WEIGHTED VECTOR-VALUED BOUNDS FOR THE SINGULAR INTEGRAL OPERATORS WITH NONSMOOTH KERNELS

GUOEN HU

ABSTRACT. Let T be a singular integral operator with non-smooth kernel which was introduced by Duong and McIntosh. In this paper, we prove that this operator and its corresponding grand maximal operator satisfy certain weak type endpoint vector-valued estimate of $L \log L$ type. As an application we established a refined weighted vector-valued bound for this operator.

1. Introduction

We will work on \mathbb{R}^n, $n \geq 1$. Let $A_p(\mathbb{R}^n)$ ($p \in (1, \infty)$) be the weight functions class of Muckenhoupt, that is, $w \in A_p(\mathbb{R}^n)$ if w is nonnegative and locally integrable, and

$$[w]_{A_p} := \sup_Q \left(\frac{1}{|Q|} \int_Q w(x)\,dx \right) \left(\frac{1}{|Q|} \int_Q w^{-\frac{1}{p-1}}(x)\,dx \right)^{p-1} < \infty,$$

where the supremum is taken over all cubes in \mathbb{R}^n, $[w]_{A_p}$ is called the A_p constant of w, see [6] for properties of $A_p(\mathbb{R}^n)$. In the last several years, there has been significant progress in the study of sharp weighted bounds with A_p weights for the classical operators in Harmonic Analysis. The study was begin by Buckley [1], who proved that if $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$, then the Hardy-Littlewood maximal operator M satisfies

$$(1.1) \quad \|Mf\|_{L^p(\mathbb{R}^n, w)} \lesssim_{n, p} [w]_{A_p}^{\frac{1}{p'\gamma}} \|f\|_{L^p(\mathbb{R}^n, w)},$$

Moreover, the estimate (1.1) is sharp since the exponent $1/(p-1)$ can not be replaced by a smaller one. Hytönen and Pérez [9] improved the estimate (1.1), and showed that

$$(1.2) \quad \|Mf\|_{L^p(\mathbb{R}^n, w)} \lesssim_{n, p} ([w]_{A_p}[w^{-\frac{1}{p-1}}]_{A_{\infty}})^{\frac{1}{p'}} \|f\|_{L^p(\mathbb{R}^n, w)},$$

where and in the following, for a weight u, $[u]_{A_{\infty}}$ is defined by

$$[u]_{A_{\infty}} = \sup_{Q \subset \mathbb{R}^n} \frac{1}{u(Q)} \int_Q M(u\chi_Q)(x)\,dx.$$

It is well known that for $w \in A_p(\mathbb{R}^n)$, $[w^{-\frac{1}{p-1}}]_{A_{\infty}} \lesssim [w]_{A_p}^{\frac{1}{p'}}$. Thus, (1.2) is more subtle than (1.1).

The sharp dependence of the weighted estimates of singular integral operators in terms of the $A_p(\mathbb{R}^n)$ constant was first considered by Petermichl [14, 15], who...
solved this question for Hilbert transform and Riesz transform. Hytönen [7] proved that for a Calderón-Zygmund operator \(T \) and \(w \in A_2(\mathbb{R}^n) \),
\[
\|Tf\|_{L^2(\mathbb{R}^n, w)} \lesssim_n \|w\|_{A_2} \|f\|_{L^2(\mathbb{R}^n, w)}.
\]
This solved the so-called \(A_2 \) conjecture. Combining the estimate (1.3) and the extrapolation theorem in [3], we know that for a Calderón-Zygmund operator \(T \),
\[
(1.4) \quad \|Tf\|_{L^p(\mathbb{R}^n, w)} \lesssim_{n, p} \|w\|_{A_p}^{\max\{1, \frac{1}{p-1}\}} \|f\|_{L^p(\mathbb{R}^n, w)}.
\]
In [12], Lerner gave a much simple proof of (1.4) by controlling the Calderón-Zygmund operator using sparse operators. Lerner [12] proved that

Theorem 1.1. Let \(T \) be a sublinear operator and \(\mathcal{M}_T \) be the corresponding grand maximal operator defined by

\[
\mathcal{M}_T f(x) = \sup_{Q \ni x} \sup_{\xi \in Q} |T(f\chi_{\mathbb{R}^n\setminus 3Q})(\xi)|.
\]

Suppose that both \(T \) and \(\mathcal{M}_T \) are bounded from \(L^1(\mathbb{R}^n) \) to \(L^{1, \infty}(\mathbb{R}^n) \). Then for \(p \in (1, \infty) \) and \(w \in A_p(\mathbb{R}^n) \), \(T \) satisfies (1.4).

Let \(p, r \in (0, \infty) \) and \(w \) be a weight. As usual, for a sequence of numbers \(\{a_k\}_{k=1}^\infty \), we denote \(\|\{a_k\}\|_r = (\sum_k |a_k|^r)^{1/r} \). The space \(L^p(l^r; \mathbb{R}^n, w) \) is defined as
\[
L^p(l^r; \mathbb{R}^n, w) = \{\{f_k\}_{k=1}^\infty : \|\{f_k\}\|_{L^p(l^r; \mathbb{R}^n, w)} < \infty\}
\]
where
\[
\|\{f_k\}\|_{L^p(l^r; \mathbb{R}^n, w)} = \left(\int_{\mathbb{R}^n} \|f_k(x)\|_r^p w(x) \, dx \right)^{1/p}.
\]
When \(w \equiv 1 \), we denote \(\|\{f_k\}\|_{L^p(l^r; \mathbb{R}^n, w)} \) by \(\|\{f_k\}\|_{L^p(l^r; \mathbb{R}^n)} \) for simplicity. Hu [10] extended Lerner’s result to the vector-valued case, proved that

Theorem 1.2. Let \(T \) be a sublinear operator and \(\mathcal{M}_T \) be the corresponding grand maximal operator. Suppose that for some \(q \in (1, \infty) \),
\[
\left| \left\{ y \in \mathbb{R}^n : \|Tf_k(y)\|_r + \|\mathcal{M}_T f_k(y)\|_r > \lambda \right\} \right| \lesssim \int_{\mathbb{R}^n} \|\{f_k(y)\}\|_r^q \log \left(1 + \frac{\|\{f_k(y)\}\|_r^q}{\lambda} \right) \, dy.
\]

Then for all \(p \in (1, \infty) \) and \(w \in A_p(\mathbb{R}^n) \),
\[
\|\{Tf_k\}\|_{L^p(l^r; \mathbb{R}^n, w)} \lesssim_{n, p} \|w\|_{A_p}^{\frac{1}{p}} \left(\|w^{-\frac{1}{p-1}}\|_{A_\infty}^{\frac{1}{p}} + \|w\|_{A_\infty} \right) \|\{f_k\}\|_{L^p(l^r; \mathbb{R}^n, w)}.
\]

Let \(T \) be a \(L^2(\mathbb{R}^n) \) bounded linear operator with kernel \(K \) in the sense that for all \(f \in L^2(\mathbb{R}^n) \) with compact support and a.e. \(x \in \mathbb{R}^n \setminus \text{supp } f \),
\[
(1.5) \quad T f(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy.
\]

where \(K \) is a measurable function on \(\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y) : x = y\} \). To obtain a weak \((1, 1)\) estimate for certain Riesz transforms, and \(L^p \) boundedness with \(p \in (1, \infty) \) of holomorphic functional calculi of linear elliptic operators on irregular domains, Duong and McIntosh [11] introduced singular integral operators with nonsmooth kernels on spaces of homogeneous type via the following generalized approximation to the identity.
Definition 1.3. A family of operators \(\{A_t\}_{t>0} \) is said to be an approximation to the identity, if for every \(t > 0 \), \(A_t \) can be represented by the kernel at in the following sense: for every function \(u \in L^p(\mathbb{R}^n) \) with \(p \in [1, \infty] \) and almost everywhere \(x \in \mathbb{R}^n \),

\[
A_t u(x) = \int_{\mathbb{R}^n} a_t(x, y) u(y) dy,
\]

and the kernel \(a_t \) satisfies that for all \(x, y \in \mathbb{R}^n \) and \(t > 0 \),

\[
|a_t(x, y)| \leq h_t(x, y) = t^{-n/s} h \left(\frac{|x - y|}{t^{1/s}} \right),
\]

where \(s > 0 \) is a constant and \(h \) is a positive, bounded and decreasing function such that for some constant \(\eta > 0 \),

\[
\lim_{r \to \infty} r^{n+\eta} h(r) = 0.
\]

Assumption 1.4. There exists an approximation to the identity \(\{A_t\}_{t>0} \) such that the composite operator \(T A_t \) has an associated kernel \(K_t \) in the sense of (1.6), and there exists a positive constant \(c_1 \) such that for all \(y \in \mathbb{R}^n \) and \(t > 0 \),

\[
\int_{|x-y| \geq c_1 t^s} K(x, y) - K_t(x, y) dx \lesssim 1.
\]

An \(L^2(\mathbb{R}^n) \) bounded linear operator with kernel \(K \) satisfying Assumption 1.4 is called a singular integral operator with nonsmooth kernel, since \(K \) does not enjoy smoothness in space variables. Duong and McIntosh [4] proved that if \(T \) is an \(L^2(\mathbb{R}^n) \) bounded linear operator with kernel \(K \), and satisfies Assumption 1.4 then \(T \) is bounded from \(L^1(\mathbb{R}^n) \) to \(L^{1, \infty}(\mathbb{R}^n) \). To consider the weighted estimates with \(A_p(\mathbb{R}^n) \) boundedness of singular integral operators with non-smooth kernel, Martell [13] introduced the following assumptions.

Assumption 1.5. There exists an approximation to the identity \(\{D_t\}_{t>0} \) such that the composite operator \(D_t T \) has an associated kernel \(K^t \) in the sense of (1.6), and there exist positive constants \(c_2 \) and \(\alpha \in (0, 1] \), such that for all \(t > 0 \) and \(x, y \in \mathbb{R}^n \) with \(|x - y| \geq c_2 t^s \),

\[
|K(x, y) - K^t(x, y)| \lesssim \frac{t^\alpha/s}{|x-y|^{n+\alpha}}.
\]

Martell [13] proved that if \(T \) is an \(L^2(\mathbb{R}^n) \) bounded linear operator, satisfies Assumption 1.4 and Assumption 1.5 then for any \(p \in (1, \infty) \) and \(w \in A_p(\mathbb{R}^n) \), \(T \) is bounded on \(L^p(\mathbb{R}^n, w) \). The first purpose of this paper is to establish the endpoint vector-valued estimates for the corresponding grand maximal operator of singular integral operators with nonsmooth kernels. Our main result can be stated as follows.

Theorem 1.6. Let \(T \) be an \(L^2(\mathbb{R}^n) \) bounded linear operator with kernel \(K \) as in (1.5). Suppose that \(T \) satisfies Assumption 1.4 and Assumption 1.5. Then for each \(\lambda > 0 \),

\[
\left| \left\{ x \in \mathbb{R}^n : \|\{T f_k(x)\}\|_{l^q} + \|\{M T f_k(x)\}\|_{l^q} > \lambda \right\} \right| \\
\lesssim \int_{\mathbb{R}^n} \|\{f_k(x)\}\|_{l^q} \frac{1}{\lambda} \log \left(1 + \|\{f_k(x)\}\|_{l^q} \right) dx.
\]
If we further assume that the kernels \(\{K^t\}_{t>0} \) in Assumption [1.5] also satisfy that for all \(t>0 \) and \(x,y \in \mathbb{R}^n \) with \(|x-y| \leq ct^{\frac{1}{2}}, \)
\[(1.9) \quad |K^t(x,y)| \lesssim t^{-\frac{n}{2}}, \]
then (1.8) is also true for \(T^* \), here and in the following, \(T^* \) is the maximal singular integral operator defined by
\[
T^* f(x) = \sup_{\epsilon>0} |T_\epsilon f(x)|,
\]
with
\[
T_\epsilon f(x) = \int_{|x-y|>\epsilon} K(x,y) f(y) dy.
\]
As a consequence of Theorem [1.6] and Theorem [1.1] we obtain the following weighted vector-valued bounds for \(T \) and \(T^* \).

Corollary 1.7. Let \(T \) be an \(L^2(\mathbb{R}^n) \) bounded linear operator with kernel \(K \) in the sense of (1.9). Suppose that \(T \) satisfies Assumption [1.1] and Assumption [1.2] Then for \(p \in (1, \infty) \) and \(w \in A_p(\mathbb{R}^n), \)
\[(1.10) \quad \|\{Tf_k\}\|_{L^p(q;\mathbb{R}^n,w)} \lesssim_n, p \left([w]_{A_p}^{\frac{1}{q}} + [w]_{A_\infty}^{\frac{1}{q}} \right) \|\{f_k\}\|_{L^p(q;\mathbb{R}^n,w)}, \]
with \(\sigma = w^{-\frac{1}{p-1}}. \) Moreover, if the kernels \(\{K^t\}_{t>0} \) in Assumption [1.5] satisfy (1.9), then the weighted estimate (1.10) also holds for \(T^* \).

Remark 1.8. We do not know if the weighted bound in (1.10) is sharp.

In what follows, \(C \) always denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. We use the symbol \(A \lesssim B \) to denote that there exists a positive constant \(C \) such that \(A \leq CB. \)
Constant with subscript such as \(C_1, \) does not change in different occurrences. For any set \(E \subset \mathbb{R}^n, \chi_E \) denotes its characteristic function. For a cube \(Q \subset \mathbb{R}^n \) and \(\lambda \in (0, \infty), \) we use \(\ell(Q) \) (diam\(Q)) to denote the side length (diam\(eter\)) of \(Q, \) and \(\lambda Q \) to denote the cube with the same center as \(Q \) and whose side length is \(\lambda \) times that of \(Q. \) For \(x \in \mathbb{R}^n \) and \(r > 0, \) \(B(x, r) \) denotes the ball centered at \(x \) and having radius \(r. \)

2. **Proof of Theorem 1.6**

We begin with some preliminary lemmas.

Lemma 2.1. Let \(q, p_0 \in (1, \infty), q \in [0, \infty) \) and \(S \) be a sublinear operator. Suppose that
\[
\|\{Sf_k\}\|_{L^{p_0}(q;\mathbb{R}^n)} \lesssim \|\{f_k\}\|_{L^{p_0}(q;\mathbb{R}^n)},
\]
and for all \(\lambda > 0, \)
\[
\left| \{x \in \mathbb{R}^n : \|\{Sf_k(x)\}\|_{L^q} \geq \lambda \} \right| \lesssim \int_{\mathbb{R}^n} \frac{\|\{f_k\}\|_{L^q}}{\lambda} \log^\theta \left(1 + \frac{\|\{f_k\}\|_{L^q}}{\lambda} \right) dx.
\]
Then for cubes \(Q_2 \subset Q_1 \subset \mathbb{R}^n, \)
\[
\frac{1}{|Q_1|} \int_{Q_1} \|\{S(f_k\chi_{Q_2})(x)\}\|_{L^{q}} dx \lesssim \|\{f_k\}\|_{L^{q}} \|L_{(\log L)^{p_0+1}, Q_2} \|_{L^{(\log L)^{p_0+1}, Q_2}},
\]
here and in the following, for $\beta \in [0, \infty)$,

$$\|f\|_{L^0, \infty} = \inf \{\lambda > 0 : \frac{1}{|Q|} \int_Q \frac{|f(y)|}{\lambda} \log^\beta \left(1 + \frac{|f(y)|}{\lambda}\right) dy \leq 1\}.$$

Proof. Lemma 2.1 is a generalization of Lemma 3.1 in [11]. Their proofs are very similar. By homogeneity, we may assume that $\|\{f_k\}\|_{L^0, \infty} = 1$, which implies that

$$\int_{Q_2} \|\{f_k(x)\}\|_{\infty} \log^{\beta+1} (1 + \|\{f_k(x)\}\|_{\infty}) dx \leq |Q_2|.$$

For each fixed $\lambda > 0$, set $\Omega_\lambda = \{x \in \mathbb{R}^n : \|\{f_k(x)\}\|_{\infty} > \lambda^{\frac{p_0-1}{2p_0}}\}$. Decompose f_k as

$$f_k(x) = f_k(x)\chi_{\Omega_\lambda}(x) + f_k(x)\chi_{\mathbb{R}^n\setminus\Omega_\lambda}(x) = f_k^1(x) + f_k^2(x).$$

It is obvious that $\|\{f_k^1\}\|_{L^\infty(\Omega_\lambda; \mathbb{R}^n)} \leq \lambda^{\frac{p_0-1}{2p_0}}$. A trivial computation leads to that

$$\int_1^\infty \left|\left\{x \in \mathbb{R}^n : \|\{S(f_k^1(x))\}\|_{\infty} > \lambda/2\right\}\right| d\lambda \lesssim \int_1^\infty \int_{Q_2} \|\{f_k^1(x)\}\|_{\infty}^p d\lambda \lesssim \int_{Q_2} \|\{f_k^1(x)\}\|_{\infty} d\lambda \int_1^\infty \lambda^{-p_0} \frac{(\log \lambda)^2}{\lambda} d\lambda \lesssim |Q_2|.$$

On the other hand,

$$\int_1^\infty \left|\left\{x \in \mathbb{R}^n : \|\{S(f_k^1(x))\}\|_{\infty} > \lambda/2\right\}\right| d\lambda \lesssim \int_1^\infty \int_{Q_2} \|\{f_k^1(x)\}\|_{\infty} \log^\beta (1 + \|\{f_k^1(x)\}\|_{\infty}) d\lambda \lesssim \int_{Q_2} \|\{f_k^1(x)\}\|_{\infty} \log^\beta (1 + \|\{f_k^1(x)\}\|_{\infty}) d\lambda \int_1^{\|\{f_k(x)\}\|_{\infty}^{2p_0}} \frac{1}{\lambda} d\lambda dx \lesssim \int_{Q_2} \|\{f_k^1(x)\}\|_{\infty} \log^{\beta+1} (1 + \|\{f_k^1(x)\}\|_{\infty}) dx.$$

Combining the estimates above then yields

$$\int_0^\infty \left|\left\{x \in Q_1 : \|\{S(f_k^1(x))\}\|_{\infty} > \lambda\right\}\right| d\lambda \lesssim \int_0^1 \left|\left\{x \in Q_1 : \|\{S(f_k^1(x))\}\|_{\infty} > \lambda\right\}\right| d\lambda + \int_1^\infty \left|\left\{x \in \mathbb{R}^n : \|\{S(f_k^1(x))\}\|_{\infty} > \lambda/2\right\}\right| d\lambda + \int_1^\infty \left|\left\{x \in \mathbb{R}^n : \|\{S(f_k^1(x))\}\|_{\infty} > \lambda/2\right\}\right| d\lambda \lesssim |Q_1|.$$

This completes the proof of Lemma 2.1.
Recall that the standard dyadic grid in \(\mathbb{R}^n \) consists of all cubes of the form
\[2^{-k}([0, 1)^n + j), \quad k \in \mathbb{Z}, \quad j \in \mathbb{Z}^n. \]

Denote the standard grid by \(\mathcal{D} \). For a fixed cube \(Q \), denote by \(\mathcal{D}(Q) \) the set of dyadic cubes with respect to \(Q \), that is, the cubes from \(\mathcal{D}(Q) \) are formed by repeating subdivision of \(Q \) and each of descendants into \(2^n \) congruent subcubes.

As usual, by a general dyadic grid \(\mathcal{D} \), we mean a collection of cube with the following properties: (i) for any cube \(Q \in \mathcal{D} \), it side length \(\ell(Q) \) is of the form \(2^k \) for some \(k \in \mathbb{Z} \); (ii) for any cubes \(Q_1, Q_2 \in \mathcal{D} \), \(Q_1 \cap Q_2 \in \{Q_1, Q_2, 0\} \); (iii) for each \(k \in \mathbb{Z} \), the cubes of side length \(2^k \) form a partition of \(\mathbb{R}^n \). By the one-third trick, (see \cite{S} Lemma 2.5), there exist dyadic grids \(\mathcal{D}_1, \ldots, \mathcal{D}_{3^n} \), such that for each cube \(Q \subset \mathbb{R}^n \), there exists a cube \(I \in \mathcal{D}_j \) for some \(j \), \(Q \subset I \) and \(\ell(I) \approx \ell(Q) \).

Let \(\{D_t\}_{t \geq 0} \) be an approximation to the identity. Associated with \(\{D_t\}_{t \geq 0} \), define the sharp maximal operator \(M_{f, D}^l \) by

\[
M_{D}^l f(x) = \sup_{B \ni x} \frac{1}{|B|} \int_B |f(y) - D_t f(y)| \, dy, \quad f \in L^p(\mathbb{R}^n), \quad p \in [1, \infty)
\]

with \(t_B = r_B^s \) and \(s \) the constant appeared in (1.6), the supremum is taken over all balls in \(\mathbb{R}^n \). This operator was introduced by Martell \cite{M} and plays an important role in the weighted estimates for singular integral operators with non-smooth kernels. Let \(q \in (1, \infty) \), \(\{f_k\} \subset L^p(\mathbb{R}^n) \) for some \(p \in (1, \infty) \), set

\[
M_{f, D}^q (\{f_k\})(x) = \sup_{B \ni x} \frac{1}{|B|} \int_B \|\|f_k(y) - D_{t_B} f_k(y)\|_q\| \, dy.
\]

Lemma 2.2. Let \(\lambda > 0 \), \(\{f_k\} \subset L^1(\mathbb{R}^n) \) with compact support, \(B \subset \mathbb{R}^n \) be a cube such that there exists \(x_0 \in B \) with \(M(\|\{f_k\}\|_{L^q}) (x_0) < \lambda \). Then, for every \(\zeta \in (0, 1) \), we can find \(\gamma > 0 \) (independent of \(\lambda, B, f, x_0 \)), such that

\[
|\{x \in B : M(\|\{f_k\}\|_{L^q}) (x) > A \lambda, M_{f, D}^q (\{f_k\})(x) \leq \gamma \lambda\}| \leq \zeta |B|,
\]

where \(A > 1 \) is a fixed constant which only depends on the approximation of the identity \(\{D_t\}_{t \geq 0} \).

Proof. Let \(A \in (1, \infty) \) be a constant which will be chosen later. For \(\lambda > 0 \), set

\[
E_{\lambda} = \{x \in B : M(\|\{f_k\}\|_{L^q}) (x) > A \lambda, M_{f, D}^q (\{f_k\})(x) \leq \gamma \lambda\}.
\]

We assume that there exists \(x_E \in E_{\lambda} \), for otherwise there is nothing to prove. As in the proof of Proposition 4.1 in \cite{M} (see also the proof of Lemma 2.6 of \cite{M}), we can verify that for each \(x \in E_{\lambda} \) and \(A = 2^{-2n} A \),

\[
M(\|\{f_k\}\|_{L^q} \chi_{A B})(x) > A \lambda.
\]

Now let \(t = r_{16B} \). For \(y \in 4B \), write

\[
|D_t (f_k \chi_{16B})(y)| \leq \int_{16B} |h_t(y, z)f_k(z)| \, dz.
\]

By Minkowski’s inequality, we deduce that

\[
\|\{D_t (f_k \chi_{16B})(y)\}\|_{L^p} \leq \int_{16B} |h_t(y, z)||\{f_k(z)\}|_{L^q} \, dz \lesssim M(\|\{f_k\}\|_{L^q})(x_0),
\]
since h is bounded on $[0, \infty)$. Also, we have that for $y \in 4B$,

$$\|\{D_t(f_k \chi_{R^n \setminus 16B})(y)\}\|_{\ell^v} \leq \sum_{l=1}^{\infty} \frac{1}{|B|} \int_{2^{l+1}B \setminus 2^{l}B} |h_t(y, z)| \|\{f_k(z)\}\|_{\ell^v} dz$$

$$\lesssim \sum_{l=1}^{\infty} \frac{1}{|B|} \int_{2^{l+1}B \setminus 2^{l}B} h(2^{l+1}) \|\{f_k(z)\}\|_{\ell^v} dz$$

$$\lesssim M(\|\{f_k\}\|_{\ell^v})(x_0).$$

This, in turn implies that for all $y \in \mathbb{R}^n$,

$$M(\|\{(D_t f_k \chi_{4B})\|_{\ell^v}\})(x) \lesssim M(\|\{f_k\}\|_{\ell^v})(x_0) \leq C_1 \lambda,$$

with $C_1 > 0$ a constant. Therefore, for each $x \in E_\lambda$,

$$M(\|\{f_k \chi_{4B}\}\|_{\ell^v})(x) \leq M(\|\{(f_k - D_t f_k \chi_{4B})\|_{\ell^v}\})(x) + M(\|\{(D_t f_k \chi_{4B})\|_{\ell^v}\})(x)$$

$$\leq M(\|\{(f_k - D_t f_k \chi_{4B})\|_{\ell^v}\})(x) + C_1 \lambda.$$

We choose $A > 1$ such that $\tilde{A} = C_1 + 1$. It then follows that

$$E_\lambda \subset \{x \in B : M(\|\{(f_k - D_t f_k \chi_{4B})\|_{\ell^v}\})(x) > \lambda\}.$$

This, via the weak type $(1, 1)$ estimate of M, tells us that

$$|E_\lambda| \leq C_2 \lambda^{-1} \int_{4B} \|h_k(y) - D_t h_k(y)\|_{\ell^v} dy \leq C_2 16^n \lambda^{-1} |B|M_2^v(\{f_k\})(x_E) \leq C_2 16^n \gamma |B|.$$

For each $\zeta \in (0, 1)$, let $\gamma = \zeta (2C_2 16^n)^{-1}$. The inequality (2.1) holds for this γ. □

As in the proof of the Fefferman-Stein inequality (see [6], pp 150-151), or the proof of Theorem 2.2 in [11]), we can deduce from Lemma 2.2 that

Corollary 2.3. Let Φ be an increasing function on $[0, \infty)$ satisfying

$$\Phi(2t) \leq C \Phi(t), \quad t \in [0, \infty).$$

$\{D_t\}_{t > 0}$ be an approximation to the identity as in Definition 1.4. Let $\{f_k\}$ be a sequence of functions such that for any $R > 0$,

$$\sup_{0 < \lambda < R} \Phi(\lambda)|\{x \in \mathbb{R}^n : M(\|\{f_k\}\|_{\ell^v})(x) > \lambda\}| < \infty.$$

Then

$$\sup_{\lambda > 0} \Phi(\lambda)|\{x \in \mathbb{R}^n : M(\|\{f_k\}\|_{\ell^v})(x) > \lambda\}| \leq \sup_{\lambda > 0} \Phi(\lambda)|\{x \in \mathbb{R}^n : M_2^v(\{f_k\})(x) > \lambda\}|.$$

Lemma 2.4. Let T be an $L^2(\mathbb{R}^n)$ bounded linear operator with kernel K as in (1.5). Suppose that T satisfies Assumption [14]. Then for any $q \in (1, \infty)$, T is bounded from $L^1(\ell^q; \mathbb{R}^n)$ to $L^{1, \infty}(\ell^q; \mathbb{R}^n)$

Proof. We only consider the case $c_1 = 2$. The other cases can be treated in the same way. For $\lambda > 0$, by applying the Calderón-Zygmund decomposition to $\|\{f_k\}\|_{\ell^v}$ at level λ, we obtain a sequence of cubes $\{Q_l\}$ with disjoint interiors, such that

$$\lambda < \frac{1}{|Q_l|} \int_{Q_l} \|\{f_k(x)\}\|_{\ell^v} dx \lesssim \lambda,$$

and $\|\{f_k(x)\}\|_{\ell^v} \lesssim \lambda$ for a.e. $x \in \mathbb{R}^n \setminus \cup_l Q_l$. For each fixed k, set

$$f^l_k(x) = f_k(x) \chi_{\mathbb{R}^n \setminus \cup_l Q_l}(x),$$

\text{for } x \in Q_l.$$
with $b_{k,l}(y) = f(x)\chi_{Q_l}(y)$, $t_{Q_l} = \{\ell(Q_l)\}^\ast$. By the fact that $\|\{f_k\}\|_{L^\infty(\nu;\mathbb{R}^n)} \lesssim \lambda$, we deduce that

$$\|\{f_k\}\|_{L^q(\nu;\mathbb{R}^n)}^q \lesssim \lambda^{q-1} \|\{f_k\}\|_{L^1(\nu;\mathbb{R}^n)}.$$

Recalling that T is bounded on $L^q(\mathbb{R}^n)$, we have that

$$\left|\left\{Tf_k(x)\right\}\right|_{\nu} \geq \lambda / 3 \right| \lesssim \lambda^{-q} \|\{f_k\}\|_{L^q(\nu;\mathbb{R}^n)} \lesssim \lambda^{-1} \|\{f_k\}\|_{L^1(\nu;\mathbb{R}^n)}.$$

On the other hand, we get from (1.5) and (1.6) that

$$\int_{\mathbb{R}^n} |v_k(y)A_{t_{Q_l}}b_{k,l}(y)|dy \leq \int_{Q_l} |b_{k,l}(z)| \left|\int_{\mathbb{R}^n} h_{t_{Q_l}}(z, y)|v_k(z)|dz\right|dy \lesssim \int_{Q_l} |b_{k,l}(z)|dz \inf_{y \in Q_l} Mv_k(y).$$

A straightforward computation involving Minkowski’s inequality gives us that

$$\left(\sum_k \|b_{k,l}\|_{L^1(\nu;\mathbb{R}^n)}^q\right)^{1/q} \leq \int_{Q_l} \left(\sum_k |f_k(y)|^q\right)^{1/q} dy \lesssim \lambda |Q_l|.$$

Therefore, by Minkowski’s inequality and the vector-valued inequality of the Hardy-Littlewood maximal operator M (see [7]),

$$\left\|\left(\sum_k \left|\sum_l A_{t_{Q_l}}b_{k,l}\right|^q\right)^{1/q}\right\|_{L^q(\mathbb{R}^n)} \leq \sup_{\|v_k\|_{L^{q'}(\nu';\mathbb{R}^n)} \leq 1} \sum_k \sum_l \int_{\mathbb{R}^n} |v_k(y)A_{t_{Q_l}}b_{k,l}(y)|dy \lesssim \sup_{\|v_k\|_{L^{q'}(\nu';\mathbb{R}^n)} \leq 1} \sum_k \sum_l \int_{Q_l} |b_{k,l}(z)|dz \inf_{y \in Q_l} Mv_k(y) \lesssim \sup_{\|v_k\|_{L^{q'}(\nu';\mathbb{R}^n)} \leq 1} \sum_k \left(\sum_l \left(\int_{Q_l} |b_{k,l}(z)|dz\right)^q\right)^{1/q} \inf_{y \in Q_l} \|Mv_k(y)\|_{L^{q'}} \lesssim \sup_{\|v_k\|_{L^{q'}(\nu';\mathbb{R}^n)} \leq 1} \int_{Q_l} \left\|Mv_k(y)\right\|_{L^{q'}} dy \lesssim \lambda \sup_{\|v_k\|_{L^{q'}(\nu';\mathbb{R}^n)} \leq 1} \int_{Q_l} \left\|Mv_k(y)\right\|_{L^{q'}} dy \lesssim \lambda^{1 - q} \|\{f_k\}\|_{L^1(\nu;\mathbb{R}^n)}.$$

This, along with the fact that T is bounded from $L^q(\mathbb{R}^n)$, leads to that

$$\|T\|_{L^q(\mathbb{R}^n)} \lesssim \lambda / 3.$$

We turn our attention to Tf_k. Let $\Omega = \cup_{l} 4nQ_l$. It is obvious that $|\Omega| \lesssim \lambda^{-1} \|\{f_k\}\|_{L^1(\nu;\mathbb{R}^n)}$. For each $x \in \mathbb{R}^n \setminus \Omega$, write

$$|Tf_k(x)| \leq \sum_l \int_{\mathbb{R}^n} |K(x; y) - K_{A_{t_{Q_l}}}(x; y)|b_{k,l}(y)|dy$$

for the Littlewood maximal operator λ.
Applying Minkowski’s inequality twice, we obtain
\[\|\{Tf_k^2(x)\}\|_{L^p} \leq \sum_l \int_{\mathbb{R}^n} |K(x; y) - K_{A_lQ_l}(x; y)| \|\{b_{k,l}(y)\}\|_{L^q} dy \]

Therefore,
\[(2.4) \quad \{x \in \mathbb{R}^n \setminus \Omega : \|\{Tf_k^2(x)\}\|_{L^p} > \lambda/3\} \]
\[\lesssim \lambda^{-1} \sum_l \int_{\mathbb{R}^n \setminus 4nQ_l} |K(x; y) - K_{A_lQ_l}(x; y)| dx \|\{b_{k,l}(y)\}\|_{L^q} dy \]
\[\lesssim \lambda^{-1} \|\{f_k\}\|_{L^q(r^3; \mathbb{R}^n)}. \]
Combining the inequalities (2.2)-(2.4) leads to our conclusion. \(\square \)

Lemma 2.5. Let \(T \) be the singular integral operator in Theorem 1.2, then for each \(N \in \mathbb{R}^n \) and functions \(\{f_k\}_{k=1}^N \subset L^p(\mathbb{R}^n) \) for some \(p_0 \in [1, \infty) \),
\[M^2_p(Tf_k)(x) \lesssim M_{L \log L}(\|\{f_k\}\|_{L^q}(x) + \|Mf_k(x)\|_{L^q}). \]

Proof. Let \(x \in \mathbb{R}^n \), \(B \) be a ball containing \(x \) and \(t_B = r_B^2 \). Write
\[\frac{1}{|B|} \int_B \|\{(Tf_k(y) - D_{t_B}Tf_k(y))\}\|_{L^p} dy \leq E_1 + E_2 + E_3, \]
with
\[E_1 = \frac{1}{|B|} \int_B \|\{T(f_k\chi_{4B}(y))\}\|_{L^q} dy, \]
\[E_2 = \frac{1}{|B|} \int_B \|\{D_{t_B}T(f_k\chi_{4B}(y))\}\|_{L^q} dy, \]
and
\[E_3 = \frac{1}{|B|} \int_B \|\{(Tf_k\chi_{R^n\setminus4B}) - D_{t_B}T(f_k\chi_{R^n\setminus4B})(y)\}\|_{L^q} dy. \]
Recall that \(T \) is bounded on \(L^2(\mathbb{R}^n) \) (and so is bounded on \(L^q(\mathbb{R}^n) \)). Thus by Lemma 2.1 and Lemma 2.4
\[E_1 \lesssim \|\|\{f_k\}\|_{L^q}\|_{L^p} log L, 4B \lesssim M_{L \log L}(\|\{f_k\}\|_{L^q}(x)). \]
On the other hand, it follows from Minkowski’s inequality that
\[\|\{D_{t_B}T(f_k\chi_{4B})(y)\}\|_{L^q} \lesssim \int_{\mathbb{R}^n} |h_{t_B}(y, z)| \|\{T(f_k\chi_{4B})(z)\}\|_{L^q} dz \]
Let
\[F_0 = \int_{16B} |h_{t_B}(y, z)| \|\{T(f_k\chi_{4B})(z)\}\|_{L^q} dz \]
and for \(j \in \mathbb{N} \),
\[F_j = \int_{2^{j+5}B \setminus 2^{j+4}B} |h_{t_B}(y, z)| \|\{T(f_k\chi_{4B})(z)\}\|_{L^q} dz. \]
By the estimate (1.7) and Lemma 2.1 we know that
\[F_0 \leq \|\|\{f_k\}\|_{L^q}\|_{L^p} log L, 4B, \]
and
\[F_j \leq \frac{1}{|B|} h(2^j) \int_{2^{j+5}B} \|\{T(f_k\chi_{4B})(z)\}\|_{L^q} dz \lesssim 2^{-\delta j} \|\{f_k\}\|_{L^q} \|\{f_k\}\|_{L^p} log L, 4B. \]
This, in turn gives us that

\[E_2 \lesssim \|\{f_k\}\|_{L^q} \log L, AB. \]

Finally, Assumption 1.3 tells us that for each \(k\) and \(y \in B\),

\[|T(f_k\chi_{\mathbb{R}^n \setminus AB})(y) - D_{tb}T(f_k\chi_{\mathbb{R}^n \setminus AB}(y)| \lesssim Mf_k(x), \]

which implies that

\[E_3 \lesssim \|\{Mf_k(x)\}\|_t. \]

Combining the estimates for \(E_1, E_2\) and \(E_3\) then leads to our desired conclusion. \(\Box\)

Let \(\mathcal{D}\) be a dyadic grid. Associated with \(\mathcal{D}\), define the sharp maximal function \(M^\sharp_{\mathcal{D}}\) as

\[M^\sharp_{\mathcal{D}}f(x) = \sup_{Q \subset \mathcal{D}} \inf_{c \in \mathbb{C}} \frac{1}{|Q|} \int_Q |f(y) - c| dy. \]

For \(\delta \in (0, 1)\), let \(M^\sharp_{\mathcal{D}, \delta}f(x) = [M^\sharp_{\mathcal{D}}(|f|^\delta)(x)]^{1/\delta}\). Repeating the argument in [16, p. 153], we can verify that if \(\Phi\) is a increasing function on \([0, \infty)\) which satisfies that

\[\Phi(2t) \leq C\Phi(t), \quad t \in [0, \infty), \]

then

\[(2.5) \quad \sup_{\lambda > 0} \Phi(\lambda)\{x \in \mathbb{R}^n : |h(x)| > \lambda\} \lesssim \sup_{\lambda > 0} \Phi(\lambda)\{x \in \mathbb{R}^n : M^\sharp_{\mathcal{D}, \lambda}h(x) > \lambda\}, \]

provided that \(\sup_{\lambda > 0} \Phi(\lambda)\{x \in \mathbb{R}^n : M_{\mathcal{D}, \lambda}h(x) > \lambda\} < \infty\).

Lemma 2.6. Under the assumption of Theorem 1.2, for each \(\lambda > 0\),

\[\{x \in \mathbb{R}^n : \{\{MTf_k(x)\}\}\|_t > \lambda\} \lesssim \int_{\mathbb{R}^n} \frac{\|\{f_k\}\|_t}{\lambda} \log \left(1 + \frac{\|\{f_k\}\|_t}{\lambda}\right) dx. \]

Proof. By the well known one-third trick (see [5, Lemma 2.5]), we only need to prove that, for each dyadic grid \(\mathcal{D}\), the inequality

\[(2.6) \quad \{\{x \in \mathbb{R}^n : \{M_{\mathcal{D}}(Tf_k(x))\}\|_t > 1\} \}
\]

\[\lesssim \int_{\mathbb{R}^n} \|\{f_k(x)\}\|_t \log \left(1 + \|\{f_k(x)\}\|_t\right) dx. \]

holds when \(\{f_k\}\) is finite. As in the proof of Lemma 8.1 in [2], we can very that for each cube \(Q \in \mathcal{D}\), \(\delta \in (0, 1)\),

\[\inf_{c \in \mathbb{C}} \left(\frac{1}{|Q|} \int_Q \|\{M_{\mathcal{D}}f_k(y)\}\|_t - c\|_t^\delta \right)^{\frac{1}{\delta}} \lesssim \left(\frac{1}{|Q|} \int_Q \|\{M_{\mathcal{D}}(f_k\chi_Q)\}\|_t^\delta \right)^{\frac{1}{\delta}} \lesssim \|\{f_k\chi_Q\}\|_t, \]

where in the last inequality, we invoked the fact that \(M_{\mathcal{D}}\) is bounded from \(L^1(\mathbb{R}^n)\) to \(L^{1, \infty}(l^q, \mathbb{R}^n)\). This, in turn, implies that

\[(2.7) \quad M^\sharp_{\mathcal{D}, \delta}(\|\{M_{\mathcal{D}}f_k\}\|_t)(x) \lesssim M_{\mathcal{D}}(\|\{f_k\}\|_t)(x). \]
Let $\Phi(t) = t \log^{-1}(1 + t^{-1})$. It follows from (2.5), (2.7), (2.1) and Lemma 2.6 that

$$\left\{ x \in \mathbb{R}^n : \| \{ M_{T_f} f_k(x) \} \|_\nu > 1 \right\}$$

$$\lesssim \sup_{t > 0} \Phi(t) \left\{ x \in \mathbb{R}^n : M_{T_f}^2 \| \{ M_{T_f} f_k \} \|_\nu(x) > t \right\}$$

$$\lesssim \sup_{t > 0} \Phi(t) \left\{ x \in \mathbb{R}^n : M \| \{ T f_k \} \|_\nu(x) > \lambda \right\}$$

$$\lesssim \sup_{t > 0} \Phi(t) \left\{ x \in \mathbb{R}^n : M_{\log L}^2 \| \{ T f_k \} \|_\nu(x) > t \right\}$$

$$\lesssim \sup_{t > 0} \Phi(t) \left\{ x \in \mathbb{R}^n : M_{L \log L} \| \{ f_k \} \|_\nu(x) + \| M f_k(x) \|_\nu > t \right\}$$

$$\lesssim \int_{\mathbb{R}^n} \| \{ f_k(x) \} \|_\nu \log\left(1 + \| \{ f_k(x) \} \|_\nu\right) dx,$$

where in the last inequality, we have invoked the fact that M is bounded from $L^1(I_\nu; \mathbb{R}^n)$ to $L^{1, \infty}(I_\nu; \mathbb{R}^n)$ (see [5]). This establish (2.6) and completes the proof of Lemma 2.6.

Proof of Theorem 1.6 Let $q \in (1, \infty)$. We know by Lemma 2.4 that T is bounded from $L^1(I_\nu; \mathbb{R}^n)$ to $L^{1, \infty}(I_\nu; \mathbb{R}^n)$. On the other hand, it was proved in [4] (see also [13]) that under the assumption of Theorem 1.6

$$T^* f(x) \leq MT f(x) + M f(x).$$

Thus by Lemma 2.6 for each $\lambda > 0$,

$$\left\{ x \in \mathbb{R}^n : \| \{ T^* f_k(x) \} \|_\nu > \lambda \right\} \lesssim \int_{\mathbb{R}^n} \| \{ f_k(x) \} \|_\nu \log\left(1 + \| \{ f_k(x) \} \|_\nu\right) dx.$$

Therefore, it suffices to consider M_T and M_{T^*}. On the other hand, it was proved in that maximal operator $M_{L \log L}$ satisfies that

$$\left\{ x \in \mathbb{R}^n : \| \{ M_{L \log L} f_k(x) \} \|_\nu > \lambda \right\}$$

$$\lesssim \int_{\mathbb{R}^n} \| \{ f_k(x) \} \|_\nu \log\left(1 + \| \{ f_k(x) \} \|_\nu\right) dx.$$

Thus, by Lemma 2.6 our proof is now reduced to proving that the inequalities

(2.8) $\quad \mathcal{M}_T f(x) \lesssim MT f(x) + M_{L \log L} f(x).$

and

(2.9) $\quad \mathcal{M}_{T^*} f(x) \lesssim MT f(x) + M_{L \log L} f(x).$

hold. Without loss of generality, we assume that $c_2 > 1$.

Let $Q \subset \mathbb{R}^n$ be a cube and $x, \xi \in Q$. Set $t_Q = \frac{1}{c_2 \sqrt{n} \Omega(Q)}$ and write

$$T(f \chi_{\mathbb{R}^n \setminus \delta_3 Q})(\xi) = D_{t_Q} T f(\xi) - D_{t_Q} T(f \chi_{\delta_3 Q})(\xi)$$

$$+ \left(T(f \chi_{\mathbb{R}^n \setminus \delta_3 Q})(\xi) - D_{t_Q} T(f \chi_{\mathbb{R}^n \setminus \delta_3 Q})(\xi) \right).$$
A trivial computation involving (1.8) leads to that

\[|D_{tQ} T f(\xi)| \lesssim |Q|^{-1} \sum_{j=1}^{\infty} \int_{2^{j-1}n t_Q^\frac{1}{2} < |\xi - y| \leq 2^j n t_Q^\frac{1}{2}} h \left(\frac{|\xi - y|}{t_Q^\frac{1}{2}} \right) |T f(y)| dy \]

+ |Q|^{-1} \int_{|\xi - y| \leq 2n t_Q^\frac{1}{2}} |T f(y)| dy

\[\lesssim |Q|^{-1} \sum_{j=1}^{\infty} \int_{2^{j-1}n t_Q^\frac{1}{2} < |x - y| \leq 2^j n t_Q^\frac{1}{2}} h \left(\frac{|x - y|}{2 t_Q^\frac{1}{2}} \right) |T f(y)| dy \]

+ |Q|^{-1} \int_{|x - y| \leq 3n t_Q^\frac{1}{2}} |T f(y)| dy

\[\lesssim M T f(x). \]

On the other hand, it follows from Lemma 2.11 that

\[|D_{tQ} T (f \chi_{3Q})(\xi)| \lesssim \frac{1}{|Q|} \sum_{j=1}^{\infty} \int_{2^{j-1}n t_Q^\frac{1}{2} < |x - y| \leq 2^j n t_Q^\frac{1}{2}} h \left(\frac{|x - y|}{2 t_Q^\frac{1}{2}} \right) |T (f \chi_{3Q})(y)| dy \]

+ |Q|^{-1} \int_{|x - y| \leq 3n t_Q^\frac{1}{2}} |T (f \chi_{3Q})(y)| dy

\[\lesssim M_L \log L f(x). \]

Finally, Assumption 1.3 tells us that

\[|T (f \chi_{R^n \setminus 3Q})(\xi) - D_{tQ} T (f \chi_{R^n \setminus 3Q})(\xi)| \lesssim \int_{R^n \setminus 3Q} |K(\xi, y) - K^{tQ}(\xi, y)||f(y)| dy \]

\[\lesssim t_Q^\alpha \int_{R^n \setminus 3Q} \frac{1}{|\xi - y|^{n+\alpha}} |f(y)| dy \]

\[\lesssim M f(x). \]

Combining the estimates above leads to (2.8).

It remains to prove (2.9). Let \(x, \xi \in Q \). Observe that \(\operatorname{supp} \chi_{R^n \setminus 3Q}(y) \subset \{ y : |y - x| \geq \ell(Q) \} \).

(2.10) \[T^*(f \chi_{R^n \setminus 3Q})(\xi) \leq |T (f \chi_{R^n \setminus 3Q})(\xi)| + \sup_{\epsilon \geq \ell(Q)} |T_\epsilon f(\xi)|. \]

Now let \(\epsilon \geq \ell(Q) \). Write

\[T_\epsilon (f \chi_{R^n \setminus 3Q})(\xi) = D_{(\epsilon/c^2)^*} T f(\xi) - D_{(\epsilon/c^2)^*} T (f \chi_{3Q})(\xi) + (T_\epsilon (f \chi_{R^n \setminus 3Q})(\xi) - D_{\epsilon^*} T (f \chi_{R^n \setminus 3Q})(\xi)). \]

As in the argument for \(M_T \), we can verify that

\[|D_{(\epsilon/c^2)^*} T f(\xi)| \lesssim M(T f)(x) \]

and

\[|D_{(\epsilon/c^2)^*} T (f \chi_{3Q})(\xi)| \lesssim M_L \log L f(x). \]
As in [4], write
\[
T_\epsilon(f \chi_{R^n \setminus 3Q})(\xi) - D_\epsilon^s T(f \chi_{R^n \setminus 3Q})(\xi) = \int_{|\xi - y| \leq \epsilon} K^{(\epsilon / c_2)^s}(\xi, y) f(y) \chi_{R^n \setminus 3Q}(y) dy \\
+ \int_{|\xi - y| > \epsilon} (K(\xi, y) - K^{(\epsilon / c_2)^s}(\xi, y)) f(y) \chi_{R^n \setminus 3Q}(y) dy.
\]

The fact that \(K^{(\epsilon / c_2)^s}\) satisfies the size condition (1.9), implies that
\[
\left| \int_{|\xi - y| \leq \epsilon} K^{(\epsilon / c_2)^s}(\xi, y) f(y) dy \right| \lesssim \epsilon^{-n} \int_{|\xi - y| < \epsilon} |f(y)| dy \lesssim M f(x).
\]

On the other hand, by the Assumption 1.5, we obtain that
\[
\left| \int_{|\xi - y| > \epsilon} (K(\xi, y) - K^{(\epsilon / c_2)^s}(\xi, y)) f(y) \chi_{R^n \setminus 3Q}(y) dy \right| \lesssim M f(x).
\]

Therefore,
\[
\sup_{\epsilon \geq \ell(Q)} |T_\epsilon(f \chi_{R^n \setminus 3Q})(\xi)| \lesssim M T f(x) + M L \log L f(x),
\]

which, via the estimates (2.8) and (2.10), shows that
\[
M_{T^*} f(x) \lesssim M T f(x) + M L \log L f(x).
\]

This completes the proof of Theorem 1.6. \(\square\)

References

[1] S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), 253-272.
[2] D. Cruz-Uribe, SFO, J. Martell and C. Pérez, Sharp weighted estimates for classical operators, Adv. Math. 229 (2012), 408-441.
[3] O. Dragicević, L. Grafakos, M. Pereyra and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), 73-91.
[4] X. T. Duong and A. McIntosh, Singular integral operators with nonsmooth kernels on irregular domains, Rev. Mat. Iberoamericana 15 (1999), 233-265.
[5] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
[6] L. Grafakos, Modern Fourier Analysis, GTM250, 2nd Edition, Springer, New York, 2008.
[7] T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. 175 (2012), 1473-1506.
[8] T. Hytönen, M. T. Lacey and C. Pérez, Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc. 45 (2013), 529-540.
[9] T. Hytönen and C. Pérez, Sharp weighted bounds involving \(A_\infty\), Anal. PDE. 6 (2013), 777-818.
[10] G. Hu, Weighted vector-valued estimates for a non-standard Calderón-Zygmund operator, arXiv:1602.07830.
[11] G. Hu and D. Yang, Weighted estimates for singular integral operators with nonsmooth kernels, J. Aust. Math. Soc. 85 (2008), 377-417.
[12] A. K. Lerner, On pointwise estimate involving sparse operator, New York J. Math. 22 (2016), 341-349.
[13] J. M. Martell, Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math. 161 (2004), 113-145.
[14] S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical \(A_p\) characteristic, Amer. J. Math. 129 (2007), 1355-1375.
[15] S. Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (4) (2008), 1237-1249.
[16] E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ. 1993.
Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, P. R. China

E-mail address: guoenxx@163.com