Anti-periodicity on high-order inertial Hopfield neural networks involving mixed delays

Luogen Yao* and Qian Cao

Abstract
This paper deals with a class of high-order inertial Hopfield neural networks involving mixed delays. Utilizing differential inequality techniques and the Lyapunov function method, we obtain a sufficient assertion to ensure the existence and global exponential stability of anti-periodic solutions of the proposed networks. Moreover, an example with a numerical simulation is furnished to illustrate the effectiveness and feasibility of the theoretical results.

Keywords: High-order inertial neural networks; Anti-periodic solution; Global exponential stability; Mixed delay

1 Introduction
The inertial neural networks model, which was first proposed by Babcock and Westerwelt [1, 2], is one of the other popular artificial neural network models used in a variety of application areas. This type of neural networks has received much attention by many researchers. In particular, numerous works have been devoted to study the dynamic behaviors on inertial neural networks with time-varying delays and some excellent results are reported, for example, stability [3–5], Hopf bifurcation [6–11], and synchronization [12–14]. To the best of our knowledge, the dynamics analysis on inertial neural networks is usually to convert them into a first-order differential system by reducing order variable substitution under the assumption that the activation functions are bounded [15–17]. However, the authors in [12, 18–21] pointed out that the above method not only raises the dimension in the inertial neural networks system, but also increases huge amount of computation which makes it difficult to realize in practice. For the above reasons, the authors of [19, 20] and [21], respectively, developed some non-reduced order techniques to investigate the stability and synchronization of inertial neural networks with different types of time delays.

On the other hand, in neural networks dynamics involving fields such as communication, economics, biology or ecology, the relevant state variables are usually considered as proteins and molecules, light intensity levels or electric charges, which are naturally anti-periodic [22–24]. Considering this factor, many recurrent neural network models involve...
ing time-varying delays and anti-periodic environments have been widely investigated in \[16, 17, 24–26\]. It is worth noting that the high-order Hopfield neural networks have the advantages of faster convergence speed, larger storage capacity and stronger fault tolerance than lower-order neural networks \[27–29\]. Consequently, Yao \[30\] studied the existence and global exponential stability of anti-periodic solutions for a class of proportional delayed high-order inertial Hopfield neural networks with time-varying delays.

In recent years, the authors in \[21\] have mentioned that many parallel routes with a series of different axon sizes and lengths appear in neural networks, and it is desired to explain the dynamics behaviors of neural networks by involving continuously distributed delays. Furthermore, the dynamic behaviors of many recurrent neural networks with continuously distributed delays have been revealed in \[27, 31–35\]. However, few articles have considered the anti-periodic problem for the following high-order inertial Hopfield neural networks (HIHNNs) involving time-varying delays and continuously distributed delays:

\[
\begin{align*}
x''_i(t) &= -a_i(t)x'_i(t) - b_i(t)x_i(t) + \sum_{j=1}^{n} c_{ij}(t)A_j(x_j(t)) \\
&\quad + \sum_{j=1}^{n} d_{ij}(t)B_j(x_j(t - q_{ij}(t))) \\
&\quad + \sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{ijl}(t)Q_j(x_j(t - \eta_{ijl}(t)))Q_l(x_l(t - \xi_{ijl}(t))) \\
&\quad + \sum_{j=1}^{n} h_{ij}(t) \int_{0}^{+\infty} \sigma_{ij}(u)J_j(x_j(t - u)) \, du \\
&\quad + \sum_{j=1}^{n} \sum_{l=1}^{n} p_{ijl}(t) \int_{0}^{+\infty} \tilde{\sigma}_{ij}(u)R_j(x_j(t - u)) \, du \\
&\quad \times \int_{0}^{+\infty} \tilde{\sigma}_{ijl}(u)R_l(x_l(t - u)) \, du + J_i(t),
\end{align*}
\]

and the initial value conditions:

\[
x_i(s) = \psi_i(s), \quad x'_i(0) = \psi'_i, \quad -\infty \leq s \leq 0, \psi_i \in BC((-\infty, 0], \mathbb{R}), \psi_i \in \mathbb{R},
\]

where \(BC((-\infty, 0], \mathbb{R}) \) is the set of all continuous and bounded functions from \((-\infty, 0]\) to \(\mathbb{R}\), \(J_i, c_{ij}, d_{ij}, \theta_{ijl}, h_{ij}, p_{ijl} : \mathbb{R} \to \mathbb{R}\), \(a_i, b_i : \mathbb{R} \to (0, +\infty)\) and \(q_{ij}, \eta_{ijl}, \xi_{ijl} : \mathbb{R} \to \mathbb{R}^+\) are bounded and continuous functions, \(a_i, b_i, q_{ij}, \eta_{ijl}, \xi_{ijl}\) are periodic functions with period \(T > 0\), the input term \(J_i\) is \(T\)-anti-periodic (i.e. \(J_i(t + T) = -J_i(t)\) for all \(t \in \mathbb{R}\)), and \(i, j, l \in D = \{1, 2, \ldots, n\}\).

Motivated by the previous discussions, in this paper, without adopting the reduced order method, we shall install new results concerning the anti-periodic dynamics for HIHNNs with time-varying delays and continuously distributed delays. Some sufficient conditions ensuring the existence and global exponential stability on the anti-periodic solution of system (1.1) are established by using differential inequalities and the Lyapunov function method, which improve and complement some earlier publications \[16, 17, 36–40\].

We organize the paper as follows. In Sect. 2, some assumptions and an important lemmas are listed. Section 3 presents the main results and their detailed proof. Section 4 gives
In this section, some assumptions and a key lemma are provided.

2 Preliminary results

In this section, some assumptions and a key lemma are provided.

Assumptions

\((G_1)\) There are nonnegative constants \(L_i^A, L_i^B, L_i^Q, L_i^K, L_i^R, M_i^Q\) and \(M_i^R\) such that

\[
\begin{align*}
|A_i(u) - A_i(v)| & \leq L_i^A|u - v|, \\
|B_i(u) - B_i(v)| & \leq L_i^B|u - v|, \\
|Q_i(u) - Q_i(v)| & \leq L_i^Q|u - v|, \\
|R_i(u) - R_i(v)| & \leq L_i^K|u - v|, \\
|K_i(u) - K_i(v)| & \leq L_i^K|u - v|, \\
|\sigma_i(u)| & \leq M_i^Q, \\
|\bar{\sigma}_i(u)| & \leq M_i^R,
\end{align*}
\]

where

\[
\begin{align*}
c_{ij}(t + T)A_i(u) = -c_{ij}(t)A_i(-u), & \quad d_{ij}(t + T)B_i(u) = -d_{ij}(t)B_i(-u), \\
\theta_{ij}(t + T)Q_i(u)Q_i(v) = -\theta_{ij}(t)Q_i(-u)Q_i(-v), \\
h_{ij}(t + T) \int_0^\infty \sigma_{ij}(s)K_i(u) ds = -h_{ij}(t) \int_0^\infty \sigma_{ij}(s)K_i(-u) ds,
\end{align*}
\]

and

\[
p_{ij}(t + T) \int_0^\infty \bar{\sigma}_{ij}(s)R_i(u) ds \int_0^\infty \bar{\sigma}_{ij}(s)R_i(-u) ds \\
= -p_{ij}(t) \int_0^\infty \bar{\sigma}_{ij}(s)R_i(-u) ds \int_0^\infty \bar{\sigma}_{ij}(s)R_i(u) ds,
\]

for all \(u, v \in \mathbb{R}, \ i, j, l \in D.\)

\((G_2)\) For \(i, j, l \in D, |\sigma_{ij}(t)|e^{\mu t}, |\dot{\sigma}_{ij}(t)|e^{\mu t}, |\bar{\sigma}_{ij}(t)|e^{\mu t}\) are integrable on \([0, +\infty)\) for a positive constant \(\mu.\)

\((G_3)\) There are constants \(\beta_i > 0\) and \(\alpha_i \geq 0, \gamma_i \geq 0\) obeying

\[
C_i(t) < 0, \quad 4C_i(t)D_i(t) > L_i^2(t), \quad \forall t \in \mathbb{R}, i \in D, \tag{2.1}
\]

where

\[
C_i(t) = \alpha_i \gamma_i - \alpha_i(t) \alpha_i^2 + \frac{1}{2} \alpha_i^2 \sum_{j=1}^n \left(|c_{ij}(t)|L_i^A + |d_{ij}(t)|L_i^B \right) \\
+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^n \sum_{l=1}^n |\theta_{ij}(t)|(M_i^QL_i^Q + L_i^Q) \\
+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^n |h_{ij}(t)|L_i^K \int_0^\infty |\sigma_{ij}(u)| du \\
+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^n \sum_{l=1}^n |p_{ij}(t)|M_i^R \int_0^\infty |\bar{\sigma}_{ij}(u)| du \int_0^\infty |\bar{\sigma}_{ij}(u)| du \\
+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^n \sum_{l=1}^n |p_{ij}(t)|M_i^R \int_0^\infty |\bar{\sigma}_{ij}(u)| du \int_0^\infty |\bar{\sigma}_{ij}(u)| du,
\]
\[D_i(t) = -\beta_i(t)\alpha_i \gamma_i + \frac{1}{2} \sum_{j=1}^{n} (|c_{ij}(t)|L_i^A + |d_{ij}(t)|L_i^B)\alpha_i \gamma_i \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \alpha_j^2 \left(|c_{ij}(t)|L_i^A + d_{ij} L_i^B \frac{1}{1 - \tilde{\xi}_{ij}} e^{2\tilde{\xi}_{ij}} \right) \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \left(|c_{ij}(t)|L_i^A + d_{ij} L_i^B \frac{1}{1 - \tilde{\xi}_{ij}} e^{2\tilde{\xi}_{ij}} \right) |\alpha_j \gamma_j| \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} |\alpha_j \gamma_j| |\theta_{ijl}(t)| (M_j^Q L_j^O + L_j^O M_j^O) \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 + |\alpha_j \gamma_j|) \theta_{ijl}^* M_j^O L_j^O e^{2\tilde{\xi}_{ijl}} \frac{1}{1 - \tilde{\xi}_{ijl}} \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 + |\alpha_j \gamma_j|) \theta_{ijl}^* M_j^Q L_j^Q e^{2\tilde{\xi}_{ijl}} \frac{1}{1 - \tilde{\xi}_{ijl}} \]
\[+ \frac{1}{2} \sum_{j=1}^{n} (\alpha_j^2 \tilde{\xi}_{ijl} + |\alpha_j \gamma_j| \tilde{\xi}_{ijl}) L_j^L \int_0^{+\infty} \left| \sigma_j(u) \right| e^{2\mu u} du \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 + |\alpha_j \gamma_j|) \bar{P}_{ijl}^O \int_0^{+\infty} \left| \tilde{\sigma}_{ijl}(u) \right| du \int_0^{+\infty} \left| \tilde{\sigma}_{ijl}(u) \right| e^{2\mu u} du M_j^O L_j^L \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 + |\alpha_j \gamma_j|) \bar{P}_{ijl}^Q \int_0^{+\infty} \left| \tilde{\sigma}_{ijl}(u) \right| du \int_0^{+\infty} \left| \tilde{\sigma}_{ijl}(u) \right| e^{2\mu u} du M_j^Q L_j^L \]
\[+ \frac{1}{2} \sum_{j=1}^{n} |\alpha_j \gamma_j| \bar{h}_{ijl}(t) L_j^L \int_0^{+\infty} \left| \sigma_j(u) \right| du \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} |\alpha_j \gamma_j| \bar{p}_{ijl}(t) \int_0^{+\infty} \left| \tilde{\sigma}_{ijl}(u) \right| du \int_0^{+\infty} \left| \tilde{\sigma}_{ijl}(u) \right| du \]
\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} |\alpha_j \gamma_j| \bar{p}_{ijl}(t) \int_0^{+\infty} \left| \tilde{\sigma}_{ijl}(u) \right| du \int_0^{+\infty} \left| \tilde{\sigma}_{ijl}(u) \right| du, \]

\[E_i(t) = \beta_i + \gamma_i^2 - \alpha_i(t)\alpha_i \gamma_i - b_i(t)\alpha_i^2, \quad \tilde{q}_{ij}^0 = \max_{te[0,T]} q_{ij}^0(t), \]

\[\tilde{\eta}_{ijl}^* = \max_{te[0,T]} \eta_{ijl}^0(t), \quad \tilde{\xi}_{ijl}^* = \max_{te[0,T]} \xi_{ijl}^0(t), \]

\[q_{ij}^0 = \max_{te[0,T]} q_{ij}(t), \quad \eta_{ijl}^* = \max_{te[0,T]} \eta_{ijl}(t), \]

and

\[\xi_{ijl}^* = \max_{te[0,T]} \xi_{ijl}(t), \quad \bar{c}_{ij}^* = \sup_{te\mathbb{R}} |c_{ij}(t)|, \quad \bar{d}_{ij}^* = \sup_{te\mathbb{R}} |d_{ij}(t)|, \]

\[\theta_{ijl}^* = \sup_{te\mathbb{R}} |\theta_{ijl}(t)|, \quad i,j,l \in D. \]

(G_k) For \(i, j, l \in D, q_{ij}, \eta_{ijl} \) and \(\xi_{ijl} \) are continuously differentiable, \(q_{ij}^0(t) = \tilde{q}_{ij}^0(t) < 1, \eta_{ijl}^0(t) = \tilde{\eta}_{ijl}^0(t) < 1 \) and \(\tilde{\xi}_{ijl}^0(t) = \tilde{\xi}_{ijl}^0(t) < 1 \) for all \(t \in \mathbb{R} \).
Remark 2.1 According to (G₁) and the basic theory on functional differential equation with infinite delay in [41], one can show that all solutions of (1.1) and (1.2) exist in [0, +∞).

Lemma 2.1 Assume that (G₁), (G₂), (G₃) and (G₄) hold. Let \(x(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \) and \(y(t) = (y_1(t), y_2(t), \ldots, y_n(t)) \) be two solutions of system (1.1) satisfying

\[
x_i(s) = \phi_i^x(s), \quad x'_i(0) = \psi_i^x, \quad y_i(s) = \phi_i^y(s), \quad y'_i(0) = \psi_i^y,
\]

(2.2)

where \(i \in D, \phi_i^x, \phi_i^y \in BC([–\infty, 0], \mathbb{R}), \psi_i^x, \psi_i^y \in \mathbb{R} \). Then there are two positive constants \(\lambda \) and \(M = M(\phi^x, \phi^y, \psi^x, \psi^y) \) such that

\[
|x_i(t) – y_i(t)| \leq Me^{-\lambda t}, \quad |x'_i(t) – y'_i(t)| \leq Me^{-\lambda t}, \quad \text{for all } t \geq 0, i \in D.
\]

(2.3)

Proof Denote \(z_i(t) = y_i(t) – x_i(t) \), then

\[
z'_i(t) = -a_i(t)z'_i(t) - b_i(t)z_i(t)
\]

\[
= \left[n \sum_{j=1}^{n} c_{ij}(t)\tilde{A}_j(z_j(t)) + \sum_{j=1}^{n} d_{ij}(t)\tilde{B}_j(z_j(t) - q_{ij}(t)) + \sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{ijl}(t) \right]
\]

\[
\times \left[Q_i(y_i(t - \eta_{ijl}(t)))Q_i(y_i(t - \xi_{ijl}(t)))Q_i(x_i(t) - \xi_{ijl}(t)) + Q_i(y_i(t - \eta_{ijl}(t)))Q_i(x_i(t) - \eta_{ijl}(t))Q_i(x_i(t) - \xi_{ijl}(t)) \right]
\]

\[
\times \left[\int_{0}^{\infty} \tilde{\sigma}_{ijl}(u)R_j(y_j(t - u)) \ du \int_{0}^{\infty} \tilde{\sigma}_{ijl}(u)R_j(x_j(t - u)) \ du \right]
\]

\[
- \left[\int_{0}^{\infty} \tilde{\sigma}_{ijl}(u)R_j(x_j(t - u)) \ du \int_{0}^{\infty} \tilde{\sigma}_{ijl}(u)R_j(y_j(t - u)) \ du \right]
\]

\[
+ \left[\int_{0}^{\infty} \tilde{\sigma}_{ijl}(u)R_j(y_j(t - u)) \ du \int_{0}^{\infty} \tilde{\sigma}_{ijl}(u)R_j(x_j(t - u)) \ du \right]
\]

\[
- \left[\int_{0}^{\infty} \tilde{\sigma}_{ijl}(u)R_j(x_j(t - u)) \ du \int_{0}^{\infty} \tilde{\sigma}_{ijl}(u)R_j(y_j(t - u)) \ du \right],
\]

where

\[
\tilde{A}_j(z_j(t)) = A_j(y_j(t)) - A_j(x_j(t)), \quad \tilde{B}_j(z_j(t) - q_{ij}(t))) = B_j(y_j(t) - q_{ij}(t))) - B_j(x_j(t) - q_{ij}(t))), \quad \tilde{K}_j(z_j(t - u)) = K_j(y_j(t - u)) - K_j(x_j(t - u)),
\]

and \(i, j \in D \).

According to (G₂) and the boundedness of (1.1), one can select a constant \(\lambda > 0 \) such that

\[
C_1^1(t) < 0, \quad 4C_1^2(t)D_1^2(t) > (E_1^2(t))^2, \quad \forall t \in \mathbb{R},
\]

(2.4)
where

\[C^i_j(t) = \lambda \alpha_i^2 + \alpha_i \gamma_i - \alpha_i(t) \alpha_i^2 + \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \left(|c_{ij}(t)| L_j^A + |d_{ij}(t)| L_j^B \right) \]

\[+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\theta_{ijl}(t) |(M^Q L_j^i \theta_{ijl}(t) + L_j^Q M^Q) \right) \]

\[+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \left(|h_{ij}(t)| L_j^K \int_0^{+\infty} |\sigma_{ij}(u)| \, du \right) \]

\[+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \sum_{l=1}^{n} \left(p_{ijl}(t) |M^P L_j^i \int_0^{+\infty} |\hat{\sigma}_{ijl}(u)| \, du \right) \]

\[+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|p_{ijl}(t)| |M^P L_j^i \int_0^{+\infty} |\hat{\sigma}_{ijl}(u)| \, du \right) \]

\[\frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|p_{ijl}(t)| |M^P L_j^i \int_0^{+\infty} |\hat{\sigma}_{ijl}(u)| \, du \right) \]

\[D_j^i(t) = -b_i(t) \alpha_i \gamma_i + \beta_i \lambda i \gamma_i^2 + \frac{1}{2} \sum_{j=1}^{n} \left(|c_{ij}(t)| L_j^A + |d_{ij}(t)| L_j^B \right) |\alpha_i \gamma_i| \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \left(|c_{ij}(t)| L_j^A + d_{ij}^* L_j^B \frac{1}{1 - \hat{\sigma}_{ij}} e^{224 \gamma_i} \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \left(|c_{ij}(t)| L_j^A + d_{ij}^* L_j^B \frac{1}{1 - \hat{\sigma}_{ij}} e^{224 \gamma_i} \right) |\alpha_i \gamma_i| \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|\alpha_i \gamma_i| |\theta_{ijl}(t)| (M^Q L_j^i \theta_{ijl}(t) + L_j^Q M^Q) \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|\alpha_i \gamma_i| \theta_{ijl}(t) M^Q L_j^i \frac{1}{1 - \hat{\sigma}_{ij}} \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|\alpha_i \gamma_i| \theta_{ijl}(t) M^Q L_j^i \frac{1}{1 - \hat{\sigma}_{ij}} \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|\alpha_i \gamma_i| |h_{ij}(t)| L_j^K \int_0^{+\infty} |\sigma_{ij}(u)| \, du \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|p_{ijl}(t)| M^P L_j^i \int_0^{+\infty} |\hat{\sigma}_{ijl}(u)| \, du \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|p_{ijl}(t)| M^P L_j^i \int_0^{+\infty} |\hat{\sigma}_{ijl}(u)| \, du \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|p_{ijl}(t)| M^P L_j^i \int_0^{+\infty} |\hat{\sigma}_{ijl}(u)| \, du \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(|p_{ijl}(t)| M^P L_j^i \int_0^{+\infty} |\hat{\sigma}_{ijl}(u)| \, du \right) \]
and

\[E_i^t(t) = \beta_i + \gamma_i^2 + 2\lambda_1\alpha_i\gamma_i - a_i(t)\alpha_i\gamma_i - b_i(t)\alpha_i^2, \quad i \in D. \]

Set

\[
W(t) = \frac{1}{2} \sum_{i=1}^{n} \beta_i z_i^2(t) e^{2\lambda t} + \frac{1}{2} \sum_{i=1}^{n} (\alpha_i z_i'(t) + \gamma_i z_i(t))^2 e^{2\lambda t}
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i^2 \delta_{ij} + |\alpha_i\gamma_i|) \theta_{ij} L_i^R \int_{t-q_i(t)}^{t} z_j^2(s) \frac{1}{1 - \hat{q}_i} e^{2\lambda s} ds
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_i^2 + |\alpha_j\gamma_j|) \theta_{ijl} M_l^R L_i^Q \int_{t-\xi_{ijl}(t)}^{t} z_j^2(s) \frac{1}{1 - \eta_{ijl}} e^{2\lambda s} ds
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} (\alpha_i^2 \delta_{ij} + |\alpha_j\gamma_j|) \theta_{ijlm} M_l^R M_m^R L_i^Q e^{2\lambda s} \int_{t-q_{ijm}(t)}^{t} z_j^2(s) e^{2\lambda s} ds du
\]

\[
\times \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| \int_{t-u}^{t} z_j^2(s) e^{2\lambda(s+u)} ds du
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} (\alpha_i^2 + |\alpha_j\gamma_j|) \theta_{ijlm} M_l^R M_m^R L_i^Q \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| du
\]

\[
\times \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| \int_{t-u}^{t} z_j^2(s) e^{2\lambda(s+u)} ds du.
\]

A straightforward computation yields

\[
W''(t)
\]

\[
= 2\lambda \left[\frac{1}{2} \sum_{i=1}^{n} \beta_i z_i^2(t) e^{2\lambda t} + \frac{1}{2} \sum_{i=1}^{n} (\alpha_i z_i'(t) + \gamma_i z_i(t))^2 e^{2\lambda t} \right]
\]

\[
+ \sum_{i=1}^{n} \left(\beta_i + \gamma_i^2 \right) z_i(t) z_i'(t) e^{2\lambda t} + \sum_{i=1}^{n} \alpha_i (\alpha_i z_i'(t) + \gamma_i z_i(t)) e^{2\lambda t}
\]

\[
\times \left[-a_i(t) z_i'(t) - b_i(t) z_i(t) + \sum_{j=1}^{n} c_{ij}(t) \tilde{A}_j(z_j(t)) + \sum_{j=1}^{n} d_{ij}(t) \tilde{B}_j(z_j(t - q_j(t))) \right]
\]

\[
+ \sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{ijl}(t) (Q_j(y_j(t - \eta_{ijl}(t))) Q_l(y_l(t - \xi_{ijl}(t))))
\]

\[
- Q_j(y_j(t - \eta_{ijl}(t))) Q_l(x_l(t - \xi_{ijl}(t))) + Q_j(y_j(t - \eta_{ijl}(t))) Q_l(x_l(t - \xi_{ijl}(t)))
\]
\[-Q_i(x_i(t - \eta_{i\gamma}(t)))Q_i(x_i(t - \xi_{i\gamma}(t)))\]
\[+ \sum_{j=1}^{n} h_{ij}(t) \int_{0}^{+\infty} \sigma_{ij}(u) K_j(z_j(t - u)) du + \sum_{j=1}^{n} \sum_{l=1}^{n} p_{ijl}(t)\]
\[\times \left(\int_{0}^{+\infty} \bar{\sigma}_{i\gamma}(u) R_j(y_j(t - u)) du \int_{0}^{+\infty} \bar{\sigma}_{i\gamma}(u) R_l(y_l(t - u)) du \right.\]
\[- \int_{0}^{+\infty} \bar{\sigma}_{i\gamma}(u) R_j(y_j(t - u)) du \int_{0}^{+\infty} \bar{\sigma}_{i\gamma}(u) R_l(x_l(t - u)) du\]
\[+ \int_{0}^{+\infty} \bar{\sigma}_{i\gamma}(u) R_j(y_j(t - u)) du \int_{0}^{+\infty} \bar{\sigma}_{i\gamma}(u) R_l(x_l(t - u)) du\]
\[- \int_{0}^{+\infty} \bar{\sigma}_{i\gamma}(u) R_j(x_j(t - u)) du \int_{0}^{+\infty} \bar{\sigma}_{i\gamma}(u) R_l(x_l(t - u)) du \right]\]
\[+ \sum_{i=1}^{n} \alpha_{i\gamma} (z_i'(t))^2 e^{2\lambda t} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i^2 \sigma_{ij} + |\alpha_i\gamma_i| \sigma_{ij}\sigma_{ij}) e^{2\lambda t} L_j^B\]
\[\times \left[z_i^2(t) \frac{1}{1 - \bar{q}_{ij}(t)} e^{2\lambda t} - z_i^2(t - q_i(t)) e^{2\lambda(t - q_i(t))} \frac{1 - q_i(t)}{1 - \bar{q}_{ij}(t)} \right]\]
\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_i^2 + |\alpha_i\gamma_i|) \theta_{ijl}^2 M_j^Q L_j^Q e^{2\lambda x_{ijl}}\]
\[\times \left[z_i^2(t) \frac{1}{1 - \bar{\xi}_{ij}^e(t)} e^{2\lambda t} - z_i^2(t - \xi_{ij}^e(t)) e^{2\lambda(t - \xi_{ij}^e(t))} \frac{1 - \xi_{ij}^e(t)}{1 - \bar{\xi}_{ij}^e(t)} \right]\]
\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_i^2 + |\alpha_i\gamma_i|) \theta_{ijl}^2 L_j^Q e^{2\lambda \eta_{ijl}}\]
\[\times \left[z_i^2(t) \frac{1}{1 - \tilde{\eta}_{ijl}(t)} e^{2\lambda t} - z_i^2(t - \eta_{ijl}(t)) e^{2\lambda(t - \eta_{ijl}(t))} \frac{1 - \eta_{ijl}(t)}{1 - \tilde{\eta}_{ijl}(t)} \right]\]
\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i^2 \sigma_{ij} + |\alpha_i\gamma_i| \sigma_{ij}\sigma_{ij}) L_j^K\]
\[\times \left[\int_{0}^{+\infty} |\sigma_{ij}(u)| e^{2\lambda u} du z_i^2(t) e^{2\lambda t} - \int_{0}^{+\infty} |\sigma_{ij}(u)| z_i^2(t - u) d ue^{2\lambda t} \right]\]
\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_i^2 + |\alpha_i\gamma_i|) p_{ijl}^2 M_j^R L_j^R \int_{0}^{+\infty} |\bar{\sigma}_{ij}(u)| du\]
\[\times \left[\int_{0}^{+\infty} |\bar{\sigma}_{ij}(u)| e^{2\lambda u} du z_i^2(t) e^{2\lambda t} - \int_{0}^{+\infty} |\bar{\sigma}_{ij}(u)| z_i^2(t - u) d ue^{2\lambda t} \right]\]
\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_i^2 + |\alpha_i\gamma_i|) p_{ijl}^2 M_j^R L_j^R \int_{0}^{+\infty} |\bar{\sigma}_{ij}(u)| du\]
\[\times \left[\int_{0}^{+\infty} |\bar{\sigma}_{ij}(u)| e^{2\lambda u} du z_i^2(t) e^{2\lambda t} - \int_{0}^{+\infty} |\bar{\sigma}_{ij}(u)| z_i^2(t - u) d ue^{2\lambda t} \right]\]
\[\leq e^{2\lambda t} \left(\sum_{i=1}^{n} (\beta_i + \gamma_i^2 + 2\lambda \alpha_i \gamma_i - a_i(t) \alpha_i \gamma_i - b_i(t) \alpha_i^2) z_i(t) z_i'(t) \right)\]
\[+ \sum_{i=1}^{n} \left(\lambda \alpha_i^2 + \alpha_i \gamma_i - \alpha_i(t) \alpha_i^2 \right) \left(z_i(t) \right)^2 - \sum_{i=1}^{n} \left(b_i(t) \alpha_i \gamma_i - \lambda \beta_i - \lambda \gamma_i^2 \right) z_i^2(t) \]

\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\alpha_i^2 d_{ij}^* + |\alpha_i \gamma_i| d_{ij}^* \right) L_j^B \left(e^{23\alpha_i^2} z_i^2(t) - \frac{1}{1 - \xi_{ij}} \right) \]

\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 + |\alpha_i \gamma_i| \right) \theta_{ijl}^0 M_j^Q \left(e^{23\alpha_i^2} z_i^2(t) - \frac{1}{1 - \xi_{ij}} \right) \]

\[- \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\alpha_i^2 d_{ij}^* + |\alpha_i \gamma_i| d_{ij}^* \right) L_j^B \left(t - q_j(t) \right) \]

\[- \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 + |\alpha_i \gamma_i| \right) \theta_{ijl}^0 M_j^Q \left(t - \xi_{ij} \right) \]

\[- \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 + |\alpha_i \gamma_i| \right) \theta_{ijl}^0 M_j^Q \left(t - \eta_{ijl} \right) \]

\[+ \sum_{i=1}^{n} \left(\alpha_i^2 |z_i^2(t)| + |\alpha_i \gamma_i| |z_i(t)| \right) c_0(t) \left| \bar{A}_i(z_i(t)) \right| \]

\[+ \sum_{i=1}^{n} \left(\alpha_i^2 |z_i^2(t)| + |\alpha_i \gamma_i| |z_i(t)| \right) d_0(t) \left| \bar{B}_i(z_i(t) - q_j(t)) \right| \]

\[+ \sum_{i=1}^{n} \left(\alpha_i^2 |z_i^2(t)| + |\alpha_i \gamma_i| |z_i(t)| \right) \]

\[\times \sum_{j=1}^{n} \sum_{l=1}^{n} \left| \theta_{ijl}(t) \right| \left((M_j^QL_j^Q |z_l(t - \xi_{ijl}(t))| + M_j^QL_j^Q |z_l(t - \eta_{ijl}(t))| \right) \]

\[+ \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\alpha_i^2 |z_i^2(t)| + |\alpha_i \gamma_i| |z_i(t)| \right) h_i(t) \left| \int_0^\infty \sigma_q(u) \left| \bar{K}_j(z_i(t - u)) \right| du \right| \]

\[+ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 |z_i^2(t)| + |\alpha_i \gamma_i| |z_i(t)| \right) p_{ijl}(t) \left| \int_0^\infty \left| \tilde{\sigma}_{ijl}(u) \right| du \right| \]

\[\times \int_0^\infty \left| \tilde{\sigma}_{ijl}(u) \right| |z_i(t - u)| d\mu_1 \overline{L}_2^R \]

\[+ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 |z_i^2(t)| + |\alpha_i \gamma_i| |z_i(t)| \right) \left| \int_0^\infty \left| \tilde{\sigma}_{ijl}(u) \right| du \right| \]

\[\times \int_0^\infty \left| \tilde{\sigma}_{ijl}(u) \right| |z_i(t - u)| d\mu_1 \overline{L}_2^R \]

\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\alpha_i^2 h_i^* + |\alpha_i \gamma_i| h_i^* \right) L_j^K \left| \int_0^\infty \left| \sigma_q(u) \right| e^{23u} du \right| \]

\[- \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\alpha_i^2 h_i^* + |\alpha_i \gamma_i| h_i^* \right) L_j^K \left| \sigma_q(u) \right| z_i^2(t - u) du \]
Yao and Cao

\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{j=1}^{n} (\alpha_i^2 + |\alpha_i\gamma_i|) p_{ij}^l \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| e^{2iu} \, du z_i^2(t) M_i^B L_i^B \]

\[- \frac{1}{2} \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{j=1}^{n} (\alpha_i^2 + |\alpha_i\gamma_i|) p_{ij}^l \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| z_i^2(t-u) \, du M_i^B L_i^B \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{i=1}^{n} (\alpha_j^2 + |\alpha_j\gamma_j|) p_{ij}^l \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| e^{2iu} \, du z_i^2(t) M_i^B L_i^B \]

\[- \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{i=1}^{n} (\alpha_j^2 + |\alpha_j\gamma_j|) p_{ij}^l \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| z_i^2(t-u) \, du M_i^B L_i^B \]

\[= e^{2st} \left\{ \sum_{i=1}^{n} \left(\beta_i + \gamma_i^2 + 2\lambda \alpha_i \gamma_i - a_i(t) \alpha_i \gamma_i - b_i(t) \alpha_i^2 \right) z_i(t) z_i(t) \right\} \]

\[+ \frac{1}{2} \sum_{i=1}^{n} \left(\lambda \alpha_i^2 + \alpha_i \gamma_i - a_i(t) \alpha_i^2 \right) (z_i(t))^2 \]

\[+ \sum_{i=1}^{n} \left[-b_i(t) \alpha_i \gamma_i + \lambda \beta_i + \lambda \gamma_i^2 + \frac{1}{2} \sum_{j=1}^{n} (\alpha_j^2 d_{ji}^+ + |\alpha_j\gamma_j| d_{ji}^+) L_i^B e^{2iu} \right] \frac{1}{1 - \xi_{ji}} \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 + |\alpha_j\gamma_j|) \theta_{ij}^l M_i^B L_i^B e^{2iu} \frac{1}{1 - \xi_{ij}} \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 h_{ji}^+ + |\alpha_j\gamma_j|h_{ji}^+) L_i^B \int_{0}^{+\infty} \sigma_{ji}(u) e^{2iu} \, du \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 + |\alpha_j\gamma_j|) \theta_{ij}^l L_i^B e^{2iu} \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| e^{2iu} \, du M_i^B L_i^B \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 + |\alpha_j\gamma_j|) \theta_{ij}^l L_i^B e^{2iu} \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| e^{2iu} \, du M_i^B L_i^B \]

\[- \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 d_{ji}^+ + |\alpha_j\gamma_j| d_{ji}^+) L_i^B \int_{0}^{+\infty} \sigma_{ij}(u) e^{2iu} \, du \]

\[- \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 + |\alpha_j\gamma_j|) \theta_{ij}^l L_i^B e^{2iu} \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| e^{2iu} \, du M_i^B L_i^B \]

\[- \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_j^2 h_{ji}^+ + |\alpha_j\gamma_j|h_{ji}^+) L_i^B \int_{0}^{+\infty} |\hat{\sigma}_{ij}(u)| e^{2iu} \, du \]
\[-\frac{1}{2} \sum_{j=1}^{n} \int_{0}^{t} \int_{0}^{t} |\tilde{\sigma}_{j}(u)| |\tilde{\sigma}_{j}(u)| \sum_{i=1}^{n} \left(\alpha_{i}^{2} |z_{i}(t)| + |\alpha_{i} \gamma_{i}| |z_{i}(t)| \right) \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\alpha_{j}^{2} |z_{j}(t)| + |\alpha_{j} \gamma_{j}| |z_{j}(t)| \right) \right) \right] \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\alpha_{j}^{2} |z_{j}(t)| + |\alpha_{j} \gamma_{j}| |z_{j}(t)| \right) \right) \right) \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\alpha_{j}^{2} |z_{j}(t)| + |\alpha_{j} \gamma_{j}| |z_{j}(t)| \right) \right)
\]

It follows from (G1) and \(PQ \leq \frac{1}{4}(P^{2} + Q^{2}) \) (\(P, Q \in \mathbb{R} \)) that

\[\sum_{j=1}^{n} \sum_{i=1}^{n} \left(\alpha_{j}^{2} |z_{j}(t)| + |\alpha_{j} \gamma_{j}| |z_{j}(t)| \right) \left| c_{j}(t) \right| \left| \tilde{A}_{j}(z_{j}(t)) \right| \]

\[\leq \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j}^{2} |c_{j}(t)| L_{A}^{4} \left((\tilde{z}_{j}(t))^{2} + z_{j}^{2}(t) \right) \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} |\alpha_{j} \gamma_{j}| |c_{j}(t)| L_{A}^{4} \left(\tilde{z}_{j}(t) + z_{j}^{2}(t) \right) \]

\[= \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j}^{2} |c_{j}(t)| L_{A}^{4} \left(\tilde{z}_{j}(t) \right)^{2} \]

\[+ \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \left(|\alpha_{j} \gamma_{i}| |c_{j}(t)| L_{A}^{4} + \alpha_{j}^{2} |c_{j}(t)| L_{A}^{4} + |\alpha_{j} \gamma_{i}| |c_{j}(t)| L_{A}^{4} \right) z_{j}(t). \]

\[\sum_{j=1}^{n} \sum_{i=1}^{n} \left(\alpha_{j}^{2} |z_{j}(t)| + |\alpha_{j} \gamma_{j}| |z_{j}(t)| \right) \left| d_{j}(t) \right| \left| \tilde{B}_{j}(z_{j}(t) - q_{j}(t)) \right| \]

\[\leq \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j}^{2} |d_{j}(t)| L_{A}^{4} \left((\tilde{z}_{j}(t))^{2} + z_{j}^{2}(t) - q_{j}(t) \right) \]
\[
\frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} |a_{ij}y_j| |d_{ij}(t)| L_j^R (z_j^2(t) + z_j^2(t - q_{ij}(t))) \\
= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2 |d_{ij}(t)| L_j^R (z_j^2(t))^2 + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}y_j| |d_{ij}(t)| L_j^R z_j^2(t) \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij}^2 |d_{ij}(t)| L_j^R + |a_{ij}y_j| |d_{ij}(t)| L_j^R) z_j^2(t - q_{ij}(t)), \\
\sum_{j=1}^{n} (a_{ij}^2 |z_j(t)| + |a_{ij}y_j| |z_j(t)|) \\
\times \sum_{j=1}^{n} \sum_{l=1}^{n} |\theta_{ij}(t)| (M_j^Q L_j^Q |z_j(t - \xi_{ij}(t))| + L_j^O |z_j(t - n_{ij}(t))| M_j^O) \\
\leq \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} a_{ij}^2 |\theta_{ij}(t)| (M_j^Q L_j^Q ((z_j(t))^2 + z_j^2(t - \xi_{ij}(t))) \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} |a_{ij}y_j| |\theta_{ij}(t)| (M_j^Q L_j^Q ((z_j(t))^2 + z_j^2(t - n_{ij}(t)))) \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} a_{ij}^2 |\theta_{ij}(t)| L_j^R M_j^Q ((z_j(t))^2 + z_j^2(t - n_{ij}(t))) \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} |a_{ij}y_j| |\theta_{ij}(t)| L_j^Q M_j^Q ((z_j(t))^2 + z_j^2(t - \xi_{ij}(t))) \\
= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} a_{ij}^2 |\theta_{ij}(t)| (M_j^Q L_j^Q + L_j^O M_j^Q) ((z_j(t))^2 \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} |a_{ij}y_j| |\theta_{ij}(t)| (M_j^Q L_j^Q + L_j^O M_j^Q) (z_j(t))^2 \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (a_{ij}^2 + |a_{ij}y_j|) |\theta_{ij}(t)| M_j^Q L_j^Q z_j^2(t - \xi_{ij}(t)) \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (a_{ij}^2 + |a_{ij}y_j|) |\theta_{ij}(t)| L_j^Q M_j^Q z_j^2(t - n_{ij}(t)) \\
= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} a_{ij}^2 |\theta_{ij}(t)| (M_j^Q L_j^Q + L_j^O M_j^Q) ((z_j(t))^2 \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} |a_{ij}y_j| |\theta_{ij}(t)| (M_j^Q L_j^Q + L_j^O M_j^Q) (z_j(t))^2 \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (a_{ij}^2 + |a_{ij}y_j|) |\theta_{ij}(t)| M_j^Q L_j^Q z_j^2(t - \xi_{ij}(t)) \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (a_{ij}^2 + |a_{ij}y_j|) |\theta_{ij}(t)| L_j^Q M_j^Q z_j^2(t - n_{ij}(t)),
\]
\[
\sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i^2 |z_i'(t)| + |\alpha_i \gamma_i| |z_i(t)|) |h_j(t)| \int_{0}^{+\infty} |\sigma_j(u)| |K_j(z_i(t-u))| du
\]
\[
\leq \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i^2 |h_j(t)| L_j^R \int_{0}^{+\infty} |\sigma_j(u)| du |z_i'(t)|^2
\]
\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} |\alpha_i \gamma_i| |h_j(t)| L_j^R \int_{0}^{+\infty} |\sigma_j(u)| du |z_i'(t)|
\]
\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i^2 |h_j(t)| L_j^R + |\alpha_i \gamma_i| |h_j(t)| L_j^R) \int_{0}^{+\infty} |\sigma_j(u)| du |z_i'(t-u)| du,
\]
\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{j=1}^{n} (\alpha_i^2 |z_i'(t)| + |\alpha_i \gamma_i| |z_i(t)|) |p_{ijl}(t)|
\]
\[
\times \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| |z_i(t-u)| du M_{ijl}^R L_{ijl}^R
\]
\[
\leq \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{j=1}^{n} \alpha_i^2 |p_{ijl}(t)| M_{ijl}^R L_{ijl}^R \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du |z_i'(t)|^2
\]
\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{j=1}^{n} |\alpha_i \gamma_i| |p_{ijl}(t)| M_{ijl}^R L_{ijl}^R \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du |z_i'(t-u)| du
\]
\[
\times \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| |z_i'(t-u)| du,
\]
and
\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} (\alpha_i^2 |z_i'(t)| + |\alpha_i \gamma_i| |z_i(t)|) |p_{ijl}(t)|
\]
\[
\times \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| |z_i(t-u)| du M_{ijl}^R L_{ijl}^R
\]
\[
\leq \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{j=1}^{n} \alpha_i^2 |p_{ijl}(t)| M_{ijl}^R L_{ijl}^R \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du |z_i'(t)|^2
\]
\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{j=1}^{n} |\alpha_i \gamma_i| |p_{ijl}(t)| M_{ijl}^R L_{ijl}^R \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| du |z_i'(t-u)| du
\]
\[
\times \int_{0}^{+\infty} |\tilde{\sigma}_{ijl}(u)| |z_i'(t-u)| du,
\]
which, together with (2.4) and (2.5), entails
\[
W'(t) \leq e^{2\lambda t} \left\{ \sum_{i=1}^{n} (\beta_i + \gamma_i^2 + 2\lambda \alpha_i \gamma_i - a_i(t) \alpha_i \gamma_i - b_i(t) \alpha_i^2) z_i(t) z_i'(t) \right\}
\]
\[\sum_{i=1}^{n} \left[\lambda \alpha_i^2 + \alpha_i \gamma_i - \alpha_i (t) \alpha_i^2 + \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} (|c_{ij}(t)| L_j^A + |d_{ij}(t)| L_j^B) \right] \\
+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \sum_{l=1}^{n} |\theta_{ij}(t)| (M_j^Q L_j^A + L_j^Q M_j^P) \\
+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} |h_{ij}(t)| L_j^K \int_{0}^{+\infty} |\sigma_{ij}(u)| \, du \\
+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \sum_{l=1}^{n} |p_{ij}(t)| M_j^P L_j^R \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \\
+ \frac{1}{2} \alpha_i^2 \sum_{j=1}^{n} \sum_{l=1}^{n} |p_{ij}(t)| M_j^P L_j^R \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \left(\varepsilon_i(t)\right)^2 \\
+ \sum_{i=1}^{n} \left[-b_i(t) \alpha_i \gamma_i + \lambda \beta_i + \lambda \gamma_i^2 + \frac{1}{2} \sum_{j=1}^{n} (|c_{ij}(t)| L_j^A + |d_{ij}(t)| L_j^B) |\alpha_i \gamma_i| \right] \\
+ \frac{1}{2} \sum_{j=1}^{n} \alpha_i^2 \left(|c_{ij}(t)| L_j^A + d^*_j L_j^B \frac{1}{1 - \hat{q}_{ij}} e^{2q_j^*} \right) \\
+ \frac{1}{2} \sum_{j=1}^{n} \alpha_i^2 \left(|c_{ij}(t)| L_j^A + d^*_j L_j^B \frac{1}{1 - \hat{q}_{ij}} e^{2q_j^*} \right) |\alpha_j \gamma_j| \\
+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} |\alpha_j \gamma_j| |\theta_{ij}(t)| (M_j^Q L_j^A + L_j^Q M_j^P) \\
+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 + |\alpha_j \gamma_j| \right) \theta_{ij} M_j^P L_j^R e^{2s_{ij}} \frac{1}{1 - q_{ij}} \\
+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 + |\alpha_j \gamma_j| \right) \theta_{ij} M_j^P L_j^R e^{2s_{ij}} \frac{1}{1 - \hat{q}_{ij}} \\
+ \frac{1}{2} \sum_{j=1}^{n} \left(\alpha_i^2 h_j^* + |\alpha_j \gamma_j| h_j^* \right) L_j^K \int_{0}^{+\infty} |\sigma_{ij}(u)| e^{2\lambda u} \, du \\
+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 + |\alpha_j \gamma_j| \right) p_{ij} \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| e^{2\lambda u} \, du M_j^P L_j^R \\
+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} \left(\alpha_i^2 + |\alpha_j \gamma_j| \right) p_{ij} \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| e^{2\lambda u} \, du M_j^P L_j^R \\
+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} |\alpha_j \gamma_j| |h_{ij}(t)| L_j^K \int_{0}^{+\infty} |\sigma_{ij}(u)| \, du \\
+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} |\alpha_j \gamma_j| |p_{ij}(t)| M_j^P L_j^R \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \\
+ \frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} |\alpha_j \gamma_j| |p_{ij}(t)| M_j^P L_j^R \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \int_{0}^{+\infty} |\tilde{\sigma}_{ij}(u)| \, du \left(\varepsilon_i(t)\right)^2 \]
Let \(T \)-anti-periodic solution of the system (1.1) be a solution of system (1.1) with initial condition \(v_i(0) = \psi_i^y \in \mathbb{R}, i \in D \), respectively. Referring to the definition of stability adopted in [5, 18–21, 40, 42–45], this indicates that \(y(t) \) is globally exponentially stable.

This indicates that \(W(t) \leq W(0) \) for all \(t \in [0, +\infty) \), and

\[
\frac{1}{2} \sum_{i=1}^{n} \beta_i z_i^2(t) e^{2\lambda t} + \frac{1}{2} \sum_{i=1}^{n} (\alpha_i z_i'(t) + \gamma_i z_i(t))^2 e^{2\lambda t} \leq W(0), \quad t \in [0, +\infty).
\]

Manifestly,

\[
(\alpha_i z_i'(t) e^{\lambda t} + \gamma_i z_i(t) e^{\lambda t})^2 = (\alpha_i z_i'(t) + \gamma_i z_i(t))^2 e^{2\lambda t}
\]

and

\[
\alpha_i |z_i'(t)| e^{\lambda t} \leq |\alpha_i z_i'(t) e^{\lambda t} + \gamma_i z_i(t) e^{\lambda t}| + |\gamma_i z_i(t) e^{\lambda t}|.
\]

Combining with the Cauchy–Schwarz inequality, one can pick a constant \(M > 0 \) such that

\[
|z_i'(t)| \leq Me^{-\lambda t}, \quad |z_i(t)| \leq Me^{-\lambda t}, \quad t \geq 0, i \in D,
\]

which proves Lemma 2.1. \(\Box \)

Remark 2.2 More precisely, according to Lemma 2.1, we know that, if \(y(t) \) is an equilibrium point or a \(T \)-anti-periodic solution of (1.1), then all solutions of the system (1.1) and their derivatives are exponentially convergent to \(y(t) \) and \(y'(t) \), respectively. Referring to the definition of stability adopted in [5, 18–21, 40, 42–45], this indicates that \(y(t) \) is globally exponentially stable.

3 Anti-periodicity of HIHNNs (1.1)

Now, we set out to present the main result of this paper as follows.

Theorem 3.1 Under conditions \((G_1)-(G_6)\), system (1.1) has a globally exponentially stable \((T)\)-anti-periodic solution.

Proof Let \(\nu(t) = (\nu_1(t), \nu_2(t), \ldots, \nu_n(t)) \) be a solution of system (1.1) with initial conditions:

\[
\nu_i(s) = \varphi^y_i(s), \quad \nu_i(0) = \psi^y_i, \quad \varphi^y_i \in BC((-\infty, 0], \mathbb{R}), \psi^y_i \in \mathbb{R}, i \in D. \tag{3.1}
\]

Clearly, for any nonnegative integer \(m \),

\[
(((-1)^{m+1})^m \nu_i(t + (m + 1)T))^{(m+1)} = -a_i(t)((-1)^{m+1})^m \nu_i(t + (m + 1)T)^{(m+1)} - b_i(t)((-1)^{m+1})^m \nu_i(t + (m + 1)T)
\]
for all $i \in D, t + (m + 1)T \geq 0$. It is easy to see that $(-1)^{m+1}v(t + (m + 1)T)$ is a solution of (1.1), and $u(t) = -v(t + T)$ satisfies system (1.1) involving initial values:

$$
\phi_i(s) = -v_i(s + T), \quad \psi_i(t) = -v'_i(t), \quad \text{ for all } s \in (-\infty, 0], i \in D.
$$

According to Lemma 2.1, we can take a constant $N = N(\psi^u, \psi^v, \phi^u, \psi^u)$ satisfying

$$
|v_i(t) - u_i(t)| \leq Ne^{-\lambda t}, \quad |v'_i(t) - u'_i(t)| \leq Ne^{-\lambda t}, \quad \text{ for all } t \geq 0, i \in D.
$$

Thus,

$$
\begin{align*}
&|(-1)^p v_i(t + pT) - (-1)^{p+1} v_i(t + (p + 1)T)| \\
&= |v_i(t + pT) - u_i(t + pT)| \leq Ne^{-\lambda t(p+T)}, \\
&|((-1)^p v_i(t + pT))' - ((-1)^{p+1} v_i(t + (p + 1)T))'| \\
&= |v'_i(t + pT) - u'_i(t + pT)| \leq Ne^{-\lambda t(p+T)}, \\
\end{align*}
$$

for all $i \in D, t + pT \geq 0$.

Thus, together with the facts that

$$
\begin{align*}
&=(-1)^{m+1} v_i(t + (m + 1)T) \\
&= v_i(t) + \sum_{p=0}^{m} [(-1)^{p+1} v_i(t + (p + 1)T) - (-1)^p v_i(t + pT)] \quad (i \in D)
\end{align*}
$$

and

$$
\begin{align*}
&=(-1)^{m+1} v_i(t + (m + 1)T) \\
&= v'_i(t) + \sum_{p=0}^{m} [((-1)^{p+1} v_i(t + (p + 1)T))' - ((-1)^{p+1} v_i(t + pT))'] \quad (i \in D),
\end{align*}
$$
then, we can show that there exists a continuous differentiable function $\kappa(t) = (\kappa_1(t), \kappa_2(t), \ldots, \kappa_n(t))$ such that $\{(-1)^m\upsilon(t + mT)\}_{m \geq 1}$ and $\{((-1)^m\upsilon(t + mT))'\}_{m \geq 1}$ are uniformly convergent to $\kappa(t)$ and $\kappa'(t)$ on any compact set of \mathbb{R}, respectively. Moreover,

$$\kappa(t + T) = \lim_{m \to +\infty} (-1)^m\upsilon(t + T + mT) = -\lim_{(m+1) \to +\infty} (-1)^{m+1}\upsilon(t + (m + 1)T) = -\kappa(t)$$

involves that $\kappa(t)$ is T-anti-periodic on \mathbb{R}. It follows from (G_1)–(G_4) and the continuity on (3.2) that $\{\upsilon'(t + (m + 1)T)\}_{m \geq 1}$ uniformly converges to a continuous function on any compact set of \mathbb{R}. Furthermore, for any compact set of \mathbb{R}, setting $m \to +\infty$, we obtain

$$\kappa_i''(t) = -a_i(t)\kappa_i'(t) - b_i(t)\kappa_i(t) + \sum_{j=1}^{n} c_{ij}(t)A_j(\kappa_j(t))$$

$$+ \sum_{j=1}^{n} d_{ij}(t)B_j(\kappa_j(t - q_{ij}(t)))$$

$$+ \sum_{j=1}^{n} \sum_{l=1}^{n} \theta_{ijl}(t)Q_j(\kappa_j(t - \eta_{ijl}(t)))Q_l(\kappa_l(t - \xi_{ijl}(t)))$$

$$+ \sum_{j=1}^{n} h_{ij}(t) \int_{0}^{+\infty} \sigma_{ij}(u)K_j(\kappa_j(t - u)) \, du$$

$$+ \sum_{j=1}^{n} \sum_{l=1}^{n} p_{ijl}(t) \int_{0}^{+\infty} \hat{\sigma}_{ijl}(u)R_j(\kappa_j(t - u)) \, du$$

$$\times \int_{0}^{+\infty} \tilde{\sigma}_{ijl}(u)R_l(\kappa_l(t - u)) \, du + f_i(t), \quad i \in D,$$

which involves the fact that $\kappa(t)$ is a T-anti-periodic solution of (1.1). With the aid of Lemma 2.1 and Remark 2.2, we find that $\kappa(t)$ is globally exponentially stable. This completes the proof of Theorem 3.1.

Remark 3.1 In this present paper, the exponential convergence on every solution and its derivative in system (1.1) is established. In particular, one can see that the results in [19–21, 30, 34] are a special case of Theorem 3.1. This indicates that our results generalize and improve the previous references.

4 A numerical example

In this section, we give an example with a simulation to demonstrate the feasibility and the validity of our theoretical results.
Example 4.1 Let \(n = 2 \), and let us regard the following high-order inertial Hopfield neural networks with mixed delays:

\[
\begin{aligned}
\dot{x}_1(t) &= -(14.92 + 0.1 \sin(t))x_1(t) - (27.89 + 0.2 \sin(t))x_1(t) + 2.28(\sin(t)A_1(x_1(t)) + 2.19(\cos(t)A_2(x_2(t))) \\
&\quad - 0.84(\cos(2t)B_1(x_1(t) - 0.2 \sin^2(t)) + 2.41(\cos(2t)B_2(x_2(t - 0.3 \sin^2(t))) \\
&\quad + 4(\sin(t)Q_1(x_1(t - 0.4 \sin^2(t))Q_2(x_2(t - 0.5 \sin^2(t))) \\
&\quad - 0.95(\cos(2t) \int_0^{\tau} 2(\sin(4\tau)e^{-0.5\tau}K_1(x_1(t - u))d\tau) \\
&\quad + 2.52(\sin(2t) \int_0^{\tau} 3(\tau)e^{-0.5\tau}K_2(x_2(t - u))d\tau) \\
&\quad + 3.8(\cos(t) \int_0^{\tau} 2(\sin(2\tau)e^{-0.5\tau}R_1(x_1(t - u)))d\tau) \\
&\quad \times \int_0^{\tau} \cos(2(\tau + 55 \sin(t))) + 55 \sin(t)
\end{aligned}
\]

\[
\begin{aligned}
\dot{x}_2(t) &= -(15.11 + 0.1 \cos(t))x_2(t) - (31.05 + 0.1 \sin(t))x_2(t) \\
&\quad - 1.88(\sin(t)A_1(x_1(t)) - 2.33(\cos(t)A_2(x_2(t))) \\
&\quad - 2.18(\sin(2t)B_1(x_1(t - 0.2 \cos^2(t)) + 3.18(\sin(2t)B_2(x_2(t - 0.3 \cos^2(t))) \\
&\quad + 3.8(\sin(t)Q_1(x_1(t - 0.4 \cos^2(t))Q_2(x_2(t - 0.5 \cos^2(t))) \\
&\quad - 2.28(\cos(2t) \int_0^{\tau} 2(\sin(2\tau)e^{-0.5\tau}K_1(x_1(t - u))d\tau) \\
&\quad + 3.28(\sin(2t) \int_0^{\tau} 5(\tau)e^{-0.5\tau}K_2(x_2(t - u))d\tau) \\
&\quad + 4(\cos(t) \int_0^{\tau} 2(\sin(2\tau)e^{-0.5\tau}R_1(x_1(t - u)))d\tau) \\
&\quad \times \int_0^{\tau} \cos(4(\tau + 48 \sin(t))) + 48 \sin(t)
\end{aligned}
\]

where \(A_1(u) = A_2(u) = \frac{1}{35} |u|, B_1(u) = B_2(u) = \frac{1}{48} u, Q_1(u) = Q_2(u) = \frac{1}{110} (|u + 1| - |u - 1|), \\
K_1(u) = K_2(u) = \frac{1}{48} \arctan u, R_1(u) = R_2(u) = \frac{1}{28} |\arctan u|.

Obviously, one can take \(\lambda = 0.01, \alpha_i = \gamma_i = 1.1, \beta_i = 5, L_i^A = \frac{1}{35}, L_i^B = \frac{1}{48}, L_i^Q = \frac{1}{55}, L_i^K = L_i^R = \frac{1}{2}, M_i^Q = \frac{1}{35}, M_i^R = \frac{1}{48}, i = 1, 2, \) such that (4.1) satisfies (2.4) and all the conditions assumed in Sect. 2. By Theorem 3.1, we know that system (4.1) has a globally exponentially stable \(\pi \)-anti-periodic solution \(x^*(t) \), and every solution of (4.1) and its derivative are exponentially convergent to \(x^*(t) \) and \((x^*)' \), respectively. Simulations in Figs. 1 and 2 reflect that the theoretical periodicity is in agreement with the numerically observed behavior.

Figure 1 Numerical solutions \(x(t) \) to system (4.1) with initial values: \((\phi_1(s), \phi_2(s), \psi_1(s), \psi_2(s)) \equiv (2 \sin t + 1, -2 \cos t - 3, 2, 0), (2 \cos t + 2, 3 \sin t - 1, 0, 3, -3 \sin t - 2, -4 \sin t + 3, -3, -4)\).
Remark 4.1 By the way, there are many excellent results on inertial Hopfield neural networks with time-varying delays [18–21, 27, 29, 30]. However, the anti-periodicity on high-order inertial Hopfield neural networks with bounded time-varying delays and unbounded continuously distributed delays have never been touched upon by using the non-reduced order method. In addition, the corresponding results of [17–21, 27, 29, 30] and [46–95] cannot be used to reveal the convergence of the anti-periodic solution of the system (4.1).

5 Conclusions
In this paper, abandoning the traditional reduced order method, we explore the global convergence dynamics on a class of anti-periodic high-order inertial Hopfield neural networks with bounded time-varying delays and unbounded continuously distributed delays. Some sufficient conditions have been obtained to guarantee that every solution and its derivative of the addressed model is exponentially convergent to an anti-periodic solution and its derivative by combining differential inequality techniques with the Lyapunov function method. It should be mentioned that the results obtained in this manuscript are novel, and the method adopted provides a possible effective approach for studying other types high-order inertial neural networks with mixed delays.

Acknowledgements
The authors would like to thank the anonymous referees and the editor for very helpful suggestions and comments which led to improvements of the original paper.

Funding
This work was supported by Natural Science Foundation of Hunan Province of China (Nos. 2019JJ40141, 2019JJ40142), and Scientific Research Fund of Hunan Provincial Education Department (19A267).

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The two authors contributed equally to this work. All authors read and approved the final manuscript.

Author details
1Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation; School of Mathematics and Statistics, Hunan University of Technology and Business, 410205 Changsha, Hunan, P.R. China. 2College of Mathematics and Physics, Hunan University of Arts and Science, 415000 Changde, Hunan, P.R. China.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 April 2020 Accepted: 17 June 2020 Published online: 02 July 2020

References
1. Babcock, K., Westervelt, R.: Stability and dynamics of simple electronic neural networks with added inertia. Physica D 23, 464–469 (1986)
2. Babcock, K., Westervelt, R.: Dynamics of simple electronic neural networks. Physica D 28, 305–316 (1987)
3. Yu, S., Zhang, Z., Quan, Z.: New global exponential stability conditions for inertial Cohen–Grossberg neural networks with time delays. Neurocomputing 151, 1446–1454 (2015)
4. Bai, Z., Huang, C., Huang, L.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146, 4667–4682 (2018)
5. Huang, C.: Exponential stability of inertial neural networks involving proportional delays and non-reduced order method. J. Exp. Theor. Artif. Intell. 32(1), 133–146 (2020)
6. Li, C., Chen, G., Liao, L., Yu, J.: Hopf bifurcation and chaos in a single inertial neuron model with time delay. Eur. Phys. J. B 41, 337–343 (2004)
7. Zhao, H., Yu, X., Wang, L.: Bifurcation and control in an inertial two-neuron system with time delays. Int. J. Bifur. Chaos 22(2), 1250036 (2012)
8. Wang, J., T, L.: Global Lagrange stability for inertial neural networks with mixed time varying delays. Neurocomputing 235, 140–146 (2017)
9. Ge, J., Xu, J.: Weak resonant double Hopf bifurcations in an inertial four-neuron model with time delay. Int. J. Neural Syst. 22, 63–75 (2012)
10. Zhang, H., Cao, Q., Yang, H.: Asymptotically almost periodic dynamics on delayed Nicholson-type system involving patch structure. J. Inequal. Appl. 2020, 102 (2020)
11. Chen, T., Huang, L., Yu, P., Huang, W.: Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal., Real World Appl. 41, 82–106 (2018)
12. Li, X., Li, X., Hu, C.: Some new results on stability and synchronization for delayed inertial neural networks based on non-reduced order method. Neural Netw. 96, 91–100 (2017)
13. Yang, X., Wen, S., Liu, Z., Li, C., Huang, C.: Dynamic properties of foreign exchange complex network. Mathematics 7, 832 (2019). https://doi.org/10.3390/math7090832
14. Huang, C., Yang, L., Cao, J.: Asymptotic behavior for a class of population dynamics. AIMS Math. 54(4), 3378–3390 (2020). https://doi.org/10.3934/math.2020218
15. Ke, Y., Miao, C.: Stability and existence of periodic solutions in inertial BAM neural networks with time delay. Neural Comput. Appl. 23, 1089–1099 (2013)
16. Ke, Y., Miao, C.: Anti-periodic solutions of inertial neural networks with time delays. Neural Process. Lett. 45, 523–538 (2017)
17. Xu, C., Zhang, Q.: Existence and global exponential stability of anti-periodic solutions for BAM neural networks with inertial term and delay. Neurocomputing 153, 108–116 (2015)
18. Huang, C., Liu, B.: New studies on dynamic analysis of inertial neural networks involving non-reduced order method. Neurocomputing 325, 283–287 (2019)
19. Huang, C., Yang, L., Liu, B.: New results on periodicity of non-autonomous inertial neural networks involving non-reduced order method. Neural Process. Lett. 50, 595–606 (2019)
20. Huang, C., Zhang, H.: Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method. Int. J. Biomath. 12(2), 1–13 (2019)
21. Zhang, J., Huang, C.: Dynamics analysis on a class of delayed neural networks involving inertial terms. Adv. Differ. Equ. 2020, 120 (2020). https://doi.org/10.1186/s13662-020-02566-4
22. Kelley, J.-M., Bond, E.: Anti-periodic solutions of Liénard equations with state dependent impulses. J. Differ. Equ. 261(7), 4164–4187 (2016)
23. Peng, J., Zhang, Y.: Heron triangles with figurate number sides. Acta Math. Hung. 157(2), 478–488 (2019)
24. Huang, C., Wang, J., Huang, L.: Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure. Electron. J. Differ. Equ. 2020, 61 (2020)
25. Huang, C., Wen, S., Huang, L.: Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays. Neurocomputing 357, 47–52 (2019)
26. Huang, C., Long, X., Cao, J.: Stability of antiperiodic recurrent neural networks with multiproportional delays. Math. Methods Appl. Sci. 43(9), 6093–6102 (2020). https://doi.org/10.1002/mma.6350
27. Li, Y., Meng, X., Xiong, L.: Pseudo almost periodic solutions for neutral type high-order Hopfield neural networks with mixed time-varying delays and leakage delays on time scales. Int. J. Mach. Learn. Cybern. 8(6), 1–13 (2017)
28. Li, J., Ying, J., Xie, D.: On the analysis and application of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal., Real World Appl. 47, 188–203 (2019)
29. Xiao, B., Meng, H.: Existence and exponential stability of positive almost periodic solutions for high-order Hopfield neural networks. Appl. Math. Mech. 33, 532–542 (2009)
30. Yao, L.: Global exponential stability on anti-periodic solutions in proportional delayed HİHNs. J. Exp. Theor. Artif. Intell. 32(3), 503–513 (2020). https://doi.org/10.1080/0952813X.2019.1652941
35. Zhao, C., Wang, Z.: Exponential convergence of a SICNN with leakage delays and continuously distributed delays of neutral type. Neural Process. Lett. 41, 239–247 (2015)
36. Li, W., Huang, L., Ji, J.: Periodic solution and its stability of a delayed Beddington–Deangelis type predator–prey system with discontinuous control strategy. Math. Methods Appl. Sci. 42(13), 4498–4515 (2019)
37. Iswarya, M., Raja, R., Rajchakit, G., Cao, J., Alababu, J., Huang, C.: Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on cone-decaying theory and graph theoretic method. Mathematics 7(11), 1055 (2019). https://doi.org/10.3390/math7111055
38. Zhao, J., Liu, J., Fang, L.: Anti-periodic boundary value problems of second-order functional differential equations. Bull. Malays. Math. Sci. Soc. 37(2), 311–320 (2014)
39. Xu, Y., Cao, Q., Guo, X.: Stability on a patch structure Nicholson’s blowflies system involving distinctive delays. Appl. Math. Lett. 105, 108340 (2020). https://doi.org/10.1016/j.aml.2020.108340
40. Ke, Y., Miao, C.: Stability analysis of inertial Cohen–Grossberg-type neural networks with time delays. Neurocomputing 117, 196–205 (2013)
41. Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Lecture in Mathematics, vol. 1473. Springer, Berlin (1991)
42. Duan, L., Huang, C.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017)
43. Huang, C., Cao, J., Cao, J.: Stability analysis of switched cellular neural networks: a mode-dependent average dwell time approach. Neural Netw. 82, 94–99 (2016). https://doi.org/10.1016/j.neunet.2016.07.009
44. Liu, B.: Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays. Math. Methods Appl. Sci. 40, 167–174 (2017)
45. Huang, C., Yang, H., Cao, J.: Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discrete Contin. Dyn. Syst., Ser. S (2020). https://doi.org/10.3934/dcdss.2020372
46. Huang, C., Yang, Z., Yi, T., Zou, X.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014). https://doi.org/10.1016/j.jde.2013.12.015
47. Huang, C., Long, X., Huang, L., Fu, S.: Stability of almost periodic Nicholson’s blowflies model involving patch construction and mortality terms. Canad. Math. Bull. 63(2), 405–422 (2020). https://doi.org/10.4153/S0008439519000511
48. Huang, C., Zhang, H., Huang, L.: Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Commun. Pure Appl. Anal. 18(6), 3337–3349 (2019)
49. Hu, H., Yi, T., Zou, X.: On spatial-temporal dynamics of a Fisher–KPP equation with a shifting environment. Proc. Am. Math. Soc. 148, 213–221 (2020)
50. Hu, H., Yuan, X., Huang, L., Huang, C.: Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Math. Biosci. Eng. 16(5), 5729–5749 (2019)
51. Hu, H., Zou, X.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017)
52. Wang, J., Huang, C., Huang, L.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)
53. Wang, J., Chen, X., Huang, L.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)
54. Zhang, H., Qian, C.: Convergence analysis on inertial proportional delayed neural networks. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-02737-3
55. Qian, C.: New periodic stability for a class of Nicholson’s blowflies models with multiple different delays. Int. J. Control (2020). https://doi.org/10.1080/00207179.2020.1766118
56. Huang, C., Su, R., Cao, J., Xiao, S.: Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators. Math. Comput. Simul. 107, 127–135 (2020). https://doi.org/10.1016/j.matcom.2019.06.001
57. Zhang, X., Hu, H.: Convergence in a system of critical neutral functional differential equations. Appl. Math. Lett. 107, 106385 (2020). https://doi.org/10.1016/j.aml.2020.106385
58. Tan, Y., Huang, C., Sun, B., Wang, T.: Dynamics of a class of delayed reaction–diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)
59. Huang, C., Yang, X., Cao, J.: Stability analysis of Nicholson’s blowflies model with two different delays. Math. Comput. Simul. 171, 201–206 (2020). https://doi.org/10.1016/j.matcom.2019.09.023
60. Zhang, Y.: Some observations on the Diophantine equation $f(y) = f(x)^2$. Colloq. Math. 142(2), 275–283 (2016)
61. Li, L., Jin, Q., Yao, B.: Regularity of fuzzy convergence spaces. Open Math. 16, 1455–1465 (2018)
62. Lv, B., Huang, L., Wang, K.: Endomorphisms of twisted Grassmann graphs. Graphs Comb. 33(1), 157–169 (2017)
63. Huang, C., Peng, C., Chen, X., Wen, F.: Dynamics analysis of a class of delayed economic model. Abstr. Appl. Anal. 2013, 962738 (2013). https://doi.org/10.1155/2013/962738
64. Zhang, Y.: Right triangle and parallelogram pairs with a common area and a common perimeter. J. Number Theory 164, 179–190 (2016)
65. Huang, L., Su, H., Tang, G., Wang, J.: Bilinear forms graphs over residue class rings. Linear Algebra Appl. 523, 13–32 (2017)
66. Cao, Q., Guo, X.: Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays. AIMS Math. 5(6), 5402–5421 (2020). https://doi.org/10.3934/math.2020347
67. Li, X., Liu, Y., Wu, J.: Flocking and pattern motion in a modified Cucker–Smale model. Bull. Korean Math. Soc. 53(5), 1327–1339 (2016)
68. Xie, Y., Li, Q., Zhu, K.: Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. Nonlinear Anal., Real World Appl. 31, 23–37 (2016)
69. Xie, Y., Li, Y., Zeng, Y.: Uniform attractors for nonclassical diffusion equations with memory. J. Funct. Spaces 2016, 5340489 (2016). https://doi.org/10.1155/2016/5340489
70. Wang, F., Wang, P., Yao, Z.: Approximate controllability of fractional partial differential equation. Adv. Differ. Equ. 2015, 367 (2015). https://doi.org/10.1186/s13662-015-0692-3
71. Liu, Y., Wu, J.: Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations. Adv. Differ. Equ. 2015, 379 (2015). https://doi.org/10.1186/s13662-015-0708-z
72. Yan, L., Liu, J., Luo, Z.: Existence and multiplicity of solutions for second-order impulse differential equations on the half-line. Adv. Differ. Equ. 2013, 293 (2013). https://doi.org/10.1186/1687-1847-2013-293
73. Huang, L., Lu, B.: Cores and independence numbers of Grassmann graphs. Graphs Comb. 33(6), 1607–1620 (2017)
74. Liu, W.: An incremental approach to obtaining attribute reduction for dynamic decision systems. Open Math. 14, 875–888 (2016)
75. Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator. Int. J. Bifurc. Chaos 29(7), 1–23 (2019). https://doi.org/10.1142/S0218127419500913
76. Wang, F., Yao, Z.: Approximate controllability of fractional neutral differential systems with bounded delay. Fixed Point Theory 17, 495–508 (2016)
77. Zhou, S., Jiang, Y.: Finite volume methods for N-dimensional time fractional Fokker–Planck equations. Bull. Malays. Math. Sci. Soc. 42(6), 3167–3186 (2019)
78. Huang, L., Lv, B.: Endomorphisms and cores of Grassmann graphs. Graphs Comb. 35(6), 1607–1620 (2017)
79. Liu, W.: An incremental approach to obtaining attribute reduction for dynamic decision systems. Open Math. 14, 875–888 (2016)
80. Jin, Q., Li, L., Lang, G.: p-Regularity and p-regular modification in T-convergence spaces. Mathematics, 7(4), 370 (2019). https://doi.org/10.3390/math7040370
81. Huang, L.: Endomorphisms and cores of quadratic forms graphs in odd characteristic. Finite Fields Appl. 55, 284–304 (2019)
82. Huang, L., Lu, B., Wang, K.: Endos–Ko–Rado theorem, Grassmann graphs and p-Kneser graphs for vector spaces over a residue class ring. J. Comb. Theory, Ser. A 164, 125–158 (2019)
83. Li, Y., Xu, L., Zhou, Q.: Characterizations of John spaces. Monatsh. Math. 188(3), 547–559 (2019)
84. Huang, L., Lu, B., Wang, K.: The endomorphisms of Grassmann graphs. Ars Math. Contemp. 10(2), 383–392 (2016)
85. Gong, X., Wu, F., Hu, Z., Yang, J., Yang, X.: Extreme return, extreme volatility and investor sentiment. Filomat 30(15), 3949–3961 (2016)
86. Jiang, Y., Huang, B.: A note on the value distribution of f(1/f(m)). Hiroshima Math. J. 46(2), 135–147 (2016)
87. Huang, L., Jiang, S., Zhao, K.: p-Regularity and p-regular modification in T-convergence spaces. Mathematics, 7(4), 370 (2019)
88. Huang, L., Lu, B., Wang, K.: Endos–Ko–Rado theorem, Grassmann graphs and p-Kneser graphs for vector spaces over a residue class ring. J. Comb. Theory, Ser. A 164, 125–158 (2019)
89. Huang, L., Lu, B., Wang, K.: The endomorphisms of Grassmann graphs. Ars Math. Contemp. 10(2), 383–392 (2016)
90. Gong, X., Wu, F., Hu, Z., Yang, J., Yang, X.: Extreme return, extreme volatility and investor sentiment. Filomat 30(15), 3949–3961 (2016)
91. Wang, W., Liu, F., Chen, W.: Exponential stability of pseudo almost periodic delayed Nicholson-type system with patch structure. Math. Methods Appl. Sci. 42(2), 592–604 (2019)
92. Wang, W.: Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays. Fuzzy Sets Syst. 338, 40–49 (2018)
93. Wang, W., Shi, C., Chen, W.: Stochastic Nicholson-type delay differential system. Int. J. Control, 1–14 (2019). https://doi.org/10.1080/00207179.2019.1651941
94. Qian, C., Hu, Y.: Novel stability criteria on nonlinear density-dependent mortality Nicholson’s blowflies systems in asymptotically almost periodic environments. J. Inequal. Appl. (2020). https://doi.org/10.1186/s13660-019-2275-4