Supporting Information

Supporting text

Cluster level weights derivation

From a Taylor series expansion, the variance of the cluster log-odds is approximated by

\[
\text{var} \left(\log \left(\frac{\hat{p}_{ij}}{1 - \hat{p}_{ij}} \right) \right) \approx \sigma^2_b + E \left[\frac{1}{p_{ij}(1 - p_{ij})m_{ij}} \right]
\]

We can substitute \(\rho_i = \frac{\sigma^2_b}{\sigma^2_b + \frac{1}{p_i(1 - p_i)}} \) and take the prevalence in each arm for the expectation of the prevalence in each cluster so that

\[
\text{var} \left(\log \left(\frac{\hat{p}_{ij}}{1 - \hat{p}_{ij}} \right) \right) \approx \frac{\rho_i}{1 - \rho_i} + \frac{1}{p_i(1 - p_i)m_{ij}}
\]

\[
= \frac{1 + (m_{ij} - 1)\rho_i}{m_{ij}(1 - \rho_i)p_i(1 - p_i)}
\]

Inverse variance weights are then

\[
w_{ij} = \frac{m_{ij}(1 - \rho_i)p_i(1 - p_i)}{1 + (m_{ij} - 1)\rho_i}
\]

Assuming the same mean prevalence in both arms and the same ICC in both arms, we can simplify this to

\[
w_{ij} = \frac{m_{ij}}{1 + (m_{ij} - 1)\rho_i}
\]

Data simulation: Distribution of random effects

We simulated scenarios with \(u_{ij} \) sampled from three different distributions.

Normal distribution: In this scenario, \(u_{ij} \sim N(0, \sigma_b) \)

Gamma distribution: In this scenario, \(u_{ij} = \sigma_b (a_{ij} - 2) \) and \(a_{ij} \sim Gamma(2, 1) \)

The shape parameter of the Gamma distribution was set to 2 as a way of comparing small sample performance to large sample performance with non-normal random effects. Heagerty and Kurland [1] found in large samples, generalised linear mixed models gave cluster-level covariate estimates with little bias with a shape parameter of 2 or larger, but smaller values lead to biased effect estimates. We assess if this limit is similar with a small number of clusters.

This process gives values of \(u_{ij} \) with mean zero and variance \(\sigma_b^2 \). A shape parameter of 2 give a distribution with skew 1.4 and kurtosis 3.

Uniform distribution: In this scenario, \(u_{ij} \sim N(-\sqrt{3\sigma_b^2}, \sqrt{3\sigma_b^2}) \). This give a distribution with mean zero, variance \(\sigma_b^2 \), zero skew, and kurtosis -6/5.
Data simulation: Cluster size sampling

When cluster size varied we sampled m_{ij} to have a minimum cluster size of 3. Each scenario set the mean cluster size m and coefficient of variation of cluster size $CV = S/m$ where S is the standard deviation of cluster size. We set $m_{ij} = 2 + \delta_{ij}$ where

$$\delta_{ij} \sim Negbin\left(\text{no.of fails} = \frac{(m - 2)^2}{s^2 - (m - 2)}, \text{prob.of fail} = \frac{m - 2}{s^2}\right)$$

References

[1] HEAGERTY, P. J. & KURLAND, B. F. 2001. Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973-985.
Figure 1: Examples of cluster-level summary distributions where analysis methods have nominal type-one error in previous literature.

A: The t-test has been shown to give close to nominal type-one error when observations follow an exponential distribution with rate = 1 even in small samples (Boneau 1960). B: GLMMs (large number of clusters) have been shown to give close to nominal type one error for fixed effects when cluster-means follow a gamma distribution with skewness $2/\sqrt{2}$. Type-one error is affected with more severe skew (Litiere 2008). C: Both t-tests (large and small samples) and random effect models (large number of clusters) have been shown to have nominal type-one error with a uniform distribution.
Figure 2: Performance measures of cluster-level analysis methods by number of clusters (rows) and prevalence (colour). Measures shown (columns): Standardised intervention effect estimate bias, Standard error bias, Type-one error.
Figure 3: Performance measures of cluster-level analysis methods by number of clusters (rows) and distribution of cluster log-odds (colour). Measures shown (columns): Standardised intervention effect estimate bias, Standard error bias, Type-one error.

Distribution	Normal	Gamma	Uniform
CL.W.			
CL.UNW.			
Figure 4: Performance measures of cluster-level analysis methods by number of clusters (rows) and mean cluster size (colour). Measures shown (columns): Standardised intervention effect estimate bias, Standard error bias, Type-one error.
Figure 5: Performance measures of cluster-level analysis methods by number of clusters (rows) and CV of cluster size (colour). Measures shown (columns): Standardised intervention effect estimate bias, Standard error bias, Type-one error.
Figure 6: Performance measures of cluster-level analysis methods by number of clusters (rows) and ICC (colour). Measures shown (columns): Standardised intervention effect estimate bias, Standard error bias, Type-one error.
Figure 7: Performance measures of GLMM methods by number of clusters (rows) and prevalence (colour). Measures shown (columns): Effect estimate bias, Standard error bias, Type-one error
Figure 8: Performance measures of GLMM methods by number of clusters (rows) and distribution of cluster log-odds (colour). Measures shown (columns): Effect estimate bias, Standard error bias, Type-one error.
Figure 9: Performance measures of GLMM methods by number of clusters (rows) and CV of cluster size (colour). Measures shown (columns): Effect estimate bias, Standard error bias, Type-one error.
Figure 10: Performance measures of GLMM methods by number of clusters (rows) and ICC (colour). Measures shown (columns): Effect estimate bias, Standard error bias, Type-one error

![Graph showing performance measures]
Figure 11: Comparison of bias and type-one error of GEE methods by number of clusters (rows) and prevalence (colour). Measures shown (columns): Effect estimate bias, Standard error bias, Type-one error.

Prevalence

Percent standardised effect estimate bias Percent standard error bias Percent type-one error

Prevalence 0.1 0.3
Figure 12: Comparison of bias and type-one error of GEE methods by number of clusters (rows) and distribution of cluster log-odds (colour). Measures shown (columns): Effect estimate bias, Standard error bias, Type-one error.
Figure 13: Comparison of bias and type-one error of GEE methods by number of clusters (rows) and CV of cluster size (colour). Measures shown (columns): Effect estimate bias, Standard error bias, Type-one error.
Figure 14: Comparison of bias and type-one error of GEE methods by number of clusters (rows) and ICC (colour). Measures shown (columns): Effect estimate bias, Standard error bias, Type-one error.
Figure 15: Power comparison of equally weight cluster level analysis, GLMM with REPL, and GEE with FG standard errors (columns) by number of clusters (rows), ICC (y axis), and prevalence (colour). All methods use DF_{CP}.
Figure 16: Power comparison of equally weight cluster level analysis, GLMM with REPL, and GEE with FG standard errors (columns) by number of clusters (rows), ICC (y axis), and distribution of cluster log-odds (colour). All methods use DF_{CP}
Figure 17: Power comparison of equally weight cluster level analysis, GLMM with REPL, and GEE with FG standard errors (columns) by number of clusters (rows), ICC (y axis), and mean cluster size (colour). All methods use DF C_P

![Graph showing power comparison](image-url)