A potential role for genome structure in the translation of mechanical force during immune cell development

Elsie Jacobson a, Jo K. Perry a, David S. Long b, Mark H. Vickers a, and Justin M. O’Sullivan a

aLiggins Institute, University of Auckland, Auckland, New Zealand; bAuckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

ABSTRACT
Immune cells react to a wide range of environments, both chemical and physical. While the former has been extensively studied, there is growing evidence that physical and in particular mechanical forces also affect immune cell behavior and development. In order to elicit a response that affects immune cell behavior or development, environmental signals must often reach the nucleus. Chemical and mechanical signals can initiate signal transduction pathways, but mechanical forces may also have a more direct route to the nucleus, altering nuclear shape via mechanotransduction. The three-dimensional organization of DNA allows for the possibility that altering nuclear shape directly remodels chromatin, redistributing critical regulatory elements and proteins, and resulting in wide-scale gene expression changes. As such, integrating mechanotransduction and genome architecture into the immunology toolkit will improve our understanding of immune development and disease.

KEYWORDS
chromatin; genome biology; Hi-C; immune; mechanosensory; mechanotransduction; nucleus; nuclear lamin; nucleoskeleton; tensegrity

Introduction

Immune cells are exposed to a vast array of different microenvironments as they travel through the body in search of foreign agents. The mammalian immune system is remarkably effective at clearing pathogens and tumors while leaving commensal bacteria and healthy tissue intact.1 Tight self-regulation and rapid responses maintain the balance of pro-inflammatory and anti-inflammatory factors at a healthy level, while allowing high levels of inflammation at local sites of infection.2 However this balance is disturbed in autoimmune disorders, where local inflammation is maintained at damaging levels without the presence of a pathogen, destroying otherwise healthy tissue.3 Further, global low grade inflammation gives rise to the co-morbidities associated with obesity.4 Much is already known about the environmental and genetic factors that contribute to the development and differentiation of the wide range of pro- and anti-inflammatory cells, particularly in regard to cytokines and protein-altering mutations.5,6 However, it remains possible that the mechanical processes (i.e. mechanotransduction7) associated with the physical environment also directly contribute to development of immune cells in vivo.

Chemical signals regulate cell differentiation

Immune cells are surrounded by a chemical milieu in vivo,8 which induces and directs immune cell differentiation.5 Many cell types, including immune cells, secrete cytokines into the extracellular matrix (ECM). When cytokines come into close proximity with a cell with an appropriate receptor, the cytokine will bind, initiating a signal transduction cascade that activates or represses target genes9 – often transcription factors.10 This in turn induces further changes in gene expression, often upregulating the original cytokine(s)9 and creating a positive feedback loop. For example, exposing a naïve CD4 + T helper (Th) cell to the interferon (IFN)-γ cytokine upregulates the T-bet transcription factor, which in turn upregulates IFNγ.11 This feedback loop maintains the newly differentiated pro-inflammatory Th1 cell.5

In an appropriate cytokine environment, CD4+ T helper cells can differentiate into a wide range of
subtypes in addition to Th1 cells.5,12,13 The mechanisms of induction and behavior of some of these subtypes (\textit{e.g.} allergen associated Th2 cells,14 pro-inflammatory Th17 cells,15 and anti-inflammatory Treg cells16) are well characterized. In contrast, the induction and behavior of other T helper cell subtypes, including Tfh, Tr1, Th3, and Th9, is less well understood.9 However, even the classical subtypes are more plastic and variable than originally thought, particularly in humans.17

Spatial DNA organization modulates immune cell development

We have gained significant insight into the effects of cytokines on differentiation and disease,5,6 and recent progress has also been made into the role of genetic variation in the human immune response.18 One area of interest is the role of regulatory variants in immune cells, where recent studies of expression quantitative trait loci (eQTL) have shown that genetic variants located in regulatory regions cause immune cells to be more or less receptive to certain environmental signals.19,20 Both studies identified many more cis-eQTLs (<1 MB from the promoter) than trans-eQTLs (>1 MB from the promoter, or on a different chromosome), most likely because multiple testing dramatically reduces the power to detect long-range eQTLs.21

The trans-eQTLs that were identified in Fairfax et al.19 and Lee et al.20 were attributed to cis-eQTLs affecting major pathway regulators.19,20 However, trans-eQTL effects can also be directly mediated by the spatial organization of DNA, which is critical in immune cell development. This is best illustrated by the T helper 2 locus control region (Th2 LCR), which has long been known to regulate expression of Th2 cytokines (Interleukin(II)-4/5/13) in \textit{cis}.22 Recent experiments have demonstrated that the Th2 locus also regulates key Th1 (IFN\textgamma) and Th17 (Il-17) cytokines in mice – even though they are found on different chromosomes.23 This critical stage in the regulation of T cell differentiation23 is achieved by the formation of a spatial connection between 3 different chromosomes, possibly mediated by a transcription factory.24 Disruption of this interchromosomal connection, by deleting the DNase I hypersensitive region RHS6 of the Th2 LCR, increases the proportion of Th17 cells produced.23,25 Thus, this raises the possibility that genetic variants within this LCR could result in dysregulated Th cell differentiation and an autoimmune disorder.26

Disruption of the Th2 LCR has a major impact on Th cell development, therefore it is reasonable to assume that variants with this effect are unlikely to become common in the population.27 However, mutations that modulate, instead of disrupt, the activity of regulatory regions are common polymorphisms.18 As with many complex disorders,28 immune cell enhancers are enriched for autoimmune-associated single nucleotide polymorphisms (SNPs).18 Moreover, these enhancers frequently form spatial connections with promoters more than 500kb away, even if there are promoters that are more proximal.29

While the linear order of elements within a chromosome is important, DNA has a 3-dimensional spatial organization that is a store of epigenetic information during cellular and organismal development. DNA is flexible and forms many chromatin loops, which are clustered into topological domains.30,31 These topological domains interact with other domains of a similar chromatin state, creating a hierarchical organization of DNA.32 This means that regulatory elements can interact with gene promoters from many kilobases away, or even on different chromosomes.25,33,34 Some of these interactions are mediated by transcription factories: regions of the nucleus containing a high density of active RNA polymerase and other transcriptional components, resulting in high levels of transcription of proximal loci.35-39 If a mutation in one locus affects the composition or localization of the transcription factory,40 it could disrupt the expression of some or all of the genes associated with that factory.40

The accurate annotation of trait-associated variants requires the integration of spatial information because of the interleaved organization of the genome. This requirement is illustrated by the SNP, rs9930506 which is strongly associated with obesity.41 rs9930506 is located in an intron of the \textit{FTO} gene. \textit{FTO} codes for the fat mass and obesity-associated protein and was initially thought to be the target of rs9930506 activity.42 However, chromatin capture techniques, such as 4C which identifies spatial interactions between genomic loci, and subsequent eQTL analysis revealed that rs9930506 was localized to an enhancer that regulates 2 different genes, \textit{IRX3} and \textit{IRX5}, 600kb and 1.2Mb away respectively.43,44 These genes code for the Iroquois homeobox proteins 3 and 5, which are
transcriptional regulators involved in the differentiation of adipocyte progenitor cells into either lipid-storing white adipocytes or lipid-utilizing beige adipocytes, the latter being protective against obesity. Thus, by only considering the linear organization of DNA, analyses into the function of rs9930506 incorrectly focused on FTO for many years, before IRX3 and IRX5 were investigated in relation to this obesity associated SNP.

As with the FTO SNP rs9930506, integrating spatial genomics data into genome wide association study (GWAS) analyses is likely to produce novel and actionable insights into the genetic basis of complex autoimmune disorders (e.g.,). Moreover, since the effects of some variants are only apparent under certain environmental conditions or at a specific point in development, a range of relevant stimuli, both chemical and mechanical, should be used to investigate the functionality of a SNP.

Do mechanical forces regulate immune differentiation and disease?

The tensegrity model proposes that cell shape is maintained by pre-stressed networks containing both stiff and flexible structures held under constant tension: the cyto- and nucleo-skeletons. The cyto- and nucleo-skeletons are mechanically linked via a protein complex that spans the nuclear envelope, known as the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex. This pre-stressed network provides a conduit through which mechanical forces can have immediate effects on nuclear shape, altering chromatin organization and dynamics.

Immune cells are exposed to a wide range of mechanical environments. The physical characteristics of these environments range from shear stress in the blood stream, to cellular deformation during diaplasia, and the complex mechanical environments of the bone marrow, organs, tissues, and tumors. Each of these environments plays a role in the development or behavior of immune cells, and ultimately the overall immune activity in the human body. However, mechanosensing in mature immune cells has remained relatively understudied due to the commonly held belief that mature immune cells lack myosin IIB and Lamin A, which are crucial mechanosensory components of the cyto- and nucleo-skeleton, respectively. Despite this we know that Lamin A plays a critical role in T cell activation and that immune cells respond to mechanical forces throughout their lifetime.

Haematopoietic stem cells (HSCs) develop in the bone marrow, a complex tissue that is very soft in the center, but increases in stiffness toward the periphery. Early HSCs divide symmetrically in the soft interior, but once reaching the stiff ECM in the periphery of the marrow, they divide asymmetrically (Fig. 2A). This occurs because a soft matrix represses polarization of myosin IIB, a mechanosensory component of the actin cytoskeleton. As the HSC reaches the stiff matrix, myosin IIB becomes polarized and asymmetrically segregates during cell division, resulting in 2 daughter cells: a stem cell, and a differentiated cell containing the low myosin IIB levels characteristic of differentiating blood cells. Mature immune cells also respond to matrix stiffness; neutrophil-like HL60 cells alter cell and nuclear morphology, as well as chemotaxis speed and directionality, in proportion to substrate elasticity.

The mechanical environment directly influences cell fate determination in mesenchymal stem cells.

Figure 1. Tensegrity architecture coordinates responses to mechanical signals. Cell surface receptors are mechanically linked to the nucleus via the cytoskeleton and LINC complex. These inter-connected skeletons can transduce mechanical signals, including fluid shear stress to rapidly remodel the cyto- and nucleo-skeletons.
by altering the composition of the nuclear lamina, which is composed of 2 intermediate filament subtypes; Lamin A/C and Lamin B form a mesh layer on the inner surface of the nuclear envelope. Lamin A/C has low elasticity, while Lamin B is more extensible; thus the ratio of Lamin A:B determines nuclear stiffness and is highly variable between cell types, correlating with the size of the forces they are exposed to. Stiff matrices (~100kPa) or shear stress induces high Lamin A and expression of osteoblast genes, whereas soft matrices (~1kPa) induce low Lamin A and expression of adipocyte or neuronal genes. Manipulation of Lamin A levels can reproduce these cell fate decisions, indicating that the increased Lamin A expression caused by mechanical forces influences gene expression in developing MSCs.

The flow of causality in this case demonstrates that the mechanical environment shapes the nucleoskeletal composition, which then allows all other gene expression changes to complete differentiation of the cell. This ensures that cells have the appropriate nucleoskeletal architecture for their environment.

The endothelial cells that line blood vessels are also highly responsive to shear stress; their nuclei flatten and align in the direction of blood flow. Endothelial cells within blood vessels also respond to the composition of the underlying basement membrane, which often stiffens as we age. Stiffening of the basement membrane directs changes in endothelial cells that affect their responses to fluid shear stress. Growth on a stiff matrix also alters the differentiation trajectory of MSCs in response to the cytokine transforming growth factor (TGF)-β. Thus, the mechanical environment alters cellular responses to

Figure 2. Immune cells are exposed to a variety of mechanical environments. (A) During development in the bone marrow, Haematopoietic stem cells (HSCs) divide symmetrically (i) in the soft marrow, but divide asymmetrically upon reaching the stiff matrix (ii); one daughter cell maintains stemness, while the other begins differentiation. The differentiating cell migrates into the blood vessel by squeezing through the endothelial cell layer, which deforms the nucleus (iii). The cell is then subject to fluid shear stress in the blood stream (iv). This step is particularly important for the development of megakaryocytes into platelets. (B) During inflammation, the matured immune cell must then extravasate to enter the infected tissue. To migrate through the endothelial cell layer, the cell first makes contact with the endothelial cells (rolling adhesion, (i)), then becomes more strongly adherent (firm adhesion, (ii)), and finally undergoes diapedesis (iii). After successful migration, the cell may be exposed to a range of tissue microenvironments (iv,v). Finally, the cell may return to the blood stream (C), again deforming the nucleus to migrate through the endothelial cell layer, and once again becoming exposed to fluid shear stress.
mechanical and chemical signals affecting cell activity and differentiation.

The mechanical composition of the bone marrow niche may be sensitive to the compressive and tensile forces applied to bones, which could influence HSC differentiation. While there are currently no studies showing a direct link between bone loading, marrow composition, and HSC development, many groups have noted the connection between exercise or microgravity, and immune activity. For instance, chronic low-grade inflammation is a hallmark of obesity, and often leads to metabolic disorders such as type 2 diabetes. These disorders can be mitigated by exercise, i.e., increased bone loading, which reduces the peripheral white blood cell count of at-risk women. Conversely, astronauts regularly suffer from immune deficiency during spaceflight as a result of microgravity, i.e. severely reduced mechanical loading. The results of these studies seem contradictory, indicating that mechanical loading can both increase and reduce white blood cell count. However, it is possible that mechanical loading results in a regression to the mean, preventing the extreme phenotypes of both immune depletion and overstimulation. Although these effects could be due to cytokine or hormonal signaling, the mechanical forces applied to bone from gravity or exercise may affect immune cells directly, or via altered bone marrow composition.

Immune cell shape changes during diapedesis

Once blood cells have matured in the bone marrow, they enter circulation, where fluid shear stress from blood flow affects many immune cell types. Megakaryocytes are torn apart to produce immature thrombocytes, which continue to mature in the lamellar flow. Fluid shear stress prevents pseudopod formation and prevents immune cells adhering to endothelial cells, although this response can be modulated by inflammatory signals. Shear stress from blood flow is crucial for the activation of neutrophils, and encourages CD3+ T cell migration across the endothelium, also known as trans endothelial migration (TEM) or diapedesis. To complete diapedesis, cells must change their shape to fit between the endothelial cells, presenting a further mechanical challenge to the cell and nucleus.

Diapedesis is necessary at many stages of immune cell development, from leaving the bone marrow, to entering and leaving lymph nodes and other organs. Briefly, the immune cell first attaches to the endothelial cell, initiating an adhesion cascade, before polarizing and migrating through an endothelial cell junction. This paracellular route is most commonly observed, but some cells actually undergo transcellular diapedesis and migrate through the center of the endothelial cell. Either way, the cell must deform itself to leave or enter the blood vessel, resulting in changes to the immune cell. For example, in a recent study, Zimmermann et al. showed that reverse transmigration (i.e., migrating from the tissue to a vessel) enhances the proinflammatory behavior of macrophages compared to those that remain in the tissue. This observation can be explained by: 1) the possibility that proinflammatory cells are more inclined to migrate; or 2) the cell deformation during reverse transmigration altering macrophage gene expression to activate proinflammatory pathways. Migration is known to induce expression of β1-integrin in neutrophils, supporting the explanation that migration alters expression of pro-inflammatory genes.

Recently, Raab et al. have shown that migration through physiologic (mouse ear explant) and non-physiologic (PDMS micro-channels, collagen matrix) spaces much smaller than the nucleus can result in the nuclear envelope of dendritic cells rupturing. Prior to rupture, the nucleus undergoes extensive deformation, and some nuclei fail to rupture at all. When the nucleus loses membrane integrity, extensive DNA damage can occur. However, it remains unknown how nuclear deformation without rupture influences the spatial organization of DNA, and whether deformation results in programmed gene expression changes or simply a DNA damage response.

Microscopic and other observations indicate that chromatin reorganisation must occur during migration. However, the nuclear shape change that takes place may be due to mechanotransduction or programmed remodelling. When a mechanical force is directly applied to a cell, it must respond quickly to prevent damage, making mechanotransduction a likely response mechanism. However, diapedesis is a controlled process. Programmed chromatin remodelling could be initiated at any stage of...
diapedesis, pre-empting the nuclear shape changes to avoid damage during migration. In either case, nuclear remodelling must occur for the immune cell to complete diapedesis, and may result in widespread gene expression changes.54

The nucleus is known to be a highly mechanosensitive organelle.107 This is supported by observations that cytoskeletal regulated changes to nuclear shape result in altered dynamics for heterochromatic foci52,104 and telomeres.52 Mechanosensitivity is not limited to the movement of chromatin and nuclear structure. Transcription factors, including NF-kB,105 and the chromatin remodeller HDAC3,108 have been observed to move from the cytoplasm to the nucleus in cells under mechanical stress.105,108 Physiological levels of stress have also been shown to disrupt protein complexes, notably this has included the dissociation of coilin from the survival motor neuron protein (SMN) deep within the nucleus.109 Finally, a recent study has shown that chromatin stretching in response to a directional force increased chromatin accessibility and resulted in higher gene expression.110

In isolation, these responses seem insufficient to account for the highly specific gene expression changes that occur in response to mechanical forces. However, the combination of chromatin movement, a dynamic proteome, and interactions between these elements, may be sufficient to culminate in global but precise transcriptional changes.

Many proteins are associated with the nucleoskeleton and chromatin.39,111 These proteins include, but are not limited to: sumo1,112,113 a post-translational modifier of many nuclear proteins114,115; the retinoblastoma protein116-118 which is critical to cell cycle control and differentiation119; and a range of transcription-associated proteins and complexes.120,121 Mechanical directed movement of chromatin,51,52 including that which occurs during migration, may: 1) result in disruption or repositioning of transcription factories,39 chromatin remodelling complexes,122 and other nuclear bodies109 that alter the expression of many genes at once (Fig. 3A, B); or 2) expose previously hidden genomic regions to different nucleoskeleton and chromatin associated proteins. Naturally, these options need not be mutually exclusive. Notably, even if the repositioning is only transient, the chromatin and/or transcriptional changes may be sustained long after migration, as a result of enduring post-translational modifications and the prevalence of feedback loops in eukaryotic gene regulation115,123-126 (Fig. 3C).

Future experiments

We currently lack a systems understanding of the immune system. This is partly because we have not been fully able to mechanistically link the changes that occur as immune cells move between chemically and mechanically defined compartments in the body with the signals they are encountering and their tissue specific roles (Fig. 2). Future experiments need to capture the dynamic nature of the nuclear changes that occur in immune cells when faced with these diverse environments, if we are to understand how mechanical and chemical signals interact during the human immune response.

That chromatin organization provides the link between nuclear shape and gene expression changes is not a new hypothesis,51,52,106,127 but it can be approached in a novel way. Analyzing the movement of heterochromatic foci and tagged loci has revealed directional and reproducible movement of chromatin in response to mechanical forces and constraints.51,52,74,75,104,110 This movement has even been directly linked to transcriptional changes in a bacterial artificial chromosome introduced into a mammalian nucleus.110 However, correlating specific chromatin reorganisation events with gene expression changes in endogenous chromatin may require higher resolution techniques, such as genome-wide chromosome conformation capture (e.g. Hi-C,128 GCC129). Unfortunately, Hi-C is destructive and does not allow repeated sampling from the same set of cells. The dynamic nature of the genome130 means that single time point sampling will not distinguish between transient changes, stable changes, and stochastic movement of the immune cell genome in response to migration. Microscopic imaging techniques analogous to the brainbow131 that allow simultaneous and distinct fluorescent tagging of many genomic loci or transcriptional proteins could allow us to investigate nuclear remodelling during migration.104 Other methods of interrogating nuclear organization that allow for repeated and rapid sampling of individual cells would be invaluable.

Immune cell development plays a critical role in human health and disease. Immune disorders have a
clear and quantifiable genetic component. Investigating the spatial organization of DNA in immune cells is a promising method of finding the mechanisms by which autoimmune disease associated SNPs affect the immune system. Mechanical forces affect immune cells at all stages of development, so understanding how these forces act in isolation, and in combination with chemical signals, is critical for understanding how immune cells behave and differentiate in vivo.

Conclusion

Developing a systems understanding of the immune system that enables rapid and reliable therapeutic intervention requires an interdisciplinary approach to immune development that incorporates both mechano- and genome biology.

Abbreviations

- **ECM**: Extracellular matrix
- **Eqtl**: Expression quantitative trait locus
- **GWAS**: Genome wide association study
- **HSC**: Haematopoietic stem cell
- **IFN**: Interferon
- **IL**: Interleukin
- **LINC**: Linker of nucleoskeleton and cytoskeleton
- **MSC**: Mesenchymal stem cell
- **PTM**: Post-translational modification

Figure 3. Chromatin architecture may translate mechanical forces to gene expression changes. Changes in nuclear shape may affect nuclear activity in several ways. The most simple model (A) shows repositioning of DNA relative to a transcription factory; these changes are rapidly reversible and may not be maintained in the absence of the force in either the structure or the function of the nucleus. (B) Some chromatin remodelling proteins are known to ‘slide’ along DNA. Therefore, pulling on chromatin loops brings 2 or more proteins into close proximity, forming the complexes necessary to initiate transcription. This may result in a stable change to both genome organization and function. (C) Changes in nuclear shape may bring a modifier and its target into contact, allowing a transient change to chromatin architecture to result in a stable change to nuclear function. For simplicity, SUMOylation has been illustrated as the post-translational modification (PTM) of the transcription factor, shown here tethered to the nuclear lamina. Transcription factors and other accessory proteins have SUMO (Small Ubiquitin-like Modifier), ubiquitin, or other PTMs delivered by modifiers which are often tethered to chromatin or nucleoskeleton components. These modifications may activate or repress transcriptional activity, or target the protein for degradation.
SNP Single nucleotide polymorphism
SUMO Small ubiquitin-like modifier
TEM Trans endothelial migration
TGF Transforming growth factor
Th T helper (cell)
Th2 LCR T helper 2 locus control region

Disclosure of potential conflicts of interest
No potential conflicts of interest were disclosed.

ORCID
Elsie Jacobson http://orcid.org/0000-0002-6094-5490
Jo K. Perry http://orcid.org/0000-0002-4418-947X
David S. Long http://orcid.org/0000-0003-3829-1205
Mark H. Vickers http://orcid.org/0000-0003-4876-9356
Justin M. O’Sullivan http://orcid.org/0000-0003-2927-450X

References

[1] Cohn M. A new concept of immune specificity emerges from a consideration of the self-nonself discrimination. Cell Immunol 1997; 181:103-8; PMID:9398397; http://dx.doi.org/10.1006/cimm.97.1212
[2] Pelanda R, Piccirillo CA. Tolerance, immune regulation, and autoimmunity: cells and cytokines that make a difference. Curr Opin Immunol 2008; 20:629-31; PMID:18977298; http://dx.doi.org/10.1016/j.coi.2008.10.005
[3] Kochi Y, Suzuki A, Yamamoto K. Genetic basis of rheumatoid arthritis: A current review. Biochem Biophys Res Commun 2014; 452:254-62; PMID:25078624; http://dx.doi.org/10.1016/j.bbrc.2014.07.085
[4] Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011; 29:415-45; PMID:21219177; http://dx.doi.org/10.1146/annurev-immunol-031210-101322
[5] Zhu J, Yamane H, Paul W. Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010; 28:445-89; PMID:20192806; http://dx.doi.org/10.1146/annurev-immunol-030409-101212
[6] Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6:113; PMID:24592313; http://dx.doi.org/10.1269/f1000.0063
[7] Fedorchuk GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. Prog Biophys Mol Biol 2014; 115:76-92; PMID:25008017; http://dx.doi.org/10.1016/j.pbiombio.2014.06.009
[8] Vahedi G, Kanno Y, Sartorelli V, O’Shea JJ. Transcription factors and CD4 T cells seeking identity: masters, minions, setters and spikers. Immunology 2013; 139:294-8; PMID:23586907; http://dx.doi.org/10.1111/imm.12113
[9] Kishimoto T, Taj T. Cytokine signal transduction review. Cell 1994; 76:253-62; PMID:8293462; http://dx.doi.org/10.1016/0092-8674(94)90333-6
[10] Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2016; 163:307-19; http://dx.doi.org/10.1016/j.cell.2015.07.035
[11] O’Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000; 10:542-50; http://dx.doi.org/10.1016/S0962-8924(00)01856-0
[12] Fang Z, Hecklau K, Gross F, Bachmann I, Venzke M, Karl M, Schuchhardt J, Radbruch A, Herzl H, Baumgrass R. Transcription factor co-occupied regions in the murine genome constitute T-helper-cell subtype-specific enhancers. Eur J Immunol 2015; 45:3150-7; PMID:26300430; http://dx.doi.org/10.1002/eji.201545713
[13] Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 2010; 33:192-202; PMID:20674401; http://dx.doi.org/10.1016/j.immuni.2010.07.014
[14] Licona-Limon P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 2013; 14:536-42; PMID:23685824; http://dx.doi.org/10.1038/ni.2617
[15] Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27:485-517; PMID:19132915; http://dx.doi.org/10.1146/annurev.immunol.021908.132710
[16] Bayer AL, Malek TR, de la Barrera A, Cabello-Kindelan C. T regulatory cell adoptive therapy for tolerance induction in autoimmunity and transplantation. Am J Transplant 2014; 14:2432-3; PMID:25039654; http://dx.doi.org/10.1111/ajt.12854
[17] Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, G r a a r i P , d e S i m o n e M , P a g a n i M , A b r i g n a n i S . Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 2014; 343:1246949; PMID:24604202; http://dx.doi.org/10.1126/science.1246949
[18] Farh KK, Marson A, Zhu J, Kleinewitfeld M, Housley WJ, Beik S, Shores N, Whitten H, Ryan RJH, Shishkin AA, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518:337-43; PMID:25363779; http://dx.doi.org/10.1038/nature13835
[19] Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong AA, et al. Genetic and epigenetic factors and CD4 T cells seeking identity: masters, minions, setters and spikers. Immunology 2013; 139:294-8; PMID:23586907; http://dx.doi.org/10.1111/imm.12113
[20] Fedorchuk GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. Prog Biophys Mol Biol 2014; 115:76-92; PMID:25008017; http://dx.doi.org/10.1016/j.pbiombio.2014.06.009
[21] Vahedi G, Kanno Y, Sartorelli V, O’Shea JJ. Transcription factors and CD4 T cells seeking identity: masters, minions, setters and spikers. Immunology 2013; 139:294-8; PMID:23586907; http://dx.doi.org/10.1111/imm.12113
[22] Gaffney DJ, Hindorff L, Sethupathy P, Junkins H, Ramos E, Mehta J, Jansen R, Nap J, Dermitzakis E,
Gilad Y, et al. Global properties and functional complexity of human gene regulatory variation. PLoS Genet 2013; 9:e1003501; PMID:23737752; http://dx.doi.org/10.1371/journal.pgen.1003501

Lee GR, Fields PE, Griffin TJ, Flavell RA. Regulation of the Th2 cytokine locus by a locus control region. Immunity 2003; 19:145-53; PMID:12871646; http://dx.doi.org/10.1016/S1074-7613(03)00179-1

Kim L, Esplugues E, Zorca CE, Parisi F, Kluger Y, Kim TH, Galjart NJ, Flavell RA. Oct-1 regulates IL-17 expression by directing interchromosomal associations in conjunction with CTCF in T cells. Mol Cell 2014; 54:56-66; PMID:24613343; http://dx.doi.org/10.1016/j.molcel.2014.02.004

Williams A, Spilianakis CG, Flavell RA. Intercromosomal association and gene regulation in trans. Trends Genet 2010; 26:188-97; PMID:20236724; http://dx.doi.org/10.1016/j.tig.2010.01.007

Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA. Intercromosomal associations between alternatively expressed loci. Nature 2005; 435:637-45; PMID:15880101; http://dx.doi.org/10.1038/nature03574

Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M, Nishihara M, Iwakura Y, Hirano T. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 2008; 29:628-36; PMID:18848474; http://dx.doi.org/10.1016/j.immuni.2008.07.018

Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 2009; 19:212-9; PMID:19481926; http://dx.doi.org/10.1016/j.gde.2009.04.010

Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet 2015; 16:197-212; PMID:25707927; http://dx.doi.org/10.1038/nrg3891

Martin P, Mcgovern A, Orozco G, Duffus K, Yarwood A, Cooper N, Barton A, Wallace C, Fraser P, Worthington J, et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat Commun 2015; 6:1-17

Bickmore WA, van Steensel B. Genome architecture: domain organization of interphase chromosomes. Cell 2013; 152:1270-84; PMID:23498936; http://dx.doi.org/10.1016/j.cell.2013.02.001

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012; 485:376-80; PMID:22495300; http://dx.doi.org/10.1038/nature1082

Bouwman BAM, de Laat W. Getting the genome in shape: the formation of loops, domains and compartments. Genome Biol 2015; 16:154; PMID:26257189; http://dx.doi.org/10.1186/s13059-015-0730-1

Schierding W, O’Sullivan JM. Connecting SNPs in diabetes: A spatial analysis of meta-GWAS loci. Front Endocrinol (Lausanne) 2015; 6:1-6; PMID:25688231

Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Gaile D, Berezney R. Wide-scale alterations in interchromosomal organization in breast cancer cells: defining a network of interacting chromosomes. Hum Mol Genet 2014; 23:5133-46; PMID:24833717; http://dx.doi.org/10.1093/hmg/ddu237

Edelman LB, Fraser P. Transcription factories: genetic programming in three dimensions. Curr Opin Genet Dev 2012; 22:110-4; PMID:22365496; http://dx.doi.org/10.1016/j.gde.2012.01.010

Razin SV, Gavrilov AA, Pichugin A, Lipinski M, Iarovaia OV, Vassetzky YS. Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res 2011; 39:9085-92; PMID:21880598; http://dx.doi.org/10.1093/nar/gkr683

Pombo A, Jones E, Iborra FJ, Kimura H, Sugaya K, Cook PR, Jackson DA. Specialized transcription factories within mammalian nuclei. Crit Rev Eukaryot Gene Expr 2000; 10:10; http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.v10.i1.40

Branco MR, Pombo A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 2006; 4:e138; PMID:16623600; http://dx.doi.org/10.1371/journal.pbio.0040138

Iborra FJ, Pombo A, Jackson DA, Cook PR. Active RNA polymerases are localized within discrete transcription ‘factories’ in human nuclei. J Cell Sci 1996; 109:1427-36; PMID:8799830

Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 2006; 312:269-72; PMID:16614224; http://dx.doi.org/10.1126/science.1123191

Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, Carlsson LMS, Kiess W, Vatin V, Lecoeur C, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007; 39:724-6; PMID:17496892; http://dx.doi.org/10.1038/ng2048

Sullivan JM. Connecting SNPs in diabetes: A spatial analysis of meta-GWAS loci. Front Endocrinol (Lausanne) 2015; 6:1-6; PMID:25688231

FTO form long-range functional connections with IRX3. Nature 2014; 507:371-5; PMID:24646999; http://dx.doi.org/10.1038/nature13138
[44] Clausnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puvvindran V, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015; 373:895-907; PMID:26287746; http://dx.doi.org/10.1056/NEJMoa1502214

[45] Gulati P, Cheung MK, Antrobus R, Church CD, Harding HP, Tung YCL, Rimmington D, Ma M, Ron D, Lehner PJ, et al. Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc Natl Acad Sci 2013; 110:2557-62; PMID:23359686; http://dx.doi.org/10.1073/pnas.1222796110

[46] Schierding W, Antony J, Cutfield WS, Horsfield JA, O'Sullivan JM. Intergenic GWAS SNPs are key components of the spatial and regulatory network for human growth. Hum Mol Genet 2016; PMID:27288450. E-pub ahead of print.

[47] Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997; 59:575-99; PMID:9074778; http://dx.doi.org/10.1146/annurev.physiol.59.1.575

[48] Dahl KN, Kalinowski A. Nucleoskeleton mechanics at a glance. J Cell Sci 2011; 124:675-8; PMID:21321324; http://dx.doi.org/10.1242/jcs.069096

[49] Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 2006; 172:41-53; PMID:16380439; http://dx.doi.org/10.1083/jcb.200509124

[50] Osmanagic-myers S, Dechat T, Foisner R. Lamins at the crossroads of mechanosignaling. Genes Dev 2015; 29 (3):225-37; PMID:25644599; http://dx.doi.org/10.1101/gad.255968.114

[51] Uhler C, Shivashankar GV. Geometric control and modeling of genome reprogramming. Bioarchitecture 2016; 6:76-84; PMID:27434579; http://dx.doi.org/10.1080/19490992.2016.1201620

[52] Makhija E, Jokhun DS, Shivashankar GV. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc Natl Acad Sci 2016; 113:E32-40; PMID:26699462; http://dx.doi.org/10.1073/pnas.1513189113

[53] Mitchell MJ, Lin KS, King MR. Fluid shear stress increases neutrophil activation via platelet-activating factor. Biophys J 2014; 106:2243-53; PMID:24853753; http://dx.doi.org/10.1016/j.bpj.2014.04.001

[54] Rowat AC, Jaalouk DE, Zwerger M, Ung WL, Eydelnant IA, Olins DE, Olins AL, Herrmann H, Weitz DA, Lammerding J. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J Biol Chem 2013; 288:8610-8; PMID:23355469; http://dx.doi.org/10.1074/jbc.M112.441535

[55] Ivanovska IL, Shin J-W, Swift J, Discher DE. Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol 2015; 25:523-32; PMID:26045259; http://dx.doi.org/10.1016/j.tcb.2015.04.003

[56] Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology 2008; 47:1394-400

[57] Iredale JP, Friedman SL, Gines P, Cardenas A, Arroyo V, Rodes J, Iredale JP, Fallowfield JA, Iredale JP, Bataller R, et al. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007; 117:539-48; PMID:17332881; http://dx.doi.org/10.1172/JCI30542

[58] Wynna TA. Fibrotic disease and the TH1/TH2 paradigm. Nat Rev Immunol 2004; 4:583-94

[59] Arena U, Vizzutti F, Corti G, Ambu S, Bresci S, Moscarella S, Boddi V, Petrarca A, Laffi G, et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 2007; 47:380-4; http://dx.doi.org/10.1002/hep.22007

[60] Mambetsariev I, Tian Y, Wu T, Lavoie TT, Birkov KKG, Birukova AAA, Rocco P, Santos C Dos, Pelosi P, et al. Stiffness-activated GEF-H1 expression exacerbates LPS-induced lung inflammation. PLoS One 2014; 9: e92670; http://dx.doi.org/10.1371/journal.pone.0092670

[61] Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development. Cancer Cell 2005; 8:175-6; PMID:16169461; http://dx.doi.org/10.1016/j.jcc.2005.08.009

[62] Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol 2011; 3:a003228; PMID:20980442; http://dx.doi.org/10.1101/cshperspect.a003228

[63] Piccolo S, Cordenonsi M, Dupont S. Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res 2013; 19:4925-30; PMID:23797907; http://dx.doi.org/10.1158/1078-0432.CCR-12-3172

[64] Shin JW, Buxboim A, Spinler KR, Swift J, Christian DA, Hunter CA, Léon C, Gachet C, Dungal PCDP, Ivanovska IL, et al. Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell 2014; 14:81-93; PMID:24268694; http://dx.doi.org/10.1016/j.stem.2013.10.009

[65] Röber RA, Sauter H, Weber K, Osborn M. Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells. J Cell Sci 1990; 95(Pt 4):587-98; PMID:22007

[66] González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Trigueros-Motos L, Cibrián D, Morlino G, Blanco-Berrocal M, Osorio FG, Freije JMP, López-Otín C, et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal 2014; 7:ra37

[67] Oakes PW, Patel DC, Morin NA, Zitterbart DP, Fabry B, Reichner JS, Tang JX, Pelham R, Wang Y, Janney P, et al. Neutrophil morphology and migration are affected by substrate elasticity. Blood 2009; 114:1387-95;
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. J Cell Sci 2014; 117:4779-86; PMID:25331638; http://dx.doi.org/10.1016/j.jcs.2014.02.019

Dahl KN, Kahn SM, Wilson KL, Discher DE. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell Sci 2004; 117:4779-86; PMID:15331638; http://dx.doi.org/10.1007/s00284-003-1357

Röber RA, Weber K, Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 1989; 105:365-78; PMID:2680424

Swift J, Ivanovska IL, Buxboim A, Harada T, Dave PCP, Pinter J, Pajerowski JD, Spinder KR, Shin J, Rehfeldt F, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 2014; 341:1240104; http://dx.doi.org/10.1126/science.1240104

Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126:677-89; PMID:16923388; http://dx.doi.org/10.1016/j.cell.2006.06.044

Yourek G, McCormick SM, Mao JJ, Reilly GC. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 2010; 5:713-24; PMID:20868327; http://dx.doi.org/10.2217/reg.10.60

Bermeo S, Vidal C, Zhou H, Duque G. Lamin A/C acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the Wnt/β-catenin pathway. J Cell Biochem 2015; 116:2344-53; PMID:25846419; http://dx.doi.org/10.1002/jcb.25185

Steward R, Tambe D, Hardin CC, Krishnan R, Fredberg JJ. Fluid shear, intercellular stress, and endothelial cell alignment. Am J Physiol - Cell Physiol 2015; 308:C657-64; PMID:25652451; http://dx.doi.org/10.1152/ajpcell.00363.2014

Chachisvilis M, Zhang Y-L, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci 2006; 103:15463-8; PMID:17030791; http://dx.doi.org/10.1073/pnas.0607224103

Tkachenko E, Gutierrez E, Saikin SK, Fogelstrand P, Kim C, Groisman A, Ginsberg MH. The nucleus of endothelial cell as a sensor of blood flow direction. Biol Open 2013; 2:1007-12; PMID:24167710; http://dx.doi.org/10.1242/bio.20134622

Kohn JC, Zhou DW, Bordeleau F, Zhou AL, Mason BN, Mitchell MJ, King MR, Reinhart-King CA. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys J 2015; 108:471-8; PMID:25650915; http://dx.doi.org/10.1016/j.bpj.2014.12.023

Baker JM, De Lisio M, Parise G. Endurance exercise training promotes medullary hematopoiesis. FASEB J 2011; 25:4348-57; PMID:21868472; http://dx.doi.org/10.1096/fj.11-189043

Sontam DM, Firth EC, Tsai P, Vickers MH, O’Sullivan JM, Ajubi NE, Klein-Nulend J, Alblas MJ, Burger EH, Nijweide PJ, et al. Different exercise modalities have distinct effects on the integrin-linked kinase (ILK) and Ca²⁺ signaling pathways in the male rat bone. Physiol Rep 2015; 3:e12568

Buttner P, Mosig S, Lechtermann A, Funke H, Mooren FC. Exercise affects the gene expression profiles of human white blood cells. J Appl Physiol 2006; 102:26-36; PMID:16990507; http://dx.doi.org/10.1152/japplphysiol.00066.2006

Johannsen NM, Swift DL, Johnson WD, Dixit VD, Earnest CP, Blair SN, Church TS, Kannel W, Anderson K, Wilson P, et al. Effect of different doses of aerobic exercise on total white blood cell (WBC) and WBC subfraction number in postmenopausal women: results from DREW. PLoS One 2012; 7: e31319

Wilson JM, Krigsfeld GS, Sanzari JK, Wagner EB, Mick R, Kennedy AR. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells. Adv Sp Res 2012; 49:237-48; http://dx.doi.org/10.1016/j.asr.2011.09.019

Crucian BE, Cubbage ML, Sams CF. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J Interf Cytokine Res 2000; 20:547-56; http://dx.doi.org/10.1089/10799900050044741

Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 2014; 105:141-50; PMID:24798950; http://dx.doi.org/10.1016/j.diabres.2014.04.006

Ehrnborg C, Lange KHW, Tall R, Christiansen JS, Lundberg PA, Baxter RC, Boroujerdi MA, Bengtsson BA, Healey ML, Pentecost C, et al. The growth hormone/insulin-like growth factor-I axis hormones and
bone markers in elite athletes in response to a maximum exercise test. J Clin Endocrinol Metab 2003; 88:394-401; PMID:12519882; http://dx.doi.org/10.1210/jc.2002-020037

[90] Blaber EA, Finkelstein H, Dvorochkin N, Sato KY, Yousuf R, Burns BP, Globus RK, Almeida EAC. Microgravity reduces the differentiation and regenerative potential of embryonic stem cells. Stem Cells Dev 2015; 24:2605-21; PMID:26414276; http://dx.doi.org/10.1089/scd.2015.0218

[91] Junct T, Schulze H, Chen Z, Massberg S, Goeger T, Krueger A, Wagner DD, Graf T, Italiano JE, Shvidasani RA, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 2007; 317:1767-70; PMID:17885137; http://dx.doi.org/10.1126/science.1146304

[92] Spiner KR, Shin JW, Lambert MP, Discher DE, Junct T, Schulze H, Chen Z, Thon J, Macleod H, Begonia A, et al. Myosin-II repression favors pre/proplatelets but shear activation generates platelets and fails in macrothrombocytopenia. Blood 2015; 125:525-33; PMID:25359423; http://dx.doi.org/10.1182/blood-2014-05-576462

[93] Moazzam F, DeLano FA, Zweifach BW, Schmid-Schönbein GW. The leukocyte response to fluid stress. Proc Natl Acad Sci 1997; 94:5338-43; PMID:9144238; http://dx.doi.org/10.1073/pnas.94.10.5338

[94] Fukuda S, Yasu T, Predescu DN, Schmid-Schönbein GW. Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ Res 2000; 86: e13-8; PMID:10625314; http://dx.doi.org/10.1161/01.RES.86.1.e13

[95] Cinamon G, Shinder V, Alon R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat Immunol 2001; 2:515-22; PMID:11376338; http://dx.doi.org/10.1038/88710

[96] Muller WA. PECAM: Regulating the start of diapedesis. In: Adhesion molecules function and inhibition. 2007. 201-20. Switzerland: Birkhäuser Basel. http://dx.doi.org/10.1007/978-3-7643-7975-9_8201-20

[97] Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005; 6:1182-90; PMID:16369557; http://dx.doi.org/10.1038/ni1275

[98] Zimmermann HW, Bruns T, Weston CJ, Curbishley SM, Liaskou E, Li KK, Resheq YJ, Badenhorst PW, Adams DH. Bidirectional transendothelial migration of monocytes across hepatic sinusoidal endothelium shapes monocyte differentiation and regulates the balance between immunity and tolerance in liver. Hepatology 2016; 63:233-46; PMID:26473398; http://dx.doi.org/10.1002/hep.28285

[99] Werr J, Xie X, Hedqvist P, Ruoslahti E, Lindbom L. Beta1 integrins are critically involved in neutrophil locomotion in extravascular tissue In vivo. J Exp Med 1998; 187:2091-6; PMID:9625769; http://dx.doi.org/10.1084/jem.187.12.2091

[100] Kubes P, Niu XF, Smith CW, Kehrli ME, Reinhardt PH, Woodman RC. A novel β 1-dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalasin B or endothelial transmigration. FASEB J 1995; 9:1103-11; PMID:7544310

[101] Werr J, Johansson J, Eriksson EE, Hedqvist P, Ruoslahti E, Lindbom L. Integrin α(2)/β(1) (VLA-2) is a principal receptor used by neutrophils for locomotion in extravascular tissue. Blood 2000; 95:1804-9; PMID:10688841

[102] Raab M, Gentili M, de Belley H, Thiam HR, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennonen-Duménil AM, MANEL N, et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 2016; 352:359-62; PMID:27013426; http://dx.doi.org/10.1126/science.aad7611

[103] Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, Davidson PM, Friedl P, Wolf K, Lammerding J, et al. Nuclear envelope rupture and repair during cancer cell migration. Science 2016; 352:353-8; PMID:27013428; http://dx.doi.org/10.1126/science.aad7297

[104] Booth-Gauthier EAA, Alcoser TAA, Yang G, Dahl KNN. Force-induced changes in subnuclear movement and rheology. Biophys J 2012; 103:2423-31; PMID:23260044; http://dx.doi.org/10.1016/j.bpj.2012.10.039

[105] Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 2004; 113:370-8; PMID:14755334; http://dx.doi.org/10.1172/JCI200419670

[106] Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J 2006; 20:811-27; PMID:16675838; http://dx.doi.org/10.1096/fj.05-5424rev

[107] Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 2009; 10:75-82; PMID:19197334; http://dx.doi.org/10.1038/nrm2594

[108] Jain N, Iyer KV, Kumar A, Shivashankar GV. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc Natl Acad Sci 2013; 110:11349-54; PMID:23798429; http://dx.doi.org/10.1073/pnas.1300881110

[109] Poh YC, Shevtsov SP, Chowdhury F, Wu DC, Na S, DUNDR M, Wang N, Geiger B, SPATZ JP, Bershady AD, et al. Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat Commun 2012; 3:866; PMID:22643893; http://dx.doi.org/10.1038/ncomms1873

[110] Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, Singh R, Khanna N, Belmont AS, Wang N. Transcription upregulation via force-induced direct stretching of
[135] Sanborn AL, Rao SSP, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnapan D, Cutkosky A, Li J, et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci 2015; 112:E6456-65; PMID:26499245; http://dx.doi.org/10.1073/pnas.1518552112

[136] Muratani M, Tansey WP. How the ubiquitin–proteasome system controls transcription. Nat Rev Mol Cell Biol 2003; 4:192-201; PMID:12612638; http://dx.doi.org/10.1038/nrm1049

[137] Filtz TM, Vogel WK, Leid M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci 2014; 35:76-85; PMID:24388790; http://dx.doi.org/10.1016/j.tips.2013.11.005

[138] Benayoun BA, Veitia RA. A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol 2009; 19:189-97; PMID:19328693; http://dx.doi.org/10.1016/j.tcb.2009.02.003

[139] Deng M, Hochstrasser M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 2006; 443:827-31; PMID:17051211; http://dx.doi.org/10.1038/nature05170