RESEARCH PAPER

Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies

Robert P. Koester¹, Jeffrey A. Skoneczka², Troy R. Cary³, Brian W. Diers³ and Elizabeth A. Ainsworth¹,²,³,*

¹ Department of Plant Biology, University of Illinois, Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61801, USA
² Global Change and Photosynthesis Research Unit, USDA/ARS, Urbana IL 61801, USA
³ Department of Crop Sciences, University of Illinois, Urbana-Champaign, 1201 W Gregory Drive, Urbana, IL 61801, USA

* To whom correspondence should be addressed. E-mail: lisa.ainsworth@ars.usda.gov

Received 4 March 2014; Revised 27 March 2014; Accepted 31 March 2014

Abstract

Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (ε_i), converted light energy into biomass (ε_c), and partitioned biomass into seed (ε_p) were examined. Seed yield increased by 26.5 kg ha⁻¹ year⁻¹, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in ε_i. Greater biomass production per unit of absorbed light resulted in improvements in ε_c. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in ε_p. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future.

Key words: Energy conversion efficiency, harvest index, light interception efficiency, partitioning efficiency, radiation use efficiency, yield potential.

Introduction

Soybean (Glycine max) yields have steadily increased throughout the past century from advances made in breeding, improved management practices, and increased atmospheric carbon dioxide concentrations (Specht et al., 1999; De Bruin and Pederson, 2008; Rowntree et al., 2013). However, the current rate of gain is insufficient to meet the United Nations target of doubling crop yields by 2050 in order to meet the needs of a growing population (Tilman et al., 2011; Ray et al., 2013). While soybean yields have been increased through traditional breeding efforts, the physiological mechanisms underlying past yield gains in the USA are largely unknown. An understanding of the physiological basis of past improvements in soybean yield could help identify strategies for increasing future production.

Yield potential (Y_p) is defined as the maximum yield achieved when a crop is grown in absence of biotic and abiotic stresses (Evans and Fischer, 1999). Y_p can be parameterized by different efficiencies in the following equation adapted from Monteith (1977):

\[Y_p = 0.487 S_i \times \varepsilon_i \times \varepsilon_c \times \varepsilon_p \]
In this equation, S_i is total incident solar radiation during the growing season of which ~48.7% is photosynthetically active. Light interception efficiency (ϵ_i) is determined by the speed and duration of canopy closure along with canopy size and architecture. Energy conversion efficiency (ϵ_c), or radiation use efficiency, is determined by the amount of solar energy that is transformed into biomass through the balance of photosynthesis and respiration. Partitioning efficiency (ϵ_p), or harvest index, is determined by the amount of biomass energy allocated to vegetative versus reproductive structures (Zhu et al., 2010). The Monteith equation tracks energy transfer from the sun to the seed and provides insight into the physiological mechanisms that ultimately govern yield potential. As a result, the Monteith equation has been used to assess which parameters are at their theoretical maxima and which could be improved further to advance yield (Gifford et al., 1984; Loomis and Amthor, 1999; Reynolds et al., 2000; Reynolds et al., 2010; Zhu et al., 2010; Ainsworth et al., 2012).

The extent to which soybean breeding strategies have improved ϵ_i, ϵ_c, and ϵ_p in US soybean germplasm has not been investigated. In Chinese and Canadian soybean germplasm, negative correlations between plant height and lodging score with cultivar year of release (YOR) have been reported (Jin et al., 2010; Morrison et al., 2000). These changes in height and lodging improved the standing power of the crop and are hypothesized to increase ϵ_i (Zhu et al., 2010). Improved ϵ_p with YOR in Chinese and Canadian germplasm was attributed to increased seed biomass with little or no increase in total aboveground biomass (Jin et al., 2010; Morrison et al., 1999). There is some evidence that ϵ_c also has been improved by breeding because leaf-level photosynthetic carbon assimilation increased with YOR (Jin et al., 2010; Morrison et al., 1999). However, ϵ_c is the season-long balance between C gain and C loss, and changes in carbon utilization and respiration can offset changes in photosynthesis. Additionally, a direct correlation between leaf-level photosynthesis and crop yield is not consistently apparent (Kumudini, 2002). Therefore, it is not known how decades of soybean breeding have altered ϵ_c.

It has been suggested that modern cultivars in high-yielding environments achieve theoretical maximum efficiencies of ϵ_i (0.9) and ϵ_p (0.6), while ϵ_c is far below the theoretical C$_3$ maximum (0.094; Zhu et al., 2010). However, there has not been a comprehensive study that parameterizes the Monteith equation across US soybean cultivars with a range of release dates in order to assess how decades of breeding have altered the efficiencies in the field. Further, there is insufficient knowledge about whether elite germplasm are reaching their theoretical maximum efficiencies. Therefore, in order to elucidate the physiological mechanisms of yield improvement in historical soybean germplasm, this study parameterizes the Monteith equation in US soybean cultivars released from 1923–2007. It has been hypothesized that: (1) breeding has increased canopy duration and decreased lodging, therefore ϵ_i will increase with cultivar YOR; (2) breeding has improved net C balance in soybean, therefore ϵ_c will increase with cultivar YOR; and (3) seed yield has been increased by traditional breeding while vegetative biomass has not been affected, therefore ϵ_p will increase with YOR.

Materials and methods

Experimental design

Research was conducted at the Crop Research and Education Center in Urbana, IL (40° N 88° 14′W) in 2012 and 2013. Twenty-four indeterminate, maturity group III soybean cultivars were chosen to represent 84 years of past yield gains (Table 1). The publicly developed cultivars were obtained from the USDA Soybean Germplasm Collection, Urbana, IL, courtesy of Dr Randall Nelson. Nonpublic selections were obtained from Pioneer Hi-Bred, Syngenta, and Monsanto and were coded as private entries. Cultivars were chosen to minimize differences in maturity date and to maximize evenness of distribution across the years of study. Seed of all cultivars were produced in a common environment in Illinois the year prior to each experiment. Each year of the experiment was arranged in a randomized complete block design with three replicates. In one block, the cultivars were each grown in large plots (3.05 × 12.20 m with 16 rows in 2012 and 3.05 × 9.44 m with 12 rows in 2013) and in the two remaining blocks, cultivars were grown in smaller plots (3.05 × 3.05 m with four rows in both years). The smaller plots were used to determine seed yield at maturity as well as lodging while the larger plots were used for destructive physiological measurements, tissue sampling, as well as yield determination at maturity. Experimental plots were planted at a row width of 0.76 m and thinned after emergence to a uniform density (Table 2) after unequal stand density was observed in 2011 in a preliminary experiment (Supplementary Fig. S1A available at JXB online). Unequal stand density was caused by differences in germination rates (Supplementary Fig. S1B). Daily meteorological data, including S_i (Fig. 1A, B), temperature (Fig. 1C, D), and precipitation (Fig. 1E, F), were collected ~1.5 km from the field site by the Illinois Climate Network monitoring station (Angel, 2009). Plots were irrigated using drip-line tubing four times during the 2012 season to prevent water stress (Fig. 1E). Drip-line tubing was not laid in 2013 because of ample precipitation early in the growing season.

Table 1. List of maturity group III soybean cultivars grown with year of release and plant introduction number

Cultivar	YOR	PI no.
Dunfield	1923	PI648318
Illini	1927	PI648348
AK (Harrow)	1928	PI648298
Mandell	1934	PI648381
Lincoln	1943	PI648362
Adams	1948	PI648502
Ford	1958	PI648562
Shelby	1958	PI648574
Ross	1960	PI648612
Adelphia	1964	PI648503
Wayne	1964	PI648628
Calland	1968	PI648527
Williams	1971	PI648631
Woodworth	1974	PI648632
Zane	1984	PI648634
Private 3-2	1986	na
Resnik	1987	PI634645
Private 9	1989	na
Private 19	1994	na
Private 11	1996	na
IA 3010	1998	na
IA 3023	2003	na
Private 3-13	2004	na
Private 3-14	2007	na
Measurements of ϵ_i were made once or twice per week throughout the growing season. The photosynthetically active radiation (PAR) was measured above (I_a) and below (I_b) the canopy in two undisturbed areas in each large plot between 11:00 and 14:00 on clear-sky days with a 0.87-m line quantum sensor (AccuPAR LP-80, Decagon Devices, Pullman, WA, USA). ϵ_i was estimated from two measurements of PAR directly above the canopy and eight measurements

Table 2. Summary of meteorological conditions, plant density, and planting and harvest dates in the 2 years of study

Year	Planting date	Harvest date	Final plant density (plants ha$^{-1}$)	Precipitation (mm)	Mean maximum temperature ($^\circ$C)	Radiation (MJ m$^{-2}$)
2012	12 May	30 Oct	386,421	483a	30.6	2944
2013	16 May	14 Oct	379,325	315	28.1	2130

aPrecipitation plus irrigation.

Fig. 1. Meteorological data for the 2012 and 2013 experimental growing seasons (planting date to 30 September): daily total solar radiation (A and B), daily maximum, mean, and minimum temperatures (C and D), and rainfall and irrigation events and accumulated precipitation across the growing season (E and F).
below the canopy. Below-canopy measurements were made ~2.5 cm above the ground across a 0.76 m transect between rows. \(\varepsilon_i \) was then calculated as 1 – \(\frac{I_{f,i}}{I_{f}} \) (Nobel et al., 1993). The season-long mean \(\varepsilon_i \) was calculated using all measurements taken throughout the season. \(\varepsilon_i \) measurements were stopped and assumed to be 0 once the plot reached growth stage R7 defined by pod maturity (Fehr et al., 1971), by which time most of the remaining foliage had senesced.

Aboveground biomass accumulation per unit area was measured every 2 weeks. Avoiding the edges of the plot (0.5 m), a 1-m length of row was harvested at 2.5 cm above the ground. Plants were counted and separated into leaf, stem (including petioles and petioles), and pod sections. Plant material was then dried for 1 week at 70 °C and weighed. In order to convert total biomass into energy equivalents, seeds, leaves, and stems were ground and analysed for total energy content using adiabatic bomb calorimetry (model 1261, Parr Instrument, Moline, IL, USA) with benzoic acid as a standard (Supplementary Figs S2 and S3). Biomass measurements were made in parallel with \(\varepsilon_i \) measurements. Cumulative intercepted radiation (PAR, \(\varepsilon_i \)) at the time of each biomass harvest was calculated by multiplying the accumulated PAR by the linearly interpolated \(\varepsilon_i \) estimated for each period of time between biomass harvests. For calculation of season-long \(\varepsilon_i \), cumulative PAR, (MJ m\(^{-2}\)) was plotted against cumulative biomass energy (MJ m\(^{-2}\)) until peak biomass was observed. The slope of the linear fit was used to estimate \(\varepsilon_i \) (Monteith, 1972) and it was assumed that \(\varepsilon_i \) was 0 on the day of crop emergence.

Statistical analysis

A significant correlation between yield, Monteith efficiencies, and cv YOR was tested using least-squares regressions (PROC MIXED procedure, SAS version 9.2, SAS Institute, Cary, NC, USA) or first-order linear regression (SigmaPlot, Systat Software, Richmond, CA, USA). A t-test was used to determine if linear regressions slopes were significantly different among years. A two-segment linear regression model (PROC NL MIXED procedure, SAS version 9.2) was also fit to the data and compared to the linear fit using the Akaike information criterion coefficient.

Results

Yield increased linearly with cv YOR

There was a linear improvement in soybean yields with cultivar YOR, with increases of 32.1 kg ha\(^{-1}\) year\(^{-1}\) in 2012 and 20.8 kg ha\(^{-1}\) year\(^{-1}\) in 2013 (Fig. 2A, B). The rate of yield gain in 2012 was significantly greater than in 2013 (\(P<0.005 \)). Older cultivars showed less year-to-year variation in seed production, with yield differences of ~145 kg ha\(^{-1}\) between years, while the newest cultivars yielded ~800 kg ha\(^{-1}\) more in 2012 compared to 2013 (Fig. 2A, B). Newer cultivars (Private 3–14, Private 3–13, and IA3023) were consistently among the highest yielding and older cultivars (Dunfield and Illini) were the lowest in both years of the experiment.

\(\varepsilon_i \) increased with cv YOR

Season-long \(\varepsilon_i \) increased with YOR in both 2012 and 2013 (Fig. 2C, D), and the slopes in the trends were not significantly different between years (\(P=0.24 \)). Increases in season-long \(\varepsilon_i \) with cultivar YOR were driven by a longer growing season, with more recent cultivars maturing later (Fig. 3). The growing season was ~10 d longer in lines released from the 1980s to the 2000s, compared to the lines released from the 1920s to the 1940s (Fig. 3). There was difference in the rate of canopy closure in older or newer cultivars, and most cultivars approached 90% closure by ~60 d after planting (Fig. 3). Lodging, which negatively affects \(\varepsilon_i \) at the end of the growing season, also decreased with YOR (Supplementary Fig. S4).

\(\varepsilon_p \) increased with cv YOR

\(\varepsilon_p \) was calculated as the ratio of seed biomass to total aboveground biomass and also expressed in terms of energy content of the seed to the energy content of total aboveground biomass at full maturity (R8; Fehr et al., 1971). Total seed and stem biomass was measured as for described, except 2 m of row were harvested for calculation of \(\varepsilon_p \). Lodging scores were determined in all three experimental plots using a 0–10 scale according to the following system: most main stems were completing vertical at 0° (0), 45° (5), completely horizontal at 90° (10). When the cultivars had reached maturity, yield was determined by harvesting two centre rows from each of the three yield plots with a 2-row combine and estimates were adjusted to 13% seed moisture content.

Statistical analysis

A significant correlation between yield, Monteith efficiencies, and cv YOR was tested using least-squares regressions (PROC MIXED procedure, SAS version 9.2, SAS Institute, Cary, NC, USA) or first-order linear regression (SigmaPlot, Systat Software, Richmond, CA, USA). A t-test was used to determine if linear regressions slopes were significantly different among years. A two-segment linear regression model (PROC NL MIXED procedure, SAS version 9.2) was also fit to the data and compared to the linear fit using the Akaike information criterion coefficient.

Results

Yield correlations with Monteith efficiencies

In 2012, all three Monteith efficiencies (\(\varepsilon_i, \varepsilon_c, \text{and} \varepsilon_p \)) were significantly correlated with yield (Fig. 6), and \(\varepsilon_c \) and \(\varepsilon_p \) were correlated with one another (Fig. 6). However, \(\varepsilon_i \) was not correlated with \(\varepsilon_c \) or \(\varepsilon_p \) in 2012. In 2013, \(\varepsilon_c \) and \(\varepsilon_p \) were significantly correlated with yield (Fig. 7) but \(\varepsilon_i \) was not (Fig. 7). \(\varepsilon_i \) was more strongly correlated to yield in 2013 (Fig. 7), a year with ~30% less total solar radiation over the growing season compared to 2012. \(\varepsilon_p \) is autocorrelated with seed yield and
therefore it showed very high correlation coefficients in both years (Figs 6 and 7).

Discussion

In field trials of US soybean cultivars released over the past 84 years, seed yield significantly increased with YOR. When separating yield into its physiological efficiencies, there were consistent increases in the efficiencies by which canopies intercepted solar energy, converted it into biomass, and partitioned biomass into yield. In a highly productive agricultural area in the midwest USA, peak ε_i is >90% and ε_p is reaching the theoretical maxima value (60%) in recently released soybean cultivars. However, there is still room for further improvement in ε_i in modern soybean cultivars.

This study of historical soybean cultivars estimated rates of soybean yield gain of 1.8% year$^{-1}$ in 2012 and 1.1% year$^{-1}$ in 2013. These rates are in line with the annual percentage gains reported in a literature review by Specht et al. (1999) and are similar to rates reported in a recent study of 60 cultivars with a similar range of YOR dates that also included the 24 cultivars grown in this present study (Rowntree et al.,...
While Rincker et al. (2014) found the data were better described by a two-segment linear fit with different slopes before and after 1964, the rates of yield gain in this study were better described by a single linear fit, perhaps because there was less power in this study to detect differences in the rate of yield gain before and after 1964. The gains in soybean yield reported here are also similar to improvements reported for other major crops including maize (Zea mays; Duvik and Cassman, 1999; Richards, 2000), rice (Oryza sativa; Peng et al., 2000), and wheat (Triticum aestivum; Reynolds et al., 1999; Shearman et al., 2005). The greater rates of yield gain observed in 2012 compared to 2013 were likely caused by differences in environmental factors and irrigation. The experimental site experienced hot, dry growing conditions in 2012, so plots were irrigated to reduce water stress. The 2013 growing season had lower maximum temperatures, less incoming solar radiation, and ample water early in the season. However, drought conditions occurred after the canopy closed and when seeds were filling, which likely contributed to the lower rate of gain in seed yield in 2013. When comparing the 2 years of the study, it was also notable that more recently released cultivars consistently outperformed older cultivars in all environments, they may have greater environmental sensitivity. These results are consistent with Rincker et al. (2014), who found greater rates of soybean yield gain in high-yielding environments and lower yield stability in more recently released cultivars.

The effective capture of solar radiation across the growing season determines how much solar energy is available for conversion into biomass and therefore yield. In this study, εi increased with cultivar YOR similarly across both years, with soybean canopies intercepting approximately 50–75% of the growing season’s PAR. Peak εi in all soybean cultivars was >90%, consistent with previous reports (Dermody et al., 2008). However, the seasonal εi measured in this study is lower than the theoretical maximum εi for soybean of ~90% (Zhu et al., 2010) and lower than previously reported levels of 89% (Dermody et al., 2008). This may be because the current study used wider row spacing than Dermody et al. (2008) and because the current study took more measurements early in the growing season when the canopy was still developing. There was no difference in time to canopy closure among new and old soybean varieties, but rather an increase in the duration of a photosynthetically active canopy allowing greater capture of St. This was in part because more recent cultivars have later maturity dates (Rowntree et al., 2013) but also because lodging significantly decreased with YOR, which lengthened the duration of an active canopy. Other studies in soybean have reported similar improvements in lodging score over years of breeding (Specht et al., 1999; Morrison et al., 2000; Jin et al., 2010). There are very few direct estimates of εi in soybean, but leaf area index (LAI) is commonly measured and used to indicate εi. A decreasing trend in LAI with YOR has been reported (Morrison et al., 1999; Jin et al., 2010), indicating that newer cultivars with lower LAI may have reduced capacity for intercepting light. However, while LAI can be a good indicator of light interception at the early stages of canopy closure, at an LAI of 3.5–4.0 light interception exceeds 95% (Board and Harville, 1992). Therefore, LAI values above ~4.0 reveal very little about εi. Improvement strategies for light interception in major crops tend to focus primarily on extending the growing season and/or engineering for optimal crop canopy architecture (Reynolds et al., 2000; Parry et al., 2010; Zhu et al., 2010), which would increase the total St for the crop to intercept. In rice, for example, each day added to the growing season translated into a 180 kg ha⁻¹ increase in yield (Akita, 1988).
Energy conversion efficiency and its improvement has been the focus of many yield improvement strategies (Amthor, 2010; Zhu et al., 2010; Parry et al., 2010; Raines, 2011; Ainsworth et al., 2012). Yet the extent of how ϵ_c has been improved through historical breeding is not well understood. In this study, ϵ_c increased with YOR in both 2012 and 2013, leading to a \sim36% improvement over the 84 years covered in this study (\sim0.43% year$^{-1}$). A similar increase in ϵ_c in wheat cultivars released from the 1970s to the 1990s has been reported (Shearman et al. 2005); however, earlier studies of different wheat cultivars failed to report a similar trend (Slafer et al., 1990; Calderini et al., 1997). In the current study, ϵ_c was 29% higher in 2013 compared to 2012, with a maximum ϵ_c of 2.9% in 2012 and 4.3% in 2013. These rates are higher than the rates of field-grown C$_3$ crops (2.4%) previously reported by Zhu et al., (2008) but still well below the theoretical maximum of 9.4% (Zhu et al., 2010). The exclusion of root biomass in the calculation of ϵ_c also underestimates the efficiency (Sinclair and Muchow, 1999), although it is not known how traditional breeding has affected root biomass allocation. ϵ_c is estimated from the linear relationship between biomass accumulation and intercepted light, and gains in ϵ_c in recently released soybeans came from increased biomass production for a given amount of intercepted light (Fig. 4). Changes in respiration or photosynthesis could underpin this trend in ϵ_c, and previous work in Canadian and Chinese germplasm suggests that leaf-level photosynthesis has improved with YOR (Jin et al., 2010; Morrison et al., 1999). However, future studies are needed to determine the mechanisms driving improvements in ϵ_c in these maturity group III historical lines. ϵ_c in 2012 was lower than in 2013, because although the crop intercepted 33% more PAR in 2012 than in 2013, because although the crop intercepted 33% more PAR in 2012 than in 2013, peak biomass was only 13% greater in 2012 than in 2013. Photosynthesis saturates at \sim50% full sunlight and plants are not able to utilize all the intercepted solar radiation, which results in decreased efficiencies of energy conversion (Sinclair and Muchow, 1999; Ort, 2001). A recent meta-analysis by Slattery et al. (2013) found in shading experiments that ϵ_c increased by 18% when

Fig. 4. Accumulated aboveground biomass versus cumulative PAR in 2012 (A) and 2013 (B). Lines represent least-squared regression between dry biomass versus cumulative PAR. The slope of each line (m) is ϵ_c. Each point represents the biomass and cumulative PAR for the five oldest cultivars and the five most recently released cultivars.
Fig. 5. Determinants of partitioning efficiency (ε) versus YOR at growth stage R8 plotted against cultivar YOR in 2012 and 2013: seed biomass (A and B) and total biomass (C and D). Lines represent significant least-squares regression (** P<0.001).

Fig. 6. 2012 correlation matrix of yield and Monteith efficiencies. ε is expressed in terms of biomass (g seed/g total aboveground biomass). Scatterplots and correlation coefficients are plotted in a matrix where lines represent significant least-squares regression. Bold indicates significant results.
Physiological basis for historical yield improvement in soybean

Plants were grown in shaded conditions compared to full sunlight. Consistent with the meta-analysis, ε_c of soybean was greater in a year with less solar radiation; however, despite the increased efficiency in 2013, 2012 resulted in higher absolute seed yields. Although the plants were less efficient in the amount of C fixed per MJ of light in 2012, the plants had higher rates of incident solar radiation throughout the growing season which more than compensated for the loss of efficiency and led to the increase in peak biomass.

Consistent increases in ε_p with YOR were observed in 2012 and 2013. The range of ε_p based on biomass for both years was similar (0.3–0.55), and the most recently released cultivars approached the theoretical maximum of 0.60 (Figs 6 and 7). The improvement of ε_p with YOR was achieved through tripling seed biomass per area but only doubling total biomass per area (Fig. 5). The rate of gain in ε_p in Chinese soybean germplasm was similar at 0.40% year$^{-1}$ (Jin et al., 2010). In Canadian soybean germplasm, historical improvements in ε_p were only due to increases in seed weight and not total biomass (Morrison et al., 1999). In other major food crops, particularly small grains, improvements in ε_p largely drove improvements in yield from 1900 to 1980 (Hay, 1995). In wheat, linear increases in ε_p were found with YOR in the UK and Mexico and were achieved through increased grain yield with no increase in total biomass (Austin et al., 1989; Sayre et al., 1997). More recently, Shearman et al. (2005) reported that ε_p levelled off at ~0.5 when they looked at cultivars of wheat that were released from 1970 to 1995. Historically, rice showed improvements in ε_p until it reached a maximum of around 0.6 in the 1980s when increases in yield were then attributed to greater rates of biomass production (Hay, 1995; Peng et al., 2000). The ε_p of maize was already high (~0.45) in the early 1930s and therefore gains in maize yield were made through increases in total biomass (Hay, 1995; Richards, 2000). While the data presented here support a linear increase in ε_p with YOR in soybean (i.e. the data are not reaching a plateau), ε_p in the most recently released lines is approaching the theoretical maximum.

In conclusion, several physiological changes have accompanied the impressive gains in soybean yield over the past 80 years. First, soybean canopies of more recently released cultivars have greater season-long canopy interception efficiencies owing to longer growing seasons and improved resistance to lodging. Second, modern soybean cultivars have better efficiencies of converting light energy into aboveground biomass and produce 9–17% more aboveground biomass energy in a growing season than cultivars released before 1950. Third, the partitioning of biomass to seeds has been...
maximized in modern soybean lines. Where is there room for future improvement in soybean yield? Longer growing seasons would enable already efficient soybean canopies to harvest more light (Rowntree et al., 2013), but there appears to be little room for improving ε_p. On the other hand, ε_c is still well below the theoretical maximum, even in the most recently released cultivars, and therefore it is an important target for future improvement.

Supplementary material

Supplementary data are available at *JXB* online.

- **Supplementary Fig. S1.** Plant density and seed germination versus YOR in 2011.
- **Supplementary Fig. S2.** Leaf and stem energy content versus YOR.
- **Supplementary Fig. S3.** Seed composition versus YOR in 2012 and 2013.
- **Supplementary Fig. S4.** Lodging score versus YOR in 2012 and 2013.

Acknowledgements

The authors thank Brittany Nohl, Nicholas Vertin, Craig Vendrek, Becky Slattery, Jackie Rodriguez, Payam Vatani, Christopher Montes, Joseph Sullivan, Kristen Michon, Kristen Bishop, Anna Molineaux, Charlie Mitsdarfer, Randall Nelson, Ed Johnson, Courtney Leisner, Amin Ghane, Amy Betzelberger, Taylor Repp, Carlos Garcia, Matt Siebers, Rachel Paul, Darshi Banan, Caroline Kiesinski, Matt Kmet, Matt Kendzior, and Charley llungu for help maintaining the field trials and/or assisting with the measurements reported here.

References

Ainsworth EA, Vendrek CR, Skoneczka JA, Long SP. 2012. Accelerating yield potential in soybean: potential targets for biotechnological improvement. *Plant, Cell and Environment* 35, 38–52.

Akita A. 1988. Physiological basis of heterosis in rice. In: Hybrid rice. *Proceedings of the International Symposium on Hybrid Rice*. Los Banos, Philippines: International Rice Research Institute, pp 67–77.

Austin RB, Ford MA, Morgan CL. 1989. Genetic improvement in the yield of winter wheat: a further evaluation. *Journal of Agricultural Science* 112, 295–301.

Amthor JS. 2010. From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. *New Phytologist* 188, 939–959.

Angel J. 2009. *The Water and Atmospheric Resources Monitoring Program*. Urbana, IL: Illinois State Water Survey, University of Illinois at Champaign-Urbana.

Board JE, Harville BG. 1992. Explanations for greater light interception in narrow- vs. wide-row soybean. *Crop Science* 32, 198–202.

Calderini DF, Drecrer MF, Slafer GA. 1997. Consequences of plant breeding on biomass growth, radiation interception, and radiation use efficiency in wheat. *Field Crops Research* 52, 271–281.

De Bruin JL, Pederson P. 2008. Yield improvement and stability for soybean cultivars with resistance to *Heterodera glycines* Itohono. *Agronomy Journal* 100, 1354–1359.

Dermody O, Long SP, McConnaughay K, DeLucia EH. 2008. How do elevated CO₂ and O₃ affect the interception and utilization of radiation by a soybean canopy? *Global Change Biology* 14, 556–564.

Duvik DN, Cassman KG. 1999. Post-green revolution trends in yield potential of temperate maize in the north-central United States. *Crop Science* 39, 1622–1630.

Evans LT, Fischer RA. 1999. Yield potential: its definition, measurement, and significance. *Crop Science* 39, 1544–1551.

Fehr WR, Caviness CE, Burmood DT, Pennington JS. 1971. Stage of development descriptions for soybeans, *Glycine max* (L) Merr. *Crop Science* 11, 929–931.

Gifford RM, Thorne JH, Hitz WD, Giaquinta RT. 1984. Crop productivity and photoassimilate partitioning. *Science* 225, 801–808.

Hay RKM. 1995. Harvest index: a review of its use in plant breeding and crop physiology. *Annals of Applied Biology* 126, 197–216.

Jin J, Liu K, Wang G, Li M, Shen Z, Chen X, Herbert SJ. 2010. Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. *Field Crops Research* 115, 116–123.

Kumudini S. 2002. Trials and tribulations: a review of the role of assimilate supply in soybean genetic yield improvement. *Field Crops Research* 75, 211–22.

Loomis RS, Amthor JS. 1999. Yield potential, plant assimilatory capacity, and metabolic efficiencies. *Crop Science* 39, 1584–1596.

Monteith JL. 1972. Solar radiation and productivity in tropical ecosystems. *Journal of Applied Ecology* 9, 747–766.

Monteith JL. 1977. Climate and the efficiency of crop production in Britain. *Philosophical Transactions of the Royal Society B* 281, 277–294.

Morrison MJ, Voldeng HD, Cober ER. 1999. Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. *Agronomy Journal* 91, 685–689.

Morrison MJ, Voldeng HD, Cober ER. 2000. Agronomic changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. *Agronomy Journal* 92, 780–784.

Nobel PS, Forseth IN, Long SP. 1993. Canopy structure and light interception. In: DO Hall, JMO Scurlock, HR Bolhar-Nordenkampf, RC Leaegood, SP Long, eds, *Photosynthesis and production in a changing climate*. London: Chapman and Hall, pp 79–90.

Ort DR. 2001. When there is too much light. *Plant Physiology* 125, 932–939.

Parry MA, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu X-G, Price GD, Condon AG, Furbank RT. 2010. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. *Journal of Experimental Botany* 62, 453–467.

Peng S, Laza RC, Vissers RM, Sanico AL, Cassman KG, Khush GS. 2000. Grain yield of rice cultivars and lines developed in the Philippines since 1966. *Crop Science* 40, 307–314.

Raines CA. 2011. Increasing photosynthetic carbon assimilation in C₃ plants to improve crop yield: current and future strategies. *Plant Physiology* 115, 36–42.

Ray DK, Mueller ND, West PC, Foley JA. 2013. Yield trends are insufficient to double global crop production by 2050. *PLoS ONE* 19, e66428.

Reynolds M, Bonnet D, Chapman SC, Furbank RT, Manes Y, Mather DE, Parry MAJ. 2010. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. *Journal of Experimental Botany* 62, 439–452.

Reynolds MP, Rajaram S, Sayre KD. 1999. Physiological and genetics changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. *Crop Science* 39, 1611–1621.

Reynolds MP, van Ginkel M, Ribaut J-M. 2000. Avenues for genetic modification of radiation use efficiency in wheat. *Journal of Agricultural and Biological Engineering* 51, 459–473.

Richards RA. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. *Journal of Experimental Botany* 51, 447–458.

Rincker K, Nelson R, Specht J, et al. 2014. Genetic improvement of US soybean in maturity groups II, II, and IV. *Crop Science* (E-pub ahead of print; doi: 10.2135/cropsci2013.10.0665).

Rowntree SC, Suhre JJ, Weidenbenner NH, et al. 2013. Genetic gain x management interactions in soybean: I. Planting date. *Crop Science* 53, 1128–1138.

Sayre KD, Rajaram S, Fischer RA. 1997. Yield potential progress in short bread wheat in northwest Mexico. *Crop Science* 37, 36–42.
Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ. 2005. Physiological processes associated with wheat yield progress in the UK. Crop Science 45, 175–185.

Sinclair TR, Muchow RC. 1999. Radiation use efficiency. Advances in Agronomy 65, 215–265.

Slafer GA, Andrade FH, Storre EH. 1990. Genetic improvement effects on pre-anthesis physiological attributes related to wheat grain yield. Field Crops Research 23, 225–263.

Slattery RA, Ainsworth EA, Ort DR. 2013. A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap. Journal of Experimental Botany 64, 3723–3733.

Specht JD, Hume JD, Kumudini SV. 1999. Soybean yield potential—a genetic and physiological perspective. Crop Science 39, 1560–1570.

Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, USA 108, 20260–20264.

Zhu X-G, Long SP, Ort DR. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass. Current Opinion in Biotechnology 19, 153–159.

Zhu X-G, Long SP, Ort DR. 2010. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology 61, 235–261.