Non-invasive human skin transcriptome analysis using mRNA in skin surface lipids

Takayoshi Inoue1✉, Tetsuya Kuwano1, Yuya Uehara1, Michiko Yano1, Naoki Oya1, Naoto Takada1, Shodai Tanaka1, Yui Ueda1, Akira Hachiya1, Yoshito Takahashi1, Noriyasu Ota1 & Takatoshi Murase1✉

Non-invasive acquisition of mRNA data from the skin can be extremely useful for understanding skin physiology and diseases. Inspired by the holocrine process, in which the sebaceous glands secrete cell contents into the sebum, we focused on the possible presence of mRNAs in skin surface lipids (SSLs). We found that measurable levels of human mRNAs exist in SSLs, where the sebum protects them from degradation by RNases. The AmpliSeq transcriptome analysis was modified to measure SSL-RNA levels, and our results revealed that the SSL-RNAs predominantly comprised mRNAs derived from sebaceous glands, the epidermis, and hair follicles. Analysis of SSL-RNAs non-invasively collected from patients with atopic dermatitis revealed increased expression of inflammation-related genes and decreased expression of terminal differentiation-related genes, consistent with the results of previous reports. Further, we found that lipid synthesis-related genes were downregulated in the sebaceous glands of patients with atopic dermatitis. These results indicate that the analysis of SSL-RNAs is a promising strategy to understand the pathophysiology of skin diseases.
ntera- and inter-organ communication mediated via various hormones, growth factors, cytokines, metabolites, and miRNAs play important roles in maintaining homeostasis in the human body. Several efforts have been made to establish comprehensive methods to analyze the expression of these mediators to monitor the physiological conditions of the body and explore predictive biomarkers for various diseases. Particularly, the use of serum, urine, and saliva samples, which can be obtained in a non- or low-invasive manner, has been widely investigated.

The skin is often referred to as the window to the body’s health since the skin’s phenotypes, such as the cutaneous pathology and appearance, and its secretions reflect not only skin conditions but also the conditions inside the body. Moreover, skin forms the body surface and biomolecules can be easily collected from the sweat, hair, and stratum corneum samples, thereby making skin a useful source of samples to monitor skin and body conditions. For instance, the cortisol content in scalp hair correlates with long-term cumulative cortisol exposure. Sweat can also be used as an indicator of internal physiological changes, and attempts have been made to use it for monitoring patients’ conditions; for instance, the tracking of blood glucose levels by measuring glucose in sweat samples of patients with diabetes. Although metabolites, proteins, and DNA are relatively easy to collect from the sweat and hair samples, it is difficult to collect measurable levels of mRNAs from skin in a non- or low-invasive manner. So far, tape-stripped stratum corneum has been used to collect mRNAs in a minimally invasive manner; however, the mRNA content thus collected is very low and highly degraded due to RNase activity on the skin surface. Therefore, a skin biopsy is essentially required to analyze mRNA expression; however, this method is invasive, which limits its application. More recently, a minimally invasive method for mRNA analysis via RNA-seq using AmpliSeq technology with 16–20 consecutive tape strips has been reported. However, tape stripping of the stratum corneum is known to induce skin damage, including disruption of the skin barrier, epidermal hyperproliferation, and infiltration of CD3-positive T cells into the dermis, indicating that the problems related to the invasiveness of this technique remain to be fully resolved.

Sebaceous glands synthesize and accumulate lipids to produce sebum. The lipids accumulated in the cytosol of sebocytes are secreted into the sebaceous ducts following the rupture of the plasma membrane. This mode of secretion is called holocrine secretion and is unique to exocrine glands, such as lipid-secreting sebaceous and meibomian glands. The holocrine secretion of cell contents led us to the idea that sebum may contain various biomolecules, including mRNAs, which may be useful for analyzing biological information. Therefore, in this study, we first investigated the presence of mRNAs in human sebum and established a non-invasive, comprehensive method of analyzing human mRNAs using skin surface lipids (SSLs) as samples. Further, the applicability of this method in skin characterization was verified in healthy subjects and in patients with atopic dermatitis (AD).

Results

Measurable human mRNA is present in SSLs. qPCR was conducted to evaluate the mRNA abundance in the SSL samples. The expression of ACTB and GAPDH mRNA in SSLs was comparable that in 100 ng to 500 pg and 1–100 ng of total RNA in normal human epidermal keratinocytes (NHEK), respectively (Fig. 1a). The level of human mRNA degradation in SSLs could not be measured directly due to the presence of bacterial mRNA. Therefore, we established an assay to verify the quality of human mRNA in SSLs. The reverse primer was designed near the 3’ end and was used with the forward primers to amplify 363 bp and 57 bp long human ACTB mRNAs. After reverse transcription using oligo-dT primers, ACTB levels were quantified by performing qPCR using primers generating 363 and 57 bp human ACTB mRNAs. In the case of ACTB mRNA of longer than 363 bp, both the 363 and 57 bp fragments were amplified, whereas in the case of ACTB mRNA of 57–363 bp, only the 57 bp fragment was amplified (Fig. 1b). This assay was validated using RNA subjected to artificial and gradual degradation using RNase. The gradually degraded RNA was analyzed to calculate the percentage of fragments containing >200 nucleotides (DV200 value) (Fig. 1c, d). The DV200 values of gradually degraded RNA negatively correlated with the abundance ratio of the 363 bp and 57 bp amplicons (Fig. 1e). The level of human mRNA degradation in SSLs collected from six males was calculated using a standard curve (Fig. 1e) and showed a mean DV200 value of 56.5% (Fig. 1f).

Sebum lipids inhibit RNase activity. Consistent with the results of a study reporting RNase 7 expression in human skin, we confirmed that RNase 7 was expressed in the sebaceous glands and epidermis and also detected in SSLs (Fig. 2a, b). The median RNase 7 content in SSLs collected from 11 subjects was 0.09 ng per mg of sebum (range: 0.026–0.38 ng/mg). Because there is high abundance of RNase on the surface of human skin, it was surprising to detect human mRNA in SSLs. This finding led us to hypothesize that sebum lipids inhibit RNase activity. Based on these results, we evaluated the influence of sebum lipids on recombinant RNase 7 activity. Intact cellular RNA and RNase 7 were incubated with or without sebum lipids obtained from four subjects at 37 °C for 30 min. Interestingly, the 28S and 18S ribosomal RNAs were completely degraded after incubation with RNase 7 in the absence of sebum lipids; on the other hand, ribosomal RNAs were stable in the presence of lipids (Fig. 2c). Next, we aimed to identify the key lipids that inhibit RNase 7 activity. The sebum lipids were separated into fractions A–D on a thin-layer chromatography (TLC) plate (Fig. 2d), and the lipids were recovered from each fraction and subjected to the RNase 7 inhibition assay. We observed that while fractions A, B, and C decreased RNase 7 activity, the inhibitory effect of fraction D was weak (Fig. 2e). Triglycerides and esters in the sebum are hydrolyzed by the skin microbiome to generate free fatty acids (FFAs). The FFAs in human sebum are predominantly composed of carbon atoms (palmitic acid, 16:0; sapienic acid, 16:1) and palmitoleic acid, (C16:1Δ9). Therefore, we evaluated the inhibitory effects of free palmitoleic acids and various lipids with palmitoleic acid as their main fatty acid, on RNase activity. The free palmitoleic acids and other lipids were dissolved in the reaction buffer at 1 mg/mL or 100 mg/mL concentration, except for cholesterol and wax esters, which could not be dissolved at 100 mg/mL. Our results showed that FFAs strongly suppressed RNase activity at 1 mg/mL concentration, compared with other lipids (Fig. 2f). Moreover, FFAs of different chain lengths (myristoleic acid (C14:1) and oleic acid (C18:1)) also suppressed RNase 7 activity (Fig. 2g).

Global expression analysis of SSL-RNAs. For specific and comprehensive quantification of human mRNAs in SSLs, we performed the AmpliSeq transcriptome analysis that can perform multiplexed amplification of cDNA amplicons for more than 20,000 genes. Moreover, this method can analyze even small amounts of RNAs as well as degraded RNAs. Although we attempted to prepare sequence libraries from SSL-RNAs based on the default protocol, our success rate was low. Since the data quality can be improved via optimization of the AmpliSeq
protocol23, we modified the experimental conditions for preparing the sequence library. In the modified protocol, we altered the volume of reagents, standardized the conditions for reverse transcription and target amplification, and added a purification step after the target amplification to remove the primer dimers (Supplementary Method 1). With the new protocol, the success rate of the library preparation improved and the AmpliSeq library was prepared with samples obtained from healthy subjects (91\%, 29/32) and patients with AD (100\%, 30/30). To analyze the experimental bias of our protocol, we verified the correlation between the expression results of AmpliSeq and qPCR of thymus and activation-regulated chemokine (TARC/CCL17) and corneodesmosin (CDSN), and observed a high correlation (CCL17, $R = 0.81$, CDSN, $R = 0.87$) (Fig. 3a). Furthermore, the correlation coefficients for the technical replicate of the reverse transcription (0.94 and 0.90) confirmed that our protocol had low experimental bias (Fig. 3b).

The SSL-RNA expression profile predominantly reflects mRNA expression in sebaceous glands, epidermis, and hair follicles. The regions of the sebaceous glands, epidermis, sweat glands, hair follicles, and dermis were isolated from the human skin sections using LMD followed by AmpliSeq transcriptome analysis (Supplementary Fig. 1a). Each region generated distinct clusters when multidimensional scaling was performed to analyze the similarity of the transcriptome profile in different regions (Supplementary Fig. 1b). Next, we focused on the genes highly expressed in each region (Supplementary Fig. 1c)24–39. Genes encoding ELOVL fatty acid elongase 3 and 5 (ELOVL3 and ELOVL5), perilipin 2

![Image of Fig. 1: Evaluation of mRNA expression and RNA degradation in skin surface lipids (SSLs). a] Fig. 1 Evaluation of mRNA expression and RNA degradation in skin surface lipids (SSLs). a qPCR to check for ACTB and GAPDH mRNA expression in SSL samples. Gene expression is shown as the relative expression for 100 pg of RNA derived from normal human epidermal keratinocytes (NHEK). NHEK total RNA (10 pg to 100 ng) is the standard used. b Outline for assaying the degradation of human mRNA in SSLs. The extent of mRNA degradation was determined using the long (363 bp)/short (57 bp) amplicon ratio calculated from qPCR results. c Preparation of RNA samples with different levels of degradation. A series of standards (S1–S10) are presented with known level of RNA degradation. d DV200 value indicating the percentage of fragments containing >200 nucleotides, of c. e The relationship between the DV200 of d and the value of 363 bp/57 bp (abundance of 363 bp amplicon/abundance of 57 bp amplicon measured by qPCR). f Indirect assessment of the human mRNA degradation in SSLs, $n = 6$. DV200 of each SSL-RNA sample was calculated using the standard curve of e.
and 5 (PLIN2 and PLIN5), and microsomal glutathione S-transferase 1 (MGST1) are highly expressed in sebaceous glands. In our study, these genes were highly expressed in sebaceous glands isolated via LMD than in other regions (Supplementary Fig. 1c). Other regions isolated by LMD also expressed region-characteristic genes, indicating that the LMD was performed successfully.

To gain further insight into the characteristics and origin of SSL-RNAs, we explored genes highly expressed in each region isolated by LMD. In each region, genes with a mean of log2(normalized counts + 1) >10, and with more than 1.5-fold differential expression compared to other region(s), were selected (Fig. 4). However, using these criteria, we did not find any gene selectively expressed in epidermis, due to its similarity with the hair follicles. Therefore, we listed epidermal genes with more than 1.5-fold differential expression than in sebaceous glands, sweat glands, and dermis. To obtain information regarding the origin of SSL-RNAs, the SSL-RNA profile of 29 healthy subjects was analyzed using the genes expressed characteristically at each region. The results presented in the heat map indicate that SSL-RNAs predominantly comprise mRNAs characteristic for sebaceous glands, epidermis, and hair follicles (Fig. 4).

The filaggrin (FLG), filaggrin 2 (FLG2), and aspartic peptidase retroviral like 1 (ASPRV1), that were expressed in the granular layer of epidermis, were abundantly expressed in SSL-RNAs.
The genes encoding keratin 25, 27, and 71 (KRT25, KRT27, and KRT71, respectively) that are expressed in the inner root sheath of hair follicles were highly expressed in SSL-RNAs (Fig. 4). These results suggest that SSL-RNAs provide information regarding the granular layer of the epidermis and the inner root sheath of hair follicles.

To further characterize SSL-RNAs, we compared the transcript profiles of SSLs and the stratum corneum. RNAs present in the stratum corneum were enriched in epidermis-related RNAs, whereas RNAs present in the SSL were also rich in sebaceous gland- and hair follicle-related RNAs (Supplementary Fig. 2). The correlation coefficient between SSL-RNAs and stratum corneum RNAs calculated using transcriptome profile normalized with DESeq2 was 0.51 (the mean value of 10 subjects). When focusing on 34 genes highly expressed in the epidermis, the correlation coefficient increased to 0.82.

The SSL-RNA profiles of the face and scalp, which have dense sebaceous glands and hair follicles, were also compared. The analysis of the dimensionality reduction using t-distributed stochastic neighbor embedding (t-SNE) and variance stabilizing transformation (VST) values in all genes showed that face samples and scalp samples showed to be distinctly classified into two groups (Supplementary Fig. 3). The expression levels of 633 genes were significantly different between the face and scalp, and gene ontology analysis of 305 genes, which were abundantly expressed in the scalp compared with the face, demonstrated the GO terms keratinization (GO:0031424), (FDR = 2.43E–10). Therefore, the expression levels of hair keratins and hair follicle-specific epithelial keratins were compared between the face and scalp, showing that the expression levels of most keratin molecules were higher in the scalp than in the face (Supplementary Table 1). The expression levels of type 1 hair keratins could not be detected in most of the samples. Thus, the SSL-RNA analysis can be used to characterize skin regions.

Furthermore, we performed a comparative analysis of SSL-RNA profiles in male and female individuals known to have different sebum production levels. The levels of casual sebum on the cheek and the recovered sebum on the forehead and cheek at 60 min after washing the face in male were significantly higher than those in female (Supplementary Fig. 4a). The expression of SSL-RNAs differed greatly depending on such skin characteristics; the expression levels of 25 lipid metabolism-related genes expressed in sebaceous glands were higher in males, in agreement with recovered sebum levels (Supplementary Fig. 4b).

Comparison of SSL-RNAs expression between healthy subjects and patients with AD. We analyzed SSL-RNAs from 29 healthy subjects and 30 patients with AD. The major output of the AmpliSeq data obtained with our modified method was as follows: (i) the average number of reads was 11,456,318 in healthy subjects and 11,137,677 in patients with AD (n = 29, blue) and patients with AD (n = 30, red). b The correlation of the transcriptome profile when preparing libraries in duplicate from each SSL-RNA obtained from two healthy male subjects.
In a previous study reporting a global gene expression analysis in skin biopsy samples, genes related to the terminal differentiation of keratinocytes were analyzed. Heatmap showing the expression profiles for each region (sebaceous glands, epidermis, sweat glands, hair follicles, and dermis) isolated using LMD, whole skin from three healthy male subjects, and SSL-RNAs obtained from 29 healthy male subjects.

Our results in SSL-RNAs analysis showed that the expression of CCL17, interleukin 1β (IL1B), interleukin 13 (IL13), and S100 calcium-binding protein A9 (S100A9) significantly increased in patients with AD, but the expression of FLG and involucrin (IVL) was significantly decreased in the patients with AD compared to healthy subjects (Fig. 5a).
were significantly downregulated and those related to immune-mediated inflammation were upregulated in patients with AD compared with their expression levels in healthy subjects. Based on this report, we selected 12 genes related to terminal differentiation and 22 genes related to immune-mediated inflammation that were detected in SSL-RNAs and compared their expression patterns. Our results showed that the expression patterns of these genes in SSL-RNAs of patients with AD and healthy subjects were largely consistent with the previous report (Fig. 5b).

Moreover, the analysis of the dimensionality reduction using t-SNE and VST values in all genes showed that the healthy subjects and patients with AD could be distinctly classified into two groups (Fig. 6a). To identify the differential biological functions between healthy subjects and patients with AD, we extracted 918 upregulated and 1033 downregulated genes in patients with AD (Fig. 6b and Supplementary Data 1). For the 918 upregulated genes, the GO terms mRNA splicing and stimulatory C-type lectin receptor signaling pathway were significantly enriched, while the GO term detection of chemical stimulus involved in sensory perception of smell and keratinocyte differentiation was enriched among the 1033 downregulated genes (Fig. 6c).

The sebum secretion is reduced in patients with AD than in healthy individuals; however, the molecular mechanism underlying this reduction remains unknown. GO analysis was performed on 46 genes highly expressed in the sebaceous glands selected from the results of the LMD experiment (Fig. 4), which resulted in the enrichment of genes involved in lipid metabolism.

Fig. 5 Comparison of AD marker genes in healthy subjects (HL) and patients with AD. a The differential expression of CCL17, IL13, IL1B, S100A9, FLG, and IVL in HL and AD. Boxes represent mean ± interquartile range (IQR), and whiskers represent 1st and 3rd quartile 1.5 * IQR. Benjamini–Hochberg adjusted p values are shown from the likelihood ratio test between HL and AD. HL (n = 29), AD (n = 30). b Heat maps using z-transformed log2 (normalized counts + 1) in 12 terminal differentiation-related genes (upper) and 22 genes related to immune-mediated inflammation (lower).
The expression of 25 genes involved in lipid metabolism (GO:0006629) was downregulated in patients with AD compared to healthy individuals (Fig. 7b). Furthermore, genes encoding peroxisome proliferator-activated receptor alpha (PPARA), peroxisome proliferator-activated receptor gamma (PPARG), MYC proto-oncogene, bHLH transcription factor (MYC), transforming growth factor beta 1 (TGFB1), tumor protein p53 (TP53), and PR/SET domain 1 (BLIMP1) regulate sebocyte differentiation and sebum production in vivo and ex vivo. Among these genes, the expression of TGFB1 was significantly upregulated in patients with AD than in healthy subjects (Fig. 7c).

Discussion

In this study, we found that mRNAs of measurable quantity and quality were present in SSLs. Further, we established a non-invasive and comprehensive method to profile skin mRNAs using SSLs conveniently collected from the skin surface with an oil-blotting film. A substantial quantity of RNases is present on the skin surface, and extreme caution should be taken when handling mRNAs. However, unexpectedly, we found that mRNAs in SSLs escape RNase degradation due to the lipid components of the sebum and can be analyzed by AmpliSeq transcriptome sequencing. We analyzed the lipid components responsible for inhibiting the RNase activity and our results suggested that FFAs, triacylglycerol, and squalene contributed to the RNase inhibitory activity of sebum. Due to inhibitory effects of lipids on RNases, we speculate that mRNAs may be less susceptible to RNases-mediated degradation in the lipid-rich/low-water environment of SSLs. In addition, the optimal pH for RNase activity is 6.5–8.0, whereas the skin surface is generally weakly acidic (pH 4.1–5.8) due to the presence of organic acids such as lactic acid; hence, these factors may collectively reduce the RNase activity in SSLs. It is known that sebum is secreted by sebaceous glands in the form of fine granules (4–5 nm); however, there is no knowledge on the spatial arrangement of lipids, organic acids, and mRNAs in SSLs. Identifying the distribution of these components, as well as the molecular interactions between them, is necessary to understand the precise stabilization mechanism of mRNA on the skin.

We established the method for comprehensive analysis of SSL-RNAs. Recent advances in sequence technology have made it possible to analyze even degraded mRNA. To prepare RNA-seq libraries, a minimum DV200 value of 30% is generally recommended. Using our modified method, the DV200 of human mRNAs in SSLs was approximately 56.5%, making it suitable for transcriptome analysis. However, when the sequence libraries were prepared according to the standard protocol of Ion AmpliSeq Transcripome Human Gene Expression Kit, the success rate was very low. Use of the optimized protocol (by standardizing conditions of reverse transcription and target amplification, and adding a purification step after target amplification) led to an improvement in library production efficiency, and the transcriptome sequencing resulted in a success rate of 95%. Further, the analytical error of this
method was low and the results showed high correlation with qPCR results. Thus, our SSL-RNA analysis method using the improved AmpliSeq protocol enables profiling of the mRNA expression in SSLs in a reliable manner.

We investigated the origin of the SSL-RNAs by comparing their mRNA expression profile with those of different regions of the skin. Holocrine secretion of sebum made us speculate that the expression pattern of SSL-RNAs should be similar to that of the sebaceous glands. Indeed, analysis of different regions of the skin obtained by LMD showed that the mRNAs derived from the sebaceous glands were highly expressed in SSL-RNAs. In addition, SSL-RNAs were rich not only in mRNAs derived from sebaceous glands but also in those derived from the epidermis and hair follicles, the tissues in close contact with the sebum. In contrast, the mRNAs characteristic

![Fig. 7 Comparison of SSL-RNAs profile representing highly expressed genes in sebaceous glands in healthy subjects (HL) and patients with AD.](image)

- **a** Gene ontology analysis of 25 genes highly expressed in sebaceous glands (selected in Fig. 4).
- **b** Heat maps using z-transformed log2 (normalized counts + 1) of 25 genes highly expressed in sebaceous glands.
- **c** The differential expression of PPARA, PPARG, MYC, TGFB1, TP53, and BLIMP1 in HL and patients with AD. Boxes represent mean ± interquartile range (IQR), and whiskers represent 1st and 3rd quartile 1.5 * IQR. Benjamini-Hochberg adjusted p-values are shown from the likelihood ratio test between HL and AD. HL (n = 29), patients with AD (n = 30).
of sweat glands and dermis, which are not in close contact with sebum, were absent in SSLs. Overall, in contrast to tape-striped stratum corneum RNAs, SSL-RNAs were thought to characteristically contain RNAs from the epidermis, along with RNAs from the sebaceous glands and surrounding tissues.

The mechanism underlying transfer of epidermal mRNAs into SSLs remain unclear, and there could be several possible mechanisms. The mRNAs characteristic of the granular layer of the epidermis (transcribed from FLG, FLG2, and ASPRV1) were highly expressed in SSL-RNAs. In addition, stratum corneum is reported to contain detectable amounts of mRNA13–18. We speculate that the epidermal mRNAs transferred to the stratum corneum due to keratinization are mixed with the sebum on the skin surface, leading to their presence in SSLs. The SSLs also contained hair follicle-derived RNAs, which may be related to the anatomical features of the hair follicle. SSL-RNAs were rich in mRNAs of KRT25, KRT27, and KRT71, the marker genes for the inner root sheath.34,35 The inner root sheath detaches from the hair shaft and degrades during hair growth, and the process occurs at the orifice of the sebaceous duct.34 These observations indicate that the epithelial cells of the inner root sheath may get mixed with sebum at the orifice and skin surface, and as a result, information pertaining to the hair follicles may be reflected in the SSL-RNAs. In addition, extracellular vesicles released from various cells contain several biomolecules including mRNAs,55,56 it is possible that extracellular vesicle-derived mRNAs are also included in the SSL-RNAs. Collectively, our results indicate that SSL-RNAs predominantly contains mRNAs derived from the sebaceous glands, epidermis, and hair follicles, and are, therefore, a useful resource for analyzing the biological information related to the relevant regions of the skin.

Finally, we verified the applicability of this method by performing a comparative analysis of the SSL-RNA profiles of healthy subjects with different amounts of sebum production, and healthy subjects and patients with AD. The SSL-RNA analysis revealed that a group of genes involved in lipid synthesis is highly expressed in sebaceous glands in men with high amounts of recovered sebum, indicating that this method may be useful for detecting skin conditions. Furthermore, we observed that the transcriptome profile was markedly different between healthy subjects and patients with AD, with differential expression of immune-mediated inflammation and terminal differentiation-related genes, as shown in a previous skin biopsy report.42 Moreover, GO:00050911: detection of chemical stimuli involved in sensory perception of smell was the most significantly changed GO term in our study, consistent with the analysis of stratum corneum RNAs collected from patients with AD, indicating that the analysis of SSL-RNAs successfully captured the characteristics of AD. Atrophy of the sebaceous glands and reduction in sebum secretion have been reported in patients with AD.57 However, little is known about the underlying mechanism, including the gene expression profile of sebaceous glands, in patients with AD due to difficulty in obtaining facial skin tissue samples containing sebaceous glands. Here, we showed that the expression of 25 lipid metabolism-related genes highly expressed in sebaceous glands were lower in AD patients than in healthy subjects. Moreover, the expression of TGBF1, which suppresses sebocyte differentiation and lipid accumulation,50 was significantly increased in SSL-RNAs of patients with AD. Increase in the number of TGFβ-positive cells in patients with AD has also been reported.58 These results suggest that the suppression of lipid synthesis via TGBF1 may be one of the mechanisms responsible for dysregulated sebum synthesis in these patients. The possibility of TGFβ-mediated regulation of sebum production requires further investigation. Thus, the transcriptome analysis of SSL-RNAs can evaluate the molecular profile of AD in a non-invasive manner, and is a promising method for comprehensive understanding of AD pathology.

There is one limitation regarding the clinical findings of the SSL-RNA analysis. In this study, we validated this method in a relatively limited number of patients (samples collected from 29 healthy male subjects and 30 patients with AD aged 20–48 years were used to validate this method). Validation in a more subjects and on a larger scale is needed to further strengthen the findings of this study and to confirm the applicability of the SSL-RNA analysis method.

In summary, we established a non-invasive method for skin RNA analysis that utilizes SSL samples collected by simply wiping the skin surface for less than a minute. This non-invasive method has potential application in unraveling the molecular profiles of skin conditions and diseases including AD, which will be helpful for clinical management of these diseases in the future. Understanding the status and course of AD at the molecular level is essential not only to assess the pathophysiology of AD but also to design its effective therapeutic treatments. The clinical phenotypes of AD are extremely complex, warranting the need for identifying biomarkers that can classify invisible endophenotypes.59 This comprehensive analysis method using SSL-RNAs is expected to contribute to solving these clinical and research issues owing to advantageous features such as non-invasiveness and ease of sampling. Further, since the skin is called the disease-sensor organ and is believed to reflect the conditions inside the body,60,61 the SSL-RNA analysis may have wide applicability to understand various pathologies of human body.

Methods

Subject recruitment and collection of SSLs. For SSL-RNA analysis in healthy subjects, 32 healthy male individuals (mean age: 34.6 years, range: 20–49 years, SD = 9.24) were recruited in October 2016. The participants were evaluated by dermatologists prior to the commencement of the study to confirm that no obvious skin disease or conditions were present on their faces. Subjects with self-reported AD were recruited, and 30 male patients with mild and moderate facial AD (mean age: 31.0 years, range: 20–48 years, SD = 8.82) diagnosed by the dermatologist between June and October 2017 were then included in the study. To compare SSL-RNAs and stratum corneum RNAs, 10 healthy male individuals (mean age: 40.6 years, range: 28–57 years, SD = 10.23) were recruited. Furthermore, to evaluate the differences of SSL-RNA profile between face and scalp, 10 healthy female individuals (mean age: 26.3 years, range: 24–32 years, SD = 2.41) were recruited. To analyze the relationship between sebum secretion and SSL-RNA profile, 38 healthy male individuals (mean age: 39.1 years, range: 20–58 years, SD = 12.5) and 42 healthy female individual (mean age: 38.5 years, range: 20–56 years, SD = 11.6) were recruited. All participants received an adequate explanation for the study and provided written informed consent. All subjects were told not to remove facial sebum by washing, using wipers, or shaving their face from the test day until the end of the test. Patients with AD were also advised to avoid using steroid anti-inflammatory and immunosuppressive drugs on their facial skin from 24 h prior to the study. This study was approved by the Human Research Ethics Committee, Kao Corporation (approval numbers: 792-2016082, T003-170413, T173-180920, and T246-190815), the Japan Aesthetic Dermatology Symposium (approval number: KU-2017-05-003), and the Shinjukuminamiguchi Dermatologic Clinic (approval number: KU-2016-10-065).

SSLs were collected by wiping the whole face (forehead, cheek, face line, nose, and chin) or parietal scalp using oil blotting film (8.0 cm × 5.0 cm, 3 M Japan, Tokyo, Japan) and samples were stored in glass vials at –80 °C until use. To compare SSL-RNAs and stratum corneum RNAs, SSLs were collected according to the aforementioned method. Then, SSLs were completely removed from the face using facial cleansers, and five stratum corneum samples were collected from each left and right cheek using D-squame tape strips (22 mm in diameter, CuDerm, Dallas, USA, Texas). Samples were stored at –80 °C until use.

Skin tissue. Surgically removed adult forehead skin from three Caucasian males, aged 62, 66, and 67 years, and nose skin from one adult (Caucasian female, 66-year-old) were provided by the Colorado Dermatology Institute (Colorado Springs, CO, USA) for laser microdissection (LMD) and immunostaining, respectively. The procurement of skin tissues was approved by the Institutional Review Board of Integris Health (Aurora, TX, USA; approval number: T066a-170829) and was conducted according to the Declaration of Helsinki Principles. Informed consent was obtained from the volunteers prior to surgery. After surgery, the skin tissues were stored in

10 COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03154-w | www.nature.com/commsbio
Further, DV200 values of the SSL-RNA samples were calculated from the standard curve. Western blotting for RNase 7 (rabbit polyclonal, 1:50, Cloud-Clone (mouse monoclonal (AE-1/AE-3), original solution, Nichirei, Tokyo, Japan) or western blotting detection reagents (GE Healthcare). Enzyme-linked immunosorbent assay for RNase 7 was performed using the TaqMan Fast Universal PCR Master Mix (Thermo Fisher Scientific, PA, USA) was incubated with 30 fmol of ssDNA treated with RNase 7 or SSLs collected from six healthy males as described above. The level of degradation of human mRNAs in SSLs was estimated using the following cDNA synthesis primer: ACTB (forward primer 57 bp): 5′-GCTTGGTCTCCCTGGGAG-3′; and the samples were incubated on ice for 30 min, followed by centrifugation at 12,000 × g for 15 min at 4 °C. The upper layer was transferred to a fresh tube and precipitated with ethanol. The precipitates were washed with 70% ethanol (v/v) and dissolved in 10 µL of nuclease-free water.

Reverse transcription was performed using the SuperScript IV First-Strand Synthesis System and Oligo-dT primers (Thermo Fisher Scientific) and TaqMan probes for each gene (Thermo Fisher Scientific).

Evaluation of mRNA degradation in SSLs. To prepare standard samples with different levels of degraded mRNAs, total RNA (1 µg) extracted from NHEK cells treated with RNase 7 or SSLs collected from six healthy males as described above. RNA extraction and qPCR were performed using the QiAzyme Mini Kit (Qiagen). The level of RNA degradation in the samples was determined using the High Sensitivity RNA ScreenTape (Agilent Technologies, Palo Alto, CA, USA) on an Agilent 4200 TapeStation system (Agilent Technologies). The level of degradation of human mRNAs in SSLs was estimated using the following calculated DV200 value, which can be calculated as the percentage of fragments containing >200 nucleotides. mRNA was reverse-transcribed using the SuperScript IV First-Strand Synthesis System and Oligo-dT primers (Thermo Fisher Scientific), and was amplified in a thermal cycler using the PowerUP SYBR Green Master Mix (Thermo Fisher Scientific) and the following primers: RNase 7 (rRNA, 57 bp): 5′-ACAATGTGGCCGAGGACTTT-3′; and RNase 7 (forward primer 57 bp): 5′-GCTTGGTCTCCCTGGGAG-3′; and the samples were incubated on ice for 30 min, followed by centrifugation at 12,000 × g for 15 min at 4 °C. The upper layer was transferred to a fresh tube. RNA was purified using the mRNAeasy Mini Kit (Qiagen). The level of RNA degradation in the samples was determined using the High Sensitivity RNA ScreenTape (Agilent Technologies). The level of degradation of human mRNAs in SSLs was estimated using the following calculated DV200 value, which can be calculated as the percentage of fragments containing >200 nucleotides. mRNA was reverse-transcribed using the SuperScript IV First-Strand Synthesis System and Oligo-dT primers (Thermo Fisher Scientific), and was amplified in a thermal cycler using the PowerUP SYBR Green Master Mix (Thermo Fisher Scientific) and the following primers: RNase 7 (rRNA, 57 bp): 5′-ACAATGTGGCCGAGGACTTT-3′; and RNase 7 (forward primer 57 bp): 5′-GCTTGGTCTCCCTGGGAG-3′; and the samples were incubated on ice for 30 min, followed by centrifugation at 12,000 × g for 15 min at 4 °C. The upper layer was transferred to a fresh tube. RNA was purified using the mRNAeasy mini kit (performing DNase treatment in the purification step) (Qiagen) and eluted from the resin twice using 30 µL of nuclease-free water followed by ethanol precipitation, and then dissolved in 10 µL of nuclease-free water.

The level of degradation was estimated using the following cDNA synthesis primer: ACTB (forward primer 57 bp): 5′-GCTTGGTCTCCCTGGGAG-3′; and the samples were incubated on ice for 30 min, followed by centrifugation at 12,000 × g for 15 min at 4 °C. The upper layer was transferred to a fresh tube. RNA was purified using the mRNAeasy mini kit (performing DNase treatment in the purification step) (Qiagen) and eluted from the resin twice using 30 µL of nuclease-free water followed by ethanol precipitation, and then dissolved in 10 µL of nuclease-free water.

The level of degradation was estimated using the following cDNA synthesis primer: ACTB (forward primer 57 bp): 5′-GCTTGGTCTCCCTGGGAG-3′; and the samples were incubated on ice for 30 min, followed by centrifugation at 12,000 × g for 15 min at 4 °C. The upper layer was transferred to a fresh tube. RNA was purified using the mRNAeasy mini kit (performing DNase treatment in the purification step) (Qiagen) and eluted from the resin twice using 30 µL of nuclease-free water followed by ethanol precipitation, and then dissolved in 10 µL of nuclease-free water.

The level of degradation was estimated using the following cDNA synthesis primer: ACTB (forward primer 57 bp): 5′-GCTTGGTCTCCCTGGGAG-3′; and the samples were incubated on ice for 30 min, followed by centrifugation at 12,000 × g for 15 min at 4 °C. The upper layer was transferred to a fresh tube. RNA was purified using the mRNAeasy mini kit (performing DNase treatment in the purification step) (Qiagen) and eluted from the resin twice using 30 µL of nuclease-free water followed by ethanol precipitation, and then dissolved in 10 µL of nuclease-free water.
steps: 98 °C for 15 s and 64 °C for 1 min for five cycles. Next, 50 µL of the PCR product was mixed with 25 µL of the AMPure XP beads and the supernatant was transferred to fresh PCR tubes. The supernatants were mixed with 60 µL of the AMPure XP beads and purified; target fragments were eluted from the beads using 10 µL of TE buffer. The quality check of the library was performed using the High Sensitivity D1000 ScreenTape on the Agilent 4200 TapeStation. We have described the library preparation for AmpliSeq in the comparison between SSL RNAs and stratum corneum RNAs in Supplementary Method 2.

Sequencing. The library was quantified using the Ion Library TagManTM Quantitation Kit (Thermo Fisher Scientific). After an input of 50 pM of DNA library in the Ion Chef System (Thermo Fisher Scientific), template preparation and chip loading were performed, and RNA-seq was conducted on the Ion SS XL System (Thermo Fisher Scientific).

Verification of the correlation coefficient between AmpliSeq and qPCR results. For identifying RPLP0, CDSN, and CCL17 expression in SSL-RNAs, CDNA was pre-amplified with 14 cycles using the TaqMan PreAmp Master Mix (Thermo Fisher Scientific) and the pooled TaqMan probe (RPLP0, CDSN, and CCL17) (Thermo Fisher Scientific), and then diluted fivefold with nuclease-free water. qPCR was performed as described in the mRNA extraction and qPCR sub-section. Expression value of RPLP0 was used as an internal control. Correlation between the value of reads per million mapped reads of AmpliSeq and the relative expression value of qPCR in healthy subjects and patients with AD was analyzed.

References

1. Droujinine, I. A. & Perrimon, N. Interorgan communication pathways in physiology: focus on Drosophila. Annu. Rev. Genet. 50, 539–570 (2016).

2. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

3. Yokoi, A. et al. Integrated extracellular microRNA profiling for ovarian cancer screening. Nat. Commun. 9, 4319 (2018).

4. Sudo, K. et al. Development and validation of an esophageal squamous cell carcinoma detection model by large-scale microRNA profiling. JAMA Netw. Open 2, e194573 (2019).

5. Yassu, T. et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci. Adv. 3, e1701133 (2017).

6. Paliwal, S., Hwang, B. H., Tsai, K. Y. & Mitragotri, S. Diagnostic opportunities based on skin biomarkers. Eur. J. Pharm. Sci. 50, 546–556 (2013).

7. Wester, V. L. & van Rossum, E. F. C. Clinical applications of cortisol measurements in hair. Eur. J. Endocrinol. 173, M1–M10 (2015).

8. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

9. Moyer, J., Wilson, D., Finkelstein, I., Wong, B. & Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 14, 398–402 (2012).

10. Park, J. H. P. et al. An antimicrobial protein, lactoferrin exists in the sweat-proteome analysis of sweat. Exp. Dermatol. 20, 369–371 (2011).

11. Bengtsson, C. F. et al. DNA from keratinous tissue. Part I: hair and nail. Ann. Anat. 194, 17–25 (2012).

12. Wong, R. et al. Use of RT-PCR and DNA microarrays to characterize RNA recovered by non-invasive tape harvesting of normal and inflamed skin. J. Investig. Dermatol. 123, 159–167 (2004).

13. Dyjack, N. et al. Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2 high-atopic dermatitis disease endotype. J. Allergy Clin. Immunol. 141, 1298–1309 (2018).

14. He, H. et al. Tape strips reflect distinct immune and barrier profiles in atopic dermatitis and psoriasis. J. Allergy Clin. Immunol. 147, 199–212 (2021).

15. Pavil, A. B. et al. Tape strips from early-onset pediatric atopic dermatitis highlight disease abnormalities in nonlesional skin. Allergy 76, 314–325 (2021).

16. Leung, D. Y. M. et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci. Transl. Med. 11, eaax2685 (2019).

17. Peppelman, M., van den Eijnde, W. A. J., Jaspers, E. J., Gerritsen, M.-J. P. & van Erp, P. E. J. Combining tape stripping and non-invasive reflectance confocal microscopy: an in vivo model to study skin damage. Skin. Res. Technol. 24, 474–484 (2018).

18. Schneider, M. R. & Paus, R. Sebocytes, multifaceted epithelial cells: lipid production and holocrine secretion. Int. J. Biochem. Cell Biol. 42, 181–185 (2010).

19. Ro, B. I. & Dawson, T. L. The Role of Sebaceous Gland Activity and Scap Microfloral Metabolism in the Etiology of Seborrhoeic Dermatitis and Dandruff. J Invest Dermatol Symp Proc. 10, 194–197 (2005).

20. Li, W. et al. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis. BMC Genomics 16, 1069 (2015).

21. Wang, J. et al. Combining tape stripping and non-invasive reflectance confocal microscopy: an in vivo model to study skin damage. Skin. Res. Technol. 24, 474–484 (2018).

22. Kitago, M. et al. Localization of the candidate genes ELOVL5 and SCD1 for male effect on male pheromone synthesis in goats (Capra hircus). J. Reprod. Dev. 53, 1329–1333 (2007).

23. Dahlof, M. et al. PLIN2, the major perilipin regulated during sebocyte differentiation, controls sebaceous lipid accumulation in vitro and sebaceous gland size in vivo. Biochim. Biophys. Acta 1830, 4642–4649 (2013).

24. Joost, S. et al. Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity. Cell Syst. 3, 221–237.e9 (2016).
28. Zhang, Y. et al. Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135, 2161–2172 (2008).
29. Makino, T., Mizawa, M., Yamakoshi, T., Takashii, M. & Shimizu, T. Expression of filaggrin-2 protein in the epidermis of human skin diseases: a comparative analysis with filaggrin. Biochem. Biophys. Res. Commun. 449, 100–106 (2014).
30. Donovan, M. et al. Filaggrin and filaggrin 2 processing are linked together through skin aspartic acid protease activation. PLoS ONE 15, e0232679 (2020).
31. Gao, Y. et al. Isolation, culture and phenotypic characterization of human sweat gland epithelial cells. Int. J. Mol. Med. 34, 997–1003 (2014).
32. Rieg, S., Garbe, C., Sauer, B., Kalbacher, H. & Schittek, B. Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br. J. Dermatol. 131, 534–539 (2018).
33. Miura, K. et al. Homeobox transcriptional factor engrailed homeobox 1 is expressed specifically in normal and neoplastic sweat gland cells. Histopathology 72, 1199–1208 (2018).
34. Langbein, L. et al. K25 (K25irs1), K26 (K25irs2), K27 (K25irs3), and K28 (K25irs4) represent the type I inner root sheath keratins of the human hair follicle. J. Investig. Dermatol. 126, 2377–2386 (2006).
35. Langbein, L., Yoshida, H., Preetzel-Wunder, S., Parry, D. A. & Schweizer, J. The keratins of the human beard hair medulla: the riddle in the middle. J. Investig. Dermatol. 130, 55–73 (2010).
36. Kutz, W. E. et al. ADAMTS10 protein interacts with fibillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J. Biol. Chem. 286, 17156–17167 (2011).
37. Le Goiff, C. et al. Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatoarxis. Development 133, 1587–1596 (2006).
38. Warrick, E. et al. Morphological and molecular characterization of actinic lentigo reveals alterations of the dermal extracellular matrix. Br. J. Dermatol. 177, 1619–1632 (2017).
39. Mouratou, A. E. et al. Expression of lymphatic markers and lymphatic growth factors in psoriasis before and after anti-TNF treatment. Bras. Dermatol. 89, 891–897 (2014).
40. Jürgen, S., Lutz, L., Michael, A. R. & Hermelita, W. Hair follicle-specific keratins and their diseases. Exp. Cell Res. 313, 2010–2020 (2007).
41. Myo-Kyoung, K. et al. Evaluation of gender difference in skin type and pH. J. Dermatol. Sci. 41, 153–156 (2006).
42. Suárez-Fariñas, M. et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J. Allergy Clin. Immunol. 127, 954–964.e1–4 (2011).
43. Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).
44. Bianchi, P. et al. Analysis of gene expression in atopic dermatitis using a microarray based method. J. Investig. Dermatol. 132, 469–472 (2012).
45. Gitter, J. K. et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol. 130, 1344–1354 (2012).
46. Furuchi, M. et al. The usefulness of sebum check film for measuring the secretion of sebum. Arch. Dermatol. Res. 302, 657–660 (2010).
47. Trivedi, N. R. et al. Peroxinsome proliferator-activated receptors increase human sebum production. J. Investig. Dermatol. 126, 2002–2009 (2006).
48. Cottle, D. L. et al. c-MYC-induced sebaceous gland differentiation is controlled by an androgen receptor/p53 axis. Cell Rep. 3, 427–441 (2013).
49. Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126, 597–609 (2006).
50. McNairn, A. J. et al. TGFbeta signaling regulates lipogenesis in human sebaceous glands. BMC Dermatol 13, 2 (2013).
51. Sorrentino, S. The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett. 584, 2194–2200 (2010).
52. Lambers, H., Piessens, S., Bloem, A., Pronk, H. & Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 28, 359–370 (2006).
53. Sheu, H. M., Chao, S. C., Wong, T. W., Yu-Yun Lee, J. & Tsai, J. C. Human skin surface lipid film: an ultrastructural study and interaction with cornocytes and intercellular lipid lamellae of the stratum corneum. Br. J. Dermatol. 140, 385–391 (1999).
54. Sundberg, J. P. et al. Asebia-2J (Sdclab2J): a new allele and a model for scarring alopecia. Am. J. Pathol. 156, 2067–2075 (2000).
55. Xiao, D. et al. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS ONE 7, e46874 (2012).
56. Wu, C.-X. & Liu, Z.-F. Proteomic profiling of sweat exosome suggests its involvement in skin immunity. J. Investig. Dermatol. 138, 89–97 (2018).
57. Shi, V. Y. et al. Role of sebaceous glands in inflammatory dermatoses. J. Am. Acad. Dermatol. 73, 856–863 (2015).
58. Masao, T. et al. Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J. Allergy Clin. Immunol. 111, 875–881 (2003).
59. Muraro, A. et al. Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 137, 1347–1358 (2016).
60. Kozawa, S. et al. The body-wide transcriptome landscape of disease models. Science 2, 238–268 (2018).
61. Uehara, Y. et al. Non-invasive diagnostic tool for Parkinson’s disease by sebum RNA profile with machine learning. Sci. Rep. 11, 18550 (2021).
62. Yuyin, S., Chimeii, C., Junko, T., Motoko, M. & Yutaka, T. Physiological and subjective responses to low relative humidity. J. Physiol. Anthropol. 25, 7–14 (2006).

Author contributions
T.I. conceived the study. T.I., A.H., Y.T., and T.M. planned the study. T.I., T.K., Y.U., M.Y., N.T., S.T., Y.U., and N.Oy. performed the experiments and analyzed the data. T.M., Y.T., and N.Ot. supervised the research. T.I. and T.M. wrote the manuscript. All authors reviewed the manuscript.

Competing interests
A patent application related to this work has been filed (No. PCT/JP2017/021040: method for preparing nucleic acid sample). Status: patent granted [DE, FR, GB, KR, CN, JP], patent pending (US). Inventors: T.I. and A.H. Patent applicant: Kao Corporation). All other co-authors declare that they have no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-022-03154-w.

Correspondence and requests for materials should be addressed to Takayoshi Inoue or Takatoshi Murase.

Peer review information Communications Biology thanks Mads Almose Røpke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Eve Rogers. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022