Magnetic Solid-Phase Extraction Based on Different Modified Materials for the Determination of Lead in Environmental, Food and Biological Samples

Xiaoyue Shana, Yanpeng Shib, Siwei Tanc, Ji Shaod, Kewen Sue, Ling Zhangf and Haipeng Ye**

Hangzhou Occupational Disease Prevention and Control Hospital, Hangzhou 310014, China

*Corresponding author e-mail: 617304832@qq.com, aterryshan1111@126.com, b569845409@qq.com, c376522415@qq.com, d605202969@qq.com, e229352295@qq.com, f1575296204@qq.com

Abstract. Lead is one of the most important trace heavy metals, which is damaged to human beings and environment. Hence, the determination of lead in environmental, food and biological samples is extremely important to guarantee the public health and safety. This paper summarized and compared the magnetic solid-phase extraction based on different modified materials for the determination of lead in environmental, food and biological samples.

1. Introduction

Lead Pb(II) is one of the most toxic elements that is widely used in chemical and plastic industries, battery manufacturing, smelting, printing industries and mining [1]. Exposure to lead can result in significant health issues [2, 3], such as kidney, brain, liver, bones, hematological damage, and even result in death [4, 5]. However, the amounts of lead ions in real samples are usually lower than the detection limits of most analytical methods. Besides, the direct determination of trace lead is not recommended due to the matrix effects occurring in real samples [6]. Therefore, separation and preconcentration steps are usually required to achieve accurate quantification.

Several extraction and preconcentration procedures have been reported for trace lead, such as coprecipitation [7, 8], cloud point extraction (CPE) [9], liquid liquid extraction [10], solid phase extraction (SPE) [11, 12]. Among these techniques, SPE is the most popular one due to high enrichment factor, simple operation and low cost [3, 13]. However, SPE has its limitations such as being time-consuming, large amounts of organic solvents, low sensitivity and selectivity [14].

As a novel SPE procedure, magnetic solid-phase extraction (MSPE) based on the separation of target analytes from the sample solution by using magnetic sorbents and an external magnetic field, has attracted much interest and attained wide applications [15]. In MSPE, the phase separation of the solid magnetic sorbent from a liquid sample can be separated easily and quickly using the external magnetic field without centrifugation and filtration [16]. Therefore, it is obvious the choice of appropriate magnetic-based sorbents is a key factor for effective extraction of lead. To date, different sorbents such as carbon nanotubes [17], graphene oxide [18-21], metal organic frameworks [22], molecular...
imprinted materials [23], polymeric materials [15, 24] and biosorbents [25] have been employed for the preconcentration of lead in MSPE.

This paper summarized MSPE based on various modified materials for determination of lead in environmental, food and biological samples, and compared the difference between different sorbents for determination of lead in different samples.

2. Different materials for determination of lead in environmental samples
The monitoring of lead in environmental samples is of great importance to ensure the quality of human health. Recently, lots of modified magnetic nanoparticles have been widely applied for determination of lead in environmental samples, including inorganic materials (Mg-NiFe2O4), carbonaceous materials (MBT-MMWCNTs) and molecular imprinted materials (MIIPs). Suo et al. [18] synthesized silica-coated magnetic graphene oxide nanocomposite (Fe3O4-GO@SiO2) coupled with ICP-MS to determine lead. Gugushe et al. [26] and Gu et al. [27] applied magnetic multi-walled carbon nanotubes/zeolite nanocomposite (MWCNT-Fe3O4@Zeo) and graphene-grafted silica-coated Fe3O4 nanoparticles (Fe3O4-SiO2-G) combined with ICP-OES for determination of lead, respectively. Zadeh et al. [28] utilized magnesium (II)-doped nickel ferrite (Mg-NiFe2O4) nanoparticles coupled with FAAS for analysis of lead. As shown in Table 1, most of the determination of lead in environmental samples were coupled with FAAS and the detection limits were found to be very low.

Table 1. Different materials for determination of lead in environmental samples.

Analyte	Application	Materials	Technique	LOD	References
Lead	Bottled mineral water	Fe3O4-GO@SiO2	ICP-MS	3.641 ng/L	[18]
	Industrial wastewater	MWCNT-Fe3O4@Zeo	ICP-OES	23.0 ng/L	[26]
	Lake water	Fe3O4-SiO2-G	ICP-OES	0.922 ng/L	[27]
	Industrial wastewater and acidic lead battery water	Mg-NiFe2O4	FAAS	0.2 ng/mL	[28]
	River, drinking, sea, well and springwater	MBT-MMWCNTs	FAAS	0.21 ng/mL	[29]
	Tap, well and mineral water	MWCNTs and 1,10-diaza-18-crown-6 NPs	FAAS	1.1 ng/mL	[30]
	Well and aqueduct water	MIIPs	GFAAS	2.4 ng/L	[31]
	Lake, tap and waste water	Nitroso-R salt impregnated magnetic Ambersorb 563	FAAS	1.5 ng/mL	[32]

3. Different materials for determination of lead in food samples
Food samples are very complex, often containing proteins, fat, salts, acids, bases and numerous food additives. Hence, the determination of lead ions in food samples require higher demand. Recently, a large number of highly sensitivity and selective magnetic sorbents have been applied in pretreating food samples. Yavuz et al. [33] synthesized a nanosized spongelike Mn3O4 combined with FAAS for determination of lead in various food (strawberry, potato, black cumin, lettuce, lentil, ginger, nettle, artichoke, cress, and squash). Akkaya et al. [34] utilized cobalt magnetic particles (Co-MPs) coupled with FAAS to determine lead. Mehdinia et al. [35] took advantage of Fe3O4@graphene oxide@polyimide nanocomposite (Fe3O4@GO@PI) combined with FAAS to determine lead ions. Besides, Fe3O4 nanoparticles coated with 3-(trimethoxysilyl)-1-propanethiol and modified with ethylene glycol bis-mercaptopoacetate (EGBMA-MSPT-MNPs) combined with ICP-OES were used to determine lead ions [36]. Table 2 clearly demonstrates the potential of MSPE based on different modified materials as a powerful sample preparation tool in analysis of lead in complex food samples.
Table 2. Different materials for determination of lead in food samples.

Analyte	Application	Materials	Technique	LOD (ng/mL)	References
Lead	Various food	Nanosized spongelike Mn₃O₄	FAAS	3.0	[33]
	Black tea samples	Co-MPs	FAAS	7.77	[34]
	Fish and mollusk samples	Fe₃O₄@GO@PI	FAAS	0.25	[35]
	Rice, canned tuna fish, and tea leaves	EGBMA-MSPT-MNPs	ICP-OES	0.08	[36]
	Drinking samples	LDH-based hydrogel	FAAS	0.39	[3]
	Milk, indian rice and red tea	MWCNTs-Fe₃O₄ MNP	ICP-AES	0.6	[37]

4. Different materials for determination of lead in biological samples

Nowadays, most of the reported methods were applied to simple matrix samples, such as environmental water [13, 14, 38-41]. The determination of lead ions in biological samples is a great challenge because the high complexity of real sample matrix and effects of interfering species. Thus, the determination of lead ions in biological samples requires higher selectivity and higher adsorption capacity of the adsorbent material with higher sensitivity and accuracy instrumentals. Sun et al. [42] synthesized magnetic graphene oxide nanocomposite (Fe₃O₄/GO) coupled with ICP-MS to determine lead in human urine and plasma samples. Ramandi et al. [43] utilized 1-(2-pyridylazo)-2-naphthol modified Fe₃O₄/TiO₂ combined with FAAS for determination of lead ions in human urine and blood plasma samples. Besides, γ-mercaptopropyltrimethoxysilane (γ-MPTS) modified silica-coated magnetic nanoparticles were synthesized and combined with electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) for lead determination in cells [44], as shown in Table 3.

Table 3. Different materials for determination of lead in biological samples.

Analyte	Application	Materials	Technique	LOD References	
Lead	Human urine and plasma samples	Fe₃O₄/GO	ICP-MS	0.157 mg/mL	[42]
	Human urine, and blood plasma samples	1-(2-pyridylazo)-2-naphthol	FAAS	1.21 mg/mL	[43]
	HepG2 cells	Y-MPTS/Si	ETV-ICP-MS	1.12 mg/mL	[44]
	Milk powder	Fe₃O₄@SiO₂@IDA microspheres	ICP-MS	0.26 mg/L	[45]
	Human hair samples	H2Dz-SCMNPs	ICP-OES	62 mg/L	[46]

5. Conclusion

MSPE based on several of modified magnetic nanoparticles have been widely applied for determination of lead in environmental, food and biological samples, including inorganic materials (nanosized spongelike Mn₃O₄), carbonaceous materials (Fe₃O₄/GO), molecular imprinted materials (MIIPs) and et al. The determination of environmental samples were always coupled with FAAS, while food and biological samples due to its complexity of real sample matrix and effects of interfering species required higher sensitivity and accuracy instrumentals, such as ICP-OES and ICP-MS.

Acknowledgments

This work was financially supported by the Hangzhou Foundation for Development of Science and Technology (NO. 20180533B95, NO. 20181228Y28), the Medical Health Foundation for Key Talents in Zhejiang Province, China (NO. 2016KYB241, NO. 2018KY640, NO. 2019KY543).

References

[1] B. Ekka, L. Rout, M.K. Sahu Aniket Kumar, R.K. Patel, P. Dash, Removal efficiency of Pb(II) from aqueous solution by 1-alkyl-3-methylimidazolium bromide ionic liquid mediated mesoporous silica, Journal of Environmental Chemical Engineering. 3 (2015) 1356-1364.
[2] M. Soylak E. Yilmaz, Ionic liquid dispersive liquid–liquid microextraction of lead as pyrrolidinedithiocarbamate chelate prior to its flame atomic absorption spectrometric determination, Desalination. 257 (2011) 297-301.

[3] J. Wang, Q. Yang, L. Zhang, M. Liu, N. Hu, W. Zhang, W. Zhu, R. Wang, Y. Suo, J. Wang, A hybrid monolithic column based on layered double hydroxide-alginate hydrogel for selective solid phase extraction of lead ions in food and water samples, Food Chemistry. 257 (2018) 155-162.

[4] H.A. Sani, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, A. Musa, T.A. Saleh, Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions, Process Safety and Environmental Protection. 109 (2017) 97-105.

[5] X. He, R. Che, Y. Wang, Y. Li, L. Wan, X. Xiang, Core–nanoshell magnetic composite material for adsorption of Pb(II) in wastewater, Journal of Environmental Chemical Engineering. 3 (2015) 1720-1724.

[6] P. Jamshidi F. Shemirani, Adsorption and desorption of Pb2+ on magnetic Mn2O3 as highly efficient adsorbent: Isotherm, kinetic and thermodynamic studies, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 571 (2019) 151-159.

[7] K. Prasad, P. Gopikrishna, R. Kala, T.P. Rao, G.R. Naidu, Solid phase extraction vis-a-vis coprecipitation preconcentration of cadmium and lead from soils onto 5,7-dibromoquinoline-8-ol embedded benzophenone and determination by FAAS, Talanta. 69 (2006) 938-45.

[8] S. Kagaya, T. Sagisaka, S. Miwa, K. Morioka, K. Hasegawa, Rapid Coprecipitation Technique with Hybrid Hydroxide System Using Ytterbium(III), Gallium(III), and Magnesium(II) for Simultaneous Concentration of 13 Elements in Concentrated Salt Solution Prior to Their Inductively Coupled Plasma Atomic Emission Spectrometric Determination, Bulletin of the Chemical Society of Japan. 79 (2006) 717-724.

[9] H.A. Panahi, E. Mottaghinejad, A.R. Badr, E. Moniri, Synthesis, characterization, and application of amberlite XAD-2- salicylic acid- iminodiacetic acid for lead removal from human plasma and environmental samples, Journal of Applied Polymer Science. 121 (2011) 1127-1136.

[10] X. Jia, Y. Han, X. Liu, T. Duan, H. Chen, Dispersive liquid–liquid microextraction combined with flow injection inductively coupled plasma mass spectrometry for simultaneous determination of cadmium, lead and bismuth in water samples, Microchimica Acta. 171 (2010) 49-56.

[11] A. Tobiasz S. Walas, Solid-phase-extraction procedures for atomic spectrometry determination of copper, TrAC Trends in Analytical Chemistry. 62 (2014) 106-122.

[12] S. Ayata, S.S. Bozkurt, K. Ocakoglu, Separation and preconcentration of Pb(II) using ionic liquid-modified silica and its determination by flame atomic absorption spectrometry, Talanta. 84 (2011) 212-5.

[13] Z. Erbas, M. Soylak, S. Ozdemir, E. Kilinc, Fe3O4@SiO2@Bacillus pumilis: magnetised solid phase bio-extractor for preconcentration of Pb(II) and Cu(II) from water samples, International Journal of Environmental Analytical Chemistry. 99 (2019) 1112-1122.

[14] S. Hosseinazadegan, W. Nischkauer, K. Bica, A. Limbeck, FI-ICP-OES determination of Pb in drinking water after pre-concentration using magnetic nanoparticles coated with liquid ironic, Microchemical Journal. 146 (2019) 339-344.

[15] A.M. Al'Abri, S. Mohamad, S.N. Abdul Halim, N.K. Abu Bakar, Development of magnetic porous coordination polymer adsorbent for the removal and preconcentration of Pb(II) from environmental water samples, Environ Sci Pollut Res Int. 26 (2019) 11410-11426.

[16] M. Naghizadeh, M.A. Taher, M. Behzadi, F. Hassan Moghaddam, Simultaneous preconcentration of bismuth and lead ions on modified magnetic core–shell nanoparticles and their determination by ETAAS, Chemical Engineering Journal. 281 (2015) 444-452.

[17] S. Ju, J. Yu, Y. Ma, Y. Yang, M. Liu, Rapid Determination of Cadmium and Lead in Maca (Lepidium meyenii) by Magnetic Solid-Phase Extraction and Flame Atomic Absorption
[18] L. Suo, X. Dong, X. Gao, J. Xu, Z. Huang, J. Ye, X. Lu, L. Zhao, Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry, Microchemical Journal. 149 (2019) 104039.

[19] N. Ghorbanian, S. Seidi, J.B. Ghasemi, S.J. Sadeghi, Dispersive solid phase extraction of lead in water samples using embedded 1,5-diphenylcarbazone grafted graphene oxide in microporous magnetic chitosan coupled with flame atomic absorption spectrometry, Journal of the Iranian Chemical Society. 16 (2019) 1411-1421.

[20] J. Wang, M. Liu, L. Zhang, T. Zhang, T. Yue, Z. Li, N. Hu, Y. Suo, J. Wang, Biomass reinforced graphene oxide solid/liquid phase membrane extraction for the measurement of Pb(II) in food samples, Food Chem. 269 (2018) 9-15.

[21] S. Seidi, M. Majd, M. Rezaazadeh, M. Shanbehaz, Magnetic nanocomposite of chitosan-Schiff base grafted graphene oxide for lead analysis in whole blood, Anal Biochem. 553 (2018) 28-37.

[22] M. Taghizadeh, A.A. Asgharinezhad, M. Pooladi, M. Barzin, A. Abbaspahzadeh, A. Tadjarodi, A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology, Microchimica Acta. 180 (2013) 1073-1084.

[23] S.M. Shah, X. Su, F. Muhammad, Z.S. Traore, Y. Gao, Highly Selective Solid-Phase Extraction of Pb(II) by Ion-Imprinted Superparamagnetic Mesoporous Silica, ChemistrySelect. 4 (2019) 259-264.

[24] M. Ramezanpour, S.N. Raeisi, S.A. Shahidi, S. Ramezanpour, S. Seidi, Polydopamine-functionalized magnetic iron oxide for the determination of trace levels of lead in bovine milk, Anal Biochem. 570 (2019) 5-12.

[25] S. Abbaspahzadeh, H.R. Nodhe, S.R.W. Alwi, Bio-adsorbent derived from papaya peel waste and magnetic nanoparticles fabricated for lead determination, Pure and Applied Chemistry. 90 (2018) 79-92.

[26] A.S. Gugushe, A. Mpupa, P.N. Nomgongo, Ultrasound-assisted magnetic solid phase extraction of lead and thallium in complex environmental samples using magnetic multi-walled carbon nanotubes/zeolite nanomaterial, Microchemical Journal. 149 (2019) 103960.

[27] W. Gu X. Zhu, Graphene-grafted silica-coated Fe3O4 nanoparticles as a magnetic solid-phase extraction material coupled with inductively coupled plasma optical emission spectroscopy for the separation and analysis of heavy metal ions, Separation Science Plus. 1 (2018) 209-216.

[28] H. Abdolmohammad-Zadeh A. Salimi, Preconcentration of Pb(II) by using Mg(II)-doped NiFe2O4 nanoparticles as a magnetic solid phase extraction agent, Microchim Acta. 185 (2018) 343.

[29] E. Kazemi, S. Dadfarra, A.M. Haji Shabani, P.S. Hashemi, Synthesis of 2-mercaptopbenzoiazole/magnetic nanoparticles modified multi-walled carbon nanotubes for simultaneous solid-phase microextraction of cadmium and lead, International Journal of Environmental Analytical Chemistry. (2017) 1-13.

[30] H. Fazelirad M.A. Taher, A study on the synthesis and application of magnetic nanosorbent for the simultaneous preconcentration and measurement of toxic metals in different real and standard samples, Measurement. 97 (2017) 23-28.

[31] M. Fayazi, M.A. Taher, D. Afzal, A. Mostafari, M. Ghanem-Motlagh, Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions, Mater Sci Eng C Mater Biol Appl. 60 (2016) 365-373.

[32] M. Soylak Z. Erbas, Vortex-assisted magnetic solid phase extraction of Cd(II), Cu(II) and Pb(II) on the Nitroso–R salt impregnated magnetic Ambersorb 563 for their separation, preconcentration and determination by FAAS, International Journal of Environmental Spectrometry, Analytical Letters. 48 (2015) 2566-2580.
Analytical Chemistry. 98 (2018) 799-810.

[33] E. Yavuz, S. Tokalioglu, H. Sahan, S. Patat, Nanosized spongelike Mn3O4 as an adsorbent for preconcentration by vortex assisted solid phase extraction of copper and lead in various food and herb samples, Food Chem. 194 (2016) 463-9.

[34] E. Akkaya, F. A. Erulas, C. Büyükpinar, S. Bakirdere, Accurate and sensitive determination of lead in black tea samples using cobalt magnetic particles based dispersive solid-phase microextraction prior to slotted quartz tube-flame atomic absorption spectrometry, Food Chemistry. 297 (2019) 124947.

[35] A. Mehdinia, M. Ramezani, A. Jabbari, Preconcentration and determination of lead ions in fish and mollusk tissues by nanocomposite of Fe3O4@graphene oxide@polyimide as a solid phase extraction sorbent, Food Chem. 237 (2017) 1112-1117.

[36] M.H. Mashhadizadeh, M. Amoli-Diva, M.R. Shapouri, H. Afruzi, Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles, Food Chem. 151 (2014) 300-5.

[37] S. Azimi Z. Es’haghi, A Magnetized Nanoparticle Based Solid-Phase Extraction Procedure Followed by Inductively Coupled Plasma Atomic Emission Spectrometry to Determine Arsenic, Lead and Cadmium in Water, Milk, Indian Rice and Red Tea, Bull Environ Contam Toxicol. 98 (2017) 830-836.

[38] M. Golshekan F. Shirini, Fe3O4@MCM-41-(SO3−)[ZrO2] Magnetic Mesoporous Nanocomposite: Dispersive Solid-Liquid Micro Extraction of Pb2+ Ions, Silicon. (2019).

[39] A. Islam, N. Zaidi, H. Ahmad, S. Kumar, Functionalized carbon nanotubes for dispersive solid-phase extraction and atomic absorption spectroscopic determination of toxic metals ions, International Journal of Environmental Science and Technology. 16 (2018) 707-718.

[40] B. Fahimirad, Y. Rangraz, A. Elhampour, F. Nemati, Diphenyl diselenide grafted onto a Fe3O4-chitosan composite as a new nanosorbent for separation of metal ions by effervescent salt-assisted dispersive magnetic micro solid-phase extraction, Mikrochim Acta. 185 (2018) 560.

[41] M. Faraji, S. Shariati, Y. Yamini, M. Adeli, Preconcentration of trace amounts of lead in water samples with cetyltrimethylammonium bromide coated magnetite nanoparticles and its determination by flame atomic absorption spectrometry, Arabian Journal of Chemistry. 9 (2016) S1540-S1546.

[42] J. Sun, Q. Liang, Q. Han, X. Zhang, M. Ding, One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples, Talanta. 132 (2015) 557-63.

[43] N. Fasih Ramandi F. Shemirani, Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples, Talanta. 131 (2015) 404-11.

[44] B. Chen, S. Heng, H. Peng, B. Hu, X. Yu, Z. Zhang, D. Pang, X. Yue, Y. Zhu, Magnetic solid phase microextraction on a microchip combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for determination of Cd, Hg and Pb in cells, Journal of Analytical Atomic Spectrometry. 25 (2010) 1931.

[45] N. Zhang, H. Peng, S. Wang, B. Hu, Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS, Microchimica Acta. 175 (2011) 121-128.

[46] G. Cheng, M. He, H. Peng, B. Hu, Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES, Talanta. 88 (2012) 507-15.