Ecological factors and spatial heterogeneity of Terrestrial Birds in Peninsular Malaysia

Martins C.O¹, Olaniyi O.E², Zakaria M¹*

¹Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia
²Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Nigeria

*Corresponding author: mzakaria@upm.edu.my.

Abstract. In Malaysia, multiple land use by humans has opened the way to substantial loss of wetland ecosystem, and shrinkage of the populations, habitat and food bases of avian species. However, the study of the avian population especially terrestrial birds becomes eminent to understand the complexity of wetlands ecosystem structure, and also develop appropriate management with robust monitoring tools to ensure their ecological sustainability. The study aimed to determine the eco-climatic factors that influenced the occurrence of terrestrial birds and to develop their habitat suitability models in Paya Indah wetlands (PIW) and Putrajaya wetlands (PW), Malaysia. The distance sampling point count technique using stratified random design was employed to survey (from November 2016 to January 2019) and choose 57 and 54 point stations around 14 and 24 lakes of PIW and PW respectively. An automatic linear modelling algorithm and geographic information systems were employed to compute the importance ratios of seventeen eco-climatic factors (hydrology, 9; climatic, 5; waterscape, 1 and landscape, 2). The result showed that some of the observed terrestrial birds individual and estimated indices were significant. The model showed that more than 50% of the land mass were moderately suitable in Paya Indah wetland while 35.22 % were suitable in Putrajaya wetland. Thus, the models’ adoption as management tools would help in the sustenance of the wetlands’ habitat quality and management effectiveness of the terrestrial bird species.

1. Introduction
In Malaysia, multiple lands use by humans has opened the way to substantial loss of wetland ecosystem, and shrinkage of the populations, habitat and food bases of avian species. However, the study of avian population becomes eminent to understand the complexity of wetlands ecosystem structure, and also develop appropriate management with robust monitoring tools to ensure their ecological sustainability. Researchers have also begun to explore the potential influence of climate change on bird populations [1,2,3].

However, it is very important to establish the natural relics and distribution areas of terrestrial birds with immense scientific value. Some past studies revealed the direct and indirect relationship between birds distribution and environmental factors (rainfall, atmospheric temperature, relative humidity, water temperature, land use/land cover, wind speed, barometric pressure, flood level, tree species and height, food types, types of waterbody) of wetlands be [4,5,6,7,8,9]. This is due to the drastic reduction in birds population as well as shrinkage in wetlands globally [10,12]. The fluctuation in the distribution of
terrestrials birds had reflected the spatial variability in their environmental factors on micro and macro scales [6]. Also, the spatiotemporal variation in bird assemblages is associated with seasonal variations in ecological and environmental variables [13,14].

This study explored the integration of terrestrial birds presence and absence data with associated environmental variables to predict their habitat suitability using the Automatic Linear Modelling Algorithm (ALMA) and Geographic Information System methods. Yang [15] introduced the Automatic Linear Modelling Algorithm, a form of a regression model with various model selection methods (such as forward stepwise, best subsets, include all predictors) to rank the independent variables based on the computation of predictor importance coefficient (referred to importance ratios in this study). These predictor importance coefficients are relative values, sum up to 1.0 and rank each independent (predictor) variable according to its importance to the model [16]. Understand the habitat requirements of birds and successfully manage these species, researchers are dependent on standardized collection techniques. Hence, the study aims to determine the eco-climatic factors that influences the occurrence of terrestrial birds and to develop their habitat suitability model in Paya Indah Wetland and Putrajaya wetland.

2. Materials and methods

2.1 Study Area

The study was conducted in Paya Indah Wetland. The wetland reserve is made up of about 3050ha of lands out of which 450 ha are under the management of the Department of Wildlife and National Parks, Peninsular Malaysia. (Figure 1). Also the study was undertaken at the man-made Putrajaya wetlands. It is geographically situated within 2° 57’ 43” latitude and 101° 41’ 47” longitude. It is located at 26 km south to Kuala Lumpur (Figure 1) and covers a land cover mass of 200 ha (77.70 ha planted zone, 76.80 ha vast water bodies, 9.60 ha islands, 23.70 ha immersion region and 9.40 ha tracks). The wetland comprises of five arms (upper west, upper north, upper east, bring down east, upper bisa) and central swamp. It is highly diverse in plant species which provide a distinctive microhabitat to the avian species.

2.2 Bird surveys

The distance sampling point count technique was employed to survey the avian species of man-made Putrajaya wetlands from November 2016 to July 2018. This technique is a less demanding and more proficient approach to determine the population status of avian species [17,18,19]. It involves the visual and sound-related identification of winged animals with settled or variable radius plots, and this gives critical data on species abundance, diversity and density among various natural surroundings [20,21,22]. It enhances deductibility, which permits the estimation of density and abundance of wild creatures, including birds [23]. Information was collected for 19 consecutive months. 82 count stations were systematically placed at 300 m interval apart, to avoid the double count of the same avian species at more than one station. Each point count station was surveyed for 10min. The survey was taken from 0730–1100 h. The method was followed as delineated by [17,19,23,24].

2.3 Model Development

An automatic linear modelling algorithm (ALMA) and geographic information systems were employed to compute the importance ratios of seventeen environmental factors. These seventeen factors were Atmospheric Pressure, Wind Speed, Rainfall, Relative Humidity, Atmospheric Temperature, water temperature, pH, Dissolved Oxygen, Electrical conductivity, Salinity, Turbidity, Maximum depth, Minimum depth, Water Quality Index, NDWI, NDVI and LULC (hydrology, climatic, waterscape, and landscape factors) (Fig 2).
Figure 1. Location map of Paya Indah Wetlands and Putrajaya Reserve, Peninsular Malaysia

Figure 2. Framework for habitat suitability modelling of terrestrial birds in Paya Indah Wetland of Peninsular Malaysia.

3. Results and Discussion
We also recorded 104,872 observations of terrestrial birds belonging to 71 bird species and 30 families (See Appendices A and B) using point-count distance sampling techniques in Putrajaya wetland. Most of the terrestrial birds are Least concern according to IUCN.
Table 1. Diversity indices and densities of Terrestrial Birds in Paya Indah Peninsular Malaysia

Estimate	Terrestrial Birds Wetlands			
	Paya Indah	Putrajaya	t-value	P
Observed birds’ individuals	104,872	97,340	7.44	0.00*
Shannon’s diversity index(N)	7.25	7.84	16.22	0.00*
Margalefs richness index(R)	13.25	24.00	28.32	0.00*
Pielou’s J evenness index(E)	0.92	0.93	1.55	0.12

Figure 3 shows the land use/land cover of Paya Indah wetland and Putrajaya wetland. The land use map was classified into the bare ground/built-up areas, lakes marsh swamp/aquatic grassy vegetation, Semi-closed secondary forest/aquatic herbaceous vegetation and wetland boundaries in both wetlands. The Semi-closed secondary forest/aquatic herbaceous vegetation had the highest coverage (395.79) followed by the Bare ground/Built-up areas (367.61). However, the Lakes had the lowest land use/land cover (Figure 3b).

Figure 3a. Land use cover metrics for Paya Indah wetland

Figure 3b. Land use cover metrics for Putrajaya Wetland
Table 2. Attributes of the environmental factors in Paya Indah wetland and Putrajaya wetlands

Parameters	Wetlands		
	Paya Indah	Putrajaya	
Climatic			
Atmospheric Pressure (Hpa)	1009.203 - 1009.325	1009.436 - 1009.935	
Wind Speed (m/s)	1.487 - 1.618	1.361 - 1.383	
Rainfall (mm)	9.976 - 10.691	8.525 - 9.027	
Relative Humidity (%)	27.855 - 77.530	76.958 - 78.016	
Atmospheric temperature (°C)	27.741 - 27.773	27.309 - 27.564	
Hydrological			
Water temperature (°C)	24.45 - 30.79	29.94 - 30.72	
pH	5.73 - 9.05	7.35 - 7.58	
Dissolved Oxygen (mg/L)	4.47 - 8.22	6.12 - 7.35	
Electrical conductivity (µS/cm)	15.49 - 41.18	59.78 - 152.31	
Salinity (ppt)	0.50 - 5.04	0.03 - 0.08	
Turbidity (NTU)	2.02 - 23.73	12.67 - 76.85	
Maximum depth(m)	3.12 - 20.74	-	
Minimum depth (m)	0.65 - 5.92	-	
Water Quality Index 50.66 - 80.24

Land use/land cover classes (LULC)

Land Use/Land Cover	PIW	PW
Marsh swamp/lotus swamp/grassy vegetation	310.24 (19.64)	345.38 (24.31)
Semi-closed secondary forest	391.77 (24.80)	395.79 (27.87)
Shrubland	372.75 (23.60)	-
Bare ground/built-up areas	131.54 (8.33)	367.61 (25.88)
Lakes	373.25 (23.63)	311.57 (21.94)

Normalized Difference Water Index (NDWI)

Type	PIW	PW
Water areas	1175.23 (74.40)	1255.79 (88.41)
Non-water areas	404.32 (25.60)	164.56 (11.59)

Normalized Difference Vegetation Index (NDVI)

Type	PIW	PW
Vegetated areas	1159.96 (73.44)	1139.86 (80.25)
Non-vegetated areas	419.59 (26.56)	280.49 (19.75)

Each cell in LULC, NDWI and NDVI signifies “land cover area in hectares” (proportion in %)

Figure 5a. The performance of the fitted habitat suitability models for (B) terrestrial bird species in Paya Indah Wetland

Figure 5b. The performance of the fitted habitat suitability models for (B) terrestrial bird species in Putrajaya Wetlands

The performance of the fitted habitat suitability models revealed that the two models had a robust performance (Figure 5) with AUC values significantly greater than 0.50 of a random model. The AUC values for terrestrial birds in PIW and PW were 0.962 and 0.958 respectively. Habitat suitability evaluation criteria importance judgment weights for terrestrial birds in PIW and PW are presented in Table 4. Based on the automatic linear modelling result in PIW, Turbidity had the highest contribution to the habitat suitability model of a terrestrial birds with importance ratio (0.252) and weight (25.2%). However, the contributions of six factors to the habitat suitability model of terrestrial in PIW were highly significant (p ≤ 0.05) based on the automatic linear modelling. Similarly, all climatic factors contributed significantly to the model especially Relative humidity which was the highest contributor (21.82%). Land use/land cover (a measure of vegetation cover, forage availability and human activity) also contributed to the habitat suitability model of terrestrial in PW with importance ratio (0.101) and weight (10.11).

Figure 5 shows the habitat suitability models of terrestrial birds in PIW and PW. From the habitat suitability map in PIW, it was observed that the moderately suitable area for terrestrial birds occupied the highest land cover mass of 535.40ha (33.90%), while the highly suitable area for terrestrial birds occupied the least land cover mass of 103.55ha (6.56%) (Table 3). The habitat suitability map for
terrestrial birds in PW showed that the suitable area for terrestrial birds occupied the highest land cover mass of 430.28 ha (30.29%), while the highly non-suitable area for terrestrial birds occupied the least land cover mass (<1%).

Figure 6. Habitat suitability models of Terrestrial birds in Paya Indah Wetlands and Putrajaya wetland of Peninsular Malaysia

Table 3. Habitat suitability evaluation criteria importance judgment weights for terrestrial birds in Paya Indah and Putrajaya wetlands

Criteria	Factors	Paya Indah Importance ratio	Weight (%)	Rank	Putrajaya Importance ratio	Weight (%)	Rank
Hydrology	Econd(uS/cm)	0.000^{ns}	0.00	14	0.021^{ns}	2.10	8
	DO(mg/L)	0.033^{ns}	3.30	9	0.021^{ns}	2.10	8
	WQI	0.153[*]	15.30	2			
	Turbidity(NTU)	0.252[*]	25.20	1	0.021^{ns}	2.10	8
	Temperature(°C)	0.000^{ns}	0.00	14	0.021^{ns}	2.10	8
	Salinity(ppt)	0.100[*]	10.00	5	0.021^{ns}	2.10	8
	pH	0.090[*]	9.00	6	0.021^{ns}	2.10	8
	Minimum Depth(m)	0.038^{ns}	3.80	8			
	Maximum Depth(m)	0.059^{ns}	5.90	7			
Climatic	Relative humidity(%)	0.004^{ns}	0.40	11	0.218[*]	21.82	1
	Rainfall(mm)	0.005^{ns}	0.50	10	0.085[*]	8.51	6
	Wind Speed(m/s)	0.005^{ns}	0.50	10	0.135[*]	13.51	4
Gross Arithmetic Mean (GAM) of importance ratio for terrestrial birds in Paya Indah = 0.063
Gross Arithmetic Mean (GAM) of importance ratio for terrestrial birds in Putrajaya = 0.071

Table 4. Attributes of habitat suitability models for terrestrial birds in Paya Indah and Putrajaya Wetland

Suitability classes	Paya Indah	Putrajaya		
	Area (Ha)	Proportion (%)	Area (Ha)	Proportion (%)
Highly suitable	0.10	0.01	423.85	29.84
Suitable	298.33	18.89	500.22	35.22
Moderately suitable	800.62	50.69	318.34	22.41
Non-suitable	480.25	30.40	177.11	12.47
Highly non-suitable	0.26	0.02	0.84	0.06
Total	1,579.55	100.00	1,420.35	100.00

Hydrology variables such as WQI, turbidity salinity and pH significantly contributed to the abundance of terrestrial birds in Paya Indah Wetland. This may be due to its rich aquatic flora and fauna present in the lakes in the wetland. This agrees with Rajpar and Zakaria [25] that hydrology was an important criterion for wetland bird’s diversity. Also, all climatic variables studied significantly contributed to the occurrence of terrestrial birds in Putrajaya wetlands. Several studies like [17,19,26] have highlighted the influence of climatic variables on the habitat and wetlands which may influence the presence or absence of some bird species.

Both wetlands experienced one form of human activities or the other. Zakaria and Rajpar and La Sorte et al. [25,27], reported that agricultural activities coupled with tourism infrastructural development to be the major anthropogenic activities over the years in Paya Indah Wetland. Also, urban sprawling and water purification/supply could have attributed to the landscape dynamics and variation of Putrajaya Wetland. This study was supported by the findings of Rajpar and Zakaria and Jahanbakhsh et al. [28,29] that vegetation cover affected the habitat selection, distribution and diversity of wetland birds. Furthermore, the influence of climate change on wetlands’ vegetation composition, structure, hydro-morphological properties, and consequently the populations’ distribution and sustainability of waterbirds in wetlands cannot be underestimated. According to Shekhawat et al.; Paolini et al.; and Mundkur et al. [30,31,32], this global phenomenon had broad impacts on the distribution, morphology, carrying capacities and seasonal variations of wetlands connected to the feeding and breeding activities of birds.

Conclusion
The results of this study revealed that terrestrial birds had a rich diversity in Paya Indah Wetland and Putrajaya Wetlands. This is due to the rich vegetation and suitable aquatic food present in the wetlands. In addition, the occurrence and richness of food resources such as fruits, seeds, insects (locus, moths, butterflies, crickets, flies, termites and beetles), nectar, reptiles (lizards, snakes), mammals (mice and rats), amphibians and birds is also a key factor that affects diversity and richness of bird species [33]. This Model approach can be adopted as a management tool coupled with a robust population monitoring
database to enhance management effectiveness of terrestrial bird species in the wetland. We recommend that a meteorological station should be established in this wetlands in order to sample the microclimatic data such as rainfall, sunshine, relative humidity and wind speed in the area. These microclimatic data will be useful in future ecological studies.

Acknowledgement
The authors would like to thank the Department of Wildlife and National Parks, Peninsular Malaysia for permission to conduct this study. This research was partially funded by the Putra grant initiative (GP-IPS/2018/9638000), Faculty of Forestry, University Putra Malaysia.

Appendix A

Table A1. Terrestrial birds and their IUNC Status in Putrajaya Wetland

Family	Scientific Name	Common Names	IUCN Status	Total Observation	Rank(%)
Pycnonotidae	*Pycnonotus goiavier*	Yellow-vented Bulbul	LC	16,079	16.52
Columbidae	*Treron vernans*	Pink-necked Green Pigeon	LC	10,986	11.29
Sturnidae	*Aplonis panayensis*	Philippine Glossy Starling	LC	10,943	11.24
Columbidae	*Streptopelia chinensis*	Spotted Dove	LC	5,496	5.65
Sturnidae	*Acroderhues fuscus*	Jungle Myna	LC	5,553	5.29
Columbidae	*Geopelia striata*	Peaceful Dove	LC	4,805	4.94
Passeridae	*Passer montanus*	Eurasian Tree Sparrow	LC	4,177	4.29
Sturnidae	*Acridotheres tristis*	Common Myna	LC	4,415	4.21
Turdidae	*Copsychus saularis*	Oriental Magpie Robin	LC	3,563	3.65
Ploceidae	*Ploceus philippinus*	Baya Weaver	LC	2,300	2.36
Rhipiduridae	*Rhipidura javanica*	Pied Fantail	LC	2,053	2.11
Estrildidae	*Lonchura punctulat*	Scaly-breasted Munia	LC	2,018	2.07
Columbidae	*Columba livia*	Rock Pigeon	LC	1,757	1.80
Phasianidae	*Gallus gallus*	Red Junglefowl	LC	1,715	1.76
Sturnidae	*Acridotheres javanicus*	White-vented Myna	VU	1672	1.72
Oriolidae	*Oriolus chinensis*	Black-naped Oriole	LC	1,731	1.65
Chloropseidae	*Aegithina viridissima*	Green Iora	NT	1,595	1.52
Laniidae	*Lanius cristatus*	Brown Shrike	LC	1,556	1.48
Estrildidae	*Lonchura maja*	White-headed Munia	LC	1,376	1.41
Meropidae	*Merops philippinus*	Blue-tailed Bee-eater	LC	1,256	1.29
Cisticolidae	*Prinia flavigentris*	Yellow-bellied Prinia	LC	960	0.99
Motacillidae	*Anthus novaeseelandiae*	Richards Pipit	LC	896	0.92
Sylvidae	*Orthotomus ruficeps*	Ashy Tailoredbird	LC	811	0.83
Chloropseidae	*Aegithina tipher*	Common Iora	LC	613	0.58
Coracidae	*Eurystomus orientalis*	Dollar Bird	LC	389	0.37
Nectarinidae	*Nectarinia jugularis*	Olive-backed Sunbird	LC	360	0.37
Corvidae	*Corvus splendens*	House Crow	LC	296	0.30
Sylvidae	*Orthotomus sutorius*	Common Tailorbird	LC	282	0.27
Corvidae	*Corvus macrorynchos*	Large-billed Crow	LC	282	0.27
Nectarinidae	*Anthreptes malacensis*	Brown-throated Sunbird	LC	272	0.26
Cuculidae	*Cacomantis merulinus*	Plaintive Cuckoo	LC	263	0.25
Cuculidae	*Eudynamys scolopacea*	Common Asian Koel	LC	219	0.22
Sylvidae	*Acrocephalus orientalis*	Oriental Reed Warbler	LC	205	0.21
Family	Scientific Name	Common Names	IUCN Status	Total Observation	Rank(%)
----------------	--------------------------	-------------------------------	-------------	-------------------	---------
Meropidae	*Merops viridis*	Blue-throated Bee-eater	LC	198	0.20
Campephagidae	*Lalage nigra*	Pied Triller	LC	137	0.17
Nectarinidae	*Anithreptes simplex*	Plain Sunbird	LC	175	0.17
Pycnonotidae	*Pycnonotus plumosus*	Olive-winged Bulbul	LC	155	0.16
Megalaimidae	*Megalaima haemacephala*	Copper-smith Barbet	LC	148	0.15
Cisticolidae	*Cisticola juncidis*	Zitting Cisticola	LC	126	0.12
Picidae	*Celeus brachyurus*	Rufous Woodpecker	LC	120	0.12
Sturnidae	*Sturnus sturninus*	Asian Pied Starling	LC	113	0.12
Zosteropidae	*Zosterops palpebranosus*	Oriental White-eye	LC	106	0.11
Muscicapidae	*Muscicapa dauaurica*	Asian Brown	LC	106	0.11
Cisticolidae	*Cisticola juncidis*	Zitting Cisticola	LC	85	0.09
Picidae	*Dinopium javanense*	Common Flameback	LC	92	0.09
Phasianidae	*Turnix suscitator*	Barred Button Quail	LC	92	0.09
Columbidae	*Chalcophaps indica*	Emerald Dove	LC	78	0.08
Dicaeidae	*Dicaeum cruentatum*	Scarlet-backed Flowerpecker	LC	78	0.08
Estrildidae	*Lonchura malacca*	Black-headed Munia	LC	71	0.07
Nectarinidae	*Arachnothera longirostra*	Little Speiderhunter	LC	49	0.05
Nectarinidae	*Anithreptes rhodolaema*	Red-throated Sunbird	NT	49	0.05
Picidae	*Centropus sinensis*	Greater Coucal	LC	42	0.04
Picidae	*Picumnus innomintus*	Speekled Piculet	LC	42	0.04
Timaliidae	*Argya earlei*	Striated Babbler	LC	28	0.03
Pycnonotidae	*Pycnonotus jocosus*	Red-whiskered Bulbul	LC	28	0.03
Picidae	*Cacomantis solleraitii*	Banded Bay Cuckoo	LC	28	0.03
Picidae	*Passer domesticus*	House Sparrow	LC	28	0.03
Dicuridae	*Dicrurus macrocerus*	Black Drongo	LC	21	0.02
Nectarinidae	*Arachnothera flavigaster*	Spectacled Spiderhunter	LC	21	0.02
Accipitridae	*Elanus caeruleus*	Black-shouldered Kite	LC	21	0.02
Accipitridae	*Accipiter gularis*	Japanese Sparrow Hawk	LC	14	0.01
Accipitridae	*Avicea leophotes*	Black Baza	LC	14	0.01
Estrildidae	*Lonchura leucogastroides*	Javan Munia	LC	14	0.01
Columbidae	*Treron curvirostra*	Thick-billed Green Pigeon	LC	14	0.01
Picidae	*Cuculus Micropterus*	Indian Cuckoo	LC	14	0.01
Picidae	*Chrysococcyx xanthorhynchus*	Violet Cuckoo	LC	14	0.01
Laniidae	*Lanius schach*	Long-tailed Shrike	LC	14	0.01
Caprimulgidae	*Caprimulgus macrurus*	Large-tailed Nightjar	LC	14	0.01
Nectarinidae	*Arachnothera chrysogenys*	Yellow-eared Spiderhunter	LC	14	0.01
Accipitridae	*Spilornis cheela*	Serpent Eagle	LC	7	0.00
Appendix B

Table B1. Terrestrial birds and their IUCN Status in Paya Indah Wetland

Family	Scientific Name	Common Names	IUCN Status	Total Observation	Rank(%)
Pycnonotidae	*Pycnonotus goiavier*	Yellow-vented Bulbul	LC	16,367	15.61
Columbidae	*Treron vernans*	Pink-necked Green Pigeon	LC	16,756	15.98
Columbidae	*Geopelia striata*	Zebra Dove	LC	10,230	9.76
Columbidae	*Streptopelia chinensis*	Spotted Dove	LC	8,548	8.15
Sturnidae	*Acridotheres fuscus*	Jungle Myna	LC	5,553	5.29
Sturnidae	*Acridotheres tristis*	Common Myna	LC	4,415	4.21
Estrildidae	*Lonchura punctulata*	Scaly-breasted Munia	LC	3,987	3.80
Ploceidae	*Ploceus philippinus*	Baya Weaver	LC	3,676	3.51
Hirundinidae	*Hirundo tahitica*	Pacific Swallow	LC	3,433	3.27
Meropidae	*Merops philippinus*	Blue-tailed Bee-eater	LC	3,394	3.24
Motacillidae	*Anthus richardi*	Richard's Pipit	LC	2,499	2.38
Oriolidae	*Oriolus chinensis*	Black-naped Oriole	LC	2,081	1.98
Passeridae	*Lonchura malacca*	Black-headed Munia	LC	2,081	1.98
Muscipicidae	*Copsychus saularis*	Oriental Magpie Robin	LC	1,974	1.88
Sturnidae	*Aplonis panayensis*	Philippine Glossy Starling	LC	1,886	1.80
Rhipiduridae	*Rhipidura javanica*	Pied Fantail	LC	1,624	1.55
Aegithinidae	*Aegithina virdissima*	Green Iora	NT	1,595	1.52
Laniidae	*Lanius cristatus*	Brown Shrike	LC	1,556	1.48
Passeridae	*Passer montanus*	Eurasian Tree Sparrow	LC	1,089	1.04
Sturnidae	*Acrocephalus grangis*	Great myna	LC	1,050	1.00
Cuculidae	*Centropus bengalensis*	Lesser Coucal	LC	1,031	0.98
Campephagida	*Lalage nigra*	Pied Triller	LC	535	0.51
Columbidae	*Treron bicincta*	Orange-breasted Green Pigeon	LC	535	0.51
Coraciidae	*Eurystomus orientalis*	Dollar Bird	LC	389	0.37
Meropidae	*Merops viridis*	Blue-throated Bee-eater	LC	360	0.34
Acrocephalidae	*Acrocephalus orientalis*	Oriental Reed Warbler	LC	340	0.32
Cisticolidae	*Orthotormus sutorias*	Common Tailorbird	LC	282	0.27

LC =Least Concern, NT= Near Threatened, VU= Vulnerable, IUCN= International Union for Conservation of Nature,
Family	Scientific Name	Common Names	IUCN Status	Total Observation	Rank(%)
Corvidae	*Corvus macrorhynchos*	Large-billed Crow	LC	282	0.27
Nectariniidae	*Anthreptes malacensis*	Brown-throated Sunbird	LC	272	0.26
Cuculidae	*Cacomantis meralinus*	Plaintive Cuckoo	LC	263	0.25
Cuculidae	*Cacomantis meralinus*	Plaintive Cuckoo	LC	263	0.25
Cisticolidae	*Orthotomus ruficeps*	Ashy Tailorbird	LC	243	0.23
Campephagidae	*Pericrocotus diversicatus*	Ashy Minivet	LC	243	0.23
Nectariniidae	*Nectarinia jugularis*	Olive-backed Sunbird	LC	224	0.21
Pycnonotidae	*Pycnonotus plumosus*	Olive-winged Bulbul	LC	224	0.21
Nectariniidae	*Cinnyris jugularis*	Olive-backed Sunbird	LC	224	0.21
Corvidae	*Corvus splendens*	House Crow	LC	204	0.19
Cuculidae	*Chrysococcyx minutillus*	Little Bronze Cuckoo	LC	195	0.19
Turnicidae	*Turnix suscitator*	Barred Button Quail	LC	195	0.19
Accipitridae	*Elanus caeruleus*	Black-shouldered Kite	LC	165	0.16
Cuculidae	*Centropus sinensis*	Greater Coucal	LC	146	0.14
Muscicapidae	*Muscicapa dauurica*	Asian Brown Flycatcher	LC	136	0.13
Estrildidae	*Lonchura maja*	White-headed Munia	LC	126	0.12
Caprimulgidae	*Caprimulgus macrurus*	Large-tailed Nightjar	LC	117	0.11
Caprimulgidae	*Caprimulgus affinis*	Savanna Nightjar	LC	117	0.11
Cisticolidae	*Cisticola juncidis*	Zitting Cisticola	LC	113	0.12
Columbidae	*Treron olax*	Little Green Pigeon	LC	107	0.10
Pachycephalidae	*Pachycephala grisola*	Mangrove Whistler	LC	78	0.07
Cisticolidae	*Orthotomus sericeus*	Rufous-tailed Tailorbird	LC	58	0.06
Sturnidae	*Gracula religiosa*	Common Hill Myna	LC	58	0.06
Nectariniidae	*Aethopyga christinae*	Fork-tailed sunbird	LC	58	0.06
Phasianidae	*Coturnix chinensis*	King quail	LC	58	0.06
Picidae	*Celeus brachyurus*	Rufous Woodpecker	LC	58	0.06
Nectariniidae	*Arachnothera longirostra*	Little Spiderhunter	LC	49	0.05
Laniidae	*Lanius schach*	Long-tailed Shrike	LC	29	0.03
Locustellidae	*Locustella certhiola*	Pallas's grasshopper warbler	LC	29	0.03
Nectariniidae	*Nectarinia calcostetha*	Copper-throated Sunbird	LC	29	0.03
Picidae	*Picus flavinucha*	Greater Yellow-nape	LC	29	0.03
Accipitridae	*Avicea leuophotes*	Black Baza	LC	14	0.01
Accipitridae	*Haliastur indus*	Brahminy Kite	LC	10	0.01
Accipitridae	*Circus aeruginosus*	Western Marsh Harrier	LC	10	0.01
Accipitridae	*Haliaetus leucogaster*	White-bellied sea Eagle	LC	10	0.01
Cisticolidae	*Prinia rufescens*	Rufescent Prinia	LC	10	0.01
Columbidae	*Treron curvirostra*	Thick-billed Green Pigeon	LC	10	0.01
Family	Scientific Name	Common Names	IUCN Status	Total Observation	Rank(%)
---------------	----------------------------------	-----------------------------	-------------	-------------------	---------
Cuculidae	Clamator coromandus	Chestnut-winged Cuckoo	LC	10	0.01
Cuculidae	Eudynamys scolopacea	Common Koel	LC	10	0.01
Emberizidae.	Emberiza aureola	Yellow-breasted Bunting	LC	10	0.01
Nectariniidae	Nectarinia sperata	Purple-throated Sunbird	LC	10	0.01
Phylloscopidae	Phylloscopus inornatus	Yellow-browed Warbler	LC	10	0.01
Picidae	Picumnus innominatus	Speckled Piculet	LC	10	0.01
Phylloscopidae	Phylloscopus borealis	Arctic Warbler	LC	7	0.00
Dicruridae	Dicrurus leucophaeus	Ashy Drongo	LC	0.00	0.00

LC = Least Concern, NT = Near Threatened, VU = Vulnerable, IUCN = International Union for Conservation of Nature,

Reference

[1] Both, C., C. A. M. Van Turnhout, R. G. Bijlsma, H. Siepel, A. J. Van Strien, and R. P. B. Foppen. 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. *Proceedings of the Royal Society of London. Series B, Biological Sciences* 277:1259–1266.

[2] DeLeon, R. L., E. E. DeLeon, and G. R. Rising. 2011. Influence of climate change on avian migrants’ first arrival dates. *Condor* 113:915–923.

[3] Dybala, K. E., J. M. Eadie, T. Gardali, N. E. Seavy, and M. P. Herzog. 2013. Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population. *Global Change Biology* 19:2688–2697.

[4] Ludwig GX, Alatalo RV, Helle P, Linden H, Lindstom J & Siitari H 2006 Short and long term population dynamical consequences of asymmetric climate change in Black Grouse. *Proceedings of the Royal Society B* 273:2009–2016.

[5] Ajonina G, Amougou J, Ayissi I, Ajonina P, Ntabe E & Dongmo M 2009 Waterbirds as bio-indicators of seasonal-climatic changes in river basin properties: eight years monthly monitoring in lower Sanaga, Cameroon. *IOP Conference Series: Earth and Environmental Science* 6(29) 292021.

[6] Fasola M, Rubolini D, Merli E, Boncompagni E & Bressan U 2009 Long-term trends of heron and egret populations in Italy, and the effects of climate, human-induced mortality, and habitat on population dynamics. *Population Ecology* 52(1):59–72.

[7] Ismail A & Rahman F 2013 Does weather play an important role in the early nesting activity of colonial waterbirds? A case study in Putrajaya Wetlands, Malaysia. *Tropical Life Sciences Research* 24(1):1-7.

[8] Zainul-Abidin M K, Mohd-Taib F R & Md-Nor S 2017 Distribution and habitat selection of the Asian Openbill (Anas tomusoschitans) in Peninsular Malaysia. *Malayan Nature Journal* 69(3):169-181.

[9] Morganti M, Manica M, Bogliani G, Gustin M, Luoni F, Trottı P et al. 2019 Multi-species habitat models highlight the key importance of flooded reedbeds for inland wetland birds: implications for management and conservation. *Avian Research* 10(1)

[10] Wainger L & Mazzotta M 2011 Realizing the potential of ecosystem services: a framework for relating ecological changes to economic benefits. *Environmental Management* 48:710–733.

[11] Gumbricht T, Román-Cuesta RM, Verchot LV, Herold M, Wittmann F, Householder E et al. 2017 Tropical and Subtropical Wetlands Distribution version 2
12. Wetlands International 2018 IWC Online database. URL: http://iwc.wetlands.org. Data extracted on: 29/10/2018.

13. Paolini KE, Strickland BK, Tegt JL, VerCauteren KC & Street GM 2018 Seasonal variation in preference dictates space use in an invasive generalist. PLoS ONE 13(7).

14. Santillan V, Quitian M, Tinoco BA, Zarate E, Schleuning M, Böhning-Gaese K et al. 2018 Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevation gradient. PLoS ONE 13(5).

15. Yang H 2013 The case for being automatic: Introducing the automatic linear modelling (LINEAR) procedure in SPSS statistics. Multiple Linear Regression Viewpoints 39(2) 1–37.

16. IBM Corp. Released 2011 IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.

17. Martins CO, Rajpar MN, Nurhidayu S, & Zakaria M 2017 Habitat Selection of Dendrocygna javanica in Heterogeneous Lakes of Malaysia. J. Biodivers. Manage. Forestry 6(3): 1-6.

18. Aborn DA 2007 Abundance, Density and Diversity of Neotropical Migrants at the Lula Lake Land Trust, GA. Southeastern Naturalist 6(2) 293 – 304.

19. Zakaria M, Rajpar M N and Sajap S A 2009 Species diversity and feeding guilds of birds in Paya Indah Wetland Reserve, Peninsular Malaysia. Intl. J. Zoological Res. 5(3) 86–100.

20. Koli V K, Yaseen M and Bhatnagar C 2013b Population status of Painted Stork Mycteria leucocephala and Black-headed Ibis Threskiornis melanocephalus in southern Rajasthan, India. Indian Birds 8 39-41.

21. Ma Z, Wang Y, Gan X, Li B, Cai Y and Chen Y 2009 Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River Estuary, China. Environmental Management, 43(6) 1187-1200.

22. Manjari B J and Withanage U C 2015 Variation of avifaunal diversity in relation to land-use modifications around a tropical estuary, the Negombo estuary in Sri Lanka. Journal of Asia-Pacific Biodiversity 8 72-82.

23. Nadeau, C P, Conway C J, Smith B S and Lewis T E 2008 Maximizing detection probability of wetland dependent bird during point count surveys in North-western Florida. The Wilson J. Ornithology 120(3) 513–518.

24. Mohamed S K and Anjana P 2017 Conservation status, species composition, and distribution of Avian Community in Bhimbandh Wildlife Sanctuary, India. Journal of Asia-Pacific Biodiversity 10 20-26

25. Zakaria M & Rajpar MN 2013 Density and Diversity of Water Birds and Terrestrial Birds in Man-made Marsh, Malaysia. Sains Malaysiana 42(10): 1483–1492.

26. Zakaria M & Rajpar MN 2010 Density and diversity of waterbirds and terrestrial birds at Paya Indah Wetland Reserve, Selangor Peninsular Malaysia. Journal of Biological Sciences 10 658–666.

27. La Sorte, F. A., Lepczyk, C. A., Aronson, M. F. J., Goddard, M. A., Hedblom, M., Katti, M., … Yang, J. (2018). The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization. Diversity and Distributions 24(7) 928–938.

28. Rajpar M.N. & Zakaria M. 2014 Effects of habitat characteristics on waterbird distribution and Richness in wetland ecosystem of Malaysia Journal of Wildlife and Parks 28 105-120

29. Jahanbakhsh Ganjeh, M. 2017 Factors Influencing Abundance and Species Richness of Overwintered Waterbirds in Parishan International Wetland in Iran. Applied Ecology and Environmental Research 15(4) 1565–1579.

30. Shekhawat, D. S., Bhatnagar, C., Koli, V. K., & Agarwal, S. 2014 First record of Cinereous Vulture Aegypius monachus (Falconiformes: Accipitridae) from southern Rajasthan, India. Journal of Threatened Taxa 6(4) 5675–5676.

31. Paolini, K. E., Strickland, B. K., Tegt, J. L., VerCauteren, K. C., & Street, G. M. 2018 Seasonal variation in preference dictates space use in an invasive generalist. PLOS ONE 13(7), e0199078.
[32] Mundkur, T., Langendoen, T. and Watkins, D. (eds.) 2017. The Asian Waterbird Census 2008-2015 - results of coordinated counts in Asia and Australasia. Wetlands International, Ede. Pp146

[33] van Heezik, Y., and Adams, A. L. 2016 Vulnerability of native and exotic urban birds to housing densification and changing gardening and landscaping trends. *Urban Ecosyst.* 19 1551–1563