Robust Probabilistic Predictive Syntactic Processing: Motivations, Models, and Applications

by

Brian Edward Roark
B.A., University of California, Berkeley, 1989
M.S., Claremont Graduate School, 1997

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Cognitive and Linguistic Sciences at Brown University

May 2001
This thesis by Brian E. Roark is accepted in its present form by
the Department of Cognitive and Linguistic Sciences
as satisfying the dissertation requirement for
the degree of Doctor of Philosophy

Mark Johnson, Director

Eugene Charniak, Reader

Julie Sedivy, Reader

Frederick Jelinek, Reader

Peder J. Estrup
Dean of the Graduate School and Research
Abstract of “Robust Probabilistic Predictive Syntactic Processing” by Brian Edward Roark, Ph.D., Brown University, May, 2001.

This thesis presents a broad-coverage probabilistic top-down parser, and its application to the problem of language modeling for speech recognition. The parser builds fully connected derivations incrementally, in a single pass from left-to-right across the string. We argue that the parsing approach that we have adopted is well-motivated from a psycholinguistic perspective, as a model that captures probabilistic dependencies between lexical items, as part of the process of building connected syntactic structures. The basic parser and conditional probability models are presented, and empirical results are provided for its parsing accuracy on both newspaper text and spontaneous telephone conversations. Modifications to the probability model are presented that lead to improved performance. A new language model which uses the output of the parser is then defined. Perplexity and word error rate reduction are demonstrated over trigram models, even when the trigram is trained on significantly more data. Interpolation on a word-by-word basis with a trigram model yields additional improvements.
Acknowledgments

I would like to thank Mark Johnson for invaluable discussion, guidance and moral support over the course of my time here at Brown. It has been a fertile, collaborative atmosphere under his direction, and the research perspective which he cultivates is one that I will attempt to carry with me. Eugene Charniak also contributed greatly to my work here at Brown, and I’d like to thank him, and Mark, for maintaining a truly interdisciplinary research group here.

I have benefited immensely from being in this small, diverse department, which presented me with so many perspectives on language, computation, linguistics, and cognitive science in general, many of which I have internalized. Thanks so much to Polly Jacobson for being such a wonderful teacher; she’s influenced me more than she thinks. Also to Julie Sedivy for kindling an interest in many of the issues addressed in this thesis; and to Katherine Demuth for encouraging and collaborating on projects that took me away from my narrow specialty. Thanks also to Philip Lieberman and Molly Homer.

The collegiality among graduate students here, and their diversity of interests, has made for a rewarding work environment. The computational students in the department – including myself, Massimiliano Ciaramita, Rodrigo Braz, and Yasemin Altun – have been mutually supportive in the extreme, and I appreciate being part of that. Thanks also to the graduate and undergraduate students who have been part of the Brown Laboratory for Linguistic Information Processing (BLLIP) over the years; in addition to Massi and Yasemin: Don Blaheta, Sharon Caraballo, Heidi Fox, Niyu Ge, Keith Hall, John Hale, Sharon Goldwater, Gideon Mann, and Matt Berland. The weekly group meetings were among my best learning experiences here at Brown. Last, but not least, thanks for that odd intangible that I have received by virtue of sharing an office with Jesse Hochstadt.

Thanks to our friends from the Center for Language and Speech Processing at Johns Hopkins – Frederick Jelinek, Ciprian Chelba, Sanjeev Khudanpur, and Peng Xu – for comments and support in a truly collaborative spirit.

A special additional thanks to both Eugene Charniak and Ciprian Chelba for providing some of the code used at certain points in the work reported in this thesis. They both saved me much time and effort that would have been spent writing that code.

Some of the results presented in this thesis have appeared, in a slightly different form, in Roark and Johnson (1999) and Roark (2001).

Finally, this thesis would not have been written without the tireless and loving support of my wife Luciana. Having a family at home has made all the difference for me, and I recognize that the time that I have devoted to the research in this thesis has been devoted by her as well. She has my love and thanks. This thesis is dedicated to my mother, Barbara Jean Harman (b. Jan. 8, 1940; d. Jan. 10, 2000); and to my son, Max Emilio Roark (b. Jan. 16, 1998).
# Contents

Abstract iv  
Acknowledgments v  
List of Figures ix  
List of Tables xiv

## 1 Introduction 1

1.1 Roadmap . 2  
1.1.1 Computational linguistics . 2  
1.1.2 Psycholinguistics . 3  
1.1.3 Speech recognition . 3  
1.2 Problem statement and background . 3  
1.2.1 Parsing . 5  
1.2.2 Statistical parsing . 13  
1.2.3 Human sentence processing . 14  
1.2.4 Broad-coverage parsing and human sentence processing . 17  
1.3 Chapter summary . 19  

## 2 Psycholinguistic models of sentence processing 21  
2.1 Parsing for incremental interpretation . 22  
2.2 Lexical and syntactic disambiguation . 27  
2.3 Robust sentence processing models . 31  
2.4 Chapter summary . 34  

## 3 Probabilistic top-down and left-corner parsing 35  
3.1 Background . 35  
3.1.1 Grammars, derivations, and trees . 35  
3.1.2 Grammar transforms . 38  
3.2 Top-down probabilistic parsing . 45  
3.3 Empirical results I . 50  
3.3.1 Evaluation . 50  
3.3.2 Delaying rule identification through factorization . 51  
3.3.3 Left-corner parsing . 52  
3.3.4 Non-local annotation . 54  
3.3.5 Accuracy/Efficiency tradeoff . 55
List of Figures

1.1 Two parse structures for an ambiguous string: (a) NP-attached structure; and (b) VP-attached structure ................. 6
1.2 Partial structures built when the word ‘saw’ is incorporated into the analysis: (a) top-down; (b) bottom-up; (c) left-corner (dotted lines indicate underspecified links) ......... 9
1.3 Incrementally building left-recursive structures: (a)-(c) distinct top-down parses; (d) underspecified left-corner parse (dotted lines indicate underspecified links) ......... 10
1.4 Dynamic programming example: finding the shortest path from A to H ................. 11
1.5 Transforming the tree structure in (a) to the undirected, triangulated graph in (b), and the structure of the dependencies (c) after performing the dynamic programming calculation on node 3 ................. 12

2.1 (a) Fully specified top-down prediction; (b) Underspecified top-down prediction; (c) Delayed prediction of constituent boundary ................. 26

3.1 Two parse trees: (a) a complete parse tree; (b) a complete parse tree with an explicit stop symbol for rules ................. 38
3.2 Order of announce points for (a) top-down; (b) bottom-up; (c) arc-standard left-corner; and (d) arc-eager left-corner parsing strategies ................. 39
3.3 Factored trees: (a) unfactored original; (b) right factored (RF); (c) left factored to binary (LF2); (d) left factored to unary (LF1); (e) left factored to nullary (LF0) ................. 41
3.4 The same structure with (a) the original grammar; (b) the left-corner transformed grammar; and (c) the left-corner transformed grammar with ε-removal ................. 43
3.5 Announce points for different transformations of the context-free grammar, when used with a top-down parser ................. 45
3.6 A deterministic top-down parsing algorithm, modified from Aho, Sethi, and Ullman (algorithm 4.3), taking a start symbol $S^*$, a parsing table $M_G$, and an input string $w$ as arguments. The symbol $\triangleright$ precedes comments ................. 47
3.7 A non-deterministic top-down parsing algorithm, taking a context-free grammar $G$, a derives relation $\Rightarrow$, an input string $w$, a base beam-factor $\gamma$, and a threshold function $f$ as arguments. The symbol $\triangleright$ denotes our derives relation defined on page 72. The symbol $\triangleright$ precedes comments ................. 48
3.8 (a) The original structure; (b) after left-corner transform (LC); (c) after left-corner transform and left-factorization (LC $\circ$ LF); and (d) after left-corner transform, left-factorization, and parent announce annotation (LC $\circ$ LF $\circ$ ANN) ................. 53
3.9 (a) Original tree; (b) with parent annotation; and (c) with left-corner annotation ................. 55
3.10 Changes in performance with beam factor variation ................. 56
3.11 Changes in performance with beam factor variation ................. 57
3.12 The same two steps in derivations for two strings

3.13 Conditional probability model represented as a decision tree, identifying the
location in the partial parse tree of the conditioning information

3.14 Reduction in average precision/recall error and in number of rule expansions per
word as conditioning increases, for sentences of length \( \leq 40 \)

3.15 Observed running time on section 23 of the Penn treebank, with the full condi-
tional probability model and beam of \( 10^{-11} \), using one 300 Mhz UltraSPARC
processor and 256MB of RAM of a Sun Enterprise 450

4.1 Tree-walking functions to return conditioning values for the probability model.

4.2 More tree-walking functions to return conditioning values for the probability model.

4.3 Two trees, to illustrate the tree-walking functions for non-POS expansions. The
newly hypothesized node in trees (a) and (b) is the ‘PP’. The labels of these new
nodes are the conditioned variables.

4.4 Two trees, to illustrate the tree-walking functions for POS expansions. The newly
hypothesized node in both trees (a) and (b) is the word ‘with’. The labels of these
new nodes are the conditioned variables.

4.5 Percentage of candidate analyses at a left-child chain depth beyond the correct
parse, at the first word in the sentences and at other words of the sentences

4.6 Percentage of candidate analyses and percentage of correct parses with a left-child
chain depth, at the first word in the sentences and at other words of the sentences

4.7 Three representations of the NP modifications: (a) the original grammar repres-
entation; (b) Selective left-corner representation; and (c) a flat structure that is
unambiguously equivalent to (b)

4.8 A new tree-walking function to condition on values in the left-child chain beyond
the grandparent of the left-hand side. node is a pointer to a node in the tree, which is
a data structure with five fields: label which is a pointer to a character string; and
parent, child, leftsib, and head, which are pointers to other nodes in the tree.
The symbol \( \triangleright \) precedes comments.

4.9 Percentage of candidate analyses at a left-child chain depth beyond the correct
parse at the first word in the sentences, for the original base beam factor, and with
a narrow beam at the first word.

4.10 Percentage of candidate analyses for wide and narrow beams and percentage of
correct parses with a left-child chain depth at the first word in the sentences

4.11 A sample parse tree from the Penn Switchboard Treebank

4.12 Typical disfluencies from the Switchboard treebank

4.13 Functions for conditioning probabilities so as to capture EDITED node paral-
lelism. node is a pointer to a node in the tree, which is a data structure with
five fields: label which is a pointer to a character string; and parent, child, leftsib,
and head, which are pointers to other nodes in the tree. The symbol \( \triangleright \) precedes
comments.
4.14 Another function for conditioning probabilities so as to capture EDITED node parallelism. *node* is a pointer to a node in the tree, which is a data structure with five fields: *label* which is a pointer to a character string; and *parent*, *child*, *leftsib*, and *head*, which are pointers to other nodes in the tree. The symbol $\triangleright$ precedes comments.

4.15 The modified conditional probability models used for Switchboard parsing. These are identical to those in figures 4.3 and 4.4, except for the EDIT-CHILD and EDIT-LEX functions.

5.1 Tree representation of a derivation state

5.2 Reduction in average precision/recall error, number of rule expansions, and perplexity as conditioning increases

5.3 Increase in average precision/recall error, model perplexity, interpolated perplexity, and efficiency (i.e. decrease in rule expansions per word) as base beam factor decreases

5.4 Original treebank tree, and the restructured constituents. Everything except the changes shown remained the same in our transform of the training corpus.
# List of Tables

| Table | Title                                                                 | Page |
|-------|----------------------------------------------------------------------|------|
| 3.1   | The effect of different approaches to factorization                  | 51   |
| 3.2   | Left Corner Results                                                  | 54   |
| 3.3   | Non-local annotation results                                          | 55   |
| 3.4   | Levels of conditioning information, mnemonic labels, and a brief description of the information level for empirical results | 63   |
| 3.5   | Results conditioning on various contextual events, standard training and testing corpora | 64   |
| 3.6   | Comparison of parsing results with the best in the literature         | 66   |
| 4.1   | Parsing results using the conditional probability model from chapter 3, with a smoothed (Markov) grammar of order 3, versus a PCFG backbone. Results are trained on sections 2-21 and tested on section 23. | 76   |
| 4.2   | Parsing results using the new conditional probability model, with a variety of base beam factors. Results are trained on sections 2-21 and tested on section 23. | 76   |
| 4.3   | Left-child chain counts from sections 2-21 of the Penn Wall St. Journal Treebank. Counts for the position in the sentence are total number of words in that position. Counts for the chains are for chains of length > 1, where only non-POS categories are counted in a chain. | 78   |
| 4.4   | Recursive left-child chain counts from sections 2-21 of the Penn Wall St. Journal Treebank. Percentage may sum to more than 100, due to the fact that a single recursive chain may hold consecutive recursion for more than category. | 78   |
| 4.5   | Parsing results using the $FLC_{NP}$ transform at two different base beam factors, the LC-CHAIN features, and a narrow beam at the sentence initial position only, compared with the original smoothed grammar results. Results are trained on sections 2-21 and tested on section 23. | 83   |
| 4.6   | Parsing results using the model from previous sections, and the new model with functions to condition probabilities on EDITED node parallelism. The parser was trained on sections 2 and 3 of the switchboard treebank, and tested on files sw4004 through sw4153. | 91   |
| 4.7   | Parsing results using the new model with functions to condition probabilities on EDITED node parallelism, at various base beam factors. The parser was trained on sections 2 and 3 of the switchboard treebank, and tested on files sw4004 through sw4153. | 91   |
| 4.8   | Results using the Charniak and Johnson modified labeled precision and recall metric, of their parser, our parser, and EDITED nodes from our parser. | 92   |
| 4.9   | Parsing results on section 23 of the Penn Wall St. Journal Treebank: (i) with punctuation; (ii) with no punctuation; and (iii) with punctuation treated as an empty node. | 93   |
Chapter 1

Introduction

Statistical methods have become central within computational linguistics in the past decade, providing the means by which many technologies can be applied to freely occurring language. For example, broad-coverage parsing of English has become feasible through the use of statistical techniques and highly ambiguous grammars. Grammars of natural language syntax (at this stage of their development) fall into one (or more likely both) of two classes: those that undergenerate the language they are intended to model – i.e. those that fail to cover grammatical sentences in the language – and those that overgenerate the language – i.e. cover grammatical sentences and many ungrammatical ones besides. Grammars that attempt to cover freely occurring language, i.e. to provide syntactic analyses for arbitrary strings of the language, must include enough rules to handle a large variety of potential syntactic structures, and this leads to both overgeneration and ambiguity – they provide a great many possible parses for each grammatical string. If one parses freely occurring language with a non-stochastic grammar, one either fails to parse a large proportion of the sentences (if the grammar undergenerates) or finds a very large number of parses for each sentence (if the grammar is ambiguous), and most likely both. Statistical methods do not change this situation, but they do ameliorate the problems associated with ambiguous grammars, insofar as they can be used to effectively select from among or prune the set of parses for a particular string. Broad-coverage statistical parsers now efficiently achieve 100 percent coverage of freely occurring language with a very high accuracy. Similar advantages have been found in many applications, such as large vocabulary speech recognition and machine translation.

Statistical methods and increased computing power have combined to make techniques possible which were unrealistic even a few years ago. Some of these techniques rely exclusively on statistics; for example, word clustering based on co-occurrence, irrespective of any structural relationship between the words – so-called bag-of-words approaches. Others look to combine structured and stochastic methods, e.g. the statistical parsing example above. This combination can and does make the difference between success and failure in many areas of computational linguistics, which opens up the possibility that non-statistical approaches that were considered and discarded as impractical in the past may have the potential to be successfully applied, when appropriately combined with statistical methods. This thesis investigates one such resurrection: incremental top-down parsing.

The principal contribution of this thesis lies in the exploitation of probabilistic lexico-syntactic information provided by a robust incremental parser for language modeling. We present a high accuracy, efficient incremental parser, and the parsing model will be profitably applied unmodified as a language model for speech recognition in multiple test domains.
While the empirical work presented in this thesis will be strictly computational, and of primary interest to computational linguists, it aspires to an interdisciplinary appeal. In particular, there are issues in the study of human sentence processing that have been largely ignored or glossed over within certain currently influential approaches, and we will spend a chapter discussing these issues. In short, people have been repeatedly shown to interpret sentences incrementally, and to use interpretations on-line to influence future interpretation. While many studies show the contextual sensitivity of on-line interpretation, and provide models to account for this sensitivity, the syntactic implications of these models receive much less attention. We will show that this can be more than simply a problem of leaving certain details of the model less than fully specified, but one which has the potential to change some models’ empirical predictions.

An additional question that might be asked about incremental interpretation in human sentence processing is: why? It is certainly imaginable that the sentence processing mechanism could have evolved to interpret sentences only once they have been seen in entirety. The computational benefits of delaying the composition of constituents until those constituents are complete can be very large - see the discussion of dynamic programming below. Yet this is not the case. The results in this thesis point the way to a reason for this question, one which has only just begun to be investigated in the psycholinguistic literature (Borsky, 1998). The ultimate computational payoff to resurrecting top-down parsing will be in language modeling for speech recognition. The ease with which words can be incorporated into parses (or interpretations) can be used as a measure for resolving acoustic ambiguities. The additional ambiguities introduced by continuous speech, and the reliance upon many levels of context (e.g. phonetic, phonological, syntactic) to resolve these ambiguities, is one potential reason for incremental interpretation in human sentence processing.

The thesis will be organized as follows: this chapter will introduce the central problems, as well as some basic terminology; the next chapter will discuss psycholinguistic models of sentence processing, and their implicit demands upon syntactic processing; chapter 3 will outline probabilistic top-down parsing, and report on extensive trials with the basic models; chapter 4 will present refinements to these models, aimed at improving accuracy, efficiency, and coverage; finally, chapter 5 will present the application of this parsing model to language modeling for speech recognition.

This thesis is intended to be of interest to more than one research community. However, not everyone will be uniformly interested in what is being presented. For this reason the next sub-section will provide a roadmap to the contents, complete with advice on what readers with particular interests can skip.

### 1.1 Roadmap

Depending on the reader’s primary area of interest, the relevant chapters in this thesis may differ. Everyone is invited to read the thesis in its entirety, but the following three paths through the thesis are probably sufficient for those with focused interests.

#### 1.1.1 Computational linguistics

For the reader who is primarily interested in computational linguistics, chapters 3-5 will be of the greatest interest. For an informal discussion of parsing, see section 1.2 through sub-section 1.2.2. Subsequent sections of chapter one and all of chapter two deal with models of human sentence
processing, and are not required to begin reading from chapter three.

1.1.2 Psycholinguistics

Chapters one and two present the psycholinguistic claims in this thesis. Chapters 3-5 are strictly computational, and serve the earlier psycholinguistic arguments as something of an existence proof – that the kind of parser that we advocate can perform very well, even with a very ambiguous grammar. Thus, the reader who is primarily interested in psycholinguistics should read chapters one and two in entirety, including the informal introduction to parsing in the next section, since it will introduce a perspective on syntactic parsing and much vocabulary that will be important to understanding chapter two.

1.1.3 Speech recognition

The empirical results in speech recognition are presented in chapter five. However, to understand how the parser functions (and hence how the language model works), it is a good idea for people whose primary interest is in speech recognition to follow the recommendations for those interested in computational linguistics above.

1.2 Problem statement and background

This thesis deals with the following problem: incremental interpretation requires hypothesizing semantic relationships between constituents before they are necessarily completed; yet, because of the large number of local ambiguities, the most efficient way to parse a string into constituent structure is through dynamic programming. Jurafsky saw this problem, and made the following distinction, which we will see again (in a slightly different form) in the asynchronous model in Shieber and Johnson (1993):

FROM OUR PERSPECTIVE, THIS DISTINCTION BETWEEN “PURE SYNTAX” AND INTERPRETATION IS UNNECESSARILY COMPLICATED. A SIMPLER MODEL IS ONE IN WHICH SYNTACTIC AND SEMANTIC PROCESSING ARE VERY TIGHTLY COUPLED, WITH FULLY CONNECTED SYNTACTIC STRUCTURES. SUCH A MODEL, HOWEVER, HAS BEEN CONSIDERED PROBLEMATIC FOR A VARIETY OF REASONS. LET US SPEND SOME TIME MAKING CLEAR WHY WE TAKE THE PERSPECTIVE WE DO, AND THE UNDERLYING ASSUMPTIONS OF BOTH POSITIONS.

The nature of interpretation is not the subject of this thesis, and we will not provide a model of interpretation. Any model of interpretation, however, will take as its starting point some kind of compositional semantic processing, which productively combines the meanings of smaller constituents into meanings of larger constituents. For example, the meaning of the nominal constituent ‘green sky’ is derived from the meanings of ‘green’ and ‘sky’ via some productive rule that also allows one to derive the meaning of ‘purple sky’. This sort of compositional semantic processing is at least in part syntactic, to the extent that decisions must be made about which constituents compose. Consider, for example, ‘drunken airplane pilots’, which is ambiguous between “drunken pilots of airplanes” and “pilots of drunken airplanes”. We know that living beings get drunk, and
that pilots, not airplanes, are alive, which provides a basis for disambiguation. The semantic composition that allows us to interpret ‘drunken airplane pilots’ must decide, or make a guess, at the appropriate compositional structure.

Incremental interpretation will also involve some kind of semantic composition, resulting in a partial interpretation which may or may not be correct. For example, ‘every author read . . . ’ is ambiguous between what is called the main verb reading and what is called the reduced relative reading. The main verb reading would continue: ‘every author read in the garden.’ The reduced relative reading would continue: ‘every author read by the children voted for Roosevelt.’ Incremental interpretation involves distinguishing the two interpretations, and deciding (perhaps) that ‘every author’ is a good agent for the verb, thus immediately favoring a main verb reading of the sentence, in advance of any truly disambiguating material. The semantic ambiguity between the two readings could be represented as follows, using standard formal semantic notation

\[
\begin{align*}
(1.1) & \quad \lambda y \forall x [\text{author}(x) \rightarrow \text{read}(x, y)] \\
(1.2) & \quad \lambda P \forall x [\text{author}(x) \land \exists y \text{read}(y, x) \rightarrow P(x)]
\end{align*}
\]

In both cases, function composition can allow for meaning composition before the constituents are complete. Semantically, the two constituents, the subject NP and the verb, compose to give very different meanings, which correspond to different interpretations. As stated earlier, this incremental semantic composition is a prerequisite for incremental interpretation. It involves hypothesizing compositional structure(s), and perhaps disambiguating based on considerations such as thematic fit.

Evidence for rapid, incremental interpretation is provided by garden-path effects. People have difficulty, for example, with reduced relative clauses, generally preferring the main verb reading, such as in the above example. Yet these preferences can vary, depending on many factors, such as thematic fit. In contrast to the above example, a string like ‘the newspaper read . . . ’ may not disprefer a reduced relative reading so dramatically, by virtue of ‘the newspaper’ being a poor agent for the main verb. In order to evaluate these alternatives, they must be hypothesized, i.e. the potential relationships (compositional structure) between constituents must be made explicit immediately.

To get back to the distinction made in the Jurafsky quote above, both parsing and interpretation involve hypothesizing relationships between constituents – composing smaller constituents to form larger constituents – and hence it is not clear how an efficiency gain in “parsing” but not in “interpretation” would impact the language comprehension process as a whole. To the extent that two constituents must be hypothesized to compose semantically for interpretation, what is the gain in not hypothesizing this composition syntactically?

Let us be clear from the outset what we mean by “incremental interpretation”. An incremental parser builds syntactic structure from left-to-right over the string. There are methods that couple syntactic and semantic processing in such a way that, to the extent that the parser is incremental, so is the semantic processing. Such a processing model can and has been used for improving search, by pruning certain semantically non-viable analyses – e.g. [Dowding et al. (1992)]. This, however, is not the sense of incremental interpretation that we are using. This kind of incremental parsing produces disconnected fragments of interpretations, and waits until constituents are complete before composing them to form larger constituents. Incremental interpretation composes meanings before constituents are complete, to provide a single, connected analyses for the string to that point. Consider again the example ‘the authors read . . . ’. An incremental bottom-up parser will wait to compose the subject NP and main VP until they have both been completed, and hence will not provide a single, connected analysis until the end of the string.
Incremental interpretation requires enough connected constituent structure to distinguish between competing analyses. This might be done via a sentence processing mechanism that performs bottom-up syntactic parsing, coupled with some additional semantic processing, such as the mechanism proposed in Shieber and Johnson (1993), which will be discussed in detail in Chapter 2. In such an architecture, the syntactic constituent structure is left underspecified, while semantic connections between constituents and words are hypothesized by a semantic module. A simpler architecture than this is one in which there is a one-to-one correspondence between the syntactic and semantic compositional structure, and parsing and interpretation are part of the same process. This is known as the rule-to-rule hypothesis, and it is standardly assumed in theories of compositional semantics. Under such a hypothesis, a top-down parser builds enough structure for incremental interpretation, since the hypothesized syntactic structure will directly correspond to a hypothesized semantic structure. It should be pointed out that a top-down parser of this sort may build more structure than is necessary for immediate incremental interpretation. For example, consider the partial string ‘I saw Jim’s . . . ’. Whether or not a link between the verb and the constituent begun by the possessive must be hypothesized immediately to allow for incremental interpretation of the sort that people appear to perform is unclear. Certainly by the time the head of the noun phrase is encountered, such a link must be hypothesized. Another predictive parsing approach, left-corner parsing, would also build enough structure in this case to allow for the kind of discrimination that is observed in people. A parsing approach that delays hypothesizing structure until precisely when it is needed would meet our criterion for providing enough structure for incremental interpretation. In the absence of the knowledge of where that point is for every construction, we can investigate a top-down parser that will, in every case, provide enough.

The approach that we will advocate is incremental predictive parsing, without dynamic programming. If it can be shown that an incremental parser that builds enough constituent structure for incremental interpretation is viable in a highly ambiguous, broad-coverage domain, then there is no reason to expect that the human sentence processing mechanism needs to resort to dynamic programming. Once such a parser has been constructed, we can ask whether the approach buys us something computationally in return for not using dynamic programming. Hence there is both a psycholinguistic and computational motivation for the empirical work in this thesis.

The danger in trying to produce something of interest to two research communities is that one might actually produce something of interest to nobody at all. To avoid this fate, we will spend some time at the outset establishing a common vocabulary, and introducing some of the fundamental issues at stake for each of the research areas. This is also intended to delimit the topic a bit, so that we can later focus upon just those issues about which our empirical work has something to say. First we will discuss the computational background for parsing. We will remain informal at this stage, to facilitate interdisciplinary understanding; formal computational details will be provided as the approach is developed in later chapters. This computational introduction will be followed by a discussion of certain central ideas in modeling the human sentence processing mechanism.

1.2.1 Parsing

Parsing can be decomposed into several sub-tasks. The first is identification of constituents. For example, in figure 1.1 the substring ‘the thief’ in the string ‘the thief saw the cop with the binoc-
ulars’ is quite uncontroversially a constituent, whatever its internal structure may be. We can identify the constituent by a beginning word (‘the’), an ending word (‘thief’), and some kind of label. Less clear, and hence more controversial, are the appropriate labels for constituents, and their internal structure. The labels and structures shown in figure 1.1 come from the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993), whose conventions we have adopted for no theoretical reason, but simply because our approach requires a treebank, and this is the only one of an adequate size available.

Note that the internal structure of the NP constituents in the Penn Treebank is flat, with no *N constituents or compounding structure. While this decision (and others) about the constituent structure are perhaps theoretically unsatisfying, they do not seriously impact the results in this thesis, insofar as we are investigating whether a parser of a certain type can find good parses in a very large search space. If we collect all of the context-free grammar rules from the trees of the Penn Treebank, the resulting grammar is very ambiguous. In addition, it is a heavily left-recursive grammar, which is a well-known problem for top-down parsers. Hence this particular parsing domain provides a more-than-suitable test bed for an incremental predictive parser. By using this grammar, we are not making any claims about the actual constituent structure of English, although we take the existence of such basic constituents as noun phrases (NP), verb phrases (VP), prepositional phrases (PP), and clauses (S) as uncontroversial.

At this point it is convenient to begin discussing constituents as nodes in a tree representation, such as that presented in figure 1.1. A tree is a labelled, ordered, directed graph consisting of nodes and arcs between nodes. The arc represents the parent/child relationship between nodes or constituents: the arc goes from the parent to the child. By definition every node in a tree, excepting the root, has exactly one parent node (see e.g. Aho, Sethi, and Ullman, 1986). Nodes in the tree with no outgoing arcs – i.e. no children – are called leaves. There are two kinds of node labels: (i) those that are words in the language, which are sometimes called terminal items or terminals, by virtue of the fact that they terminate that branch of the tree (they cannot have children); and (ii)
non-terminals, which are not part of the string. If a leaf node of the tree has a non-terminal label, it is called an empty node, since it does not produce any terminals in the string. By convention, in the Penn Treebank there are two disjoint sets of non-terminals, those which can and those which cannot be the parent of a terminal item. Those which can be the parent of a terminal item are called pre-terminals, or parts-of-speech (POS), and they can only be the parent of one terminal item at a time. These include things like determiner (DT), singular noun (NN), and preposition (IN). Again, we have no theoretical reason for adopting the convention that POS constituents are disjoint from other non-terminal constituents, but we follow the Penn Treebank for purely pragmatic reasons.

Given the pervasive use of trees as objects of interest in their own right in linguistic and psycho-linguistic theory, let us make clear that we consider trees a notational convenience and not an end-product of the parsing and interpretation process. Trees represent the compositional structure of a string of words, i.e. how smaller constituents compose to form larger constituents. Ideally, composition of constituents is both syntactic and semantic; both parsing and interpretation involve hypothesizing that particular constituents compose to form larger constituents. Trees are a convenient graphical representation for this compositional, hierarchical constituent structure, and (from our perspective) nothing else.\footnote{We must offer a caveat to these remarks, that the trees in the Penn treebank are not suited to the kind of rule-to-rule syntactic/semantic processing that we would favor. For example, the flat NP constituents underspecify the rich compositional structure of noun phrases in English. The parsers, however, that we will be investigating do not depend on a particular kind of constituent structure, but can handle any constituent structure encoded in a treebank, including grammars more appropriate for a rule-to-rule correspondence. Once again, however, our hands are tied by the lack of large treebanks apart from the ones that we are using.}

The two parse structures in figure 1.1 represent two hypotheses of the constituent structure of the sentence. These correspond to two interpretations: (a) the cop had the binoculars; or (b) the thief had the binoculars, and used them to see the cop. In terms of beginning and ending locations of constituents, and their labels, the two hypotheses are identical, except for an extra NP constituent in structure (a), spanning the substring ‘the cop with the binoculars’. These two structures do more, however, than simply hypothesize constituent boundaries – they also hypothesize dominance relationships between constituents. It is possible to have two distinct structural hypotheses with exactly the same hypothesized constituents, if two of the constituents span exactly the same substring. This will happen with unary productions, or with empty nodes. Something more must be said, then, about these dominance relationships.

A constituent $X$ dominates a constituent $Y$ if and only if either (i) $X$ is the parent of $Y$; or (ii) $X$ is the parent of a constituent $Z$ that dominates $Y$. The parent relationship is also called immediate dominance, since there is no intermediate node that is dominated by the parent and dominates the child. Each non-terminal node in the tree dominates a string of zero or more terminal items, which is called its terminal yield. Each constituent can be characterized by its label and its terminal yield, as was done when we introduced the notion of constituency. Each parse structure (or constituent structure) can be characterized by its constituents and the dominance relationships between constituents. This characterization allows us to state the difference between the two hypothesized constituent structures in figure 1.1 in a way that is closer to our understanding of the differences in interpretation: the parent of the PP is either (a) the object NP or (b) the VP.

We have two hypothesized constituent structures in figure 1.1 for the given string: how were they found? Well, in this case, we relied on the author’s knowledge of lowest-common-denominator constituency and intuitions about English. In the absence of this homunculus, some search strategy must be adopted to find the constituent structures from among the space of possible structures,
and for selecting them as “good” once they are found. First, some sort of grammar must be provided, which specifies the sets of terminals and non-terminals (including the root non-terminal), along with rules specifying how larger constituents can be composed of smaller constituents. For example, an NP constituent in English can consist of a DT followed by an NN, but not by an NN followed by a DT. By far the most common representation of such a grammar is through context-free rules of the form \( NP \rightarrow DT\ NN \), which can be interpreted as, “an NP constituent can immediately dominate a DT constituent, followed by an NN constituent and nothing else.”

In addition to the grammar, we must also consider the direction of hypothesis search. Two extremes in the continuum of parsing strategies are pure top-down and pure bottom-up. A pure top-down parsing strategy starts with the root of the tree and builds the structure down towards the terminals. In this strategy, parent nodes are hypothesized before any of their children. A pure bottom-up parsing strategy starts with the terminals and builds structure up towards the root. In this strategy, parent nodes are hypothesized after all of their children. There are many potential hybrid strategies, in which some of the structure is recognized top-down and some bottom-up, or some compromise between the two. One well-known hybrid strategy that will come up several times in the course of this thesis is called left-corner parsing (Rosenkrantz and Lewis II, 1970), in which (to over-simplify) parent nodes are hypothesized after their leftmost child has been fully built, but before the rest of their children are built.

Let us illustrate how the hypothesis search would work with each of these three strategies, by stepping through a parse of the first few words of the sentence “the cop saw the thief with the binoculars” incrementally, left-to-right. For simplicity, suppose that the root of the tree is always S, and that the only rules in the grammar are those in the derivations in figure 1.2. These approaches are being presented informally, to facilitate discussions of their differences.

The top-down parser begins with S, and expands it to NP followed by VP. This is a left-to-right parser, so it always works on the leftmost unexpanded non-terminal, in this case NP. The parser expands the NP into DT followed by NN. The DT expands to the terminal item ‘the’, and the NN expands to the terminal item ‘cop’. At this point, the leftmost unexpanded non-terminal is VP, which is expanded to VBD followed by NP. The VBD expands to the terminal item ‘saw’, at which point the leftmost unexpanded non-terminal is NP. And so on.

The bottom-up parser begins with the leftmost terminal item ‘the’. This can have the parent DT. The parser then moves to the next terminal item ‘cop’. This can have the parent NN. A DT followed by an NN can have the parent NP. The parser then moves to the next terminal item ‘saw’. This can have the parent VBD. And so on. Eventually a sequence of non-terminals can combine to form an S.

The left-corner parser begins with S and the leftmost terminal item ‘the’. The terminal item can have the parent DT. The parser then moves to the next terminal item ‘cop’. This can have the parent NN. A DT followed by an NN can have the parent NP. The parser then moves to the next terminal item ‘saw’. This can have the parent VBD. And so on. Eventually a sequence of non-terminals can combine to form an S.

---

\(^3\)It is worth pointing out that there are grammars of constituent structure that do not use phrase structure rules of this kind, but rather embed larger fragments of syntactic structure in the lexicon. For example, Tree Adjoining Grammars (Joshi, Levy, and Takahashi, 1975) and Categorial Grammars (Bar-Hillel, 1953; Lambek, 1958; Steedman, 1987) make use of lexical categories that specify precisely what kinds of categories the word can compose with. Note, however, that these approaches also require, in addition to access of these syntactic “part-of-speech” tags, syntactic operations to combine them. Hence, although the “division of labor” if you will has been shifted so that lexical access provides more of the syntactic structure, most of the points that will be made about syntactic processing also hold for these lexicalized formalisms.
Figure 1.2: Partial structures built when the word ‘saw’ is incorporated into the analysis: (a) top-down; (b) bottom-up; (c) left-corner (dotted lines indicate underspecified links)

S and the newly predicted S are the same constituent. The next terminal item is ‘saw’, which can have the POS label VBD. Having found a VBD, the parser predicts its parent VP and the remaining child of the VP, NP. Again, whether the newly predicted VP and the one predicted by virtue of expanding the S are the same is left underspecified. These decisions are made later in the string.

To understand the relevance of the parsing strategies to incremental interpretation, let us examine the structure built by different hypothesis search strategies when applied incrementally to a string. Figure 1.3 shows the amount of structure that will be built at the point when the word ‘saw’ is integrated into the analysis, for a pure top-down, pure bottom-up, and standard left-corner parser, each moving incrementally from left-to-right, as in the informal examples given. The top-down parser builds a fully connected tree to the left of the word; the bottom-up parser, because it does not build a non-terminal until all of its children have been built, has no structure built above the subject NP and the main verb. The left corner parser will have predicted an S constituent, after having built its left-corner constituent (the subject NP) and a VP constituent, after having built its left-corner constituent (the main verb). A standard left-corner algorithm will not, however, have attached the top-down and bottom-up predictions at this point in the string; an “eager attachment” version of the left-corner algorithm, in which this attachment is made earlier, will be discussed later in the thesis. The basic point to make here is that, if incremental interpretation involves hypothesizing that ‘the thief’ is an NP constituent (as opposed to ‘the thief saw’, which could be a nominal compound – some kind of tool), and that it is the subject of the main verb ‘saw’, then additional links will need to be hypothesized beyond those of the bottom-up parser. In other words, some kind of link between the constituents – which the top-down partial parse already provides – is needed for incremental interpretation.

Keep in mind that the partial parses in figure 1.2 represent one potential constituent structure, yet there might (and most often will) be many such hypotheses for a given string at any given point. One can either maintain all such alternatives, or have some metric for deciding that certain alternatives are better than others, and so discard the bad ones. Such metrics can come in many forms, from structural biases to memory constraints to probabilities. Of course, there is a danger to throwing away hypotheses in an incremental parser: garden pathing. It may very well be the
case that a dispreferred analysis at an intermediate point turns out to be the correct one. If all viable analyses have been discarded, then either the parser fails or some sort of repair strategy must be pursued.

In some cases, it is impossible to enumerate all of the possible partial parses, in particular if they are infinite. If we follow a top-down parsing strategy with a grammar that contains left-recursion, i.e. where there are rules in the grammar of the form $A \rightarrow A \alpha$, in which the first child on the right-hand side of the rule is of the same category of the parent, there are an infinite number of possible partial parses. Consider figure 1.3a-c, where we have shown three possible top-down partial parses of the verb phrase ‘saw the thief’, each providing for a different number of PP attachments. In order to allow for an arbitrary number of PP attachments, we would have to maintain an arbitrary number of distinct parses. A left-corner derivation, in contrast, by underspecifying the immediate dominance links, can handle this by delaying the point at which a decision must be made about the relationship between the predicted NP and the found NP. This difficulty with left-recursion is one of the major criticisms of top-down parsing, and one of the large benefits of left-corner and bottom-up parsing over top-down. The issue of left recursion and top-down parsing will be examined in detail in Chapter 4.

Even if some analyses are effectively pruned from the search space or choice points delayed, the number of distinct partial parses that must be retained may be large enough to benefit from dynamic programming. There is some flexibility with respect to the specific parsing strategy: standard chart parsing uses dynamic programming in a strictly bottom-up fashion; an Earley parser (Earley, 1970) incrementally uses dynamic programming with top-down filtering. A top-down parser cannot make use of dynamic programming techniques because of the exponential complexity that results from moving through the chart in that particular order. The next topic that we will cover in this introductory section on parsing is dynamic programming.

The basic idea behind dynamic programming is to use the structure of a problem to collapse partial solutions to the problem. For example, consider the graph in figure 1.4. Each arc is intended to represent a directional path from one point to another. Suppose that we want to evaluate all paths from point A to point F, to find the shortest. This could be done by explicitly evaluating all of the distinct paths, which in this case number 39. Or this could be done by simply evaluating each of
Figure 1.4: Dynamic programming example: finding the shortest path from A to F

the smaller intermediate links en-route from A to F. For example, to get from A to F through B, we must first go from A to B, then from B to F. The path choice from B to F is independent of which path was taken from A to B. The shortest path from A to F through B is the combination of the shortest path from A to B and the shortest path from B to F. Hence, this problem can be represented and processed efficiently by considering the 15 sub-paths, rather than all 39 complete paths. Thus there is a benefit even in this very sparsely connected case.

The same idea holds in parsing, insofar as every possible tree traces a path between the root node and the leaves. A chart can be constructed, every cell of which represents a possible constituent location. A chart parser will populate cells in the chart with edges, which are entries that indicate a constituent label and location. Under the context-free assumption, the path from the leaves to that constituent is independent of the path from that constituent to the root, in precisely the same way as in the example problem above. Hence, through dynamic programming over a chart, we can efficiently enumerate and evaluate all possible parses for a string given a context-free grammar.

To see why dynamic programming does not work for top-down parsing, one must understand what determines the complexity of the computation. Very briefly, to perform dynamic programming over a directed acyclic graph (DAG), one first removes the direction on the arcs, then creates new arcs between nodes with the same parent (triangularization). This is represented in figure 1.5, in the transition from the tree structure in (a) to the undirected triangulated graph in (b). The graph in (b) consists of two cliques of size three. A clique is a subset of the nodes in the graph that are fully connected: nodes 1, 2, and 3 form a clique, as do 3, 4, and 5. If the maximum clique size in a dynamic programming problem is $n$, the complexity of the computation is on the order of $|v|^{n-1}$, where $|v|$ is the space of possible values at each node (for a full presentation of dynamic programming see, e.g., Corman, Leiserson, and Rivest, 1990). After performing the dynamic programming calculation on any node, all remaining nodes that have an arc to that node are now linked. Hence, if we choose node 3 in the graph in (b), the resulting graph structure after performing dynamic
programming on that node is shown in (c). This is now a fully connected graph, i.e. there is now a clique of size 4, so the complexity of computation is $|v|^3$. If we had chosen to visit nodes in the graph in the order 2, 4, 5, 3, 1, for example, then the maximum clique size at any stage would be 3, and hence the complexity $|v|^2$. One can see from this that it is a good idea to begin with the leaves of the tree and move up, to minimize the maximum clique size. Dynamic programming with a top-down node visitation schedule results in a very large maximum clique size. It is worthwhile noting that there are dynamic programming versions of other predictive parsing strategies, such as left-corner (Sikkel and Nijholt, 1997), which do not suffer this problem so dramatically.

As Jurafsky points out, the internal structure of a constituent can make a difference to interpretation. In other words, as has been pointed out repeatedly, the context-free assumption is quite false for natural language. Consider, for example, a noun phrase such as 'the House Ways and Means Committee' as opposed to 'the Oakland A’s and Detroit Tigers’. There are several ways to carve up each of these NP constituents, which change the way they would be interpreted. By representing such a constituent as an NP, with an unspecified internal structure, these distinctions in interpretation would be lost. As pointed out in Martin, Church, and Patil (1981), the number of possible analyses for constructions such as PP attachment inside of noun phrases (e.g. ‘the boy with the dog with the leash’) grows exponentially according to the catalan numbers. The chart, however, with its context-free independence assumptions, contains on the order of $n^2$ cells, where $n$ is the length of the string. Hence, it packs this exponential number of analyses into a polynomial space. Differences in interpretation can hinge upon distinctions lost in the chart.

In sum, the critical requirement for incremental interpretation is that enough of the structure must be specified to allow for alternate interpretations to be distinguished. Insofar as one interpretation is “preferred” over another to the extent that the expectation for constituents that are consistent with that interpretation is increased at the expense of other constituents, such a processing mechanism can be called “predictive”. We will argue that top-down and left-corner parsing, both of which can be implemented in a top-down architecture, fit the requirements for such a processing mechanism.
1.2.2 Statistical parsing

In this thesis, we will present a novel statistical parser that performs comparably with state-of-the-art statistical parsers, while following an incremental, top-down parsing strategy. It is thus important, in this introductory section, to explain what is state-of-the-art in statistical parsing, and how our parser differs from this.

The past five years have seen enormous improvements in broad-coverage parsing accuracy, through the use of statistical techniques. The parsers that perform at the highest level of accuracy (Charniak (1997; 2000); Collins (1997; 2000); Ratnaparkhi, 1997) use probabilistic models with a very large number of parameters, including, critically, lexical head-to-head dependencies. Each of these parsers proceed in multiple stages: the Charniak and Collins parsers both prune the chart of edges that fall below some threshold score, before using their full models on the trees that remain packed in the chart; the Ratnaparkhi parser first runs a part-of-speech tagger, followed by a shallow “chunker”, which finds flat constituents given the input and part-of-speech tags, and finally a procedure which builds and evaluates fully connected structures.

The specific probabilistic models differ from approach to approach, with different parameters and different ways of mixing and smoothing the probabilistic evidence. At a very general level, however, these approaches share some key characteristics. In each of these approaches, scores or weights are calculated for events, e.g. edges or other structures, or perhaps constituent/head or even head/head relations. The scores for these events are compared and “bad” events, i.e. events with relatively low scores, are either discarded (as in beam search) or sink to the bottom of a heap (as in best-first). In fact, this general characterization is basically what goes on at each of the stages in multi-stage parsers, although the events that are being weighted, and the models by which they are scored, may change. In each parser’s final stage, the parse which emerges with the best score is returned for evaluation. These parsers get between 86 and 90 percent labeled precision and recall on standard test sets.

This is a general characterization of the best statistical parsers in the literature. Let us focus upon one of these three approaches, and give more details about how it works. The other approaches differ in details, but all of them involve pruning the search space and scoring alternatives in some way. We will give a brief outline of the Charniak parser (Charniak, 1997, Charniak, 2000), which we will refer to as the EC parser. The EC parser first prunes the search space by building a chart containing only the most likely edges. Each new edge is assigned a score, which is called its figure-of-merit (FOM), and pushed onto a priority queue. The FOM is the product of the probability of the constituent given the simple probabilistic context-free grammar (PCFG) and certain boundary statistics, which are scores measuring the likelihood of the constituent integrating with its surrounding context. Edges that are taken from the priority queue (highest score first) are put into the chart, and standard chart building occurs, with new edges being pushed onto the heap. This process continues until a complete parse is found; hence this is a best-first approach. Of course, the chart building does not necessarily need to stop when the first parse is found; it can continue until some stopping criterion is met. The criterion that was used by Charniak is a multiple of the number of edges that were present in the chart when the first parse was found. Thus, if the parameter is 1, the parser stops when the first parse is found; if the parameter is 10, the parser stops when the number of edges in the chart is ten times the number that were in the chart when the first parse was found.

4See, e.g., Corman, Leiserson, and Rivest (1990) for an introduction to data structures such as priority queues and stacks
This is the first stage of the parser. The second stage takes all of the parses packed in the chart that are above a certain probability threshold given the PCFG, and assigns a score using the full probability model. To evaluate the probability of each parse, the evaluation proceeds from the top down. Given a particular constituent, it first evaluates the probability of the part-of-speech of the head of that constituent, conditioned on a variety of information from the context. Next, it evaluates the probability of the head itself, given the part-of-speech that was just predicted (plus other information). Finally, it evaluates the probability of the rule expansion, conditioned on, among other things, the POS of the head and the head. It then moves down the tree to evaluate the newly predicted constituents. See Charniak (2000) for more details on the specifics of the parser.

The parser that we will present in later chapters shares some characteristics with these parsers, but differs in certain fundamental ways. Our parser will also condition the probabilities of events on a large number of contextual parameters in more-or-less the way Charniak does. It also will use boundary statistics to assign partial structures a figure-of-merit, which is the product of the probability of the structure in its own right and a score for its likelihood of integrating with its surrounding context. The parser will differ, however, in that it will parse incrementally in a single pass, from left to right. This will mean, among other things, that the lexical head of a constituent may not be available at a particular point in the analysis, to condition the probabilities of other subordinate heads. Hence, while our conditional probability model will share many parameters with, say, the Charniak model, a good number of important features will not be available, given our incremental parsing strategy.

Another statistical parser that should be mentioned is the probabilistic shift-reduce parser of Chelba and Jelinek (1998a). This parser differs from the parsers mentioned above as ours does: by following an incremental, single pass parsing strategy. It differs from our model by following a bottom-up parsing strategy. Accuracy results have not been made available for this parser; it has been evaluated as a language model for speech recognition. Our top-down parsing strategy will make it easy for us to capture certain top-down conditioning parameters that are used in the parsers mentioned earlier, but which are harder for the bottom-up Chelba and Jelinek parser to make use of. We will go into more detail about the specifics of their parser in chapter five, and compare our parser with theirs as a language model for statistical speech recognition.

Now we will discuss certain central ideas in the human sentence processing literature, in an attempt to (i) establish a common vocabulary, and (ii) focus the issues upon those which this thesis can potentially address.

### 1.2.3 Human sentence processing

Ever since the publication of Bever (1970), the study of human sentence processing has largely focused on situations where the process is burdened or fails altogether. His famous example

(1.3) The horse raced past the barn fell

illustrates the difficulty that people can have interpreting grammatical sentences. Sentences such as 1.3 have been called garden path sentences, because people appear to commit to the wrong interpretation at early points of local ambiguity, and cannot recover. People have trouble with many kinds of grammatical constructions, although this is usually exhibited by an increase in processing time, rather than by a complete failure to interpret. A common experimental paradigm is to present subjects with sentences that contain local ambiguities, and measure their performance at or near the point of disambiguation. If a minimal change in the stimulus items can produce a
measurable, significant difference in the comprehension process, then this can be taken as evidence of the nature of the comprehension mechanism.

There have been a number of centrally important issues in the sentence processing literature over the past three decades, and we will identify a number of them in this section, in an attempt to narrow the discussion to those issues upon which we feel the present thesis bears.

First on this list is modularity, or the degree to which different “levels” of linguistic processing and general cognition are mutually inaccessible. Early models of human sentence processing (Frazier and Fodor, 1978; Frazier, 1979; Forster, 1979) made very explicit predictions based on highly modular architectures, in which, for example, the only information that could pass between the syntactic processor and the semantic processor were syntactic hypotheses in one direction and accept/reject in the other direction. This is a finer-grained modularity than that called for in Fodor (1983). His distinction was between automatic processes, such as language processing, and general cognition. Insofar as a “level” of linguistic processing is automatic, requiring no general inference, then there is nothing in Fodor’s conception of modularity that would preclude that level interacting with other levels of automatic language processing. It may be convenient because of traditional divisions in linguistic theory to conceive of language processing as involving, sequentially: phonetic, phonological, morphological, syntactic, and semantic processing. This convenience, however, is a perhaps less-than-compelling reason for hypothesizing a modular division of labor. One might very well hold a modular view of the language faculty without further decomposing this module into the above-mentioned sub-modules.

Recent evidence of the rapid use of the discourse and visual context in disambiguation – e.g. Tanenhaus et al. (1995) – may lead some to question modularity in language processing, even in the very general sense of Fodor. Whether or not inferential processes are involved in the immediate disambiguation processes, or some kind of dumb proxy (as Fodor himself has suggested), such as contextually sensitive probabilities, might be an empirical question, although it remains to be seen if they really are empirically differentiable. In the models considered in this thesis, the kind of information that is guiding syntactic processing in our model is of the dumb sort, yet it is quite consistent with a richer inferential model. Whether the preferences are probabilities estimated from surface co-occurrence of lexical items and constituents, or some kind of inferentially-driven weighted biases, a processing mechanism of the sort we advocate would apply. In other words, we will not be making any claims regarding the modularity of processing.

A second issue that has claimed many pages in the literature is serial versus parallel processing. In the sentence processing domain, the question is: are multiple hypotheses about the syntactic structure pursued simultaneously (in parallel), or is one “preferred” hypothesis pursued until it fails, prompting a reanalysis of the sentence? In the former position, longer reading times in the face of ambiguity are typically said to arise as the result of some kind of weighting process – often involving competition among analyses. In such a model, some fixed amount of resources (e.g. activation in a neural network) must be spread among analyses, which compete via mutual inhibition for a share of the resources; this competition is what accounts for the longer reading times. In the serial position, these longer reading times reflect a reanalysis of the structure of the sentence. In fact, there is nothing inconsistent with reanalysis in a parallel model: one can imagine a sentence processing mechanism that keeps some number of analyses in parallel, but which follows some kind of reanalysis procedure under certain circumstances. For example, suppose that there is a fixed limit on the number of analyses that can be kept active, say two. This would involve pursuing two “preferred” hypotheses instead of just one. If both of them end up failing, a reanalysis procedure could be followed, in just the same way that it would be followed in the
face of the failure of a single preferred analysis. Hence the debate between serial and parallel is not a debate between competition and reanalysis. Nevertheless, the debate is most often framed in terms of the presence or absence of reanalysis.

These serial and parallel positions are potentially empirically differentiable, as was shown in Mendelsohn and Pearlmutter (1999), which reported a reading time increase when a dis-preferred analysis became implausible. In a serial model, this secondary analysis would never have been constructed, so it cannot account for such an effect. Given that the serial/parallel debate most often takes the form of reanalysis versus re-ranking, however, even if such a result is replicated and verified, it is unlikely to resolve lingering questions about how to account for increases in reading times. As is pointed out in a discussion of these issues in Gibson and Pearlmutter (2000), a limited parallel parser could involve reanalysis as well. A limited parallel parser that can consider, say, up to two analyses in parallel (but no more) with reanalysis is consistent with these results, and might account for many sentence processing effects in just the way a serial parser would. Furthermore, reanalysis can mean different things to different people, and until there is a general theory of syntactic reanalysis, it will be difficult to generate truly falsifiable hypotheses.

While the parser that we will implement is, in these terms, a parallel, non-backtracking model, it could be extended to include some sort of reanalysis. One possible way that this could be straightforwardly done is to narrow the number of analyses that can be simultaneously considered, and when some triggering event occurs – either a complete failure to extend active analyses, or the active analyses become very unlikely given the probabilistic model – reanalysis and repair strategies can be pursued. Hence, we will have little to say about this ongoing controversy. Difficult questions that would face such an extension – such as when to reanalyze and how to go about it – are the same as would be faced by any large scale reanalysis implementation. As far as we know, there are no broad-coverage parsers that follow such a strategy.

Two other central issues at play in the sentence processing literature are frequently confounded: lexically-driven models with interacting constraints, and connectionist models. The reason that they are confounded is because many of the lexically-driven models were simulated with artificial neural networks; because lexically-driven models shift the division of labor in parsing to include a larger role for the lexicon (see footnote 3 above), local non-hierarchical processing mechanisms, such as neural nets, are able to simulate certain syntactic disambiguation processes. Yet as Steedman (1999) points out, the syntactic disambiguation carried out in neural networks is akin to part-of-speech tagging, ignoring as it does the hierarchical structure required for the kind of compositionality that goes on in syntactic and semantic processing. While some of the work on enabling neural networks to handle hierarchical structure is quite interesting for the novel perspectives on the relationship between syntactic structure and structures that a neural network can handle, such as fractals ([Tabor, in press]), structured stochastic models of the sort investigated in this thesis offer many of the benefits of neural networks (e.g. graceful degradation and probabilistic weights) without limits on the kinds of structures that can be processed. Hence we will discuss lexically-driven models with interacting constraints independently from a connectionist framework.

Perhaps the best way to see how syntactic ambiguity resolution can be recast as lexical ambiguity is through the main verb / reduced relative ambiguity, illustrated in example 1.3 above. This can be thought of as an ambiguity between two possible syntactic structures – the verb ‘raced’ is either analyzed as the main verb of the clause or as a past participle (as in ‘was raced’), attaching via a relative clause to the subject NP. Alternatively, this can be thought of as a lexical ambiguity, between a main verb and a past participle. Each of these lexical items is consistent with only one
of the two syntactic structures, hence this strictly lexical ambiguity can account for the syntactic ambiguity. Such a model stands in contrast to one that stipulates a syntactic module that operates on strictly structural principles. As stated in MacDonald, Pearlmutter, and Seidenberg (1994)

Reinterpreting syntactic ambiguity resolution as a form of lexical ambiguity resolution obviates the need for special parsing principles to account for syntactic interpretation preferences . . . (MacDonald, Pearlmutter, and Seidenberg, 1994, p. 676)

The “special parsing principles” referenced in this quote are those used in so-called garden pathing models, such as minimal attachment and late closure (Frazier, 1979), whereby structural principles guide the syntactic processor’s initial choice of analysis. For example, the principle of minimal attachment dictates that attachments are preferred that introduce the fewest nodes into the tree. This leads to, among other things, a preference for VP attachment of prepositional phrases in standard PP attachment ambiguities. A lexical model of the sort advocated by MacDonald, Pearlmutter, and Seidenberg (1994) would have different preferences depending on specific lexical items in the string, as well as other things.

Our perspective on the shift from the predominant garden pathing models of the late seventies and eighties to the probabilistic constraint models of the last decade will be outlined in the next chapter. At this point we will just say that this is one central issue in the human sentence processing literature where our work does have something to say. While the garden pathing models may be unmotivated, this does not mean that syntactic processing, distinct from lexical processing, is unmotivated. On the contrary, hypothesizing links between constituents is a prerequisite to incremental sentence processing models, and lexical disambiguation cannot do all of the work. One simple example of this is multiple PP attachments, e.g.

(1.4) the thief from the city with the narrow streets
(1.5) the thief from the city with the narrow waist

The ambiguity when the second preposition is encountered is not a lexical ambiguity, but rather is a pure attachment ambiguity – which NP is being modified? Disambiguating material may be encountered downstream, but if incremental interpretation is taking place, certain syntactic, non-lexical decisions must be made. The point is simply that there is a role for syntactic processing, even in models that rely heavily on the lexicon.

1.2.4 Broad-coverage parsing and human sentence processing

What can research about broad-coverage parsing possibly say about human sentence processing? Potentially many things, including making predictions about what kinds of constructions are likely to be difficult and what kind of information is likely to be useful to people. Also, as was mentioned above and will be discussed further in the next chapter, explicit computational modeling can unearth interesting confounds in experimental data, and suggest ways of removing them. One additional way that parsing research of the sort that will be pursued in this thesis can be psycholinguistically relevant is by underlining an aspect of language comprehension that is simply ignored in most current computational models of human sentence processing: that it is robust and productive in the extreme. Computational psycholinguistics in the sentence processing domain these days is typically focused on models that can be shown to experience difficulty on examples that people have difficulty with, taken from a small, hand-built set of sentences. The fact that these models fail to extend much beyond this small set, including to sentences that are extremely easy for peo-
ple to process, is largely unremarked upon. This has resulted in computational psycholinguistics being of interest in recent years almost exclusively to psycholinguists, far less to computational linguists.

This is in large part an issue of evaluation: what is the standard by which we decide whether the model has explanatory power? Complete explanatory adequacy is met when the model is restrictive enough to explain why people fail or struggle to parse certain strings, yet permissive enough to explain why they do not have difficulty with other strings. Given that no model even begins to approach complete explanatory adequacy at this point, psycholinguists have largely chosen to evaluate models on their restrictiveness; while computational linguists are largely interested in adequate coverage, i.e. they evaluate on a model’s ability to analyze arbitrary, naturally occurring strings in the language. Hence, models such as those advocated by Stevenson (1993), Sturt and Crocker (1996), Lewis (1998), Gibson (1998), and Vosse and Kempen (2000) all present evaluations of their models in terms of a small number of simulations (either manual or computed) on exemplars of construction types common in the experimental literature, which exhibit attested patterns of performance. In contrast, parsing models in the computational literature – too many to list here, but including all of the parsers that will be mentioned in later chapters – are evaluated on what percentage of sentences in some test set are parsed, and with what accuracy.

The problem is scalability. As mentioned above, the experimental paradigm in human sentence processing typically involves pathological linguistic examples constructed expressly for the particular study by the researchers. If we think of a probability distribution over strings in a language, these stimuli very often inhabit the tail of the distribution, i.e. they are quite often rare constructions, such as the reduced relative or center-embedding. If the explanation of parser behavior in these pathological circumstances relies in some critical way on a specific parser architecture – e.g. reanalysis operations as a part of the parser as in Sturt and Crocker (1996) and Lewis (1998); or competition processes as in Stevenson (1993) and Vosse and Kempen (2000) – then the onus is upon the researchers to show that these architectural specifics that restrict processing appropriately in the handful of examples given do not restrict processing inappropriately in naturally occurring language. Whether or not these models can scale up to handle freely occurring language is an open question, and the burden of proof is on their proponents.

While the Gibson (1998) paper has a similar focus on pathological constructions, its predictions are based on well-formedness metrics that are to a certain extent independent of the processing mechanism, insofar as a wide variety of mechanisms could use the metric. This is akin to probabilistic constraints, which can be brought to bear on processing in any number of ways. By the same argument, the kinds of constraints on the model in Jurafsky (1996) are quite general, although he makes a stronger assumption about the nature of the processing mechanism, namely a parallel beam search, to account for garden path phenomenon. In a sense, this thesis is a demonstration that a processing mechanism of the sort proposed in Jurafsky (1996) is permissive enough to cover freely occurring natural language, while potentially being restrictive enough to account for certain empirical facts.

We will hence do three things in this thesis that are relevant to psycholinguistic models of

---

5An encouraging exception is in Brants and Crocker (2000), which demonstrates the ability of an incremental probabilistic chart parser to find “good” parses, even with severe memory limitations. The fact that a chart parser is not sufficient for incremental interpretation should be noted, but their comments about computational models being focused on behavior when confronted with toy input is in accordance with ours.

6An exception to this is Supertagging – see Bangalore and Joshi (1999), and Kim, Bangalore, and Trueswell (to appear) – which has some currency in both communities, although this is not, strictly speaking, a parsing approach.
human sentence processing. In the next chapter, we will examine some of the computational modeling and experimental literature in a further attempt to justify our approach, as well as expose possible confounds in some of the empirical results. Our empirical computational work will establish the applicability of predictive models to the general problem of language comprehension. Also, our investigation into conditional probability models for parsing will point out certain distributional regularities that might be exploited by people for disambiguation.

1.3 Chapter summary

In this chapter, we have introduced the central problems to be dealt with by this thesis, as well as fundamental notions in both parsing and human sentence processing. The main points made in the chapter were: (i) links between constituents – of the sort provided by top-down parsers – are required for incremental interpretation; (ii) lexical approaches grammars, while accounting for some syntactic disambiguation via local lexical disambiguation, do not obviate the need for syntactic processing; and (iii) processing models that have been shown to be restrictive in ways that humans are, must also be capable of robust, productive processing in ways that humans are.

The next chapter will explore in detail some of the changes in models of human sentence processing over the past decade and a half, and the role of parsing within these models. We will show that some of the modular architectures that were proposed complicated their models to avoid committing to top-down parsing. We will also demonstrate that more than one model is consistent with many recent empirical results – one in which constituent structure plays a role and one in which it does not. A failure to be explicit about the parsing mechanism underlying models of disambiguation is to blame for this, and we will provide some potential stimuli to resolve the empirical questions that arise from this underspecification. Finally, we will discuss specific ways in which robust parsing of the sort we are investigating in this thesis can be relevant to the study of human language processing.
Chapter 2

Psycholinguistic models of sentence processing

A major turning point in the study of how humans process sentences came with the study by Crain and Steedman (1985) and its follow up Altmann and Steedman (1988). In these studies, it was demonstrated that the referential context could immediately influence the preferred interpretation of certain ambiguities that involved restrictive noun phrase modification, evidenced by reading times in the region of interest. In the case that referential ambiguity exists (the definite noun phrase describes more than one discourse entity) then definite noun phrase modification is facilitated; otherwise VP modification is preferred. For example, consider the following four sentences, taken from the two cited papers above.

(2.1) The psychologist told the woman that he was having trouble with to visit him again
(2.2) The psychologist told the woman that he was having trouble with her husband
(2.3) The burglar blew open the safe with the diamonds
(2.4) The burglar blew open the safe with the dynamite

In sentences 2.1 and 2.2, there is a local ambiguity at the word *that* between NP modification (as in sentence 2.1), and a sentential argument to the verb (as in sentence 2.2). The definite article of the object in each of the sentences carries with it a presupposition of uniqueness. In cases where the context within which the sentence is presented contains more than one entity consistent with the base noun phrase (e.g. two women), then this presupposition is violated, unless some restriction resolves the ambiguity. Crain and Steedman (1985) showed a preference for the NP modification reading in such a case. Similarly, sentences 2.3 and 2.4 have a local prepositional phrase attachment ambiguity between NP attachment (as in sentence 2.3) and VP attachment (as in sentence 2.4). Altmann and Steedman (1988) showed a facilitation of the NP attachment reading relative to the VP attachment reading in cases where referential ambiguity existed. This effect has been replicated repeatedly with a variety of constructions – e.g. Britt (1994) – and the preference shown for NP attachment in the case of referential ambiguity is immediate (Tanenhaus et al., 1995).

This is strong evidence for incremental interpretation of sentences, insofar as a bias such as those reported requires some kind of mechanism by which hypothesized NP constituents are immediately matched with existing discourse entities. In the case that the hypothesized NP is definite, yet could potentially match more than one entity (e.g. *the cop* in a context within which more than one cop has already been introduced), an expectation for NP modification can
be formed. The facilitation reported in Tanenhaus et al. above indicates that the attachment is immediate, i.e. the constituent structure that is being hypothesized is a connected structure; if this were not the case, then one would not see the difference between conditions until later in the sentence.

Up to the point of these studies, the dominant perspective in the sentence processing literature involved the so-called “garden pathing” models mentioned in the previous chapter, in which a single initial syntactic hypothesis is generated via purely structural principles, such as minimal attachment, and then reanalyzed in the case of a mis-parse. In the face of the immediate influence of discourse context on reading times, such a model must involve a rapid (and very smart) reanalysis procedure, which takes essentially no time (at least not measurable experimentally) in the case that there is referential support for the as-yet-unbuilt dispreferred NP attachment, but which garden paths in the absence of referential support. This would require the interpretation module to know the presence of a syntactic alternative to the one that it has been given by the syntactic module, without having seen it. The module would then have to reject the VP attachment, despite that analysis being perfectly acceptable to that point. If the NP attachment that presumably results from the reanalysis fails, a new reanalysis would be triggered – would this second reanalysis be able to find the previously discarded VP analysis? The complications that would be required to maintain the garden pathing models led some researchers to adopt alternative architectures: a parallel, weakly interactive modular architecture (Altmann and Steedman, 1988; Steedman, 1989), or non-modular architectures – e.g. MacDonald, Pearlmuter, and Seidenberg (1994). The rest of this chapter will focus upon these two ways of dealing with immediate contextual influence on parsing.

We will make two main arguments in the course of this chapter. First, that the brief literature on modular approaches to incremental interpretation at the beginning of the 1990s tried to address the parsing issue, but in the end bypassed the “connected structure” problem by assuming that a separate “interpretation” module would do that work. Our parser obviates the need for such complication, by allowing connected syntactic structures to be built. Second, that the literature on non-modular approaches to incremental interpretation, by which we mean models making use of interacting probabilistic constraints, have just plain ignored parsing as a legitimate concern, choosing to remain “agnostic” about the extent of structure building going on, focusing instead exclusively on disambiguation, and hence failing to make relatively important distinctions in their models. In the end, regardless of the processing model one adopts – parallel, serial, with or without reanalysis – the basic requirement of incrementally built connected structure remains. That will be the topic of the subsequent chapters of the thesis.

2.1 Parsing for incremental interpretation

One result of the evidence for incremental interpretation coming out of the psycholinguistic literature was a small set of papers from interested computational linguists, dealing explicitly with the ramifications for parsing and grammars. Two papers (Abney, 1989; Steedman, 1989) made different claims about the ramifications of incremental interpretation; then Stabler (1991) attempted to show that neither of these claims was in fact true; and finally Shieber and Johnson (1993) showed that the criticism of Abney (1989) in Stabler (1991) was unmotivated, but that Abney (1989) was wrong anyhow. Our position will be that, in fact, Abney (1989) was right, at least insofar as his claim was that connected representations provide the sort of information required for interpretation. The specific arguments will be discussed next.
Steedman’s argument was an attempt to show that Combinatory Categorial Grammar (CCG) is the appropriate form of the competence grammar, by virtue of the fact that it allows for three desirable properties of sentence processing to co-exist: (i) “strong competence”, i.e. that the competence grammar is what people use for syntactic processing, as opposed to some approximation or simplification of the competence grammar; (ii) incremental interpretation; and (iii) right-branching constituent structures in languages like English. His argument is that, in a right-branching constituent structure, many constituents will not be complete before the end of the string, hence either the constituent structure is wrong, or the grammar is not used directly for sentence processing, or the string is not incrementally interpreted. In CCG, however, a mechanism exists (function composition) for composing what in standard grammars are incomplete constituents into interpretable units, hence CCG can avoid the “paradox” above.

Abney’s argument was that the parser must be top-down, because a bottom-up parser does not have enough structure built to allow for incremental interpretation. This is basically the argument that we have been advocating here, under the assumption that syntactic and semantic processing are part of the same derivational process. Although Abney makes the point about top-down parsing in his paper, he does not take any position about the feasibility of using such a parser in practice.

One other point about Steedman (1989) before moving on to discuss the other papers. By using function composition to change right-branching constituent structures into left-branching structures, a CCG derivation of the sort Steedman is arguing for is a fully connected structure of the sort that we advocate. A left-branching structure with complex CCG slash categories corresponds to a fully-connected tree using standard categories. He recognizes that this brings along with it the processing difficulties of any such parser.

The proliferation of possible analyses that is induced by the inclusion of function composition seems at first glance to have disastrous implications for processing efficiency. . . . (Steedman, 1989, p. 481)

This underlines a point that we have made and will make later in the chapter, that lexicalized grammars can embed much syntactic information in the lexicon, but the syntactic processing difficulties involved in hypothesizing connected trees are just as profound as with standard phrase-structure grammars. This is a point that is well understood by syntacticians and computational linguists, but apparently not by some psycholinguists.

Stabler dismisses Steedman’s argument for CCG by showing that one can easily interpret partial syntactic structures. In fact, one can see this by simply noting that function composition works for CCG, so it can certainly work for some interpretive mechanism, based on incomplete constituents. Function composition allows for a partial evaluation, which is precisely what interpretation over incomplete constituents would involve. What Steedman proposed was not that, for example, the right-branching constituent structure of English favored by linguists is in fact left-branching, but simply that this constituent structure could be derived in a left-branching way, through function composition. He was working in a framework that tightly couples syntactic and semantic processing, but one can imagine a scenario in which they are decoupled, and his point would still hold for interpretation, even if the syntax were something other than CCG.

Stabler attempts to dismiss Abney’s argument as well, but as Shieber and Johnson (1993) subsequently pointed out, he does not succeed. His point was that, with the appropriate formal apparatus, each syntactic operation can correspond to a semantic operation, and to the extent that we can uniquely identify a syntactic analysis by listing the constituents in the order that they are identified (presuming we know the search strategy), then we can also provide a semantic analysis by listing the semantic operations in the appropriate order. This notion of incremental
interpretation, however, is not the one that we are working with, as mentioned in the introductory chapter, so let us be very explicit about the differences. Our next points are related to those made in Shieber and Johnson (1993).

We will define an incremental parser as a parser that moves from left to right across the string \( w_0 w_1 \ldots w_n \), and which completes all nodes that end at \( w_k \) before \( w_{k+1} \) is incorporated into the derivation. Under this definition, a top-down, left-to-right parser is incremental, and so is a bottom-up, left-to-right parser, such as a shift-reduce parser. An incremental semantic processor, insofar as semantic processing is a way of combining constituents in some way, can also be incremental by following either a bottom-up or top-down search path. Incremental interpretation, however, in the way that we are using it, is more than simply moving from left-to-right over the string; it involves identifying key dependencies between words and constituents in the string immediately, often before the last word in the constituent is reached. For example, there are (at least) two potential interpretations of a string that begins "the horse raced" – the main verb interpretation and the reduced relative interpretation. Incremental interpretation in the way that we are speaking of it here involves discriminating these two potential interpretations, and perhaps even discarding one in favor of the other. In any case, it involves explicitly identifying the relevant distinctions between these two interpretations, which has to do with the syntactic and semantic dependency between the verb form and the subject noun phrase. This is what psycholinguists mean when they say that people incrementally interpret sentences – they identify and then prefer or disprefer alternative interpretations.

The point that Stabler made is simply that interpretation can be seen as being fundamentally related to parsing; hence, insofar as a bottom-up parser can be incremental, so can incremental interpretation. While we agree that there is a fundamental similarity between the kinds of hypotheses that need to be made syntactically and those that need to be made for interpretation, we will argue in the opposite direction: since incremental interpretation involves hypothesizing relationships between constituents, so should incremental parsing, in this other sense of incremental.

Shieber and Johnson (1993) criticize Stabler’s argument against Abney (1989) on more-or-less the grounds that we have put forward here, but they provide another criticism against Abney’s view. In a nutshell, their argument is as follows: to the extent that one stipulates a modular architecture for the human sentence processing mechanism (an asynchronous processor, in their parlance), the output of a bottom-up parser is an acceptable input to an interpretation mechanism, even one that proceeds incrementally in the way that we have defined it. In other words, even though the constituents constructed on the stack of a bottom-up parser does not have sufficient information (as Stabler claimed) for incremental interpretation:

There is also a finite amount of state information. As it turns out, the state of an LR parser finitely encodes a set of possible left-contexts for the stack items. This set of contexts has a regular structure, and corresponding to that regular structure of syntactic left contexts, there is a regular structure of functors over the completed constituent meanings (from the stack). Since these functors are incrementally computable from the LR state, they are accessible by the interpreter, and hence available for incremental interpretation. (Shieber and Johnson, 1993, p. 305)

The parser, hence, underspecifies the left context, i.e. the stack represents the set of all left contexts that are consistent with it. The interpreter can then take the stack and derive the potential semantic relationships from this. They give an example, using synchronous Tree-Adjoining Grammar, that demonstrates how, in certain circumstances, connected syntactic structure is not required for incremental interpretation.

Note that the semantic derivation which feeds interpretation requires a derivation strategy just
as the parser does for the syntactic derivation. The semantic derivation, however, cannot be strictly bottom up, since it requires the composition of incomplete constituents. This asynchronous model is similar to Jurafsky’s in this respect, in that the parser gets the efficiency gain of a bottom-up parser, which allows for dynamic programming, while interpretation, which operates simultaneously with parsing, must follow a semantic derivation strategy that is not strictly bottom-up, but which composes incomplete constituents. Under a rule-to-rule assumption, in which syntactic and semantic derivations make use of corresponding rules, it is not clear what advantage such a model would have for the interpretive process as a whole in following a bottom-up search path in parsing; however, it would force a certain amount of duplicate effort, to the extent that two separate mechanisms do what amounts to the same structure building.

In the absence of this rule-to-rule assumption, one could have a big efficiency win with an asynchronous model of this sort, if a large number of syntactic alternatives correspond to a single semantic alternative. Their example is VP adjunction: suppose that VP modification occurred with left recursive VP rules of the form $VP \rightarrow VP AP$. When the main verb is encountered, a top-down parser is faced with the problem mentioned in the previous chapter, namely that there are an infinite number of parses corresponding to the infinite number of possible adjunctions. Regardless of the number of these adjunctions, however, the semantic relationship between the subject NP and the main verb will be the same, i.e. the number of semantic analyses corresponding to this infinite number of syntactic analyses is one. Of course, the opposite is likely to be true as well—that single syntactic analyses correspond to a large number of semantic analyses. Consider noun compounds: the compounds ‘ostrich burger’ and ‘kid burger’ appear syntactically identical, but (hopefully) semantically quite different. Here a single syntactic derivation would correspond to multiple possible semantic derivations.

We will follow Steedman and Stabler (and many others), and make the simplifying assumption of a rule-to-rule correspondence between syntactic and semantic rules. Under this assumption, if the semantic derivation is required, for incremental interpretation, to compose constituents, the syntactic derivation might as well compose the constituents as well. If we assume such a correspondence, there is no overall gain in delaying the choice points in one derivation and not the other, so the two derivations may as well move along in lockstep. In other words, under such an assumption, the syntactic derivation needs to specify enough of the structure for adequate semantic processing to occur to allow incremental interpretation.

There are a number of factors that caused Shieber and Johnson to go to the lengths they did in allowing for bottom-up parsing. First, and most obvious, is left-recursion, which is widely known to be a major problem with the top-down approach. We will discuss this problem at length in the next chapter, in the context of our top-down parser, and will further examine the issue in chapter 4. We advocate a probabilistic beam-search, in which low probability partial parses are discarded. This sort of mechanism was also advocated by Jurafsky (1996) as a way to account for garden pathing phenomenon in a parallel parser. In such an approach, each left-recursive rule has a probability associated with it, so that every time it is used, the probability of the analysis drops. Eventually, the probability will fall outside of the beam, and the parser will stop building these categories. The capacity of people to interpret left-recursive structures is presumably not unbounded, so this may or may not be an appropriate way to handle these constructions. One alternative to this that will be discussed in the next chapters will be selective left-corner parsing, which can be simulated in our parser, delaying choice points until later in the string, and thus avoiding problems with left-recursion. In practice, we achieve good results with pure top-down parsing, in spite of frequent left-recursion.
Shieber and Johnson also assume parsing to be a deterministic serial process, so that all parsing choices involve a commitment to a particular structure. Thus, to the extent that a top-down parser builds structure, it rules out everything inconsistent with that structure.

The choice to expand the NP top-down as a determiner (Det) followed by a noun (N) – as opposed to, say, an NP followed by a reduced relative clause – essentially commits the top-down parser to this reading, and that choice occurs at the beginning of the constituent, i.e. the beginning of the sentence. In general, a top-down parser makes such commitments too early. (Shieber and Johnson, 1993, p. 301)

Steedman, in contrast, posits a parallel parser, which builds all of the alternatives, and sends them off to be interpreted. As discussed above, these two alternatives are extremely difficult to distinguish empirically; basing an argument for one model over another based on an assumption of serialism is questionable.

Another assumption is about the choice point associated with top-down parsing: when a commitment to constituents is made within one particular analysis. We can first note that their particular example in the quote above is not necessarily a good example of early commitment. A reduced relative clause, as a restrictive NP modifier, is likely to fall under an $\tilde{N}$ constituent, so their point for this particular example is based on an NP structure that many linguists would argue against. If the modification falls within the $\tilde{N}$ constituent, even given their pure top-down parsing assumptions, the choice point would not be at the beginning of the sentence, but later, once the head noun is in the look-ahead. Of course, this is still very early in the sentence.

That aside, their point about when the commitment must take place in a top-down parser is based on one potential top-down algorithm, which has full specification and prediction to the extreme. There has been much work on variation of choice points in parsing strategies (Demers, 1977; Nijholt, 1980; Abney and Johnson, 1991), with pure top-down and pure bottom-up occupying the extremes of a continuum of possible strategies. Choices about node labels and rules can be delayed to points where they can more reasonably be made, without going to the extreme of a pure bottom-up strategy. Figure 2.1a shows the structure that a fully specified top-down derivation will build to incorporate the first word of the string. Figure 2.1b shows the same structure, but with the predictions about categories that do not dominate the first word left underspecified. In fact, both the predicted categories and the number of subsequent children of each predicted constituent can be left underspecified. Further, figure 2.1c shows the structure that will be built when constituents

Figure 2.1: (a) Fully specified top-down prediction; (b) Underspecified top-down prediction; (c) Delayed prediction of constituent boundary
are explicitly closed with an additional empty final child. A simple modification to top-down parsing, which preserves constituent structures and maintains a connected left-context, is to predict one child at a time in a leftmost manner, and to explicitly predict the end of a constituent at the point when it ends. In such a way, at the beginning of the sentence (‘the’), an NP is predicted, consisting of a determiner (and maybe more). When the next word is encountered (‘flowers’), a noun is added to the NP constituent, but it is not necessarily closed (there may be modification, or noun compounding). When the third word (‘sent’) is seen, the NP can be explicitly closed, and the word attached through another constituent. This is a top-down parsing algorithm, just one that uses a certain amount of underspecification of that which is yet to be encountered to delay disambiguation to the appropriate point. We will achieve this effect through grammar factorization. Shieber and Johnson go much farther in trying to delay the disambiguation points:

To get incremental interpretation to work with disambiguation requires postponement of choice points; a bottom-up parser is a natural way to achieve this postponement. (Shieber and Johnson, 1993, p. 301)

While an extreme top-down algorithm may be prey to their criticisms, very simple and natural modifications make a top-down parser perfectly consistent with their architecture, and one that would provide connected structures for interpretation. A problem which remains is left-recursion, but we shall see that, in a probabilistic setting, this is not such a problem in practice.

While their point is valid, that connected syntactic structures are not necessarily required for incremental interpretation, the question remains as to whether the complications that must be introduced into the model – a modular architecture and additional semantic computation over and above syntactic parsing – is worth it. It may be true that connected structures can be bypassed, but such structures do make incremental interpretation far simpler, and they allow for a cleaner link between syntactic and semantic processing, without strong modular assumptions.

### 2.2 Lexical and syntactic disambiguation

A sentence processing modeling perspective that has become popular in the wake of empirical evidence for rapid on-line integration and interpretation is that of interacting probabilistic constraints. As was mentioned in the last chapter, these models are very often associated with neural network models, and tend to focus on local lexical constraints as opposed to longer distance or non-lexical dependencies. In this section, we will take the position that the extreme lexicalist position is untenable, and that experimental stimuli that have been developed to be modeled in this way ignore crucial distinctions that may change the kinds of predictions they make. Further, there seems to be some confusion of terminology, so that lexical influences on interpretation are taken to be ‘bottom-up’, when in fact the probabilistic effect can be quite well modeled in a top-down fashion. Let us first clear up this potential terminological confusion, before turning to the issue of local vs. non-local modeling.

The top-down parsing strategy that we will advocate involves a look-ahead word (the next word in the string), and the parser is guided from predicted categories down to the new lexical item. This sort of look-ahead is consistent with garden pathing phenomena, since it is used only to help guide its own integration into the constituent structure, not the integration of previous words. The goal is to generate a set of likely partial constituent structures that incorporate the word. One can think of it as growing the structure down towards the word: at each word, some new
extended piece of structure is added to existing structure, incorporating the new word, and making new predictions about what is likely to come. Given an existing fully connected partial analysis and a new word, the search space for the ways of incorporating the new word into the connected structure is the same whether one grows the new structure down from the existing structure to the new word, or up from the word to the existing structure. Hence, to the extent that psycholinguists speak of integrating words into the syntactic structure, they are speaking (computationally) of a top-down process.

An incremental parser that is guided by the input is not necessarily bottom-up. To the extent that connected structures are being incrementally built, in the manner we are advocating, then the parser is not strictly bottom-up. In the following quote, however, the bottom-up/top-down distinction seems to be denoting more of a purely-lexical/purely-syntactic distinction, rather than the derivation strategies that we have been discussing:

The results favor a constraint-based model of sentence processing in which the bottom-up input computes, in parallel, the possible syntactic alternatives at the point of ambiguity, and contextual constraints provide immediate support for one or another of those alternatives. (Spivey-Knowlton and Sedivy, 1995, p. 228-9)

The phenomenon at issue in this paper is PP attachment ambiguities, where the attachment preferences are observed at the preposition. According to the model that they are advocating, the various potential attachments are hypothesized and then evaluated with respect to a certain number of contextual constraints, including things like referential ambiguity and lexical bias. As we can see, the terms top-down and bottom-up mean something quite different for psycholinguists than for computational linguists. In the terminology that we have been using, standard in the computational literature, what they describe is not necessarily a bottom-up process, but is rather consistent with predictive parsing, in which incomplete constituents, such as the new prepositional phrase, is composed with earlier constituents, such as the NP or VP. The crucial question is: what is the nature of the lexical preferences, and are these preferences mediated by the compositional structure of the string.

Before moving on to discuss specific studies, let us be clear what is meant in this domain by “lexical” models. Lexicalized grammar formalisms, such as Categorial Grammar, Tree-Adjoining Grammars (TAG), and Lexical-Functional Grammar (LFG), have been around for decades. They embed syntactic information into rich lexical entries, and account for such lexically dependent phenomena as subcategorization by including the relevant information in each lexical entry. Other formalisms, such as phrase-structure based theories like GPSG and HPSG, also include a role for lexical influence on the syntax. All of these theories, however, deal with categorical syntactic information, not with lexical preferences or biases, which is more the province of psycholinguistic and computational models. It is this latter form of lexical model that we are discussing here.

To be sure, lexical items can carry with them strong structural preferences, e.g. verb subcategorization preferences (which may involve a probabilistic distribution over possible frames) or preposition attachment preferences. Sometimes these preferences can immediately affect the likelihood of new links – such as selectional preferences exerted by a main verb on a hypothesized subject. Other times, these preferences drive processing downstream – such as subcategorization, which in English can be modeled (as we will show later in the thesis) as a top-down predictive pathing phenomena. For example, if the parser can look to the word after the verb in a reduced relative construction, it can in certain cases disambiguate (e.g. *the horse raced fell*) yet people still seem to garden path. Our model is not prey to this criticism, since we only use a look-ahead word to guide its own integration, after the previous words have already been incorporated.
bias towards particular argument structures downstream. These are the sorts of preferences that are being investigated in these sentence processing models – as well as by statistically-oriented computational linguists such as Charniak, Collins, and many others.

While the garden path models advocated by Frazier and colleagues occupy one extreme on the continuum of syntactic and lexical models of processing, by virtue of giving no role to lexical preferences in guiding the parsing process, other more recent approaches (MacDonald, Pearlmuter, and Seidenberg, 1994; Trueswell, 1996) have taken the other extreme, advocating models that can be interpreted as giving no role to syntactic processing outside of the lexicon. In these models, all relevant information and structure is projected out of the lexicon, and processing is driven by purely local constraints.

It is further proposed that most, if not all, syntactic ambiguities hinge upon one or more lexical ambiguities present in a phrase or sentence. (Trueswell, 1996, p. 566)

Incidentally, many of these models are implemented as neural networks, to simulate the time-course of disambiguation. These local models are straightforward to simulate in a neural network. Unfortunately, models which make use of hierarchical structures, such as those typically used to model syntactic and semantic composition, are quite difficult for neural networks to handle. Hence, to the degree that the ability to model phenomena with neural networks is desirable to a particular researcher, this is an additional incentive for modeling disambiguation as a local process.

The point that we want to make in this section is that this sort of model goes too far; one can pack as much of the structure as one likes into the lexicon, and there will still be a significant amount of syntactic processing required. This is a point that is recognized by linguists (see, e.g., the Steedman quote in the previous section), but not apparently by all psycholinguists. Furthermore, not all constraints on disambiguation are strictly lexical. For example, the presuppositional constraints that have been shown to lead to an NP modification preference in Altmann and Steedman (1988). Or consider the following ambiguous sentence:

(2.5) Mary told the man John saw

One reading of this is as a response to the question: what did Mary tell the man? Another reading is as a response to the question: Who did Mary tell about it? It is not clear how one might cast this ambiguity in terms of any particular lexical ambiguity; rather it is an ambiguity about how different constituents compose to form an interpretable sentence.

In fact, some of the constraints that are used to simulate results in local, lexical approaches – so-called configurational biases – are quite simply non-lexical syntactic constraints. To take two recent examples of studies in this paradigm:

The fourth constraint was a configurational bias favoring the main clause over the relative clause. A sentence-initial sequence of “noun phrase verbed” is typically the beginning of a main clause. For present purposes, we remain agnostic about whether the main clause bias is best characterized at the structural level or whether it emerges from other more local constraints, including argument structure preferences or other lexically-triggered constraints. (McRae, Spivey-Knowlton, and Tanenhaus, 1998, p. 288)

For present purposes, we remain agnostic about whether this configurational bias is best characterized at a structural level or whether it emerges from other more local constraints. (Spivey and Tanenhaus, 1998, p. 1521)

Both of these studies were looking at the reduced relative / main verb ambiguity, attempting to understand the pattern of preferences and how they can be accounted for in a model of interacting
constraints. Another constraint in the McRae et al. study quoted above is the thematic fit of the subject NP and either the agent role of the main verb or the patient role of the reduced relative. Hence, in this study at least, there is a clear role of constituency in the model. Indeed, the agnosticism expressed in the above papers distinguishes them from the more extreme position expressed in, for example, MacDonald, Pearlmutter, and Seidenberg (1994). These approaches seem instead to presuppose some syntactic processing mechanism.

An interesting feature of simple English noun phrases without phrasal modifiers is that the head is almost always the rightmost noun. For this reason, to test the influence of thematic fit, a stimulus is typically constructed that has the head noun and the ambiguous verb adjacent to one another. For example, the following were taken from the items of the McRae et al. study:

(2.6) The snakes devoured by the tribesmen had been roasting over the coals all afternoon.
(2.7) The rabbits devoured by the tribesmen had been roasting over the coals all afternoon.

To the extent that a garden path (evidenced by increased reading time) is avoided when the subject is a good patient of the verb, this is taken as evidence for the immediate influence of thematic fit. There are two models, however, by which this influence can be exerted, given the previous items: (i) the probability of the reduced relative reading given that the previous word is rabbit is greater than the probability of the reduced relative reading given that the previous word is snake; or (ii) the probability of the reduced relative reading given that the subject NP is a rabbit is greater than the probability of the reduced relative reading given that the the subject NP is a snake. The first model is akin to an n-gram model, of the sort that have been shown to be quite powerful for part-of-speech tagging and speech recognition. If the hypothesis is that all of syntactic disambiguation is locally, lexically driven, then this is the appropriate kind of model. Such a model, however, will make very different predictions from the second. Consider, for example:

(2.8) The snakes, brown and unusually plump, devoured by the tribesmen . . .
(2.9) The rabbits, brown and unusually plump, devoured by the tribesmen . . .

The above appositives (with commas included to aid disambiguation) remove the head of the noun phrase from its position adjacent to the verb, without introducing another attachment ambiguity. Now the two models would make different predictions. The locally driven (n-gram) model would predict that the thematic role constraint would not contribute to disambiguation in this case; a model which instead made hypotheses about the subject NP of the utterance could make use of the thematic role information. In addition, it is not clear how the configurational constraint of string initial NP V′ed – which we will write for convenience S/[NP,V] – holds up under more complex NP structures.

A similar point can be made about items from another study within this lexicalist paradigm, Tabor, Juliano, and Tanenhaus (1997). Here the ambiguity is between the complementizer and determiner reading of ‘that’ when it appears post-verbally and sentence initially. For example, here are sample items from that study:

(2.10) The lawyer insisted that cheap hotel was clean and comfortable.
(2.11) The lawyer insisted that cheap hotels were clean and comfortable.
(2.12) The lawyer visited that cheap hotel to stay for the night.
(2.13) That cheap hotel was clean and comfortable to our surprise.
(2.14) That cheap hotels were clean and comfortable surprised us.
Here again we have configurational constraints (post-verbal vs. sentence initial), and the verb, which can select for the syntactic category of its complement, is adjacent to the ambiguous item. The claim is that interacting constraints (the syntactic environment and the lexical bias) will determine preferences of interpretation. The most natural model, given just the above items, is again a strictly local Markov model that conditions probabilities based on adjacent words (where the beginning of the sentence is treated as a ‘word’). This, of course, also makes it straightforward to model in a neural network\(^2\). The predictions of this locally driven model would be, for example, that the probability of ‘that’ as a determiner following ‘visited’ is much higher than the probability of ‘that’ as a complementizer following ‘visited’.

An alternative model might make the following claim: that the probability of an NP complement of ‘visited’ is much higher than the probability of a sentential complement, hence the probability of a complementizer is very low, since complementizers begin sentential constituents, not NP constituents. This model would by necessity involve some syntactic processing, since the prediction being made is not for the specific lexical item, but for a constituent, which in turn makes predictions of its own. Of course, both kinds of predictions (local and syntactic) could play a role.

In order to differentiate between these two models, the critical modification that must be made to the stimuli is to move the ambiguities out of the local influence of the specific lexical items. If the lexical influence is active despite the intervention of arbitrary constituents, then very simple local models will prove inadequate to model such a process. Interestingly, these kinds of stimuli have been around from the beginning of this line of psycholinguistic research. The stimuli from the Crain and Steedman (1985) study that were mentioned above, and which we reprint here for ease of reference, do exactly this, in separating the ambiguous ‘that’ from the verb via an earlier NP argument:

\begin{align*}
(2.15) & \quad \text{The psychologist told the woman that he was having trouble with } \text{to visit him again} \\
(2.16) & \quad \text{The psychologist told the woman that he was having trouble with } \text{her husband}
\end{align*}

One interesting line of empirical research would be to enrich the intervening NP with an arbitrary amount of lexical material – through noun compounding and other forms of modification – to examine whether the verb can sustain its influence.

Another modification that can be made to try to tease apart whether or not there is a role for processing over and above lexical processing is to remove the lexicon from the process – either by using non-lexical ambiguities of the sort illustrated above in example 2.5, or by the use of non-words, which do not have a lexical entry. For example

\begin{align*}
(2.17) & \quad \text{The man snarmed the larimonious klarm of the vite.}
\end{align*}

To the extent that there are attachment preferences independent of the heads of the phrases to which the PP is attaching, this is evidence for the kinds of statistical generalizations that a structural, constituent-based model can capture.

### 2.3 Robust sentence processing models

The parsing model that we will present in the following chapters is one that conditions the probabilities (weights) of structures on many features in the syntactic and lexical context. It shares

\footnote{As was previously mentioned, Steedman (1999) points out that the syntactic disambiguation carried out in neural networks is akin to part-of-speech tagging.}
with the models outlined in the previous section the ability to model certain lexical preferences such as verb subcategorization and PP attachment biases. Like these models, our parsing model is parallel; further, it builds the connected structures which are assumed as an input into many of these models. It allows, however, for syntactic generalizations that are not available in the strictly lexical models – such as a general NP attachment bias for specific prepositions, e.g. ‘of’. Most importantly, the model scales up to process freely occurring sentences; i.e. the processing model is robust enough to accurately process arbitrary strings of the language.

Why should such a project be of interest to psycholinguists? Most psycholinguists will be interested only to the extent that the parser can, or potentially can, help to understand how people process language. Apart from arguments about the relative simplicity of extending this model to include incremental interpretation, and its ability to capture abstract, syntactic dependencies that would elude extreme local, lexicalist models, there are a couple of ways in which this project could potentially shed light on human sentence processing. The first is through falsifiable hypotheses that are explicit in the model as it is implemented. The second is as a testbed for investigating models of interacting probabilistic constraints beyond a set of toy examples. We will discuss both of these in this section.

Before we do, however, let us first reiterate our focus on the robust nature of human language processing, and the importance of having models of sentence processing that can scale up to handle language robustly. For example, a serial sentence processing model with reanalysis can make very explicit predictions based on the failure of a preferred interpretation at certain points in the string, and the subsequent processing required to generate a second analysis. It would be of great interest to see an effective robust parsing implementation of such a processing mechanism, because it would of necessity require an explicit definition of failure (what triggers reanalysis) that is sufficiently sensitive to cause reanalysis when needed, but sufficiently conservative not to cause reanalysis when it is not needed. It would also require a reanalysis procedure that would be general enough to handle the very large number of constructions that occur in natural language. Our broad coverage parser may be considered as an existence proof of a robust limited parallel model. Such a proof may be of limited interest to psycholinguists, but the level of explicitness that is required for the implementation goes beyond what has been provided for other models: to become robust, other models would certainly have to extend the coverage of their grammars, and thus increase the ambiguity of the space within which their mechanism searches. This would almost certainly force changes to the model, and make explicit the predictions of their mechanism.

For our parsing model, we have made a number of explicit definitions that could result in testable hypotheses about how people process sentences. In particular, the parser follows a top-down search path, which carries with it certain advantages and disadvantages relative to other parsing strategies, which will be discussed at length in the chapters to come. In order to make this parsing strategy work, we followed a probabilistic beam search, in which parses falling outside of the beam were discarded. This combination of top-down and probabilistic beam-search makes some strong predictions. We will mention a couple here, with the proviso that this is not the central work of this thesis, and that more work would be necessary to fully flesh out these predictions into testable hypotheses. We will give a sense of these predictions, but do not claim to be in a position to evaluate them at this time.

One prediction our robust parser makes is with regards to the depth of embedding. It is generally believed that center embedding is costlier than purely left- or right-branching structures, and this has been used to argue for a left-corner parsing mechanism (Abney and Johnson, 1991; Resnik, 1992), which we will discuss in detail in the next chapter. A left-corner parser, unlike our
top-down parser, would predict a potentially unlimited depth of embedding along the left edge of
the tree, i.e. at the first word. In a nutshell, the left-corner parser delays prediction of the parent
node until the leftmost child has been constructed, and hence will only build embedded structures
at decision points later in the string. Our parsing model, in contrast, would predict that embedded
structure beyond a certain depth, even at the left edge of the tree, would be pruned by the beam
search. To the extent that unlimited embedding is not acceptable to people sentence initially, this
could be explained by our mechanism.

Interestingly, the specific definition of the beam threshold that we use in the parser, which was
chosen for both efficiency and accuracy, does provide an explanation for increased difficulty for
deep center embedding versus embedded structure along the left or right periphery of the tree.
To understand the specifics of the threshold definition, the reader is referred to the next chapter,
where it is explained in depth. The basic idea is that all parses within some probability range of
the best parse are kept; all those with a probability that falls too far below the best probability are
discarded. The breadth of the probability range, however, is variable, depending on the number of
alternatives that fall within the range: if many parses fall within the original range, it is narrowed,
so that more of them fall outside of the threshold. Of course, as new ambiguities are introduced in
the string, more relatively probable parses are introduced into the beam. This increases the density
of alternatives within the original probability range, causing the beam to shrink. In other words,
进一步 along the string, predicted embedded structures fall outside of the beam much faster than
at the left edge of the string. This would predict more difficulty for center embedding than for
sentence-initial embedding.

While the above predictions are for the specific version of beam search that we implemented,
any incremental beam search approach will result in a garden pathing model, as is noted in Jurafsky
(1996). The parser that we outline in the next chapter does garden path on some percentage of the
sentences, although this seems to be more the result of poor probabilistic models due to sparse data
– the specific examples of garden path sentences are not particularly instructive. Our approach to
parameter estimation – relative frequency estimation from a treebank corpus – yields an effective
yet quite stupid probability model, by which we mean that it encodes little in the way of explicit
knowledge. All that the model encodes is observed co-occurrence, which is a far cry from the
sophisticated linguistic and real-world dependencies that humans presumably encode and exploit
in language processing. As a result, it is difficult to make general predictions based upon the
particular probability model that our parser uses. Hence, if the parser garden paths on a particular
sentence, it seems to be more the result of a problem with the probabilistic model.

That said, one potential research program would be to engineer a robust probabilistic grammar
that encodes probabilistic dependencies that are psycholinguistically well-motivated or attested.
That is not to say that the dependencies that we encode do not exist – on the contrary, the cer-
tainly seem to capture important regularities, ones which may have a psycholinguistic correlate.
However, given that people have a much richer model of these dependencies, perhaps certain
engineered probabilistic models would be better as psycholinguistic models. Since the parsing
approach that we advocate is independent of the grammar and probability model, such engineered
grammars could be tested to see how they perform with standard garden path sentences, as well as
how they scale up to deal with what should be unproblematic strings. One cannot underestimate
the importance of this last test. Finding generalizations that buy a syntactic processing mechanism
the right bias in a handful of cases is easy; those same generalizations can often cause the parser
to go very wrong in other unexpected circumstances.

Another potentially interesting direction would be to look at adding inhibitory competition
between alternatives. To the extent that competition for limited resources is seen to drive the timecourse of sentence processing (e.g., [Tabor, Juliano, and Tanenhaus, 1997]), our parser, with additional competitive processing, could make predictions about the timecourse of human sentence processing. As with the previous suggestion of engineering a well-motivated grammar, the results of such experiments would be very dependent on the parameters that are adopted, both for the probabilistic model and the parsing model.

If one were confident in the psychological reality of the parameters of the probabilistic model, another interesting potential model for the timecourse of sentence processing would be in terms of the speed of lexical access. We will demonstrate in this thesis the applicability of a probabilistic parser of this sort to language modeling, i.e. predicting each subsequent word from context. With the appropriate head-to-head dependencies, such a language model can be quite peaked; in other words, it makes very strong predictions about what is likely to follow. If the following word has a high probability (a high activation), it should be processed faster than an unexpected (low probability or activation) word. To the extent that a parsing model such as the one that we are using can capture the kinds of lexico-syntactic dependencies that are argued for in the psycholinguistic literature – such as verb subcategorization and selectional preferences, as well as other head-to-head dependencies – it could provide detailed timecourse predictions based on probabilistic expectations. A similar approach was taken in [Hale (2001)], with a probabilistic Earley parser.

All of this is quite speculative. The research program that will be presented in the remainder of the thesis is focused upon building a robust parser, not on building an explicit model of human sentence processing. The key contributions of this thesis are computational, not psycholinguistic. Nevertheless, the model is consistent with several critical aspects of human sentence processing, and such a parser could serve as a fruitful testbed for richer psychological models.

2.4 Chapter summary

The basic claim that is being made here is that connected syntactic structures, of the sort provided by a top-down parser, facilitate incremental interpretation. Shieber and Johnson showed that a bottom-up parser could be sufficient for incremental interpretation, provided that it is coupled asynchronously with a semantic processor which can derive, from these bottom-up syntactic derivations, the semantic relationships. This does result in sufficient information to allow for incremental interpretation, yet such an approach requires an additional derivational mechanism at some point in the process that is capable of producing this information. A simpler model is one that tightly couples the syntactic and semantic processing, hence requiring sufficient syntactic structure to be built to allow for distinctions in interpretation to be made. The basic problem that will be addressed in subsequent chapters will be: how can this be done? The rest of this thesis will show that a probabilistic approach not only makes top-down parsing possible in a very ambiguous search space, but also an efficient alternative to other parsing strategies, with computational benefits in its own right.

In presenting the parser that follows, we are not making claims about the syntactic representations that people maintain in processing sentences. Rather, we are making the claim that the kind of parsing strategy that we are investigating is consistent with models of human sentence processing, and results in a simpler model than would result from another parsing strategy. Further, many of the phenomena modeled by local, lexically driven models, such as PP attachment preferences or verb subcategorization biases, are captured by this model as well. Yet those models tend to emphasize disambiguation and ignore real issues of hypothesis search that our approach handles.
Chapter 3

Probabilistic top-down and left-corner parsing

This chapter will introduce, outline, and evaluate a broad-coverage probabilistic parsing strategy that maintains fully connected trees in the left context. In such a way, this parser is consistent with many diverse models of human sentence processing in a way that no other broad-coverage parser is. Certainly there have been parsing models proposed that fit the demands of on-line interpretation – e.g. Abney and Johnson (1991), Stabler (1991), Jurafsky (1996), Stevenson (1993), and Vosse and Kempen (2000). Yet these models at best are implemented with toy grammars and toy examples, and there has been no attempt to investigate how they scale up to deal with freely occurring language. Our model will be shown to scale up very well, and to provide results that are comparable with the best broad-coverage parsers in the literature.

The chapter will be structured as follows. We will first provide the requisite computational background for the algorithm that we will be discussing, and formally present the algorithm. We will then give some empirical results for parsers that take POS labels as input, rather than words. The model will then be extended to take words as input, and to use more robust conditional probability models. Empirical results will then be presented for this extended parser, and it will be compared with other parsing results from the literature.

3.1 Background

This section will introduce probabilistic (or stochastic) context-free grammars (PCFGs), as well as such notions as derivations, trees, and c-command, which will be important in defining our language model later in the thesis. In addition, we will explain several grammar transformations that will be used.

3.1.1 Grammars, derivations, and trees

Here we will formally introduce context-free grammars, which form the basis for the PCFGs that we will use in parsing. The presentation here follows closely that in Aho, Sethi, and Ullman (1986). A CFG $G = (V, T, P, S^\dagger)$, consists of a set of non-terminal symbols $V$, a set of terminal symbols $T$, a start symbol $S^\dagger \in V$, and a set of rule productions $P$ of the form: $A \rightarrow \alpha$, where $A \in V$ and $\alpha \in (V \cup T)^*$. These context-free rules can be interpreted as rewrite rules, whereby the non-terminal $A$ on the left-hand side of the rule is rewritten as (or replaced by) the $\alpha$ on the
right-hand side of the rule. Note that \( \alpha \) is a member of \((V \cup T)^*\), so that it may be the empty string \( \epsilon \). Productions with an empty right-hand side are called epsilon productions, and they are usually written \( A \rightarrow \epsilon \). Such a rule says that \( A \) can be re-written as nothing at all.

A sequence of replacements is called a derivation, and we represent one step of a derivation – i.e. one replacement via a context-free rule – with the symbol \( \Rightarrow \). Thus, if we have a rule \( A \rightarrow \alpha \), then \( \beta A \gamma \Rightarrow \beta \alpha \gamma \). To denote a derivation in zero or more steps, we use \( \Rightarrow^* \). To denote a derivation in one or more steps, we use \( \Rightarrow^+ \).

A CFG \( G \) defines a language \( L_G \), which is a subset of \( T^* \), consisting of only those strings that can be derived in one or more steps from the start symbol, i.e. \( \alpha \) such that \( \alpha \in T^* \) and \( S \Rightarrow^+ \alpha \). We will denote strings either as \( w \) or as \( w_0 w_1 \ldots w_n \), where \( w_n \) is understood to be the last terminal symbol in the string. For simplicity in displaying equations, from this point forward let \( w_i \) be the substring \( w_i \ldots w_j \).

Consider the following simple example of noun compounding. Suppose that the symbol \( N \) is our non-terminal start symbol, and our grammar consists of the following rules:

\[
\begin{align*}
(3.1) & \quad N \rightarrow N N \\
(3.2) & \quad N \rightarrow \text{dog} \\
(3.3) & \quad N \rightarrow \text{food} \\
(3.4) & \quad N \rightarrow \text{can}
\end{align*}
\]

If we want to show that ‘\text{dog food can}’ is in the language generated by this grammar, we can derive it starting from \( N \) and replacing non-terminals via these rewrite rules. Here are three possible derivations of the string.

\[
\begin{align*}
(3.5) & \quad N \Rightarrow N N \Rightarrow N \text{can} \Rightarrow N N \text{can} \Rightarrow N \text{food can} \Rightarrow \text{dog food can} \\
(3.6) & \quad N \Rightarrow N N \Rightarrow N N N \Rightarrow N N \text{can} \Rightarrow N \text{food can} \Rightarrow \text{dog food can} \\
(3.7) & \quad N \Rightarrow N N \Rightarrow \text{dog} N \Rightarrow \text{dog} N N \Rightarrow \text{dog food N} \Rightarrow \text{dog food can}
\end{align*}
\]

Notice that in the second step of each derivation, we followed three different derivation paths. Derivation \( 3.5 \) replaced the rightmost non-terminal with a terminal item, whereas derivation \( 3.7 \) replaced the leftmost non-terminal with a terminal item. A derivation that always replaces the rightmost non-terminal is called rightmost, and a derivation that always replaces the leftmost non-terminal is called leftmost. It is ambiguous in derivation \( 3.6 \) whether the non-terminal replaced in the second step of the derivation was the left or rightmost. To remove this ambiguity, we can introduce brackets, which delimit the beginning and ending symbols of the replaced non-terminals. We will omit the outermost brackets and brackets around terminal items for convenience. The three derivations with such bracketing are:

\[
\begin{align*}
(3.8) & \quad N \Rightarrow N N \Rightarrow N \text{can} \Rightarrow (N N) \text{can} \Rightarrow (N \text{food} \text{can}) \Rightarrow (\text{dog food} \text{can}) \\
(3.9) & \quad N \Rightarrow N N \Rightarrow N (N N) \Rightarrow N (N \text{can}) \Rightarrow N (\text{food can}) \Rightarrow \text{dog (food can)} \\
(3.10) & \quad N \Rightarrow N N \Rightarrow \text{dog} N \Rightarrow \text{dog} (N N) \Rightarrow \text{dog (food N)} \Rightarrow \text{dog (food can)}
\end{align*}
\]

Derivations \( 3.8 \) and \( 3.9 \) are rightmost derivations, while derivation \( 3.10 \) is leftmost. Note, however, that the two rightmost derivations do not end up with the same bracketing. This corresponds to an ambiguity in the grammar.

We will sometimes speak of top-down leftmost derivations in terms of a pushdown automaton (PDA). A PDA is a finite-state automaton with a stack. A stack is a data structure within which entries can be inserted (pushed) and removed (popped) in a last-in-first-out manner. A derivation
can be thought of as follows: first, we place the start symbol of the grammar onto the stack; then, until the stack is empty, pop the last non-terminal from the stack, and if it is a non-terminal, push the symbols on the right-hand side of the rule onto the stack, from right-to-left. This order of pushing symbols onto the stack ensures that the next symbol popped from the stack will be the leftmost child.

The bracketing that we have provided can be enhanced to provide more information about the derivation, including the label of the non-terminal that has been expanded. Let us take derivation \[ (N) \Rightarrow (N (N) (N)) \Rightarrow (N (N dog) (N)) \Rightarrow (N (N (food) (N))) \Rightarrow (N (N dog) (N food) (N can))) \]
as an example. To make this clear, the outermost brackets will now be included, and all non-terminals will be bracketed, even before they are expanded.

With the exception of the new bracketing and labeling, derivation \[ (3.11) \] is identical to derivation \[ (3.10) \].

The labeled bracketing at the end of derivation \[ (3.11) \] is equivalent to a tree. A tree represents a derivation, without any information about the order of replacements. Thus derivations \[ (3.9) \] and \[ (3.10) \] would be represented by the same tree, despite following different derivation strategies. Our top-down parser will be following a leftmost derivation strategy, so the ordering of the rewriting will be fixed, which implies one derivation per tree. Hence we will sometimes speak of trees and sometimes of derivations.

A complete derivation is one in which there are no more non-terminals left to be replaced. A complete tree is the tree representation of a complete derivation. The terminal yield of any derivation is the sequence of terminal items in the output of the derivation.

A PCFG is a CFG with a probability assigned to each rule; specifically, each right-hand side has a probability given the left-hand side of the rule. The probability of a parse tree is the product of the probabilities of each rule in the tree. Provided a PCFG is consistent (or tight), which it always will be in the approach we will be advocating, this defines a proper probability distribution over completed trees.

A PCFG also defines a probability distribution over strings of words (terminals) in the following way. Let \[ T_w \] be the set of all complete trees rooted at the start symbol, with the string of terminals \[ w_{0}^{n} \] as the terminal yield. Then

\[
P(w_{0}^{n}) = \sum_{t \in T_w} P(t)
\]

The intuition behind equation \[ (3.12) \] is that, if a string is generated by the PCFG, then it will be produced if and only if it is the terminal yield of one of the trees in the set \[ T_w \]. Hence, the probability of the string occurring in the space of all possible strings of the language is the probability of the set \[ T_w \], i.e. the sum of its members’ probabilities.

Finally, let us introduce the term c-command. We will use this notion in our conditional probability model, and it is also useful for understanding some of the previous work in this area. Recall that a node \( A \) dominates a node \( B \) in a tree if and only if either (i) \( A \) is the parent of \( B \); or (ii) \( A \) is the parent of a node \( C \) that dominates \( B \). A node \( B \) is lower in the tree than \( A \) if

\cite{chi1998} proved that any PCFG estimated from a treebank with the maximum likelihood relative frequency estimator is tight. All of the PCFGs that are used in this thesis are estimated using the relative frequency estimator.
A dominates $B$. The simple definition of c-command that we will be using in this thesis is the following: a node $A$ c-commands a node $B$ if and only if (i) $A$ does not dominate $B$; and (ii) the lowest branching node (i.e. non-unary node) that dominates $A$ also dominates $B$. Thus in figure 3.1(a), the subject NP and the VP each c-command the other, because neither dominates the other and the lowest branching node above both (the S) dominates the other. Notice that the subject NP c-commands the object NP, but not vice versa, since the lowest branching node that dominates the object NP is the VP, which does not dominate the subject NP.

In certain circumstances it will be useful for us to think of each rule expansion in the tree as having an explicit stop symbol. In the incremental algorithms that we will be presenting, rules will typically be predicted one child at a time. We can leave the possibility open for subsequent children by not predicting that the rule stops. One can do this by including an explicit empty STOP category to every production, as in figure 3.1(b). The syntactic structures that are represented in the two trees in figure 3.1 are the same.

### 3.1.2 Grammar transforms

Nijholt (1980) characterized parsing strategies in terms of two announce points: the point at which a parent category is announced (identified) relative to its children, and the point at which the rule expanding the parent is identified. Abney and Johnson (1991) expanded on this, adding a third announce point, namely when the arc is announced between a parent and a particular child. In pure top-down parsing, a parent category and the rule expanding it are announced before any of its children. In pure bottom-up parsing, they are identified after all of the children. Standard left-corner parsers announce a parent category and its expanding rule after its leftmost child has been completed, but before any of the other children.

Let us illustrate this graphically, by indicating the point at which nodes and arcs in a particular tree would be identified under different strategies. Figure 3.2 shows the sequence of node and arc announcements for the same tree in four different parsing strategies. There are a couple of key points that can be made from these detailed diagrams. First, consider the second word of the string, ‘man’, which is the head noun of the noun phrase, with two PP adjuncts. To allow
Figure 3.2: Order of announce points for (a) top-down; (b) bottom-up; (c) arc-standard left-corner; and (d) arc-eager left-corner parsing strategies

for the adjunction, three N constituents are built in a left-recursive chain. The top-down parsing strategy (figure 3.2a) first announces the topmost N node, then announces the nodes down this left-recursive chain until it reaches the terminal item. This search strategy is widely known to encounter problems in dealing with left-recursive structures. If the potential depth of this chain is unconstrained, the top-down parser can continue to announce new N nodes as the left-child of the previously announced N node, ad infinitum. Enumeration of all of these alternative analyses leads to non-termination.

Johnson (1995) points out that, with appropriate memoization of what structures have been built, a top-down parser can be built that will terminate in the face of left-recursion.
The bottom-up strategy (figure 3.2b) waits until all of the children constituents have been announced before building parent constituents, so it does not have the problem with left-recursion that a top-down parser does. Neither do the two variants of left-corner parsing, what Abney and Johnson (1991) term arc-standard (figure 3.2c) and arc-eager (figure 3.2d), although these avoid non-termination by first recognizing just the left-child of each node before the node itself, rather than all of the children, as in bottom-up parsing. These two left-corner strategies differ not in the order of node identification, but in the order of arc identification. The arc-standard algorithm waits for non-leftmost children to be fully built before announcing the arc between the parent and these children, whereas the arc-eager announces these arcs as soon as the child node is announced. One can see this difference in the first PP adjunction. In arc-standard left-corner, the arc between the N and the PP is the 16th announcement, after the entire PP has been built. In contrast, the arc-eager strategy announces the arc between the N and the PP immediately after the PP is announced.

In terms of tree traversal, top-down is a pre-order traversal, i.e. it visits the parent first, before the children. Bottom-up is a post order traversal, visiting the children before the parent. Left-corner parsing is an example of in-order traversal, which goes from the leftmost child to the parent to the remaining children.

Recall from the previous chapter the argument made by Shieber and Johnson (1993) about the problems in top-down parsing with respect to early commitment to certain structures. An incremental pure top-down parser has the same announce point for both parent and rule (future children of the parent) – in particular, before any children have been built. They used this criticism to advocate a bottom-up parser, which announces both parent and rule after all of the children are built. We argued for a variant, which handles their objection about early commitment, that has separate announce points for the parent and for the arcs that collectively constitute the rule. This is the top-down parsing strategy that is outlined in figure 3.2a, where the arc between the root S node and the VP is only announced after the entire NP has been built. As before, the parent is announced before the children; but the specific rule is not announced until after all of the children have been built. For an incremental parser, it is of critical importance to delay announce points of rule expansions, to enable as much potentially disambiguating information to enter either the left-context or the look-ahead.

To see this point, suppose that the category on the top of the stack is an NP and there is a determiner (DT) in the look-ahead. In such a situation, there is no information to distinguish between the rules NP → DT JJ NN and NP → DT JJ NNS. If the decision can be delayed, however, until such a time as the relevant pre-terminal is in the look-ahead, the parser can make a more informed decision.

Grammar factorization is one way to do this, by allowing the parser to use a rule like NP → DT NP-DT, where the new non-terminal NP-DT can expand into anything that follows a DT in an NP. With a top-down parser, the expansion of NP-DT occurs only after the next pre-terminal is in the look-ahead. We will first give an informal intuition for the factorization via some examples, then explicitly define it. There are actually several ways to factor a grammar, some of which are better than others for a top-down search. The first distinction that can be drawn is between what we will call left factorization (LF) versus right factorization (RF, see figure 3.3). In the former, the rightmost items on the right-hand side of each rule are grouped together; in the latter, the leftmost items on the right-hand side of the rule are grouped together. Within LF transforms, however, there is some variation, with respect to how long rule underspecification is maintained. One method is to have the final underspecified category rewrite as a binary rule (hereafter LF2, see figure 3.3c). Another is to have the final underspecified category rewrite as a unary rule (LF1, figure 3.3d). The
last is to have the final underspecified category rewrite as a nullary rule (LF0, figure 3.3e).

We will show some trials demonstrating the effect of these different factorizations on our parser, but we will ultimately settle on LF0, which we formalize here – the other LF factorizations are easy modifications of this. The left-factorization transform of a CFG $G = (V, T, P, S)$ is the CFG $\mathcal{L}F(G) = (V_1, T, P_1, S)$, where:

$$V_1 = V \cup \{D-\beta : D \in V, \beta \in (V \cup T)^+\}$$

and $P_1$ contains all instances of the schemata 3.13. The $D-\beta$ are new nonterminals; informally, they encode the left-hand side of a rule (D), and the sequence of children categories ($\beta$) to the left in the rule, so $D-\beta \Rightarrow^{\ast} \mathcal{L}F(G) \gamma$ only if $D \Rightarrow^{\ast} G \beta \gamma$.

$D \rightarrow B D-B$ where $D \rightarrow B \gamma \in P$ (3.13a)

$D-\beta \rightarrow B D-\beta B$ where $D \rightarrow \beta B \gamma \in P$ (3.13b)

$D-\beta \rightarrow \epsilon$ where $D \rightarrow \beta \in P$ (3.13c)

$D \rightarrow \epsilon$ where $D \rightarrow \epsilon \in P$ (3.13d)

This factorization results in all productions being binary, except epsilon productions, even originally unary productions\footnote{In practice, if the non-terminal set is split into disjoint sets of pre-terminals and other non-terminals, such as in the Penn Treebank, the factored pre-terminal productions are uniformly unary, so no factorization need take place.}. For a left-to-right, top-down parser, this delays predictions about what non-terminals we expect later in the string until we have seen more of the string. In effect, this is an underspecification of some of the predictions that our top-down parser is making about the rest of the string.

This underspecification of the non-terminal predictions (e.g. NP-DT in the example in figure 3.3, as opposed to JJ) allows constituents to become part of the left-context before their siblings are announced. By virtue of being in the left-context of a specific top-down derivation, conditioning information, such as lexical heads, can be extracted for use in the conditional probability distribution. For example, inside of a VP constituent, once the head verb has been found, the prob-
ability of other children within the VP constituent can be conditioned on that verb. This would provide a specific verb’s subcategorization preferences. In addition, this underspecification means that words further downstream will be in look-ahead at the announce point of later children. For example, suppose that the grammar allows NP modification with either relative clauses or prepositional phrases. By underspecifying further children of the NP, the decision about what category is modifying the NP is delayed until the look-ahead word is the word after the head noun. If the next word is a preposition, then the modification is likely to be a prepositional phrase, hence we obtain additional guidance by delaying this decision.

These transforms have a couple of very nice properties. First, they are easily reversible, i.e. every parse tree built with $\mathcal{LF}(G)$ corresponds to a unique parse tree built with $G$. Second, if we use the relative frequency estimator for our production probabilities, the probability of a tree built with $\mathcal{LF}(G)$ is identical to the probability of the corresponding tree built with $G$.

Left-corner (LC) parsing (Rosenkrantz and Lewis II, 1970) is a well-known strategy that uses both bottom-up evidence (from the left corner of a rule) and top-down prediction (of the rest of the rule). To do this, one makes a distinction between (top-down) predicted categories and (bottom-up) found categories. Three actions can be followed by the parser: (i) shift: put the next word of the string onto the top of the stack; (ii) predict: if the topmost item on the stack is the first category on the right-hand side of a rule in the grammar, pop it, and push the remaining right-hand side categories of the rule onto the stack, marking them as predicted, followed by the parent category of the rule; and (iii) attach: if a category is found on the top of the stack followed by an identical category that is marked predicted, then both can be popped from the stack. Useless non-terminals, which can never match a predicted category, can be filtered out by building a left-corner table, and checking to make sure that prediction only builds categories that can occur at the left-corner of a predicted category or attach to it.

Demers (1977) defined generalized left-corner parsing (GLC), in which prediction occurs, not necessarily after the first category is found on the right-hand side, but after some pre-specified number of categories. Thus standard left-corner parsing is an instance of GLC, where all prediction takes place after the first child (after 1 category); and top-down parsing is also an instance of GLC, where prediction takes place before the first child (after 0 categories). Note that one can also vary the announce points for arcs as well as nodes, and that the announce points could vary from rule to rule.

Rosenkrantz and Lewis II (1970) showed how to transform a context-free grammar into a grammar that, when used by a top-down parser, announces nodes in the same order as an LC parser would with the original grammar. As mentioned earlier, left-corner parsing has been advocated by virtue of the fact that it does not face the same non-termination problem with left-recursive grammars that top-down parsing does. It has also been advocated because eager attachment left-corner parsing places psychologically plausible demands on memory (Abney and Johnson, 1991; Resnik, 1992), since the stack only grows when there are center-embedded structures. We will investigate left-corner parsing by performing the $\mathcal{LC}$ grammar transform, then using the transformed grammar with the same top-down parser as for other trials. This provides a way of comparing the two approaches, without worrying about the impact of differences in implementation.

The left-corner transform of a CFG $G = (V, T, P, S)$ is the CFG $\mathcal{LC}(G) = (V_1, T, P_1, S)$, where:

$$V_1 = V \cup \{D-X : D \in V, X \in V \cup T\}$$

and $P_1$ contains all instances of the schemata 3.14. In these schemata, $D \in V, w \in T$, and lower case Greek letters range over $(V \cup T)^*$. The $D-X$ are new nonterminals; informally they
Figure 3.4: The same structure with (a) the original grammar; (b) the left-corner transformed grammar; and (c) the left-corner transformed grammar with \( \epsilon \)-removal

encode a parse state in which a \( D \) is predicted top-down and an \( X \) has been found left-corner, so \( D X \Rightarrow^{\gamma} \) only if \( D \Rightarrow^{\gamma} X \gamma \).

\[
\begin{align*}
D & \rightarrow w D \rightarrow \epsilon \\
D \rightarrow B \rightarrow \beta D \rightarrow C & \text{ where } C \rightarrow B \beta \in L \\
D \rightarrow D & \rightarrow \epsilon
\end{align*}
\]

(3.14a)  
(3.14b)  
(3.14c)

This transform converts left-recursion to right-recursion, which is not a problem for top-down parsers (Johnson, 1998a). The effect of the transform can be seen in figure 3.4. The transformed trees have the same root, but the topmost production jumps immediately to the left-corner terminal item of the original tree. Once a left-corner is recognized, the next production predicts the rest of the children of the original production and recognizes the parent. The epsilon productions in 3.4(b) represent an attachment of the predicted category and the recognized category. Eager attachment can be effected by removing these \( \epsilon \)-productions, i.e. composing 3.14b and 3.14c, which would leave \( D-D \) categories only in the case of a \( D \) constituent being at the left-corner of another \( D \) constituent. This is eager attachment because these epsilon productions correspond to the attach move of the left-corner production; by composing this with the rule in which the \( D-D \) occurs on the right-hand side, the parser must make the decision about attachment earlier. Full \( \epsilon \)-removal
yields the grammar given by the schemata below.

\[ D \rightarrow w D - w \]  \hspace{1cm} (3.15a)

\[ D \rightarrow w \quad \text{where} \quad D \Rightarrow^+_L w \]  \hspace{1cm} (3.15b)

\[ D - B \rightarrow \beta D - C \quad \text{where} \quad C \rightarrow B \beta \in L \]  \hspace{1cm} (3.15c)

\[ D - B \rightarrow \beta \quad \text{where} \quad D \Rightarrow^+_L C, C \rightarrow B \beta \in L \]  \hspace{1cm} (3.15d)

This transform results in trees like that in figure 3.4(c).

A variant of the standard left-corner transform that will be explored in later chapters is the selective left-corner transform (Johnson and Roark, 2000). In such a transform, some productions, but not necessarily all, are recognized left-corner, while the rest are recognized top-down. Such a transform could be used to eliminate all, or the most likely, left-recursive structures from the grammar. The selective left-corner transform takes as input a CFG \( G = (V, T, P, S) \) and a set of left-corner productions \( L \subseteq P \), which contains no epsilon productions; the non-left-corner productions \( P - L \) are called top-down productions. The standard left-corner transform is obtained by setting \( L \) to the set of all non-epsilon productions in \( P \). The selective left-corner transform of \( G \) with respect to \( L \) is the CFG \( \mathcal{LC}_L(G) = (V_1, T, P_1, S) \), where, again:

\[ V_1 = V \cup \{D-X : D \in V, X \in V \cup T\} \]

and \( P_1 \) contains all instances of the schemata 3.16:

\[ D \rightarrow w D - w \]  \hspace{1cm} (3.16a)

\[ D \rightarrow \alpha D - A \quad \text{where} \quad A \rightarrow \alpha \in P - L \]  \hspace{1cm} (3.16b)

\[ D - B \rightarrow \beta D - C \quad \text{where} \quad C \rightarrow B \beta \in L \]  \hspace{1cm} (3.16c)

\[ D - D \rightarrow \epsilon \]  \hspace{1cm} (3.16d)

The schemata function as follows. The productions introduced by schema 3.16a start a left-corner parse of a predicted nonterminal \( D \) with its leftmost terminal \( w \), while those introduced by schema 3.16b start a left-corner parse of \( D \) with a left-corner \( A \), which is itself found by the top-down recognition of production \( A \rightarrow \alpha \in P - L \). Schema 3.16c extends the current left-corner \( B \) up to a \( C \) with the left-corner recognition of production \( C \rightarrow B \beta \). Finally, schema 3.16d matches the top-down prediction with the recognized left-corner category.

An LC grammar can also benefit from factorization. We use transform composition to apply first one transform, then another to the output of the first. We denote this \( A \circ B \) where \( (A \circ B)(t) = B(A(t)) \). After applying the left-corner transform, we then factor the resulting grammar, i.e. \( \mathcal{LC} \circ \mathcal{LF} \). If we have \( \epsilon \)-productions in the left-corner grammar, the use of \( \mathcal{LF} \) is not needed, i.e. nullary productions need only be introduced from one source. Thus with standard left-corner, left factorization is always to unary (LF1), while \( \epsilon \) removed left-corner grammars are typically factored to nullary (LF0).

Figure 3.5 shows the effect of various grammar transforms on the announce points when used by an incremental top-down parser. These announce points are given, not simply in relation to the immediate children of the constituent, but also in relation to the word in the look-ahead. The guidance provided by the look-ahead – not to mention the lexical items incorporated into the left-context – can make a large difference in the efficiency with which plausible alternatives are identified, as was illustrated above with the base NP expansion via \( \text{NP} \rightarrow \text{DT JJ NN} \) versus \( \text{NP} \rightarrow \text{DT JJ NNS} \).

There are a couple of ways that the grammar transforms can be used in treebank parsing. Be-
cause the grammar is induced from a corpus of trees, the transform can be performed either before or after the grammar induction. In other words, the trees in the corpus can be transformed using the grammar transform, and this new, transformed corpus can be used for grammar induction; or the grammar can be induced, and the transform applied to the induced grammar. Some of the transforms – such as left and right factorization – can be applied either way, and the resulting grammar is the same. Transforming the corpus may be slightly easier in this case, since the rule probabilities can be estimated by the same relative frequency estimation technique used with the original grammar, whereas the grammar transform, performed after rule induction, would have to explicitly gather probability mass for each new transformed rule. Abney, McAllester, and Pereira (1999) describes how to compute the transformed rule probabilities. See Johnson (1998b) for details of the transform/de-transform paradigm.

For the left-corner transform, the grammars produced by the two methods are, in fact, different. Performing the grammar transform before rule induction results in fewer rules than if the transform is applied to the grammar after induction, sometimes even an order of magnitude fewer. This is because the grammar transform produces all possible left-corner rules, whereas the tree transform produces only the observed left-corner rule instances. This has the benefit of introducing more contextual guidance to the grammar (see discussion below about the differences in performance), but the disadvantage of reducing coverage. See Johnson and Roark (2000) for more discussion of the differences between these two methods of inducing a left-corner grammar. Unless otherwise specified, all transformations are performed on the corpus of trees, prior to grammar induction.

### 3.2 Top-down probabilistic parsing

This parser is essentially a stochastic version of the top-down parser described in Aho, Sethi, and Ullman (1986). To present the parser, we will first present their deterministic algorithm, then discuss how to handle the non-determinism. The parser will be presented as taking strings of
words as input, but it can also be applied to strings of POS tags, with the obvious changes to look-ahead calculations.

Deterministic top-down parsing (see the algorithm in figure 3.6) is effected via a parsing table $M_G$, which takes a non-terminal category $X$ and the look-ahead word (the next word in the string) $w_i$, and returns either a rule expanding the non-terminal or a fail symbol. Consider the set of productions from a very simple context-free grammar:

\begin{align}
(3.17) & \quad S \to NP \ VP \\
(3.18) & \quad NP \to DT \ NN \\
(3.19) & \quad VP \to V \ NP \\
(3.20) & \quad DT \to \text{the} \\
(3.21) & \quad NN \to \text{moon} \\
(3.22) & \quad NN \to \text{sun} \\
(3.23) & \quad V \to \text{is}
\end{align}

This grammar is very limited, but can handle strings like ‘the moon is the moon’. The parsing table will have an entry for the pair $M_G(S, \text{the}) = S \to NP \ VP$, since rule 3.17 is the only possible path, given the above grammar, from $S$ to $\text{the}$. Given a grammar $G$, a parsing table $M_G$ can be built, by finding, for every non-terminal/terminal pair, all rules that can be the first step in a path from the non-terminal to the terminal. If a parsing table can be built where each entry in the table is unique, i.e. in which there is no ambiguity about which rule to apply with any pair (such as the above grammar), then the grammar is said to be LL(1), where LL stands for left-to-right and leftmost, and the 1 means that there is one terminal item in look-ahead. With such a parsing table, one can deterministically parse the input top-down, with the algorithm in figure 3.6.

Suppose that we were to enrich our small toy grammar with a couple of rules to handle NP modification with prepositional phrases, to be able to handle strings like ‘the moon is the sun of the night’. The rules might look something like:

\begin{align}
(3.24) & \quad NP \to NP \ PP \\
(3.25) & \quad PP \to IN \ NP \\
(3.26) & \quad IN \to \text{of} \\
(3.27) & \quad NN \to \text{night}
\end{align}

With the introduction of these rules, the grammar is no longer LL(1), because for certain non-terminal/terminal pairs, there is more than one rule in the table. For example, in this case $M_G(NP, \text{the})$ has two entries: rules 3.18 and 3.24. Grammars sufficient to cover freely occurring strings of English, as mentioned in earlier chapters, are typically massively ambiguous, so any top-down approach must be able to handle such non-determinism.

Our basic approach will be to keep many separate derivations, each of which follows a search path akin to the deterministic parser just outlined. This will involve assigning each partial derivation a figure-of-merit, or a score of how good the derivation is. The goal is to work on just the promising ones, and discard the rest. Finding an appropriate figure-of-merit can be difficult, because of issues of comparability. Two competing analyses may be at different points in their
TOP-DOWN-PARSER \((S^\dagger, M_G, w = w_0 \ldots w_n⟨/s⟩)\)

1. \(i ← 0\)
2. \(S = S^\dagger\$\) \>
   Let \(S\) be the stack, and \(\$\) the end-of-stack marker
3. repeat
4. \(\triangleright\) let \(X\) be the top stack symbol on \(S\)
5. \(\text{POP} X\) from \(S\)
6. if \(X ∈ T\)
7. then if \(X = w_i\)
8. then \(i ← i + 1\)
9. else ERROR
10. else if \(M_G[X, w_i] = X → Y_1 \ldots Y_k\)
11. then \(\text{PUSH} Y_1 \ldots Y_k\) onto \(S\)
12. \(\text{OUTPUT}(X → Y_1 \ldots Y_k)\)
13. else ERROR
14. until \(X = \$\)
15. if \(w_i ≠ ⟨/s⟩\) \>
   if look-ahead is not the end-of-string
16. then ERROR

Figure 3.6: A deterministic top-down parsing algorithm, modified from Aho, Sethi, and Ullman (algorithm 4.3), taking a start symbol \(S^\dagger\), a parsing table \(M_G\), and an input string \(w\) as arguments. The symbol \(\triangleright\) precedes comments.

derivation, so this figure-of-merit must be able to, in a sense, normalize the scores with respect to the extent of the derivation. This can be done by including in the score the probability of the derivation to that point, as well as some estimate of how much probability the analysis is going to spend to extend the derivation. We do not compare derivations with different terminal yields, but rather extend the set of competing derivations to the current word before moving on to the next word; hence the derivations are more comparable than they might otherwise be. Each derivation probability is monotonically decreasing, i.e. every rule added to the derivation decreases its probability; yet each rule also brings the existing derivation closer to the look-ahead word, so that the amount of probability that will have to be spent, for promising analyses, to reach the look-ahead word will offset the drop in probability. Thus attention is appropriately focused on these promising derivations.

To introduce our parsing algorithm, we will first define candidate analysis (i.e. a partial parse), and then a derives relation between candidate analyses. We will then present the algorithm in terms of this relation.

The input to the parser is a string \(w^n_i\) and a PCFG \(G\). The parser’s basic data structure is a priority queue of candidate analyses. A candidate analysis \(C = (D, S, P_D, F, w^n_i)\) consists of a partial derivation \(D\), a stack \(S\), a derivation probability \(P_D\), a figure-of-merit \(F\), and a string \(w^n_i\) remaining to be parsed. The first word in the string remaining to be parsed, \(w_i\), we will call the look-ahead word. The derivation \(D\) consists of a sequence of rules used from \(G\). The stack \(S\) contains a sequence of non-terminal symbols that need to be accounted for, and an end-of-stack marker \(\$\) at the bottom. The probability \(P_D\) is the product of the probabilities of all rules in
\text{ABOVE-THRESHOLD}(C = (D, S, P_D, F, w^n_i \langle /s \rangle), \mathcal{H}_{i+1}, \gamma, f)
\begin{align*}
1 & \quad \mathcal{H}_{i+1}[0] = (D', S', P'_D, F', w'^{n+1}_i \langle /s \rangle) \quad \triangleright \text{Heap provides the best scoring entry} \\
2 & \quad \text{if } F > P_{D'} * f(\gamma, |\mathcal{H}_{i+1}|) \\
3 & \quad \quad \text{then return } \text{TRUE} \\
4 & \quad \quad \text{else return } \text{FALSE}
\end{align*}

\text{ND-TOP-DOWN-PARSER}(G = (V, T, P, S^\dagger), \Rightarrow, w = w_0 \ldots w_n \langle /s \rangle, \gamma, f)
\begin{align*}
1 & \quad i \leftarrow 0 \\
2 & \quad \mathcal{H}_i[0] \leftarrow (\langle \rangle, S^\dagger \$, 1, 1, w^n_i \langle /s \rangle) \quad \triangleright \text{Let } \mathcal{H}_i \text{ be the priority queue for } w_i \\
3 & \quad \text{for } i \leftarrow 0 \text{ to } n \\
4 & \quad \quad \text{while } \text{ABOVE-THRESHOLD}(\mathcal{H}_i[0], \mathcal{H}_{i+1}, \gamma, f) \\
5 & \quad \quad \quad \text{do } C \leftarrow \mathcal{H}_i[0] = (D, S, P_D, F, w^n_i \langle /s \rangle) \\
6 & \quad \quad \quad \quad \text{POP } C \text{ from } \mathcal{H}_i \\
7 & \quad \quad \quad \quad \triangleright \text{let } X \text{ be the top stack symbol on } S \\
8 & \quad \quad \quad \quad \text{if } X \in T \\
9 & \quad \quad \quad \quad \quad \text{then } \forall C' \text{ such that } C \Rightarrow C' : \text{PUSH } C' \text{ onto } \mathcal{H}_{i+1} \\
10 & \quad \quad \quad \quad \text{else } \forall C' \text{ such that } C \Rightarrow C' : \text{PUSH } C' \text{ onto } \mathcal{H}_i \\
11 & \quad \quad \quad \triangleright \text{At the end of the string, we must empty the stack to complete the derivation} \\
12 & \quad \quad \text{while } \text{ABOVE-THRESHOLD}(\mathcal{H}_{n+1}[0], \mathcal{H}_{n+2}, \gamma, f) \\
13 & \quad \quad \quad \text{do } C \leftarrow \mathcal{H}_{n+1}[0] = (D, S, P_D, F, \langle /s \rangle) \\
14 & \quad \quad \quad \quad \text{POP } C \text{ from } \mathcal{H}_{n+1} \\
15 & \quad \quad \quad \quad \triangleright \text{let } X \text{ be the top stack symbol on } S \\
16 & \quad \quad \quad \quad \text{if } X = \$ \\
17 & \quad \quad \quad \quad \quad \text{then PUSH } C \text{ onto } \mathcal{H}_{n+2} \\
18 & \quad \quad \quad \quad \text{else } \forall C' \text{ such that } C \Rightarrow C' : \text{PUSH } C' \text{ onto } \mathcal{H}_{n+1} \\
19 & \quad \quad \quad \text{if } \text{EMPTY}(\mathcal{H}_{n+2}[0]) \quad \triangleright \text{if no analysis made the final heap} \\
20 & \quad \quad \quad \text{then ERROR}
\end{align*}

Figure 3.7: A non-deterministic top-down parsing algorithm, taking a context-free grammar \(G\), a derives relation \(\Rightarrow\), an input string \(w\), a base beam-factor \(\gamma\), and a threshold function \(f\) as arguments. The symbol \(\Rightarrow\) denotes our derives relation defined on page 72. The symbol \(\triangleright\) precedes comments.

the derivation \(D\). \(F\) is the product of \(P_D\) and a look-ahead probability, \(\text{LAP}(S, w_i)\), which is a measure of the likelihood of the stack \(S\) rewriting with \(w_i\) at its left corner. Exactly how the LAP is calculated is described on page 73.

We can define a \textit{derives} relation, denoted \(\Rightarrow\), between two candidate analyses as follows. \((D, S, P_D, F, w^n_i) \Rightarrow (D', S', P'_D, F', w'^{n+1}_i)\) if and only if \(^6\)

\(^6\)The + in (i) denotes concatenation. To avoid confusion between sets and sequences, \(\emptyset\) will not be used for empty strings or sequences, rather the symbol \(\langle \rangle\) will be used. Note that the script \(S\) is used to denote stacks, while \(S^\dagger\) is the start symbol.
i. $D' = D + A \rightarrow \beta$

ii. $S = A \alpha S$

iii. either $S' = \beta \alpha S$ and $j = i$

or $\beta = w_i$, $j = i+1$, and $S' = \alpha S$

iv. $P_D = P_D P(A \rightarrow \beta)$; and

v. $F' = P_D' \text{LAP}(S', w_j)$

The parse begins with a single candidate analysis on the priority queue: $(\langle \rangle, S^\dagger 1, 1, w_0^n)$. It then proceeds as follows. The top ranked candidate analysis, $C = (D, S, P_D, F, w_0^n)$, is popped from the priority queue. If $S = \$ and $w_i = \langle /s \rangle$, then the analysis is complete. Otherwise, all $C'$ such that $C \Rightarrow C'$ are pushed onto the priority queue.

We implement this as a beam search. For each word position $i$, we have a separate priority queue, $\mathcal{H}_i$, of analyses with look-ahead $w_i$. When there are “enough” analyses by some criteria (which we will discuss below) on priority queue $\mathcal{H}_{i+1}$, all candidate analyses remaining on $\mathcal{H}_i$ are discarded. Since $w_n = \langle /s \rangle$, all parses that are pushed onto $\mathcal{H}_{n+1}$ are complete. The parse on $\mathcal{H}_{n+1}$ with the highest probability is returned for evaluation. In the case that no complete parse is found, a partial parse is returned and evaluated. Figure 3.7 presents the algorithm formally.

The LAP is the probability of a particular terminal being the next left-corner of a particular analysis. The terminal may be the left-corner of the top-most non-terminal on the stack of the analysis or it might be the left-corner of the top non-terminal on the stack of the analysis. Since $H$ (which we will discuss below) on priority queue, it might be the top non-terminal on the stack of the analysis. 

The same empirical probability, $P(A_i \Rightarrow X \alpha)$, is collected for every pre-terminal $X$ as well. The LAP approximation for a given stack state and look-ahead terminal is:

$$\text{LAP}(S, w_i) = \sum_{\alpha \in (V \cup T)^*} P_G(A_0^n \Rightarrow w_i \alpha)$$

(3.28)

We recursively estimate this with two empirically observed conditional probabilities for every non-terminal $A_i$: $\hat{P}(A_i \Rightarrow w_i \alpha)$ and $\hat{P}(A_i \Rightarrow \epsilon)$. The same empirical probability, $\hat{P}(A_i \Rightarrow X \alpha)$, is collected for every pre-terminal $X$ as well. The LAP approximation for a given stack state and look-ahead terminal is:

$$P_G(A_j \Rightarrow w_i \alpha) \approx P_G(A_j \Rightarrow w_i \alpha) + \hat{P}(A_j \Rightarrow \epsilon) P_G(A_{j+1} \Rightarrow w_i \alpha)$$

(3.29)

where

$$P_G(A_j \Rightarrow w_i \alpha) \approx \lambda_{A_j} \hat{P}(A_j \Rightarrow w_i \alpha) + (1 - \lambda_{A_j}) \sum_{X \in V} \hat{P}(A_j \Rightarrow X \alpha) \hat{P}(X \rightarrow w_i)$$

(3.30)

The $\lambda_{A_j}$ mixing coefficients for interpolation are a function of the frequency of the non-terminal $A_j$, and are estimated in the standard way using held-out training data [Jelinek and Mercer, 1980].

We have identified three pieces of information that are potentially useful in deciding when “enough” parses have been collected for the substring $w_0^n$ — in other words, that it is likely that the

---

7Equivalently, we can split the analyses at this point, so that there is one POS per analysis. If the POS label is given by the input string, then, obviously, this does not need to occur.
parse which will ultimately have the highest score is in the set already collected: (i) the number of analyses that have successfully reached $w_i$; (ii) the number of analyses that have been pushed back on the heap without having reached $w_i$; and (iii) the highest probability from among the analyses that have reached $w_i$, which can be used to define a probability range as a beam threshold. A couple of considerations are relevant when considering which of these scores to use for beam thresholding. First, if (ii) is ignored, there is no assurance of termination with a left-recursive grammar, since it is possible that no analysis ever reaches $w_i$. Second, the density of competing analyses within a fixed probability range can vary dramatically depending on the syntactic context.

If the threshold is defined by a target number for factor (i) above, and the density is very low, the parser could spend a lot of time searching for parses with an extremely low probability in an attempt to find enough of them to fill the beam. If the threshold is defined by a target range based on factor (iii) above, and the density is very high, the parser could spend a lot of time following all of the paths within that range. Based on these considerations, all three factors should play a role in deciding when “enough” analyses have been found, i.e. in setting the threshold below which analyses are discarded. One way to give each factor a role is to simply set three thresholds, and stop expanding whenever one of them is crossed. We shall instead define two thresholds, one of which is defined as a function of two of the factors.

The beam threshold at word $w_i$ is a function of the probability of the top ranked candidate analysis, $H_{i+1}[0]$, on priority queue $H_{i+1}$ and the number, $|H_{i+1}|$, of candidate analyses on $H_{i+1}$. The basic idea is that we want the beam to be very wide if there are few analyses that have been added to $H_{i+1}$, but relatively narrow if many analyses have been advanced. If $\tilde{p}$ is the probability of the highest ranked analysis on $H_{i+1}$, then all other analyses are discarded if their probability falls below $\tilde{p}f(\gamma, |H_{i+1}|)$, where $\gamma$ is an initial parameter, which we call the base beam factor. For the initial study, reported in the next section, which parsed strings of POS tags, $\gamma$ was $10^{-4}$, and $f(\gamma, |H_{i+1}|) = \gamma|H_{i+1}|$. In this case, if 100 analyses have already been pushed onto $H_{i+1}$, then a candidate analysis must have a probability above $10^{-2}\tilde{p}$ to avoid being pruned. When $|H_{i+1}| = 1000$ candidate analyses, the beam is narrowed to $10^{-1}\tilde{p}$. For the later study, reported beginning on page 93, which parsed strings of words, $\gamma$ was $10^{-11}$, unless otherwise noted, and $f(\gamma, |H_{i+1}|) = \gamma|H_{i+1}|^3$. This function has the effect of having a very wide beam early, but closing much faster than in the early study. Thus, if 100 analyses have already been pushed onto $H_{i+1}$, then a candidate analysis must have a probability above $10^{-5}\tilde{p}$ to avoid being pruned. After 1000 candidate analyses, the beam has narrowed to $10^{-2}\tilde{p}$. There is also a maximum number of allowed analyses on $H_{i+1}$, in case the parse fails to advance an analysis to $H_{i+1}$. This was typically 10,000 in both studies.

### 3.3 Empirical results I

#### 3.3.1 Evaluation

Statistical parsers are typically evaluated for accuracy at the constituent level, rather than simply whether or not the parse that the parser found is completely correct or not. A constituent for evaluation purposes consists of a non-preterminal non-terminal label (e.g. NP) and a span (beginning and ending word positions). For example, in figure 3.1(a), there is a VP that spans the words “chased the ball”. Evaluation is carried out on a hand-parsed test corpus (Marcus, Santorini, and Marcinkiewicz, 1993), and the manual parses are treated as correct. We will call the manual parse GOLD and the parse that the parser returns TEST. Precision is the number of common constituents in GOLD and TEST divided by the number of constituents in TEST. Recall is the number of com-
| Transform | Rules in Grammar | Percent of Sentences Parsed* | Avg. Rule Expansions Considered | Avg. LP and LR† | Avg. MLP LP and LR† | Ratio of Avg. Prob to Avg. MLP Prob† |
|-----------|-----------------|----------------------------|--------------------------------|----------------|---------------------|----------------------------------|
| None      | 14962           | 34.16                      | 19270                          | .65521         | .76427              | .001721                          |
| RF        | 37955           | 33.99                      | 96813                          | .65539         | .76095              | .001440                          |
| LF1       | 29851           | 91.27                      | 10140                          | .71616         | .72712              | .340858                          |
| LF0       | 41084           | 97.37                      | 13868                          | .73207         | .72327              | .443705                          |

Beam Factor = $10^{-4}$ *Length $\leq 40$ (2245 sentences in F23 - Avg. length = 21.68)
†Of those sentences parsed

Table 3.1: The effect of different approaches to factorization

mon constituents in GOLD and TEST divided by the number of constituents in GOLD. Following standard practice, we will be reporting scores only for non-part-of-speech constituents, which are called labeled recall (LR) and labeled precision (LP). Also following standard practice, we will ignore punctuation altogether, and treat ADVP and PRN as equivalent. Sometimes we will present average labeled precision and recall, and also what can be termed the parse error, which is one minus their average.

LR and LP are part of the standard set of PARSEVAL measures of parser quality (Black et al., 1991). For the preliminary empirical results we will focus upon LR and LP as measures of accuracy, but when the full-blown model is investigated, we will also include, from this set of measures, the crossing bracket scores: average crossing brackets (CB), percentage of sentences with no crossing brackets (0 CB), and the percentage of sentences with two crossing brackets or fewer ($\leq 2$ CB). In addition, to measure efficiency, we will show the average number of rule expansions considered per word, i.e. the number of rule expansions for which a probability was calculated – see Roark and Charniak (2000) – and the average number of analyses advanced to the next priority queue per word.

This is an incremental parser with a pruning strategy and no backtracking. In such a model, it is possible to commit to a set of partial analyses at a particular point that cannot be completed given the rest of the input string (i.e. the parser can garden path). In such a case, the parser fails to return a complete parse. For the preliminary results, we performed evaluation upon those sentences for which a parse is found. For the full-blown model, in the event that no complete parse is found, the highest initially ranked parse on the last non-empty priority queue is returned. All unattached words are then attached at the highest level in the tree. In such a way we predict no new constituents and all incomplete constituents are closed. This structure is evaluated for precision and recall, which is entirely appropriate for these incomplete as well as complete parses. If we fail to identify nodes later in the parse, the recall will suffer, and if our early predictions were bad, both precision and recall will suffer. Of course, the percentage of these failures are reported as well.

### 3.3.2 Delaying rule identification through factorization

Table 3.1 summarizes some trials demonstrating the effect of different factorization approaches on parser performance. The grammars were induced from sections 2-21 of the Penn Wall St. Journal Treebank (Marcus, Santorini, and Marcinkiewicz, 1993), and tested on section 23. The parser
was applied to strings of given POS tags, not words. For each transform tested, every tree in the training corpus was transformed before grammar induction, resulting in a transformed PCFG and look-ahead probabilities estimated in the standard way. Each parse returned by the parser was de-transformed for evaluation. The parser used in each trial was identical, with a base beam factor \( \gamma = 10^{-4} \), and \( f(\gamma, |H_{t+1}|) = \gamma |H_{t+1}| \). The performance is evaluated using these measures: (i) the percentage of candidate sentences for which a parse was found (coverage); (ii) the average number of rule expansions considered per candidate sentence (efficiency); and (iii) the average labeled precision and recall of those sentences for which a parse was found (accuracy). We also used the same grammars with an exhaustive, bottom-up CKY parser, to ascertain both the accuracy and probability of the maximum likelihood parse (MLP). We can then additionally compare the parser’s performance to the MLP’s on those same sentences.

As expected, right factorization conferred no benefit to our parser. No factorization and right factorization resulted in very low coverage – those sentences that they do cover are apparently easier to parse, given that their maximum likelihood parse precision and recall scores are higher than for the test set as a whole. Left factorization, in contrast, improved performance across the board. LF0 provided a substantial improvement in coverage and accuracy over LF1, with something of a decrease in efficiency. This efficiency hit is partly attributable to the fact that the same tree has more nodes with LF0. Indeed, the efficiency improvement with left factorization over the standard grammar is even more interesting in light of the great increase in the size of the grammars.

It is worth noting at this point that, with the LF0 grammar, this parser is now a viable broad-coverage statistical parser, with good coverage, accuracy, and efficiency\(^8\). Left-recursion, typically a great problem for top-down parsers, does not seem to be fatal here, despite being relatively probable. Next we considered the left-corner parsing strategy.

### 3.3.3 Left-corner parsing

We will be investigating left-corner parsing as a grammar transform, as discussed in the previous section. Multiple transforms can be applied to the grammar in sequence, through function composition. For example, the output of a left-corner transform can be left-factored. Recall that we will denote this kind of transform composition \( (A \circ B)(\tau) = B(A(\tau)) \). Recall also that, since \( \epsilon \)-productions can be introduced from either transform in a redundant location, when composing them the factorization will be to unary rather than nullary.

Another probabilistic LC parser investigated (Manning and Carpenter, 1997), which utilized an LC parsing architecture (not a transformed grammar), also got a performance boost through left factorization. Since that involved feeding an LF grammar to an LC parser, this is equivalent to LF \( \circ \) LC, which is a very different grammar from LC \( \circ \) LF. Given our two factorization orientations (RF and LF), there are four possible compositions of factorization and LC transforms:

\[
(a) \text{RF} \circ \text{LC} \quad (b) \text{LF} \circ \text{LC} \quad (c) \text{LC} \circ \text{RF} \quad (d) \text{LC} \circ \text{LF}
\]

Table 3.2 shows left-corner results over various conditions\(^9\). Interestingly, options (a) and (d)

\(^8\)The very efficient bottom-up statistical parser detailed in Charniak, Goldwater, and Johnson (1998) measured efficiency in terms of total edges popped. An edge (or, in our case, a parser state) is considered when a probability is calculated for it, and we felt that this was a better efficiency measure than simply those popped. As a baseline, their parser considered an average of 2216 edges per sentence in section 22 of the WSJ corpus (p.c.).

\(^9\)Option (c) is not the appropriate kind of factorization for our parser, as argued in the previous section, and so is omitted.
Figure 3.8: (a) The original structure; (b) after left-corner transform (LC); (c) after left-corner transform and left-factorization (LC $\circ$ LF); and (d) after left-corner transform, left-factorization, and parent announce annotation (LC $\circ$ LF $\circ$ ANN)

encode the same information, leading to nearly identical performance. As stated before, left factorization moves the rule announce point from before to after all of the children. The LC transform is such that LC $\circ$ LF also delays parent identification until after all of the children. The transform LC $\circ$ LF $\circ$ ANN moves the parent announce point back to the left corner by introducing unary rules at the left corner that simply identify the parent of the factored rule. Figure 3.8 shows a tree, and the sequential effects of the transforms: tree (b) shows the left-corner transform; tree (c) shows the structure after tree (b) has been left-factored. Notice in tree (c) that the category NP does not appear until after the last word of the NP. In tree (d), the NP prediction is annotated onto a category that is predicted after the first child has been built. This allows us to test the effect of the position of the parent announce point on the performance of the parser. As we can see, however, the effect is slight, with similar performance on all measures.

LF $\circ$ LC performs with higher accuracy than the others when used with an exhaustive parser, but seems to require a massive beam in order to even approach performance at the MLP level. Manning and Carpenter (1997) used a beam width of 40,000 parses on the success heap at each input item, which must have resulted in several orders of magnitude more rule expansions than what we have been considering up to now, and yet their average labeled precision and recall (.7875) still fell well below what we found to be the MLP accuracy (.7987) for the grammar. This is most likely due to sparse data, which the relatively narrow search makes our parser particularly susceptible to, and apparently also makes the search in Manning and Carpenter fall short as well. The chart parser, while also affected by sparse data, is not a garden pathing model, so a poor local estimate of probabilities may not derail the parser in the way that ours or Manning and Carpenter’s may be.

Sparse data occurs when the parameters of the model become too large to be accurately esti-
Table 3.2: Left Corner Results

| Transform | Rules in Grammar | Percent of Sentences Parsed* | Avg. Rule Expansions Considered | Avg. LP and LR† | Avg. MLP LP and LR† | Ratio of Avg. Prob to Avg. MLP Prob† |
|-----------|-----------------|-------------------------------|----------------------------------|----------------|----------------------|-----------------------------------|
| LC        | 21797           | 91.75                         | 9000                             | .76399         | .78156               | .175928                           |
| RF ○ LC   | 53026           | 96.75                         | 7865                             | .77815         | .78056               | .359828                           |
| LC ○ LF   | 53494           | 96.7                          | 8125                             | .77830         | .78066               | .359439                           |
| LC ○ LF ○ ANN | 55094       | 96.21                         | 7945                             | .77854         | .78094               | .346778                           |
| LF ○ LC   | 86007           | 93.38                         | 4675                             | .76120         | .80529               | .267330                           |

Beam Factor = $10^{-4}$  †Length ≤ 40 (2245 sentences in F23 - Avg. length = 21.68)
†Of those sentences parsed

mated from the limited amount of training data. In this case, the parameters are the rules, and the estimation procedure (relative frequency estimation) used in this preliminary experiment requires rules to be observed to give them any probability mass. Beyond this, in order for the estimate for any particular parameter to converge to the true probability, many observations are required. Thus, for example, the LF ○ LC grammar has over 86,000 rules, as opposed to less than 54,000 for LC ○ LF, i.e. many more parameters and more-or-less the same number of observations, which leads to fewer observations per parameter to be estimated. The reason for the large increase in grammar size is that in the LF ○ LC grammar, even the composite non-terminals introduced by factorization are recognized left-corner, leading to ancestor/left-corner pairs that involve an indefinite number of base categories in combination. This same problem of sparse data will come up with non-local annotation in the next section, and even more severely with the full model later in this chapter.

3.3.4 Non-local annotation

Johnson (1998b) discusses the improvement of PCFG models via the annotation of non-local information onto non-terminal nodes in the trees of the training corpus. One simple example is to copy the parent node onto every non-terminal (called parent annotation below), e.g. the rule $S \rightarrow NP \ VP$ at the root of the tree becomes $S \rightarrow S^† \rightarrow NP^† \ VP^† \ S$. The idea here is that the distribution of rules of expansion of a particular non-terminal may differ depending on the non-terminal’s parent. Indeed, it was shown that this additional information improves the MLP accuracy dramatically.

We looked at two kinds of non-local information annotation: parent (PA) and left-corner (LCA). Left-corner parsing gives improved accuracy over top-down or bottom-up parsing with the same grammar. Why? One reason may be that the ancestor category is a useful piece of information in estimating a probability distribution over likely rules, just as the parent category is. To test this, we annotated the left-corner ancestor category onto every leftmost non-terminal category. Figure 3.9 shows each of these two annotation transforms. The results of our annotation trials are shown in table 3.3.

There are two important points to notice from these results. First, with PA we get not only the previously reported improvement in accuracy, but additionally a fairly dramatic decrease in the number of rule expansions that must be visited to find a parse. That is, the non-local information not only improves the final product of the parse, but it guides the parser more quickly to the final
product. The annotated grammar has 1.5 times as many rules, and would slow a bottom-up CKY parser proportionally. Yet our parser actually considers far fewer rule expansions en route to the more accurate parse.

Second, LC-annotation gives nearly all of the accuracy gain of left-corner parsing, in support of the hypothesis that the ancestor information was responsible for the observed accuracy improvement. This result suggests that if we can determine the information that is being annotated by the troublesome (apparently because of sparse data given the size of the grammar) LF ◦ LC transform, we may be able to get the accuracy improvement with a relatively narrow beam. Parent-annotation before the LC transform gave us the best performance of all, with very few rule expansions considered on average, and excellent accuracy for a non-lexicalized grammar.

### 3.3.5 Accuracy/Efficiency tradeoff

One point that deserves to be made is that there is something of an accuracy/efficiency tradeoff with regards to the base beam factor. The results given so far were at $10^{-4}$, which functions pretty well for the transforms we have investigated. Figures 3.10 and 3.11 show four performance measures for four of our transforms at base beam factors of $10^{-3}$, $10^{-4}$, $10^{-5}$, and $10^{-6}$. There is a dramatically increasing efficiency burden as the beam widens, with varying degrees of payoff. With the top-down transforms (LF0 and PA ◦ LF0), the ratio of the average probability to the MLP probability does improve substantially as the beam grows, yet with only marginal improvements in coverage and accuracy. Increasing the beam seems to do less with the left-corner transforms.
Figure 3.10: Changes in performance with beam factor variation
Figure 3.11: Changes in performance with beam factor variation
3.3.6 Summary of results

There are several key results in this section. First, when the grammar is appropriately factored, it is possible to navigate this very large search space to find parses with nearly the same accuracy as the maximum likelihood parse, with fairly high coverage. This is achieved with our top-down parser despite a heavily left-recursive grammar. Second, non-local annotation – of parent category or left-corner ancestor – not only improves the accuracy of the parses found, which is consistent with previous results, but also improves the efficiency with which they are found, measured by the number of distinct rule expansions that need to be considered. Left-corner parsing provides an accuracy improvement over simple top-down, but we have shown that this is by virtue of the annotation of the ancestor category in the transform. Nevertheless, there is an efficiency improvement of over 25 percent through the use of a left-corner grammar versus a left-corner annotated grammar, which is unsurprising, given that the left-corner grammar jumps over left-recursive cycles.

These are promising results. Sparse data, however, was experienced through lower coverage (higher percentage of failure to find a parse) whenever additional non-local information was encoded into the grammar. This will become even more acute when we move to parsing words instead of POS tags, and when lexical information is “annotated” onto the grammars. Smoothing of the grammars will be employed, so that more reliable estimates can be obtained of conditional rule probabilities. Hence, while the parsing algorithm will remain largely unchanged, the probability model will change dramatically.

3.4 Lexicalized conditional probability model

A simple PCFG conditions rule probabilities on the left-hand side of the rule. It has been shown repeatedly – e.g. Briscoe and Carroll (1993), Charniak (1997), Collins (1997), Inui et al. (1997), Johnson (1998b) – that conditioning the probabilities of structures on the context within which they appear, for example on the lexical head of a constituent (Charniak, 1997; Collins, 1997), on the label of its parent non-terminal (Johnson, 1998b), or, ideally, on both and many other things besides, leads to a much better parsing model and results in higher parsing accuracies.

One way of thinking about conditioning the probabilities of productions on contextual information, e.g. the label of the parent of a constituent or the lexical heads of constituents, is as annotating the extra conditioning information onto the labels in the context-free rules. Examples of this are bilexical grammars – see e.g. Eisner and Satta (1999), Charniak (1997), Collins (1997) – where the lexical heads of each constituent are annotated on both the right- and left-hand sides of the context free rules, under the constraint that every constituent inherits the lexical head from exactly one of its children, and the lexical head of a POS is its terminal item. Thus the rule $S \rightarrow NP \ VP$ becomes, for instance, $S[barks] \rightarrow NP[dog] \ VP[barks]$. One way to estimate the probabilities of these rules is to annotate the heads onto the constituent labels in the training corpus, and simply count the number of times particular productions occur (relative frequency estimation). This procedure yields conditional probability distributions of constituents on the right-hand side with their lexical heads, given the left-hand side constituent and its lexical head. The same procedure works if we annotate parent information onto constituents. This is how Johnson (1998b) conditioned the probabilities of productions: the left-hand side is no longer, for example, $S$, but rather $S^{↑}SBAR$, i.e. an $S$ with $SBAR$ as parent. This means that such a grammar is still a PCFG, yet with a much larger non-terminal set, i.e. we are growing the number of potential states of the pushdown automaton.
Notice, however, that in the case of parent annotation, the annotations on the right-hand side are predictable from the label on the left-hand side (unlike, for example, bilexical grammars), so that the relative frequency estimator yields conditional probability distributions of the original rules, given the parent of the left-hand side. Let us make this explicit. Consider the rule \( S \rightarrow NP \ VP \):

\[
P(S \rightarrow NP \ VP) = P(NP, VP | \text{lhs} = S) \tag{3.31}
\]

Now consider parent annotation; for example, \( S \uparrow \text{SBAR} \rightarrow NP \uparrow S \ VP \uparrow S \):

\[
P(S \uparrow \text{SBAR} \rightarrow NP \uparrow S \ VP \uparrow S) = P(NP \uparrow S, VP \uparrow S | \text{lhs} = S, \text{par} = \text{SBAR})
= P(NP, VP | \text{lhs} = S, \text{par} = \text{SBAR}) \tag{3.32}
\]

Hence the probability of the rule is the probability of the children given the left-hand side of the rule, plus some additional information. The probability of a rule in a bilexical grammar does not simplify in the same way, since the conditioned variables must also include a novel lexical head. For example, the probability of \( S[barks] \rightarrow NP[dog] \ VP[barks] \) is formulated as \( P(NP, VP, \text{np}(dog) | \text{lhs} = VP, \text{vp}(barks)) \), which involves the prediction of an additional event (namely the head of the NP) beyond the categories of the children.

All of the conditioning information that we will be considering will be such that the only novel predictions being made by rule expansions are the node-labels of the constituents on the right-hand side. Everything else is already specified by the left-context. We use the relative frequency estimator, and smooth our production probabilities by interpolating the relative frequency estimates with those obtained by “annotating” less contextual information. As mentioned in the previous section, rich unsmoothed models suffer greatly from sparse training data, and these smoothing methods are a way of giving probability mass to infrequent events.

This perspective on conditioning production probabilities makes it easy to see that, in essence, by conditioning these probabilities, we are expanding the state space. That is, the number of distinct non-terminals grows to include the composite labels; so does the number of distinct productions in the grammar. In a top-down parser, each rule expansion is made for a particular candidate parse, which carries with it the entire rooted derivation to that point; in a sense, the left-hand side of the rule is annotated with the entire left-context, and the rule probabilities can be conditioned on any aspect of this derivation.

Consider, for example, the two derivations in figure 3.12. The two steps in these two derivations are identical: (i) extending the verb POS to the verb, and (ii) building a PP child of the VP. The two verbs are more-or-less equiprobable in the Penn Treebank. The first of the two steps will involve estimating a probability for the verb given its POS tag. It might be useful to additionally condition this probability on the head of the subject NP (\( stock \)), since stocks are unlikely agents of \textit{issue} and not-so-unlikely agents of \textit{open}. In addition, we might want to condition the VP expansion (to PP) on the head of the VP that has just been found: \textit{open} may be more likely to occur with PP modification than \textit{issue}. Each derivation step in our top-down parser carries with it the derivation to that point, which can be used to provide relevant conditioning information for future steps in the derivation.

We do not use the entire left-context to condition the rule probabilities, but rather “pick-and-choose” which events in the left-context we would like to condition on. One can think of the conditioning events as functions, which take the partial tree structure as an argument and return
a value, upon which the rule probability can be conditioned. Each of these functions is an algorithm for walking the provided tree and returning a value. For example, suppose that we want to condition the probability of the rule $A \to \alpha$. We might write a function that takes the partial tree, finds the parent of the left-hand side of the rule and returns its node label. If the left-hand side has no parent, i.e. it is at the root of the tree, the function returns the null value (NULL). We might write another function that returns the non-terminal label of the closest sibling to the left of $A$, and NULL if no such node exists. We can then condition the probability of the production on the values that were returned by the set of functions.

Recall that we are working with a factored grammar, so some of the nodes in the factored tree have non-terminal labels that were created by the factorization, and may not be precisely what we want for conditioning purposes. In order to avoid any confusions in identifying the non-terminal label of a particular rule production in either its factored or non-factored version, we introduce the function $CN(A)$ for every non-terminal in the factored grammar $\mathcal{F}(G)$, which is simply the label of the constituent whose factorization results in $A$. For example, in figure 3.3(e), $CN(NP - DT, JJ)$ is simply NP.

Note that a function can return different values depending upon the location in the tree of the non-terminal that is being expanded. For example, suppose that we have a function that returns the label of the closest sibling to the left of $CN(A)$ or NULL if no such node exists. Then a subsequent function could be defined as follows: return the parent of the parent (the grandparent) of $CN(A)$ only if $CN(A)$ has no sibling to the left; otherwise return the 2nd closest sibling to the left of $CN(A)$, or, as always, NULL if no such node exists. If the function returns, for example, “NP”, this could either mean that the grandparent is NP or the 2nd closest sibling is NP; yet there is no ambiguity in the meaning of the function, since the result of the previous function disambiguates
For all rules \( A \rightarrow \alpha \)

\[ \bigcirc A \]

\( \bigcirc \) the parent, \( Y_p \), of \( \mathcal{CN}(A) \) in the derivation

\( \bigcirc \) the closest sibling, \( Y_s \), to the left of \( \mathcal{CN}(A) \) in the derivation

\( A = \text{POS}, Y_s \neq \text{NULL} \)

\( \bigcirc \) the parent, \( Y_p' \), of \( Y_p \) in the derivation

the closest sibling, \( Y_{p_s} \), to the left of \( Y_p \)

the POS of the closest c-commanding lexical head to \( A \)

the closest c-commanding lexical head to \( A \)

If \( Y_s \) is CC, the leftmost child of the conjoining category; else NULL

the lexical head of \( \mathcal{CN}(A) \) if already seen;

otherwise the lexical head of the closest constituent to the left of \( A \) within \( \mathcal{CN}(A) \)

the next closest c-commanding lexical head to \( A \)

The functions that were used for the present study to condition the probability of the rule, \( A \rightarrow \alpha \), are presented in figure 3.13, in a tree structure. This is a sort of decision tree for a tree-walking algorithm to decide what value to return, for a given partial tree and a given depth. For example, if the algorithm is asked for the value at level 0, it will return \( A \), the left-hand side of the rule being expanded. Suppose the algorithm is asked for the value at level 4. After level 2 there is a branch in the decision tree. If the left-hand side of the rule is a POS, and there is a sibling to the left of \( \mathcal{CN}(A) \) in the derivation, then the algorithm takes the right branch of the decision tree to decide what value to return; otherwise the left branch. Suppose it takes the left branch. Then after level 3, there is another branch in the decision tree. If the left-hand side of the production is a POS, then the algorithm takes the right branch of the decision tree, and returns (at level 4) the POS of the closest c-commanding lexical head to \( A \), which it finds by walking the parse tree; if the left-hand side of the rule is not a POS, then the algorithm returns (at level 4) the closest sibling to the left of the parent of \( \mathcal{CN}(A) \).

The functions that we have chosen for this chapter follow from the intuition (and experience) that what helps parsing is different depending on the constituent that is being expanded. POS nodes have lexical items on the right-hand side, and hence can bring some of the head-head dependencies into the model that have been shown to be so effective. If the POS is leftmost within its constituent,

---

Recall that \( A \) can be a composite non-terminal introduced by grammar factorization. When the function is defined in terms of \( \mathcal{CN}(A) \), the values returned are obtained by moving through the non-factored tree.
then very often the lexical item is sensitive to the governing category to which it is attaching. For example, if the POS is a preposition, then its probability of expanding to a particular word is very different if it is attaching to a noun phrase versus a verb phrase, and perhaps quite different depending on the head of the constituent to which it is attaching. Subsequent POSs within a constituent are likely to be open class words, and less dependent on these sorts of attachment preferences.

Conditioning on parents and siblings of the left-hand side has proven to be very useful. To understand why this is the case, one need merely to think of VP expansions. If the parent of a VP is another VP (i.e. if an auxiliary or modal verb is used), then the distribution over productions is different than if the parent is an S. Conditioning on head information, both POS of the head and the lexical item itself, has proven useful as well, although given our parser’s left-to-right orientation, in many cases the head has not been encountered within the particular constituent. In such a case, the head of the last child within the constituent is used as a proxy for the constituent head. All of our conditioning functions, with one exception, return either parent or sibling node labels at some specific distance from the left-hand side, or head information from c-commanding constituents. The exception is the function at level 5 along the left branch of the tree in figure 3.13. Suppose that the node being expanded is being conjoined with another node, which we can tell by the presence or absence of a CC node. In that case, we want to condition the expansion on how the conjoining constituent expanded. In other words, this attempts to capture a certain amount of parallelism between the expansions of conjoined categories.

The conditioning events that we have made use of in this model have a linear order, which, in general, corresponds to a distance from the left-hand side of the rule being expanded, i.e. the parent of the newly hypothesized category. By adding this conditioning information, we effectively encode finer and finer distinctions into the tag set, which in its original form is quite coarse. For example, the POS tag “IN” is both preposition and complementizer. One way to make the distinction between these two subsets is by annotating the parent of the POS tag within the tree already built – either IN\textsuperscript{PP} versus IN\textsuperscript{SBAR}, which nicely separates these two subclasses. Since both PPs and SBARs can occur in similar contexts (both NP and VP modification), if we jump over the parent of the POS, and instead condition the probability of the word (e.g. that) on events farther away in the left-context, we may end up conditioning on evidence that is pulled from very different syntactic contexts. The grandparent, for example, i.e. the parent of the parent, can be a VP or NP in both cases. Thus any evidence for a VP grandparent bias versus an NP grandparent bias for a complementizer like that (or any lexical attachment preferences) will be brought to bear in support of VP attachment for both SBAR and PP constituents, despite the fact that this particular complementizer never participates in a PP. Hence the general guiding principle in building these conditioning events is that events closer to the rule occur earlier in the linear set of conditioning events; also tags occur before specific lexical items. This is intended to ensure that when information is used to support a structure, it has actually occurred with that structure, and not some other.

In presenting the parsing results, we will systematically vary the amount of conditioning information, so as to get an idea of the behavior of the parser. We will refer to the amount of conditioning by specifying the deepest level from which a value is returned for each branching path in the decision tree, from left to right in figure 3.13: the first number is for left-contexts where the left branch of the decision tree is always followed (non-POS non-terminals on the left-hand side); the second number for a left branch followed by a right branch (POS nodes that are leftmost within their constituent); and the third number for the contexts where the right branch is always
Table 3.4: Levels of conditioning information, mnemonic labels, and a brief description of the information level for empirical results

| Conditioning | Mnemonic label | Information level |
|--------------|----------------|-------------------|
| 0,0,0        | none           | Simple PCFG       |
| 2,2,2        | par+sib        | Small amount of structural context |
| 5,2,2        | NT struct      | All structural (non-lexical) context for non-POS |
| 6,2,2        | NT head        | Everything for non-POS expansions |
| 6,3,2        | POS struct     | More structural info for leftmost POS expansions |
| 6,5,2        | attach         | All attachment info for leftmost POS expansions |
| 6,6,4        | all            | Everything |

followed (POS nodes that are not leftmost within their constituent). For example, (4,3,2) would represent a conditional probability model that (i) returns NULL for all functions below level four in all contexts; (ii) returns NULL for all functions below level three if the left-hand side is a POS; and (iii) returns NULL for all functions below level two for non-leftmost POS expansions.

Table 3.4 gives a breakdown of the different levels of conditioning information used in the empirical trials, with a mnemonic label that will be used when presenting results. These different levels were chosen as somewhat natural points at which to observe how much of an effect increasing the conditioning information has. We first include structural information from the context, i.e. node labels from constituents in the left context. Then we add lexical information, first for non-POS expansions, then for leftmost POS expansions, then for all expansions.

All of the conditional probabilities are linearly interpolated. For example, the probability of a rule conditioned on six events is the linear interpolation of two probabilities: (i) the empirically observed relative frequency of the rule when the six events co-occur; and (ii) the probability of the rule conditioned on the first five events (which is in turn interpolated). The interpolation coefficients are a function of the frequency of the set of conditioning events, and are estimated by iteratively adjusting the coefficients so as to maximize the likelihood of the rules observed in a held out corpus.

This was an outline of the conditional probability model that we used for the PCFG. The model allows us to assign probabilities to derivations, which can be used by the parsing algorithm to decide heuristically which candidate analyses are promising and should be expanded, and which are less promising and should be pruned.

### 3.5 Empirical results II

The trials in this chapter are intended to examine the accuracy and efficiency that can be achieved by the basic parser under a variety of conditions. Later trials will look at: (i) further modifications to this basic model; (ii) test corpus perplexity and recognition performance; (iii) the effect of beam variation on these performance measures; and (iv) performance with different corpora. The results in this section will give us a baseline against which we can compare further results.
These results look at the performance of the parser on the standard corpora for statistical parsing trials: sections 2-21 (989,860 words, 39,832 sentences) of the Penn Treebank serving as the training data, section 24 (34,199 words, 1,346 sentences) as the held-out data for parameter estimation, and section 23 (59,100 words, 2,416 sentences) as the test data. Section 22 (41,817 words, 1,700 sentences) served as the development corpus, on which the parser was tested until stable versions were ready to run on the test data, to avoid developing the parser to fit the specific test data.

Table 3.5 shows trials with increasing amounts of conditioning information from the left-context. There are a couple of things to notice from these results. First, and least surprising, is that the accuracy of the parses improved as we conditioned on more and more information. Like the non-lexicalized parser in the previous results, we found that the search efficiency, in terms of number of rule expansions considered or number of analyses advanced, also improved as we increased the amount of conditioning. Unlike those results, however, our coverage did not substantially drop as the amount of conditioning information increased, and in some cases improved slightly. For the earlier results, we did not smooth the conditional probability estimates, and then blamed sparse data for our decrease in coverage as we increased the conditioning information. These results appear to support this, since the smoothed model showed no such tendency.

Figure 3.14 shows the reduction in parser error, $1 - \frac{LR+LP}{2}$, and the reduction in rule expansions considered as the conditioning information increased. The bulk of the improvement comes from simply conditioning on the labels of the parent and the closest sibling to the node being expanded. Interestingly, conditioning all POS expansions on two c-commanding heads made no accuracy difference compared to conditioning only leftmost POS expansions on a single c-commanding head; but it did improve the efficiency.

These results, achieved using simple conditioning events and considering only the left-context, are within 1-4 percentage points of the best published accuracies cited above. Table 3.6 compares our parser with these published results. All of the parsers that we are comparing with are off-line,
Figure 3.14: Reduction in average precision/recall error and in number of rule expansions per word as conditioning increases, for sentences of length $\leq 40$

multi-pass parsers, which have the benefit of seeing the entire string while building structure, and hence the ability to exploit certain dependencies that are unobserved as we build our structure incrementally.

Of the 2416 sentences in the section, our parser found the totally correct parse for 728, a 30.1 percent tree accuracy. Also, the parser returns a set of candidate parses, from which we have been choosing the top ranked; if we use an oracle to choose the parse with the highest accuracy from among the candidate parses (which averaged 70.0 in number per sentence), we find an average labeled precision/recall of 94.1, for sentences of length $\leq 100$. The parser, thus, could be used as a front end to some other model, with the hopes of selecting a more accurate parse from among the final candidate parses.

While we have shown that the conditioning information improves the efficiency in terms of rule expansions considered and analyses advanced, what does the efficiency of such a parser look like in practice? Figure 3.15 shows the observed time at our standard base beam of $10^{-11}$ with the full conditioning regimen, alongside an approximation of the reported observed (linear) time in Ratnaparkhi (1997). Our observed times look polynomial, which is to be expected given our pruning strategy. We define our beam search in terms of a probability range that narrows with the number of successful analyses found; nonetheless, for any given number of analyses, there is a probability range. Hence, the denser the competitors within a narrow probability range of the best analysis, the more time will be spent working on these competitors. The farther along in the sentence, the more chance for ambiguities that can lead to such a situation. In other words, the density of competitors within a narrow probability range of the best analysis will tend to grow with the length of the sentence, leading to the increased time that we observe. That increase is very
| Model          | LR | LP | CB  | 0 CB | ≤ 2 CB | Pct. failed |
|---------------|----|----|-----|------|--------|-------------|
| Our parser    | 85.7 | 85.7 | 1.41 | 59.0 | 79.9 | 1.7          |
| Charniak (1997) | 86.7 | 86.6 | 1.20 | 59.9 | 83.2 | 0            |
| Ratnaparkhi (1999) | 86.3 | 87.5 |       |      |       |              |
| Collins (1999)  | 88.1 | 88.3 | 1.06 | 64.0 | 85.1 | 0            |
| Charniak (2000) | 89.6 | 89.5 | 0.88 | 67.6 | 87.8 | 0            |
| Collins (2000)  | 89.6 | 89.5 | 0.88 | 67.6 | 87.8 | 0            |

Table 3.6: Comparison of parsing results with the best in the literature.

Figure 3.15: Observed running time on section 23 of the Penn treebank, with the full conditional probability model and beam of $10^{-11}$, using one 300 Mhz UltraSPARC processor and 256MB of RAM of a Sun Enterprise 450

slight, and is bounded, since the number of analyses that succeed will eventually raise the threshold to the probability of the best analysis itself. While our observed times are not linear, and are clearly slower than his times (even with a faster machine), they are quite respectably fast. The differences between a k-best and a beam-search parser (not to mention the use of dynamic programming) make a running time difference unsurprising, since best first can push good analyses through, without waiting to fill the beam at each word. What is perhaps surprising is that the difference
is not greater. Furthermore, this is quite a large beam (see discussion below), so that very large improvements in efficiency can be had at the expense of the number of analyses that are retained.

3.6 Chapter summary

In this chapter we have presented and tested a broad-coverage incremental probabilistic parser that maintains fully connected structures in the left-context. In other words, this parser is consistent with models of incremental interpretation, yet can cover freely occurring language with very high accuracy, efficiency, and coverage. We have found that, as the quality of the statistical model improves, i.e. as more relevant conditioning information is included in the model, the search becomes more efficient as the parses get more accurate. The smoothing techniques that were used in the full model gave some relief to the sparse data problems reported in the preliminary results, without eliminating the efficiency gain associated with the richer models.

We will be putting this parser and model through more trials and tests when we begin to look at language modeling for speech recognition. There are, however, a number of remaining issues that need to be investigated to improve the performance of this model. In particular, we will look at better smoothing techniques for the grammar itself; we will take a detailed look at the parser’s performance in the face of left-recursion, and examine several methods for improving performance; we will examine new conditioning features for parsing spoken language transcripts; and we will investigate our model’s ability to produce empty nodes.

We have established a baseline performance level for a predictive parser working in this very large search space. The next chapter will improve upon this baseline performance in all respects: coverage, accuracy, and efficiency. This will be followed by a detailed examination of applying this parsing model to language modeling for speech recognition.
Chapter 4

Model enhancements and modifications

This chapter will focus upon potential improvements in three areas that are either problematic or under-exploited in the parsing model that we have outlined in the previous chapter: (i) the PCFG backbone; (ii) left-recursion; and (iii) empty nodes. Some of the modifications that we will outline were motivated by applying the parser to spoken language, rather than the text processing that we have presented to this point. To examine their effect in detail, however, we will be comparing first with results from the previous chapter, before moving on to parsing speech. Later in the chapter we will present parsing results of an improved model on the Switchboard corpus of transcribed telephone conversations. The subsequent chapter will explore the use of the parser as a language model for speech recognition.

This chapter will be organized as follows. The first section will look at smoothing the PCFG backbone of the parser, leading to complete coverage and improved accuracy over the results presented in the previous chapter. The second section will examine in detail the issue of left-recursion, in an attempt to evaluate how much of a problem it is for the top-down parser, and investigate some ways in which any problems be ameliorated. This section will include results from the application of the selective left-corner transform, as well as other techniques. We will then examine parsing with the new Switchboard treebank, which has some new non-terminals that will warrant changing the probability model slightly. The last section will examine the specification of a certain number of pre-terminal nodes as empty, which is a simple and straightforward extension of the parser. This could come in handy for parsing when the training data contains terminals that are omitted in the testing data, such as punctuation when parsing speech. We will show parsing results when punctuation is left in the training corpus, and treated as empty for parsing purposes, compared to removing punctuation from both training and testing.

4.1 Smoothed PCFG

One of the problems that we continued to experience, even with the smoothing regime that accompanied lexicalization at the end of the last chapter, was a failure to find a parse for about one out of every hundred sentences, even for this highly edited text. While garden pathing in this way is something that may recommend our model psycholinguistically, since people seem to garden path under certain circumstances, the causes of garden pathing that we experienced in the previous chapter were not generally of the class that cause problems in people. Rather, the failure to parse was quite frequently due to rare uses of punctuation that happen not to have been observed in particular syntactic contexts in the training corpus. More generally, many of the rules in the
treebank are very flat, so that long sequences of children categories are observed, with none of the intermediate constituents that would be observed in more detailed hierarchical structures. For example, noun phrases can consist of a determiner followed by a string of nouns, adjectives and other “nouny” things, in nearly every permutation. Given limited training data, the chance of not observing some particular permutation is quite high. We will discuss a method of smoothing to allow for unseen rules to be assigned a probability.

To give an idea of how much of a problem this might be, of the 15 thousand or so PCFG rules that can be induced from the Penn Wall St. Journal Treebank in the standard way, over 3,600 of these are NP rules with only pre-terminals on the right-hand side. The pre-terminal categories on the right-hand side of these base NPs include determiners, adjectives, common and proper nouns, gerunds, and punctuation, among other things. While there are some ordering constraints – e.g. determiners occur typically first and only once – productive noun compounding and variations in punctuation result in many possible combinations. Some of these are observed, but many are not. For example, the following rule occurs in the training data with a probability of approximately 0.00000285:

\[
(4.1) \quad \text{NP} \rightarrow \text{DT} \text{ JJ JJ NN NN NNS}
\]

The POS tag DT is for determiners, JJ for adjectives, NN for singular common nouns, and NNS for plural common nouns, so this rule would cover something like ‘the delicious black duck beak soups’. Unfortunately, the following two rules are not observed in the training corpus, and thus have a probability of zero with the current grammar estimation technique:

\[
(4.2) \quad \text{NP} \rightarrow \text{DT JJ JJ NN NN NNS}
\]

\[
(4.3) \quad \text{NP} \rightarrow \text{DT “ JJ “ JJ NN NN NNS}
\]

Hence, there is no way to cover, in a flat NP rule, something like ‘the so-called delicious black duck beak soups’, nor something like ‘the “delicious” black duck beak soups’. This may be argued to be a short-coming of the grammar formalism, and that may be true; more hierarchical structure would help with some of this, to the extent that there would be more exemplars of shorter rules. However, this is the grammar that has been provided in the treebank, and the grammar estimation techniques that have been used up to now do not provide sufficient probability to unseen rules of the sort we have given in the example.

A method that has been adopted for treebank parsing in the past (Collins, 1997; Charniak, 2000) is what Charniak has termed a Markov grammar. The basic idea is to make a Markov assumption about the dependency between the children, i.e. that the probabilities of children are independent of their siblings when the distance between them is beyond some fixed \( n \).

Perhaps the easiest way to see how this would work in practice is through the chain rule. To simplify the notation, let us assume that all rules in the grammar are of the form \( A \rightarrow B_0 \ldots B_k \), and that \( B_0 \) is always some start symbol, and \( B_k \) is always some stop symbol. Since every rule begins with \( B_0 \), its probability is always 1. A PCFG assigns probability to a rule as follows:

\[
P(A \rightarrow B_0 \ldots B_k) = \prod_{i=1}^{k} P(B_i|A, B_0, \ldots, B_{i-1})
\] (4.4)

Johnson (1998b) showed, however, that the perhaps more linguistically well-motivated structures may not be as effective as flat structures for modeling the dependencies, since the additional level in the hierarchy carries an independence assumption that appears to be false.
A Markov assumption of order \( n \) would change each component of the previous equation as follows:

\[
P(B_i|A, B_0, \ldots, B_{i-1}) = P(B_i|A, B_{i-n}, \ldots, B_{i-1})
\]  

(4.5)

This results in a new decomposition of the probability of a PCFG rule. For example, suppose we chose a Markov grammar of order 1:

\[
P(A \rightarrow B_0 \ldots B_k) = \prod_{i=1}^{k} P(B_i|A, B_{i-1})
\]  

(4.6)

To get back to our unobserved rules above, the probabilistic grammar estimation for a Markov grammar of order 1 no longer asks how frequently the entire sequence of children has been observed with that parent, but rather how frequently each child has been observed with that previous sibling and that parent.

The move to estimating PCFG rule probabilities in this manner simplifies some things and complicates others. We will be able to do away with keeping track of specific rules, and simply evaluate the probability of subsequent children as we grow the trees, conditioned on events in the left-context as before, now including some number of previous children in the production. Complicating matters slightly is the fact that constituent head identification is now no longer tied to specific rules, and this will force us to include head identification in our probabilistic model.

We have adopted, following Charniak (2000), a smoothed third-order Markov grammar. This means that a certain amount of probability mass (depending on the smoothing parameters) is reserved for arbitrary permutations of children that have been observed under a particular parent. In estimating the grammar in this way, we have moved from a PCFG with some 15,000 possible productions to one with an infinite number of possible productions. At each point in the rule expansion, some probability mass is reserved for producing any child. This process can continue indefinitely.

Our conditional probability model is now greatly simplified, given the uniformity of the conditioning events. Instead of beginning with a PCFG rule identifier, which encodes a composite of the parent and the previous children (recall the non-terminals introduced by left-factorization), then continuing with values returned from tree-walking functions, now all of the conditioning events can be encoded as values returned from tree-walking functions. In addition, our look-ahead probability will also be defined in terms of these tree-walking functions, and our new head probability will also be defined in this way. Hence, our grammar estimation routine now involves simply taking a given set of functions and performing maximum likelihood estimation of the conditioned variable given the values returned from these conditioning functions. This is the same for all three components of our model.

To make this explicit, let us briefly define a small set of treewalking functions, and give the conditional probability models used in the trials that will follow. These functions take a pointer to a node in the tree as an argument. Each node in the tree contains, as a part of its structure, pointers to: (i) its label; (ii) its parent node (parent); (iii) its first child node (child); (iv) its sibling to the left (leftsib); and (v) its designated head child node (head). The function then moves the node pointer to other locations in the tree, and returns a value from the final position of the pointer. We use these functions as follows: hypothesize a new arc and node in the tree, and pass the function a pointer to the new node. Hence all values returned from the functions are relative to the newly hypothesized node, the label of which is the conditioned variable. Most of the functions are given
PAR-SIB\((node, m, n)\)
1 \(\text{for } i \leftarrow 1 \text{ to } m\) \hspace{1em} ▷ Move up \(m\) nodes
2 \(\text{do if } node \neq \text{ NULL}\)
3 \hspace{1em} then \(node \leftarrow node.\text{parent}\)
4 \hspace{1em} \(\text{for } i \leftarrow 1 \text{ to } n\) \hspace{1em} ▷ Move left \(n\) nodes
5 \hspace{1em} \(\text{do if } node \neq \text{ NULL}\)
6 \hspace{2em} then \(node \leftarrow node.\text{leftsib}\)
7 \hspace{2em} \text{if } node \neq \text{ NULL}
8 \hspace{3em} \text{then return } node.\text{label}\)
9 \hspace{2em} \text{else return } \text{NULL}

LEFTMOST-PS\((node, m, n)\)
1 \(\text{if } node.\text{leftsib} \neq \text{ NULL}\) \hspace{1em} ▷ Only for leftmost children
2 \hspace{1em} \text{then return } \text{NULL}
3 \hspace{1em} \text{else return } \text{PAR-SIB}(node, m, n)

LEX-HEAD\((node, m)\)
1 \(\text{if } node \neq \text{ NULL}\)
2 \hspace{1em} \text{then } \(node \leftarrow node.\text{head}\) \hspace{1em} ▷ Go to a node’s head child
3 \hspace{1em} \text{while } node \neq \text{ NULL} \text{ and } node.\text{child} \neq \text{ NULL} \hspace{1em} ▷ Until node is a leaf
4 \hspace{2em} \(\text{do } node \leftarrow node.\text{head}\)
5 \hspace{1em} \(\text{for } i \leftarrow 1 \text{ to } m\) \hspace{1em} ▷ Move up \(m\) nodes
6 \hspace{2em} \(\text{do if } node \neq \text{ NULL}\)
7 \hspace{3em} \text{then } \(node \leftarrow node.\text{parent}\)
8 \hspace{2em} \(\text{if } node \neq \text{ NULL}\)
9 \hspace{3em} \text{then return } node\)
10 \hspace{2em} \text{else return } \text{NULL}

CURR-HEAD\((node, m)\)
1 \(\text{if } node = \text{ NULL}\)
2 \hspace{1em} \text{return } \text{NULL}
3 \hspace{1em} \text{headnode} \leftarrow \text{LEX-HEAD}(node.\text{parent}, m)
4 \hspace{1em} \(\text{if } headnode \neq \text{ NULL}\) \hspace{1em} ▷ If parent’s head has been found, return it
5 \hspace{2em} \text{then return } headnode.\text{label}
6 \hspace{1em} \text{else } headnode \leftarrow \text{LEX-HEAD}(node.\text{leftsib}, m) \hspace{1em} ▷ Else, left-sibling head
7 \hspace{2em} \text{if } headnode \neq \text{ NULL}
8 \hspace{3em} \text{then return } headnode.\text{label}
9 \hspace{2em} \text{else return } \text{NULL}

Figure 4.1: Tree-walking functions to return conditioning values for the probability model. \(node\) is a pointer to a node in the tree, which is a data structure with five fields: \(label\) which is a pointer to a character string; and \(parent, child, leftsib,\) and \(head\), which are pointers to other nodes in the tree. The symbol ▷ proceeds comments.
LEFT-CCOMMAND(node)
1 while node ≠ NULL and node.leftsib = NULL ▷ node is leftmost child
2 do node ← node.parent
3 if node = NULL
4 then return NULL
5 parenthead ← node.parent.head
6 if parenthead ≠ NULL ▷ Go to head of constituent, if found
7 then node ← parenthead
8 else node ← node.leftsib ▷ Else, left-sibling
9 return node

CC-HEAD(node, m, n)
1 for i ← 1 to m
2 do if node ≠ NULL
3 then node ← LEFT-CCOMMAND(node)
4 return CURR-HEAD(node, n)

LEFTMOST-CCH(node, m, n)
1 if node.leftsib ≠ NULL ▷ Only for leftmost children
2 then return NULL
3 else return CC-HEAD(node, m, n)

CONJ-PARALLEL(node)
1 if node ≠ NULL and node.leftsib = NULL
2 then node ← node.parent
3 if node = NULL
4 then return NULL
5 thislabel ← node.label
6 siblabel ← PAR-SIB(node, 0, 1)
7 if siblabel = ‘CC’ ▷ If parent is being conjoined
8 then node ← node.leftsib
9 while node ≠ NULL node.label ≠ thislabel
10 do node ← node.leftsib ▷ Find first category with same label
11 if node ≠ NULL
12 then node ← node.child
13 return node.label ▷ Return label of first child of conjoined node
14 return NULL

Figure 4.2: More tree-walking functions to return conditioning values for the probability model. node is a pointer to a node in the tree, which is a data structure with five fields: label which is a pointer to a character string; and parent, child, leftsib, and head, which are pointers to other nodes in the tree. The symbol ▷ precedes comments.
additional parameters, so each individual function will be identified by a function name and up to two parameter values. Figures 4.1 and 4.2 give the algorithms for the tree-walking functions.

Figures 4.3 and 4.4 give the conditional probability models for non-POS expansions and POS expansions, respectively. Each model is a linear order of functions, and the probability of the conditioned event is conditioned on the values returned by these functions. The figures also provide two example trees each, with a newly hypothesized node (the conditioned variable), and the values that would be returned from each of the tree-walking functions. As before, the conditional probability estimate with $n$ features is the linear interpolation of the MLP relative frequency estimate for $n$ features and the conditional probability estimate with $n - 1$ features. The order in which these models is presented is the order of interpolation.

The second part of the probability model is the probability that the previous child of the constituent is the head of the constituent. There are three possible cases: (i) the head has already been found to the left of the previous child; (ii) the previous child is the head; or (iii) none of the previous children is the head of the constituent. For example, when the new node is built in the
Conditioning Function | Description | Value Returned
--- | --- | ---
0 | PAR-SIB(node,1,0) | Left-hand side (LHS), i.e. parent
1 | PAR-SIB(node,2,0) | Parent of LHS (PAR)
2 | PAR-SIB(node,1,1) | Last child of PAR
3 | LEFTMOST-PS(node,3,0) | Parent of PAR (GPAR)
4 | LEFTMOST-CCH(node,1,1) | POS of C-Commanding head
5 | CC-HEAD(node,1,0) | C-Commanding head
6 | CC-HEAD(node,2,0) | Next C-Commanding head

Figure 4.4: Two trees, to illustrate the tree-walking functions for POS expansions. The newly hypothesized node in both trees (a) and (b) is the word ‘with’. The labels of these new nodes are the conditioned variables.

Figure 4.3a, the probability for (i) above is zero, since the previous child of the NP is the first child; the probabilities for (ii) and (iii) must be estimated. The conditioned variable is one of the three above alternatives. The head probability model that we used in these trials consisted entirely of values returned by the PAR-SIB function with the following parameters: (0,1), (1,0), (0,0), (0,2), and (0,3). In words, we are conditioning the head location on: (0) the label of the previous child; (1) the left-hand side (i.e. parent label of the newly hypothesized node); (2) the label of the newly hypothesized node; (3) the label of the 2nd child to the left; and (4) the label of the 3rd child to the left. Once the head is identified as the previous child, that selection is fixed for that candidate analysis from that point forward. For every rule expansion, more than one analysis must be considered, depending on the range of possibilities for head assignment.

One possible concern would be the use of the new node label to condition the head probability, and also the lexical head of the constituent to condition the probability of the new node label. The way that the CURR-HEAD function is defined however, is that, if the head of the constituent has not been assigned yet, it selects the head of the previous child. Hence the head probability can be evaluated after the rule expansion probability.

The look-ahead probability (LAP) is defined in exactly the way it was in the previous section, except that instead of being conditioned on the composite category created through factorization,
it is conditioned on the label of the current category and the three previously emitted children.

Table 4.1 gives results using this new probability model with the same training and testing sections presented in the previous section, along with the results with these same conditioning features from the previous chapter\(^2\). Even though the conditioning events are the same, our accuracy improves by nearly one percentage point, while our coverage goes to 100 percent. The rule expansions considered for the same beam definition increases by a third, but this is hardly surprising. The number of productions in the original form (i.e. after being de-transformed) that now have probability mass is infinite, as opposed to the previous, unsmoothed grammar of about 15,000 rules.

Table 4.2 gives results with a variety of base beam factors. Recall that the beam threshold is defined as a variable probability range. For a given base beam factor \(\gamma\), we define the beam as \(\gamma|H_{i+1}|\)\(^3\), i.e. the range narrows with the cube of the number of analyses advanced. The results in table 4.2 indicate that, with the new model, the beam can be greatly narrowed without losing much accuracy, and maintaining complete coverage. At a \(\gamma = 10^{-9}\), the parser loses less than half a point of either precision or recall, while considering fewer than forty percent of the rule expansions that

\(^2\)The conditional probability models that are presented here are, with the exception of the Markov grammar smoothing, identical to the models used at the end of the previous chapter.

Table 4.1: Parsing results using the conditional probability model from chapter 3, with a smoothed (Markov) grammar of order 3, versus a PCFG backbone. Results are trained on sections 2-21 and tested on section 23.

| Grammar      | LR  | LP  | CB  | 0 CB | \(\leq 2\) CB | Pct. failed | Avg. rule expansions considered\(^1\) | Average analyses advanced\(^1\) |
|--------------|-----|-----|-----|------|--------------|-------------|-----------------------------------|----------------------------------|
| PCFG         | 85.7| 85.7| 1.41| 59.0 | 79.9         | 1.7         | 6,709                             | 207.6                            |
| Smoothed     | 86.4| 86.8| 1.31| 59.5 | 81.6         | 0           | 9,008                             | 198.9                            |

\(^1\)per word

Table 4.2: Parsing results using the new conditional probability model, with a variety of base beam factors. Results are trained on sections 2-21 and tested on section 23.

| Base Beam Factor | LR  | LP  | CB  | 0 CB | \(\leq 2\) CB | Pct. failed | Avg. rule expansions considered\(^1\) | Average analyses advanced\(^1\) |
|------------------|-----|-----|-----|------|--------------|-------------|-----------------------------------|----------------------------------|
| \(10^{-11}\)     | 86.4| 86.8| 1.31| 59.5 | 81.6         | 0           | 9,008                             | 198.9                            |
| \(10^{-10}\)     | 86.2| 86.5| 1.34| 59.2 | 81.4         | 0           | 5,528                             | 120.0                            |
| \(10^{-9}\)      | 86.1| 86.4| 1.36| 59.0 | 81.1         | 0           | 3,439                             | 72.6                             |
| \(10^{-8}\)      | 85.6| 85.9| 1.41| 58.3 | 80.3         | 0           | 2,159                             | 43.9                             |
| \(10^{-7}\)      | 85.3| 85.0| 1.49| 56.8 | 79.3         | 0           | 1,374                             | 26.6                             |
| \(10^{-6}\)      | 84.2| 84.5| 1.59| 55.3 | 77.9         | 0           | 898                               | 16.2                             |

\(^1\)per word
were considered at the widest beam. Recall that this measure correlates nearly perfectly with time (Roark and Charniak, 2000), so there is an equivalent speedup.

Because of the improvement that this approach provides over the unsmoothed PCFG approach in the previous chapter, we will consider the smoothed grammar parser our standard parser from this point forward. We will refer to the parser from the previous chapter as the base parser for comparison purposes.

4.2 Left-recursion

Left-recursion, as has been mentioned several times throughout the course of this thesis, is a problem for top-down parsers. Our results up to this point have demonstrated that it is possible for a top-down parser to efficiently build enough structure to find good parses, even in the face of left-recursion. This is because of the nature of the beam-search. It is permissive enough to retain analyses with a certain number of left-recursive expansions, and this number seems generally sufficient. What we have not done is investigate this issue in detail. How much of a problem is left-recursion, and if it is a problem, how can we improve performance in the face of it?

Let us consider this question in terms of the length of left-child chains, i.e. chains of leftmost children. At each terminal item in the tree, we can count the number of consecutive non-terminals above it until we reach one that is not the leftmost child within its constituent (or the root). We will call this the left-child chain for that particular word. For example, in the tree in figure 4.4a, both determiners have left-child chains with three categories: the at the beginning of the sentence has DT, NP, and S above it; a in the object NP has DT, NP, and NP above it. Because lowest non-terminal in a chain is always a POS non-terminal, we will generally omit them from the left-child chains. Hence, we would count each of these left-child chains to be of length 2.

These left-children chains are where the left-recursion will occur. Because of the beam-search, long chains of left-recursive categories – e.g. seven consecutive NP left children – are not a priori more of a problem than other long sequences of left children – e.g. seven consecutive left children of mixed categories – since a threshold exists by which all sequences over some bound will eventually be pruned. It could be, however, that the bulk of the long left-child chains include left-recursive productions.

The first step to investigate this issue is to evaluate the parser with respect to its performance upon these left-child chains. We want the parser to build left-child chains as long as needed, but no longer. Ideally, the parser would build exactly enough to find the actual parse, although this ideal is clearly not achievable with an incremental parser, which cannot know in advance how many will be needed. There are two ways in which the parser can fall short of this ideal: by not building left-child chains of sufficient length to find the correct parse; and by building chains that are too long, i.e. that can never be used, and thus wasting effort.

What is the extent of left-child chains in the training data that we are attempting to model? We attempted to answer this question by collecting all of the left-child chains consisting of two or more non-POS non-terminals, from sections 2-21 of the Penn Wall St. Journal Treebank. Table 4.3 summarizes these counts, with counts at all word positions, at just the first word of each sentence, and at all words except the first word. The first word will always have a left-child chain in the way that we have defined it, because the chain will of necessity include the root category and the non-terminal spanning the entire string, e.g. S. We have split the data into cases where some non-terminal category occurs more than once in the chain – i.e. there is left-recursion – and those where no such recursion occurs. Looking first at words other than the first word of the sentence,
Table 4.3: Left-child chain counts from sections 2-21 of the Penn Wall St. Journal Treebank. Counts for the position in the sentence are total number of words in that position. Counts for the chains are for chains of length > 1, where only non-POS categories are counted in a chain.

Table 4.4: Recursive left-child chain counts from sections 2-21 of the Penn Wall St. Journal Treebank. Percentage may sum to more than 100, due to the fact that a single recursive chain may hold consecutive recursion for more than category.

---

we can see that there are slightly more left-child chains with left-recursion than without, and those with recursion tend to be slightly longer. Even so, very few such chains occur with a depth greater than four. Very few chains occur with a depth greater than three, unless left-recursion is involved. At the first word, there are longer chains, with some number occurring at depth six with recursion.

Let us look in more detail at the recursive chains. Table 4.4 gives counts for recursive chains. We split the recursion into those containing only consecutive recursion – i.e. where the same category occurs as its own leftmost child – and that which is non-consecutive, i.e. where a recursive category occurs not as its own child, but as the child of a descendent. Interestingly, this latter type of recursive chain occurs very rarely, and then most frequently with certain short chains, such as SBAR → S → SBAR and NP → ADJP → NP. Consecutive NP recursion accounts for over 88 percent of all recursive chains, and NP, S, and VP together account for 98 percent of them! Only consecutive NP recursive chains include significant counts beyond a depth of two.

The question that we might attempt to answer now is whether or not our probability model as it currently stands sufficiently models the probability of these left-child chains. Let us focus upon the consecutive NP case, since this is where the bulk of the deepest recursion occurs. If we can
successfully model this, the probability of continuing an NP left-child chain should drop off the longer the chain gets. By virtue of conditioning our rule probabilities on the parent and closest sibling up to the grandparent of the left-hand side, our model does drop the rule probability for a left-recursive child the deeper the chain – up to a point.

Let us calculate the probabilities for some chains given our model. Recall that we will calculate the child given the left-hand side of the rule (\( \text{lhs} \)), the previous three children of the \( \text{lhs} \) (\( c \)), the parent of \( \text{lhs} \) (\( p \)), the previous child of \( p \) (\( \text{sib} \)), the parent of \( p \) (\( \text{gp} \)), and the previous child of \( \text{gp} \) (\( \text{gsib} \)). The probability of an NP occurring as the left-child of another NP is, overall, about .25, so we can use this as our starting point. Suppose the parent of the first NP in the chain is an S, and that it is the first child of the S. Let \( \emptyset \) be the NULL value. Then, using simple relative frequency from f2-21:

\[
P(\text{NP} | \text{lhs} = \text{NP}, c = \emptyset, p = \text{S}, \text{sib} = \emptyset, \ldots) = .25 \\
P(\text{NP} | \text{lhs} = \text{NP}, c = \emptyset, p = \text{NP}, \text{sib} = \emptyset, \text{gp} = \text{S}, \text{gsib} = \emptyset) = .07 \\
P(\text{NP} | \text{lhs} = \text{NP}, c = \emptyset, p = \text{NP}, \text{sib} = \emptyset, \text{gp} = \text{NP}, \text{gsib} = \emptyset) = .03
\]

Note that this decrease in probability as the chain grows is already in our model. However, each subsequent link in the chain after this last one will have the same probability, since our conditional probability model forgets about the chain after the grandparent of the left-hand side. This may or may not be a problem, since the drop off in probability is quite large already. If the lookahead word is, for example, ‘the’, let the NP analysis with no recursion have a probability \( p_0 \). Then with one level of recursion, the probability would be \(.25p_0\); with two, \(.0175p_0\); three, \(.0005p_0\); four, approximately \(10^{-5}p_0\). Each subsequent expansion would reduce this by a factor of approximately \(10^{-2}\). Hence, these structures should fall off of even a fairly wide beam relatively quickly.

Which brings up the issue of how well the parser actually does in dealing with these left-child chains. To measure this, we collected the left-child chains of length greater than or equal to two non-POS non-terminals from the test corpus, and looked for whether or not they were built and stayed within the beam. Of the 56,684 lexical items in the test set, 10,837 had left-child chains of length two or more. We looked for the presence of these chains in any of the candidate analyses of our standard parser (i) at the word where they should have been constructed; and (ii) at the word where they should have been closed. If the chains are present in our set of candidate analyses, then they are evaluated with our probability model, which is all we can ask. Of the 10,837 chains, only 184 were missing from our set of candidate analyses at the word where they should have been closed; of these, 87 were missing at the word where they should have been constructed, i.e. they were never in the beam at all. Note that we do not know the reason why they were missing from the beam. It could be that the parser garden pathed at some other location, creating a syntactic context in which these chains are no longer viable. Of the chains that were not present, 36 were with non-S nodes at the root of the tree, e.g. an NP or VP rather than a full S; only 6 of these were not in the beam at the first word. The parser did return as the most likely parse 306 such trees, so it is not completely S biased.

Thus, overall 98.3 percent of correct left-child chains of length greater than one were in the set of candidate parses when they were closed. Thus we do not seem to be building too few left-child chains to find the correct analysis. We may be poorly modeling these chains, however, and build too many. To evaluate this, we counted the depth of left-child chains being built for each analysis staying within the beam threshold at each word in the test corpus. As shown above, the length of left-child chains at the first word of the sentence is typically longer than at other points
in the sentence, so all of the data that we collected is divided between the first position in the sentence and all other positions. Figure 4.5 plots the percentage of candidate analyses that built a left-child chain at a word at a depth $n$ beyond the depth of the correct parse. Over 80 percent of candidate analyses at word positions that are not sentence initial built the right depth or less. However, nearly 70 percent of all sentence initial candidate analyses built left-child chains beyond the length necessary for the correct analysis.

Figure 4.5 shows the percentages at particular depths of left-child chains for both the correct parses and our candidate analyses, again split by whether or not the word is sentence initial. From this we can see that the parser seems to be spending its time building left-child chains in approximately the right proportion away from the sentence initial position, by which we mean that it is building the most analyses with the most common depths. At the sentence initial position, however, the parser is building more candidate analyses at less frequent depths than at more frequent depths. This is perhaps not surprising, given that the combinatorics dictate that the possibilities at depth 3 are exponentially greater in number than at depth 2. Nevertheless, it seems that more effort than is necessary is being spent on long left-child chains in the sentence initial position.

Given that the bulk of left-recursion comes from consecutive NP left-children, and that the longer left-child chains result from left-recursive chains, one approach to spending less time on
building lengthy chains is to perform a selective left-corner transform on productions with an NP parent and left-child. The transform schemata was presented in chapter 3, on page 66. The basic idea is that NP → NP α productions will be recognized left-corner, and all other productions top-down. As mentioned earlier, the left-corner transform turns left-recursion into right-recursion, so that long NP left-child chains will no longer be built. The negative to this transform is that it underspecifies the immediate dominance links, and hence some of the conditioning information that is used in our model will be unavailable with these productions. The hope is that we can disrupt the immediate dominance links for only very few productions, while taking care of the bulk of the left-recursion problem.

Consider figure 4.7, which gives three representations of an NP constituent. The first (figure 4.7a) is the tree with the original grammar. The second tree (figure 4.7b) is the result of the selective left-corner transform on NP → NP α productions. The selective left-corner transform turns the left-branching NP structure in figure 4.7a to the right-branching structure in 4.7b, by first building the categories from inside of the lowest NP in the structure, then nesting the further modifications into a right-branching structure, through the use of the slash category, (NP/NP). Since the only production that we are transforming are these NP productions, the slash categories will always be NP/NP. A second transform can deterministically flatten this structure to that in
Figure 4.7: Three representations of the NP modifications: (a) the original grammar representation; (b) Selective left-corner representation; and (c) a flat structure that is unambiguously equivalent to (b)

We will call this flattened transform the flattened selective left-corner transform with respect to a non-terminal $A$, or $FLC_A$. We transform the trees in the training corpus, estimate the parameters (using the smoothed Markov grammar approach), then de-transform the parses returned from the parser.

This transform with respect to NP does remove the consecutive NP left-child chains that make up such a large proportion of the left-child chains that we observed. Note that it does not remove all left-recursion from the grammar, not even all NP left-recursion. The left-child categories of the NP can rewrite to other non-terminals as left-child, e.g. S, which can then have an NP as their left-child. We have seen, however, that this kind of non-consecutive recursion is relatively rare.

One issue that is important to keep in mind when using a grammar of this sort is that the slash categories must always be preceded by some non-slash categories, and not followed by anything other than subsequent slash categories. If, however, we condition the probability of these rules using the smoothed Markov PCFG approach that we outlined in the previous section, then some probability mass will be reserved for rules in which the NP/NP slash categories precede another category, such as NN. This does not correspond to anything in the original grammar. In order to remove the probability mass from these un-interpretable structures, we can model these as a linear interpolation in which the mixing parameter when going from a 1st-order Markov grammar to a 0th-order is set to zero, i.e. no probability mass is contributed by the 0-order model.

This transform is one way to try to improve the efficiency with which the parser deals with left-child chains. There are two other simple modifications to the original model that we also tried, which do not change the structure of the grammar. The first has to do with the fact that our model forgets about ancestors beyond the grandparent of the left-hand side. For leftmost children, we could easily add in features which look for links in a left-child chain beyond the grandparent of the left-hand side. These features would not interfere with the conditioning provided by other features beyond the grandparent of the left-hand side, since those functions (CONJ-PARALLEL and CURR-HEAD) only provide non-NULL values when there is a left-sibling somewhere below the grandparent. Figure 4.8 provides the function LC-CHAIN to provide values along the left-child chain. We augmented our conditional probability model for non-POS expansions with two
LC-CHAIN(node, m)
1 for i ← 1 to m ▷ Move up m nodes, if no left-sibling
2 do if node ≠ NULL and node.leftsib = NULL
3 then node ← node.parent
4 else return NULL
5 if node ≠ NULL
6 then return node.label
7 else return NULL

Figure 4.8: A new tree-walking function to condition on values in the left-child chain beyond the grandparent of the left-hand side. node is a pointer to a node in the tree, which is a data structure with five fields: label which is a pointer to a character string; and parent, child, leftsib, and head, which are pointers to other nodes in the tree. The symbol ▷ precedes comments.

Table 4.5: Parsing results using the $FLC_{NP}$ transform at two different base beam factors, the LC-CHAIN features, and a narrow beam at the sentence initial position only, compared with the original smoothed grammar results. Results are trained on sections 2-21 and tested on section 23.

| Model                      | LR  | LP  | CB  | 0 CB | ≤ 2 CB | Pct. failed | Avg. rule expansions considered$^\dagger$ | Average analyses advanced$^\dagger$ |
|----------------------------|-----|-----|-----|------|--------|-------------|------------------------------------------|-----------------------------------|
| section 23: 2416 sentences of length ≤ 100 |
| Original Smoothed          | 86.4| 86.8| 1.31| 59.5 | 81.6   | 0           | 9,008                                    | 198.9                             |
| $FLC_{NP}$ (10$^{-11}$)   | 86.6| 87.1| 1.27| 60.4 | 82.3   | 0.04        | 9,388                                    | 179.0                             |
| $FLC_{NP}$ (10$^{-10}$)   | 86.4| 86.8| 1.28| 60.0 | 82.0   | 0.04        | 5,625                                    | 104.0                             |
| LC-CHAIN features          | 86.4| 86.8| 1.31| 59.4 | 81.5   | 0.04        | 9,006                                    | 198.8                             |
| First beam 10$^{-7}$       | 86.4| 86.8| 1.30| 59.6 | 81.6   | 0           | 8,829                                    | 193.6                             |
| First beam 10$^{-6}$       | 86.4| 86.8| 1.30| 59.6 | 81.6   | 0           | 8,769                                    | 192.2                             |

$^\dagger$per word
rows. With the $\mathcal{FLC}_{NP}$ transform, the number of these left-child chains is dramatically reduced, and hence the number of competing parses at each word. If the number of competing analyses drops, then the probability range does not narrow as quickly, so that more analyses actually are retained on the beam. To test this, we ran the parser with the $\mathcal{FLC}_{NP}$ and a narrower base beam factor of $10^{-10}$. On this trial, the parser performed nearly identically with the standard parser, but considered 40 percent fewer expansions per word. Hence this transform is doing what it is supposed to do, and it makes a fairly large difference.

Adding the LC-CHAIN features did not result in a noticeable change in performance, except for the failure to find a parse for one sentence. The number of left-child chains in the correct parses of the test set that were missing from the candidates with this model was exactly the same as with the previous model. This indicates that additional conditioning information beyond the grandparent of the left-hand side of the rule being expanded is not going to help model the left-child chains much better than the original model did.

The final simple technique that we tried, of narrowing the beam at the initial word only, did improve things somewhat. The accuracy of the parses remained the same, but the number of expansions considered was reduced by two percent when the beam factor at the first word was
Figure 4.10: Percentage of candidate analyses for wide and narrow beams and percentage of correct parses with a left-child chain depth at the first word in the sentences narrowed to $10^{-7}$, and a bit more when it was narrowed to $10^{-6}$. The number of left-child chains in the correct parses of the test set that were missing from the candidates with this model increased from 184 to 195 at $10^{-7}$, and to 208 at $10^{-6}$, but this didn’t seem to impact the overall accuracy of the parser. Figures 4.9 and 4.10 show the left-child chain modeling improvements with the sentence initial beam at $10^{-6}$. The percentage of the parser’s time that is being spent on likely depths of left-child chains at the first word has gone up, moving closer to the distribution that we see in the correct parses. Nevertheless, the overall efficiency gain of this is relatively small.

To conclude this section, we have investigated the extent of the classic problem of top-down parsing, namely dealing with left-recursion. We characterized the extent of the problem, and evaluated the performance of the existing model. We then implemented three potential solutions, one of which made things quite a lot better ($FLC_{NP}$), one left things the same, and one improved the performance only slightly. All in all, despite the potential gravity of the problem of left recursion, even the standard top-down parser performs reasonably well in the face of it.
4.3 Parsing transcribed speech

Up to this point, we have been parsing edited newspaper text. In the next chapter, we will be discussing the application of our probabilistic parser as a language model for statistical speech recognition. The ultimate applicability of the methods that we will describe depends on whether or not a parser such as this can effectively parse spontaneous speech. This section will examine parsing spontaneous telephone conversation transcripts.

As we have seen, treebank parsers can be amazingly effective on edited newspaper text. Parsing spontaneous speech, however, is a different matter. False starts, sentence and word fragments, and ungrammaticality are quite common, all of which, needless to say, pose a problem for any parser, but particularly for a statistical parser trained on written, edited text. The release of a new Penn Treebank version, including a large treebank of Switchboard telephone speech, is thus a great opportunity for examining how well treebank techniques can be made to handle these kinds of phenomena. It was viewing this treebank that spurred us to investigate the smoothed Markov grammar approach presented in section one of this chapter.

Figure 4.11 gives an example parse tree from the new treebank. There is a new non-terminal, ‘EDITED’, which is used for false starts. For example, in the tree in figure 4.11, a conjoined clause was begun (‘and we’), but the VP is then continued with a subordinate clause. The words in the falsely started clause are placed under an EDITED constituent, with as much internal structure as is evident from the input. A second false start occurs further along in the string. These EDITED nodes provide a way to fit disfluencies into a parse structure, and hence we can apply a parser trained on a treebank of such trees directly to strings of spontaneous speech, without pre-processing.

Following Charniak and Johnson (2001), we designated all of sections 2 and 3 (92,536 sentences, 945,294 words) as the training corpus; files sw4004 through sw4153 (6,051 sentences, 67,050 words) as the test corpus; files sw4154 through sw4483 (6,021 sentences, 68,543 words) as the held out corpus; and files sw4519 through sw4936 (5,895 sentences, 69,597 words) as the
development corpus. These transcriptions have had punctuation inserted by annotators, to delimit interjections and false starts. Hence, a sentence such as

(4.10)  ‘Uh well we ’re we have one on the way’

was transcribed

(4.11)  ‘Uh , well we ’re , we have one on the way .

The word counts above include punctuation.

The first thing that we tried was to simply leave the model as it was for the Wall St. Journal parsing trials, train on the new treebank in exactly the same way, parse and evaluate. It is clear, however, by inspecting some of the disfluencies found in the corpus, that there is some relationship between the false start and what replaces it. Figure 4.12 shows two common kinds of false starts, in which the EDITED node is either followed by the identical constituent, or by a very similar constituent. In the same way that we were able to effectively model parallelism in conjoined constituents, we could condition the probability of structures on values returned from a function looking at these EDITED constituents.

---

Figure 4.12: Typical disfluencies from the Switchboard treebank

---

3These trials will be reported a bit later in the section.
EDIT-SKIP\((node)\)

1. if PUNCUTATION\((node)\) ▷ If punctuation
2. then return TRUE
3. if node.label = ‘PRN’ or node.label = ‘INTJ’ ▷ If a parenthetical or interjection
4. then return TRUE
5. return FALSE

EDIT-CHILD\((node)\)

1. if node ≠ NULL and node.leftsib = NULL and node.parent ≠ NULL
2. then node ← node.parent
3. else return NULL
4. thislabel ← node.label ▷ Save left-hand side label
5. node ← node.leftsib
6. while node ≠ NULL and EDIT-SKIP\((node)\)
7. do node ← node.leftsib ▷ Move left past skip categories
8. if node = NULL or node.label ≠ ‘EDITED’
9. then return NULL
10. parentlabel ← node.parent.label ▷ Save parent label
11. node ← node.child ▷ Move to first child
12. if node.label = parentlabel ▷ If same label as parent, keep going
13. then node ← node.child
14. if node.label ≠ thislabel ▷ If category is not same as left-hand side
15. then return NULL
16. node ← node.child ▷ Go to first child
17. if node = NULL
18. then return NULL
19. else return node.label

Figure 4.13: Functions for conditioning probabilities so as to capture EDITED node parallelism. node is a pointer to a node in the tree, which is a data structure with five fields: label which is a pointer to a character string; and parent, child, leftsib, and head, which are pointers to other nodes in the tree. The symbol ▷ precedes comments.

There are two observations that we could easily exploit to model the likelihood of an EDITED constituent: (i) the first child of the first constituent after the EDITED constituent tends to be the same as the first child of the category inside of the EDITED constituent; and (ii) the first word after the EDITED constituent tends to be the same as the first word of the EDITED constituent. There are a couple of provisos that need to made to these observations. First, interjections (e.g. ‘uh’) and parentheticals (e.g. ‘you know’ or ‘I mean’) as well as punctuation frequently stand between the disfluency and the continuation. Hence, any algorithm that wants to link a disfluency and its continuation should skip these categories. Second, as evidenced by the disfluency in figure 4.12c, the category directly under the EDITED node may not be the next produced category, but rather the category under which the disfluency occurs. In this case, in order to get the parallelism, one
EDIT-LEX\((node, m)\)

1. \textbf{while} \(node \neq \text{NULL}\) and \(node.\text{lefsib} = \text{NULL}\) \hspace{1em} \triangleright \text{Move up left-child chain}
2. \textbf{do} \(node \leftarrow node.\text{parent}\)
3. \textbf{if} \(node = \text{NULL}\)
4. \textbf{then return} \text{NULL}
5. \(node \leftarrow node.\text{lefsib}\)
6. \textbf{while} \(node \neq \text{NULL}\) and \text{EDIT-SKIP}(\text{node}) \hspace{1em} \triangleright \text{Move left past skip categories}
7. \textbf{do} \(node \leftarrow node.\text{lefsib}\)
8. \textbf{if} \(node = \text{NULL}\) or \(node.\text{label} \neq \text{‘EDITED’}\)
9. \textbf{then return} \text{NULL}
10. \textbf{while} \(node.\text{child} \neq \text{NULL}\)
11. \textbf{do} \(node \leftarrow node.\text{child}\) \hspace{1em} \triangleright \text{Move down to the left-corner}
12. \textbf{for} \(i \leftarrow 1\) to \(m\) \hspace{1em} \triangleright \text{Move up } m \text{ nodes}
13. \textbf{do if} \(node \neq \text{NULL}\)
14. \textbf{then} \(node \leftarrow node.\text{parent}\)
15. \textbf{if} \(node \neq \text{NULL}\)
16. \textbf{then return} \text{node}
17. \textbf{else return} \text{NULL}

Figure 4.14: Another function for conditioning probabilities so as to capture EDITED node parallelism. \textit{node} is a pointer to a node in the tree, which is a data structure with five fields: \textit{label} which is a pointer to a character string; and \textit{parent}, \textit{child}, \textit{lefsib}, and \textit{head}, which are pointers to other nodes in the tree. The symbol \triangleright \text{precedes comments.}

must look at the category under the EDITED node, and, if it is the same as the parent of the EDITED node, go to its first child to find the parallel constituent.

Two new functions were written, one to match the first constituent following the EDITED node with a constituent under the EDITED node, and condition its expansion on the first child of this edited category (EDIT-CHILD). This function is presented in figure 4.13. The next is to condition the probability of the first lexical item after an EDITED node with the left-corner lexical item in the EDITED node (EDIT-LEX). This function is presented in figure 4.14. The revised conditional probability models are presented in figure 4.15.

Table 4.6 gives parsing results both with the conditional probability models from the previous sections, and with the new EDITED node functions. The look-ahead and head probability models remained the same. Overall, both models do pretty well. The new functions provide a half a percentage point improvement in accuracy, and about a four percent decrease in expansions considered. As far as correctly finding EDITED nodes, the old model, inherited from the Wall St. Journal parser, gets 56.5 percent recall and 67.0 percent precision for these nodes; the new model gets 63.5 percent recall and 71.0 percent precision. Thus our new functions do seem to be buying us some improvement in detecting disfluencies, which translates to overall accuracy improvements.

Table 4.7 gives the performance with our Switchboard conditional probability model at a variety of base beam factors. It would be surprising if the same parameterization worked equally
well both for Wall St. Journal text and spoken language. Indeed, between $10^{-9}$ and $10^{-11}$ there is virtually no difference in accuracy, yet there is a sixty percent reduction in the number of rule expansions considered⁴.

Since the Switchboard treebank is relatively new, there is only one other parsing result that we are aware of, to which we could compare these results. This is the two-stage architecture presented in Charniak and Johnson (2001), which first runs a high-precision classifier to decide whether lexical items are EDITED. If they are, then they are removed for input into a statistical parser. The labeled precision and recall percentages presented in that paper were measured according to a special definition, which has three modifications to the definition that we have been using until

⁴The parser was correspondingly faster, from 3.7 words per second to 10.1 words per second, which is a 63.3 percent speed up. The expansions considered metric is directly proportional to time, and provides a machine-independent metric, as argued in Roark and Charniak (2000).
Table 4.6: Parsing results using the model from previous sections, and the new model with functions to condition probabilities on EDITED node parallelism. The parser was trained on sections 2 and 3 of the switchboard treebank, and tested on files sw4004 through sw4153.

| Base Beam Factor | LR  | LP  | CB  | 0 CB | ≤ 2 CB | Pct. failed | Avg. rule expansions considered† | Average analyses advanced† |
|------------------|-----|-----|-----|------|--------|-------------|-----------------------------|--------------------------|
|                  | LR  | LP  | CB  | 0 CB | ≤ 2 CB | Pct. failed | Avg. rule expansions considered† | Average analyses advanced† |
| now. First, all internal structure of EDITED nodes is removed, creating flat constituents. Second, two EDITED nodes with no intermediate non-EDITED material are merged. Third, the beginning and ending positions of the EDITED constituents are treated as equivalent for scoring purposes (like punctuation).

Table 4.7: Parsing results using the new model with functions to condition probabilities on EDITED node parallelism, at various base beam factors. The parser was trained on sections 2 and 3 of the switchboard treebank, and tested on files sw4004 through sw4153.

now. First, all internal structure of EDITED nodes is removed, creating flat constituents. Second, two EDITED nodes with no intermediate non-EDITED material are merged. Third, the beginning and ending positions of the EDITED constituents are treated as equivalent for scoring purposes (like punctuation).

Table 4.8 presents their results and ours with this modified precision and recall metric. We present precision and recall, as well as the F-measure, since the precision and recall can be rather far apart. We also measured the performance of our parser just with respect to these modified EDITED nodes. These results indicate that we do pretty well on the internal structure of edited nodes, so that our performance drops somewhat when that structure is omitted. With the pre-processing, the Charniak parser outperforms ours by a point and a half.

In summary, we have taken our existing parser and applied it unmodified to transcribed speech with quite good results. With the additional conditioning information, we eke out an additional half a point of accuracy.
Table 4.8: Results using the Charniak and Johnson modified labeled precision and recall metric, of their parser, our parser, and EDITED nodes from our parser.

| Parser                      | LR   | LP   | F-measure |
|-----------------------------|------|------|-----------|
| Charniak and Johnson        | 86.5 | 85.3 | 85.9      |
| Our parser                  | 84.7 | 84.9 | 84.8      |
| Our EDITED nodes            | 63.9 | 67.5 | 65.6      |

### 4.4 Empty punctuation

Transcribed speech may have punctuation, but hypotheses from a speech recognition system typically do not. Two approaches will be investigated for parsing spoken language without the transcribed punctuation: (i) removal of punctuation from both training and testing corpora; and (ii) removal of punctuation from testing data, and treating the punctuation categories as empty. In both cases we can compare the performance with the results presented in the previous section.

Why might we want to keep the punctuation in the training data? One situation that will occur when punctuation is removed is that distinct productions will be collapsed into the same productions. Collapsing distinct rules versus keeping them distinct can make a difference to a parser. It could happen that neither of two separate readings is in the maximum likelihood parse, but when their probability mass is combined in a single production, they are. For example, the productions

\[(4.12) \quad \text{NP} \to \text{NP SBAR}\]
\[(4.13) \quad \text{NP} \to \text{NP} , \text{SBAR} ,\]

are very different kinds of constructions, restrictive versus non-restrictive modification, as in the following two strings, which are examples of the previous two rules, respectively:

\[(4.14) \quad \text{‘legislation that would restrict how the…’}\]
\[(4.15) \quad \text{‘the bill, whose backers include…’}\]

An example from our spoken language corpus is parentheticals, which can be either the sort of vacuous interjection represented by ‘you know’ or ‘I mean’, or an actual parenthetical construction, such as ‘at least’. The former are delimited by commas in the transcription, but the latter are not.

Our top-down parsing algorithm is already able to handle \(\varepsilon\)-productions. In practice, if our empty categories are always empty (as in the case with punctuation categories when there is no punctuation in the input), when an empty category is at the top of the stack, it is simply popped off, and the derivation is pushed back onto the current heap. The look-ahead probability treats the punctuation as an empty node, so that the definition as given can be applied.

Table 4.9 presents parsing results under three conditions: (i) with punctuation as it is given in the treebank; (ii) with all punctuation removed from the training and testing corpora; and (iii)

---

\(^5\) They might be modified to produce punctuation tokens at places where transcribers are likely to place them, but the systems that we will be using the output from do not do this.
| Model Factor | LR | LP | CB | 0 CB | \( \leq 2 \) CB | Pct. failed | Avg. rule expansions considered\(^{†}\) | Average analyses advanced\(^{†}\) |
|--------------|----|----|----|------|----------------|-------------|-----------------------------|-----------------------------|
| section 23: 2416 sentences of length \( \leq 100 \) |
| With punctuation | 86.4 | 86.8 | 1.31 | 59.5 | 81.6 | 0 | 9,008 | 198.9 |
| No punctuation | 83.4 | 84.1 | 1.69 | 54.4 | 76.6 | 0.04 | 11,146 | 229.0 |
| Empty punctuation | 81.8 | 82.8 | 1.88 | 51.3 | 74.5 | 0.29 | 19,728 | 252.5 |

\(^{†}\)per word

Table 4.9: Parsing results on section 23 of the Penn Wall St. Journal Treebank: (i) with punctuation; (ii) with no punctuation; and (iii) with punctuation treated as an empty node.

| Model Factor | LR | LP | CB | 0 CB | \( \leq 2 \) CB | Pct. failed | Avg. rule expansions considered\(^{†}\) | Average analyses advanced\(^{†}\) |
|--------------|----|----|----|------|----------------|-------------|-----------------------------|-----------------------------|
| sw4004-sw4153: 6051 sentences of length \( \leq 100 \) |
| With punctuation | 85.2 | 85.6 | 0.61 | 83.8 | 92.4 | 0 | 9,562 | 170.1 |
| No punctuation | 84.0 | 84.6 | 0.68 | 82.1 | 91.5 | 0.08 | 12,051 | 182.2 |
| Empty punctuation | 79.9 | 81.8 | 0.79 | 79.4 | 90.8 | 0.36 | 19,180 | 201.7 |

\(^{†}\)per word

Table 4.10: Parsing results on section 23 of the Penn Switchboard Treebank: (i) with punctuation; (ii) with no punctuation; and (iii) with punctuation treated as an empty node.

with punctuation removed from the testing corpora, but not the training corpus, and punctuation treated as an empty node. From these results, we can see that punctuation provides much disambiguating information, since when it is removed, the labeled precision and recall drops by about three percentage points, and the number of expansions considered increases by over twenty percent. However, treating punctuation as empty nodes does not help. In fact, it worsens performance dramatically, particularly in terms of efficiency. What seems to be going on is that the ability to predict punctuation as needed leads to a proliferation of competitor analyses. Since the beam is defined as a function of both the probability of the best analysis and the number of successful candidate analyses, this proliferation leads to substantially narrower beams. In other words, the large number of analyses crowds out good analyses.

Table 4.10 performs the same experiment on our Switchboard testing corpus. Here, interestingly, the removal of punctuation has much less impact on the accuracy of the parser – labeled precision and recall drops by only a percentage point. Critically, precision and recall for EDITED nodes goes from a 67.0 F-measure with punctuation to 65.3 without, which is perhaps less of a drop than might be expected, given that the punctuation is largely used to delimit false starts. Treating punctuation as empty nodes leads to a far worse drop in performance than in the WSJ experiment, although the increase in expansions considered follows the same pattern. It appears that in the case of Switchboard, the punctuation is providing far less guidance than in the case of the newspaper text, so that not only do good analyses get crowded out by the proliferation of candidate analyses, but the punctuation does not perform much useful extra disambiguation.
In sum, while it is possible to use empty nodes within this framework, it does not appear, at least when it comes to punctuation, to provide any benefit.

### 4.5 Chapter summary

In this chapter, we have presented several modifications to the parser architecture and model, some of which have improved performance substantially (smoothed Markov grammar and conditioning functions for EDITED parallelism), others of which have had no noteworthy positive effect (attempts to improve efficiency of processing left-child chains), and still others which hurt performance (empty punctuation). As we enter the final chapter, we have a model which is capable of handling spontaneous spoken language effectively, in terms of the accuracy with which it identifies constituents, the efficiency with which it finds them, and the coverage it achieves.
Chapter 5

Language modeling with a top-down parser

With certain exceptions, computational linguists have in the past generally formed a separate research community from speech recognition researchers, despite some obvious overlap of interest. Perhaps one reason for this is that, until relatively recently, few methods have come out of the natural language processing community that were shown to improve upon the very simple language models still standardly in use in speech recognition systems. In the past few years, however, some improvements have been made over these language models through the use of statistical methods of natural language processing; and the development of innovative, linguistically well-motivated techniques for improving language models for speech recognition is generating more interest among computational linguists. While language models built around shallow local dependencies are still the standard in state-of-the-art speech recognition systems, there is reason to hope that better language models can and will be developed by computational linguists for this task.

This chapter will examine language modeling for speech recognition from a natural language processing point of view. Some of the recent literature investigating approaches that use syntactic structure in an attempt to capture long-distance dependencies for language modeling will be reviewed. A new language model, based on probabilistic top-down parsing, will be outlined and compared with the previous literature, and extensive empirical results will be presented which demonstrate its utility.

Two features of our top-down parsing approach will emerge as key to its success. First, the top-down parsing algorithm builds a set of rooted candidate parse trees from left-to-right over the string, which allows it to calculate a generative probability for each prefix string from the probabilistic grammar, and hence a conditional probability for each word given the previous words and the probabilistic grammar. A left-to-right parser whose derivations are not rooted, i.e. with derivations that can consist of disconnected tree fragments, such as an LR or shift-reduce parser, cannot simply use PCFG probabilities to incrementally calculate a generative probability of each prefix string, because their derivations include probability mass from unrooted structures. In order to get generative probabilities from a bottom-up parser, additional calculations beyond the parsing itself must be done [Jelinek and Lafferty, 1991]. However, if the probabilities are on parser operations, and not on the rules in the grammar, then a shift-reduce parser can be generative, as in the Structured Language Model of Chelba and Jelinek (1998). In our approach, the derivations are rooted, so the generative probability is simply the sum of the probability of all parses, using the PCFG.
A parser that is not left-to-right, but which has rooted derivations, e.g. a head-first parser, will be able to calculate generative joint probabilities for entire strings; however it will not be able to calculate probabilities for each word conditioned on previously generated words, unless each derivation generates the words in the string in exactly the same order. For example, suppose that there are two possible verbs that could be the head of a sentence. For a head-first parser, some derivations will have the first verb as the head of the sentence, and the second verb will be generated after the first; hence the second verb’s probability will be conditioned on the first verb. Other derivations will have the second verb as the head of the sentence, and the first verb’s probability will be conditioned on the second verb. In such a scenario, there is no way to decompose the joint probability calculated from the set of derivations into the product of conditional probabilities using the chain rule. Of course, the joint probability can be used as a language model, but it cannot be interpolated on a word-by-word basis with, say, a trigram model, which we will demonstrate is a useful thing to do.

Thus, our top-down parser allows for the incremental calculation of generative conditional word probabilities, a property it shares with other left-to-right parsers with rooted derivations such as Earley parsers (Earley, 1970) or left-corner parsers (Rosenkrantz and Lewis II, 1970).

A second key feature of our approach is that top-down guidance improves the efficiency of the search as more and more conditioning events are extracted from the derivation for use in the probabilistic model. Because the rooted partial derivation is fully connected, all of the conditioning information that might be extracted from the top-down left context has already been specified, and a conditional probability model built on this information will not impose any additional burden on the search. In contrast, an Earley or left-corner parser will underspecify certain connections between constituents in the left-context, and if some of the underspecified information is used in the conditional probability model, the state will have to be split. Of course, this can be done, but at the expense of search efficiency; the more that this is done, the less of a benefit there is to be had from the underspecification. A top-down parser will, in contrast, derive an efficiency benefit from precisely the information that is left underspecified in these other approaches.

Thus, our top-down parser makes it very easy to condition the probabilistic grammar on an arbitrary number of values extracted from the rooted, fully specified derivation. This has lead us to a formulation of the conditional probability model in terms of values returned from tree-walking functions that themselves are contextually sensitive. The top-down guidance that is provided makes this approach quite efficient in practice.

The next section of the chapter will provide a brief introduction to language modeling for speech recognition, as well as a brief discussion of some recent approaches to using syntactic structure to this end. It will be followed by empirical results from the use of our parser for language modeling.

5.1 Background

5.1.1 Language modeling for speech recognition

This section will briefly introduce language modeling for statistical speech recognition, with such topics as the chain rule, n-gram language modeling, and interpolation for smoothing\(^1\).

A speech recognition system can be thought of as a function that takes an acoustic signal as input and outputs a string of words; a “good” function outputs a “good” string of words, i.e. a string

\(^1\)For a detailed introduction to statistical speech recognition, see Jelinek (1998).
of words that largely matches the string of words intended by the speaker. A statistical approach to speech recognition tries to find the string of words which is most likely given the observed speech signal, i.e. the string with the maximum a posteriori probability. Given an acoustic signal \( A \), the system attempts to find a string of words \( S_{\text{max}} \) in the language \( L \) such that

\[
S_{\text{max}} = \arg\max_S P(S|A) = \arg\max_S \frac{P(A|S)P(S)}{P(A)} = \arg\max_S P(A|S)P(S) \quad (5.1)
\]

The first component of this model, \( P(A|S) \), is the probability of the acoustic signal given the string, which is known as the acoustic model. The second component of the model, \( P(S) \), is the prior probability of the string itself, which is known as the language model. The quality of a statistical speech recognizer will jointly depend on the quality of these two models. We will put acoustic modeling to the side and consider language modeling in isolation.

In language modeling, we assign probabilities to strings of words. A string, taken as a whole, may never have been seen before, and, in fact, very likely has not been seen. To assign a probability, the chain rule is generally invoked. The chain rule states, for a string of \( k+1 \) words, \( w^k_0 \)

\[
P(w^k_0) = P(w_0)P(w_1|w_0)\ldots P(w_{n-1}|w_0^{n-2}) \prod_{i=n}^k P(w_i|w_{i-n}^{i-1}) \quad (5.2)
\]

This corresponds to the left-to-right ordering of most speech recognition systems, in that the probability of any particular word is conditioned on the words to its left in the string. However, even if the permitted sentence length were bounded to some fixed finite length, this formulation would require an infeasibly large conditional probability estimate for the words at the end of the string. In order to estimate these conditional probabilities, the conditioning substrings (i.e. \( w_{i-1}^{i-1} \)) are clustered into equivalence classes, and the probability of a word is conditioned on the equivalence class of the string to its left.

One interesting way in which the models that we will be discussing can and do differ is in how they define these equivalence classes. The most prevalent class of models makes the assumption that language is (more-or-less) a Markov process. That is, they assume that the probability of a word is dependent only on the \( n \) closest words on either side, for some stipulated \( n \), and is independent of anything else.

In terms of equivalence classes, a Markov language model of order \( n \) stipulates that two prefix strings of words belong to the same equivalence class if their final \( n \) words are the same. The effect of such a model is that the conditioning information in the chain rule is truncated to include only the previous \( n \) words.

\[
P(w^k_0) = P(w_0)P(w_1|w_0)\ldots P(w_{n-1}|w_0^{n-2}) \prod_{i=n}^k P(w_i|w_{i-n}^{i-1}) \quad (5.3)
\]

These models are commonly called \( n \)-gram models\(^2\) because their probabilities are defined in terms of strings of words of length \( n \). The standard language model used in many speech recognition systems is the trigram model, i.e. a Markov model of order 2, which can be characterized by

\(^2\)The \( n \) in \( n \)-gram is one more than the order of the Markov model, since the \( n \)-gram includes the word being conditioned.
the following equation:

\[ P(w_0^{n-1}) = P(w_0)P(w_1|w_0) \prod_{i=2}^{n-1} P(w_i|w_{i-2}^{i-1}) \]  (5.4)

As presented above, however, \( n \)-gram models have a serious problem with parameter estimation. The number of \( n \)-gram probabilities that must be estimated for a vocabulary of size \( |V| \) is \( |V|^n \). Thus, even for a moderately sized vocabulary and a large corpus, the number of parameters that must be estimated quickly outgrows the number of tokens in the training corpus, i.e. the data is too sparse for the number of parameters. For example, a trigram model for a modest vocabulary of 10,000 words must assign a probability to \( 10^{12} \) trigrams. A simple maximum likelihood estimate, which counts the number of occurrences of the trigram in the training corpus, will assign a probability of zero to all unobserved trigrams. Many of these unobserved trigrams, however, do not really have zero probability of occurring; the training data is just not large enough to begin converging to the true distribution, i.e. it is sparse.

Of course, unigram probabilities, i.e. word probabilities conditioned on none of the preceding words (Markov model of order 0), do not face sparse data problems of nearly the same severity, with merely \( |V| \) parameters. The word probabilities could be estimated with this model. Unfortunately, it turns out that the conditional probability of a word given some number of previous words, when there is enough training data, is a far better estimate of the probability of a word. Consider the word sprouts. If one were going to estimate a probability for this word, without knowing anything else, the estimate would probably be relatively low. If, however, one knew that the word Brussels had just occurred, a good probability estimate would be relatively high. So it seems that there is a dilemma here: on the one hand, there is not enough data to estimate all parameters of an \( n \)-gram model with \( n > 1 \); on the other hand, there is not enough information in a unigram probability model to accurately estimate word probabilities within a string.

The most common solution to this dilemma is to smooth the probability estimates of higher order Markov models with lower order Markov models. The idea is that, if there is enough observed data to accurately estimate the probability for a higher order Markov model, that estimate will be relied upon heavily. If there is not enough, the estimates of lower order Markov models will be relied upon. There are several methods for doing this; one very common method is interpolation (Jelinek and Mercer, 1980). The idea behind interpolation is simple and has been shown to be very effective. For an interpolated \( (n+1) \)-gram

\[ P(w_i|w_{i-n}^{i-1}) = \lambda_n(w_{i-n}^{i-1})\hat{P}(w_i|w_{i-n}^{i-1}) + (1 - \lambda_n(w_{i-n}^{i-1}))P(w_i|w_{i-n+1}^{i-1}) \]  (5.5)

Here \( \hat{P} \) is the empirically observed relative frequency, and \( \lambda_n \) is a function from \( V^n \) to \([0,1]\). What the equation says is that the probability estimate of a word conditioned on the \( n \) previous words is the sum of two parts: the first part, which makes up \( \lambda_n \) of the estimate, is the empirically observed probability of the word given its \( n \) predecessors; the second part, which contributes the remaining \( 1 - \lambda_n \), is the probability estimate of the word conditioned on the \((n - 1)\) previous words. This interpolation is recursively applied to the smaller order \( n \)-grams until the bigram is finally interpolated with the unigram, i.e. \( \lambda_0 = 1 \).

An interpolated trigram model performs very well, better than an interpolated bigram model, and only marginally worse than an interpolated 4-gram model for typical training data sizes. It is the standard in speech recognition, and most work on language modeling is focused on providing
models that improve on the trigram. This may seem a surprising fact, given the obvious limitations of looking only two words back.

### 5.1.2 Previous work

There have been attempts to jump over adjacent words to words farther back in the left-context, without the use of dependency links or syntactic structure, for example Saul and Pereira (1997) and Rosenfeld (1996, 1997). We will focus our very brief review, however, on those which use grammars or parsing for their language models. These can be divided into two rough groups: those that use the grammar as a language model; and those that use a parser to uncover phrasal heads standing in an important relation (c-command) to the current word. The approach that we will subsequently present uses the probabilistic grammar as its language model, but only includes probability mass from those parses that are found, i.e. it uses the parser to find a subset of the total set of parses (hopefully most of the high probability parses) and uses the sum of their probabilities as an estimate of the true probability given the grammar.

### Grammar models

As mentioned in section [3.1.1], a PCFG defines a probability distribution over strings of words. One approach to syntactic language modeling is to use this distribution directly as a language model. There are efficient algorithms in the literature (Jelinek and Lafferty, 1991; Stolcke, 1995) for calculating exact string prefix marginal probabilities given a PCFG. The algorithms both utilize a left-corner matrix, which can be calculated in closed form through matrix inversion. Exact calculation is limited, therefore, to grammars where the non-terminal set is small enough to permit inversion. String prefix probabilities can be straightforwardly used to compute conditional word probabilities by definition:

\[
P(w_{j+1}|w_j) = \frac{P(w_{j+1}^0)}{P(w_j^0)}
\]

Stolcke and Segal (1994) and Jurafsky et al. (1995) used these basic ideas to estimate bigram probabilities from hand-written PCFGs, which were then used in language models. Interpolating observed bigram probabilities with calculated bigrams led, in both cases, to improvements in word error rate over using the observed bigrams alone, demonstrating that there is some benefit to using these syntactic language models to generalize beyond observed \(n\)-grams.

### Finding phrasal heads

Another approach that uses syntactic structure for language modeling has been to use a shift-reduce parser to identify preceding c-commanding phrasal head words or part-of-speech (POS) tags from arbitrarily far back in the prefix string, for use in a trigram-like model.

A shift-reduce parser\(^3\) operates from left-to-right using a stack and a pointer to the next word in the input string. Each stack entry consists minimally of a non-terminal label. The parser performs two basic operations: (i) **shifting**, which involves pushing the POS label of the next word onto the stack and moving the pointer to the following word in the input string; and (ii) **reducing**, which

---

\(^3\)For details, see e.g. Hopcroft and Ullman (1979).
Figure 5.1: Tree representation of a derivation state

Figure 5.1: Tree representation of a derivation state

takes the top \( k \) stack entries and replaces them with a single new entry, the non-terminal label of which is the left-hand side of a rule in the grammar which has the \( k \) top stack entry labels on the right-hand side. For example, if there is a rule \( \text{NP} \rightarrow \text{DT} \text{NN} \), and the top two stack entries are \( \text{NN} \) and \( \text{DT} \), then those two entries can be popped off of the stack and an entry with the label \( \text{NP} \) pushed onto the stack.

Goddeau (1992) used a robust deterministic shift-reduce parser to condition word probabilities by extracting a specified number of stack entries from the top of the current state, and conditioning on those entries in a way similar to an \( n \)-gram. In empirical trials, Goddeau used the top 2 stack entries to condition the word probability. He was able to reduce both sentence and word error rates on the ATIS corpus using this method.

The “Structured Language Model” (SLM) used in Chelba and Jelinek (1998a; 1998b; 1999), Jelinek and Chelba (1999), and Chelba (2000) is similar to that of Goddeau, except that (i) their shift-reduce parser follows a non-deterministic beam search, and (ii) each stack entry contains, in addition to the non-terminal node label, the head-word of the constituent. The SLM is like a trigram, except that the conditioning words are taken from the tops of the stacks of candidate parses in the beam, rather than from the linear order of the string.

Their parser functions in three stages. The first stage assigns a probability to the word given the left-context (represented by the stack state). The second stage predicts the POS given the word and the left-context. The last stage performs parser operations (shifting the new category and reducing the top-two stack entries) until this can no longer be done. When there are no more parser operations to be done (or, in their case, when the beam is full), the following word is predicted. And so on until the end of the string.

Each different POS assignment or parser operation is a step in a derivation. Each distinct derivation path within the beam has a probability and a stack state associated with it. Every stack entry has a non-terminal node label and a designated head word of the constituent. When all of the parser operations have finished at a particular point in the string, the next word is predicted as follows. For each derivation in the beam, the head words of the two topmost stack entries form a trigram with the conditioned word. This interpolated trigram probability is then multiplied by the normalized probability of the derivation, to provide that derivation’s contribution to the probability of the word. More precisely, for a beam of derivations \( D_i \)

\[
P(w_{i+1} | w_0^i) = \frac{\sum_{d \in D_i} P(w_{i+1} | h_{0d}, h_{1d})P(d)}{\sum_{d \in D_i} P(d)}
\]

where \( h_{0d} \) and \( h_{1d} \) are the lexical heads of the top two entries on the stack of \( d \).

Figure 5.1 gives a partial tree representation of a potential derivation state for the string ‘the
dog chased the cat with spots', at the point when the word 'with' is to be predicted. The shift-reduce parser will have, perhaps, built the structure shown, and the stack state will have an NP entry with the head 'cat' at the top of the stack, and a VBD entry with the head 'chased' second on the stack. In the Chelba and Jelinek model, the probability of 'with' is conditioned on these two head words, for this derivation.

Since the specific results of the SLM will be compared in detail with our model when the empirical results are presented, at this point we will simply state that they have achieved a reduction in both perplexity and WER over a standard trigram using this model.

5.1.3 Evaluation

This section will present standard methods for the evaluation of language models. Perplexity is a standard measure within the speech recognition community for comparing language models. In principle, if two models are tested on the same test corpus, the model that assigns the lower perplexity to the test corpus is the model closest to the true distribution of the language, and thus better as a prior model for speech recognition. Perplexity is the exponential of the cross entropy, which we will define next.

Given a random variable \( X \) with distribution \( p \) and a probability model \( q \), the cross entropy, \( H(p, q) \) is defined as follows:

\[
H(p, q) = -\sum_{x \in X} p(x) \log q(x) \tag{5.8}
\]

Let \( p \) be the true distribution of the language. Then, under certain assumptions\(^4\), given a large enough sample, the sample mean of the negative log probability of a model will converge to its cross entropy with the true model. That is

\[
H(p, q) = -\lim_{n \to \infty} \frac{1}{n} \log q(w^n_0) \tag{5.9}
\]

where \( w^n_0 \) is a string of the language \( L \). In practice, one takes a large sample of the language, and calculates the negative log probability of the sample, normalized by its size\(^5\). The lower the cross entropy (i.e. the higher the probability the model assigns to the sample), the better the model. Usually this is reported in terms of perplexity, which we will do as well. Perplexity (\( P \)), as stated above, is the exponential of the cross entropy:

\[
P = \exp \left( -\frac{\log q(w^n_0)}{n} \right) = \exp \left( \log \frac{1}{q(w^n_0)} \right)^{\frac{1}{n}} = \left( \frac{1}{q(w^n_0)} \right)^{\frac{1}{n}} \tag{5.10}
\]

Hence it is the inverse of the geometric mean word probability – the mean contribution, per word, to the probability of the sample.

Some of the trials discussed below will report results in terms of word and/or sentence error rate, which are obtained when the language model is embedded in a speech recognition system. Word error rate is the number of deletion, insertion, or substitution errors per 100 words. Sentence error rate is the number of sentences with one or more errors per 100 sentences.

---

\(^4\)See Cover and Thomas (1991) for a discussion of the Shannon-McMillan-Breiman theorem.

\(^5\)It is important to remember to include the end marker in the strings of the sample.
A statistical speech recognizer attempts to find the string which maximizes the posterior probability. Standard practice is to add more terms into the formulation of the posterior. One is a language model weight factor \( \beta \), which is a power to which the prior is raised. The higher \( \beta \), the more the prior language model is relied upon. A second term is a constant term \( \exp(-\gamma) \), which is raised to the power of the size of the hypothesis string. The idea is to favor short strings of words over longer strings of words. The constant \( \gamma \) is known as the word insertion penalty. Let \( |S| \) be the number of words in \( S \). Then the best hypothesis is:

\[
\arg\max_S P(A|S)P(S)^\beta \exp(-\gamma|S|) = \arg\max_S \log P(A|S) + \beta \log P(S) - \gamma|S| \quad (5.11)
\]

These parameters are reported with each recognition trial. In general, unless otherwise noted, we will use the same parameters as the lattice trigram for the trial.

The rest of this chapter will present the application of our parsing model to language modeling for speech recognition. The first three sections of empirical results were generated with the base parsing model presented in chapter three. Then we will present results using the improvements to the model presented in chapter four, as well as some additional improvements to the way the language model is trained, and how it is mixed with other models.

5.2 Empirical results

The modifications to the base parser presented in chapter four were evaluated with respect to parsing. Now that our parser is to be evaluated as a language model, it is of interest to see the effect of the move from the base to the standard parsing model. For that reason, results will be presented first for the base model (sections 5.2.1-3), then for the standard model (sections 5.2.4-6).

5.2.1 Perplexity results

The next set of results will highlight what recommends our parsing approach most: the ease with which one can estimate string probabilities in a single pass from left-to-right across the string. By definition, a PCFG’s estimate of a string’s probability is the sum of the probabilities of all trees that produce the string as terminal leaves (see equation 5.12). In the beam-search approach used by our parser, we can estimate the string’s probability in the same manner, by summing the probabilities of the parses that the algorithm finds. Since this is not an exhaustive search, the parses that are returned will be a subset of the total set of trees that would be used in the exact PCFG estimate; hence the estimate thus arrived at will be bounded above by the probability that would be generated from an exhaustive search. The hope is that a large amount of the probability mass will be accounted for by the parses in the beam. The method cannot overestimate the probability of the string.

A PCFG also defines a marginal probability distribution over string prefixes, and we will present this in terms of partial derivations. A partial derivation (or parse) \( d \) is defined with respect to a string \( w_j^k \) as follows: it is the leftmost derivation\(^6\) of the string, with \( w_j \) on the right-hand side of the last expansion in the derivation. Let \( D_{w_j^k} \) be the set of all partial derivations for a prefix string \( w_0^j \). Then the marginal probability \( P_{M_\ell} \) is the probability of all strings which begin with the

\(^{6}\text{Recall our presentation of derivations in chapter 3. A leftmost derivation is a derivation in which the leftmost non-terminal is always expanded.}\)
prefix string $w^j_0$, and is defined as

$$P_M(w^j_0) = \sum_{d \in D_{w^j_0}} P(d) \quad (5.12)$$

This is the same as summing the probability of all complete trees which have $w^j_0$ as the first $j + 1$ words of their terminal yield. Let $T_w$ be the set of all complete trees rooted at the start symbol, with the string of terminals $w = w^j_0w'$ as the terminal yield, for some $w' \in T^*$. Then

$$P_M(w^j_0) = \sum_{t \in T_w} P(t) \quad (5.13)$$

By definition,

$$P(w_{j+1}|w^j_0) = \frac{P_M(w^{j+1}_0)}{P_M(w^j_0)} = \frac{\sum_{d \in D_{w^{j+1}_0}} P(d)}{\sum_{d \in D_{w^j_0}} P(d)} \quad (5.14)$$

Note that the numerator at word $w_j$ is the denominator at word $w_{j+1}$, so that the product of all of the word probabilities is the numerator at the final word, i.e. the marginal string prefix probability.

We can make a consistent estimate of the string probability by similarly summing over all of the trees within our beam. Let $\mathcal{H}_i^{init}$ be the priority queue $\mathcal{H}_i$ before any processing has begun with word $w_i$ in the look-ahead. This is a subset of the possible leftmost partial derivations with respect to the prefix string $w^{i-1}_0$. Since $\mathcal{H}_i^{init}$ is produced by expanding only analyses on priority queue $\mathcal{H}_i^{init}$, the set of complete trees consistent with the partial derivations on priority queue $\mathcal{H}_i^{init}$ is a subset of the set of complete trees consistent with the partial derivations on priority queue $\mathcal{H}_i^{init}$, i.e. the total probability mass represented by the priority queues are monotonically decreasing. Thus conditional word probabilities defined in a way consistent with equation (5.14) will always be between zero and one. Our conditional word probabilities are calculated as follows:

$$P(w_i|w^{i-1}_0) = \frac{\sum_{d \in \mathcal{H}_i^{init}} P(d)}{\sum_{d \in \mathcal{H}_i^{init}} P(d)} \quad (5.15)$$

The probability of the end-of-string symbol $\langle /s \rangle$ is the sum of the probabilities of the completed trees divided by the sum of the partial derivations for the string though the last word.

As mentioned above, the model cannot overestimate the probability of a string, because the string probability is simply the sum over the beam, which is a subset of the possible derivations. By utilizing a figure-of-merit to identify promising analyses, we are simply placing our attention on those parses which are likely to have a high probability, and thus we are increasing the amount of probability mass that we do capture, of the total possible. It is not part of the probability model itself.

Since each word is (almost certainly, because of our pruning strategy) losing some probability mass, the probability model is not “proper”, i.e. the sum of the probabilities over the vocabulary is less than one. In order to have a proper probability distribution, we would need to renormalize by dividing by some factor. Note, however, that this renormalization factor is necessarily less than one, and thus would uniformly increase each word’s probability under the model, i.e. any perplexity results reported below will be higher than the “true” perplexity that would be assigned with a properly normalized distribution. In other words, renormalizing would make our perplexity
| Corpora        | Conditioning | LR   | LP   | Pct. Failed | Perplexity | Avg. Rule Expansions Considered† | Average Analyses Advanced† |
|---------------|-------------|------|------|-------------|------------|----------------------------------|-----------------------------|
| unmodified    | all         | 85.2 | 85.1 | 1.7         | 7,206      | 213.5                            |                             |
| no punct      | all         | 82.4 | 82.9 | 0.2         | 9,717      | 251.8                            |                             |
| C&J corpus    | par+sib     | 75.2 | 77.4 | 0.1         | 310.04     | 17,418                           | 457.2                       |
| C&J corpus    | NT struct   | 77.3 | 79.2 | 0.1         | 290.29     | 15,948                           | 408.8                       |
| C&J corpus    | NT head     | 79.2 | 80.4 | 0.1         | 255.85     | 14,239                           | 363.2                       |
| C&J corpus    | POS struct  | 80.5 | 81.6 | 0.1         | 240.37     | 13,591                           | 341.3                       |
| C&J corpus    | all         | 81.7 | 82.1 | 0.2         | 152.26     | 11,667                           | 279.7                       |

†per word

Table 5.1: Results conditioning on various contextual events, sections 23-24, modifications following Chelba and Jelinek

measure lower still. The hope, however, is that the improved parsing model provided by our conditional probability model will cause the distribution over structures to be more peaked, thus enabling us to capture more of the total probability mass, and making this a fairly tight upper bound on the perplexity.

One final note on assigning probabilities to strings: because this parser does garden path on a small percentage of sentences, this must be interpolated with another estimate, to ensure that every word receives a probability estimate. In our trials, we used the unigram, with a very small mixing coefficient:

$$P(w_i|w_{i-1}^{\lambda}) = \lambda(w_{i-1}^{\lambda}) \frac{\sum_{d \in H_{init}^{j}} P(d)}{\sum_{d \in H_i^{j}} P(d)} + (1 - \lambda(w_{i-1}^{\lambda})) \hat{P}(w_i)$$  \hspace{1cm} (5.16)

If $\sum_{d \in H_{init}^{j}} P(d) = 0$ in our model, then our model provides no distribution over following words, since the denominator is zero. Thus,

$$\lambda(w_{i-1}^{\lambda}) = \begin{cases} 0 & \text{if } \sum_{d \in H_{init}^{j}} P(d) = 0 \\ .999 & \text{otherwise} \end{cases}$$  \hspace{1cm} (5.17)

Chelba and Jelinek (1998a; 1998b) also used a parser to help assign word probabilities, via the Structured Language Model outlined in section 5.1.2. They trained and tested the SLM on a modified, more “speech-like” version of the Penn Treebank. Their modifications included: (i) removing orthographic cues to structure (e.g. punctuation); (ii) replacing all numbers with the single token $N$; and (iii) closing the vocabulary at 10,000, replacing all other words with the UNK token. They used sections 00-20 (929,564 words) as the development set, sections 21-22 (73,760 words) as the check set (for interpolation coefficient estimation), and tested on sections 23-24 (82,430 words). We obtained the training and testing corpora from them (which we will denote C&J corpus), and also created intermediate corpora, upon which only the first two modifications
were carried out (which we will denote *no punct*). Differences in performance will give an indication of the impact on parser performance of the different modifications to the corpora. All trials in this section used sections 00-20 for counts, held out 21-22, and tested on 23-24, with our base parser from chapter 3.

Table 5.1 shows several things. First, it shows relative performance for unmodified, *no punct*, and C&J corpora with the full set of conditioning information. We can see that removing the punctuation causes (unsurprisingly) a dramatic drop in the accuracy and efficiency of the parser. Interestingly, it also causes coverage to become nearly total, with failure on just two sentences per thousand on average.

We see the familiar pattern, in the C&J corpus results, of improving performance as the amount of conditioning information grows. In this case we have perplexity results as well, and figure 5.2 shows the reduction in parser error, rule expansions, and perplexity as the amount of conditioning information grows. While all three seem to be similarly improved by the addition of structural context (e.g. parents and siblings), the addition of c-commanding heads has only a moderate effect on the parser accuracy, but a very large effect on the perplexity. The fact that the efficiency was improved more than the accuracy in this case (as was also seen in figure 3.14), seems to indicate that this additional information is causing the distribution to become more peaked, so that fewer analyses are making it into the beam.

Table 5.2 compares the perplexity of our base model with Chelba and Jelinek (1998a; 1998b)

---

7Since the C&J and *no punct* corpora do not have a fixed vocabulary, we still must deal with unknown words in the test corpora. This is done by estimating a distribution over POS tags for unknown words from a held-out corpus.
Table 5.2: Comparison with previous perplexity results

| Paper                              | Perplexity          |
|------------------------------------|---------------------|
|                                    | Trigram Baseline    | Model             | Interpolation, $\lambda=.36$ |
| Chelba and Jelinek (1998a)         | 167.14              | 158.28            | 148.90                        |
| Chelba and Jelinek (1998b)         | 167.14              | 153.76            | 147.70                        |
| Current results                    | 167.02              | 152.26            | 137.26                        |

on the same training and testing corpora. We built an interpolated trigram model to serve as a baseline (as they did), and also interpolated our model’s perplexity with the trigram (replacing the unigram interpolation), using the same mixing coefficient as they did in their trials (taking 36 percent of the estimate from the trigram). The trigram model was also trained on sections 00-20 of the C&J corpus. Trigrams and bigrams were binned by the total count of the conditioning words in the training corpus, and maximum likelihood mixing coefficients were calculated for each bin, to mix the trigram with bigram and unigram estimates. Our trigram model performs at almost exactly the same level that theirs does, which is what we would expect. Our parsing model’s perplexity improves upon Chelba and Jelinek (1998a) fairly substantially, but is only slightly better than Chelba and Jelinek (1998b). However, when we interpolate with the trigram, we see that the additional improvement is greater than the one they experienced. This is not surprising, since our conditioning information is in many ways orthogonal to that of the trigram, insofar as it includes the probability mass of the derivations; in contrast, their model in some instances is very close to the trigram, by conditioning on two words in the prefix string, which may happen to be the two adjacent words.

These results are particularly remarkable, given that we did not build our model as a language model per se, but rather as a parsing model. The perplexity improvement was achieved by simply taking the existing parsing model and applying it, with no extra training beyond that done for parsing.

The hope was expressed above that our reported perplexity would be fairly close to the “true” perplexity that we would achieve if the model were properly normalized, i.e. that the amount of probability mass that we lose by pruning is small. One way to test this is the following: at each point in the sentence, calculate the conditional probability of each word in the vocabulary given the previous words, and sum them. If there is little loss of probability mass, the sum should be close to one. We did this for the first 10 sentences in the test corpus, a total of 213 words (including the end-of-sentence markers). The parser failed to parse one of the sentences, so that 12 of the word probabilities (all of the words after the point of the failure) were not estimated by our model. Of the remaining 201 words, the average sum of the probabilities over the 10,000 word vocabulary was 0.9821, with a minimum of 0.7960, and a maximum of 0.9997. Interestingly, at the word where the failure occurred, the sum of the probabilities was 0.9301.

---

8Our optimal mixture level was closer to 40 percent, but the difference was negligible.
9Thanks to Ciprian Chelba for this suggestion.
| Model                  | Training Size | Vocabulary Size | LM Weight | Word Error Rate % | Sentence Error Rate % |
|------------------------|---------------|-----------------|-----------|-------------------|-----------------------|
| Lattice trigram        | 40M           | 20K             | 16        | 13.7              | 69.0                  |
| Chelba (2000) (λ=.4)   | 20M           | 20K             | 16        | 13.0              |                       |
| Current model          | 1M            | 10K             | 15        | 15.1              | 73.2                  |
| Treebank trigram       | 1M            | 10K             | 5         | 16.5              | 79.8                  |
| No language model      | 0             | 16K             | 0         | 16.8              | 84.0                  |

Table 5.3: Word and sentence error rate results for various models, with differing training and vocabulary sizes, for the best language model factor for that particular model

### 5.2.2 Word error rate

In order to get a sense of whether these perplexity reduction results can translate to improvement in a speech recognition task, we performed a very small preliminary experiment on N-best lists. The DARPA ‘93 HUB1 test setup consists of 213 utterances read from the Wall St. Journal, a total of 3446 words. The corpus comes with a baseline trigram model, using a 20,000 word open vocabulary, and trained on approximately 40 million words. We used Ciprian Chelba’s A* decoder\[10\] to find the 50 best hypotheses from each lattice, along with the acoustic and trigram scores. Given the idealized circumstances of the production (text read in a lab), the lattices are relatively sparse, and in many cases 50 distinct string hypotheses were not found in a lattice. We reranked an average of 22.9 hypotheses with our language model per utterance.

One complicating issue has to do with the tokenization in the Penn Treebank versus that in the HUB1 lattices. In particular, contractions (e.g. he’s) are split in the Penn Treebank (he ’s) but not in the HUB1 lattices. Splitting of the contractions is critical for parsing, since the two parts oftentimes (as in the previous example) fall in different constituents. We follow Chelba (2000)\[10\] in dealing with this problem: for parsing purposes, we use the Penn Treebank tokenization; for interpolation with the provided trigram model, and for evaluation, the lattice tokenization is used. If we are to interpolate our model with the lattice trigram, we must wait until we have our model’s estimate for the probability of both parts of the contraction; their product can then be interpolated with the trigram estimate. In fact, interpolation in these trials made no improvement over the better of the uninterpolated models, but simply resulted in performance somewhere between the better and the worse of the two models, so we will not present interpolated trials here.

Table 5.3 reports the word and sentence error rates for five different models: (i) the trigram model that comes with the lattices, trained on approximately 40M words, with a vocabulary of 20,000; (ii) the best performing model from Chelba (2000), which was interpolated with the lattice trigram at λ=0.4; (iii) our parsing model, with the same training and vocabulary as the perplexity trials above; (iv) a trigram model with the same training and vocabulary as the parsing model; and (v) no language model at all. This last model shows the performance from the acoustic model alone, without the influence of the language model. Recall that the log of the language model score is multiplied by the language model (LM) weight when summing the logs of the language scores.

\[10\]See Chelba (2000) for details.
and acoustic scores, as a way of increasing the relative contribution of the language model to the composite score. We followed Chelba (2000) in using an LM weight of 16 for the lattice trigram. For our model and the treebank trigram model, the LM weight that resulted in the lowest error rates is given.

The small size of our training data, as well as the fact that we are rescoring N-best lists, rather than working directly on lattices, makes comparison with the other models not particularly informative. What is more informative is the difference between our model and the trigram trained on the same amount of data. We achieved a 1.4 percent improvement in word error rate, and a 6.6 percent improvement in sentence error rate over the treebank trigram. Interestingly, as mentioned above, interpolating two models together gave no improvement over the better of the two, whether our model was interpolated with the lattice or the treebank trigram. This contrasts with our perplexity results reported above, as well as with the recognition experiments in Chelba (2000), where the best results resulted from interpolated models. We will see an improvement in WER with interpolation in the next section.

The point of this small experiment was to see if our parsing model could provide useful information even in the case that recognition errors occur, as opposed to the (generally) fully grammatical strings upon which the perplexity results were obtained. It has been pointed out that, given that our model relies so heavily on context, it may have difficulty recovering from even one recognition error, perhaps more difficulty than a more locally-oriented trigram. While the improvements over the trigram model in these trials are modest, they do indicate that our model is robust enough to provide good information even in the face of noisy input. Subsequent chapters will include more substantial word recognition experiments.

### 5.2.3 Beam variation

The next set of results that we will present addresses the question of how wide the beam must be for adequate results. The base beam factor that we have used to this point is $10^{-11}$, which is

| Base Beam Factor | LR | LP | Pct. failed | Perplexity $\lambda=0$ | Perplexity $\lambda=.36$ | Avg. rule expansions considered | Words per second |
|------------------|----|----|-------------|-----------------------|-------------------------|-----------------------------|------------------|
| $10^{-11}$       | 81.7 | 82.1 | 0.2         | 152.26                | 137.26                  | 11,667                      | 3.1              |
| $10^{-10}$       | 81.5 | 81.9 | 0.3         | 154.25                | 137.88                  | 6,982                       | 5.2              |
| $10^{-9}$        | 80.9 | 81.3 | 0.4         | 156.83                | 138.69                  | 4,154                       | 8.9              |
| $10^{-8}$        | 80.2 | 80.6 | 0.6         | 160.63                | 139.80                  | 2,372                       | 15.3             |
| $10^{-7}$        | 78.8 | 79.2 | 1.2         | 166.91                | 141.30                  | 1,468                       | 25.5             |
| $10^{-6}$        | 77.4 | 77.9 | 1.5         | 174.44                | 143.05                  | 871                         | 43.8             |
| $10^{-5}$        | 75.8 | 76.3 | 2.6         | 187.11                | 145.76                  | 517                         | 71.6             |
| $10^{-4}$        | 72.9 | 73.9 | 4.5         | 210.28                | 148.41                  | 306                         | 115.5            |
| $10^{-3}$        | 68.4 | 70.6 | 8.0         | 253.77                | 152.33                  | 182                         | 179.6            |

Table 5.4: Results with full conditioning on the C&J corpus at various base beam factors
quite wide. It was selected with the goal of high parser accuracy; but in this new domain, parser accuracy is a secondary measure of performance. To determine the effect on perplexity, we varied the base beam factor in trials on the Chelba and Jelinek corpora, keeping the level of conditioning information constant, and table 5.4 shows the results across a variety of factors.

The parser error, parser coverage, and the uninterpolated model perplexity ($\lambda = 1$) all suffered substantially from a narrower search, but the interpolated perplexity remained quite good even at the extremes. Figure 5.3 plots the percentage increase in parser error, model perplexity, interpolated perplexity, and efficiency (i.e. decrease in rule expansions per word) as the base beam factor decreased. Note that the model perplexity and parser accuracy are quite similarly effected, but that the interpolated perplexity remained far below the trigram baseline, even with extremely narrow beams.

**5.2.4 Further perplexity reduction**

The first question that we can ask is, what kind of perplexity reduction from the results presented in previous sections do we get by virtue of the model improvements from chapter four – in particular smoothing the grammar. We took the identical training and test set and ran the standard parser over it. The results are presented in table 5.5. This change in the parsing model resulted in a four point reduction in perplexity over the results generated by the previous version of the parser.

A second way to improve perplexity that we investigated was a modification to the way in which the language model scores are mixed. As it stands, following Chelba and Jelinek (1998a),...
we mix our scores on a word by word basis with a fixed mixing parameter of $\lambda = .36$, which was the same factor that they used. To understand how we want to improve the mixing, let us first discuss the trigram model.

As mentioned earlier, the trigram model is smoothed through deleted interpolation. The n-grams are grouped into sets (or buckets) and treated as equivalent for the purpose of mixing parameter estimation. A separate mixing parameter is estimated for each bucket, and it is used for all events that fall in that bucket. For the trigram used to this point, we bucketed based on the raw frequency of the event. In what follows, we used the score advocated in Chen (1996), which is the total count of the conditioning event, divided by the number of distinct conditioned events with which the conditioning event was found (which we will call ‘Average Count’). For example, in a bigram model, the ‘Average Count’ of the conditioning word is the total count of that word, divided by the number of distinct bigrams within which it is the first word. This bucketing score has been shown, and is shown here, to outperform raw frequency quite dramatically. We will use this score to create buckets for the estimation of the parameters for mixing the raw bigram with the unigram, the raw trigram with the smoothed bigram, and the smoothed trigram with the grammatical language models.

We propose an improved method for mixing the parsing language model and the trigram model together that is a simple extension of the interpolation that we are already using for the trigram. We will decide upon the mixing of the models based upon the “reliability” of the n-gram estimate, in much the same way as we decide upon how much to mix the raw trigram, bigram, and unigram estimates. The idea is to use the buckets defined for the trigram interpolation, and assign each smoothed trigram estimate a new bucket; then, using a held out corpus in the standard way, estimate for each bucket the optimal mixing coefficient for mixing the smoothed trigram and the parser’s language model score. The more reliable the smoothed trigram estimate, presumably the more it will be relied upon.

The new buckets for the smoothed trigrams are not simply the original trigram buckets, because an unobserved trigram will be totally smoothed to the bigram score, which has a bucket of its own. Instead of having a single index, each bucket will be identified by a pair of indices (i,j). We reserve (0,0) for sentence initial prediction. If the trigram bucket is greater than zero (i.e. the two previous words have been seen together), i = 0 and j is the trigram bucket; otherwise, i = 1 and j is the bigram bucket. This gives us a measure of the reliability of the smoothed trigram. For example, if the bucket for smoothing the trigram to bigram is bucket 10, the bucket for smoothing from trigram to the grammatical language model is (0,10). If the bucket for smoothing from

| Model                          | Perplexity         | Trigram Base-line | Model | Interpolation, $\lambda=.36$ |
|-------------------------------|--------------------|-------------------|-------|-------------------------------|
| Chelba and Jelinek (1998a)    | 167.14             | 158.28            | 148.90|
| Chelba and Jelinek (1998b)    | 167.14             | 153.76            | 147.70|
| PCFG model                    | 167.02             | 152.26            | 137.26|
| Smoothed grammar              | 167.02             | 148.12            | 134.22|

Table 5.5: Comparison with previous perplexity results
Table 5.6: Perplexity results when mixing the new parsing model with (i) the old trigram; (ii) a better trigram with Average Count bucketing; and (iii) the better trigram with variable mixing.

| Trigram model       | Mixing         | Perplexity |
|---------------------|----------------|------------|
|                     |                | Trigram Baseline | Parsing Model | Interpolation |
| Frequency buckets   | $\lambda = .36$ | 167.02      | 148.12       | 134.22        |
| Average Count buckets | $\lambda = .36$ | 158.49      | 148.12       | 131.64        |
| Average Count buckets | Variable      | 158.49      | 148.12       | 130.24        |

trigram to bigram is 0, and the bucket for smoothing from bigram to unigram is 5, the bucket for smoothing from trigram to the grammatical language model is (1,5). Using these buckets, we then estimated the optimal mixing coefficients for the two language model probability estimates.

Table 5.6 gives the results of our trials with different mixing methods. Moving from the raw frequency based bucketing to the Average Count bucketing improved our trigram performance, and correspondingly the performance of the mixture. Mixing the parsing model and the improved trigram with a variable mixing coefficient based on the trigram bucketing did improve perplexity slightly, but not as much as we might have hoped. One possible reason for this is the fact that in this circumstance the trigram is the weaker of the two models, so that we are deciding when and how much to use the stronger of the two models, rather than the other way around. It would probably be advisable to try to find some way to decide, given the parser state, how much to smooth to the trigram. This, however, is not quite as simple as using the n-gram buckets.

Next we perform more substantial n-best re-ranking trials, to see if our language model can improve word error rate over a trigram model.

### 5.2.5 Further word error rate trials

There were several factors that made the word error rate results in the previous section not a full-blown test of the model. First, the parsing model used was the unsmoothed PCFG model, not the more effective model with the smoothed Markov grammar. Next, the vocabulary size was kept at 10,000 words, rather than the 20,000 for the other models. Third, in ways that we will explain, the format of the training corpus was not perfectly aligned with the format of the test corpus. Lastly, we only trained on the approximately one million word treebank, whereas the other models were trained on 20-40 times that much data.

To remedy this, we first created a training corpus that was aligned with the spoken language input from the n-best lists. We wanted to change the lexical items of the treebank, while preserving the phrase structure intact. The major differences between the newspaper text and the read text are: (i) numbers, currencies, and dates; (ii) common abbreviations; (iii) acronyms; and (iv) hyphen and period delimited items. Figure 5.4 shows the changes to two constituents due to the tree transformations that we performed. The following list illustrates some common changes that were made.

- currency: $3.75 $3.75 → three dollars and seventy five cents
- numbers: 2.1% 2.1% → two point one percent
- dates: Nov. 30, 1999 Nov. 30, 1999 → November thirtieth, nineteen ninety nine
Figure 5.4: Original treebank tree, and the restructured constituents. Everything except the changes shown remained the same in our transform of the training corpus.

- abbreviations: Inc. → Incorporated
- acronyms: IBM → I. B. M.
- hyphens: top-yielding → top yielding
- periods: U.S. → U. S.

With the exception of the hyphens, these transformations can be carried out deterministically. This is because the read format for numbers are easily modeled with a small number of rules, and the parts-of-speech for all output are predictable from the original part-of-speech. For example, acronyms are typically tagged NNP, and the resulting initials also are tagged NNP. The hyphenated words, however, are most commonly adjectives which decompose into non-adjective words. We chose the most common tag for each of the words, or the original tag of the hyphenated item for previously unobserved words.

As in the previous trials, there is still a tokenization mis-alignment between what is required for parsing and what is standardly used in language models. Namely, contractions and possessives (e.g. John's) are split for parsing but are a single token for the language model. As stated previously, we will split these for parsing, but for interpolation with the lattice trigram or for evaluation, they were treated as a single token.

We expanded our vocabulary to a 20,000 word open vocabulary, which is the standard from NIST for this test set, replacing all items outside of the lexicon with UNK. The DARPA ‘93 HUB1
| λ   | 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
|-----|-----|-----|-----|-----|-----|-----|
| WER % | 14.0 | 14.0 | 13.7 | 13.6 | 13.4 | 13.7 |

Table 5.7: Word Error Rate results on the WSJ HUB1 test set, with a 20k vocabulary, trained on the WSJ treebank, at various mixtures with the lattice trigram. The model is $\lambda$ times the trigram plus $(1-\lambda)$ times the parsing model.

test setup consists of 213 utterances read from the Wall St. Journal, a total of 3446 words. We then parsed the n-best lists extracted from the HUB1 test set, training on the new transformed training corpus for sections 0-20, and transformed held-out sections 21-22. We used the smoothed Markov grammar model given in the previous chapter. Table 5.7 gives word error rate results for the model at various interpolation values with the lattice trigram, where the $\lambda$ contribution is from the trigram, and $1-\lambda$ from our parsing model. Recall that the lattice trigram is trained on 40 million words, while our parser is trained on a 961,786 word training corpus with 76,563 words held out. For all WSJ trials, we used a language model weight of 16 and no word insertion penalty.

Our model on its own gets a WER percent of 14.0, a 1.1 percent error reduction from the performance presented in the previous section. As we interpolate with the lattice trigram, the performance improves, so that at $\lambda = 0.8$, we are improving on the lattice trigram with a modest 0.3 percent reduction in error.

The last problem with the previous word error rate results has to do with the amount of training data. We are limited by the amount of annotated data, which is about a million words. To increase the amount of training data, we performed a single pass of Expectation Maximization (EM) on an additional 1.2 million words (for more on EM and the Inside/Outside algorithm, see e.g. Manning and Schütze, 1999). While the potential amount of training data is very large (the lattice trigram is trained on 40 million words, and Chelba (2000) used EM to train on 20 million words), the number of parameters in our model made the memory requirements of training on that much additional data prohibitive. A trigram model with a 20,000 word vocabulary has on the order of $10^{13}$ parameters. Our conditional probability model, with approximately 80 non-terminals and 20,000 words, has on the order of $10^{22}$ parameters. One future area of research is to reduce the number of parameters without sacrificing the level of performance, and so be able to train on much larger data sets. For the purposes of this thesis, however, we will investigate EM on just a million more words.

EM works by taking an estimate of the parameters, and finding the expected counts of hidden data. It then uses the expected counts of the hidden data to find a maximum likelihood estimate for the parameters. In our case, the hidden data are parse trees. The initial parameter values are those estimated from the treebank; the expected count for a hidden event is the probability of the event divided by the probability of the string. Since the probability of the string is estimated in our model by the sum of the probabilities of all parse trees found for the string, the expected count for a particular parse tree is its probability normalized by the total probability of the trees in the beam.

In practice, we train the model as follows. First, we train the parser as usual with the given training corpus, and parse the additional data, in our case 1.2 million words. For each string in
Table 5.8: Word Error Rate results on the WSJ HUB1 test set, with a 20k vocabulary, trained on the WSJ treebank plus the hidden data from an additional 1.2 million words, at various mixtures with the lattice trigram. The model is \( \lambda \) times the trigram plus \( (1-\lambda) \) times the parsing model.

| \( \lambda \) | 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
|----------------|-----|-----|-----|-----|-----|-----|
| WER %          | 13.2| 13.1| 12.8| 12.7| 13.0| 13.7|

Table 5.8 gives the word error rate results on the HUB1 test set with the additional 1.2 million words of training. EM reduced the word error rate of our model by 0.8 percent. Uninterpolated, our model now improves upon the lattice trigram, reducing the error by 0.5 percent. Interpolated with the lattice trigram, the best model (at \( \lambda = 0.6 \)) reduces the word error rate by 1.0 percent from the lattice trigram rate. Further, our 12.7 percent is better than the best performing model reported in Chelba (2000), which had a 13.0 percent WER. This despite only training on a fraction of the training data of the other models.

For the Switchboard trials, we tested on 2,427 utterances (20,639 words) from the CLSP WS97 test set (Center For Language And Speech Processing, 1997). Lattices from each of the test utterances were provided by CLSP, from which the 50 best hypotheses were extracted, along with their lattice trigram and acoustic scores. Some of the test utterances were part of the new Switchboard treebank, so their trees were removed from the training data for these trials. The parsing model that we used for these trials is the one presented in chapter four, with the additional conditioning functions for EDITED parallelism.

Table 5.9 gives the word error rate results for the parsing model trained on the given treebank, which, after punctuation and utterances from the test section were removed, contained 766,268 words. The held out corpus was the same as in the parsing trials, 56,293 words with punctuation removed. The language models were used with a language model weighting factor of 12, and a word insertion penalty of 10. The results do not improve upon the lattice trigram. Table 5.10 gives the results with a parsing model trained with an additional 900,682 words using EM. Here we do get a small improvement over the trigram model, when the two models are mixed at \( \lambda = 0.8 \), a 0.2 percent reduction in the error rate.

---

11To save space, we saved all parse trees until 99 percent of the probability mass is accounted for. All remaining candidate trees were discarded.
Table 5.9: Word Error Rate results on the Switchboard test set, with a 22k vocabulary, trained on the Switchboard treebank, at various mixtures with the lattice trigram. The model is $\lambda$ times the trigram plus $(1-\lambda)$ times the parsing model.

| $\lambda$ | 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
|-----------|-----|-----|-----|-----|-----|-----|
| WER %     | 42.4| 40.0| 40.1| 40.0| 40.0| 39.1|

Table 5.10: Word Error Rate results on the Switchboard test set, with a 22k vocabulary, trained on the Switchboard treebank plus additional 900k words, at various mixtures with the lattice trigram. The model is $\lambda$ times the trigram plus $(1-\lambda)$ times the parsing model.

| $\lambda$ | 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
|-----------|-----|-----|-----|-----|-----|-----|
| WER %     | 39.4| 39.1| 39.0| 39.0| 38.9| 39.1|

5.2.6 Grammaticality bias

As mentioned earlier, it is critical to evaluate a parser-based language model in terms of how well it reduces word error rate, because the parser is likely to be sensitive to recognizer errors, and hence be of limited use when scoring a typically very noisy set of hypotheses. The question is: does the parser-based model have a gross preference for well-formed input, limiting its applicability? We have shown that the parser can provide useful information, and reduce word error rate in the face of noisy hypotheses, but this section will take a closer look at this issue via a simple additional experiment.

What we want to do is to look at the difference in the performance of the models when the correct string is present and when the correct string is not present. If the drop in performance of the parsing language model is greater than the drop in performance of the lattice trigram, then this is evidence for a grammaticality bias. To do this, we narrowed our test set to just those sentences with the correct string among the n-best hypotheses. We then tested the models both with the correct string included and with the correct string excluded.

The number of strings in the test sets for which the correct string was present among the 50 best was about half of the total for both the WSJ and the Switchboard trials. In the case of Switchboard, however, the largest number of such strings were single word utterances, which is too short to be germane to the question at hand. For that reason, we set lower bounds on the sentence length, and tested at various lower bounds. Given the number of very short strings, it is perhaps surprising that a grammatical model can improve on an n-gram model at all in this domain.

Table 5.11 summarizes the results of our trials. The parsing model that we used for the trials was after one iteration of EM training. One notices several things from this test. First, the WER for these trials is very much below the WER for the entire test set, in both domains. The reason for this presumably has to do with the fact that the correct hypothesis falls within the 50 best. If that is the case, then presumably many close neighbors to the correct string are also within the 50 best, so that the overall performance, even without selecting the correct string, will be better than when the correct hypothesis falls outside of the 50-best list. Also note that the sentence error rate (SER)
for the trigram is always equal to or less than that for the parsing model, which is the opposite of what you would expect if there were a strong grammaticality bias in the parsing model.

In the Wall St. Journal trial, the change in WER when the correct string was removed was identical for both the trigram and the parsing model. For the various Switchboard trials, the change was in fact 0.2 or 0.3 percent greater for the trigram model than for the parsing model, which is in the wrong direction for a strong grammaticality bias in the parsing model. Given the small number of strings in these trials, these results cannot be called conclusive, but they add to the evidence that there is not a large grammaticality bias in the model.

One last comment about the results in table 5.11. In the Switchboard trials, the WER actually improves as the set is narrowed to include only longer strings. It appears that the longer sentences in our smaller test set are “easier” in some sense than the shorter sentences. In order to see if this generalizes to the test set as a whole, we looked at the 816 strings in the Switchboard test set that had a length greater than or equal to 10. On this subset, the lattice trigram scored a WER of 39.3, 0.2 percent worse than on the test set as a whole. The parsing model, in contrast, scored 39.0 on this subset, 0.4 percent better than its overall score, and better than the lattice trigram for this subset. The improvement on the very small sets that we reported on in table 5.11 was much larger than this as the length of the sentences grew, so this does not appear to be a general phenomenon, but rather something about this subset. Perhaps the reason is that, the longer the string, the more densely packed the competitors, so that if the correct string makes the 50-best list, the acoustic scores must really favor the good words, and hence improve the scores in general.

To sum up this section, it appears unlikely that the parsing model that we have been exploring has a gross bias towards grammaticality that would hinder its use within speech recognition systems.

### 5.3 Chapter summary

In summary, we have defined a language model for speech recognition that is a direct application of our existing parser model. We have demonstrated both perplexity and word error rate reduction over trigram models. In the case of the WSJ trials, we improved on the trigram even with just 5 percent of its training data. In the Switchboard trials, we successfully used EM to improve our
model to the point where we could improve on the lattice trigram. Improvements in our ability to
model the Switchboard utterances syntactically may lead to further improvements. Overall, this
model has proven useful even in the face of ill-formed input.
Chapter 6

Conclusion

We have presented a parser in this thesis that provides fully connected syntactic structure incrementally. It is a model that is consistent with models of human sentence processing (Jurafsky, 1996), yet which handles syntactic complexity without resorting to dynamic programming, while scaling up to handle freely occurring language. In addition to its psycholinguistic motivations, we found a large computational motivation in the model’s applicability to language modeling for speech recognition. Our robust parser can cover spontaneous spoken language input without the need for pre-processing, and the language model that it provides yields substantial reductions in perplexity and word error rate on standard test corpora.

There are several directions to go with this research in the future. One is to attempt to improve the model, by reducing the number of parameters and better modeling the dependencies. The linear order of interpolation, and even the use of interpolation as opposed to other smoothing methods, is one clear area of potential weakness. Maximum entropy modeling is an obvious candidate to replace our current approach.

Another direction is to modify the model to better fit the needs of statistical speech recognition. In this thesis, we have applied the parser straight “out of the box”, yet the desideratum is quite different from that which the model was built to deliver. If our goal is language modeling and not parsing, perhaps we can modify the structure of the grammar in ways that do not preserve the original structure, but which capture the dependencies as well or better. Perhaps some of these modifications may also reduce the search problem as well. We demonstrated the efficacy of the selective left-corner transform, in a flattened form that preserved constituent structure. Perhaps other transforms that do not preserve constituent structure would be even more beneficial. If recovery of Penn Treebank style structure is not the goal, then such modifications can be carried out without worry.

Given the results of this thesis, as well as what has been seen recently in the literature from Chelba and Jelinek, it is clear that syntactic parsing can provide access to dependencies that elude standard language models. We speculate that parsing will play a role in the language models of commonly available speech recognition systems within the next five to ten years. Clearly there is much work to be done to make such models viable under the processing demands of speech recognition. This thesis should illustrate that this additional work will be well worth the effort.
References

[Abney1989] Abney, Steven. 1989. A computational model of human parsing. Journal of Psycholinguistic Research, 18(1):129–144.

[Abney and Johnson1991] Abney, Steven and Mark Johnson. 1991. Memory requirements and local ambiguities of parsing strategies. Journal of Psycholinguistic Research, 20(3):233–250.

[Abney, McAllester, and Pereira1999] Abney, Steven, David McAllester, and Fernando C.N. Pereira. 1999. Relating probabilistic grammars and automata. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, pages 542–549.

[Aho, Sethi, and Ullman1986] Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers, principles, techniques, and tools. Addison-Wesley, Reading, Mass.

[Altmann and Steedman1988] Altmann, Gerry and Mark Steedman. 1988. Interaction with context during human sentence processing. Cognition, 30:198–238.

[Bangalore and Joshi1999] Bangalore, Srinivas and Aravind K. Joshi. 1999. Supertagging: an approach to almost parsing. Computational Linguistics, 25(2):237–265.

[Bar-Hillel1953] Bar-Hillel, Joshua. 1953. A quasi-arithmetical notation for syntactic description. Language, 29:47–58.

[Bever1970] Bever, Thomas G. 1970. The cognitive basis for linguistic structures. In John R. Hayes, editor, Cognition and the development of language. Wiley, New York.

[Black et al.1991] Black, Ezra, Steven Abney, Dan Flickenger, Claudia Gdaniec, Ralph Grishman, Philip Harrison, Donald Hindle, Robert Ingria, Frederick Jelinek, Judith Klavans, Mark Liberman, Mitchell P. Marcus, Salim Roukos, Beatrice Santorini, and Tomek Strzalkowski. 1991. A procedure for quantitatively comparing the syntactic coverage of English grammars. In DARPA Speech and Natural Language Workshop, pages 306–311.

[Borsky1998] Borsky, Susan. 1998. The Interaction of Sentence Context and Local Acoustic Information during Sentence Comprehension. Ph.D. thesis, Florida Atlantic University.

[Brants and Crocker2000] Brants, Thorsten and Matthew Crocker. 2000. Probabilistic parsing and psychological plausibility. In Proceedings of the 18th International Conference on Computational Linguistics (COLING), pages 111–117.

[Briscoe and Carroll1993] Briscoe, Ted and John A. Carroll. 1993. Generalized probabilistic LR parsing of natural language (corpora) with unification-based grammars. Computational Linguistics, 19(1):25–60.

[Britt1994] Britt, M. Anne. 1994. The interaction of referential ambiguity and argument structure. Journal of Memory and Language, 33:251–283.

[Center For Language And Speech Processing1997] Center For Language And Speech Processing. 1997. Ws97 test set. In Proceedings of the CLSP/JHU Workshop on Innovative Techniques for Large Vocabulary Continuous Speech Recognition.
[Charniak1997] Charniak, Eugene. 1997. Statistical parsing with a context-free grammar and word statistics. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pages 598–603.

[Charniak2000] Charniak, Eugene. 2000. A maximum-entropy-inspired parser. In Proceedings of the 1st Conference of the North American Chapter of the Association for Computational Linguistics, pages 132–139.

[Charniak, Goldwater, and Johnson1998] Charniak, Eugene, Sharon Goldwater, and Mark Johnson. 1998. Edge-based best-first chart parsing. In Proceedings of the Sixth Workshop on Very Large Corpora, pages 127–133.

[Charniak and Johnson2001] Charniak, Eugene and Mark Johnson. 2001. Edit detection and parsing for transcribed speech. In Proceedings of the 2nd Conference of the North American Chapter of the Association for Computational Linguistics.

[Chelba2000] Chelba, Ciprian. 2000. Exploiting Syntactic Structure for Natural Language Modeling. Ph.D. thesis, The Johns Hopkins University.

[Chelba and Jelinek1998a] Chelba, Ciprian and Frederick Jelinek. 1998a. Exploiting syntactic structure for language modeling. In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, pages 225–231.

[Chelba and Jelinek1998b] Chelba, Ciprian and Frederick Jelinek. 1998b. Refinement of a structured language model. In International Conference on Advances in Pattern Recognition, pages 275–284.

[Chelba and Jelinek1999] Chelba, Ciprian and Frederick Jelinek. 1999. Recognition performance of a structured language model. In Proceedings of Eurospeech, pages 1567–1570.

[Chen1996] Chen, Stanley F. 1996. Building Probabilistic Models for Natural Language. Ph.D. thesis, Harvard University.

[Chi and Geman1998] Chi, Zhiyi and Stuart Geman. 1998. Estimation of probabilistic context-free grammars. Computational Linguistics, 24(2):299–305.

[Collins1997] Collins, Michael J. 1997. Three generative, lexicalised models for statistical parsing. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics, pages 16–23.

[Collins2000] Collins, Michael J. 2000. Discriminative reranking for natural language parsing. In The Proceedings of the 17th International Conference on Machine Learning.

[Corman, Leiserson, and Rivest1990] Corman, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. 1990. Introduction to Algorithms. The MIT Press, Cambridge, MA.

[Cover and Thomas1991] Cover, Thomas M. and Joy A. Thomas. 1991. Elements of Information Theory. John Wiley and Sons, Inc., New York.
[Crain and Steedman1985] Crain, Stephen and Mark Steedman. 1985. On not being led up the garden path: The use of context by the psychological parser. In David R. Dowty, Lauri Karttunen, and Arnold M. Zwicky, editors, Natural Language Parsing. Cambridge University Press, Cambridge, UK.

[Demers1977] Demers, Alan J. 1977. Generalized left-corner parsing. In Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, 1977 ACM SIGACT/SIGPLAN, pages 170–182.

[Dowding et al.1992] Dowding, John, Robert Moore, Francois Andry, and Douglas Moran. 1992. Interleaving syntax and semantics in an efficient bottom-up parser. In Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics, pages 110–116.

[Earley1970] Earley, Jay. 1970. An efficient context-free parsing algorithm. Communications of the ACM, 6(8):451–455.

[Eisner and Satta1999] Eisner, Jason and Giorgio Satta. 1999. Efficient parsing for bilexical context-free grammars and head automaton grammars. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, pages 457–464.

[Fodor1983] Fodor, Jerry A. 1983. Modularity of Mind. The MIT Press, Cambridge, MA.

[Forster1979] Forster, Kenneth I. 1979. Levels of processing and the structure of the language processor. In W. E. Cooper and E. Walker, editors, Sentence processing: Psycholinguistic studies presented to Merrill Garrett. Erlbaum, Hillsdale, NJ.

[Frazier1979] Frazier, Lyn. 1979. On comprehending sentences: syntactic parsing strategies. Indiana University Linguistics Club, Bloomington, IN.

[Frazier and Fodor1978] Frazier, Lyn and Janet D. Fodor. 1978. The sausage machine: a new two-stage parsing model. Cognition, 6:291–325.

[Gibson1998] Gibson, Edward. 1998. Linguistic complexity: locality of syntactic dependencies. Cognition, 68(1):1–76.

[Gibson and Pearlmutter2000] Gibson, Edward and Neal J. Pearlmutter. 2000. Distinguishing serial and parallel parsing. Journal of Psycholinguistic Research, 29(2):231–240.

[Goddeau1992] Goddeau, David. 1992. Using probabilistic shift-reduce parsing in speech recognition systems. In Proceedings of the 2nd International Conference on Spoken Language Processing, pages 321–324.

[Hale2001] Hale, John. 2001. A probabilistic earley parser as a psycholinguistic model. In Proceedings of the 2nd Conference of the North American Chapter of the Association for Computational Linguistics.

[Hopcroft and Ullman1979] Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, Mass.

[Inui et al.1997] Inui, Kentaro, Virach Sornlertlamvanich, Hozummi Tanaka, and Takenobu Toku-naga. 1997. A new formalization of probabilistic GLR parsing. In Proceedings of 5th International Workshop on Parsing Technologies, pages 123–134.
[Jelinek1998] Jelinek, Frederick. 1998. *Statistical Methods for Speech Recognition*. The MIT Press, Cambridge, MA.

[Jelinek and Chelba1999] Jelinek, Frederick and Ciprian Chelba. 1999. Putting language into language modeling. In *Proceedings of Eurospeech*, pages 1–6.

[Jelinek and Lafferty1991] Jelinek, Frederick and John Lafferty. 1991. Computation of the probability of initial substring generation by stochastic context-free grammars. *Computational Linguistics*, 17(3):315–323.

[Jelinek and Mercer1980] Jelinek, Frederick and Robert L. Mercer. 1980. Interpolated estimation of markov source parameters from sparse data. In *Proceedings of the Workshop on Pattern Recognition in Practice*, pages 381–397.

[Johnson1995] Johnson, Mark. 1995. Memoization in top-down parsing. *Computational Linguistics*, 21(3):405–417.

[Johnson1998a] Johnson, Mark. 1998a. Finite-state approximation of constraint-based grammars using left-corner grammar transforms. In *Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics*, pages 619–623.

[Johnson1998b] Johnson, Mark. 1998b. PCFG models of linguistic tree representations. *Computational Linguistics*, 24(4):617–636.

[Johnson and Roark2000] Johnson, Mark and Brian Roark. 2000. Compact non-left-recursive grammars using the selective left-corner transform and factoring. In *Proceedings of the 18th International Conference on Computational Linguistics (COLING)*, pages 355–361.

[Joshi, Levy, and Takahashi1975] Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975. Tree adjunct grammars. *Journal of Computer and System Sciences*, 10(1):136–163.

[Jurafsky1996] Jurafsky, Daniel. 1996. A probabilistic model of lexical and syntactic access and disambiguation. *Cognitive Science*, 20:137–194.

[Jurafsky et al.1995] Jurafsky, Daniel, Chuck Wooters, Jonathan Segal, Andreas Stolcke, Eric Fosler, Gary Tajchman, and Nelson Morgan. 1995. Using a stochastic context-free grammar as a language model for speech recognition. In *Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing*, pages 189–192.

[Kim, Bangalore, and Trueswell1998] Kim, Albert E., Srinivas Bangalore, and John C. Trueswell. *to appear*. The convergence of lexicalist perspectives in psycholinguistics and computational linguistics. In Paula Merlo and Suzanne Stevenson, editors, *Sentence processing and the lexicon: formal, computational, and experimental perspectives*. John Benjamins, Amsterdam.

[Lambek1958] Lambek, Joachim. 1958. The mathematics of sentence structure. *American Mathematical Monthly*, 65:154–169.

[Lewis1998] Lewis, Richard L. 1998. Reanalysis and limited repair parsing: Leaping off the garden path. In Janet D. Fodor and Fernanda Ferreira, editors, *Reanalysis in Sentence Processing*. Kluwer Academic Publishers, Dordrecht.
[MacDonald, Pearlmutter, and Seidenberg1994] MacDonald, Maryellen C., Neal J. Pearlmutter, and Mark S. Seidenberg. 1994. Lexical nature of syntactic ambiguity resolution. *Psychological Review*, 101(4):676–703.

[Manning and Carpenter1997] Manning, Christopher and Bob Carpenter. 1997. Probabilistic parsing using left corner language models. In *Proceedings of the Fifth International Workshop on Parsing Technologies*.

[Manning and Schütze1999] Manning, Christopher and Hinrich Schütze. 1999. *Foundations of Statistical Natural Language Processing*. The MIT Press, Cambridge, MA.

[Marcus, Santorini, and Marcinkiewicz1993] Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of English: The Penn Treebank. *Computational Linguistics*, 19(2):313–330.

[Martin, Church, and Patil1981] Martin, William A., Kenneth Church, and Ramesh Patil. 1981. Preliminary analysis of a breadth-first parsing algorithm: Theoretical and experimental results. Technical Report MIT/LCS/TM–261, Laboratory for Computer Science, Massachusetts Institute of Technology.

[McRae, Spivey-Knowlton, and Tanenhaus1998] McRae, Ken, Michael J. Spivey-Knowlton, and Michael K. Tanenhaus. 1998. Modeling the influence of thematic fit (and other constraints) in on-line sentence comprehension. *Journal of Memory and Language*, 38:283–312.

[Mendelsohn and Pearlmutter1999] Mendelsohn, Aurora and Neal J. Pearlmutter. 1999. Serial versus parallel sentence comprehension. In revision.

[Nijholt1980] Nijholt, Anton. 1980. *Context-free Grammars: Covers, Normal Forms, and Parsing*. Springer Verlag, Berlin.

[Ratnaparkhi1997] Ratnaparkhi, Adwait. 1997. A linear observed time statistical parser based on maximum entropy models. In *Proceedings of the Second Conference on Empirical Methods in Natural Language Processing (EMNLP-97)*, pages 1–10.

[Resnik1992] Resnik, Philip. 1992. Left-corner parsing and psychological plausibility. In *The Proceedings of the fifteenth International Conference on Computational Linguistics, COLING-92*, pages 191–197.

[Roark2001] Roark, Brian. 2001. Probabilistic top-down parsing and language modeling. *Computational Linguistics*. in press.

[Roark and Charniak2000] Roark, Brian and Eugene Charniak. 2000. Measuring efficiency in high-accuracy, broad-coverage statistical parsing. In *Proceedings of the COLING-2000 Workshop on Efficiency in Large-scale Parsing Systems*, pages 29–36.

[Roark and Johnson1999] Roark, Brian and Mark Johnson. 1999. Efficient probabilistic top-down and left-corner parsing. In *Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics*, pages 421–428.

[Rosenfeld1996] Rosenfeld, Ronald. 1996. A maximum entropy approach to adaptive statistical language modeling. *Computer, Speech and Language*, 10:187–228.
[Rosenfeld1997] Rosenfeld, Ronald. 1997. A whole sentence maximum entropy language model. In Proceedings of IEEE Workshop on Speech Recognition and Understanding, pages 230–237.

[Rosenkrantz and Lewis II1970] Rosenkrantz, Stanley J. and Philip M. Lewis II. 1970. Deterministic left corner parsing. In IEEE Conference Record of the 11th Annual Symposium on Switching and Automata, pages 139–152.

[Saul and Pereira1997] Saul, Lawrence and Fernando C.N. Pereira. 1997. Aggregate and mixed-order markov models for statistical language processing. In Proceedings of the Second Conference on Empirical Methods in Natural Language Processing (EMNLP-97), pages 81–89.

[Shieber and Johnson1993] Shieber, Stuart and Mark Johnson. 1993. Variations on incremental interpretation. Journal of Psycholinguistic Research, 22(2):287–318.

[Sikkel and Nijholt1997] Sikkel, Klaas and Anton Nijholt. 1997. Parsing of context-free languages. In G. Rozenberg and A. Salomaa, editors, The Handbook of Formal Languages, Vol. 2: Linear Modeling: Background and Application. Springer Verlag, Berlin, pages 61–100.

[Spivey and Tanenhaus1998] Spivey, Michael J. and Michael K. Tanenhaus. 1998. Syntactic ambiguity resolution in discourse: Modeling the effects of referential context and lexical frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(6):1521–1543.

[Spivey-Knowlton and Sedivy1995] Spivey-Knowlton, Michael J. and Julie Sedivy. 1995. Parsing attachment ambiguities with multiple constraints. Cognition, 55:227–267.

[Stabler1991] Stabler, Edward P. 1991. Avoid the pedestrian’s paradox. In Robert C. Berwick, Steven P. Abney, and Carol Tenny, editors, Principle-Based Parsing: Computation and Psycholinguistics. Kluwer Academic Publishers, Dordrecht, pages 199–237.

[Steedman1987] Steedman, Mark. 1987. Combinatory grammars and parasitic gaps. Natural Language and Linguistic Theory, 5:403–439.

[Steedman1989] Steedman, Mark. 1989. Grammar, interpretation, and processing from the lexicon. In William Marslen-Wilson, editor, Lexical representation and process. The MIT Press, Cambridge, MA.

[Steedman1999] Steedman, Mark. 1999. Connectionist sentence processing in perspective. Cognitive Science, 23(4):615–634.

[Stevenson1993] Stevenson, Suzanne. 1993. A competition-based explanation of syntactic attachment preferences and garden path phenomena. In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, pages 266–273.

[Stolcke1995] Stolcke, Andreas. 1995. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities. Computational Linguistics, 21(2):165–202.

[Stolcke and Segal1994] Stolcke, Andreas and Jonathan Segal. 1994. Precise n-gram probabilities from stochastic context-free grammars. In Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, pages 74–79.
[Sturt and Crocker1996] Sturt, Patrick and Matthew Crocker. 1996. Monotonic syntactic processing: a cross-linguistic study of attachment and reanalysis. *Language and Cognitive Processes*, 11(5):449–494.

[Tabor in press] Tabor, Whitney. *in press*. Fractal encoding of context free grammars in connectionist networks. *Expert Systems: The International Journal of Knowledge Engineering and Neural Networks*.

[Tabor, Juliano, and Tanenhaus1997] Tabor, Whitney, Cornell Juliano, and Michael K. Tanenhaus. 1997. Parsing in a dynamical system: an attractor-based account of the interaction of lexical and structural constraints in sentence processing. *Language and Cognitive Processes*, 12:211–271.

[Tanenhaus et al.1995] Tanenhaus, Michael K., Michael J. Spivey-Knowlton, Kathleen Eberhard, and Julie Sedivy. 1995. Integration of visual and linguistic information during spoken language comprehension. *Science*, 268:1632–1634.

[Trueswell1996] Trueswell, John. 1996. The role of lexical frequency in syntactic ambiguity resolution. *Journal of Memory and Language*, 35:566–585.

[Vosse and Kempen2000] Vosse, Theo and Gerard Kempen. 2000. Syntactic structure assembly in human parsing: a computational model based on competitive inhibition and a lexicalist grammar. *Cognition*, 75:105–143.

[Weinberg1987] Weinberg, Amy. 1987. *Locality Principles in Syntax and in Parsing*. Ph.D. thesis, MIT.