Influence of eight rootstocks on fruit quality of *Morus multicaulis* cv. ‘Zijing’ and the comprehensive evaluation of fruit quality traits

Rong-Li MO¹a, Na ZHANG¹b, Yang ZHOU², Zhao-Xia DONG¹, Zhi-Xian ZHU¹, Yong LI¹, Cheng ZHANG¹, Qiang JIN³*, Cui YU¹*

¹Hubei Academy of Agricultural Sciences, Institute of Economic Crops, Wuhan, Hubei 430064, China; moqianchun1987@163.com; zhangnayuanwu@126.com; 317437017@qq.com; 345653882@qq.com; 68568911@qq.com; 2972993630@qq.com; mrsyu888@hotmail.com (*corresponding author)

²Yangtze University, College of Horticulture and Forestry, Jingzhou, Hubei 434025, China; zy1226324627@126.com

³Tarim University, College of Horticulture and Forestry, Aksu, Xinjiang 843300, China; jqzky@163.com (*corresponding author)

These authors contributed equally to this work

Abstract

Mulberry (*Morus L.*) has become an important crop throughout the world due to its fruits have been industrially exploited for various commercially valuable products. Many studies on mulberry related to genetic diversity, fruit quality, and breeding programs have been carried out, but little information on mulberry rootstocks is available, especially the possibility of applying grafting to improve the fruit quality. Here, we evaluated the effects of 8 different rootstocks on the fruit quality of ‘Zijing’ mulberry. Twelve fruit quality traits were extremely different except for the fruit shape index (FSI). ‘Zijing’ on ‘Zheza 2’ had the highest fruit weight (FW) and size, as well as titratable acidity (TA), but lower levels of other compounds content except the total soluble solids content (TSS) were detected. ‘Yuesang 51’ exhibited the highest soluble sugar content (SSC), reducing sugar content (RSC), SSC/TA ratio, anthocyanin content (AC) and the lower TA. In contrast, the lowest TSS, SSC and RSC were shown in ‘Guisang 5’. Moreover, ‘Guisang 12’ exhibited the highest TSS and soluble protein content (SPC). The highest vitamin C content (VC) was observed in ‘Guisang 6’. ‘Tang 10 × Lun109’, Zhenzhubai seedlings, ‘Yuesang 11’ together with ‘Yuesang 51’ had the lowest and similar levels of TA. Most importantly, these fruit quality traits were evaluated by principal component analysis (PCA), and ‘Yuesang 51’ with good comprehensive fruit quality was screened out, followed by ‘Guisangyou 12’. Overall, these results contribute to evaluating the roles of different rootstocks on improving fruit quality of mulberry.

Keywords: correlation analysis; fruit quality; mulberry; principal component analysis; rootstock

Introduction

In China, mulberry (*Morus L.; Moraceae*) is called “Sang Shen” and mainly grown for sericulture. Besides using the leaves, mulberry bears sweet fruit with various nutrients for human body (Jelled *et al.*, 2017; Pawlowska *et al.*, 2008; Huang *et al.*, 2017), which can be eaten fresh, or made for wine, tea, fruit juice, jam (Singhal *et al.*, 2010). In China, Korea and Japan, mulberry fruit can also be used in the pharmaceuticals industry for its various medicinal properties, and was designated as one of the first medicinal-and-edible plants
by the Ministry of Health of China in 1985. It breaks down only purposes as syrup or adding flavors and natural colour in medicines (Singhal et al., 2001, 2003). These applications accelerate the development of the mulberry fruit industry, and open a new vista for utilization of mulberry. Meanwhile, it poses new challenges to the quantity and quality of mulberry fruit seedlings, especially grafted seedlings.

As an important part of grafted seedlings, rootstock plays an important role in promoting their culture on different climatic and soil conditions and improving plant disease resistance (Dichio et al., 2004; Cinelli and Loreti, 2004). These adaptive traits are conducive to improving fruit yields and quality (Webster, 1995, 2001; Nimbolkar et al., 2016). Recently, the use of rootstocks were demonstrated to be an effective strategy in improving fruit yields and quality of cherry (Milošević et al., 2020; López-Ortega et al., 2016), plum (Popara et al., 2020), sweet orange (Continella et al., 2018), pear (Ikinci et al., 2014), peach (Orazem et al., 2011; Giorgi et al., 2005), as well as vegetables fruit of tomato (Gioia et al., 2010; Flores et al., 2010; Turhan et al., 2011), eggplant (Mozafarian et al., 2020) and watermelon (Fallik and Ziv, 2020). Previous studies reported that many physiological and biochemical parameters such as fruit weight, fruit diameter, total soluble solids content, soluble sugar content, reducing sugar content, titratable acidity, soluble sugar content/titratable acidity ratio, anthocyanin content, etc. were measured to evaluate the fruit quality of different rootstock-scion combinations in lemon (Ali et al., 2005), ‘pioneer’ Japanese plums (Daza et al., 2008), sweet cherry (Gregorio et al., 2016) and sweet orange (Continella et al., 2018).

At present, the research on mulberry rootstocks mainly focuses on tolerance of drought, waterlogging and salt. Zhang et al. (2018) reported that grafting using Qinglong mulberry with salt tolerance as rootstock and Tieba mulberry with high yield and good quality as scion could improve salt tolerance. In addition, our previous study (Mo et al., 2021) showed that the Morus multicaulis Perr. seedling has stronger drought tolerance, while Morus atropurpurea Roxb. seedling has stronger waterlogging tolerance. To our knowledge, the possibility of applying rootstocks to improve mulberry fruit quality has rarely been investigated. Therefore, the objective of the present study was to investigate the effects of different rootstocks on fruit quality of ‘Zijing’, a new mulberry cultivar with good taste and seedless. It is essential to the mulberry industry, and it will become a useful approach in commercial cultivation of mulberry fruit by using good rootstocks.

Materials and Methods

Plant material

The experiments were conducted at the experimental field for fruit growing of the Mulberry Repository of Hubei Province (latitude: 30.4481447, longitude: 114.327689 and altitude: 28 m), Wuhan, China. Eight rootstocks, including ‘Guisang 5’, ‘Guisang 6’, ‘Guisangyou 12’, ‘Tang 10 × Lun 109’, ‘Yuesang 11’, ‘Yuesang 51’, ‘Zheza 2’ and Zhenzhubai seedlings, were evaluated in grafting combinations with ‘Zijing’ [M. multicaulis Perr. ‘Zhushan 3’ (2X) × M. atropurpurea Roxb. ‘Yueyou 78’ (4X)], a fresh purple-colored mulberry cultivar selected by Institute of Economic Crops, Hubei Academy of Agricultural Sciences.

These seedlings were budded with ‘Zijing’ in July 2019, and all rootstocks were compatible with the scion (Figure 1). After surviving, budded plants were transplanted at a spacing of 0.5 × 2.0 m. The trial was design with 12 trees for each rootstock-scion combination, and they were randomly divided into 3 groups, each of which was a biological replicate. Measurements were carried out in the third year (2021) after planting.
Mo R-L et al. (2022). Not Bot Horti Agrobo 50(1):12598

Figure 1. The healing investigation of graft interface in different rootstocks in combination with ‘Zijing’ in third years after grafting on ‘Guisang 5’, ‘Guisang 6’, ‘Guisangyou 12’, ‘Tang 10 × Lun 109’, ‘Yuesang 11’, ‘Yuesang 51’, ‘Zheza 2’ and Zhenzhubai seedlings, respectively

Red arrows indicate graft interface. Scale bar = 2 cm

Physical parameters

In harvest season of 2021, mature fruits were manually and randomly collected according to the color and sense organs. A total of 150 fruits per rootstock-scion combination were selected from 12 trees. Fruit weight (FW, g) were recorded as the mean weight using an electronic balance (JE2001, Shanghai Puchun Measure Instrument CO., LTD, Shanghai, China). Fruit length (FL, mm) and diameter (FD, mm) were measured within 0.01 mm accuracy using a digital vernier caliper (3V Battery Digital Caliper, Guilin Guanglu Measuring Instrument CO., LTD, Guilin, China). Fruit shape index (FSI) was calculated based on FL/FD.

Biochemical parameters

Total soluble solid content (TSS, °Brix) of mulberry fruit juice was determined with a digital refractometer (PAL-1, Atago, Tokyo, Japan). The measurement range, resolution and accuracy of the instrument were 0.0-53.0 °Brix, 0.1% °Brix and ± 0.2% °Brix, respectively. The percent of titratable acidity (TA, expressed as the percentage of citric) was determined with fruit homogenized with water (add 1 g fruit sample to 100 ml with water) by titration using 0.05 N NaOH and 1% phenolphthalein indicator. Soluble sugar content (SSC, %) was determined by the anthrone reagent method according to the description of Morris (1948), and then SSC/TA ratio was estimated. The reducing sugar content (RSC, %) was measured using the dinitrosalicylic acid reagent method (Miller, 1959). All the above biochemical parameters were determined in three replicates.
Bioactive compounds

The soluble protein content (SPC, mg·g⁻¹) was determined using the coomassie brilliant blue G-250 method as described in the study of Sun (2000). The VC (mg·g⁻¹) of mulberry fruit was measured using Vitamin C assay kit (Colorimetric method) according to the instructions according to the instructions of Vitamin C assay kit (Colorimetric method, Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The anthocyanin content (AC, nmol·g⁻¹) of fruit was measured according to the method described in (Rabino and Mancinelli, 1986). All measurements were performed in three replicates.

Statistical analysis

Analysis of variance (ANOVA) was performed by Excel, and the numeric data was expressed as means ± S.D. SPSS software (Version 26.0, IBM, USA) was used for multiple range significant difference (Duncan) test (p< 0.05) and partial correlation analysis, as well as principal component analysis (PCA). Sample parameters were converted to standardized values by using subordinate function (Tao, 1982; Xie and Liu, 2013), the equation is following:

\[U_{ij} = (X_{ij} - X_{\text{min}})/(X_{\text{max}} - X_{\text{min}}) \]

Where \(X_{ij}(i = 1, 2, \ldots n; j = 1, 2, \ldots p)\) is the value of the ith rootstock and the jth fruit quality indicator, \(X_{\text{min}}\) is the minimum of the jth indicator of fruit quality and \(X_{\text{max}}\) is the maximum of the jth indicator.

The values of each integrated indicator of fruit quality is defined in the following equation (Wang and Xing, 2017):

\[Q_1 = S_{11}U_1 + S_{12}U_2 + \ldots + S_{1p}U_p \]
\[Q_2 = S_{21}U_1 + S_{22}U_2 + \ldots + S_{2p}U_p \]
\[\ldots \]
\[Q_t = S_{t1}U_1 + S_{t2}U_2 + \ldots + S_{tp}U_p \]

Where \(S_{1i}, S_{2i}, \ldots S_{ti}(i = 1, 2, \ldots t)\) are the loading factor of principal component (\(S_{ip} = A_{ip}/\lambda_i\), \(A_{ip}\) is the loading factor of component, \(\lambda_i\) is the eigenvalues) and \(U_1, U_2, \ldots U_p\) are the standardized values.

The comprehensive evaluation index is determined based on the following equation (Wang and Xing, 2017):

\[Q = C_{r1}Q_1 + C_{r2}Q_2 + \ldots + C_{rt}Q_t \]

Where \(C_{r1}, C_{r2}, \ldots C_{rt}\) are the variance contribution rate corresponding to the principal components. A higher comprehensive evaluation index indicates a better quality of fruits.

Results and Discussion

Physical properties of mulberry fruit

The different rootstock significantly affected fruit physical attributes of mulberry ‘Zijing’ (Table 1). The fruit weights of 8 mulberry combinations ranged from 2.53 g to 3.06 g with an average of 2.70 g. Of these, ‘Zheza 2’ had the biggest fruits (3.06 ± 0.19 g), which was significantly larger than other rootstocks. The range of fruit weights was close to 2.54-3.02 g, which was reported in the four different mulberry cultivars from Pakistan (Iqbal et al., 2010), and some indigenous mulberry genotypes from Turkish (Balik et al., 2019), but they were lower than the fruit weights of black mulberry fruits grown in Turkey (Koyuncu et al., 2004; Gunes and Cekic, 2004; Ercisli and Orhan, 2008) and black mulberry variety in Turpan of China (Li et al., 2019). In addition, ‘Zheza 2’ exhibited the highest FL (26.20 ± 0.77 mm) and FD (15.53 ± 0.24 mm). In contrast, ‘Tang 10×Lun 109’ exhibited the lowest FL (21.83 ± 0.96 mm) and FD (13.60 ± 0.46 mm). Variations in fruit
lengths and diameters have also been reported in black mulberry in different region by literature above. However, in this work, the lower values have been noted. Considerable variations of fruit weights and sizes of mulberry are usually related to the genotypes and growing environments, as well as maturity of fruit, for instance, the fruit weights of ‘Mavromourina’ variety largely increased from immature (4 g) to fully ripe fruit (7 g) (Gerasopoulos and Stavroulakis, 1997). This study showed that different rootstocks could obviously affect fruit weight and size of mulberry fruits. Moreover, there were no significant differences among the 8 rootstocks in terms of fruit shape indexes of ‘Zijing’ mulberry.

Table 1. Fruit physical parameters of ‘Zijing’ mulberry on different rootstocks

Rootstock	FW (g)	FL (mm)	FD (mm)	FSI
‘Guisang 5’	2.74 ± 0.15 b	24.50 ± 0.92 ab	14.53 ± 0.53 ab	1.69 ± 0.03 a
‘Guisang 6’	2.58 ± 0.06 b	23.95 ± 1.80 abc	14.10 ± 0.92 b	1.70 ± 0.03 a
‘Guisangyou 12’	2.68 ± 0.10 b	23.16 ± 1.38 bc	14.34 ± 0.23 ab	1.61 ± 0.07 a
‘Tang 10 × Lun 109’	2.60 ± 0.10 b	21.83 ± 0.96 c	13.60 ± 0.46 b	1.61 ± 0.03 a
‘Yuesang 11’	2.53 ± 0.08 b	22.97 ± 0.81 bc	14.16 ± 0.69 b	1.62 ± 0.04 a
‘Yuesang 51’	2.73 ± 0.12 b	23.59 ± 0.65 bc	14.39 ± 0.42 ab	1.64 ± 0.02 a
‘Zheza 2’	3.06 ± 0.19 a	26.20 ± 0.77 a	15.53 ± 0.24 a	1.69 ± 0.03 a
Zhenzhubai seedlings	2.70 ± 0.02 b	23.96 ± 0.30 abc	14.41 ± 0.37 ab	1.66 ± 0.04 a

The different letter(s) in each column indicate significant differences among means within each rootstock at p<0.05 (Duncan test). FW (fruit weight), FL (fruit length), FD (fruit diameter), FSI (fruit shape index).

Biochemical parameters of mulberry fruit

TSS (containing sugars, salts, protein, acids, etc.) is a fundamental index for assessing fruit quality (Oz and Ulukanli, 2014). In this study, the rootstocks significantly affected TSS of mulberry fruits (Table 2). TSS of 8 rootstocks of mulberry ranged from 10.96 to 13.93 °Brix. Both of ‘Guisangyou 12’ and ‘Zheza 2’ exhibited the highest and similar TSS of 13.93 °Brix and 13.44 °Brix, respectively, whereas ‘Guisang 5’ had the lowest and did differ significantly from both above rootstocks. Generally, the refractometer, which was chosen for measuring TSS, has been widely used as a rapid method to determine sugar content of preharvest fruit. However, Hale et al. (2005) reported that TSS was poorly correlated with sucrose and total sugar in sweet corn. Therefore, we further analyzed the content of sugar and acid.

The sensory quality of fruit mainly depends on the contents of sugars and organic acids (Colaric et al., 2005). Generally, the higher the sugar content, the sweeter the fruit. In this work, we observed significant differences of SSC, RSC and TA among the 8 rootstocks (Table 2). ‘Yuesang 51’ had the highest SSC (9.30%), RSC (8.08%) and the lower TA (1.21%). Conversely, the lower level of SSC (7.74%), RSC (6.83%) and the highest TA (1.58%) were observed in ‘Zheza 2’. Moreover, ‘Guisang 5’ exhibited the minimum value of SSC (7.45%) and RSC (5.15%), and the lower TA (1.40%) as compared to the fruits in ‘Zheza 2’. It could be inferred that the SSC was positively correlated with RSC and negatively correlated with TA in mulberry fruit. These results coincided with findings in Zhao et al. (2019), which reported that SSC accumulation and rapid decrease of TA were mainly in the third stage (rapid growth stage II) and reached the peak and bottom, respectively, at full maturity.

The ratio of soluble sugars to organic acids, two of the major metabolites in fleshy fruits, has an important impact on balancing the sweetness and tartness of fruit. But it can only be regarded as a subjective parameter to evaluate the consumer’s perception of fruit sweetness rather than a horticultural trait, on account of a tight link between sugar and acid metabolism (Qiao et al., 2017). As shown in Table 2, obvious differences in SSC/TA were discovered among the mulberry rootstocks. The highest level of SSC/TA was detected in ‘Yuesang 51’, while ‘Guisang 5’ and ‘Zheza 2’ exhibited the lowest and similar values of SSC/TA.
Table 2. Fruit biochemical parameters of ‘Zijing’ mulberry on different rootstocks

Rootstock	TSS (°Brix)	SSC (%)	RSC (%)	TA (%)	SSC/TA
‘Guisang 5’	10.96 ± 0.29	7.45 ± 0.25	5.15 ± 0.37	1.40 ± 0.02	5.31 ± 0.12
‘Guisang 6’	11.69 ± 1.04	7.79 ± 0.14	6.63 ± 0.08	1.23 ± 0.05	6.34 ± 0.36
‘Guisangyou 12’	13.93 ± 0.45	8.12 ± 0.28	7.31 ± 0.06	1.32 ± 0.06	6.16 ± 0.11
‘Tang 10 × Lun 109’	12.11 ± 0.26	8.13 ± 0.23	7.52 ± 0.17	1.18 ± 0.04	6.88 ± 0.24
‘Yuesang 11’	12.31 ± 0.11	8.29 ± 0.37	7.74 ± 0.03	1.19 ± 0.06	6.95 ± 0.33
‘Yuesang 51’	12.67 ± 0.42	9.30 ± 0.36	8.08 ± 0.12	1.21 ± 0.04	7.68 ± 0.25
Zhenzhubai seedlings	13.44 ± 0.48	7.74 ± 0.28	6.83 ± 0.17	1.58 ± 0.01	4.90 ± 0.20

The different letter(s) in each column indicate significant differences among means within each rootstock at \(p < 0.05 \) (Duncan test). TSS (total soluble solid content), TA (titratable acidity), SSC (soluble sugar content), RSC (reducing sugar content).

Soluble protein content and antioxidant activity of mulberry fruit extracts

As shown in Figure 2, significant difference was found in SPC, VC and AC among the different rootstocks. ‘Guisangyou 12’, ‘Guisang 5’ and ‘Guisang 6’ showed the highest and similar levels of SPC (0.32 mg g\(^{-1}\), 0.31 mg g\(^{-1}\), 0.31 mg g\(^{-1}\), respectively), whereas ‘Tang 10 × Lun 109’, ‘Zheza 2’ and ‘Yuesang 11’ exhibited the lowest and statistically similar values of SPC (Figure 2a). In addition, the vitamin C content of the fruit varied from 0.28 to 0.45 mg g\(^{-1}\) (Figure 2b). The highest VC (0.45 mg g\(^{-1}\)) was detected in ‘Guisang 6’, which is significantly different from other rootstocks, and ‘Yuesang 11’ showed the lowest VC. We found that all the rootstocks except ‘Yuesang 11’ and ‘Zheza 2’ had higher Vitamin C content than those detected in Iqbal et al. (2010), which reported 25.2-32.25 mg/100 g Vitamin C in four mulberry cultivars. Also, lower levels of vitamin C content were reported in other mulberry studies (Gungor and Sengul, 2008; Ercisli and Orhan, 2008; Ercisli et al., 2010; Eyduran et al., 2015). Notably, vitamin C content of juice sack in citrus ranged from 25.4 to 45.3 mg/100 g FW (Abeysinghe et al., 2007). Therefore, in addition to fruit of Actinidia and Citrus species, mulberry fruit also has high vitamin C content and could be considered as excellent sources of vitamin C.

The healthy functions and potential pharmacological properties including anti-oxidative, anti-tumour, hypolipidemic, neuroprotective and anti-inflammatory effects of anthocyanin have been widely recognized and studied (Stintzing and Carle, 2004; Kang et al., 2006; Huang et al., 2011; Sirikancharanrod et al., 2016). Furthermore, the appealing colour of mulberry fruit is mainly attributed to anthocyanin concentration and purple-coloured mulberry fruit usually contains the highest levels of anthocyanin (Aramwit et al., 2010). In the present study, AC ranged from 1960.29 nmol g\(^{-1}\) (‘Tang 10 × Lun 109’) to 2785.69 nmol g\(^{-1}\) (‘Yuesang 51’) (Figure 2c). Importantly, the AC of Zhenzhubai seedlings, ‘Zheza 2’ and ‘Yuesang 11’ showed similar levels with that of ‘Tang 10 × Lun 109’. Comparison the results with the previous studies is very difficult due to different extracts methods, units usages, measuring instrument, cultivars, maturity stage, growing season, environmental conditions, postharvest storage conditions (Bae and Suh, 2007; Song et al., 2009; Aramwit et al., 2010; Tabakoglu and Karaca, 2018; Guo et al., 2019).

Correlation analysis of fruit quality traits

The correlation analysis of the fruit quality traits was performed, and the correlation indexes were showed in Table 3. The fruit weight and soluble sugar content are the important indicators for assessment and classification. It can be found that fruit weights had an extremely significant positive relationship with fruit lengths \((r = 0.848, p = 0.008)\) and titratable acidity \((r = 0.862, p = 0.006)\), but negatively correlated with SSC/TA \((r = -0.648, p = 0.083)\), which indicated that the bigger fruit, the higher titratable acidity. Besides, soluble sugar content had a significant positive correlation with reducing sugar content \((r = 0.817, p = 0.013)\) and SSC/TA \((r = 0.810, p = 0.015)\), but it has a negative correlation with TA \((r = -0.482, p = 0.227)\). It could
be inferred that the metabolism of sugars and acids is closely related. The higher the soluble sugar content, the higher the reducing sugar content and the lower the titratable acidity. Recent genetic evidence has revealed a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status, rather than regulating sugar or acid metabolism alone (Qiao et al., 2017).

Figure 2. Fruit soluble protein content and antioxidant activity of ‘Zijing’ mulberry fruit extracts on different rootstocks. (a) SPC (soluble protein content) (b) VC (vitamin C content) (c) AC (anthocyanin content)
The different letter(s) in each column indicate significant differences among means within each rootstock at $p < 0.05$ (Duncan test)

Table 3. Correlation analysis of the fruit quality traits

	FW	FL	FD	FSI	TSS	SSC	RSC	TA	SSC/TA	SPC	VC	AC	
FW	1												
FL	0.848**	1											
FD	0.920**	0.943**	1										
FSI	0.450	0.800*	0.555	1									
TSS	0.400	0.114	0.377	-0.397	1								
SSC	-0.193	-0.375	-0.227	-0.516	0.307	1							
RSC	-0.240	-0.480	-0.275	-0.700	0.556	0.817*	1						
TA	0.862**	0.812*	0.852**	0.480	0.294	-0.482	-0.473	1					
SSC/TA	-0.648	-0.707*	-0.664	-0.560	-0.051	0.810*	0.724*	-0.901**	1				
SPC	-0.186	0.050	-0.075	0.275	-0.141	-0.096	-0.420	-0.064	-0.051	1			
VC	-0.230	-0.175	-0.346	0.177	-0.100	0.071	-0.090	-0.252	0.172	0.639	1		
AC	0.005	0.045	0.024	0.078	0.068	0.442	-0.008	0.024	0.156	0.707	0.557	1	

* and ** significant at 5 % and 1 % level, respectively. FW (fruit weight), FL (fruit length), FD (fruit diameter), FSI (fruit shape index), TSS (total soluble solid content), TA (titratable acidity), SSC (soluble sugar content), RSC (reducing sugar content), SPC (soluble protein content), VC (vitamin C content), AC (anthocyanin content).

Evaluation of results by PCA

It is difficult to select a suitable combination of rootstock-scion according to a single or a few indicators, so it is necessary to comprehensively evaluate fruit quality traits through PCA (Wang and Xing, 2017; Zhao et al., 2020). Based on all the collected data for the fruit quality parameters, it is theoretically possible to consider the standardized values as variables representing fruit quality. Then, according to the eigenvalues of the correlation matrices, PCA was used to obtain the total variance explained by the contribution rate and
cumulative contribution rate interpretation, as well as the component loading matrix (Supplementary Table S2).

Table 4. The score and rank of the comprehensive fruit quality parameters among different rootstocks

Rootstock	Q1	Q2	Q3	Q	Rank
‘Guisang 5’	-0.565	0.894	0.979	0.117	7
‘Guisang 6’	0.179	0.910	1.209	0.499	4
‘Guisangyou 12’	0.393	0.179	1.762	0.527	2
‘Tang 10 × Lun 109’	0.987	-0.233	0.643	0.507	3
‘Yuesang 11’	0.751	-0.427	0.722	0.370	5
‘Yuesang 51’	0.819	0.074	2.035	0.744	1
‘Zheza 2’	-1.191	-0.641	1.220	-0.472	8
Zhenzhubai seedlings	0.313	0.153	0.973	0.347	6

In this analysis, three components were extracted based on the criterion that the eigenvalues are larger than one. The accumulative contribution rate of the first three principal components was 85.49 %. Particularly, PC1 explained 45.34 % of the total variance. Moreover, PC1 was found to be associated with the fruit size indicators (fruit weight, fruit length, fruit diameter and fruit shape index) and the fruit flavour index (soluble sugar content, reducing sugar content, titratable acidity and the ratio of soluble sugar content/titratable acidity), PC2 was found to be soluble protein content and Vitamin C content, and PC3 was found to be anthocyanin content. These results were consistent with previous study (Zhao et al., 2020). As shown in Table 4, ‘Yuesang 51’ was the first in the ranks of comprehensive fruit quality based on the result of PCA due to the higher score of mulberry’s pigment factor, followed by ‘Guisangyou 12’, and ‘Zheza 2’ was clearly last.

Conclusions

The results of this study revealed that rootstock had significant effects on mulberry fruit quality. Although ‘Zijing’ mulberry grafted on ‘Zheza 2’ had the highest fruit weight and size, it showed the higher titratable acidity and the lower levels of other compounds than other rootstocks. Therefore, ‘Zheza 2’ is not recommended as an ideal rootstock for mulberry cultivar. In contrast, ‘Yuesang 51’ could be considered as a suitable rootstock for ‘Zijing’ mulberry due to the highest sugar content (soluble sugar and reducing sugar), anthocyanin content and the lowest titratable acidity. Furthermore, the results of PCA showed that the quality of ‘Yuesang 51’ ranked first, followed by ‘Guisangyou 12’. This study provided significant progress for effects of rootstocks on mulberry fruit quality and selectable rootstocks in mulberry breeding projects.

Authors’ Contributions

Conceptualization, RLM and NZ; methodology, RLM, NZ and ZXD; software, RLM and NZ; validation, RLM and NZ; formal analysis, RLM and NZ; investigation, RLM, NZ and YZ; resources, RLM, NZ, YZ, YL and CZ; data curation, RLM and NZ; writing original draft preparation, RLM and NZ; writing review and editing, RLM, NZ, ZXD, ZXZ, YL, CZ and CY; visualization, RLM and NZ; project administration, QJ; funding acquisition, CY; All authors read and approved the final manuscript.
Ethical approval (for researches involving animals or humans)

Not applicable.

Acknowledgements

This research was financially supported by National Key R & D Program of China (2019YFD1000600), Key Projects of Natural Science Foundation of Hubei Province (2020CFA061), Major Projects of Technological Innovation in Hubei Province (2019ABA090) and the China Agriculture Research System of MOF and MARA.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Abeyesinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K (2007). Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chemistry 104(4):1338-1344. https://doi.org/10.1016/j.foodchem.2007.01.047

Ali AJ, Mongi Z, Yahia H (2005). Yield, fruit quality, and tree health of ‘Allen Eureka’ lemon on seven rootstocks in Saudi Arabia. Scientia Horticulturae 105:457-465. https://doi:10.1016/j.scienta.2005.02.008

Aramwit P, Bang N, Srichana T (2010). The properties and stability of anthocyanins in mulberry fruits. Food Research International 43(4):1093-1097. https://doi.org/10.1016/j.foodres.2010.01.022

Bae SH, Suh HJ (2007). Antioxidant activities of five different mulberry cultivars in Korea. LWT-Food Science and Technology 40(6):955-962. https://doi.org/10.1016/j.lwt.2006.06.007

Balik A, Geçer MK, Aslantaş R (2019). Diversity of biochemical content in fruits of some indigenous mulberry genotypes. Turkish Journal of Agriculture and Forestry 43(1): 28-35. https://doi.org/10.3906/tar-1806-69

Cinelli F, Loreti F (2004). Evaluation of some plum rootstocks in relation to lime-induced chlorosis by hydroponic culture. Acta Horticulturae 658:421-427. https://doi.org/10.17660/ActaHortic.2004.658.62

Colaric M, Veberic R, Stampar F, Hudina M (2005). Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. Journal of the Science of Food and Agriculture 85(15):2611-2616. https://doi.org/10.1002/jsfa.2316

Continella A, Pannitteri C, La Malfa S, Legua P, Distefano G, Nicolosi E, Gentile A (2018). Influence of different rootstocks on yield precocity and fruit quality of ‘Tarocco Scirè’ pigmented sweet orange. Scientia Horticulturae 230:62-67. https://doi.org/10.1016/j.scienta.2017.11.006

Daza A, García-Galavis PA, Grande MJ, Santamaria C (2008). Fruit quality parameters of ’Pioneer’ Japanese plums produced on eight different rootstocks. Scientia Horticulturae 118:206-211. https://doi.org/10.1016/j.scienta.2008.06.003

Dichio B, Xiloyannis C, Celano G, Vicinanza L, Go’ mez-Aparisi J, Esmenjaud D, Salesses G (2004). Performance of new selections of Prunus rootstocks resistant to Root Knot nematodes, in water logging conditions. Acta Horticulturae 658(658):403-405. https://doi.org/10.17660/ActaHortic.2004.658.59

Ercisli S, Orhan E (2008). Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from Northeast Anatolia region of Turkey. Scientia Horticulturae 116(1):41-46. https://doi.org/10.1016/j.scienta.2007.10.021

Ercisli S, Tosun M, Duralija B, Voça S, Sengul M, Turan M (2010). Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technology and Biotechnology 48(1):102-106.
Eyduran SP, Ercisli S, Akin M, Beyhan O, Geçer MK, Eyduran E, Erturk YE (2015). Organic acids, sugars, vitamin C, antioxidant capacity, and phenolic compounds in fruits of white (Morus alba L.) and black (Morus nigra L.) mulberry genotypes. Journal of Applied Botany and Food Quality 88:134-138. https://doi.org/10.5073/JABFQ.2015.088.019

Fallik E, Ziv C (2020). How rootstock/scion combinations affect watermelon fruit quality after harvest?. Journal of the Science of Food and Agriculture 100(8):3275-3282. https://doi.org/10.1002/jsfa.10325

Flores FB, Sanchez-Bel P, Estah MT, Martinez-Rodriguez MM, Moyano E, Morales B, ... Bolarin MC (2010). The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae 125(3):211-217. https://doi.org/10.1016/j.scienta.2010.03.026

Gerasopoulos D, Stavroulakis G (1997). Quality characteristics of four mulberry (Morus sp) cultivars in the area of Chania, Greece. Journal of the Science of Food and Agriculture 73(2):261-264. https://doi.org/10.1002/(SICI)1097-0010(199702)73:2<261::AID-JSFA74>3.0.CO;2-S

Gioia FD, Serio F, Buttaro D, Ayala O, Santamaria P (2010). Influence of rootstock on vegetative growth, fruit yield and quality in 'Cuore di Bue', an heirloom tomato. The Journal of Horticultural Science and Biotechnology 85(6):477-482. https://doi.org/10.1080/14620316.2010.11512701

Giorgi M, Capocasa F, Scalzo J, Murri G, Battino M, Mezzetti B (2005). The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv.'Suncrest'). Scientia Horticulturae 107(1):36-42. https://doi.org/10.1016/j.scienta.2005.06.003

Gunes M, Cekic C (2004). Some chemical and physical properties of fruits of different mulberry species commonly grown in Anatolia, Turkey. Asian Journal of Chemistry 16(3):1849-1855. https://doi.org/10.17660/ActaHortic.2004.658.59

Gungor N, Sengul M (2008). Antioxidant activity, total phenolic content and selected physicochemical properties of white mulberry (Morus alba L.) fruits. International Journal of Food Properties 11(1):44-52. https://doi.org/10.1080/10982630701558652

Guo N, Jiang YW, Wang LT, Niu LJ, Liu ZM, Fu YJ (2019). Natural deep eutectic solvents couple with integrative extraction technique as an effective approach for mulberry anthocyanin extraction. Food Chemistry 296:78-85. https://doi.org/10.1016/j.foodchem.2019.05.196

Hale TA, Hassell RL, Phillips T (2005). Refractometer measurements of soluble solid concentration do not reliably predict sugar content in sweet corn. HortTechnology 15(3):668-672. https://doi.org/10.21273/HORTTECH.15.3.0668

Huang HP, Chang YC, Wu CH, Hung CN, Wang CJ (2011). Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chemistry 129(4):1703-1709. https://doi.org/10.1016/j.foodchem.2011.06.035

Huang LX, Zhou YB, Meng LW, Wu D, He Y (2017). Comparison of different CCD detectors and chemometrics for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique. Food Chemistry 224:1-10. https://doi.org/10.1016/j.foodchem.2016.12.037

Ikinci A, Bolat I, Ercisli S, Kodad O (2014). Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. ‘santa maria’ in semi-arid conditions. Biological Research 47(1):1-8. http://dx.doi.org/10.1186/1750-1172-47-71

Iqbal M, Mir K, Munir M (2010). Physico-chemical characteristics of different mulberry cultivars grown under agro-climatic conditions of Miran Shah, North Waziristan (Khyber Pakhtunkhwa), Pakistan. Journal of Agricultural Research 48(2):209-217.

Jelled A, Hassine RB, Thouiri A, Flamini G, Chahdoura H, Arem AE, ... Cheikh HB (2017). Immature mulberry fruits richness of promising constituents in contrast with mature ones: A comparative study among three Tunisian species. Industrial Crops and Products 95:434-443. https://doi.org/10.1016/j.indcrop.2016.10.053

Kang TH, Hur JY, Kim HB, Ryu JH, Kim SY (2006). Neuroprotective effects of the cyanidin-3-O-beta-D-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neuroscience Letters 391(3):122-126. https://doi.org/10.1016/j.neulet.2005.08.053

Koyuncu F, Koyuncu MA, Yildirim F, Vural E (2004). Evaluation of black mulberry (Morus nigra L.) genotypes from lakes region, Turkey. European Journal of Horticultural Science 69(3):125-131.
Mo RL et al. (2022). Not Bot Horti Agrobo 50(1):12598

Li CC, Zhang ZG, Liu YF, Yang L, Cheng P (2020). Quality analysis and evaluation of 12 mulberry varieties in Turpan. Southwest China Journal of Agricultural Sciences 33(09):1892-1897. https://doi.org/10.16213/j.cnki.scjas.2020.9.003

López-Ortega G, García-Montiel F, Bayo-Canha A, Frutos-Ruiz C, Frutos-Tomás D (2016). Rootstock effects on the growth, yield and fruit quality of sweet cherry cv. ‘Newstar’ in the growing conditions of the region of Murcia. Scientia Horticulturae 198:326-335. https://doi.org/10.1016/j.scienta.2015.11.041

Miller GL (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3):426-428. https://doi.org/10.1021/ac60147a030

Milosević T, Milosević N, Mladenović J (2020). Combining fruit quality and main antioxidant attributes in the sour cherry: The role of new clonal rootstock. Scientia Horticulturae 265:109236. https://doi.org/10.1016/j.scienta.2020.109236

Mo RL, Li Y, Dong ZX, Zhu ZZ, Yu C, Hu XM, Deng W (2021). Physiological and biochemical response of two mulberry rootstock seedlings to drought and waterlogging stress. Science of Sericulture 47(2):0127-0137. https://doi.org/10.13441/j.cnki.cykx.2021.02.004

Morris DL (1948). Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107(2775):254-255. https://doi.org/10.1126/science.107.2775.254

Mozafarian M, Ismail NSB, Kappel N (2020). Rootstock effects on yield and some consumer important fruit quality parameters of eggplant cv. ‘Madonna’ under protected cultivation. Agronomy 10(9):1442. https://doi.org/10.3390/agronomy10091442

Nimbolkar PK, Awachare C, Reddy YTN, Chander S, Hussain F (2016). Role of rootstocks in fruit production – a review. Journal of Agricultural Engineering and Food Technology 3(3):183-188.

Orazem P, Stampar F, Hudina M (2011). Fruit quality of Red Haven and Royal Glory peach cultivars on seven different rootstocks. Journal of Agricultural and Food Chemistry 59(17):9394-9401. https://doi.org/10.1021/jf2009588

Oz AT, Ulukanli Z (2014). The effects of calcium chloride and 1-Methylcyclopropene (1-MCP) on the shelf life of mulberries (Morus alba L.). Journal of Food Processing and Preservation 38(3):1279-1288. https://doi.org/10.1111/jfpp.12089

Pawlowska AM, Oleszek W, Braca A (2008). Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. Journal of Agricultural and Food Chemistry 56(9):3377-3380. https://doi.org/10.1021/jf703709r

Popara G, Magazin N, Keserović Z, Milić B, Milović M, Kalajdžić J, Manojlović M (2020). Rootstock and interstock effects on plum cv. ‘Cačanska Lepotica’ young tree performance and fruit quality traits. Erwerbs-Obstbau 62(4):421-428. https://doi.org/10.1007/s10341-020-00512-y

Qiao L, Cao MH, Zheng J, Zhao YH, Zheng ZL (2017). Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange. BMC Plant Biology 17(1):1-13. https://doi.org/10.1186/s12870-017-1138-8

Rabin I, Mancinelli AL (1986). Light, temperature, and anthocyanin production. Plant Physiology 81(3):922-924. https://doi.org/10.1104/pp.81.3.922

Singhal BK, Dhar A, Sharma A, Qadri SMH, Ahsan MM (2001). Sericultural by-products for various valuable commercial products as emerging bio science industry. Sericologia 41(3):369-391.

Singhal BK, Dhar A, Bindroo BB, Tripathi PM, Qadri SMH, Ahsan MM (2003). Medicinal utilities of mulberry and non-mulberry food plants of the silkworm. Recent Progress in Medicinal Plants 8:477-500.

Singhal BK, Khan MA, Dhar A, Baqua FM, Bindroo BB (2010). Approaches to industrial exploitation of mulberry (Mullbery sp.) fruits. Journal of Fruit and Ornamental Plant Research 18(1):83-99.

Sirikancharad A, Bumrungpet A, Kaewruang W, Senawong T, Pavadhong P (2016). The effect of mulberry fruits consumption on lipid profiles in hypercholesterolemic subjects: A randomized controlled trial. Journal of Pharmacy and Nutrition Sciences 60:7-14. https://doi.org/10.6000/1927-5951.2016.06.01.2

Song W, Wang HJ, Bucheli P, Zhang PF, Wei DZ, Lu YH (2009). Phytochemical profiles of different mulberry (Morus sp.) species from China. Journal of Agricultural and Food Chemistry 57(19):9133-9140. https://doi.org/10.1021/jf9022228

Stintzing FC, Carl R (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology 15(1):19-38. https://doi.org/10.1016/j.tifs.2003.07.004
Sun Q (2000). Determination of soluble protein content in plant tissues. In: Li HS (Ed). Experimental principles and techniques of plant physiology and biochemistry. Higher Education Press, Beijing, pp 182-85.

Tabakoglu N, Karaca H (2018). Effects of ozone-enriched storage atmosphere on postharvest quality of black mulberry fruits (*Morus nigra* L.). LWT-Food Science and Technology 92:276-281. https://doi.org/10.1016/j.lwt.2018.02.044

Tao XX (1982). The preliminary application of fuzzy mathematics in agricultural science. Journal of Shenyang Agricultural University 2:96-107.

Turhan A, Ozmen N, Serbeci MS, Seniz V (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Scientia Horticulturae 38(4):142-149. https://doi.org/10.1016/j.scienta.2011.01.016

Wang XK, Xing YY (2017). Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: a principal component analysis. Science Reports 7(1):1-13. https://doi.org/10.1038/s41598-017-00373-8

Webster AD (1995). Rootstock and interstock effects on deciduous fruit tree vigour, precocity and yield productivity. New Zealand Journal of Crop and Horticultural Science 23(4):373-382. https://doi.org/10.1080/01140671.1995.9513913

Webster AD (2001). Rootstocks for temperate fruit crops: current uses, future potential and alternative strategies. Acta Horticulturae 557:25-34. https://doi.org/10.17660/ActaHortic.2001.557.1

Xie JJ, Liu CP (2013). Method of fuzzy mathematics in agricultural science. Huazhong University of Science and Technology Press (4th ed), Wuhan.

Zhang HH, Li X, Zhang SB, Yin ZP, Zhu WX, Li JB, ... Sun GY (2018). Rootstock alleviates salt stress in grafted mulberry seedlings: physiological and PSII function responses. Frontiers in Plant Science 9:1806. https://doi.org/10.3389/fpls.2018.01806

Zhao P, Huang CS, Tang XP, He JY, Lei T, Liu Y, Wu J (2020). Study on main indicators and model to evaluate mulberry fruit quality. Science of Sericulture 46(3):0295-0305. https://doi.org/10.13441/j.cnki.cyxx.2020.03.004

Zhao XX, Gao HP, Wang YF, Zheng ZL, Bao LJ, Su C, ... Qian YH (2019). Changes in content of endogenous hormones during mulberry fruit development and its relationship with maturation. Science of Sericulture 45(5):0643-0650. https://doi.org/10.13441/j.cnki.cyxx.2019.05.003

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License.

© Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.