Linear and rational factorization of tropical polynomials

Bo Lin \(^1\)
Ngoc Mai Tran \(^2\)

\(^1\) School of Mathematics, Georgia Institute of Technology
\(^2\) Dept. of Mathematics, University of Texas, Austin

Emory University
Algebra Seminar
February 25th, 2020

arXiv:1707.03332v3
Outline

- Background: factorization of tropical polynomials is hard;
- Tools: Cayley trick, signed Minkowski sum of polytopes;
- Main results and algorithms;
- Examples: homogeneous linear polynomials and more.
Tropical algebra

Definition

On the set $\mathbb{R} = \mathbb{R} \cup \{-\infty\}$ we define two commutative binary operations \oplus and \odot as follows: for $a, b \in \mathbb{R}$ and $c \in \mathbb{R}$,

$$a \oplus b = \max(a, b), \quad a \odot b = a + b.$$

$$c \oplus -\infty = c, \quad c \odot -\infty = -\infty.$$

The triple $(\mathbb{R}, \oplus, \odot)$ is called the tropical semiring.
Tropical algebra

Definition

On the set $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}$ we define two commutative binary operations \oplus and \odot as follows: for $a, b \in \mathbb{R}$ and $c \in \overline{\mathbb{R}}$,

$$a \oplus b = \max(a, b), \quad a \odot b = a + b.$$

$$c \oplus -\infty = c, \quad c \odot -\infty = -\infty.$$

The triple $(\overline{\mathbb{R}}, \oplus, \odot)$ is called the tropical semiring.

Remark

We use the so-called max-plus operations for convenience. There is an equivalent way to define the tropical semiring: replace \max by \min and $-\infty$ by ∞.

B. Lin & N. Tran
Linear and rational factorization of tropical polynomials
Tropical polynomials

Definition

A tropical polynomial is a function $f : \mathbb{R}^n \to \mathbb{R}$, such that for any $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$,

$$f(x) = \bigoplus_{a \in A} \left(f_a \odot \bigotimes_{i=1}^{n} x_i^{a_i} \right) = \max_{a \in A} \left(f_a + \sum_{i=1}^{n} a_i x_i \right)$$

where $A \subseteq \mathbb{N}^n$ is finite and $f_a \in \mathbb{R}$ for $a \in A$.
Tropical polynomials

Definition

A tropical polynomial is a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), such that for any \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \),

\[
 f(x) = \bigoplus_{a \in A} \left(f_a \odot \bigotimes_{i=1}^{n} x_i^{\circ a_i} \right) = \max_{a \in A} \left(f_a + \sum_{i=1}^{n} a_i x_i \right)
\]

where \(A \subseteq \mathbb{N}^n \) is finite and \(f_a \in \mathbb{R} \) for \(a \in A \).

Remark

We ignore the ground field \(K \), and directly take valuations as the coefficients of each term in the polynomial.
Roots of tropical polynomials

Definition

Let $f(x)$ be a tropical polynomial. A point $x \in \mathbb{R}^n$ is a root of f if the maximum is attained at least twice in the evaluation of $f(x)$.
Roots of tropical polynomials

Definition

Let $f(x)$ be a tropical polynomial. A point $x \in \mathbb{R}^n$ is a root of f if the maximum is attained at least twice in the evaluation of $f(x)$.

Definition

Let f be a tropical polynomial. The tropical hypersurface $T(f)$ is the set of all roots of f.
Roots of tropical polynomials

Definition

Let $f(x)$ be a tropical polynomial. A point $x \in \mathbb{R}^n$ is a root of f if the maximum is attained at least twice in the evaluation of $f(x)$.

Definition

Let f be a tropical polynomial. The tropical hypersurface $T(f)$ is the set of all roots of f.

Example

Suppose $f(x, y) = \max(x, y, 0)$. The graph of $T(f)$ is the right figure.
There are three levels of equivalence between two tropical polynomials f and g.

1. $f =_1 g$: f and g have the same terms and coefficients;
2. $f =_2 g$: $f(x) = g(x)$ for all $x \in \mathbb{R}^n$;
3. $f =_3 g$: $T(f) = T(g)$.

Example:

$$\max(2x, 0) = \max(2x, x - 1, 0)$$

for all $x \in \mathbb{R}$. Then

$$\max(2x, 0) = 2\max(2x, x - 1, 0).$$

In addition, they both equal

$$\max(3x + 2, x + 1, 2),$$

as all of them have a unique root $x = 0$.

In this project, we focus on $=_2$, i.e. the equivalence of polynomial functions.
Equivalence of tropical polynomials

There are three levels of equivalence between two tropical polynomials f and g.

1. $f =_1 g$: f and g have the same terms and coefficients;
2. $f =_2 g$: $f(x) = g(x)$ for all $x \in \mathbb{R}^n$;
3. $f =_3 g$: $T(f) = T(g)$.

Example

$max(2x, 0) = max(2x, x - 1, 0)$ for all $x \in \mathbb{R}$. Then $max(2x, 0) =_2 max(2x, x - 1, 0)$. In addition, they both $=_3 max(3x + 2, x + 1, 2)$, as all of them have a unique root $x = 0$.

In this project, we focus on $=_2$, i.e. the equivalence of polynomial functions.

B. Lin & N. Tran
Linear and rational factorization of tropical polynomials
Like ordinary polynomials, we also want to write tropical polynomials as (tropical) product of other tropical polynomials.
Fundamental theorem of tropical algebra

Like ordinary polynomials, we also want to write tropical polynomials as (tropical) product of other tropical polynomials. In the univariate case, we have the following result.

Theorem (Fundamental theorem of tropical algebra)

Every tropical polynomial in one variable with rational coefficients equals to a product of linear tropical polynomials with rational coefficients as functions.
Like ordinary polynomials, we also want to write tropical polynomials as (tropical) product of other tropical polynomials. In the univariate case, we have the following result.

Theorem (Fundamental theorem of tropical algebra)

Every tropical polynomial in one variable with rational coefficients equals to a product of linear tropical polynomials with rational coefficients as functions.

Example

\[f_1(x) = \max(4x, 3x + 2, 2x + 1, -3) =_2 \max(x, 2) + \max(x, -1) + 2 \max(x, -2). \]
Multivariate: factorization is NP-complete

Deciding whether a general tropical polynomial is factorizable is hard.
Deciding whether a general tropical polynomial is factorizable is hard.

Theorem (Kim-Roush ’05, Grigg ’07)

The factorization of multivariate tropical polynomials is NP-complete.
Newton polytope and regular subdivision

Definition

Let $f(x) = \max_{a \in A} (f_a + \sum_{i=1}^{n} a_ix_i)$. The Newton polytope of f, denoted by $\text{Newt}(f)$, is the convex hull of \{(a_1, a_2, \ldots, a_n) | a \in A\}.

$\text{Newt}(f)$ is a lattice polytope in \mathbb{R}^n. It tells us what terms could appear in the polynomial.
Newton polytope and regular subdivision

Definition

Let $f(x) = \max_{a \in A} (f_a + \sum_{i=1}^{n} a_i x_i)$. The Newton polytope of f, denoted by $\text{Newt}(f)$, is the convex hull of $\{(a_1, a_2, \ldots, a_n) | a \in A\}$.

$\text{Newt}(f)$ is a lattice polytope in \mathbb{R}^n. It tells us what terms could appear in the polynomial.

Remark

The regular subdivision of $\text{Newt}(f)$ induced by the weights f_a provides important information of $T(f)$.
Example: regular subdivision of $\text{Newt}(f_2)$

Let $f_2(x_1, x_2) = \max(2x_1 - 3, 2x_2 - 1, x_1 + x_2, x_1, x_2 + 1, 0)$. Then $\text{Newt}(f_2) = \text{Conv}((0, 0), (1, 0), (0, 1), (0, 2), (1, 1), (2, 0))$. If we choose the weight vector as $w = (-3, -1, 0, 0, 1, 0)$, the regular subdivision of $\text{Newt}(f_2)$ is
Duality between $T(f)$ and the regular subdivision of Newt(f)

Figure 1: Duality between $T(f_2)$ and $\Delta_{\text{Newt}(f_2)}$
Duality between $T(f)$ and the regular subdivision of $\text{Newt}(f)$

Proposition

Let Δ_f be the regular subdivision of $\text{Newt}(f)$ w.r.t. the vector f_a. Then the tropical hypersurface $T(f)$ is the polyhedral complex dual to Δ_f.
Duality between $T(f)$ and the regular subdivision of Newt(f)

Proposition

Let Δ_f be the regular subdivision of Newt(f) w.r.t. the vector f_a. Then the tropical hypersurface $T(f)$ is the polyhedral complex dual to Δ_f.

Remark

This result tells us that regular subdivision is a useful tool to study tropical polynomials.
Definition

A tropical polynomial f is a unit if the induced regular subdivision on $\text{Newt}(f)$ is trivial. For a set of lattice polytopes S in \mathbb{R}^n, an S-unit f is a unit such that $\text{Newt}(f)$ is a translation of some polytope in S.

A tropical polynomial f is called S-factorizable if it equals to a tropical product of S-units. And f is called S-rational if there exist a polynomial g and an S-factorizable polynomial h such that $f \circ g = h$. f is called strong S-rational if in addition g is also S-factorizable.
Definition

*A tropical polynomial f is a unit if the induced regular subdivision on $\text{Newt}(f)$ is trivial. For a set of lattice polytopes S in \mathbb{R}^n, an S-unit f is a unit such that $\text{Newt}(f)$ is a translation of some polytope in S.**

Definition

A tropical polynomial f is called S-factorizable if it equals to a tropical product of S-units. And f is called S-rational if there exist a polynomial g and an S-factorizable polynomial h such that $f \odot g = h$. f is called strong S-rational if in addition g is also S-factorizable.
Cayley trick and Newton polytope

The polyhedral version of the Cayley trick is the following

Theorem (Sturmfels ’94 (Thm 5.1))

Let S be a set of polytopes. Then f is S-factorizable if and only if Δ_f is a regular mixed subdivision of $\text{Newt}(f)$ with respect to a sequence of possibly repeated polytopes in S.
Cayley trick and Newton polytope

The polyhedral version of the Cayley trick is the following

Theorem (Sturmfels ’94 (Thm 5.1))

Let S be a set of polytopes. Then f is S-factorizable if and only if Δ_f is a regular mixed subdivision of Newt(f) with respect to a sequence of possibly repeated polytopes in S.

So we can consider the decomposition of a polytope into Minkowski sums of other polytopes. But this is hard, too.

Theorem (Gao-Lauder ’01)

The decomposition problem of integral polygons is NP-complete.
There are results that work in special cases:

- Gritzmann-Sturmfels (’93): d-dimensional polytopes with up to n vertices;
- Fukuda (’04): zonotopes;
- Fukuda-Weibel (’05): V-polytopes.
In this work, we present a large class of polytopes S such that the set of S-factorizable tropical polynomials has unique and local factorization. Here local means that if each cell of Δ_f is a Minkowski sum of some polytopes in S, then f is S-factorizable.
Our contribution

In this work, we present a large class of polytopes S such that the set of S-factorizable tropical polynomials has unique and local factorization. Here local means that if each cell of Δ_f is a Minkowski sum of some polytopes in S, then f is S-factorizable. We also present algorithms to determine whether a tropical polynomials f is S-factorizable or S-rational. And if the answer is positive, we compute the decomposition (though with exponential time complexity).
Example: S_{K_3}-rational but not S_{K_3}-factorizable

For each positive integer n, our first choice of S is the standard simplex $\text{Conv}(e_i \mid 1 \leq i \leq n)$ and its faces, denoted by S_{K_n}. which are the Newton polytopes of the tropical polynomials of the form $\max(x_1 + c_1, x_2 + c_2, \ldots, x_n + c_n)$, where each $c_i \in \mathbb{R}$.
Example: S_{K_3}-rational but not S_{K_3}-factorizable

For each positive integer n, our first choice of S is the standard simplex $\text{Conv}(e_i \mid 1 \leq i \leq n)$ and its faces, denoted by S_{K_n}. which are the Newton polytopes of the tropical polynomials of the form $\max(x_1 + c_1, x_2 + c_2, \ldots, x_n + c_n)$, where each $c_i \in \overline{\mathbb{R}}$.

Example

$\tilde{f}_2(x) = \max(2x_1 - 3, 2x_2 - 1, x_1 + x_2, x_1 + x_3, x_2 + x_3 + 1, 2x_3)$ is not S_{K_3}-factorizable, but \tilde{f}_2 is S_{K_3}-rational. In fact

$$\tilde{f}_2 + \max(x_1 - 1, x_2, x_3) = \max(x_1 - 1, x_2 - 2, x_3)$$

$$+ \max(x_1 - 3, x_2, x_3) + \max(x_1, x_2 + 1, x_3)$$

$$= \max(3x_3, x_2 + 2x_3 + 1, 2x_2 + x_3 + 1, 3x_2 - 1, x_1 + 2x_3, x_1 + x_2 + x_3, x_1 + 2x_2, 2x_1 + x_3 - 1, 2x_1 + x_2 - 1, 3x_1 - 4).$$
Example: \tilde{f}_2

Note that \tilde{f}_2 is the homogenization of f_2. Figure 2 shows the rational factorization:

Figure 2: The rational factorization of \tilde{f}_2
Signed Minkowski sum

The S-rational examples motivate us to consider the following.

Definition

Let P, Q be two nonempty polytopes of \mathbb{R}^n. If there exists a nonempty polytope $R \subset \mathbb{R}^n$ such that $P = Q + R$, then we define the **Minkowski difference** $P - Q$ as R.
Signed Minkowski sum

The S-rational examples motivate us to consider the following.

Definition

Let P, Q be two nonempty polytopes of \mathbb{R}^n. If there exists a nonempty polytope $R \subset \mathbb{R}^n$ such that $P = Q + R$, then we define the **Minkowski difference** $P - Q$ as R.

Definition

Let P_1, P_2, \cdots, P_m be non-empty polytopes in \mathbb{R}^n, $c_1, c_2, \cdots, c_m \in \mathbb{Z}$ with at least one being positive. If there exists a polytope P' such that

$$\sum_{c_i < 0} (-c_i) P_i + P' = \sum_{c_i > 0} c_i P_i,$$

then the signed Minkowski sum $\sum_{i=1}^m c_i P_i$ is defined to be P'.
H-representations and b-vectors

We focus on the H-representation of polytopes.

Definition

For matrix $H \in \mathbb{Z}^{r \times n}$ whose rows are primitive vectors, and a vector $b \in \mathbb{R}^r$, let $P_{H,b}$ denote the possibly empty polytope given by

$$P_{H,b} = \{ x \in \mathbb{R}^n \mid Hx \leq b \}. $$

Suppose $H = \begin{bmatrix} h_1 & h_2 & \cdots & h_r \end{bmatrix}^T$, where h_i is the i-th row vector of H. For any polytope P, let

$$v(H, P) = \begin{bmatrix} \max_{x \in P} h_1 \cdot x & \max_{x \in P} h_2 \cdot x & \cdots & \max_{x \in P} h_r \cdot x \end{bmatrix}^T. $$

And let $b(H) = \{ b \in \mathbb{R}^r \mid P_{H,b} \neq \emptyset \text{ and } v(H, P_{H,b}) = b \}$.
Example

Let H be

$$
\begin{pmatrix}
-1 & 0 \\
0 & -1 \\
1 & 1
\end{pmatrix}.
$$

And $b = (0, 0, 1)^T$. Then

$$
P(H, b) = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \geq 0, x_2 \geq 0, x_1 + x_2 \leq 1\}
= \text{Conv}((0, 0), (0, 1), (1, 0)).
$$

And $v(H, P(H, b)) = b$, so $b \in b(H)$.
Proposition

Let P_i be lattice polytopes and $H \in \mathbb{Z}^{r \times n}$ contains all primitive normal vectors of their Minkowski sum $\sum_{i=1}^{m} P_i$. Suppose vectors b_i are such that $P_{H,b_i} = P_i$. For $y^+, y^- \in \mathbb{N}^m$, suppose the signed Minkowski sum $\sum_{i=1}^{m} (y^+_i - y^-_i) P_{H,b_i}$ is well-defined. Then

$$\sum_{i=1}^{m} (y^+_i - y^-_i) P_{H,b_i} = P_{H,\sum_{i=1}^{m} (y^+_i - y^-_i) b_i}.$$
H-representable polytopes

Proposition

Let P_i be lattice polytopes and $H \in \mathbb{Z}^{r \times n}$ contains all primitive normal vectors of their Minkowski sum $\sum_{i=1}^{m} P_i$. Suppose vectors b_i are such that $P_{H,b_i} = P_i$. For $y^+, y^- \in \mathbb{N}^m$, suppose the signed Minkowski sum $\sum_{i=1}^{m} (y^+_i - y^-_i)P_{H,b_i}$ is well-defined. Then

$$\sum_{i=1}^{m} (y^+_i - y^-_i)P_{H,b_i} = P_H, \sum_{i=1}^{m} (y^+_i - y^-_i)b_i.$$

Remark

This proposition enables us to decompose a polytope into a signed Minkowski sum of polytopes on the level of the b-vectors. Then linear algebra can be used.
Basis and unique factorization

Let S be a finite set of lattice polytopes in \mathbb{R}^n. Let $H(S) \in \mathbb{Z}^{r \times n}$ be a matrix whose row vectors are all distinct primitive normal vectors of the polytope $\sum_{S \in S} S$, with coordinate-wise lexicographic order. Then $H(S)$ is uniquely defined.

Definition

\[
\mathcal{B}(S) = \{ b \in \mathbb{Z}^r \cap b(H(S)) \mid P_{H(S),b} \in S \}, \\
\overline{\mathcal{B}}(S) = \{ b \in \mathbb{Z}^r \cap b(H(S)) \mid \emptyset \neq P_{H(S),b} \subset \mathbb{Z}^n \text{ is a lattice polytope} \}.
\]

S is a basis if $\mathcal{B}(S)$ is a basis over \mathbb{Z} for $\mathbb{Z}\mathcal{B}(S)$. S is a full basis if $\mathcal{B}(S)$ is a basis over \mathbb{Z} for $\overline{\mathcal{B}}(S)$.
The good polynomials and polytopes of S

Let S be a finite set of lattice polytopes.

Definition

Let $\mathbb{N}[S]$ be the set of S-factorizable polynomials, $\mathbb{E}[S]$ be the set of S-rational polynomials and $\mathbb{Z}[S]$ be the set of strong S-rational polynomials.
The good polynomials and polytopes of S

Let S be a finite set of lattice polytopes.

Definition

Let $\mathbb{N}[S]$ be the set of S-factorizable polynomials, $\mathbb{E}[S]$ be the set of S-rational polynomials and $\mathbb{Z}[S]$ be the set of strong S-rational polynomials.

Let f be a unit tropical polynomial in \mathbb{R}^n and $P = \text{Newt}(f)$. Then

Proposition

- $f \in \mathbb{E}[S]$ if and only if $P = P_{H(S),b}$ for some $b \in \overline{B}(S)$
- $f \in \mathbb{N}[S]$ if and only if $P = P_{H(S),b}$ for some $b \in \mathbb{N}B(S)$.
- $f \in \mathbb{Z}[S]$ if and only if $P = P_{H(S),b}$ for some $b \in \overline{B}(S) \cap \mathbb{Z}B(S)$.
Consider the regular subdivision of the square:

(0, 0) \rightarrow (1, 1)
Example: a basis without local factorization

Consider the regular subdivision of the square:

If both triangles belong to S, then S does not have local factorization. This motivates us to exclude such pairs of polytopes in good S.
To define positive basis, we need the following:

Definition

A polytope S is canonical if for any proper face P, $P \not\subseteq S$. A set of polytopes S is canonical if S is canonical for all $S \in S$. S is hierarchical if for any $S \in S$, all proper faces of S also belong to S.
To define positive basis, we need the following:

Definition

A polytope S is canonical if for any proper face P, $P \not\subseteq S$. A set of polytopes S is canonical if S is canonical for all $S \in S$. S is hierarchical if for any $S \in S$, all proper faces of S also belong to S.

Definition

Let S be a hierarchical set of polytopes. An orientation τ is a map from the row vectors of $H(S)$ to $\{1, -1\}$, such that $\tau(v) = -\tau(-v)$. Let $H^+_\tau = \{v \mid \tau(v) = 1\}$. S is positive with orientation τ if for each $v \in H^+_\tau$ and $S \in S$, face$_{-v}(S)$ is not a proper face of S.
Example: a non-positive basis

Let

\[\mathcal{S} = \{ \text{Conv}((0,0), (1,0), (0,1)), \text{Conv}((1,1), (1,0), (0,1)), \text{Conv}((0,0), (1,0)) \}. \]

Then \(\mathcal{S} \) is a basis (note that \(\mathcal{S} \) is not hierarchical). However, \(\mathcal{S} \) is not positive.
Example: a non-positive basis

Let

\[\mathcal{S} = \{ \text{Conv}((0,0), (1,0), (0,1)), \text{Conv}((1,1), (1,0), (0,1)), \text{Conv}((0,0), (1,0)) \} \].

Then \(\mathcal{S} \) is a basis (note that \(\mathcal{S} \) is not hierarchical). However, \(\mathcal{S} \) is not positive.

Since \(\text{Conv}((1,0), (0,1)) \) is a facet for some polytope in \(\mathcal{S} \), the vectors \((1,1)\) and \((-1,-1)\) are row vectors of \(H(\mathcal{S}) \). Then for any orientation \(\tau \), if \(\tau((1,1)) = 1 \), then \(\text{face}_{(-1,-1)}(\text{Conv}((1,1), (1,0), (0,1))) = \text{Conv}((1,0), (0,1)) \) is a proper face of \(\text{Conv}((1,1), (1,0), (0,1)) \); the other case is similar.
Example: a positive basis

Let S consist of the polytope $\text{Conv}((0, 0), (1, 0), (0, 1))$ and its proper faces. Then S is a positive basis.
Example: a positive basis

Let S consist of the polytope $\text{Conv}((0,0), (1,0), (0,1))$ and its proper faces. Then S is a positive basis. If we homogenize, this S becomes the family S_{K_3}.
Main Theorems

Theorem (L.-Tran ’17+)

If S is a positive basis, then $\mathbb{N}[S]$ has unique and local factorizations.
Main Theorems

Theorem (L.-Tran ’17+)

If \(S \) is a positive basis, then \(\mathbb{N}[S] \) has unique and local factorizations.

Theorem (L.-Tran ’17+)

If \(S \) is a positive basis, then \(\mathbb{Z}[S] \) has unique and local factorizations. In addition, \(\mathbb{Z}[S] = \mathbb{E}[S] \) if and only if \(S \) is a full positive basis. In this case, \(f \in \mathbb{Z}[S] = \mathbb{E}[S] \) if and only if the edges of cells in \(\Delta_f \) are parallel to edges in \(S \).
Given a tropical polynomial f and a finite set S of lattice polytopes. We have algorithms for each of the following purposes:

1. Decide whether S is a positive basis.
2. Given a positive basis S, decide whether $f \in \mathbb{Z}[S] \setminus \mathbb{N}[S]$, $f \in \mathbb{N}[S]$, or neither.
3. If $f \in \mathbb{N}[S]$, obtain the unique factorization for f.
4. If $f \in \mathbb{Z}[S] \setminus \mathbb{N}[S]$, obtain a $g \in \mathbb{N}[S]$ such that $f \odot g \in \mathbb{N}[S]$.
The family S_{K_n} of simplices is important because the factorization into linear polynomials has applications in economics and combinatorics.
S_{Kn} revisited

The family S_{Kn} of simplices is important because the factorization into linear polynomials has applications in economics and combinatorics.

Proposition

S_{Kn} is a full positive basis.
A formula using generalized permutohedra

If f is strong S_{K_n}-rational, then each cell C' in Δf is a generalized permutohedra. So there exist $(z_I)_{I \subseteq [n]} \in \mathbb{R}^{2^n}$ such that

$$C' = \{(t_1, \ldots, t_n) \in \mathbb{R}^n \mid \sum_{i=1}^{n} t_i = z_{[n]}, \sum_{i \in I} t_i \geq z_I \quad \forall I \subseteq [n]\}.$$
A formula using generalized permutohedra

If f is strong S_{K_n}-rational, then each cell C' in Δ_f is a generalized permutohedra. So there exist $(z_I)_{I \subseteq [n]} \in \mathbb{R}^{2n}$ such that

$$C' = \{(t_1, \ldots, t_n) \in \mathbb{R}^n \mid \sum_{i=1}^{n} t_i = z_{[n]}, \sum_{i \in I} t_i \geq z_I \quad \forall I \subseteq [n]\}.$$

The following result gives a Möbius inversion formula to decompose C'.

Theorem (Ardila-Benedetti-Doker '10)

$$C = \sum_{I \subseteq [n]} y_I \cdot \text{Conv}(\{e_i \mid i \in I\}),$$

where $y_I = \sum_{J \subseteq I} (-1)^{|I|-|J|} z_J$.
Factors of a S_{K_3}-factorizable h_1

Let $n = 3$ and consider the finite set S_{K_3}. Let

$$h_1(x_1, x_2, x_3) = \max(x_2 + 2x_3 + 4, 2x_2 + x_3 + 6, 3x_2 + 7,$$

$$x_1 + 2x_3 + 5, x_1 + x_2 + x_3 + 7, x_1 + 2x_2 + 8,$$

$$2x_1 + x_3 + 7, 2x_1 + x_2 + 8, 3x_1 + 5).$$
Factors of a S_{K_3}-factorizable h_1

Let $n = 3$ and consider the finite set S_{K_3}. Let

$$h_1(x_1, x_2, x_3) = \max(x_2 + 2x_3 + 4, 2x_2 + x_3 + 6, 3x_2 + 7, x_1 + 2x_3 + 5, x_1 + x_2 + x_3 + 7, x_1 + 2x_2 + 8, 2x_1 + x_3 + 7, 2x_1 + x_2 + 8, 3x_1 + 5).$$

Δ_{h_1} has 5 maximal cells:

1. $\text{Conv}(\{(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1)\})$,
2. $\text{Conv}(\{(1, 2, 0), (1, 1, 1), (0, 3, 0), (0, 2, 1)\})$,
3. $\text{Conv}(\{(1, 1, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2)\})$,
4. $\text{Conv}(\{(1, 1, 1), (1, 0, 2), (2, 0, 1)\})$,
5. $\text{Conv}(\{(2, 1, 0), (2, 0, 1), (3, 0, 0)\})$.

B. Lin & N. Tran
Linear and rational factorization of tropical polynomials
Next we write the 5 maximal cells as Minkowski sums of polytopes in S_{K^3}. Both methods work here. Let’s decompose $C_1 = \text{Conv}((2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1))$ using the Möbius inversion formula. C_1 is a generalized permutohedron with parameters:

z	\emptyset	\{1\}	\{2\}	\{3\}	\{1, 2\}	\{1, 3\}	\{2, 3\}	\{1, 2, 3\}
z	0	1	0	0	2	1	1	3
signed Minkowski sum - Möbius inversion

Next we write the 5 maximal cells as Minkowski sums of polytopes in S_{K_3}. Both methods work here. Let’s decompose $C_1 = \text{Conv}(\{(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1)\})$ using the Möbius inversion formula. C_1 is a generalized permutohedron with parameters:

\[
\begin{array}{cccccccc}
\emptyset & \{1\} & \{2\} & \{3\} & \{1,2\} & \{1,3\} & \{2,3\} & \{1,2,3\} \\
 z & 0 & 1 & 0 & 0 & 2 & 1 & 1 & 3 \\
\end{array}
\]

Then the coefficients $y_I = \sum_{J \subseteq I} (-1)^{|I| - |J|} z_J$ are:

\[
\begin{array}{cccccccc}
\emptyset & \{1\} & \{2\} & \{3\} & \{1,2\} & \{1,3\} & \{2,3\} & \{1,2,3\} \\
y & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

Thus $C_1 = S_{\{1\}} + S_{\{1,2\}} + S_{\{2,3\}}$.
signed Minkowski sum - b-vector

$H(S_{K_3})$ is the transpose of (up to row permutation):

$$
\begin{bmatrix}
1 & 1 & 1 & 0 & 1 & 0 & 0 & -1 & -1 & -1 & 0 & -1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & -1 & 0 & -1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & -1 & 0 & -1 & -1 & 0 & 0 & -1
\end{bmatrix}.
$$
signed Minkowski sum - b-vector

$H(S_{K_3})$ is the transpose of (up to row permutation):

$$
\begin{bmatrix}
1 & 1 & 1 & 0 & 1 & 0 & 0 & -1 & -1 & -1 & 0 & -1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & -1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & -1 & 0 & -1 & -1 & 0 & 0 & -1
\end{bmatrix}.
$$

The vectors $v(H(S_{K_3}), P)$ for the simplices $P \in S_{K_3}$ are

$$
\begin{bmatrix}
\{1,2,3\}: & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\{1,2\}: & 1 & 1 & 1 & 1 & 1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
\{1,3\}: & 1 & 1 & 1 & 1 & 1 & 0 & 1 & -1 & 0 & -1 & 0 & 0 & 0 \\
\{2,3\}: & 1 & 1 & 1 & 1 & 0 & 1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 \\
\{1\}: & 1 & 1 & 1 & 0 & 1 & 0 & 0 & -1 & -1 & -1 & 0 & -1 & 0 & 0 \\
\{2\}: & 1 & 1 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & -1 & 0 & -1 & 0 \\
\{3\}: & 1 & 0 & 1 & 1 & 0 & 0 & 1 & -1 & 0 & -1 & -1 & 0 & 0 & -1
\end{bmatrix}.
$$

This 7×14 matrix has full rank.
Take $C_2 = \text{Conv}(\{(1, 2, 0), (1, 1, 1), (0, 3, 0), (0, 2, 1)\})$. Then

$$v(H, C_2) = (3, 3, 2, 3, 1, 3, 1, -3, -2, 0, -2, 0, -1, 0).$$
signed Minkowski sum - C_2

Take $C_2 = \text{Conv} \left(\{(1, 2, 0), (1, 1, 1), (0, 3, 0), (0, 2, 1)\} \right)$. Then

$$v(H, C_2) = (3, 3, 2, 3, 1, 3, 1, -3, -2, 0, -2, 0, -1, 0).$$

It turns out that $v(H, C_2)$ belongs to the span of the previous matrix and it is the sum of the 2-nd, 4-th, and 6-th rows. Thus

$$C_2 = S_{\{2\}} + S_{\{1,2\}} + S_{\{2,3\}}.$$
Factors of a S_{K_3}-factorizable h_1

So we write the 5 maximal cells as Minkowski sums of polytopes in S_{K_3} respectively:

$$S\{1\} + S\{1,2\} + S\{2,3\}, S\{2\} + S\{1,2\} + S\{2,3\},$$
$$S\{3\} + S\{1,2\} + S\{2,3\}, S\{1\} + S\{3\} + S\{1,2,3\}, 2S\{1\} + S\{1,2,3\}.$$
Factors of a S_{K_3}-factorizable h_1

So we write the 5 maximal cells as Minkowski sums of polytopes in S_{K_3} respectively:

\[S\{1\} + S\{1,2\} + S\{2,3\}, S\{2\} + S\{1,2\} + S\{2,3\}, \]
\[S\{3\} + S\{1,2\} + S\{2,3\}, S\{1\} + S\{3\} + S\{1,2,3\}, 2S\{1\} + S\{1,2,3\}. \]

For each maximal cell C, we find a unique homogeneous linear function $l_C(x_1, x_2, x_3)$ such that for $a \in C$,
\[l_C(a_1, a_2, a_3) = -(h_1)_a. \] This is called the Legendre transform.
Legendre transform of the 5 maximal cells

The coefficients of the linear functions are

\((8/3, \ 8/3, \ 5/3), (10/3, \ 7/3, \ 4/3), (11/3, \ 8/3, \ 2/3),\n(3, \ 3, \ 1), (5/3, \ 14/3, \ 11/3)\).
Legendre transform of the 5 maximal cells

The coefficients of the linear functions are

\((8/3, 8/3, 5/3), (10/3, 7/3, 4/3), (11/3, 8/3, 2/3), (3, 3, 1), (5/3, 14/3, 11/3)\).

The algorithm always chooses a polytope from \(S_{K_3}\) with largest dimension that appears in the Minkowski sums, and fix a maximal cell \(\sigma\). In this case, we choose \(S_{\{1,2,3\}}\) and \(\sigma = \text{Conv}(\{(1, 1, 1), (1, 0, 2), (2, 0, 1)\})\). Then we get a linear factor from the Legendre transform

\[\max(x_1 + 3, x_2 + 3, x_3 + 1). \]
The remaining factors

Now there are two more linear factors. The important thing is to determine what are the contributions of the first factor in the Minkowski sums. For another maximal cell \(\eta \), we find all vertices \(v \in S_{\{1,2,3\}} \) such that \(l_{\sigma}(v) - l_{\eta}(v) \) is maximal. Write the convex hull of these vertices as a Minkowski sum of polytopes in \(S_{K_3} \), which is the contribution of the first factor, and we want to delete them.
The remaining factors

Now there are two more linear factors. The important thing is to determine what are the contributions of the first factor in the Minkowski sums. For another maximal cell η, we find all vertices $v \in S_{\{1,2,3\}}$ such that $l_\sigma(v) - l_\eta(v)$ is maximal. Write the convex hull of these vertices as a Minkowski sum of polytopes in S_{K_3}, which is the contribution of the first factor, and we want to delete them.

The five polytopes are

$$S_{\{1,2\}}, S_{\{2\}}, S_{\{3\}}, S_{\{1,2,3\}}, S_{\{1\}}.$$
The remaining Minkowski sums

Now the Minkowski sums become

1. \(S\{1\} + S\{1,2\} + S\{2,3\} \),
2. \(S\{2\} + S\{1,2\} + S\{2,3\} \),
3. \(S\{3\} + S\{1,2\} + S\{2,3\} \),
4. \(S\{1\} + S\{3\} + S\{1,2,3\} \),
5. \(S\{1\} + S\{1\} + S\{1,2,3\} \).
The remaining Minkowski sums

Now the Minkowski sums become

1. \(S_1 + S_{1,2} + S_{2,3} \),
2. \(S_2 + S_{1,2} + S_{2,3} \),
3. \(S_3 + S_{1,2} + S_{2,3} \),
4. \(S_1 + S_3 + S_{1,2,3} \),
5. \(S_1 + S_1 + S_{1,2,3} \).

Repeat the procedure, we can find the other two linear factors of \(h_1 \):

\[\max(x_1, x_2 + 3, x_3 + 2), \max(x_1 + 1, x_2). \]
$	ilde{f}_2$ revisited

Recall S_{K3} consists of polytopes $\text{Conv}((1,0,0),(0,1,0),(0,0,1))$ and its faces. For convenience denote these polytopes as $S_{\{1,2,3\}}, S_{\{1,2\}}, S_{\{3\}}$, etc. Note that $\Delta_{\text{Newt}(\tilde{f}_2)}$ has four 2-dimensional cells: $\text{Conv}((2,0,0),(1,0,1),(1,1,0))$ and other two symmetric ones, plus $\text{Conv}((1,0,1),(1,1,0),(0,1,1))$.
Recall S_{K_3} consists of polytopes $\text{Conv}((1, 0, 0), (0, 1, 0), (0, 0, 1))$ and its faces. For convenience denote these polytopes as $S\{1,2,3\}, S\{1,2\}, S\{3\}$, etc. Note that $\Delta_{\text{Newt}(\tilde{f}_2)}$ has four 2-dimensional cells: $\text{Conv}((2, 0, 0), (1, 0, 1), (1, 1, 0))$ and other two symmetric ones, plus $\text{Conv}((1, 0, 1), (1, 1, 0), (0, 1, 1))$.

$\text{Conv}((2, 0, 0), (1, 0, 1), (1, 1, 0)) = S\{1,2,3\} + (1, 0, 0)$, but

$\text{Conv}((1, 0, 1), (1, 1, 0), (0, 1, 1)) = S\{1,2\} + S\{1,3\} + S\{2,3\} - S\{1,2,3\}$.

So this cell is the reason that \tilde{f}_2 is not S_{K_3}-factorizable. And if $\text{Newt}(g) = S\{1,2,3\}$, g may suffice. To find the coefficients of g we need the Legendre transform and the steps are similar to the previous example.
Another full positive basis S_2

This example comes from tropical plane curves of degree 2. Let S_2 consists of the following ten polytopes P_1, \ldots, P_{10} (and their faces).

\[
\begin{bmatrix}
1 & -1 & 0 & 0 & 1 & -1 & 1 & -1 & 2 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}.
\]
Another full positive basis S_2

This example comes from tropical plane curves of degree 2. Let S_2 consists of the following ten polytopes P_1, \ldots, P_{10} (and their faces).

$H(S_2)$ is the following 14×3 matrix:

$$
\begin{bmatrix}
1 & -1 & 0 & 0 & 1 & -1 & 1 & -1 & 1 & 2 & -2 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & -1 & -1 & 1 & 2 & -2 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{bmatrix}.
$$
Example: \(\Delta_{\text{Newt}}(f_3) \)

Let \(f_3(x_1, x_2, x_3) = \max(2x_1 + 2x_2, x_1 + 3x_2 - 2, x_1 + x_2 + 2x_3 - 3, 3x_1 + x_3 - 1, x_1 + 2x_2 + x_3 - 4, 4x_1 - 3) \). Then \(\text{Newt}(f_3) \) is \(\text{Conv}((2, 2, 0), (1, 3, 0), (1, 1, 2), (3, 0, 1), (1, 2, 1), (4, 0, 0)) \) and \(\Delta_{\text{Newt}}(f_3) \) consists of three triangles \(C_1, C_2, C_3 \):

\[
\begin{align*}
C_1 & \quad \text{Triangle } C_1 \\
C_2 & \quad \text{Triangle } C_2 \\
C_3 & \quad \text{Triangle } C_3
\end{align*}
\]

Figure 3: The projection of \(\Delta_{\text{Newt}}(f_3) \) onto coordinates \(x_1 \) and \(x_2 \).
Computing g_3

Using the b-vectors, we can write

\[C_1 = P_1 - P_2 + P_3 - P_4 + P_{10} + \text{Conv}((1, 0, 1)), \]
\[C_2 = -P_1 + 2P_4 + P_7 + \text{Conv}((1, 1, -2)), \]
\[C_3 = -P_3 + 2P_4 + P_9 + \text{Conv}((2, 0, -2)). \]

Then $\text{Newt}(g)$ should be at least the Minkowski sum

$P_1 + P_2 + P_3 + P_4$.

Computing g_3

Using the b-vectors, we can write

\[C_1 = P_1 - P_2 + P_3 - P_4 + P_{10} + \text{Conv}((1, 0, 1)), \]
\[C_2 = -P_1 + 2P_4 + P_7 + \text{Conv}((1, 1, -2)), \]
\[C_3 = -P_3 + 2P_4 + P_9 + \text{Conv}((2, 0, -2)). \]

Then $\text{Newt}(g)$ should be at least the Minkowski sum $P_1 + P_2 + P_3 + P_4$.

In fact, the following polynomial works:

\[
g_3(x_1, x_2, x_3) = \max(2x_1, 2x_3 - 10/3, x_2 + x_3 - 2) \]
\[+ \max(x_1 + x_3, 2x_3 - 5/3, x_2 + x_3 - 1/3) \]
\[+ \max(2x_3, 2x_2 - 1, x_1 + x_3 - 2) + \max(2x_1, 2x_3 - 5, x_1 + x_2 - 2). \]
Computing h_3

We take the product $f_3 \odot g_3$ and apply the algorithms again, we get

$$h_3(x_1, x_2, x_3) = x_1 - 3x_3 + 2 \max\left(2x_3 - \frac{5}{2}, x_1 + x_3, x_2 + x_3 - 2\right)$$

$$+ \max\left(2x_3 - \frac{8}{3}, x_1 + x_3 - 1, 2x_2\right) + \max(x_2 + x_3 - 2, 2x_1)$$

$$+ 2 \max\left(2x_3, x_1 + x_3 - 2, x_2 + x_3 - 1/2\right)$$

$$+ \max\left(2x_3 - \frac{10}{3}, x_1 + x_2 - \frac{1}{3}, 2x_1\right).$$
The subdivision of $\text{Newt}(h_3)$

Figure 4: Two ways to decompose Δ_{h_3}: by writing h_3 as a product of S_2-units, or by writing $h_3 = f_3 \odot g_3$.
Conjecture

Let E be a finite set of primitive lattice edges in \mathbb{R}^n. Then there exists a full positive basis S such that E corresponds to the 1-dimensional polytopes in S.

This conjecture implies the following:

Conjecture

Any tropical polynomial is S-rational for some full positive basis S.

B. Lin & N. Tran
Linear and rational factorization of tropical polynomials
Open problems

Conjecture

Let E be a finite set of primitive lattice edges in \mathbb{R}^n. Then there exists a full positive basis S such that E corresponds to the 1-dimensional polytopes in S.

This conjecture implies the following:

Conjecture

Any tropical polynomial is S-rational for some full positive basis S.
Some references

[ABD10] Federico Ardila, Carolina Benedetti, and Jeffrey Doker. Matroid polytopes and their volumes. *Discrete & Computational Geometry*, 43(4):841–854, 2010.

[BGK16] Elizabeth Baldwin, Paul Goldberg, and Paul Klemperer. Tropical intersections and equilibrium (day 2 slides). Hausdorff School on Tropical Geometry and Economics, 2016.

[GL01] Shuhong Gao and Alan G.B. Lauder. Decomposition of polytopes and polynomials. *Discrete & Computational Geometry*, 26(1):89–104, 2001.

[Mur03] Kazuo Murota. *Discrete convex analysis*. SIAM, 2003.

[Pos09] Alexander Postnikov. Permutohedra, associahedra, and beyond. *International Mathematics Research Notices*, 2009(6):1026–1106, 2009.

[Stu94] Bernd Sturmfels. On the Newton polytope of the resultant. *J. Algebraic Combin.*, 3(2):207–236, 1994.
The End

Thank you!