Chemical Study and Biological Activity Evaluation of Two Azorean Macroalgae: *Ulva rigida* and *Gelidium microdon*

Madalena Silva1, Luis M. M. Vieira2, Ana Paula Almeida3,4, Artur M. S. Silva2, Ana M. L. Seca5,6, M. Carmo Barreto6, Ana I. Neto1,7, Madalena Pedro4, Euginha Pinto4 and Anake Kijjoo1,2*

1CILMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
2ICBAS - Departamento de Química, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
3Mestrado em Ciências Ambientais, Universidade Severino Sombra (USS), Rio de Janeiro, Brazil
4CEQUIMED - Centro de Química Medicinal da Universidade do Porto, Porto, Portugal
5Departamento de Química & QOPNA, Universidade de Aveiro, Aveiro, Portugal
6Departamento de Ciências Tecnológicas e Desenvolvimento, Universidade dos Açores, Ponta Delgada, Portugal
7CIRN & Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
8CESPU - Cooperativa de Ensino Superior, Politécnico e Universitário, Gandra, Portugal
9Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal

Abstract

The green macroalgae *Ulva rigida* C. Agardh (Chlorophyta) and the red macroalgae *Gelidium microdon* Kützing (Rhodophyta), collected from the Azorean archipelago, were investigated for their secondary metabolites and their in vitro growth inhibitory effect on three human tumor cell lines: MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (melanoma), as well as for their antifungal and antibacterial activities. The methanol extract of *U. rigida* furnished isofucosterol (1), 7(3β,6α)-3β-hydroxy-5α,6α-epoxymegastigmane (2) and (+)-dehydrovomifoliol (3) while the methanol extract of *G. microdon* yielded cholesterol (4) and lumichrome (5). The crude extracts of both macroalgae were found to be moderately active against the three cell lines whereas compound 1 showed a weak effect and compound 2 was inactive. The crude extracts of the two macroalgae were found to be moderately active against some fungi and bacteria while compounds 1 and 2 were inactive against all microorganisms tested.

Keywords: Azores; Macroalgae; *Ulva rigida*; *Gelidium microdon*; Isofucosterol; 7(3β,6α)-3β-hydroxy-5α,6α-epoxymegastigmane; (+)-dehydrovomifoliol; Lumichrome; Antitumor; Antimicrobial

Abbreviations: MeOH - Methanol; Me2CO - Acetone; δ - Chemical Shift in ppm; DMSO - Dimethyl Sulphoxide; HR-ESIMS - High Resolution Electrospray Ionization Mass Spectrometry; SRB - Sulforhodamine B; MLC - Minimal Inhibitory Concentration; MLC - Minimal Lethal Concentration

Introduction

The marine environment is an exceptional reservoir of bioactive compounds, many of which exhibit structural/chemical features not found in terrestrial natural products. This is easily understood since the Ocean, which covers almost 71% of the Earth’s surface and represents an open access journal, is extremely abundant at mid shore level. Consequently, *G. microdon* is common and abundant at mid and low shore levels whereas *U. rigida* is abundant and dominant at the Azorean intertidal bedrock areas, Azorean intertidal areas [8,17]. Although both species are locally abundant and dominant in the Azorean intertidal bedrock areas, *U. rigida* is common and abundant at mid and low shore levels whereas *G. microdon* is extremely abundant at mid shore level. Consequently, environmental stress conditions [13]. These metabolites have been targets of the drug discovery program and some of these bioactive compounds such as sulfated polysaccharides, steroids and diterpenes have found their applications in the pharmaceutical industry [14,15].

During our on-going project aiming at exploiting bioactive secondary metabolites from macroalgae of the Azorean archipelago for added-value products, we have conducted phytochemical studies of the green alga *Ulva rigida* C. Agardh and the red alga *Gelidium microdon* Kützing, and evaluation of the in vitro antitumor and antimicrobial activities of the crude extracts of these two macroalgae as well as their isolated metabolites. The main reasons for selection of these two species were based on the fact that *Ulva* and *Gelidium* species are well-recognized sources of industrially important biopolymers and the organic crude extracts of these two species had been previously found to exhibit a promising in vitro cytotoxicity on cancer cell lines and antioxidant activity [16]. Furthermore, they are abundant in the Azorean intertidal areas [8,17]. Although both species are locally abundant and dominant at the Azorean intertidal bedrock areas, *U. rigida* is common and abundant at mid and low shore levels whereas *G. microdon* is extremely abundant at mid shore level. Consequently, *Corresponding author:* Prof, Anake Kijjoo, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal, Tel: +351-220428331; Fax: +351-220428090; E-mail: anakekijjoo@icbas.up.pt

Received February 10, 2013; **Accepted** April 26, 2013; **Published** April 30, 2013

Citation: Silva M, Vieira LMM, Almeida AP, Silva AMS, Seca AML, et al. (2013) Chemical Study and Biological Activity Evaluation of Two Azorean Macroalgae: *Ulva rigida* and *Gelidium microdon*. *Oceanography* 1: 102. doi:10.4172/ocn.1000102

Copyright: © 2013 Silva M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
their abundance and easy access for collection can guarantee their quantity for further biotechnological exploitation in the future. Furthermore, as these two species are annual and intertidal, they do not present any significant variations of the concentrations of their secondary metabolites, which can be influenced by their age and depth of the collection site. Although both Ulva and Gelidium species have been extensively investigated as sources of biotechnologically relevant biopolymers, their secondary metabolites have never been fully exploited for value-added products. While Ulva species are an important source of ulvan, a natural sulfated polysaccharide which has been extensively investigated for development of novel drugs and functional foods [18], Gelidium species are one of the main sources of phycocolloids, such as agar [19,20]. Several types of secondary metabolites such as bromophenol [21-23], sesquiterpenes [24,25], and steroids [23,26] have been previously reported from the macroalgae of the genus Ulva; however, there are only few reports on the chemical constituents of the genus Gelidium. While gelidene, a polyhalogenated monocyclic monoterpene, was isolated from G. sesquipedale [27], jasmonic acid was reported from G. latifolium [28].

Due to the pristine environment of the Azorean archipelago, we have elaborated the project aiming to exploit the potential of the macroalgae of this region. The collections of these two species were carried out in May and October in order to allow us to study their chemical compositions in different seasons, i.e. spring and autumn, as well as of two different reproductive stages. We now report the chemical study together with the antitumor and antimicrobial activities evaluation of the first collection (May 2011) of the green macroalga *U. rigida* and the red macroalga *G. microdon* from S. Miguel Island which is considered to be one of the environmentally healthy habitats and rich in algal communities of the Azorean Sea. Examination of the methanol extract of *U. rigida* led to isolation of isofucosterol (1), 7(E)-3β-hydroxy-5α,6α-epoxymegastigmane (2) and (+)-dehydrovomifoliol (3), while the methanol extract of *G. microdon* yielded cholesterol (4) and lumichrome (5) (Figure 1). The crude extracts of both macroalgae, together with isofucosterol (1) and 7(E)-3β-hydroxy-5α,6α-epoxymegastigmane (2), were evaluated for their *in vitro* growth inhibition on three tumor cell lines: MCF-7, NCI-H460 and A375-C5, as well as for their antifungal and antibacterial activities.

Material and Methods

General experimental procedures

Melting points were determined on a Bock monoscope and are uncorrected. Optical rotations were determined on an ADP410 Polarimeter. 1H and 13C NMR spectra were recorded at ambient temperature on a Bruker Advance instrument operating at 300.13 and 75.4 MHz, respectively. High resolution mass spectra were measured with a Waters Xevo QToF mass spectrometer coupled to a Waters Aquity UPLC system. A Merck silica gel GF 254 was used for preparative TLC, and a Merck Si gel 60 (0.2-0.5 mm) was used for analytical chromatography.

Biological material

U. rigida and *G. microdon* were collected in May 2011 from the...
Extraction and isolation of the constituents

Dried powdered material (U. rigida - 1472.5 g and G. microdon - 151.91 g). Treatment of the crude methanol extracts to remove the chlorophylls was percolated with MeOH, at room temperature until exhaustion. The resulting solutions were filtered with filter paper (Whatman no 1) and concentrated under reduced pressure to yield crude extracts of U. rigida (154.49 g) and G. microdon (151.91 g). The crude methanol extracts were chromatographed over a 0.2-0.5 mm Si Gel column (120 g) and eluted with mixtures of petroleum ether, CHCl3, Me2CO and MeOH, 250 ml fractions were collected as follows: frs 1-2 (petroleum ether-CHCl3, 9:1), frs 3-52 (petroleum ether-CHCl3, 1:4), frs 53-112 (petroleum ether-CHCl3, 1:4), frs 113-126 (petroleum ether-CHCl3, 1:4), frs 127-145 (CHCl3-Me2CO, 1:1), frs 212-243 (CHCl3-Me2CO, 3:7), frs 244-289 (CHCl3-Me2CO, 1:4), frs 290-303 (Me2CO). Frs 30 and 31 were combined (691.1 mg) and recrystallized in CHCl3 to give 66.9 mg of cholesterol (4) (MeOH). Frs 81-100 were combined (127.6 mg) and recrystallized in CHCl3 in ppm: 145.9 (C-9), 121.9 (C-29), 60.8 (C-17), 42.3 t (C-4 and C-13), 39.8 t (C-12), 39.5 t (C-12), 37.2 t (C-11), 36.5 t (C-10), 36.2 t (C-22), 35.8 d (C-20), 31.9 t (C-7), 31.9 t (C-8), 23.7 t (C-28), 23.7 t (C-27), 22.6 q (C-26), 21.1 t (C-11), 19.4 q (C-18), 18.7 q (C-21), 11.9 q (C-18).

Growth inhibition of human tumor cell lines

The effect of the extracts and of compounds 1 and 2 were evaluated for their capacity to inhibit in vitro growth of three human tumor cell lines: MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-S (melanoma), according to the procedure adopted by the National Cancer Institute (NCI) in the "In vitro Anticancer Drug Discovery Screen" that uses the protein-binding dye SRB to convert cell counts to absorbance measurements.

Table 1: NMR data for compound 2 in CDCl3 (1H 300.13, 13C 75.47 MHz).

Position	δ2 (δ in ppm)	δ3 (δ in Hz)	COSY	HMBC
1	35.1, C			
2α	46.6, CH3	1.64, dt (12.9, 1.8)	H-2β	
β	1.26, dt (12.9, 10.4)		H-2α	
3	64.0, CH3	3.90, m		
4α	40.5, CH3	2.39, ddd (14.5, 5.1, 1.7)	H-17	C-3, 5, 6
β	1.66, dd (14.5, 8.7)		H-2α	C-2, 5
5	67.3, C			
6	69.4, C			
7	142.4, CH3	7.03, d (15.6)	H-8	C-6, 8, 9
8	132.6, CH3	6.29, d (15.6)	H-7	C-6, 7, 9
9	197.5, CO			
10	28.3, CH3	2.28, s		C-4, 6
11	19.8, CH3	1.19, s		C-4, 8
12	25.0, CH3	0.98, s		C-1, 2, 6, 13
13	29.3, CH3	1.19, s		C-1, 2, 6, 12

Table 2: NMR data for compound 3 in CDCl3 (1H 300.13, 13C 75.47 MHz).

Position	δ2 (δ in ppm)	δ3 (δ in Hz)	COSY	HMBC
1	41.4, C			
2α	48.5, CH3	2.51, d (17.0)	H-2β	C-1, 3, 11
β	2.34, d (17.0)		H-2α	
3	197.0, CO			
4	127.8, CH3	5.96, brt (1.0)	H-2β	C-2, 6, 13
5	160.4, C			
6	79.3, C			
7	145.0, CH	6.84, d (15.7)	H-8	C-5, 6, 9
8	130.3, CH3	6.47, d (15.7)	H-7	C-6, 9
9	197.4, CO			
10	28.4, CH3	2.31, s		C-8, 9
11	18.7, CH3	1.88, s		C-4, 5, 6
12	24.3, CH3	1.03, s		C-1, 2, 13
13	22.9, CH3	1.11, s		C-1, 2, 12
Table 3: NMR data for compound 5 in CDCl₃ (¹H 300.13, ¹³C 75.47 MHz).

Position	δ₁, type	δ₁, (J in Hz)	HMBC	
1	130.2, C	130.2, C		
2	146.5, C	146.5, C		
3	138.4, C	138.4, C		
4	128.7, CH	128.7, CH	7.92, s	C-7, 13, 15
5	138.9, C	138.9, C		
6	144.7, C	144.7, C		
7	125.8, CH	125.8, CH	7.71, s	C-6, 12, 16
8	141.6, C	141.6, C		
9	150.1, CO	150.1, CO	11.84, brs	C-2
10	11.8, brs	11.8, brs	C-2	
11	160.7, CO	160.7, CO		
12	19.6, CH₂	19.6, CH₂	2.47, s	C-11, 12, 13
13	20.2, CH₂	20.2, CH₂	2.49, s	C-9, 12, 13

Antifungal assays

Broth microdilution methods based on Clinical and Laboratory Standards Institute (CLSI) reference protocols M7-A7 and M38-A2 for yeasts (Candida albicans) and filamentous fungi (Aspergillus fumigatus and dermatophytes), respectively, were used to determine the MIC and MLC of the crude extracts and the isolated metabolites [34]. Candida albicans ATCC 10231, Aspergillus fumigatus ATCC 46645 and dermatophytes: Epidermophyton floccosum FF9, Microsporum canis FF1, Microsporum gypseum FF3, Trichophyton mentagrophytes FF7, and Trichophyton rubrum FF5 were used as test organisms. The yeast cell suspensions were prepared in 0.85% NaCl with Tween 20 and the cell density adjusted at 20-250 conidia/square (hemocytometer) for A. fumigatus and 20-60 conidia/square for dermatophytes. To achieve an inoculum size of 0.4-5 × 10⁵ CFU/mL for A. fumigatus and 1-3 × 10⁶ CFU/mL for dermatophytes, the spore suspensions were diluted with RPMI 1640. The solutions of the extracts and compounds 1 and 2 were prepared in DMSO and added to the cell suspensions in order to obtain test concentrations ranging from 16 to 256 μg/mL. In addition, reference antifungal compound, fluconazole was used as standard antifungal drug. Controls without crude extracts and isolated compounds, as well as sterility and DMSO control wells, were also included. The plates were incubated aerobically at 35°C ± 0.2°C for 24h/48h in atmospheric humidity (C. albicans and A. fumigatus) and at 25°C ± 0.2°C for 5 days in atmospheric humidity for dermatophytes. To evaluate the MLCs, 20 μL samples were taken from each negative well and the first well exhibiting growth (serve as a growth control), after MIC reading, spotted onto SDA (Sabouraud Dextrose Agar) plates and incubated at 35°C ± 0.2°C 24h/48h (C. albicans and A. fumigatus) or at 25°C ± 0.2°C for 7 days (dermatophytes).

Antibacterial assays

A broth microdilution method, based on CLSI reference protocol M7-A7, was used to determine the MIC and MLC of the crude extracts and the isolated metabolites [35]. Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29253, and Methicillin Resistant Staphylococcus aureus (MRSA), clinical isolate, were used as test organisms. The cell suspensions were prepared in 0.85% NaCl and the transmittance of cell density adjusted to that produced by a 0.5 McFarland standard to achieve an inoculum size of 10⁵ CFU/mL, the cell suspensions were diluted with MHB (Muller-Hinton Broth). The stock solutions of the extracts, and compounds 1 and 2 were prepared in DMSO and further diluted in serial two-folds with MHB to final concentrations ranging from 16 to 256 μg/mL. In addition, gentamicin was used as standard antibacterial drug and controls without crude extracts and isolated compounds, as well as sterility and DMSO control wells, were also included. The plates were incubated aerobically at 35°C ± 0.2°C for 16/20h in atmospheric humidity. To measure the MLCs, 20 μL samples were taken from each negative well and the first well exhibiting growth (serve as a growth control), after MIC reading, spotted onto MHA (Muller-Hinton Agar) plates and incubated at 35°C ± 0.2°C for 24h.

Results and Discussion

The structures of the compounds were established mainly by 1D (¹H and ¹³C NMR) data as well as comparison of their NMR data with those reported in the literature.
chemical shift values of compound 1 were compatible with those of
isoucosterol [36,37]. Isoucosterol is a common phycoester and it has
been previously reported from several macroalgae [38].

The 1^1^C NMR spectrum of compound 2 displayed thirteen carbon
signals which were categorized, by DEPT and HSQC experiments
(Table 1), as one carbonyl of a conjugated ketone (δ 197.5), two
methine sp^2 (δ 132.6, 142.4), two oxoquaternary sp^2 (δ 69.4, 67.3),
one quaternary sp^3 (δ 35.1), one oxymethine sp^3 (δ 64.0), two methylene
sp^3 (δ 40.5, 46.6) and four methyl (δ 19.8, 24.9, 28.3, 29.3) carbons. The
COSY spectrum displayed cross peak between the olefinic protons at δ
7.03 d (J= 15.6) and δ 6.29 d (J= 15.6), confirming the presence of a
trans double bond. That this trans double bond was part of the 3-oxo-
butenyl side chain which linked to C-6 of the cyclohexenol moiety was
supported by the HMBC correlations of the methyl protons signals at δ
1.19s (δ C 127.8) to the carbon signals at δ C 138.4, 141.6, 144.7, 146.5, two methine
sp^2 (δ 125.8, 128.7) and two methyl (δ 19.6, 20.2) carbons. The HMBC spectrum
displayed cross peaks of the amide proton signals at δ
H 5.96, brt, (J= 15.7 Hz) to C-9 (δ C 138.4, 144.7, C-10 (δ C 141.6) and CH3-15 (δ C 19.6),
the proton signal at δ 7.71s (δ 125.9) showed HMBC correlations to C-5 (δ C 138.4), C-7 (δ C 138.9) and CH1-16 (δ C 20.2). Thus, the structure of compound 5 is 7, 8-dimethylalloxazine or commonly known as
lumichrome. Lumichrome, a derivative of the vitamin riboflavin, has
been purified and chemically identified from culture filtrates of the alga
Chlamydomonas as a Quorum Sensing (QS) signal-mimic compound
capable of stimulating the Pseudomonas aeruginosa LasR QS receptor
[40]. Bacteria, plants, and algae commonly secrete riboflavin or
lumichrome, raising the possibility that these compounds could serve
as either QS signals or as interkingdom signal mimics capable of
manipulating QS in bacteria with a LasR-like receptor [40].

The effect of the extracts of *U. rigida* and *G. microdon* (before and
after removal of the chlorophylls), isoucosterol (1) and (7E)-3β-hydroxy-5α,
6α-epoxymegastigmane (2) were evaluated for their capacity to inhibit in vitro
growth of three tumor cell lines: MCF-7, NCI-H460 and A375-C5. The results showed that the crude
extracts were moderately active against the three cell lines; however,
isoucosterol (1) was found to be less active than the crude extract of
U. rigida, while (7E)-3β-hydroxy-5α,6α-epoxymegastigmane (2) was inactive (Table 4).

The crude methanol extracts of *U. rigida* and *G. microdon* (before and
after removal of the chlorophylls) were also evaluated for their
antifungal activity against *C. albicans, A. fumigatus*, and dermatophytes
E. floccosum, *M. canis*, *M. gypseum*, *T. mentagrophytes*, and *T. rubrum*. The results showed that removal of the chlorophylls caused an increase
in antifungal activity of *U. rigida* against *T. rubrum*, *T. mentagrophytes*,
M. canis, and *E. floccosum*. Whereas *T. rubrum* showed higher
susceptibility, *G. microdon* showed more resistance (MIC higher than
256 μg/mL). Removal of the chlorophylls also caused an increase in
the activity of *G. microdon* crude extract against *T. rubrum* and *E.
floccosum*. It was found that *M. canis* showed more susceptibility
while *T. mentagrophytes* and *M. gypseum* showed higher resistance.
Interestingly, both isoucosterol (1) and (7E)-3β-hydroxy-5α,6α-
epoxymegastigmane (2) were inactive against all the tested organisms
(Table 5).

Table 4: Growth inhibitory effect crude methanol extracts of *U. rigida* and *G. microdon*, compounds 1 and 2, in different cell lines.
control was performed by testing the inhibitory activity of gentamicin against the lowest concentration of the crude extract or compound causing bacterial death. All experiments were performed in duplicate and repeated at least three times. Quality control for the young researcher scholarship under the PTDC/MAR/100482/2008 project. LA0015/2011 and QOPNA-PEst-C/QUI/UI0062/2011. Madalena Silva thanks FCT Ciência e a Tecnologia (FCT), COMPETE, QREN, FEDER, MCTES, and partially showed activity against all the strains of tested organisms (Table 6).

-3β-hydroxy-5α,6α-epoxymegastigmane (2)

E isofucosterol (1) nor 7(1)

and that sensitivity increases removal of the chlorophylls showed a weak activity against S. aureus, however removal of the chlorophylls caused S. aureus, and MRSA. The results (Table 6) showed that the crude methanol extract of U. rigida (before removal of chlorophylls) did not show any activity against the test bacteria; however removal of the chlorophylls showed a weak activity against S. aureus and that sensitivity increases against MRSA. Interestingly, neither isofucosterol (1) nor 7(E)-3β-hydroxy-5α,6α-epoxymegastigmane (2) showed activity against all the strains of tested organisms (Table 6).

Acknowledgments

This work was financially supported by the project "Bioactive products in marine alga of Azores (PTDC/MAR/100482/2008)". Through Fundação para a Ciência e a Tecnologia (FCT), COMPETE, QREN, FEDER, MCTES, and partially supported by CEDREM-PEst-OE/UE/UI0400/2011, Project "Pest-C/MAR/ LA0015/2011 and GQFNP/Peat-C/QUI/UI0062/2011, Madalena Silva thanks FCT for the young researcher scholarship under the PTDC/MAR/100482/2008 project.

References

1. Kijooa A, Sawangwong P (2004) Drugs and Cosmetics from the Sea. Mar Drugs 2: 73-82.
2. Newman DJ, Cragg GM (2004) Marine Natural Products and Related Compounds in Clinical and Advanced Preclinical Trials. J Nat Prod 67: 1216-1238.
3. Simmons TL, Andriananalo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4: 333-42.
4. Folmer F, Jaspars M, Dicato M, Diederich M (2008) Marine natural products as targeted modulators of the transcription factor NF-kappaB. Biochem Pharmacol 75: 603-617.
5. Boopathy NS, Kathiresan K (2010) Anticancer Drugs from Marine Flora: An overview. J Oncology 1-18.
6. Wijesekara I, Pangestuti R, Kim SK (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84: 14-21.
7. León-Cisneros K, Tittley I, Terra MR, Nogueira EM, Neto Al (2012) The marine algal (seaweed) flora of the Azores: 4, further additions. Life Mar Sci 29: 25-32.
8. Neto AI (2005) Observations on the biology and ecology of selected macroalgae from the littoral of São Miguel (Azores). Bot Mar 43: 229-242.
9. Wallenstein FM, Couto RP, Amaral AS, Wilkinson M, Neto AI, et al. (2009) Baseline metal concentrations in marine algae from São Miguel (Azores) under different ecological conditions - Urban proximity and shallow water hydrothermal activity. Mar Pollut Bull 58: 424-455.
10. Dhingraulk V, Verlec XN (2009) Southern Ocean seaweeds: A resource for exploration in food and drugs. Aquacultures 287: 229-242.
12. Paiva LS, Patarraf RF, Neto AJ, Lima EMC, Baptista JAB (2011) Antioxidant activity of macroalgae from the Azores. Life Mar Sci 29: 1-6.
13. Shahabi EA (2011) Algae as promising organisms for environment and health. Plant Signal Behav 6: 1338-1350.
14. Gupta S, Abu-Ghannam N (2011) Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Tech 22: 315-326.
15. Khanavi M, Gheidariaro R, Sadati N, Ardekani MRS, Nabavi SMB, et al. (2012) Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line. Pharmacogn Mag 8: 60-64.
16. Medeiros J, Macedo M, Constância J, LoDuca J, Cunningham G, et al. (1999) Potential anticancer activity from plants and marine organisms collected in the Azores. Açoreana 9: 55-61.
17. Neto AI, Tittley I, Raposeiro P (2005) Flora Marinha do Litoral dos Açores [Rocky Shore Marine Flora of the Azores]. Secretaria Regional do Ambiente e do Mar, Açores.
18. Toskas e do Mar, Açores. [Rocky Shore Marine Flora of the Azores]. Secretaria Regional do Ambiente e do Mar, Açores.
19. Flodin KM, Hwang IK, Park JK, Boo SM (2011) A new Agarophyte species Gelidium microdon. Oceanography 1: 102.
20. Silva MA, Assef GM, Faure R (1989) Gelidene, a New Polyhalogenated diterpenoids of Gelidium microdon. Phytochemistry 28: 380-384.
21. Silva VM, Lopes WA, Andrade JB, Veloso MCC, Santos GV, et al. (2007) Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum delile and their antibacterial activity. J Nat Prod 70: 1807-1823.
22. Almeida AP, Dethoup T, Singburaudom N, Lima, R, Vasconcelos MH, et al. (2010) The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurolum cristatum and its secondary metabolites. J Nat Pharm 1: 25-29.
23. Renn DV (1994) Agar and agarose: indispensable partners in biotechnology. Ind Eng Chem Prod Res Dev 33: 17-21.
24. Flodin C, Whitfield FB (1999) 4-Hydroxybenzoic acid: a likely precursor of 2,4,6-tribromophenol in Ulva lactuca. Phytochemistry 51: 249-255.
25. Chakraborty RD, Lipton AP, Raj RP, Viajayan KK (2010.2) Guaianes with free radical scavenging effects of edible brown seaweeds. Trends Food Sci Tech 22: 315-326.
26. Khanavi M, Gheidariaro R, Sadati N, Ardekani MRS, Nabavi SMB, et al. (2012) Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line. Pharmacogn Mag 8: 60-64.
27. Medeiros J, Macedo M, Constância J, LoDuca J, Cunningham G, et al. (1999) Potential anticancer activity from plants and marine organisms collected in the Azores. Açoreana 9: 55-61.
28. Gerwick WH (1993) Carbocyclic Oxylinps of Marine Origin. Chem Rev 93: 1807-1823.
29. Kijoka A, Bessa J, Pinto MMM, Anantachoke C, Silva AMS, et al. (2002) Polyoxymethylenecyclohexene derivatives from Ellipheopsis cherevensis. Phytochemistry 59: 543-549.
30. Kovganko NV, Kashkhan ZN, Borisov EV (2000) 13C NMR Spectrum of Functionality Substituted 3β-Chloroderivatives of Cholesterol and β-Sitosterol. Chem Nat Compd 36: 595-598.
31. Rosa S, Giulio A, Tommonaro G (1997) Triterpenoids and Sterol Glucosides from cell cultures of Lycopersion esculentum. Phytochemistry 44: 861-864.
32. D’Abrrosca B, DellaGreca M, Fiorentino A, Monaco P, Oriano P, et al. (2004) Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum delile. Phytochemistry 65: 497-505.
33. Almeida AP, Dethoup T, Singburaudom N, Lima, R, Vasconcelos MH, et al. (2010) The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurolum cristatum and its secondary metabolites. J Nat Pharm 1: 25-29.
34. Pinto E, Alonso C, Duarte S, Vale-Silva L, Costa E, et al. (2011) Antifungal activity of xanthones: evaluation of their effect on ergosterol biosynthesis by high-performance liquid chromatography. Chem Biol Drug Des 77: 212-222.
35. Lopes G, Sousa C, Silva LR, Pinto E, Andrade PB, et al. (2012) Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions? PLoS one 7: e31145.
36. Seo S, Uomori A, Yoshimura Y, Seto H, Ebizuka Y, et al. (1990) Biosynthesis of isofucosterol from [2-13C2H3] acetate and [1,2-13C2] acetate in issue cultures of Physalis peruviana - the Stereochemistry of the hydroxide shift C24-C25. J Chem Soc, Perkin Transactions 1: 105-109.
37. Kodai T, Umebayashi K, Nakatani T, Ishiyama K, Noda N (2007) Compositions of royal jelly II. Organic acid glycosides and sterols of royal jelly of honeybee (Apis mellifera). Chem Pharm Bull 55: 1528-1531.
38. Mahendran M, Sirisena DM (1980) Sterols of some Sri Lankan Marine Algae. J Nat Sci Council Sri Lanka 8: 69-74.
39. Ren Y, Shen L, Zhang D-W, Dai S-J (2009) Two new sesquiterpenoids from Solanum lyratum with cytotoxic activities. Chem Pharm Bull 57: 408-410.
40. Rajamani S, Bauer WD, Robinson JB, Farrow JM 3rd, Pesci EC, et al. (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant Microbe Interact 21: 1184-1192.