Molecular systematics of the marine Dothideomycetes

S. Suetrong1,2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeier5, J. Sakayaroj1, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2*

1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pakholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirozaki University, Bunkyo-cho 3, Hirozaki, Aomori 036-8561, Japan

*Correspondence: E.B. Gareth Jones, remispora@gmail.com

Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnuales, Mytiliniidales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Dodyelliaeaceae, Leptosphaeriaceae, Lentilholisciacae, Lophiotomataceae, Massarinaceae, Montagulaceae, Morosphaeriaceae, Plesporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera studied: Halomassarina, Morosphaeria and Rimora. Few marine species are reported from the Dothideomycetidae (e.g. Mycophagellaceae, Capnodiales), a group poorly studied at the molecular level. New marine lineages include the Testudinaceae and Mangilica guatemalensis in the Jahnuales. Significantly, most marine Dothideomycetes are intertidal tropical species with only a few from temperate regions on salt marsh plants (Spartina species and Juncus roemarianus), and rarely totally submerged (e.g. Halothria positionae and Pontoporeia biturnbina on the seagrasses Posidonia oceanica and Cymodocea nodosum). Specific attention is given to the adaptation of the Dothideomycetes to the marine milieu, new lineages of marine fungi and their host specificity.

Key words: Dothideomycetes, ecology, marine fungi, multi-locus, new genera, systematics.

Taxonomic novelties: Aigialaceae Suetrong, ecotagropon, E.B.G. Jones, Kohlm., Volk.-Kohlm. & Schoch, fam. nov., Halomassarina Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volk.-Kohlm. & Schoch, gen. nov., Halomassarina hallassiae (Kohlm. & Volk.-Kohlm.), Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volk.-Kohlm. & Schoch, comb. nov., Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volk.-Kohlm. & Schoch, comb. nov., Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volk.-Kohlm. & Schoch, comb. nov., Clade V. Morosphaeriaceae Suetrong, Sakayaroj, E.B.G. Jones, & Schoch, fam. nov., Morosphaeria velataspora (K.D. Hyde & Borse) Suetrong, Sakayaroj, E.B.G. Jones & Schoch, comb. nov., Morosphaeria ramunculicola (K.D. Hyde) Suetrong, Sakayaroj, E.B.G. Jones & Schoch, comb. nov., Rimora mangrovi (Kohlm. & Vittai) Kohlm., Volk.-Kohlm., Suetrong, Sakayaroj, E.B.G. Jones, comb. nov.

INTRODUCTION

Most marine Dothideomycetes are intertidal, primarily from mangrove habitats and rely on the active discharge of their ascospores. They are frequently found as saprobes of decaying woody materials in the marine environment. The species that occur completely submerged in the sea are mostly parasites or symbionts of seagrasses or marine algae. It is not clear how ascospore discharge occurs in these species as their hosts are primarily from temperate regions on salt marsh plants (Spartina species and Juncus roemarianus), and rarely totally submerged (e.g. Halothria positionae and Pontoporeia biturnbina on the seagrasses Posidonia oceanica and Cymodocea nodosum). Specific attention is given to the adaptation of the Dothideomycetes to the marine milieu, new lineages of marine fungi and their host specificity.

Scolecosporiella typhae, Stenphyllum triglochinolica and Phialophora cf. olivacea and molecular data indicates that the telemorphs of Amorosia littoralis, dendryphilla salina and D. arenaria may be in the Pleosporales (Mantle et al. 2006, Jones et al. 2008). This paucity of marine anamorphic fungi is in marked contrast to freshwater fungi and terrestrial genera of the class (Cai et al. 2006, Shenoy et al. 2007, Shearer et al. 2009; this volume).

Marine Dothideomycetes occur on a wide range of substrata: mangrove wood, twigs and leaves; sea and marsh grasses (especially Spartina spp. and Juncus roemarianus) (Kohlmeyer et al. 1995a–c, 1996, 1997a–b). Culms and leaves of sea and marsh grasses are ideal substrata for saprobic fungi because they may remain standing for several years during and after senescence (Christian et al. 1990, Kohlmeyer & Volkmann-Kohlmeier 2001). Other species are found on brown and red seaweeds, e.g. Loldtia danica and Pleospora gracilariaceae (Schatz 1984, Simmons & Schatz 1989), on wood associated with sand e.g. Caryospora australiensis and Decaisnella formosa (Abdel-Wahab & Jones 2003) or on the brackish water palm Nypa fruticans, e.g. Canispora nypae, Herpotrichia nypicola, Tirisporella beccariana and Heliscascus nypae (Jones et al. 1996, Hyde & Alias 2000). Few marine Dothideomycetes produce elaborate appended ascospores, and...
most possess gelatinous sheaths that swell in water when released from the asc (Massarina velataspore and Trematelia halophila). Genera with appended ascospores, although generally modifications of a gelatinous sheath, include: Carinaspore nypae, Decorospora gaudejouryi and Falcoformispersa lignatis.

The main objective of this study is to provide information on the taxa that are unique to the marine milieu, e.g. Aegialus spp., Manglicola guatemalensis, Halothia positioniae and Pontoporia biturbinata and confirm the taxonomic assignment of other marine ascomycetes within the context of a well sampled analysis with other related fungi.

MATERIAL AND METHODS

Collection of fungi

Drift and attached wood, culms and leaves of marsh plants, seagrasses and seaweeds were collected from a variety of habitats and geographical locations, placed in clean plastic bags and returned to the laboratory. After washing with freshwater to remove sediments, the samples were examined for fungi. Samples were kept moist by spraying with sterilised distilled water. Sporulating fungi were examined, identified, illustrated and single-spore isolations made. Most of the fungi sequenced in this study were obligate species, but some facultative and halotolerant terrestrial taxa from Juncus roemerianus have also been included so as to increase the sampling diversity.

Fungal isolates and culture characteristics

A selection of specimens were isolated by cutting the top of an ascospora with a sterilised razor blade, removing the contents of the centrum by making a spore suspension and then streaking the spores on antibiotic seawater agar (Kohlmeyer & Kohlmeyer 1979, Schoch et al. 2007) and germinating spores picked up. Other single ascospore isolations were made on cornmeal seawater agar (CMA/S) and an equal volume of phenol-chloroform (PIERCE) added. The mixture was kept at -20 °C for 30 min, or until the DNA had precipitated, chilled absolute ethanol and 7.5 M ammonium acetate. The mixture upper liquid phase was transferred to a new microtube containing an equal volume of phenol-chloroform (PIERCE) added. The mixture was incubated at 70 °C for 30 min, allowed to germinate overnight. Germinating spores on antibiotic seawater agar (Kohlmeyer & Kohlmeyer 1979, 2007) were used to facilitate the selection of other fungal sequences to be used in the analyses. Alignments were checked and manually optimised along with other sequences obtained from the GenBank nucleotide database. The dataset was refined visually in BioEdit v. 7.0.1 (Hall 2004) to facilitate the selection of other fungal sequences to be used in the analyses. Alignments were checked and manually optimised along with other sequences obtained from the GenBank nucleotide database. The dataset was refined visually in BioEdit v. 7.0.1 (Hall 2004) to facilitate the selection of other fungal sequences to be used in the analyses.
Molecular phylogenies

The BLAST search based on SSU and LSU sequences revealed the closest matches with taxa in *Dothideomycetes* and SSU, LSU, TEF1, and RPB2 sequences generated as part of this study are listed in Table 1. These sequences were combined with previously published data from various orders of the *Dothideomycetes* (Botryosphaeriales, Capnodiales, Dothideales, Hysteriales, Pleosporales and Myriangiales) obtained from GenBank (Table 1). The data set consisted of 199 taxa, with *Opegrapha dolomitica* and *Roccella fuciformis* included as the outgroup taxa. The maximum parsimony dataset consists of 4 141 total characters, 1 890 (45.6 %) characters are constant, 532 (12.8 %) characters are parsimony informative and 1 791 (41.6 %) characters are parsimony uninformative. The heuristic search resulted in a single most parsimonious tree (MPT) with a length of 18 715 steps (CI = 0.208, RI = 0.623, RC = 0.130; data not shown). One hundred successive searches using a rapid hill-climbing algorithm from distinct randomised starting trees in RAxML yielded a best scoring likely tree (Fig. 1) with a log likelihood –84765.605900. The matrix had 2 985 alignment patterns with 32 % of the characters consisting of gaps or undetermined characters. The alignment patterns were distributed across seven partitions as follows: LSU – 859, SSU – 217, TEF1 codon1 – 195, TEF1 codon2 – 309, TEF1 codon3 – 309, RPB2 codon1 – 230, RPB2 codon2 – 203, RPB2 codon1 – 254.

Phylogenetic trees obtained from maximum likelihood, Bayesian and maximum parsimony analyses yielded trees with similar overall topology at subclass, order and family relationship in agreement with previous work based on maximum likelihood (Schoch et al. 2006). However, the internal node relationships of some taxa were resolved differently between the maximum likelihood, Bayesian and maximum parsimony trees. For example: the taxonomic position of *Biatrospora marina* differed between the maximum likelihood, Bayesian and Maximum parsimony trees in the maximum likelihood and Bayesian tree, *B. marina* grouped in a basal part of Clade XIV- Residual paraplychete assemblage. But in the maximum parsimony tree, *B. marina* grouped in a basal clade to the *Testudinacaeae*. This is not unexpected as divergence in evolutionary rates and the presence of missing data affects all these methods differently. Nevertheless, we describe new taxa based on agreement in support for all three computational methods.

Taxonomy

This study resulted in the sampling of 51 marine dothideomycetous species (Table 1) with most of the marine genera belonging in the *Plesosporomycetidae*, and only two taxa (*Mycosphaerella, Scirrhia*) referred to the *Dothideomycetidae*. Only clades with marine taxa (in blue bold in the tree) are discussed in the text.

Marine Dothideomycetes show great variation in the morphology of the ascomata, asci and ascospores as illustrated in Figs 2–3. Many genera possess ascospores with a mucilaginous sheath that swells in water, once released from the asci. In others the sheath are drawn out to form appendages (e.g. *Carinispora nypae, Decorospora gaudrefroyi, Falciformispora lignitilis*).

Plesosporomycetidae

1. *Pleosporales*, Fig. 1.

Delineation of families in the *Pleosporales* previously relied extensively on morphological characters which resulted in 17 to 19 families (Kirk et al. 2001, Lumbsch & Huhndorf 2007). These were poorly resolved at the molecular level and Schoch et al. (2006) could only find reasonable support for seven families in a phylogeny generated from four genes: *Leptosphaeriaceae, Lophiostomataceae, Phaeosphaeriaceae, Pleosporaceae, Sporormiaceae, Testudinaceae* and *Trematosphaeriaceae*. A major reassessment of these taxa is needed and attempts are underway to complete this (see Mugambi et al. 2009a, and Zhang et al. 2009, this volume). As part of this process we attempted to place a diverse selection of marine *Dothideomycetes* using phylogenetic
Fig. 1. RAxML tree of marine Dothideomycetes with bootstrap support values for maximum likelihood and maximum parsimony above the nodes. The values below the nodes are Bayesian posterior probabilities. Relevant clades are highlighted in colour.
reconstruction. This resulted in 11 supported clades corresponding to families, with marine representatives (Fig. 1) (Didymellaceae-Clade IX, Lentitheciaceae-Clade I, Leptosphaeriaceae-Clade VIII, Lophiotomataceae-Clade XII, Massarinaceae-Clade II, Montagulaceae-Clade III, Phaeosphaeriaceae-Clade VII, Pleosporaceae-Clade VI, Sporormiaceae-Clade XIII, Testudinaceae-Clade XV, Trematosphaeriaceae-Clade IV) and two new families: 1) Aigialaceae (Clade XVII) for Aigialus and related taxa (Ascomycota mangicola and Lophiotoma mangrove), and 2) Morosphaeriaceae (Clade V) for the species Morosphaeria (Massarina ramunculicola, Massarina velatapsora), Helicascus nypae, H. kanaloanus and Kirschsteiniothelia elaterasus. Further clades are also identified, but their position remains unresolved, e.g. the familial position of the taxa Halothia posidioniae, Mauritiana rhizophorae and Pontoporeia biturbinalta in clade XIV.

Clade I. Lentitheciaceae

The marine Massarina species are not monophyletic which is in agreement with observations on terrestrial and freshwater members of the genus (Zhang et al. 2009b). Consequently a number of taxonomic changes are proposed in this chapter. Zhang et al. (2009a; this volume) erected the family Lentitheciaceae. However the monophyly of Lophiotoma is not supported in the current study. Massarina phragmiticola was described from the saltmarsh grass Phragmites australis (Poon et al. 1998), and groups within this family. It grouped with M. arundinacea with 84 % MLBP and 98 % MPBP support (Fig. 1). However Zhang et al. (2009a; this volume) refers M. arundinacea to the new genus Lentitheciaceae and we place M. phragmiticola in synonymy with Lentitheciaceae arundinacea.

Keissleriella (type species K. aesculi) comprises some 25 species (Kirk et al. 2008) and two species group with Lentitheciaceae in clade I, with high support. Keissleriella rara was described from the salt marsh species Juncus roemerianus, a rare halotolerant species (Kohlmeyer et al. 1995c). Zhang et al. (2009a) also included Keissleriella linearis in their phylogenetic analysis and transferred it to Lentitheciaceae.

Clade II. Massarinaceae

Aptroot (1998) reviewed the genus Massarina and reduced the 160 names in the literature to 43 taxa, while others (especially those from aquatic habitats) have been transferred to Lophiotoma (Hyde & Aptroot 1998, Hyde et al. 2002b, Liew et al. 2002). However, subsequent studies indicate that Massarina and Lophiotoma species are polyphyletic (Zhang et al. 2009b; this volume). These genera and the families Lophiotomataceae / Massarinaceae are difficult to separate and often have overlapping characters (Zhang et al. 2009b). In our analysis the type species Massarina eburnea forms a well supported clade (Clade II) with two Heliminthosporium species (H. velutinum, H. solani) as a sister group.

Jones et al. (2009) referred the genus Massarina to the Lophiotomataceae based on the molecular evaluation of Hyde et al. (2002b) and Liew et al. (2002). Lophiotoma has been reported as a monophyletic genus (Tanaka & Harada 2003, Tanaka & Hosoya 2008) while Zhang et al. (2009b) have shown that Lophiotoma is phylogenetically divided into two groups: Lophiotoma I which includes the type species L. macrostomum (voucher Lundqvist 20504), and Lophiotoma II which also contains sequences of L. macrostomum (voucher HHUF 27293 and HHUF 27290). Zhang et al. (2009b) were unable to verify the identity of the different strains of L. macrostomum and consequently could not determine the taxonomic position of Lophiotoma s. str. The paraphyletic nature of the Lophiotomataceae has previously been noted (Schoch et al. 2006) and clade XII is likely to represent the narrow concept of the Lophiotomataceae, although it is still too early to draw this conclusion until type material of Lophiotoma (L. macrostomum) is obtained (Zhang et al. 2009b). In our analysis we have selected the accession numbers AB433273 and AB433274 from the voucher specimens HHUF 27290 and HHUF 27293, respectively, and regard this clade as representing the family Lophiotomataceae (Clade XII).

Clade III. Montagulaceae

Based on morphological data, Jones et al. (2009) referred the genus Tremataeia to the Pleosporaceae, but molecular data places it with high support in the Montagulaceae (100 % MLBP, 94 % MPBP, 1.00 BYPP) with Bimuria novae-zelandiae as a sister
taxon. Kohlmeyer et al. (1995a) described Tremateia halophila from senescent leaves of Juncus roemerianus and regarded it as a facultative marine ascomycete. Characteristic features include an apical cap on the ascus, I- ocular chamber, and muriform ascospores with a wide mucilaginous sheath, and a Phoma-like anamorph.

Clade IV. Trematosphaeriaceae

This clade comprises four strains of Massarina thalassiae, a common species on mangrove wood, from Aldabra, Australia, Belize, Brunei, Florida, Galapagos, India, Malaysia, Mexico, Thailand (Kohlm. & Volkmann-Kohlmeyer 1987, Hyde 1992d, 1993, Alias & Jones 2000, Jones et al. 2006), with Trematosphaeria pertusa as a sister taxon. Falciformispora lignitellis (Fig. 2T, W) also groups in this clade with high support (94 % MLBP, 90 % MPBP, 1.00 BYPP); a species found on mangrove wood as well as on the fronds of the terrestrial oil palm (U. Pinruan, pers. comm.). As Massarina thalassiae cannot be accommodated in the genus Massarina based on molecular evidence, a new genus Halomassarina, is described.

Halomassarina Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volkm.-Kohlm. & C.L. Schoch, gen. nov. MycoBank MB515951. Fig. 2AF.

Etymology: From the Greek hals = salt, in reference to the marine origin of the fungus.

Ascomata subglobosa ad pyriformia, immersa vel erumpentia, ostiolata, peripherysata, papillata vel epipapillata, clypeata, coriacea, brunnea, singularia. Peridium cellulis applanatis pachydermisque, texturam angularem formans. Hamathecium pseudoparaphysibus simplicibus, rarer anastomosantibus. Asci octospori, cylindrici ad clavati, pedunculati, pachydermi, fissitunicati, camera oculare, sine apparatu apicali, I non reagentes. Ascospores distichiae, ellipsoidæae, triseptatæ, hyalinae, tunica gelatinosa tectæ.

Ascomata subglose to pyriform, immersed or erumpent, ostiolate, peripherysata, papillata or papillaplate, clypeate, coriaceous, brown, single. Peridium of flattened, thick-walled cells, forming a textura angularis. Hamathecium of simple, rarely anastomosing pseudoparaphyses. Asci 8-spored, cylindrical to clavate, pedunculate, thick-walled, fisitunicate, with an ocular chamber but without apical apparatus, I-negative. Ascospores distichous, ellipsoidal, 3-septate, hyaline, surrounded by a gelatinous sheath.

Type species: Halomassarina thalassiae Kohlm. & Volkm.-Kohlm.), Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volkm.-Kohlm. & C.L. Schoch.

Halomassarina thalassiae (Kohlm. & Volkm.-Kohlm.) Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volkm.-Kohlm. & C.L. Schoch, comb. nov. MycoBank MB515952. Basionym: Massarina thalassiae Kohlm. & Volkm.-Kohlm. Canad. J. Bot. 65: 575. 1987.

This is a widely collected tropical species from intertidal and subtidal mangrove wood or fishing crafts (Kohlmeyer & Volkmann-Kohlmeyer 1987).

Clade V. Morosphaeriaceae

This clade, comprising four marine species Massarina ramunculicola, M. velataspora, Helicascus kanalosanus and H. nygae, is well supported (100 % MLBP, 100 % MPBP, 1.00 BYPP) with the Massarinaeaeae, Montagulanaceae and Trematosphaeriaceae as sister clades. As M. ramunculicola and M. velataspora do not group with other Massarina species, a new family and genus Morosphaeria are proposed.

Morosphaeriaceae Suetrong, Sakayaroj, E.B.G. Jones & C.L. Schoch, fam. nov. MycoBank MB515953.

Familia Pleosporales. Ascomycota. Ascomata subglobosa, conica, lenticularia, immersa ad superficia, ostiolata, papillata, peripherysata, brunnea vel nigra, coriacea vel carbonacea, solitaria, vel gregaria, cum 3–4 loculi, ostilosi communi ad centrum. Hamathecium pseudoparaphysibus filamentosus, numerosus, ramosis ad basem, ramosis anastomosantibus supra ascos. Asci octospori, clavati vel cylindrici pedunculati, pachydermi, fisitunicati, persistentes, camera apicale et disco apicale, IKI non-reagentes. Ascospores biseriatae, hyalinae ad brunnea, septatae constrictae ad leviter constrictae, tunica vel calyptra gelatinosa tectae, vel sine turica.

Family in the Pleosporales, Ascomycota. Ascomata subglobose, conical, lenticular, immersed to superficial, ostiolate, papillate, peripherysate, brown to black, coriaceous or carbonaceous, single to gregarious, stromatic with 3–4 loculi with a common central ostiole. Hamathecium with filamentous pseudoparaphyses, unbranched to branched at the base, anastomosing above the asc, embedded in a gelatinous matrix. Asci 8-spored, clavate to cylindrical, pedunculate, thick-walled, fisitunicate, with an ocular chamber and apical ring, non-amyloid, persistent. Ascospores biseriate, hyaline to brown, septate, with or without a gelatinous sheath or cap.

Type genus: Morosphaeria Suetrong, Sakayaroj, E.B.G. Jones & C.L. Schoch.

Morosphaeria Suetrong, Sakayaroj, E.B.G. Jones & C.L. Schoch, gen. nov. MycoBank MB515954.

Etymology: Named after Mor = sea in Welsh in reference to its marine habitat and sphearia in reference to the perithecial ascomata

Ascomata solitaria vel gregaria, subglobosa vel lenticularia, immersa, erumpentia, ostiolata, papillata, coriacea, brunnea ad nigra, pseudoparaphysibus angusti, hyaliniis, simplicibus et numerosis. Asci octospori, clavati vel cylindrici, pedunculati, bifurcatis, pachydermi, fisitunicati, cum camera apicale et apicale, IKI non reagentes. Ascospores uniseriatae vel biseriatae, fusiformes vel ellipsoidales, 1–3 septatae, constrictae ad septa, cum tunica gelatinosae.

Ascomata solitaria or gregarious, subglose to pyriform, immersed becoming superficial, ostiolate, papillate, coriaceous, brown to black, pseudoparaphyses filamentous, anastomosing, branching, and numerous. Asci 8-spored, clavate to cylindrical, short pedunculate, thick-walled, bifurcate, fisitunicate, with an ocular chamber and apical apparatus, persistent. Ascospores hyaline, 1–3 septate, constricted at the septa, fusiform to ellipsoid, surrounded by a mucilaginous sheath.

Type species: Morosphaeria velataspora (K.D. Hyde & Borse) Suetrong, Sakayaroj, E.B.G. Jones & C.L. Schoch.

Morosphaeria velataspora (K.D. Hyde & Borse) Suetrong, Sakayaroj, E.B.G. Jones & C.L. Schoch, comb. nov. MycoBank MB515955. Fig. 2AG. Basionym: Massarina velataspora K.D. Hyde & Borse, Mycotoxan 27: 163. 1986.
Morosphaeria ramunculicola (K.D. Hyde) Suetrong, Sakayaroj, E.B.G. Jones & C.L. Schoch, **comb. nov.** MycoBank MB515956. Fig. 3A, H.

Basionym: Massarina ramunculicola K.D. Hyde, Mycologia 83: 839. 1992.

Both species are common and frequently collected on dead wood of various mangrove trees in tropical and subtropical localities (Hyde & Borse 1986b, Hyde 1992a, Schmit & Shearer 2003, Jones & Abdel-Wahab 2005, Jones et al. 2006). Ascospores of both species possess a well-developed sheath (Au *et al.* 2001, Au & Vrijmoed 2002), while in *M. ramunculicola* polar appendages are formed as outgrowth of the fibrillar material within the inner regions of the sheath through polar discontinuities (Read *et al.* 1997a, b). The taxa *Helicascus kanaloanus* and *H. nypae* form a sister group to *Morosphaeria* species with high bootstrap support. Jones *et al.* (2009) referred this genus to the Pleosporaceae as in previous analyses (Tam *et al.* 2003) and grouped it with *Kirschsteiniothelia*...
elaterascus (Shearer 1993a). However, Kirschsteiniothelia is polyphylectic with the marine species K. maritima grouping in our analysis in the Mytilinidaceae (Clade XIX, Fig. 1). In addition to this the type species of the genus, K. aethiops and its anamorph, Dendryphiopsis atra, are placed outside of the Pleosporales as currently defined, always in close association with an isolate of Phaeosphaeria olivacea (Jones et al., 2002). This genus has four species that form a sister group to Phaeolus and Phaeosphaeria, but molecular data suggests that species in some currently accepted genera sensu Lumbsch & Huhndorf (2007) e.g. Comminutispora, are unrelated (Schoch et al. 2009a; this volume).

Zhang et al. (2009a; this volume) included the following marine species in the Phaeosphaeriaceae: Leptosphaeria albopunctata, Ph. spartinae, Ph. spartinica, Ph. typharum as well as Amarenomyces ammophilae, a facultative marine species collected on Juncus roemerianus throughout the year (Kohlmeier et al. 1997a). Of the marine taxa included in this family all occur on salt marsh plants: L. aestuarii, Ph. olivacea on J. roemerianus, Ph. spartinae, and Ph. spartinica on Spartina spp., while Ph. ammophilae occurs on a range of grasses and sedges, but primarily on Ammophila arenaria (Kohlmeier & Kohlmeyer 1979).

Clade VIII. Leptosphaeriaceae

Currently five Leptosphaeria species are referred to this family (Jones et al., 2009), but no sequences of marine Leptosphaeria are available for any of these, and therefore their taxonomic position cannot be verified.

Clade IX. Didymellaceae

The family Didymellaceae was recently described for the teleomorph genera Didymella, Leptosphaerula, including several Phoma anamorphs (de Gruyter et al. 2009). Four marine Didymella species have been described, three from brown or red seaweeds and D. avicenniae from wood of Avicennia (Patil & Borse 1985, Jones et al. 2009). In our analyses it forms a well-supported
basal clade (99 % MLBP, 97 % MPBP, 1.00 BYPP) to the families Phaeosphaeriaceae, Pleosporaceae, and Leptosphaeriaceae. Kohlmeyer & Volkman-Kohlmeeyer (2003) questioned the taxonomic position of Didymella magnei, a species found on the red seaweed Palmaria palmata, because the ascospores differed morphologically from those of other Didymella species.

Clade X. Julella clade

The genus Julella was previously assigned to the Pleosporales incertae sedis and Phaeosphaeriaceae, respectively (Jones et al. 2009). Julella avicenniae (Fig. 2 AE) was initially described as a Pleospora species but because the ascomata develop on woody substrata, immersed beneath a clypeus with narrow pseudoparaphyses, Hyde (1992b) transferred it to Julella.
However, ascomata can be superficial on well-decayed mangrove wood. Although regarded as an obligate marine ascomycete (Hyde 1992b), it may be implicated in the dieback of young shoots of Avicennia marina, at Morib mangrove, Malaysia, not submerged in seawater (Jones 2007). Julella avicenniae strains form a monophyletic clade with an unidentified pleosporaceous sequence (OSC 100706). This forms a moderately supported clade separated from other families in the Pleosporales (67 % MLBP).

Clade XII. Lophiostomataceae

In our analyses the families Lophiostomataceae and Massarinaeae are distinct, and distantly placed within the Pleosporales. This is confirmed elsewhere (Zhang et al. 2009a; this volume). Jones et al. (2009) referred seven genera with marine species to this family (Decaisnella-Clade XIV, Unresolved, Herpotrichia-Clade XI, Melanommataceae, Lophiostoma, Massarina-Clade II, Massarinaeae, Paralomyces, Platystomum, Quintaria-Clade XVI Residual assemblage). However, molecular data places some of these in other families, as indicated in the above sentence (Fig. 1). Of these genera, only Platystomum and Paralomyces (Tam et al. 2003) were included in the present analysis. Currently four marine Lophiostoma species are recognised: L. acrostichi, L. armatisporum, L. rhizophora and Platystomum scalarisporum; however, Su et al. (pers. obs.) propose the transfer of the latter species to Lophiostoma based on morphological and molecular data. Other Lophiostoma species have been transferred to Astrosphaeriella (A. asiana, A. mangrovis) by Hyde et al. (2002b) and Liew et al. (2002). In our analysis, based on molecular data, Lophiostoma mangrovi is referred to the family Agialaceae (Clade XV, Fig. 1), while other Massarina species are placed in the Lentitheciaceae (Clade I) [Lentitheicum (Massarina) phragmiticola], or the new family Morosphaericeae (clade V) [Morosphaeria (Massarina) ramunculicola, M. (Massarina) velataspores]. No molecular data is available for the marine species Herpotrichia nycicola which occurs on the palm Nypa fruticos, while Quintaria lignatilis forms a sister group to the Testudinaceae with low support (Schoch et al. 2006).

Clade XIV. Residual paraphyletic assemblage

Several unresolved species form part of a poorly resolved group that includes the Testudinaceae and it is not clear whether missing data played a role in this. The genera in question include: Carinispora (Fig. 2AV), Massarina ricifera, Passeriniella, Salsuginea and Quintaria (Fig. 2F). Jones et al. (2009) referred Salsuginea ramicola (Fig. 2M, X) to the Pleosporales incertae sedis; a genus with similarities to Helicascus (Kohlmeyer 1969, Hyde 1991) while Hyde (1991) suggested the Dothideales incertae sedis. Both genera occur on mangrove wood but differ in that Salsuginea lacks a stroma, the ascomata form under a clypeus, asci have a distinctive ocular chamber and ascospores with prominent apical pores and lacking a mucilaginous sheath. It is a species collected from various mangrove tree species with ascospore measurements differing, but whether this is in response to the host remains to be evaluated (Hyde 1991).

The genera Acrocordiopsis (Fig. 3P) and Passeriniella form an unsupported clade with both taxa known from mangrove wood in the tropics (Hyde & Mouzouris 1988, Borse & Hyde 1989, Alias et al. 1999) and referred previously to the Melanommataceae and Dothideales incertae sedis, respectively (Jones et al. 2009). Morphologically they would appear to share few common characters. Acrocordiopsis species are characterised by large (<2 mm) ascospores that are conical, superficial on the host and carboxenous with the ascospores forming on a thin layer of peridial tissue on the host substratum while the ascospores are hyaline and 1-septate (Alias et al. 1999). Currently two Passeriniella species are accepted (Jones et al. 2009), namely P. mangrovi and P. savoryellipsoid, with coriaceous, globose to subglobose, immersed ascospore, and ascospores that are 3-septate, central cells brown, and hyaline end cells (Hyde & Mouzouris 1988, Maria & Sridhar 2002). The taxonomic characterisation of the genus Passeriniella is confusing and has been discussed by Hyde & Mouzouris (1988) and Kohlmeyer & Volkmann-Kohlmeyer (1991).

Byssothecium (Passeriniella) obiones, a common species on senescent culms of Spartina, has a checkered history, assigned to Pleospora, Leptosphaeria, Didymosphaeria, Melasphaeria and Passeriniella (Jones et al. 2009). Khashnosh & Shearer (1996) showed that based on ITS sequence data, Byssothecium

The latter are temperate hosts, while D. formosa and M. rhizophora are from the tropics.

Clade XV. Testudinaceae

Verruculina and Massarina ricifera (Fig. 2K, AA) are the only marine genera referred to this family, poorly supported in the current analysis, but confirming the results of a previous study (Schoch et al. 2006). In their analysis the family formed the basal node to the Pleosporales. Members of the Testudinaceae form a monophyletic clade and are characterised by ascospores that are 1-septate, brown without germ slits and with or without ornamentation (Kruys et al. 2006). However, Verruculina enalia shares few characters with members of the Testudinaceae, it differs especially by its marine habitat and persistent asci. Massarina ricifera is an obligate marine ascomycete growing on Juncus roemerianus and referred by Kohlmeyer et al. (1995b) to the Lophiostomataceae “with hesitation” as it did not fully agree with the type species Massarina eburnea. Molecular data presented here clearly indicates that it does not belong in Massarina, but further assignment must await additional collections.
(Passeriella) obiones did not belong in either Leptosphaeria or Phaeosphaeria. Subsequently, Barr (2002) assigned it to Byssothecium, based on the vericolourous ascospores in the Teichosporaceae. In our original data set, it grouped with Mycosphaerella species in the Capnodiales. As the origin of this sequence (JK 4748) cannot be verified, and because of the distinctive morphology of B. obiones which has little in common with those of Mycosphaerella and other members in the Capnodiales, we did not present these data here.

Two sequences of Quintaria lignitilis form a sister group to the Testudinaceae but with moderate support for all analyses. The genus has previously been referred to the Lophiostomataceae (Cai et al. 2006) and shares features in common with Trematosphaeria. Quintaria differs from Trematosphaeria by having completely immersed ascomata with rounded bases, black incrustations lining the sides of the ostiolar canal, a non-amyloid plate in the ascus and hyaline ascospores (Kohlmeyer & Volkmann-Kohlmeyer 1991).

Carinispora nypae is another anomalous taxon whose taxonomic position cannot be resolved at this time. It is placed in the paraphyletic assemblage XVI by maximum likelihood and Bayesian derived phylogenies, but not for those obtained by maximum parsimony. This may be due to artifacts associated with long branch lengths and its placement will require more in-depth analysis. Carinispora nypae is found growing on the marine palm Nypo fruticans and has raised crust-like spots covered in a soft crust-like stroma, with lenticular ascomata under a clypeus, cylindrical and narrow asci, and yellow to pale-brown ascospores with a pronounced sheath drawn out on one side into a spine-like polar appendage (Hyde 1992a). Hyde (1992a) commented that it was close to Phaeosphaeria, but our data do not support this view.

Clade XVII. Aigialaceae Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volkm.-Kohlm. & C.L. Schoch, fam. nov. MycoBank MB515957.

Etymology: Named after the type genus.

Family Pleosporaceae. Ascomycotina. Ascomata globosa, conica, immersa ad superficiem, ostiolata, ostiolum rotundum vel fissuriforme, epapillata, periphysata. Hamathecium pseudoparaphysibus trabeculatis, eramosis ad basem, ramosis superficialia, ostiolata, ostiolum rotundum vel fissuriforme, periphysata. Peridium cellulis pachydermis, texturam angularem ad basem, anastomosantibus supra ascos. Asci octospori, cylindrici pedunculati, pachydermi, fissitunicati, disco apicale, IKI non-reagentes. Ascosporae distichae, fusiformes, dissepimentatae, hyalinae, tunica gelatinosa tectae.

Family in the Pleosporales, Ascomycota. Ascomata globosum and immersed to superficial or conical, ostiolate, ostiolum round to cleft-like, appapillate, black, carbonaceous to coriaceous, single to gregarious. Periphysate. Hamathecium trabeculatum, unbranched at the base, anastomosing above the ascus, embedded in a gelatinous matrix. Asci 8-spored, cylindrical, pedunculate, thick-walled, fissitunicata, with a refractive apical ring, non-amyloid. Ascospores biseriate or monostichous, peripherally, ostiolar, ostiolum round or fissuriforme, epapillate, periphysata.

Type genus: Aigialus Kohlm. & Schatz.

Aigialus Kohlm. & S. Schatz, Trans. Brit. Mycol. Soc. 85: 699. 1985. A. grandis Kohlm. & S. Schatz, Trans. Brit. Mycol. Soc. 85: 699. 1985 (Type species). Fam. 3A–B, L, N. A. mangrovis Borse, Trans. Brit. Mycol. Soc. 88: 424. 1987. Fig. 3D, P. A. parvus S. Schatz & Kohlm., Trans. Brit. Mycol. Soc. 85: 704. 1985. Fig. 3C, F–G, O.

A. rhizophorae Borse, Trans. Brit. Mycol. Soc. 88: 424. 1987. Fig. 3E, Q. A. striatisspora K.D. Hyde, Mycol. Res. 96: 1044. 1992.

Jones et al. (2009) accepted four species in this genus, but rejected A. rhizophorae as it shared a number of features with A. grandis, but only differed in the vertical septation in the subapical cell. Recent collections made in Thailand have enabled us to sequence this species and it is clearly distinct from A. grandis. This is a commonly encountered genus on mangrove wood and widely reported in the literature (Borse 1987, Schmit & Shearer 2003, Abdel-Wahab 2005, Jones et al. 2006). Aigialus striatisspora was described from Ranong mangrove, Thailand, but no further collections have been made (Hyde et al. 1990, 1993).

Asocratera Kohlm., Canad. J. Bot. 64: 3036. 1986. A. manglicola Kohlm., Canad. J. Bot. 64: 3036. 1986 (Type species).

Asocratera manglicola is characterised by carbonaceous, black, gregarious ascomata that are conical, crater-like, superficial on wood, on a black stroma, by trabeculate pseudoparaphyses, by asci with a refractive apical ring, and hyaline ascospores, surrounded by a gelatinous evanescent sheath (Kohlmeyer 1986). It is a common species on mangrove wood in the intertidal zone, and known from various tropical geographic locations (Schmit & Shearer 2003).

Rimora Kohlm., Volkm-Kohlm., Suetrong, Sakayaroj & E.B.G. Jones, gen. nov. MycoBank MB515958.

Etymology: From the Latin rina = cleft, fissure and os = mouth, in reference to the cleft-like ostiole, a unique feature among marine ascomycetes.

Ascomata erumpentia, apice plano, elongata, appilata, ostiolo fissuriforme, periphysata, nigra, gregaria. Peridium cellulis pachydermis, texturam angularem formans. Hamathecium pseudoparaphysibus ramosis. Asci octospori, cylindrici, pedunculati, pachydermi, fissitunicata, sinne apparatu apicali. Ascospores distichae, fusiformes, trisepitae, hyalinae, tunica gelatinosa tectae.

Ascomata erumpent, with flat tops, elongated, appilulate, opening with a periphysate cleft-like ostiole, black, gregarious. Peridium of thick-walled cells, forming a textura angularis. Hamathecium of branched pseudoparaphyses. Asci 8-spored, cylindrical, pedunculate, thick-walled, fissitunicata, without apical apparatus. Ascospores biseriate, fusiform, 3-septate, hyaline, surrounded by an evanescent sheath.

Type species: Rimora mangrovei (Kohlm. & Vittal) Kohlm., Volkm-Kohlm., Suetrong, Sakayaroj, E.B.G. Jones. Rimora mangrovei (Kohlm. & Vittal) Kohlm., Volkm-Kohlm., Suetrong, Sakayaroj & E.B.G. Jones, comb. nov. MycoBank MB515959. Fam. 3K, S. Basionym: Lophiostoma mangrovei Kohlm. & Vittal, Mycologia 78: 487. 1986.
the pseudoparaphyses. However, the aforementioned authors conceded that *A. mangrovis* (and *A. asiatica*) differed from other *Astrosphaeriella* species by their round flattened ascomata, silt-like ostioles and non monocotyledonous hosts.

All three genera *Aigialus*, *Ascoscrotites* and *Rimora* share features such as carbonaceous, apipallate ascomata, trabeculate pseudoparaphyses, cylindrical asci with an apical apparatus and ascospores with a sheath. However, they differ in the morphology of their ascospores: brown and muriform in *Aigialus*, hyaline and 1–3-septate in *Ascoscrotites* and *Rimora*.

2. *Mytilinidiales*, Fig. 1

Clade XIX. *Mytilinidiales*

The common bitunicate ascomycete *Kirschsteiniothelia maritima* groups with *Lophium mytilum*, with *Mytilinidion mytilillum* and *Hysterium andinense* as a sister group. The genus *Kirschsteiniothelia* has been referred to the *Pleosporaceae* (Eriksson & Hawksworth 1998, Kirk et al. 2001), *Pleomassariaceae* (Barr 1993), and questionably the *Massariaceae* (Kodsueb et al. 2006). The genus appears to be polyphyletic, and Shearer (1993a) and Schoch et al. (2006) are of the opinion that *K. aethiops* does not belong in the *Pleosporaceae*. Kodsueb et al. (2006) show that *K. elaterascus* (a freshwater species) clusters with *Morosphaeria* (*Massarina*) *ramunculicola* in a sister clade to the *Melanomnataceae* (see also clade XI, Fig. 1). However, *K. elaterascus* differs from *K. maritima*, and other *Kirschsteiniothelia* species in ascus structure, its unusual endoascus with a long, coiled base that uncoils during ascus dehiscence, ascospore measurements, the presence of an ascospore sheath and its freshwater occurrence (Shearer 1993a).

Clade XX. Unresolved taxa

Included in this clade are three coelomycete species of which *Pseudorobilliadra phragmitis* has been reported from pine and yellow poplar test panels from estuarine waters (Salinity 3–16 ppt) (Jones et al. 2009). This monophyletic group formed a well-supported clade and a sister group to the *Mytilinidiales*. However in the current study they form a weakly supported clade with *Farlowiella camichaeliana* and are basal to the *Mytilinidiales* in all analyses.

3. *Patellariales*, Fig. 1

Clade XXII. *Patellariaceae*

Patellaria cf. atrata (Fig 2B, R, AD), a species found growing on various mangrove wood species collected in Hong Kong and Thailand, forms a sister group to the *Hysteropatella* species, taxa normally assigned to the *Hysteriales*, but recently removed (Boehm et al. 2009a, b; this volume). Morphologically, little distinguishes *Glioniella clavatopora* and *Patellaria atrata*; paraphyses in the latter species are distinctly branched and club-shaped (Suetrong & Jones 2006). The paraphyses illustrated by Steinke & Hyde (1997) are simple and not branched (Suetrong & Jones 2006). Boehm et al. (2009a; this volume) refer *Glioniella* to the *Hysteriales*, and *Patellaria* in the *Patellariaceae*; further collections of the marine taxa are required to resolve their identification.

A number of marine species do not group within existing orders of *Dothideomycetes* and this may indicate new supergeneric taxa not yet circumscribed. The lack of sufficient protein coding gene sequences for these in our analysis and the tendency for these species to be associated with fast evolving branches on our trees further complicates the development of phylogenetic hypotheses for these taxa.

(i) *Biatrospora marina* (Clade XIV), in all analyses, forms a distinct long branch and is a basal taxon to the *Pleosporomycetidae* without any closely related taxa (Fig. 1). It is an unusual species described from *Sonneratia alba* mangrove wood collected in the Seychelles and India (Hyde & Borse 1986a). It has immersed subglobose to pyriform ascocoma that are black and carbonaceous, cylindrical asci and brown, septate ascospores with hyaline, globose refractive chamber or an appendage at each end. Pseptation is unusual in that ascospores are non-septate in the center but septate at both ends and not constricted at the septa. Additional collections have been made from mangroves in Hong Kong, Malaysia and Thailand (Jones et al. 2006, E.B.G. Jones unpubl. data).

(ii) *Saccardoella rhizophorae* Clade XIX. *Saccardoella* species have been regarded as having unitunicate asci and thus classified in the *Cyphosphaeriaceae* (Barr 1994). However, Mathiasson (1989) was of the opinion that the asci are bitunicate and this would appear to be supported by the current study. *Saccardoella* species are known from terrestrial, marine and freshwater habitats (Hyde 1992c, Tsui et al. 1998). However in all phylogenetic analyses to date this species does not group within any known family or order, and further studies are required to determine its phylogenetic relationship.

4. *Jahnulales*

Aliquandostipitaceae (data not shown)

The family *Aliquandostipitaceae* was established for species in the genus *Aliquandostipites* based on the phylogenetic analyses of SSU nrDNA sequences (Inderbitzin et al. 2001). Subsequently Pang et al. (2002) introduced the new order *Jahnulales* into the *Dothideomycetes*, *Ascomycota*, based on phylogenetic analysis of SSU nrDNA sequences of *Aliquandostipite*, *Jahnula* and *Patescospora*. More recently, Campbell et al. (2007) studied the phylogenetic relationships of taxa in the *Jahnulales* inferred from SSU and LSU nrDNA sequences and recognised four groups: 1) a basal group with *Megalohypha aqua-dulces*; 2) a *Jahnula* group comprising the type species *J. aquatica*; 3) five *Aliquandostipite* species; and 4) four *Jahnula* species and the anamorphic genera *Brachiosphaera* and *Xylomyces*. They emended the ordinal description to include brown, wide hyphae (>10 µm) and greater variation of ascospore morphology.

Three marine fungi belong in the *Jahnulales*, the teleomorph *Mangicula guatemalensis* and the anamorphic species *Xylomyces chlorydosporus* and *X. rhizophorae* (Suetrong et al. 2010). *Mangicula guatemalensis* is a poorly known species with only three previous collections (Kohlmeier & Kohlmeier 1971, Hyde 1988, Jones et al. 2009, Suetrong et al. 2010). The type strain was collected from dead roots of *Rhizophora mangle* in Guatemala (Kohlmeier & Kohlmeier 1971). Subsequent collections have been made on intertidal prop roots of *Rhizophora apiculata* at Kpg Danau, Brunei (Hyde 1988) and frond bases of *Nypa fruticans* (Jones et al. 2009). Common features *M. guatemalensis* shares with the *Jahnulales* include stipitate ascomata, bitunicate asci, reticulate pseudoparaphyses and 1-septate brown ascospores. *Mangicula guatemalensis* differs from other bitunicate ascomycetes by its large
ascomata, wide ostiole, large unequally 1-septate ascospores and mangrove habitat on *R. mangle* and the frond bases of *N. fruticans*.

Huhndorf (1994) referred *Mangicola* to the Hypsostromataceae, a family with no known relationship to any group in the Dothideomycetes (*Loculoascomycetes*) but “probably with affinities to the Melanommatales” (Mugambi & Huhndorf 2009; this volume). Characteristics that unite *Mangicola* and the Hypsostromataceae include superficial, large, elongate ascomata (stalked) with a soft-texture, trabeculate pseudoparaphyses, stipitate asci attached in a basal arrangement in the centrum and fusiform, septate ascospores (Huhndorf 1994).

Dothideomycetidae

5. *Capnodiales*, Fig. 1

Fourteen genera, such as *Belzeana*, *Caryospora*, *Coronopapilla*, *Lautospora*, *Loratospora*, *Pontoporeia* and *Thalassoasculus*, assigned to the subclass *Dothideomycetidae*, have only marine species, and represent new lineages of fungi that may be associated with the *Capnodiales* (Jones et al. 2009). Importantly, few have been studied at the molecular level. Placement of the genera *Passeriniella* and *Pontoporeia* has already been discussed above.

Clade XXV. Mycosphaerellaceae

Mycosphaerella eurypotami, a halotolerant terrestrial species found on *Juncus roemerianus*, was tentatively referred to the genus by Kohlmeyer et al. (1997b). In the current study it is a sister taxon to all *Mycosphaerella* species with moderate support. Jones et al. (2009) list three marine *Mycosphaerella* species (*M. salicorniae*, *M. staticiola*, *M. suaeidae-australis*) found on salt marsh plants (*Armeria*, *Limonium*, *Salicornia* and *Suaeda*), while *M. pneumatothripe* is a common species on the pneumatophores of *Avicennia* species in Asia and the Caribbean (Kohlmeyer & Kohlmeyer 1979, Jones et al. 2003, E.B.G. Jones, pers. comm.). However recent molecular phylogenies containing a single culture did not support the placement of *M. pneumatothripe* in *Mycosphaerella* (Schoch et al. 2006); instead it was found on a poorly resolved branch within *Dothideomycetidae*.

In our analysis, *Scirrhia annulata*, described from senescent leaves of *Juncus roemerianus* (Kohlmeyer et al. 1996), groups with various *Mycosphaerella* species with moderate support. Diagnostic features are the linear stromata, 1–3 mm long, generally superficial, multiloculate with ascomata in longitudinal rows, asci clavate with apical apparatus (several rings), ascospores 3-septate, brown, with a thin evanescent sheath, and measuring 46–60 x 9–11.5 µm.

Clade XVIII. Unresolved taxa (Fig. 1)

(i) The taxonomic position of *Heleiosasa barbatula* (Fig. 1) is unresolved as observed by its swapping position in different analyses (data not shown) and previously referred to the *Dothideales* and *Pleosporales incertae sedis*, respectively (Kohlmeyer et al. 1996, Jones et al. 2009). This species, collected on *Juncus roemerianus*, is rare and is not obligately marine. Characteristics include immersed ostiolate epipalliate ascomata formed beneath a clypeus, with pseudoparaphyses, asci cylindrical with short pedicel, refractive apical apparatus and ascospores that are pale brown, ellipsoidal, 1-septate with 10 or more cilia-like polar appendages at each end.

(ii) The genera *Caryospora*, and *Lineolata* form a basal clade in all analyses with weak support, genera previously assigned to *Melanommatales* and *Pleosporales incertae sedis*, respectively (Jones et al. 2009). Both occur on mangrove substrata and have been widely reported from different geographical locations (Schmit & Shearer 2003).

Caryospora was thought to be related to *Caryospora*, with which it shares a number of common features (Kohlmeyer 1985). It is found on dead wood of intertidal roots and branches of mangrove trees and has large ascomata and 1-septate, dark-brown ascospores that are thickened at their apices.

Lineolata was initially described as a *Didymosphaeria* but transferred to this genus (Kohlmeyer & Volkmann-Kohlmeyer 1990) as it differs in the following respects: no clypeus, almost superficial ascomata, hamathecium with a gelatinous matrix, asci with an apical ring-like structure around the ocular chamber and ornamented brown ascospores. It remains enigmatically placed here, although three monophyletically placed isolates obtained from different geographic locations heighten our confidence in the provenance of these sequences.

DISCUSSION

Marine lineages of the Dothideomycetes

The study confirms the occurrence of several marine Dothideomycetes with well supported sequence data. The *Pleosporales* includes ten families and three unresolved clades with marine species, while the orders *Capnodiales*, *Jahnulales*, *Mytilillidiales*, and *Patellariales* are represented by few taxa. This is in common with their known diversity (? in nature (Kohlmeyer & Kohlmeyer 1979, Jones et al. 2009). While many terrestrial genera have marine members, e.g. *Mycosphaerella*, *Passeriniella*, *Lophostoma*, *Massarina*, *Trematosphaeria* and *Phaeosphaeria*, others have no known terrestrial counterparts. The uniqueness of these has necessitated the introduction of two new families in the *Pleosporales*, *Aigialaceae* (all marine genera: *Aigialus*, *Ascoscratera*, *Rimora*) and *Morosphaeriaceae* (marine genera *Helicascus*, *Morosphaeria* and the freshwater species *Kirschsteiniothella elaterascus*). The taxonomic position of other exclusively marine genera/species remains to be resolved e.g. the seagrass ascomycetes *Halotithia posidoniae*, *Pontoporeia biturbinata* (Clade XIV), and *Lineolata rhizophorae* (Clade XVIII) and *Bartirospora marina* (Clade XIV).

A number of new marine lineages have been highlighted as result of molecular studies including *Mangicola guatemalensis*, the first member of the *Jahnulales* reported from marine habitats (Suetrong et al. 2010). This is of particular interest as all other *Jahnulales* members are fresh water or peat swamp species and raises the question as to whether these marine fungi are derived from terrestrial and freshwater taxa that have migrated to the sea. This would support earlier phylogenetic analyses (Spatafora et al. 1998) that strongly suggest a terrestrial origin of another marine ascomycete family in the *Sordariomycetes*, the *Halosphaeriaceae*. A more recent data set (Schoch et al. 2009a; this volume) continues to support this hypothesis. The marine species *M. guatemalensis* occurs in estuarine mangrove habitats on the palm fronds of *Nipa fruticans* and *Rhizophora* wood and may well form a link between lignonous freshwater taxa and species from estuarine to marine environments. Another *Jahnulales* species of interest is the anamorph *Xylomyces rhizophorae*, found on various marine and
mangrove substrata (Kohlmeier & Volkmann-Kohlmeier 1998, S. Swichai, pers. comm.), Campbell et al. (2007) and Prihatini et al. (2008) have shown that Xylomyces chlamydosporus has a telemorph in the Jahnulales.

A second marine lineage is the Agialaceae comprising three genera: Agialus, Ascocratera, and the new genus Rima, a family within the Pleosporales. Morphologically they show few common characteristics but all are to be found in mangrove habitats.

Schoch et al. (2006) showed that Verniculina enalia is a member of the Testudinaceae, and another marine lineage in the Dothideomycetes. Previously referred to the Didymosphaeriaceae (Kohlmeier & Volkmann-Kohlmeier 1990), it forms a well supported basal clade to the Pleosporales. Continued molecular studies of unresolved taxa may yield further lineages of marine ascomycetes.

Taxa for future phylogenetic study

Marine Dothideomycetes include a broad spectrum of genera and a wide variety has been sequenced for the current study. However, several remain to be investigated with DNA sequence data, especially the genera Belizeana, Capillatospora and Thalassoascus (Dothideales incertae sedis); Lautospora (Dothideomycetidae incertae sedis); Bicrouania (Melanommataceae?); Lautitia (Phaeosphaeriaceae?) and Tirisporella (Pleosporales incertae sedis). Most are only rarely collected, have yet to be isolated, are intertidal, or rarely totally submerged. Other more frequently collected taxa also require further analysis: Quintania lignitallis (mangrove species), Decaisnella formosa (wood in association with sand) and Byssothecium obiones (on Spartina grass).

Adaptation to the marine environment

Of the 64 genera (108 species) of marine Dothideomycetes nearly all are intertidal species found in mangrove habitats, with the exception of those that occur on marine algae, saltmarsh plants or seagrasses, e.g. Thalassoascus, Lautitia, Pharcidia (algae), Bicrouania (marsh plants), Halothelia, Pontoporeia (seagrasses); Caryospora australiensis, Decaisnella formosa and Platystomum scabridisporum (wood associated with sand) (Abdel-Wahab & Jones 2000, 2003). Most of them would appear to be well adapted to intertidal estuarine habitats with active discharge of their ascospores. Although they lack the elaborate ascospore appendages found in the Halosphaeriaceae (Jones 1994, 1995) many have mucilaginous sheaths, often elaborated to form polar appendages (Yusoff et al. 1994, Read et al. 1997a, b, Alias et al. 2001, Au et al. 1999). Ascospores within the ascus are surrounded by a well-defined delimiting membrane which prevents the mucilaginous sheath from expanding, thus ensuring effective ascospore discharge (Read et al. 1994, Yusoff et al. 1994). Once ejected from the ascus the sheaths (and appendages) take up water, swell and help in the attachment of the spores to suitable substrata (Jones 1995).

Some species form ascospore appendages by fragmentation of a sheath e.g. Capronia ciliomaris (Au et al. 1999) and Tirisporella beccariana (Jones et al. 1996). A similar mechanism of appendage unfolding appears to occur in Helcoidea barbatula (Kohlmeier et al. 1996). As with the ensheathed ascospores, the appendages do not dilate until they are dispersed into water.

Few marine anamorphic fungi have been reported in comparison to those found in freshwater habitats (Marvanová 1997, Belliveau & Bårlocher 2005, Cai et al. 2006). Currently some 94 marine anamorphs are known, but only a few have been linked to teleomorphs in the Dothideomycetes: Amorosia littoralis (Mantle et al. 2006), Dendryphiella arenaria, O. salina (Jones et al. 2008), Xylomyces spp. (Campbell et al. 2007, Prihatini et al. 2008), Pseudorobillarda phragmitis (Runjindamai, pers. comm.), and Robillarda rhizophorae (Runjindamai, pers. comm.). A strain of Alternaria maritima groups within the Pleosporaceae in the current study, while other marine anamorphic species e.g. Stemphyllum spp. Stagonospora spp., may also be linked to teleomorphs in the Dothideomycetes.

Freshwater anamorphic fungi are uniquely adapted to their habitat with branched, sigmoid and tetraradiate conidia (Jones 2006, Campbell et al. 2007); many have teleomorphs in the Dothideomycetes (Webster & Descals 1979, Tsui & Berbee 2006, Tsui et al. 2006). In contrast few of the marine hyphomycetes appear to be adapted to their milieu, lacking any elaboration of their conidia (except e.g. Varicosporina ramulosa and Dwayaangam junci). This is particularly so for species with recorded teleomorphs in the Dothideomycetes (Jones et al. 2008).

Specific habitats of marine Dothideomycetes

Marine Dothideomycetes are generally intertidal ascomycetes and more common in mangroves, with only a few documented from temperate climates.

(i) Nypa fruticans: Currently some 100 saprophytic fungi have been documented from Nypa fruticans, a brackish water palm that occurs from fully saline conditions to freshwater habitats. Common fungi on this palm include Astrosphaeriella nypae, Astrosphaeriella striatispora, Helicascus nypae, Linocarpon appendiculatum and Tirisporella beccariana. Many of the fungi occurring in Nypa are not found on other mangrove or marine substrata, for example, Linocarpon spp., Astrosphaeriella spp., Oxidothis spp. and Fasciatispora lignicola. Therefore one could ask, are these fungi host-specific or is their occurrence on Nypa determined by the salinity of the habitat? A significant number of fungi on Nypa are unique to the palm, e.g. Helicascus nypae, Tirisporella beccariana and Carinisporella nypae while recently Mangicola guatemalensis has been found to be common on this palm in Thailand.

(ii) Seagrasses: The diversity of fungi in seagrasses has been a neglected field (Raghukumar 2008). Generally, diverse seagrass species support low diversity and density of saprophytic and endophytic fungi, as confirmed by many studies (Wilson 1998, Alva et al. 2002, Devarajan et al. 2002, Rodriguez 2008, Sakayaroj et al. 2010). The most common marine fungi associated with seagrasses include Sordariomycetes, Corollospora maritima, Linda thalassiae, Lulworthia sp. and anamorphic fungi (Kohlmeier & Kohlmeyer 1979, Newell & Fell 1980). Cuomo et al. (1982, 1985) reported that the marine Dothideomycetes, Pontoporeia biturbinata, and Halothelia posidoniana were commonly found on Posidonia oceanica and Cymodocea nodosa from Mediterranean coasts (Cuomo et al. 1982, 1985) and Cyprus (Jones et al. 2009). These two obligate marine Dothideomycetes appear to be host specific and are frequently found on rhizomes of seagrass (Kohlmeier & Kohlmeyer 1979).

Many anamorphic dothideomycetous fungi have been found predominantly as endophytes associated with living seagrass tissues (Sakayaroj et al. 2010). They are mostly sterile mycelia and have only been identified by DNA sequence analysis (Sakayaroj et al. 2010). So far the diversity of marine fungi associated with seagrasses, compared with other substrata, is relatively low (Kohlmeier & Kohlmeyer 1979). This is probably due to 1) growth
inhibiting substances present in seagrass, 2) possibly the frail leaves of seagrass break up before most of the ascomycetes are able to colonise or sporulate and finally 3) they are attacked by other competitors such as bacteria, protozoa, lower fungi, fast growing anamorphic and/or terrestrial fungi (Sakayaroj et al. 2010).

(iii) Saltmarsh plants: Spartina and Juncus roemerianus: The mycota of the saltmarsh plant Juncus roemerianus, endemic to the U.S. east coast and to the Gulf of Mexico, is unique among herbaceous plants and can only be vaguely compared to that of mangrove trees, which also host obligate marine as well as terrestrial species. The terete leaves of J. roemerianus remain standing for three years or more and the extreme conditions of the habitat are the reason for the unique fungal diversity (117 species, 17 families; Kohlmeyer & Volkman-Kohlmeyer 2001). Bitunicates appear to be less abundant than other groups of fungi; they range from obligate marine taxa at the base to terrestrial but halotolerant species at the tip of the leaves.

Spartina species are common saltmarsh plants in temperate climates that support a wide range of fungi. Kohlmeyer & Volkman-Kohlmeyer (2002) list 39 obligate and facultative marine fungi reported from Spartina species, of which 13 are bitunicate species. Phaeosphaeria species appear to be the most common bitunicate genus on this substratum.

(iv) Mangroves: Some 54 species of mangrove trees and 60 associates occur in the new and old world (Tomlinson 1986) with senescent wood, leaves and fruits offering a unique habitat for fungi. It is interesting that magicolous fungi are predominantly bitunicate species, while uniltunicate ascomycetes are more prevalent in other marine habitats. Of the 108 described marine Dothideomycetes, 90 sequences are currently available enabling the taxonomic resolution of a number of genera and species; in particular of Massarina species which are frequently found on mangrove substrata.

Future studies

Many habitats, substrata, geographical locations remain virgin territory for studies on marine fungi. For example, a recent investigation of the fungal diversity associated with the brown alga Fucus serratus found several unknown phylotypes within the Sordariomycetes the prevalence of mangrove fungi in Dothideomycetes is even more noticeable. Does this ecological predominance reflect a radiation event of these fungi in the Dothideomycetes? Or is our sampling still biased towards specific geographies and ecologies? Only a renewed focus on the niches described above will provide us with the answer. It is our hope that a broader scope will provide enough resolution to begin to address ecological shifts in this fascinating group of fungi.

ACKNOWLEDGEMENTS

This work was supported by TRF/BIOTEC Special Program for Biodiversity Research and Training Grant BRT R251006, BRT R351004 BRT R352015, and a TOTAL Corporate Foundation, TOTAL E & P Thailand. We thank Y. Zhang and Dr K.D. Hyde for exchange of data and useful discussions. SS acknowledges the Songklanagarad Scholarship for Graduate Studies from the Prince of Songkla University. We thank Prof. M. Tanticharoen, Dr K. Kirtikara and Dr L. Eurewilaichitr for continued support. We thank A. Klaysuwan for technical assistance, and U. Pinnuan, N. Runngdaminai, R. Cheoyklin, A. Loilong, S. Preedanon and O. Supaphon for assistance with the field work. Work performed by CLS after 2008 was supported in part by the IntraNational Research Program of the NII, National Library of Medicine. Part of this work was also funded by a grant from NSF (DEB-0717476) to JWS and CLS (until 2008).

REFERENCES

Abdel-Wahab MA (2005). Diversity of marine fungi from Egyptian Red Sea mangroves. Botanica Marina 48: 348–355.
Abdel-Wahab MA, Jones EBG (2000). Three new marine ascomycetes from driftwood in Australian sand dunes. Mycoscience 41: 379–388.
Abdel-Wahab MA, Jones EBG (2003). Decaisnella formosa sp. nov. (Ascomycota, Massariaceae) from an Australian sandy beach. Canadian Journal of Botany 81: 598–600.
Alias SA, Jones EBG (2000). Colonization of mangrove wood by marine fungi at Kuala Selangor mangrove stand, Malaysia. Fungal Diversity 5: 9–21.
Alias SA, Jones EBG, Torres J (1999). Intertidal fungi from the Philippines, with a description of Acrocorydopsis aphanica sp. nov. (Ascomycota). Fungal Diversity 2: 35–41.
Alias SA, Moss ST, Jones EBG (2001). Cuculopsorella mangrovei, ultrastructure of ascospores and their appendages. Mycoscience 42: 405–411.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.
Alva P, Molenzire EHC, Pointing SP, Pena-Murala R, Hyde KD (2002). Do seagrasses harbour endophytes? In: Fungi in Marine Environments (Hyde KD, ed.), Fungal Diversity Research Series 7: 167–178.
Aptroot A (1998). A world revision of Massarina (Ascomycota). Nova Hedwigia 66: 89–162.
Au DWT, Jones EBG Vrijmoed LLP (1999). The ultrastructure of Capronia citronaria, an intertidal marine fungus from San Juan Island, Mycologia 91: 328–333.
Au DWT, Vrijmoed LLP, Jones EBG (2001). Ultrastructure of asci and ascospores of Massarina velataspora from intertidal mangrove wood. Botanica Marina 44: 261–266.
Barr ME (1996). Notes on the Pleomassariaceae, Mycotaxon 51: 191–224.
Barr ME (1998). Planistromellaceae, a new family in the Dothideales. Mycotaxon 60: 433–442.
Barr ME (2002). Teichosporaceae, another family in the Pleosporales. Mycotaxon 72: 373–389.
Belliveau MJ-R, Bärlocher F (2005). Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycological Research 109: 1407–1417.
Boehm EWA, Mugambi GK, Huhndorf SM, Marubcowits SL, Schoch CL (2009a). A phylogenetic reappraisal of the Hystesiaceae, Mytiliniaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with key to world species: Studies in Mycology 64: 49–83.
Jones EBG, Sakayaroj J, Suetrong S, Somthithip S, Pang KL (2009). Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity 35: 1–203.

Kashubinish A, Shearer CA (1996). Phylogenetic relationships in some Leptonectiaceae and Phaeosphaeriaceae species. Mycological Research 100: 1355–1360.

Kato K, Toh H (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinformatics 9: 286–298.

Kirk PM, Cannon PF, David JC, Stalpers JA (2001). Dictionary of the Fungi, 8th edn. CABI Publishing, London, U.K.

Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Ainsworth and Bisby’s Dictionary of the Fungi, 10th edn. CABI International, Wallingford, U.K.

Kluger A, Farris JS (1986). Quantitative physics and the evolution of anurans. Systematic Zoology 18: 3–12.

Kodsue B, Dhanasekaran V, Aiptop A, Lumyong S, McKenzie EHC, Hyde KD, Jeewon R (2006). The family Pleosporaceae: intergenetic relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia 98: 571–583.

Kohlmeyer J (1969). Marine fungi of Hawaii including the new genus Suetrong.

Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson OE (1997b). Fungi on Rhizophora mangle in Madagascar. Mycological Research 101: 1371–1378.

Kohlmeyer J, Volkmann-Kohlmeyer B (2001). The biodiversity of fungi on mangroves. Experientia 57: 510–512.

Kohlmeyer J, Volkmann-Kohlmeyer B (2003). Marine ascomycetes from algae and animal hosts. Botanica Marina 46: 303–304.

Kohlmeyer J, Volkmann-Kohlmeyer B (1986). New bitunicate ascomycetes. Mycological Research 89: 83–91.

Kohlmeyer J, Volkmann-Kohlmeyer B (1987). New marine fungi from mangroves and trees along eroding shorelines. Nova Hedwigia 9: 89–104.

Kohlmeyer J, Kohlmeyer E (1971). Marine fungi from tropical America and Africa. Mycologia 63: 831–861.

Kohlmeyer J, Kohlmeyer E (1979). Marine Mycology. The Higher Fungi. Academic Press, New York, U.S.A.

Kohlmeyer J, Vital BPR (1986). Lophiostoma mangrovis, a new marine ascomycete from the tropics. Mycologia 78: 485–489.

Kohlmeyer J, Vollmann-Kohlmeyer B (1987). Marine fungus from Aldabra, the Galapagos, and other tropical islands. Canadian Journal of Botany 65: 571–582.

Kohlmeyer J, Vollmann-Kohlmeyer B (1990). Revision of marine species of Didymosphaeria (Ascomycotina). Mycological Research 94: 685–690.

Kohlmeyer J, Vollmann-Kohlmeyer B (1991). Illustrated key to the filamentous marine fungi. Botanica Marina 34: 1–61.

Kohlmeyer J, Vollmann-Kohlmeyer B (1998). A new marine Xylomyces on Rhizophora from the Caribbean and Hawaii. Fungal Diversity 1: 159–164.

Kohlmeyer J, Vollmann-Kohlmeyer B (2001). The biodiversity of fungi on Juncus roemerianus. Mycological Research 105: 1411–1412.

Kohlmeyer J, Vollmann-Kohlmeyer B (2002). Fungi on Juncus and Spartina: New marine species of Anthostomella, with a list of marine fungi known from Spartina. Mycological Research 106: 365–374.

Kohlmeyer J, Vollmann-Kohlmeyer B (2003). Marine ascomycetes from algae and animal hosts. Botanica Marina 46: 285–306.

Kohlmeyer J, Vollmann-Kohlmeyer B, Eriksson OE (1995a). Fungi on Juncus roemerianus. 2. New dictyosporous ascomycetes. Botanica Marina 38: 165–174.

Kohlmeyer J, Vollmann-Kohlmeyer B, Eriksson OE (1995b). Fungi on Juncus roemerianus. 4. New marine ascomycetes. Mycologia 87: 532–542.

Kohlmeyer J, Vollmann-Kohlmeyer B, Eriksson OE (1995c). Fungi on Juncus roemerianus. New marine and terrestrial ascomycetes. Mycological Research 100: 393–401.

Kohlmeyer J, Vollmann-Kohlmeyer B, Eriksson OE (1996). Fungi on Juncus roemerianus. 8. New bitunicate ascomycetes. Canadian Journal of Botany 74: 1830–1840.

Kohlmeyer J, Vollmann-Kohlmeyer B, Eriksson OE (1997a). Fungi on Juncus roemerianus. 9. New obligate and facultative marine ascomycota. Botanica Marina 40: 291–300.

Kohlmeyer J, Vollmann-Kohlmeyer B, Eriksson OE (1997b). Fungi on Juncus roemerianus. 12. Two new species of Mycophyta and Phaeosphaeriaceae (Ascomycotina). Botanica Marina 42: 505–511.

Knyas A, Eriksson OE, Wedin M (2006). Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. Mycological Research 110: 527–536.

LaRette B, Simon D (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750–759.

LaRette T, Buraud G, Mache S, Barbier G, VandenKempen R (2008). Fungal diversity in deep-sea hydrothermal ecosystems. Applied and Environmental Microbiology 75: 6415–6421.

Leuchtmann A (1984). Über Phaeosphaeria Miyake und andere bitunicate Ascomyceten mit mehrfach querspeilten Ascosporen. Sydowia 37: 75–194.
Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010). Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Diversity 41: In press.

Schatz S (1984). The life history, developmental morphology, and taxonomy of Lautilia danica gen. nov., comb. nov. Canadian Journal of Botany 62: 28–32.

Schmit JP, Shearer CA (2003). A checklist of mangrove-associated fungi, their geographical distribution and known host plants. Mycotaxon 85: 423–478.

Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, et al. (2009a). A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15.

Shearer CA (1993b). Pseudohalonectria helicosporum nov. gen., sp. nov. from the seagrass Lophiostoma and its teleomorph. Mycologia 85: 1041–1052.

Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD (2006). Ribosomal and phylogenetic diversities of Endophytes associated with the tropical seagrass Lautitia danica. Canadian Journal of Botany 84: 224–239.

Shenoy BD, Jeewon R, Hyde KD (2007). The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 56: 224–239.

Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98: 1041–1052.

Shearer CA, Jung S, Song G-H, Volkmann-Kohlmeyer B, Kohlmeyer J (2009). The molecular phylogeny of freshwater Dothideomycetes. Studies in Mycology 64: 145–153.

Shenoy BD, Jeewon R, Hyde KD (2007). Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Diversity 28: 1–54.

Shenoy BD, Jeewon R, Wu WP, Shi DT, Hyde KD (2008). Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research 110: 916–928.

Simmons E, Schatz S (1989). Memoir of the New York Botanic Gardens 49: 305.

Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998). Independent terrestrial origins of the Halosphaeriaceae (marine Ascomycota). American Journal of Botany 85: 1569–1580.

Steinke TD, Hyde KD (1997). Glioniella clavatissima, sp. nov. from Avicennia marina in South Africa. Mycosenologia 38: 7–9.

Stamatakis A (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

Suiretong S, Jones EBG (2006). Marine discomycetes: A review. Indian Journal of Marine Sciences 35: 1–6.

Suiretong S, Sakayaroj J, Phongpaichit S, Jones EBG (2010). Morphological and molecular characteristics of a poorly known marine ascomycete, Mangicola guatemalensis. Mycologia. doi:10.3852/07-217.

Sutherland GK (1916). Marine Fungi Imperfecti. New Phytologist 15: 35–48.

Swafford DL (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, U.S.A.

Tam WH, Pang KL, Jones EBG (2003). Ordinal placement of selected marine Dothideomycetes inferred from SSU ribosomal DNA sequence analysis. Botanica Marina 4: 487–494.

Tanaka K, Harada Y (2003). Pleosporales in Japan (1): the genus Lophiostoma. Mycoscience 44: 85–96.

Tanaka K, Hosoya T (2008). Lophiostoma sagittiforme sp. nov., a new ascomycete (Pleosporales, Dothideomycetes) from Island Yakushima in Japan. Sydowia 62: 131–145.

Thompson JD, Higgins DG, Gibson TJ (1994). Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

Tomlinson PB (1986). The Botany of Mangroves. Cambridge University Press, Cambridge, U.K. 1: 1–413.

Tsui CKM, Berbee ML (2006). Phylogenetic relationships and convergence of helicosporous fungi inferred from ribosomal DNA sequences. Molecular Phylogenetics and Evolution 39: 587–597.

Tsui KM, Hyde KD, Hodgkiss UJ, Goh TK (1998). A new freshwater species of Saccardoella from Hong Kong and South Africa. Mycologia 90: 701–704.

Tsui KM, Sivichai S, Berbee M (2008). Molecular systematic of Helicoma, Helicomyces and Helicosporemyces and their teleomorphs inferred from rDNA sequences. Mycologia 99: 94–104.

Wang G, Li Q, Zhu P (2008). Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Geiliodes fibrosa. Antonie van Leeuwenhoek 93: 163–174.

Webster J, Descals E (1979). The teleomorphs of waterborne hyphomycetes from freshwater. In: The Whole Fungus (Kendrick WB, ed.). Ottawa, National Museum of Canada and Kananaskis Foundation 2: 419–451.

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocol: A guide to methods and applications (Innis MA, Gelfand DH, Sninsky JS, White TJ, eds), Academic Press, San Diego, U.S.A.: 315–322.

Wiens JJ (2006). Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39: 34–42.

Wilson WL (1998). Isolation of Endophytes from Seagrasses from Bermuda. MSc. Thesis. The University of New Brunswick, Canada.

Yusoff M, Moss ST, Jones EBG (1994). Ascospora ultrastructure of Pleospora gaudrifolii Patoiullard (Pleosporaceae, Loculoascomycetes, Ascomycota). Canadian Journal of Botany 72: 1–6.

Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter Jd, et al. (2009). Multi-locus phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology 64: 85–102.

Zhang Y, Wang HK, Studerina J, Hyde KD (2009b). Towards a phylogenetic clarification of Lophiostoma / Massarina and morphologically similar genera in the Pleosporaceae. Fungal Diversity 38: 225–251.

Zuccaro A, Mitchell JI (2005). Fungal communities of seagrasses. In: The Fungal Community (Dighton J, White JF Jr, Oudemans P, eds). 3rd edn. CRC Press, New York, NY, U.S.A.: 533–579.

Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI (2008). Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Applied Environmental Microbiology 74: 931–941.
SUPPLEMENTARY INFORMATION

Table 1. The list of species used in this study.

Taxon	Substrate	Collector	Location	Source	SSU	LSU	RPB2	TEF1	
Acrocordiopsis patilii	Mangrove wood	J. Sakayaroj	Thailand, Hat Khanom Mu Ko Thale Tai National Park	BCC 28166	GU479736	GU479772	GU479811	–	
Acrocordiopsis patilii	Mangrove wood	J. Sakayaroj	Thailand, Hat Khanom Mu Ko Thale Tai National Park	BCC 28167	GU479737	GU479773	GU479812	–	
Aigialus grandis	Mangrove wood	E.B.G. Jones	Malaysia, Morib	BCC 18419	GU479738	GU479774	GU479813	GU479838	
Aigialus grandis	Mangrove wood	E.B.G. Jones	Malaysia, Morib	BCC 20000	GU479739	GU479775	GU479814	GU479839	
Aigialus grandis	Mangrove wood	J. Kohlmeyer	Belize, Stewart Island	JK 5244A	GU296131	GU301793	GU371762	–	
Aigialus grandis	Mangrove wood	J. Kohlmeyer	Bahamas, Mores Island	JK 4770	GU479740	–	–	–	
Aigialus grandis	Mangrove wood	E.B.G Jones	Malaysia, Morib	CY 2909	AF441172	–	–	–	
Aigialus grandis	Mangrove wood	S. Suetrong	Thailand, Kung Krabaen Bay Royal development Study Center	BCC 33563	GU479741	GU479776	GU479815	GU479840	
Aigialus mangrovei	Mangrove wood	S. Suetrong	Thailand, Kung Krabaen Bay Royal development Study Center	BCC 33564	GU479742	GU479777	GU479816	GU479841	
Aigialus parvus	Mangrove wood	E.B.G. Jones	Malaysia, Morib	BCC 18403	GU479743	GU479778	GU479817	GU479842	
Aigialus parvus	Mangrove wood	E.B.G. Jones	Malaysia, Morib	BCC 32558	GU479744	GU479779	GU479818	GU479843	
Aigialus parvus	Mangrove wood	E.B.G. Jones	Malaysia, Morib	CY 5061	AF441173	–	–	–	
Aigialus rhizophorae	Mangrove wood	S. Suetrong	Thailand, Mu Ko Chang National Park	BCC 33572	GU479745	GU479780	GU479819	GU479844	
Aigialus rhizophorae	Mangrove wood	S. Suetrong	Thailand, Mu Ko Chang National Park	BCC 33573	GU479746	GU479781	GU479820	GU479845	
Allewia eureka				DAOM 195275	DQ677994	DQ678044	DQ677938	DQ677883	
Alternaria alternata				CBS 916.96	DQ678031	DQ678082	DQ677980	DQ677927	
Alternaria maritima			Ubiquitous	CBS 126.60	GU456294	GU456317	–	–	
Amorosia littoralis			Littoral zone	P.G. Mantle	NN 6654	AM292056	AM292055	–	–
Ascochyta pisi				CBS 126.54	DQ678018	DQ678070	DQ677867	DQ677913	
Ascocrratera manglicola				CBS 120023	GU296136	GU301799	GU371763	–	
Ascocrratera manglicola				K. Tanaka	HHUF 30032	GU479748	GU479783	GU479822	GU479847
Ascocrratera manglicola	Mangrove wood	E.B.G. Jones	Thailand, Ranong Mangrove forest	BCC 09270	GU479747	GU479782	GU479821	GU479846	
Ascocrratera manglicola				J. Kohlmeyer	JK 5262C,	GU296136	GU301799	GU371763	–
Aureobasidium pullulans				CBS 584.75	DQ471004	DQ470956	DQ470906	DQ471075	
Berkleasmium micronesulm				CBS 8141	DQ280268	DQ280272	–	–	
Berkleasmium nigroapicale				CBS 8220	DQ280269	DQ280273	–	–	
Batrionospora marina	Mangrove wood	E.B.G. Jones	Singapore, Singapore mangrove forest	CY 1228	GQ925835	GQ925848	GU479823	GU479848	
Bimuria noavea-zelandiae				CBS 107.79	DQ677998	DQ678051	DQ677944	DQ767637	
Botryosphaeria dothidea				CBS 115476	DQ677998	DQ678051	DQ677944	DQ767637	
Botryosphaeria ribis				CBS 115475	DQ678000	DQ678053	DQ677947	DQ677993	
Botryosphaeria stevensii				CBS 431.82	DQ678012	DQ678064	DQ677960	DQ677907	
Botryosphaeria tsugae				CBS 418.64	AF271127	DQ766755	DQ767644	DQ677914	
Taxon	Substrate	Collector	Location	Source	SSU	LSU	RPB2	TEF1	
--------------------------	-------------------------------	-----------	---------------------------------	-------------------------	-----------	-----------	--------------	-------------	
Byssothecium cirinnans	Mangrove wood (Nypa fruticans)	A. Loilong	Thailand, Tambon Bang Pao	CBS 36316	GU479749	–	–	GU479849	
Capnodium coffeae	Mangrove wood	J. Kohlmeyer	Fiji, Suva	JK 5020A	GU479750	GU479784	–	–	
Capnodium salicinum	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Carinispora nypae	Mangrove wood	A. Loilong	Thailand, Tambon Bang Pao	CBS 36316	GU479749	–	–	GU479849	
Carylporinae	Mangrove wood	J. Kohlmeyer	Fiji, Suva	JK 5020A	GU479750	GU479784	–	–	
Cladosporium	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Columnosphaeria	Mangrove wood	J. Kohlmeyer	Fiji, Suva	JK 5020A	GU479750	GU479784	–	–	
Decaisnella formosa	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Decorospora gaudefroyi	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Delitschia winteri	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Delphinella strobiligena	Mangrove wood	J. Kohlmeyer	Fiji, Suva	JK 5020A	GU479750	GU479784	–	–	
Dendryphiella arenaria	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Dendryphiella salina	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Didymella cucurbitacearum	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Didymella fucicola	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Dothidea hippophaes	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Dothidea insculpta	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Dothidea sambuci	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Dothiora cannabinae	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Elsinoe centrolobi	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Elsinoe phaseoli	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Elsinoe veneta	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Falciformispora lignantii	Mangrove wood	U. Pinruan	Thailand, Ban Bang Sak	BCC 21118	GU371835	GU371827	–	–	
Falciformispora lignantii	Mangrove wood	U. Pinruan	Thailand, Ban Bang Sak	BCC 21117	GU371834	GU371826	–	–	
Farlowiella carmichaeliana	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Floricola striata	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Gloniopsis praelonga	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Gloniopsis subrugosa	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Guignardia bidwellii	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Guignardia gauthieri	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Halomassarina (Massarina) thalassiae	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Halomassarina (Massarina) thalassiae	Mangrove wood	E.B.G. Jones	Australia, The Mornington Peninsula National Park	BCC 25617	GQ925834	GQ925847	GU479824	GU479850	
Table 1. (Continued).

Taxon	Substrate	Collector	Location	Source	SSU	LSU	RPB2	TEF1
Halomassarina (Massarina) thalassiae	Mangrove wood	E.B.G. Jones	U.S.A., Florida	BCC 17055	GQ925843	GQ925850	–	–
Halomassarina (Massarina) thalassiae	Mangrove wood	E.B.G. Jones	U.S.A., Florida	BCC 17054	GQ925842	GQ925849	–	–
Halothia posidoniae	Seagrasses (Posidonia oceanica)	E.B.G. Jones	Cyprus	BBH 22481	GU479752	GU479786	–	–
Heleiosa barbatula	Juncus roemeranus	J. Kohlmeyer, B. Kohlmeyer	U.S.A., North Carolina, Carteret County	JK 5548I	GU479753	GU479787	–	–
Helicascus kanaloanus	Mangrove wood	A. Loilong	Thailand, Tambon Bang Pao	BCC 36751	GU479754	GU479788	GU479826	GU479854
Helicascus nypae	Mangrove wood	A. Loilong	Thailand, Tambon Bang Pao	BCC 36752	GU479755	GU479789	GU479827	GU479855
Helicascus nypae	Mangrove wood	E.B.G. Jones	Malaysia, Kuala Selangor	PP 6066	AF441174	–	–	–
Helminthosporium solani							–	–
Helminthosporium velutinum							–	–
Herpotrichia diffusa				CBS 250.62	DQ678019	DQ678071	DQ677968	DQ677915
Herpotrichia juniperi				CBS 200.31	DQ678029	DQ678080	DQ677978	DQ677925
Hysterium andinense				CBS 123562	FJ161159	FJ161199	FJ161125	FJ161107
Hysterium angustatum				CBS 236.34	–	FJ161180	FJ161117	FJ161096
Hysterium pulicare				CBS 123377	FJ161161	FJ161201	FJ161127	FJ161109
Hysterobrevium mori				CBS 123564	FJ161158	FJ161198	–	FJ161106
Hysterobrevium smilacis				CBS 114601	FJ161135	FJ161174	FJ161114	FJ161091
Hysteropatella clavispora				CBS 247.34	DQ678006	AY541493	DQ677955	DQ677901
Hysteropatella elliptica				CBS 935.97	EF495114	DQ767657	DQ767647	DQ767640
Julella avicenniae	Mangrove wood	E.B.G. Jones	Thailand, Mu Ko Chang National Park	BCC 18422	GU371831	GU371823	GU371787	GU371816
Julella avicenniae	Mangrove wood	E.B.G. Jones	Thailand, Mu Ko Chang National Park	BCC 20173	GU371830	GU371822	GU371786	GU371815
Julella avicenniae	Mangrove wood	J. Kohlmeyer		JK 5236A	GU479756	GU479790	–	–
Julella avicenniae	Mangrove wood	E.B.G. Jones	Hong Kong Tingkok	CY 2462	AF441175	–	–	–
Keissleriella cladophila	Mangrove wood			CBS 104.55	GU298155	GU301822	GU371735	GU349043
Keissleriella rara	Juncus roemeranus	J. Kohlmeyer, B. Kohlmeyer	U.S.A., North Carolina, Carteret County	CBS 118429	GU479757	GU479791	–	–
Kirschsteiniothelia elaterascus				HKUCC 7769 & A22-5A	AF053727	AY787934	–	–
Kirschsteiniothelia maritima	Driftwood	J. Kohlmeyer, B. Kohlmeyer	U.S.A., Washington, Friday Harbor Laboratories	CBS 221.60	–	GU323203	–	GU349001
Lentitheciun (Massarina) phragmiticola	Phragmites, grass	C. Tsui	Hong Kong Tai, O Lantau Island	CBS 110446	DQ813512	DQ813510	–	–
Lentitheciun arundinaceum (Massarina arundinacea)	Phragmites, grass	C. Tsui	Hong Kong Tai, O Lantau Island	CBS 619.86	DQ813513	DQ813509	–	–
Leptosphaeria biglobosa				CBS 303.51	–	GU301826	–	GU349010
Leptosphaeria doliolum				CBS 505.75	U43447	U43474	–	–
Leptosphaeria maculans				DAOM 2220267	DQ470993	DQ470946	DQ471062	DQ471062
Leptosphaerulina australis				CBS 939.69	EU754068	EU754167	–	–
Table 1. (Continued).

Taxon	Substrate	Collector	Location	Source	SSU	LSU	RPB2	TEF1	
Lewia infectoria	Mangrove wood	J. Kohlmeyer	U.S.A., Florida	IMI 303186	U43465	U43482	–	–	
Lineolata rhizophorae	Mangrove wood	J. Kohlmeyer	Australia, Queensland	CBS 641.66	GU479758	GU479792	GU479828	–	
Lineolata rhizophorae	Mangrove wood	J. Kohlmeyer	Belize, Blue Ground Range	CBS 118422	–	GU479805	–	–	
Lophiostronga (Platystomum)	Wood, sand	E.B.G. Jones	Australia, The Momington Peninsula National Park	BCC 22836	GG025832	GG025845	GU479829	GU479856	
Lophiostronga (Platystomum)	Wood, sand	E.B.G. Jones	Australia, The Momington Peninsula National Park	BCC 22835	GG025831	GG025844	GU479830	GU479857	
Lophiostronga arundinis				CBS 621.86	DQ782383	DQ782384	DQ782386	DQ782387	
Lophiostronga bipolarae			(Massarina bipolaris)	HKUCC 1053	AF164365	–	–	–	
Lophiostronga crenatum				CBS 629.86	DQ678017	DQ678069	DQ677965	DQ677912	
Lophiostronga fuckellii				CBS 113432	–	EU552139	–	–	
Lophiostronga fuckellii				CBS 101952	–	DQ399531	–	–	
Lophiostronga macrostromum				KT 709	AB521732	AB433274	–	–	
Lophiostronga macrostromum				KT 635	AB521731	AB433273	–	–	
Lophiostronga sagittiforme				HHUFO 29754	–	AB369267	–	–	
Lophium mytilinum				CBS 269.34	DQ0678030	DQ0678081	DQ677979	DQ677926	
Loratospora aestuarii	Juncus roemerianus	J. Kohlmeyer, B. Kohlmeyer	U.S.A., North Carolina, Carteret County	JK 5535D	GU296168	GU301838	GU371760	–	
Macrohomina phaseolina				CBS 277.33	DQ678037	DQ678088	DQ677986	DQ677929	
Massarina platani				CBS 221.37	DQ678013	DQ678065	DQ677961	DQ677908	
Massarina eburnea				CBS 473.64	AF164367	–	–	–	
Massarina eburnea				HKUCC 4054	AF164366	–	–	–	
Massarina igniaria				CBS 845.96	DQ813511	DQ810223	–	–	
Massarina ricifera	Juncus roemerianus	J. Kohlmeyer, B. Kohlmeyer	U.S.A., North Carolina, Carteret County	JK 5535F	GU479759	GU479793	–	–	
Mauritiana rhizophorae	Mangrove wood	S. Suetrong	Thailand, Kung Krabaen Bay Royal development Study Center	BCC 28866	GU371832	GU371824	GU371796	GU371817	
Mauritiana rhizophorae	Mangrove wood	S. Suetrong	Thailand, Kung Krabaen Bay Royal development Study Center	BCC 28867	GU371833	GU371825	GU371797	GU371818	
Melanomma pulvis-pyrius				CBS 109.77	AF164389	DQ384095	–	–	
Melanomma radicans				ATCC 42522	U43461	U43479	AY485625	–	
Montagnula opulenta				CBS 168.34	AF164370	DQ678086	DQ677984	–	
Morosphaeria (Massarina)	Mangrove wood	J. Kohlmeyer	U.S.A., North Carolina, Carteret County	JK 5304B	GU479760	GU479794	GU479831	–	
Morosphaeria (Massarina)	Mangrove wood	E.B.G. Jones	Malaysia, Monib	BCC 18405	GG025839	GG025854	–	–	
Morosphaeria (Massarina)	Mangrove wood	E.B.G. Jones	Malaysia, Monib	BCC 18404	GG025838	GG025853	–	–	
Morosphaeria (Massarina)	Mangrove wood			HKUCC 7649	–	DQ528762	–	–	
Taxon	Substrate	Collector	Location	Source	SSU	LSU	RPB2	TEF1	
-------------------------------	----------------------------	-------------	---------------------------------------	--------	--------------	--------------	------	--------	
Morosphaeria (Massarina) velataspora	Mangrove wood	E.B.G. Jones	U.S.A., Florida	BCC 17059	GQ925841	GQ925852	–	–	
Morosphaeria (Massarina) velataspora	Mangrove wood	E.B.G. Jones	U.S.A., Florida	BCC 17058	GQ925840	GQ925851	–	–	
Mycosphaerella eurypotami	Juncus roemerianus	J. Kohlmeyer, B. Kohlmeyer	U.S.A., North Carolina, Carteret County	JK 5586J	GU479761	GU301852	GU371722	GU371722	
Mycosphaerella fijiensis				OSC 100622	DQ767552	DQ678098	DQ677993	–	
Mycosphaerella graminicola				CBS 292.38	DQ678033	DQ678094	DQ677982	–	
Mycosphaerella punctiformis				CBS 113265	DQ471017	DQ470968	DQ470920	–	
Myxangiogloea duriaeii				CBS 260.36	AY016347	DQ678059	DQ677954	DQ677900	
Myxangiogloea hispanicum				CBS 247.33	GU296180	GU301854	GU371744	GU349055	
Myxangiogloea eurypotami				CBS 303.34	FJ161144	FJ161184	FJ161119	FJ161100	
Myxangiogloea rossii				CBS 690.82	DQ384069	DQ384107	–	–	
Oedohysterium inalens				CBS 238.34	FJ161142	FJ161182	FJ161118	FJ161097	
Oedohysterium sinense				EB 0333	FJ161169	FJ161209	FJ161130	–	
Opegrapha dolomitica				–	DQ883706	–	DQ883714	DQ883732	
Ophiophaerella herpordichus				ATCC 12279	U43453	U43471	–	–	
Ostreichnicurtisii				CBS 19834	FJ161137	FJ161176	–	FJ161093	
Ostreichniassafras				CBS 322.34	FJ161148	FJ161188	FJ161122	–	
Paraliomyces lentiferus	Mangrove wood	E.B.G. Jones	Hong Kong, North Lantau	CY 3525	AF441176	–	–	–	
Passeriniella savoryellopsis	Mangrove wood	J. Kohlmeyer	Belize, Tobacco Range	JK 5167C	GU479762	GU479795	–	GU479858	
Patellaria atrata 1	Mangrove wood	S. Suetrong	Thailand, Kung Krabae Royal development Study Center	BCC 28877	GU371837	GU371829	–	–	
Patellaria atrata 2	Mangrove wood	S. Suetrong	Thailand, Kung Krabae Royal development Study Center	BCC 28876	GU371836	GU371828	–	–	
Phaeodothis winteri				CBS 182.58	DQ678021	DQ678073	DQ677970	DQ677917	
Phaeosphaeria albopunctata	Spartina alterniflora	J. Kohlmeyer	U.S.A., North Carolina, Beaufort	CBS 254.64	–	GU45631	–	–	
				DAO 226215	AY544725	AY544684	DQ677941	DQ677885	
Phaeosphaeria avenaria				CBS 576.86	DQ678011	DQ678063	DQ677959	DQ677906	
Phaeosphaeria eustoma				Juncus romerianus	JK 5540Q	–	GU479807	–	–
Phaeosphaeria olivacea		J. Kohlmeyer, B. Kohlmeyer	U.S.A., North Carolina, Carteret County	JK 55177A	–	GU479808	–	–	
Phaeosphaeria spartincola	Spartina sp.	J.Kohlmeyer	U.S.A., Maryland, Solomons	JK 5577A	–	GU479808	–	–	
Phoma herbarum				CBS 615.75	EU754067	EU754186	–	–	
Phytomyza ulmi				CBS 361.52	EF114726	EF114702	–	–	
Pleospora herbarum				CBS 191.86	DQ247812	DQ247804	DQ247794	DQ471090	
Pleospora sedicola				CBS 109843	–	AY849568	–	–	
Pleosporaceae sp. 1				OSC 100706	–	GU479809	–	–	
Pontoporeia biturbinata	Seagrasses	E.B.G. Jones	Cyprus	BBH 23338	GU479763	GU479796	GU479837	–	
Preussia minima				CBS 524.50	DQ678003	DQ678056	DQ677950	DQ677897	

Table 1. (Continued).
Table 1. (Continued).

Taxon	Substrate	Collector	Location	Source	SSU	LSU	RPB2	TEF1
Preussia tericola				DAOM 230091	AY544726	AY544686	DQ470895	DQ471063
Pseudodobillarda phragmitis				CBS 842.84	EU754103	EU754202	–	–
Pseudodobillarda siamensis				BCC 12531	FJ825365	FJ825375	–	–
Pseudodobillarda texana				BCC 12535	FJ825367	FJ825377	–	–
Paliglumium araucanum				CBS 112412	FJ161113	FJ161112	FJ161109	FJ161108
Paliglumium clavisporum				CBS 123339	FJ161157	FJ167526	FJ161124	FJ161105
Paliglumium simulans				CBS 206.34	FJ161139	FJ161178	FJ161116	FJ161094
Pyrenophora phaeocomes				DAOM 222769	DQ499595	DQ499596	DQ497614	DQ497607
Pyrenophora tritic-repentis				OSC 10066	AY544716	AY544672	–	–
Quintaria lignatilis	Mangrove wood	J. Kohlmeyer, B. Kohlmeyer	French Polynesia, Moorea	JK 5390A, CBS 117700	GU296188	GU301865	GU371761	–
Quintaria lignatilis	Mangrove wood	E.B.G. Jones	U.S.A., Florida	BCC 17444	GU479764	GU479797	GU479832	GU479859
Quintaria submersa	Pattern			CBS 115553	–	–	–	–
Repetophragma ornitense				HKUCC 10830	–	–	–	–
Rimora (Lophiostoma) mangrovei	Mangrove wood	J. Kohlmeyer	Belize, Blue Ground Range	JK 5246A	GU296193	GU301868	GU371759	–
Rimora (Lophiostoma) mangrovei	Mangrove wood	J. Kohlmeyer	India, Goa	JK 5437B	GU479765	GU479798	–	–
Roccella fuciformis				DUKE 15572	AY584678	AY584654	DQ782866	–
Saccardoella rhizophorae	Mangrove wood	J. Kohlmeyer, B. Kohlmeyer	Hawaii, Oahu	JK 5456A	GU479766	GU479799	–	–
Salsigina ramicola	Mangrove wood	K. Tanaka	Japan, Okinawa	KT 2597.1	GU479767	GU479800	GU479833	GU479861
Salsigina ramicola	Mangrove wood	K. Tanaka	Japan, Okinawa	KT 2597.2	GU479768	GU479801	GU479834	GU479862
Scirrhia annulata	Juncus roemerianus	S. Newell	U.S.A., Georgia, Sapelo Island	JK 5546G	GU479769	–	–	–
Scorias spongiosa				CBS 325.33	DQ678024	DQ678075	DQ677973	DQ677920
Styldothia pucciniioides				CBS 193.58	AY016353	AY004342	–	–
Sydowi a polyspora				CBS 116.29	DQ678005	DQ678058	DQ677953	DQ677999
Tremateia halophila	Juncus roemerianus	J. Kohlmeyer	U.S.A., North Carolina, Carteret County	JK 5517J	GU296201	–	GU371721	–
Trematosphaeria (Lophiostoma) heterospora				CBS 644.86	AY016354	AY016369	DQ497615	DQ471049
Trematosphaeria pertusa				CBS 122371	FJ201993	FJ201992	–	–
Trematosphaeria pertusa				CBS 122368	FJ201991	FJ201990	–	–
Ullospora bilgramii				CBS 110020	DQ678025	DQ678076	DQ677974	DQ677921
Verruculina enalia	Mangrove wood	E.B.G. Jones	Malaysia, Morib	BCC 18401	GU479770	GU479802	GU479835	GU479863
Verruculina enalia	Mangrove wood	E.B.G. Jones	Malaysia, Morib	BCC 18402	GU479771	GU479803	GU479836	GU479864
Verruculina enalia	Mangrove wood	J. Kohlmeyer, B. Kohlmeyer	Belize, Blue Ground Range	JK 5253A	DQ678028	DQ678079	DQ677977	–
Westerdykella (Eremodothis) angulata				CBS 610.74	DQ384067	DQ384105	–	–
Westerdykella cylindrica				CBS 454.72	AY016355	AY004343	DQ470925	DQ497610
Westerdykella dispersa				CBS 508.75	U42488	DQ468050	–	–
Wittsteinina lacustris				CBS 618.86	DQ678023	–	DQ677972	DQ677919