RESEARCH ARTICLE

EVALUATION OF TWO METHODS OF GERMPLASM COLLECTION IN MEXICO SOUTHEAST

José Vidal Cob-Uicab¹, Gilbert José Herrera-Cool¹, Carlos Román Castillo-Martínez², Bartolo Rodríguez-Santiago³, Xavier García-Cuevas¹ and Refugio Ramón Rivera-Leyva⁴

1. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP); Carretera Chetumal-Bacalar km 25 Campo experimental Chetumal, 77963, Quintana Roo, México.
2. INIFAP, Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF); avenida Progreso No. 5, 04010, Ciudad de México, México.
3. INIFAP, Centro de Investigación Regional Sureste; calle 6 No. 398 X 13, Avenida Correa Rachó, Col. Díaz Ordaz, 97130, Mérida, Yucatán, México.
4. INIFAP, Campo experimental Mocochá; Antigua Carretera Mérida-Motul km. 25.5, 97454, Yucatán, México.

Abstract

The implementation of good farming practices in seed collecting is fundamental key to guarantee the physiological and genetic quality of forest seeds. The objective of this work was to evaluate the implementation of two methods to collect seeds from Cedrela odorata L. to guarantee seeds of high physiological quality. Seeds from 40 superior phenotypically trees of Cedrela odorata L. in Yucatan Mexico peninsula region were collected from March to May 2019. The collect methods applied in this research were the traditional collect and the climb trees. The physiological quality of seeds was evaluated by germination and tetrazolium test. The laboratory analysis confirmed 88% of seeds pure with 94% of germination in climbing trees method, in contrast in the traditional method showed 66% of seeds pure with 72% of germination. The results by conventional germination it was not showed significative statistical differences. These results are part of novel contributions in collect methodology using tools to climb on trees which to be complement of superior phenotypically trees selection, contribute comprehensively to obtain physiological and genetic quality forest seeds.

Introduction:-

Genetic quality seed collect and production are activities not common which limits the development and quality of commercial forest plantations. Those plantations usually require continue and abundant supply of seeds with high yielding (Fuentes et al., 2009) and the best traits (Holliday et al., 2017). Furthermore, introduction of forest plants in some areas under completely different environment conditions to require by each species could cause development of plagues and diseases (Vanegas, 2016), alteration in trophic relationships (Liebhold et al., 2017) and loss of biodiversity (Fernández-Pérez et al., 2013). Seeds are the principal reproductive organ in the most of superior land plants, those are product of biologic processes which start with flowering and finish with fruit ripening, besides represent a remarkable evolutionary advance in plant sexual reproduction (Coen and Magnani, 2018) and contain genetic variability essential source to supply a forest genetic improvement program (Louwaars, 2018).

Corresponding Author:- José Vidal Cob-Uicab
Address:- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Carretera Chetumal-Bacalar km 25campo Experimental Chetumal, 77963, Quintana Roo, México.
Consequently, genetic quality of seeds implies the precise knowledge of parental source and the individual phenotypic characteristics, which are essential to design effective strategies in plant selection breeding (Zhang et al., 2020; Thomas et al., 2017). One of the important factors to obtain quality seeds is the collect method. Yougentobet al. (2016) mentioned that seed samples are required for a wide range of research and management activities, however obtaining these materials from the branches of tall trees can be extremely difficult (Barker and Pinard, 2001). The production and utilization of high-quality seeds are the basic keys for success in plant forest breeding programs also are requisites for control of seed industry quality (França-Neto and Krzyzanowski, 2019). On the other hand, to sure that seeds are of quality with high germination rate is necessary to apply tools that permit to identify defective and unviable seeds. This kind of analysis it is necessary to obtain information about physiological and biological quality of seeds (Xia et al., 2019). One of the most traditional tests for analyzing seed quality is the tetrazolium test, whose effectiveness is known because provide information of physiological characteristics of seeds (Salazar Mercado et al., 2020). Tetrazolium test indirectly determines the respiratory activity in the cells of seed tissues (França-Neto and Krzyzanowski, 2019) and is a widely used method to evaluate the quality of seeds in different species (França-Neto and Krzyzanowski, 2019; Pereira et al., 2019; Belniaki et al., 2019; Oliveira et al., 2016; Espitia-Camacho et al., 2017).

The objective of this research was to evaluate the implementation of two methods to collect seeds from superior trees of Cedrela odorata L. with the purpose to optimize the process to select phenotypic quality germplasm from trees and provide sources to commercial forest plantations in tropic.

Materials and Methods:

Seed collect location
The study was carried out in tree of Cedrela odorata L. distributed in Mexico, Yucatán peninsula region.

Trees selection
Evaluation and selection of trees were by individual assessment method (Ipinza, 1998). This method is based in evaluation and registration of two groups of variables. The quantitative variables were total height (m), height of clean stem (m) and normal diameter (m). Qualitative variables were shaft shape (straight = 6, slightly crooked = 4, crooked = 2, very crooked = 1), forks (none = 6, top 1/3 = 4, middle 1/3 = 2, bottom 1/3 = 1), branch insertion angle (60° to 90° = 6, 30° to 60° = 4, 0° to 30° = 2), crown shape (circular = 6, irregular circular = 5, half circular = 4, less than half a circle = 3, few branches = 2, only sprouts = 1), position within the canopy (dominant = 6, codominant = 4, intermediate = 2, suppressed = 1), health (no pests = 7, bark cutters = 6, borers = 5, defoliators = 4, parasitic plants = 3, fungi = 2, physical damage = 1) and cup vigor (good = 6, fair = 4, bad = 2). Data obtained from evaluation were added and then defined in three categories: 1= from 33 to 49 points, 2= from 25 to 32 points and 3= less than 25 points. Finally, the trees in category 1 were selected to harvest the seeds. The equipment used to measure were clinometer and diametric tape, furthermore, a global positioning system to georeference each individual.

Collect Methods
The seed collect from 40 previously selected Cedrela odorata L. trees were carried out from March to May 2019. Two methods of collect were implemented in field: 1. - traditional method and 2. - Tree climbing method. Traditional method consisted in collecting inferior phenotypic trees (short trees with a high number of branches) without tools. This method was carried out in natural stands and unknown geographic origin. The tree climbing method consist in collect seeds with tools (climbing harness, climbing rope and slings) to rise to the top of superior phenotypically trees (sturdy, straight and low-branching trees).

Seeds analysis
Analysis of seeds were carried out in Forest Biotechnology Laboratories located in Forest Biotechnology Laboratory of the National Center for Disciplinary Research in Conservation and Improvement of Forest Ecosystems (CENID/COMEF, by its acronym in Spanish) which belongs to National Institute of Forestry, Agricultural and Livestock Research (INIFAP, by its acronym in Spanish). Seeds were evaluated in laboratory considering number and weight of seeds, viability test with tetrazolium, germination percentage and humidity contain per each seed lot accord International Seed Testing Association (ISTA, 2014) standards.
Seed variability test with tetrazolium

Seeds were immersed in distilled water for 24 hours, then a transversal cut with a scalpel was carried out in embryos to separate the seed coat and reserve tissues. Posteriorly, embryos were placed in test tubes with distilled water and 2, 3 and 5 of 1% of triphenyltetrazolium (Merck) taking care that solution covers all seeds. The test tubes were placed in an incubation room at 30 ± 1°C of temperature in darkness condition. Finally, solution was drained, and seeds were evaluated with a stereomicroscope (Vista Vision®).

Statistical analysis

Variance analysis was carried out in all experiments and significant differences were determined according to the Tukey test (p≤0.05). The software used for all analysis was the statistic software SAS (Statistical Analysis System, 1999).

Results and Discussion:

Analysis of method type

Laboratory analysis of seeds confirmed 88% of purity and 94% of germination in seeds collected by climbing trees, in contrast the traditional method showed 66% of purity and 62% of germination. The variance analysis showed significant statistical differences (p ≤ 0.05) between study factors and germination percentage of seeds. Tukey test in collect method of tree climbing factor showed significant statistical differences (Table 1).

Table 1: Comparative test between percentage average of purity and Cedrela odorata L. seeds germination generated by Tukey test.

| Collect method    | Variables |          |          |          |
|-------------------|-----------|----------|----------|----------|
|                   | Purity    | Germination | Trees    |
|                   | percentage| percentage| number   |
| Traditional       | 66.0⁰     | 72.0⁰     | 40       |
| Tree climbing     | 88.0⁰     | 92.0⁰     | 40       |

Different letters indicate significant statistical differences according to Tukey test (p ≤ 0.05).

This difference could be that seed collector realized this activity with tools to get up on treetop (Figure 1) which helped it directly collect and obtain better visibility to select seeds with the best physiological characteristics, health, coloration, size, maturation and weight.

Size and weight of seeds were characteristics that showed the best association with germination percentage which were 92% (Table 1). This response could be attributable to high contain of carbohydrates inside of seed endosperm which contain high availability of nutrients and energy to stimulate the germination, emergency and seed surviving (Khurana and Singh, 2001). It is fundamental to consider the interaction with other factors, for instance: genetic quality, physiological maturity of trees and seeds and climate conditions of fruit development (Ribeiro et al., 2012) which could influence the capacity of seeds to develop and obtain high germination rates. Donoso et al. (1999) mentioned that fruits and seeds should be collected before its dispersion. This is accord of our results due to that this work showed the efficacy of tree climbing collect method as a strategy which permitted obtain vigorous, health and better condition seeds with high germination percentage (Figure 1).
Figure 1:- Fruits and seeds collected from superior phenotypicallytrees of Cedrela odorata L. by climbing method. a. - collect brigade starting the climb process, b. - fruits with optimal characteristics for collecting and c. - vigorous, healthy and physiological maturity fruits.

In contrast, traditional collect method is used by collectors to collect seeds with unknown origin and uncontrol of select the trees. This method is usually applied by collectors due to its easy processing and the high quantity of fruits harvested. The only limiting is that collectors do not consider the seed parameters quality (Table 1)

Tetrazolium test
No coloration, scattered pale pinks and intense pink color were observed in tetrazolium test. Embryos which showed more than three quarters with an intense pink color were determined as viable, contrary, embryos not viable showed a pale red or white coloration (ISTA, 2014) (figure 2).
These results indicated that concentration of tetrazolium and tissue exposition time permitted the best stain because of the oxide-reduction reactions in cell of embryos.

Germination test
Germination test in germinative chamber showed plant averages germinated between 72 and 92 %. Variance analysis confirmed that results obtained by germination conventional test was not showed significative statistical differences. On the other hand, unviable seeds presence could be to degradation in cellular membranes because of peroxidation of lipids and peroxidation no enzymatic (Ravikumar et al., 2002). Stain intensity of embryos confirmed that tetrazolium concentration of 1% and stain time of 1.5 hours were enough to evaluate the seed quality. Lima et al. (2010) mentioned that first hours of water absorption of seeds is fundamental because of enzymatic activity which is related with final color.

Conclusions:-
Optimization of a collect methodology based in climbing of superior phenotypically trees, showed to be effective to obtain vigorous seeds of genetic and physiological quality. The characteristics that showed the best association with germination percentage were seed size and weight. Nevertheless, it is fundamental to consider the interaction of other factors as: genetic quality and physiological maturity of trees and seeds. This research provides a fundamental technology to supply physiological and genetical quality seeds for commercial forest plantations.

Acknowledgments:-
This work was supported by Fondo Sectorial para la Investigación, el Desarrollo y la Innovación Tecnológica Forestal CONACyT-CONAFOR with project number: 275052.

Declaration of interests
All authors declare that they have not conflicts of interest to disclose.
References:
1. Barker, A. and Pinard, M.A. (2001). Forest canopy research: sampling problems, and some solutions. Plant Ecology, 153, 23-38. Doi: https://doi.org/10.1007/978-94-017-3606-0 3
2. Belniakí, A. C., Michelon, T. B., Vieira, E. S. N., and Panobianco, M. (2020). Rapid results of peach palm seed viability: a methodological proposition for the tetrazolium test. Journal of Seed Science, 42. Doi: https://doi.org/10.1590/2317-1545v42234727
3. Coen, O., and Magnani, E. (2018). Seed coat thickness in the evolution of angiosperms. Cellular and Molecular Life Sciences, 75(14), 2509-2518. Doi: https://doi.org/10.1007/s00018-018-2816-x
4. Donoso, C., Donoso, P., González, M. and Sandoval, V. (1999). Los bosques siempreverdes. Silvicultura de los bosques nativos de Chile. ed. by C. Donoso and A. Lara. Editorial Universitaria, Santiago, Chile.
5. Espitia-Camacho, M., Araméndiz-Tatis, H., and Cardona-Ayala, C. (2017). Viability, morphometric, and anatomical characteristics of Cedrela odorata L. and Carinianapryformis Miers seeds. Agronomía Mesoamericana, 28(3), 605-617. Doi: https://doi.org/10.15517/ma.v28i3.26287
6. Fernández-Pérez, L., Ramírez-Marcial, N. and González-Espinosa, M. (2013). Reforestación con Cupressus sutchitanica y su influencia en la diversidad del bosque de pino-encino en Los Altos de Chiapas, México. Botanical Sciences, 91(2), 207-216.
7. França-Neto, J. D. B., and Krzyzanowski, F. C. (2019). Tetrazolium: an important test for physiological seed quality evaluation. Journal of Seed Science, 41(3), 359-366. Doi: http://dx.doi.org/10.1590/2317-1545v41n323104
8. Fuentes, F.F., Martinez, E.A., Hinrichsen, P.V., Jellen, E.N.andMaughan, P.J. (2009). Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Wild.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics, 10(2), 369-377. Doi: https://doi.org/10.1007/s10592-008-9604-3
9. Holliday, J. A., Aitken, S. N., Cooke, J. E., Fady, B., González-Martínez, S. C., Heuertz, M., and Plomion, C. (2017). Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Molecular ecology, 26, 706–717. Doi: https://doi.org/10.1111/mec.13963
10. ISTA. (2014). International rules for seed testing. Editorial ISTA.
11. Ipinza, R., Gutiérrez, B., and Emhart, V. (1998). Mejora genética forestal operativa. Valdivia, Chile. Universidad Austral de Chile, Facultad de Ciencias Forestales. Doi: 10.13140/RG.2.1.3815.0884
12. Khurana, E. and Singh, J. (2001). Ecology of tree seed and seedlings: Implications for tropical forest conservation and restoration. Current Science, 80(6), 748-757. Doi: https://www.jstor.org/stable/24105660
13. Liebhold, A. M., Brockerhoff, E. G., Kalisz, S., Nunez, M. A., Wardle, D. A., and Wingfield, M. J. (2017). Biological invasions in forest ecosystems. Biological Invasions, 19(11), 3437-3458. Doi: https://doi.org/10.1007/s10530-017-1458-5
14. Lima, L. B. D., Pinto, T. L. F. and Novembre, A. D. D. L. C. (2010). Avaliação da viabilidade e do vigor de sementes de pepino pelo teste de tetrazólio. Revista Brasileira de Sementes, 32(1), 60-68. Doi: https://doi.org/10.1590/S0101-3122201000100007
15. Louwaars, N. P. (2018). Plant breeding and diversity: A troubled relationship?. Euphytica, 214(7), 1-9. Doi: https://doi.org/10.1007/s10681-018-2192-5
16. Oliveira, F. N. D., Torres, S. B., Noguéira, N. W., and Freitas, R. M. O. D. (2016). Viability of Simiragardneriana M.B. Barbosa & Peixoto seeds by the tetrazolium test. Journal of Seed Science, 38(1), 7-13. Doi: https://doi.org/10.1590/2317-1545v38n1153565
17. Pereira, D. F., Bugatti, P. H., Lopes, F. M., Souza, A. L., and Saito, P. T. (2019). Contributing to agriculture by using soybean seed data from the tetrazolium test. Data in brief, 23, 103652. Doi: https://doi.org/10.1016/j.dib.2018.12.090
18. Ravikumar, R., Ananthakrishnan, G., Girija, S. y Ganapathi, A. (2002). Seed viability and biochemical changes associated with accelerated ageing in Dendrocalamus strictus seeds. BiolPlant, 45,153-156. Doi: https://doi.org/10.1023/A:1015106203273
19. Ribeiro, C. A., Costa, M., de Senna, D.S., Caliman, J.P. (2012). Fatores que afetam a germinação das sementes e a biomassa de plantulas de Tabebuia heptaphylla. Floresta, 42(1),161–168. Doi: http://dx.doi.org/10.5380/rf.v42i1.26312
20. Salazar Mercado, S. A., Caleno, J. D. Q., and Suarez, J. P. R. (2020). Optimization of the tetrazolium test in three species of orchids of the Andean forest. Australian Journal of Crop Science, 14(5), 822-829. Doi: https://doi.org/10.21475/ajcs.20.14.05.p2276
21. Statistical Analysis System (SAS). (1999). Institute Inc. 1998th version. (Software of computer). Institute Inc. Cary, NC, USA.
22. Thomas, E., Alcazar, C., Moscoso Higuita, L. G., Osorio, L. F., Salgado-Negret, B., Gonzalez, M., ... and Ramirez, W. (2017). The importance of species selection and seed sourcing in forest restoration for enhancing adaptive potential to climate change: Colombian tropical dry forest as a model. Secretariat of the Convention on Biological Diversity.

23. Vanegas, L.M. (2016). Manual de mejores prácticas de restauración de ecosistemas degradados, utilizando para reforestación solo especies nativas en zonas prioritarias. Editorial Conafor-Conabio.

24. Xia, Y., Xu, Y., Li, J., Zhang, C., and Fan, S. (2019). Recent advances in emerging techniques for non-destructive detection of seed viability: A review. Artificial Intelligence in Agriculture, 1, 35-47. Doi:https://doi.org/10.1016/j.aiia.2019.05.001

25. Yougentob, K. N., Zdenek, C., and van Gorsel, E. (2016). A simple and effective method to collect leaves and seeds from tall trees. Methods in Ecology and Evolution, 7(9), 1119-1123. Doi: https://doi.org/10.1111/2041-210X.12554

26. Zhang, H., Zhang, Y., Zhang, D., Dong, L., Liu, K., Wang, Y., and Zhao, X. (2020). Progeny performance and selection of superior trees within families in Larixolgensis. Euphytica, 216(4), 1-10. Doi:https://doi.org/10.1007/s10681-020-02596-9.