THE BACKGROUND FIELD METHOD:
Alternative Way of Deriving the Pinch Technique’s Results

Shoji Hashimoto, Jiro Kodairay and Yoshiaki Yasuiz
Dept. of Physics, Hiroshima University
Higashi Hiroshima 724, JAPAN

Ken Sasakix
Dept. of Physics, Yokohama National University
Yokohama 240, JAPAN

Abstract

We show that the background field method (BFM) is a simple way of deriving the same gauge-invariant results which are obtained by the pinch technique (PT). For illustration we construct gauge-invariant self-energy and three-point vertices for gluons at one-loop level by BFM and demonstrate that we get the same results which were derived via PT. We also calculate the four-gluon vertex in BFM and show that this vertex obeys the same Ward identity that was found with PT.

ySupported in part by the Monbusho Grant-in-Aid for Scientific Research No. 040011.
zSupported in part by the Monbusho Grant-in-Aid for Scientific Research No. C-05640351.
xSupported in part by the Monbusho Grant-in-Aid for Scientific Research No. 050076.
xe-mail address: a121004@cl ed.ynu.ac.jp
1 Introduction

Formulation of a gauge theory begins with a gauge invariant Lagrangian. However, except for lattice gauge theory, when we quantize the theory in the continuum we are under compulsion to x a gauge. Consequently, the corresponding Green's functions, in general, will not be gauge invariant. These Green's functions in the standard formulation do not directly reflect the underlying gauge invariance of the theory but rather obey complicated Ward identities. If there is a method in which we can construct systematically gauge-invariant Green's functions, then it will make the computations much simpler and may have many applications.

Along this line exist two approaches: One is the pinch technique and the other, the background field method. The pinch technique (PT) was proposed some time ago by Cornwall [1] [2] for a well-defined algorithm to form new gauge-independent proper vertices and new propagators with gauge-invariant self-energies. Using this technique Cornwall and Papavassiliou obtained the one-loop gauge-invariant self-energy and vertex parts in QCD [3] [4]. Later it was shown [5] that PT works also in spontaneously broken gauge theories, and since then it has been applied to the standard model to obtain a gauge-invariant electromagnetic form factor of the neutrino [6], one-loop gauge-invariant $W\ W$ and $Z\ Z$ self-energies [6], and $W\ W$ and $Z\ W\ W$ vertices [6].

On the other hand, the background field method (BFM) was first introduced by DeWitt [8] as a technique for quantizing gauge field theories while retaining explicit gauge invariance. In its original formulation, DeWitt worked only for one-loop calculations. The multi-loop extension of the method was given by 't Hooft [10], DeWitt [9], Boulware [11], and Abbott [12]. Using these extensions of the background field method, explicit two-loop calculations of the function for pure Yang-Mills theory was made first in the Feynman gauge [12]–[13], and later in the general gauge [14].

Both PT and BFM have the same interesting feature. The Green's functions
(gluon self-energies and proper gluon-vertices, etc) constructed by the two methods retain the explicit gauge invariance, thus obey the naive Ward identities. As a result, for example, a computation of the QCD -function coefficient is much simplified. Only thing we need to do is to construct the gauge-invariant gluon self-energy in either method and to examine its ultraviolet-divergent part. Either method gives the same correct answer [3] [12]. Thus it may be plausible to anticipate that PT and BFM are equivalent and that they produce exactly the same results.

In this paper we show that BFM is an alternative and simple way of deriving the same gauge-invariant results which are obtained by PT. Although the final results obtained by both methods are gauge invariant, we have found, in particular, that the BFM in the Feynman gauge corresponds to the intrinsic PT. In fact we explicitly demonstrate, for the cases of the gauge-invariant gluon self-energy and three-point vertex, both methods with the Feynman gauge produce the same results which are equal term by term. We also give the gauge-invariant four-gluon vertex calculated in BFM and show explicitly that this vertex satisfies the same simple Ward identity that was found with PT.

The paper is organized as follows. In Sec 2 we review the intrinsic PT and explain how the gauge-invariant proper self-energy and three-point vertex for gluon were derived in PT. In Sec 3 we write down the Feynman rule for QCD in BFM and compute the gauge-invariant gluon self-energy at one-loop level in BFM with the Feynman gauge. The result is shown to be the same, term by term, as the one obtained by the intrinsic PT. The BFM is applied, in Sec 4, to the calculation of the three-gluon vertex. The result is shown to coincide, again term by term, with the one derived by the intrinsic PT. In Sec 5 we compute the gauge-invariant four-gluon vertex at one-loop level in BFM. We present each contribution to the vertex from the individual Feynman diagrams. Then we show that the acquired four-gluon vertex satisfies the same naive Ward identity that was found with PT and is related to the gauge-invariant three-gluon vertex obtained previously by PT and BFM.
2 The intrinsic pinch technique

There are three equivalent versions of the pinch technique: the S matrix PT [1] - [3], the intrinsic PT [3] and the Degrassi-Sirlin alternative formulation of the PT [3]. To prepare for the later discussions and to establish the notations, we briefly review, in this section, the intrinsic PT and explain the way how the gauge-invariant proper self-energy and three-point vertex for gluons at one-loop level were obtained in Ref. [3].

In the S-matrix pinch technique we obtain the gauge-invariant effective gluon propagator by adding the pinch graphs in Fig. 1(b) and 1(c) to the ordinary propagator graphs [Fig. 1(a)]. The gauge dependence of the ordinary graphs is canceled by the contributions from the pinch graphs. Since the pinch graphs are always missing one or more propagators corresponding to the external legs, the gauge-dependent parts of the ordinary graphs must also be missing one or more external propagator legs. So if we extract systematically from the proper graphs the parts which are missing external propagator legs and simply throw them away, we obtain the gauge-invariant results. This is the intrinsic PT introduced by Cornwall and Papavassiliou [3].

We will now derive the gauge-invariant proper self-energy for gluons of gauge group SU(N) using the intrinsic PT. Since we know that PT successfully gives gauge-invariant quantities, we use the Feynman gauge. Then the ordinary proper self-energy whose corresponding graphs are shown in Fig. 2 is given by

\[
\sigma_0 = \frac{IN g^2}{2} \int \frac{d^D k}{(2\pi)^D} \frac{1}{k^2 (k + q)^2} \left[\begin{array}{ccc}
(k; q) & (k + q; q) & k (k + q) & k (k + q) \\
(k + q; k) & (k + q; q) & k (k + q) & k (k + q)
\end{array} \right]; (1)
\]

where we have symmetrized the ghost loop in Fig. 2(b) and omitted a trivial group-theoretic factor \(ab\). We assume the dimensional regularization in \(D = 4 - 2\epsilon\) dimensions. The three-gluon vertex \((k; q)\) has the following expression [13]:

\[
(k; q) \quad (k; q; k + q)
\]
Here and in the following we make it a rule that whenever the external momentum appears in the three-gluon vertex, we put it in the middle of the expression, that is, like q \text{ in Eq. (2)}. Now we decompose the vertices into two pieces: a piece \(F \) which has the terms with the external momentum \(q \) and a piece \(P \) \((P\) for pinch) carries the internal momenta only.

\[
(k; q) = F + P;
\]

\[
F (k; q) = (2k + q) g + 2q g; \quad \text{(3)}
\]

\[
P (k; q) = k g + (k + q) g; \quad \text{(4)}
\]

The full vertex \((k; q)\) satisfies the following Ward identities:

\[
k (k; q) = P (q) d_1 (q) P (k + q) d_1 (k + q)
\]

\[
(k + q) (k; q) = P (q) d_1 (q) P (k) d_1 (k)
\]

where we have defined

\[
P (q) = g + q g q^2; \quad d_1 (q) = q^2; \quad \text{(5)}
\]

The rules of the intrinsic PT are to let the pinch vertex \(P \) act on the full vertex and to throw out the \(d_1 (q) \) terms thereby generated. We rewrite the product of two full vertices as

\[
= F F + P P + P P P \quad \text{(6)}
\]

Using the Ward identities in Eq. (4) we find that the sum of the second and third terms of Eq. (6) turns out to be

\[
P + P = 4P (q) d_1 (q)
\]

\[
2P (k) d_1 (k)
\]

\[
2P (k + q) d_1 (k + q) \quad \text{(7)}
\]
We drop the first term on the RHS of (7) following the intrinsic PT rule. Now we use the dimensional regularization rule (which we adhere to throughout this paper)
\[Z_c^0 k^2 = 0; \] (8)
and discard the parts which disappear after integration, then the second and third terms can be written as
\[2P \ (k) d^1 (k) \ 2P \ (k + q) d^1 (k + q) = 2k k \ 2(k + q) (k + q); \] (9)
Also applying the dimensional regularization rule Eq. (8) to the fourth term on the RHS of Eq. (6), we find
\[P^p P^p = 2k k \ (k q + q k); \] (10)
Now combining the first term on the RHS of Eq. (6) with Eqs. (9) and (10), and inserting them into Eq. (1), we arrive at the following expression for the gauge-invariant self-energy [3]
\[b = \frac{iN g^2}{2} \ d^0 k \ \frac{1}{(2)^p k^2 (k + q)^2} \ \left[F^p (k; q) F^p (k + q; q) 2(k + q) (2k + q) \right]; \] (11)
The same rules are applied to obtain the gauge-invariant three-gluon vertex at one-loop level. The contributions of the graphs depicted in Fig. 3 to the ordinary proper three-gluon vertex are summarized as [13]
\[0 = \frac{iN g^2}{2} \ d^0 k \ \frac{1}{(2)^p k^2 k_2^2 k_3^2} N \] (12)
\[N = (k_2; q_1) \ (k_3; q_2) \ (k_1; q_3) \]
\[+ k_1 k_2 k_3 + k_1 k_2 k_3; \] (13)
where the momenta and Lorentz indices are defined in Fig. 3(a) and the overall group-theoretic factor \(gf^{abc} \) is omitted.
Decomposing into $^F + ^P$ and dropping the terms involving $d^1(q)$ which are generated by application of P to the full vertices, Cornwall and Papavassiliou obtained the following expression for gauge-invariant proper three-gluon vertex:

\[
\begin{align*}
\beta (q_1; q_2; q_3) &= \frac{\ln g^2}{2} \frac{d^0 k}{(2)^D} \frac{1}{k_1^2 k_2^2 k_3^2} \left(F(k_2; q_1) \cdot F(k_3; q_2) \cdot F(k_1; q_3) \right) \\
&\quad + 2 (k_2 + k_3) (k_3 + k_1) (k_1 + k_2) \\
&\quad \cdot \{8 (q_1 g q_1 g) A^E (q_1) + 8 (q_2 g q_2 g) A^E (q_2) + 8 (q_3 g q_3 g) A^E (q_3) \} \; ;
\end{align*}
\]

where $A^E (q)$ is defined by

\[
A^E (q) = \frac{g^2}{(2)^D} \frac{1}{k^2 (k + q)^2} ;
\]

3 The background field method and the gauge-invariant gluon self-energy

In this section we write down the Feynman rules for QCD in the background field calculations and compute the gluon self-energy in the Feynman gauge. Then we will see that the result coincides, term by term, with the gauge-invariant gluon self-energy derived via the intrinsic PT.

In BFM, the field in the classical lagrangian is written as $A + Q$, where A (Q) denotes the background (quantum) field. The Feynman diagram with A on external legs and Q inside loops need to be calculated. The relevant Feynman rules are given in Fig. 4. It is noted that the Feynman rule for the ghost-A vertex is similar to the one which appears in the scalar QED. Now let us write a three-point vertex
with one A^b-eld as
\[e^{abc} (p; q; r) = g_\alpha^{\, a} \epsilon^{abc} (p; q; r) \] (16)
\[e (p; q; r) = (p \cdot q + \frac{1}{r} \cdot r) g + (q \cdot r + \frac{1}{p} \cdot p) g + (r \cdot p + \frac{1}{q} \cdot q) g ; \] (17)

Then we find that in the Feynman gauge $\alpha = 1$, \[e (k; q; k + q) \] turns out to be
\[e (k; q; k + q) j_{-1} = 2q g + 2q g + (2k + q) g ; \] (18)
which coincides with the expression of F in Eq.(3). This fact gives us a hint that BFM may reproduce the same results which are obtained by the intrinsic PT (and we find later that it is true in fact).

Now we calculate the gluon self-energy in BFM with the Feynman gauge. The relevant diagrams are depicted in Fig.5. The diagram 5(a) gives a contribution
\[b^{(a)} = \frac{\alpha^2 Z}{2} \frac{d^3 k}{(2\pi)^3} \frac{1}{k^2 (k + q)^2} \frac{1}{(k + q + q)^2} \frac{1}{(2k + q)^2} \frac{1}{(2k + q)^2} \] (19)
where we have used the fact $e^{j_{-1}} = F$ and $e^{j_{-1}} = F$. On the other hand, through the scalar QED-like coupling for the background eld and ghost vertices, the diagram 5(b) gives
\[b^{(b)} = \frac{\alpha^2 Z}{2} \frac{d^3 k}{(2\pi)^3} \frac{1}{k^2 (k + q)^2} \frac{1}{(2k + q)^2} \frac{1}{(2k + q)^2} \] (20)
It is interesting to note that the contributions of diagrams 5(a) and 5(b), respectively, correspond to the first and second terms in the parentheses of Eq.(11) and the sum of the two contributions coincides with the expression of the gauge-invariant self-energy b which was derived in section 2 by the method of intrinsic PT.

4 The gauge-invariant three-gluon vertex

The success in deriving the gauge-invariant PT result for the gluon self-energy by BFM gives us momentum to study, for the next step, the gauge-invariant three-gluon
vertex at one-loop level. The relevant diagram s are shown in Fig.6, where momenta and Lorentz and color indices are displayed. With the fact that an AQQ vertex in the Feynman gauge, \(e_{-1} \), is equivalent to \(F \) in Eq. (3), it is easy to show that the contribution of the diagram 6(a) is

\[
(a) \quad \frac{\frac{3N g^2 F^{abc}Z}{2}}{2 \pi^0 k_1^2 k_2^2 k_3^2} \cdot \frac{1}{2} \cdot \frac{F(k_2; q_1) F(k_3; q_2) F(k_1; q_3)}{(2 \pi^0 k_1^2 k_2^2 k_3^2)}: \quad (21)
\]

The contribution of the diagram 6(b) (and the similar one with the ghost running the other way) is

\[
(b) \quad \frac{\frac{3N g^2 F^{abc}Z}{2}}{2 \pi^0 k_1^2 k_2^2 k_3^2} \cdot \frac{1}{2} \cdot \frac{2(k_2 + k_3)(k_3 + k_1)(k_1 + k_2)}{(2 \pi^0 k_1^2 k_2^2 k_3^2)}: \quad (22)
\]

When we calculate the diagram 6(c), again we use the Feynman gauge \((e = 1) \) for the four-point vertex with two background fields. Remembering that the diagram 6(c) has a symmetric factor \(1/2 \) and adding the two other similar diagrams, we find

\[
(c) \quad \frac{\frac{3N g^2 F^{abc}Z}{2}}{2 \pi^0 k_1^2 k_2^2 k_3^2} \cdot \frac{1}{2} \cdot \frac{8(q_1 g q_2 g)^R(q_1) + 8(q_2 g q_3 g)^R(q_2) + 8(q_3 g q_1 g)^R(q_3)}{(2 \pi^0 k_1^2 k_2^2 k_3^2)}: \quad (23)
\]

Finally, the contribution of the diagram 6(d) (and two other similar diagrams) turns out to be null because of the group-theoretical identity for the structure constants \(f^{abc} \) such as

\[
f^{ead}(f^{dbc}X^{ce} + f^{dce}X^{be}) = 0: \quad (24)
\]

Now adding the contributions from the diagrams (a)−(c) in Fig. 6 and omitting the overall group-theoretic factor \(gF^{abc} \), we find that the result coincides with the expression of Eq. (14) which was obtained by the intrinsic PT. Also we note that each contribution from the diagrams (a)−(c), respectively, corresponds to a particular term in Eq. (14).
Finally we close this section with a mention that the constructed \(b(q_1; q_2; q_3) \) is related to the gauge-invariant self-energy \(b \) of Eq. (14) through a Ward identity [3]

\[
q^b_1 (q_1; q_2; q_3) = b(q_1) + b(q_3);
\]

which is indeed a naive extension of the tree-level one.

5 The gauge-invariant four-gluon vertex and its Ward identity

The gauge-invariant four-gluon vertex has been constructed by Papavassiliou [4] using the S-matrix PT. As he stated in Ref. [4], the construction was a nontrivial task because of the large number of graphs and certain subtleties of PT. Although he did not report the exact closed form of the gauge-invariant four-gluon vertex, he showed that the new four-gluon vertex is related to the previously constructed \(b \) in Eq. (14) through a simple Ward identity. In this section we apply BFM with the Feynman gauge to obtain the gauge-invariant four-gluon vertex at one-loop level. We give the closed form of this vertex and show that it satisfies the same Ward identity which was proved by Papavassiliou.

The bare four-gluon vertex in Fig.7(a) is expressed as \(i g^2 \) \(abcd \) with

\[
\begin{align*}
abcd & = f^{abc} f^{cdx} (g \ g \ g \ g) \\
 & + f^{adc} f^{cbx} (g \ g \ g \ g) \\
 & + f^{adx} f^{bco} (g \ g \ g \ g);
\end{align*}
\]

while the bare three-gluon vertex in Fig.7(b) is expressed as \(g^{abc} (k_1; k_2; k_3) \) with

\[
abcd (k_1; k_2; k_3) = f^{abc} (k_1; k_2; k_3)
\]

and \((k_1; k_2; k_3) \) is given by Eq. (2). Now acting with \(q_1 \) on \(abcd \), we get

\[
q_1 abcd = f^{abc} f^{cdx} (q_1 \ g \ q_1 \ g)
\]
Next with a help of the Jacobi identity

\[f^{abx} f^{cdx} + f^{acx} f^{dbx} + f^{adx} f^{bxc} = 0; \]

(29)

we add

\[0 = f^{abx} f^{cdx} + f^{acx} f^{dbx} + f^{adx} f^{bxc} \]

\((q_i, q_j) g + (q_i, q_j) g + (q_i, q_j) g \) \hspace{1cm} (30)

to the RHS of Eq. (28) and we obtain the tree-level Ward identity \([15]\)

\[q_i^{\text{abcd}} = f^{abx} f^{cdx} (q_i, q_j, q_k, q_l) \]

\[+ f^{acx} f^{dbx} (q_i, q_j, q_k, q_l) \]

\[+ f^{adx} f^{bxc} (q_i, q_j, q_k, q_l) ; \]

(31)

The bare three- and four-gluon vertices are manifestly gauge independent. However, if we consider the usual one-loop corrections to these vertices, they become gauge dependent and do not satisfy Eq. (31) any more.

We now apply BFM to the case of the four-gluon vertex and show that the constructed gauge-invariant vertex satisfies the generalized version of the Ward identity in Eq. (31). The diagrams for the four-gluon vertex at one-loop level are shown in Fig. 8. It is noted that the two-gluon loop diagrams 8(e) have a symmetric factor \(\frac{1}{2} \).

For later convenience let us introduce the following group-theoretic quantities:

\[f(\text{abcd}) = f^{aln} f^{bmn} f^{cne} f^{dle}; \]

(32)

which satisfy the relations

\[f(\text{abcd}) = f(\text{boda}) = f(\text{badc}) \]

(33)

\[f(\text{abcd}) f(\text{abcd}) = \frac{N}{2} f^{alx} f^{cdx}; \]

(34)
The last relation is derived from an identity for the structure constants f^{abc}

$$f^{abc} f^{dme} f^{enl} = \frac{N}{2} f^{abc}$$

and the Jacobi identity Eq. [23].

It is straightforward to evaluate the diagrams in Fig. 8, and the relevant momenta, colors, and Lorentz indices are indicated in the graphs. The relations for color factors in Eqs. [33]-[34] are extensively used. We present each contribution to the vertex from the individual Feynman diagram, expecting that each contribution corresponds to the particular term of the intrinsic P + T result once the calculation is made in the future. The results are the following.

[a]: The diagrams s 8 (a) give

$$\begin{align*}
(a) b_{abcd} & (q_1; q_2; q_3; q_4) = i g^2 f (abcd) Z \frac{d^0 k}{(2 \pi)^D} \frac{1}{k^2 (k + q_i)^2 (k - q_i)^2} \\
& \times f (k q_i q_k) f (k q_o) f (k + q_i q_k) f (k q_i q_o) \\
& + (q_2; b; \cdots) \cdot (q_1; c; \cdots) + (q_3; c; \cdots) \cdot (q_4; d; \cdots);
\end{align*}$$

(36)

where the notation $(q_2; b; \cdots) \cdot (q_1; c; \cdots)$ represents a term obtained from the first one by the substitution $(q_2; b; \cdots) \cdot (q_1; c; \cdots)$. The same notation applies to the third term, and also to the expressions below.

[b]: The diagrams s 8 (b) give

$$\begin{align*}
(b) b_{abcd} & (q_1; q_2; q_3; q_4) = i g^2 f (abcd) Z \frac{d^0 k}{(2 \pi)^D} \frac{1}{k^2 (k + q_i)^2 (k - q_i)^2} \\
& \times 2 (2k q_1) (2k + q_2) (2k q_i q_k) (2k q_i q_o) \\
& + (q_2; b; \cdots) \cdot (q_1; c; \cdots) + (q_3; c; \cdots) \cdot (q_4; d; \cdots);
\end{align*}$$

(37)

[c]: The diagrams s 8 (c) give

$$\begin{align*}
(c) b_{abcd} & (q_1; q_2; q_3; q_4) = i g^2 Z \frac{d^0 k}{(2 \pi)^D} \frac{1}{k^2 (k + q_i)^2 (k - q_i)^2} \\
& \times f (k q_i q_k) f (k q_o) f (k + q_i q_k) f (k q_i q_o) \\
& + (q_2; b; \cdots) \cdot (q_1; c; \cdots) + (q_3; c; \cdots) \cdot (q_4; d; \cdots);
\end{align*}$$

(38)
\[f(\text{abcd}) + f(\text{abc}d) g^F (k; q_1; q_2) \]
\[+ N f^{\text{abcd}} f^{\text{cdk}} F (k; q_1; q_2) F (k; q_1; q_2) \]
\[+ (q_1; b_1) \! (q_1; c_1) + (q_1; b_1) \! (q_1; d_1) \]
\[+ (q_1; a_1) \! (q_1; c_1) + (q_1; a_1) \! (q_1; d_1) \]
\[+ (q_1; a_1) \! (q_1; c_1); (q_1; b_1) \! (q_1; d_1) : \] (38)

[\text{f}]: The diagrams \(8(\text{a})\) give
\[b_{\text{abcd}} (q_1; q_2; q_3; q_4) = \frac{ig^2 Z}{d^6} \frac{1}{(2 \pi)^2} \frac{1}{(k + q_1)^2} \frac{1}{(k + q_2)^2} \]
\[f(\text{abcd}) + f(\text{abc}d) 2g (2k + q_1) \]
\[+ (q_1; b_1) \! (q_1; c_1) + (q_1; b_1) \! (q_1; d_1) \]
\[+ (q_1; a_1) \! (q_1; c_1) + (q_1; a_1) \! (q_1; d_1) \]
\[+ (q_1; a_1) \! (q_1; c_1); (q_1; b_1) \! (q_1; d_1) : \] (39)

[\text{g}]: The diagrams \(8(\text{e})\) give
\[b_{\text{abcd}} (q_1; q_2; q_3; q_4) = \frac{ig^2 A^g}{(q_1 + q_2)} \]
\[f(\text{abcd}) + f(\text{abc}d) D g g + 4N f^{\text{abcd}} f^{\text{cdk}} (g g g g) \]
\[+ (q_1; b_1) \! (q_1; c_1) + (q_1; b_1) \! (q_1; d_1) : \] (40)

where \(A^g(q_1)\) is defined in Eq. (13).

[\text{f}]: The diagrams \(8(\text{f})\) give
\[b_{\text{abcd}} (q_1; q_2; q_3; q_4) = \frac{ig^2 A^f}{(q_1 + q_2)} f(\text{abcd}) + f(\text{abc}d) 2g g \]
\[+ (q_1; b_1) \! (q_1; c_1) + (q_1; b_1) \! (q_1; d_1) : \] (41)

Then the final form of the gauge-invariant four-gluon vertex \(b_{\text{abcd}}\) at one-loop level is given by the sum
\[b_{\text{abcd}} = (a) b_{\text{abcd}} + (b) b_{\text{abcd}} + (c) b_{\text{abcd}} \]
Our next task is to show explicitly that the above four-gluon vertex \(b_{abcd} \) satisfies the following generalized version of the Ward identity in Eq. (31):

\[
q^b_{abcd} = f^{abc} b^{d} (q_1; q_2; q_3 + q_4) + \quad 2 f^{abc} b^{d} (q_1; q_2; q_3 + q_4) + \quad f^{abc} b^{d} (q_1; q_2; q_3 + q_4); \tag{43}
\]

where

\[
b_{abc} (q_1; q_2; q_3) = f^{abc} b^{d} (q_1; q_2; q_3) \tag{44}
\]

and \(b (q_1; q_2; q_3) \) is the gauge-invariant three-gluon vertex given in Eq. (14). The Ward identity Eq. (43), first found by Papavassiliou with PT [4], is naturally expected to hold in BFM formalism.

We act with \(q_1 \) on the individual contributions to \(b_{abcd} \) which are expressed in Eqs. (36)-(41). Before going through the evaluation we make some preparations. Let us introduce the following integrals for the three-point vertex with the constraint \(q_1 + q_2 + q_3 = 0 \):

\[
B (q_1; q_2; q_3) = \int \frac{d^D k}{(2 \pi)^D} \frac{1}{k^2 (k + q_1)^2 (k + q_2)^2} \quad f (k; q_1; q_2) f (k + q_3; q_4); \tag{45}
\]

\[
C (q_1; q_2; q_3) = \int \frac{d^D k}{(2 \pi)^D} \frac{1}{k^2 (k + q_1)^2 (k + q_2)^2} \quad (2k + q_3) (2k + q_4) (2k + q_5); \tag{45}
\]

In terms of \(B \) and \(C \), the gauge-invariant three-gluon vertex \(b \) in Eq. (14) is expressed as

\[
b (q_1; q_2; q_3) = \frac{3N g^2}{2} (q_1; q_2; q_3) + 2C (q_1; q_2; q_3) \quad 8 (q_1 g q_2 g) \tilde{F} (q_3) \quad 8 (q_2 g q_3 g) \tilde{F} (q_4) \quad 8 (q_3 g q_4 g) \tilde{F} (q_5); \tag{46}
\]
These B and C satisfy the following relations:

$$B (q_1; q_2; q_3) = B (q_2; q_1; q_3); \quad (47)$$
$$C (q_1; q_2; q_3) = C (q_2; q_1; q_3); \quad (48)$$

which can be proved by changing integration variables under the constraint $q_1 + q_2 + q_3 = 0$ and using the fact

$$F (k; q) = F (k; q; q); \quad (49)$$

Throughout the algebraic manipulations, we often take the means of changing the integration variables under the constraint $q_1 + q_2 + q_3 + q_4 = 0$ and make use of identities

$$q_1 F (k_1; q_2; q_3) = \left(k_1 q_2 \right)^2 k_2 g; \quad q_2 \left(2k_1 q_2 \right) = k^2 \left(k q_2 \right)^2 \quad (50)$$

to reduce the number of propagators by one, the relations of Eqs. (47)–(49) for B, C, and F to classify terms into groups with the same color factors. We also use the identity of Eq. (34). The results are

$$[a]:$$

$$q_1 (a)_{b_1 b_2 b_3 b_4} (q_1; q_2; q_3; q_4) =$$

$$\left(ig^2 f (abcd) + f (abdc) \right) q_1
\frac{Z}{(2 \pi)^D} \frac{\left(k q_2 ; q_1 \right)}{(k + q_2 q_3)^2} \frac{F (k q_3; q_1) F (k q_1; q_3)}{(k + q_1 q_3)^2}$$

$$+ N f_{x y z} f_{cdx} \frac{1}{2} B \left(q_3 ; q_2 ; q_1 ; q_4 \right)$$

$$+ q_1 \frac{Z}{(2 \pi)^D} \frac{\left(k q_3 ; q_1 \right)}{(k + q_1 q_3)^2} \frac{F (k q_1; q_3) F (k q_3; q_1)}{(k + q_2 q_3)^2}$$

$$+ \text{cyclic permutations} \quad (51)$$

where $f_{cyclic permutations}$ represents two terms which are obtained from the first term by the substitution $f(q_1;b; \quad) \quad (a; c; \quad) \quad (a_3;d; \quad) \quad (a_3; b; \quad)$ and the
substitution \(f(q_1; b_1) \) \((q_1; d_1)\) \((q_1; c_1)\) \((q_2; b_2)\)g. The same notation applies to the expressions below.

\[\text{[b]}: \]
\[
q_4 \overset{2}{b_{abcd}} (q_1; q_2; q_3; q_4) =
\left(q_4^2 \left(f(abcd) + f(abdc) \right) \right) \left(2q_1 \right) Z \frac{d^k}{(2)^D} \left(\frac{k}{k} \frac{q_1; q_3}{(2k + q_3)} \right. \\
\left. + N f_{abk} f_{cdk} C \right) (q_3; q_4; q_1 + q_4) + \text{cyclic permutations}
\]

\[\text{[c]}: \]
\[
q_4 \overset{2}{b_{abcd}} (q_1; q_2; q_3; q_4) =
\left(q_4^2 \left(f(abcd) + f(abdc) \right) \right) D q_1 g \tilde{K} (q_1 + q_3) \\
\left(q_4^2 \left(f(abcd) + f(abdc) \right) \right) \left(2q_1 \right) Z \frac{d^k}{(2)^D} \left(\frac{k}{k} \frac{q_1; q_3}{(2k + q_3)} \right. \\
\left. + N f_{abk} f_{cdk} 4(q_2 g q_2 g) \tilde{K} (q_1 + q_2) \tilde{K} (q_4) \right) \\
\left(q_4^2 \left(f(abcd) + f(abdc) \right) \right) \left(2q_1 \right) Z \frac{d^k}{(2)^D} \left(\frac{k}{k} \frac{q_1; q_3}{(2k + q_3)} \right. \\
\left. + N f_{abk} f_{cdk} 4(q_2 g q_2 g) \tilde{K} (q_1 + q_2) \tilde{K} (q_4) \right)
\]

\[\text{[d]}: \]
\[
q_4 \overset{2}{b_{abcd}} (q_1; q_2; q_3; q_4) =
\left(q_4^2 \left(f(abcd) + f(abdc) \right) \right) 2q_1 g \tilde{K} (q_1 + q_3) \\
\left(q_4^2 \left(f(abcd) + f(abdc) \right) \right) \left(2q_1 \right) Z \frac{d^k}{(2)^D} \left(\frac{k}{k} \frac{q_1; q_3}{(2k + q_3)} \right. \\
\left. + 2q_1 \right) Z \frac{d^k}{(2)^D} \left(\frac{k}{k} \frac{q_1; q_3}{(2k + q_3)} \right. \\
\left. + \text{cyclic permutations} \right)
\]

\[\text{[e]}: \]
\[
q_4 \overset{2}{b_{abcd}} (q_1; q_2; q_3; q_4) =
\left(q_4^2 \left(f(abcd) + f(abdc) \right) \right) D q_1 g \tilde{K} (q_1 + q_3) \\
\left(q_4^2 \left(f(abcd) + f(abdc) \right) \right) \left(2q_1 \right) Z \frac{d^k}{(2)^D} \left(\frac{k}{k} \frac{q_1; q_3}{(2k + q_3)} \right. \\
\left. + 2q_1 \right) Z \frac{d^k}{(2)^D} \left(\frac{k}{k} \frac{q_1; q_3}{(2k + q_3)} \right. \\
\left. + \text{cyclic permutations} \right)
\]
\[N f^{abx}f^{cdx} 4 (q_1 g q_1 g) \mathcal{A} (q_1 + q_2) \]

+ cyclic permutations \hspace{1cm} (55)

\[[f]: \]

\[q_i (^{(f)} b^{abcd}) (q_1 ; q_1 ; q_1 ; q_1) = \mathrm{i}g^2 f (abcd) + f (abdc) (2q_1 g) \mathcal{A} (q_1 + q_2) \]

+ cyclic permutations : \hspace{1cm} (56)

Adding together all the contributions [Eqs. (53) - (56)], we find

\[q_i b^{abcd} (q_1 ; q_1 ; q_1 ; q_1) = \frac{\mathrm{i}g^2 N}{2} f^{abx}f^{cdx} B (q_1 ; q_1 ; q_1 + q_1) + 2C (q_1 ; q_1 ; q_1 + q_1) \]

\[8 (q_1 + q_2) g (q_1 + q_2) g \mathcal{A} (q_1 + q_2) \]

\[+ 8 q_3 g q_3 g \mathcal{A} (q_3) \]

+ cyclic permutations \hspace{1cm} (57)

It is noted that all the terms which are proportional to factors \([f (abcd) + f (abdc)],\]

\([f (acdb) + f (adbc)],\text{ and } [f (acdb) + f (adbc)]\) cancel out and only terms with factors \(N f^{abx}f^{cdx}, N f^{acx}f^{dbx},\text{ and } N f^{adx}f^{bux}\) remain in the final result. The last step is to add

\[0 = \frac{\mathrm{i}g^2 N}{2} f^{abx}f^{cdx} + f^{acx}f^{dbx} + f^{adx}f^{bux} \]

\[8 (q_1 g q_2 g) \mathcal{A} (q_1) \]

\[8 (q_3 g q_3 g) \mathcal{A} (q_3) \]

\[8 (q_4 g q_4 g) \mathcal{A} (q_4) \]

\hspace{1cm} (58)

to the RHS of Eq. (57) and to use Eq. (46), and we arrive at the desired result of Eq. (43).
6 Conclusions

In this paper we demonstrated that the background field method is an alternative and simple way of deriving the same gauge-invariant results which are obtained by the pinch technique. We have found, in particular, in the cases of gauge-invariant gluon self-energy and three-gluon vertex, that both BFM in the Feynman gauge and the intrinsic PT produce the same results which are equal term by term. We also calculated the gauge-invariant four-gluon vertex in BFM and presented its exact form. Finally we explicitly showed that this four-gluon vertex satisfies the same simple Ward identity that was found with PT.

We already know that PT works in spontaneously broken gauge theories, especially, in the standard model. It will be very interesting to investigate whether BFM may reproduce the same results for the one-loop gauge-invariant $W W$ and $Z Z$ self-energies and $W W$ and $ZW W$ vertices which were constructed by PT.

Acknowledgements

One of the authors (K.S) would like to thank Professor D. Zwanziger and Ioannis Papavassiliou for the hospitality extended to him in the spring of 1994 at New York University where part of this work was done, and Professor T. Muta for the hospitality extended to him at Hiroshima University. He is also very grateful to Ioannis Papavassiliou for informative and helpful discussions on the pinch technique.
References

[1] J. M. Cornwall, in Proceedings of the French-American Seminar on Theoretical Aspects of Quantum Chromodynamics, Marseille, France, 1981, edited by J. W. Dash (Centre de Physique Theorique, Marseille, 1982).

[2] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).

[3] J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40, 3474 (1989).

[4] J. Papavassiliou, Phys. Rev. D 47, 4728 (1993).

[5] J. Papavassiliou, Phys. Rev. D 41, 3179 (1990).

[6] G. De grassi and A. Sirlin, Phys. Rev. D 46, 3104 (1992).

[7] J. Papavassiliou and K. Philippides, Phys. Rev. D 48, 4255 (1993).

[8] B. S. DeWitt, Phys. Rev. 162, 1195 (1967); also in Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1963).

[9] B. S. DeWitt, in Quantum Gravity 2, edited by C. J. Isham, R. Penrose, and D. W. Sciama (Oxford University Press, New York, 1981).

[10] G. ’t Hooft, in Acta Universitatis W. ratislavensis No. 368, X Ith Winter School of Theoretical Physics in Karpacz, February-March, 1975; also in Functional and Probabilistic Methods in Quantum Field Theory, Vol. I.

[11] D. G. Boulware, Phys. Rev. D 23, 389 (1981).

[12] L. F. Abbott, Nucl. Phys. B 185, 189 (1981); Acta Physica Polonica B 13, 33 (1982).

[13] S. Ichinose and M. Omote, Nucl. Phys. B 203, 221 (1982).

[14] D. M. Capper and A. MacLean, Nucl. Phys. B 203, 413 (1982).
The definition of three-gluon vertex, and therefore, of F and P in this paper is different from the corresponding ones in Ref. [3] by the overall factor 1.
Figure captions

Fig. 1
The S-matrix pinch technique applied for the elastic scattering of two fermions. Graphs (b) and (c) are pinch parts, which, when added to the ordinary propagator graphs (a), yield the gauge-invariant effective gluon propagator.

Fig. 2
Graphs for the ordinary proper self-energy 0. (a): Gluon-loop. (b): Ghost-loop. Momenta and Lorentz indices are indicated.

Fig. 3
Graphs for the ordinary proper three-gluon vertex 0. (a): Gluon-loop. (b) (c): Ghost-loops. Momenta and Lorentz indices are indicated.

Fig. 4
Feynman rules for background field calculations in QCD. The wavy lines termating in an A represent external gauge fields. The other wavy lines and dashed lines represent QCD fields and ghost fields, respectively. Only shown are rules which are requisite for calculations in this paper.

Fig. 5
Graphs for a calculation of the gauge-invariant self-energy b in BFM. (a): Gluon-loop. (b) Ghost-loop. Momenta and Lorentz indices are indicated.

Fig. 6
Graphs for a calculation of the gauge-invariant three-gluon vertex b in BFM. (a) (c): Gluon-loops. (b) (d): Ghost-loops. Momenta and Lorentz indices are indicated.

Fig. 7
The bare four-gluon vertex (a) and the bare three-gluon vertex (b). Momenta, and color and Lorentz indices are indicated.

Fig. 8
Graphs for a calculation of the gauge-invariant four-gluon vertex b in BFM. (a) (c) (e): Gluon-loops. (b) (d) (f): Ghost-loops. Momenta, and color and Lorentz indices are indicated.
Fig. 2
Fig. 3
\[\frac{i_{ab}}{k^2 + i^n} g (l) \frac{k}{k^2} # \]

\[\text{Diagram} \]

\[g f_{abc} (p + q) \]

\[i g^2 \left[f_{abx} f_{xcd} (g g g + \frac{1}{2} g g) + f_{adx} f_{xbc} (g g g + \frac{1}{2} g g) + f_{acx} f_{xbd} (g g g) \right] \]

\[ig^2 g (f_{acx} f_{xdb} + f_{adx} f_{xcb}) \]
(a)

(b)

Fig. 5
\[a, \mu + 2 \text{ permutations} \]

Fig. 6
\[a, \mu \]

\[d, \beta \] \quad \[q_4 \] \quad b, \nu \]

\[q_1 \]

\[q_3 \]

\[c, \alpha \]

\[\mathbf{F}_i g. \ 7 \]

\[\mathcal{I} g^2 \ abed \]
\[q_1 + 2 \text{ permutations} \]

\[q_1 + 5 \text{ permutations} \]
(b)
\[\mu q_2 A \alpha q_4 A \beta k \quad k+q_2 \quad q_3 + 5 \text{ permutations} \]

(d)
\[q_1 A, q_2 A, \mu q_3 A, \nu q_4 A, \alpha q_5 A, \beta k + q_1 + q_2 \]

\[+ 2 \text{ permutations} \]

\[q_1 A, q_2 A, q_3 A, q_4 A, q_5 A \]

\[+ 5 \text{ permutations} \]

Fig. 8
