A direct product decomposition of the automorphism group of Cayley graphs generated by transposition sets

Ashwin Ganesan*

Abstract

Let S be a set of transpositions generating the symmetric group S_n, where $n \geq 3$. It is shown that if the girth of the transposition graph of S is at least 5, then the automorphism group of the Cayley graph Cay(S_n, S) is the direct product $S_n \times \text{Aut}(T(S))$, where $T(S)$ is the transposition graph of S; the direct factors are the right regular representation of S_n and the image of the left regular action of $\text{Aut}(T(S))$ on S_n. This strengthens a previous result of the author, where the automorphism group was factored as a semidirect product.

Index terms — Cayley graphs; transposition sets; automorphisms of graphs; direct products; normal Cayley graphs.

1. Introduction

Let $X = (V, E)$ be a simple undirected graph. The (full) automorphism group of X, denoted $\text{Aut}(X)$, is the set of permutations of the vertex set that preserve adjacency: $\text{Aut}(X) := \{g \in \text{Sym}(V) : E^g = E\}$. Let H be a group and let S be a subset of H. The Cayley graph of H with respect to S, denoted Cay(H, S), is the graph with vertex set H and arc set $\{(h, sh) : h \in H, s \in S\}$. When S satisfies the condition $1 \notin S = S^{-1}$, the Cayley graph Cay(H, S) has no self-loops and can be considered to be undirected.

Given a group H, let R be the action of H on itself by right multiplication, so that $R(h) : x \mapsto xh$, for all $h \in H$. The right regular representation of H, denoted $R(H)$, is the set of permutations $\{R(h) : h \in H\}$. Similarly, the left regular representation of H consists of the set of permutations $\{L(h) : h \in H\}$, where $L(h) : x \mapsto h^{-1}x$. The product action U of $H \times H$ on itself is defined by rule $U(h, g) : x \mapsto h^{-1}xg$. It can be shown that both $L(H)$ and $R(H)$ are normal subgroups of $U(H \times H) = L(H)R(H)$.

*Department of Electronics and Telecommunication Engineering, Vidyalankar Institute of Technology, Wadala, Mumbai, India. Correspondence address: ashwin.ganesan@gmail.com
(cf. [2, p. 8]), though in general the two regular subgroups do not intersect trivially since the cardinality of their intersection is the order of the center of the group.

A Cayley graph $\text{Cay}(H, S)$ is vertex-transitive since the right regular representation $R(H)$ acts as a group of automorphisms of the Cayley graph \cite{1, 2}. A Cayley graph $X := \text{Cay}(H, S)$ is said to be normal if the right regular representation $R(H)$ is a normal subgroup of $\text{Aut}(X)$, or equivalently, if $\text{Aut}(X) = R(S_n) \rtimes \text{Aut}(S_n, S)$. Let S be a set of transpositions generating the symmetric group S_n. The transposition graph of S, denoted $T(S)$, is defined to be the graph with vertex set $\{1, \ldots, n\}$, and with two vertices i and j being adjacent in $T(S)$ whenever $(i, j) \in S$. It is known that if the girth of the transposition graph $T(S)$ is at least 5, then the automorphism group of the Cayley graph $\text{Cay}(S_n, S)$ is the semidirect product $R(S_n) \rtimes \text{Aut}(S_n, S)$, where $\text{Aut}(S_n, S)$ is the set of automorphisms of S_n that fixes S setwise (cf. \cite{4}). It is also known that $\text{Aut}(S_n, S) \cong \text{Aut}(T(S))$ (cf. \cite{3}).

Given a set S of transpositions generating S_n, let $G := \text{Aut}(\text{Cay}(S_n, S))$. In the instances where $G = R(S_n) \rtimes G_e$, the factor $G_e \cong \text{Aut}(T(S))$ is in general not a normal subgroup of G, so that the semidirect product cannot be written as a direct product. In the present paper, it is shown that $R(S_n)$ has another complement in G which is a normal subgroup of G. Recall that any two complements of a normal subgroup are isomorphic to each other (cf. \cite{3, p. 65}), so that a normal complement of $R(S_n)$, if one exists, would have to be isomorphic to $G_e \cong \text{Aut}(T(S))$. In the proof below, we show that the image of $\text{Aut}(T(S))$ under the left regular action of S_n on itself is a normal complement of $R(S_n)$ in G. Thus, the direct factor $\text{Aut}(T(S))$ that arises in $G \cong R(S_n) \times \text{Aut}(T(S))$ is not G_e but is obtained by considering the left regular action.

The main result of this paper is the following:

Theorem 1. Let S be a set of transpositions generating S_n, $n \geq 3$. If the girth of the transposition graph $T(S)$ is at least 5, then the automorphism group of the Cayley graph $\text{Cay}(S_n, S)$ is the direct product $S_n \rtimes \text{Aut}(T(S))$.

Proof: Let $X := \text{Cay}(S_n, S)$. Since the girth of the transposition graph $T(S)$ is at least 5, the Cayley graph X is a normal Cayley graph with automorphism group $\text{Aut}(X) = R(S_n) \rtimes \text{Aut}(S_n, S)$, where $\text{Aut}(S_n, S) \cong \text{Aut}(T(S))$. Let L be the left regular action of S_n on itself, and let $L(\text{Aut}(T(S)))$ denote the image of $\text{Aut}(T(S))$ under this action, i.e. $L(\text{Aut}(T(S))) := \{L(a) : a \in \text{Aut}(T(S))\} \leq \text{Sym}(S_n)$.

We first show that the elements in $L(\text{Aut}(T(S)))$ are automorphisms of X. Let $a \in \text{Aut}(T(S))$. We show that $(h, g) \in E(X)$ if and only if $(h, g)^{L(a)} \in E(X)$. Suppose $(h, g) \in E(X)$. Then $g = sh$ for some $s = (i, j) \in S$. We have that $(h, g)^{L(a)} = (h, sh)^{L(a)} = (h^{L(a)}, (sh)^{L(a)}) = (a^{-1}h, a^{-1}sh) = (a^{-1}h, (a^{-1}sa)a^{-1}h)$. Now $a^{-1}sa = a^{-1}(i, j)a = (i^a, j^a) \in S$ since a is an automorphism of the graph T that has edge set S. Thus, $(h, sh)^{L(a)} \in E(X)$. Conversely, suppose $(h, g)^{L(a)} \in E(X)$. Then $a^{-1}h = sa^{-1}g$ for some $s \in S$. Hence $h = (a^{-1})g$. As before, $asa^{-1} \in S$, so that h is adjacent to g. Thus, $L(\text{Aut}(T(S)))$ is a subgroup of $\text{Aut}(X)$.

The left and right regular representations of a group have as their intersection the image of the center of the group. The center of S_n is trivial, whence $L(\text{Aut}(T(S)))$
and $R(S_n)$ have a trivial intersection. Since X is a normal Cayley graph, $\text{Aut}(X) = R(S_n) \rtimes \text{Aut}(T(S))$, where $\text{Aut}(S_n, S) \cong \text{Aut}(T(S))$, and it follows from cardinality arguments that $R(S_n) L(\text{Aut}(T(S)))$ exhausts all the elements of $\text{Aut}(X)$. Thus, $R(S_n)$ and $L(\text{Aut}(T(S)))$ are complements of each other in $\text{Aut}(X)$ and every element in $\text{Aut}(X)$ can be expressed uniquely in the form $R(a)L(b)$ for some $a \in S_n$ and $b \in \text{Aut}(T(S))$.

Suppose $g \in \text{Aut}(X)$ and $c \in \text{Aut}(T(S))$. Then $g = R(a)L(b)$ for some $a \in S_n, b \in \text{Aut}(T(S))$. Hence, $g^{-1}L(c)g = (R(a)L(b))^{-1}L(c)(R(a)L(b))$, which maps $x \in S_n$ to $b^{-1}c^{-1}bxa^{-1}a = b^{-1}c^{-1}bx$. Since $b, c \in \text{Aut}(T(S))$, $d^{-1} := b^{-1}c^{-1}b \in \text{Aut}(T(S))$. Thus, $g^{-1}L(c)g = L(d) \in L(\text{Aut}(T(S)))$. Hence $L(\text{Aut}(T(S)))$ is a normal subgroup of $\text{Aut}(X)$.

As an example, consider the special case where S is the set of n cyclically adjacent transpositions, where $n \geq 5$. The corresponding Cayley graph $X := \text{Cay}(S_n, S)$ is called the modified bubble sort graph of dimension n. It was known previously that $\text{Aut}(X) \cong R(S_n) \rtimes D_{2n}$. By Theorem \Box $\text{Aut}(X) \cong S_n \times D_{2n}$.

While the theorem above assumes that the transposition graph of S has girth at least 5, it can be seen that the theorem holds for arbitrary transposition sets as long as the Cayley graph is normal. For any transposition set S, the permutation group image of $\text{Aut}(T(S))$ under the left regular action L of S_n on itself is a subgroup of $\text{Aut}(\text{Cay}(S_n, S))$. Thus, if the Cayley graph $X := \text{Cay}(S_n, S)$ is such that $\text{Aut}(X)$ is the semidirect product $R(S_n) \rtimes \text{Aut}(S_n, S) \cong R(S_n) \rtimes \text{Aut}(T(S))$, then $\text{Aut}(X)$ is the direct product $R(S_n) \times \text{Aut}(T(S))$.

References

[1] N. L. Biggs. *Algebraic Graph Theory, 2nd Edition*. Cambridge University Press, Cambridge, 1993.

[2] P. J. Cameron. *Permutation Groups*. London Mathematical Society Student Texts 45, Cambridge University Press, 1999.

[3] Y-Q. Feng. Automorphism groups of Cayley graphs on symmetric groups with generating transposition sets. *Journal of Combinatorial Theory Series B*, 96:67–72, 2006.

[4] A. Ganesan. Automorphism groups of Cayley graphs generated by connected transposition sets. *Discrete Mathematics*, 313:2482–2485, 2013.

[5] C. Godsil and G. Royle. *Algebraic Graph Theory*. Graduate Texts in Mathematics vol. 207, Springer, New York, 2001.

[6] M. Isaacs. *Finite Group Theory*. AMS, Graduate Studies in Mathematics, Volume 92, 2008.