Review

The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy

Dan Yang a, Feiyang Deng b, Dechun Liu b, Bo He b, Bing He b, Xing Tang a,∗, Qiang Zhang a,b,c,∗

a School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
b Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
∗ State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China

ARTICLE INFO

Article history:
Received 19 March 2018
Revised 7 May 2018
Accepted 5 June 2018
Available online 14 September 2018

Keywords:
Gold nanomaterials
Imaging and biodiagnostics
Drug delivery
Photothermal therapy
Immunotherapy
Combination therapy

ABSTRACT

Aurum nanomaterials (ANM), combining the features of nanotechnology and metal elements, have demonstrated enormous potential and aroused great attention on biomedical applications over the past few decades. Particularly, their advantages, such as controllable particle size, flexible surface modification, higher drug loading, good stability and biocompatibility, especially unique optical properties, promote the development of ANM in biomedical field. In this review, we will discuss the advanced preparation process of ANM and summarize their recent applications as well as their prospects in diagnosis and therapy. Besides, multi-functional ANM-based theranostic nanosystems will be introduced in details, including radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), and so on.

© 2018 Shenyang Pharmaceutical University. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Gold nanomaterials, formed by aurum element, had been applied to biomedicine based on their unique physico-chemical properties since their first colloidal syntheses [1]. As a member of inorganic materials, the advantages of ANM promote their widespread use in biomedicine [2–7]: 1) Easy to synthesize. Various particle sizes can be achieved via adjusting preparation conditions. 2) Flexible surfaces modification. Gold cores can be modified for specific properties, such as improved stability, drug loading, active targeting, etc. 3) High biocompatibility. The cores are composed of non-toxic inert material and extremely stable. 4) Excellent drug carriers. The loaded
components cover a wide range including small molecule chemicals, macromolecular proteins, nucleic acids, antibodies and so on. 5) Controlled drug release. Active substance release can be triggered by site-specific in vivo conditions. 6) Superior optical properties such as surface plasmon resonance (SPR), light scattering and photothermal heating, which can be utilized for tracking, imaging, diagnosis and therapy.

Since the first biomedical application of immungold labeling in 1971 [8], ANM gradually plays an important role in preclinical studies. Nowadays, ANM is taken as one of the major tools for imaging and diagnostic techniques, such as surface-enhanced Raman scattering (SERS) [9], two-photon luminescence imaging (TPL) [10], X-ray computed tomography (CT) [11] and photoacoustic (PA) imaging [12]. The properties of gold promise the application of ANM. First, the strong SPR effect enhances optical signals, increases its laser penetration into tissues and also can be readily transformed into heat or acoustic waves. Second, ANM can be observed directly with electron microscope and treated as excellent contrast reagents due to its high electron density. Besides, similar to common nanomaterials, ANM is suitable as a carrier for drug delivery in small molecule chemical drugs as well as macromolecule protein, antibody and nucleic acid. Notably, with the two advantages of ANM, the combined treatment and theranostics develop rapidly now, including photothermal therapy, photodynamic therapy and immunotherapy. For example, Tian et al. reported the interventional treatment with gold nanoshells or clinical iodine-125 interstitial brachytherapy (IBT-125-I) against pancreatic cancer. After functional carriers were delivered to the tumor site via a special needle under ultrasonic guidance, gold nanoshells-based photothermal therapy as well as subsequent immune response showed a 25% higher survival rate of rats than IBT-125-I. Meanwhile, CT and optical imaging based on gold provided convenience in treatment [13].

In clinic, safety and biocompatibility of drug systems are the issues of most concern, the same also applies to ANM. Currently, there are six ANM clinical trials [14]. AuroLase®, consisting of PEGylated gold-silica nanoshell, is under phase I trial for thermal ablation of metastatic lung tumors, in which gold shell provides the thermal ablation based on their strong absorption of near-infrared light and PEG maintains particle stability and biocompatibility [15,16]. Throughout the research process, the better data indicates the enormous potential for clinical transformation.

Overall, ANM is one promising nanoplateform in both preclinical and clinical application. This review will provide insights into synthesis, preparation of gold drug delivery system, the application in biomedicine as well as combination therapy on the multi-function of ANM, and the further development in future.

2. Preparation of aurum nano drug delivery systems

ANM, with one-dimensional diameter ranging from a few to one hundred of nanometers, are readily prepared for desired core-shell structure shapes, such as nanospheres, nanorods, nanocages, nanostars, nanoshells, nanocubes and nanobowls, to achieve unique physical and chemical properties [6]. Among those, preparation of nanospheres and nanorods are mostly reported and will be further introduced as follows.

2.1. Synthesis of aurum core

The gold core provides the basic properties of metallic element and determines the genres of ANM based on its shape [17]. The methods of core synthesis vary from different ANM [18]. For gold nanospheres, reducing gold salt is the main synthetic approach [19] and particle sizes are controlled by regulating the ratio of reducing agent to gold ion. As shown in Fig. 1A, Turkevich’s citrate-mediated synthetic method (Citrate Reduction) [20,21], is the most commonly used synthesis process and could produce monodisperse gold nanospheres with 10–150 nm diameter range. In which, citrate salt solution is always added into the boiled chloroaurate solution and the gold cores could be obtained under continuous stirring.
Higher proportion of citrate salt leads to smaller particle size [22], and the morphology of nanoparticles is also affected by the speed of mixing two aqueous solutions, the concentration of ions, temperature as well as pH value of reaction solution [23,24]. For preparation of gold nanoparticles in very small particle size (1–9 nm), the reaction of borohydride participation (Borohydride Reduction), also called Brust–Schiffrin method, is more suitable [25,26]. The reaction of core-forming is usually carried out in aqueous environment without heating due to the strong reducibility of borohydride [27]. Besides, a two-step protocol, spontaneous nucleation and isotropic growth (Seeds Growth), has addressed the need for more stable and larger gold nanoparticles (50–200 nm) by increasing Au deposition further on a small Au nucleus [28]. This process provides a novel approach to obtain stable, regular and uniform gold nanospheres with larger particle size, which are difficult to achieve with the first two methods [29]. These three kinds of core synthesis methods show investigators a wide range of selectivity according to the specific requirements during the construction of the round-shaped ANM.

Gold nanorods, which can be fabricated easily and diversely, are another important ANM due to their unique light properties in photothermal application. Seed-mediated growth, template growth as well as electrochemical process are the main synthesis methods, among which seed-mediated growth is especially reused on account of its long history and universal applicability [30,31]. Similar to the seeds growth in gold nanospheres preparation, the seed-mediated growth also starts with a small gold particle but continues to react in the solution containing surfactant, silver nitrate (AgNO₃), and cetyltrimethylammonium bromide (CTAB). The aspect ratio of nanorods is affected by the concentration of AgNO₃, the diameters of the seeds, pH, etc. [32]. Template growth (Fig. 1B), also used in many other nanostructures preparations, is accomplished via Au deposition on the templates (porous aluminum, polycarbonate) in certain conditions. After selective dissolution of template, some polymeric stabilizers are added [33] and the gold nanorods can be dispersed in water or organic solvents with the help of external force (e.g. sonication, agitation) [34]. It is obvious that particle sizes of gold nanorods correspond to the core diameters of the templates [35]. As for the electrochemical process (Fig. 1C) firstly established by Wang et al. [36], they utilized two-electrotyde electrochemical cell with gold as anode while platinum as cathode to produce gold nanorods via electrolysis in a mixed solution containing CTAB, aceton and cyclohexane as well as other substances, in which CTAB also acted as stabilizer apart from one composition of the electrolyte. These three approaches, with other methods as complements [37], can make up and cooperate with each other for synthesis of almost all types of gold nanorods.

2.2. Modification of functional shell

The gold nano core synthesized according to the methods mentioned above can keep good stability when stored at low temperature for several months, but they will aggregate when the weak protective layer (for example: citric acid, boride) is destroyed by external factor, such as high ionic strength solution, centrifugation, freeze and so on. In general, gold core only offers fundamental properties of gold nano-system while the satisfactory stability, solubility, biocompatibility and drug loading are determined by protective shells [19,31].

2.2.1. Protective shell

Although substances (e.g. CTAB, citric acid, hydroquinone) used in preparation of ANM contribute to system stability, poorly protective effect or toxicity (e.g. CTAB) to cells remain non-negligible [38,39]. To improve stability and biocompatibility, functional linkers have been designed for conjugation with gold core, which are based on groups like amine, carboxylate, thiolate, dithiocarbamate, selenide and phosphate to form Au-N, Au-COO−, Au-S, etc. [40,41]. It has been proved that Au-S bond is more stable and easily formed (always only mixed at room temperature) than Au-N, Au-COO− or other bonds and it is considered the most popular and effective method [42]. To obtain these conjugates, thiolated poly (ethylene glycol), namely PEG–SH, is frequently employed as linkers in surface modification owing to its characteristics of hydrophilicity, neutral in charge and good biocompatibility. Besides, PEG overcomes the dilemma like nonspecific surface binding with biological molecules via electrostatic interactions and excess uptake by reticular endothelial system (RES) [43–45]. Meanwhile, Liu and Thierry found that facile surface modification did not affect the basic properties of gold nanoparticles except a slight increase of particle size [29]. These indicate PEG is an optimal candidate as protective layer.

Notably, various stabilizers always demonstrate more advantages apart from stability. For example, protein (e.g. bovine serum albumin [46], surfactant (e.g. Tween [47]), polymerizable surfactant [48]) and inorganic shell (e.g. silica [49]) are applied in improving the water dispersity of ANM. Introduction of different charge stabilizers provides a controlled dispersion state and size distribution of gold nanoparticles via adjusting the ratio of the positively and negatively charged ligands [4]. Besides, Tween is confirmed to improve DNA modification [50], etc.

2.2.2. Drug loading shell

Some drugs can form shells around in ANM and these will offer not only protective layer, but also a therapeutic effect. The drugs (Fig. 2) are generally conjugated on cores in the following three ways: 1) by covalent bond directly; 2) by covalent bond with an intermediate linker; 3) by electrostatic binding, hydrophobic interaction, etc.

The formation of Au-S bond is the most popular and easiest method for drug loading in ANM. The active substance (chemical drugs, peptide, protein, etc.) containing or endowed with thiol group via modification can be conjugated on the surface of gold nanoparticles directly [51]. For instance, Prades et al. used cysteine to form Au-S bond with gold core, and modified the nanoparticles with the active peptide which has high affinity to transferrin receptor. Due to the enhanced blood-brain barrier penetration ability of the metal carrier as well as active targeting properties, this system increased cerebral cellular uptake and reduced β-amyloid in Alzheimer’s disease [52]. Li and co-workers completed a facile and effective protocol to attach thiolated DNA on gold core without the tedious salt addition process [47]. Sundaram et al. also constructed a co-delivered gold carrier by adding the thiol group at DNA 5’
end and encapsulating neomycin inside the DNA, which realized controlled release by responding to temperature and affinity [53]. Apart from covalent bond, drugs can be also conjugated to gold core with by an intermediate linker, which holds two functional groups to connect with gold and active agents, respectively. Amino and carboxyl ends are two main groups for linking chemicals [54,55], fluorescent dyes [56], proteins [57], ligands [5,58] etc. For instance, thiol-terminal PEG mixture (different molecular weight) was attached by protein on the carboxyl group at the other end and modified protein drugs efficiently and conveniently [29]. Similarly, paclitaxel was covalently linked to gold nanoparticles by DNA (aminoterminal) fragments and demonstrated 50-fold increase in solubility compared with bulk drug [59].

Besides, drugs can also be physically adsorbed on the surface of gold cores to achieve rapid and effective drug release profile in vivo [60,61]. For example, Thomas and Klibanov combined the negative charge DNA with modified polyethyleneimine (PEI) on the surface of gold nanoparticles and transfected monkey kidney (COS-7) cells. The result showed that the transfection efficacy was 12 times higher than using PEI vector alone [62]. Based on the hydrophobic interactions, Yu et al. loaded photodynamic therapy (PDT) drugs on the gold nanoparticles via noncovalent interaction and then coated PEG chain in the outermost layer, which ensured fast and complete drug release [63]. Antonio et al. prepared a multi-functional gold nanoparticles containing lactose, human galectin-3 and methotrexate (MTX) via hydrophobic interaction and steric hindrance [64]. Wang et al. also constructed a novel vaccine approach utilizing gold nanoparticles, which loaded recombinant trimetric A/Aichi/2/68 (H3N2), hemagglutinin (HA) and TLR5 agonist flagellin (FlIc) with click chemistry and metal-chelating reactions [65]. Besides, new composite delivery systems were also developed with gold core entrapped in other materials, which provided the space for drugs and achieved a better biocompatibility, such as gold core-liposome system [66,67], gold core-micelle system [68], gold core-silica nanoparticles [69], gold core-chitosan nanoparticles [70], and so on.

3. Appliances of aurum based nano drug delivery systems

ANM can be constructed into an excellent platform for imaging, diagnosis and therapy on account of their changeable shape, tunable size, unique surface properties as well as good biocompatibility [71]. Their characteristics, like optical absorption of particular wavelength of light, abundant surface electrons, strong electron density and special appearance color, provide privilege for ANM as agents for imaging and diagnosis detection (Fig. 3) [72], while flexible modification, large surface area, good stability and low toxicity demonstrate feasibility for drug delivery [73].

3.1. Imaging and diagnosis

3.1.1. Raman spectroscopy

Raman spectroscopy, discovered by Raman in 1928 as a supplement to the infrared spectroscopy, is a powerful tool to study molecular structure but always shows weak signals [6]. Plasmonic nanoparticles (completely made of or covered with plasmonic elements) can enhance Raman signs and thus are called surface-enhanced Raman scattering (SERS) [74]. ANM, as a main candidate for SERS due to its unique optical properties, has been applied in physical, chemical, biological analysis in the research of biomedical science. For instance, to improve the specificity and sensitivity of tumor diagnosis, a monoclonal anti-epidermal growth factor receptor (anti-EGFR) antibody was conjugated on the SERS-characterized gold nanorods, which showed higher-level Raman signals.
in cancer cells than normal ones [9]. Kang and co-workers designed a real-time doxorubicin (DOX) tracking system based on plasmonic-tunable Raman/fluorescence imaging spectroscopy (Fig. 3A). In brief, DOX (drug and fluorophore) and gold nanoparticles were conjugated by pH-sensitive hydrazine, after internalized into acidic endosomes, the hydrazine linker would be broken and DOX was released from gold particles. In this case, DOX got rid of quenching effect from gold nanoparticles and its fluorescence could be detected, while the Raman enhancement was weakened. Conversely, fluorescence disappeared while enhanced Raman spectrum could be detected when DOX was conjugated. This technique provided a viable and convenient idea to monitor the drug delivery dynamics in living cells through observing the change between fluorescence and Raman spectrum [75].

3.1.2. Visual observation
The metallic nature (high optical density) of gold enables ANM to be observed by naked eyes with colorful appearance according to their shapes and sizes [76]. As the color of ANM would change when gold nanoparticles aggregates, it could be used for rapid test applications as lateral-flow immunoassays [77].
Lee et al. designed an intelligent ANM system based on color change along with distance-dependent optical properties. The original gold nanoparticles were purple in aggregation status in Hg\(^{2+}\) surroundings and turned red when the particles turned mono-dispersed when cysteine competed with Hg\(^{2+}\). The color transformation could be observed naked eyes or an UV-vis spectrometer [78]. At present, the colorimetric assay has been proved a fast, highly selective and sensitive method applied in many researches [79].

Immunogold staining technology is another useful tool in samples detection which was set up by Faulk and Taylor in 1971 and has been widely applied [8,80]. Orlov and co-workers conjugated antibodies of labeled RNA polymerase II to 0.8 nm gold nanoparticles. After endocytosis, this ANM could be targeted to the corresponding enzymes and detected by scanning electron microscopy (SEM), which provided a method for labeling cellular protein in situ [81]. Besides, the coupling technique of immunogold labeling and automatic gold detection software (Fig. 3B) [82], serial multiplex immunogold labeling [83] as well as various labeling-detection methods promoted application of immunogold labeling into mature tools for tracking or detecting the distribution of samples.

3.1.3. Microscope detection
ANM show strong light scattering at their plasmonic wavelengths, which has been used for imaging and diagnostic with microscope. It was reported that gold nanoparticles with different shapes and particle sizes could be easily observed in a high contrast with common substance (e.g. cells, plasma) with a simple microscope at dark field condition [84,85]. Chanda et al. prepared a gastrin releasing protein receptor specific bombesin (BBN) peptide linked gold nanorods (Fig. 3C). For tracking nanocarriers internalized by receptor-specific pathway, dark-field images as well as TEM technology were used, based on the strong scattering light and high density of gold nanorods, respectively [86].

Two-photon luminescence imaging (TPLI), which can not only enhance the laser penetration with longer wavelength, but also obtain a clear and remarkable sign with little damage to samples, has been used in vitro and in vivo in recent years. Gold nanorods, as well as other ANM, demonstrated outstanding ability for this technology owing to its near-infrared absorption wavelength and producing strong TPLI intensities [10,87]. Loumaigne and co-workers investigated the TPLI property of spherical gold particles (such as Brownian rotation) at single-particle aspect and they found that the average anisotropy could be influenced by either polarization or excitation wavelength [88]. Li and Gu used gold nanorods to conjugate with transferrin as a functional carrier to overcome tumors. They thought gold nanorods with high efficacy of TPLI were more effective and accurate in diagnosis than common fluorescein isothiocyanate. This finding could enhance microsurgery and a regulative apoptosis of cancer cells by adjusting laser energy [89].

Different from TPLI, the images of confocal reflectance microscopy (CRM) are obtained with a lower power of light source so that photothermal effect could be avoided. Thus, CRM is another promising alternative to the detection of photo-signal excited by laser and widely used in studying the distribution of intracellular ANM [90,91]. In contrast to conventional fluorophores, the gold nanoparticles can be detected easily and the signals will not be quenched and disappeared, leading to more convenient and accurate without false-positive fluorescent leak. Yuan et al. set up a facile method via confocal laser scanning microscope (CLSM) to observe gold nanoparticles without fluorescence modification through fluorescent channels. When nanoparticles were excited by 633 nm laser, a sharp, stable reflected signal was obtained, which existed in real-time imaging and could be applied in co-localization or further quantitative analysis [92].

3.1.4. Optical coherence tomography (OCT) and X-ray computed tomography (CT)
Optical coherence tomography (OCT) is a potential optical imaging technology based on light scattering and could be utilized for obtaining real-time and three-dimensional images with high resolution in situ [93]. In Yali Jia’s research, it was proved that gold nanorods was a novel contrast agent for OCT imaging by methodology detection [94]. Prabhulkar and co-workers prepared gold nanorods conjugated with anti-glucose transporter-1 antibodies as an indicating agent to evaluate ocular surface squamous neoplasia by OCT imaging and immunofluorescence in molecular histopathology [95].

In X-ray computed tomography (CT), ANM is regarded as proper CT contrast agents for the large atomic weight to overcome the limits in clinical diagnosis like mild nephro-toxicity, short working time and weak contrast [11,96]. Kim and co-workers compared the CT imaging efficacy between gold nanoparticles (30 nm, PEG coating) and a clinical contrast agent, Ultravist. As result, gold nanoparticles showed 5.3-fold higher X-ray absorption coefficient in vitro and 24-fold longer of blood circulation time in vivo (Fig. 3D) [97]. Similar observation was reported in Park’s comparison between hollow gold nanoparticles and Ultravist 300, which revealed that hollow gold nanoparticles had an equivalent HU value at the concentration less than one-fifth of Ultravist 300 [98].

3.1.5. Photoacoustic (PA) imaging
Photoacoustic (PA) utilizes the acoustic waves induced by the thermal expansion of surrounding air from ANM rather than direct heat (e.g. photothermal effect) [99]. The ultrasound also deepen tissue penetration ability [100]. Song et al. utilized functional polymer modified gold nanoparticles to rapidly detect the latent fingerprints (LFP) with the co-action of PA and colorimetric visualization. This one-step strategy did not require silver staining to enhance signal and considered as a potential technique to identify chemicals of LFP residues, due to the high affinity and universal secretions and flexibility for different people (Fig. 3E) [12]. Yeager and co-workers constructed silica-coated gold nanorods as photoacoustic contrast agents for detection of temperature change of atherosclerotic plaques, which were also induced by the selective heating of plasmonic gold nanoparticles, suggesting that gold system was not only a diagnosis method but also a contrast agent according to their multiplicity [101].

3.2. Application in therapy
Apart from imaging and diagnosis, ANM has also been widely applied to biomedical therapeutics because of the
flexibility for various active agents, high drug loading and good biocompatibility. Different types of drugs, such as chemicals, peptides, proteins, lipids, carbohydrates or nucleic acid [102,103] are conjugated to ANM for various diseases treatments, including but not limited to anti-cancer, anti-viral, anti-microbial, anti-inflammatory therapeutic effect, which depend on the intrinsic activity of the drugs [73,104−106].

Small molecule drugs, e.g. DOX [107], paclitaxel [108] or other chemical drugs, which are most widely used in clinical and laboratory settings, could be easily assembled into the ANM as the protocol described in Fig. 2 and exhibit promising therapeutic efficacy. For example, ANM shows great potential in antibacterial drug delivery against pathogens, even to overcome resistant bacteria [109]. Li and co-workers prepared various tunable functional ANM with antimicrobial drugs and targeted ligands, which demonstrated effective against both Gram-negative and Gram-positive uropathogens, providing a novel antimicrobial strategy [110]. ANM are also fit for biomolecules, such as proteins and nucleic acid [111]. At present, a number of researches have reported gold nanoparticles as a common vector for gene effective delivery for repairing defective genes, regulating protein expression level, administrating therapeutically relevant processes owing to their high DNA loading ability, suitable biocompatibility. Generally, targeting nucleic acid is anchored onto ANM via covalent bonding and electrostatic absorption for its functional group and strong negative charge, respectively [112]. For instance, polyethyleneimine-g-bovine serum albumin (PEI-BSA) was synthesized as a non-viral gene vector and attached to ANM. After desired gene was adsorbed on the outermost of PEI-BSA-ANM via electrostatic interaction, the complex achieved high transfection efficacy [113]. As for protein delivery, a typical case was reported that ANM delivered silk fibroin (SF) delivery while SF also maintained the stability of ANM after lyophilization [114].

3.2.1 Controlled release
Drug release profile is an important issue and requires careful consideration in drug delivery system design. By loaded onto ANM in different ways, drugs could release under the influence of endogenous or external factors, such as glutathione, pH, enzymes, temperature and light [115]. Glutathione-mediated release may serve as a strategy triggered by the large differences between intracellular glutathione (GSH) concentration (2−17 mM) [116]. Specifically, the drugs are separated from carriers through GSH reduction or exchange with the endogenous thiol substance. In a GSH sensitive system, Ce6, a hydrophobic photosensitizer, was conjugated covalently to surface of gold nanorods via disulphide bond and demonstrated great photothermal effect and singlet oxygen generation in A549 cells after endocytosis [117]. Besides, in some gene delivery systems, siRNA was released via being replaced by GSH on ANM, featuring an overall negative charge and thiol of GSH (Fig. 4A) [118]. For preparation of carriers, drugs could conjugate to ANM with ester bond, which might be fractured via hydrolysis or exert function by intracellular enzymes (Fig. 4B) [119]. Shieh et al. designed gold nanoparticles linked to paclitaxel via a phosphodiester bond which could be hydrolyzed by the high concentration of phosphodiesterase in tumor cells. In this way, free paclitaxel was successfully accumulated in the cell massively to obtain a strong anti-tumor effect [120]. pH-responsive is another principle for intelligent ANM. With the progress of intracellular endosome transport, the surrounding pH gradually decreases. Meanwhile, the acidic microenvironment of tumor also promoted the targeted release of the drugs in many researches (Fig. 4C) [121,122].

Different from drug released regulated by intracellular environment, external factors could also be utilized to induce drug release, such as light [123], temperature [108,124], osmotic pressure (Fig. 5A) [125] and so on. Based on the characteristic of gold nanoparticles, gold core can be ablated by near infrared irradiation (NIR) [126]. In Lee's study, DOX release depended on the power of NIR laser irradiation and tumor pH [127]. Wijaya et al. also utilized two kinds of gold nanorods as a carrier for delivering gene oligonucleotides. The two lengths of gold nanorods were sensitive to 800 nm and 1100 nm NIR, respectively, which promoted the selective release of gene oligonucleotides by using specific wavelength (Fig. 5B) [128].

4. Theranostics
Theranostics, the superposition of therapy and diagnose, is one of the most promising application of ANM in biomedicine at present. It keeps developing with intense investigation currently and benefits from the fundamental optical, electronic characters and drug-loading properties [129]. According to reports, it has covered an extensive field like radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), etc.

4.1 Radiotherapy
ANM process high X-ray absorption as well as unique optical features and are an effective tool for radiotherapy with imaging function and therapeutic effect. They serve as a radiosensitizer based on three main mechanisms with ionizing radiation: increasing photoelectrons generation (physical); catalyzing the production of free radicals (chemical); promoting the damage via disturbing cell process (biological) [7]. Meanwhile, the key performances can also be summarized as the following five points, called as 5Rs: redistribution, repair, repopulation, reoxygenation and intrinsic radiosensitivity [130]. Zhang and co-workers prepared series of PEG-coated gold nanoparticles with different particle sizes and compared the in vitro and in vivo sensitization effects. All the nanoparticles showed good radioactive efficacy and caused rapid cell necrosis as well as subsequent apoptosis with less toxicity, among which 12.1 nm and 27.3 nm were the optimal choice [131]. With addition of antibody (trastuzumab) against HER-2, higher cytotoxicity was observed in vitro, so was a 46% reduction in tumor volume of MDA-MB-361 in mice compared with non-targeted nanoparticles with X-radiation [132]. Tsourkas et al. constructed gold-loaded polymeric micelles, in which 1.9 nm gold nanoparticles and amphiphilic di-block copolymer were synthesized as core

Asian Journal of Pharmaceutical Sciences 14 (2019) 349–364

355
and shell, respectively. After intravenous injection, the system delineated the profile of tumor via CT and then exerted radiation therapeutic effect, exhibiting a 1.7-fold enhancement in mice survival time compared with simply radiation [133]. Dong et al. prepared folic acid-modified and DOX-loaded gold nanorods (FA-GSINs-DOX), and utilized the triple mechanisms (chemoradiotherapy and CT imaging) to overcome the unresectable hepatocellular carcinoma (Fig. 6). As a result, the multifunctional platform demonstrated remarkable synergistic anticancer effects in tumor regression with less systematic toxicity due to the active targeting simultaneously [134].

4.2. Photothermal therapy

Photothermal therapy (PTT) is based on the induced heat. When suitable materials are exposed under laser, the phonons of plasmonic nanoparticles transfer by absorption light energy, which also induced temperature increase in nanoparticles as well as surroundings via conduction [135]. With strong light absorption properties, ANM can cause distinct temperature increase; Meanwhile, the high photo-stability and good biocompatibility guarantee ANM as promising hyperthermia agents [136,137]. Shen et al. prepared gold nanorods with siRNA on surface to achieve a synergy for antitumor combining gene silencing and photothermal therapy. The functional carrier provided siRNA endosomal escape for higher silencing efficacy and then promoted the inhibition of cancer cell proliferation further via gold nanorods heating activity [138]. The combination of photothermo-chemotherapy (photothermal-DOX) also showed obvious superiorities over either therapy alone on gold nanoshell [139]. Besides, Kim and co-workers designed a multifunctional carrier, in which a NIR responsive gold nanorods and a drug reservoirs mesoporous silica formed the core and shell of the nanoparticle, respectively, and then a thermoresponsive polymer was coated in the outermost. Temperature and pH controlled drug release. The therapeutic effect was enhanced via multi-modes treatments (chemo and hyperthermia) with precise detection of the X-ray from gold nanorods [140]. Generally speaking, when photosensitive materials are exposed with light, there also exists another phenomenon except temperature increase, which is the generation of reactive oxygen species (ROS) via energy conversion of surrounding oxygen molecules from light [141]. ROS is a byproduct substance in the cell oxidative metabolism, which might accelerate cell death [142]. This is the theory of photodynamic therapy (PDT). Based on the flexible
nanoplatform of targeting gold nanorods, Liu et al. designed a mitochondrion-targeted and plasmonic properties from gold, which enhanced PDT therapy effect and reduced systemic toxicity (Fig. 7) [143]. Besides, the optional conversion between PDT and PTT was also an interesting issue [144] and during the process of PTT, a small part of specific immune response also existed, completing by the way of immune cells capturing antigens from dry tumor cells [145]. These provided phototherapeutics of ANM more vigorous development and new insight.

4.3. Immunological therapy

Immunological therapy (IT) is one of the most attractive and energetic strategies for cancer treatment in recent years, which works by activating or adjusting the body's immune response to overcome disease forcefully [146]. ANM are bioinert, easily-synthesized, capable to load antigen or immune adjuvant and can be internalized into immune system to regulate immune response accurately. In IT system, they deliver immune adjuvants, induce immune response, importantly, not only these, their diagnostic imaging property is further contributed them to become a new intelligent theranostics venues. Qu et al. designed an immunomodulatory cytosine-guanosine oligodeoxynucleotides (CpG ODNs) and DOX co-conjugated gold nanorods, which displayed high loading capability for both CpG and DOX and combined three therapy strategies (chemotherapy, hyperthermal therapy and immunotherapy) simultaneously, which showed significant advantage over each one alone (Fig. 8) [147]. Cohen and co-workers reported a platform to track and delivery functional T-cells, on which T-cells could be observed precisely with

Fig. 5 – Drug release from ANM via regulating by (A) osmotic pressure (Reproduced with permission from [125]) Copyright 2016 Elsevier; (B) light (Reproduced with permission from [128]) Copyright 2009 American Chemical Society.
assistance of gold nanoparticles via dark field microscopy, multiple modes CT scans and 3D volume-rendering images. Meantime, cytokine release in vitro and high tumor inhibition rate in vivo were maintained, indicating no negative effect on T cells [148].

5. Conclusion and outlook
A great deal of attention was focused on the ANM to biomedical area and has made palmary achievements. In biological
imaging and diagnosis, ANM can well be performed based on their SPR characteristic, high electron density, strong scattering light as well as colorful appearance. In drug delivery, ANM can be considered as a qualified delivery system due to their suitability for diverse drugs, controlled drug release behavior and good biocompatibility. However, as the gold nanosystem always load drugs on their surface, the drug loading efficiency may be somewhat deficient. If sufficient target drug accumulation is to be obtained, a large amount of gold nanoparticles will be necessary, which may increase their toxic side effects on healthy tissues to some extent. Besides, in the metabolism and clearance in vivo, ANM cannot be removed from the body easily as there are poor corresponding enzyme as well as degradation pathway.

Thankfully, due to the development of nanotechnology, more and more gold nanomaterials have been synthesized, such as gold nanocages, gold nanoshells and other systems with large surface areas. At the same time, the hybrid system composed of organic and inorganic materials, including gold-micelle, gold-liposome, are also promising. These ANM are helpful in increasing drug loading and reducing biotoxicity. Specifically, theranostics, utilizing the abilities of multi therapeutic methods in one nanocarrier simultaneously will be going to be the most potential nanopatforms...
based on integrating the advantages of ANM in the future. In which, multi-strategies of combination therapy and precision treatment with the aid of imaging and biodiagnostics will greatly promote the therapeutic effect and the metabolism also will be improved due to the accelerated cleaning with the help of laser light. In summary, flexible multi-functional theranostics system is the focus of next research on gold nanomaterials.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Acknowledgments

Supported by the National Basic Research Program of China (2015CB932100).

REFERENCES

[1] Brody H, Grayson M, Scully T, et al. Gold outlook. Nature 2013;495:S1–S40.

[2] Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009;38:1759–82.

[3] An L, Wang Y, Tian Q, Yang S. Small gold nanorods: Recent advances in synthesis, biological imaging, and cancer therapy. Mater Basel 2017;10:1372–92.

[4] Pillai PF, Huda S, Kowalczyk B, Grzybowski BA. Controlled pH stability and adjustable cellular uptake of mixed-charge nanoparticles. J Am Chem Soc 2013;135:6392–5.

[5] Nicolardi S, Van Der Burgt YEM, Codée JDC, Wuhrer M, Hokke CH, Chiado P. Structural characterization of biofunctionalized gold nanoparticles by ultrahigh-resolution mass spectrometry. ACS Nano 2017;11:8257–64.

[6] Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012;41:2740–79.

[7] Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 2017;109:84–101.

[8] Press P, Britain G, Furth V. An immunocolloid method for the electron microscope. Immunochemistry 1971;8:1081–3.

[9] Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 2007;7:1591–7.
[10] Croissant J, Maynadier M, Mongin O, et al. Enhanced two-photon fluorescence imaging and therapy of cancer cells via Gold\textregistered Bridged silesiquoxane nanoparticles. Small 2015;11:295–9.

[11] Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 2011;399:3–27.

[12] Song K, Huang P, Yi C, et al. Photoacoustic and colorimetric visualization of latent fingerprints. ACS Nano 2015;9:12344–8.

[13] Hu Y, Chi C, Wang S, et al. A comparative study of clinical interventional phosphorescence and interventional photothermal therapy for pancreatic cancer. Adv Mater 2017;29:1–9.

[14] Charbgoo F, Nejabat M, Abnous K, et al. Gold nanoparticle should understand protein corona for being a clinical nanomaterial. J Control Release 2018;272:39–53.

[15] Anselmo AC, Mitragoti S. A review of clinical translation of inorganic nanoparticles. AAPS J 2015;17:1041–54.

[16] Hassan S, Prakash G, Bai Ozturk A, et al. Evolution and clinical translation of drug delivery nanomaterials. Nano Today 2017;15:91–106.

[17] Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 2011;6:385–91.

[18] Austin LA, Mackey MA, Dreden EC, El-Sayed MA. The optical, photothermal, and facial surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 2014;88:1391–417.

[19] Panahi Y, Mohammadhosseini M, Nejati-Koshki K, et al. Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine. Drug Res 2017;67:77–87.

[20] Turkovich J, Stevenson PC. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11:55–75.

[21] Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 2006;1:246–52.

[22] PRENS G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 1973;241:20–2.

[23] Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 2007;129:13939–48.

[24] Zhao L, Jiang D, Cai Y, Ji X, Xie R, Yang W. Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale 2012;4:5071–6.

[25] Brust M, Schiffrin DJ, Bethell D, Kiely CJ. Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv Mater 1995;7:795–7.

[26] Liz-Marzán LM. Gold nanoparticle research before and after the Brust–Schiffrin method. Chem Commun 2013;49:16–18.

[27] Arosio D, Manzoni L, Arcaldi EM V, Scolastico C. Cyclic RGD functionalized gold nanoparticles for tumor targeting. Bioconjugate Chem 2011;2011:664–72.

[28] Perrault SD, Chan WCW. Synthesis and surface modification of highly monodisperse, spherical gold nanoparticles of 50–200nm. J Am Chem Soc 2009;131:17042–3.

[29] Liu T, Thierry B. A solution to the PEG dilemma: Efficient bioconjugation of large gold nanoparticles for biodiagnostic applications using mixed layers. Langmuir 2012;28:15634–42.

[30] Pérez-Juste J, Pastoriza-Santos L, Liz-Marzán LM, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 2005;249:1870–901.

[31] Yang DP, Cui DX. Advances and prospects of gold nanorods. Chem. Asian J. 2008;3:2010–22.

[32] Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem Mater 2004;16:3633–40.

[33] Gao C, Zhang Q, Lu Z, Yin Y. Templated synthesis of metal nanorods in silica nanotubes. J Am Chem Soc 2011;133:19706–9.

[34] Cortie MB, McDonagh AM. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 2011;111:3715–35.

[35] Ciszek JW, Huang L, Tsonchev S, et al. Assembly of nanorods into desired superstructures: the role of templating, capillary forces, adhesion, and polymer hydration. ACS Nano 2010;4:259–66.

[36] Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC. The shape transition of gold nanorods. Langmuir 1999;15:701–9.

[37] Vignedeman L, Kanhal BP, Zubarev ER. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv Mater 2012;24:4811–41.

[38] Zhu XM, Fang C, Jia H, et al. Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings. Nanoscale 2014;6:11462–72.

[39] Kah JCY, Zubieta A, Saavedra RA, Hamad-Schifferli K. Stability of gold nanorods passivated with amphiphilic ligands. Langmuir 2012;28:8834–44.

[40] Daniel MCM, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology. Catal Nanotechnol Chem Rev 2004;104:293–346.

[41] Iwashita S, Saito Y, Ohtsu H, Tsuge K. Synthesis, structures and stability of amido gold(III) complexes with 2,2’-6,2’-terpyridine. Dalt Trans 2014;43:15719–22.

[42] Cheng Y, Samia AC, Li J, Kenney ME, Resnick A, Burda C. Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Langmuir 2010;26:2248–55.

[43] Zheng M, Davidson F, Huang X. Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J Am Chem Soc 2005;127:7790–1.

[44] Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011;63:136–51.

[45] Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci 2016;11:337–48.

[46] Yoo D, Lee D. Oligochitosan-stabilized photoluminescent gold nanocoatings for optical bioimaging. Biomater Res 2017;21:1–7.

[47] Li J, Zhu B, Yao X, et al. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides. ACS Appl Mater Interf 2014;6:16800–7.

[48] Alkilany AM, Murphy CJ. Gold nanoparticles with polyelectrolyte surfactant bilayer: synthesis, polymerization, and stability evaluation. Langmuir 2009;25:13874–9.

[49] Yari A, Saeidikhah M. Ultra-trace electrochemical impedance determination of bovine serum albumin by a two dimensional silica network citrate–capped gold nanoparticles modified gold electrode. Talanta 2015;144:1336–41.

[50] Xu S, Yuan H, Xu A, Wang J, Wu L. Rapid synthesis of stable and functional conjugates of DNA/gold nanoparticles mediated by Tween 80. Langmuir 2011;27:13629–34.

[51] Kidiyian A, Silva EA, Kim J, Aizenberg M, Mooney DJ. Surface modification with alginate-derived polymers for stable, protein-repellent, long-circulating gold nanoparticles. ACS Nano 2012;6:4796–805.
[52] Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012;33:7194–205.

[53] Sundaram P, Wower J, Byrne ME. A nanoscale drug delivery carrier using nucleic acid aptamers for extended release of therapeutic. Nanomed Nanotechnol Biol Med 2012;8:1143–51.

[54] Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011;5:5797–92.

[55] Craig GE, Brown SD, Lamprou DA, Graham D, Wheate NJ. Cisplatin-tethered gold nanoparticles that exhibit enhanced reproductibility, drug loading, and stability: a step closer to pharmaceutical approval? Inorg Chem 2012;51:3490–7.

[56] Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS. Tuning payload delivery in tumour cylinders using gold nanoparticles. Nat Nanotechnol 2010;5:465–72.

[57] Sykes EA, Chen J, Zheng G, Chan WCW. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS nano 2014;8:5696–706.

[58] Karampour S, Sadjadi MS, Farshadny N. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell nanoparticles for targeted drug delivery application. Spectrochim Acta Part A Mol Biomol Spectros 2015;148:146–55.

[59] Zhang XQ, Xu X, Lam R, Giljohann D, Ho D, Mirkin CA. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates. ACS Nano 2011;5:5962–70.

[60] Curry D, Cameron A, MacDonald B, et al. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems. Nanoscale 2015;7:19611–19.

[61] Jiang W, Kim BSY, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 2008;3:145–50.

[62] Thomas TA, Klibanov AM. Conjugation to gold nanoparticles enhances polyethyleneimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci 2003;100:9138–43.

[63] Cheng Y, Meyers JD, Broome AM, Kenney ME, Basilion JP, Burda C. Deep penetration of a PDT drug into tumors by noncovalent drug-nanoparticle conjugates. J Am Chem Soc 2011;133:2583–91.

[64] Aykaç A, Martos-Maldonado MC, Casas-Solvas JM, et al. β-cyclodextrin-bearing gold glyconanoparticles for the development of site specific drug delivery systems. Langmuir 2014;30:234–42.

[65] Wang C, Zhu W, Wang BZ. Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunogenic responses in vivo and in vitro. Int J Nanomed 2017;12:4747–62.

[66] Du B, Gu X, Han X, et al. Lipid-coated gold nanoparticles functionalized by folic acid as gene vectors for targeted gene delivery in vitro and in vivo. ChemMedChem 2017;12:1768–75.

[67] Gui R, Wan A, Liu X, Jin H. Intracellular fluorescent thermometry and photothermal-triggered drug release developed from gold nanoclusters and doxorubicin dual-loaded liposomes. Chem Commun 2014;50:1546–8.

[68] Zhong Y, Wang C, Cheng L, Meng F, Zhong Z, Liu Z. Gold nanorod-core biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. Biomacromolecules 2013;14:2411–19.

[69] Zeiderman MR, Morgan DE, Christein JD, Grizzle WE, McMasters KM, McNally LR. Acidic pH-targeted chitosan-capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater Sci Eng 2016;2:1108–20.

[70] Battogtokh G, Gotov O, Ko YT. Chitosan–ceramide coating on gold nanorod to improve its physiological stability and reduce the lipid surface-related toxicity. Arch Pharm Res 2017;40:356–63.

[71] Kim JE, Choi JH, Colas M, Kim DH, Lee H. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron 2016;80:543–59.

[72] Rosi NL, Mirkin CA. Nanostuctures in biodiagnostics. Chem Rev 2005;105:1547–62.

[73] Vidgren L, Zubarev ER. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 2013;65:663–76.

[74] Li JF, Tian ZQ. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature Letters 2010;464:392–5.

[75] Kang B, Affii MM, Austin LA, El-Sayed MA. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy. ACS Nano 2013;7:7420–7.

[76] Schneider G, Decher G. Functional core/shell nanoparticles via layer-by-layer assembly. Investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. Langmuir 2008;24:1778–89.

[77] Lin LK, Uzunoglu A, Stanciu LA. Aminolated and thiolated PEG-covered gold nanoparticles with high stability and antiaggregation for lateral flow detection of biophenol A. Small 2018;14:1702828.

[78] Lee JS, Ulmann PA, Han MS, Mirkin CA. A DNA - Gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 2008;8:529–33.

[79] Li L, Li B. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 2009;134:1361–5.

[80] Sirerol-Piqué MS, Cebríani-Silla A, Alfaro-Cervelló C, Gomez-Pinedo U, Soriano-Navarro M, Verdugo JMC. GFP immunogold staining, from light to electron microscopy, in mammalian cells. Microsc Microanal 2012;18:589–99.

[81] Orlov I, Schertel A, Zuber G, et al. Live cell immunogold labelling of RNA polymerase II. Sci Rep 2015;5:8324–8.

[82] Enger R. Automated gold particle quantification of immunogold labeled micrographs. J Neurosci Methods 2017;286:31–7.

[83] Shahidi R, Williams EA, Conzelmann M, et al. A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes. Elife 2015;4:1–24.

[84] Fan L, Lou D, Zhang Y, Gu N. Rituximab–Au nanoprobes for simultaneous dark-field imaging and DAB staining of CD20 over-expressed on Raji cells. Analyst 2014;139:5660–2.

[85] Rosman C, Pierrat S, Henk A, et al. A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy. Small 2012;8:3683–90.

[86] Chanda N, Shukla R, Katti K V, Kannan R. Gastrin releasing protein receptor specific gold nanorods : breast and prostate tumor avid nanovectors for molecular imaging. Nano Letter 2009;9:1798–805.

[87] Jin X, Li H, Wang S, et al. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation. NanoScale 2014;6:14360–70.

[88] Loumaigne M, Vasanthakumar P, Richard A, Débarre A. Influence of polarization and wavelength on two-photon excited luminescence of single gold nanospheres. Phys Chem Chem Phys 2011;13:11597–605.
Asian Journal of Pharmaceutical Sciences 14 (2019) 349–364

[89] Li JL, Gu M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials 2010;31:9492–8.

[90] Zhou Y, Wu X, Wang T, et al. A comparison study of detecting gold nanorods in living cells with confocal reflectance microscopy and two-photon fluorescence microscopy. J Microsc 2010;237:200–7.

[91] Yang D, Liu D, Qin M, et al. Intestinal mucin induces more endocytosis but less transcytosis of nanoparticles across enterocytes by triggering nano-clustering and strengthening the retrograde pathway. ACS Appl Mater Interf 2018;10:11443–56.

[92] Yuan L, Wei W, Li J, et al. Facile method for CLSM imaging unfunctionalized Au nanoparticles through fluorescent channels. J Nanoparticle Res 2009;11:1219–25.

[93] Sebastián V, Lee S-K, Zhou C, Kraus MF, Fujimoto JG, Jensen KF. One-step continuous synthesis of biocompatible gold nanorods for optical coherence tomography. Chem Commun 2012;48:6654–6.

[94] Jia Y, Liu G, Gordon AY, et al. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography. Opt Express 2015;23:4212–25.

[95] Prabhukar S, Matthews J, Rawal S, Awdeh RM. Molecular histopathology using gold nanorods and optical coherence tomography. Invest Ophthalmol Vis Sci 2015;54:1192–200.

[96] Zhu J, Zheng L, Wen S, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-entrapped multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2014;35:7635–46.

[97] Kim D, Park S, Jae HL, Yong YJ, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 2007;129:7661–5.

[98] Park J, Park J, Ju EJ, et al. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J Control Rel 2015;207:77–85.

[99] Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015;10:299–320.

[100] Feis A, Gellini C, Salvi FR, Becucci M. Photoacoustic excitation profiles of gold nanoparticles. Photoacoustics 2014;2:47–53.

[101] Yeager D, Chen YS, Litovsky S, Emelianov S. Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: A feasibility study. Theranostics 2014;4:36–46.

[102] Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 2012;64:200–16.

[103] Salazar-González JA, González-Ortega O, Rosales-Mendoza S. Gold nanoparticles and vaccine development. Expert Rev Vaccines 2015;14:1197–211.

[104] Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB. Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 2010;28:207–13.

[105] Hornos Carneiro MF, Barbosa F. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. J Toxicol Environ Heal Part B 2016;19:129–48.

[106] Krishnan G, Subramaniyan J, Chengalvarayan Subramani P, Muralidharan B, Thiruvengadam D. Hesperetin conjugated PEGylated gold nanoparticles exploring the potential role in anti-inflammation and anti-proliferation during diethylnitrosamine-induced hepatocarcinogenesis in rats. Asian J Pharm Sci 2017;12:442–55.

[107] Latorre A, Posch C, Garcimartín Y, et al. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics. Nanoscale 2014;6:7436–42.

[108] Sun Y, Wang Q, Chen J, et al. Temperature-sensitive gold nanoparticle-coated Pluronic-PLL nanoparticles for drug delivery and chemo-photothermal therapy. Theranostics 2017;7:4424–44.

[109] Pradeepa, Vidya SM, Mutalik S, Udaya Bhat K, Huligol P, Avadhani K. Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sci 2016;153:171–9.

[110] Li X, Robinson SM, Gupta A, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014;8:10682–6.

[111] Su S, Zuo X, Pan D, et al. Design and applications of gold nanoparticle conjugates by exploiting biomolecule–gold nanoparticle interactions. Nanoscale 2013;5:2589–99.

[112] Ding Y, Jiang Z, Saha K, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther 2014;22:1075–83.

[113] Zhang P, Li B, Du J, Wang Y. Regulation the morphology of cationized gold nanoparticles for effective gene delivery. Colloids Surf B Biointerf 2017;157:18–25.

[114] Jia L, Guo L, Zhu J, Ma Y. Stability and cytocompatibility of silk fibroin-capped gold nanoparticles. Mater Sci Eng C 2014;43:231–6.

[115] Duncan B, Kim C, Rotello VM. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Rel 2010;148:122–7.

[116] Turell I, Rada R, Alvarez B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic Biol Med 2013;65:244–53.

[117] Choi J, Lee SE, Park JS, Kim SY. Gold nanorod-photosensitizer conjugates with glutathione-sensitive linkages for synergistic cancer photodynamic/photothermal therapy. Biotechnol Bioeng 2018;115:1340–54.

[118] Gold AA, Ghosh PS, Kim C, Han G, Forbes NS, Rotello VM. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2008;2:2213–18.

[119] Ruan S, Hu C, Tang X, et al. Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano 2016;10:10086–98.

[120] Hwu JR, Lin YS, Josephrajan T, et al. Targeted paclitaxel conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 2009;131:66–8.

[121] Xia F, Hou W, Zhang C, et al. PH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. Acta Biomater 2018;18:1–12.

[122] Yilmaz G, Demir B, Timur S, Becer CR. Poly(methacrylic acid)-coated gold nanoparticles: functional platforms for theranostic applications. Biomacromolecules 2016;17:2901–11.

[123] Guerrero AR, Hassan N, Escobar CA, Albericio F, Kogan MJ, Araya E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine 2014;9:2023–39.

[124] Amoli-Diva M, Sadighi-Bonabi R, Pourghazi K. Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery. Mater Sci Eng C 2017;76:242–8.

[125] Nowald C, Kásdorfi BT, Lieeg O. Controlled nanoparticle release from a hydrogel by DNA-mediated particle disaggregation. J Control Rel 2017;246:71–8.
Haine AT, Niidome T. Gold nanorods as nanodevices for bioimaging, photothermal therapeutics, and drug delivery. Chem Pharm Bull Tokyo 2017;65:625–8.

Lee HJ, Liu Y, Zhao J, et al. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging. J Control Rel 2013;172:152–8.

Wijaya a, Schaffer S, Pallares I, Hamad-Schifferli K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 2008;2:80–6.

Dykman L, Khlentsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 2012;41:2256–82.

Cui L, Her S, Borst GR, Bristow RG, Jaffray DA, Allen C. Radiosensitization by gold nanoparticles: will they ever make it to the clinic? Radiother Oncol 2017;124:344–56.

Zhang XD, Wu D, Shen X, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomater 2012;33:6408–19.

Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM. Molecurally targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat 2013;137:81–91.

Al Zaki A, Joh D, Cheng Z, et al. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 2014;8:104–12.

Wang Z, Shao D, Chang Z, et al. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano 2017;11:12732–41.

Zhang Z, Wang J, Chen C. Gold nanorods based platforms for light-mediated theranostics. Theranostics 2013;3:223–38.

Bao Z, Liu X, Liu Y, Liu H, Zhao K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J Pharm Sci 2016;11:349–64.

Spyratou E, Makropoulos M, Efthathopoulos E, Georgakilas A, Silver L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers Basel 2017;9:172.

Shen J, Kim HC, Mu C, et al. Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy. Adv Healthc Mater 2014;3:1629–37.

Wang L, Yuan Y, Lin S, et al. Photothermo-chemotherapy of cancer employing drug leakage-free gold nanoshells. Biomaterials 2016;78:40–9.

Baek S, Singh RK, Kim TH, et al. Triple hit with drug carriers: pH- and temperature-responsive theranostics for multimodal chemo- and photothermal therapy and diagnostic applications. ACS Appl Mater Interf 2016;8:8967–79.

Yao J, Feng J, Chen J. External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci 2016;11:585–95.

Wang Z, Guo W, Kuang X, Hou S, Liu H. Nanopreparations for mitochondria targeting drug delivery system: current strategies and future prospective. Asian J Pharm Sci 2017;12:498–508.

Liu J, Liang H, Li M, et al. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018;157:107–24.

Vankayala R, Lin CC, Kalluru P, Chiang CS, Hwang KC. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials 2014;35:5527–38.

Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv Mater 2014;26:8154–62.

Almeida JPM, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomed Nanotechnol Biol Med 2014;10:503–14.

Tao Y, Ju E, Liu Z, Dong K, Ren J, Qu X. Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy. Biomaterials 2014;35:6646–56.

Meir R, Shamalov K, Betzer O, et al. Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 2015;9:8365–72.