Methods. Retrospective analysis of 15,314 inpatients within the Mass General Brigham healthcare system who had two tests within a 36-hour period between May 1, 2020 and May 29, 2021. Early infection was defined as having a negative test followed by a positive test. Patients with prior positive tests were excluded. The primary outcome was the proportion of patients in early infection over the total number tested serially, stratified by 4-hour testing intervals from the timestamp of the first test. Multivariate modeling was used to identify features predictive of early infection. Covariates included demographics, body site, PCR assay, location, community incidence, percent positivity, and median / skew of Ct value distributions.

Results. Of 19,973 test pairs, 193 (0.97%) were characterized as a negative followed by a positive within 36 hours. Bivariable analysis showed a close association between negative to positive test pairs during the first surge in spring 2020 that was not present during the winter surge. Negative to positive test pairs were most common in the 12 to 16 hour time interval (51/193, 26%, Figure 1). After controlling for covariates, the Roche cobas assay was more likely to identify patients with a negative to positive test pair relative to the Cepheid Xpert, Hologic Panther Fusion and Roche Liat assays. A second specimen from the lower respiratory tract was more likely to lead to a positive relative to other body sites.

Cepheid Xpert, Hologic Panther Fusion and Roche Liat assays. A second specimen from the winter surge. Negative to positive test pairs were most common in the 12 to 16 hour time interval. Bivariate analysis showed a close association between positivity, and median / skew of Ct value distributions. Included demographics, body site, PCR assay, location, community incidence, percent positivity, and median / skew of Ct value distributions.

A single primer was designed to amplify a 348 bp region of spike. Probes were initially designed with locked nucleic acids (LNAs) to increase probe melting temperature, shorten probe length, and specifically detect 417K.484K, and N501Y (Figure). The assay was optimized and evaluated using characterized variant sample pools. Clinical evaluation was performed on a convenience set of residual nasal nasopharyngeal swabs, and variant calls were confirmed by SARS-CoV-2 genomic sequencing in a subset of samples. Following the initial evaluation, unmodified probes (without LNAs) were designed to detect 1452R, 1452Q, and E484Q.

Results. Representative results of variant detection a single Spike SNP run are shown for mutations in the codons for 417K (A) and mutations that encode 484K (B) and 501Y (C). Curves shift to lower dilutions of the following variants: blue, BEI 52266 (wild type); pink B.1.1.7; purple, B1.525; and green, P.1. Variant pools were used for B.1.17, B.1.525, and P.1 strains. Curves are displayed for a given dilution in each channel and result interpretation is shown (D).

Conclusion. The Spike SNP assay provides fast, inexpensive and sensitive detection of specific mutations associated with variants of concern (VOC). The Spike SNP assay can be quickly modified to detect new mutations in the receptor binding domain. Similar analytical performance of LNA-modified and unmodified probes presents options for future assay customization that balance the shorter probe length (LNAs) and increased accessibility (unmodified). The Spike SNP assay, if implemented across laboratories offering SARS-CoV-2 testing, could greatly increase capacity for variant detection and surveillance globally.

Disclosures. Colleen S. Kraft, MD, MSc; Rebriotix (Individual(s) Involved: Self); Advisor or Review Panel member.

Abstracts • OFID 2021:8 (Suppl 1) • S89
Session: O-30. Research in COVID-19 Diagnostics

Background. SARS-CoV-2 variants of concern (VOC) have challenged real-time reverse transcriptase polymerase chain reaction (RT-PCR) methods for the diagnosis of COVID-19.

Methods. The CDC 2019-Novel Coronavirus real-time RT-PCR panel was modified to create a single-plex extraction-free proxy RT-PCR assay, VOCFast™. This assay uses the nucleocapsid N1 as well as novel primer/probe pairs to target VOC mutations in the Orf1a and spike (S) genes. For analytical validation of VOCFast, synthetic controls for the Wuhan, alpha/B.1.1.7, beta/B.1.351, and gamma/P.1 strains were tested at various concentrations. Clinical validation was performed using patient anterior nares swab and saliva specimens collected in the Denver, CO area between Nov 2020 and Feb 2021 or in March 2021. Orthogonal next-generation sequencing (NGS) was also performed.

Results. Similar N1 quantification cycle (Cq) values corresponding to viral load were observed for all strains, suggesting that VOC mutations do not affect performance of the N1 primer/probe. Orf1a-mut and S1-mut primer/probes generated a stable high Cq value for the Wuhan strain. Conversely, Orf1a-mut Cq values were inversely correlated with viral load for all VOC. The S1-mut Cq was inversely correlated with viral load of the alpha strain, but did not reliably amplify beta/gamma VOC. The limit of detection was 8 copies/μL.

Detection of VOC in clinical specimens and validation by NGS

Conclusion. The combination of the N1, Orf1a-mut, and S1-mut primers/probes in VOCFast can distinguish the Wuhan, alpha, and beta/gamma strains and it consistent with NGS results. Testing of clinical samples revealed that VOC emerged in Denver, CO in March 2021. Future work to discriminate beta, gamma, and emerging VOC is ongoing. In summary, VOCFast is an extraction-free RT-PCR assay for nasal swab and saliva specimens that can identify VOC with a turnaround time suitable for clinical testing.
150. Updated Clinical Guidelines for Treatment and Prophylaxis of Plague

Kenneth Klinker, PharmD MINI; Matthew D. Ford, MPH; Catherine Cooly, MPH; Shannon Fleck-Deredian, MPH; Centers for Disease Control and Prevention, Fort Collins, CO; Centers for Disease Control and Prevention/Division of Vector-Borne Diseases/Alakia Foundation of Companies, Fort Collins, CO

Session: O-31. Respiratory Infections

Background. Plague still occurs naturally in the western United States, Latin America, Asia, and Africa. Yersinia pestis, the causative agent of plague, is a Tier 1 bioterrorism agent due to its potential for aerosol release and high fatality rates. Recommendations for treatment and post-exposure prophylaxis (PEP) of plague were published in 2000 and included limited first-line options for treating plague, namely streptomycin or gentamicin. Doxycycline or ciprofloxacin were recommended for PEP. However, since 2000 new human clinical data and animal data have become available, and the FDA has approved additional antimicrobials for plague.

Methods. CDC developed updated, evidence-based guidelines for treatment and prophylaxis of plague using a comprehensive process. To collect evidence on relative susceptibility and potential resistance trends, CDC conducted systematic literature reviews and analyzed U.S. surveillance data. Results of these investigations were published in Clinical Infectious Diseases in 2020. We also hosted several meetings with subject matter experts and clinical organizations (IDSA, AAP, etc.), federal agencies, and others to review relevant data and gather individual input on treatment and prophylaxis of plague.

Results. The forthcoming plague guidelines will include several important updates. First-line treatment options have been expanded to include ciprofloxacin, levofloxacin, and moxifloxacin in addition to streptomycin and gentamicin. For PEP, levofloxacin and moxifloxacin are now first-line options in addition to doxycycline and ciprofloxacin. Trimethoprim-sulfamethoxazole is now one of several new alternative options for PEP. The updated guidelines also include recommendations for treatment of clinical forms of plague other than pneumonic. Additional special populations such as immunocompromised persons and neonates are also covered.

Conclusion. Plague remains a threat, both as a naturally occurring disease and as a potential bioterrorism weapon, and preparedness and early recognition are key to effective response. The updated clinical guidelines will be a useful tool for clinicians to manage antimicrobial treatment and PEP for plague.

Disclosures. Kenneth Klinker, PharmD, Merck & Co., Inc. (Employee, Shareholder); Levita K. Hidayat, PharmD BCIDP, Merck & Co., Inc. (Employee, Shareholder); C. Andrew DeRyke, PharmD, Merck & Co., Inc. (Employee, Shareholder); Mary Motyl, PharmD, Merck & Co., Inc. (Employee, Shareholder); Karri A. Bauer, PharmD, Merck & Co., Inc. (Employee, Shareholder)

152. Sharp Decline in Rates of Community Respiratory Viral Infections Among NIH Clinical Center Patients During the COVID-19 Pandemic

Michele Woolbert, MPH1; Ninet Sinaai, PhD, MPH2; Christine Spalding, BSN3; David K. Henderson, M.D.1; Tara N. Palmore, MD1; National Institutes of Health, Bethesda, Maryland; NIH, Bethesda, MD; NIH Clinical Center, Maryland

Session: O-31. Respiratory Infections

Background. During the first year of the COVID-19 pandemic, nonpharmaceutical interventions had a broad impact on viral transmission apart from SARS-CoV-2. The NIH Clinical Center has used the BioFire FilmArray multiplex PCR respiratory pathogen panel (RPP) for evaluation of upper respiratory symptoms since 2014. Beginning in 3/20, respiratory samples from symptomatic patients were tested by SARS-CoV-2 PCR and the RPP. We performed a retrospective study comparing frequency and rates of community respiratory viruses detected by RPP from 1/14 through 3/21.

Methods. Results of RPPs from nasopharyngeal swabs/washes, bronchoalveolar lavages, and bronchial washes were included. Results from viral challenge studies and other viral tests were excluded. Charts were reviewed to determine whether repeat positives for the same virus within 12 months represented new infections; repeats from the same infection were excluded. A quantitative data analysis was completed using cross tabulations; comparisons were done using mixed models, applying Dunnett’s correction for multiple comparisons.

Results. A total of 3,329 patients underwent 8,122 RPPs from 1/14 through 3/21. Frequency of all respiratory pathogens declined from an annual range of 0.88-1.97% for multiplicity. Comparisons were done using mixed models, applying Dunnett’s correction for multiple comparisons.

Conclusion. In ICU patients, exceeding CRPA and combined ESBL-E phenotype frequency of 15% for both classifications, impacts susceptibility to 1st line BIs resulting in failure to achieve empiric susceptibility thresholds. This stratification could serve as a decision point for triggering earlier susceptibility testing or modifying empiric therapy recommendations for LRTI to include newer agents pending microbiology results.

Disclosures. Kenneth Klinker, PharmD, Merck & Co., Inc. (Employee, Shareholder); Levita K. Hidayat, PharmD BCIDP, Merck & Co., Inc. (Employee, Shareholder); C. Andrew DeRyke, PharmD, Merck & Co., Inc. (Employee, Shareholder); Mary Motyl, PharmD, Merck & Co., Inc. (Employee, Shareholder); Karri A. Bauer, PharmD, Merck & Co., Inc. (Employee, Shareholder)

Abstracts • OFID 2021:8 (Suppl 1) • S91

ESBL-E phenotype (K. pneumoniae (Kp) + E. coli (Ec)) observed in critically ill patients with lower respiratory tract infections (LRTI).

Methods. In 2016-2019, ~20 US institutions per year submitted up to 250 gram-negative pathogens as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART). A total of 471 PA, 380 KPN, and 336 EC isolates were collected from ICU patients with LRTI. MICs were determined using broth microdilution and interpreted using 2015 CLSI breakpoints. ESBL-E phenotype was defined as: ceftriaxone MIC ≥ 2 mg/L, and imipenem/relebactam (I/R) (Table 1). However, as frequency of CRPA and ESBL-E exceeded 15%, aggregate BL susceptibility declined to 77.3%, 79.3%, and 86.2% for PE, I/R, and MEM, respectively. In contrast, C/T and I/R maintain susceptibility above the empiric susceptibility threshold of ≥80% deemed optimal.

Results. Overall, CRPA and ESBL-E phenotypes were identified in 28.4% and 21.2% of isolates, respectively. Aggregate BL susceptibility in group 1 was above the 80% threshold for cefepime (FEP), piperacillin/tazobactam (TZP), meropenem (MEM), cefotaxime/tazobactam (C/T), and imipenem/relebactam (I/R) (Table 1). However, as frequency of CRPA and ESBL-E exceeded 15%, aggregate BL susceptibility declined to 77.3%, 79.3%, and 86.2% for PE, I/R, and MEM, respectively. In contrast, C/T and I/R maintain susceptibility above the empiric susceptibility threshold.

Table 1. Aggregate susceptibility of P. aeruginosa, E. coli, and K. pneumoniae ICU LRTI isolates stratified by resistance frequency. Best (Group 1) and worst-case (Group 2) scenarios