First record of trace fossils from the Oxfordian Argiles rouges de Kheneg Formation (Tiaret, northwestern Algeria)

Mourad Belaid(1,2)*, Amine Cherif(1,3)*, Olev Vinn(4) and Mohammed Nadir Naimi(1,3)

1 Kasdi-Merbah University, Faculty of Hydrocarbons, Renewable Energies, Earth Sciences and Universe, Department of Earth Sciences and Universe, Ghardaïa Road, Ouargla, 3000, Algeria (*corresponding author)
2 Kasdi-Merbah University, Laboratory of Hydrocarbons: Petroleum, Gas and Aquifers; foulade.casri@univ-ouargla.dz
3 Kasdi-Merbah University, Laboratory of Geology of Sahara, Algeria; acherif11@gmail.com (Amine Cherif), mohammednadirnaimi@gmail.com (Mohammed Nadir Naimi)
4 University of Tartu, Department of Geology, Ravila 14A, 50411 Tartu, Estonia; (olev.vinn@ut.ee)

do: 10.4154/gc.2020.10

Abstract

Three main facies associations FA-1 to FA-3 occur in the Oxfordian Argiles rouges de Kheneg Formation in northwestern Algeria. They correspond respectively to the deeper part of a mixed siliciclastic-carbonate shelf, upper shoreface and offshore transition-lower offshore. The trace fossil association of the Argiles rouges de Kheneg Formation contains fifteen ichnogenera and is moderately diverse for the Upper Jurassic. The formation contains diverse and abundant deep water or dominantly deep water trace fossils (i.e. Belorhaphe, Chondrites, Helminthopsis, Nerites, Megagrapton). They indicate that a part of the formation was deposited in offshore transition to lower offshore environments.

1. INTRODUCTION

The studied Upper Jurassic outcrops are located to the north of the town of Tiaret on the boundary of the southern Tellian domain (Fig. 1). The uppermost Jurassic deposits are distributed in North Africa along the southern margin of the former Tethys Ocean. In northwestern Algeria, the Oxfordian strata stretch over the Tellian Atlas and are named as the Ammonitico rosso de Frig and Argiles rouges de Kheneg (ATROPS & BENEST, 1994), in the Oran and Arzew mountains (northern Tell) they are known as the Upper Oxfordian “Grès chocolats” and eventually as “l’ensemble détritique de Kheneg Formation” in the Tellian domain (AUGIER, 1967). In the High Plateaus Oxfordian rocks have been either referred to the “Argiles de Saïda” in the Tlemcenian domain (AUÇIER, 1967; ELMI & BENEST, 1978; CHERIF et al., 2015, 2018; HALAMSKI & CHERIF, 2017), or as the “Grès de Sidi Saâdoun” and “Argiles de Faidja” (CARATINI, 1970; ATROPS & BENEST, 1981).

The Argiles rouges de Kheneg Formation is composed of red marly limestone in the lower part, thick sandstone in the middle, and red to green clay-limestone-sandstone intercalations in the upper part. The best exposures are located in the Oued Kheneg and Ain El Hamra areas (Fig. 1). They have been mapped and investigated since the late 19th century (e.g., WELSCH, 1890; POLVÈCHE, 1960; TCHOUMATCHÉNÇKO & KHRISCHÈV, 1992). So far, these deposits had never been described from ichnological and sedimentary points of view.

The present paper presents the first ichnologic and sedimentological study of the Oxfordian deposits exposed at Oued Kheneg and Ain El Hamra (northern Tell). Our contribution provides a list of ichnotaxa and a facies inventory that aid the interpretation of the depositional environment.

2. GEOGRAPHICAL AND GEOLOGICAL FRAMEWORK

Geographically, the study site belongs to the northern domain of Algeria called “Alpine Algeria”, which consists of three domains comprising young mountains formed during the Alpine orogeny. These domains are, from north to south: (i) The Tellian Atlas (knapp domain, composed of sedimentary rocks ranging from the Jurassic to Miocene in age); (ii) The High Plateaus (the foreland of the Alpine range bearing a thin sedimentary cover of Jurassic age). In the western part, there are a series of mountain ranges such as the Saïda Mountains and the Frenda Mountains; (iii) The Saharan Atlas (formed from an elongated trough pinched between the High Plateaus and the Saharan Platform, infilled with a thick sedimentary sequence during the Mesozoic times).

From the palaeogeographic point of view, Alpine Algeria was a part of north-western Africa during the Mesozoic, and was characterized by the individualization of two different palaeogeographic domains: the autochthonous intracontinental chains (the Atlas s.s., FRIZON DE LAMOTTE et al., 2008) and the Rif Range with the Tellian-Kabylian belt (Magharebides), composed of paraautochthonous to allochthonous units (CHALOUAN et al., 2008). The history of these domains is contemporary with the opening of the central Atlantic and Neo-Tethys oceans (BREDE et al., 1992; GOMEZ et al., 2000) during the Late Jurassic, on the southern shelf of Western Tethys (e.g. DERCOURT et al., 1993; BERRA & ANGIOLINI, 2014). However, the study area was likely to have bathyal water depths (TCHOUMATCHÉNÇKO & KHRISCHÈV, 1992).

The Argiles rouges de Kheneg Formation contains the Upper Jurassic marine deposits outcropping in the southern Tell Atlas. These deposits are mostly of pelagic origin, with subordinate yet locally important detrital beds at the mid-Upper Oxfordian “Grès intercalaires”. In the uppermost Late Oxfordian, intermittent siliciclastic deposits have been described as the Argiles de Saïda facies (subunit C-2 in this study) and interpreted as a result of intra-Oxfordian tectonic movements (ATROPS & BENEST, 1981). In the Middle Oxfordian to Late Oxfordian, of the Argiles de Saïda Formation in the Saïda Mountains and the Frenda Mountains, the depositional environment was characterized by shallow
water mixed carbonate-siliciclastic deposition, as evidenced by frequent tidal and tempestite structures (CHERIF et al., 2015, 2018; HALAMSKI & CHERIF, 2017).

3. FACIES CHARACTERISTICS AND STRATIGRAPHY

The Argiles rouges de Kheneg Formation was defined by ATROPS & BENEST (1994), in order to accommodate a series of marine deposits above the Middle Oxfordian Ammonitico rosso de Frid Formation and overlain by the Kimmeridgian Calcaires du Bou Rheddou Formation. These deposits display a wide array of different lithologies, such as marly and nodular/pseudo-nodular limestones, and bioturbated sandstones. However, the formation can be subdivided into three informal units, based on their respective faunal and lithologic features (corresponding to the facies-type, namely F1-F4) (Fig. 2).

Unit A (Lowermost part of the formation – lower Ammonitico rosso)

This first unit is up to 25 m thick in the Ain El Hamra area, and about 15 m thick in Oued Kheneg. It consists of the alternation of red claystone/marlstone interlayers (Facies F1) 0.10 to 0.50 m thick (displaying planktonic foraminifers and ostracods) and red to green nodular limestone (Facies F2), occurring in 0.20 to 3 m thick packages. Both F1 and F2 commonly contain ammonites, echinoids, crinoids, bivalves and brachiopods. The microscopic scale of F2 (ATROPS & BENEST, 1984, 1986) shows skeletal and intraclast components with non-skeletal grains (ooids and pellets) forming wackestone and packstone-textured carbonates. The fossil allochems include echinoid debris, crinoid fragments, bivalves, and planktonic foraminifers.

The ammonite communities indicate the Stenocycloides Subzone with Gregoryceras fouqui (KILIAN) and the Grossouvrei Subzone with rare Perisphinctes (Dichotomoceras) bifurcatus (QUENSTEDT) (ATROPS & BENEST, 1984).

Unit B (Middle part of the formation – middle sandstone)

This 5-15 m thick unit is easily distinguished from the upper part of the lower unit by the presence of a 0.20 to 1 m thick sandstone (Facies F3), separated by centimetre thick red to green claystone interlayers. The middle sandstone unit shows a large variation in thickness from 15 m in the Oued Kheneg section to 5 m in the Ain El Hamra section. The sandstone beds are yellow to brown when weathered, grey to greenish in fresh cuts. They show sharp erosive bases, pebble impressions, are channelized (Fig. 3C), and show sole marks (flute-casts). The wave/current structures are usually represented by horizontal and sigmoidal bedding, thick sets of hummocky-cross stratification (HCS) and large wavy cross-bedding (Fig. 3D). Commonly, the beds show unidirectional, linguoid ripple-marks (Fig. 3E) or mega-ripples (Fig. 3F).

At the top of this unit, the upper surface of the sandstone is highly bioturbated with large Thalassinoides (Fig. 5D). No body fossils have been recorded in this unit.

Figure 1. Location map of the study area: (A and B) Geographic location and Satellite image of northwestern Algeria; (C) Satellite image of the study area (from Google Earth).
Unit C (Uppermost part of the formation - upper Ammonitico rosso)

This 40-45 m thick unit is divided into two subunits:

3.1. Subunit C-1 (lower part of the unit)

As the lower part of the formation, this 22-30 m subunit is mostly composed of alternations of interlayered decimetre thick red (rarely green) claystone/marlstone (F1) (0.60-1 m) and red, pink to green micritic limestone (F2) (0.10-0.20 m). The limestone is nodular to pseudo-nodular and bioturbated. The bioturbation is generally represented by filled burrows. In the lower part, the limestone beds are rich in ammonites, echinoids, crinoids, echinoderm debris, and brachiopods. Broadly, the lithostratigraphic characteristics as well as the fossil content and the microscopic texture are similar to the lower unit.

Subunit C-2 (upper part of the unit)

This subunit is 12 to 15 m thick, cropping at the upper part of the Argiles rouges de Kheneg Formation (Fig. 3G). It is mostly composed of green shales to red claystone (F1) and thin sand- and siltstones (Facies F4). F4 embrace fine-grained sandstones (subfacies F4-a) and millimetre to centimetre thick siltstone laminae (subfacies F4-b). The F4-a and F4-b are brown in colour, and are 0.02-0.15 m thick, show channelized and sharp erosive bases, contain septarian nodules (lower part of the succession). The beds display abundant flute-cast, groove-mark, load-cast, horizontal lamination, small scale HCS, unidirectional, wavy and linguoid ripple-marks (Fig. 3H).

The unit C was dated as the Upper Kimmeridgian (Bimammatum Zone, Hypselum Subzone to the Planula Zone, Minutum Subzone) on the basis of ammonites (ATROPS & BENEST, 1994).
4. FACIES INTERPRETATION

The table below summarizes the main facies (F1, F2, F3 and F4) with their principal lithological, sedimentological and ichnological features:

5. FACIES ASSOCIATION AND PALAEOENVIRONMENT

Three facies associations have been distinguished, namely FA-1 to FA-3

5.1. Facies association (FA-1): The deeper part of platform

FA-1 comprises mudstone facies (F1) and limestone facies (F2). F1 includes red claystone (subfacies F1-a) and marlstone interlayers (subfacies F1-b). F1 and F2 are rhythmically interbedded and correspond to the Ammonitico rosso facies of the lower unit and the subunit C-1 of the upper unit and locally to some parts of the subunit C-2. Sediments of FA-1 were likely deposited in the deeper part of the carbonate shelf.

5.2. Facies association (FA-2): Upper shoreface

FA-2 occurs exclusively in the middle unit and is composed of thick sandstone (F3), mostly thinning upward. It contains subordinate thin green claystone interlayers (F1-a). It may be attributed to the upper shoreface deposits and is the shallowest facies of the Argiles rouges de Khene Formation.

5.3. Facies association (FA-3): Offshore transition-lower offshore

The upper part of the Argiles rouges de Khene Formation is composed of the facies association FA-3, which is made of interbedded fine-grained sandstones (F4-a), siltstones (F4-b) and claystone intervals (F1-a) (Fig. 3G). The shallow-water and high-energy conditions are proven by several wave/current sedimentary structures, and the recorded trace fossils belong to the Cruziana ichnofacies-Nereites ichnofacies transition. This facies association represents deposition in offshore transition-lower offshore environments.

6. ICHNOLOGY

Trace fossils are abundant and diverse in the subunit C-2 (uppermost part of the formation), but less frequent in the middle sandstone. Fifteen ichnogenera are recognized, presented in alphabetical order.

Belorhaphe zickzack, cf. Bergaueria isp., Helminthopsis isp., Megagrapton irregular, M. submontanum Nereites isp., Nereites irregularis, Ophiomorpha isp., Ophiomorpha rudis, O. annulata, Palaeophycus isp., Planolites isp., Protovirgularia isp., Thalassinoides isp.

Facies-type	General description	Fossils	Structures	Sedimentary process	Facies association and environment
Facies F1: Mudstones	subfacies F1-a: claystone	0.10-1 m thick, massive, laminated or lumpy mudstone very finely flaky, dark red, grey to green color,	ammonites, echinoids, crinoids, bivalves, brachiopods, foraminifers and ostracods.	without wave/current or biogenic structures	Below storm-wave base F1a: suspension sedimentation at F1b: chimic, biochimic decantation of limestone process and fine argillaceous fraction input
Facies F2: Limestone	nodular and pseudo-nodular, red, pink, green, 0.05-0.30 mm thick	ammonites, echinoids, crinoids, bivalves, brachiopods, foraminifers and ostracods.	Chondrites isp., Thalassinoides	Below storm wave-base, sedimentation speed, from decreased sediment input or secondarily increased winnowing by shelf currents.	
Facies F3: Thick sandstone	Thick beds, thinning upward. 0.20-1 m, yellow to brown, channelized, sharp erosive bases	Thalassinoides isp., horizontal and sigmoidal bedding, HCS ripple-marks and mega-ripples, sole marks, pebble impressions	deposition above storm-wave base		
Facies F4: Thin sand and siltstone.	subfacies F4-a: sandstones	brown to yellow, 0.02-0.15 mm thick, channelized, sharp erosive bases	Belorhaphe zickzack, cf. Bergaueria isp., Helminthopsis isp., Megagrapton irregular, M. submontanum Nereites isp., Nereites irregularis, Ophiomorpha isp., Ophiomorpha rudis, O. annulata, Palaeophycus isp., Planolites isp., Protovirgularia isp., Thalassinoides isp.	Sandstones: above storm-wave base (offshore-transition) Siltstones: post-storm deposits	
Facies F4: Thin sand and siltstone.	subfacies F4-b: siltstones	azoic	septarian nodules, flute-cast, groove-mark and load cast, horizontal lamination, HCS, wavy and ripple-marks.	BA3 = F1 + F4 (Thin sand and siltstone) (Offshore transition —lower offshore)	
Belaid et al.: First record of trace fossils from the Oxfordian Argiles rouges de Kheneg Formation (Tiaret, northwestern Algeria)

of 45°, 3 mm wide and 3-4 mm high. *Belorhaphe zickzack* is a typical graphoglyptid burrow (SEILACHER, 1977) and occurs in clastic sediments of the deep sea (UCHMAN, 1998; DEMIR-CAN & UCHMAN, 2017).

cf. *Bergaueria* isp. (Fig. 4B)

This trace is a hypichnion perpendicular to the stratification plane. It occurs mainly in the upper part of the second and third units. *Bergaueria* is a cylindrical structure, with an apical depression. It is considered as a resting or dwelling trace, produced by suspension feeders (FÜRSICH, 1975; PEMBERTON et al., 1988) and reported from shallow to deeper marine environments (CRIMES & ANDERSON, 1985; UCHMAN, 1998; CHERIF et al., 2015).

Chondrites isp. (Fig. 4C)

This trace is preserved as full relief, composed of a branching dendritic burrow network, mostly horizontal to the bedding. The burrows are from 0.5 to 1 mm wide, less than 30 mm long. *Chondrites* is frequent in the bioturbated limestone of the lower and upper Ammonitico rosso facies. It is considered as a fodinichnion (RICHTER, 1927) of marine annelids (SIMPSON, 1956),
and is classified as a chemichnion (BROMLEY, 1996). Generally, Chondrites is reported from offshore (CHERIF et al., 2015, 2018) to deep-sea deposits or in deep tier (BROMLEY, 1990), often considered to be an indicator of anoxia in sediments (BROMLEY & EKDALE 1984).

Helminthopsis isp. (Fig. 4D)

This trace is a hypichnial meandering ridge 0.2 to 2 mm wide and 100 mm long. It is attributed to polychaete worms (KSIĄŻKIEWICZ, 1977); mostly reported from deeper facies (CHAMBERLAIN; 1971; WETZEL et al., 2007).

Megagrapton irregularare KSIĄŻKIEWICZ, 1968 (Fig. 4E)

This trace fossil is preserved as a system of hypichnial, winding branched semi-cylindrical ridges forming an irregular net. The ridges are 1-2 mm wide, the branching points are 30-150 mm apart. *M. irregularare* has been observed in deposits of a wide spectrum of environments (BUATOIS et al., 2017), but is considered to be typical of turbiditic deposits (KSIĄŻKIEWICZ, 1977; UCHMAN, 1998).

Megagrapton submontanum AZPEITIA MOROS, 1933 (Fig. 4F)

These are hypichnial, winding branched ridges forming net with meshes bordered by strings, which are 1.0–1.7 mm wide and about four meshes are preserved. The maximum width of the mesh is 30 and 50 mm. *M. submontanum* occurs exclusively in deep water, mainly in flysch deposits (UCHMAN, 1998).

Nereites isp. (Fig. 5A)

This is a set of hypichnial horizontal, meandering ribbons, 2.0-5.0 mm wide, bounded by an even zone which is 1-2 mm wide.

Nereites irregularis SCHAFHÄUTL, 1851 (Fig. 5B)

This trace is preserved as an epichnial meandering burrow, made of a shallow furrow, 4.5 mm wide. *Nereites* are locomotion traces of annelid worms (SEILACHER, 2007), commonly occurring in deep-sea deposits. It is composed of a median faecal string and bounding zones, which indicate sediment reworking (UCHMAN, 1995).
Ophiomorpha isp. (Fig. 5C)

This consists of a horizontal, cylindrical burrow 5 to 10 mm wide, and at a least of 70 mm long, covered by irregular pellets and co-occurs with *Planolites*.

cf. *Ophiomorpha annulata* KSIĄŻKIEWICZ, 1977 (Fig. 5D) occurs as a straight to slightly curved, horizontal tunnel, preserved in epirelief, on the sandstone bed, 2.5-8 mm in diameter, and about 250 mm long. *O. annulata* may be smooth or showing arranged granules as a meniscate shape.

Ophiomorpha rudis KSIĄŻKIEWICZ, 1977 (Fig. 5D)

It co-occurs with *Palaeophycus* and *Planolites* as simple cylindrical burrows, straight or slightly curved, horizontal to bedding plane. This trace is 2.5–5 mm wide on average and 300 mm long, showing scratches or small to strong nodular external surfaces. *Ophiomorpha* is produced by shrimp-like crustaceans, living in burrows made in high-energy coastal marine sand environments (FREY et al., 1978), but it has also been reported from deep-sea deposits (KERRN & WARME, 1974; UCHMAN, 1995; UCHMAN, 2009).

Palaeophycus isp. (Fig. 5C-D and E)

Slightly sinusoidal horizontal and unbranched cylindrical burrows, 5 to 10 mm in diameter, a few centimetres to 150-200 mm-long; studied specimens are preserved as positive/negative epi- or hyporeliefs. This trace characterizes mainly the upper part
of the third unit. *Palaeophycus* is an extremely eurybathic facies-crossing trace, interpreted as a mostly dwelling burrow of suspension feeding or predatory worms (PEMBERTON & FREY, 1982).

Planolites isp. (Fig. 5C-D and H)

A straight, gently curved cylindrical burrow, preserved mostly as hypichnial ridges which are 2-4 mm wide and about 8.0 mm long. They are found solitarily or in association with *Ophiomorpha, Palaeophycus* and *Thalassinoides*. Planolites is attributed to vermiform deposit-feeders (PEMBERTON & FREY, 1982; UCHMAN, 1995) and considered as facies-crossing from distal platforms (DAM, 1990; CHERIF et al, 2015) to deep-sea deposits (DEMIRCAN, 2008).

Protovirgularia isp. (Fig. 5F)

Protovirgularia occurs as horizontal cylindrical straight trail preserved as epirelief, 2.5 mm in diameter, with regular to irregular chevron-shaped markings. This trace is commonly attributed to fodiinichnia and cubichnia of molluscs such as bivalves and it has been documented in estuarine deposits and wave-influenced deposits (MANGANO & BUATOIS, 2004; UCHMAN & GAZDZICKI, 2006; CHERIF et al, 2015, 2018).

Thalassinoides isp. (Fig. 5G-H)

Thalassinoides consists of horizontal, sub-cylindrical systems of irregular burrows, generally dichotomous, Y-shaped branching. All specimens are preserved as full-relief structures. Burrow diameter ranges from 4 to 50 mm, they are 50 to 250 mm-long. *Thalassinoides* is a facies-crossing ichnogenus, representing deposit-feeding and dwelling activities of crustaceans (FÜR-SICH, 1973), reported from shallow-marine (SCHLIRF, 2000, CHERIF et al, 2015, 2018) to deep-marine (UCHMAN, 1995) environments.

REFERENCES

ATROPS, F. & BENEST, M. (1984): Données biostratigraphiques nouvelles sur l’Oxfordien et Kimméridgien du Djebel Nador et Tiaret (Avant-pays tellien, Algérie): Conséquences paléogéographiques.– Geobios, 1/14, 155–122. doi: 10.1016/S0016-6995(84)80170-2

ATROPS, F. & BENEST, M. (1994): Les formations à ammonites du Malm dans le bassin tellien, au nord de Tiaret: leur importance pour les corrélations avec les séries de l’avant-pays de l’Ouest algérien.– In: CARIOU, E. & HANTZPERGUE, P. (eds.): 3rd International Symposium on Jurassic stratigraphy, Poitiers, 1991.– Geobios, 79–91. doi: 10.1016/S0016-6995(94)80027-4

AUGIER, C. (1967): Quelques éléments essentiels de la couverture sédimentaire des Hauts Plateaux.– Publication du Service Géologique de l’Algérie, 34, 47–80.

AZPETHA MOROS, F. (1993) : Datos para el estudio paleontológico del Flysch de la Costa Cantábrica y de algunos otros puntos de España.— Boletín del Instituto Geológico y Minero de España, 53, 1–65.

BAUCON, A., BEDNARZ, M., DUFOUR, S., FELLETTI, F., MALGESINI, G., DE CARVALHO, CN., NIKLAS, KJ., WEHRMANN, A., BATSTONE, R., BERNARDINI, F., BRIGUGLIO, A., CABELLA, R., CAVALAZZI, B., FERRETTI, A., ZANZERL, H., MCILROY, D. (2019): Ethology of the trace fossil Chondrites: form, function and environment.— Earth-Science Reviews, 202. doi: 10.1016/j.earscirev.2019.102989

BENEST, M., OUARDAS, T., PERRIAUX, J & USELLE, JP. (1998): Dynamique et contrôle de la sédimentation détritique de l’Oxfordien supérieur ou Kimméridgien supérieur (Zone à Acanthisium) dans le cadre paléostuctural de la plate-forme ouest algérienne.– Bulletin su service Géologique de l’Algérie, 9/2, 95–121.

BERRA, F. & ANGIOLINI, L. (2014): The evolution of the Tethys region throughout the Phanerozoic: A brief tectonic reconstruction.– In: MARLOW, L., KENDALL, C. & YOSE, L. (eds.): Petroleum systems of the Tethyan region.– American Association of Petroleum Geologists Memoir, 106, 1–27. doi: 10.1306/13431840M1063606
