Approximations to galaxy star formation rate histories: properties and uses of two examples

J.D. Cohn1,2*

1Space Sciences Laboratory University of California, Berkeley, CA 94720, USA
2Theoretical Astrophysics Center, University of California, Berkeley, CA 94720, USA

ABSTRACT

Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and “green valley” galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

Key words: Galaxies: evolution, formation, haloes

1 INTRODUCTION

Many galaxy properties are now observed and measured in samples extending over huge volumes of sky, reaching back to earlier and earlier times. Several trends have been discovered to emerge from all the interrelated complexities of galaxy formation. These include the fact that small isolated galaxies tend to be star forming, central galaxies in large dark matter halos tend to be quiescent, and galaxies of a certain stellar mass often inhabit host dark matter halos of a certain mass. Finding these and other trends can help identify and understand physical causes and effects in galaxy formation. For instance, several such trends are thought to originate from self-regulation of physical processes, so that tracking one process implies the behavior of others (for example, Schaye et al (2010), Hopkins, Quataert & Murray (2011)). Simple models can be used to try to identify such trends. These trends can also help to guide the construction of simple models, especially when they have simple physical interpretations, such as the stellar mass-halo mass relations.

Here, the focus is on simple descriptions of (integrated) galaxy histories rather than fixed time properties. These descriptions can provide a point of contact between results of detailed models (arising from the interplay of all the model processes and components) and observations, or between two different models. Again, these descriptions can also encode known trends, and help to search for new ones. For instance, galaxy halo histories on average can be fit by a simple parameterized form (e.g., Wechsler et al (2002); Zhao et al (2003); Tasitsiomi et al (2004); McBride, Fakhouri & Ma (2009); Zhao et al (2009); Dekel et al (2013); Rodriguez-Puebla et al (2017) and many others). Several of these halo history parameterizations incorporate the physical insight that galaxy halos often have a quickly growing phase, dominated by significant mergers, followed by a slower accretion...
dominated phase. That is, the functional form of the simplified models allow a physical interpretation as well.

In the following, two simplified descriptions of integrated galaxy star formation rate histories are applied to several samples constructed from the L-galaxies semi-analytic model (Henriques et al 2015). The N-body Millennium simulation (Springel et al 2005; Lemson et al 2006; Angulo & White 2010; Angulo & Hilbert 2015) provides the underlying halo and subhalo histories. One description is based upon an integrated lognormal fit, following the proposal studied in detail in Cladders et al (2013); Abramson et al (2016); Diemer et al (2017). A specific physical shape is assumed. The second description follows Cohn & Van de Voort (2015); Sparre et al (2015), applying principal component analysis (PCA), not to the instantaneous star formation rate histories (as in those works) but instead to the integrated star formation rate histories. PCA uses fluctuations around the sample average history, determined by the sample. PCA thus incorporates all of a sample’s galaxy histories in its definition, in addition to assigning parameters to each galaxy’s individual history. Using integrated rather than instantaneous star formation rate histories was proposed as key to reducing scatter in Diemer et al (2017). These integrated histories are taken as the main quantities of interest here.

This work can be considered as a natural combination and extension of that of Diemer et al (2017) and Pacifici et al (2016). The relations among the lognormal fit parameters, and between them and several galaxy and star formation rate properties were explored in Diemer et al (2017). The integrated star formation rate was also introduced therein as a basic quantity. In Pacifici et al (2016), average histories were found for star formation rates. In detail, individual galaxy star formation rate histories were sorted into subfamilies according to whether they were quiescent or star forming, their final stellar mass, and their time of observation, and then stacked within each subfamily. The properties of the scatter around each of the history subfamilies studied by Pacifici et al (2016) is measured below in an analogous sample, and compared to the scatter of subfamilies created using the lognormal and PCA fits.

In galaxy samples and methods are described. The integrated star formation rate histories are analyzed using both descriptions in Pacifici et al (2016) and the accuracy of using the fits as approximations is measured. In Pacifici et al (2016) correlations between the two descriptions and between them and final time properties or other galaxy histories are quantified. Machine learning is used to investigate how well several galaxy properties, including the history of the largest halo only at each time, can directly predict the fit parameters. Different ways of sorting the integrated star formation rate histories into subfamilies are considered in Pacifici et al (2016). A summary and discussion are found in Pacifici et al (2016) and the appendix has more details of the machine learning results and of splitting up galaxy samples into subfamilies using the history-defined (fit) parameters.

2 SAMPLES AND METHODS

Star formation rate histories are taken from the L-galaxies model, built upon the Millennium Simulation (Springel et al 2005; Lemson et al 2006). The simulation is dark matter only, and the histories were downloaded from the German Astrophysical Virtual Observatory. The underlying MRscPlanck1 simulation is the original Millennium simulation, rescaled via the method in Angulo & White (2010); Angulo & Hilbert (2015) to the Planck parameters $\Omega_m = 0.317, h = 0.673, \sigma_8 = 0.826$ and side 470.279 Mpc/h.

There are two natural definitions of star formation rate histories, schematically illustrated with a sample simulated galaxy dark matter history in Fig. 1. All dark matter halos which eventually merge to form the final galaxy are shown. Time runs up the picture, with the single final galaxy at top, and progenitors appearing at the time when they are first resolved in the simulation (the size of dot is proportional to dark matter halo mass). The progenitors of the final galaxy that exist at any given time are shown on the same row, with lines connecting them to their descendants in the row above.

The full star formation rate history specifies the formation time of all stars in all galaxies which eventually merge to produce the final galaxy. At any given time, this rate is the sum of star formation rates across the appropriate row in Fig. 1. The full star formation rate history is encoded in the spectrum of the final galaxy, measured observationally, although stellar ageing and stripping can remove stars. Every star in the final galaxy was formed as part of the full star formation rate.

In contrast, the main star formation rate history is composed of the star formation rate of the largest progenitor.
galaxies were included above the scales as noted. Here, M_c considered from the
\[M_c \geq 10^{12} M_\odot \]
In order to study properties of galaxy histories as a function of halo mass or stellar mass, random samples with a roughly uniform distribution in log final M_h or log final M^* were also created. All three subsamples have approximately 33000 galaxies, and full and main histories are studied for both. A fourth sample was taken for comparison with machine learning work by Kamdar, Turk & Brunner (2016a), and includes all galaxies with final time halo mass above $10^{12} M_\odot$ which are central at both the last and second to last time step (17% were satellites at some point in their histories). There are 386919 galaxies in this sample, so only the main star formation rate history was considered. These samples are called M_h, M^*, ran, and cen M_h, big below (with main or full to identify the choice of star formation rate history, except for cen M_h, big where only the main history was extracted). More details are in Table 1 and the stellar mass and halo mass distributions at final times are in Fig. 2. Besides highlighting higher M_h and M^* galaxies, using several subsamples illustrates how the fits below can be used to compare different galaxy samples (or different models built on the same or different simulations).

The starting redshift is 9.7 (when the universe is about 450 Myr old), and following Diemer et al (2017), star formation rate histories are integrated to the present day, using the galaxy formation model star formation rates at each output time. The integrated star formation rate from the initial time to time t is $\dot{S}(t)$. For the seven samples here, there are 48 output times, outputs 11 to 58 in the MRscPlanck1 simulation.

Note that the final time integrated star formation rate $\dot{S}(t_f)$ is not the final stellar mass. For the main histories, stellar mass gain due to mergers and stripping is not included. Although the full histories include all stars formed by galaxies which eventually merge into the final galaxy, they still do not account for stars which are stripped off, or those which are added by stripping of other galaxies which don’t eventually merge, and again, for both, starbursts are not.

2.1 Galaxy history samples

In order to study properties of galaxy histories as a function of halo mass or stellar mass, four galaxy samples are considered from the $\sim 2.26 \times 10^7$ galaxies at the scale factor $a = 0.9997$ time step of the simulation (called the final time hereon). One sample is a random selection of galaxies with final $M^* > 10^9 M_\odot$. This sample is dominated by the lowest mass galaxies in the sample, due to the shape of the mass function. To better identify properties as a function of final halo or stellar mass, rather than being swamped by properties of low mass galaxies, random samples with a roughly uniform distribution in log final M_h or log final M^* were also created.

Sample	method	range	N_{gal}	all final galaxies above	history type
M_h	20 bins of ≤ 2000 in log M_h	$10.60 < \log M_h/M_\odot < 15.60$	31383	log $M_h/M_\odot > 14.30$	main, full
M^*	20 bins of ≥ 2000 in log M^*	$8.00 < \log M^*/M_\odot < 12.43$	34246	log $M^*/M_\odot > 11.77$	main, full
ran	random	$M^*/M_\odot > 10^9$	32775	N/A	main, full
cen M_h, big	all central galaxies	$M_h/M_\odot \geq 10^{12}$	386919	central $M_h/M_\odot \geq 10^{12}$	main

Table 1. Seven galaxy samples used for measurements. In the binned samples chosen from equally spaced logarithmic bins (final M^* or M_h), 2000 galaxies were randomly chosen in each bin. However, in the highest bins, fewer than 2000 galaxies exist in the simulation; all galaxies were included above the scales as noted. Here, M^*, M_h refer to values at final time.

Figure 2. Final time halo mass and stellar mass distributions for the 4 simulation samples described in the text and Table 1. The M_h, M^* and ran samples are all randomly selected according to some criteria, while the cen M_h, big sample includes all galaxies $M_h \geq 10^{12} M_\odot$ which are central at the last two time outputs.

The full star formation rate history was considered by

- Diemer et al (2017) in the Illustris simulation, and by
- Pacifici et al (2016), who used spectra to get the star formation rate histories, and then matched them to a semi-analytic post treatment of the Millennium simulation histories. Both definitions of star formation rate histories are considered below.

Download 386919 full histories is computationally time intensive and not expected to yield significantly more insight. Comparisons of this sample to the exact sample used in Kamdar, Turk & Brunner (2016a) are in the appendix.

The simulation data at each output does not include starburst contributions.

3 There are star formation rate histories at 20 output times directly available from these simulations as well Shamshiri et al 2015.
Two galaxy SFR history approximations

not available at the simulation output times [8] in both cases, the stars age as well.

These integrated histories $\dot{S}(t)$ are assigned peak times, using a lognormal fit (following Gladders et al. [2013] and Diemer et al. [2017]) and principal component expansions around the average history as follows.

2.2 Lognormal fit

For the lognormal parameterization, star formation rate (SFR) histories are taken to have the form \cite{Diemer2017},

$$ SFR_{\text{log}}(t) = \frac{A}{\sqrt{2\pi}rt} \exp\left(-\frac{(\ln t - T_o)^2}{2r^2}\right) , \quad (1) $$

with corresponding integrated star formation rate history

$$ \dot{S}(t) = \frac{A}{\sqrt{2\pi}r} \left(1 - \text{erf}\left(\frac{\ln t - T_o}{r \sqrt{2}}\right)\right) \quad (2) $$

Fits are done to this integrated star formation rate history, following Diemer et al. [2017], due to its reduced scatter.

This parameterization has a peak time, width and peak SFR

$$ t_{\text{peak}} = e^{T_0 + r^2} $$
$$ \sigma_t = 2t_{\text{peak}} \sinh(\sqrt{2\ln(2)}r) $$
$$ SFR_{\text{peak}} = \frac{A}{\sqrt{2\pi}r} e^{-T_0 + r^2/2} \quad (3) $$

The width σ_t is the amount of time between the two points in the history where the star formation rate is above 1/2 of its peak value. More generally \cite{Diemer2017}, the time where the star formation rate reaches 1/3 of its peak value, $SFR(t_{\beta}) = \frac{1}{2} SFR_{\text{peak}}$ is

$$ t_{\pm \frac{1}{3}} = t_{\text{peak}} e^{\pm r \sqrt{2 \ln(3)}} . \quad (4) $$

One particular value of interest is $t_{1/2}$, where the star formation rate drops to half of its peak value (it is part of $\sigma_t = t_{1/2} - t_{-1/2}$ and can be roughly thought of as a sort of quenching parameter).

Diemer et al. [2017] applied this lognormal fit to integrated star formation rate histories in the Illustris simulation, as well to the integral of observed quiescent galaxy star formation rate histories stacked by Pacifici et al. [2016], and compared to similar fits on observations by Gladders et al. [2013]. They used the 29203 galaxies in Illustris with $M^* \geq 10^8 M_\odot$, integrating the star formation rates starting when the universe was 54 Myr old along 100 equally spaced output times.

For Illustris, the parameters $t_{\text{peak}}, \sigma_t$ are correlated, obeying a mean relation,

$$ \sigma_t \sim 0.83 t_{\text{peak}}^{3/2} \quad \text{in Gyr.} \quad (5) $$

(For example, see Figs. 5 and 6 in Diemer et al. [2017].)

By construction, this fit is an approximation. They defined the goodness of fit for their parameterization as

$$ D = \max_a |\dot{S}_{\text{log}}(t) - \dot{S}(t)| \quad (6) $$

and found that satellites tended to have worse fits than central galaxies. This goodness of fit measure will be used below for both approximations and all 7 samples.

2.3 Principal component analysis

Principal component analysis (PCA) offers another approximation to galaxy integrated star formation rate histories. For PCA in general, vectors are decomposed into the average of the sample, plus coefficients a_n times principal components PC_n. The PC_n, basis vectors for fluctuations around the average, are eigenvectors of the covariance matrix of the vector components. The integrated star formation rate history of one galaxy up to a particular time is an element of the vector $\dot{S}(t)$ for that particular galaxy. The full ensemble of a sample’s integrated star formation rate histories, for all of its galaxies, determines the average and the fluctuation vectors $PC_n(t)$.

In more detail, the integrated star formation rate histories are first normalized by dividing the integrated star formation rate histories by each galaxy’s individual integrated star formation rates at the final time.

$$ \bar{S}(t) = \dot{S}(t)/\dot{S}(t_f) . \quad (7) $$

(Gain, as mentioned earlier, $\dot{S}(t_f)$ is not necessarily the same as final M^*. Without this normalization, the sample average and fluctuations around it are dominated by the most massive galaxies, as these tend to have the largest integrated star formation rates and fluctuations. Other candidates for rescaling $\dot{S}(t)$, using the final stellar mass or the peak star formation rate, gave much larger scatters around the resulting average history.

The vector $\alpha^n(t)$, the normalized integrated star formation rate history of any galaxy labeled by α, is then written using PCA as

$$ S^n(t) = \bar{S}(t) + \sum_{n=-N_{\text{times}}}^{N_{\text{times}}-1} a^n_n PC_n(t) \quad . \quad (8) $$

with constant coefficients a^n_n. Here the average $\bar{S}(t) = 1/N_{\text{gal}} \sum_{\alpha} S^n(t)$. The PCA basis fluctuations $PC_n(t)$ are the orthonormalized eigenvectors of the covariance matrix, $C_{ij} = \langle S(t_i)S(t_j) \rangle$. There are as many fluctuation basis vectors $PC_n(t)$ as there are output times t_i, 48 for the samples under study here, and the expression Eq. [8] is exact. The improved fit is likely in part due to a double power law having an extra parameter and thus extra flexibility, but see also, e.g., Carnall et al. [2017]. Just as in the lognormal fit, discussed below, some of the bad fits are due to rejuvenating histories.
largest contribution to the sample variance is in the direction $PC_0(t)$, followed by $PC_1(t)$, etc. (For parameter counting, to give the unnormalized history there is one additional parameter, to undo the rescaling which made $S(t_f) \equiv 1$ for each galaxy. Because of this constraint, the variance in the direction of $PC_4(t)$, a vector of zeros except for a 1 at final time, is 0.)

An approximation to the integrated star formation rate history can be made by truncating the expansion Eq. \ref{eq:expansion}
keeping only some of the $PC_n(t)$. Hereon, the PCA approximation is taken to be the truncation of the above expansion to the first three components:

$$S^0(t) \approx \bar{S}(t) + a_0^0 PC_0(t) + a_1^0 PC_1(t) + a_2^0 PC_2(t) . \quad (9)$$

If this approximate description of average history plus a few fluctuations is to be useful, a large fraction of the variance of the sample should be captured using the first few basis fluctuations, that is, by the sum of the first few eigenvalues of the covariance matrix. Not unrelated, but not automatic, for the approximation to be good for any particular galaxy labeled by α, the a_n^α, for $n > 2$, should be relatively small, for example, in comparison to the variance around the average for the full sample. Again, in the PCA decomposition, both the $PC_n(t)$ and the average integrated history, $\bar{S}(t)$, are properties of the sample, and depend upon the galaxy histories used. The sample depends upon its selection function, and the galaxy histories of course depend upon the theory used to construct them.

3 PARAMETERIZING GALAXY HISTORIES

The lognormal fit, Eq. \ref{eq:lognormal} and PCA approximation, Eq. \ref{eq:PCA}
were implemented for all seven galaxy samples in Table \ref{table:fits}. Some properties of the fits, in particular, the values of the leading parameters, t_{peak} and a_0, their relation, and measures of goodness of the fits, are as follows.

3.1 Lognormal Fit

The distribution of t_{peak} is shown at top in Fig. \ref{fig:histories} for all 7 samples. It is weighted towards early times, especially in the M^* and M_b samples, which have the largest fraction of massive and thus early forming galaxies. Another characteristic time, as mentioned above, is when a galaxy drops to 1/2 of its peak star formation rate, $t_{1/2}$, shown at the bottom of Fig. \ref{fig:histories}. Although related to quenching, $t_{1/2}$ does not specify on its own when a galaxy leaves the star forming main sequence, as the star forming main sequence changes with redshift and depends on the stellar mass of the galaxy (see, Speagle et al \cite{speagle2014}, for example, for different estimates of where the star forming main sequence lies, depending upon definitions of stellar mass and star formation rates).

Galaxy by galaxy, on average, the full samples have slightly earlier t_{peak} (0.12-0.25 Gyr) and larger σ_t (0.74-1.35 Gyr). That is, the time evolution of the combined star formation rate of all the progenitor galaxies of a final galaxy on average peaks earlier but decays more slowly than that for the single main galaxy. This effect has many contributing factors which would be interesting to better understand, including the smaller mass of the galaxies which merge onto the main galaxy, their tendency to quench when they fall into the main galaxy’s halo, and the relation of the merger rate to the star formation rate of the main galaxy.

For these samples, the $t_{peak} - \log \sigma_t$ correlation is about 80% and the two parameters obey a similar mean relation to that of Illustris, where $\sigma_t \sim 0.83 t_{peak}^{0.6}$ \cite{diemer2017}. In the cases here, the power law remains close to 1.5, but the prefactor varies by a factor of two between samples with different mass distributions. The full ran sample, expected to have sampling closest to the Illustris distribution, obeys $\sigma_t \sim 0.68 t_{peak}$. Bluck et al \cite{bluck2016} compared both models to observations and found that L-galaxies (Henriques et al \cite{henriques2015}) quench too quickly and Illustris galaxies not quickly enough, consistent with Illustris having a larger σ_t for a given t_{peak} as found here.

\footnotetext[8]{The approximation to the full $\bar{S}(t)$, when used below, is obtained by multiplying $\bar{S}(t)$ by $S(t_f)$. Also note that these approximate integrated histories can give a negative instantaneous star formation rate. For fixed time comparisons any negative star formation rate is set to zero. One could introduce more complexity by constraining the expansion to give positive star formation rates at every time.}

\footnotetext[9]{Fitting $\log \sigma_t = \log t_{peak} + C$ gave $\sigma_t = a t_{peak}^b$ where $a = (0.56,0.82,0.86,0.99,0.62,0.68,0.46)$ and $b = (1.54,1.44,1.44,1.43,1.59,1.62,1.57)$ for main, full M_b, main, full, M^*, main, full ran, and cen M_b samples respectively.}
3.2 Principal Component Analysis

Turning to principal analysis, the average histories $\bar{S}(t)$ and leading three fluctuations, $PC_0(t), PC_1(t), PC_2(t)$ are shown in Fig. 4 for all 7 samples. The average history $\bar{S}(t)$ is at upper left. The total variance around each $\bar{S}(t)$ is listed in the legend and a star marks the lognormal fit $t_{peak}(S(t))$ for each. The other panels show the first 3 principal components, and list their respective fractional contributions to the total variance for each sample. (Again, solid lines are main histories, dashed are full histories.) These first 3 fluctuations have \geq 97% of the total scatter around the average. This is a better approximation than that found by applying PCA to the star formation rate histories themselves. In the latter case, again rescaling by $\bar{S}(t)$, all samples except cen $M_{h,\text{big}}$ require >10 PC_n to capture 90% or more of the variance around the average history. (The cen $M_{h,\text{big}}$ sample requires 6 PC_n.) The smaller fraction of variance in the first 3 fluctuations around the instantaneous star formation rate makes the PCA approximation, Eq. 9 much less useful.

Comparing samples, as the number of lower M^* galaxies (which tend to be star forming) increases, there is a trend towards later sample average t_{peak} and correspondingly later times for the peaks of the principal components. This is in line with the tendency of lower M^* galaxies to quench at later times. The average histories of each of the subsamples seem independent of whether the full or main histories are used. This is in spite of very different full to main normalizations, a comparison of $\tilde{S}_{\text{full}}(t_j)$ and $\tilde{S}_{\text{main}}(t_j)$ is in Fig. 5 for the M_h sample. The bottom panel shows their ratio as a function of final M_h (the trend with final M^* was weaker). Higher M_h halos have larger ratios of full to main $\tilde{S}(t_j)$, that is, they have more star formation in their full history which was not “in situ”, i.e., not in the main star formation rate history.

Most of the variance around the average history is captured in the coefficient of the leading fluctuation $PC_0(t), a_0$. Fig. 6 shows the distribution of a_0 for all 7 samples. From Fig. 6 it can be seen that adding $PC_0(t)$ to the average history with a positive coefficient a_0 will cause the integrated star formation rate to rise earlier than the average history.
Two galaxy SFR history approximations

3.3 Comparison of lognormal and PCA approximations

3.3.1 Relation of leading parameters

The two parameterizations are related. In particular, the PCA leading contribution, a_0, is correlated with the lognormal fit parameter t_{peak}. Their relation is shown for the full M_h sample in Fig. 4. Roughly, a late t_{peak} corresponds to a negative a_0, meaning the rise in the integrated star formation rate occurs at a later time. The correlation is similarly strong for a_0 with $\ln \sigma_1$, expected given the mean relation for $\sigma_1(t_{\text{peak}})$, and with $t_{1/2}$, the time when star formation rate in the fit falls to half of its maximum. Relations for the other 6 samples are comparable in shape and size. The relation between the two parameters visibly changes for larger $t_{\text{peak}} \gtrsim 5$ Gyr, presumably because the shape of $PC_0(t)$ is not flexible enough to approximate star formation rates peaking at late times, see below. In addition, the integrated

and a negative a_0 will cause a later rise in the integrated star formation rate history. Although the full and main average histories (and $PC_0(t)$, except for the M_h sample) closely overlap, the positive a_0 distributions strongly differ between the full and main histories for the M_h, M^+ samples, which have a large number of high mass halos. (The full cen M_h, big sample was not downloaded, as mentioned earlier.)

Figure 5. Top: fraction of galaxies with given ratios of full to main final integrated star formation rates, $\tilde{S}_{\text{full}}(t_f)/\tilde{S}_{\text{main}}(t_f)$. After dividing by these normalizations, the full and main average integrated histories almost coincide, see upper left in Fig. 4. Bottom: Final M_h dependence of $\tilde{S}_{\text{full}}(t_f)/\tilde{S}_{\text{main}}(t_f)$. log$_{10}$ number of galaxies in each pixel according to scale at right.

Figure 6. Distribution of a_0 for all 7 samples. As a_0 is the coefficient of $PC_0(t)$ (shown in Fig. 4, upper right), positive a_0 increases the integrated star formation rate at early times relative to the average, and negative a_0 decreases it, corresponding to later star formation. Full and main distributions separate at positive a_0 for samples with many large final M_h galaxies. For these, main histories tend to have a larger positive a_0, i.e., an earlier rise in integrated star formation rate. The variance in this coefficient captures (depending on sample) from 81% to 88% of the total variance around the average, as noted in Fig. 4.

Figure 7. Comparison of lognormal and PCA approximations via their leading parameters t_{peak} and a_0. Top: the t_{peak} distribution for the full M_h sample. Far right: the a_0 distribution. Bottom left: the logarithm of the number of galaxies sharing each pair of values. Although a correlation is visible, the relation between t_{peak} and a_0 changes noticeably for low a_0 and large $t_{\text{peak}} > 7$ Gyr, i.e. for galaxies which have star formation at later times. Even with this flat tail, there is a high a_0, t_{peak} correlation of galaxies shown (the highest $t_{\text{peak}} > 30$ Gyr objects are dropped, about 0.1% of this sample). These trends in the joint distribution are seen in all samples; correlations range from -0.70 to -0.75, again using galaxies with $t_{\text{peak}} < 30$ Gyr (up to 0.4% of galaxies in the ran sample). Similar correlations are found with $t_{1/2}$.

10 Restricting to galaxies with good fits, e.g. with $D < 0.05$, changes the correlations slightly, but not the shape of the plot.
histories for galaxies with later \(t_{\text{peak}} \) tend to be very close to each other (more elaboration in Section 8 below).

In spite of the many correlations, the fits have key differences. In particular, \(t_{\text{peak}} \) for each galaxy is independent of the full galaxy sample used, defined solely in terms of fitting to a predetermined lognormal shape. In contrast, \(a_0 \) depends upon the full sample (which determines both \(PC_0(t) \) and the average) but has no prior assumptions about the shape of the histories. Also, for the \(t_{\text{peak}} \) parameterization, for different galaxies the peak moves in position and changes in width (the integral of the height is fixed). In the PCA approximation, varying the PCA coefficients can alter the sign and amplitude of each of the fluctuations \(PC_n(t) \) around the fixed average, but not their shape. The \(t_{\text{peak}} \) parameterization enforces that the integrated star formation rate is monotonic, while the approximation using the first 3 \(PC_n(t) \) does not require this (as mentioned earlier, its derivative can thus lead to negative instantaneous star formation rates, these unphysical star formation rates are set to zero).

3.3.2 Approximating histories

Two measures of the goodness of fit to \(S(t) \), the squared “distance” \(d^2 = |fit - S(t)|^2 \) and the goodness of fit criterion \(D \) in Eq. 6 roughly the maximum spacing between the history and the fit, are shown in Fig. 8. Solid lines are the PCA approximation, dependent upon \(a_0, a_1, a_2 \), and dashed lines are the lognormal fit, dependent upon \(t_{\text{peak}} \) and \(\sigma_f \). (As \(S(t) \) is used here, the parameters \(S(t_\text{fit}) \) and A drop out. Scaling out these factors is automatic in \(D \), and for \(d^2 \) it prevents the high mass galaxies from swamping the signals as well as making intercomparisons more difficult.) The two methods give roughly the same quality of fit by these measures, sample by sample. The ran samples have the best fits. Relative to the other samples, the ran samples also have more satellites (noted to have worse lognormal fits in Diemer et al. 2017), but fewer high mass haloes.\(^{11}\)

The \(d^2 \) for the two approximations are correlated, good or bad fits tend to occur together. Many of the \(D > 0.05 \) fits can be seen by eye to be due to rejuvenating histories, where two bouts of star formation occur, separated by a period of quiescence.\(^{12}\)

To get a sense of how the histories deviate from their fits in more detail, the average of \(S_{\text{true}}(t) - S_{\text{fit}}(t) \) is shown for the main ran sample in Fig. 9. The full ran sample is similar. This average is zero for the PCA approximation by construction, but slightly nonzero for the lognormal fit. The shaded regions are the standard deviations (calculated for top and bottom separately) for each time step. These are up to 5% of the final value (which is 1) for this sample. The PCA approximation error is the sum of the neglected principal components in Eq. 8 its standard deviation generally has an oscillatory envelope, and the envelope is \(\approx 0.05 \) across samples, compared to \(\leq 0.07 \) for the lognormal fit (and in every sample the deviation for PCA was \(\leq \) that for the lognormal - 0.02).

3.3.3 Approximating final time star formation rate

One can also step back and compare the fits to the histories to the simulation at a fixed time, for instance at \(z = 0 \). The final star formation rate distribution is shown in Fig. 10 for the ran sample. The shaded region is the final time

\(^{11}\) The distance \(d^2 \) is minimized to calculate \(t_{\text{peak}}, \sigma_f \). The parameter \(D \) was introduced in part to undo the cumulative effects of using the integrated star formation rate rather than the star formation rate itself. (However, one can also take the integrated star formation rate as the quantity of choice for considering the history, and then use \(d^2 \) alone.)

\(^{12}\) Aside from many of the samples having different compositions relative to Illustris, the number of steps in the histories may have also contributed to the difference in goodness of fit, as the Illustris simulation has about twice as many outputs over the same period covered by the Millennium outputs, with equal spacing in time rather than in scale factor.
star formation rate distribution of the simulation \(^{13}\) identical for the main (top) and full (bottom) samples. Any rates \(< 10^{-7} M_\odot \text{yr}^{-1}\), including possible negative ones from the PCA construction, are set to \(10^{-7} M_\odot \text{yr}^{-1}\). The lognormal fit has many more galaxies in the green valley, closer to the shape of the star formation rate distribution in the simulation. In contrast, there are more galaxies with the minimum star formation rate in the PCA fits; their number then drops precipitously in the green valley. Adding more principal components can increase the number of galaxies lying in the green valley, but even using 38 components, i.e. including up to \(a_{37}PC_{37}\), did not reach the approximate agreement at final time in the green valley found by using the lognormal fits. \(^{14}\) In the other samples, with more high mass galaxies, the agreement between the fit at higher star formation rates is worse. An excess appears for these other samples at the higher star formation rates, which persists to lower star formation rates for the lognormal fit.

There is slightly different information in the instantaneous stellar mass-star formation rate diagram, with the star formation rates again calculated from the fits to the integrated histories. This relation is shown in Fig. \(^{11}\). The top two panels are the simulation, which is identical on the left and right, again because this is the final time. Below are the final time star formation rates based upon fits to the main (left) and full (right) integrated star formation rate histories. The middle panel is the lognormal fit, the bottom panel the fit from PCA. (The fraction of galaxies with negative rates in the PCA fit is listed on the y-axis for the lower 2 panels.) In the simulation and both fits, a star forming main sequence is evident, but in the PCA fit, the absence of galaxies in the “green valley” between star forming and quiescent is again noticeable. The numbers of galaxies with the minimum star formation rate \(< 10^{-7} M_\odot \text{yr}^{-1}\) are compared in the simulation and the fits. Those which are common to both the fit and the simulation (“both”), and those present in the fit (“fit”) are divided by the number in the simulation (“true”). The lognormal fit lacks some of these quiescent galaxies, while the PCA fit has too many, relative to the simulation. For other samples, “fit/true” \(< 1\) for all of the lognormal fits, and for the \(M_\odot\) and cen \(M_{b,\text{big}}\) PCA fits.

To summarize, the galaxy histories were approximated with two fits. The lognormal description assigns each history a peak, which can move in time, and a width of lognormal shape, while the PCA approximation treats all histories in a sample as the sum of the same average history plus perturbations with fixed position and shape, derived from the sample, with the perturbation coefficients changing for different galaxies. The PCA approximation, which normalizes the integrated star formation rate histories before expanding

\(^{13}\) The PCA construction gives the prediction for \(S(t); \text{SFR}(t_f)\) is approximated as \((\hat{S}(t_f) - \hat{S}(t))/((t_f - t_j)\) where \(t_f - t_j=0.36\) Gyr. This is also a possible approximation for \(\text{SFR}(t_j)\), which has a similar distribution, although there is scatter between the two. \(^{14}\) I thank M. Sparre for suggesting this test. At the final time, successive principal components to the star formation roughly oscillate. Lying in the green valley requires a close but not exact cancellation between these successive terms, which might explain why so many terms are required. This green valley gap also appears if one uses the PCA fit to the instantaneous star formation rate, dividing first by the final stellar mass.
Two galaxy SFR history approximations

Figure 11. Stellar mass (in units of \(M_\odot \)) vs. star formation rate (in units of \(M_\odot \text{ yr}^{-1} \)) at final time in the simulation (top panel, same at left and right), as compared to the lognormal (middle) and PCA (bottom) approximations. Main histories are at left, to the full histories at right. The star forming main sequence is visible at top (log \(N_{\text{gal}} \) per pixel shown in the bars at right). Galaxies with \(SFR < 10^{-7} M_\odot \text{ yr}^{-1} \) are assigned the minimum \(SFR = 10^{-7} M_\odot \text{ yr}^{-1} \), including the 15% of PCA fit galaxies with \(SFR < 0 \) in this sample. The “green valley” between the minimum \(SFR \) and the star forming main sequence has fewer galaxies in the PCA fit, compared to the lognormal fit or simulation. “both”, “true”, and “fit” refer to the number of galaxies with minimum \(SFR \) common to the simulation and fit, in the simulation, or in the fit, respectively, with ratios as shown. Relative to the simulation, in the ran sample more galaxies are quiescent in the PCA fit (fit/true > 1) and fewer are quiescent in the lognormal fit (fit/true \(\ll 1 \)); these numbers vary with sample.

them, has similar averages and basis fluctuations for the full and main histories. The PCA normalization factors, i.e., the final integrated star formation rates, differ the most between full and main histories for galaxies with higher final \(M_\odot \). In the lognormal fit, the peak time is slightly earlier for the full samples, and the width slightly larger. The lognormal and PCA approximations have correlated leading parameters and give similar “distances” (as shown in Fig. 8) from the simulated histories, using two estimates of goodness of fit.

One use of these fits is to compare their parameters to final time galaxy properties and histories of other galaxy properties, explored next.

4 GALAXY STAR FORMATION RATE FITS COMPARED TO OTHER GALAXY PROPERTIES

With the parameterizations based upon a lognormal fit or PCA in hand, their relation to other galaxy properties can be explored, such as the observable final time \(M^* \) and \(SFR \), the in principle observable final time \(M_h \), and properties of main histories for halo mass and stellar mass. Recall that the full (rather than main) histories of galaxy halos and other dark matter properties are combined with the full semi-analytic model to create the detailed star formation rate histories in the first place. Both correlations and machine learning can be used to analyze these relations.
Two galaxy SFR history approximations

4.1 Correlations

Because there are correlations between galaxy histories and galaxy final properties, for example, more massive galaxy halos tend to have galaxies which quenched earlier, correlations are expected between \(M_h \), \(M^* \), and SFR. The halo mass \(M_h \) refers to the host (sub)halo of a galaxy ("mvir" in the Millennium simulation, i.e., its \(M_{200c} \) mass when it was last a central galaxy).

Quantities which are expected to be related to each other include \(M_h \), \(M^* \), \(SFR \), lognormal fit parameters \(t_{peak} \), \(\sigma_1 \), \(A \), and PCA fit parameters \(a_0 \), \(a_1 \), \(a_2 \), and \(\tilde{S}(t) \). These are the combinations of variations which dominate the normalized scatter of the 10×10 correlation matrix of each sample. The fraction of the scatter in each PCA component is shown at left, for each sample. The shading shows where zero correlation lies. The leading contribution to the scatter, \(PC_{tot,0}(t) \), shows that final \(M^* \), final \(M_h \) and \(a_0 \) tend to fluctuate opposite to \(t_{peak} \), \(\sigma_1 \). The subleading contributions show \(a_1 \) as related to final \(M_h \), final \(M^* \), and, in the next leading combination, having sample dependent relations. The different samples have different fractions of high final \(M_h \) or \(M^* \) galaxies, Fig. 2

Figure 12. First 3 principal components for joint changes in final \(M_h \), final \(M^* \), final SFR, lognormal fit parameters \(t_{peak} \), log \(\sigma_1 \), \(A \), and PCA fit parameters \(a_0 \), \(a_1 \), \(a_2 \), \(\tilde{S}(t) \). These three vectors are the combinations of variations which dominate the normalized scatter of the 10×10 correlation matrix of each sample. The fraction of the scatter in each PCA component is shown at left, for each sample. The shading shows where zero correlation lies. The leading contribution to the scatter, \(PC_{tot,0}(t) \), shows that final \(M^* \), final \(M_h \) and \(a_0 \) tend to fluctuate opposite to \(t_{peak} \), \(\sigma_1 \). The subleading contributions show \(a_1 \) as related to final \(M_h \), final \(M^* \), and, in the next leading combination, having sample dependent relations. The different samples have different fractions of high final \(M_h \) or \(M^* \) galaxies, Fig. 2

\[t_{peak} \sim 0.36 \] for \(t_{peak} \) with halo mass redshift \(z_{peak} \), in 3 different stellar mass bins. (They noted their scaling \(\sigma_1 \sim 0.36^{1/2} \) peak did not seem to arise naturally from the analytic (Dekel et al. 2013) mass accretion rate for a halo. \[t_{peak} \sim 0.36^{1/2} \]) for the samples here, the correlation of \(t_{peak} \) with halo mass redshift was highest for the samples with the largest average \(t_{peak} \), \sim 50% for \(\text{ran} \), dropping to magnitude < 10% for the \(M_h \) samples. Correlations were similar, with opposite sign, for \(a_0 \) and halo mass redshift. Using PCA for \(M_h(t) \), normalized to end at 1 (unlike the integrated star formation rate history, \(M_h(t) \) does not have to be monotonic), correlations between \(a_0,b_0 \) and \(a_0 \) and \(t_{peak} \) were small (below 20%) for all samples except the \(\text{ran} \) samples, where they were \sim \pm 30%.

A close relation is expected between the integrated star formation rate and the main stellar mass history, as \(M^*(t) \) is the sum of stellar mass formed within the galaxy (the "main" integrated star formation rate) plus contributions from mergers, stripping by and of other galaxies, and ageing (instantaneously applied in the semi-analytic models).}

\[z_{peak} = \ln 2/\alpha \] for a fit to halo histories of \(M_h(z) = M_{200c} e^{-\alpha z} \) (Wechsler et al. 2002)

\[\text{Diemer et al. (2017)} \] also measured correlations between the lognormal fit parameters and other galaxy quantities, including final \(M^* \) (which can be traded for another parameter in the fit), maximum halo mass, \(z = 3 \) environment, halo age (using 2 measures), black hole mass, and size.

\[t_{peak} \] histories \(M_h(t) \) were analyzed via PCA in [Wong and Taylor (2012), and (sub) halo main histories were compared to stellar mass histories in (Cohn & Van de Voort (2015), Wong and Taylor (2012)] found that the largest principal component for halo histories was most closely correlated with concentration. Instead of dividing by the final halo mass, [Wong and Taylor (2012)] set the mean of each history to zero and the variance to 1 and then did PCA, i.e., on correlations.

\[\text{The full stellar mass histories, not considered here, would in-} \]
Correlations between a_0 and its stellar mass history counterpart $a_{0,*}$ are $\sim 76 - 97\%$, with the random sample having the largest correlation (for samples with both main and full integrated star formation rate, both are similarly correlated with $a_{0,*}$). The fluctuation PC_0 in the integrated star formation rate is associated with more of the scatter than its counterpart in the stellar mass histories.\footnote{For stellar mass history PCA, Cohn & Van de Voort (2015) found that galaxies sharing approximately the same final stellar mass ($z = 0$) were well characterized, $\geq 90\%$ of variance, by their average values plus their first 3 $PC_0(t)$ fluctuations.}

4.2 Halo mass at t_{peak}: $M_{h,peak}$

In the lognormal fit, another way of comparing the halo history to t_{peak} is to consider $M_h(t_{peak}) \equiv M_{h,peak}$. This characteristic mass at peak star formation rate is shown in Fig. 13 for all central galaxies in the M_h, M^* and ran samples. This mass is only available for galaxies with t_{peak} in the past, and satellites are excluded because their t_{peak} is expected to also depend on their time of infall into a larger halo. Only galaxies which have been central at all times are counted as central.

In the top figures, for the M_h, M^* and ran samples, main (left) and full (right), a bimodal feature is evident. This is clearest at low $t_{peak} < 5$ Gyr, and is highlighted by the separating line at $M_h = 10^{11.5} M_\odot$ (the cen $M_{h,big}$ sample by construction has no galaxies below $10^{10} M_\odot$ at final times, and so is not shown.) Galaxies with low $M_{h,peak}$ are a small fraction. Those with with $M_{h,peak} < 10^{11.5} M_\odot$ and $t_{peak} < 5$ Gyr comprise (main and full) 7%, 11%, and 4% respectively of the central galaxies for the M_h, M^* and ran samples. About half of these low $M_{h,peak}$ galaxies have relatively poor fits (with $D > 0.1$); distributions of D for the full samples are shown in Fig. 8.

These galaxies not only quench at a lower halo mass, but often have their halo masses remaining low afterwards. This can be seen in the bottom of Fig. 13.\footnote{Not all galaxies with low $M_{h,peak}$ “stall”. In the main (M_h, M^*, ran) samples, a very small fraction (2%, <1%, 4%) of these stalled galaxies surpass $M_h = 10^{11.72} M_\odot$, in the full samples, these fractions are (3%, 1%, 8%) respectively.} For the main ran sample, these low $M_{h,peak}$ galaxy halo histories over time are shown as blue lines. The other central galaxy histories with $t_{peak} < 5$ Gyr are shown as the green shaded lines, and tend to reach much higher halo masses over time. It would be interesting to find out more about this sample of galaxies, and whether this split in $M_{h,peak}$ arises in other models or can be tested observationally. In simplified models based on halo histories, stalling of halo growth or hitting a specific host halo mass are often used as criteria to determine when star formation quenches (e.g., Hearin & Watson 2013). However, the reason for stalling is not clear; it would be interesting to pursue this further. The trend of lower $M_{h,peak}$ with increasing t_{peak}, for galaxies which have not “stalled” seems to reflect the known trend of downsizing.\footnote{I thank B. Diemer for pointing this out.}

![Figure 13](image.png)

Figure 13. Top: central galaxy main halo mass M_h at peak time t_{peak}, $M_{h,peak}$, as a function of t_{peak}. The fraction of galaxies in each sample which are central at all times and have t_{peak} in the past is noted at left for each panel. Samples are as listed for M_h, M^* and ran, top to bottom, with main integrated star formation rate histories at left, full integrated star formation rate histories at right. The magenta horizontal line at $\log M_{h,peak}/M_\odot = 11.5$ divides these galaxies into two groups. For the majority of central galaxies, which are above the horizontal magenta line, $M_{h,peak}$ seems to decrease with increasing t_{peak}. Bottom: in blue, the halo histories for the 619 central galaxies (of 17278 total central galaxies) below the dividing line shown in panels above, i.e. with $M_{h,peak} < 10^{11.5} M_\odot$, and with $t_{peak} < 5$ Gyr. Unlike most other halo histories for galaxies with $t_{peak} < 5$Gyr, shown as green lines, the low $M_{h,peak}$ galaxy halo masses seem to stall at low values. The averages of the two samples, including only nonzero histories at each step, are shown by the solid yellow and dashed yellow lines.

4.3 Machine learning

One can go beyond correlations and try to predict t_{peak}, a_0, and more, following the machine learning approach of Kamdar, Turk & Brunner (2016a,b). If machine learning is successful in using smaller numbers of galaxy properties to reproduce properties of the full models, then it can be used to get these properties instead of, for instance, the full semi-analytical models. In addition, the success of obtaining galaxy final and history properties based upon a smaller set...
Figure 14. Found and true galaxy properties as listed for the full M_h sample (top and lower left) and the main ran sample (lower right), using machine learning. Correlations between found and true properties are listed in parentheses. Training set galaxies were 1/10 of the sample, trimmed by requiring a good t_{peak} fit, and are included in the plot and correlation. Different inputs were explored to obtain final galaxy properties: final M_h (upper left), final SFR, M^* (upper right), and the main halo history $M_h(t)$ for the lower two panels. The color scale shows the log of the number of galaxies in each pixel. Galaxies with $t_{\text{peak, true}} > 100$ Gyr and $SFR_{\text{peak, true}} > 100$ were excluded for comparisons between found and true t_{peak} and SFR_{peak} respectively. Fractions of galaxies used are given. The fit in Eq. 3 was used to calculate the “true” $SFR_{\text{peak, true}}$.

The details of the methods of Kamdar, Turk & Brunner (2016a,b), in particular, python notebooks, are available publicly at https://github.com/ProfessorBrunner/ml-sims. (See also Xu et al. (2013), Ntampka et al. (2015) for some other applications of machine learning to galaxy formation in particular.) Kamdar, Turk & Brunner (2016a) used main galaxy halo histories $M_h(t)$ and a few other halo properties as inputs, predicting several final time observables. Again, the semi-analytic models which produce the star formation rate histories use the full, not main, halo history, plus additional dark matter simulation halo information (see, e.g. Fu et al. (2013) for a recent summary).

Here, machine learning is applied to predict t_{peak}, log σ, SFR_{peak}, a_0, a_1, a_2, the final integrated star formation rate, $\tilde{S}(t_f)$, and final M^* for all 7 samples. The method of Kamdar, Turk & Brunner (2016a) found most promising for M^* and several other properties, extremely randomized trees (Breiman et al. 1984 Geurts, Ernst & Wehenkel 2006), also gave the strongest correlations between the predicted and true values of a_0 and t_{peak}, although RandomForestRegressor was very close, again, similar to what they found.

For all but the cen $M_{h,\text{big}}$ sample, the initial training set was a random selection of 10% of the galaxies, subsequently trimmed to keep only those with a good lognormal fit for t_{peak} ($D < 0.06$, defined in Eq. 6). For the much larger cen

22 Agarwal, Dave & Basset (2017), Nadler et al (2017) also appeared as this work was being written up.

23 Results for A, although just a combination of $SFR_{\text{peak}}, t_{\text{peak}}$ and σ_v via equation Eq. 3 were much worse that these other quantities; A was thus calculated from $SFR_{\text{peak}}, t_{\text{peak}}, \sigma_v$.

24 Small parameter variations from the Kamdar, Turk & Brunner (2016a) choices did not improve the true-found correlations. Agarwal, Dave & Basset (2017) have more comparisons and comparison methods.
$M_{h, \text{big}}$ data set, 25 10,000 random galaxies were chosen (due to limited computing power), and requiring $D < 0.06$ left ~ 7000 galaxies, closer to 3% of the sample total.

Although main halo histories $M_h(t)$ are a key part of the Kamdar, Turk & Brunner (2016a) training set, it is also interesting to understand how well fewer or other inputs recover parameters. This helps to clarify which inputs contain the most predictive power. Inputs considered are:

- final time SFR only
- final time M^* only
- final time M_h only
- final time SFR and M^* together (both observable)
- final time SFR, M^*, M_h together
- first 3 PCA components for $M_h(t)$ (again, $M_h(t)$ histories normalized to 1 at final time)
- main halo mass histories $M_h(t)$ (not normalized)

For all combinations of inputs listed above, correlations between predicted and true values, and median differences or ratios were measured. A few distributions of true versus predicted values are shown in Fig. 14. The training data for these measurements are final M_h at upper left, final SFR, M^* at upper right, and the main halo histories, $M_h(t)$, for different samples at lower left and right.

Summary statistics using all combinations of the inputs to predict $M^*, a_0, t_{\text{peak}}$ and SFR_{peak} are in Fig. 15. The best results came from using the whole (main) halo history, closest to the galaxy information used by Kamdar, Turk & Brunner (2016a). However, many of the variants starting with smaller

25 The cen $M_{h, \text{big}}$ sample is analogous to that of Kamdar, Turk & Brunner (2016a), more discussion in the appendix, 15.
numbers of inputs exhibited significant success, in particular using the three leading principal components for the halo history.

Some expected trends are visible. For instance, the success of using final M_h to predict final M^* is presumably due to the stellar mass-halo mass relation. The larger median separations between true and found t_{peak} for the random sample, followed by the M^* sample, are likely related to their higher fractions of low M^* and thus large t_{peak} galaxies, especially the harder-to-estimate future t_{peak} values. Although the correlations between true and found were similar for the full and main histories, the difference in the median values of the fit parameters sometimes varied more between main and full histories than between samples, for example, for SFR_{peak}.

The poorer results for the cen $M_{h,\text{big}}$ sample seem to be not due to the training of the fits, but from the halo distribution in the cen $M_{h,\text{big}}$ sample itself. Using the full M_h sample, e.g., to train a network to predict parameters for the cen $M_{h,\text{big}}$ sample, gave predictions similarly bad to those found by training the network on the cen $M_{h,\text{big}}$ sample.

More generally, overall correlations between true and found values are strongly dependent on the makeup of the sample. For instance, if only a small range of final halo masses is considered, the correlations between true and found values of t_{peak} decreases, because much of the strength of the correlation between true and found values of t_{peak} is due to machine learning using the final M_h dependence of t_{peak} (see Fig. 14).

The mismatch between true and found values of the parameters translates into worse approximations for the fits to the original histories and for the final time stellar mass to star formation rate relation, and a different shape of the scatter around the histories. Results and some comparisons to the earlier direct fits (shown earlier in Fig. 8. Fig 11 and Fig. 9) are in the appendix. In particular, the number of galaxies assigned the lowest star formation rates ($\leq 10^{-7} M_\odot yr^{-1}$) via machine learning never reaches 1/3 of those in the simulation, and in the ran sample is $\leq 1\%$ of the simulation number for the lognormal fit.

To summarize, many of the galaxy properties at final time and their main halo histories $M_h(t)$ are strongly correlated with the star formation rate history parameters. Machine learning can find fairly good fits to the peak time t_{peak} or leading PCA fluctuation coefficient a_0 by using the leading 3 principal components of the halo history, or by using the main halo history $M_h(t)$. However, although these parameters and final stellar masses are fairly well approximated, the approximations to the true simulation integrated histories and final time values are noticeably worse, and the machine learning determined instantaneous star formation rates at final times have significantly fewer quiescent galaxies in the ran sample (doing slightly better in the samples with more high mass galaxies).

5 BIMODALITY AND BEYOND

Galaxies are often classified as star forming and quiescent (separated at SSFR = $10^{-12} yr^{-1}$ for the samples here, from considering the SSFR distribution in the simulation outputs). This division can help identify common properties and correlations within the set of star forming or quiescent galaxies and guide the search for mechanisms which cause transitions between these two categories. Since both t_{peak} and a_0 give one parameter characterizations for galaxy histories, they can also be used to group galaxies, into subfamilies that share similar integrated star formation rate histories.

Whether a galaxy is star forming or quiescent is, not surprisingly, related to its star formation rate history, and thus to t_{peak} and a_0, with quiescence tending to imply low t_{peak} (or $t_{1/2}$), and high a_0, that is, early star formation. However, although related, these separations of galaxy histories are all distinct. The number of galaxies with high t_{peak} and high SSFR matches that of galaxies with low a_0, and number of galaxies with low SSFR and high a_0 matches that of galaxies with low t_{peak}, but for other pairings of SSFR, t_{peak}, and a_0, the number of galaxies in subfamilies cut on one quantity differs from that in a subfamily found by a cut in another quantity.

Although all three quantities can be used to separate galaxy samples, the integrated star formation rate histories of quiescent and star forming galaxies do not separate as well as those with high and low t_{peak} or a_0. In particular, there is larger scatter around the average values for the quiescent and star forming histories, as shown in Fig. 13. In each panel, each sample’s galaxies are split into high and low SSFR (top panel), t_{peak} (middle panel) and a_0 (lowest panel). Averages for the high and low subfamilies are shown by lines as indicated. To get a sense of the scatter around the two subfamilies, that for the main M_h subfamily is shown in each figure. The subfamily variances around the two averages are shown in blue, and superposed (purple, which almost coincides) are the shapes of the fluctuations due to the first 3 subfamily principal components (within each subfamily). The variance due to the first three principal components at time t_i is $\sum_{n=0}^{N-2} <a_n^2 > P C_n (t_i)^2$. This gives a visual estimate of the overlap and shows that the two subfamilies again have a few parameters capturing a large amount of scatter around their respective averages.

There are also two quantitative ways of classifying a separation into subfamilies as successful. The first is the change from the total (original) variance to that around the two samples,

$$\Delta \sigma_{\text{tot}}^2 = \sum_{\text{samples}} \sigma_i^2 - \sigma_{\text{initial}}^2 < 0 \tag{10}$$

When $\Delta \sigma_{\text{tot}}^2 < 0$, the separation into subfamilies reduces the total scatter.

The second quantity is the distance between the two subfamily averages, relative to the overlaps of their populations (roughly estimated by the variance around each aver-

27 Beyond the halo virial mass, Kamdar, Turk & Brunner (2016a) also trained on the halo number of particles, maximum velocity and velocity dispersion, as well as, for the final time, the halo half mass radius, virial velocity, virial radius, and r_{crit}, 200. Virial velocity and maximum velocity histories did not strongly improve the cen $M_{h,\text{big}}$ sample correlations between true and found.

28 But the description using the first three PCA components assumes one average history and captures most of the scatter, and using an average history also works in some descriptions of galaxy evolution more generally (Behroozi, Wechsler & Conroy 2013b). See also Eales et al (2018), Kelson (2014).
age). If this ratio is less than one, it suggests that the two populations do not overlap significantly,

$$\frac{\sigma^2_0 + \sigma^2_1}{|S_0(t) - S_1(t)|^2} < 1.$$ \hspace{1cm} (11)

Here, σ_i^2 is the variance around each subfamily, with respective average $S_i(t)$.

In the legends in Fig. 10, $\Delta\sigma_0^2_{\text{tot}}$ for each separation is given for each galaxy sample and separations. Although the SSFR separation is fixed, the separations for t_{peak} and a_0 are chosen by scanning through values to minimize $\Delta\sigma^2_{\text{tot}}$ and the overlap, Eq. (11). For the SSFR split, $\Delta\sigma^2_{\text{tot}}$ and the overlap between the regions which lie in the scatter of both average paths are larger (this is true for all 7 samples). Subfamilies of galaxies sharing high or low t_{peak} or high or low a_0 have more distinct integrated star formation rate histories.

5.1 Subsets of galaxy histories

As splitting on specific star formation rate does not separate galaxy histories into distinct families as well as using t_{peak} or a_0, and the distribution of these latter two parameters (Fig. 3) is not necessarily bimodal, it seems possible to group galaxies into more than two subfamilies, with each subfamily sharing similar integrated star formation rate histories. One motivation for this is to compare properties of galaxies lying in different subfamilies, besides the parameters used to sort into subfamilies. This might be useful in identifying shared trends in subfamilies or general physical causes of certain properties. For instance, if massive galaxies are present in several different subfamilies, one might ask what properties caused their different integrated star formation rates, in spite of their sharing the same final halo mass? These subfamily classifications can serve as starting points for such lines of investigation.

Here a first step is taken in exploring separations into many subfamilies. Whether subfamilies are well separated can again be decided by comparing whether the final sum of scatters around each subfamily is smaller relative to the that of the full sample around its average ($\Delta\sigma_0^2_{\text{tot}} < 0$, Eq. (10)) and whether adjacent subfamilies are sufficiently separated,

$$\frac{\sigma^2_i + \sigma^2_{i+1}}{|S_i(t) - S_{i+1}(t)|^2} < 1.$$ \hspace{1cm} (12)

The split is now into many ($i = 1, \ldots, N$) subfamilies, each with individual averages $\bar{S}_i(t)$.

The wide range of histories shared by galaxies with the same final stellar mass was noted by Pacifici et al. (2016), who separated quiescent and star forming galaxies and then stacked star formation rate histories within these categories based upon stellar mass. The averages $\bar{S}_i(t)$ and variances around them for six stellar mass families (quiescent galaxies

Figure 16. Average integrated star formation rate histories for all 4 samples, split into high and low specific star formation rate (top, $SSFR \leq 10^{-12} \text{yr}^{-1}$), t_{peak} (middle) and a_0 (bottom). Adding a parameter, i.e. splitting into subfamilies, should reduce the scatter ($\Delta\sigma_0^2_{\text{tot}}$ negative), however the SSFR subfamilies have $\Delta\sigma_0^2 > 0$. Thistle shading shows the contribution of the first 3 principal components to the variance, blue (only visible at the edges) the full variance, for the main M_h subfamilies only; see text for details of separating into subfamilies.
only, i.e. SSFR $\leq 10^{-12}$ yr$^{-1}$) are shown in in Fig. 17 top, for the main random sample. The other samples are similar. In addition to the large scatter overlaps between average histories for the subfamilies, i.e., Eq. [12] does not hold, the sum of scatters around the individual $S_S(t)$ is much larger than original scatter around the single average history ($\Delta\sigma^2_{\text{tot}}$ is listed above the panel).

In comparison, a_0 and t_{peak} can separate integrated histories more cleanly. Two examples are shown in Fig. 17. The middle example splits all galaxies based upon t_{peak}, the lower example, using a_0.30

An exhaustive study of possible separations into categories is beyond the scope of this note. An assortment of subfamily separations were tried. Their $\Delta\sigma^2_{\text{tot}}$ values are compared in appendix 4, and those tried which reduced the total scatter also had subfamilies separated enough according to Eq. [12]. Some general features were noted, for instance, when using t_{peak} to determine subfamilies, galaxies with $t_{\text{peak}} > 7$ Gyr had integrated histories which seemed too close together to lie in different subfamilies. One other way of separating integrated histories was also considered, suggested by Pacifici et al (2016), a quenching time t_q. In the few examples explored, t_q did not seem to work as well as t_{peak} or a_0, for instance in terms of $\Delta\sigma^2_{\text{tot}}$ however, again, an exhaustive comparison was not made, and the definition could also be refined.

Once a sample is split according to a_0 or t_{peak}, galaxies which share similar integrated star formation rate histories can be compared in terms of other properties, such as final time M^* or M_h, for instance, to look for reasons that a common final time property is associated with different subfamilies, when that occurs. Distributions of several properties for the galaxies in the 3 or 4 subfamilies of Fig. 17 compared side by side in the appendix, 4, as examples.

In summary, as might be expected, splitting integrated star formation rates of galaxies according to whether they are star forming or quiescent doesn’t separate their histories as well as splitting based upon their lognormal fit t_{peak} or a_0. For a bimodal split, using a_0 to sort each galaxy reduced the total scatter more generally than using t_{peak}; however, for splits into several subfamilies, both t_{peak} and a_0 can be seen to reduce the full scatter and give what seem to be reasonably separated histories. A few other general trends seemed to occur. For instance, all galaxy integrated star formation rate histories with a fitted $t_{\text{peak}} \gtrsim 7$ Gyr tended to have large overlap with each other. And again, as a_0 dominates the scatter around the average history, it is not surprising that subfamilies split via its value are less likely to overlap than those split via final time properties. These separations may be useful as starting points for comparing galaxies which share one property but not another in a simulation (for example, t_{peak} but not final M^*, or final M_h but not a_0).

6 SUMMARY, DISCUSSION AND FUTURE DIRECTIONS

In this note, two different methods for parameterizing integrated star formation rate histories were considered: a fixed lognormal form (following Gladders et al (2013); Diemer et al (2017)) and a PCA approximation, treating all histories as the ensemble average plus a combination of the leading three fluctuations (principal components) around it. The lognormal parameterization treats the star formation rate history as having a peak at a certain time, plus a width with a fixed shape, while PCA views all histories as fluctuations around one average history (independent of whether the galaxy is quiescent or not), plus fluctuations of fixed shape and coefficients varying in size and sign. The PCA approximation, using the first 3 principal components, has one more parameter than the lognormal fit, and is more closely tied to the properties of the ensemble of galaxies it describes, as the principal components and the average history around which they fluctuate are both determined using the galaxy sample itself.

These fits were explored with data from the Henriques et al (2015) model built upon the Millennium simulation Springel et al (2005); Lemson et al (2006). To illustrate how to compare samples (or more generally models), four sets of simulated galaxy histories were created: one approximately uniform in log M_h, one approximately uniform in log M^*, one randomly selected, and including all final time central galaxies in massive halos.

The samples of galaxies were characterized by their lognormal fit parameters (especially t_{peak}) and by their average histories, PCA fluctuations, and distributions of the fluctuation coefficients (especially a_0). For the PCA approximation, the shapes of the averages and fluctuations were similar across different samples, with most variations between samples easily interpreted as due to changes in the number of galaxies with high final halo mass (expected to quench earlier). The first 3 PCA components captured a large fraction of the scatter around the average history for every sample. The lognormal and PCA fits have correlated leading parameters, especially for galaxies with an early t_{peak} and high a_0. The lognormal fit parameter $t_1/2$, when a galaxy dropped to half of its peak star formation rate, was also strongly correlated with a_0.

Star formation rates of both the main (following one galaxy through time) and full (including all the galaxies which eventually merge to form the final galaxy) integrated star formation rate histories were considered for 3 of the 4 samples. The full histories have an earlier t_{peak} in the lognormal fit, and smaller variance around the average history in PCA. The full and main histories differed more strongly for samples with larger numbers of high final mass galaxies. Different samples (or models) of galaxies can be compared via parameters of the lognormal fit (t_{peak}, a_0, A, σ_{peak}).
Figure 17. Three examples of splits of integrated histories into families. Top: quenched galaxies in the main ran sample (SSFR $< 10^{-12}\text{yr}^{-1}$), split by final stellar mass as in Pacifici et al (2016). Middle: the main M_h sample split by t_{peak}. Bottom: the full M_h sample split by a_0. In each, $\Delta \sigma^2_{\text{tot}}$, Eq. 10, is shown at top. At left, lines are the average in each subfamily, stars are the lognormal fit t_{peak} to these averages. The dark shaded region is the variance around each average history due to the first 3 principal components in each subfamily, as in Fig. 16. The light shaded region (indistinguishable in most places, the first 3 principal components dominate the scatter) is the corresponding full variance. At right are the averages of the instantaneous star formation rates in each subfamily (normalized by each galaxy’s final integrated star formation rate). For the stellar mass separated sample, the different subfamilies overlap significantly; final stellar mass is not that closely correlated with galaxy integrated star formation rate history. Using t_{peak} and a_0 gives better separations into subfamilies.
and the average relation $\sigma_t \approx a t_{\text{peak}}^{b}$ and by the PCA fit parameters $(a_0, a_1, a_2, \hat{S}(t))$, the average history of the sample and its PCA basis fluctuations and the variance in the fluctuations.

Two fixed time properties were studied in more detail. The instantaneous star formation rates in the simulations were compared to that given by the fits. The lognormal fit worked better in tracing the distribution of the instantaneous star formation rate at the final redshift (in particular, it was difficult to get the correct number of green valley galaxies in the PCA approximation, even when many principal components were included). It is possible that even with the visible differences from the true (i.e., simulation) values that the fits can provide useful approximate star formation rates, depending on what the rates are used for; the average deviation between the fit and simulated values, over time steps, is zero by construction for the PCA approximation, and small for the lognormal fit.

Secondly, the peak star formation rate halo mass $M_{h,\text{peak}}$ is bimodal as a function of t_{peak}. (It is not seen in the high final mass cen $M_{h,\text{big}}$ sample which excludes low mass halos by construction.) Downscaling is also evident on the dominant (higher $M_{h,\text{peak}}$) branch. It would be interesting to understand what is happening with the lower $M_{h,\text{peak}}$ galaxies. Perhaps environmental effects are starving their growth, for example. It would also be interesting to understand if this feature appears in other galaxy formation models and in nature.

The parameterizations for both fits were correlated with final time properties (M^*, M_h, and SFR), and with properties of the galaxy main halo histories. Machine learning, following Kamdar, Turk & Brunner (2016a), was used to estimate the PCA and lognormal approximation parameters, using a range of inputs, including just the final halo mass and the main halo history $M_h(t)$. (The galaxy histories are the product of a detailed and complex semi-analytic model, following all halo and subhalo contributions and many physical properties of a galaxy throughout time, and so are automatically related to the full, rather than main, halo histories.) The final halo mass could already give a significant correlation between the true and found values of several fit parameters. The first 3 principal components of $M_h(t)$ almost worked as well as $M_h(t)$ itself in predicting fit parameters, and the true and found values of several quantities were highly correlated. However, the machine learning predicted final time star formation rates were even further from their simulation (true) values than the original fits. Machine learning shows that a relation can be found, but does not detail the relation, aside from providing importances. For these galaxy halo histories, it seemed that halo masses at a wide range of times in the history were important for predicting final values. It suggests promise for linking halo main histories directly to star formation rate histories through these parameterizations, perhaps in a simplified galaxy formation model.

Using the leading parameter of either approximation, a_0 or t_{peak}, better separates galaxies into subfamilies with similar histories than using whether a galaxy is quenched or star forming at final times. However, once a continuous parameter is used to separate histories, there is no obvious reason to only split galaxies into two groups. Separations into more families of galaxy histories were explored. Many were found which both reduced overall scatter and had subfamilies separated further than the variances around each subfamily average. These might be useful to compare galaxies with similar histories but different final properties or vice versa, to help identify which changes create these different populations within a single galaxy formation model, or to compare between models.

All of these calculations were done within the context of the Henriques et al. (2015), or L-galaxies, semi-analytic model built upon the Millennium simulation. The lognormal fit was applied to the Illustris simulation in the Diemer et al. (2017) paper inspiring this work. Illustris incorporates different physics, has a different number of time steps, and better (using the measure D in Eq. 5) lognormal fits to its histories than the fits to the histories here. Both of these simulations have some disagreement with observations, as noted earlier, for instance, one comparison has found that L-galaxies quenches too quickly and Illustris not enough (Bluck et al. 2016), which was seen, for example, in comparison of their $\sigma_t(t_{\text{peak}})$ relations. It would be interesting to compare these approximations between other simulations and models.

Not only can galaxy formation models be changed, other definitions of peak time may also be more effective at either separating the integrated star formation rate histories into families, or matching the instantaneous star formation rates. For instance, there are different fits such as the double power law fit of Behroozi, Wechsler & Conroy (2013b) studied in Diemer et al. (2017), which has less scatter in many cases, but also many singular fits at least when tried for the galaxy histories studied here, see also Gladess et al. (2013); Carnall et al. (2017); Martinez-Garcia et al. (2018) for examples of other studies of a variety of functional forms. (Carnall et al. (2017) identify several distinct star formation history shapes, depending upon the particular galaxy.) Two other obvious possibilities for special times, even within the lognormal fit definition, are $t_{1/2}$ and the quenching time. The quenching time also requires the stellar mass, time, and choosing a definition and width of the star forming main sequence, so it was not pursued in detail here.

In summary, these two ways of viewing galaxy integrated star formation rate histories provide examples of how to distill some of the huge variation and complexity of galaxy formation into a few characteristics of galaxy histories and their populations. These characteristics often have simple meanings and can be compared between models, and ideally, eventually to physical mechanisms. In the examples here, the variations between these characteristics revealed the different underlying mass distributions in the subsamples. Comparing the average histories, fluctuations distribution of parameters (and their relations to each other, e.g., here for instance by S. Faber in her Berkeley Astronomy Colloquium of fall 2017.}

32 As in Diemer et al. (2017)
33 In addition, the first principal component of halo history (with a slightly different definition) has been associated with concentration (Wong and Taylor 2012), which has also been suggested as a key parameter controlling the scatter in galaxy quenching,
34 Care must be taken to rescale the variance around the average when two models have different numbers of time steps.
the lognormal fit), separations into subfamilies and other properties across simulations may allow identifying properties characterizing the full samples, and thus the models which created them. These properties may not be evident in the detailed prescriptions for the individual galaxies, but instead emerge in the samples, and perhaps in observations, as a whole.

ACKNOWLEDGEMENTS

I thank P. Behroozi and C. Pacifici for the inspiring discussions to work on this, to B. Diemer, G. Lemson, Y. Feng for help in various steps of obtaining and analyzing the data, and many others for conversations, comments and questions, including S. Alam, M. van Daalen, N. Dalal, R. Dave, and A. Kravtsov. I also thank other participants at the Santa Barbara Galaxy-Halo connection workshop in June 2017, members of the Royal Observatory of Edinburgh, and participants at the Berkeley Center for Cosmological physics workshop and Nordita workshop in July 2017 for the opportunity to talk on this work and for their feedback and suggestions, and the Royal Observatory and Nordita for their kind hospitality. B. Diemer and C. Pacifici generously provided many helpful suggestions and criticisms of an earlier draft. I am especially grateful to M. White for innumerable discussions and suggestions, as well as encouragement. I also thank the referee for many helpful suggestions and questions. The Millennium Simulation databases used in this paper and the web application providing online access to them were constructed as part of the activities of the German Astrophysical Virtual Observatory (GAVO).

APPENDIX A: THE CEN $M_{h,\text{big}}$ SAMPLE

The cen $M_{h,\text{big}}$ sample is based upon the sample used by Kamdar, Turk & Brunnet (2016a), who took central galaxies which had $M_h \leq 10^{12} M_\odot$ at final times, and found that using main halo histories plus some other histories and parameters as inputs for machine learning gave a $\sim 88\%$ correlation between predicted and true M^\star. For their machine learning, they use information beyond $M_h(t)$ as input for the learning algorithm, including circular velocity $V_{\text{max}}(t)$ and velocity dispersion $V_{\text{disp}}(t)$.

But there are also differences with their $M_h(t)$ sample from cen $M_{h,\text{big}}$. In particular, their outputs are traced back to $z = 5.7$, while here the starting time is $z = 10$ (they had 45 outputs compared to the 48 here). They also used a different, earlier, semi-analytic model (Guo et al. 2010) from the Millennium database. For machine learning, it seems the most important difference is that their sample was trimmed in two ways. It was trimmed explicitly reject outliers. It was also trimmed implicitly through the SQL query to reject the $\sim 7\%$ of the halos meeting the final halo mass and central galaxy criteria which were not present at all time steps. That is, they used “INNER JOIN” rather than “FULL OUTER JOIN” used here. This may have resulted in a sample which was not only better behaved, but easier to model via machine learning.

APPENDIX B: MACHINE LEARNING FITS

Machine learning, discussed in §4.3 in the text, was applied to all 7 samples, using $M_h(t)$ to predict the parameters t_{peak}, σ_t, A, a_0, a_1, a_2, $\bar{S}(t)$ and the final time M^\star. Below, the resulting fits to the integrated star formation rate histories are compared to the simulation outputs, in direct parallel to the comparison of the direct fits with the simulation outputs in §3.3.2 and §3.3.3.

B1 Goodness of approximations using ML parameters

Just as for the original fits in §3.3.2 the machine learning fits can be compared to the simulated histories using d^2 and D. These are shown in Fig. B1 with the original distribu-
Figure B2. Average difference \(\langle S_{\text{true}}(t) - S_{\text{fit}}(t)\rangle\), solid line, and its scatter, shaded, for the machine learning PCA fit (top) or lognormal fit (bottom), in the main ran sample. The simulation gives \(S_{\text{true}}(t)\). This can be compared to the average and scatter from the direct fits shown in Fig. 9 in the main text. Again, the shaded regions are one standard deviation, calculated separately for galaxies with \(S_{\text{true}}(t) - S_{\text{fit}}(t)\) above or below the average. The scatter is much larger in the machine learning fits, and has changed shape. Relative to the direct fits, the standard deviations have increased from \(\leq 0.05\) to \(0.15-0.20\) (PCA), and from \(\leq 0.07\) to \(0.19-0.24\) (lognormal). Note the fit on average tends to overestimate rather than underestimate \(S_{\text{true}}\), unlike the earlier fit.

Figure B3. Final time star formation rates in the ran simulation (top panel uses main integrated star formation rate history fits, bottom panel uses full integrated star formation rate history fits).

The filled in region shows the simulation (true) final star formation rate distributions. The star formation rates for the direct fits to the histories, shown earlier in magenta in Fig. 10 are shown again here. The machine learning fits are in black. Dotted lines correspond to the lognormal fit and dashed lines to the PCA fit. Again, galaxies with negative star formation rates in the PCA fit are again here. The machine learning fits tend to give a narrower peak at high star formation rate.

35 The average histories and principal components for the PCA approach are assumed to be fixed for the sample to their true value, rather than calculated from the training set alone.

B2 Approximating final time star formation rate

For the final time \(SFR(M)\) predictions, Fig. 13 shows the correlations between true and found for the final \(M\) machine learning predictions. Two other \(M\) tests not shown are successful: the stellar mass to halo mass relation, considered in Kamdar, Turk & Brunner (2016a) and the stellar mass function (well reproduced except for losing some galaxies at the high mass end). However, the stellar mass to star formation rate relations are worse because of the final time star formation rate discrepancies, shown in Fig. 15. This can be compared to Fig. 10 in 3.3.3; the black lines give the machine learning predictions, while the magenta lines show the earlier predictions using the direct fits. The machine learning prediction for the number of galaxies in the green valley decreases for both fits for the ran sample, but behaves differently in other samples. All samples show some increase of galaxies with fairly high star formation rates above the number in the simulation when the rates are found using machine learning fits.

The resulting stellar mass to star formation rates, the machine learning version of Fig. 13 are shown in Fig. 13. Just as in Fig. 11 the simulation result is at top, and the fits (this time from machine learning) are below. The fractions of negative star formation rates for the PCA fit are again given on the y-axis on the lowest row, after which all galaxies with \(SFR \leq 10^{-7} M_\odot\text{yr}^{-1}\) are assigned to the minimal \(SFR = 10^{-7} M_\odot\text{yr}^{-1}\). These minimal SFR galax-
Two galaxy SFR history approximations

Figure B4. Stellar mass versus star formation rate at redshift zero from machine learning for M^* and the lognormal fit (middle panels) and the PCA fit (bottom panels), compared to the actual distribution in the simulation (top panels). This is the same comparison, for the same ran sample, as shown in Fig. 11 however in that case, the fits were direct, rather than via machine learning. At left, the fit to the main star formation rate history is used, at right, the fit to the full star formation history is used. Again, galaxies with negative star formation rates in the PCA fit are counted and then set to $10^{-7} M_{\odot}/yr^{-1}$ along with any other galaxies with SFR $< 10^{-7} M_{\odot}/yr^{-1}$. Other quantities are defined as in Fig. 11. See text for more discussion.

Appendix C: Separating Galaxy Histories Into Many Subfamilies

As discussed in §5, integrated star formation rate histories can be separated into many different subfamilies, once a continuous parameter such as t_{peak} is assigned to each history. A variety of different splits were tried, with $\Delta \sigma^2_{\text{tot}}$, Eq. 10, and the overlaps, Eq. 12, compared for each. Subfamilies were divided according to quenching time, t_{peak} and a_0, changing the number of subfamilies and dividing values of the parameters. Some splits were uniform, others were based on different regions visible in figures such as Fig. 7. (Uniform splits for t_{peak} grouped all histories with $t_{\text{peak}} \gtrsim 7.5$ Gyr together as they always significantly overlapped.) A sampling of how the scatter changes in different subfamily choices, and 2 examples of galaxy properties in the different subfamilies.
are given in this section. A full exploration of all possible subfamilies is beyond the scope of this work.

For this small set of assorted subfamilies, a chart of $\Delta \sigma^2_{\text{tot}}$ as a function of number of subfamilies is shown in Fig. [C1] (for splits into subfamilies with $\Delta \sigma^2_{\text{tot}} < 4$). The divisions based upon M^* and SSFR discussed in [9] are also included. In this small sample, splitting integrated star formation rate histories based upon a_0 again tended to succeed more often than splitting on the basis of t_{peak} or t_q, perhaps because a_0 is the coefficient of the largest fluctuation around the average history. However, these examples do not preclude better (in terms of $\Delta \sigma^2_{\text{tot}}$ and Eq. [12]) separations in terms of t_{peak} or t_q.

The galaxies in the different subfamilies can be compared in terms of their average history properties (stellar mass, halo mass and main and full integrated star formation rates), and other properties. Two examples are shown in Fig. [C2] and Fig. [C3]. For these subfamilies, the average integrated star formation rate histories, scatter around these averages, and instantaneous star formation rates are in the bottom two panels in Fig. [17]. Fig. [C2] corresponds to properties of the 3 subfamilies separated using t_{peak}, for the full M_h sample, and Fig. [C3] corresponds to the separation of galaxies into 4 subfamilies using a_0, in the main M_h sample.

In each plot, each column is a different subfamily, and each row focuses the distribution of the same property or properties.

- The top row panel shows average histories for M^*, M_h, and the full and main integrated star formation rate. (These are full and main histories in subfamilies determined by a_0 or t_{peak} from either the main or full integrated star formation rate histories.) The main integrated star formation rate is rescaled to have final value 1. The other histories are rescaled to have the same final value, corresponding to the median values of $\bar{S}_{\text{full}}(t_f)/\bar{S}_{\text{main}}(t_f)$ for the full integrated star formation rate histories, $1.868M^*(t_f)/\bar{S}_{\text{main}}(t_f)$ for the stellar mass histories, and $M_h(t_f)/(100\bar{S}_{\text{main}}(t_f))$ for the halo mass histories.

The prefactor for the stellar mass history rescaling is to take out the stellar ageing; if the stellar mass history and main integrated star formation rate history roughly coincide, then almost all the star formation occurs in the main history, i.e. in situ. This is also seen in the difference between the full (dashed line) and main (solid line) integrated star formation rate histories; these two lines overlap if the median full and main histories overlap after this rescaling. As might be expected, this overlap occurs more for low a_0 or high t_{peak}, corresponding to the lowest final M^* and final M_h galaxies. These galaxies are not expected to gain much stellar mass through mergers, tending to be small and star forming (or quenched satellites). The vertical solid line is the t_{peak} for M_h sample.
Figure C2. Properties of the galaxies sorted by the t_{peak} separations producing the average integrated and instantaneous star formation rate histories in the middle row of Fig. 17. Each column corresponds to one subfamily, with sample galaxies chosen according to the t_{peak} range listed at top. The highest row shows the average main integrated SFR (solid blue), full integrated SFR (dashed blue), M_h (solid black) and M^* (green stars) histories. Each type of history is normalized to the same final value, described in the text. The scatters are not rescaled with the final values, so sizes and shapes of scatters can be compared directly across subfamilies, and the vertical axis is shared across all columns on the top row. Histories are all as a function of time, listed in Gyr along the x-axis. The magenta vertical line shows the average peak time for the each subfamily. In the second row, the solid line shows the a_0 distribution for the subfamily, with light purple shading showing the full sample distribution. This breaks down the relation between a_0 and t_{peak}. The third row shows the logarithm of number of galaxies with a given final log M^* and SFR. Galaxies with SFR=0 are set to $\text{SFR} = 10^{-7} M_\odot \text{yr}^{-1}$. Solid dark lines in the fourth and fifth rows give the log of the number of galaxies with a given final M^* and final M_h for each subfamily, along with the full distribution, shaded in light purple. The distribution of satellites in the lower two panels is shown as a dashed red line.

- The solid lines in the second rows show the distribution of a_0 (for the sample split on t_{peak}) or t_{peak} (for the sample split on a_0), to see how well the cut in one quantity corresponds to a cut in the other. The shaded region shows the full sample distribution of a_0 or t_{peak} respectively.

the average integrated star formation rate history for each subfamily.

The shading around the main halo mass histories and the main stellar mass histories are the 3 principal components of scatter (purple) and the full variance (blue, at edges) around the galaxy histories. These scatters are rescaled to histories with a final value of 1, so that their relative size can be compared directly between different columns, similarly, the vertical scales for the top row are identical for all columns.
The next three rows are final time properties, showing the stellar mass to halo mass, final stellar mass and final halo mass of galaxies in each subfamily. The shaded regions show the full sample distribution of these quantities. For final M^* and final M_h, the distribution for satellites is also shown separately.\footnote{There is some bimodality in final halo masses and stellar masses for samples with $t_{\text{peak}} \sim 5$ Gyr and $-1 < a_0 < 0$, correlated with the value of a_1, a_2. This is somewhat perhaps hinted at in Fig.\ref{fig:results} in the main text.}

These figures compare different properties of the subfamilies which have different integrated star formation rate histories. Similar final properties are often spread across several subfamilies. For instance, galaxies with moderately high final M^* can lie in 3 of the 4 subfamilies split using a_0 in Fig.\ref{fig:results} with different contributions from, for instance, mergers. These comparisons may give another angle on trying to disentangle contributing factors to the formation of galaxies. Similarly, galaxies with early peaks in star formation rate can often span a wide range of final stellar masses. Again, the hope would be that these comparisons would help identify cases where some features are shared and others differ, which could motivate searches for physical causes of either the differences or the similarities. These simpler questions may give useful angles for approaching the wide diversity of properties and galaxy histories produced by galaxy formation models.

REFERENCES

Abramson, L.E., Gladders, M.D., Dressler, A., Oemler, A., Jr, Poggianti, B., Vulcani, B., 2016, ApJ, 832, 7

Agarwal, S., Dave, R., Bassett, B.A., 2017, \texttt{arXiv:1712.03255}

Angulo, R.E., White, S.D.M., 2010, MNRAS, 405, 143

Angulo, R.E., Hilbert, S., 2015, MNRAS, 448, 364

Behroozi, P.S., Marchesini, D., Wechsler, R.H., Muzzin, A., Papovich, C., Stefanon, M., 2013a, ApJL, 777, 10

Behroozi, P.S., Wechsler, R.H., Conroy, C., 2013a, ApJ, 770, 57

Bluck, A.F.L., et al., 2016, MNRAS, 462, 2559

Breiman, L., Friedman, J., Stone C. J., Olshen R. A., 1984, Classification and regression trees. CRC press

Carnall, A.C., McLure, R.J., Dunlop, J.S., Dave, R., 2017, \texttt{arXiv:1712.04452}

Cohn, J.D., van de Voort, F., 2015, MNRAS, 446, 3253

Dekel, A., Zolotov, A., Tweed, D., Cacciato, M., Ceverino, D., Primack, J.R., 2013, MNRAS, 435, 999

Diemer, B., Sparre, M., Abramson, L.E., Torrey, P., 2017, ApJ, 839, 26

Eales, S., et al, 2018, MNRAS, 473, 3507

Fu, J., et al, 2013, MNRAS, 434, 1531

Geurts P., Ernst D., Wehenkel L., 2006, Machine learning, 63, 3

Gladders, M.D., Oemler, A., Dressler, A., Poggianti, B., Vulcani, B., Abramson, L., 2013, ApJ, 770, 64

Guo, Q., White, S., Boylan-Kolchin, M., De Lucia, G., Kauffmann, G., Lemson, G., Li, C., Springel, V., Weinmann, S., 2011, MNRAS, 413, 101

Guo, Q., White, S., Angulo, R. E., Henriques, B., Lemson, G., Boylan-Kolchin, M., Thomas, P., Short, C., 2013, MNRAS, 428, 1351

Hearin, A.P., Watson, D.F., 2013, MNRAS, 435, 1313

Henriques, B. M. B., White, S. D. M., Thomas, P. A., Angulo, R., Guo, Q., Lemson, G., Springel, V., Overzier, R., 2015, MNRAS, 451, 2663

Hopkins, P.F., Quataert, E., Murray, N., 2011, MNRAS, 417, 950

Kandar, H.M., Turk, M.J., Brunner, R.J., 2016a, MNRAS, 455, 642

Kandar, H.M., Turk, M.J., Brunner, R.J., 2016b, MNRAS, 457, 1162

Kelson, D.D., 2014, \texttt{arXiv:1406.5191}

Kelson, D.D., Benson, A.J., Abramson, L.E., 2016, \texttt{arXiv:1610.06560}

Lemson, G., and the Virgo consortium, 2006, \texttt{arXiv:astro-ph/0608019}

Martinez-Garcia, E.E., Bruzual, G., Magris, G., Gonzalez-Lopezziara,R.A., 2018, MNRAS, 1862

McBride, J., Fakhouri, O., Ma, C.-P., 2009, MNRAS, 298, 1858

Nadler, E.O, Mao, Y.-Y., Wechsler, R.H., Garrison-Kimmel, S., Wetzel, A., 2017, \texttt{arXiv:1712.04467}

Ntampaka M., Trac H., Sutherland D. J., Battaglia N., Poczoz B., Schneider J., 2015, ApJ, 803, 50

Pacifici, C., Kassin, S.A., Weiner, B., Charlot, S., Gardner, J.P., 2013, ApJL, 762, 15

Pacifici, C., Kassin, S.A., Weiner, B.J., et al, 2016, ApJ, 832, 79

Rodriguez-Puebla, A., Primack, J.R., Avila-Reese, V., Faber, S., 2017, MNRAS, 470, 651

Schaye, J., et al, 2010, MNRAS, 402, 1536

Shamshiri, S., Thomas, P. A., Henriques, B. M., Tojeiro, R., Lemson, G., Oliver, S. J., Wilkins, S., 2015, MNRAS, 451, 2681

Sparre, M., et al, 2015, MNRAS, 447, 3548

Speagle, J.S., Steinhardt, C.L., Capak, P.L., Silverman, J.D., 2014, ApJS, 214, 15

Springel, V., et al, 2005, Nature, 435, 629

Tasitsiomi, A., Kravtsov, A.V., Gottlboer, S., Klypin, A.A., 2004, ApJ, 621, 673

Wechsler, R.H., Bullock, J.S., Primack, J.R., Kravtsov, A.V., Allgood, B., 2006, ApJ, 652, 71

Wong, A.W.C., Taylor, J.E., 2012, ApJ, 757, 102

Xu X., Ho S., Trac H., Schneider J., Poczos B., Ntampaka M., 2013, ApJL, 772, 147

D.H. Zhao, Y.P. Jing, H.J. Mo, G. Boerner, 2003, ApJL, 597, 9

D.H. Zhao, Y.P. Jing, H.J. Mo, G. Boerner, 2009, ApJ, 707, 354
Figure C3. Final time properties of the galaxies in subfamilies corresponding to the a_0 separation with average integrated and instantaneous star formation rate histories shown in the bottom row of Fig. 17. Lines and colors are as in Fig. C2 above, except for the second row. In this case, as a_0 is used to separate the histories into subfamilies, the t_{peak} distribution of each subfamily is given, with the full distribution shown as a shaded region. In the bottom two rows, the subfamily (2nd column) which is bimodal in M_h and M^* can be further split into two samples by using a_1 or a_2, both of which are correlated with high or low final M^*, M_h in this subfamily.