MAPK, NFκB, and VEGF signaling pathways regulate breast cancer liver metastasis

Xinhua Chen¹, Zhihong Zheng², Limin Chen¹ and Hongyu Zheng¹

¹Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
²Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China

Correspondence to: Xinhua Chen, email: cxhfzfj@163.com

Keywords: breast cancer; metastasis; liver; microarray; interaction network

ABSTRACT

In this study, we investigated the molecular pathways regulating breast cancer liver metastasis. We identified 48 differentially expressed genes (4 upregulated and 44 downregulated) by analyzing microarray dataset GSE62598 from Gene Expression Omnibus (GEO). We constructed a genetic interaction network with 84 nodes and 237 edges using the String consortium database. The network was reliably robust with a clustering coefficient (cc) of 0.598 and protein-protein interaction (PPI) enrichment p value of zero. Using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, we identified MAPK, NFκB and VEGF signaling pathways as the most critical pathways regulating breast cancer liver metastasis. These results indicate that the distinct breast cancer metastatic stages, including dissemination from the primary breast tumor, transit through the vasculature, and survival and proliferation in the liver, are regulated by the MAPK, NFκB, and VEGF signaling pathways.

INTRODUCTION

Breast cancer is the most frequently diagnosed cancer globally and is the leading cause of cancer-related deaths among women [1]. In the United States, more than 240,000 newly diagnosed breast cancer cases and 40,000 deaths were reported in 2016 [2]. Liver metastasis is reported in 15% of newly diagnosed breast cancer patients [3, 4]. Breast cancer liver metastasis is associated with very poor prognosis and has a survival time of only 4-8 months, if untreated [5]. Introduction of new therapies in the last decade has resulted in 1-2% yearly decrease in mortality rates [6]. However, breast cancer patients with liver metastasis still are associated with very poor outcomes [7].

Metastatic disease is a complex, multistage process that involves detachment of breast cancer cells from the primary tumor, which then travel through the blood or lymphatic system and finally survive and proliferate in the liver. Given the complex multistep process, liver metastasis involves a sophisticated network of molecular events. However, the molecular mechanisms associated with breast cancer metastasis to the liver are unclear, and their understanding is essential for developing more effective therapies. In this study, therefore, we generated a genetic interaction network using microarray gene expression data from breast cancer liver metastases and explored the molecular mechanisms involved using bioinformatic analyses.

RESULTS

Forty-eight genes are differentially expressed in metastatic breast tumor cells

Table 1 lists the differentially expressed genes with a fold change ≥2 and false discovery rate ≤ 5%. There were 48 differentially expressed genes that were distinctly upregulated (4 genes) or downregulated (44 genes) in metastatic tumor cells than in normal parental cells. Figure 1 shows the heat map of the differentially expressed genes.
Gene ID	Gene Name	Fold Change	Gene regulation
A_52_P618173	Limch1	2.290749902	Up
A_52_P418791	Rbp1	2.424147188	Up
A_51_P423484	Rbp1	2.165856946	Up
A_52_P299915	Map2k6	2.176087369	Up
A_51_P102538	Otop1	0.336723951	Down
A_51_P289341	Fermt1	0.317362329	Down
A_52_P452667	Prom2	0.285970233	Down
A_51_P333923	Tspan1	0.315241505	Down
A_51_P167489	Lama3	0.41612039	Down
A_51_P177242	Unc13b	0.418318499	Down
A_52_P88091	Dsg2	0.403969687	Down
A_51_P233153	Cadps2	0.298078637	Down
A_51_P196207	Capsl	0.388252581	Down
A_52_P79821	Esrp1	0.26893644	Down
A_52_P559779	Dsg2	0.347328438	Down
A_51_P493987	Moxd1	0.417459194	Down
A_52_P87757	Il24	0.336785971	Down
A_52_P134455	Fermt1	0.367135842	Down
A_51_P356055	Grp	0.449573589	Down
A_51_P353252	Mal2	0.291415896	Down
A_51_P187602	Serpinb5	0.3120555	Down
A_52_P638605	Ap1m2	0.436913739	Down
A_51_P105879	Myo5b	0.486596961	Down
A_52_P405945	Prl3d2	0.483474132	Down
A_51_P401517	Il24	0.483144818	Down
A_52_P252931	Dsc2	0.491809463	Down
A_52_P468068	Tchh	0.490774711	Down
A_51_P322115	Htr5b	0.372641522	Down
A_52_P286350	Sh2d1b1	0.471867312	Down
A_52_P487686	BC100530	0.483518325	Down
A_51_P489488	Pde4dip	0.487698119	Down
A_51_P179293	2310002L13Rik	0.382311761	Down
A_51_P322090	Ovol2	0.489037358	Down
A_52_P661412	Adora1	0.485167002	Down
A_52_P683580	Tbc1d9	0.471654273	Down
A_51_P206475	Lce1i	0.476512201	Down
A_51_P496540	Sh2d1b1	0.488430246	Down
Gene ID	Gene Name	Fold Change	Gene regulation
-----------------	-----------	--------------	-----------------
A_52_P601757	Dsg2	0.414988774	Down
A_51_P496253	Slc6a4	0.464974691	Down
A_51_P438283	Il1a	0.497937489	Down
A_51_P455620	Fam167a	0.45781262	Down
A_51_P332309	Eomes	0.434829918	Down
A_51_P225827	Ovol1	0.474676527	Down
A_51_P338878	P2ry12	0.424196491	Down
A_52_P373982	Grhl2	0.481346604	Down
A_52_P642488	Kcnk1	0.43461204	Down
A_51_P303079	Tmem54	0.492962995	Down
A_51_P362328	Grhl2	0.469572322	Down

Abbreviation: SAM, Significance Analysis Microarray

Figure 1: Heatmap visualization of the differently expressed genes identified by Significant Analysis of Microarray (SAM) in metastatic tumor cells (GSM1529777, GSM1529778, GSM1529779) versus 4T1 parental cells (GSM1529768, GSM1529769, GSM1529770). Red represents up-regulated genes, while green represents down-regulated genes.
A genetic interaction network based on the
differently expressed genes

A genetic interaction network was constructed from the 48 differentially expressed genes using the String platform future analysis (Figure 2). The interaction network consisted of 84 nodes and 237 edges. The average node degree was 5.64. The network was reliably robust with a clustering coefficient (cc) of 0.598 and protein-protein interaction (PPI) enrichment p value of zero.

GO analysis of the differently expressed genes

Molecular function analysis by the GO consortium database revealed that most of the differently expressed genes regulated protein binding and kinase activity (Table 2). Besides, the major biological processes associated with the liver metastases were positive regulation of cell communication, MAPK cascade, signaling, and protein kinase activity (Table 3).

Signaling pathways involved in breast cancer liver metastasis

Table 4 shows the signaling pathways involved in breast cancer liver metastases by the KEGG database. The major signaling pathways included the MAPK, NF-kappa B and VEGF signaling pathways that maybe critical for the distinct pathological stages of liver metastasis.

DISCUSSION

Breast cancer liver metastasis is a complex process that includes tumor cell dissemination from the primary tumor, transit through the blood or lymphatic system, and proliferation in liver. Underlying this complex multistep process is a sophisticated network of molecular events. In

Figure 2: Genetic interaction network associated with breast cancer liver metastases basing on String platform. In this figure, each circle represents a gene (node) and each connection represents a direct or indirect connection (edge). Line color indicates the type of interaction evidence and line thickness indicates the strength of data support.
this study, we generated, for the first time, a comprehensive genetic interaction network from the microarray gene expression profile to identify the molecular mechanisms involved in breast cancer liver metastases. The results suggested that MAPK, NF-κB and VEGF signaling pathways are significantly associated with distinct stages of breast cancer liver metastasis.

Dissemination of carcinoma cells is the initial step of the metastasis, which is initiated by epithelial-mesenchymal transition (EMT) program during which tumor cells acquire mesenchymal features and lose epithelial properties [8, 9]. The complex molecular events during EMT are initiated and controlled by signaling pathways that respond to extracellular cues. The transforming growth factor-β (TGF-β) signaling family plays a predominant role in EMT [10]. Moreover, the MAPK signaling pathway is required for the initiation of TGF-β induced EMT [11, 12]. In addition to TGF-β family proteins, tyrosine kinase receptors (RTKs) play a key role in the trans-differentiation process, further highlighting the importance of MAPK signaling [13]. MAPK pathway inhibitors have been used clinically for many cancers, including breast cancer [14]. In addition, NFκB is an important regulator of the expression of various proteins involved in the immune response [15].

After successfully disassociating from the primary tumor, metastatic carcinoma cells traverse the blood or lymphatic system, during which they interact with several cell types including platelets, neutrophils, monocytes, macrophages, and endothelial cells [16]. The circulating tumor cells also interact with platelets

GO ID	Molecular Function	Observed Gene Count	FDR
GO.0004702	receptor signaling protein serine/threonine kinase activity	15	3.13E-21
GO.0005515	protein binding	7	2.03E-05
GO.0004708	MAP kinase kinase activity	41	2.41E-05
GO.0017137	Rab GTPase binding	5	2.74E-05
GO.0031489	myosin V binding	6	0.000307
GO.0017022	myosin binding	4	0.000381
GO.0004709	MAP kinase kinase kinase activity	5	0.000518
GO.0005488	binding	4	0.00169
GO.0017075	syntaxin-1 binding	59	0.00354
GO.0004707	MAP kinase activity	3	0.00402
GO.0004674	protein serine/threonine kinase activity	3	0.00363
GO.0004946	bombesin receptor activity	9	0.0113
GO.0005102	receptor binding	2	0.0128
GO.0004908	interleukin-1 receptor activity	14	0.018
GO.0019905	syntaxin binding	2	0.0215
GO.0019899	enzyme binding	4	0.0253
GO.0004871	signal transducer activity	15	0.032
GO.0005179	hormone activity	16	0.0377
GO.0060089	molecular transducer activity	4	0.0377
GO.0086083	cell adhesive protein binding involved in bundle of His cell-	17	0.0377

Abbreviations: FDR, false discovery rate; GO, Gene Ontology.
high platelet counts are associated with poor prognosis in carcinomas [18]. Recent studies have revealed that platelets alter the fate of circulating cancer cells [19]. Platelet-tumor cell contacts and platelet-derived TGF-β synergistically activate the TGF-β/Smad and NFκB pathways in cancer cells enabling their transition to an invasive mesenchymal-like phenotype, thereby enhancing metastasis [20]. Inhibition of NFκB signaling in cancer cells or ablation of TGF-β1 expression in platelets protects against lung metastasis in vivo [20].

In the liver, a pre-metastatic niche is established by VEGFR+ bone marrow progenitors before the arrival of tumor cells [21]. In fact, the initial events during the development of metastasis are VEGF-dependent [22]. Once the metastatic cancer cells survive in the new environment, they undergo colonization before the onset of the final process of malignancy. In general, a tumor requires angiogenesis to grow beyond 1-2 mm in size. In the initial pre-vascular phase, the size of the tumor does not exceed a few millimeters, but, neovascularization results in rapid growth of the tumor. Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis, which stimulates endothelial proliferation and migration, inhibits endothelial apoptosis, and increases vascular permeability and vasodilatation [23]. VEGF-targeting therapy has shown significant benefits in the treatment of metastatic breast cancer [24, 25]. In conclusion, based on the genetic interaction network, we identified MAPK, NF-kappa B and VEGF signaling pathways as key regulators of breast cancer liver metastasis.

Table 3: Biological process analysis of the genetic interaction network associated with liver-aggressive explant in terms of Gene Ontology (GO)

GO ID	Biological Process	Observed Gene Count	FDR
GO.0051046	regulation of secretion	21	5.45E-10
GO.0080134	regulation of response to stress	28	6.97E-10
GO.1903530	regulation of secretion by cell	19	4.53E-09
GO.0051047	positive regulation of secretion	15	8.72E-09
GO.0032101	regulation of response to external stimulus	20	1.24E-07
GO.0032879	regulation of localization	31	1.24E-07
GO.0051049	regulation of transport	27	1.24E-07
GO.0051050	positive regulation of transport	20	1.24E-07
GO.0031347	regulation of defense response	18	3.95E-07
GO.0010647	positive regulation of cell communication	25	4.18E-07
GO.0060341	regulation of cellular localization	22	4.18E-07
GO.0043410	positive regulation of MAPK cascade	14	8.81E-07
GO.0014047	glutamate secretion	6	1.17E-06
GO.0050690	regulation of defense response to virus by virus	6	1.38E-06
GO.0023056	positive regulation of signaling	23	1.79E-06
GO.0051650	establishment of vesicle localization	10	2.00E-06
GO.0046717	acid secretion	7	3.36E-06
GO.0001934	positive regulation of protein phosphorylation	17	5.02E-06
GO.0016079	synaptic vesicle exocytosis	37	3.10E-13
GO.0045860	positive regulation of protein kinase activity	11	3.55E-13

Abbreviations: FDR, false discovery rate; GO, Gene Ontology; MAPK: mitogen-activated protein kinase.
Table 4: Signaling pathway analysis of the genetic interaction network associated with liver-aggressive explant in terms of Gene Ontology (GO)

Pathway ID	Signaling pathway	Observed Gene Count	FDR
4010	MAPK signaling pathway	16	1.42E-12
4668	TNF signaling pathway	9	7.29E-08
5014	Amyotrophic lateral sclerosis (ALS)	7	1.26E-07
4750	Inflammatory mediator regulation of TRP channels	8	3.45E-07
4380	Osteoclast differentiation	8	1.45E-06
5140	Leishmaniasis	6	1.24E-05
4721	Synaptic vesicle cycle	5	0.000104
4664	Fc epsilon RI signaling pathway	5	0.000156
4660	T cell receptor signaling pathway	5	0.000787
5146	Amoebiasis	5	0.000993
4060	Cytokine-cytokine receptor interaction	7	0.00133
4722	Neurotrophin signaling pathway	5	0.00145
5160	Hepatitis C	5	0.00206
4015	Rap1 signaling pathway	6	0.00207
4911	Insulin secretion	4	0.00355
4728	Dopaminergic synapse	4	0.0148
5131	Shigellosis	3	0.0148
4370	VEGF signaling pathway	3	0.0155
5162	Measles	4	0.0162
5120	Epithelial cell signaling in Helicobacter pylori infection	3	0.0194
5222	Small cell lung cancer	3	0.0351
4064	NF-kappa B signaling pathway	3	0.0384
5168	Herpes simplex infection	4	0.0384
4723	Retrograde endocannabinoid signaling	3	0.0473

Abbreviations: FDR, false discovery rate; GO, Gene Ontology.

MATERIALS AND METHODS

Microarray dataset resources

Microarray dataset with the accession number GSE62598 was downloaded from Gene Expression Omnibus (GEO). In this study, the authors examined if the propensity of breast cancer cells to metastasize to liver was associated with distinct patterns of immune cell infiltration [26]. Total RNA was extracted from 4T1 parental and individual metastatic sub-populations. The mRNA array was performed on Agilent-014868 Whole Mouse Genome Microarray 4×44k G4122F platform.

Analysis of differentially expressed genes

The gene expression profiles of metastatic tumor cells versus disseminated tumor cells were normalized by log_{10} transformation after normalization. Then, Significance Analysis of Microarrays software (SAM, http://statweb.stanford.edu/~tibs/SAM/) was used to produce a cluster of up- or down-regulated genes [27].

Genetic interaction network construction

Genetic interaction network was constructed using the String consortium database (http://string-db.org/). In addition, to identify the pathways involved Gene Ontology consortium
(GO, http://www.geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/) functional enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID, https://david.ncifcrf.gov/).

Statistical analysis

According to a previous publication [28], gene expression was considered significant if the threshold of false discovery rate (FDR) ≤ 5% and fold change ≥ 2. For GO and KEGG enrichment analysis, biological process, molecular function and signaling pathways, $p ≤ 5\%$ was considered significant.

Author contributions

All authors contributed towards data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.

ACKNOWLEDGMENTS

We thank Gene Expression Omnibus (GEO), Significance Analysis of Microarrays (SAM), and String databases for making their data readily available to the scientific community.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1. Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJ, Naghavi M. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet. 2011; 378:1461–84. https://doi.org/10.1016/S0140-6736(11)61351-2.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016; 66:7–30. https://doi.org/10.3322/caac.21332
3. Clark GM, Sledge GW Jr, Osborne CK, McGuire WL. Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol. 1987; 5:55–61. https://doi.org/10.1200/JCO.1987.5.1.55.
4. Insa A, Lluch A, Prosper F, Marugan I, Martinez-Agullo A, Garcia-Conde J. Prognostic factors predicting survival from first recurrence in patients with metastatic breast cancer: analysis of 439 patients. Breast Cancer Res Treat. 1999; 56:67–78.
5. Adam R, Aloia T, Krissat J, Bralet MP, Paule B, Giacchetti S, Delvart V, Azoulay D, Bismuth H, Castaing D. Is liver resection justified for patients with hepatic metastases from breast cancer? Ann Surg. 2006; 244:897-907. https://doi.org/10.1097/01.sla.0000246847.02058.1b.
6. Pagani O, Senkus E, Wood W, Colleoni M, Cufer T, Kyriakides S, Costa A, Winer EP, Cardoso F, ESO-MBC Task Force. International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? J Natl Cancer Inst. 2010; 102:456-63. https://doi.org/10.1093/jnci/djq029.
7. Senkus E, Cardoso F, Pagani O. Time for more optimism in metastatic breast cancer? Cancer Treat Rev. 2014; 40:220–28. https://doi.org/10.1016/j.ctrv.2013.09.015.
8. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe RF, Vahdat LT, Altorki NK, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015; 527:472-6. https://doi.org/10.1038/nature15748.
9. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS, Kalluri R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015; 527:525-530. https://doi.org/10.1038/nature16064.
10. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15:178-96. https://doi.org/10.1038/nrm3758.
11. Wojcieszowski MC, Mahmutovic L, Shu DY, Lovicu FJ. ERK1/2 signaling is required for the initiation but not progression of TGFβ-induced lens epithelial to mesenchymal transition (EMT). Exp Eye Res. 2017; 159:98–113. https://doi.org/10.1016/j.exer.2017.03.012.
12. Hu X, Zhou Y, Kong P, Cui H, Yan T, Yang J, Qian Y, Ma Y, Wang F, Li H, Cheng C, Zhang L, Jia Z, et al. FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer. Cancer Lett. 2017; 397:83–93. https://doi.org/10.1016/j.canlet.2017.03.033.
13. Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV, Cohen MS, Johansen JV, Winther BR, Lund LR, Winther O, Taunton J, Hansen SH, Frödin M. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell. 2009; 35:511-22. https://doi.org/10.1016/j.molcel.2009.08.002.
14. Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev. 2013; 39:935–46. https://doi.org/10.1016/j.ctrv.2013.03.009.
15. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008; 132:344–62. https://doi.org/10.1016/j.cell.2008.01.020.
16. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging Biological Principles of Metastasis. Cell. 2017; 168:670-691. https://doi.org/10.1016/j.cell.2016.11.037.
17. Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2012; 2:1091-9. https://doi.org/10.1158/2159-8290.CD-12-0329.

18. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011; 11:123–34. https://doi.org/10.1038/nrc3004.

19. Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015; 126:582-8. https://doi.org/10.1182/blood-2014-08-531582.

20. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011; 20:576-90. https://doi.org/10.1016/j.ccr.2011.09.009.

21. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005; 438:820-7. https://doi.org/10.1038/nature04186.

22. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006; 12:895-904. https://doi.org/10.1038/nm1469.

23. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997; 18:4-25. https://doi.org/10.1210/edrv.18.1.0287.

24. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenker T, Cell D, Davidson NE. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007; 357:2666–76. https://doi.org/10.1056/NEJMoa072113.

25. Miles DW, Chan A, Dirix LY, Cortés J, Pivot X, Tomczak P, Delozier T, Sohn JH, Provencher L, Puglisi F, Harbeck N, Steger GG, Schneeweiss A, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010; 28:3239–47. https://doi.org/10.1200/JCO.2008.21.6457.

26. Tabariès S, Ouellet V, Hsu BE, Annis MG, Rose AA, Meunier L, Carmona E, Tam CE, Mes-Masson AM, Siegel PM. Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res. 2015; 17:45. https://doi.org/10.1186/s13058-015-0558-3.

27. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001; 98:5116-21. https://doi.org/10.1073/pnas.091062498.

28. Fan S, Li X, Tie L, Pan Y, Li X. KIAA0101 is associated with human renal cell carcinoma proliferation and migration induced by erythropoietin. Oncotarget. 2016; 7:13520-13537. https://doi.org/10.18632/oncotarget.5876.