On the potential of machine learning to examine the relationship between sequence, structure, dynamics and function of intrinsically disordered proteins

Kresten Lindorff-Larsen1,* and Birthe B. Kragelund1,*

1Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen. Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark

Abstract Intrinsically disordered proteins (IDPs) constitute a broad set of proteins with few uniting and many diverging properties. IDPs—and intrinsically disordered regions (IDRs) interspersed between folded domains—are generally characterized as having no persistent tertiary structure; instead they interconvert between a large number of different and often expanded structures. IDPs and IDRs are involved in an enormously wide range of biological functions and reveal novel mechanisms of interactions, and while they defy the common structure-function paradigm of folded proteins, their structural preferences and dynamics are important for their function. We here discuss open questions in the field of IDPs and IDRs, focusing on areas where machine learning and other computational methods play a role. We discuss computational methods aimed to predict transiently formed local and long-range structure, including methods for integrative structural biology. We discuss the many different ways in which IDPs and IDRs can bind to other molecules, both via short linear motifs, as well as in the formation of larger dynamic complexes such as biomolecular condensates. We discuss how experiments are providing insight into such complexes and may enable more accurate predictions. Finally, we discuss the role of IDPs in disease and how new methods are needed to interpret the mechanistic effects of genomic variants in IDPs.

Keywords: Machine learning, intrinsically disordered protein, molecular complex, condensate, SLiM
Highlights

- Machine learning may help extract conformational preferences from poorly defined multiple sequence alignments of intrinsically disordered proteins
- Machine learning may help link biophysical experiments and conformational ensembles through better forward models
- Machine learning may help develop and parameterize better coarse-grained models for intrinsically disordered proteins
- Machine learning may help identify short-linear motifs, assign potential biological functions to them, and enable transfer of information between different systems
- Machine learning may help extract information from experiments on biomolecular condensates and enable transfer to proteomewide predictions
- Machine learning may help assign pathogenicity to genetic variants and be combined with other models to provide information about mechanisms of disease

Introduction

Intrinsically disordered proteins (IDPs) constitute a broad and relatively heterogeneous class of proteins that have in common that they do not adopt a well-defined three-dimensional structure, at least in the absence of binding partners. This in itself is not a very strict definition because also natively folded proteins are dynamic. Experimentally, disordered proteins are often characterized using a range of biophysical measurements that typically reveal the presence of transiently formed secondary structure elements and occasionally weak, transient longer-range interactions. Analogously, many proteins have regions of intrinsic disorder interspersed within or between folded domains, and in many ways these intrinsically disordered regions (IDRs) behave similarly to IDPs, and in general we will refer to both as IDPs.

The flexibility and dynamics combined with an extended surface area endow IDPs with an ability to adapt, a trait that is often key to their biological function, either because it enables them to bind to multiple different proteins or because the intrinsic dynamics may affect both binding kinetics and thermodynamics. This dynamics, however, also makes it difficult to characterize IDPs both experimentally and computationally.

It was early recognized that the amino acid composition and sequences of IDPs differed in several ways from those of folded proteins. Thus, aided by databases containing experimentally-validated IDPs (Hatos et al., 2020) a large number of prediction methods have been developed to predict protein disorder from sequence alone (Piovesan et al., 2021; Necci et al., 2021). While overall very successful, such prediction methods inherently need to deal with the heterogeneity in what is considered a disordered protein, including large differences in biological context (complexes, post-translational modifications, etc).

A complementary approach to study IDPs is to characterize the conformational ensembles that they populate. In certain favourable cases, computational methods can on their own predict some conformational properties. Often, however, a detailed and accurate characterization requires integrating one or more types of biophysical experiments with computational methods to collectively derive a collection of structures that represent the conformational heterogeneity (Mittag and Forman-Kay, 2007; Jensen et al., 2013) or dynamics (Salvi et al., 2016) of the protein. A number of such approaches exist and some of the resulting ensembles are collected in the Protein Ensemble Database (PED; Lazar et al. (2021)), by analogy to the Protein Data Bank (PDB; wwPDB consortium (2019)), which, however mostly contains more well-defined protein structures or IDPs in complexes.

For folded proteins, Anfinsen's observations (Anfinsen, 1973; Eisenberg, 2018) suggested that it should be possible to predict the three-dimensional structure of a folded protein based only on its primary structure and its interaction with the environment. Over the years, this has led to the field of protein structure prediction, and a plethora of innovative approaches to predict structure from
sequence. The accuracy of such methods are evaluated during the biennial critical assessment of structure prediction (CASP) experiment. While there have been continued improvements in the ability to predict structures over the years, the last two installments of CASP (CASP13 (2018) and CASP14 (2020)) have witnessed some substantial and impressive advances in accuracy, in particular in the so-called template-free modelling (Kryshtafovych et al., 2019; AlQuraishi, 2021). While a number of developments have contributed to this, we here highlight three. First, in the last decade a number of methods have been developed to extract structural information from multiple sequence alignments (MSAs) e.g. through the analysis of correlated substitutions during evolution (Lapedes et al., 2012; Weigt et al., 2009; Marks et al., 2011; Morcos et al., 2011; Balakrishnan et al., 2011; Xu, 2019). Second, there has been an explosion in the number of sequences available making such sequence-based approaches useful and applicable to a wider number of proteins. Finally, various deep-learning approaches have been used to ‘learn’ the complex relationship between the amino acid sequence (or MSA) and the three-dimensional structure. Most visible has been the development of the AlphaFold approach (Senior et al., 2020) in CASP13 and AlphaFold 2 in CASP14, although many other groups have also contributed to these developments including among others Xu (2019); Zheng et al. (2019); Kandathil et al. (2019); AlQuraishi (2019); Torrisi et al. (2020); Yang et al. (2020a); AlQuraishi (2021).

Motivated by our own research, this review begins by examining whether such methods can be used to predict information about the (highly conformationally heterogeneous) three-dimensional ‘structures’ and ensembles of IDPs using only the primary structure as input. We also discuss how machine learning methods may aid in integrative modelling of the conformational ensembles of IDPs. We discuss the unique properties of IDPs in complexes, both those formed via short linear motifs and in larger assemblies and biomolecular condensates, and how new sources of data may be useful to develop better prediction methods. Finally, we discuss the role of IDPs in human diseases and how an improved understanding of the relationship between sequence, structural properties, formation of complexes and function may help in this area (Fig. 1). Overall, we highlight a number of challenges that are particularly relevant for IDPs, and some of the questions that might be addressed by combining machine learning methods with experiments and other computational approaches.

Towards improved conformational ensembles

From sequence to structure

Before discussing potential applications to IDPs, we first describe very briefly some of the key steps that have lead to improved structure prediction of folded proteins, but note that this description is far from comprehensive. One key ingredient has been the ability to extract structural information, for example in the form of contacts (Lapedes et al., 2012; Marks et al., 2011), distance distributions (Senior et al., 2020) or distributions over distances and orientations (Yang et al., 2020a), from the analysis of MSAs. This work builds on earlier ideas that correlated mutations observed through evolution contain information about the proximity of amino acids in the three-dimensional structure (Taylor and Hatrick, 1994; Neher, 1994; Göbel et al., 1994), but required more advanced analysis methods, including global analysis methods (Lapedes et al., 2012; Weigt et al., 2009; Marks et al., 2011; Morcos et al., 2011; Balakrishnan et al., 2011; Xu, 2019), as well as increased number of sequences to reveal their full potential. The structural information obtained from the MSAs can then be used to guide structure determination using a range of methods to obtain three-dimensional models. Indeed, while many methods have been shown to help improve the accuracy of contact prediction, it is not clear that improved contact prediction always leads to substantially improved models of three-dimensional structures (Kassem et al., 2018). More recent improvements in the AlphaFold 2 method appear to involve using a so-called end-to-end model (AlQuraishi, 2019; Laine et al., 2021; AlQuraishi, 2021), which has been trained to predict structures directly from sequence using an iterative approach (Jumper et al., 2020). While the details are not fully available, it ap-
Figure 1. An overview of the relationship between sequence, structure, dynamics and function of IDPs, and how the inherent disorder also in the complexes affects the use of machine learning approaches. Some of the challenges to understand these relationships include improving predictions of disorder, describing ensemble properties, and finding ways to include complex heterogeneity and context effects. Finally, it is still not clear how many disease variants in IDPs lead to disease and by which mechanisms.
pears that a machine learning model has been optimized to predict directly the three-dimensional structure from sequence and trained using large sequence and structure databases.

We return now to the question of how such methods might be applied to IDPs, and note several obstacles that need to be overcome. First, the goal should not generally be to predict a single structure from the sequence, but rather an ensemble of dynamic structures. We here note in passing that some predictions provide multiple structures, but these generally represent the uncertainty of the prediction rather than the intrinsic heterogeneity and dynamics of the structure. Second, it is often difficult to generate high quality and deep MSAs of IDPs, in particular for those of low sequence complexity, or when conserved folded domains used to anchor alignments are lacking. Third, we do not have available a large number of structural ensembles that can be used to benchmark let alone train prediction methods. Thus, in contrast to the case for folded proteins where the PDB contains approximately 175,000 entries with protein structures, the PED contains ca. 200 ensembles.

Recent work has begun to develop approaches to understand the relationship between sequence and conformational ensembles of IDPs. In one such study, the concept of amino acid co-evolution was applied to predict contacts in IDPs from MSAs (Toth-Petroczy et al., 2016). In several of the proteins analysed, the predicted contacts could be shown to coincide with key contacts observed within an IDP when bound in a complex to a folded protein (Toth-Petroczy et al., 2016), thus demonstrating that the same principles that have been used so successfully for folded proteins have the potential to provide insight into IDPs, at least when they form complexes. In another study, we used similar sequence analyses of the disordered protein CsgA (Tian et al., 2015). Here, we found a strong pattern of predicted contacts that corresponded to a folded amyloid-like state that CsgA forms. In this case, these contacts are preserved by evolution because CsgA forms a functional amyloid that is beneficial to the bacteria. While these and related studies suggest that sequence analysis might contain information that can be extracted to learn about the structures of IDPs, they have so far mostly revealed information about folded states that the IDPs might adopt or, perhaps, local secondary structure in the disordered states (Toth-Petroczy et al., 2016). Here we note that there has been a substantial amount of work on predicting local structure in flexible peptides and proteins, but that our focus here is more generally on both local and global structures.

One of the limiting factors is also that we do not have a well-developed framework to discuss and quantify the relationship between sequence and ensemble properties. Indeed, as discussed above, protein disorder covers a continuum ranging from almost folded, but flexible and compact globules to chains that appear as statistical random coils. Because these proteins are best described in statistical terms, one approach is to bypass the three-dimensional structure altogether and predict key structural parameters directly from sequence. A number of such studies have focused on discovering the rules that govern the relationship between amino acid composition and patterning and, in particular, compaction of IDPs by parameterizing computational methods using experiments (Marsh and Forman-Kay, 2010; Hofmann et al., 2012; Das and Pappu, 2013; Sawle and Ghosh, 2015; Sørensen and Kjaergaard, 2019; Zheng et al., 2020; Martin et al., 2020). Recently, Cohan et al. (2019) developed a conceptual framework to examine such sequence-ensemble relationships more generally. Presumably, such approaches as well as more advanced computational methods and expanded sets of experimental data will be needed to predict structural properties beyond predicting compaction and local structure in IDPs.

Beyond sequence alignments

As discussed above, one of the main sources of information in current protein structure prediction comes from MSAs. While a detailed discussion of methods used to generate MSAs is beyond the scope of this paper, we note here that they are generally constructed based on the assumption of positional homology (Bawono et al., 2017), i.e. that a specific position in one sequence corresponds to a specific position in a homologous sequence. While this in turn is often the case for folded
proteins, the situation in IDPs appears more complicated. Moreover, some IDPs diverge by gene
duplication (Lee et al., 2008) or are only found in some species (Rozen et al., 2015), and indels
(insertion and deletions) are found to be frequent in IDPs (Light et al., 2013), obscuring alignments
further.

Recently, several ideas and methods from natural language processing have been applied to
modelling, interpreting and predicting properties from protein sequences (Alley et al., 2019; Rao
et al., 2019; Heinzinger et al., 2019; Ofer et al., 2021). While such methods are still difficult to
interpret and expensive to train, they might help study proteins for which it is difficult to construct
good alignments. Nevertheless, it still appears that MSAs contain substantial information that is
not easily extracted from such language models (Rao et al., 2019), and indeed combining the two
can be advantageous (Rao et al., 2021).

Initial applications of language models to IDPs suggest that such models could be very useful
in cases where one cannot construct accurate MSAs (Heinzinger et al., 2019). It will be interesting
to explore whether these methods can be used to discover new rules that govern IDP sequences,
and extract structural information from them. For example, as discussed above, properties such
as the level of compaction and local structural motifs can to some extent already be predicted from
sequence. It will, however, be interesting to explore how such methods can be improved—also for
other properties such as long-range interactions or post-translational modifications—by develop-
ing new methods to represent sequences that are not based on the positional-conservation dogma
that implicitly underlies many structure-prediction methods for folded proteins (Pritišanac et al.,
2019; Huihui and Ghosh, 2021).

Forward models for interpreting experimental data

Many methods for predicting the structures of folded proteins are explicitly or implicitly based
on the availability of thousands of labelled sequence-structure pairs in the PDB, used either for
parameterization, training or validation. As discussed above, we have much fewer experimentally-
derived conformational ensembles available for IDPs, and we here discuss how machine learning
methods can provide potential advances in modelling IDPs.

While a plethora of methods exist for modelling conformational ensembles of IDPs, they are
typically based on either biasing molecular simulations using experimental data or on selecting
structures from a pre-generated ensemble to improve agreement with experiments (Mittag and
Forman-Kay, 2007; Jensen et al., 2013; Bonomi et al., 2017; Orioli et al., 2020). In these methods it
is very important that the underlying dynamics and conformational averaging is treated correctly.
For folded and rigid proteins one often transforms the experimental measurements into geo-
metric restraints that are then applied during or after simulations. While this is possible for IDPs, a
more general approach involves calculating experimental quantities from conformations and en-
nsembles and comparing these to experiments. This calculation relies on so-called ‘forward models’,
i.e. algorithms to calculate experimentally-accessible quantities from conformational ensembles.

To give a concrete example, small-angle X-ray scattering (SAXS) experiments are often used to
probe the compaction of an IDP, often quantified by the radius of gyration (R_g). One approach
might therefore be to extract the R_g from experimental SAXS data and generate a conformational
ensemble with the same (average) R_g. Such an approach would, however ignore solvent contribu-
tions to the experimental measurements (Henriques et al., 2018) as well as information from a
wider range of scattering angles (Riback et al., 2017; Fuertes et al., 2017; Zheng and Best, 2018).
Also, when multiple sources of experimental data are used it is very important to treat errors and
ensemble-averaging correctly (Ahmed et al., 2020), and that becomes more difficult when working
with quantities that are transformed values of the experimental measurements. Instead of using
R_g, the more common approach is to use a forward model to calculate SAXS data from each con-
formation in an ensemble, and then compare the calculated average with experiments (Bernadó
et al., 2007). A number of such forward models exist for SAXS experiments, that differ in how
they treat solvent effects, as well as in accuracy and computational efficiency (Hub, 2018). Impor-
tantly, different forward models may give different views of a conformational ensemble (Cordeiro et al., 2017; Henriques et al., 2018), because—depending on the relationship between structure and measurement—different ensembles will be needed to agree with the experiments (Pesce and Lindorff-Larsen, 2021).

There are at least two different approaches to develop forward models, and these approaches can be combined. The first uses basic physical principles underlying the experiment to link structure and observable. Again using SAXS as an example, one of the most commonly used methods to calculate SAXS data from experiments (Crysol; Svergun et al. (1995)) calculates SAXS intensities from the scattering amplitude of the protein in vacuum as well as a model for the solvent contribution. The former is in turn based on empirically-derived form factors whereas the solvent contribution is parameterized using two parameters capturing the average solvent displaced by surface atoms and the excess density of the solvation layer. For folded and globular proteins, these two parameters are often fitted based either on a known structure or a model for the structure. Thus, the calculations of SAXS data from structural models may involve combining such a physical model while fitting one or a few empirical parameters against the experimental data.

Other forward models, such as for example methods that are used to calculate protein chemical shifts from protein structures are also often based on physical principles, but have a large number of parameters that need to be fit to experiments (Xu and Case, 2001; Shen and Bax, 2007; Kohlhoff et al., 2009; Han et al., 2011). This in turn is often based on data for folded proteins for which both high resolution structures and assigned chemical shifts are available. The mathematical function that connects structure and chemical shift is highly complex and has its roots in quantum mechanics. Thus, an alternative approach to express this relationship is to use neural networks (Meiler, 2003; Shen and Bax, 2010; Li et al., 2020a; Yang et al., 2020b). One assumption underlying most of these approaches is that the experimental chemical shifts (which are time and ensemble averaged quantities) can be predicted accurately from a single structure. While that may be sufficient to study the rigid regions of folded proteins, other approaches may be needed to deal with more flexible parts (Lindorff-Larsen et al., 2005; Li and Bruuschweiler, 2012; Christensen et al., 2013). For IDPs where the chemical shifts represent a relatively broader ensemble of states and with more homogeneous chemical environments, further developments may be required to calculate accurate chemical shifts (relative to the small deviations from random coil values) and to extract structural information from these experiments (Crehuet et al., 2019).

Semi-empirical forward models such as those described above can be extremely difficult to develop for IDPs. This is because we rarely have sets of proteins for which we accurately know the conformational distribution derived independently from the set of measurements that one aims to develop a forward model for. Thus, most structures and ensembles determined for IDPs are implicitly based on forward models trained and validated on folded proteins. In the case of SAXS data this means, for example, that we often make the assumption that the solvation of a disordered protein is similar to that of a natively folded protein, and that the solvation properties are independent of the structure. While this may be true, this is very difficult to validate. One approach towards this goal may be to use more refined forward models to derive the ensembles (Hub, 2018; Hermann and Hub, 2019), to reparameterize simplified models using such more refined methods (Henriques et al., 2018), or to refine ensembles and forward models in a self-consistent manner (Rieping et al., 2005; Brookes and Head-Gordon, 2016; Pesce and Lindorff-Larsen, 2021).

How can machine learning methods aid in the further development of forward models, and thus in our ability to derive conformational ensembles from experimental data? As described above, neural networks have already been used extensively to parameterize a function used to calculate chemical shifts, and we expect such methods will become refined and extended to a wider set of experiments. Machine learning methods have also been developed to extract shape information from SAXS experiments (Franke et al., 2018) though, to our knowledge, not as forward models. Similarly, a deep neural network based approach has been developed to process and extract structural information from electron paramagnetic resonance (EPR) experiments (Worswick
et al., 2018). Finally, a neural network was recently trained using quantum calculations to predict data from infrared absorption spectroscopy (Ye et al., 2020). Circular dichroism (CD) spectroscopy is widely used to study IDPs (Chemes et al., 2012), yet calculating CD spectra from conformational ensembles of IDPs is difficult and generally based on ‘basic spectra’ derived from folded proteins often via secondary structure classification (Nagy et al., 2019). We envisage that machine learning methods can aid in generalizing such approaches towards IDPs. In addition to the improved accuracy potentially afforded by such machine-learning-based forward models, they may also have other advantages such as rapid evaluation and differentiability, both of which can be important when determining conformational ensembles from experimental data.

Improving energy functions for simulating IDPs

Returning to the problem of predicting conformational properties and ensembles of IDPs from sequence we now explore how experiments and machine learning methods may be combined to improve conformational modelling. Ensembles generated either directly from molecular simulations or from integrative modelling using experiments are dependent on the quality of the physical models used in simulations (Orioli et al., 2020). Thus improved force fields and energy functions both enable more accurate predictions of conformational properties from sequence, but also makes integrative methods more robust (Lindorff-Larsen and Ferkinghoff-Borg, 2009; Camilloni et al., 2012; Tiberti et al., 2015; Larsen et al., 2020; Ahmed et al., 2021). While molecular simulations may not be the most computationally efficient approach to predict conformational properties from sequence, it can serve as a benchmark and starting point for developing other approaches.

In recent years there have been substantial improvements in explicit solvent, all-atom force fields used to study the structure and dynamics of IDPs (Best, 2017; Huang and Mackerrill Jr, 2018; Robustelli et al., 2018; Mu et al., 2021), and these improvements have been derived both by better quantum-level calculations and empirical fitting to experimental data. Conformational sampling of IDPs, in particular long IDPs or their complexes, remains a substantial challenge, and therefore implicit solvent or coarse-grained methods are sometimes used. These can in turn be parameterized using either bottom-up (based on more accurate models) or top-down (from experiments) approaches, or indeed a combination of the two (Noid, 2013).

Some time ago we developed an automated approach to parameterize force fields based on experimental data and applied it to develop a coarse-grained model for IDPs (Norgaard et al., 2008). The basic idea, which had also been explored earlier for force field development (Njo et al., 1995; Norby and Liljefors, 1998; Groth et al., 2001; Bathe and Rutschlede, 2003), is to sample force field parameter space and to optimize the parameters by comparing simulation results against experiments. Using a Bayesian framework it is possible to combine the experiments with other sources of information, and one may use reweighting techniques to speed up parameterization (Norgaard et al., 2008). In some sense, this approach can be considered a machine learning approach for learning force field parameters from experimental data. Later, similar ideas have been developed and applied to the problem of optimizing all-atom force fields against experimental data (Li and Brüschweiler, 2010; Piana et al., 2011; Di Pierro and Elber, 2013; Wang et al., 2014; Cesari et al., 2019). The ideas developed by Norgaard et al. (2008) have been extended and applied to larger sets of experimental data to construct coarse-grained (Chen et al., 2018; Latham and Zhang, 2019; Dannenhoffer-Lafage and Best, 2021) and all-atom (Demerdash et al., 2019) models for IDPs. In these approaches, the experimental data are used to refine or parameterize a fixed functional form for the force field and representation of the protein. Recently, a number of machine learning approaches have been developed and used both to construct force fields and to develop coarse-grained representations (Ruff et al., 2015; Husic et al., 2020; Gkeka et al., 2020; Giulini et al., 2020; Yang et al., 2021), and we expect such approaches could have a substantial impact on our ability to simulate IDPs at various resolutions.

The methods described above suggest that machine learning methods may be used both to improve our ability to calculate and interpret experimental observables and to parameterize com-
putational models for IDPs directly against experiments. Common to both problems is the focus on interpreting and using the experimental measurements. This is key because the procedure when going from experimental measurement to conformational ensemble involves approximations and loss of information. In the context of folded proteins, this is generally thought to be less of a concern, and the three dimensional coordinates are often a relatively good representation of the system and of the data. This in turn means that structure prediction methods can be trained or benchmarked on the protein structures (coordinates) rather than the experimental measurements used to derive them. We expect that this will not be the case for IDPs, and instead we suggest that machine learning methods for structure prediction should be benchmarked or trained directly on experimental data similarly to the force fields described above. Related, it is still an open question to what extent the complicated models used to predict protein structures from sequence internally represent the physics of proteins, and thus training models for structure prediction from experiments may end up being comparable to training molecular force fields.

Towards predicting interactions and complexes

Identifying short linear motifs

An noted above, the primary structures of disordered proteins are generally not very well conserved. Nevertheless, their sequences do carry important information about their function, clues to which can be derived from direct sequence analysis and alignments. Although complicated to perform, and often assisted by manual refinements and adjustments, it is still possible to construct multiple sequence alignments of disordered proteins and from these alignments identify conservation hotspots in otherwise poorly conserved regions. In such cases, few positions—as little as between two and five—are highly conserved across species and found to be distributed across a confined stretch of approximately a dozen residues. These conserved sequence stretches represent so-called Short Linear Motifs (SLiMs) (Neduva et al., 2005; Van Roey et al., 2014; Jespersen and Barbar, 2020). SLiMs are recurrent, and the same SLiM can be identified in different, seemingly unrelated proteins conferring binding to specific partner proteins or other biomolecules. They constitute interactions sites, and the conserved residues are essential contact points that form part of the complex interface, and are thus essential to IDPs and their interactome. Today, more than 2000 SLiMs have been identified and annotated, and more candidate SLiMs reported with many assembled in the Eukaryotic Linear Motif database (elm.eu.org; Dinkel et al. (2012); Kumar et al. (2020); Gouw et al. (2020)). It is, however, difficult to identify new SLiMs, define SLiM properties and specificity, and to annotate their functions. Below we discuss some areas where new experimental approaches and machine learning method may be integrated to shed further light on these problems.

One problem when applying machine learning methods to predict new instances from known SLiMs is that, typically, only a small number of experimentally verified cases are reported for each individual SLiM. This is mainly because methods for SLiM identification have been low-throughput and have relied mostly on bioinformatics approaches with subsequent biochemical and biological testing (O’Shea et al., 2017), or through integrating computation and medium throughput experiments (Zeke et al., 2015). More recently however, new high-throughput approaches have been used to define, expand and refine SLiMs. Examples include combining structure-based shape complementarity analysis and proteome-wide affinity purification mass spectrometry (Brauer et al., 2019) and proteomic peptide phage display (ProP-PD), a method for simultaneous proteome-scale identification of SLiM-mediated interactions and foot-printing of the binding region with amino acid resolution (Ivarsson et al., 2014; Sundell et al., 2018). Recent work addressed ≈1,000,000 overlapping peptides covering the entire human disorderome in a single binding assay (Benz et al., 2021).

The generation of these large data sets provides new possibilities to train various types of prediction methods. Thus, a model has been trained to discriminate experimentally determined 14-3-3-binding SLiMs from non-binding phosphopeptides (Madeira et al., 2015) and a Random Forrest...
model was trained on a high-throughput phage display data set collected for low-specificity SLiM binding to S100A5 identifying recognition rules based on features of hydrophobicity and shape complementarity as primary determinants (Wheeler et al., 2020). Likewise, prediction of binding regions in longer IDPs have been aided by the use of a trained bidirectional recurrent neural network, combining sequence, predicted secondary structures, Vina docking score and predicted disorder to improve the prediction (Khan et al., 2013). Thus, machine learning approaches may help identify features that define SLiM binding and specificity, and are often used together with 3D structures, as done e.g. for PDZ binding peptides (Kundu and Backofen, 2014); a case where also more confident negatives could be included. Similar improvements in the number of reliable true-negatives were achieved in a reevaluation of a high-throughput binding data of SH2-pTyr interactions (Ronen et al., 2020). Currently such efforts are limited by a relative small number of large data sets, and further that larger scale experiments often address already known SLiMs. Another problem when developing prediction methods is the relatively low number of negative examples in many data sets, which has an impact on the number of false positives provided by the resulting models. Thus, ways to improve this issue are clearly needed. Once addressed, however, machine learning approaches could substantially further our understanding of SLiM-based interactions by enabling extraction of features of interaction that expand our view on sequence properties that determine SLiMs. Such features, which may also relate to conformational features, may help move beyond the expectation and limitation provided by a defined SLiM-sequence space. Indeed, SH2 domains, which are known to bind phospho-tyrosine ligands, have been shown to be able to also accommodate glutamates (Wallweber et al., 2014), which would not be expected solely from the SLiM definition, and therefore not typically included in fragment based database designs for machine learning purposes (Plewczyński et al., 2005). Finally, results from machine learning approaches may have the further benefit of contributing to the development of new vocabulary to describe SLiM-based interactions and uncover novel rules for interactions by IDPs.

Annotating function to short linear motifs

Although many SLiMs have been classified, it has been estimated that the human proteome counts more than 100,000 SLiMs, leaving most SLiMs unidentified (Tompa et al., 2014). Needless to say, each newly discovered potential SLiM in a disordered protein needs experimental verification as well as annotation; a task that remains a huge effort and experimentally highly challenging. So, although identification of their presence may be relatively accessible, and even aided by machine learning approaches, functional annotation of SLiMs remains an obstacle. Current high-throughput approaches for functional annotation have used in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants to uncover new interactors (Wigington et al., 2020), as well as Prop-PD (Javsson et al., 2014; Sundell et al., 2018).

There are, however, a number of complications that may make it difficult to apply machine learning methods to aid in annotating the function of newly discovered SLiMs. The same SLiM may in one protein be embedded in a sequence that folds to an α-helix when bound, whereas in another protein, the same SLiM may form an extended structure or a β-strand when bound. One example is provided by a set of plant transcription factors that all bind to the αα-hub domain RST from RCD1 through the RST-binding SLiM. Here, the transcription factors individually form either a helix, an extended or disordered SLiM structures in the complexes (O'Shea et al., 2017; Bugge et al., 2018). Thus, inherent to SLiMs is a certain plasticity in the position of the key conserved residues that form the critical contacts with the binding partner. Furthermore, the same sequence stretch within a disordered protein can have overlapping SLiMs and form biologically relevant complexes with different partners. There are several examples of this, for example the transcriptional activation domains of the tumor suppressor protein p53, which each have many different partners binding to the same overlapping region (Oldfield et al., 2008; Teilum et al., 2021).

Once the target protein is known, additional complications can arise. One is SLiM ‘reversibility’, in which two proteins with the same SLiM binds in opposite directions to the same partner,
as shown for Sap25 and REST binding to Sin3-PAH1 (Swanson et al., 2004) and peptide binding to MHC class II molecules (Günther et al., 2010). This directly points to the SLiM context as carrying additional functional relevance (Stein and Aloy, 2008). Indeed, it has been shown that the context may have both positive and negative effects on binding through charge attraction and repulsion (Palopoli et al., 2018; Prestel et al., 2019), and it may contribute to allosteric regulation (García-Pino et al., 2010; Li et al., 2017; O'Shea et al., 2017). Thus, the influence of context on SLiM-based interactions is emerging as functionally important and with a large potential relevant to drug targeting (Bugge et al., 2020). However, these flanking sequences and regions are often not conserved and are not resolved in experimental structures of the protein complexes—or even included in the experiments. Thus, these regions and their potential structural ensembles and conformational preferences cannot be extracted from the PDB and thus they currently constitute a data-gap for training purposes.

As the sequence properties of SLiMs are known only for a small fraction of the predicted SLiM-ome, there is a strong need for procedures that may enable the identification and annotation of SLiMs without extensive experimental efforts. Combined with the variability in the number of residues separating the key conserved sites within a SLiM, the possibility of being able to predict distance distributions of SLiM-based interactions, in which the possible contact points and special requirements could be mapped, would potentially be an important asset that may help facilitate functional annotation and even pinpoint relevant binding partners to address. While machine learning approaches seem like a promising approach, the elasticity of the SLiM sequence and the low conservation of the SLiM context would make a purely sequence-based approach difficult. Further information might be obtained from an MSA of the IDP and the binding partner (Skerker et al., 2008; Burger and Van Nimwegen, 2008; Weigt et al., 2009), although the signal for contacts might be relatively weak and difficult to extract. Another problem that emerges is how to learn from sets of SLiMs that have been characterized in depth, and apply this knowledge to other sequences that have been probed much less.

One recently described approach to learn the rules for protein-peptide interactions is a bespoke machine-learning approach, termed hierarchical statistical mechanical modelling, which can be trained on families with abundant experimental data (structures and sequences) (Cunningham et al., 2020). The approach learns a pseudo-energy function for interactions relevant for binding, which can be transferred also to proteins for which less information is available. In this way, the approach provides an elegant example of how machine learning methods can be used to learn general rules of biophysics that enable transfer and predictions on a wider class of problems and systems.

Looking ahead, although many structures have been determined of complexes between folded domains and peptides representing SLiMs from disordered proteins, these structures have in most cases been solved in the absence of the flanking regions. As these regions can be highly relevant for binding specificity and affinity, it is important to develop approaches that take these sequences into account. At the moment, however, the functional and structural properties of flanking regions are poorly understood and rarely studied, making it difficult to develop prediction methods. Initially, it might be fruitful to compare the surface properties of the protein that binds the IDP (e.g. charge patterning and hydrophobicity) to the overall physico-chemical properties of the flanking regions. One approach towards such endeavours uses a sequence-based model of charge patterning to relate sequence to function (HuHui and Ghosh, 2021). Eventually, and aided by the generation of data sets that includes longer peptides or full-length proteins, it may be possible to develop prediction methods that combine local and long-range interactions, perhaps using similar methods as when predicting effects of enhancers in gene regulation (Shlyueva et al., 2014; Avsec et al., 2021).

Complexes beyond SLiMs

As most IDPs have large exposed surface areas with high conformational flexibility, they also have high potential for binding other proteins (Berlow et al., 2015; Gao et al., 2018). IDP have thus
shown remarkable structural and functional diversity in their complexes, ranging from complex formation through folding-upon-binding with interfaces of similar composition and properties as to those formed between folded complexes (Rogers et al., 2014; Sugase et al., 2007; Iešmantavičius et al., 2014; Robustelli et al., 2020), over complexes where the disordered partner remains dynamic to different extents (Brzovic et al., 2011; Tillu et al., 2021). At the extreme end of the scale, highly dynamic complexes, which entirely lack the formation of stable secondary or tertiary structures, can form, for example between two highly and oppositely charged IDPs (Borgia et al., 2018; Schuler et al., 2020). The dynamics retained in these complexes serve functional roles through very different mechanisms. Their dynamic properties lead to several mechanistic advantages such as complex partner exchange (Berlow et al., 2017, 2019), facilitated dissociation via competitive substitution through formation of trimers (Sottini et al., 2020), ensemble redistributions (Henley et al., 2020), and allosteric regulations (Milles et al., 2018; Hendus-Altenburger et al., 2019). Their malleability also confers other functional advantages to IDPs, one of which is the ability to bind multiple binding-partners as hubs, some at an overlapping site in competition, and some distributed along the chain leading to scaffolding and e.g. the formation of signalling complexes or transcriptional factories. How would machine learning methods aid in decomposing the role of disorder in functions of IDPs and what are the problems associated with this task?

One of the first discoveries from studying disordered protein complexes were that they can fold upon binding, either to an already folded partner through one of two highly discussed mechanisms (Dogan et al., 2014; Iešmantavičius et al., 2014; Arai et al., 2015) or through the occasional mutual folding of two disordered proteins (Demarest et al., 2002; Dogan et al., 2012). Whereas folding-upon-binding of disordered regions at first may seem highly analogous to the process of protein folding, and hence in principle should be amiable to machine learning approaches to predict the structures of the complexes, there are however a number of obvious caveats to its direct use. First, even though the binding region may be known, it is not easy to predict from sequence alone, which part of the disordered protein will fold. Further, a continuum of disorder can exist both in the IDP alone and in a complex, and highly disordered complexes, by some termed fuzzy (Fuxreiter and Tompa, 2012; Olsen et al., 2017), may result in weak and near-stochastic interactions.

One such example is the activation domains of transcription factors (Erkine, 2018), whose properties were originally characterized as ‘acid blobs and negative noodles’ (Sigler, 1988). Recently, a number of multiplexed assays have been used to expand this view and study the functional requirements of the sequence properties of transcriptional activation domains (Staller et al., 2018; Ravarani et al., 2018; Erijman et al., 2020; Tycko et al., 2020; Sanborn et al., 2021; Staller et al., 2021). These results confirm the original observations of a requirement for hydrophobic and negatively charged residues and provide additional information about the role of patterning. Further, the data can be used to train various sequence-based machine learning models for activity (Ravarani et al., 2018; Erijman et al., 2020; Sanborn et al., 2021; Griffith and Holehouse, 2021). The results suggest that most functional variation can be explained solely by amino acid composition, but that there is additional signal from higher-order properties of the amino acid sequence (Erijman et al., 2020), thus highlighting the importance of generating sequence libraries with such properties in mind (Staller et al., 2018).

In addition to specific favourable interactions in a complex, binding by disordered proteins may also be driven by the use of entropy through other mechanisms (Pritišanac et al., 2019; Flock et al., 2014) such as via counter-ion release (Borgia et al., 2018), increased conformational flexibility in the complex or expansion of the surrounding disordered context (Heller et al., 2015). Prediction methods should ideally be able to quantify the remaining disorder after binding. Indeed, there are several examples of IDPs for which the bound state involves differently structured sub-populations of the complex, which all contribute to the specificity and selectivity in binding (Brzovic et al., 2011; Henley et al., 2020), and there are complexes in which several contacts are made between the IDP and the folded partner, but where these dynamically and independently interchange (shuffle) just as in holding a hot potato (Perham, 1975; Hendus-Altenburger et al., 2016). While such ex-
amples provide difficult targets for prediction methods, they are also difficult to characterize by experiments, and thus there is limited data to train and benchmark on.

Biomolecular condensates

Many IDPs have the ability to form multivalent interactions that are key for the ability to form so-called biomolecular condensates, either alone, with another IDP or in complex with folded domains or RNA. We refer the reader to recent reviews on the topic (Banani et al., 2017; Peran and Mittag, 2020; Dignon et al., 2020; Choi et al., 2020), and focus here mostly on the role of IDPs in forming such condensates and a set of problems where machine learning methods might help.

Biomolecular condensates often form via the process of liquid-liquid phase separation (LLPS), and a central requirement for a molecule to form these structures is the ability to form multivalent interactions. In the context of IDPs, this can for example be a protein carrying multiple SLiMs that can bind to folded multidomain proteins (Li et al., 2012; Bouchard et al., 2018) or a set of amino acid residues within an IDP that can form sufficiently strong interactions between them (Wang et al., 2018; Martin et al., 2020). Key areas for biophysical research include identifying the sequences and interactions that drive phase separation, identifying determinants of specificity in condensate formation, and elucidating the structural and dynamical features in biomolecular condensates. Before examining these questions, we stress that not all IDPs readily undergo LLPS, and that not all condensates involve IDPs.

Given the importance of IDP-IDP and SLiM-target interactions, the methods discussed above for characterizing IDPs and SLiMs are also important for studying condensates. One key insight is that—due to the similarity between intramolecular interactions within IDPs and intermolecular interactions between IDPs—there is a correspondence between the propensity of an IDP to sample more compact structures and for it to undergo phase separation (Panagiotopoulos et al., 1998; Lin and Chan, 2017; Dignon et al., 2018a, 2020; Choi et al., 2020; Martin et al., 2020). Thus, methods to predict compaction of IDPs or to parameterize simulation methods for isolated IDPs will also aid in studying phase separation of IDPs. Similarly, methods to predict SLiMs and their binding partners—and possibly the affinity of pairwise interactions—from sequence or from MSAs will aid in mapping the interactions that drive phase separation in these systems, and help to derive rules and features for their formation.

A number of databases have recently been created to collect information about proteins that undergo phase separation (Li et al., 2020b, c; Mézáros et al., 2020; You et al., 2020; Ning et al., 2020). Such databases are now being used to develop prediction methods for phase separation (Vernon et al., 2018; Hardenberg et al., 2020; van Mierlo et al., 2021; Raimondi et al., 2021; Saar et al., 2021), also with the aim of providing insight into the sequences and properties that are important for phase separation. In the same way as prediction methods for protein disorder have played a central role in understanding the role of disorder at the proteome level, such methods have the potential to do the same for biomolecular condensates (Vernon et al., 2018; Hardenberg et al., 2020).

Moving ahead, it will be important to extend such databases and prediction methods with additional quantitative information on the propensity to phase separate, and to annotate more broadly what components or features are involved in the formation of condensates. In the same way as many proteins and peptides have been shown to form amyloid structures under some conditions, many proteins will likely undergo LLPS. Thus, in the same way as methods for predicting aggregation propensities have been trained on quantitative measurements of aggregation (Chiti et al., 2003; Fernandez-Escamilla et al., 2004; Pawar et al., 2005), improvements in our ability to predict the propensity to undergo LLPS will likely involve fitting to or benchmarking against quantitative measurements of phase separation. Such analyses are already being performed with various coarse-grained simulation methods discussed above (Dignon et al., 2018b; Martin et al., 2020; Dignon et al., 2020; Choi et al., 2020; Bremer et al., 2021), but it may be difficult to scale these methods to proteomewide applications or to scan large numbers of components in heterotypic conden-
sates. The relationship between intra- and inter-molecular interactions and the driving force for phase separation suggests that it might be possible to train sequence-based prediction models on single-chain properties and use these to predict the ability to undergo LLPS. Such methods have already provided a number of general rules about valency and patterning that appear promising for our ability to predict the propensity of proteins to undergo LLPS from their amino acid sequence (Martin et al., 2020; Statte et al., 2020; Hazra and Levy, 2020; Amin et al., 2020; Bremer et al., 2021). Including the context, such as concentration, crowding and additional partners in heterotypic condensate formation in these models would be an important extension. The conformational landscape of IDPs is also dependent on a richness in protein post-translational modifications such as phosphorylations, methylations, sulfation, and lipidation, and e.g. phosphorylation and arginine methylation has been shown to affect the formation of condensates (Nott et al., 2015; Monahan et al., 2017; Lu et al., 2018; Hofweber et al., 2018; Hofweber and Dormann, 2019). Thus, predicting post-translational modifications and their effects on condensates would help provide additional insight into how condensates are regulated.

Intrinsic disorder and human diseases

Given their wide range of biological functions, it is not surprising that IDPs are involved in a number of human diseases (Uversky et al., 2009) including neurodegeneration (Uversky, 2015) and in particular in cancer (Iakoucheva et al., 2002; Deiana et al., 2019; Mézsáros et al., 2021). How may machine learning methods help understand the role of IDPs in disease?

While it appears a simple question to ask whether IDPs are enriched in a particular disease, answering this question requires accurate and unbiased predictions of protein disorder (Deiana et al., 2019). Thus, we need continuous development of databases and quantitative measures of protein disorder and assessment of prediction accuracy, as well as development of new prediction methods (Nielsen and Mulder, 2019; Dass et al., 2020; Hatos et al., 2020; Necci et al., 2021).

It is important to gain a better understanding of the molecular mechanisms underlying diseases involving IDPs. The expression of IDPs is tightly regulated, and misregulation may lead to disease (Babu et al., 2011). For folded proteins, it is well established that genetic missense variants may cause disease via a wide range of mechanisms including affecting both protein stability and interactions (Stefi et al., 2013; Sahni et al., 2015; Stein et al., 2019). A substantial number of disease-causing variants are, however, located in regions of predicted disorder and are predicted to affect for example SLiMs (Vacic et al., 2012). Thus, it is becoming clear that missense variants in IDPs can also lead to disease via perturbed interactions that either cause loss or gain of function (Meyer et al., 2018; Li et al., 2019; Wong et al., 2020), including promoting the formation of fibrils and toxic oligomeric species.

Loss of protein stability arising from missense variants and resulting protein degradation is established to be a key mechanism underlying loss of function for many folded proteins (Casadio et al., 2011; Stein et al., 2019), and indeed measurements or predictions of protein stability and abundance are useful for predicting loss of function (Matreyek et al., 2018; Cagada et al., 2021). While intrinsic thermodynamic stability of a folded state is not a meaningful quantity for IDPs, missense variants may still affect their cellular abundance. This may for example happen by mutations leading to impaired interactions and degradation, as exemplified by a missense variant in the IDR of the growth hormone receptor; a mutations leading to severe lung cancer (Chhabra et al., 2018). Similarly, missense variants may lead to new interactions by SLiM appearance (Davey et al., 2015; Meyer et al., 2018), lack of degradation by interference with degrons, disorder-to-order formation (Vacic et al., 2012), or changes in long-range interactions (Grazioli et al., 2019). In the latter example, machine learning techniques helped uncover differences in conformational dynamics from molecular dynamics trajectories of amyloid beta and the E22G disease variant, implicating their fibrillation into different morphologies. Thus, we need a better understanding both of the how IDPs are targeted for degradation and the sequence signals that determine cellular abundance (van der Lee et al., 2014), and of how contact remodeling along the chain impacts the ensemble.
Disordered regions may act as degradation signals (degrons) (Uversky, 2013), and new large-scale experiments are enabling a better understanding of the sequence and structural properties of degrons (Geffen et al., 2016; Koren et al., 2018). We expect that such experiments will ultimately enable better predictions of the degradation and abundance of IDPs, and the effects of mutations on these properties.

One particularly important role of IDPs in disease may be in those that are involved in the formation of biomolecular condensates. A number of diseases have been associated with misregulation or formation of such condensates (as recently reviewed by others; Aguzzi and Altmeyer (2016); Shin and Brangwynne (2017); Elbaum-Garofinkle (2019); Boija et al. (2021); Cai et al. (2021); Alberti and Hyman (2021)), and thus a better understanding of the sequence properties that drive the formation of condensates will be important for predicting their role in disease (Tsang et al., 2020) as well as for targeting them pharmaceutically (Biesaga et al., 2021).

More generally, in order to better predict how variants in IDPs may cause disease, we need a clearer overview of the relationship between sequence, structural and dynamical properties, binding preferences and function. For folded proteins, analyses of conservation via MSAs are very powerful to predict whether a variant may cause disease (Riesselman et al., 2018; Livesey and Marsh, 2020), but as discussed above, constructing and analysing MSAs provide unique challenges for IDPs. Thus, we need new methods to leverage the increasingly growing sequence databases to predict the effects of sequence variation in IDPs (Zarin et al., 2019; Zhou et al., 2020; Zarin et al., 2021), ultimately enabling targeting and drug development for combating diseases related to misregulation and dysfunction of disordered proteins. From an experimental point of view, multiplexed assays of variant effects (also sometimes called deep mutational scans) can provide key insights into both fundamental aspects of protein science (Fowler and Fields, 2014) and genotype-phenotype relationships and disease (Starita et al., 2017). Such experiments are now also beginning to provide a more comprehensive view of the effects of amino acid substitutions in IDPs such as the experiments on activation domains of transcription factors discussed above (Staller et al., 2018; Ravarani et al., 2018; Erijman et al., 2020; Tycko et al., 2020; Sanborn et al., 2021; Staller et al., 2021), as well as experiments on a number of aggregation prone disordered proteins (Rogers et al., 2018; Bolognesi et al., 2019; Gray et al., 2019; Newberry et al., 2020b; Seuma et al., 2021).

Outlook

IDPs are an enormously broad class of molecules and together with IDR$s they are involved in a wide range of biological functions. A key defining feature of IDPs and IDR$s is something they do not have, namely a persistent three-dimensional structure. Thus, in many ways they are defined by being different from the globular and membrane proteins that in more than a century have been the central focus of much protein science. Indeed, when the first CASP experiment was performed in 1994 (Moult et al., 1995) only few proteins where recognized as being intrinsically disordered and rarely was the conformational disorder linked to biological function.

In some ways, IDPs and IDR$s are simpler than folded protein because their linear (primary) structure already provides much insight into their chemistry and ability to interact with other molecules. Thus, a number of computational methods have been developed to predict disorder from sequence and to identify local segments of the sequence that can bind to other molecules. This apparent simplicity, however, can be deceiving. For folded proteins, the necessity to fold into a specific three-dimensional structure puts substantial restraints on the sequence and thus on evolution. Thus, MSAs of folded proteins often provide clues about specific residues and regions that are key to structure and function. Together with a large number of high resolution structures, this has lead to our ability to predict with increasing accuracy the structure of folded proteins. In contrast, while the sequences of many IDPs are conserved for function, this relationship is complex and different from that governing folded proteins, largely because their function is also coupled to their dynamics. It is interesting to speculate what protein science would have looked like if we
had first discovered IDPs, and then later found sequences that fold into specific three-dimensional structures.

Over the last 25 years, we have begun to understand the rules that govern the structural properties of IDPs, their interactions and their biological functions. Like for folded proteins, much insight has come from studying one system at a time, and computational methods are used to consolidate this into rules and predictions. In this review we have outlined a number of current problems in studies of IDPs, including our ability to characterize their structural preferences and interactions and our limitations in describing them. We have highlighted areas where machine learning and other computational methods have already had important impact, and new areas for further exploration (Fig. 2). Common to all is the tight interplay between experiment and computation. Particularly important is perhaps the realization that the two need to be developed together, with experiments being designed to inform computational methods, and computational algorithms developed, trained, and benchmarked using experiments. We look forward to see where these approaches will take the field.

Acknowledgments

We acknowledge many discussions with our colleagues at the Structural Biology and NMR laboratory and Linderstrøm-Lang Centre for Protein Science, and thank Tanja Mittag for comments on the manuscript. Asta B. Andersen is thanked for graphics support. Our research is supported by the Novo Nordisk Challenge Programmes REPIN (NNF18OC0033926; BBK) and PRISM (NNF18OC0033950; KLL), and the Lundbeck Foundation BRAINSTRUC initiative in structural biology (R155-2015-2666; KLL & BBK).
Figure 2. Outlining connections between sequence, structure, dynamics and function of IDPs where implementing machine learning approaches could have a potential (indicated with black connectors). From sequences and sequence alignments, machine learning approaches may help extract conformational properties from poorly defined sequence alignments of IDPs. Machine learning may be used to improve methods for combining biophysical experiments (here illustrated by SAXS, NMR, smFRET, EPR, IR and CD) and computation for example by deriving better forward models, and helping parameterizing force fields or better coarse grained (CG) models of IDPs. Machine learning may also enable extraction of new SLiMs and annotation of their biological functions, and provide insight into and ability to predict how context and flanking region (flanks) contribute to IDP function. Machine learning may also help predict and understand properties important for the formation of biomolecular condensates, and how context plays roles in their formation and dissolution. Finally, but not illustrated here, the combination of these approaches may help assign pathogenicity to genetic variants of IDPs. United, machine learning in combination with bioinformatics, simulation, theory and experiments can provide new rules for understanding IDP ensembles and IDP function. Jointly, such rules are necessary to enable the important decomposition of how mutations in IDPs may lead to disease states.
References
Aguzzi A, Altmeyer M. Phase separation: linking cellular compartmentalization to disease. Trends in cell biology. 2016; 26(7):547–558.

Ahmed MC, Crehuet R, Lindorff-Larsen K. Computing, Analyzing, and Comparing the Radius of Gyration and Hydrodynamic Radius in Conformational Ensembles of Intrinsically Disordered Proteins. In: Intrinsically Disordered Proteins Springer; 2020. p. 429–445.

Ahmed MC, Skaanning LK, Jussupow A, Newcombe EA, Kragelund BB, Langkilde AE, Lindorff-Larsen K. Refinement of α-synuclein ensembles against SAXS data: Comparison of force fields and methods. Frontiers in molecular biosciences. 2021; 8.

Alberti S, Huynh AA. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nature Reviews Molecular Cell Biology. 2021; p. 1–18.

Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Unified rational protein engineering with sequence-based deep representation learning. Nature methods. 2019; 16(12):1315–1322.

AlQuraishi M. End-to-end differentiable learning of protein structure. Cell systems. 2019; 8(4):292–301.

AlQuraishi M. Machine learning in protein structure prediction. Current Opinion in Chemical Biology. 2021; 65:1–8.

Amin AN, Lin YH, Das S, Chan HS. Analytical theory for sequence-specific binary fuzzy complexes of charged intrinsically disordered proteins. The Journal of Physical Chemistry B. 2020; 124(31):6709–6720.

Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973; 181(4096):223–230.

Arabi M, Sugase K, Dyson HJ, Wright PE. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proceedings of the National Academy of Sciences. 2015; 112(31):9614–9619.

Avsec Z, Agarwal V, Visentin D, Leidsam JR, Grabska-Barwinska A, Taylor KR, Assael Y, Jumper J, Kohli P, Kelley DR. Effective gene expression prediction from sequence by integrating long-range interactions. bioRxiv. 2021; .

Babu MM, van der Lee R, de Groot NS, Gsponer J. Intrinsically disordered proteins: regulation and disease. Current opinion in structural biology. 2011; 21(3):432–440.

Balakrishnan S, Kamisetty H, Carbonell JG, Lee SI, Langmead CJ. Learning generative models for protein fold families. Proteins: Structure, Function, and Bioinformatics. 2011; 79(4):1061–1078.

Banani SF, Lee HO, Huynh AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nature reviews Molecular cell biology. 2017; 18(5):285–298.

Bathe M, Rutledge GC. Inverse Monte Carlo procedure for conformation determination of macromolecules. Journal of computational chemistry. 2003; 24(7):876–890.

Bawono P, Dijkstra M, Pirovano W, Feenstra A, Abeln S, Heringa J. Multiple sequence alignment. In: Bioinformatics Springer; 2017.p. 167–189.

Benz C, Ali M, Krystkowiak I, Simonetti L, Sayadi A, Mihalic F, Kliche J, Andersson E, Jemth P, Davey NE, et al. Proteome-scale amino-acid resolution footprinting of protein-binding sites in the intrinsically disordered regions of the human proteome. bioRxiv. 2021; .

Berlow RB, Dyson HJ, Wright PE. Functional advantages of dynamic protein disorder. FEBS letters. 2015; 589(19):2433–2440.

Berlow RB, Dyson HJ, Wright PE. Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature. 2017; 543(7645):447–451.

Berlow RB, Martinez-Yamout MA, Dyson HJ, Wright PE. Role of backbone dynamics in modulating the interactions of disordered ligands with the TAZ1 domain of the CREB-binding protein. Biochemistry. 2019; 58(10):1354–1362.

Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI. Structural characterization of flexible proteins using small-angle X-ray scattering. Journal of the American Chemical Society. 2007; 129(17):5656–5664.
Best RB. Computational and theoretical advances in studies of intrinsically disordered proteins. Current opinion in structural biology. 2017; 42:147–154.

Biesaga M, Frigolé-Vivas M, Salvatella X. Intrinsically disordered proteins and biomolecular condensates as drug targets. Current Opinion in Chemical Biology. 2021; 62:90–100.

Boija A, Klein IA, Young RA. Biomolecular condensates and cancer. Cancer cell. 2021; .

Bolognesi B, Faure AJ, Seuma M, Schmiedel JM, Tartaglia GG, Lehner B. The mutational landscape of a prion-like domain. Nature communications. 2019; 10(1):1–12.

Bonomi M, Heller GT, Camilloni C, Vendruscolo M. Principles of protein structural ensemble determination. Current opinion in structural biology. 2017; 42:106–116.

Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Netts D, Kragelund BB, Best RB, Schuler B. Extreme disorder in an ultrahigh-affinity protein complex. Nature. 2018; 555(7694):61–66.

Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, Granata D, Marzahn MR, Lindorff-Larsen K, Salvatella X, et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Molecular cell. 2018; 72(1):19–36.

Brauer BL, Moon TM, Shefetic SR, Nasa I, Page R, Peti W, Kettenbach AN. Leveraging new definitions of the LxVP SLiM to discover novel calcineurin regulators and substrates. ACS chemical biology. 2019; 14(12):2672–2682.

Bremer A, Farag M, Borchers WM, Peran I, Martin EW, Pappu RV, Mittag T. Deciphering how naturally occurring sequence features impact the phase behaviors of disordered prion-like domains. bioRxiv. 2021; .

Brookes DH, Head-Gordon T. Experimental inferential structure determination of ensembles for intrinsically disordered proteins. Journal of the American Chemical Society. 2016; 138(13):4530–4538.

Brzovic PS, Heikaus CC, Kisselev L, Vernon R, Herbig E, Pacheco D, Warfield L, Littlefield P, Baker D, Klevit RE, et al. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Molecular cell. 2011; 44(6):942–953.

Bugge K, Braki I, Fernandes CB, Dreier JE, Lundsgaard JE, Olsen JG, Skrivor K, Kragelund BB. Interactions by disorder—a matter of context. Frontiers in Molecular Biosciences. 2020; 7.

Bugge K, Staby L, Kemplen KR, O'Shea C, Bendsen SK, Jensen MK, Olsen JG, Skrivor K, Kragelund BB. Structure of radical-induced cell death1 hub domain reveals a common aa-scaffold for disorder in transcriptional networks. Structure. 2018; 26(5):734–746.

Burger L, Van Nimwegen E. Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method. Molecular systems biology. 2008; 4(1):165.

Cagliada M, Johansson KE, Valančiūtė A, Nielsen SV, Hartmann-Petersen R, Yang JJ, Fowler DM, Stein A, Lindorff-Larsen K. Understanding the origins of loss of protein function by analyzing the effects of thousands of variants on activity and abundance. Molecular Biology and Evolution. 2021; p. msab095.

Cai D, Liu Z, Lippincott-Schwartz J. Biomolecular Condensates and Their Links to Cancer Progression. Trends in biochemical sciences. 2021; .

Camilloni C, Robustelli P, Simone AD, Cavalli A, Vendruscolo M. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts. Journal of the American Chemical Society. 2012; 134(9):3968–3971.

Casadio R, Vassura M, Tisvari S, Fariselli P, Luigi Martelli P. Correlating disease-related mutations to their effect on protein stability: A large-scale analysis of the human proteome. Human mutation. 2011; 32(10):1161–1170.

Cesari A, Bottaro S, Lindorff-Larsen K, Banāš P, Šponer J, Bussi G. Fitting corrections to an RNA force field using experimental data. Journal of chemical theory and computation. 2019; 15(6):3425–3431.

Chemes LB, Alonso LG, Noval MG, de Prat-Gay G. Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains. In: Intrinsically disordered protein analysis Springer; 2012.p. 387–404.

Chen J, Chen J, Pinamonti G, Clementi C. Learning effective molecular models from experimental observables. Journal of chemical theory and computation. 2018; 14(7):3849–3858.
Chhabra Y, Wong HY, Nikolajsen L, Steinocher H, Papadopulos A, Tunny K, Meunier F, Smith A, Kragelund B, Brooks A, et al. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation. Oncogene. 2018; 37(4):489–501.

Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature. 2003; 424(6950):805–808.

Choi JM, Holehouse AS, Pappu RV. Physical principles underlying the complex biology of intracellular phase transitions. Annual Review of Biophysics. 2020; 49:107–133.

Christensen AS, Linnet TE, Borg M, Boomsma W, Lindorff-Larsen K, Hamelryck T, Jensen JH. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics. PLoS One. 2013; 8(12):e84123.

Cohan MC, Ruff KM, Pappu RV. Information theoretic measures for quantifying sequence-ensemble relationships of intrinsically disordered proteins. Protein Engineering, Design and Selection. 2019; 32(4):191–202.

wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic acids research. 2019; 47(D1):D520–D528.

Cordeiro TN, Chen P, De Biasio A, Sibille N, Blanco FJ, Hub JS, Crehuet R, Bernadó P. Disentangling polydispersity in the PCNA-p15PAF complex, a disordered, transient and multivalent macromolecular assembly. Nucleic acids research. 2017; 45(3):1501–1515.

Crehuet R, Buigues PJ, Salvatella X, Lindorff-Larsen K. Bayesian-maximum-entropy reweighting of IDP ensembles based on NMR chemical shifts. Entropy. 2019; 21(9):898.

Cunningham JM, Koytiger G, Sorgor PK, AlQuraishi M. Biophysical prediction of protein–peptide interactions and signaling networks using machine learning. Nature methods. 2020; 17(2):175–183.

Dannenhoffer-Lafage T, Best RB. A Data-Driven Hydrophobicity Scale for Predicting Liquid–Liquid Phase Separation of Proteins. The Journal of Physical Chemistry B. 2021; .

Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proceedings of the National Academy of Sciences. 2013; 110(33):13392–13397.

Dass R, Mulder FA, Nielsen JT. ODINPred: Comprehensive prediction of protein order and disorder. Scientific reports. 2020; 10(1):1–16.

Davey NE, Cyert MS, Moses AM. Short linear motifs—ex nihilo evolution of protein regulation. Cell Communication and Signaling. 2015; 13(1):1–15.

Deliana A, Forcelloni S, Porrello A, Giansanti A. Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell. PloS one. 2019; 14(8):e0217889.

Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W, Dynson HJ, Evans RM, Wright PE. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature. 2002; 415(6871):549–553.

Demerdash O, Shrestha UR, Petridis L, Smith JC, Mitchell JC, Ramanathan A. Using small-angle scattering data and parametric machine learning to optimize force field parameters for intrinsically disordered proteins. Frontiers in molecular biosciences. 2019; 6:64.

Di Pierro M, Elber R. Automated optimization of potential parameters. Journal of chemical theory and computation. 2013; 9(8):3311–3320.

Dignon GL, Best RB, Mittal J. Biomolecular phase separation: From molecular driving forces to macroscopic properties. Annual review of physical chemistry. 2020; 71:53–75.

Dignon GL, Zheng W, Best RB, Kim YC, Mittal J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proceedings of the National Academy of Sciences. 2018; 115(40):9929–9934.

Dignon GL, Zheng W, Kim YC, Best RB, Mittal J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS computational biology. 2018; 14(1):e1005941.

Dinkel H, Michael S, Weatheritt RJ, Davey NE, Van Roey K, Altenberg B, Toedt G, Uyar B, Seiler M, Budd A, et al. ELM—the database of eukaryotic linear motifs. Nucleic acids research. 2012; 40(D1):D242–D251.
Griffith D, Holehouse AS. PARROT: a flexible recurrent neural network framework for analysis of large protein datasets. bioRxiv. 2021; .

Groth M, Malicka J, Rodziewicz-Motowidlo S, Czapelewski C, Klaudel L, Wiczk W, Liwo A. Determination of conformational equilibrium of peptides in solution by NMR spectroscopy and theoretical conformational analysis: Application to the calibration of mean-field solvation models. Peptide Science: Original Research on Biomolecules. 2001; 60(2):79–95.

 Günther S, Schlundt A, Sticht J, Roske Y, Heinemann U, Wiesmüller KH, Jung G, Falk K, Rötzschke O, Freund C. Bidirectional binding of invariant chain peptides to an MHC class II molecule. Proceedings of the National Academy of Sciences. 2010; 107(51):22219–22224.

Han B, Liu Y, Ginzier SW, Wishart DS. SHIFX2: significantly improved protein chemical shift prediction. Journal of biomolecular NMR. 2011; 50(1):43.

Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M. Widespread occurrence of the droplet state of proteins in the human proteome. Proceedings of the National Academy of Sciences. 2020; 117(52):33254–33262.

Hatos A, Hajdu-Soltész B, Monzon AM, Palopoli N, Álvarez L, Aykac-Fas B, Bassot C, Benítez GI, Bevilacqua M, Chasapi A, et al. DisProt: intrinsic protein disorder annotation in 2020. Nucleic acid research. 2020; 48(D1):D269–D276.

Hazra MK, Levy Y. Charge pattern affects the structure and dynamics of polyampholyte condensates. Physical Chemistry Chemical Physics. 2020; 22(34):19368–19375.

Heinzinger M, Elnaggar A, Wang Y, Dallago C, Nechaev D, Matthes F, Rost B. Modeling aspects of the language of life through transfer-learning protein sequences. BMC bioinformatics. 2019; 20(1):1–17.

Heller GT, Sormanni P, Vendruscolo M. Targeting disordered proteins with small molecules using entropy. Trends in biochemical sciences. 2015; 40(9):491–496.

Hendus-Altenburger R, Pedraz-Cuesta E, Olesen CW, Papaleo E, Schnell JA, Hopper JT, Robinson CV, Pedersen SF, Kragelund BB. The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC biology. 2016; 14(1):1–17.

Hendus-Altenburger R, Wang X, Sjøgaard-Frich LM, Pedraz-Cuesta E, Shetfig SR, Bendsøe AH, Page R, Kragelund BB, Pedersen SF, Peti W. Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature communications. 2019; 10(1):1–13.

Henley MJ, Linhares BM, Morgan BS, Cierpicki T, Fierke CA, Mapp AK. Unexpected specificity within dynamic transcriptional protein–protein complexes. Proceedings of the National Academy of Sciences. 2020; 117(44):27346–27353.

Henriques J, Arleth L, Lindorff-Larsen K, Skepö M. On the calculation of SAXS profiles of folded and intrinsically disordered proteins from computer simulations. Journal of molecular biology. 2018; 430(16):2521–2539.

Hermann MR, Hub JS. SAXS-restrained ensemble simulations of intrinsically disordered proteins with commitment to the principle of maximum entropy. Journal of chemical theory and computation. 2019; 15(9):5103–5115.

Hofmann H, Soranno A, Borgia G, Gask K, Nettels D, Schuler B. Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proceedings of the National Academy of Sciences. 2012; 109(40):16155–16160.

Hofweber M, Dormann D. Friend or foe—Post-translational modifications as regulators of phase separation and RNP granule dynamics. Journal of Biological Chemistry. 2019; 294(18):7137–7150.

Hofweber M, Hutten S, Bourgeois B, Spritzer E, Niedner-Bolzen A, Schifferer M, Ruepp MD, Simons M, Niessing D, Madl T, et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell. 2018; 173(3):706–719.

Huang J, MacKerell Jr AD. Force field development and simulations of intrinsically disordered proteins. Current opinion in structural biology. 2018; 48:40–48.

Hub JS. Interpreting solution X-ray scattering data using molecular simulations. Current opinion in structural biology. 2018; 49:18–26.
Huihui J, Ghosh K. Intra-chain interaction topology can identify functionally similar Intrinsically Disordered Proteins. Biophysical Journal. 2021; p. 1860–1868.

Husic BE, Charron NE, Lemm D, Wang J, Pérez A, Majewski M, Krämer A, Chen Y, Olsson S, de Fabritiis G, et al. Coarse graining molecular dynamics with graph neural networks. The Journal of Chemical Physics. 2020; 153(19):194101.

Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK. Intrinsic disorder in cell-signaling and cancer-associated proteins. Journal of molecular biology. 2002; 323(3):573–584.

Iešmantavičius V, Degan J, Jermth P, Teilm L, Kjaergaard M. Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angewandte Chemie International Edition. 2014; 53(6):1548–1551.

Ivarsson Y, Arnold R, McLaughlin M, Nim S, Joshi R, Ray D, Liu B, Teyra J, Pawson T, Moffat J, et al. Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proceedings of the National Academy of Sciences. 2014; 111(7):2542–2547.

Jensen MR, Ruigrok RW, Blackledge M. Describing intrinsically disordered proteins at atomic resolution by NMR. Current opinion in structural biology. 2013; 23(3):426–435.

Jesper N, Barbar E. Emerging features of linear motif-binding Hub proteins. Trends in biochemical sciences. 2020; 45(5):375–384.

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Tunyasuvunakool K, Ronneberger O, Bates R, Židek A, Bridgland A, Meyer C, Kohl SAA, Potapenko A, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, et al., AlphaFold 2 presentation; 2020. [Online; accessed 2-May-2021]. https://predictioncenter.org/casp14/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf.

Kandathil SM, Greener JG, Jones DT. Recent developments in deep learning applied to protein structure prediction. Proteins: Structure, Function, and Bioinformatics. 2019; 87(12):1179–1189.

Kassem MM, Christoffersen LB, Cavalli A, Lindorff-Larsen K. Enhancing coevolution-based contact prediction by imposing structural self-consistency of the contacts. Scientific reports. 2018; 8(1):1–10.

Khan W, Duffy F, Pollastri G, Shields DC, Mooney C. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains. PLoS One. 2013; 8(9):e72838.

Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M. Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. Journal of the American Chemical Society. 2009; 131(39):13894–13895.

Koren I, Timms RT, Kula T, Xu Q, Li MZ, Elledge SJ. The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell. 2018; 173(7):1622–1635.

Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins: Structure, Function, and Bioinformatics. 2019; 87(12):1011–1020.

Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, et al. ELM—the eukaryotic linear motif resource in 2020. Nucleic acids research. 2020; 48(D1):D296–D306.

Kundu K, Backofen R. Cluster based prediction of PDZ-peptide interactions. BMC genomics. 2014; 15(1):1–11.

Laine E, Eismann S, Elofsson A, Grudinin S. Protein sequence-to-structure learning: Is this the end(to-end revolution)? arXiv. 2021; p. 2105.07407.

Lapedes A, Giraud B, Jarzynski C. Using sequence alignments to predict protein structure and stability with high accuracy. arXiv preprint arXiv:12072484. 2012;.

Larsen AH, Wang Y, Bottaro S, Grudinin S, Arleth L, Lindorff-Larsen K. Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution. PLoS computational biology. 2020; 16(4):e1007870.

Latham AP, Zhang B. Maximum entropy optimized force field for intrinsically disordered proteins. Journal of chemical theory and computation. 2019; 16(1):773–781.
Lazar T, Martínez-Pérez E, Quaglia F, Hatos A, Chemes LB, Iserte JA, Méndez NA, Garrone NA, Saldaño TE, Marchetti J, et al. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Research. 2021; 49(D1):D404–D411.

van der Lee R, Lang B, Kruse K, Gsponer J, de Groot NS, Huynen MA, Matouschek A, Fuxreiter M, Babu MM. Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell reports. 2014; 8(6):1832–1844.

Lee YD, Wang J, Stubbe J, Elledge SJ. Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Molecular cell. 2008; 32(1):70-80.

Li DW, Brüsschweiler R. NMR-based protein potentials. Angewandte Chemie International Edition. 2010; 49(38):6778–6780.

Li DW, Brüsschweiler R. PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles. Journal of biomolecular NMR. 2012; 54(3):257–265.

Li J, Bennett KC, Liu Y, Martin MV, Head-Gordon T. Accurate prediction of chemical shifts for aqueous protein structure on “Real World” data. Chemical Science. 2020; 11(12):3180–3191.

Li J, White JT, Saavedra H, Wrabl JO, Motlagh HN, Liu K, Sowers J, Schroer TA, Thompson EB, Hilser VJ. Genetically tunable frustration controls allostery in an intrinsically disordered transcription factor. Elife. 2017; 6:e30688.

Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, et al. Phase transitions in the assembly of multivalant signalling proteins. Nature. 2012; 483(7389):336–340.

Li Q, Peng X, Li Y, Tang W, Zhu J, Huang J, Qi Y, Zhang Z. LLPSDB: a database of proteins undergoing liquid–liquid phase separation in vitro. Nucleic acids research. 2020; 48(D1):D320–D327.

Li Q, Wang X, Dou Z, Yang W, Huang B, Lou J, Zhang Z. Protein Databases Related to Liquid–Liquid Phase Separation. International Journal of Molecular Sciences. 2020; 21(18):6796.

Li Y, Zhang Y, Li X, Yi S, Xu J. Gain-of-function mutations: an emerging advantage for cancer biology. Trends in biochemical sciences. 2019; 44(8):659–674.

Light S, Sagit R, Sachenkova O, Ekman D, Elofsson A. Protein expansion is primarily due to indels in intrinsically disordered regions. Molecular biology and evolution. 2013; 30(12):2645–2653.

Lin YH, Chan HS. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophysical Journal. 2017; 112(10):2043–2046.

Lindorff-Larsen K, Best RB, Vendruscolo M. Interpreting dynamically-averaged scalar couplings in proteins. Journal of biomolecular NMR. 2005; 32(4):273–280.

Lindorff-Larsen K, Ferkinghoff-Borg J. Similarity measures for protein ensembles. PloS one. 2009; 4(1):e4203.

Livesey BJ, Marsh JA. Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations. Molecular systems biology. 2020; 16(7):e9380.

Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature. 2018; 558(7709):318–323.

Madeira F, Tinti M, Murugesan G, Berrett E, Stafford M, Toth R, Cole C, MacKintosh C, Barton GJ. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides. Bioinformatics. 2015; 31(14):2276–2283.

Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C. Protein 3D structure computed from evolutionary sequence variation. PloS one. 2011; 6(12):e28766.

Marsh JA, Forman-Kay JD. Sequence determinants of compaction in intrinsically disordered proteins. Biophysical journal. 2010; 98(10):2383–2390.

Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ, Bremer A, Grace CR, Soranno A, Pappu RV, Mittag T. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science. 2020; 367(6478):694–699.

Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, Kircher M, Khechaduri A, Dines JN, Hause RJ, et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nature genetics. 2018; 50(6):874–882.
Meiler J. PROSHIFT: protein chemical shift prediction using artificial neural networks. Journal of biomolecular NMR. 2003; 26(1):25–37.

Mészáros B, Erdős G, Szabó B, Schád É, Tantos Á, Abukhairan R, Horváth T, Murvai N, Kovács OP, Kovács M, et al. PhaSePro: the database of proteins driving liquid–liquid phase separation. Nucleic acids research. 2020; 48(D1):D360–D367.

Mészáros B, Hajdu-Soltész B, Zeke A, Dosztányi Z. Mutations of Intrinsically Disordered Protein Regions Can Drive Cancer but Lack Therapeutic Strategies. Biomolecules. 2021; 11(3):381.

Meyer K, Kirchner M, Uyar B, Cheng JY, Russo G, Hernandez-Miranda LR, Szymborska A, Zaubier H, Rudolph IM, Willnow TE, et al. Mutations in disordered regions can cause disease by creating dileucine motifs. Cell. 2018; 175(1):239–253.

van Mierlo G, Jansen JR, Wang J, Poser I, van Heeringen Sj, Vermeulen M. Predicting protein condensate formation using machine learning. Cell Reports. 2021; 34(5):108705.

Milles S, Jensen MR, Lazert C, Guseva S, Ivashchenko S, Communie G, Maurin D, Gerlier D, Ruigrok RW, Blackledge M. An ultraweak interaction in the intrinsically disordered replication machinery is essential for measles virus function. Science advances. 2018; 4(8):eaat7778.

Mittag T, Forman-Kay JD. Atomic-level characterization of disordered protein ensembles. Current opinion in structural biology. 2007; 17(1):14.

Monahan Z, Ryan VH, Janke AM, Burke KA, Rhoads SN, Zerze GH, O'Meally R, Dignon SL, Conicella AE, Zheng W, et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. The EMBO Journal. 2017; 36(20):2951–2967.

Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proceedings of the National Academy of Sciences. 2011; 108(49):E1293–E1301.

Moult J, Pedersen JT, Judson R, Fidelis K. A large-scale experiment to assess protein structure prediction methods. Proteins. 1995; 23:ii–iv.

Mu J, Liu H, Zhang J, Luo R, Chen HF. Recent Force Field Strategies for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling. 2021; 61(3):1037–1047.

Nagy G, Igav M, Jones NC, Hoffmann SV, Grubmüller H. SESCA: predicting circular dichroism spectra from protein molecular structures. Journal of chemical theory and computation. 2019; 15(9):5087–5102.

Necci M, Piovesan D, Tosatto SC. Critical assessment of protein intrinsic disorder prediction. Nature Methods. 2021; p. 1–10.

Neduva V, Linding R, Su-Angrand I, Stark A, De Masi F, Gibson Tj, Lewis J, Serrano L, Russell RB. Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol. 2005; 3(12):e405.

Neher E. How frequent are correlated changes in families of protein sequences? Proceedings of the National Academy of Sciences. 1994; 91(1):98–102.

Newberry RW, Arhar T, Costello J, Hartoularos GC, Maxwell AM, Naing ZZC, Pittman M, Reddy NR, Schwarz DM, Wassarman DR, et al. Robust Sequence Determinants of α-Synuclein Toxicity in Yeast Implicate Membrane Binding. ACS Chemical Biology. 2020; 15(8):2137–2153.

Newberry RW, Leong JT, Chow ED, Kampmann M, DeGrado WF. Deep mutational scanning reveals the structural basis for α-synuclein activity. Nature chemical biology. 2020; 16(6):653–659.

Nielsen JT, Mulder FA. Quality and bias of protein disorder predictors. Scientific reports. 2019; 9(1):1–11.

Ning W, Guo Y, Lin S, Mei B, Wu Y, Jiang P, Tan X, Zhang W, Chen G, Peng D, et al. DrLLPS: a data resource of liquid–liquid phase separation in eukaryotes. Nucleic acids research. 2020; 48(D1):D288–D295.

Njo SL, van Gunsteren WF, Müller-Plathe F. Determination of force field parameters for molecular simulation by molecular simulation: An application of the weak-coupling method. The Journal of chemical physics. 1995; 102(15):6199–6207.

Noid WG. Perspective: Coarse-grained models for biomolecular systems. The Journal of chemical physics. 2013; 139(9):09B201_1.
Rao R, Bhattacharya N, Thomas N, Duan Y, Chen X, Canny J, Abbeel P, Song YS. Evaluating protein transfer learning with tape. Advances in Neural Information Processing Systems. 2019; 32:9689.

Rao R, Liu J, Verkuil R, Meier J, Canny JF, Abbeel P, Sercu T, Rives A. Msa transformer. bioRxiv. 2021; .

Ravarani CN, Erkina TY, De Baets G, Dudman DC, Erkine AM, Babu MM. High-throughput discovery of functional disordered regions: investigation of transactivation domains. Molecular systems biology. 2018; 14(5):e8190.

Riback JA, Bowman MA, Zmyslowski AM, Knoverek CR, Jumper JM, Hinshaw JR, Kaye EB, Freed KF, Clark PL, Sosnick TR. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science. 2017; 358(6360):238–241.

Rieping W, Habeck M, Nilges M. Inferential structure determination. Science. 2005; 309(5732):303–306.

Riesselman AJ, Ingraham JB, Marks DS. Deep generative models of genetic variation capture the effects of mutations. Nature methods. 2018; 15(10):816–822.

Robustelli P, Piana S, Shaw DE. Developing a molecular dynamics force field for both folded and disordered protein states. Proceedings of the National Academy of Sciences. 2018; 115(21):E4758–E4766.

Robustelli P, Piana S, Shaw DE. Mechanism of coupled folding-upon-binding of an intrinsically disordered protein. Journal of the American Chemical Society. 2020; 142(25):11092–11101.

Rogers JM, Passioura T, Suga H. Nonproteinogenic deep mutational scanning of linear and cyclic peptides. Proceedings of the National Academy of Sciences. 2018; 115(43):10959–10964.

Rogers JM, Wong CT, Clarke J. Coupled folding and binding of the disordered protein PUMA does not require particular residual structure. Journal of the American Chemical Society. 2014; 136(14):5197–5200.

Ronan T, Garnett R, Naegle KM. New analysis pipeline for high-throughput domain–peptide affinity experiments improves SH2 interaction data. Journal of Biological Chemistry. 2020; 295(32):11346–11363.

Rozen S, Füzesi-Levi MG, Ben-Nissan G, Mizrachi L, Gabashvili A, Levin Y, Ben-Dor S, Eisenstein M, Sharon M. CSNAP is a stoichiometric subunit of the COP9 signalosome. Cell reports. 2015; 13(3):585–598.

Ruff KM, Harmon TS, Pappu RV. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. The Journal of chemical physics. 2015; 143(24):12B607_1.

Saar KL, Morgunov AS, Qi R, Arter WE, Krainer G, Knowles TP, et al. Learning the molecular grammar of protein condensates from sequence determinants and embeddings. Proceedings of the National Academy of Sciences. 2021; 118(15).

Sahni N, Yi S, Taipale M, Bass JIF, Coulombe-Huntington J, Yang F, Peng J, Weile J, Karras GI, Wang Y, et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell. 2015; 161(3):647–660.

Salvi N, Abyzov A, Blackledge M. Multi-timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation. The journal of physical chemistry letters. 2016; 7(13):2483–2489.

Sanborn AL, Yeh BT, Feigerle JT, Hao CV, Townshend RJ, Lieberman-Aiden E, Dror RO, Kornberg RD. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. Elife. 2021; 10:e68068.

Sawle L, Ghosh K. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. The Journal of chemical physics. 2015; 143(8):08B615_1.

Schuler B, Borgia A, Borgia MB, Heidarsson PO, Holmstrom ED, Nettels D, Sottini A. Binding without folding—the biomolecular function of disordered polyelectrolyte complexes. Current opinion in structural biology. 2020; 60:66–76.

Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Židek A, Nelson AW, Bridgland A, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020; 577(7792):706–710.

Seuma M, Faure AJ, Badia M, Lehner B, Bolognesi B. The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer’s disease mutations. Elife. 2021; 10:e63364.
Shen Y, Bax A. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. Journal of biomolecular NMR. 2007; 38(4):289–302.

Shen Y, Bax A. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. Journal of biomolecular NMR. 2010; 48(1):13–22.

Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017; 357(6357).

Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nature Reviews Genetics. 2014; 15(4):272–286.

Sigler PB. Acid blobs and negative noodles. Nature. 1988; 333(6170):210–212.

Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O, Goulian M, Laub MT. Rewiring the specificity of two-component signal transduction systems. Cell. 2008; 133(6):1043–1054.

Sørensen CS, Kjaergaard M. Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics. Proceedings of the National Academy of Sciences. 2019; 116(46):23124–23131.

Sottini A, Borgia A, Borgia MB, Bugge K, Nettels D, Chowdhury A, Heidarsson PO, Zosel F, Best RB, Kragelund BB, et al. Polyelectrolyte interactions enable rapid association and dissociation in high-affinity disordered protein complexes. Nature communications. 2020; 11(1):1–14.

Staller MV, Holehouse AS, Swain-Lenz D, Das RK, Pappu RV, Cohen BA. A high-throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell systems. 2018; 6(4):444–455.

Staller MV, Ramirez E, Holehouse AS, Pappu RV, Cohen BA. Design principles of acidic transcriptional activation domains. bioRxiv. 2021; p. 2020–10.

Starita LM, Ahituv N, Dunham MJ, Kitzman JO, Roth FP, Seelig G, Shendure J, Fowler DM. Variant interpretation: functional assays to the rescue. The American Journal of Human Genetics. 2017; 101(3):315–325.

Statt A, Casademunt H, Brangwynne CP, Panagiotopoulos AZ. Model for disordered proteins with strongly sequence-dependent liquid phase behavior. The Journal of chemical physics. 2020; 152(7):075101.

Steif S, Nishi H, Petukh M, Panchenko AR, Alexov E. Molecular mechanisms of disease-causing missense mutations. Journal of molecular biology. 2013; 425(21):3919–3936.

Stein A, Aloy P. Contextual specificity in peptide-mediated protein interactions. PloS one. 2008; 3(7):e2524.

Stein A, Fowler DM, Hartmann-Petersen R, Lindorff-Larsen K. Biophysical and mechanistic models for disease-causing protein variants. Trends in biochemical sciences. 2019; 44(7):575–588.

Sugase K, Dyson HJ, Wright PE. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature. 2007; 447(7147):1021–1025.

Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Güntert P, Chi CN, Ivarsson Y. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Molecular systems biology. 2018; 14(8):e8129.

Svergun D, Barberato C, Koch MH. CRYSOl—an program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. Journal of applied crystallography. 1995; 28(6):768–773.

Swanson KA, Knoepfler PS, Huang K, Kang RS, Cowley SM, Laherty CD, Eisenman RN, Radhakrishnan I. HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations. Nature structural & molecular biology. 2004; 11(8):738–746.

Taylor WR, Hatrick K. Compensating changes in protein multiple sequence alignments. Protein Engineering, Design and Selection. 1994; 7(3):341–348.

Teillum K, Olsen JG, Kragelund BB. On the specificity of protein-protein interactions in the context of disorder. Biochemical Journal. 2021; in press.

Tian P, Boomsma W, Wang Y, Otzen DE, Jensen MH, Lindorff-Larsen K. Structure of a functional amyloid protein subunit computed using sequence variation. Journal of the American Chemical Society. 2015; 137(1):22–25.

Tiberti M, Papaleo E, Bengtsen T, Boomsma W, Lindorff-Larsen K. ENCORE: software for quantitative ensemble comparison. PLoS Comput Biol. 2015; 11(10):e1004415.
Tillu VA, Rae J, Gao Y, Ariotti N, Floetenmeyer M, Kovtun O, McMahon KA, Parton RG, Collins BM. Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nature communications. 2021; 12(1):1–18.

Tompa P, Davey NE, Gibson TJ, Babu MM. A million peptide motifs for the molecular biologist. Molecular cell. 2014; 55(2):161–169.

Torrisi M, Pollastri G, Le Q. Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal. 2020; .

Toth-Petroczy A, Palmedo P, Ingraham J, Hopf TA, Berger B, Sander C, Marks DS. Structured states of disordered proteins from genomic sequences. Cell. 2016; 167(1):158–170.

Tsang B, Pritišanac I, Scherer SW, Moses AM, Forman-Kay JD. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell. 2020; 183(7):1742–1756.

Tycko J, DelRosso N, Hess GT, Banerjee A, Mukund A, Van MV, Ego BK, Yao D, Spees K, Suzuki P, et al. High-throughput discovery and characterization of human transcriptional effectors. Cell. 2020; .

Uversky VN. The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini. FEBS letters. 2013; 587(13):1891–1901.

Uversky VN. Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders. Frontiers in aging neuroscience. 2015; 7:18.

Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Lakoucheva LM, Obradovic Z, Dunker AK. Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC genomics. 2009; 10(1):1–17.

Vacic V, Markwick PR, Oldfield CJ, Zhao X, Haynes C, Uversky VN, Lakoucheva LM. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput Biol. 2012; 8(10):e1002709.

Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chemical reviews. 2014; 114(13):6733–6778.

Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. elife. 2018; 7:e31486.

Wallweber HJ, Tam C, Franke Y, Starovasnik MA, Lupardus PJ. Structural basis of recognition of interferon-α receptor by tyrosine kinase 2. Nature structural & molecular biology. 2014; 21(5):443.

Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell. 2018; 174(3):688–699.

Wang LP, Martinez TJ, Pande VS. Building force fields: An automatic, systematic, and reproducible approach. The journal of physical chemistry letters. 2014; 5(11):1885–1891.

Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. Identification of direct residue contacts in protein–protein interaction by message passing. Proceedings of the National Academy of Sciences. 2009; 106(1):67–72.

Wheeler LC, Perkins A, Wong CE, Harms MJ. Learning peptide recognition rules for a low-specificity protein. Protein Science. 2020; 29(11):2259–2273.

Wigington CP, Roy J, Damle NP, Yadav VK, Blikstad C, Resch E, Wong CJ, Mackay DR, Wang JT, Krystkowiak I, et al. Systematic discovery of Short Linear Motifs decodes calcineurin phosphatase signaling. Molecular Cell. 2020; 79(2):342–358.

Wong ET, So V, Guron M, Kuechler ER, Malhis N, Bui J, Gsponer J. Protein–protein interactions mediated by intrinsically disordered protein regions are enriched in missense mutations. Biomolecules. 2020; 10(8):1097.

Worswick SG, Spencer JA, Jeschke G, Kuprov I. Deep neural network processing of DEER data. Science advances. 2018; 4(8):eaat5218.

Xu J. Distance-based protein folding powered by deep learning. Proceedings of the National Academy of Sciences. 2019; 116(34):16856–16865.
Xu XP, Case DA. Automated prediction of 15N, 13Cα, 13Cγ and 13C′ chemical shifts in proteins using a density functional database. Journal of biomolecular NMR. 2001; 21(4):321–333.

Yang H, Xiong Z, Zonta F. Construction of a neural network energy function for protein physics. bioRxiv. 2021; .

Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences. 2020; 117(3):1496–1503.

Yang Z, Chakraborty M, White AD. Predicting Chemical Shifts with Graph Neural Networks. bioRxiv. 2020; .

Ye S, Zhong K, Zhang J, Hu W, Hirst JD, Zhang G, Mukamel S, Jiang J. A Machine Learning Protocol for Predicting Protein Infrared Spectra. Journal of the American Chemical Society. 2020; 142(45):19071–19077.

You K, Huang Q, Yu C, Shen B, Sevilla C, Shi M, Hermjakob H, Chen Y, Li T. PhaSepDB: a database of liquid–liquid phase separation related proteins. Nucleic acids research. 2020; 48(D1):D354–D359.

Zarin T, Strome B, Ba ANN, Alberti S, Forman-Kay JD, Moses AM. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. Elife. 2019; 8:e46883.

Zarin T, Strome B, Peng G, Pritišanac I, Forman-Kay JD, Moses AM. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. Elife. 2021; 10:e60220.

Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Molecular systems biology. 2015; 11(11):837.

Zheng W, Li Y, Zhang C, Pearce R, Mortuza S, Zhang Y. Deep-learning contact-map guided protein structure prediction in CASP13. Proteins: Structure, Function, and Bioinformatics. 2019; 87(12):1149–1164.

Zheng W, Best RB. An extended Guinier analysis for intrinsically disordered proteins. Journal of molecular biology. 2018; 430(16):2540–2553.

Zheng W, Dignon G, Brown M, Kim YC, Mittal J. Hydropathy patterning complements charge patterning to describe conformational preferences of disordered proteins. The journal of physical chemistry letters. 2020; 11(9):3408–3415.

Zhou JB, Xiong Y, An K, Ye ZQ, Wu YD. IDRMutPred: predicting disease-associated germline nonsynonymous single nucleotide variants (nsSNVs) in intrinsically disordered regions. Bioinformatics. 2020; 36(20):4977–4983.