MnSb₂O₆: A Polar Magnet with a Chiral Crystal Structure

R. D. Johnson, K. Cao, L. C. Chapon, F. Fabrizi, N. Perks, P. Manuel, J. J. Yang, Y. S. Oh, S.-W. Cheong, and P. G. Radaelli

1Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
2ISIS facility, Rutherford Appleton Laboratory-STFC, Chilton, Didcot OX11 0QX, United Kingdom
3Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
4Institut Laue-Langevin, BP 156X, 38042 Grenoble, France
5Laboratory for Pohang Emergent Materials, Pohang University of Science and Technology, Pohang 790-784, Korea
6Rutgers Center for Emergent Materials and Department of Physics and Astronomy, 136 Frelinghuysen Road, Piscataway 08854, New Jersey, USA

(Received 15 March 2013; revised manuscript received 23 May 2013; published 3 July 2013)

Structural and magnetic chiralities are found to coexist in a small group of materials in which they produce intriguing phenomenologies such as the recently discovered Skyrmion phases. Here, we describe a previously unknown manifestation of this interplay in MnSb₂O₆, a trigonal oxide with a chiral crystal structure. Unlike all other known cases, the MnSb₂O₆ magnetic structure is based on rotating cycloids rather than helices. The coupling to the structural chirality is provided by a magnetic axial vector, related to the so-called vector chirality. We show that this unique arrangement is the magnetic ground state of the symmetric-exchange Hamiltonian, based on ab initio theoretical calculations of the Heisenberg exchange interactions, and is stabilized by out-of-plane anisotropy. MnSb₂O₆ is predicted to be multiferroic with a unique ferroelectric switching mechanism.

DOI: 10.1103/PhysRevLett.111.017202 PACS numbers: 75.85.+t, 75.25.−j, 75.30.Et

The search for materials applicable to novel multifunctional solid-state technology has driven the study of exotic electronic ordering phenomena, which arise due to interactions between magnetic, electronic, and structural degrees of freedom. For example, the discovery of Skyrmion phases [1,2] has focused attention on the interplay between complex magnetism and crystal symmetries, in particular, the coupling of structural and magnetic chiralities. Two archetypes are known: in MnSi and related metal silicides and germanides, the magnetic structure inherits the chirality of the acentric crystal structure through antisymmetric Dzyaloshinskii-Moriya (DM) exchange, forming either a simple helix or a more complex “3-q” Skyrmion phase in applied magnetic fields [1]. By contrast, the iron langasite (Ba₃NbFe₃Si₂O₁₄) [3,4] magnetic structure is helical, but also possesses a net triangular chirality [5], induced by geometrical frustration inherent to the crystal structure. The magneto-structural coupling, primarily due to symmetric (Heisenberg) exchange, involves structural chirality, magnetic helicity and triangular chirality, which can be combined into a phenomenological invariant.

In this Letter we present a third, previously unrecognized example, MnSb₂O₆, which bears similarities and intriguing differences with langasite, and, most strikingly, is predicted to be multiferroic. Both materials crystallize in the same space group (P321), and have similar building blocks and exchange pathways. However, the MnSb₂O₆ magnetic structure refined from neutron diffraction data is very different to that of langasite, being based on cycloids rather than helices. We show that the two magnetic structures are related by a global spin rotation, both having similar forms of the Heisenberg exchange energy, but stabilised by different anisotropies. Seven nearest-neighbor super-super-exchange interactions, calculated using ab initio density functional theory (DFT), yield a magnetic ground state and propagation vector in good agreement with experiment. Furthermore, MnSb₂O₆ is predicted to be weakly polar and a multiferroic of an unusual kind, since reversing the electric field would result in a switch between single- and two-domain configurations.

Trigonal MnSb₂O₆ is structurally related to sodium fluosilicate [6,7]. The lattice is populated by a basis of edge-sharing MnO₆ and SbO₆ distorted octahedra, which form interleaved layers of isolated manganese triangular plaquettes (Fig. 1(a), referred to as “triangles” hereafter) and depleted honeycomb lattices of antimony ions [Fig. 1(b)] stacked along the c axis at z = 0 and z = 1/2, respectively [Fig. 1(c)].

Manganese is the only magnetic ion in the crystal, and adopts a valence of 2+ giving a high spin, S = 5/2, and orbitally quenched, L = 0, moment. MnO₆ octahedra are isolated and magnetic interactions occur via super-super-exchange pathways (Mn-O-O-Mn). Magnetization data showed evidence for short-range magnetic correlations below ~200 K, and long-range antiferromagnetic order below T_N = 12.5 K [8]. Neutron powder diffraction (NPD) [8] showed that below T_N the manganese magnetic moments had three-dimensional Heisenberg character and rotate according to the incommensurate propagation...
vector $k = (0.015, 0.015, 0.183)$ in a plane orthogonal to the a axis—an approximately cycloidal magnetic structure.

In this study, polycrystalline samples of MnSb$_2$O$_6$ were prepared using 99.9% pure MnCO$_3$ and 99.999% pure Sb$_2$O$_3$. Stoichiometric amounts were mixed, ground, and pelletized. The pellets were sintered at 1100°C for ten hours, followed by furnace cooling to room temperature. The process was repeated twice with intermediate grindings. Single crystals of MnSb$_2$O$_6$ with typical dimensions $2.5 \times 1.5 \times 0.5$ mm3 were grown by chemical vapor transport using prereacted powders and a Cl$_2$ gas agent.

NPD experiments were performed using WISH [9] at ISIS, UK. Comparison of diffraction data (Fig. 2) collected at 20 and 6 K showed a number of reflections evident only below T_N, which could be indexed with propagation vector $k_{\text{exp}} = (0, 0, 0.1820)$. Contrary to reported results [8], k_{exp} lies along the Δ line of symmetry, preserving the threefold rotation as in langasite [10]. Apart from this, the published structure [8] provided a good basis for the refinement of our 6 K data using FULLPROF [11], yielding a final reliability factor of $R_{\text{mag}} = 3.42\%$. It is not possible to differentiate between amplitude-modulated and rotating magnetic structures by NPD measurements alone, but the former leads to unphysical moment magnitudes and can be excluded. Manganese moments rotate in a common plane containing k_{exp}—a cycloidal magnetic structure, shown in Fig. 3. The three cycloids in the unit cell have the same polarity, defined as $P_m = k \times (S \times S')$ where S and S' are adjacent Mn spins along the c axis. This situation should lead to a net ferroelectric polarization $\perp c$, in analogy to many other cycloidal magnets [12]. The in-plane orientation of the spin rotation plane, and hence the direction of P_m, could not be determined via NPD, but this is not crucial for the interpretation of the underlying physics as will become clear. Refined moment magnitudes (constrained to be the same for the symmetry-equivalent Mn ions) and relative phases (position within the spin rotation plane) are given in Table I. Phases between the cycloids on the three symmetry-equivalent Mn atoms are either $0 \rightarrow (2/3)\pi \rightarrow (4/3)\pi$ or $0 \rightarrow (4/3)\pi \rightarrow (2/3)\pi$, as discussed in the Supplemental Material [13]; however, the fit to the powder data is insensitive to this choice of phases, as well as the polarity of the cycloids.

FIG. 1 (color online). The crystal structure of MnSb$_2$O$_6$. (a) $z = 0$ layer of manganese triangles with intra-connecting SbO$_6$ octahedra. (b) $z = 1/2$ layer of SbO$_6$ octahedra. (c) Projection of the crystal looking down the b^* axis. MnO$_6$ and SbO$_6$ octahedra are colored blue and yellow, respectively. Oxygen ions are shown as red spheres and the unit cell is drawn in black.

FIG. 2 (color online). Rietveld refinement against neutron powder diffraction data measured at (a) 20 K, top and bottom tick marks indicate the MnSb$_2$O$_6$ nuclear and impurity Mn$_2$Sb$_2$O$_7$ peaks, respectively, and at (b) 6 K, top, middle, and bottom tick marks indicate the MnSb$_2$O$_6$ nuclear, Mn$_2$Sb$_2$O$_7$, and magnetic peaks, respectively. The measured and calculated profiles are shown with dots and a continuous line, respectively, and a difference curve (observed-calculated) is shown at the bottom. Top inset: The temperature dependence of the magnetic moment magnitude. Bottom inset: Data in (a) subtracted from that in (b), showing the magnetic reflections.
becomes apparent when one considers that the MnSb$_2$O$_6$ magnetic structure can be obtained from the Ba$_3$NbFe$_3$Si$_2$O$_{14}$ magnetic structure by globally rotating all spins by 90° around A, which determines the spin rotation plane, and hence the direction of P_m (shown in Fig. 3). The analogy becomes even more compelling when one considers that both $A \cdot P_m$ and $\ve e_H \ve e_T$ are pseudoscalars, and are therefore capable of providing a coupling to the structural chirality σ through the invariants $\sigma A \cdot P_m$ and $\ve e_H \ve e_T$.

The best single-domain refinement corresponded to the MD1 magnetic structure, and a significantly improved fit was obtained with a 0.8(1)MD1:0.2(1)MD2 domain fraction indicating that, unlike the Ba$_3$NbFe$_3$Si$_2$O$_{14}$ crystals of the previous studies [3,4], our MnSb$_2$O$_6$ crystal was a nonracemic mixture of two chiral structural domains. The inclusion of threefold symmetry related domains did not improve fitting statistics due to peak intensity averaging inherent to the diffraction experiment.

One would expect the Ba$_3$NbFe$_3$Si$_2$O$_{14}$ and MnSb$_2$O$_6$ Heisenberg mean-field Hamiltonians to have the same form, since solutions related by a global spin rotation are degenerate in the absence of anisotropy. However, the number of nearest-neighbor exchange interactions and their magnitudes differ, owing to the different crystal structures. In Ba$_3$NbFe$_3$Si$_2$O$_{14}$ [3,4], the magnetic structure was described by five interactions, J_1–J_5. We adopt the same configuration and labelling scheme, but introduce a further two exchange pathways (J_6 and J_7) as the larger manganese plaquettes give greater significance to the interactions associated with the J_2 triangles.

The absolute magnitudes of the seven exchange interactions, depicted in Figs. 4(a)–4(d), were calculated using DFT within the spin-polarized generalized gradient approximation, implemented in the Vienna ab initio simulations package (VASP) [14,15]. The projector augmented-wave pseudopotentials [16] with a 500 eV plane-wave cutoff were used. A collinear spin approximation without spin-orbit coupling, suitable for calculating symmetric exchanges, gave the values presented in Table II. The paramagnetic region of the magnetic susceptibility measured on the powder sample (not shown here) was fitted to give a Curie-Weiss temperature of $\Theta = -19.6$ K. This value corresponds to a total exchange interaction with an order of magnitude consistent with those calculated.

All exchange interactions were found to be significant; however, the left-handed interactions, J_3 and J_7 are weak compared to the right-handed interactions, J_1 and J_6. It is apparent by qualitative inspection of the magnetic structure that in MD1 $J_3(J_6) \gg J_5(J_7)$, and vice versa for MD2. These left- and right-handed diagonal exchange pathways are directly related to the chirality of the crystal structure, as the inversion symmetry operator that transforms one chiral domain into the other, also interchanges $J_3(J_6)$ with $J_5(J_7)$. This demonstrates that the diagonal exchange

![Image of the magnetic structure of MnSb$_2$O$_6$.](Image) The magnetic structure of MnSb$_2$O$_6$. For clarity, we only show a single manganese triangle in the ab plane, with the circular spin rotation envelopes drawn in grey. (a) The cycloid propagating parallel to the c axis. (b) and (c) The two magnetic domains, MD1 and MD2, respectively, generated by an axial rotation of the totally symmetric coplanar triangular mode.

Unlike the NPD measurement, a single crystal neutron diffraction experiment (performed at D10, ILL and described in the Supplemental Material [13]), was sensitive to the combination of cycloidal polarity (P_m) and triangular spin arrangement (phases). To capture all these distinct configurations, we introduce the vector $A = k \times V$, where $V = (1/3)(S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$ is known as the vector chirality and S_1, S_2, and S_3 are spins on the same triangle. A is an axial vector that is necessarily collinear with P_m and, unlike V, is uniquely defined provided that the sense of rotation in traversing the triangle and k are chosen consistently with the right-hand rule. The single crystal unpolarized neutron diffraction intensities depend on the dot product $A \cdot P_m$, but are insensitive to the individual orientation of A or P_m. We label the two distinct magnetic configurations with A parallel or anti-parallel to P_m as MD1 and MD2, respectively, [Figs. 3(b) and 3(c)].

Despite significant differences in magnetic structure, this scenario is strongly reminiscent of langasite, for which the diffraction intensities were sensitive to the product of two scalar quantities, $\ve e_H$ (helicity) and $\ve e_T$ (scalar triangular chirality) [3], rather than two vector quantities as in the present case. The deep analogy between the two cases
interactions couple the magnetic domains to the structural chirality.

A mean-field magnetic ground state calculation based upon symmetric Heisenberg exchange was performed for the three manganese sites in the unit cell. The exchange interactions were fixed to the values calculated above, and the propagation vector, \(\mathbf{k}_{\text{calc}} = (k_x, k_y, k_z) \), was left free to vary, bounded by the first Brillouin zone of the P321 space group. The energy eigenvalues of the Hamiltonian were solved through diagonalization of the Fourier transform of the interaction matrix. A unique minimum energy solution was numerically found corresponding to \(\mathbf{k}_{\text{calc}} = (0, 0, 0.166) \). This \(\mathbf{k} \) vector is in good agreement with that determined experimentally, validating our symmetric exchange model. Importantly, the calculation shows that the magnetic ground state orders with a vector constrained to the \(\Delta \) line of symmetry, also consistent with langasite.

Figure 4(e) shows the Heisenberg exchange energies calculated along all lines of symmetry with the minimum at \(\mathbf{k}_{\text{calc}} \) labeled.

The eigenvectors of the Hamiltonian give the phase relationships between the three manganese atoms. By fixing \(\mathbf{k}_{\text{calc}} \) we find that the eigenvectors of the minimum energy solution are those corresponding to MD1. Swapping \(J_3(J_6) \) with \(J_5(J_2) \) gives eigenvectors corresponding to MD2, confirming the description given above.

One question remains regarding the anisotropy that favors the cycloidal magnetic structure over a helix in MnSb\(_2\)O\(_6\), while the opposite is true of Ba\(_3\)NbFe\(_5\)Si\(_2\)O\(_{14}\). Typically rotating magnetic structures are stabilized in acentric crystals (for example MnSi [17]) via the DM interaction, where energy may be gained through canting spins according to a vector \(\mathbf{D} \), where \(\Delta E_{\text{DM}} = \sum_n \mathbf{D} \cdot (S_n \times S_{n+1}) \). However, when \(\mathbf{D} \) lies perpendicular to a threefold rotation axis, all vectors will exactly cancel giving no gain in energy. It is likely, therefore, that in MnSb\(_2\)O\(_6\) single-ion-anisotropy favors an out-of-plane spin rotation, breaking the threefold symmetry.

To conclude the discussion on the magnetic structure, we consider the possible directions of \(\mathbf{P}_m \) and the resulting domain structure. Although this could not be probed by our diffraction experiment, we expect a unique set of symmetry-equivalent directions for \(\mathbf{P}_m \) to be stabilized by magnetoelastic interactions. The simplest scenario is for \(\mathbf{P}_m \) to be parallel to one of the twofold axes, yielding three symmetry-equivalent domains for each structural enantiomer. It is less likely that \(\mathbf{P}_m \) lies in a general in-plane direction, yielding 6 domains (illustrated in the Supplemental Material [13]). It is important to stress that, in either situation, \(\mathbf{P}_m \) and \(-\mathbf{P}_m \) are not equivalent—a fact that has a strong bearing on the predicted ferroelectricity, as follows.

We can make a strong prediction that a single structural enantiomer of MnSb\(_2\)O\(_6\) should be ferroelectric, due to the presence of a coupling term \(\lambda \mathbf{P}_m \cdot \mathbf{P} \) (or \(\lambda \sigma \mathbf{A} \cdot \mathbf{P} \)) in the phenomenological free energy expression. The electrical polarization \(\mathbf{P} \) is either parallel or antiparallel to \(\mathbf{P}_m \), depending on the sign of the coupling constant \(\lambda \). Indeed, by implementing the Berry phase method [18] in our DFT calculations [19], we find an electric polarization of 2 \(\mu \text{C m}^{-2} \), originating in the DM interaction, and oriented

TABLE II. Exchange interactions \(J_1-J_7 \) in units of meV, evaluated through DFT-based calculations. Note that the values include the spin component \(S(S + 1) \).

	\(J_1 \)	\(J_2 \)	\(J_3 \)	\(J_4 \)	\(J_5 \)	\(J_6 \)	\(J_7 \)
	0.77	1.47	2.2	1.16	0.4	1.94	0.4
perpendicular to the c axis and within the spin rotation plane. Furthermore, the calculation showed that by switching A the direction of P is reversed. Unfortunately, as the single crystal samples grow as platelets, it is impossible to measure such a small, in-plane ferroelectric polarization reliably. The same is true for powder averaged, polycrystalline measurements. We note that the above coupling is the exact converse to that of ferroaxial multiferroics, in which a magnetic chirality couples to a structural axial vector to give $P / C_2^m [20,21]$. Since P_m and $-P_m$ are not equivalent, MnSb$_2$O$_6$ would have a unique ferroelectric switching mechanism, in which reversing the electric field would switch between a single domain and a mixture of at least two domains, discussed further in the Supplemental Material [13].

The work done at the University of Oxford was funded by an EPSRC Grant No. EP/J003557/1, entitled “New Concepts in Multiferroics and Magnetoelectrics.” Work at Rutgers was supported by the DOE under Contract No. DE-FG02-07ER46382, and work at Postech was supported by the Max Planck POSTECH/KOREA Research Initiative Program [No. 2011-0031558] through the NRF of Korea, funded by the Ministry of Education, Science and Technology.

* r.johnson1@physics.ox.ac.uk

[1] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neuhaus, R. Georgii, and P. Böni, Science 323, 915 (2009).
[2] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, and C. Pfleiderer, Phys. Rev. Lett. 108, 237204 (2012).
[3] K. Marty, Y. Simonet, E. Ressouche, R. Ballou, P. Lejay, and P. Bordet, Phys. Rev. Lett. 101, 247201 (2008).
[4] C. Stock, L. C. Chapon, A. Schneidewind, Y. Su, P. G. Radaelli, D. F. McMorrow, A. Bombardi, N. Lee, and S.-W. Cheong, Phys. Rev. B 83, 104426 (2011).
[5] Triangular chirality of spins on a triangle, ϵ_r, is defined as positive if the spins rotate counterclockwise as one circumscribes counterclockwise the triangle with k pointing towards the observer. Formally, $\epsilon_r = \frac{1}{3} (S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1) \cdot k$.
[6] H. Vincent, X. Turrillas, and I. Rasines, Mater. Res. Bull. 22, 1369 (1987).
[7] H. G. Scott, J. Solid State Chem. 66, 171 (1987).
[8] J. N. Reimers, J. E. Greedan, and M. A. Subramanian, J. Solid State Chem. 79, 263 (1989).
[9] L. C. Chapon, P. Manuel, P. G. Radaelli, C. Benson, L. Perrott, S. Ansell, N. J. Rhodes, D. Raspino, D. Duxbury, E. Spill, and J. Norris, Neutron News 22, 22 (2011).
[10] K. Marty, V. Simonet, P. Bordet, R. Ballou, P. Lejay, O. Isnard, E. Ressouche, F. Bourdarot, and P. Bonville, J. Magn. Magn. Mater. 321, 1778 (2009).
[11] J. Rodríguez-Carvajal, Physica (Amsterdam) 192, 55 (1993).
[12] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
[13] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.111.017202 for details of the single crystal neutron diffraction experiment, symmetry analysis, and a description of antiferromagnetic and ferroelectric domains.
[14] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[15] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[16] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
[17] M. Kataoka and O. Nakanishi, J. Phys. Soc. Jpn. 50, 3888 (1981).
[18] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
[19] The DFT setup for polarization calculations was the same as that for the exchange interactions, except with $U = 4$ eV. A $1 \times 1 \times 3$ supercell with $k_z = 1/3$ was used, and the 120° spin structures were set to rotate in the ac plane. Spin-orbit coupling was found to induce $P \parallel a$.
[20] R. D. Johnson, S. Nair, L. C. Chapon, A. Bombardi, C. Vecchini, D. Prabhakaran, A. T. Boothroyd, and P. G. Radaelli, Phys. Rev. Lett. 107, 137205 (2011).
[21] R. D. Johnson, L. C. Chapon, D. D. Khalyavin, P. Manuel, P. G. Radaelli, and C. Martin, Phys. Rev. Lett. 108, 067201 (2012).