Research Paper
The Effect of Chemical Additives in Refolding of Recombinant Vascular Endothelial Growth Factor

Mohsen Khaki¹,²,* Hamid Abtahi¹,², Ghasem Mosayebi¹,²

1. Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.

Extended Abstract

Introduction

Vascular Endothelial Growth Factor (VEGF) is a glycoprotein that is produced in various cells including macrophages, platelets, keratinocytes, renal mesangial cells as well as a variety of cancer cells. VEGF has angiogenic and mitogenic roles, differentiating cells, enhancing angiogenesis and repairing tissues. The most common and most important subset of this protein is VEGF-A-165 [3]. Production of recombinant proteins including VEGF in prokaryotic cells, impair their function due to disruption of protein structure. Since the process of modifying the protein structure by conventional methods such as chemical dialysis is time consuming and expensive, in the present study, appropriate additives were selected for structural modification and restoration of the activity of VEGF, and then these additives were used for chemical dialysis of the recombinant VEGF in vitro.
Methods and Materials

In this experimental in vitro study, the gene encoding VEGF-A165 (Acc: NM_001287044), was extracted from NCBI database. By adding the sequence of BamHI and XhoI restriction enzymes to the gene, the fragment was synthesized by the Biomatics Company. After transformation of the gene into E. coli DH5α proliferative cells and E. coli BL21 (DE3) expression cells, protein expression induction was performed with IPTG [7-9]. Recombinant protein was extracted by affinity chromatography and Ni-NTA kit. The presence of protein was confirmed by SDS-PAGE method. To simulate the structural modification process of proteinase, ExPASy server, aggrescan server, PDB, Chimera Photo, PubChem, Hyperchem, AutoDock and LigPlot software were used. The selected additives used were used in these nine dialysis programs and the product of each program was evaluated by flow cytometry for treatment of Mesenchymal Stem Cell (MSC) and its differentiation into endothelial cell (EC). Commercial protein (ab9571, Abcam Co.) was used as positive control. Data were analyzed by independent T-test and Mann-Whitney U test in SPSS software considering a significance level of less than 0.05.

Results

The results of the LigPlot software showed that weaker hydrogen bonds were formed between cysteine and VEGF compared to other amino acids. The aggrescan server data showed sensitive areas of protein aggregation. Based on flow cytometry results, the rate of specific cluster differentiation markers (CD31/CD144) in the recombinant VEGF-treated group was 27%; in the commercial protein-treated group, 17%; and in the control group, 15%.

Discussion

The greater impact of recombinant VEGF than commercial protein on cell differentiation reported in this study may be due to the protein structure modification by using software and using appropriate chemical additives for chemical dialysis of this protein. According to the results of this study, cysteine had the most effect on the structural modification of recombinant VEGF. This result was consistent with the software results because the level of bonding energy between this amino acid and VEGF was lower and the hydrogen bonds between them were higher than the others. Cysteine can facilitate cross-linking of the disulfide bonds in the structure of recombinant VEGF. The effect of cysteine along with dithiothreitol (DTT) on modifying the structure of the recombinant VEGF is remarkable because DTT acts as a redox compound of the common disulfide bonds, which occurs more frequently under alkaline buffer conditions. Ethylenediaminetetraacetic Acid (EDTA), arginine and triton X-100 also had a reinforcing role in modifying the structure of recombinant VEGF. EDTA is a chelator and inhibitor of metalloprotease enzymes and reduces oxidation reactions and enhances protein solubility. Triton X-100 is a non-ionic surfactant and a lubricant detergent; it stops protein aggregation and by inducing the solubility of the oligomeric proteins, supports the refolding process.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its Ethical approval from the Research Ethics Committee of Arak University of Medical Sciences (Code: ARAKMU. REC.1394.199). All experiments in this study on living cells in standard laboratory conditions, were carried out in compliance with the principles of biosafety.

Funding

This study is a research proposal approved by Arak University of Medical Sciences (Code: 2356) and received financial support from the Deputy for Research and Technology.

Authors’ contributions

Scientific design and management: Hamid Abtahi; Design and implementation of flow cytometry: Ghasem Mosib; Implementation of practical research process and writing an article: Mohsen Khaki.

Conflicts of interest

The authors would like to thank the Deputy for Research and Technology of Arak University of Medical Sciences for their valuable support.
مقاله

فاکتور رشد اندوتلیال عروقی (VEGF) یک گلیکوپروتئین هومودایمر با وزن 145 کیلو دالتون است که در سلول‌های مختلف از جمله مایکروفاژ، پلاکت، سلول‌های هپاتیتی، سلول‌های پروتئین ساخته است. VEGF از طریق آنزیم‌های خاصی به وسیله خود، به‌طور خودکار و با استفاده از بیولوژیکی تولید می‌شود و باعث رشد و اکسپرسیون سلول‌های استخوانی، همسر و سایر سلول‌های درون‌پیوندی می‌شود.

هممدان نیز ممکن است که رشد و اکسپرسیون می‌شود. VEGF از طریق آنزیم‌های خاصی به وسیله خود، به‌طور خودکار و با استفاده از بیولوژیکی تولید می‌شود و باعث رشد و اکسپرسیون سلول‌های استخوانی، همسر و سایر سلول‌های درون‌پیوندی می‌شود.

مقدمه

فاکتور رشد اندوتلیال عروقی (VEGF) یک گلیکوپروتئین هومودایمر با وزن 145 کیلو دالتون است که در سلول‌های مختلف از جمله مایکروفاژ، پلاکت، سلول‌های هپاتیتی، سلول‌های پروتئین ساخته است. VEGF از طریق آنزیم‌های خاصی به وسیله خود، به‌طور خودکار و با استفاده از بیولوژیکی تولید می‌شود و باعث رشد و اکسپرسیون سلول‌های استخوانی، همسر و سایر سلول‌های درون‌پیوندی می‌شود.

فاکتور رشد اندوتلیال عروقی (VEGF) یک گلیکوپروتئین هومودایمر با وزن 145 کیلو دالتون است که در سلول‌های مختلف از جمله مایکروفاژ، پلاکت، سلول‌های هپاتیتی، سلول‌های پروتئین ساخته است. VEGF از طریق آنزیم‌های خاصی به وسیله خود، به‌طور خودکار و با استفاده از بیولوژیکی تولید می‌شود و باعث رشد و اکسپرسیون سلول‌های استخوانی، همسر و سایر سلول‌های درون‌پیوندی می‌شود.

فاکتور رشد اندوتلیال عروقی (VEGF) یک گلیکوپروتئین هومودایمر با وزن 145 کیلو دالتون است که در سلول‌های مختلف از جمله مایکروفاژ، پلاکت، سلول‌های هپاتیتی، سلول‌های پروتئین ساخته است. VEGF از طریقتا
حضور مکمل‌های شیمیایی مختلف در بافر دیالیز شبیه‌سازی شد. بهره‌گیری از نرم‌افزارهای شبیه‌سازی اصلاح ساختار پروتئین نوترکیب با اجرای این طرح، برای صرفه‌جویی در وقت و هزینه‌ها، ابتدا با در عطف به مطالب ذکر شده در قسمت مقدمه، در خصوص اجرا شد. غلظت پروتئین تخلیص شده، بود. در ادامه این طرح، کلیه مراحل مربوط به تولید سلول (MSc)، استفاده شد. ابتدا در یک پلاک پلیت کشت و تمایز آن برای ارزیابی اثربخشی فرآیند بازآرایی محصول به دست آمده، از برنامه دیالیز روی محصول پروتئین با انتخاب مورد نظر (سیستئین، پرولین، گلایسین و آرژنین)، از سایت Chi-SDS-PAGE استخراج شد. با توجه به اینکه بر اساس نتایج به دست آمده از اجرا شد، بر حسب مقدار پروتئین

11. Mesenchymal Stem Cells (MSc) https://pubchem.ncbi.nlm.nih.gov
10. Protein Data Bank (PDB) (http://www.rcsb.org)
9. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis
8. Protein Data Bank (PDB) (http://www.rcsb.org)
7. His-tag
پژوهش‌ها به استفاده از تکنیک‌های Expasi pH، میزان pH ایزو انتکروپیک مورد نظر بررسی گردیده‌اند. VEGF-A (pI=9.2) از نظر دیالیزیه‌های VEGF، نتایج تحقیقات انجام شده، نشان داد که به‌طور کلی، VEGF و پرایش‌های آن، تهیه‌های محلولی ضایعات خاصی نسبت به سایر استحصالات، ارائه می‌شود. فلورسیت‌های مورس می‌توانند نشان بدهند که در صورت تفاوت در نحوه ناحیه دمایی و ناحیه ناملمولول، درصد تمار شده دست ساز، VEGF از بین سایر تیمارها، مورد ارزیابی قرار گرفته‌اند. از پروتئین تجارتی شرکت abcam (ab9571) به عنوان کنترل مثبت استفاده شد. برای افزایش 10 درصد، تیمار سلول‌ها به مدت 2 روز انجام شد. برای ارزیابی دقت آزمایش، در مورد گودال‌های تیمارشده با به صورت دو گوده (دوپلیکیت) و در مورد کنترل، تیمار در سه گوده (تریپلیکیت) انجام شد. از پروتئین تجارتی شرکت abcam به عنوان کنترل مثبت استفاده شد.

ایزو الکتریک pH با استفاده از نرم‌افزار LigPlot تعیین شد و بر اساس آن میزان الکتریک pH (pI) نشان دهنده میزان انتگرال تامین گردید. نتایج نرم‌افزارهای مکمل متفاوت

پروتئین	میلی مولار				
NaCl	200	150	150	150	150
EDTA	1	1	1	1	1
Arg	50	50	50	50	50
Cys	150	150	150	150	150
Gly	150	150	150	150	150
Pro	150	150	150	150	150
DTT	1	1	1	1	1
Glu	1	1	1	1	1
Tr	1	1	1	1	1

DTT: Diamine Tetraacetic Acid; Cys: Cysteine; Pro: Proline; Arg: Arginine, Gly: Glycine; Glu: Glucose; Tr: TritonX-100; EDTA: Ethylene Dithiothreitol.
جدول 1: الگوی تیمار سلول‌های مردانه‌شمال استمل سل با پروتکن‌های VEGF

الگوی تیمار سلول‌ها	VEGF و MSc				
برنامه 1	VEGF	VEGF	VEGF	VEGF	VEGF
برنامه 2	VEGF	VEGF	VEGF	VEGF	VEGF
برنامه 3	VEGF	VEGF	VEGF	VEGF	VEGF
برنامه 4	VEGF	VEGF	VEGF	VEGF	VEGF
برنامه 5	VEGF	VEGF	VEGF	VEGF	VEGF
برنامه 6	VEGF	VEGF	VEGF	VEGF	VEGF
برنامه 7	VEGF	VEGF	VEGF	VEGF	VEGF
برنامه 8	VEGF	VEGF	VEGF	VEGF	VEGF
برنامه 9	VEGF	VEGF	VEGF	VEGF	VEGF
کنترل منفی	PBS	PBS	PBS	PBS	PBS

جدول 2: شاخص‌های مولکولی تمیز کننده رشدی مختلف سلول‌ها

شاخص سلولی	سلول اختصاصی	شاخص سلولی
CD 34	Blast cell	CD 34
CD 34, CD73, CD44	MSc	CD 34, CD144

جدول 3: درصد سلول‌های پهپا و تیماری بر اساس میزان شاخص‌های مولکولی

نوع شاخص	نوع سلول	درصد
CD 105	مردانه‌شمال	67
CD 34	سلول بالاست	74
CD 34 / CD 105	سلول بالاست	158
CD 90	مردانه‌شمال	70
CD 73	مردانه‌شمال	68
CD 90 / CD 73	مردانه‌شمال	30
CD 44	مردانه‌شمال	88
CD 44 / CD 73	مردانه‌شمال	48
CD 90 / CD 44	مردانه‌شمال	15
CD 31	انویلی	77
CD 144	انویلی	65
CD 31 / CD 144	انویلی	16
برای اصلاح ساختار و ترکیب، استفاده شده است. سیستئین و آرژنین به‌طور خاص برای استفاده در مطالعات مشابه استفاده شده است. با توجه به ویژگی‌های شیمیایی و فیزیکی، VEGF می‌تواند ساختار و پایداری پروتئین را مهار کند و نتیجه‌گیری شده از تحقیقات خاصی‌است که آرژنین ممکن است ساختار آمینتیاز را منهدم کند.

همچنین، نقش مواد شیمیایی از جمله آرژنین در بیوشیمی و آنتی‌بادی، آنزیم کازئین کیناز و زنجیره تکی ایمنوتوکسین می‌کند. از جمله در زمینه تولید چند پروتئین نوترکیب مثل بخش ریفولدینگ به عنوان یک ترکیب مفید در بازاصلاح پروتئین عمل می‌کند. این یافته‌ها نشان داد که آرژنین در بافر در مورد اثر آرژنین، نتایج بعضی مطالعات با مطالعه حاضر متفاوت بود. نتایج برخی از آزمایش‌ها نشان داد که باندهای دی سولفید بود. علاوه بر این دو ترکیب، نقش عواملی چون VEGF در پروتئین نوترکیب، استفاده شد. سیستئین و آرژنین به عنوان یک عامل ضد ثبات پروتئین عمل کردند.

یک دناتوره کننده پروتئین عمل کرد. از جمله VEGF باعث اصلاح ساختار پروتئین و تبدیل فرم غیرفعال آن به فرم فعال شد.

16. Cysteine-rich protein
15. Nikolovska et al.
14. Shi et al.
13. Site-directed mutagenesis investigations
12. Xia
11. Yancey
10. [18-20]
9. [17]
8. [21-22]
7. [23-24]
6. [25-26]
5. [27-28]
4. [29-30]
3. [31-32]
2. [33-34]
1. [35-36]
پی اساس نتایج حاصل از این مطالعه، مواد مکمل مفید DDT، VEGF، و پروتئین ترکیبی FGF در سیستم‌ها موجب افزایش سطح تعداد سلول‌های اندوتلیال و افزایش فعالیت آنزیم‌های تاجدهای سطحی شد. بنابراین، این مواد مکمل مفید باید در برنامه‌های درمانی بخصوص درمان‌های دیالیز و درمان‌های دیگر استفاده شوند.

نتایج نشان داد که با کمک ترکیب‌های واکنش‌های فیزیولوژیکی سایر سلول‌های اندوتلیال، فعالیت آنزیم‌های تاجدهای سطحی می‌تواند افزایش یابد و در پی افزایش تعداد سلول‌های اندوتلیال و افزایش فعالیت آنزیم‌های تاجدهای سطحی سلول‌های اندوتلیال بیابند. بنابراین، این مواد مکمل مفید باید در برنامه‌های درمانی بخصوص درمان‌های دیالیز و درمان‌های دیگر استفاده شوند.
مشارکت‌نویسندگان

طراحی و مدیریت علمی: حمید ابطحی؛ طراحی و اجرای فلاسیامتری: دکتر قاسم مسیبی؛ اجرای رایانه
عملی تحقیق و نگارش مقاله: محسن خاکی.

تعارض منافع

نویسندگان این مقاله تصریح می‌کنند که هیچگونه تضاد منافعی در پژوهش حاضر وجود ندارد.

تشکر و قدردانی

بدین مسیله از پشتیبانی مدیریت بهداشت مخاطین پژوهشی دانشگاه علوم پزشکی اراک، قادرانی می‌شود.
References

[1] Yamagishi N, Teshima-Kondo S, Masuda K, Nishida K, Kuwano Y, Dang DT, et al. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells. BMC Cancer. 2013; 13(1):229. [DOI:10.1186/1471-2407-13-229] [PMID] [PMCID]

[2] Lee SB, Park JS, Lee S, Park J, Yu S, Kim H, et al. Overproduction of recombinant human VEGF (vascular endothelial growth factor) in Chinese hamster ovary cells. J Microbiol Biotechnol. 2008; 18(1):183-7.

[3] Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: Isoforms, protenolysis, and vascular patterning. Cytokine Growth Factor Rev. 2014; 25(1):1-19. [DOI:10.1016/j.cytogfr.2013.11.002] [PMID] [PMCID]

[4] Attilgan E, Hu J. Improving protein docking using sustainable genetic algorithms. Int J Comput Inform Syst Ind Manag App. 2011; 3:248-55.

[5] Khaki M, Salmanian AH, Abtahi H, Ganj A, Mosayebi G. Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor-A. Rep Biochem Mol Biol. 2018; 6(2):144-50.

[6] Didevara E, Abtahi H, Vempati P, Popel AS, Mac Gabhann F. Improved protein docking using sustainable genetic algorithms. Int J Comp Inf Syst Ind Manag App. 2011; 3:248-55.

[7] Abbasian S, Soufian S, Nejad A, Abtahi H. Investigating the possibility of recombinant streptavidin and appraisal of its binding affinity to biotin. Koomeh. 2015; (1):115-21.

[8] Khaki M, et al. Chemical Additives in Refolding of Recombinant Vascular Endothelial. JAMS. 2020; 22(6):170-181.

[9] Inoue N, Takai E, Arakawa T, Shiraki K. Arginine and lysine reduce the high viscosity of serum albumin solutions for pharmaceutical injection. J Biosci Bioeng. 2014; 117(5):539-43. [DOI:10.1016/j.jbiosc.2013.10.016] [PMID]

[10] Arora D, Khanna N. Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies. J Biotechnol. 1996; 52(2):127-33. [DOI:10.1016/S0168-1656(96)01636-7] [PMID] [PMCID]

[11] Arakawa T, Kita Y. Multi-faceted arginine: Mechanism of the effects of arginine on protein. Curr Protein Pept Sci. 2014; 15(6):608-20. [DOI:10.2174/1568009417666170623121446] [PMID] [PMCID]

[12] Bourot S, Sire O, Trautwetter A, Touze T, Wu LF, Blanco C, et al. Glycine betaine-assisted protein folding in a lyso mutant of Escherichia coli. J Biol Chem. 2000; 275(2):1050-6. [DOI:10.1074/jbc.275.2.1050] [PMID] [PMCID]

[13] Atilgan E, Hu J. Improving protein docking using sustainable genetic algorithms. Int J Comp Inf Syst Ind Manag App. 2011; 3:248-55.

[14] Bourot S, Sire O, Trautwetter A, Touze T, Wu LF, Blanco C, et al. Glycine betaine-assisted protein folding in a lyso mutant of Escherichia coli. J Biol Chem. 2000; 275(2):1050-6. [DOI:10.1074/jbc.275.2.1050] [PMID] [PMCID]

[15] Waller KW, Lyles MM, Gilbert HF. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine. Biochem. 1996; 35(6):1972-80. [DOI:10.1021/bi952157n] [PMID]

[16] Cothran A, St John RJ, Schmelzer CH, Pizarro SA. High-pressure refolding of human Vascular Endothelial Growth Factor (VEGF) recombinantly expressed in bacterial inclusion bodies: Refolding optimization, and feasibility assessment. Biotechnol Prog. 2011; 27(5):1273-81. [DOI:10.1002/btp.642] [PMID]

[17] Buchner J, Rudolph R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (N Y). 1991; 9(2):157-62. [DOI:10.1038/nb0291-157] [PMID]

[18] Kinashi H, Ito Y, Sun T, Katsuno T, Takei Y. Roles of the TGF-β-VEGF-C isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 2014; 25(1):1-19. [DOI:10.1016/j.cytogfr.2013.11.002] [PMID] [PMCID]

[19] Arora D, Khanna N. Method for increasing the yield of properly folded recmbinant human gamma interferon from inclusion bodies. J Biotechnol. 1996; 52(2):127-33. [DOI:10.1016/S0168-1656(96)01636-7] [PMID] [PMCID]

[20] Lee SH, Carpenter JF, Chang BS, Randolph TW, Kim YS. Effects of solutes on solubilization and refolding of proteins from inclusion bodies with high hydrostatic pressure. Protein Sci. 2006; 15(2):304-13. [DOI:10.1100/ijms.00049891] [PMID] [PMCID]

[21] Reilly RC, Lille H, Rudolph R, Lange C. L-Aarginine increases the solubility of unfolded species of hen egg white lysozyme. Protein Sci. 2005; 14(4):929-35. [DOI:10.1100/ps.041085005] [PMID] [PMCID]

[22] Lee SH, Carpenter JF, Chang BS, Randolph TW, Kim YS. Effects of solutes on solubilization and refolding of proteins from inclusion bodies with high hydrostatic pressure. Protein Sci. 2006; 15(2):304-13. [DOI:10.1100/ps.041085005] [PMID] [PMCID]

[23] Thomson CA, Olson M, Jackson LM, Schrader JW. A simplified method for the efficient refolding and purification of recombinant human GM-CSF. PLOS One. 2012; 7(11):e49891. [DOI:10.1371/journal.pone.0049891] [PMID] [PMCID]
