On Generalized m-th Root Finsler Metrics

A. Tayebi, E. Peyghan and M. Shahbazi

February 15, 2013

Abstract

In this paper, we characterize locally dually flat generalized m-th root Finsler metrics. Then we find a condition under which a generalized m-th root metric is projectively related to a m-th root metric. Finally, we prove that if a generalized m-th root metric is conformal to a m-th root metric, then both of them reduce to Riemannian metrics.

Keywords: Generalized m-th root metric, locally dually flat metric, projectively related metrics, conformal change.

1 Introduction

An m-th root metric $F = \sqrt[m]{A}$, where $A := a_{i_1...i_m}(x)y^{i_1}...y^{i_m}$, is regarded as a direct generalization of Riemannian metric in a sense, i.e., the second root metric is a Riemannian metric. The theory of m-th root metrics has been developed by Matsumoto-Shimada [15][19], and applied by Antonelli to Biology as an ecological metric [3]. The third and fourth root metrics are called the cubic metric and quartic metric, respectively.

For quartic metrics, a study of the geodesics and of the related geometrical objects is made by Balan, Brinzei and Lebedev [6][9][13]. Also, Einstein equations for some relativistic models relying on such metrics are studied by Balan-Brinzei in two papers [10][11]. In four-dimension, the special quartic metric in the form $F = \sqrt[4]{y^1y^2y^3y^4}$ is called the Berwald-Moór metric [7][8]. In the last two decades, physical studies due to Asanov, Pavlov and their co-workers emphasize the important role played by the Berwald-Moór metric in the theory of space-time structure and gravitation as well as in unified gauge field theories [4][16][17]. In [7], Balan prove that the Berwald-Moór structures are pseudo-Finsler of Lorentz type and for co-isotropic submanifolds of Berwald-Moór spaces present the Gauss-Weingarten, Gauss-Codazzi, Peterson-Mainardi and Ricci-Kühne equations.

In [20], tensorial connections for m-th root Finsler metrics have been studied by Tamassy. Li-Shen study locally projectively flat fourth root metrics under irreducibility condition [14]. Yu-You show that an m-th root Einstein Finsler

\footnote{2010 Mathematics Subject Classification: Primary 53B40, 53C60}
metrics are Ricci-flat [23]. In [21], Tayebi-Najafi characterize locally dually flat and Antonelli m-th root metrics. They prove that every m-th root metric of isotropic mean Berwald curvature (resp, isotropic Landsberg curvature) reduces to a weakly Berwald metric (resp, Landsberg metric). They show that m-th root metric with almost vanishing H-curvature has vanishing H-curvature [22].

Let (M, F) be a Finsler manifold of dimension n, TM its tangent bundle and (x^i, y^j) the coordinates in a local chart on TM. Let F be a scalar function on TM defined by $F = \sqrt{A^{2/m} + B}$, where A and B are given by

$$A := a_{i_1 \ldots i_m}(x)y^{i_1} \ldots y^{i_m}, \quad B := b_{ij}(x)y^iy^j.$$

(1)

Then F is called generalized m-th root Finsler metric. Put

$$A_i = \frac{\partial A}{\partial y^i}, \quad A_{ij} = \frac{\partial^2 A}{\partial y^i \partial y^j}, \quad B_i = \frac{\partial B}{\partial y^i}, \quad B_{ij} = \frac{\partial^2 B}{\partial y^i \partial y^j},$$

$$A_{x^i} = \frac{\partial A}{\partial x^i}, \quad A_0 = A_{x^i}y^i, \quad B_{x^i} = \frac{\partial B}{\partial x^i}, \quad B_0 = B_{x^i}y^i.$$

Suppose that the matrix (A_{ij}) defines a positive definite tensor and (A^{ij}) denotes its inverse. Then the following hold

$$g_{ij} = \frac{A^{ij}}{m^2} - \frac{2}{m} [mA_{ij} + (2 - m)A_iA_j] + b_{ij},$$

(2)

$$y^jA_i = mA, \quad y^iA_{ij} = (m - 1)A_j, \quad y_i = \frac{1}{m}A^{j}_{jk}A_{ji},$$

(3)

$$A^{ij}A_{jk} = \delta^i_k, \quad A^{ij}A_i = \frac{1}{m - 1}y^j, \quad A_iA_jA^{ij} = \frac{m}{m - 1}A.$$

(4)

Information geometry has emerged from investigating the geometrical structure of a family of probability distributions and has been applied successfully to various areas including statistical inference, control system theory and multi-terminal information theory [1][2]. Dually flat Finsler metrics form a special and valuable class of Finsler metrics in Finsler information geometry, which plays a very important role in studying flat Finsler information structure [15]. A Finsler metric F on a manifold M is said to be locally dually flat, if at any point there is a standard coordinate system (x^i, y^j) in TM such that $(F^2)_{x^i}y^j y^k = 2(F^2)_{x^i}$. In this case, the coordinate (x^i) is called an adapted local coordinate system. In this paper, we characterize locally dually flat generalized m-th root Finsler metrics. More precisely, we prove the following.

Theorem 1. Let $F = \sqrt{A^{2/m} + B}$ be a generalized m-th root metric on an open subset $U \subset \mathbb{R}^n$. Suppose that A is irreducible. Then F is locally dually flat if and only if there exists a 1-form $\theta = \theta_i(x)y^i$ on U such that the following holds

$$B_{0i} = 2B_{x^i},$$

(5)

$$A_{x^i} = \frac{1}{3m} [mA\theta_i + 2\theta A_i],$$

(6)

where $B_{0i} = B_{x^k}y^ky^i$.
In local coordinates \((x^i, y^i)\), the vector field \(G = y^i \frac{\partial}{\partial x^i} - 2G^i \frac{\partial}{\partial y^i}\) is a global vector field on \(TM_0\), where \(G^i = G^i(x, y)\) are local functions on \(TM_0\) given by following
\[
G^i := \frac{1}{4} g^{ij} \left\{ \frac{\partial^2 F^2}{\partial x^i \partial y^j} - \frac{\partial F^2}{\partial x^j} \right\}, \quad y \in T_x M.
\]
The vector field \(G\) is called the associated spray to \((M, F)\). Two Finsler metrics \(F\) and \(\bar{F}\) on a manifold \(M\) are called projectively related if there is a scalar function \(P(x, y)\) defined on \(TM_0\) such that
\[
\bar{G}^i = G^i + Py^i,
\]
where \(\bar{G}^i\) and \(G^i\) are the geodesic spray coefficients of \(\bar{F}\) and \(F\), respectively.

Theorem 2. Let \(\bar{F} = \sqrt{A^{2m}} + B\) and \(F = A^{1/m}\) are generalized \(m\)-th root and \(m\)-th root Finsler metrics on an open subset \(U \subset \mathbb{R}^n\), respectively, where \(A := a_{i_1 \ldots i_m}(x)y^{i_1} \cdots y^{i_m}\) and \(B := c_{i_1 \ldots i_m}(x)y^{i_1} \cdots y^{i_m}\) with \(c_{i_1 \ldots i_m} = c_{i_1} \cdots c_{i_m}\). Suppose that the following holds
\[
(1 + c_k d^k) A^{ij}(B_{0j} - B_{xj}) - d^k [2\Delta_k + (B_{0k} - B_{xk})] A^{ij} c_j = 0, \quad (7)
\]
where
\[
\Delta_k = \frac{A^{2 - 2}}{m} \left[\frac{2}{m} - 1 \right] A_k A_0 + AA_{0k} - AA_{xk},
\]
d\(^k = g^{ik} d_i\) and \(g^{ik} = \left[\frac{1}{2} (F^2) y^i y^k \right]^{-1}\). Then \(\bar{F}\) is projectively related to \(F\). Moreover, suppose that the following holds
\[
2A^{\frac{2}{m} - 2} d^k c_i d^l [\frac{2}{m} - 1] A_j A_0 + AA_{0j} - AA_{xj} - md^k [B_{0i} - B_{xk}] \neq 0. \quad (8)
\]
Then \(B = 0\). In this case, \(\bar{F} = F\).

The first to treat the conformal theory of Finsler metrics generally was Knebelman. He defined two metric functions \(F\) and \(\bar{F}\) as conformal if the length of an arbitrary vector in the one is proportional to the length in the other, that is if \(\bar{g}_{ij} = \varphi g_{ij}\). The length of vector \(\varepsilon\) means here the fact that \(\varphi g_{ij}\), as well as \(g_{ij}\), must be Finsler metric tensor, he showed that \(\varphi\) falls into a point function. In this paper, we show that if a generalized \(m\)-th root is conformal to a \(m\)-th root Finsler metric, then both of them reduce to Riemannian metrics. More precisely, we prove the following.

Theorem 3. Let \(\bar{F} = \sqrt{A^{2/m}} + B\) and \(F = A^{1/m}\) are generalized \(m\)-th root and \(m\)-th root Finsler metric on an open subset \(U \subset \mathbb{R}^n\), respectively, where \(A := a_{i_1 \ldots i_m}(x)y^{i_1} \cdots y^{i_m}\) and \(B := b_{i_1 \ldots i_m}(x)y^{i_1} \cdots y^{i_m}\). Suppose that \(\bar{F}\) is conformal to \(F\). Then \(\bar{F}\) and \(F\) reduce to Riemannian metrics.
2 Preliminaries

Let M be a n-dimensional C^∞ manifold. Denote by $T_x M$ the tangent space at $x \in M$, by $TM = \cup_{x \in M} T_x M$ the tangent bundle of M and by $TM_0 = TM \setminus \{0\}$ the slit tangent bundle. A Finsler metric on M is a function $F : TM \to [0, \infty)$ which has the following properties: (i) F is C^∞ on TM_0, (ii) F is positively 1-homogeneous on the fibers of tangent bundle TM, (iii) for each $y \in T_x M$, the following quadratic form g_y on $T_x M$ is positive definite,

$$g_y(u, v) := \frac{1}{2} \frac{\partial^2}{\partial s \partial t} [F^2(y + su + tv)]_{s, t = 0}, \quad u, v \in T_x M.$$

Let $x \in M$ and $F_x := F|_{T_x M}$. To measure the non-Euclidean feature of F_x, define $C_y : T_x M \otimes T_x M \otimes T_x M \to \mathbb{R}$ by

$$C_y(u, v, w) := \frac{1}{2} \frac{d}{dt} [g_y + tw(u, v)]_{t = 0}, \quad u, v, w \in T_x M.$$

The family $C := \{C_y\}_{y \in TM_0}$ is called the Cartan torsion. It is well known that $C = 0$ if and only if F is Riemannian.

Given a Finsler manifold (M, F), then a global vector field G is induced by F on TM_0, which in a standard coordinate (x^i, y^j) for TM_0 is given by $G^i = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i}$, where $G^i(y)$ are local functions on TM given by

$$G^i := \frac{1}{4} y^j \left\{ \frac{\partial^2 [F^2]}{\partial x^k \partial y^l} y^k \right\}_{y^l}^{x^l}, \quad y \in T_x M. \quad (9)$$

G is called the associated spray to (M, F). The projection of an integral curve of G is called a geodesic in M. In local coordinates, a curve $c(t)$ is a geodesic if and only if its coordinates ($c^i(t)$) satisfy $\ddot{c}^i + 2G^i(\dot{c}) = 0$.

For a tangent vector $y \in T_x M_0$, define $B_y : T_x M \otimes T_x M \otimes T_x M \to T_x M$ and $E_y : T_x M \otimes T_x M \to \mathbb{R}$ by $B_y(u, v, w) := B^i_{jkl}(y) u^j v^k w^l |_{x}$ and $E_y(u, v) := E_{jk}(y) u^j v^k$, where

$$B^i_{jkl}(y) := \frac{\partial^3 G^i}{\partial y^j \partial y^k \partial y^l}(y), \quad E_{jk}(y) := \frac{1}{2} B^m_{jkm}(y),$$

$$u = u^i \frac{\partial}{\partial x^i}|_x, \quad v = v^i \frac{\partial}{\partial x^i}|_x \quad \text{and} \quad w = w^i \frac{\partial}{\partial x^i}|_x.$$

B and E are called the Berwald curvature and mean Berwald curvature, respectively. A Finsler metric is called a Berwald metric if $B = 0$ or $E = 0$, respectively.

Define $D_y : T_x M \otimes T_x M \otimes T_x M \to T_x M$ by $D_y(u, v, w) := D^i_{jkl}(y) u^j v^k w^l \frac{\partial}{\partial x^i}|_x$ where

$$D^i_{jkl} := B^i_{jkl} - \frac{2}{n + 1} \{ E_{jk} \delta^i_l + E_{jl} \delta^i_k + E_{kl} \delta^i_j + E_{jkli} y^i \}. $$

We call $D := \{D_y\}_{y \in TM_0}$ the Douglas curvature. A Finsler metric with $D = 0$ is called a Douglas metric. It is remarkable that, the notion of Douglas metrics was proposed by Bácsó-Matsumoto as a generalization of Berwald metrics \[5\].
3 Proof of the Theorem

To prove Theorem 1, we need the following.

Lemma 1. Let $F = \sqrt{A^{2/m} + B}$ be a generalized m-th root Finsler metric on an open subset $U \subset \mathbb{R}^n$. Then, F is a locally dually flat metric if and only if the following holds

$$A_x^l = \frac{1}{2A} \left(\frac{2}{m} - 1 \right) A_0 A_l + A A_{0l} + \frac{m}{2} A^{2\frac{m-2}{m}} \left(B_{0l} - 2B_x^l \right).$$ \hspace{1cm} (10)

Proof. Let F be a locally dually flat metric

$$[F^2]_{x^l y^k} = 2[F^2]_x^l.$$ \hspace{1cm} (11)

We have

$$(A^\frac{2}{m} + B)_x^l = \frac{2}{m} A^{\frac{2-m}{m}} \left[A_x^l + \frac{m}{2} A^{\frac{m-2}{m}} B_x^l \right],$$ \hspace{1cm} (12)

$$(A^\frac{2}{m} + B)_x^l y^k = \frac{2}{m} A^{\frac{2-m}{m}} \left[\frac{2-m}{m} A_0 A_l A^{-1} + A_{0l} + \frac{m}{2} A^{\frac{m-2}{m}} B_{0l} \right].$$ \hspace{1cm} (13)

By (11)-(13), we have (10). The converse is trivial. \hfill \square

Proof of Theorem 1. Now, suppose that A is irreducible. One can rewrite (10) as follows

$$(1 - \frac{2}{m}) A_0 A_l - A [A_{0l} - 2A_x^l] = \frac{m}{2} A^{2-\frac{2}{m}} [B_{0l} - 2B_x^l].$$ \hspace{1cm} (14)

The left hand side of (14) is a rational function in y, while its right hand side is an irrational function in y. Thus, (14) reduces to following

$$(2 - m) A_0 A_l = m A [2A_x^l - A_{0l}],$$ \hspace{1cm} (15)

$$B_{0l} - 2B_x^l = 0.$$ \hspace{1cm} (16)

By (15), the irreducibility of A and $deg(A_l) = m - 1$, it follows that there exists a 1-form $\theta = \theta_l y^l$ on U such that

$$A_0 = \theta A.$$ \hspace{1cm} (17)

This implies that

$$A_{0l} = A \theta_l + \theta A_l - A_x^l.$$ \hspace{1cm} (18)

By plugging (17) and (18) in (15), we get (10). The converse is a direct computation. This completes the proof. \hfill \square

By Lemma 1 and Theorem 1, we get the following.

Corollary 1. Let $F = A^{1/m}$ be an m-th root Finsler metric on an open subset $U \subset \mathbb{R}^n$. Then F is a locally dually flat metric if and only if the following holds

$$A_x^l = \frac{1}{2A} \left(\frac{2}{m} - 1 \right) A_l A_0 + A A_{0l}.$$ \hspace{1cm} (19)

Moreover, suppose that A is irreducible. Then F is locally dually flat if and only if there exists a 1-form $\theta = \theta_l(x) y^l$ on U such that (17) holds.
4 Proof of the Theorem

Two Finsler metrics F and \bar{F} on a manifold M are called projectively related if any geodesic of the first is also geodesic for the second and vice versa. Thus, there is a scalar function $P(x, y)$ defined on TM_0 such that $G^i = G^i + Py^i$, where G^i and \bar{G}^i are the geodesic spray coefficients of F and \bar{F}, respectively.

Lemma 2. Let $A = [A_{ij}]$ be an $n \times n$ invertible and symmetric matrix, $C = [C_i]$ and $D = [D_j]$ are two non-zero $n \times 1$ and $1 \times n$ vector, such that $C_iD_j = C_jD_i$. Suppose that $1 + A^{pq}C_pD_q \neq 0$. Then the matrix $B = [B_{ij}]$ defined by $B_{ij} := A_{ij} + C_iD_j$ is invertible and

$$B^{ij} := (B_{ij})^{-1} = A^{ij} - \frac{1}{1 + A^{pq}C_pD_q} A^{ki}A^{lj}C_kD_l,$$ \hspace{1cm} (20)

where $A^{ij} := (A_{ij})^{-1}$.

Lemma 3. Let $\bar{F} = \sqrt{A^{2/m} + B}$ and $F = A^{1/m}$ are generalized m-th root and m-th root Finsler metric on an open subset $U \subset \mathbb{R}^n$, respectively, where $A := a_{i_1...i_m}(x)y^{i_1}...y^{i_m}$ and $B := c_i d_j y^i y^j$ with $c_i d_j = c_j d_i$ and $c_i d_i \neq -1$. Suppose that the following holds

$$mA^{m-2} A^{ij} \mathbb{G}_i - [4\Upsilon + kd^k] A^i = 0,$$ \hspace{1cm} (21)

where

$$\mathbb{G}_i = B_{0i} - B_{xi},$$

$$\Upsilon = \frac{kd^k}{4} \left\{ [F^2]_{x+y}^k y^k - [F^2]_{xy} \right\},$$

$$k = \frac{1}{1 + c_i d_i},$$

$$A^i = mA^{m-2} A^{ij}c_j,$$

d^k = g^{ik} d_k$ and $g^{ik} = \left[\frac{1}{2} (F^2)_{y^i y^k} \right]^{-1}$. Then \bar{F} is projectively related to F.

Proof. By assumption, we have

$$\bar{F}^2 = F^2 + B,$$ \hspace{1cm} (22)

where $F = A^{1/m}$ be an m-th root Finsler metric, $A := a_{i_1...i_m}(x)y^{i_1} y^{i_2} \ldots y^{i_m}$ is symmetric in all its indices and $B = c_i d_j y^i y^j$. Then we have

$$\bar{g}_{ij} = g_{ij} + c_i d_j,$$ \hspace{1cm} (23)

where

$$g_{ij} = \frac{A^{\pm 2}}{m^2} [mA_{ij} + (2 - m)A_i A_j].$$ \hspace{1cm} (24)
Then by Lemma 2 we get
\[\bar{g}^{ij} = g^{ij} - \frac{1}{1 + c_m d^m} c^i d^j, \quad (25) \]
where \(d^m = g^{mi} d_i, \quad c^m = g^{mi} c_i \) and
\[g^{ij} = A^{-\frac{2}{m}} \left[m A A^{ij} + \frac{m - 2}{m - 1} y^i y^j \right]. \quad (26) \]

Then by (9), (22) and (25), we have
\[\bar{G}^i = \frac{1}{4} g^{il} \left[\frac{\partial^2 F^2}{\partial x^k \partial y^l} y^k - \frac{\partial F^2}{\partial x^l} \right] = \frac{1}{4} \left[g^{il} - kc^i d^l \right] \left[\frac{\partial^2 (F^2 + B)}{\partial x^k \partial y^l} y^k - \frac{\partial (F^2 + B)}{\partial x^l} \right], \]
where \(k = \frac{1}{1 + c_m d^m} \). Then
\[\bar{G}^i = \frac{1}{4} \left[g^{il} - kc^i d^l \right] \left[\frac{\partial^2 F^2}{\partial x^k \partial y^l} y^k - \frac{\partial F^2}{\partial x^l} \right] + \frac{1}{4} \left[g^{il} - kc^i d^l \right] \left[\frac{\partial^2 B}{\partial x^k \partial y^l} y^k - \frac{\partial B}{\partial x^l} \right] = G^i - [\Upsilon + 1 \frac{kd^l \mathfrak{B}_l}{4}] c^i + \frac{1}{4} g^{il} \mathfrak{B}_l, \quad (27) \]
where
\[\Upsilon = \frac{kd^l}{4} \left\{ [F^2]_{x^k y^l} y^k - [F^2]_{x^l} \right\}, \quad \mathfrak{B}_l = B_{0l} - B_{xl}. \quad (28) \]

Put
\[\Phi := \frac{m - 2}{m - 1} A^{-\frac{2}{m}} y^p c_p, \quad \mathcal{A}^i := mA^i A^{-\frac{m - 2}{m}} y^p c_p. \quad (29) \]

Then we have
\[c^i = g^{ip} c_p = A^{-\frac{2}{m}} \left[m A A^{ip} + \frac{m - 2}{m - 1} y^i y^p \right] c_p = \mathcal{A}^i + \Phi y^i, \quad (30) \]

By (26), (27) and (30), we get
\[\bar{G}^i = G^i + \left[A^{-\frac{2}{m}} \frac{m - 2}{4(m - 1)} y^l \mathfrak{B}_l - (\Upsilon + 1 \frac{kd^l \mathfrak{B}_l}{4}) c_p \right] y^i \]
\[- \left[\Upsilon + 1 \frac{kd^l \mathfrak{B}_l}{4} \right] \mathcal{A}^i + \frac{m}{4} A^{-\frac{m - 2}{m}} A^{il} \mathfrak{B}_l. \quad (31) \]

If the relation (21) holds, then by (31) the Finsler metric \(\bar{F} \) is projectively related to \(F \).
Lemma 4. Let \(\bar{F} = \sqrt{A^{2/m} + B} \) and \(F = A^{1/m} \) are generalized \(m \)-th root and \(m \)-th root Finsler metric on an open subset \(U \subset \mathbb{R}^n \), respectively, where \(A := a_{i_1...i_m}(x)y^{i_1}...y^{i_m} \) are symmetric in all its indices and \(B := c_{i}d_{j}y^{i}y^{j} \) with \(c_{i}d_{j} = c_{j}d_{i} \) and \(c_{i}d_{i} \neq -1 \) is a 2-form on \(M \). Suppose that (21) and (8) hold. Then \(B = 0 \).

Proof. Let (21) holds

\[
[4g + k\partial^\theta \mathfrak{B}_l] A^i = mA^{1-2}A^l \mathfrak{B}_l. \tag{32}
\]

Then by (28) and (29) we have

\[
g^{ij} d_j \left[(F^2)_{x+y^k} - (F^2)_{x} + \mathfrak{B}_l \right] A^l p c_p = A^l \mathfrak{B}_l g^{qr} c_q d_q + A^l \mathfrak{B}_l, \tag{33}
\]

or equivalently

\[
g^{ij} d_j \left[(F^2)_{x+y^k} - (F^2)_{x} \right] A^l p c_p - A^l \mathfrak{B}_l = [A^l d^j - A^l d^j] c_j \mathfrak{B}_l. \tag{34}
\]

The following holds

\[
(F^2)_{x+y^k} - (F^2)_{x} = \frac{2}{m} A^{1-2} \left[\left(\frac{2}{m} - 1 \right) A l A_0 + A A_0 l - A A_{x l} \right]. \tag{35}
\]

Contracting (35) with \(g^{ij} \) yields

\[
g^{ij} [(F^2)_{x+y^k} - (F^2)_{x}] = \frac{2}{m} A^{1-2} \mathcal{H}^{ij} \left[\left(\frac{2}{m} - 1 \right) A l A_0 + A A_0 l - A A_{x l} \right], \tag{36}
\]

where \(\mathcal{H}^{ij} := [m A A^{ij} + \frac{m-2}{m-1} y^{i}y^{j}] \). By considering (36), the left hand side of (41) is a rational function in \(y \), while its right hand side is a irrational function in \(y \). Then (34) reduces to following

\[
g^{ij} d_j A^l p c_p \mathfrak{F}_l = A^l \mathfrak{B}_l, \tag{37}
\]

\[
A^l d^j c_j \mathfrak{B}_l = A^l d^j d^j c_j \mathfrak{B}_l, \tag{38}
\]

where \(\mathfrak{F}_l := [(F^2)_{x+y^k} - (F^2)_{x}] \). Contracting (37) with \(A_{si} \) implies that

\[
\mathfrak{B}_s = (d^l \mathfrak{F}_l)c_s. \tag{39}
\]

By multiplying (38) with \(A_{is} \), we have

\[
d^j c_j \mathfrak{B}_s = d^l \mathfrak{B}_l c_s. \tag{40}
\]

\[
d^j c_j \times (39)- (40) \text{ yields } ((d^j c_j)d^j \mathfrak{F}_l - d^j \mathfrak{B}_l)c_s = 0. \tag{41}
\]

By assumption, (3) holds and then \((d^j c_j)d^j \mathfrak{F}_l - d^j \mathfrak{B}_l \neq 0 \). Thus \(c_s = 0 \) and \(B = 0 \) which implies that \(\bar{F} = F \). This completes the proof. \(\square \)
Proof of Theorem 2. By Lemmas 3 and 4, we get the proof.

Recently, Zu-Zhang-Li proved that every Douglas m-th root Finsler metric $F = A^{1/m}$ ($m > 4$) with irreducibility of A, is a Berwald metric [24]. Then by Theorem 2, we have the following.

Corollary 2. Let $\bar{F} = \sqrt{A^{2/m} + B}$ and $F = A^{1/m}$ are generalized m-th root and m-th root Finsler metric on an open subset $U \subset \mathbb{R}^n$, respectively, where $m > 4$, $A := a_{i_1...i_m}(x)y^{i_1}...y^{i_m}$ is irreducible and $B := c_i(x)d_j(x)y^iy^j$ with $c_id_j = c_jd_i$ and $c_id^j \neq -1$. Suppose that (7) holds and \bar{F} is a Douglas metric. Then F reduces to a Berwald metric.

5 Proof of the Theorem 3

Let (M, F) and (\tilde{M}, \tilde{F}) be two Finsler spaces on same underlying n-dimensional manifold M. A Finsler space (M, F) is conformal to a Finsler space (\tilde{M}, \tilde{F}), if and only if there exists a scalar field $\alpha(x)$ satisfying $\bar{F} = e^{\alpha}F$ (see [12]). The conformal change $\alpha(x)$ is called homothetic and isometry if $\alpha_i = \frac{\partial \alpha}{\partial x^i} = 0$ and $\alpha = 0$, respectively. In these section, we will prove a generalized version of Theorem 3. Indeed, we are going to consider two generalized m-th root metrics $\bar{F} = \sqrt{A^{2/m} + B}$ and $\tilde{F} = \sqrt{A^{2/m} + \tilde{B}}$ which are conformal and prove the following.

Theorem 4. Let $\bar{F} = \sqrt{A^{2/m} + B}$ and $\tilde{F} = \sqrt{A^{2/m} + \tilde{B}}$ are two generalized m-th root metrics on an open subset $U \subset \mathbb{R}^n$, where $B := b_{ij}(x)y^iy^j$ and $\tilde{B} := \tilde{b}_{ij}(x)y^iy^j$. Suppose that \bar{F} is non-isometry conformal to \tilde{F}. Then $F = A^{1/m}$ is a Riemannian metric.

Proof. Let

$$F = e^{\alpha}\bar{F},$$

where $\bar{F} = \sqrt{A^{2/m} + B}$ and $\tilde{F} = \sqrt{A^{2/m} + \tilde{B}}$ are generalized m-th root Finsler metrics on an open subset $U \subset \mathbb{R}^n$, where $B := b_{ij}(x)y^iy^j$ and $\tilde{B} := \tilde{b}_{ij}(x)y^iy^j$. By assumption \bar{F} is conformal to \tilde{F}. Then, we have

$$\bar{g}_{ij} = e^{2\alpha}\tilde{g}_{ij}.\quad (43)$$

Then we have

$$g_{ij} + \tilde{b}_{ij} = e^{2\alpha}(g_{ij} + \tilde{b}_{ij}),\quad (44)$$

where $g_{ij} = \frac{1}{2}(A^{1/m})_{y^iy^j}$ is the fundamental tensor of $F := A^{1/m}$. Since α is not isometry, i.e., $\alpha \neq 0$, then by (43) and (44), we get

$$g_{ij} = \frac{1}{1 - e^{2\alpha}}(e^{2\alpha}\tilde{g}_{ij} - \bar{b}_{ij}).\quad (45)$$

This implies that $C_{ijk} = 0$ and then F is Riemannian.
By [44], we get the following.

Corollary 3. Let \(\bar{F} = \sqrt{A^{2/m} + B} \) and \(\tilde{F} = \sqrt{A^{2/m} + \tilde{B}} \) are two generalized \(m \)-th root metrics on an open subset \(U \subset \mathbb{R}^n \), where \(F := A^{1/m} \) is not Riemannian, \(\bar{B} := \bar{b}_{ij}(x)y^iy^j \) and \(\tilde{B} := \tilde{b}_{ij}(x)y^iy^j \). Suppose that \(\bar{F} \) is conformal to \(\tilde{F} \). Then \(\bar{F} = \tilde{F} \) or equivalently \(\bar{B} = \tilde{B} \).

Proof of Theorem 3 In Theorem [4] put \(\tilde{B} = 0 \) and \(\tilde{F} := F \). Suppose that the generalized \(m \)-th root metric \(\bar{F} = \sqrt{A^{2/m} + B} \) is conformal to the \(m \)-th root Finsler metric \(F = A^{1/m} \). By Theorem [4] \(F \) is Riemannian and then \(C_{ijk} = 0 \). Since \(\bar{g}_{ij} = e^{2\alpha}g_{ij} \) then \(\bar{g}_{ij} = g_{ij} + b_{ij} \), which yields \(\bar{C}_{ijk} = C_{ijk} \).

Thus \(\bar{C}_{ijk} = 0 \), which implies that \(\bar{F} \) reduces to a Riemannian metric. This completes the proof. \(\square \)

Acknowledgments. We are deeply grateful to the referee for a very careful reading of the manuscript and valuable suggestions.

References

[1] S.-I. Amari, *Differential-Geometrical Methods in Statistics*, Springer Lecture Notes in Statistics, Springer-Verlag, 1985.

[2] S.-I. Amari and H. Nagaoka, *Methods of Information Geometry*, AMS Translation of Math. Monographs, Oxford University Press, 2000.

[3] P. L. Antonelli, R. Ingarden and M. Matsumoto, *The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology*, Kluwer Acad. publ., Netherlands, 1993.

[4] G.S. Asanov, *Finslerian Extension of General Relativity*, Reidel, Dordrecht, 1984.

[5] S. Bácsó and M. Matsumoto, *On Finsler spaces of Douglas type, A generalization of notion of Berwald space*, Publ. Math. Debrecen. 51(1997), 385-406.

[6] V. Balan, *Spectra of symmetric tensors and \(m \)-root Finsler models*, Linear Algebra and its Applications, 436(1) (2012), 152-162.

[7] V. Balan, *Notable submanifolds in Berwald-Moór spaces*, BSG Proc. 17, Geometry Balkan Press 2010, 21-30.

[8] V. Balan, *CMC and minimal surfaces in Berwald-Moór spaces*, Hypercomplex Numbers in Geometry and Physics, 2(6), 3(2006), 113-122.
[9] V. Balan, N. Brinzei and S. Lebedev, *Geodesics, paths and Jacobi fields for Berwald-Moér quartic metrics*, Hypercomplex Numbers in Geometry and Physics, accepted.

[10] V. Balan and N. Brinzei, *Einstein equations for (h, v)-Berwald-Moér relativistic models*, Balkan. J. Geom. Appl. 11(2) (2006), 20-27.

[11] V. Balan and N. Brinzei, *Berwald-Moér-type (h, v)-metric physical models*, Hypercomplex Numbers in Geometry and Physics. 2(4) (2005), 114-122.

[12] M. Hashiguchi, *On conformal transformation of Finsler metrics*, J. Math. Kyoto Univ. 16(1976), 25-50.

[13] S.V. Lebedev, *The generalized Finslerian metric tensors*, to appear.

[14] B. Li and Z. Shen, *On projectively flat fourth root metrics*, Canad. Math. Bull. 55(2012), 138-145.

[15] M. Matsumoto and H. Shimada, *On Finsler spaces with 1-form metric. II. Berwald-Moér’s metric L = (y^1 y^2 ... y^n)^{1/n}*, Tensor N. S. 32(1978), 275-278.

[16] D.G. Pavlov, *Space-Time Structure, Algebra and Geometry*, Collected papers, TETRU, 2006.

[17] D.G. Pavlov, *Four-dimensional time*, Hypercomplex Numbers in Geometry and Physics, 1(2004), 31-39.

[18] Z. Shen, *Riemann-Finsler geometry with applications to information geometry*, Chin. Ann. Math. 27(2006), 73-94.

[19] H. Shimada, *On Finsler spaces with metric L = \sqrt[n]{\alpha_{i_1 i_2 ... i_n} y^{i_1} y^{i_2} ... y^{i_n}}*, Tensor, N.S., 33(1979), 365-372.

[20] L. Tamassy, *Finsler spaces with polynomial metric*, Hypercomplex Numbers in Geometry and Physics, 3(6) (2006), 85-92.

[21] A. Tayebi and B. Najafi, *On m-th root Finsler metrics*, J. Geom. Phys. 61(2011), 1479-1484.

[22] A. Tayebi and B. Najafi, *On m-th root metrics with special curvature properties*, C. R. Acad. Sci. Paris, Ser. I, 349(2011), 691-693.

[23] Y. Yu and Y. You, *On Einstein m-th root metrics*, Diff. Geom. Appl. 28(2010) 290-294.

[24] D. Zu, S. Zhang and B. Li, *On Berwald m-th root Finsler metrics*, Publ. Math. Debrecen, accepted.
Akbar Tayebi and Mohammad Shahbazi
Department of Mathematics, Faculty of Science
University of Qom
Qom, Iran
Email: akbar.tayebi@gmail.com
Email: m.shahbazinia@gmail.com

Esmaeil Peyghan
Department of Mathematics, Faculty of Science
Arak University
Arak 38156-8-8349, Iran
Email: epeyghan@gmail.com