Preference of a Polyphagous Mirid Bug, *Apolygus lucorum* (Meyer-Dür) for Flowering Host Plants

Hongsheng Pan¹, Yanhui Lu¹, Kris A. G. Wyckhuys², Kongming Wu¹

¹ State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China, 2 International Center for Tropical Agriculture CIAT-Asia, Hanoi, Vietnam

Abstract

Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most important herbivores in a broad range of cultivated plants, including cotton, cereals, vegetables, and fruit crops in China. In this manuscript, we report on a 6-year long study in which (adult) *A. lucorum* abundance was recorded on 174 plant species from 39 families from early July to mid-September. Through the study period per year, the proportion of flowering plants exploited by adult *A. lucorum* was significantly greater than that of non-flowering plants. For a given plant species, *A. lucorum* adults reached peak abundance at the flowering stage, when the plant had the greatest attraction to the adults. More specifically, mean adult abundance on 26 species of major host plants and their relative standard attraction were 10.3–28.9 times and 9.3–19.5 times higher at flowering stage than during non-flowering periods, respectively. Among all the tested species, *A. lucorum* adults switched food plants according to the succession of flowering plant species. In early July, *A. lucorum* adults preferred some plant species in bloom, such as *Vigna radiata, Gossypium hirsutum, Helianthus annuus* and *Chrysanthemum coronarium*; since late July, adults dispersed into other flowering hosts (e.g. *Ricinus communis, Impatiens balsamina, Humulus scandens, Ocimum basilicum, Agastache rugosus* and *Coriandrum sativum*); in early September, they largely migrated to flowering *Artemisia* spp. (e.g. *A. argyi, A. lavandulaeolia, A. annua* and *A. scoparia*). Our findings underscore the important role of flowering plays in the population dynamics and inter-plant migration of this mirid bug. Also, our work helps understand evolutionary aspects of host plant use in polyphagous insects such as *A. lucorum*, and provides baseline information for the development of sustainable management strategies of this key agricultural pest.

Citation: Pan H, Lu Y, Wyckhuys KAG, Wu K (2013) Preference of a Polyphagous Mirid Bug, *Apolygus lucorum* (Meyer-Dür) for Flowering Host Plants. PLoS ONE 8(7): e68980. doi:10.1371/journal.pone.0068980

Editor: Murad Ghanim, Volcani Center, Israel

Received April 6, 2013; **Accepted** June 8, 2013; **Published** July 10, 2013

Copyright: © 2013 Pan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the National Basic Research Program of China (No. 2012CB114104), and the Special Fund for Agro-scientific Research in the Public Interest (201103012), the National Natural Science Funds (No. 31222046). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kmwu@ippcaas.cn

Introduction

Agricultural landscapes regularly consist of crop fields interspersed with uncultivated habitats, thus providing abundant food resources for generalist phytophagous insects [1,2]. Change in the phenology of certain host or food plants results in a constantly changing mosaic of habitats across the agro-landscape [1,3]. Most polyphagous plant-feeding insects ephemerally exploit suitable host plants and habitats, but equally engage in host plant switching to locate new, more suitable hosts [1,4,5]. One advantage of such periodic host switching is that it permits continuous exploitation of a nutrient-diverse diet, thereby improving survival and reproduction [1,6,7]. Additionally, polyphagous insect herbivores usually exhibit clear preferences for particular plant species or plant growth stages [7,9,10,11]. An in-depth assessment of host plant preferences of polyphagous insects is central to understanding their seasonal dynamics on a particular plant species and their movement between plants and habitats across the agricultural landscape.

Many polyphagous insects, such as butterflies and moths (Lepidoptera), show great preference for flowers [7,12,13,14]. Many species of mirid bugs (Hemiptera: Miridae) prefer to feed on the relatively energy-rich plant tissues in flowers and buds [15], giving this insect group the common name “flower bugs” [16]. For example, *Lygus lineolaris* (Palisot de Beauvois) typically feeds on leaf buds and reproductive structures such as flower buds and flowers [17]. This mirid bug usually tracks a succession of flowering plant species, with plant colonization initiating at the formation of floral buds or flowers [18], and maximum abundance attained during bloom [19]. *Lygus hesperus* Knight often attained its peak of adult abundance in alfalfa, when that crop was in the blooming stage [11]. Similar phenomena already have been described in many other mirid bugs [15].

The mirid bug *Apolygus lucorum* (Meyer-Dür) (Hemiptera: Miridae) has historically been regarded as a minor pest in cotton and many other crops in China [20,21]. However, the widespread adoption of transgenic Bt (*Bacillus thuringiensis*) cotton and subsequent reduction of insecticide sprays in Bt cotton has allowed *A. lucorum* to reach outbreak levels in cotton and several other agricultural crops [22]. *A. lucorum* adults and nymphs feed on vegetative and reproductive tissues of their host plants, causing stunted growth and the abscission or mummification of leaves, flowers and fruits [20]. As a polyphagous species, recorded from at least 242 different host species in 49 different families, *A. lucorum* has been found to switch intensively between habitats and host plants over time [20,23,24]. As early as 1958, *A. lucorum* were...
Table 1. Host plant species assayed during 2007–2012.

Family	Plant species	2007	2008	2009	2010	2011	2012
Amaranthaceae	Amaranthus retroflexus L.	+					
Amaranthaceae	Achyranthes bidentata Blume	+	+	+	+	+	+
Amaranthaceae	Amaranthus tricolor L.	+	+	+	+	+	+
Amaranthaceae	Amaranthus hypochondriacus L.	+					
Amaranthaceae	Celosia crispata L.	+	+	+	+	+	+
Amaranthaceae	Amaranthus caudatus L.	+					
Amaranthaceae	Gomphrena globosa L.	+					
Apocynaceae	Catharanthus roseus (L.) G. Don	+					
Araceae	Arisaema erubescens (Wall.) Schott	+					
Asclepiadaceae	Telosma cordata (Burm. f.) Merr.	+	+				
Asclepiadaceae	Cynanchum thesioides (Freyn) K. Schum.	+					
Asclepiadaceae	Metaplexis japonica (Thunb.) Mak.	+					
Balsaminaceae	Impatiens balsamina L.	+	+	+	+	+	+
Basellaceae	Basella rubra L.	+					
Boraginaceae	Echium vulgare L.	+					
Boraginaceae	Borago officinalis L.	+					
Boraginaceae	Lithospermum erythrorhizon Sieb. et Zucc.	+					
Campanulaceae	Platycodon grandiflorus (Jacq.) A. DC.	+					
Capparaceae	Cleome spinosa Jacq.	+	+	+	+	+	+
Capparaceae	Cleome gynandra L.	+	+	+	+	+	+
Caryophyllaceae	Dianthus superbus L.	+	+	+	+	+	+
Chenopodiaceae	Kochia scoparia (L.) Schrad.	+					
Chenopodiaceae	Beta vulgaris L.	+	+	+	+	+	+
Chenopodiaceae	Salsola collina Pall.	+	+	+	+	+	+
Chenopodiaceae	Chenopodium glaucum L.	+					
Chenopodiaceae	Chenopodium album L.	+					
Chenopodiaceae	Chenopodium serotinum L.	+					
Compositae	Artemisia argyi Levé. et Vant.	+	+	+	+	+	+
Compositae	Artemisia annua L.	+	+	+	+	+	+
Compositae	Helianthus annuus L.	+	+	+	+	+	+
Compositae	Artemisia lavandulifolia DC.	+	+	+	+	+	+
Compositae	Artemisia scoparia Waldst. et Kt.	+	+	+	+	+	+
Compositae	Cosmos sulphureus Cav.	+	+	+	+	+	+
Compositae	Achillea millefolium L.	+	+	+	+	+	+
Compositae	Ilexis denticulata (Houtt.) Stebb.	+	+	+	+	+	+
Compositae	Lactuca sativa L.	+	+	+	+	+	+
Compositae	Coreopsis tinctoria Nutt.	+					
Compositae	Rudbeckia hirta L.	+					
Compositae	Calendula officinalis L.	+					
Compositae	Taraxacum brassicafolium Kitag.	+					
Compositae	Taraxacum mongolicum Hand.-Mazz.	+					
Compositae	Cichorium intybus L.	+					
Compositae	Sonchus brachyatus DC.	+					
Compositae	Chrysanthemum coronarium L.	+	+	+	+	+	+
Compositae	Chrysanthemum paludosum L.	+	+	+	+	+	+
Compositae	Ageratum conyzoides L.	+	+	+	+	+	+
Compositae	Coreopsis basilis L.	+	+	+	+	+	+
Compositae	Tagetes patula L.	+	+	+	+	+	+
Compositae	Pyrethrum cineranifolium Trev.	+	+	+	+	+	+
Family	Plant species	2007	2008	2009	2010	2011	2012
---------------	---	------	------	------	------	------	------
Compositae	Chamaemelum nobilis (L.) All.				+		+
Compositae	Zinnia elegans Jacq.	+			+		
Compositae	Xanthium sibiricum Patrin ex Widder	+					
Compositae	Carthamus tinctorius L.	+					
Compositae	Arctium lappa L.	+					
Compositae	Heteropappus altaicus (Willd.) Novopokr.						+
Compositae	Cirsium setosum (Willd.) MB.						+
Compositae	Bidens bipinnata L.						+
Compositae	Lactuca indica L.	+					
Compositae	Tagetes eracta L.						+
Convolvulaceae	Ipomoea batatas Lam.	+			+		
Convolvulaceae	Convolvulus tricolor L.						+
Convolvulaceae	Phlomis nil (L.) Choisy	+					+
Convolvulaceae	Ipomoea aquatica Forsk.	+					+
Cruciferae	Raphanus sativus L.	+			+		
Cruciferae	Brassica chinensis L.	+			+		
Cruciferae	Brassica oleracea L.	+					
Cruciferae	Iberis amara L.	+			+		
Cruciferae	Orychophragnus violaceus (L.) O. E. Schulz	+			+		
Cruciferae	Brassica juncea (L.) Czern. et Coss.	+			+		
Cruciferae	Sinapis alba L.	+			+		
Cruciferae	Isatis indigotica Fort.	+			+		
Cruciferae	Brassica pekinensis Rupr.	+					
Cucurbitaceae	Citrullus lanatus (Thunb.) Mansfeld	+			+		+
Cucurbitaceae	Benincasa hispida (Thunb.) Cogn.	+			+		
Cucurbitaceae	Cucumis sativus L.	+			+		
Cucurbitaceae	Momordica charantia L.	+			+		
Cucurbitaceae	Cucurbita moschata (Duch.) Poiret	+			+		
Cucurbitaceae	Luffa cylindrica (L.) Roem.	+			+		
Cucurbitaceae	Cucurbita pepo L.	+			+		
Cucurbitaceae	Cucumis melo L.	+			+		
Cucurbitaceae	Trichosanthes kirinowii Maxim.	+					
Dioscoreaceae	Dioscorea opposita Thunb.	+					
Euphorbiaceae	Ricinus communis L.	+			+		
Euphorbiaceae	Euphorbia marginata Pursh.	+					
Euphorbiaceae	Acalypha australis L.	+					
Gramineae	Sorghum vulgare Pers.	+			+		
Gramineae	Zea mays L.	+			+		
Gramineae	Setaria italica (L.) Beauv.	+			+		
Gramineae	Sorghum sudanense (Piper) Stapf	+			+		
Gramineae	Coix lacryma-jobi L.	+			+		
Gramineae	Leptochloa chinesis (L.) Nees.	+					
Labiatae	Agastache rugosus (Fisch. et Meyer) O. kuntze.	+			+		
Labiatae	Ocimum basilicum L.	+			+		
Labiatae	Leonurus heterophyllus Sweet	+			+		
Family	Plant species	2007	2008	2009	2010	2011	2012
------------	--	------	------	------	------	------	------
Labiatae	*Salvia farinacea* Benth.						
Labiatae	*Mentha haplocalyx* Briq.						
Labiatae	*Schizonepeta tenuifolia* (Benth.) Briq.						
Labiatae	*Scutellaria baicalensis* Georgi						
Labiatae	*Hyssopus officinalis* L.						
Labiatae	*Marjoram hortensis* Moenh. syn. *Origanum*						
Labiatae	*Salvia officinalis* L.						
Labiatae	*Leonurus sibiricus* L.						
Labiatae	*Salvia splendens* Ker-Gawler						
Leguminosae	*Lablab purpureus* (L.) Sweet						
Leguminosae	*Astragalus adsurgens* Pall.						
Leguminosae	*Vigna unguiculata* (L.) Walp.						
Leguminosae	*Vigna radiata* (L.) Wilczek						
Leguminosae	*Phaseolus vulgaris* L.						
Leguminosae	*Arachis hypogaea* L.						
Leguminosae	*Glycine max* (L.) Merr.						
Leguminosae	*Medicago sativa* L.						
Leguminosae	*Onobrychis vicifolia* Scop.						
Leguminosae	*Astragalus complanatus* Bunge						
Leguminosae	*Mimosa pudica* L.						
Leguminosae	*Mellilotus suaveolens* Ledeb.						
Leguminosae	*Phaseolus cocineus* L.						
Leguminosae	*Vigna angularis* (Willd.) Ohwi et Ohashi						
Leguminosae	*Glycyrrhiza uralensis* Fisch.						
Leguminosae	*Trifolium repens* L.						
Leguminosae	*Pisum sativum* L.						
Leguminosae	*Dolichos lablab* L.						
Leguminosae	*Trifolium pratense* L.						
Leguminosae	*Sophora flavescens* Ait.						
Leguminosae	*Cassia occidentalis* L.						
Leguminosae	*Coronilla varia* L.						
Leguminosae	*Cassia tora* L.						
Leguminosae	*Vicia villosa* Roth						
Liliaceae	*Allium fistulosum* L.						
Liliaceae	*Allium tuberosum* Rottl. ex Spreng.						
Linaceae	*Linum usitatissimum* L.						
Malvaceae	*Gossypium hirsutum* L.						
Malvaceae	*Abutilon theophrasti* Medic.						
Malvaceae	*Althea rosea* (L.) Cavan.						
Malvaceae	*Hibiscus cannabinus* L.						
Malvaceae	*Malva sinensis* Cavan.						
Malvaceae	*Malope trifida* L.						
Malvaceae	*Hibiscus esulentus* L.						
Moraceae	*Cannabis sativa* L.						
Moraceae	*Humulus scandens* (Lour.) Merr.						
Nyctaginaceae	*Mirabilis jalapa* L.						
Oleaceae	*Forsythia suspensa* (Thunb.) Vahl						
Onagraceae	*Oenothera odorata* Jacq.						
Pedaliaceae	*Sesamum indicum* L.						
reported to track locally available flowering plants over the course of a cropping season [25]. Lu et al. [22] found that *A. lucorum* adults preferred cotton plants over other major host crops in mid-to late June in northern China, and proposed that this was because cotton is one of the few flowering host crops locally present during this period. However, much remains to be investigated regarding the plant flower preference of polyphagous *A. lucorum* and the associated ecological mechanisms.

In this study, we related *A. lucorum* adult abundance of on a given plant species with plant phenology data. Our objectives were (1) to assess temporal differences in the extent of flower preference by *A. lucorum* adults, and (2) to assess the role of flower preference as the driver of *A. lucorum* host plant switching.

Materials and Methods

Ethics Statement

No specific permits were required for the described field studies.

Field Trials

During 2007–2012, field studies were conducted at the Langfang Experiment Station of the Chinese Academy of Agricultural Sciences (39.53 °N, 116.70 °E) in Hebei Province of China. For our trials, we planted 131 species of host plants in 2007, 76 species in 2008, 108 species in 2009, 75 species in 2010, 62 species in 2011 and 88 species in 2012, adding up to 174 distinct plant species from 39 families (Table 1), including wild and cultivated plants commonly found in agro-ecosystems of northern China. These 174 species of plant species comprised 74.7% (174 of 233) of the known *A. lucorum* summer host plants.

Family	Plant species	2007	2008	2009	2010	2011	2012
Phytolaccaceae	*Phytolaca acinosa* Roxb.	+					
Polemoniaceae	*Phlox drummondii* Hook.		+	+	+	+	
Polygonaceae	*Fagopyrum esculentum* Moench	+	+	+	+	+	+
Polygonaceae	*Polygonum orientale* L.	+	+		+	+	
Polygonaceae	*Rheum officinale* Baill.	+					
Portulacaceae	*Portulaca grandiflora* Hook.	+	+	+	+		+
Ranunculaceae	*Nigella damascena* L.	+	+				
Rubiaceae	*Ixora chinensis* Lam.			+		+	+
Rutaceae	*Murraya paniculata* (L.) Jack.	+	+	+			+
Solanaceae	*Solanum tuberosum* L.	+	+	+	+	+	+
Solanaceae	*Nicotiana alata* L.	+	+	+	+		
Solanaceae	*Lycopersicon esculentum* Mill.		+			+	
Solanaceae	*Capsicum annuum* L.	+	+	+			
Solanaceae	*Solanum melongena* L.	+	+	+	+		
Solanaceae	*Datura metel* L.	+	+		+		+
Solanaceae	*Petunia hybrida* Vilm.	+				+	
Solanaceae	*Physalis alkekengi* L.		+				
Solanaceae	*Solanum nigrum* L.						+
Tiliaceae	*Corchorus capsularis* L.	+	+				+
Umbellifera	*Daucus carota* L. var. sativa DC.				+	+	+
Umbellifera	*Coriandrum sativum* L.					+	+
Umbellifera	*Apium graveolens* L.	+	+	+	+		+
Umbellifera	*Cnidium monnierii* (L.) Cuss.			+			
Umbellifera	*Saposhnikovia divaricata* (Turcz.) Schischk.	+					
Umbellifera	*Bupleurum falcatum* L.			+			
Umbellifera	*Angelica dahurica* (Fisch. ex Hoffm.) Benth. et Hook. f.						
Zygophyllaceae	*Tribulus terrestris* L.	+					

Note: + indicates that this plant species was tested in that year. A blank space means no assay.

doi:10.1371/journal.pone.0068980.t001
Table 2. The use of flowering and non-flowering host plants by *Apolygus lucorum* adults during different periods from 2007–2012.

Years	Periods	Proportion of flowering plants with the presence of adults (%)	Proportion of non-flowering plants with the presence of adults (%)	Statistical results of Chi-square analysis
2007	Early July	91.67 (22/24)	31.78 (34/107)	\(X^2 = 28.73; df = 1; P < 0.0001\)
	Late July	95.83 (69/72)	47.46 (28/59)	\(X^2 = 39.49; df = 1; P < 0.0001\)
	Early August	84.95 (79/93)	27.03 (10/37)	\(X^2 = 41.12; df = 1; P < 0.0001\)
	Late August	85.06 (74/87)	26.32 (10/38)	\(X^2 = 41.40; df = 1; P < 0.0001\)
	Early September	73.91 (34/46)	30.88 (21/68)	\(X^2 = 20.35; df = 1; P < 0.0001\)
2008	Early July	80.00 (8/10)	27.27 (18/66)	\(X^2 = 10.73; df = 1; P = 0.0011\)
	Late July	82.50 (33/40)	58.33 (21/36)	\(X^2 = 5.38; df = 1; P = 0.0204\)
	Early August	90.74 (49/54)	45.45 (10/22)	\(X^2 = 18.46; df = 1; P < 0.0001\)
	Late August	96.36 (53/55)	45.00 (9/20)	\(X^2 = 27.00; df = 1; P < 0.0001\)
	Early September	91.30 (42/46)	48.15 (13/27)	\(X^2 = 17.06; df = 1; P < 0.0001\)
2009	Early July	100.00 (11/11)	11.34 (11/97)	\(X^2 = 47.88; df = 1; P < 0.0001\)
	Late July	48.72 (19/39)	10.14 (7/69)	\(X^2 = 20.28; df = 1; P < 0.0001\)
	Early August	63.64 (42/66)	4.76 (2/42)	\(X^2 = 36.85; df = 1; P < 0.0001\)
	Late August	71.01 (49/69)	13.89 (5/36)	\(X^2 = 30.91; df = 1; P < 0.0001\)
	Early September	83.33 (20/24)	18.18 (14/77)	\(X^2 = 34.78; df = 1; P < 0.0001\)
2010	Early July	88.89 (24/27)	22.92 (11/48)	\(X^2 = 30.22; df = 1; P < 0.0001\)
	Late July	62.26 (33/53)	22.73 (5/22)	\(X^2 = 9.72; df = 1; P = 0.0018\)
	Early August	98.44 (63/64)	36.36 (4/11)	\(X^2 = 37.96; df = 1; P < 0.0001\)
	Late August	94.23 (49/52)	27.27 (6/22)	\(X^2 = 36.32; df = 1; P < 0.0001\)
	Early September	96.30 (26/27)	70.73 (29/41)	\(X^2 = 6.88; df = 1; P = 0.0087\)
2011	Early July	66.67 (22/33)	24.14 (7/29)	\(X^2 = 11.21; df = 1; P < 0.0001\)
	Late July	80.95 (34/42)	55.00 (11/20)	\(X^2 = 4.59; df = 1; P = 0.0323\)
	Early August	93.33 (42/45)	41.18 (7/17)	\(X^2 = 20.26; df = 1; P < 0.0001\)
	Late August	90.70 (39/43)	36.84 (7/19)	\(X^2 = 19.96; df = 1; P < 0.0001\)
	Early September	95.83 (23/24)	63.16 (24/38)	\(X^2 = 8.56; df = 1; P = 0.0034\)
2012	Early July	50.00 (12/24)	14.06 (9/64)	\(X^2 = 12.41; df = 1; P = 0.0004\)
	Late July	70.37 (38/54)	23.53 (8/34)	\(X^2 = 18.35; df = 1; P < 0.0001\)
	Early August	81.36 (48/59)	51.72 (15/29)	\(X^2 = 8.39; df = 1; P = 0.0038\)
	Late August	83.05 (49/59)	34.48 (10/29)	\(X^2 = 20.76; df = 1; P < 0.0001\)
	Early September	79.63 (43/54)	27.27 (9/33)	\(X^2 = 23.35; df = 1; P < 0.0001\)

Note: Data in parentheses represent the number of plant species with the presence of *A. lucorum* adults and the total number of plant species at flowering or non-flowering stages, respectively.

https://doi.org/10.1371/journal.pone.0068980.t002

for the presence of *A. lucorum* adults, complemented by knock-down techniques [26]. Both sampling tactics were directed to the upper parts of plants. Knock-down techniques consisted of holding a single plant over a rectangular 40×26×11 cm white-colored pan, and striking it four times, after which the number of dislodged individuals was counted. During each sampling event, we determined the number of *A. lucorum* adults with both sampling methods, and subsequently identified individuals based upon morphological features [28]. Four 1×1 m subplots were sampled within each plot. At each sampling event, we also recorded plant growth stage and presence of flowers for each plant species [22,26]. For a given plant species, sampling was restricted to times when live plant material was present.

Data Analysis

A chi-square test was performed to compare the extent to which *A. lucorum* adults visited flowering vs. non-flowering plants during a given specific 2-wk sampling window per year. Each sampling period comprised three or four field surveys. If flowers were found at one or more surveys, the plant species was regarded as “flowering” for the corresponding period. On the other hand, if no flowers were found during any of the surveys, the respective plant species was treated as “non-flowering”.

We calculated the standard attraction (\(A\)) of a given plant species (\(p\)) to *A. lucorum* adults at a given sampling date as \(A_p = P_p \times n\), where \(P_p\) is relative attraction, defined as the percent abundance of *A. lucorum* adults on plant species \(p\) versus total adult abundance on all tested plant species, and \(n\) is a standardization factor, defined as the total number of plant species found with *A. lucorum* adults at the same date [22]. This algorithm eliminates the potential influence of temporal differences in *A. lucorum* population density and number or type of plant species tested between seasons in estimating degree of attractiveness to *A. lucorum* adults of a given plant at a specific sampling date. Each year, we analyzed the most important host plant of *A. lucorum*, cotton (*Gossypium hirsutum* L.) and all other host species with higher adult abundances (i.e.,...
Figure 1. Standard attraction of different host plants during flowering (black diamonds) and non-flowering (grey dots) periods for Apolygus lucorum adults from 2007–2012. Means (±SE) between flowering and non-flowering periods are significantly different for each plant species per year (P < 0.05). The blank indicates no assay. Plant species: 1 Agastache rugosa (Fisch. et Meyer) O. kuntze., 2 Amaranthus hypochondriacus L., 3 Artemisia annua L., 4 Artemisia argyi Lév. et Vant., 5 Artemisia lavandulaefolia DC., 6 Artemisia scoparia Waldst. et Kit., 7 Cannabis sativa L., 8 Chamaemelum nobile (L.) All., 9 Chrysanthemum coronarium L., 10 Coriandrum sativum L., 11 Dianthus superbus L., 12 Fagopyrum esculentum Moench, 13 Gossypium hirsutum L., 14 Helianthus annuus L., 15 Humulus scandens (Lour.) Merr., 16 Impatiens balsamina L., 17 Linum usitatissimum L., 18 Mentha haplocalyx Briq., 19 Ocimum basilicum L., 20 Oenothera odorata Jacq., 21 Polygonum orientale L., 22 Ricinus communis L., 23 Schizonepeta tenuifolia (Benth.) Briq., 24 Sorghum vulgare Pers., 25 Telosma cordata (Burm. f.) Merr., 26 Vigna radiata (L.) Wilczek.

doi:10.1371/journal.pone.0068980.g001
Table 3. Comparison of the standard attraction of each plant species at flowering and non-flowering periods for Apolygus lucorum adults during 2007–2012.

No.	Plant species	2007	2008	2009	2010	2011	2012
1	Agastache rugosa (Fisch. et Meyer) O. kuntze.	F = 60.38; df = 1,14; P < 0.0001	F = 23.25; df = 1,14; P = 0.0003	F = 11.08; df = 1,14; P = 0.0050	F = 21.69; df = 1,13; P = 0.0004	F = 16.56; df = 1,13; P = 0.0013	F = 12.80; df = 1,13; P = 0.0034
2	Amaranthus hypochondriacus L.						
3	Artemisia annua L.	F = 31.88; df = 1,14; P = 0.0001	F = 12.80; df = 1,14; P = 0.0030	F = 16.60; df = 1,14; P = 0.0011	F = 16.30; df = 1,13; P = 0.0014	F = 21.50; df = 1,13; P = 0.0005	F = 8.41; df = 1,13; P = 0.0124
4	Artemisia argyi Lév. et Vant.	F = 10.34; df = 1,14; P = 0.0062	F = 9.27; df = 1,14; P = 0.0087	F = 52.52; df = 1,14; P < 0.0001	F = 24.82; df = 1,13; P = 0.0003	F = 6.91; df = 1,13; P = 0.0209	F = 16.05; df = 1,13; P = 0.0015
5	Artemisia lavandulifolia DC.	F = 11.91; df = 1,14; P = 0.0039	F = 19.43; df = 1,14; P = 0.0006	F = 26.72; df = 1,14; P = 0.0001	F = 8.29; df = 1,13; P = 0.0129	F = 6.73; df = 1,13; P = 0.0223	F = 7.75; df = 1,13; P = 0.0155
6	Artemisia scoparia Waldst. et Kit.	F = 14.50; df = 1,14; P = 0.0019	F = 8.61; df = 1,14; P = 0.0109	F = 31.11; df = 1,14; P = 0.0001	F = 13.10; df = 1,13; P = 0.0031	F = 13.16; df = 1,13; P = 0.0031	F = 3.72; df = 1,13; P = 0.0738
7	Cannabis sativa L.	F = 136.18; df = 1,14; P < 0.0001	F = 9.84; df = 1,14; P = 0.0073	F = 47.12; df = 1,14; P < 0.0001	F = 150.10; df = 1,13; P < 0.0001	F = 15.42; df = 1,13; P = 0.0017	F = 5.14; df = 1,13; P = 0.0410
8	Chamaemelum nobile (L.) All.						
9	Chrysanthemum coronarium L.	F = 14.88; df = 1,9; P = 0.0039	F = 8.64; df = 1,12; P = 0.0124	F = 11.07; df = 1,13; P = 0.0054	F = 23.71; df = 1,13; P = 0.0003	F = 5.48; df = 1,13; P = 0.0359	
10	Coriandrum sativum L.	F = 17.18; df = 1,12; P = 0.0014	F = 33.00; df = 1,14; P = 0.0001	F = 23.71; df = 1,13; P = 0.0003	F = 5.48; df = 1,13; P = 0.0359		
11	Dianthus superbus L.	F = 8.66; df = 1,14; P = 0.0107					
12	Fagopyrum esculentum Moench	F = 10.25; df = 1,14; P = 0.0064					
13	Gossypium hirsutum L.	F = 9.09; df = 1,14; P = 0.0093	F = 28.52; df = 1,14; P = 0.0001	F = 10.34; df = 1,14; P = 0.0062	F = 22.70; df = 1,13; P = 0.0004	F = 7.99; df = 1,13; P = 0.0143	F = 8.57; df = 1,13; P = 0.0118
14	Helianthus annuus L.	F = 44.40; df = 1,11; P = 0.0001					
15	Humulus scandens (Lour.) Merr.	F = 18.45; df = 1,14; P = 0.0007	F = 10.59; df = 1,14; P = 0.0058	F = 9.86; df = 1,14; P = 0.0072	F = 15.01; df = 1,13; P = 0.0019	F = 31.62; df = 1,13; P = 0.0001	F = 16.69; df = 1,13; P = 0.0013
16	Impatiens balsamina L.	F = 16.54; df = 1,14; P = 0.0012	F = 19.82; df = 1,14; P = 0.0005	F = 15.07; df = 1,14; P = 0.0017	F = 10.00; df = 1,13; P = 0.0075	F = 24.36; df = 1,13; P = 0.0003	F = 5.08; df = 1,13; P = 0.0422
17	Linum usitatissimum L.						
18	Mentha haplocalyx Briq.	F = 9.53; df = 1,14; P = 0.0090	F = 5.87; df = 1,14; P = 0.0265	F = 33.69; df = 1,14; P = 0.0063	F = 10.58; df = 1,13; P = 0.0063	F = 8.44; df = 1,13; P = 0.0123	
19	Ocimum basilicum L.	F = 12.97; df = 1,14; P = 0.0029	F = 30.31; df = 1,14; P = 0.0001	F = 29.66; df = 1,14; P = 0.0001	F = 7.48; df = 1,13; P = 0.0170	F = 8.16; df = 1,13; P = 0.0135	F = 8.16; df = 1,13; P = 0.0135
20	Oenothera odorata Jacq.	F = 7.38; df = 1,13; P = 0.0176					
21	Polygonum orientale L.	F = 6.76; df = 1,13; P = 0.0220					
seasonal mean density) than cotton. Standard attraction data for a flowering or non-flowering plant at a given sampling date were considered as replicates in the analysis. Per year, statistical differences in standard attraction between flowering and non-flowering stages for each plant species were determined using analysis of variance (ANOVA) followed by Tukey’s honestly significant differences (HSD) test after verifying the assumptions of normality, homogeneity of variance, and independence. All statistical analyses were performed using SAS/STAT, version 9.1 (SAS Institute, Inc., Cary, NC).

Results

Over the course of the experiment, the proportion of flowering plants with the presence of *A. lucorum* adults was significantly higher than that of non-flowering plants in each of the different periods (inc. early July, late July, early August, late August, and early September) \(P<0.05\) (Table 2). More specifically, the proportions of flowering and non-flowering plants exploited by *A. lucorum* adults were 50.0–100.0% and 11.3–31.8% in early July, 48.7–95.8% and 10.1–58.3% in late July, 63.6–98.4% and 4.8–51.7% in early August, 71.0–96.4% and 10.9–45.0% in late August, and 73.9–96.3% and 18.2–63.2% in early September, respectively (Table 2).

For a given plant species with high adult abundance, standard attraction during flowering periods was significantly higher than during non-flowering periods \(P<0.05\) (Figure 1, Table 3). The average standard attraction of all selected flowering plants at flowering stage was 9.3, 7.7, 19.5, 15.5, 12.9, and 12.3 times higher than that during non-flowering periods from 2007 until 2012, respectively. Seasonal fluctuations in *A. lucorum* adult abundance on each plant species and the relative standard attraction for a given plant species showed similar trends. The mean population level of the above plant species at flowering stage was 10.3, 7.7, 19.5, 15.5, 12.9, and 12.3 times higher than that during non-flowering periods, respectively (Table 3).

The use of flowering plant species by *A. lucorum* adults varied during the course of the sampling period. In early July, *A. lucorum* adults preferred a small number of species, such as *Vigna radiata* (L.), *Gossypium hirsutum* L., *Helianthus annuus* L., and *Chrysanthemum coronarium* L., which were in flower. In late July, adults dispersed more widely into other hosts (e.g. *Ricinus communis* L., *Impatiens balsamina* L., *Humulus scandens* (Lour.) Merr., *Ocimum basilicum* L.). *Artemisia argyi* Lév. et Vant., *A. lindbergiae* DC., *A. annua* L. and *A. scoparia* Waldst. et Kft.) (Figure 2–7).

Discussion

In earlier work, seasonal host switching of certain polyphagous mirid bugs (e.g. *L. lineolaris*, *Pseudatomoscelis seriatus* [Reuter]) has been related to their preference for flowering host plants [19,29,30]. In our study, *A. lucorum* equally exhibited a clear preference for flowering plants and switched food plants according to the succession of different flowering plant species in the local agro-ecosystem [22,25]. It provided important information for further understanding the interaction between *A. lucorum* and host plants, and exploring the patterns of population dynamics of this mirid bug in different host plants.

The polyphagous species *A. lucorum* prefers to feed on tender leaves, buds and flowers, which usually become scarce after
flowering stage [20]. To locate suitable food, *A. lucorum* adults exhibit a clear preference for flowering plant species in the process of host plant switching. This strategy of host plant switching helps offset seasonal or year-to-year changes in host abundance [31] and also allows mirid bugs to avoid intra- and interspecific competition for host plants. In 2010, *I. balsamina* plants were badly infected with powdery mildew in early August, making those plants less suitable for *A. lucorum* population growth. As a result, most adults dispersed to other host plants and the abundance in *I. balsamina* decreased dramatically. Similar population dynamics were also found in other host plants with serious pest infestations during the study.
supporting our speculation that *A. lucorum* altered host plants primarily to find suitable food.

Through host plant switching hemimetabolous insects, such as mirid bugs, possibly can increase their population growth [32]. For example, *L. lineolaris* shows different rates of reproduction on different hosts, and host switching thus can considerably increase its population growth and survival [33]. In a laboratory study, *A. lucorum* adults and nymphs had higher survival and fitness on mungbean (*V. radiata*) over cotton [34], and on flowering individuals of three plant species (*G. hirsutum*, *R. communis* and *I. balsamina*) [32]. However, it is unknown which parts of the flowers (e.g., pollen, flower nectars) are the main food sources for *A. lucorum* or which nutrients (e.g., sugars, amino acids) are the most important for the increase of its population fitness [32]. Additionally, *A. lucorum* preference-performance relationship for flowering plants needs to be assessed in field conditions, as other ecological factors such as natural enemy abundance, environmental conditions, and broader host plant availability can affect host plant choice [35].
At a given time, *A. lucorum* showed a clear preference for a limited number of plant species. As not all plant species are present in all agricultural landscapes of northern China, *A. lucorum* abundance is deemed highly dependent upon location and composition of local agricultural landscapes [36]. In China, there are different cropping patterns, including mixed plantations of food crops and cotton, fruit trees and cotton, pastures and cotton, and so forth [37]. In each cropping pattern, the dominant overwintering location and seasonal host plant range of *A. lucorum* vary considerably [24], which would lead to different patterns of host plant use (inc. seasonal dynamics, between-plant transfer).

Our work showed year-by-year fluctuations in general *A. lucorum* abundance (Figure 2–7), which affected its population levels on a given host plant at any specific time. Yearly differences in climatic conditions and associated plant germination and growth are thought to be the prime determinants of those seasonal patterns [32,39,39]. Computer models maybe help to simulate its population dynamics in the agro-ecosystem and then analyze the effects of various biotic factors (e.g., host plant selection, phenological relative survival) and abiotic factors (e.g. temperature, rainfall) on its seasonal occurrence [40].

For many phytophagous insects, host switching is guided by host plant volatiles [41,42]. Adults of *A. lucorum* are attracted to variable extent to different plant species in Y-tube olfactometer trials [43], with electro-antennogram (EAG) responses to (E)-2-hexenal and other plant volatiles [44]. Increase in *A. lucorum* abundance on flowering plants may hint that adults orient themselves to specific volatiles of flowering plants. Visual cues may further enhance their behavioral response to plant volatiles [45]. However, for *A. lucorum* as for many other mirid bugs, much remains to be learned about the exact chemical and non-chemical determinants of flower preference.

Recently, there has been increasing interest in the application of behavioral manipulation methods (e.g. trap cropping) as a component of integrated pest management (IPM) strategies [46,47,48,49]. Our elucidation of considerable variation in *A.
lucorum abundance among host plants and among different periods (Figure 2–7), will contribute to the development of sustainable management strategies for A. lucorum. Previous work has led to the use of V. radiata as a trap crop for A. lucorum in Bt cotton fields [26]. This work also provides several other potential trap plants of A. lucorum and aids in identify the attractive volatile compositions, all of which could be developed as new alternative methods of controlling this mirid bug [49,50].

Agricultural landscapes dominated by crops and uncultivated habitats may contribute in increasing or decreasing pest population density in the fields, therefore analyzing the temporal variability of source and sink effects is of importance for managing the placement of landscapes to promote pest control. For example,
Ting [51] found that the population abundance of mirid bug complex (mainly including *A. lucorum*, and *Adelphocoris suturalis* (Jakovlev), *Adelphocoris lineolatus* (Goeze), *Adelphocoris fasciaticollis* (Reuter)) in alfalfa fields at middle April were positively correlative with that in cotton field at early July. Carrière et al. [2] reported that abundance of seed alfalfa and cotton flowering date were positively associated with *Lygus* density in cotton fields, whereas abundances of cotton and uncultivated habitats were negatively associated with *Lygus* density in cotton. Our present study provide an ability to explore the source/sink role of different plant species as factors affecting population dynamics of *A. lucorum*, and aiding the development of landscape-level pest management strategies.

Figure 6. Seasonal changes of population density of *Apolygus lucorum* adults and standard attraction of each host plant during 2011.
doi:10.1371/journal.pone.0068980.g006
Acknowledgments

We thank the graduate trainees at Langfang Experimental Station, CAAS during the period 2007–2012 for assistance with the field surveys.

Author Contributions

Conceived and designed the experiments: K. Wu HP YL. Performed the experiments: HP YL. Analyzed the data: YL HP K. Wu. Contributed reagents/materials/analysis tools: HP YL K. Wu. Wrote the paper: HP YL K. Wyckhuys K. Wu.

References

1. Kennedy GG, Storer NP (2000) Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu Rev Entomol 45: 467–493.
2. Carrière Y, Goodell PB, Ellers-Kirk C, Larocque G, Dutilleul P, et al. (2012) Effects of local and landscape factors on population dynamics of a cotton pest. PLoS ONE 7: e39862.
3. Bradley Jr. JR (1993) Influence of habitat on the pest status of Heliothis species on cotton in the southern United States. Evolution of Insect Pests: Patterns of Variation. Wiley and Sons, New York, 375–391.
4. Brandenburg RL, Kennedy GG (1982) Intercrop relationships and spider mite dispersal in a corn/peanut agro-ecosystem. Environ Exp Appl 32: 269–276.
5. Brazzle JR, Heinz KM, Parrella MP (1997) Multivariate approach to identifying patterns of Bemisia argentifolii (Homoptera: Aleyrodidae) infesting cotton. Environ Entomol 26: 995–1003.
6. Velasco LRI, Walter GH (1993) Potential of host-switching in Nezara viridula (Hemiptera: Pentatomidae) to enhance survival and reproduction. Environ Entomol 22: 326–333.
7. Liu ZD, Scheirs J, Heckel DG (2010) Host plant flowering increases both adult oviposition preference and larval performance of a generalist herbivore. Environ Entomol 39: 552–560.

Figure 7. Seasonal changes of population density of Apolygus lucorum adults and standard attraction of each host plant during 2012. doi:10.1371/journal.pone.0068980.g007

Author Contributions

Conceived and designed the experiments: K. Wu HP YL. Performed the experiments: HP YL. Analyzed the data: YL HP K. Wu. Contributed reagents/materials/analysis tools: HP YL K. Wu. Wrote the paper: HP YL K. Wyckhuys K. Wu.

References

1. Kennedy GG, Storer NP (2000) Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu Rev Entomol 45: 467–493.
2. Carrière Y, Goodell PB, Ellers-Kirk C, Larocque G, Dutilleul P, et al. (2012) Effects of local and landscape factors on population dynamics of a cotton pest. PLoS ONE 7: e39862.
3. Bradley Jr. JR (1993) Influence of habitat on the pest status of Heliothis species on cotton in the southern United States. Evolution of Insect Pests: Patterns of Variation. Wiley and Sons, New York, 375–391.
4. Brandenburg RL, Kennedy GG (1982) Intercrop relationships and spider mite dispersal in a corn/peanut agro-ecosystem. Environ Exp Appl 32: 269–276.
5. Brazzle JR, Heinz KM, Parrella MP (1997) Multivariate approach to identifying patterns of Bemisia argentifolii (Homoptera: Aleyrodidae) infesting cotton. Environ Entomol 26: 995–1003.
6. Velasco LRI, Walter GH (1993) Potential of host-switching in Nezara viridula (Hemiptera: Pentatomidae) to enhance survival and reproduction. Environ Entomol 22: 326–333.
7. Liu ZD, Scheirs J, Heckel DG (2010) Host plant flowering increases both adult oviposition preference and larval performance of a generalist herbivore. Environ Entomol 39: 552–560.
Flower Preference of Apolygus lucorum

8. Kennedy GG, Margolies DC (1985) Considerations in the management of mobile arthropod pests in diversified agroecosystems. Bull Entomol Soc Am 31: 21–27.

9. Jackson RE, Bradley JR, Van Deny J, Leonard BR, Allen KC, et al. (2008) Regional assessment of Heliosperma zaos populations on cotton and non-cotton crop hosts. Environ Entomol 37: 89–106.

10. Womack CL, Schuster MF (1987) Host plants of the tarnished plant bug (Hemiptera: Miridae) in cotton cultivation region of Kwanchung, Shensi, China. Acta Entomol Sin 13: 5113–5122.

11. Dixon AFG (1987) The way of life of aphids: Host specificity, speciation and distribution. In: Minks AK, Harrewijn P, eds. Aphids: Their biology, natural enemies and control. Vol. A. Elsevier, Amsterdam.

12. Kong HH, Pang HS, Lu YH, Yang YZ (2013) Nymphal performance correlated with adult preference for flowering host plants in a polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae). Arthropod-Plant Inte 7: 83–91.

13. Stewart SD, Gaylor MJ (1994) Effects of host switching on oviposition by the tarnished plant bug (Heteroptera: Miridae). J Entomol Soc 21: 231–238.

14. Rajapakse CNK, Walter GH (2007) Polyphagy and primary host plants: oviposition preference versus larval performance in the Lepidopteran pest Helicoverpa armigera. Arthropod-Plant Inte 1: 17–26.

15. Wheeler Jr AG (2001) Biology of the Plant Bugs (Hemiptera: Miridae). Cornell University Press, Ithaca, NY.

16. Holzschau A, De-Ja-Fenter I, Klein D, Tscharnke T (2007) Diversity of flower-visiting bees in cereal fields: effects of farm system, landscape composition and regional context. J Appl Entol 41: 41–49.

17. Lu YH, Wu KM (2011) Mirid bugs in China: pest status and management strategies. Outlooks Pest Man 22: 248–252.

18. Lu YH, Wu KM, Wyckhuys KAG, Guo YY (2010) Temperature-dependent life history of the green plant bug, Apolygus lucorum (Meyer-Du¨r)(Hemiptera: Miridae). Appl Entomol Zool 45: 387–393.

19. Lu YH, Wu KM (2011) Effect of relative humidity on population growth of Apolygus lucorum (Heteroptera: Miridae). Appl Entomol Zool 46: 421–427.

20. Feng HQ, Gould F, Huang YX, Jiang YY, Wu KM (2010) Modeling the population dynamics of cotton bedbug Helicoverpa armigera (Hulbner)(Lepidop- tera: Noctuidae) over a wide area in northern China. Ecol Model 221: 1819–1830.

21. Schoonhoven LM, van Loon JJA, Dieke M (2005) Insect-Plant Biology, second ed. Oxford University Press, Oxford, UK.

22. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10: 269–274.

23. Wu GQ, Xiao LB, Tang YA, Sun Y, Bai LX (2012) Relative preferences of Apolygus lucorum adults for six host species and their volatiles. Chin J Appl Entomol 49: 641–647.

24. Chen ZC, Su L, Ge F, Su JW (2010) Electroantennogram responses of the green leaf bug, Lygus lineolaris (Hemiptera: Miridae), to sex pheromone analogs and plant volatiles. Acta Entomol Sin 53: 47–54.

25. Blackmer JL, Cañas LA (2005) Visual cues enhance the response of Lygus hesperus (Heteroptera: Miridae) to volatile hosts from plant volatiles. Environ Entomol 34: 1524–1533.

26. Nakamura HMT (1991) Trap cropping in pest management. Annu Rev Entomol 36: 119–138.

27. Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51: 265–290.

28. Cook SM, Khan ZR, Pickett JA (2006) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52: 373–400.

29. Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest natural enemies and control. Vol. A. Elsevier, Amsterdam.

30. Jiang RE, Bradley JR, Van Deny J, Leonard BR, Allen KC, et al. (2008) Regional assessment of Heliosperma zaos populations on cotton and non-cotton crop hosts. Environ Entomol 37: 89–106.

31. Dixon AFG (1987) The way of life of aphids: Host specificity, speciation and distribution. In: Minks AK, Harrewijn P, eds. Aphids: Their biology, natural enemies and control. Vol. A. Elsevier, Amsterdam.

32. Womack CL, Schuster MF (1987) Host plants of the tarnished plant bug (Hemiptera: Miridae) in cotton cultivation region of Kwanchung, Shensi, China. Acta Entomol Sin 13: 5113–5122.

33. Dixon AFG (1987) The way of life of aphids: Host specificity, speciation and distribution. In: Minks AK, Harrewijn P, eds. Aphids: Their biology, natural enemies and control. Vol. A. Elsevier, Amsterdam.

34. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10: 269–274.

35. Wu GQ, Xiao LB, Tang YA, Sun Y, Bai LX (2012) Relative preferences of Apolygus lucorum adults for six host species and their volatiles. Chin J Appl Entomol 49: 641–647.

36. Chen ZC, Su L, Ge F, Su JW (2010) Electroantennogram responses of the green leaf bug, Lygus lineolaris (Hemiptera: Miridae), to sex pheromone analogs and plant volatiles. Acta Entomol Sin 53: 47–54.

37. Blackmer JL, Cañas LA (2005) Visual cues enhance the response of Lygus hesperus (Heteroptera: Miridae) to volatile hosts from plant volatiles. Environ Entomol 34: 1524–1533.

38. Nakamura HMT (1991) Trap cropping in pest management. Annu Rev Entomol 36: 119–138.

39. Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51: 265–290.

40. Cook SM, Khan ZR, Pickett JA (2006) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52: 373–400.

41. Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest management. Annu Rev Entomol 42: 123–146.

42. Lu YH, Zhang YJ, Wu KM (2008) Host-plant selection mechanisms and behavioral manipulation strategies of phytophagous insects. Acta Ecol Sin 28: 5113–5122.

43. Ting YQ (1964) Studies on the population fluctuations of cotton mirids in the cotton cultivation region of Kwanchung, Shensi, China. Acta Entomol Sin 13: 290–310.