Analyses of turbulence in a wind tunnel by a multifractal theory for probability density functions

Toshihico Arimitsu¹, Naoko Arimitsu² and Hideaki Mouri³

1 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
2 Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
3 Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan
E-mail: arimitsu.toshi.ft@u.tsukuba.ac.jp

Received 21 October 2011, in final form 26 April 2012
Published 22 May 2012
Online at stacks.iop.org/FDR/44/031402

Communicated by E Knobloch

Abstract

The probability density functions (PDFs) for energy dissipation rates, created from time-series data of grid turbulence in a wind tunnel, are analyzed at a high precision by the theoretical formulae for PDFs within multifractal PDF theory which is constructed under the assumption that there are two main elements constituting fully developed turbulence, i.e. coherent and incoherent elements. The tail part of the PDF, representing intermittent coherent motion, is determined by a Tsallis-type PDF for singularity exponents essentially with one parameter with the help of a new scaling relation whose validity is checked for the case of the grid turbulence. For the central part PDF representing both contributions from the coherent motion and the fluctuating incoherent motion surrounding the former, we introduced a trial function specified by three adjustable parameters which amazingly represent scaling behaviors in a much wider area not restricted to the inertial range. From the investigation of the difference between two difference formulae approximating the velocity time derivative, it is revealed that the connection point between the central and tail parts of the PDF extracted by theoretical analyses of PDFs is actually the boundary of the two kinds of instabilities associated respectively with coherent and incoherent elements.

(Some figures may appear in colour only in the online journal)
1. Introduction

There are several keystone works (Mandelbrot 1974, Benzi et al 1984, 1991, Parisi and Frisch 1985, Halsey et al 1986, Meneveau and Sreenivasan 1987, Nelkin 1990, Hosokawa 1991, Dubrulle 1994, She and Leveque 1994, She and Waymire 1995, Arimitsu T and Arimitsu N 2000a, b, 2001, 2002, Arimitsu N and Arimitsu T 2002, Biferale et al 2004, Chevillard et al 2006) providing the multifractal aspects for fully developed turbulence. Only a few works (Benzi et al 1991, Arimitsu T and Arimitsu N 2001, 2002, Arimitsu N and Arimitsu T 2002, Biferale et al 2004, Chevillard et al 2006) analyze the probability density functions (PDFs) for physical quantities representing intermittent character. Other works deal with only the scaling property of the system, e.g. a comparison of the scaling exponents of velocity structure function. In the research works analyzing PDFs, multifractal probability density function theory (MPDFT) (Arimitsu T and Arimitsu N 2001, 2002, 2011, Arimitsu N and Arimitsu T 2002, 2011) provides the most precise analysis of the fat-tail PDFs. MPDFT is a statistical mechanical ensemble theory constructed by the authors (Arimitsu T and Arimitsu N 2002, 2011) to analyze intermittent phenomena providing fat-tail PDFs.

To extract the intermittent character of the fully developed turbulence, it is necessary to have information on the self-similar hierarchical structure of the system. This is realized by producing a series of PDFs for responsible singular quantities with different lengths

$$\ell_\alpha = \ell_0 \delta^{-n}, \quad \delta > 1 \quad (n = 0, 1, 2, \ldots)$$

(1)

that characterize the regions in which the physical quantities are coarse-grained. The value for δ is chosen freely by observers. Let us assume that the self-similar structure of fully developed turbulence is such that the choice of δ should not affect the theoretical estimation of the values for the fundamental quantities characterizing the turbulent system under consideration. The A&A model within the framework of MPDFT itself tells us that this requirement is satisfied if the scaling relation has the form ((Arimitsu T and Arimitsu N 2011), Arimitsu N and Arimitsu T 2011)

$$\ln 2/(1-q) \ln \delta = 1/\alpha_- - 1/\alpha_+.$$

(2)

Here, q is the index associated with the Rényi entropy (Rényi 1961) or with the Havrda–Charvat and Tsallis (HCT) entropy (Havrda and Charvat 1967, Tsallis 1988); α_\pm are zeros of the multifractal spectrum $f(\alpha)$ (see below in section 2). The multifractal spectrum is uniquely related to the PDF for α (see (4) below). The PDF of α is related to the tail part of PDFs within MPDFT for those quantities revealing intermittent behavior whose singularity exponents can have values $\alpha < 1$, e.g. the energy dissipation rates, through the variable transformation between α and the physical quantities (see (3) below for the case of the energy dissipation rates ε_α). With the new scaling relation (2), observables have come to depend on the parameter δ only in the combination $(1-q)\ln\delta$. The difference in δ is absorbed in the entropy index q.

In the above papers, we analyzed PDFs for energy transfer rates (Arimitsu T and Arimitsu N 2011) and PDFs for energy dissipation rates (Arimitsu N and Arimitsu T 2011), which are given in figure 11 of Aoyama et al (2005), with the help of the new scaling relation, and checked the independence of the PDFs from δ. It was found that the adjustable parameters

$\delta \approx 2$,

Since almost all the PDFs that had been provided previously were for the case where $\delta = 2$, it has been possible to analyze PDFs (Arimitsu T and Arimitsu N 2001, 2002; Arimitsu N and Arimitsu T 2002) with the scaling relation $1/(1-q) = 1/\alpha_- - 1/\alpha_+$ proposed by Costa et al (1997) and Lyra and Tsallis (1998) in connection with the 2^n periodic orbit. The orbit having the marginal instability of zero Liapunov exponent appears at the threshold to chaos via a period-doubling bifurcation in one-dimensional (1D) dissipative maps.
for the central part of the PDF provide us with δ-independent scaling behaviors as functions of r/η, and that the scaling properties are satisfied in a much wider region not restricted to the inside of the inertial range. However, the number of data points used in drawing the PDFs in figure 11 of Aoyama et al. (2005) is not enough, especially for the precise analyses of the central part of PDFs performed in Arimitsu T and Arimitsu N (2011) and Arimitsu N and Arimitsu T (2011). Therefore, we will perform, as one of the aims of the present paper, the same analyses that were done for DNS, with the help of PDFs created from wind tunnel turbulence with a higher enough resolution in order to make sure that the characteristics discovered previously with rather poor resolution at the central part are correct. Since we have the raw time-series data taken from wind tunnel turbulence, we can create PDFs for energy dissipation rates with enough resolutions fitted to our needs.

In this paper, we analyze the PDFs for energy dissipation rates extracted out from the time series of the velocity field of a fully developed turbulence which were observed by one of the authors (HM) in his experiment conducted in a wind tunnel (Mouri et al. 2008). In section 2, we present the formulae of theoretical PDFs within the A&A model that are necessary in the following sections for the analysis of PDFs obtained from the experimental turbulence. In section 3, we analyze the observed PDFs for energy dissipation rates at a high precision with the theoretical PDF within the A&A model of MPDFT, and verify the proposed assumption related to the magnification δ. In section 4, in order to see what information one can extract out from the time-series data, we compare two different PDFs for energy dissipation rates created from the time-series data with different approximations for temporal derivative. We may learn from this how to treat the central part of PDFs to derive the information on incoherent fluctuating motion around the coherent turbulent motion. A summary and discussion are provided in section 5.

2. Singularity exponent and PDFs for energy dissipation rates

MPDFT is constructed under the assumption, following Parisi and Frisch (1985), that the singularities distribute themselves in a multifractal way in real physical space. The singularities stem from the invariance of the Navier–Stokes (NS) equation for an incompressible fluid under the scale transformation $\vec{x} \to \vec{x}' = \lambda \vec{x}$, accompanied by the scale changes $\vec{u} \to \vec{u}' = \lambda^{\alpha/3} \vec{u}$ in velocity field, $t \to t' = \lambda^{1-\alpha/3} t$ in time and $p \to p' = \lambda^{2\alpha/3} p$ in pressure with an arbitrary real number α, in the limit of large Reynolds number, i.e. the contribution from the dissipation term in the NS equation, which is proportional to the kinematic viscosity ν, is negligibly small compared with the convection term. In treating an actual turbulent system, however, the value ν is fixed at a finite value unique to the material of fluid prepared for an experiment. We should keep in mind that the dissipation term can become effective depending on the region under consideration, since the term breaking the invariance does exist, i.e. non-zero (see the discussion in the following).

The invariance under the scale transformation leads to the scaling property

$$\frac{\varepsilon_n}{\varepsilon} = \left(\frac{\ell_n}{\ell_0}\right)^{\alpha-1}$$

for the energy dissipation rate ε_n averaged in the regions with diameter ℓ_n. Here, we put $\varepsilon_0 = \varepsilon$ whose value is assumed to be constant. The energy dissipation rate becomes singular for $\alpha < 1$, i.e. $\lim_{n \to \infty} \varepsilon_n = \lim_{n \to \infty} \ell_n^{\alpha-1} \to \infty$. The degree of singularity is specified by the singularity exponent α (Parisi and Frisch 1985).

Let us consider α to be a stochastic variable whose PDF $P(\alpha)$ is given by the Rényi- or HCT-type function (Arimitsu T and Arimitsu N 2000a, b, 2001, 2002, 2011, Arimitsu N...
and Arimitsu T 2002, 2011):

\[P^{(\alpha)}(\alpha) \propto \left[1 - (\alpha - \alpha_0)^2 / (\Delta \alpha)^2 \right]^{n/(1-q)} \]

(4)

with $\Delta \alpha = [2X/(1-q) \ln \delta]^{1/2}$. The domain of α is $\alpha_{\text{min}} \leq \alpha \leq \alpha_{\text{max}}$ with α_{min} and α_{max} being given by $\alpha_{\text{min/max}} = \alpha_0 \mp \Delta \alpha$. q is the entropy index\(^5\). From (4), we have for $n \gg 1$ the expression for the multifractal spectrum

\[f(\alpha) = 1 + \ln \left[1 - (\alpha - \alpha_0)^2 / (\Delta \alpha)^2 \right] / (1 - q) \ln \delta. \]

(5)

The independence of $f(\alpha)$ from n is interpreted as a manifestation of the existence of a self-similar hierarchical structure responsible for the intermittent fluid motion of turbulence.

The three parameters α_0, X and q appearing in $P^{(\alpha)}(\alpha)$ are determined to be the functions of the intermittency exponent μ with the help of three conditions: one is the energy conservation law $\langle \epsilon_n \rangle = \epsilon$. Another is the definition of the intermittency exponent μ, i.e. $\langle (\epsilon_n / \epsilon)^2 \rangle = (\ell_0 / \ell_0)^{-\mu}$. The last condition is the scaling relation (2) with α_δ being the solution of $f(\alpha_\delta) = 0$, which is a generalization of that introduced by Tsallis and his co-workers (Costa et al 1997, Lyra and Tsallis 1998) to which (2) reduces when $\delta = 2$. Here, the average $\langle \cdot \cdot \cdot \rangle$ is taken with $P^{(\alpha)}(\alpha)$. The parameter q is determined, together with α_0 and X, as a function of μ only in the combination $(1-q)\ln \delta$. The difference in μ is absorbed into the entropy index q; therefore changing the zooming rate δ may result in picking up a different hierarchy, containing the entropy specified by the index q, out of the self-similar structure of turbulence. As the parameters are dependent on q only in the combination $(1-q)\ln \delta$, we are naturally led to replace μ in the expression of $P^{(\alpha)}(\alpha)$ in (4) with $n = \tilde{n} / \ln \delta$. If \tilde{n} does not depend on δ, $P^{(\alpha)}(\alpha)$ becomes also independent of δ.\(^6\) Note that, with the new number \tilde{n}, $\ell_\tilde{n}$ introduced in (1) reduces to

\[\ell_\tilde{n} = \ell_0 e^{-\tilde{n}}. \]

(6)

MPDFT provides us with a systematic framework to make a connection between the PDF $P^{(\alpha)}(\alpha)$ of the singularity exponent α and the PDF of the observed quantity such as the energy dissipation rate representing intermittent singular behavior in its time evolution. The element of fluid motion specified by the singularity exponent satisfying $\alpha < 1$ takes care of the intermittency large (singular) spikes observed in the time evolution of the energy dissipation rate, and contributes to the tail part of the PDF for energy dissipation rates (see figures 1(a) and (b)). This element is directly related to a coherent hierarchical structure such as the multi-scale Cantor set characterized by the multifractal spectrum $f(\alpha)$. Therefore, the fluid motion controlled by this element is referred to as a coherent motion. There is another element of fluid motion due to the symmetry-breaking term, i.e. the dissipation term in the NS equation, which produces fluctuation of fluid surrounding the coherent turbulent motion. This element contributes mainly to the central part of the PDF (see figures 1(a) and (b)). The fluid motion provided by this element is referred to as an incoherent motion. Note that the central part of the PDF is constituted by two elements, i.e. the incoherent and coherent motions.

\(^5\) The function (4) is the MaxEnt PDF derived from the Rényi entropy or from the HCT entropy with two constraints: one is the normalization condition and the other is a fixed q-variance (Tsallis 1988). This choice of PDF is also quite natural since the Rényi entropy and the HCT entropy are directly related to the generalized dimension (Hentschel and Procaccia 1983) describing those systems containing multifractal structures (Grassberger 1983). Note that for the HCT entropy the relation is given with the help of the q-exponential (Tsallis et al 2001), which is a function satisfying a scaling invariance (Suyari and Wada 2006) and reduces to the ordinary exponential for $q \to 1$.

\(^6\) The introduction of \tilde{n} is intimately related to the infinitely divisible process (Dubrulle 1994, She and Waymire 1995). It is confirmed by the observation in the preset paper that \tilde{n} is independent of δ and has values of $O(1)$ (see table 2). Then, taking the limit $\delta \to 1+$ with a fixed value of \tilde{n}, one has an infinitely divisible distribution. A detailed investigation of the A&A model from this viewpoint will be given elsewhere in the near future.
Based on the above consideration, we assume that the probability \(\Pi_3^{(a)}(\epsilon_n) d\epsilon_n \) can be, generally, divided into two parts as

\[
\Pi_3^{(a)}(\epsilon_n) d\epsilon_n = \Pi_3^{(a)}(\epsilon_n) d\epsilon_n + \Delta \Pi_3^{(a)}(\epsilon_n) d\epsilon_n
\]

(see figures 1(a) and (b)). The first term describes the coherent motion, i.e. the contribution from the abnormal part of the physical quantity \(\epsilon_n \) due to the fact that its singularities distribute themselves in a multifractal way in real space. This is the part representing a coherent turbulent motion given in the limit \(\nu \to 0 \) but is not equal to zero \((\nu \neq 0) \). The second term represents the contribution from the incoherent fluctuating motion. The normalization of the PDF is specified by \(\int_0^\infty \epsilon_n \Pi_3^{(a)}(\epsilon_n) = 1 \). We assume that the coherent contribution is given by (Arimitsu T and Arimitsu N 2001) \(\Pi_3^{c}(\epsilon_n) d\epsilon_n = \Pi_3^{c}(\epsilon_n) d\epsilon_n \). For the expression of \(\Pi_3^{c}(\epsilon_n) \), see Arimitsu N and Arimitsu T (2011).

Let us introduce another division of the PDF (see figure 1(c)), i.e.

\[
\hat{\Pi}_3^{(a)}(\epsilon_n) = \hat{\Pi}_3^{(a)}(\epsilon_n) + \hat{\Pi}_3^{(a)}(\epsilon_n),
\]

where \(\hat{\Pi}_3^{(a)}(\epsilon_n) \) is introduced by the relation \(\hat{\Pi}_3^{(a)}(\epsilon_n) d\epsilon_n = \Pi_3^{(a)}(\epsilon_n) d\epsilon_n \) with the variable transformation \(\xi_n = \epsilon_n / (\langle \epsilon_n^2 \rangle)^{1/2} \) where the cumulant average \(\langle \cdots \rangle_c \) is taken with the PDF \(\Pi_3^{(a)}(\epsilon_n) \). The two parts of the PDF, the tail part \(\hat{\Pi}_3^{(a)}(\epsilon_n) \) and the central part \(\hat{\Pi}_3^{(a)}(\epsilon_n) \), are connected at \(\xi_n = \xi_n^* \) under the conditions that they have the common value and the common log-slope there. Note that \(\xi_n^* \) is related to \(\epsilon_n^* \) by \(\xi_n^* = \epsilon_n^*/(\langle \epsilon_n^2 \rangle)^{1/2} \) and to \(\alpha^* \) by (3). The value of \(\alpha^* \) is determined for each PDF as an adjusting parameter in the analysis of PDFs obtained by ordinary or numerical experiments.

When one creates a PDF from the time-evolution data for the microscopic energy dissipation rate, he puts each realization into an appropriate bin according to the value \(\epsilon_n \) which is obtained by averaging the microscopic energy dissipation rates in each time interval corresponding to the length \(\epsilon_n \). For larger \(\epsilon_n \) values belonging to the tail part domain of the PDF, most of the realizations in a bin at the interval \(\epsilon_n \sim \epsilon_n + d\epsilon_n \) come from the time interval containing at least one intermittently large spike (singular spike) of microscopic energy dissipation rates. The bin may have a negligibly small proportion of the number of realizations coming from those intervals with only fluctuations compared to the number of realizations with at least one singular spike. On the other hand, for smaller \(\epsilon_n \) values belonging to the central part PDF domain, the number of realizations coming from the time intervals...
containing singular spikes with smaller heights is of about the same order as the number of realizations from the time intervals containing only fluctuations, since the height of singular spikes contributing to this bin must be about the same height as fluctuations.

Under the above interpretation, it may be reasonable to assume that, for the tail part of the PDF \(\hat{P}_3^{(n)}(\xi_n) \), the contribution from the first term \(\Pi^{(n)}_{3,1}(\xi_n) \) in (7) to the intermittent rare events dominates, and the contribution from the second term \(\Delta \Pi^{(n)}_{3,2}(\xi_n) \) to the events is negligible, i.e.

\[
\hat{P}_3^{(n)}(\xi_n) \, d\xi_n = \Pi^{(n)}_{3,1}(\xi_n) \, d\xi_n
\]

for \(\xi_n^* \leq \xi_n \). For \(0 \leq \xi_n \leq \xi_n^* \), as there is no theory for the central part of the PDF \(\hat{P}_3^{(n)}(\xi_n) \) at present, we put

\[
\hat{P}_3^{(n)}(\xi_n) \, d\xi_n = \Pi^{(n)}_{3,2}(\xi_n) \, d\xi_n
\]

with \(\Pi^{(n)}_{3,2} = \Pi^{(n)}_{3,1} \sqrt{|f''(\alpha^*)|/2\pi(|\ln(\xi_n/\xi_n^*)|/\xi_n)} \) and a trial function of the Tsallis type

\[
e^{-\theta(\xi_n)} = \left(\frac{\xi_n}{\xi_n^*} \right)^{\theta-1} \left[1 - (1-q') \left(\theta + f''(\alpha^*) \right) \left(\frac{\xi_n}{\xi_n^*} \right)^{w_3} - 1 \right] / w_3 \right]^{1/(1-q')}
\]

containing a minimal number of adjustable parameters, i.e. \(q' \), \(\theta \) and \(w_3 \). The parameter \(w_3 \) is adjusted by the property of the experimental PDFs around the connection point; \(q' \) is the entropy index different from \(q \) in (4); \(\theta \) is determined by the property of the PDF near \(\xi_n = 0 \). For the expression of \(\hat{P}_3 \), see Arimitsu N and Arimitsu T (2011). The contribution to \(\hat{P}_3^{(n)}(\xi_n) \) comes both from coherent and incoherent motions (see figure 1).

The reason why we chose the trial function (11) for the central part PDF is because it is a natural generalization of the \(\chi \)-square distribution function for the variable \(y_n = (\xi_n/\xi_n^*)^{w_3} \). The observed value of \(q' \) is in the range 1.03 \(\leq q' \leq 1.09 \) (see table 2). Note that in the limit \(q' \to 1 \) the trial function reduces to the \(\chi \)-square distribution function for \(y_n \). The quantity \((\theta + w_3 - 1)/w_3 \) provides us with an estimate for the number of independent degrees of freedom for the dynamics contributing to the central part of the PDF.

3. Verification of assumptions through the analyses of experimental PDFs

3.1. Experimental setup and extraction of PDFs

By means of the theoretical formula within MPDFT summarized in section 5, we analyze PDFs of energy dissipation rates created from the time-series data (Mouri et al 2008) for the turbulence produced by a grid in a wind tunnel (see table 1). Measurements are made by a hot-wire anemometer with a crossed-wire probe placed on the centerline of the tunnel at 4 m downstream from the grid. It is expected that turbulence around the probe is homogeneous in both stream-wise and span-wise directions, as the cross-section 16 cm \(\times \) 16 cm of each open square surrounded by the rods constituting the grid is small enough compared with the cross-section 3 m \(\times \) 2 m of the wind tunnel. The cross-section of a rod is 4 cm \(\times \) 4 cm. We also expect that the turbulence around the probe is isotropic even for larger scales since the values of rms one-point velocity fluctuations for span-wise and stream-wise components are almost equal (see table 1). There are still possible pitfalls about the assumption of isotropy (Biferale and Procaccia 2005) because of the difference in values between the averaged energy dissipation rates estimated with the span-wise velocity component \(v \), i.e. 15\(\nu \langle (\partial v/\partial x)^2 \rangle \rangle /2 = \langle \varepsilon \rangle = 7.98 \text{ m}^2 \text{ s}^{-3} \), and that estimated with the stream-wise velocity fluctuation \(u \), i.e. 15\(\nu \langle (\partial u/\partial x)^2 \rangle \rangle = 8.58 \text{ m}^2 \text{ s}^{-3} \) (Mouri et al 2008).

Table 1. Parameters of the grid turbulence in a wind tunnel (Mouri et al. 2008). The inertial range is determined as the region where the second moment of the velocity differences for the longitudinal component scales with the exponent 2/3 with respect to the distance between the positions of two velocities used to derive the velocity difference.

Quantity	Value
Microscale Reynolds number, Re_x	409
Kolmogorov length, η	0.138 mm
Kinematic viscosity, ν	1.42×10^{-3} m2 s$^{-1}$
Mean velocity of downstream wind, U	21.16 m$^{-1}$
Mean energy dissipation rate, $\langle \varepsilon \rangle = 15 \nu (\langle (\partial v/\partial x)^2 \rangle)/2$	7.98 m2 s$^{-1}$
Correlation length of longitudinal velocity	17.9 cm
Inertial range	$50 \lesssim r/\eta \lesssim 150$
rms of span-wise velocity fluctuations, $\langle (\delta x)^2 \rangle^{1/2}$	1.06 m$^{-1}$
rms of stream-wise velocity fluctuations, $\langle (\delta y)^2 \rangle^{1/2}$	1.10 m$^{-1}$
Sampling interval, Δt	1.43×10^{-3} s
The number of data points	4×10^8

However, as the difference is less than 10%, we expect that anisotropy, even if it exists, may not affect the following analyses seriously.

Assuming isotropy of the grid turbulence, we adopted the surrogate $15 \nu (\partial v/\partial x)^2/2 = 15 \nu (\partial v/\partial t)^2/2U^2$ for the energy dissipation rate (Cleve et al. 2003, Mouri et al. 2008) with the mean velocity U of downstream wind (see table 1), where the x-axis is chosen to be the direction of the mean flow in a wind tunnel and v is the span-wise velocity component. Here, we used Taylor’s frozen hypothesis for replacing the variable from time t to space x (for the estimation of $\partial v/\partial t$, we use here the difference formula

$$\partial v/\partial t \simeq \Delta^2 v/\Delta t = \left[8 [v(t + \Delta t) - v(t - \Delta t)] - [v(t + 2\Delta t) - v(t - 2\Delta t)] \right] / 12 \Delta t,$$

where Δt is the sampling interval observing velocity (see table 1). With this formula, we can have a better estimate of the velocity time derivative by means of $\Delta^2 v/\Delta t$ without contamination up to the term of $O(\Delta t)^2$. We represent the local energy dissipation rates derived from (12) by the symbol ε, i.e., $\varepsilon = 15 \nu (\Delta^2 v/\Delta t)^2/2U^2$.

In creating the experimental PDFs for energy dissipation rates, 4×10^8 data points are put into 2×10^4 bins along the ξ_2-axis. We discarded those bins in which the number of data points is less than 25. Note that the average number of data points per bin is 2×10^4. In drawing the created PDFs for energy dissipation rates, not all the bins but every 10^2 bins are plotted for better visibility. The experimental PDF in the region near the rightmost end points is scattered because of the lower statistics due to the smaller number of data points in the bins located there (see figures 2(a) and 4(a)).

3.2. Analyses of experimental PDFs

The experimental PDF is analyzed with the help of the theoretical formula for the PDF by the following procedure: (i) Pick three experimental PDFs with consecutive r values, say, r_1, $r_2 = r_1 \delta$ and $r_3 = r_1 \delta^2$. (ii) With a trial μ value, analyze each of the three experimental PDFs to find out tentative but the best values q^*, w_3, θ, α^* and $n_i = \ln(r_i/\ell_0)/\ln \delta$ ($i = 1, 2, 3$) for the theoretical PDF. (iii) Check if the differences $n_3 - n_2$ and $n_2 - n_1$ are close to 1 or not. (iv) If not, change the μ value and repeat processes (ii) and (iii) until one arrives
Figure 2. PDFs of energy dissipation rates for $\delta = 3$ on (a) the log and (b) the linear scale in the vertical axes. For better visibility, each PDF is shifted by -2 unit along the vertical axis in (a) and by -0.4 unit along the vertical axis in (b). Closed circles are the experimental PDFs for $r/\eta = 21.9, 65.7, 197$ and 591 from the smallest value (top) to the largest value (bottom) where r corresponds to ℓ_n. Solid lines represent the curves given by the present theory with parameters listed in table 2(a).

Table 2. Parameters of PDFs created by (a) formula (12) and (b) formula (13). For both cases, $\mu = 0.260 \,(1 - q) \ln \delta = 0.393, \, a_0 = 1.15, \, X = 0.310$, giving $q = 0.642$.

r/η	n	\bar{n}	q'	w_3	θ	n	\bar{n}	q'	w_3	θ
6.57	5.50	6.04	1.03	0.250	2.10	5.20	5.71	1.03	0.250	3.50
21.9	4.00	4.39	1.02	0.250	3.50	4.00	4.39	1.04	0.380	5.30
65.7	3.00	3.30	1.05	0.490	4.10	3.00	3.30	1.04	0.450	5.00
197	1.60	1.76	1.06	0.780	4.50	2.00	2.20	1.07	0.750	6.00
591	0.60	0.416	1.09	1.25	5.80	0.580	0.637	1.09	1.24	6.20

at the set of best-fit parameters under the condition $n_3 - n_2 = n_2 - n_1 \simeq 1$ within a settled accuracy. (v) With the thus determined common μ value, determine the best-fit values $q', \, w_3$, θ and α^* for each of the other PDFs which are not picked for the above processes (i)–(iv). One notes that $n_i - n_{i-1} \simeq 1$ are satisfied automatically for every PDF created from the experiment.

The PDFs of energy dissipation rates are analyzed in figure 2 for the magnification $\delta = 3$ on (a) the log and (b) the linear scale in the vertical axes. For better visibility, each PDF is shifted by an appropriate unit along the vertical axis. Closed circles are the experimental data points for PDFs for the cases $r/\eta = 21.9, 65.7, 197$ and 591 from the smallest value (top) to the largest value (bottom) where r corresponds to ℓ_n. Solid lines represent the theoretical PDFs given by (8) with (9) and (10). The parameters necessary for the theoretical PDF of the A&A model are determined as $(1 - q) \ln \delta = 0.393, \, a_0 = 1.15$ and $X = 0.310$, which turn out to be independent of δ. Other parameters are listed in tables 2(a) and 3(a). We performed the same analyses for other magnifications, $\delta = 2$ and 5, and found that the extracted value $\mu = 0.260$ for the intermittency exponent is common to the three cases in which PDFs are created with the different values of magnification, i.e. $\delta = 2, 3, 5$. It means that, within the analysis of the energy dissipation rates, the turbulent system under consideration is characterized by a unique μ value as it should be.
Table 3. Connection points between the central and the tail part PDFs created by (a) formula (12) and (b) formula (13). \((\langle r \rangle) = 7.98 \text{m}^2 \text{s}^{-3}\).

\(r/\eta\)	\(\alpha^*\)	\(\varepsilon_n^* (\langle r \rangle)\)	\(\varepsilon_n^*\)	\(\alpha^*\)	\(\varepsilon_n^* (\langle r \rangle)\)	\(\varepsilon_n^*\)
6.57	0.750	4.53	3.30	0.750	4.17	3.56
21.9	0.700	3.74	3.56	0.550	7.22	5.24
65.7	0.500	5.20	5.25	0.500	5.20	6.25
197	0.280	3.54	13.6	0.300	4.66	13.2
591	0.180	1.72	16.0	0.180	1.69	15.3

Figure 3. The \(r/\eta (= \xi_r/\eta)\) dependence of (a) \(\hat{n}\), (b) \(\alpha^*\) and (c) \(\theta\). In (a), the data points extracted by the present analysis via (12) are plotted by closed circles for \(\delta = 2\), by closed squares for \(\delta = 3\), by closed triangles for \(\delta = 5\), whereas those extracted by the DNS analysis (Arimitsu N and Arimitsu T 2011) are plotted by symbols nabl for \(\delta = 2^{1/3}\), by times for \(\delta = 2^{1/2}\), and the data points extracted by the present analyses via (12) (via (13)) are plotted by closed (open) circles for \(\delta = 2\), by closed (open) squares for \(\delta = 3\), by closed (open) triangles for \(\delta = 5\). Solid (dashed) lines are the empirical formulae (b) \(\alpha^* = -0.326 \log_{10}(r/\eta) + 1.05\) \((\alpha^* = -0.285 \log_{10}(r/\eta) + 0.966)\) and (c) \(\theta = 1.83 \log_{10}(r/\eta) + 0.460\) \((\theta = 1.32 \log_{10}(r/\eta) + 2.70)\). The empirical formulae are obtained by using all the data points for different values of \(\delta\). The inertial range for the present (DNS) analysis is the region between the vertical dash-dotted (dotted) lines.

The dependence of \(\hat{n}\) on \(r/\eta (= \xi_r/\eta)\) for the present analysis with the series of PDFs derived through (12) is given in figure 3(a) by closed circles for \(\delta = 2\), by closed squares for \(\delta = 3\) and by closed triangles for \(\delta = 5\). The empirical formula for \(\hat{n}\) obtained by making use of all the data points for \(\delta = 2, 3\) and 5 with the method of least squares has the expression \(\hat{n} = -1.03 \ln(r/\eta) + 7.31\), which is drawn by a solid line (lower line in the figure). This proves the correctness of the assumption that the fundamental quantities of turbulence are independent of \(\delta\). We include in the figure, for comparison, the data points of \(\hat{n}\) for 4096\(^3\) DNS taken from figure 4 of Arimitsu N and Arimitsu T (2011) and the empirical formula \(\hat{n} = -1.01 \ln(r/\eta) + 8.74\) (upper solid line) derived with the data points by the method of least squares. For the DNS, \(\mu = 0.345\) (Arimitsu N and Arimitsu T 2011). How much \(\hat{n}\) data points are scattered from the empirical formula (see figure 3(a)) and also from the theoretical formula (6) with \(\xi_r = r\) provides us with a measure of how much we perform an appropriate extraction of parameters. The data points of \(\hat{n}\) for the turbulence in the wind tunnel are scattered more compared with those for the turbulence in 4096\(^3\) DNS, as the time-series raw data from the wind tunnel include indispensable measurement errors associated with readout processes, e.g. mainly electrical noises.
Figure 4. Comparison of PDFs for energy dissipation rates $\Pi_{1}^{(\alpha)}(\langle \varepsilon \rangle)$ and $\Pi_{1}^{(\alpha)}(\langle \varepsilon \rangle)$ created, respectively, with formulae (12) and (13). In (a) and (d)-(f), closed (open) circles and full (dashed) lines are, respectively, the experimental and theoretical PDFs for $\Pi_{1}^{(\alpha)}(\langle \varepsilon \rangle)$ ($\Pi_{1}^{(\alpha)}(\langle \varepsilon \rangle)$) with $\mu = 0.260$. PDFs in (a) represent the cases $r/\eta = 6.57$ (top), 21.9 (middle) and 65.7 (bottom), shifted by -2 unit along the vertical axis for better visibility. The magnification of the central part PDFs for each $r (= \ell_\alpha)$ is given in (d)-(f). The relative difference $\Delta_\alpha = (\Pi_{1}^{(\alpha)}(\langle \varepsilon \rangle) - \Pi_{1}^{(\alpha)}(\langle \varepsilon \rangle))/\Pi_{1}^{(m)}(\langle \varepsilon \rangle)$ is given for (b) $r/\eta = 6.57$ and (c) 65.7, in which closed circles (full lines) are experimental (theoretical) Δ_α. The error bar is the standard deviation of 100 hidden (not shown in the figures) data points for Δ_α, which are located between the adjacent data points for Δ_α appearing in the figures. The shown error bars are thinned out. Note that (a) and (b)-(f) are, respectively, drawn on the log and linear scale in the vertical axes.

The $r/\eta (= \ell_\alpha/\eta)$ dependences of α^* and θ are given, respectively, in figures 3(b) and (c) by closed circles for $\delta = 2$, by closed squares for $\delta = 3$ and by closed triangles for $\delta = 5$, which are extracted from the series of PDFs derived through (12). The solid line in each panel, (b) and (c), represents an empirical formula obtained from all the data points for $\delta = 2, 3$ and 5 by the method of least squares. These figures prove again the correctness of the assumption that the fundamental quantities of turbulence are independent of δ. The value of q' is found to be about $q' = 1.05$ (see table 2(a)). We found that w_3 is also independent of δ and has a common line $\log_{10} w_3 = 0.372 \log_{10} (r/\eta) + \log_{10} 0.112$. Note that the empirical formulae for \bar{h}, α^* and θ is effective only for the region $r/\eta \gtrsim 2$ since θ should satisfy $\theta > 1$ (see figure 3(c)). We observe that the parameters q', θ, w_3 for the central part PDF and the connection point α^* have scaling behaviors in a much wider region not restricted to the inside of the inertial range.

4. Comparison of PDFs produced with full and less contaminations

In this section, we analyze the PDFs for the energy dissipation rates derived from the time-series data with the difference formula

$$\frac{\partial v}{\partial t} \simeq \Delta^{(0)} v/\Delta t = [v(t + \Delta t) - v(t)]/\Delta t$$

(13)
in order to study what difference comes out compared with the PDFs analyzed in section 3 which is derived by means of the difference formula (12). Note that formula (13) estimates the values of velocity time derivative with \(\Delta(0)v/\Delta t \) which may contain full contamination, i.e. from the first-order term with respect to \(\Delta t \). We introduce the symbol \(\epsilon^{(0)} \) for the local energy dissipation rates derived from (13), i.e., \(\epsilon^{(0)} = 15v(\Delta(0)v/\Delta t)^2/2U^2 \). In creating the experimental PDFs for the energy dissipation rates, we took the same procedure as that used in section 3.

We compare, in figures 4(a) and (d)–(f), the PDFs of energy dissipation rates \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) and \(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) \) which are created, respectively, with the help of formulae (12) and (13). Note that the arguments for every PDF are scaled by \(|\langle \epsilon \rangle| \), which does not depend on \(r = \ell_n \). In figure 4(a) each PDF is displayed on the log scale in the vertical axis for the cases \(r/n = 6.57 \) (top), 21.9 (middle) and 65.7 (bottom), which are shifted by \(-2\) unit along the vertical axis for better visibility. The magnification of their central part PDFs is displayed in figures 4(d) \(r/n = 6.57 \), (e) 21.9 and (f) 65.7 on the linear scale in the vertical axis. The closed (open) circles and the full (dashed) lines are, respectively, the experimental (theoretical PDFs for \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) (\(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) \)) with \(\mu = 0.260 \). Note that the values of the intermittency exponent \(\mu \) for \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) and for \(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) \) turn out to be the same. Other parameters are listed in tables 2 and 3.

The relative differences \(\Delta_n = [\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) - \Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|)]/\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) for \(r/n = 6.57 \) and 65.7 are given, respectively, in figures 4(b) and (c), in which closed circles (full lines) represent the experimental (theoretical) mean values of \(\Delta_n \). The error bar in these figures is the standard deviation of 100 hidden (not shown in the figures) data points for \(\Delta_n \) which locate between the adjacent data points for \(\Delta_n \) appearing in the figures. These figures show that the mean relative difference \(\Delta_n \) in the region of the central part of PDFs is about 10 times larger than the mean relative difference in the region of the tail part\(^6\). The small negative but nearly constant mean values of \(\Delta_n \) in the tail part region tell us that the tail of \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) and that of \(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) \) are parallel to each other, which is the reason why we obtained the same \(\mu \) value for both PDFs. We observe that the error bars in the tail part region become larger toward the rightmost end of the PDF, which may be attributed to the smaller number of realizations in each bin there. Actually, the length of an error bar associated with a bin is quite close to the value \(\sqrt{1/N + 1/N^{(0)}} \), which estimates the standard deviation of \(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) ||\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) with the help of the number of realizations \(N \) (\(N^{(0)} \)) in the bin under consideration for \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) (\(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) \)). The numbers of realizations in figure 4(c) are, for example, \(N = 21 \), \(N^{(0)} = 23 \) for the rightmost error bar, \(N = 206 \), \(N^{(0)} = 192 \) for the fifth error bar from the rightmost error bar, \(N = 31580 \), \(N^{(0)} = 31327 \) for an error bar at \(\epsilon/|\langle \epsilon \rangle| \approx 5 \) and \(N = 2861811 \), \(N^{(0)} = 2888373 \) for an error bar around the peak point of \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) where \(\epsilon/|\langle \epsilon \rangle| \approx 0.25 \). The \(\epsilon \)-dependence of the mean values of \(\Delta_n \) in the central region indicates that the central part of \(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) \) around its peak point moves rightwards relative to the central part of \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \). On the other hand, from the \(\epsilon \)-dependence of the mean values of \(\Delta_n \) in the tail region, it may be appropriate to interpret that the tail part of \(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) \) moves leftwards relative to the tail part of \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \). If the number of realizations in each bin is increased, i.e. statistics are raised, we expect that the standard deviations of \(\Delta_n \) should reduce their values and that the fluctuation of the mean values of \(\Delta_n \) in the tail region should disappear. The difference of the squared time derivatives of (13) and (12) gives \((\Delta(0)v/\Delta t)^2 - (\Delta^2v/\Delta t)^2 = (\partial v/\partial t)(\partial^2 v/\partial t^2) \Delta t + O(\Delta t) \). From

\footnote{We observe that \((\langle \epsilon^{(0)} \rangle) = 8.08\ m^2/s^1 \), which is larger than \(|\langle \epsilon \rangle| \).}

\footnote{Note that the connection points of \(\Pi_3^{(n)}(\epsilon/|\langle \epsilon \rangle|) \) (\(\Pi_3^{(n)}(\epsilon^{(0)}/|\langle \epsilon \rangle|) \)) for \(r/n = 6.57 \) and 65.7 locate, respectively, at \(\epsilon^*/|\langle \epsilon \rangle| = 4.06 \) (\(\epsilon^{(0)*}/|\langle \epsilon \rangle| = 4.17 \) and \(\epsilon^*/|\langle \epsilon \rangle| = 5.20 \) (\(\epsilon^{(0)*}/|\langle \epsilon \rangle| = 5.20 \).}
the direction of the relative horizontal shift of the PDFs, we know that the net contributions of the velocity component \(v \) for the region around the peak point and of the tail region satisfy, respectively,

\[
(\partial v / \partial t) (\partial^2 v / \partial t^2) > 0 \quad \text{and} \quad (\partial v / \partial t) (\partial^2 v / \partial t^2) < 0.
\] \((14) \)

Taking into account the smallness of the gradient of the tail part PDFs, we see that the absolute value of the latter in (14) is quite large compared with the former value.

The dependence of \(\alpha^* \) and \(\theta \) on \(r/\eta \) (= \(\ell_n/\eta \)) are given, respectively, in figures 3(b) and (c) by open circles for \(\delta = 2 \), by open squares for \(\delta = 3 \) and by open triangles for \(\delta = 5 \), which are extracted from the series of PDFs cleated with (13). The dashed line in each of the figures (b) and (c) represents an empirical formula obtained from all the data points for \(\delta = 2, 3 \) and 5 by the method of least squares. These figures prove again, even for the case of full contamination, the correctness of the assumption that the fundamental quantities of turbulence are independent of \(\delta \). We also found that \(w_3 \) is independent of \(\delta \) and has a common line \(\log_{10} w_3 = 0.318 \log_{10} (r/\eta) + \log_{10} 0.141 \). The value of \(q^* \) is found to be about \(q^* = 1.05 \) (see table 2(b)).

There is only a slightly visible difference in the lines for \(\alpha^* \), \(w_3 \) and in the values of \(q^* \) between the two kinds of PDFs, one with less contamination (12) and the other with full contamination (13) (see figure 3(b); see also tables 2 and 3). The significant difference appears in the \(r/\eta \) dependence of \(\theta \), which is shown in figure 3(c). The difference in \(\theta \) explains the shift of the peak points between the two PDFs (see figures 4(d)–(f)).

5. Summary and discussion

The new scaling relation (2) is essential for the parameters \(\alpha_0 \), \(X \) and \(q \), associated with the tail part PDF, to be determined self-consistently as functions of the intermittency exponent \(\mu \), and to be independent of the magnification rate \(\delta \). On the other hand, we introduced the trial function (11) for the central part PDF with three adjustable parameters \(q^* \), \(w_3 \) and \(\theta \) and found that these parameters are also independent of \(\delta \), and satisfy scaling behaviors in a wider area not restricted to the inertial range.

The independence of \(\tilde{h} \) from \(\delta \) ensures the uniqueness of the PDF of \(\alpha \) for any value of \(\delta \). The comparison between the empirical formulae for \(\tilde{h} \) given in figure 3(a) and the theoretical formula (6) provides us with the estimation \(\xi_0 = 20.6 \) cm, which is about the same as the correlation length 17.9 cm or the separation 20 cm of the axes of adjacent rods forming the grid. Here, we are assuming that the empirical formulae are effective even for \(r/\eta \lesssim 2 \) (see the discussion in section 3 about the effective region of \(r/\eta \)). Note that \(\xi_0 \) gives an estimation of the diameter of the largest eddy within the energy cascade model.

As to the parameters appearing in the trial function for the central part PDFs, \(\exp[-g(\xi_0)] \) in (11), the discoveries that \(q^* \simeq 1.05 \) and that \(\theta \) and \(\ln w_3 \) reveal scaling properties are quite attractive for the research looking at the nature of the fluctuations surrounding the coherent turbulent motion of a fluid. The fact that the value \(q^* \) is quite close to 1 indicates that the HCT-type function in (11), i.e. the part giving \(\exp[-g(\xi_0)](\xi_0^* / \xi_0)^{\theta-1} \), is close to an exponential function. There is no theoretical prediction yet, which is based on an ensemble theoretical aspect or on a dynamical aspect starting with the NS equation, to produce the formula for the central part PDF that represents the contributions both of the coherent turbulent motion providing intermittency and of incoherent fluctuations (background flow) around the coherent motion. If one could succeed in formulating a dynamical theory which produces properly the formula for the central part of PDFs starting with the NS equation, it may provide us with...
the physical meaning of the parameters \(q', \theta\) and \(w_3\) and with an appropriate pathway to the dynamical approach, e.g. the renormalization group approach, to fully developed turbulence. A study in this direction is in progress.

Introducing two difference formulae (12) and (13) for the estimate of \(\partial v/\partial t\), i.e. \(\Delta^{(3)}v/\Delta t\) with less contamination and \(\Delta^{(0)}v/\Delta t\) with full contamination, we performed a trial for the extraction of information from PDFs by comparing two kinds of PDFs for energy dissipation rates, \(\Pi_1^{(3)}(\varepsilon/\langle \varepsilon \rangle)\) and \(\Pi_1^{(0)}(\varepsilon/\langle \varepsilon \rangle)\) with \(\varepsilon \propto (\Delta^{(3)}v/\Delta t)^2\) and \(\varepsilon \propto (\Delta^{(0)}v/\Delta t)^2\). We observed that the intermittency exponents for the two kinds of PDFs turn out to take the same value \(\mu = 0.260\) (see tables 2 and 3 for other parameters). Through the accurate analyses of PDFs, it was also revealed that the parameters for \(\Pi_1^{(0)}(\varepsilon/\langle \varepsilon \rangle)\) and for \(\Pi_1^{(a)}(\varepsilon/\langle \varepsilon \rangle)\) are independent of \(\delta\) thanks to the new scaling relation (2) and that they show quite similar scaling behaviors extending to the regions with smaller and larger \(r/\eta\) values outside the inertial range (see figure 3). The connection points \(\alpha^*\) of the tail and central parts of the PDFs take almost the same value for each \(r/\eta\) (see table 3 and figure 3(b)). It is found that, among the parameters controlling the central part, only \(\theta\) has a relatively larger deviation between the two different PDFs (see table 2 and figure 3(c)), which is related to the shift of the peak point occurring between the two kinds of PDFs. Other parameters \(q'\) and \(w_3\) do not have a significant difference among the two PDFs (see table 2).

Observing the relative difference \(\Delta_n\) between \(\Pi_1^{(a)}(\varepsilon/\langle \varepsilon \rangle)\) and \(\Pi_1^{(0)}(\varepsilon/\langle \varepsilon \rangle)\) in figures 4(b) and (c) with the values \(\varepsilon_3^*/\langle \varepsilon_3 \rangle = 4.53\) for \(r/\eta = 65.7\) and \(\varepsilon_0^*/\langle \varepsilon_0 \rangle = 5.20\) for \(r/\eta = 65.7\), we note that the connection point \(\varepsilon_3^*\) of the central part PDF and the tail part PDF provides us with the boundary dividing the two regions according to their nature of stability specified by the inequalities in (14). It seems to tell us that the net behavior of incoherent motion of a fluid contributing mainly around the peak point (central part) of the PDF is an unstable time evolution, whereas that of coherent turbulent motion contributing mainly to the tail part of the PDF is a stable time evolution. The former may be attributed to a manifestation of fluctuations, whereas the latter may be attributed to the characteristics of intermittency. Note that we assumed that the central part \(\Pi_1^{(a)}(\varepsilon_3)\) is constituted by two contributions, one from the coherent contribution \(\Pi_1^{(a)}(\varepsilon_3)\) and the other from the incoherent contribution \(\Delta \Pi_1^{(a)}(\varepsilon_3)\), and that almost all of the contribution to the tail part \(\Pi_1^{(a)}(\varepsilon_0)\) comes from the coherent intermittent motion of turbulence. Further investigation on these outcomes and their interpretation is necessary, but we leave this as one of the attractive future problems.\(^9\)

Let us close this paper by noting those studies in progress that are deeply related to the present work. It has been revealed (Motoike and Arimitsu 2012) that the new scaling relation (2) is intimately related to the \(\delta^k\)-periodic orbits (\(\delta \geq 3\)) located at the threshold to chaos via the \(\delta \geq 3\) times ramification (bifurcation) in \(\delta\)-period windows in the chaotic region, for example, of the logistic map. The self-similar nesting structure of \(\delta^k\)-period windows (\(k = 1, 2, 3, \ldots\)) can be the origin of intermittent coherent motion in fully developed turbulence. We expect that further investigation in this direction to extract a message provided by the new scaling relation may lead us to a novel interpretation of fully developed turbulence. We are also making a precise comparison between the results extracted in this paper for the grid turbulence in a wind tunnel and those for 4096\(^3\) DNS turbulence by raising the resolution of PDFs, i.e. by creating more data points for PDFs. These advances will be reported in a forthcoming work in the near future.

\(^9\) We observed that there is no visible difference between \(\Pi_1^{(a)}(\varepsilon/\langle \varepsilon \rangle)\) and the PDF extracted with the formula \(\partial v/\partial t \simeq [v(t + \Delta t) - v(t - \Delta t)]/2\Delta t\), which is correct without contamination up to the term of \(O(\Delta t)\).
Acknowledgment

TA and NA thank Professor T Motoike, Dr K Yoshida, Mr M Komatsuzaki and Mr K Takechi for fruitful discussion.

References

Aoyama T, Ishihara T, Kaneda Y, Yokokawa M, Itakura K and Uno A 2005 Statistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic box J. Phys. Soc. Japan 74 3202–12
Arimitsu N and Arimitsu T 2002 Multifractal analysis of turbulence by using statistics based on non-extensive Tsallis' or extensive Rényi's entropy J. Korean Phys. Soc. 40 1032–6
Arimitsu N and Arimitsu T 2011 Verification of the scaling relation within MPDFT by analyzing PDFs for energy dissipation rates out of 4096³ DNS Physica A 390 161–76
Arimitsu T and Arimitsu N 2000a Analysis of fully developed turbulence in terms of tsallis statistics Phys. Rev. E 61 3237–40
Arimitsu T and Arimitsu N 2000b Tsallis statistics and fully developed turbulence J. Phys. A: Math. Gen. 33 L235–41 (Corrigendum: 2001 34 673–4)
Arimitsu T and Arimitsu N 2001 Analysis of turbulence by statistics based on generalized entropies Physica A 295 177–94
Arimitsu T and Arimitsu N 2002 PDF of velocity fluctuation in turbulence by a statistics based on generalized entropy Physica A 305 218–26
Arimitsu T and Arimitsu N 2011 Analysis of PDFs for energy transfer rates from 4096³ DNS —Verification of the scaling relation within MPDFT J. Turbulence 12 1–25
Benzi R, Paladin G, Parisi G and Vulpiani A 1984 On the multifractal nature of fully developed turbulence and chaotic systems J. Phys.A: Math. Gen. 17 3521–31
Benzi R, Biferale L, Paladin G, Vulpiani A and Vergassola M 1991 Multifractality in the statistics of the velocity gradients in turbulence Phys. Rev. Lett. 67 2299–302
Biferale L, Boffetta G, Celani A, Devenish B J, Lanotte A and Toschi F 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence Phys. Rev. Lett. 93 064502
Benzi R, Paladin G, Parisi G and Vulpiani A 1984 On the multifractal nature of fully developed turbulence and chaotic systems J. Phys.A: Math. Gen. 17 3521–31
Benzi R, Greiner M and Sreenivasan K R 2003 On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence Europhys. Lett. 61 756–61
Costa U M S, Lyra M L, Plastino A R and Tsallis C 1997 Power-law sensitivity to initial conditions within a logistic-like family of maps: fractality and nonextensivity Phys. Rev. E 56 245–50
Dubrulle B 1994 Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance Phys. Rev. Lett. 73 959–62
Grassberger P 1983 Generalized dimension of strange attractors Phys. Lett. A 97 227–9
Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B I 1986 Fractal measures and their singularities: the characterization of strange sets Phys. Rev. A 33 1141–51
Havrda J H and Charvat F 1967 Quantification methods of classification processes: concepts of structural a entropy Kybernetika 3 30–5
Hentschel H G E and Procaccia I 1983 The infinite number of generalized dimensions of fractals and strange attractors Physica D 8 435–44
Hosokawa I 1991 Turbulence models and probability distributions of dissipation and relevant quantities in isotropic turbulence Phys. Rev. Lett. 66 1054–7
Lyra M L and Tsallis C 1998 Nonextensivity and multifractality in low-dimensional dissipative systems Phys. Rev. Lett. 80 53–6
Mandelbrot B B 1974 Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier J. Fluid Mech. 62 331–58
Menneaux C and Sreenivasan K R 1987 The multifractal spectrum of the dissipation field in turbulent flows Nucl. Phys. B (Proc. Suppl.) 2 A49–76
Motoike T and Arimitsu T 2012 in preparation to submit
Mouri H, Hori A and Takaoka M 2008 Fluctuations of statistics among subregions of a turbulence velocity field Phys. Fluids 20 035108
Nelkin M 1990 Multifractal scaling of velocity derivatives in turbulence Phys. Rev. A 42 7226–9
Parisi G and Frisch U 1985 Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics
(New York: North-Holland/American Elsevier) pp 84–7
Rényi A 1961 On measures of entropy and information Proc. 4th Berkeley Symp. on Mathematical Statistics and
Probability (USA: Berkeley) pp 547–61
She Z-S and Leveque E 1994 Universal scaling laws in fully developed turbulence Phys. Rev. Lett. 72 336–9
She Z-S and Waymire E C 1995 Quantized energy cascade and log-Poisson statistics in fully developed turbulence
Phys. Rev. Lett. 74 262–5
Suyari H and Wada T 2006 Scaling property and Tsallis entropy derived from a fundamental nonlinear differential
equation Proc. 2006 Int. Symp. on Information Theory and its Application (ISITA2006) pp 75–80 (arXiv:cond-
mat/0608007)
Tsallis C 1988 Possible generation of Boltzmann–Gibbs statistics J. Stat. Phys. 52 479–87
Tsallis C 2001 Nonextensive statistical mechanics and thermodynamics: historical background and present status
Nonextensive Statistical Mechanics and Its Applications ed S Abe and Y Okamoto (Berlin: Springer) pp 3–98