TOPICAL REVIEW

Current trends in the green syntheses of tin oxide nanoparticles and their biomedical applications

Suresh Sagadevan*, J Anita Lett, Is Fatimah, Yogeswaran Lokanathan, Estelle Léonard, Won Chun Oh, M A Motalib Hossain and Mohd Rafie Johan

1 Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
2 Department of Physics, Sathyabama Institute of Science and Technology, Chennai–600119, India
3 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
4 Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
5 Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu-CS 60 319-60 203 Compiègne Cedex, France
6 Department of Advanced Materials Science and Engineering, Hanseo University, Seosan-si, Chungnam 356-706, Korea

* Authors to whom any correspondence should be addressed.
E-mail: drsreshnano@gmail.com and wc_oh@hanseo.ac.kr

Keywords: bio-mediated synthesis, green fabrication, tin oxide nanoparticles, biological application

Abstract

Metal oxide nanoparticles had found a variety of applications in numerous fields of industrial, medical, and environmental technologies, attributable to recent advances nanotechnology field. Tin oxide nanoparticles (SnO₂ NPs) have gained importance as metal oxide nanoparticles due to their potential in various fields, particularly nanomedicine and other biomedicine fields. Tin oxide nanoparticles can be made using a variety of biological, chemical, and physical methods. Physicochemical methods are costly, emit high levels of toxic chemicals into the atmosphere, and consume a lot of energy. On the other hand, the biological approach is an environmentally safe, cost-effective, dependable, convenient, and easy way to synthesize tin oxide nanoparticles. In this review, the bio-mediated synthesis, as well as various biomedical applications of tin oxide nanoparticles, were discussed.

1. Introduction

Nanotechnology, which involves technologies from interdisciplinary fields such as physics, chemistry, biology, material science, and medicine, has recently emerged as one of the most significant research fields [1]. There was a considerable need to remove harmful reagents, and the green synthesis of nanoparticles was mainly cob [2]. The bio-mediated formation of nanoparticles has attracted the interest of researchers, including biologists, chemists, and materials scientists, as well as those looking forward to inorganic material synthesis utilizing environmentally friendly technologies [3, 4]. Because of their phyto-synthesizing potential, the application of transition metal nanoparticles has gained further prominence due to their properties of being biocompatible, low-toxicity, and enable environmentally friendly synthesis and usage [5]. Various chemical and physical methods to synthesize SnO₂ nanoparticles have been developed over the last few decades. The commonly used methods are chemical and physical methods such as hydrothermal, electrochemical, sputtering, microwave irradiation, photochemical synthesis, laser ablation, and chemical, physical and solid vapor deposition [6–10]. However, these processes involve the use of various dangerous and toxic chemicals, high amounts of electricity, and incur high expenditure. Thus, techniques with green chemistry methods that are pure, non-toxic, and environmentally sustainable are sought [11, 12]. The environmentally friendly and sustainable green technology approach of utilizing living organism such as plants and microbes in the synthesis of metallic oxide nanoparticles have captured attention and interest of many scientists [13, 14]. The biosynthesis of metallic oxide nanoparticles is a novel production method in a non-toxic, clean, and environmentally friendly manner [15, 16]. Bacteria were
found to act as cost-effective nano-factories that can convert metal ions into metallic nanoparticles [17]. Furthermore, the bacterial detoxification process that converts toxic metal ions into non-toxic metal NPs has been studied [18, 19]. This process has an intriguing reduction efficiency due to the chemical detoxification mechanism and energy-dependent ion efflux from the bacterial cell by membrane protein [17, 20, 21]. As a result of these fascinating features, bacteria are a top alternative for the green synthesis of nanoparticles. Biomolecules in bacteria can regulate the growth of inorganic crystals during biomineralization processes [14]. Various bacterial species, including *Pseudomonas aeruginosa*, *Pseudomonas stutzeri*, *Bacillus subtilis*, *Bacillus licheniformis*, *Lactobacillus casei*, *Rhizopus oryzae*, *Zooglea ramigera*, and others, have been investigated in recent years for the fabrication of metallic nanoparticles [17, 22–24]. Previous studies had examined multiple bacterial species, but only *Erwinia herbicola* was found to be capable of synthesizing SnO2 nanoparticles. SnO2 is an important material for various advanced engineering and medical applications, and studies on its mechanical, antibacterial properties, antioxidant properties [25–27], and cytotoxicity (Hepatocellular Carcinoma Cell Line) properties [28] have been undertaken.

Referring to the recent trend in bio-mediated production of metal oxide, the bio-mediated production of tin oxide nanoparticles from a variety of living organisms (plants, microbes, and other biological molecules), as well as various applications of tin oxide was reviewed here. The review covers the general perspective of the synthesis of metal oxide nanoparticles, the synthesis in green chemistry perspective, and the overview on the use of, particularly SnO2 nanoparticles in biomedical applications.

2. Synthesis of metal oxide nanoparticles

Nanostructures can be obtained in one of two ways: top-down or bottom-up. Grinding, milling, sputtering, and thermal ablation are examples of top-down methods that require breaking down bulk material into small particles by size reduction. Bottom-up methods concentrate on making nanoparticles (NPs) from smaller entities, such as atoms, molecules, and smaller particles [29]. Chemical and biological techniques are mainly used in bottom-up approaches. This has the benefit of increasing the probability of producing NPs with more uniform chemistry and fewer metallic NPs with fewer deficiencies.

2.1. Green synthesis

Green synthesis of NPs enables effective, sustainable, and environmentally friendly production while avoiding the creation of undesired by-products. To achieve this aim, ideal solvent systems and natural resources (such as organic systems) are needed. Green syntheses of metallic NPs have utilized a range of biological materials (e.g., plant and microbial extracts). Plant extracts enable a relatively simpler process to generate nanoparticles at a bigger amount as compared to microbes mediated synthesis, considering the available metal oxide NPs green synthesis methods. Biogenic nanoparticles are the common name for these materials (figure 1). The solvent, temperature, pressure, and pH conditions all play a role in green synthesis methodologies. Diverse plant extracts have been extensively studied to be used in the green synthesis of metal/metal oxide NPs as various useful phytochemicals are available from various extracts of the plant especially from leaves, such as terpenoids, flavones, ketones, amides, phenols, aldehydes, ascorbic acids, and carboxylic acids. Metal salts can be reduced into metal nanoparticles by these components [30] and these NPs have been studied for applications in diagnostic systems, anti-microbial applications, and a variety of other biotechnological applications [31].

2.2. Biosynthesis of tin oxide (SnO2) nanoparticles

In the last decade, there has been a significant increase in interest in biologically synthesizing SnO2 NPs because the process is more reliable, eco-friendly, cost-effective, low input-high yield, and simple procedures that do not harm the environment. For the green synthesis of SnO2 NPs, a variety of biological substrates such as plant extracts, bacteria, and natural biomolecules have been successfully used. Green synthesis is primarily driven by phytochemicals from various plants and enzymes from bacteria. During the synthesis, the active compounds found in green sources act as a reducing, capping, and stabilizing agent. SnO2 NPs can be synthesized by various methods, including physical, chemical, photochemical, biological, and hybrid approaches [32, 33] (figure 2). Physical synthesis approach includes spray pyrolysis [34], ultrasonication [35] sputtering [36] thermal decomposition [37] laser irradiation and ablation [38, 39] electrolysis [40] and chemical vaporization [41]. Nevertheless, there are pros and cons to the chemical synthesis of NPs. The chemical synthesis process is normally straightforward, can be conducted in ambient conditions and the resulting nanoparticles are homogeneous and have a narrow range of size [41]. Nanoparticles can be made chemically by reduction reactions, or by electrolysis of aqueous solutions that precipice metal ions from the aqueous solution. Chemical processes, on the other hand, have one of the most serious drawbacks: the generation of toxic by-products during the process. Such waste materials would inevitably accumulate during large-scale industrial activity,
resulting in bioaccumulation. This is dangerous to people’s health and the environment [42]. Thus, environmentally safe and non-hazardous synthesis approaches are favoured and used in the production of NPs. Biological synthesis methods that fulfill the above-mentioned condition have been studied extensively in metal oxide NPs production [34, 37]. Bioleaching and bioaccumulation fields have been studying the interaction and build-up of metal ions in micro- or micro-organisms in natural settings or due to industrialization; however, the approach of using living organisms for the biosynthesis of metallic NPs is a relatively new advance [43]. Nanoparticles have been synthesized using a range of micro-and macro-organisms, including bacteria, algae, fungi, algae, and plant biomass/derivatives (figure 3) [44]. Living organisms are increasingly being used in this area because they are less expensive and environmentally friendly compared to physicochemical methods, and also due to more successful application of synthesized NPs.
2.3. Plant-mediated synthesis of tin oxide (SnO₂) nanoparticles.

Plant-mediated synthesis has surpassed traditional physicochemical methods as the best synthesis platform because it is free of toxic chemicals and provides natural capping and reducing agents. Furthermore, it is simple and environmentally friendly, producing a quantity-enriched product free of impurities. This method eliminates the need for high-temperature, high-pressure, and expensive equipment. Extracts from plant leaves, bulbs, roots, stems, petals, or fruits have been used to prepare metal oxide NPs, which is considered a more effective and environmentally friendly process. Various plant derivatives have been used in the synthesis of NPs such as proteins, polysaccharides, and organic compounds such as citrates, flavonoids, carbonyls, amine, and amide [45]. The advantages of using plant-extract-mediated synthesis include [46, 47] a plentiful supply of resources; a non-hazardous, cost-effective, quicker, environmentally friendly, and direct process; stable NPs; and tunability of shape and size of NPs and production of NP with stable and uniform properties.

In addition, secondary metabolites also can be utilized for the bio-reduction of tin salt precursors. Various phytochemical compounds, reduce metal ions (Sn²⁺) to be Sn⁰. Further oxidation process converts Sn⁰ into SnO₂ NPs. Figure 4 depicts an example of the bioreduction mechanism of Sn²⁺ by gallic acid from bioreactor plants [48].

Numerous studies had examined the capacity of extracts of various plant species to synthesize SnO₂ NPs due to the benefits of this method and also the NPs biosynthesis process is simple (figure 5).

The abundance of plant extracts leads to low-cost chemicals, moreover, by using H₂O as a solvent in the extract preparation, the process is safer [49]. Thus, the interest in the green synthesis of various types of metal oxide NPs and semiconductors in bulk has grown tremendously. Plant extracts are being used as capping and reducing agents in the green synthesis of metal NPs. Plant extracts can be used as bio-templates to monitor the NPs’ morphology [50]. Variety of plant materials have been studied for green synthesis of SnO₂ NPs, such as Ficus Carica leaf [49], Persia Americana seed [51], fruit [52], Saraca indica flower [53], Psidium guajava leaf [54], Litsea cubeba fruit Cymophomandra betacea [55], Piper nigrum seed [56], Aspalathus linearis leaf [57], Clerodendrum inerme leaf [58], Piper beetle leaf [59], Parkia speciosa Hassk pods [60], Trigonella foenum-graecum seeds [61], Aspalathus linearis leaf, Camellia sinensis leaf, Punica granatum fruit, Saraca indica flower, etc.

2.4. Fungal mediated synthesis of tin oxide (SnO₂) nanoparticles

Fungi are eukaryotic non-phototrophic organisms that possess a cell wall. This includes yeast, molds, and mushrooms. While some fungi live off on decaying matters such as a dead tree, others parasitize on living matter. The cell wall of fungi is mainly made of glycoproteins, glucan, and chitin. Intracellular and extracellular reactions of fungi with aqueous metal ions can produce NPs [62]. Extracellular synthesis of nanoparticles by fungi is known to be quicker and also yields NPs bigger in size compared to the intracellular synthesis [63]. The nucleation of particles that happens inside the fungus could be the reason for the difference in NPs’ size [64]. Studies have reported syntheses of NPs from various genus fungi’s such as Aspergillus spp., Alternaria alternata,
2.5. Bacterial synthesis of tin oxide (SnO$_2$) nanoparticles

Microorganisms are capable of producing a wide range of distinct nanostructures. This has piqued the interest of scientists in using these microbes to synthesize nanostructures for a variety of applications. Bacteria and fungi can produce inorganic molecules through biologically mediated and induced synthesis. Nanostructures of desired geometries and compositions can be formed by controlling biological synthesis. Despite the precision of nanoparticle physicochemical synthesis, biological nanoparticle synthesis is still limited in terms of particle geometry controllability and process scalability. Additionally, biologically induced synthesis has enabled scientists to create inorganic nanoparticles from common metal precursors, while also providing a wide range of
NPs were found to significantly inhibit Candida albicans activity compared to that of Escherichia coli. This difference can be associated with the structural and compositional differences in the cell wall of the different classes of organisms. The main difference is that the cell wall made up of a peptidoglycan layer protects bacteria while the cell wall made up of chitin protects yeast [86]. As with many other nanoparticles, the behavior is linked to the ability of the nanoparticles to block cell growth through cell wall cleavage via the mechanism depicted in figure 7. Many factors influence the antibacterial activity of SnO₂ NPs, including particle size, the capping agent used during synthesis, and nanoparticle morphology. For example, 16 mg ml⁻¹ of SnO₂ NPs were found to significantly inhibit E. coli and C. albicans growth, with 22 mm and 14 mm zone of inhibition, respectively (figure 7). The minimum inhibitory concentration (MIC), and minimum bactericidal/fungicidal concentration (MBC/MFC) was of 0.5 mg ml⁻¹ and >1 mg ml⁻¹ respectively for E. coli, while the MIC and MFC were of 8 mg ml⁻¹ and >16 mg ml⁻¹ respectively for C. albicans [86]. The increase in the concentration of NPs increased the antimicrobial activity of the prepared NPs. The lower concentration of NPs needed to reach MIC and MBC for bacteria compared to that of fungi can be explained by enhanced binding of positively charged metal NPs to the negatively charged surface of the bacteria, conferring a higher bactericidal effect compared to fungicidal effect at the same concentration of NPs. In addition, Cobalt-doped SnO₂ (Co-doped SnO₂) NPs also showed broad-spectrum antibacterial properties, whereby it was effective against both Gram-negative and Gram-positive bacteria [87].

The potential mechanism of SnO₂ NPs’ antibacterial activity is shown in figure 8. Metal oxide NPs are able to break into the outer membrane and cell wall of bacteria, and then inactivate the cells. These properties enable...
SnO₂ nanoparticles to penetrate the cell membrane to elicit antibacterial activity\cite{88}. As the bactericidal activity increase in a nanoparticles dose-dependent manner, a higher concentration of SnO₂ nanoparticles can significantly increase its bactericidal effect. Metal oxide nanoparticles have been reported to act thru few mechanisms such as nanoparticle decomposition that cause reactive oxygen species production, and electrostatic interaction of NPs with the cell wall\cite{89}. Bactericidal activity of SnO₂ NPs through these mechanism causes a zone of inhibition (ZOI) around the area containing NPs and the size of ZOI is determined by the bactericidal potency of the SnO₂ NPs.

3.2. In vitro antioxidant activity

Estimation of free radical scavenging activity using 1, 1-diphenyl-2-picryl hydrazyl (DPPH) is commonly used to evaluate the antioxidant potential of NPs. DPPH, a deep purple colour stable free radical turns into yellow colour when scavenged or reduced. When the SnO₂ NPs are mixed into DPPH solution, the solution will slowly change from deep purple to yellow, demonstrating the scavenging potential or antioxidant activity of SnO₂. The odd electron or the free radical of the DPPH pair with a cation from an antioxidant compound thus reducing or scavenging the DPPH to form DPPH-H. The amount decolourisation is relative to the number of scavenged electrons. Figure 9\cite{90} shows an example of the scavenging capacity of SnO₂ nanoparticles. The antioxidant activity was directly proportional to the concentration of SnO₂ nanoparticles. The free radical scavenging activity is a surface reaction as the free radical’s reaction occurs on the surface of the antioxidant compound. Particle size, morphology, defects, and other variables influence the radical scavenging potential. More extensive studies on the influence of the aforementioned factors on the antioxidant potential of SnO₂ are necessary to better understand the antioxidant potential and mechanism of SnO₂ nanoparticles.

Figure 7. Agar well diffusion assay showing the zone of inhibition at 16, 8, 4, 2, 1, 0.5 mg ml⁻¹ of SnO₂ NPs. Control: Sterile water. (A) E. coli; (B) C. albicans. Reprinted with permission from\cite{86}).

Figure 8. Schematic diagram showing the possible mechanism of antibacterial activity.
3.3. Anticancer activity
The previous study has explored the SnO₂ NPs’ size-dependent cytotoxic impact on HCT116 and A549 cancer cell lines. SnO₂ NPs in 3 different sizes were tested to check their effect on cancer cell line viability. The SnO₂ NPs samples of S1, S2, and S3 were in diameter of 8.85 ± 3.5 nm, 12.76 ± 3.9 nm, and 25.99 ± 8.2 nm respectively. The findings showed that NP size is an important factor in determining its cytotoxic effect where the smallest NPs sample had the highest cytotoxic effect on A549 and HCT116 cancer cell lines. Besides that, the cytotoxicity increased in a dose-dependent manner too where a higher concentration of SnO₂ NPs caused higher cell death. Thus, the cytotoxic activity of NPs can be increased by reducing particle size and increasing the concentration of SnO₂ NPs. The effect of the capping agent on the cytotoxicity of the cell lines was also investigated in this study. Under similar conditions, MTT assay was performed with *Piper nigrum* seeds extract, which mediated the green synthesis of SnO₂ NPs in this study, and it was found that the capping agent was not cytotoxic on carcinoma cell lines. The S1, S2, and S3 samples of SnO₂ NPs showed IC₅₀ (half maximal inhibitory concentration) values of 165, 174, and 208 μg l⁻¹ respectively against HCT116; 135, 157, and 187 μg l⁻¹ respectively against A549 carcinoma cell lines as shown in figure 10 [91].

Another study reported, the synthesis of SnO₂ NPs using sugar apple (*Annona squamosa*) peel extract mediated process, and the cytotoxicity of SnO₂ NPs against the hepatocellular carcinoma cell line (HepG2) [28]. These SnO₂ NPs were found to have an IC₅₀ value of 148 μg ml⁻¹. Besides that, a previous study also found that 24 h of exposure of HCT116 human cells with 1 μg ml⁻¹ super-paramagnetic iron oxide nanoparticles (SPIONPs) did not affect the viability of the cells [92]. These findings show that the SnO₂ NPs may have a different cytotoxic effect on different cell types and the cytotoxicity activity is NPs’ size-dose-dependent. It is inferred that the metal oxide NPs interact with cell-membrane proteins, penetrate cells, produce reactive oxygen species (ROS), and finally cause oxidative stress and cell damage due to ROS imbalance and the redox state of the cell [93–97]. The presence of pro-oxidant functional groups on the surface of NPs or NP-cell interactions determines the cytotoxicity of NPs [98–100] as it affects cellular signalling and the immune system. Mechanism of cytotoxic effect on cancer cells by SnO₂ NPs as shown in figure 11.

4. Conclusion
Tin oxide nanoparticles have gotten a lot of attention because of their numerous applications. It has antibacterial, antifungal, antiviral, anticancer, antioxidant, drug delivery, and several other biomedical applications. Tin oxide nanoparticles have been created using a variety of methods, including chemical, physical, and biological methods. Physical and chemical methods are also costly and include the use of a dangerous chemical that may have a harmful impact. The biological approach, on the other hand, is an environmentally sustainable, cost-effective, efficient, safe, low-energy-consuming, and simple method. This review summarized the synthesis of tin oxide NPs using various biological methods, as well as their properties, mechanism of action, and various biomedical applications. More research should be done on potential methods of reducing SnO₂ NPs’ toxicity while preserving and enhancing their biological activities to improve the biomedical applications of SnO₂ NPs.
Figure 10. Cytotoxic effect of S1, S2, and S3 samples on (a) HCT116 (b) A549 cancer cell lines. NPs sizes of samples S1, S2, and S3 are 8.85 ± 3.5 nm, 12.76 ± 3.9 nm, and 25.99 ± 8.2 nm respectively. CDDP: Cis-diamminedichloridoplatinum (II). A negative control is cell culture without any NPs or additional compounds. Reprinted with permission from [91].

Figure 11. Mechanism of cytotoxic effect on SnO\textsubscript{2} NPs.
Acknowledgments

The authors would like to acknowledge the financial support provided by a Research University grant from the University of Malaya (RU001-2020).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Conflict of interest

The authors declare no conflict of interest with this work.

ORCID iDs

Suresh Sagadevan https://orcid.org/0000-0003-0393-7344
J Anita Lett https://orcid.org/0000-0003-2917-4277
Is Fatimah https://orcid.org/0000-0001-5551-6563
Estelle Léonard https://orcid.org/0000-0002-3576-388X

References

[1] Madhumitha G and Roopan S M 2013 Devastated crops: multifunctional efficacy for the production of nanoparticles J Nanomater 951858 1–12
[2] Kumar R, Roopan S M, Prabhakaran A, Khanna V G and Chakraborty S 2012 Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles Spectrochim. Acta A 90 173–6
[3] Rajkumar G, Rahuman A A, Roopan S M, Khanna V G, Elango G, Kamaraj C, Zahir A A and Velayutham K 2012 Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria Spectrochim. Acta A 91 23–9
[4] Roopan S M, Surendra T V, Elango G and Kumar S H S 2014 Biosynthetic trends and future aspects of bimetalllic nanoparticles and its medicinal applications Appl. Microbiol. Biotechnol. 98 5289–300
[5] Roopan S M, Rohit G M, Madhumitha G, Rahuman A A, Kamaraj C, Bharathi A and Surendra T V 2013 Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity Ind. Crop Prod. 43 631–5
[6] Kowsari E and Ghezelbash M R 2012 Ionic liquid-assisted, facile synthesis of ZnO nanocomposites and, investigation of their photocatalytic activity Mater. Lett. 68 17–20
[7] Chen W, Ghosh D and Chen S 2008 Large-scale electrochemical synthesis of SnO2 nanoparticles J. Mater. Sci. 43 5291–9
[8] Jiang L et al 2005 Size-controllable synthesis of monodispersal SnO2 nanoparticles and application in electrocatalysts J. Phys. Chem. B 109 8774–8
[9] Tian Z, Liang C, Liu J, Zhang H and Zhang L 2011 Reactive and photocatalytic degradation of various water contaminants by laser ablation-derived SnOx nanoparticles in liquid J. Mater. Chem. 21 18242–7
[10] Wang H, Sun F, Yang Y, Gu K, Chen W and Li W 2011 Photochemical construction of free-standing Sn-filled SnO2 nanotube array on a solution surface for flexible use in photocatalysis J. Mater. Chem. 21 12407–13
[11] Gangula A, Ramakrishna P, Ramakrishna M, Lohith K, Chelli J and Apparao M R 2011 Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides Langmuir 27 15268–74
[12] Kirubaharan C J, Kalpana D, Lee Y S, Kim A R, Yoo D J, Nahm K S and Kumar G G 2012 Biomediated silver nanoparticles for the highly selective copper(II) ion sensor applications Ind. Eng. Chem. Res. 51 7441–6
[13] Huang J et al 2008 Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors Ind. Eng. Chem. Res. 47 6081–90
[14] Dong Q, Su H, Zhang D, Cao W and Wang N 2007 Biogenic synthesis of tubular SnO2 with hierarchical intertextures by an aqueous technique involving glycoprotein Langmuir 23 8108–13
[15] Duran N and Seabra A B 2012 Metallic oxide nanoparticles: state of the art in biogenic synthesises and their mechanisms Appl. Microbiol. Biotechnol. 95 275–88
[16] Srivastava N and Mukhopadhyay M 2014 Biosynthesis and characterization of gold nanoparticles using zoogloea ramigera and assessment of its antibacterial property J. Cluster Sci. 1–18
[17] Srivastava S and Constanti M 2012 Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1 J. Nanopart. Res. 14 1–10
[18] Ramanathan R, OMullane A P, Parikh R Y, Smooker P M, Bhargava S K and Bansal V 2010 Bacterial kinetics-controlled shapedirected biosynthesis of silver nanoplates using morganella psychrotolerans Langmuir 27 7114–9
[19] Ramanathan R, Riedl M R, OMullane A P, Smooker P M, Bhargava S K and Bansal V 2013 Aquous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis activity in bacterial systems Nanoscale 5 2300–6
[20] Hallmann J, Quad-Hallmann A, Mahaffe W F and Kloeper J W 1997 Bacterial endophytes in agricultural crops Can. J. Microbiol. 43 895–914
[21] Bruns M K, Kapil S and Oehme F W 2000 Microbial resistance to metals in the environment Ecotoxicol. Environ. Saf. 45 198–207
[22] Srivastava N and Mukhopadhyay M 2013 Biosynthesis and structural characterization of selenium nanoparticles mediated by Zoogloesramigera Powder Technol. 244 36–9
[23] Das S K, Dickinson C, Lahri F, Brougham D F and Marsili E 2012 Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract Green Chem. 14 1322–34
[24] Irvani S 2014 Bacteria in nanoparticle synthesis: current status and future prospects International Scholarly Research Notices 2014 359316

[25] Kumari M M and Philip D 2015 Synthesis of biogenic SnO₂ nanoparticles and evaluation of thermal, rheological, antibacterial and antioxidant activities Powder Technol. 270 312–9

[26] Vidhu V K and Philip D 2015 Biogenic synthesis of SnO₂ nanoparticles Evaluation of antibacterial and antioxidant activities Spectrochim. Acta A 134 372–9

[27] Talebian N, Sadeghi H and Zavvare H 2014 Enhanced bactericidal action of SnO₂ nanostructures having different morphologies under visible light: Influence of surfactants J. Photochem. Photobiol. B 130 132–8

[28] Roopan S, Kumar S H S, Madhumitha G and Suthidhārāna K 2015 Biogenic—production of SnO₂ nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2) Appl. Biochem. Biotechnol. 175 1567–75

[29] Faramarzi M A and Sadighi A 2013 Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures Adv. Colloid Interface Sci. 189 — 190 1–20

[30] Doble M and Kruthiventi A K 2007 Green chemistry and engineering. (Cambridge: Academic)

[31] Aguilar Z 2013 Nanomaterials for medical applications. (Boston: Elsevier)

[32] Narayanan K B and Sakhthivel N 2010 Biological synthesis of metal nanoparticles by microbes Adv. Colloid Interface Sci. 156 1–13

[33] Khan M M, Saadah N H, Khan M E, Harunzani M H, Tan A L and Cho M H 2019 Potential of costsus woodsonii leaf extract introducing narrow band gap ZnO nanoparticles Mater. Sci. Semicond. Process. 91 194–200

[34] Lounis Z, Bouslama M, Zegadi C, Ghaffor D, Gaazzoul M, Baizaid A, Halati M S, Kharroubi B, Bashrahou F and Ouervedane A 2018 Journal of electron spectroscopy and surface stoichiometry analysis by AES, EELS spectroscopy and AFM microscopy in UHVAtmosphere of SnO₂ thin film J. Electron. Spectrosc. Relat. Phenom. 226 9–16

[35] Manikandan A S and Renukadevi K B 2017 Influence of photoactivation on the photocatalytic activity of tin oxide thin films Mater. Res. Bull. 94 85–91

[36] Majumdar S and Devi P S 2010 Synthesis of SnO₂ nanoparticles using ultrasonication AIP Conf. Proc. 1276 1–7

[37] Jaiwal M K and Kumar R 2015 Studies of dense electronic excitation induced modification in cobalt doped SnO₂ thin films prepared by sputtering techniue J. Alloys Compd. 648 850–8

[38] Huang F, Pu F, Lu X, Zhang H, Xia Y, Huang W and Li Z 2013 Photoelectrochemical sensing of Cu²⁺ ions with SnO₂/CdS heterostructural films Sens. Actuators, B 183 601–7

[39] Li Y, Yin W, Deng R, Chen R, Chen J, Yan Q, Yao B, Sun H, Wei S H and Wu T 2012 Realizing a SnO₂-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule NPG AsiaMater. 4 e30

[40] Pallà Papavu A, Mattle T, Temmel S, Lehmann U, Hintennach A, Grisel A, Wokaun A and Lippert T 2016 Highly sensitive SnO₂ sensor via reactive laser−induced transfer Sci. Rep. 6 1–9

[41] Rahmi R and Kurniawan F 2017 Synthesis of SnO₂ nanoparticles by high potential electrolysis Bull. Chem. React. Eng. Catal. 12 281–6

[42] Banjerdreerakul K, Vas-Umuuay P and Paravarjarn V 2018 Synthesis of mesoporous tin dioxide via sol-gel process assisted by resorcinol-formaldehyde gel Particuology 37 26–32

[43] Vijayaraghavan K and Ashokkumar K 2017 Plant-mediated biosynthesis of metallic nanoparticles: a review of synthesis, characterization techniques and applications J. Environ. Chem. Eng. 5 4866–83

[44] Gavrilović T V, Jovanović D J and Dramićanin M D 2018 Synthesis of multifunctional inorganic materials Microsensor to Nanometer Dimensions (In Micro and Nano Technologies, Nanomaterials for Green Energy) ed B A Bhavanese et al(Elsevier) Ch 2 55–81

[45] Khan M M, Lee J and Cho M H 2013 Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles Int. J. Hydrogen Energy 38 5243–50

[46] Asmethunisha N and Kathiresan K 2013 A review on biosynthesis of nanoparticles by marine organisms Colloids Surf. B 103 283–7

[47] Sangappa M, Vandana S P, Bhathar A U and Thigajaran P 2013 Mycobiosynthesis of novel non toxic zinc oxide nanoparticles by a new soil fungus aspergillus terreus VIT J. Chem. Pharm. Res. 5 1555–61

[48] Copinath K and Arumugam A 2014 Extracellular mycosynthesis of gold nanoparticles using fusarium solani Appl. Nanosci. 4 657–62

[49] Fatimah I, Sahroni I, Muraza O and Doong R-A 2020 One-pot biosynthesis of SnO₂ quantum dots mediated by Clitoria ternatea flower extract for photocatalytic degradation of rhodamine B J. Environ. Chem. Eng. 8 103879

[50] Hu J 2015 Biosynthesis of SnO₂ nanoparticles by Ficus Carica leaf extract for electrochemically determining Hg(II) in water samples Int. J. Electrochem. Sci. 10 10688–76

[51] Khalil A T, Ovais M, Ullah I, Ali M, Shinwari Z K, Hassan D and Maaza M 2018 Sageretia thea (Osbeck) modulated biosynthesis of NO₃ nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential Artif. Cells Nanomed. Biotechnol. 46 838–52

[52] Elango G, Kumaran S M, Kumar S S, Muthuraja S and Roopan S M 2015 Green synthesis of SnO₂ nanoparticles and its photocatalytic activity of phenolsulphonphalene dye Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 145 176–80

[53] Elango G and Roopan S M 2016 Efficacy of SnO₂ nanoparticles towards photocatalytic degradation of methylene blue dye J. Photochem. Photobiol., B 155 34–40

[54] Vidhu V K and Daizy P 2015 Biogenic synthesis of SnO₂ nanoparticles: evaluation of antibacterial and antioxidant activities Biometals Spectroscopy A 134 372–9

[55] Kumar M, Mehta A, Mishra A, Singh J, Ravat M and Basu S 2018 Biosynthesis of tin oxide nanoparticles using Psidium guajava leaf extract for photocatalytic dye degradation under sunlight Mater. Lett. 215 121–4

[56] Hong G-B and Jiang C-J 2017 Synthesis of SnO₂ nanoparticles using extracts from Litsea cubeba fruits Mater. Lett. 194 164–7

[57] Tammina S K, Mandal B K, Ranaian S and Dasgupta N 2017 Cytotoxicity study of Piper nigrum seed mediated synthesized SnO₂ nanoparticles via aspalathus linearis J. Alloy. Compd. 681 561–70

[58] Dhalo A, Manikandan E, Rajendran V and Maaza M 2016 Physcial & enhanced photocatalytic properties of green synthesized SnO₂ nanoparticles via aspalathus linearis J. Alloy. Compd. 681 561–70

[59] Singh K A, Kanwal S, Rizwan K and Shadshid S 2018 Enhanced antimicrobial, antioxidant, in vivo antitumor and in vivo anticancer effects against breast cancer cell line by green synthesized undoped SnO₂ and Co−doped SnO₂ nanoparticles from Clerodendrum inerme Microb. Pathog. 125 366–84

[60] Singh I, Kaur N, Kaur P, Kaur S, Kaur J, Kukkar P, Kumar V, Kukkar D and Rawat M 2018 Piper betle leaves mediated synthesis of biogenic SnO₂ nanoparticles for photocatalytic degradation of reactive yellow 16 dye under direct sunlight. Environ Nanotechnol. Monit. 10 331–8

[61] Begum S and Ahmarmuzzaman M 2018 Green synthesis of SnO₂ quantum dots using parkia speciose hassk pods extract for the evaluation of anti-oxidant and photocatalytic properties J. Photochem. Photobiol. 184 44–53

[62] Vidhu V K and Philip D 2015 Phytosynthesis and applications of bioactive SnO₂ nanoparticles Mater. Charact. 101 97–105
[62] Sehgal N, Soni K, Gupta N and Kohli K 2018 Microorganism assisted synthesis of gold nanoparticles: a review Asian J. Biomed. Pharm. Sci. 8 22–9
[63] Khan A U, Malik N, Khan M, Cho M H and Khan M M 2018 Fungi-assisted silver nanoparticle synthesis and their applications Bioprocess. Biostyst. Eng. 41 1
[64] Yadav A, Kon K, Kratosova G, Duran N, Ingle A P and Raj M 2015 Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research Biotechnol. Lett 37 2099–120
[65] Khandel P and Shahi S K 2018 Myogenic nanoparticles and their bio-prospective applications: current status and future challenges Journal of Nanostructure in Chemistry 8 369–91
[66] Shamsuzzaman, Mushra A, Khanam H and Aljawfi R N 2017 Biological synthesis of ZnO nanoparticles using c. albicans and studying their catalytic hirussun in the native white-rot fungus from chilean forests J. Nanomater. 2015 1–7
[67] Thakker J N, Dalwadi P and Dhandhukia P C 2013 Biosynthesis of gold nanoparticles using fusarium oxysporum F. Sp. Cubense JT1, a plant pathogenic fungus ISRN Biotechnol. 2013 1–5
[68] Guadie J A, Bonde S R, Gaikwad S C, Gade A K and Rai M K 2011 Phoma Glomerata: a novel agent for fabrication of iron oxide nanoparticles J. Boninosci. 5 138–42
[69] Tarafdar J C and Raiya R 2013 Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using aspergillus oryzae TF9RJ. Nanomater. 2013 1–4
[70] Shankar P D, Shobana S, Karuppasamy I, Pugazhendhi A, Ramkumar V S, Arvindnarayan S and Kumar G 2016 A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgal: formation mechanism and applications. enzyme microb Technol. 95 28–44
[71] Verma C, Ebenso E E, Bahadur I and Qurashi M A 2018 An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media J. Mol. Liq. 266 577–90
[72] Khan M M, Ansari S A, Lee J H, Lee J and Cho M H 2014 MixedCulture Electrochemically Active Biofilms and Their Microscopic and Spectroelectrochemical Studies ACS Sustainable Chem. Eng. 2 323–32
[73] Dhoumdia Z H and Chakraborty H 2012 Lactobacillus mediated synthesis of silver oxide nanoparticles Nanotechnol. 21 15
[74] Mishra S, Singh B R, Naqvi A H and Singh H B 2017 Potential of biosynthesized silver nanoparticles using stenotrophomonas Sp. BHUS7 (MTCC 5978) for management of soil-borne and foliar phytopathogens Sci. Rep. 7 1–15
[75] Moisecsu C, Bonnecle S C, Tobler D J and Ardelean I I 2008 Controlled biominanerallization of magnetite (Fe3O4) by magnetospirillum gryphiswaldense Mineral. Mag. 72 533–6
[76] Wright M H, Farooqui S M, White A R and Greene A C 2016 Production of manganese oxide nanoparticles by shewanella species Appl. Environ. Microbiol. 82 5402–9
[77] Kundu D, Haara C, Chatterjee A, Chaudhuri A and Mishra S 2014 Extracellular biosynthesis of zinc oxide nanoparticles using rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon cancerin J. Photochem. Photobiol., B 140 194–204
[78] Correa-Llantén D N, Muñoz-Ibáñez S A, Castro M E, Muñoz P A and Blamey J M 2013 Gold nanoparticles synthesized by geobacillus Sp. strain ID17 a Thermophilic bacterium isolated from desolation island, antarctica Microb. Cell Fact. 12 75
[79] Jayaseelan C, Rahuman A A, Kirthi A V, Marimuthu S, Santoshkumar T, Bagavan A, Gaurav K, Karthik L and Rao K V B 2012 Novel microbial route to synthetize ZnO nanoparticles using aeromonas hydrophila and their activity against pathogenic bacteria and fungi Spectrochim. Acta, Part A 90 78–84
[80] Singh B N, Rawat A K S, Khan W, Naqvi A H and Singh B R 2014 Biosynthesis of stable antioxidant zno nanoparticles by pseudomonas aeruginosa rhodanopseudomonas PLoS One 9 e106937
[81] Tripathi R M, Bhadwal A S, Gupta R K, Singh P, Shrivastav A and Shrivasatav B R 2014 ZnO nanoparticles: novel biogenic synthesis and enhanced photocatalytic activity J. Photochem. Photobiol., B 141 288–95
[82] Ghorbani H R, Mehr F P and Poor A K 2015 Extracellular synthesis of copper nanoparticles using culture supernatants of salmonella typhimurium Orient. J. Chem. 31 527–9
[83] Srivastava N and Mulkopadhyay M 2014 Biosynthesis of SnO2 nanoparticles using bacterium erwinia herbicola and their photocatalytic activity for degradation of dyes Ind. Eng. Chem. Res. 53 13971–9
[84] Ying T, Teo W K and Nair C Y 1995 Gold uptake by chlorella Sp.let S J. Appl. Phycol. 7 97–100
[85] Rehman S, Mousa Astri S, Alam Khan F, Rabindran Jermy B, Khan H, Akhtar S, Al Jindan R, Mohammed Khan K and Qurashi A 2019 Biocompatible tin oxide nanoparticles: synthesis, antibacterial, anticandidal and cytotoxic activities Chemistry Sel. 4 4013–7
[86] Qamar M, Shahid S, Khan S, Zaman S and Sarwar M 2017 Synthesis characterization, optical and antibacterial studies of co-doped SnO2 nanoparticles Dpg J Nanomater. Biostauct 12 1127–35
[87] Subbiahogan S, Sharif S, Grijpma D W, Laurent S, Van der Mei H C, Mahmoudi M and Busscher H J 2012 Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci Acta Biomater. 8 2047–55
[88] Veronique B S, Franck T Z, Sandra R, Sabine P, Lars C, Alexandros L, Renate J, Katharina L and Ulrich J 2012 Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(N-isopropylacrylamide) hydrogel surface layers Adv. Funct. Mater. 22 2376–86
[89] Vidhu V K and Philip D 2015 Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities Spectrochim. Acta, Part A 134 372–9
[90] Tammina S K, Mandal B K, Ranjan S and Dasgupta N 2017 Cytotoxicity study of piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT 116) and lung cancer (A549) cell lines J. Photochem. Photobiol., B 166 158–68
[91] Ahmadzadeh Raji M, Amara M, Amoabedy G, Tajik P, Barin A, Magierski S and Ghalati-Zaideh E 2014 Cytotoxicity of synthesized iron oxide nanoparticles: Toward novel biomarkers of colon cancer 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 6179–82
[92] Maddinedi S B, Mandal B K, Ranjan S and Dasgupta N 2015 Diastase assisted green synthesis of size controllable gold nanoparticles RSC Adv. 5 26727–34
[93] Lin W, Stayton I, Huang Y-W, Zhou X D and Ma Y 2008 Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549 Toxicol. Environ. Chem. 90 983–96
[94] Fahmy B and Cormier S A 2009 Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells Toxicol. in Vitro 23 1365–71
[96] Manke A, Wang L and Rojanasakul T 2013 Mechanisms of nanoparticle-induced oxidative stress and toxicity BioMed Res. Int. 2013 942916
[97] Sarkar A, Ghosh M and Sil P C 2014 Nanotoxicity: oxidative stress-mediated toxicity of metal and metal oxide nanoparticles J. Nanosci. Nanotechnol. 14 730–43
[98] Knaapen A M, Borm P J, Albrecht C and Schins R P 2004 Inhaled particles, and lung cancer Part A: Mechanisms, Int. J. Cancer 109 799–809
[99] Risom L, Møller P and Loft S 2005 Oxidative stress-induced DNA damage by particulate air pollution Mutat. Res. 592 119–37
[100] Khanna P, Ong C, Ray B H and Baeg G H 2015 Nanotoxicity: an interplay of oxidative stress, inflammation and cell death Nanomaterials. 5 1163–80