On p- Open Sets with Respect to an Ideal

N. Deena
Department of Mathematics, Ramanujan Research Centre in Mathematics
Saraswathi Narayanan College, Madurai, Tamil Nadu, India

K. Krishnan
Department of Mathematics, Ramanujan Research Centre in Mathematics
Saraswathi Narayanan College, Madurai, Tamil Nadu, India

Abstract
In this paper we introduce and investigate, the notion of \(\alpha - p \)-open, semi-\(lp \)-open and pre-\(lp \)-open sets via idealization by using \(p \)-local function and studied their some properties.

Keywords: Semi open, Pre open, Alpha open, P–Local function.

Introduction
Ideal in topological space have been considered since 1930 by Kuratowski [1] and Vaidyanathaswamy [2]. After that ideal topology generalized in general topology by Jankovi and Hamleet [3]. In 2005 Hatir and Noir introduced the \(\alpha - l \)-open set, semi-\(l \)-open set, pre-\(l \)-open set [4]. Finally in 2014 \(\alpha - l \)-open, semi-\(l \)-open, pre-\(l \)-open sets were introduced by R.Shanthi and M.Rameshkumar [5]. In this paper we introduced the notion of \(\alpha - lp \)-open, semi-\(lp \)-open, pre-\(lp \)-open set and studied some properties of their.

Preliminaries
Let (\(X, \tau \)) be topological space with no separation properties assumed. For a subset of topologicalspace (\(X, \tau \)), Cl (A) and Int (A) denote the closure and interior of A in (\(X, \tau \)) resp. An ideal I of topological space is collection of non-empty subset of X together with the following.

(i) \(x \in \text{Cl}(A) \) implies \(x \in \text{Cl}(B) \) for every \(B \subseteq A \).
(ii) \(A \subseteq X \) implies \(B \subseteq X \) for every \(B \subseteq A \).
(iii) \(A \subseteq X \) implies \(A \subseteq X \) for every \(B \subseteq A \).

The triplet forms (\(X, \tau, I \)) is called the ideal topological space where \(\tau \) is topological space of X with an ideal I. Given a topological space (\(X, \tau \)) with an ideal I on X If P(x) is the set of all subset of X, a set operator (\(x \subseteq P(x) \) called a local function [5] of A with respect to \(\tau \) and I is defined as follows: for \(A \subseteq X \), \(A_{\tau} = \{ x \in X \mid x \in A \} \) for every \(U \subseteq \tau \) wherer \((x) = \{ u \in x \mid x \in U \} \). Additionally, \(\text{cl}^*(A) = A \cup (A \subseteq \tau \) defines kuratowski closure operator for a topology \(\tau \) (I. \(\tau \)), called the \(^* \)-topology and finer than \(\tau \).
Definition 2.1
Let \((X, \tau)\) be a topological space. A subset \(A\) of \(X\) is said to be a \(p\)-open set if there exists an open set \(U\) in \(X\) such that \(U \subseteq A \subseteq \text{int}(\text{Cl}(A))\). The complement of a \(p\)-open set is \(p\)-closed. The collection of all \(p\)-open sets in \(X\) is denoted by \(pO(X)\) and is called the \(p\)-local function. The semi closure of \(A\) in \((X, \tau)\) is denoted by the intersection of all \(p\)-closed sets containing \(A\) and is denoted by \(pc\).

Definition 2.2
For \(A \subseteq X\), the set \(\{x \in X / U \cap A \neq \emptyset\}\), for every \(U \in pO(X)\) where \(pO(X) = \{U \cap pO(X) / x \in U\}\), we write \(A\) instead of \(A \cap (U \cap A)\). The closure operator \(Cl^p\) for a topology \(T\) is defined as follows \(Cl^p(A) = AUA\). For a topology \(T \subseteq (I) \subseteq r^p(I)\) and \(Int^p(A)\) denotes the interior of the set \(A\) in \((X, r^p, I)\).

Definition 2.3
A subset of topological space \(X\) is said to be,
- \(pre - open\) if \(A \subseteq \text{int}(\text{Cl}(A))\)
- \(semi-open\) if \(A \subseteq \text{Cl}(\text{int}(A))\)
- \(alpha - open\) if \(A \subseteq \text{int}(\text{Cl}(\text{int}(A)))\)

Definition 2.4
A subset of topological space \(X\) is said to be,
- \(alpha-1\)-open if \(A \subseteq \text{int}(\text{Cl}(\text{int}(A)))\)
- \(pre-1\)-open if \(A \subseteq \text{int}(\text{Cl}(A))\)
- \(semi-1\)-open if \(A \subseteq \text{Cl}(\text{int}(A))\)

Lemma: For a subset of topological space, the following properties hold.
- \(pc(A) = AUA\text{int}(\text{Cl}(A))\)
- \(pc(A) = \text{int}(\text{Cl}(A))\), if \(A\) is open

Lemma: Let \(A\) be a topological space and \(A, B\) be subsets of \(X\), then the following properties hold:
- if \(A \subseteq B\) then \(A \subseteq B\).
- if \(U \in r\) then \(U \cap A \subseteq (U \cap A)\).
- \(A \subseteq \text{Cl}(A)\) the \(A\) is \(p\)-closed in \(X\).

\(A \subseteq A\).
\(AUB = AUB\).
if \(I = \{\emptyset\}\), then \(A = \text{Cl}(A)\)

\(a-1_p\)-open, \(semi-1_p\)-open, \(pre-1_p\)-open
In this we define the \(a-1_p\)-open sets, \(pre-1_p\)-open, \(semi-1_p\)-open and studied some properties of their.

Definition 3.1
A subset of topological space \(X\) is said to be.
- \(alpha-1_p\)-open if \(A \subseteq \text{int}(Cl^p(\text{int}(A)))\)
- \(pre-1_p\)-open if \(A \subseteq \text{int}(Cl^p(A))\)
- \(semi-1_p\)-open if \(A \subseteq Cl^p(\text{int}(A))\)
Proposition 3.2
For a subset of an ideal topological space the following hold:
*Every \(\alpha - I_p \)-open set is \(\alpha \)-open.

Proof
Let \(A \) be a \(\alpha - I_p \)-open set. Then, we have \(A \subseteq \text{int}(\text{Cl}^\alpha(\text{int}(A))) = \text{int}((\text{int}(A) \cup \text{int}(A))) \subseteq \text{int}(\text{Cl}(\text{int}(A)) \cup \text{int}(A)) \subseteq \text{int}(\text{Cl}(\text{int}(A))). \) Thus, \(A \) is an \(\alpha \)-open set.

Remark 3.3
Converse of the above proposition need not be true as seen from the following example.

Example 3.4
Let \(X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\} \) and \(I = \{\emptyset, \{b\}, \{c\}, \{bc\}\}. \) Then the set \(A = \{b, c\}, B = \{a, b, c, d\}, C = \{a\}. \) \(A \) is \(\text{Semi} - I_p \)-open, but not \(\text{Semi} - I_p \)-open, \(B \) is \(\text{Pre} - I_p \)-open, but not \(\alpha - I_p \)-open.

Proposition 3.5
Every open set of an ideal topological space is an \(\alpha - I_p \)-open set.

Proof:
Let \(A \) be a \(\text{Semi} - I_p \)-open set. Then, we have \(A \subseteq \text{int}(\text{Cl}^\alpha(A)) = \text{int}((\text{int}(A) \cup \text{int}(A))) \subseteq \text{int}(\text{Cl}(\text{int}(A)) \cup \text{int}(A)) \subseteq \text{int}(\text{Cl}(\text{int}(A))). \) Then \(A \) is an \(\alpha - I_p \)-open set.

Remark 3.4
Converse of the above proposition 3.3 need not be true as seen from the following example.

Example 3.6
Let \(X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, X\} \) and \(I = \{\emptyset, \{b\}, \{c\}, \{bc\}\}. \) Set \(A = \{a, c\}, \) is \(\alpha - I_a \)-open, but \(A \notin r. \)

Proposition 3.7
Every \(\alpha - I_p \)-open set is both \(\text{Semi} - I_p \)-open set and \(\text{Pre} - I_p \)-open set.

Proof
The proof is obvious.

Remark 3.8
Converse of the above proposition 3.7 need not be true as seen from the following example.
Example 3.9
Let \(X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\} \) and \(I = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}. \) then the set \(A = \{a\} \) is a pre-\(I_p \)-open, but not \(a-I_p \)-open and \(A \) is Semi-open, but not \(a-I_p \)-open.

Proposition 3.10
For a subset of an ideal topological space the following hold:
Every \(a-I_p \)-open set is \(a-I \)-open.
Every Semi-\(I_p \)-open set is Semi-\(I \)-open.
Every Pre-\(I_p \)-open set is Pre-\(I \)-open.

Proof:
The proof is obvious.

Remark 3.11
Converse of the proposition 3.10 need not be true. DFFD

Proposition 3.12
Let \((X, \tau, I)\) be an ideal topological space and \(A \) an open subset of \(X. \) Then the following hold, if \(I = \{\emptyset\}, \) then
1. \(A \) is \(\epsilon - \gamma - \) open set if and only if \(A \) is a \(a - open. \)

Proof
If \(I = \{\emptyset\}, \) \(A = p Cl(A) \) for any subset \(A \) of \(X \) and hence \(Cl^{\tau}(A) = A \cup A = p Cl(A). \) By proposition 3.2. Every \(a-I_p \)-open set is an \(a- \) open set. Conversely if \(A \) is a \(a- \) open set. Then \(A \subseteq \text{int} (Cl(\text{int}(A))) = \text{acl}\text{(int}(A)) = (Cl^{\tau}(\text{int}(A))). \) Hence \(A = \text{int}(A) \subseteq \text{int} (Cl^{\tau}(\text{int}(A))). \) Therefore, \(A \) is \(a-I_p \)-open. Thus, \(A \) is \(a-I_p \)-open set if and only if \(A \) is \(a-open. \)

2. \(A \) is Semi-\(I_p \)-open set if and only if \(A \) is a Semi-open.

Proof
If \(I = \{\emptyset\}, \) \(A = p Cl(A) \) for any subset \(A \) of \(X \) and hence \(Cl^{\tau}(A) = A \cup A = p Cl(A). \) By proposition 3.2. Every Semi-\(I_p \)-open set is an Semi-\(\) open set. Conversely is \(fA \) is Semi-\(\) open set. Then \(A \subseteq Cl(\text{int}(A)). \) Hence \(A = \text{int}(A) \subseteq \text{int} (Cl(\text{int}(A))) = \text{acl}(\text{int}(A)) = (Cl^\tau(\text{int}(A))). \) Therefore, \(A \) is \(a-I_p \)-open. Thus, \(A \) is Semi-\(I_p \)-open set if and only if Semi-\(open. \)

3. \(A \) is Pre-\(I_p \)-open set if and only if \(A \) is a Pre-open.

Proof
If \(I = \{\emptyset\}, \) \(A = p Cl(A) \) for any subset \(A \) of \(X \) and hence \(Cl^{\tau}(A) = A \cup A = p Cl(A). \) By proposition 3.2. Every Pre-\(I_p \)-open set is an Pre-open set. Conversely if \(A \) is Pre-open set. Then \(A \subseteq \text{int}(Cl(A)) = aCl(A) = Cl^{\tau}(A). \) Hence \(A = \text{int}(A) \subseteq \text{int}(Cl^\tau(A)). \) Therefore, \(A \) is Pre-\(I_p \)-open. Thus, \(A \) is Pre-\(I_p \)-open set if and only if Pre-open.

References
1. K. Kuratowski, topology, vol. I, Academicpress, New York, 1966.
2. R. Vaidyanathaswamy, Settopology, Chelseapublishingcompany, 1960.
3. D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer.Math.Hungar. 97(4) (1990), 295-310.
4. E.Hatir and T.Noiri, On decomposition of continuity via ideals, Acta. Math.Hungar. 96(4) (2002), 341-349.

5. R.Santhis and M. Ramesh kumar, A decomposition of continuity in ideal by using semi local functions, Asian journal of mathematics and its application, vol. 2014.

6. O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.