1H, 15N and 13C resonance assignments of the N-terminal domain of the nucleocapsid protein from the endemic human coronavirus HKU1

Aline de Luna Marques1,2,4 · Icaro Putinhon Caruso2,3,4 · Marcos Caique Santana-Silva1,2,4 · Peter Reis Bezerra2,4 · Gabriela Rocha Araujo2,4 · Fabio Ceneviva Lacerda Almeida2,4 · Gisele Cardoso Amorim1,2,4

Received: 12 October 2020 / Accepted: 11 December 2020 / Published online: 3 January 2021 © The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract
Coronaviruses have become of great medical and scientific interest because of the Covid-19 pandemic. The hCoV-HKU1 is an endemic betacoronavirus that causes mild respiratory symptoms, although the infection can progress to severe lung disease and death. During viral replication, a discontinuous transcription of the genome takes place, producing the subgenomic messenger RNAs. The nucleocapsid protein (N) plays a pivotal role in the regulation of this process, acting as an RNA chaperone and participating in the nucleocapsid assembly. The isolated N-terminal domain of protein N (N-NTD) specifically binds to the transcriptional regulatory sequences and control the melting of the double-stranded RNA. Here, we report the resonance assignments of the N-NTD of HKU1-CoV.

Keywords Human betacoronavirus · HKU1 · Nucleocapsid protein · N-terminal domain · NMR assignment

Biological context
Coronaviruses (CoV) are positive single-stranded RNA viruses, which are among the largest viral genomes, containing approximately 30 kb (Ou et al. 2017). CoVs are classified into four genera, based on their genomic organization and similarity, replication strategies, structural features, and pathogenicity: alpha, beta, gamma, and delta coronavirus (Taskin Tok et al. 2017).

Since 2002, three betacoronaviruses have been causing concerns and gained scientific notoriety because of their high mortality and economic impacts: severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, which is causing the Covid-19 pandemic (Raoult et al. 2020). In addition to these more aggressive, there are endemic human CoVs (non-SARS-like CoV), such as hCoV-OC43 and hCoV-HKU1, associated with mild upper respiratory tract diseases (Ou et al. 2017).

Although the symptoms of endemic coronavirus infection are, in general, similar to those of common colds, hCoV-HKU1 and hCoV-OC43 can cause severe lung damage in more debilitated people (Hulswit et al. 2019). Thus, these endemic infections result in loss of quality of life, negatively impacting the economy (due to the temporary removal of symptomatic individuals) and cause preventable deaths (Raoult et al. 2020).

A unique and essential feature of CoVs is the discontinuous transcription of the genomic RNA, generating subgenomic messenger RNAs (sgmRNA). This process is regulated by the leader transcriptional regulatory sequence
In this work, we report the \(^1\)H, \(^15\)N, and \(^13\)C backbone and side-chain resonance assignments of the N-NTD of hCoV-HKU1. To date, there is no structural information available for this protein and these data are important for the comparison with the hCoVs that cause severe acute respiratory symptoms, contributing to the understanding of diseases such as Covid-19.

Methods and experiments

Cloning, expression and purification

The DNA encoding 138 amino acid residues (56 to 193) of the N-terminal region of hCoV-HKU1 protein N was codon-optimized, synthesized, and subcloned between NdeI and BamHI sites in pET28a by GenScript©. *Escherichia coli* strain BL21(DE3) was transformed with this plasmid and selected colonies were grown in LB media for 6 h at 37 °C. The pre-culture was transferred to 100 mL of fresh minimal media (M9) and then expanded to 1 L of M9, supplemented with \(^15\)NH\(_4\)Cl (1 g/L) and \(^13\)C-glucose (3 g/L). All media contained 50 µg/mL of kanamycin. Protein expression was induced with 0.2 mM IPTG when optical density (O.D.) reached 0.6–0.8 at 600 nm. After 16 h of induction at 16 °C, the cells were centrifuged and the cell pellet was resuspended in 35 mL of lysis buffer: 50 mM Tris–HCl (pH 8), 500 mM NaCl, 20 mM imidazole, 10% glycerol, 0.01 mg/mL of DNAase and 0.1 mM PMSF. The cells were disrupted by sonication. After centrifugation (10,000 rpm, 4 °C, 15 min), the supernatant was applied to HisTrap FF column (GE Healthcare Life Sciences) and purified by nickel affinity chromatography. The washing buffer contained 50 mM Tris–HCl (pH 8), 500 mM NaCl, 20 mM imidazole, and 10% glycerol. The bound proteins were eluted with a linear 20–500 mM imidazole gradient. The fractions containing the protein of interest were dialyzed against 2 L of 50 mM Tris–HCl (pH 8), 500 mM NaCl and 1 mM DTT overnight at 4 °C. Simultaneously, the protein was cleaved with TEV protease (molar ratio TEV:protein equals to 1:30), to remove the His-tag. After dialysis, the sample was reapplied to the HisTrap FF column, using the same purification buffers. The fractions containing the protein were concentrated with Millipore Centriprep (3000 MWCO) and the buffer composition was changed to 20 mM sodium phosphate (pH 6.8), 50 mM NaCl, 500 µM PMSF, 3 mM sodium azide, and 3 mM EDTA.

NMR spectroscopy

The NMR sample was supplied with 5% (v/v) D\(_2\)O. All NMR spectra were acquired at 298 K on a Bruker 800 MHz AVANCE III spectrometer. Data were processed using NMRPipe (Delaglio et al. 1995) software and analyzed with CCPNMR Analysis (Vranken et al. 2005). Backbone resonance assignments were determined using the \(^{15}\)N–\(^1\)H-HSQC spectrum (Fig. 1) together with a set of triple resonance experiments: HNCO, HN(CA)CO, HNCA, CBCA(CO)NH, HNCACB, and HBHA(CO)NH. Side-chain resonance assignments were performed using \(^{13}\)C-HSQC, (H)CCH-TOSY, HCCH-TOSY, and \(^{15}\)N and \(^{13}\)C-NOESY-HSQC experiments. The chemical shift of water proton was used as an internal reference for \(^1\)H while \(^13\)C and \(^15\)N chemical shifts were referenced indirectly to water (Wishart et al. 1995).

Assignments and data deposition

Chemical shift assignments (\(^1\)H, \(^15\)N, and \(^13\)C) have been deposited in the BioMagResBank (http://www.bmrb.wisc.edu) under the ID 50507. We almost fully assigned the \(^1\)H, \(^15\)N, and \(^13\)C resonances, except for N2 Ne/He, S8 N/NH, F16 H̄, D21 N/NH, K23 N/NH, Y82 H̄/He, T111 Hy2/Cy2, E133 H̄/Hy, and G123 N/NH. We did not assign histidine Êe and some phenylalanine’s He/Çe. We assigned 96% of the backbone NHs, all Ca and CB, 93.6% of C', 70.8% of side-chain carbons, and 86.6% of side-chain hydrogens. G83 has unusual HN and HA chemical shifts (3.04 and 2.57 ppm, respectively), probably due to interaction to the aromatic ring of W91 (He), as confirmed by the presence of a NOE crosspeak in the \(^{15}\)N-NOESY spectrum.
The chemical shifts were analyzed with TalosN software (Fig. 2) (Shen and Bax 2013). The random coil index (RCI-S2) values (Berjanskii and Wishart 2005) (Fig. 2a) indicated 4 dynamical regions: N-terminal, C-terminal, the loop between residues 49 to 64, known as the finger, and the loop between residues 102 and 115. These flexible regions confer the necessary plasticity for the protein to interact with cellular partners such as proteins or RNA (Caruso et al. 2020). TalosN predicted 5 β-strands with high confidence, named β1, β2, β5, β6, and β7. It also predicted two small β-strands within the finger, named β3 and β4. For these two β-strands, the confidence is small, probably due to the flexibility of the loop, but they are present in the structures of homologous proteins (Kang et al. 2020).
Acknowledgements This work was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The author IPC gratefully acknowledges the post-doctoral fellowship and financial support from FAPERJ (202.279/2018) and the PROPe UNESP. We also acknowledge the Covid-19 NMR Consortium (https://covid19-nmr.de/) for providing an excellent environment for scientific discussions.

Compliance with ethical standards

Conflict of interest The authors declare that there are no conflicts of interest.

References

Baker SC (2008) Coronaviruses: molecular biology. Encycl Virol. https://doi.org/10.1016/B978-012374410-4.00769-X

Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971. https://doi.org/10.1021/ja054842f

Caruso ÍP, Sanches K, Da Poian AT et al (2020) Dynamics of the N-terminal domain of SARS-CoV-2 nucleocapsid protein drives dsRNA melting in a counterintuitive tweezer-like mechanism. BioRxiv. https://doi.org/10.1101/2020.08.24.264465

Chang CK, Hou MH, Chang CF et al (2014) The SARS coronavirus nucleocapsid protein—forms and functions. Antiviral Res 103:39–50

Delaglio F, Grzesiek S, Vuister GW et al (1995) Nmrpipe—a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293

Grossoehme NE, Li L, Keane SC et al (2009) Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. J Mol Biol 394:544–557. https://doi.org/10.1016/j.jmb.2009.09.040

Hulswit RJG, Lang Y, Bakkers MJG et al (2019) Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci USA 116:2681–2690. https://doi.org/10.1073/pnas.1809667116

Kang S, Yang M, Hong Z et al (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2020.04.009

Ou X, Guan H, Qin B et al (2017) Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus
HKU1. Nat Commun 8:1–10. https://doi.org/10.1038/ncomms15216
Raoult D, Zumla A, Locatelli F et al (2020) Coronavirus infections: epidemiological, clinical and immunological features and hypotheses. Cell Stress 4:66–75. https://doi.org/10.15698/cst2020.04.216
Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241. https://doi.org/10.1007/s10858-013-9741-y
Taskin Tok T, Tatar G, Tugba TT (2017) Structures and Functions of Coronavirus Proteins: Molecular Modeling of Viral Nucleoprotein-International Journal of Virology & Infectious Diseases

International Journal of Virology & Infectious Diseases. Int J Virol Infect Dis 2:1–7
Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696
Wishart DS, Bigam CG, Yao J et al (1995) 1H, 13C and 15 N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140. https://doi.org/10.1007/BF00211777

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.