Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids

Camille Laurent-Gengoux
Département de mathématiques
Université de Poitiers
86962 Futuroscope-Chasseneuil, France
laurent@math.univ-poitiers.fr

Mathieu Stiénon *
E.T.H. Zürich
Departement Mathematik
8092 Zürich, Switzerland
stienon@math.ethz.ch

Ping Xu †
Department of Mathematics
Penn State University
University Park, PA 16802, U.S.A.
ping@math.psu.edu

Dedicated to the memory of Paulette Libermann

Abstract

We study holomorphic Poisson manifolds and holomorphic Lie algebroids from the viewpoint of real Poisson geometry. We give a characterization of holomorphic Poisson structures in terms of the Poisson Nijenhuis structures of Magri-Morosi and describe a double complex which computes the holomorphic Poisson cohomology. A holomorphic Lie algebroid structure on a vector bundle $A \to X$ is shown to be equivalent to a matched pair of complex Lie algebroids $(T^{0,1}X, A^{1,0})$, in the sense of Lu. The holomorphic Lie algebroid cohomology of A is isomorphic to the cohomology of the elliptic Lie algebroid $T^{0,1}X \bowtie A^{1,0}$. In the case when (X, π) is a holomorphic Poisson manifold and $A = (T^*X)_\pi$, such an elliptic Lie algebroid coincides with the Dirac structure corresponding to the associated generalized complex structure of the holomorphic Poisson manifold.

*Research supported by the European Union through the FP6 Marie Curie R.T.N. ENIGMA (Contract number MRTN-CT-2004-5652).
†Research partially supported by NSF grants DMS-0306665 and DMS-0605725 & NSA grant H98230-06-1-0047
1 Introduction

The aim of this paper is to solve several problems naturally arisen in studying the connection between holomorphic Poisson manifolds and holomorphic Lie algebroids with real Poisson geometry.

Holomorphic Poisson structures appear naturally in many places [5, 20, 23, 27, 42, 14, 13]. For instance, any semi-simple complex Lie group admits a natural Poisson group structure [11, 10, 40], which is holomorphic. Its dual is also a holomorphic Poisson group. Indeed one of the simplest types of examples of holomorphic Poisson manifolds are the Lie-Poisson structures on the dual of complex Lie algebras. Holomorphic Poisson structures were also studied from the point of view of algebraic geometry by Bondal [2] and Polishchuk [39] in the middle of the 90’ s. Recently, holomorphic Poisson structures were linked to generalized complex geometry [17, 16, 18, 19, 24].
There are several equivalent ways of defining holomorphic Poisson structures. One simple definition is, like in the real case, a holomorphic bivector field π (i.e. $\pi \in \Gamma(\wedge^2 T^1,0 X)$ such that $\partial \pi = 0$) satisfying the equation $[\pi, \pi] = 0$. Since $\wedge^2 T \subset X = \wedge^2 T X \oplus i \wedge^2 T X$, for any $\pi \in \Gamma(\wedge^2 T C X)$, we can write $\pi = \pi_R + i \pi_I$, where π_R and $\pi_I \in \Gamma(\wedge^2 T X)$ are bivector fields on the underlying real manifold X.

Problem 1. Are π_R and π_I Poisson structures? And conversely, given two Poisson structures π_R and π_I, when does $\pi = \pi_R + i \pi_I$ define a holomorphic Poisson structure?

We give an affirmative answer to the first question. As for the second, we show that $\pi = \pi_R + i \pi_I$ is holomorphic Poisson if, and only if, (π_I, J) is a Poisson Nijenhuis structure and $\pi_R^2 = J \circ \pi_I$. Thus (π_R, π_I) is a bi-Hamiltonian structure on X.

Poisson Nijenhuis structures were introduced by Magri and Morosi [34] [35] in their study of bi-Hamiltonian systems, and were intensively studied afterwards [27] [43]. A Poisson Nijenhuis structure π, N on a manifold X consists of a pair (π, N), where π is a Poisson tensor on X and $N : TX \to TX$ is a Nijenhuis tensor, which satisfy some compatibility conditions (see Section 2.3 for the precise conditions). By a Nijenhuis tensor, we mean a $(1,1)$-tensor on X with vanishing Nijenhuis torsion.

Since Poisson Nijenhuis structures are related to generalized complex structures [8] [41], as a consequence, we recover the well known correspondence between holomorphic Poisson structures and generalized complex structures (of a special type) [19] [17].

Another natural question is:

Problem 2. Given a holomorphic Poisson structure $\pi = \pi_R + i \pi_I$, are the holomorphic symplectic foliations of π and the symplectic foliations of π_R and π_I related?

Indeed we show that all these symplectic foliations coincide. Also for a holomorphic symplectic 2-form $\omega = \omega_R + i \omega_I$, we show that the real and imaginary parts of its holomorphic Poisson tensor are, up to a constant scalar, the Poisson tensors corresponding to ω_R and ω_I, respectively.

Lie algebroids are an extremely powerful tool in Poisson geometry. Indeed the Lie algebroid structures on a given vector bundle are in one-one correspondence with the so called fiberwise linear Poisson structures on the dual bundle. This correspondence extends to the holomorphic context; any holomorphic Lie algebroid structure on the vector bundle $A \to X$ gives rise to a fiberwise linear holomorphic Poisson structure on $A^* \to X$. Thus the real and imaginary parts of this holomorphic Poisson structure are fiberwise linear Poisson structures on the dual bundle (being considered as a real vector bundle). Hence one obtains two real Lie algebroid structures A_R and A_3, respectively.

Problem 3. Obtain an explicit description of the Lie algebroid structures A_R and A_3 in terms of the holomorphic Lie algebroid structure on A.

Let $A \to X$ be a vector bundle endowed with a holomorphic Lie algebroid structure. Extending the Lie bracket on the space of holomorphic sections of $A \to X$ to the space of all smooth sections so as to preserve the Leibniz rule, we get a real Lie algebroid structure A_R on the bundle $A \to X$. It turns out that, up to a scalar constant, A_R is isomorphic to A_R. The multiplication by $\sqrt{-1}$ in the fibers of A defines a real vector bundle map $j : A_R \to A_R$ over the identity map satisfying $j^2 = -\text{id}$.

We prove that the Nijenhuis torsion of j vanishes and that, up to a scalar constant, A_3 is isomorphic to $(A_R)_j$, the deformation of the Lie algebroid A_R by j. Extending j by \mathbb{C}-linearity, we get a bundle map $j : A_C \to A_C$ with $j^2 = -\text{id}$. Since the Nijenhuis torsion of j vanishes, its eigenbundles $A^{1,0}$ and $A^{0,1}$ with eigenvalues i and $-i$ are complex Lie algebroids.
There is yet another connection between Poisson manifolds and Lie algebroids. Given a Poisson manifold \((X, \pi)\), it is well known that \(T^*X\) carries a natural Lie algebroid structure. This holds for holomorphic Poisson structures as well. Namely, if \((X, \pi)\) is a holomorphic Poisson manifold, then \(T^*X\) is naturally a holomorphic Lie algebroid, denoted \((T^*X)_\pi\). On the other hand, as highlighted earlier, each holomorphic Poisson structure corresponds to a generalized complex structure \(J\), whose \((-i)\)-eigenbundle \(L\) is a Dirac structure and thus a complex Lie algebroid \([14, 6]\).

Problem 4. What is the precise relation between the holomorphic Lie algebroid \((T^*X)_\pi\) and the complex Lie algebroid \(L\)?

A key ingredient to answer this problem is the notion of matched pairs studied by Lu, Mackenzie, and Mokri \([31, 32, 36]\). We show that \((T^{0,1}X, (T^{1,0}X)_\pi)\) is a matched pair (here \((T^{1,0}X)_\pi = A^{1,0}\) for \(A = (T^*X)_\pi\)) and \(T^{0,1}X \bowtie (T^{1,0}X)_\pi^*\) (see Theorem 4.3 for the definition of \(\bowtie\)) is isomorphic to \(L\). Furthermore, we prove that the holomorphic Poisson cohomology of \(\pi\), which is defined to be the holomorphic Lie algebroid cohomology of \((T^*X)_\pi\), is isomorphic to the cohomology of the elliptic Lie algebroid \(T^{0,1}X \bowtie (T^{1,0}X)_\pi^*\). This leads to our next problem:

Problem 5. Given an arbitrary holomorphic Lie algebroid \(A\), find a complex Lie algebroid \(L\) whose cohomology groups are isomorphic to those of \(A\).

The cohomology of a holomorphic Lie algebroid \(A\) is the cohomology of the complex of sheaves \((\Omega^*_A, d_A)\) as introduced by Evens-Lu-Weinstein \([15]\) (see Definition 4.4), while the cohomology of a complex (smooth) Lie algebroid \(L\) is the cohomology of the cochain complex \((\Gamma(\wedge^*L^*), d_L)\). So, in a certain sense, solving the problem above amounts to finding a Dolbeault type of resolution for arbitrary holomorphic Lie algebroids.

The solution is \(L = T^{0,1}X \bowtie A^{1,0}\). Indeed we show that \(A\) is holomorphic if, and only if, \((T^{0,1}X, A^{1,0})\) is a matched pair (see Theorem 4.3); one may thus form the complex Lie algebroid \(T^{0,1}X \bowtie A^{1,0}\), which is in fact an elliptic Lie algebroid in the sense of Block \([1]\). The Lie algebroid cohomology of the latter can be expressed as the total cohomology of a double complex.

The following notations are widely used in the sequel. For a manifold \(M\), we use \(q_M\) to denote the projection \(TM \rightarrow M\). And given a complex manifold \(X\), \(T_CX\) is shorthand for the complexified tangent bundle \(TX \otimes \mathbb{C}\) while \(T^{i,0}X\) (resp. \(T^{0,i}X\)) stands for the \(+i\) (resp. \(-i\)) eigenbundle of the almost complex structure. By \(\mathfrak{X}^{k,l}(X)\) we denote the space of sections of \(\wedge^kT^{1,0}X \otimes \wedge^lT^{0,1}X \rightarrow X\), and by \(\Omega^{k,l}(X)\) the space of differential forms of type \((k,l)\). For a Lie algebroid \(A\), the Nijenhuis torsion \([27, 26]\) of a bundle map \(\phi : A \rightarrow A\) over the identity is denoted \(N_\phi\), which is a section in \(\Gamma(\wedge^2A^* \otimes A)\) defined by

\[
N_\phi(V, W) = [\phi V, \phi W] - \phi([\phi V, W] + [V, \phi W] - \phi[V, W]), \quad \forall V, W \in \Gamma(A).
\]

When \(A\) is the Lie algebroid \(TX\) and \(\phi : TX \rightarrow TX\) is a \((1,1)\)-tensor, the Nijenhuis torsion \(N_\phi\) is a \((2, 1)\)-tensor on \(X\).

Note that the modular classes of holomorphic Lie algebroids were studied by Evens-Lu-Weinstein \([15]\) and Huebschmann \([21]\) while the modular classes of holomorphic Poisson manifolds were studied by Brylinski-Zuckerman \([5]\). In a separate paper, we will investigate the relation between these modular classes and their counterparts in real Poisson geometry, and in particular with the modular classes of Poisson Nijenhuis manifolds recently studied by Damianou-Fernandes \([9]\) and Kosmann-Schwarzbach-Magri \([25]\).

Acknowledgments We would like to thank Centre Émile Borel and Peking University for their hospitality while work on this project was being done. We also wish to thank Sam Evens and Alan Weinstein for useful discussions and comments.
2 Holomorphic Poisson manifolds

2.1 Definition

Definition 2.1. A holomorphic Poisson manifold is a complex manifold X whose sheaf of holomorphic functions \mathcal{O}_X is a sheaf of Poisson algebras.

By a sheaf of Poisson algebras over X, we mean that, for each open subset $U \subset X$, the ring $\mathcal{O}_X(U)$ is endowed with a Poisson bracket such that all restriction maps $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ (for arbitrary open subsets $V \subset U \subset X$) are morphisms of Poisson algebras. Moreover, given an open subset $U \subset X$, an open covering $\{U_i\}_{i \in I}$ of U and a pair of functions $f, g \in \mathcal{O}_X(U)$, then the local data $(f|_{U_i}, g|_{U_i})$ $(i \in I)$ glue up to $(f|_U, g|_U)$ if they coincide on the overlaps $U_i \cap U_j$.

Lemma 2.2. On a given complex manifold X, holomorphic Poisson structures are in one-to-one correspondence with holomorphic bivector fields π (i.e. $\pi \in \Gamma(\wedge^2 T^{1,0} X)$ such that $\partial \pi = 0$), satisfying the equation $[\pi, \pi] = 0$.

Proof. This is a standard result. For completeness, let us sketch a proof here. Choose any complex coordinate chart (U, ϕ), which identifies $U \subset X$ with an open ball of \mathbb{C}^n. As in the smooth case, that $\mathcal{O}_X(U)$ is a Poisson algebra is equivalent to the existence of a holomorphic bivector field π_U on U satisfying the relation $[\pi_U, \pi_U] = 0$. Moreover the compatibility condition on the restriction maps implies that there indeed exists a holomorphic bivector field π on X, whose restriction to U is π_U for all such open subset U. \qed

2.2 Associated real Poisson structures

Since $\wedge^2 T^\mathbb{C}X = \wedge^2 TX \oplus i \wedge^2 TX$, for any $\pi \in \Gamma(\wedge^2 T^\mathbb{C}X)$, we can write $\pi = \pi_R + i \pi_I$, where π_R and $\pi_I \in \Gamma(\wedge^2 TX)$ are (real) bivector fields on X (seen as a real manifold by forgetting the complex structure). Note that sections of $\wedge^2 T^\mathbb{C}X$ (in particular of $\wedge^2 T^{1,0} X$) can be seen as bidifferential operators on $C^\infty(M, \mathbb{C})$. The real bivector fields π_R and π_I are then the real and imaginary parts of these bidifferential operators.

Both π_R and π_I define brackets $\{\cdot, \cdot\}_R$ and $\{\cdot, \cdot\}_I$ on $C^\infty(M, \mathbb{R})$ in the standard way. These extend to $C^\infty(M, \mathbb{C})$ by \mathbb{C}-linearity. The next lemma describes such an extension.

Lemma 2.3. (a) Under the direct sum decomposition

$$\wedge^2 T^\mathbb{C}X = \wedge^2 T^{1,0} X \oplus (T^{1,0} X \wedge T^{0,1} X) \oplus \wedge^2 T^{0,1} X,$$

we have

$$\pi_R = \frac{\pi}{2} + 0 + \frac{\pi}{2}, \quad \text{and} \quad \pi_I = \frac{\pi}{2} + 0 + \frac{\pi}{2}.$$

(b) \hspace{1em} $\forall f, g \in \mathcal{O}_X(U)$, we have the following relations:

$$\{f, g\}_R = \frac{1}{2} \{f, g\}, \quad \{\overline{f}, g\}_R = \frac{1}{2} \{f, \overline{g}\}, \quad \{f, \overline{g}\}_R = 0,$$

$$\{f, g\}_I = -\frac{i}{2} \{f, g\}, \quad \{\overline{f}, g\}_I = \frac{i}{2} \{f, \overline{g}\}, \quad \{f, \overline{g}\}_I = 0.$$

(c) Both π_R and π_I are Poisson tensors.

Proof. \hspace{1em} Immediate. \hspace{1em} If $f, g \in \mathcal{O}_X(U)$, then \overline{f} and \overline{g} are antiholomorphic. Hence $\overline{\partial f} = 0 = \overline{\partial g}$. Therefore $\pi(\partial f, g) = \{f, g\}$, $\pi(\overline{\partial f}, \overline{g}) = 0$ and $\pi(\overline{\partial f}, \overline{\partial g}) = 0$. The conclusion follows. \hspace{1em} It suffices to prove the Jacobi identity for $\{\cdot, \cdot\}_R$ and $\{\cdot, \cdot\}_I$. From (b), it follows that it holds for holomorphic functions in $\mathcal{O}_X(U)$. It follows from the Leibniz rule that the Jacobi identity holds for all complex valued smooth functions in $C^\infty(X, \mathbb{C})$. This concludes the proof. \qed
As an immediate consequence, we have the following

Corollary 2.4. For all \(f, g \in \mathcal{O}_X(U) \), we have

\[
\{ \Re f, \Re g \}_R = \frac{1}{4} \Re \{ f, g \}, \quad \{ \Re f, \Im g \}_I = \frac{1}{4} \Im \{ f, g \},
\]

\[
\{ \Im f, \Im g \}_R = -\frac{1}{4} \Re \{ f, g \}, \quad \{ \Re f, \Im g \}_I = -\frac{1}{4} \Im \{ f, g \},
\]

\[
\{ \Re f, \Im g \}_R = \frac{1}{4} \Im \{ f, g \}, \quad \{ \Re f, \Re g \}_I = -\frac{1}{4} \Re \{ f, g \}.
\]

where \(\Re f \) and \(\Im f \) stand for the real and imaginary part of the function \(f \), respectively.

Thus, in a local chart \((z_1 = x_1 + iy_1, \ldots, z_n = x_n + iy_n)\) of complex coordinates of \(X \), we have

\[
\{ x_i, x_j \}_R = \frac{1}{4} \Re \{ z_i, z_j \}, \quad \{ x_i, x_j \}_I = \frac{1}{4} \Im \{ z_i, z_j \},
\]

\[
\{ y_i, y_j \}_R = -\frac{1}{4} \Re \{ z_i, z_j \}, \quad \{ y_i, y_j \}_I = -\frac{1}{4} \Im \{ z_i, z_j \},
\]

\[
\{ x_i, y_j \}_R = \frac{1}{4} \Im \{ z_i, z_j \}, \quad \{ x_i, y_j \}_I = -\frac{1}{4} \Re \{ z_i, z_j \}.
\]

2.3 Poisson Nijenhuis structures

Lemma 2.5. Let \(\pi = \pi_R + i \pi_I \in \Gamma(\wedge^2 T^* C X) \) with \(\pi_R, \pi_I \in \Gamma(\wedge^2 TX) \). Then \(\pi \in \Gamma(\wedge^2 T^{1,0} X) \) iff \(\pi_R^2 = \pi_I^2 \circ J^* \), where \(J : TX \to TX \) is the almost complex structure on \(X \).

Proof. We have

\[
\pi \in \Gamma(\wedge^2 T^{1,0} X) \iff \pi(\alpha, \beta) = 0, \forall \alpha \in \Omega^{0,1}(X), \beta \in \Omega^1(X) \]
\[
\iff \pi(\alpha, \beta) = 0, \alpha = \frac{1+iJ}{2}(\alpha'), \forall \alpha', \beta \in \Omega^1(X) \]
\[
\iff \pi^2 \circ \left(\frac{1+iJ}{2} \right) = 0 \]
\[
\iff i\pi^2 = \pi^2 \circ J^* \]
\[
\iff 2\pi_R^2 \circ J^* = (\pi^2 + \pi^2) \circ J^* = i(\pi^2 - \pi^2) = -2\pi_I^2 \]
\[
\iff \pi_R^2 = \pi_I^2 \circ J^* \]

Recall that a Poisson Nijenhuis structure \([27] [26]\) on a manifold \(X \) consists of a pair \((\pi, N)\), where \(\pi \) is a Poisson tensor on \(X \) and \(N : TX \to TX \) is a Nijenhuis tensor such that the following compatibility conditions are satisfied:

\[
N \circ \pi^2 = \pi^2 \circ N^* \]
\[
[\alpha, \beta]_\pi = [N^* \alpha, \beta]_\pi + [\alpha, N^* \beta]_\pi - N^* [\alpha, \beta]_\pi
\]

where \(\pi_N \) is the bivector field on \(X \) defined by the relation \(\pi_N^2 = \pi^2 \circ N^* \) and for any bivector field \(\hat{\pi} \) on \(M \),

\[
[\alpha, \beta]_\hat{\pi} := L_{\hat{\pi} \alpha}(\beta) - L_{\hat{\pi} \beta}(\alpha) - d(\hat{\pi}(\alpha, \beta)), \forall \alpha, \beta \in \Omega^1(M).
\]

Proposition 2.6. Let \(X \) be a complex manifold with associated almost complex structure \(J \). Then \(\pi = \pi_R + i \pi_I \), where \(\pi_R, \pi_I \in \Gamma(\wedge^2 TX) \), is a holomorphic Poisson structure on \(X \) iff the pair \((\pi_I, J)\) is a Poisson Nijenhuis structure and \(\pi_R^2 = \pi_I^2 \circ J^* \).

Proof. First observe that, for all \(f \in C^\infty(X, \mathbb{C}) \) and \(\alpha, \beta \in \Omega^1(X) \), one has

\[
[\alpha, f \beta]_{\pi_R} = (\pi_R^2 \alpha)(f) \beta + f[\alpha, \beta]_{\pi_R}
\]
and

\[[J^* \alpha, f \beta]_{\pi_I} + [\alpha, J^* f \beta]_{\pi_I} - J^* [\alpha, f \beta]_{\pi_I} = (\pi^I_R J^* \alpha)(f) \beta + f(J^* \alpha, \beta)_{\pi_I} + [\alpha, J^* \beta]_{\pi_I} - J^* [\alpha, \beta]_{\pi_I}. \]

Therefore, since by Lemma 2.3 we have \(\pi^I_R = \pi^I_J \circ J^* \), it suffices to check the compatibility condition (2.3) for \(\alpha = df \) or \(df^* \) and \(\beta = dg \) or \(dg^* \) with \(f \) and \(g \in \mathcal{O}_X(U) \).

An easy but cumbersome computation, making use of the relations of Lemma 2.3 and the well-known equivalences

\[f \in \mathcal{O}_X(U) \iff J^* df = idf \iff J^* df^* = -idf^*, \]

shows that the Poisson Nijenhuis compatibility of \(\pi_I \) and \(J \) is equivalent to the closure of \(\mathcal{O}_X(U) \) under the Poisson bracket of functions associated to \(\pi \).

For example, \(\forall f, g \in \mathcal{O}_X(U) \):

\[[J^* df, dg]_{\pi_I} + [df, J^* dg]_{\pi_I} = [df, dg]_{\pi_I} = 0 \]

\[= 2id\{f, g\} - J^* d\{f, g\} = d\{f, g\} + \frac{i}{2} J^* d\{f, g\} - \frac{i}{2} d\{f, g\} \]

\[= \frac{i}{2}(J^* d\{f, g\} - i d\{f, g\}). \]

Theorem 2.7. Given a complex manifold \(X \) with associated almost complex structure \(J \), the following are equivalent:

(a) \(\pi = \pi_R + i\pi_I \in \Gamma(\wedge^2T^{1,0}X) \) is a holomorphic Poisson bivector field;

(b) \((\pi_I, J) \) is a Poisson Nijenhuis structure on \(X \) and \(\pi^I_R = \pi^I_J \circ J^* \);

(c) the endomorphism

\[J_\pi = \begin{pmatrix} J & \pi^I_J \\ 0 & -J^* \end{pmatrix} \]

of \(TM \oplus T^* M \) is a generalized complex structure and \(\pi^I_R = \pi^I_J \circ J^* \).

Proof. (a) \(\iff \) (b) This is Proposition 2.6. (b) \(\iff \) (c) The equivalence follows from [11] Theorem 7.6 (see also [3]).

Remark 2.8. It is well known that a holomorphic Poisson structure gives rise to a generalized complex structure. The holomorphic Poisson tensor is a strong Hamiltonian operator in the sense of Liu-Weinstein-Xu [29], which deforms the Dirac structure on \(T_C X \oplus T^*_C X \) associated to the usual complex structure seen as a generalized complex structure [41] [17] [24].

Remark 2.9. The equivalence of (a) and (b) in Theorem 2.7 was also known to Lu [30].

2.4 Holomorphic symplectic manifolds

Let \((X, \omega) \) be a holomorphic symplectic manifold, where \(\omega \in \Omega^{2,0}(X) \) is the holomorphic symplectic 2-form whose corresponding holomorphic Poisson bivector field is denoted by \(\pi = \pi_R + i\pi_I \in \Gamma(\wedge^2T^{1,0}X) \).

Let \(\omega_R, \omega_I \in \Omega^2(X) \) be the real and imaginary parts of \(\omega \), i.e. \(\omega = \omega_R + i\omega_I \). By the holomorphic Darboux theorem both \(\omega_R \) and \(\omega_I \) are symplectic 2-forms.
Proposition 2.10. The Poisson bivector fields corresponding to ω_R and ω_I are $4\pi_R$ and $-4\pi_I$, respectively.

Proof. The holomorphic Darboux theorem asserts that, in a neighborhood of each point, there exist complex symplectic coordinates $(z_1, \ldots, z_n, z_1', \ldots, z_n')$ so that ω can be written as

$$\omega = \sum_{k=1}^{n} dz_k \wedge dz_k'.$$

In terms of real coordinates, defined by

$$z_k = x_k + iy_k, \quad z_k' = x_k' + iy_k'$$

for $k = 1, \ldots, n$, we have

$$\begin{cases} \omega_R = \sum_{k=1}^{n} (dx_k \wedge dx_k' - dy_k \wedge dy_k') \\ \omega_I = \sum_{k=1}^{n} (dx_k \wedge dy_k' + dy_k \wedge dx_k') \end{cases}$$

By ω_R^{-1} and ω_I^{-1}, we denote the Poisson bivector fields corresponding to ω_R and ω_I, respectively. Thus we have

$$\begin{cases} \pi = -\sum_{k=1}^{n} \frac{\partial}{\partial z_k} \wedge \frac{\partial}{\partial z_k'} \\ \omega_R^{-1} = -\sum_{k=1}^{n} \left(\frac{\partial}{\partial x_k} \wedge \frac{\partial}{\partial x_k'} - \frac{\partial}{\partial y_k} \wedge \frac{\partial}{\partial y_k'} \right) \\ \omega_I^{-1} = -\sum_{k=1}^{n} \left(\frac{\partial}{\partial x_k} \wedge \frac{\partial}{\partial y_k'} + \frac{\partial}{\partial y_k} \wedge \frac{\partial}{\partial x_k'} \right) \end{cases}$$

On the other hand, using the relations $\frac{\partial}{\partial z_k} = \frac{1}{2}(\frac{\partial}{\partial x_k} - i\frac{\partial}{\partial y_k})$ and $\frac{\partial}{\partial z_k'} = \frac{1}{2}(\frac{\partial}{\partial x_k'} - i\frac{\partial}{\partial y_k'})$, it is simple to see that the real and imaginary parts of π are given by

$$\begin{cases} \pi_R = \frac{1}{4} \sum_{k=1}^{n} \left(\frac{\partial}{\partial x_k} \wedge \frac{\partial}{\partial x_k'} - \frac{\partial}{\partial y_k} \wedge \frac{\partial}{\partial y_k'} \right) \\ \pi_I = \frac{1}{4} \sum_{k=1}^{n} \left(\frac{\partial}{\partial x_k} \wedge \frac{\partial}{\partial y_k'} + \frac{\partial}{\partial y_k} \wedge \frac{\partial}{\partial x_k'} \right) \end{cases}$$

The conclusion thus follows immediately. \qed

2.5 Symplectic foliation

Proposition 2.11. Let (X, π) be a holomorphic Poisson manifold, and π_R and π_I the real and imaginary parts of π. Then the symplectic foliations of π_R and π_I coincide, and their leaves are exactly the holomorphic symplectic leaves of π.

Proof. The relation $\pi_R^4 = \pi_I^4 \circ J^*$ implies that π_R and π_I have the same symplectic leaves, for the distributions $\pi_R^4(T^*X)$ and $\pi_I^4(T^*X)$ coincide.

The relation $\pi = \pi_R + i\pi_I = \pi_R + iJ\pi_R$ implies that, for all $\alpha \in (T^{0,1}X)^*$,

$$\pi^2(\alpha) = (\text{id} + iJ)\pi_R^2(\alpha).$$
Since $\alpha = \Re(\alpha) + iJ^\ast \Re(\alpha)$, we obtain:

$$\pi^2(\alpha) = 2(\text{id} + iJ)\pi^1_R(\Re(\alpha)).$$

Taking the real part, we obtain

$$\Re(\pi^2(\alpha)) = 2\pi^1_R(\Re(\alpha)).$$

In particular, the map $T^{0,1}X \to TX$ sending an element to its real part is an isomorphism from the distribution $\pi^2((T^{0,1}X)^\ast)$ to the distribution $\pi^1_R(T^\ast X)$, so that the leaves associated to these distributions coincide.

3 Holomorphic Lie algebroids

3.1 Definition

Holomorphic Lie algebroids were studied for various purposes in the literature. See [3, 15, 21, 6, 44] and references cited there for details. Let us recall its definition below.

The tangent bundle $TX \to X$ of a complex manifold X is naturally a holomorphic vector bundle. We will denote its sheaf of holomorphic sections, i.e. the sheaf of holomorphic vector fields, by Θ_X.

Given a holomorphic vector bundle $A \xrightarrow{\rho} X$, the sheaf of holomorphic sections \mathcal{A} of $A \to X$ is the contravariant functor which associates to an open subset U of X the space $\mathcal{A}(U)$ of holomorphic sections of $A \to X$ over U. Similarly, the sheaf of smooth sections \mathcal{A}_∞ is the contravariant functor $U \to \Gamma(A_U)$. Clearly, \mathcal{A} is a sheaf of \mathcal{O}_X-modules while \mathcal{A}_∞ is a sheaf of $C^\infty(X)$-modules. Moreover \mathcal{A} is a subsheaf of \mathcal{A}_∞.

Definition 3.1. A holomorphic Lie algebroid is a holomorphic vector bundle $A \to X$, equipped with a holomorphic bundle map $A \xrightarrow{\rho} TX$, called the anchor map, and a structure of sheaf of complex Lie algebras on A, such that

(a) the anchor map ρ induces a homomorphism of sheaves of complex Lie algebras from \mathcal{A} to Θ_X;

(b) and the Leibniz identity

$$[V, fW] = (\rho(V)f)W + f[V, W]$$

holds for all $V, W \in \mathcal{A}(U)$, $f \in \mathcal{O}_X(U)$ and all open subsets U of X.

Remark 3.2. Note that in the definition above, the last axiom implies that the anchor map ρ is automatically a holomorphic bundle map once we assume that it is a complex bundle map.

3.2 Underlying real Lie algebroid

By forgetting the complex structure, a holomorphic vector bundle $A \to X$ becomes a real (smooth) vector bundle, and a holomorphic vector bundle map $\rho : A \to TX$ becomes a real (smooth) vector bundle map.

Let $A \to X$ be a holomorphic vector bundle whose underlying real vector bundle is endowed with a Lie algebroid structure $(A, \rho, \llbracket \cdot, \cdot \rrbracket)$ such that, for any open subset $U \subset X$,

(a) $[\mathcal{A}(U), \mathcal{A}(U)] \subset \mathcal{A}(U)$

(b) and the restriction of the Lie bracket $\llbracket \cdot, \cdot \rrbracket$ to $\mathcal{A}(U)$ is \mathbb{C}-linear.
Then the restriction of $[\cdot, \cdot]$ and ρ from $\Gamma(A)$ to \mathcal{A} makes A a holomorphic Lie algebroid.

The following proposition states that any holomorphic Lie algebroid can be obtained out of such a real Lie algebroid, in a unique way.

Proposition 3.3. Given a structure of holomorphic Lie algebroid on the holomorphic vector bundle $A \rightarrow X$ with anchor map $A \xrightarrow{\rho} TX$, there exists a unique structure of real smooth Lie algebroid on the vector bundle $A \rightarrow X$ with respect to the same anchor map ρ such that the inclusion of sheaves $\mathcal{A} \subset \mathcal{A}_\infty$ is a morphism of sheaves of real Lie algebras.

Proof. (i) Unicity. We first prove the unicity. Assume there exist two such Lie algebroid structures on the vector bundle $A \rightarrow X$. The two anchor maps would be equal. And for each open subset U of X, the two brackets would coincide on the subspace $\mathcal{A}(U)$ of $\Gamma(A_U)$. Thus the two brackets would also coincide on the $C^\infty(U, \mathbb{R})$-span of $\mathcal{A}(U)$ inside $\Gamma(A_U)$. But for all trivializing open subsets U of X, $\mathcal{A}(U)$ generates $\Gamma(A_U)$. Hence the two Lie algebroid structures must coincide.

(ii) Existence. We first prove the existence of such a structure of real Lie algebroid. Denote by $j : A \rightarrow \mathcal{A}$ the bundle map defining the fiberwise complex structure on A.

Recall that, given a Lie algebra \mathfrak{h} and a commutative algebra F over a field k together with a Lie algebra homomorphism $\rho : \mathfrak{h} \rightarrow \text{Der}(F)$, the tensor product $F \otimes_k \mathfrak{h}$ is endowed with a natural Lie algebra structure over the field k given by

$$[f \otimes a, g \otimes b] = fg \otimes [a, b] + f\rho(a)g \otimes b - g\rho(b)f \otimes a,$$

for all $a, b \in \mathfrak{h}$, $f, g \in F$. Choose an open subset U of X. Applying the previous general fact to the Lie algebra $\mathcal{A}(U)$, the commutative algebra $C^\infty(U, \mathbb{C})$ and the anchor map $\rho : \mathcal{A}(U) \rightarrow \text{Der}(C^\infty(U, \mathbb{C}))$, one obtains a Lie algebra structure on $C^\infty(U, \mathbb{C}) \otimes_\mathbb{R} \mathcal{A}(U)$. Note that this is a real Lie algebra, since $\mathcal{A}(U) \rightarrow \text{Der}(C^\infty(U, \mathbb{C}))$ is \mathbb{R}-linear but not \mathbb{C}-linear.

Now, for any holomorphic function $h \in \mathcal{O}_X(U)$, it follows from Eq. (4) and the Leibniz identity for the holomorphic Lie algebroid $A \rightarrow X$ that

$$[f \otimes a, gh \otimes b - g \otimes hb] = fgh \otimes [a, b] + fg\rho(a)h \otimes b + f(\rho(a)g)h \otimes b - fg \otimes h[a, b] - fg \otimes (\rho(a)h)b - f(\rho(a)g) \otimes hb.$$

In other words, the elements of type $fh \otimes a - f \otimes ha$, with $f \in C^\infty(U, \mathbb{C})$, $a \in \mathcal{A}(U)$ and $h \in \mathcal{O}_X(U)$, generate an ideal of the Lie algebra $C^\infty(U, \mathbb{C}) \otimes_\mathbb{R} \mathcal{A}(U)$. As a consequence, the Lie bracket given by Eq. (4) induces a Lie algebra structure (over \mathbb{R}) on the quotient $C^\infty(U, \mathbb{C}) \otimes_{\mathcal{O}_X(U)} \mathcal{A}(U)$ of $C^\infty(U, \mathbb{C}) \otimes_\mathbb{R} \mathcal{A}(U)$ by the aforementioned ideal.

There is a natural map $C^\infty(U, \mathbb{C}) \otimes_{\mathcal{O}_X(U)} \mathcal{A}(U) \rightarrow \Gamma(A_U)$ mapping $f \otimes a$ to $\Re(f)a + \Im(f)j(a)$, for all $f \in C^\infty(U, \mathbb{C})$ and $a \in \mathcal{A}(U)$. This is actually an isomorphism if the open subset U of X is trivializing the holomorphic bundle $A|_U \rightarrow U$. Indeed, any smooth section of $A \rightarrow X$ over U can be written as a linear combination $\sum_{k=1}^n f_k a_k$, where $a_k \in \mathcal{A}(U)$ and f_k is a smooth \mathbb{C}-valued function on U. Therefore, $\Gamma(A_U)$ is a Lie algebra. By construction, the previous Lie bracket restricts to a \mathbb{C}-linear bracket on $\mathcal{A}(U)$ and is a Lie-Rinehart algebra over $C^\infty(U)$. Hence, $A|_U$ is a smooth Lie algebroid. By the unicity in (i), one obtains a smooth Lie algebroid $A \rightarrow X$ by gluing $A|_U$ together using an open covering $\{U_i\}$ of X. \hfill \Box

In the sequel, we will use A_R to denote the underlying real Lie algebroid of a holomorphic Lie algebroid A. When referring to holomorphic Lie algebroids, we either use Definition 3.1 or the equivalent one as in Proposition 3.3. In particular, by saying that a real Lie algebroid is a holomorphic Lie algebroid, we mean that it is a holomorphic vector bundle and its Lie bracket on smooth sections restricts to a \mathbb{C}-linear bracket on $\mathcal{A}(U)$, for all open subset $U \subset X$.

10
3.3 Underlying imaginary Lie algebroid

Assume that \((A \to X, \rho, [\cdot, \cdot])\) is a holomorphic Lie algebroid. Consider the bundle map \(j : A \to A\) defining the fiberwise complex structure on \(A\). We compute the Nijenhuis torsion of \(j\) by considering \(A\) as a real Lie algebroid \(A_R\).

Proposition 3.4. Let \((A \to X, \rho, [\cdot, \cdot])\) be a holomorphic Lie algebroid and \(j : A_R \to A_R\) its associated endomorphism. Then the Nijenhuis torsion of \(j\) vanishes.

Proof. Since \(T(j)\) is a section in \(\Lambda^2 A^*_R \otimes A_R\), it suffices to prove that \(T(j)(V, W) = 0\) for any holomorphic sections \(V, W \in \mathcal{A}(U)\), where \(U \subset X\) is any open subset. This however follows immediately from the \(\mathbb{C}\)-linearity of \([\cdot, \cdot]\) on \(\mathcal{A}(U)\):

\[
[V, jW] = j[V, W] = [jV, W], \quad \forall V, W \in \mathcal{A}(U).
\]

Since the Nijenhuis torsion of \(j : A_R \to A_R\) vanishes, one can define a new (real) Lie algebroid structure on \(A\), denoted by \((A \to X, \rho_j, [\cdot, \cdot]_j)\), where the anchor \(\rho_j = \rho \circ j\) and the bracket on \(\Gamma(A)\) is given by

\[
[V, W]_j = [jV, W] + [V, jW] - j[V, W], \quad \forall V, W \in \Gamma(A).
\]

In the sequel, \((A \to X, \rho_j, [\cdot, \cdot]_j)\) will be called the **underlying imaginary Lie algebroid** and denoted by \(A_I\). It is known that \(j : A_I \to A_R\) is a Lie algebroid isomorphism.

3.4 Associated complex Lie algebroids

Let \((A \to X, [\cdot, \cdot], \rho)\) be a holomorphic Lie algebroid. Complexifying its underlying real Lie algebroid (which was described in Proposition 3.3) by extending the anchor map and the Lie bracket \(\mathbb{C}\)-linearly, we obtain a complex Lie algebroid:

\[
\begin{array}{ccc}
A_C & \xrightarrow{\rho_C} & T_C X \\
\downarrow & & \downarrow \\
X & \text{ } & \\
\end{array}
\]

where \(A_C = A \otimes \mathbb{C}\). Extending \(\mathbb{C}\)-linearly the bundle map \(j : A \to A\), we obtain a map of complex vector bundles \(j : A_C \to A_C\) such that \(j^2 = -\text{id}\). Let \(A^{1,0} \to X\) and \(A^{0,1} \to X\) be its eigenbundles with eigenvalues \(i\) and \(-i\) respectively. It follows from Proposition 3.4 that \(\Gamma(A^{1,0})\) and \(\Gamma(A^{0,1})\) are Lie subalgebras of \(\Gamma(A_C)\). Hence \(A^{1,0}\) and \(A^{0,1}\) are complex Lie subalgebroids of \(A_C\). Note that the map

\[
A \to A^{1,0} : a \mapsto \frac{1}{2}(a - ij(a))
\]

is an isomorphism of complex vector bundles. Hence by pulling back all the structures, one obtains a complex Lie algebroid structure on the same complex vector bundle \(A \to X\). Similarly, \(a \mapsto \frac{1}{2}(a + ij(a))\) is an isomorphism of complex vector bundles \(A \to A^{0,1}\). Hence \(A \to X\) admits another complex Lie algebroid structure. The following proposition describes these complex Lie algebroids explicitly. Its proof is a simple computation and is left to the reader.
Therefore, where both sides are considered as sections of A.

Now we consider the bracket. For this purpose, let $\Phi \in T \times X \rightarrow T X$ be its corresponding holomorphic Lie algebroid, which can be defined in a similar way as in the smooth case. To be more precise, let Φ and Ψ, respectively, be the holomorphic bundle maps

$$\Phi : T X \rightarrow T^{1,0} X, \Phi = \frac{1}{2}(1 - iJ)$$

and

$$\Psi : T^* X \rightarrow (T^{1,0} X)^*, \Psi = 1 - iJ^*,$$

where J is the almost complex structure on X. Define the anchor $\rho : (T^* X)_\pi \rightarrow TX$ to be $\rho = \Phi^{-1} \circ \pi^\# \circ \Psi$ and the bracket

$$[\alpha, \beta]_\pi = L_{\rho^\pi} \beta - L_{\rho^\pi} \alpha - d(\rho\alpha, \beta)$$

$\forall \alpha, \beta \in \Gamma(T^* X[U])$ holomorphic.

Its associated complex Lie algebroid $A^{1,0}$ will be denoted $(T^{1,0} X)_\pi^*$ since its underlying complex vector bundle is $(T^{1,0} X)^*$. The following lemma is obvious.

Lemma 3.6. For the associated complex Lie algebroid $(T^{1,0} X)_\pi^*$, the anchor map is

$$(T^{1,0} X)^* \xrightarrow{\pi^*_\pi} T C X$$

and the bracket on $\Omega^{1,0}(X)$ is given by

$$[\xi^{1,0}, \eta^{1,0}] = L_{\pi^* \xi^{1,0}} \eta^{1,0} - L_{\pi^* \eta^{1,0}} \xi^{1,0} - \partial \pi(\xi^{1,0}, \eta^{1,0}), \forall \xi^{1,0}, \eta^{1,0} \in \Omega^{1,0}(X).$$

The following proposition describes the underlying real and imaginary Lie algebroids of $(T^* X)_\pi$.

Proposition 3.7. Let (X, π) be a holomorphic Poisson manifold, where $\pi = \pi_R + i\pi_I \in \Gamma(\wedge^2 T^{1,0} X)$. Then the underlying real and imaginary Lie algebroids of $(T^* X)_\pi$ are isomorphic to $(T^* X)_{4\pi_R}$ and $(T^* X)_{4\pi_I}$, respectively.

Proof. First, let us consider the anchor map $\rho : (T^* X)_\pi \rightarrow TX$ as a bundle map of real vector bundles. Clearly we have

$$\rho = \Phi^{-1} \circ \pi^\# \circ \Psi = \Phi^{-1} \circ \pi_R^\# \circ (1 - iJ^*) \circ (1 - iJ^*) = 4\pi_R^\#.$$

Now we consider the bracket. For this purpose, let A_R be its underlying real Lie algebroid and A_C the complexification of A_R. Note that for any holomorphic functions $f, g \in \mathcal{O}_X(U)$, we have

$$[d f, d g]_{\pi_R} = d\{f, g\},$$

where both sides are considered as sections of A_C. It thus follows, from Corollary 2.3 that

$$\Re [d f, d g]_{\pi_R} = d\Re \{f, g\} = 4 d\Re (f, \Re g)_{\pi_R} = 4 d\Re(f, \Re g)_{\pi_R}.$$

Therefore, A_R is isomorphic to $(T^* X)_{4\pi_R}$.

Finally note that the Nijenhuis structure $j : A_R \rightarrow A_R$ in Section 3.3 is simply J^*. It thus follows that $(A_R)_j$ is isomorphic to $(T^* X)_{4\pi_I}$ using Theorem 2.7. □
3.6 Holomorphic Lie-Poisson structures

Similar to the smooth case, there is also another equivalent definition of holomorphic Lie algebroids. The proof is similar to the smooth case, and is left to the reader. Note that the complex dual $\text{Hom}_C(A, C)$ of a holomorphic vector bundle $A \to X$ is again a complex manifold, which is also a holomorphic vector bundle over X. We denote by $p : \text{Hom}_C(A, C) \to X$ the projection onto the base manifold. There is a one-one correspondence between holomorphic sections $V \in \mathcal{A}(U)$ and fiberwise-linear holomorphic functions l_V on $\text{Hom}_C(A|_U, C)$:

$$l_V(\alpha) = \alpha(V|_{p(\alpha)}).$$

Proposition 3.8. Let $A \to X$ be a holomorphic vector bundle. The following are equivalent:

(a) A is a holomorphic Lie algebroid;

(b) there exists a fiberwise-linear holomorphic Poisson structure on $\text{Hom}_C(A, C)$.

Here the Lie algebroid structure on $(A, \rho, [\cdot, \cdot])$ and the Poisson structure on $\text{Hom}_C(A, C)$ are related by the following equations:

$$\{p^*f, l_V\} = p^*(\rho(V)(f))$$
$$\{l_V, l_W\} = l_{[V,W]}$$

for any $V, W \in \mathcal{A}(U)$ and $f \in \mathcal{O}_X(U)$, where $p : \text{Hom}_C(A, C) \to X$ is the projection.

Summarizing the discussions above, we get the main result of this section.

Theorem 3.9. Let $A \to X$ be holomorphic vector bundle. There is a one-to-one correspondence between:

(a) holomorphic Lie algebroid structures on $A \to X$,

(b) fiberwise-linear holomorphic Poisson structures on $\text{Hom}_C(A, C)$.

3.7 Real and imaginary parts of a holomorphic Lie-Poisson structure

Any complex vector space V can be equivalently thought of as a real vector space with an \mathbb{R}-linear endomorphism j, such that $j^2 = -1$, representing the multiplication by the imaginary number $\sqrt{-1}$.

Given a complex vector space V, its complex dual space is the set of morphisms $\text{Hom}_C(V, C)$ from V to C in the category of complex vector spaces. Similarly, its real dual space is the set of morphisms $\text{Hom}_R(V, \mathbb{R})$ from V to \mathbb{R} in the category of real vector spaces. Clearly, $\text{Hom}_C(V, C)$ is a vector space over \mathbb{C} while $\text{Hom}_R(V, \mathbb{R})$ is a vector space over \mathbb{R}.

The map $\text{Hom}_R(V, \mathbb{R}) \to \text{Hom}_C(V, C) : f \mapsto (1 - ij^*)f$ is an isomorphism of real vector spaces. Indeed, $g \in \text{Hom}_C(V, C)$ if and only if $g = (1 - ij^*)f$ with $f = \mathbb{R} \circ g \in \text{Hom}_R(V, \mathbb{R})$.

Given a complex vector bundle $A \to X$, we denote its complex and real dual bundles by $\text{Hom}_C(A, C) \to X$ and $\text{Hom}_R(A, \mathbb{R}) \to X$, respectively. Applying the previous isomorphism fiberwise yields the isomorphism of real vector bundles $\Psi = 1 - ij^*$:

$$\begin{array}{ccc}
\text{Hom}_R(A, \mathbb{R}) & \xrightarrow{\Psi} & \text{Hom}_C(E, \mathbb{C}) \\
\text{Hom}_R(A, \mathbb{R}) & \xrightarrow{\Psi} & \text{Hom}_C(E, \mathbb{C})
\end{array}$$

(10)
Here \(p_C \) and \(p_R \) denote the projections of the vector bundles \(\text{Hom}_C(A, \mathbb{C}), \text{Hom}_R(A, \mathbb{R}) \) onto their base \(X \). Note that \(\Psi^{-1}(\xi) = \Re \circ \xi \).

We consider a holomorphic Lie algebroid \((A \to X, \rho, [,\cdot]) \). According to Proposition 3.8, the complex dual bundle \(\text{Hom}_C(A, \mathbb{C}) \) is a fiberwise linear holomorphic Poisson manifold, whose holomorphic Poisson tensor is denoted by \(\pi \). Let \(\pi_R \) and \(\pi_I \) be its real and imaginary parts. Then \(\pi_R := \Psi^{-1}_R \pi_R \) and \(\pi_I := \Psi^{-1}_I \pi_I \) are fiberwise \(\mathbb{R} \)-linear Poisson tensors on the real dual bundle \(\text{Hom}_R(A, \mathbb{R}) \). These Poisson structures therefore correspond to real Lie algebroids on \(A \to X \), which are denoted by \((A \to X, \rho_R, [,\cdot]|_R) \) or \(A_R \) and \((A \to X, \rho_3, [,\cdot]|_3) \) or \(A_3 \), respectively. The following Proposition identifies these Lie algebroids with those discussed in Section 3.3.

Proposition 3.10. Let \((A \to X, \rho, [,\cdot]) \) be a holomorphic Lie algebroid.

(a) The Lie algebroid \((A \to X, 4\rho_R, 4[,\cdot]|_R) \) is isomorphic to the real Lie algebroid \(A_R \);

(b) The Lie algebroid \((A \to X, -4\rho_3, -4[,\cdot]|_3) \) is isomorphic to the imaginary Lie algebroid \(A_I \).

Proof. First, we fix some notations. Any section \(V \in \Gamma(A) \) can be thought of as a fiberwise \(\mathbb{C} \)-linear (resp. \(\mathbb{R} \)-linear) function on \(\text{Hom}_C(A, \mathbb{C}) \) (resp. \(\text{Hom}_R(A, \mathbb{R}) \)), which we denote by \(l_V \) (resp. \(l'_V \)).

For all \(V \in \Gamma(A) \) and \(f \in \text{Hom}_R(A, \mathbb{R}) \), we have

\[
(\Psi^*l_V)(f) = l_V(f - i(j(f))) = f(V) - i f(j(V)) = l'_V(f) - i l'_V(f).
\]

Thus

\[
\begin{cases}
\Re(\Psi^* l_V) = l'_V \\
\Im(\Psi^* l_V) = -l'_V.
\end{cases}
\] \hspace{1cm} (11)

First we look at the anchor map \(\rho_R \). Given any \(x \in X \), \(\alpha \in A_x \) and \(\eta \in T_x^* X \), to compute \(\langle \eta, \rho_R(\alpha) \rangle \), we choose an open neighborhood \(U \subset X \) containing \(x \), a holomorphic section \(V \in \mathcal{A}(U) \) through \(\alpha \), and a holomorphic function \(f \in \mathcal{O}_X(U) \) with \(d(\Re(f))|_x = \eta \).

Consider the relation

\[
p_C^*\big(\rho(V)f\big) = \{ p_C^* f, l_V \}
\]

from Proposition 3.8. Taking the real part, we obtain, by Corollary 2.4

\[
p_C^*(\rho(V)\Re(f)) = 4\{ p_C^* \Re(f), \Re(l_V) \}_R.
\]

Applying \(\Psi^* \) to both sides and using Eqs. (10) and (11), we have

\[
p^*_C\big(\rho(V)\Re(f)\big) = \Psi^* p_C^*(\rho(V)\Re(f)) = 4\Psi^* \{ p_C^* \Re(f), \Re(l_V) \}_R
\]

\[
= 4\{ \Psi^* p_C^* \Re(f), \Re(\Psi^* l_V) \}_R = 4\{ p_C^* \Re(f), l'_V \}_R = 4p_R^* (\rho_R(V)\Re(f)).
\]

Hence it follows that

\[
\rho(V)\Re(f) = 4\rho_R(V)\Re(f)
\]

and

\[
\langle \eta, 4\rho_R(\alpha) \rangle = \langle \eta, \rho(\alpha) \rangle.
\]

We now identify the anchor map \(\rho_3 \). Taking the imaginary part of the relation

\[
p_C^*\big(\rho(V)f\big) = \{ p_C^* f, l_V \}
\]

from Proposition 3.8 we obtain

\[
p_C^*(\rho(V)\Im(f)) = 4\{ p_C^* f, l_V \}_I
\]
by Corollary \[2.4\] Applying \(\Psi^* \) to both sides and making use of (10) and (11), we get:

\[
p_\mathbb{R}(\rho(V)\mathfrak{z}(f)) = \Psi^*p_\mathbb{C}(\rho(V)\mathfrak{z}(f)) = -4\Psi^*\{p_\mathbb{C}\mathfrak{z}(f), \mathfrak{z}(l_V)\}_\mathfrak{A} = -4\{\Psi^*p_\mathbb{C}\mathfrak{z}(f), \Psi^*(l_V)\}_\mathfrak{A} = 4\{p_\mathbb{R}\mathfrak{z}(f), l'_V\}_\mathfrak{A}.
\]

It follows that

\[
\rho(V)\mathfrak{z}(f) = 4\rho_\mathfrak{A}(jV)\mathfrak{z}(f),
\]

which implies that \(4\rho_\mathfrak{A} = -\rho_j \).

We now consider the Lie brackets. Choose an open neighborhood \(U \subset X \) such that the holomorphic vector bundle \(A|_U \to U \) is trivial. Since the module of smooth sections of \(A|_U \) is generated (over \(C^\infty(U, \mathbb{R}) \)) by the holomorphic sections, it suffices to show that the bracket \(4[V, W]_\mathbb{R} \) (resp. \(-4[V, W]_\mathfrak{A} \)) is equal to \([V, W] \) (resp. \([V, W]_j \)), for any two holomorphic sections \(V, W \in A(U) \).

According to Proposition \[3.8\] we have

\[
\{l_V, l_W\} = l_{[V,W]} \quad \forall V, W \in A(U).
\]

By Corollary \[2.4\] we obtain

\[
\Re\{l_{[V,W]}\} = \Re\{l_V, l_W\} = 4\{\Re(l_V), \Re(l_W)\}_\mathbb{R}.
\]

Therefore, applying \(\Psi^* \) to both sides, we get

\[
\Re(\Psi^*l_{[V,W]}) = 4\Psi^*\{\Re(l_V), \Re(l_W)\}_\mathbb{R} = 4\{\Re(\Psi^*l_V), \Re(\Psi^*l_W)\}_\mathbb{R}
\]

and, using (11), we obtain

\[
l'_{[V,W]} = 4\{l'_V, l'_W\}_\mathbb{R}.
\]

Hence it follows that \(4[V, W]_\mathbb{R} = [V, W] \).

We now turn our attention to the Lie bracket \([\cdot, \cdot]_\mathfrak{A} \). Taking the imaginary part of Eq. (12) and applying \(\Psi^* \) to both sides, it follows from Corollary \[2.4\] that

\[\begin{align*}
4\{\Im(\Psi^*l_V), \Im(\Psi^*l_W)\}_\mathfrak{A} &= \Im(\Psi^*[V,W]).
\end{align*}\]

Hence, using Eq. (11), we obtain

\[
4l'_{[V,W]}_\mathfrak{A} = 4\{l'_V, l'_W\}_\mathfrak{A} = l'_{[V,W]}.
\]

Therefore,

\[
4[jV, jW]_\mathfrak{A} = j[V, W]
\]

and

\[
[V, W]_j = j^{-1}[jV, jW] = -4[V, W]_\mathfrak{A}.
\]

This completes the proof. \[\Box\]

Remark 3.11. In particular, given a Lie algebra \(g \) over \(\mathbb{C} \), its complex dual \(\text{Hom}_\mathbb{C}(g, \mathbb{C}) \) is a holomorphic Poisson manifold. The isomorphism \(\text{Hom}_\mathbb{R}(g, \mathbb{R}) \overset{\Psi}{\to} \text{Hom}_\mathbb{C}(g, \mathbb{C}) \) maps the Lie-Poisson structure on \(\text{Hom}_\mathbb{R}(g, \mathbb{R}) \) corresponding to the Lie algebra bracket \(v \otimes w \mapsto \frac{1}{2}[v, w] \) (resp. \(v \otimes w \mapsto -\frac{1}{2}j[v, w] \)) on \(g \) to the real (resp. imaginary) part of the holomorphic Poisson structure on \(\text{Hom}_\mathbb{C}(g, \mathbb{C}) \). Here \(j : g \to g \) is the \(\mathbb{R} \)-linear operator representing the scalar multiplication by \(\sqrt{-1} \in \mathbb{C} \).

This is an immediate consequence of the relations

\[
\{l'_V, l'_W\}_\mathbb{R} = \frac{1}{4}[V, W], \quad \{l'_V, l'_W\}_\mathfrak{A} = \frac{1}{4}[V, W],
\]

and the following fact: since here, the holomorphic vector bundle \(A \to X \) is reduced to the vector space \(g \), all elements \(V, W \) of \(g \) are automatically holomorphic sections and, we have

\[
[V, W]_j = [jV, W] + [V, jW] - j[V, W] = j[V, W]
\]

since the restriction of the Lie bracket to the holomorphic sections is \(\mathbb{C} \)-linear.
4 Holomorphic Lie algebroid cohomology and holomorphic Poisson cohomology

4.1 Matched pairs

The notion of matched pairs of Lie algebroids was introduced by Lu in her classification of Poisson group actions \[31\], and further studied by Mokri \[36\] and Mackenzie \[32\].

Definition 4.1. A matched pair of Lie algebroids is a pair of (complex or real) Lie algebroids \(A\) and \(B\) over the same base manifold \(M\), where \(B\) is an \(A\)-module and \(A\) is a \(B\)-module such that the following identities hold:

\[
[a(X), b(Y)] = -a(\nabla_Y X) + b(\nabla_X Y),
\]

\[
\nabla_X [Y_1, Y_2] = [\nabla_X Y_1, Y_2] + [Y_1, \nabla_X Y_2] + \nabla_{\nabla_Y X_1} Y_2 - \nabla_{\nabla_Y X_2} Y_1,
\]

\[
\nabla_Y [X_1, X_2] = [\nabla_Y X_1, X_2] + [X_1, \nabla_Y X_2] + \nabla_{\nabla_X X_1} Y_2 - \nabla_{\nabla_X X_2} Y_1,
\]

where \(X_1, X_2, X \in \Gamma(A)\) and \(Y_1, Y_2, Y \in \Gamma(B)\). Here, \(a\) and \(b\) are the anchor maps of \(A\) and \(B\), respectively, and \(\nabla\) denotes both the representation

\[\Gamma(A) \otimes \Gamma(B) \rightarrow \Gamma(B) : (X, Y) \mapsto \nabla_X Y\]

of \(A\) on \(B\) and the representation

\[\Gamma(B) \otimes \Gamma(A) \rightarrow \Gamma(A) : (Y, X) \mapsto \nabla_Y X\]

of \(B\) on \(A\).

Theorem 4.2 \([36, 32]\). Given a matched pair \((A, B)\) of Lie algebroids, there is a Lie algebroid structure \(A \bowtie \bowtie \bowtie B\) on the direct sum vector bundle \(A \oplus \oplus B\), with anchor \(c(X \oplus Y) = a(X) + b(Y)\) and bracket

\[X_1 \oplus Y_1, X_2 \oplus Y_2 = ([X_1, X_2] + \nabla_Y X_2 - \nabla_X Y_1) \oplus ([Y_1, Y_2] + \nabla_X Y_2 - \nabla_Y X_1).
\]

Conversely, if \(A \oplus \oplus B\) has a Lie algebroid structure for which \(A \oplus 0\) and \(0 \oplus B\) are Lie subalgebroids, then the representations \(\nabla\) defined by

\[\nabla_{X \oplus 0} \nabla_{0 \oplus Y} = -\nabla_Y X \oplus \nabla_X Y\]

endow the pair \((A, B)\) with a matched pair structure.

See \[32\] for more details.

Example 4.3. Let \(X\) be a complex manifold. Then \((T^{0,1}X, T^{1,0}X)\) is a matched pair, where the actions are given by

\[\nabla_{X^{0,1}} X^{1,0} = pr^{1,0}[X^{0,1}, X^{1,0}] \quad \text{and} \quad \nabla_{X^{1,0}} X^{0,1} = pr^{0,1}[X^{1,0}, X^{0,1}],\]

for all \(X^{0,1} \in \mathfrak{X}^{0,1}(X)\) and \(X^{1,0} \in \mathfrak{X}^{1,0}(X)\). Hence \(T^{0,1}X \bowtie \bowtie T^{1,0}X\) and \(T_C X\) are isomorphic as complex Lie algebroids.

More generally, given a holomorphic Lie algebroid \(A\), the pair \((A^{0,1}, A^{1,0})\) is a matched pair of Lie algebroids and \(A^{0,1} \bowtie \bowtie A^{1,0}\) is isomorphic, as a complex Lie algebroid, to \(A_C\).
Let A and B be two (complex or real) Lie algebroids over the same base manifold M. Assume B is an A-module and A is a B-module, both representations being abusively denoted by the same symbol ∇. And define

$$F(X; Y) := [a(X), b(Y)] + a(\nabla_Y X) - b(\nabla_X Y),$$

$$S(X; Y_1, Y_2) := [\nabla_X Y_1, Y_2] + [Y_1, \nabla_X Y_2] - \nabla_X [Y_1, Y_2] + \nabla_{Y_2, X} Y_1 - \nabla_{Y_1, X} Y_2,$$

$$T(Y; X_1, X_2) := [\nabla_Y X_1, X_2] + [X_1, \nabla_Y X_2] - \nabla_Y [X_1, X_2] + \nabla_{X_2, Y} X_1 - \nabla_{X_1, Y} X_2,$$

where a and b are the respective anchor maps of A and B, while $X_1, X_2, X \in \Gamma(A)$ and $Y_1, Y_2, Y \in \Gamma(B)$. The following result can be verified directly.

Lemma 4.4. For any (complex or real-valued) function f on M, we have:

$$F(f X; Y) = f F(X; Y)$$

$$S(f X; Y_1, Y_2) = f S(X; Y_1, Y_2)$$

$$T(f Y; X_1, X_2) = f T(Y; X_1, X_2)$$

and

$$S(X; f Y_1, Y_2) = f S(X; Y_1, Y_2) + F(X; Y_2)(f)Y_1$$

$$T(Y; f X_1, X_2) = f T(Y; X_1, X_2) - F(X_2; Y)(f)X_1.$$

Moreover, S and T are skew-symmetric in their last two arguments.

4.2 Cohomology of a matched pair

Proposition 4.5. Let A and B be a pair of Lie algebroids over M with mutual actions ∇. The pair (A, B) is a matched pair iff the diagram

$$\begin{array}{ccc}
\Gamma(\wedge^k A^* \otimes \wedge^l B^*) & \xrightarrow{\partial_A} & \Gamma(\wedge^{k+1} A^* \otimes \wedge^l B^*) \\
\partial_B & & \partial_B \\
\Gamma(\wedge^k A^* \otimes \wedge^{l+1} B^*) & \xrightarrow{\partial_B} & \Gamma(\wedge^{k+1} A^* \otimes \wedge^{l+1} B^*)
\end{array}$$

(17)

commutes, where ∂_A and ∂_B denote the Lie algebroid cohomology differential operators of A with values in the module $\wedge^* B^*$ and of B with values in the module $\wedge^* A^*$, respectively.

Here, if $\alpha \in \Gamma(\wedge^k A^* \otimes \wedge^l B^*)$, ∂_A and ∂_B are given by

$$\partial_A \alpha = (\partial_A \alpha) (A_0, \ldots, A_k, B_1, \ldots, B_l)$$

$$= \sum_{i=0}^{k} (-1)^i \left(a(A_i) \alpha (A_0, \ldots, \hat{A}_i, \ldots, A_k, B_1, \ldots, B_l) - \sum_{j=1}^{l} \alpha (A_0, \ldots, \hat{A}_i, \ldots, A_k, B_1, \ldots, \nabla_{A_i} B_j, \ldots, B_l) \right)$$

$$+ \sum_{i<j} (-1)^{i+j} \alpha ([A_i, A_j], A_0, \ldots, \hat{A}_i, \ldots, \hat{A}_j, \ldots, A_k, B_1, \ldots, B_l)$$

(18)
and
\[
(\partial_B \alpha)(A_1, \ldots, A_k, B_0, \ldots, B_l) \\
= \sum_{i=0}^{l} (-1)^i \left(b(B_i) \alpha(A_1, \ldots, A_k, B_0, \ldots, \widehat{B_i}, \ldots, B_l) \\
- \sum_{j=1}^{k} \alpha(A_1, \ldots, \nabla_B A_j, \ldots, A_k, B_0, \ldots, \widehat{B_i}, \ldots, B_l) \right) \\
+ \sum_{i<j} (-1)^{i+j} \alpha(A_1, \ldots, A_k, [B_i, B_j], B_0, \ldots, \widehat{B_i}, \ldots, \widehat{B_j}, \ldots, B_l).
\]

(19)

Proof. ⇒ If the pair \((A, B)\) is a matched pair, then the direct sum \(A \oplus B\) is a Lie algebroid with bracket given by (16). And the corresponding Lie algebroid differential
\[
\Gamma(\Lambda^\bullet(A \oplus B)^*) \xrightarrow{d_{A \oplus B}} \Gamma(\Lambda^{\bullet+1}(A \oplus B)^*),
\]
defined by
\[
(d_{A \oplus B} \alpha)(C_0, \ldots, C_n) = \sum_{i=0}^{n} (-1)^i \alpha(C_i) \left(\alpha(C_0, \ldots, \widehat{C_i}, \ldots, C_n) \right) \\
+ \sum_{i<j} (-1)^{i+j} \alpha([C_i, C_j], C_0, \ldots, \widehat{C_i}, \ldots, \widehat{C_j}, \ldots, C_n),
\]
satisfies \(d_{A \oplus B}^2 = 0\). Now, remember that
\[
\Lambda^n(A \oplus B)^* = \bigoplus_{k+l=n} \Lambda^k A^* \otimes \Lambda^l B^*.
\]

It is easy to see that
\[
d_{A \oplus B}(\Gamma(\Lambda^k A^* \otimes \Lambda^l B^*)) \subset \Gamma(\Lambda^{k+2} A^* \otimes \Lambda^{l-1} B^*) \oplus \Gamma(\Lambda^{k+1} A^* \otimes \Lambda^l B^*) \\
\oplus \Gamma(\Lambda^k A^* \otimes \Lambda^{l+1} B^*) \oplus \Gamma(\Lambda^{k-1} A^* \otimes \Lambda^{l+2} B^*).
\]

Moreover, since \(A\) and \(B\) are Lie subalgebroids of \(A \rhd B\), the stronger relation
\[
d_{A \oplus B}(\Gamma(\Lambda^k A^* \otimes \Lambda^l B^*)) \subset \Gamma(\Lambda^{k+1} A^* \otimes \Lambda^l B^*) \oplus \Gamma(\Lambda^{k+1} A^* \otimes \Lambda^{l+1} B^*)
\]
holds. Composing \(d_{A \oplus B}\) with the natural projections on each of the direct summands, we get the commutative diagram below:

\[
\begin{array}{c}
\Gamma(\Lambda^k A^* \otimes \Lambda^l B^*) \\
\downarrow \partial_A \\
\end{array}
\begin{array}{c}
\Gamma(\Lambda^{k+1} A^* \otimes \Lambda^l B^*) \\
\downarrow d_{A \oplus B} \\
\end{array}
\begin{array}{c}
\Gamma(\Lambda^{k+1} A^* \otimes \Lambda^l B^*) \\
\downarrow (-1)^k \partial_B \\
\end{array}
\begin{array}{c}
\Gamma(\Lambda^{k+1} A^* \otimes \Lambda^{l+1} B^*) \\
\end{array}
\end{array}
\]

where \(\partial_A\) and \(\partial_B\) are the coboundary operators given by (18) and (19). From \(d_{A \oplus B}^2 = 0\), it follows that \(\partial_A^2 = 0\), \(\partial_B^2 = 0\) and \(\partial_A \circ \partial_B = \partial_B \circ \partial_A\).

⇐ Conversely, given the commutative diagram (17), one can define an operator
\[
\Gamma(\Lambda^\bullet(A \oplus B)^*) \xrightarrow{d_{A \oplus B}} \Gamma(\Lambda^{\bullet+1}(A \oplus B)^*),
\]

18
whose restriction to $\Gamma(\wedge^k A^* \otimes \wedge^l B^*)$ is $\partial_A + (-1)^k \partial_B$. Clearly, $d_{\text{Abs}}^2 = 0$ and $(\Gamma(\wedge^* (A \oplus B)^*), \ d_{\text{Abs}})$ is a differential graded algebra. Hence it follows that $A \oplus B$ admits a Lie algebroid structure with associated differential d_{Abs}. Moreover,

$$d_{\text{Abs}} \Gamma(\wedge^k A^* \otimes \wedge^l B^*) \subset \Gamma(\wedge^{k+1} A^* \otimes \wedge^l B^*) \oplus \Gamma(\wedge^k A^* \otimes \wedge^{l+1} B^*).$$

Therefore, $\Gamma(A)$ and $\Gamma(B)$ are closed under the Lie algebroid bracket on $A \oplus B$. The subbundles A and B are thus Lie subalgebroids of $A \oplus B$. We conclude that the pair (A, B) is a matched pair of Lie algebroids.

Proposition 4.6. The Lie algebroid cohomology of $A \bowtie B$ (with trivial coefficients) is isomorphic to the total cohomology of the double complex $\{\}$.

Proof. This is an immediate consequence of the following fact, which was already pointed out in the proof of Proposition 4.5: the restriction of the cohomology operator

$$\Gamma(\wedge^* (A \oplus B)^*) \xrightarrow{d_{\text{Abs}}} \Gamma(\wedge^{*+1} (A \oplus B)^*)$$

to the subspace $\Gamma(\wedge^k A^* \otimes \wedge^l B^*)$ of $\Gamma(\wedge^{k+1} (A \oplus B)^*)$ is $\partial_A + (-1)^k \partial_B$.

4.3 Canonical complex Lie algebroid associated to a holomorphic Lie algebroid

The following result is standard, for instance, see [22] [1].

Lemma 4.7. Let E be a complex vector bundle over a complex manifold X. Then E is a holomorphic vector bundle if, and only if, E is a $T^{0,1}X$-module — i.e. there exists a flat $T^{0,1}X$-connection on E:

$$\Gamma(T^{0,1}X) \otimes \Gamma(E) \to \Gamma(E) : (X, \varepsilon) \mapsto \nabla_X \varepsilon.$$

Proof. \Rightarrow Let \mathcal{E} denote the sheaf of holomorphic sections of $E \to X$. For all $U \subset X$ open and $\sigma \in \mathcal{E}(U)$, set $\nabla_X \sigma = 0$, $\forall X \in \Gamma(T^{0,1}X|_U)$. Then ∇ extends to all smooth sections of E by

$$\nabla_X (f \varepsilon) = X(f) \varepsilon + f \nabla_X \varepsilon$$

since $\Gamma(E|_U)$ is generated by $\mathcal{E}(U)$ over $C^\infty(U, \mathbb{C})$. One easily sees that ∇ is a flat $T^{0,1}X$-connection.

\Leftarrow Let ∇ denote the representation of $T^{0,1}X$ on E. And define the sheaf \mathcal{E} over X by

$$\mathcal{E}(U) = \{ \sigma \in \Gamma(E|_U)|\nabla_X \sigma = 0, \forall X \in \Gamma(T^{0,1}X|_U) \},$$

for all $U \subset X$ open. If $\sigma \in \mathcal{E}(U)$, then

$$\nabla_X (f \sigma) = X(f) \sigma + f \nabla_X \sigma = X(f) \sigma,$$

for all $X \in \Gamma(T^{0,1}X|_U)$. Hence $f \sigma \in \mathcal{E}(U)$ if $f \in \mathcal{O}_X(U)$. Thus \mathcal{E} is a sheaf of \mathcal{O}_X-modules. Since ∇ is flat, given any $e \in E_x$, there exists a neighborhood U of x and a local section $\sigma \in \mathcal{E}(U)$ through e. Hence there exists a holomorphic vector bundle structure on E with \mathcal{E} as sheaf of holomorphic sections.

Now we can state the main result of this section.
We define a new Lie algebroid structure \(A \) as anchor map and such that the Lie brackets of \(A \) satisfy the matched pair axioms (13) to (15). (It remains to prove that the pair \((T^{0,1}X, A^{1,0}) \) is naturally a matched pair of complex Lie algebroids. Conversely, given a complex manifold \(X \) and a matched pair \((T^{0,1}X, B) \), where \(B \) is a complex Lie algebroid over \(X \) whose anchor takes its values in \(T^{1,0}X \), there exists a holomorphic Lie algebroid \(A \) such that \(B \cong A^{1,0} \) as complex Lie algebroids.

Proof. Let \(\rho \) denote the anchor map of \(A \). Since \(A \) is a holomorphic vector bundle, by Lemma 4.7 the complex vector bundle \(A^{1,0} \) is a \(T^{0,1}X \)-module. This gives a representation

\[
\Gamma(T^{0,1}X) \otimes \Gamma(A^{1,0}) \to \Gamma(A^{1,0}) : (X, \eta) \mapsto \nabla_X \eta
\]

of \(T^{0,1}X \) on \(A^{1,0} \). On the other hand, the \(\mathbb{C} \)-linear extension of the anchor map \(\rho : A \to TX \) induces a complex vector bundle map \(\rho : A^{1,0} \to T^{1,0}X \), which is a morphism of complex Lie algebroids. Similar to the situation of Example 4.3, the map

\[
\Gamma(A^{1,0}) \otimes \Gamma(T^{0,1}X) \to \Gamma(T^{0,1}X) : (\eta, X) \mapsto \nabla_\eta X := \text{pr}^{0,1}[\rho_c(\eta), X]
\]

is automatically a representation of \(A^{1,0} \) on \(T^{0,1}X \).

It remains to prove that the pair \((T^{0,1}X, A^{1,0}) \), with the above two representations, satisfies the matched pair axioms (13) to (15).

If \(\eta \) is a holomorphic section of \(A^{1,0}|_U \), then \(\nabla_X \eta = 0 \) for all \(X \in \Gamma(T^{0,1}X|_U) \) (by definition of the \(T^{0,1}X \)-module structure of \(A^{1,0} \)) and, since \(\rho_c(\eta) \) is a holomorphic section of \(T^{1,0}X \) over \(U \), we have

\[
\text{pr}^{0,1}[X, \rho_c(\eta)] = 0, \quad \forall X \in \Gamma(T^{0,1}X|_U).
\]

Thus

\[
[X, \rho_c(\eta)] = - \text{pr}^{0,1}[\rho_c(\eta), X] + \rho_c(\nabla_X \eta), \quad (21)
\]

for all \(\eta \in A^{1,0}(U) \) and \(X \in \Gamma(T^{0,1}X) \). >From Lemma 4.1 it follows that Eq. (21) actually holds for all smooth sections \(\eta \) of \(A^{1,0} \). This relation is nothing but axiom (13) in the particular case \((T^{0,1}X, A^{1,0}) \).

If the sections of \(A^{1,0} \) involved in Eq. (13) are taken holomorphic, then (13) holds because, in that particular case, all its terms vanish. Therefore, by Lemma 4.1 and the fact that \(A^{1,0} \) is generated by \(A^{1,0} \) as a sheaf of modules over the sheaf \(C^{\infty}(X) \) of smooth functions, Eq. (13) is always satisfied.

Finally, it follows from the definition of the \(A^{1,0} \)-module structure on \(T^{0,1}X \) and the Jacobi identity that

\[
\nabla_\eta [X_1, X_2] = [\nabla_\eta X_1, X_2] + [X_1, \nabla_\eta X_2], \quad \forall \eta \in A^{1,0}(U), \forall X_1, X_2 \in \Gamma(T^{0,1}X).
\]

Hence (15) follows from Lemma 4.1.

\[\equiv \text{Let } E \to X \text{ denote the underlying complex vector bundle, } [\cdot, \cdot]_B \text{ the Lie bracket on } \Gamma(E) \text{ and } \rho : E \to T^{1,0}X \text{ the anchor map of the Lie algebroid } B. \text{ Since } B \text{ is a } T^{0,1}X \text{-module, it follows from Lemma 4.7 that } E \text{ is a holomorphic vector bundle — a smooth section } \eta \in \Gamma(E|_U) \text{ being holomorphic iff } \nabla_X \eta = 0, \forall X \in \Gamma(T^{0,1}X|_U).\]

Moreover, by Eq. (12), if \(\eta_1, \eta_2 \in \Gamma(E|_U) \) are two holomorphic sections over an open subset \(U \subset X \), \([\eta_1, \eta_2] \) is also a holomorphic section of \(E \) over \(U \); i.e. the sheaf \(E \) of holomorphic sections of \(E \) is a subsheaf of complex Lie subalgebras of the sheaf \(E_{\infty} \) of smooth sections.

We define a new Lie algebroid structure \(A \) on the vector bundle \(E \) with the composition

\[
E \xrightarrow{\rho} T^{1,0}X \xrightarrow{2R} TX
\]

as anchor map and such that the Lie brackets of \(A \) and \(B \) agree on the subsheaf \(E \) of \(E_{\infty} \):

\[
[\sigma, \tau]_A = [\sigma, \tau]_B \quad \forall \sigma, \tau \in E(U).
\]
Here \Re means real part.

Eq. (13) implies that

$$\nabla_\eta Y = [\rho_C(\eta), Y], \quad \forall \eta \in \mathcal{E}(U), \forall Y \in \Gamma(T^{0,1}X|_U).$$

Thus $\text{pr}^{1,0}[\rho_C(\eta), X] = 0$. By Example (3), $\rho_C(\eta)$ is thus a holomorphic section of $T^{1,0}X|_U$ if η is a holomorphic section of $E|_U$. Hence $\rho : E \to T^{0,1}X$ and $\Re \circ \rho : E \to TX$ are holomorphic bundle maps.

Note that

$$\forall \eta \in \mathcal{E}(U), \forall X \in \Gamma(T^{1,0}X).$$

Thus, the Lie bracket on \mathcal{A} satisfies the Leibniz rule. Indeed, for all $\sigma, \tau \in \mathcal{E}(U)$ and $f \in \mathcal{O}_X(U)$, we have

$$[\sigma, f \tau]_\mathcal{A} = [\sigma, f \tau]_B = df(\rho(\sigma))\tau + f[\sigma, \tau]_B = df(2\Re \circ \rho(\sigma))\tau + f[\sigma, \tau]_A.$$

Clearly, \mathcal{A} is a holomorphic Lie algebroid over X with the same underlying complex vector bundle E and with \mathcal{E} as its sheaf of holomorphic sections. By construction, $A^{1,0}$ and B are isomorphic complex Lie algebroids.

Thus, given a holomorphic Lie algebroid $A \to X$, we obtain two complex Lie algebroids: A_C and $T^{0,1}X \cong A^{1,0}$. The following proposition follows easily from the construction of $T^{0,1}X \cong A^{1,0}$.

Proposition 4.9. Assume $(A \to X, \rho, [\cdot , \cdot])$ is a holomorphic Lie algebroid. Then

$$A_C \to T^{0,1}X \cong A^{1,0} : a \mapsto (\rho_C(\text{pr}^{0,1}(a)), \text{pr}^{1,0}(a))$$

is a homomorphism of complex Lie algebroids.

4.4 Lie algebroid cohomology

We use the following definition of Lie algebroid cohomology due to Evens-Lu-Weinstein [15].

Definition 4.10. Given a holomorphic Lie algebroid $A \to X$, let Ω^*_A be the sheaf of holomorphic sections of $\wedge^k A^* \to X$ ($k = 1, 2, \ldots$) and $\Omega^0_A = \mathcal{O}_X$. We have the following complex of sheaves over X:

$$\Omega^*_A : \Omega^*_A \xrightarrow{d_A} \Omega^1_A \xrightarrow{d_A} \ldots \xrightarrow{d_A} \Omega^k_A \xrightarrow{d_A} \Omega^{k+1}_A \xrightarrow{d_A} \ldots$$

where

$$(d_A \alpha)(V_0, \ldots, V_k) = \sum_{i=0}^k (-1)^i \rho(V_i)\alpha(V_0, \ldots, \hat{V_i}, \ldots, V_k)$$

$$+ \sum_{i<j} (-1)^{i+j} \alpha([V_i, V_j], V_0, \ldots, \hat{V_i}, \hat{V_j}, \ldots, V_k)$$

for all $\alpha \in \Omega^k_A(U)$, $V_0, \ldots, V_k \in \mathcal{A}(U)$, and any open subset U of X.

The holomorphic Lie algebroid cohomology of A (with trivial coefficients) is defined to be the cohomology of the complex of sheaves Ω^*_A:

$$H^*(A, \mathbb{C}) := H^*(X, \Omega^*_A).$$

The following result gives us an important way of computing holomorphic Lie algebroid cohomology using smooth cohomology, i.e. Lie algebroid cohomology of complex Lie algebroids. In a certain sense, this is a generalization of Dolbeault’s theorem to Lie algebroids.
Theorem 4.11. Let $A \to X$ be a holomorphic Lie algebroid. Then

$$H^*(A, \mathbb{C}) \cong H^*(T^{0,1}X \bowtie A^{1,0}, \mathbb{C}),$$

where the right hand side stands for the complex Lie algebroid cohomology of $T^{0,1}X \bowtie A^{1,0}$ (see Proposition 4.6), which can be interpreted as a generalization of the Dolbeault cohomology.

Proof. By $\Omega^{0,k}_X \otimes \mathcal{A}^{1,0}_k$, we denote the sheaf of sections of the complex vector bundle $(T^{0,k}X)^* \otimes \wedge^l A^{1,0} \to X$. By the holomorphic Poincaré lemma, we have the following resolution of complex of sheaves:

\[
\begin{array}{ccccccc}
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \Omega^2_A & \hat{\partial} \Omega^0_1 \otimes \mathcal{A}^{1,0}_\mathbb{C} & \Omega^2_0 \otimes \mathcal{A}^{2,0}_\mathbb{C} & \hat{\partial} \Omega^0_1 \otimes \mathcal{A}^{2,0}_\mathbb{C} & \cdots \\
0 & \Omega^1_A & \hat{\partial} \Omega^0_1 \otimes \mathcal{A}^{1,0}_\mathbb{C} & \Omega^1_0 \otimes \mathcal{A}^{2,0}_\mathbb{C} & \hat{\partial} \Omega^0_1 \otimes \mathcal{A}^{2,0}_\mathbb{C} & \cdots \\
0 & \Omega^0_A & \hat{\partial} \Omega^0_1 \otimes \mathcal{A}^{1,0}_\mathbb{C} & \Omega^0_0 \otimes \mathcal{A}^{2,0}_\mathbb{C} & \hat{\partial} \Omega^0_1 \otimes \mathcal{A}^{2,0}_\mathbb{C} & \cdots \\
\end{array}
\]

(22)

The conclusion thus follows immediately from Theorem 4.8.

Example 4.12. As in Example 4.3 consider a complex manifold X. Let $A = TX$ be its holomorphic tangent bundle considered as a holomorphic Lie algebroid. In this particular case, $H^*(A, \mathbb{C})$ is the holomorphic de Rham cohomology, while $H^*(T^{0,1}X \bowtie A^{1,0}, \mathbb{C})$ is the \mathbb{C}-valued smooth de Rham cohomology since $T^{0,1}X \bowtie A^{1,0} = T^{0,1}X \bowtie T^{1,0}X \cong T^C X$ as complex Lie algebroids. It is well known that they are isomorphic.

Indeed the complex Lie algebroid $T^{0,1}X \bowtie A^{1,0}$ is an elliptic Lie algebroid in the sense of Block. Recall that a complex Lie algebroid $(A \to X, [-, -], \rho)$ is said to be *elliptic* [1] if the map $\Re \circ \rho : A \to TX$ is surjective. For an elliptic Lie algebroid, the Lie algebroid cohomology cochain complex is an elliptic complex [1]. Hence the cohomology groups are finite dimensional if the base manifold is compact. This can be easily seen directly from our definition of holomorphic Lie algebroid cohomology in terms of a complex of sheaves.

Denote by $H^*(A_R, \mathbb{C})$ the Lie algebroid cohomology of the underlying real Lie algebroid A_R with trivial complex coefficients. The following result is an immediate consequence of Theorem 4.11 and Proposition 4.9.

Proposition 4.13. Let A be a holomorphic Lie algebroid with underlying real Lie algebroid A_R. Then there is a natural morphism

$$H^*(A, \mathbb{C}) \to H^*(A_R, \mathbb{C}).$$

Remark 4.14. In [21], Weinstein asked the question how to integrate a complex Lie algebroid. For the complex Lie algebroid $T^{0,1}X \bowtie A^{1,0}$ arising from a matched pair, our discussion above suggests that the holomorphic Lie groupoid integrating the holomorphic Lie algebroid A might be a candidate. It will be interesting to explore further if Theorem 4.8 would have any applications in solving Weinstein’s integration problem.
4.5 Cohomology with general coefficients

Definition 4.15. Given a holomorphic Lie algebroid $A \to X$, an A-module is a holomorphic vector bundle $E \to X$ together with a morphism of sheaves (of \mathbb{C}-modules)

$$A \otimes \mathcal{E} \to \mathcal{E} : V \otimes s \mapsto \nabla_V s$$

such that, for any open subset $U \subset X$, the relations

$$\nabla_{fV}s = f\nabla_V s$$
$$\nabla_V(fs) = (\rho(V)f)s + f\nabla_V s$$
$$\nabla_V \nabla_W s - \nabla_W \nabla_V s = \nabla_{[V,W]}s$$

are satisfied $\forall f \in \mathcal{O}_X(U), \forall V, W \in \mathcal{A}(U)$ and $\forall s \in \mathcal{E}(U)$.

Lemma 4.16. Let $A \to X$ be a holomorphic Lie algebroid and $E \to X$ a complex vector bundle. Then $E \to X$ is an A-module if, and only if, $E \to X$ is a module over the complex Lie algebroid $T^{0,1}X \cong A^{1,0}$.

Proof. \Rightarrow Firstly, note that, since $E \to X$ is a holomorphic vector bundle with sheaf of holomorphic sections \mathcal{E}, by Lemma [4.7] E is a $T^{0,1}X$-module whose representation map

$$\Gamma(T^{0,1}X) \otimes \Gamma(E) \to \Gamma(E) : (X, s) \mapsto \nabla^X_X s$$

is entirely characterized by the condition

$$\mathcal{E}(U) = \left\{ \sigma \in \Gamma(E|_U)|\nabla^X_X \sigma = 0, \ \forall X \in \Gamma(T^{0,1}X|_U) \right\},$$

for all open subsets $U \subset X$.

On the other hand, E is a module over the holomorphic Lie algebroid $(A \to X, [\cdot, \cdot], \rho)$ with representation map

$$A \otimes \mathcal{E} \to \mathcal{E} : (a, s) \mapsto \nabla_a s,$$

where A and \mathcal{E} are the O_X-sheaves of holomorphic sections of A and E respectively. Since A_∞ and \mathcal{E}_∞ are generated by A and \mathcal{E} as sheaves of C^∞_X-modules, one can define a representation

$$\Gamma(A^{1,0}) \otimes \Gamma(E) \to \Gamma(E) : (a, s) \mapsto \nabla_\alpha^{1,0} s$$

of the complex Lie algebroid $(A^{1,0}, [\cdot, \cdot]^{1,0}, \rho^{1,0})$ on E, which is entirely determined by the requirement that, for all subsets U of X, one has

$$\nabla_{(1-ij)\alpha}^\sigma = \nabla_\alpha^\sigma$$

for all $\alpha \in A(U)$ and $\sigma \in \mathcal{E}(U)$.

The equation

$$\nabla_{(X,a)s} = \nabla_X^{0,1} s + \nabla_\alpha^{1,0} s$$

defines a connection of the complex Lie algebroid $T^{0,1}X \cong A^{1,0}$ (associated to the holomorphic Lie algebroid A) as in Theorem [4.8] on E. To check that this covariant derivative is flat, it suffices to prove that

$$\nabla_{(X,0)} \nabla_{(0,a)s} - \nabla_{(0,a)} \nabla_{(X,0)s} = \nabla_{[(X,0),(0,a)]s},$$

for all $X \in \Gamma(T^{0,1}X), a \in \Gamma(A^{1,0})$ and $s \in \Gamma(E)$. However, the curvature being a tensor, it actually suffices to check that, for any open subset U of X, one has

$$\nabla_{(X,0)} \nabla_{(0,(1-ij)\alpha)s} - \nabla_{(0,(1-ij)\alpha)} \nabla_{(X,0)s} = \nabla_{[(X,0),(0,(1-ij)\alpha)]s}$$

(23)
for all \(X \in \Gamma(T^{0,1}\mathcal{X}|_U) \), \(\alpha \in \mathcal{A}(U) \) and \(\sigma \in \mathcal{E}(U) \). By definition of the Lie algebroid structure of \(T^{0,1}\mathcal{X} \cong \mathcal{A}^{1,0} \),

\[
[(X,0), (0, (1 - ij)\alpha)] = (-\nabla_{\alpha}X, 0)
\]

since \(\alpha \) is holomorphic. Hence, Eq. (23) becomes

\[
\nabla^{0,1}_X \nabla_{\alpha} \sigma - \nabla_{\alpha} \nabla^{0,1}_X \sigma = \nabla^{0,1}_{-\nabla_{\alpha}X} \sigma,
\]

which is obviously true since each term in the equation above vanishes — indeed, the second argument of each \(\nabla^{0,1} \) is a holomorphic section of \(E \).

\[\nabla \Rightarrow \text{Let } \nabla \text{ denote the representation of } T^{0,1}\mathcal{X} \cong \mathcal{A}^{1,0} \text{ on } E. \]

Since \(T^{0,1}\mathcal{X} \) is a Lie subalgebroid of \(T^{0,1}\mathcal{X} \cong \mathcal{A}^{1,0} \), \(E \) is a \(T^{0,1}\mathcal{X} \)-module and thus, by Lemma 4.7, \(E \to X \) is a holomorphic vector bundle whose sheaf of holomorphic sections \(\mathcal{E} \) is characterized by

\[
\mathcal{E}(U) = \{ \sigma \in \Gamma(E|_U)|\nabla_{(X,0)} \sigma = 0, \forall X \in \Gamma(T^{0,1}\mathcal{X}|_U) \}\tag{24}
\]

Moreover, the curvature of \(\nabla \) being flat, we have

\[
\nabla_{(X,0)} \nabla_{(0,(1-ij)\alpha)} \sigma - \nabla_{(0,(1-ij)\alpha)} \nabla_{(X,0)} \sigma = \nabla_{[(X,0),(0,(1-ij)\alpha)]} \sigma, \tag{25}
\]

for any open subset \(U \) of \(X \) and all \(X \in \Gamma(T^{0,1}\mathcal{X}|_U) \), \(\alpha \in \mathcal{A}(U) \) and \(\sigma \in \mathcal{E}(U) \). Note that, since \(\alpha \) is holomorphic,

\[
[(X,0), (0, (1 - ij)\alpha)] \in \Gamma(T^{0,1}\mathcal{X}|_U). \tag{26}
\]

Making use of Eqs. (24) and (26), Eq. (25) becomes

\[
\nabla_{(X,0)} \left(\nabla_{(0,(1-ij)\alpha)} \sigma \right) = 0, \tag{25}
\]

for any open subset \(U \) of \(X \) and all \(X \in \Gamma(T^{0,1}\mathcal{X}|_U) \), \(\alpha \in \mathcal{A}(U) \) and \(\sigma \in \mathcal{E}(U) \). In other words, the map

\[
\mathcal{A}(U) \times \mathcal{E}(U) \to \mathcal{E}(U) : (\alpha, \sigma) \mapsto \nabla_{(0,(1-ij)\alpha)} \sigma
\]

does indeed take its values in \(\mathcal{E} \). Therefore this restriction of \(\nabla \) endows the holomorphic vector bundle \(E \to X \) with a structure of module over the holomorphic Lie algebroid \(\mathcal{A} \).

Definition 4.17. Given a holomorphic Lie algebroid \(\mathcal{A} \to X \) and an \(\mathcal{A} \)-module \((E \to X, \nabla) \), we have the complex of sheaves over \(X \)

\[
\Omega^*_A \otimes \mathcal{E} : \Omega^0_A \otimes \mathcal{E} \xrightarrow{d^A_0} \Omega^1_A \otimes \mathcal{E} \xrightarrow{d^A_1} \cdots \xrightarrow{d^A_k} \Omega^{k+1}_A \otimes \mathcal{E} \xrightarrow{d^A_{k+1}} \cdots
\]

where

\[
(d_A^k \alpha)(V_0, \cdots, V_k) = \sum_{i=0}^k (-1)^i \nabla_{V_i} (\alpha(V_0, \cdots, \hat{V}_i, \cdots, V_k)) + \sum_{i<j} (-1)^{i+j} \alpha([V_i, V_j], V_0, \cdots, \hat{V}_i, \cdots, \hat{V}_j, \cdots, V_k)
\]

for any open subset \(U \) of \(X \) and all \(\alpha \in (\Omega^k_A \otimes \mathcal{E})(U) \) and \(V_0, \cdots, V_k \in \mathcal{A}(U) \).

The holomorphic Lie algebroid cohomology of \(\mathcal{A} \) (with coefficients in the \(\mathcal{A} \)-module \(E \)) is defined to be the cohomology of the complex of sheaves \(\Omega^*_A \otimes \mathcal{E} \):

\[
H^*(\mathcal{A}, E) := H^*(X, \Omega^*_A \otimes \mathcal{E}).
\]
Lemma 4.18. Let $A \to X$ be a holomorphic Lie algebroid and $E \to X$ an A-module. If X is compact, then $H^k(A, E)$ is finite dimensional for all k.

The following theorem can be proved in a similar fashion as in Theorem 4.11.

Theorem 4.19. Let $A \to X$ be a holomorphic Lie algebroid and $E \to X$ an A-module. Then

$$H^*(A, E) \cong H^*(T^{0,1}X \otimes A^{1,0}, E).$$

Given a holomorphic Lie algebroid $A \to X$ and an A-module $E \to X$, it is simple to see that $E \to X$ naturally becomes an A_R-module. The following is a straightforward generalization of Proposition 4.13.

Proposition 4.20. Let A be a holomorphic Lie algebroid with underlying real Lie algebroid A_R, and $E \to X$ an A-module. Then there is a natural homomorphism

$$H^*(A, E) \to H^*(A_R, E).$$

4.6 Application to holomorphic Poisson manifolds

Now consider the cotangent bundle Lie algebroid $(T^*X)_\pi$ associated to a holomorphic Poisson structure (X, π). Since $(T^*X)_\pi$ is a holomorphic Lie algebroid, according to Theorem 4.8, $(T^{0,1}X, (T^{1,0}X)_\pi^*)$ is a matched pair. On the other hand, according to Theorem 4.11, to any holomorphic Poisson manifold corresponds a natural generalized complex structure. The following theorem indicates the relation between this generalized complex structure and the complex Lie algebroid $T^{0,1}X \otimes (T^{1,0}X)_\pi^*$.

Theorem 4.21. If (X, π) is a holomorphic Poisson manifold, then the complex Lie algebroid $T^{0,1}X \otimes (T^{1,0}X)_\pi^*$ is isomorphic to the Dirac structure $L_4\pi$, the $-i$-eigenbundle of the generalized complex structure

$$\mathbb{J}_{4\pi} = \begin{pmatrix} J & 4\pi_1^2 \\ 0 & J^* \end{pmatrix}$$

as in Theorem 2.7.

We need a few lemmas.

Lemma 4.22.

$$L_{4\pi} = \{(X^{0,1} + \pi^2 \xi^{1,0}, \xi^{1,0}) | \xi^{1,0} \in \Omega^{1,0}(X), \ X^{0,1} \in \mathfrak{X}^{0,1}(X)\}$$

Proof. It is clear that

$$\mathbb{J}_{4\pi}(X^{0,1}, 0) = (J X^{0,1}, 0) = -i (X^{0,1}, 0).$$

On the other hand, since $\pi_1^2 = \frac{1}{2i} (\pi^\sharp - \pi^\flat)$, it follows that

$$\pi_1^2 \xi^{1,0} = \frac{1}{2i} (\pi^\sharp \xi^{1,0}) = -\frac{i}{2} \pi^\sharp \xi^{1,0}.$$

Since $\pi_2^R = J \circ \pi_1^\sharp$, we have

$$J \circ \pi^\sharp = J \circ (\pi_1^\sharp + i \pi_1^\flat) = -\pi_1^\sharp + i \pi_2^R = i (\pi_1^\sharp + i \pi_1^\flat) = i \pi^\sharp.$$

It thus follows that

$$\mathbb{J}_{4\pi}(\pi^\sharp \xi^{1,0}, \xi^{1,0}) = (J \pi^\sharp \xi^{1,0} + 4\pi_1^2 \xi^{1,0}, -J^* \xi^{1,0}) = (-i \pi^\sharp \xi^{1,0}, i \xi^{1,0}) = i (\pi^\sharp \xi^{1,0}, \xi^{1,0}).$$

Hence $(X^{0,1} + \pi^2 \xi^{1,0}, \xi^{1,0})$ is an eigenvector of $\mathbb{J}_{4\pi}$ with eigenvalue $-i$. The conclusion thus follows from dimension counting.
By abuse of notations, \(\nabla \) denotes both the \(T^{0,1}X \)-representation on \((T^{1,0}X)^* \) and the \((T^{1,0}X)^* \)-representation on \(T^{0,1}X \).

Lemma 4.23. For any \(X^{0,1} \in \mathfrak{X}^{0,1}(X) \) and \(\xi^{1,0} \in \Omega^{1,0}(X) \), we have
\[
\nabla_{X^{0,1}}\xi^{1,0} = L_{X^{0,1}}\xi^{1,0}.
\] (28)

Proof. For any \(Y^{1,0} \in \mathfrak{X}^{1,0}(X) \), we have
\[
\langle \nabla_{X^{0,1}}\xi^{1,0}, Y^{1,0} \rangle = X^{0,1}\langle \xi^{1,0}, Y^{1,0} \rangle - \langle \xi^{1,0}, \nabla_{X^{0,1}}Y^{1,0} \rangle
= X^{0,1}\langle \xi^{1,0}, Y^{1,0} \rangle - \langle \xi^{1,0}, \text{pr}^{1,0}[X^{0,1}, Y^{1,0}] \rangle
= X^{0,1}\langle \xi^{1,0}, Y^{1,0} \rangle - \langle \xi^{1,0}, [X^{0,1}, Y^{1,0}] \rangle
= (L_{X^{0,1}}\xi^{1,0}, Y^{1,0}).
\]
Hence \(\nabla_{X^{0,1}}\xi^{1,0} = L_{X^{0,1}}\xi^{1,0} \). \qed

Lemma 4.24. For any \(X^{0,1} \in \mathfrak{X}^{0,1}(X) \) and \(\xi^{1,0} \in \Omega^{1,0}(X) \), we have
\[
\pi^2\nabla_{X^{0,1}}\xi^{1,0} = \text{pr}^{1,0}[\pi^2\xi^{1,0}, X^{0,1}].
\] (29)

Proof. Note that if \(Y^{1,0} \in \mathfrak{X}^{1,0}(X) \) is a holomorphic vector field, \(\text{pr}^{1,0}[X^{0,1}, Y^{1,0}] = 0 \). Hence it follows that \(L_{X^{0,1}}\pi \in \Gamma(T^{0,1}X \land T^{1,0}X) \), for \(\pi \in \mathfrak{X}^{2,0}(X) \) is a holomorphic bivector field. Therefore \((L_{X^{0,1}}\pi)^2\xi^{1,0} \in \mathfrak{X}^{0,1}(X) \). That is, \(\text{pr}^{1,0}(L_{X^{0,1}}\pi)^2\xi^{1,0} = 0 \). Now since
\[
\pi^2(L_{X^{0,1}}\xi^{1,0}) - L_{X^{0,1}}(\pi^2\xi^{1,0}) = (L_{X^{0,1}}\pi)^2\xi^{1,0},
\]
applying \(\text{pr}^{1,0} \) to both sides, we obtain
\[
\pi^2(L_{X^{0,1}}\xi^{1,0}) = \text{pr}^{1,0}[X^{0,1}, \pi^2\xi^{1,0}]
\]
and, using Eq. (28),
\[
\pi^2(\nabla_{X^{0,1}}\xi^{1,0}) = \text{pr}^{1,0}[X^{0,1}, \pi^2\xi^{1,0}].
\] \qed

Proof of Theorem 4.21 First, recall that the Lie bracket on \(\Gamma(L_{4\pi}) \) is the restriction of the Courant bracket
\[
[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X\eta - \mathcal{L}_Y\xi + \frac{1}{2}d(\xi Y - \eta X)
\]
of \(\Gamma(TX \oplus T^*X) \) [17] [31].

Consider the map \(\phi : T^{0,1}X \otimes (T^{1,0}X)^* \rightarrow L_{4\pi} : (X^{0,1}, \xi^{1,0}) \mapsto (X^{0,1} + \pi^2\xi^{1,0}, \xi^{1,0}) \),

which is an isomorphism of vector bundles. It is clear that \(\phi \) interchanges the anchor maps. One sees immediately that
\[
[\phi(X^{0,1}), \phi(Y^{0,1})] = \phi[X^{0,1}, Y^{0,1}] \quad \forall X^{1,0}, Y^{1,0} \in \mathfrak{X}^{0,1}(X)
\]
\[
[\phi(\xi^{1,0}), \phi(\eta^{1,0})] = \phi[\xi^{1,0}, \eta^{1,0}] \quad \forall \xi^{1,0}, \eta^{1,0} \in \Omega^{1,0}(X).
\]

Now for any \(X^{0,1} \in \mathfrak{X}^{0,1}(X) \) and \(\xi^{1,0} \in \Omega^{1,0}(X) \),
\[
[\phi(X^{0,1}), \phi(\xi^{1,0})] = [X^{0,1}, \pi^2\xi^{1,0} + \xi^{1,0}] = [X^{0,1}, \pi^2\xi^{1,0}] + L_{X^{0,1}}\xi^{1,0}
= [X^{0,1}, \pi^2\xi^{1,0}] + \nabla_{X^{0,1}}\xi^{1,0}
= \text{pr}^{1,0}[X^{0,1}, \pi^2\xi^{1,0}] + \text{pr}^{1,0}[X^{0,1}, \pi^2\xi^{1,0}] + \nabla_{X^{0,1}}\xi^{1,0}
= \text{pr}^{1,0}[X^{0,1}, \pi^2\xi^{1,0}] - \nabla_{\xi^{1,0}}X^{0,1} + \nabla_{X^{0,1}}\xi^{1,0}
\] (by definition of \(\phi \))
(by definition of \([\cdot, \cdot] \))
(by Eq. (28))
(since \(T\xi^0 X = T^{1,0}X \oplus T^{-1,0}X \))
(by Eq. (20))
On the other hand,
\[
\phi[X^{0,1}, \xi^{1,0}] = \phi(-\nabla_{\xi^{1,0}} X^{0,1} + \nabla_{X^{0,1}} \xi^{1,0}) = -\nabla_{\xi^{1,0}} X^{0,1} + \pi \nabla_{X^{0,1}} \xi^{1,0} + \nabla_{X^{0,1}} \xi^{1,0}.
\]
From Eq. (29), it thus follows that
\[
[\phi(X^{0,1}), \phi(\xi^{1,0})] = \phi[X^{0,1}, \xi^{1,0}].
\]
Hence \(\phi\) is indeed a Lie algebroid isomorphism.

4.7 Holomorphic Poisson cohomology

Consider the matched pair \((T^{0,1}X, (T^{1,0}X)^*_{\mu})\) associated to a holomorphic Poisson manifold \((X, \pi)\). With Proposition 4.5 in mind, we set \(A = T^{0,1}X\) and \(B = (T^{1,0}X)^*\). Then
\[
\Gamma(\wedge^k A^* \otimes \wedge^l B^*) \simeq \Omega^{0,k}(X) \otimes_{\mathcal{C}^\infty(X, \mathbb{C})} \mathfrak{X}^{l,0}(X) \simeq \Omega^{0,k}(X, T^{l,0}X)
\]
and the commutative diagram of Proposition 4.5 becomes
\[
\begin{array}{ccc}
\Omega^{0,k}(X, T^{l,0}X) & \xrightarrow{\partial_A} & \Omega^{0,k+1}(X, T^{l,0}X) \\
\partial_B & & \partial_B \\
\Omega^{0,k}(X, T^{l+1,0}X) & \xrightarrow{\partial_B} & \Omega^{0,k+1}(X, T^{l+1,0}X).
\end{array}
\]

The next proposition describes the coboundary operators \(\partial_A\) and \(\partial_B\) in this context.

Proposition 4.25. Let \((T^{0,1}X, (T^{1,0}X)^*_{\mu})\) be the matched pair associated to a holomorphic Poisson manifold \((X, \pi)\). Then

(a) \(\partial_A : \Omega^{0,k}(X, T^{l,0}X) \to \Omega^{0,k+1}(X, T^{l,0}X)\) is the \(\bar{\partial}\)-operator associated to the holomorphic vector bundle \(T^{l,0}X\);

(b) \(\partial_B : \Omega^{0,k}(X, T^{l,0}X) \to \Omega^{0,k}(X, T^{l+1,0}X)\) is the operator \(d_\pi\) defined by the relation
\[
(d_\pi \alpha)(Y_1, \ldots, Y_k) = [\pi, \alpha(Y_1, \ldots, Y_k)] + (-1)^k \alpha \bigwedge [\pi, Y_1 \wedge \cdots \wedge Y_k],
\]
where \(Y_1, \ldots, Y_k\) are arbitrary elements of \(\mathfrak{X}^{0,1}(X)\) and \(\alpha \bigwedge [\pi, Y_1 \wedge \cdots \wedge Y_k]\) denotes the element in \(\mathfrak{X}^{l+1,0}(X)\) obtained by contracting \(\alpha\) with the \((k+1)\)-vector field \([\pi, Y_1 \wedge \cdots \wedge Y_k]\).

Alternatively, if \(\omega \in \Omega^{0,k}(X)\) and \(P \in \mathfrak{X}^{l,0}(X)\), then
\[
d_\pi(\omega \otimes P) = \omega \otimes [\pi, P] + \sum_{i=1}^n (\omega_{\overline{e}_i^1}) d\omega \otimes (e_i \wedge P),
\]
where \((e_1, \ldots, e_n)\) is a basis of \(T_x^{1,0}X\) and \((e^1, \ldots, e^n)\) is the dual basis of \((T_x^{1,0}X)^*\).

Proof. a This is straightforward. b Since Eq. (31) follows easily from Eq. (32), we will only prove Eq. (32).

For any \(A_1, \ldots, A_k \in \mathfrak{X}^{0,1}(X)\) and \(B_0, \ldots, B_l \in \Omega^{1,0}(X)\), according to Eq. (19), we have
\[
(\partial_B(\omega \otimes P))(A_1, \ldots, A_k, B_0, \ldots, B_l) = T \cdot \omega(A_1, \ldots, A_k)
\]
\[
+ \sum_{i=0}^l (-1)^i S_i \cdot P(B_0, \ldots, \widehat{B_i}, \ldots, B_l)
\]

27
Here

\[
T = \sum_{j=0}^{l} (-1)^j \pi^\sharp(B_j) P(B_0, \ldots, \widehat{B_j}, \ldots, B_l)
\]

\[+ \sum_{j_1, j_2=0}^{l} (-1)^{j_1+j_2} P([B_{j_1}, B_{j_2}], B_0, \ldots, \widehat{B_{j_1}}, \ldots, \widehat{B_{j_2}}, \ldots, B_l)
\]

and, for \(i = 1, \ldots, l\),

\[
S_i = \pi^\sharp(B_i) (\omega(A_1, \ldots, A_k)) - \sum_{j=1}^{k} \omega(A_1, \ldots, \nabla B_i A_j, \ldots, A_k).
\]

It is clear that

\[T = [\pi, P](B_0, \ldots, B_l). \quad (33)\]

According to Eq. (20), we have

\[\nabla B_i A_j = \text{pr}^{0,1}[\pi^\sharp B_i, A_j].\]

Since \(\omega\) is a \((0,k)\)-form, it follows that

\[([\pi^\sharp B_i, A_j] - \text{pr}^{0,1}[\pi^\sharp B_i, A_j]) \cup \omega = 0.\]

As a consequence, we have

\[\omega(A_1, \ldots, \nabla B_i A_j, \ldots, A_k) = \omega(A_1, \ldots, [\pi^\sharp B_i, A_j], \ldots, A_k).\]

Therefore

\[S_i = \pi^\sharp(B_i) (\omega(A_1, \ldots, A_k)) - \sum_{j=1}^{k} \omega(A_1, \ldots, [\pi^\sharp B_i, A_j], \ldots, A_k)
\]

\[= (L_{\pi^\sharp(B_i)} \omega)(A_1, \ldots, A_k)
\]

\[= (t_{\pi^\sharp(B_i)} \omega)(A_1, \ldots, A_k),
\]

where the last equality uses the relation \(t_{\pi^\sharp B_i} \omega = 0\). Hence it follows that

\[\sum_{i=0}^{l} (-1)^i S_i \cdot P(B_0, \ldots, \widehat{B_i}, \ldots, B_l)
\]

\[= \sum_{i=0}^{l} (-1)^i (t_{\pi^\sharp(B_i)} \omega)(A_1, \ldots, A_k) P(B_0, \ldots, \widehat{B_i}, \ldots, B_l)
\]

\[= \sum_{i=0}^{l} (-1)^i \sum_{j=1}^{n} B_i(e_j) \left(t_{\pi^\sharp(e_j)} \omega \right) (A_1, \ldots, A_k) P(B_0, \ldots, \widehat{B_i}, \ldots, B_l)
\]

\[= \sum_{j=1}^{n} \left(t_{\pi^\sharp(e_j)} \omega \right) (A_1, \ldots, A_k) (e_j \wedge P)(B_0, \ldots, B_l).
\]

This concludes the proof of the proposition.

As an immediate consequence, we have the following

Corollary 4.26. Let \((X, \pi)\) be a holomorphic Poisson manifold. The following cohomologies are all isomorphic:

(a) the holomorphic Poisson cohomology of \((X, \pi)\);
(b) the complex Lie algebroid cohomology of L_{π};

(c) the total cohomology of the double complex

\[
\begin{array}{cccc}
\cdots & \cdots & \cdots & (34) \\
\downarrow \phi & \downarrow \phi & \downarrow \phi \\
\Omega^{0,0}(X, T^{2,0}X) & \Omega^{0,1}(X, T^{2,0}X) & \Omega^{0,2}(X, T^{2,0}X) & \cdots \\
\downarrow \phi & \downarrow \phi & \downarrow \phi \\
\Omega^{0,0}(X, T^{1,0}X) & \Omega^{0,1}(X, T^{1,0}X) & \Omega^{0,2}(X, T^{1,0}X) & \cdots \\
\downarrow \phi & \downarrow \phi & \downarrow \phi \\
\Omega^{0,0}(X, T^{0,0}X) & \Omega^{0,1}(X, T^{0,0}X) & \Omega^{0,2}(X, T^{0,0}X) & \cdots \\
\end{array}
\]

Here d_{π} is the differential operator defined by Eq. (31) or Eq. (32).

Remark 4.27. When X is a Stein manifold (for instance $X = \mathbb{C}^n$), one easily sees that our Poisson cohomology groups are isomorphic to the ones defined by Lichnerowicz’s cochain complex of holomorphic multivector fields, as in the smooth case (see, for instance, [38]).

We also note that our holomorphic Poisson cohomology groups are always finite dimensional if the manifold is compact.

References

[1] J. Block, Duality and equivalence of module categories in noncommutative geometry I, (2007), arXiv:math/0509284.
[2] A. Bondal, Non-commutative deformations and Poisson brackets on projective spaces, Preprint no. 67, Max Planck Institut Bonn, 1993.
[3] M. N. Boyom, KV-cohomology of Koszul-Vinberg algebroids and Poisson manifolds, Internat. J. Math. 16 (2005), no. 9, 1033–1061.
[4] K. A. Brown, K. R. Goodearl, and M. Yakimov, Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space, Adv. Math. 206 (2006), no. 2, 567–629.
[5] J. L. Brylinski and G. Zuckerman, The outer derivation of a complex Poisson manifold, J. Reine Angew. Math. 506 (1999), 181–189.
[6] S. Chemla, A duality property for complex Lie algebroids, Math. Z. 232 (1999), no. 2, 367–388.
[7] A. Coste, P. Dazord, and A. Weinstein, Groupoïdes symplectiques, Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, vol. 87, Univ. Claude-Bernard, 1987.
[8] M. Crainic, Generalized complex structures and Lie brackets, (2007), arXiv:math/0412097.
[9] P. A. Damianou and R. L. Fernandes, Integrable hierarchies and the modular class, (2007), arXiv:math/0607784.
[10] V. G. Drinfel’d, Constant quasiclassical solutions of the Yang-Baxter quantum equation, Dokl. Akad. Nauk SSSR 273 (1983), no. 3, 531–535.
[11] ______, *Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations*, Dokl. Akad. Nauk SSSR 268 (1983), no. 2, 285–287.

[12] S. Evens and J.-H. Lu, *On the variety of Lagrangian subalgebras. I*, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 5, 631–668.

[13] ______, *On the variety of Lagrangian subalgebras. II*, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 347–379.

[14] ______, *Poisson geometry of the Grothendieck resolution of a complex semisimple group*, Mosc. Math. J. 7 (2007), no. 4, 613–642.

[15] S. Evens, J.-H. Lu, and A. Weinstein, *Transverse measures, the modular class and a cohomology pairing for Lie algebroids*, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 200, 417–436.

[16] M. Gualtieri, *Branes on Poisson varieties*, (2007), arXiv:0710.2719.

[17] ______, *Generalized complex geometry*, (2007), arXiv:math/0401221.

[18] N. Hitchin, *Generalized Calabi-Yau manifolds*, Q. J. Math. 54 (2003), no. 3, 281–308.

[19] ______, *Instantons, Poisson structures and generalized Kähler geometry*, Comm. Math. Phys. 265 (2006), no. 1, 131–164.

[20] J. Huebschmann, *Poisson geometry of certain moduli spaces*, The Proceedings of the Winter School “Geometry and Physics” (Smí, 1994), no. 39, 1996, 15–35.

[21] ______, *Duality for Lie-Rinehart algebras and the modular class*, J. Reine Angew. Math. 510 (1999), 103–159.

[22] D. Huybrechts, *Complex geometry*, Universitext, Springer-Verlag, Berlin, 2005, An introduction.

[23] K. Iwasaki, *Fuchsian moduli on a Riemann surface—its Poisson structure and Poincaré-Lefschetz duality*, Pacific J. Math. 155 (1992), no. 2, 319–340.

[24] A. Kapustin, *Topological strings on noncommutative manifolds*, Int. J. Geom. Methods Mod. Phys. 1 (2004), no. 1-2, 49–81.

[25] D. Korotkin and H. Samtleben, *On the quantization of isomonodromic deformations on the torus*, Internat. J. Modern Phys. A 12 (1997), no. 11, 2013–2029.

[26] Y. Kosmann-Schwarzbach, *The Lie bialgebroid of a Poisson-Nijenhuis manifold*, Lett. Math. Phys. 38 (1996), no. 4, 421–428.

[27] Y. Kosmann-Schwarzbach and F. Magri, *Poisson-Nijenhuis structures*, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), no. 1, 35–81.

[28] ______, *On the modular classes of Poisson-Nijenhuis manifolds*, (2007), arXiv:math/0611202.

[29] Z.-J. Liu, A. Weinstein, and P. Xu, *Manin triples for Lie bialgebroids*, J. Differential Geom. 45 (1997), no. 3, 547–574.

[30] J.-H. Lu, private communication.

[31] ______, *Poisson homogeneous spaces and Lie algebroids associated to Poisson actions*, Duke Math. J. 86 (1997), no. 2, 261–304.

[32] K. C. H. Mackenzie, *Ehresmann doubles and Drinfel’d doubles for Lie algebroids and Lie bialgebroids*, (2007), arXiv:math/0611799.
[33] K. C. H. Mackenzie and P. Xu, *Lie bialgebroids and Poisson groupoids*, Duke Math. J. **73** (1994), no. 2, 415–452.

[34] F. Magri and C. Morosi, *On the reduction theory of the Nijenhuis operators and its applications to Gel'fand-Dikii equations*, Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982), vol. 117, 1983, 599–626.

[35] ———, *Old and new results on recursion operators: an algebraic approach to KP equation*, Topics in soliton theory and exactly solvable nonlinear equations (Oberwolfach, 1986), World Sci. Publishing, Singapore, 1987, 78–96.

[36] T. Mokri, *Matched pairs of Lie algebroids*, Glasgow Math. J. **39** (1997), no. 2, 167–181.

[37] R. Moraru, *Integrable systems associated to a Hopf surface*, Canad. J. Math. **55** (2003), no. 3, 609–635.

[38] A. Pichereau, *Poisson (co)homology and isolated singularities*, J. Algebra **299** (2006), no. 2, 747–777.

[39] A. Polishchuk, *Algebraic geometry of Poisson brackets*, J. Math. Sci. (New York) **84** (1997), no. 5, 1413–1444.

[40] M. A. Semenov-Tian-Shansky, *Dressing transformations and Poisson group actions*, Publ. Res. Inst. Math. Sci. **21** (1985), no. 6, 1237–1260.

[41] M. Stiénon and P. Xu, *Poisson quasi-Nijenhuis manifolds*, Comm. Math. Phys. **270** (2007), no. 3, 709–725.

[42] L. Stolovitch, *Sur les structures de Poisson singulières*, Ergodic Theory Dynam. Systems **24** (2004), no. 5, 1833–1863.

[43] I. Vaisman, *Complementary 2-forms of Poisson structures*, Compositio Math. **101** (1996), no. 1, 55–75.

[44] A. Weinstein, *The integration problem for complex Lie algebroids*, From geometry to quantum mechanics, Progr. Math., vol. 252, Birkhäuser Boston, Boston, MA, 2007, 93–109.

[45] P. Xu, *Gerstenhaber algebras and BV-algebras in Poisson geometry*, Comm. Math. Phys. **200** (1999), no. 3, 545–560.