Comparative study of palatal rugae pattern in class II div 1 and class I individuals

Chandrasekhar Gandikota, Yudhister Palla Venkata¹, Padmalatha Challa¹, Shubhaker Rao Juvvadi, Anirudh Mathur²

ABSTRACT

Aims: To determine if the palatal rugae have a characteristic pattern in untreated class II div 1 malocclusions compared to normal class I occlusions, and to provide a valuable insight whether palatal rugae can be taken up as additional criteria for classifying malocclusions. Materials and Methods: The study was conducted on initial maxillary dental casts of 24 individuals with untreated class II div 1 malocclusion with an overjet of minimum of 5mm, of whom 12 were females and 12 were males, with age ranging from 16 to 24 years and compared with Class I patients casts. Results: There was no statistically significant difference in the mean intermolar widths of the two groups. The first, second and third palatal rugae were shorter in class II div 1 patients than in class I patients which was statistically significant. All the patients with Angle’s class I occlusion had good pattern of palatal rugae falling in the score range of 1–3, whereas 22% of the patients with class II div 1 had poor pattern of palatal rugae, with score 4 and 2 patients exhibiting a score of 4 and 5, respectively, but this was not statistically significant. Conclusion: There was a significant constriction of the palatal rugae in class II div 1 individuals as compared to class I individuals, though they were matched for the same intermolar widths. There was a distinct pattern of palatal rugae between the two groups.

KEY WORDS: Palatal rugae, class II div 1 malocclusion, class I malocclusion, intermolar widths
palatal rugae adjacent to the alveolar arch slightly change their position after tooth extraction.\[12\] However, some events may contribute to changes in the pattern of PR, such as finger sucking in childhood and persistent pressure due to orthodontic treatment. Furthermore, it has been reported that extractions can produce a local effect on the direction of the PR.\[13\] The PR has been considered relevant for human identification due to its stability,\[14\] and being equivalent to the fingerprint, is unique for each individual.\[15\] This study on the identification of persons is called palatoscopy or palate rugoscopy.\[16\] The idea of this study was spurred whether this pattern of rugae can be mapped for a category of patients.

Aims and Objectives

The aims of the study were the following:

1. To determine if the palatal rugae have a characteristic pattern in untreated class II div I malocclusions compared to normal class I occlusions.
2. To provide a valuable insight whether palatal rugae can be taken up as additional criteria for classifying malocclusions.

Materials and Methods

The study was conducted on initial maxillary dental casts of 27 individuals with untreated class II div 1 malocclusion, of whom 14 were females and 13 were males, with age ranging from 16 to 24 years. Initial maxillary dental casts of 24 individuals (12 males and 12 females) with untreated class I occlusion matched to the same age group as above were taken up. Impressions were made of alginate and poured with type III dental stone.

Further Criteria of Selection

Class II div 1 samples with an overjet of a minimum of 5 mm were selected. Intermolar width measured from central fossae of molars was taken up as a standardization criterion.

The palatal rugae were carefully highlighted using 0.5-mm pencil and the precise measurements were done on a transparent measurement template. The traced palatal rugae were observed for size, shape, direction, and pattern.

A median palatal plane was constructed as a reference plane [Figure 2]. Based on the length, the rugae were classified as: Primary, 5 mm and above; secondary, 3–5 mm; and fragmentary, less than 2 mm [Figure 3]. Primary rugae were then interpreted based on the classification given by Lysell et al.,\[16\] Shetty et al.,\[17\] and Nayak et al.\[18\] Based on the shape, the primary rugae were classified as curved wavy straight circular [Figure 4].

Based on the direction, they were classified as: (a) forward directed (a) and (b) backward directed [Figure 5]. Based on the unification, the primary rugae were classified as (a) converging and (b) diverging [Figure 6].

A final ordinal scale was put up [Figures 7–12].

Statistical Methods Used

- Unpaired \(t \)-test was used to compare differences between two means.
- Chi-square test was used to find the distribution of proportions among the samples.
Analysis of variance (ANOVA) was used to find out if any relationship existed between the size and pattern of palatal rugae.

Software used – SPSS Version 14.0

The following parameters were analyzed:

a. Mean intermolar width and comparison between two groups.

b. The total widths of the primary rugae 1, 2, 3, and comparison between two groups.

c. Ordinal scale index of each cast and comparison between two groups.

d. ANOVA test to compare if any relationship existed between the size and pattern of palatal rugae.
The second palatal rugae were shorter in class II div 1 patients than in class I patients by 3.1 mm and this difference was statistically significant as evident by a P value = 0.001 [Table 3].

The third palatal rugae were evidently shorter in class II div 1 patients than in class I patients by 4.24 mm and this difference was statistically highly significant as evident by a P value = 0.000 [Table 4].

All the patients with Angle’s class I occlusion had good pattern of palatal rugae falling in the range of 1–3, whereas 22% of the patients with class II div 1 had poor pattern of palatal rugae, with 4 and 2 patients exhibiting a score of 4 and 5, respectively, but this was not statistically significant according to chi-square test with a P value = 0.12 [Table 5].

Discussion

The mean intermolar width was taken as a standardization for both the groups, with the mean intermolar width in class I sample being 47.25 ± 2.06 mm and in class II div 1 sample being 46.81 ± 1.88 mm. There was a significant difference in the total transverse widths of all the three palatal rugae between the two groups, with the third rugae showing a highly significant difference. This shows the constriction of the arch in class II div 1 individuals than in class I individuals, even with matched intermolar widths. The ordinal scale we have put up in this study has provided a method of categorizing the pattern for each group, though the palatal rugae possess unique patient characteristics. The results of the individual distribution of rugae pattern among the groups, though statistically not significant according to chi-square test, show that to some extent there is a near-normal pattern for the class I sample than the class II div 1 sample.

There were no significant differences between sexes for most of the above findings.

The findings of the ANOVA test showed no significant relationship between the size and pattern of the palatal rugae between the two groups. Hauser et al.[19] in 1989 stated that size of the palate affected rugae development. They reported that individuals with broader palates showed greater rugae development.

Most of the studies were done to establish the stability of palatal rugae as landmarks by Almeida et al.[9] By comparing extraction and non-extraction cases, Bailey et al.[10] had studied the effects on palatal rugae, before and after orthodontic treatment in both children and adults. The transverse widths were taken into consideration and they were longitudinal studies comparing the treatment effects in the same cohort. In our study, an effort was made to compare the differences between two groups, namely class I occlusion and class II div 1 patients. Here, not only the transverse widths were taken into consideration, but also the pattern was observed. A new ordinal scale was put up to categorize the pattern. An effort was made to standardize both the groups and the selection criteria were followed. A simple
Table 1: Inter molar width

Ang. Cl	Mean	Std. deviation	Min	Max	Range
1	47.25	2.069	44	53	9
2	46.81	1.882	44	51	7
Total	47.02	1.965	44	53	9

With P value of 0.435 there was no statistically significant difference in the mean inter molar widths of the two groups.

Table 2: Total transverse width of primary palatal rugae 1

Ang. class	N	Mean	Std. deviation
R1+L1	1	24	20.54
	2	27	19.11

Unpaired t test

t	df	Sig. (2-tailed)	Mean difference	95% Confidence Interval of the Difference
				Lower
				Upper
R1+L1	2.392	.023 (Sig)	1.431	.229
	2.348	.024 (Sig)	1.431	.200
	46.81	.004 (Sig)	1.412	.246
	44	.005 (Sig)	1.412	.246
	9	.006 (Sig)	1.412	.246

Table 3: Total transverse width of primary palatal rugae 2

Ang. class	N	Mean	Std. deviation
R2+L2	1	24	25.58
	2	27	22.48

Unpaired t test

t	df	Sig. (2-tailed)	Mean difference	95% confidence interval of the difference
				Lower
				Upper
R2+L2	3.487	.001 (Sig)	3.102	1.314
	3.367	.002 (Sig)	3.102	1.228
	53	.003 (Sig)	3.102	1.228

Table 4: Total transverse width of primary palatal rugae 3

Ang. class	N	Mean	Std. deviation
R3+L3	1	24	31.50
	2	27	27.26

Unpaired t test

t	df	Sig. (2-tailed)	Mean difference	95% confidence interval of the difference
				Lower
				Upper
R3+L3	4.949	.000	4.241	2.519
	4.841	.000	4.241	2.470

Table 5: Angle’s class vs index cross tabulation

Ang. class	Index	Total			
1	2	3	4	24	
2	1	1	4	10	51

Table 6: Distributional changes of BrdU, PCNA, E2F1 and % within ang. class

% within ang. class	1	2	3	4	Total
29.2%	1	2	4	10	26
43.2%	1	1	6	14	22
38.7%	1	2	4	8	15

Table 7: Conclusion

There was a significant constriction of the palatal rugae in class II div 1 individuals as compared to class I individuals, though they were matched for the same intermolar widths. There was a distinct pattern of palatal rugae between the two groups. It is too premature to make a comment on the use of palatal rugae to classify malocclusions. Though an interrelationship between size and pattern was not obtained, further studies in this direction can provide a valuable insight.

References

1. Goria C. “Le Rughe del Palato in Speciale Rapporto coll’Anthropologia Criminale e la Psichiatria”. Archives of Criminal Anthropology 1911;32-72.
2. Amasaki H, Ogawa M, Nagasao J, Mutoh K, Ichihara N, Asari M, et al. Distributional changes of BrdU, PCNA, E2F1 and PAL31 molecules in developing murine palatal rugae. Ann Anat 2003;185:517-23.
3. Buchtová M, Tichy F, Putnová I, Misek I. The development of palatal rugae in the European pine vole, Microtus subterraneus (Arvicolidae, Rodentia). Folia Zoo 2003;52:127-36.
4. Waterman RE, Meller SM. Alteration in the epithelial surfaces of human palatal shelves prior to and during fusion: A scanning electron microscope study. Anat Rec 1974;180:111-36.
5. Yamazaki Y. Cross-sectional study of plicae palatine transversae in the Japanese. Anthropol Rep Niigata 1962;34:59-76.
6. Jordanov JA. Growth of the hard palate in man. Anthropological characteristics. Z Morphol Anthropol 1971;63:230-7.
7. Lang J, Baumeister R. Postnatal development of the width and height of the palate and the palate foramina. Anat Anz 1984;155:151-67.
8. Thomas CJ, Kotze TJ, van der Merwe CA. An improved statistical method for the racial classification of man by means of palatal rugae. Arch Oral Biol 1987;32:315-7.
9. Almeida MA, Phillips C, Kula K, Tulloch C. Stability of the palatal rugae as landmarks for analysis of dental casts. Angle Orthod 1995;65:43-8.
10. Bailey LT, Esmailnejad A, Almeida MA. Stability of the palatal rugae as landmarks for analysis of dental casts in extraction and nonextraction cases. Angle Orthod 1999;69:73-8.
11. Patil MS, Patil SB, Acharya AB. Palatine rugae and their significance in clinical dentistry: A review of the literature. J Am Dent Assoc 2008;139:1471-87.
12. Peavy DC Jr, Kendrick GS. The effects of tooth movement on the palatine rugae. J Prosthet Dent 1967;18:536-42.
13. Limson KS, Julian R. Computerized recording of the palatal rugae pattern and an evaluation of its application in forensic identification. J Forensic Odontostomatol 2004;22:1-4.
14. Muthusubramanian M, Limson KS, Julian R. Analysis of rugae in burn victims and cadavers to simulate rugae identification in cases...
of incineration and decomposition. J Forensic Odontostomatol 2005;23:26-9.
15. Caldas IM, Magalhães T, Afonso A. Establishing identity using cheiloscopy and palatoscopy. Forensic Sci Int 2007;165:1-9.
16. Lysell L. (1955). Plicae palatinae transversae and papilla incisiva in man. Acta Odontol Scand 1989;18:1-137.
17. Shetty SK, Kalia S, Patil K, Mahima VG. Palatal Rugae pattern in Mysorean and Tibetan population. Indian J Dent Res 2009;16:51-5.
18. Nayak P, Acharya AB, Padmimi AT, Kaveri H. Differences in palatal rugae shape in two populations of India. Arch Oral Biol 2007;52:977-82.
19. Hauser G, Deponte A, Roberts MJ. Palatal Rugae. J Anat 1989;165:237-49.
20. Scott PJ. The reflex plotters: Measurement without photographs.

Photogrammetric Rec 1981;151:304-305.
21. Richmond S, Jones ML. A comparison of two and three dimensional incisor angles. Br J Orthod 1985;12:90-6.
22. Bansode SC, Kulkarni MM. Importance of palatal rugae in individual identification. J Forensic Dent Sci 2009;1:77-81.
23. Paliwal A, Wanjari S, Parwani R. Palatal rugoscopy: Establishing identity. J Forensic Dent Sci 2010;2:27-31.
24. Jibi PM, Gautam KK, Basappa N, Raju OS. Morphological Pattern of Palatal Rugae in Children of Davangere. J Forensic Sci 2011;56:1192-7.

Source of Support: Nil, Conflict of Interest: None declared.
