SYMMETRIC CHAIN DECOMPOSITION OF NECKLACE POSETS

VIVEK DHAND

ABSTRACT. A finite ranked poset is called a symmetric chain order if it can be written as a disjoint union of rank-symmetric, saturated chains. If \(\mathcal{P} \) is any symmetric chain order, we prove that \(\mathcal{P}^n/\mathbb{Z}_n \) is also a symmetric chain order, where \(\mathbb{Z}_n \) acts on \(\mathcal{P}^n \) by cyclic permutation of the factors.

1. Introduction

Let \((\mathcal{P},<) \) be a finite poset. A chain in \(\mathcal{P} \) is a sequence of the form \(x_1 < x_2 < \cdots < x_n \) where each \(x_i \in \mathcal{P} \). For \(x, y \in \mathcal{P} \), we say \(y \) covers \(x \) (denoted \(x \lessdot y \)) if \(x < y \) and there does not exist \(z \in \mathcal{P} \) such that \(x < z \) and \(z < y \). A saturated chain in \(\mathcal{P} \) is a chain where each element is covered by the next. We say \(\mathcal{P} \) is ranked if there exists a function \(\text{rk} : \mathcal{P} \to \mathbb{Z}_{\geq 0} \) such that \(x \lessdot y \) implies \(\text{rk}(y) = \text{rk}(x) + 1 \). The rank of \(\mathcal{P} \) is defined as \(\text{rk}(\mathcal{P}) = \max\{\text{rk}(x) \mid x \in \mathcal{P}\} + \min\{\text{rk}(x) \mid x \in \mathcal{P}\} \). A saturated chain \(\{x_1 \lessdot x_2 \lessdot \cdots \lessdot x_n\} \) in a ranked poset \(\mathcal{P} \) is said to be rank-symmetric if \(\text{rk}(x_1) + \text{rk}(x_n) = \text{rk}(\mathcal{P}) \).

We say that \(\mathcal{P} \) has a symmetric chain decomposition if it can be written as a disjoint union of saturated, rank-symmetric chains. A symmetric chain order is a finite ranked poset for which there exists a symmetric chain decomposition.

A finite product of symmetric chain orders is a symmetric chain order. This result can be proved by induction \([1]\) or by explicit constructions (e.g. \([3]\)). Naturally, this raises the question of whether the quotient of a symmetric chain order under a given group action has a symmetric chain decomposition. For example, if \(X \) is a set then \(\mathbb{Z}_n \) acts on the set \(\text{Map}(\mathbb{Z}_n, X) \simeq X^n \). The elements of \(X^n/\mathbb{Z}_n \) are called \(n \)-bead necklaces with labels in \(X \). A symmetric chain decomposition of the poset of binary necklaces was first constructed by K. Jordan \([6]\), building on the work of Griggs-Killian-Savage \([4]\). There have been recent independent proofs and generalizations of these results \([2, 5]\).

The main result of this paper is the following:

1.1. Theorem. If \(\mathcal{P} \) is a symmetric chain order, then \(\mathcal{P}^n/\mathbb{Z}_n \) is a symmetric chain order.

We give a brief outline of the proof. First, we show that the poset of \(n \)-bead binary necklaces is isomorphic to the poset of partition necklaces, i.e. \(n \)-bead necklaces labeled by positive integers which sum to \(n \). It turns out to be convenient to exclude the maximal and minimal binary necklaces, which correspond to those partitions of \(n \) having \(n \) parts and 0 parts, respectively. Let \(\mathcal{Q}(n) \) denote the poset of partition necklaces...
with these two elements removed. We decompose $Q(n)$ into rank-symmetric sub-posets Q_α, running over partition necklaces α where 1 does not appear. This decomposition corresponds to the “block-code” decomposition of binary necklaces defined in [4].

We can also extend this idea to non-binary necklaces. In fact, the poset of n-bead $(m+1)$-ary necklaces embeds into the poset of mn-bead binary necklaces, and the image corresponds to the union of those $Q_\alpha \subset Q(mn)$ such that every part of α is divisible by m.

Next, we prove a “factorization property” for $Q_\alpha \subset Q(n)$. If P and Q are finite ranked posets, we say that P covers Q (or Q is covered by P) if there is a morphism of ranked posets from P to Q which is a bijection on the underlying sets. We denote this relation as $P \hookrightarrow Q$. Note that any ranked poset covered by a symmetric chain order is also a symmetric chain order. If α is aperiodic, then Q_α is covered by a product of symmetric chains. If α is periodic of period d, then Q_α is covered by the poset of (n/d)-bead necklaces labeled by Q_β, for some aperiodic d-bead necklace β.

Finally, if \mathcal{P} is a symmetric chain order, then $\mathcal{P}^n/\mathbb{Z}_n$ has a decomposition into posets which are either products of chains, or posets of d-bead necklaces with labels in a product of chains (where $d < n$), or posets of n-bead $(m+1)$-ary necklaces for some $m \geq 1$. In each case, we apply induction to finish the proof.

2. Generalities on necklaces

We begin by recalling some basic facts about \mathbb{Z}_n-actions on sets. We will use additive notation for the group operation of \mathbb{Z}_n. The subgroups of \mathbb{Z}_n are of the form $\langle d \rangle$ where d is a positive divisor of n, and $\mathbb{Z}_n/\langle d \rangle \simeq \mathbb{Z}_d$. If X is a set with \mathbb{Z}_n-action, let $X^{\langle d \rangle}$ denote the set of $\langle d \rangle$-fixed points in X. Equivalently:

$$X^{\langle d \rangle} = \{ x \in X \mid \langle d \rangle \subset \text{Stab}_{\mathbb{Z}_n}(x) \}.$$

Note that $X^{\langle c \rangle} \subset X^{\langle d \rangle}$ if c is a divisor of d. Next, we define:

$$X^{\langle d \rangle} = \{ x \in X \mid \langle d \rangle = \text{Stab}_{\mathbb{Z}_n}(x) \}.$$

Of course, we have:

$$X = \bigsqcup_{d | n} X^{\langle d \rangle}$$

and the \mathbb{Z}_n action on $X^{\langle d \rangle}$ factors through \mathbb{Z}_d. In other words, we have a bijection:

$$X/\mathbb{Z}_n \simeq \bigsqcup_{d | n} X^{\langle d \rangle}/\mathbb{Z}_d.$$

Now consider the special case where $X = \text{Map}(\mathbb{Z}_n, Y)$ for some arbitrary set Y, where \mathbb{Z}_n acts on the first factor. In other words,

$$(af)(b) = f(a + b)$$
for any \(a, b \in \mathbb{Z}_n \) and \(f : \mathbb{Z}_n \to Y \). Now the previous paragraph implies that:

\[
\text{Map}(\mathbb{Z}_n, Y) = \bigsqcup_{d|n} \text{Map}(\mathbb{Z}_n, Y)[d]
\]

and

\[
\text{Map}(\mathbb{Z}_n, Y) / \mathbb{Z}_n = \bigsqcup_{d|n} \text{Map}(\mathbb{Z}_n, Y)[d] / \mathbb{Z}_d.
\]

The elements of \(\text{Map}(\mathbb{Z}_n, Y) / \mathbb{Z}_n \) are called \(n \)-bead necklaces with labels in \(Y \).

An element of \(\text{Map}(\mathbb{Z}_n, Y)\{d\} / \mathbb{Z}_d \) is said to be periodic of period \(d \). An element of \(\text{Map}(\mathbb{Z}_n, Y)\langle n \rangle / \mathbb{Z}_n \) is said to be aperiodic. Given a map \(g : \mathbb{Z}_n \to Y \), let \([g]\) denote the corresponding necklace in \(\text{Map}(\mathbb{Z}_n, Y) / \mathbb{Z}_n \). A \(n \)-bead necklace with labels in \(Y \) can be visualized as a sequence of \(n \) elements of \(Y \) placed evenly around a circle, where we discount the effect of rotation by any multiple of \(\frac{2\pi}{n} \) radians. Given \((y_1, \ldots, y_n) \in Y^n\), let \([y_1, \ldots, y_n]\) denote the corresponding \(n \)-bead necklace.

Our first observation is that an \(n \)-bead necklace of period \(d \) is uniquely determined by any sequence of \(d \) consecutive elements around the circle. Moreover, as we rotate the circle, these \(d \) elements will behave exactly like an aperiodic \(d \)-bead necklace.

2.1. Proposition. There is a natural bijection between \(n \)-bead necklaces of period \(d \) and aperiodic \(d \)-bead necklaces.

Proof. Recall the following general fact: if \(G \) is a group, \(H \) is a normal subgroup of \(G \), and \(Y \) is an arbitrary set, then there is an isomorphism of \(G \)-sets:

\[
\text{Map}(G, Y)^H \cong \text{Map}(G/H, Y)
\]

\[
f \mapsto (gH \mapsto f(g)).
\]

Moreover, the action of \(G \) on each side factors through \(G/H \). In particular, there is an isomorphism of \(\mathbb{Z}_n \)-sets:

\[
\text{Map}(\mathbb{Z}_n, Y)^{\langle d \rangle} \cong \text{Map}(\mathbb{Z}_d, Y)
\]

where the \(\mathbb{Z}_n \)-action factors through \(Z_d \). Looking at elements of period \(d \), we get:

\[
\text{Map}(\mathbb{Z}_n, Y)^{\langle d \rangle} \cong \text{Map}(\mathbb{Z}_d, Y)^{\langle d \rangle}
\]

and so:

\[
\text{Map}(\mathbb{Z}_n, Y)^{\langle d \rangle} / \mathbb{Z}_d \cong \text{Map}(\mathbb{Z}_d, Y)^{\langle d \rangle} / \mathbb{Z}_d.
\]

□

Now suppose that \(Y \) is a disjoint union of non-empty subsets:

\[
Y = \bigsqcup_{i \in I} Y_i
\]

where \(I \) is a finite set. Equivalently, we have a surjective map \(\pi : Y \to I \), where \(Y_i = \pi^{-1}(i) \) for each \(i \in I \). It follows that there is a surjective map:

\[
\pi_* : \text{Map}(\mathbb{Z}_n, Y) \to \text{Map}(\mathbb{Z}_n, I)
\]
\[\pi_*(f) = \pi \circ f. \]

Given a map \(g : \mathbb{Z}_n \to I \), we define:
\[
\text{Map}_g(\mathbb{Z}_n, Y) = \pi^{-1}(g) = \{ f : \mathbb{Z}_n \to Y \mid \pi \circ f = g \}.
\]

In other words, \(f \in \text{Map}_g(\mathbb{Z}_n, Y) \) if and only if \(f(a) \in Y_{g(a)} \) for all \(a \in \mathbb{Z}_n \). Since \(\pi_* \) is surjective, we have a decomposition:
\[
\text{Map}(\mathbb{Z}_n, Y) = \bigcup_{g \in \text{Map}(\mathbb{Z}_n, I)} \text{Map}_g(\mathbb{Z}_n, Y).
\]

Note that \(\text{Map}_g(\mathbb{Z}_n, Y) \) is not necessarily stable under the action of \(\mathbb{Z}_n \). If \(a, b \in \mathbb{Z}_n \) and \(f \in \text{Map}_g(\mathbb{Z}_n, Y) \), then:
\[
a(f)(b) = f(a + b) \in Y_{g(a + b)}
\]
so we have a bijection:
\[
\text{Map}_g(\mathbb{Z}_n, Y) \simeq \text{Map}_{ag}(\mathbb{Z}_n, Y)
\]
induced by the action of \(a \in \mathbb{Z}_n \). We define:
\[
\text{Map}_{\{g\}}(\mathbb{Z}_n, Y) = \bigcup_{a \in \mathbb{Z}_n} \text{Map}_{ag}(\mathbb{Z}_n, Y).
\]

Note that \(\mathbb{Z}_n \) acts on \(\text{Map}_{\{g\}}(\mathbb{Z}_n, Y) \).

2.2. Remark. We recall a basic observation which will make it easier to define maps on sets of necklaces. Suppose \(S \) and \(T \) are sets equipped with equivalence relations \(\sim \) and \(\approx \), respectively. Let \(U \) be a subset of \(S \) which has a non-trivial intersection with each equivalence class in \(S \). Then \(U \) inherits the equivalence relation \(\sim \) and the natural map from \(U/\sim \) to \(S/\sim \) is a bijection. Given a map \(f : U \to T \) such that \(u_1 \sim u_2 \implies f(u_1) \approx f(u_2) \) for all \(u_1, u_2 \in U \), we obtain a map \((S/\sim) \simeq (U/\sim) \to (T/\approx) \).

2.3. Remark. If \(\alpha \) is a periodic \(n \)-bead necklace of period \(d \) with labels in \(I \), then:
\[
\alpha = \underbrace{[\beta, \ldots, \beta]}_{d \text{ times}}
\]
where \(\beta = (\beta_1, \ldots, \beta_d) \) is a \(d \)-tuple of elements in \(I \) such that \([\beta] \) is aperiodic.

2.4. Lemma. Let \(\pi : Y \to I \) be a surjective map where \(I \) is finite.

(1) There is a natural decomposition:
\[
\text{Map}(\mathbb{Z}_n, Y)/\mathbb{Z}_n = \bigcup_{d|n} \left(\bigcup_{\alpha \in \text{Map}(\mathbb{Z}_n, I)^{d}/\mathbb{Z}_d} \text{Map}_\alpha(\mathbb{Z}_n, Y)/\mathbb{Z}_n \right).
\]

(2) If \(\alpha = [\beta, \ldots, \beta] \in \text{Map}(\mathbb{Z}_n, I)^{d}/\mathbb{Z}_d \), where \(\beta = (\beta_1, \ldots, \beta_d) \), then there is a bijection:
\[
\text{Map}_\alpha(\mathbb{Z}_n, Y)/\mathbb{Z}_n \simeq (Y_{\beta_1} \times \cdots \times Y_{\beta_d})^{\mathbb{Z}_n}/\mathbb{Z}_d.
\]
Proof. (1) Since

\[
\text{Map}(\mathbb{Z}_n, Y) = \bigcup_{g \in \text{Map}(\mathbb{Z}_n, I)} \text{Map}_g(\mathbb{Z}_n, Y)
\]

and

\[
\text{Map}(\mathbb{Z}_n, I) = \bigcup_{d | n} \text{Map}(\mathbb{Z}_n, I)^{(d)}
\]

we see that:

\[
\text{Map}(\mathbb{Z}_n, Y) = \bigcup_{d | n} \left(\bigcup_{g \in \text{Map}(\mathbb{Z}_n, I)^{(d)}} \text{Map}_g(\mathbb{Z}_n, Y) \right).
\]

As noted above, in order to make this an equality of \(\mathbb{Z}_n\)-sets we need to take the coarser decomposition:

\[
\text{Map}(\mathbb{Z}_n, Y) = \bigcup_{d | n} \left(\bigcup_{[g] \in \text{Map}(\mathbb{Z}_n, I)^{(d)}/\mathbb{Z}_d} \text{Map}_g[\mathbb{Z}_n, Y] \right).
\]

Now we simply take the quotient by \(\mathbb{Z}_n\) on both sides:

\[
\text{Map}(\mathbb{Z}_n, Y)/\mathbb{Z}_n = \bigcup_{d | n} \left(\bigcup_{[g] \in \text{Map}(\mathbb{Z}_n, I)^{(d)}/\mathbb{Z}_d} \text{Map}_g[\mathbb{Z}_n, Y]/\mathbb{Z}_n \right).
\]

Note that we are simply organizing the \(n\)-bead \(Y\)-labeled necklaces by looking at the periods of the underlying \(n\)-bead \(I\)-labeled necklaces.

(2) Let \(g \in \text{Map}(\mathbb{Z}_n, I)^{(d)}\) and let \(a \in \mathbb{Z}_n\). By definition, \(ag = (a + x)g\) if and only if \(x \in \langle d \rangle\). So:

\[
\text{Map}_ag(\mathbb{Z}_n, Y) = \text{Map}_{(a+x)g}(\mathbb{Z}_n, Y)
\]

if \(x \in \langle d \rangle\). On the other hand, if

\[
h \in \text{Map}_ag(\mathbb{Z}_n, Y) \cap \text{Map}_{(a+x)g}(\mathbb{Z}_n, Y)
\]

for some \(x \in \mathbb{Z}_n\), then \(\pi \circ h = ag = (a + x)g\), which implies that \(x \in \langle d \rangle\). The upshot is that we can actually write \(\text{Map}_{[g]}(\mathbb{Z}_n, Y)\) as a disjoint union over \(\mathbb{Z}_d\):

\[
\text{Map}_{[g]}(\mathbb{Z}_n, Y) = \bigcup_{a \in \mathbb{Z}_d} \text{Map}_ag(\mathbb{Z}_n, Y).
\]

Now consider the sequence of values \(g(a)\) for \(a \in \mathbb{Z}_n\). This sequence is of the form \((\beta, \ldots, \beta)\), where \(\beta = (\beta_1, \ldots, \beta_d)\). Therefore:

\[
\text{Map}_g(\mathbb{Z}_n, Y) \simeq (Y_{\beta_1} \times \cdots \times Y_{\beta_d})^{\frac{n}{d}}
\]

and so:

\[
\text{Map}_{[g]}(\mathbb{Z}_n, Y) \simeq \bigcup_{j=0}^{d-1} (Y_{\beta_{j+1}} \times \cdots \times Y_{\beta_d} \times Y_{\beta_1} \times \cdots \times Y_{\beta_j})^{\frac{n}{d}}.
\]
Let us apply Remark 2.2 to the following sets:

\[
S = \bigoplus_{j=0}^{d-1} (Y_{\beta_{j+1}} \times \cdots \times Y_{\beta_d} \times Y_{\beta_1} \times \cdots \times Y_{\beta_j})^{\frac{n}{d}} \quad \text{and} \quad T = (Y_{\beta_1} \times \cdots \times Y_{\beta_d})^{\frac{n}{d}}.
\]

The equivalence relations on \(S\) and \(T\) are defined by group actions: \(\mathbb{Z}_n\) acts on \(S \simeq \text{Map}_{[g]}(\mathbb{Z}_n, Y)\) and \(\mathbb{Z}_d^{\frac{n}{d}}\) acts on \(T\) by cyclic permutation of the factors. Let \(U\) be the subset of \(S\) corresponding to the \(j = 0\) component:

\[
U = (Y_{\beta_1} \times \cdots \times Y_{\beta_d})^{\frac{n}{d}}.
\]

Each element of \(S\) is equivalent to an element of \(U\), and the restricted equivalence relation on \(U\) is given by the action of the subgroup \(\langle d \rangle\) which is exactly the same as the action of \(\mathbb{Z}_d^{\frac{n}{d}}\) by cyclic permutation of the factors. Therefore:

\[
S/\mathbb{Z}_n \simeq U/\langle d \rangle \simeq T/\mathbb{Z}_d^{\frac{n}{d}}.
\]

\[\square\]

2.5. Remark. We can visualize the above result as follows: we choose a place to “cut” an \(n\)-bead \(Y\)-labeled necklace in order to get an \(n\)-tuple of elements of \(Y\). We can always rotate the original necklace so that the underlying \(I\)-labeled necklace has a given position with respect to the cut. Moreover, if the underlying \(I\)-labeled necklace has period \(d\), then we can break the \(n\)-tuple into segments of size \(d\) so that the corresponding \(I\)-labeled \(d\)-bead necklaces are aperiodic. As we rotate the original necklace by multiples of \(\frac{2\pi}{d}\) radians, we will permute these segments among each other.

3. Partition necklaces

Let \(n\) be a positive integer. Consider the set of ordered partitions of \(n\) into \(r\) positive parts:

\[
\mathcal{P}(n,r) = \{(a_1, \ldots, a_r) \in \mathbb{Z}_{>0}^r \mid \sum_{i=1}^r a_i = n\}
\]

Define:

\[
\mathcal{P}(n) = \bigsqcup_{r=1}^{n-1} \mathcal{P}(n,r)
\]

In other words, \(\mathcal{P}(n)\) is the set of non-empty ordered partitions of \(n\) into positive parts, where at least one part is greater than 1. Note that refinement of partitions defines a partial order on \(\mathcal{P}(n)\), and the rank of a partition is given by the number of parts.

Let \(\mathcal{Q}(n)\) denote the set of necklaces associated to \(\mathcal{P}(n)\):

\[
\mathcal{Q}(n) = \bigsqcup_{i=1}^{n-1} \mathcal{P}(n,r)/\mathbb{Z}_r
\]

In other words:

\[
\mathcal{Q}(n) = \{[a_1, \ldots, a_r] \in \mathbb{Z}_{>0}^r/\mathbb{Z}_r \mid 1 \leq r \leq n-1, \sum_{i=1}^r a_i = n\}
\]
where \([a_1, \ldots, a_r]\) denotes the \(\mathbb{Z}_r\)-orbit of \((a_1, \ldots, a_r)\).

The elements of \(Q(n)\) are called partition necklaces. Note that \(Q(n)\) inherits the structure of a ranked poset from \(P(n)\).

Let \(N(n, 1)\) denote the set of \(n\)-bead binary necklaces with the necklaces \([0, \ldots, 0]\) and \([1, \ldots, 1]\) removed.

3.1. Proposition

For any \(n \geq 1\), there is an isomorphism of ranked posets:

\[
\psi_n : N(n, 1) \cong Q(n).
\]

Proof. Given a non-empty \(n\)-bead binary necklace \(\beta\) of rank \(r\), let \(\psi_n(\beta)\) be the necklace whose entries are given by the number of steps between consecutive non-zero entries of \(\beta\). More precisely, \(\psi_n\) is given by:

\[
[1, 0^{c_1}, 1, 0^{c_2}, \ldots, 1, 0^{c_r}] \mapsto [c_1 + 1, \ldots, c_r + 1]
\]

Note that the right hand side is the necklace of a partition of \(n\) into \(r\) positive parts.

The inverse of \(\psi_n\) is given by:

\[
[a_1, \ldots, a_r] \mapsto [1, 0^{a_1-1}, 1, 0^{a_2-1}, \ldots, 1, 0^{a_r-1}].
\]

Moreover, changing a “zero” to a “one” in a binary necklace corresponds to a refinement of the corresponding partition necklace, so the above bijection is compatible with the partial orders and rank functions on each poset. \(\square\)

An ordered partition \((a_1, \ldots, a_r)\) and the corresponding partition necklace \([a_1, \ldots, a_r]\) are said to be fundamental if each \(a_i \geq 2\). Let \(\mathcal{F}(n)\) denote the set of fundamental partition necklaces in \(Q(n)\).

Now we apply Remark 2.2 to the case where \(S = P(n)\) and \(T\) is the subset of \(P(n)\) consisting of fundamental partitions. Equip each set with the necklace equivalence relation, so \((S/\sim) = Q(n)\) and \((T/\approx) = F(n)\). Define the subset:

\[
U = \{(1^{n_1}, m_1, 1^{n_2}, m_2, \ldots, 1^{n_k}, m_k) \in P(n) \mid n_i \geq 0, m_i \geq 2 \text{ for all } 1 \leq i \leq k\}
\]

Since we have excluded \((1, \ldots, 1)\) from \(P(n)\), we see that any element of \(P(n)\) is equivalent to some element in \(U\). Now define:

\[
f : U \rightarrow T
\]

\[
(1^{n_1}, m_1, 1^{n_2}, m_2, \ldots, 1^{n_k}, m_k) \mapsto (m_1 + n_1, \ldots, m_k + n_k).
\]

Since \(f\) is compatible with the respective equivalence relations, we obtain a map:

\[
\pi_n : Q(n) \rightarrow \mathcal{F}(n)
\]

\[
[1^{n_1}, m_1, 1^{n_2}, m_2, \ldots, 1^{n_k}, m_k] \mapsto [m_1 + n_1, m_2 + n_2, \ldots, m_k + n_k].
\]

Note that \(\pi_n\) restricts to the identity on \(\mathcal{F}(n)\). In particular, \(\pi_n\) is surjective. Therefore, we get a decomposition of \(Q(n)\):

\[
Q(n) = \bigsqcup_{\alpha \in \mathcal{F}(n)} Q_{\alpha}
\]
where $Q_n = \pi_n^{-1}(\alpha)$. This decomposition is the same as the decomposition for binary necklaces defined in [4]. Indeed, the map $\pi_n \circ \psi_n$ is essentially the necklace version of the “block-code” construction.

If $m \geq 1$, a fundamental partition necklace $[a_1, \ldots, a_r] \in \mathcal{F}(n)$ is said to be divisible by m if each a_i is divisible by m. Define the following sub-poset of $Q(n)$:

$$Q(n, m) = \{ \alpha \in Q(n) \mid \pi_n(\alpha) \text{ is divisible by } m \} = \bigsqcup_{m|\alpha} Q_\alpha.$$

Let $N(n, m)$ denote the set of n-bead $(m+1)$-ary necklaces with the necklaces $[0, \ldots, 0]$ and $[m, \ldots, m]$ removed. We have the following generalization of Proposition 3.1.

3.2. Lemma. For any $n, m \geq 1$, there is an isomorphism of ranked posets:

$$\psi_{n,m} : N(n, m) \simeq Q(mn, m).$$

Proof. Given an n-bead $(m+1)$-ary necklace, we construct an mn-bead binary necklace via the substitution: $j \mapsto 1^{j0^{m-j}}$, and then we apply the map ψ_{mn} from Proposition 3.1. This composition is clearly a morphism of ranked posets. Here is an explicit formula for $\psi_{n,m}$:

$$[b_1, b_2, \ldots, b_r] \mapsto [1^{b_1-1}, m(c_1+1) - b_1 + 1, \ldots, 1^{b_r-1}, m(c_r+1) - b_r + 1]$$

where each $b_i \geq 1$ and $c_i \geq 0$. The sum of the terms in the partition necklace is:

$$\sum_{i=1}^{r} (b_i - 1 + m(c_i + 1) - b_i + 1) = m(r + \sum_{i=1}^{r} c_i) = mn$$

as desired. Let us check that $\pi_{mn} \circ \psi_{n,m}(\alpha)$ is divisible by m for all $\alpha \in N(n, m)$. Consider the element:

$$\alpha = [b_1, b_2, \ldots, b_r] \mapsto [1^{b_1-1}, m(c_1+1) - b_1 + 1, \ldots, 1^{b_r-1}, m(c_r+1) - b_r + 1]$$

where $\pi_{n,m}(\psi_{n,m}(\alpha)) = [me_1, \ldots, me_s]$ and this result is indeed divisible by m.

By reversing the above process, we get a formula for the inverse of $\psi_{n,m}$. An arbitrary element of $Q(mn, m)$ is of the form:

$$[1^{m_1}, m_1, 1^{m_2}, m_2, \ldots, 1^{m_k}, m_k]$$

where each $m_i \geq 1$, each $m_i + n_i$ is divisible by m_i, and $\sum_{i=1}^{k} (m_i + n_i) = mn$. The corresponding mn-bead binary necklace is:

$$[1^{n_1+1}, 0^{m_1-1}, \ldots, 1^{n_k+1}, 0^{m_k-1}]$$

Now we need to apply the substitution $1^{j0^{m-j}} \mapsto j$. Since $m_i + n_i$ is divisible by m, we can apply this to each block $[1^{n_i+1}, 0^{m_i-1}]$ separately. Furthermore, we should
break each block into segments of size \(m \) and apply the substitution to each segment. Therefore, \((1^{n_i+1}, 0^{m_i-1})\) looks like:

\[
\underbrace{(1^m, 1^m, \ldots, 1^m)}_{q_i \text{ times}}, 1^n, 0^{m-r}, 0^{m-1-(m-r_i)}.
\]

where \(q_i \) is the quotient of the division of \(n_i + 1 \) by \(m \) and \(r_i \) is the remainder. Note that \(m_i - 1 - (m - r_i) = m_i - 1 - m + (n_i + 1 - m q_i) = m_i + n_i - m q_i - m \), which is divisible by \(m \). Therefore, the inverse of \(\psi_{n,m} \) is given by the following formula:

\[
[1^{n_1}, m_1, 1^{n_2}, m_2, \ldots, 1^{n_k}, m_k] \mapsto [m^{q_1}, r_1, 0^{t_1}, \ldots, m^{q_k}, r_k, 0^{t_k}]
\]

where:

\[n_i + 1 = m q_i + r_i \text{ such that } 0 \leq r_i < m \]

Note that the number of beads in the above necklace is:

\[
\sum_{i=1}^{k} (q_i + 1 + \frac{m_i + n_i}{m} - q_i - 1) = \frac{1}{m} \sum_{i=1}^{k} (m_i + n_i) = \frac{m n}{m} = n
\]

as desired. \(\square \)

3.3. Lemma. Let \(\alpha = [a_1, \ldots, a_r] \in \mathcal{F}(n) \). If \(\alpha \) is aperiodic, then:

\[Q_{[a_1]} \times \cdots \times Q_{[a_r]} \lelihook Q_{\alpha}. \]

If \(\alpha \) is periodic of period \(d \) and \(\alpha = [\beta, \ldots, \beta] \), then:

\[Q_{\frac{\beta}{r}} / \mathbb{Z}_{r^d} \lelihook Q_{\alpha}. \]

Proof. If \(m \geq 2 \), note that \(Q_{[m]} \) is a chain with \(m - 1 \) vertices. We will apply Lemma 2.4 to the following set:

\[Q = \bigsqcup_{m=2}^{n} Q_{[m]}. \]

Note that our indexing set is \(I = \{2, \ldots, n\} \). Let \(\alpha = [a_1, \ldots, a_r] \in \mathcal{F}(n) \). Since \(a_1 + \cdots + a_r = n \), we know that each \(a_i \leq n \), which implies that \(\alpha \) is labeled by elements of \(I \). If \(\alpha \) is aperiodic, it follows from part (2) of Lemma 2.4 that we have a rank-preserving bijection:

\[\text{Map}_\alpha(\mathbb{Z}_r, Q) / \mathbb{Z}_r \cong Q_{[a_1]} \times \cdots \times Q_{[a_r]} \]

On the other hand, if \(\alpha = [\beta, \ldots, \beta] \in \text{Map}(\mathbb{Z}_r, I)^{(d)} / \mathbb{Z}_d \), where \(\beta = (\beta_1, \ldots, \beta_d) \), then we have rank-preserving bijections:

\[\text{Map}_\alpha(\mathbb{Z}_r, Q) / \mathbb{Z}_r \cong (Q_{[\beta_1]} \times \cdots \times Q_{[\beta_d]}) / \mathbb{Z}_d \cong Q_{[\beta]} / \mathbb{Z}_d \]

where the second bijection exists due to the fact that \([\beta] \) is aperiodic. It remains to check that the poset relations are preserved. Indeed, any covering relation among two
necklaces labeled by $Q[\beta_1] \times \cdots \times Q[\beta_d]$ will correspond to a covering relation within a chain $Q[\beta_i]$ for some i, which will also be a covering relation among the corresponding Q-labeled necklaces.

3.4. Remark. The above Lemma provides an explanation of why it is easier to find a symmetric chain decomposition of n-bead binary necklaces if n in prime [4]. Indeed, in this case all non-trivial necklaces are aperiodic, so each Q_α is covered by a product of symmetric chains and we can apply the Greene-Kleitman rule.

4. Proof of the theorem

4.1. Theorem. If \mathcal{P} is a symmetric chain order, then $\mathcal{P}^n/\mathbb{Z}_n$ is a symmetric chain order.

Proof. The statement is trivial for $n = 1$. Assume that the theorem is true for any $n' < n$. Let C_1, \ldots, C_r denote the chains in a symmetric chain decomposition of \mathcal{P}. We may assume that:

$$\mathcal{P} = \bigsqcup_{i=1}^r C_i.$$

If we let $I = \{1, 2, \ldots, r\}$ and apply part (1) of Lemma 2.4 to \mathcal{P}, we obtain:

$$\text{Map}(\mathbb{Z}_n, \mathcal{P})/\mathbb{Z}_n = \bigsqcup_{d|n} \left(\bigsqcup_{\alpha \in \text{Map}(\mathbb{Z}_n, I)_{(d)}/\mathbb{Z}_d} \text{Map}_\alpha(\mathbb{Z}_n, \mathcal{P})/\mathbb{Z}_n \right).$$

Now we apply part (2) of Lemma 2.4. If $\alpha = [a_1, \ldots, a_n]$ is an aperiodic n-bead necklace with labels in I, then:

$$C_{a_1} \times \cdots \times C_{a_n} \hookrightarrow \text{Map}_\alpha(\mathbb{Z}_n, \mathcal{P}).$$

Since $C_{a_1} \times \cdots \times C_{a_n}$ is a symmetric chain order, it follows that $\text{Map}_\alpha(\mathbb{Z}_n, \mathcal{P})$ is a symmetric chain order. Also note that $C_{\beta_1} \times \cdots \times C_{\beta_d}$ is a centered subposet of $\text{Map}(\mathbb{Z}_n, \mathcal{P})/\mathbb{Z}_n$. On the other hand, if $\alpha = [\beta_1, \ldots, \beta_d]$ is a periodic n-bead necklace with labels in I, where $\beta = (\beta_1, \ldots, \beta_d)$, then:

$$(C_{\beta_1} \times \cdots \times C_{\beta_d})_{\mathbb{Z}_d} \hookrightarrow \text{Map}_\alpha(\mathbb{Z}_n, \mathcal{P})/\mathbb{Z}_n.$$

Again, note that this poset is a centered subposet of $\text{Map}(\mathbb{Z}_n, \mathcal{P})/\mathbb{Z}_n$ since it is a cyclic quotient of a centered subposet of \mathcal{P}^n.

If $d > 1$, then $\frac{n}{d} < n$ and $(C_{\beta_1} \times \cdots \times C_{\beta_d})$ is a symmetric chain order, so

$$(C_{\beta_1} \times \cdots \times C_{\beta_d})_{\mathbb{Z}_d} \hookrightarrow \text{Map}_\alpha(\mathbb{Z}_n, \mathcal{P})/\mathbb{Z}_n$$

is a symmetric chain order by induction.

If $d = 1$, then:

$$C^n/\mathbb{Z}_n \hookrightarrow \text{Map}_\alpha(\mathbb{Z}_n, \mathcal{P})/\mathbb{Z}_n.$$
where C is a chain with $m + 1$ vertices, for some $m \geq 1$. It suffices to consider the centered subposet $N(n, m)$. By Lemma 3.2, we have:

$$N(n, m) \simeq Q(mn, m).$$

If $Q_\alpha \subset Q(mn, m)$, then $\alpha = [ma_1, \ldots, ma_s]$, where $a_1 + \cdots + a_s = n$. In particular, note that $s \leq n$. By Lemma 3.3, there are two possibilities for Q_α. If α is aperiodic, Q_α is a product of chains, so it is a symmetric chain order. If α is periodic of period d, then:

$$Q_\alpha^{\frac{n}{d}} / \mathbb{Z}_{\frac{n}{d}} \hookrightarrow Q_\alpha$$

where $[\beta]$ is a d-bead aperiodic necklace. In particular, $Q_{[\beta]}$ is itself a product of chains (hence a symmetric chain order). We know that $\beta = (mc_1, \ldots, mc_d)$, where $c_1 + \cdots + c_d = \frac{dn}{d}$. There are three possible cases:

(i) If $d > 1$, then $\frac{n}{d} < n$. Since $Q_{[\beta]}$ is a symmetric chain order, by induction we conclude that

$$Q_{[\beta]}^{\frac{n}{d}} / \mathbb{Z}_{\frac{n}{d}}$$

is a symmetric chain order.

(ii) If $d = 1$ and $s < n$ then $Q_{[\beta]}$ is a single chain, so $Q_{[\beta]}^{\frac{n}{d}} / \mathbb{Z}_{\frac{n}{d}}$ is a symmetric chain order by induction.

(iii) If $d = 1$ and $s = n$, then $\beta = (m)$ and $\alpha = [m, \ldots, m]$. In this case:

$$Q_{[m]}^{n} / \mathbb{Z}_{n} \hookrightarrow Q_\alpha.$$

Since $Q_{[m]}$ is a chain with $m - 1$ vertices, we see that we have returned to the case of the \mathbb{Z}_n-quotient of the n-fold power of a single chain. However, note that the we have managed to decrease the length of the chain by two, i.e. from $m + 1$ vertices to $m - 1$ vertices. Now we can again apply Lemma 3.2 and Lemma 3.3 to the centered subposet $N(n, m - 2)$, etc.

Eventually, after we go through this argument enough times, we will eventually reach the case of:

$$C^n / \mathbb{Z}_n$$

where C is a chain with one or two vertices. If $|C| = 1$, there is nothing to show. So we are left with the case where C is a chain with two vertices, i.e. the poset of binary necklaces. It suffices to look at the centered subposet $N(n, 1)$. By Proposition 3.1,

$$N(n, 1) \simeq Q(n).$$

Again, we consider the subposets Q_α. As usual, if α is aperiodic then Q_α is covered by a product of symmetric chains. If $\alpha = [\beta, \ldots, \beta]$ is periodic of period d then

$$Q_{[\beta]}^{\frac{n}{d}} / \mathbb{Z}_{\frac{n}{d}} \hookrightarrow Q_\alpha$$

where $[\beta]$ is an aperiodic d-bead necklace and $Q_{[\beta]}$ is a product of chains. If $d > 1$, then $\frac{n}{d} < n$ so

$$Q_{[\beta]}^{\frac{n}{d}} / \mathbb{Z}_{\frac{n}{d}}$$
is a symmetric chain order by induction. Finally, if α is periodic of period $d = 1$ then α is an n-bead partition necklace of period 1 whose entries sum to n, so $\alpha = [1, 1, \ldots, 1]$, but this element was explicitly excluded from the set $\Omega(n)$.

Acknowledgements. I would like to thank the Department of Mathematics at Michigan State University for their hospitality. I am especially grateful to Bruce Sagan for his encouragement while this project was under way. This paper also benefited greatly from several referee comments.

References

[1] N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk. On the set of divisors of a number. *Nieuw Arch. Wiskunde (2)*, 23:191-193, 1951.

[2] Dwight Duffus, Jeremy McKinben-Sanders, and Kyle Thayer. Some Quotients of the Boolean Lattice are Symmetric Chain Orders. http://arxiv.org/abs/1107.1098.

[3] Curtis Greene and Daniel J. Kleitman. Strong versions of Sperner’s theorem. *J. Combinatorial Theory Ser. A*, 20(1):80-88, 1976.

[4] Jerrold R. Griggs, Charles E. Killian, and Carla D. Savage. Venn diagrams and symmetric chain decompositions in the Boolean lattice. *Electron. J. Combin.* 11 (2004).

[5] Patricia Hersh and Anne Schilling. Symmetric chain decomposition for cyclic quotients of Boolean algebras and relation to cyclic crystals. http://arxiv.org/abs/1107.4073.

[6] Kelly Kross Jordan. The necklace poset is a symmetric chain order. *J. Combin. Theory Ser. A* 117 (2010), no. 6, 625-641.