GENERALIZATIONS OF KAPLANSKY THEOREM FOR SOME (p, k)-QUASI-HYPONORMAL OPERATORS

Abdelkader Benali [1] and Ould Ahmed Mahmoud Sid Ahmed [2]

[1] Mathematics Department, Faculty of science, University of Hassiba Benbouali, Chlef Algeria. B.P. 151 Hay Essalem, chlef 02000, Algeria.
 benali4848@gmail.com

[2] Mathematics Department, College of Science. Aljouf University
 Aljouf 2014. Saudi Arabia
 sidahmed@ju.edu.sa

January 14, 2018

Abstract

In the present paper, we generalized some notions of bounded operators to unbounded operators on Hilbert space such as k-quasihyponormal and k-paranormal unbounded operators. Furthermore, we extend the Kaplansky theorem for normal operators to some (p, k)-quasihyponormal operators. Namely the (p, k)-quasihyponormality of the product AB and BA for two operators.

Keywords. Unbounded operator, normal operator, (k, p)-quasihyponormal operator, k-paranormal operator.

Mathematics Subject Classification (2010). Primary 47B15, Secondary 46L10.

1 INTRODUCTION

Through out the paper we denote Hilbert space over the field of complex numbers \mathbb{C} by \mathcal{H} and the usual inner product and the corresponding norm of \mathcal{H} are denoted by $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ respectively. Let us fix some more notations. We write $\mathcal{B}(\mathcal{H})$ for the set of all bounded linear operators in \mathcal{H} whose domain are equal to \mathcal{H}. For an operator $A \in \mathcal{B}(\mathcal{H})$, the range, the kernel and the adjoint of A are denoted by $\mathcal{R}(A)$, $\mathcal{N}(A)$ and A^* respectively. If \mathcal{M} is a...
space of \(\mathcal{H} \), \(\overline{\mathcal{M}} \) and \(\mathcal{M}^\perp \) denote its closure and its orthogonal complement, respectively and \(A|\mathcal{M} \) denotes the restriction of \(A \) to \(\mathcal{M} \).

In this section we introduce basic notations and recall some well-know concepts of some classes of bounded and unbounded operators in a Hilbert space.

An operator \(A \in \mathcal{B}(\mathcal{H}) \) is said to be: normal if \(A^*A = AA^* \) (equivalently \(\| Ax \| = \| A^*x \| \) for all \(x \in \mathcal{H} \)), hyponormal if \(A^*A \geq AA^* \) (equivalently \(\| Ax \| \geq \| A^*x \| \) for all \(x \in \mathcal{H} \)), Co-hyponormal if \(AA^* \geq A^*A \) (equivalently \(\| A^*x \| \geq \| Ax \| \) for all \(x \in \mathcal{H} \)), quasinormal if \(AA^*A = A^*A^2 \) (equivalently \((A^*A)^2 = A^*A^2 \)) and Quasi-hyponormal if \(A^2A^2 \geq (A^*A)^2 \) (equivalently \(\| A^2x \| \geq \| A^*Ax \| \) for all \(x \in \mathcal{H} \)).

An operator \(A : \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H} \) is said to be densely defined if \(\mathcal{D}(A) \) (the domaine of \(A \)) is dense in \(\mathcal{H} \) and it is said to be closed if its graph is closed. The (Hilbert) adjoint of \(A \) is denoted by \(A^* \) and it is known to be unique if \(A \) is densely defined.

We denote by \(\text{Op}(\mathcal{H}) \) the set of unbounded densely defined linear operators on \(\mathcal{H} \).

Let \(A, B \in \text{Op}(\mathcal{H}) \), the product \(AB \) of two unbounded operators is defined by

\[
(AB)x = A(Bx) \quad \text{on} \quad \mathcal{D}(AB) = \{ x \in \mathcal{D}(B) : Bx \in \mathcal{D}(A) \}.
\]

Let \(A, B \in \text{Op}(\mathcal{H}) \), we recall that \(B \) is called an extension of \(A \), denoted by \(A \subseteq B \), if \(\mathcal{D}(A) \subset \mathcal{D}(B) \) and \(Ax = Bx \) for all \(x \in \mathcal{D}(A) \). An closed operator \(A \in \text{Op}(\mathcal{H}) \) is said to commute with \(B \in \mathcal{B}(\mathcal{H}) \) if \(BA \subseteq AB \), that is, if for \(x \in \mathcal{D}(A) \), we have \(Bx \in \mathcal{D}(A) \) and \(BAx = ABx \).

Let \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \text{Op}(\mathcal{H}) \) we say that \(A \) commutes with \(B \) if \(BA \subseteq AB \).

Recall also that if \(A, B \) and \(AB \) are all densely defined, then we have \(A^*B^* \subseteq (BA)^* \).

There are cases where equality holds in the previous inclusion, namely if \(B \) is bounded. For other notions and results about bounded and unbounded operators, the reader may consult [19].

A generalization of normal, quasinormal, hyponormal and paranormal operators to unbounded normal quasinormal, hyponormal and paranormal operators has been presented by several authors in the last years. Some important references are [7, 9, 10, 11, 20, 21].

An operator \(A \in \text{Op}(\mathcal{H}) \), we said to be hyponormal if \(\mathcal{D}(A) \subset \mathcal{D}(A^*) \) and \(\| A^*x \| \leq \| Ax \| \) for all \(x \in \mathcal{D}(A) \). We refer to [10] for basic facts concerning unbounded hyponormal operators.

An operator \(A \in \text{Op}(\mathcal{H}) \) is said to be normal if \(A^*A = AA^* \). A closed operator \(A \in \text{Op}(\mathcal{H}) \) is normal if and only if \(\mathcal{D}(A) = \mathcal{D}(A^*) \) and \(\| Ax \| = \| A^*x \| \) for all \(x \in \mathcal{D}(A) \).

A densely defined operator \(A : \mathcal{D}(A) \subseteq \mathcal{H} \rightarrow \mathcal{H} \) is said to be paranormal if

\[
\| Ax \|^2 \leq \| A^2x \| \| x \| \quad \text{for all} \quad x \in \mathcal{D}(A^2)
\]

or equivalently

\[
\| Ax \|^2 \leq \| A^2x \| \quad \text{for every unit vector} \quad x \in \mathcal{D}(A^2). \quad \text{(See [7]).}
\]
Let A and B be normal operators on a complex separable Hilbert space \mathcal{H}. The equation $AX = XB$ implies $A^*X = XB^*$ for some operator $X \in B(\mathcal{H})$ is known as the familiar Fuglede-Putnam theorem. (See [14]).

Consider two normal (resp. hyponormal) operators A and B on a Hilbert space. It is known that, in general, AB is not normal (resp. not hyponormal). Kaplansky showed that it may be possible that AB is normal while BA is not. Indeed, he showed that if A and AB are normal, then BA is normal if and only if B commutes with AA^*, (see [12]).

In [18, Theorem 3], Patel and Ramanujan proved that if A and $B \in B(\mathcal{H})$ are hyponormal such that A commutes with $|B|$ and B commutes with $|A^*|$ then AB and BA are hyponormal.

The study of operators satisfying Kaplansky theorem is of significant interest and is currently being done by a number of mathematicians around the world. Some developments toward this subject have been done in [6, 10, 12, 15, 16, 17] and the references therein.

The aim of this paper is to give sufficient conditions on two some (p, k)-quasihyponormal operators (bounded or not), defined on a Hilbert space, which make their product (p, k)-quasihyponormal. The inspiration for our investigation comes from [1], [15] and [17].

The outline of the paper is as follows. First of all, we introduce notations and consider a few preliminary results which are useful to prove the main result. In the second section we discussed conditions which ensure hyponormality, k-quasihyponormality or (p, k)-quasihyponormality of the product of hyponormal, k-quasihyponormal or (p, k)-quasihyponormality of operators. In Section three, the concepts of k-quasihyponormal and k-paranormal unbounded operators are introduced. We give sufficient conditions which ensure k-quasihyponormality (k-parnormality or k-$*$-parnormality) of the product of k-quasihyponormal (k-parnotmal or $k-*$-paranormal) of unbounded operators.

2 KAPLANSKY LIKE THEOREM FOR BOUNDED (p, k)-QUASIHYPONORMAL OPERATORS

The next definitions and lemmas give a brief description for the background on which the paper will build on.

Definition 2.1. An operator $A \in B(\mathcal{H})$ is said to be

1. p-hyponormal if $(A^*A)^p - (AA^*)^p \geq 0$ for $0 < p \leq 1$ ([3]).

2. p-quasihyponormal if $A^*\left((A^*A)^p - (AA^*)^p\right)A \geq 0$, $0 < p \leq 1$ ([4]).

3. k-quasihyponormal operator if $A^k(A^*A - AA^*)A^k \geq 0$ for positive integer k ([5]).

4. (p,k)-quasihyponormal if $A^{*k}\left((A^*A)^p - (AA^*)^p\right)A^k \geq 0$, $0 < p \leq 1$ and k is positive integer ([13]).

A (p, k)-quasihyponormal is an extension of p-hyponormal, p-quasihyponormal and k-quasihyponormal.
Remark 2.1. Let $N, hN, p h, Q(p)$ and $Q(p, k)$ denote the classes consisting of normal, hyponormal, p-hyponormal, p-quasihyponormal and (p, k)-quasihyponormal operators. These classes are related by the proper inclusion. (See [14]).

$$N \subset hN \subset p h \subset Q(p) \subset Q(p, k).$$

We need the following lemma which is important for the sequel.

Lemma 2.1. Let $A, B \in B(H)$. Then the following properties hold

1. If $A \geq B$ then $C^* A C \geq C^* B C$, for all $C \in B(H)$.

2. If range of C is dense in H then $A \geq B \iff C^* A C \geq C^* B C$.

Proof. This proof will be left to the reader.

The following famous inequality is needful.

Lemma 2.2. (Hansen’s inequality)

Let $A, B \in B(H)$ such that $A \geq 0$ and $\| B \| \leq 1$ then

$$\left(B^* A B \right)^\alpha \geq B^* A^\alpha B \quad 0 < \alpha \leq 1.$$

Kaplansky showed that it may be possible that AB is normal while BA is not. Indeed, he showed that if A and AB are normal, then BA is normal if and only if B commutes with $|A|$.

Kaplansky theorem’s has been extended form normal operators to hyponormal operators and unbounded hyponormal operators by the authors in [1]. We collect some of their results in the following theorem.

Theorem 2.1. (1) Let $A, B \in B(H)$. The following statements hold:

1. If A is normal and AB is hyponormal then

$$B A A^* = A A^* B \implies BA \text{ is hyponormal.}$$

2. If A is normal and AB is co-hyponormal then

$$B A A^* = A A^* B \implies BA \text{ is co-hyponormal.}$$

3. If A is normal, AB is hyponormal and BA is co-hyponormal then

$$B A A^* = A A^* B \iff AB \text{ and } BA \text{ are normal.}$$

We give another proof of Kaplansky theorem.
Theorem 2.2. [Kaplansky, [12]] Let A and $B \in \mathcal{B}(\mathcal{H})$ be two bounded operators such that AB and A are normal. Then

$$A^*AB = BA^*A \iff (BA) \text{ is normal.}$$

Proof. "\implies"

Assume that $A^*AB = BA^*A$ and we need to prove that BA is normal.

It is well known that A is normal if and only if $\|Ax\| = \|A^*x\|$ for all $x \in \mathcal{H}$.

Since AB is normal we have

$$\|(AB)Ax\| = \|(AB)^*Ax\| \text{ for all } x \in \mathcal{H}$$

and we deduce that

$$\|A(BA)x\| = \|A(BA)^*x\| \text{ for all } x \in \mathcal{H}.$$

By hypotheses given in the theorem, we have

$$\|A(BA)x\| = \|A(BA)^*x\|$$

$$\iff \langle A(BA)x, A(BA)x \rangle = \langle A(BA)^*x, A(BA)x \rangle$$

$$\iff \langle [A(BA)]^* A(BA)x, x \rangle = \langle [A(BA^*)]^* A(BA)x, x \rangle$$

$$\iff \langle (BA)^* (BA)x, x \rangle = \langle A(A^*BA)x, x \rangle$$

$$\iff \langle (BA)^*(BA), A^*Ax \rangle = \langle (BA)(BA)^*, A^*Ax \rangle$$

$$\iff \langle (BA)^*(BA) - (BA)(BA)^*, A^*Ax \rangle = 0 \text{ for all } x \in \mathcal{H}.$$

Put $T = \left((BA)(BA)^* - (BA)^*(BA) \right)$.

Form the identities above we have $\langle Tx, A^*Ax \rangle = 0$ for all $x \in \mathcal{H}$. This implies that

$$Tx \in \mathcal{R}(A^*A)^\perp = \overline{\mathcal{R}(A^*A)}^\perp = \mathcal{N}(A^*) = \mathcal{N}(A) \text{ for all } x \in \mathcal{H}.$$

Now if $\mathcal{N}(A) = \{0\}$, we have $Tx = 0$ for all $x \in \mathcal{H}$ and $T \equiv 0$ i.e., BA is normal.

If $\mathcal{N}(A) \neq \{0\}$. Suppose that, contrary to our claim, the operator $T \neq 0$. There exists $x_0 \in \mathcal{H}$, $x_0 \neq 0$ such that $Tx_0 \neq 0$. Since $Tx_0 \in \mathcal{N}(A)$ and $\mathcal{H} = \mathcal{N}(A) \oplus \mathcal{N}(A)^\perp$, it follows that $Tx_0 \notin \mathcal{N}(A)^\perp$. From this we deduce that there exists $z_0 \in \mathcal{N}(A)$ so that $\langle Tx_0, z_0 \rangle \neq 0$.

As usual, this leads to the statement that

$$0 \neq \langle Tx_0, z_0 \rangle = \langle x_0, Tz_0 \rangle \implies x_0 \notin \mathcal{N}(A)^\perp \text{ (since } Tz_0 \in \mathcal{N}(A)).$$
This means that, \(x_0 \in \mathcal{N}(A) \) and
\[
Tx_0 = ((BA)^*(BA) - (BA)(BA)^*)x_0 = -(BA)(BA)^*x_0 = 0.
\]
This contradicts the assumption that \(Tx_0 \neq 0 \).

(2) "\(\iff \)" The reverse application is even evidence of Kaplansky

We have \(ABA = ABA \Rightarrow (AB)A = A(BA) \), and by the theorem of Fuglede-Putnam
\[
(AB)^*A = A(BA)^* \Rightarrow ((AB)^*A = (A(BA))^*).
\]
So
\[
A^*(AB) = (BA)A^* \Rightarrow A^*AB = BAA^*.
\]

Consider two quasihyponormal operators \(A \) and \(B \) on a Hilbert space. It is known that, in general, \(AB \) is not quasihyponormal.

Example 2.1. Let \(\mathcal{H} = l^2(\mathbb{N}) \) with the canonical orthonormal basis \((e_n)_{n\in\mathbb{N}} \) and consider \(A \) the unilateral right shift operator on \(\mathcal{H} \) defined by \(Ae_n = e_{n+1} \) for all \(n \in \mathbb{N} \) and \(B \) the operator defined on \(\mathcal{H} \) by
\[
B_{en} = \begin{cases}
 e_n, & \text{if } n \neq 1 \\
 0 & \text{if } n = 1.
\end{cases}
\]

A simple calculation shows that \(A \) and \(B \) are quasihyponormal and \(AB \) does not quasi-hyponormal, since
\[
\|AB^*(AB)e_0\| = 1 \text{ and } \|(AB)^2e_0\| = 0.
\]

Denote by \(\mathbb{C}^{mn} \) the set of all \(m \times n \) complex matrix.

In [8], the authors proved the following results.

Theorem 2.3. ([8]) Let \(A = UH \), where \(H \in \mathbb{C}^{nn} \) is positive semidefinite Hermitian and \(U \in \mathbb{C}^{nn} \) is unitary, and let \(B \in \mathbb{C}^{nm} \),

1. if \(BU \) is normal and \(HBU = BUH \), then \(AB \) and \(BA \) are normal,
2. if \(AB \) and \(BA \) are normal, then \(HBU = BUH \).

Theorem 2.4. ([8]) Let \(A \in \mathbb{C}^{mn} \) and \(B \in \mathbb{C}^{nm} \). Then \(AB \) and \(BA \) are normal if and only if \(A^*AB = BA^*A \) and \(ABB^* = BB^*A \).

We show here the main results of this paper. Our intention is to study some conditions for which the product of operators will be hyponormal and \(k \)-quasihyponormal or \((k, p) \)-quasihyponormal.
Proposition 2.1. Let $A = U|A| \in \mathcal{B}(\mathcal{H})$ with U is unitary and let $B \in \mathcal{B}(\mathcal{H})$ such that $|A|BU = BU|A|$. The following properties hold

1. If UB is hyponormal, then AB is hyponormal.
2. If BU is hyponormal, then BA is hyponormal.
3. If UB is quasihyponormal, then AB is quasihyponormal.
4. If BU is quasihyponormal, then BA is quasihyponormal.

Proof. (1) Suppose that UB is hyponormal. Then

\[
\|(AB)^*x\| = \|B^*|A|U^*x\| = \|B^*U^*|A|U^*x\| = \|(UB)^*|A|U^*x\| \\
\leq \|UB|A|U^*x\| = \|U|A|BUU^*x\| = \|ABx\|.
\]

This shows that AB is hyponormal.

(2) Suppose that BU is hyponormal. Then

\[
\|(BA)^*x\| = \||A|U^*B^*x\| = \||A|(BU)^*x\| = \|(BU)^*|A|x\| \\
\leq \|BU|A|x\| = \|BAx\|.
\]

This shows that BA is hyponormal.

(3) Assume that UB is quasihyponormal, then

\[
\|(AB)^*(AB)x\| = \|B^*|A|^2Bx\| \\
\leq \|B^*|A|^2BUU^*x\| = \|B^*BU|A|^2U^*x\| = \|B^*U^*UBU|A|^2U^*x\| = \|(UB)^*(UB)|A|^2U^*x\| \\
\leq \|(UB)^2|A|^2U^*x\| = \|UBUBU|A|^2U^*x\| = \|UBU|A|^2Bx\| \\
\leq \|U|A|BU|A|Bx\| = \|(AB)^2x\|.
\]

This shows that AB is quasihyponormal.
(4) Assume that BU is quasihyponormal. Then

$$
\|(BA)^*(BA)x\| = \|A^*B^*BAx\| \\
\leq \|A(BU)^*BUA|x\| \\
= \|(BU)^*(BU)|A^2x\| \\
\leq (BU)^2|A|^2|x| \quad \text{(since BU is quasihyponormal)} \\
\leq BU|A|BU|A|x| \\
= \|(BA)^2x\|.
$$

This shows that BA is quasihyponormal.

Proposition 2.2. Let A and $B \in B(\mathcal{H})$ are hyponormal operators. If $BA^* = A^*B$, then AB and BA are k-quasihyponormal.

Proof. Let $x \in \mathcal{H},$

$$
\|(AB)^*(AB)^kx\| = \|B^*A^*(AB)^kx\| \\
\leq \|BA^*(AB)^kx\| \quad \text{(since B is hyponormal)} \\
\leq \|A^*B(AB)^kx\| \\
\leq \|AB(AB)^kx\| \quad \text{(since A is hyponormal)} \\
\leq \|(AB)^{k+1}x\|
$$

we even have evidence to k- quasi-hyponormal.

Proposition 2.3. Let A and $B \in B(\mathcal{H})$ such that A and B are doubly commutative k-quasi-hyponormal operators then AB is k- quasi-hyponormal.

Proof. Let $x \in \mathcal{H},$

$$
\|(AB)^*(AB)^kx\| = \|A^*A^kB^kB^*x\| \leq \|A^{k+1}B^*B^kx\| \leq \|A^{k+1}B^{k+1}x\| = \|(AB)^{k+1}x\|
$$

Proposition 2.4. Let A and $B \in B(\mathcal{H})$ are k-quasihyponormal operators for some positive integer k. The following statements hold

1. If $A^*A^kB = BA^*A^k$ and $A^jB^j = (AB)^j$ for $j \in \{k, k+1\}$, then AB is k- quasihyponormal.

2. If $B^kB^jA = AB^kB^j$ and $B^jA^j = (BA)^j$ for $j \in \{k, k+1\}$, then BA is k- quasihyponormal.
Proof. (1)

\[
\|(AB)^*(AB)^kx\| = \|B^*A^kB^kx\| \\
= \|B^*B^kA^kx\| \\
\leq \|B^{k+1}A^kx\| \quad \text{(since } B \text{ is } k-\text{quasihyponormal)} \\
\leq \|A^kA^{k+1}Bx\| \\
\leq \|A^{k+1}B^{k+1}x\| \quad \text{(since } A \text{ is } k-\text{quasihyponormal)} \\
\leq \|(AB)^{k+1}x\| \quad \text{for all } x \in \mathcal{H}.
\]

(2)

\[
\|(BA)^*(BA)^kx\| = \|A^*B^kA^{k+1}x\| \\
= \|A^*A^kB^kx\| \\
\leq \|A^{k+1}B^kA^{k+1}x\| \quad \text{(since } A \text{ is } k-\text{quasihyponormal)} \\
\leq \|B^kA^{k+1}B^{k+1}x\| \\
\leq \|B^{k+1}A^{k+1}x\| \quad \text{(since } B \text{ is } k-\text{quasihyponormal)} \\
= \|(BA)^{k+1}x\| \quad \text{for all } x \in \mathcal{H}.
\]

\[\square\]

Proposition 2.5. Let \(A\) and \(B\) \(\in \mathcal{B}(\mathcal{H})\) such that \(A\) is normal and \(AB\) is quasinormal, then

\(A^*AB = BA^*A \implies BA\) is quasinormal.

Proof. Let \(A = U|A|\) with \(U\) unitary. Since \(A^*AB = BA^*A\) we have \(|A|B = B|A|\). These facts and the quasinormality of \(AB\) give

\[
(BA)(BA)^*(BA) = U^*(AB)U(U^*(AB)U)^*(U^*(AB)U) \\
= U^*(AB)(AB)^*(AB)U \\
= U^*(AB)^*(AB)^2U \\
= (U^*(AB)U)^*(U^*(AB)U)^2 \\
= (BA)^*(BA)^2.
\]

\[\square\]

Remark 2.2. The reverse implication does not hold in the previous result (even if \(A\) is self-adjoint) as shown in the following example.

Example 2.2. Let \(A\) and \(B\) be acting on the standard basis \((e_n)\) of \(\ell^2(N)\) by:

\[Ae_n = \alpha_n e_n \quad \text{and} \quad Be_n = e_{n+1}, \quad \forall n \geq 1\]

respectively. Assume further that \(\alpha_n\) is bounded, real-valued and positive, for all \(n\). Hence \(A\) is self-adjoint (hence normal!) and positive. Then

\[ABe_n = \alpha_{n+1} e_{n+1}, \quad \forall n \geq 1.\]
For convenience, let us carry out the calculations as infinite matrices. Then

\[
AB = \begin{pmatrix}
0 & 0 & 0 & 0 \\
\alpha_1 & 0 & 0 & 0 \\
0 & \alpha_2 & 0 & 0 \\
0 & \alpha_3 & 0 & \ddots \\
0 & 0 & \ddots & \ddots \\
\end{pmatrix}
\]

so that \((AB)^*\) =

\[
\begin{pmatrix}
0 & \alpha_1 & 0 & 0 \\
0 & 0 & \alpha_2 & 0 \\
0 & 0 & 0 & \alpha_3 \\
0 & 0 & 0 & \ldots \\
\end{pmatrix}
\]

Hence

\[
(AB)^2 = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & \alpha_1 \alpha_2 & 0 \\
0 & \alpha_2 \alpha_3 & 0 \\
0 & 0 & \ddots \\
\end{pmatrix}
\]

and \([(AB)^*]^2\) =

\[
\begin{pmatrix}
0 & 0 & \alpha_1 \alpha_2 & 0 \\
0 & 0 & 0 & \alpha_2 \alpha_3 \\
0 & 0 & 0 & \ldots \\
0 & 0 & 0 & \ldots \\
\end{pmatrix}
\]

so

\[
(AB)^* AB = \begin{pmatrix}
\alpha_1^2 & 0 & 0 & 0 \\
0 & \alpha_2^2 & 0 & 0 \\
0 & 0 & \alpha_3^2 & 0 \\
0 & 0 & 0 & \ddots \\
\end{pmatrix}
\]

this implies

\[
[(AB)^* AB]^2 = \begin{pmatrix}
\alpha_1^4 & 0 & 0 & 0 \\
0 & \alpha_2^4 & 0 & 0 \\
0 & 0 & \alpha_3^4 & 0 \\
0 & 0 & 0 & \ddots \\
\end{pmatrix}
\]

and

\[
[(AB)^*]^2 [AB]^2 = \begin{pmatrix}
(\alpha_1 \alpha_2)^2 & 0 & 0 & 0 \\
0 & (\alpha_2 \alpha_3)^2 & 0 & 0 \\
0 & 0 & (\alpha_3 \alpha_4)^2 & 0 \\
0 & 0 & 0 & \ddots \\
\end{pmatrix}
\]
It thus becomes clear that AB is quasi hyponormal iff $\alpha_n \leq \alpha_{n+1}$.

Similarly

$$BAe_n = \alpha_ne_{n+1}, \ \forall n \geq 1.$$

Whence the matrix representing BA is given by:

$$BA = \begin{pmatrix} 0 & 0 & 0 \\
\alpha_2 & 0 & 0 \\
0 & \alpha_3 & 0 \\
0 & \alpha_4 & \ddots \\
0 & \ddots & 0 \\
\end{pmatrix}$$

so that $(BA)^* = \begin{pmatrix} 0 & 0 & 0 \\
0 & \alpha_2 & \alpha_3 \\
0 & \alpha_3 & \alpha_4 \\
0 & \ddots & 0 \\
0 & \ddots & \ddots \\
\end{pmatrix}.$

Therefore,

$$(BA)^2 = \begin{pmatrix} 0 & 0 & 0 \\
0 & 0 & \alpha_2 \alpha_3 \\
0 & \alpha_3 \alpha_4 & \ddots \\
0 & \ddots & 0 \\
0 & \ddots & \ddots \\
\end{pmatrix}, \quad [(BA)^*]^2 = \begin{pmatrix} 0 & 0 & 0 \\
0 & 0 & \alpha_2 \alpha_3 \\
0 & \alpha_3 \alpha_4 & \ddots \\
0 & \ddots & 0 \\
0 & \ddots & \ddots \\
\end{pmatrix}.$$

and

$$(BA)^*BA = \begin{pmatrix} \alpha_2^2 & 0 \\
0 & \alpha_2^2 \\
0 & \alpha_3^2 \\
0 & \alpha_4^2 & \ddots \\
0 & \ddots & 0 \\
0 & \ddots & \ddots \\
\end{pmatrix}.$$

this implies

$$(BA)^*BA = \begin{pmatrix} \alpha_2^4 & 0 \\
0 & \alpha_2^4 \\
0 & \alpha_3^4 \\
0 & \alpha_4^4 & \ddots \\
0 & \ddots & 0 \\
0 & \ddots & \ddots \\
0 & \ddots & \ddots \\
\end{pmatrix}.$$
\[
[(BA)^*]^2 [BA] = \begin{pmatrix}
((\alpha_2\alpha_3)^2 & 0 & 0 \\
0 & (\alpha_3\alpha_4)^2 & 0 \\
0 & 0 & ((\alpha_4\alpha_5))^2 \\
0 & 0 & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots & \ddots
\end{pmatrix}
\]

Accordingly, \(BA \) is quasi hyponormal if and only if \(\alpha_n \leq \alpha_{n+1} \) (thankfully, this is the same condition for the hyponormality of \(AB \)).

Finally,

\[
BA^2 = \begin{pmatrix}
0 & 0 & \alpha_1^2 & 0 & \cdots & 0 \\
\alpha_1 & 0 & 0 & 0 & \cdots & 0 \\
0 & \alpha_2 & 0 & 0 & \cdots & 0 \\
0 & 0 & \alpha_3 & 0 & \cdots & 0 \\
0 & \cdots & 0 & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \cdots & \ddots & \ddots
\end{pmatrix}
\neq A^2B = \begin{pmatrix}
0 & 0 & \alpha_1 & 0 & \cdots & 0 \\
\alpha_1 & 0 & 0 & 0 & \cdots & 0 \\
0 & \alpha_2 & 0 & 0 & \cdots & 0 \\
0 & 0 & \alpha_3 & 0 & \cdots & 0 \\
0 & \cdots & 0 & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \cdots & \ddots & \ddots
\end{pmatrix}
\]

Proposition 2.6. Let \(A = U|A| \) and \(B \in \mathcal{B}(\mathcal{H}) \) such that \(A \) and \(B \) are quasinormal. If \(BU \) is quasinormal and \(|A|BU = BU|A| \), then \(BA \) is quasinormal.

Proof. Let \(A = U|A| \) be the polar decomposition of \(A \) with \(U \) partial isometry. Since \(A \) is quasinormal we have \(|A|U = U|A| \). These facts and the quasinormality of \(AB \) give

\[
(BA)(BA)^*(BA) = (B|A|U)(B|A|U)^*(B|A|U)
= BU|A|^2(BU)^*BU|A|
= |A|^2(BU)(BU)^*(BU)|A|
= |A|^2(BU)^*(BU)^2|A|
= (BU|A|)^*(BU|A|)^2
= (BA)^*(BA)^2.
\]

Thus \(BA \) is quasinormal. \(\Box \)

Proposition 2.7. Let \(A, B \in \mathcal{B}(\mathcal{H}) \) such that \(A \) is normal and \(AB \) is paranormal. Then

\[
A^*AB = BA^*A \implies BA \text{ is paranormal.}
\]

Proof. Let \(A = U|A| \) with \(U \) is unitary. Since \(A \) is normal we have \(|A|U = U|A| \) and hence \(B|A| = |A|B \). This then gives

\[
BA = U^*ABU.
\]
From this fact we obtain that for all unit vector $x \in \mathcal{H}$,

$$
\|(BA)x\|^2 = \|U^*(AB)Ux\|^2 \\
\leq \|(AB)Ux\|^2 \\
\leq \|(AB)^2Ux\| \quad (\text{since } AB \text{ is paranormal and } \|Ux\| = 1) \\
= \|U(U^*ABU)^2x\| \\
\leq \|(BA)^2x\|.
$$

Hence BA is paranormal operator.

Let A and $B \in B(\mathcal{H})$. The commutator of A and B is defined as $[A, B] = AB - BA$ and the self-commutator of A is $[A^*, A]$.

The span of A and B is

$$
\text{span}\{A, B\} := \{ aA + bB, \quad a, b \in \mathbb{C} \}.
$$

Proposition 2.8. Let A and $B \in B(\mathcal{H})$ such that A is quasihyponormal and B is hyponormal. If

$$
[B^*, A] = A^*[B^*, B]B = B^*[A^*, A]B = 0.
$$

Then $T = \omega A + B$ is quasihyponormal for all $\omega \in \mathbb{C}$.

Proof. Note that if $\omega \in \mathbb{C}$ and $T = \omega A + B$, then

$$
[T^*, T] = |\omega|^2[A^*, A] + [B^*, B] + 2\text{Re}(\omega[B^*, A]).
$$

By hypotheses given in the theorem, we have

$$
T^*[T^*, T]T = |\omega|^4 A^*[A^*, A]A + |\omega|^2 A^*[B^*, B]A + B^*[B^*, B]B.
$$

By Lemma 2.1 we get $T^*[T^*, T]T \geq 0$. This completes the proof.

Proposition 2.9. Let A and $B \in B(\mathcal{H})$ such that A and B are quasihyponormal. If

$$
[B^*, A] = A^*[B^*, B]B = B^*[A^*, A]B = A^*[B^*, B]A = 0.
$$

Then $T = \omega A + B$ is quasihyponormal for all $\omega \in \mathbb{C}$.

Proof. By the same arguments as in the proof of the proposition above, we have

$$
T^*[T^*, T]T = |\omega|^4 A^*[A^*, A]A + B^*[B^*, B]B.
$$

The next result is a necessary and sufficient condition for $\text{span}\{A, B\}$ to be quasihyponormal.
Theorem 2.5. Let \(A \) and \(B \in \mathcal{B}(H) \) such that
\[
[B^*, A] = A^*[B^*, B]B = B^*[A^*, A]B = A^*[B^*, B]A = 0.
\]
Then \(A \) and \(B \) are quasihyponormal if and only if \(\text{span}\{A, B\} \) is quasihyponormal.

Proof. First assume that \(A \) and \(B \) are quasihyponormal. It is immediate from the preceding proposition that \(\text{span}\{A, B\} \) is quasihyponormal. The converse is immediate from the definition of \(\text{span}\{A, B\} \).

\[\square\]

Theorem 2.6. Let \(A \) and \(B \in \mathcal{B}(H) \) such that \(A \) is normal and \(AB \) is \((p, k)\)-quasihyponormal. If \(B(AA^*) = (AA^*)B \) then \(BA \) is \((p, k)\)-quasihyponormal for \(0 < p \leq 1 \) and \(k \in \mathbb{Z}_+ \).

Proof. Since \(A \) is normal, we have \(A = PU = UP \) with \(P \geq 0 \) and \(U \) unitary.

\[B(AA^*) = (AA^*)P^2B = BP^2 \implies PB = BP.\]

A simple computation shows that
\[U^*ABU = BA.\]

since \((AB)^*(AB)\) and \((AB)(AB)^*\) are positive and \(||U|| \leq 1\), by using Lemma 2.2, it follows that
\[
(BA)^k \left((BA)^* (BA) \right)^p (BA)^k = (U^*(AB)^* U)^k \left(U^*(AB)^*(AB)U \right)^p (U^*(AB)U)^k
\]
\[
= U^*(AB)^k U \left(U^*(AB)^*(AB)U \right)^p U^*(AB)^k U
\]
\[
\geq U^*(AB)^k U (AB)^k U
\]
\[
\geq U^*(AB)^k U (AB)^k U \quad \text{(since } AB \text{ is in } Q(p, k))
\]
\[
\geq U^*(AB)^k U U^*(AB)UU^*(AB)^*U^* \geq 0
\]
\[
\geq U^*(AB)^k U \left(U^*(AB)UU^*(AB)^*U \right)^p U^*(AB)^k U \quad \text{(by Lemma 2.2)}
\]
\[
\geq (U^*(AB)^* U)^k \left(U^*(AB)UU^*(AB)^*U \right)^p (U^*(AB)U)^k
\]
\[
= (BA)^k \left((BA)(BA)^* \right)^p (BA)^k.
\]

This implies that \(BA \) is \((p, k)\)-quasihyponormal operator. The proof of this theorem is finished.
Theorem 2.7. Let A and $B \in \mathcal{B}(\mathcal{H})$ such that A is (p,k)-quasihyponormal and B is invertible. If A commute with B and B^* then AB is (p,k)-quasihyponormal for $0 < p \leq 1$ and $k \geq 1$.

Proof.

\[
(AB)^k (AB)^k (AB)^k = (AB)^k (B^*A^*AB)^p (AB)^k \\
\geq (AB)^k B^*(AA) (AB)^k \\
\geq (B^*)^{k+1} A^k (A^*)^p A^k B^{k+1} \\
\geq (B^*)^{k+1} A^k (AA)^p A^k B^{k+1} \\
\geq (AB)^k (AB)(AB)^* (AB)^k
\]

\[\square \]

3. KAPLANSKY LIKE THEOREM FOR UNBOUNDED k-QUASI-HYPONORMAL OPERATORS

In this section, we generalized some notions of bounded operators to unbounded operators on a Hilbert space and we give sufficient conditions which ensure k-quasihyponormality (k-parnormality or k-*$-$paranormality) of the product of k-quasihyponormal (k-paranormal or k-*$-$paranormal) of unbounded operators.

For an $A \in Op(\mathcal{H})$, define A^2 by

\[D(A^2) = \{ x \in D(A) / Ax \in D(A) \}, A^2 x = A(Ax) \]

We can define higher powers recursively. Given A^n, define

\[D(A^{n+1}) = \{ x \in D(A) / Ax \in D(A^n) \}, A^{n+1} x = A^n(Ax) \]

Let us begin with the concept of k-quasihyponormality.

Definition 3.1. A densely defined operator $A : D(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ is said to be k-quasihyponormal for some positive integer k if $D(A) \subset D(A^*)$ and

\[\| A^* A^k x \| \leq \| A^{k+1} x \| \text{ for all } x \in D(A^{k+1}). \]

Remark 3.1. (1) Clearly, the class of all k-quasihyponormal operators on \mathcal{H} contains all hyponormal operators.

(2) the class of k-quasihyponormal operators properly contains the classes of k'-quasihyponormal ($k' < k$).
Definition 3.2. A densely defined operator $A : \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ is said to be
(1) k-paranormal for some positive integer k if
$$\|Ax\|^k \leq \|A^kx\| \|x\|^{k-1} \text{ for all } x \in \mathcal{D}(A^k),$$
or equivalently
$$\|Ax\|^k \leq \|A^kx\| \text{ for every unit vector } x \in \mathcal{D}(A^k).$$
(2) $k - \ast$-paranormal for some positive integer k if $\mathcal{D}(A) \subset \mathcal{D}(A^\ast)$ and
$$\|A^\ast x\|^k \leq \|A^kx\| \|x\|^{k-1} \text{ for all } x \in \mathcal{D}(A^k),$$
or equivalently $\mathcal{D}(A) \subset \mathcal{D}(A^\ast)$ and
$$\|A^\ast x\|^k \leq \|A^kx\| \text{ for every unit vector } x \in \mathcal{D}(A^k).$$

Example 3.1. Consider the Hilbert space $\mathcal{H} = l^2(\mathbb{Z})$ under the inner product $\langle x, y \rangle = \sum_{n=-\infty}^{\infty} x_n\overline{y_n}$, and let $(e_n)_{n \in \mathbb{Z}}$ be any orthonormal basis for \mathcal{H}. Let $(\omega_n)_{n \in \mathbb{Z}}$ be an increasing sequence of numbers such that $\omega_n > 0$ for all $n \in \mathbb{Z}$ and $\sup_n (\omega_n) = \infty$. Consider the unilateral forward weighted shift operator A defined in term of the standard basis of $l^2(\mathbb{Z})$ by
$$Ae_n = \omega_n e_{n+1} \text{ for all } n \in \mathbb{Z}.$$
A simple calculation shows that the adjoint of unilateral forward weighted shift is given by
$$A^\ast e_n = \omega_n e_{n-1} \text{ for all } n \in \mathbb{Z}.$$
By this we have
$$A^\ast Ae_n = \omega_n^2 e_n \text{ and } A^2 e_n = \omega_n \omega_{n+1} e_{n+2}.$$
Consequently
$$\|A^\ast Ae_n\| \leq \|A^2 e_n\| \text{ for all } n \in \mathbb{Z}.$$
Which implies that the operator A is quasihyponormal.

Lemma 3.1. If $A \in Op(\mathcal{H})$ be a k-quasihyponormal, then
$$\|A^kx\|^2 \leq \|A^{k+1}x\| \|A^{k-1}x\| \text{ for } x \in \mathcal{D}(A^{k+1}).$$
Proof. In fact
$$\|A^kx\|^2 = \langle A^kx, A^kx \rangle = \langle A^\ast A^kx, A^{k-1}x \rangle \leq \|A^\ast A^kx\| \|A^{k-1}x\| \leq \|A^{k+1}x\| \|A^{k-1}x\|.$$
Proposition 3.1. Let A be a closed densely defined operator in \mathcal{H}. If A is k-quasihyponormal then
$$A^k \left(A^2 - a A^* A + a^2 I \right) A^k \geq 0 \quad \text{for all } a \in \mathbb{R}.$$

Proof. Let us suppose that A is k-quasihyponormal. Then it follows that the following relation holds:
$$\| A^* A^k x \|^2 \leq \| A^{k+1} x \|^2 \leq \| A^{k+2} x \| \| A^k x \|.$$

This means that
$$\| A^* A^k x \|^2 \leq \| A^{k+2} x \| \| A^k x \| \iff 4 \| A^* A^k x \|^2 - 4 \| A^{k+2} x \| \| A^k x \| \leq 0 \iff \| A^{k+2} x \|^2 - 2a \| A^{k+2} x \|^2 + a^2 \| A^k x \|^2 \geq 0 \iff A^k \left(A^2 - a A^* A + a^2 I \right) A^k \geq 0.$$

This completes the proof of the proposition.

Proposition 3.2. Let $A \in Op(\mathcal{H})$ be a k-quasihyponormal. if A is invertible then A is hyponormal.

Proof. As A is k-quasihyponormal, we have by definition that $\mathcal{D}(A) \subset \mathcal{D}(A^*)$ and
$$\| A^* A^k x \| \leq \| A^{k+1} x \| \quad \text{for all } x \in \mathcal{D}(A^{k+1}).$$

Since A is invertible with an everywhere defined bounded inverse, we have for all $x \in \mathcal{D}(A) : A^{-k} x \in \mathcal{D}(A^{k+1})$
$$\| A^* A^k A^{-k} x \| \leq \| A^{k+1} A^{-k} x \| \quad \text{for all } x \in \mathcal{D}(A^{k+1}).$$

Hence we may write
$$\| A^* x \| \leq \| A x \|.$$

Proposition 3.3. Let $A \in B(\mathcal{H})$ and $B \in Op(\mathcal{H})$ such that A and B are hyponormal. If $BA^* \subseteq A^* B$ then AB is k-quasihyponormal.

Proof. Let $x \in \mathcal{D}((AB)^{k+1}),$
$$\| (AB)^* (AB)^k x \| = \| B^* A^* (AB)^k x \| \leq \| BA^* (AB)^k x \| \quad \text{(since } B \text{ is hyponormal)} \leq \| A^* B (AB)^k x \| \leq \| AB (AB)^k x \| \quad \text{(since } A \text{ is hyponormal)} \leq \| (AB)^{k+1} x \|.$$

we even have evidence to quasi-hyponormal.
Proposition 3.4. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \text{Op}(\mathcal{H})$ such that A is normal and AB is k-quasihyponormal. If $B(AA^*) \subseteq (AA^*)B$ then BA is k-quasihyponormal.

Proof. Since A is normal, we have $A = PU = UP$ with $P \geq 0$ and U unitary.

$$B(AA^*) = (AA^*B) \Rightarrow P^2B = BP^2 \Rightarrow PB = BP.$$

A simple computation shows that

$$U^*ABU = BA.$$

So

$$\| (BA)^* (BA)^k x \| = \| U^* (AB)^* UU^* (AB)^k Ux \| = \| U^* (AB)^* (AB)^k Ux \| \leq \| U^* (AB)^{k+1} Ux \| \leq \| (U^* ABU)^{k+1} x \| = \| (BA)^{k+1} x \|,$$

This implies that (BA) is k-quasi hyponormal.

\[\Box \]

Proposition 3.5. Let $A \in \mathcal{B}(\mathcal{H})$ and $B : D(B) \subset \mathcal{H} \longrightarrow \mathcal{H}$ be closed densely defined operator such that A and B are k-quasihyponormal. If $A^* A^k B \subseteq BA^* A^k$ and $A^j B^j \subseteq (AB)^j$ for $j \in \{k, k+1\}$, then AB is k-quasihyponormal.

Proof. Since $A \in \mathcal{B}(\mathcal{H})$ and B is closed densely defined, it is well known that

$$AB)^* = B^* A^*.$$

Hence we may write

$$\|(AB)^*(AB)^k x\| = \|B^* A^k B^k x\| = \|B^* B^k A^k x\| \leq \|B^{k+1} A^k x\| \text{ (since } B \text{ is } k\text{-quasihyponormal)} \leq \|A^k A^k B^{k+1}\| \leq \|A^{k+1} B^{k+1} x\| \text{ (since } A \text{ is } k\text{-quasi hyponormal)} \leq \|(AB)^{k+1} x\|.$$

This completes the proof.

\[\Box \]

Proposition 3.6. Let $A \in \text{Op}(\mathcal{H})$ is normal and $B \in \mathcal{B}(\mathcal{H})$.

1. If AB is k-paranormal and $A^* AB \subseteq BA^* A$, then BA is k-paranormal.

2. If AB is $k-\ast$-paranormal and $A^* AB \subseteq BA^* A$, then BA is $k-\ast$-paranormal.
Proof. (1) Using the normality of $A = U|A| = |A|U$ (U unitary) and the fact that

$$A^*AB \subseteq BA^*A$$

we see that $BA = U^*ABU$.

Now we have

$$\|BAx\|^k = \|U^*ABUx\|^k \leq \|ABUx\|^k \leq \|(AB)^kUx\| \leq \|(U^*ABU)^kx\| = \|(BA)^kx\|.$$

(2) By similar argument.

References

[1] B. Abdelkader and H. Mortad Mohammed, Generalizations of Kaplansky’s Theorem Involving Unbounded Linear Operators. Bulletin of the Polish Academy of Sciences. Mathematics. Vol. 62, no 2, 181–186 (2014).

[2] A. Aluthge and D. Wang, Powers of p-Hyponormal Operators, J. of Inequal. And Appl., (1999), Vol. 3, pp. 279-284.

[3] A. Aluthge, On p-hyponormal operators for $0 < p < 1$; Integral Equations Operator Theory 13 (1990) 307–315.

[4] C. Arora, P. Arora, On p-quasihyponormal operators for $0 < p < 1$, Yokohama Math. J. 41 (1993) 25–29.

[5] S.L. Campbell, B.C. Gupta, On k-quasihyponormal operators, Math. Japonoca 23 (1978) 185–189.

[6] J. B. Conway and W. Szymanski, Linear combinations of Hyponormal operators. Rocky Mountain journal of Mathematics. Volume 18, Number 3, Summer 1988.

[7] A. Daniluk, On the closability of paranormal operators. J. Math. Anal. Appl. 376 (2011) 342-348.

[8] E. Deutsch, P. M. Gibson and H. Schneider, The Fuglede-Putnam Theorem and Normal Products of Matrices. Linear Algebra and its Applications Volume 13, Issues 12, 1976, Pages 53-58.

[9] Z. J. Jablonski, I. B. Jung, J. Stochel, Unbounded quasinormal operators revisited, Integr. Equ. Oper. Theory, 79 (2014), 135-149.

[10] J. Janas, On unbounded hyponormal operators. Ark. Math. 27(1989), 273–281.
[11] W. E. Kaufman, Closed operators and pure contractions in Hilbert space, Proc. Amer. Math. Soc. 87 (1983), 83-87.

[12] I. Kaplansky, Products of normal operators, Duke Math. J., 1953, 20/2, 257–260.

[13] I.H. Kim, On $(p; k)$-quasihyponormal operators. Mathematical inequalities and Applications. Vol. 7, Number 4 (2004), 629–638.

[14] M. Y. Lee, An extension of the Fuglede-Putnam theorem to (p, k)-quasihyponormal operators. Kyungpook Math. J. 44(2004), No. 4, 593-596.

[15] M. H. Mortad, On the Normality of the Sum of Two Normal Operators, Complex Anal. Oper. Theory, 6/1 (2012), 105–112. 399-408.

[16] M. H. Mortad, An application of the Putnam-Fuglede theorem to normal products of self-adjoint operators, Proc. Amer. Math. Soc. 131 (2003), 3135-3141.

[17] M. H. Mortad, On some product of two unbounded self-adjoint operators, Integral Equations Operator Theory 64 (2009), 399-407.

[18] A.B. Patel and P.B. Ramanujan, On Sum and Product of Normal Operators. Indian J. Pure Appl. Math., 12(100: 1213–1218(1981).

[19] 17. W. Rudin, Functional analysis, McGraw-Hill, 1991 (2nd edition).

[20] Schöichi Òta and Konrad Schmügen, On some classes of unbounded operators. Integral Equations and Operator Theory Vol. 12 (1989).

[21] J. Stochel, F. H. Szafraniec, On normal extensions of unbounded operators. II, Acta Sci. Math. (Szeged) 53 (1989), 153-177.