Biology aspect and parameter population the scalloped hammerhead (Sphyrna lewini Griffith & Smith, 1834) caught from coastal fisheries in the eastern Indian Ocean

U Chodrijah and R Faizah*

Center For Fisheries Research, Jakarta
Gedung Balitbang KP II, Jl. Pasir Putih 2 Ancol Timur, Jakarta Utara

*E-mail: faizah.ria@gmail.com

Abstract. The scalloped hammerhead, Sphyrna lewini, have a circumglobally distribution in tropical and warm-temperate waters. Generally, in Indian ocean this species is a bycatch of the tuna longline, however, in Tanjung Luar, this species is a target species. The life history from this species is still limited. The study aimed to assess the biology aspect and growth of the scalloped hammerhead in the period February 2013 to December 2016. The result showed that 2449 individuals were caught with size between 43-395 cm TL (average 198.03 cm) for females and males ranged between 47-340 cm TL (average 161.61 cmTL). The sex ratio that was dominated by female sharks was 2.69: 1. The clasper length and total length relationship were positive with a linear regression equation of CL = 0.0902*TL-4.4402 (R2=0.6837). It showed that the length of the claspers increases proportionally with the length of the body. Application of age at length data for produced von Bertalanffy growth model parameter estimates of female L∞ = 397 cm TL, K = 0.27 year⁻¹, and for male S. lewini was L∞ = 381 cm TL, K = 0.17/ year. The total mortality rate (Z) the scalloped hammerhead was 1.15/ years, natural mortality (M) is 037/ years and the fishing mortality (F) was 0.78/ years with exploitation rate (E) = 0.68

1. Introduction
The scalloped hammerhead, Sphyrna lewini, have a circumglobally distribution in tropical and warm-temperate waters. This species is a member of family Sphyrnidae and type of shark is often caught in Indonesian waters [1], especially in the Indian Ocean region south of Java and Nusa Tenggara [2]. The hammerhead shark originally a bycatch on tuna fisheries but in artisanal fisheries in some areas are sometimes targeted for catch [3, 4, 5]. [5] reported that the catch of S. lewini from longline fishery based in Tanjung Luaras much as 18% of the total catch. The S. lewini population is thought to have experienced pressure due to fishing and trafficking intensive, especially for the fins [6][7]. Although status the exact population is not known, however, presumably there has been a decline in the population of S. lewini in all over the world, one of that is in the Indian Ocean waters ([4]). In general, sharks are very vulnerable to overfishing pressure [8, 9] because this species has the cycle long life, growth and development slow sexual maturity as well low fecundity [10, 11,12, 13]. Hence, monitoring to the status of the scalloped hammerhead population other elasmobranchii need to be done in order to be able applied a fisheries management effort sustainable.

Current data and information needs related to S. lewini quite important considering its conservation status according to the International Union's Red List for the conservation of Nature and Natural Resources (Red List IUCN) is rare (Endangered). According to Convention on International Trade in Endangered Species (CITES) of Wild Fauna and Flora it has included in Appendix II [5, 14, 15], even in Indonesia itself the scalloped hammerhead shark is a species which is prohibited from
2. Materials and Method

2.1. Field work
The study was conducted in Tanjung Luar, West Nusa Tenggara, part of Eastern Indian Ocean (Figure 1). Sampling was done monthly between February 2013 to December 2016. The total length (TL) was measured from the most anterior part of the cephalopodic head to the farthest tip of the caudal fin. A total of 2449 specimens of the scalloped hammerhead *Sphyrna lewini* were measured during the study period. Sex determination of *Sphyrna lewini* was based on the presence of the clasper in the male.

![Figure 1. Map of sampling site](image)

2.2. Data Analysis
To determine the sex ratio of *Sphyrna lewini* found in this study, we used the formula according to [18]:

\[NK = \frac{NJ_B}{N} \times 100\% \]

where \(NK \) = sex ratio; \(NJ_B \) = number of female or male of *S. lewini* and \(N \) = total number of *Sphyrna lewini* observed.

Sex ratio between females and males was also analyzed using Chi-Square test to determine the significant difference from the expected ratio 1:1 [19].
The growth of the scalloped hammerhead is estimated according to the von Bertalanffy Growth Function (VBGF) based on the value of growth parameters including length asymptotic (L_∞, unit cm), growth (k, unit year $^{-1}$), and theoretical age, which is the age when the fish reach size 0 (t_0, unit year).

Estimation of the L_∞ and k parameters was performed by means of the Electronic Length Frequency Analysis (ELEFAN) analysis with the TropfishR package [20] on the R-Statistics Program software version 3.6.3 [21]. Fish growth can be modelled with the VBGF non-linear regression curve so that the length of the fish at a certain age (longevity or L_t (cm)) can be estimated the equations reported by [22] is described as:

$$L_t = L_\infty (1-e^{-k(t-t_0)})$$

The parameters for the growth functions are as follows: L_t is the length at age t (in years); L_∞ is the species maximum (in mm); t_0 is the mean theoretical age when length is equal to zero (years); and k is the growth coefficient.

The theoretical age at birth (t_0) was calculated using the empirical formula [22]

$$\log (-t_0) = -0.392 - 0.275 \log L_\infty - 1.038 \log K$$

The total mortality coefficient (Z) was estimated by linearizing length-converted catch curve analysis Z was calculated by:

$$Z = M + F$$

Natural mortality of the stock was estimated using [24]:

$$\log M = -0.0066 - 0.279 \log L_\infty + 0.6543 \log K + 0.4634 \log T$$

Where, $M =$ natural mortality and T ($^\circ$C) = annual mean water temperature. The fishing mortality (F), describing the rate of mortality due to fishing activities, was estimated from the relationship.

Exploitation rate (E) was measured by the formula:

$$E = F/Z$$

3.** Result and Discussion**

3.1. Length Frequency Distribution

Total 2449 individuals of *S. lewini* was found in this study during 2013-2016 (Figure 2). This figure showed the abundance of *S. lewini* was dominated by female during study with length distribution ranged from 43-395 cm TL (average 198.03 cm) for females and males ranged between 47-340 cm TL (average 161.61 cmTL).
Figure 2. Length distribution of *Sphyra lewini* caught from eastern Indian ocean

3.2. Estimation of Growth Parameter (*L*_∞, *K*, *t*₀)
Estimated growth parameters of the scalloped hammerhead performed in conditions by gender segregation. Growth forms a nonlinear regression curve with the equation *L*_t=381 (1-e-0.17(t+0.4688)) for
male and \(L_t = 397 \left(1 - e^{-0.27(t+0.3039)} \right)\) for female (Figure 3 and Figure 4). Von Bertalanffy Growth Curve can reconstruct on a monthly length frequency distribution monthly length frequency distribution showed a shift in the fish size mode from month to month that indicates population growth.

The growth parameter of the scallop hammerhead in this study was similar with several landing place such as South Nusa Tenggara, Java Sea and Borneo (Table 1).
Table 1. Growth parameters of the scalloped hammerhead at several landing place

No	Sex	L_{∞}(cm)	K (year)	Location	References
1	Male	381	0.17	Eastern Indian Ocean	Present study
	Female	397	0.27		
2	Male	399	0.29	South Nusa Tenggara	[25]
	Female	399	0.24		
3	Male	339	0.29	Java Sea and Borneo	[17]
	Female	289.3			
4	Male	259.8	0.15	South Java, Bali and Lombok	[3]
	Female	389.6	0.16		
5	Male	266	0.05	Brazillian coast	[26]
	Female	300	0.05		
6	Combine	330.5	0.077	Eastern Australia	[27]
7	Male	278.4	0.13	Western North Atlantic and Gulf of Mexico	[28]
	Female	302.1	0.09		
8	Male	334.4	0.13	Pacific Mexican coast	[29]
	Female	319.7	0.16		
9	Male	320.6	0.22	Taiwan, China	[30]
	Female	319.7	0.25		
10	Combine	329	0.073	Northwestern gulf of Mexico	[31]

3.3. Length at first capture

Length at first capture (L_c) defined as the length which 50% of the fish are retained and 50% cannot be released by fishing gear. The probability length of first at capture for the scalloped hammerhead shark (combine between female and male) in Tanjung Luar was estimated as: $L_c = 192.26$ cm (Figure 5). Length of first at capture for female was estimated as $L_c = 197.66$ cm and for male was $L_c = 164.68$ (Figure 6 and 7)

![Figure 5. Length at first capture (L_c) of Sphyrna lewini caught from eastern Indian ocean](image-url)
Figure 6. The length at first capture (Lc) of *Sphyrna lewini* for female caught from eastern Indian ocean

Figure 7. The length at first capture (Lc) of *Sphyrna lewini* for male caught from eastern Indian ocean

3.4. Sex Ratio

A total of 2449 individual’s data of the scalloped hammerhead were 1768 identified as female and 681 were male. The sex ratio between female and male shark in 2013 was 2.43:1. In 2014 was 2.55: 1, 2015 was 2.87 :1 and then 2,66:1 in 2016 (Figure 8)

Figure 8. Sex ratio of *Sphyrna lewini* caught from eastern Indian ocean

The predominance of the scallop hammerhead female was landed in Tanjung Luar is a common phenomenon as is reported in previous research [1, 17, 25]. According to [27] the composition of the size and sex of the scalloped hammerhead being caught will be different in the fishing area. The sex ratio of the scalloped hammerhead caught in southern Nusa Tenggara different from the Java Sea and southern Kalimantan where the catch is dominated by males [17]. The difference in sex ratio on the scalloped hammerhead was influenced by location, oceanography phenomena, and capture methods. Catch by using a long line in the offshore was also thought to affect differences sex ratio because the scallop hammerheads female tends to associated with oceanic waters [32]
3.5. The relationship between clasper length and total length
The relationship between clasper length and total length is positive with a linear regression equation of
CL = 0.0902*TL-4.4062 (R²=0.6837). It showed that the length of the claspers increases proportionally with the length of the body (Figure 9).

![Figure 9](image_url)

Figure 9. The relationship between clasper length and total length of *Sphyrna lewini* caught from eastern Indian ocean

The relationship between clasper length and total length was positive linear. This relationship was supposed to depend on the clasper condition. The more calcium contained on the clasper, the shorter it will be. [33] argued that the relationship between the clasper length and total body length is usually used to determine the size at which the Elasmobranch reach maturity.

3.6. Mortality and exploitation rate
The total mortality rate (Z) the scalloped hammerhead was 1.15/years resulting from the linear curve of the conversion result catch by length or linearization length catch curve (Figure 10). Natural mortality (M) is 0.37/years and the fishing mortality (F) was 0.78/years.
Based on Virtual Population Analysis (VPA) using the length frequency data, the result showed that fishing mortality (F) was maximum/dominant in the size group of 60-80 cm (Figure 11)

Meanwhile, the exploitation rate (E) obtained 0.68. Pauly (1983) [23] stated that exploitation rate will be more than 0.5 for the stocks supposed to over fished. In this study, E value more than 0.5, therefore

Figure 10. Catch curve of *Sphyrna lewini* caught from eastern Indian ocean

Figure 11. Length Structured Virtual Population Analysis of *Sphyrna lewini* caught from eastern Indian ocean
can be said that *Sphyrna lewini* is over exploited along eastern Indian ocean and appropriate management measures have to be taken for maintaining the fishing effort of *S. lewini* in the Indian ocean.

4. Conclusion
The growth of scalloped hammerhead shark can be modeled based on the von Bertalanffy growth curve form the equation $L_t=381 \ (1-e^{-0.17^{(t+0.4688)})}$ for male and $L_t=397 \ (1-e^{-0.27^{(t+0.3039)})}$ for female. The length at first capture $L_c = 192.26$ cm. Exploitation rate $(E) = 0.68$/year indicating that the scalloped hammerhead exploitation is high so it requires strategy formulation effective management to maintain fisheries sustainability.

Acknowledgement
The authors would like to thank shark enumerators at Tanjung Luar, East Lombok. This study was funded by Research Institute for Marine Fisheries (RIMF) Cibinong, Bogor, Indonesia 2013-2016

References
[1] White W T, Barton C and Potier I C 2008 Catch composition and reproductive biology of *Sphyrna lewini* (Griffith & Smith) (Carcharhiniformes, Sphyridae) in Indonesian waters *Journal of Fish Biology* 72(7): 1675 – 89.
[2] Dharmadi F 2015 Pelagic shark fisheries of Indonesia’s Eastern Indian Ocean Fisheries Management Region *African Journal of Marine Science* 37(2): 259–65.
[3] Drew M, White W T, Dharmadi, Harry A V and Huveneers C 2015 Age, growth and maturity of the pelagic thresher *Alopias pelagicus* and the scalloped hammerhead *Sphyrna lewini* *Journal of Fish Biology* 86(1): 333–54.
[4] IOTC (Indian Ocean Tuna Commission) 2014 Status of the Indian Ocean scalloped hammerhead shark IOTC-2013-SC16-ES19 p 6
[5] Dharmadi F 2013 *Tinjauan Status Perikanan Hiu dan Upaya Konservasinya di Indonesia* (Jakarta: Direktorat Konservasi Kawasan dan Jenis Ikan Direktorat Jenderal Kelautan Pesisir dan Pulau-Pulau Kecil) p 179.
[6] Ferretti F, Myers R A, Serena F and Lotze H K 2008 Loss of large predatory sharks from the Mediterranean Sea *Conservation Biology* 22: 952–64.
[7] Hayes C G, Jiao Y and Cortes E 2009 Stock assessment of scalloped hammerheads in the western North Atlantic Ocean and Gulf of Mexico *North American Journal of Fisheries Management* 29: 1406–11
[8] Galluccci V F Taylor I G and Erzini K 2006 Conservation and management of exploited shark populations based in reproductive value. *Can. J.Fish. Aquat. Sci.* 63: 931 – 42.
[9] Musick J A, Burgess G, Cailliet G, Camhi M and Fordham S 2000 Management of sharks and their relatives (Elasmobranchii) *Fisheries* 25: 9–13.
[10] Castro J I Woodley C M and Brudek R L 1999 A preliminary evaluation of the status of shark species *FAO Fisheries Technical Paper* 380 72 (Rome: FAO)
[11] Compagno L J V 1998 Sharks In K. E Carpenter V H Niem (Eds.) *FAO Identification Guide for Fishery Purposes The Living Marine Resources of the Western Central Pacific* (2) Cephalopods, Crustaceans Holothurians and Sharks (2) pp 1193–366 (Rome: FAO).
[12] Last P R and Stevens J D 1994 Sharks and Rays of Australia (Canberra: CSIRO) p 513.
[13] Stobutzki I C Miller M J Heales D S and Brewer D T 2002 Sustainability of elasmobranchs caught as bycatch in a tropical prawn (shrimp) trawl fishery. *Fish Bull* 100 800–21.
[14] Dulvy N K et al 2014 Extinction risk and conservation of the world’s sharks and rays *eLife* Research Article 3, eLife.00590 3 p 35.
[15] White W T, Last P R., Stevens J D, Yearsley G K, Fahmi and Dharmadi 2006 Economically Important Sharks and Rays of Indonesia. National Library of Australia Cataloging-in-Publication entry Australia 329

[16] Chodrijah U and Setyadji B 2015 Some Biological Aspects of Scalloped Hammerhead Sharks (Sphyrna lewini Griffith & Smith, 1834) Caught From Coastal Fisheries in The Eastern Indian Ocean. Ind. Fish. Res. J. 21(2): 91–7

[17] Muslih Mahdiana A, Syakti A, Hidayati D, Riyanti N V and Yuneni R R 2016 Beberapa Parameter Populasi Ikan Hiu Martil (Sphyrna lewini) di Perairan Laut Jawa dan Kalimantan. In Dharmadi Fahmi (Eds.), Proc., Symp., Hiu dan Pari di Indonesia pp 51–6

[18] Khouw A S 2016 Methods and Quantitative Analysis in Bioecology (Bandung: Alfabet) [in Indonesia].

[19] Gay L R 1996 Educational Research: Competences for Analysis and Application (New Jersey: Prentice-Hall Inc) p 662.

[20] Mildenberger T K, Taylor M H and Wolff M 2017 TropFishR : an R package for fisheries analysis with length-frequency data Working paper p 19.

[21] R Core Team 2020 R A Language and Environment for Statistical Computing (Vienna Austria: R Foundation for Statistical Computing) Retrieved from https://www.r-project.org/

[22] Sparre P and Venema S C 1998 Introduction to Tropical Fish Stock Assessment Part 1 Manual FAO Fisheries Technical Paper 306 p 376

[23] D Pauly 1983 Some simple methods for the assessment of tropical fish stocks FAO Fish Tech. Pap (Rome: FAO)

[24] Pauly D 1980 On the interrelationships between natural mortality growth parameters and mean environmental temperature in 175 fish stocks. J.Cons. Int. Explor. Mer. 39(2) 175–92.

[25] Sentosa A A, Dharmadi D and Tjahjo W H 2016 population parameters of scalloped hammerhead shark (Sphyrna lewini Griffith & Smith, 1834) caught from southern Nusa Tenggara waters J.Lit.Perikan.Ind 22(4): 253-62

[26] Kotas J, Mastrochirico V and Petrele Junior M 2011 Age and growth of the scalloped hammerhead shark Sphyrna lewini (Griffith and Smith 1834) from the southern Brazilian coast Brazilian Journal of Biology 71: 755–61

[27] Harry A V, Macbeth W G, Gutteridge A N and Simpfendorfer C A 2011 The life histories of endangered hammerhead sharks (Carchariniformes, Sphyridae) from the east coast of Australia. Journal of Fish Biology 78: 2026–51

[28] Piercy A C and Sulikowski J G B 2007 Age and growth of the scalloped hammerhead shark Sphyrna lewini in the north-west Atlantic Ocean and Gulf of Mexico Marine and Freshwater Research 58: 34–40.

[29] Tolentino V A and Mendoza C R 2001 Age and growth for the scalloped hammerhead shark Sphyrna lewini(GriffithandSmith, 1834) along the central Pacific coast of Mexico Ciencias Marinas 27: 501–20

[30] Chen C T, Leu T C, Joung S J and Lo N C H 1990 Age and growth of the scalloped hammerhead Sphyrna lewini in northeastern Taiwan waters. Pacific Science 44 156–170.

[31] Branstetter S 1987 Age and growth validation of newborn sharks held in laboratory aquaria, with comments on the life history of the Atlantic sharpnose shark Rhizoprionodon terraenovae. Copeia 1987 pp 291–300.

[32] Clarke T A 1971 The ecology of the scalloped hammerhead shark, Sphyrna lewini in Hawaii Paciﬁc Science 15: 133–44

[33] Stevens J D McLoughlin K J 1991 Distribution size and sex composition reproductice biology and diet of sharks from northern Australia. Australian Journal of Marine and Freshwater Research 42 (2): 151-99