Enhancing the filtered derived category

Owen Gwilliam, https://people.mpim-bonn.mpg.de/gwilliam/, Max Planck Institute for Mathematics, Bonn
Dmitri Pavlov, https://dmitripavlov.org/, Faculty of Mathematics, University of Regensburg

Contents

1. Introduction
2. Filtered objects in the language of stable \(\infty\)-categories
3. Filtered objects in the language of stable model categories
4. Comparison of the quasicategorical and the model categorical constructions
5. Application: filtered operads and algebras over them
6. Application: filtered \(\mathcal{D}\)-modules
7. References

Abstract. The filtered derived category of an abelian category has played a useful role in subjects including geometric representation theory, mixed Hodge modules, and the theory of motives. We develop a natural generalization using current methods of homotopical algebra, in the formalisms of both stable \(\infty\)-categories and stable model categories. We characterize the filtered stable \(\infty\)-category \(\text{Fil}(\mathcal{C})\) of a stable \(\infty\)-category \(\mathcal{C}\) as the left exact localization of sequences in \(\mathcal{C}\) along the \(\infty\)-categorical version of completion (and prove an analogous model category statement). We also spell out how these constructions interact with spectral sequences and monoidal structures. As examples of this machinery, we construct a stable model category of filtered \(\mathcal{D}\)-modules and develop the rudiments of a theory of filtered operads and filtered algebras over operads.

1 Introduction

The filtered derived category plays an important role in the setting of constructible sheaves, \(\mathcal{D}\)-modules, mixed Hodge modules, and elsewhere. Our goal is to revisit this construction using current technology for homotopical algebra, extending it beyond the usual setting of chain complexes (or sheaves of chain complexes). Put simply, we would like to describe the filtered version of a stable \(\infty\)-category, generalizing this classical situation. We also develop explicitly this machinery in the setting of model categories, so that it can be deployed in highly structured contexts and used in concrete computations.

There are several places where this kind of machinery would be useful. For instance, it applies to filtered spectra (and sheaves of spectra). In a different direction, this work allows one to work with filtered \(\infty\)-operads and filtered algebras over \(\infty\)-operads in a clean way, as explained in §5.

Several results here are undoubtedly well-known but seem to be unavailable for convenient reference. In this introduction, we begin by describing the classical construction and the basic problem we pursue. We then describe our main results and the structure of the paper and finish with a comparison to other work.

1.1. The classical construction

Let \(\mathbb{Z}\) denote the integers, equipped with the usual total ordering by \(<\). Let \(\mathbb{Z}\) denote the associated category, whose objects are integers and where \(\mathbb{Z}(m, n)\) is empty if \(m > n\) and is a single element if \(m \leq n\).

Let \(\mathbb{A}\) denote an abelian category.

Definition 1.2. The category of sequences in \(\mathbb{A}\) is the functor category \(\text{Fun}(\mathbb{Z}, \mathbb{A})\). We denote it by \(\text{Seq}(\mathbb{A})\).

Definition 1.3. The filtered category of \(\mathbb{A}\), denoted \(\text{Fil}(\mathbb{A})\), is the full subcategory of the category of sequences in which an object \(X: \mathbb{Z} \to \mathbb{A}\) satisfies the condition that \(X(m \to n): X(m) \to X(n)\) is a monomorphism for every \(m \leq n\).

Given an object \(X\) in \(\text{Fil}(\mathbb{A})\), we view it as equipping the object \(X(\infty) = \text{colim} X\) with the filtration whose \(n\)th component is \(X(n)\). Thus, we only consider filtrations that are “exhaustive” in the classical terminology.
Remark 1.4. Often, people are interested in a tower, i.e., a sequence where one is interested in the limit \(X(\infty) \) (or homotopy limit) rather than colimit. In algebra, one often studies examples where each structure map is an epimorphism, such as
\[
\cdots \to \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z} \to \cdots \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \to 0.
\]
In stable homotopy theory, one studies towers of spectra, such as the chromatic tower. It is possible to view a tower as a sequence in our sense by working in the opposite category (see Remark 2.20).

It is well-known that \(\text{Fil}(A) \) is additive but not abelian, which increases the complexity of homological algebra in this setting.

Definition 1.5. The associated graded functor \(\text{Gr}: \text{Seq}(A) \to \prod_{\mathbb{Z}} A \) sends a sequence \(X \) to \(\text{Gr}X \) where
\[
(\text{Gr}X)_n = X(n)/\text{im} X(n-1 \to n)
\]
for all \(n \in \mathbb{Z} \).

Remark 1.6. In Lemma 3.3, we show that \(\text{Gr} \) is left adjoint to the functor that turns a list of objects \((A_n)_{n \in \mathbb{Z}} \) into a sequence where every structure map is zero.

We now consider the abelian category \(\text{Ch}(A) \) of unbounded chain complexes in \(A \). We equip it with the quasi-isomorphisms as its class of weak equivalences.

Definition 1.7. The filtered derived category of \(A \), denoted \(D^{\text{fil}}(A) \), is the localization of \(\text{Ch}(\text{Fil}(A)) \) (equivalently, \(\text{Fil}(\text{Ch}(A)) \)) with respect to the filtered weak equivalences, which are maps of sequences \(f: X \to Y \) such that \(\text{Gr}f: \text{Gr}X \to \text{Gr}Y \) is an indexwise quasi-isomorphism.

A core objective of this paper is to formulate and analyze a version of this construction that takes as input a stable \(\infty \)-category or stable model category. We show, of course, that our construction applied to \(\text{Ch}(A) \) recovers this classical construction at the level of homotopy categories. We also explore how this lift of the classical construction interacts with, e.g., monoidal structures and spectral sequences.

Remark 1.8. This kind of construction is also useful in the setting of stable homotopy theory, as the spectral sequence arising from a sequence of spectra \(X = \cdots \to X(n) \to X(n+1) \to \cdots \) only depends on \(X \) up to the spectral version of filtered weak equivalence. (We prove this assertion in Propositions 2.18 and 3.44.)

1.9. Overview of the paper and its main results

The statements below admit both a \(\infty \)-categorical interpretation (with “category” replaced by “\(\infty \)-category” and terms like “colimit” interpreted \(\infty \)-categorically), as explained in §2, and a model-categorical interpretation (with “category” replaced by “model category”, “colimit” by “homotopy colimit”, and so on), as explained in §3. As shown in §4, these two approaches are equivalent.

Remark 1.10. The reader will notice, just by counting pages, that the \(\infty \)-categorical treatment is noticeably quicker, thanks to the convenient machinery developed by Lurie in \([HTT]\) and \([HA]\). The relative length in the model category section arises because we need to introduce and develop model categorical versions of some concepts, such as t-structures, in a convenient fashion. We expect that these tools may be helpful for other purposes.

Consider the category of functors from \(\mathbb{Z} \) to a locally presentable stable category \(A \), which we call sequences in \(A \). A crucial role is played, in both approaches, by a completion functor, which an endofunctor on sequences in \(A \).

Theorem 1.11. The following categories of filtered objects in \(A \) are equivalent:
1. sequences localized at graded equivalences;
2. sequences localized at completion maps;
3. the essential image of the completion functor;
4. complete sequences;
5. sequences reflectively localized at maps from the zero object to constant sequences.

The associated graded functor is a continuous and cocontinuous functor to \(\mathbb{Z} \)-graded objects in \(A \). It creates equivalences.

One reason for the importance of these filtered categories is the following relationship with spectral sequences.
Proposition 1.12. Given a presentable stable category A with a t-structure, the functor that constructs a spectral sequence from a sequence in A factors through the category of filtered objects in A.

The constructions play well with a symmetric monoidal structure. If A is closed symmetric monoidal, then so is the category of sequences in A, with the monoidal structure given by the Day convolution with respect to the addition on \mathbb{Z}.

Theorem 1.13. The Day convolution monoidal structure descends to a closed symmetric monoidal structure on filtered objects. The associated graded functor is strong monoidal and strong closed.

We discuss issues of duals and dualizability in this context as well.

Remark 1.14. If one restricts to the subcategory of nonnegative integers and hence to sequences of the form $X(0) \to X(1) \to \cdots$, then the Dold-Kan correspondence (and its generalization to stable quasicategories, see Theorem 1.2.4.1 in [HA]) provide an efficient approach to the kind of results we develop here. But our interest includes unbounded sequences, which is not subsumed by those results.

Here is an outline of the paper’s structure. In §2, we rely on the formalism articulated by Lurie in [HTT] and [HA] to develop this notion; a key point is showing that the completion functor is the localization functor for graded equivalences. (It begins by filling in and fixing the assertions of Example 1.2.2.11 of Lurie [HA].) In §3, we approach these questions via model categories, in hopes of making it as easy as possible to apply these notions in concrete situations. (These two sections can be read independently, according to the taste of the reader. Comparing them, though, can be illuminating.) In §4, we provide a precise comparison and methods for converting between the quasicategorical and model categorical settings. We finish by developing some quick applications: we provide convenient model categories for filtered operads and filtered algebras over filtered operads, and we construct a stable model category of filtered D-modules.

1.15. Notation

We work in the settings of model categories and of ∞-categories (which will mean quasicategories here, although nearly all arguments are model-independent). To help make clear which setting applies, we use script letters like \mathcal{C} to denote ∞-categories and bold letters like \mathbf{A} to denote model categories. When working with ∞-categories, we will use terms like ‘functor’ or ‘colimit’ and mean the ∞-categorical notions (which are the only ones that make sense in that setting). When working with model categories, we will carefully distinguish between, e.g., ‘colimit’ (the 1-categorical notion) and ‘homotopy colimit’.

1.16. Relation to other work

There is a substantial literature using filtered derived categories, and filtrations themselves are used wherever people want to do nontrivial homological algebra. We thus do not provide a detailed survey of the literature here; Theorem 2.3 shows that we are enhancing the classical situation. Our construction using stable model categories, due to its 1-categorical flavor, is easy to compare to approaches via classical homological algebra (e.g., by Laumon [DmodF]). For instance, the recent work of Schapira and Schneider’s [DCFO] finds an abelian category presenting the filtered derived category in much the way our model category construction does.

Carlsson [DCSH] studies a version of derived completion in the setting of stable homotopy theory. His focus is on base-change of spectral modules along morphisms of ring spectra, and his derived completion is a spectral generalization of I-adic completion in classical commutative algebra, as he explains carefully. (Bhatt [CddR] and Bhatt-Scholze [PETS] employ techniques similar to Carlsson’s.) Using the ∞-categorical Dold-Kan correspondence of Lurie, Theorem 1.2.4.1 of [HA], one can convert Carlsson’s cosimplicial constructions into constructions with sequences (in our terminology). Lurie in §4 of [DAGXII] also develops a similar formalism. Our constructions use the term “derived completion” in a more abstract setting but apply in these algebraic settings, although we do not examine here whether our results are helpful in those contexts. Our work bears the same relationship to that of Carlsson or Bhatt and Scholze as an abstract spectral sequence bears to I-adic completion.

More recently, Lurie (§1.2.2, §1.2.3 in [HA]) introduced filtered objects in stable quasicategories, and in §3.1, §3.2 of [Rot] he studies some properties of filtered spectra, in particular, the strong monoidality of the associated graded functor. Our focus here includes many aspects not covered there, such as natural symmetric monoidal structures and dualizability, in addition to the comparisons with model categories.
1.17. Acknowledgments

We thank Thomas Nikolaus and Benjamin Hennion for helpful conversations about localization, Tobias Barthel and Nathaniel Stapleton for interesting examples of filtered spectra, Fosco Loregian for pointing out Bousfield’s paper [Fac] to us, François Petit and Lee Cohn for help with the literature, and Jakob Scholbach for providing extensive feedback on this paper. We are grateful for an anonymous reviewer’s feedback, which led to improved articulation and arrangement of our results. We also thank the Lab for being a wonderful resource. A part of this work was done while both authors participated in the “Homotopy theory, manifolds, and field theories” trimester at the Hausdorff Research Institute for Mathematics. The second author was also supported by the Max Planck Institute for Mathematics.

2 Filtered objects in the language of stable ∞-categories

In this section, our arguments will be model-independent in nature, never relying on particular features of quasicategories. Hence here we will use the term “∞-category” and not “quasicategory.” In Section §1, we use “quasicategory” to emphasize that there we use quasicategories as an explicit model for ∞-categories.

Let C be a stable ∞-category. For φ: A → B in C, let cofib(φ) denote the pushout of φ and the zero map 0: A → 0. Let Seq(C) denote the functor category Fun(Z, C). We call such a functor a sequence in C. Note that Seq(C) is automatically stable, as limits and colimits in functor categories are computed objectwise.

In this section, for a sequence X, we will use X(n)/X(n−1) to denote

\[\text{cofib}(X(n−1 → n)): X(n−1) → X(n), \]

for simplicity. Note that cofib: Fun(Δ¹, C) → C is left adjoint to the functor A → (0 → A), which is the left Kan extension induced by the inclusion \{1\} → Δ¹. (See Remarks 1.1.1.7 and 1.1.1.8 of [HA].)

Our focus in this paper is on the interplay between sequences and their associated graded objects.

Definition 2.1. The associated graded functor Gr: Seq(C) → ∐_Z C sends a sequence X to the graded object \((X(n)/X(n−1))_{n \in \mathbb{Z}}\). Used in [247, 249].

Note that Gr is the composite

\[\text{Seq}(C) \rightarrow \prod_Z \text{Fun}(\Delta^1, C) \rightarrow \prod_Z C, \]

where \(X\) maps to \((X(n−1 → n))_{n \in \mathbb{Z}}\) and then to \((\text{cofib}(X(n−1 → n)))_{n \in \mathbb{Z}}\).

Definition 2.2. A morphism \(f: X → Y\) is a graded equivalence if Gr\(f\) is an equivalence.

The usual terminology is filtered equivalence but we find graded more descriptive. In words, a morphism between sequence \(f: X → Y\) is a graded equivalence if the induced map

\[X(n)/X(n−1) → Y(n)/Y(n−1) \]

is an equivalence for every \(n\).

Let \(W_G\) denote the collection of graded equivalences.

Definition 2.3. For \(C\) a stable ∞-category, the filtered ∞-category of \(C\) is the localization \(\text{Seq}(C)[W_G^{-1}]\). We denote it by \(\text{Fil}(C)\).

Remark 2.4. The word “localization” above might seem ambiguous: it can mean either inverting morphisms up to a homotopy, or it can mean passing to the full subcategory of local objects. As we show in Lemma 2.13, the two notions coincide in our case.

Theorem 2.5. If \(C\) possesses sequential limits, then the localization \(\text{Fil}(C)\) exists and is a stable ∞-category.

Proof. In §2.7 we construct \(\text{Fil}(C)\) by giving an explicit equivalence with the image of a left exact localization functor on \(\text{Seq}(C)\), namely the completion functor. By Lemma 1.4.4.7 of Lurie [HA], such a localization is stable.

This terminology of “filtered ∞-category” is justified by the next result. Let \(D(\mathcal{A})\) denote the derived ∞-category of a Grothendieck abelian category \(\mathcal{A}\). (See §1.3.5 of Lurie [HA] for its construction.)
Theorem 2.6. The homotopy category of the filtered ∞-category $\text{Fil}(D(A))$ is equivalent to the classical filtered derived category $D^\text{fil}(A)$. Used in 3.16.

This result is a folklore theorem, undoubtedly well-known to many people, but it is not available in the literature so far we can tell. One goal of this paper is to make the result available for reference. To ease the comparison with more classical approaches, we use model categories as an intermediary, so the proof is deferred to 3.14, where it follows immediately from Proposition 4.3 and Theorem 4.4.

2.7. Complete filtered objects

We will now construct the localization of $\text{Seq}(\mathcal{C})$ at the graded equivalences $W_{G\mathcal{C}}$ (see definition 2.1). The key notion will be that of completion of a sequence. We assume for the remainder of this section that \mathcal{C} possesses sequential limits.

Definition 2.8. Let X be a sequence, and let $X(-\infty) = \lim X$. The completion of X is the sequence \widehat{X} with $\widehat{X}(n) = \cofib(X(-\infty) \to X(n))$. Let $\text{comp}: \text{Seq}(\mathcal{C}) \to \text{Seq}(\mathcal{C})$ denote the completion functor sending X to \widehat{X}.

For X a sequence, let $X(\infty)$ denote $\colim X$, which we view as the “underlying object” whose filtration is given by the sequence. Note that the completion of a constant sequence X is thus always zero, since the map $X(-\infty) \to X(n)$ is an equivalence for all n. This observation means that completion typically changes the “underlying object” of a filtration X: indeed, a sequence is complete precisely when the map $X(\infty) \to \widehat{X}(\infty)$ is an equivalence.

This notion of completion is not the obvious generalization of the “classical” approach to completion, so we will show that both approaches do coincide. The classical completion \overline{X} of an ordinary sequence (say, of chain complexes) goes as follows. Let $\overline{X}(\infty)$ denote $\lim_{n \in \mathbb{Z}} X(\infty)/X(n)$. The classical completion of X is the sequence $\overline{X}(n) = \fib(\overline{X}(\infty) \to X(\infty)/X(n))$.

Lemma 2.9. The fiber of the canonical map $X(\infty) \to \overline{X}(\infty)$ is $X(-\infty)$. Hence

$$\overline{X}(n) \simeq \cofib(X(-\infty) \to X(n)) = \widehat{X}(n),$$

so that $\overline{X} \simeq \widehat{X}$. In particular, $\colim \overline{X}(n) \simeq \overline{X}(\infty) \simeq \widehat{X}(\infty)$. Used in 3.12, 3.30.

Moreover, this result justifies a posteriori our use of the notation $\overline{X}(\infty)$, as it is the colimit of the sequence \overline{X}.

Proof. The first assertion is by the following computation:

$$\fib(X(\infty) \to \overline{X}(\infty)) \simeq \fib(\lim X(\infty) \to \lim X(\infty)/X(n))$$
$$\simeq \lim \fib(X(\infty) \to X(\infty)/X(n))$$
$$\simeq \lim X(n) = X(-\infty),$$

as desired.

The second claim is then

$$\overline{X}(n) \simeq \fib(\overline{X}(\infty) \to X(\infty)/X(n))$$
$$\simeq \fib(\lim_{m < n} X(\infty)/X(m) \to \lim_{m < n} X(\infty)/X(n))$$
$$\simeq \lim_{m < n} \fib(X(\infty)/X(m) \to X(\infty)/X(n))$$
$$\simeq \lim_{m < n} \cofib(X(m) \to X(n)),$$

as asserted. The final claim follows by analogous manipulations.

By the lemma, for every n, there is a canonical morphism $X(n) \to \widehat{X}(n)$, and these are compatible with the structure maps of the sequences X and \widehat{X}. In other words, we have the following.
Corollary 2.10. There is a natural transformation $\gamma_\ast: \text{id}_{\text{Seq}(C)} \Rightarrow \text{comp}$ via the natural map $X \rightarrow \hat{X}$.

The following is now immediate.

Lemma 2.11. For every sequence X, the map $\gamma(X)$ is a graded equivalence. Indeed, for each pair $n < m$, the induced map

$$X(m)/X(n) \rightarrow \hat{X}(m)/\hat{X}(n)$$

is an equivalence. \Box

Definition 2.12. A sequence X is complete if $\gamma(X): X \rightarrow \hat{X}$ is an equivalence.

Note that X is complete if and only if $X(-\infty) \simeq 0$. For example, the “step-sequence” $\langle n, A \rangle$ of an object A—with $\langle n, A \rangle(m) = 0$ for $m < n$ and $\langle n, A \rangle(m) = A$ for $m \geq n$, with the identity map for each morphism $\langle n, A \rangle(n \rightarrow n + 1)$—is complete.

Remark 2.13. One should be careful here. When working in a classical situation, such as with a filtered chain complex, one must bear in mind that $X(-\infty)$ is a homotopy limit and often not a limit. Hence $X(-\infty) \simeq 0$ should not be identified with the classical notion of a “Hausdorff” or “separated” filtration. For instance, anticipating example 3.14 below, we note that the filtration of the polynomial ring $k[t]$ by powers of the ideal (t) is separated in the classical sense, but this sequence X is not complete. Its completion is $\hat{X} \simeq k[[t]]$, so that

$X(-\infty) \simeq \text{fib}(X(\infty) \rightarrow \hat{X}(\infty)) \simeq (k[[t]]/k[[t]])[-1],$

using the fact that fibers and cofibers agree up to suspension. \Box

Proposition 2.14. The completion functor is a left exact localization of $\text{Seq}(C)$.

Proof. We begin by showing completion is a localization. Let X be a sequence and Y a complete sequence. If $f: X \rightarrow Y$ is a map of sequences, then there is a natural map $f(-\infty): X(-\infty) \rightarrow Y(-\infty) \simeq 0$. Hence, for every n, the map $f(n)$ factors through $X(n)/X(-\infty)$, and so f factors as

$$X \xrightarrow{\gamma(X)} \hat{X} \xrightarrow{\gamma} Y.$$

Thus comp is left adjoint to the inclusion of the full subcategory of complete sequences into $\text{Seq}(C)$.

Left exactness of comp follows from the observation that comp is a composite of left exact functors:

(i) the functor $X \mapsto X(-\infty)$ is a limit and hence commutes with finite limits, and

(ii) for each n, the functor $X \mapsto X(n)/X(-\infty) = \hat{X}(n)$ preserves finite limits because it is a colimit and colimits commute with finite limits in a stable ∞-category such as $\text{Seq}(C)$.

We now want to relate this localization with localizing $\text{Seq}(C)$ at \mathcal{W}_G.

Lemma 2.15. The functor comp realizes localization with respect to the graded equivalences \mathcal{W}_G. \Box

Proof. A map $f: X \rightarrow Y$ is a graded equivalence if and only if $\text{cofib}(\text{Gr } f) \simeq 0$. Now observe that Gr is an exact functor: in functor categories, like $\text{Seq}(C)$, colimits are computed objectwise, and since colimits commute, it is manifest that Gr is right-exact and hence exact. Thus, f is a graded equivalence if and only if $\text{Gr}(\text{cofib } f) \simeq \text{cofib}(\text{Gr } f) \simeq 0$, which is equivalent to cofib f being a constant sequence. (Note that we only had to consider $n = 0$ in this argument, but the same is true for any n).

Similarly, as comp is a left adjoint, we see that comp(f) is an equivalence if and only if

$\text{comp}(\text{cofib } f) \simeq \text{cofib}(\text{comp } f) \simeq 0$, which is equivalent to cofib f being a constant sequence (we need cofib $(f(n) \simeq \text{cofib } f(-\infty)$ for all n). Thus, a map f is an equivalence after completion if and only if it is a graded equivalence. \Box

Remark 2.16. The above shows that $\text{Fil}(C)$ can also be defined as the localization of $\text{Seq}(C)$ with respect to the completion maps $X \rightarrow \text{comp}(X)$ for all objects X.

2.17. Spectral sequences

Given a t-structure on a stable ∞-category C, its heart C^0 is an abelian category. In §1.2.2 of [HA], Lurie explains how to construct a spectral sequence in C^\otimes for each sequence $X \in \text{Seq}(C)$. We obtain the following ∞-categorical generalization of the classical fact that a filtered complex and its completion have the same spectral sequence.
Proposition 2.18. For any sequence \(X \), the completion map \(\gamma(X): X \rightarrow \hat{X} \) induces an isomorphism of spectral sequences.

In other words, the construction of spectral sequences factors through \(Fil(C) \).

Proof. We freely use Lurie’s terminology from §1.2.2 of [HA]. The spectral sequence for \(X \) is determined by the \(\mathbb{Z} \)-complex associated to \(X \), which assigns to each \(i \leq j \) the cofiber \(\text{cofib}(X(i) \rightarrow X(j)) \). The \(\mathbb{Z} \)-complex of \(\hat{X} \) is precisely the same, by Lemma 2.11 and \(\gamma(X) \) produces the isomorphism.

Remark 2.19. We want to emphasize that a \(t \)-structure on \(C \) also provides two natural sequences for each object \(X \) via the shifted truncations. The first sequence is

\[
\cdots \rightarrow \tau_{\geq k + 1}X \rightarrow \tau_{\geq k}X \rightarrow \tau_{\geq k - 1}X \rightarrow \cdots,
\]

which generalizes Postnikov towers of spectra to the setting of stable \(\infty \)-categories. The second sequence is

\[
\cdots \rightarrow \tau_{< k + 1}X \rightarrow \tau_{< k}X \rightarrow \tau_{< k - 1}X \rightarrow \cdots,
\]

which generalizes Whitehead towers and can be obtained by taking the homotopy cofiber of the canonical map of the Postnikov filtration on \(X \) to the constant sequence on \(X \). Thus every \(t \)-structure associates to each object two spectral sequences (though they only differ by indexing).

Remark 2.20. In Remark 1.4, we mentioned that one might care about towers; in other words, view a sequence \(X \) as a way of describing its limit \(\lim_n X \), rather than its colimit. It is easy to accomplish this, as follows. Note that the opposite category \(C^{op} \) of a stable \(\infty \)-category \(C \) is also stable. Consider the functor \(\iota: \mathbb{Z} \rightarrow C^{op} \) sending \(n \) to \(-n \). Given a sequence \(X \in \text{Seq}(C) \), let \(X^\circ \in \text{Seq}(C^{op}) \) denote the composite \(X^{op} \circ \iota \), where \(X^{op}: \mathbb{Z}^{op} \rightarrow C^{op} \) is \(X \) viewed in the opposite categories. Then \(\text{colim}X^\circ = X^\circ(\infty) \simeq \lim X \). The spectral sequence for \(X^\circ \) is the natural spectral sequence for a tower. (Note that this spectral sequence agrees with that for \(X \), up to some reindexing, since cofibers in \(C^{op} \) agree, up to a shift, with cofibers in \(C \).)

Remark 2.21. In §1.2.2 of [HA], Lurie develops a correspondence between sequences and “chain complexes” in a stable \(\infty \)-category \(C \). He uses it, for instance, to construct the spectral sequence associated to a sequence. Using our completed category, one can establish a rather elegant equivalence of categories between \(\mathbb{Z} \)-indexed filtered objects and \(\mathbb{Z} \)-complexes in the sense of Definition 1.2.2.2 of Lurie [HA]. (A \(\mathbb{Z} \)-complex is essentially a homotopy coherent chain complex.) This correspondence is quite similar to Lurie’s Lemma 1.2.2.4, except that we do not need to add \(-\infty \) to the indexing set of chain complexes because of our usage of completion.

2.22. Symmetric monoidal structures

If \(C \) is a presentable closed symmetric monoidal \(\infty \)-category, then so is the \(\infty \)-category \(\text{Seq}(C) \) with its natural symmetric monoidal product \(\otimes_\ast \) given by the Day convolution. (See Proposition 2.9 of Glasman [DCIC].) In essence, we have

\[(X \otimes_\ast Y)(n) \simeq \text{colim}_{p+q \leq n} X(p) \otimes Y(q),\]

which assembles all the elements of the “double complex” \(X \otimes: \mathbb{Z} \times \mathbb{Z} \rightarrow C \) below the line \(p + q = n \), so that \(\infty \)-categorical Day convolution is a direct generalization of the classical formula from homological algebra. Note that the colimit \(X \mapsto X(\infty) \) is a strong monoidal functor from \(\text{Seq}(C) \) to \(C \), and thus the “underlying object” of a tensor product of sequences goes to the tensor product of the underlying objects.

Remark 2.23. One way to understand this symmetric monoidal product is by examining how it behaves on a collection of generators of \(\text{Seq}(C) \). A natural choice for generators are the “step-sequences”: let \(\langle m, A \rangle \) denote the sequence which is zero for \(n < m \) and the fixed object \(A \) for \(n \geq m \), with identity as the structure maps. These generators form a \(\infty \)-subcategory \(\text{Gen} \) of all sequences, and there is a relative Yoneda embedding \(\text{Seq}(C) \rightarrow \text{PSh}(\text{Gen}) \), which is a fully faithful functor from sequences to the \(\infty \)-category of presheaves on these generators. Indeed, the representable functors for the \(\langle m, A \rangle \) and the maps \(\langle m, A \rangle \rightarrow \langle m, A' \rangle \) detect the \(m \)th component, whereas the Yoneda image of \(\langle m, A \rangle \rightarrow \langle m + 1, A \rangle \) detects the transition map from
the \(m\)th to the \((m + 1)\)st component. (Any map between generators is either zero or can be presented as the composition of these two maps.) The monoidal product \(\langle m, A \rangle \otimes_s \langle n, B \rangle\) is just \(\langle m + n, A \otimes B \rangle\), and this produces a monoidal product on presheaves on generators. By the monoidal Yoneda embedding, this presheaf monoidal structure determines the tensor product of sequences. Used in [2.25].

Let \(v: Fil(C) \to Seq(C)\) denote the forgetful functor right adjoint to \(\text{comp}\). We use it to induce a symmetric monoidal structure on the filtered \(\infty\)-category.

Theorem 2.24. The filtered \(\infty\)-category \(Fil(C)\) is a symmetric monoidal \(\infty\)-category via the completed tensor product \(\hat{\otimes}_s\), where

\[
X \hat{\otimes}_s Y = \text{comp}(\iota X \otimes_s \iota Y)
\]

for any \(X\) and \(Y\) in \(Fil(C)\).

Proof. By Proposition 2.2.1.9 and Example 2.2.1.7 of Lurie [HA], to prove our claim, we need only to show that for any graded equivalence \(f: X \to Y\) and any sequence \(Z\), \(\text{id}_Z \otimes_s f: Z \otimes_s X \to Z \otimes_s Y\) is a graded equivalence.

Observe the following simple fact: given a commuting square

\[
\begin{array}{ccc}
X(n - 1) & \longrightarrow & X(n) \\
\downarrow f(n-1) & & \downarrow f(n) \\
Y(n - 1) & \longrightarrow & Y(n)
\end{array}
\]

in a stable \(\infty\)-category, the map \(X(n)/X(n - 1) \to Y(n)/Y(n - 1)\) is an equivalence if and only if the map \(\text{cofib}(f(n - 1)) \to \text{cofib}(f(n))\) is an equivalence. Thus we have another mechanism for identifying graded equivalences: check if the sequence \(\text{cofib}\) is constant.

Suppose \(f: X \to Y\) is a graded equivalence and \(Z\) is arbitrary. We compute

\[
\text{cofib}(\text{id}_Z \otimes_s f)(n) \simeq \text{colim}_{p+q \leq n} \text{cofib}(\text{id}_Z \otimes_s f(p) \otimes X(q)) \rightarrow Z(p) \otimes Y(q))
\]

\[
\simeq \text{colim}_{p+q \leq n} Z(p) \otimes \text{cofib}(f(q))
\]

\[
\simeq \text{colim}_{p+q \leq n} Z(p) \otimes \text{cofib}(f(q - 1))
\]

\[
\simeq \text{colim}_{p+q \leq n} \text{cofib}(Z(p) \otimes X(q - 1)) \rightarrow Z(p) \otimes Y(q - 1))
\]

\[
\simeq \text{cofib}(\text{id}_Z \otimes_s f)(n - 1).
\]

Hence, \(\text{id}_Z \otimes_s f\) is also a graded equivalence. []

The following proposition is proved by Lurie for the case of filtered spectra as Proposition 3.2.1 in [Rot].

Proposition 2.25. The associated graded functor \(\text{Gr}\) is strong monoidal, intertwining \(\hat{\otimes}_s\) on \(Fil(C)\) with the tensor product \(\otimes_{\text{Gr}}\) given by Day convolution on \([Z, C]\) Used in [5.3].

Proof. Recall from Remark 2.23 that the monoidal structure is determined by its behavior on the step-sequences \(\langle m, A \rangle\), due to the fully faithful relative Yoneda embedding \(Y\). For formal reasons, the functor \(Y\) is strong monoidal. (This follows from the general theory of Day convolutions, see §3 in Glasman [DCIC].) Given a cocontinuous functor \(F\), a strong monoidal structure on \(F\) can be constructed on the symmetric monoidal \(\infty\)-category of generators, and then canonically extended to the whole category by cocontinuity. Observe that the associated graded functor \(\text{Gr}\) is cocontinuous. The associated graded of \(\langle m, A \rangle\) is \(A\) in degree \(m\) and zero elsewhere, which allows us to lift the structure maps of the strong monoidal structure on \(C\) to \(Fil(C)\). For maps of generators, observe that there is only the zero map \(\langle m, A \rangle \to \langle n, B \rangle\) for \(m < n\). If \(m \geq n\), then such maps can be identified with map \(A \to B\), and for these the functoriality conditions are satisfied because they are satisfied for \(C\). []
The functor \(\text{Gr} \) also plays nicely with the internal homs in both categories. Let \(\text{Hom}_C \) denote the internal hom in \(C \) adjoint to \(\otimes \). Let \(\text{Hom}_{\text{Gr}} \) denote the internal hom adjoint to \(\otimes_{\text{Gr}} \) on \(\prod_{\mathbb{Z}} C \). Observe the following explicit formula:

\[
\text{Hom}_{\text{Gr}}(X, Y)_n = \prod_{m \in \mathbb{Z}} \text{Hom}_C(X_m, Y_{m+n}).
\]

Similarly, let \(\text{Hom}_{\text{Fil}} \) denote the internal hom adjoint to \(\hat{\otimes} \) on \(\text{Fil}(C) \). We now obtain a convenient explicit formula for \(\text{Hom}_{\text{Fil}} \).

Lemma 2.26. For any \(X, Y \in \text{Fil}(C) \),

\[
\text{Hom}_{\text{Fil}}(X, Y)(n) \simeq \int_{m \in \mathbb{Z}} \text{Hom}_C(X(m), Y(m+n))
\]

where \(\int_* B(-, -) \) denotes the end of a bifunctor \(B \).

Proof. It suffices to show that both sides represent the same functor. We want to show that for any object \(A \) in \(C \) we have

\[
\mathcal{C}(A, \text{Hom}_{\text{Fil}}(X, Y)(n)) \simeq \mathcal{C}(A, \int_{m \in \mathbb{Z}} \text{Hom}_C(X(m-n), Y(m))).
\]

Using hom-tensor adjunctions and the fact that ends are limits, we transform this desired equivalence to

\[
\mathcal{C}(\langle n, A \rangle \otimes X, Y) \simeq \int_{m \in \mathbb{Z}} \mathcal{C}(A \otimes X(m-n), Y(m)).
\]

The equality now expresses the fact that the space of natural transformations between two functors can be computed as an end. In the last transition we commuted the continuous functor \(\mathcal{C}(A, -) \) past the end, which is a limit, and used the hom-tensor adjunction. \(\square \)

Proposition 2.27. The associated graded functor \(\text{Gr} \) is strong closed, meaning the canonical morphism

\[
\text{Gr}(\text{Hom}_{\text{Fil}}(X, Y)) \to \text{Hom}_{\text{Gr}}(\text{Gr} X, \text{Gr} Y),
\]

which is adjoint to the composition

\[
\text{Gr} X \otimes_{\text{Gr}} \text{Gr}(\text{Hom}_{\text{Fil}}(X, Y)) \to \text{Gr}(X \hat{\otimes} \text{Hom}_{\text{Fil}}(X, Y)) \to \text{Gr} Y,
\]

is an equivalence. \(\text{Used in } [\text{Traces}] \)

Proof. As in the previous proof, it suffices to verify the case when \(X \) is a step-sequence \(\langle m, A \rangle \). Shifting the degree by \(m \), we may assume \(m = 0 \). We have \(\text{Hom}_{\text{Fil}}((0, A), Y) = Y^A \), where \(Y^A \) denotes the object-wise internal hom \(n \mapsto \text{Hom}_C(A, Y(n)) \). Furthermore, \(\text{Gr}((0, A)) = A[0] \), which is a copy of \(A \) in degree 0 and 0 elsewhere, and \(\text{Hom}_{\text{Gr}}(A[0], \text{Gr} Y) = (\text{Gr} Y)^A \), where the superscript \(A \) again denotes the object-wise internal hom, this time for graded objects. Combining these observations together, we want to show that \(\text{Gr}(Y^A) \to (\text{Gr} Y)^A \) is an equivalence, which is true because \(\text{Hom}_{\text{Fil}}(A, -) \) preserves finite (co)limits and \(\text{Gr} \) is defined using a cofiber. \(\square \)

2.28. Dualizability and reflexivity

Convention 2.29. In this section \(C \) denotes a presentable closed symmetric monoidal \(\infty \)-category with a monoidal unit \(1 \).

2.30. Abstract theory

Any symmetric monoidal \(\infty \)-category has an intrinsic notion of a dualizable object (see Ponto and Shulman [Traces] for an expository account). When the category is closed, however, the situation is slightly simpler and so we will work in that context. Let \(C^\otimes \) be a closed symmetric monoidal \(\infty \)-category, and let \(\text{Hom}_C \) denote the internal hom adjoint to \(\otimes \). Let \(1 \) denote the unit object in \(C \). An object \(X \) in \(C \) is dualizable (or rigid) if and only if the canonical map \(X \otimes \text{Hom}_C(X, 1) \to \text{Hom}_C(X, X) \) is an equivalence (see §2 in [Traces] or Proposition 10.2.(iii) in Boyarchenko and Drinfeld [GVdual]). The dual \(X^! \) is given by \(\text{Hom}_C(X, 1) \).
Proposition 2.35. If a graded object \(M = (M_n) \) has finitely many nonzero components, each of which is \(C \)-dualizable, then \(M \) is dualizable in \(\prod_{\mathbb{Z}} C \). As a partial converse, if the monoidal unit \(1 \) is a compact
object in C, then a dualizable object in $\prod_{Z}C$ has only finitely many nonzero components, each of which is C-dualizable.

Proof. For the first part, start with a graded object M with finitely many nonzero components, each of which is C-dualizable. Construct the dual N of M by placing the dual of M_{-n} in degree n. The counit map $M \otimes N \to 1[0]$ is given by the counit maps $M_{-n} \otimes N_{n} \to 1$. The unit map $1[0] \to N \otimes M$ has as its target $\prod_{n \in Z} N_{n} \otimes M_{-n}$, and only finitely many components are nonzero, hence by stability \prod is \prod in this case and we can use the unit maps $1 \to N_{n} \otimes M_{-n}$ as individual components. The triangle identities follow from the triangle identities of M_{n}.

For the second part, recall that an object X is dualizable if and only if the canonical map

$$X \otimes \text{Hom}_{\text{Gr}}(X, 1) \to \text{Hom}_{\text{Gr}}(X, X)$$

is an equivalence. Via the explicit formulas for tensor products and homs of graded objects, the degree n component of that canonical map is

$$\prod_{m \in Z} \text{Hom}(X_{m}, 1) \otimes X_{m+n} \to \prod_{m \in Z} \text{Hom}_{C}(X_{m}, X_{m+n}).$$

For the canonical map to be an equivalence, we conclude, using the next lemma below, that the individual components

$$\text{Hom}_{C}(X_{m}, 1) \otimes X_{m+n} \to \text{Hom}_{C}(X_{m}, X_{m+n})$$

must be equivalences for all m and n. For $n = 0$ we now show that individual components of X are dualizable. The counit map in graded objects

$$c: 1[0] \to X \otimes \text{Hom}_{\text{Gr}}(X, 1)$$

has degree 0 component

$$c_{0}: 1 \to \prod_{m \in Z} \text{Hom}_{C}(X_{m}, 1) \otimes X_{m}.$$

Consider the map

$$\pi_{m}: \prod_{m \in Z} \text{Hom}_{C}(X_{m}, 1) \to \text{Hom}_{C}(X_{m}, 1),$$

given by the identity map in degree m and the zero map in other degrees. The composition $\pi_{m} \circ c_{0}$ is the counit map of X_{m}. On the other hand, the compactness of 1 implies that only finitely many of these counit maps are nonzero, and hence only finitely many of X_{m} are nonzero.

Lemma 2.37. Let $f: \prod_{m \in Z} A_{m} \to \prod_{m \in Z} B_{m}$ be induced by maps $f_{n}: A_{n} \to B_{n}$. If f is an equivalence, then the components $f_{n}: A_{n} \to B_{n}$ are equivalences.

Proof. Suppose $g: \prod_{m \in Z} B_{m} \to \prod_{m \in Z} A_{m}$ is an inverse to f. Precomposing and postcomposing with the canonical maps $B_{m} \to \prod_{n \in Z} B_{n}$ and $\prod_{n \in Z} A_{n} \to A_{n}$ gives us a collection of maps $g_{n}: B_{n} \to A_{n}$, which are the inverses of the given maps $f: A_{n} \to B_{n}$.

2.38. Reflexivity and dualizability of sequences

Recall that the monoidal unit 1_{s} in sequences is the step-sequence $\langle 0, 1 \rangle$, which is zero in negative degrees and 1, with identity structure map, in nonnegative degrees.

We start by computing the 1_{s}-reflector of X, which is the dual of X whenever X is dualizable in $\text{Seq}(C)$.

Lemma 2.39. For any sequence X, the 1_{s}-reflector $\text{Hom}_{\text{Seq}}(X, 1_{s})$ of X is equivalent to the sequence

$$n \mapsto \text{Hom}_{C}(X(\infty)/X(1-n-1), 1).$$

More generally, if D is a reflecting object in C and D_{s} denotes the sequence $\langle 0, D \rangle$, then the D_{s}-reflector of X is equivalent to the sequence $n \mapsto \text{Hom}_{C}(X(\infty)/X(1-n-1), D)$.

Proof. Recall that for any step-sequence $\langle n, A \rangle$ and any sequence X, we have $\text{Seq}(\langle n, A \rangle, X) \cong C(A, X(n))$. Thus, by Yoneda, we see that the functor $A \mapsto \text{Seq}(\langle n, A \rangle, X)$ is represented by $X(n)$. We will use this
observation to compute the nth value of the sequence $\text{Hom}_{\text{Seq}}(X, 1_s)$. To do so, however, it is convenient to use the following observation.

For a sequence Z, let $Z_{[-1]}$ denote the sequence where $Z_{[-1]}(k) = Z(-1)$ for $k \geq 0$, with identity as transition maps, and where $Z_{[-1]}(k) = Z(k)$ for $k < 0$, with transition maps inherited from Z. Consider the cofiber $Z_{[-1]}$ of the natural map $Z_{[-1]} \to Z$: it has

$$Z_{[-1]}(k) = \text{cofib}(Z(-1) \to Z(k)) = Z(k)/Z(-1)$$

for $k \geq 0$ and $Z_{[-1]}(k) = 0$ for $k < 0$. Observe that

$$\text{Seq}(Z, 1_s) = \mathcal{C}(Z(\infty)/Z(-1), 1) = \text{Seq}(Z_{[-1]}(\infty), 1_s),$$

which is the main property we need of this operation $Z \mapsto Z_{[-1]}$.

Combining the two observations above, we compute

$$\text{Seq}(⟨n, A⟩, \text{Hom}_{\text{Seq}}(X, 1_s)) \simeq \text{Seq}(⟨n, A⟩ \otimes_s X, 1_s)$$

$$\simeq \text{Seq}(⟨(n, A) \otimes_s X⟩_{[-1]}), 1_s)$$

$$\simeq \mathcal{C}(⟨(n, A) \otimes_s X⟩_{[-1]}(\infty), 1)$$

$$\simeq \mathcal{C}(A \otimes (X(\infty)/X(−n−1)), 1)$$

$$\simeq \mathcal{C}(A, \text{Hom}_\mathcal{C}(X(\infty)/X(−n−1), 1)).$$

By Yoneda, we thus see that $\text{Hom}_{\text{Seq}}(X, 1_s)(n)$ is given by $\text{Hom}_\mathcal{C}(X(\infty)/X(−n−1), 1)$. No special properties of 1 were used, so the proof for general D is the same.]

The above computation shows that the monoidal unit 1_s is not very convenient as a reflecting object; both $X(\infty)$ and a shift appear in the expression for the reflector.

Definition 2.40. Consider a closed symmetric monoidal stable ∞-category \mathcal{C} with a reflecting object D. Let $D_{≤0}$ denote the sequence that is zero for $n > 0$ and is D in nonpositive degrees, with identity maps as the structure maps. The sequences $D_{≥0}$ and $D_{>0}$ are defined analogously, with D placed in degree n where $n ≥ 0$ or $n > 0$, respectively. Let $\text{const}(D)$ denote the constant sequence with value D.

Lemma 2.41. The $D_{≤0}$-reflector of a sequence X is the sequence $n \mapsto \text{Hom}_\mathcal{C}(X(−n), D)$.

Proof. Consider the exact sequence

$$D_{≥0} \to \text{const}(D) \to D_{≤0};$$

in other words, $D_{≤0} = \text{cofib}(D_{≥0} \to \text{const}(D))$. Observe that

$$\text{Hom}_{\text{Seq}}(X, \text{const}(D)) = \text{const}(\text{Hom}_\mathcal{C}(\text{colim} X, D)) = \text{const}(\text{Hom}_\mathcal{C}(X(\infty), D)).$$

By the previous lemma, we compute

$$\text{Hom}_{\text{Seq}}(X, D_{≥0})(n) = \text{Hom}_\mathcal{C}(X(\infty)/X(−n), D).$$

(Note the shift because $D_{≥0}$ is the sequence $⟨1, D⟩$.) The nth value of the $D_{≤0}$-reflector of X is then the cofiber of the map

$$\text{Hom}_{\text{Seq}}(X, D_{≥0})(n) \to \text{Hom}_{\text{Seq}}(X, \text{const}(D))(n),$$

which is

$$\text{Hom}_\mathcal{C}(\text{fib}(X(\infty) \to X(\infty)/X(−n)), D) = \text{Hom}_\mathcal{C}(X(−n), D),$$

verifying the claim.]

Note that $\text{Gr}(D_{≤0}) = \Sigma D[1]$, so the associated graded of a $D_{≤0}$-reflector is the $\Sigma D[1]$-reflector, i.e., the suspension and shift of the D-reflector. On the other hand, $\text{Gr}(D_{≥0}) = D[0]$, so the associated graded of a $D_{≥0}$-reflector is the D-reflector itself, in particular, the associated graded preserves duals, as expected.
2.42. Filtered reflexivity and dualizability

For filtered objects we have the following criterion for reflexivity. Let \(R \in \text{Fil}(\mathcal{C}) \) be a choice of reflecting object.

Proposition 2.43. An object in \(\text{Fil}(\mathcal{C}) \) is \(R \)-reflexive if and only if its associated graded is \(\text{Gr} R \)-reflexive. The associated graded functor sends \(R \)-reflectors to \(\text{Gr} R \)-reflectors.

Proof. The associated graded functor is a strong monoidal and strong closed functor, and so it preserves reflexive objects and sends reflectors to reflectors. Furthermore, the associated graded functor reflects equivalences, so that the morphism \(\text{X} \to \text{Hom}_{\text{Fil}}(\text{Hom}_{\text{Fil}}(\text{X}, R), R) \) is an equivalence if the associated graded of \(\text{X} \) is \(\text{Gr} R \)-reflexive, i.e., \(\text{Gr X} \to \text{Hom}_{\text{Gr}}(\text{Hom}_{\text{Gr}}(\text{Gr X}, \text{Gr R}), \text{Gr R}) \) is an equivalence. [1]

Proposition 2.44. An object in \(\text{Fil}(\mathcal{C}) \) is dualizable if and only if its associated graded is dualizable. The associated graded functor preserves duals.

Proof. As in the previous proof, the associated graded functor is strong monoidal, strong closed, and reflects equivalences. Dualizability of \(\text{X} \) is equivalent to the map \(\text{X} \otimes \text{Hom}_{\text{Fil}}(\text{X}, 1) \to \text{Hom}_{\text{Fil}}(\text{X}, \text{X}) \) being an equivalence, and the dual of \(\text{X} \) is computed by \(\text{Hom}_{\text{Fil}}(\text{X}, 1) \), which implies our claims. [1]

3 Filtered objects in the language of stable model categories

We now develop an enhancement of the filtered derived category using model categories. Our motivation is to provide concrete tools for manipulating and computing filtered objects in highly structured situations, like symmetric spectra or chain complexes.

Let \(\mathcal{A} \) be a left proper combinatorial stable model category. (See Chapter 7 of Hovey [ModCat] for a review of stable model categories and Appendix A.2 of Lurie [HTT] for a review of combinatorial model categories.) Let \(\text{Seq}(\mathcal{A}) \) denote the functor category \(\text{Fun}(\mathbb{Z}, \mathcal{A}) \) equipped with the projective model structure, in which weak equivalences are natural transformations that are objectwise weak equivalences and in which fibrations are natural transformations that are objectwise fibrations.

Lemma 3.1. If a sequence

\[
\cdots \xrightarrow{x_{n-1}} X(n) \xrightarrow{x_n} X(n+1) \xrightarrow{x_{n+1}} X(n+2) \xrightarrow{x_{n+2}} \cdots
\]

is cofibrant, then each map \(x_n \) is a cofibration and all objects \(X(n) \) are cofibrant. More generally, for a cofibration \(\text{X} \to \text{Y} \) of sequences, the individual components \(X(n) \to Y(n) \) and the maps

\[
Y(n-1) \sqcup_{X(n-1)} X(n) \to Y(n)
\]

are cofibrations.

Proof. Any cofibration is a retract of a transfinite composition of cobase changes of generating cofibrations, so it suffices to check the claim on generating cofibrations and under these operations. Let \(\langle m, A \rangle \) denote the sequence given by 0 for \(n < m \) and for \(n \geq n \) the object \(A \in \mathcal{A} \) with identity as every structure map. (It is a kind of step function; these generate all sequences.) In \(\text{Seq}(\mathcal{A}) \), a generating cofibration is a map \(\langle m, f \rangle: \langle m, A \rangle \to \langle m, B \rangle \) which is 0 for \(n < m \) and the same map \(f \) for every \(n \geq m \), with \(f: A \to B \) a generating cofibration in \(\mathcal{A} \). Thus, a generating cofibration \(\langle m, f \rangle \) is clearly a levelwise cofibration and the other maps (involving the pushouts) are also cofibrations.

Consider the inclusion \(\{ n \} \hookrightarrow \mathbb{Z} \): restricting along this inclusion sends \(X \) to \(X(n) \). Retracts, cobase changes, and transfinite composition in \(\text{Seq}(\mathcal{A}) \) all commute with restriction along this inclusion. A generating cofibration \(\langle m, f \rangle \) also clearly restricts to a generating cofibration in \(\mathcal{A} \) (possibly trivial). As cofibrations in \(\mathcal{A} \) are preserved under these three operations, we see that a cofibration \(f \) in sequences restricts to a cofibration \(f(n) \) in \(\mathcal{A} \).

Similarly, consider the inclusion \((n - 1 \to n) \hookrightarrow \mathbb{Z} \): restricting along this inclusion sends \(X \) to the arrow \(X(n-1) \to X(n) \). Again, generating cofibrations restrict to generating cofibrations along this inclusion, and the three operations commute with this restriction. This implies that the pushout map

\[
Y(n-1) \sqcup_{X(n-1)} X(n) \to Y(n)
\]

arising from a cofibration of sequences, is a cofibration. [1]
As a partial converse, for a sequence X in which each $X(n)$ is cofibrant and each structure map x_n is a cofibration, if X is bounded below—so that $X(k) = 0$ for $k \ll 0$—then X is a cofibrant sequence.

Remark 3.2. There is a model structure on sequences in A for which the cofibrant objects are precisely the sequences with cofibrant components and cofibrations as transition maps. Indeed, the class of morphisms that satisfies the two properties indicated in the above lemma is weakly saturated, as explained in the proof. Furthermore, it lies between the projective cofibrations and the injective cofibrations and is cofibrantly generated by Corollary 3.3 in Makkai and Rosický’s *CellCat*. Thus this intermediate model structure with such cofibrations exists by the Smith recognition theorem. We will not develop or use this model structure because it presents the same ∞-category as the projective model structure, but the projective model structure is better developed and more convenient to apply. Used in 1.6, 3.3.

Example 3.3. Consider $A = \text{Ch}(\mathbb{A})$, the category of unbounded chain complexes of a Grothendieck abelian category \mathbb{A}, equipped with the injective model structure in which the weak equivalences are the quasi-isomorphisms and the cofibrations are the levelwise monomorphisms. (See Proposition 1.3.5.3 in Lurie’s *HA*, in which A is constructed and shown to be left proper, combinatorial, and stable.) By the lemma, we see that a (projectively) cofibrant sequence is always a filtered chain complex, and every bounded below filtered cochain complex is a cofibrant sequence. Moreover, this lemma ensures that every sequence is weakly equivalent to a filtered chain complex, by applying a cofibrant replacement functor. Hence, one might profitably view filtrations simply as tools for understanding sequences, rather than as intrinsically important. (In the intermediate model structure introduced in the preceding remark, the filtered chain complexes are precisely the cofibrant sequences.)

Recall that the cofiber of a map $f: A \to B$ is the pushout of $0 \leftarrow A \to B$, where 0 is the zero object, or equivalently, it is the coequalizer of $f: A \to B$ and the zero map $0: A \to B$. (That is, it is a cokernel.) The homotopy cofiber is the cofiber after cofibrantly replacing f in the projective structure on the arrow category of A.

Let $\text{Seq}(A)^c$ denote the full subcategory of cofibrant sequences. For $X \in \text{Seq}(A)^c$, each structure map x_n is a cofibration and so the homotopy cofiber $\text{hocofib}(X(n) \to X(n+1))$ is weakly equivalent to the cofiber $\text{cofib}(X(n) \to X(n+1))$ because the model category A is left proper.

Definition 3.4. A map $f: X \to Y$ of cofibrant sequences is a graded equivalence if for every n, the induced map $\text{cofib}(X(n-1) \to X(n)) \to \text{cofib}(Y(n-1) \to Y(n))$ is a weak equivalence.

It will be useful to extend this notion to noncofibrant sequences. We first make the following simple observation.

Lemma 3.5. The functor $\text{Gr}: \text{Fun}(\mathbb{Z}, A) \to \prod_{n \in \mathbb{Z}} A$ is a left Quillen functor whose right adjoint R is given by

$$R(B) = (\cdots \xrightarrow{0} B_n \xrightarrow{0} B_{n+1} \xrightarrow{0} \cdots),$$

where B is the graded object $(B_n)_{n \in \mathbb{Z}}$. Used in 1.3.3.

Proof. It is clear that R preserves fibrations and acyclic fibrations, as those are objectwise, so it suffices to verify that we have an adjunction. Let X denote a sequence

$$\cdots \xrightarrow{x_{n-1}} X(n) \xrightarrow{x_n} X(n+1) \xrightarrow{x_{n+1}} \cdots$$

and B a graded object $(B_n)_{n \in \mathbb{Z}}$. To give a map of sequences $f: X \to R(B)$ is to give a map $f(n): X(n) \to B_n$ for every n such that $f(n) \circ x_{n-1} = 0 \circ f(n-1) = 0$. Hence $f(n)$ factors as

$$X(n) \xrightarrow{q_n} X(n)/\text{im} x_{n-1} \xrightarrow{\bar{f}(n)} B_n.$$

Hence the map f factors through $\bar{f}: \text{Gr} A \to B$, the associated map between graded objects. Conversely, any map of graded objects $g: \text{Gr} X \to B$ produces a map of sequences by precomposition with the quotient maps $q_n: X(n) \to X(n)/\text{im} x_{n-1}$.

Let W_G denote the collection of graded equivalences.
Definition 3.6. For A a stable model category, the *filtered model category of A* is the left Bousfield localization $L_{G} \text{Seq}(A)$ of the projective model structure along W_{G}. We denote it by $\text{Fil}(A)$.

We would like a simple characterization of the weak equivalences in $\text{Fil}(A)$. Let \overline{W}_{G} denote the subcategory of weak equivalences generated under the 2-out-of-3 condition by the levelwise weak equivalences and graded equivalences between cofibrant sequences.

Fix a cofibrant replacement functor Q on $\text{Seq}(A)$.

Definition 3.7. A map $f : X \to Y$ of sequences is a *derived graded equivalence* if the map $Qf : QX \to QY$ is a graded equivalence.

Proposition 3.8. A map $f : X \to Y$ of sequences is in \overline{W}_{G} if and only if it is a derived graded equivalence.

In particular, the class of derived graded equivalences does not depend on the choice of Q. Used in Used in

Proof. Given $f : X \to Y$, we have a commuting square

\[
\begin{array}{ccc}
 X & \xrightarrow{f} & Y \\
 \uparrow_{q_{X}} & & \uparrow_{q_{Y}} \\
 QX & \xrightarrow{Qf} & QY.
\end{array}
\]

If f is a graded equivalence between cofibrants, then so is $q_{Y} \circ Qf = f \circ q_{X}$, hence Qf must be as well. Conversely, if Qf is a graded equivalence, then f is in \overline{W}_{G}.]

Remark 3.9. *A priori* we know that the weak equivalences in $\text{Fil}(A)$ will include the derived graded equivalences but might include more. In Proposition 3.31, however, we will show that weak equivalences in the left Bousfield localization indeed coincide with derived graded equivalences.

We now provide conditions under which this localization exists. Recall that a model category is *left proper* if cobase changes along cofibrations are homotopy cobase changes. Equivalently, one can say that weak equivalences are closed under cobase changes along cofibrations. For the purposes of this section, a model category is *compactly generated* if maps with a right lifting property with respect to all cofibrations between compact objects are weak equivalences. This is a very mild condition, for example, any left Bousfield localization of the projective model structure on simplicial presheaves on any small category has this property.

A crucial property of compactly generated model categories is that weak equivalences are closed under filtered colimits, in particular, transfinite compositions.

Theorem 3.10. If a model category A is combinatorial, stable, and left proper, then so is $\text{Fil}(A)$. In particular, the model structure on $\text{Fil}(A)$ exists. In addition, if A is compactly generated, then so is $\text{Fil}(A)$.

Proof. The desired model structure is the left Bousfield localization of the projective model structure on $\text{Seq}(A)$ with respect to the derived graded equivalences. By Theorem 4.7 in Barwick [LR] such left Bousfield localizations exist for any left proper combinatorial model category as soon as the subcategory of weak equivalences is accessible. (The statement there requires a set of localizing morphisms. Here one can take any set of morphisms that generates derived graded equivalences under κ-filtered colimits, where the subcategory of derived graded equivalences is κ-accessible and the model category $\text{Seq}(A)$ is κ-combinatorial. By Proposition 3.31 below, we can simply take maps between constant sequences $0 \to K$, where K runs over a set of homotopy generators for A.)

The underlying category A is locally presentable by assumption. The subcategory of levelwise weak equivalences is accessible because so is the subcategory of weak equivalences in A. We wish to show \overline{W}_{G} is an accessible subcategory, meaning it is accessible as a category and the embedding is an accessible functor. To this end we use Theorem 5.1.6 in Makkai and Paré [XXcC], which shows that the forgetful functor from the bicategory of accessible categories and accessible functors to the bicategory of all categories and functors creates products, inserters, and equifiers (the so-called “PIE-limits”). We will show that \overline{W}_{G} arises as such a PIE-limit.

Let Q be an accessible cofibrant replacement functor for $\text{Seq}(A)$ constructed by the small object argument. The functor $\text{Gr} \circ Q$ to the combinatorial model category $\coprod_{\mathbb{Z}} A$ is accessible, and hence the preimage of the class of weak equivalences in $\coprod_{\mathbb{Z}} A$ is accessible. By Proposition 3.8, we know that \overline{W}_{G} is precisely this preimage.]
From now on, we assume A satisfies the hypotheses of the preceding proposition.

3.11. Complete filtered objects

In this subsection, we provide a different perspective on where the filtered stable category comes from. To be more precise, we provide a different class of morphisms, the completion maps, such that localization along them agrees with localization along the graded equivalences.

3.12. Completions

Definition 3.13. Given a collection W of arrows on a category C, let \overline{W} denote the closure of W under the 2-out-of-3 relation. Then (C, \overline{W}) is a category with weak equivalences.

The essence of our problem is to compare two different notions of weak equivalence on the category of sequences $\text{Seq}(A)$. Let W_L denote the collection of levelwise weak equivalences, which is the usual notion of weak equivalence on such a diagram category. As above, W_G denotes the collection of graded weak equivalences between cofibrant sequences.

The ∞-categories presented by the relative categories $(\text{Seq}(A), W_L)$ and $(\text{Seq}(A), W_G \cup W_L)$ are not equivalent. It is immediate that $W_L \subseteq W_G \cup W_L$, but the converse does not hold. Consider the following classic example.

Example 3.14. We filter the polynomial algebra $k[t]$ by the powers of the ideal (t):

$$A(n) = \begin{cases} k[t], & \text{for } n \geq 0; \\ \{ (t^n) \}, & \text{for } n < 0. \end{cases}$$

The map $f: p(t) \mapsto (1 + t)p(t)$ is filtration-preserving, and $\text{Gr } f: \text{Gr } A \to \text{Gr } A$ is the identity. However, f itself is not invertible.

But these ∞-categories are very close to being equivalent, and we want to understand how to enlarge W_L in a natural way to obtain $\overline{W_G \cup W_L}$. The key role is played by completion.

Fix a fibrant replacement functor R on $\text{Seq}(A)$, and let $\text{holim } Y = \lim R(Y)$ be its homotopy limit. Note that there is a natural map $\lim Y \to \text{holim } Y$. (The choice of R does not matter as any other choice will have a zigzag of natural weak equivalences to R.)

Similarly, fix a fibrant replacement functor R' on the arrow category $\text{Fun}(\{0 \to 1\}, A)$ and define

$$\text{hofib}(\phi) = \text{fib} R'(\phi)$$

for $\phi: A \to B$ a morphism in A. (In a linear setting, the fiber $\text{fib}(\phi)$ is typically called the kernel.) Note that there is a natural map $\text{fib}(\phi) \to \text{hofib}(\phi)$.

Finally, fix a cofibrant replacement functor Q on $\text{Seq}(A)$.

The following constructions play an important role for us.

1. Consider the functor $\text{colim}: \text{Seq}(A)^c \to A$. We denote the image of a cofibrant sequence X under this functor by $X(\infty)$, and we view this object as equipped with a filtration via the sequence. Note that $X(\infty)$ is a representative of the homotopy colimit, as we are working with the projective model structure. (We are thus working only with exhaustive filtrations, in classical terminology.) Note as well that the natural map $X(n) \to X(\infty)$ is a cofibration between cofibrant objects, so its cofiber is also the homotopy cofiber.

2. Consider the functor $\text{quot}: \text{Seq}(A)^c \to \text{Seq}(A)$ sending a sequence X to the sequence

$$\text{quot } X(n) = \text{cofib}(X(n) \to X(\infty)).$$

We then define a functor $(-)^\wedge: \text{Seq}(A)^c \to A$ sending a sequence X to $X^\wedge = \text{holim } \text{quot } (X)$.

3. Finally, we define a completion functor $\text{comp}: \text{Seq}(A)^c \to \text{Seq}(A)$ where the completion of X, denoted $\hat{X} = \text{comp } X$, is the sequence

$$\hat{X}(n) = \text{hofib } (X^\wedge \to \text{quot } X(n)).$$

There is a natural transformation $c: \text{id} \Rightarrow \text{comp}$ arising from the natural map of sequences $c_X: X \to \hat{X}$ given by the natural map $X(n) \to \hat{X}(n)$ for every n. We call this the completion map for X.

16
Remark 3.15. There is another approach, following our construction with stable quasicategories. Let

\[X(-\infty) = \operatorname{holim}_{n \in \mathbb{Z}} X(n) \]

and set

\[\widehat{X}(n) = \operatorname{hocofib}(X(-\infty) \to X(n)). \]

By suitably modifying the arguments around Lemma 3.14, one can show that this definition of \(\widehat{X} \) agrees, up to weak equivalence, with the completion functor we just defined. The reason why we stick to the other approach is that the homotopy limits involved in its definition can often be computed as ordinary limits, as explained below. This allows for convenient calculation of the completion, without deriving any functors.

Definition 3.16. A cofibrant sequence is complete if the natural map \(X(\infty) \to \widehat{X}(\infty) \) is a weak equivalence (equivalently, if \(X(-\infty) \sim 0 \)). The derived completion of a sequence \(X \in \text{Seq}(A) \) is the completion of its cofibrant replacement \(QX \). A sequence is derived complete if the completion map \(c_{QX} : QX \to \widehat{QX} \) is a weak equivalence.

Remark 3.17. In the case that a cofibrant sequence \(X \) is bounded below, so that there is some \(N \) such that \(X(n) = 0 \) for all \(n < N \), \(\widehat{X}(\infty) = X(\infty) \) as quot \(X(n) = X(\infty) \) for all \(n < N \). Hence a bounded below sequence is complete.

This notion of completeness diverges from the usual notion in that we work with the homotopy limit of the sequence of quotients \(\operatorname{cofib}(X(n) \to X(\infty)) \), rather than the limit (i.e., the limit in the sense of ordinary categories). In certain situations, these coincide. For instance, let \(A \) be an abelian category satisfying AB3 and AB4* and having a generator. Let \(A = \text{Ch}(\mathbb{A}) \) be the category of unbounded complexes. Then for a sequence \(X \) in \(A \) where each map \(X(i) \to X(i+1) \) is an epimorphism, the homotopy limit \(\operatorname{holim}X \) coincides with the limit \(\lim X \). (This result is Theorem 3.1 of Roos [DerLim].)

Remark 3.18. Our polynomial example 3.14 is not complete in the traditional or homotopical sense. The limit of the filtration \(k[t]/(t^n) = k[[t]] \), and it is also the homotopy limit, as just remarked. However, using the filtration of \(k[[t]] \) by powers of the ideal \(t \), the map \(f : p \mapsto (1 + t)p \) is invertible by the geometric series. (Note the perhaps-surprising consequence that the homotopy limit of the sequence

\[\cdots \to (t^n) \to (t^{n-1}) \to \cdots \to k[t] \]

is not zero! Rather, it can be computed as \((k[[t]]/k[t])[-1] \). See Remark 2.13.)

3.19. The comparison result

Definition 3.20. Let \(W_C \) denote the collection of completion maps for cofibrant sequences.

Recall that \(W_G \) only involves morphisms between cofibrant sequences, so it does not contain \(W_L \), which allows arbitrary sequences.

Lemma 3.21. On \(\text{Seq}(A) \), \(W_G \cup W_L \) is equal to \(W_C \cup W_L \).

Remark 3.22. In other words, once sequences are identified with their completions, levelwise and graded weak equivalences coincide. This statement is analogous to the well-known fact that a filtered object and its completion have the same spectral sequence.

We immediately obtain the following consequence of the lemma.

Corollary 3.23. The \(\infty \)-categories presented by \((\text{Seq}(A), W_G \cup W_L)\) and \((\text{Seq}(A), W_C \cup W_L)\) are equivalent.

Proof of lemma. The proof relies on several lemmas proved below. First, we show that every graded equivalence arises in some 2-out-of-3 relation with completions or levelwise equivalences. Let \(f : X \to Y \) a graded weak equivalence between cofibrant objects. Applying completion, we obtain a commuting diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow_{c_X} & & \downarrow_{c_Y} \\
\widehat{X} & \xrightarrow{\widehat{f}} & \widehat{Y}.
\end{array}
\]
By Lemma [3.27], we see that \(\tilde{f} \) is a levelwise equivalence. Hence the composition \(\tilde{f} \circ c_X = c_Y \circ f \) is in the closure of \(W_L \cup W_C \) under composition, which forces \(f \) to be in the closure, too.

Second, by Lemma [3.22], we know that every completion map \(c_X : X \to \hat{X} \) factors into a graded equivalence followed by a levelwise equivalence. Hence it arises in a 2-out-of-3 relation with graded and levelwise equivalences.

To simplify notation, we write \(M/N \) for the cofiber of a map \(f : M \to N \), where the map \(f \) will be clear from context. Note that for a cofibrant sequence \(A \), the structure maps \(A(m) \to A(n) \) are cofibrations for all \(m < n \). Hence, for any \(k < m < n \), the induced map \(A(m)/A(k) \to A(n)/A(k) \) is a cofibration because it is the pushout of the cofibration \(A(m) \to A(n) \) along the map \(A(m) \to A(m)/A(k) \).

Lemma 3.24. If \(f : A \to B \) is a graded equivalence between cofibrant sequences, then the induced maps

\[
\tilde{f}_{mn} : A(n)/A(m) \to B(n)/B(m)
\]

are weak equivalences for all \(m < n \). Used in [44*]

Proof. The proof is by induction on \(k = n - m \). As \(\text{Gr} f \) is a weak equivalence, we have the base case of \(k = 1 \). For the induction step, consider the map of short exact sequences

\[
\begin{array}{cccccccc}
0 & \longrightarrow & A(n-k)/A(n-k-1) & \longrightarrow & A(n)/A(n-k-1) & \longrightarrow & A(n)/A(n-k) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & B(n-k)/B(n-k-1) & \longrightarrow & B(n)/B(n-k-1) & \longrightarrow & B(n)/B(n-k) & \longrightarrow & 0.
\end{array}
\]

(Alternatively, view it as a map of pushout squares.) These short exact sequences are also homotopy exact due to the left pair of horizontal arrows being cofibrations, so by left properness their cofibers are also homotopy cofibers. Thus, as we know the leftmost and rightmost vertical maps are weak equivalences, the middle vertical arrow is also a weak equivalence.

Lemma 3.25. If \(f : A \to B \) is a graded equivalence between cofibrant sequences, then the induced maps

\[
\tilde{f}_{m\infty} : A(\infty)/A(m) \to B(\infty)/B(m)
\]

are weak equivalences for all \(m \). Used in [26*], [27*]

Proof. Because colimits commute and, in this situation of cofibrant objects, the homotopy colimit coincides with the colimit, we find

\[
A(\infty)/A(m) = \text{colim}_{n>m} (A(n)/A(m)) \simeq \text{hocolim}_{n>m} (A(n)/A(m)),
\]

and likewise for \(B(\infty)/B(m) \). The preceding lemma then ensures that

\[
\text{hocolim}_{n>m} (\tilde{f}_{mn}) : \text{hocolim}_{n>m} (A(n)/A(m)) \to \text{hocolim}_{n>m} (B(n)/B(m))
\]

is a weak equivalence.

Lemma 3.26. If \(f : A \to B \) is a graded weak equivalence of complete cofibrant sequences, then the morphism \(f(\infty) : A(\infty) \to B(\infty) \) is a weak equivalence. Used in [27*]

Proof. By Lemma [3.23], we know that

\[
\text{holim}_n A(\infty)/A(n) \to \text{holim}_n B(\infty)/B(n)
\]

is a weak equivalence because the morphism of underlying diagrams is an objectwise weak equivalence. By the definition of completeness, we then see that \(f(\infty) \) is a weak equivalence.

18
Lemma 3.27. If \(f: A \to B \) is a graded weak equivalence of complete cofibrant sequences, then the map
\(f(n): A(n) \to B(n) \) is a weak equivalence for all \(n \). Hence, \(f \) is a levelwise weak equivalence.

Proof. Consider the diagram
\[
\begin{array}{cccccc}
0 & \longrightarrow & A(n) & \longrightarrow & A(\infty) & \longrightarrow & A(\infty)/A(n) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & B(n) & \longrightarrow & B(\infty) & \longrightarrow & B(\infty)/B(n) & \longrightarrow & 0.
\end{array}
\]

By Lemma 3.26, we know \(f(\infty): A(\infty) \to B(\infty) \) is a weak equivalence. We also know the rightmost vertical
arrow is a weak equivalence by Lemma 3.25. Because \(A(n) \to A(\infty) \) and \(B(n) \to B(\infty) \) are cofibrations,
the right map is the homotopy cofiber of the left two maps. But by stability, the left map is the homotopy
fiber of the right two maps, which are weak equivalences. Hence, the leftmost vertical arrow is also a weak
equivalence.

Lemma 3.28. For every cofibrant sequence \(X \), the canonical map \(X \to Q(\hat{X}) \) is a graded equivalence.

Proof. Observe that the completion map \(c_X \) admits a functorial factorization \(X \to Q(\hat{X}) \overset{\sim}{\to} \hat{X} \), where
the first map is a cofibration and the second map is an acyclic fibration (in \(Seq(A) \) with the projective model
structure). We know that
\[
\text{cofib}(Q(\hat{X})(n) \to Q(\hat{X})(n + 1)) \simeq \text{hocofib}(\hat{X}(n) \to \hat{X}(n + 1)).
\]

Since \(A \) is stable, the homotopy cofiber agrees with the homotopy fiber, up to shift. Moreover, homotopy
(co)fibers commute. Applying these facts repeatedly, we compute
\[
\begin{align*}
\text{hocofib}(\hat{X}(n) \to \hat{X}(n + 1)) & \simeq \Sigma \text{hofib}(\text{hofib}(X^n \to X(\infty)/X(n)) \to \text{hofib}(X^n \to X(\infty)/X(n + 1))) \\
& \simeq \Sigma \text{hofib}(\text{hofib}(X^n \to X^n) \to \text{hofib}(X(\infty)/X(n) \to X(\infty)/X(n + 1))) \\
& \simeq \Sigma \text{hofib}(0 \to \text{hofib}(X(\infty)/X(n) \to X(\infty)/X(n + 1))) \\
& \simeq \text{hofib}(X(\infty)/X(n) \to X(\infty)/X(n + 1)) \\
& \simeq \Omega \text{hocofib}(\text{hofib}(X(n) \to X(\infty)) \to \text{hocofib}(X(n + 1) \to X(\infty))) \\
& \simeq \Omega \text{hocofib}(\text{hofib}(X(n) \to X(n + 1)) \to \text{hocofib}(X(\infty) \to X(\infty))) \\
& \simeq \Omega \text{hocofib}(X(n) \to X(n + 1)) \\
& \simeq \text{hocofib}(X(n) \to X(n + 1)).
\end{align*}
\]

Hence, the canonical map is a graded equivalence, as desired.

3.29. Completion and derived graded equivalences

We finish this subsection by identifying the weak equivalences in \(\text{Fil}(A) \) with derived graded
equivalences. Although derived graded equivalences are by definition contained in the weak equivalences of \(\text{Fil}(A) \),
a priori it might be possible that the process of left Bousfield localization introduces new weak equivalences.
Now we show that this is not the case in Proposition 3.34.

Recall that in a model category in \(A \), there is a simplicial set known as the derived mapping space
\(Map(X,Y) \) between any two objects \(X \) and \(Y \) in \(A \). See Chapter 17, and in particular §17.5.15, of Hirschhorn
[ModCat], who calls it the functorial two-sided homotopy function complex. This construction encodes
important information about weak equivalences: Theorem 17.7.7 in [ModCat] states that a map \(f: X \to Y \) is
a weak equivalence in \(A \) if and only if the induced map \(Map(W,X) \to Map(W,Y) \) is a weak equivalence of
simplicial sets for every object \(W \) in \(A \), and likewise if and only the induced map \(Map(Y,Z) \to Map(X,Z) \)
is a weak equivalence of simplicial sets for every object \(Z \) in \(A \).

This construction is also central in Bousfield localization. Recall that for a morphism \(f: X \to Y \) in \(A \),
an object \(Z \) is \(f \)-local if the associated map \(Map(Y,Z) \to Map(X,Z) \) is a weak equivalence. Similarly, for
any object \(Z \), a morphism \(f: X \to Y \) is \(Z \)-local if the associated map \(Map(Y,Z) \to Map(X,Z) \) is a weak
equivalence. Given a collection S of morphisms in a model category A, a map f is a weak equivalences in the left Bousfield localization $L_S A$ if it is local with respect to every object X which is itself local with respect to every morphism in S.

Besides these general tools, we need the following constructions with sequences. For any object K in A, let $\text{const}(K)$ denote the constant sequence for K: $\text{const}(K)(n) = K$ for all n and every structure map is the identity. For any sequence X, let $X(\infty) = \text{holim} X$ and $X(\infty) = \text{hocolim} X$.

Lemma 3.30. For any sequence X,
\[
\text{const}(X(\infty)) \simeq \text{hofib}(c_X : X \to \hat{X})
\]
and
\[
\text{hofib}(c_X : X \to \hat{X}) \simeq \text{const}(\hat{X}(\infty)/X(\infty)).
\]

Proof. The arguments in Lemma 2.9 (and just around it) apply essentially verbatim.

Proposition 3.31. The class of W_G-local objects in $\text{Seq}(A)$ coincides with the class of derived complete sequences. Furthermore, the class of weak equivalences in $\text{Fil}(A)$ (i.e., local equivalences in $\text{Seq}(A)$) coincides with derived graded equivalences. Used in 3.10*, 3.29*, 3.32*.

Proof. A morphism of sequences $\text{const}(K) \to Y$ is given by a map $K \to \text{lim Y}$ in A, and similarly the derived mapping space $\text{Map}(\text{const}(K), Y)$ between sequences is weakly equivalent to the derived mapping space $\text{Map}(K, \text{holim Y})$ in A. Observe as well that the morphism from $\text{const}(0) \to \text{const}(K)$ is always a derived graded equivalence. Thus, a sequence Y is local with respect to the morphism $\text{const}(0) \to \text{const}(K)$ if the morphism of derived mapping spaces
\[
\text{Map}(K, \text{holim Y}) \to \text{Map}(0, \text{holim Y}) \simeq \text{pt}
\]
is a weak equivalence (by Theorem 17.7.7 in Hirschhorn [ModCat]). Consequently, Y is local for morphisms $\text{const}(0) \to \text{const}(K)$ with arbitrary K if and only if holim Y is weakly equivalent to 0, and so, by Lemma 3.30, if and only if Y is derived complete.

It remains to show that derived graded equivalences contain all local equivalences with respect to derived complete sequences. Let $f : X \to Y$ be local for every derived complete sequence, and without loss of generality assume f is a cofibration between cofibrant objects. Let Z be a fibrant object in A and let $Z[n]$ denote the sequence that is zero except for Z placed in degree n; by construction $Z[n]$ is derived complete. Using Proposition 17.4.16 in Hirschhorn [ModCat] and Lemma 3.3, we see that the map $\text{Map}(Y, Z[n]) \to \text{Map}(X, Z[n])$ is weakly equivalent to $\text{Map}(Y_n/Y_{n-1}, Z) \to \text{Map}(X_n/X_{n-1}, Z)$, which is a weak equivalence by the assumption that f is local. Since Z is an arbitrary fibrant object in A, Theorem 17.7.7 in [ModCat] again shows that $X_n/X_{n-1} \to Y_n/Y_{n-1}$ is a weak equivalence. The latter expression computes the (derived) associated graded of f at index n. Varying n, we find that f is a derived graded equivalence.

We remark that the above proof shows that it suffices to perform left Bousfield localization with respect to morphisms of the form $\text{const}(0) \to \text{const}(K)$.

Lemma 3.32. The functor Gr is a left Quillen functor $\text{Fil}(A) \to \prod_Z A$. Its left derived functor creates weak equivalences.

Proof. We already know that Gr is a left Quillen functor $\text{Seq}(A) \to \prod_Z A$. By the universal property of left Bousfield localizations it suffices to show that the left derived functor Gr sends W_G to weak equivalences in $\prod_Z A$, which holds by definition of W_G. The second claim is essentially by construction, and it follows from Proposition 3.31.

3.33. t-structures and spectral sequences

To construct a spectral sequence for a filtered object of a stable model category A, we need an analog of homology groups. The standard tool is a t-structure, which provides an abelian category A^\otimes and a nice functor $\pi_0 : \text{Ho}(A) \to A^\otimes$. The “homology groups” of an object $X \in A$ is then the collection $\{\pi_0(\Omega^n X)\}_{n \in \mathbb{Z}}$, where Σ denotes suspension and $\Sigma^{-1} = \Omega$ denotes looping. Once one has a t-structure, there is a natural way to construct a spectral sequence for a filtered object, as we explain below.
3.34. t-structures for stable model categories

In the context of triangulated categories and stable quasicategories, there is a well-known notion of t-structure. We give a transcription into the language of stable model categories, which is desirable if one wants to perform concrete computations with spectral sequences.

Recall (Definition 17.8.1 in Hirschhorn [ModCat]) that a homotopy orthogonal pair is a pair of morphism

\[i: A \to B \text{ and } p: X \to Y \]

such that the canonical map

\[
\text{Map}(B, X) \to \text{Map}(A, X) \times_{\text{Map}(A, Y)} \text{Map}(B, Y)
\]

is a weak equivalence. Here Map denotes the derived mapping space and \(\times \) denotes homotopy pullback. In this case we say that \(i \) is left homotopy orthogonal to \(p \) and \(p \) is right homotopy orthogonal to \(i \).

Recall (Bousfield, Definition 6.2 in [Fact]) that a homotopy factorization system on a model category \(A \) is a pair \((E, M)\), where \(E \) is a class contained in the cofibrations of \(A \) and \(M \) is a class contained in the fibrations of \(A \), such that

1. the class \(E \) coincides with the class of cofibrations that are left homotopy orthogonal to all elements of \(M \);
2. the class \(M \) coincides with the class of fibrations that are right homotopy orthogonal to all elements of \(E \);
3. any morphism in \(A \) factors as an element of \(E \) composed with an element of \(M \).

We additionally demand that the latter factorization is functorial, in complete analogy to the modern definition of a model category. A homotopy factorization system is accessible if its functorial factorization is an accessible functor.

Remark 3.35. According to Theorem 7.1 in Bousfield [Fact], any set \(I_E \) of cofibrations in a combinatorial model category generates an accessible homotopy factorization system whose class \(E \) is the smallest weakly saturated class containing \(I_E \) and all (generating) acyclic cofibrations and satisfying the condition that for any composable pair \((f, g)\) of cofibrations such that \(gf \) and \(f \) belong to \(E \), then so does \(g \). Typically \(I_E \) will be chosen to consist of generating cofibrations. Used in §4.7.

The functorial factorization provides two natural functors on \(A \). Every object \(X \in A \) has a unique terminal morphism \(X \to 1 \), and we let \(\tau_{\leq 0} \) denote the functor arising from the factorization \(X \to \tau_{\leq 0}X \to 1 \). Likewise, factoring \(0 \to X \) gives us \(0 \to \tau_{\geq 0}X \to X \) for some functor \(\tau_{\geq 0} \). The notations \(\tau_{\leq 0} \) and \(\tau_{\geq 0} \) were chosen in anticipation of the definition below.

In terms of functors \(\tau_{\leq 0} \) and \(\tau_{\geq 0} \) one can characterize the classes \(E \) and \(M \) as follows: \(E \) consists of those cofibrations \(f \) for which \(\tau_{\leq 0}f \) is a weak equivalence and \(M \) consists of those fibrations \(g \) for which \(\tau_{\geq 0}g \) is a weak equivalence.

Definition 3.36. A t-structure on a combinatorial stable model category \(A \) is a homotopy factorization system on \(A \) that is normal: for any object \(X \) the induced sequence \(\tau_{\geq 0}X \to X \to \tau_{\leq 0}X \) is homotopy exact, i.e., applying the derived mapping space functor \(\text{Map}(\cdot, Z) \) for any object \(Z \) gives us a homotopy fiber sequence of pointed spaces. A t-structure is accessible if its homotopy factorization system is.

We give a detailed comparison with the quasicategorical notion of t-structure in §4.7.

Remark 3.37. Passing to the homotopy category of \(A \), the normality property reproduces property (iii) of the original Definition 1.3.1 of a t-structure on a triangulated category from Beilinson, Bernstein, and Deligne [Perv]. The other two properties (i) and (ii) are supplied by the notion of a homotopy factorization system.

Remark 3.38. As shown by Lurie in Proposition 1.2.1.16 of [HA], the normality condition can be reformulated as an additional condition on \(E \): the class \(E \) is generated by the subclass consisting of morphisms whose domain is the initial object of \(A \). Equivalently, one can say that if \(A \to B \) is in \(E \), then so is its homotopy base change along \(0 \to B \), as explained in Proposition 4.11 of Fiorenza and Loregiàngi [NTT]. Using the latter as an additional saturation condition to the one explained in Remark 3.35, we can speak of t-saturation.

In light of the discussion above, we have the following result.
Proposition 3.39. For any combinatorial stable model category A and any set of cofibrations I_E, there is an accessible t-structure on A whose class E is generated by I_E under t-saturation.

Example 3.40. Consider the symmetric monoidal combinatorial model category Ch of unbounded chain complexes of abelian groups equipped with the projective model structure. A standard set of generating cofibrations consists of the inclusions $\mathbb{Z}[n] \to (\mathbb{Z}[n+1] \to \mathbb{Z}[n])$. Take I_E to consist of those generating cofibrations with $n \geq 0$, and construct the associated t-structure. Maps in E are cofibrations that induce an isomorphism on homology in strictly negative degrees. Maps in M are fibrations that induce an isomorphism on homology in nonnegative degrees.

Example 3.41. Consider the symmetric monoidal combinatorial stable model category Sp^S of symmetric simplicial spectra, equipped with the stable projective model structure. (See Hovey, Shipley, Smith [SS].) The generating cofibrations of Sp^S are $S \otimes (\Sigma_n \times (\partial \Delta^k \to \Delta^k))_+[n]$, where S denotes the symmetric group of the form $(\Sigma_n \times (\partial \Delta^k \to \Delta^k))$. Observe that for this t-structure a morphism $0 \to X$ belongs to E if the nth spectral level of X is strictly n-connective, i.e., a pointed simplicial set whose set of k-simplices consists of one element for $k < n$. In order to identify this t-structure with the standard t-structure on spectra it suffices to show that the closure under weak equivalences of the codomains of morphisms in E of the form $0 \to X$ coincides with connective spectra. In one direction, elements of I_E are morphisms of connective spectra, hence $\tau_{<0}$ applied to them produces an equivalence. For the other direction it suffices to show that spectra X for which the terminal morphism $X \to 1$ is right homotopy orthogonal to I_E are coconnected (meaning $\tau_{<0}$ vanishes). (Abusing the language, we say that X itself has this property.) Without loss of generality assume X to be fibrant. Next, observe that in the above formula $S \otimes -$ is derived, hence we can use the adjunction property to reduce the problem to identifying symmetric sequences in pointed simplicial sets that are right homotopy orthogonal to the maps $(\Sigma_n \times (\partial \Delta^k \to \Delta^k))_+[n]$ for $k \geq n$. Again, the functor $(\Sigma_n \times -)_+[n]$ is derived in the above formula, and using the same trick again we reduce the problem to identifying morphisms of simplicial sets that are right homotopy orthogonal to the maps $\partial \Delta^k \to \Delta^k$ for $k \geq n$. These are precisely the $(n-2)$-truncated simplicial sets. Thus we have an Ω-spectrum whose nth spectral level is $(n-2)$-truncated (e.g., the 0th level is contractible), hence its nonnegative homotopy groups vanish, hence it is coconnected.

Remark 3.42. Any t-structure on a stable model category gives rise to two different sequences for any object X. The first sequence is

$$
\cdots \to \tau_{>k+1}X \to \tau_{>k}X \to \tau_{\geq k-1}X \to \cdots
$$

which generalizes Postnikov towers of spectra to the setting of stable model categories. The second sequence is

$$
\cdots \to \tau_{<k+1}X \to \tau_{<k}X \to \tau_{<k-1}X \to \cdots
$$

which generalizes Whitehead towers and can be obtained by taking the homotopy cofiber of the canonical map of the Postnikov filtration on X to the constant sequence on X. (Thus in the setting of filtered objects, these two objects only differ by suspension.)

3.43. Spectral sequences

We now turn to setting up spectral sequences. As shown by Beilinson, Bernstein, and Deligne in [Perv], the t-structure on $Ho(A)$ picks out a full subcategory of the homotopy category, known as its heart, which is abelian. We denote this category by A°. By construction, the double truncation functor $\tau_{\leq 0} \circ \tau_{\geq 0}$ on $Ho(A)$ maps to A°. We denote by π_0 the composition $A \to Ho(A) \to A^\circ$. Thus, we obtain "homotopy groups" with values in A° for every object in A by the formula $\pi_n = \pi_0 \circ \Sigma^{-n}$.

Each sequence $X \in Seq(A)$ has an associated spectral sequence taking values in A°, which we quickly describe below, following §1.2.2 of Lurie [HA]. We now obtain a generalization of the classical statement that a filtered complex and its completion have the same spectral sequence.

Proposition 3.44. A sequence X and its derived completion $\hat{Q}X$ have the same spectral sequence. Hence, the functor from $Seq(A)$ to the category of spectral sequences in A° factors through the filtered category $Fil(A)$. Used in [5].
This proposition follows immediately from the construction of the spectral sequence $E_2^{p,q}(X)$ of a sequence X, which is given by

$$E_2^{p,q}(X) = \text{im} \pi_{p+q}(\text{hocofib}(X(p-r) \to X(p)) \to \text{hocofib}(X(p-1) \to X(p+r-1))).$$

The differential d_r is determined by the connecting maps in the long exact sequences of homotopy groups arising from the homotopy pushout square

$$\text{hocofib}(X(i) \to X(j)) \longrightarrow \text{hocofib}(X(i) \to X(k))$$

$$\downarrow \quad \quad \quad \quad \quad \downarrow$$

$$0 = \text{hocofib}(X(j) \to X(j)) \longrightarrow \text{hocofib}(X(j) \to X(k))$$

that holds for any triple $i \leq j \leq k$. (For a more extensive discussion, see Construction 1.2.2.6 and Proposition 1.2.2.7 of Lurie [HA].)

Proof. The canonical map $q_X : QX \to X$ is a weak equivalence, and hence this map induces an isomorphism of spectral sequences. By Lemma 3.28, we know $QX \to Q(\hat{Q}X)$ is a graded equivalence, and so Lemma 3.24 tells us the map provides an isomorphism of spectral sequences. Finally, $q_{\hat{Q}X} : Q(\hat{Q}X) \to \hat{Q}X$ again induces an isomorphism of spectral sequences. Altogether, we obtain the proposition. \blacksquare

3.45. Enrichments and enhancements

The following result shows that an enrichment on the underlying model category A passes to its category of filtered objects $\text{Fil}(A)$. In particular, if the original model category is dg-enhanced (i.e., enriched over chain complexes), then so is its category of filtered objects. Thus this result provides one more sense in which to interpret the paper’s title.

Recall from Barwick [LR] that a model category is **tractable** if it is combinatorial and all cofibrations are generated, under weak saturation, by cofibrations with cofibrant source. Examples of tractable model categories include chain complexes over a ring (or differential graded algebra), simplicial symmetric spectra, motivic symmetric spectra, presheaves of simplicial symmetric spectra with the local model structure, and symmetric spectra in some tractable left proper symmetric monoidal model category. Indeed, almost every combinatorial model category encountered in practice is tractable; constructing a nontractable combinatorial model category is nontrivial, but see the example after Corollary 8.6.4 in Simpson [HTHC].

Proposition 3.46. If V is a symmetric monoidal tractable model category and A is a V-enriched model category that is tractable, left proper, and stable, then the model category $\text{Fil}(A)$ is V-enriched and tractable.

Proof. The model category $\text{Seq}(A)$ is V-enriched because the pushout-product axiom and the unit axiom can be verified indexwise. We now apply Theorem 4.46 in Barwick [LR], which requires us to verify (as explained in the proof there) that the class of maps with respect to which we localize (in our case, the derived graded equivalences) is closed with respect to the derived tensor product with an arbitrary object of V. Observe that derived graded equivalences are defined using a homotopy cofiber, and homotopy cofibers commute with derived tensor products. (Derived tensor product with a fixed object $X \otimes -$ can be computed as the tensor product with a fixed cofibrant replacement of this object $Q(X) \otimes -$ As the left derived functor of the left Quillen functor, it preserves homotopy colimits.) \blacksquare

3.47. Symmetric monoidal structures

Many of the most important stable model categories in mathematics have a natural symmetric monoidal structure. For example, given a commutative ring R, chain complexes of R-modules can be tensored over R. We now explain how to incorporate such a structure into the filtered setting.

Let (A, \otimes) now denote a symmetric monoidal combinatorial stable model category. We do not assume the unit to be cofibrant, but we do require Hovey’s unit axiom. Our main result in this section is the following.
Theorem 3.48. There is a symmetric monoidal product \otimes_s on $\Fil(A)$ such that $(\Fil(A), \otimes_s)$ is a symmetric monoidal stable model category. Used in $\llbracket 3.52 \rrbracket$

The rest of the section is devoted to the proof. We begin by equipping $\Seq(A)$ with a symmetric monoidal structure (via Day convolution) and verify it satisfies the pushout-product axiom. We then define \otimes_s and prove the main result.

The arguments depend on verifying certain properties of generating cofibrations, so we need to identify these maps in $\Seq(A) = \Fun(Z, A)$ and $\Fun(Z \times Z, A)$, which are both equipped with the projective model structure. Note that every $n \in Z$ and every $A \in A$ determines a “step-sequence,” denoted (n, A), that sends m to 0 if $m < n$ and to A if $m \geq n$ (with identity as structure map). A generating cofibration in $\Seq(A)$ is then a map $f: (n, A) \to (m, A')$ where for $m \geq n$, the map is always a fixed cofibration $\phi: A \to A'$ in A. A generating cofibration in $\Fun(Z \times Z, A)$ is entirely analogous: a map $F: ((m, n), A) \to (m, n), A'$ where the map is a cofibration $\phi: A \to A'$ for (i, j) with $i \geq m$ and $j \geq n$, but is otherwise zero.

Now we define the “external product”, which is the bifunctor

$$\boxtimes: \Fun(Z, A) \times \Fun(Z, A) \to \Fun(Z \times Z, A)$$

sending $(X, Y): (m, n) \to X(m) \otimes Y(n)$. It possesses the following crucial property.

Lemma 3.49. Let $f: X \to Y$ and $g: U \to V$ be cofibrations in $\Seq(A)$. Then the natural map

$$X \boxtimes V \sqcup_{X \boxtimes U} Y \boxtimes U \to Y \boxtimes V$$

is a cofibration in $\Fun(Z \times Z, A)$. If one of the cofibrations is acyclic, then so is the resulting map. Used in $\llbracket 3.52 \rrbracket$.

Proof. It suffices to check this assertion when f and g are generating cofibrations. Let $X = (m, A)$ and $Y = (m, B)$ with f determined by a cofibration $\phi: A \to B$ in A, and likewise $U = (n, C)$ and $V = (n, D)$ with g determined by a cofibration $\psi: C \to D$ in A. Then, for instance, $X \boxtimes U = ((m, n), A \otimes C)$. The pushout $X \boxtimes V \sqcup_{X \boxtimes U} Y \boxtimes U$ is then

$$(m, n), A \otimes D \sqcup_{A \otimes C} B \otimes C.$$

The natural map from the pushout to the product is then the generating cofibration determined by (m, n) and the cofibration

$$A \otimes D \sqcup_{A \otimes C} B \otimes C \to B \otimes D$$

in A. ✷

Next, we define the “totalization”, which is the functor

$$\text{tot}: \Fun(Z \times Z, A) \to \Fun(Z, A) = \Seq(A)$$

sending Z to $\text{tot}(Z)(n) = \colim_{p + q \leq n} Z(p, q)$. (This colimit is over the full subcategory of Z^2 given by objects (p, q) such that $p + q \leq n$.)

Lemma 3.50. \boxtimes is a left Quillen bifunctor, and tot is a left Quillen functor.

Proof. Now observe that tot is the left Kan extension along the addition map $+: Z \times Z \to Z$. By Proposition A.2.8.7 in Lurie [HTT], tot is thus a left Quillen functor with respect to the projective model structures. (We note that this proposition is slightly more general than stated: it holds for a cofibrantly-generated model category, not just a combinatorial model category.) ✷

Definition 3.51. For X and Y in $\Seq(A)$, we define $X \otimes_s Y = \text{tot}(X \boxtimes Y)$.

Proposition 3.52. The composition $\otimes_s = \text{tot} \circ \boxtimes$ makes $\Seq(A)$ into a symmetric monoidal stable model category.

Proof. Applying tot to the map in Lemma $\llbracket 3.49 \rrbracket$, we find that

$$A \otimes_s D \sqcup_{A \otimes_s C} B \otimes_s C \to B \otimes_s D$$

is a cofibration in $\Seq(A)$ with the projective model structure. Hence, \otimes_s satisfies the pushout-product axiom with respect to the projective model structure. ✷
Proof of Theorem 3.44. We now want to verify that we obtain a monoidal model category after left Bousfield localizing at the graded equivalences W_G. By Proposition 4.47 of Barwick [LR], it suffices to show that the derived graded equivalences are closed under taking the derived tensor product with an arbitrary object. In fact, it suffices to verify this only for a collection of weak (aka homotopy) generators. We will work with the sequences (m, A), which are zero for $n < m$ and a cofibrant object A from A for $n \geq m$, with the identity as the structure map; these are homotopy generators.

Now consider $f : X \to Y$ a graded equivalence between cofibrant sequences. We want to show that
\[
\langle m, A \rangle \otimes_s f : \langle m, A \rangle \otimes_s X \to \langle m, A \rangle \otimes_s Y
\]
is a graded equivalence of cofibrant sequences. Observe that
\[
(\langle m, A \rangle \otimes_s X) (n)/(\langle m, A \rangle \otimes_s X) (n - 1) \cong A \otimes (X(-m + n)/X(-m + n - 1)).
\]
Thus, as A is cofibrant, the induced map $\text{Gr}(\langle m, A \otimes_s f \rangle)$ is an indexwise weak equivalence.

We now prove the unit axiom. The monoidal unit is given by $\langle 0, 1 \rangle$ and its cofibrant replacement can be taken to be $\langle 0, Q1 \rangle$, where $Q1 \to 1$ is a cofibrant replacement in A. It now suffices to observe that $\langle 0, 1 \rangle \otimes X = X$ and $\langle 0, Q1 \rangle \otimes X = Q1 \otimes X$ (here $Q1 \otimes X$ is taken componentwise), and that a cofibrant object X in particular has cofibrant components. Hence the map $Q1 \otimes X \to 1 \otimes X = X$ is a weak equivalence by the unit axiom of A.

Proposition 3.53. The associated graded functor has canonical strong monoidal and strong closed structures. Used in 4.25*

Proof. The argument for Proposition 2.25 and Proposition 2.27 works here with no changes. The associated graded functor is cocontinuous, and the tensor product is strong monoidal on generators. □

3.54. The monoid axiom

Suppose A is a symmetric monoidal combinatorial stable model category and R is a monoid in filtered objects in A. We would like to equip the category Mod_R of left R-modules in $(\text{Fil}(A), \otimes_s)$ with a model structure whose fibrations and weak equivalences are transferred along the forgetful to $\text{Fil}(A)$. Schwede and Shipley [MonAx] have provided a simple and conceptual condition for this kind of construction to work: Theorem 4.1 of [MonAx] states that for a cofibrantly generated monoidal model category C, the category of left modules over any monoid in C inherits a cofibrantly generated model structure if C satisfies the monoid axiom (Definition 3.3 in [MonAx]).

As explained in §3.2 of [HTS], it is convenient to split the monoid axiom into simpler properties that are easier to establish separately. We recall from that paper. An h-cofibration is a map $X \to Y$ such that the pushout functor $X/A \to Y/A$ on undercategories preserves weak equivalences. For the case of left proper model categories considered below, h-cofibrations can also be characterized as those maps which for which cobase changes (pushouts) are also homotopy cobase changes. In these terms, left properness then demands that cofibrations are h-cofibrations. A monoidal model category is h-monoidal if the monoidal product of any object with a cofibration is an h-cofibration. Lemma 3.2.6 of [HTS] implies that a h-monoidal, compactly generated model category satisfies the monoid axiom. A monoidal model category is flat if the pushout product of a cofibration and a weak equivalence is a weak equivalence. The general idea behind these definitions is that h-monoidality ensures the existence of a model structure, whereas flatness gives rise to Quillen equivalences between model structures constructed using weakly equivalent data.

Flatness and h-monoidality have symmetric analogs, as explained in Definition 4.2.2 and Definition 4.2.7 of [HTS]. These properties play the same role for symmetric structures, such as commutative monoids and algebras over symmetric operads, as their nonsymmetric analogs for nonsymmetric structures, such as left modules over monoids and algebras over nonsymmetric operads.

Proposition 3.55. If A is a (symmetric) flat, (symmetric) h-monoidal, symmetric monoidal, left proper, compactly generated, combinatorial stable model category, then so are $\text{Seq}(A)$ and $\text{Fil}(A)$. Used in 5.14*

Proof. We have already established that $\text{Seq}(A)$ exists and is a symmetric monoidal combinatorial stable model category. It is compactly generated because cofibrations do not change under left Bousfield localizations, whereas weak equivalences increase. It is left proper because projective cofibrations are in particular...
componentwise cofibrations. Flatness and h-monoidality of Seq(A) follow from the same properties of A because they can be established for generating (acyclic) cofibrations (see Theorem 3.2.8 in HTSP in the nonsymmetric case and Theorem 4.3.9 there in the symmetric case), and the latter are monoidal products of representables and generating (acyclic) cofibrations of A. Finally, by Proposition 6.2.1 of HTSP, the same set of properties holds for the left Bousfield localization Fil(A) of the projective structure on Seq(A).

Examples 3.56. Simplicial sets, simplicial modules, chain complexes of modules, simplicial presheaves all satisfy the conditions of the proposition, as explained in §7 of HTSP. Topological spaces can also be used if one replaces compact generadedness with strong admissible generadedness, as explained there.

The arguments of Schwede and Shipley in MonAx then imply the following.

Corollary 3.57. Let A satisfy the hypotheses in the preceding proposition. If R is a monoid in Fil(A), then the category ModR of left R-modules in (Fil(A), ⊗, s) inherits a model category structure via the forgetful functor Fil(A): weak equivalences and fibrations are checked in Fil(A).

There is a modest generalization. A symmetric monoidal category (C, ⊗, 1) is a commutative monoid in the (large) bicategory of categories, functors, and natural transformations. A left C-module D is a left module over C in this bicategory. Given a monoid R in C, one can then study left modules in D over R. Lemma 3.2.6 of HTSP gives conditions under which the monoid axiom holds in such a left module category, and hence when the category of left R-modules in D admits a compatible model structure.

Corollary 3.58. Let A be a left module over a monoidal category C such that A is a left proper compactly generated combinatorial stable model category. Let R be a monoid in Fil(C), and let fModR(A) denote the category of left R-modules in Fil(A). If for all n the functor Rn ⊗ −: A → A sends acyclic cofibrations to acyclic h-cofibrations, then category fModR(A) admits a model structure whose weak equivalences and fibrations are inherited via the forgetful functor to Fil(A).

4 Comparison of the quasicategorical and the model categorical constructions

In this section, we compare our constructions in the quasicategorical and model categorical settings. We start by showing that every stable model category has an “underlying” stable quasicategory, and then show that this construction intertwines with forming the filtered category. In consequence, we deduce the folk theorem, Theorem 4.4. We show next that, conversely, every presentable stable quasicategory lifts to the stable model category setting. Finally, we verify the compatibility of t-structures in both settings.

4.1 Comparing versions of filtered categories

Let us begin by describing the “underlying quasicategory” of a combinatorial model category, following Lurie’s treatment in §1.3.4 of HA. Recall Definition 1.3.4.15 of HA: the underlying quasicategory U(A) of a model category A is any quasicategory C equipped with a functor N(A) → C that realizes C as N(A)[W−1], i.e., a quasicategory obtained from the nerve N(Ac) of the category Ac of cofibrant objects in A by inverting the weak equivalences W up to homotopy. (For example, take the marked simplicial set (N(Ac), Wc) and fibrantly replace.) Lurie produces such an underlying quasicategory of a combinatorial model category in three steps. First, by Theorem 1.1 in Dugger Pres, every combinatorial model category A is Quillen equivalent to a simplicial left proper combinatorial model category A. Second, Lemma 1.3.4.21 in HA shows that a left Quillen equivalence A → A between combinatorial model categories induces a weak equivalence N(Ac)[W−1] → A of the corresponding marked simplicial sets, which present inverting morphisms up to homotopy. Third, Theorem 1.3.4.20 in HA constructs an equivalence 11(W−1) → N(Ac) of quasicategories for any simplicial model category A, where 11 is the full simplicial subcategory of bifibrant objects in A. Finally, Proposition A.3.7.6 in HTT shows that N(Ac) is presentable for any combinatorial simplicial model category A.

Lemma 4.2. Given a combinatorial stable model category A, the underlying quasicategory U(A) is a presentable stable quasicategory.

Proof. Presentability was established above. Stability amounts to being pointed and the suspension functor being an equivalence of quasicategories. By Theorem 4.2.4.1 in HTT, the homotopy coherent nerve functor
sends homotopy (co)limit diagrams in \(\hat{A}^\circ \) to (co)limit diagrams in \(N(\hat{A}^\circ) \). Thus bicartesian squares are mapped to bicartesian squares, and similarly for the zero object.

We now verify that our constructions of the filtered category intertwine via \(\mathcal{U} \).

Proposition 4.3. For any left proper combinatorial stable model category \(A \), the canonical functor of quasicategories

\[
\mathcal{U}(\text{Fil}(A)) \to \text{Fil}(\mathcal{U}(A))
\]

is an equivalence, where the functor \(\mathcal{U} \) takes the underlying quasicategory of a model category. Furthermore, the above equivalence of categories is compatible with the associated graded functor: the square

\[
\mathcal{U}(\prod_Z A) \longrightarrow \prod_Z \mathcal{U}(A)
\]

commutes up to a homotopy. Used in 2.6*.

Proof. Proposition 1.3.4.25 in Lurie [HA] establishes the result for sequences: the canonical functor

\[
\mathcal{U}(\text{Seq}(A)) \to \text{Seq}(\mathcal{U}(A))
\]

is an equivalence of quasicategories. This proposition also implies that the bottom arrow of the square is an equivalence. Proposition A.3.7.8 in Lurie [HTT] verifies that the localizations intertwine: it thus promotes the equivalence for sequences to the desired equivalence of completed sequences.

It remains to verify the commutativity of the square. Using the description of the associated graded functor after Definition 2.1 (and its obvious model categorical counterpart), we present the square as the vertical composition of two squares, where the middle row is

\[
\mathcal{U}\left(\prod_Z \text{Fun}(0 \to 1, A)\right) \to \prod_Z \text{Fun}(0 \to 1, \mathcal{U}(A)),
\]

which is an equivalence of quasicategories by Proposition 1.3.4.25 in [HA]. The vertical maps in the top square are the restriction functors along \(\prod_Z (0 \to 1) \to \mathbb{Z} \) where the \(n \)-th index goes to the arrow \(m \to m + 1 \) in \(\mathbb{Z} \). The vertical maps in the bottom square are given by taking cofibers; they are the left adjoints of the left adjoints of the restriction functors along \(\mathbb{Z} \to \prod_Z (0 \to 1) \). (In other words, we are just decomposing the associated graded functors in the natural way.)

It now suffices to show the commutativity of the top and bottom square separately. These claims follow once we show the general fact that for any functor \(I \to J \), the square

\[
\mathcal{U}(\text{Fun}(J, A)) \longrightarrow \text{Fun}(N(J), \mathcal{U}(A))
\]

is commutative up to a homotopy, where \(\text{Fun}(-, A) \) is equipped with the injective structure so that the functor \(\text{Fun}(J, A) \to \text{Fun}(I, A) \) is a left Quillen functor. The horizontal arrows are equivalences, by the arguments above, and the vertical arrows are cocontinuous functors. Observe that the following diagram commutes strictly:

\[
\text{N(Fun}(J, A)^c)) \longrightarrow \text{Fun}(N(J), \mathcal{U}(A))
\]

where the superscript \(c \) denotes the class of cofibrant objects. Therefore, the diagram obtained by localizing the left column commutes up to a homotopy because the space of factorizations of a functor \(F:C \to D \) through a localization functor \(C \to C[W^{-1}] \) (of quasicategories) is either empty or contractible (i.e., either \(F \) inverts the elements of \(W \) or it does not, and in our case it does).
Theorem 4.4. For a Grothendieck abelian category, let $A = \text{Ch}(A)$ be the stable model category given by the injective model structure. The homotopy category of the filtered stable model category $\text{Fil}(A)$ is equivalent to the classical filtered derived category $D^b(\text{Fil}(A))$. Used in 2.6*.

Remark 4.5. In [HA] Lurie constructs the derived ∞-category $\mathcal{D}(A)$ by taking the dg nerve of the full dg subcategory of fibrant-cofibrant objects of A with the injective model structure. Our result here thus implies Theorem 2.6, the ∞-categorical assertion we made earlier.

Proof. Let us begin with $\text{Seq}(A)$ equipped with the projective model structure. Consider the subcategory of classically filtered objects in $\text{Seq}(A)$: the sequences of chain complexes in which each structure map is a monomorphism. The subcategory of cofibrant objects $\text{Seq}(A)^c$ is also a subcategory of these classically filtered objects. The cofibrant replacement functor on $\text{Seq}(A)$, restricted to the classically filtered objects, exhibits a natural weak equivalence between these categories with weak equivalences. In particular, their homotopy categories are equivalent.

Left Bousfield localization does not change the cofibrant objects and so one can work with the same cofibrant replacement functor. Thus, even after localization of $\text{Seq}(A)$ at the graded weak equivalences, the cofibrant replacement functor produces a weak equivalence between sequences and cofibrant sequences, and hence a weak equivalence between the subcategory of classically filtered objects and the cofibrant sequences. (Using the intermediate model structure constructed in Remark 3.2, the cofibrant objects are precisely the filtered chain complexes in the usual sense. Thus it is manifest that the homotopy categories are equivalent, because this model structure has the same weak equivalences as $\text{Fil}(A)$.)

We now show that the stable quasicategory setting can be lifted to the stable model category setting.

Proposition 4.6. Every presentable stable ∞-category is presented by a simplicial left proper combinatorial stable model category A.

Proof. By Proposition 1.4.4.9.(3) in Lurie [HA], we observe that a presentable stable ∞-category is presented by an accessible left exact localization of the ∞-category of presheaves of spectra on a small ∞-category. The latter small ∞-category can be rectified to a small simplicial category, and the above localization can be presented by a left exact accessible left Bousfield localization of the category of presheaves of simplicial spectra. The resulting model category is simplicial, left proper, combinatorial, and stable. (Simplicial spectra are stable and stability is preserved under taking presheaf categories and left exact left Bousfield localizations.)

4.7. Comparing t-structures Used in 3.36*

Lemma 4.2 showed that a combinatorial stable model category has an associated presentable stable quasicategory. We now that this construction respects t-structures.

Proposition 4.8. An accessible t-structure on a combinatorial stable model category A produces an accessible t-structure on the quasicategory $\mathcal{U}(A)$.

Remark 4.9. The notion of an accessible t-structure is Definition 1.4.4.12 in Lurie [HA]. Our definition of accessible t-structure was motivated to ensure the compatibility encoded in this proposition.

Proof. The proof is an assembly of several results.

(1) A homotopy factorization system on A (Bousfield, Definition 6.2 in [Fact]) induces a factorization system on $\mathcal{U}(A)$ (Lurie, Definition 5.2.8.8 in [HTT], or Fiorenza and Loregian, Definition 8 in [NTT]) by taking the image of the elements of E and M with bifibrant domains and codomains.

(2) The normality property of a homotopy factorization system descends to the quasicategorical normality property as in Definition 17 in Fiorenza and Loregian [NTT], which follows from the fact that the comparison functor maps homotopy exact sequences to exact quasicategorical sequences, see Propositions 1.3.4.23 and 1.3.4.24 in [HTT].

(3) The accessibility property of a homotopy factorization system descends to the small generation property, as in Remark 5.5.5.2 in Lurie [HTT]. Indeed, we can take the image under the comparison functor of some generating set for E, which we can assume to have bifibrant (co)domains, without loss of generality. Proposition 1.3.4.24 in [HTT] then implies that the image is still a generating set for the quasicategorical factorization system.
In consequence, we can invoke Theorem 2 in Fiorenza and Loregian \cite{NTT} to see that we obtain a t-structure on the triangulated category $\text{Ho}(A)$ given by the homotopy category of A.

Conversely, we can rigidify quasicategorical accessible t-structures to our situation.

Proposition 4.10. Any presentable stable quasicategory C with an accessible t-structure can be presented by a combinatorial stable model category with an accessible t-structure.

Proof. Let $C_{\geq 0}$ denote the full subquasicategory of C consisting of all objects X with $\tau_{<0}X \simeq 0$. The inclusion $\iota: C_{\geq 0} \to C$ of quasicategories is a cocontinuous functor between presentable quasicategories. Choose a cardinal κ such that both $C_{\geq 0}$ and C are locally κ-presentable and the functor $\tau_{\geq 0}: C \to C_{\geq 0}$ is κ-accessible. Denote by S, respectively T, the full subquasicategory of κ-compact objects in $C_{\geq 0}$, respectively C. By construction, S and T are essentially small quasicategories and the inclusion $\iota: C_{\geq 0} \to C$ sends S to T. The functor $\tau_{\geq 0}$ can now be presented as the composition $C \to P(S) \to C_{\geq 0}$, where the first functor is the restricted Yoneda embedding and the second functor is induced by the inclusion $S \to C_{\geq 0}$ using the universal cocompletion property of $P(S)$.

Recall Theorem 5.5.1.1.(5) in Lurie \cite{HTT}: a κ-presentable quasicategory can be presented as an accessible localization of the quasicategory of presheaves on the (essentially small) full subquasicategory of κ-compact objects. We have the following commutative square of quasicategorical right adjoint functors:

$$
\begin{array}{ccc}
C & \xrightarrow{\tau_{\geq 0}} & C_{\geq 0} \\
\downarrow & & \downarrow \\
P(T) & \xrightarrow{\iota^\ast} & P(S),
\end{array}
$$

where the vertical functors are the (restricted) Yoneda embeddings into presheaf quasicategories and the bottom functor is restriction along the inclusion $\iota: S \to T$.

Using the left adjoint of the homotopy coherent nerve functor, rigidify ι to a fully faithful inclusion $\bar{\iota}: \bar{S} \to \bar{T}$ of simplicial categories. (First rectify the codomain of ι, then take the full subcategory consisting of objects weakly equivalent to an object in the domain of ι.) Take the induced adjunction of combinatorial model categories of simplicial presheaves and perform a left Bousfield localization with respect to the maps that are inverted by the corresponding quasicategorical localizations. (As usual, it suffices to take a generating set of such maps, which exists by accessibility.)

Now use the above theorem to construct a t-structure generated by a set of cofibrations I_E obtained by tensoring a generating cofibration of simplicial sets and the representable functor of an object in the image of $\bar{\iota}$. The domain of ι corresponds to $C_{\geq 0}$, so for any element f of the resulting class E the morphism $\tau_{<0}f$ is an equivalence.

Vice versa, any morphism g with $\tau_{<0}f$ an equivalence is weakly equivalent to a cofibration in E. Indeed, the homotopy factorization system constructed above factors g as an element q of the saturation (in the sense explained above) of the set I_E (hence a cofibration in E), and a morphism h that is right homotopy orthogonal to I_E. As explained above, $\tau_{<0}g$ is an equivalence, hence so is $\tau_{<0}h$. Using the definition of I_E, we immediately show that h is a weak equivalence when evaluated on any element of \bar{S}, and by definition of S this means that $\tau_{\geq 0}h$ is an equivalence. Thus $\tau_{<0}h$ and $\tau_{\geq 0}h$ are equivalences, which means that h is an equivalence and the morphism g can be presented as q, which has the form we need.

5 Application: filtered operads and algebras over them

In this section we very briefly indicate how to obtain a homotopy theory of filtered operads, and (filtered) algebras, by combining the abstract machinery of this paper with that in \cite{Operads}.

Given a monoidal model category C and a set W of colors, let $\text{Oper}_W(C)$ denote the category of W-colored symmetric operads with values in C. (See Kelly \cite{OpMay} for a definition in the single-colored case.) Given an operad $P \in \text{Oper}(C)$, and M a left module category over C, let $\text{Alg}_P(M)$ denote the category of P-algebras in M. (Often we take $M = C$.)
Definition 5.1. Let A be a symmetric monoidal stable model category. The category of W-colored (symmetric) *filtered operads* in A is the category of W-colored (symmetric) operads in the symmetric monoidal category $\text{Fil}(A)$ of filtered objects in A.

Definition 5.2. Let M be a stable model category that is a left module over A. The category of *filtered algebras* in M over a filtered operad O is $\text{Alg}_O(\text{Fil}(M))$.

Remark 5.3. We emphasize that a filtered operad is not the same as a sequence of operads, and we will not develop here the notion of a filtered object in operads. Note that in a sequence $\{O_k\}$ of operads, one can only compose operations at a fixed index k, whereas in a filtered operad, composition mixes stages of the filtration. A similar issue is visible at the level of associative algebras. In a filtered associative algebra, the product of an element from the mth stage and nth stage lives in the $(m + n)$th stage. In a sequence of associative algebras, by contrast, supposing $m \leq n$, an element in the mth algebra maps to an element of the nth algebra, but any products then remain in the nth algebra.

Remark 5.4. When A is the category of chain complexes, the notion of a filtered operad considered here recovers that defined by Kimura, Stasheff, and Voronov in §5 of [HMC] by requiring the n-ary operations of an operad to be a cofibrant sequence.

Theorem 5.5. Let A be a (symmetric) flat, (symmetric) h-monoidal, symmetric monoidal, compactly generated, combinatorial stable model category. For a fixed set of colors W the category of filtered W-colored (symmetric) operads in A has a compactly generated combinatorial model structure, as does the category of filtered algebras over any fixed filtered colored (symmetric) operad. Furthermore, weak equivalences of operads induce Quillen equivalences of model categories of algebras.

Proof. Apply Theorem 5.10 and Theorem 7.10 of [Operads] to the symmetric monoidal model category $\text{Fil}(A)$, which satisfies the assumptions of these theorems by Proposition 3.55.

Example 5.6. If A is the category of rational chain complexes (or over any characteristic zero field k), then the conditions of the above theorem are satisfied in the symmetric case. Hence filtered algebras over filtered operads in chain complexes over k admit a model structure, and quasi-isomorphisms of operads induce Quillen equivalences.

Nonexample 5.7. The conditions of the above theorem are satisfied only in the nonsymmetric case when A is the category of chain complexes of abelian groups, vector spaces over a field of characteristic p, or, more generally, modules over a ring. For such categories, the symmetric case does not apply. Recall, for instance, that the transferred model structure does not exist on commutative differential graded algebras in characteristic p.

Note that for symmetric operads one needs the rather strong condition of symmetric flatness, which is not satisfied, for instance, by simplicial sets or chain complexes of abelian groups. However, for the case when A is the category of symmetric spectra, one can obtain much easier criteria to verify, as explained in the work of the second author and Scholbach [Spectra].

Theorem 5.8. Let C be a flat, h-monoidal, symmetric monoidal, compactly generated, combinatorial model category, R be a commutative monoid in symmetric sequences in C, and W be a fixed set of colors. The category of filtered W-colored (symmetric) operads in symmetric R-spectra in C admits a compactly generated combinatorial model structure, as does the category of filtered algebras over a fixed such operad. Furthermore, weak equivalences of filtered operads induce Quillen equivalences of categories of filtered algebras.

Proof. This follows from Theorem 3.4.1 and Theorem 3.4.4 in [Spectra] and Proposition 3.55.

Often, we are interested in the case where R is a free commutative monoid on a symmetric sequence concentrated in degree 1, where it is given by an object $R_1 \in C$.

Example 5.9. If C is pointed simplicial sets and $R_1 = S^1_*$, the pointed simplicial circle, then symmetric R-spectra are symmetric simplicial spectra. We thus obtain a model structure on filtered algebras in simplicial symmetric spectra over filtered operads in simplicial symmetric spectra, in particular, filtered simplicial operads.

Example 5.10. For natural sequences of Lie groups, such as the orthogonal groups $O(n)$, the Thom spectrum MO is filtered by the sequence $MO(n)$. Similarly, MU is filtered by the sequence $MU(n)$. These are
important examples of filtered E_∞ ring spectra. The (symmetric) Thom spectrum $MO(m)$ has as its \(k \)-th spectral level the simplicial set $BO(m)^{R^k \oplus V_m}$, where $V_m \to BO(m)$ is the universal rank m vector bundle over $BO(m)$ and the superscript denotes the Thom space of a vector bundle. We have inclusion maps $MO(m) \to MO(m+1)$ and multiplication maps $MO(m) \wedge MO(n) \to MO(m+n)$. The latter are induced on individual spectral levels k and l by the maps $BO(m)^{R^k \oplus V_m} \wedge BO(n)^{R^l \oplus V_n} \to BO(m+n)^{R^{k+l} \oplus V_{m+n}}$ constructed using the universal property of $BO(m+n)$. Combined together, this data gives us a filtered E_∞-ring spectrum MO.

Example 5.11. The Adams-Novikov spectral sequence of an E_∞-algebra spectrum E over an E_∞-ring spectrum S is obtained from the filtered object given by applying the quasicategorical Dold-Kan correspondence to the bar construction of E over S, a cosimplicial spectrum (the \(n \)-th term is $E \wedge_S \cdots \wedge_S E$, where E repeats $n+1$ times).

Example 5.12. Consider the category of pointed motivic spaces, i.e., simplicial presheaves on the Nisnevich site localized at Nisnevich covers and the maps $A^1 \times X \to X$. If $R_1 = \mathbb{P}^1$, then symmetric R-spectra are motivic symmetric spectra and we obtain a model structure on filtered algebras over filtered motivic operads.

Remark 5.13. As an example of a situation involving more complicated ambient categories than chain complexes or spectra, one can cite the slice filtration in motivic homotopy theory, which gives rise to the slice spectral sequence.

It can be convenient to consider the associated graded operad of a filtered operad (similarly, the associated graded algebra of a filtered algebra). For the case of chain complexes, these notions were considered by Dotsenko [DQPB] and Griffin [OpCon], for example.

Proposition 5.14. For any symmetric monoidal stable model category \mathcal{C} such that the categories of filtered and graded (symmetric) operads admit a transferred model structure, the associated graded functor Gr induces a left Quillen functor from filtered operads to graded operads. For a fixed filtered operad O such that filtered algebras over O and graded algebras over $Gr(O)$ admit a transferred model structure, the associated graded functor induces a left Quillen functor from filtered algebras over O to graded algebras over $Gr(O)$.

Proof. As established in Proposition 3.53, the associated graded functor Gr is strong monoidal. In particular, it induces functors from filtered operads to graded operads and from algebras over a filtered operad to algebras over the associated graded operad. We treat both cases simultaneously; recall that operads are themselves algebras over a certain colored operad. Recall that Gr, on the level of \mathcal{C}, has a right adjoint R, which inserts zeros as transition maps. For trivial reasons, this right adjoint is also strong monoidal. Then R induces a functor on the level of algebras (or operads), and it is a right Quillen functor because both model structures are transferred. The functor Gr, on the level of algebras, is left adjoint to this functor and is thus a left Quillen functor. $lacksquare$

6 Application: filtered \mathcal{D}-modules

In this section we apply the abstract theory above to construct a model structure on filtered \mathcal{D}-modules. First, though, we need to introduce some machinery for sheaves. Throughout, X will denote a complex manifold.

Remark 6.1. We could also take X to be a smooth variety (with the Zariski topology) over \mathbb{C}, though in such a situation one typically also wants log poles, which would make the exposition here considerably more involved. See [MGR] for an account of this situation.

Denote by $\text{PSh}(X, \text{Ch}(\mathbb{C}))$ the category of presheaves on X of chain complexes of complex vector spaces equipped with the opens-wise monoidal product, which we denote $\otimes_{\mathbb{C}}$. There is always the projective model structure on this category, where a map of presheaves is a weak equivalence if it is a quasi-isomorphism on every open and a map of presheaves is a fibration if it is a fibration on every open. This model structure does not care about the topology on X, however, for which we need the following definitions. A map $f: F \to G$ of presheaves is a local weak equivalence if every map on stalks $f_x: F_x \to G_x$ is a quasi-isomorphism. In fact, every presheaf is actually locally weakly equivalent to a sheaf.
Proposition 6.2. The left Bousfield localization at the local weak equivalences of \((\text{PSh}(X, \text{Ch}(\mathbb{C}))), \otimes_{\mathbb{C}} \) with the projective model structure is a symmetric flat, symmetric h-monoidal, symmetric monoidal, left proper, compactly generated, combinatorial stable model category \(\text{Mod}_{\mathbb{C}}(X)\).

Proof. The relevant machinery on Bousfield localizations in this context can be found around Definition 6.1.1 in [HTSP]. The projective model structure is itself transferred along the forgetful functor given by the evaluation on all objects, and the projective model structure on unbounded chain complexes has all the properties in the statement, as explained in §7.4 of [HTSP]. As established in §5 and §6 of [HTSP], all these properties survive the constructions mentioned above.

Remark 6.3. Because we work with presheaves localized along local weak equivalences, many constructions become simpler. For instance, we will never apply sheafification in defining some functor: as an example, we work directly with the tensor product of presheaves, which is formed open by open, and do not sheafify.

We now turn our attention to \(\mathcal{D}\)-modules. Let \(\mathcal{O}\) denote the structure sheaf of \(X\): for instance, if \(X\) is a complex manifold, then \(\mathcal{O}\) denotes the sheaf of holomorphic functions. The sheaf \(\text{End}_{\mathcal{O}}(\mathcal{O})\) of \(\mathbb{C}\)-linear endomorphisms admits a filtration, defined as follows: for \(n < 0\), \(D_n = 0\) and for \(n \geq 0\),

\[
D_n = \{ P \in \text{End}_{\mathcal{O}}(\mathcal{O}) \mid [P, \mathcal{O}] \in D_{n-1} \}.
\]

Then \(\mathcal{D} = \text{colim}_n D_n\) is the sheaf known as the \textit{sheaf of differential operators} on \(X\). The resulting filtered object admits a monoid structure given by composition of endomorphisms, which amounts to saying that the composition map \(D_m \otimes D_n \to D_{m+n}\) satisfies the associativity and unitality conditions. Thus \(\mathcal{D}\) is a monoid in \((\text{Fil(\text{Mod}_{\mathcal{O}}(X)), \otimes_{\mathbb{C}}})\). (We have to use complex vector spaces instead of \(\mathcal{O}\)-modules because \(\mathcal{D}\) has two different actions of \(\mathcal{O}\).)

Let \(\text{fMod}_{\mathcal{D}}(X)\) denote the category of filtered left \(\mathcal{D}\)-modules over \(X\), i.e., the category of left modules over the monoid \(\mathcal{D}\) in filtered presheaves of chain complexes.

Proposition 6.4. The category \(\text{fMod}_{\mathcal{D}}(X)\) admits a left proper, compactly generated, combinatorial stable model structure transferred from filtered presheaves of chain complexes of complex vector spaces.

Proof. Apply Corollary 3.57.

This stable model category is a useful enhancement of the classical approaches to working with filtered \(\mathcal{D}\)-modules, such as that developed by Laumon in [DmodF]. Historically, people have worked with filtrations that are eventually bounded below. This category is a full subcategory of the category defined here. Moreover, filtered weak equivalences among such filtered \(\mathcal{D}\)-modules are weak equivalences in our category. Our stable model category then provides functorial homotopy limits and colimits for arbitrary diagrams, which enlarges the class of manipulations beyond those available in the derived category itself.

Remark 6.5. In the upcoming work [MdR], filtered \(\mathcal{D}\)-modules are equipped with a more pliable model structure, known as the \textit{semiprojective} model structure, which enlarges the cofibrations so as to produce a \textit{monoidal} model category. The subtle Koszul duality between \(\mathcal{D}\)-modules and \(\Omega\)-modules can then be concretely realized as a Quillen equivalence of combinatorial stabilizable monoidal model categories between \textit{filtered} \(\mathcal{D}\)-modules and \textit{filtered} \(\Omega\)-modules. In [MdR], this duality is used to develop the functoriality of filtered \(\mathcal{D}\)-modules in an efficient and clean way. In particular, given a map \(f: X \to Y\) of varieties, a Quillen adjunction is constructed whose right derived functor recovers Laumon’s derived direct image functor [DmodF], the key ingredient in his proof of a Riemann-Roch theorem for \(\mathcal{D}\)-modules. The approach chosen in [MdR] essentially constructs the pullback-pushforward adjunction for filtered \(\mathcal{D}\)-modules using the pullback-pushforward Quillen adjunction for \(\Omega\)-modules (defined in a straightforward way), pre- and postcomposed with the Quillen equivalences between \(\mathcal{D}\)-modules and \(\Omega\)-modules. This highly structured approach does not impose any conditions (such as smoothness) on \(f\) and allows one to define pullback and pushforwards of arbitrary \(\mathcal{D}\)-modules, without additional restrictions such as holonomicity or boundedness of the filtration. Moreover, this formalism provides a powerful, efficient toolkit for mixed Hodge modules, a key aim of [MdR], by allowing log poles.
7 References

[Fact] Aldridge K. Bousfield. Constructions of factorization systems in categories. Journal of Pure and Applied Algebra 9:2 (1977), 207–220. [MR0478151] Zbl:0361.18001. doi:10.1016/0022-4049(77)90067-6.

[AccCat] Michael Makkai, Robert Paré. Accessible categories: the foundations of categorical model theory. Contemporary Mathematics 104 (1989). [MR1031717] Zbl:0703.03042. doi:10.1090/conm/104.

[HMC] Takashi Kimura, Jim Stasheff, Alexander Voronov. Homology of moduli of curves and commutative homotopy algebras. The Gelfand Mathematical Seminars, 1993–1995 (1996), 151–170. Birkhäuser Boston. [MR1398921] Zbl:0858.18010. arXiv:alg-geom/9502006v2. doi:10.1007/978-1-4612-4082-2-9.

[SymSpec] Mark Hovey, Brooke Shipley, Jeff Smith. Symmetric spectra. Journal of the American Mathematical Society 13:1 (1999), 149–208. [MR1695653] Zbl:0931.55006. arXiv:math/9801077v2. doi:10.1090/S0894–0347-99-00320-3.

[OpAx] Stefan Schwede, Brooke E. Shipley. Algebras and modules in monoidal model categories. Proceedings of the London Mathematical Society 80:2 (2000), 491–511. [MR1734325] Zbl:1026.18004. arXiv:math/9801082v1. doi:10.1112/s002461150001220x.

[Pres] Daniel Dugger. Combinatorial model categories have presentations. Advances in Mathematics 164:1 (2001), 177–201. [MR1870516] Zbl:1001.18001. arXiv:math/0007068v1. doi:10.1006/aima.2001.2015.

[DCSH] Gunnar Carlsson. Derived completions in stable homotopy theory. Journal of Pure and Applied Algebra 212:3 (2008), 550–577. [MR2365333] Zbl:1146.55006. arXiv:0707.2585v1. doi:10.1016/j.jpaa.2007.06.015.

[DQPB] Vladimir Dotsenko. An operadic approach to deformation quantization of compatible Poisson brackets. Journal of Generalized Lie Theory and Applications 1:2 (2007), 107–115. [MR2320771] Zbl:1120.53043. arXiv:math/0611154v4. doi:10.4303/jglt/a070203.

[HTT] Jacob Lurie. Higher topos theory. Annals of Mathematics Studies 170 (2009). [MR2522659] Zbl:1175.18001. arXiv:math/0608040v4. doi:10.1515/9781400830558. http://math.harvard.edu/~lurie/papers/croppedtopoi.pdf.

[DCSH] Gunnar Carlsson. Derived completions in stable homotopy theory. Journal of Pure and Applied Algebra 212:3 (2008), 550–577. [MR2365333] Zbl:1146.55006. arXiv:0707.2585v1. doi:10.1016/j.jpaa.2007.06.015.
