A linear magnetic flux-to-voltage transfer function of a differential DC SQUID

I I Soloviev, V I Ruzhickiy, N V Klenov, S V Bakurskiy and M Yu Kupriyanov

1 Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, 119991, Moscow, Russia
2 Moscow Institute of Physics and Technology, State University, 141700 Dolgoprudny, Moscow region, Russia
3 MIREA—Russian Technological University, 119454, Moscow, Russia
4 N L Dukhov All-Russia Research Institute of Automatics, 127055, Moscow, Russia
5 Physics Department, Moscow State University, 119991, Moscow, Russia

E-mail: isol@phys.msu.ru

Received 30 November 2018, revised 19 February 2019
Accepted for publication 6 March 2019
Published 4 June 2019

Abstract
A superconducting quantum interference device with differential output or ‘DSQUID’ was previously proposed for operation in the presence of large common-mode signals. The DSQUID is the differential connection of two identical SQUIDs. Here we show that besides suppression of electromagnetic interference this device provides effective linearization of the DC SQUID voltage response. In the frame of the resistive shunted junction model with zero capacitance, we demonstrate that spur-free dynamic range of the DSQUID magnetic flux-to-voltage transfer function is higher than 100 dB while the total harmonic distortion of a signal is less than $10^{-3}\%$ with a peak-to-peak amplitude of a signal being a quarter of half flux quantum, $2\Phi_0/8$.

Analysis of the DSQUID voltage response stability to a variation of circuit parameters shows that DSQUID implementation allows for highly linear magnetic flux-to-voltage transformation at the cost of a high identity of Josephson junctions and high-precision current supply.

Keywords: DC SQUID, voltage response, linearity, working margins, DSQUID

1. Introduction

Modern Josephson junction fabrication technology [1] allows for the development of complex circuits [2] with high-precision control of their parameters. Both low-temperature and high-temperature superconductor (LTS and HTS) technologies provide the potential to fabricate SQUID arrays with about a million Josephson junctions [3, 4]. This expands the area of SQUID applications to include SQUID-based structures that should ideally act as linear magnetic flux-to-voltage transformers [4–10]: from electrically small antennas to analog-to-digital converter circuits and from susceptometers to SQUID-based multiplexers.

SQUID-based structures with high dynamic range and highly linear voltage responses obtained without a feedback loop are named ‘superconducting quantum arrays’ (SQA) [11–13]. Two types of cells have been proposed as the basic blocks of SQA. These are the bi-SQUID [14–21] and the so-called differential quantum cell (DQC) [5, 11–13, 22–26]. Unfortunately, despite several attempts to realize bi-SQUID-based structures [16, 27, 28], no outstanding results have been reported [21]. DQCs seem to deliver better performance for SQAs at present [5]. However, since a DQC is a differential connection of identical parallel SQUID arrays, it usually occupies a large area which is not convenient in some cases.

In this paper, we consider the simplest version of DQC—two identical DC SQUIDs with a differential output which we call a ‘DSQUID’, see figure 1(a). It has been demonstrated that the DSQUID allows one to obtain a high common-mode rejection ratio [29]. This feature is especially useful where the SQUID-based system contains long wiring. It was also noted that the effects of background magnetic fields and of temperature fluctuations are also suppressed due to this differential configuration [29].
The system of equations describing the SQUID in terms of the Josephson junction critical current I_c is obtained by subtracting the high linearity of its voltage response as well as analysis of the linearity decrease with deviations of the circuit parameters from their optimal values.

2. Model

The DSQUID voltage response is obtained by the subtraction of voltage responses of its parts: $u_{DS} = u_a - u_s$. The Josephson junctions of DSQUID ought to be overdumped to accomplish the high linearity of DQCs [5]. Equality of DSQUID parts naturally suggest the use of LTS technology where the technological spread of parameters can be minimized.

For the temperature $T = 4.2 \text{K}$ the effective current noise value is $I_f = (2\pi / \phi_0)k_BT \approx 0.18 \mu A$, where ϕ_0 is the magnetic flux quantum and k_B is the Boltzmann constant. The choice of Josephson junction critical current $I_c \geq 180 \mu A$ leads to dimensionless noise intensity $\gamma = I_f / I_c \leq 10^{-3}$ which makes the noise impact to DQC characteristics insignificant [5]. The transfer functions of each SQUID of the DSQUID are calculated in the frame of the well-known resistive shunted junction (RSJ) model with zero capacitance.

The system of equations describing the SQUID in terms of Josephson phase sum and difference $\varphi_{\pm} = (\varphi_1 \pm \varphi_2) / 2$ (where $\varphi_{1,2}$ are the Josephson phases of SQUID junctions) is as follows:

$$\frac{d\varphi_+}{d\tau} = i_b - \sin \varphi_+ \cos \varphi_-, \quad (1a)$$

$$\frac{d\varphi_-}{d\tau} = - (\varphi_+ - \varphi_-) / \beta_0 - \sin \varphi_+ \cos \varphi_-, \quad (1b)$$

where time $\tau = \tau_{\varphi}$ is normalized to the characteristic frequency, $\omega_\varphi = 2\pi I_c / \beta_0$, β_0 is the junction shunt resistance, $i_b = b_b / 2I_c$ is the normalized bias current, $\beta_0 = \pi L_b / \phi_0$ is the normalized SQUID inductance, and $\phi_0 = \pi \phi_0 / \phi_0$ is the normalized applied magnetic flux. For each SQUID the DSQUID φ_α is the sum of the signal flux, φ_α, and the magnetic bias flux setting the working point and the width of the working region, $\pm \phi_b / 2$, as it is shown in figure 1.

We use two approaches for the estimation of voltage response linearity. The first one is calculation from the so-called spur-free dynamic range (SFDR). In this approach we apply the external magnetic flux to each SQUID of the DSQUID in the form,

$$\varphi_b = (\phi_b / 2) \sin \omega_1 \tau + (\phi_b / 2) \sin \omega_2 \tau \pm \phi_b / 2,$$ \quad \text{(2)}$$

where frequencies $\omega_b = 1.1 \omega_1$ are much smaller than Josephson oscillation frequency, $\omega_{1,2} \ll \omega_b$, ϕ_b is the amplitude of the signal. SFDR is calculated as a ratio of one of the signal tones to maximum amplitude of distortions arising in the spectrum of output signal due to nonlinearity of the magnetic flux-to-voltage transfer function.

The second approach is the calculation of total harmonic distortion (THD). In this case the applied signal contains only one harmonic component:

$$\varphi_b = \phi_b \sin \omega_1 \tau \pm \phi_b / 2.$$ \quad \text{(3)}$$

THD is calculated as $\text{THD} = \sqrt{\sum_{n=1}^N A_n^2} / A_1$, where A_n are amplitudes of output signal spectral harmonics.

SFDR and THD calculations requires finding the accurate shape of the DSQUID voltage response by numerical solutions of system (1) for each SQUID. For this purpose we define the dependence $\varphi_\alpha(\varphi_\alpha)$ combining equations (1a), (1b),

$$\frac{d\varphi_\alpha}{d\tau} = - (\varphi_+ - \varphi_-) / \beta_0 - \sin \varphi_+ \cos \varphi_-, \quad (4)$$

and then calculate the period of Josephson oscillations using (1a):

$$T = \int_0^{2\pi} \frac{d\varphi_\alpha}{ib - \sin \varphi_+ \cos \varphi_-(\varphi_\alpha)}.$$ \quad \text{(5)}$$

This gives us the Josephson oscillation frequency, $\omega_{\text{J}} = 2\pi / T$, which is equal to the time-averaged voltage, u, normalized to the I_R product.

Calculation of the voltage response shape for the estimation of the magnetic flux-to-voltage transfer coefficient is completed much faster by using analytical expressions presented in [30, 31].

3. Linearization

Differential connection of two identical SQUIDs in DSQUID with their mutual flux bias allows subtraction of some part of the SQUID voltage response from its mirrored image, see figure 1(b), due to the symmetry and periodicity of the SQUID voltage response. This subtraction leads to partial compensation of nonlinear terms in the DSQUID magnetic flux-to-voltage transfer function for the two regions of SQUID voltage response marked by numbers I and II in figure 1(b).

The first region (I in figure 1(b)) is in the vicinity of zero external magnetic flux ($\phi_b \approx 0$) [30]. In the limit of zero
SQUID inductance, $\beta_l = 0$, and for the bias current equal to the critical current, $i_b = 1$, the SQUID voltage response shape is described by the function: $u = |\sin \phi_b|$. For the bias flux $\phi_b \leq \pi/2$ and inside the region $\phi_b \in [1-\phi_b/2, \phi_b/2]$ the voltage responses of DSQUID arms can be written as $u_x = \pm \sin(\phi_b \pm \phi_b/2)$. Thus, in the range where sine can be approximated by a linear function the total response becomes linear:

$$u_x \approx 2\phi_b \cos \phi_b/2.$$

(6)

It is seen that the most linear part of the voltage response (at $\phi_b = 0$) is moved from the boundary of the SQUID working region ($0 \leq \phi_b \leq \pi/2$) to its center in the DSQUID, making its utilization possible. At the same time, the bias flux providing the maximum transfer coefficient, $\phi_b = 0$, simultaneously makes the width of the working (and linearized) region decrease.

The second region (II in figure 1(b)) suitable for linearization in the DSQUID is located near the opposite boundary of the SQUID working region ($\phi_b \approx \pi/2$). Analytical approximation of the SQUID voltage response found in [30, 31] is

$$u = u_0 - a[1 + (\beta_1^2u_0)^{-2}]^{-1}(i_b - u_0)\tan^2 \phi_b,$$

(7)

where $u_0 = \sqrt{\beta_1^2 - \cos^2 \phi_b}$ is the voltage response in the limit of vanishing inductance, $\beta_l = 0$, and a, β_1^2 are parameters depended on i_b, β_l (see the appendix).

In the vicinity of $\phi_b = \pi/2$ expression (7) can be accurately represented by a Taylor series limited to the quadratic term:

$$\lim_{\phi_b \to \pi/2} u \approx i_b - \frac{1}{2i_b}(Q + (1 - QZ)\left[\phi_b - \frac{\pi}{2}\right]^2).$$

(8)

Dependencies of Q and Z on i_b, β_l are presented in the appendix.

For the bias flux close to $\phi_b = \pi$, the voltage response of DSQUID arms can be written as $u_x = u(\phi_b + \pi/2 \pm \delta)$, where $\delta = \pi/2 - \phi_b/2$, due to symmetry of the SQUID voltage response. According to (8) this leads to the linearized total response:

$$u_x = \frac{\phi_b - \phi_b}{i_b}(1 - QZ).$$

(9)

While the width of the region II is defined by the range of validity of approximation (8), the width of the linearized region of DSQUID voltage response is determined by overlapping of regions I i.e. by the bias flux ϕ_b. Deviation of the bias flux from $\phi_b = \pi$ increases the transfer coefficient but decreases the linearized region width.

Therefore, in both considered cases we face a tradeoff between the transfer coefficient and the width of the linearized region of DSQUID voltage response. Below we show that it is possible to satisfy this tradeoff for the bias flux values in the vicinity of $\phi_b = 0$ or π. Corresponding examples shown in figure 2 are discussed in more detail below.

4. Optimization of parameters

An optimization procedure is performed in the range of the bias current, $i_b \in [1, 1.2]$, and the inductance, $\beta_i/\pi \in [0.05, 1]$. Using the standard Nelder-Mead simplex algorithm [32] we numerically find the optimal bias flux providing the highest SFDR of DSQUID voltage response.

We use two different conditions to consider linearization of the two SQUID voltage response regions (I and II in figure 1(b)). The first one is limitation of the peak-to-peak signal to 30% of the width of the DSQUID working region, $2\phi_a = 0.35\phi_b$. It is used to consider utilization of the region I ($\phi_b \approx 0$). The usage of region II ($\phi_b \approx \pi/2$) is considered with limitation of the peak-to-peak signal to a fixed value equal to a quarter of the SQUID working region, $2\phi_a = \pi/8$.

Results of optimization obtained with utilization of the first condition is presented in figures 3(a), (b), (c). It is seen that the highest SFDR > 100 dB is obtained with the bias current close to the critical current, $i_b \to 1$, see figure 3(a). However, while the transfer coefficient for this bias current is also high (figure 3(c)), the bias flux is quite small (figure 3(b)), and thus the width of the DSQUID working region is negligible.

Fortunately, there is a kind of plateau on the i_b, β_i plane of parameters where $i_b > 1$ and linearity is still rather high, SFDR > 90 dB, see figure 3(a). The example shown in figure 2(a) corresponds to the values of parameters: $i_b = 1.02$, $\beta_i = 0.35\pi$ at the boundary of this plateau providing both high enough bias flux, $\phi_b = 0.3895\pi$, and transfer coefficient, $du/d\phi_b = 1.04$, while linearity is SFDR $= 92$ dB and THD $= 6 \times 10^{-4}\%$.

The chosen optimal bias flux corresponds to the width of the linear range equal to approximately a quarter of the width of the SQUID working region, $2\phi_a \approx \pi/8$. The linearity increase is possible with decreases to the signal amplitude as shown in figure 4 with the solid line. However, the bias flux should additionally be slightly tuned (see inset in figure 4). SFDR reaches 130 dB with the peak-to-peak signal equal to
Figure 3. Results of the bias flux optimization for obtaining the highest SFDR of DSQUID voltage response under different conditions: (i) $2\phi_b = 0.3\beta_b$ for (a), (b), (c) and (ii) $2\phi_a = \pi/8$ for (d), (e), (f). SFDR is presented in (a), (d) planes, the optimal bias flux ϕ_b/π is in (b), (e) planes, and the transfer coefficient $du/d\phi_b$ is in (c), (f).

Figure 4. SFDR of DSQUID voltage response versus peak-to-peak signal amplitude for chosen values of parameters, $i_b = 1.02$, $\beta = 0.35\pi$, and optimal bias flux presented in inset (solid line). SFDR for the constant bias flux, $\phi_b = 0.389 \pi$, is shown by dotted line.

10% of the bias flux. The SFDR obtained with constant bias flux is presented by the dotted line.

While limitation of signal amplitude to a percent of the DSQUID working region width makes utilization of region I preferable, setting a fixed signal amplitude and vice versa allows the usage of region II. Optimization results obtained under utilization of the second condition ($2\phi_a = \pi/8$) is presented in figures 3(d), (e), (f). Figure 3(d) shows that for inductance values higher than $\beta_l = 0.15\pi$ there are some values of the bias current $i_b > 1$ providing high linearity of the voltage response, SFDR > 100 dB (figure 3(d)), with the bias flux ϕ_b close to π (figure 3(e)). Unfortunately, the transfer coefficient decreases with increase of SFDR, see figures 3(d), (f). For the previously chosen inductance, $\beta_l = 0.35\pi$, the optimal bias current is $i_b = 1.108$ and with the bias flux equal to $\phi_b = 0.8337\pi$ the transfer coefficient is $du/d\phi_b = 0.22$. The corresponding linearity is SFDR $= 112$ dB, THD $= 6 \cdot 10^{-4}$%. The DSQUID voltage response for this set of parameters is presented in figure 2(b).

Figure 5 shows the SFDR dependence with deviation of DSQUID parameters from their optimal values, $\delta i_b/i_b$, $\delta \phi_b/\phi_b$, $\delta \beta_l/\beta_l$, for both examples shown in figure 2. It is seen that the linearity strongly depends on the bias current, see figure 5(a). One should set i_b with precision of $\pm 0.1 - 0.2\%$ to keep SFDR not less than 10 dB from its maximum. At the same time for the same margin for SFDR the bias flux ϕ_b can be set with an order less precision, $\pm 1 - 2\%$, see figure 5(b). The requirements for the inductance value are even weaker (figure 5(c)).

5. Discussion

The data shown in figure 5 indicates high requirements for the identity of SQUID parameters in the DSQUID. The statistics of Josephson junctions critical currents fabricated by modern LTS fabrication processes can be described approximately as Gaussian with standard deviation strongly dependant on the junction size [33]. For junctions with critical currents greater
than 180 μA (corresponding size is greater than 1500 nm) the standard deviation is less than 1% for the process using 248-nm photolithography, see equation 5 in [1]. Based on the data presented in figure 5(a), we can estimate the real attainable linearity (SFDR) above 80 dB, accordingly.

Using the conventional SQUID configuration, one needs to restrict the width of the working range below 0.1 Φ0 to make THD less than 1% [34]. With a similar width of the working region, 2Φin = Φ0/8, DSQUID provides THD up to three orders better. By assuming the root mean square flux noise of Φn = 10−6 Φ0/Hz−1/2, one can obtain the DSQUID dynamic range of about 100dB/Hz−1/2. This means that with SFDR of an order of 100 dB, DSQUID allows truly linear magnetic flux-to-voltage transformation since the distortions can be made lower than the noise floor.

SQA can be based on a DSQUID as far as the DSQUID is the DQC. The SQA formation can serve for the increase in dynamic range and transfer coeficient of the RFBR grant 16-29-09515 of the Russian Science Foundation. Section 1 was written with the support of the RFBR grant 17-12-01079 of the Russian Science Foundation. V I R acknowledges the Basis Foundation scholarship.

Appendix

Expression (7) is the approximation of the DC SQUID voltage response shape. Analytical dependencies of its parameters a, βf, on ib, β0 are as follows [30, 31]:

\[a = 2\kappa\nu(2\xi^2 - 1)/\xi, \quad \beta_f = \sqrt{\xi/\chi}, \]

where

\[\kappa = \beta_0^{1.66}/(2.154\beta_1^{0.48} + 2.285), \]

\[\nu = \beta_1^{0.92}/(4.28\beta_1^{0.625} + 5.06), \]

\[\xi = -0.586\kappa + 2\nu + 4\kappa\nu(i_0^2 - 1), \]

\[\chi = 0.586\kappa^2 - \kappa - 2\kappa\nu(i_0^2 - 1). \]

Parameters Q, Z of the Taylor series (8) are combinations of a, βf, and ib:

\[Q = a[1 + (\beta_f^2ib)^2]^{-1}, \]

\[Z = 1 - [((\beta_f^2ib)^2 - 3(4i_0^2[1 + (\beta_f^2ib)^2])^{-1}. \]

6. Conclusion

We considered a differential SQUID—a ‘DSQUID’ possessing a highly linear voltage response. The DSQUID is the differential connection of two identical SQUIDs. Two regions of SQUID voltage response suitable for linearization in the DSQUID are identified. A rising tradeoff between the transfer coefficient and the width of the linearized region is revealed. Optimal values of the circuit parameters providing high linearity of the voltage response (SFDR > 100 dB and THD < 10−3%) are found. The linearity dependence on deviation of the circuit parameters from their optimal values is studied. It is shown that the ultimate linearity comes at the cost of high identity of Josephson junctions (at the level of tenths of a percent) and high-precision current supply (up to the third decimal place).

Acknowledgments

This work was supported by Grant No. 17-12-01079 of the Russian Science Foundation. Section 1 was written with the support of the RFBR grant 16-29-09515 ofi.m. V I R acknowledges the Basis Foundation scholarship.

ORCID iDs

I I Soloviev @ https://orcid.org/0000-0001-9735-2720
N V Klenov @ https://orcid.org/0000-0001-6265-3670
S V Bakurskiy @ https://orcid.org/0000-0002-6010-6697

Figure 5. SFDR of DSQUID voltage response versus deviation of (a) the bias current, δib/ib, (b) the bias flux, δΦib/Φ0, and (c) the inductance, δβ0/β0, for two chosen sets of parameters: (i) ib = 1.02, β0 = 0.35π, φ0 = 0.389 5π and (ii) ib = 1.108, β0 = 0.35π, φ0 = 0.833 7π (corresponding lines are marked by ib values).
References

[1] Tolpygo S K 2016 Superconductor digital electronics: scalability and energy efficiency issues Low Temp. Phys. 42 361–79

[2] Soloviev I I, Klenov N V, Bakurskiy S V, Kupriyanov M Y, Gudkov A L and Sidorenko A S 2017 Beyond Moore’s technologies: operation principles of a superconductor alternative Bellstein J. Nanotechnol. 8 2689–710

[3] Semenov V K, Polyakov Y A and Tolpygo S K 2017 AC-biased shift registers as fabrication process benchmark circuits and flux trapping diagnostic tool IEEE Trans. Appl. Supercond. 27 7856973

[4] Keenan S, Hannam K, Mitchell E, Lazar J, Lewis C, Graencea A, Purches W and Foley C 2017 Large high-temperature superconducting 2D SQIF arrays European Conf. on Applied Superconductivity (EUCAS) (17-21 September 2017) (Geneva, Switzerland EP172411

[5] Kornev V K, Kolotinskiy N V, Shara A V, Soloviev I I and Mukhanov O A 2017 Broadband active electrically small superconductor antennas Supercond. Sci. Technol. 30 103001

[6] Mitchell E E, Hannam K E, Lazar J, Leslie K E, Lewis C J, Graencea A, Keenan S T, Lam S K H and Foley C P 2016 2D SQIF arrays using 20 000 YBCO high Rn Josephson junctions Supercond. Sci. Technol. 29 06L01

[7] Couëdo F et al 2019 High-Tc superconducting antenna for highly-sensitive microwave magnetometry Appl. Phys. Lett. 114 192602

[8] Mukhanov O A et al 2008 Superconductor digital-RF receiver systems IEEE Trans. Electron. E91-C 306–17

[9] Zakosarenko V et al 2011 Time-domain multiplexed SQUID readout of a bolometer camera for APEX Supercond. Sci. Technol. 24 015011

[10] Braginski A I 2019 Superconductor electronics: status and outlook J. Supercond. Novel Magn. 32 23–44

[11] Kornev V K, Shara A V, Soloviev I I, Kolotinskiy N V, Scripka V A and Mukhanov O A 2014 Superconducting quantum arrays IEEE Trans. Appl. Supercond. 24 0680001

[12] Kornev V, Shara A V, Soloviev I I, Kolotinskiy N and Mukhanov O 2014 Superconducting quantum arrays for broadband RF systems J. Phys.: Conf. Ser. 507 042019

[13] Kornev V K, Soloviev I I, Shara A V, Klenov N V and Mukhanov O A 2013 Active electrically small antenna based on superconducting quantum array IEEE Trans. Appl. Supercond. 23 1800405

[14] Kornev V K, Soloviev I I, Klenov N V and Mukhanov O A 2009 Bi-SQUID: a novel linearization method for dc SQUID voltage response Supercond. Sci. Technol. 22 114011

[15] Kornev V K, Soloviev I I, Klenov N V, Shara A V and Mukhanov O A 2011 Linear Bi-SQUID arrays for electrically small antennas IEEE Trans. Appl. Supercond. 21 713–6

[16] Shara A V, Soloviev I I, Kornev V, Schmelz M, Stolz R, Zakosarenko V, Anders S and Meyer H G 2012 Bi-SQUIDs with submicron cross-type Josephson tunnel junctions Supercond. Sci. Technol. 25 045001

[17] Kornev V K, Shara A V, Soloviev I I and Mukhanov O A 2014 Signal and noise characteristics of bi-SQUID Supercond. Sci. Technol. 27 115009

[18] Kornev V K, Soloviev I I, Klenov N V and Kolotinskiy N V 2016 Design issues of HTS Bi-SQUID IEEE Trans. Appl. Supercond. 26 7438807

[19] Kornev V K, Kolotinskiy N V, Levochchina A Y and Mukhanov O A 2017 Critical current spread and thermal noise in Bi-SQUID cells and arrays IEEE Trans. Appl. Supercond. 27 7756342

[20] Kornev V K, Kolotinskiy N V, Bazulin D E and Mukhanov O A 2017 High-inductance Bi-SQUID IEEE Trans. Appl. Supercond. 27 7752858

[21] Kornev V K, Kolotinskiy N V, Bazulin D E and Mukhanov O A 2018 High-linearity Bi-SQUID: design map IEEE Trans. Appl. Supercond. 28 1601905

[22] Kornev V, Kolotinskiy N, Scripka V, Shara A, Soloviev I and Mukhanov O 2014 High linearity voltage response parallel-array cell J. Phys.: Conf. Ser. 507 042018

[23] Kornev V K, Soloviev I I, Klenov N V and Mukhanov O A 2011 Design and experimental evaluation of SQIF arrays with linear voltage response IEEE Trans. Appl. Supercond. 21 394–8

[24] Kornev V, Soloviev I, Klenov N and Mukhanov O 2010 Progress in high-linearity multi-element Josephson structures Physica C 470 886–9

[25] Kornev V K, Soloviev I I, Klenov N V and Mukhanov O A 2009 High linearity SQIF-like Josephson junction structures IEEE Trans. Appl. Supercond. 19 741–4

[26] Kornev V K, Soloviev I I, Klenov N V, Filippov T V, Engscheid H and Mukhanov O A 2009 Performance advantages and design issues of SQIFs for microwave applications IEEE Trans. Appl. Supercond. 19 916–9

[27] Prokopenko G V, Mukhanov O A, Leese D Escobare O, Taylor B, De Andrade M C, Berggren S, Longhini P, Palacios A, Nisenoff M and Fagaly R L 2013 DC and RF measurements of serial Bi-SQUID arrays IEEE Trans. Appl. Supercond. 23 6392883

[28] Berggren S et al 2013 Development of 2-D Bi-SQUID arrays with high linearity IEEE Trans. Appl. Supercond. 23 6407797

[29] Drueng D, Storm J H and Beyer J 2013 SQUID current sensor with differential output IEEE Trans. Appl. Supercond. 23 1100204

[30] Soloviev I I, Klenov N V, Schegolev A E, Bakurskiy S V, Kupriyanov M Y, Tereshonok M V and Golubov A A 2018 Analytical description of low-Tc DC SQUID response and methods for its linearization 2017 XVI International Superconductive Electronics Conf., ISEC 2017 vol 2018- January pp 1–3

[31] Soloviev I I, Klenov N V, Schegolev A E, Bakurskiy S V and Kupriyanov M Y 2016 Analytical derivation of DC SQUID response Supercond. Sci. Technol. 29 094005

[32] Lagarias J C, Reeds J A, Wright M H and Wright P E 1998 Convergence properties of the Nelder-Mead simplex method in low dimensions SIAM J. Optim. 9 112–47

[33] Tolpygo S K, Bolkhovsky V, Weir T J, Johnson L M, Gouker M A and Oliver W D 2015 Fabrication process and properties of fully-planarized deep-submicron Nb/AI-AlAlOx/Nb Josephson junctions for VLSI circuits IEEE Trans. Appl. Supercond. 25 1101312

[34] Mueck M and Clarke J 2001 Harmonic distortion and intermodulation products in the microstrip amplifier based on a superconducting quantum interference device Appl. Phys. Lett. 78 3666–8

[35] Mueller B, Karrer M, Limberger F, Becker M, Schroeppele B, Burkhardt C J, Kleiner R, Goldobin E and Koelle D 2019 Josephson junctions and SQIFs created by focused helium ion beam irradiation of YBa2Cu3O7 Josephson junctions and SQUIDs created by focused helium ion beam irradiation of YBa2Cu3O7 Phys. Rev. Appl. 11 044082

[36] Longhini P et al 2012 Voltage response of non-uniform arrays of bi-superconductive quantum interference devices J. Appl. Phys. 111 093920

[37] Kornev V K, Kolotinskiy N V, Scripka V A, Shara A V and Mukhanov O A 2015 Output power and loading of superconducting quantum array IEEE Trans. Appl. Supercond. 25 1602005