Cerebral Function Monitoring In Neonatal Intensive Care Units

Aysen Orman, Nilay Hakan, Atika Çağlar, Mustafa Aydin

AIM: Cerebral function monitoring with amplitude-integrated electroencephalography (aEEG) device is a method for continuous monitoring of brain activity that is increasingly use in neonatal intensive care units.

METHODS: In its simplest form, aEEG is a processed single-channel EEG that is filtered and time-compressed. Several classifications are currently in use to describe patient’s tracings, voltage criteria, pattern recognition, cyclicity, and the presence of seizures.

RESULTS: The main usage of the aEEG currently is for select newborns with birth asphyxia who benefit from therapeutic hypothermia and for predict of their long-term neurological prognosis. The early aEEG traces of preterm infants also predict of their neurodevelopmental outcome. Current evidences demonstrated that aEEG is useful for define cerebral background activity, detect seizures, monitor treatment effects and predict neurodevelopmental outcomes of newborns. The main advantages of this device are its simplicity for both application and interpretation on one hand and the possibility of continuous long-term monitoring with real time assessment of clinical events on the other.

CONCLUSION: aEEG is a safe and reliable method for the bedside monitoring of neonatal cerebral function and it can also provide information about long-term neurological prognosis.

Key words: Cerebral function monitoring; Amplitude-integrated electroencephalography; Newborn infant; Treatment; Prognosis

© 2018 The Author(s). Published by ACT Publishing Group Ltd. All rights reserved.

Orman A, Hakan N, Çağlar A, Aydin M. Cerebral Function Monitoring In Neonatal Intensive Care Units. International Journal of Neurology Research 2018; 4(1): 464-471 Available from: URL: http://www.ghrnet.org/index.php/jnr/article/view/2366
of used therapies\[14\]. Recently, it has also been used to determine the effects of pulmonary hypertension and congenital heart diseases on the brain.

Studies have shown that there is a good correlation between aEEG and conventional EEG signals. The aEEG is usually recorded from one or two channels derived from parietal, central, or frontal electrodes. Therefore, it is considered as a single-channel EEG monitor\[20\]. aEEG is based upon cEEG that is recorded with two or four scalp electrodes, depicting the amplitude of the raw EEG on a time-compressed semi-logarithmic scale. The electrodes of the device are placed on biparietal P3-P4 or central C3-C4 localizations (Figure 1)\[9\]. The signals from these regions are amplified first and then recorded at a rate of 6 cm per hour after being filtered through various filters to purify the artifacts caused by muscle activities or surrounding electronic devices\[10\]. aEEG can be affected by other technical factors such as respiratory movements, interelectrode distance, head skin edema, electrocardiographic artifacts, and high frequency ventilation. Muscle or movement artefacts can result in a broad band or sudden changes activity recordings. Repetitive movements cause a similar appearance to seizure activity. Therefore, the artifacts should always be excluded and EEG traces without artifacts should be evaluated\[11\]. Hence, it is also important to control the impedances of the artifact, which reflects the quality of contact between the skin and the electrode. Poor contact or low impedance can cause to emergence of artifacts and so artificially increase of the voltage of aEEG. Silver-silver electrodes and coaxial cables which traditionally used in the original aEEG device reduce the artefacts that are caused by motion or equipment\[12,13\].

A special bandpass filter enhances frequencies between 2 and 15 Hz. Frequencies < 2 Hz and > 15 Hz are attenuated in order to eliminate artefacts. Amplitudes <10 μV are displayed on a linear scale and amplitudes >10 μV on a logarithmic scale. The lowest-detected amplitude is shown as the lower border, and the highest amplitude is shown as the upper border. By this means, even small changes in the lower amplitude remain visible, while an overloading of the display at high amplitudes is avoided. Due to time compression, 5 - 6 cm on the time scale represents 1 h, thus making the review of brain activity for hours and even days possible\[14,15\]. The visible information in the aEEG traces is limited to changes of the amplitude. Modern devices offer the possibility of viewing the raw EEG, so the frequency and morphology of the raw EEG curve can also be considered for interpretation. This helps to distinguish between artefacts and real seizure activity during suspicious sections of the aEEG band. Broad-band filter often rejects the less than 2 activities per second\[14\].

Although aEEG offers the possibility for continuous CFM in neonates, it gives less information than a cEEG. The cEEG, using the international 10-20 system of electrode placement, is considered the gold standard for detecting electro-clinical or electrographic seizures, but the short duration of routine EEG may miss clinical or electrographic seizures. Moreover, it requires the compensator equipment and evaluation by a specialized neurologist. Another EEG monitoring protocol is continuous video-EEG. The American Clinical Neurophysiology Society guideline recommends that continuous EEG monitoring combined with synchronized video-EEG can be used for high-risk patients, including those with HIE, to screen for seizure activity. However, aEEG is straightforward to apply and can be monitored by neonatologists or nurses. More than half of neonatologists are utilizing aEEG with practice variations by NICU settings\[16\]. But, in the study of Rakshasbhuvankar et al. where aEEG and conventional video EEG was compared\[17\], aEEG had low (33.7%) sensitivity for detecting the seizures lasting less than 5 minutes.

Hence, this review aims to explain the fundamentals and clinical applications of the aEEG for clinical practitioners.

aEEG classification

The standard aEEG contains minimum and maximum peak variability of the filtered EEG amplitude. It appears as an activity band passing slowly on the display screen. The width of the band indicates the variability in the aEEG amplitude. In healthy newborns, there are regular changes in the width of the band according to the sleep-wake state and fluctuates between approximately 10 and 40 μV (Figure 2A)\[14,15\]. The interpretation of the EEG is basically based on the sleep-wake cycles (SWCs) and the presence of seizures (Table 1).

Background activity	Seizure activity	Sleep-wake cycle
CNV	No	Advanced
DNV	Single	Immature
Burst-suppression	Recurrent	No
Low voltage	Status epileptic	
Flat tracing		

CNV: Continuous normal voltage; DNV: Discontinuous normal voltage

aEEG traces

Background activity in the aEEG trace is an indicator of electrical activity. Background activity varies with gestational age and drug exposure. In small preterm babies, the aEEG background is discontinuous with episodes of high amplitude alternate with low amplitude activity. As the gestational age increases, the aEEG background pattern continues as in full-term babies\[20\]. The aEEG background patterns are classified according to the upper and lower limit values of the activity bands (Table 2).

Two major factors in the classification of aEEG traces are voltage and pattern. Voltages in the trace are classified as normal, abnormal, and low. Interpretation of the aEEG usually involves three categories; (a) classification of the background pattern, (b) SWC and (c) pattern. V oltages in the trace are classified as normal, abnormal, and low. Interpretation of the aEEG usually involves three categories; (a) classification of the background pattern, (b) SWC and (c) pattern.

Table 2

Seizure activity	Sleep-wake cycle
Flat tracing	

CNV: Continuous normal voltage; DNV: Discontinuous normal voltage
presence of seizure activity. Hence, aEEG traces observed in full-term neonates can be evaluated under six main groups[21]:

1. **SWCs:** Normal voltage seen in healthy babies is characterized by wide awake and narrow sleep bands. The normal SWC seems to curl up and down like a snake with narrowing and expanding traces. The lower limit of the aEEG pattern should be > 5 μV and the upper limit should be > 10 μV. Narrow band occurs during rapid eye movement (REM) period and wide band during non-REM period (Figure 2B)[22]. The absence of SWCs may also suggest presence of immature brain. The presence and quality of SWCs reflect the severity of the hypoxic-ischemic insult. But, there may be significant changes in the SWCs regardless of the severity of encephalopathy in newborns underwent perinatal asphyxia. In addition, the time of onset of SWC has a predictive value for neurodevelopmental outcome[23]. However, further studies are needed in this respect.

2. **Wave-pattern:** It is seen before the completely normal trace appears in infants who recovering from hypoxic-ischemic injury. Voltage is normal, but lower (< 5 μV) and upper (> 10 μV) voltage fluctuations are seen.

3. **Absence of sleep-wake pattern:** It occurs after mild injuries and often following a normal sleep-wake cycle pattern. There are abnormal voltage band traces of fixed width.

4. **Burst-suppression:** It is seen in moderate or severe injuries. The longer it takes, worse the prognosis. Short-duration high-voltage bursts occur on a low-voltage trace that produce wide bands where the upper limit can be < 5 μV and the upper limit can exceed 10 μV (Figure 3)[24].

5. **Isoelectric line:** It is seen after severe hypoxic ischemic injury and predicts the poor prognosis. There are low-voltage traces which showing no fluctuation on an inactive background < 5 μV (Figure 4)[25].

6. **Seizure:** The seizures must be continued for at least ten minutes in order to be visible in the aEEG. Seizures can also be subclinical (subtle). It is difficult to distinguish short-term seizures from artefacts in aEEG traces. During the seizure, upper limit may be as high as 50 μV, so increased voltage changes are observed on the above-mentioned traces. If repeated frequently, a “saw-tooth” appearance will occur (Figure 5)[26].

aEEG in clinical practice

Currently, aEEG is often used in the NICU setting to detect seizures and predict the prognosis in full-term neonates with HIE. However, it is increasingly used for the determination of neurodevelopmental effects of persistent pulmonary hypertension and congenital heart diseases[27].

aEEG in patients with HIE

During the neonatal period, aEEG has been generally studied in full-term neonates who developed HIE secondary to perinatal asphyxia. It is known that aEEG patterns are the early predictor of brain damage in these patients. Low voltage and flat isoelectric activity are associated with poor prognosis[28]. Many studies reported that aEEG traces within the first 6-12 hours period of hypoxic-ischemic insult are very valuable[29,30]. In the total body hypothermia (TOBY) study, aEEG was used as an adjunct to determine patients who should undergo to therapeutic hypothermia. After the use of aEEG in these trials, many centers have added aEEG to their clinical protocols for evaluating the severity of encephalopathy and deciding on brain cooling therapy.

Marics et al[31] retrospectively assessed the causes and prevalence of false-positive interpretation of aEEG in newborns with moderate to severe HIE. The muscle artefacts can especially lead to an incorrect

Table 2 Classification of background activity in aEEG (lower and upper limit values of activity bands).

Background	Lower limit	Upper limit	Interpretation
CNV	> 5 μV	> 10-25 μV	Normal
DNV	< 5 μV	> 10 μV	Low amplitude can be variable
Burst-suppression	< 5 μV	-	Amplitude can rise to 25 μV with burst
Low voltage	< 5 μV	< 5 μV	There may be some variables
Flat tracing	< 5 μV	< 5 μV	Isoelectric line

CNV: Continuous normal voltage; DNV: Discontinuous normal voltage

Table 3 Comments on background activity of the aEEG.

Pattern	Minimum amplitude	Maximum amplitude	Interpretation
Pattern 1	5-10 μV	10-50 μV	in the continuous background
Pattern 2	< 5 μV	> 10 μV	in the discontinuous background
Pattern 3	< 5 μV	> 10 μV	in the discontinuous background
Pattern 4	0-2 μV	> 25 μV	in the continuous background
Pattern 5	Very low voltage	< 5 μV	in the continuous background

Figure 2 Background aEEG patterns:

A, normal pattern in a full-term neonate (lower limit > 5 μV and upper limit > 10-25 μV); B, normal aEEG voltage in which the sleep-wake patterns are observed (* REM period and ** non-REM period)

Figure 3 Burst suppression pattern (arrow showing a burst in raw EEG).
evaluation of aEEG traces. Because the seizures are common in the first 1-2 days of life in newborns with HIE, aEEG or video EEG is recommended in these patients[32,33]. The aEEG is interpreted by measuring the waves’ amplitude and monitoring the pattern (Table 3, Figure 6)[22].

Effects of hypothermia on aEEG traces
There is a direct correlation between the degree of hypothermia and the suppression in the aEEG amplitude. Periodic complexes at 30 °C, suppression at 25 °C, “burst” activity and an isoelectric line at 17 °C emerge in the aEEG. However, hypothermia in which the internal temperature of the body is cooled to 33-34 °C in the case of HIE does not affect the aEEG traces. The initiation of hypothermia to babies with HIE who have moderate to severe abnormal aEEG patterns within the first 6 hours after birth positively affects the neurological outcomes. In a study which compared cooled infants with non-cooled infants, the positive predictive value of aEEG was low (64-75%) within 6 hours after birth; but it reached to 80% in both groups within 24-36 hours after birth[34]. In another study, it was reported that possibility of severe neurological damage was high (>80%) in patients having severe suppression in aEEG in the first 48 hours of life[35]. It is still unclear that whether the recovery time of pathological findings in aEEG is changed by cooling therapy.

aEEG for detection of neonatal seizures
Seizures in the newborns are often difficult to detect because they...
are generally subclinical. This may be detrimental to the immature brain and may negatively affect the long-term neurodevelopmental outcomes. Neonatal seizures are rarely idiopathic; they are commonly a manifestation of serious central nervous system diseases. Main causes of seizure in neonates are HIE (30-50%), intracranial hemorrhages (10-17%), hypocalcemia (6-15%), hypoglycemia (6-10%), central nervous system infections (5-14%), infants (7%), inborn error metabolism (3%) and idiopathic (10%).

The electrographic features of the neonatal seizures are quite diverse. Interhemispheric bilateral synchronized seizures are rare. Electrical seizures in the newborn infants are usually originated from central or temporal foci. In general, the seizure pattern of repetitive sharp spikes and slow waves that originated from one focus and travel from one side of the cortex to another is frequently encountered. Therefore, aEEG has been a major curiosity in the detection of seizures, the selection of anticonvulsant treatment and the evaluation of effectiveness of treatment. The limited number of electrodes applied during aEEG monitoring may fail to detect the spatially distributed seizure activities. This reduces the sensitivity of aEEG in neonatal seizures. However, it may be difficult to detect the seizure in a time-compressed aEEG screening if the neonatal seizure duration is short (60% of seizures last around 90 seconds).

Nonetheless, specificity is more reliable; very few false positive results have been reported in systematic studies. Shellhaas et al. evaluated the effects of aEEG on neonatal seizure and reported that aEEG had no effect on the use of antiepileptic drugs, and ordering of neuroimaging studies. They concluded that the increase in brain oxygenation measured by aEEG is a good tool as other clinical, radiological and neurophysiological evaluations in terms of predicting neurodevelopmental outcomes in newborns with HIE.

Effects of drugs on aEEG traces

Several drugs affect the background of aEEG amplitude. Sedatives like chloral hydrate, opiates and anticonvulsant drugs like phenobarbital and benzodiazepines temporarily suppress the EEG. Fentanyl and high dose midazolam treatments can cause deep depression in aEEG. Therefore, aEEG assessment made within 30-60 minutes after drug exposure may result in misinterpretation of the encephalopathy degree. aEEG in prediction of prognosis

The diagnostic value of cEEG on brain damage has been proven by conducted studies. aEEG has a high diagnostic value in neonates developed encephalopathy within the few hours after birth. It has been reported that aEEG is a good tool as other clinical, radiological and neurophysiological evaluations in terms of predicting neurodevelopmental outcomes in newborns with HIE.

Features showing good prognosis:
1. Presence of normal background activity pattern;
2. Even if the aEEG trace initially is abnormal, return to normal within 48 hours during cooling and within 24 hours during normothermia;
3. The presence of SWCs or the beginning of SWCs within the first 36 hours after birth.

Features showing poor prognosis:
1. Abnormal background pattern;
2. Interrupted pattern and low voltage;
3. An amplitude of <5μV within the first postnatal 3 days;
4. Absence of SWC;
5. Status epilepticus;
6. Prolonged and marked moderate to severe voltage disturbances.

However, further studies exploring the predictive value of aEEG and/or video EEG monitoring on short- and long-term outcomes in high-risk neonates are needed.

CFM using near infrared spectroscopy (NIRS)

aEEG and NIRS may be useful in examining cerebral electrical activity and cerebral hemodynamic changes during therapeutic hypothermia. NIRS is a technique which developed on the basis of relative transparency of light on the biological tissues. Thin-layer of the skin, skull and cerebral tissue of neonates allow the NIRS lights of 700-1000 nanometer wavelengths to penetrate easily. Reflections of the NIRS light through the cerebral tissue are sent to the detector which presents about 2-3 cm depth. NIRS are based upon the principle of absorbing the light by oxygenated and deoxygenated hemoglobin at different wavelengths and use to continuously monitor of cerebral hemodynamics in clinical practice for measuring changes in different concentrations. Previous studies have reported that changes in cerebral oxygenation in the patients with HIE are associated with the severity of brain injury. Delayed perfusion at the beginning of the secondary energy failure in hypoxic cases causes low cerebral oxygenation and cerebral vasodilatation. This suggests that the increase in brain oxygenation measured by NIRS is associated with poor prognosis.

Ancora et al. evaluated the neurodevelopmental outcome of cooled neonates with HIE by aEEG and NIRS and reported that aEEG lost its positive predictive value within the first 24 hours of life. But, the tissue oxygenation index assessed by NIRS has been reported to be useful for early prediction of infants who benefit from therapeutic approach. NIRS has the potential to guide clinical management by monitoring brain oxygenation and perfusion for preventing brain damage, and avoiding unnecessary treatment. It can also provide important information about the prognosis of these babies.
In conclusion, aEEG is widely used in many developed countries around the world because it is easily accessible and helps patient management. As it has relatively low and variable sensitivity and specificity than a cEEG, it cannot replace that technique. Rather, it complements the existing means for cerebral diagnostics such as cEEG, ultrasound, and magnetic resonance imaging. There is good evidence for the prediction of outcome after birth asphyxia in full-term infants, and the aEEG has been established as a tool to identify infants who will benefit from cooling²⁵⁻²⁷. In preterm infants, there is also good evidence that long-term neurological prognosis can be predicted by early aEEG recordings. However, to date, this knowledge does not result in consequences for clinical decision making in this infant population. It is likely that aEEG will become a standard tool in NICUs in the future.

REFERENCES

1. Maynard D, Prior PF, Scott DF. A continuous monitoring device for cerebral activity. Electroencephalogr Clin Neurophysiol 1969; 27: 672-73. [PMID: 4187315]
2. Prior PF, Maynard DE, Sheaff PC, Simpson BR, Strunin L, Weaver EJ, Scott DF. Monitoring cerebral function: clinical experience with new device for continuous recording of electrical activity of brain. Br Med J 1971; 2: 736-8. [PMID: 4528286]
3. Silvay G, Mindich BP, Owitz S, Koffski RM, Litwak RS. Evaluation of a new cerebral function monitor during open-heart surgery. Mt Sinai J Med 1983; 50: 44-8. [PMID: 6601759]
4. Hellström-Westas L, Rosén I, Svenningsen NW. Cerebral function monitoring during the first week of life in extremely small birthweight (ESLBW) infants. Neuropediatrics 1991; 22: 27-32. [DOI: 2038424] [DOI: 10.1055/s-2008-1071411] [PMID: 2038424]
5. Shany E, Shorer Z, Karpus M. Cerebral function monitoring after severe perinatal asphyxia. Harefuah 1998; 135: 440-5.
6. Toet MC, Hellström-Westas L, Groenendaal F, Eken P, de Vries LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic ischemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 1999; 81: F19-23. [PMID: 10375357]
7. Hellström-Westas L, Rosén I, Svenningsen NW. Silent seizures in sick infants in early life, diagnosis by continuous cerebral function monitoring. Acta Paediatr Scand 1985; 74: 741-8. [PMID: 4050421]
8. Alftullah I, Aasaikar S, Torres F. Status epilepticus: clinical experience with two special devices for continuous cerebral monitoring. ActaNeuroScand 1991; 84: 374-81. [DOI: 10.1111/j.1600-0404.1991.tb04973.x] [PMID: 1776384]
9. Reynolds P. Neonatal encephalopathy guideline. Available at: http://www.asph.mobi/Guidelines_Neonatal/Neonatal%20Encephalopathy%20Guideline%20Mar2015.pdf (accessed at May 2018).
10. Vries L, Hellström-Westas L. Role of cerebral function monitoring in the newborn. Arch Dis Child Fetal Neonatal Ed 2005; 90: F201-7. [DOI: 10.1136/adc.2004.062745] [PMID: 15846008]
11. Lommen CM, Pasman JV, van Kranen VH, Andriessen P, Cluitmans PJ, van Rooij LG, BambangOetomo S. An algorithm for the automatic detection of seizures in neonatal amplitude-integrated EEG. Acta Paediatr 2007; 96: 674-80. [DOI: 10.1111/j.1651-2227.2007.00233.x] [PMID: 17381475]
12. Del Río R, Ochoa C, Alarcon A, Arnáez J, Blanco D, García-Alix A. Amplitude integrated electroencephalogram as a prognostic tool in neonates with hypoxic-ischemic encephalopathy: a systematic review. PLoS One 2016; 11: e0165744. [DOI: 10.1371/journal.pone.0165744] [PMID: 27802300]
13. Maynard D, Prior PF, Scott DF. Device for continuous monitoring of cerebral activity in resuscitated patients. Br Med J 1969; 4: 545-6. [PMID: 5358856]
14. Hellström-Westas L, Rosén I, Svenningsen NW. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed 1995; 72: F34-38. [DOI: 10.1136/ fn.72.1.F34] [PMID: 7743282]
15. Wikström S, Pupp IH, Rosén I, Norman E, Fellman V, Ley D, Hellström-Westas L. Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatr 2012; 101: 719-26. [DOI: 10.1111/j.1651-2227.2012.02677.x] [PMID: 22530996]
16. Shah NA, Van Meurs KP, Davis AS. Amplitude-integrated electroencephalography: a survey of practices in the United States. Am J Perinatol 2015; 32: 755-60. [DOI: 10.1055/s-0034-1395483] [PMID: 25519200]
17. Rakshashuvankar A, Paul S, Nagarajan L, Ghosh S, Rao S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure 2015; 33: 90-8. [DOI: 10.1016/j.seizure.2015.09.014] [PMID: 26456617]
18. Shah NA, Wusthoff CJ. How to use: amplitude-integrated EEG (aEEG). Arch Dis Child EducPract Ed 2015; 100: 75-81. [DOI: 10.1136/archdischild-2013-305676] [PMID: 25035312]
19. Abend NS, Wusthoff CJ. Neonatal seizures and status epilepticus. J Clin Neurophysiol 2012; 29: 441-8. [DOI: 10.1097/WNP.0b013e31826bd90d] [PMID: 23072101]
20. Janáčková S, Boyd S, Yozawitz E, Tsuchida T, Lambdin MD, Gueden S, Pressler R. Electroencephalographic characteristics of epileptic seizures in preterm neonates. Clin Neurophysiol 2016; 127: 2721-7. [DOI: 10.1016/S1474-4422(13)70246-1] [PMID: 24229615]
21. Li XF, Zhou YX, Zhang L. Newborns' sleep-wake cycle development on amplitude integrated electroencephalography. World J Pediatr 2016; 12: 327-34. [DOI: 10.1007/s12519-0060026-x] [PMID: 27351568]
22. Bruns N, Blumenthal S, Meyer I, Kloese-Verschuur S, Felderhoff-Müser U, Müller H. Application of an Amplitude-integrated EEG monitor (cerebral function monitor) to neonates. J Vis Exp 2017; Sep 6; (127). [DOI: 10.3791/55985] [PMID: 28930990]
23. Örsekdar D, Toet MC, van Rooij LG, van Huffelen AC, Groenendaal F, de Vries LS. Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics 2005; 115: 327-32. [DOI: 10.1542/peds.2004-0863] [PMID: 15687440]
24. Hellström-Westas L, Rosén I, de Vries LS, Greisen G. Amplitude-integrated EEG classification and interpretation in preterm and term infants. Neo Reviews 2006; 7: e76-e87. [DOI: 10.1542/neo.7-2-e76]
25. Toet MC, Lenners PM. Brain monitoring in neonates. Early Hum Dev 2009; 85: 77-84. [DOI: 10.1016/j.earlhumdev.2008.11.007] [PMID: 19150756]
26. Glass HC. Neonatal brain monitoring. Available at: http://www.cenceo.net/Neonatal2017talks/Glass_BrainMonitoring.pdf (accessed at May 2018).
27. El-Naggar WI, Keyzers M, McNamara PJ. Role of amplitude-integrated electroencephalography in neonates with cardiovascular compromise. J Crit Care 2010; 25: 317-21. [DOI: 10.1016/j.jcrc.2008.11.008] [PMID: 19327328]
28. Chandrasekaran M, Chaban B, Montaldo P, Thayyil S. Predictive value of amplitude-integrated EEG (aEEG) after rescue hypothermic neuroprotection for hypoxic ischemic encephalopathy: a meta-analysis. J Perinatol 2017; 37: 684-9. [DOI: 10.1038/jp.2017.14] [PMID: 28252661]
29. van Rooij LG, Toet MC, Osredkar D, van Huffelen AC, Groenendaal F, de Vries LS. Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 2005; 90: F245-51. [DOI: 10.1136/adc.2004.064964] [PMID: 15846017]
Orman A et al. Neonatal Cerebral Function Monitoring

HL, Juszczak E, Kapellou O, Levene M, Marlow N, Porter E, Thoresen M, Whitelaw A, Brocklehurst P; TOBY Study Group. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009; 361: 1349-58. [DOI: 10.1056/NEJMoa0900584]; [PMID: 19797281]

31. Marigó C, Cséke A, Vásárhelyi B, Zakariás D, Schuster G, Szabó M. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischemic encephalopathy. BMC Pediatr 2013; 13: 194. [DOI: 10.1186/1471-2431-13-194]; [PMID: 24268061]

32. Wusthoff CJ, Dlugos DJ, Gutierrez-Colina A, Wang A, Cook N, Donnelly M, Clancy R, Abend NS. Electrographic seizures during therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. J Child Neurol 2011; 26: 724-8. [DOI: 10.1177/0883073810390036]; [PMID: 21447810]

33. Lynch NE, Stevenson NJ, Livingstone V, Murphy BP, Rennie JM, Boylan GB. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia 2012; 53: 549-57. [DOI: 10.1111/j.1528-1167.2011.03451.x]; [PMID: 26571073]

34. Toso PA, González AJ, Pérez ME, Kattan J, Fabres JG, Tapia JL, González HS. Clinical utility of early amplitude integrated EEG in monitoring term newborns at risk of neurological injury. J Pediatr (Rio J) 2014; 90: 143-8. [DOI: 10.1016/j.jped.2013.07.004]; [PMID: 24183404]

35. Hallberg B, Grossmann K, Bartocci M, Blennow M. The prognostic value of early aEEG in asphyxiated infants undergoing systemic hypothermia treatment. Acta Paediatr 2010; 99: 531-6. [DOI: 10.1111/j.1651-2227.2009.19653.x]; [PMID: 20050830]

36. Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly CJ, Cilio MR, Glidden DV, Bonifacio SL, Massey S, Tsuchida TN. Conventional EEG in a Cohort of Premature Infants. Pediatrics 2004; 113: e61-6. [DOI: 14702497]

37. Meledin I, Abu Tailak M, Glat S, Yoge V, Golan A, Novack V, Shany E. Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants. Clin EEG Neurosci 2017; 48: 146-54. [DOI: 10.1177/1550059416684004]; [PMID: 27230038]

38. Olischar M, Klebermass K, Kuhle M, Hulek M, Kohlhauser C, Rücklinger E, Pollak A, Weninger M. Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks’ gestational age. Neurophysiol Clin 2007; 37: 211-3. [DOI: 10.1016/j.neuchi.2007.10.008]; [PMID: 18063233]

39. van Leuven K, Groenendaal F, Toet MC, Schobben AF, Bos SA, de Vries LS, Ramadener CM. Midazolam and amplitude-integrated EEG in asphyxiated full-term neonates. Acta Paediatr 2004; 93: 1221-7. [DOI: 15384888]

40. Shany E. The influence of phenobarbital overdose on aEEG recording. Eur J Paediatr Neurol 2004; 8: 323-5. [DOI: 10.1016/j.eurjped.2008.08.005]; [PMID: 19027583]

41. Niemarck HJ, Halbertsma FJ, Andriessen P, BambangOetomo S. Amplitude-integrated electroencephalographic changes in a newborn induced by overdose of morphine and corrected with naloxone. Acta Pediatr 2008; 97: 132-4. [DOI: 10.1111/j.1651-2227.2007.00583.x]; [PMID: 18201313]

42. Del Rio R, Ochoa C, Alarcon A, Arnez J, Blanco D, García-Alix A. Amplitude integrated electroencephalogram as a prognostic tool in neonates with hypoxic-ischemic encephalopathy: A Systematic Review. PLoS One 2016; 11: e0165744. [DOI: 10.1371/journal.pone.0165744]; [PMID: 27802500]

43. Lemmers PM, Zwanenburg RJ, Benders MJ, de Vries LS, Groenendaal F, van Bel F, Toet MC. Cerebral oxygenation and brain activity after perinatal asphyxia: does hyperthermia change their prognostic value? Pediatr Res 2013; 74: 180-5. [DOI: 10.1038/pr.2013.84]; [PMID: 23728382]

44. Niezey CK, Bos AF, Sival DA, Meiners LC, Ter Horst HJ. Amplitude-integrated EEG and cerebral near-infrared spectroscopy in cooled, asphyxiated infants. Am J Perinatol 2018; 35: 904-10. [DOI: 10.1055/s-0038-1626712]. [PMID: 29421831]

45. Brown DW, Picot PA, Naeni GM, Springett R, Delpy DT, Garcia-Alix A. Near infrared spectroscopy of cerebral hemodynamics in newborn piglets. Pediatr Res 2002; 51: 564-70. [DOI: 10.1203/00006450-20020500-0004]; [PMID: 11978878]

46. Ancora G, Maranella E, Grandi S, Sbravati F, Coccolini E, Savini S, Faldella G. Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain activity after perinatal asphyxia: does hyperthermia change their prognostic value? Pediatr Res 2013; 74: 180-5. [DOI: 10.1038/pr.2013.84]; [PMID: 23728382]

47. Ferriero DM. Neonatal brain injury. N Engl J Med 2004; 351: 1985-95. [DOI: 10.1056/NEJMra041996]; [PMID: 15525724]

48. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared
60. Dix LM, van Bel F, Lemmers PM. Monitoring cerebral oxygenation in neonates: an update. *Front Pediatr* 2017; 5: 46. [DOI: 10.3389/fped.2017.00046]; [PMID: 28352624]

61. Bruns N, Dransfeld F, Hüning B, Hobrecht J, Storbeck T, Weiss C, Felderhoff-Müser U, Müller H. Comparison of two common aEEG classifications for the prediction of neurodevelopmental outcome in preterm infants. *Eur J Pediatr* 2017; 176: 163-71. [DOI: 10.1007/s00431-016-2816-5. PMID: 27924356]

62. Marics G, Csekő A, Vásárhelyi B, Zakariás D, Schuster G, Szabó M. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy. *BMC Pediatr* 2013; 13: 194. [DOI: 10.1186/1471-2431-13-194]; [PMID: 24268061]

63. Dix LM, van Bel F, Lemmers PM. Monitoring cerebral oxygenation in neonates: an update. *Front Pediatr* 2017; 5: 46. [DOI: 10.3389/fped.2017.00046]; [PMID: 28352624]

64. Bruns N, Dransfeld F, Hüning B, Hobrecht J, Storbeck T, Weiss C, Felderhoff-Müser U, Müller H. Comparison of two common aEEG classifications for the prediction of neurodevelopmental outcome in preterm infants. *Eur J Pediatr* 2017; 176: 163-71. [DOI: 10.1007/s00431-016-2816-5. PMID: 27924356]

65. Marics G, Csekő A, Vásárhelyi B, Zakariás D, Schuster G, Szabó M. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy. *BMC Pediatr* 2013; 13: 194. [DOI: 10.1186/1471-2431-13-194]; [PMID: 24268061]