The Transcriptional Role of Vitamin A and the Retinoid Axis in Brown Fat Function

Carsten T. Herz and Florian W. Kiefer*

Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria

In recent years, brown adipose tissue (BAT) has gained significance as a metabolic organ dissipating energy through heat production. Promotion of a thermogenic program in fat holds great promise as potential therapeutic tool to counteract weight gain and related sequelae. Current research efforts are aimed at identifying novel pathways regulating brown fat function and the transformation of white adipocytes into BAT-like cells, a process called “browning.” Besides numerous genetic factors some circulating molecules can act as mediators of adipose tissue thermogenesis. Vitamin A metabolites, the retinoids, are potent regulators of gene transcription through nuclear receptor signaling and are thus involved in a plethora of metabolic processes. Accumulating evidence links retinoid action to brown fat function and browning of WAT mainly via orchestrating a transcriptional BAT program in adipocytes including expression of key thermogenic genes such as uncoupling protein 1. Here we summarize the current understanding how retinoids play a role in adipose tissue thermogenesis through transcriptional control of thermogenic gene cassettes and potential non-genomic mechanisms.

Keywords: vitamin A, retinoid, obesity, brown fat, adipose tissue browning, thermogenesis

BROWN ADIPOSE TISSUE AND BROWNING OF WHITE FAT

Brown adipose tissue (BAT) is an adipose organ specialized in producing heat to maintain body temperature. Brown adipocytes, in contrast to white adipocytes, are rich in mitochondria and are characterized by a large number of small multilocular lipid droplets as compared to unilocular lipid droplets in white adipocytes (1). The mitochondria of brown adipocytes express uncoupling protein 1 (UCP1) in the inner mitochondrial membrane which, when activated, uncouples the proton motive force generated by mitochondrial oxidative metabolism from ATP synthesis and thereby dissipates chemical energy as heat (1). Promotion of brown fat thermogenesis counteracts obesity and related complications in numerous animal models and has therefore evolved as a promising novel therapeutic concept in the fight against the human obesity epidemic (2). Classical BAT depots, as most comprehensively described in rodents, embody mainly interscapular, axillary, cervical, femoral, and perirenal depots (1). However, brown-like or so-called beige adipocytes can also be found in white adipose tissue (WAT) depots, predominantly in subcutaneous fat and to a lesser extent in visceral fat (3). Stimulation of BAT thermogenesis classically occurs through hypothalamic noradrenergic signaling via the β3-adrenergic pathway in response to cold (1). This results in activation of protein kinase A (PKA) which promotes
intracellular lipolysis and acts through the p38 MAPK as well as the CREB pathway which increases the expression of genes essential for the maintenance of thermogenic function such as UCP1, DIO2, and PGC1α (4). The emergence of beige adipocytes in WAT, coined “browning,” can occur in response to various stimuli including a number of genetic factors, hormones and chronic cold exposure. Beige cells can possess characteristics of both, classic white and brown adipocytes. When activated, beige fat cells express significant amounts of UCP1 and contribute toward thermogenesis and energy expenditure (4). It remains a matter of debate whether these newly formed beige adipocytes stem from mature white adipocytes undergoing conversion to UCP1-expressing cells following thermogenic stimuli or if a pool of distinct precursor cells gives rise to beige adipocytes. Elegant lineage tracing studies in mice provided evidence for both theories (5, 6).

Whereas, the salutary metabolic effects of brown fat have been unequivocally demonstrated in rodents, the impact of BAT physiology on human energy metabolism and its relevance for metabolic disease is less well-understood. Currently, the gold standard for the detection and quantification of active BAT in humans is 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) (7). The most potent physiologic stimulus for BAT activation is cold exposure that results in significant uptake of 18F-FDG in thermogenically active BAT depots and correlates in many studies with increased energy expenditure (8–11). The inverse relationships between active BAT and the degree of obesity and age also supports a potential protective role of BAT in metabolic disorders in humans (8, 12–14). Cold-induced BAT activity is mainly found in deep cervical, supraclavicular, paravertebral, and some renal fat depots in human adults (15). However, BAT in humans is not an organ as easily delineated from WAT as bona fide murine BAT since it comprises a mixture of brown and white adipocytes (16). The emergence of unilocular adipocytes in brown fat depots, called BAT whitening, has been demonstrated in animal models of aging and obesity (17, 18) and can be experimentally induced by high ambient temperature and defective β-adrenergic signaling, resulting in brown adipocyte death and inflammation (19). In contrast, clinical studies have found that repeated cold exposure over the course of 2 to 6 weeks, successfully increased the amount of active BAT as evidenced by 18F-FDG-PET/CT imaging in lean and overweight individuals as well as patients with diabetes, respectively (9, 20–23). The observed changes in BAT mass were accompanied by reductions in body fatness and improvements in insulin sensitivity (9, 21, 23). These findings not only suggest that thermogenically active BAT can be recruited in humans but emphasize the potential for therapies targeted at BAT with the aim to re-establish relevant amounts in BAT-depleted states such as obesity or older age and thus reverse associated metabolic aberrations.

VITAMIN A AND RETINOID METABOLISM

Besides their functions in cell differentiation, embryonic development, reproduction, retinal function and immunity, vitamin A and its metabolites, the retinoids, have been recognized as important regulators of energy metabolism (24). Vitamin A must be obtained from the diet by intake of either preformed retinol or provitamin A (carotenoids) which can be converted to retinol by beta-carotene monoxygenase. After absorption, the majority (~90%) is stored in the liver, while a smaller part (~10%) is stored in adipocytes (25, 26). In the liver, vitamin A is primarily stored in the form of retinyl esters in cytoplasmic lipid droplets of hepatic stellate cells (80–90%) and hepatocytes (10–20%) (25). Mobilization occurs via hydrolysis and binding to retinol binding protein (RBP) which transports retinol to the target tissues (25). In adipocytes, RBP-bound retinol is taken up by the multi-transmembrane cell surface receptor STRA6 (27). Intracellularly, retinol is then either re-esterified or converted to retinoic acid via two oxidative reactions: In the first step, retinol is reversibly oxidized to retinaldehyde (Rald) by alcohol- and retinol dehydrogenases (ADHs, RDHs) followed by irreversible oxidation to retinoic acid. The enzyme class of retinaldehyde dehydrogenases (RALDHs) has been identified to catalyze this rate-limiting step of retinoid metabolism. Intracellular retinoic acid availability and nuclear transport is facilitated by cellular retinoic acid-binding proteins and fatty acid binding protein 4 (28–30). Retinoic acid signals predominantly through the nuclear receptors retinoic acid receptors (RAR), retinoid X receptors (RXR) and peroxisome proliferator-activated receptors (PPAR) (24, 31) and is thus a potent regulator or gene transcription (Figure 1). While 9-cis retinoic acid has been found to be a potent ligand for RXR, its physiological relevance is under debate (32, 33). Quantification of 9-cis retinoic acid failed in most tissues of mice, rats and humans (34, 35). Despite a questionable physiological role, endogenous 9-cis retinoic acids or synthetic analogs might still be promising candidates for the activation of a thermogenic program in adipocytes through RXR, as discussed in the following section.

RETINOIDS AND TRANSCRIPTIONAL CONTROL OF THE THERMOGENIC PROGRAM

Accumulating evidence suggests that retinoids are involved in a number of metabolic processes including glucose and lipid metabolism, adipocyte differentiation and thermogenic programming of fat cells. Retinoid actions on metabolic pathways mainly depend on the regulation of gene expression through the nuclear receptor RAR and RXR which can also form RAR/RXR heterodimers. In addition, RXR works in concert with PPARy, another key nuclear receptor controlling energy pathways and particularly adipocyte function (Figure 1). In 3T3-L1 cells, a murine model for white adipocytes, the effects of retinoic acid can vary dependent upon the stage of adipogenesis and expression of the transcription factors RAR, RXR, and PPARy. Early in adipogenesis, retinoic acid inhibits whereas after 48 h of differentiation it promotes fat cell formation (36). The silencing mediator of retinoid and thyroid hormone receptors (SMRT) serves as a corepressor for nuclear receptors and regulates adipocyte differentiation, adipose tissue accumulation
and insulin sensitivity. SMRT knockout mice have higher body weight on high-fat diet but increased insulin-mediated glucose disposal possibly due to a combination mechanisms involving an increased number of smaller subcutaneous adipocytes as well as decreased leptin expression, resulting in greater caloric intake (37). Some evidence suggests that retinoids can also act through non-genomic mechanisms such as protein retinoylation, a posttranslational modification shown to mediate cell differentiation, cell growth and possibly steroidogenesis (38). In recent years retinoids have been repeatedly linked to the transcriptional control of a brown fat program. Already in 1995, it was first reported that all-trans retinoic acid induced Ucp1 expression in murine brown adipocytes independent of differentiation status. Retinoic acid-response elements were found in the upstream region of the rat Ucp1 gene and RARα was identified as a mediator of the UCP1 responsiveness to retinoic acid (39–41) (Figure 1). However, studies showing that the RXR ligand 9-cis-retinoic acid also promoted Ucp1 expression in brown adipocytes to a similar extent as noradrenaline suggested that RXR may also be involved in inducing a BAT transcriptional program. Indeed, co-transfection of murine expression vectors for the different RAR and RXR subtypes indicated that RARα, RARβ, and RXRα are the major retinoid-receptor subtypes mediating the transcriptional response of Ucp1 to retinoids (42). PPARγ is another nuclear receptor regulated by all-trans retinoic acid with the potential to regulate BAT activity (43).
In murine adipocyte cell lines, the effect of all-trans retinoic acid on thermogenic gene expression has however been shown to be independent of PPARγ (44). Retinoic acid may also alter the thermogenic capacity of brown adipocytes by non-genomic effects via induction of p38/MAPK phosphorylation (45). In vivo, the administration of both all-trans retinoic acid and 9-cis-retinoic acid markedly increased Ucp1 expression in brown fat depots in mice. 9-cis-retinoic acid even prevented BAT whitening through cold de-acclimation (46). In accordance, dietary supplementation of vitamin A in the form of retinyl acetate for 8-weeks significantly augmented Ucp1 expression in BAT of rats while decreasing the WAT marker leptin. Whole body adiposity was modestly increased Ucp1 expression in BAT of rats while decreasing A in the form of retinyl acetate for 8-weeks significantly demonstrated to be independent of PPARγ (47). Rdh1 deficiency suppressed thermogenic gene expression and BAT function, the retinoid pathways may also be regulated by cold exposure and adrenergic stimulation. The retinol transport protein RBP is induced by norepinephrine, cAMP and activators of PPARγ and PPARα in brown adipocytes. This effect requires the action of PPARγ-coactivator-1α and is absent in PPARα deficient adipocytes, suggesting that PPAR signaling is required of adrenergic induction of RBP in brown adipocytes (56).

All these reports show promise that retinoid pathways could serve as therapeutic targets to enhance energy expenditure and counteract obesity. Even though most reports stem from animal experiments, some in vitro studies in primary human adipocytes suggest that retinoids may also modulate thermogenic pathways in human fat (52). However, clinical studies on the association between retinoids and brown fat activity are lacking. Hence, validation of the previous preclinical findings in humans is warranted.

CONCLUSION

Retinoids are vitamin A derivatives that are tightly regulated by a network of converting enzymes. Retinoic acid has been established as potent transcriptional regulator of thermogenic gene expression in adipose tissue, both, in vitro and in vivo. However, recent evidence suggest that retinoic acid is not the only biologically active vitamin A metabolite regulating thermogenic processes in adipocytes. Also the precursors, retinol and retinaldehyde may have independent biological functions in adipose thermogenesis. Targeting the retinoid pathway e.g., by interfering with retinoid converting enzymes that alter retinoid concentrations in selective tissues may offer novel therapeutic avenues to harness the energy dissipating qualities of BAT and beige fat for counteracting obesity and associated metabolic complications.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by the Vienna Science and Technology Fund (WWTF) LS12-059 and the Austrian Science Fund (FWF) P 27391-B26 (both to FWK).
REFERENCES

1. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. PLoS Rev. (2004) 8:427–359. doi: 10.1122/phyrrev.0001.2003

2. Heriot GT, Kiefer FW. Adipose tissue browning in mice and humans. J Endocrinol. (2019) 241:R97–109. doi: 10.1530/JOE-18-0598

3. Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Pécunia L, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci. (1992) 103:931–42.

4. Cinti S. Adipose organ development and remodeling. Compr Physiol. (2018) 8:1357–431. doi: 10.1002/cphy.c170042

5. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. (2010) 298:E124–53. doi: 10.1152/ajpendo.00600.2009

6. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. (2013) 19:1338–44. doi: 10.1038/nm.3324

7. Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, et al. Brown Adipose Reporting Criteria in Imaging (BARI-CIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. (2016) 24:210–22. doi: 10.1016/j.cmet.2016.07.014

8. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts J, Nelemans EC, de Vries J, et al. Determination of endogenous retinoids in tissues and serum. J Nutr Biochem. (2006) 17:152–61. doi: 10.1016/j.jnutbio.2005.12.014

9. Yoneshiro T, Aita S, Matsushita M, Hayakawa T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. (2013) 123:3404–8. doi: 10.1172/JCI76703

10. Hibi M, Oishi S, Matsushita M, Yoneshiro T, Yamaguchi T, Usui C, et al. Brown adipose tissue is involved in diet-induced thermogenesis and whole-body fat utilization in healthy humans. Int J Obes. (2016) 40:1655–61. doi: 10.1038/ijo.2016.124

11. Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity. (2011) 19:1693–6. doi: 10.1038/oby.2010.105

12. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. (2009) 360:1500–8. doi: 10.1056/NEJMoa0808718

13. Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. (2013) 123:3404–8. doi: 10.1172/JCI76703

14. Hibi M, Oishi S, Matsushita M, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. (2009) 58:1526–31. doi: 10.2337/db08-0530

15. Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, et al. Age-related decrease in cold-acivated brown adipose tissue and accumulation of body fat in healthy adults. Obesity. (2011) 19:1755–60. doi: 10.1038/oby.2011.125

16. Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGhee S, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. (2014) 63:3686–98. doi: 10.2337/db14-0513

17. Hanseus MJW, van der Lans A, van den Driesche J, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. (2016) 65:1179–89. doi: 10.2337/db15-1372

18. van der Lans A, van den Driesche J, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med. (2015) 21:863– 5. doi: 10.1038/nm.3891

19. van den Driesche J, van der Lans A, Schaart G, van den Driesche J, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. (2016) 65:1179–89. doi: 10.2337/db15-1372

20. Hanseus MJW, van der Lans AAL, Brans B, Hoeks J, Jarden KMC, Schaart G, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. (2016) 65:1179–89. doi: 10.2337/db15-1372
40. Rabelo R, Reyes C, Schifman A, Silva JE. A complex retinoic acid response element in the uncoupling protein gene defines a novel role for retinoids in thermogenesis. Endocrinology. (1996) 137:3488–96. doi: 10.1210/endo.137.8.8754778

41. Bonet ML, Puigserver P, Serra F, Ribot J, Vázquez F, Pico C, et al. Retinoic acid modulates retinoid X receptor alpha and retinoic acid receptor alpha levels of cultured brown adipocytes. FEBS Lett. (1997) 406:196–200. doi: 10.1016/S0014-5793(97)00274-3

42. Alvarenga, Checa M, Bruin S, Viñas O, Mampel T, Iglesias R, et al. Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids. Biochem J. (2000) 345:91–7. doi: 10.1042/bj3450091

43. Shaw N, Elholm M, Noy N. Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem. (2003) 278:41589–92. doi: 10.1074/jbc.C300368200

44. Murholm M, Isidor MS, Basse AL, Winther S, Sørensen C, Skovgaard-Petersen J, et al. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biol. (2013) 14:41. doi: 10.1186/1471-2121-14-41

45. Teruel T, Hernandez R, Benito M, Lorenzo M. Rosiglitazone and retinoic acid induce uncoupling protein-1 (UCP-1) in a P38 mitogen-activated protein kinase-dependent manner in fetal primary brown adipocytes. J Biol Chem. (2003) 278:263–9. doi: 10.1074/jbc.M207200200

46. Puigserver P, Vázquez F, Bonet ML, Pico C, Palou A. In vitro and in vivo induction of brown adipocyte uncoupling protein (thermogenin) by retinoic acid. Biochem J. (1996) 317 (Pt3):827–33. doi: 10.1042/bj3170827

47. Kumar MV, Sunvold GD, Scarpace PJ. Dietary vitamin A supplementation in rats: suppression of leptin and induction of UCP1 mRNA. J Lipid Res. (1999) 40:26–9

48. Bonet ML, Oliver J, Picó C, Felipe F, Ribot J, Cinti S, et al. Opposite effects of feeding a vitamin A-deficient diet and retinoic acid treatment on brown adipose tissue uncoupling protein 1 (UCP1), UCP2 and leptin expression. J Endocrinol. (2000) 166:511–7. doi: 10.1677/joe.0.1660511

49. Mercader J, Ribot J, Murano I, Felipe F, Cinti S, Bonet ML, et al. Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology. (2006) 147:5325–32. doi: 10.1210/en.2006-0760

50. Wang B, Fu X, Liang X, Deavila JM, Wang Z, Zhao L, et al. Retinoic acid induces white adipose tissue browning by increasing adipocyte vascularity and inducing beige adipogenesis of PDGFRα+ adipose progenitors. Cell Discov. (2017) 3:17036. doi: 10.1038/celldisc.2017.36

51. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Vierbeck J, et al. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med. (2007) 13:695–702. doi: 10.1038/nm1587

52. Kiefer FW, Vernochet C, O’Brien P, Spoerl S, Brown JD, Nallamshetty S, et al. Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nat Med. (2012) 18:918–25. doi: 10.1038/nm.2757

53. Hannsen MJW, Wierts R, Hoeks J, Gemmink A, Brans B, Mottaghy FM, et al. Glucose uptake in human brown adipose tissue is impaired upon fasting-induced insulin resistance. Diabetologia. (2015) 58:586–95. doi: 10.1007/s00125-014-3465-8

54. U Din M, Saari T, Raiko J, Kudomi N, Maurer SF, Lahesmaa M, et al. Postprandial oxidative metabolism of human brown fat indicates thermogenesis. Cell Metab. (2018) 28:207–16.e3. doi: 10.1016/j.cmet.2018.05.020

55. Krois CR, Vuckovic MG, Huang P, Zaversnik C, Liu CS, Gibson CE, et al. RDH1 suppresses adiposity by promoting brown adipose adaptation to fasting and re-feeding. Cell Mol Life Sci. (2019) 76:2425–47. doi: 10.1007/s00018-019-03046-z

56. Rosell M, Hondares E, Iwamoto S, Gonzalez FJ, Wabitsch M, Staels B, et al. Peroxisome proliferator-activated receptors-α and -γ, and cAMP-mediated pathways, control retinol-binding protein-4 gene expression in brown adipose tissue. Endocrinology. (2012) 153:1162–73. doi: 10.1210/en.2011-1367

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Herz and Kiefer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.