Association of Sleep Disturbances and Cognitive Decline among Cognitively Normal Elders Over Time

Wei Feng
Capital Medical University School of Public Health

Mandela William Nzoyoum Kuetchu
Beijing Tiantan Hospital

Meng Zhang
Capital Medical University School of Public Health

MengMeng Liu
Capital Medical University School of Public Health

Deginet Aklilu
Capital Medical University School of Public Health

Wei Wang
Edith Cowan University

XiaoNan Wang
Capital Medical University School of Public Health

Xiuhua Guo (✉ statguo@ccmu.edu.cn)
Capital Medical University School of Public Health https://orcid.org/0000-0001-6657-6940

Research

Keywords: Sleep disturbances, Aging, Longitudinal study, Alzheimer’s disease, Generalized linear mixed models

DOI: https://doi.org/10.21203/rs.3.rs-416599/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: While sleep disturbances (SD) has been shown to be associated with worse cognition, but the causal relationship between the two subjects to debate. Our objective was to investigate the longitudinal impact of SD on cognitive function.

Objective: To determine the effect of self-reported clinical diagnosis of SD on longitudinal changes in brain amyloid-PET, CSF-biomarkers (Aβ42, T-tau and P-tau) and cognitive function in cognitively normal.

Methods: A total of 463 cognitively normal elders (357 normal and 106 SD) were included. Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants were collected from 2005 to 2020. The generalized linear mixed models adjusting variables which were selected by the Akaike Information Criterion (AIC) and the marginal effect estimation method was used to estimate the risk effect of SD. Cox proportional hazards regression models estimated the relative hazard of Alzheimer's Disease (AD), among baseline SD patients.

Results: The age range of participants was 73.60±5.71 years old, and the female proportion was 43.63%. In adjusted regression models, Participants with baseline SD had higher likelihood of developing worse cognition over subsequent follow-up, PACC (decrease 7.53 points [95%CI, 7.36-7.70]; P<0.001), MMSE (decrease 5.26 points [95%CI, 5.17-5.35]; P<0.001), and CDR–Sum of Boxes (increase 5.61 points [95%CI, 5.67-5.54]; P=0.001). Similarly, Cox regression analysis suggested that sleep disturbances is a risk factor of AD (HR=1.55, 95% CI=1.08 to 2.22).

Conclusion: SD probably is a warning sign of AD, because it is associated with greater likelihood of cognitive decline or dementia over time. Associations are likely multifactorial and could be explained by intervening variables in the path from SD to dementia, or by common risk factors for pathological processes in brain. These findings suggest need for more attentions of older adults with sleep compromise.

Introduction

Sleep disturbances (SD) has been defined as difficulty in initiating or maintaining sleep, along with an impairment of daytime functioning[1]. The elderly have been associated with increased night sleep disturbances whose prevalence is estimated to be approximately 50%[2, 3]. Sleep disturbances in this population has adverse effects including an increased risk of dementia, hypertension, diabetes, obesity, depression, heart attack, and stroke[4, 5]. Alzheimer’s disease (AD) is a dementia syndrome in which cognitive impairment interferes with the performance of daily activities. The daily activities that are affected include sleep (sleep disturbances) which is the most common in patients with AD[6]. Consequently, whether sleep disturbances, which is common in the elderly, is the cause of AD or not should be verified with more evidences.
Accumulating evidence suggests that sleep disturbances precede the neurobiology of AD and symptoms of cognitive decline by years. Poor sleep quality was associated with Mild Cognitive Impairment (MCI), which often represents a prodromal phase of preclinical dementia[7]. Moreover, it is thought that sleep disturbances starts to occur in the preclinical phases of AD, as they have been found to predict incident dementia[8–10]. However, these studies don't use the people with normal cognition and overlook the variance of cognition from time, and so it is hard to say in this case that the main reason of cognitive decline is the effect of time or the sleep disturbance. Moreover, there is still no consensus on whether sleep disturbances could cause cognitive decline. Some studies report there is no association between sleep disturbances and cognition[11]. Furthermore, some studies even report slightly better cognitive functioning in those with sleep disturbance[12]. So, there is a conflict about whether sleep disturbances are the pre-symptomatic stage of AD or not.

Preclinical AD is important for the understanding of ageing and AD and drug development because of the hypothesis that disease-modifying interventions will be most effective when initiated early[13]. If we can ensure that sleep disturbances in the preclinical AD have adverse effects on subsequent cognitive change, then we can know the causal relationship between sleep and dementia and whether it's essential to slow the progression of AD by regulating sleep disorder. The purpose of this current study was to compare the differences in subsequent cognitive change between normal sleep and sleep disturbances at baseline among normal cognition or subjective memory concerns individuals.

Methods

Study Participants

Data used were collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2005 as a public-private partnership, led by Michael W. Weiner, MD[14]. The primary purpose of ADNI was to investigate whether serial MRI, PET, other biomarkers, also clinical and neuropsychological assessment could be combined to assess the progression of MCI and early dementia. In this current study, we downloaded and merged the data (16 years follow-up, from 2005 to 2020) which was updated at 30th Jun 2020 from the official website of ADNI, including 83 ADNI sites in the Canada and United States.

For the present study, a subset of individuals with Normal Cognition (NC) or subjective memory concerns those who were self-reported or reported by a study partner or clinician and was included in the analyses. Individuals with sleep disturbances were termed as SD based on the medical history diagnosed by clinicians with “insomnia”, “sleep disorder”, “sleep apnea”, and “sleep disturbance”. As shown in Figure S1, the participants without the medical history information of sleep disturbances were considered to have normal sleep and were termed as Normal Sleep (NS). So, we got 1165 individuals: 152 SD, 1013 NS. After that, we excluded the participants without baseline information of CSF Aβ42, CSF tau, CSF phospho-tau (p-tau), medical history, variables of demographic, medication history, and cognition evaluated variables.
Lastly, we got 463 individuals: 106 SD, 357 NS. The follow-up time in months for the individuals of this study is shown in Table S1.

Standard Protocol Approvals, Registrations, and Patient Consents

The data in this study was approved by institutional review boards of all ADNI centers. Additionally, patient informed consent has also been done by ADNI.

CSF biomarkers and cognitive tests

Participants included in this study had baseline Preclinical Alzheimer Cognitive Composite (PACC), Mini-Mental State Examination (MMSE)\[15\] scores of 24 to 30 (0 to 30, worst to best) and Clinical Dementia Rating (CDR)\[16\] scores of box (0 to 3, best to worst). PACC\[17\] is a baseline standardized z score composite of the Alzheimer Disease Assessment Scale—Cognitive Subscale Delayed Word Recall, Logical Memory Delayed Recall\[18\], MMSE, and (log-transformed) Trail-Making Test B Time to Completion which decreases with worse performance\[19\]. Logical Memory Delayed Recall scores are based on years of education and were required to be at least 9 for 16 years of education, at least 5 for 8 to 15 years of education, and at least 3 for 0 to 7 years of education (0 to 25, worst to best). Additionally, accumulating studies suggest that increased amyloid protein precedes the cognitive symptoms of AD\[20\]. So, we required that the participants should have the CSF β-amyloid peptide (Aβ\textsubscript{42}) and the profiles related with Aβ\textsubscript{42} including CSF tau, p-tau. The above variables needed participants to be followed up at least one time or more.

Confounding variables

Age is associated with the sleep disturbance, so it was treated as the covariate in our model. Additionally, the other variables like APOE\textsubscript{ε}4 carriage, gender, family history of dementia, family history of AD, medication of AD, education level, and ventricular volume at baseline were considered into the model. The intaking of medicine against AD was collected from concurrent medications log. Race and ethnicity were self-reported as required by the National Institutes of Health. ADNI was approved by the institutional review boards of all participating institutions. Written informed consent was obtained from all participants at each site.

Statistical Analysis

The profiles of sleep disturbances and normal sleep group were described and the differences between these groups were tested by Pearson χ^2 and two-sample t-test. Progression by sleep disturbances group among individuals with normal cognition was analyzed by generalized linear mixed effects (GLME) models which could control the bias from individual and confounding variables. The interaction of time and sleep disturbances was also included in the model. The Cox regression was also used to investigate if the sleep disturbances could lead to AD to happen in the follow-up years.
The primary GLME model was used to estimate the longitudinal effect of baseline SD over time. Firstly, this analysis treated the time as the continuous variable, which could show the long-term effect of SD to cognitive normal individuals in this cohort study. Although time is measured discretely, there are enough numerical values that we could fit a line to it, which could consider the spacing between each time point. Additionally, the time was treated as a categorical variable in the other models of which the design is same as the primary model, which could show the short-term effect of SD in each follow-up. The Akaike Information Criterion (AIC)\(^2\)\(^{21}\), a model selection tool, was used to decide if quadratic terms for time should be added. The other variables like age, APOE\(\varepsilon\)4 carriage, gender, family history of dementia, family history of AD, medication of AD, education level, and ventricular volume at baseline were selected into the model by AIC. Moreover, the structure of the model was also chosen by AIC from random intercept, random slope, compound symmetric, and unstructured option.

For the estimation of interaction between the sleep disturbances and time we used the marginal effect estimation method. The marginal effect estimation\(^2\)\(^{22}\) could evaluate the effect of sleep disturbances on cognitive profiles at each follow-up year. So, we could see how the interaction of sleep disturbances and time influence the cognitive decline. Considering fewer data were available at the later study visits, we emphasized the point estimation at 6 year.

Sensitivity Analyses

Considering possible reverse causality, sensitivity analyses were used to explore robust associations between sleep disturbances and cognitive decline. People with elevated CSF A\(\beta\)42 are more likely to get cognitive decline than those with low level CSF A\(\beta\)42. So, we reanalyzed the association between sleep disturbances and cognition function by excluding participants whose CSF A\(\beta\)42 less than 985pg/mL\(^2\)\(^{23}\). All of the above analyses and graphs were performed with R software (version 4.0.2, https://www.R-project.org/). All the statistical tests were two-sided and \(P\) value < 0.05 were considered as statistically significant.

Results

As can be seen from Table 1, all essential characteristics were used to compare between NS (n = 357) and SD (n = 106). The proportion of male SD was significantly lower than that of NS. Whereas, the percentage of family histories of patients with Dementia, family histories of patients with AD, and subjective memory concern in SD was higher than that in NS with statistical significance. The participants in SD had fewer education years than those with normal sleep. Additionally, comparing the profiles of cognition between SD and NS, we found that the people with sleep disturbances have a higher value of PACC, logical memory delayed recall, FDG, and the lower of ADAS13. That indicated people with sleep disturbances have better cognition in the baseline.

Table S2, Table S3, and Table S3 shows that sleep disturbance, time, and the interaction of sleep disturbances and time are significantly associated with PACC, MMSE, and CDR-Sum of Boxes when the model adjusted confounding factors selected by AIC. Although there were protective effects of sleep
disturbances for PACC, MMSE, and CDR-Sum of Boxes at baseline, the sleep disturbances could be a risk factor for these cognitive outcomes by the years. As shown in Fig. 1, when the time was treated as a continuous variable, there was a decreased tendency by years on PACC and MMSE, and the CDR-Sum of Boxes score rose dramatically by time. After first year follow-up, the difference in scores for cognitive variables between sleep disturbances and normal sleep was larger and larger. There was not this kind of relationship in the categorical time models. So, sleep disturbances made the PACC, MMSE, and CDR-Sum of Boxes get worse by years in the continuous time model.

According to Table S9, sleep disturbance, time, and the interaction of sleep disturbances and time are significantly associated with CSF Aβ42 in continuous time models. Although time and sleep disturbances alone were not considered risk factors for Aβ42 protein elevation, the interaction of sleep disturbances and time did contribute to Aβ42 protein elevation. The effect of time made all of cognitive profiles get worse significantly. As shown in Fig. 3, the concentration of Aβ42 protein dropped sharply by years and the concentration in sleep disorder group was higher than that in the normal group after 1 year in the continuous time model.
Table 1
Participant characteristics by Insomnia disorder Group in baseline

Clinical Characteristics	Normal Sleep n = 357	Insomnia disorder n = 106	Overall n = 463	t/χ²	P
Age, (Mean ± SD), y	73.83 ± 5.63	72.81 ± 5.92	73.60 ± 5.71	1.614	0.107
Gender [Male]	178 (49.86)	24 (22.64)	202 (43.63)	24.620	< 0.001
Education, (Mean ± SD), y	16.29 ± 2.56	15.56 ± 2.91	16.12 ± 2.66	2.514	0.012
Family History of Dementia	159 (44.54)	72 (67.92)	231 (49.89)	17.881	< 0.001
Family History of AD	103 (28.85)	50 (47.17)	153 (33.05)	12.400	< 0.001
Medications of AD	16 (4.48)	9 (8.49)	25 (5.40)	2.571	0.109
Ethnicity				1.524	0.467
Not Hispanic/Latino	342 (95.80)	104 (98.11)	446 (96.33)		
Hispanic/Latino	12 (3.36)	2 (1.89)	14 (3.02)		
Race				8.202	0.084
Asian	2 (0.56)	2 (1.89)	4 (0.86)		
Black	27 (7.56)	1 (0.94)	28 (6.05)		
White	323 (90.48)	102 (96.23)	425 (91.79)		
More than 1 race	4 (1.12)	1 (0.94)	5 (1.08)		
Subjective memory concern	89 (24.93)	42 (39.62)	131 (28.29)	8.697	0.003
≥ 1 APOE4 allele	99 (27.73)	33 (31.13)	132 (28.51)	0.464	0.496
PACC (z score composite), (Mean ± SD)	-0.63 ± 2.64	0.58 ± 2.43	-0.36 ± 2.64	-4.236	< 0.001
MMSE, (Mean ± SD)	29.00 ± 1.22	29.11 ± 0.94	29.03 ± 1.16	-0.881	0.379
Logical Memory Delayed Recall, (Mean ± SD)	13.01 ± 3.23	14.02 ± 3.14	13.24 ± 3.24	-2.844	0.005
ADAS13, (Mean ± SD)	10.10 ± 4.53	7.58 ± 3.61	9.52 ± 4.46	5.254	< 0.001

Abbreviations: Intracranial Volume (ICV)
	Normal Sleep	Insomnia disorder	Overall	t/χ²	P
CDR-Sum of Boxes, (Mean ± SD)	0.04 ± 0.14	0.05 ± 0.15	0.04 ± 0.14	-0.704	0.482
CSF Aβ42, (Mean ± SD), pg/mL	1194.64 ± 436.21	1200.13 ± 432.45	1195.90 ± 434.89	-0.114	0.909
CSF t-Tau, (Mean ± SD), pg/mL	240.20 ± 91.20	257.00 ± 108.18	244.05 ± 95.50	-1.594	0.112
CSF p-Tau, (Mean ± SD), pg/mL	22.15 ± 9.30	23.91 ± 11.83	22.55 ± 9.95	-1.601	0.110

MRI Characteristics

	n = 298	n = 94	n = 392	t	P
Ventricular Volume, (Mean ± SD), %ICV	3.23 ± 1.63	2.88 ± 1.67	3.14 ± 1.65	1.767	0.078
Hippocampal Volume, (Mean ± SD), %ICV	0.72 ± 0.07	0.73 ± 0.06	0.72 ± 0.07	-1.233	0.218

PET Characteristics

	n = 241	n = 73	n = 314	t	P
FDG	1.31 ± 0.11	1.35 ± 0.10	1.32 ± 0.11	-3.260	0.001
Amyloid PET SUVR, [Mean ± SD]	1.13 ± 0.18	1.19 ± 0.23	1.14 ± 0.19	-2.115	0.035

Abbreviations: Intracranial Volume (ICV)
Cognitive Profiles	Continuous time Models	Sleep Disturbance	Time	Sleep Disturbance*Time		
	Beta (95%CI)	P-Value	Beta (95%CI)	P-Value	Beta (95%CI)	P-Value
PACC (z score composite)	1.73 (1.12, 2.34)	0.001	-0.17 (-0.18, -0.15)	0.001	-0.15 (-0.18, -0.13)	0.001
MMSE	0.92 (0.61, 1.22)	0.001	-0.05 (-0.06, -0.05)	0.001	-0.10 (-0.12, -0.09)	0.001
Logical Memory Delayed Recall	0.55 (-0.05, 1.15)	0.071	-0.10 (-0.11, -0.08)	0.001	0.00 (-0.02, 0.02)	0.861
CDR-Sum of Boxes	-0.81 (-1.06, -0.55)	0.001	0.05 (0.04, 0.05)	0.001	0.11 (0.10, 0.12)	0.001

Cognitive Profiles	Categorical time Models	Sleep Disturbance
	Beta (95%CI)	P-Value
PACC (z score composite)	-0.37 (-1.16, 0.42)	0.363
MMSE	-0.40 (-0.82, 0.03)	0.069
Logical Memory Delayed Recall	0.28 (-0.51, 1.07)	0.492
CDR-Sum of Boxes	0.04 (-0.29, 0.37)	0.805
Table 3
Relationship of amyloid markers Profiles and FDG to Sleep Disturbance in the Continuous time Models and Categorical time Models

Continuous time Models	Sleep Disturbance	Time	Sleep Disturbance*Time			
Amyloid markers and FDG	Beta (95%CI)	P-Value	Beta (95%CI)	P-Value	Beta (95%CI)	P-Value
CSF Aβ42	-31.40 (-81.12, 18.32)	0.216	-9.54 (-11.51, -7.56)	0.001	6.50 (2.96, 10.03)	0.001
Amyloid PET SUVR	0.00 (-0.02, 0.02)	0.809	0.00 (0.00, 0.00)	0.001	0.00 (0.00, 0.00)	0.305
FDG	0.00 (-0.02, 0.02)	0.974	-0.01 (-0.01, 0.00)	0.001	0.00 (0.00, 0.00)	0.091

Categorical time Models	Sleep Disturbance	
Amyloid markers and FDG	Beta (95%CI)	P-Value
CSF Aβ42	26.66 (-36.68, 90.00)	0.409
Amyloid PET SUVR	0.02 (0.00, 0.05)	0.105
FDG	-0.01 (-0.04, 0.01)	0.298
Mean neurodegeneration profiles are depicted in Table S7 and Fig. 3. The percentage of ICV for ventricular volume increased gradually by years and that of sleep disturbances group was higher than the normal one in the continuous time model. As shown in Table S8, S10, and S11, there was not this kind of relationship between sleep disturbances and CSF tau, p-tau, and hippocampal volume in models. The effect of time made neurodegeneration profiles get worse significantly but for hippocampal volume.

Figure 4 shows the hazard ratio of sleep disturbances for the AD in the Cox model adjusting other covariates. The hazard ratio APOE^z4 allele was 2.18 (1.54, 3.07), which is the highest one among these variables, followed by sleep disturbances and male. 1.55 (1.08, 2.22) was the second number, belonged to sleep disturbance, and the male was the lowest one with 1.53 (1.05, 2.23). The above results were statistically significant ($P < 0.05$).

In the sensitivity analysis that excluded participants whose CSF Aβ42 more than 985pg/mL, the results did not change substantially. We found that sleep disturbances can still have a negative effect on the

Continuous time Models	Sleep Disturbance	Time	Sleep Disturbance*Time			
Neurodegeneration Profiles	Beta (95%CI)	P-Value	Beta (95%CI)	P-Value	Beta (95%CI)	P-Value
CSF t-Tau	2.05 (-9.82, 13.93)	0.735	2.53 (2.22, 2.84)	0.001	0.52 (-0.05, 1.09)	0.076
CSF p-Tau	0.34 (-0.95, 1.63)	0.609	0.30 (0.27, 0.33)	0.001	0.00 (-0.06, 0.06)	0.999
Hippocampal Volume	-0.01 (-0.01, 0.00)	0.090	0.00 (0.00, 0.00)	0.001	0.00 (0.00, 0.00)	0.129
Ventricular Volume	-0.06 (-0.19, 0.07)	0.342	0.09 (0.09, 0.09)	0.001	0.01 (0.01, 0.02)	0.001

Categorical time Models	Sleep Disturbance	
Neurodegeneration Profiles	Beta (95% CI)	P-Value
CSF t-Tau	8.66 (-4.59, 21.92)	0.200
CSF p-Tau	0.89 (-0.52, 2.30)	0.216
Hippocampal Volume	-0.01 (-0.02, 0.00)	0.034
Ventricular Volume	0.07 (-0.08, 0.22)	0.345
PACC, MMSE, and CDR-Sum of Boxes, CSF Aβ42, and ventricular ICV volume over years. Moreover, we reanalyzed the COX regression for AD, which depict sleep disturbances can still be the risk factor of AD.

Discussion

In this longitudinal study of cognitively normal participants, participants with sleep disturbances were easier to develop cognitive decreased symptoms compared participants with normal sleep. The cognitive decreased symptoms included the downward trend of PACC and MMSE, and the upward trend of CDR-Sum of Boxes score, CSF Aβ42, and ventricular volume in 10 to 14 years follow-up. Additionally, people with sleep disturbances who got AD were 1.55 (1.08, 2.22) times more than that of those with normal sleep. That suggests that sleep disturbances probably represent the pre-symptomatic stage of AD.

There were some differences in demographic and cognitive profiles between people with sleep disturbances and normal sleep in the baseline. The sleep disturbances accounted for a higher male percentage than that of those having normal sleep. However, prior studies[24, 25] found women to be more frequent and explain about sleep disturbances saying that women are easier to be influenced by stress and depression which make them difficult to get a good sleep. In this study, the average age of people was around 73 and men got more diseases in this kind of age than women[26], which makes them get difficult to fall in sleep. That's why there were more males with sleep disturbances than females with sleep disturbance. Meanwhile, the proportion of family histories of patients with dementia or AD in sleep disturbances was higher than that in the group with normal sleep, but the percentage of individuals with APOEε4 allele was no significant difference between these two groups. More interesting, the cognitive profiles including PACC, logical memory delayed recall, FDG, and ADAS13 at sleep disturbances group were better than that at normal sleep. So, whether sleep disturbances has adverse effects on cognitive decline or other factors or not needs the longitudinal research part in this study to clarify.

In the longitudinal research part, time was treated as a continuous variable and categorical variable respectively with the generalized linear mixed model to investigate how sleep disturbances influences the subsequent cognitive change. The significant variables in baseline were selected by AIC as covariates into the model to ensure that these variables could influence the cognition. We found that the subsequent cognition outcomes in sleep disturbances group get significantly worse than that in the normal group, such as PACC, MMSE, and CDR-Sum of Boxes, in the continuous time model but not that in the categorical time model. Compared with the group with normal sleep, those with sleep disturbances had worse mean scores at 6 years on the PACC (mean difference, 7.53 points [95%CI, 7.36–7.70]; \(P < 0.001 \)), MMSE (mean difference, 5.26 points [95%CI, 5.17–5.35]; \(P < 0.001 \)), and CDR–Sum of Boxes (mean difference, 5.61 points [95%CI, 5.67–5.54]; \(P = 0.001 \)). Considering the categorical time model doesn’t consider the spacing of the time points compared to the continuous time model[27], sleep disturbances had the adverse effect on cognition with long term effect but not on each time point. A multi-center study about sleep disturbances and later cognitive status also found that sleep disturbances is associated with lower MMSE scores (β=-0.28, 95% CI=-0.49 to -0.07)[28], which is consistent with our results. A research study[29] which evaluates the performance of cognitive questionnaires suggested that the CDR-Sum of
Boxes is more precise in measuring the severity of cognitive dysfunction than the MMSE and we also found that sleep disturbances influences that outcome. Consequently, sleep disturbances in baseline probably could make the cognition subsequently decline.

For outcomes of markers of amyloid, sleep disturbances showed the long-term increased effect on the Aβ in CSF. There was not any influence from sleep disturbances on some neurodegeneration markers (CSF tau and p-tau). That is supported by the amyloid hypothesis[30] of Alzheimer's disease which supposes that the concentration of Aβ would increase first and then the high concentration of Aβ induce the amyloid plaques and neurofibrillary tangles. Later, the concentration of tau and p-tau would be at a high level. Our findings are consistent with this hypothesis, when the CSF Aβ rise in individuals with sleep disturbance, the CSF tau and p-tau haven’t any significant change. Consequently, sleep disturbances could be a preclinical stage to AD.

The Cox regression analysis showed sleep disturbances is a significant risk factor of AD (HR = 1.55, 95% CI = 1.08 to 2.22) considering other covariates, which is supported by previous studies. Similarly, a multi-centre longitudinal study[31] demonstrated that late-life sleep disturbances is associated with an increased dementia risk (HR = 1.94, 95% CI = 1.08 to 3.49). Osorio et al.[32] found that individuals with sleep disturbances are easier to get AD. Sterniczuk et al.[10] reported that participants who have trouble in sleeping will get dementia or AD within 4 years. The follow-up time of this study cohort was longer than that of previous studies, and the follow-up time was 10 to 14 years. Besides, the confounding factors were fully considered in this research paper, therefore the results were more reliable and credible.

There are some strengths in this study. First of all, the individuals in this longitudinal research study all had a normal cognition, which could rule out the effects of cognitive decline on sleep disturbance. Secondly, we used the marginal effect estimation which quantifies the interaction between sleep disturbances and time on cognitive decline. Additionally, the generalized linear mixed model was used in this research, which could consider the bias of individual-level and use the data which doesn't meet the requirements of the traditional model. Finally, a lot of covariates were included in this study and were selected by AIC, which could exclude the probability that cognitive decline is caused by other factors.

There are also some limitations to this research. Firstly, the number of participants in our study is limited, therefore the relationship between cognitive decline and sleep disturbances needs a large sample size cohort to verify. Next, the lack of people with clinical imaging indicators in the late follow-up resulted in a short follow-up time and small sample size at each follow-up. Lastly, the research study didn’t consider to use biological experiments to verify the results. However, we plan to address these questions in further study.

Conclusion

In conclusion, this study confirmed that sleep disturbances in the baseline is associated with subsequent cognitive decline among cognitively normal elders and is an increased risk of AD. Sleep disturbances probably is a pre-symptomatic stage of AD, which will be important for import by the clinical doctor to
prevent people to get cognitive decline or AD. Individuals with sleep disturbances should pay more attention to their cognition and be given active treatments. Further studies should explore whether there are some pieces of evidence from the biological mechanism to support the relationship between sleep disturbances and cognitive decline.

Abbreviations

SD: sleep disturbances; AD: Alzheimer’s Disease; MCI: Mild Cognitive Impairment; NC: Normal Cognition; NS: Normal Sleep; CSF: Cerebrospinal Fluid; PACC: Preclinical Alzheimer Cognitive Composite; MMSE: Mini-Mental State Examination; CDR: Clinical Dementia Rating; GLME: Generalized Linear Mixed Effects AIC: Akaike Information Criterion; HR: Hazard Ratio.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All data are available in the ADNI database (ida.loni.usc.edu). Derived data is available from the corresponding author on request by any qualified investigator.

Competing interests

The authors have no competing interests to declare.

Funding

This current study was financially supported by The Program of National Natural Science Foundation of China (Serial Number: 81903408) (XN Wang), The National Key R&D Program of China (Serial Number: 2016YFC1302804) (XH Guo). The funding was neither was used for the study design nor data collection but to cover for the publication fees.

Authors' contributions

Feng Wei and Xiuhua Guo designed this research study, did the statistics analyses, and drafted this paper. Mandela William Nzoyoum Kuetché, Meng Zhang, and Mengmeng Liu collected the data from ADNI, revised the manuscripts, and designed the figures in this paper. Deginet Akilulu gave suggestions to the generalized linear mixed model, revised the method part, and interpretation of data for the work in this
research. Wei Wang, Xiaonan Wang, and Xiuhua Guo revised the work of whole manuscript, and offered contributions to the conception of the work from epidemiology and statistics view.

Acknowledgements

In this work, we employed the database of the Alzheimer's Disease Neuroimaging Initiative (ADNI). ADNI was established as a multicenter longitudinal study to identify imaging, clinical, genetic and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). ADNI is the result of a $67 million partnership efforts by both the public and the private sector. Financial support was obtained from the National Institute on Aging, 13 pharmaceutical companies, and two foundations providing funding through the Foundation for the National Institutes of Health. The study can be split into three sub-initiatives - ADNI1, ADNI2, and ADNI GO. The initial phase known as ADNI1 included subjects between 55-90 years of age from approximately 50 sites across the United States (US) and Canada. ADNI2 and ADNI GO add new participants and funding to the study. The database is made available to researchers around the world and has a broad range of collaborators. The principal investigator (PI) of ADNI, who oversees all aspects, is Dr. Michael Weiner, MD, VA Medical Center and the University of California - San Francisco. For up-to-date information, see www.adni-info.org. We sincerely thank those who participated in data management and analysis. In a very particular way, we are grateful for the help from the friends of ours who sacrificed a lot in this study. We are also thankful to Xiaojia Wen of Capital Medical University for her support in helping to point out some mistakes from clinical view.

References

1. Grau-Rivera O, Operto G, Falcón C, Sánchez-Benavides G, Cacciaglia R, Brugulat-Serrat A, et al. Association between insomnia and cognitive performance, gray matter volume, and white matter microstructure in cognitively unimpaired adults. Alzheimer's research therapy. 2020;12(1):1–14.
2. Cybulski M, Cybulski L, Krajewska-Kulak E, Orzechowska M, Cwalina U, Kowalczuk K. Sleep disorders among educationally active elderly people in Bialystok, Poland: a cross-sectional study. BMC Geriatrics. 2019;19(1):225-.
3. Sindi S, Pérez LM, Vetrano DL, Triolo F, Kåreholt I, Sjöberg L, et al. Sleep disturbances and the speed of multimorbidity development in old age: results from a longitudinal population-based study. BMC Med. 2020;18(1):1–10.
4. Colten HR, Altevogt BM. Extent and health consequences of chronic sleep loss and sleep disorders. Sleep disorders and sleep deprivation: an unmet public health problem. 2006:55–135.
5. Jee HJ, Shin W, Jung HJ, Kim B, Lee BK, Jung Y-S. Impact of Sleep Disorder as a Risk Factor for Dementia in Men and Women. Biomolecules Therapeutics. 2020;28(1):58.
6. Brzecka A, Leszek J, Ashraf GM, Ejma M, Ávila-Rodriguez MF, Yarla NS, et al. Sleep disorders associated with Alzheimer's disease: a perspective. Front NeuroSci. 2018;12:330.
7. Di Iulio F, Palmer K, Blundo C, Casini AR, Gianni W, Caltagirone C, et al. Occurrence of neuropsychiatric symptoms and psychiatric disorders in mild Alzheimer’s disease and mild cognitive impairment subtypes. Int Psychogeriatr. 2010;22(4):629–40.

8. Diem SJ, Blackwell TL, Stone KL, Yaffe K, Tranah G, Cauley JA, et al. Measures of sleep–wake patterns and risk of mild cognitive impairment or dementia in older women. The American Journal of Geriatric Psychiatry. 2016;24(3):248–58.

9. Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA. Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep. 2013;36(7):1027–32.

10. Sterniczuk R, Theou O, Rusak B, Rockwood K. Sleep disturbance is associated with incident dementia and mortality. Curr Alzheimer Res. 2013;10(7):767–75.

11. Mecca AP, Michalak HR, McDonald JW, Kemp EC, Pugh EA, Becker ML, et al. Sleep disturbance and the risk of cognitive decline or clinical conversion in the ADNI cohort. Dement Geriatr Cogn Disord. 2018;45(3–4):232–42.

12. Kyle SD, Sexton CE, Feige B, Luik Al, Lane J, Saxena R, et al. Sleep and cognitive performance: cross-sectional associations in the UK Biobank. Sleep medicine. 2017;38:85–91.

13. Sperling RA, Rentz DM, Johnson KA, Karlawish J, Donohue M, Salmon DP, et al. The A4 study: stopping AD before symptoms begin? Science translational medicine. 2014;6(228):228fs13-fs13.

14. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, et al. Impact of the Alzheimer's disease neuroimaging initiative, 2004 to 2014. Alzheimer's Dement. 2015;11(7):865–84.

15. Mitchell AJ. The Mini-Mental State Examination (MMSE): update on its diagnostic accuracy and clinical utility for cognitive disorders. Cognitive screening instruments: Springer; 2017. pp. 37–48.

16. Kim JW, Byun MS, Sohn BK, Yi D, Seo EH, Choe YM, et al. Clinical dementia rating orientation score as an excellent predictor of the progression to alzheimer's disease in mild cognitive impairment. Psychiatry investigation. 2017;14(4):420.

17. Kansal A, Stern S, Keenan A. Simulation study on differences in Alzheimer Disease (AD) Cooperative Study–Preclinical Alzheimer Cognitive Composite (ADCS-PACC) Based on Long-term Clinical Outcomes (P5. 193). AAN Enterprises; 2018.

18. Dzikon C. The Wechsler Memory Scale (WMS-IV). The Wiley Encyclopedia of Personality and Individual Differences: Measurement and Assessment. 2020:529 – 32.

19. Broshek DK, Barth JT. The Halstead-Reitan Neuropsychological Test Battery. 2000.

20. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's dementia. 2011;7(3):280–92.

21. Sakamoto Y, Ishiguro M, Kitagawa G. Akaike information criterion statistics. Dordrecht, The Netherlands: D Reidel. 1986;81.

22. Bartus T. Estimation of marginal effects using margeff. The Stata Journal. 2005;5(3):309–29.
23. Shaw LM, Waligorska T, Fields L, Korecka M, Figurski M, Trojanowski JQ, et al. Derivation of cutoffs for the Elecsys® amyloid β (1–42) assay in Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2018;10(1):698–705.

24. Jaussent I, Dauvilliers Y, Ancelin M-L, Dartigues J-F, Tavernier B, Touchon J, et al. Insomnia symptoms in older adults: associated factors and gender differences. The American Journal of Geriatric Psychiatry. 2011;19(1):88–97.

25. Li R, Wing Y, Ho S, Fong S. Gender differences in insomnia—a study in the Hong Kong Chinese population. J Psychosom Res. 2002;53(1):601–9.

26. Kim IH. Age and gender differences in the relation of chronic diseases to activity of daily living (ADL) disability for elderly South Koreans: based on representative data. J Prev Med Public Health. 2011;44(1):32–40.

27. Kneib T, Fahrmeir L. Structured additive regression for categorical space–time data: A mixed model approach. Biometrics. 2006;62(1):109–18.

28. Sindi S, Johansson L, Skoog J, Mattsson AD, Sjöberg L, Wang H-X, et al. Sleep disturbances and later cognitive status: a multi-centre study. Sleep medicine. 2018;52:26–33.

29. Balsis S, Benge JF, Lowe DA, Geraci L, Doody RS. How do scores on the ADAS-cog, MMSE, and CDR-SOB correspond? The Clinical Neuropsychologist. 2015;29(7):1002–9.

30. Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. Journal of neurochemistry. 2009;110(4):1129–34.

31. Sindi S, Kåreholt I, Johansson L, Skoog J, Sjöberg L, Wang HX, et al. Sleep disturbances and dementia risk: A multicenter study. Alzheimer's Dement. 2018;14(10):1235–42.

32. Osorio RS, Pirraglia E, Agüera-Ortiz LF, During EH, Sacks H, Ayappa I, et al. Greater risk of Alzheimer’s disease in older adults with insomnia. J Am Geriatr Soc. 2011;59(3):559.

Figures
Figure 1

Mean Cognitive Profiles by marginal effect estimation in linear mixed models. (Profiles are from linear mixed-effects models controlling for age and other baseline covariates selected by Akaike Information Criterion. Shaded regions indicate 95% CI. Dot sizes are proportional to the number of observations. Continuous time models include a quadratic term.)
Figure 2

Mean Profiles of Markers of Amyloid (Cerebrospinal Fluid Aβ and Florbetapir PET) and Glucose Metabolism (FDG-PET) by marginal effect estimation in linear mixed models. (See Figure 1 for explanation of statistical components.)
Figure 3

Mean Profiles of Neurodegeneration Markers by marginal effect estimation in linear mixed models. (See Figure 1 for explanation of statistical components.)
Exposure Group	Hazard Ratio (95%CI)	P
Family History of Dementia	0.76 (0.42–1.36)	0.352
Family History of AD	1.36 (0.76–2.43)	0.305
Gender [Male]	1.53 (1.05–2.23)	0.027
≥1 APOE4 allele	2.18 (1.54–3.07)	<0.001
Education, (Mean ± SD), y	0.96 (0.90–1.02)	0.188
Insomnia disorder	1.55 (1.08–2.22)	0.018

Figure 4

The hazard ratio of insomnia disorder for the AD in the Cox regression model.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Supplementary.docx](#)