Floristic Diversity and Natural Regeneration Status of Entoto Mountain and the Surrounding Area in Addis Ababa, Ethiopia

Ergua Atinafe,1 Ephrem Assefa,2 Birhanu Belay,1 Yemenzwork Endale,2 and Talemos Seta1

1Gullele Botanic Garden, Addis Ababa, Ethiopia
2Entoto and Surrounding Tourist Destination Development Project (ESTDDP) Office, Addis Ababa, Ethiopia

Correspondence should be addressed to Talemos Seta; talemos.seta@yahoo.com

Received 12 December 2019; Accepted 13 March 2020; Published 28 April 2020

1.Introduction

Ethiopia is an important regional center of biological diversity, and the flora and fauna have a rich endemic element [1, 2]. The country has the fifth largest flora in tropical Africa. Vegetation types in Ethiopia are highly diverse, varying from Afroalpine to desert vegetation. However, the vegetation resources of the country have been reduced due to various factors. The most prominent ones are deforestation, expansion of agricultural land, overgrazing, unsustainable utilization, invasion of exotic species, and overexploitation for various purposes such as firewood, charcoal, construction material, and timber, all spurred by rapid human population growth [3, 4].

Plantations in general and Eucalyptus plantation in particular can have a catalytic effect on the regeneration of native species and can be used as a management tool for restoration of degraded forest lands [5, 6]. Because of the considerable damage of the mountain forests, concern has arisen about the natural regeneration of indigenous species. Regeneration is thus defined as the reassembly of floristic and structural diversity back to self-perpetuating climax states [7]. In Ethiopia, the uncontrolled removal of trees and land disturbance, such as collection of firewood, cultivation of lands, and grazing, severely reduce the density of the species and affect regeneration [8].

In the Ethiopian highlands, which suffer from severe deforestation and biomass fuel crises, Eucalyptus is the prominent tree in government and community estate plantations because of its ready propagation through coppicing, resistance to browsing by livestock, and rapid growth rate. Currently, about 55 Eucalyptus species are available in Ethiopia [9]. However, the most common and widespread Eucalyptus species include Eucalyptus globulus Labill.
The natural regeneration of plants is an important subject in both conservation biology and management [10]. Cost-effective plant regeneration, especially natural regeneration (i.e., regeneration of native plant species), is the keystone of sustainable forestry [11, 12]. Natural regeneration depends on the seed bank [13]. In this study, our objective was to identify the vegetation resources and the current regeneration status of woody species of the Entoto mountain range that lies on the Northwestern Entoto, Central Yeka, Ankorcha mount, and Northeastern Yeka mountain range that lies on the Northwestern Entoto, current regeneration status of woody species of the Entoto objective was to identify the vegetation resources and the keystone of sustainable forestry [11, 12]. Natural regeneration is an important subject in both conservation biology and management [10].

2. Materials and Methods

2.1. Description of the Study Area. The study area belongs to dry evergreen Afromontane forest and grassland complex (DAF) in the central highlands of Ethiopia [14]. Mount Entoto is considered to be the highest peak overlooking the city of Addis Ababa. Its altitude reaches 3,200 meters above sea level and is part of the Entoto mountain chain. This study area is located in two subcities of Addis Ababa, namely, Gullele and Yeka subcities. The study was conducted in Entoto mountain and its surrounding area that surrounds the city Addis Ababa between latitudes 9°08′N–10°06′N and longitudes 37°47′E–37°48′E. The altitude range of the study area is between 2,251 m and 3,031 m a.s.l. This study was undertaken in the Entoto mountain range that lies on the southeastern slopes of Mt Entoto, between the northern limit of the city of Addis Ababa, and the track along the mountain ridge. As can be seen from the underneath map, the elevation of the area ranges from 2,440 m to 3,196 m a.s.l. (Figure 1).

2.2. Climate of the Study Area. From the 10-year (2007 to 2016) temperature and rainfall data collected from [15], the mean annual rainfall of the area is about 1226 ml. As far as the monthly rainfall record of the area is concerned, the area mostly receives its maximum rainfall between June and September. This is normally considered as the rainy season (kiremt) in the area. Low amount of rainfall is recorded in August (14.49°C). The lowest temperature was recorded during the month of February (−3°C), April (19°C), and May (19.15°C), which is above the mean annual temperature (17.81°C) of the stated period. The lowest temperature was recorded during the month of August (14.49°C).

2.3. Methods of Data Collection

2.3.1. Sampling Design. In this study, a systematic sampling design was used to collect data on vegetation and topo-graphic variables. Ten transect lines consisting of 62 plots of size 20 m × 20 m (400 m²) were systematically laid in south-north directions using compass. Five plots each was laid in eight transect lines and six plots each in the last two transect lines. The distance between consecutive plots along the transect lines was from 500 m to 1 km. Five transects were laid at 2 km distance and three transect lines at 1.5 km and the last two at 3 km distance from each other. Trees and shrubs were collected from the larger size plots whereas the nested small subplots (five 1 m × 1 m plots; four in the corner and one in the center of the larger plot) were used for seedling and sapling and herbaceous data collection.

For the sake of data collection and analysis, all the plots were categorized into five land uses through visual observation. These include Eucalyptus globulus plantation forest (EPF), plantation forest (PAF), natural forest (NAF), degraded land (DEL), and riverine vegetation (RV).

2.3.2. Data Collection. In each quadrat, all trees, shrubs, climber, and herbs were recorded. Plant species occurring outside the quadrat but inside the study area were also documented. In addition, all of the naturally regenerated woody species were identified and counted from each plot. Individuals were categorized into three size groups as follows [16]: seedling (height ≤1.0 m), sapling (height between 1 and 3 m), and tree/shrub (height >3 m). During the study, physiographic variables such as altitude, longitude, and latitude were measured for each plot using GPS. Taxonomic identification was made following the Flora of Ethiopia and Eritrea, Honey bee Flora of Ethiopia, and consultation with experienced taxonomic experts.

2.3.3. Data Analysis. Plant species recorded in all plots were used in the analysis of the vegetation data. For analysis of vegetation data, Shannon and Wiener index of species diversity [17], species evenness, and Jaccard’s coefficient of similarity were used. Shannon’s index takes into account the evenness of abundance of species. The ratio of observed Shannon index to maximum diversity (Hmax = ln S) can be taken as a measure of evenness (E) [18–20]. Similarities of vegetation of the five land-use types were also compared using Jaccard’s coefficient of similarity (JCS) [19]. Density of the selected plant species was compared among the five land-use types. The frequency and relative frequency of the selected dominant plant species were presented for the study area. Similarly, the growth form of all the identified species in five land-use types was presented in the diagram. All the analyzed outputs of the vegetation data were presented in the form of table and diagram to indicate the areas in terms of ecological and economic significance.

3. Results and Discussion

3.1. Floristic Composition and Diversity of the Study Area. A total of 179 plant species belonging to 107 genera and 60 families were identified from the study area (see Table 1). The total numbers of individual species in their respective growth form against different land-use types are indicated in
Herbs were dominant and represented by (91) 50.84% species, shrub by (46) 25.67%, tree by (26) 14.53%, and tree/shrub by (9) 5.03% species while climber by (7) 3.9% species. From the total woody species, *Eucalyptus globulus* (952/ha), *Juniperus procera* (369/ha), and *Carissa spinarum* (304/ha) were the most abundant species in the study area, whereas species such as *Millettia ferruginea*, *Ficus sur*, *Croton macrostachyus*, and *Prunus africana* were the least abundant species having only one individual per ha (see Table 1).

The species composition and density in each habitat generally depend on the current status of the sites. The seven species-rich families contributed (Asteraceae, Fabaceae, Poaceae, Lamiaceae, Rosaceae, Rubiaceae, and Oleaceae) 49.46% of the total plant species, and the remaining 53 families contributed 50.54% of the total plant species. Twenty endemic plant species were recorded in the study area. Of the 20, 7 herbs, 8 shrubs, 4 tree plant species, and one species were succulent (Table 1). This showed that Entoto Mountain and its surrounding area are considered as a place with diverse flora including endemic species, and priority should be given to conserve this floristic diversity in the area.

Shannon–Wiener diversity index and species evenness, in the study area, show considerable variation among the land-use types (Table 2). Shannon diversity index and species evenness were highest in Riverine vegetation (2.92 and 0.475) followed by natural forest (2.92 and 0.44) and plantation forest (2.85 and 0.385). In contrast, *Eucalyptus* plantation forest had a Shannon diversity index and evenness of 2.60 and 0.214 followed by degraded land (1.48 and 0.295) which relatively showed lowest species richness. This may be attributed to the impact of *Eucalyptus* on the growth of other plant species and high disturbance by collection of firewood, animal grazing, and farming. Moreover, some of the areas have been cleared for walking paths. About 63 species (mostly herbs and shrubs) were recorded in *Eucalyptus* plantation forest and the lowest species richness (15 species) was recorded in degraded land (Table 3).
Table 1: List of all plant species, family, and growth habit recorded from the study area.

No.	Botanical name	Family	Habit	Origin
1	*Acacia abyssinica* Hochst. ex Benth.	Fabaceae	Tree	N
2	*Acacia decurrens* Willd.	Fabaceae	Tree	EX/P
3	*Acacia melanoxylon* R.Br.	Fabaceae	Tree	EX/P
4	*Acacia saligna* (Labill.) Wendl.	Fabaceae	Shrub	EX/P
5	*Achyranthes aspera* L.	Amaranthaceae	Herb	N
6	*Acemella caudihiza* Del.	Asteraceae	Herb	N
7	*Adiantum capillus-veneris* L.	Adiantaceae	Herb	N
8	*Adiantum thalictroides* Willd. ex Sch.	Adiantaceae	Herb	N
9	*Albizia gummifera* (J. F. Gmel.) C. A. Sm.	Fabaceae	Tree	N
10	*Albizia schimperiana* Oliv.	Fabaceae	Tree	N
11	*Alchemilla abyssinica* Fresen.	Rosaceae	Herb	N
12	*Alchemilla padata* A. Rich.	Rosaceae	Herb	N
13	*Aloe debrana* Christian	Aloaceae	Herb	EN
14	*Amaranthus caudatus* L.	Amaranthaceae	Herb	N
15	*Anagallis arvensis* L.	Primulaceae	Herb	N
16	*Anthospermum herbaeum* L.f.	Rubiaceae	Herb	N
17	*Argemone mexicana* L.	Papaveraceae	Herb	EX
18	*Argyrolobium rupestr* (E.Mey.) Wdp.	Fabaceae	Herb	N
19	*Arthraxon mican* (Nees) Hochst.	Poaceae	Herb	N
20	*Asparagus africanus* Lam.	Asparagusaceae	Shrub	N
21	*Asparagus setaceus* (Kunth) Jessop	Asparagusaceae	Shrub	N
22	*Asplenium aethipicum* (Burmf.) Beckerer	Aspleniaceae	Herb	N
23	*Asplenium monanthes* L.	Aspleniaceae	Herb	N
24	*Asplenium proteus* Schrad.	Aspleniaceae	Herb	N
25	*Bersama abyssinica* Fresen.	Melanthiaceae	T/S	N
26	*Bidens macropera* (Sch.-Bip.ex Chiov.)	Asteraceae	Herb	N
27	*Buddleja polystachya* Fresen.	Loganiaceae	Shrub	N
28	*Cardamine hirsuta* L.	Brassiaceae	Herb	N
29	*Cardus lepantchantus* Fresen.	Asteraceae	Herb	N
30	*Cardus shimeri* Sch.Bip.ex A.Rich	Asteraceae	Herb	N
31	*Cardus sp*	Asteraceae	Herb	N
32	*Carissa spinarium* L.	Apocynaceae	Herb	Shrub
33	*Casuarina equisetifolia*	Casuarinaceae	Tree	EX/P
34	*Chelanthes farinosa* (Forssk.) Kauf.	Sinopteridaceae	Herb	N
35	*Cirsium vulgare* (Savi.) Ten.	Asteraceae	Herb	N
36	*Clematis simensis* Fresen.	Ranunculaceae	Climber	N
37	*Clerodendrum myricoides* (Hochst.) Vatke	Lamiaceae	Shrub	N
38	*Clutia lanceolata* Forssk	Euphorbiaceae	Shrub	N
39	*Coffea Arabica* L.	Rubiaceae	T/S	N/P
40	*Commelina benghalensis* L.	Commelinaceae	Herb	N
41	*Coryza pedunculata* (Oliv.) Wild.	Asteraceae	Herb	N
42	*Conyza pyrrocephapa* Sch. Bip.ex A.Rich	Asteraceae	Herb	N
43	*Coryza stricta* Willd.	Asteraceae	Herb	N
44	*Crepis rupepell* Sch.Bip.	Asteraceae	Herb	N
45	*Crotalaria exaltata* Polhill	Fabaceae	Shrub	EN
46	*Crotalaria rosenii* (Pax) Milne-Redh. ex Polhill	Fabaceae	Shrub	EN
47	*Croton macrostachyus* Del.	Euphorbiaceae	Tree	N
48	*Cupressus lusitanica* Mill.	Cupressaceae	Tree	EX/P
49	*Cyathula uncinulata* (Schrad.) Schinz.	Amaranthaceae	Herb	N
50	*Cynodon sp*	Poaceae	Herb	N
51	*Cynoglossum geometricum* Bakl. and Wright	Boraginaceae	Herb	N
52	*Cyperus rotundus* L.	Cyperaceae	Herb	N
53	*Cyperus sp*	Cyperaceae	Herb	N
54	*Datura stramonium* L.	Solanaceae	Herb	N
55	*Dichondra repens* J.R. and G. Forst.	Convolvulaceae	Herb	N
56	*Digitaria setulina* (Forssk.) P. Beauv.	Poaceae	Herb	N
57	*Discopodium penninervium* Hochst.	Solanaceae	Shrub	N
58	*Doyyalis abyssinica* (A. Rich.) Warb.	Flacourtiaceae	Shrub	N
59	*Doyyalis verrucosa* (Hochst.) Warb.	Flacourtiaceae	Shrub	N
60	*Dysselordia radicans* Nees	Acanthaceae	Herb	N
No.	Botanical name	Family	Habit	Origin
-----	---------------------------------	--------------	--------	--------
61	Echinops macrostachyus Fresen.	Asteraceae	Shrub	N
62	Echinops kebericho Mesfin	Asteraceae	Shrub	EN
63	Ekebergia capensis Sparrm.	Meliaceae	Tree	N
64	Embelia schimperi Vatke	Myrsinaceae	Shrub	N
65	Eragrostis sp	Poaceae	Herb	N
66	Eragrostis schweinfurthii Chiov.	Poaceae	Herb	N
67	Eragrostis tef (Zucc.) Trotter	Poaceae	Herb	EN
68	Erica arborea L.	Ericaceae	Shrub	N
69	Erythrina brucei Schweinf.	Fabaceae	Tree	EN
70	Eucalyptus camaldulensis Dehn.	Myrtaceae	Tree	EX/P
71	Eucalyptus globulus Labill.	Myrtaceae	Tree	EX/P
72	Exotheca sp.	Poaceae	Herb	N
73	Ficus sur Forssk.	Moraceae	Tree	N
74	Ficus vastera Forssk.	Moraceae	Tree	N
75	Galium simensis Fresen.	Rubiaceae	Herb	N
76	Geranium aculeolatum Oliv.	Geraniaceae	Herb	N
77	Geranium arabicum Forssk.	Geraniaceae	Herb	N
77	Grevillea robusta R.Br.	Proteaceae	Tree	EX/P
79	Hagenia abyssinica (Bruce) J.F. Gmel.	Rosaceae	Tree	N
80	Helichrysum foetidum (L.) Moench	Asteraceae	Herb	N
81	Helichrysum formosissima Sch. Bip.ex A. Rich.	Asteraceae	Herb	N
82	Helichrysum nudifolium (L.) Less.	Asteraceae	Herb	N
83	Helichrysum schimperi (Sch. Bip. ex A. Rich.) Sch. Bip. Ex Moser	Asteraceae	Shrub	N
84	Helichrysum traversii Chiov	Asteraceae	Herb	N
85	Helichrysum glutaceum Dc.	Asteraceae	Herb	N
86	Hypericum revolutum Vahl.	Hypericaceae	Shrub	N
87	Hypericum sp.	Hypericaceae	Shrub	N
88	Hypoestes forskoali (Vahl) Soland. ex Roem. and Schult	Acanthaceae	Herb	N
89	Hypoestes triflora (Forsk.) Roem. and Schult	Acanthaceae	Herb	N
90	Inula confertiflora A.Rich.	Asteraceae	Herb	EN
91	Jasminum abyssinicum Hochst. ex.Dc.	Oleaceae	Climber	N
92	Jasminum grandiflorum L. subsp. floribundum (R. Br. ex Fresen.) P. S. Green	Oleaceae	Climber	N
93	Jasminum stans pax	Oleaceae	Shrub	EN
94	Juniperus procera Endl.	Cupressaceae	Tree	N
95	Justicia schimperiana (Hochst ex Nees) T. Anders	Acanthaceae	Herb	N
96	Kalanchoe pettianiana A.Rich.	Crassulaceae	Herb	EN
97	Lactuca inermis Forssk.	Asteraceae	Herb	N
98	Lagerra tomentosa (Sch.Bip.ex A.Rich.) Oliv.and Hiern	Asteraceae	Shrub	EN
99	Lagerra crispata (Vahl) Hepper and Wood	Asteraceae	Herb	N
100	Lantana trifolia L.	Verbenaceae	Shrub	N
101	Leonotis ocypholia (Burm.f.) Warsson	Lamiaceae	Herb	N
102	Leucas stachyformis (Hochst. ex Benth.) Briq	Lamiaceae	Herb	EN
103	Linum trigynum L.	Linaceae	Herb	N
104	Lippia adoensis Hochst. ex Walp.	Verbenaceae	Shrub	EN
105	Lotus corniculatus L.	Fabaceae	Herb	N
106	Maesa lanceolata Forssk.	Myrsinaceae	T/S	N
107	Marsdenia abyssinica (Hochst.) Schltr.	Asclepiadaceae	Shrub	N
108	Maytenus addat (Loes.) Sebsebe	Celastraceae	Shrub	EN
109	Maytenus arbutifolia (A.Rich.) Wilczek	Celastraceae	T/S	N
110	Maytenus gracilipes (Welw.ex Oliv.) Exell	Celastraceae	Shrub	N
111	Millettia ferruginea (Hochst.) Bak.	Fabaceae	Tree	EN
112	Myrsine africana L.	Myrsinaceae	Shrub	N
113	Myrsine melanophloeo (L) R.Br.	Myrsinaceae	T/S	N
114	Nuxia congrata R. Br. ex Fresen	Loganiaceae	Tree	N
115	Olea europaea L. subsp. cuspidata (Wall. Ex	Oleaceae	Tree	N
116	Olinia rochitana A. Juss.	Oliniaceae	T/S	N
117	Opuntia ficus-indica (L) Miller.	Cactaceae	Herb	N
118	Oxyris quadriflora Decn.	Santalaceae	T/S	N
119	Oxalis corniculata L.	Oxalidaceae	Herb	N
120	Oxalis radicosa A.Rich.	Oxalidaceae	Herb	N
No.	Botanical name	Family	Habit	Origin
-----	--------------------------------	--------------	-------	--------
121	Panicum subalbidum	Poaceae	Herb	N
122	Pavetta abyssinica	Rubiaceae	Tree	N
123	Pennisetum riparium	Poaceae	Herb	N
124	Pennisetum squamulatum	Poaceae	Herb	N
125	Pennisetum pentastachyum	Poaceae	Herb	N
126	Pentas lanceolata (Forsk)	Rubiaceae	Shrub	N
127	Pentas schimperiana (A.Rich)	Rubiaceae	T/S	N
128	Phytolacca dodendron L’ Herit	Phytolaccaea	Shrub	N
129	Plantago lanceolata L.	Plantaginaceae	Herb	N
130	Plantago palmata Hook.f.	Plantaginaceae	Herb	N
131	Plectranthus punctatus (Vatke)	Lamiaceae	Herb	N
132	Podocarpus falcatus (Thunb)	Podocarpaceae	Tree	N
133	Polygohicum transvaalense	Aspleniaceae	Herb	N
134	Premna schimperi	Lamiaceae	Herb	N
135	Prunus schimperiana	Rosaceae	Tree	N
136	Rhamnus prinoides L’Herit	Rosaceae	Shrub	N
137	Rhamnus staddo A.Rich.	Rosaceae	Shrub	N
138	Rhus glutinosa A.Rich. Subsp.	Anacardiaceae	Shrub	EN
139	R. abyssinica Lindley	Rosaceae	Shrub	N
140	Rubia cordifolia L.	Rubiaceae	Climber	N
141	Rubus niveus Thunb.	Rosaceae	Shrub	N
142	Rubus steudneri Schwinein.	Rosaceae	Shrub	N
143	Rumex abyssicus Jacq.	Polygonaceae	Herb	N
144	Rumex nepalensis Spreng.	Polygonaceae	Herb	N
145	Salvia nilotica Jacq.	Lamiaceae	Herb	N
146	Satureja abyssinica (Benth.) Brijq.	Lamiaceae	Herb	N
147	Satureja paradoxa (Vatke) Engl.	Lamiaceae	Herb	EN
148	Satureja imbricata (Forsk.) Brijq.	Lamiaceae	Shrub	N
149	Satureja punctata (Benth.) Brijq.	Lamiaceae	Shrub	N
150	Scabiesa columbaria L.	Dipsacaceae	Herb	N
151	Scoparia theifolia Gilg	Flacourtiaceae	Tree	N
152	Sida schimperiana Hochst. ex A.Rich.	Malvaceae	Shrub	N
153	Sida tenuicarpa Vollesen	Malvaceae	Shrub	N
154	Sclias aspera L.	Smilacaceae	Climber	N
155	Solanece gigas (Vatke) C. Jeffrey	Asteraceae	Shrub	EN
156	Solarum indicum L.	Solanaceae	Shrub	N
157	Solarum marginatum L.f.	Solanaceae	Shrub	N
158	Solarum nigrum L.	Solanaceae	Herb	N
159	Sonchus asper (L.) Hill	Asteraceae	Herb	N
160	Sonchus bipontini Asch.	Asteraceae	Herb	N
161	Spergularia rubra (L.) J. and C. Presl.	Caryophyllaceae	Herb	N
162	Stephania abyssinica (Dillon et A.Rich.) Walp.	Menispermaceae	Herb	N
163	Syzygium guineense	Myrtaceae	Tree	N
164	Tagetes minuta L.	Asteraceae	Herb	N
165	Thymus schimperi Ronniger	Lamiaceae	Herb	EN
166	Trifolium acaule Steud. ex A. Rich.	Fabaceae	Herb	N
167	Trifolium rupepellianum Fresen.	Fabaceae	Herb	N
168	Trifolium semipilosum Fresen.	Fabaceae	Herb	N
169	Uebelinia abyssinica Hochst.	Caryophyllaceae	Herb	N
170	Urtica simensis Steudel	Urticaceae	Herb	EN
171	Verbascum sinalicum Benth.	Scrophulariaceae	Shrub	N
172	Vernonia adoensis Sch. Bip ex Wolp.	Asteraceae	Shrub	N
173	Vernonia amygdalina Del.	Asteraceae	T/S	N
174	Vernonia filigera Oliv. and Hiern	Asteraceae	Shrub	N
175	Vernonia leopoldii (Sch. Bip.) Vatke.	Asteraceae	Shrub	EN
176	Veronica persica Chiov.	Scrophulariaceae	Herb	N
177	Verbeia sativa L.	Fabaceae	Climber	N

Notes: EN = endemic; N = native; EX = exotic; NR = naturally regenerated; P = planted.
The similarity in species composition of land-use types was above 0.50 except between natural forest and riverine forest (0.35) having low similarity. Comparatively, there was high similarity (0.74) between natural forest and degraded land (Table 3). The total density of woody species in Entoto Mountain and its surrounding area was 3374 stems/ha. In the study area, the highest density of species was recorded for *Eucalyptus globulus*, which was 952 individuals/ha. The first highest density of naturally regenerated woody species was contributed by *Juniperus procera* (369 individuals/ha) followed by *Carissa spinarum* which makes up 304 individuals/ha. The least dense species in the study area were *Ficus sur*, *Millettia ferruginea*, *Croton macrostachyus*, and *Prunus africana* each contributing 1–6 individuals/ha (Table 4). This may be attributed to the ecological suitability and anthropogenic impacts as the study area is the margin of the capital city of Ethiopia.

The frequency gives an approximate indication of the homogeneity and heterogeneity of a stand. The most frequent woody species in the study site was *Juniperus procera* (90.3%) followed by *Eucalyptus globulus* and *Rosa abyssinica* (Table 5). This may be attributed to the deliberate plantation and natural regeneration of *Juniperus procera* for the greening of the city of Addis Ababa. Naturally, the area is classified under dry Afromontane forest ecosystem where the *Juniper* is most dominant. Moreover, *Eucalyptus globulus* was originally introduced in the 19th century to solve the problem of fuelwood and construction material for the surrounding people around the Entoto mountain chain.

Table 2: Shannon, evenness, Simpson’s indices and species richness for the land-use categories.

Land-use category	No. of plots	Total area (ha)	No. of individuals/ha	Species richness	Shannon diversity index	Evenness index	Simpson (1 − D)
Riverine vegetation	4	0.16	5256	39	2.92	0.47	0.91
Natural forest	9	0.36	3761	42	2.92	0.44	0.91
Plantation forest	13	0.52	3073	45	2.85	0.38	0.91
Eucalyptus plantation forest	25	1.0	3642	63	2.60	0.21	0.83
Degraded land	11	0.44	2118	15	1.48	0.29	0.58
Total	62	2.48	3373	78	2.96	0.25	0.89

Table 3: Jaccard’s coefficient of similarity in species composition of the five land-use types.

Land-use category	EPF	NAF	PAF	DEL
NAF	0.54	—	—	—
PAF	0.61	0.52	—	—
DEL	0.60	0.74	0.60	—
RV	0.678	0.35	0.61	0.69

The similarity in species composition of land-use types was above 0.50 except between natural forest and riverine forest (0.35) having low similarity. Comparatively, there was high similarity (0.74) between natural forest and degraded land (Table 3). The total density of woody species in Entoto Mountain and its surrounding area was 3374 stems/ha. In the study area, the highest density of species was recorded for *Eucalyptus globulus*, which was 952 individuals/ha. The first highest density of naturally regenerated woody species was contributed by *Juniperus procera* (369 individuals/ha) followed by *Carissa spinarum* which makes up 304 individuals/ha. The least dense species in the study area were *Ficus sur*, *Millettia ferruginea*, *Croton macrostachyus*, and *Prunus africana* each contributing 1–6 individuals/ha (Table 4). This may be attributed to the ecological suitability and anthropogenic impacts as the study area is the margin of the capital city of Ethiopia.

The frequency gives an approximate indication of the homogeneity and heterogeneity of a stand. The most frequent woody species in the study site was *Juniperus procera* (90.3%) followed by *Eucalyptus globulus* and *Rosa abyssinica* (Table 5). This may be attributed to the deliberate plantation and natural regeneration of *Juniperus procera* for the greening of the city of Addis Ababa. Naturally, the area is classified under dry Afromontane forest ecosystem where the *Juniper* is most dominant. Moreover, *Eucalyptus globulus* was originally introduced in the 19th century to solve the problem of fuelwood and construction material for the surrounding people around the Entoto mountain chain.
3.2. Regeneration Status in the Study Area. Composition and density of seedlings and saplings would indicate the status of regeneration in the study area. Information on the regeneration status of 72 species was naturally regenerated in the study area. A total of 55 species were represented in the seedling class, and the total seedling density of naturally regenerated woody species was 2876 individuals ha\(^{-1}\). The sapling class was composed of 42 species; the total sapling density of naturally regenerated woody species was 3363 individuals ha\(^{-1}\). A total of 68 woody species were represented in the mature tree/shrub class and the total mature tree and shrub density was 4645 individuals ha\(^{-1}\). The result showed that the floristic composition and density of the species were varying; there were seedlings or saplings of Olinia rochetiana, Olea europaea subsp. cuspidata, and Prunus africana while lacked mature woody species. This might suggest that there were exploitations of mature individuals in the study area. The composition, distribution, and density of seedlings and saplings of selected species indicate the future status of the forest. Composition of seedling population perishes before reaching sapling stage due to browsing, grazing, and trampling by wild and domestic animals. Moreover, seedlings are more vulnerable to environmental hazards and biotic factors especially at the early stages of seedling establishment [21]. The ratio of woody species seedlings to mature tree/shrub (0.62:1), seedlings to saplings (0.76:1), and saplings to mature tree/shrub (0.81:1) showed the distribution of more mature tree/shrub population than that of seedling and saplings. Potential causes of seedling mortality include abiotic stresses such as shade, drought, and trampling, and biotic influences such as herbivory, root competition lack of safe site for seed recruitment, nature of seeds of certain trees which seek dormancy period, litter accumulation, pathogens, species specificity, and moisture stress or probably they might have other alternative adaptations for propagation and reproduction rather than seed germination [21]. Therefore, additional work and consecutive monitoring of the natural regeneration in the study area are needed; particularly, the status of soil seed

Species name	EPF	NAF	PAF	DEL	RV	Total	RD
Acacia abyssinica	22	44	75	82	13	46	1.4
Asparagus africanus	83	11	25	68	31	54	1.6
Bersama abyssinica	31	39	27	0	25	25	0.8
Carissa spinarum	268	625	154	0	1125	304	9.0
Clematis simensis	3	14	0	0	0	3	0.1
Cluita lanceolata	2	0.06	0	0	12.5	2.42	0.07
Croton macrostachyus	0	14	0	0	0	2	0.1
Dovyalis abyssinica	20	167	20	213	54	1.6	
Dovyalis verrucosa	15	0	0	50	9	0.3	
Ekebergia capensis	6	31	17	81	16	0.5	
Erica arborea	42	0	23	0	22	0.6	
Erythrina brucei	2	3	10	0	3	0.1	
Eucalyptus globulus	1362	261	412	1339	644	952	28.2
Ficus sur	1	0.02	0	0	0	0.81	0.02
Ficus vasta	1	0	25	0	5	0.2	
Hagenia abyssinica	0	0	25	0	5	0.2	
Jasminum stans	34	83	23	138	40	1.2	
Juniperus procera	321	706	281	719	369	10.9	
Lippia adoensis	11	25	15	69	16	0.5	
Maesa lanceolata	33	56	0	75	26	0.8	
Maytenus arbutifolia	20	222	15	125	52	1.5	
Myrsine Africana	29	142	15	138	44	1.3	
Myrsine melanophloeos	21	0	0	19	14	0.4	
Olea europaea subsp. cuspidata	2	0.06	0	12.5	2.42	0.07	
Olinia rochetiana	24	39	40	119	31	0.9	
Pentas lanceolata	8	14	10	50	10	0.3	
Podocarpus falcatus	0	0	0	94	6	0.2	
Prunus africana	0	0	4	38	3	0.1	
Rhamnus staddo	0	0	4	56	4	0.1	
Rosa abyssinica	143	94	102	313	136	4.0	
Rubus apetalus	20	28	0	38	15	0.4	
Satureja punctata	11	0	25	0	10	0.3	
Sida schimperiana	70	0	110	0	63	1.9	
Smilax aspera	26	83	0	0	23	0.7	
Vernonia amygdalina	12	50	29	0	18	0.5	
Vernonia leopoldi	106	122	96	111	75	105	3.1

Table 4: Density of selected woody species in the study area.
banks has to be investigated to recognize whether or not regeneration potential, other than seedlings and saplings, survives.

The plantations have been subjected to natural and human-induced disturbances, which resulted in their degradation or complete destruction. The loss of forest results in soil erosion, land degradation, loss of biodiversity, and impoverishment of ecosystems. In most of the woody plants in dry Afromontane forests, the lack of persistent soil seed banks affects the formation of populations of seedlings on the forest floor [22]. Natural disturbances and human exploitation, such as careful selective cutting, may promote regeneration of the *Eucalyptus globulus*. However, excessive exploitation of species or clearing and conversion of the forest areas into permanent cultivation will eliminate or reduce the species composition and density especially (degraded land). The absence of soil seed banks and seedlings and removal of mature trees as well as their stumps and roots coupled with poor long-distance dispersal will have severe consequences on the regeneration of the woody vegetation. This implies that the future existence of tropical dry evergreen Afromontane forests depends on the protection and conservation of the remaining patches of forests [8]. Entoto Mountain and its surrounding area are characterized by high density of naturally regenerated woody species. Thus, the naturally regenerated woody species are in a good state of regeneration. *Juniperus procera, Carissa spinarum, Rosa abyssinica*, and *Myrsine africana* are species with the highest density of naturally regenerating woody plants than the remaining woody species in the study area. Similar findings were reported in the study conducted by Debush [23]. The probable reason for high density of *Rosa abyssinica* and *Myrsine africana* may be due to their resistance to browsing by wild or domestic animals and its low household and economic uses.

Earlier works have shown that the presence or absence of understory vegetation in a plantation is a factor of the density of the stand, the rainfall regime, and management than their origin (reference). *Eucalyptus* plantations have been existed for centuries without affecting the regeneration potential of some selected species like *Rosa abyssinica, Rubus apetalus, Carissa spinarum, Juniperus procera, Myrtus arbutfolia, Maesa lanceolata, Myrsine africana, Lagdera tomentosa, Satureja punctata, Dovyalis abyssinica, and Vernonio leopoldi* in the study area. This would contribute to the rehabilitation of degraded lands partly by increasing plant biodiversity particularly, shrubs, climbers, and lianas. On top of this, less dense stands of *Eucalyptus globulus* harbors more regenerated plant species than the high dense stands of *Eucalyptus globulus*. In fact, human disturbance, such as collection of firewood, animal grazing, farming, and other activities, reduces considerably the regeneration process in *Eucalyptus* plantation forest.

Many authors [6,7,23] described that *Eucalyptus* can act as succession catalysts, facilitating the recolonization of native flora through their influence on understory microclimate and soil fertility which is in agreement with the present finding.

A study made by Debush [23] clearly demonstrated that there is a seed source in the vicinity; establishment of forest plantations can help not only to provide wood for various purposes, rehabilitate degraded lands, and conserve soil and water but also to catalyze natural regeneration of shrubs, climbers and lianas, and some tree species, thereby enhancing plant biodiversity. A study conducted in similar areas is in agreement with the findings of the present study [24].

4. Conclusion and Recommendations

Entoto Mountain and its surrounding area are characterized by high density of naturally regenerated woody species and relatively in good state of regeneration. From the present study, a total of 179 plant species were recorded and identified. Of which, Asteraceae (30 species) was the most dominant family followed by Fabaceae. Of the total, 77 species were woody plant species. Some of these woody plants which dominantly occur in the study area include *Eucalyptus globulus, Eucalyptus camaldulensis, Casuarina equisetifolia, Juniperus procera,* and *Cupressus lusitanica*. In general, the study area provides important economic and

Species name	Frequency	Relative frequency
Acacia abyssinica	40.32	2.75
Asparagus africanus	51.61	3.52
Bersania abyssinica	22.58	1.54
Carissa spinarum	8.06	0.55
Clematis simensis	6.45	0.44
Clitia lanceolata	12.9	0.88
Croton macrostachyus	1.61	0.11
Dovyalis abyssinica	40.32	2.75
Dovyalis verrucosa	8.00	0.55
Ekbergia capensis	22.58	1.54
Erica arborea	16.13	1.10
Erythrina brucei	8.00	0.55
Eucalyptus globulus	72.58	4.96
Ficus sur	3.22	0.22
Ficus vasta	1.61	0.11
Hagenia abyssinica	11.29	0.77
Jasminum stans	25.81	1.76
Juniperus procera	90.32	6.17
Lippia adenosis	24.19	1.65
Maesa lanceolata	32.26	2.20
Maytenus arbutfolia	32.26	2.20
Myrsine africana	25.81	1.76
Myrsine melanophloeos	16.00	1.09
Olea europaea subsp. cuspidata	12.9	0.88
Olinia rochethiana	40.32	2.75
Pentas lanceolata	32.26	2.20
Podocarpus falcatus	1.61	0.11
Prunus africana	9.68	0.66
Rhamnus staddo	8.06	0.55
Rosa abyssinica	80.65	5.51
Rubus apetalus	16.13	1.10
Satureja punctata	12.90	0.88
Sida schimperiana	8.06	0.55
Smilax aspera	24.19	1.65
Vernonia amygdalina	6.45	0.44
Vernonia leopoldi	40.32	2.75

![Table 5: Frequency and relative frequency of selected species.](image)
social value to the rural communities living around the area, by its attraction to domestic and international tourists. To minimize the present human influence on the area and for the future management of the area in a sustainable manner, conservation and management activities should be immediately implemented by the responsible stakeholders such as Environmental Protection Authority, Ethiopian Biodiversity Institute, Forest Research Center, Forest, Environment and Climate Change Commission, and other institutions working on the related issues.

Participatory management programmes should be introduced and implemented to protect locally threatened and the most economically important species from local extinction. Some of the species of conservation concern in the area include Croton macrostachyus, Ficus sur, Ficus vasta, Olea europaea L. subsp. cuspidata, Hagenia abyssinica, Podocarpus falcatus, and Prunus africana.

Raising public awareness on the use, conservation, and management of plant resources and vegetation is very important through extension programmes. Moreover, it is highly required by the responsible bodies to explore indigenous knowledge and other ethnobotanical matters on the diverse uses of plant resources to promote the sustainable use of the plant resources around Mount Entoto and the surroundings of Addis Ababa City.

Data Availability
All the data were obtained from field survey and are open to readers.

Conflicts of Interest
All the authors have declared that there are no conflicts of interest.

References
[1] A. J. Sayer, S. C. Harcourt, and M. N. Collins, The Conservation Atlas of Tropical Forest, Macmillan Publishing Co. Inc., New York, NY, USA, 1992.
[2] WCMC (World Conservation Monitoring Center), Global Biodiversity: Status of the Earth’s Living Resources,” Chapman and Hall, London, UK, 1992.
[3] H. Zegeye, D. Teketay, and E. Kelbessa, “Diversity and regeneration status of woody species in Tara Gedam and Abebay forests, northwestern Ethiopia,” Journal of Forestry Research, vol. 22, no. 3, pp. 315–328, 2011.
[4] T. Soromessa, T. Demel, and S. Demissew, “Ecological study of the vegetation in Gamo Gofa zone, southern Ethiopia,” Journal of Tropical Ecology, vol. 45, pp. 209–221, 2004.
[5] E. Yirdaw, Restoration of the native woody species diversity using plantation species as foster trees in the degraded highlands of Ethiopia, Ph.D. Dissertation, University of Helsinki, Helsinki, Finland, 2002.
[6] M. Lemenih and T. Demel, “Restoration of native forest flora in the degraded high lands of Ethiopia: constraints and opportunities,” Ethiopian Journal of Science, vol. 27, no. 1, pp. 75–90, 2004.
[7] F. Debuste, T. Soromessa, and M. Argaw, “Impact of Eucalyptus globulus Labill. (Myrtaceae) plantation on the regeneration of woody species at Entoto mountain, Addis Ababa, Ethiopia,” in Proceedings of the Congress Held in Addis Ababa, Addis Ababa, Ethiopia, September 2010.
[8] T. Demel, “Seed and regeneration ecology in dry Afro-montane forests of Ethiopia: II. Forest disturbances and succession,” Tropical Ecology, vol. 46, pp. 45–64, 2005.
[9] I. Friis, “Myrtaceae,” in Flora of Ethiopia and Eritrea, S. Edwards, T. Mesfin, and I. Hedberg, Eds., vol. 2, no. 2, pp. 71–106, Addis Ababa University, Addis Ababa and Uppsala University, Uppsala, Sweden, 1995.
[10] X. Du, Q. Guo, X. Gao, and K. Ma, “Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest,” Forest Ecology and Management, vol. 238, no. 1-3, pp. 212–219, 2007.
[11] M. Jonasova, A. V. Hees, and K. Prach, “Rehabilitation of monotonous exotic coniferous plantations: a case study of spontaneous establishment of different tree species,” Ecological Engineering, vol. 28, no. 2, pp. 141–148, 2006.
[12] T. Leinonen, R. B. O’Hara, J. M. Cano, and J. Merila, “Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis,” Journal of Evolutionary Biology, vol. 21, no. 1, pp. 1–17, 2008.
[13] J. Wang, H. Ren, L. Yang, D. Li, and Q. Guo, “Soil seed banks in four 22-year-old plantations in south China: implications for restoration,” Forest Ecology and Management, vol. 258, pp. 2000–2006, 2009.
[14] I. Friis and S. Demissew, “Vegetation maps of Ethiopia and Eritrea. A review of existing maps and the need for a new map for the flora of Ethiopia and Eritrea,” Biologiske Skrifter, vol. 54, pp. 399–438, 2001.
[15] EMA, Ethiopian Meteorology Agency, Addis Ababa, Ethiopia, 2017.
[16] F. Senbeta and T. Demel, “Regeneration of indigenous woody species under the canopies of tree plantations in central Ethiopia,” Tropical Ecology, vol. 42, no. 2, pp. 175–185, 2001.
[17] C. I. Shannon and W. Weiner, The Mathematical Theory of Communication, University of Illinois, Chicago, IL, USA, 1949.
[18] M. Kent and P. Coker, Vegetation Description and Analysis. A Practical Approach, Belhaven Press, London, UK, 1992.
[19] C. J. Krebs, Ecology: The Experimental Analysis of Distribution and Abundance, Harper and Row Publishers, New York, NY, USA, 1985.
[20] A. E. Magurran, Ecological Diversity and its Measurement, Chapman and Hall, London, UK, 1988.
[21] D. Teketay, “Seedling populations and regeneration of woody species in dry Afro-montane forests of Ethiopia,” Forest Ecology and Management, vol. 98, no. 2, pp. 149–165, 1997.
[22] D. Teketay and A. Granström, “Soil seed banks in dry Afro-montane forests of Ethiopia,” Journal of Vegetation Science, vol. 6, no. 6, pp. 777–786, 1995.
[23] F. Debuste, “Impact of Eucalyptus globulus Labill. (Myrtaceae) plantation on the regeneration of woody species at Entoto mountain,” M.Sc. thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2008.
[24] R. Rayhanur, R. Mizanur, and A. Chowdhury, “Assessment of natural regeneration status: the case of Durgapur hill forest, Netrokona, Bangladesh,” Geology, Ecology, and Landscapes, pp. 1–10, 2019.