VARIANCE OF THE EXPONENTS OF ORBIFOLD LANDAU-GINZBURG MODELS

WOLFGANG EBELING AND ATSUSHI TAKAHASHI

Abstract. We prove a formula for the variance of the set of exponents of a non-degenerate weighted homogeneous polynomial with an action of a diagonal subgroup of SL_n(C).

Introduction

Let X be a smooth compact Kähler manifold of dimension n. The Hodge numbers h^{p,q}(X) := dim_{\mathbb{C}} H^q(X, \Omega_X^p), p, q \in \mathbb{Z}, are some of the most important numerical invariants of X. They satisfy

\[h^{p,q}(X) = h^{q,p}(X), \quad p, q \in \mathbb{Z}, \]

and the Serre duality

\[h^{p,q}(X) = h^{n-p,n-q}(X), \quad p, q \in \mathbb{Z}. \]

The Euler number \(\chi(X) \) can also be written in terms of the Hodge numbers as

\[\chi(X) = \sum_{p, q \in \mathbb{Z}} (-1)^{p+q} h^{p,q}(X). \]

One can easily calculate the expectation value of the distribution \(\{ q \in \mathbb{Z} \mid h^{p,q}(X) \neq 0 \} \), which is given by the formula

\[
\sum_{p, q \in \mathbb{Z}} (-1)^{p+q} q \cdot h^{p,q}(X) = \frac{1}{2} n \cdot \chi(X).
\]

Equivalently, this can be rewritten as

\[
\sum_{p, q \in \mathbb{Z}} (-1)^{p+q} \left(q - \frac{n}{2}\right) h^{p,q}(X) = 0.
\]

This means nothing else but that the mean of the distribution \(\{ q \in \mathbb{Z} \mid h^{p,q}(X) \neq 0 \} \) is \(n/2 \). It is then natural to ask what is the variance of this distribution. A formula for this variance was given by A. Libgober and J. Wood [LW] and L. Borisov [B]:

2010 Mathematics Subject Classification. 32S25, 32S35, 14L30.
Theorem 1 (Libgober-Wood, Borisov). One has
\[
\sum_{p,q \in \mathbb{Z}} (-1)^{p+q} \left(q - \frac{n}{2} \right)^2 h^{p,q}(X) = \frac{1}{12} n \cdot \chi(X) + \frac{1}{6} \int_X c_1(X) \cup c_{n-1}(X),
\]
(0.1)
where \(c_i(X)\) denotes the \(i\)-th Chern class of \(X\).

If the first Chern class \(c_1(X)\) is numerically zero, then the above formula becomes
\[
\sum_{p,q \in \mathbb{Z}} (-1)^{p+q} \left(q - \frac{n}{2} \right)^2 h^{p,q}(X) = \frac{1}{12} n \cdot \chi(X).
\]
(0.2)

Similar phenomena were discovered in singularity theory. Let us consider a polynomial \(f(x_1, \ldots, x_n)\) with an isolated singularity at the origin. There, the analogue of the set \(\{q \in \mathbb{Z} \mid h^{p,q}(X) \neq 0\}\) above will be the set of the exponents of \(f(x_1, \ldots, x_n)\), which is a set of rational numbers and is also one of the most important numerical invariants defined by the mixed Hodge structure associated to \(f(x_1, \ldots, x_n)\). Let us give two important examples.

First, suppose that \(f(x_1, \ldots, x_n)\) is a non-degenerate weighted homogeneous polynomial, namely, a polynomial with an isolated singularity at the origin with the property that there are positive rational numbers \(w_i, i = 1, \ldots, n\), such that \(f(\lambda^{w_i} x_1, \ldots, \lambda^{w_n} x_n) = \lambda f(x_1, \ldots, x_n), \lambda \in \mathbb{C}\setminus\{0\}\). We have the following properties of the exponents of \(f\):

Theorem 2 (cf. [St]). Let \(q_1 \leq q_2 \leq \cdots \leq q_\mu\) be the exponents of \(f\), where \(\mu\) is the Milnor number of \(f\) defined by
\[
\mu := \dim_{\mathbb{C}} \mathbb{C}[x_1, \ldots, x_n] \left/ \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \right..
\]
Then one has
\[
\mu = (-1)^n \prod_{i=1}^{n} \left(1 - \frac{1}{w_i} \right)
\]
and
\[
\sum_{i=1}^{\mu} y^{q_i - \frac{n}{2}} = (-1)^n \prod_{i=1}^{n} \frac{y^{\frac{1}{2}} - y^{w_i - \frac{1}{2}}}{1 - y^{w_i}}.
\]
In particular, one has a duality of exponents \(q_i + q_{\mu-i+1} = n, i = 1, \ldots, \mu\), and hence
\[
\sum_{i=1}^{\mu} q_i = \frac{1}{2} n \cdot \mu.
\]

The following formula was proven by C. Hertling [H] in the context of Frobenius manifolds and an elementary proof was given by A. Dimca [D].
Theorem 3 (Hertling, Dimca). Let \(q_1 \leq q_2 \leq \cdots \leq q_\mu \) be the exponents of \(f \). One has
\[
\sum_{i=1}^{\mu} \left(q_i - \frac{n}{2} \right)^2 = \frac{1}{12} \hat{c} \cdot \mu, \quad \hat{c} := n - 2 \sum_{i=1}^{n} w_i.
\]

Next, consider the polynomial \(f(x_1, x_2, x_3) := x_1^{\alpha_1} + x_2^{\alpha_2} + x_3^{\alpha_3} - x_1 x_2 x_3 \) such that \(1/\alpha_1 + 1/\alpha_2 + 1/\alpha_3 < 1 \). We have the following properties of the exponents of \(f \):

Theorem 4 (cf. [AGV]). The set of exponents \(\{q_i\} \) of \(f \) is given by
\[
\left\{ \frac{1}{\alpha_1} + 1, \frac{2}{\alpha_1} + 1, \ldots, \frac{\alpha_1 - 1}{\alpha_1} + 1, \frac{1}{\alpha_2} + 1, \frac{2}{\alpha_2} + 1, \ldots, \frac{\alpha_2 - 1}{\alpha_2} + 1, \frac{1}{\alpha_3} + 1, \frac{2}{\alpha_3} + 1, \ldots, \frac{\alpha_3 - 1}{\alpha_3} + 1, 2 \right\}.
\]
In particular, one has
\[
\sum_{i=1}^{\mu} \left(q_i - \frac{3}{2} \right)^2 = \frac{1}{12} \mu + \frac{1}{6} \chi, \quad \chi := 2 + \sum_{i=1}^{3} \left(\frac{1}{\alpha_i} - 1 \right).
\]

The purpose of this paper is to generalize these results to pairs \((f, G)\), where \(G \subset \text{SL}_n(\mathbb{C}) \) is a finite abelian subgroup leaving \(f \) invariant. If \(f \) is weighted homogeneous, such a pair is also called an orbifold Landau-Ginzburg model because \(f \) is the potential of such a model. Our main theorem in this paper is Theorem 19. The generalization of Theorem 4 is given as Theorem 21. The similarity between smooth compact Kähler manifolds and isolated hypersurface singularities with a group action is not an accident but a matter of course. Mirror symmetry predicts a correspondence between Landau-Ginzburg models and (non-commutative) Calabi-Yau orbifolds. For example, a mirror partner of a weighted homogeneous polynomial with a group action is a fractional Calabi–Yau manifold of dimension \(\hat{c} \), which has lead us to the statement of Theorem 19.

Acknowledgements. This work has been supported by the DFG-programme SPP1388 "Representation Theory" (Eb 102/6-1). The second named author is also supported by JSPS KAKENHI Grant Number 24684005. We thank the anonymous referee for carefully reading our paper and for most valuable comments.

1. Basic properties of \(E \)-functions

Let \(G \) be a finite abelian subgroup of \(\text{SL}_n(\mathbb{C}) \) acting diagonally on \(\mathbb{C}^n \). For \(g \in G \), we denote by \(\text{Fix} g := \{ x \in \mathbb{C}^n \mid g \cdot x = x \} \) the fixed locus of \(g \) and by \(n_g := \dim \text{Fix} g \) its dimension.

We first introduce the notion of the age of an element of a finite group as follows:
Definition (IN). Let \(g \in G \) be an element and \(r \) be the order of \(g \). Then \(g \) has a unique expression of the following form

\[
g = \text{diag}(e[a_1/r], \ldots, e[a_n/r])
\]

with \(0 \leq a_i < r \), where \(e[-] = e^{2\pi \sqrt{-1} \cdot -} \). Such an element \(g \) is often simply denoted by \(g = \frac{1}{r}(a_1, \ldots, a_n) \). The age of \(g \) is defined as

\[
\text{age}(g) := \frac{1}{r} \sum_{i=1}^{n} a_i.
\]

Since we assume that \(G \subset \text{SL}_n(\mathbb{C}) \), the age\((g) \) is a non-negative integer for all \(g \in G \).

Definition. An element \(g \in G \) of age 1 with \(\text{Fix} g = \{0\} \) is called a junior element. The number of junior elements is denoted by \(j_G \).

Proposition 5. The function \(f^g \) has an isolated singularity at the origin.

Proof. Since \(G \) acts diagonally on \(\mathbb{C}^n \), we may assume that \(\text{Fix} g = \{x_{n_g+1} = \cdots = x_n = 0\} \) by a suitable renumbering of indices. Since \(f \) is invariant under \(G \), \(g \cdot x_i \neq x_i \) for \(i = n_g + 1, \ldots, n \) and \(\frac{\partial f}{\partial x_{n_g+1}}, \ldots, \frac{\partial f}{\partial x_n} \) form a regular sequence, we have

\[
\left(\frac{\partial f}{\partial x_{n_g+1}}, \ldots, \frac{\partial f}{\partial x_n} \right) \subset (x_{n_g+1}, \ldots, x_n).
\]

Therefore, we have

\[
\dim \mathbb{C} [x_1, \ldots, x_{n_g}] / \left(\frac{\partial f^g}{\partial x_1}, \ldots, \frac{\partial f^g}{\partial x_{n_g}} \right) = \dim \mathbb{C} [x_1, \ldots, x_n] / \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_{n_g}}, x_{n_g+1}, \ldots, x_n \right) \leq \dim \mathbb{C} [x_1, \ldots, x_n] / \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \right) < \infty.
\]

We first associate to \(f \) a natural mixed Hodge structure with an automorphism, which gives the following bi-graded vector space:

Definition. Define the bi-graded vector space \(\mathcal{H}_f := \bigoplus_{p,q} \mathcal{H}_f^{p,q} \) as

(i) If \(p + q \neq n \), then \(\mathcal{H}_f^{p,q} := 0 \).

(ii) If \(p + q = n \) and \(p \in \mathbb{Z} \), then

\[
\mathcal{H}_f^{p,q} := \text{Gr}_p^n H^{n-1}(Y_f, \mathbb{C})_1.
\]
(iii) If \(p + q = n \) and \(p \notin \mathbb{Z} \), then
\[
\mathcal{H}_{f}^{p,q} := \text{Gr}_{k}^{[p]} H^{n-1}(Y_f, \mathbb{C})_{\mathbb{C}^{n}}^{\mathbb{Z} - \nu},
\]
where \([p]\) is the largest integer less than \(p \).

As a vector space, \(\mathcal{H}_{f} \) is identified with \(\Omega_{f} := \Omega_{\mathbb{C}^{n},0}^{n} / df \wedge \Omega_{\mathbb{C}^{n},0}^{n-1} \). Note that we have
\[
\Omega_{f} = \mathcal{O}_{\mathbb{C}^{n},0} \left/ \left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}} \right) \cdot dx_{1} \wedge \cdots \wedge dx_{n}, \right.
\]
and that Theorem 2 can be shown based on the above equality by calculating the Poincaré polynomial of the right hand side. The \(G \)-action on \(\mathcal{H}_{f} \) can also be identified with the one on \(\Omega_{f} \). We shall use the fact that \(\mathcal{H}_{f,g} \) admits a natural \(G \)-action by restricting the \(G \)-action on \(\mathbb{C}^{n} \) to \(\text{Fix } g \) (which is well-defined since \(G \) acts diagonally on \(\mathbb{C}^{n} \)).

To the pair \((f,G)\) we can associate a natural mixed Hodge structure with an automorphism, which gives the following bi-graded vector space:

Definition. Define the bi-graded \(\mathbb{C} \)-vector space \(\mathcal{H}_{f,G} \) as
\[
\mathcal{H}_{f,G} := \bigoplus_{g \in G} (\mathcal{H}_{f,g})^{G}(-\text{age}(g), -\text{age}(g)), \tag{1.1}
\]
where \((\mathcal{H}_{f,g})^{G}\) denotes the \(G \)-invariant subspace of \(\mathcal{H}_{f,g} \).

Since the bi-graded vector space \(\mathcal{H}_{f,G} \) is the analog of \(\bigoplus_{p,q \in \mathbb{Z}} H^{p}(X, \Omega_{X}^{q}) \) for a smooth compact Kähler manifold \(X \), we introduce the following notion:

Definition. The **Hodge numbers** for the pair \((f,G)\) are
\[
h^{p,q}(f,G) := \dim_{\mathbb{C}} \mathcal{H}_{f,G}^{p,q}, \quad p, q \in \mathbb{Q}.
\]

Definition. The rational number \(q \) with \(\mathcal{H}_{f,G}^{p,q} \neq 0 \) is called an **exponent** of the pair \((f,G)\). The **set of exponents** of the pair \((f,G)\) is the multi-set of exponents
\[
\{ q * h^{p,q}(f,G) \mid p, q \in \mathbb{Q}, \ h^{p,q}(f,G) \neq 0 \},
\]
where by \(u * v \) we denote \(v \) copies of the rational number \(u \).

Note that \(p+q \in \mathbb{Z} \) for the rational number \(q \) with \(h^{p,q}(f,G) \neq 0 \) since \(G \subset \text{SL}_{n}(\mathbb{C}) \).

Definition. The **E-function** for the pair \((f,G)\) is
\[
E(f,G)(\bar{t}, \bar{t}) := \sum_{p,q \in \mathbb{Q}} (-1)^{(p-n)+q} h^{p,q}(f,G) \cdot \bar{t}^{p-\frac{n}{2}} \bar{t}^{-q-\frac{q}{2}}. \tag{1.2}
\]
Definition. The Milnor number for the pair \((f, G)\) is
\[
\mu(f, G) := E(f, G)(1, 1) = \sum_{p, q \in \mathbb{Q}} (-1)^{(p-n)+q} h^{p,q}(f, G).
\]

Theorem 6. Assume that \(f\) is a non-degenerate weighted homogeneous polynomial. Write \(g \in G\) in the form \((\lambda_1(g), \ldots, \lambda_n(g))\) where \(\lambda_i(g) = e[a_iw_i]\). The E-function for the pair \((f, G)\) is given by the following formula:
\[
E(f, G)(t, \bar{t}) = \sum_{g \in G} E_g(f, G)(t, \bar{t}) \tag{1.3}
\]
\[
E_g(f, G)(t, \bar{t}) := (-1)^n \left(\prod_{a_iw_i \in \mathbb{Z}} (t\bar{t})^{w_i} \right)^{-\frac{1}{2}} \frac{1}{|G|} \sum_{h \in G} \prod_{a_iw_i \in \mathbb{Z}} \frac{\left(\frac{1}{t}\right)^{\frac{1}{2}} - \lambda_i(h) \left(\frac{1}{t}\right)^{w_i} - \frac{1}{2}}{1 - \lambda_i(h) \left(\frac{1}{t}\right)^{w_i}}. \tag{1.4}
\]
Here \([a]\) for \(a \in \mathbb{Q}\) denotes the largest integer less than or equal to \(a\).

Proof. Theorem 2 enables us to obtain \(E_g(f, G)(t, \bar{t})\). In particular, the term
\[
\frac{1}{|G|} \sum_{h \in G} (-1)^n \prod_{a_iw_i \in \mathbb{Z}} \frac{\left(\frac{1}{t}\right)^{\frac{1}{2}} - \lambda_i(h) \left(\frac{1}{t}\right)^{w_i} - \frac{1}{2}}{1 - \lambda_i(h) \left(\frac{1}{t}\right)^{w_i}}
\]
calculates the \(G\)-invariant part of \(E(f^g, \{1\})(t, \bar{t})\) and the term \(\prod_{w_i \in \mathbb{Z}} (-1) (t\bar{t})^{w_i} \left(\frac{1}{t}\right)^{\frac{1}{2}} \right)^{-\frac{1}{2}}\) gives the contribution from the age shift \((-\text{age}(g), -\text{age}(g))\). \(\square\)

We have the following properties of the Hodge numbers \(h^{p,q}(f, G)\).

Corollary 7. Assume that \(f\) is a non-degenerate weighted homogeneous polynomial. We have
\[
h^{p,q}(f, G) = h^{q,p}(f, G), \quad p, q \in \mathbb{Q}.
\]

In other words, we have
\[
E(f, G)(t, \bar{t}) = E(f, G)(\bar{t}, t).
\]

Proof. This is shown by an elementary direct calculation. \(\square\)

Corollary 8. Assume that \(f\) is a non-degenerate weighted homogeneous polynomial. The Hodge numbers satisfy the “Serre duality”
\[
h^{p,q}(f, G) = h^{n-p,n-q}(f, G), \quad p, q \in \mathbb{Q}.
\]

In other words, we have
\[
E(f, G)(t, \bar{t}) = E(f, G)(t^{-1}, \bar{t}^{-1}).
\]
Proof. By using the formula
\[w_i(-a_i) - [w_i(-a_i)] - \frac{1}{2} = -w_i a_i + [w_i a_i] + \frac{1}{2}, \]
an easy calculation yields the formula. \(\square\)

Corollary 9. Assume that \(f\) is a non-degenerate weighted homogeneous polynomial. The mean of the set of exponents of \((f, G)\) is \(n/2\). Namely, we have
\[\sum_{p,q \in \mathbb{Q}} (-1)^{(p-n)+q} \left(q - \frac{n}{2} \right)^2 h^{p,q}(f, G) = 0. \]

Proof. This is obvious from the previous corollary. \(\square\)

Definition. Define the variance of the set of exponents of \((f, G)\) by
\[\text{Var}_{(f,G)} := \sum_{p,q \in \mathbb{Q}} (-1)^{(p-n)+q} \left(q - \frac{n}{2} \right)^2 h^{p,q}(f, G). \]

In order to state our formula for the variance, we introduce the following notion of dimension for a polynomial \(f\) with an isolated singularity at the origin.

Definition. The non-negative rational number \(\hat{c}\) defined as the difference of the maximal exponent of the pair \((f, \{1\})\) and the minimal exponent of the pair \((f, \{1\})\) is called the dimension of \(f\).

Proposition 10. Assume that \(f\) is a non-degenerate weighted homogeneous polynomial. The dimension \(\hat{c}\) of \(f\) is given by
\[\hat{c} := n - 2 \sum_{i=1}^{n} w_i. \]

Proof. It easily follows from Theorem \(\square\) that the maximal exponent and the minimal exponent are given by \(n - \sum_{i=1}^{n} w_i\) and \(\sum_{i=1}^{n} w_i\) respectively. \(\square\)

It is natural from the mirror symmetry point of view to expect that the variance of the set of exponents of \((f, G)\) should be given by
\[\text{Var}_{(f,G)} = \frac{1}{12} \hat{c} \cdot \mu_{(f,G)}. \quad (1.5) \]

This will be proved in the next section.
2. Variance of the exponents

Definition. The χ_y-genus for the pair (f, G) is

$$\chi(f, G)(y) := E(f, G)(1, y).$$

We have

$$\chi(f, G)(y) = (-1)^n \sum_{g \in G} \left(y^{\text{age}(g)} \frac{n-n_g}{2} \right) \frac{1}{|G|} \sum_{h \in G} \prod_{\lambda_i(g)=1} \frac{y^{\frac{1}{2}} - \lambda_i(h)y^{w_i-\frac{1}{2}}}{1 - \lambda_i(h)y^{w_i}}.$$

One has

$$\mu(f, G) = \lim_{y \to 1} \chi(f, G)(y),$$

$$\text{Var}(f, G) = \lim_{y \to 1} \frac{d}{dy} \left(y \frac{d}{dy} \chi(f, G)(y) \right).$$

Proposition 11. Let

$$p_i(y) := \frac{y^{\frac{1}{2}} - \lambda_i(h)y^{w_i-\frac{1}{2}}}{1 - \lambda_i(h)y^{w_i}}.$$

(i) For $\lambda_i(h) = 1$ one has

$$\lim_{y \to 1} p_i(y) = 1 - \frac{1}{w_i}, \quad \lim_{y \to 1} \frac{d}{dy} p_i(y) = 0, \quad \lim_{y \to 1} \frac{d}{dy} \left(y \frac{d}{dy} p_i(y) \right) = \frac{1}{12}.$$

(ii) For $\lambda_i(h) \neq 1$ one has

$$\lim_{y \to 1} p_i(y) = 1, \quad \lim_{y \to 1} \frac{d}{dy} p_i(y) = \frac{1 + \lambda_i(h)}{2 - \lambda_i(h)}, \quad \lim_{y \to 1} \frac{d}{dy} \left(y \frac{d}{dy} p_i(y) \right) = -\frac{(1 - 2w_i)\lambda_i(h)}{(1 - \lambda_i(h))^2}.$$

Proof. For (i) see the proof of [D Proposition 5.2]. Statement (ii) follows from a similar elementary but tedious computation.

Let $I_0 := \{1, \ldots, n\}$ and let $H \subset G$ be a subgroup of G. For a subset $I \subset I_0$ ($I = \emptyset$ is admitted) let H^I be the maximal subgroup of H fixing the coordinates $x_i, i \in I$.

Lemma 12. Let $H \subset G$ be a subgroup of G and $i \in I_0$. Then

$$\sum_{h \in H \setminus H^I} \frac{1 + \lambda_i(h)}{1 - \lambda_i(h)} = 0$$

Proof. One has

$$\sum_{h \in H \setminus H^I} \frac{1 + \lambda_i(h)}{1 - \lambda_i(h)} = \sum_{h \in H \setminus H^I} \frac{1}{1 - \lambda_i(h)} + \sum_{h \in H \setminus H^I} \frac{1}{\lambda_i(h^{-1}) - 1} = 0.$$
Proposition 13. Let \(r \in \mathbb{Z}, r \geq 2 \), and \(\zeta_r = e[1/r] \) be a primitive \(r \)-th root of unity. Then one has
\[
- \sum_{k=1}^{r-1} \frac{\zeta_r^k}{(1 - \zeta_r^k)^2} = \frac{r^2 - 1}{12}.
\]

Proof. One has
\[
- \sum_{k=1}^{r-1} \frac{\zeta_r^k}{(1 - \zeta_r^k)^2} = \lim_{t\to 1} q'(t) \text{ where } q(t) := - \sum_{k=1}^{r-1} \frac{1}{1 - \zeta_r^kt}.
\]
One can easily see that
\[
q(t) = \frac{-r \left(\sum_{k=0}^{r-2} tk \right) + \sum_{k=0}^{r-2} (k+1)tk}{\sum_{k=0}^{r-1} tk}.
\]
This implies
\[
\lim_{t\to 1} q'(t) = \frac{1}{r^2} \left[\sum_{k=1}^{r-2} k(k-r+1)r - \left(\sum_{\ell=1}^{r-1} (\ell - r) \right) \left(\sum_{k=1}^{r-1} k \right) \right] = \frac{r^2 - 1}{12}.
\]

Corollary 14. Let \(H \subset G \) be a subgroup of \(G \) and \(i \in I_0 \). Then
\[
- \sum_{h \in H \setminus H^{(i)}} \frac{\lambda_i(h)}{(1 - \lambda_i(h))^2} = \frac{|H \cap H^{(i)}|(|H/H \cap H^{(i)}|^2 - 1)}{12}.
\]

Proof. The image of the factor group \(H/H \cap H^{(i)} \) under the induced character \(\lambda_i : H/H \cap H^{(i)} \to \mathbb{C}^* \) is a finite abelian subgroup of the unit circle \(S^1 \) and hence cyclic. Therefore the formula follows from Proposition 13.

Let
\[
((x)) := \begin{cases}
 x - \lfloor x \rfloor - \frac{1}{2} & \text{if } x \in \mathbb{R}, x \notin \mathbb{Z}, \\
 0 & \text{if } x \in \mathbb{Z}.
\end{cases}
\]

Proposition 15. Let \(r \in \mathbb{Z}, r \geq 2, \zeta_r = e[1/r] \) be a primitive \(r \)-th root of unity, and \(a, b \) be integers satisfying \(0 < a, b < r \). Then one has
\[
\frac{1}{4r} \sum_{\substack{k=1 \atop k \neq ak, bk}}^{r-1} \frac{1 + \zeta_r^ak}{1 - \zeta_r^ak} \frac{1 + \zeta_r^bk}{1 - \zeta_r^bk} = - \sum_{k=1}^{r-1} ((a \frac{r}{k}))((b \frac{r}{k})) = \frac{1 + e[x]}{1 - e[x]} = \sqrt{-1} \cot \pi x.
\]

Remark 16. The right hand side of the formula of Proposition 15 is a generalized Dedekind sum and Proposition 15 is a slight generalization of [HZ, 5.2 Theorem 1], since
\[
\frac{1 + e[x]}{1 - e[x]} = \sqrt{-1} \cot \pi x
\]
for any real number \(x \). The difference is that [HZ, 5.2 Theorem 1] is only formulated for integers \(a, b \) prime to \(r \).
Proof of Proposition \[15\]. We follow the proof of [HZ 5.2 Theorem 1]. For simplicity, we assume $b = 1$. By the formula [HZ 5.2 (2)] which goes back to Eisenstein [E], we have
\[
(\frac{q}{r}) = -\frac{1}{2r} \sum_{\ell=1}^{r-1} \zeta_r^{\ell q} \zeta_r^{\ell} + 1 \zeta_r^{\ell - 1}
\]
for any integers q and r. (Note that there is a minor misprint in [HZ 5.2 (2)].) Applying this formula, we get
\[
\sum_{\ell=1}^{r-1} ((\frac{a\ell}{r})) ((\frac{\ell}{r})) = \frac{1}{4r^2} \sum_{\ell=1}^{r-1} \sum_{m=1}^{r-1} \zeta_r^{(m+ak)\ell} \zeta_r^{m + 1} \zeta_r^k + 1 \zeta_r^{m - 1} \zeta_r^{k - 1}
\]
\[
= \frac{1}{4r^2} \sum_{k=1, r \nmid ak}^{r-1} \zeta_r^{ak} + 1 \zeta_r^k + 1 \zeta_r^{ak} - 1 \zeta_r^k - 1 = -\frac{1}{4r^2} \sum_{k=1, r \nmid ak}^{r-1} 1 + \zeta_r^{ak} 1 + \zeta_r^k 1 - \zeta_r^{ak} 1 - \zeta_r^k,
\]
since
\[
\sum_{\ell=1}^{r} \zeta_r^{(m+ak)\ell} = \begin{cases} 0 & \text{if } m + ak \not\equiv 0 \mod r, \\ r & \text{if } m + ak \equiv 0 \mod r. \end{cases}
\]
Corollary 17. Let $K \subset J \subset I_0$. Then
\[
\frac{1}{4} \sum_{h \in G^K} \left(\sum_{j \in J \setminus K, \lambda_j(h) \neq 1} \frac{1 + \lambda_j(h)}{1 - \lambda_j(h)} \right)^2 = -|G^K| \sum_{h \in G^K} \left(\sum_{j \in J \setminus K} ((a_jw_j)) \right)^2,
\]
where $\lambda_j(h) = e[a_jw_j]$ for all $h \in G^K$ and $j \in J \setminus K$.
Proof. This follows from Proposition \[15\] by the same arguments as in the proof of Corollary \[14\].

Proposition 18. One has
\[
\mu_{(f,G)} = \frac{(-1)^n}{|G|} \left\{ \sum_{I \subseteq I_0} \prod_{i \in I} \left(1 - \frac{1}{w_i} \right) \left[\sum_{J \subseteq J_0} (-1)^{|J|-|I|} |G^J|^2 \right] \right\}. \tag{2.1}
\]
Proof. Let $J \subseteq I_0$. Let G_J be the set of elements of $g \in G$ with $\lambda_j(g) = 1$ for $j \in J$ and $\lambda_j(g) \neq 1$ for $j \not\in J$, i.e. the set of elements of G which fix the coordinates $x_j, j \in J$, and only these coordinates. Then
\[
|G_J| = \sum_{K, J \subseteq K \subseteq I_0} (-1)^{|K|-|J|} |G^K|.
\]
Let $I \subset J$. Let $G_{I,J}$ be the set of elements g of G with $\lambda_i(g) = 1$ for $i \in I$ and $\Lambda_j(g) \neq 1$ for $j \in J \setminus I$ (and $\lambda_k(g)$ arbitrary for $k \in I_0 \setminus J$). Then

$$|G_{I,J}| = \sum_{K, I \subseteq K \subseteq J} (-1)^{|K|-|I|}|G^K|.$$

By Proposition 11 one has

$$\lim_{y \to 1} \chi(f, G)(y) = \frac{(-1)^n}{|G|} \sum_{J} |G_J| \left(\sum_{I \subseteq J} \prod_{i \in I} \left(1 - \frac{1}{w_i} \right) |G_{I,J}| \right).$$

Now let $I \subset I_0$ be fixed. Then

$$\sum_{J \subseteq J \subseteq I_0} |G_J||G_{I,J}| = \sum_{J \subseteq J \subseteq I_0} \left(\sum_{K \subseteq K \subseteq I_0} (-1)^{|K|-|J|}|G^K| \right) \left(\sum_{L \subseteq L \subseteq J} (-1)^{|L|-|J|}|G^L| \right)$$

$$= \sum_{I \subseteq L \subseteq I_0} \sum_{K \subseteq K \subseteq I_0} \left(\sum_{J \subseteq J \subseteq K} (-1)^{|K|+|L|-|J|} \right) |G^K||G^L|$$

$$= \sum_{K \subseteq K \subseteq I_0} (-1)^{|K|-|L|}|G^K|^2;$$

since for fixed $L \subset I_0$ and $K \subset I_0$ with $L \subset K$

$$\sum_{J \subseteq J \subseteq K} (-1)^{|K|+|L|-|J|} = (-1)^{|K|-|L|}(1 - 1)^{|K|-|L|} = \begin{cases} (-1)^{|K|-|L|} & \text{for } L = K, \\ 0 & \text{otherwise.} \end{cases} \quad (2.2)$$

\[
\square
\]

Now we are ready to state the main result of our paper.

Theorem 19. One has

$$\text{Var}_{(f,G)} = \sum_{p,q \in \mathbb{Q}} (-1)^{(p-n)+q} \left(q - \frac{n}{2} \right)^2 h^{p,q}(f,G) = \frac{1}{12} \hat{c} \cdot \mu(f,G).$$

Proof. We use the notation introduced in the proof of Proposition 18. By Proposition 11 and Lemma 12 we have

$$\lim_{y \to 1} \frac{d}{dy} \left(y \frac{d}{dy} \chi(f, G)(y) \right) = A + B + C,$$
where

\[
A := \frac{(-1)^n}{|G|} \sum_{J, j \subset I_0} \sum_{g \in G_J} \left(\text{age}(g) - \frac{n - n_g}{2} \right)^2 \left[\sum_{I_i, i \in I} \left(1 - \frac{1}{w_i} \right) |G_{I_i J}| \right],
\]

\[
B := \frac{(-1)^n}{|G|} \sum_{J, j \subset I_0} |G_J| \left[\sum_{I_i, i \in I} \left(1 - \frac{1}{w_i} \right) \sum_{h \in G_{I_i J}} \frac{1}{4} \left(\sum_{j \in J \setminus I} \frac{1 + \lambda_j(h)}{1 - \lambda_j(h)} \right)^2 \right],
\]

\[
C := \frac{(-1)^n}{|G|} \sum_{J, j \subset I_0} |G_J| \times \left[\sum_{I_i, i \in I} \left(1 - \frac{1}{w_i} \right) \left(\sum_{i \in I} \frac{1 - 2w_i}{12} \right) - \sum_{h \in G_{I_i J}} \sum_{j \in J \setminus I} \frac{(1 - 2w_j)\lambda_j(h)}{(1 - \lambda_j(h))^2} \right].
\]

a) We first show that \(A + B = 0 \). We first take the sums in \(A \) and \(B \) in a different order:

\[
A = \frac{(-1)^n}{|G|} \sum_{I_i, i \in I} \prod_{i \subset J} \left(1 - \frac{1}{w_i} \right) A_I, \quad A_I := \sum_{J, j \subset I_0} \sum_{g \in G_J} \left(\text{age}(g) - \frac{n - n_g}{2} \right)^2 |G_{I_i J}|,
\]

\[
B = \frac{(-1)^n}{|G|} \sum_{I_i, i \in I} \prod_{i \subset J} \left(1 - \frac{1}{w_i} \right) B_I, \quad B_I := \sum_{J, j \subset I_0} |G_J| \left(\sum_{h \in G_{I_i J}} \frac{1}{4} \left(\sum_{j \in J \setminus I} \frac{1 + \lambda_j(h)}{1 - \lambda_j(h)} \right)^2 \right).
\]

Now let \(I \subset I_0 \) be fixed. Let \(\lambda_i(g) = e[a_i w_i] \). Then we have on one hand:

\[
A_I = \sum_{J, j \subset I_0} |G_{I_i J}| \sum_{g \in G_J} \left(\sum_{j \in I_0 \setminus J} (a_j w_j) \right)^2
= \sum_{J, j \subset I_0} |G_{I_i J}| \sum_{K, j \subset K \subset I_0} (-1)^{|K| - |J|} \sum_{g \in G^K} \left(\sum_{j \in I_0 \setminus K} (a_j w_j) \right)^2.
\]
On the other hand we have by Corollary 17

\[B_I = \sum_{I \subset J \subset I_0} |G_J| \sum_{h \in G_{I,J}} \frac{1}{4} \left(\sum_{j \in J \setminus I} \frac{1 + \lambda_j(h)}{1 - \lambda_j(h)} \right)^2 \]

\[= \sum_{I \subset J \subset I_0} |G_J| \sum_{K \subset J \subset I_0} (-1)^{|K| - |J|} \sum_{h \in G^K} \frac{1}{4} \left(\sum_{j \in J \setminus K} \frac{1 + \lambda_j(h)}{1 - \lambda_j(h)} \right)^2 \]

\[= - \sum_{I \subset J \subset I_0} |G_J| \sum_{K \subset J \subset I_0} (-1)^{|K| - |J|} \sum_{h \in G^K} \left(\sum_{j \in J \setminus K} ((a_j w_j)) \right)^2 \]

For \(I \subset K \subset J \subset I_0 \) let

\[s(K, J) := \sum_{g \in G^K} \left(\sum_{j \in J \setminus K} ((a_j w_j)) \right)^2 \]

Then

\[A_I = \sum_{K \subset J \subset I_0} \sum_{I \subset K \subset I_0} (-1)^{|K| - |J|} |G_{I,J}| s(K, I_0) \]

\[:= \sum_{K \subset J \subset I_0} \sum_{I \subset K \subset I_0} (-1)^{|K| - |J|} \left(\sum_{L \subset J \subset K} (-1)^{|L| - |J|} |G^L| \right) s(K, I_0) \]

\[= \sum_{L \subset J \subset I_0} \sum_{K \subset J \subset I_0} \left(\sum_{I \subset K \subset I_0} (-1)^{|K| + |L| - |J|} \right) |G^L| s(K, I_0) \]

\[= \sum_{K \subset I_0} (-1)^{|K| - |I|} |G^K| s(K, I_0) \]
by Formula (2.2). On the other hand, we have

\[B_I = - \sum_{K \subset I \subset J \subset I_0} (-1)^{|K|-|I|} |G_J||G^K|s(K, J) \]

\[= - \sum_{K \subset I \subset J \subset I_0} \sum_{i \in K} (-1)^{|K|-|I|} \left(\sum_{J' \subset J} (-1)^{|J'|-|J|} |G^{J'}| \right) |G^K|s(K, J) \]

\[= - \sum_{K \subset I \subset J \subset I_0} \sum_{i \in K} \left(\sum_{L \subset J} (-1)^{|K|-|L|-|J|} |G^L| \right) |G^K|s(K, J) \]

\[= - \sum_{K \subset I \subset J \subset I_0} (-1)^{|K|-|I|} |G^K|s(K, I_0) = -A_I, \]

again by Formula (2.2) and since \(|G^{I_0}| = 1\). This shows that \(A + B = 0\).

b) We now consider the term \(C\). Let \(J \subset I_0\), \(I \subset J\) and \(j \in J\), \(j \not\in I\). Then it follows from Corollary 14 that

\[- \sum_{h \in G_{I,J}} \frac{\lambda_j(h)}{(1 - \lambda_j(h))^2} = \frac{1}{12} m^{j}_{I,j}, \]

where

\[m^{j}_{I,j} := \sum_{K, j \not\in K, i \in K \subset J} (-1)^{|K|-|I|} |G^{K \cup \{i\}}| \left(|G^K/G^{K \cup \{i\}}| \right)^2 - 1). \]

By a) we have

\[\lim_{y \to 1} \frac{d}{dy} \left(y \frac{d}{dy} \chi(f, G)(y) \right) = C \]

\[= \frac{(-1)^n}{|G|} \sum_{J, i \in I_0} |G_J| \left[\sum_{I, j \subset J} \prod_{i \in I} \left(1 - \frac{1}{w_i} \right) \left(|G_{I,J}| \left(\sum_{i \in I} \frac{1 - 2w_i}{12} \right) + \sum_{j \in J, j \not\in I} m^{j}_{I,j} \left(\frac{1 - 2w_j}{12} \right) \right) \right] \]

\[= \frac{(-1)^n}{|G|} \sum_{I, i \in I_0} \prod_{i \in I} \left(1 - \frac{1}{w_i} \right) \left[\sum_{J, i \subset J \subset I_0} |G_J| \left(|G_{I,J}| \left(\sum_{i \in I} \frac{1 - 2w_i}{12} \right) + \sum_{j \in J, j \not\in I} m^{j}_{I,j} \left(\frac{1 - 2w_j}{12} \right) \right) \right]. \]
Now let $I \subset I_0$ and $j \notin I$ be fixed. Then
\[
\sum_{J \in J, I \subset J \subset I_0} |G_J|m^J_{I,J} = \sum_{J \in J, I \subset J \subset I_0} \left(\sum_{K \subseteq I \subset J \subset I_0} (-1)^{|K| - |J|}|G^K| \right) \left(\sum_{L \neq L_j, I \subset L \subset I_0} (-1)^{|L| - |I|}|G^{L \cup \{j\}}| \left(|G^L/G^{L \cup \{j\}}|^2 - 1 \right) \right)
\]
\[
= \sum_{L \neq L_j, I \subset L \subset I_0} \sum_{K \subseteq I \subset J \subset I_0} \left(\sum_{J \in J, I \subset J \subset I_0} (-1)^{|K| + |L| - |I| - |J|} \right) |G^K||G^{L \cup \{j\}}| \left(|G^L/G^{L \cup \{j\}}|^2 - 1 \right).
\]
Since $j \notin L$ but $j \in J$, the case $J = L$ and hence also $K = L$ is excluded in the sum
\[
\sum_{J \in J, I \subset J \subset K} (-1)^{|K| + |L| - |I| - |J|}.
\]
Therefore
\[
\sum_{J \in J, I \subset J \subset K} (-1)^{|K| + |L| - |I| - |J|} = \begin{cases} (-1)^{|L| - |I|} & \text{for } K = L \cup \{j\}, \\ 0 & \text{otherwise}. \end{cases}
\]
Hence we obtain
\[
\sum_{J \in J, I \subset J \subset I_0} |G_J|m^J_{I,J} = \sum_{L \neq L_j, I \subset L \subset I_0} (-1)^{|L| - |I|}|G^{L \cup \{j\}}|^2 \left(|G^L/G^{L \cup \{j\}}|^2 - 1 \right).
\]
\[
= \sum_{L \neq L_j, I \subset L \subset I_0} (-1)^{|L| - |I|} \left(|G^L|^2 - |G^{L \cup \{j\}}|^2 \right)
\]
\[
= \sum_{K \subseteq I \subset I_0} (-1)^{|K| - |I|}|G^K|^2.
\]
Therefore the statement follows from Proposition 18. \qed

3. Variance of the Exponents for Cusp Singularities with Group Actions

Let $f(x_1, x_2, x_3) := x_1^{\alpha_1} + x_2^{\alpha_2} + x_3^{\alpha_3} - x_1x_2x_3$ and G be a finite subgroup of $SL_n(\mathbb{C})$ acting diagonally on \mathbb{C}^n under which f is invariant. Let $K_i \subset G$ be the maximal subgroup fixing the coordinate x_i, $i = 1, 2, 3$. Define numbers $\gamma_1, \ldots, \gamma_3$ by
\[
(\gamma_1, \ldots, \gamma_3) = \left(\frac{\alpha_i}{|G/K_i|} \ast |K_i|, i = 1, 2, 3 \right),
\]
where we omit numbers which are equal to one on the right-hand side. Define a number $\chi(f, G)$ by
\[
\chi(f, G) := 2 - 2j_G + \sum_{i=1}^8 \left(\frac{1}{\gamma_i} - 1 \right).
\]
Lemma 20. Let the pair \((f, G)\) be as above.

(i) The Milnor number of the pair \((f, G)\) is given by

\[
\mu_{(f,G)} = 2 - 2j_G + \sum_{i=1}^{s} (\gamma_i - 1). \tag{3.1}
\]

(ii) The set of exponents for the pair \((f, G)\) is given by

\[
\{1,2\} \prod \left\{ \frac{1}{\gamma_1} + 1, \frac{2}{\gamma_1} + 1, \ldots, \frac{\gamma_1 - 1}{\gamma_1} + 1 \right\} \\
\prod \left\{ \frac{1}{\gamma_2} + 1, \frac{2}{\gamma_2} + 1, \ldots, \frac{\gamma_2 - 1}{\gamma_2} + 1 \right\} \prod \ldots \\
\ldots \prod \left\{ \frac{1}{\gamma_s} + 1, \frac{2}{\gamma_s} + 1, \ldots, \frac{\gamma_s - 1}{\gamma_s} + 1 \right\} \tag{3.2}
\]

Proof. See Corollary 5.13 and the proof of Theorem 5.12 of [ET].

We have the following formula for the variance. Note that we have \(\hat{c} = 1\) by Theorem [4].

Theorem 21. Let the pair \((f, G)\) be as above. The variance of the set of exponents of \((f, G)\) is given by

\[
\text{Var}_{(f,G)} = \frac{1}{12} \mu_{(f,G)} + \frac{1}{6} \chi_{(f,G)} = \frac{1}{12} \hat{c} \cdot \mu_{(f,G)} + \frac{1}{6} \chi_{(f,G)}. \tag{3.3}
\]

Proof. Some elementary calculation yields the statement.

We have the following formula for the variance. Note that we have \(\hat{c} = 1\) by Theorem [4].

Note that the pair \((f, G)\) can be considered as a mirror partner of the orbifold curve (Deligne–Mumford stack) \(C\) which is a smooth projective curve of genus \(j_G\) with \(s\) isotropic points of orders \(\gamma_1, \ldots, \gamma_s\) (cf. Theorem 7.1 of [ET]). The above formula for the variance is compatible with this observation. In particular, the dimension of \(C\) is 1, \(\mu_{(f,G)}\) is the orbifold Euler number \(\chi(C)\) of \(C\) and \(\chi_{(f,G)}\) is the orbifold Euler characteristic of \(C\), which is the degree of the first Chern class \(c_1(C)\) of \(C\). Applying this to the formula in Theorem [1] we recover the equation (3.3).

References

[AGV] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko: *Singularities of Differentiable Maps*, Volume II, Birkhäuser, Boston Basel Berlin 1988.

[B] L. Borisov: On Betti numbers and Chern classes of varieties with trivial odd cohomology groups. arXiv: [alg-geom/9703023].

[D] A. Dimca: Monodromy and Hodge theory of regular functions. In: New developments in singularity theory (Cambridge, 2000), NATO Sci. Ser. II Math. Phys. Chem., 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 257–278.

[ET] W. Ebeling, A. Takahashi: Mirror symmetry between orbifold curves and cusp singularities with group action. Int. Math. Res. Not. doi: 10.1093/imrn/rns115.

[E] G. Eisenstein: Théorèmes arithmétiques. J. Reine Angew. Math. 27 (1844), 281–283.
VARIANCE OF THE EXPONENTS

C. Hertling: Frobenius manifolds and variance of the spectral numbers. In: New developments in singularity theory (Cambridge, 2000), NATO Sci. Ser. II Math. Phys. Chem., 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 235–255.

F. Hirzebruch, D. Zagier: The Atiyah-Singer theorem and elementary number theory. Publish or Perish, Inc., Berkeley, 1974.

Y. Ito, M. Reid: The McKay correspondence for finite subgroups of SL(3, C). In: Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 221–240.

A. Libgober, J. Wood: Uniqueness of the complex structure on Kähler manifolds of certain homotopy types. J. Differential Geom. 32 (1990), no. 1, 139–154.

J. H. M. Steenbrink: Mixed Hodge structure on the vanishing cohomology. In: Real and Complex Singularities, Proc. Nordic Summer school, Oslo, (1976), pp. 525–563. orbifoldized Poincaré polynomials. Commun. Math. Phys. 205 (1999), 571–586.

Institut für Algebraische Geometrie, Leibniz Universität Hannover, Postfach 6009, D-30060 Hannover, Germany

E-mail address: ebeling@math.uni-hannover.de

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka Osaka, 560-0043, Japan

E-mail address: takahashi@math.sci.osaka-u.ac.jp