Stochastic resetting in backtrack recovery by RNA polymerases

Édgar Roldán,1,2,3,* Ana Lisica,4,5 Daniel Sánchez-Taltavull,6 and Stephan W. Grill5,4,1,*

1Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
2Center for Advancing Electronics Dresden, cfaed, Dresden, Germany
3GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain
4BIOTEC, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
5Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
6Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada K1H 8L6

(Received 22 March 2016; published 20 June 2016)

DOI: 10.1103/PhysRevE.93.062411

I. INTRODUCTION

Transcription of genetic information from DNA into RNA is the first step of gene expression and is fundamental for cellular regulation. The process is performed by macromolecular enzymes called RNA polymerases that move stepwise along a DNA template and produce a complementary RNA, as illustrated in Fig. 1. Transcription elongation is often interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to an absorbing state.

In a backtrack, a polymerase performs a random walk on the DNA template until it realigns the 3’ end from the active site and leaves the enzyme transcriptionally inactive [1–5] (Fig. 1). Backtracking is a central mechanism of transcriptional proofreading and it facilitates important co-transcriptional processes, such as promoter-proximal pausing, co-transcriptional pre-mRNA splicing and arrest [6,7].

In a backtrack, a polymerase performs a random walk on the DNA template until it realigns the 3’ end from the active site [8]. Once the RNA 3’ end is realigned, the polymerase is recovered from the backtracked state and is able to resume elongation. The recovery of the polymerase from a backtracked state, called backtrack recovery, results from the kinetic competition between two mechanisms [9]: polymerases can either recover by diffusing along the DNA until returning to the elongation-competent state [8,10–15] or by cleavage of the backtracked RNA which generates a new RNA 3’ end in the active site [16–18] (see Fig. 1). The cleavage reaction can be performed by intrinsic cleavage mechanisms or it can be assisted by a transcription factor, TFIIS [19–21].

The stochastic motion of backtracked RNA polymerases was previously reported in single-molecule experiments (see Fig. 2 for an example) and described as continuous-time Markov processes [8,10,12–15,22]. Specifically, backtracking has been modelled as a hopping process over a discrete lattice of nucleotides [11,13–15,23–25] but also as a diffusion process in continuous space [8]. However, it remains unclear which aspects of the backtracking process depend on the discreteness of the position lattice and which can be described with a diffusion process.

Here we present both discrete and continuous-space descriptions of backtrack recovery and investigate to which extent a diffusion process is a good approximation of the polymerase dynamics during a backtrack. We present a solvable stochastic model of RNA polymerase backtrack recovery that includes both diffusion and cleavage and study its main statistical features. The process shares similarities with recent development on diffusion processes with stochastic resetting introduced in Ref. [26]. In such problems a particle undergoes Brownian diffusion but can also stochastically reset its position [26–33]. The mean first-passage time to reach an absorber can be determined analytically, which depends on the statistics of resetting. A backtracked RNA polymerase undergoes a random walk to the elongation-competent state while also resetting its position via cleavage. Here we determine the first-passage time properties of this variant of a “diffusion with stochastic resetting” process.

In experiments, deep backtracks are readily identified, and it is possible to determine the time a polymerase takes to recover from a backtrack of a certain depth [9]. Hence we consider the recovery time \(t_{\text{rec}} \), defined as the first-passage time of a random walker to reach an absorbing barrier with the walker starting at a given “initial” backtrack depth. We derive exact expressions for relevant statistics, such as the mean time to recover from a backtrack, or mean recovery time, for both continuous and discrete stochastic models. For previously reported parameter values, where the hopping rate is much larger than the cleavage rate, we show that both

*Corresponding authors: edgar@pks.mpg.de, stephan.grill@biotec.tu-dresden.de
nucleotides backtracked by the polymerase (see Fig. 3 for a graphical illustration). For example, \(n(t) = 3 \) means that at time \(t \) the polymerase has backtracked three nucleotides. In our model, polymerases can jump between adjacent states with hopping rate \(k \) can cleave an RNA transcript of any length with a cleavage rate \(k_c \). We consider that no external forces bias the hopping rates of the polymerase on the lattice. Cleavage is represented by an instantaneous jump or stochastic reset [26–30] to the elongation-competent state located in \(n = 0 \). The elongation-competent state is considered as an absorbing state because the probability to backtrack after cleavage is very low [14]. Our discrete model is a variant of the hopping models introduced by Depken et al. in Refs. [11] and [12].

The time evolution of the position of the polymerase can be described in a master equation formalism [35]. The probability of the polymerase to be at state \(n \) at time \(t \geq 0 \) is denoted by \(p_n(t) \). We consider the initial condition \(p_n(0) = \delta_{n, n_0} \), that is, polymerases are initially positioned at \(n_0 \geq 1 \). The dynamics of the probability of the polymerase to be at a given state at time \(t \) is described by the following master equation:

\[
\frac{dp_n(t)}{dt} = k p_{n+1}(t) - (2k + k_c) p_n(t) + k p_{n-1}(t),
\]

\[
\frac{dp_n(t)}{dt} = k p_{n+1}(t) - (2k + k_c) p_n(t) + k p_{n-1}(t) + k_c p_{n-1}(t),
\]

where \(n \geq 2 \). The elongation state \(n = 0 \) is an absorber. Recent experiments showed that the elongation rate from \(n = 0 \) is more than 10 times faster than the rate of backtracking by one nucleotide [14], so we neglect the possibility to make a jump from \(n = 0 \) to \(n = 1 \). Hence, the recovery time is the first-passage time of the polymerase to reach the absorber located in \(n = 0 \).

Equations (1) and (2) can be solved exactly. We now present the exact solution of the master equation and derive exact expressions for the recovery time distribution and the mean recovery time of a polymerase from a given initial backtracked state.

A. Solution of the master equation

We now derive the analytical solution for the master equation of the hopping model. Equations (1) and (2) can
be rewritten as
\[
\frac{d}{dt} P(t) = AP(t),
\]
where \(P(t) = [p_1(t), p_2(t), \ldots]^\top \) is a column vector including the state probabilities at time \(t \) and \(A \) is a tridiagonal symmetric Toeplitz matrix [36] of the form
\[
A = \begin{bmatrix}
-2(k+k_c) & k & 0 & 0 & \cdots \\
k & -2(k+k_c) & k & 0 & \cdots \\
0 & k & -2(k+k_c) & k & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}.
\]

The solution of Eq. (3) with initial condition \(P(0) = [0, 0, \ldots, 1, 0, \ldots]^\top \), with \(p_{n0}(0) = 1 \) and \(p_{n0}(0) = 0 \) for \(n \neq n_0 \), is given by [37]

\[
P(t) = P(0)e^{At}.
\]

We now decompose \(A \) in the following form:
\[
A = QDQ^{-1},
\]
where \(D \) is a diagonal matrix containing the eigenvalues of \(A \) and \(Q \) is a matrix with the eigenvectors of \(A \) in columns. Note that since \(A \) is symmetric, \(Q^{-1} = Q^\top \). To obtain the eigenvalues of \(A \) we first assume that the matrix is of finite size \(N \times N \) and then take the limit \(N \to \infty \). For \(N \) finite, the matrix elements of the matrices \(D \) and \(Q \) are given by [36]
\[
D_{ii} = -2(k + k_c) + 2k \cos \left(\frac{i\pi}{N+1} \right),
\]
\[
Q_{ij} = \frac{2}{\sqrt{N+1}} \sin \left(\frac{i\pi}{N+1} \right).
\]

The term \(\sqrt{\frac{2}{N+1}} \) that appears in Eq. (7) is a normalizing constant. As a result, Eq. (4) can be rewritten as
\[
P(t) = Qe^{Dt}Q^\top P(0),
\]
where \(e^{Dit} \) is a diagonal matrix with elements \(e^{Di_j} \) \((i = 1, \ldots, N)\) in the diagonal. After some algebra, we obtain the following expression for the \(n \)th element of the vector \(P(t) \):
\[
p_n(t) = \sum_{m=1}^{N} \sin \left(\frac{k\pi}{N+1} \right) e^{-(2k+k_c)t} \left(\frac{k\pi}{N+1} \right) \left(\frac{2}{\sqrt{N+1}} \sin \left(\frac{n\pi}{N+1} \right) \right) \] \times \int_0^t \frac{e^{2kt} \cos(x)}{x} dx.
\]

We now take the asymptotic limit \(N \to \infty \). In this limit, \(k/N \to x \) where \(x \) is a continuous variable and the sum \(\sum_{m=1}^{N} \) becomes the integral \(\int_0^1 dx \). Using these approximations, and the property \(\sin(ax) \sin(bx) = \frac{1}{2} \{ \sin[(a - b)x] - \sin[(a + b)x] \} \)
we obtain the following exact solution for the master equation:
\[
p_n(t) = \int_0^1 e^{2kt} \cos x \sin(n_0 x) \sin(nx) dx
\]
\[
= e^{(2k+k_c)t} \left\{ \int_0^1 e^{2kt} \cos(x) \cos[(n_0 - n)x] dx \right\}
\]
\[
- \int_0^1 e^{2kt} \cos(x) \cos[(n_0 + n)x] dx \right\}
\]
\[
= e^{-2k(1+k_c)t} \left[I_{n_0-n}(2kt) - I_{n_0+n}(2kt) \right],
\]
where \(I_n \) is a modified Bessel function of the first kind, which is given by [38]
\[
I_n(z) = \frac{1}{\pi} \int_0^\pi e^{z \cos x} \cos(mx) dx.
\]

From Eq. (10) we can calculate the probability to be at state \(n = 1 \) at time \(t \). Using the property \(I_{n-1}(z) - I_{n+1}(z) = \frac{2}{z} I_n(z) \) [38] in Eq. (10) we obtain
\[
p_1(t) = e^{-(2k+k_c)t} \frac{n_0 I_0(2kt)}{kt}.
\]

For \(n_0 = 1 \), the probability for a polymerase to return to the first backtrack state at time \(t \) equals the expression derived previously for a cleavage-deficient polymerase (see Eq. (2) in [11]) times an exponential factor \(e^{-kt} \). The exponential factor \(e^{-kt} \) equals the probability that cleavage does not occur in the time interval \([0, t]\).

B. Recovery time distribution

Next, using the analytical solution of the master equation we derive an analytical expression for the recovery time distribution from an initial backtrack depth, \(n_0 \).

We first introduce a generating function
\[
G(t, z) = \sum_{n=1}^\infty p_n(t) z^{n-1}.
\]

For \(z = 0 \), the generating function gives the probability to be in \(n = 1 \) at time \(t \), \(G(t, 0) = p_1(t) \). For \(z = 1 \), the generating function equals the survival probability \(S(t; n_0) \) at time \(t \) starting from \(n_0 \), \(G(t, 1) = \sum_{n=0}^\infty p_n(t) = S(t; n_0) \).

Using the generating function, the full set of master equations [Eqs. (1) and (2)] can be rewritten as a single ordinary differential equation for the generating function,
\[
\frac{\partial G(t, z)}{\partial t} = \left[k z - (2k + k_c) + \frac{k}{z} \right] G(t, z) - \frac{k}{z} G(t, 0).
\]

The initial condition \(p_n(0) = \delta_{0,n_0} \) can be expressed in terms of the generating function as \(G(0, z) = \sum_{n=1}^\infty p_n(0) z^{n-1} = \sum_{n=0}^\infty \delta_{n_0,n} z^{n-1} = z^{n_0-1} \). The solution of Eq. (14) with this initial condition is
\[
G(t, z; n_0) = \exp \left[\left[k z - (2k + k_c) + \frac{k}{z} \right] t \right] \]
\[
\times \left[z^{n_0-1} - \frac{k}{z} \right] _{0}^{t} e^{-(2k+k_c)t} G(s, 0) ds.
\]

We next define \(\Phi(\tau_{rec}; n_0) d\tau_{rec} \) as the probability of a polymerase to recover from an initial backtrack position \(n_0 \) in the time interval \([\tau_{rec}, \tau_{rec} + d\tau_{rec}]\). To calculate \(\Phi(\tau_{rec}; n_0) \), we use the fact that a polymerase can exit a backtrack by hopping (from state \(n = 1 \) with rate \(k \)) or by cleavage (from any state with rate \(k_c \)). The probability density of the polymerase to reach the absorbing state at time \(\tau_{rec} \) is then given by
\[
\Phi(\tau_{rec}; n_0) = k G(\tau_{rec}, 0; n_0) + k_c G(\tau_{rec}, 1; n_0).
\]
The probability to be at the state 1 in \(\tau_{\text{rec}} \), \(G(\tau_{\text{rec}}, 0; n_0) \) is given by Eq. (12):

\[
G(\tau_{\text{rec}}, 0; n_0) = e^{-(2k + 1) \tau_{\text{rec}}} \frac{n_0 I_n(2k \tau_{\text{rec}})}{k \tau_{\text{rec}}}.
\] (17)

The survival probability in \(\tau_{\text{rec}} \), \(S(\tau_{\text{rec}}; n_0) = G(\tau_{\text{rec}}, 1; n_0) \), equals

\[
G(\tau_{\text{rec}}, 1; n_0) = e^{-k \tau_{\text{rec}}} \left[1 - k \int_{0}^{\tau_{\text{rec}}} e^{-2ks} \frac{n_0 I_n(2ks)}{ks} ds \right],
\] (18)

which yields

\[
G(\tau_{\text{rec}}, 1; n_0) = e^{-k \tau_{\text{rec}}} \left[1 - \frac{(k \tau_{\text{rec}})^n}{n_0 \Gamma(n_0)} H(\tau_{\text{rec}}; n_0) \right],
\] (19)

where \(\Gamma \) is the Gamma function and

\[
H(\tau_{\text{rec}}; n_0) = 2 F_2 \left[\left[0, 0 + \frac{1}{2} \right]; \left[n_0 + 1, 2n_0 + 1 \right] \right] - 4k \tau_{\text{rec}}.
\] (20)

Here \(2 F_2 \) is a generalized hypergeometric function (see Ref. [38]). The recovery time distribution is obtained by substituting (17) and (19) in (16):

\[
\Phi(\tau_{\text{rec}}; n_0) = e^{-(2k + 1) \tau_{\text{rec}}} \frac{n_0 I_n(2k \tau_{\text{rec}})}{\tau_{\text{rec}}}
\]

\[
+ k_c e^{-k_c \tau_{\text{rec}}} \left[1 - \frac{(k \tau_{\text{rec}})^n}{n_0 \Gamma(n_0)} H(\tau_{\text{rec}}; n_0) \right].
\] (21)

For a cleavage-deficient polymerase \(k_c = 0 \) initially in the first backtracking state \(n_0 = 1 \), the recovery time distribution equals

\[
\Psi(\tau_{\text{rec}}) = e^{-2k \tau_{\text{rec}}} \frac{I_1(2k \tau_{\text{rec}})}{\tau_{\text{rec}}},
\] (22)

which coincides with the pause time distribution derived in previous works (Eq. (2) in Ref. [11]).

To verify our model, we perform numerical simulations of the hopping process with cleavage using the Gillespie algorithm [39] [Figs. 4(a) and 4(b)]. From our simulations, we calculate first-passage time distributions to the elongation state and compare them with the recovery time distribution derived in Eq. (21) [Figs. 4(c) and 4(d)]. In the presence of cleavage, recovery can happen from backtracks of any depth. Cleavage prevents backtracks of large duration, as shown by the sharp cutoff of the first-passage time distribution at large times [Fig. 4(c), inset]. In the absence of cleavage, deep backtracks are recovered at very large times, with a power-law tail \(\Phi(\tau_{\text{rec}}; n_0) \sim \tau_{\text{rec}}^{-3/2} \) [Fig. 4(d), inset]. The first-passage time distributions obtained from numerical simulations in both the cleavage-assisted [Fig. 4(e)] and cleavage-deficient case [Fig. 4(d)] agree with the theoretical expression of the recovery time distribution derived here in Eq. (21).

C. Mean recovery time

The mean recovery time \(\langle \tau_{\text{rec}} \rangle \) is a useful statistic that can be measured experimentally in single-molecule experiments. Moreover, the mean recovery time can provide a quantitative measure of kinetic rates of backtrack recovery, as shown in Ref. [9]. The mean recovery time can be obtained from Eq. (21), and equals

\[
\langle \tau_{\text{rec}} \rangle = \frac{1}{k_c} \left[1 - \sqrt{\frac{4k_c^3 \phi + 1 - 1}{\phi^2 \tau_{\text{rec}}}} \right]^n_0.
\] (23)

We introduce the following characteristic scales of time and backtrack position:

\[
n_c = \frac{4k_c}{k_c}, \quad \tau_c = \frac{1}{k_c}.
\] (24)

The mean recovery time then simplifies to

\[
\langle \tau_{\text{rec}} \rangle = \frac{1}{n_c} \left[1 - \left(\sqrt{\frac{n_c^2 + 1 - 1}{n_c^2}} \right)^n_0 \right].
\] (25)

For \(n_0 = 0 \), \(\langle \tau_{\text{rec}} \rangle = 0 \) since the polymerase is at time \(t = 0 \) in the recovered state. For \(n_0 = 1 \) we obtain

\[
\langle \tau_{\text{rec}} \rangle \bigg|_{n_0=1} = \frac{2 \tau_c}{n_c^2 + 1}. \] (26)

Note that Eq. (27) is in agreement with previous results (see Eq. (5) in Ref. [24]).

For initial backtracked positions \(n_0 \) that are not large compared to \(n_c \), i.e., when \(n_0 < n_c \), the mean recovery time given by Eq. (26) depends linearly on the initial backtrack depth

\[
\langle \tau_{\text{rec}} \rangle \bigg|_{n_0} = \tau_c \left[1 - \left(\frac{\phi}{n_c^2} \right)^n_0 \right] + O(n_0^2).
\] (27)

When the initial position is much larger than the characteristic backtrack position \(n_c \), i.e., when \(n_0 \gg n_c \), the mean recovery time saturates to \(\tau_c \).

If the hopping and cleavage rates are equal \((k = k_c) \), the mean recovery time given by Eq. (26) can be rewritten in terms of the Golden ratio \(\phi = (\sqrt{5} + 1)/2 \) and the Golden ratio conjugate \(\Phi = (\sqrt{5} - 1)/2 \):

\[
\langle \tau_{\text{rec}} \rangle \bigg|_{k=k_c} = \tau_c \left[1 - \left(\frac{\phi}{\Phi} \right)^n_0 \right].
\] (29)

The duration of a transcriptional pause, or equivalently, the mean recovery time from \(n_0 = 1 \) is, for the case where \(k = k_c \), equal to \(\langle \tau_{\text{rec}} \rangle \bigg|_{k=k_c, n_0=1} = \tau_c / \phi \).

Figure 5 shows the analytical expression of the mean recovery time in the discrete model (23) compared to the average recovery time obtained from numerical simulations. The mean recovery time increases with increasing initial backtrack depth and saturates at 1/\(k_c \) for deep initial backtracks. The saturation of the mean recovery time at large \(n_0 \) was observed experimentally for Pol II recovery assisted with TFIIS [9].

In the absence of cleavage, the mean recovery time is not bounded, yielding \(\langle \tau_{\text{rec}} \rangle = \infty \). Alternative statistics should therefore be considered to characterize the recovery in the absence of cleavage, such as the mode or the median recovery times.
FIG. 4. Stochastic trajectories of the discrete hopping model and recovery time distributions. (a) Sample trajectories of the hopping model with diffusion and cleavage \((k = 1/s, k_c = 0.01/s)\) simulated using the Gillespie algorithm. The light blue (light gray) trajectory represents a polymerase that recovers by diffusion, and the dark blue (dark gray) trajectory a polymerase that recovers by cleavage. (b) Sample trajectories for the discrete model with only diffusion, \(k = 1/s, k_c = 0\), obtained using the Gillespie algorithm. (c) Recovery time probability density for the case where \(k = 1/s\) and \(k_c = 0.01/s\). The bars are obtained from histograms of 1000 numerical simulations, and the curve is the exact expression given by Eq. (21). The inset shows a log-log plot of the recovery time distribution for long recovery times. (d) Numerical and analytical probability density of the recovery time for the case where \(k = 1/s, k_c = 0\). The inset shows the tail \(\tau_{\text{rec}}^{1/2}\) of the distribution at long times. In all cases the initial backtrack depth was set to \(n_0 = 5\).

III. CONTINUOUS MODEL: DIFFUSION PROCESS WITH CLEAVAGE

To address which features of the backtrack recovery process depend on the details of the 1D lattice of the DNA template, we now consider a continuous-space model where the motion of the polymerase is described by a diffusion process with a stochastic resetting \([26]\) to the elongation state due to RNA cleavage. Such a model can be envisioned as the continuous limit of the model in Fig. 3.

We consider that the position of the polymerase, \(x\), is a continuous random variable. We define \(\rho(x,t|x_0,0)dx\) as the probability of a polymerase to be in the interval \([x, x + dx]\) at time \(t\), given that it was at \(x_0\) at time 0. In this continuous-space description the probability density \(\rho(x,t|x_0,0)\) evolves in time according to a Fokker-Planck equation with a diffusion term and a sink term,

\[
\frac{\partial \rho(x,t|x_0,0)}{\partial t} = D \frac{\partial^2 \rho(x,t|x_0,0)}{\partial x^2} - k_c \rho(x,t|x_0,0),
\]

where we assume \(x > 0\). Equation (30) results from taking the continuous limit in Eq. (2) and defining \(x = an\), \(x_0 = an_0\) and the diffusion coefficient \(D = a^2 k\), with \(a = 0.34 \text{ nm}\) the distance between two nucleotides. The solution of the Fokker-Planck equation (30) with initial condition \(\rho(x,0|x_0,0) = \delta(x-x_0)\) and the absorbing boundary condition \(\rho(0,t|x_0,0) = 0\) for \(x > 0\) is given by

\[
\rho(x,t|x_0,0) = \frac{e^{-k_c t}}{\sqrt{4\pi Dt}} \left[e^{-(x-x_0)^2/4Dt} - e^{-(x+x_0)^2/4Dt} \right].
\]

The recovery time probability density is given by the probability density flux to \(x = 0\) due to diffusion, plus the probability flux due to cleavage:

\[
\Phi(\tau_{\text{rec}}; x_0) = \Phi_{\text{diff}}(\tau_{\text{rec}}; x_0) + \Phi_c(\tau_{\text{rec}}; x_0)
\]

\[
= D \frac{\partial \rho(x,\tau_{\text{rec}}|x_0,0)}{\partial x} \bigg|_{x=0} + k_c S(\tau_{\text{rec}}; x_0),
\]

where \(\Phi_{\text{diff}}(\tau_{\text{rec}}; x_0)d\tau_{\text{rec}}\) is the probability to recover by diffusion in the time interval \([\tau_{\text{rec}}; \tau_{\text{rec}} + d\tau_{\text{rec}}]\) and \(\Phi_c(\tau_{\text{rec}}; x_0)d\tau_{\text{rec}}\) is the probability to recover by cleavage in the time interval \([\tau_{\text{rec}}; \tau_{\text{rec}} + d\tau_{\text{rec}}]\). The probability density flux across \(x = 0\) due to diffusion equals

\[
\Phi_{\text{diff}}(\tau_{\text{rec}}; x_0) = D \left. \frac{\partial \rho(x,\tau_{\text{rec}}|x_0,0)}{\partial x} \right|_{x=0}
\]

\[
= e^{-k_c \tau_{\text{rec}}} \frac{x_0}{\sqrt{4\pi D \tau_{\text{rec}}}} e^{-x_0^2/4D\tau_{\text{rec}}},
\]

\[
\Phi_c(\tau_{\text{rec}}; x_0) = k_c S(\tau_{\text{rec}}; x_0) = k_c \frac{\tau_{\text{rec}}}{\sqrt{4\pi D \tau_{\text{rec}}}} e^{-\tau_{\text{rec}}^2/4D}.
\]
FIG. 5. Mean recovery time as a function of the backtrack depth for the discrete model shown in Fig. 3. Recovery time averaged over 1000 numerical simulations (symbols) of recovery from different initial backtrack depths. Diffusion rate was set to \(k_c = 0.01/s \) in all cases and \(k_d = 0.03/s \) (squares) and \(k_c = 0.05/s \) (circles). Error bars are standard errors of the mean with 90% statistical significance. The solid curves are obtained with the (top), \(kc \) for the discrete model shown in Fig. 3. Recovery time averaged over initial backtrack depths. Diffusion rate was set to \(1000 \) numerical simulations (symbols) of recovery from different in \(t_{rec} = \tau_c/τ_c \) and a scaled initial position \(x_0 = x_0/\tau_c \). We obtain a universal expression

\[
\Phi(\tau_{rec}; x_0) = e^{-k_c \tau_{rec}} \frac{x_0}{\sqrt{4\pi D \tau_{rec}}} e^{-x_0^2/4D \tau_{rec}} + k_c e^{-k \tau_{rec}} \operatorname{erf}\left(\frac{x_0}{\sqrt{4D \tau_{rec}}}\right). \tag{41}
\]

We now write Eq. (41) scaling time with respect to \(\tau_c \) and the initial position with respect to \(x_c = \sqrt{4D/k_c} \) similarly to Eqs. (24) and (25) in the hopping model. In units of a scaled time \(t_{rec} = \tau_{rec}/\tau_c \) and a scaled initial position \(x_0 = x_0/x_c \), we obtain a universal expression

\[
\Phi(\tau_{rec}; x_0) = e^{-\omega \tau_{rec}} \frac{x_0}{\sqrt{4\pi t_{rec}}} e^{-x_0^2/4t_{rec}} + e^{-\omega \tau_{rec}} \operatorname{erf}\left(\frac{x_0}{\sqrt{4t_{rec}}}\right). \tag{42}
\]

To test the validity of the analytical expression for the recovery time distribution (42), we perform numerical simulations of the continuous model (see Fig. 6). The following Langevin equation, \(dx(t)/dt = \xi(t) \), describes the evolution of the backtracked distance at time \(t \) in continuous space, denoted as \(x(t) \). Here \(\xi(t) \) models a stochastic force that drives the polymerase forward or backward. The stochastic force is described by a \(\delta \)-correlated Gaussian white noise with zero mean \(\langle \xi(t) \rangle = 0 \) and an amplitude proportional to the diffusion coefficient, \(\langle \xi(t)\xi(t') \rangle = 2D\delta(t-t') \). Cleavage events are modelled as a stochastic resetting process with a resetting probability independent of time and position [26]. In every simulation time step of duration \(\Delta t \), the probability to cleave is set to \(\frac{k_c}{\Delta t} \). This ensures that in the limit of \(\Delta t \) small, the probability that cleavage does not occur in the time interval \([0,t] \) is equal to \(e^{-k \tau} \). We perform numerical simulations of the Langevin equation using an Euler discrete-time numerical integration scheme with \(\Delta t = 1 \) ms, which is one order of magnitude smaller than any characteristic time of backtrack recovery given by the inverse of cleavage or diffusion rates [9].

The results shown in Fig. 6 validate the exact expression obtained for the recovery time distribution given by Eq. (41) both in the presence and in the absence of cleavage. The recovery time distributions obtained for the same initial backtrack distance \(x_0 = 5 \) have the same shape as those obtained in the discrete-space description [cf. Fig. 4].

A. Mean recovery time

In the continuous model, the mean recovery time can be obtained by calculating the mean value of the first-passage distribution [Eq. (41)]:

\[
\langle \tau_{rec} \rangle = \frac{1}{k_c} \left[1 - e^{-x_0/\sqrt{4D \tau}} \right], \tag{43}
\]

or equivalently,

\[
\langle \tau_{rec} \rangle = \tau_c \left[1 - e^{-2x_0/x_c} \right]. \tag{44}
\]

Note that the mean recovery time can also be calculated by a different route, using the backward Fokker-Planck equation together with the Laplace transform of the survival probability (see Appendix).

Equations (43) and (44) show that the mean recovery time for deep initial backtracks \((x_0 \gg x_c) \) saturates to \(\tau_c \). Our results indicate that recovery happens mostly by diffusion for shallow backtracks, where \(x_0 \ll x_c \), and mostly by cleavage...
for deep backtracks, where $x_0 \gg x_c$. For shallow initial backtracks ($x_0 \lesssim x_c$), the mean recovery time scales linearly with x_0,

$$\frac{\langle \tau_{\text{rec}} \rangle}{\tau_c} = \frac{x_0}{x_c/2} + O(x_0^2),$$

(45)

similarly to the mean recovery time in the discrete hopping model [see Eq. (28)].

Taking the limit $n_c \gg 1$ in the expression for the mean recovery time in the discrete model [Eq. (26)], we obtain

$$\langle \tau_{\text{rec}} \rangle \sim \tau_c \left[1 - e^{-2n_0/kc^{1/2}} \right] \sim \tau_c \left[1 - e^{-2x_0/x_c} \right],$$

(46)

where we have used $x_0 = an_0$ and $x_c = an_c$. Note that this expression is equal to the mean recovery time in the continuous model [Eq. (44)]. Hence, the mean recovery times in the discrete and continuous description coincide for large characteristic depth.

Figure 7 shows the scaled mean recovery time $\langle \tau_{\text{rec}} \rangle / \tau_c$ in the discrete and continuous models as a function of the scaled initial backtrack depth n_0/n_c (or x_0/x_c). The figure shows that the mean recovery time in the discrete model coincides with the mean recovery time in the continuous model for $n_c \geq 1$ and the agreement holds for any initial backtrack depth. When $n_c \geq 1$, the polymerase typically performs a large number of jumps prior to recovery. Hence, in this regime the details of the DNA template do not impact on the mean recovery time, even for shallow initial backtracks.

Notably, the limit $n_c \gg 1$ is in agreement with the experimental data obtained from single-molecule experiments with RNA polymerase II, where $k \sim 1 \text{ s}^{-1}$ and $k_c \sim (0.01 - 0.1) \text{ s}^{-1}$ [9,13–15,41], yielding $n_c \gg 1$. Therefore, for reported values of diffusion and cleavage rates, the diffusion approximation can be used without loss of generality, with the advantage of providing a simpler mathematical framework with respect to the hopping process.

IV. DISCUSSION

Here we have described the diffusive backward motion of paused RNA polymerases as a diffusion process with stochastic resetting. For this purpose we have considered continuous-time stochastic models with the position of the backtracked polymerase described by a discrete or a continuous random variable.

We have provided exact results on the statistics of the time needed for an RNA polymerase to recover from an arbitrary initial backtrack depth in both discrete (hopping) and continuous-space (diffusion) stochastic descriptions. In our models, recovery times are equivalent to first-passage times to reach an absorber. We have presented a roadmap
backtrack depths for the initial backtrack depth in the hopping model with cleavage Φ_1. The scaled mean recovery time for discrete and continuous models. Scaled diffusion model [Eq. (44), magenta curve].

for the calculation of the first-passage time distribution for a continuous-time random walk with an absorbing state, which models RNA polymerase backtrack recovery with high fidelity. Both hopping and diffusion models provide similar recovery time distributions, with the majority of differences in the short recovery times and a complete overlap for long recovery times (see Table I for a summary of the main results).

We have shown that both a discrete and continuous description can be used concurrently for backtrack recovery analysis for short and long backtracks when the characteristic distance $n_c = 2\sqrt{k/k_c}$ is greater than one. This corresponds to cases where the hopping rate k is larger than the cleavage rate k_c and is in good agreement with estimated rates of RNA polymerase backtracking [9,14,15]. Future work in the framework of stochastic resetting will have to be done to consider the case where polymerases can cleave only until a critical backtrack distance, as recently found in single-molecule experiments [9]. Single-molecule optical tweezers transcription experiments of RNA polymerase backtracking [8–10,13–15,25,42] would allow one to experimentally validate the stochastic models provided here and quantify the backtrack diffusion and cleavage rates of these enzymes.

ACKNOWLEDGMENTS

We are thankful to Shamik Gupta, Izaak Neri, Federico Vazquez, Masatoshi Nishikawa, Clélie de Mulatier, and Francesc Font-Clos for helpful discussions. E.R. acknowledges financial support from the Spanish Government through ENFASIS (Grant No. FIS2011-22644) and TerMic (Grant No. FIS2014-52486-R). E.R. and D.S.T. are thankful to Centro de Ciencias de Benasque Pedro Pascual (Benasque, Spain) for their hospitality. S.W.G. was supported by the DFG (SPP 1782, GSC 97, GR 3271/2, GR 3271/3, GR 3271/4), the European Research Council (Grant No. 281903), ITN grants 281903 and 641639 from the EU, the Max-Planck-Society, and the Human Frontier Science Program (RGP0023/2014).

APPENDIX: CALCULATION OF THE MEAN RECOVERY TIME FROM THE BACKWARD FOKKER-PLANCK EQUATION

The backward Fokker-Planck equation corresponding to Eq. (30) in the continuous-space model reads

$$\frac{\partial p(x,t|x_0,0)}{\partial t} = D \frac{\partial^2 p(x,t|x_0,0)}{\partial x^2} - k_c p(x,t|x_0,0).$$

(A1)

Integrating Eq. (A2) with respect to x from $x = 0$ to $x = \infty$ we obtain the following equation for the survival probability:

$$\frac{\partial S(t;x_0)}{\partial t} = D \frac{\partial^2 S(t;x_0)}{\partial x^2} - k_c S(t;x_0).$$

(A2)

Taking the Laplace transform, Eq. (A2) yields

$$qS(q;x_0) - 1 = D \frac{\partial^2 qS(q;x_0)}{\partial x^2} - k_c qS(q;x_0).$$

(A3)

TABLE I. Summary of expressions for the probability distribution of the recovery time and the mean recovery time from a given initial backtrack depth in the hopping model with cleavage $\Phi(\tau_{rec};n_0)$ and in the diffusion model with cleavage $\Phi(\tau_{rec};x_0)$ with initial backtrack depths n_0 and x_0, respectively. Here k is the diffusion rate, k_c is the cleavage rate, D is the diffusion coefficient, and $H(\tau_{rec};n_0) = \frac{\psi_2}{2}(n_0,n_0+1/2); n_0+1,2n_0+1; -4k\tau_{rec}$.

Discrete hopping model	Diffusion and cleavage ($k > 0; k_c > 0$)	Only diffusion ($k > 0; k_c = 0$)
$\Phi(\tau_{rec};n_0)$	$e^{-(2k+k_c)\tau_{rec}} \frac{n_0}{n_0!} e^{n_0/2\tau_{rec}} + k_c e^{-k_c\tau_{rec}} \left[1 - \frac{(k/k_c)^{n_0}}{n_0!} H(\tau_{rec};n_0) \right]$	$e^{-(2k+k_c)\tau_{rec}} \frac{n_0}{n_0!} e^{n_0/2\tau_{rec}}$
$\langle \tau_{rec} \rangle$	$\frac{1}{k_c} \left[1 - \frac{(k/k_c)^{n_0}}{\sqrt{4\pi D\tau_{rec}}} \right]$	∞

Continuous diffusion model	Diffusion and cleavage ($D > 0; k_c > 0$)	Only diffusion ($D > 0; k_c = 0$)
$\Phi(\tau_{rec};x_0)$	$e^{-k_{rec}} \frac{x_0}{\sqrt{4\pi D\tau_{rec}}} e^{-x_0^2/4D\tau_{rec}} + k_c e^{-k_{rec}} \text{erf}(\frac{x_0}{\sqrt{4D\tau_{rec}}})$	$\frac{x_0}{\sqrt{4\pi D\tau_{rec}}} e^{-x_0^2/4D\tau_{rec}}$
$\langle \tau_{rec} \rangle$	$\frac{1}{k_c} \left[1 - e^{-x_0^2/4D\tau_{rec}} \right]$	∞
where \(S(q; x_0) = \int_0^\infty dt e^{-q t} S(t; x_0) \) is the Laplace transform of the survival probability and we have used \(S(0; x_0) = 1 \). The solution of Eq. (A3) is given by

\[
S(q; x_0) = \frac{1}{k_c + q} [1 - e^{-x_0 \sqrt{k_c q t}}]. \tag{A4}
\]

From Eq. (A4) one can find all the moments of the recovery time distribution. In particular, the mean recovery time:

\[
\langle \tau_{\text{rec}} \rangle = S_n(0) = \frac{1}{k_c} [1 - e^{-x_0 \sqrt{k_c q t}}]. \tag{A5}
\]

which coincides with Eq. (43).
[28] A. Nagar and S. Gupta, Diffusion with stochastic resetting at power-law times, *Phys. Rev. E* **93**, 060102(R) (2016).

[29] X. Durang, M. Henkel, and H. Park, The statistical mechanics of the coagulation–diffusion process with a stochastic reset, *J. Phys. A: Math. Theor.* **47**, 045002 (2014).

[30] A. Pal, Diffusion in a potential landscape with stochastic resetting, *Phys. Rev. E* **91**, 012113 (2015).

[31] T. Rotbart, S. Reuveni, and M. Urbakh, Michaelis-menten reaction scheme as a unified approach towards the optimal restart problem, *Phys. Rev. E* **92**, 060101(R) (2015).

[32] S. Reuveni, Optimal Stochastic Restart Renders Fluctuations in First Passage Times Universal, *Phys. Rev. Lett.* **116**, 170601 (2016).

[33] J. Fuchs, S. Goldt, and U. Seifert, Stochastic thermodynamics of resetting, arXiv:1603.01141.

[34] M. Jahnel, M. Behrndt, A. Jannasch, E. Schäffer, and S. W. Grill, Measuring the complete force field of an optical trap, *Opt. Lett.* **36**, 1260 (2011).

[35] C. W. Gardiner, *Stochastic Methods* (Springer-Verlag, Berlin, Germany, 2009).

[36] G. H. Golub and C. F. Van Loan, *Matrix Computations* (Johns Hopkins University Press, Baltimore, MD, 2012), Vol. 3.

[37] J. Sotomayor, *Licções de equações diferenciais ordinárias* (Instituto de Matemática Pura e Aplicada, CNPq, Livros Tecnicos e Científicos Editora, Rio de Janeiro, 1979), Vol. 11.

[38] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables* (Courier Corporation, North Chelmsford, MA, 1964), p. 55.

[39] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, *J. Comp. Phys.* **22**, 403 (1976).

[40] S. Redner, *A Guide to First-Passage Processes* (Cambridge University Press, Cambridge, UK, 2001).

[41] B. Zamft, L. Bintu, T. Ishibashi, and C. Bustamante, Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases, *Proc. Natl. Acad. Sci. USA* **109**, 8948 (2012).

[42] E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, Direct observation of base-pair stepping by RNA polymerase, *Nat. Cell Biol.* **438**, 460 (2005).