Real multiplication and modular curves

Igor Nikolaev

Abstract

We construct an inverse of functor F, which maps isomorphism classes of elliptic curves with complex multiplication to the stable isomorphism classes of the so-called noncommutative tori with real multiplication. The construction allows to prove, that complex and real multiplication are mirror symmetric, i.e. F maps each imaginary quadratic field of discriminant $-D$ to the real quadratic field of discriminant D.

Key words and phrases: complex and real multiplication

AMS Subj. Class.: 11G15; 46L85

1 Introduction

A. Real multiplication. Let $0 < \theta < 1$ be an irrational number; consider an AF-algebra, \mathbb{A}_θ, given by the following Bratteli diagram:

$$
\begin{array}{c}
\cdots \\
\cdots \\
\vdots \\
\vdots \\
\vdots
\end{array}
$$

, where $\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$

Figure 1: The noncommutative torus.

The K-theory of \mathbb{A}_θ is (essentially) the same as for noncommutative torus, i.e. the universal C^*-algebra generated by the unitaries u and v satisfying

*Partially supported by NSERC.
the commutation relation \(vu = e^{2\pi i \theta} uv \); for brevity, we call \(\mathbb{A}_\theta \) a noncommutative torus. Two such tori are stably isomorphic (Morita equivalent), whenever \(\mathbb{A}_\theta \otimes \mathbb{K} \cong \mathbb{A}_{\theta'} \otimes \mathbb{K} \), where \(\mathbb{K} \) is the \(C^* \)-algebra of compact operators; the isomorphism occurs, if and only if, \(\theta' = (a \theta + b)/(c \theta + d) \), where \(a, b, c, d \in \mathbb{Z} \) and \(ad - bc = 1 \) \cite{2}. The \(\mathbb{A}_\theta \) is said to have real multiplication, if \(\theta \) is a quadratic irrationality \cite{4}; we shall denote such an algebra by \(\mathbb{A}_{RM} \). The real multiplication is equivalent to the fact, that the ring \(\text{End} \left(K_0(\mathbb{A}_\theta) \right) \) exceeds \(\mathbb{Z} \); here \(K_0(\mathbb{A}_\theta) \cong \mathbb{Z} \oplus \mathbb{Z} \theta \) is called a pseudo-lattice, ibid.

B. The Teichmüller functor. Let \(\mathbb{H} = \{ x + iy \in \mathbb{C} \mid y > 0 \} \) be the upper half-plane and for \(\tau \in \mathbb{H} \) let \(\mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau) \) be a complex torus; we routinely identify the latter with a non-singular elliptic curve via the Weierstrass \(\wp \) function. Two complex tori are isomorphic, whenever \(\tau' = (a \tau + b)/(c \tau + d) \), where \(a, b, c, d \in \mathbb{Z} \) and \(ad - bc = 1 \). If \(\tau \) is imaginary and quadratic, the elliptic curve is said to have complex multiplication; the latter is equivalent to the condition, that the ring of endomorphisms of lattice \(L = \mathbb{Z} + \mathbb{Z} \tau \) exceeds \(\mathbb{Z} \). Such curves are fundamental in number theory; we shall denote them by \(E_{CM} \). There exists a continuous map from elliptic curves to noncommutative tori, which sends isomorphic curves to the stably isomorphic tori; an exact result is this. (We refer the reader to \cite{5} for the details.) Let \(\phi \) be a closed form on the topological torus, whose trajectories define a measured foliation; according to the Hubbard-Masur theorem, this foliation corresponds to a point \(\tau \in \mathbb{H} \). The map \(F : \mathbb{H} \to \partial \mathbb{H} \) is defined by the formula \(\tau \mapsto \theta = \int_{\gamma_2} \phi / \int_{\gamma_1} \phi \), where \(\gamma_1 \) and \(\gamma_2 \) are generators of the first homology of the torus. The following is true: (i) \(\mathbb{H} = \partial \mathbb{H} \times (0, \infty) \) is a trivial fiber bundle, whose projection coincides with \(F \); (ii) \(F \) is a functor, which sends isomorphic complex tori to the stably isomorphic noncommutative tori. We shall refer to \(F \) as the Teichmüller functor; the restriction of \(F \) to elliptic curves with complex multiplication establishes a bijection between the isomorphism classes of \(E_{CM} \) and the stable isomorphism classes of \(\mathbb{A}_{RM} \), ibid.

C. A modular curve associated to real multiplication. One can attach a modular curve to \(\mathbb{A}_{RM} \) as follows; we refer the reader to Section 2.2 for details of the construction. Let \(\Lambda_{RM} \cong K_0(\mathbb{A}_{RM}) \) be the pseudo-lattice with real multiplication and consider \(\Lambda_{RM} \) to be a discrete subset of the boundary of the half-plane \(\mathbb{H} \). Let \(g \in SL_2(\mathbb{Z}) \) be a hyperbolic isometry of \(\mathbb{H} \); then \(g(x) = x \) and \(g(\bar{x}) = \bar{x} \) for a pair \((x, \bar{x})\) of conjugate quadratic irrationalities at the boundary of \(\mathbb{H} \). We shall denote by \(\Gamma(\mathbb{A}_{RM}) \) the maximal congruence subgroup of \(SL_2(\mathbb{Z}) \) whose hyperbolic fixed points belong to \(\Lambda_{RM} \); the cor-
responding modular curve $X(\mathbb{A}_{\text{RM}}) := \mathbb{H}/\Gamma(\mathbb{A}_{\text{RM}})$ will be called associated to the torus \mathbb{A}_{RM}. Lemma 1 describes the curve $X(\mathbb{A}_{\text{RM}})$ in terms of the discriminant and conductor of the real multiplication.

D. The result. For not a full square integer $D > 1$, we shall write $E_{CM}^{(-D,f)}$ to denote an elliptic curve with complex multiplication by an order of conductor $f \geq 1$ in the imaginary quadratic number field $\mathbb{Q}(\sqrt{-D})$ [7]. Likewise, we shall write $\mathbb{A}_{\text{RM}}^{(D,f)}$ to denote a noncommutative torus with real multiplication by an order of conductor $f \geq 1$ in the real quadratic number field $\mathbb{Q}(\sqrt{D})$ [4]. Our main result can be expressed as follows.

Theorem 1 For every elliptic curve $E_{CM}^{(-D,f)}$ there exists a holomorphic map $F^{-1} : X(F(E_{CM}^{(-D,f)})) \to E_{CM}^{(-D,f)}$, such that $F(E_{CM}^{(-D,f)}) = \mathbb{A}_{\text{RM}}^{(D,f)}$.

The note is organized as follows. A brief introduction to the preliminary facts can be found in Section 2. Theorem 1 is proved in Section 3.

2 Preliminaries

2.1 AF-algebras and real multiplication

A C^*-algebra is an algebra A over \mathbb{C} with a norm $a \mapsto ||a||$ and an involution $a \mapsto a^*$ such that it is complete with respect to the norm and $||ab|| \leq ||a|| ||b||$ and $||a^*a|| = ||a^2||$ for all $a, b \in A$. Any commutative C^*-algebra is isomorphic to the algebra $C_0(X)$ of continuous complex-valued functions on some locally compact Hausdorff space X; otherwise, A represents a noncommutative topological space. The C^*-algebras A and A' are said to be stably isomorphic (Morita equivalent) if $A \otimes \mathcal{K} \cong A' \otimes \mathcal{K}$, where \mathcal{K} is the C^*-algebra of compact operators; roughly speaking, stable isomorphism means that A and A' are homeomorphic as noncommutative topological spaces.

An AF-algebra (Approximately Finite C^*-algebra) is defined to be the norm closure of an ascending sequence of finite dimensional C^*-algebras M_n, where M_n is the C^*-algebra of the $n \times n$ matrices with entries in \mathbb{C}. Here the index $n = (n_1, \ldots, n_k)$ represents the semi-simple matrix algebra $M_n = M_{n_1} \oplus \cdots \oplus M_{n_k}$. The ascending sequence mentioned above can be written as $M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} \cdots$, where M_i are the finite dimensional C^*-algebras and φ_i the homomorphisms between such algebras. The homomorphisms φ_i can be arranged into a graph as follows. Let $M_i = M_{i_1} \oplus \cdots \oplus M_{i_k}$ and
$M' = M_{i_1} \oplus \ldots \oplus M_{i_k}$ be the semi-simple C^*-algebras and $\varphi_i : M_i \to M'$ the homomorphism. One has two sets of vertices V_{i_1}, \ldots, V_{i_k} and $V_{i_1}', \ldots, V_{i_k}'$ joined by b_{rs} edges whenever the summand M_i contains b_{rs} copies of the summand M_{i_r}' under the embedding φ_i. As i varies, one obtains an infinite graph called the Bratteli diagram of the AF-algebra. The matrix $B = (b_{rs})$ is called partial multiplicity matrix; an infinite sequence of B_i defines a unique AF-algebra.

For a unital C^*-algebra A, let $V(A)$ be the union (over n) of projections in the $n \times n$ matrix C^*-algebra with entries in A; projections $p, q \in V(A)$ are equivalent if there exists a partial isometry u such that $p = u^*u$ and $q = uu^*$. The equivalence class of projection p is denoted by $[p]$; the equivalence classes of orthogonal projections can be made to a semigroup by putting $[p] + [q] = [p + q]$. The Grothendieck completion of this semigroup to an abelian group is called the K_0-group of the algebra A. The functor $A \to K_0(A)$ maps the category of unital C^*-algebras into the category of abelian groups, so that projections in the algebra A correspond to a positive cone $K_0^+(A)$ and the unit element $1 \in A$ corresponds to an order unit $u \in K_0(A)$. The ordered abelian group (K_0, K_0^+, u) with an order unit is called a dimension group; an order-isomorphism class of the latter we denote by (G, G^+). By \mathcal{A}_θ we denote an AF-algebra given by the Bratteli diagram of Fig. 1. It is known that $K_0(\mathcal{A}_\theta) \cong \mathbb{Z}^2$ and $K_0^+(\mathcal{A}_\theta) = \{(p, q) \in \mathbb{Z}^2 \mid p + \theta q \geq 0\}$. The AF-algebras $\mathcal{A}_\theta, \mathcal{A}_{\theta'}$ are stably isomorphic, i.e. $\mathcal{A}_\theta \otimes \mathbb{K} \cong \mathcal{A}_{\theta'} \otimes \mathbb{K}$, if and only if $\mathbb{Z} + \theta \mathbb{Z} = \mathbb{Z} + \theta' \mathbb{Z}$ as the subsets of \mathbb{R}. Usually the pseudo-lattice $\Lambda = \mathbb{Z} + \theta \mathbb{Z}$ has only trivial endomorphisms given by multiplication times integers \mathbb{Z}; the case when $\text{End} (\Lambda) > \mathbb{Z}$ happens if and only if θ is a quadratic irrationality. By analogy with the complex multiplication for lattices in \mathbb{C}, the pseudo-lattice is said to have a real multiplication if $\text{End} (\Lambda) > \mathbb{Z}$; the corresponding AF-algebra is denoted by \mathcal{A}_{RM}. The ring $\text{End} (\Lambda)$ is isomorphic to an order R in the ring of integers of the real quadratic number field $K = \mathbb{Q}(\theta)$; any such order has the form $R = \mathbb{Z} + fO_K$, where $f \geq 1$ is an integer number called conductor and O_K the ring of integers of K \cite{4}.

2.2 Modular curve $X(\mathcal{A}_{RM})$

We shall denote by $\Lambda_{RM} = K_0(\mathcal{A}_{RM})$ a pseudo-lattice with real multiplication; it is a discrete subset of the boundary of the half-plane $\mathbb{H} = \{x + iy \in \mathbb{C} \mid y > 0\}$. Consider a quadratic irrational number $\theta \in \Lambda_{RM}$ and let $\bar{\theta} \in \Lambda_{RM}$ be its algebraic conjugate; θ and $\bar{\theta}$ are fixed points of a hyperbolic isometry
g ∈ SL₂(ℤ). By Γ(ARM) we understand a congruence subgroup of SL₂(ℤ), such that its hyperbolic fixed points belong to the pseudo-lattice Λ₉; the modular curve $X(ARM) := \mathbb{H}/\Gamma(ARM)$ will be called associated to the non-commutative torus A₉. Let $N > 1$ be an integer. Recall, that $\Gamma_1(N) := \{(a,b,c,d) ∈ SL₂(ℤ) | a,d \equiv 1 \mod N, c \equiv 0 \mod N\}$ and $X_1(N) = \mathbb{H}/\Gamma_1(N)$; the following lemma characterizes the modular curves $X(ARM)$.

Lemma 1 $X(ARM) \cong X_1(fD)$, where D is the discriminant and f the conductor of A₉.

Proof. Let $Λ₉$ be a pseudo-lattice with the real multiplication by an order R in the real quadratic number field $Q(\sqrt{D})$; it is known ([1]), that $Λ₉ ⊆ R$ and $R = ℤ + (fω)ℤ$, where $f ≥ 1$ is the conductor of R and

$$
ω = \begin{cases}
\frac{1+\sqrt{D}}{\sqrt{D}} & \text{if } D \equiv 1 \mod 4, \\
\frac{1\sqrt{D}}{\sqrt{D}} & \text{if } D \equiv 2, 3 \mod 4.
\end{cases}
$$

(1)

Recall that matrix $(a,b,c,d) ∈ SL₂(ℤ)$ has a pair of real fixed points x and \bar{x} if and only if $|a+d| > 2$ (the hyperbolic matrix); the fixed points can be found from the equation $x = (ax+b)(cx+d)^{-1}$ by the formulas:

$$
x = \frac{a-d}{2c} + \frac{\sqrt{(a+d)^2 - 4}}{4c^2}, \quad \bar{x} = \frac{a-d}{2c} - \frac{\sqrt{(a+d)^2 - 4}}{4c^2}.
$$

(2)

Case I. If $D \equiv 1 \mod 4$, then formula (1) implies that $R = (1+\frac{f}{2})ℤ + \sqrt{\frac{f^2D}{2}ℤ}$. If $x ∈ Λ₉$ is the fixed point of transformation $(a,b,c,d) ∈ SL₂(ℤ)$, then formula (2) implies that:

$$
\begin{cases}
\frac{a-d}{2c} = (1+\frac{f}{2})z_1, \\
\frac{(a+d)^2 - 4}{4c^2} = \frac{f^2D}{4}z_2^2.
\end{cases}
$$

(3)

for some integer numbers z_1 and z_2. The first equation yields $a-d = (f + 2)cz_1$; one can assume that c is divisible by fD, since the equation of the fixed point $x = (ax+b)(cx+d)^{-1}$ will not change if we multiply the nominator and denominator of the fraction by a constant. Thus, $d ≡ a \mod (fD)$. The second equation gives us $(a+d)^2 - 4 = f^2Dc^2z_2^2$; therefore $(a+d)^2 - 4 ≡ 0 \mod (fD)$. Since $d ≡ a \mod (fD)$, we conclude that $a^2 - 1 ≡ 0 \mod (fD)$ and $a ≡ ±1 \mod (fD)$. We pick $a ≡ 1 \mod (fD)$ for otherwise matrix
\[(a, b, c, d) \pmod{(fD)} \text{ must be multiplied by } Const = -1. \text{ All together, we get:} \]
\[a \equiv 1 \pmod{(fD)}, \quad d \equiv 1 \pmod{(fD)}, \quad c \equiv 0 \pmod{(fD)}. \quad (4)\]

Case II

If \(D \equiv 2 \text{ or } 3 \pmod{4}\), then formula \(\text{(1)}\) implies that \(R = \mathbb{Z} + (\sqrt{f^2D}) \mathbb{Z}\). If \(x \in \Lambda_{RM}\) is the fixed point of transformation \((a, b, c, d) \in SL_2(\mathbb{Z})\), then formula \(\text{(2)}\) implies that:

\[
\begin{cases}
\frac{a-d}{2c} = z_1 \\
\frac{(a+d)^2 - 4}{4c^2} = f^2Dz_2^2
\end{cases}
\quad (5)
\]

for some integer numbers \(z_1\) and \(z_2\). The first equation yields \(a - d = 2cz_1\); as explained, one can assume that \(c\) is divisible by \(fD\). Thus, \(d \equiv a \pmod{(fD)}\). The second equation gives us \((a+d)^2 - 4 = 4f^2Dc^2z_2^2\); therefore \((a+d)^2 - 4 \equiv 0 \pmod{(fD)}\). Since \(d \equiv a \pmod{(fD)}\), we conclude that \(a^2 - 1 \equiv 0 \pmod{(fD)}\) and \(a \equiv \pm 1 \pmod{(fD)}\). Again, we pick \(a \equiv 1 \pmod{(fD)}\) for otherwise matrix \((a, b, c, d) \pmod{(fD)}\) must be multiplied by \(Const = -1\). All together, we get equations \((4)\). Since all possible cases are exhausted, lemma 1 follows. \(\square\)

3 Proof of theorem \[1\]

Recall, that \(\Gamma(N) := \{(a, b, c, d) \in SL_2(\mathbb{Z}) \mid a, d \equiv 1 \pmod{N}, b, c \equiv 0 \pmod{N}\}\) is called a **principal congruence group** of level \(N\); the corresponding modular curve will be denoted by \(X(N) = \mathbb{H}/\Gamma(N)\).

Lemma 2 (Hecke) There exists a holomorphic map \(X(fD) \to E_{CM}^{(-D,f)}\).

Proof. We shall outline the proof referring the reader to the original work \cite{[3]}\. Let \(\mathfrak{A}\) be an order of conductor \(f \geq 1\) in the imaginary quadratic number field \(\mathbb{Q}(\sqrt{-D})\); consider an \(\mathbb{L}\)-function attached to \(\mathfrak{A}\):

\[
L(s, \psi) = \prod_{\mathfrak{P} \subset \mathfrak{A}} \frac{1}{1 - \frac{\psi(\mathfrak{P})}{N^s(\mathfrak{A})}}, \quad s \in \mathbb{C},
\quad (6)
\]

where \(\mathfrak{P}\) is a prime ideal in \(\mathfrak{A}\), \(N(\mathfrak{P})\) its norm and \(\psi\) the Grössencharacter. Put it in a slightly different terms, it was observed by Hecke that \(L(s, \psi)\) coincides with a cusp form \(F(s)\) of the principal congruence group \(\Gamma(fD)\). On the other hand, the Deuring theorem says that \(L(E_{CM}^{(-D,f)}, s) = L(s, \psi)L(s, \bar{\psi})\),
where \(L(E_{CM}^{(-D,f)}, s) \) is the Hasse-Weil \(L \)-function of the elliptic curve and \(\bar{\psi} \) a conjugate of the Grössencharacter; thus, \(L(E_{CM}^{(-D,f)}, s) = L(F, s) \), where \(L(F, s) := \sum_{n=1}^{\infty} \frac{c_n}{n^s} \) and \(c_n \) the Fourier coefficients of the cusp form \(F \). In other words, the elliptic curve \(E_{CM}^{(-D,f)} \) is modular; if we denote by \(A_F \) an abelian variety given by the periods of holomorphic differential \(F'(s)ds \) and its conjugates on the Riemann surface \(X(fD) \), then the following diagram commutes:

\[
\begin{array}{ccc}
X(fD) & \xrightarrow{\text{canonical embedding}} & A_F \\
\downarrow & & \downarrow \text{holomorphic projection} \\
E_{CM}^{(-D,f)} & &
\end{array}
\]

The holomorphic map \(X(fD) \rightarrow E_{CM}^{(-D,f)} \) is obtained by composition of the horizontal and the vertical arrows of the diagram. □

Lemma 3 The Teichmüller functor \(F \) acts by the formula \(E_{CM}^{(-D,f)} \mapsto A_{RM}^{(D,f)} \).

Proof. Let \(L_{CM} \) be a lattice with complex multiplication by an order \(\mathfrak{A} = \mathbb{Z} + (f \omega)\mathbb{Z} \) in the imaginary quadratic field \(\mathbb{Q}(\sqrt{-D}) \); the multiplication by \(\alpha \in \mathfrak{A} \) generates an endomorphism \((a, b, c, d) \in M_2(\mathbb{Z}) \) of the lattice \(L_{CM} \). We shall use an explicit formula for the Teichmüller functor \(F \) ([3], p.524):

\[
F : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{End} (L_{CM}) \mapsto \begin{pmatrix} a & b \\ -c & -d \end{pmatrix} \in \text{End} (\Lambda_{RM}),
\]

where \(\Lambda_{RM} \) is the pseudo-lattice with real multiplication corresponding to \(L_{CM} \); one can reduce to the case \(d = 0 \) by a proper choice of basis in \(L_{CM} \). We shall consider the following two cases.

Case I. If \(D \equiv 1 \mod 4 \), then formula (11) implies that \(\mathfrak{A} = \mathbb{Z} + (f + \sqrt{-f^2D})/2 \mathbb{Z} \); thus \(\alpha = \frac{2m+fn}{2} + \sqrt{-f^2Dn^2}/4 \) for some \(m, n \in \mathbb{Z} \). The multiplication by \(\alpha \) gives an endomorphism \((a, b, c, 0) \in M_2(\mathbb{Z}) \) with

\[
\begin{cases}
 a = Tr(\alpha) = \alpha + \bar{\alpha} = 2m + fn \\
 b = -1 \\
 c = N(\alpha) = \alpha\bar{\alpha} = (\frac{2m+fn}{2})^2 + \frac{f^2Dn^2}{4}.
\end{cases}
\]
The norm $N(\alpha)$ attains non-trivial minimum f^2D on $m = -f$ and $n = \pm 2$, i.e. on $\alpha_0 = f\sqrt{-D}$. To find $F(\alpha_0)$, one substitutes in (7) $a = 0, b = -1, c = f^2D, d = 0$:

\[
\begin{pmatrix}
0 & -1 \\
\end{pmatrix} \in \text{End} \ (L_{CM}) \mapsto \begin{pmatrix}
0 & -1 \\
\end{pmatrix} \in \text{End} \ (\Lambda_{RM}). \tag{9}
\]

Thus, $F(\alpha_0) = f\sqrt{D}$ and pseudo-lattice Λ_{RM} has real multiplication by an order R in the real quadratic field $\mathbb{Q}(\sqrt{D})$. To find R, notice that the all calculations above apply to the real field $\mathbb{Q}(\sqrt{D})$ if one replaces D by $-D$ and $\alpha \in \Re$ by $F(\alpha) \in R$; therefore, $R = \mathbb{Z} + \left(\frac{f + \sqrt{-D}}{2}\right)\mathbb{Z}$. In other words, $F(E_{CM}^{(-D,f)}) = \kappa_{RM}^{(D,f)}$ in this case.

Case II. If $D \equiv 2$ or $3 \mod 4$, then formula (11) implies that $\Re = \mathbb{Z} + (\sqrt{f^2D})\mathbb{Z}$; thus $\alpha = m + \sqrt{-f^2Dn^2}$ for some $m, n \in \mathbb{Z}$. The multiplication by α gives an endomorphism $(a, b, c, 0) \in M_2(\mathbb{Z})$ with

\[
\begin{cases}
a = \text{Tr}(\alpha) = \alpha + \bar{\alpha} = 2m \\
b = -1 \\
c = N(\alpha) = \alpha\bar{\alpha} = m^2 + f^2Dn^2.
\end{cases} \tag{10}
\]

The norm $N(\alpha)$ attains non-trivial minimum f^2D on $m = 0$ and $n = \pm 1$, i.e. on $\alpha_0 = f\sqrt{-D}$. To find $F(\alpha_0)$, one substitutes in (7) $a = 0, b = -1, c = f^2D, d = 0$:

\[
\begin{pmatrix}
0 & -1 \\
\end{pmatrix} \in \text{End} \ (L_{CM}) \mapsto \begin{pmatrix}
0 & -1 \\
\end{pmatrix} \in \text{End} \ (\Lambda_{RM}). \tag{11}
\]

Thus, $F(\alpha_0) = f\sqrt{D}$ and pseudo-lattice Λ_{RM} has real multiplication by an order R in the real quadratic field $\mathbb{Q}(\sqrt{D})$. We repeat the argument of part I and get $R = \mathbb{Z} + (\sqrt{f^2D})\mathbb{Z}$. In other words, $F(E_{CM}^{(-D,f)}) = \kappa_{RM}^{(D,f)}$ in this case. Since all possible cases are exhausted, lemma 3 is proved. □

Lemma 4 For every $N \geq 1$ there exists a holomorphic map $X_1(N) \to X(N)$.

Proof. Indeed, $\Gamma(N)$ is a normal subgroup of index N of the group $\Gamma_1(N)$; therefore, there exists a degree N holomorphic map $X_1(N) \to X(N)$. □

Theorem 1 follows from lemmas 1-3 and lemma 4 for $N = fD$. □
References

[1] Z. I. Borevich and I. R. Shafarevich, Number Theory, Acad. Press, 1966.

[2] E. Effros and C.-L. Shen, Approximately finite C^*-algebras and continued fractions, Indiana J. Math. 29 (1980), 191-204.

[3] E. Hecke, Bestimmung der Perioden gewisser Integrale durch die Theorie der Klassenkörper, Math. Z. 28 (1928), 708-727.

[4] Yu. I. Manin, Real multiplication and noncommutative geometry, in “Legacy of Niels Hendrik Abel”, 685-727, Springer, 2004.

[5] I. Nikolaev, Remark on the rank of elliptic curves, Osaka J. Math. 46 (2009), 515-527.

[6] M. Pimsner and D. Voiculescu, Imbedding the irrational rotation C^*-algebra into an AF-algebra, J. Operator Theory 4 (1980), 201-210.

[7] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151, Springer 1994.

The Fields Institute for Mathematical Sciences, Toronto, ON, Canada, E-mail: igor.v.nikolaev@gmail.com

Current address: 101-315 Holmwood Ave., Ottawa, ON, Canada, K1S 2R2