Some Topology on Zero-Dimensional Subrings of Product of Rings

Hassan Mouadi*, Driss Karim*

*Faculty of sciences and technologies, University Hassan 2 of Casablanca 19, Tarik Bnou Ziad Street, Hospitals, Casablanca, Morocco

Abstract. Let R be a ring and $\{R_i\}_{i \in I}$ a family of zero-dimensional rings. We define the Zariski topology on $\mathcal{Z}(R, \prod R_i)$ and study their basic properties. Moreover, we define a topology on $\mathcal{Z}(R, \prod R_i)$ by using ultrafilters; it is called the ultrafilter topology and we demonstrate that this topology is finer than the Zariski topology. We show that the ultrafilter limit point of a collections of subrings of $\mathcal{Z}(R, \prod R_i)$ is a zero-dimensional ring. Its relationship with $F^{-}\lim$ and the direct limit of a family of rings are studied.

1. Introduction

All rings considered in this paper are assumed to be commutative, and have identity element. Let S be a ring, we will denote by $\mathcal{Z}(S), \mathcal{V}(S), \mathcal{A}(S)$, respectively, the sets of zero-dimensional, von Neumann regular, artinian subrings of S. The study of zero-dimensionality in commutative rings has been widely treated in the literature with a purely algebraic approach, (see [6, 7]). Our purpose here is to give a new characterization of zero-dimensionality notion by using the ultrafilters topology and the $F^{-}\lim$.

Let R be a subring of a ring S, we denote by $\mathcal{Z}(R, S)$ the set of intermediate zero-dimensional subrings of the pair (R, S). We define Zarisky topology on $\mathcal{Z}(R, S)$, more precisely on $\mathcal{Z}(R, \prod R_i)$, where $\{R_i\}_{i \in I}$ is a family of zero dimensional rings, whose open sets are of the form $\mathcal{Z}(R[x], \prod R_i)$ such that $x \in \prod R_i$. Moreover, we define a topology on $\mathcal{Z}(R, \prod R_i)$ by using ultrafilters it’s called the ultrafilter topology and we demonstrate that this topology is finer than the Zariski topology. Based on the notion of the $F^{-}\lim$ one gives new rings can be expressible as direct union of artinian rings or zero dimensional rings with finite spectrum.

In the second section, we define the Zariski topology on $\mathcal{Z}(R, \prod R_i)$ and study their basic properties, The ultrafilter topology is studied in the third section . In the fourth section we define the $F^{-}\lim$-limit of a collection of zero-dimensional rings and we give his relationship with the direct union of subrings of $\prod R_i$.

2. Preliminaries

In this paper, we focus on intermediate zero-dimensional rings of a pair of rings. En particularly, we characterize these families by using special topologies. Now, let I be a set and \mathcal{F} be a collection of subsets of I, we define a ultrafilters topology on I when \mathcal{F} is a collection of clopen sets. We begin by giving some notations. Let R be a subring of a ring S, we denote by $\mathcal{V}(S, R)$ and $\mathcal{A}(S, R)$, respectively, the set of von
Neumann regular and artinian subrings of S that contain R. Thus, the following question arises naturally. Under what condition is a specified one of two sets nonempty?

Clearly $\mathcal{Z}(S, R)$ is nonempty if $\mathcal{V}(S, R)$ or $\mathcal{A}(S, R)$ is nonempty. On the other hand, suppose R is a subring of the ring S, the following conditions are equivalent:

1. $\mathcal{Z}(R, S) \neq \emptyset$.
2. The power of the ideal xS is idempotent for each x in R.
3. For each finitely generated ideal I, the set $\{\text{Ann}_R(I)\}_{m=1}^{\infty}$ stabilizes for some $m \in \mathbb{N}$.

For proof see [3, Proposition 1] and [6, Theorem 1.6]

Now, assume that $\mathcal{Z}(R, S) \neq \emptyset$, is that $\mathcal{Z}(R, S)$ closed under arbitrary intersection?

Theorem 2.1. ([6, Theorem 2.1]) Suppose $\{R_a\}_{a \in A}$ is a nonempty family of zero-dimensional subrings of the ring S. Then $\bigcap_{a \in A} R_a$ is zero-dimensional subring of S.

Remark 2.2. Suppose R is subring of the ring S. If $\mathcal{Z}(R, S) \neq \emptyset$, then Theorem 2.1 shows that $\mathcal{Z}(R, S) \neq \emptyset$ has a unique minimal element. We denote this element by R_0, and call it the minimal zero-dimensional extension of R in S. Then for each x in R, assume that $x^{m(x)}S$ is idempotent, and let s_x be the pointwise inverse of $x^{m(x)}$ in S. By [6, Theorem 2.5] we have that $R^0 = R[s_x : x \in R]$.

We will work in at least ZFC, that is, Zermelo-Frankel set theory with the axiom of choice. We will in certain case use additional axioms. We recall that \mathcal{F} is a filter on set I if it is a subset of the power set of I that satisfies the following conditions:

1. $\emptyset \not\in \mathcal{F}$ and $I \in \mathcal{F}$;
2. If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$;
3. If $A \in \mathcal{F}$ and $A \subset A' \subset I$, then $A' \in \mathcal{F}$.

A filter \mathcal{F} on I is called an ultrafilter if \mathcal{F} is maximal with respect to being a filter, or equivalently, if whenever $A \subset I$, then either $A \in \mathcal{F}$ or $I \setminus A \in \mathcal{F}$. An ultrafilter \mathcal{F} is called principal if there exists an element $i_0 \in I$ such that \mathcal{F} consist of all subsets of I that contain i_0. Other ultrafilters are called non-principal. We denote the collection of all ultrafilters on a set I by $\hat{\mathcal{P}}(I)$.

Definition 2.3. Let R be a subring of the ring S and $S(R, S)$ be the set of all the rings between R and S. Let Y be a subset of $S(R, S)$ and \mathcal{F} be an ultrafilter on Y. Set $Y_\mathcal{F} := \{a \in S : U_a \cap Y \in \mathcal{F}\}$. We call $Y_\mathcal{F}$ an ultrafilter limit point of Y with $U_a := \{c \in S(R, S) : a \in c\}$.

Lemma 2.4. The set $Y_\mathcal{F}$ is a subring of S contains R.

Proof. Let $x, y \in Y_\mathcal{F}$ then each of the sets U_{xy} and U_{x-y} contain $U_x \cap U_y \in \mathcal{F}$, from definition of an ultrafilter, we have $U_{xy}, U_{x-y} \in \mathcal{F}$, then $x - y, xy \in Y_\mathcal{F}$. Moreover, for each $a \in R$, $U_a = S(R, S) \in \mathcal{F}$, then $Y_\mathcal{U}$ contains R. Hence $Y_\mathcal{F}$ is a subring of S. □

A nonempty subset Y of $S(R, S)$ is an ultrafilter closed if, for any ultrafilter \mathcal{U} on Y, we have $Y_\mathcal{U} \in Y$. Then the ultrafilter closed sets of $S(R, S)$ are closed sets for a topology, called the ultrafilter topology (see [2]).

Definition 2.5. Let X be a set and \mathcal{F} be a nonempty collection of subsets of X. For each $Y \subseteq X$ and each ultrafilter \mathcal{U} on Y, we define $Y_{(X, \mathcal{F})}(\mathcal{U}) := \{x \in X : \forall F \in \mathcal{F}, x \in F \iff F \cap Y \in \mathcal{U}\}$.

We will denote the set $Y_{(X, \mathcal{F})}(\mathcal{U})$ simply by $Y(\mathcal{U})$, when no confusion can arise.
Lemma 2.6. ([1, Lemma 2.5]) Let X be a set, \mathcal{F} be a given nonempty collection of subsets of X and $Y \subseteq Z \subseteq X$. Let \mathcal{U} be an ultrafilter on Y, $T \in \mathcal{U}$ and let \mathcal{U}_f and \mathcal{U}^\ast, respectively, the ultrafilter defined by

$$\mathcal{U}_f := \{U \cap T : U \in \mathcal{U}\}, \quad \mathcal{U}^\ast := \{Z' \subseteq Z : Z' \cap Y \in \mathcal{U}\}.$$

Then we have

$$Y(\mathcal{U}) = T(\mathcal{U}_f) = Z(\mathcal{U}^\ast).$$

Remark 2.7. Let X be a set and \mathcal{F} be a nonempty collection of subsets of X that is closed under complements. Then, for any subset Y of X and any ultrafilter \mathcal{U} on Y, we have

$$Y(\mathcal{U}) = \bigcap \{F \in \mathcal{F} : F \cap Y \in \mathcal{U}\}.$$

Definition 2.8. Let X be a set and \mathcal{F} be a nonempty collection of subsets of X. Then, we say that a subset Y of X is \mathcal{F}–stable under ultrafilter if $Y(\mathcal{U}) \subseteq Y$, for each ultrafilter \mathcal{U} on Y.

Let X be a set and \mathcal{F} be a nonempty collection of subsets of X. Then the family of all the subsets of \mathcal{F}–stable under ultrafilter is the collection of the closed sets form a topology on X. We will call it the \mathcal{F}–ultrafilter topology on X, and denote by $X^{\mathcal{F}–ultra}$ the set X endowed with the \mathcal{F}–ultrafilter topology.

Proposition 2.9. ([1, Proposition 2.13]) Let X be a set, \mathcal{F} be a nonempty collection of subsets of X. Then, for each subspace Y of $X^{\mathcal{F}–ultra}$, we have

$$Ad(Y) = \bigcup \{Y(\mathcal{U}) : \mathcal{U} \in \beta(Y)\}.$$

Remark 2.10. If $\mathcal{F} \subseteq C$ are collections of subsets of X, then the C–ultrafilter topology is finer than or equal to the \mathcal{F}–ultrafilter topology. In fact, for each subset Y of X and each ultrafilter \mathcal{U} on Y, we have $Y(\mathcal{U}) \subseteq Y_{\mathcal{F}}(\mathcal{U}) \subseteq Y_C(\mathcal{U})$.

In the following example we give some relation between the \mathcal{F}–ultrafilter topology and ultrafilter topology for particular cases.

Example 2.11. 1. Let A be a ring and \mathcal{P} be the collection of all the principal open subsets of $X := Spec(A)$. Then, the \mathcal{P}–ultrafilter topology of X is equal to the ultrafilter topology.

2. Let K be a field, A be a subring of K and C be the natural basis of open sets for the Zariski topology on the spectral space $Zar(K|A)$ of all the valuation domains of a field K containing a fixed subring A of K. Then, the C–ultrafilter topology is equal to the ultrafilter topology on $Zar(K|A)$.

Now, we are interested in the topological structure on $Z(R, \prod R_i)$. Let R be a ring and $\{R_i\}_{i \in \mathcal{I}}$ be a family of zero-dimensional rings such that R is imbeddable into $\prod R_i$. The set $Z(R, \prod R_i)$ endowed with a topological structure defined by taking, as a basis for the open sets, the subsets

$$B_S := \{T \in Z(R, \prod R_i) \setminus S \subseteq T\}.$$

For S varying in $B_{fin}(\prod R_i)$. This topology is called the Zariski topology on $Z(R, \prod R_i)$.

Remark 2.12. If $S := \{x_1, x_2, ..., x_n\}$ with $x_j \in \prod R_i$ for each $j \in \{1, ..., n\}$, then

$$B_S := Z(R[x_1, x_2, ..., x_n], \prod R_i).$$

Therefore the collection of subsets $\mathcal{B} := \{Z(R[x], \prod R_i) : x \in \prod R_i\}$ is a base for the Zariski topology on $Z(R, \prod R_i)$.

As a simple consequence of the previous remark, if $Z(R, \prod R_i) \neq \emptyset$, then for each $x \in R$, there exists $m(x) \in \mathbb{N}$ such that $x^{m(x)} \prod R_i$ is idempotent, let s_x be the pointwise inverse of $x^{m(x)}$ in $\prod R_i$, then $R^0 = R[s_x : x \in R]$, with R^0 is a unique minimal zero-dimensional in $Z(R, \prod R_i)$.

Moreover, the collection of subsets $\mathcal{B} := \{Z(R[t], \prod R_i) : x \in \prod R_i\}$ is a base for the Zariski topology, as $R[x_1 : x \in R] \subseteq Z(R, \prod R_i)$, then there is an element $t \in \prod R_i$ such that $R[s_x : x \in R] \subseteq Z(R[t], \prod R_i)$, then $R[t] \subseteq R[s_x : x \in R]$, and as $R[s_x : x \in R]$ is an unique minimal element, then $R[t] = R[s_x : x \in R]$ or $\dim(R[t]) \neq 0$.

H. Mouadi, D. Karim / Filomat 34:14 (2020), 4589–4595
3. The Ultrafilter Topology on \(\mathcal{Z}(R, \prod R_i) \)

It is worth reminding that not all rings admit a zero-dimensional subring. Particularly, infinite product of rings. Now, let \(R \) be a ring and \(\{R_i\}_{i \in I} \) a family of zero-dimensional rings such that \(R \) is imbeddable into \(\prod R_i \). The main goal is to study the behavior of \(\mathcal{Z}(R, \prod R_i) \) with respect to the ultrafilter topology and will compare it with the Zariski topology.

We start with following properties.

Theorem 3.1. Let \(R \) be a ring and \(\{R_i\}_{i \in I} \) a family of zero-dimensional rings such that \(R \) is imbeddable into \(\prod R_i \) with \(\mathcal{Z}(R, \prod R_i) \neq \emptyset \), if \(Y \) is a nonempty subset of \(\mathcal{Z}(R, \prod R_i) \) and \(\mathcal{U} \) is an ultrafilter on \(Y \), then:

1. \(R_{\mathcal{U}} := \{x \in \prod R_i / B_{[x]} \cap Y \in \mathcal{U}\} \in \mathcal{Z}(R, \prod R_i) \).
2. The collection of all subsets \(Y \) of \(\mathcal{Z}(R, \prod R_i) \) stable for ultrafilters (i.e.
 for each \(\mathcal{U} \in \beta(Y) \), \(R_{\mathcal{U}} \in Y \)) is the family of closed sets for a topology on \(\mathcal{Z}(R, \prod R_i) \) called the ultrafilter topology of \(\mathcal{Z}(R, \prod R_i) \).

Proof. 1. Let \(C := \{B_S : S \in B_{fin}(\prod R_i)\} \) be the natural basis of open sets of the Zariski topology of \(\mathcal{Z}(R, \prod R_i) \). If \(Y \) is a subset of \(\mathcal{Z}(R, \prod R_i) \) and \(\mathcal{U} \) is an ultrafilter on \(Y \), we have:

\[
x \in Y_C(\mathcal{U}) \iff \forall B_S \in C, x \in B_S \Rightarrow B_S \cap Y \in \mathcal{U}
\]

\[
\Leftrightarrow B_{[x]} \cap Y \in \mathcal{U}
\]

Then \(Y_C(\mathcal{U}) = \{R_{\mathcal{U}}\} \), as \(C \) is closed under complements. According to Remark 2.7, we have that \(R_{\mathcal{U}} = \bigcap \{F \in C : F \cap Y \in \mathcal{U}\} \), then \(R_{\mathcal{U}} \) is a zero-dimensional ring by Theorem 2.1. On the other hand, \(R \subseteq R_{\mathcal{U}} \) because \(B_{[x]} = \mathcal{Z}(R, \prod R_i) \) for each \(x \in R \).

2. Suppose that \(A, B \) are ultrafilter closed of \(\mathcal{Z}(R, \prod R_i) \) (i.e.
 closed set for an ultrafilter topology of \(\mathcal{Z}(R, \prod R_i) \)), and \(\mathcal{U} \) be an ultrafilter on \(Y = A \cup B \). Take into account the properties of ultrafilters, we can assume that \(A \in \mathcal{U} \). According to proof of (1) and Definition 2.8 , \(A \) is \(C \)-stable with \(C := \{B_S : S \in B_{fin}(\prod R_i)\} \), by Lemma 2.6, we have \(\{R_{\mathcal{U}}\} = Y_C(\mathcal{U}) = A_C(\mathcal{U}_A) \subseteq A \subseteq Y \), then \(Y \) is ultrafilter closed.

Now, let \(C \) be a collection of ultrafilter closed on \(\mathcal{Z}(R, \prod R_i) \). Let \(\mathcal{U} \) be an ultrafilter on \(X = \bigcap C := \{C / C \in C\} \). By Lemma 2.6, for each \(C \in C \), we have \(C(\mathcal{U}^C) = X(\mathcal{U}) \), and thus \(X(\mathcal{U}) \subseteq X \). Then \(X \) is ultrafilter closed. \(\square \)

Theorem 3.2. Let \(R \) be a ring and \(\{R_i\}_{i \in I} \) a family of zero-dimensional rings such that \(R \) is imbeddable into \(\prod R_i \) with \(\mathcal{Z}(R, \prod R_i) \neq \emptyset \).

1. The ultrafilter topology is finer than the Zariski topology on \(\mathcal{Z}(R, \prod R_i) \).
2. The basic open sets of the Zariski topology on \(\mathcal{Z}(R, \prod R_i) \) are both open and closed by the ultrafilter topology.

Proof. 1. Since \(C := \{B_S : S \in B_{fin}(\prod R_i)\} \) is a natural basis of open sets on the Zariski topology of \(\mathcal{Z}(R, \prod R_i) \), it is enough to prove that \(O := \mathcal{Z}(R, \prod R_i) \backslash B_S \) is stable for ultrafilter. Assume, by contradiction, that there exists an ultrafilter \(\mathcal{U} \) on \(O \) such that \(R_{\mathcal{U}} \neq O \). It follows that \(S \subseteq R_{\mathcal{U}} \), and then \(B_S \cap O \in \mathcal{U} \), for every \(x \in S \). Then \(B_S \cap O \in \mathcal{U} \), because \(S \) is finite. This is a contradiction by the definition of \(O \).

2. Direct consequence of the Theorem 3.1 and the Remark 2.12. \(\square \)

Remark 3.3. Let \(R \) be a ring and \(\{R_i\}_{i \in I} \) a family of zero-dimensional rings such that \(R \) is imbeddable into \(\prod R_i \). According to Remark 2.7 and [6] the set \(\mathcal{A}(R, \prod R_i) \) is not \(C \)-stable, where \(C := \{B_S : S \in B_{fin}(\prod R_i)\} \) is the basis of open sets of the Zariski topology on \(\mathcal{Z}(R, \prod R_i) \).
4. The \(F^- \) – lim of a Collection of Zero-Dimensional Rings

Let \(R \) be a subring of a ring \(S \). The first goal of this section is to define the \(F^- \) – lim of the set \(\mathcal{Z}(R, S) \). Then we give a characterization of \(\mathcal{Z}(R, S) \) by using the \(F^- \) – lim. Thereby, its relationship with ultrafilter limit and the direct limit of a family of rings.

Definition 4.1. Let \(A \) be a set, \(S(A) \) be the set of all subsets of \(A \) and let \(I \) be an infinite set. Let \(\{S_i\}_{i \in I} \) be a family of \(S(A) \), and let \(F^- \) be an ultrafilter on \(I \), then we define the \(F^- \) – \(\lim \) of \(\{S_i\}_{i \in I} \) by:

\[
F^- \lim_{i \in I} S_i := \{a \in A : \{i \in I : a \in S_i\} \in F^-\}.
\]

We note that the set \(F^- \lim_{i \in I} S_i \) is a subset of \(A \) and we have that:

\[
F^- \lim_{i \in I} S_i = \bigcup_{x \in F^-} \bigcap_{i \in X} S_i.
\]

Proposition 4.2. Let \(R \) is subring of the ring \(S \) such that \(\mathcal{Z}(R, S) \neq \emptyset \). Let \(\{R_i\}_{i \in I} \in \mathcal{Z}(R, S) \), and \(F^- \) is an ultrafilter on \(I \). Then the ring \(F^- \lim_{i \in I} R_i \) is a direct union of zero-dimensional subrings of \(S \).

Proof. By Definition 4.1, we have that \(F^- \lim_{i \in I} R_i = \bigcup_{i \in F^-} (\cap_{i \in A} R_i) \), and according to Theorem 2.1 \(\cap_{i \in A} R_i \) is a zero-dimensional ring for each \(A \) in \(F^- \). On the other hand, if \(A \in F^- \) and \(A \subset A' \subset I \), then \(A' \in F^- \). Then the union is direct.

Proposition 4.3. Let \(\{R_i\}_{i \in I} \) be a nonempty family of zero-dimensional subrings of a ring \(S \) and \(F^- \) be an ultrafilter on \(I \). Let \(S_X = \cap_{i \in X} R_i \) for each \(X \in F^- \), if for each \(X \) some \(R_i \), \(F^- \lim_{i \in I} R_i \) is an artinian reduced ring, \(F^- \lim_{i \in I} R_i \) is a direct union of artinian rings.

Proof. Let \(I \) be set and let \(F^- \) an ultrafilter on \(I \). For each nonempty family \(\{R_i\}_{i \in I} \) of zero-dimensional subrings of a ring \(S \), let \(S_X = \cap_{i \in X} R_i \) for each \(X \in F^- \). Assuming that some \(R_i \) in \(\{R_i\}_{i \in I} \) is an artinian reduced ring then \(S_X \) is a zero-dimensional sub-ring of artinian reduced ring (because \(S_X = \cap_{i \in X} R_i \subseteq R_i \)). That means, \(S_X \) is a zero-dimensional reduced ring with only finitely many idempotents, therefore is an artinian ring. Then similar proof of the Lemma 4.2 may show that \(F^- \lim_{i \in I} R_i \) is a direct union of artinian rings.

Lemma 4.4. Let \(X \subseteq \mathcal{Z}(R, \Pi R) \) and \(U \) be an ultrafilter on \(X \), then for each subset \(\{S_j : j \in J\} \subseteq X \) and each ultrafilter \(F^- \) on \(J \). We have \(F^- \lim_{j \in J} S_j \in \mathcal{Z}(R, \Pi R) \), and \(S_U = F^- \lim_{j \in J} S_j \) with \(S_U \) is the ultrafilter limit of \(X \).

Proof. Let \(\sigma : J \rightarrow X \) be a bijection, and let \(F^- = \{\sigma^{-1}(F) : F \in U\} \). Then \(F^- \) is an ultrafilter on \(J \). For each \(j \in J \), we put \(\sigma(j) = S_j \). Then,

\[
a \in S_U \iff B_{|\sigma(j)} \cap X \in U \iff \{j \in J : a \in S_j\} \in F^- \iff a \in F^- \lim_{j \in J} S_j.
\]

Therefore, \(S_U = F^- \lim_{j \in J} S_j \). On other hand, according to Theorem 3.1 \(F^- \lim_{j \in J} S_j \in \mathcal{Z}(R, \Pi R) \).

Definition 4.5. Let \(I \) be an arbitrary set and let \(F^- \) be any ultrafilter on \(I \). Let \(x_i \in X \) for \(i \in I \), we say that \(x \) is an ultralimit of \(x_i \) with respect to \(F^- \) if only if for every open set \(O \) of \(X \) with \(x \in X \cap \{i \in I : x_i \in O\} \in F^- \) when denoted by \(\lim_{F^-} x_i = x \).

We say that \(X \) is \(F^- \) – complete if and only if for all choices of \(x_i \in X \) there is a \(x \in X \) such that \(\lim_{F^-} x_i = x \).

We recall that \(X \) is ultracomplete if for every set \(I \), all sequences \(x_i \in X \) for \(i \in I \) and every ultrafilter \(F^- \) on \(I \), there is an \(x \in X \) with \(\lim_{F^-} x_i = x \), this is the equivalent of saying that \(X \) is \(F^- \) – complete for every \(I \) and every ultrafilter \(F^- \) on \(I \).

Proposition 4.6. Let \(\{S_i\}_{i \in I} \in S(A) \) for each \(i \in I \) and \(F^- \) be an ultrafilter on \(I \). We have \(\lim_{F^-} S_i = F^- \lim_{i \in I} S_i \).
Proof. Let $S_i \subseteq A$ for some $i \in I$, we claim that $\lim_{\mathcal{F}} S_i = S$ where $S = \mathcal{F} - \lim_{\mathcal{G}} S_i$. Suppose that O is an open set in $S(A)$ such that $S \in O$. On the other hand let $B_{FG} = \{S \subseteq A : F \subseteq S \text{ and } S \cap G = \emptyset\}$ where F,G are finite subsets of A. Each B_{FG} is a basic open set of $S(A)$ such that $S \in B_{FG} \subseteq O$. But this asserts that $F \subseteq S$. Let $g \in G$, $g \notin S$. So $\{i : F \subseteq S_i\} \subseteq \mathcal{F}$ and also for each $g \in G$, $\{i : g \in S_i\} \notin \mathcal{F}$. It follows that for each $g \in G$, $\{i : g \notin S_i\} \in \mathcal{F}$. Thus $\{i : S_i \in B_{FG}\} \subseteq \mathcal{F}$. Thus the claim. \hfill \square

Proposition 4.7. ([8, Proposition 1.9]) X is Hausdorff if and only if for all I, and all ultrafilters \mathcal{F} on I with all sequences $x_i \in X$ for $i \in I$ and if $\lim_{\mathcal{F}} x_i$ exists, then this limit is unique.

Before studying the relations between the notion of $\mathcal{F} - \lim$ and the direct union of the rings, give us a topological property of $\mathcal{Z}(R, \prod R_i)$ using the definition and the previous property.

Proposition 4.8. Let R be a ring and $\{R_i\}_{i \in I}$ a family of zero-dimensional rings with $\mathcal{Z}(R, \prod R_i) \neq \emptyset$ then:

1. $\mathcal{Z}(R, \prod R_i)$ is Hausdorff.
2. $\mathcal{Z}(R, \prod R_i)$ is compact if and only if $R_{U} \neq \emptyset$ for each ultrafilter U on $\mathcal{Z}(R, \prod R_i)$.

Proof. 1. Let $X \subseteq \mathcal{Z}(R, \prod R_i)$ and U is an ultrafilter on X. Suppose that J is an indexed set, \mathcal{F} is an ultrafilter on J, and $S_i \in X$ by Lemma 4.4, $S_{\mathcal{F}} = \mathcal{F} - \lim_{\mathcal{G}} S_i$ with $S_{\mathcal{F}}$ is the ultrafilter limit of X, according to proof of Theorem 3.1 $\mathcal{F} - \lim_{\mathcal{G}} S_i$ is unique. On the other hand, by Proposition 4.6, Definition 4.5 and Proposition 4.7 we have that $\mathcal{Z}(R, \prod R_i)$ is a Hausdorff space.

2. Assume that $\mathcal{Z}(R, \prod R_i) \neq \emptyset$ then by [8, Theorem 1.6] we have that: $\mathcal{Z}(R, \prod R_i)$ is compact if and only if $\mathcal{Z}(R, \prod R_i)$ is ultracomplete. Moreover, by Definition 4.5, for every set J, all sequences $\{T_i\}_{i \in J} \in \mathcal{Z}(R, \prod R_i)$ for $j \in J$ there exists a $R_{T_i} = \mathcal{F} - \lim_{\mathcal{G}} T_j$ for every ultrafilter \mathcal{F} on J, and it is equivalent to $R_{U} \neq \emptyset$ for each ultrafilter U in $\mathcal{Z}(R, \prod R_i)$. \hfill \square

Corollary 4.9. Let A be a nonempty subset of $\mathcal{A}(R, \prod R_i)$ and U an ultrafilter in A, then A_{U} the ultrafilter limit point of A is a zero-dimensional ring.

Proof. We know that every artinian ring is a zero-dimensional ring, then A is a nonempty subsets of $\mathcal{Z}(R, \prod R_i)$, by Theorem 3.1, we have that A_{U} is a zero-dimensional ring. \hfill \square

By Remark 3.3 the ring A_{U} is not necessary artinian.

Definition 4.10. Let R be a ring and S a ring containing R. An element $x \in S$ is said to be integral over R if there exists an integer n and elements r_1, \ldots, r_n in R such that

$$x^n + r_1x^{n-1} + \ldots + r_{n-1}x + r_n = 0.$$

This equation is called an equation of integral dependence of x over R (of degree n). The set of all elements of S that are integral over R is called the integral closure of R in S. If every element of S is integral over R, we say that S is integral over R.

Lemma 4.11. Let R be a noetherian ring and R_{a} be a family of zero-dimensional rings, and let $I \mathcal{Z}(R, \prod R_a)$ be the set of all the rings $C \subseteq \mathcal{Z}(R, \prod R_a)$ such that C is integrally closed of R in $\prod R_a$, then:

1. $\forall S_i \in I \mathcal{Z}(R, \prod R_a) \exists T_i \in \mathcal{A}(R, \prod R_a)$ such that $S_i = \lim_{\mathcal{G}} T_i$.

2. For each family $\{S_j : j \in I\} \subseteq I \mathcal{Z}(R, \prod R_a)$ we have that $\{K_i : i \in I\} \subseteq \mathcal{A}(R, \prod R_a)$ such that $\mathcal{F} - \lim_{\mathcal{G}} S_j = \lim_{\mathcal{G}} K_i$.

H. Mouadi, D. Karim / Filomat 34:14 (2020), 4589–4595

4594
Proof. 1. Let $I\mathcal{Z}(R, \prod R_{\alpha})$ be the set of all the subrings $C \in \mathcal{Z}(R, \prod R_{\alpha})$ such that C is integrally closed of A in $\prod R_{\alpha}$ and let $S_j \in I\mathcal{Z}(A, \prod R_{\alpha})$, then by proof of [7, corollary 5.5] S_j is a direct union of artinian subrings, from where $\exists T^j_i \in \mathcal{A}(R, \prod R_{\alpha})$ such that
\[S_j = \lim_{i \in I} T^j_i. \]
with I is a direct set.

2. According to Lemma 4.4 and Theorem 3.1 and [1, Proposition 3.6], we have that $\mathcal{F} - \lim_{j \in J} S_j$ is a zero-dimensional integral closed of R in $\prod R_{\alpha}$, then $\mathcal{F} - \lim_{j \in J} S_j \in I\mathcal{Z}(R, \prod R_{\alpha})$ and by (1) we have that
\[\mathcal{F} - \lim_{j \in J} S_j = \lim_{i \in I} K_i \]
with $\{K_i : i \in I\} \subseteq \mathcal{A}(A, \prod R_{\alpha})$. \qed

References

[1] C.A. Finocchiaro, Spectral spaces and ultrafilter, Comm. Algebra 43 (2015) 325–336.
[2] C.A. Finocchiaro, M. Fontana, A. Loper, Ultrafilter and constructible topologies on spaces of valuation domains, Comm. Algebra 41 (2013) 1825–1835.
[3] D. Karim, On the set of intermediate artinian subrings, in: Homological and combinatorial methods in algebra, Springer Proceeding in Mathematics and Statistics 228, Ardabil, Iran, 2016, 139–149.
[4] M. Fontana, K.A. Loper, The patch topology and the ultrafilter topology on the prime spectrum of a commutative ring, Comm. Algebra 36 (2008) 2917–2922.
[5] S. Garcia-Ferreira, L.M. Ruza-Montilla, The $F - \lim$ of a sequence of prime ideals, Comm. Algebra 39 (2011) 2532–2544.
[6] R. Gilmer, Zero-dimensional extension rings and subrings, in: Zero-dimensional Commutative Rings, Lecture Note in Pure and Applied Mathematics 171, New York, 1995, 27–39.
[7] R. Gilmer, M. Heinzer, Product of commutative rings and zero-dimensionality, Trans. Amer. Math. Soc. 331 (1992) 663–680.
[8] G.C. Nelson, Compactness, ultralimits, ultraproducts, and maximal ideals, Preprint (1996).