Trypanosoma evansi infection in a captive Indian Wolf Canis lupus pallipes
– molecular diagnosis and therapy

Manojita Dash 1 id, Sarat Kumar Sahu 1 e, Santosh Kumar Gupta 3 e, Niranjan Sahoo 4 e
& Debarat Mohapatra 5 e

1 2 Centre for Wildlife Health, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
2 Nandankanan Zoological Park, Po-Barang, Khordha District, Odisha 754005, India.
3 Department of Preventive Veterinary Medicine and Epidemiology, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
4 manojita.dash@gmail.com, 2 sahu.sarat77@gmail.com (corresponding author), 3 santoshkumargupta67@ymail.com, 4 niranjasahoo@hotmail.com, 5 debbarat73@gmail.com

Abstract: A five-year old, apparently healthy male Indian Wolf Canis lupus pallipes of Nandankanan Zoological Park, Odisha became ill with acute signs of anorexia, lethargy, staggering gait, and was non-responsive to external stimuli. Microscopic examination of Giemsa stained blood smear revealed presence of extracellular flagellates having morphological similarity to Trypanosoma spp. Haematological parameters showed anaemia (Hb 6.0 g%), mild leucopenia (total leukocyte count 5 x 10⁹ / mm³) and thrombocytopenia (180 x 10³ / µl). Serum biochemistry revealed high aspartate aminotransferase (AST) (830 IU/L), blood urea nitrogen (BUN) (178.2 mg/dl), creatinine (4.44 mg/dl), and low glucose (25.7 mg/dl) levels. Polymerase chain reaction (PCR) analysis targeting internal transcribed spacer (ITS1) region followed by National Centre for Biotechnology Information blast confirmed Trypanosoma evansi infection in the captive Indian Wolf. The animal showed clinical recovery with the administration of single dose of quinapyramine sulphate and quinapyramine chloride @ 4.0 mg/ kg b wt subcutaneously. The wolf started taking meat from the very next day with improved activity. No trypanosomes could be detected in the stained blood smears as well as through PCR carried 25 days post treatment. The occurrence became an eye opener for the zoo. Thereafter, all canids were included under chemoprophylaxis protocol against trypanosomiasis.

Keywords: Anemia, Canids, captivity stress, Chemoprophylaxis, PCR, Quinapyramine salts.
INTRODUCTION

Trypanosomosis, caused by an unicellular, eukaryotic haemoprotozoan of different Trypanosoma spp., is an important disease of domestic and wild animals (Aulakh et al. 2005; Gupta et al. 2009). A number of trypanosomes exist worldwide; however, Trypanosoma evansi is the only pathogenic species prevalent in India (Desquesnes et al. 2003; Kumar et al. 2021). Sengupta (1974), Ziauddin et al. (1992), and Shukla (2002) reported trypanosomosis in Indian Wolves in Indian zoos at Kolkata, Mysore, and Lucknow, respectively. This extra-cellular haemoparasite is transmitted by biting flies of genera Tabanus, Stomoxys, and Haematobia (Parashar et al. 2006, 2018). The disease is characterized by anaemia, anorexia, intermittent fever, generalised weakness, conjunctivitis, corneal opacity, oedema of head and throat, difficulty in swallowing, hoarse voice, and staggering gait (Chaudhuri et al. 2009). The disease can be diagnosed by direct demonstration of trypomastigote forms of the parasite in the stained blood smears, but the polymerase chain reaction (PCR) has an increased diagnostic potential with high sensitivity and specificity to detect parasite DNA (Eloy & Lucheis 2009). Trypanosomosis has been successfully treated with a single dose of dimazine aceturate (3.5 mg/kg body weight intramuscular (Rani & Suresh 2007) or sulphate and chloride salts of quinapyramine (4.0 mg/kg bw subcutaneous (Singh et al. 1993). The present case study documents molecular diagnosis through PCR and successful therapy of Trypanosoma evansi infection in a captive Indian Wolf at Nandankanan Zoological Park (NKZP), India.

CASE HISTORY AND OBSERVATION

The NKZP received a pair of wolves during September 2018 from Sri Chamarajendra Zoological Gardens, Mysuru under an animal exchange program. Both were housed in an open air enclosure of 28 sq meters attached to a feeding cell of 15 sq meters. Regular prophylactic measures included annual vaccination against rabies, parvo, distemper, parainfluenza, adenovirus type I and II, hepatitis and Leptospira spp., fecal sample examination followed by deworming with albendazole/fenbendazole at three month intervals and ground spray of enclosure with ectoparasiticides deltamethrine/cypermethrine in alternate months. The female partner died on 07 March 2019 due to cardiac dysfunction leaving the male wolf alone.

On 24 September 2019, the 5-year old apparently healthy male partner (approximate body weight 20.0 kg) was noticed anorectic, debilitated, non-responsive to external stimuli, reduced activity levels with staggering gait. Close examination inside a squeeze cage revealed shallow breathing and pale conjunctiva. Body temperature was 103.2°F. Peripheral blood samples were collected on the same day from the left saphenous vein in ethylene diamine tetraacetic acid @ 1.5 mg/ml (EDTA) and clot activator vials for haematobiochemical and parasitological examination. Faecal samples were collected for detection of gastrointestinal infection.

DIAGNOSIS AND TREATMENT

Coprolological examination did not reveal the presence of any endoparasite ova or cyst. Blood smear stained with Giemsa stain and examined under oil immersion showed the presence of extracellular flagellated Trypanosomes (Image 1). Molecular test was performed for confirmation of the species. DNA was extracted from the EDTA blood sample using Qiamp DNA blood Mini kit (M/S Qiagen, Germany) according to the manufacturer’s instructions. PCR was carried out in 50 µl reaction volumes containing 10X reaction buffer with KCl, 25 mM MgCl2, 2 mM dNTPs, 3 units of Taq DNA polymerase, 2 µM of each primer (Njiru et al. 2005), nuclease free water and 2 µl of template DNA. PCR was programmed to perform a denaturation step at 95°C for 10 mins followed by 35 cycles consisting of 30 secs at 94°C, 30 secs at 55°C, and 30 secs at 72°C. The last extension step was 10 mins at 72°C. The PCR product was run in 2% agarose gel with ethidium bromide-stain using an electrophoresis system (M/S BIO-RAD, USA) along with one positive (1 µg of DNA) and one negative control (Image 2). After getting the desired band at 480 bp, the PCR product was sequenced and the data was compared in National Centre for Biotechnology Information (NCBI) database. The sequenced data matched with T. evansi with 93.6% identity and 97.0% query cover. The consensus sequence (generated in BIOEDIT software) was submitted in genbank (NCBI) and the assigned accession number was MZ321577.

Analysis results depicted in Table 1 revealed decrease in certain haematobiochemical values like haemoglobin (6.0 g%), total leucocyte count (5.0 10^3/mm^3), neutrophil (56%), platelets count (180 x 10^3/µl) and glucose (25.7 mg/dl). Increased values in both haematological and biochemical parameters included lymphocyte (41%), AST (830.4 IU/l), total protein (7.63 g/dl), urea (178.2...
Trypanosoma evansi infection in captive Indian Wolf
Dash et al.

mg/dl), creatinine (4.44 mg/dl), cholesterol 272.7 mg/dl), triglyceride (418.8 mg/dl), calcium (11.1 mg/dl), phosphorous (11.4 mg/dl), magnesium (2.7 mg/dl), and total billirubin (0.80 mg/dl)

Quinapyramine sulphate and chloride @ 4.0mg/ kg b wt (Injection Triquin of M/S Vetoquinol India Animal Health Pvt Ltd., Thane) was administered subcutaneously. As supportive therapy, the Indian Wolf was administered with paracetamol inj (Injection Fevastin of M/S Tablets India Limited, Chennai) @ 2.0 ml intramuscular and electrolytes with 20% dextrose infusion @ 300 ml (Rintose of M/S Vetoquinol India Animal Health Pvt Ltd.). The Indian Wolf started responding to treatment from the very next day itself. Body temperature dropped to 101.4°F with signs of improvement in the activity and appetite.

DISCUSSION

NZKP had the earlier records of trypanosomosis among white Tigers Panthera tigris, Bengal Tigers Panthera tigris tigris, and Jungle Cat Felis chaus (Parija & Bhattacharya 2001; Sahoo et al. 2009). Hence, the NK2P is following a chemoprophylaxis protocol against trypanosomosis for all large felids (N= 46) and calculated doses of quinapyramine salts (Injection Triquin of M/S Vetoquinol India Animal Health Pvt Ltd, Maharashtra) are being administered subcutaneously at every four month intervals. But the canids were not included in this chemoprophylaxis protocol, as there was no incidence of the said disease amongst canids at NK2P.

It is quite challenging to ascertain the species of Trypanosoma spp. from the blood smear. PCR is the ultimate diagnostic protocol to reveal the fact. PCR targeting internal transcribed spacer (ITS1) region is highly sensitive and reliable for the diagnosis of pathogenic Trypanosoma spp. such as T. evansi, T. brucei brucei, T. b. rhodesiense, T. b. gambiense, T. congolense, T. savannah, T. congolense kiiifi, T. congolense forest, T. simiae, T. simiae tsavo, T. godfreyi, and T. vivax (Njiru et al. 2005). Successful detection of Trypanosoma spp. has been reported using ITS1 CF and BR PCR primers in cattle, tsetse fly, sand fly, dogs, equids, monkeys, and camels (Thumbi et al. 2008; Alanazi et al. 2018; Gaithuma et al. 2019; Medkour et al. 2020). The current study unveiled incidence of T. evansi in a captive Indian Wolf at NK2P.

Wild animals often exhibit moderate levels of trypano-tolerance with their innate ability to co-exist with trypanosomes without showing overt disease (Sudan et al. 2017). The disease flares up when the animal gets exposed to physiological and somatic stress following concurrent infection, capture, translocation and captivity that often compromises their innate resistance (Fowler 1986; Singh et al. 2003).

The clinical signs in the present case were high rise of temperature (103.2°F), pale mucous membrane, bilateral lacrimation, and generalised debility. These observations were in agreement with the findings of Rani.
& Suresh (2007). The fever might be due to the effects of toxic metabolites produced by dying trypanosomes (Tizard et al. 1978).

Anemia was a consistent finding as reported earlier in different hosts including dogs infected with Trypanosomosis (Moreira et al. 1985; Monzon et al. 1991; Silva et al. 1995; Gurtler et al. 2007). The anaemia is attributable to extravascular destruction of RBC which may be through the process of erythrophagocytosis or metabolic product and toxins liberated from the parasites. Blood cellular changes revealed leucopenia along with reduced neutrophil count. Similar findings were recorded by Barr et al. (1991).

Increase in AST, ALT, ALP, urea, creatinine level as compared to reference level corroborated with findings of Barr et al. (1991) who reported a similar pattern of changes in a dog during the acute phase. Marked elevation in the level of total protein values were recorded as compared to reference level. Hyperproteinemia found in this study could be associated with hypergammaglobulinemia due to antigenic stimulation provoked by the parasite, as seen in canines (Aquino et al. 2002). There was a decrease in the albumin and globulin ratio. The fall in albumin levels was secondary to hyperglobulinemia as a compensatory mechanism for maintenance of normal blood viscosity increased by globulin levels (Aquino et al. 2002). Hyperbilirubinemia has been reported in naturally infected dogs as a consequence of an increase in unconjugated bilirubin (Sandoval et al. 1994) and conjugated bilirubin. There was decrease in serum glucose (25.7 mg/dl) level. Hypoglycemia has been shown to be an important

Table 1. Pre- and post-treatment haemato-biochemical values of an Indian Wolf with Trypanosoma evansi infection.

Parameter	Days of blood collection	Reference range	
	24.ix.2019	18.x.2019	
	(Pre-treatment)	(Post-treatment)	
Hematology			
Haemoglobin (g %)	6.0	13.0	10.5-15
Total leucocyte count (10^3/mm^3)	5.0	5.6	5.0-14.1
Neutrophil (%)	56.0	70.0	58-71
Eosinophil (%)	3.0	3.0	0.4
Lymphocyte (%)	41.0	26.0	28-39
Monocyte (%)	-	1.0	0-2
Basophil (%)	-	0	0
Platelet (×10^3/µl)	180.0	226.0	211-621
Biochemistry			
ALT(IU/L)	10.3	331.1	24-64
AST(IU/L)	830.4	159.8	23-66
ALP(IU/L)	96.1	26.3	20-156
BUN (mg/dl)	178.2	63.8	16-41
Creatinine (mg/dl)	4.4	2.18	0.5-1.5
Glucose (mg/dl)	25.7	117.2	58.2-91
Total protein(g/dl)	7.63	6.4	5.07-6.49
Albumin (g/dl)	1.5	2.7	2.92-3.53
Globulin (g/dl)	5.0	3.6	2.03-3.16
Cholesterol (mg/dl)	272.7	178.5	138-198
Triglyceride(mg/dl)	418.7	39.7	20-112
Calcium (mg/dl)	11.1	10.9	5.58-7.94
Phosphorous (mg/dl)	11.4	2.6	4-5.32
Magnesium (mg/dl)	2.7	2.4	1.8-2.4
Total Bilirubin (mg/dl)	0.8	0.8	0.10-0.50

* Sabapara & Vadalia(1999) | ° Kaneko et al.(2008)
clinical laboratory finding in naturally infected animals, and it is inversely proportional to blood trypanosome count.

Diminazene aceturate is a commonly used drug in the treatment of trypanosomosis (Rani & Suresh 2007). However, a combination of quinapyramine sulphate and quinapyramine chloride (3:2 w/w) at dose rate 4.0 mg/kg b wt is also effective in achieving complete recovery (Singh et al 1993). Shukla (2002) did not get a complete cure with diminazene@ 0.8g/ 100 kg b. wt in case of an Indian Wolf, rather, quinapyramine sulphate @ 5.0mg/ kg b wt resulted in complete recovery. In a similar line, combination of quinapyramine sulphate and quinapyramine chloride @ 4.0mg/kg b wt administered subcutaneously as a single dose showed uneventful recovery in the present case.

The incidence of trypanosomiasis in an Indian Wolf became an eye opener for the zoo to extend the chemoprophylaxis to other hosts. As per the recommendation, the susceptible species, viz., Indian Wolf, Jackal, Dhole, and hyenids of NKZP are being included in the preventive protocol against trypanosomiasis now.

CONCLUSION

Molecular diagnosis of Trypanosoma evansi infection in an Indian Wolf followed by successful treatment with a single injection of quinapyramine sulphate and quinapyramine chloride @ 4.0 mg/kg b wt subcutaneously was recorded at Nandankanan Zoological Park.

REFERENCES

Alanazi, A.D., R. Puschendorf, B. Salim, M.S. Alyousif, I.O. Alanazi & H.R. Al-shehri (2018). Molecular detection of equine trypanosomiasis in the Riyadh Province of Saudi Arabia. Journal of Veterinary Diagnostic Investigation 30(6): 942–945. https://doi.org/10.1177/1040638718798688

Aquino, L.P.C.T., R.Z. Machado, A.C. Alessi, A.E. Santana, M.B. Castro & L.C. Marques (2002). Hematological, biochemical and anatomopathological aspects of experimental infection with Trypanosoma evansi in dogs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 54: 8–18. https://doi.org/10.1590/S0102-09352002000100002

Aulakh, G.S., L.D. Singla & J. Singh (2005). Bovine trypanosomiasis due to Trypanosoma evansi: Clinical, haematobiochemical and therapeutic studies, pp 137–144. In: Sobti, R.C. & V.L. Sharma (Eds.), New Horizons in Animal Sciences. Vishal Publishing and Co., Jalandhar.

Barr, S.C., K.A. Gossett & T.R. Klei (1991). Clinical, clinicopathologic, and parasitologic observation of trypanosomiasis in dog infected with North American Trypanosoma cruzi isolates. American Journal of Veterinary Research 52: 954–960.

Chaudhuri, S., B. Changkija & J.P. Varshney (2009). Concurrent infection of Trypanosoma evansi and Dirofilaria immitis in a non-descript bitch. Journal of Veterinary Parasitology 23: 167–169.

Desquenes, M., Z. Bengaly, L. Milligo, Y. Meme & H. Sakande (2001). The analysis of the cross-reactions occurring in antibody-ELISA for detection of trypanosomes can improve identification of the species involved. Annals of Tropical Medicine and Parasitology 95(2): 141–155. https://doi.org/10.1007/s13117-012-0093-y

Eloy, L.J. & S.B. Lucheis (2009). Canine trypanosomiasis: Etiology of infection and implications for public health. Journal of Venomous Animals and Toxins Including Tropical Diseases 15(4): 589–611. https://doi.org/10.1590/S1519-99292009000400002

Fowler, M.E. (1986). Zoo and Wild Animal Medicine, 2nd ed. W.B. Saunders company.

Gaihuma, A.K., J. Yamagishi, A. Martinelli, K. Hayashida, N. Kawai & M. Marsela (2019). A single test approach for accurate and sensitive detection and taxonomic characterization of trypanosomes by comprehensive analysis of internal transcribed spacer 1 amplicons. PLoS Neglected Tropical Diseases 13(2): e0006842. https://doi.org/10.1371/journal.pntd.0006842

Gupta, M.P., H. Kumar & L.D. Singla (2009). Trypanosomosis concurrent to tuberculosis in black bucks. The Indian Veterinary Journal 86: 727–728.

Gurtler, R.E., M.C. Cecere, M.A. Lauricella, M.V. Cardinal, U. Kitron & J.E. Cohen (2007). Domestic dogs and cats as source of Trypanosoma cruzi infection in rural northeastern Argentina. Parasitology 134: 69–82. https://doi.org/10.1017/S0031182006001125

Kaneko, J.J., J. Harvey & M.L. Bruss (2008). Clinical Biochemistry of Domestic Animals - 6th Edition. Academic Press, San Diego, pp. 873–904. https://doi.org/10.1016/0897-0812-370491-7.00033-7

Kumar, H., M.P. Gupta, P.K. Sidhu, V. Mahajan, M.S. Bal, K. Kaur, Ashuma, S. Verma & L.D. Singla (2012). An outbreak of acute Trypanosoma evansi infection in crossbred cattle in Punjab, India. Journal of Applied Animal Research 40(3): 256–259. https://doi.org/10.1080/09712119.2012.667651

Medkour, H., M. Varloud, B. Davoust & O. Mediannikov (2020). New molecular approach for the detection of kinetoplastida parasites of medical and veterinary interest. Microorganisms 8: 356. https://doi.org/10.3390/microorganisms8030356

Monzon, C.M., V.I. Villavicencio & J.P. Roux (1991). Estudios hematologicosencobalos y equinosinfectados Con el Trypanosoma evansi. Veterinary Argent 8: 668–676.

Moreira, R.D. & R.Z. Machado (1985). Identificaçãoesolomamento do Trypanosoma evanuem um clãdomunício De Campaçu-MS, pp. 66. In: Encontro de pesquisasveterinárias, jaboticabal. resumo... jaboticabal: UNESP/Faculdade de Ciências Agrárias.

Njiru, Z.K., C.C. Constantine, S. Guya, J. Crowther, J.M. Moreira, R.D. & R.Z. Machado (1985). Identificaçãoeisolamento do Trypanosoma evansi: Clinical, haematobiochemical and anatomopathological aspects of experimental infection with Trypanosoma evansi in dogs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 54: 8–18. https://doi.org/10.1590/S0102-09352002000100002
Trypanosoma evansi infection in captive Indian Wolf

Dash et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 January 2022 | 14(1): 20494–20499

844–845.
Sandoval, G.L., N.B. Coppo & M.S. Negrette (1994). Alterações bioquímicas e histopatológicas de um cãoerato infectado com Trypanosoma evansi. Hora Vet 81: 53–55.
Sengupta, M.R. (1974). A preliminary report on diseases and parasites of zoo animals, birds and reptiles. Indian Journal of Animal Health 13: 15–24.
Silva, R.A.M.S., A.T.M. Barros & H.M. Herrera (1995). Trypanosomosis outbreaks due to Trypanosoma evansi in the Pantanal, Brazil. A preliminary approach on risk factors. Revue d’élevage et de médecine vétérinaire des pays tropicaux 48: 315–319.
Singh, R., L.D. Singla & P.S. Dhaliwal (2003). Dexamethasone flared up trypanosomosis in a dog. Indian Veterinary Medical Journal 27: 93–94
Shukla, U. (2002). Trypanosomiasis in wolf (Canis lupus)- a case study for Lucknow Zoo. Zoos’ Print Journal 17: 862. https://doi.org/10.11609/JoTT.ZPJ.17.8.862

Sudan, V., A.K. Verma & A.K. Jaiswal (2017). Trypanosomiasis of wild animals with emphasis on Indian scenario. Veterinary Parasitology Regional Studies and Reports 10: 25–28. https://doi.org/10.1016/j.vprsrr.2017.07.003
Singh, B., I.S. Kalra, M.P. Gupta & D.C. Nauriyal (1993). Trypanosoma evansi in dogs: seasonal prevalence and chemotherapy. Veterinary Parasitology 50: 137–141.
Thumbi, S.M., F.A. McOdimba & R.O. Mosi (2008). Comparative evaluation of three PCR base diagnostic assays for the detection of pathogenic trypanosomes in cattle blood. Parasites Vectors 1: 46 https://doi.org/10.1186/1756-3305-1-46
Tizard, I.R., K.H. Nielsen, J.R. Seed & J.E. Hall (1978). Biologically active products from African trypanosomes. Microbiological Reviews 42: 661–681. https://doi.org/10.1128/mr.42.4.664-681.1978
Ziauddin, K.S., K. Muralidharan & S.J. Seshadri (1992). Trypanosomiasis in a wolf at Mysore Aoo- a case report. Indian Journal of Wildlife Health Management 1: 47.
Articles

Estimating the completeness of orchid checklists and atlases: a case study from southern India
– Antonio Croce, Pp. 20311–20322

A floristic survey across three coniferous forests of Kashmir Himalaya, India – a checklist
– Ashfaq Ahmad Dar, Akhtar Hussain Malik & Narayanawamy Parthasarathy, Pp. 20323–20345

Associations of butterflies across different forest types in Uttarakhand, western Himalaya, India: implications for conservation planning
– Arun Pratap Singh, Pp. 20346–20370

Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal
– Jagan Nath Adhikari, Janak Raj Khatiwada, Suman Sapkota, Bishnu Prasad Bhattarai, Deepak Rijal & Lila Nath Sharma, Pp. 20371–20386

Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Asota) in western Sarawak, Malaysian Borneo
– Jayasimil Mohd-Azlan, Jooon Yee Yong, Nabilah Norshuhahad Mohd Hazzrol, Philoveny Pengiran, Ariantl Atong & Sheema Abdul Azit, Pp. 20387–20399

Communications

Macrolichens of Mathikettan Shola National Park, Western Ghats: a preliminary investigation with some new records
– Aswathi Anilkumar, Stephen Sequeira, Arun Christy & S.M. Arsha, Pp. 20400–20405

New distribution record of globally threatened Ocean Turf Grass Holophila beccarii Ascherson, 1871 from the North Andaman Islands highlights the importance of seagrass exploratory surveys
– Swapnali Gole, Prasad Gaidhani, Shraba Bose, Anant Pande, Jeyaraj Antony John & Kuppasamy Sivakumar, Pp. 20406–20412

An inventory of new orchid (Orchidaceae) records from Kozhikode, Kerala, India
– M. Sulaiman, C. Murugan & M.U. Sharief, Pp. 20413–20415

Abundance and spatial distribution analyses of Stemnonorus moonii Thwaites (Dipterocarpaceae) - a critically endangered species endemic to Sri Lanka
– K.A.M.R.P. Atapattu, H.D.C.K. Perera, H.S. Kathiriarchachi & A.R. Gunawarden, Pp. 20426–20432

Plant diversity of Point Calimere Wildlife Sanctuary and fodder species grazed by the Blackbuck Antelope cervicapra L.
– Ashutosh Kumar Upadhyay, A. Andrew Emmanuel, Ansa Sarah Varghese & D. Narasimh, Pp. 20433–20443

Raptors observed (1983–2016) in National Chambal Gharial Sanctuary: semi-arid biogeographic region suggestions for parametric studies on ecological continuity in Khathiar-Gir Ecoregion, India
– L.A.K. Singh, R.K. Sharma & Udayan Rao Pawar, Pp. 20444–20460

Nesting success of Sharpe’s Longclaw (Macroxyrsharpei Jackson, 1904) around the grasslands of lake O’bolosat Nyandarua, Kenya
– Hamisi Ann Risper, Charles M. Warui & Peter Njorgoe, Pp. 20461–20468

Revival of Eastern Swamp Deer Rucervus duvaucelii ranjitsinhji (Groves, 1982) in Manas National Park of Assam, India
– Nazrul Islam, Aftab Ahmed, Rathin Barman, Sanatan Deka, Bhaskar Choudhury, Prasanta Kumar Saikia & Jyothishman Deka, Pp. 20488–20493

Trypanosoma evansi infection in a captive Indian Wolf Canis lupus pallipes – molecular diagnosis and therapy
– Manojita Dash, Sarat Kumar Sahu, Santosh Kumar Gupta, Niranjan Shahoo & Debarat Mohapatra, Pp. 20494–20499

View Point

COVID-19 and civil unrest undoing steady gains in karst conservation and herpetological research in Myanmar, and an impediment to progress
– Evan S.H. Quah, Lee L. Grismer, Perry L. Wood, Jr., Aung Lin & Myint Kyaw Thura, Pp. 20500–20502

Short Communications

Morphological characterization and mt DNA barcode of a tiger moth species, Asota ficus (Fabricius, 1775) (Lepidoptera: Noctuoidea: Erebidae: Aganainae) from India
– Aparna Sureshchandra Kalawate, K.P. Dinesh & A. Shabnam, Pp. 20503–20510

Distribution of Smooth-coated Otters Lutrogale perspicillata (Mammalia: Carnivora: Mustelid: in Ratnagiri, Maharashtra, India
– Swandan Patil & Kranti Yardi, Pp. 20511–20516

Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region
– Muzaffar A. Kichloo, Asha Shoil & Neeraj Sharma, Pp. 20517–20522

Notes

Robiquetia gracilis (Lindl.) Garay—a new record to the flora of Anamalai Hills, Tamil Nadu, India
– B. Subbaiyan, V. Ganesan, P.R. Nimal Kumar & S. Thangaraj Panneerselvam, Pp. 20523–20525

Ipomoea laxiflora H.J. Chowdhery & Debtta (Convolvulaceae): new records for the Western Ghats and semi-arid regions
– Sachsin M. Patil, Ajit M. Vasava, Vinay M. Raole & Kishore S. Rajput, Pp. 20526–20529

Counting the cost: high demand puts Banyum persicum (Boiss.) B.Fedtsch. in jeopardy
– Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

First record of Parasitic Jaeger Stercorarius parasiticus (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar
– Sai Sein Lin Do, Myint Kyaw, L.C.K. Yun, Min Zaw Tun, Yar Zar Lay Naung, Soe Naing Aye & Swn C. Renner, Pp. 20534–20536

Book Review

Capparis of India
– V. Sampath Kumar, Pp. 20537–20538