Water pollution level of the Upstream Citarum river based on macrozoobenthic family biotic index

Jamiatunisa Anwar, Yayat Dhahiyat, Zahidah and Herman Hamdani

DOI: https://doi.org/10.22271/fish.2021.v9.i2a.2436

Abstract
Cituarum River was known as the dirtiest river in the world in 2009, it was caused by the increase in population growth around the Citarum River, which damaging the river and the surrounding environment. This research was conducted at 4 stations, namely 1.Situ Cisanti; 2.Wangisagara; 3.Majalaya; and 4.Sapan, by using purposive sampling method and descriptive quantitative analysis method to determine the level of water pollution in the Upstream Citarum River based on the family biotic index of macrozoobenthos. The results showed that the level of water pollution in the Upstream Citarum River was light to severe. The FBI value of the Upstream Citarum River ranges from 3,95-5,85. Station 1 and station 2 have slightly bad water criteria with each FBI value is 5,85 and 5,77, station 3 has an FBI value of 3,95 with very good water criteria, and station 4 has an FBI value of 5,63 with sufficient water criteria.

Keywords: water pollution level, the Upstream Citarum river, macrozoobenthos, family biotic index (FBI)

1. Introduction
Cituarum River is a river that flows along 297 km through 13 districts/cities [1]. Population growth around the Citarum River continues to increase, causing the increase in the need for land and damaging the river, also the surrounding environment [2]. In 2009, the Citarum River was known as the dirtiest river in the world, and Fulazzaki research [3] shows that in 2009 the water quality of the Citarum River is very bad. Based on the final report of water quality in Citarum River: planning interventions to improve water quality in upper Citarum River (2012) [4], the Citarum River is polluted by domestic waste, industrial waste, agricultural waste, and municipal solid waste. van Ginkel research [5] shows that the largest polluter of the Citarum River is the industry. The level of water pollution in the Citarum River can be determined by looking at the physical, chemical, and biological parameters of the river. One of the biological parameters is macrozoobenthos. Macrozoobenthos is an invertebrate organism that lives on and in the seabed [6]. Macrozoobenthos can be found all over the river. According to Kawuri [7] macrozoobenthos are an organism that is sensitive to the changes of water quality in their habitat, which can affect their composition and abundance. This is related to their tolerance to environmental changes, so these organisms are often used as an indicator of the water pollution level [8].

Family Biotic Index (FBI) is an index that is used to analyze water quality by taking into the tolerance value of an organism based on its family. The macrozoobenthic tolerance value describes whether the macrozoobenthos is intolerant or tolerant, the tolerance value for macrozoobenthos to environmental changes ranges from 0-10 [9]. FBI values can be used to support and explain the physical and chemical parameter data of waters [10].

2. Materials and Methods
This research was conducted using field observation and purposive sampling methods. Sampling was done by 4 repetitions every 2 weeks at 4 different stations, that are: Station 1 (Situ Cisanti - 7°41’22.9” S 107°43’33.3” E); Station 2 (Wangisagara - 7°4’54” S 107°44’40” E); Station 3 (Majalaya - 7°4’34” S 107°45’24” E); and Station 4 (Sapan - 7°4’08” S 107°43’12” E).
The tools used in the macrozoobenthic sampling were surber nets (40 x 25 cm) and ekman grab (20 x 20 cm). Macrozoobenthic sampling using surber nets was carried out at stations that had shallow depths, and macrozoobenthic sampling using ekman grab was carried out at a deep enough station and it was not possible to use surber nets. The family biotic index value can be calculated by the following formula \[^{[11]}\]:

\[
FBI = \frac{\sum x_i \times t_i}{N}
\]

Description :
FBI = Family biotic index value
\(x_i\) = Number of specimens in taxa \(i\)
\(t_i\) = Tolerance value of taxa \(i\)
\(N\) = Total number of specimens in the sample

Water pollution criteria based on the FBI value :

No.	FBI Value	Water Quality	Water Pollution Level
1.	0.00 – 3.75	Well	Not polluted by organic matter
2.	3.76 – 4.25	Very good	Slightly polluted by organic matter
3.	4.26 – 5.00	Good	Polluted by some organic matter
4.	5.01 – 5.75	Enough	Polluted a little bit of organic matter
5.	5.76 – 6.50	A little bad	Polluted a lot by organic matter
6.	6.51 – 7.25	Bad	Very much polluted by organic matter
7.	7.26 – 10.00	Poor	Heavily polluted by organic matter

Source: Hilsenhoff \[^{[11]}\]

The data were analyzed by quantitative descriptive method, and the results were explained by relating the FBI values to physical, chemical, and water substrate parameters.

3. Results and Discussion

The Citarum River has 19 Watersheds with the Citarum Watershed as its main river. Observations were made at 4 stations, namely station 1 (Situ Cisanti) which has a calm water flow and has a greenish-brown color of the water. Station 2 (Wangisagara) has a heavy water flow with light brown color. Station 3 (Majalaya) has a brown and heavy water flow. In Station 3, a lot of garbage was found. Furthermore, station 4 (Sapan) has a calm water flow and a black color of the water.

3.1 Physical and Chemical Parameters of Upstream Citarum River Water

Physical and chemical parameters data of Upstream Citarum River water are shown in Table 2, as follows:

No.	Parameter	Unit	Station 1	Station 2	Station 3	Station 4
1.	Temperature	°C	24.35 ± 3.29	24.85 ± 2.80	24.98 ± 1.88	24.20 ± 1.10
2.	Depth	cm	60.25 ± 4.99	66.50 ± 4.36	25.3 ± 11.85	31.25 ± 12.92
3.	Light-Transparency	cm	48.1 ± 8.2	41.1 ± 23.4	25.3 ± 10.9	23.2 ± 9.9
4.	Flow	M/s	0.04 ± 0.01	0.24 ± 0.12	0.20 ± 0.17	0.34 ± 0.10
5.	pH	-	6.50 ± 0.22	6.45 ± 0.31	6.33 ± 0.22	6.54 ± 0.26
6.	DO	Mg/l	7.55 ± 0.28	7.28 ± 1.06	6.80 ± 0.21	6.68 ± 0.49
7.	BOD	Mg/l	2.45 ± 0.12	2.77 ± 0.95	3.13 ± 0.37	4.24 ± 1.01

(Table description: 1. Situ Cisanti, 2. Wangisagara, 3. Majalaya, 4. Sapan)

The station with the highest temperature is station 3 with an average temperature value of 24.98 °C ± 1.88. And the station with the lowest average temperature is station 4 which has an average water temperature of 24.20 °C ± 1.10. This temperature difference is caused by the differences in water depth that affect the penetration of solar heat \[^{[12]}\]. In the upstream, water temperature is also affected by air temperature and water level, whereas in the downstream area, the temperature is affected by wastewater temperature and the upstream temperature \[^{[13]}\].

Station 2 is the deepest station with an average depth of 66.50 cm ± 4.36, and station 3 is the shallowest station with an average depth of 25.3 cm ± 11.85. According to Kurniawan et al. \[^{[14]}\] the depth of the river is affected by the sedimentation/deposition process, if the sedimentation is high, the river will become increasingly shallow. Station 3 has the shallowest depth due to high sedimentation processes because station 3 is surrounded by cliffs of land that are prone to landslides which then enter into the river body and cause sedimentation. This data is supported by Kurniawan et al. research \[^{[14]}\] which shows that station 3 has an increased quantity of sediment in 2018, the sediment comes from land erosion in the watershed and sediment carried from the upstream.

The highest average light transparency is at station 1, which is 48.1 cm ± 8.2, and the lowest average light transparency is at station 4, which is 23.2 cm ± of 9.9. According to Dahlgre et al. \[^{[15]}\] water transparency can be affected by turbidity, in low turbidity conditions, light can penetrate to the streambed. Station 1 has the lowest average current speed of 0.04 m/s ± 0.01, Station 4 has the fastest current speed with an average current speed of 0.34 m/s ± 0.10. The current at station 1 belongs to the very slow flow type. Meanwhile, currents at stations 2, 3, and 4 are included in the medium current type. The different current speeds at each station are influenced by friction with land, wind, river contours, river locations, and disturbances such as garbage and algae \[^{[16]}\].

The average pH value of station 3 is 6.33 ± 0.22, station 3 has the lowest average pH value. The station with the highest average pH value is station 4, which is 6.54 ± 0.20, and is the
station with the highest average pH value. pH value in the river is influenced by the decomposition process, industrial pollutants, and acidic runoff water [17]. The addition of CO$_2$ into the water could increase H$_2$CO$_3$, then decreases the pH value of the water [18]. Station 3 has the lowest pH value, this is due to the high amount of industrial waste disposal in station 3. Station 3 is an area with a large number of industrial factories. Based on a report written by Birry et al. [19], there were 800 textile industries around station 3 in 2012. The high activity of these industries caused the high amount of carbon dioxide (CO$_2$) in this station [19], which then caused the pH value of this station is quite low.

Station 1 has the highest average of dissolved oxygen concentration compared to other stations, which is 7.73 mg/l ± 0.28, and station 4 is the station with the lowest average dissolved oxygen concentration of 6.73 mg/l ± 0.49. Dissolved oxygen in the riverine environment is affected by the photosynthesis process, flow, light, and nutrients on the biomass of periphyton and macrophytes [20]. It is also affected by water temperature, respiration, and contaminants [21]. Besides, according to Happy et al. [22] dissolved oxygen in the water is also affected by the BOD value. Station 4 has the lowest dissolved oxygen concentration because station 4 has a fairly high BOD value compared to the other 3 stations, which is 4.24 mg/l ± 1.01. The Upstream Citarum River has dissolved oxygen concentrations ranges from 6.68 to 7.55 mg/l. The concentration of dissolved oxygen in the Upstream Citarum River increases, compared to Happy et al. research [22], that shows the dissolved oxygen concentration of the Upstream Citarum River in 2012 ranged from 0.38-4.6 mg/l. Station 1 has the lowest average BOD value, which is 2.45 mg/l ± 0.12, and station 4 has the highest average BOD value 4.24 mg/l ± 1.01. According to Salmin [23], the BOD value of water is influenced by the population and temperature of the water. High BOD values are also influenced by water pollutants such as industrial wastewater [24]. The BOD value of the Upstream Citarum River which ranges from 2.45-4.24 mg/l is considered quite low, compared to the data of Nufutomo and Muntalif research [25] that shows the BOD value of the Upstream Citarum River in 2017 is higher, it is ranged from 2.65-6.24 mg/l.

3.2 Physical and chemical parameters of the substrate

Observation data of the Upstream Citarum River substrate is shown in Table 3, as follows:

No.	Parameters	Unit	Station 1	Station 2	Station 3	Station 4
1.	Texture	-	Dusty clay	Clay	Clay sandy	Loamy clay dusty
2.	pH	-	7.24	7.06	7.44	7.36
3.	C-Organik	%	5.26	5.98	4.22	4.19
4.	N-total	%	0.50	0.42	0.18	0.22
5.	C/N ratio	-	10	9	7	19

(Table description: 1. Situ Cisanti, 2. Wangisagara, 3. Majalaya, 4 Sapan)

The highest N-total is at station 1 with the N-total value of 0.50%. And the lowest N-total is at station 3 which is 0.18%. According to Barus et al. [30] the N-total value of water is influenced by the type of substrate, the smaller the substrate particle size, the greater the organic matter content in the waters. The C/N ratio of the Upstream Citarum River ranges from 7-19. The highest C/N ratio is at station 4 and the lowest C/N ratio is at station 3. The C/N ratio value of water is influenced by the total N-total in these waters, because the higher the N-total value of water, the lower the C/N ratio [30]. According to Pratiwi et al. [31] a low C/N ratio indicates that the mineralization process of organic matter in waters is running well.

3.3 Family Biotic Index (FBI)

Data of macrozoobenthos FBI value in the Upstream Citarum River are shown in Table 4, as follows:

Station	FBI	Criterion
1	5.85	Slightly Poor
2	5.77	Slight Poor
3	3.95	Very Good
4	5.63	Enough

(Table description: 1. Situ Cisanti, 2. Wangisagara, 3. Majalaya, 4. Sapan)
The FBI value can be used to support and explain the physical and chemical parameter data of waters \[^{12}\]. The Upstream Citarum River has an FBI value that ranges from 3.95-5.85. The station with the highest FBI value is station 1, which is 5.85, and has water criteria that are a little bad and polluted with a lot of organic matter. This is consistent with the results of the C-organic substrate observations, which show that the station 1 substrate contains very high C-organic (Table 3). Station 2 has an FBI value of 5.77 and is included in the slightly bad waters criteria and polluted with a lot of organic matter. Station 3 is the station with the lowest FBI value, which is 3.95, with the water criteria that are very good and polluted with a little organic matter. Following the results of the C-organic substrate observations (Table 3), which shows that station 3 has a low C-organic content. The FBI value of station 3 is quite low when compared with the research results of Zalhasmy et al. \[^{12}\] which shows that in 2018 the FBI value of station 3 reached 9 with the very bad water criteria. Furthermore, station 4 has an FBI value of 5.63 and is included in the adequate water criteria, which less-more polluted with organic matter. The FBI value is related to the tolerance level of the macrozoobenthos at each station. The macrozoobenthic tolerance value describes whether the macrozoobenthos is intolerant or tolerant, the tolerance value for macrozoobenthos to environmental changes ranges from 0-10 \[^{9}\]. In all stations found Lymnaea rubiginosa from the Lymnaeidae family in a high abundance, Lymnaea rubiginosa has a tolerance value of 6. However, at station 3 other species are also commonly found, namely Chironomus sp. from the Chironomidae family which has a low tolerance value, which is 2, and Placobdella parasitica from the Glossiphoniidae family which has a tolerance value of 1.

4. Conclusion

The level of water pollution in the Upstream Citarum River based on the FBI value of macrozoobenthos is light to heavy polluted, this is shown by the FBI values that range from 3.95 to 5.85. The FBI value of station 1 is 5.85 with slightly bad water criteria, FBI value of station 2 is 5.77 with slightly bad water criteria, FBI value of station 3 is 3.95 with very good water criteria, and FBI value of station 4 is 5.63 with sufficient water criteria. The water quality of the Upstream Citarum River has developed as indicated by an increase in dissolved oxygen concentration, a decrease in BOD value, and an increase in water quality based on the decreasing FBI value.

5. References

1. Kurniash N. Pengelolaan DAS Citarum berkelanjutan. Jurnal Teknologi Lingkungan. 2002;3(2):82-91.
2. SATGAS PPK DAS Citarum. Ringkasan Eksekutif Rencana Aksi Pengendalian Pencemaran dan Kerusakan DAS Citarum 2009, 2019-2025
3. Pulazzaki MA. Water quality evaluation system to assess the status and the suitability of the Citarum river water to different uses. Environment Monitoring and Assessment. 2009;168:669-684.
4. Water Quality in Citarum River: Planning interventions to improve water quality in upper Citarum River 2012.
5. van Ginkel CHK. Water quality in the Upper Citarum River Basin: towards a better understanding of a heavily polluted catchment. Student Undergraduate Research E-Journal 2016;8(2).
6. Bundesamt für Seeschifffahrt und Hydrographie (BSH). Monitoring specificatin makrozoobenthos 2012.
7. Kawuri LR. Kondisi Perairan Berdasarkan Bioindikator Makrobenos di Sungai Seketak Tembalang Kota Semarang. Journal of Management Aquatic Resources 2012;1(1):1-7.
8. Hastomo YA. Makrozoobenthos Sebagai Bioindikator Kualitas Air Sungai Citarum Hulu 2015, 45.
9. Hartini H, Arthana IW, Wiryatno J. Struktur Komunitas Makrozoobentos pada Tiga Muara Sungai Sebagai Bioindikator Kualitas Perairan di Pesisir Pantai Amperan dan Pantai Tanjung Karang Kota Mataram Lombok. Jurnal Ecotrophic 2012;7(2):116-125.
10. Hendrasarie N, Januar. Pemetaan Kualitas Air di Kali Surabaya Berdasar Indeks Makroinvertebrata Benthos, dengan Model Wintwens 2.3. Jawa Timur. Jurnal Envirotek 2019;11(2).
11. Hilsenhoff WL. An Improved Biotic Index Of Organic Stream Pollution, The Great Lakes. The Great Lake Entomologist 1988;20(1):31-39.
12. Sidabutar EA, Sartimbul A, Handayani M. Distribusi Suhu, Salinitas dan Oksigen Terlarut di Kedalaman di Perairan Teluk Priji Kabupaten Trenggalek. Jurnal of Fisheries and Marine Science. 2019;3(1):46-52.
13. Briciu AE, Mihaila D, Graur A, Oprea DI, Pricasariu A, Birstricean PI. Changes in the Water Temperature of Rivers Impacted by the Urban Heat Island: Case Study of Suceava City. Water Journal 2020;12(1343):1-24.
14. Kurniawan V, Setyarnini NLSE, Kushartono W, Tajuddin AN, Sandjaya A. Citarum Harum – Investigasi Lapangan untuk Mengukur Tingkat Sedimentasi pada Sungai Citarum. Jurnal Bakti Masyarakat Indonesia 2018;12(2):119-126.
15. Dahlgre R, van Nieuwenhuyse E, Litton G. Transparency tube provides reliable water-quality measurements. California Agriculture 2004;58(3):149-153.
16. Putra DS. Keanekaragaman Gastropoda di Perairan Litoral Pulau Pengujan Kabupaten Bintan 2015.
17. Mesner N, Geiger J. pH. In Understanding Your Watershed 2010.
18. Adnan AI, Ong MY, Nomanbhay S, Show PL. Determination of Dissolved CO2 Concentration in Culture Media: Evaluation of pH Value and Mathematical Data. Processes MDPI 2020;8(1373):1-15.
19. Birry AA, Meutia H, Sunardi, Sumiarsa D, Aminudin C, Febriani R et al. Bahan Beracun Lepsa Kendali 2012.
20. He J, Chu A, Ryan MC, Caterina V, Zaitlin B. Abiotic influences on dissolved oxygen in a riverine environment. Ecological Engineering 2011;37:1804-1814.
21. Kulkarni SJ. A Review on Research and Studies on Dissolved Oxygen and Its Affecting Parameters. International Journal of Research and Review 2016;3(8):18-22.
22. Happy AR, Masyamirs, Yayat D. Distribusi Kandungan Logam Berat Pb dan Cd Pada Kolom Air dan Sedimen Daerah Aliaran Sungai Citarum Hulu. Jurnal Perikanan Kelautan 2012;3(3).
23. Salmin. Oksigen Terlarut (DO) dan Kebutuhan Oksigen Biologi (BOD) Sebagai Salah Satu Indikator Untuk Menentukan Kualitas Perairan. Jurnal Osean 2005;xxx(3):21-26.
24. Susilowati, Sutrisno J, Masykuri M, Maridi. Dynamics and Factors that Affects DO-BOD Concentrations of...
Madiun River. AIP Conference Proceedings 2018, 1-6.
25. Nufutomo TK, Muntalif BS. Cryptosporidium sebagai Indikator Biologi dan Indeks Nsf-Wqi untuk Mengevaluasi Kualitas Air (Studi Kasus: Hulu Sungai Citarum, Kabupaten Bandung). Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan 2017;14(2):45-53.
26. Palealu GV, Koneri R, Butarbutar RR. Kelimpahan dan Keanekaragaman Makrozoobentos di Sungai Air Terjun Tunan, Talawaan, Minahasa Utara, Sulawesi Utara. Jurnal Ilmiah Sains 2018;18(2):97-102.
27. Fadly MR, Rifardi, Efriyeldi. Hubungan Substrat Dasar dengan Kelimpahan Makrozoobenthos di Pantai Pelawan Pulau Karimun Besar Kabupaten Karimun Provinsi Kepulauan Riau 2017.
28. Azni Z, Saniman, Ishak. Sistem Penghitung pH Air pada Tambak Ikan Berbasis Mikrokontroller. Jurnal Ilmiah Sainsitkom 2016;15(2):101-108.
29. Romimohtarto K, Juwana. Biologi Laut : Ilmu Pengetahuan Tentang Biota Laut. Djambatan 2001.
30. Barus BS, Aryawati R, Putri WAE, Nurjaliasti E, Diansyah G, Sitorus E. Hubungan N-Total dan C-Organik Sedimen Dengan Makrozoobentos di Perairan Pulau Payung, Banyuasin, Sumatera Selatan. Jurnal Kelautan Tropis 2019;22(2):147-156.
31. Pratiwi GAP, Atmaja WD, Soniari NN. Analisa Kualitas Kompos Dengan Mol Sebagai Dekomposer. Jurnal Agroekoteknologi Tropika 2013;2(4):2301-6515.
32. Zalhasmy I, Hasanah ME, Hidayat AF, Widianwari AM, Rahmanisa G, Wahyunita C et al. Penentuan Status Ekologis Sungai DAS Citarum pada Daerah Danau Cisanti sampai Daerah Majalaya. Penelitian Kecil Proyek Ekologi SITH-ITB 2018, 1-10.