The prognostic value of lymphovascular invasion in radical prostatectomy: a systematic review and meta-analysis

Yi Huang1,*, Hai Huang1,*, Xiu-Wu Pan1, Dan-Feng Xu2, Xin-Gang Cui1, Jie Chen1, Yi Hong1, Yi Gao1, Lei Yin1, Jian-Qing Ye1, Lin Li1

INTRODUCTION
Prostate cancer (PCa) is the second most common cancer and the sixth leading cause of cancer-related death in Caucasian men, and there were estimated 238 590 new PCa cases and 29 720 deaths from PCa in the United States in 2014.1 With advances in the minimally invasive technologies, radical prostatectomy (RP) as the standard treatment has made great progress in improving perioperative outcomes. Nevertheless, early biochemical recurrence (BCR) occurred in approximately 20% patients undergoing RP,2,3 in whom the 5-year metastasis rate was as high as 30%–44%.4 Thus, it is imperative for clinicians to identify risk factors of post-RP BCR, and provide advisable indexes for adjuvant therapies including external beam radiotherapy (EBRT), intensity-modulated radiotherapy, and androgen deprivation therapy.

To date, although some potential biomarkers including Lymphovascular Invasion (LVI) have been added to the pathological reports of PCa patients who underwent prostatectomy, their impact on prognosis such as BCR has not been sufficiently evaluated.5 LVI has been documented as a poor prognostic factor in many solid tumors.5,6 Some authors have demonstrated an association between the presence of LVI in prostatectomy specimens and BCR. Although the College of American Pathologists (CAP) suggested that LVI should be reported in the routine examination of RP specimens in the 2010 consensus statement, there is a lack of convincing evidence to support its prognostic value.7 Therefore, we conducted a systematic review of current publications to assess the prognostic value of LVI in BCR, and a meta-analysis was performed for the extracted data that could be merged.

MATERIALS AND METHODS

Literature search
We search Electronic databases including PubMed, Web of Science and the Cochrane Library for published studies that analyzed the prognostic value of LVI in PCa up to May 31, 2014. The following Medical Subject Headings terms and free texts were used: “lymphovascular,” “microvascular,” “vascular,” “vessel,” “invasion,” “prostate,” “prostatic,” “cancer,” “carcinoma,” “neoplasm,” “tumor,” and “mass.” The searching strategies and results are shown in Table 1. In addition, a full manual search from the reference list of each identified article was performed.

Study selection
We defined the inclusion and exclusion criteria at the initiation of the search. Studies were included when they met the following
criteria: (1) studies that included definitive diagnosis of PCa; (2) studies that assessed LVI in RP specimens involving lymphatic or vascular invasion for which no attempt was made to differentiate them; (3) studies that chose RP as the only treatment; (4) studies that investigated the relationship between LVI and patient pathological outcomes or the correlation between LVI with preoperative prostate specific antigen (PSA) and pathological parameters; and (5) studies that offered a hazard ratio (HR) and 95% confidence interval (CI) directly or rendered the data that could be used to calculate HR and 95% CI. The exclusion criteria were: (1) review articles, letters to the editor, commentaries, or case reports; (2) studies that duplicated patient populations that had been reported in previous publications; and (3) studies on PCa cell lines or animal models.

The whole process was monitored by two reviewers (YH and HH) independently. Discrepancies between the reviewers were resolved by a consensus meeting with three senior investigators (YG, YH, and XGC) who made the final decision regarding inclusion or exclusion of the study.

Data extraction

The following specified data were gathered from each eligible study: (1) main characteristics including the author, country, publication year, institution, recruitment period, study design, pathology stain method, definition of LVI, definition of BCR, the number of patients, median age at operation, the number of pelvic lymph node dissection (PLND), neoadjuvant (neo), androgen deprivation therapy (ADT), external beam radiotherapy (EBRT), and median follow-up time (Supplementary Table 1); (2) Tumor-Node-Metastasis (TNM) stage characteristics, Gleason score, and correlation between LVI and preoperative PSA and pathological parameters (Supplementary Table 2); (3) HR of LVI in univariate or multivariate Cox analyses, Co-factors, and the conclusion of each study concerning whether LVI was an independent predictor (Supplementary Table 3).

Statistical analysis

The primary objective of this review was to determine differences in survival outcomes between patients with negative LVI and positive LVI. HR and 95% CI were collected from each study if they were not directly reported, and the HR was estimated according to the method reported by Tierney et al.1 The overall pooled HR was estimated by calculating the weighted average of the log-HRs and their 95% CI from each study. An observed HR >1 implied a poor survival outcome for patients with positive LVI. The impact of LVI on the outcome was considered as an independent predictor if the 95% CI did not overlap with 1 and $P < 0.05$. Subgroup analysis was performed to check whether the pooled HR was influenced by the region and number of patients, pathologic N stage, median follow-up, analysis results, definition of BCR, staining method, and staging system. In order to assess the stability of the combined HR, sensitivity analysis was performed by removing one study. The heterogeneity of the combined HR was evaluated using the Chi-square (χ^2 test) and inconsistency (I² test). Meta-analysis used the fixed-effect model, when $P \geq 0.1$ and $I^2 \leq 50\%$, which indicated a moderate heterogeneity between studies, whereas when $P < 0.1$ or $I^2 > 50\%$, which indicated large heterogeneity, the random-effect model was applied. In addition, publication bias was evaluated by Egger’s linear regression and Begg’s rank correlation.

The secondary objective of this review was to study the relationship between the pathological parameters of PCA and LVI. The data of pathological stage were divided as low-stage (pT2) group and high stage (pT3-4) group. Gleason scores were categorized as low Gleason score (GS <7) and high Gleason score (GS ≥7). The RR of the high stage or high Gleason score along with the corresponding 95% CI was calculated by meta-analysis. In addition, the extracapsular extension (ECE), seminal vesicle involvement (SVI), and pathological node (pN) were directly divided as positive and negative. RR and CI of positive components were analyzed. Stata (Version 12.0; Stata Corp, College station, TX, USA) was used for all statistical analyses.

RESULTS

A total of 25 studies were selected for the systematic review and meta-analysis (Figure 1). With regard to the primary objective, survival outcomes with negative LVI and positive LVI were evaluated. Some studies revealed that LVI was an independent predictor in cancer-specific survival (CSS), distant metastasis (DM), progression-free survival (PFS), overall survival (OS), and these details are shown in Supplementary Table 3, however, the data for CSS, DM, PFS, OS were not available in any study. Nevertheless, 21 studies provided the BCR data, and the meta-analysis showed that positive LVI was correlated with poorer BCR in RP patients (HR = 2.05, 95% CI, 1.64–2.56, $P < 0.00001$) (Figure 2). Test of Cochrane Q ($\chi^2 = 47.39, P = 0.001$) and inconsistency test ($I^2 = 57.8\%$) could not exclude a significant heterogeneity. Given the large heterogeneity between the studies, subgroup analysis was performed, and the results are shown in Supplementary Table 4. In sensitivity analysis, one-way sensitivity analysis was carried out to exclude a single study and calculated the pooled HR for remaining studies, and omission of each study did not have a significant impact on the merged value of HR. Allowing for publication bias, Begg’s funnel plot was performed, and no significant
publication bias was detected between these studies regarding HR of BCR with \(P = 0.112 \). In addition, Egger’s test (\(P = 0.207 \)) demonstrated a similar result (Figure 3).

The secondary objective was to assess the relationship between LVI and higher pathological tumor stages (> pT3 stage), higher Gleason score (> GS = 7), positive pN, ECE, and SVI. Ten studies provided data on the number of higher pT stage in the positive LVI groups and negative LVI groups, and the pooled RR was 1.90 (95% CI, 1.73–2.08; \(Z = 13.45, P < 0.00001 \)) with a moderate heterogeneity (\(P = 0.054 \) for heterogeneity; \(I^2 = 46.1\% \)) (Figure 4a). Similarly, the data of other pathological parameters were extracted from eligible studies, and we found that LVI was significantly correlated with higher GS (pooled RR, 1.30; 95% CI, 1.23–1.39; \(Z = 8.55, P < 0.00001 \)) with a moderate heterogeneity (\(P = 0.019 \) for heterogeneity; \(I^2 = 47.1\% \)) (Figure 4b), positive pN status (pooled RR, 5.67; 95% CI, 3.14–10.24; \(Z = 5.74, P < 0.00001 \)) with a large heterogeneity (\(P < 0.00001 \) for heterogeneity test; \(F = 72.8\% \)) (Figure 4c), ECE (pooled RR, 1.72; 95% CI, 1.46–2.02; \(Z = 6.50, P < 0.00001 \)) with a large heterogeneity (\(P < 0.00001 \) for heterogeneity test; \(F = 73.6\% \)) (Figure 4d) and SVI (pooled RR, 3.36; 95% CI, 2.41–4.70; \(Z = 7.11, P < 0.00001 \)) (Figure 4e) despite a large heterogeneity among studies (\(P < 0.00001 \) for heterogeneity test; \(F = 81.9\% \)).

DISCUSSION

Lymphovascular invasion is defined as the presence of a tumor within an endothelial-lined space, which most probably links with the hematogenous spread of tumor cells. Tumor cells first infiltrate into lymphatic and/or vascular vessels, and then disseminate, which is a much more common phenomenon in malignant tumors including PCA.43 In addition, LVI is a significant prognostic factor in bladder, upper urinary tract urothelial and lung cancers, which has been confirmed in several systematic review studies.41–43 As regards to liver and testicular tumors, LVI has been added to the TNM staging system, in terms of improved tumor staging.44–46 Although the prognostic value of LVI in PCA patients after RP has been appraised by a number of studies, the results remain controversial.

The results obtained in our meta-analysis are in line with those in a previous System Review by Ng et al.”46 In addition, our study presented a series of advancements in comparison with the previous studies. First, we included more eligible studies with large sample sizes. The Ng’s search time was ended in 2009. However, we added 8 extra studies including 2825 patients from 2009 to 2014, thus providing more exact evaluation on the effect and enabling more authentic subgroup analyses.

Second, although the same result was obtained in Ng’s study reporting a significant relationship between LVI and BCR in RP, we found that the pooled result of LVI had a large heterogeneity (\(F = 57.8\% \)) by meta-analysis, and so we conducted a subgroup analysis. Meanwhile, the sensitivity analysis of our study revealed that the omission of each study did not have a significant impact on the merged value of HR. In contrast, Ng et al.”46 only assessed the quality of publications and no other analysis on the reliability of the result was done.

In our subgroup analyses of the region, sample size, pN status, follow-up time, negative/positive result of LVI, PSA level definition of BCR and staining method, we found a significant correlation between LVI and staining method, we found a significant correlation between LVI and poor BCR. Notably, in large sample groups with the number of patients larger than 500, the pooled HR was 1.58 (1.28–1.95). In the short-term follow-up group with the follow-up duration <24 months, we also found that LVI could serve as a predictor in early BCR and be used in Nomogram for predicting BCR.47 Although only one study43 revealed that the addition of LVI only marginally improved the predictive accuracy (from 0.880 to 0.884). In addition, LVI was correlated with higher pT stages, higher GS, positive pN status, ECE, and SVI, indicating that the presence of LVI in PCa may predict the higher risk of progression with poor BCR, PFS, CSS, DM, and OS, and some previous studies13,20,22,23 may support this possibility though we do not have available data to further analysis.

Figure 2: Forest plots of hazard ratios with the random-effects model for lymphovascular invasion in patients with prostate cancer (biochemical recurrence-free probability).
There are some limitations in our meta-analysis. The first is the problem of heterogeneity due to relevant baseline patient characteristics of each study. Although we took into account the heterogeneity in our meta-analysis using the random-effects model, the conclusion drawn in this study should be considered prudently. Second, as some of the studies were unable to provide data available to calculate HRs of BCR, we could not merge their results, although publication bias evaluation of BCR showed no significant difference and sensitivity analysis confirmed the prognostic value of LVI. In addition, as only few included studies covered survival outcomes such as PFS, CSS, DM, and OS, we were unable to perform a meta-analysis for the lack of data available to calculate HR and 95% CI directly or indirectly. Finally, most studies were retrospective, and only two studies included in our meta-analysis were prospective. Therefore, more prospective multicenter trials are required to confirm the conclusion.

In addition to these study limitations, it is usually difficult to completely exclude subjective bias among pathologists in clinical practice.

Figure 3: Begg’s Funnel plots for publication bias test. Assessment of potential publication bias in studies of lymphovascular invasion in patients with prostate cancer (biochemical recurrence-free probability).

Figure 4: Forest plots of RR’s for the Association of LVI with (a) higher pathological tumor stages (>pT3 stage); (b) higher Gleason score (>GS = 7); (c) pathological node (pN); (d) extracapsular extension (ECE); (e) seminal vesicle involvement (SVI). RR: risk ratio.
practice. Knowing that the surrounding stromal tissue can mimic vascular invasion that cannot be easily be recognized, experts have reached agreement that the report of LVI is only in unequivocal cases. With regard to staining method, hematoxylin and eosin (HE) is the most commonly used examination for LVI. However, some included studies incorporated immunohistochemical analysis, and this added measure may increase the detection rate of LVI. But as there are still controversies over the use of immunohistochemical analysis, it is not used routinely in clinical practice. What’s more, in most studies, tumor cells invasion in lymphatic vessels and vascular vessels were combined as LVI and no effort was made to distinguish between them. One reason for this is the difficulty that there is lack of reproducibility when using routine light microscopy, and previous studies have not fully evaluated the clinical values to assess the survival outcomes of prostate cancer in terms of distinguishing vascular invasion from lymphatic invasion.

CONCLUSION
Our meta-analysis indicates that LVI has a detrimental effect on the BCR-Free probability, and clinicopathological features in RP specimens and, therefore, could be considered as an independent prognostic factor of BCR. It could also be used to predict BCR patients who need further adjuvant therapies.

AUTHOR CONTRIBUTIONS
Y Huang reviewed articles, analyzed data, and drafted the manuscript; HH and XWP reviewed articles, analyzed data, and revised the manuscript critically; HH participated in as the third reviewer and drafting the manuscript; JC and Y Hong participated in data analyzing and revised the manuscript; JQY and LL participated in its design and helped to draft the manuscript; DFX supervised the project and revised manuscript; XGC and YG conceived of the study, participated and revised the manuscript; XGC and YG conceived of the study, participated and revised the manuscript; HH participated in as the third reviewer and revising manuscript; JQY and LL participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

COMPETING INTERESTS
The authors declare that they have no competing interests.

ACKNOWLEDGMENTS
This work was supported by grants from the National Natural Science Foundation of China for Youths (No. 8100136 and 81202020); the National Natural Science Foundation of China (No. 30973006, 81170637); Shanghai Committee of Science and Technology General Program for Medicine (No. 11JC1402302); the Key Project of Science and Innovation Foundation of Shanghai Ministry of Education (14zz084); and the Military Fund for Health Care (13BZJ29).

Supplementary information is linked to the online version of the paper on the Asian Journal of Andrology website.

REFERENCES
1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.
2. Porter CR, Kodama K, Gibbons RP, Correa R Jr, Chun FK, et al. 25-year prostate cancer control and survival outcomes: a 40-year radical prostatectomy single institution series. J Urol 2006; 176: 569–74.
3. Menon M, Bhandari M, Gupta N, Lane Z, Peabody JD, et al. Biochemical recurrence following robot-assisted radical prostatectomy: analysis of 1384 patients with a median 5-year follow-up. Eur Urol 2010; 58: 838–46.
4. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999; 281: 1591–7.
5. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, et al. EUA guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 2014; 65: 124–37.
6. Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL, et al. Inclusion of vasculature-related variables in the Dukes staging system of colon cancer. Clin Cancer Res 2005; 11 (24 Pt 1): 8653–60.
7. Lotan Y, Gupta A, Shariat SF, Palapattu GS, Vazina A, et al. Lymphovascular invasion is independently associated with overall survival, cause-specific survival, and local and distant recurrence in patients with negative lymph nodes at radical cystectomy. J Clin Oncol 2005; 23: 6533–9.
8. Magi-Galluzzi C, Evans AJ, Delhaunt B, Epstein JI, Griffiths DF, et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod Pathol 2011; 24: 26–38.
9. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007; 8: 16.
10. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719–48.
11. Higgins JP, Thompson SG, Deeks JI, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.
12. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–88.
13. van den Ouden D, Kranse R, Hop WC, van der Kwast TH, Schröder FH. Microvascular invasion in prostate cancer: prognostic significance in patients treated with radical prostatectomy for clinically localized carcinoma. Urol Int 1998; 60: 17–24.
14. de la Taille A, Rubin MA, Buttyan R, Olsson CA, Bagiella E, et al. Is microvascular invasion on radical prostatectomy specimens a useful predictor of PSA recurrence for prostate cancer patients? Eur Urol 2000; 38: 79–84.
15. Herman CM, Wilcox GE, Kattan MW, Scardino PT, Wheeler TM. Lymphovascular invasion as a predictor of disease progression in prostate cancer. Am J Surg Pathol 2000; 24: 859–63.
16. Quinn DI, Henshall SM, Haynes AM, Brenner PC, Kooner R, et al. Prognostic significance of pathological features in localized prostate cancer treated with radical prostatectomy: implications for staging systems and predictive models. J Clin Oncol 2001; 19: 3692–705.
17. Ito K, Nakashima J, Mukai M, Asakura H, Ohiyashi T, et al. Prognostic implication of microvascular invasion in biochemical failure in patients treated with radical prostatectomy. Urol Int 2003; 70: 297–302.
18. Ferrari MK, McNeal JE, Malhotra SM, Brooks JD. Vascular invasion predicts recurrence after radical prostatectomy: stratification of risk based on pathologic variables. Urology 2004; 64: 749–53.
19. Shariat SF, Khodddami SM, Saboorian H, Koeneman KS, Sagalowsky AI, et al. Lymphovascular invasion is a pathological feature of biologically aggressive disease in patients treated with radical prostatectomy. J Urol 2004; 171: 1122–7.
20. Cheng L, Jones TD, Lin H, Eble JN, Zeng G, et al. Lymphovascular invasion is an independent prognostic factor in prostate adenocarcinoma. J Urol 2005; 174: 2181–5.
21. Antunes AA, Srougi M, Dal’Oglio MF, Crippa A, Paranhas M, et al. Microvascular invasion is an independent prognostic factor in patients with prostate cancer treated with radical prostatectomy. Int Braz J Urol 2006; 32: 668–75; discussion 675–7.
22. Brooks JP, Albert PS, O’Connell J, McLeod DG, Poppi MM. Lymphovascular invasion in prostate cancer: prognostic significance in patients treated with radiotherapy after radical prostatectomy. Cancer 2006; 106: 1521–6.
23. Hofer MD, Kuefer R, Huang W, Li H, Bismar TA, et al. Prognostic factors in lymph node-positive prostate cancer. Urology 2006; 67: 1016–21.
24. Loeb S, Roehl KA, Yu X, Antenor JA, Han M, et al. Lymphovascular invasion in radical prostatectomy specimens: prediction of adverse pathologic features and biochemical progression. Urology 2006; 68: 99–103.
25. Huang SP, Huang CY, Wang JS, Liu CC, Pu YS, et al. Prognostic significance of p53 and X-ray repair cross-complementing group 1 polymorphisms on prostate-specific antigen recurrence in prostate cancer post radical prostatectomy. Clin Cancer Res 2007; 13 (22 Pt 1): 6632–8.
26. May M, Kaufmann O, Hammermann F, Loy V, Siegmund M. Prognostic impact of lymphovascular invasion in radical prostatectomy specimens. BJU Int 2007; 99: 539–44.
27. Baydar DE, Basiskioglu B, Ozen H, Geyik PO. Prognostic significance of lymphovascular invasion in clinically localized prostate cancer after radical prostatectomy. Scientific World Journal 2008; 8: 303–12.
28. Whittemore DE, Hick EJ, Carter MR, Moul JW, Miranda-Sousa AJ, et al. Significance of tertiary Gleason pattern 5 in Gleason score 7 radical prostatectomy specimens. J Urol 2008; 179: 516–22; discussion 522.
29. Yamamoto S, Kawakami S, Yonese J, Fujii Y, Ohkubo Y, et al. Lymphovascular invasion is an independent predictor of prostate-specific antigen failure after radical prostatectomy. Int J Urol 2008; 15: 895–9.
30. Jour BH, Bae J, Yi JS, Wang IS, Lee SE, et al. Perineural invasion is a prognostic factor for biochemical failure after radical prostatectomy. Int J Urol 2009; 16: 682–6.
31. Cho IC, Chung HS, Cho KS, Kim JE, Joung JY, et al. Bcl-2 as a predictive factor for biochemical recurrence after radical prostatectomy: an interim analysis. Cancer Res Treat 2010; 42: 157–62.
32. Lee JT, Lee S, Yun CJ, Jeon BJ, Kim JM, et al. Prediction of perineural invasion
and its prognostic value in patients with prostate cancer.

33 Jung JH, Lee JW, Aronceld FR, Cho NH, Yusoff NA, et al. Significance of perineural invasion, lymphovascular invasion, and high-grade prostatic intraepithelial neoplasia in robot-assisted laparoscopic radical prostatectomy.

34 Yee DS, Shariat SF, Lowrance WT, Maschino AC, Savage CJ, et al. Prognostic significance of lymphovascular invasion in radical prostatectomy specimens.

35 Chromek TF, Cha EK, Pummer K, Scherr DS, Tewari AK, et al. Prognostic value of insulin-like growth factor II mRNA binding protein 3 in patients treated with radical prostatectomy.

36 Luo HL, Chiang PH, Chen YT, Cheng YT. Lymphovascular invasion is a pathological feature related to aggressive cancer behavior and predicts early recurrence in prostate cancer.

37 Leng YH, Lee WJ, Yang SO, Lee JK, Jung TY, et al. Oncologic outcomes of patients with Gleason score 7 and tertiary Gleason pattern 5 after radical prostatectomy.

38 Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics.

39 Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer.

40 Alexander-Sefre F, Singh N, Ayhan A, Salveson HB, Wilbanks G, et al. Detection of tumour lymphovascular space invasion using dual cytokeratin and CD31 immunohistochemistry.

41 Ku JH, Byun SS, Jeong H, Kwak C, Kim HH, et al. Lymphovascular invasion as a prognostic factor in the upper urinary tract urothelial carcinoma: a systematic review and meta-analysis.

42 Kim H, Kim M, Kwak C, Kim HH, Ku JH. Prognostic significance of lymphovascular invasion in radical cystectomy on patients with bladder cancer: a systematic review and meta-analysis.

43 Molberg NM, Bennette C, Howell E, Backhus L, Devine B, et al. Lymphovascular invasion as a prognostic indicator in stage I non-small cell lung cancer: a systematic review and meta-analysis.

44 Vauthey JN, Lauwers GY, Esnaola NF, Do KA, Belghiti J, et al. Simplified staging for hepatocellular carcinoma.

45 Albers P, Siener R, Kiesch S, Weissbach L, Kresse S, et al. Risk factors for relapse in clinical stage I nonseminomatous testicular germ cell tumors: results of the German Testicular Cancer Study Group Trial.

46 Ng J, Mahmud A, Bass B, Brundage M. Prognostic significance of lymphovascular invasion in radical prostatectomy specimens.

47 Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer.
Study	Country	Year	Institution	Recruitment period	Study design	Pathology stain method	Definition of LVI	Number of patients	Median age at operation, range (year)	PLND	Neo	ADT	EBRT	Median follow-up, range (months)
Yee et al.	USA	2010	Memorial Sloan-Kettering Cancer Center	2004–2007 Prospective	HE	Yes	PSA ≥ 0.1	1298	59, NA	1298	0	24	NA	27, NA
Lee et al.	Korea	2010	Pusan National University Hospital	1999–2010 Retrospective	HE	Yes	PSA ≥ 0.2	361	69.0 ± 6.8, 49–94	NA	0	NA	42.4 ± 33.6, 6.5–141.6	
Cho et al.	Korea	2010	Korea Nation Cancer Center	2005–2009 Retrospective	NA	No	PSA ≥ 0.4	167	64.4, 49–80	NA	0	NA	23.3–51	
Jeon et al.	Korea	2009	Seoul National University Hospital	1995–2004 Retrospective	NA	Yes	PSA ≥ 0.2	237	64.5, 44–86	135	18	30	41.4, 1–141.4	
Whittimore et al.	USA	2008	Wilford Hall Medical Center	1988–2003 Retrospective	NA	No	PSA ≥ 0.2	214	NA	NA	0	0	NA	NA
Yamamoto et al.	Japan	2008	Cancer Institute Hospital, Tokyo	1994–2005 Retrospective	HE	Yes	PSA ≥ 0.2	94	68, 52–76	94	0	NA	47.4, 9.1–146.8	
May et al.	Germany	2006	Carl-Thiem Hospital Vivantes-Clinic Am Urban	1996–2003 Retrospective	IHC (CD31)/HE	Yes	PSA ≥ 0.2	412	63.7, 44–79	412	0	0	NA	52.5–10–116
Hofer et al.	Germany	2005	University of Ulm Hospital	1986–2002 Retrospective	NA	Yes	PSA ≥ 0.4	201	64, 48–78	201	0	201	NA	41, 1–151
Antunes et al.	Brazil	2006	Syrian Lebanese Hospital	1993–2000 Retrospective	NA	No	PSA ≥ 0.4	428	62.8, 40–83	NA	0	0	NA	53.9 ± 20.1, NA
Loeb et al.	USA	2006	Washington University School of Medicine North Western University Feinberg School of Medicine	1989–2002 Retrospective	HE	Yes	PSA ≥ 0.2	1709	NA	NA	NA	NA	NA	34, 1–122
Brooks et al.	USA	2006	Walter Reed Army Medical Center National Naval Medical Center	1991–2001 Retrospective	NA	No	PSA ≥ 0.2	160	NA	160	NA	NA	32	99.6, NA
Cheng et al.	USA	2005	Indiana University Hospital	1990–1998 Retrospective	NA	Yes	PSA ≥ 0.1	504	62, NA	504	0	NA	44, 1.5–144	
Shariat et al.	USA	2004	University of Texas South Western Medical Center	1994–2002 Retrospective	HE	Yes	PSA ≥ 0.2	630	60.9, 40–75	630	NA	NA	NA	43.9, 4–100
Ito et al.	Japan	2002	Keio University School of Medicine	1989–1998 Retrospective	HE	Yes	PSA ≥ 0.2	82	66.5 ± 0.5, 56–74	82	0	0	0	21.7 ± 1.9, 9–84.2
de la Taille et al.	USA	1999	Columbia-Presbyterian Medical Center	1993–1998 Retrospective	HE	Yes	PSA ≥ 0.2	241	62, 42–77	NA	NA	NA	22.9, 6–77.6	
van den Ouden et al.	Netherlands	1997	Erasmus University and Academic Hospital	1977–1994 Retrospective	HE	Yes	PSA ≥ 0.1	273	63.8, 45–75	273	NA	NA	49, 1–206	
Leng et al.	Korea	2013	Veterans Health Service Medical Center	2005–2010 Retrospective	NA	No	PSA ≥ 0.2	166	NA	NA	167	0	0	33.7 ± 18.7, NA
Chromecki et al.	USA	2011	Weil Cornell Medical College	2011 Retrospective	NA	No	PSA ≥ 0.2	232	62.6, NA	232	0	0	69.0, 4.3–113.4	
Quinn et al.	Australia	2001	St. Vincent’s Hospital Campus	1986–1999 Retrospective	NA	Yes	PSA ≥ 0.4	732	62.1, 40.7–76.7	724	83	NA	41.1, 1.0–167.7	
Huang et al.	China	2007	Kaohsiung Medical University Kaohsiung Veterans General Hospital	2000–2005 Prospective	NA	No	PSA ≥ 0.2	126	NA	NA	NA	NA	NA	NA
Jung et al.	Korea	2011	Yonsei University College of Medicine	2005–2009 Retrospective	NA	Yes	PSA ≥ 0.2	407	63.24, 38–82	407	0	0	0	18.43, 6–50
Ferrari et al.	USA	2004	Stanford University Medical Center	1984–1999 Retrospective	HE	Yes	PSA ≥ 0.1	620	64.5, 42–78	614	0	NA	90, 24–216	
Luo et al.	China	2012	Kaohsiung Chang Gung Memorial Hospital	1998–2010 Retrospective	NA	No	PSA ≥ 0.2	87	63, 49–83	NA	NA	NA	40.9, 0.6–99.9	
Herman et al.	USA	2000	Memorial Sloan-Kettering Cancer Center	1983–1997 Retrospective	HE	Yes	PSA ≥ 0.4	263	64, NA	263	8	NA	36, 1–158	
Baydar et al.	Turkey	2007	Hacettepe University, School of Medicine	1992–2001 Retrospective	IHC (CD31)/HE	Yes	PSA ≥ 0.2	71	62, 48–75	69	0	NA	54, 4–145	

BOR: biochemical recurrence; PSA: prostate specific antigen; EBRT: external beam radiotherapy; RP: radical prostatectomy; ADT: androgen deprivation therapy; PLND: pelvic lymph node dissection; Neo: neoadjuvant; HE: hematoxylin and eosin; IHC: immunohistochemistry; NA: not available; LV: lymphovascular invasion
Supplementary Table 2: The TNM stage characteristics and correlations between LVI and preoperative PSA and pathological parameters

Study	TNM stages and GS characteristics (staging system)	Number (% of positive LVI)	Preoperative PSA (ng/mL)	pT stage ≥pT3/total	ECE Positive/total	SVI Positive/total	GS ≥7 GS/total	pN stage pN+/total
Yee et al.	pT2-4, pNO-1 GS (<7, 7, >7) (2002 AJCC)	129/1298 (9.9)	7.3 (4.9–11.3)	5.1 (3.7–7.1)	<0.001	NA	NA	NA
Lee et al.	pT2-4, pNO-1 GS (<7, 7, >7) (2002 AJCC)	40/361 (11.1)	NA	NA	NA	NA	NA	NA
Cho et al.	pT2-3, pNx GS (<7, 7, >7) (2002 AJCC)	16/167 (9.6)	NA	NA	NA	NA	NA	NA
Jeon et al.	pT2-3, pNO-1 GS (<7, 7, >7) (2002 AJCC)	41/237 (17.3)	16.4 (2.7–98.0)	10.5 (0.2–86.6)	0.002	30/41 (74.4)	62/196	26/41 (58.2)
Whitemore et al.	pT2-4, pNO-1 GS (7) (2002 AJCC)	12/214 (5.6)	NA	NA	NA	NA	NA	NA
Yamamoto et al.	pT3a, pNO GS (<7, 7, >7) (1997 AJCC)	26/64 (27.7)	12.8 (3.5–59.0)	8.55 (0.5–75.0)	0.022	26/26 (94.4)	NA	0/26 (0.0)
May et al.	pT2-3b, pNO GS (<7, 7, >7) (1997 AJCC)	42/412 (10.2)	22.6 (6.4–151)	10.9 (0.1–51)	<0.001	27/42 (64.3)	86/370	NA
Hofer et al.	pTx, pNO GS (<7, 7, >7) (2002 AJCC)	29/116 (25.0)	NA	NA	NA	NA	NA	NA
Antunes et al.	pT2-3, pNO GS (<7, 7, >7) (1992 AJCC)	47/428 (11.0)	10.6 (8.6–13.1)	8 (7.5–8.5)	0.004	24/47 (88.2)	95/381	43/47 (98.9)
Loeb et al.	pTx, pNO-1 GS (<7, 7, >7) (NA)	118/1109 (6.9)	5.8	4.5	<0.0001	78/118 (67.1)	346/1573	55/115 (47.5)
Brooks et al.	pTx, pNO-1 GS (<7, 7, >7) (NA)	18/160 (11.3)	10.9 (4.7–40.7)	17.7 (1.3–21.7)	0.44	NA	NA	13/18 (72.2)
Cheng et al.	pT2-2, pNO-1 GS (<7, 7, >7) (1997 AJCC)	106/504 (21.0)	NA	NA	NA	73/106 (70.3)	83/398	63/106 (59.7)
Shariat et al.	pTx, pNO-1 GS (<7, 7, >7) (1997 AJCC)	32/630 (5.1)	7.8 (4.0–99.0)	6.0 (0.1–52.0)	0.04	NA	NA	26/32 (80.9)
Ito et al.	pT2-3, pNO GS (<7, 7, >7) (1992 AJCC)	38/82 (46.3)	NA	NA	NA	NA	NA	NA
de la Taille et al.	pT2-3, pNO-1 GS (<7, 7, >7) (NA)	21/241 (12.4)	NA	NA	NA	20/30 (66.7)	56/211	21/30 (78.6)
van den Ouden et al.	pT2-4, pNO-1 GS (<7, 7, >7) (1992 AJCC)	33/273 (12.1)	NA	NA	NA	32/33 (155/240)	30/33	14/240 (57.1)
Leng et al.	pT2-4, pNO-1 GS (7) (2010 AJCC)	40/166 (24.1)	NA	NA	NA	NA	NA	NA
Chromecki et al.	pTx, pNO-1 GS (<7, 7, >7) (NA)	8/102 (7.8)	NA	NA	NA	NA	NA	NA
Quinn et al.	pT2-4, pNO-1 GS (<7, 7, >7) (1992 AJCC)	38/731 (5.2)	NA	NA	NA	NA	NA	NA
Huang et al.	pT2-4, pNO-1 GS (<7, 7, >7) (1992 AJCC)	17/111 (15.3)	NA	NA	NA	NA	NA	NA
Jung et al.	pT2-3, pNO-1 GS (<7, 7, >7) (2002 AJCC)	27/407 (6.6)	12.83 (2.40–30.78)	9.83 (1.76–83.23)	0.075	17/27 (62.9)	108/380	50/380 (50.0)
Ferrari et al.	pTx, pNO-1 GS (<7, 7, >7) (NA)	110/620 (17.7)	NA	NA	NA	70/110 (63.6)	14/9/509	31/109 (31.0)
Luo et al.	pTx, pNO-1 GS (<7, 7, >7) (NA)	18/87 (20.7)	NA	NA	NA	14/18	26/69	10/18 (57.1)
Herman et al.	pT3, pNO GS (<7, 7, >7) (NA)	91/172 (52.9)	NA	NA	NA	63/91	97/172	37/91 (39.2)
Baydar et al.	pT2-3, pNO-1 GS (<7, 7, >7) (NA)	11/71 (15.5)	NA	NA	NA	11/11	36/60	7/11 (63.6)

A P value represent a statistically difference. TNM: tumor-node-metastasis; ECE: extracapsular extension; SVI: seminal vesicle involvement; LVI: lymphovascular invasion; PSA: prostate-specific antigen; pT: pathological tumor; pN: pathological node; AJCC: American Joint Committee on Cancer and the International Union Against Cancer; GS: Gleason score; NA: not available
Supplementary Table 3: Estimation of the HR

Study	Survival analysis	HR estimation or P	Co-factors	LVI independent predictor?
Yee et al.24	BCR	HR (95% CI): 1.77	Pre-PSA, ECE, SVI, GS, SM, LNI	Yes
Lee et al.22	BCR	HR (95% CI): 1.086	GS, pT stage, SM, TV, Primary-Gleason grade, secondary-Gleason grade, Number of positive lymph nodes, nadir PAS	No
Yee et al.24	CSS	*P=0.533	NA	No
Cho et al.31	BCR	HR (95% CI): 2.683	Pre-PSA, biopsy GS, GS, SM, ECE, SVI, Bcl-2 expression	No
Jeon et al.30	BCR	HR (95% CI): 1.08	Pre-PSA, ECE, SVI, GS, SM, PNI	No
Whittemore et al.28	BCR	HR (95% CI): 2.49	>pT2 stage, pre-PSA, SM, PNI, LNI, percentage cancer (tumor burden)	Yes
Yamamoto et al.29	BCR	HR (95% CI): 1.64	Pre-PSA, biopsy GS, GS, SM, clinical stage	Yes
May et al.26	BCR	HR (95% CI): 4.39	Pre-PSA, GS, SVI, PSA density, positive biopsy cores	Yes
Hofer et al.23	BCR	HR (95% CI): 1.9	Gleason grade 4/5, nuclear grade 3	Yes
Antunes et al.21	BCR	HR (95% CI): 1.78	Pre-PSA, ECE, SM, clinical stage, present of positive biopsy cores	Yes
Loeb et al.24	BCR	HR (95% CI): 1.5	GS, SVI, SM, ECE, LNI	No
Brooks et al.22	BCR	HR (95% CI): 5.47	Pre-PSA, SM, LNI, ECE, SVI, GS, PNI, Undetectable PSA after RP, pre-RP PSA level	Yes
Cheng et al.20	BCR	HR (95% CI): 1.6	pT stage, GS, SM	Yes
Shariat et al.19	CSS	*P=0.001	NA	Yes
Ito et al.17	BCR	HR (95% CI): 4.39	GS, ECE, SM, SVI, PNI	Yes
de la Taille et al.14	BCR	HR (95% CI): 7.15	pT3 stage, pre-PSA, GS, SM	Yes
van den Ouden et al.13	BCR	HR (95% CI): 2.3	ECE, grade 3, positive lateral margin	Yes
OS	*P=0.02	NA	NA	Yes
DM	*P=0.001	NA	NA	Yes
Leng et al.27	BCR	HR (95% CI): 0.75	>pT2 stage, PSA density, TV, SM, PNI	No
Chomecki et al.25	BCR	HR (95% CI): 7.435	pT stage, pre-PSA, LNI, ECE, SVI, GS, SM, abnormal IMP3	Yes
Quinn et al.16	BCR	HR (95% CI): 1.37	pT stage, pre-PSA, GS, SVI, LNI, PNI, SM, year of RP, adjuvant therapy (excluding indefinite hormonal therapy)	No
Huang et al.25	BCR	HR (95% CI): 3.51	Pre-PSA, GS, PNI, SM, age, tumor multifocality, HGPIN	No
Jung et al.23	BCR	HR (95% CI): 1.839	Pre-PSA, SVI, GS, SM, ECE, LNI, PNI, HGPIN	No
Luo et al.36	BCR	NA	NA	Yes
Baydar et al.27	BCR	NA	NA	Yes
Ferrari et al.18	BCR	NA	NA	Yes
Herman et al.15	BCR	NA	NA	Yes

*A P value was determined by the log rank test. BCR: biochemical recurrence-free survival; GS: Gleason score; ECE: extracapsular extension; SVI: seminal vesicle invasion; LNI: lymph node invasion; SM: surgical margins; TV: tumor volume; PNI: perineural invasion; PSA: prostate-specific antigen; IMP3: insulin-like growth factor III mRNA binding protein 3; HGPIN: high-grade prostatic intraepithelial neoplasia; XRCC1: X-ray repair cross-complementing protein-1; PTL0: pertumoral lymphatic vessel density; RP: radical prostatectomy; P-XRT: postprostatectomy radiotherapy; RT: radiotherapy; PFS: progression-free survival; DM: distant metastases; OS: over survival; CSS: cancer specific survival; HR: hazard ratio; NA: not available; LVI: lymphovascular invasion; CI: confidence interval; PAS: periodic acid-Schiff.
Supplementary Table 4: Subgroup analysis of biochemical recurrence-free survival

Region	Number of included articles	Number of cases	Pooled HR (95% CI)	ES	Heterogeneity P (het)	Publication bias				
						Begg’s P	Egger’s P			
Asian	8	1625	1.479 (1.139–1.921)	Fix, (inverse variance)	Z=2.94	P=0.003	32.2	0.171	0.108	0.405
Other	13	6818	2.322 (1.771–3.043)	Random, (inverse variance)	Z=6.10	P=0.001	62.9	0.001	0.035	0.058
Number of patients										
<200	8	998	2.590 (1.539–4.360)	Fix, (inverse variance)	Z=3.58	P=0.000	69.2	0.002	0.386	0.209
200–500	8	2771	2.219 (1.454–3.387)	Random, (inverse variance)	Z=3.69	P=0.000	63.7	0.007	0.902	0.757
>500	5	4872	1.582 (1.281–1.953)	Fix, (inverse variance)	Z=4.27	P=0.000	0.0	0.963	-	-
Pathologic N stage										
pN−	4	1016	2.493 (1.471–4.224)	Random, (inverse variance)	Z=3.39	P=0.001	69.1	0.021	-	-
pN+	1	116	1.9 (1.1–3.5)	NA	NA	NA	NA			
Median follow-up										
≤24 months	4	897	3.645 (2.091–6.353)	Fix, (inverse variance)	Z=4.56	P=0.000	19.0	0.295	-	-
24–36 months	3	3173	1.442 (1.059–1.965)	Fix, (inverse variance)	Z=2.32	P=0.020	43.5	0.170	-	-
>36 months	12	4048	2.031 (1.536–2.685)	Random, (inverse variance)	Z=4.97	P=0.000	64.3	0.001	0.902	0.511
LVI independent predictor?										
No	9	4519	1.374 (1.088–1.734)	Fix, (inverse variance)	Z=2.67	P=0.008	0.0	0.598	0.536	0.496
Yes	12	3924	2.618 (1.953–3.509)	Random, (inverse variance)	Z=6.44	P=0.000	63.3	0.002	0.019	0.038
Definition of BCR										
PSA ≥0.1	3	2075	1.765 (1.353–2.301)	Fix, (inverse variance)	Z=4.19	P=0.000	0.0	0.623	-	-
PSA ≥0.2	14	4926	2.311 (1.610–3.318)	Random, (inverse variance)	Z=4.54	P=0.000	70.2	0.000	0.902	0.544
PSA ≥0.4	4	1442	1.691 (1.252–2.285)	Fix, (inverse variance)	Z=3.43	P=0.001	0.0	0.733	-	-
Stain method										
HE	9	5192	1.776 (1.483–2.128)	Fix, (inverse variance)	Z=6.23	P=0.000	35.9	0.131	0.386	0.117
IHC and HE	1	412	4.39 (2.47–7.8)	NA	NA	NA	NA			

PSA: prostate-specific antigen; BCR: biochemical recurrences; HE: hematoxylin and eosin; IHC: immunohistochemistry; HR: hazard ratio; CI: confidence interval; LVI: lymphovascular invasion; ES: effect size; NA: not available