An Algebraic q-Deformed Form for Shape-Invariant Systems

A. N. F. Aleixo*
Instituto de Física, Universidade Federal do Rio de Janeiro, RJ - Brazil

A. B. Balantekin†
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 USA

M. A. Cândido Ribeiro‡
Departamento de Física - Instituto de Biociências, Letras e Ciências Exatas
UNESP, São José do Rio Preto, SP - Brazil

(June 20, 2018)

Abstract

A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserve the shape-invariance property presented by primary system. q-deformed generalizations of Morse, Scarf, and Coulomb potentials are given as examples.

*Electronic address: armando@if.ufrj.br

†Electronic address: baha@nuc.th.physics.wisc.edu

‡Deceased
I. INTRODUCTION

Supersymmetric quantum mechanics [1,2] is generally studied in the context of one-dimensional systems. The partner Hamiltonians

\[\hat{H}_1 = \hbar \Omega \hat{A}^\dagger \hat{A} \quad \text{and} \quad \hat{H}_2 = \hbar \Omega \hat{A} \hat{A}^\dagger \]

(1.1)

are most readily written in terms of one-dimensional operators

\[\hat{A} \equiv \frac{1}{\sqrt{\hbar \Omega}} \left(W(x) + \frac{i}{\sqrt{2m}} \hat{p} \right) \quad \text{and} \quad \hat{A}^\dagger \equiv \frac{1}{\sqrt{\hbar \Omega}} \left(W(x) - \frac{i}{\sqrt{2m}} \hat{p} \right) \]

(1.2)

where \(\hbar \Omega \) is a constant energy scale factor, introduced to permit working with dimensionless quantities, and \(W(x) \) is the superpotential. A number of such pairs of Hamiltonians share an integrability condition called shape invariance [3]. The shape-invariance condition has an underlying algebraic structure [4]. Note that the definition in Eq. (1.1) differs from the one given in Ref. [4] as in the present paper all operators are defined to be dimensionless.

The development of quantum groups and quantum algebras motivated great interest in \(q \)-deformed algebraic structures [5–7], and in particular in the \(q \)-harmonic oscillators. Until now quantum groups have found applications in solid state physics [8], nuclear physics [9,10], quantum optics [11] and in conformal field theories [12]. Quantum algebras are deformed versions of the usual Lie algebras obtained by introducing a deformation parameter \(q \). In the limit of \(q \) going to the unity these quantum algebras reduce to the usual Lie algebra. The quantum algebras provide us with a class of symmetries which is richer than the usual class of Lie symmetries, the latter is contained in the former as a special case (when \(q \to 1 \)). Quantum algebras may turn out to be appropriate tools for describing symmetries of physical systems which cannot be described by the ordinary Lie algebras.

In this paper we present a quantum deformed generalization for all shape-invariant systems and show that is possible to introduce generalized ladder operators for these systems. The paper is organized in the following way, in Section II we present the algebraic formulation of shape invariance; in Section III we introduce the fundamental principles of our quantum deformed generalization; in Section IV we introduce the shape-invariant formulation for quantum deformed systems and work out some examples. Finally, conclusions and brief remarks close the paper in Section V.

II. ALGEBRAIC FORMULATION TO SHAPE INVARIANCE

The Hamiltonian \(\hat{H}_1 \) of Eq. (1.1) is called shape-invariant if the condition

\[\hat{A}(a_1) \hat{A}^\dagger(a_1) = \hat{A}^\dagger(a_2) \hat{A}(a_2) + R(a_1), \]

(2.1)

is satisfied [3]. In this equation \(a_1 \) and \(a_2 \) represent parameters of the Hamiltonian. The parameter \(a_2 \) is a function of \(a_1 \) and the remainder \(R(a_1) \) is independent of the dynamical variables such as position and momentum. As it is written the condition of Eq. (2.1) does not require the Hamiltonian to be one-dimensional, and one does not need to choose the ansatz of Eq. (1.2). In the cases studied so far the parameters \(a_1 \) and \(a_2 \) are either related...
by a translation [4,13] or a scaling [14–16]. Introducing the similarity transformation that replaces \(a_1 \) with \(a_2 \) in a given operator
\[
\hat{T}(a_1) \hat{O}(a_1) \hat{T}^\dagger(a_1) = \hat{O}(a_2)
\]
(2.2)
and the operators
\[
\hat{B}_+ = \hat{A}^\dagger(a_1) \hat{T}(a_1) \quad \text{and} \quad \hat{B}_- = \hat{B}_+^\dagger = \hat{T}^\dagger(a_1) \hat{A}(a_1),
\]
(2.3)
the Hamiltonians of Eq. (1.1) take the forms
\[
\hat{H}_1 = \hbar \Omega \hat{B}_+ \hat{B}_- \quad \text{and} \quad \hat{H}_2 = \hbar \Omega \hat{T} \hat{B}_- \hat{B}_+ \hat{T}^\dagger.
\]
(2.4)
With Eq. (2.1) one can also easily prove the commutation relation [4]
\[
[\hat{B}_-, \hat{B}_+] = \hat{T}^\dagger(a_1) R(a_1) \hat{T}(a_1) \equiv R(a_o),
\]
(2.5)
where we used the identity
\[
R(a_n) = \hat{T}(a_1) R(a_{n-1}) \hat{T}^\dagger(a_1),
\]
(2.6)
valid for any \(n \). Eq. (2.5) suggests that \(\hat{B}_- \) and \(\hat{B}_+ \) are the appropriate creation and annihilation operators for the spectra of the shape-invariant potentials provided that their non-commutativity with \(R(a_1) \) is taken into account. Indeed using the relations
\[
R(a_n) \hat{B}_+ = \hat{B}_+ R(a_{n-1}) \quad \text{and} \quad R(a_n) \hat{B}_- = \hat{B}_+ R(a_{n+1}),
\]
(2.7)
which readily follow from Eqs. (2.3) and (2.6), one can write down the additional commutation relations
\[
\left\{ \begin{array}{ll}
[\hat{B}_+, R(a_o)] = \{R(a_1) - R(a_o)\} \hat{B}_+ \\
[\hat{B}_+, \{R(a_1) - R(a_o)\}] = \{R(a_2) - R(a_o)\} \hat{B}_+^2,
\end{array} \right.
\]
(2.8)
and the Hermitian conjugate relations. In general there is an infinite number of such commutation relations, hence the appropriate Lie algebra is infinite-dimensional. The ground state of the Hamiltonian \(\hat{H}_1 \) satisfies the condition
\[
\hat{A} |\Psi_o\rangle = 0 = \hat{B}_- |\Psi_o\rangle.
\]
(2.9)
The normalized \(n \)-th excited state of \(\hat{H}_1 \) is
\[
|\Psi_n\rangle = \frac{1}{\sqrt{R(a_1) + R(a_2) + \cdots + R(a_n)}} \hat{B}_+ \cdots \frac{1}{\sqrt{R(a_1) + R(a_2)}} \hat{B}_+ \frac{1}{\sqrt{R(a_1)}} \hat{B}_+ |\Psi_o\rangle
\]
(2.10)
with the eigenvalue \(E_n = \hbar \Omega e_n \) where
\[
e_n = \sum_{k=1}^{n} R(a_k).
\]
(2.11)
The action of the \(\hat{B}_\pm \) operators on that state given in Eq. (2.10) is
\[
\hat{B}_+ |\Psi_n\rangle = \sqrt{e_{n+1}} |\Psi_{n+1}\rangle \quad \text{and} \quad \hat{B}_- |\Psi_n\rangle = \sqrt{e_{n-1} + R(a_o)} |\Psi_{n-1}\rangle.
\]
(2.12)
Finally, using Eqs. (2.12) it is easy to show that
\[
\hat{H}_1 |\Psi_n\rangle \equiv \hbar \Omega \left(\hat{B}_+ \hat{B}_- \right) |\Psi_n\rangle = \hbar \Omega e_n |\Psi_n\rangle \quad \text{and} \quad \hat{B}_- \hat{B}_+ |\Psi_n\rangle = \{e_n + R(a_0)\} |\Psi_n\rangle.
\]
(2.13)
III. QUANTUM DEFORMATION OF SHAPE-INVARIANT SYSTEMS

A. \(q\)-Deformed Creation and Annihilation Operators

To obtain a quantum deformed version of the shape-invariant systems Hamiltonian we introduce the \(q\)-deformed forms for the creation and annihilation operators \(\hat{B}^{(q)}_-\) and \(\hat{B}^{(q)}_+\) in terms of the usual \(\hat{B}_\pm\) operators as

\[
\hat{B}^{(q)}_- \equiv \sqrt{\frac{[\hat{B}_-\hat{B}_+]_q}{\hat{B}_-\hat{B}_+}} \hat{B}_- = \hat{B}_- \sqrt{\frac{[\hat{B}_+\hat{B}_-]_q}{\hat{B}_+\hat{B}_-}}
\]

(3.1)

and

\[
\hat{B}^{(q)}_+ \equiv (\hat{B}^{(q)}_-)^\dagger = \hat{B}_+ \sqrt{\frac{[\hat{B}_-\hat{B}_+]_q}{\hat{B}_-\hat{B}_+}} = \sqrt{\frac{[\hat{B}_+\hat{B}_-]_q}{\hat{B}_+\hat{B}_-}} \hat{B}_+,
\]

(3.2)

where we used the definition

\[
[x]_q \equiv \frac{q^x - q^{-x}}{q - q^{-1}}.
\]

(3.3)

For the limit \(q \to 1\) it is easy to show that

\[
\lim_{q \to 1} [x]_q = x,
\]

(3.4)

and the postulated relations (3.1) and (3.2) tend to the usual generalized ladder operators. For any analytical function \(f(x)\) it is easy to show that

\[
\hat{B}_\pm f(\hat{B}_\pm) = f(\hat{B}_\pm \hat{B}_\pm) \hat{B}_\pm.
\]

(3.5)

In particular we have

\[
\hat{B}_\pm \left[\frac{q^{\pm B_\pm} B_\pm}{\hat{B}_\pm B_\pm} \right] = \left[\frac{q^{\pm B_\pm} B_\pm}{\hat{B}_\pm B_\pm} \right] \hat{B}_\pm.
\]

(3.6)

B. \(q\)-Deformed Hamiltonian

With our definition of \(q\)-deformed ladder operators we can write down the \(q\)-deformed form of the Hamiltonian \(\hat{H}_1\) as

\[
\hat{H}_1^{(q)} = \hbar \Omega \left(\hat{B}^{(q)}_+ \hat{B}^{(q)}_- \right) = \hbar \Omega \left(\sqrt{\frac{[\hat{B}_+\hat{B}_-]_q}{\hat{B}_+\hat{B}_-}} \hat{B}_+ \hat{B}_- \sqrt{\frac{[\hat{B}_+\hat{B}_-]_q}{\hat{B}_+\hat{B}_-}} \right) = \hbar \Omega [\hat{B}_+\hat{B}_-]_q
\]

(3.7)

and also

4
\[B_+^{(q)} B_+^{(q)} = \sqrt{\frac{[\hat{B}_- \hat{B}_+]_q}{B_- B_+}} \hat{B}_- \hat{B}_+ + \frac{[\hat{B}_- \hat{B}_+]_q}{B_- B_+} [\hat{B}_- \hat{B}_+]_q. \] (3.8)

With these results we conclude that the commutator of the \(q \)-deformed \(B \)'s operators is given by

\[[\hat{B}_-^{(q)}, \hat{B}_+^{(q)}] = [\hat{B}_- \hat{B}_+]_q - [\hat{B}_+ \hat{B}_-]_q. \] (3.9)

Another conclusion is that the \(q \)-deformed version of the Hamiltonian and its undeformed version commute with each other, \([\hat{H}_1^{(q)}, \hat{H}_1] = 0 \), therefore they have the common set of eigenstates given by Eq. (2.10). Then taking into account Eqs. (2.12), (2.13), (3.1), and (3.2) we can show that

\[\hat{B}_+^{(q)} |\Psi_n\rangle = \sqrt{[e_{n+1}]_q} |\Psi_{n+1}\rangle \quad \text{and} \quad \hat{B}_-^{(q)} |\Psi_n\rangle = \sqrt{[e_{n-1} + R(a_0)]_q} |\Psi_{n-1}\rangle. \] (3.10)

To get the eigenvalues of \(\hat{H}_1^{(q)} \) we can use these results and Eqs. (3.7) and (3.8) to obtain

\[\hat{H}_1^{(q)} |\Psi_n\rangle = \hbar \Omega \hat{B}_+^{(q)} \hat{B}_-^{(q)} |\Psi_n\rangle = \hbar \Omega [e_n]_q |\Psi_n\rangle \quad \text{and} \quad \hat{B}_-^{(q)} \hat{B}_+^{(q)} |\Psi_n\rangle = [e_n + R(a_0)]_q |\Psi_n\rangle. \] (3.11)

C. Generalized Quantum Deformed Models for Shape-Invariant Potentials

With the definitions presented in the previous section it is possible to define new \(q \)-deformed ladder operators and their \(q \)-commutations relations as we illustrate in this section.

1. Standard model

Using Eqs. (3.7), (3.8) and the commutation relation (2.5) we can evaluate the product

\[\hat{B}_-^{(q)} \hat{B}_+^{(q)} - q^{R(a_0)} \hat{B}_+^{(q)} \hat{B}_-^{(q)} = [\hat{B}_- \hat{B}_+]_q - q^{R(a_0)} [\hat{B}_+ \hat{B}_-]_q \]

\[= \frac{1}{q - q^{-1}} \left\{ q^{\hat{B}_- \hat{B}_+} - q^{-\hat{B}_- \hat{B}_+} - q^{(\hat{B}_- \hat{B}_+ - \hat{B}_+ \hat{B}_-)} \left[q^{\hat{B}_+ \hat{B}_-} - q^{-\hat{B}_+ \hat{B}_-} \right] \right\} \]

\[= \frac{q^{-\hat{B}_- \hat{B}_+}}{q - q^{-1}} \left\{ q^{(\hat{B}_- \hat{B}_+ - \hat{B}_+ \hat{B}_-)} - q^{(-\hat{B}_- \hat{B}_+ + \hat{B}_+ \hat{B}_-)} \right\} \]

(3.12)

which gives

\[\hat{B}_-^{(q)} \hat{B}_+^{(q)} - q^{R(a_0)} \hat{B}_+^{(q)} \hat{B}_-^{(q)} = [R(a_0)]_q q^{-\hat{B}_+ \hat{B}_-}. \] (3.13)

In a similar way we can show that

\[\hat{B}_-^{(q)} \hat{B}_+^{(q)} - q^{-R(a_0)} \hat{B}_+^{(q)} \hat{B}_-^{(q)} = [R(a_0)]_q q^{\hat{B}_+ \hat{B}_-}. \] (3.14)
an expected result considering the invariance under the substitution of $q \rightarrow q^{-1}$ of the q-number definition (3.3). Eqs. (3.13) and (3.14) represent q-commutators for any shape-invariant potential. In the particular case of the harmonic oscillator potential we have $R(a_o) = R(a_1) = \ldots = \text{cte.} = 1$ after a suitable normalization and we get

$$\hat{B}^{(q)}_- \rightarrow \hat{a}_q = \sqrt{[\hat{N} - 1]_q} \hat{a} = \hat{a} \sqrt{\frac{[\hat{N}]_q}{N - 1}}, \quad \hat{B}^{(q)}_+ \rightarrow \hat{a}^\dagger_q = \hat{a}^\dagger \sqrt{\frac{[\hat{N} - 1]_q}{N - 1}} = \sqrt{\frac{[\hat{N}]_q}{N}} \hat{a}^\dagger. \quad (3.15)$$

Therefore, Eqs. (3.13) and (3.14) reduce to the form

$$\hat{a}_q \hat{a}_q^\dagger - q^{\pm 1} \hat{a}_q^\dagger \hat{a}_q = q^{\mp \hat{N}}, \quad (3.16)$$

where $\hat{N} = \hat{a}^\dagger \hat{a} \neq \hat{a}_q^\dagger \hat{a}_q$. The operators \hat{a}_q and \hat{a}_q^\dagger and its q-deformed commutation relation (3.16) are the basic assumptions usually postulated in the study of the standard q-deformed harmonic oscillator models [10,17,18]. The relation (3.16) also is termed q-deformed physics boson canonical commutation relation [19] and was introduced in order to provide a realization of quantum groups [17,18] which arise naturally in the solution of certain lattice models [8].

2. Generalized Q-Deformed Models

A second way to construct a q-deformed model for a shape-invariant potential can be obtained if we define the new operators

$$\left\{ \begin{array}{l}
\hat{C}^{(q)}_- \equiv \frac{1}{\sqrt{q}} \hat{B}^{(q)}_- q^{(\hat{B}_- \hat{B}_+)/2} = \frac{1}{\sqrt{q}} q^{(\hat{B}_- \hat{B}_+)/2} \hat{B}^{(q)}_-

\hat{C}^{(q)}_+ \equiv \hat{C}^{(q)\dagger}_- = \frac{1}{\sqrt{q}} q^{(\hat{B}_+ \hat{B}_-)}/2 \hat{B}^{(q)}_+ = \frac{1}{\sqrt{q}} \hat{B}^{(q)}_+ q^{(\hat{B}_- \hat{B}_+)/2}. \quad (3.17)\end{array} \right.$$\n
Using the results of Eqs. (3.7), (3.8), the commutation relation (2.5) and the commutation between any function of the remainders $R(a_o)$ and the couple of operators $\hat{B}_\pm \hat{B}_\mp$ we can evaluate the products

$$\hat{C}^{(q)}_- \hat{C}^{(q)}_+ = \frac{1}{\sqrt{q}} q^{(\hat{B}_- \hat{B}_+)/2} \hat{B}^{(q)}_- \hat{B}^{(q)}_+ q^{(\hat{B}_- \hat{B}_+)/2} / \sqrt{q}$$

$$= q^{\hat{B}_- \hat{B}_+} [\hat{B}_- \hat{B}_+] / q$$

$$= q^{2 \hat{B}_- \hat{B}_+ - 1} / q^2 - 1, \quad (3.18)$$

and

$$\hat{C}^{(q)}_+ \hat{C}^{(q)}_- = \frac{1}{\sqrt{q}} q^{(\hat{B}_+ \hat{B}_-)}/2 \hat{B}^{(q)}_+ \hat{B}^{(q)}_- q^{(\hat{B}_+ \hat{B}_-)}/2 / \sqrt{q}$$

$$= q^{\hat{B}_+ \hat{B}_-} [\hat{B}_+ \hat{B}_-] / q$$

$$= q^{2 \hat{B}_+ \hat{B}_- - 1} / q^2 - 1. \quad (3.19)$$
With the results found in Eqs. (3.18) and (3.19) and the commutation relation (2.5) it is possible to establish the \(q\)-deformed commutation relation

\[
\hat{C}^{(q)}_+ \hat{C}^{(q)}_+ - q^{2R(a_0)} \hat{C}^{(q)}_+ \hat{C}^{(q)}_- = q^{R(a_0)} [R(a_0)]_q / q.
\]

(3.20)

The definition of \(q\)-numbers given by Eq. (3.3) is not the only possible one. There is an alternative definition of called the \(Q\)-numbers. Indeed if we change \(q^2 \rightarrow Q\) and use \(Q\)-operators generalization of the \(Q\)-numbers definition

\[
[x]_Q = \frac{Q^x - 1}{Q - 1},
\]

(3.21)

it is possible to rewrite the definitions (3.17) as

\[
\hat{C}^{(q)}_\pm = \hat{B}^{(Q)}_\pm = \sqrt{[(\hat{B}_\pm \hat{B}_\mp)]_Q / \hat{B}_\pm \hat{B}_\mp} \hat{B}_\pm = \sqrt{[\hat{B}_\pm \hat{B}_\mp]_Q / \hat{B}_\pm \hat{B}_\mp}
\]

(3.22)

and show that the \(q\)-deformed commutation relation (3.20) can be written in its \(Q\)-deformed version as

\[
\hat{B}^{(Q)}_- \hat{B}^{(Q)}_+ - Q^{R(a_0)} \hat{B}^{(Q)}_+ \hat{B}^{(Q)}_- = [R(a_0)]_Q.
\]

(3.23)

Again, for a harmonic oscillator potential system we have that \(R(a_0) = R(a_i) = \ldots = 1\) and

\[
\hat{C}^{(q)}_- \rightarrow \hat{b}_Q = \hat{a} \frac{[\hat{N}]_Q}{\hat{N}} = \sqrt{[\hat{N} - 1]_Q / \hat{N} - 1} \hat{a}, \quad \hat{C}^{(q)}_+ \rightarrow \hat{b}^\dagger_Q = \hat{a}^{\dagger} \sqrt{[\hat{N} - 1]_Q / \hat{N} - 1} = \sqrt{[\hat{N}]_Q / \hat{N}} \hat{a}^{\dagger}.
\]

(3.24)

In this case Eq. (3.20) reduces to the form

\[
\hat{b}_Q \hat{b}^\dagger_Q - Q \hat{b}^\dagger_Q \hat{b}_Q = 1
\]

(3.25)

that together with the \(\hat{b}_Q\)'s operators definition correspond to a different version of the deformed harmonic oscillator model, first introduced by Arik and Coon [20] and later considered also by Kuryshkin [21]. Thus, we can consider the operators \(\hat{B}^{(Q)}_\pm\) and Eq. (3.23) as the generalized version for all shape-invariant systems of the \(Q\)-deformed basic relations first postulated by Arik and Coon for the \(Q\)-deformed harmonic oscillator model.

3. Another generalized \(q\)-deformed model

Another \(q\)-deformed model can be obtained if we define the new operators

\[
\begin{align*}
\hat{D}^{(q)}_- &= q^{-R(a_0)/2} \hat{B}^{(q)}_- q^{\hat{B}^- / 2} = q^{-R(a_0)/2} q^{-R(a_0)/2} q^{\hat{B}^- / 2} \hat{B}^{-}\hat{B}^- / 2 \\
\hat{D}^{(q)}_+ &= \hat{D}^{(q)}_+ = \hat{B}^{(q)}_+ q^{\hat{B}^- / 2} \hat{B}^{-} q^{R(a_0)/2} = \hat{B}^{(q)}_+ q^{\hat{B}^- / 2} q^{-R(a_0)/2}.
\end{align*}
\]

(3.26)
Using the results of Eqs. (3.7), (3.8), the commutation relation (2.5) and the commutation between any function of the remainders \(R(a_n) \) and the couple of operators \(B_\pm \) we can write down the product

\[
\hat{D}_-^{(q)} \hat{D}_+^{(q)} = q^{-R(a_0)/2} q^{\hat{B}_-\hat{B}_+/2} \hat{D}_-^{(q)} \hat{D}_+^{(q)} q^{\hat{B}_-\hat{B}_+/2} q^{-R(a_0)/2} \\
= q^{-R(a_0)} q^{\hat{B}_-\hat{B}_+} [\hat{B}_- \hat{B}_+]_q \\
= \frac{q^{(\hat{B}_- \hat{B}_+ + \hat{B}_+ \hat{B}_-)} - q^{-R(a_0)}}{q - q^{-1}},
\]

and, with the help of Eqs. (2.7), the product

\[
\hat{D}_+^{(q)} \hat{D}_-^{(q)} = q^{\hat{B}_+\hat{B}_-/2} q^{-R(a_0)} \hat{D}_-^{(q)} \hat{D}_+^{(q)} q^{\hat{B}_+\hat{B}_-/2} \\
= q^{-R(a_1)} q^{\hat{B}_+\hat{B}_-} [\hat{B}_+ \hat{B}_-]_q \\
= q^{-[R(a_0)+R(a_1)]} \left(\frac{q^{(\hat{B}_- \hat{B}_+ + \hat{B}_+ \hat{B}_-)} - q^{R(a_0)}}{q - q^{-1}} \right).
\]

Using the results shown in Eqs. (3.27) and (3.28) it is possible to establish the following \(q \)-deformed commutation relation

\[
\hat{D}_-^{(q)} \hat{D}_+^{(q)} - q^{[R(a_0)+R(a_1)]} \hat{D}_+^{(q)} \hat{D}_-^{(q)} = [R(a_0)]_q.
\]

In the limiting case of a harmonic oscillator potential system, when \(R(a_0) = R(a_1) = \ldots = 1 \) one has

\[
\hat{D}_-^{(q)} \rightarrow \hat{b}_q = q^{-1/2} \hat{a}_q q^{\hat{N}/2} = q^{\hat{N}/2} \hat{a}_q, \quad \hat{D}_+^{(q)} \rightarrow \hat{b}_q^\dagger = q^{-1/2} q^{\hat{N}/2} \hat{a}_q^\dagger = \hat{a}_q^\dagger q^{\hat{N}/2},
\]

which gives us for Eq. (3.29) the following form:

\[
\hat{b}_q \hat{b}_q^\dagger - q^2 \hat{b}_q^\dagger \hat{b}_q = 1.
\]

Hence there are two possible and different shape invariant generalizations for Arik and Coon quantum deformed model. The first one by using the operators \(\hat{D}_\pm^{(q)} \) and Eq. (3.23) and the second one with the operators \(\hat{D}_\pm^{(q)} \) and Eq. (3.29). These two generalizations for shape invariant systems are equivalent when we applied to the harmonic oscillator potential system, giving the standard Arik and Coon model.

An important aspect to observe at this point is that all quantum deformed models generalized from the primary shape-invariant potentials and presented in these last sections do not preserve the shape invariance after the quantum deformation. In other words, the quantum deformation breaks the shape invariance of the final \(q \)-deformed system. Obviously this fact is a result of the basic assumptions used to build the quantum deformed models.

IV. SHAPE-INVARIENT QUANTUM DEFORMED SYSTEMS

The purpose of this section is to build an alternative generalized quantum deformed model which, unlike the previous ones, after the quantum deformation, preserves the shape invariance condition shown by the primary system.
A. New q-Deformed Ladder Operators

To find a q-deformed system formulation which preserves the shape-invariant condition we introduce new operators defined by

$$
\begin{align*}
\tilde{S}_-^{(q)} &= \mathcal{F} B_+^{(q)} q^{B_+/2} B_+^{(q)} \mathcal{F} B_-^{(q)} q^{B_-/2} B_-^{(q)} \\
\tilde{S}_+^{(q)} &= S_-^{(q)} = q^{B_+/2} B_+^{(q)} \mathcal{F} = B_+^{(q)} q^{B_-/2} \mathcal{F}
\end{align*}
$$

(4.1)

where the $B_+^{(q)}$ operators were introduced by Eqs.(3.2), (3.1) and \mathcal{F} is a compact notation for a real functional of the potential parameters a_0, a_1, a_2, \ldots. Note that for the hermitian conjugation condition written above to be satisfied q must be assumed as a real parameter. We specify the conditions on \mathcal{F} below. Considering that $[\mathcal{F}, B_\pm B_\mp] = 0$ and using the definitions in Eq. (4.1), the commutation relations (2.5) and Eqs. (3.7), (3.8) and (2.7) it is possible to evaluate the products

$$
\tilde{S}_-^{(q)} \tilde{S}_+^{(q)} = \mathcal{F} q^{B_- B_+/2} B_+^{(q)} q^{B_- B_+/2} \mathcal{F} = \mathcal{F}^2 q^{B_- B_+} [\hat{B}_- B_+]_q
$$

(4.2)

and

$$
\tilde{S}_+^{(q)} \tilde{S}_-^{(q)} = q^{B_+ B_-/2} B_+^{(q)} \mathcal{F}^2 B_-^{(q)} q^{B_+ B_-/2} = \hat{T}(a_1) \mathcal{F}^2 \hat{T}^\dagger(a_1) q^{B_+ B_-} [\hat{B}_+ B_-]_q.
$$

(4.3)

Now, with the results of Eqs. (4.2), (4.3) and the commutation relation (2.5) we can write down the commutator of the \hat{S}-operators

$$
[\tilde{S}_-^{(q)}, \tilde{S}_+^{(q)}] = \mathcal{F}^2 q^{R(a_0)} q^{B_+ B_-} [\hat{B}_- B_+]_q - \hat{T}(a_1) \mathcal{F}^2 \hat{T}^\dagger(a_1) q^{-R(a_0)} q^{B_- B_+} [\hat{B}_+ B_-]_q.
$$

(4.4)

At this point, we assume that the functional operator \mathcal{F}, until now considered arbitrary, satisfies the constraint

$$
\hat{T}(a_1) \mathcal{F}^2 \hat{T}^\dagger(a_1) = q^{2R(a_0)} \mathcal{F}^2.
$$

(4.5)

Thus, taking into account this condition and the operator relation

$$
q^{B_\pm B_\mp} [\hat{B}_\pm B_\mp]_q = q^{(B_\mp B_\pm + B_\pm B_\mp)} - q^{\mp R(a_0)}
$$

(4.6)

it follows that the commutator can be written as

$$
[\tilde{S}_-^{(q)}, \tilde{S}_+^{(q)}] = G_0,
$$

with

$$
G_0 \equiv \mathcal{F}^2 q^{R(a_0)} [R(a_0)]_q.
$$

(4.7)

Comparing Eqs. (2.5) and (4.7) we conclude that the later can be associated with a shape-invariance condition as the former and that $\tilde{S}_-^{(q)}$ and $\tilde{S}_+^{(q)}$ are the appropriate creation and annihilation operators for the spectra of the q-deformed shape-invariant systems whose Hamiltonian and its eigenstates and eigenvalues will be determined at next section.
B. Hamiltonian, Eigenstates and Eigenvalues

Using the new ladder operators introduced in the previous section we can define a new Hamiltonian as

$$\hat{H}^{(q)} = \hbar \Omega \hat{S}^{(q)}_+ \hat{S}^{(q)}_- .$$ \hspace{1cm} (4.8)

With this definition, the relations (2.7) and Eq. (4.7) we can write down the additional commutation relations

$$[\hat{H}^{(q)}, (\hat{S}^{(q)}_+)^n] = \hbar \Omega \{ \mathcal{G}_1 + \mathcal{G}_2 + \cdots + \mathcal{G}_n \} (\hat{S}^{(q)}_+)^n$$ \hspace{1cm} (4.9)

and

$$[\hat{H}^{(q)}, (\hat{S}^{(q)}_-)^n] = -\hbar \Omega (\hat{S}^{(q)}_-)^n \{ \mathcal{G}_1 + \mathcal{G}_2 + \cdots + \mathcal{G}_n \}$$ \hspace{1cm} (4.10)

where we defined

$$\mathcal{G}_n = T(a_1) \mathcal{G}_{n-1} T^\dagger(a_1),$$ \hspace{1cm} (4.11)

with \mathcal{G}_0 given by Eq. (4.7). Using Eqs. (2.9), (3.1) and (4.1) we can also show that $\hat{S}^{(q)}_- |\Psi_0\rangle = 0$. From this result and the commutator (4.9) it follows that

$$\hat{H}^{(q)} \{ (\hat{S}^{(q)}_+)^n |\Psi_0\rangle \} = \hbar \Omega \{ \mathcal{G}_1 + \mathcal{G}_2 + \cdots + \mathcal{G}_n \} \{ (\hat{S}^{(q)}_+)^n |\Psi_0\rangle \},$$ \hspace{1cm} (4.12)

i.e., $(\hat{S}^{(q)}_+)^n |\Psi_0\rangle$ is an eigenstate of the Hamiltonian $\hat{H}^{(q)}$ with the eigenvalue

$$\mathcal{E}_n = \hbar \Omega \sum_{k=1}^n \mathcal{G}_k .$$ \hspace{1cm} (4.13)

Indeed this conclusion could be obtained with another approach. With the operator definition in Eq. (4.1) and the functional condition in Eq. (4.5), the Hamiltonian $\hat{H}^{(q)}$ can be written in terms of the primary shape-invariant operators \hat{B}_\pm as

$$\hat{H}^{(q)} = \hbar \Omega q^{2R(a_0)} \mathcal{F}^2 q^{\hat{B}_+ \hat{B}_-} [\hat{B}_+ \hat{B}_-]_q .$$ \hspace{1cm} (4.14)

Obviously we have that $[\hat{H}^{(q)}, \hat{H}] = 0$, hence these two Hamiltonians have a common set of eigenstates give by Eq. (2.10), in other words $|\Psi_n\rangle \propto (\hat{S}^{(q)}_+)^n |\Psi_0\rangle$. Now, to get the eigenvalues of $\hat{H}^{(q)}$ it is enough to use this expression, Eqs. (2.13) and (3.11) to obtain

$$\hat{H}^{(q)} |\Psi_n\rangle = \hbar \Omega q^{2R(a_0)} \mathcal{F}^2 q^{e_n} [e_n]_q |\Psi_n\rangle$$ \hspace{1cm} (4.15)

where e_n is given by Eq. (2.11). Indeed, by using the generalization of the condition in Eq. (4.5)

$$\{ \hat{T}(a_1) \}^k \mathcal{F} \{ \hat{T}^\dagger(a_1) \}^k = \prod_{j=0}^{k-1} q^{R(a_j)} \mathcal{F}$$ \hspace{1cm} (4.16)
it is straightforward to show that
\[\mathcal{E}_n = \hbar \Omega \sum_{k=1}^{n} G_k = \hbar \Omega \sum_{k=1}^{n} \{ \hat{T}(a_i) \}^k \mathcal{F} \{ \hat{T}^\dagger(a_i) \}^k q^{R(a_k)} [R(a_k)]_q = \hbar \Omega q^{2R(a_0)} \mathcal{F}^2 q^{e_n} [e_n]_q. \]

(4.17)

On the other hand, with Eqs. (2.7), (2.13), (3.10), (4.1) and the condition (4.5) it is possible to show that
\[\hat{S}_+^{(q)} |\Psi_n\rangle = q^{R(a_0)} \mathcal{F} q^{e_{n+1}/2} \sqrt{[e_{n+1}]_q} |\Psi_{n+1}\rangle \]
and
\[\hat{S}_-^{(q)} |\Psi_n\rangle = q^{R(a_0)/2} \mathcal{F} q^{e_{n-1}/2} \sqrt{[e_{n-1}+R(a_0)]_q} |\Psi_{n-1}\rangle, \]
showing clearly that \(\hat{S}_+^{(q)} \) and \(\hat{S}_-^{(q)} \) represent appropriate creation and annihilation operators.

C. An Ansatz for the Functional \(\mathcal{F} \)

Until this point we did not specify the functional \(\mathcal{F} \). In this section we will give an ansatz for \(\mathcal{F} \). We will begin by noting that the remainder \(R(a_j) \) is given by the expression
\[R(a_j) = C [f(a_j) - f(a_{j+1})] \]
for a number of shape-invariant potentials. In Eq. (4.22) both the constant \(C \) and the function \(f(a_j) \) is determined by the particular potential in consideration.

For the Morse potential, \(V(x) = V_0(e^{-2\lambda x} - 2be^{-\lambda x}) \), the superpotential is [4]
\[W(x; a_n) = \sqrt{V_0(a_n - e^{-\lambda x})}. \]

(4.23)

\(R(a_j) \) is given by
\[R(a_j) = [a_j^2 - a_{j+1}^2] \]

(4.24)

with
\[a_j = b - \frac{\lambda \hbar}{\sqrt{2mV_0}} (j - \frac{1}{2}), \quad (4.25) \]

where we identified \(\hbar \Omega \equiv V_0 \). Hence we get \(f(a_j) = a_j^2 \).

For the Scarf potential, \(V(x) = -V_0 / \cosh^2 \lambda x \), the superpotential is \[W(x; a_n) = \sqrt{V_0 a_n \tanh \lambda x}. \quad (4.26) \]

\(R(a_j) \) is given by

\[R(a_j) = [a_j^2 - a_{j+1}^2] \quad (4.27) \]

with

\[a_j = \frac{1}{2} \left(\sqrt{\frac{8mV_0}{\hbar^2 \lambda^2} + 1} - 2j + 1 \right) \quad (4.28) \]

if we identify \(\Omega = \lambda \sqrt{V_0/(2m)} \). Hence one again obtains \(f(a_j) = a_j^2 \).

For the Coulomb potential, \(V_L(r) = -\frac{Ze^2}{r} + \frac{\hbar^2 \lambda^2}{2m} (L+1) \), we have \(a_L = L \). The superpotential is \[W(r; L) = \sqrt{\frac{m(Ze^2)^2}{2\hbar^2}} \left(\frac{1}{(L+1)^2} - \frac{\hbar^2}{mZe^2} \frac{L+1}{r} \right) \quad (4.29) \]

with

\[R(L) = \frac{Z^2 e^4}{4} \left[\frac{1}{(L+1)^2} - \frac{1}{(L+2)^2} \right], \quad (4.30) \]

if we identify \(\hbar \Omega = m(Ze^2)^2/(2\hbar^2) \). In this case \(f(L) = \frac{1}{(L+1)^2} \) or alternatively \(f(a_j) = \frac{1}{(a_j+1)^2} \).

We can give an explicit ansatz for \(\mathcal{F} \) applicable to those cases where Eq. (4.22) is satisfied. Noting the identity

\[\hat{T}(a_1) q^{-2Cf(a_0)} \hat{T}^\dagger(a_1) = q^{-2Cf(a_1)} = q^{2R(a_0)} q^{-2Cf(a_0)}, \quad (4.31) \]

we conclude that in those cases the functional \(\mathcal{F} \) depends only on \(a_0 \):

\[\mathcal{F} = q^{-Cf(a_0)}. \quad (4.32) \]

For the shape-invariant potentials that satisfy Eq. (4.22) we can then define

\[\mathcal{F}_0 \equiv q^{-Cf(a_0)}, \quad (4.33) \]

and

\[\mathcal{F}_n = T(a_1) \mathcal{F}_{n-1} T^\dagger(a_1), \quad (4.34) \]

At the moment a more general expression for \(\mathcal{F} \) is not readily available.
V. CONCLUSIONS

In this article we introduced a quantum deformed theory applicable to all shape-invariant systems. To achieve this we introduced the appropriate q-deformed ladder operators. We also constructed an alternative q-deformed model that preserves the shape-invariance property presented by primary system. Our results are applicable to those shape-invariant potentials where the potential parameters are related by a translation.

Shape-invariance represents exact-solvability of a system. We previously given a method to obtain a new exactly-solvable system starting with a known shape-invariant system by coupling it to a two-level system. The resulting models generalize the Jaynes-Cummings model by substituting a shape-invariant system instead of the harmonic oscillator [23,24]. Results presented in this paper represent generalization in a different direction, namely deformation of not the harmonic oscillator, but of certain shape-invariant systems.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foundation Grants No. INT-0070889 and PHY-0244384 at the University of Wisconsin, and in part by the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation. M.A.C.R. acknowledges the support of Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Contract No. 98/13722-2). A.N.F.A. and M.A.C.R. acknowledge the support of Conselho Nacional de Pesquisa (CNPq) (Contract No. 910040/99-0) and thank to the Nuclear Theory Group at University of Wisconsin for their very kind hospitality.
REFERENCES

[1] E. Witten, Nucl. Phys. B 188 (1981) 513.
[2] F. Cooper, A. Khare and U. Sukhatme, Phys. Rept. 251 (1995) 267 [arXiv:hep-th/9405029].
[3] L. E. Gendenshtein, JETP Lett. 38 (1983) 356 [Pisma Zh. Eksp. Teor. Fiz. 38 (1983) 299].
[4] A. B. Balantekin, Phys. Rev. A 57 (1998) 4188 [arXiv:quant-ph/9712018].
[5] V. G. Drinfeld, J. Sov. Math. 41 (1988) 898 [Zap. Nauchn. Semin. 155 (1986) 18].
[6] M. Jimbo, Lett. Math. Phys. 11 (1986) 247.
[7] M. Jimbo, Adv. Ser. Math. Phys. 10 (1989) 1.
[8] M. T. Batchelor, L. Mezincescu, R. I. Nepomechie and V. Rittenberg, J. Phys. A 23 (1990) L141; H. Grosse, S. Pallua, P. Prester and E. Raschhofer, J. Phys. A 27 (1994) 4761; M. R. Ubriaco, Phys. Rev. E 55 (1997) 291 [arXiv:hep-th/9610124].
[9] R. Barbier, J. Meyer and M. Kibler, J. Phys. G 20 (1994) L13 [arXiv:hep-th/9407054]; Maia Angelova, V. K. Dobrev and A. Frank, J. Phys. A: Math. Gen., 34, L503 (2001).
[10] D. Bonatsos and C. Daskaloyannis, Prog. Part. Nucl. Phys. 43 (1999) 537 [arXiv:nucl-th/9909003].
[11] M. Chaichian, D. Ellinas and P. Kulish, Phys. Rev. Lett. 65, 980 (1990); V. Buzek, J. Mod. Opt. 39, 949 (1992); L. M. Kuang, J. Mod. Opt. 41, 517 (1994); K. P. Marzlin, Int. J. Ther. Phys. 36, 841 (1997); C. Zhe, Phys. Rev. A 47, 5017 (1993).
[12] L. Alvarez-Gaume, C. Gomez and G. Sierra, Phys. Lett. B 220 (1989) 142; L. Alvarez-Gaume, C. Gomez and G. Sierra, Nucl. Phys. B 330 (1990) 347.
[13] C. Chuan, J. Phys. A: Math. Gen. 24, L1165 (1991).
[14] A. B. Balantekin, M. A. Candido Ribeiro and A. N. Aleixo, J. Phys. A 32 (1999) 2785 [arXiv:quant-ph/9811061].
[15] A. N. Aleixo, A. B. Balantekin and M. A. Candido Ribeiro, J. Phys. A 35 (2002) 9063 [arXiv:math-ph/0209033].
[16] A. Khare and U. P. Sukhatme, J. Phys. A 26 (1993) L901 [arXiv:hep-th/9212147]; D. T. Barclay, R. Dutt, A. Gangopadhyaya, A. Khare, A. Pagnamenta and U. Sukhatme, Phys. Rev. A 48 (1993) 2786 [arXiv:hep-ph/9304313].
[17] A. J. Macfarlane, J. Phys. A 22 (1989) 4581.
[18] L. C. Biedenharn, J. Phys. A 22 (1989) L873.
[19] A. I. Solomon, Phys. Lett. A 196, 29 (1994).
[20] G. Iwata, Prog. Theor. Phys. 6 (1951) 524; M. Arik and D. D. Coon, J. Math. Phys. 17 (1976) 524; for a review of applications in optics see V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt. 4 (2002) R1.
[21] V. V. Kuryshkin, Ann. Fond. Louis de Broglie 5, 111 (1980).
[22] E. Drigo Filho and M. A. Candido Ribeiro, arXiv:nucl-th/0108073.
[23] A. N. Aleixo, A. B. Balantekin and M. A. Candido Ribeiro, J. Phys. A 33 (2000) 3173 [arXiv:quant-ph/0001049].
[24] A. N. Aleixo, A. B. Balantekin and M. A. Candido Ribeiro, J. Phys. A 34 (2001) 1109 [arXiv:quant-ph/0101024].