Comparative study between proximal femoral nail and dynamic hip screw with trochanteric stabilizing Plate (TSP) in unstable intertrochanteric femur fractures

Dr. Parameswar Rao G and Dr. Siddaram N Patil
DOI: https://doi.org/10.22271/ortho.2018.v4.i4k.108

Abstract
Background: Unstable fractures accounts for approximately 50 to 60% of all intertrochanteric fractures. Failure rates of (DHS) dynamic hip screw for unstable fracture patterns are as high as 50%. Proximal femoral nail is technically more demanding surgery and also associated with complications like implant failure, femoral shaft fracture, improper reduction, screw cut-out and non-union. This study was done to compare the results of using Trochanteric stabilization plate in addition to dynamic hip screw versus proximal femoral nail which is considered as a better implant for unstable fractures.

Materials and Methods: A prospective study was conducted comparing outcomes of proximal femoral nailing versus trochanteric stabilization plate with dynamic hip screw for 44 patients with unstable intertrochanteric fractures (22 each). Modified Harris Hip scoring system and Parker mobility score was used for evaluation.

Results: In our study, Average time of union in all 22 patients of PFN group was about 12 weeks while average time of union in all 22 patients of DHS with TSP group was about 14 weeks. The Harris hip score was 85.45 in DHS with TSP group while it was 84.72 in the PFN group (p=0.846). The Parker mobility score was 7.81 in the DHS with TSP group while it was 7.95 in the PFN group (p=0.728).

Conclusions: Use of TSP with DHS can give good results in unstable IT fractures. Addition of TSP to DHS gives good lateral wall buttress which prevent excessive medialisation of shaft and gives comparable result to PFN.

Keywords: unstable intertrochanteric fractures, trochanteric stabilization plate, dynamic hip screw

Introduction
Intertrochanteric fractures are defined as fractures involving upper end of femur through and in between both trochanters with or without extension into upper femoral shaft [1]. In 1990, 26% of all hip fractures occurred in Asia whereas this figure could rise to 37% in 2025 and 45% in 2050 [2,3]. Stable fractures are those which are undisplaced and with intact posteromedial cortex [4].

Unstable fractures accounts for approximately 50 to 60% of all intertrochanteric fractures [5,6]. These fractures remain a problem, particularly in patients who do not restrain from full weight bearing during early mobilization [7]. Kaufer described five variables that affect the biomechanical strength of repair. Surgeon independent variables are bone quality, which is related to age and osteoporosis, fracture pattern or fracture stability, which must be understood and will affect the variables that are surgeon dependent. Surgeon dependent variables are implant choice, quality of fracture reduction, and positioning of the implant. Failure rates of (DHS) dynamic hip screw for unstable fracture patterns are as high as 50% [9,10] whereas in stable fractures it is around 5%. Buttress plates i.e., trochanter stabilizing plate act as an adjunct to sliding screw plate devices and aim to restore the lacking lateral buttress. Encouraging results have been reported by several groups [7,10,11] using a trochanter stabilising plate in small series. PFN is technically more demanding surgery and also associated with complications like implant failure, femoral shaft fracture, improper reduction, screw cut-out and non-union.
This study was done to compare the results of using TSP in addition to DHS to see whether this augmentation gives better results and reduces the complication rate as compared to using DHS alone. We compared this group of patients with fixation using PFN which is considered as a better implant for unstable fractures.

Materials and Methods: A prospective study was conducted from November 2015 to December 2017 comparing the results and outcomes of Proximal femoral nailing versus Trochanteric stabilization plate with Dynamic hip screw for 50 patients with unstable intertrochanteric fractures (25 each).

Inclusion criteria: 1. Patients with fracture as A2.2 and onward, classified using AO classification. 2. Patients with age 18 years and more.

Exclusion criteria: 1. Open fractures. 2. Previous fractures or surgery in affected hip.

Surgical Techniques: DHS with TSP: Position of the patient was same as above. The vastus lateralis splitting approach was used. The greater trochanter and upper part of shaft of femur was exposed. A guide wire was passed 1 inch below the base of the greater trochanter into the centre of the femoral head under Carm image guidance in both AP and lateral views. Triple reaming was done. DHS screw was inserted. TSP was placed inside the sliding plate and under fluoroscopic guidance contouring of TSP done according to the shape of greater trochanter. The 1st cortical screw fixed DHS plate with TSP with shaft of femur thus stabilising DHS with TSP. A 6.5-mm screw was passed parallel to the DHS through the TSP to act as an anterotation screw while permitting sliding collapse. Greater trochanter was fixed with 6.5 mm or 4.0 mm CC screw.

Fig 1: Shows the trochanteric stabilization plate

Fig 2: Shows the trochanteric stabilization plate with dynamic hip Screw

The trochanteric stabilizing plate was an adjunct to compression hip screw fixation. It prevents excessive collapse and medial translation of the shaft. It was a low profile plate and had a leaf like shape for greater trochanter and 1 hole distally which matches with 1st cortical screw of DHS plate.

Fig 3: Shows the Carm image of TSP with DHS.

Fig 4: Shows the intraoperative clinical photo of TSP

Patients were encouraged to sit in the bed after 24 hours after surgery. Patients were taught quadriceps setting exercises, ankle pumps and knee mobilization in the immediate post operative period. Patient was taught gait training before discharge from the hospital. Patients were encouraged to weight bear partially with axillary crutches or walker depending on the pain tolerability of individual patient from 3rd day. Patients were discharged from the hospital when independent walking was possible with walking aids mostly on 4th day. Patients were followed up at 2 weeks, 1.5 months, 3 months, 4.5 months and 6 months. At every visit patient was assessed clinically regarding hip and knee function, walking ability, fracture union and deformity. Modified Harris Hip scoring system and Parker mobility score was used for evaluation. X-ray of the involved hip with femur was done to assess: 1. Signs of union. 2. Neck- shaft angle. 3. Failure of fixation. 4. Failure of implant. Assessment of mobility before the fracture. Score is the total - 0 to 9.
Table 1: Parker mobility score.

Mobility	No difficulty	With an aid	With help from another person	Not at all
Able to get about the house	3	2	1	0
Able to get out of the house	3	2	1	0
Able to go shopping	3	2	1	0

Table 2: Shows the Harris hip score scale rating

Score	Rating
90-100	Excellent
80-89	Good
70-79	Fair
60-69	Poor

Statistical analysis
Analyses were performed using IBM SPSS version 22 software (SPSS Inc, Chicago, IL). Coded data were entered into an excel sheet. Outcome measures were presented by Mean, SD, Proportions and confidence intervals. Comparison of quantitative measures was done by t test and difference in proportions by Chi-square test. P<0.05 was considered as statistically significant.

Results

Table 3: shows the results of Type of fracture

Type of fracture	PFN	DHS with TSP	Total
Type A 2.2	5	8	13
Type A 2.3	12	13	25
Type A 3.1	4	1	5
Type A 3.2	1	0	1
Total	22	22	44

Table 4: Shows the time duration from trauma to surgery.

Time duration (days)	PFN	DHS with TSP	Total
1-5	3	3	6
6-10	8	10	18
11-15	4	6	10
15-20	7	3	10

Table 5: Shows outcome results as per Harris hip score

Harris hip score (follow up)	PFN	DHS Level of with TSP significance	
HHS 15 days	17.54	16.22	P=0.061
HHS 1.5 M	33.86	31.86	P=0.061
HHS 3 M	61.18	60.04	P=0.127
HHS 4.5 M	72.13	71.45	P=0.573
HHS 6 M	84.72	85.45	P=0.846

In our study, we found no statistically significant difference between Parker mobility score in both the groups at 15 days, 1.5 month, 3 month, 4.5 month and 6 month follow up (p>0.05).

Table 6: Shows the Parker mobility score.

Parker mobility score (follow up)	PFN	DHS with TSP	Significance TSP
PMS 15 days	1.36	1.36	P=0.757
PMS 1.5 M	4.45	4.54	P=0.671
PMS 3 M	6.18	6.27	P=0.677
PMS 4.5 M	7.31	7.22	P=0.707
PMS 6 M	7.95	7.81	P=0.728

Table 7: Shows intraoperative parameters.

Parameters	PFN	DHS with TSP	Significance TSP
Blood loss (ml)	115	131.8	P=0.075
Intraoperative time (min)	94.09	104.54	P=0.186
No of shots	54.6	46.81	P=0.061

In our study, we found no statistically significant difference between Harris hip score in both the groups at 15 days, 1.5 m, 3 m, 4.5 m and 6 m follow up (p value)

Union rate
In our study, Average time of union in all 22 patients of PFN group was about 12 weeks (Range: 6 to 16 weeks) while average time of union in all 22 patients of DHS with TSP group was about 14 weeks (Range: 6 to 20 weeks).

Table 8: Shows the complications of TSP and PFN.

Parameters	DHS with TSP (%)	PFN (%)	
Infection	(superficial)	1 (4.5)	0
Infection	(deep)	0	0
Non union		0	2 (9)
Implant failure		0	1 (4.5)
Revision surgery		1 (4.5)	0
Screw migration		0	2 (9)
Periprosthetic fracture		0	2 (9)

monitored over a period of time and eventually fracture healed well.

Table 9: Shows about shortening.

Shortening	PFN	DHS with TSP
1 cm	4	7
1 to 2 cm	0	2
>2 cm	0	0

There was no failure to achieve close reduction among all 30 patients. There was no iatrogenic fracture of lateral cortex among all 30 patients. There were no instances of drill bit breakage or jamming of nail. In two cases, Iatrogenic fracture occurred while distal locking. There was excessive valgus angulation in 3 out of 22 patients.

There was no failure to achieve close reduction among all 30 patients. There was no iatrogenic fracture of lateral cortex among all 30 patients. There was excessive valgus angulation in 4 of 22 patients. There was only one case of superficial infection in DHS with TSP group which was treated on OPD basis with oral antibiotics and did not required implant removal or debridement. No case of Deep infection in both the groups. Implant breakage occurred in one patient of PFN group (4.54%) who was not willing for further treatment and got united in malposition. No patient of DHS with TSP group developed implant failure. Two patients developed reverse Z-effect in PFN group of which 1 patient underwent implant removal and was not willing for further management so
discharged on skin traction. 2nd patient was lost to follow up.

No patient of DHS with TSP group developed screw cut-out. In DHS with TSP group, 1 patient required revision in immediate post op period as reduction was not acceptable. No patient of PFN group required revision surgery. Two patients of PFN group developed Periprosthetic fracture intraoperatively while doing distal locking. So encirclement wiring was done in those cases as Long PFN was not available intraoperatively. Patients were.

![Images of X-rays showing union and non-union of fractures.](image)

Fig 5: (A) Shows the AP view of preop X-ray of patient A; (B) Shows the lateral view of preop x-ray of patient A; (C) Shows the AP view the 3 months follow up X-ray of patient A; (D) Shows the X-ray at 6 months showing union of patient A.

Fig 6: (A) Showing the AP view of patient B with union at 6 months; (B) Showing lateral view of patient B at 6 months with union.

Fig 7: Shows union in patient C at 6 months follow-up.

Fig 8: (A) Showing the pre op X-ray of patient D in AP view; (B) Showing the postop X-ray of patient D in AP view; (C) Showing X-ray of patient D, with broken nail at 1.5 months follow-up.
Discussion
Union was seen in all fractures in DHS with TSP group while 2 patients of PFN group went into non-union with screw migration and 1 fracture with implant failure united in malposition. Rho et al in their study found union rate of 18 weeks in PFN group while union rate of 19 weeks in DHS with TSP group compared to 12 weeks and 14 weeks in our study respectively.\[13\]
In DHS with TSP group, Harris hip score at 15 days was 16.22 which is less than PFN group (avg - 17.54). At 1.5 month follow up PFN group had HHS (avg - 33.86) more than DHS with TSP group (avg - 31.86). At 3 month also PFN group had HHS (avg - 61.18) more than DHS with TSP group (avg - 60.04). At 4.5 month PFN had HHS (avg - 72.13) more than DHS with TSP group (avg - 71.45). But at 6 month HHS of DHS with TSP group (avg - 85.45) was more than PFN group (avg - 84.72) because of more complications occurred in PFN group compared to DHS with TSP group. Statistically there was no significant difference between HHS of both the groups at every follow up i.e. 15 days, 1.5 months, 3 months, 4.5 months and 6 months. Result in our study was comparable to Shetty et al study which showed 10 cases of excellent, 10 cases of good, 9 cases of fair and 4 cases of poor result in DHS with TSP group. 14 While in our study we got 6 cases with excellent, 12 cases with good and 4 cases with fair result with no case of poor result.

Parker mobility score was also used to assess the functional status of patient at follow up. 15 In DHS with TSP group PMS at 15 days was 1.36 which was equal to PFN group. At 1.5 month follow PFN group had PMS (avg – 4.45) less than DHS with TSP group (avg – 4.54). At 3 month also PFN group had PMS (avg – 6.18) less than DHS with TSP group (avg – 6.27). At 4.5 month PFN had PMS (avg – 7.31) more than DHS with TSP group (avg – 7.22). But at 6 months PMS of DHS with TSP group (avg – 7.81) was more than PFN group (avg – 7.95). Still statistically there was no significant difference between PMS of both the groups at every follow up i.e. 15 days, 1.5 months, 3 months, 4.5 months and 6 months, which showed that functional outcomes in our study were comparable. The results of our study was comparable with Rho et al study which showed no significant difference between PFN and DHS with TSP group at 6 month follow up.\[13\]
In our study we found 2 patients of DHS with TSP group with shortening of 1 to 2 cm and had difficulty while walking. So shoe raise was given in these cases to compensate the shortening. Patients did not have any difficulty later while walking. 7 patients of DHS with TSP group had shortening of 1 cm and had no difficulty while walking. In PFN group we found 4 patients with shortening of 1 cm with no difficulty while walking. So we found that TSP overall reduces the chances of limb shortening in unstable cases when used with DHS and gave comparable result to PFN.

Conclusion

Use of TSP with DHS can give good results in unstable IT fractures. As compared to DHS with TSP, PFN is technically more demanding surgery and in our study we found complication rate of PFN to be higher as compared to DHS with TSP. Addition of TSP to DHS gives good lateral wall buttress which prevent excessive medialisation of shaft and gives comparable result to PFN which is considered as better implant in unstable fractures.

References

1. Kumar R, Singh RN, Singh BN. Comparative prospective study of proximal femoral nail and dynamic hip screw in treatment of intertrochanteric fracture femur. J Clin Orthop Trauma. 2012; 3(1):28-36.
2. Gullberg B, Johnell O, Kanis JA. World Wide Projection for Hip Fracture. Osteoporosis Int. 1997; 7(5):407-13.
3. Melton LJ, Kears AE, Atkinson EJ, Bolander ME, Achenbach SJ, Huddleston JM, et al. Secular Trends in Hip Fracture Incidence and Recurrence. Osteoporosis Int. 2009; 20(5):687-94.
4. Kyle RF, Gustilo RB, Premer RF. Analysis of six hundred and twenty-two intertrochanteric hip fractures. J Bone Joint Surg Am. 1979; 61:216-21.
5. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995; 77:1058-64.
6. Lindskog DM, Michael RB. Unstable Intertrochanteric Hip Fractures in the Elderly. J Am Acad Orthop Surg. 2004; 12:179-90.
7. Babst R, Martinet O, Renner N, Rosso R, Bodoky A, Heberer M, et al. Die DHS-Abstützplatte für die Versorgung der instabilen proximalen Femurfrakturen. Schweizer Med Wochenschr. 1993; 123:566-8.
8. Kaufer H. Mechanics of the treatment of hip injuries. Clin Orthop. 1980; 146:53-61.
9. Haidukewych GJ, Israel TA, Berry DJ. Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am. 2001; 83:643-50.
10. Medoff RJ, Maes K. A new device for the fixation of unstable pertrochanteric fractures of the hip. J Bone Joint Surg Am. 1991; 73:1192-9.
11. David A, Hüfner K, Lewandrowski KU, Pape D, Muhr G. Dynamische Hüftschraube (DHS) mit Abstützplatte-einesicherer Osteosynthese-für hochinstabile "reverse" trochantere Frakturen. Chirurg. 1996; 67:1166-73.
12. Von Hasselbach C, Witzel U. Die Schenkelhalszuggurtungsplatte. Chir Praxis. 1987; 38:235-60.
13. Rho JY, Kim SB, Heo YM, Cho SJ, SikChae D, Lee WS. Proximal Femoral Nail Antirotation versus Compression Hip Screw with Trochanter Stabilizing Plate for Unstable Intertrochanteric Hip Fractures. J Korean Fracture Society. 2010; 23(2):161-6.
14. Shetty A, Ballal A, Kumar A, Sadasivan, Hedge A. Dynamic Hip Screw with Trochanter stabilization Plate Fixation of Unstable Inter-Trochanteric Fractures: A Prospective Study of Functional and Radiological Outcomes. J Clin Diagnos Res. 2016; 10(9):6-8.
15. Parker MJ, Palmer CR. A new mobility score for predicting mortality after hip fracture. J Bone Joint Surgery Br. 1993; 75:797-8.
16. Jonnes C, Shishir SM, Najimudeen S. Type II Intertrochanteric Fractures: Proximal Femur. Arch Bone Jt Surg. 2016; 4(1):23-8.
17. Matre K, Vinje T, Havelin LI, Gjertsen JE, Furnes O, Espehaug B, et al. Trigem Intertan Intramedullary Nail Versus Sliding Hip Screw. J Bone Joint Surg Am. 2013; 95:200-8.
18. Gupta RK, Sangwan K, Kamboj P, Sarabjeet SP, Walecha P. Unstable trochanteric fractures: the role of lateral wall reconstruction. Int Orthop (SICOT). 2010; 34:125-9.
19. Bhakat U, Bandyopadhayay R. Comparative Study between Proximal Femoral Nailing and Dynamic Hip Screw in Intertrochanteric Fracture of Femur. Open J Orthop. 2013; 3:291-5.