Identification of Compound Heterozygous Mutations in the \textit{BBS7} Gene in a Korean Family with Bardet-Biedl Syndrome

Seok Joon Shin, M.D.\(^1\), Myungshin Kim, M.D.\(^2,3\), Hyojin Chae, M.D.\(^2,3\), Ahlm Kwon, M.T.\(^2\), Yonggoo Kim, M.D.\(^2,3\), Sung Jun Kim, M.D.\(^1\), Hye Eun Yoon, M.D.\(^1\), Dong Wook Jekarl, M.D.\(^4\), and Seungok Lee, M.D.\(^4\)

Division of Nephrology\(^1\), Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul; Catholic Genetic Laboratory Center\(^2\), Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul; Department of Laboratory Medicine\(^3\), Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul; Department of Laboratory Medicine\(^4\), Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Dear Editor,

Bardet-Biedl syndrome (BBS) (OMIM 209900) is an autosomal recessive, clinically and genetically heterogeneous ciliopathy \([1, 2]\). The prevalence of BBS is relatively low, ranging from 1:100,000 in the North American to 1:160,000 in the European population, and is rarely found in East Asia \([3, 4]\). To date, at least fifteen BBS genes (\textit{BBS1-14, SDCCAG8}) have been identified, accounting for 70-76\% of BBS cases. Among them, \textit{BBS 1, 2, 10}, and \textit{12} are considered the major causative genes \([3-5]\). Correlation between the BBS genotype and phenotype varies among and within families \([1, 3]\). Here, we report the first genetically confirmed BBS case in a Korean family with a compound heterozygous mutation of the \textit{BBS7} gene.

A 26-yr-old Korean male (proband) was the second son of non-consanguineous Korean parents. He was blind, mentally retarded, and truncally obese. Past history showed that he had undergone an operation for an atrial septal defect at the age of four. A chest X-ray revealed cardiomegaly and pulmonary edema. Renal sonogram revealed bilateral small-sized kidneys, increased renal parenchymal echogenicity, and poor corticomedullary differentiation, together with laboratory findings, were indicative of an end-stage renal disease. Fundus examination revealed pigmentary changes as typically observed in retinitis pigmentosa with optic disc atrophy (Fig. 1). The proband was treated with maintenance hemodialysis and antihypertensive medications.

The proband’s 28-yr-old brother showed similar clinical findings, but his parents, younger sister, and other blood relatives presented as non-specific (Fig. 2A). Clinical characteristics of the proband and his brother are summarized in Table 1, and both of their diagnoses were consistent with the BBS diagnostic criteria \([1, 2]\). However, his brother showed some different phenotypes: unilateral kidney agenesis with milder renal symptoms, no atrial septal defect with milder cardiovascular symptoms, and deep vein thrombosis of the left lower extremity.

Genetic studies conducted on the fourteen known BBS genes (\textit{BBS1-BBS14}) from all family members by Sanger sequencing revealed that the proband and his brother shared the same compound heterozygous variants of the \textit{BBS7} gene (NM_176824.2) (Fig. 2B). One of which was a novel variant (c.103-1G>A) in the consensus splice acceptor site, which altered the splicing recognition site of ‘AG’ to ‘AA’ at the \textit{BBS7} gene intron 2 and exon 3 boundary. \textit{In silico} analysis of the mutant splice site using a neu-
Fig. 1. Fundus photograph of the proband with Bardet-Biedl syndrome. Fundus examination showed optic disc atrophy with indistinct margins. Marked arteriolar narrowing is observed, and bone spicule pigmentation are present in the mid-periphery of the retina. Macular dystrophy is also observed in both eyes.

Fig. 2. Characterization of the family with Bardet-Biedl syndrome. (A) Pedigree showing the segregation of c.103-1G>A and c.728G>A variants. The arrow indicates the proband of the family. (B) Sequencing analysis revealed a compound heterozygous mutation of c.103-1G>A (a consensus splice acceptor site) at the intron 2 and the exon 3 boundary, and c.728G>A (p.Cys243Tyr) at the exon 8 of the BBS7 gene.

Nevertheless, 24-30% of BBS cases show no mutations in BBS genes [3-5]. BBS phenotype could be affected not only by transcription of DNA mutations, but also by other etiologies not addressed in this study, such as protein defects associated with noncoding RNA regulatory mechanisms or methylation. Further studies are warranted to clarify these issues.

Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

Acknowledgments

This research was supported by the Basic Science Research Program from the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2013R1A1A2006801).

REFERENCES

1. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 1999;36:437-46.
2. Baker K and Beales PL. Making sense of cilia in disease: the human cil-
Table 1. Features of the proband and his brother per the diagnostic criteria of Bardet–Biedl syndrome

Phenotype	II:2 (Proband)	II:1 (Brother)	Frequency (%) reported by
			Beales et al. [1]
			Devault et al. [3]
Gender (M:F)	Male	Male	1.3:1
Age at diagnosis (yr, mean)	26	28	9
			19.2
Primary features			
1. Visual disorder	Yes	Yes	100
Rod-cone dystrophy	Yes	Yes	93
Optic atrophy	Yes	Yes	-
Blindness	Yes	Yes	84
2. Limb defects	No	No	98
Postaxial polydactyly	No	No	69
			82
3. Weight gain anomaly	Yes	Yes	93
Truncal obesity	Yes	Yes	52
Overweight	Yes	Yes	72
(Body mass index > 25 kg/m²)	(29.75)	(29.74)	
4. Learning disabilities	Yes	Yes	62
5. Hypogonadism	No	No	96
			16
6. Renal anomalies	Yes	Yes	46
			53
Scarring	Yes	No	12
7. Mild spasticity (especially lower limbs)	Yes	Yes	47
			-
8. Diabetes mellitus	No	No	6
			19
9. Dental anomalies	No	No	27
			51
10. Cardiovascular anomalies	Yes	Yes	19
Atrial septal defect	Yes	No	3
Left ventricular hypertrophy	Yes	Yes	-
Congestive heart disease	Yes	No	-
			-
11. Hepatic fibrosis	No	No	2
12. Hyposmia/anosmia	No	No	67
13. Nociception/thermosensation	No	No	19
14. Infections	No	No	32
15. Miscellaneous			
Emotional immaturity	Yes	Yes	18
Hypertension	Yes	Yes	8
Deep vein thrombosis	No	Yes	-
Retroperitoneal fibrosis	No	Yes	-

http://dx.doi.org/10.3343/alm.2015.35.1.181 www.annlabmed.org 183
3. Deveault C, Billingsley G, Duncan JL, Bin J, Theal R, Vincent A, et al. BBS genotype-phenotype assessment of a multiethnic patient cohort calls for a revision of the disease definition. Hum Mutat 2011;32:610-9.

4. Chen J, Smaoui N, Hammer MB, Jiao X, Riazuddin SA, Harper S, et al. Molecular analysis of Bardet-Biedl syndrome families: report of 21 new mutations in 10 genes. Invest Ophthalmol Vis Sci 2011;52:5317-24.

5. Billingsley G, Deveault C, Héon E. BBS mutational analysis: a strategic approach. Ophthalmic Genet 2011;32:181-7.

6. Wang X, Wang H, Sun V, Tuan HF, Keser V, Wang K, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet 2013;50:674-88.

7. Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 2001;293:2256-9.

8. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007;129:1201-3.

9. Blacque OE, Reardon MJ, Li C, McCarthy J, Mahjoub MR, Ansley SJ, et al. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev 2004;18:1630-42.

10. Zhang Q, Nishimura D, Vogel T, Shao J, Swiderski R, Yin T, et al. BBS7 is required for BBSome formation and its absence in mice results in Bardet-Biedl syndrome phenotypes and selective abnormalities in membrane protein trafficking. J Cell Sci 2013;126:2372-80.