Multifaceted effects of anti-inflammatory pectins in protecting β-cells and reducing responses against immunoisolating capsules for cell transplantation

Hu, Shuxian

DOI:
10.33612/diss.149819517

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hu, S. (2021). Multifaceted effects of anti-inflammatory pectins in protecting β-cells and reducing responses against immunoisolating capsules for cell transplantation. University of Groningen. https://doi.org/10.33612/diss.149819517

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3

Shuxian Hu¹, Rei Kuwabara¹, Martin Beukema¹, Michela Ferrari², Bart J. de Haan¹, Marthe T.C. Walvoort², Paul de Vos¹, Alexandra M. Smink¹

1. Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
2. Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands

Carbohydr Polym. 2020 Dec 1;249:116863
ABSTRACT

Insufficient intake of dietary fibers in Western societies is considered a major contributing factor in the high incidence rates of diabetes. The dietary fiber pectin has been suggested to be beneficial for management of both Diabetes Type 1 and Type 2, but mechanisms and effects of pectin on insulin producing pancreatic β-cells are unknown. Our study aimed to determine the effects of lemon pectins with different degree of methyl-esterification (DM) on β-cells under oxidative (streptozotocin) and inflammatory (cytokine) stress and to elucidate the underlying rescuing mechanisms, including effects on galectin-3. We found that specific pectins had rescuing effects on toxin and cytokine induced stress on β-cells but effects depended on the pectin concentration and DM-value. Protection was more pronounced with low DM5 pectin and was enhanced with higher pectin-concentrations. Our findings show that specific pectins might prevent diabetes by making insulin producing β-cells less susceptible for stress.

KEYWORDS

Dietary Pectin, Streptozotocin, Inflammatory cytokine, Islet β-cell, Type 1 Diabetes, Galectin-3
INTRODUCTION

Pancreatic islet inflammation is the main pathophysiological features of Type 1 Diabetes and late-period Type 2 Diabetes [1]. β-cells possess an active oxidative metabolism and a low antioxidant enzyme content [2]. Therefore, they are susceptible to damage by oxidative and nitrosative stress [2]. This stress is caused by overproduction of free radical species such as reactive oxygen species (ROS) and nitric oxide (NO) and is involved in induction of β-cell apoptosis [3, 4]. Also, during progression of the autoimmunity causing Type 1 Diabetes, invading immune cells and secretion of cytokines by those cells also provoke islet-inflammation and apoptosis by ROS and NO overproduction [5].

Recently, a high pectin diet has been suggested to be effective for diabetes management [6]. Most of these beneficial effects are attributed to altering glucose tolerance [7, 8]. However, it has not been investigated whether pectins can also directly impact β-cells. Pectin is a heteropolysaccharide dietary fiber that is isolated from cell walls of terrestrial plants [9] and can be taken up in blood [10-13]. Pectins derived from lemon are mainly composed of a backbone of α-1,4-linked-d-galacturonic acid residues that are partly methyl-esterified [14]. The percentage of methyl-esterification, known as degree of methyl-esterification (DM), impacts function of several biological processes [7, 15]. However, the role of DM and the exact molecular mechanism behind the effects on islet survival have not been investigated.

Pectin is a natural and specific inhibitor of galectin-3 (Gal-3) [16]. Gal-3, a β-galactoside-binding lectin, is involved in cellular communication, inflammation, and apoptosis [17]. Gal-3 is widely expressed in different cell types and found both intracellularly and extracellularly [17]. Recent evidence suggests that Gal-3 is essential in development of diabetes and shows high expression in diabetic individuals [18]. Gal-3-deficiency has shown to prevent diabetogenesis [18, 19] and is highly expressed in pancreatic tissue [20]. Dietary fiber pectin may prevent pancreatic β-cell damage during oxidative and inflammatory stress depending on DM via Gal-3. To gain more insight in how pectin may influence islet function, we studied the impact of pectin on human islets and a mouse β-cell line under oxidative and inflammatory stress, induced by streptozotocin (STZ) or the proinflammatory cytokines Interferon-γ (IFN-γ), Tumor necrosis factor-α (TNF-α), and Interleukin 1-β (IL-1β). We investigated if the effects of pectin are dependent on the degree of methyl-esterification. To gain insight in a possible
role of Gal-3, the Gal-3 antagonist α-lactose was applied in this study to block Gal-3 during challenge of β-cells. Our data demonstrates that pectins protect human and mouse β-cells from oxidative and inflammatory processes in a DM-dependent fashion.

MATERIALS AND METHODS

Cell culture

The mouse insulinoma MIN6 cell line (ATCC, Manassas, VA, USA) was cultured in DMEM (Lonza, Basel, Switzerland) supplemented with 15% fetal bovine serum (FBS, Lonza), 50 μmol/L β-mercaptoethanol, 2 mmol/L L-glutamine, 50 U/mL penicillin, and 50 mg/L streptomycin (all from Sigma-Aldrich, St. Louis, MO, USA) in 5% CO₂, 20% O₂, and 75% N₂ at 37 °C.

Human islet isolation and culture

Human islets were isolated from cadaveric pancreata: three batches were isolated at the Leiden University Medical Center (Leiden, The Netherlands) [21] and two batches were provided through the JDRF award 31-2008-416 (ECIT Islet for Basic Research program, Milan, Italy). Procedures were performed in accordance with the Code of Proper Secondary Use of Human Tissue in The Netherlands as formulated by the Dutch Federation of Medical Scientific Societies. After shipment, islets were handpicked and cultured in CMRL-1066 (GIBCO, Bleiswijk, the Netherlands), containing 10% FBS, 50 U/mL penicillin, and 50 mg/L streptomycin, as previously described [22]. Islets were cultured in 5% CO₂, 20% O₂, and 75% N₂ at 37 °C.

Pectin samples

Lemon pectins with DM values of DM5 and DM18 were purchased from CP Kelco (Lille Skensved, Denmark). The DM 69 pectin was purchased from Andre Pectin (Yantai, China). Endotoxin levels in pectin samples were quantified with a Limulus amebocyte lysate assay and showed to be below the detection level of 0.1 μg/L [23]. The molecular weight of pectin was measured using high pressure size exclusion chromatography. The DM was determined with an Ultimate 3000 high-performance liquid chromatography (HPLC) system (Thermo Scientific). The constituent monosaccharide content and composition
was determined by gas chromatography as previously described [23]. The DM value of pectin was confirmed by analyzing the release of methanol by high-performance liquid chromatography [24]. The DM was calculated as the total mass of released methanol (mol) from per 100 mol of galacturonic acid.

Nuclear Magnetic Resonance Spectroscopy (NMR)

DM5, DM18, and DM69 pectins (17 mg) were suspended in 0.75 mL of D₂O. All of the samples had a pH in the range 4-4.7. ¹H-, ¹³C-NMR and Heteronuclear Multiple Quantum Coherence (HMQC) spectra were recorded on a Bruker Spectrometer (600, 150.9 MHz; Mannheim, Germany) in a 5-mm tube at 80 °C using D₂O as solvent. ¹H and ¹³C chemical shifts were reported with 3-(trimethylsilyl) propionic-2,2,3,3-d₄ acid (δ 0.00 for ¹H and for ¹³C) and acetone (δ 2.22 for ¹H and δ 30.89, δ 215.94 for ¹³C) as internal reference.

Human islet and MIN6 cell treatments

To investigate the effect of pectins on healthy β-cells, MIN6 cells and human islets were incubated with lemon pectin (DM5, DM18, DM69) dissolved in culture medium at a final concentration of 0.5, 1, and 2 g/L for 24 h (Figure 1A). To determine the influence of pectins under stress, the cells and islets were incubated with the pectins for 1 h and then exposed for 24 h to either the apoptosis-inducer streptozotocin (STZ, Sigma-Aldrich) or the proinflammatory cytokines IFN-γ, TNF-α, and IL-1β (all from ImmunoTools, Friesoythe, Germany) (Figure 1B). All experiments with human islets and cells were performed at 37 °C during this study. For these experiments, the cells were treated with mouse or human proinflammatory cytokines, IFN-γ (2000 U/mL), TNF-α (2000 U/mL), and IL-1β (150U/mL). Cell viability, apoptosis, ROS, NO, and oxygen consumption rate (OCR) were measured after exposure to the above-described conditions. Furthermore, to test whether effects are Gal-3 dependent, MIN6 cell respiratory capacity was quantified in the presence of the Gal-3 inhibitor α-lactose (Figure 1C). For this, cells were incubated with or without α-lactose (20 mM) (Sigma-Aldrich) 1 h before pectin incubation. For all of the above treatments, components were added into the culture system without medium replacement.
Figure 1. Treatment schedule. Cadaveric human islets and MIN6 cells were incubated according to this treatment scheme. When adding the components (pectin, streptozotocin (STZ), α-Lactose, or cytokines) to the culture system, this was done without medium replacement. The former component was present during the following incubation.

Cell viability assays

In order to investigate the effect of pectins on beta cell viability, the cell proliferation reagent WST-1 was applied (Roche, Indianapolis, IN, USA). See ESM Methods for details. One day before the test, 1 x 10⁴ MIN6 cells or 15 human islets were seeded per well in 96-well plates. After the above-described treatments, cells and islets were incubated with 100 µL fresh media supplemented with 10 µL WST-1 for 30 min at 37 °C. The absorbance was measured at 450 nm using a Bio-Rad Benchmark Plus microplate spectrophotometer reader (Bio-Rad Laboratories B.V, Veenendaal, the Netherlands).

To investigate the effect of pectins on beta cell apoptosis, the cells and human islets were stained by Alexa Fluor® 488 annexin V (Biolegend, San Diego, CA, USA) and propidium iodide (PI, Thermo Scientific, Eugene, OR, USA). Briefly, human islets were seeded on gelatin-coated coverslips with a diameter of 10.2 mm (15 islets/slide). MIN6 cells (1 x 10⁶ cells/well) were cultured in 6-well plates. On the following day, cells or islets were incubated with pectins in the presence and absence of STZ/cytokines as described above. After these incubations, MIN6 cells and islets were collected and incubated with 4.5 µg/mL FITC annexin V and 1 µg/mL propidium iodide for 15 min at room temperature. The staining of human islets was analyzed using a Leica DM4000 B microscope (Leica Microsystems, Wetzlar, Germany). The percentage of annexin V positive area and islet size were measured using ImageJ software (Version 1.47; National Institutes of Health, Bethesda, MD, USA). The staining of the Min6 cells was examined by flow cytometry (BD...
Biosciences, Breda, The Netherlands). These results were analyzed using FlowJo® 10.4.2 software (LLC, Ashland, OR, USA) and the number of apoptotic cells was expressed as the percentage of the total number of cells.

To investigate insulin synthesis function, islets were fixed for 15 min with 4% paraformaldehyde (Merck, Darmstadt, Germany), and non-specific binding was blocked by incubating with 1% bovine serum albumin (Sigma-Aldrich) for 1 hour. Then islets were incubated for 1 hour at room temperature with the primary antibody guinea pig anti-insulin (Dako, Santa Clara, CA, USA, 1:200). After washing, the cells and islets were incubated for 1 hour at room temperature with goat-anti-guinea pig Alexa Fluor® 488 (Thermo Scientific, 1:400) followed by a 1-minute incubation with (4',6-Diamidino-2-Phenylindole) DAPI (1.0 µg/mL; Roche). The staining was analyzed using a Leica SP8 confocal microscope. Data were processed using ImageJ software.

Oxidative stress assays

Intracellular ROS was detected according to the manufacturer’s instruction of a Cellular ROS Assay Kit (Abcam, Cambridge, UK). Briefly, MIN6 cells (1 x 10⁴/well) or human islets (25 islets/well) were seeded in black 96-well immuno plates (Thermo Scientific). After the treatments as described above, cells and islets were washed twice with PBS. Afterward they were incubated with 20 μM 2',7'-dichlorofluorescein diacetate (DCFDA) at 37 °C for 30 minutes. After this incubation, fluorescence was measured (excitation 485 nm, emission 535 nm) using a fluorescence plate reader (PerkinElmer, Waltham, MA, USA).

The NO concentration in the supernatant of the MIN6 cells or human islets was measured with a Nitric Oxide Assay Kit (Invitrogen, Vienna, Austria) according to manufacturer’s instructions. Before the assay, MIN6 cells and human islets were cultured and incubated with pectins followed by incubation with STZ or cytokines as described above. Briefly, nitrate in the supernatants was converted to nitrite using nitrate reductase. Subsequently, using Griess reagents the nitrite converted to a deep purple azo compound. A Bio-Rad Benchmark Plus microplate spectrophotometer reader at 540 nm was then used to measure the level of azo compounds, which reflected the NO concentration in the sample.

Oxygen consumption analysis

The effect of pectins on mitochondrial function was measured by the Agilent Seahorse XF24 Extracellular Flux Assay Kit (Seahorse Bioscience, North Billerica, MA, USA). MIN6 cells (4 x 10⁴ cells/well) were seeded in XF24 cell culture microplates (Seahorse Bioscience) and treated with pectin, STZ or cytokines in the presence and absence of α-lactose as described above. Subsequently, the cells were washed with XF basic medium (Seahorse Bioscience) supplemented with 3 mM glucose, 2 mM glutamine, and 2 mM sodium pyruvate followed by incubation in this medium at 37 °C in a non-CO₂ incubator for 60 min. Then plates were transferred to a Seahorse Bioscience XFe24 extracellular flux analyzer (Seahorse Bioscience) and subjected to an equilibration period. One assay cycle comprised of 1 minute mixing, 2 minutes waiting, and 3 minutes measurements. After measuring basal oxygen consumption rate (OCR) for 3 cycles, Oligomycin (1μM, Sigma-Aldrich) was added to inhibit ATP synthase and thus determine the proportion of respiration used to generate ATP. After 3 assay cycles, carbonyl cyanide-4-(trifluoromethoxy) phenyl hydrazone (FCCP, 1μM, Sigma-Aldrich) was added to determine the maximal respiration by mitochondria by uncoupling ATP synthesis from electron transportation. After another 3 cycles Rotenone (0.5 μM, Sigma-Aldrich) and Antimycin A (0.5 μM, Sigma-Aldrich) were added to measure the non-mitochondrial respiratory rate.

Statistical analysis

Parametric distribution of data was confirmed using Kolmogorov-Smirnov tests. Data are expressed as mean ± standard error of mean (SEM). Statistical differences of parametric data were analyzed using one-way ANOVA, while nonparametric data were analyzed with a Kruskal-Wallis test. *P*-values < 0.05 were considered to be statistically significant (*p < 0.05, **p < 0.01, and ***p < 0.001). The data were analyzed using GraphPad Prism (version7.00; GraphPad Software Inc, La Jolla, CA, USA).

RESULTS

Structural characterization of pectins

The structural characterization of pectin DM5, DM18, and DM69 reported in Table 1
was confirmed by NMR analysis (Figure S1-S8). The major carbohydrate residue α-linked galacturonic acid (α-GalA) and the degree of methylation was determined. The 1H-NMR spectrum of DM5 showed the following α-GalA peaks: H-1 at 5.09, H-2 at 3.76, H-3 at 3.98, H-4 at 4.44, and H-5 at 4.77 parts per million (ppm). 13C-NMR of DM5 presented the following α-GalA peaks: C-1 at 99.94, C-2 at 69.06, C-3 at 69.64, C-4 at 71.81, and C-5 at 78.91 ppm. The peak at 174.71 ppm is assigned to the carbonyl group (C6). No significant OCH$_3$ signal was observed. The 1H-NMR of DM18 showed the following α-GalA peaks: H-1 at 5.10, H-2 at 3.78, H-3 at 3.99, H-4 at 4.45, and H-5 at 4.82 ppm. The peak at 3.82 ppm can be assigned to the OCH$_3$ group. The integration of the OCH$_3$ group corresponds to ~20% methylation. The 13C-NMR of DM18 showed peaks of α-GalA: C-1 at 100.03, C-2 at 69.03, C-3 at 69.51, C-4 at 71.66, and C-5 at 78.89 ppm. The peak at 53.52 ppm belongs to the OCH$_3$ group. The 1H-NMR of DM69 that can be assigned to α-GalA: H-1 and H-5 appear as a multiplet at 5.05 ppm, H-2 at 3.69, H-3 at 3.98, and H-4 at 4.46 ppm. The OCH$_3$ peak resides at 3.82 ppm and its integration suggests ~61% methylation. However, significant overlap of the methyl peak in the 1H spectrum prevents accurate determination of methylation. The poor solubility and high gelling capacity of DM69 prevented the acquisition of a detailed 13C NMR spectrum, so the 13C chemical shifts were revealed by HMQC.

Table 1. Structural characteristics of the pectins. Degree of methyl-esterification (DM) is defined as the amount of methanol (mole) per 100 moles of the total galacturonic acid in the sample. Molecular weight = Mw. Rhamnose = Rha, arabinose = Ara, galactose = Gal, glucose = Glc, and Uronic acid = UA.

Pectin	Mw (KDa)	Monosaccharide content (mol%)	Carbohydrate content (%)				
		Rha	Ara	Gal	Glc	UA	
DM5	36	0	0	3	0	95	68
DM18	53	0	0	3	1	95	73
DM69	81	1	2	8	1	87	83

Protective effect under STZ-induced stress

We first investigated the effects of pectins on human islets without any stressor. Pectins did not significantly influence cell viability with any of the tested DM-value (DM5, DM18 and DM69) or at any concentration (0.5, 1, and 2 g/L) (Figure 2A, B). To investigate effects of pectin on islets under stress we first tested the impact of pectins on islet-cells exposed to STZ, *i.e.* a well-known β-cell apoptosis inducer [26]. Human islets were incubated with
pectins with DM5, DM18, and DM69 and at concentrations of 0.5, 1, and 2 g/L for 1 h. Subsequently 5 mM STZ was added and incubated for 24 h.

Figure 2. Effects of pectins with different DM (DM5, DM18, and DM69) on cell survival in human islets and MIN6 cells exposure to STZ. Human islets (A and B) or MIN6 cells (F) were incubated with pectin followed by measuring cell viability (A and F) using a WST-1 assay and insulin staining (B). To investigate the effect of pectins on islet β-cell under streptozotocin (STZ)-induced stress, islets (C-E) or MIN6 cells (F-H) were incubated with pectins for 1 h followed by co-incubation for 24 h with 5 mM STZ and pectin. After incubation cell viability was determined by a WST-1 assay (C and G). Islet cell apoptosis was determined by co-staining with Annexin V and PI, and analyzed under a fluorescence microscope (D). Islet Annexin PI staining results were analyzed by using Image J gradation analysis (E). MIN6 cell apoptosis was detected using a flow cytometric assay with Annexin V and PI staining (H). Results are plotted as mean ± SEM (n=5). The statistical differences were quantified using one-way ANOVA analysis with Newman-Keuls multiple comparisons test (*p < 0.5, **p < 0.01, ***p < 0.001). Scale bar denotes 100 μm.

STZ significantly reduced viability by 53.8 ± 8.6% (p < 0.001; Figure 2C). This reduction was less when islets were pre-incubated with pectins. DM5 pectin showed the most pronounced protection. It prevented the STZ-induced viability decrease by 38.7
Protective effects of pectins on pancreatic β-cells

± 10.5% (p < 0.01) at a concentration of 1 g/L but not at 0.5 g/L. DM5 pectin exposure at a concentration of 2 g/L showed even a stronger protective effect and prevented the decrease in viability after STZ exposure by 46.3 ± 13.7% (p < 0.01). Effects were still present but less pronounced with DM18 pectin which only at 2 g/L significantly prevented STZ-induced reduction in viability by 41.8 ± 9.7% (p < 0.01). Pectin of higher DM, i.e. DM 69, did not show any significant protective effects. The effect of pectins on islet apoptosis was also investigated. STZ at a concentration of 5 mM significantly increased islet apoptosis with 54.8 ± 7.5% (p < 0.001) compared to the untreated islets (Figure 2D, E). DM5 pectin at a concentration of 2 g/L significantly prevented STZ-induced apoptosis with 46.0 ± 8.5% (p < 0.001). This effect was not observed when islets were pre-incubated with pectin of higher DM or lower concentrations.

Islets are clusters of several different cell types [27]. To confirm relevance of our findings for β-cells we also performed the above-described experiments with a pure β-cell line. Since there is no human β-cell line available that responds to glucose stimulation like in healthy individuals, we used the mouse MIN6 cell line that does respond to glucose changes [28, 29]. As in islets, pectin alone did not show any effects on β-cell viability under homeostatic culture conditions (Figure 2F). However, STZ significantly decreased cell viability by 53.0 ± 1.1% (p < 0.001; Figure 2G), which was significantly prevented by DM5 pectin at 1 g/L by 33.8 ± 6.1% (p < 0.05). DM5 pectin exposure at 2 g/L showed a stronger protective effect and prevented the decline by 40.5 ± 2.0% (p < 0.001). DM18 pectin at 2 g/L significantly inhibited the decrease by 27.5 ± 2.3% (p < 0.05). DM69 pectin did not have a significant effect here. STZ-induced apoptosis in 61.2 ± 6.8% of the MIN6 cells (p < 0.001; Figure 2H). DM5 pectin at a concentration of 1 g/L and 2 g/L significantly prevented STZ-induced cell apoptosis by respectively 46.8 ± 8.5% (p < 0.01) and 53.4 ± 7.3% (p < 0.001). DM18 pectin at 2 g/L also significantly inhibited apoptosis by 45.5 ± 7.6% (p < 0.01). There was no rescuing effect of DM69 pectin.

Protective effect under inflammatory stress

To determine the role of pectins on β-cell survival under cytokine stress we tested the effects after exposure to the cocktail of IL-1β + IFN-γ + TNF-α, which has been identified as essential effector molecules in the initiation of Type 1 Diabetes [30]. The cytokines significantly decreased human islet viability with 63.2 ± 8.3% (p < 0.001; Figure 3A). However, a pre-incubation with pectin prevented this viability decrease. DM5 at a
concentration of 1 g/L significantly prevented the viability decline with 45.7 ± 8.0%
($p < 0.001$) and at 2 g/L almost completely prevented the negative effects on viability.
Effects were less at higher DM as DM18 pectin only prevented cytokine damage at 2 g/L
significantly with 43.8 ± 10.9% ($p < 0.01$) and not at lower concentrations. DM69 pectin
did not influence islet viability after cytokine exposure. Inflammatory cytokine-induced
islet apoptosis is the main cause of islet loss [31]. Therefore, apoptosis was investigated
following incubation with pectins and cytokines. Cytokines induced apoptosis in 53.1
± 5.5% ($p < 0.001$) of the human islet-cells (Figure 3B, C). However, the apoptosis was
significantly reduced with 43.9 ± 5.8% ($p < 0.001$) when islets were pre-incubated with
DM5 pectin at 2 g/L. Pectins of DM18 and DM69 did not show an effect on apoptosis at
any concentrations.

Figure 3. Effects of DM5, DM18, or DM69 pectin on
cell survival of human islets and MIN6 cells exposure to
proinflammatory IFN-γ, TNF-α, and IL-1β cytokine cocktail.
Human islets (A-C) and MIN6 cells (D and E) were incubated
with pectins for 1 h followed by co-incubated of pectins and
cytokines (IFN-γ, TNF-α, and IL-1β) for an additional 24 h.
After incubation, cell viability
was determined by a WST-1
assay (A and D). Cell apoptosis
was determined by co-staining
with Annexin V and PI. Human
islets were imaged with a
fluorescence microscope (B)
and analyzed by using Image
J gradation analysis (C). MIN6
cell apoptosis was detected
using a flow cytometric assay
(E). Results are plotted as mean ± SEM (n=5). The statistical
differences were analyzed
using one-way ANOVA analysis
with Newman-Keuls multiple
comparisons test. (*$p < 0.5$, **$p < 0.01$, ***$p < 0.001$). Scale bar
denotes 100 μm.
We also studied the impact of cytokines and pectins on MIN6 cells. Cytokine-treated cells showed a decrease in cell viability of 57.9 ± 2.6% ($p < 0.001$) compared to controls. This decrease was prevented by low-DM pectins (Figure 3D). DM5 pectin at 1 g/L significantly prevented the viability decrease with 44.0 ± 5.4% ($p < 0.01$). When further increasing the dosages of DM5 pectin to 2 g/L, the pectin almost completely prevented the negative effect on viability ($p < 0.001$). DM18 pectin at 2 g/L demonstrated a protective effect but less effective as DM5 pectin. It prevented decrease in cell viability with 27.8 ± 4.0% ($p < 0.05$). DM69 pectin-pretreated cells did not show significant differences. To also determine the influence of pectin on cytokine-induced β-cell apoptosis, we measured apoptosis of MIN6 cells incubated with cytokines in presence and absence of pectin. Cytokines increased apoptosis by 77.2 ± 7.6 % ($p < 0.001$; Figure 3E). DM5 pectin at a concentration of 1 g/L and 2 g/L significantly prevented this increase with 43.4 ± 8.3 % ($p < 0.05$) and 63.7 ± 8.6 % ($p < 0.01$). DM18 pectin only showed a rescuing effect at 2 g/L, the apoptosis was reduced with 51.9 ± 7.4 % ($p < 0.01$) compared to cells treated with cytokines alone. DM69 pectin did not prevent cytokine-induced apoptosis.

Pectin attenuates generation of free radicals

As early stages of STZ-induced β-cell damage are characterized by free radical generation, we studied whether pectins impact the release of ROS and NO [32]. Since 2 g/L pectins had the most pronounced effect, these experiments were only done with this concentration. ROS generation was significantly increased with 41.4 ± 8.4% ($p < 0.05$) after human islets were treated with STZ (Figure 4A). This increase was prevented by DM5 pectin with 43.2 ± 6.8% ($p < 0.05$), but not by DM18 and DM69 pectin. STZ also strongly impacted NO synthesis of islets, which was enhanced with 73.7 ± 5.3% ($p < 0.001$; Figure 4B) compared to untreated controls. DM5 and DM18 pectin prevented this enhancement with respectively 76.2 ± 5.7% ($p < 0.001$) and 56.3 ± 7.7% ($p < 0.01$). DM69 pectin was unable to prevent the NO overproduction.

We also studied ROS and NO generation in MIN6 cells showing that STZ provoked an increased production of ROS with 66.9 ± 4.0% ($p < 0.001$) as compared with untreated controls (Figure 4C). DM5 pectin significantly prevented this increase with 50.1 ± 4.5% ($p < 0.01$) compared to cells incubated with only STZ. DM18 pectin also significantly suppressed the increase in ROS production with 26.1 ± 4.4% ($p < 0.05$), but DM69 pectin did not show significant prevention. Consistent with the human islet results,
STZ enhanced NO release from MIN6 cells with $38.4 \pm 1.9\%$ ($p < 0.01$; Figure 4D). DM5 pectin prevented this STZ-induced NO increase with $34.9 \pm 1.9\%$ ($p < 0.01$) resulting in similar levels of NO compared to the untreated control. DM18 pectin also significantly prevented STZ-induced NO increase with $24.8 \pm 1.9\%$ ($p < 0.05$), whereas DM69 pectin did not impact NO release.

Elevated intracellular free radicals, induced by proinflammatory cytokines, trigger β-cell death via apoptosis [33]. Therefore, we investigated production of ROS and NO in both islets and MIN6 cells after treatment with our cytokine cocktail and 2 g/L of the different pectins. Treatment with cytokines significantly increased ROS production in islets with $70.3 \pm 12.7\%$ ($p < 0.001$; Figure 4E). Pretreatment with DMS pectin significantly prevented the cytokine-induced ROS generation, which was similar to untreated controls.
Protective effects of pectins on pancreatic β-cells

A preincubation with DM18 did also significantly reduce ROS production with 40.0 ± 14.9% (p < 0.05). However, DM69 pectin exposure did not prevent the increase. NO was elevated after cytokine incubation with 52.5 ± 14.6% (p < 0.01; Figure 4F). This increase was prevented by DM5 pectin with 38.4 ± 16.4% (p < 0.05), but not by DM18 and DM69 pectin.

In MIN6 cells we observed similar results as in the human islets. Cytokines provoked a significant increase of ROS with 74.5 ± 6.9% (p < 0.001) as compared with untreated controls (Figure 4G). DM5 pectin suppressed this overproduction with 58.9 ± 7.7% (p < 0.001). DM18 pectin has less effect but still significantly suppressed the increase in ROS production with 26.1 ± 9.7% (p < 0.05). DM69 pectin did not show a significant effect. Furthermore, cytokines enhanced NO release in MIN6 cells with 35.2 ± 6.2% (p < 0.001; Figure 4H). DM5 pectin prevented this NO increase with 31.4 ± 6.8% (p < 0.01), which made the NO level similar to the untreated control. DM18 and DM69 pectin did not prevent the NO increase.

Pectin prevents damage in energy metabolism

The release of free radicals is often accompanied by mitochondrial dysfunction, which leads to disorders in the cellular energy metabolism [34]. To investigate whether the tested pectins contribute to maintenance of β-cell energy metabolism after STZ exposure, we determined the effect of pectin on the OCR of MIN6 cells, which is an indicator of mitochondrial respiration in islet-cells (Figure 5A) [35]. As these assays require high cell amounts, it could only be performed with MIN6 cells and not with the rarely available human islets.

STZ has a strong negative impact on the OCR of β-cells, which was prevented by pectins in a DM-dependent fashion (Figure 5B-E). MIN6 cells incubated with STZ showed a decreased respiration rate, including a significantly decreased basal respiration, which was 46.8 ± 2.4% (p < 0.001) lower than controls, a spare respiration reduction of 23.2 ± 3.6% (p < 0.05), and a reduced ATP production of 53.5 ± 3.6% (p < 0.001). A pre-incubation with DM5 pectin almost completely prevented these negative effects. The mitochondrial basal respiration rate, spare respiration, and ATP-linked respiration values were identical to the untreated controls when cells were exposed to DM5 pectin and STZ. DM18 pectin
had a partial rescue effect. Cells exposed to DM18 pectin prevented the STZ-induced basal respiration decrease with 16.9 ± 2.8% ($p < 0.05$) and ATP-linked respiration with 22.4 ± 4.0% ($p < 0.05$). The spare respiration was still affected by STZ. DM69 pectin did not protect the cells from STZ-induced respiratory damage.

![Figure 5](image)

Figure 5. Effect of DM5, DM18, or DM69 pectin on oxygen consumption rate of MIN6 cells after STZ or cytokine-induced stress. (A) A schematic overview of the mitochondrial stress test. Arrows indicate the subsequent addition of the ATPase inhibitor oligomycin, the uncoupling reagent FCCP, and the inhibitors of the electron transport chain rotenone/antimycin A. MIN6 cell were seeded in a Seahorse cell culture plate. After incubation with pectins at 2 g/L for 1 h, STZ at a final concentration of 5 mM (B-E) or a cytokine cocktail (F-I) was added to each well and co-incubated with pectin for 24 h. OCR of treated cells was investigated using Seahorse Bioscience XF24 extracellular flux analyzer. Figure C-E and G-I respectively represent individual parameters for basal respiration, spare respiration, and ATP-linked respiration. Results are plotted as mean ± SEM (n=5). The statistical differences were analyzed using one-way ANOVA analysis with Newman-Keuls multiple comparisons test. (*$p < 0.05$, **$p < 0.01$, ***$p < 0.001$).

To determine the influence of pectin on cytokine-induced mitochondrial dysfunction, we treated MIN6 cells with the cytokines in the presence and absence of pectins at 2 g/L and measured OCR after 24 h. The culture of β-cells with cytokines significantly decreased OCR, it reduced the basal respiration with 52.8 ± 2.0 % ($p <
Protective effects of pectins on pancreatic β-cells

0.001), spare respiration with 53.9 ± 8.0% (p < 0.001), and ATP-linked respiration with 64.6 ± 1.8% (p < 0.001; Figure 5F-I). However, cells preincubated with pectins were protected from these effects. DM5 pectin significantly prevented the decrease in basal respiration with 48.1 ± 3.5% (p < 0.001), spare respiration with 33.6 ± 3.2% (p < 0.05), and ATP-linked respiration with 69.7 ± 5.2% (p < 0.001) as compared with cells incubated with only cytokines. DM18 pectin was less efficient but still had significant protective effects. It prevented a basal respiration decrease of 25.8 ± 4.9% (p < 0.05), reduced spare respiration with 35.3 ± 3.8% (p < 0.05), and prevented ATP-linked respiration decline with 37.7 ± 7.0% (p < 0.01). DM69 pectin did not show any significant effects here.

Pectins rescue damaged cells by binding to Gal-3

Pectin influences adipocyte metabolism and cancer cell apoptosis as a natural ligand of Gal-3 [16, 36]. To verify if pectin prevents STZ-induced OCR reduction through interaction with Gal-3, the OCR was measured in the presence and absence of the Gal3 antagonist α-lactose [36]. Since DM5 pectin showed the most pronounced effect, this experiment was only done with DM5 pectin. An incubation with α-lactose alone did not influence β-cell respiration in normal culture conditions (Figure 6A-D). The mitochondrial basal respiration rate, spare respiration, and ATP-linked respiration of MIN6 cells exposed to α-lactose were identical to untreated controls. However, in the presence of α-lactose, the preventive effects of DM5 pectin were compromised. The preincubation with α-lactose before pectin and STZ resulted in reduced basal respiration, spare respiration, and ATP-linked respiration, which was respectively 24.4 ± 4.4% (p < 0.01), 19.5 ± 8.2% (p < 0.05), and 31.6 ± 5.7% (p < 0.01) lower than cells treated with pectin and STZ.

We also treated MIN6 cells with DM5 pectin and the cytokines with and without preincubation of α-lactose. A preincubation of α-lactose prevented the protective effect of DM5 pectin on cytokine-damaged β-cells (Figure 6E). The protective effect of DM5 on basal respiration was no longer present, inclusion of the α-lactose decreased the basal respiration with 56.8 ± 2.7% (p < 0.001) compared with cells treated with DM5 pectin and cytokines (Figure 6F). The preincubation of lactose did not show considerable influence on spare respiration (Figure 6G). The rescue effect of DM5 pectin on ATP-linked respiration was fully counteracted by preincubation of α-lactose (Figure 6H). This indicates that DM5 pectin binds with Gal-3 and regulates β-cell metabolism.
Figure 6. DM5 pectin influences islet cell respiration through Galectin-3 (Gal-3). To verify if pectin prevents the STZ- or cytokine-induced OCR reduction through interaction with Gal-3, OCR was measured in the presence and absence of the Gal-3 ligand α-lactose (Lac). MIN6 cells were seeded in a Seahorse cell culture plate. Lactose at 20 mM was incubated with MIN6 cells for 1 h, followed by DM5 pectin and STZ (A-D) or a cytokine cocktail (E-H) for an additional 24 h. OCR of treated cells was investigated using the Seahorse Bioscience XF24 extracellular flux analyzer. Figure B-D and F-H respectively represent individual parameters for basal respiration, spare respiration, and ATP-linked respiration. Results are plotted as mean ± SEM (n=5). The statistical differences were analyzed using one-way ANOVA analysis with Newman-Keuls multiple comparisons test. (*p < 0.05, **p < 0.01, ***p < 0.001).

Discussion

Type 1 and Type 2 Diabetes are frequently associated with oxidative and inflammatory stress-induced β-cell loss [37-39]. Many report beneficial effects of pectin on glucose management, but not much is known about the direct impact on β-cells under stress [6, 8]. Previous studies have shown that pectin may regulate the function of Gal-3, which have been shown to participate in cytokine-induced apoptosis [40]. Here, we showed that pectins can rescue β-cell viability and their respiratory metabolism under STZ- or cytokine-induced stress. Furthermore, pectins reduced oxidative and nitrosative stress in both human islets and β-cells. This protective effect against STZ or inflammatory stress was dependent on the DM and the concentration of the pectins.
Previous mouse studies demonstrate a potential role for Gal-3 in anti-diabetic effect of pectins [19, 41]. These studies did not investigate the direct protective effects of pectin on islets. Islets are believed to be micro-organs containing several cell types [27, 42]. By using a combination of human islets and a β-cell line, we proved the direct protective effects of pectin on β-cells. We show pectins rescue from oxidative or inflammatory stress through Gal-3. Gal-3 is synthesized by free ribosomes in the cytosol but can easily cross the plasma membrane and the endomembrane system to translocate into the nucleus, mitochondria, and extracellular matrix [17]. Since pectin is a macromolecule and cannot access cytoplasm, pectin likely binds with Gal-3 at the surface of the cellular membrane and in the extracellular matrix [23].

The mechanism behind the anti-apoptotic effects may be via three ways (Figure 7). First, pectin is directly inhibiting pro-apoptotic Gal-3 located on the cell membrane [43]. This binding suppresses related mitochondrial apoptotic pathways and rescues mitochondrial respiratory function [43]. Second, pectin is hampering intracellular danger signal delivery. Gal-3 mediates the ligation of cell surface glycoproteins and increases the affinity of cell binding, which in turn facilitates intercellular signaling [44]. The severely impaired β-cell can generate danger signals that induce nearby cell apoptosis [45]. The binding of pectin to Gal-3 potentially suppresses danger signal delivery, subsequently improving cell survival under stress. Third, another plausible explanation could be that pectin induces translocation of Gal-3 to the perinuclear membranes [46]. This translocation protects mitochondrial integrity and inhibits apoptosis [46]. However, the exact mechanism by which Gal-3 translocates remains subject of debate [47]. Further research will enable us to exactly pinpoint which of the three mechanisms described above is applicable to Gal-3 in β-cell apoptotic processes by pectins.

The protective effect against STZ or cytokines is dependent on pectin concentration and DM value of the pectin. The low-DM pectin at high concentration showed the highest efficiency in protection against oxidative and inflammatory damage. The DM-dependent effect may be related to the molecular weight of pectin, which can be explained by differences in the valid binding-domain densities of pectins with different DM values. Considering that pectin is a long-chain polymer, each single chain has multiple binding regions [15]. Although longer chain polymers could contain more binding regions, limited by complicated structure and distance between regions, partial regions in long-chain pectin may not be able to freely bind with Gal-3 [16].
procedure applied for pectin de-esterification results in shorter chains and a decrease in the molecular weight of the pectin [23, 48]. This procedure may also liberate binding regions from complicated long-chain pectins and allow them to freely bind with Gal-3. Therefore, the lowest DM pectin has a maximum amount of freely binding regions per unit mass that leads to a more prominent effect [49].

Figure 7. Schematic illustration of the rescuing effects of low-DM pectin on β-cells. Cellular membrane and extracellular Gal-3 binding with low-DM pectin inhibits mitochondrial dysfunction, ROS and NO overproduction, and apoptosis in β-cells under STZ- or proinflammatory cytokine-induced stress.

The composition of sidechain monosaccharides might influence the biological characteristics of pectins [50]. Among the tested pectins in this study, similar sugar composition patterns were found in DM5 and DM18 pectin. However, DM5 pectin showed significantly stronger protection against β-cell damage. This indicates the DM values of pectins do influence the protective ability of pectin. Additionally, it was suggested that the pectin structure present a high diversity according to their different origin [51]. Recent studies of pectins extracted from other sources, e.g. okra, sour cherry pomace, and papayas, suggest the essential roles of pectin's molecular weight and the
degree of methyl-esterification on its chemical and biological characteristics [52, 53]. The comparisons of pectin extract from different sources may also contribute to a deeper understanding of structure-related biological function.

Our study suggests that low-DM lemon pectins, could potentially be applied in the prevention and management of diabetes by protecting β-cells against inflammatory and oxidative stress. This is, to the best of our knowledge, a new explanation as to why increased dietary fiber intake is associated with a lower frequency of hyperglycemia. Treatment of intestinal inflammation and tumors with dietary fibers showed that these polysaccharides are taken up by gastrointestinal macrophages, transported to the bone marrow, and subsequently secreted into the peripheral circulation [10-13]. This indicates pectins can be blood-born, and influence tissue metabolism. The insufficient intake of dietary fibers in Western societies has been believed to be one of the major causes of the high incidence rates of both Type 1 Diabetes and Type 2 Diabetes [54]. Previous studies report beneficial effects of dietary fiber on glucose metabolism, but none of these effects is attributed to directly impacting metabolism or viability of β-cells under stress [6, 32]. Our study demonstrates that low-DM pectin plays an essential role in maintaining β-cell metabolism and promoting survival under stressful conditions. Islet transplantation, a promising treatment for Type 1 Diabetes, which is challenged by oxidative stress-induced islet graft loss, could also benefit from these results [55, 56]. As a natural polymer with excellent biocompatibility [57], low-DM pectin could be applied as a preincubation or coating of the islet graft to improve graft survival. Based on its biocompatibility and biodegradability, we believe that the highly abundant and low-cost natural polymer pectin might has a great potential for reducing the expense and cytotoxicity of diabetes treatment [57]. In conclusion, this study provides new insights in how pectin can contribute to maintenance of health. Our data reveals an unrecognized influence of pectin on β-cell apoptosis in the oxidative and inflammatory context, showing to improve β-cell survival through binding with Gal-3.
Figure S1. 1H NMR (600 MHz, D$_2$O, 80°C) of DM5.
Figure S2. 13C NMR(600 MHz, D$_2$O, 80 °C) of DM5.
Figure S3. HMQC (600 MHz, D$_2$O, 80 °C) of DM5.
Figure S4. 1H NMR (600 MHz, D$_2$O, 80 °C) of DM18.
Figure S5. 13C NMR (600 MHz, D$_2$O, 80 °C) of DM18.
Figure S6. HMQC (600 MHz, D$_2$O, 80 °C) of DM18.
Figure S7. 1H NMR (600 MHz, D$_2$O, 80 °C) of DM69.
Figure S8. HMQC (600 MHz, D₂O, 80 °C) of DM69.
REFERENCES

1. Sudhahar, V., et al., Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle: Novel Mechanism to Limit Endothelial Dysfunction in Type 2 Diabetes Mellitus. Arteriosclerosis, thrombosis, and vascular biology, 2018. 38(3): p. 529-541.

2. Gerber, P.A. and G.A. Rutter, The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxidants & redox signaling, 2017. 26(10): p. 501-518.

3. Dabhi, B. and K.N. Mistry, Oxidative stress and its association with TNF-α-308 G/C and IL-10-889 C/T gene polymorphisms in patients with diabetes and diabetic nephropathy. Gene, 2015. 562(2): p. 197-202.

4. Fujimaki, K., et al., SET7/9 Enzyme Regulates Cytokine-induced Expression of Inducible Nitric-oxide Synthase through Methylation of Lysine 4 at Histone 3 in the Islet β Cell. The Journal of biological chemistry, 2015. 290(27): p. 16607-16618.

5. Merriman, C. and D. Fu, Down-regulation of the islet-specific zinc transporter-8 (ZnT8) protects human insulinoma cells against inflammatory stress. J Biol Chem, 2019. 294(45): p. 16992-17006.

6. Wu, J., et al., Hypoglycemic effect and mechanism of a pectic polysaccharide with hexenuronic acid from the fruits of Ficus pumila L. in C57BL/KsJ db/db mice. Carbohydrate Polymers, 2017. 178: p. 209-220.

7. Samout, N., et al., Therapeutic effect of apple pectin in obese rats. Biomedicine & Pharmacotherapy, 2016. 83: p. 1233-1238.

8. Garcia-Carrizo, F., et al., High-Esterified Pectin Reverses Metabolic Malprogramming, Improving Sensitivity to Adipostatic/Adipokine Hormones. Journal of Agricultural and Food Chemistry, 2019. 67(13): p. 3633-3642.

9. Dranca, F. and M. Oroian, Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Research International, 2018. 113: p. 327-350.

10. Hong, F., et al., Mechanism by Which Orally Administered β-1,3-Glucans Enhance the Tumoricidal Activity of Antitumor Monoclonal Antibodies in Murine Tumor Models. 2004. 173(2): p. 797-806.

11. De Leoz, M.L.A., et al., A quantitative and comprehensive method to analyze human milk oligosaccharide structures in the urine and feces of infants. Analytical and Bioanalytical Chemistry, 2013. 405(12): p. 4089-4105.

12. Ewiegger, T., et al., Prebiotic oligosaccharides: In vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. 2010. 21(8): p. 1179-1188.

13. Porporatto, C., I.D. Bianco, and S.G. Correa, Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. 2005. 78(1): p. 62-69.

14. Moreira, H.R., et al., Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydrate Polymers, 2014. 103: p. 339-347.

15. Eliaz, I. and A. Raz, Pleiotropic Effects of Modified Citrus Pectin. Nutrients, 2019. 11(11): p. 2619.

16. Zhang, T., et al., Multiple approaches to assess pectin binding to galectin-3. Int J Biol Macromol, 2016. 91: p. 994-1001.

17. Sehrawat, S. and M. Kaur, Galectin-3 as a modifier of anti-microbial immunity: Unravelling the unknowns. Glycobiology, 2020.

18. Yilmaz, H., et al., Increased levels of galectin-3 were associated with prediabetes and diabetes: new risk factor? Journal of Endocrinological Investigation, 2015. 38(5): p. 527-533.

19. Mensah-Brown, E.P., et al., Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clin Immunol, 2009. 130(1): p. 83-8.

20. Sparre, T., et al., IL-1beta induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis. Diabetologia, 2002. 45(11): p. 1550-61.

21. Ichii, H., et al., Rescue Purification Maximizes the Use of Human Islet Preparations for Transplantation. Am J Transplant, 2005. 5(1): p. 21-30.

22. Smink, A.M., et al., Selection of polymers for application in scaffolds applicable for human pancreatic islet transplantation. Biomed Mater, 2016. 11(3): p. 035006.

23. Sahasrabudhe, N.M., et al., Dietary Fiber Pectin Directly Blocks Toll-Like Receptor 2–1 and Prevents Doxorubicin-Induced Ileitis. Front Immunol, 2018. 9(383).

24. Voragen, A.G.J., H.A. Schols, and W. Pilnik, Determination of the degree of methylation and acetylation of pectins by h.p.l.c. Food Hydrocolloids, 1986. 1(1): p. 65-70.

25. Liu, Q., et al., Zwitterionically modified alginites mitigate cellular overgrowth for cell encapsulation. Nature Communications, 2019. 10(1): p. 5262.

26. Biswas, J., et al., Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes. Neuroscience, 2017. 356: p. 151-166.

27. Cabrera, O., et al., The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proceedings of the National
Academy of Sciences of the United States of America, 2006. 103(7): p. 2334-2339.

28. Ishihara, H., et al., Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia, 1993. 36(11): p. 1139-1145.

29. Hastoy, B., et al., Electrophysiological properties of human beta-cell lines EndoC-betaH1 and -betaH2 conform with human beta-cells. Sci Rep, 2018. 8(1): p. 16994.

30. van der Torren, C.R., et al., Serum Cytokines as Biomarkers in Islet Cell Transplantation for Type 1 Diabetes. PLOS ONE, 2016. 11(1): p. e0146649.

31. Arroyo-Jousse, V., et al., Epigenetics in type 1 diabetes: TNFα gene promoter methylation status in Chilean patients with type 1 diabetes mellitus. British Journal of Nutrition, 2016. 116(11): p. 1861-1868.

32. Wu, H., et al., Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC cardiovascular disorders, 2016. 16: p. 5-5.

33. Kim, W.H., et al., Synergistic activation of JNK/ SAPK induced by TNF-α and IFN-γ: Apoptosis of pancreatic β-cells via the p53 and ROS pathway. Cellular Signalling, 2005. 17(12): p. 1516-1532.

34. Banerjee, A., et al., Protective efficacy of Tinospora sinensis against streptozotocin induced pancreatic islet cell injuries of diabetic rats and its correlation to its phytochemical profiles. Journal of Ethnopharmacology, 2020. 248: p. 112356.

35. Lacua, L.A., B.J. de Haan, and P. de Vos, Laminin and collagen IV inclusion in immunosolating microcapsules reduces cytokine-mediated cell death in human pancreatic islets. J Tissue Eng Regen Med, 2018. 12(2): p. 460-467.

36. Fang, T., et al., Modified citrus pectin inhibited bladder tumor growth through downregulation of galectin-3. Acta Pharmacologica Sinica, 2018. 39(12): p. 1885-1893.

37. Usmani-Brown, S., et al., β cell responses to inflammation. Molecular Metabolism, 2019. 27: p. S104-S113.

38. Danobeitia, J.S., et al., Novel Fusion Protein Targeting Mitochondrial DNA Improves Pancreatic Islet Functional Potency and Islet Transplantation Outcomes. Cell transplantation, 2017. 26(11): p. 1742-1754.

39. Hu, S., et al., Acetate and Butyrate Improve beta-cell Metabolism and Mitochondrial Respiration under Oxidative Stress. Int J Mol Sci, 2020. 21(4): p. 1542.

40. Nishikawa, H., et al., Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3. Stroke, 2018. 49(11): p. 2743-2751.

41. Li, P., et al., Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell, 2016. 167(4): p. 973-984.e12.

42. Saksida, T., et al., Galectin-3 deficiency protects pancreatic islet cells from cytokine-triggered apoptosis in vitro. 2013. 228(7): p. 1568-1576.

43. Fukumori, T., et al., CD29 and CD7 Mediate Galectin-3-Induced Type II T-Cell Apoptosis. 2003. 63(23): p. 8302-8311.

44. Colin Hughes, R., Galectins as modulators of cell adhesion. Biochimie, 2001. 83(7): p. 667-676.

45. Paredes-Juarez, G.A., et al., DAMP production by human islets under low oxygen and nutrients in the presence or absence of an immunosolating-capsule and necrostatin-1. Scientific Reports, 2015. 5(1): p. 14623.

46. Yu, F., et al., Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem, 2002. 277(18): p. 15819-27.

47. Funasaki, T., A. Raz, and P. Nangia-Makker, Nuclear transport of galectin-3 and its therapeutic implications. Seminars in cancer biology, 2014. 27: p. 30-38.

48. Hotchkiss, A.T., et al., Enzymatic Modification of Pectin To Increase Its Calcium Sensitivity while Preserving Its Molecular Weight. Journal of Agricultural and Food Chemistry, 2002. 50(10): p. 2931-2937.

49. Eliaz, I., Letter to the Editor: Not all modified citrus pectins are the same: size does matter. 2019. 316(5): p. H1232-H1233.

50. Torkova, A.A., et al., Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLoS One, 2018. 13(9): p. e0204261.

51. Muller-Maatsch, J., et al., Pectin content and composition from different food waste streams. Food Chem, 2016. 201: p. 37-45.

52. Prado, S.B.R., et al., Pectin Interaction with Immune Receptors is Modulated by Ripening Process in Papayas. Sci Rep, 2020. 10(1): p. 1690.

53. Mao, Y., et al., Investigating the influence of pectin content and structure on its functionality in bioflocculant extracted from okra. Carbohydr Polym, 2020. 241: p. 116414.

54. Mishra, S.P., et al., Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives. Microorganisms, 2019. 7(3): p. 67.

55. Bottino, R., et al., Response of Human Islets to Isolation Stress and the Effect of Antioxidant Treatment. Diabetes, 2004. 53(10): p. 2559.

56. Hu, S. and P. de Vos, Polymeric Approaches to Reduce Tissue Responses Against Devices Applied for Islet-Cell Encapsulation. Front Bioeng
57. Singha, N.R., et al., Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M (II): Determination of physicochemical changes in loaded hydrogels. 2017. 8(20): p. 3211-3237.
