No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations

Xiangcheng Ma 1,∗, Eliot Quataert 1, Andrew Wetzel 2, Philip F. Hopkins 3, Claude-André Faucher-Giguère 4 and Dušan Kereš 5

1Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720, USA
2Department of Physics, University of California, Davis, CA 95616, USA
3TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA
4Department of Physics and Astronomy and CIERA, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
5Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Accepted 2020 August 7. Received 2020 August 2; in original form 2020 March 13

ABSTRACT

We present the escape fraction of hydrogen ionizing photons (fesc) from a sample of 34 high-resolution cosmological zoom-in simulations of galaxies at z ≥ 5 in the Feedback in Realistic Environments project, post-processed with a Monte Carlo radiative transfer code for ionizing radiation. Our sample consists of 8500 haloes in Mvir ∼ 10⁸–10¹² M⊙ (M* ∼ 10⁴–10¹⁰ M⊙) at z = 5–12. We find the sample average ⟨fesc⟩ increases with halo mass for Mvir ∼ 10⁸–10⁹.5 M⊙, becomes nearly constant for 10⁹.5–10¹¹ M⊙, and decreases at ≥10¹¹ M⊙. Equivalently, ⟨fesc⟩ increases with stellar mass up to M* ∼ 10⁸ M⊙ and decreases at higher masses. Even applying single-star stellar population synthesis models, we find a moderate ⟨fesc⟩ ∼ 0.2 for galaxies at M* ∼ 10⁸ M⊙. Nearly half of the escaped ionizing photons come from stars 1–3 Myr old and the rest from stars 3–10 Myr old. Binaries only have a modest effect, boosting ⟨fesc⟩ by ∼25–35 per cent and the number of escaped photons by 60–80 per cent. Most leaked ionizing photons are from vigorously star-forming regions that usually contain a feedback-driven kpc-scale superbubble surrounded by a dense shell. The shell is forming stars while accelerated, so new stars formed earlier in the shell are already inside the shell. Young stars in the bubble and near the edge of the shell can fully ionize some low-column-density paths pre-cleared by feedback, allowing a large fraction of their ionizing photons to escape. The decrease of ⟨fesc⟩ at the high-mass end is due to dust attenuation, while at the low-mass end, ⟨fesc⟩ decreases owing to inefficient star formation and hence feedback. At fixed mass, ⟨fesc⟩ tends to increase with redshift. Although the absolute ⟨fesc⟩ does not fully converge with resolution in our simulations, the mass- and redshift-dependence of ⟨fesc⟩ is likely robust. Our simulations produce sufficient ionizing photons for cosmic reionization.

Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshift – cosmology: theory – dark ages, reionization, first stars.

1 INTRODUCTION

Over the past decade, thanks to a series of deep imaging campaigns carried out with the Hubble Space Telescope (HST) and ground-based facilities, we have obtained relatively robust constraints on the bright-end (MUV ≲ −17) rest-frame ultraviolet luminosity functions (UVLFs) of star-forming galaxies up to z ∼ 8 (e.g. Bouwens et al. 2015a; Bowler et al. 2015; Finkelstein et al. 2015; Ono et al. 2018) and tentative measurements on the UVLFs at z ∼ 9–10 (e.g. Oesch et al. 2013, 2014; Bouwens et al. 2016; Stefanon et al. 2017). The Hubble Frontier Fields (HFFs) campaign make it even possible to probe the UVLFs down to MUV ≲ −12 at z ∼ 6 (e.g. Atek et al. 2015, 2018; Bouwens et al. 2017; Livermore, Finkelstein & Lotz 2017). The upcoming James Webb Space Telescope (JWST; scheduled launch date in 2021 March) is expected to remarkably advance our knowledge on the galaxy populations at these redshifts.

These high-redshift star-forming galaxies are thought to be the dominant sources for reionization (e.g. Madau, Haardt & Rees 1999; Faucher-Giguère et al. 2009; Haardt & Madau 2012; Faucher-Giguère 2020; however, see Madau & Haardt 2015), a phase transition of the hydrogen in the intergalactic medium (IGM) from neutral to fully ionized. Cosmic reionization began with the onset of the first generation of stars at z ∼ 20–30 (e.g. Loeb & Barkana 2001) and finished by z ∼ 5 (e.g. Fan, Carilli & Keating 2006a; Becker et al. 2015). The number of ionizing photons emitted from high-redshift galaxies per unit time can be estimated from the observed UVLFs and stellar population synthesis models (e.g. Leitherer et al. 1999; Conroy 2013; Eldridge et al. 2017). One critical, yet poorly understood, parameter to link high-redshift galaxies to cosmic reionization is the escape fraction of ionizing photons from these galaxies to the IGM (fesc).

Models that describe the reionization history from the galaxy populations at z ≥ 5 need to make assumptions about fesc, either a constant fesc for all galaxies or some mass- and redshift-dependent form of fesc (e.g. Finkelstein et al. 2012, 2019; Kuhlen & Faucher-Giguère 2012; Robertson et al. 2013, 2015; Bouwens et al. 2018a).
Lyman with small peak separations (e.g. Verhamme et al. 2015, 2017), and the prerequisite for understanding those possible indirect indicators of Lyman-continuum (LyC) fluxes from galaxies at $z \gtrsim 5$ is almost impossible. Great efforts have been made to search for rest-frame LyC fluxes from galaxies at $z \sim 0$–4 over the past two decades. Steidel, Pettini & Adelberger (2001) reported detection of strong LyC flux and inferred high f_{esc} from a stacked spectrum of 29 galaxies at $z \sim 3.4$ (see also Shapley et al. 2006), but these early studies at $z \gtrsim 3$ likely suffer from foreground contaminations from low-redshift interlopers (e.g. Vanzella et al. 2010; Siana et al. 2015). In the literature, various authors have reported significantly lower f_{esc} (of the order of 0.01) using galaxy samples from the local Universe to $z \sim 3$ (e.g. Leitherer et al. 1995; Cowie, Barger & Trouille 2009; Bridge et al. 2010; Siana et al. 2010; Boutsia et al. 2011; Leitet et al. 2011, 2013; Grazian et al. 2016, 2017; Rutkowski et al. 2016). Such low f_{esc} is not sufficient for cosmic reionization.

The field has turned around in recent years. Strong LyC leakage has been confirmed from a number of galaxies at $z \sim 0$–4, with inferred f_{esc} from a few per cent to over 50 per cent (e.g. Vanzella et al. 2012, 2016, 2020; Izotov et al. 2016a,b, 2018; Fletcher et al. 2019; Rivera-Thorsen et al. 2019; Ji et al. 2020). Most of them are compact, extreme starburst galaxies that are thought to be analogues of typical star-forming galaxies in the reionization era. The strong LyC-leaking galaxies share some common properties, such as high [O III]/[O II] ratios (O32; e.g. Nakajima & Ouchi 2014; Izotov et al. 2016a), high Lyman-α escape fractions and EWs, double-peak Lyman-α profile with small peak separations (e.g. Verhamme et al. 2015, 2017), and weak low-ionization metal absorption lines (e.g. Jaskot & Oey 2014; Chisholm et al. 2018). There also exist galaxies with comparable O32 ratios and Lyman-α features that do not have detectable LyC fluxes, which are thought to be line-of-sight variations (e.g. Jaskot et al. 2019; Malkan & Malkan 2019; Izotov et al. 2020; Nakajima et al. 2020). Moderate $f_{\text{esc}} \sim 0.1$–0.2 have also been reported recently for considerably large spectroscopic samples of galaxies at $z \sim 3$ after a careful examination of foreground contamination (e.g. Nestor et al. 2013; Steidel et al. 2018). Newly developed cross-correlation analysis between star-forming galaxies and IGM transmission at $z \gtrsim 5$ also suggests $f_{\text{esc}} \sim 0.1$–0.2 (e.g. Kakiichi et al. 2018; Meyer et al. 2019).

In principle, the common features of strong LyC leakers outlined above may be used as an indirect indicator of f_{esc} from high-redshift galaxies once rest-frame UV-to-optical spectra are accessible at $z \gtrsim 5$ with JWST, potentially offering an independent probe of the contribution of high-redshift galaxies to cosmic reionization. The most important question now is to understand the key physics that governs the escape of ionizing photons, which is also a critical prerequisite for understanding those possible indirect indicators of f_{esc}. High-resolution, spatially resolved spectroscopic data of some LyC leakers in the nearby Universe have been obtained recently to address this question (e.g. Keenan et al. 2017; Miceva et al. 2018; Menacho et al. 2019). A comparably detailed theoretical investigation is demanded by these observations.

The escape of ionizing photons involves physics spanning several orders of magnitude in scale. The young stars that produce the majority of the ionizing photons are normally surrounded by dense gas left from the giant molecular clouds (GMCs) in which the stars are formed. Most ionizing photons from the young stars will be absorbed locally before the birth clouds are dispersed (e.g. Kim et al. 2013; Ma et al. 2015; Kimm et al. 2017; Kakikih & Gronke 2019; Kim, Kim & Ostriker 2019). The time-scale for cloud destruction has to compete with time-scale of massive star evolution, as the ionizing photon budget of a stellar population declines rapidly after the death of the most massive stars in about 3 Myr. Some ionizing photons may also be absorbed by the extended neutral hydrogen in the interstellar medium (ISM) and in the halo before the rest photons escape to the IGM (e.g. Ferrara & Loeb 2013). Given the complexity, hydrodynamic simulations of galaxy formation form a powerful tool for understanding the escape of ionizing photons.

The escape of ionizing photons involves physics spanning several orders of magnitude in scale. The young stars that produce the majority of the ionizing photons are normally surrounded by dense gas left from the giant molecular clouds (GMCs) in which the stars are formed. Most ionizing photons from the young stars will be absorbed locally before the birth clouds are dispersed (e.g. Kim et al. 2013; Ma et al. 2015; Kimm et al. 2017; Kakikih & Gronke 2019; Kim, Kim & Ostriker 2019). The time-scale for cloud destruction has to compete with time-scale of massive star evolution, as the ionizing photon budget of a stellar population declines rapidly after the death of the most massive stars in about 3 Myr. Some ionizing photons may also be absorbed by the extended neutral hydrogen in the interstellar medium (ISM) and in the halo before the rest photons escape to the IGM (e.g. Ferrara & Loeb 2013). Given the complexity, hydrodynamic simulations of galaxy formation form a powerful tool for understanding the escape of ionizing photons.

Early studies using (sub-)kpc-resolution cosmological simulations that cannot properly resolve the ISM structure tend to produce high f_{esc} from tens of per cent to unity (e.g. Razoumov & Sommer-Larsen 2010; Yajima, Choi & Nagamine 2011; see also Anderson et al. 2017). Intriguingly, with more detailed treatments of the multiphase ISM and feedback developed for newer simulations of better resolution, in which the formation and feedback destruction of GMCs start to be resolved, the predicted f_{esc} has been brought down significantly to a few to ten per cent (at least in haloes above $M_{\text{vir}} \sim 10^8 M_\odot$; e.g. Gnedin, Kravtsov & Chen 2008; Paardekooper et al. 2011; Kim et al. 2013; Kimm & Cen 2014; Wise et al. 2014; Ma et al. 2015, 2016; Paardekooper, Kochfar & Dalla Vecchia 2015; Xu et al. 2016; Rosdahl et al. 2018; however, Wise & Cen 2009). Ma et al. (2015) argue in their simulations, ionizing photons from stars younger than 3 Myr are almost entirely consumed by the birth clouds, while there is no longer a sufficiently large ionizing photon budget available from older stars, thereby resulting in $f_{\text{esc}} \gtrsim 0.05$. Such f_{esc} is at the lower limit of what is required for cosmic reionization, hence runaway OB stars (e.g. Conroy & Kratter 2012; Kimm & Cen 2014) and binaries (e.g. Ma et al. 2016; Rosdahl et al. 2018) are invoked to provide the ‘missing’ photons, either by making the ionizing photons from young stars escape more easily or producing more ionizing photons after 3 Myr.

More importantly, this suggests that the ‘sub-grid’ models implemented in these simulations have a large impact on the prediction of f_{esc}. That being said, this problem should be revisited while simulations are advancing in resolution and sub-grid recipes. Current state-of-the-art cosmological simulations of $z \gtrsim 5$ galaxies are fairly successful in reproducing the observed UVLFs at these redshifts (e.g. Gnedin 2016; Ocvirk et al. 2016; Ceverino, Glover & Klessen 2017; Ma et al. 2018, 2019; Rosdahl et al. 2018; Wilkins et al. 2018). It is worth emphasizing that large-volume simulations with (sub-)kpc resolution are not well suited for studying f_{esc}. Sufficiently detailed treatments of the ISM and feedback physics are mandatory. In this paper, we use a suite of 34 high-resolution cosmological zoom-in simulations of $z \gtrsim 5$ galaxies from the Feedback in Realistic Environments project (FIRE; Hopkins et al. 2018b). These simulations use the FIRE-2 version of the source code GIZMO (Hopkins 2015) that...
We introduce the MCRT code for our post-processing calculations in Section 2. Section 3 presents f_{esc} for our simulations, the mass- and redshift-dependence of f_{esc}, and the effects of dust attenuation and binary stars on f_{esc}. In Section 4, we investigate the most critical physics that governs the escape of ionizing photons. We discuss our results in Section 5, and conclude in Section 6. Throughout this paper, we define f_{esc} of a galaxy as the absolute fraction of ionizing photons that escape the halo virial radius.

We adopt a standard flat LCDM cosmology with Planck 2015 cosmological parameters $H_0 = 68$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.27$, $\Omega_{\Lambda} = 0.73$, and $n = 0.97$ (Planck Collaboration XIII 2016a). We use a Kroupa (2002) initial mass function (IMF) from 0.1–100 M_\odot, with IMF slopes of -1.30 from 0.1–0.5 M_\odot and -2.35 from 0.5–100 M_\odot.

2 METHOD

2.1 The simulations

This work uses a suite of 34 cosmological zoom-in simulations at $z \geq 5$, which we summarize in Table 1. The sample is nearly identical to that presented in Ma et al. (2019), except that simulations z5m10a, z5m11c, and z5m11l are re-run from the same initial conditions using eight times higher mass resolution. The higher resolution simulations of z5m10a and z5m11c have been first presented in Ma et al. (2020).

The zoom-in regions are centred around haloes chosen at desired mass and redshift from a set of dark matter (DM)-only cosmological boxes. The multiscale cosmological zoom-in initial conditions are generated at $z = 99$ using the MUSIC code (Hahn & Abel 2011) following the method from Oiørbe et al. (2014). We ensure no contamination from low-resolution particles within $2R_{\text{vir}}$ of the central halo, and less than 1 per cent contamination by mass within $(30 h^{-1}$ Mpc$)^3$ box.

2.2 Simulation details

2.2.1 Simulation parameters

- **Redshift and mass range:** $z = 5$–12 spanning halo masses $M_{200} \sim 10^5$–$10^{10.5} M_\odot$. We also investigate the dependence of f_{esc} on galaxy mass and redshift in our simulated sample. Our results provide an essential complement to previous studies from other groups that found a decreasing f_{esc} with halo mass in $M_{200} \sim 10^9$–$10^{10.5} M_\odot$ (e.g. Wise et al. 2014; Paardekooper et al. 2015; Xu et al. 2016).

- **Gas softening:** The softening length for gas is adaptive ($\epsilon_{\text{gas}} = 0.048 h^{-1}$ kpc). Force softening length for star particles is $\epsilon_{\text{star}} = 5 h^{-1}$ kpc.

Name	z_f	M_{halo} (M_\odot)	M_\star (M_\odot)	m_{DM} (M_\odot)	m_{gas} (M_\odot)	ϵ_{gas} (pc)	ϵ_{DM} (pc)
z5m12b	5	8.73e11	2.55e10	7126.5	3.9e4	0.42	42
z5m12c	5	7.91e11	1.83e10	7126.5	3.9e4	0.42	42
z5m12d	5	5.73e11	1.20e10	7126.5	3.9e4	0.42	42
z5m12e	5	5.04e11	1.35e10	7126.5	3.9e4	0.42	42
z5m12f	5	4.51e11	5.36e9	7126.5	3.9e4	0.42	42
z5m12g	5	3.15e11	4.68e9	7126.5	3.9e4	0.42	42
z5m11e	5	2.47e11	2.53e9	7126.5	3.9e4	0.42	42
z5m11f	5	1.98e11	1.86e9	7126.5	3.9e4	0.42	42
z5m11g	5	1.35e11	1.62e9	7126.5	3.9e4	0.42	42
z5m11h	5	1.01e11	1.64e9	7126.5	3.9e4	0.42	42
z5m11i	5	7.57e10	9.45e8	890.8	4.9e3	0.28	21
z5m11j	5	5.17e10	2.77e8	890.8	4.9e3	0.28	21
z5m11k	5	4.02e10	1.67e8	890.8	4.9e3	0.28	21
z5m11l	5	4.16e10	1.22e8	954.4	5.2e3	0.28	21
z5m11m	5	3.30e10	1.56e8	954.4	5.2e3	0.28	21
z5m11n	5	2.57e10	3.93e7	954.4	5.2e3	0.28	21
z5m11o	5	1.87e10	4.81e7	954.4	5.2e3	0.28	21
an independent box of the same size run to $z = 9$. They are centred on haloes from $M_{\text{halo}} \sim 10^{11} - 10^{12} M_\odot$ at $z = 7$ and $z = 9$, respectively.

The initial mass for baryonic particles (gas and stars) is $m_b \sim 100,900$, or $7000 M_\odot$, and high-resolution DM particles $m_{\text{DM}} \sim 650 - 4 \times 10^4 M_\odot$ in our simulations. Force softening for gas particles is adaptive, with a minimum Plummer-equivalent force softening length $\epsilon_{\text{gas}} = 0.14 - 0.42$ pc. Force softening lengths for star particles and high-resolution DM particles are fixed at $\epsilon_{\text{star}} = 5\epsilon_{\text{gas}} = 0.7 - 2.1$ pc and $\epsilon_{\text{DM}} = 10 - 42$ pc, respectively. The softening lengths are in comoving units at $z > 9$ and in physical units thereafter. In Table 1, we provide the final redshift, mass resolution, force softening lengths, final halo mass, and stellar mass for all 34 zoom-in simulations analysed in this paper.

All simulation are run using an identical version of the code GIZMO (Hopkins 2015) in the meshless finite-mass (MFM) mode with the FIRE-2 models of the multiphase ISM, star formation, and stellar feedback (Hopkins et al. 2018b), which we briefly summarize below. Gas follows an ionized+atomic+molecular cooling curve in 10^4–10^{10} K, including metallicity-dependent fine-structure and molecular cooling at low temperatures and high-temperature metal-line cooling for 11 separately tracked species (H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe). At each time-step, the ionization states and cooling rates for H and He are computed following Katz, Weinberg & Hernquist (1996) and cooling rates from heavier elements are calculated from a compilation of CLOUDY runs (Ferland et al. 2013), where we apply a uniform, redshift-dependent ionizing background from Faucher-Giguère et al. (2009) and an approximate model for H II regions generated by local sources. Gas self-shielding is accounted for with a local Jeans-length approximation.

Star formation is allowed only in dense, molecular, and locally self-gravitating regions with hydrogen number density above $n_H = 1000$ cm$^{-3}$ at 100 per cent efficiency per local free-fall time ($\rho_\text{f} = \rho_\text{f}/\rho_\text{c}$, where $\epsilon = 1$ by default; see Hopkins, Narayanan & Murray 2013). Every star particle is regarded as a stellar population with known mass, age, and metallicity assuming a Kroupa (2002) IMF from 0.1 to 100 M_\odot. The simulations account for the following feedback mechanisms: (i) local and long-range radiation pressure,\(^5\) (ii) photoionization and photoelectric heating, and (iii) energy, momentum, mass, and metal injections from SNe and stellar winds. The luminosities, mass-loss rates, and Type-II SN rates for each star particle are obtained from STARBURST99 (Leitherer et al. 1999), and Type-Ia SN rates from Mannucci, Della Valle & Panagia (2006). These simulations include a subresolution turbulent metal diffusion model described in Su et al. (2017) and Escala et al. (2018). We do not consider primordial chemistry nor Pop III star formation, but adopt an initial metallicity floor of $Z = 10^{-4} Z_\odot$. We emphasize that our photoionization feedback only includes a very approximate model for H II regions: from each newly formed star particle, we move radially outwards and ionize neutral gas particles one by one until the ionizing photon budget of the star is exhausted; ionized gas is set to 10^4 K and photoelectric heating is included following the rates from Wolfire et al. (2003). Hopkins et al. (2020) show that this approximate model does not make a big difference on galaxy-scale dynamics compared to more accurate radiation–hydrodynamic method even in haloes down to $M_{\text{halo}} \sim 10^8 - 10^{12} M_\odot$ in our simulated sample. In the top panel, we divide our sample into three redshift bins regardless of mass resolution. In the bottom panel, we show the sample size at three mass resolution but at all redshift.

\(^4\)The ionizing background makes reionization complete at $z \sim 9$ under the optically thin assumption.

\(^5\)This refers to single scattering of UV-optical radiation by dust and multiple scattering of reprocessed infrared photons in the optically thick regime. Escaped flux is attenuated by the line-of-sight optical depth computed with a tree method (see appendix E in Hopkins et al. 2018b for details).

Figure 1. Number of halo snapshots for every 0.3 dex from $M_{\text{halo}} = 10^{7.8} - 10^{12} M_\odot$ in our simulated sample. In the top panel, we divide our sample into three redshift bins regardless of mass resolution. In the bottom panel, we show the sample size at three mass resolution but at all redshift.
The structure of our MCRT code is similar to those described in previous works (e.g. Fumagalli et al. 2011; Ma et al. 2015; Smith et al. 2019). A total number of $1\,\cdots\,2.4\times10^8$ photon packets are emitted isotropically from the location of star particles, sampled by their ionizing photon emissivity. The same number of photon packets are sent from domain boundary inwards to create an isotropic, uniform ionizing field with intensity given by Faucher-Giguère et al. (2009). Each photon packet is propagated until it escapes the domain, or is absorbed. The number of photon packets we use is sufficiently large such that it does not affect our results on f_{esc}. These photon packets are used to construct the ionization radiation field in the domain.

A photon packet may be absorbed by a neutral hydrogen atom with photoionization cross-section from Verner et al. (1996). It may also be absorbed or scattered by dust grains. In our default calculations, we assume (i) 40 per cent of the metals are locked in dust grains and the relation between infrared excess and UV slope (i.e. the IRX–β relation; see Ma et al. 2018, Section 6 and Ma et al. 2019). Nonetheless, this treatment is still simplistic and a detailed investigation on dust grain physics is beyond the scope of this paper.

We consider a model where dust is ignored completely (Model III in Table 2) and compare the results with those in our default model to bracket the effect of dust on f_{esc} (Section 3.2.2).

3 THE ESCAPE FRACTION OF IONIZING PHOTONS

In this section, we present the ionizing photon escape fraction, f_{esc}, for our simulated sample, its correlation with galaxy mass and redshift, and the effects of stellar population and dust on these results. We reiterate the fact that the f_{esc} of a galaxy is defined as the absolute fraction of ionizing photons that escape the virial radius of the halo. We investigate the key physics that governs the escape of ionizing photons in Section 4.

3.1 The instantaneous escape fraction

Fig. 3 shows the star formation rate (SFR; black solid lines) and f_{esc} (cyan dashed lines) as a function of cosmic time for four examples in our sample: the central haloes in $z=5$–12 in our simulated sample.
Figure 3. The star formation rate (SFR; black solid lines) and instantaneous escape fraction \(f_{\text{esc}} \) (cyan dashed lines) for four galaxies in our simulations, using single-star and our default dust models. Both the SFR and \(f_{\text{esc}} \) show large variabilities on short time-scales. There is usually a time lag between the rising of \(f_{\text{esc}} \) and the rising of SFR at the beginning of a starburst, as it takes some time for feedback to clear the sightlines where ionizing photons can escape. Note that a galaxy may have high \(f_{\text{esc}} \) but low SFR at certain epochs, meaning that it is not leaking a large number of ionizing photons.

z5m11e, with halo mass spanning in \(M_{\text{vir}} \sim 10^{9.6} - 10^{11.5} \, M_\odot \) by \(z = 5 \). For each simulation, we show the 57 epochs from \(z = 12 \) to 5 at which we saved a snapshot. Both \(f_{\text{esc}} \) and the SFR show large time variabilities, with \(f_{\text{esc}} \) changing from nearly zero to order unity (e.g. \(\gtrsim 20 \) per cent) on short time-scales. There is usually a time delay between the rising of \(f_{\text{esc}} \) and the rising of SFR when a starburst begins (e.g. z5m09b at \(t \sim 0.9 \) Gyr, z5m10d, and z5m11c at \(t \sim 1.1 \) Gyr). This has been reported in our previous works (e.g. Ma et al. 2015; Smith et al. 2019) and is because it takes a few Myr for stellar feedback to clear some sightlines before a considerable fraction of the ionizing photons are allowed to escape. In Section 4.1, we further show how feedback determines the escape of ionizing photons.

Fig. 4 shows the relation between \(f_{\text{esc}} \) and halo mass \(M_{\text{vir}} \) for our simulated sample. Each point represents a halo snapshot. In the top panel, the points are colour-coded by redshift. In the bottom panel, the colours represent the mass resolution of the simulation. The instantaneous \(f_{\text{esc}} \) has a large scatter (2–4 dex) at a given \(M_{\text{vir}} \). Again, a high \(f_{\text{esc}} \) does not necessarily mean the galaxy is leaking a large number of ionizing photons, as the SFR may be low at these epochs.

3.2 The average escape fraction

3.2.1 Correlations with galaxy mass

We divide our sample into 14 equal-width bins in logarithmic halo mass from \(\log M_{\text{vir}} = 7.8 - 12 \), with a bin width of 0.3 dex. For each bin, we compute the average escape fraction over all halo snapshots in that bin, \(\langle f_{\text{esc}} \rangle = \sum_i Q_{\text{esc,i}}/ \sum_i Q_{\text{ion,i}} = \sum_i f_{\text{esc,i}} Q_{\text{ion,i}}/ \sum_i Q_{\text{ion,i}} \).
where Q_{ion} and $Q_{\text{esc,i}}$ are the number of ionizing photons emitted and escaped per unit time, and $f_{\text{esc,i}}$ is the escape fraction of the ith galaxy in the bin. In the left-hand panel of Fig. 5, we show the correlation between f_{esc} and halo mass M_{vir}. The colour separates simulations run with different resolution (blue: $m_b \sim 7000 \, M_\odot$, green: $900 \, M_\odot$, and red: $100 \, M_\odot$). Here we average over galaxies at all redshifts in a given mass bin, but we study redshift dependence later in Section 3.2.4. Note that certain bins do not have a large number of galaxies ($\lesssim 100$, see Fig. 1), which may introduce noise to our results.

Our results on f_{esc} do not yet fully converge with resolution. Simulations at 7000 M_\odot resolution tend to produce systematically lower f_{esc} than those at 900 M_\odot resolution or better, while we do not find significant differences between simulations at 900 M_\odot and 100 M_\odot resolution. Now we focus on the qualitative trend between f_{esc} and M_{vir}. For intermediate halo mass (i.e. log $M_{\text{vir}} \sim 9.5$–11), f_{esc} is nearly constant and does not depend strongly on halo mass. This trend is found both for simulations at 7000 M_\odot resolution and at 900 M_\odot or better resolution, although the absolute value of f_{esc} differs between the two subsamples. In this halo mass range, f_{esc} is roughly 0.2 for simulations at 900 M_\odot resolution, while $f_{\text{esc}} \sim 0.1$ for those at 7000 M_\odot resolution. At the massive end (i.e. above log $M_{\text{vir}} \sim 11$), f_{esc} decreases with halo mass and drops to 0.03 at log $M_{\text{vir}} \sim 9.5$–11. This is due to increasingly important dust attenuation at higher masses (cf. Fig. 6 and Section 3.2.2). Below log $M_{\text{vir}} \sim 9$, f_{esc} decreases with increasing halo mass and drops under 0.05 at log $M_{\text{vir}} \sim 8$. We discuss in Section 4.4 that this is likely due to less efficient star formation and stellar feedback in low-mass galaxies in clearing the gas for ionizing photons to escape. We emphasize that the apparent independence of f_{esc} on M_{vir} from log $M_{\text{vir}} \sim 9.5$–11 is likely a coincidence: we show below in Section 3.2.2 that if there is no dust, f_{esc} will increase with M_{vir} up to $M_{\text{vir}} \sim 10^{11} \, M_\odot$ (cf. Fig. 6), and the effect of dust attenuation becomes increasingly strong at higher masses, leading to a nearly constant f_{esc} at intermediate halo mass.

We also bin our sample in every 0.5 dex in stellar mass into 13 equal-width stellar mass bins from log $M_\star \sim 3.75$–10.25. We show in the right-hand panel of Fig. 5 the correlation between f_{esc} and stellar mass, where we average f_{esc} over galaxies at all redshifts in a given stellar mass bin and the colour represents the resolution used for our simulations. Again, simulations run at 7000 M_\odot resolution produce systematically lower f_{esc} than those run at 900 M_\odot resolution or better, but the qualitative behaviour of the f_{esc}–M_\star relation agrees well between the two subsamples. We find that f_{esc} increases with stellar mass until log $M_\star \sim 8$, where f_{esc} starts to decrease at higher masses. We obtain $f_{\text{esc}} \sim 0.2$ (0.1) for 900 M_\odot (7000 M_\odot) resolution at log $M_\star \sim 8$ where f_{esc} peaks. Similar to what is mentioned above, the low f_{esc} at the high- and low-mass end is due to heavy dust attenuation and inefficient feedback, respectively, which we explicitly show later in this paper.

We reiterate the facts that simulations at 7000 M_\odot resolution and those at 900 M_\odot or better resolution predict broadly consistent trends between f_{esc} and M_{vir} (M_\star) where the mass overlaps. Also, simulations at 900 M_\odot and 100 M_\odot resolution predict broadly similar f_{esc}. This suggests that the qualitative trend in the f_{esc}–M_{vir} (M_\star) relation from Fig. 5 is likely robust and not an artefact due to the non-trivial selection criteria for our simulated sample.

3.2.2 The effects of dust attenuation

For every halo above $M_{\text{vir}} = 10^{10} \, M_\odot$ in our simulations, we repeat the MCRT calculations without dust extinction and scattering (‘no dust’, i.e. Model III in Table 2). We expect dust to be subdominant in haloes below $M_{\text{vir}} = 10^{10} \, M_\odot$, as they are much less dust-enriched than more massive haloes. In the left-hand column of Fig. 6, we compare the f_{esc}–M_{vir} relation (top panel) and the f_{esc}–M_\star relation (bottom panel) with and without dust attenuation. The blue and red symbols represent simulations run at 7000 M_\odot resolution and at 900 M_\odot or better resolution, respectively. Thereafter, we combine simulations at 900 M_\odot and 100 M_\odot resolution, given that we do
constant at the more massive end. This suggests that the seemingly
high-mass end (log M for simulations at 900
likelihood to escape (cf. Fig. 9 and Section 4.3). Binary stars increase the number of ionizing photons emitted by
sin 0.25 (0.15) for simulations at 900 M_\odot (7000 M_\odot)
resolution, and turns nearly constant at the more massive end. This suggests that the seemingly
constant f_{esc} over log M_{vir} \sim 9.5–11 and the decrease of f_{esc} at the high-mass end (log M_{vir} \geq 11, log M_* \geq 8) are due to increasingly heavy dust attenuation.

3.2.3 The effects of binary stars

We also repeat our MCRT calculations with the binary stellar population models instead of the single-star models from BPASS (i.e. Model II in Table 2). The binary models include mass transfer from the primary star to the secondary star and binary merger that make more high-mass stars at later times compared to single-star models. They also take into account quasi-homogeneous evolution for low-metallicity, fast rotating stars (due to mass transfer), whose surface temperatures are high (see e.g. Eldridge & Stanway 2012; Eldridge et al. 2017). For a single-age stellar population, the ionizing photon emissivity is nearly the same between single-star and binary models in the first 3 Myr, but binary models predict more ionizing photons than single-star models after 3 Myr due to binary evolution. Binary models produce \sim20–35 per cent more ionizing photons for a single-age population of 0.1–10^3 solar metallicity over its lifetime. Besides, feedback is expected to clear a large fraction of the sightlines after 3 Myr, so the extra ionizing photons from binary stars are likely to escape more easily (see also Section 4.3). These two effects suggest that binary stars may contribute a large number of ionizing photons for reionization (e.g. Ma et al. 2016; Stanway, Eldridge & Becker 2016; Götberg, de Mink & Groh 2017; Rosdahl et al. 2018; Götberg et al. 2020).

In the middle column of Fig. 6, we compare the results using single-star (light plus signs) and binary (dark cross signs) models, We restate that the binary models are only used in post-processing calculations, not on-the-fly in our simulations. Again, the top panel and the bottom panel show the f_{esc}–M_{vir} and f_{esc}–M_* relations, respectively, and the colours represent the resolution for our simulations. We confirm previous works that binary stars tend to produce systematically higher f_{esc}, although the qualitative trend between f_{esc} and halo/stellar mass remains the same as single-star models. However, we find that binary stars only boost f_{esc} moderately by \sim25–35 per cent, and the average ionizing photon production rate (Q_{ion}) by \sim20–30 per cent, so the number of ionizing photons

escaped per unit time \((Q_{\text{esc}})\) is boosted by about \(~60\text{–}80\) per cent compared to single-star models for most halo mass and stellar mass bins. Our results here suggest that binary stars have smaller effects than previously found (cf. a factor of 3 or more, e.g. Ma et al. 2016; Rosdahl et al. 2018), probably because stars younger than 3 Myr (when binary evolution is subdominant) leak ionizing photons more efficiently in our current FIRE-2 simulations, thereby lowering the relative contribution by the extra ionizing photons from binary stars. We further discuss this in Section 4.3.

3.2.4 Dependence on redshift

So far, we only studied the average escape fraction over galaxies at all redshifts. Now we investigate the redshift dependence of \(f_{\text{esc}}\). We note that our sample has a very small size, so we only divide it into two redshift bins: \(z < 8\) and \(z \geq 8\). There will be too few galaxies in many halo (stellar) mass bins if we use more redshift bins, so we only focus on the qualitative trend of \(f_{\text{esc}}\) with redshift. In the right-hand column of Fig. 6, we present the \(f_{\text{esc}} = M_\ast / M_\ast\) (top) and \(f_{\text{esc}} = M_\ast / M_\ast\) (bottom) relations, where the plus and cross symbols represent galaxies at \(z < 8\) and \(z \geq 8\), respectively. The colours represent different resolutions. For nearly all mass bins, \(z \geq 8\) galaxies show systematically higher \(f_{\text{esc}}\) than their \(z < 8\) counterparts. We speculate that this is because SFR increases with redshift for a given halo (stellar) mass (Ma et al. 2018), so feedback is more efficient in clearing the gas and allowing more ionizing photons to escape owing to the stronger star formation activities at higher redshifts. A decreasing \(f_{\text{esc}}\) towards lower redshift has been proposed in some models of the reionization history (e.g. Kuhlen & Faucher-Giguère 2012; Faucher-Giguère 2020; Yung et al. 2020). Finally, we stress that the qualitative behaviours of the \(f_{\text{esc}} = M_\ast / M_\ast\) and \(f_{\text{esc}} = M_\ast / M_\ast\) relations are roughly the same between the two redshift bins.

4 PHYSICS OF IONIZING PHOTON ESCAPING

In Section 3, we show that although the instantaneous \(f_{\text{esc}}\) of individual galaxies ranges from \(~10^{-4}\) to 1, sample averaged \(f_{\text{esc}}\) is moderate, with \(f_{\text{esc}} = 0.2\) around \(M_\ast = 10^8 M_\odot\) using single-star stellar population models (for simulations at 900 \(M_\odot\) resolution or better). We reiterate that not every galaxy with a high instantaneous \(f_{\text{esc}}\) is a strong leaker of ionizing photons. Only those that have both high \(f_{\text{esc}}\) and SFR (in the middle of a starburst) are likely the dominant contributor to reionization. Moreover, we find that the average \(f_{\text{esc}}\) decreases at \(M_\ast > 10^8 M_\odot\) due to dust attenuation, but \(f_{\text{esc}}\) also decreases with decreasing stellar mass at \(M_\ast \leq 10^8 M_\odot\). Note that strong leakers also exist, but are not common, among low-mass galaxies. In this section, we address two questions: (1) in what conditions can ionizing photons escape efficiently, and (2) why do low-mass galaxies have low escape fractions on average?

Our analysis below mainly uses simulations at 900 \(M_\odot\) or better resolution, but we have confirmed that the qualitative behaviours are similar for simulations at 7000 \(M_\odot\) resolution. We mainly focus on results using single-star models, in which almost all the ionizing photons are emitted from stars younger than 10 Myr (cf. Section 4.3), unless stated otherwise.

4.1 Geometry of ionizing-photon-leaking regions

In this section, we present some example galaxies with strong ionizing photon leakage from our simulations to establish an intuitive picture for the escaping of ionizing photons. This is also useful for understanding the LyC-leaking galaxies discovered at intermediate and low redshifts (see Section 1 and references therein).

The top row of Fig. 7 shows the central galaxy of simulation z5m11b at \(z = 5.116\). The halo mass and stellar mass at this epoch are \(M_\text{halo} = 3.7 \times 10^{10} M_\odot\) and \(M_\ast = 1.5 \times 10^8 M_\odot\), respectively. It is at the early stage of starburst that begins 25 Myr ago. The galaxy has an instantaneous \(f_{\text{esc}} = 0.2\) and rapidly rising SFR at this time. The left-hand panel presents the gas surface density of a 1 kpc \(\times\) 10 kpc region centred at the halo centre. A large gas reservoir has built up in the ISM that triggered the starburst (\(M_{\text{gas}} \sim 7.5 \times 10^8 M_\odot\) in the inner 5 kpc). Almost all star formation in the past 10 Myr happens in the three regions marked by the dashed squares (1.2 kpc on each side). Most stars were formed in region A (white). It is also where nearly all the escaped ionizing photons come from. Regions B and C (red) formed an order of magnitude fewer stars, and few ionizing photons from these stars can escape.

Region A contains a kpc-scale superbubble surrounded by an incomplete dense shell. In the top-middle panel of Fig. 7, we zoom into the 1.2 kpc \(\times\) 1.2 kpc region marked by box A. The white points show stars formed 3–10 Myr ago, while the colour points show stars younger than 3 Myr, colour-coded by their ages. The top-right-hand panel shows the same image, except that the young stars are colour-coded by the escape fraction of individual stars. The superbubble is presumably created by clustered SNe from stars 3–10 Myr old. These stars are sitting in the low-density bubble at this time. In the meanwhile, new stars form in the compressed, dense shell as the bubble expands in the ISM. More importantly, the shell can be accelerated while forming stars. This is the reason why there is an age gradient in stars younger than 3 Myr at the bottom half of the shell (see also Yu et al. 2020). As a consequence, stars that are only 2–3 Myr old already locate inside the low-density bubble. Moreover, the bubble is not completely covered by dense gas, with a large fraction of the sightlines cleared by feedback along which the gas column density is low (e.g. the direction pointing out of the image). The bubble has a large number of young stars. We will show in Section 4.2 that the low-column-density sightlines can be fully ionized by these young stars, allowing ionizing photons to escape effectively through these optically thin channels. Stars 3–10 Myr old in the bubble, and stars 2–3 Myr old at the inner side of the bubble (which have \(f_{\text{esc}} \sim 0.3\)), contribute the majority of the escaped ionizing photons.

To summarize, region A is leaking ionizing photons along the optically thin sightlines around the superbubble. The escaped photons come from stars 3–10 Myr old in the bubble and younger stars at the inner edge of the shell. The low-column-density channels are pre-cleared by feedback and then fully ionized by the large amount of young stars collectively in the bubble (cf. Fig. 8 and Section 4.2). In contrast, regions B and C do not contain a superbubble. We find that most of the young stars in these regions are still buried in their birth clouds. Even stars 3–10 Myr old are surrounded by optically thick neutral gas in the ISM. This suggests that feedback in regions B and C has not been sufficiently strong to clear some channels that can be fully ionized to allow ionizing photons to escape.

\footnote{Thanks to the nature of the Monte Carlo method, we are able to track the source from which a photon packet is emitted in our MCRT calculations, so we know how many photon packets are emitted from each star particle and how many of them eventually escape. This should not be confused with the galaxy escape fractions (i.e. averaged over all stars in the galaxy).}

\footnote{The total mass of stars 3–10 Myr old in the superbubble is \(2.2 \times 10^5 M_\odot\).}
Figure 7. Examples of galaxies with strong ionizing photon leakage. Top row: The central galaxy in simulation z5m11b at z = 5.116. The galaxy is at the early stage of a starburst. At this epoch, it has a halo (stellar) mass of $M_\text{vir} = 3.7 \times 10^{10} M_\odot$ ($M_\star = 1.5 \times 10^8 M_\odot$) and instantaneous $f_\text{esc} \sim 0.2$. Left-hand panel: Gas surface density of a 10 kpc \times 10 kpc projection. Most stars in the past 10 Myr are formed in region A (marked by the white dashed square), where the majority of the escaped ionizing photons come from. Regions B and C have formed an order of magnitude fewer stars than region A, but almost no ionizing photons escape from both regions. Middle: Zoom-in image on region A (1.2 kpc on each side). The white points show stars 3–10 Myr old, while the colour points show stars younger than 3 Myr, colour-coded by their single-star escape fractions. Region A contains a kpc-scale superbubble presumably created by stars 3–10 Myr old. A dense shell around the bubble is forming new stars while accelerated by feedback, leaving an age gradient at the bubble edge. Stars 2–3 Myr old are already in the low-density bubble. The large number of young stars in region A can fully ionize the low-column-density sightlines around the bubble, allowing a large fraction of ionizing photons to escape. In contrast, regions B and C do not contain a feedback-driven superbubble nor a large number of young stars to fully ionize the surrounding gas. Bottom row: The central galaxy of simulation z5m11c at z = 5.186. The galaxy is in the middle of a starburst. It has a halo (stellar) mass of $M_\text{vir} = 7.4 \times 10^{10} M_\odot$ ($M_\star = 7.8 \times 10^8 M_\odot$) and instantaneous $f_\text{esc} \sim 0.26$. The left-hand panel shows the gas surface density in a 10 kpc \times 10 kpc region around the halo centre. The middle panel zooms into the (1.2 kpc)2 region marked by the white dashed box in the left. This region is at the edge of a superbubble of a few kpc in size and contains a dense shell compressed by the bubble. This is the most active star-forming region in the past 10 Myr, where the majority of the escaped ionizing photons come from. The white points show stars 3–10 Myr old, which locate inside the low-density bubble. The colour points show stars younger than 1 Myr (rather than 3 Myr in the top row), colour-coded by their age in the middle panel and by f_esc in the right-
In the previous section, we use some examples to illustrate the typical geometry of strong ionizing-photon-leaking regions in galaxies with high f_{esc}. For galaxies of all masses, we run our simulations at 900 M_\odot, where the sample average (f_{esc}) peaks at 0.2 (see Fig. 5). The black and red lines show stars with individual-star escape fraction $f_{\text{esc}} < 0.05$ and $f_{\text{esc}} > 0.2$, respectively. From every star particle, we compute the column density out to the virial radius along 100 random directions. Each star is weighted equally when calculating the distribution function.

The solid lines show the distribution function of total (neutral and ionized) hydrogen column density ($N_{\text{HI}} = N_{\text{HI}} + N_{\text{HII}}$), while the dotted lines show that only for neutral hydrogen (N_{HI}), with ionization states taken from our default MCRT calculations. As a proof of concept, we also redo the MCRT calculations without photoionization from stars (but including the uniform ionizing background and collisional ionization) and show the resulting distribution of N_{HI} in Fig. 8 with the thin dashed lines. Our results highlight two physical processes that are crucial to the escape of ionizing photons. First of all, comparing the black and red solid lines, we find that stars leaking ionizing photons effectively (e.g. $f_{\text{esc}} > 0.2$; red) tend to locate in regions with lower N_{HI} around compared to stars that have much lower f_{esc} (black). These regions are presumably cleared by stellar feedback (e.g. SN bubbles; see Fig. 7 and Section 4.1). Secondly, we find a large fraction of optically thin ($N_{\text{HI}} \lesssim 2 \times 10^{-17} \, \text{cm}^{-2}$) sightlines surrounding stars with high f_{esc}, through which ionizing photons can escape freely. More importantly, comparing the red dashed and dotted lines, we argue that these optically thin channels around young stars must be self-ionized by these stars. This is more likely to happen in regions where a large number of stars have formed in the past 10 Myr. In contrast, stars that have much lower f_{esc} tend to be fully embedded in optically thick ($N_{\text{HI}} \gtrsim 2 \times 10^{17} \, \text{cm}^{-2}$) sightlines. These stars are not sufficient to highly ionize the surrounding gas, making it difficult for their ionizing photons to escape.

Although we only show the column density distribution for all stars younger than 10 Myr in galaxies around log M_* ~ 8, in Fig. 8, we have confirmed that all our conclusions still hold if we compare stars in a narrow age bin or in galaxies at a different mass.

4.3 Escape fraction by stellar age

We define the average of escape fraction over individual stars in a narrow age bin, $\left\langle f_{\text{esc}} \right\rangle_{\text{age}}$, for a selected population of galaxies from our simulations. In the top panel of Fig. 9, we present $\left\langle f_{\text{esc}} \right\rangle_{\text{age}}$ as a function of stellar age for galaxies in four stellar mass bins, where we calculate $\left\langle f_{\text{esc}} \right\rangle_{\text{age}}$ for every 0.5 dex in logarithmic age. Note that we only use simulations at 900 M_\odot or better resolution and single-star models for post-processing calculations.

We find $\left\langle f_{\text{esc}} \right\rangle_{\text{age}}$ increases with age for galaxies of all masses. A large fraction of the young stars are still embedded in their birth clouds, so they tend to have low f_{esc} on average. As feedback from these stars starts to destroy the birth clouds, blow out supershells in the ISM, and clear low-column-density sightlines, their ionizing photons can escape more easily, thereby increasing $\left\langle f_{\text{esc}} \right\rangle_{\text{age}}$ at later times. At a given age, $\left\langle f_{\text{esc}} \right\rangle_{\text{age}}$ tends to increase with stellar mass, in line with the trend between the sample average $\langle f_{\text{esc}} \rangle$ and M_* in Fig. 5. In more massive galaxies, stars 10 Myr old have an average $\left\langle f_{\text{esc}} \right\rangle_{\text{age}} \sim 0.4$; even stars 1–3 Myr old on average leak 10–20 per cent of their ionizing photons, most of which are likely from stars formed in an accelerated shell at the edge of a superbubble (e.g. Fig. 7). In galaxies under $M_* \sim 10^9 \, M_\odot$, however, almost no ionizing photon escape.
from stars younger than 3 Myr are able to escape; stars 10 Myr old only have \(f_{\text{esc}} \) lower than 0.1. After 20 Myr, \(f_{\text{esc}} \) increases more significantly with age, indicating that this is the time-scale on which feedback eventually clears some sightlines in such low-mass galaxies, but stars older than 20 Myr no longer have a high ionizing photon production efficiency.

For completeness, we show the cumulative distribution of ionizing photons emitted (solid) and escaped (dashed) as a function of stellar age. In single-star case (black), 50 per cent of the escaped ionizing photons come from stars 1–3 Myr old, while the rest 50 per cent from stars 3–10 Myr old. The binary models extend the distribution to slightly later times.

In Section 3.2.3, we mention that binary models produce more ionizing photons after 3 Myr than single-star models owing to mass transfer and stellar mergers. These extra photons tend to escape efficiently given the relatively high \(f_{\text{esc}} \) after 3 Myr. When using binary models (cyan), we find 55 per cent (35 per cent) of the emitted (escaped) ionizing photons come from stars younger than 3 Myr, 40 per cent (55 per cent) from stars 3–10 Myr old, and the rest 5 per cent (10 per cent) from stars over 10 Myr old. We find binary stars only increase the number of ionizing photons escaped by 60–80 per cent, much lower than that reported in previous works (cf. a factor of 3 or more; e.g. Ma et al. 2016; Rosdahl et al. 2018). This is likely due to the fact that a large fraction of the escaped ionizing photons are from stars younger than 3 Myr (when binary evolution is subdominant) in our simulations, thus reducing the relative effects of the extra photons from binaries after 3 Myr.

4.4 Why does \(f_{\text{esc}} \) decrease at the low-mass end?

In Section 3.2.1 and Fig. 5, we show that the sample average \(f_{\text{esc}} \) decreases with decreasing stellar mass below \(M_\star \sim 10^4 M_\odot \). There is a similar trend with halo mass at \(M_{\text{vir}} \lesssim 10^{11} M_\odot \) if dust attenuation is ignored (e.g. the left-hand column in Fig. 6). We study why \(f_{\text{esc}} \) decreases at the low-mass in this section.

From each star particle younger than 10 Myr, we calculate the radius out to which the ionizing photons can travel before absorbed by neutral hydrogen. In Fig. 10, we show the distribution of this radius for galaxies in four stellar mass bins from \(M_\star \sim 10^4–10^5 M_\odot \). Only simulations at 900 \(M_\odot \) resolution...
optically thin sightlines increases with this radius to infinity (not shown in Fig. 10, the fraction of such galaxies. Combined the results from Figs 9–11, we suggest that the \(\propto \) density paths channels pre-cleared by feedback. (cf. Fig. 8 and Section 4.2), presumably through some low-column-paths are photoionized by the young stars collectively in the galaxy.

from 0.2 to 10 pc, as well as the median \(R(\tau_{\rm HI} = 1) \), increases with stellar mass. The results in Fig. 10 suggest that most ionizing photons can reach larger distances with stellar mass. The results in Fig. 10 suggest that most ionizing photons can reach larger distances (from a few 100 to 10 kpc) in relatively high-mass galaxies. We reiterate that the optically thin halo is bimodal, similar to the red dotted line in Fig. 8. The fraction of optically thin sightlines \(N_{\rm HI} \mid \geq 2 \times 10^{17} \) cm\(^{-2}\) decreases significantly with decreasing stellar mass. This suggests a high covering fraction of optically thick neutral gas \(N_{\rm HI} \mid \geq 2 \times 10^{17} \) cm\(^{-2}\) in the halo around low-mass galaxies. \(^{9} \) We reiterate that the optically thin paths are photoionized by the young stars collectively in the galaxy (cf. Fig. 8 and Section 4.2), presumably through some low-column-density paths channels pre-cleared by feedback.

In Ma et al. (2018), we show the stellar mass and average SFR scale with halo mass as \(\propto M_{\rm vir}^{0.5} \), which means star formation is less efficient in low-mass galaxies than in their high-mass counterparts. Moreover, the mass-weighted gas temperature in the halo (roughly independent of radius in 0.2–1\(R_{\rm vir} \)) decreases from 10\(^5 \) K for galaxies in \(M_{\star} \sim 10^{5}–10^{6} \) \(M_{\odot} \) to 10\(^3 \) K for those in \(M_{\star} \sim 10^{1}–10^{2} \) \(M_{\odot} \), making collisional ionization less effective in the halo of low-mass galaxies. Combined the results from Figs 9–11, we suggest that the low \(f_{\rm esc} \) in low-mass galaxies owes to a combination of reasons as follows. First, feedback is not strong enough to blow out kpc-scale superbubbles around stars \(\lesssim 10 \) Myr old and trigger star formation in the dense shell surrounding the bubble simultaneously. This can be seen from the fact that only a small fraction of the ionizing photons from young stars can travel more than 100 pc before absorbed in low-mass galaxies (Fig. 10). Secondly, the young stars cannot fully ionize a large number of channels throughout the halo (Fig. 11), so stars of all ages tend to have low escape fractions on average in the low-mass galaxies (the top panel in Fig. 9). Both arguments above are likely resulted from the low star formation efficiencies in these galaxies, namely low-mass galaxies do not form sufficient stars coherently to clear some low-column-density paths and to fully ionize these sightlines. Finally, the low gas temperatures in the halo make the neutral gas covering fraction higher around low-mass galaxies, at least partly responsible to the low \(\langle f_{\rm esc} \rangle_{\rm w} \) in Fig. 9.

5 DISCUSSION

5.1 The impact of sub-grid recipes

In Section 1, we mentioned that the prediction of \(f_{\rm esc} \) from hydrodynamic simulations of galaxy formation might be sensitive to the ‘sub-grid’ models implemented in these simulations. In particular, Ma et al. (2015) found \(f_{\rm esc} \leq 0.05 \) using a sample of three simulations spanning \(M_{\star} \sim 10^{9}–10^{11} \) \(M_{\odot} \) at \(z \geq 5 \) run with the FIRE-1 version of GIZMO (see Hopkins et al. 2014, for details), whereas in this paper, we find \(f_{\rm esc} \sim 0.2 \) in \(M_{\star} \sim 10^{8.5}–10^{11} \) \(M_{\odot} \) in FIRE-2 simulations, both using single-star stellar population models.

To test possible subtle effects of different sub-grid treatments, we re-run simulation zS1m11b (with halo mass \(M_{\star} \sim 4 \times 10^{10} \) \(M_{\odot} \) at \(z = 5 \) from the initial condition to \(z = 5 \) for more than 20 times with almost all possible combinations of choices for hydrodynamic method, sub-grid models, etc., as listed below.

(i) Hydrodynamic solver: P-SPH (Hopkins 2013, used for FIRE-1) and MFM (Hopkins 2015, FIRE-2).

(ii) Density threshold for star formation in \(n_{th} = 50–1000 \) cm\(^{-3}\). The default value for FIRE-1 (FIRE-2) is 50 (1000) cm\(^{-3}\). We do not experiment with higher \(n_{th} \) given our resolution.

(iii) The non-conservative FIRE-1 and the more accurate, conservative FIRE-2 SN coupling algorithms (see Hopkins et al. 2018a, for detailed descriptions and comparisons).

(iv) The default self-gravitating criteria for star formation (used for both FIRE-1 and FIRE-2) and the stricter version from Grudić et al. (2018) (see also Ma et al. 2020).

(v) The star formation efficiency per local free-fall time \(\epsilon \sim 0.1–1 \) (default is 1 in both FIRE-1 and FIRE-2).

(vi) The maximum search radius for gas particles for SN coupling in 0.2–10 kpc (default is 2 kpc in both FIRE-1 and FIRE-2).

(vii) More subtle changes from FIRE-1 to FIRE-2 including the inclusion of an artificial pressure floor from Truelove et al. (1997) for the P-SPH method, cooling functions, and recombination rates.

All the tests we run produce statistically indistinguishable star formation histories for galaxy zS1m11b. We also run post-processing calculations on all these simulations using our MCRT code to calculate \(f_{\rm esc} \). We compare the time average of \(f_{\rm esc} \) over 48 snapshots in \(z = 5–10 \) for this galaxy, \(\langle f_{\rm esc} \rangle_{\tau} \). We find that runs using the P-SPH method generally produce \(\langle f_{\rm esc} \rangle_{\tau} \sim 0.1 \), while those using the MFM method predict \(\langle f_{\rm esc} \rangle_{\tau} \sim 0.2 \). The star formation criteria, SN coupling algorithms, etc., make more subtle differences. Note that the P-SPH method smooths the density field using a quintic

\[f_{\rm esc} \] in FIRE-2 simulations

\[M_{\star} \sim 10^{5} M_{\odot} \] still holds for simulations run at \(m_{\phi} = 7000 M_{\odot} \) resolution. However, we find that the distribution of \(N_{\rm HI} \) becomes independent of stellar mass at \(M_{\star} \geq 10^{8} M_{\odot} \). This indicates that the nearly constant \(f_{\rm esc} \) above \(M_{\star} \sim 10^{8} M_{\odot} \) without dust attenuation (bottom left-hand panel in Fig. 6) is likely due to a constant opening angle of optically thin sightlines at the high-mass end.

\[\frac{M_{\star}}{10^{4}–10^{5} M_{\odot}} \]

\[\frac{M_{\star}}{10^{5}–10^{6} M_{\odot}} \]

\[\frac{M_{\star}}{10^{6}–10^{7} M_{\odot}} \]

\[\frac{M_{\star}}{10^{7}–10^{8} M_{\odot}} \]

\[\frac{M_{\star}}{10^{8}–10^{9} M_{\odot}} \]

\[\frac{M_{\star}}{10^{9}–10^{10} M_{\odot}} \]

\[\frac{M_{\star}}{10^{10}–10^{11} M_{\odot}} \]
5.2 Which galaxies provide the most ionizing photons?

In Section 3.2.1, we find \(\langle f_{\text{esc}} \rangle \) increases with halo mass in \(M_{\text{vir}} \sim 10^8 \) to \(10^{9.5} \) \(M_\odot \), turns nearly constant in \(M_{\text{vir}} \sim 10^{9.5} \) to \(10^{11} \) \(M_\odot \), and decreases with halo mass above \(M_{\text{vir}} \sim 10^{11} \) \(M_\odot \). In the literature, the dependence of \(\langle f_{\text{esc}} \rangle \) on \(M_{\text{vir}} \) has been studied in state-of-the-art simulations with sophisticated chemical network and/or on-the-fly radiation hydrodynamics. These simulations are fairly expensive so some of them are run in small cosmological volumes (box size less than \(\sim 10 \) cMpc) and/or stopped at relatively high redshifts (\(z \gtrsim 8 \)) (see e.g. Wise et al. 2014; O'Shea et al. 2015; Paardekooper et al. 2015; Xu et al. 2016). These studies found that \(\langle f_{\text{esc}} \rangle \) decreases with halo mass, from \(\langle f_{\text{esc}} \rangle \sim 0.5 \) at \(M_{\text{vir}} \lesssim 10^8 \) \(M_\odot \) to \(\langle f_{\text{esc}} \rangle \lesssim 0.05 \) at \(M_{\text{vir}} \gtrsim 10^{10} \) \(M_\odot \) (e.g. Wise et al. 2014; Xu et al. 2016). Intriguingly, Xu et al. (2016) found that \(\langle f_{\text{esc}} \rangle \) starts to increase at \(M_{\text{vir}} \gtrsim 10^9 \) \(M_\odot \) to \(\langle f_{\text{esc}} \rangle \sim 1.0 \) to 2 at \(M_{\text{vir}} \sim 10^{9.5} \) \(M_\odot \), in line with what we find in our simulations. Nonetheless, the simulation from Xu et al. (2016) only contains a small number of halos at \(M_{\text{vir}} \sim 10^{9.5} \) \(M_\odot \) while no halo at higher masses. Our results thus complement these previous studies by extending the \(\langle f_{\text{esc}} \rangle - M_{\text{vir}} \) relation to the massive end.

In our simulations, the average SFR, and thereby the ionizing photon emissivity \(\langle Q_{\text{ion}} \rangle \), scale with halo mass as \(\propto M_{\text{vir}}^{3/2} \). A nearly constant \(\langle f_{\text{esc}} \rangle \) gives \(\langle Q_{\text{ion}} \rangle \propto M_{\text{vir}}^{3/2} \) for the rates of escaped photons at intermediate halo mass from \(M_{\text{vir}} \sim 10^{9.5} \) to \(10^{11} \) \(M_\odot \). However, the scaling becomes steeper (shallower) as \(\langle Q_{\text{ion}} \rangle \propto M_{\text{vir}}^{3/2} \) (\(\propto M_{\text{vir}}^{3/2} \)) at the low-(high)-mass end as \(\langle f_{\text{esc}} \rangle \) decreases. At a given halo mass, both the SFR (and hence \(\langle Q_{\text{ion}} \rangle \)) and \(\langle f_{\text{esc}} \rangle \) increase with redshift (see fig. 7 in Ma et al. 2018 and Fig. 6), so \(\langle Q_{\text{ion}} \rangle \) also increases with redshift. The best-fitting normalization of the broken power-law function to our data is \(\langle Q_{\text{ion}} \rangle \sim 1 \times 10^{43} \) s\(^{-1}\) from \(z = 6 \) to \(10 \) at \(M_{\text{vir}} = 10^{11} \) \(M_\odot \), where we use single-star population models. By convolving the broken power-law function of \(\langle Q_{\text{ion}} \rangle - M_{\text{vir}} \) relation with the halo mass functions (HMFs; Murray, Power & Robotham 2013) at \(z \gtrsim 5 \), we obtain the number density of ionizing photons escaped to the IGM as \(n_{\text{ion}} \sim 10^{41.2-10^{6.6}} \) s\(^{-1}\) \(\text{Mpc}^{-3} \), decreasing with redshift from \(z = 6 \) to 10. Binary stars will enhance \(n_{\text{ion}} \) by about \(\sim 60 \) to \(80 \) per cent (Section 3.2.3). Our estimate of \(n_{\text{ion}} \) is in broad agreement with what derived from the most recent constraints on the reionization history (e.g. Mason et al. 2019b). Here we present the quantitative details on \(\langle Q_{\text{ion}} \rangle \) and \(n_{\text{ion}} \) only for completeness. Given the non-convergence in our simulations, we emphasize that these numbers likely suffer a factor of 2 uncertainties. They should be used with caution.

Now we consider the distribution of \(n_{\text{ion}} \) per logarithmic halo mass, \(\text{d}n_{\text{ion}}/\text{d} \log M_{\text{vir}} \). The HMF can be well described by a power-law function at the low-mass end and an exponential function at the high-mass end, \(\text{d}n/\text{d} \log M_{\text{vir}} \sim M_{\text{vir}}^{-1} \exp(-M_{\text{vir}}/M_{\text{vir}}^*) \), where \(M_{\text{vir}}^* \) is some characteristic mass (Schechter 1976). As \(\text{d}n_{\text{ion}}/\text{d} \log M_{\text{vir}} = \langle Q_{\text{ion}} \rangle \text{d}n/\text{d} \log M_{\text{vir}} \), for the canonical \(\alpha = 2 \) slope, \(n_{\text{ion}} \) increases with \(M_{\text{vir}} \) at the low-mass end and decreases dramatically above \(M_{\text{vir}}^* \). We find at \(z \sim 6 \), \(\text{d}n_{\text{ion}}/\text{d} \log M_{\text{vir}} \) peaks at approximate \(M_{\text{vir}} \sim 10^{10.5} \) \(M_\odot \) (\(M_{\text{vir}} \gtrsim 10^9 \) \(M_\odot \)), which means that intermediate-mass galaxies dominate the cosmic ionizing photon budget at \(z \sim 6 \) (see also Naidu et al. 2020). However, the HMF starts to decline at a much smaller mass at \(z \sim 10 \), so we find \(\text{d}n_{\text{ion}}/\text{d} \log M_{\text{vir}} \) peaks at \(M_{\text{vir}} \sim 10^9 \) \(M_\odot \) (\(M_{\text{vir}} \lesssim 10^9 \) \(M_\odot \)). Our results suggest that low-mass galaxies dominate the ionizing photon budget at early times, while more massive galaxies take over near the end of reionization (e.g. Finkelstein et al. 2012, 2019; Robertson et al. 2013, 2015; Faucher-Giguère 2020; Naidu et al. 2020; Yung et al. 2020).

6 CONCLUSIONS

In this paper, we use a sample of 34 high-resolution cosmological zoom-in simulations of \(z \geq 5 \) galaxies run with the FIRE-2 version of the source code GIZMO and explicit models for the multiphase ISM, star formation, and stellar feedback in Hopkins et al. (2018b). Our sample consists of simulations run at baryonic mass resolution \(m_p \sim 7000 \) \(M_\odot \), \(900 \) \(M_\odot \), and \(100 \) \(M_\odot \). We post-process over 8500 relatively well-resolved galaxy snapshots from all zoom-in regions with a Monte Carlo radiative transfer code for ionizing radiation to calculate \(f_{\text{esc}} \) and the gas ionization states. Our default calculations assume a constant dust-to-metal ratio of 0.4 in gas below 10\(^7\) K (no dust at higher temperatures) and an SMC-like extinction curve from Weingartner & Draine (2001). We consider both the single-star and binary models from the BPASS stellar population synthesis models to calculate the ionizing photon emissivity for every star particle in our simulations (v2.2.1; Eldridge et al. 2017).

We study the sample average \(\langle f_{\text{esc}} \rangle \) (i.e. the average of instantaneous \(f_{\text{esc}} \) over all galaxies at all redshifts for a given halo/stellar mass bin) and its dependence on halo or stellar mass, redshift, dust, and stellar population models. We also explore the key physics that governs the escape of ionizing photons in our simulations.

Our main findings include the following.

(i) Both the instantaneous \(f_{\text{esc}} \) and SFR exhibit strong variability on short time-scales (Section 3.1, Fig. 3). There is usually a time delay...
between the rising of f_{esc} and the rising of SFR at the beginning of a starburst, because it takes some time for feedback to clear the sightlines for ionizing photons to escape. A galaxy may have a high f_{esc} but low SFR at some epochs, meaning that it is not leaking a large number of ionizing photons. The instantaneous f_{esc}--M_{\star} relation shows enormous scatter, with f_{esc} ranging from $\lesssim 10^{-4}$ to 1 at fixed M_{vir} (Fig. 4).

(ii) Our results on the sample average ($\langle f_{esc} \rangle$) do not fully converge with resolution. Simulations run at 7000 M_\odot resolution tend to produce systematically lower ($\langle f_{esc} \rangle$) than those run at 900 M_\odot or better resolution. Simulations run with 900 and 100 M_\odot resolution produce consistent results on $\langle f_{esc} \rangle$. Nonetheless, the qualitative trends in the $\langle f_{esc} \rangle$--M_{vir} (M_\star) relation are robust (Section 3.2.1, Fig. 5).

(iii) In our default dust model, $\langle f_{esc} \rangle$ increases with halo mass in $M_{\text{vir}} \sim 10^9$--$10^{10.5} M_\odot$, becomes roughly constant in $M_{\text{vir}} \sim 10^{10.5}$--$10^{11} M_\odot$, and decreases at $M_{\text{vir}} \gtrsim 10^{10} M_\odot$ (left, Fig. 5). $\langle f_{esc} \rangle$ also increases with stellar mass in $M_\star \sim 10^9$--$10^{10} M_\odot$ and decreases at $M_\star \gtrsim 10^{10} M_\odot$ (right, Fig. 5). The declining $\langle f_{esc} \rangle$ at the high-mass end is due to dust attenuation (Section 3.2.2; left-hand column, Fig. 6).

(iv) For single-star models, $\langle f_{esc} \rangle \sim 0.2$ around $M_\star \sim 10^9 M_\odot$ and $M_{\text{vir}} \sim 10^{10.5} M_\odot$ (for simulations at 900 M_\odot or better resolution). $\langle f_{esc} \rangle \sim 0.1$ for those at 7000 M_\odot resolution. The binary stars boost $\langle f_{esc} \rangle$ by 25--35 per cent, the ionizing photon emissivity by 20--30 per cent, and therefore the number of photons escaped by 60--80 per cent (Section 3.2.3; middle column, Fig. 6). The effect of binary stars is modest, as a considerable fraction of stars younger than 3 Myr leak ionizing photons efficiently (see below).

(v) Galaxies at $z \gtrsim 8$ tend to have systematically higher $\langle f_{esc} \rangle$ than those at $z < 8$, suggesting a decreasing f_{esc} towards lower redshift (right-hand column, Fig. 6).

(vi) We find a common geometry for vigorously star-forming regions that leak ionizing photons efficiently. They usually contain (or a part of) a feedback-driven, kpc-scale superbubble surrounded by a dense, star-forming shell. The shell is also accelerated, leaving an age gradient in the newly formed stars at the bubble edge. Stars formed slightly earlier in the shell, despite younger than 3 Myr, are already at the inner side of the shell. These young stars, along with stars 3--10 Myr old in the bubble, can fully ionize the low-column-density sightlines surrounding the bubble, allowing a large fraction of their ionizing photons to escape (Section 4.1, Fig. 7).

(vii) Young stars ($z \lesssim 10$ Myr) with high f_{esc} (measured for individual stars) preferentially locate in regions with lower column densities out to the virial radius, compared to stars with low f_{esc}. These regions are presumably cleared by stellar feedback. In addition, the low-column-density sightlines must also be ionized collectively by the young stars in these regions to become optically thin to ionizing photons. In contrast, stars with low f_{esc} are fully hidden in optically thick sightlines (Section 4.2, Fig. 8).

(viii) The average of f_{esc} over stars in a given age, $\langle f_{esc} \rangle_{\text{age}}$, increases monotonically with stellar age in 0--40 Myr, likely because the impact of feedback in clearing the sightlines gets stronger with time. At fixed age, $\langle f_{esc} \rangle_{\text{age}}$ decreases in galaxies with decreasing stellar mass in $M_\star \sim 10^9$--$10^8 M_\odot$, in line with the $\langle f_{esc} \rangle$--M_\star relation at the low-mass end (Section 4.3, Fig. 9).

(ix) In single-star models, about a half of the escaped ionizing photons come from stars 1--3 Myr old, while the rest from stars 3--10 Myr old. The contribution from stars $\gtrsim 10$ Myr old is negligible. In binary models, 35 per cent, 45 per cent, and 20 per cent of the escaped photons are from stars 1--3, 3--10, and $\gtrsim 10$ Myr old (Section 4.3, Fig. 9).

(x) With decreasing stellar mass at $M_\star \lesssim 10^8 M_\odot$, an increasing fraction of the ionizing photons are absorbed in a shorter range (Fig. 10) and the covering fraction of optically thick gas in the halo also increases (Fig. 11). This suggests that the low ($\langle f_{esc} \rangle$) at the low-mass end is due to a combination of inefficient star formation (and hence feedback) and low gas temperatures in the halo (Section 4.4).

(xi) We estimate the escaped ionizing photon density based on simple broken power-law fits to our simulation data, $n_{\text{ion}} \sim 10^{8.6}$--$10^{12.1}$ s$^{-1}$ Mpc$^{-3}$, increasing with decreasing redshift from $z = 6$ to 10. This is sufficient for cosmic reionization according to most recent constraints. We find low-mass galaxies ($M_\star \lesssim 10^8 M_\odot$) dominate the cosmic ionizing photon budget at $z \sim 10$, but intermediate-mass galaxies ($M_\star \sim 10^8 M_\odot$) gradually take over towards the end of reionization at $z \sim 6$ (Section 5.2).

In future work, we will carry out radiative transfer calculations on the resonance Lyman α line (e.g. Smith et al. 2019) and nebular lines like [O II] and [O III] (e.g. Arata et al. 2020) to understand the proposed observational signatures of f_{esc} (Section 1, and references therein). We will also revisit the question of f_{esc} as we keep improving our sub-grid recipes, resolution, and numerical methods.

ACKNOWLEDGEMENTS

The simulations and post-processing calculations used in this paper were run on XSEDE computational resources (allocations TG-AST120025, TG-AST130039, TG-AST140023, and TG-AST140064), and TG-AST190028). This work was supported in part by a Simons Investigator Award from the Simons Foundation (EQ) and by NSF grant AST-1715070. AW was supported by NASA, through ATP grant 80NSSC18K1097 and HST grants GO-14734 and AR-15057 from STScI. PH was supported by an Alfred P. Sloan Foundation Research Fellowship, NASA ATP Grant NNX14AH35G, and NSF Collaborative Research Grant #1411920 and CAREER grant #1455342. CAFG was supported by NSF through grants AST-1715491, AST-1715216, and CAREER award AST-1652522, by NASA through grant 17-ATP17-0067, and by a Cottrell Scholar Award from the Research Corporation for Science Advancement. DK was supported by NSF grant AST-1715101 and the Cottrell Scholar Award from the Research Corporation for Science Advancement.

DATA AVAILABILITY STATEMENT

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Anderson L., Governato F., Karcher M., Quinn T., Wadsley J., 2017, MNRAS, 468, 4077

Arata S., Yajima H., Nagamine K., Abe M., Khochar S., 2020, preprint (arXiv:2001.01853)

Atek H. et al., 2015, ApJ, 814, 69

Atek H., Richard J., Kneib J.-P., Schaerer D., 2018, MNRAS, 479, 5184

Becker G. D., Bolton J. S., Madau P., Pettini M., Ryan-Weber E. V., Venemans B. P., 2015, MNRAS, 447, 3402

Bouwens R. J. et al., 2016, ApJ, 830, 67

Bouwens R. J., Illingworth G. D., Oesch P. A., Caruana J., Holwerda B., Smit R., Wilkins S., 2015b, ApJ, 811, 140

Bouwens R. J., Oesch P. A., Illingworth G. D., Ellis R. S., Stefanon M., 2017, ApJ, 843, 129

Downloaded from https://academic.oup.com/mnras/article/498/2/2001/5900555 by California Institute of Technology user on 03 December 2020
APPENDIX A: THE EFFECT OF RESOLUTION ON \(\langle f_{\text{esc}} \rangle \)

In Section 3.2, we show the sample-averaged \(\langle f_{\text{esc}} \rangle \) does not fully converge with resolution, with simulations at \(m_b \sim 7000 \, M_\odot \) resolution producing systematically lower \(\langle f_{\text{esc}} \rangle \) than those at \(900 \, M_\odot \) or better resolution (Fig. 5). We further show in Fig. A1 the column density distribution from stars younger than 10 Myr out to the halo virial radius in galaxies around \(\log M_\star \sim 8 \). From each particle, we calculate the column densities along 100 random sightlines and the distribution functions are weighted by the ionizing photon emissivity. The solid and dashed lines show \(N_H \) and \(N_{\text{H I}} \), respectively. The colours represent simulations at \(\lesssim 900 \, M_\odot \) (blue) and \(\sim 7000 \, M_\odot \) (orange) resolution. At higher resolution, the distribution of \(N_H \) extends to lower column densities and hence a higher fraction of the sightlines become optically thin \((N_{\text{H I}} \lesssim 2 \times 10^{17} \, \text{cm}^{-2}) \) to ionizing photons than at lower resolution. We speculate that the primary reason for the lower \(\langle f_{\text{esc}} \rangle \) at lower resolution is that some of the low-column-density, optically thin sightlines would be underresolved, or oversmoothed and hence becomes optically thick at lower resolution, consistent with our findings in Section 5.1 that SPH method tends to produce systematically lower \(f_{\text{esc}} \) than MFM method given the lower effective hydrodynamic resolution with SPH method. We emphasize the importance of convergence study when studying \(f_{\text{esc}} \) in hydrodynamic simulations.