Changes in Interaction Between Accessory Protein 8 and IL17RA in UK Isolates Caused by Mutations in the SARS-CoV-2 Open Reading Frame 8

Ekrem AKBULUT*

Malatya Turgut Özal University, Engineering and Natural Sciences Faculty, Bioengineering Department, 44200, Malatya-Turkey

* Corresponding Author: ekremakbulut@gmail.com ORCID: 0000-0002-7526-9835

Abstract:

SARS-CoV-2 is the infectious agent of COVID-19, one of the most important health problems of the twenty-first century. IL17RA is an crucial receptor in the generation of the host immune response. ORF8 is the viral accessory protein of SARS-CoV-2 that suppresses the host immune response. Mutations can alter the viral properties and clinical course of SARS-CoV-2. In this study, we investigated the changes that SARS-CoV-2 ORF8 mutations may cause in the interaction of IL17RA with ORF8. The study was carried out using 825 complete genome sequences from UK isolates. Mutation analyzes were performed using RDP4 and MEGAX. The protein model was created using the Swiss Model. Protein protein interaction was analyzed by Haddock ver 2.4. Analysis of changes in protein stability was performed using SDM2, mCSM stability and DUET tools. The change in ORF8 - IL17RA binding affinity before and after the mutation was evaluated using mCSM-PP12. We detected P30S, R52I, Y73C and L118V mutations in SARS-CoV-2 ORF8. Mutations have been shown to reduce protein stability and affinity. After the mutation, the binding dynamics of ORF8 to IL17RA were changed. Molecular attachment scores were -78.0±3.4 kcal.mol⁻¹ and -76.3±11.9 kcal.mol⁻¹, for wild type and mutant, respectively. After the mutations, the hydrogen bond number and position between ORF8 and IL17RA changed. While establishing ten hydrogen bonds between the wild type and IL17RA, four hydrogen bonds were established between the mutant ORF8 and IL17RA. The decreased affinity between ORF8 and IL17RA can be seen as a stronger immune response and a milder clinical course. Although our results contain important data for understanding ORF8, which is an important drug target, it needs to be repeated with in-vivo and crystallography studies.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed 3.27 million people since December 2019. SARS-CoV-2, which revealed the third largest coronavirus epidemic in the last 20 years, infected 160 million people [1,2]. The molecular basis of the severity and rapid spread of COVID-19 disease caused by SARS-CoV-2 is largely unknown [3]. Although prophylactic vaccine development studies have recently been successful in COVID-19 disease, the high mutation capacity and progressive evolutionary change of the virus genome pose the risk of overriding existing treatments [4]. SARS-CoV-2, which is of zoonotic origin such as severe acute respiratory syndrome coronavirus (SARS) and Middle East respiratory syndrome (MERS), may be a sign that members of this family may cause serious health problems in the future, and even epidemics with transition between species [5,6]. The SARS-CoV-2 genome consists of 16 non-structural proteins, 4 structural proteins (S, M, E, N) and 5 accessory proteins [7]. Although the SARS-CoV-2 genome is known as the genetic code, the functional role of many accessory proteins is not clearly [8,9]. Open Reading Frame-8 (ORF8) from SARS-CoV-2 is an accessory protein consisting of 366 nucleotides. Its evolutionary distance from other beta coronaviruses makes SARS-CoV-2 ORF8 an
important research target [8]. ORF8 from SARS CoV-2 is a rapidly evolving accessory protein that has been proposed to interfere with immune responses [3]. ORF8 from SARS-CoV-2 disrupts antigen presentation and reduces the recognition and elimination of virus-infected cells [10]. ORF8 suppresses the immune response by reducing the expression of MHC I (HLA-A2) molecules. The major pathway for ORF8-mediated MHC-I downregulation is the lysosomal degradation. The proteins that ORF8 from SARS-CoV-2 interacts with in the host are localized in the endoplasmic reticulum [11]. This may result in the rearrangement of the ER traffic of host-ORF8 interactions during infection.

ORF8 from SARS-CoV-2 was shown to inhibit type I interferon (IFN-β) activation and NF-kappa-B pathway [12]. Cytokine binding triggers the homotypic interaction of the IL17RA and IL-17RC chains with the TRAF3IP2 adapter, leading to TRAF6-mediated activation of the NF-kappa-B and MAP kinase pathways, resulting in the activation of cytokines, chemokines, antimicrobial peptides and matrix metalloproteinases that will ultimately generate strong immune inflammation [13–15]. IL17RA involved in antiviral host defense through various mechanisms. IL17RA plays a role in the maintenance of the integrity of epithelial barriers during pathogen infection. It stimulates the production of antimicrobial beta-defensins DEFB1, DEFB103A, and DEFB104A by mucosal epithelial cells, limiting the entry of microbes through the epithelial barriers [16,17]. It contributes to virus clearance by driving the differentiation of B1a-B cells, providing for production of virus-specific IgM antibodies at first line of host defense [18]. IL17RA interaction with ORF8 from SARS-CoV-2 is one of the most important stages of viral infection that suppresses the immune response [4].

The discovery of effective treatments against SARS-CoV-2 requires full elucidation of the functional properties of the virus genome and proteome. Functional properties of many viral proteins, which are the target of treatment, can be achieved by in-silico approaches in a shorter time and with less funds than conventional methods [19]. In this study, changes in ORF8 - IL17RA interaction caused by mutations in SARS-CoV-2 ORF8, which play a role in the suppression of the immune response, were analyzed using in-silico approaches.

2. Materials and Methods

2.1. Sequence and Mutation Data

This study was carried out using genome data of 825 SARS CoV-2 isolates from United Kingdom (UK). Genome data of the isolates were taken from GISAID EpiCoV database [20]. Reference ORF8 accession code is YP_009724396.1. Protein sequence information of 825 isolates were aligned with the MAFFT (v7.475) multiple sequence alignment program FFT-NS-i algorithm [21,22]. The scoring matrix BLOSUM 80 and 1 PAM was chosen for the amino acid sequences and nucleotide, respectively [23,24]. Gap opening penalty was used as 2.0. The mutated residues were analyzed with RDP4 and MegaX tools [25,26].

2.2. Homology Model of Mutant Protein

Three-dimensional model of mutant ORF8 protein was generated by the method of homology modeling using Swiss-Model [27]. 7JTL (RCSB protein data bank code) was selected as template. ProSA and MolProbity tools were used for structural validation and model of wild type and mutant ORF8 proteins [28,29]. Secondary structure components (random coils, beta strands alpha helices) of ORF8 protein were defined by using PSSIPRED [30]. Superimpose and conformational analysis of wild type and mutant proteins were performed with PyMOL (ver2.4.1). Topological differences of wild type and mutant ORF8 proteins were calculated with the i-Tasser TM-Score and root mean square deviation (RMSD) algorithm [31,32].

2.3. Docking

The wild type and mutant ORF8 proteins were used as ligands and IL17RA (pdb code 4HSA) was used as target for molecular docking with Haddock version 2.4. The contact points for the IL17RA were residues number 25, 26, 31, 87, 88, 89, 90, 91, 92, 261, 262 and 265. The contact points for the ORF8 were residues number 49, 56, 58, 71, 72, 73, 74, 75, 76, 83, 84, 85 and 95. Number of structures for rigid body docking was set to 1000. Number of trials for rigid body minimisation was set to 5. Number of structures for semi-flexible refinement was set to 200. Refined with short molecular dynamics in open solvent using water. Clustering method was selected Fraction of Common Contacts (FCC). RMSD cutoff for clustering was set to 0.6 Å. Kyte-Doolittle hydrophobicity scale method was used for solvating. Cutoff distance (proton-acceptor) to define an hydrogen bond was set to 2.5 Å. Cutoff distance (carbon-carbon) to define an hydrophobic contact was set to 3.9 Å. Docking parameters were performed as blind docking with default values [33]. Docking results were visualized with Discovery SV (ver20.1, DDS Biovia) and PyMOL.
2.4. Protein Stability and Protein-Protein Affinity Analysis

Analysis of changes in protein stability was performed using SDM2 [34], mCSM stability and DUET tools [35]. The change in ORF8 - IL17RA binding affinity before and after the mutation was evaluated using the mCSM-PPI2 tool [36].

3. Results and Discussions

In this study, mutation analysis of UK isolates revealed Pro30Ser, Arg52Ile, Tyr73Cys and Leu118Val mutations. The homology model of the mutant ORF8 was created with the Swiss Model. The quality scores of the mutant model were -0.94, 0.67 and -3.83 for QMEAN, Molprobity, and ProSA, respectively. It was determined that the generated mutant ORF8 model was within the NMR quality limits (Figure 1). After docking, the TM-score (0.73) between the wild type ORF8 - IL17RA and the mutant ORF8- IL17RA complexes were observed to be topologically similar, although not high rate. The RMSD in supersposition was 0.28 Å. The change in the topological structure after the mutation can alter the protein-protein interaction [37].

The docking analysis consolidated 132 structural models for the wild type ORF8 into 18 clusters, which represents 66 % of the water-refined models generated. The docking analysis consolidated 129 structural models for the mutant ORF8 into 17 clusters, which represents 64 % of the water-refined models generated. Docking analysis revealed the top 10 models with the lowest binding energy with IL17RA for wild type and mutant ORF8. The docking score was -78.0±3.4 kcal.mol⁻¹ and -76.3±11.9 kcal.mol⁻¹ for wild type and mutant ORF8, respectively (Table 1). Molecular docking results showed that; the ten hydrogen bonds were established between the wild type ORF8 and IL17RA, while four hydrogen bonds were established between the mutant ORF8 and IL17RA (Table 2). The wild type ORF8 made contact with IL17RA on five locations, while between the mutant ORF8 and IL17RA, contact was made on three locations (Figure 2). The decrease in the number of hydrogen bonds and contact points established before mutation between ORF8 from SARS-CoV-2 and IL17RA explains the decreased affinity after the mutations.

Protein dynamic analysis showed that mutations in Tyr73 and Leu188 residues impair protein stability (Table 3). The ΔΔG values were -0.389 kcal.mol⁻¹ and -0.85 kcal.mol⁻¹, respectively. However, the vibrational entropy energies between wild type and mutant showed that mutations in the Pro30, Tyr73 and Leu118 residues of the ORF8 increased protein flexibility, while the mutation at the Arg52 residue decreased flexibility (Table 3). The interaction data for ORF8 and IL17RA showed decreased affinity after mutation (ΔΔGaffinity -0.070, -0.201, -0.924 and -1.224 for P30S, R52I, Y73C and L118V, respectively). Unlike SARS and MERS, the physical
interaction of ORF8 from SARS-CoV-2 with IL17RA may be associated with the high virulence effect of SARS-CoV-2 and the severe clinical course of the disease [38–41]. Although ORF8 is known to modulate the systemic IL17 signaling pathway in SARS-CoV-2 infections, its mechanism has not been fully elucidated. IL17, a pleiotropic cytokine, is likely to play different roles in the immune system during SARS-CoV-2 infection. This makes solving the molecular mechanism of IL17A and SARS-CoV-2 ORF8 interaction more difficult [42]. Inactivation of IL17RA showed that it resulted in a significant reduction in SARS-CoV-2 viral replication in ACE2 cell lines. In this study, it was shown that the region where ORF8 from SARS-CoV-2 binds with the lowest binding energy on IL17RA is the binding site of IL17F [13]. The regulatory effect of unique signaling properties of IL17RA on innate and adaptive immune systems is a result of its interaction with IL17F [43,44]. Disruption of the interaction between IL17RA and IL17F by the ORF8 linkage may be one of the main mechanisms explaining the process of suppressing the immune response. Engaging the binding site of IL17RA, a common receptor for the IL17 family, with ORF8 may suppress the cytokine signaling process. One of regions of sequence unique to SARS-CoV-2 begins after Cys61 and extends until before the Cys83-Leu84-Pro85 conserved motif. SARS-CoV-2-specific 73YIDIT6 motif occurs at the center of this region. The YIDI motif is responsible for stabilizing an extensive non-covalent dimer interface [3]. The combination of Leu95, Ile58, Val49, and Pro56 form a hydrophobic interaction with Tyr73 of the YIDI motif. In this study, it was shown that the Tyr73Cys mutation caused an increase in flexibility and a decrease in stabilization. It appears that the occurring mutation of Tyr73 may adversely affect the stabilization of the dimer interface. This may affect the functional properties of ORF8 from SARS-CoV-2. Mutations can alter virulence characteristics of SARS-CoV-2 and affect the clinical course of the disease. The clinical effect of deletions in ORF8 may be a milder infection with less systemic release of proinflammatory cytokines and a more efficient immune response to SARS-CoV-2 [42,45].

In conclusion, it was shown in this study that 4 mutations identified in ORF8 from SARS-CoV-2 caused changes in the dynamic properties of the protein and this may result in a decrease in IL17RA affinity. These data will contribute to elucidating the functional properties of ORF8, which is an important therapeutic target. More studies are needed to fully elucidate how ORF8 from SARS-CoV-2 suppresses the host immune system.

Author Statements:

- The authors declare that they have equal right on this paper.
- The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Acknowledgement: We gratefully acknowledge the following Authors (See document S1 in Supplementary Material for authors and laboratories that provided genome data used in this study) from the Originating laboratories responsible for obtaining the specimens, as well as the Submitting laboratories where the genome data were generated and shared, on which this research is based. All submitters of data may be contacted directly via www.gisaid.org.

Table 1. Docking scores of wild and mutant ORF8 with IL17RA

	DocSc	i-RMSD	Evdw	Eelec	Edesolv	Eair	Z-Score	
1	W	-78.0 ± 3.4	2.4 ± 0.4	-40.9 ± 5.1	-220.6 ± 34.4	-1.3 ± 3.4	83.5 ± 25.7	-2.1
	M	-76.3 ± 11.9	11.9 ± 0.1	-48.2 ± 4.1	-164.5 ± 25.7	-1.2 ± 3.0	60.4 ± 40.1	-1.8
2	W	-71.8 ± 6.5	14.0 ± 0.4	-35.0 ± 7.0	-255.8 ± 26.1	0.4 ± 3.1	139.1 ± 41.0	-1.2
	M	-74.8 ± 10.8	0.7 ± 0.4	-49.0 ± 7.4	-191.9 ± 7.3	-0.1 ± 3.7	125.8 ± 81.5	-1.6
3	W	-66.5 ± 8.0	8.3 ± 0.6	-35.8 ± 3.3	-186.5 ± 29.5	1.5 ± 1.7	51.3 ± 38.9	-0.4
	M	-65.8 ± 11.8	11.4 ± 0.7	-37.1 ± 5.9	-189.3 ± 73.7	1.5 ± 2.3	76.0 ± 43.8	-0.4
4	W	-64.4 ± 3.6	6.7 ± 1.2	-47.5 ± 10.9	-160.2 ± 43.6	5.4 ± 2.4	76.9 ± 14.0	-0.4
	M	-64.4 ± 5.3	13.6 ± 0.3	-41.1 ± 2.8	-165.3 ± 24.1	2.5 ± 2.6	72.9 ± 31.3	-0.2
Table 2. Hydrogen bond interaction for ORF8-IL17RA complexes

Hydrogen bond	IL17RA	ORF8
wild type		
Asn91:HN	Gln72:O	
Asn91:O	Gln72:HN	
Arg93:HH21	Ser69:O	
Asp123:OD2	Lys94:HZ3	
Asp123:O	Lys94:HZ1	
Gln124: OE1	Lys94:HZ1	
Gln200:HE22	Asp119:OD2	
Asn261:OD1	Glu92:HN	
Asp262:OD1	Gln27:HE22	
Asp262:OD2	Gln91:HE22	
mutant		
Asn89:O	Ile74:HN	
Asp121:OD2	Lys94:HZ2	
Asp121:OD2	Lys94:HZ3	
Ser257:O	His28:HE2	

Table 3. Effects of mutant residues on protein dynamics.

wild position	mutant	ENCoM	DynaMut	mCSM	SDM	DUET	ENCoM	Flex.
Pro	Ser	-0.144	0.146	-1.000	0.810	-0.372	0.180	Inc
Arg	Ile	0.124	0.436	0.206	0.910	0.414	-0.155	Dec
Tyr	Cys	-0.525	-0.389	-0.526	-0.040	-0.290	0.656	Inc
Leu	Val	-0.248	-0.850	-1.593	-1.580	-1.712	0.310	Inc

Flex.: Flexibility
References

[1] Worldometer, "Coronavirus Cases" Worldometer (2020) 1–22. https://doi.org/10.1101/2020.01.23.20018549V2.

[2] P. Zhou, X. Lou Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R. Di Jiang, M.Q. Liu, Y. Chen, X.R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F.X. Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Shi, "A pneumonia outbreak associated with a new coronavirus of probable bat origin" Nature 579 (2020) 270–273. https://doi.org/10.1038/s41586-020-127-7.

[3] T.G. Flower, C.Z. Buffalo, R.M. Hooy, M. Allaire, X. Ren, J.H. Hurley, "Structure of SARS-CoV-2 ORF8, a rapidly evolving coronavirus protein implicated in immune evasion" Proceedings of the National Academy of Sciences 118 (2020) 1–6. https://doi.org/10.1073/pnas.2007270837.

[4] D.E. Gordon, D.E. Gordon, J. Hiatt, M. Bouhaddou, V. V Rezelj, S. Ulferts, "Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms" Science 340 (2013) 1236–1240. https://doi.org/10.1126/science.1227942.

[5] A. Fontanet, B. Autran, B. Lina, M.P. Kieny, S.S.A. Karim, D. Sridhar, "SARS-CoV-2 variants and ending the COVID-19 pandemic" The Lancet 397 (2021) 952–954. https://doi.org/10.1016/S0140-6736(21)00370-6.

[6] M. Miao, E. De Clercq, G. Li, "Genetic Diversity of SARS-CoV-2 over a One-Year Period of the COVID-19 Pandemic: A Global Perspective" Biomedicines 9 (2021) 412. https://doi.org/10.3390/biomedicines9040412.

[7] F. Wu, S. Zhao, B. Yu, Y.M. Chen, W. Wang, Z.G. Song, Y. Hu, Z.W. Tao, J.H. Tian, Y.Y. Pei, M.L. Yuan, Y.L. Zhang, F.H. Dai, Y. Liu, Q.M. Wang, J.J. Zheng, L. Xu, E.C. Holmes, Y.Z. Zhang, "A new coronavirus associated with human respiratory disease in China" Nature 579 (2020) 265–269. https://doi.org/10.1038/s41586-020-0083-3.

[8] F. Pereira, "Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene" Infection, Genetics and Evolution 85 (2020) 1–10. https://doi.org/10.1016/j.igev.2020.104525.

[9] C. Baruah, P. Devi, D.K. Sharma, "Sequence analysis and structure prediction of SARS-CoV-2 accessory proteins 9b and ORF14: Evolutionary analysis indicates close relatedness to bat coronavirus" BioMed Research International 2020 (2020) 1–13. https://doi.org/10.1155/2020/7234961.

[10] Y. Zhang, J. Zhang, Y. Chen, B. Luo, Y. Yuan, F. Huang, T. Yang, F. Yu, J. Liu, B. Liu, Z. Song, J. Chen, T. Pan, X. Zhang, Y. Li, R. Li, W. Huang, F. Xiao, H. Zhang, "The ORF8 protein of SARS-CoV-2 mediates immune evasion through potently downregulating MHC-I" BioRxiv (2020) 1–41. https://doi.org/10.1101/2020.05.24.111823.

[11] et al. Gordon DE, Jang GM, Bouhaddou M, "A SARS-CoV-2 protein interaction map reveals targets for drug repurposing" Nature 583 (2020) 1–13.

[12] J.Y. Li, C.H. Liao, Q. Wang, Y.J. Tan, R. Luo, Y. Qiu, X.Y. Ge, "The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway" Virus Research 286 (2020) 198074. https://doi.org/10.1016/j.virusres.2020.198074.

[13] L.K. Ely, S. Fischer, K.C. Garcia, "Structural basis of receptor sharing by interleukin 17 cytokines" Nature Immunology 10 (2009) 1245–1251. https://doi.org/10.1038/ni.1813.

[14] D. Toy, D. Kugler, M. Wolfson, T. Vanden Bos, J. Gurgel, J. Derry, J. Tocker, J. Peschon, "Cutting Edge: Interleukin 17 Signals through a Heteromeric Receptor Complex" The Journal of Immunology 177 (2006) 36–39. https://doi.org/10.4049/jimmunol.177.1.36.

[15] M. Kurte, P. Luz-Crawford, A.M. Vega-Letter, R.A. Contreras, G. Tejedor, R. Elizondo-Vega, L. Martinez-Viola, C. Fernández-O’Ryan, F.E. Figueroa, C. Jorgensen, F. Djouad, F. Carrón, "IL17/IL17RA as a novel signaling axis driving mesenchymal stem cell therapeutic function in experimental autoimmune encephalomyelitis" Frontiers in Immunology 9 (2018) 802. https://doi.org/10.3389/fimmu.2018.00802.

[16] V. Ramirez-Carrozzi, A. Sambandam, E. Luis, Z. Lin, S. Jeet, J. Lesch, J. Hackney, J. Kim, M. Zhou, J. Lai, Z. Modrusan, T. Sai, W. Lee, M. Xu, P. Caplazi, L. Diehl, J. De Voss, M. Balazs, L. Gonzalez, H. Singh, W. Ouyang, R. Pappu, "IL-17C regulates the innate immune function of epithelial cells in an autocrine manner" Nature Immunology 12 (2011) 1159–1166. https://doi.org/10.1038/ni.2156.

[17] B. Neupane, D. Acharya, F. Naznee, G. Gonzalez-Fernandez, A.S. Flynt, F. Bai, "Interleukin-17A Facilitates Chikungunya Virus Infection by Inhibiting IFN-α2 Expression" Frontiers in Immunology 11 (2020) 2955. https://doi.org/10.3389/fimmu.2020.588382.

[18] W.T. Ma, X.T. Yao, Q. Peng, D.K. Chen, "The protective and pathogenic roles of IL-17 in viral infections: Friend or foe?" Open Biology 9 (2019) 190109. https://doi.org/10.1098/rsob.190109.

[19] V.K. Bhardwaj, A. Singh, P. Das, R. Purohit, "Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs" Computers in Biology and Medicine 128 (2021) 1–13. https://doi.org/10.1016/j.compbiomed.2020.104117.

[20] GISAIID, "GISAIID - Next hCoV-19 App" Genomic Epidemiology of HCoV-19 (2020). https://www.gisaid.org (accessed April 1, 2021).

[21] K. Katoh, "MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform" Nucleic Acids Research 30 (2002) 3059–3066. https://doi.org/10.1093/nar/gkf436.
Cytokine IL-17F Forms a Homodimeric Complex with Receptor IL-17RC to Drive IL17RA-Independent Signaling” Immunity 52 (2020) 499-512.e5. https://doi.org/10.1016/j.immuni.2020.02.004.

[44] M. Veldhoen, "Interleukin 17 is a chief orchestrator of immunity” Nature Immunology 18 (2017) 612–621. https://doi.org/10.1038/ni.3742.

[45] L. Zinzula, "Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2" Biochemical and Biophysical Research Communications 538 (2021) 116–124. https://doi.org/10.1016/j.bbrc.2020.10.045.