AN IMPROVEMENT TO AN ALGORITHM OF
BELABAS, DIAZ Y DIAZ AND FRIEDMAN

LOÏC GRENIÉ AND GIUSEPPE MOLTENI

Abstract. In [BDF08] Belabas, Diaz y Diaz and Friedman show a way to determine, assuming the Generalized Riemann Hypothesis, a set of prime ideals that generate the class group of a number field. Their method is efficient because it produces a set of ideals that is smaller than earlier proved results. Here we show how to use their main result to algorithmically produce a bound that is lower than the one they prove.

1. Introduction

We refer the reader to the paper [BDF08] for an outline of Buchmann’s algorithm.

Let K be a number field of degree n_K, with r_1 (resp. r_2) real (resp. pair of complex) embeddings. We denote Δ_K the absolute value of its discriminant.

Definition 1. Let W be the set of functions F: $[0, +\infty) \to \mathbb{R}$ such that

- F is continuous;
- $\exists \varepsilon > 0$ such that the function $F(x)e^{(\frac{1}{2}+\varepsilon)x}$ is integrable and of bounded variation;
- $F(0) > 0$;
- $(F(0) - F(x))/x$ is of bounded variation.

Let then, for $T > 1$, $W(T)$ be the subset of W such that

- F has support in $[0, \log T]$;
- the Fourier cosine transform of F is non-negative.

The main result of [BDF08] is, up to a minor reformulation:

Theorem 2 (Belabas, Diaz y Diaz, Friedman). Let K be a number field satisfying the Riemann Hypothesis for all L-functions attached to non-trivial characters of its ideal class group \mathcal{O}_K^*, and suppose there exists, for some $T > 1$, an $F \in W(T)$ with $F(0) = 1$ and such that

\[
2 \sum_p \log N_p \sum_{m=1}^{+\infty} \frac{F(m \log N_p)}{N_p^{m/2}} > \log \Delta_K - n_K\gamma - n_K \log(8\pi) - \frac{r_1 \pi}{2} \]

\[
+ r_1 \int_0^{+\infty} \frac{1 - F(x)}{2 \cosh(x/2)} \, dx + n_K \int_0^{+\infty} \frac{1 - F(x)}{2 \sinh(x/2)} \, dx .
\]

Then the ideal class group of K is generated by the prime ideals of K having norm less than T.

The authors apply the result to the function $\frac{1}{2}C_L * C_L$ where $L = \log T$, $*$ is the convolution operator and C_L is the characteristic function of $(-\frac{L}{2}, \frac{L}{2})$, to get the
Corollary 4 (Belabas, Diaz y Diaz, Friedman). Suppose \(K\) is a number field satisfying the Riemann Hypothesis for all \(L\)-functions attached to non-trivial characters of its ideal class group \(\mathcal{O}_K\), and for some \(T > 1\) we have

\[
2 \sum_{p, m: N_p^m < T} \log N_p N_p^{m/2} \left(1 - \frac{\log N_p^m}{\log T}\right) > \log \Delta_K - n_K \left(\gamma + \log(8\pi) - \frac{c_1}{\log T}\right) - r_1 \left(\frac{\pi}{2} - \frac{c_2}{\log T}\right),
\]

where

\[
c_1 = \frac{\pi^2}{2}, \quad c_2 = 4C.
\]

(Here \(C = \sum_{k \geq 0} (-1)^k (2k + 1)^{-2} = 0.915965 \cdots\) is Catalan’s constant.)

Then the ideal class group of \(K\) is generated by the prime ideals of \(K\) having norm less than \(T\).

Our aim is to find a good \(T\) for the number field \(K\) as fast as possible exploiting the bilinearity of the convolution product.

2. Setup

We use the following definition to simplify a little bit the language.

Definition 6. A bound for \(K\) is an \(L = \log T\) with \(T\) as in Theorem 4.2.

2.1. Rewriting the theorem. We begin by homogenizing Equation (3) and relaxing the requirement \(F(0) = 1\) to \(F(0) > 0\) so that now the condition on the function is

\[
2 \sum_{p} \log N_p \sum_{m=1}^{+\infty} \frac{F(m \log N_p)}{N_p^{m/2}} > F(0) \left(\log \Delta_K - n_K \gamma - n_K \log(8\pi) - \frac{r_1 \pi}{2}\right) + r_1 \int_0^{+\infty} \frac{F(0) - F(x)}{2 \cosh(x/2)} \, dx + n_K \int_0^{+\infty} \frac{F(0) - F(x)}{2 \sinh(x/2)} \, dx.
\]

Definition 8. Let \(S\) be the real vector space of even and compactly supported step functions and, for \(T > 1\), let \(S(T)\) be the subspace of \(S\) of functions supported in \([-\log T, \log T]\).

Definition 9. For any integer \(N \geq 1\) and positive real \(\delta\) we define the subspace \(S(N, \delta)\) of \(S(e^{2N\delta})\) made of functions which are constant \(\forall k \in \mathbb{N}\) on \([k\delta, (k+1)\delta]\).

The elements of \(S(N, \delta)\) are thus step functions with fixed step width \(\delta\). If \(N \geq 1, \delta > 0\) and \(T = e^{2N\delta}\) we have

\[
\begin{align*}
\forall \Phi \in S(T), & \quad \frac{1}{\|\Phi\|_2^2} \Phi * \Phi \in \mathcal{W}(T) \\
\forall k \geq 1, & \quad S\left(kN, \delta \frac{\delta}{k}\right) \subseteq S(N, \delta).
\end{align*}
\]
If, for some \(T > 1 \), \(\Phi \in \mathcal{S}(T) \) and \(F = \Phi * \Phi \) satisfies (7) then, according to Theorem 2, \(\mathcal{O}_K \) is generated by prime ideals \(p \) such that \(Np < T \). This leads us to define the linear form \(\ell_K \) on \(\mathcal{S} \) by

\[
\ell_K(F) = -2 \sum_p \log Np \sum_{m=1}^{\infty} \frac{F(m \log Np)}{Np^{m/2}} + F(0) \left(\log \Delta_K - n_K \gamma - n_K \log(8\pi) - \frac{r_1 \pi}{2} \right) + r_1 \int_0^{+\infty} \frac{F(0) - F(x)}{2 \cosh(x/2)} \, dx + n_K \int_0^{+\infty} \frac{F(0) - F(x)}{2 \sinh(x/2)} \, dx
\]

and the quadratic form \(q_K \) on \(\mathcal{S} \) by \(q_K(\Phi) = \ell_K(\Phi * \Phi) \). We can at this point give a weaker version of Theorem 2 as

Corollary 11. Let \(K \) be a number field satisfying GRH and \(T > 1 \). If the restriction of \(q_K \) to \(\mathcal{S}(T) \) has a negative eigenvalue then \(\mathcal{O}_K \) is generated by prime ideals \(p \) such that \(Np < T \).

Note that \(q_K \) is a continuous function as a function from \((\mathcal{S}(T), \| \cdot \|_1) \) to \(\mathbb{R} \). Therefore if \(\log T \) is a bound for \(\Phi \) then there exists an \(L' < \log T \) such that \(L' \) is a bound for \(K \). Note also that, in terms of \(T \), only the norms of prime ideals are relevant, which means that we do not need the smallest possible \(T \) to get the best result.

Remark. If \(T > 1 \) and \(\Phi \in \mathcal{S}(T) \), then for any \(\varepsilon > 0 \) there exists \(N \geq 1, \delta > 0 \) and \(\Phi_\delta \in \mathcal{S}(N, \delta) \) such that \(\| \Phi * \Phi - \Phi \| \leq \varepsilon \) and \(e^{2N\delta} \leq T \). Hence we do not lose anything in terms of bounds if we consider only the subspaces of the form \(\mathcal{S}(N, \delta) \).

2.2. Computing the integrals.

Let \(T > 1 \) be a real, \(L = \log T \) and \(F_L = C_L * C_L \) where, as above, \(C_L \) is the characteristic function of \([-\frac{L}{2}, \frac{L}{2}] \). We readily see that \(F_L(x) = (L-x)C_{2L}(x) \) for any \(x \geq 0 \). We easily compute

\[
\int_0^{+\infty} \frac{F_L(0) - F_L(x)}{2 \cosh(x/2)} \, dx = 4C - 4 \text{Im dilog} \left(\frac{i}{\sqrt{T}} \right)
\]

and

\[
\int_0^{+\infty} \frac{F_L(0) - F_L(x)}{2 \sinh(x/2)} \, dx = \frac{\pi^2}{2} - 4 \text{dilog} \left(\frac{1}{\sqrt{T}} \right) + \text{dilog} \left(\frac{1}{T} \right)
\]

where \(C \) is Catalan’s constant and \(\text{dilog}(x) \) is the dilogarithm function normalized to be the primitive of \(-\frac{\log(1-x)}{x} \) such that \(\text{dilog}(0) = 0 \) (this is the normalization of \(\text{dilog} \)).

2.3. A remark on the restriction of quadratic forms.

Let \(q \) be a quadratic form on an \(n \)-dimensional vector space \(V \) of signature \((z, p, m)\). We can interpret \(p \) (resp. \(m \)) as the dimension of a maximal subspace on which \(q \) is positive (resp. negative) definite while the kernel of \(q \) has dimension \(z = n - p - m \).

Let \(H \) be an hyperplane of \(V \) and \(q' \) the restriction of \(q \) to \(H \). A maximal subspace on which \(q' \) is definite is a subspace on which \(q \) is definite, thus the intersection of a maximal subspace on which \(q \) is definite with \(H \). This means the signature \((z', p', m') \) of \(q' \) will be such that \(p' \leq p \leq p' + 1 \) and \(m' \leq m \leq m' + 1 \). Cases \(p = p' + 1, m = m' + 1 \) and \(p = p', m = m' \) are both possible with \(z = n - p - m = z' - 1 \) and \(z = z' + 1 \) respectively.
3. Improving the Result

3.1. Basic bound. We restate [BDF08, Section 3, p. 1191] which determines an optimal bound for Corollary [4]. Let GRHcheck\((K, \log T)\) be the function that returns the right hand side of \([5]\) minus its left hand side and BDyDF\((K)\) be the function which computes the optimal bound, by dichotomy for instance. The computation of BDyDF\((K)\) is very fast because the only arithmetic information we need on \(K \simeq \mathbb{Q}[x]/(P)\) is the splitting information for primes \(p < T\) and is determined easily for nearly all \(p\). Indeed if \(p\) does not divide the index of \(\mathbb{Z}[x]/(P)\) in \(\mathfrak{O}_K\), then the splitting of \(p\) in \(K\) is determined by the factorization of \(P \mod p\). We can also store such splitting information for all \(p\) that we consider and do not recompute it each time we test whether a given bound \(\log T\) is sufficient.

3.2. Improving the bound. We fix a number field \(K\). We denote \(q_{K,N,\delta}\) the restriction of \(q_K\) to \(\mathcal{S}(N, \delta)\). According to Corollary [11] if \(q_{K,N,\delta}\) has a negative eigenvalue then \(2N\delta\) is a bound for \(K\). This justifies the following definition.

Definition 12. The pair \((N, \delta)\) is \(K\)-good when \(q_{K,N,\delta}\) has a negative eigenvalue.

We can reinterpret Functions GRHcheck and BDyDF saying that if GRHcheck\((K, 2\delta)\) is negative then \((1, \delta)\) is \(K\)-good and that \((1, \frac{1}{2}\log BDyDF(K))\) is \(K\)-good.

As a first step to improve on Corollary [4] given \(\delta > 0\) we look for the smallest \(N\) such that \((N, \delta)\) is \(K\)-good. Looking for such an \(N\) can be done fairly easily with this setup. For any \(i \geq 1\), let \(\Phi_i\) be the characteristic function of \((-i\delta, i\delta)\). Then \((\Phi_i)_{1 \leq i \leq N}\) is a basis of \(\mathcal{S}(N, \delta)\).

We have \(\Phi_i * \Phi_j = F_{2i\delta} = (2i\delta - |x|)C_{4i\delta}(|x|)\); observe also that the function considered in Corollary [4] is \(\frac{1}{\log T}F_{\log T}\). We further observe that

\[\Phi_i * \Phi_j = F_{(i+j)\delta} - F_{|i-j|\delta}\]

This means that the matrix \(A_N\) of \(q_{K,N,\delta}\) can be computed by computing only the values of \(\ell_K(F_{2i\delta})\) for \(1 \leq i \leq 2N\) and subtracting those values.

We then stop when the determinant of \(A_N\) is negative or when \(2N\delta \geq BDyDF(K)\). This does not guarantee that we stop as soon as there is a negative eigenvalue. Indeed, consider the following sequence of signatures:

\[0, p, 0 \to 1, p, 0 \to 1, p, 1 \to 0, p + 1, 2 \to \cdots\]

We should have stopped when the signature was \((1, p, 1)\) however the determinant was zero there. Our algorithm will stop as soon as there is an odd number of negative eigenvalues (and no zero) or we go above BDyDF\((K)\). Such unfavorable sequence of signatures is however very unlikely and can be ignored in practice.

The corresponding algorithm is presented in Function NDelta. We have added a limit \(N_{\max}\) for \(N\) which is not needed right now but will be used later. In Function NDelta, we need to slightly change GRHcheck to returns the difference of both sides of Equation (7) instead of (5). Note that \((\Phi_i)\) is a basis adapted to the inclusion \([10c]\) so that we only need to compute the edges of the matrix \(A_N\) at each step. The test \(\det A < 0\) in line [13] can be implemented using Cholesky LDL\(*\) decomposition which is incremental.

One way to use this function is to compute \(T = BDyDF(K)\) and for some \(N_{\max} \geq 2\), let \(\delta = \frac{\log T}{2N_{\max}}\) and \(N = N_{\text{Delta}}(K, \delta, N_{\max})\). Using the inclusion \([10b]\), we see that \((N, \delta)\) is \(K\)-good and that \(N \leq N_{\max}\), so that we have improved the bound.
3.3. Adaptive steps. Unfortunately Function \text{NDelta} is not very efficient mostly for two reasons. To explain them and to improve the function we introduce some extra notations.

For any \(\delta > 0 \), let \(N_\delta \) be the minimal \(N \) such that \((N, \delta)\) is \(K \)-good. Observe that Function \text{NDelta} computes \(N_\delta \), as long as \(N_\delta \leq N_{\text{max}} \) and no zero eigenvalue prevents success. Obviously, using \cite{[10d]}, we see that for any \(N \geq N_\delta \), \((N, \delta)\) is \(K \)-good. We have observed numerically that the sequence \(N \delta N \) is roughly decreasing, i.e. for most values of \(N \) we have \(N \delta N \geq (N + 1) \delta N_{\text{max}} \).

For any \(N \geq 1 \), let \(\delta_N \) be the infimum of the \(\delta \)'s such that \((N, \delta)\) is \(K \)-good. It is not necessarily true that if \(\delta \geq \delta_N \) then \((N, \delta)\) is \(K \)-good, however we have never found a counterexample.

The function \(\delta \mapsto \delta N_\delta \) is piecewise linear with discontinuities at points where \(N_\delta \) changes; the function is increasing in the linear pieces and decreasing at the discontinuities. This means that if we take \(0 < \delta_2 < \delta_1 \) but we have \(N_{\delta_2} > N_{\delta_1} \) then we may have \(N_{\delta_2} \delta_2 > N_{\delta_1} \delta_1 \) so the bound we get for \(\delta_2 \) is not necessarily as good as the one for \(\delta_1 \).

The resolution of Function \text{NDelta} is not very good: going from \(N - 1 \) to \(N \) the bound for the norm of the prime ideals is multiplied by \(e^{2\delta} \). This is the first reason reducing the efficiency of the function. The second one is that if \(N_{\text{max}} \) is above 20 or so, the number \(\delta = \frac{\log \text{BdyDF}(K)}{2N_{\text{max}}} \) has no specific reason to be near \(\delta_{N_0} \); as discussed above, this means that we can get a better bound for \(K \) by choosing \(\delta \) to be just above either \(\delta_{N_0} \) or \(\delta_{1+N_0} \). Both reasons derive from the same facts and give a bound for \(K \) that can be overestimated by at most \(2\delta \) for the considered \(N = \text{NDelta}(K, \delta, N_{\text{max}}) \).

To improve the result, we can use once again inclusion \cite{[10k]} and determine a good approximation of \(\delta_N \) for \(N = 2^n \). We determine first by dichotomy a \(\delta_0 \) such that \((N_0, \delta_0)\) is \(K \)-good for some \(N_0 \geq 1 \) (we use \(N_0 = 8 \) in our computation). For any \(k \geq 0 \), we take \(N_{k+1} = 2N_k \) and determine by dichotomy a \(\delta_{k+1} \) such that \((N_{k+1}, \delta_{k+1})\) is \(K \)-good; we already know that \(\frac{\delta}{4} \) is an upper bound for \(\delta_{k+1} \) and we can either use 0 as a lower bound or try to find a lower bound not too far from the upper bound because the upper bound is probably not too bad. The algorithm is described in Function \text{Bound}. It uses a subfunction \text{OptimalT}(K, N, T_l, T_h) which returns the smallest integer \(T \in [T_l, T_h] \) such that \text{NDelta}(K, \log T/(2N), N) > 0. The algorithm does not return a bound below those proved in and .

3.4. Further refinements. To reduce the time used to compute the determinants, we tried to use steps of width 4\(\delta \) in \([\frac{1}{3} \log T, \frac{1}{3} \log T]\) and of width 2\(\delta \) in the rest of \([\frac{2}{3} \log T, \frac{2}{3} \log T]\), to halve the dimension of \(S(N, \delta) \). It worked in the sense that we found substantially the same \(T \) faster. However we decided that the total time of the algorithm is not high enough to justify the increase in code complexity.

4. Examples

In this section we will denote \(T(K) \) the result of Function \text{BdyDF} and \(T_l(K) \) the result of Function \text{Bound}.

4.1. Various fields. We tested the algorithm on several fields. Let first \(K = \mathbb{Q}[x]/(P) \) where

\[
P = x^3 + 559752270111028720x + 55137512477462689.
\]

The polynomial \(P \) has been chosen so that for all primes \(2 \leq p \leq 53 \) there are two prime ideals of norms \(p \) and \(p^2 \). This ensures that there are lots of small norms of prime ideals. We have \(T(K) = 19162 \). There are 2148 non-zero prime ideals with norms up to \(T(K) \). We found that \(T_l(K) = 11071 \) and that there are 1343 non-zero prime ideals of norms up to \(T_l(K) \).
The time used by Function \texttt{BDyDF} was 58ms on our test computer while the time used by our algorithm was an additional 36ms. The test was designed in such a way that our algorithm used the decomposition information of Function \texttt{BDyDF}, so it saved a little time.

We tested also the algorithm on the set of 4686 fields of degree 2 to 27 and small discriminant coming from a benchmark of [PARI15]. The mean value of \(\frac{T_1(K)}{\mathcal{T}(K)} \) for those fields is lower than \(\frac{1}{7} \).

For cyclotomic fields, the new algorithm does not give results significantly better than those of Belabas, Diaz y Diaz and Friedman. It might be because the discriminant of a cyclotomic field is not large enough with respect to its degree.

4.2. Pure fields. We computed \(T(K) \) and \(T_1(K) \) for fields of the form \(\mathbb{Q}[x]/(P) \) with \(P = x^n \pm p \) and \(p \) is the first prime after \(10^a \) for a certain family of integers \(n \) and \(a \). We computed the family of \(\frac{T_1(K)}{\mathcal{T}(K)} \) for each fixed degree. The graph shows that it is decreasing with the discriminant. The graph of \(\frac{T_1(K)}{\mathcal{T}(K)}(\log \log \Delta_K)^2 \) is much more regular and looks to have a non-zero limit, see Figure 1 below. We computed the mean of \(\frac{T_1(K)}{\mathcal{T}(K)}(\log \log \Delta_K)^2 \) for each fixed degree. The results are summarized below:

\[
\begin{array}{|c|c|c|}
\hline
P & a \leq \log \Delta_K \leq & \text{mean} \\
\hline
x^2 - p & 3999 & 9212 & 13.19 \\
x^6 + p & 1199 & 13818 & 13.38 \\
x^{21} - p & 328 & 15169 & 13.68 \\
\hline
\end{array}
\]

The small discriminants are (obviously) much less sensitive to the new algorithm. We reduced the range for each series to have \(\log \Delta_K \leq 500 \). The results are as follows:

\[
\begin{array}{|c|c|c|}
\hline
P & a \leq & \text{mean} \\
\hline
x^2 - p & 218 & 12.35 \\
x^6 + p & 43 & 13.66 \\
x^{21} - p & 10 & 17.19 \\
\hline
\end{array}
\]

4.3. Biquadratic fields. We repeated the computations above also for biquadratic fields \(\mathbb{Q}[\sqrt{p_1}, \sqrt{p_2}] \) where each \(p_i \) is the first prime after \(10^{a_i} \) for a certain family of integers \(a_i \). We found that the mean of \(\frac{T_1(K)}{\mathcal{T}(K)}(\log \log \Delta_K)^2 \) is 13.63 for the 7119 fields computed and 13.88 if we restrict the family to the 1537 ones with \(\log \Delta_K \leq 500 \).

Final remarks. In [BDF08 Th. 4.3] the authors prove that for a fixed degree \(T(K) \gg (\log \Delta_K \log \Delta_K)^2 \) and conjecture that \(T(K) \sim \frac{1}{10}(\log \Delta_K \log \Delta_K)^2 \) while our computations suggest that \(T_1(K) \) has smaller order. We will prove in a subsequent article [GM15] that \(T(K) \asymp (\log \Delta_K \log \Delta_K)^2 \) and that \(T_1(K) \ll (\log \Delta_K)^2 \).
\textbf{Input:} a number field \(K \)
\textbf{Input:} a positive real \(\delta \)
\textbf{Input:} a positive integer \(N_{\text{max}} \)
\textbf{Output:} an \(N \leq N_{\text{max}} \) such that \((N, \delta)\) is \(K\)-good or 0

1. \(\text{tab} \leftarrow (2N_{\text{max}} + 1)\)-dimensional array;
2. \(\text{tab}[0] \leftarrow 0; \)
3. \(A \leftarrow N_{\text{max}} \times N_{\text{max}} \) identity matrix;
4. \(N \leftarrow 0; \)
5. while \(N < N_{\text{max}} \) do
 6. \(N \leftarrow N + 1; \)
 7. \(\text{tab}[2N - 1] \leftarrow (2N - 1)\text{GRHcheck}(K, (2N - 1)\delta); \)
 8. \(\text{tab}[2N] \leftarrow 2N\text{GRHcheck}(K, 2N\delta); \)
 9. for \(i \leftarrow 1 \) to \(N \) do
 10. \(A[N,i] \leftarrow \text{tab}[N+i] - \text{tab}[N-i]; \)
 11. \(A[i,N] \leftarrow A[N,i]; \)
 12. end
 13. if \(\det A < 0 \) then
 14. \(\text{return } N; \)
 15. end
16. end
17. return 0;

\textbf{Function} \(\text{NDelta}(K, \delta, N_{\text{max}}) \)
Input: a number field K
Output: a bound for the norm of a system of generators of \mathcal{O}_K

1. $T_0 \leftarrow 4 \left(\log \Delta_K + \log \log \Delta_K - (\gamma + \log 2\pi) n_K + 1 + (n_K + 1) \frac{\log(\log \Delta_K)}{\log \Delta_K} \right)^2$;
2. $T_0 \leftarrow \min\left(T_0, 4.01 \log^2 \Delta_K\right)$;
3. $N \leftarrow 8$; $\delta \leftarrow 0.0625$;
4. while $\mathcal{N}\Delta\text{Delta}(K, \delta, N) = 0$ do
5. $\delta \leftarrow \delta + 0.0625$;
6. end
7. $T_h \leftarrow \text{OptimalT}(K, N, e^{2N(\delta-0.0625)}, e^{2N\delta})$;
8. $T \leftarrow T_h + 1$;
9. while $T_h < T \| T > T_0$ do
10. $T \leftarrow T_h$; $N \leftarrow 2N$;
11. $T_h \leftarrow \text{OptimalT}(K, N, 1, T_h)$;
12. end
13. return T;

Function $\text{Bound}(K)$

References

[PARI15] The PARI Group, Bordeaux, *PARI/GP* version 2.8, 1985–2015, available from http://pari.math.u-bordeaux.fr/.

[BDF08] Karim Belabas, Francisco Diaz y Diaz, and Eduardo Friedman, *Small generators of the ideal class group*, Math. Comp. 77 (2008), no. 262, 1185–1197.

[GM15] Loïc Grenié and Giuseppe Molteni, *Explicit bounds for algorithms computing class field generators*, preprint.