Transcriptional activity of HTLV-I Tax influences the expression of marker genes associated with cellular transformation

Francene J. Lemoine, Diane R. Wycuff and Susan J. Marriott

Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

Human T cell leukemia virus type I (HTLV-I) has been identified as the etiologic agent of adult T cell leukemia (ATL). HTLV-I encodes a transcriptional regulatory protein, Tax, which also functions as the viral transforming protein. Through interactions with a number of cellular transcription factors Tax can modulate cellular gene expression. Since the majority of Tax-responsive cellular genes are important regulators of cellular proliferation, the transactivating functions of Tax appear to be necessary for cellular transformation by HTLV-I. Gaining a complete understanding of the broad range of genes regulated by Tax, the temporal pattern of their expression, and their effects on cell function may identify early markers of disease progression mediated by this virus.

1. Introduction

Infection with human T cell leukemia virus type I (HTLV-I) is a prerequisite for the development of two fatal human diseases: adult T cell leukemia/lymphoma (ATL) and tropical spastic paraparesis or HTLV-I associated myelopathy (TSP/HAM). ATL is a lymphoproliferative disorder of mature T cells [39,80,118] and accounts for about 1% of all leukemias [79], while TSP/HAM is a degenerative disease of the central nervous system [30,75]. This review focuses on evaluating markers of HTLV-I infection that may be predictive of ATL development.

Approximately 20 million people worldwide are infected with HTLV-I [23]. The efficiency of HTLV-I transmission is relatively low and occurs both vertically and horizontally, predominantly from mother to infant through ingestion of infected T cells in breast milk. Transmission can also occur through the exchange of infected bodily fluids during activities such as sexual contact, transfusion, and needle sharing among IV drug users. Upon infection of CD4⁺ T lymphocytes, the HTLV-I provirus integrates randomly into the host chromosome. Infection is followed by a long period of clinical latency during which time it is difficult to detect viral gene expression. Patients seroconvert relatively early following infection despite the absence of clear clinical symptoms. Fewer than 5% of infected individuals develop ATL, and the disease typically presents 20 to 40 years after infection. The relationship between age and the development of ATL suggests that five independent events are required to complete the transformation process [74]. These features highlight the importance of defining early markers of viral infection to identify individuals with increased likelihood of developing disease. In combination with improved predictors of disease development, strategies for intervention in disease progression must also be developed.

2. The HTLV-I transcriptional activator and transforming protein, Tax

HTLV-I encodes a protein, Tax, which is essential for viral replication due to its ability to activate viral gene expression through specific Tax-responsive elements within the viral long terminal repeat [10,20,88,91]. Tax is also the transforming protein of HTLV-I [33,34,38,69,82,90,97,115]. Because the tax gene is not widely expressed in ATL cells, its role in tumor induction is likely to be an early event in cellular transformation. Tax modulates transcriptional activity by interacting with a subset of cellular transcription factors that tether Tax to the viral promoter [29,93,94,119] rather than by directly binding DNA. Through its interactions...
with cellular transcription factors, Tax also modulates expression of a variety of cellular genes, an activity that appears to play a major role in the function of Tax as a viral oncoprotein.

3. Effects of HTLV-I Tax on cellular gene expression

The transcriptional activity of Tax affects three major transcription factor pathways including cAMP response element binding protein (CREB) [1,2,11,24,57,93,119], nuclear factor κB (NF-κB) [8,49,53,84,92], and serum response factor (SRF) [26,28]. Mechanisms through which Tax regulates these three pathways are different and have been discussed in other recent reviews [23,117]. Exploiting these pathways, Tax activates the transcription of more than thirty cellular genes (Table 1) including growth factors and cytokines, growth factor receptors, cell cycle and DNA repair control proteins, nuclear transcription factors and others (cell adhesion molecules, cytoplasmic signal transmitters, and cytoskeletal proteins). Although Tax regulation of most of these genes has been mapped to CREB, NF-κB or SRF binding sites, some of the cellular genes regulated by Tax utilize alternative transcription factor pathways for activation, and specific Tax responsive elements remain to be defined in a few of these promoters. Because of its broad ranging functions, Tax has been referred to as a promiscuous transactivator, implying that it may regulate certain universal transcription pathways.

In contrast to its transcriptional activation functions, Tax has been shown to repress transcription of five cellular genes, β-polymerase, lck, bax, p53, and p18ink4C (Table 1). Although the element through which Tax represses β-polymerase expression has not been defined, Tax repression of bax, lck, p53 and p18ink4C is mediated through E-box elements in their promoters. Only one cellular gene, p21, has been reported to be positively regulated by Tax through an E-box suggesting that E-boxes may primarily serve as a negative regulatory target for Tax [107]. Notably, four of the five cellular genes that are transrepressed by Tax (β-polymerase, bax, p53, and p18ink4C) have functions in regulation of cell cycle progression and DNA repair, implying that the repression of these functions may be a critical step in transformation.

4. Tax activation of genes encoding growth factors, cytokines, and growth factor receptors

The ability of Tax to activate growth factors and their receptors implies the possibility of autocrine or paracrine stimulation of cell proliferation. Tax activation of the IL-2Rα chain, a component of the high affinity IL-2 receptor (CD25), is an early event in HTLV-I infection. However, this IL-2Rα induction is not sufficient to transform cells. Tax activation of IL-2R/IL-2 gene expression probably accounts for the polyclonal proliferation of infected T cells observed during clinical latency. Monoclonal outgrowth of leukemic T cells occurs in a small portion of infected individuals. T cell lines established from HTLV-I infected individuals during clinical latency typically require the addition of exogenous IL-2 (immortalized) while those established from late stage ATL patients are IL-2 independent (transformed) even though they do not express IL-2 [6]. Tax expression is low to undetectable in transformed ATL cells, yet CD25 expression is maintained suggesting that another mechanism for IL-2R activation may exist in late stage ATL cells. Leukemic cells from ATL patients also fail to express IL-4, although Tax can transactivate this promoter [99]. Despite the absence of these growth factors in leukemic cells, their expression may play important roles in early polyclonal proliferation of HTLV-I infected cells.

OX40, a member of the tumor necrosis factor (TNF) receptor family that serves as a marker of activated T and B cells, is also expressed on the surface of HTLV-I infected cells [43]. Binding of the OX40 ligand (gp34), a member of the TNF family [31], induces T cell proliferation, modulates cytokine production, and influences T cell migration into tissues [21,31,32,42,43]. These findings suggest that autocrine or paracrine OX40/OX40L interactions may provide necessary co-stimulatory signals for transformation or survival and proliferation of HTLV-I infected cells.

5. Tax activation of genes encoding cell cycle and DNA repair proteins

Cancer-causing viruses typically encode one or more proteins that disrupt cell cycle checkpoints leading to cellular transformation. HTLV-I is no exception to this rule. Tax activates genes that stimulate cell cycle progression and represses some that inhibit cell cycle progression. Cyclin D2 is a G1 cyclin that induces cell cycle progression to late G1 phase. In Tax-expressing
Table 1

Genes	Effect	Pathway	Reference
Growth factors/cytokines			
IL-1α	+	NF-κB	65, 66
IL-1β	+	C/EBPβ, PU.1	104
IL-2	+	NF-κB	54, 61, 89, 109
IL-3	+	?	61
IL-4	+	?	61
IL-5	+	AP-1, GATA-4*	113
IL-6	+	NF-κB	67, 116
IL-8	+	NF-κB, AP-1	63, 64
IL-15	+	NF-κB	7
NGF	+	CRE	35
proenkephalin	+	AP-1	25, 48
PTHrP	+	CRE, Sp1, Ets*	17, 18, 41, 62, 111
c-sis (PDGF)	+	Sp1, NGFI-A/Egr-1	100, 101
GM-CSF	+	NF-κB	37, 61, 71, 109
GM-CSF ligand (gp34)	+	NF-κB	9, 36, 60, 73
TGFβ(1)	+	NF-κB	50
TNFβ-β	+	NF-κB	77, 102
Growth factor receptors			
IL-2Rα (CD25)	+	NF-κB	8, 15, 44, 58, 84, 89, 109
OX40 (TNF receptor family)	+	NF-κB	36
egr-1 (Krox-24)	+	SRE, CRE	4
egr-2 (Krox-20)	+	SRE, CRE	4
class I MHC	+	?	87
Cell cycle/DNA repair			
PCNA	+	?	83
cyclin D2	+	CRE	3, 86
bcl-X(L)	+	NF-κB	70, 105
p21	+	E-box	3, 13, 16
bax	−	E-box	12
p18INK4C	−	E-box	3, 96
p53	−	E-box	108
DNA polymerase β	−	?	47
Transcription factors			
c-fos	+	SRE, CRE	5, 26, 27, 68
c-jun	+	?	45
c-myc	+	NF-κB	19
fra-1	+	AP-1	103
RNA polymerase III	+	CRE	78
E2F-1	+	CRE	52
Nur77	+	CRE	14
Signaling and other			
vimentin (cytoskeleton)	+	NF-κB	55, 56, 85
β-globin	+	CRE	22
ε-globin	+	CRE	22
ICAM-1 (CD-54)	+	CRE	76, 98
lyn	−	?	106, 114
lck	−	E-box	51

*Transcription factors that cooperate with Tax to activate the given promoter.

cells, expression from the cyclin D2 promoter is elevated, and cyclin D2 is found complexed with unusual cdk partners 2 and 4 [86].

Proliferating cell nuclear antigen (PCNA) interacts with and regulates the activity of proteins involved in DNA replication and repair, as well as proteins involved in cell cycle progression. The PCNA protein is an essential co-factor of DNA polymerase δ (pol δ), an enzyme involved in both DNA replication and repair. The interaction of PCNA with pol δ functions to increase the processivity of both leading and lagging strand DNA replication. The effect of PCNA on DNA replication and repair is thought to involve interactions with cyclins and cyclin dependent kinases (cdks). Cdk inhibitors,
such as p21, can block PCNA-dependent DNA synthesis but have no effect on PCNA-dependent DNA repair. Excess PCNA can overcome the p21 block of DNA replication, stimulate DNA synthesis past template lesions and increase nucleotide misincorporation rates. Thus, overexpression of PCNA appears to stimulate DNA synthesis even in the presence of normal negative regulatory signals.

In response to DNA damage, p53 induces p21, a cdk inhibitor that typically induces cell cycle arrest by restricting the transition from G1 to S phase. Tax represses the p53 promoter in HTLV-I-infected cells, yet p53 protein levels are elevated and the protein possesses no apparent transcriptional activity. The p21 promoter is activated by Tax suggesting that Tax may function to restrict cell cycle progression; however, overexpression of p21 in uninfected T cells does not appear to block cell cycle progression [72]. As a result of these altered activities of cyclin D2, PCNA, p53 and p21, HTLV-I infected cells may be incapable of G1 arrest in the presence of DNA damage.

6. Tax activation of genes encoding transcription factors

Because some Tax-activated genes encode transcription factors, Tax can indirectly influence an even broader range of cellular genes than those it directly regulates. The products of the c-fos and c-jun immediately early growth response genes heterodimerize to activate transcription of genes that respond to the phorbol ester TPA, an activator of protein kinase C (PKC). Since deregulated c-fos expression can induce cellular transformation, Tax activation of this protein could contribute to the early stages of HTLV-I transformation. E2F-1, a member of the E2F transcription factor family, heterodimerizes with members of the DP family to regulate the expression of cell cycle control proteins including dihydrofolate reductase, thymidine kinase, DNA polymerase α, PCNA, histone 2A, cyclin A, cyclin E, cyclin D1, p107, pRB, c-myc, N-myc, erb-B, and B-myb. Deregulated E2F-1 expression can induce resting cells to enter S phase and stimulate cell proliferation. These proliferative effects could also play an important role at early stages of HTLV-I transformation.

Transcriptional activities of Tax are necessary, but probably not sufficient, for transformation. Despite this review’s focus on the transcriptional effects of Tax, the protein has other functions including the ability to interact with and inactivate p16Ink4a, a cyclin dependent kinase inhibitor that halts G1 phase progression [95]. This function of Tax could contribute to abnormal G1 to S phase transition. The interaction of Tax with IκB, a cytoplasmic inhibitor of NF-κB, induces release of NF-κB binding activity [40,110]. Finally, Tax has the ability to inactivate the tumor suppressor protein p53 despite the fact that Tax does not form a physical complex with p53 or induce its degradation. p53 mutations are rare in ATL cells and infected T-cell lines; however, p53 stabilization is an early event after in vitro HTLV-I infection of human primary peripheral blood mononuclear cells (PBMC) and thus may be a useful marker of disease progression.

7. Conclusions

The quest for markers that will predict disease susceptibility in HTLV-I infected individuals is in its infancy. In this review we have provided a comprehensive list of cellular genes regulated by the HTLV-I Tax protein and have highlighted a subset of these genes for discussion of their potential effects on cellular transformation. Since the genome is small and viral gene expression is difficult to detect in infected individuals, it is unlikely that monitoring viral gene expression patterns will be useful in this effort. HTLV-I integrates randomly into the host chromosome, and the site of viral integration does not appear to correlate with disease type or progression. Despite intense effort devoted to sequencing viral isolates from asymptomatic, as well as ATL and TSP/HAM patients, genetic subtypes clearly associated with disease have not been identified. These results suggest that disease markers are most likely to be identified from among the cellular genes whose expression patterns are altered following viral infection. Though lengthy, the list of genes regulated by Tax is probably not yet complete. Despite extensive knowledge about the molecular mechanisms used by Tax to regulate the expression of individual cellular genes, little is known about the temporal and spatial patterns of gene expression from early post-infection into the disease states. Future studies directed at detailing these events are likely to reveal important predictive markers of disease progression.

Acknowledgments

Some of the work cited in this review was supported by Public Health Service grants CA-77371 and CA-
References

[1] N. Adya and C.-Z. Giam, Distinct regions in human T-cell lymphotropic virus type I Tax mediate interactions with activator protein CREB and basal transcription factors, J. Virol. 69 (1995), 1834–1841.

[2] N. Adya, J.-J. Zhao, W. Huang, I. Boros and C.-Z. Giam, Expansion of CREB’s DNA recognition specificity by Tax results from interaction with Ala-Ala-Arg at positions 282–284 near the conserved DNA-binding domain of CREB, Proc. Natl. Acad. Sci. USA 91 (1994), 5642–5646.

[3] T. Akagi, H. Ono and K. Shimotohno, Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: Possible involvement of Tax1 in the altered expression of cyclin D2, p16 arrest and p21Waf1/Cip1/Sdi1, Oncogene 12 (1996), 1645–1652.

[4] C. Alexandre, C. Chamone and B. Varder, Transactivation of Krox-20 and Krox-24 promoters by the HTLV-I Tax protein through common regulatory elements, Oncogene 6 (1991), 1851–1857.

[5] C. Alexandre and B. Verrier, Four regulatory elements in the human c-fos promoter mediate transactivation by HTLV-I Tax protein, Oncogene 6 (1991), 543–551.

[6] S.K. Arya, F. Wong-Staal and R.C. Gallo, T-cell growth factor genes: lack of expression in human T-cell leukemia/lymphoma virus infected cells, Science 225 (1984), 1086–1087.

[7] N. Azimi, K. Brown, R.N. Bamford, Y. Tagaya, Y. Siebenlist and T.A. Waldmann, Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site, Proc. Natl. Acad. Sci. USA 95 (1998), 2452–2457.

[8] D.W. Ballard, E. Bohnlein, J.W. Lowenthal, Y. Wano, B.R. Faenza and W.C. Greene, Tax protein of HTLV-I influences the expression of marker genes, Proc. Natl. Acad. Sci. USA 91 (1994), 5642–5646.

[9] P.R. Baum, R.B. Gayle, F. Ramsdell, S. Srinivasan, R.A. Sorenson, M.L. Watson, M.F. Selldin, E. Baker, G.R. Sutherland and K.N. Clifford et al., Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-I regulated molecule, Oncogene 12 (1996), 1652–1655.

[10] P.R. Baum, R.B. Gayle, F. Ramsdell, S. Srinivasan, R.A. Sorenson, M.L. Watson, M.F. Selldin, E. Baker, G.R. Sutherland and K.N. Clifford et al., Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-I regulated protein gp34, EMBO J. 13 (1994), 3992–4001.

[11] J.N. Brady, K.-T. Jeang, J. Duvall and G. Khoury, Identification of p65-responsive regulatory sequences within the human T-cell leukemia virus type I long terminal repeat, J Virol 61 (1987), 2175–2181.

[12] A. Braunweiler, P. Carl, A.A. Franklin, H.A. Giebeler and J.K. Nyborg, A molecular mechanism for human T-cell leukemia virus latency and Tax transactivation, J. Biol. Chem. 270 (1995), 12814–12822.

[13] A. Braunweiler, J.E. Carrus, J.C. Reed and J.K. Nyborg, Repression of Bax gene expression by the HTLV-I Tax protein: implications for suppression of apoptosis in virally infected cells, Virology 231 (1997), 135–140.

[14] A. Cereseto, F. Diella, J.C. Mulloy, A. Cara, P. Michieli, R. Grassmann, G. Franchini and M.E. Klotman, p55 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells, Blood 88 (1996), 1551–1560.

[15] X. Chen, V. Zachar, C. Chang, P. Ebbeson and X. Liu, Differential expression of Nur77 family members in human T lymphotropic virus type 1-infected cells: transactivation of the TR3/nur77 gene by Tax protein, J Virol 72 (1998), 6902–6906.

[16] S.L. Cross, M.B. Feinberg, J.B. Wolf, N.J. Holbrook, F. Wong-Staal and W.J. Leonard, Regulation of the human interleukin-2 receptor–chain promoter: Activation of a non-functional promoter by the transactivator gene of HTLV-I, Cell 49 (1987), 47–56.

[17] C. De La Fuente, F. Santiago, S.Y. Chong, L. Deng, T. Mayhood, P. Fu, D. Stein, T. Denny, F. Coffman, N. Azimi, R. Mahieux and F. Kashanchi, Overexpression of p21waf1 in human T-cell lymphotropic virus type 1-infected cells and its association with cyclinAdk1, J Virol 74 (2000), 7270–7273.

[18] J. Dittmer, S.D. Gitlin, R.L. Reid and J.N. Brady, Transactivation of the P2 promoter of parathyroid hormone-related protein by human T-cell lymphotropic virus type I Tax: Evidence for the involvement of transcription factor Ets1, J. Virol. 67 (1993), 6087–6095.

[19] J. Dittmer, C.A. Pise-Masison, K.E. Clemens, K.S. Choi and J.N. Brady, Interaction of human T-cell lymphotropic virus type I Tax, Ets1 and Sp1 in transactivation of the PTHR-P2 promoter, J. Biol. Chem. 272 (1997), 4953–4958.

[20] M.P. Duyao, D.J. Kessler, D.B. Spicer, C. Bartholomew, J.L. Clevland, M. Siekevitz and G.E. Sonnenshein, Transactivation of the c-myc promoter by human T cell leukemia virus type 1 tax is mediated by NF kappa B, J Biol Chem 267 (1992), 16288–16291.

[21] B.K. Felber, H. Paskalis, C. Kleinman-Swing, F. Wong-Staal and G.N. Pavlakis, The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats, Science 229 (1985), 675–679.

[22] S. Flynn, K.M. Toelner, C. Raykundalia, M. Goodall and P. Lane, CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1, J Exp Med 188 (1999), 297.

[23] H.B. Fox, P.D. Gutman, H.P.G. Dave, S.X. Cao, M. Mittleman, P.E. Berg and A.N. Schechter, Trans-activation of human globin genes by HTLV-I Tax1, Blood 74 (1989), 2749–2754.

[24] G. Franchini, Molecular mechanisms of human T-cell leukemia/lymphomatous virus type I infection, Blood 86 (1995), 3619–3639.

[25] A.A. Franklin, M.F. Kubrik, M.N. Uittenbogaard, A. Braunweiler, P. Utasincharoen, M.-A.H. Matthews, J.P. Hoefiller and J.K. Nyborg, Transactivation by the human T-cell leukemia virus Tax protein is mediated through enhanced binding of AFF-2 and CREB, J Biol Chem 268 (1993), 21225.

[26] W. Fu, S.R. Shah, H. Jiang, D.C. Hilt, H.P. Dave and J.B. Joshi, Transactivation of proenkaphalin gene by HTLV-I tax1 protein in glial cells: involvement of Fos/Jun complex at an AP-1 element in the proenkaphalin gene promoter, J Neurovirol 3 (1997), 16–27.

[27] M. Fujii, T. Niki, T. Morii, T. Matsuda, M. Matsui, N. Nomura and M. Seiki, HTLV-I Tax induces expression of various immediate early serum responsive genes, Oncogene 6 (1991), 1023–1029.
dependent pathway by prostaglandin E₂ in HTLV-I-infected T cells, *J Biol Chem* **268** (1993), 1174–1179.

42. A. Imura, T. Hori, K. Imada, T. Ishikawa, Y. Tanaka, M. Maeda, S. Imanura and T. Uchiyama, The human \(\text{Ox40/gp34} \) system directly mediates adhesion of activated T cells to vascular endothelial cells, *J Exp Med* **183** (1996), 2185.

43. A. Imura, T. Hori, K. Imada, S. Kawamata, Y. Tanaka, S. Imanura and T. Uchiyama, \(\text{Ox40} \) expressed on fresh leukemic cells from adult T-cell leukemia patients mediates cell adhesion to vascular endothelial cells: implication for the possible involvement of \(\text{Ox40} \) in leukemic cell infiltration, *Blood* **89** (1997), 2951.

44. J. Inoue, M. Seiki, T. Taniguchi, S. Tsuru and M. Yoshida, Induction of interleukin 2 receptor gene expression by p40\(^{\text{tax}} \) encoded by human T-cell leukemia virus type I, *EMBO J.* **5** (1986), 2883–2888.

45. Y. Iwakura, M. Tosa, E. Yoshida, S. Sato, J. Nakayama-Yamada, K. Itagaki, M. Asano, H. Siomi, M. Hatakanaka, T. Takeda, T. Nunoya, S. Ueda and H. Shibuta, Augmentation of c-fos and c-jun expression in transgenic mice carrying the human T-cell leukemia virus type-I tax gene, *Virus Genes* **9** (1995), 161–170.

46. K.-T. Jeang, I. Boros, M. Radonovich, J. Duvall, G. Khoury and J.N. Brady, Cellular proteins and DNA sequences involved in trans-activation of the HTLV-I LTR by p40\(^{\text{tax}} \), in: *AnonymousThe control of human retrovirus gene expression*, Cold Spring Harbor Laboratory, 1988, pp. 265–279.

47. K.-T. Jeang, S.G. Widen, O.J. Semmes and S.H. Wilson, HTLV-I trans-activator protein, Tax, is a trans-repressor of the human–polymerase gene, *Science* **247** (1990), 1082–1084.

48. J.B. Joshi and H.P.G. Dave, Transactivation of the proenkephalin gene promoter by the Tax1 protein of human T-cell lymphotropic virus type I, *Proc. Natl. Acad. Sci. USA* **89** (1992), 1006–1010.

49. T. Kanno, K. Brown, G. Franzoso and U. Siebenlist, Kinetic analysis of human T-cell leukemia virus type I tax-mediated activation of NF-kappaB, *Mol. Cell Biol.* **14** (1994), 6443–6451.

50. S.J. Kim, J.H. Kehrl, J. Burton, C.L. Tendler, K.T. Jeang, D. Danielpour, C. Thevenin, K.Y. Kim, M.B. Sporn and A.B. Roberts, Transactivation of the transforming growth factor beta 1 (TGF-beta1) gene by human T lymphotropic virus type 1 tax: A potential mechanism for the increased expression of TGF-beta1 in adult T cell leukemia, *J Exp Med* **172** (1990), 121–129.

51. I. Lemasson, V. Robert-Hebmann, S. Hamaia, M.D. Dodon, L. Gazzolo and C. Devaux, Transexpression of kac gene expression by human T-cell leukemia virus type 1-encoded p40\(^{\text{tax}} \), *J. Virol.* **71** (1997), 1975–1983.

52. I. Lemasson, S. Thébault, C. Sardet, C. Devaux and J.M. Mesnard, Activation of E2F-mediated transcription by human T-cell leukemia virus type I tax protein in a p16\(^{\text{NK4}} \)-negative T-cell line, *J. Biol. Chem.* **273** (1998), 23598–23604.

53. K.Y. Leung and G.J. Nabel, HTLV-I transactivator induces interleukin-2 receptor expression through an NF-kB-like factor, *Nature* **333** (1988), 776–778.

54. M. Li and M. Siekevitz, A cis element required for induction of the interleukin 2 enhancer by human T-cell leukemia virus type I binds a novel Tax-inducible nuclear protein, *Mol. Cell Biol.* **13** (1993), 6490–6500.

55. A. Lilienbaum, M. DucDudon, C. Alexandre, L. Gazzolo and D. Paulin, Effect of human T-cell leukemia virus type I Tax...
protein on activation of the human vimentin gene, J Virol 64 (1990), 256–263.

[56] A. Lilenbaum and D. Paulin, Activation of human vimentin gene by Tax protein of human T-cell leukemia virus I, J Biol Chem 268 (1993), 2180–2188.

[57] K.G. Low, H.-M. Chu, Y. Tan, P.M. Schwartz, G.M. Daniels, M.H. Molenaar and M.J. Comb, Novel interactions between human T-cell leukemia virus type I Tax and activating transcription factor 3 at a cyclic AMP-responsive element, Mol. Cell. Biol. 14 (1994), 4958–4974.

[58] M. Maruyama, H. Shibuya, H. Harada, M. Hatakeyama, M. Nisen, N. Mori, R. Shibata, M. Shiroyama, K. Tajima, M. Muro and K. Shimotohno, Multi-step carcinogenesis model for adult T-cell leukemia, Jpn. J. Can. Res. 89 (1989), 191–195.

[59] K. Ohtani, A. Tsuji, T. Tsukahara, N. Numata, M. Miura, K. Sugamura and M. Nakamura, Molecular mechanisms of promoter regulation of the gp34 gene that is trans-activated by an oncoprotein tax of human T cell leukemia virus type I, J. Biol. Chem. 273 (1998), 14119–14129.

[60] N. Mori, E. Ejima and D. Prager, Transactivation of parathyroid hormone-related protein gene expression by human T-cell leukemia virus type I tax, Eur. J. Haematol. 56 (1996), 116–117.

[61] N. Mori, N. Mukaida, D.W. Ballard, K. Matsushima and N. Yamazato, Human T-cell leukemia virus type I Tax transactivates human interleukin 8 gene through acting concurrently on AP-1 and nuclear factor-kappaB-like sites, Cancer Res. 58 (1998), 3993–4000.

[62] N. Mori, S. Murakami, S. Oda, D. Prager and S. Eto, Production of interleukin 8 in adult T-cell leukemia cells: Possible transactivation of the interleukin 8 gene by human T-cell leukemia virus type I tax, Cancer Res. 55 (1995), 3592–3597.

[63] N. Mori and D. Prager, Transactivation of the interleukin-1 alpha promoter by human T-cell leukemia virus type I tax proteins, Blood 87 (1996), 3410–3417.

[64] N. Mori and D. Prager, Transactivation of the interleukin-1 alpha promoter by human T-cell leukemia virus type I tax transactivates RNA polymerase III promoter in vitro and in vivo, J. Biol. Chem. 271 (1996), 20501–20506.

[65] P. Pisani, D.M. Parkin, N. Muzon and J. Ferlay, Cancer and infection: estimates of the attributable fraction in 1990, Cancer Epidemiol. Biomarkers Prev. 6 (1997), 378–400.

[66] B.J. Poiesz, F.W. Ruscetti, A.F. Gadzar, P.A. Bunn, J.D. Minna and R.C. Gallo, Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient tropism of human T-cell leukemia virus type I, Proc Natl Acad Sci USA 77 (1980), 7415–7419.

[67] R. Pozzati, J. Vogel and J. Gay, The human T lymphotropic virus I Tax gene can cooperate with the ras oncogene to induce neoplastic transformation of cells, Mol Cell Biol 10 (1990), 413–417.

[68] S. Ressler, G.F. Morris and S.J. Marriott, Human T-cell leukemia virus type I Tax transactivates the human proliferating cell nuclear antigen promoter, J. Virol. 71 (1997), 1181–1190.

[69] F.J. Lemon, H. Potete, T. Tan, K. Kawakami, R. Roedter, W. Haseltine and C.A. Rosen, Cellular transcription factors and regulation of IL-2 receptor gene expression by HTLV-I tax gene product, Science 241 (1988), 89–92.
Transcriptional activity of HTLV-I Tax influences the expression of marker genes

A. Salvetti, A. Lilienbaum, M.-M. Portier, P. Gounon, D. Paulin and L. Gazzolo, Organization and expression of intermediate filaments in epithelial cells expressing the HTLV-I Tax protein, *European Journal of Cell Biology* 61 (1993), 383–391.

S. Santiago, E. Clark, S. Chong, C.A. Molina, F. Mozafari, R. Mabrouk, M. Fujii, N. Azimi and F. Kashanchi, Transcriptional up-regulation of the cyclin D2 gene and acquisition of new cyclin-dependent partners in human T-cell leukemia virus type 1-infected cells, *J Virol* 73 (1999), 9917–9927.

M. Sawada, A. Suzumura, M. Yoshida and T. Marunouchi, Human T-cell leukemia virus type I trans-activator induces class I major histocompatibility complex antigen expression in gial cells, *J Virol* 64 (1990), 4002–4006.

M. Seiki, A. Hikishishi, T. Taniguchi and M. Yoshida, Expression of the pX gene of HTLV-I: general splicing mechanism in the HTLV family, *Science* 228 (1985), 1532–1534.

M. Siekevitz, M.B. Feinberg, N. Holbrook, F. Wong-Staal and W.C. Greene, Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I, *Proc Natl Acad Sci USA* 84 (1987), 5389–5393.

M.R. Smith and W.C. Greene, Type I human T-cell leukemia virus Tax protein transforms rat fibroblasts through the cyclic adenosine monophosphate response element binding protein/activating transcription factor pathway, *J Clin. Invest.* 88 (1991), 1038–1042.

J.G. Sodroski, C.A. Rosen, W.C. Goh and W.A. Haseltine, A transcriptional activator protein encoded by the x-or region of the human T-cell leukemia virus, *Science* 228 (1985), 1430–1434.

S.C. Sun, J. Elwood, C. B’erard and W.C. Greene, Human T-cell leukemia virus type I Tax activation of NF-kappa B/Rel involves phosphorylation and degradation of I kappa B alpha and RelA (p65)-mediated induction of the c-rel gene, *Mol. Cell Biol.* 14 (1994), 7377–7386.

T. Suzuki, J.-I. Fujisawa, M. Toita and M. Yoshida, The transactivator Tax of human T-cell leukemia virus type I (HTLV-I) interacts with cAMP-responsive element (CRE) binding and CRE modulator proteins that bind to the 21 base pair enhancer of HTLV-I, *Proc Natl Acad Sci USA* 90 (1993), 610–614.

T. Suzuki, H. Hirai, J.-I. Fujisawa, T. Fujita and M. Yoshida, A trans-activator Tax of human T-cell leukemia virus type I binds to NF-kappaB p50 and serum response factor (SRF) and associates with enhancer DNAs of NF-κB and CAR box, *Oncogene* 8 (1993), 2391–2397.

T. Suzuki, S. Kitao, H. Matsushime and M. Yoshida, HTLV-I Tax protein interacts with cyclin-dependent kinase inhibitor p16INK4a and counteracts its inhibitory activity towards CDK4, *EMBO J.* 15 (1996), 1607–1614.

T. Suzuki, T. Narita, M. Uchida-Toita and M. Yoshida,Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-I through two distinct mechanisms, *Virology* 259 (1999), 384–391.

A. Tanaka, G. Takahashi, S. Yamaoka, T. Nosaka, M. Maki and M. Hatanaka, Oncogenic transformation by the tax gene of human T cell leukemia virus type I in vitro, *Proc Natl Acad Sci USA* 87 (1990), 1071–1075.

Y. Tanaka, M. Hayashi, S. Takagi and O. Yoshie, Differential transactivation of the intercellular adhesion molecule 1 gene promoter by Tax1 and Tax2 of human T-cell leukemia viruses, *J. Virol.* 70 (1996), 8508–8517.

C.L. Tendler, S.J. Greenberg, W.A. Blattner, A. Manns, E. Murphy, T. Fleisher, B. Hanchard, O. Morgan, J.D. Burton, D.L. Nelson and T.A. Waldmann, Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: pathogenic implications and a rationale for immunotherapy, *Proc. Natl Acad Sci USA* 87 (1990), 5219–5222.

S.R. Trejo, W.E. Fahl and L. Ratner, cis-pSDGF-B promoter transactivation by the tax protein of human T-cell leukemia virus type 1, *J. Biol. Chem.* 271 (1996), 14584–14590.

S.R. Trejo, W.E. Fahl and L. Ratner, The Tax protein of human T-cell leukemia virus type 1 mediates the transactivation of the c-sis/platelet-derived growth factor-B promoter through interactions with the zinc finger transcription factors Sp1 and NGFI-A/Egr-1, *J. Biol. Chem.* 272 (1997), 27411–27421.

E. Tschachler, E. Bohnlein, S. Felzmann and M.S. Reitz, Human T-cell lymphotropic virus type I Tax regulates the expression of the human lymphotoxin gene, *Blood* 83 (1993), 95–100.

H. Tsuchiya, M. Fujii, T. Niki, M. Tokuhara, M. Matsui and M. Seiki, Human T-cell leukemia virus type I Tax activates transcription of the human fra-1 gene through multiple cis elements responsive to transmembrane signals, *J. Virol.* 67 (1993), 7001–7007.

J. Tsukada, M. Misago, Y. Serino, R. Ogawa, S. Murakami, M. Nakanishi, S. Tonai, Y. Kominato, I. Morimoto, P.E. Auron and S. Eto, Human T-cell leukemia virus type I Tax transactivates the promoter of human prointerleukin-1 gene through association with two transcription factors, nuclear factor-interleukin-6 and Sp1-1, *Blood* 90 (1997), 3142–3153.

T. Tsukahara, M. Kannagi, T. Ohashi, H. Kato, M. Arai, G. Nunez, Y. Iwanga, N. Yamamoto, K. Ohtani, M. Nakamura and M. Fuji, Induction of Bcl-XL expression by human T-cell leukemia virus type I Tax through NF-kB in apoptosis-resistant T-cell transfectants with Tax, *J. Virol.* 73 (1999), 7981–7987.

F. Uchiyumi, K. Samba, Y. Yamanashi, J.-I. Fujisawa, M. Yoshida, K. Inoue, K. Toyoshima and T. Yamamoto, Characterization of the promoter region of the src family gene lyn and its trans activation by human T-cell leukemia virus type I-encoded p60v-src, *Mol. Cell. Biol.* 12 (1992), 3784–3795.

M.N. Uittenbogaard, A.P. Armstrong, A. Chiaramello and J.K. Nyborg, Transcriptional repression of p53 by human T-cell leukemia virus type I tax protein represses gene expression through the basic helix-loop-helix family of transcription factors, *J. Biol. Chem.* 269 (1994), 22466–22469.

M.N. Uittenbogaard, H.A. Giebler, D. Reisman and J.K. Nyborg, Transcriptional repression of p53 by human T-cell leukemia virus type I Tax protein, *J. Biol. Chem.* 270 (1995), 28503–28506.

Y. Wano, M.B. Feinberg, J.B. Hosking, H. Bogerd and W.C. Greene, Stable expression of the tax gene of type I human T-cell leukemia virus in human T cells activates specific cellular genes involved in growth, *Proc Natl Acad Sci USA* 85 (1988), 9733–9737.

M. Watanabe, M. Muramatsu, H. Hirai, T. Suzuki, J.-I. Fujisawa, M. Yoshida, K. Arai and N. Arai, HTLV-I encoded Tax in association with NF-kappaB precursor p105 enhances nuclear localization of NF-kappaB p50 and p65 in transfected cells, *Oncogene* 8 (1993), 2949–2958.

T. Watanabe, K. Yamaguchi, K. Takatsuki, M. Osame and M. Yoshida, Constitutive expression of parathyroid hormone-related protein gene in human T-cell leukemia virus type 1 (HTLV-I) carriers and adult T-cell leukemia patients that can
be transactivated by HTLV-I tax gene, *J Exp Med* **172** (1990), 759–765.

[112] X. Xu, S.H. Kang, O. Heidenreich, M. Okerholm, J.J. O’Shea and M.I. Nerenberg, Constitutive activation of different Jak tyrosine kinases in human T cell leukemia virus type 1 (HTLV-I) tax protein or virus-transformed cells, *J. Clin. Invest.* **96** (1995), 1548–1555.

[113] T. Yamagata, K. Mitani, H. Ueno, Y. Kanda, Y. Yazaki and H. Hirai, Triple synergism of human T-lymphotropic virus type 1-encoded tax, GATA-binding protein, and AP-1 is required for constitutive expression of the interleukin-5 gene in adult T-cell leukemia cells, *Mol. Cell Biol.* **17** (1997), 4272–4281.

[114] Y. Yamanashi, S. Mori, M. Yoshida, T. Kishimoto, K. Inoue, T. Yamamoto and K. Toyoshima, Selective expression of a protein-tyrosine kinase, p56 lyn, in hematopoietic cells and association with production of human T-cell lymphotropic virus type I, *Proc. Natl Acad Sci USA* **86** (1989), 6538–6542.

[115] S. Yamaoka, T. Tobe and M. Hatanaka, Tax protein of human T-cell leukemia virus type 1 is required for maintenance of the transformed phenotype. *Oncogene* **7** (1992), 433–437.

[116] I. Yamashita, S. Katamine, R. Moriuchi, Y. Nakamura, T. Miyamoto, K. Eguchi and S. Nagataki, Transactivation of the human interleukin-6 gene by human T-lymphotropic virus type 1 Tax protein, *Blood* **84** (1994), 1573–1578.

[117] J. Yao and B. Wigdahl, Human T cell lymphotropic virus type 1 genomic expression and impact on intracellular signaling pathways during neurodegenerative disease and leukemias, *Frontiers in Bioscience* **5** (2000), 138–168.

[118] M. Yoshida, I. Miyoshi and Y. Hinuma, Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its importance in the disease, *Proc. Natl Acad Sci USA* **79** (1982), 2031–2035.

[119] L.-J. Zhao and C.-Z. Giam, Human T-cell lymphotropic virus type 1 (HTLV-I) transcriptional activator, Tax, enhances CREB binding to HTLV-I 21 base pair repeats by protein-protein interaction, *Proc. Natl Acad Sci USA* **89** (1992), 7070–7074.