Finite temperature phase transition in a cross-dimensional triangular lattice

Shengjie Jin¹, Xinxin Guo¹, Peng Peng¹, Xuzong Chen¹, Xiaopeng Li²,³ and Xiaoji Zhou¹,⁴

¹ State Key Laboratory of Advanced Optical Communication System and Network, Department of Electronics, Peking University, Beijing 100871, People’s Republic of China
² State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
³ Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People’s Republic of China
⁴ Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China

E-mail: xiaopeng_li@fudan.edu.cn and xjzhou@pku.edu.cn

Keywords: Bose–Einstein condensation, quantum phase transitions, control theory in mathematical physics, optical lattice

Abstract

Atomic many-body phase transitions and quantum criticality have recently attracted much attention in non-standard optical lattices. Here we perform an experimental study of finite temperature superfluid transition of bosonic atoms confined in a three dimensional triangular lattice, whose structure can be continuously deformed to dimensional crossover regions including quasi-one and two dimensions. This non-standard lattice system provides a versatile platform to investigate many-body correlated phases. For the three dimensional case, we find that the finite temperature superfluid transition agrees quantitatively with the Gutzwiller mean field theory prediction, whereas tuning towards reduced dimensional cases, both quantum and thermal fluctuation effects are more dramatic, and the experimental measurement for the critical point becomes strongly deviated from the mean field theory. We characterize the fluctuation effects in the whole dimension crossover process. Our experimental results imply strong many-body correlations in the system beyond mean field description, paving a way to study quantum criticality near Mott-superfluid transition in finite temperature dimension-crossover lattices.

1. Introduction

Phase transition, a ubiquitous concept in many-body physics, has long been a central subject in the study of condensed matter physics, describing a broad range of phenomena from superconductivity, magnetism, to Bose–Einstein condensation. With recent experimental developments, ultracold atoms in optical lattices have become a fascinating platform to explore quantum phase transitions with control and tuning capability unreachable in conventional systems [1, 2]. Both fermionic and bosonic Hubbard models previously proposed as theoretical toy models to study strongly correlated physics in solid state systems, have now been precisely implemented by confining alkali atoms in optical lattices [1–13]. For the former, experimental efforts have been largely focused on the finite-temperature physics for the experimental challenge to reach the zero-temperature quantum ground states [8, 9, 14–19]. For the latter, the ground state superfluid phase and the Mott–superfluid transition, have been accomplished in optical lattices of different dimensionality and geometries [6, 20–27]. It has been found that this phase transition is qualitatively captured by a Gutzwiller–type mean field theory [28–32].

For a finite temperature system near a quantum phase transition point, it is well known that thermal fluctuations play essential roles in characterizing the relevant physical properties, leading to a wide quantum critical region [33, 34] potentially of deep connections to the understanding of high Tc superconductivity [35] mechanism. Finite temperature effects near a Mott–superfluid transition have been explored in theory [3, 36–40], but the experimental studies are relatively scarce [41–44]. The temperature effects are particularly...
intricate for optical lattices undergoing a dimension crossover, where thermal fluctuations intertwine with quantum kinematics. For such systems, renormalization group analysis implies strong fluctuation effects and inapplicability of mean field theories even at a qualitative level\cite{45-47}. Characterizing quantum and thermal fluctuation effects beyond the mean field theory for the phase transition of an optical lattice in the dimension crossover region thus demands experimental studies.

In this paper, we perform experimental studies of the finite temperature superfluid phase transition in a triangular optical lattice whose dimensionality is continuously tuned from quasi-one dimension to two and three dimensions. Atoms in lattices of different dimensionality can be clearly distinguished from the experimentally measured momentum distributions as probed in two orthogonal directions. As shown in figure 1, the lattice contains a triangular lattice in the xy-plane and a one-dimensional lattice along z-axis. The lattice structure is determined by the two-dimensional triangular lattice depth V_{xy} and the one dimensional lattice depth V_z. When $V_{xy} \approx V_z$, the lattice is three dimensional, where we find phase transition properties agree with mean field theory predictions. The system becomes quasi-two and one-dimensional at $V_z \gg V_{xy}$ and $V_z \ll V_{xy}$ for both of which experimental measurements are strongly deviated from mean field theory predictions, yielding strong fluctuation effects in dimension crossover regions. This is attributed to quantum and thermal fluctuations within a single-band or across different orbitals in optical lattices\cite{12}. Our experiment paves a way to study novel many-body physics of dimension crossover lattices, where quantum and thermal fluctuations are both dominant.

2. Experimental system and model description

In our experiment, the triangular lattice is formed by three laser beams with a wavelength $\lambda_{||} = 1064$ nm that intersect at the position of Bose–Einstein condensate (BEC) in xy-plane. For the confinement in the third direction, i.e. the z axis, we add a vertical optical lattice formed by the interference of counter-propagating laser beams with a wavelength $\lambda_z = 852$ nm. The optical potential produced in this setup is then given by

$$V(x) = -V_{xy} \sum_{i=1}^{3} 2 \cos \left(\frac{2\pi}{\lambda_{||}} \sqrt{3} \vec{b}_i \cdot \vec{r} + \Delta \phi_i\right) + 2V_z \cos^2 \left(\frac{2\pi}{\lambda_z} z\right),$$

where we have $x = (x, y, z)$, and $\vec{b}_1 = [1, 0, 0]$, $\vec{b}_2 = [-1/2, \sqrt{3}/2, 0]$, and $\vec{b}_3 = [-1/2, -\sqrt{3}/2, 0]$. Here the unit of potential V_{xy} and V_z is E_R, which equals to $\frac{2\pi}{k_{||}}$ with $k_{||} = \frac{2\pi}{\lambda_{||}}$, respectively.

Before turning on the optical lattice, we prepare BECs of about $1 \times 10^5 \text{Rb}$ atoms in a harmonic trap and the temperature is 50 nK. We have a harmonic trap with frequencies $(\omega_x, \omega_y, \omega_z) = 2\pi \times (24 \text{ Hz}, 48 \text{ Hz}, 55 \text{ Hz})$ in the three directions, respectively. The procedure details have been provided in our earlier works\cite{48-52}. After the preparation of BECs, we adiabatically ramp on the triangular lattice within 80 ms. Then the vertical lattice V_z is adiabatically turned on within 20 ms. Then we hold the system for 10 ms. The average filling of the lattice is approximately six atoms per site. Finally, all the trap and lattices are turned off and an absorption image is obtained after time-of-flight. In the experiment, we can get the absorption image from z-direction or y-direction, which is called Probe-Z and Probe-Y, respectively.

![Figure 1. Pictorial illustration of the experimental lattice system. (a) shows the structure of the optical lattice. There are three laser beams in the xy-plane with $\lambda_{||} = 1064$ nm (red) forming a triangular pattern, and two laser beams in the z direction with $\lambda_z = 852$ nm (blue) providing an additional one-dimensional confinement. (b)–(d) Schematic diagram of momentum distribution and the spatial distribution of atoms. (b) corresponds to the three dimensional case with $V_{xy} \approx V_z$, (c) corresponds to the quasi-two dimensional case with $V_{xy} \ll V_z$, where the momentum interference peaks are dispersed on $\hat{x} \cdot \hat{y}$ plane. (d), quasi-one dimensional case with $V_{xy} \gg V_z$ where the interference are dispersed in \hat{z} direction. The red and white dashed lines represent the tunnelings t_x and t_y, respectively.](image-url)
A single-band lattice Hamiltonian is reached under tight-banding approximation

\[H = \sum_{\langle r, r' \rangle} \left[-t_{ij} \hat{b}_{r}^{\dagger} \hat{b}_{r'} + \text{h.c.} \right] + \sum_{r} \left[-t_{z} \hat{b}_{r}^{\dagger} \hat{b}_{r+\mathbf{e}_{z}} + \text{h.c.} \right] + \frac{U}{2} \sum_{r} \hat{b}_{r}^{\dagger} \hat{b}_{r}^{\dagger} \hat{b}_{r} \hat{b}_{r} - \mu \sum_{r} \hat{b}_{r}^{\dagger} \hat{b}_{r}. \]

Here \((r, r') \) represents two neighboring sites in the \(xy \)-plane, \(\hat{b} \) and \(\hat{b}^{\dagger} \) the annihilation and creation operators, \(U \) the interaction strength, \(\mu \) the chemical potential. The tunnelings in \(xy \)-plane and in the \(z \) direction are \(t_{x} \) and \(t_{z} \), respectively (see figure 1). The tunnelings are determined by fitting the tight-binding energy dispersion to the band structure through exact calculations. The model parameters as shown in figure 2 are highly controllable by tuning the lattice depths \(V_{xy} \) and \(V_{z} \) in our experimental setup.

3. Dimensional crossover

Since the lattice depths \(V_{xy} \) and \(V_{z} \) can be separately tuned in our experiment, the dimensionality of the system is controllable. When \(V_{xy} \) and \(V_{z} \) are comparable, the system is a regular three dimensional lattice. In this region, mean field theory is expected to capture the essential physics, because it is close to the upper critical dimension of the \(U(1) \) phase transition [53]. When \(V_{z} \) is much weaker than \(V_{xy} \), atoms are then less confined in the \(z \) direction, and the system should be treated as weakly coupled one dimensional chains. The corresponding theoretical description is coupled Luttinger liquids, the transition temperature is determined by inter-chain couplings [45, 46, 54, 55]. In the opposite limit, when \(V_{xy} \) is much weaker than \(V_{z} \), the system is formed of weakly coupled two dimensional layers, whose physical properties rely on the comparison between Kosterlitz Thouless transition temperature and inter-layer couplings [47]. Then the superfluid transition in the dimension crossover regions should be intrinsically taken as a finite-temperature phase transition rather than a zero temperature Mott-superfluid transition.

Figure 3 shows time-of-flight measurements of the atomic system, which confirms our capability to control dimensionality from three dimensions to dimension crossover regions. With the Probe-Z and -Y, we measured the momentum distribution in the \(xy \)- and \(zx \)- planes. As shown in figure 3(a), with decreasing \(V_{z} \) at a fixed \(V_{xy} \), \(t_{z} \) becomes larger, which drives a phase transition from normal to a superfluid. In the small \(V_{z} \) limit, the system behaves as a coupled array of Luttinger liquids at finite temperature. Figure 3(b) corresponds to varying \(V_{xy} \) with a fixed \(V_{z} \). In this case, the system is formed of weakly coupled two dimensional systems at small \(V_{xy} \). The weakening of phase coherence with larger \(V_{xy} \) is attributed to the decrease in the tunneling \(t_{z} \).

4. Finite temperature mean field theory

To characterize fluctuation and many-body correlation effects beyond mean field theory in the dimension crossover regions, we provide a finite temperature mean field theory to compare with experimental results.
Under the mean field approximation, the density matrix of the system is given by \(\rho = \prod \exp[-\beta H_{\text{field}}(\mathbf{r})] \), with \(\beta \) the inverse temperature, \(H_{\text{field}}(\mathbf{r}) = -t_{\text{eff}}(\varphi^\dagger \varphi^\dagger + \varphi^\dagger \varphi^\dagger) / 2 + U n_\mathbf{r}(n_\mathbf{r} - 1) / 2 - \mu n_\mathbf{r} \), the tunneling parameter \(t_{\text{eff}} = 6t_i + 2t_z \), and the superfluid order parameter \(\varphi = \{ \mathrm{Tr} \exp[-\beta H_{\text{field}}(\mathbf{r})] \} / \{ \mathrm{Tr} \exp[-\beta H_{\text{field}}(\mathbf{r})] \} \), which is self-consistently determined. The mean field phase diagram is solely dependent on two dimensionless parameters, \(\kappa_B T / t_{\text{eff}} \) and \(U / t_{\text{eff}} \), which characterize the strengths of thermal and quantum fluctuations. As shown in figure 2, we can control the \(t_{\text{eff}} \) and \(U \) by tuning \(V_z \) and \(V_{xy} \), and then observe the phase diagram in experiments. At the zero temperature limit, an instability analysis shows Mott-superfluid phase boundary is given by \(t_{\text{eff}}^* = -[\mu + (1 - n)U] \{ [\mu - nU]/[\mu + U] \} \), with \(n \) the filling of the Mott state. Considering a transition with a fixed particle number, the phase boundary is further reduced to \(t_{\text{eff}}^* / U = 2n + 1 - \sqrt{(2n + 1)^2 - 1} \), reproducing the previous ground state analysis for symmetric lattices [3, 4]. At finite temperature, we rely on numerical self-consistent calculations to compare with experimental results.

5. Experimental determination of finite temperature phase diagram

We perform experimental measurements of the superfluid transition in different parameter regions of the system corresponding to three-, quasi-one and two dimensions. Firstly, we increase \(V_z \) at a fixed \(V_{xy} \). As shown in figure 3(a), we change \(V_z \) from zero to \(9E_R \) with \(V_{xy} \) fixed at \(6E_R \). The superfluid phase transition is revealed with Probe-Z. There are several methods to get the transition point from the absorption images [6, 56–59].

To characterize the condensate in the lattice, we extract the visibility from the TOF measurements and analyze the presence/absence of superfluid phase coherence following the approach in [56]. The visibility can be extracted from the TOF images as shown in figure 4(a). We count the number of atoms in the red areas, which indicates the atoms in first order momentum states, and the total number of atoms in these six red areas is expressed as \(N_{\text{atoms}} \). For the contrast, we also count the atoms in the yellow areas, which indicates the incoherent atoms at the edge of the first Brillouin zone and expressed as \(N_{\text{background}} \). Then, the visibility is given as:

\[
\text{Visibility} = \frac{N_{\text{atoms}} - N_{\text{background}}}{N_{\text{atoms}} + N_{\text{background}}} \tag{3}
\]

It should be pointed out that the visibility in the main text is normalized. And the bare absolute value of visibility at \(V_z = 0 \) is about 0.5.

The behavior of the visibility across the transition is shown in figure 4(b). We use a horizontal line and an oblique line to fit the visibility trend, and the transition point is the crossover point of two lines. In figure 4(b), the transition point is \(V_z = 4.9E_R \).

According to the finite temperature mean field theory and the parameters in figure 2, we can get the superfluid order parameters in theory, which is shown in figure 4(b) by the blue line. The temperature refers to the temperature of the BEC, and we keep the entropy constant in the calculation process. The theoretical superfluid order parameters reduce to zero at \(V_z = 5.3E_R \). The experimental measurement thus agrees
quantitatively with mean field theory prediction. This implies trap effects are negligible for the determination of the phase boundary in our experiment. Nonetheless, including trap effects by local density approximation or by the characteristic density approach \[60, 61\] is expected to give more precise results.

Choosing different \(V_{xy}\), we can get critical strengths of \(V_z\) for the superfluid transition as a function of \(V_{xy}\). Then we get a finite temperature phase diagram as shown in figure 4(c), where the measured transition points are represented by the red squares. According to the finite temperature mean field theory and the parameters obtained in figure 2, we can get the phase diagram in theory. As shown in figure 5, the systematic increase of fluctuation effects as we go from the three to one or two dimensions are clearly revealed.

In the above discussion, the temperature of the quantum gas is 50 nK, which refers to the temperature of the BECs before turning on the optical lattice. We get the temperature in experiments by a bimodal fitting to the time-of-flight images. We also systematically study the temperature effect on the superfluid transition phase boundary. The lines in figure 5 show the transition points for different temperatures, 50, 80, and 110 nK. For the
three temperatures, the number density of the atomic gas remains unchanged. For these different temperatures, we use the same method as in figure 4 to find the transition points. For instance, if we fix $V_{xy} = 6E_R$, the transition points are $V_z = 4.9E_R$, $4.1E_R$, and $2.5E_R$ corresponding to the temperature 50 nK, 80 nK and 110 nK, respectively. The theoretical results are shown in figure 5. At these different temperatures, we still see the experimental agreement (disagreement) in the three dimensional (quasi-two and one dimensional) case. The major observed effect of increasing temperature is the decrease in the critical lattice potential. The significance of strong quantum and thermal fluctuations are revealed in the experiment, which implies the dimension crossover lattices provide a natural platform to study quantum critical behaviors, of fundamental interest to the understanding of high Tc superconductivity in Cuprates.

In figure 5, we find that when V_z is very small, the mean-field transition points are no longer reduced as the depth V_{xy} becomes larger. The reason is because the mean-field effective tunneling $t_{eff} = t_1 + t_2$ is dominated by t_2 in that limit, and remains the same as V_{xy} increases (see figure 6). Meanwhile, with a larger V_{xy}, the chemical potential μ and interaction U are increasing together, with their ratio roughly unaffected. As a consequence, for small V_z, the mean-field superfluid order parameter will not reduce to zero with increased V_{xy}. For large V_z, the order parameter will drop to zero at large V_{xy} (see figure 6). We calculate how the band gap varies in the 1D or 2D limits. As shown in figure 7, it can be seen that there is a significant parameter region ($2 < V_{xy}/E_R < 4$ or $2 < V_z/E_R < 5$) where the band gap is much larger than the tunneling and the interaction strength U and at the same time, the experimental observations do not agree with the single-band Bose–Hubbard model description. In this parameter region, the single band Bose–Hubbard model is expected to be a valid model describing the

Figure 6. The parameters in Bose–Hubbard model for $V_z = 3E_R$ and $4.5E_R$. (a) The dashed lines, dash–dot lines and solid lines represent the chemical potential μ, hopping amplitude t_{eff} and on-site interaction U in the unit of E_R, respectively. (b) The ratio of chemical potential μ to interaction U and the mean-field superfluid order parameter at $V_z = 3E_R$ and $4.5E_R$. In the mean-field theory calculation, we use a temperature $T = 110$ nK.

Figure 7. The band gap in the 1D or 2D limits. (a) The parameters T, U, energy gaps in 2D lattice. (b) The parameters in 1D lattice. The red solid lines and blue dashed lines represent effective tunneling t_{eff} and the interaction energy U. The black solid lines represent the energy gap between the lowest bands in zero quasi-momentum. The dotted lines represent the smallest gap between the lowest two bands.
experimental system. We mention here that when the lattice confinement in a certain direction is extremely small, the single-band model becomes invalid, and field theories incorporating the continuous degrees of freedom should be constructed. Modeling the strong fluctuation effects revealed by our experiment requires more accurate theoretical methods such as quantum Monte-Carlo, which are left for future study.

6. Conclusions

To conclude, we studied the finite temperature superfluid transition in a three dimensional triangular lattice, continuously tuned from three to quasi-one and two dimensions. For the three dimensional case, the experimentally measured superfluid transition point is found to agree with the Gutzwiller mean field theory prediction, whereas it strongly deviates from the mean field theory in the reduced dimensional cases, revealing strong many-body correlation effects in this optical lattice system. The strong quantum and thermal fluctuation effects established in the dimension crossover regions of our triangular optical lattice, suggest rich quantum critical behavior worth further theoretical and experimental exploration.

Acknowledgments

This work is supported by National Program on Key Basic Research Project of China (Grant No. 2016YFA0301501, Grant No. 2017YFA0304204), and National Natural Science Foundation of China (Grants No. 61727819, No. 91736208, and No. 117740067). XL also acknowledges support by the Thousand-Youth-Talent Program of China, and thanks for hospitality by Aspen Center for Physics, which is supported by US National Science Foundation Grant PHY-1607611.

References

[1] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys. 80 885–964
[2] Dutta O, Gajda M, Hauke P, Lewenstein M, Lührmann D-S, Malomed B A, Sowitowski T and Zakrzewski J 2015 Non-standard hubbard models in optical lattices: a review Rep. Prog. Phys. 78 066001
[3] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Boson localization and the superfluid-insulator transition Phys. Rev. B 40 546–70
[4] Jakšch D, Bruder C, Cirac I J, Gardiner C W and Zoller P 1998 Cold bosonic atoms in optical lattices Phys. Rev. Lett. 81 3108–11
[5] Hofstetter W, Cirac I J, Zoller P, Demler E and Lukin M D 2002 High-temperature superfluidity of fermionic atoms in optical lattices Phys. Rev. Lett. 89 220407
[6] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms Nature 415 39–44
[7] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen (De) A and Sen U 2007 Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond Adv. Phys. 56 243–379
[8] Jordens R, Strohmaier N, Günter K, Moritz H and Esslinger T 2008 A mott insulator of fermionic atoms in an optical lattice Nature 455 204
[9] Schneider U, Hackermüller L, Will S, Best T, Bloch I, Costi T A, Helmes R W, Rasch D and Rosch A 2008 Metallic and insulating phases of repulsively interacting fermions in a 3d optical lattice Science 322 1520–5
[10] Esslinger T 2010 Fermi–hubbard physics with atoms in optical lattice Rep. Prog. Phys. 73 116401
[11] Zohar E, Cirac I J and Reznik B 2016 Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices Rep. Prog. Phys. 79 016401
[12] Li X and Liu W V 2016 Physics of higher orbital bands in optical lattices: a review Rep. Prog. Phys. 79 116401
[13] Eckardt A 2017 Colloquium: atomic quantum gases in periodically driven optical lattices Rev. Mod. Phys. 89 0111004
[14] Tarruell L, Greif D, Uehlinger T, Jotzu G and Esslinger T 2012 Creating, moving and merging dirac points with a fermi gas in a tunable honeycomb lattice Nature 483 302
[15] Uehlinger T, Jotzu G, Messer M, Greif D, Hofstetter W, Bissbort U and Esslinger T 2013 Artificial graphene with tunable interactions Phys. Rev. Lett. 111 185307
[16] Hart R A, Duarte P M, Yang T-L, Liu X, Paiva T, Khatami E, Scalettar R T, Trivedi N, Huse D A and Hulet R G 2015 Observation of antiferromagnetic correlations in the hubbard model with ultracold atoms Nature 519 211
[17] Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D and Greiner M 2016 Site-resolved measurement of the spin–correlation function in the fermi-hubbard model Science 353 1253–6
[18] Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanáš-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D and Greiner M 2017 A cold-atom fermi-hubbard antiferromagnet Nature 545 662
[19] Mita D, Brown P T, Guardado-Sanchez E, Kondev S S, Devakul T, Huse D A, Schauss P and Bakr W S 2018 Quantum gas microscopy of an attractive fermi-hubbard system Nat. Phys. 14 373
[20] Köhl M, Moritz H, Stöferle T, Schön C and Esslinger T 2005 Superfluid to mott insulator transition in one, two, and three dimensions J. Low Temp. Phys. 138 635–44
[21] Sebby-Strabley J, Anderlini M, Jessen P S and Porto J V 2006 Lattice of double wells for manipulating pairs of cold atoms Phys. Rev. A 73 033605
[22] Struck J, Öhsächer C, Target R L, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P and Sengstock K 2011 Quantum simulation of frustrated classical magnetism in triangular optical lattices Science 333 996–9
[23] Soltan-Panahi P, Struck J, Hauke P, Bick A, Plenkers W, Meineke G, Becker C, Windpassinger P, Lewenstein M and Sengstock K 2011 Multi-component quantum gases in spin-dependent hexagonal lattices Nat. Phys. 7 434
[24] Wirth G, Olschläger M and Hemmerich A 2011 Evidence for orbital superfluidity in the p-band of a bipartite optical square lattice Nat. Phys. 7 147
[25] Jo G-B, Guzman J, Thomas C K, Houss P, Vishwanath A and Stamper-Kurn D M 2012 Ultracold atoms in a tunable optical kagome lattice Phys. Rev. Lett. 108 045305
[26] Soltan-Panahi P, Lüthmann D-S, Struck I, Windpassinger P and Sengstock K 2012 Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices Nat. Phys. 8 71
[27] Lüthmann D-S, Jürgensen O, Weinberg M, Simonet J, Soltan-Panahi P and Sengstock K 2014 Quantum phases in tunable state-dependent hexagonal optical lattices Phys. Rev. A 90 013614
[28] Rokhsar D S and Kotliar B G 1991 Gutzwiller projection for bosons Phys. Rev. B 44 10328–32
[29] Schroll C, Marquardt F and Bruder C 2004 Perturbative corrections to the gutzwiller mean-field solution of the mott-hubbard model Phys. Rev. A 70 053609
[30] Zakrzewski J 2005 Mean-field dynamics of the superfluid-insulator phase transition in a gas of ultracold atoms Phys. Rev. A 71 043601
[31] Scarola V V, Demler E and Sarma S D 2006 Searching for a supersolid in cold-atom optical lattices Phys. Rev. A 73 051601
[32] Hen I and Rigol M 2010 Strongly interacting atom lasers in three-dimensional optical lattices Phys. Rev. Lett. 105 180401
[33] Coleman P and Schofield A J 2005 Quantum criticality Nature 433 226 EP –, 01
[34] Sachdev S 2008 Quantum magnetism and criticality Nat. Phys. 4 173
[35] Bednorz J G and Müller K A 1986 Possible highte superconductivity in the ba-la-ca-o system Z. Phys. B 64 189–93
[36] Lu X and Yu Y 2006 Finite-temperature effects on the number fluctuation of ultracold atoms across the superfluid-to-mott-insulator transition Phys. Rev. A 74 063615
[37] Kato Y, Zhou Q, Kawashima N and Trivedi N 2008 Sharp peaks in the momentum distribution of bosons in optical lattices in the normal state Nat. Phys. 4 617
[38] Zhou Q and Ho T-I 2010 Density profiles of quantum criticality in the presence of critical fluctuations Phys. Rev. Lett. 105 245702
[39] Hazzard K R A and Mueller E J 2011 Techniques to measure quantum criticality in cold atoms Phys. Rev. A 84 013604
[40] Witzczak-Krempa W, Sørensen E S and Sachdev S 2014 The dynamics of quantum criticality revealed by quantum monte carlo and holography Nat. Phys. 10 361–6
[41] Zhang X, Hung C-L, Tung S-K, Gernelke N and Chin C 2011 Exploring quantum criticality based on ultracold atoms in optical lattices New J. Phys. 13 045011
[42] Zhang X, Hung C-L, Tung S-K and Chin C 2012 Observation of quantum criticality with ultracold atoms in optical lattices Science 335 1070–2
[43] Yang B, Chen Y-Y, Zheng Y-G, Sun H, Dai H-N, Guo X-W, Xiong H and Zhou X 2015 Long-time nonlinear dynamical evolution for p-band ultracold atoms on a lattice Phys. Rev. A 91 023624
[44] Troitský S, Pollet L, Gerbier F, Schnorrberger U, Bloch I, Prokoš E V N V, Svistunov B and Troyer M 2010 Suppression of the critical temperature for superfluidity near the mott transition Nat. Phys. 6 998
[45] Giamarchi T 2004 Quantum Physics in One Dimension vol 121 (Oxford: Oxford University Press)
[46] Zhao E and Liu W V 2008 Theory of quasi-one-dimensional imbalanced fermi gases Phys. Rev. A 78 063605
[47] Lin C, Li X and W V Liu 2011 U(1) × u(1) to x 2 Kosterlitz–Thouless transition of the Larkin–Ovchinnikov phase in an anisotropic two-dimensional system Phys. Rev. B 83 092501
[48] Zhou X, Jin S and Schmiedmayer J 2018 Shortcut loading a bose–einstein condensate into an optical lattice New J. Phys. 20 055005
[49] Hu D, Niu L, Yang B, Chen X, Wu B, Xiong H and Zhou X 2015 Long-time nonlinear dynamical evolution for p-band ultracold atoms in an optical lattice Phys. Rev. A 92 043604
[50] Wang Z, Yang B, Hu D, Chen X, Xiong H, Wu B and Zhou X 2016 Observation of quantum dynamical oscillations of ultracold atoms in the fand d bands of an optical lattice Phys. Rev. A 94 033624
[51] Hu D, Niu L, Jin S, Chen X, Dong G, Schmiedmayer J and Zhou X 2018 Ramsey interferometry with trapped motional quantum states Commun. Phys. 1 129
[52] Niu L, Jin S, Chen X, Li X and Zhou X 2018 Observation of a dynamical sliding phase superfluid with p-band bosons Phys. Rev. Lett. 121 265301
[53] Fisher M E 1998 Renormalization group theory: its basis and formulation in statistical physics Rev. Mod. Phys. 70 653–81
[54] Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Tonks–girardeau gas of fermions in a one-dimensional optical lattice Nature 429 277
[55] Hofferberth S, Lesanovsky I, Schumm T, Imambekov A, Gritsev V, Demler E and Schmiedmayer J 2008 Probing quantum and thermal noise in an interacting many-body system Nat. Phys. 4 489
[56] Gerbier F, Widera A, Folling S, Mandel O, Gericke T and Bloch I 2005 Phase coherence of an atomic mott insulator Phys. Rev. Lett. 95 050404
[57] Yi W, Lin G-D and Duan L-M 2007 Signal of Bose–Einstein condensation in an optical lattice at finite temperature Phys. Rev. A 76 053602
[58] Spielman I B, Phillips W D and Porto J V 2008 Condensate fraction in a 2d bose gas measured across the mott-insulator transition Phys. Rev. Lett. 100 120402
[59] Becker C, Soltan-Panahi P, Kronjäger J, Dörscher S, Bongs K and Sengstock K 2010 Ultracold quantum gases in triangular optical lattices New J. Phys. 12 036502
[60] Castin Y 2001 Bose–einstein condensates in atomic gases: simple theoretical results Coherent Atomic Matter Waves (Berlin: Springer) pp 1–36
[61] Rigol M, Muramatsu A, Batrouni G G and Scalettar R T 2003 Local quantum criticality in confined fermions on optical lattices Phys. Rev. Lett. 91 130403