constraints on extended cosmological models from galaxy clustering and weak lensing.
We present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, ΛCDM and wCDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the Dark Energy Survey (DES Y1) in combination with external data. We consider four extensions of the minimal dark energy-dominated scenarios: 1) nonzero curvature Ωk, 2) number of relativistic species N_{\text{eff}} different from the standard value of 3.046, 3) time-varying equation-of-state of dark energy described by the parameters w_0 and w_a (alternatively quoted by the values at the pivot redshift, w_p, and w_a), and 4) modified gravity described by the parameters μ_0 and Σ_0 that modify the metric potentials. We also consider external information from Planck cosmic microwave background measurements; baryon acoustic oscillation measurements from SDSS, 6dF, and BOSS; redshift-space distortion measurements from BOSS; and type Ia supernova information from the Pantheon compilation of datasets. Constraints on curvature and the number of relativistic species are dominated by the external data; when these are combined with DES Y1, we find Ω_k = 0.0020_{-0.0032}^{+0.0035} at the 68% confidence level, and N_{\text{eff}} < 3.28 (3.55) at 68% (95%) confidence. For the time-varying equation-of-state, we find the pivot value (w_p, w_a) = (-0.91^{+0.19}_{-0.23}, -0.57^{+0.95}_{-1.14}) at pivot redshift z_p = 0.27 from DES alone, and (w_p, w_a) = (-1.01^{+0.04}_{-0.04}, -0.28^{+0.47}_{-0.48}) at z_p = 0.20 from DES Y1 combined with external data; in either case we find no evidence for the temporal variation of the equation of state. For modified gravity, we find the present-day value of the relevant parameters to be Σ_0 = 0.43^{+0.28}_{-0.20} from DES Y1 alone, and (Σ_0, μ_0) = (0.06^{+0.08}_{-0.07}, -0.11^{+0.42}_{-0.40}) from DES Y1 combined with external data. These modified-gravity constraints are consistent with predictions from general relativity.

I. INTRODUCTION

Evidence for dark matter [1] and the discovery of cosmic acceleration and thus evidence for dark energy [2,3] were pinnacle achievements of cosmology in the 20th century. Yet because of the still-unknown physical mechanisms behind these two components, understanding them presents a grand challenge for the present-day generation of cosmologists. Dark matter presumably corresponds to an as-yet undiscovered elementary particle whose existence, along with couplings and other quantum properties, is yet to be confirmed and investigated. Dark energy is even more mysterious, as there are no compelling models aside, arguably, from the simplest one of vacuum energy.

Dark matter and dark energy leave numerous unambiguous imprints in the expansion rate of the universe and in the rate of growth of cosmic structures as a function of time. The theoretical modeling and direct measurements of these signatures have led to a renaissance in data-driven cosmology. Numerous ground- and space-based sky surveys have dramatically improved our census of dark matter and dark energy over the past two decades, and we have led to a consensus model with ~5% energy density in baryons, ~25% in cold (non-relativistic) dark matter (CDM), and ~70% in dark energy. These probes, reviewed in [4,6], include the cosmic microwave background (CMB; [7]); galaxy clustering including the location of the baryon acoustic oscillation (BAO) feature and the impact of redshift space distortions (RSD); distances to type Ia supernovae [8];...
The simplest and best-known model for dark energy is the cosmological constant. This model, represented by a single parameter given by the magnitude of the cosmological constant, is currently in good agreement with data. On the one hand, vacuum energy density is predicted to exist in quantum field theory due to zero-point energy of quantum oscillators, and manifests itself as a cosmological constant: unchanging in time and spatially smooth. On the other hand, the theoretically expected vacuum energy density is tens of orders of magnitude larger than the observed value as has been known even prior to the discovery of the accelerating universe \cite{10, 11}. Apart from the cosmological constant, there exists a rich set of other dark energy models including evolving scalar fields, modifications to general relativity, and other physically-motivated possibilities \cite{12, 13} with many possible avenues to test them with data \cite{14}. Testing for such extensions of the simplest dark energy model on the present-day data has spawned an active research area in cosmology \cite{15-31}, and is the subject of the present paper.

The Dark Energy Survey (DES\cite{32}) is a photometric survey imaging the sky in five filters (grizY) using the 570 Mpix, 3 deg2 field-of-view Dark Energy Camera (DECam\cite{33}), mounted on the 4-meter Blanco telescope at the Cerro Tololo International Observatory in Chile. After more than five years of data-taking, the survey will end in early 2019 with more than 300 million galaxies catalogued in an area of roughly 5000 deg2.

In 2017 the DES collaboration published the analyses of its first year of data (Y1). It presented results which, for the first time, put constraints on certain cosmological parameters derived from galaxy surveys at the same level as the constraints obtained from the CMB data which is based on physical processes billions of years before galaxies were formed. These results, described in \cite{34} (hereafter Y1KP) are based on the two-point statistics of galaxy clustering and weak gravitational lensing. The combined analysis of the three different two-point correlation functions (galaxy clustering, cosmic shear, and the galaxy-shear cross-correlation, typically referred to as galaxy-galaxy lensing) is the end-product of a complex set of procedures which includes the analysis pipeline and methodology \cite{35}, its validation on realistic simulations \cite{36}, the creation of shape catalogs \cite{37}, the estimation and validation of the redshift distribution for different galaxy samples \cite{38}, measurement and derivation of cosmological constraints from the cosmic shear signal \cite{39}, galaxy–galaxy lensing results \cite{40}, and the galaxy clustering statistics \cite{41}. Both alone and in combination with external data from CMB (Planck \cite{42}), BAO (6df Galaxy Survey \cite{43}, the SDSS Data Release 7 Main Galaxy Sample \cite{44}, BOSS Data Release 12 \cite{45}) and SNe Ia (Joint Lightcurve Analysis (JLA \cite{46}), DES provides precise measurements in the parameters describing the amplitude of mass fluctuations perturbation and the matter energy density evaluated today. We refer the reader to Y1KP for more details.

In Y1KP we considered only the two simplest models for dark energy: the standard cosmological constant ΛCDM model and a wCDM model with an extra parameter (the dark energy equation-of-state w) accounting for a constant relation between the pressure and the energy density of the dark energy fluid ($p = w\rho$). In this paper we explore the impact of the DES Y1 data on the analysis of a few extensions of the standard flat ΛCDM and wCDM models considered in Y1KP, namely the possibilities of:

- Nonzero spatial curvature;
- New relativistic degrees of freedom;
- Time-variation of the dark energy equation-of-state;
- Modifications of the laws of gravity on cosmological scales.

We describe these extensions in more detail below.

Our analysis applies the same validation tests with respect to assumptions about the systematic biases, analysis choices, and pipeline accuracy, as previously done in Y1KP. We also adopt the parameter-level blinding procedure used in that paper, and we do not look at the final cosmological constraints until after unblinding, when the analysis procedure and estimates of uncertainties on various measurement and astrophysical nuisance parameters were frozen. Validation and parameter blinding are also described in further detail below.

Our study effectively complements and extends a number of studies of extensions to Λ/wCDM in the literature using state-of-the-art data, e.g. by Planck \cite{42}, the Baryon Oscillation Spectroscopic Survey (BOSS) \cite{45}, the Kilo Degree Survey (KiDS) \cite{27, 47} and more recently by using the Pantheon compilation of SNe Ia data \cite{48}. These studies report no significant deviations from ΛCDM. We will comment on the comparison of our results to these existing constraints in the conclusions.

The paper is organized as follows: the data sets used in the analyses are described in \cite{11} while the models and parameters used to describe the data are detailed in \cite{14}. To ensure that our analysis will not mis-attribute an astrophysical systematic error to a detection of an extension, we present a series of validation tests in \cite{11}. In \cite{11} we present our results before concluding in \cite{11}.

II. DATA

The primary data used in this study are the auto- and cross-correlations of galaxy positions and shapes measured in data taken by the Dark Energy Survey during its first year of observations\cite{2}. We refer the reader to Y1KP for details and only

\footnote{\url{http://www.darkenergysurvey.org/}}
give a summary here.

A. Catalogs

The images taken between August 31, 2013 and February 9, 2014 were processed with the DES Data Management (DESDM) system [49, 52], and its outputs validated and filtered to produce the high-quality DES Y1 Gold catalog [53].

From the galaxies in this catalog, we define two samples to be used here: lens galaxies, for which we measure the angular correlation function of positions, and source galaxies, for which we measure the auto-correlation of shapes and the cross-correlation of shapes with lens galaxy positions. To reduce the impact of varying survey characteristics and to remove foreground objects and contaminated regions, we define both samples over an area of 1321 deg².

As lens galaxies, we use a sample of luminous red galaxies identified with the REDMaGiC algorithm [54]. This choice is motivated by the small uncertainties in photometric redshifts, high completeness over most of our survey, and the strong clustering of these galaxies. We divide the REDMaGiC sample into five redshift bins, using three different cuts on intrinsic luminosity to ensure completeness. For bins of redshift \(z \in [0.15 - 0.3, 0.3 - 0.45, 0.45 - 0.6] \), we chose a luminosity cut of \(L > 5L_\ast \) with a spatial density \(\bar{n} = 10^{-3}(h^{-1}\text{Mpc})^{-3} \), where the comoving density assumes a fiducial ΛCDM cosmology. For the additional redshift bins \(z \in (0.6 - 0.75) \) and \((0.75 - 0.9) \), the luminosity and densities are \(L > L_\ast, \bar{n} = 4 \times 10^{-4}(h^{-1}\text{Mpc})^{-3} \) and \(L > 1.5L_\ast, \bar{n} = 10^{-4}(h^{-1}\text{Mpc})^{-3} \), respectively. In total, these samples contain approximately 660,000 lens galaxies.

The primary systematic uncertainties in this catalog are based on residual correlations of galaxy density with observational characteristics of the survey, and in the uncertainty and bias of the lens galaxy redshifts as estimated from the broad-band photometry. The first effect is studied in detail and corrected in [41]. The redshift distributions estimated for the REDMaGiC galaxies are validated, and the budget for residual uncertainties in quantified, using their clustering with spectroscopic galaxy samples [55].

To generate a catalog of source galaxies with accurate shapes for estimating lensing signals, we use the METACALIBRATION method [56, 57] on top of NGMIX [3]. NGMIX provides the ellipticity measurements for a sufficiently resolved and high signal-to-noise subsample of the Y1 Gold catalog by fitting a simple Gaussian mixture model, convolved with the individual point spread function, to the set of all single exposures taken of a galaxy. The primary systematic uncertainty in this catalog is a multiplicative error on the mean shear measurement due to biases related to noise and selection effects. In the METACALIBRATION scheme, this bias is removed by introducing an artificial shear signal and measuring the response of the mean measured ellipticity to the introduced shear. To this end, all galaxy images are artificially sheared, and their ellipticities and all properties used for selecting the sample are re-measured on the sheared versions of their images. By applying a response correction to all estimated shear signals, we find that this method provides measurements with a small multiplicative bias that is dominated by the effect of blending between neighboring galaxies [37].

To divide these source galaxies into redshift bins, we use the means of the redshift probability distributions provided by a version of the BPZ algorithm [58]. This procedure is based on the METACALIBRATION measurements of griz galaxy fluxes, as detailed in [38]. By splitting on \(z_{\text{mean}} \in [(0.2 - 0.43), (0.43 - 0.63), (0.63 - 0.9), (0.9 - 1.3)] \), we generate four bins with approximately equal density. The redshift distribution of each source bin is initially estimated from the stack of individual galaxy BPZ redshift probability distributions. This initial estimate is validated, and the systematic uncertainty on the mean redshift in each bin is estimated using a resampling method of high-quality photometric redshifts gained from multi-band data in COSMOS [38] and the clustering of the sources with REDMaGiC galaxies [59, 60].

The systematic uncertainties on redshift of both samples, and on the shear estimates of the source sample, are quantified in [37] [38] and marginalized over all cosmological likelihoods.

B. Measurements

For the lens and source sample, we use measurements of the three sets of two-point functions in [34]:

- **Galaxy clustering**: the auto-correlation of lens galaxy positions in each redshift bin \(\psi(\theta) \), i.e. the fractional excess number of galaxy pairs of separation \(\theta \) relative to the number of pairs of randomly distributed points within our survey mask [41].

- **Cosmic shear**: the auto-correlation of source galaxy shapes within and between the source redshift bins, of which there are two components \(\xi_{\perp, \parallel}(\theta) \), taking the products of the ellipticity components of pairs of galaxies, either adding (+) or subtracting (−) the component tangential to the line connecting the galaxies and the component rotated by \(\pi/4 \) [39].

- **Galaxy-galaxy lensing**: the mean tangential ellipticity of source galaxy shapes around lens galaxy positions, for each pair of redshift bins, \(\gamma_t(\theta) \) [40].

Details of these measurements and the checks for potential systematic effects in them are described in detail in [39, 41], and an overview of the full data vector is given in [34]. Here we follow Y1KP, and refer to results from combining all 3 two-point functions as “DES Y1 3 × 2pt”.

Each of these measurements is performed in a set of 20 logarithmic bins of angular separation between 2.5' and 250' using the software TREECORR [61]. We only use a subset of these bins, removing small scales on which our model is not sufficiently accurate. For the curvature, number of relativistic

\(^3\) https://github.com/esheldon/ngmix
species, and dark energy tests, we use the exact same set of scales as in Y1KP, and the datavector with a total of 457 measurements in $(w(\theta), \xi_\perp(\theta), \gamma_\parallel(\theta))$. For our modified gravity tests, we use a more stringent range of scales, described at the end of Sec. III C 4; this datavector spans only the linear scales, and has a total of 334 measurements.

DES Y1 measurements provide information at $z \lesssim 1$, when – in most models – dark energy starts to play a role in cosmic evolution. They provide information about both the geometrical measures (distances, volumes) and the growth of cosmic structure. In particular, both lensing and galaxy clustering are sensitive to the growth of structure, while the kernels in the calculation of the corresponding two-point correlation functions also encode the geometry given by distances (see e.g. equations in Sec. 4 of Y1KP). Therefore, all of the DES Y1 $3 \times 2pt$ measurements probe both geometry and the growth of structure, and thus complement the largely geometrical external data discussed below in Sec. II D. The geometry-plus-growth aspect of the DES Y1 $3 \times 2pt$ measurements makes them also uniquely sensitive to predictions of the models studied in this paper such as modified gravity.

C. Covariance

The statistical uncertainties of these measurements are due to spatial variations in the realizations of the cosmic matter density field (cosmic variance) and random processes governing the positions (shot noise) and intrinsic orientations (shape noise) of galaxies. We describe these uncertainties and their correlations with a covariance matrix C, which is calculated using CosmoLike [62] using the relevant four-point functions in the halo model [63]. Shot and shape noise are scaled according to the actual number of source galaxies in our radial bins to account for source clustering and survey geometry. Details of this approach are described in [62, 64], along with our validation of the covariance matrix and the corresponding Gaussian likelihood.

D. External data

Combining the DES large-scale structure weak lensing and galaxy clustering data with other, independent probes has benefits in constraining the beyond-minimal cosmological models considered in this paper. In particular, the measurements of distances by SNe Ia and BAO, along with the distance to recombination from the CMB, provide precise geometrical measures, while redshift-space distortions (RSD) are sensitive to the growth of cosmic structure [65, 69]. These external data significantly complement the combination of geometry and growth probed by the DES clustering and lensing data. Similarly, combining DES with external data enables the comparison of the inferred cosmology from early- and late-time probes (see e.g. Fig. 11 in Y1KP).

As in Y1KP, we combine DES data with a collection of external data sets to derive the most precise constraints on the ΛCDM extensions models. We use CMB, CMB Lensing, BAO, RSD, and Supernova Ia measurements in various combinations. Our final set of external data, described in more detail below, is similar to that used in Y1KP; the main differences are that we add RSD measurements from BOSS, and that we update the JLA supernova dataset used in Y1KP to the more recent Pantheon results.

We treat the likelihoods of individual external datasets as independent, simply summing their log-likelihoods. We now describe the individual external datasets that we add to DES data in our combined analysis.

1. CMB & CMB lensing

The cosmic microwave background temperature T and polarization (E- and B-modes) anisotropies are a powerful probe of the early universe. The combination of a rich phenomenology with linear perturbations to a background yields very strong constraints on density perturbations in the early Universe, and on reionization.

In this work we use the Planck 2015 likelihood as described in Aghanim et al. [70]. We use the Planck TT likelihood for multipoles $30 \leq \ell \leq 2508$ and the joint TT, EE, BB and TE likelihood for $2 \leq \ell \leq 30$. We refer to this likelihood combination as TT+lowP.

Planck primary CMB measurements like these strongly constrain all of the baseline cosmological parameters that we use across our models. They have varying power to constrain extension parameters.

We also make use of Planck CMB lensing measurements from temperature only [71]. These are measured from higher-order correlations in the temperature field, and act like an additional narrow and very high redshift source sample.

2. BAO + RSD

BAO measurements locate a peak in the correlation function of cosmic structure that corresponds to the sound horizon at the drag epoch. Since the sound speed before that point depends only on the well-understood ratio of photon to baryon density, this horizon acts as a standard ruler and can be used to measure the angular diameter distance with a percent-level precision.

As in Y1KP we use BAO measurements from BOSS Data Release 12 [45], which provides measurements of both the Hubble parameter $H(z)$ and the comoving angular diameter distance $d_A(z)$, at three separate redshifts.

4 Planck 2018 results were released as this paper was in advanced stages of the analysis, so we stick with using the Planck 2015 likelihood. The main difference between the two is better measurements of CMB polarization in Planck 2018, resulting in better constraints on the optical depth τ. We do not expect that these improvements would have a major impact on the combined constraints on parameters studied in this paper.

5 We used the public Planck likelihood files PLIK_lite_v18_TT.CLIK and lowl_smw_70_dx11b_2014_10_03_v5c_ap клик.

6 We use the file SMICA_g30_ftl_full_pTPTTT.CLIK_lens.
\[z_i = \{0.38, 0.51, 0.61\}. \] The other two BAO data that we use, 6DF Galaxy survey [43] and SDSS Data Release 7 Main Galaxy Sample [44], are lower signal-to-noise and can only tightly constrain the spherically averaged combination of transverse and radial BAO modes, \(D_V(z) \equiv \left[cz(1 + z)^2 D_A^2(z)/H(z) \right]^{1/3} \). These constraints are at respective redshifts \(z = 0.106 \) (6dF) and \(z = 0.15 \) (SDSS MGS).

We also utilize the redshift-space distortion measurements from BOSS DR12; they are given as measurements of the quantity \(f(z_i)\sigma_8(z_i) \) at the aforementioned three redshifts. Here \(f \) is the linear growth rate of matter perturbations and \(\sigma_8 \) is the amplitude of mass fluctuations on scales \(8 h^{-1}\text{Mpc} \). We employ the full covariance, given by [45], between these three RSD measurements and those of BAO quantities \(H(z_i) \) and \(d_A(z_i) \). We treat the 6dF and SDSS MGS measurements as independent of those from BOSS DR12.

Finally, we ignore the covariance between these BAO/RSD measurements and those of DES galaxy clustering and weak lensing; the two sets of measurements are carried out on different areas on the sky and the covariance is expected to be negligible.

III. THEORY AND MODELING

A. Standard cosmological parameters

We assume the same set of \(\Lambda \)CDM cosmological parameters described in Y1KP, then supplement it with parameters alternately describing four extensions. We parametrize the matter energy density today relative to the critical density \(\Omega_m \), as well as that of the baryons \(\Omega_b \) and of neutrinos \(\Omega_\nu \). Moreover, we adopt the amplitude \(A_s \) and the scalar index \(n_s \) of the primordial density perturbations power spectrum, as well as the optical depth to reionization \(\tau \), and the value of the Hubble parameter today \(H_0 \). Except in the case of varying curvature, we assume that the universe is flat and, except in the case of varying dark energy, we assume that it is \(\Lambda \)-dominated with \(w = -1 \); under those two assumptions, \(\Omega_\Lambda = 1 - \Omega_m \).

Note that the amplitude of mass fluctuations \(\sigma_8 \) is a derived parameter, as is the parameter that decorrelates \(\sigma_8 \) and \(\Omega_m \), \(S_8 \equiv \sigma_8/(\Omega_m/0.3)^{0.5} \). The fiducial parameter set is therefore

\[\theta_{\text{base}} = \{ \Omega_m, H_0, \Omega_b, n_s, A_s, (\tau) \}, \]

where the parentheses around the optical depth parameter indicate that it is used only in the analysis combinations that use CMB data.

To model the fully nonlinear power spectrum, we first estimate the linear primordial power spectrum on a grid of \((k, z) \) using CAMB [75] or CLASS [74]. We then apply the HALOFIT prescription [76,77] to get the nonlinear spectrum. Throughout this work, we employ the version from Takahashi et al. [76].

In addition to this set of \(\Lambda \)CDM parameters, we use the following parametrization for each of the extension models:

1. Spatial curvature: \(\Omega_k \);
2. The effective number of neutrinos species \(N_{\text{eff}} \);
3. Time-varying equation-of-state of dark energy: \(w_0, w_a \);
4. Tests of gravity: \(\Sigma(a), \mu(a) \).

We describe these extensions in more detail below in Sec. III C.

B. Nuisance parameters

We follow the analysis in Y1KP, and model a variety of systematic uncertainties using an additional 20 nuisance parameters. The nuisance parameters are:

- Five parameters \(b_i \) that model linear bias of lens galaxies in five redshift bins;
- Two parameters, \(A_{IA} \) and \(\eta_{IA} \), that model the power spectrum of intrinsic alignments as a power-law scaling \(A_{IA}(1+z)^{n_A} \), with \(s_0 = 0.76 \);
- Five parameters \(\Delta \sigma^2_i \) to model the uncertainty in the means of distributions \(n(z_i) \) of galaxies in each of the lens bins;
- Four parameters \(\Delta \tilde{z}_i \) to model the uncertainty in the means of distributions \(n(z_i) \) of galaxies in each of the source bins;
- Four parameters \(m_i \) that model the overall uncertainty in the multiplicative shear bias in each of the source bins.

More details, including the prior ranges for the nuisance parameters, are given in Table I of Y1KP.

Note that we did not change any assumptions about the nuisance parameters relative to our previous analysis applied.
to ΛCDM and wCDM. It is possible in principle that extensions (e.g. modified gravity) to these simplest models warrant more complicated modeling and therefore more nuisance parameters (e.g. adopting more complicated parametrizations of galaxy bias). To address this possibility, we consider a number of more complicated parametrizations of the systematic effects (described in Sec. IV) with the aim of determining whether we could mis-identify a systematic effect as evidence for an extension. Our tests, also described in that section, indicate that constraints on the key extension parameters studied in this paper are not sensitive to these additional parameters. This justifies our choice not to modify our fiducial nuisance parameterization described in the bullet-point list above and used previously in Y1KP. Future, more precise data will require revisiting these, in addition to potentially extracting information about these extensions from the modified behavior of astrophysical nuisance effects.

C. ΛCDM extensions

We now introduce the four extensions to the simplest Λ/wCDM models that we study in this paper. The cosmological parameters describing these extensions, along with priors given to them in our analysis, are given in Table I.

1. Spatial Curvature

Standard slow-roll inflation predicts that spatial curvature is rapidly driven to zero. In this scenario, the amount of curvature expected today is $\Omega_k \simeq 10^{-4}$, where the tiny deviation from zero is expected from horizon-scale perturbations but will be very challenging to measure even with future cosmological data [78]. Departures from near-zero curvature are however expected in false-vacuum inflation, as well as scenarios that give rise to bubble collisions [79, 80]. With curvature, and ignoring the radiation density whose contribution is negligible in the late universe, the Hubble parameter generalizes to

$$H(a) = H_0 \left[\Omega_m a^{-3} + (1 - \Omega_m - \Omega_k) + \Omega_k a^{-2} \right]^{1/2}. \quad (2)$$

so that $\Omega_k < 0$ corresponds to spatially positive curvature, and the opposite sign to the spatially negative case. In this work, we compare constraints on Ω_k using DES data alone, as well as with combinations of subsets of the external data described in [II.D].

We do not modify the standard HALOFIT prescription [75, 76] for prediction of the nonlinear power spectrum for nonzero values of Ω_k. Simulation measurements of the nonlinear spectrum for nonzero values of Ω_k do not exist to sufficiently validate this regime. However, it is not an unreasonable a priori assumption that the nonlinear modification to the power spectrum is only weakly affected by curvature beyond the primary effect captured in the linear power spectrum being modified. We do incorporate the impact of Ω_k in the evolution of the expansion and growth, which is properly modeled as part of the linear matter power spectrum that is modified by HALOFIT. We verify that this approximation does not significantly impact our results by comparing to the case where we restrict our data to scales that are safely ‘linear’ as described in IV below.

2. Extra relativistic particle species

Anisotropies in the CMB are sensitive to the number of relativistic particle species. The Standard Model of particle physics predicts that the three left-handed neutrinos were thermally produced in the early universe and their abundance can be determined from the measured abundance of photons in the cosmic microwave background. If the neutrinos decoupled completely from the electromagnetic plasma before electron-positron annihilation, then the abundance of the three neutrino species today would be

$$n = N_{\text{eff}} \times 113 \text{ cm}^{-3} \quad (3)$$

with $N_{\text{eff}} = 3$. In actuality, the neutrinos were slightly coupled during e^\pm annihilation, so $N_{\text{eff}} = 3.046$ in the standard model [81, 82]. Values of N_{eff} larger than this would point to extra relativistic species. While DES observations are less sensitive to N_{eff} than the CMB, they might constrain some parameters that are degenerate with N_{eff} so, at least in principle, adding DES observations to other data sets might provide tighter constraints.

There are well-motivated reasons for exploring possibilities beyond the standard scenario. First, the most elegant way to obtain small neutrino masses is the see-saw model [84], which typically relies on three new heavy Standard Model singlets, or sterile neutrinos. While these often are unstable and have very large masses, it is conceivable that sterile neutrinos are light and stable on cosmological time scales [85]. Indeed, there are a variety of experimental anomalies that could be resolved with the introduction of light sterile neutrinos, and a keV sterile neutrino remains an interesting dark matter candidate. If one or more light sterile neutrinos do exist, then they would typically be produced in the early universe via oscillations from the thermalized active neutrinos with an abundance determined by the mixing angles. As an example, the LSND/Miniboone anomaly [86, 87] could be resolved with a light sterile neutrino thus implying $N_{\text{eff}} \simeq 4$; the mixing angle of the sterile neutrino would dictate that it would have the same abundance as the 3 active neutrinos. More generally, a wide variety of extensions to the Standard Model contain light stable particles that would have been produced in the early Universe [88] and impacted the value of N_{eff}. It is important to note that while the addition of an extra relativistic species would explain some aspects of these observations, it is difficult for such models to accommodate all of the existing neutrino oscillation observations.

In the fiducial model, we are allowing for a single free parameter $\sum m_\nu$, treating the 3 active neutrinos as degenerate (since they would be approximately degenerate if they had masses in the range we can probe, > 0.1 eV). There is some
freedom in how to parametrize the extension of a light sterile neutrino, however. If we attempt to model the addition of a single sterile neutrino, then in principle two new parameters must be added: N_{eff}, allowed to vary between 3.046 and 4.046, and m_{ν}, the mass of the sterile neutrino. Two light sterile neutrinos would require two more parameters, etc. However, we expect that the cosmological signal will be sensitive primarily to the total neutrino mass density and the number of effective massless species at the time of decoupling, as captured by N_{eff}, so we use only these two parameters, $\sum m_{\nu}$ and N_{eff}. Note that a value of N_{eff} appreciably different than 3 would point to a sterile neutrino or another light degree of freedom. We give N_{eff} a flat prior in the range [3.0, 9.0].

3. Time-varying equation-of-state of dark energy

Given the lack of understanding of the physical mechanism behind the accelerating universe, it is important to investigate whether the data prefer models beyond the simplest one, the cosmological constant. In Y1KP, we investigated the evidence for a constant equation-of-state parameter $w \neq -1$. We found no evidence for $w \neq -1$, with a very tight constraint from the combination of DES Y1, CMB, SNe Ia, and BAO of $w = -1.00^{+0.05}_{-0.04}$.

We now investigate whether there is evidence for the time-evolution of the equation-of-state w. We consider the phenomenological model that describes dynamical dark energy:

$$w(a) = w_0 + (1 - a)w_a,$$ \hspace{1cm} (4)

where w_0 is the equation-of-state today, while w_a is its variation with scale factor a. The (w_0, w_a) parametrization fits many scalar field and some modified gravity expansion histories up to a sufficiently high redshift, and has been used extensively in past constraints on dynamical dark energy.

The linear-theory observable quantities in this model are straightforwardly computed, as the new parameters affect the background evolution in a known way, given that the Hubble parameter becomes

$$\frac{H(a)}{H_0} = \left[\Omega_m a^{-3} + (1 - \Omega_m) a^{-3(1+w_0+w_a)} e^{-3w_a(1-a)} \right]^{1/2}. \hspace{1cm} (5)$$

To obtain the nonlinear clustering in the (w_0, w_a) model, we assume the same linear-to-nonlinear mapping as in the ΛCDM model, except for the modified expansion rate $H(z)$. In particular, we implement the same HALOFIT nonlinear prescription as we do in the fiducial ΛCDM case. We impose a hard prior $w_0 + w_a \leq 0$; models lying in the forbidden region have a positive equation of state in the early universe, and are typically ruled out by the combination of low-redshift data combined with the distance to the last-scattering surface given by the CMB. Note also that in our analysis we do implicitly allow the “phantom” models where $w(a) < -1$; while not a feature of the simplest physical models of dark energy (e.g. single-field quintessence), such a violation of the weak energy condition is in general allowed [99].

ΛCDM Extension	Parameter	Flat Prior
Curvature	Ω_k	$[-0.25, 0.25]$
Number relativistic species	N_{eff}	$[3.0, 7.0]$
Dynamical dark energy	w_0	$[-2.0, -0.33]$
	w_a	$[-3.0, 3.0]$
Modified gravity	Σ_0	$[-3.0, 3.0]$
	μ_0	$[-3.0, 3.0]$

4. Modified gravity

The possibility of deviations from General Relativity on cosmological scales has been motivated by the prospect that an alternative theory of gravity could offer an explanation for the accelerated expansion of the Universe. In the past several years, numerous works constraining modifications to gravity using cosmological data have been published, including from the Planck team [24, 31], the Kilo Degree Survey [27], and the Canada-France-Hawaii Lensing Survey [91]. Constraints from the Dark Energy Survey Science Verification data were obtained in [92]. Recently, stringent constraints were made on certain alternative theories of gravity [23, 97] via the simultaneous observation of gravitational and electromagnetic radiation from a binary neutron star merger with the Laser Interferometer Gravitational Wave Observatory (LIGO) [98].

In what follows, we refer to the scalar-perturbed Friedmann-Robertson-Walker line element in the conformal Newtonian gauge:

$$ds^2 = a^2(\tau) \left[(1 + 2\Psi) d\tau^2 - (1 - 2\Phi) \delta_{ij} dx_i dx_j \right].$$ \hspace{1cm} (6)

The parameterization of deviations from General Relativity studied in this work is motivated by theoretical descriptions which make use of the quasistatic approximation (see, e.g., [99]). It can be shown that in the regime where linear theory holds and where it is a good approximation to neglect time derivatives of novel degrees of freedom (e.g. extra scalar fields), the behavior of the majority of cosmologically-motivated theories of gravity can be summarized via a free function of time and scale multiplying the Poisson equation, and another which represents the ratio between the potentials Φ and Ψ. Such a parameterization is an effective description of a more complicated set of field equations [100,109], but this approximation has been numerically verified on scales relevant to our present work [110,114].

There are a number of related pairs of functions of time and scale which can be used in a quasistatic parameterization of
gravity; we choose the functions μ and Σ, defined as

$$k^2 \Psi = -4\pi G a^2 (1 + \mu(a)) \rho \delta,$$

$$k^2 (\Psi + \Phi) = -8\pi G a^2 (1 + \Sigma(a)) \rho \delta,$$

where δ is the comoving-gauge density perturbation. This version of the parameterization was used in [24, 31, 91], and benefits from the fact that Σ parametrizes the change in the lensing response of massless particles to a given matter field, while μ is linked to the change in the matter overdensity itself. Therefore, weak lensing measurements are primarily sensitive to Σ but also have some smaller degree of sensitivity to μ via their tracing of the matter field, whereas galaxy clustering measurements depend only on μ and are insensitive to Σ.

To practically constrain μ and Σ, we select a functional form of

$$\mu(z) = \mu_0 \frac{\Omega_M(z)}{\Omega_M}, \quad \Sigma(z) = \Sigma_0 \frac{\Omega_M(z)}{\Omega_M}, \quad (9)$$

where $\Omega_M(z)$ is the redshift-dependent dark energy density (in the ΛCDM model) relative to critical density, and Ω_M is its value today. This time dependence has been introduced in [115], and is widely employed (see e.g. [24, 31, 91]). It is motivated by the fact that in order for modifications to GR to offer an explanation for the accelerated expansion of the Universe, we would expect such modifications to become significant at the same timescale as the acceleration begins. We do not model any scale-dependence of μ and Σ since it has been shown to have less impact on observables than the time-dependence [99]. We therefore include only the parameters μ_0 and Σ_0 (but, as explained in Sec. IV A, only quote constraints on Σ_0).

Note that although our choice of parameterization is motivated by the quasistatic limit of particular theories of gravity, our analysis takes an approach which is completely divorced from any given theory. We endeavor instead to make empirical constraints on the parameters μ_0 and Σ_0 as specified by Eqs. (7), (8), and (9). Because we take this empirically-driven approach, we include certain data elements in which the quasistatic approximation would not be expected to hold, most importantly the near-horizon scales for the ISW effect. Although not rigorously theoretically justified, a similar approach with respect to inclusion of the ISW effect at large scales was taken in, for example, [91]. Practically, this choice has the benefit of providing an important constraint on τ from external CMB data, which is useful in breaking degeneracies.

We use CosmoSIS with a version of MGCamb [116, 117] modified to include the Σ, μ parametrization to compute the linear matter power spectrum and the CMB angular power spectra. For some sets of (Σ_0, μ_0) MGCamb returns an error; we estimated this region of parameter space can be avoided by imposing an additional hard prior $\mu_0 < 1 + 2\Sigma_0$. We therefore implement this prior in order to avoid computations for parameters not handled by MGCamb.

To validate our modified-gravity analysis pipeline, we compare the CosmoSIS results to that of another code, Cosmolike [62]. We require that the two codes give the same theory predictions for clustering and lensing observables, and the same constraints on cosmological parameters given a simulated data vector. The comparison shows good agreement, and details can be found in Appendix [A].

Finally, because the (μ, Σ) description does not constitute a complete theoretical model, its nonlinear clustering predictions are not available to us even in principle. We therefore restrict ourselves to the linear-only analysis. To do this, we follow the Planck 2015 analysis [24] and consider the difference between the nonlinear and linear-theory predictions in the standard ΛCDM model at best-fit values of cosmological parameters and with no modified gravity. Using the respective data vector theory predictions, d_{NL} and d_{lin}, and full error covariance of DES Y1, C, we calculate the quantity

$$\Delta \chi^2 \equiv (d_{\text{NL}} - d_{\text{lin}})^T C^{-1} (d_{\text{NL}} - d_{\text{lin}}) \quad (10)$$

and identify the single data point that contributes most to this quantity. We remove that data point, and repeat the process until $\Delta \chi^2 < 1$. The resulting set of 334 (compared to the original 457) data points that remain constitutes our fiducial choice of linear-only scales.

IV. VALIDATION TESTS AND BLINDING

We subject our ΛCDM extensions analyses to the same battery of tests for the impact of systematics as in Y1KP. The principal goal is to ensure that all of our analyses are robust with respect to the effect of reasonable extensions to models of astrophysical systematics and approximations in our modeling. As part of the same battery of tests, we also test that the range of spatial scales that are used lead to unbiased cosmological results, and that motivated modifications to our modeling assumptions do not significantly change the inferred cosmology.

In these tests and the results below, sampling of the posterior distribution of the parameter space is performed with Multinest [118] and emcee [119] wrappers within CosmoSIS [10] and Cosmolike [62]. While the convergence of Multinest is intrinsic to the sampler and achieved by verifying that the uncertainty in the Bayesian evidence is below some desired tolerance, we explicitly check the convergence of emcee chains. In order to do so, we compute the autocorrelation length of each walk, then continue the walks until a large number of such lengths is reached [11].

[9] https://aliojjati.github.io/MGCAMB/mgcamb.html

[10] https://bitbucket.org/joezuntz/cosmosis/

[11] The recommended methods for convergence testing (as well as the documentation for emcee) can be found in https://emcee.readthedocs.io/
The autocorrelation length estimates how long a chain needs to be in order for new “steps” to be uncorrelated with previous ones. We then split chains into several uncorrelated segments and verify that marginalized parameter constraints do not change significantly when these segments are compared with each other. The typical number of samples of the posterior in these chains is between two and three million. We have also verified in select cases that this procedure leads to excellent agreement with the 1D marginalized parameter posteriors achieved by Multinest, so both samplers are used interchangeably in what follows.

A. Validation of assumptions using simulated data

In order to verify that our results are robust to modeling assumptions and approximations, we compare the inferred values of the extension parameters ($\Omega_k, N_{\text{eff}}, \ldots$) obtained by a systematically shifted simulated data vector. The simulated data vector is generated within the standard ΛCDM cosmology but is shifted with the addition of a systematic effect that is not included in our analysis. The goal is to ensure that we do not claim evidence for an extension to ΛCDM when the real data contains astrophysical effects more complex than those in our model. For each systematic effect, we compare the inferred set of extension parameters to the fiducial, unmodified extension parameters used in the simulations (which we refer to as the “baseline” constraint). For all of these tests, for DES we use the simulated data vectors (for the baseline case and the systematic shifts described below), but for the external data sets — CMB, BAO, RSD, and SN Ia — we use the actual, observed data vector.

The changes to modeling assumptions that we consider are:

1. **Baryonic effects:** we simulate a data vector including a contribution to the nonlinear power spectrum caused by AGN feedback using the OWLS AGN hydrodynamical simulation [121] and following the methodology of [39].

2. **Intrinsic alignments, simple case:** we simulate a data vector with the IA amplitude $A_{\text{IA}} = 0.5$ and redshift scaling $\eta_{\text{IA}} = 0.5$ using the baseline non-linear alignment model used in Y1KP. While we explicitly marginalize over these IA parameters in our analysis, this systematic check is still useful to monitor any potential biases due to degeneracy between the cosmological parameters and $(A_{\text{IA}}, \eta_{\text{IA}})$.

FIG. 1. Impact of assumptions and approximations adopted in our analysis, demonstrated on simulated DES (and actual external) data. Each column shows one of the cosmological parameters describing ΛCDM extensions; the dotted vertical line is the true input value of that parameter in the DES data vector (which does not necessarily coincide with the parameter values preferred by the external data). The vertical shaded bands show the marginalized 68% CL constraints in the baseline model for the DES-only simulated data (blue) and DES+external (red; note that this band is too narrow to be visible in the Ω_k column). The horizontal error bars show the inferred constraint for each individual addition to the simulated data vector which are listed in rows; they match the shaded bands for the baseline case. For subsequent rows, they show the inferred constraint for each individual addition to the simulated data vector as listed on the right. Some cases that appear inconsistent with the baseline analysis are discussed further in Sec. IV A. In cases where the prior is informative, we also include a dashed vertical line to signify the prior edge.
3. Intrinsic alignments, complex case: we simulate a data vector using a subset of the Tidal Alignment and Tidal Torquing model (hereafter TATT) from [122]. This introduces a tidal torquing term to the IA spectrum that is quadratic in the tidal field. The TATT amplitudes were set to \(A_1 = 0, A_2 = 2\) with no \(z\) dependence, as was done in [123] when validating the analysis of Y1KP.

4. Non-linear bias: we test our fiducial linear-bias assumption by simulating a data vector that models the density contrast of galaxies as

\[
\delta_g = b_1^i \delta + \frac{1}{2} b_2^i [\delta^2 - \sigma^2] \tag{11}
\]

where \(\delta\) and \(\delta_g\) are the overdensities in matter and galaxy counts respectively, and \(\sigma\) is the variance in the former quantity. Here \(i\) refers to the lens redshift bin and where \(b_1^i = \{1.45, 1.55, 1.65, 1.8, 2.0\}\) for the five bins. The \(b_2\) values used for each lens bin were estimated from fits to the Buzzard simulations: \(b_2 = 0.412 - 2.143 b_1 + 0.929 b_1^2 + 0.008 b_1^3\).

5. Magnification: we simulate a data vector that includes the contribution from magnification to \(\gamma_i\) and \(w(\theta)\). These are added in Fourier space using [124].

6. Limber approximation and RSD: we simulate a data vector that uses the exact (non-Limber) \(w(\theta)\) calculation\(^{12}\) and include the contribution from redshift space distortions [126].

More information about the implementation of these tests can be found in [123].

The results of these tests are shown in Fig. 1. The columns show the parameters describing \(\Lambda\)CDM extensions, namely \(w_0, \sigma_8, \Omega_k, N_{\text{eff}}, \Sigma_0, \) and \(\mu_0\). The shaded vertical region shows the marginalized 68% posterior confidence limit (CL) in each parameter for the baseline case. The horizontal error bars show how this marginalized posterior changes with the systematic described in the given row for the case of DES-only (blue bars) and DES+external (red bars) data. We observe that, except in the cases explained below, the marginalized posteriors are consistent with the baseline analysis in these tests.

Fig. 1 shows shifts in some DES-only 68% C.L. constraints relative to the input value shown by the dotted vertical lines. The most pronounced effect is in the DES-only case for modified gravity parameter \(\mu_0\) (and, to a slightly smaller extent, \(\Sigma_0\) and \(N_{\text{eff}}\)), which is more than 1-\(\sigma\) away from its true value of zero. Upon investigating this, we found that the bias away from the input value is caused by the interplay of two effects: 1) weak constraints, with a relatively flat likelihood profile in these parameters in certain directions, combined with 2) prior-volume effect, where the large full-parameter-space volume allowed in the direction in which the parameter is a reasonably good fit ends up dominating the total integrated posterior, resulting in a 1D marginalized posterior that is skewed away from the maximum likelihood true value. For example, with the restricted range of scales that we use for the modified gravity tests, negative values of \(\mu_0\) are an acceptable (though not the best) fit and, because of the relatively large number of combinations of other parameters that result in a good likelihood for \(-3 \leq \mu_0 \lesssim 0\), the 68% C.L. constraint on \(\mu_0\) ends up excluding the input best-fit value of zero (see Fig. 1). We have explicitly checked that removing the principal degeneracy with other parameters — in modified gravity tests, achieved by fixing the bias parameters \(b_i\) — removes the bias in \(\mu_0\). Nevertheless, because these tests imply that the DES-only constraint on this parameter would suffer from the aforementioned bias, we choose not to quote constraints on \(\mu_0\) from the DES-only data in the results below.

We also observe a bias in the DES+external constraint on \(w_a\) relative to the input value of zero. This is mostly driven by the fact that the best fit of the external data does not necessarily coincide with the cosmological parameter values assumed for the synthetic data vectors used to produce DES constraints — in fact, it is well-known that external data alone favors \(w_a < 0\) [81]. Additionally, even the DES simulated data alone mildly prefer negative \(w_a\) due to the prior-volume effect mentioned above. The resulting simulated DES+external constraint on \(w_a\) is then biased negative at greater than 68% confidence. Because the combined analysis on the real data will not be subject to the principal cause of the \(w_a\) bias observed here, we proceed with the analysis.

There are therefore two takeaways from Fig. 1:

- First, the projected 1D inferences from DES-only measurements on \(\mu_0\) are likely to be biased principally due to the prior volume effect, so we choose not to quote constraints on this parameter in the DES-only case (but still include it in the analysis throughout). We do not attempt to correct the biases in the \(w_0, w_a\) DES+external case or inflate the parameter errors to account for it; see the discussion above.

- Second and most importantly, the different assumptions considered in Fig. 1 produce consistent results with the baseline constraint for all parameters describing \(\Lambda\)CDM extensions.

B. Validation of assumptions using DES data

In addition to the tests in the previous section that constrain potential biases due to our modeling assumptions and approximations on simulated data, we implement several validation tests that modify how we analyze the actual DES data vector. In particular, we test the following assumptions:

7. Intrinsic alignments, free redshift evolution: while the fiducial analysis assumes IA to scale as a power-law in
redshift (see Sec. III B), we relax that here by assuming four uncorrelated constant amplitudes per source redshift bin.

8. Conservative scales: to gauge how our results depend on the range of angular scales used, we adopt the conservative set of (basically linear) scales used in the modified gravity extension, and apply it to the other three extensions (curvature, N_{eff}, dynamical dark energy).

9. Alternate photometric redshifts: to investigate the robustness of our results to the shape of the redshift distribution of source galaxies, we adopt the distributions obtained directly from resampling the COSMOS data, as described in [38].

For each of these alternate analysis options, we investigate how the fiducial constraints on the ΛCDM extensions parameters change. These results are presented and discussed along with our main results, near the end of Sec. V.

C. Blinding

We follow the same strategy as in Y1KP, and blind the principal cosmological results to protect against human bias. We do so by shifting axes in all plots showing the cosmological parameter constraints. Where relevant, this includes simultaneously not plotting theory predictions (including simulation outputs as “theory”) in those same plots. A different shift was applied to each of the DES, external data, and joint constraint contours in any figures made at the blinded stage. Moreover evidence ratios of the joint constraints were not read before unblinding. This was done to prevent confirmation bias based on the level of agreement between the DES and external constraints.

We unblinded once we ensured that there are no biases on the extension parameters due to systematics, as shown in Figs. I and J apart from those that have a known, statistical explanation (see Sec. IV A).

We have made two modifications to the analysis after the results were unblinded. First, we identified that the incorrect Planck data file (PLIK_LITE_V18_TTTEEE.CLIK) was used for our (ω_0, ω_a) results and reran these chains with the correct file (PLIK_LITE_V18_TT.CLIK). We verified that this modification does not lead to appreciable differences in the final constraints, though it does lead to a difference in the reported Bayesian evidence ratios for this case. Second, we adopted the GetDist code to evaluate the marginalized posteriors, as it is more suitable to handle boundary effects in the posteriors [127]. This leads to small differences in cases where the constraints are strongly informed by the prior boundaries, such as N_{eff}.

V. RESULTS

The constraints on curvature and the number of relativistic species are given in the two panels of Fig. 2. For curvature, we find

$$\Omega_k = 0.163^{+0.087}_{-0.136} \quad \text{DES Y1}$$

$$= 0.0020^{+0.0037}_{-0.0032} \quad \text{DES Y1 + External}$$

while for the number of relativistic species, the lower limit hits against our hard prior of $N_{\text{eff}} > 3.0$ so we quote only the 68% (95%) upper limits

$$N_{\text{eff}} < 5.28 (---) \quad \text{DES Y1}$$

$$< 3.28 (3.55) \quad \text{DES Y1 + External}.$$

where the dashes indicate that we do not get a meaningful upper limit from DES alone at the 95% since the constraint hits against the upper limit of our prior.

Figure 2 indicates that DES alone constrains curvature weakly, showing mild (~ 1-σ) preference for positive values of Ω_k; note also that this constraint is informed by the upper prior boundary. The DES-only constraint on N_{eff} is also relatively weak, and is fully consistent with the theoretically favored value $N_{\text{eff}} = 3.046$. Moreover, the DES Y1 data do not appreciably change the existing external-data constraints on these two parameters. The addition of the DES data to external measurement does slightly suppress N_{eff}, which can be understood as follows. The DES data prefer a lower Ω_m than the external data, leading to a slight increase in h such that the posterior distribution in $\Omega_m h^2$ is downweighted at the high values of this parameter combination. Because $\Omega_m h^3$ is highly correlated with N_{eff} — they both generate out-of-phase changes in the CMB temperature power spectrum — adding DES to external data also has the consequence of slightly suppressing N_{eff}.

We also compare the cases where the number of relativistic species is fixed at $N_{\text{eff}} = 3.046$ (the standard model) and $N_{\text{eff}} = 4.046$ (standard model, plus a single fully thermalized sterile neutrino). Preference for one model over the other is assessed using the evidence ratio,

$$R^{N_{\text{eff}}} = \frac{P(d|N_{\text{eff}} = 4.046)}{P(d|N_{\text{eff}} = 3.046)}$$

where $P(d|N_{\text{eff}})$ is the Bayesian evidence, given by the integral over the parameter space of the likelihood times the prior; see Eq. (5.1) in Y1KP. A ratio much greater than 1 would imply $N_{\text{eff}} = 4.046$ is favored and a ratio much less than 1 would imply that $N_{\text{eff}} = 3.046$ is favored. The Bayesian evidence ratios for DES alone is $R^{N_{\text{eff}}} = 0.78$, indicating no statistical preference for an extra relativistic species. For the external data alone and DES plus external data, the ratios are $R^{N_{\text{eff}}} = 0.0033$ and $R^{N_{\text{eff}}} = 0.0049$, respectively. The combined data therefore show strong evidence to support the standard value $N_{\text{eff}} = 3.046$ relative to the case with one additional relativistic species; DES does not appreciably change the result obtained using the external data alone (the apparent increase on the odds of $N_{\text{eff}} = 4$ when going from external to DES+external data is not statistically significant as the errors on R are larger than the difference between these two values.)
We now turn to dynamical dark energy. The constraints are shown in the left panel of Fig. 3. We find

\[
\begin{align*}
 w_0 &= -0.69^{+0.30}_{-0.29}, & w_a &= -0.57^{+0.93}_{-1.11} & \text{DES Y1} \\
 &= -0.95^{+0.09}_{-0.08}, & &= -0.28^{+0.37}_{-0.48} & \text{DES Y1 + Ext.}
\end{align*}
\]
The DES Y1 data alone are therefore consistent with the cosmological-constant values of \((w_0, w_a) = (-1, 0)\); they do not appreciably change the constraint from external data alone.

It is also useful to quote the value of the equation-of-state at the pivot \(w_p \equiv w(a_p)\); this is the scale factor at which the equation-of-state value and its variation with the scale factor are decorrelated, and where \(w(a)\) is best-determined. Rewriting Eq. (14) as \(w(a) = w_p + (a - a_p)w_a\), the pivot scale factor is

\[
a_p = 1 + \frac{C_{w_0w_a}}{C_{w_aw_a}}.
\]

where \(C\) is the parameter covariance matrix projected to the 2D \((w_0, w_a)\) space; the corresponding pivot redshift is of course \(z_p = 1/a_p - 1\). The pivot equation-of-state is obtained to be

\[
w_p = -0.91^{+0.19}_{-0.23} \quad \text{DES Y1}
\]

\[
= -1.01^{+0.04}_{-0.04} \quad \text{DES Y1 + External.}
\]

For the DES-only and DES + External cases, the pivot redshift is found to be \(z_p = 0.27\) and \(z_p = 0.20\), respectively. Figure 4 shows the constraints in the \((w_0, w_a)\) plane.

Do the DES data favor the introduction of two new parameters, \(w_0\) and \(w_a\), to the \(\Lambda\)CDM model? Again, we calculate the Bayesian evidence ratio

\[
R^{(w_0, w_a)} = \frac{P(d|w_0, w_a)}{P(d|w_0 = -1, w_a = 0)}.
\]

For DES data alone, we find \(R^{(w_0, w_a)} = 0.11\), while the DES+external data give \(R^{(w_0, w_a)} = 0.006\). Therefore, Bayesian evidence ratios strongly support \(\Lambda\)CDM, and do not favor introduction of the additional parameters \(w_0\) and \(w_a\).

Finally, we turn our attention to modified gravity, the extension for which DES carries the most weight. Recall from Sec. [IV A] that we have decided to quote only the constraint on the parameter \(\Sigma_0\) in the DES-only case. The constraint, shown in the right panel of Fig. [3] is

\[
\Sigma_0 = 0.43^{+0.28}_{-0.29} \quad \text{DES Y1}
\]

\[
\Sigma_0 = 0.06^{+0.08}_{-0.07}, \quad \mu_0 = -0.11^{+0.42}_{-0.46} \quad \text{DES Y1 + Ext.}
\]

(18)

the latter of which can be compared to the external-only constraint, which is \(\Sigma_0 = 0.28^{+0.13}_{-0.14}\). Thus the addition of DES data improves the constraints on \(\Sigma_0\) by almost a factor of two.

Besides the tighter constraint, DES also pushes \(\Sigma_0\) closer to its \(\Lambda\)CDM value of zero. An interesting manifestation of the multi-dimensionality of the parameter space is that the DES+external value is lower than either DES or external alone. This arises because DES favors a lower amplitude of mass fluctuations than that favored by the external data, due to the lower amplitude of the lensing signal observed by the DES. Because the lensing amplitude is proportional to the product \(\Sigma_0 S_8\), these two parameters are highly anti-correlated in DES, and the lensing amplitude suppression can be accommodated by decreasing either of them. Since external data constrain mostly \(S_8\) and constrain it to be high, the DES lensing amplitude is accommodated by shifting \(\Sigma_0\) down.

The constraints on the extensions parameters are summarized in Table [IV]. In Fig. [5] we show the constraints in the \(\Omega_m - S_8\) plane for the extended models (solid contours); for comparison, we also show the \(\Lambda\)CDM model constraints for DES data alone (dashed contours which are the same in all panels). The top right corner of each panel shows which extension the plot is referring to. For \(\Omega_m, N_e\), and \(w_0-w_a\) extensions, we see that the \(\Omega_m S_8\) contour from DES alone is only modestly increased by marginalization over the additional nuisance parameter(s). The exception is the modified-gravity case, where the \(\Omega_m S_8\) contour from DES alone is significantly larger and also pushed to smaller values of \(S_8\) because of the amplitude degeneracy between \(\Sigma_0\) and \(S_8\).

Furthermore, Fig. [6] shows the results of the systematic tests on the analysis assumptions outlined in Sec. [IV B]. The top row shows our fiducial constraints on the extensions parameters presented earlier in this Section, relative to the corresponding marginalized best-fit value in the same fiducial analysis. The next three rows show these constraints (still relative to the corresponding best-fit value in the fiducial analysis): assuming alternative treatment of intrinsic alignments; the use of conservative scales (except in the modified-gravity extension which assumes them by default); and adopting alternative photometric redshifts. The results show no significant biases in the results on the extensions parameters, providing further support that our modeling is robust with respect to our modeling of intrinsic alignments, angular scales used, and photometric redshifts.

We now compare our extended-model cosmological con-
TABLE II. Constraints on the parameters describing the extensions of the ΛCDM model that we study in this paper. All errors are 68% confidence intervals, except for N_{eff} where we show the 68% upper bound. We do not quote the DES-only constraint on μ_0, as discussed in Sec. IV A.

Curvature	DES Y1	External	DES Y1 + External
Ω_k	$0.163_{-0.136}^{+0.087}$	$0.0023_{-0.0030}^{+0.0035}$	$0.0020_{-0.0032}^{+0.0037}$

Number Rel. Species	DES Y1	External	DES Y1 + External
N_{eff}	< 5.38	< 3.32	< 3.28

Dynamical dark energy	DES Y1	External	DES Y1 + External
w_0	$-0.60_{-0.29}^{+0.30}$	$-0.96_{-0.08}^{+0.10}$	$-0.95_{-0.08}^{+0.09}$
w_a	$-0.57_{-1.11}^{+0.93}$	$-0.31_{-0.52}^{+0.38}$	$-0.28_{-0.48}^{+0.37}$
w_p	$-0.91_{-0.23}^{+0.19}$	$-1.02_{-0.04}^{+0.04}$	$-1.01_{-0.04}^{+0.04}$

Modified Gravity	DES Y1	External	DES Y1 + External
Σ_0	$0.43_{-0.29}^{+0.28}$	$0.26_{-0.13}^{+0.14}$	$0.06_{-0.07}^{+0.08}$
μ_0	$-0.16_{-0.47}^{+0.43}$	$-0.11_{-0.46}^{+0.42}$	
latter of which includes DES Y1 shear. The central values of Σ_0 and μ_0 in our DES+external analysis are very close to the corresponding values in P18. Our DES+external errors on Σ_0 (μ_0) are about 30% (80%) weaker that those in P18, which is probably chiefly due to our marginalization over neutrino mass, and possibly also to the aforementioned differences in the selected data sets. On the whole, the DES and P18 constraints that combine all data are consistent both mutually and with predictions of general relativity.

The non-trivial information that the DES Y1 data contribute to the overall constraints on modified gravity that we presented in this paper illustrate that near-future DES data should provide sharp tests of the modified-gravity paradigm.

VI. CONCLUSIONS

The results in this paper extend the work done in the Y1KP \[34\] by analyzing the models beyond flat ΛCDM and wCDM. In Y1KP, we found good agreement with the standard cosmological-constant dominated universe, and produced constraints on the matter density and amplitude of mass fluctuations comparable to those from the Planck satellite. We now extend that work into four new directions, allowing for: 1) nonzero curvature Ω_k; 2) number of relativistic species N_{eff} different from the standard value of 3.046; 3) time-varying equation-of-state of dark energy described by the parameters w_0 and w_a (alternatively, the values at the pivot redshift w_p and w_a); and 4) modified gravity described by the parameters Σ_0, μ_0 that modify the metric potentials.

For the first three of these four extensions, we find that the DES Y1 data alone are consistent with values of zero curvature, three relativistic species, and dark energy parameters corresponding to the cosmological constant model. We also find that DES Y1 data do not significantly improve the existing constraints which combine the Planck 2015 temperature and polarization measurements, BAO measurements from SDSS and BOSS, RSD measurements from BOSS, and type Ia su-
and characterization of the systematics makes our analysis the unblinding. This emphasis on pipeline validation, robustness, did not look at the final cosmological constraints until after cases we applied the parameter-level blinding procedure, and with 20 nuisance parameters, marginalizing over them to get

and

multinest

CosmoLike

are shown in Figs. 1 and 6. In nontrivial model spaces such analysis and to our theory modeling; the results of these tests

(Σ

and

Λ

CDM)

dicted by external data in

that DES data prefer a lower lensing amplitude than that pre-

Σ

CDM

external-only constraint, which can be explained by the fact

the external data gives

Σ

CDM

value

parameters describing

average

and

95%)

combination of DES and external data.

DES Y1 alone provides a stronger constraint on the fourth

extension of ΛCDM that we consider – modified gravity – giv-

Σ

CDM

value

parameter

volume

discussed in Sec.[IV A]. When combining DES with external data,

the

constraint

is shifted downwards with respect to the external-only constraint, which can be explained by the fact

data prefer a lower lensing amplitude than that predicted by external data in ΛCDM. Combining DES Y1 with the external data gives

Σ

CDM

and

μ

0

three times the area of Y1, should provide very interesting constraints on extensions of the minimal cosmological model including dark energy and modified gravity.

ACKNOWLEDGMENTS

Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungs- gemeinschaft and the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consor-
tium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium.

Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.

The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-88861, FPA2015-68048, SEV-2012-0234, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some calculations in this work were performed on the CCAPP condo of the Ruby Cluster and the Owens Cluster at the Ohio Supercomputer Center [128]. This work also used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC) [129].

[1] F. Zwicky, Helv. Phys. Acta 6, 110 (1933). [Gen. Rel. Grav.41,207(2009)].
[2] A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998) [arXiv:astro-ph/9805201 [astro-ph]].
[3] S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999) [arXiv:astro-ph/9812133 [astro-ph]].
[4] J. Frieman, M. Turner, and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008) [arXiv:0803.0982 [astro-ph]].
[5] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Phys. Rept. 530, 87 (2013) [arXiv:1201.2434 [astro-ph]].
[6] D. Huterer and D. L. Shafer, Rept. Prog. Phys. 81, 016901 (2018) [arXiv:1709.01091 [astro-ph]].
[7] W. Hu and S. Dodelson, Ann. Rev. Astron. Astrophys. 40, 171 (2002) [arXiv:astro-ph/0104141 [astro-ph]].
[8] H. Hoekstra and B. Jain, Ann. Rev. Nucl. Part. Sci. 58, 99 (2008) [arXiv:0805.0139 [astro-ph]].
[9] S. W. Allen, A. E. Evrard, and A. B. Mantz, Ann. Rev. Astron. Astrophys. 49, 409 (2011) [arXiv:1103.4829 [astro-ph.CO]].
[10] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[11] J. Martin, Comptes Rendus Physique 13, 566 (2012) [arXiv:1205.3365 [astro-ph]].
[12] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys. Rept. 566, 1 (2015) [arXiv:1407.0059 [astro-ph]].
[13] P. Bull et al., Phys. Dark Univ. 12, 56 (2016) [arXiv:1512.05356 [astro-ph]].
[14] B. Jain and P. Zhang, Phys. Rev. D78, 063503 (2008) [arXiv:0709.2375 [astro-ph]].
[15] P. Zhang, Phys. Rev. D73, 123504 (2006) [arXiv:astro-ph/0511218 [astro-ph]].
[16] R. Caldwell, A. Cooray, and A. Melchiorri, Phys. Rev. D76, 023507 (2007) [arXiv:astro-ph/0703375 [ASTRO-PH]].
[17] J. Guzik, B. Jain, and M. Takada, Phys. Rev. D81, 023503 (2010) [arXiv:0906.2221 [astro-ph]].
[18] R. Bean and M. Tangmatitham, Phys. Rev. D81, 083534 (2010) [arXiv:1002.4197 [astro-ph]].
[19] G.-B. Zhao, T. Giannantonio, L. Pogosian, A. Silvestri, D. J. Bacon, K. Koyama, R. C. Nichol, and Y.-S. Song, Phys. Rev. D81, 103510 (2010) [arXiv:1003.0001 [astro-ph]].
[20] R. Reyes, R. Mandelbaum, U. Seljak, T. Baldauf, J. E. Gunn, L. Lombriser, and R. E. Smith, Nature 464, 256 (2010) [arXiv:1003.2185 [astro-ph]].
[21] S. F. Daniel, E. V. Linder, T. L. Smith, R. R. Caldwell, A. Cooray, A. Leauthaud, and L. Lombriser, Phys. Rev. D81, 123508 (2010) [arXiv:1002.1962 [astro-ph]].
[22] G.-B. Zhao, R. G. Crittenden, L. Pogosian, and X. Zhang, Phys. Rev. Lett. 109, 171301 (2012) [arXiv:1207.3804 [astro-ph]].
[23] S. F. Daniel and E. V. Linder, JCAP 1302, 007 (2013) [arXiv:1212.0009 [astro-ph]].
[24] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A14 (2016) [arXiv:1502.01590 [astro-ph]].
[25] A. Hojjati, A. Plahn, A. Zucca, L. Pogosian, P. Brax, A.-C. Davis, and G.-B. Zhao, Phys. Rev. D93, 043531 (2016) [arXiv:1511.05962 [astro-ph]].
[26] V. Salvatelli, F. Piazza, and C. Marinoni, JCAP 1609, 027 (2016) [arXiv:1602.08283 [astro-ph]].
[27] S. Joudaki et al., Mon. Not. Roy. Astron. Soc. 471, 1259 (2017) [arXiv:1610.04606 [astro-ph]].
[28] E.-M. Mueller, W. Percival, E. Linder, S. Alam, G.-B. Zhao, [29] F. Z. and A. E. Evrard, Ann. Rev. Astron. Astrophys. 49, 409 (2011) [arXiv:1103.4829 [astro-ph.CO]].
Appendix A: CosmoSIS and CosmoLike comparison in the context of testing gravity

In the course of our analyses, we have compared the parameter estimation code CosmoSIS [120] used in Y1KP to the CosmoLike [22] code. The two codes show excellent agreement within the statistical error bars as shown in [123], giving us confidence that our analysis pipeline is robust. In the present paper, we have made substantial modifications (as described below) to the CosmoSIS pipeline, which we use as our principal analysis tool, for the case of the parametrized test of gravity. In order to validate the CosmoSIS pipeline, we compare its results to those from CosmoLike. We first give a brief description of the CosmoSIS and CosmoLike pipelines as applied to the case of parametrized tests of gravity and then show the results of this comparison.

The CosmoSIS pipeline has been used in Y1KP and is further described in [123]. To apply CosmoSIS to modified-gravity model analyses, we adopted the publicly available code MG Camb, instead of CAMB, for the computation of the matter and CMB power spectra. MG Camb doesn’t come with the parameterization of modified gravity identical to ours, so we analytically translate our (Σ_0, μ_0) parameters...
FIG. 7. Constraints on $\Omega_m, A_s, S_8, \Sigma_0$ and μ_0 using DES Y1 simulated data for CosmoSIS (blue contours) and CosmoLike (red).