Braided Oscillators

A. Yildiz
Feza Gürsey Institute, P.O. Box 6, 81220, Çengelköy, Istanbul, Turkey

March 30, 2022

Abstract

A generalized oscillator algebra is proposed and the braided Hopf algebra structure for this generalized oscillator is investigated. Using the solutions for the braided Hopf algebra structure, two types of braided Fibonacci oscillators are introduced. This leads to two types of braided Biedenharn-Macfarlane oscillators as special cases of the Fibonacci oscillators. We also find the braided Hopf algebra solutions for the three dimensional braided space. One of these, as a special case, gives the Hopf algebra given in the literature.
1 Introduction

The harmonic oscillator has a wide variety of applications from quantum optics to the realizations of the angular momentum algebra and hence the deformations of the oscillator algebra play an important role in q-deformed theories. The realization of the q-deformed angular momentum algebra by Biedenharn-Macfarlane oscillators1 and the realization of the Hermitian braided matrices by a pair of q-oscillators2 are some of the examples. The two parameter deformations and some of their applications can be found in3. Braided group theory (a self contained review can be found in4) deforms the notion of tensor product (called braided tensor product) and hence deforms the independence of the objects. Although braided groups arise in the formulation of quantum group covariant structures, the idea of braiding can be used without any reference to quantum groups to generalize the statistics5.

The permutation map π ($\pi : A \otimes B \rightarrow B \otimes A$) in the tensor product algebra of boson algebras $(a \otimes b)(c \otimes d) = a\pi(b \otimes c)d = ac \otimes bd$

is replaced by a generalized map called braiding ψ ($\psi : A \otimes B \rightarrow B \otimes A$) such that

$(a \otimes b)(c \otimes d) = a\psi(b \otimes c)d$.

This generalization leads to the generalization of the Hopf algebra called braided Hopf algebra6 whose axioms in algebraic (not diagrammatic) form read as

\begin{align*}
m \circ (id \otimes m) & = m \circ (m \otimes id) \\
m \circ (id \otimes \eta) & = m \circ (\eta \otimes id) = id \\
(id \otimes \Delta) \circ \Delta & = (\Delta \otimes id) \circ \Delta \\
(\epsilon \otimes id) \circ \Delta & = (id \otimes \epsilon) \circ \Delta = id \\
m \circ (id \otimes S) \circ \Delta & = m \circ (S \otimes id) \circ \Delta = \eta \circ \epsilon \\
\psi \circ (m \otimes id) & = (id \otimes m) \circ (\psi \otimes id) \circ (id \otimes \psi) \\
\psi \circ (id \otimes m) & = (m \otimes id) \circ (id \otimes \psi) \circ (\psi \otimes id)
\end{align*}
\[(id \otimes \Delta) \circ \psi = (\psi \otimes id) \circ (id \otimes \psi) \circ (\Delta \otimes id)\]

\[(\Delta \otimes id) \circ \psi = (id \otimes \psi)(\psi \otimes id) \circ (id \otimes \Delta)\]

\[\Delta \circ m = (m \otimes m)(id \otimes \psi \otimes id) \circ (\Delta \otimes \Delta)\] \hspace{1cm} (1)

\[S \circ m = m \circ \psi \circ (S \otimes S)\]

\[\Delta \circ S = (S \otimes S) \circ \psi \circ \Delta\]

\[\epsilon \circ m = \epsilon \otimes \epsilon\]

\[(\psi \otimes id) \circ (id \otimes \psi) \circ (psi \otimes id) = (id \otimes \psi) \circ (\psi \otimes id) \circ (id \otimes \psi)\]

where \(m : A \otimes A \rightarrow A\) is the multiplication map, \(\Delta : A \rightarrow A \otimes A\) is the comultiplication map, \(\eta : K \rightarrow A\) is the unit map, \(\epsilon : A \rightarrow K\) is the counit map, \(S : A \rightarrow A\) is the antipode map and \(\psi : A \otimes A \rightarrow A \otimes A\) is the braiding map. The consistency of the relations (1) requires that

\[\Delta(1_A) = 1_A \otimes 1_A, \quad \psi(1_A \otimes a) = a \otimes 1_A, \quad \psi(a \otimes 1_A) = 1_A \otimes a \quad \forall a \in A\] \hspace{1cm} (2)

where \(1_A\) is the identity of the algebra \(A\). From now on we will drop the subscript and write 1 for the identity of the algebra. All these maps are linear. Note that in the limit \(\psi \rightarrow \pi\) the braided Hopf algebra axioms reduce to the ordinary Hopf algebra axioms. The braided Hopf algebra axioms\(^7\) reduce to the axioms given above when the counit map \(\epsilon\) is an algebra homomorphism. The \(*\)-structure for a braided algebra \(B\) is different\(^8\) from the non-braided one such that

\[\Delta \circ * = \pi \circ (\ast \otimes \ast) \circ \Delta\]

\[S \circ * = \ast \circ S\] \hspace{1cm} (3)

\[(a \otimes b)^* = b^* \otimes a^*, \quad \forall a, b \in B.\]

2 Generalized Oscillator

We propose a generalized oscillator algebra generated by \(a, a^*, q^N\) and 1 satisfying
\[aq^N = qq^Na, \]

\[q^N a^* = qa^*q^N, \] (4)

\[aa^* - Q_1a^*a = Q_2q^{2N} + Q_3q^N + Q_4 \]

where \(q, Q_1, Q_2, Q_3, Q_4 \) are real constants whose values determine the type of the oscillator. For example, if \(Q_1 \) is a free parameter then the \(Q_2 = 1, Q_3 = Q_4 = 0 \) case and the \(Q_3 = 1, Q_2 = Q_4 = 0 \) case define two different Fibonacci oscillators. For the *-structure we impose \((q^N)^* = q^N, (a^*)^* = a\).

The actions of the generators on the Hilbert space are given by

\[
\begin{align*}
 a | n \rangle &= a_n | n - 1 \rangle \\
 a^* | n \rangle &= a^*_{n+1} | n + 1 \rangle \\
 q^N | n \rangle &= q^n | n \rangle.
\end{align*}
\] (5)

Using the fact that for a given algebra the Hopf algebra structure is not unique, we write the general forms of the coproducts

\[
\begin{align*}
 \Delta(q^N) &= A_1q^N \otimes q^N + A_2a \otimes a^* + A_3a^* \otimes a + A_41 \otimes q^N + A_5q^N \otimes 1 + A_61 \otimes 1, \\
 \Delta(a) &= B_1q^N \otimes a + B_2a \otimes q^N + B_31 \otimes a + B_4a \otimes 1, \\
 \Delta(a^*) &= B_1a^* \otimes q^N + B_2q^N \otimes a^* + B_3a^* \otimes 1 + B_41 \otimes a^*,
\end{align*}
\] (6)

the counits

\[
\begin{align*}
 \epsilon(q^N) &= e_1, \quad \epsilon(a) = \epsilon(a^*) = e_2,
\end{align*}
\] (7)

the antipodes

\[
\begin{align*}
 S(q^N) &= k_1q^N + k_2a + k_3a^* + k_4,
\end{align*}
\]
\[S(a) = m_1 q^N + m_2 a + m_3 a^* + m_4, \]
\[S(a^*) = m_1 q^N + m_2 a^* + m_3 a + m_4 \]

and the braidings

\[
\psi(q^N \otimes q^N) = g_1 q^N \otimes q^N + g_2 a \otimes a^* + g_3 a^* \otimes a + g_4 1 \otimes q^N + g_5 q^N + g_6 1 \otimes 1, \\
\psi(q^N \otimes a) = d_1 a \otimes q^N + d_2 q^N \otimes a + d_3 1 \otimes a + d_4 a \otimes 1, \\
\psi(a^* \otimes q^N) = d_1 q^N \otimes a^* + d_2 a^* \otimes q^N + d_3 a^* \otimes 1 + d_4 1 \otimes a^*, \\
\psi(q^N \otimes a^*) = f_1 a^* \otimes q^N + f_2 q^N \otimes a^* + f_3 1 \otimes a^* + f_4 a^* \otimes 1, \\
\psi(a \otimes q^N) = f_1 q^N \otimes a + f_2 a \otimes q^N + f_3 a \otimes 1 + f_4 1 \otimes a, \\
\psi(a \otimes a) = z_1 a \otimes a, \\
\psi(a^* \otimes a^*) = z_1 a^* \otimes a^*, \\
\psi(a \otimes a^*) = b_1 q^N \otimes q^N + b_2 a \otimes a^* + b_3 a^* \otimes a + b_4 1 \otimes q^N + b_5 q^N \otimes 1 + b_6 1 \otimes 1, \\
\psi(a^* \otimes a) = c_1 q^N \otimes q^N + c_2 a \otimes a^* + c_3 a^* \otimes a + c_4 1 \otimes q^N + c_5 q^N \otimes 1 + c_6 1 \otimes 1
\]

where symbols with a subscript are the constants to be determined.

3 Braided Hopf Algebra Structure of the Generalized Oscillator

To find the general braided Hopf algebra structure for the oscillator algebra given by (4) we substitute these general forms into the braided Hopf algebra axioms and find the solutions using the computer programming Mapple V. The constants which are the same for all solutions read as

\[
Q_4 = A_1 = A_6 = B_1 = B_2 = 0, \ A_4 = A_5 = B_3 = B_4 = 1, \\
k_2 = k_3 = k_4 = m_1 = m_3 = m_4 = e_1 = e_2 = 0, \ m_2 = -1, \\
b_4 = b_5 = b_6 = c_4 = c_5 = c_6 = g_4 = g_5 = g_6 = d_3 = d_4 = f_3 = f_4 = 0.
\]
The solutions for the other parameters are given in the tables. The constants given by (10)-(12) show that the antipodes and the counits of all generators and the coproducts of raising/lowering operators are uniquely determined. We also found that for a free deformation parameter Q_1 at most one of the other deformation parameters, namely Q_2 or Q_3, is nonzero. For $Q_2 \neq 0$, we have

$$aa^* - Q_1 a^* a = Q_2 q^{2N}. \quad (13)$$

Without loss of generality we can take $Q_2 = 1$ or by rescaling a and a^* the oscillator relation (13) can be reduced to

$$aa^* - Q_1 a^* a = q^{2N}. \quad (14)$$

We found that there are only six possible braided Hopf algebra solutions for this two parameter oscillator which are given in Table 1. Defining the free deformation parameter $Q_1 \equiv p^{-2}$ the algebra (14) can be rewritten as

$$aa^* - p^{-2} a^* a = q^{2N}. \quad (15)$$

which is the more familiar form of the q,p oscillator algebra (Fibonacci oscillator) which we call the first-type Fibonacci oscillator. Using the actions (8) the eigenvalue of the operator $a^* a$ on the state $|n\rangle$ is found to be

$$a^*_n a_n = \frac{p^{-2n} - q^{2n}}{p^2 - q^2}. \quad (16)$$

Substituting $Q_1 = q^{-2}$ into (14) we obtain the Biedenharn-Macfarlane oscillator algebra which we call the first-type Biedenharn-Macfarlane oscillator defined by

$$aa^* - q^{-2} a^* a = q^{2N}. \quad (17)$$
The eigenvalue of the operator a^*a on the state $|n\rangle$ is found to be

$$a^*_n a_n = \frac{q^{2n} - q^{-2n}}{q^2 - q^{-2}}. \quad (18)$$

There are only six braided Hopf algebra solutions for the first-type Biedenharn Macfarlane oscillator (17) which can be obtained by substituting $Q_1 = q^{-2}$ into the solutions given in Table 1. Similarly, for $Q_3 \neq 0$ the oscillator relation

$$aa^* - Q_1 a^* a = Q_3 q^N \quad (19)$$

can again be reduced to

$$aa^* - Q_1 a^* a = q^N \quad (20)$$

which we call the second-type Fibonacci oscillator. Setting the free deformation $Q_1 = p^{-1}$ the eigenvalue of the operator a^*a on the state $|n\rangle$ is found to be

$$a^*_n a_n = \frac{p^{-n} - q^n}{p^{-1} - q}. \quad (21)$$

The second-type Fibonacci oscillator (20) has only two braided Hopf algebra solutions which are given in Table 2. The second-type Biedenharn-Macfarlane oscillator can be obtained simply by substituting $Q_1 = q^{-1}$ into (20) and the same substitution into Table 2 gives braided Hopf algebra solutions.

A wide variety of one parameter oscillators can be obtained by assigning $Q_1 = f(q)$ in the algebras (14) and (20). The braided Hopf algebra solutions for these oscillators can be obtained by substituting $Q_1 = f(q)$ into the Table 1 and Table 2. However, there are extra solutions for some values Q_1 which are given in Table 3.

The braided Hopf algebra structure of the quantum space (called braided space) defined by
\[x_i x_j = q x_j x_i \quad i > j \] \hspace{1cm} (22)

determines the structure of the braided integration, derivation and Fourier transform defined on that space. For \(Q_1 = q, \ Q_2 = 0, \ Q_3 = 0, \ Q_4 = 0 \) the algebra reduces to the three dimensional quantum space with the identifications

\[x_1 \equiv a^*, \ x_2 \equiv q^N, \ x_3 \equiv a. \] \hspace{1cm} (23)

The braided Hopf algebra solutions for the three dimensional braided space are given in Table 4. Setting the free parameter \(g_1 = q^2 \) in the sol5 of Table 4 gives the braided Hopf algebra given in the literature\(^{10}\) and references therein) as a special case.

4 Conclusion

The braidings imply the relations between independent copies of algebras. For example, the implication of the braiding \(\psi(a \otimes a) \) can be found by using the identifications \(a_1 \equiv a \otimes 1 \) and \(a_2 \equiv 1 \otimes a \) such that

\[a_2 a_1 = (1 \otimes a)(a \otimes 1) = \psi(a \otimes a) = za \otimes a = za_1 a_2. \]

Thus the braiding relations imply a 2-body system of oscillators which can be extended to \(n \)-body oscillators using the \(n \)-fold braided tensor product as done by Baskerville and Majid in the context of the braided version of the \(q \)-Heisenberg algebra.\(^{11}\) The Fock space representations of the \(n \)-fold braided tensor product of oscillators can also be found. This requires the braidings of the generators of the algebra with the states. All these constructions depend on the braiding relations of the generators of the algebra. Since each solution for the braiding gives a different system of oscillators, the solutions we found may provide a general framework for the interacting oscillators and hence for the statistical mechanical quantities calculated by using these oscillators.

Because of the connection between symmetry and statistics it is interesting to investigate the un-
derlying symmetry transformations of the braided oscillators which gives rise to the braiding relations
given in the tables. It may also be interesting to find the unbraiding transformations12 or the decou-
pling of the braided oscillators. The generalization of supersymmetry to fractional supersymmetry
requires the deformation parameter to be a root of unity13 and this case deserves to be discussed on
a separate study.

The braided Hopf algebra solutions we present for the oscillators and for the three dimensional
braided space may provide a general frame on which other structures can be defined.
References

1. L. C. Biedenharn, J. Phys. A: Math. Gen. 22, L873 (1989), A. J. Macfarlane, J. Phys. A: Math. Gen. 22, 4581 (1989)

2. M. Arik and A. Yildiz, J. Phys. A: Math. Gen. 30, L255 (1997)

3. M. Arik, E. Demircan, T. Turgut, L. Ekinci and M. Mungan, Z. Phys. C 55, 89 (1992), R. Chakrabarti and R. Jagannathan J. Phys. A: Math. Gen. 24, L711 (1991), M. Daoud and M. Kibler, Phys. Lett. A 206, 13 (1995)

4. S. Majid, Beyond supersymmetry and quantum symmetry (an introduction to braided groups and braided matrices) Quantum Groups, Integrable Statistical Models and Knot Theory edited by M. L. Ge and H. J. Vega (Singapore: World Scientific), pp.231-282 (1993)

5. R. S. Dunne, A.J. Macfarlane, J.A. Azcarraga and J.C. Bueno, Phys. Lett. B 387, 294 (1996)

6. S. Majid, Algebras and Hopf algebras in braided categories Lecture Notes in Pure and Applied Mathematics vol 158 (New York: Marcel Dekker), pp. 55-105 (1994)

7. M. Durdevich, Israel Journal of Mathematics 98, 329 (1997)

8. Majid S Foundations of Quantum Group Theory (Cambridge: Cambridge University Press), (1995)

9. A. Kempf and S. Majid, J. Math. Phys. 35, 6802 (1994)

10. G. Carnovale, J. Math. Phys. 40, 5972 (1999)

11. W. K. Baskerville and S. Majid, J. Math. Phys. 34, 3588 (1993)

12. G. Fiore, H. Steinacker and J. Wess, Mod. Phys. Lett. A 16, 261 (2001)

13. R.S. Dunne, J. Math. Phys. 40, 1180 (1999), H. Ahmedov and O. F. Dayi, Mod. Phys. Lett. A 15, 1801 (2000), H. Ahmedov, A. Yildiz and Y. Ucan, J. Phys. A 34, 6413 (2001)
Table 1: Braided Fibonacci oscillator of the first type

\(k_1\)	\(s_{01}\)	\(s_{02}\)	\(s_{03}\)	\(s_{04}\)	\(s_{05}\)	\(s_{06}\)
\(-1\)	\(-1\)	\(-1\)	\(-1\)	\(-1\)	\(-1\)	\(-1\)
\(b_1\)	\(q^2 - Q_1\)	\((q^2 - Q_1)(\sqrt{Q_1} + q)\)	\((q^2 - Q_1)(\sqrt{Q_1} - q)\)	0	0	0
\(b_2\)	\(Q_1\)	\(Q_1\)	\(Q_1\)	\(Q_1\)	\(Q_1\)	\(Q_1\)
\(b_3\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)
\(z\)	\(a^2\)	\(a^2\)	\(a^2\)	\(a^2\)	\(a^2\)	\(a^2\)
\(c_1\)	\(-q^2\)	0	0	\(-1\)	\(-q + \sqrt{Q_1}\)	\(\sqrt{Q_1} - q\)
\(c_2\)	\(q^2\)	\(1\)	\(1\)	\(1\)	\(1\)	\(1\)
\(c_3\)	\(Q_1 - q^2\)	\(q^2\sqrt{Q_1}\)	\(q^2\sqrt{Q_1}\)	\(q^2\sqrt{Q_1}\)	\(q^2\sqrt{Q_1}\)	\(q^2\sqrt{Q_1}\)
\(d_1\)	\(q\)	\(q\)	\(q\)	\(q\)	\(q\)	\(q\)
\(d_2\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)
\(f_1\)	\(q^2 - Q_1\)	\((q^2 - Q_1)(\sqrt{Q_1} + q)\)	\((q^2 - Q_1)(\sqrt{Q_1} - q)\)	0	0	0
\(f_2\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)	\(q^2\)
\(g_1\)	\(\sqrt{Q_1}\)	\(\sqrt{Q_1}\)	\(\sqrt{Q_1}\)	\(\sqrt{Q_1}\)	\(\sqrt{Q_1}\)	\(\sqrt{Q_1}\)
\(g_2\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)
\(g_3\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)

\(A_2 = A_3 = 0\) for all solutions

Table 2: Braided Fibonacci oscillator of the second type

| \(a^2 - Q_2 a = q^3\), \(aq^5 = qq^3 a\), \(a^2 = qa\) |

	\(s_{01}\)	\(s_{02}\)
\(A_2\)	\(\sqrt{Q_2}\)	\(q - Q_2\)
\(A_3\)	\(Q_2(q^2 - q)\)	\(q - Q_2\)
\(k_1\)	\(-\frac{Q_2}{q}\)	\(-\frac{Q_2}{q}\)
\(b_2\)	\(0\)	\(\frac{Q_1 - q^2}{q^2}\)
\(b_3\)	\(\frac{q}{Q_2}\)	\(\frac{q}{Q_2}\)
\(z\)	\(\frac{q}{Q_2}\)	\(\frac{q}{Q_2}\)
\(c_2\)	\(\frac{q^2}{Q_2}\)	\(\frac{q^2}{Q_2}\)
\(d_1\)	\(\frac{Q_1}{q}\)	\(Q_2\)
\(f_1\)	\(q\)	\(q\)
\(g_1\)	\(\frac{q^2}{Q_2}\)	\(\frac{q^2}{Q_2}\)
\(b_1 = c_1 = d_2 = f_3 = g_3 = 0\) for both solutions		

for \(\text{both solutions}\)
Table 3: Other braided oscillator solutions

solution	sol1	sol2	sol3	sol4	sol5	
Q_1	q_1^a	$-q_1^a$	$-q_1^a$	q_1^a	$-q_1^a$	
Q_2	q_2^a	$-q_2^a$	$-q_2^a$	q_2^a	$-q_2^a$	
Q_3	0	0	0	0	1	
k_1	-1	-1	-1	-1	-1	
b_1	0	0	$2-q_2^a c_1$	$2+q_2^a c_1$	0	
b_2	q_1^a	$-q_1^a$	$-q_1^a$	q_1^a	$-q_1^a$	
z	1	-1	-1	1	-1	
c_1	0	0	c_1	c_1	0	
c_2	q_1^a	$-q_1^a$	$-q_1^a$	q_1^a	$-q_1^a$	
d_1	q_1^a	q_1^a	q_1^a	q_1^a	q_1^a	
f_1	q_1^a	q_1^a	q_1^a	q_1^a	q_1^a	
g_1	-1	-1	-1	-1	-1	
A_2	A_3	A_3	0	0	0	0
A_3	$-q A_2$	$q A_2$	0	0	0	0
k_1	-1	-1	-1	-1	-1	
b_2	0	0	0	$-1+g_1$	$-1+q c_2$	0
b_3	q_1^a	q_1^a	q_1^a	q_1^a	q_1^a	
z	1	1	g_1	g_1	g_1	
c_2	q_1^a	q_1^a	q_1^a	q_1^a	q_1^a	
c_3	0	0	g_1-1	0	0	0
d_1	q_1^a	q_1^a	q_1^a	q_1^a	q_1^a	
d_2	0	0	g_1-1	0	0	0
d_3	0	0	0	$-1+g_1$	0	0
f_2	0	0	0	0	0	
g_1	1	1	g_1	g_1	g_1	

$A_2 = A_3 = A_3 = d_3 = d_2 = g_2 = g_3 = 0$ for all solutions

Table 4: Three dimensional braided space

solution	sol1	sol2	sol3	sol4	sol5	sol6	sol7
A_2	A_3	A_3	0	0	0	0	0
A_3	$-q A_2$	$q A_2$	0	0	0	0	0
k_1	-1	-1	-1	-1	-1		
b_2	0	0	0	$-1+g_1$	$-1+q c_2$	0	
b_3	q_1^a	q_1^a	q_1^a	q_1^a	q_1^a		
z	1	1	g_1	g_1	g_1		
c_2	q_1^a	q_1^a	q_1^a	q_1^a	q_1^a		
c_3	0	0	g_1-1	0	0	0	
d_1	q_1^a	q_1^a	q_1^a	q_1^a	q_1^a		
d_2	0	0	g_1-1	0	0	0	
d_3	0	0	0	$-1+g_1$	0	0	
f_2	0	0	0	0	0		
g_1	1	1	g_1	g_1	g_1		

$b_1 = c_1 = g_2 = g_3 = 0$ for all solutions