The Stokes Phenomenon and some applications

Marius van der Put
Department of Mathematics, P.O.Box 407, 9700 AK Groningen, The Netherlands, mvdput@math.rug.nl

Conference in honor of Juan J. Morales–Ruiz, Barranquilla, AMDS 2014,

Abstract
Multisummation provides a transparent theory of Stokes matrices which is presented here with some applications. Examples of moduli spaces for Stokes matrices are computed and discussed. A moduli space for a third Painlevé equation is made explicit. It is shown that the monodromy identity, relating the topological monodromy and Stokes matrices, is very useful for some quantum differential equations and for confluent generalized hypergeometric equations.

1 Introduction
Consider a linear differential equation in matrix form \(y' + Ay = 0 \) where the entries of the matrix \(A \) are meromorphic functions defined in a neighbourhood of, say, \(z = \infty \) in the complex plane. A formal or symbolic solution can be lifted to an actual solution in a sector at \(z = \infty \), having the formal solution as asymptotic behavior.

In 1857, G.G. Stokes observed, while working in the middle of the night and not long before getting married, the phenomenon that this lifting depends on the direction of the sector at \(z = \infty \) (see [Ra, St] for more details).

\footnote{MSC2000: 14D20, 12D24, 34M40, 34M55, 53D45. \textit{keywords:} Stokes matrices, moduli space for linear connections, quantum differential equations, Painlevé equations}
This is the starting point of the long history of the asymptotic theory of singularities of differential equations. The theory of multisummation, the work of many mathematicians such as W. Balser, B.L.J. Braaksma, J. Écalle, W.B. Jurkat, D. Lutz, M. Loday–Richaud, B. Malgrange, J. Martinet, J.-P. Ramis, Y. Sibuya, makes a transparent description of the Stokes phenomenon possible. Major applications are:

(a). Moduli spaces of linear differential equations.
(b). Quantum differential equations and confluent generalized hypergeometric equations.
(c). Isomonodromy, the Painlevé equations and Okamoto–Painlevé spaces.

The first section is written for the convenience of the reader. One considers a singular matrix differential equation $y' + Ay = 0$ at $z = \infty$ and recalls its formal classification, the definition of the Stokes matrices and the analytic classification. The theory is illustrated by the confluent generalized hypergeometric equation ρD_q. We rediscover results from [DM, Mi] as application of the monodromy identity. In the second section moduli spaces for Stokes maps are discussed. It is shown that totally ramified equations have very interesting Stokes matrices. Quantum differential equations coming from Fano varieties are studied in §3. Again the computability of Stokes matrices is the theme. Certain moduli spaces, namely Okamoto–Painlevé spaces, corresponding to Painlevé equations are discussed in §4, including an explicit calculation of a monodromy space for $P_{III}(D_7)$.

1 Formale and analytic classification, Stokes maps

1.1 Terminology and notation

Let k be a differential field, i.e., a field with a map $f \mapsto f'$ (called a derivation) satisfying $(f + g)' = f' + g'$ and $(fg)' = f'g + fg'$. The field of constants of k is \{ $f \in k \mid f' = 0$ \}. In this paper we suppose that the field of constants of k is \mathbb{C} and that $k \neq \mathbb{C}$.

The most important differential fields that we will meet are $\mathbb{C}(z)$, $\hat{K} := \mathbb{C}((z^{-1}))$ and $K := \mathbb{C} \{ (z^{-1}) \}$, i.e., the field of the rational functions in z, the formal Laurent series in z^{-1} and the field of the convergent Laurent series in z^{-1}. The latter is the field of germs of meromorphic functions at
\(z = \infty\). In all cases the differentiation is \(f \mapsto f' = \frac{df}{dz}\) (sometimes replaced by \(f \mapsto \delta(f) := z \frac{df}{dz}\) in order to make the formulas nicer).

A matrix differential equation \(y' + Ay = 0\) with \(A\) a \(d \times d\)-matrix with coordinates in \(k\) gives rise to the operator \(\partial := \frac{d}{dz} + A\) of \(kd\), where \(\frac{d}{dz}\) acts coordinatewise on \(kd\) and \(A\) is the matrix of a \(k\)-linear map \(kd \to kd\). Write now \(M = (M, \partial)\) for \(kd\) and the operator \(\partial\). Then this object is a differential module.

Indeed, a differential module over \(k\) is a finite dimensional \(k\)-vector space \(M\) equipped with an additive map \(\partial : M \to M\) satisfying \(\partial(fm) = f'm + f\partial(m)\) for any \(f \in k\) and \(m \in M\). If one fixes a basis of \(M\) over \(k\), then \(M\) is identified with \(kd\) (with \(d = \dim M\)) and the operator \(\partial\) is identified with \(\frac{d}{dz} + A\). Here \(A\) is the matrix of \(\partial\) with respect to the given basis of \(M\).

Thus a differential module is “a matrix differential equation where the basis is forgotten” and a matrix differential equation is the same as a differential module with a given basis.

We will use differential operators, i.e., elements of the skew polynomial ring \(k[\partial]\) (where \(\partial\) stands for \(\frac{d}{dz}\)) defined by the rule \(\partial f = f\partial + f'\). Instead of \(\partial\) we sometimes use \(\delta := z\partial\). Then \(\delta f = f\delta + \delta(f)\) (in particular \(\delta z = z\delta + z\)).

Let \(M\) be a differential module. The ring \(k[\partial]\) acts from the left on \(M\). For any element \(e \in M\), there is a monic operator \(L \in k[\partial]\) of smallest degree such that \(Le = 0\). The element \(e\) is called a cyclic if \(L\) has degree \(d = \dim M\). Cyclic elements \(e\) exist and the corresponding operator \(L\) can be seen as a scalar differential equation. Further \(L\) determines the module \(M\).

In practice one switches between differential modules, matrix differential equations and differential operators.

1.2 Classification of differential modules over \(\hat{K} := \mathbb{C}((z^{-1}))\)

The classification of a matrix differential equation \(z \frac{d}{dz} + A\) over \(\hat{K}\) (note that we prefer here \(z \frac{d}{dz}\)) goes back to G. Birkhoff and H.L. Turritin. This classification is somewhat similar to the Jordan normal of a matrix. However it is more subtle since \(z \frac{d}{dz} + A\) is linear over \(\mathbb{C}\) and is not linear over \(\hat{K}\).

We prefer to work “basis free” with a differential module \(M\) and classify \(M\) by its solution space \(V\) with additional data forming a tuple \((V, \{V_q\}, \gamma)\). If \(\dim M = d\), then we want the solution space, i.e., the elements \(w\) with
\[\delta w = 0 \] to be a \(\mathbb{C} \)-vector space of dimension \(d \). Now we write \(\delta : M \to M \) instead of \(\partial \) because \(\frac{d}{dz} \) is replaced by \(z \frac{d}{dz} \).

In general \(\{ m \in M | \delta(m) = 0 \} \) is a vector space over \(\mathbb{C} \) with dimension \(< d \). Thus we enlarge \(\hat{K} \) to a suitable differential ring \(U \) and consider \(\{ w \in U \otimes_{\hat{K}} M | \delta w = 0 \} \).

This differential ring \(U \) (the universal Picard–Vessiot ring for \(\hat{K} \)) is built as follows. We need a linear space of “eigenvalues” \(Q := \bigcup_{m \geq 1} z^{1/m} \mathbb{C}[z^{1/m}] \) and symbols \(z^\lambda \) with \(\lambda \in \mathbb{C} \), \(\log z \), \(e(q) \) with \(q \in Q \). The relations are \(z^{a+b} = z^a \cdot z^b \), \(z^1 = z \in \hat{K} \), \(e(q_1 + q_2) = e(q_1) \cdot e(q_2) \), \(e(0) = 1 \). And we define their derivatives by the formulas \((z^a)' = az^a \), \(\log(z)' = 1 \), \(e(q)' = qe(q) \) (note that ‘ stands for \(\frac{d}{dz} \) and that the interpretation of \(e(q) \) is \(e^{q \hat{z}} \)).

This universal Picard–Vessiot ring is \(U := \hat{K}\{z^\lambda\}_{\lambda \in \mathbb{C}}, \log(z), \{e(q)\}_{q \in Q} \). This ring is a direct sum \(U = \bigoplus_{q \in Q} U_q \) and \(U_q := e(q)\hat{K}\{z^\lambda\}_{\lambda \in \mathbb{C}}, \log(z) \).

The Galois group of the algebraic closure \(\bigcup_{m \geq 1} \mathbb{C}((z^{-1/m})) \) of \(\hat{K} \) is \(\cong \hat{\mathbb{Z}} \) and is topologically generated by the element \(\gamma \) given by \(\gamma z^\lambda = e^{2\pi i \lambda} z^\lambda \) for all \(\lambda \in Q \). The algebraic closure of \(\hat{K} \) lies in \(U \). One extends \(\gamma \) to a differential automorphism of \(U \) by the following formulas (corresponding to the interpretation of the symbols) \(\gamma z^a = e^{2\pi i a} z^a \) for all \(a \in \mathbb{C} \), \(\gamma \log(z) = 2\pi i + \log(z) \), \(\gamma e(q) = e(\gamma q) \).

For every differential module \(M \) over \(\hat{K} \), its solution space, defined as \(V := \ker(\delta, U \otimes M) \) has “all solutions” in the sense that \(\dim_{\mathbb{C}} V = \dim_{\hat{K}} M \) and the canonical map \(U \otimes_{\mathbb{C}} V \to U \otimes_{\hat{K}} M \) is an isomorphism.

Put \(V_q := \ker(\delta, U_q \otimes M) \), then \(V = \bigoplus_q V_q \) is a decomposition of the solution space. Further the action of \(\gamma \) on \(U \) induces a \(\gamma \in \text{GL}(V) \) such that \(\gamma V_q = V_{\gamma q} \) for all \(q \).

Theorem 1.1 (formal classification) The functor \(M \mapsto (V, \{V_q\}, \gamma) \) is an equivalence of the Tannakian categories of the differential modules over \(\hat{K} \) and the category of the tuples \((V, \{V_q\}, \gamma) \).

This “Tannakian” property means that the functor of the theorem commutes with all constructions of linear algebra applied to modules, including tensor products. Suppose \(M \) induces the tuple \((V, \{V_q\}, \gamma) \). Then \(q \) is called an eigenvalue of \(M \) if \(V_q \neq 0 \). Further the map \(\gamma \in \text{GL}(V) \) is called the formal monodromy of \(M \). §1.3 illustrates the computation of the tuple \((V, \{V_q\}, \gamma) \).
1.3 The confluent generalized hypergeometric equation

\[pD_q = (-1)^{p-q}z^p \prod_{j=1}^p (\delta + \mu_j) - \prod_{j=1}^q (\delta + \nu_j - 1) \quad \text{with} \quad \delta = \frac{d}{dz} \]

is this equation in operator form. We assume that \(1 \leq p < q \) and that the complex parameters \(\mu_j, \nu_j \) are such that \(\mu_1, \ldots, \mu_p \) are distinct modulo \(\mathbb{Z} \).

We regard \(pD_q \) as element of \(\widehat{K}[\delta] \) and start by factoring

\[pD_q = -(\delta^p + a_{p-1}\delta^{p-1} + \cdots + a_0)(\delta^{q-p} + b_{q-p-1}\delta^{q-p-1} + \cdots + b_1\delta - (-1)^{q-p}z + b_0) \]

with all \(a_j, b_j \in \mathbb{C}[[z^{-1}]] \). The two factors almost commute and there is a factorization in the opposite direction

\[pD_q = -(\delta^p + a_{p-1}\delta^{p-1} + \cdots + a_0)(\delta^{q-p} + b_{q-p-1}\delta^{q-p-1} + \cdots + b_1\delta - (-1)^{q-p}z + b_0) \]

with all \(a_j^*, b_j^* \in \mathbb{C}[[z^{-1}]] \).

From these factorizations one can read off the solution space. The term \((\delta^p + a_{p-1}\delta^{p-1} + \cdots + a_0)\delta + a_0^*\) is equivalent to \(\prod_{j=1}^P (\delta + \mu_j) \) (‘equivalent’ means that the differential modules over \(\hat{K} \) defined by the two operators are isomorphic). This yields solutions \(f_j := z^{-\mu_j} \) for \(j = 1, \ldots, p \). They form a basis of the \(\mathbb{C} \)-vector space \(V_0 \) with eigenvalue \(q_0 = 0 \). The action of the formal monodromy \(\gamma \) on \(V_0 \) is \(\gamma(f_j) = e^{-2\pi i \mu_j} f_j \).

The term \((\delta^{q-p} + b_{q-p-1}\delta^{q-p-1} + \cdots + b_1\delta - (-1)^{q-p}z + b_0)\) is equivalent to \(\delta^\sigma - z \) (up to a sign) with \(\sigma := q - p \). This operator factors over \(\hat{K}(z^{1/\sigma}) \) and one finds the eigenvalues \(q_1 = z^{1/\sigma}, q_2 = \zeta z^{1/\sigma}, \ldots, q_\sigma = \zeta^{\sigma-1}z^{1/\sigma} \) with \(\zeta = e^{2\pi i / \sigma} \).

Now we can describe the solution space \(V \) of \(pD_q \):

\[V = V_0 \oplus V_{q_1} \oplus \cdots \oplus V_{q_\sigma}, \]

where \(V_0 \) has a basis \(f_1, \ldots, f_p \) with \(\gamma f_j = e^{-2\pi i \mu_j} f_j \). Choose a basis \(e_1 \) of the 1-dimensional space \(V_{q_1} \). Put \(e_2 := \gamma e_1, e_3 := \gamma e_2, \ldots, e_\sigma := \gamma e_\sigma-1 \). Then \(V_{q_j} = \mathbb{C} e_j \) for \(j = 1, \ldots, \sigma \). Finally \(\gamma e_\sigma = e^{2\pi i \lambda} e_1 \) with \(\lambda := \frac{1}{2}(\sigma + 1) + \sum_{j=1}^{p} \mu_j - \sum_{j=1}^{q} \nu_j \). This follows from a computation of \(\gamma \) on \(f_1 \wedge \cdots \wedge f_p \wedge e_1 \wedge \cdots \wedge e_\sigma \) and the determinant \(\delta + \sum_{j=1}^{q} (\nu_j - 1) \) of \(pD_q \).

The above coincides with the formula of the formal monodromy in [Mi], p 373. In [Mi] and [DM] an explicit basis of formal or symbolic solutions of \(pD_q \) is constructed and the computation of the formal monodromy and, later on, of the Stokes matrices is with respect to this basis. Our basis
$f_1, \ldots, f_p, e_1, \ldots, e_\sigma$ is not unique. More precisely, the above tuple has a non-trivial automorphism group $G \cong (\mathbb{C}^*)^{p+1}$. The elements of G are given by $f_j \mapsto \alpha_j f_j$ for $j = 1, \ldots, p$ and $e_j \mapsto \alpha_{p+1} e_j$ for $j = 1, \ldots, \sigma$ (and $(\alpha_1, \ldots, \alpha_{p+1}) \in G$). We will see that the group G/\mathbb{C}^* acts non-trivially on the entries of the Stokes maps.

1.4 Stokes maps and the analytic classification

Let M be a differential module over K. Then $\hat{K} \otimes M$ is a differential module over \hat{K} and induces a tuple $(V, \{V_q\}, \gamma)$. For two eigenvalues q, \tilde{q} of $\hat{K} \otimes M$ one considers special directions $e^{2\pi i d}$, $d \in \mathbb{R}$, called singular for the difference $q - \tilde{q}$. Those are the d such that $e^{\int (q - \tilde{q}) \frac{dz}{z}}$ (this is the solution of $y' = (q - \tilde{q}) y$) has maximal descent to zero for $z := re^{2\pi i d}$ and $r > 0$, $r \to 0$.

The tuple $(V, \{V_q\}, \gamma)$ is the formal classification of M, i.e., the classification of $\hat{K} \otimes_K M$. Now we consider the classification of M itself. In the sequel, we use multisummation as a black box. It is a rather technical extension of the classical Borel summation of certain divergent power series.

For a direction d, one considers a suitable sector $S(d)$ at $z = \infty$, around d. If d is not singular, then there is a unique linear map, the multisum

$$\text{sum}_d : V \to \text{the space of the solutions of } M \text{ on the sector } S(d).$$

It has the property that for any $v \in V$, the $\text{sum}_d(v)$ has asymptotic expansion v (one has to add some conditions to make sum_d unique).

For a singular direction d one takes real numbers $d^- < d < d^+$ close to d and defines the Stokes map $St_d \in \text{GL}(V)$ by $\text{sum}_{d+} = \text{sum}_{d-} \circ St_d$. To M we associate the tuple $(V, \{V_q\}, \gamma, \{St_d\}_{d \in \mathbb{R}})$. One can show that this tuple has the additional properties:

(*) St_d has the form $id + \sum_d \text{ singular for } q - \tilde{q} \text{ Hom}(V_q, V_{\tilde{q}})$.

Here, every $\ell \in \text{Hom}(V_q, V_{\tilde{q}})$ is seen as an element of $\text{End}(V)$ by the sequence of maps $V \xrightarrow{\text{projection}} V_q \xrightarrow{\ell} V_{\tilde{q}} \xrightarrow{\text{inclusion}} V$.

(**) $\gamma^{-1} St_d \gamma = St_{d+1}$.

One considers the (Tannakian) category of the tuples with the properties (*) and (**).
Theorem 1.2 (the analytic classification)
The functor \(M \mapsto (V, \{V_q\}, \gamma, \{St_d\}) \) is an equivalence of the Tannakian categories of the differential modules over \(K \) and the above category of the tuples \((V, \{V_q\}, \gamma, \{St_d\}) \) satisfying (*) and (**).

The above theorem is, in contrast with the formal classification, a deep and final result in the asymptotic theory of linear differential equations. The irregularity of Malgrange, \(\text{irr}(M) \) of the differential module \(M \) is defined by
\[
\text{irr}(M) = \sum_{q \neq \tilde{q}} \deg_z (q - \tilde{q}) \cdot \dim V_q \cdot \dim V_{\tilde{q}}.
\]
One observes that the dimension of the space of all possibilities for Stokes maps with a fixed formal tuple is equal to \(\text{irr}(M) \) (see also §2).

A useful result, obtained by the above description of the Stokes maps, is the following.

Proposition 1.3 (The monodromy identity)
The topological monodromy of \(M \) is conjugated to \(\gamma\text{St}_{d_1} \cdots \text{St}_{d_s} \in \text{GL}(V) \) where \(0 \leq d_1 < \cdots < d_s < 1 \) are the singular directions of \(M \).

One cannot claim that the topological monodromy is equal to this product since one has to identify \(V \) with the local solution space at a point near \(z = \infty \) and that can be done in many ways.

1.5 Stokes matrices for \(pD_q \)
The main observation is the following. The monodromy identity yields complete formulas for the Stokes matrices of \(pD_q \) if we are allowed to choose a suitable basis of \(V \). More precisely, by choosing multiples of the basis \(f_1, \ldots, f_p \), we can normalize some of the entries of the Stokes maps to be 1. The others are then determined by the monodromy identity. This seems to work under the assumption that \(\mu_1, \ldots, \mu_p \) are distinct modulo \(\mathbb{Z} \) and that the equation is irreducible.

We note that the differential Galois group of \(pD_q \) is in fact the differential Galois group of \(pD_q \) as equation over the field of convergent Laurent series \(K \). This group does not depend on the the choice of multiples of \(f_1, \ldots, f_p \). For its (rather involved) computation, see [Mi, DM], the formal classification and the characteristic polynomial of the topological monodromy at \(z = 0 \) (or equivalently at \(z = \infty \)) suffice. We illustrate this by the easy example
\[1D_3 = z(\delta + \mu) - \prod_{j=1}^{3}(\delta + \nu_j - 1). \]

The formal solution space is the direct sum of three 1-dimensional spaces \(V_0 \oplus V_{1/2} \oplus V_{-1/2} \) with basis \(f_1, e_1, e_2 \). There is only one singular direction in the interval \([0, 1)\), namely \(d = 0 \). The topological monodromy at \(z = 0 \) is that of the operator \(\prod_{j=1}^{3}(\delta + \nu_j - 1) \) and has eigenvalues \(e^{-2\pi i \nu_j}, \ j = 1, 2, 3. \)

The formal monodromy is \(\gamma(f_1) = e^{-2\pi i \mu} f_1, \ \gamma e_1 = e_2 \) and \(\gamma(e_2) = e^{-2\pi i \lambda} e_1 \). The product of the formal monodromy and the unique Stokes matrix in the interval \([0, 1)\) is

\[
\begin{pmatrix}
 e_1 & 0 & 0 \\
 0 & e_2 & 0 \\
 0 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 1 & x_{1,0} & 0 \\
 0 & 1 & 0 \\
 x_{0,2} & x_{1,2} & 1 \\
\end{pmatrix}
=
\begin{pmatrix}
 e_1 & e_1 x_{1,0} & 0 \\
 e_2 x_{0,2} & e_2 x_{1,2} & e_2 \\
 0 & 1 & 0 \\
\end{pmatrix}.
\]

(Where \(e_1 = e^{-2\pi i \mu}, \ e_2 = e^{-2\pi i \lambda}, \ \lambda = \frac{3}{2} + \mu - \sum \nu_j \). Its characteristic polynomial \(T^3 - (e_1 + e_2 x_{1,2}) T^2 - (e_1 e_2 x_{1,0} x_{0,2} - e_2) T + e_1 e_2 \) coincides with \(\prod_{j=1}^{3}(T - e^{2\pi i \nu_j}) \). Choose \(x_{1,0} = 1 \). Then all Stokes matrices are determined.

The exceptional case \(x_{1,0} x_{0,2} = 0 \) cannot be handled in this way. Using J.-P. Ramis result that the differential Galois group is generated as an algebraic group by the formal monodromy, the exponential torus and the Stokes matrices, one concludes that \(x_{1,0} = 0 \) or \(x_{0,2} = 0 \) implies that the equation is reducible. See [DM] for a complete description of all cases and all differential Galois groups. We remark that the monodromy identity for \(pD_q \) is explicitly present in [DM].

2 Moduli spaces for the Stokes data

For given formal data \(F := (V, \{V_q\}, \gamma) \) at \(z = \infty \), there exists a unique differential module \(N \) over \(K = \mathbb{C}\{z^{-1}\} \) with these formal data and with trivial Stokes matrices. One considers differential modules \(M \) which have formal classification \(F \). The set of isomorphism classes of these modules does not have a good algebraic structure since \(F \) has, in general, automorphisms.

D.G. Babbitt and V.S. Varadarajan consider instead pairs \((M, \phi)\) of a differential module \(M \) over \(K \) and an isomorphism \(\phi : \hat{K} \otimes M \to \hat{K} \otimes N \). Two pairs \((M_j, \phi_j), \ j = 1, 2\) are equivalent if there exists an isomorphism \(\alpha : M_1 \to M_2 \) such that \(\phi_2 \circ \alpha = \phi_1 \). The set \(\text{Stokesmoduli}(F) \) of equivalence
classes of pairs (M, ϕ) has been given a natural structure of complex algebraic
variety. Babbitt and Varadarajan prove that $\text{Stokesmoduli}(F)$ is isomorphic
to the affine space A^m_m, where $m = \sum_{i \neq j} \dim V_{q_i} \cdot \dim V_{q_j} \cdot \deg(q_i - q_j)$. The $\{q_i\}$ are the eigenvalues of M and m is the irregularity of F, in the
terminology of B. Malgrange.

This result of is in complete agreement with the above description of the
Stokes matrices $\{\text{St}_d\}$ (defined by multisummation). Thus $\text{Stokesmoduli}(F)$ is the moduli space for the possible Stokes matrices for fixed formal data $F = (V, \{V_q\}, \gamma)$.

However, there is, in general, no universal family of differential modules
parametrized by $\text{Stokesmoduli}(F) \cong \text{Spec}(\mathbb{C}[x_1, \ldots, x_m])$. In other words, $\text{Stokesmoduli}(F)$ is, in general, not a fine moduli space for the above family of differential modules.

Indeed, suppose that such a family $\{M_\xi\} \xi \in \text{Stokesmoduli}(F)$ of
differential modules over $K = \mathbb{C}(\{z^{-1}\})$ exists. This family is represented by
a matrix differential operator $z \frac{d}{dz} + A$ in the variable z and with entries in,
say, $K(x_1, \ldots, x_m)$. The monodromy identity shows that the eigenvalues of
the topological monodromy are algebraic over this field. A logarithm of the
topological monodromy is computable from $z \frac{d}{dz} + A$ and has again entries in
$K(x_1, \ldots, x_m)$. This is, in general, not possible. See §2.1 for a concrete case.

In order to produce a fine moduli space one replaces the differential mod-
ule M over $K = \mathbb{C}(\{z^{-1}\})$ by a tuple $(\mathcal{M}, \nabla, \phi)$. Here (\mathcal{M}, ∇) is a connection
on the projective line \mathbb{P}^1 over \mathbb{C} which has two singular points 0 and ∞. The
point $z = 0$ is supposed to be regular singular. Further ϕ is an isomorphism
of the formal completion of the connection at $z = \infty$ (i.e., $\mathcal{M}_\infty \otimes \mathbb{C}[[z^{-1}]]$)
with a prescribed object $\nabla : N_0 \to N_0 \otimes z^k \mathbb{C}[[z^{-1}]]$. This prescribed ob-
ject is a standard lattice (i.e., a $\mathbb{C}[[z^{-1}]]$-submodule generated by a basis) of
the formal differential module N over $\mathbb{C}((z^{-1}))$ corresponding to the given
$F = (V, \{V_q\}, \gamma)$.

According to a theorem of Birkhoff, this “spreading out of M” exists. We
will make the assumption that \mathcal{M} is a free vector bundle on \mathbb{P}^1. The above
description leads to a fine moduli space $\text{Mod}(F)$.

Let $\text{Stm} : \text{Mod}(F) \to \text{Stokesmoduli}(F)$, denote the map which associates
to a tuple $(\mathcal{M}, \nabla, \phi)$, belonging to $\text{Mod}(F)$, its set of Stokes matrices.
Known results are (see [vdP-Si]):
Theorem 2.1

(a). $\text{Mod}(F)$ is isomorphic to the affine space \mathbb{A}_C^m.
(b). Stm is analytic and has an open dense image.
(c). The generic fibre of Stm is a discrete infinite set and can be interpreted as a set of logarithms of the topological monodromy.

Comments. The proof of (a) is complicated and the result itself is somewhat amazing. (b) follows from the observations: If the topological monodromy of M is semi-simple, then a tuple $(\nabla, \mathcal{M}, \phi)$ with free \mathcal{M} exists. Moreover semi-simplicity is an open property. (c) follows from the construction of “spreading out”. One needs a logarithm of the topological monodromy in order to construct the connection (\mathcal{M}, ∇) on \mathbb{P}^1 from the differential module over $K = \mathbb{C}(\{z^{-1}\})$.

A precise description of the generic fibre seems rather difficult. Moreover, a better moduli space, replacing $\text{Mod}(F)$, which does not require the vector bundle \mathcal{M} to be free, should be constructed.

2.1 Example: Unramified cases

F is defined by $V = V_{\lambda_1 z} \oplus \cdots \oplus V_{\lambda_n z}$ where each $V_{\lambda_j z}$ has dimension one and the $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are distinct. Further γ is the identity. Then N_0 can be given by the differential operator $\delta + z \cdot \text{diag}(\lambda_1, \ldots, \lambda_n)$. Clearly $\text{Stokesmoduli}(F) \cong \mathbb{A}_C^{n(n-1)}$.

The universal family is $\delta + z \cdot \text{diag}(\lambda_1, \ldots, \lambda_n) + (T_{i,j})$, where for notational convenience $T_{i,i} = 0$ and the $\{T_{i,j}\}$ with $i \neq j$ are $n^2 - n$ independent variables. Thus $\text{Mod}(F)$ is indeed isomorphic to $\mathbb{A}_C^{n(n-1)}$. Further one observes that, in general, the matrix $L := (T_{i,j})$ has the property that $e^{2\pi i L}$ is the topological monodromy at $z = 0$ (or equivalently at $z = \infty$). Now the entries of $e^{2\pi i L}$ are rational in the $n(n-1)$-variables of $\text{Stokesmoduli}(F)$.

This shows that there is no universal family above $\text{Stokesmoduli}(F)$.

In the case $n = 2$, the map $\text{Mod}(F) \to \text{Stokesmoduli}(F)$ can be made explicit and is shown to be surjective. For $n > 2$, the above map is “highly transcendental” and we do not know whether it is surjective. The problem is the choice of a free vector bundle \mathcal{M} in the definition of $\text{Mod}(F)$.

The problem of explicit computation of the Stokes matrices, i.e., making Stm explicit in this special case, has been studied over a long period and by
many people W. Balser, W.B. Jurkat, D.A. Lutz, B. Dubrovin, D. Guzzetti et al.. There is an analytic (Laplace type) transformation of the above operator to an operator with only regular singularities. The ordinary monodromy of the transformed equation produces answers for the Stokes matrices of the original equation. This is used by Dubrovin, Guzzetti, H. Iritani, S. Tanabe, K. Ueda et al. in computations of the Stokes matrix for quantum differential equations.

Now we come to a surprising new case.

2.2 Example: Totally ramified cases

The formal case F is essentially $V = V_{z^{1/n}} \oplus V_{\zeta z^{1/n}} \oplus \cdots \oplus V_{\zeta^{n-1} z^{1/n}}$, where $\zeta := e^{2\pi i/n}$, each $V_{\zeta^i z^{1/n}}$ has dimension 1 and γ satisfies $\gamma^n = 1$. The irregularity $\sum_{i \neq j} 1 \cdot 1 \cdot \text{deg}(\zeta^i z^{1/n} - \zeta^j z^{1/n})$ is equal to $n - 1$ and this is small compared to the unramified case with irregularity $n(n - 1)$. This is responsible for special features of these important examples.

For notational convenience we will consider the case $n = 3$. The lattice N_0 with formal data F and trivial Stokes matrices can be represented by the differential operator $\delta + \begin{pmatrix} -\frac{1}{3} & 0 & z \\ 1 & 0 & 0 \\ 0 & 1 & \frac{1}{3} \end{pmatrix}$.

A computation shows that $\text{Mod}(F)$ is represented by the universal family $\delta + \begin{pmatrix} a_1 & 0 & z \\ 1 & a_2 & 0 \\ 0 & 1 & a_3 \end{pmatrix}$ with $a_1, a_2, a_3 \in \mathbb{C}$ with $a_1 + a_2 + a_3 = 0$.

(General case of the family $\delta + \begin{pmatrix} a_0 & 0 & \cdots & z \\ 1 & a_1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n-2} & 0 & \cdots \\ 0 & \cdots & 1 & a_{n-1} \end{pmatrix}$ with $\sum a_j = 0$.

The case all $a_j = 0$ corresponds to $\delta^n - z$. The case $a_i = \frac{i}{n} - \frac{n-1}{2n}$ for $i = 0, \ldots, n - 1$ corresponds to all Stokes matrices are trivial.)

There are 6 singular directions, corresponding to the differences of generalized eigenvalues $\zeta^i z^{1/3} - \zeta^j z^{1/3}$ for $i \neq j$. The corresponding Stokes matrix has one element, called $x_{j,i}$, off the diagonal. Two singular directions are in
namely \(\frac{1}{3}, \frac{2}{3}\), and the others are obtained by shifts over 1 and 2. The topological monodromy at \(z = 0\) is conjugated (by the monodromy identity) to \(\gamma St_{3/4} St_{1/4}\) which reads
\[
\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
x_{2,1} & 1
\end{pmatrix}
\begin{pmatrix}
1 & x_{0,1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

The characteristic polynomial of this matrix is \(\lambda^3 - x_{0,1} \lambda^2 - x_{2,1} \lambda - 1\).

The topological monodromy is given by the operator \(\delta + \left(\begin{array}{ccc}
a_1 & 0 & 0 \\
1 & a_2 & 0 \\
0 & 1 & a_3
\end{array}\right)\)
which has eigenvalues \(a_1, a_2, a_3\). The monodromy has eigenvalues \(e^{2\pi i a_j}\) for \(j = 1, 2, 3\). Its characteristic polynomial is \((\lambda - e^{2\pi i a_1})(\lambda - e^{2\pi i a_2})(\lambda - e^{2\pi i a_3})\) and this implies \(x_{0,1} = \sum_{j=1}^{3} e^{2\pi i a_j}\) and \(x_{2,1} = \sum_{i<j} e^{2\pi i a_i} e^{2\pi i a_j}\). This makes the analytic morphism \(Stm\) from \(\text{Mod}(F) = \text{Spec}(\mathbb{C}[a_1, a_2, a_3]/(a_1+a_2+a_3))\) to \(\text{StokesModuli}(F) = \text{Spec}(\mathbb{C}[x_{0,1}, x_{2,1}])\) explicit.

Special cases.

1. \(a_1 = -1/3, a_2 = 0, a_3 = 1/3\) yields \(x_{0,1} = x_{2,1} = 0\) and all Stokes matrices are trivial.
2. \(a_1 = a_2 = a_3 = 0\) yields \(x_{0,1} = (3\choose 1), x_{2,1} = -(2\choose 1)\). The equation is \(\delta^3 - z\) and all Stokes entries are ± binomial coefficients. In the general case \(\delta^n - z\) this remains valid and is an explicit form of part of a conjecture of Dubrovin (see also §3).

Conclusions. For the totally ramified cases \(F\) that we consider, the Stokes matrices have explicit formulas in exponentials of algebraic expressions in the entries of the matrix differential operator. This shows in particular, that there is no universal family parametrized by \(\text{StokesModuli}(F)\). Further \(Stm : \text{Mod}(F) \to \text{StokesModuli}(F)\) is surjective and the fibers correspond to choices of the logarithm of the topological monodromy.

3 Fano varieties and quantum differential equations

This part of the paper represents work by John Alexander Cruz Morales and the author [CM-vdP]. A (complex) Fano variety \(F\) is a non singular, con-
nected projective variety of dimension \(d \) over \(\mathbb{C} \), whose anticanonical bundle \((\Lambda^d \Omega)^*\) is ample. There are rather few Fano varieties.

Examples: For dimension 1 only \(F = \mathbb{P}^1 \); for dimension 2: the Fano’s are del Pezzo surfaces and \(\cong \mathbb{P}^1 \times \mathbb{P}^1 \) or \(\cong \mathbb{P}^2 \) blown up in at most 8 points in general position; for dimension 3 and 4, there are classifications (long lists).

3.1 Quantum cohomology and quantum differential equations

We borrow from the informal introduction to the subject from M. A. Guest’s book [Gue]. Let \(F \) be a Fano variety. On the vector space \(H^*(F) := \bigoplus_{i=0}^{d} H^{2i}(F, \mathbb{C}) \) there is the usual cup product \(\circ \) (say obtained by the wedge product of differential forms). Quantum cohomology introduces a deformation \(\circ_t \) of the cup product \(\circ \) on \(H^*(F) \) for \(t \in H^2(F, \mathbb{C}) \).

With respect to a basis \(b_0, \ldots, b_s \) of \(H^*(F, \mathbb{Z}) := \bigoplus_{i=0}^{d} H^{2i}(F, \mathbb{Z}) \), the quantum products \(b_i \circ_t \) have matrices which are computable in terms of the geometry of \(F \). Let \(b_1, \ldots, b_r \) be a basis of \(H^2(F, \mathbb{Z}) \).

The quantum differential equation of a Fano variety \(F \) is a system of (partial) linear differential operators \(\partial_i - b_i \circ_t, \ i = 1, \ldots, r \) acting on the space of the holomorphic maps \(H^2(F, \mathbb{C}) = \mathbb{C}b_1 + \cdots + \mathbb{C}b_r \rightarrow H^*(F, \mathbb{C}) = \mathbb{C}b_0 + \cdots + \mathbb{C}b_s \).

For the case \(r = 1 \) that interest us, the quantum differential equation reads \(z \frac{d}{dz} \psi = C \psi \), where \(\psi \) is a vector of length \(s + 1 \) and \(C \) is the matrix of quantum multiplication \(b_1 \circ_t \). The entries of the \((s + 1) \times (s + 1)\) matrix \(C \) are polynomials in \(z \) with integer coefficients. Clearly \(z = 0 \) is a regular singular point and \(z = \infty \) is irregular singular. By taking a cyclic vector one obtains a scalar differential equation of order \(s + 1 \).

3.2 Examples of quantum differential equations

\[\delta^n - z \text{ with } \delta = z \frac{d}{dz} \text{ for } \mathbb{P}^{n-1}. \]

\[\delta^{n+m-1} - m^m z (\delta + \frac{m-1}{m}) (\delta + \frac{m-2}{m}) \cdots (\delta + \frac{1}{m}) \text{ with } n \geq 1, m > 1. \]
for a non singular hypersurface of degree \(m \) in \(\mathbb{P}^{n+m-1} \).

\[
\prod_{j=0}^{n} \delta \left(\delta - \frac{1}{w_j} \right) \ldots \left(\delta - \frac{w_j-1}{w_j} \right) - z
\]

for the weighted projective space \(\mathbb{P}(w_0, \ldots, w_n) \).

\[
\delta^3 - az\delta^2 - ((b-a)z^2 + bz)\delta + 2az^2 - cz^3 \quad \text{with} \quad a, b, c \in \mathbb{Z}
\]

for del Pezzo surfaces.

\[
\delta^4 - 11z\delta^2 - 11z\delta - 3z - z^2 \quad \text{for} \quad V_5, \quad \text{a linear section of the Grassmannian} \quad G(2,5) \quad \text{in the Plücker embedding.}
\]

\[
\delta^4 - (94z^2 + 6z)\delta^2 - (484z^3 + 188z^2 + 2z)\delta - (695z^4 + 632z^3 + 98z^2) \quad \text{for} \quad \text{the 3-fold} \quad V_{22}.
\]

B. Dubrovin is one of the founders of quantum cohomology. One of his conjectures (1996-1999), [Du98, Du99] states that the Gram matrix \((G_{i,j}) \) of a (good) Fano variety coincides with the “Stokes matrix” of the quantum differential equation of \(F \) (up to a certain equivalence of matrices).

Here \(G_{i,j} = \sum_k (-1)^k \dim Ext^k(E_i, E_j) \), where \(\{E_i\} \) is an exceptional collection of coherent sheaves on \(F \) generating the derived category \(D^{b coh}(F) \). Further “Stokes matrix” is in fact a connection matrix and, in our terminology, equal to the product \(\prod_{d \in [0,1/2)} St_d \) (in counter clock order).

For \(F = \mathbb{P}^n \), this has been verified by D. Guzzetti (1999). There are recent papers [Iri, MT, Tan, T-U, Ue1, Ue2] which handle more cases and use the “Laplace type transformation” to a regular singular differential equation.

The contribution of [CM-vdP] is proving Dubrovin’s conjecture by computing all \(St_d \), using only the formal classification and the monodromy identity, for the cases \(\mathbb{P}^n \), non singular hypersurfaces of degree \(m \leq n \) in \(\mathbb{P}^n \), and for weighted projective spaces \(\mathbb{P}(w_0, \ldots, w_n) \). The equations and the method are closely related to §1.5 and §2.2.
Riemann–Hilbert approach to Painlevé equations

This classical method, related to isomonodromy, was revived and refined by M. Jimbo, T. Miwa and K. Ueno around 1980. The literature on the subject is nowadays impressive.

Certain details of the Riemann–Hilbert approach are worked out (2009) in collaboration with Masa-Hiko Saito, [vdP-Sa]. In collaboration with Jaap Top, refined calculations of Okamoto-Painlevé spaces and Bäcklund transformations were presented for $P_I - P_{IV}$ (2009-2014), see [vdP-T]. We give here a rough sketch of the ideas and especially of the part where Stokes matrices enter the picture. The starting point is a family S of differential modules M over $\mathbb{C}(z)$ with prescribed singularities at fixed points of \mathbb{P}^1. The type of singularities gives rise to a monodromy space R build out of monodromy, Stokes matrices and ‘links’.

An example for R:
The set S which gives rise to $P_{III}(D7)$ consists of the differential modules M over $\mathbb{C}(z)$ which have only 0 and ∞ as singular points. The point 0 has Katz invariant $1/2$ and the point ∞ has Katz invariant 1. The monodromy space R consists of the analytic classification $(V(0), \ldots)$ of M at $z = 0$ and $(V(\infty), \ldots)$ at $z = \infty$ and a connection matrix between these data, the link $L : V(0) \to V(\infty)$, which describes the relation between the solutions around $z = 0$ and the the solutions around $z = \infty$.

The solution space $V(0)$ at $z = 0$ is given a basis e_1, e_2 for which the formal monodromy, the Stokes matrix and topological monodromy top_0 are
\[
\begin{pmatrix}
0 & -1 \\
1 & 0 \\
\end{pmatrix}, \begin{pmatrix}
1 & 0 \\
e & 1 \\
\end{pmatrix}, \begin{pmatrix}
-e & -1 \\
1 & 0 \\
\end{pmatrix}.
\]

The solution space $V(\infty)$ at $z = \infty$ is given a basis f_1, f_2 for which the formal monodromy, the Stokes maps and the topological monodromy top_{∞} are
\[
\begin{pmatrix}
\alpha & 0 \\
0 & \alpha^{-1} \\
\end{pmatrix}, \begin{pmatrix}
1 & 0 \\
c_1 & 1 \\
\end{pmatrix}, \begin{pmatrix}
1 & c_2 \\
0 & 1 \\
\end{pmatrix}, \begin{pmatrix}
\alpha & \alpha c_2 \\
\alpha^{-1} c_1 & \alpha^{-1}(1 + c_1 c_2) \\
\end{pmatrix}.
\]

One may assume that $L := \left(\ell_1, \ell_2, \ell_3, \ell_4\right)$ has determinant 1. There is a relation $top_0 \cdot L^{-1} \cdot top_{\infty} \cdot L = 1$. This yields a set of variables and relations and thus an affine variety. The above bases e_1, e_2 of $V(0)$ and f_1, f_2 of $V(\infty)$ are not unique. Indeed, the ambiguity in these basis is given by the transformation
\(e_1, e_2 \mapsto \lambda_0 e_1, \lambda_0 e_2\) and \(f_1, f_2 \mapsto \lambda_1 f_1, \lambda_2 f_2\) with \((\lambda_0, \lambda_1, \lambda_2) \in (\mathbb{C}^*)^3\). Dividing this affine space by the action of \((\mathbb{C}^*)^3\) one obtains \(\mathcal{R}\). The final result is that \(\mathcal{R}\) is an affine cubic surface, given by variables \(\ell_{13}, \ell_{23}, \alpha\) and relation
\[
\ell_{13}\ell_{23} + \ell_{13}^2 + \ell_{23}^2 + \alpha \ell_{13} + \ell_{23} = 0.
\]

Consider the map \(S \to \mathcal{R}\) which associates to each module \(M \in S\) its monodromy data in \(\mathcal{R}\). The fibers of this map are parametrized by some \(T \cong \mathbb{C}^*\) and there results a bijection \(S \to \mathcal{R} \times T\). The set \(S\) has a priori no structure of algebraic variety. A moduli space \(\mathcal{M}\) over \(\mathbb{C}\), whose set of closed points consists of certain connections of rank two on the projective line, is constructed such that \(S\) coincides with \(\mathcal{M}(\mathbb{C})\). This defines the analytic Riemann–Hilbert morphism \(RH : \mathcal{M} \to \mathcal{R}\). The fibers of \(RH\) are the isomonodromic families. There results an extended Riemann–Hilbert isomorphism \(RH^+ : \mathcal{M} \to \mathcal{R} \times T\). From the isomorphism \(RH^+\) the Painlevé property for the corresponding Painlevé equation follows and the moduli space \(\mathcal{M}\) is identified with an Okamoto–Painlevé space. Special properties of solutions of the Painlevé equations, such as special solutions, Bäcklund transformations etc., are derived from the extended Riemann–Hilbert isomorphism.

The above sketch needs subtle refinements. One has, depending on the Painlevé equation and its parameters, to add level structure, to forget points, to desingularize \(\mathcal{R}\) and \(\mathcal{M}\), to replace spaces by their universal covering etc., in order to obtain a correct extended Riemann–Hilbert isomorphism. For the remarkable fact that for each Painlevé equation the moduli space for the monodromy \(\mathcal{R}\) is an affine cubic surface with three lines at infinity, there is not yet an explanation.

References

[CM-vdP] Cruz-Morales, J.A. and Van der Put, M.

Stokes matrices for the quantum differential equations of some Fano varieties. European Journal of Mathematics, December 2014. http://link.springer.com/article/10.1007/s40879-014-0012-6

[Du98] Dubrovin, B. Geometry and analytic theory of Frobenius manifolds, in: Proceedings of the International Congress of Mathematicians, vol II, 315–326 (Berlin 1998),
[Du99] Dubrovin, B. *Painlevé transcendents in two dimensional topological field theory*, in: The Painlevé property: 100 years later. CRM. Ser. Math. Phys. Springer (1999) 287-412

[DM] A. Duval and C. Mitschi. *Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées*. Pacific journal of mathematics, Vol 138, No 1, 1989, 25-56.

[Gue] Guest, M.A. *From Quantum Cohomology to Integrable Systems*, Oxford Graduate Texts in Mathematics 15, 2008

[Guz] Guzzetti, D. *Stokes matrices and monodromy of the quantum cohomology of projective spaces*. Comm. Math. Phys., 207 (2), (1999) 341-383

[Iri] Iritani, H. *An integral structure in quantum cohomology and mirror symmetry for toric varieties*, Adv. Math. 222 (2009), 1016–1079

[MT] Marcolli, M. and Tabuada, G. *From exceptional collections to motivic decompositions via noncommutative motives* arXiv:1202.6297.

[Mi] C. Mitschi - *Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers* - Pacific journal of Mathematics, Vol 176, No 2, 1996, 365-405.

[vdP-Sa] Van der Put, M. and Saito, M.-H. *Moduli spaces for linear differential equations and the Painlevé equations*, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 7, 2611-2667.

[vdP-Si] Van der Put, M. and Singer, M.F. *Galois theory of linear differential equations*, Grundlehren der Mathematischen Wissenschaften 328, 2003.

[vdP-T] Van der Put, M. and Top, J. *Geometric aspects of the Painlevé equations PIII(D6) and PIII(D7)*. SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 050, 24 pp.

[Ra] Ramis, J.-P. *Stokes Phenomenon: Historical Background in The Stokes Phenomenon and Hilbert’s 16th Problem*, Groningen, The Netherlands 1995, World Scientific Publishing Co.Pte.Ltd. 1996.

[St] Stokes, G.G. *Early Letters to Lady Stokes*, March 17, 1857, Memoirs and Scientific correspondance 1, 62, (Cambridge University Press 1907).

[Tan] Tanabe, S. *Invariant of a hypergeometric group associated to the quantum cohomology of the projective space*. Bull. Sci. Math 128 (2004) 811-827
[T-U] Tanabe, S. and Ueda, K. Invariants of hypergeometric groups for Calabi–Yau complete intersections in weighted projective spaces arXiv:1305.1659v2, 9 Sep 2013

[Ue1] Ueda, K. Stokes Matrices for the Quantum Cohomologies of Grassmannians. Int. Math. Res. Nos. 2005, no 34, 2075–2086

[Ue2] Ueda, K. Stokes Matrices for the Quantum Cohomology of Cubic Surfaces arXiv:math/0505350v, 2005