CONGRUENCE OF HYPER_SURFACES
OF A PSEUDO-EUCLIDEAN SPACE

Ognian Kassabov

R. S. Kulkarni has proved [1] that the so-called bending of a hypersurface in an Euclidean space determines the congruence class of the hypersurface. In the present paper we show that a similar result holds for hypersurfaces of a pseudo-Euclidean space \mathbb{R}^{n+1}_s, $n > 2$. We prove also a corresponding theorem, which accounts for the behaviour of the second fundamental form on isotropic vectors.

1. PRELIMINARIES

Let M be a Riemannian or a pseudo-Riemannian manifold with a metric tensor g. A tangent vector ξ is said to be isotropic, it is nonzero and $g(\xi, \xi) = 0$. Of course, for isotropic vectors one speaks only when the manifold is pseudo-Riemannian, i.e. when g is an indefinite metric. The values of a symmetric tensor of type (0,2) on isotropic vectors give a good information about this tensor, as it is shown by the following

Lemma 1 [2]. Let M be a pseudo-Riemannian manifold. If L is a symmetric tensor of type (0,2) on a tangent space T_pM, such that $L(\xi, \xi) = 0$ for every isotropic vector ξ in T_pM, then $L = cg$, where c is a real number.

Let ∇ and R denote the covariant differentiation and the curvature tensor of M, respectively. The Ricci tensor and the scalar curvature will be denoted by S and τ, respectively. Then the Weil conformal curvature tensor C for M is defined by

$$C = R - \frac{1}{n-2} \varphi + \frac{\tau}{(n-1)(n-2)} \pi_1,$$
where $n = \dim M$, φ is defined by

$$\varphi(T)(x, y, z, u) = g(x, u)T(y, z) - g(x, z)T(y, u) + g(y, z)T(x, u) - g(y, u)T(x, z),$$

for any symmetric tensor T of type $(0,2)$ and $\pi_1 = \frac{1}{2}\varphi(g)$. As it is well known [3], if $n > 3$, then M is conformally flat if and only if the Weil conformal curvature tensor vanishes identically. If $n = 3$ a necessary and sufficient condition for M to be conformally flat is [3]

$$\nabla_X \left(S - \frac{r}{4} g \right)(Y, Z) - \nabla_Y \left(S - \frac{r}{4} g \right)(X, Z) = 0.$$

If \overline{M} is another Riemannian or pseudo-Riemannian manifold, we denote the corresponding objects for \overline{M} by a bar overhead. Assume that f is a conformal diffeomorphism of M onto \overline{M}: $f^*\overline{g} = \varepsilon e^{2\sigma} g$, where $\varepsilon = \pm 1$ and σ is a smooth function. Then we have [3]

$$f^*\overline{R} = \varepsilon e^{2\sigma} \{ R + \varphi(Q) \},$$

where

$$Q(X, Y) = X\sigma Y - g(\nabla_X \nabla \sigma, Y) - \frac{1}{2} ||\nabla \sigma||^2 g(X, Y),$$

$\nabla \sigma$ denoting the gradient of σ and $||\nabla \sigma||^2 = g(\nabla \sigma, \nabla \sigma)$.

In [4] we have proved the following

Lemma 2. Let M and \overline{M} be pseudo-Riemannian manifolds of dimension > 2 and f be a diffeomorphism of M onto \overline{M}. Assume that at a point p of M there exists an isotropic vector ξ, such that every isotropic vector, which is sufficiently close to ξ, is mapped by f_* in an isotropic vector in $f(p)$. Then f_* is a homothety at p.

In what follows M will be a hypersurface of an Euclidean space \mathbb{R}^{n+1} or of a pseudo-Euclidean space \mathbb{R}^{n+1}_s, such that the restriction g of the usual metric of \mathbb{R}^{n+1} to M is nondegenerate. Denote the second fundamental form of M by h. Then we have the equation of Gauss

$$R(X, Y, Z, U) = h(X, U)h(Y, Z) - h(X, Z)h(Y, U)$$

and the equation of Codazzi

$$(\nabla_X h)(Y, Z) - (\nabla_Y h)(X, Z) = 0.$$

Recall also, that a point p of M is said to be quasi-umbilic, if

$$h = \alpha g + \beta \omega \otimes \omega$$

in p, where α, β are real functions and ω is an 1-form. In particular, if β is zero the point p is called umbilic.

The bending [1] K_h of M is said to be the function, assigning to each nonisotropic nonzero tangent vector x at a point of M the number

$$K_h(x) = \frac{h(x, x)}{g(x, x)}.$$
Two hypersurfaces M and \overline{M} being defined a diffeomorphism f of M onto \overline{M} is said to be bending preserving [1], if

$$(1.4) \quad K_{\overline{h}}(f_*x) = K_h(x)$$

for each nonisotropic nonzero vector x on M, whose image is also nonisotropic. The analogue of (1.4) for isotropic vectors is

$$(1.5) \quad \lim_{x \to \xi} \frac{K_{\overline{h}}(f_*x)}{K_h(x)} = 1 ,$$

where the isotropic vector ξ is approximated by nonisotropic nonzero vectors, whose images are also nonisotropic. We shall prove:

Theorem 1. Let M and \overline{M} be hypersurfaces with indefinite metrics in \mathbb{R}^{n+1}_s, $n > 2$, and let f be a diffeomorphism of M onto \overline{M}, satisfying (1.5) for each isotropic vector ξ on M. If the nonquasi-umbilic points are dense in M and if M is not conformally flat, then f is a congruence.

We recall that f is said to be a congruence if it can be extended to a motion of \mathbb{R}^{n+1}_s.

Theorem 2. Let M and \overline{M} be hypersurfaces with indefinite metrics in \mathbb{R}^{n+1}_s, $n > 2$, and let f be a bending preserving diffeomorphism of M onto \overline{M}. If the nonumbilic points are dense in M and the curvature tensor of M does not vanish identically in a point p, then there exists a neighbourhood V of p such that $f|_V$ is a congruence of V onto $f(V)$.

Remark. The proof of the congruence theorem in [1] can be applied for hypersurfaces with definite metrics (i.e. spacelike hypersurfaces) in \mathbb{R}^{n+1}_1.

2. BASIC RESULTS

In this section we prove two lemmas, which will be useful in the proofs of Theorems 1 and 2.

Lemma 3. Let M and \overline{M} be hypersurfaces with indefinite metrics in \mathbb{R}^{n+1}_s, $n > 2$, and let f be a diffeomorphism of M onto \overline{M}, satisfying (1.5) for each isotropic vector ξ on M. If the nonumbilic points are dense in M, then

a) f is conformal: $f^*\overline{g} = e^{2\sigma}g$;

b) $f^*\overline{h} = e^{2\sigma}\{h + \lambda g\}$, where λ is a smooth function;

c) $f^*\overline{R} = e^{4\sigma}\{R + \lambda\varphi(h) + \lambda^2 \pi_1\}$;

d) the following equations hold:

$$\begin{align*}
(2.1) \quad & X\sigma B(Y, Z) - Y\sigma B(X, Z) + \frac{1}{n}\{X\lambda g(Y, Z) - Y\lambda g(X, Z)\} = 0 , \\
(2.2) \quad & B(Y, \nabla\sigma) = \frac{n-1}{n}Y\lambda ,
\end{align*}$$

where $B = h - \frac{\text{tr} h}{n}g$.
Proof. Let \(p \) be a nonumbilic point of \(M \), i.e. \(h \) is not proportional to \(g \) in \(p \). Then by Lemma 1 there exists an isotropic vector \(\xi \) in \(T_pM \), such that \(h(\xi, \xi) \neq 0 \). Hence \(h(\xi', \xi') \neq 0 \) for each isotropic vector \(\xi \), which is sufficiently close to \(\xi \). Then (1.5) implies that \(f_\ast \xi' \) is isotropic. According to Lemma 2, \(f_\ast \) is a homothety at \(p \). Since the nonumbilic points are dense in \(M \), \(f \) is conformal and then a) is proved.

From a) and (1.5) it follows \((f^\ast \bar h)(\xi, \xi) = \varepsilon e^{2\sigma} h(\xi, \xi)\). Applying again Lemma 1, we obtain b). Then c) follows from b) and from the equations of Gauss for \(M \) and \(\overline{M} \).

To simplify the notations in the proof of d), we identify \(M \) with \(\overline{M} \) via \(f \), and omit \(f^\ast \) from the formulas. Then we have [3]

\[
\nabla_X Y = \nabla_X Y + X\sigma Y + Y\sigma X - g(Y, Y)\nabla\sigma .
\]

Hence, using b) and the equations of Codazzi for \(g \) and \(\bar g \), we find

\[
(2.3) \quad X\sigma h(Y, Z) - Y\sigma h(X, Z) + X\lambda g(Y, Z) - Y\lambda g(X, Z) + g(Y, Z)h(Y, \nabla\sigma) - g(Y, Z)h(X, \nabla\sigma) = 0 ,
\]

which implies immediately

\[
(2.4) \quad h(Y, \nabla\sigma) = \frac{n-1}{n} Y\lambda + \frac{\text{tr} h}{n} Y\sigma ,
\]

i.e. (2.2). From (2.3) and (2.4) we obtain (2.1). This proves the lemma.

We note that the conditions of Lemma 3 are fulfilled in Theorem 1, as well as in Theorem 2.

Lemma 4. If in Lemma 3 \(\|\sigma\|^2 = 0 \) and \(U \) denotes the open set \(\{ p \in M : \nabla\sigma \neq 0 \} \), then

a) each point of \(U \) is quasi-umbilic;

b) \(R = 0 \) in \(U \).

Proof. We shall use a connected component \(U_1 \) of \(U \). Let in (2.1) \(X = Z = \nabla\sigma, Y = \nabla\lambda \). By (2.2), we obtain

\[
(2.5) \quad (\nabla\sigma)\lambda = 0 .
\]

Now we put \(X = \nabla\sigma \) in (2.1) and get use of (2.2) and (2.5). The result is \(Y\sigma Z\lambda = 0 \) for arbitrary vector fields \(Y, Z \). Since \(\nabla\sigma \) can not vanish in \(U_1 \), it follows \(\lambda = \text{const} \) (in \(U_1 \)). Then (2.1) reduces to

\[
X\sigma B(Y, Z) - Y\sigma B(X, Z) = 0 ,
\]

which implies

\[
(2.6) \quad B = \mu d\sigma \otimes d\sigma ,
\]

where \(\mu \) is a smooth function. Equivalently, we may write

\[
(2.6') \quad h = \frac{\text{tr} h}{n} g + \mu d\sigma \otimes d\sigma ,
\]

thus proving a). From the equation of Gauss for \(g \) it follows

\[
S(x, x) = \text{tr} h . h(x, y) - \sum_{i=1}^n h(x, e_i)h(y, e_i)g(e_i, e_i) ,
\]
where \{e_i; i, \ldots, n\} is an orthogonal frame. Hence, using (2.6'), we obtain

\begin{equation}
S = \frac{n-2}{n} \mu \operatorname{tr} h \, d\sigma \otimes d\sigma + \frac{n-2}{n^2} (\operatorname{tr} h)^2 g .
\end{equation}

Thus we get

\begin{equation}
\tau = \frac{n-1}{n} (\operatorname{tr} h)^2 .
\end{equation}

From (2.7) and (2.8) we compute for \(P = S - \frac{\tau}{n} g \):

\begin{equation}
P = \frac{n-2}{n} \mu \operatorname{tr} h \, d\sigma \otimes d\sigma .
\end{equation}

By Lemma 3 c) we find immediately

\begin{equation}
 f^* S = \varepsilon e^{2\sigma} \{ S + \lambda (n-2) h + \lambda \operatorname{tr} h . g + (n-1)\lambda^2 g \} ,
\end{equation}

\begin{equation}
 f^* \tau = \tau + 2(n-1) \lambda \operatorname{tr} h + n(n-1)\lambda^2 ,
\end{equation}

\begin{equation}
 f^* P = \varepsilon e^{2\sigma} \{ P + (n-2) \lambda B \} .
\end{equation}

Analogously, (1.2) yields

\begin{equation}
 f^* P = P + (n-2) Q - \frac{n-2}{2n(n-1)} (\varepsilon \bar{\tau} e^{2\sigma} - \tau) g .
\end{equation}

From the last two equations we obtain

\begin{equation}
 Q = \frac{\varepsilon e^{2\sigma} - 1}{n-2} P + \varepsilon \lambda e^{2\sigma} B + \frac{\varepsilon \bar{\tau} e^{2\sigma} - \tau}{2n(n-1)} g .
\end{equation}

Hence, using (2.6) and (2.9), we find

\begin{equation}
 Q = \nu d\sigma \otimes d\sigma + \frac{\varepsilon \bar{\tau} e^{2\sigma} - \tau}{2n(n-1)} g ,
\end{equation}

where

\[\nu = \mu \left(\frac{\varepsilon e^{2\sigma} - 1}{n} \operatorname{tr} h + \varepsilon \lambda e^{2\sigma} \right) . \]

Since \(\nabla \sigma \) is isotropic, (1.3) yields \(Q(X, \nabla \sigma) = 0 \). Thus, applying (2.11) we conclude that

\begin{equation}
 \varepsilon \bar{\tau} e^{2\sigma} - \tau = 0 .
\end{equation}

Then, (2.11) reduces to

\begin{equation}
 Q = \nu d\sigma \otimes d\sigma
\end{equation}

or, according to (1.3) -

\[g(\nabla_X \nabla \sigma, Y) = (1 - \nu) X \sigma Y \sigma . \]

Hence, using the equation of Codazzi for \(g \) and (2.6), we derive

\[(X \mu Y \sigma - Y \mu X \sigma) Z \sigma + \frac{1}{n} \{ X \operatorname{tr} h g(Y, Z) - Y \operatorname{tr} h g(X, Z) \} = 0 . \]

Here we assume that \(Z \) is orthogonal to \(\nabla \sigma \) and \(X \), and \(Y \) is not orthogonal to \(Z \). The result is \(X \operatorname{tr} h = 0 \). i.e. \(\operatorname{tr} h \) is a constant. Thus, by (2.8) and (2.10), \(\tau \) and \(\bar{\tau} \) are also
constants. If $\bar{\tau} \neq 0$, (2.12) implies $d\sigma = 0$, which is a contradiction. Let $\bar{\tau} = 0$. According to (2.12), (2.8) and (2.10), $\tau = \text{tr}_h = \lambda = 0$. By Lemma 3 c)

\[(2.13) \quad \bar{R} = e^{4\sigma} R \]

On the other hand, from $\text{tr}_h = \lambda = 0$ and (1.2), (2.11'), we obtain

\[(2.14) \quad \bar{R} = \varepsilon e^{2\sigma} R \]

From (2.13) and (2.14) we find $(e^{2\sigma} - \varepsilon) R = 0$ in U_1 and hence this holds on U. Since σ can not vanish in an open subset of U, it follows $R = 0$ in U, which proves our assertion.

3. PROOF OF THEOREM 1

First we assume that there exists a point p of M such that $\|\nabla \sigma\|^2 \neq 0$ in p. Then $\|\nabla \sigma\|^2 \neq 0$ in a neighbourhood V of p. In (2.1) we assume that $X = Z = \nabla \sigma$ and that Y is orthogonal to $\nabla \sigma$. Using (2.2), we obtain $Y \lambda = 0$ in V. Hence $\nabla \lambda = \rho \nabla \sigma$ on V, where ρ is a smooth function. Using again (2.1) with $X = \nabla \sigma$ and applying (2.2), we find

\[B = \rho \left\{ \frac{1}{\|\nabla \sigma\|^2} d\sigma \otimes d\sigma - \frac{1}{n} g \right\} \]

in V. However, this contradicts the assumption that the set of nonquasi-umbilic points is dense.

So $\|\nabla \sigma\|^2 = 0$. Now, let us assume that $\nabla \sigma$ does not vanish at a point p and hence, in an open set U. By Lemma 4 a) each point of U is quasi-umbilic, which is impossible.

Consequently $\nabla \sigma$ vanishes identically in M, i.e. σ is a constant. Then λ is also a constant. Indeed, assuming in (2.1) that V is orthogonal to X and that $Y = Z$, $g(Y, Y) \neq 0$, we obtain $X \lambda = 0$.

Since σ is a constant, (1.2) implies

\[(3.1) \quad f^* \bar{R} = \varepsilon e^{2\sigma} R . \]

Let us assume that f is not an isometry, i.e. $(\sigma, \varepsilon) \neq (0, 1)$. Then (3.1) and Lemma 3 c) yield

\[(3.2) \quad R = \alpha \varphi(h) + \beta \pi_1 , \]

where

\[\alpha = \frac{\lambda}{\varepsilon e^{-2\sigma} - 1} , \quad \beta = \frac{\lambda^2}{\varepsilon e^{-2\sigma} - 1} \]

are constants. From (3.2), by a standard way (see e.g. [5] or [6], Example 4), we conclude that the Weyl conformal curvature tensor of M vanishes identically. So, if $n > 3$ then M is conformally flat, which is a contradiction. Let $n = 3$. Using (3.2) we find

\[(3.3) \quad S - \frac{\tau}{4} g = \alpha h + \frac{\beta}{2} g . \]
Since α, β are constants, the equation of Codazzi and (3.3) imply (1.1). Thus M is conformally flat, which is not the case. Consequently f is an isometry, i.e. $\sigma = 0, \varepsilon = 1$. Then by (3.1) and Lemma 3 c) we obtain

$$\lambda \varphi(h) + \lambda^2 \pi_1 = 0,$$

which implies

$$(3.4) \quad \lambda \{(n - 2)h + g \text{tr} h\} + (n - 1)\lambda^2 g = 0.$$

But M can not be totally umbilic. So (3.4) yields $\lambda = 0$. Hence $f_* \bar{h} = h$. Since f is an isometry, this proves the theorem.

4. PROOF OF THEOREM 2

By Lemma 3 a), b) and (1.4) we conclude that $\lambda = 0$. Putting $X = \nabla \sigma$ in (2.1) and using (2.2), we obtain

$$\|\nabla \sigma\|^2 B(Y, Z) = 0.$$

Since the nonumbilic points are dense, this implies $\|\nabla \sigma\|^2 = 0$. According to Lemma 4 b), $R = 0$ in the open set U, in which $\nabla \sigma \neq 0$. Thus the point p, in which $R \neq 0$, can not lie in the closure \overline{U} of U. Consequently, the open set $M \setminus \overline{U}$ is nonempty. Note that $d\sigma = 0$ in $M \setminus \overline{U}$. Let V be the connected component of p in $M \setminus \overline{U}$. Since σ is a constant in V, (1.2) reduces to

$$(4.1) \quad f^* R = \varepsilon e^{2\sigma} R$$

in V. On the other hand, applying Lemma 3 c) with $\lambda = 0$, we obtain

$$(4.2) \quad f^* R = e^{4\sigma} R.$$

From (4.1) and (4.2) we find $(e^{4\sigma} - \varepsilon)R = 0$. Since p lies in V, this implies $\sigma = 0$ (in V) and $\varepsilon = 1$. So we have $f^* \bar{g} = g, f^* \bar{h} = h$ in V. Consequently, f is a congruence of V onto $f(V)$, which completes the proof.

Remark. If the manifolds in Theorem 2 are analytic or the set of points, in which R is not zero, is dense, then f is a congruence of M onto \overline{M}.

REFERENCES

1. Kulikarni, R. S. Congruence of hypersurfaces. - Journ. Differ. Geom., 8, 1973, 95-102.
2. Dajczer, M., K. Nomizu. On the boundedness of Ricci curvature of an indefinite
metric. - Bol. Soc. Brasil. Mat., 11, 1980, 25-30.
3. Eisenhart, L. P. Riemannian geometry. Princeton. University Press, 1949.
4. Kassabov, O. Diffeomorphisms of pseudo-Riemannian manifolds and the values of
 the curvature tensor on degenerate planes. Serdica, 15, 1989, 78-86.
5. Chen, B.-Y., K. Yano. Manifolds with vanishing Weil or Bochner curvature tensor.
 - Journ. Math. Soc. Japan, 27, 1975, 106-112.
6. Nomizu, K. On the decomposition of the generalized curvature tensor. - Differential
 Geometry in honour of K. Yano. Kynokumya, Tokyo, 1972, 335-345.

Received 30.03.1988