermi momenta for finite nuclei are given in Ref. [33]; for 12C we have $q_F=221$ MeV/c. Within the local Tomas-Fermi approximation the total energy of the struck nucleon then is

$$E_N = \sqrt{q_N^2 + m_N^2} + U(q_N, \rho), \tag{6}$$

where m_N is the free nucleon mass and the nuclear potential U depends on the nucleon momentum q_N and density ρ. For the following calculations we adopt the potential given
by Gale, Bertsch and Das Gupta [34] and Welke et al. [35] for cold nuclear matter as

\[
U(q_N, \rho) = A_1 \frac{\rho}{\rho_0} + B_1 \left(\frac{\rho}{\rho_0} \right)^{1.24} + \frac{2\pi C_1 \Lambda_1}{\rho_0} \left[\frac{q_F^2 + \Lambda_1^2 - q_N^2}{2q_N \Lambda_1} \ln \left(\frac{(q_N + q_F)^2 + \Lambda_1^2}{(q_N - q_F)^2 + \Lambda_1^2} \right) + \frac{2q_F}{\Lambda_1} - 2 \left(\arctg \frac{q_N + q_F}{\Lambda_1} - \arctg \frac{q_N - q_F}{\Lambda_1} \right) \right],
\]

(7)

where \(A_1 = -110.44 \text{ MeV} \), \(B_1 = 140.9 \text{ MeV} \), \(C_1 = -64.95 \text{ MeV} \) and \(\Lambda_1 = 1.58 q_F \). The dashed line in Fig. 4a) shows the potential (7) for nuclear matter with \(q_F = 262 \text{ MeV/c} \) at \(\rho = \rho_0 \) as a function of the nucleon momentum. Note, that the mean field without momentum dependence provides \(U \approx -53 \text{ MeV} \) [36] for nuclear matter. The analysis of experimental scattering data using the Dirac equation [37–39] indicates that the potential becomes repulsive at nucleon energies \(E_{\text{kin}} \) above \(\approx 300 \text{ MeV} \).

The potential (7) for \(^{12}\text{C} \) (using \(q_F = 221 \text{ MeV/c} \)) is shown by the solid line in Fig. 4a). In its ground state \(^{12}\text{C} \) has \(s_{1/2} \) and \(p_{3/2} \) single-particle levels [40] with single-particle energies of \(\approx 34 \) and \(-16 \text{ MeV} \), respectively. Indeed, Fig. 4a) indicates that the potential (7) approaches the lowest single-particle energy at low nucleon momenta.

Another optical potential was proposed by Wiringa [41] as

\[
U(q_N, \rho) = A_2 \frac{\rho}{\rho_0} + B_2 \left(\frac{\rho}{\rho_0} \right)^2 + C_2 \frac{\rho}{\rho_0} \left(1 + \left[q_N / \Lambda_2 \right]^2 \right)^{-1},
\]

(8)

where \(A_2 = 15.52 \text{ MeV} \), \(B_2 = 24.93 \text{ MeV} \), \(C_2 = -116 \text{ MeV} \) and \(\Lambda_2 = 3.29 - 0.373(\rho/\rho_0) \text{ fm}^{-1} \) [42]. The dashed line in Fig. 4a) shows the potential (8) for nuclear matter at density \(\rho = 0.16 \text{ fm}^{-3} \), which at nucleon momenta below \(q_F \) (for density \(\rho_0 \)) provides almost identical results as (7).

The dispersion relation for \(^{12}\text{C} \) is given by Eq. (8) and shown in Fig. 4b) by the solid line while the dash-dotted line indicates the free dispersion relation \(E_N = \sqrt{q_N^2 + m_N^2} \). For low nucleon momenta \(q_N < 100 \text{ MeV/c} \) the Thomas-Fermi model with the Carbon potential is in rough agreement with the result from the spectral function approach of Ref. [14] shown in Fig. 4b) by the long-dashed line.

6. The spectral function

The short-range \(NN \) interactions induce correlations in the nuclear wave function, which deplete states below the Fermi sea and partially occupy the states above the Fermi level [31,44]. Thus the nuclear momentum distribution has a tail for momenta \(q_N > q_F \). The dashed line in Fig. 4a) shows the momentum distribution \(\Phi(q) \) from Ref. [4] due to the uncorrelated part of the spectral function, while the solid line indicates the total momentum distribution including the two-body correlations. Although the contribution from the high momentum component to the total function \(\Phi(q) \) is small, its role can be important, since high nucleon momenta \(q_N \) might provide the large energies required for particle production below the reaction threshold in free space.

A nucleon in nuclear matter does not have a sharp energy \(E_N \) that is uniquely defined by its momentum \(q_N \). The relation between the momentum and energy instead is given by the spectral function \(S(q_N, E_N) \), which provides the joint probability of finding a nucleon.
Figure 5. a) The nucleon momentum distribution $\Phi(q)$ for ^{12}C taken from Ref. [4]. The dashed line shows the uncorrelated part, while the solid line is the sum of the uncorrelated and correlated parts. The arrow indicates the Fermi momentum for ^{12}C from Ref. [33]. b) The dispersion relation given by the spectral function from Refs. [14,43]. The circles indicate the average nucleon energy calculated by Eq. (11).

with momentum q_N and energy E_N. The spectral function is generally given in terms of the removal energy E_R, which is defined by energy conservation in the dissociation of nucleus A into nucleus B and a single nucleon as

$$M_A = M_B + E^*_B + (m_N - E_R),$$

where M_A and M_B are the masses of the nuclei A and B in their ground state and E^*_B is the excitation energy of the residual system B. Due to momentum conservation both, the residual system and nucleon, have the same modulus of the three-momentum q_N. In Eq. (9) the term in the brackets stands for the total nucleon energy and thus we have

$$E_N = m_N - E_R.$$

In the following calculations we use the spectral function for ^{12}C as given by Sick et al. [14,13], which is shown in Fig. (b). Indeed, within the dispersion relation given by Fig. (b) a certain nucleon momentum q_N is now related to the spectrum of the nucleon energy E_N. The contribution from $s_{1/2}$ and $p_{3/2}$ single-particle levels is indicated by the weak ridge at $q<300$ MeV/c, while the spectrum beyond the shell structure stems from the short-range and tensor correlations. It is important to note that on the average large momenta $q_N>300$ MeV/c are associated with small values of the nucleon energy E_N. The
dependence of the average nucleon energy \(< E_N > \) on the momentum \(q_N \) is given as

\[
< E_N > = \frac{1}{\Phi(q_N)} \int_{E_{th}}^{\infty} E_N S(q_N, E_N) \, dE_N,
\]

while the momentum distribution is related to the spectral function as

\[
\Phi(q_N) = \int_{E_{th}}^{\infty} S(q_N, E_N) \, dE_N,
\]

where \(E_{th} \) is the single nucleon removal threshold. The average nucleon energy is shown in Fig. 5b) by the dots and indicates that high nucleon momenta correspond to high removal energies. The dependence of \(< E_N > \) on the momentum \(q_N \) can be compared to the dispersion relation given by the Thomas-Fermi model as shown in Fig. 4b). The result from the spectral function (solid line) is close to the Thomas-Fermi approach at \(q_N < 100 \text{ MeV/c} \), but the two models differ substantially at larger momenta. Notice that even below the Fermi momentum \(q_F = 221 \text{ MeV/c} \) the difference is quite strong.

The squares in Fig. 4b) indicate the average nucleon energy \(< E_N > \) resulting from the correlated part of the \(^{12}\text{C} \) spectral function as calculated in the model proposed by Ciofi degli Atti and Simula [4]. As can be seen, the agreement between the different models for the spectral function is very reasonable.

7. Results for \(K^+ \) production in \(\gamma A \) reactions

The Lorentz-invariant differential cross section for \(K^+ \)-meson production in \(\gamma A \) reaction is given as [13]

\[
E_K \frac{d^3 \sigma_{\gamma A \rightarrow K^+\Lambda}}{d^3 p_K} = A_{eff}(\sigma_{KN}) \int d^3 q_N dE_N S(q_N, E_N) \frac{Z}{A} E_K \frac{d^3 \sigma_{\gamma p \rightarrow K^+\Lambda}(\sqrt{s}, \mathcal{P}_N)}{d^3 p_K},
\]

where \(\sqrt{s} \) is the invariant energy of the incident photon and the struck nucleon defined as

\[
s = (E_\gamma + E_N)^2 - (k_\gamma + q_N)^2,
\]

\(\mathcal{P}_N = (E_N, q_N) \) denotes the four-momentum of the struck nucleon and the limits of integration in Eq. (13) are fixed by energy conservation as

\[
m_K + m_\Lambda \leq \sqrt{s} \leq \sqrt{2E_\gamma M_A + M_\Lambda^2 - M_{A-1}}
\]

with \(M_A \) and \(M_{A-1} \) denoting the mass of the initial and final \(A-1 \) nuclei, respectively. Note, that the upper limit in (13) corresponds to the ground state of the residual \(A-1 \) nucleus and provides the maximal available energy \(\sqrt{s} \) of the interaction vertex.

The primed indices in Eq. (13) denote the \(K^+ \)-meson momentum and energy in the cms of the photon and the individual target nucleon, while \(E'_K d^3 \sigma / d^3 p'_K \) for \(\mathcal{P}_N = (\sqrt{q_N^2 + m_N^2}, q_N) \) is the Lorentz invariant elementary cross section for the \(\gamma p \rightarrow K^+\Lambda \) reaction in free space as described in Sect. 2. The factor \(Z/A \) accounts for the fact that the reaction takes place only on the target protons.
Figure 6. a) The differential $\gamma p \rightarrow K^+ \Lambda$ cross section at photon energy of 926 MeV calculated for different effective nucleon masses of 800, 850 and 938 MeV as indicated in the figure. The experimental data are from Refs. [5,20]. b) The ratio ξ of the total $\gamma C \rightarrow K^+ \Lambda X$ cross section calculated with the off-shell elementary amplitude to that obtained with the on-shell $\gamma p \rightarrow K^+ \Lambda$ reaction amplitude. The circles show the calculations, while the solid line indicates the fit for $\xi=1.0\pm0.1$

The factor A_{eff} stands for the effective primary collision number as well as for the in-medium distortion of the K^+-meson when propagating through the nuclear target as described in Sect. 3. Note, that $A_{\text{eff}}=A$ when neglecting the kaon distortion.

Furthermore, the elementary $\gamma p \rightarrow K^+ \Lambda$ cross section depends on the invariant collision energy \sqrt{s} and the off-shellness of the nucleon. The calculation of \sqrt{s} with the spectral function yield the target nucleon energy E_N to be always below the free nucleon mass as shown in Fig. 5b). Furthermore, on average the nucleons with the highest momenta q_N have the lowest energies E_N (as indicated by the full dots in Fig.5b). Thus high momentum components go along with large removal energies, which is due to the fact that two nucleons with opposite high momentum (and low cms momentum) are correlated. This correlation energy increases even with the nucleon momenta and has to be ‘paid’ extra when trying to extract such a nucleon from the nucleus or to use its 4-momentum to produce an additional meson. In contrast, within the Thomas-Fermi approximation we have $E_N=\sqrt{m_N^2+q_N^2}$ and no correlation energy appears. This explains the sensitivity of the available invariant energy \sqrt{s} and the production cross section to the nuclear dispersion relation.

Moreover, we address the question on modifications of the $\gamma p \rightarrow K^+ \Lambda$ reaction amplitude in the nuclear medium. The nucleon entering the reaction may be off-shell and its effective
mass no longer be equal to the free nucleon mass. To illustrate the sensitivity of the amplitude to the effective nucleon mass we show in the Fig. 6a) the differential $\gamma p\to K^+\Lambda$ cross section (calculated at photon energy of 926 MeV) for $m_N=938$, 850 and 800 MeV. The effect is quite noticeable, however, only for a large mass shift of the nucleon in the medium. Let us recall, that typical single-particles energies for ^{12}C are $\simeq -34$ and $\simeq -16$ MeV and thus we do not expect a large effect in the production cross section due to in-medium modifications of the elementary amplitude. The actual calculations confirm these expectations.

The solid circles in Fig. 6b) show the ratio ξ of the total $\gamma C\to K^+\Lambda X$ cross section calculated with the modified elementary amplitude to that obtained with the $\gamma p\to K^+\Lambda$ reaction amplitude in free space. The ratio in Fig. 6b) can be reasonably fitted over the full range of photon energies by a constant value $\xi=1.0\pm0.1$ (shown by the solid line). Thus, in the following calculations we adopt the on-shell $\gamma p\to K^+\Lambda$ reaction amplitude.

The total cross section for the $\gamma C\to K^+\Lambda X$ reaction is calculated with different models for $S(q_N,E_N)$ and shown in Fig. 7 as a function of the photon energy. The absolute reaction threshold given by the coherent production is indicated in Fig. 7 by an arrow. We observe that the result for the total cross section depends substantially on the model applied. At high energies $E_\gamma > 1.2$ GeV both models roughly give the same total cross section. At $E_\gamma \simeq 800$ MeV the difference between the calculations with the spectral function and the Thomas-Fermi approach amounts to a factor of about 6, which results from the different dispersion relations applied to the target nucleon. This can easily be understood by inspection of Fig. 4b).

![Figure 7](image_url)

Figure 7. The $\gamma C\to K^+\Lambda X$ total cross section as a function of the photon energy E_γ. The lines show calculations with the spectral function (solid) and Thomas-Fermi model (dashed) while the arrows indicate the absolute γA and free γp reaction threshold.
One of the direct ways to extract the dispersion relation can be understood in terms of the four momentum squared Q^2_N of the target nucleon. Within the Thomas-Fermi model it is given as

$$Q^2_N \simeq (m_N + U)^2,$$

where we imply $q_N \ll m_N$. With the potential given by Eq. (7) one can estimate $Q^2_N \simeq 0.8 \text{ GeV}^2$. Moreover, within the Thomas-Fermi approximation Q^2_N is always positive and does not depend on the photon energy.

Within the spectral function approach the quantity Q^2_N is distributed as

$$-\frac{d\Psi}{dQ^2_N} = \int d^3q_N dE_N S(q_N, E_N)$$

where the integration is performed over the contour $Q^2 = E^2_N - q^2_N$. The function (17) is shown in Fig. 8a). The negative part of the Q^2_N spectrum corresponds to high nucleon momenta q_N and small energies E_N. In Fig. 8a) the arrow denoted by B shows the squared bare mass of the nucleon, while the arrow denoted by TF indicates the value for Q^2_N as given by the Thomas-Fermi approximation (6). It is seen that the Q^2 distribution extends well below B.

Figure 8. a) The Q^2_N spectrum $d\Psi/dQ^2_N$ given by the spectral function for ^{12}C. The arrows denote the Thomas-Fermi limit (TH) and the squared nucleon mass B. b) The differential Q^2_N spectra calculated for the $\gamma C \rightarrow K^+\Lambda X$ reaction at different photon energies E_{γ}.

It is clear that at photon energies above the reaction threshold in free space the total Q^2_N spectrum, as given by the spectral function, is available for $K^+\Lambda$ production. Fig. 8b) shows the Q^2_N spectra calculated for the $\gamma C \rightarrow K^+\Lambda X$ reaction at $E_\gamma = 0.8, 1.0$ and 1.2 GeV.
The Q_N^2 spectrum can be obtained experimentally from the four-momenta of the produced K^+-mesons and hyperons as

$$Q_N^2 = E_N^2 - q_N^2 = (E_K + E_\Lambda - E_\gamma)^2 - (p_K + p_\Lambda - k_\gamma)^2$$

(18)

Note, that relation (18) is similar to the experimental analysis for the reconstruction of the spectral function $S(E_N, q_N)$ in electron-nucleus scattering [33]. We also note, that the Q_N^2 spectra shown in Fig. 8(b) might be substantially distorted due to the final state interaction (FSI) of both the K^+-mesons and the Λ-hyperons. Similar problems also appear in $eA\rightarrow e'pX$ studies.

Another sensitive observable is the transverse momentum (p_t) spectrum of the produced kaons. In the elementary interaction between the photon and the target nucleon the transverse component of the total initial momentum is given by the nucleon momentum q_N, which is different in the Thomas-Fermi and the spectral function approximation. Due to momentum conservation the p_t distribution of the produced K^+-mesons reflects the transverse part of the q_N distribution.

The p_t spectrum for K^+-mesons from the $\gamma C \rightarrow K^+\Lambda X$ reaction at $E_\gamma = 800$ MeV is calculated within the two models and shown in Fig. 9(a). The solid histogram shows the calculations with the spectral function, the dashed one that obtained with the Thomas-Fermi approach. The results indicate that the absolute magnitudes of the differential cross sections from the two models are substantially different for $p_t < 170$ MeV/c in line
with the result shown in Fig. 7. The solid line in Fig. 9a) shows the calculations with the spectral function multiplied by a factor of 6 in order to account for the absolute difference in the total production cross section from the models. The shape of the \(p_t \) spectra from the two models differs at large \(p_t > 170 \text{ MeV/c} \) since in the Thomas-Fermi approximation the nucleon momenta \(q_N \) are limited to values below \(q_F \).

Fig. 9b) shows the momentum spectrum of \(K^+ \)-mesons from the \(\gamma C \rightarrow K^+ \Lambda X \) reaction at \(E_\gamma = 800 \text{ MeV} \) integrated over the laboratory angle \(0 < \cos \theta < 10^0 \). Again we find a substantial difference between the calculations with the spectral function (solid histogram) and Thomas-Fermi approximation (dashed histogram) in the absolute value of the production cross section.

To compare the shapes of the momentum spectra we have renormalized the calculations with the spectral function and show this result in Fig. 9b) by the long-dashed line. Both models provide different shapes of the momentum spectrum. The calculations with the Thomas-Fermi model indicate a detectable enhancement at large \(K^+ \)-meson momenta.

A measurement of the \(K^+ \) spectra from \(\gamma C \rightarrow K^+ \Lambda X \) reaction at \(E_\gamma = 800 \text{ MeV} \) and at forward angles is thus sensitive to the dispersion relation.

8. Contribution from secondary processes

In principle, the \(K^+ \Lambda \) production in \(\gamma A \) interactions can also proceed through a two-step process with an intermediate pion from the \(\gamma N \rightarrow \pi N \) reaction followed by the strangeness production channel \(\pi N \rightarrow K^+ \Lambda \). The cross sections for \(K^+ \)-meson production from the secondary pion induced reactions is calculated as [13,49,50]

\[
E_K \frac{d^3 \sigma_{\gamma A \rightarrow K\Lambda X}}{d^3 p_K} = \int \frac{d^3 q_N \ dE_N \ d^3 p_\pi}{E_\pi} S(q_N, E_N) A_{\text{eff}}(\sigma_{\pi N}, \sigma_{KN}) \\
\times \frac{1}{\sigma_{\text{tot}} E_K' \frac{d^3 \sigma_{\pi N \rightarrow K\Lambda(\sqrt{s})}}{d^3 p_M'}} E_{\pi'}' \frac{d^3 \sigma_{\gamma N \rightarrow \pi N(\sqrt{s})}}{d^3 p_\pi'},
\]

(19)

where the double prime indices denote the system of the intermediate pion and a target nucleon, while the single prime indices are those for the photon and the first target nucleon. Moreover, \(E_\pi d^3 \sigma_{\gamma N \rightarrow \pi N}/d^3 p_\pi \) stands for the \(\pi \)-meson differential production cross section, which is calculated in line with Eq. (13) assuming on-shell pions in the nuclear medium, while \(\sigma_{\text{tot}} \) is the total \(\pi N \) cross section.

In Eq. (19) the index \(\Omega \) at the integral stands for the Pauli blocking of the final states from the \(\gamma N \rightarrow \pi N \) reaction. Furthermore, the factor \(A_{\text{eff}} \) in Eq. (13) accounts for the effective primary collision number, pion interaction in the nuclear interior as well as for the in-medium distortion of the produced \(K^+ \)-meson. It is calculated by an integration over the path of the produced \(\pi \)-mesons and final kaons as proposed in Ref. [27,28].

The elementary \(\gamma N \rightarrow \pi N \) reaction is calculated in line with the results from the Virginia WI98K partial wave analysis [51]. Note, that three reaction channels: \(\gamma p \rightarrow \pi^+ n \), \(\gamma p \rightarrow \pi^0 p \) and \(\gamma n \rightarrow \pi^0 n \) enter the two-step process calculations of \(K^+ \Lambda \) photoproduction.

Fig. 10 shows the experimental data [20,52] on the differential cross sections for various reaction channels at several photon energies \(E_\gamma \) in comparison with the simulation code. Since the WI98K partial wave solution describes the data up to \(E_\gamma = 2 \text{ GeV} \), we expect to be accurate within this energy range. The cross sections for the \(\pi^0 p \rightarrow K^+ \Lambda \) and \(\pi^+ n \rightarrow K^+ \Lambda \)
Figure 10. The differential cross sections for different channels of the $\gamma N \rightarrow \pi N$ reaction at several photon energies. The circles show the experimental data [20,52] while the histograms indicate our simulations based on the Virginia WI98K partial wave analysis [51]. Reactions are taken from the resonance model calculation of Tsushima et al. [53,54]. As shown in Refs. [53,54] the resonance model reproduces the data well up to $K^+\Lambda$ invariant masses of ≈ 2 GeV.

Here we do not account for multi-pion production in γN reactions, which might slightly enhance the contribution from the secondary processes. Since the π-meson spectra from multi-pion production at $E_\gamma \leq 1$ GeV are soft [55] and have their main strength essentially below the $\pi N \rightarrow K^+\Lambda$ threshold, we consider our estimate for the contribution from secondary processes as a lower limit.

The dashed line in Fig. 11 shows the ratio of the $K^+\Lambda$ production cross section from secondary processes to the contribution from the direct production calculated within the Thomas-Fermi approximation. At $E_\gamma < 1.2$ GeV the contribution from the two-step reaction mechanism amounts to less than 1%. The solid line in Fig. 11 shows the calculations with the spectral function for comparison. We thus conclude that the contribution from the two-step process to the $\gamma C \rightarrow K^+\Lambda X$ reaction is almost negligible at photon energies below 1.2 GeV.

In our study on subtreshold meson production from pA collisions [13] it was found that the contribution from secondary pion induced reactions dominates the direct production mechanism. This finding is different from our present result obtained for the γA reactions and needs further explanation.

Fig. 12a) shows the rate of the pion production in γp and pp interactions as a function of
Figure 11. The ratio of the contribution to the $\gamma C \rightarrow K^+ \Lambda X$ reaction cross section from two-step to direct production process as a function of the photon energy E_γ. The dashed line shows the calculations within the Thomas-Fermi model (6) while the solid line gives the result of the spectral function approach.

the projectile momentum. This rate is defined as a ratio of the π-meson production cross section to the total reaction cross section. Let us now consider the role of the secondary reaction mechanism at energies below the direct $\gamma p \rightarrow K^+ \Lambda$ and $pp \rightarrow K^+ \Lambda p$ production thresholds, which are indicated in Fig. (2a) by the arrows. It is clear that near the direct production threshold the π-meson production rate is almost the same for the γ and p induced reaction. We thus conclude that the strength of the secondary process at a given projectile momentum is also almost the same for the photon and proton induced reactions on nuclei.

Fig. (2b) shows the rates of direct $K^+ \Lambda$ production from γp and pp reactions as a function of the excess energy ϵ. Here ϵ is given as the difference between the invariant collision energy and the total mass of the final particle. Both the experimental data and our calculations indicate that the rate of the $\gamma p \rightarrow K^+ \Lambda$ reaction is substantially (by about two orders of magnitude) larger than the $pp \rightarrow K^+ \Lambda p$ rate at energies close to the threshold in free space. Thus the direct $K^+ \Lambda$ production dominates in photon induced reactions on nuclei and the cross section is thus directly sensitive to the spectral function of the nucleon in the target nucleus.

This is an important finding indicating the advantage of γA reactions in studying the production at energies below the reaction threshold on a free nucleon. It is presently an open question if the production of heavy mesons such as ρ, ω and ϕ show the same tendency. We also refer to Ref. [55], where a dominance of the direct production mechanism was found for subthreshold η-meson production in γA reactions.
9. Conclusions

We have studied \(K^+ \)-meson production in \(\gamma C \) interactions at energies below the free \(\gamma p \rightarrow K^+ \Lambda X \) reaction threshold. The Thomas-Fermi and spectral function approximation were used in the calculation of the production process. It was found that these two models result in quite different total and differential cross sections for kaon photoproduction.

The difference between the two models for the target nucleon distribution can be detected in kaon photoproduction not only in the absolute scale, but also in the different shape of the spectra. The shapes of the transverse momentum spectra calculated with the two models seem to be identical at low transverse momenta \(p_t < 170 \text{ MeV/c} \), but differ substantially at larger \(p_t \). The large \(p_t \) region is sensitive to the details of the spectral function although the contribution from \(p_t > 170 \text{ MeV/c} \) to the total \(\gamma C \rightarrow K^+ \Lambda X \) cross section is very small.

Moreover, we have found that the evaluation of the nuclear spectral function from the \(\gamma A \rightarrow K^+ \Lambda X \) data by the \(K^+ \)-meson transverse spectra or the reconstruction of the squared four momentum \(Q_N^2 \) (see Fig. 8b)) of the bound nucleon might be possible if the final state interactions of the produced particles are small. As can be seen from Fig. 8 reactions slightly above this threshold are favoured experimentally due to the higher cross section.

We have, furthermore, found that the contribution from secondary process \(\gamma N \rightarrow \pi N \),
$\pi N \rightarrow K^+ \Lambda$ to the kaon photoproduction is almost negligible for $E_\gamma \leq 1.2$ GeV.

The authors like to acknowledge discussions with T. Feuster and G. Penner and valuable comments and suggestions from A. Gal for the final form of this work.

REFERENCES

1. R.G. Newton, Scattering Theory of Waves and Particles, Springer-Verlag (1966)
2. A.K. Kerman, H. Mc. Manus and R.M. Thaler, Ann. Phys. 8 (1959) 55.
3. D.F. Jackson, Nuclear Reactions, Methuen (1970).
4. C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53 (1996) 1689.
5. M.Q. Tran et al., Phys. Lett. B 445 (1998) 20.
6. C. Bennhold and L.E. Wright, Phys. Rev. C 39 (1989) 927.
7. A.S. Rosenthal et al., Ann. Phys. 184 (1988) 33.
8. C. Bennhold, Phys. Rev. C 39 (1989) 1944.
9. C. Bennhold, Nucl. Phys. A 547 (1992) 79c.
10. L.J. Abu-Raddad and J. Piekarewicz, Phys. Rev. C 61 (2000) 014604.
11. B. Zeidman et al., CEBAF Experiment 91-016.
12. C.E. Hyde-Wright, CEBAF Experiment 91-014.
13. A. Sibirtsev, W. Cassing and U. Mosel, Z. Phys. A 358 (1997) 357.
14. I. Sick et al., Phys. Lett. B 323 (1994) 267.
15. M. Gourdin and J. Dufour, Il Nuovo Cim. 27 (1963) 1410.
16. H. Thom, Phys. Rev. 151 (1966) 1322.
17. Particle Data Group, Eur. Phys. J. A 3 (1998) 1.
18. T. Feuster and U. Mosel, Phys. Rev. C 58 (1998) 457.
19. T. Feuster and U. Mosel, Phys. Rev. C 59 (1999) 460.
20. Landolt-Börnstein, New Series 8 (1973) 285.
21. F. James and M. Roos, Comp. Phys. Commun. 10 (1975) 343.
22. R. Williams, C.R. Ji and S.R. Cotanch, Phys. Rev. D 41 (1990) 1449.
23. A. Sibirtsev and W. Cassing, Nucl. Phys. A 641 (1998) 476.
24. M. Hoffman et al., Nucl. Phys. A 593 (1995) 341.
25. K.S. Kölbig and B. Margolis, Nucl. Phys. B 6 (1968) 85
26. O. Benhar et al., Phys. Rev. Lett. 69 (1992) 1156
27. E. Vercellin et al., Il Nuovo Cim. A 106 (1993) 861
28. M. Effenberger and A. Sibirtsev, Nucl. Phys. A 632 (1998) 99.
29. C.W. Jager, C. Vries and H. Vries, At. Data Nucl. Data Tables 14 (1974) 480.
30. A. Sibirtsev, Sov. J. Nucl. Phys. 52 (1990) 295.
31. O. Benhar, A. Fabrocini and S. Fantoni, Nucl. Phys. A 550 (1992) 201.
32. O. Benhar, A. Fabrocini and S. Fantoni, Nucl. Phys. A 505 (1989) 201.
33. S. Frullani and J. Mougey, Adv. Nucl. Phys. 14 (1984) 1.
34. C. Gale, G. Bertsch and Das. Gupta, Phys. Rev. C 35 (1987) 1666.
35. G.M. Welke et al., Phys. Rev. C 38 (1988) 2101.
36. G.F. Bertsch, H. Kruse and S. Das Gupta, Phys. Rev. C 29 (1984) 673.
37. K. Weber et al., Nucl. Phys. A 552 (1993) 571.
38. E.D. Cooper, Phys. Rev. C 36 (1987) 2170.
39. S. Hama et al., Phys. Rev. C 41 (1990) 2737.
40. W. Greiner and J.A. Maruhn, Nuclear Models, Springer (1996).
41. R.B. Wiringa, Phys. Rev. C 38 (1988) 2967.
42. V.R. Pandharipande and S.C. Pieper, Phys. Rev. C 45 (1992) 791.
43. I. Sick, private communication.
44. S. Fantoni and V.R. Pandharipande, Nucl. Phys. A 427 (1984) 473.
45. C. Mahaux and R. Sartor, Nucl. Phys. A 546 (1992) 65.
46. M. Baldo et al., Nucl. Phys. A 545 (1992) 741.
47. C. Ciofi degli Atti, E. Pace and G. Salme, Phys. Rev. C 21 (1980) 805.
48. P.F. de Cordoba and E. Oset, Phys. Rev. C 46 (1992) 1697.
49. W. Cassing et al., Phys. Lett. B 238 (1990) 25.
50. A. Sibirtsev and M. Büscher, Z. Phys A 347 (1994) 191.
51. R.A. Arndt, I.I. Strakovsky and R.L. Workman, Phys. Rev. C 53 (1996) 430.
52. SAID Data Base, on-line facility.
53. K. Tsushima, S.W. Huang and A. Faessler, Phys. Lett. B 337 (1994) 245.
54. K. Tsushima, S.W. Huang and A. Faessler, J. Phys. G 21 (1995) 33.
55. M. Effenberger, A. Hombach, S. Teis and U. Mosel, Nucl. Phys. A 614 (1997) 501.