Preparation and Thermal Stability of Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ Metallic Glass with Good Ductility

Hao Yu, Qiang Li, Haijun Wu, Yi Liu, Jialin Chen*, Guoquan Zhang, Junmei Yin

Kunming Institute of Precious Metals, Kunming 650032, China

*Corresponding author e-mail: qiali@ipm.com.cn

Abstract. The Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ amorphous alloy samples with size of 5mm \times 0.02mm were prepared by melt-spinning method. The thermal analysis results show that the glass transition temperature T_g, the initial crystallization temperature T_x and the supercooled liquid region ΔT of Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ amorphous alloy are 404K, 440K and 36K, respectively, and the calculated glass transition temperature T_{rg} is 0.617, the parameter γ is 0.415. Compared with other Au-based amorphous alloys, the Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ alloy has good glass-forming ability (GFA), better thermal stability and good ductility.

1. Introduction

It is well known that amorphous alloys have attracted much attention from materials researchers due to their excellent mechanical, chemical and magnetic properties, and have become a hot research point in the field of materials. Since amorphous alloys was reported [1, 2], the various properties of there have been extensively and deeply studied. For example, the soft magnetic properties of Fe-based and Co-based amorphous alloys have been studied for long time [3, 4, 5]. Recently, another Fe-based amorphous alloy has been found having good magnetic property as well as good plasticity [6]. There are also so many studies and reports on the mechanical properties of Al-based and Mg-based metallic glasses are better than those of corresponding crystalline alloys [7, 8, 9, 10], the superhigh strength of Co-based and Ni-based amorphous alloys [11, 12, 13, 14], superconductivity [15, 16, 17], excellent mechanical properties [18,19] and super-plasticity in supercooled liquid region [20] of Zr-based amorphous alloys, excellent mechanical property [21]of Ti-based amorphous alloy and its application in biomedicine,[22, 23, 24] and the excellent glass forming ability and thermal stability of Pd-based amorphous alloy [25, 26, 27]. However, there are few reports about Au-based amorphous alloys.

Since Duwez, a professor of California Institute of Technology, invented the melt-spinning method and successfully prepared amorphous alloys, this method has been widely used in sample preparation for studying the property of amorphous alloys. Therefore, this study design the alloy composition based on the three empirical principles [28]: (1) multicomponent systems consisting of more than three elements; (2) significant difference in atomic size ratios above about 12% among constituent elements; (3) negative heats of mixing among main constituent elements, and the exchangeability between constituent [29]. With Cu and Pd partially replace Au in Au$_{75}$Si$_{25}$, Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ amorphous alloy for properties testing was prepared by melt-spinning method.
2. Experimental

An ingot of experimental alloy was prepared by melting the mixture of high purity (higher than 99.9%) Pd, Au, Cu and Si 3-5 times under high purity Ar protection. Then, put the alloy prepared earlier into the quartz glass tube. Under the condition of argon gas protection, the alloy is heated through high frequency induction until melting. Finally, the molten alloy is sprayed onto the high-speed rotating copper roller to cool rapidly, and the glassy alloy of about 5mm×0.02mm were prepared.

The structure of the samples was examined by X-ray diffraction (XRD) (Cu K_α) using a SmartLab (Rigaku, Japan). The thermal properties of the prepared glassy alloy were examined by differential scanning calorimetry (DSC) using a STA449-F1 at different heating rate of 10, 20, 40 and 60K/min. The microstructure of the glassy alloy sample was examined by a JEM-2100 transmission electron microscope (TEM). The thin TEM foil samples were prepared through standard twin-jet electropolishing method under the liquid nitrogen protection. Bending the sample to judge the plasticity of the sample. The fracture surface was examined with EDAX-TSL scanning electron microscopy (SEM).

3. Result and Discussion

Figure 1(a) and 1(b) show the picture and XRD pattern of the as-prepared glassy alloy ribbon, respectively. It is seen that the pattern of the sample consists of two broad diffraction peaks (2θ≈40° and 2θ≈71°) without any detectable sharp crystalline peaks. It is typical XRD spectra of amorphous alloy structure, indicating that the as-prepared alloy sample is amorphous structure.

Figure 1. The picture of Au_{40}Cu_{30}Pd_{10}Si_{20} prepared by melt-spinning method (a) and XRD pattern (b)

Figure 2 shows a bright field TEM image of as-prepared ribbon sample. It is a typical TEM image of glassy alloy, showing uniform contrast and sand-like appearance, no detectable crystal structure. The related selected area electron diffraction (SAED) pattern is shown at the upper-right corner of Figure 2. There is no sharp diffraction spot or sharp diffraction ring except for the wide diffraction rings, further proved that the as-prepared alloy sample possesses amorphous structure.

Figure 2. The TEM bright field image of Au_{40}Cu_{30}Pd_{10}Si_{20} sample and the corresponding selected area electron diffraction (SAED) pattern
The microstructure of glassy alloy is a metastable structure, which will change into stable structure slowly with time in normal temperature. But when the temperature rises to a certain value, this metastable structure will be relaxation and rearrangement, and even crystallize and grow to form stable crystalline structure at higher temperature. This process is very important in studying amorphous alloys. Because of the changes in microstructure of alloy could cause the change of material property. Studying this process deeply, the reason for why glassy alloy possesses unique properties would be found out.

Figure 3 shows DSC curves of as-prepared Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ amorphous alloy sample at different heating rate. It is observed that the parameters, the glass transition temperature T_g, the initial crystallizing temperature T_x, the crystallizing peak T_p and the supercooled liquid region $\Delta T = T_x - T_g$ increases with the heating rate increases. The reason, as author suggest, is that this process is a process of atomic diffusion and migration, which is started when the temperature rises to a certain level. In the case of low heating rate, the atoms have enough time to move, gather and finally crystallize, so when the temperature does not rise to higher level, the inside atoms of the alloy have completed the corresponding "actions". In other words, in the case of faster heating rate, the atoms can not finish these "actions", before the temperature rises to higher. So, faster heating rate makes larger value of T_g, T_x, T_p and ΔT.

Figure 3. The DSC curves of Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ samples at different heating rates

The DSC curves in Figure 3 both exhibit obvious endothermic and exothermic reactions, suggesting the glass transition and crystallization happen during heating. In-depth analysis of DSC curve examined at a heating rate of 40°C/min with extrapolations shows a glass transition temperature T_g of 131°C (404K), an onset temperature of crystallization T_x of 167°C (440K) and peak temperature of crystallization T_p of 172°C (445K). In addition, the liquidus temperature T_l measured by DTA is 382°C (655K). So, the calculated supercooled liquid range $\Delta T = T_g - T_x$ and the reduced glass transition temperature $T_{rg} = T_g / T_l$ and the $\gamma = T_x / (T_g + T_l)$ are 36, 0.617 and 0.415, respectively.

Table 1. The parameters of several Au-based metallic glasses measured at a heating rate of 40°C/min

Component	T_g^{max}/T_g^{min} (K)	T_x^{max}/T_x^{min} (K)	$\Delta T_{max}/\Delta T_{min}$ (K)	$T_{rg}^{max}/T_{rg}^{min}$	$\gamma_{max}/\gamma_{min}$
(Au, Cu, Si)$_{30}$Ag$_{5}$Pd$_5$[31]	440/400	472/442	59/32	0.610/0.568	—
(Au, Si, Cu)$_{30}$Ag$_5$Pd$_5$[31]	424/409	477/456	53/47	0.605/0.603	—
(Au, Cu)$_{55.5}$Ag$_7$Si$_{17}$[32]	377/339	419/375	50/36	0.578/0.499	0.407/0.368
Au$_{49}$Cu$_{33}$Si$_{17}$[32]	383	405	22	0.564	0.381
Au$_{49}$Cu$_{33}$Ag$_{5}$Pd$_3$Si$_{16.3}$[32]	401	459	58	0.62	0.439
Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$	404	440	36	0.617	0.415
Parameters ΔT, T_{rg} [33] and γ [34] are indicators of glass forming ability (GFA) of alloy. When the parameters are bigger, the GFA of the alloy is larger. To compare GFA parameters with other Au-based glassy alloys prepared by copper mold casting, Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ has pretty good GFA. As authors thought, the bulk metallic glass of Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ could be prepared by water quenching after fluxing technique.

Figure 4 shows a picture of as-prepared Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ glassy alloy after being fold. It can be seen that the fold alloy sample has not fracture, preliminarily suggesting Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ amorphous alloy has good plasticity.

Figure 4. The picture of Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ alloy ribbons after bending deformation through 180°

Figure 5. SEM images of the surface near the fracture

Figure 5(a) and (b) show the SEM images on both sides of fracture after several folds. Figure 5(c) is a local enlarged drawing of fracture. From Fig. 5a-5c, it can be seen that plastic deformation took place before fracture, resulting in a large number of shear bands. The shear bands moved from the deformation zone to the undeformed zone in the form of parallel lines. In order to coordinate the plastic deformation, shear band branching occurs during the shear band movement, which enhances the plastic deformation ability of the samples. With the increase of deformation, more and more shear bands are produced, forming a shear band accumulation area. When the shear band can not move to the low density area, the
sample will produce surface cracks, and the sample will fracture with further deformation. As shown in Figure 5(c), surface cracks occur in the shear zone. It can be seen that the specimen has plastic deformation before fracture and has good plasticity.

4. Conclusion
Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ amorphous alloy was successfully prepared by melt-spinning method. Thermal analysis showed that the crystallization temperature of Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ amorphous alloy was higher than most of other Au-based amorphous alloys, which indicated that Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ had good thermal stability. According to the calculation results of reduced glass transition temperature T_{rg}, parameter γ and supercooled liquid region ΔT, it can be concluded that Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ alloy has better glass forming ability and plasticity. Good plasticity provides strong support for the application of Au$_{40}$Cu$_{30}$Pd$_{10}$Si$_{20}$ amorphous alloy in more fields. In addition, this study provides supplementary data for the follow-up study of Au based amorphous alloys.

Acknowledgments
The authors would like to thank the Yunnan Applied Basic Research Projects (2016FC006).

References
[1] A. Brenner, D.E. Couch, E.K. Williams, Electrodeposition of alloys of phosphorus with nickel or cobalt, J. Res Nat Bur Stand. 44 (1950) 109-112.
[2] W. Clement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys, J. Nature. 187 (1960) 869-870.
[3] A Inoue, T Zhang, H Koshiba, New bulk amorphous Fe-(Co,Ni)-M-B(M=Zr,Hf,Nb,Ta,Mo,W) alloys with good soft magnetic properties, J. Journal of Applied Physics. 83 (1998): 6326-6328.
[4] Man Q, Sun H, Dong Y, Enhancement of glass-forming ability of CoFeBSiNb bulk glassy alloys with excellent soft-magnetic properties and superhigh strength, J. Intermetallics. 18 (2010) 1876-1879.
[5] A. Inoue, F.L. Kong, Y.E. Han, Development and application of Fe-based soft magnetic bulk metallic glassy inductors, J. Journal of Alloys & Compounds, 731 (2018) 1303-1309.
[6] Y. Han, A. Inoue, F.L. Kong, Softening and good ductility for nanocrystal-dispersed amorphous Fe-Co-B alloys with high saturation magnetization above 1.7 T, J. Journal of Alloys and Compounds. 657 (2016) 237-245.
[7] A. Inoue, K. Ohtera, A.P. Tsai, Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2), J. Japanese Journal of Applied Physics.pt Letters. 27 (1988) 479-482.
[8] H.K. Yeong, A. Inoue, T. Masumoto, Ultrahigh tensile strengths of Al$_{16}$Y$_{2}$Ni$_{10}$M$_{1}$ (M=Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles, J. Materials Transactions Jim. 31 (1990) 747-749.
[9] A. Inoue, T. Nakamura, N. Nishiyama, Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method, J. Materials Transactions Jim. 33 (1992) 937-945.
[10] G. Yuan, C. Qin, A. Inoue, Mg-based bulk glassy alloys with high strength above 900 MPa and plastic strain, J. Journal of Materials Research. 20 (2005) 394-400.
[11] A. Inoue, B. Shen, H. Koshiba, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties, J. Nature Materials. 2 (2003) 661-663.
[12] T. Zhang, A. Inoue, New bulk glassy Ni-based alloys with high strength of 3000 MPa, J. Materials Transactions. 43 (2002) 708-711.
[13] A. Inoue, W. Zhang, T. Zhang, Thermal stability and mechanical strength of bulk glassy Ni-Nb-Ti-Zr alloys, J. Materials Transactions., 43 (2002) 1952-1956.
[14] B. Shen, C. Chang, A. Inoue, Ni-based bulk glassy alloys with superhigh strength of 3800 MPa in Ni–Fe–B–Si–Nb system, J. Applied Physics Letters., 88 (2006) 2248-2252.
[15] D. Okai, R. Nagai, G. Motoyama, Superconducting property of Zr–Co and Zr–Co–Al alloys fabricated by rapid solidification, J. Physica C Superconductivity. 470 (2010) 1048-1051.

[16] A. Inoue, K. Matsuzaki, T. Masumoto, Superconducting and electrical properties of amorphous zirconium-transition metal binary alloys, J. Journal of Materials Science. 21 (1986) 1258-1268.

[17] H. Kato, Y. Kawamura, A. Inoue, High tensile strength bulk glassy alloy Zr_{65}Al_{10}Ni_{10}Cu_{15} prepared by extrusion of atomized glassy powder, J. Materials Transactions Jim. 37 (1996) 70-77.

[18] A. Inoue, T. Zhang, J. Saida, High strength and good ductility of bulk quasicrystalline base alloys in Zr_{65}Al_{17.5}Ni_{10}Cu_{7.5-x}Pd_{x} system, J. Materials Transactions. 40 (2007) 1137-1143.

[19] A. Inoue, T. Zhang, Impact fracture energy of bulk amorphous Zr_{60}Al_{10}Cu_{15}Ni_{5} alloy, J. Materials Transactions Jim. 37 (2007) 1726-1729.

[20] Y. Kawamura, T. Shibata, A. Inoue, Superplastic deformation of Zr_{65}Al_{10}Ni_{10}Cu_{15} metallic glass, J. Scripta Materialia. 37 (1997) 431-436.

[21] K. Fujita, T. Hashimoto, W. Zhang, Ultrahigh fatigue strength in Ti-based bulk metallic glass, J. Reviews on Advanced Materials Science. 18 (2008) 137-139.

[22] F.X. Qin, K. Wada, X.J. Yang, Bioactivity of a Ni-free Ti-based metallic glass, J. Materials Transactions. 51 (2010) 529-534.

[23] F. Qin, Z. Dan, X. Wang, Ti-Based bulk metallic glasses for biomedical applications, in: A.N. Laskovski (Eds.), Biomedical Engineering, Trends in Materials Science, InTech, Croatia, 2011, pp. 249-268.

[24] G. Xie, F. Qin, S. Zhu, Ni-free Ti-based bulk metallic glass with potential for biomedical applications produced by spark plasma sintering, J. Intermetallics. 29 (2012) 99-103.

[25] A. Inoue, N. Nishiyama, H. Kimura, Preparation and thermal stability of bulk amorphous Pd_{40}Cu_{30}Ni_{10}P_{20} alloy cylinder of 72 mm in diameter, J. Materials Transactions Jim. 38 (1997) 179-183.

[26] N. Nishiyama, A. Inoue, Glass-forming ability of Pd_{42.5}Cu_{30}Ni_{10}P_{20} alloy with a low critical cooling rate of 0.067 K/s, J. Applied Physics Letters. 80 (2002) 568-570.

[27] K. Takenaka, T. Wada, N. Nishiyama, New Pd-based bulk glassy alloys with high glass-forming ability and large supercooled liquid region, J. Materials Transactions. 46 (2005) 1720-1724.

[28] A. Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys, J. Acta Materialia. 48 (2000) 279-306.

[29] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, J. Materials Transactions., 46 (2005) 2817-2829.

[30] A. Inoue, High strength bulk amorphous alloys with low critical cooling rates (overview), J. Materials Transactions Jim. 36 (1995) 866-875.

[31] H. Guo, W. Zhang, C. Qin, Glass-forming ability and properties of new au-based glassy alloys with low au concentrations, J. Materials Transactions. 50 (2009) 1290-1293.

[32] W. Zhang, H. Guo, M.W. Chen, New Au-based bulk glassy alloys with ultralow glass transition temperature, J. Scripta Materialia. 61 (2009) 744-747.

[33] D. Turnbull, Under what conditions can a glass be formed, J. Contemporary Physics. 10 (1969) 473-488.

[34] Z.P. Lu, C.T. Liu, Glass formation criterion for various glass-forming systems, J. Physical Review Letters, 91 (2003) 115505 (1) - 115505 (4).