CsrA Enhances Cyclic-di-GMP Biosynthesis and *Yersinia pestis* Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the *hmsT* mRNA

Amelia R. Silva-Rohwer, a **Kiara Held,** a **Janelle Sagawa,** a **Nicolas L. Fernandez,** b **Christopher M. Waters,** b **© Viveka Vadyvaloo** a

a Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
b Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA

ABSTRACT Plague-causing *Yersinia pestis* is transmitted through regurgitation when it forms a biofilm-mediated blockage in the foregut of its flea vector. This biofilm is composed of an extracellular polysaccharide substance (EPS) produced when cyclic-di-GMP (c-di-GMP) levels are elevated. The *Y. pestis* diguanylate cyclase enzymes HmsD and HmsT synthesize c-di-GMP. HmsD is required for biofilm blockage formation but contributes minimally to *in vitro* biofilms. HmsT, however, is necessary for *in vitro* biofilms and contributes to intermediate rates of biofilm blockage. C-di-GMP synthesis is regulated at the transcriptional and posttranscriptional levels. In this, the global RNA chaperone, Hfq, posttranscriptionally represses *hmsT* mRNA translation. How c-di-GMP levels and biofilm blockage formation is modulated by nutritional stimuli encountered in the flea gut is unknown. Here, the RNA-binding regulator protein CsrA, which controls c-di-GMP-mediated biofilm formation and central carbon metabolism responses in many Gammaproteobacteria, was assessed for its role in *Y. pestis* biofilm formation. We determined that CsrA was required for markedly greater c-di-GMP and EPS levels when *Y. pestis* was cultivated on alternative sugars implicated in flea biofilm blockage metabolism. Our assays, composed of mobility shifts, quantification of mRNA translation, stability, and abundance, and epistasis analyses of a *csrA hfq* double mutant strain substantiated that CsrA represses *hfq* mRNA translation, thereby alleviating Hfq-dependent repression of *hmsT* mRNA translation. Additionally, a *csrA* mutant exhibited intermediately reduced biofilm blockage rates, resembling an *hmsT* mutant. Hence, we reveal CsrA-mediated control of c-di-GMP synthesis in *Y. pestis* as a tiered, posttranscriptional regulatory process that enhances biofilm blockage-mediated transmission from fleas.

IMPORTANCE *Yersinia pestis*, the bacterial agent of bubonic plague, produces a c-di-GMP-dependent biofilm-mediated blockage of the flea vector foregut to facilitate its transmission by flea bite. However, the intricate molecular regulatory processes that underlie c-di-GMP-dependent biofilm formation and thus, biofilm-mediated blockage in response to the nutritional environment of the flea are largely undefined. This study provides a novel mechanistic understanding of how CsrA transduces alternative sugar metabolism cues to induce c-di-GMP-dependent biofilm formation required for efficient *Y. pestis* regurgititative transmission through biofilm-mediated flea foregut blockage. The *Y. pestis*-flea interaction represents a unique, biologically relevant, *in vivo* perspective on the role of CsrA in biofilm regulation.

KEYWORDS *Yersinia pestis*, *Xenopsylla cheopis* fleas, carbon storage regulator, c-di-GMP

Yersinia pestis evolved clonally from the gastrointestinal pathogen *Yersinia pseudotuberculosis* to be transmitted via flea bite (1–3). Within the flea gut, *Y. pestis* derives its nutrition from the bloodmeal and by-products of blood digestion to multiply and form a cohesive biofilm (4, 5). This enables development of a biofilm-mediated

July/August 2021 Volume 12 Issue 4 e01358-21
blockage of the flea foregut. Blockage facilitates regurgitation of bacteria back into the flea bite site of the mammalian host to cause plague (3, 6).

Biofilms are multicellular bacterial communities encased in self-produced extracellular polymeric substances (EPS). Poly-β-1,6-N-acetyl-α-glucosamine exopolysaccharides (PNAG) comprise the Y. pestis EPS and are synthesized and exported by the gene products of the hmsHFRS operon (7, 8). The hmsHFRS operon is highly transcribed at flea optimal temperatures of ≤26°C, and the gene products are produced at elevated c-di-GMP levels (9, 10). In many bacteria, the planktonic/sessile and biofilm-producing states are directed by low or high levels of c-di-GMP, respectively (11–13). In the case of Y. pestis, three of the four discrete genetic changes that confer the trait of biofilm-mediated blockage transmissibility to this pathogen occur in loci involved in c-di-GMP metabolism (14, 15).

C-di-GMP is synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterase (PDE) enzymes. Two DGCs, encoded by hmsT and hmsD, and one PDE encoded by hmsP, modulate c-di-GMP synthesis and hydrolysis, respectively, and are involved in biofilm production in Y. pestis (16–20). Although hmsT and hmsD have comparable transcript levels in vitro and in fleas (20), HmsD is predominantly involved in c-di-GMP synthesis in the flea. An hmsD mutant is severely impaired in biofilm-mediated flea blockage but exhibits only small reductions in in vitro biofilm formation (19, 20). Conversely, HmsT is the predominant DGC for in vitro biofilms. An hmsT mutant produces little to no biofilm in vitro and exhibits intermediate flea blockage rates (17, 20, 21). HmsT protein abundance is regulated at the transcriptional and posttranslational levels, while HmsD protein abundance is regulated posttranslationally. Hfq, the global RNA binding protein, posttranscriptionally represses hmsT mRNA (22, 23), while the Rcs phosphorelay system response regulator protein, RcsB, inhibits hmsT gene expression (24). HmsD is part of the HmsCDE locus encoding a tripartite signaling system, wherein HmsD is inversely modulated by HmsC and HmsE proteins in response to specific environmental stimuli (16, 19).

How Y. pestis integrates nutritional stimuli encountered in the flea gut to modulate c-di-GMP synthesis is unknown. The carbon storage regulator protein, CsrA, therefore was of interest because it posttranscriptionally coordinates physiological adaptations to changing nutritional environments in many bacteria. Additionally, the csrA gene is highly transcribed in Y. pestis blocked fleas (4). CsrA is a widely conserved global RNA binding protein in Gammaproteobacteria species, where it functions to modulate central carbon metabolism, cellular development, and pathogenesis and exhibits well-defined involvement in regulating biofilm formation (25–36). CsrA binds to the GGA motifs within 5′ untranslated regions (5′UTR) of target mRNAs to alter their translation (37–41). Two noncoding RNAs (ncRNAs), CsrB and CsrC, containing numerous CsrA binding motifs, sequester and antagonize CsrA activity by competing for binding with target mRNAs (30).

CsrA primarily posttranscriptionally represses mRNA targets that activate biofilm formation in bacteria (25, 31, 36, 42, 43). However, CsrA positively regulates in vitro biofilm production in Y. pestis by an undefined mechanism (44). Here, we sought to determine if CsrA has a role in the physiologically relevant context of in vivo biofilm-mediated flea blockage. We determined that CsrA promoted in vitro biofilm production more stringently when alternative sugars implicated in flea biofilm formation were supplemented in the culture medium. Additionally, we identified that the mechanism by which CsrA positively regulated biofilm production was through translational inhibition of the hfq mRNA, which posttranscriptionally represses the hmsT mRNA required for c-di-GMP biosynthesis. Lastly, we determined that Y. pestis CsrA is needed for robust biofilm-mediated blockage of the transmission-proficient rat flea, Xenopsylla cheopis.

RESULTS

CsrA positively regulates in vitro EPS and intracellular c-di-GMP levels. Biofilm formation of a Y. pestis csrA mutant is impaired during growth on alternative carbon
sources (e.g., K-gluconate) versus the primary carbon source glucose (44). The alternative sugars ribose and galactose appear to be primarily catabolized by Y. pestis during flea blockage (4, 5). Hence, we tested if biofilm EPS formation in a csrA mutant is more drastically impaired in these biologically relevant sugars versus glucose. An assay based on the specificity of Congo red (CR) dye to polysaccharides (17, 45) was used to allow direct comparison of EPS production from different carbon sources through normalization by bacterial biomass. The assay media were HIB, a rich routine culture medium, and the chemically defined medium TMH (46), supplemented with either glucose (TMH-glu), ribose (TMH-rib), or galactose (TMH-gal).

A csrA mutant (ΔcsrA) generated previously (44) in the avirulent epidemic KIM6+ strain background, with an isogenic wild-type (WT) parent strain and a cis-complemented csrA mutant strain (ΔcsrA::csrA), were tested for EPS production. EPS production by the WT strain in HIB was >10-fold less than that in TMH medium regardless of the carbon source (Fig. 1A). EPS production in the WT strain was significantly lower in TMH-glu versus TMH-gal and TMH-rib. Under all conditions, a ΔhmsR strain, used as a negative control as it is unable to produce EPS, displayed little to no CR binding. Compared to the WT strain, the ΔcsrA strain had significantly reduced EPS levels under all conditions, a phenotype that was restored in the ΔcsrA::csrA strain. Mean reduction in EPS levels for the ΔcsrA strain relative to the WT strain were 24% and 40% in HIB and TMH-glu and 87% and 81% in TMH-rib and TMH-gal, respectively.

To assess if EPS levels in the ΔcsrA strain correlated with intracellular c-di-GMP pools, we quantified c-di-GMP in strains grown in TMH-glu, TMH-gal, and TMH-rib. The c-di-GMP levels of the WT strain ranged between 7.6 and 10.4, 63.4 to 107.8, and 63.6 to 117.8 pmol/mg cell weight in TMH-glu, TMH-gal, and TMH-rib, respectively (Fig. 1B). Under all conditions, a ΔhmsT strain, dysfunctional in c-di-GMP synthesis (19), produced little to no c-di-GMP, as expected (18, 19, 22). Compared to the WT strain, the ΔcsrA strain had 2.7-, 8.2-, and 42-fold mean reduction in c-di-GMP levels in TMH-glu, TMH-gal, and TMH-rib, respectively. The ΔcsrA::csrA strain exhibited c-di-GMP levels within ranges displayed by the WT strain. Therefore, biofilm and c-di-GMP production in TMH-gal and TMH-rib was highly dependent on functional CsrA. However, TMH-gal was selected for the next experiments to allow for comparison with published studies (47).

CsrA Promotes translation of the hmsT mRNA. CsrA alters translation rates of mRNAs encoding enzymes for c-di-GMP synthesis or degradation, thereby altering c-di-GMP and EPS production in other bacteria (25, 35, 42, 43). Wilias et al. (44) proposed that CsrA targets the hmsP and/or hmsT mRNAs to reduce c-di-GMP levels in the ΔcsrA strain and identified putative CsrA binding sites in the 5′ UTRs of these transcripts. Our experiments described above support this idea, since we showed reduced c-di-GMP levels in the ΔcsrA strain.

To determine if translation of the hmsP and hmsT mRNAs are CsrA dependent, we constructed posttranscriptional green fluorescent protein (GFP) fusion reporters. The 5′ UTR plus predicted CsrA binding motifs (44) were engineered in-frame to the coding sequence (CDS) of gfpmut3.1 (Fig. 2A) and an inducible promoter, PtetO. The use of the PtetO promoter was intended to uncouple transcription from control by growth phases, environmental signals, or transcription factors. The 5′ UTR of flhDC was used as a positive control because it is a validated target of CsrA in Y. pseudotuberculosis (48) and shares 100% nucleotide identity with the 5′ UTR of Y. pestis flhDC mRNA. CsrA is identical between Y. pestis and Y. pseudotuberculosis; thus, Y. pestis CsrA was expected to bind the flhDC transcript. The 5′ UTR of housekeeping gene gyrB that lacks CsrA binding motifs was used as a negative control.

GFP reporter fusion constructs were transformed into the WT and ΔcsrA strains. Strains were grown in TMH-gal and fluorescence recorded at 3 h postinduction, when the greatest GFP induction was achieved for each construct (data not shown). As expected, GFP expression between the WT and ΔcsrA strains from the gyrB-gfp reporter was comparable but was significantly reduced in the ΔcsrA strain with the flhDC-gfp reporter (Fig. 2B). No significant difference in GFP expression between the WT and ΔcsrA
strains was noted for the hmsP-gfp reporter. However, significant reduction in GFP expression occurred in the hmsT-gfp reporter in the ΔcsrA strain compared to the WT strain, suggesting that the hmsT mRNA translation was CsrA dependent.

Next, to determine if decreased hmsT mRNA translational levels in the ΔcsrA strain are a result of decreased hmsT mRNA levels, we evaluated steady-state levels of the hmsT mRNA in the WT and ΔcsrA strains using reverse transcription-quantitative PCR (RT-qPCR). We included an evaluation of the hmsP mRNA as a negative control, as hmsP mRNA translational levels were unaffected by CsrA. The relative steady-state mRNA levels of the hmsT mRNA were significantly lower in the ΔcsrA strain than the WT strain, while the hmsP mRNA levels were similar between these strains (Fig. 2C). These data suggested that hmsT mRNA abundance was CsrA dependent.
CsrA does not bind directly to the hmsT mRNA. To determine if CsrA regulation of the hmsT mRNA results from direct binding of CsrA, RNA electrophoretic mobility shift assays (REMSAs) were conducted. A transcript of the hmsT mRNA containing the same region as that in the hmsT-gfp reporter fusion was used to examine the interaction of the hmsT mRNA 5′ UTR and CsrA. The hns mRNA that does not bind to CsrA was used as a negative control, and the 5′ UTR of flhDC served as a positive control (48). As previously reported (48), the labeled hns probe did not shift with increasing concentrations of CsrA-His6 (Fig. 2D). As expected, a shift occurred for the labeled flhDC probe at increasing concentrations of CsrA-His6 (Fig. 2E). No shift was seen for the labeled hmsT probe with increasing concentrations of CsrA-His6 (Fig. 2F), indicating that CsrA was not able to bind directly to the hmsT mRNA. These results strongly suggested that CsrA indirectly regulated hmsT mRNA translation.

CsrA binds specifically to the hfq mRNA. The mRNAs of known negative regulators of hmsT, RcsB or Hfq, may instead be targeted by CsrA. Indeed, CsrA orthologs of the plant pathogen Erwinia amylovora and E. coli repress mRNAs of Y. pestis orthologs of rcsB (33) and hfq (49), respectively. Both rcsB and hfq genes are part of polycistronic operons (33, 49–51). CsrA can target downstream genes within polycistronic operons by binding to CsrA binding motifs located in the 3′ end of the upstream gene (52). Therefore, to determine if Y. pestis rcsB and hfq mRNAs are candidate mRNA targets of
CsrA, a position matrix scan (44) was applied to the 5′ UTR of rcsB and hfq mRNAs to identify putative CsrA binding sites. Up to 250 bases upstream from the translational initiation codon were queried, in keeping with ranges for to-date validated CsrA targeted 5′ UTRs (36, 53, 54). Two potential binding sites were found in the hfq transcript (Fig. 3A; see also Fig. S1 in the supplemental material); one overlapped the Shine-Dalgarno (SD) sequence of the hfq mRNA (BS1) and the other occurred in a stem-loop, spanning the 2151 to 2159 nucleotide sequence located at the 3′ end of the upstream gene, miaA (BS2). The rcsB leader region contained no potential CsrA binding sites (data not shown). To experimentally test if hfq mRNA translation was CsrA dependent, we first generated an hfq-gfp posttranscriptional fusion reporter containing both putative CsrA binding sites. The GFP reporter expression from the hfq-gfp reporter in TMH-gal medium was compared between the WT and ΔcsrA strains (Fig. 3B). Expression was significantly higher in the ΔcsrA strain, suggesting that CsrA repressed hfq mRNA translation.

To determine if CsrA binds directly to the hfq mRNA, REMSAs were conducted. A minor shift in the labeled hfq probe was noted at 75 nM CsrA-His6, but at 150 nM CsrA-His6, the entire complex had shifted (Fig. 4A). Competitive binding assays verified that CsrA binding to the hfq mRNA was specific because, when competed with 2- and 10-fold excess unlabeled hfq probe, the labeled hfq probe shifted only partially or not at all, respectively (Fig. 4B).

To determine if CsrA binds to the identified GGA sites, we generated labeled probes with CC substitutions for the GG nucleotides in the GGA motif for BS1 (hfq BS1 mutant), CCC substitutions for the GGA motif at BS2 (hfq BS2 mutant) alone, and the respective aforementioned substitutions at both sites (hfq BS1/BS2 mutant). All mutant probes showed reduced binding to CsrA-His6, but at varied levels (Fig. 4C to E). For the hfq BS1 mutant probe, a small effect on binding to CsrA-His6 was noted by the presence of two complexes, one that had not shifted and the other that had shifted at ≥112 nM CsrA-His6 (Fig. 4C). The hfq BS2 mutant probe (Fig. 4D) and hfq BS1/BS2 mutant probe

FIG 3 CsrA negatively regulates hfq mRNA translation. (A) Nucleotide sequence of the 3′ end of the miaA gene (shaded gray) and the intercistronic region miaA-hfq genes plus ATG start of the hfq mRNA. The Shine-Dalgarno (SD) sequence and the ATG start codon for the hfq mRNA coding region are boldfaced and underlined. GGA motifs of the two putative CsrA binding sites are in red. The transcriptional start site (TSS) from the immediate upstream promoter is depicted by an arrow. (B) Posttranscriptional fusion reporter plasmids composing the upstream sequence and the first 9 codons of hfq fused to gfpmut3.1 (gfp), and the PtetO promoter was used in the WT and ΔcsrA strains. Error bars represent mean ± SEM relative RFU/OD600 from four independent experiments.
Y. pestis hfq mRNA can also be transcribed from a promoter immediately upstream of its translational start codon. In this case, the hfq transcript composes a 90-nucleotide 5′ UTR sequence with only BS1 present (50). Additionally, a shorter GFP reporter fusion construct representative of this shorter 5′ UTR (2115 through 127 nucleotides in relation to the ATG start) had increased GFP expression in the ΔcsrA strain compared to that of the WT strain (Fig. S2). Thus, BS1 and BS2 are authentic CsrA binding sites.

CsrA blocks translation but does not accelerate the decay rate of the hfq mRNA. CsrA may decrease hfq mRNA translation by accelerating its decay rate, blocking its translation by preventing ribosome binding, or by facilitating premature transcription termination (55). To test if CsrA alters stability of the hfq mRNA, we determined the half-life of this transcript in the WT and ΔcsrA strains after addition of rifampin to prevent transcription initiation. The mean (± standard deviation [SD]) half-life of the hfq mRNA (Fig. 5A) was similar between the WT (12 ± 2.0 min) and ΔcsrA (11.3 ± 1.3 min) strains. Therefore, CsrA binding does not destabilize the hfq mRNA.

To determine if hfq mRNA translational repression results from CsrA binding and preventing translation, we performed in vitro cell-free translational assays. We initially utilized an mRNA template containing the full-length sequence of the hfq gene engineered with a Flag tag preceding the stop codon. However, similar to a previous report using a full-length E. coli hfq gene template in cell-free translational assays (49), multiple bands were observed on immunoblots due to incomplete denaturation of the hexameric Hfq protein. Hence, mRNA templates derived from the hfq-gfp and hmsT-gfp (negative control) reporters described above were used. Similar amounts of the HmsT-GFP protein were synthesized in the presence and absence of CsrA (Fig. 5B), as expected if CsrA did not directly bind and alter translational levels of the HmsT mRNA. However, translation of the hfq-gfp transcript was inhibited in the presence of CsrA (Fig. 5B), as reflected by the 2.5 (±SD, 0.67) greater levels of Hfq-GFP protein in the absence of CsrA relative to its presence. This outcome supported that CsrA binds directly to and prevents translation of the hfq mRNA.

CsrA represses hfq mRNA translation, facilitating derepression of hmsT mRNA translation. Y. pestis Hfq posttranscriptionally represses hmsT mRNA translation by accelerating its decay rate (22, 23). Therefore, the hmsT mRNA half-life should be shorter in a ΔcsrA strain if CsrA no longer represses the hfq mRNA. To determine the mRNA stability of the hmsT mRNA in the ΔcsrA strain versus the WT strain, we determined the half-life of the hmsT mRNA as described above. As predicted, the mean ±
SD half-life of the *hmsT* mRNA (Fig. 6A) was reduced by 27.8% in the Δ*csrA* strain (2.6 ± 0.0 min) compared to the WT strain (3.6 ± 0.3 min).

We reasoned further that if CsrA represses *hfq* mRNA translation to facilitate derepression of *hmsT* mRNA levels and increased biofilm production. To determine if this occurs, we generated a Δ*csrA* Δ*hfq* double mutant strain. A complemented derivative thereof, Δ*csrA* Δ*hfq* (pLG*hfq*) strain, was also constructed by inserting the *hfq* gene and native promoter sequence on a low-copy-number plasmid, pLG338, to create pLG*hfq*.

First, steady-state levels of the *hmsT* mRNA at log phase were evaluated in the Δ*csrA* Δ*hfq* and Δ*csrA* Δ*hfq* (pLG*hfq*) strains compared to the Δ*csrA* and WT strains in TMH-gal (Fig. 6B). As hypothesized, the Δ*csrA* Δ*hfq* strain exhibited restored levels of the *hmsT* mRNA comparable to the WT strain. Additionally, the Δ*csrA* Δ*hfq* (pLG*hfq*) complemented strain showed *hmsT* levels comparable to those of the Δ*csrA* strain and significantly lower than that of the WT strain.

During routine lab culture, *Y. pestis* incurs spontaneous loss of a 102-kb locus, referred to as the pigmentation locus (56), or Pgm locus, named for the ability to form pigmented colonies on CR-supplemented agar (57). The *hmsHFRS* operon is located within the *pgm* locus and confers this phenotype. When culturing our Δ*csrA* Δ*hfq* strain on media that promote high biofilm production, we noted that the strain had a high propensity to form nonpigmented colonies, reflecting loss of EPS production. Therefore, to quantify EPS levels in these strains, CR assays were performed using LB medium that does not support high levels of biofilm production. Nonetheless, EPS levels in the Δ*csrA* Δ*hfq* strain were not different from those of the WT strain (Fig. 6C), and the Δ*csrA* Δ*hfq* (pLG*hfq*) complemented strain showed EPS levels comparable to those
of the ΔcsrA strain but significantly lower than that of the WT strain (Fig. 6C).
Additionally, we analyzed the pigmentation phenotypes of the strains on LB agar supplemented with CR. Pigmentation phenotypes matched the quantitative CR binding assay data. Thus, as hypothesized, EPS and hmsT mRNA steady-state levels in the ΔcsrA Δhfq strain and ΔcsrA Δhfq (pLGHfq) complemented strain corresponded with that of the WT and ΔcsrA strains, respectively.

CsrA is required for the robust formation of biofilm-mediated blockage in fleas. Finally, to define the role of CsrA in biofilm-mediated flea foregut blockage, we compared cumulative blockage rates in cohorts of rat fleas infected with WT, ΔcsrA, and ΔcsrA::csrA strains over a 28-day period (Fig. 7A). Fleas infected with the ΔcsrA strain achieved significantly lower cumulative blockage rates of 16.8% (±SD, 3.2) relative to the WT strain-infected fleas, which achieved rates of 39.8% (±SD, 10.4). Similar to the WT strain-infected fleas, the ΔcsrA::csrA strain-infected fleas exhibited rates of 34.2% (±SD, 11.7). An analysis of temporal incidence of blockage showed that while fleas infected with the WT and the ΔcsrA::csrA strains attained peak blockage incidence at ~15 days postinfection (dpi), the ΔcsrA strain-infected fleas exhibited generally lower blockage incidence, which was significant at 15 and 19 dpi (Fig. 7B). Flea bacterial loads and flea infection rates were not significantly different among the strains (Fig. 7C and D) despite being slightly lower in the ΔcsrA-infected fleas. Therefore, growth kinetics of the ΔcsrA strain in fleas was likely slightly lower, similar to that reported during in vitro growth (44). CsrA mutants in other bacterial species also show slow growth kinetics (28, 58). Additionally, the bacterial loads and infection rates of the ΔcsrA strain resembled those reported for biofilm-deficient Y. pestis strains (7, 59–61). Biofilm is thought to maintain bacteria in aggregates that are not easily cleared through defecation after flea blood-feeding and digestion (reviewed in reference 3), accounting for lower bacterial number in strains with reduced biofilm levels.

DISCUSSION

Our work provides evidence for CsrA control of biofilm production in Y. pestis occurring through a tiered posttranscriptional regulatory mechanism (Fig. 8). In summary, cues from alternative carbon catabolism are transduced by CsrA to repress hfq mRNA.
translation, which, in turn, leads to translational derepression of the hmsT mRNA and a respective increase in intracellular c-di-GMP pools and biofilm production. Thus, CsrA is required to facilitate robust Y. pestis biofilm-mediated foregut blockage rates in rat fleas. Maintenance of normal blockage rates drives epizootic-scale plague transmission events (2, 62). Thus, a 50% reduction in blockage rate, as seen for the csrA mutant, is synonymous with a compromised ability to maintain natural plague transmission cycles. Coincidently, an hmsT mutant exhibits a similar 50% decrease in blockage rate (20, 21), in agreement with the notion that csrA mutant blockage rates are due to the absence of CsrA-dependent enhancement of hmsT mRNA translation.

Using ribose- and galactose-supplemented media enabled our reiteration that Y. pestis EPS levels are significantly greater during culture on alternative rather than primary carbon sources (44, 63). This aligns with observations that metabolic genes involved in uptake of alternative sugars, particularly pentose sugars, are strongly induced in blocked fleas (4, 5), and an intact pentose phosphate pathway is required for efficient flea foregut blockage (61). In addition, we demonstrated that severe impairment in EPS levels in the csrA mutant resulted from exacerbated defects in producing c-di-GMP on alternative carbon sources. CsrA is therefore critical for stimulating c-di-GMP synthesis to increase EPS levels coincident with alternative carbon metabolism. Improved growth and biofilm production on alternative carbon sources in Y. pestis is mediated by cyclic AMP (cAMP) and the cAMP receptor protein complex, cAMP-CRP, under glucose-limiting conditions (44, 63). Thus, Y. pestis CsrA-dependent biofilm formation overlaps carbon catabolite repression enabling biofilm production. Interestingly, in Y. pseudotuberculosis, cAMP-CRP activates csrC but
represses csrB transcription, thereby optimizing infection fitness to the nutritional status of the mammalian host (64). CsrB also negatively regulates Y. pseudotuberculosis HmsHFRS-dependent biofilm (65). In E. coli, cAMP-CRP interfaces with the Csr system by inhibiting csrC and csrB expression and promoting CsrA-dependent biofilm inhibition (41, 66). If and how Y. pestis orthologs of sensory ncRNAs CsrB and CsrC (67) contribute to finely adjust CsrA activity in response to physiological changes during flea infection is under our investigation currently.

Bellows et al. (22) described that the hmsT mRNA is posttranscriptionally repressed by Hfq binding to its 5’ UTR, leading to accelerated transcript decay and decreases in transcript abundance of the hmsT mRNA. Hfq also posttranscriptionally regulates the hmsT mRNA through its AU-rich, long 3’ UTR sequence (23). A yet-to-be-identified small ncRNA is predicted to facilitate Hfq-hmsT mRNA interactions (22, 23). Consistent with these reports, we demonstrated that CsrA directly repressed hfq mRNA translation and that the hmsT mRNA incurred accelerated transcript decay. Epistatic analysis using a csrA hfq double mutant, in which we observed a restoration of hmsT mRNA and EPS levels to that exhibited by the wild-type strain, reinforced our findings. Notably, the csrA hfq double mutant exhibited slow growth kinetics relative to the other strains particularly when the Pgm locus was retained. However, when the Pgm locus was lost, the strain grew relatively faster (data not shown), suggesting that high biofilm production compromises growth fitness. Thus, CsrA in Y. pestis may play a role in optimizing growth fitness under nutritional conditions that promote costly biofilm production.

Hfq indirectly activates transcription of hmsP, and, together with posttranscriptional repression of the hmsT mRNA, causes decreases in biofilm and c-di-GMP levels in Y. pestis cultured on brain-heart infusion medium (22). However, in TMH-gal we noted that in an hfq mutant strain, the mRNA levels of hmsT were significantly greater than that of the wild-type strain, as expected, whereas hmsP transcript levels were similar.
between the wild-type and hfq mutant strains (see Fig. S3 in the supplemental material). We also showed that CsrA does not affect hmsP mRNA steady-state or translational levels, thereby eliminating a role for CsrA-dependent regulation of the hmsP mRNA in biofilm formation under biologically relevant conditions.

In E. coli MG1655, CsrA facilitates repression of an hfq mRNA originating from a promoter immediately upstream of the hfq ATG start through occlusion of ribosome binding and not accelerated mRNA decay (49). Coincidently, the CsrA binding site at the Shine-Dalgarno site for hfq is identical between Y. pestis and E. coli (Fig. S4). However, unlike Y. pestis, E. coli MG1655 does not similarly encode other GGA motifs upstream of the hfq mRNA translational start codon (Fig. S4). In Y. pestis, hfq mRNA transcribed with the upstream miaA gene fully restores Hfq function to an hfq mutant (50), emphasizing the significance of this transcript for production of functional Hfq levels. CsrA repression of this miaA-hfq-containing transcript in Y. pestis likely transpires through the two CsrA binding sites or the binding site at the Shine-Dalgarno site when the hfq transcript is derived from the immediately upstream promoter. In this way, hfq mRNA translation is expected to be more robustly inhibited by CsrA. Furthermore, the Y. pestis hfq transcript mutated only at the Shine-Dalgarno site possessed only a minor inability to completely shift (Fig. 3C). This may reflect an insufficiency of this binding site to properly repress hfq translation of the miaA-hfq-containing transcript, hence the need for the second binding site.

In numerous pathogens, Hfq is critical for mammalian virulence (68, 69), and in Y. pestis it is also essential for flea foregut blockage (47). Hfq regulates distinct ncRNA repertoires required for physiological fitness that are conditionally expressed during changing infection stages (68, 69). The highly stable nature of the hfq mRNA and repression of hfq mRNA translation without mRNA decay revealed by our half-life studies conceivably preserves hfq mRNA levels for any future critical rapid redeployment of Hfq protein. CsrA-mediated alterations in the hfq mRNA chiefly occurred when the number of blocked rat fleas seen was at its peak. Whether, during this peak blockage stage, (i) the ncRNA that facilitates the Hfq-hmsT mRNA interaction is produced, requiring CsrA repression of the hfq mRNA and (ii) ncRNAs CsrB and CsrC are not expressed to prevent sequestration of CsrA are intriguing questions.

CsrA-dependent biofilm regulation can occur through multiple mechanisms in bacteria. For example, in E. coli, CsrA represses translation of mRNAs encoding DGCs (25), PgaABCD, a homolog to HmsHFRS (36), and the NhaR transcriptional regulator that activates pgaABCD transcription (70) but promotes translation of the ymdA mRNA involved in inhibiting biofilm production (54). Similarly, we predict that CsrA targets other mRNAs involved in biofilm formation in Y. pestis. One putative Y. pestis target that encodes a CsrA GGA binding motif in its 5’ UTR is the hmsHFRS mRNA (44). Future studies will be needed to validate putative mRNA targets in Y. pestis. Nonetheless, indirect modulation of DGC mRNAs to promote biofilm production, as illustrated here for CsrA in Y. pestis, is seldom appreciated as part of the repertoire of CsrA-mediated molecular mechanisms of biofilm control. Notably, this contrasts with the better-known paradigmatic role of CsrA direct translational repression of DGC mRNAs to inhibit biofilm formation in other Gammaproteobacteria.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions. Bacterial strains and plasmids used in this study are listed in Table S1 in the supplemental material. The Y. pestis KIM6+ (pCD1−) strains were cultured on Congo red-heart infusion agar (57) to confirm the presence of the hmsHFRS locus prior to subsequent culturing. Strains were grown at 25°C with shaking unless otherwise stated. The chemically defined TMH medium was prepared as described previously (46). DNA sequencing verified all constructs.

Construction of Y. pestis mutant and complemented strains. Primers are listed in Table S2 under “Mutant and complementation strain construction.” To generate the Y. pestis ΔcsrA:csrA complemented csrA mutant strain, the csrA gene, with flanking promoter, and terminator regions were cloned into pUC18R6KT-mini-Tn7T-Km (71) at the EcoRI sites to create pUC18R6KT-mini-Tn7T-Km-csrA. This plasmid was then used to transpose the csrA expression fragment into the glmS-pstS site of the previously generated csrA mutant strain (44) as previously described (71).
To create the ΔcsrA Δhfq mutant strain, the hfq gene in the csrA mutant strain was replaced by a kanamycin resistance cassette by homologous recombination, as reported in a previous study (47). This was done by PCR amplification of a fragment containing flanking regions of the hfq gene and kanamycin cassette from the hfq mutant (47) genomic DNA using hfq deletion primers (Table S2). The hfq gene and its up- and downstream sequences were PCR amplified (Table S2) and cloned into a low-copy-number vector, pLG338 (72), at the SmaI site to create plasmid pLG with pLG units (RFU; excitation, 475 nm; emission, 515 nm) were measured on a TECAN Spark plate reader with op-

drotetracycline (ATc; 200 ng/ml) or vehicle. At 3 h postinduction, the numbers of relative (Table S1).

CsrA Promotes

CR binding assay. CR binding assays were performed as previously described, with minor modifi-

ations (17). CR was used at final concentrations of 0.03 ng/ml (HIB), 0.06 ng/ml (TMH-glu), 0.12 ng/ml (TMH-gal and TMH-rib), or 0.02 ng/ml (LB) to account for EPS production and incubated for 3 h (HIB and LB) or 1 h (TMH). The A600 values of sample supernatants were subtracted from medium controls contain-

ing CR at their respective concentrations to calculate relative bound CR. The value for the WT strain under each condition was set to 1 for Fig. 1. These values then were multiplied by either 0.5, 1, or 4 for HIB, TMH-glu, and TMH-rib/r to correct for the amount of CR added per medium condition.

C-di-GMP extraction and quantification. Strains were grown to late log phase. C-di-GMP was extracted from pelleted cells with extraction buffer (100 μl/48-mg cell pellet), and samples were neutral-

ized and quantified using high-performance liquid chromatography (HPLC) as described previously (16, 18, 22).

Fusion reporter construction and assay. The upstream sequences and partial coding sequences were PCR amplified (primers are listed in Table S2 under “Translational fusion reporters”) for rhDC, gyrB, hmsP, hmsT, and hfq. The generated fragments were then fused to amplified fragments of gfpmut3.1 from pFUS34 (73) by splice overlap extension PCR (SOE-PCR) and then subjected to digestion with EcoRI and cloned into low-copy-number plasmid pMWO78 (74) at the EcoRI/SmaI sites. Plasmids generated were denoted pMWO78:S’UTR of interest-gfpmut3.1 and transformed into the WT and ΔcsrA strains (Table S1).

GFP reporter strains were grown to early log phase, split into separate flasks, and treated with anhy-
drotetracycline (ATc; 200 ng/ml) or vehicle. At 3 h postinduction, the numbers of relative fluorescent units (RFU; excitation, 475 nm; emission, 515 nm) were measured on a TECAN Spark plate reader with optical density at 600 nm (OD600) values taken simultaneously. The medium blank RFU reading was sub-

tracted from the culture RFU of samples and normalized to OD600 values to account for bacterial growth. The difference of RFU/OD600 values of induced samples from uninduced samples was then calculated.

CsrA-His6 expression and purification. The csrA gene was amplified (primers listed in Table S2 under “CsrA-His tag construct”), digested with Ncol/Xhol, and cloned into matching sites in pET28A (Novagen), which was transformed into the E. coli strain, BL21 DE3 pLYS.S. Cultures were induced as previously described (75). Cell pellets were resuspended in protein buffer (100 mM Tris-HCl, 300 mM NaCl, pH 7.5, 20 mM imidazole), 26 U/ml Benzonase (Sigma), and one tablet of cOmplete Mini EDTA-free protease inhibitor cocktail (Roche) per 10 ml buffer and then lysed by sonica-

tion. Protein was purified from the supernatant using affinity chromatography as previously described (75). Relevant fractions were dialyzed with a 10,000 molecular weight cutoff (MWC0) Slide-A-Lyzer G2 di-

alysis cassette (Thermo Fisher Scientific) in dialysis buffer (protein buffer without imidazole). Buffer exchange was performed with 100 mM Tris-HCl, pH 7.5, using a Pall Microsep centrifugal device (3,000 MWC0). Concentrated protein was quantified using the DC protein assay (Bio-Rad). Before incubation with RNA probe, CsrA-His6 was prepared using 10 mM Tris-HCl, 10% glycerol, pH 7.5. CsrA protein was diluted as previously described (76).

Construction of hfq mRNA probes with GGA site mutations. The nucleotide fragment containing a T7 promoter, the upstream region of hfq (bp 177 through 74), and the GG-to-CC mutation in BS1 was commercially synthesized (Eurofins) and blunt-end cloned into pJF1.2 (Thermo Fisher) to create pJF1.2::hfq UTR BS1mut. To generate the BS2 and BS1/BS2 fragments, primers (Table S2 under “EMSA probes”) containing the GGA-to-CCC mutation in BS2 or CC-to-GG restoration in BS1 were used with inverse PCR of the pJF1.2::hfq UTR BS1mut to generate mutated fragments for labeled probe generation.

REMSA. To generate biotin-labeled EMSA probes, PCR fragments were first generated from primers (Table S2 under “EMSA probes”) where each forward primer contained a T7 promoter sequence. Fragments were gel purified and transcribed with the MegaShortScript T7 transcription kit (Invitrogen). Probes were purified using the RNA Clean and Concentrator-25 kit (Zymo) and their size confirmed by electrophoresis. RNA probes were then labeled using a Pierce RNA 3′-end biotinylation kit and purified with the Oligo Clean and Concentrator kit (Zymo). Labeled RNA concentrations were determined using a Thermo Scientific NanoDrop.

CsrA-His6 probe binding reactions were conducted in 10× CsrA binding buffer (76) and incubated at 37°C for 30 min. For REMSAs shown in Fig. 4, binding reaction mixtures included 60 ng unlabeled yeast RNA (Invitrogen) and SUPERase-In (Invitrogen). CsrA-His6 probe complexes were electrophoresed on a 6% nondenaturing polyacrylamide gel, transblotted to a positively charged nylon membrane, and then UV cross-linked (120 mJ/cm2). Biotinylated probes were detected using the chemiluminescent nucleic acid detection module (Thermo Fisher Scientific).

In vitro cell-free translation assay. The PUREExpress kit (New England Biolabs) was used per the manufacturer’s instructions. The reporter fusion constructs pMWO78:hfq-gfpmut3.1 or pMWO78:hfq-gfpmut1.1, described above, were used as templates to generate hfq-gfp and hmsT-gfp mRNA transcripts with primers containing a T7 promoter sequence (Table S2 under “EMSA probes”) using the MegaShortScript T7 transcription kit. mRNA transcripts were purified with the RNA Clean and Concentrator-25 kit (Zymo). Reaction mixtures contained 326 mM mRNA transcript with 6.2 μM CsrA-His6, which was transformed into the Bl21 gfpmut3 strain, Bl21 gfpmut3.1 or pMWO78::csrA-c).
and were incubated at 37°C. GFP signal was detected by immunoblot using 1:20,000 rabbit anti-GFP (Invitrogen), 1:100,000 goat anti-rabbit horseradish peroxidase (Invitrogen), and the SuperSignal West Femto kit (Thermo Fisher Scientific) and quantified by densitometry on a Chemidoc MP using Image Lab 4.1.

Quantification of steady-state mRNA levels and mRNA stability assays. Samples were added to RNAprotect bacterial reagent (Qiagen). RNA isolation, qRT-PCR (Table S2 under 4.1. Statistical analysis. Details of statistical analysis using GraphPad Prism version 8.1.1 are provided in the legends of Fig. 1 to 7.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.

FIG S1, TIF file, 2.1 MB.
FIG S2, TIF file, 0.3 MB.
FIG S3, TIF file, 0.3 MB.
FIG S4, TIF file, 1.1 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.02 MB.

ACKNOWLEDGMENTS
We thank Athena Lemon and Haiqin Yan for technical assistance, Vladimir Motin for the ΔcsrA strain, and Virginia Miller for the pMWO plasmid. We are indebted to Alex Bobrov, Olga Kiriillina, and Petra Dersch for experimental advice. Thanks also to Bob Perry, Anders Omsland, and Haiqin Yan for constructive feedback.

This study was funded by the National Institutes of Health grants R01AI117016-01A1 to V.V. and R01GM109259 to C.W.

REFERENCES
1. Perry RD, Fetherston JD. 1997. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66. https://doi.org/10.1128/CMR.10.1.35.
2. Hinnebusch BJ, Jarrett CO, Bland DM. 2017. Comparative ability of Oropsylla montana and Xenopsylla cheopis fleas to transmit Yersinia pestis by two different mechanisms. PLoS Negl Trop Dis 11:e0005276. https://doi.org/10.1371/journal.pntd.0005276.
3. Hinnebusch BJ, Jarrett CO, Bland DM. 2017. Feeding the plague: adaptations of Yersinia pestis to its insect vector that lead to transmission. Annu Rev Microbiol 71:215–232. https://doi.org/10.1146/annurev-micro-090816-093521.
4. Vadyvaloo V, Jarrett C, Sturdevant DE, Sebbane F, Hinnebusch BJ. 2010. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. PLoS Pathog 6:e1000783. https://doi.org/10.1371/journal.ppat.1000783.
5. Vadyvaloo V, Jarrett C, Sturdevant D, Sebbane F, Hinnebusch BJ. 2007. Analysis of Yersinia pestis gene expression in the flea vector. Adv Exp Med Biol 603:192–200. https://doi.org/10.1007/978-0-387-72124-8_16.
6. Bacot AW, Martin SCJ. 1914. Observations on the mechanism of the transmission of plague by fleas. J Hyg 13:423–439.
7. Hinnebusch BJ, Perry RD, Schwan TG. 1996. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273:367–370. https://doi.org/10.1126/science.273.5273.367.
8. Perry RD, Pendrak ML, Schuetze P. 1990. Identification and cloning of a heme storage locus involved in the pigment phenotype of Yersinia pestis. J Bacteriol 172:5929–5937. https://doi.org/10.1128/jb.172.10.5929-5937.1990.
9. Perry RD, Bobrov AG. 2010. Role of cyclic di-GMP in biofilm development and signaling in Yersinia pestis, p 270–281. In Wolfe AJ, Visick KL (ed), The second messenger cyclic di-GMP. ASM Press, Washington, DC. https://doi.org/10.1128/9781555816667.
10. Perry RD, Bobrov AG, Kiriillina O, Jones HA, Pedersen L, Abney J, Fetherston JD. 2004. Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186:1638–1647. https://doi.org/10.1128/JB.186.6.1638-1647.2004.
11. Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284. https://doi.org/10.1038/nrmicro2016.190.
12. Ryan RP. 2013. Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiology 159:1286–1297. https://doi.org/10.1099/mic.0.068189-0.
13. Valentini M, Filoux A. 2016. Biofilms and cyclic di-GMP (c-di-GMP) signalling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291:12547–12555. https://doi.org/10.1074/jbc.R115.711507.
14. Sun YC, Jarrett CO, Bosio CF, Hinnebusch BJ. 2014. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe 15:578–586. https://doi.org/10.1016/j.chom.2014.04.003.
15. Hinnebusch BJ, Chouikha I, Sun YC. 2016. Ecological opportunity, evolution, and the emergence of flea-borne plague. Infect Immun 84:1932–1940. https://doi.org/10.1128/IAI.00188-16.
16. Bobrov AG, Kiriillina O, Vadyvaloo V, Koestler BJ, Hinz AK, Mack D, Waters CM, Perry RD. 2015. The Yersinia pestis HmsCDE regulatory system is essential for blockage of the oriental rat flea (Xenopsylla cheopis), a classic
plague vector. Environ Microbiol 17:947–959. https://doi.org/10.1111/1462-2920.12419

17. Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD. 2004. HmpS, a putative phosphotriesterase, and HmST, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54:75–88. https://doi.org/10.1111/j.1365-2958.2004.04253.x

18. Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD. 2011. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 79:533–551. https://doi.org/10.1111/j.1365-2958.2010.07470.x

19. Ren GX, Yan HQ, Zhu H, Guo XP, Sun YC. 2014. HmsC, a periplasmic protein, controls biofilm formation via repression of HmsD, a diguanylate cyclase in Yersinia pestis. Environ Microbiol 16:1202–1216. https://doi.org/10.1111/1462-2920.12323

20. Sun YC, Koumoutsis A, Jarrett C, Lawrence K, Gherardini FC, Darby C, Hinnebusch BJ. 2011. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One 6:e19267. https://doi.org/10.1371/journal.pone.0019267

21. Lemon A, Sagawa J, Gravelle K, Vadyvaloo V. 2020. Biovar-related differences apparent in the flea foregut colonization phenotype of distinct Yersinia pestis strains do not impact transmission efficiency. Parasit Vectors 13:335. https://doi.org/10.1186/s13071-020-04207-x

22. Bellows LE, Koestler BJ, Karaba SM, Waters CM, Lathem WW. 2012. Hfq-dependent, co-ordinate control of cyclic di-GMP synthesis and catabolism in the plague pathogen Yersinia pestis. Mol Microbiol 86:661–674. https://doi.org/10.1111/mmi.12011.

23. Zhu H, Mao XJ, Guo XP, Sun YC. 2016. The hmsT untranslated region mediates c-di-GMP metabolism and biofilm formation in Yersinia pestis. Mol Microbiol 99:1167–1178. https://doi.org/10.1111/mmi.13301.

24. Sun YC, Guo XP, Hinnebusch BJ, Darby C. 2012. The Yersinia pestis Rcs phosphorylation inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene hmsT. J Bacteriol 194:2020–2026. https://doi.org/10.1128/JB.00642-11.

25. Jonas K, Edwards AN, Simm R, Romeo T, Römling U, Melefors Ö. 2008. The CsrA Promotes an Microbiol 12:233.https://doi.org/10.1186/1471-2180-12-233

26. Jonas K, Edwards AN, Simm R, Romeo T, Römling U, Melefors Ö. 2008. CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 189:4440–4446. https://doi.org/10.1128/JB.06243-11.

27. Bellows LE, Koestler BJ, Karaba SM, Waters CM, Lathem WW. 2012. Hfq-dependent, co-ordinate control of cyclic di-GMP synthesis and catabolism in the plague pathogen Yersinia pestis. Mol Microbiol 86:661–674. https://doi.org/10.1111/mmi.12011.

28. Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T. 2002. CsrA/RsmA targets in bacteria with experimental validation in the model organism. PLoS Biol 1:e48. https://doi.org/10.1371/journal.pbio.0010048

29. Jonas K, Edwards AN, Simm R, Romeo T, Römling U, Melefors Ö. 2008. CsrA/RsmA targets in bacteria with experimental validation in the model organism. PLoS Biol 1:e48. https://doi.org/10.1371/journal.pbio.0010048

30. Romeo T, Babitzke P. 2018. Global regulation by CsrA and its RNA antagonist Hfq. Nat Rev Microbiol 16:317–328. https://doi.org/10.1038/nrmicro.2018.11.

31. Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR. 2010. Positive regulatory function of the pleiotropic Escherichia coli csrA gene modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 192:2675–2683. https://doi.org/10.1128/JB.01522-10.

32. Lu X-H, An S-Q, Tang D-J, McCarthy Y, Tang J-L, Dow JM, Ryan RP. 2012. RsmA regulates biofilm formation in Xanthomonas campestris through a regulatory network involving cyclic di-GMP and the Cip transcription factor. PLoS One 7:e52646. https://doi.org/10.1371/journal.pone.0052646.

33. Lee JH, Ancona V, Chatnaparat T, Yang H-W, Zhao J. 2019. The RNA-binding protein CsrA controls virulence in Pseudomonas aeruginosa. Mol Microbiol 104(12):2715–2730. https://doi.org/10.1111/mmi.14660.

34. Liu MY, Yang H, Romeo T. 1995. The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 177:2663–2672. https://doi.org/10.1128/JB.177.9.2663-2672.1995.
66. Pannuri A, Vakulskas CA, Zere T, McGibbon LC, Edwards AN, Georgellis D, Babitzke P, Romeo T. 2016. Circuity linking the catabolite repression and Car global regulatory systems of Escherichia coli. J Bacteriol 198:3000–3015. https://doi.org/10.1128/JB.00454-16

67. Beauregard A, Smith EA, Petrone BL, Singh N, Karch C, McDonough KA, Wade JT. 2013. Identification and characterization of small RNAs in Yersinia pestis. RNA Biol 10:397–405. https://doi.org/10.4161/ma.23590

68. Koo JT, Alleyne TM, Schiano CA, Jafari N, Latham WW. 2011. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Proc Natl Acad Sci U S A 108: E709–E717. https://doi.org/10.1073/pnas.1101655108

69. Schiano CA, Koo JT, Schipma MJ, Caufield AJ, Jafari N, Latham WW. 2014. Genome-wide analysis of small RNAs expressed by Yersinia pestis identifies a regulator of the Yop-Ysc type III secretion system. J Bacteriol 196:1659–1670. https://doi.org/10.1128/JB.01456-13

70. Pannuri A, Yakhnin H, Vakulskas CA, Edwards AN, Babitzke P, Romeo T. 2012. Translational repression of NhaA, a novel pathway for multi-tier regulation of biofilm circuitry by Car. J Bacteriol 194:79–89. https://doi.org/10.1128/JB.06209-11

71. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2:43–44. https://doi.org/10.1038/emeth765

72. Stoker NG, Fairweather NF, Spratt BG. 1982. Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene 18:335–341. https://doi.org/10.1016/0378-1119(82)90172-x

73. Uliczka F, Pisano F, Kochut A, Opitz W, Herbst K, Stolz T, Dersch P. 2011. CsrA is an adaptable set of bioluminescent, monitoring of gene expression in bacteria during infections using an adaptable set of bioluminescent, fluorescent and colorogenic fusion vectors. PLoS One 6:e20425. https://doi.org/10.1371/journal.pone.0020425

74. Obrist MW, Miller VL. 2012. Low copy expression vectors for use in Yersinia sp. and related organisms. Plasmid 68:33–42. https://doi.org/10.1016/j.plasmid.2012.02.003

75. Kusmierek M, Heroven AK, Beckstette M, Nuss AM, Dersch P. 2019. Discovering Yersinia-host interactions by tissue dual RNA-Seq. Methods Mol Biol 2010:99–116. https://doi.org/10.1007/978-1-4939-9541-7_8

76. Yakhnin AV, Yakhnin H, Babitzke P. 2012. Gel mobility shift assays to detect protein-RNA interactions. Methods Mol Biol 905:201–211. https://doi.org/10.1007/978-1-61779-949-5_12

77. Martinez-Chavarria LC, Sagawa J, Iorns J, Hinz AK, Lemon A, Graca T, Downs DM, Vadyvaloo V. 2020. Putative horizontally acquired genes, highly transcribed during Yersinia pestis flea infection, are induced by hyperosmotic stress and function in aromatic amino acid metabolism. J Bacteriol 202:e00733-19. https://doi.org/10.1128/JB.00733-19

78. Lemon A, Cherzan N, Vadyvaloo V. 2020. Influence of temperature on development of Yersinia pestis foregut blockage in Xenopsylla cheopis (Siphonaptera: Pulicidae) and Oropsylla montana (Siphonaptera: Ceratophyllidae). J Med Entomol 57:10.1093/jme/tjaa113

79. National Research Council. 2011. Guide for the care and use of laboratory animals, 8th ed. National Academies Press, Washington, DC.