Case Report

Perivascular radiolucent line during recanalization of superficial femoral artery✩✩✩

Yuya Koike, MDa,*, Yuichiro Kawahara, MDa, Ryo Izubuchi, MDb, Hideyuki Iwaki, MD, PhDb

aDepartment of Interventional Radiology, Saiseikai Yokohamashi Nanbu Hospital, 3-2-10, Kohandai, Kohnan-Ku, Yokohama, Kanagawa 234-0054, Japan
bDepartment of Cardiovascular Surgery, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Kanagawa, Japan

A R T I C L E I N F O

Article history:
Received 22 March 2021
Revised 3 April 2021
Accepted 6 April 2021

Keywords:
Perivascular radiolucent line
Superficial femoral artery
Total occlusion
Guidewire tail

A B S T R A C T

During the recanalization of chronic total occlusions in the superficial femoral artery, severe calcification adds technical difficulty in guidewire crossing due to poor ultrasound visualization and uncontrollable guidewire manipulation. Herein, we present the case of a 70-year-old man with chronic total occlusion of the superficial femoral artery to report the “perivascular radiolucent line” indicating aspirated air in the subintimal space, which could be noted after a failed subintimal angioplasty. The perivascular radiolucent line helped a safe guidewire tail crossing by making the vascular wall visible. Physicians should be aware of the perivascular radiolucent line in case of failed subintimal angioplasty.

© 2021 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Although multiple antegrade techniques and devices have been developed to cross chronic total occlusion (CTO) lesions of the superficial femoral artery (SFA), the failure rate has remained approximately 20% [1,2]. Especially, severe calcification adds the technical difficulty in crossing the CTO due to poor ultrasound visualization and uncontrollable guidewire manipulation.

Retrograde approaches such as distal SFA, transpopliteal, and pedal arteries are the most commonly used alternative method to recanalize CTOs of the SFA when antegrade methods have failed [3]. However, the use of a retrograde technique requires another arterial puncture and may increase the risk of access-site complications. Furthermore, the use of transcollateral approach requires adequate collateral size and increases the potential risk of perforation and bleeding [4].

As a last resort of an antegrade approach, an attempt using a 0.035-in. sharpened and angled guidewire tail (Fig. 1) can make it possible to cross even hard plaque lesion, owing to pushability and torqueability. However, under poor visualization of duplex in severe calcified lesions, the technique is unsafe and may result in associated complications, such as vas-

✩✩✩

Acknowledgment: The authors appreciate Dr Keisuke Hirano who developed the 0.035-in. guidewire tail crossing as an “HIP attack technique.” The authors would like to thank Enago for the English language review.

Funding: None.

Conflict of interest: The authors have no conflict of interest to disclose.

Corresponding author.

E-mail address: r06118@hotmail.co.jp (Y. Koike).

https://doi.org/10.1016/j.radcr.2021.04.011

1930-0433/© 2021 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
cicular injury due to incident vascular wall penetration.

Herein, we present a sample case to illustrate the “perivascular lucent line,” indicating aspirated air in the subintimal space of the SFA, a helpful sign for safe guidewire tail crossing by making vascular wall visible.

Case report

A 70-year-old man was referred to our hospital due to intermittent claudication of Rutherford category 3 in the right leg. He was a past smoker with additional risk factors for atherosclerosis, such as arterial hypertension and dyslipidemia. He had a pain-free walking distance of <500 m, with an ankle brachial index (ABI) of 0.69 on the right side. A duplex examination and angiography revealed an occluded right SFA with severe calcification from the origin of the artery to the distal end. The total length of the diseased segment was 280 mm (Fig. 2A).

The procedure was started with the antegrade approach from the right common femoral artery using a 6-Fr sheath. We intended to cross the lesion under biplane fluoroscopic guidance relying on the spotty calcification due to poor ultrasound visualization. A 100-g tip-load, 0.014-in. guidewire failed to penetrate the proximal hard cap of the lesion. An attempt to cross the lesion using a 0.035-in. sharpened and angled guidewire tail (Radifocus; Terumo, Tokyo, Japan) was also interrupted due to pain associated with vessel wall penetration. Then, a 0.035-in., 1.5-mm J-shaped stiff guidewire (Radifocus; Terumo) was repeatedly retracted and advanced with forward pressure to perform subintimal recanalization. However, the subintimal space was enlarged, and the guidewire and catheter in the subintimal space at the mid-SFA could not be advanced any further. In the process, “perivascular radiolucent lines (PRL)” along the SFA, was observed, indicating aspirated air drawn into the subintimal space (Fig. 2B). Therefore, we opted to perform guidewire tail crossing again based on the radiolucent lines indicating the vessel wall. PRL enabled advancement of the sharpened guidewire tail without vessel wall penetration (Fig. 2C). After crossing the lesion, recanalization was successfully performed using 2 interwoven stents without vascular injury or air embolism (Fig. 2D).

The patient was free of any ischemic pain while walking with an ABI of 1.04 on the right side at the 3-month follow-up.

Discussion

In this report, we found 2 important clinical issues: PRL indicating vascular wall was noted after a failed subintimal angioplasty for SFA CTO lesion and helped in an attempt using a guidewire tail to cross the lesion without vessel penetration. First, PRL can make a distinct visualization of the vessel wall possible. Since Cluley et al. [5] first introduced an echo-guided angioplasty, the echo-guided technique contributed to a successful recanalization in noncalcified CTO lesions. However, due to poor ultrasound visualization in severely calcified lesions, the guidewire and vessel wall position is invisible. Spotty calcification under fluoroscopy cannot be used to sufficiently understand the vessel wall borderline, which can lead to a potential risk of guidewire tail-induced penetration. The enlarged space during the subintimal approach using the knuckle wire technique acts as a vacuum causing PRL, indicating air drawn into the subintimal space. PRL allows the vessel wall itself to be delineated by air.

Second, PRL made the guidewire tail crossing safety without wall penetration. Although an application of a guidewire tail for the treatment of severely calcified CTO has been less described, except by Kawarada et al. [6], corresponding with techniques has been used in the real world to measure the last
resort of endovascular treatment. In our strategy, an attempt using a 0.035-in. guidewire tail can be considered in cases of failed guidewire passage with intraluminal approach or with subintimal approach due to the underlying severely calcified occlusion. The technique using a 0.035-in. guidewire tail provides sufficient wire handling with pushability and torqueability. However, the technique is used off-label, unsafe, and can potentially increase vascular-penetrating complications, particularly in the patient who already underwent anticoagulated. Nonetheless, the concern remains even in the retrograde approach with added distal puncture or the transcollateral approach. With vascular wall visualization using PRL, guidewire tail crossing can be safely performed without wall penetration.

In the present case, any complication including air embolism did not occur. The air that made up PRL remained during the guidewire tail crossing and seemed to diffuse by balloon dilatation and vessel recanalization. Although the presence of air or contrast agent aspirated into the subintimal space can be detected during the subintimal angioplasty, the degree and extent of PRL will depend on the chance and uncontrollable. To perform PRL by the intentional injection of air or CO₂ into the subintimal space should not be allowed due to potential risk of embolism.

In conclusion, PRL indicating vascular wall can be noted after a failed subintimal angioplasty of SFA CTO lesion and was helpful for safe guidewire tail crossing. Physicians should be aware of the perivascular radiolucent line in case of failed subintimal angioplasty.

Patient consent statement

Written informed consent was obtained from the patient for publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. IRB approval for this type of study is not required.

REFERENCES

[1] Banerjee S, Sarode K, Patel A, Mohammad A, Parikh R, Armstrong E, et al. Comparative assessment of guidewire and microcatheter vs a crossing device-based strategy to traverse infrainguinal peripheral artery chronic total occlusions. J Endovasc Ther 2015;18:525–34.

[2] Rogers J, Laird J. Overview of new technologies for lower extremity revascularization. Circulation 2007;116:2072–85.

[3] Shi W, Yao Y, Wang W, Yu B, Wang S, Que H, et al. Combined antegrade femoral artery and retrograde popliteal artery recanalization for chronic occlusions of the superficial femoral artery. J Vasc Interv Radiol 2014;25:1363–8.

[4] Shammas NW, Daher GE, Bou Dargham B, Rachwan RJ, Robken J. Recanalization of total occlusion of the superficial femoral artery and profunda femoris using the transcollateral approach. J Invasive Cardiol 2017;29:E43–6.

[5] Cluley SR, Brener BJ, Hollier LH, Eisenbud DE, Ferrara-Ryan M, Villaneuva A, et al. Ultrasound-guided balloon angioplasty is a new technique for vascular surgeons. Am J Surg 1991;162:117–21.

[6] Kawarada O, Noguchi T, Yasuda S. Longitudinal cracking with a guidewire tail for extremely calcified lesions in infrainguinal arteries: PICKING technique. Cardiovasc Intervent Radiol 2018;41:213–16.