Abstract

Motivation: This article describes NEREL-BIO—an annotation scheme and corpus of PubMed abstracts in Russian and smaller number of abstracts in English. NEREL-BIO extends the general domain dataset NEREL by introducing domain-specific entity types. NEREL-BIO annotation scheme covers both general and biomedical domains making it suitable for domain transfer experiments. NEREL-BIO provides annotation for nested named entities as an extension of the scheme employed for NEREL. Nested named entities may cross entity boundaries to connect to shorter entities nested within longer entities, making them harder to detect.

Results: NEREL-BIO contains annotations for 700+ Russian and 100+ English abstracts. All English PubMed annotations have corresponding Russian counterparts. Thus, NEREL-BIO comprises the following specific features: annotation of nested named entities, it can be used as a benchmark for cross-domain (NEREL → NEREL-BIO) and cross-language (English → Russian) transfer. We experiment with both transformer-based sequence models and machine reading comprehension models and report their results.

Availability and implementation: The dataset and annotation guidelines are freely available at https://github.com/nerel-ds/NEREL-BIO.

1 Introduction

The lack of richly annotated training datasets is a well-known challenge in developing biomedical entity extraction systems. Despite having a large number of resources in the general domain, many languages have not made significant progress in the biomedical field. Russian is one such example; it is one of the top 10 languages in the world and has many natural language processing (NLP) datasets and resources, but the biomedical part of Russian NLP is underdeveloped. In particular, the Russian part of the Unified Medical Language System (UMLS) (Bodenreider 2004) includes three source vocabularies, and it still only amounts to 1.8% of the English UMLS in vocabulary and 1.36% in source counts (NIH UMLS 2022). Currently, there are several annotated corpora for the extraction of diseases, drugs, and adverse drug reactions from social media and clinical records in Russian (Tutubalina et al. 2021; Nesterov et al. 2022). A recent work on a Russian medical language understanding benchmark (Blinov et al. 2022) includes the RuDRec corpus (Tutubalina et al. 2021) for named entity recognition (NER). However, these corpora do not cover scientific texts and include flat (non-nesting) entity mentions only.

The majority of existing datasets and NER methods have been designed for capturing flat (non-nesting) mention structures over coarse entity type schemes. Moreover, the annotated entities in these corpora are limited to the most common entity types such as drugs/chemicals and diseases (Leaman et al. 2009; Gurulingappa et al. 2010;
Van Mulligen et al. 2012; Wei et al. 2016); see an overview of 20+ NER biomedical datasets in a BIGBIO (BigScience Biomedical) library (Fries et al. 2022) for more information. Recent work has shown an increased interest in nested entity structures in general-domain data in various languages, including English (Ringland et al. 2019), Russian (Loukachevitch et al. 2021), Thai (Buaphet et al. 2022), and Danish (Plank et al. 2020). The most widely studied corpus for nested NER in the biomedical domain is GENIA (Kim et al. 2003) which consists of 2000 PubMed abstracts and 100 000 annotations divided into 47 entity types. Yet, only 17% of the entities in the GENIA corpus are nested within another entity (Katiyar and Cardie 2018). An another large concept-mention annotated dataset named MedMentions (Mohan and Li 2018) contains 4392 PubMed abstracts annotated with 21 entity types, including disorders, anatomical structures, chemicals, and also some general concepts such as organizations, population groups, etc. However, the authors chose to annotate the most specific entity types from both general-domain and biomedical fields, as shown in Fig. 1. Figure 2 presents an example of nested named entities in NEREL-BIO. The source abstract discusses “isolated bronchus resection for central cancer” and provides the results of surgical treatment in these specific conditions. Entities “bronchus”, “bronchus resection”, “resection” are included in UMLS, while “isolated bronchus resection” and “central cancer” are not. Nested entity annotations create a basis for establishing relations between correct (longer) entities, as well as linking internal entities to equivalent UMLS concepts.

The main contributions of our work can be summarized as follows:

1. We present NEREL-BIO, a new biomedical dataset for nested NER in Russian accompanied with a smaller English corpus.

2. We evaluate BERT-based machine reading comprehension (MRC) and sequence models for biomedical nested NER.

3. To promote further cross-lingual research, we annotate a subset of 100+ English abstracts in translation from Russian using the same annotation scheme.

2 Data collection and annotation

NEREL-BIO extends the annotation scheme of the general-domain Russian dataset NEREL (Loukachevitch et al. 2021), which is the first Russian dataset annotated simultaneously with nested entities, relations between those entities, and knowledge base links (Loukachevitch et al. 2021, 2022). Entity linking annotations leverage nested named entities, and each nested named entity can be linked to a separate Wikidata entity. Nested entities enhance coverage of annotated entities, as well as relations between entities and knowledge base links. For example, using single ORGANIZATION entity in Lomonosov Moscow State University leads to the loss of two internal nested named entities: CITY (Moscow) and PERSON (Lomonosov). In such cases, NEREL employs the nested annotation LomonosowPERSON MOSCOWCITY State University. Annotation of internal entities allows “local” relations between nested entities. In the above example, it allows for establishing a relation between the university and its headquarters (Moscow). Annotating nested entities enable wider coverage of entity linking into a knowledge base. For example, entity Mayor of Novosibirsk is absent in Wikidata (which is a reference knowledge base for NEREL), but nesting permits linking of the internal entities Mayor and Novosibirsk.

At the time of this writing, NEREL contains 56K named entities and 39K relations annotated in 900+ person-oriented news articles. Twenty-nine entity types in NEREL can be categorized as follows:

- basic entity types: PERSON, ORGANIZATION, LOCATION, FACILITY;
- geopolitical entities subdivided into COUNTRY, CITY, DISTRICT, and STATE_OR_PROVINCE entities;
- numerical entities: NUMBER, ORDINAL, DATE, TIME, PERCENT, MONEY, AGE;
- socio-political entities: NATIONALITY, RELIGION, IDEOLOGY, FAMILY, LANGUAGE;
- law-related entities: LAW, CRIME, PENALTY;
- work-related entities: PROFESSION, WORK_OF_ART, PRODUCT, AWARD;
- DISEASE for labeling various health disorders and symptoms;
• EVENT, which is used for labeling so called “news events” as opposed to everyday or regular activity.

We considered the NEREL entity types for inclusion into NEREL-BIO to be able to describe the most important social relations of biomedical entities. The DISEASE entity type is most relevant to the biomedical domain. Also it was decided to use in the NEREL-BIO labeling the following NEREL general entity types: eight basic entity types, seven numerical entities, tags for characterizing persons (NATIONALITY, PROFESSION, and FAMILY), PRODUCT and EVENT. EVENT entity is used for labeling such situations as epidemics, military conflicts, tsunamis, etc., mentioned in connection with the spread of diseases or the need for additional medical care. The EVENT entity mainly corresponds to Environmental event and Traumatic event concepts in UMLS. In total, 20 general-domain entity types are available for annotating biomedical texts.

It can be also noted that PERSON, ORGANIZATION, and LOCATION entities from the basic entity group in the general domain were annotated in the biomedical MedMentions corpus (Moham and Li 2018), locations were also annotated in the QUARERO corpus (Nevéol et al. 2014). The NEREL PROFESSION type corresponds to the MedMentions occupation (OCCU) type.

2.2 NEREL-BIO dataset

2.2.1 Text collection

We used sourced documents from the WMT-2020 Biomedical Translation Task collection (Bawden et al. 2020) that contains 6029 Medline abstracts in Russian and their English translations (https://github.com/biomedical-translation-corpora/corpora). We selected texts in the range of 6-20 sentences. We trained a multilingual BERT (Devlin et al. 2019) NER model on MedMentions (Moham and Li 2018) and applied it to Russian abstracts in a zero-shot fashion. We picked about 100 documents with the densest and most diverse recognized entities. Based on the analysis of this automatic annotation, we selected abstracts with disease mentions and related laboratory or medical procedures for including in NEREL-BIO.

The abstracts were annotated using the BRAT annotation tool (Stenetorp et al. 2012). To facilitate manual annotation, automatic preannotation was done with two models. First, multilingual BERT (Devlin et al. 2019) trained on the English MedMentions (Moham and Li 2018) was applied for biomedical entity recognition; 10 biomedical entity types corresponding to UMLS semantic types [https://lhncbc.nlm.nih.gov/semnet/download/SemGroups.txt]. The following semantic tags were used in pre-annotation: ACTI (activities), ANAT, CHEM, DEVI (devices), DISO, LIVB, ORGA (organizations), PHEN (Phenomena), PHYS (Physiology), and PROC (procedures). The second model used in automatic preannotation was MRC model (Li et al. 2020) trained on the NEREL dataset, that helped labeling nested entities from the general domain. The automatic techniques provided the annotation of most evident entities and became a basis for further manual labeling. The preannotated abstracts were manually annotated by experts with further control by the moderator. We also annotated 105 English abstracts which are translations of initially selected Russian abstracts for future cross-lingual studies and experiments.

Table 1 summarizes statistics of NEREL-BIO in terms of documents and entity mentions. Table 2 contains most frequent disease mentions in the Russian part of NEREL-BIO. It can be seen that the selected abstracts are quite diverse in content.

Disease	No. of mentions
Tumor	198
Diabetes	112
Pain	111
Cancer	101
Tuberculosis	100
Arterial hypertension	88
Infection	86
Stroke	85
Cardiac ischemia	82
Alzheimer’s disease	69

2.2.2 Entity types

Biomedical entity types selected for annotation are based on their presence in the UMLS taxonomy and other annotated datasets in the biomedical domain. Seventeen specialized biomedical entity types and 20 entity types from the general NEREL dataset are included into the NEREL-BIO annotation scheme. Table 3 presents linking of the NEREL-BIO entity types to UMLS semantic types and most relevant concepts. Table 3 also contains entity statistics for the Russian and English parts of the NEREL-BIO corpus. The full set of entity types, explanations, and examples in NEREL-BIO are presented in Table 4.

Biomedical entity types in NEREL-BIO are annotated according to UMLS definitions of relevant concepts. There are a few exceptions as given below:

• HEALTH CARE_ACTIVITY, which is described as a quite general concept in UMLS, is treated as health care administration and organization activities such as hospitalization or medical evacuation;
• LABPROC entity comprises both laboratory and other diagnostic procedures;
• FINDING entity mostly corresponds to the experimental finding concept in UMLS and conveys the results of the scientific study presented in the abstract, e.g. longer hospital stay, the progression of atherosclerosis.

If compared with preannotation based on the MedMentions corpus, it should be noted that:

• from the LIVB entity, PERSON entity was singled out, because the annotated abstracts mainly discuss human diseases;
• PROC (procedures) were subdivided into scientific, medical, and laboratory procedures;
• from PHYS (physiology), the category of mental processes (MENTALPROC) was singled out;
• additional entities were annotated.

We calculated the intersection of the final annotation NEREL-BIO with initial automatic pre-annotation: the intersection contains about 25% spans with the same entity type, which means that the automatic preannotation was useful, but the annotation scheme was significantly changed.

It can be seen that all entity types of NEREL-BIO were successfully linked to the UMLS taxonomy. At the same time, we could see quite diverse mentions of geographical locations and some of the money (mainly in the context of medical expenses). Mentions of professions or occupations are quite frequent: mainly medical specialists are mentioned, but also there are studies on occupational diseases of specific professional groups.

Table 1 Statistics of NEREL-BIO.

Collection	No. of doc	No. of entities	No. of nonzero entity types
Abstracts in Russian	766	66 888	37
Abstracts in English	105	10 651	32
Some principles of annotation employed in the general domain were changed in NEREL-BIO. In particular, in the general domain, mainly capitalized mentions were annotated as named entities. In the biomedical domain, the same entity types can also appear as lower-cased mentions:

- any humans or groups can be annotated with the label PERSON such as patient, control group, population with low income;
- ORGANIZATION tag is used not only for tagging specific organizations but organization types such as hospital, medical institution, rehabilitation center.
- location-related tags (LOCATION, COUNTRY, CITY, STATE_OR_PRO-VINCE, DISTRICT, FACILITY) are also used in both cases: rural settlement, low-income countries, coastal areas, Brasilia, Vietnam.

Entities annotated in NEREL-BIO can be absent in UMLS. For example, the term left-sided congenital diaphragmatic hernia is absent in UMLS. We annotate this as follows:

\[
\text{left_sided \; congenital \; diaphragmatic \; hernia} \]

Although we cannot link the whole term in UMLS, we can link the sub-terms: Hernia (C0019270), Diaphragmatic Hernia (C0019284), Respiratory Diaphragm (C0011980), and Congenital diaphragmatic hernia (C0235833).

For annotating multiword terms, we followed the following guidelines:

- up-to three–four word biomedical terms in form of noun groups without prepositions discussed in texts are annotated without additional checks;
longer multiword phrases containing prepositions should be supported with some additional evidence, for example, there can be an abbreviation in the text for a long multiword term \(\text{ST-segment elevation acute coronary syndrome (STSEACS)}\), a long term or its English equivalent can be found in UMLS \(\text{metastasis from malignant tumor of liver (C1282502)}\) or other biomedical resources;

- internal spans in an annotated multiword term (single words or phrases), which can be considered to be valid biomedical terms, are also annotated with corresponding entity types;

- general adjectives, adjectival quantifiers are not included in the annotated entity: \text{various tumors} are annotated as \text{various[tumors]_{DISO}}.

The annotation scheme was created during multi-round preliminary annotation of parallel Russian and English abstracts. Terminologists experienced in terminological studies including the biomedical domain were involved in the annotation. All annotated abstracts were additionally checked by a moderator.

In Table 5, we provide a brief summary of how frequently nested entities appear in NEREL-BIO. For each entity type, we counted how many times entities of this type appear as an outer entity (eliminating multiple occurrences of the same entity) and divide this number by the total occurrences of the entity type in the corpus. Then, we filter out the types with less than 200 occurrences in the corpus. The top 10 entity types along with their nestedness frequency are presented in the table. Frequencies in the parallel English/Russian abstracts of the NEREL-BIO are shown in the last two columns of Table 5. Here we compare only parallel abstracts for each language.
Table 5 Frequencies of top ten entity types with nested entities in full Russian collection and 100 Russian and English documents for comparison.

Entity type	Full RU (%)	EN (%)	RU (%)
FINDING	65.7	71.2	57.4
PHYS	38.3	40.7	39.8
INJURY_POISONING	37.7	49.0	39.4
DISO	37.3	41.2	37.6
DEVICE	33.9	42.5	46.2
LABPROC	30.2	34.8	31.0
MEDPROC	30.0	44.7	33.1
ANATOMY	27.3	28.3	31.0
SCIPROC	23.9	32.1	24.6
CHEM	22.5	20.1	17.2

Total entities: 66 888
Total (outer) nested entities: 17 182

Table 6 Top 10 nested entity pairs in NEREL-BIO.

Outer entity type	Internal entity type	Occurrences
DISO	DISO	3380
ANATOMY	ANATOMY	3051
DISO	ANATOMY	1476
PHYS	PHYS	1267
CHEM	CHEM	1116
PERSON	PERSON	1038
FINDING	PHYS	956
MEDPROC	MEDPROC	911
PHYS	ANATOMY	786
PHYS	CHEM	523

Total nested pairs: 22 392

As noted by other researchers (Shabankhani et al. 2020; Campillos-Llanos et al. 2021).

3 Experiments and evaluation

For our experiments, we split NEREL-BIO into train/dev/test subsets (612/77/77 documents). For entity recognition experiments, we report results (see Table 1) on (i) Machine Reading Comprehension (MRC) model (Li et al. 2020) (Our code is available at https://github.com/fullstock/mrc_nested_ner_ru) and (ii) Sequence model (Shibuya and Hovy 2020).

3.1 Models

MRC task is formulated in the following way: for the given context \(X \) and question \(Q \) the model should obtain answer \(A \) with some function \(F \) defined as \(A = F(X, Q) \). In the named entity recognition task, \(X \) would be the given sentence/paragraph; \(Q \) is some generated or selected query sentence for a given named entity type; \(A \) is the subsequence of the context \(X \) that denotes the named entity; \(F \) is the retrieving model itself.

For the MRC model, we employed three binary classifiers based on the output of the last hidden layer from the RuBERT model (Russian BERT) (Kuratov and Arkhipov 2019). The first classifier determines the starting position of the named entity. The second classifier determines the ending position of a named entity (possibly different) of the same class. The third classifier decides, whether chosen start-end pairs represent a single named entity of such class. These classifiers are trained for each class (type) separately. Batch size was set to 16 with maximum length of the sequence to be 192 tokens. Model was trained during 16 epochs on 8 T V100 GPUs. Other parameters are set to default values after (Li et al. 2020).

We compared several question variants for the MRC model.

Keyword: the question consists of a single entity tag such as DISO or ANATOMY (Li et al. 2020).

Component-based: 2–5–10 most frequent lemmatized components of a given entity are used for formulating a query, for example “DISO are entities such as a tumor, complication, disorder, disease, illness” (five-component example). Previous experiments with the general NEREL dataset showed that component-based questions outperformed other variants (Rozhkov and Loukachevitch 2022).

Contextual: a sentence from the training sample containing a named entity of a given type without explicit or implicit labeling used for this entity in the sentence. For example, a question for DISO entity type can be as follows: “60 patients in the most acute period of hemispheric ischemic stroke were examined.”

Lexical: as in the contextual variant, a sentence from the training corpus is used as a question; additionally, the entity of a given type is masked with its label (Zhou and Chen 2021). We used the so-called full lexical approach, when all entities in a sentence of a given type are substituted with masks. An example of a masking sentence with several mentions of an entity looks as follows. The initial sentence contains three mentions of DISO: “The addition of gout contributes to endothelial dysfunction and worsens the course of DISO entity type can be as follows: “60 patients in the most acute period of hemispheric ischemic stroke were examined.” The corresponding lexical question is: “The addition of DISO contributes to DISO and worsens the course of DISO.” If a longer entity contains a shorter entity of the same type, the longer entity is preferred (so-called outmost variant).

The selection of a sentence for contextual or lexical questions is carried out in the following manner:

- The most frequent entity for a given entity type is selected.
- The first sentence in the training set that contains the selected entity is extracted to be used as a question. By “first” we imply here the lexicographic order of the filenames of the original dataset.

We also provide experimental results for the second-best Sequence model (Shibuya and Hovy 2020) since it gave comparable results in the NEREL dataset. The model treats the tag sequence for
nested entities as the second best path within the span of their parent entity. In addition, the decoding method for inference extracts entities iteratively from outermost ones to internal ones in an outside-to-inside way. It uses the Conditional Random Field method as an output layer. For this setup, we employed RuBERT model with batch size set to 16 and the same length of 192 tokens. The model was trained for 32 epochs on 8 GPUs while other parameters were set to default values.

3.2 Results
Span-level micro- and macro-averaged precision, recall, and F1 results of the models are shown in Table 7. The performance of the five-component MRC model for the 10 most frequent entities is presented in Table 8.

As shown in Table 7, the described variants of the MRC model (except the contextual variant) obtain comparable results in Micro-F measure. The best macro-averaged results are achieved by the lexical variant. Depending on entity type, performance of the MRC model varies greatly (see Table 8). In particular, this model achieves 85% F1 and 61% on ANATOMY and PHYS, respectively. We note that the best obtained results of nested NER for NEREL-BIO are less than for general NEREL dataset, on which the MRC model achieved more than 80% micro-F measure. This is in line with existing published NER results that also show similar decreased results due to the difficulty of the annotation task itself. For example, in the “mild cognitive impairment” phrase, an annotator missed labeling “cognitive impairment”.

4 Discussion and limitations
Several issues may potentially limit the applicability of NEREL-BIO; they are mostly shared with other available datasets.

4.1 Seen and unseen mentions of entities
Recent works on BERT-based models for information extraction demonstrate that the generalization ability of these models is influenced by domain shift or whether the test entity/reltion has been seen in the training set (Miftahutdinov et al. 2020; Tutubalina et al. 2020; Kim and Kang 2022). To avoid such biases, Kim and Kang (2022) removes overlaps in entity mentions and concept identifiers between training and test sets while Tutubalina et al. (2020) focuses on zero-shot entity linking between different concept terminologies. We leave these approaches to future work. We plan to investigate how well MRC models for nested NER can be adapted to unseen mentions.

4.2 Knowledge transfer between general and biomedical domains
The proposed NEREL-BIO corpus shared annotation scheme with our general-domain dataset NEREL for common entity types such as AGE, NUMBER, FACILITY, and ORGANIZATION (21 types in total). Transferability of trained models across two datasets with completely different contexts can be limited due to domain shift, while sequential training can cause complete retraining of model weights. We mark the investigation of strategies for combining different domains for future work.

4.3 Disease-centric abstracts
NEREL-BIO includes PubMed abstracts describing the results of clinical trials, hospitalization, and treatment of patients. The most frequent entities (e.g. diseases, injury, and anatomy) are related to a clinical domain, while biological entities such as genes and proteins are less presented. We suppose that this restricts the extraction of new biological relationships for protein-protein interaction or knowledge graph completion tasks, which will require additional data annotation.

5 Conclusion
Biomedical texts contain numerous nested mentions of entities such as anatomical parts within each other, diseases containing body parts or chemicals, names of procedures, which include diseases or devices, etc. In this article, we presented the first Russian dataset of biomedical abstracts NEREL-BIO, annotated with nested entities. The selected abstracts focus primarily on diseases and related medical procedures. The dataset contains a small collection of annotated parallel English abstracts. Our annotation shows that nested entities provide a better basis for extracting relations that would otherwise be lost. Similarly, nested entities also permit more complete entity linking to knowledge bases. Since, NEREL-BIO extends the annotation scheme of the general-domain Russian NEREL dataset, it permits studying domain transfer methods.

Model	Precision	Recall	MICRO-F	MACRO-F
MRC				
Keyword	76.95	75.80	76.36	58.42
2-comp	77.86	76.16	77.00	57.93
5-comp	77.25	76.26	76.74	57.27
10-comp	76.99	76.22	76.60	57.20
Lexical	77.1	75.91	76.75	59.68
Contextual	72.66	76.94	74.72	59.09

| Second-best | 75.28 | 72.98 | 74.10 | 51.29 |

Best results are marked in bold.

Model	Precision	Recall	F1
ANATOMY	82.77	85.27	83.99
CHEM	80.74	81.94	81.32
DATE	74.85	78.43	76.59
DISO	79.83	82.29	81.03
LABPROC	74.13	60.28	66.47
MEDPROC	70.86	77.37	73.96
NUMBER	83.48	90.38	86.79
PERCENT	94.76	94.51	94.63
PERSON	85.30	93.80	89.35
PHYS	58.76	62.02	60.31
Acknowledgements

The authors thank all annotators for their contribution and Zulfat Miftahutdinov for his work on models trained on the MedMentions corpus. The experiments were carried out on the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Funding

This work was supported by the Russian Science Foundation [20-112016].

Conflict of interest: None declared.

References

Artemova E, Zmeev M, Loukachevitch N et al. RuNNE-2022 shared task: recognizing nested named entities. In: Computational Linguistics and Intelligent Technologies: Proceedings of the International Conference Dialog 2022. ABBYY PRODUCTION LLC 2022. pp. 11–20.

Bawden R, Di Nunzio GM, Grozea C et al. Finding the WMT 2020 medical translation shared task: Basque, Italian and Russian as new additional languages. In: Barault L, Bojar O, Bougares F et al. (Eds) Proceedings of the Fifth Conference on Machine Translation. pp. 660–87.

Blinov P, Reshetnikova A, Nesterov A et al. Clinical corpus and neural models for drug reactions and effectiveness detection in user reviews. In: Proceedings of the 2021 Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (ACL). pp. 660–87.

Campillos-Llanos L, Valverde-Mateos A, Capllonch-Carrion A et al. A clinical trials corpus annotated with UMLS entities to enhance the access to evidence-based medicine. BMC Med Inform Decis Mak 2021;21:1–19.

Checco A, Roitero K, Maddalena E et al. Let’s agree to disagree: fixing agreement measures for crowdsourcing. In: Fifth AAAI Conference on Human Computation and Crowdsourcing. pp. 15–22. 2010.

Devlin J, Chang M-W, Lee K et al. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, USA. Association for Computational Linguistics (ACL). pp. 4171–86. 2019.

Fries JA, Weber L, Seelam N et al. Bigbio: a framework for data-centric biomedical natural language processing. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track. 2022.

Gurulingappa H, Klinger R, Hofmann-Apitius M et al. An empirical evaluation of resources for the identification of diseases and adverse effects in biomedical literature. In: 2nd Workshop on Building and Evaluating Resources for Biomedical Text Mining (7th edition of the Language Resources and Evaluation Conference). pp. 141–48. 2010.

Kattiyar A, Cardie C. Nested named entity recognition revisited. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Vol. 1. Association for Computational Linguistics (ACL). 2018.

Kim H, Kang J. How do your biomedical named entity recognition models generalize to novel entities? IEEE Access 2022;10:31513–23.

Kim J-D, Ohta T, Tateishi Y et al. Genia corpus—a semantically annotated corpus for bio-textmining. Bioinformatics 2003;19:1180–20.

Krippendorff K. Reliability in content analysis: some common misconceptions and recommendations. Hum Commun Res 2004;30:411–33.

Kuratov Y, Arkhipov M. Adaptation of deep bidirectional multilingual transformers for Russian language. Komp’uteriia i chastotu 2019;18:333–339.

Leaman R, Miller C, Gonzalez G. Enabling recognition of diseases in biomedical text with machine learning: corpus and benchmark. In: Proceedings of the 2009 Symposium on Languages in Biology and Medicine. Vol. 82, pp. 82–9. 2009.

Li X, Feng J, Meng Y et al. A unified MRC framework for named entity recognition. In: Proceedings of the 8th Annual Meeting of the Association for Computational Linguistics. pp. 5849–59. 2020.

Liu C, Fan H, Liu J. Handling negative samples problems in span-based nested named entity recognition. Neurocomputing 2022;505:353–61.

Loukachevitch N, Artemova E, Batura T et al. RUERL: a Russian dataset with nested named entities, relations and events. In: Angelova G, Kunilovskaya M, Mitrokov R, Nikolova-Koleva I (Eds) Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021). Incoma Ltd. pp. 876–85. 2021.

Loukachevitch N, Braslavski P, Batura T et al. Entity linking over nested named entities for Russian. In: Proceedings of LREC-2022. pp. 4458–66. 2022.

Miftahutdinov Z, Alamova I, Tutubalina E. On biomedical named entity recognition: experiments in interlingual transfer for clinical and social media texts. In: Jose J,M, Yilmaz E, Magalhães J (Eds) European Conference on Information Retrieval. pp. 281–8. Springer. 2020.

Mohan S, Li D. MedMentions: a large biomedical corpus annotated with UMLS concepts. In: Automated Knowledge Base Construction (AKBC). 2018.

Nesterov A, Zubkova G, Miftahutdinov Z et al. RuCcoN: clinical concept normalization in Russian. In: Findings of the Association for Computational Linguistics: ACL. 2022. pp. 239–45. 2022.

Nevolé A, Grouin C, Leixa J et al. The quaero French medical corpus: a resource for medical entity recognition and normalization. In: Proc biotextm, reykjavik. Citeseer. 2014.

NIH UMLS; NIH UMLS Statistics. 2022.

Plank B, Jensen KN, van der Goes R, Dan++. Danish nested named entity and lexical normalization. In: Proceedings of the 28th International Conference on Computational Linguistics. Association for Computational Linguistics (ACL). pp. 6649–62. 2020.

Ringland N, Dai X, Hachey B et al. NNE: a dataset for nested named entity recognition in English newswire. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (ACL). pp. 5176–81. 2019.

Rozhkov I, Loukachevitch N. Machine reading comprehension model in RuNNE competition. In: Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog”. 2022.

Shabankhani B, Charati JY, Shabankhani K et al. Survey of agreement between raters for nominal data using Krippendorff’s alpha. Arch Pharma Pract 2020;10:160–4.

Shibuya T, Hovy E. Nested named entity recognition via second-best sequence learning and decoding. Trans Assoc Comput Linguist 2020;8:605–20.

Stenetorp P, Puysalo S, Topica G et al. BRAT: a web-based tool for NLP-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics. pp. 102–7. 2012.

Tutubalina E, Kadarin A, Miftahutdinov Z. Fair evaluation in concept normalization: a large-scale comparative analysis for BERT-based models. In: Scott D, Bel N, Zong C (Eds) Proceedings of the 28th International Conference on Computational Linguistics. Association for Computational Linguistics (ACL). pp. 6710–6. 2020.

Tutubalina E, Alamova I, Miftahutdinov Z et al. The Russian drug reaction corpus and neural models for drug reactions and effectiveness detection in user reviews. Bioinformatics 2021;37:243–9.

Van Mulligen EM, Fourrier-ReglaT G, Gurwitz D et al. The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships. J Biomed Inform 2012;45:879–84.

Wei C-H, Peng Y, Leaman R et al. Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task. Database 2016;2016.

Zhou W, Chen M. An improved baseline for sentence-level relation extraction. In: Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing, Vol. 2, Association for Computational Linguistics, 2022, 161–168. https://aclanthology.org/2022.acl-short.21.