IPvSeeYou: Exploiting Leaked Identifiers in IPv6 for Street-Level Geolocation

Erik Rye (@gigaryte, CMAND)
Rob Beverly (@badcksum, CMAND)
Outline

• Overview
• Background
• IPvSeeYou
• Tool and Demo
• Conclusions
• Questions
Outline

• Overview
• Background
• IPvSeeYou
• Tool and Demo
• Conclusions
• Questions
• Got IPv6 at home? (I think…)
• Know how your router is configured? (we didn’t…)
• What does your router reveal about you? (you might be surprised…)

IPvSeeYou: Home Routers
IPvSeeYou: In a Nutshell

• Routers deployed in the wild use legacy EUI-64 IPv6 addressing
• Anyone (able to ping6 / traceroute6) can find router’s physical geolocation
 • with street-level precision
 • E.g., a subscriber’s home
IPvSeeYou: Our Contributions

- Developed a technique to find residential routers (needle in a haystack in IPv6)
- Discovered >60M routers in the wild that reveal their hardware (MAC) address
- Gathered 450M BSSID -> Geolocations
- Developed a technique to infer the WAN MAC -> WiFi BSSID mapping
- Data fusion to geolocate IPv6 prefixes of home routers
Outline

• Overview
• Background
• IPvSeeYou
• Tool and Demo
• Conclusions
• Questions
IPv6 Primer

• IPv6:
 • IPv6 addresses are 128 bits
 • E.g., 2001:abcd:1234:fedc:fe75:16ff:fe01:2345
 • Huge address space + sparsity
 • No way to actively probe entire IPv6 Internet, ala zmap
 • Even residential customers allocated a /64 (=2\(^64\) addresses)
 • No NAT

• Implication:
 • IPv6 is deployed differently than IPv4!
IPv6 “Periphery”

• Device at customer premises (CPE) is a routed hop!
• One subnet allocated to link between provider’s router and CPE
• Different subnet allocated to customer, on other side of CPE
• Smallest allocation, e.g., to a residential customer, is a /64

• What’s a home to do with \(2^{64}\) addresses?
 • Every device needs a unique IPv6 address

• How do devices choose an address within this /64?
 • Today (RFC3041/4941): “privacy extensions”, i.e., random and short-lived
 • Legacy (RFC1971/2462): “EUI-64”, encode hardware MAC address into lower 64 bits
• Recall, IEEE MAC addresses are 6 bytes, in hex:
 00:11:22:33:44:55

 Organizational Unique Identifier (OUI) = hardware manufacturer that owns block

• IPv6 EUI-64 address:
 • Insert \texttt{ff:fe} between upper and lower 3B of MAC
 • Invert 7th most significant bit
 2001:1234:4567:89ab:0211:22\texttt{ff:fe}33:4455

 EUI-64 Interface Identifier (IID)
• Advantages:
 • Simple to implement
 • Guarantees (in theory) unique IPv6 address
 • No need for duplicate address detection (faster)

• Disadvantages:
 • Exposes layer 2 (Ethernet address) in layer 3 (IP)
 • Reveals device details (hardware, vendor, etc)
 • Static address doesn’t change, even if device connects to new network
 • Globally unique -- permits tracking!

2001:1234:4567:89ab:0211:22ff:fe33:4455

EUI-64 Interface Identifier (IID)
Background: Privacy Extensions

• RFC3041, January 2001
 • Generate short-lived random interface identifier
 • Perform duplicate address detection
 • Regenerate address often
 • For example: 2001:558:6045:1c:8c9c:5f05:ecc0:1f49

• Privacy implications of SLAAC / EUI-64 known for 20+ years
 • So, all devices use privacy extensions, right?
IPvSeeYou: Impact

1. A remote, unprivileged attack on privacy, even when end-hosts utilize IETF standardized IPv6 “privacy extensions”
2. Tool that maps IPv6 router address to geolocation
3. Precision geolocation of ~12M residential IPv6 routers and allocated IPv6 prefixes
4. Geolocation of provider last-hop infrastructure, thereby geolocating IPv6 routers that use privacy extensions
5. Responsible disclosure and vendor remediation
Outline

• Overview
• Background
• IPvSeeYou
• Tool and Demo
• Conclusions
• Questions
IPvSeeYou

Active Measurement
EUI-64 IPv6 Address Discovery

+ WiFi Geolocation Databases

Wired-Wireless Identifier Matching Algorithm

Street-Level IPv6 Geolocation
• This work combines
 • IPv6 addresses w/embedded MAC addresses
 • BSSIDs w/fine-grained geolocation data
 • To geolocate IPv6 addresses

• Consulted with IRB
 • Follow all best practices to minimize any potential for harm

• Publish aggregate data analysis only

• Goal: ultimately *improve* privacy protections by highlighting this vulnerability
EUI-64 Address Discovery at Scale

- IPv6: no NAT, in-home devices publicly addressed
- **Smallest** IPv6 allocation a /64:
 - Traceroute to a random target in each /64 in a provider’s network
 - (Target unlikely to exist)
 - But, typically elicits an ICMPv6 Time Exceeded from CPE, if /64 is allocated to a customer
- Traceroute is slow! use yarrp*
- Found >60M EUI-64-derived MAC addresses

* https://www.cmand.org/yarrp
• BSSID = WiFi interface MAC address
• BSSID geolocations reported by
 • War-drivers
 • wigle.net, mylnikov.net
 • Crowd-sourced network of millions of devices
 • Provides non-GPS geolocation data for other devices in ecosystem
 • Apple Location Services*
 • Google Geolocation API
• Query databases and APIs for BSSIDs in same OUI as EUI-64-derived MAC addresses
• Amass corpus of 450M BSSID geolocations
 • Union of mylnikov.net, openBMap, and openWifi.su databases combined with querying Apple Location Services and WiGLE.net APIs

iSniff-GPS by Hubert Seiwert (BH 2012): https://github.com/hubert3/iSniff-GPS
Mapping WAN MAC to WiFi BSSID

Apple, WiGLE

WiFi Geolocation Databases

Active Probing

WAN MACs

BSSID

B B

B B B

W W W W W
Mapping WAN MAC to WiFi BSSID

BSSIDs

WAN MACs

Active Measurement EUI-64 IPv6 Address Discovery (Section x.x)

WiFi Geolocation Databases (Section Y.Y)

Wired-Wireless Identifier Matching Algorithm (Section Z.Z)

Street-Level IPv6 Geolocation
Mapping WAN MAC to WiFi BSSID

• Mental model:
 • Many all-in-one CPE devices, e.g. cable modem with built-in WiFi
 • Many System-on-a-Chip (SoC) designs where all radios made by one company
 • E.g., Broadcom BCM3349
 • Each interface gets its own MAC address
 • These MAC addresses are related
 • For example, +/- 1
Mapping WAN MAC to WiFi BSSID

• Complications
 • Some devices have many interfaces (WAN, LAN, 2.4GHz, 5GHz, Guest WiFi, Bluetooth, etc)
 • Different devices have different offsets
 • Naïve “nearest” match does not work

• But, in the best case
 • WAN MAC embedded in an EUI-64 IPv6 address:
 2001:c001:d00d:0211:22ff:fe00:0003
 • BSSID 00:11:22:00:00:01/2 captured in WiFi geolocation database
Mapping WAN MAC to WiFi BSSID

Naively, this BSSID and this WAN MAC are adjacent and belong to same device

End result: produce WAN-BSSID offset inference on a per-OUI basis
Mapping WAN MAC to WiFi BSSID

Offsets differ depending on 2.4GHz or 5GHz or guest

End result: produce WAN-BSSID offset inference on a per-OUI basis
Mapping WAN MAC to WiFi BSSID

Each device allocated 7 MAC addresses

True match, offset +6

End result: produce WAN-BSSID offset inference on a per-OUI basis
Limitations

• IPv6 Collection Limitations
 • Some CPE devices don’t use EUI-64 IPv6 addresses
 • SLAAC w/Privacy Extensions, DHCPv6 addresses
 • Nonresponsive to ICMP6 probes

• WLAN BSSID Collection Limitations
 • Device may not have a BSSID
 • Router w/o built-in WiFi
 • IoT devices
 • Devices with BSSIDs may not be in wardriving/geolocation databases
 • Restrictions/laws regarding wardriving

• Correlation Limitations
 • MAC addresses assigned to wired and wireless interfaces non-sequential or in different OUI
 • Multiple offsets per OUI
 • 2.4/5 GHz BSSIDs complicate offset inference
• Combining our WAN MAC and BSSID data with our algorithm, we geolocated:
 • At least 12M unique devices of 60M total devices
 • In 147 countries
 • In 1000+ unique OUIs

• Widespread use of EUI-64 IPv6 addresses cause serious location privacy concerns for individuals
 • CPE routers typically in homes, businesses

• In this presentation, we examine geolocation results in the aggregate or introduce large error to preserve personal privacy
• Solicited volunteers with CPE using EUI-64 IPv6 addresses
 • They divulged internal subnet
 • eg 2003:ab::/56
 • We traceroute to random address in internal network
 • Obtain WAN EUI-64 IPv6 address
 • Use IPvSeeYou to infer BSSID and geolocate IP address
• 4 of 5 volunteer devices geolocated
 • < 50m geolocation accuracy
 • 5th device used EUI-64 IPv6 addressing but non-sequential WAN/BSSID MACs

Volunteer’s geolocated device
(substantial error introduced in figure)
Results – OUI Allocations

- Manufacturers frequently divide MAC address space by model*
- IPvSeeYou shows this results in geographic divisions, too
- MitraStar OUI shows clear bands of devices geolocated to Argentina and Peru

*Decomposition of MAC Address Structure for Granular Device Inference – Martin, Rye & Beverly, ACSAC 2016
Results – OUI Allocations

- Other OUIs show consistent country geolocations
 - Minor regional variations oftentimes exist
- Askey Corp OUI shows vast majority of geolocations in Switzerland
- Swisscom, a major Swiss ISP, provides Askey routers as its standard home WLAN device

1c:24:cd :aa:bb:cc
Results – Comparison vs IP Geo DBs

• Can infer an ISP’s coverage area
• Blue
 • >1M geolocated Xfinity routers
• Orange
 • Maxmind’s GeoLite database geolocation for all 1M IP addresses
• Far surpasses IP geolocation database performance
• IPvSeeYou geolocation matches FCC coverage map, validating methodology

Inferred Comcast Xfinity service map in contiguous US
Results – Comparison vs IP Geo DBs

- Can infer an ISP’s coverage area
- Blue
 - >1M geolocated Xfinity routers
- Orange
 - Maxmind’s GeoLite database geolocation for all 1M IP addresses
- Far surpasses IP geolocation database performance
- IPvSeeYou geolocation matches FCC coverage map, validating methodology

FCC 2020 Comcast Coverage Map
https://broadbandmap.fcc.gov/#/provider-detail
Results – Geolocation by Association

• Assume IPv6 periphery (link from provider to customer router) has physical distance constraint

• If we can geolocate EUI-64 CPE attached to provider router
 • We can geolocate that provider router
 • We can geolocate non-EUI-64 CPE attached to that same router!
Results – Geolocation by Association

- Recall, using yarrp high-speed IPv6 traceroute
- Penultimate hop is the provider’s infrastructure, e.g., cable head-end
- Group geolocated EUI-64 IPv6 addresses by penultimate hop

Intuition: last-mile connection between provider and customer (e.g., cable head-end) is relatively short. Geolocation of CPE thus can reveal geolocation of provider infrastructure and non-EUI-64 CPE!
Results – Geolocation by Association

• First, geolocate all EUI-64 CPE (blue dots) connected to same last hop as a target **non-EUI-64 CPE** (unknown location)

• Next, find centroid & EUI-64-encompassing centroid radius (large blue circle)

• Non-EUI-64 CPE inferred to within encompassing circle (orange dot known ground truth)

• Simply living near EUI-64 CPE routers is a location privacy threat
• Overview
• Background
• IPvSeeYou
• Tool and Demo
• Conclusions
• Questions
1. Input WAN MAC or EUI-64 IPv6 address
2. Calculates predicted BSSID value using our inferred WAN MAC – BSSID offsets
3. Queries Apple, wigle.net, or mylnikov.net for predicted BSSID value
4. Optionally outputs KML for geolocated BSSIDs
Disclosure and Remediation

- Ideal remediation: stop using EUI-64 IPv6 addresses
- Disclosed vulnerability to multiple vendors
 - Devices account for millions of geolocated CPE
- Mixed results
Outline

• Overview
• Background
• IPvSeeYou
• Tool and Demo

• Conclusions
• Questions
Conclusions

• IPvSeeYou
• Large scale data fusion attack
• Combines:
 • EUI-64 IPv6 Addresses
 • Geolocated BSSIDs
• To geolocate
 • Millions of CPE routers
 • Provider infrastructure
 • Non-EUI-64 CPE devices

• Easy to prevent (don’t use EUI-64 IPv6 addresses), but:
 • Embedded / forgotten infrastructure that doesn’t get updated
 • Often *can’t* be updated
 • Even a single EUI-64 router can compromise privacy of non-EUI-64 devices
• Overview
• Background
• IPvSeeYou
• Tool and Demo
• Conclusions
• Questions
Thanks!

- IPvSeeYou
 - Large scale data fusion attack
 - To geolocate millions of CPE routers
- Seeking volunteers to test / validate tool; contact us!
- info@sixint.io
- EUI-64 IPv6 Geolocation Tool
 - https://github.com/6int/IPvSeeYou

Questions?