NEW EXPLICIT LORENTZIAN EINSTEIN-WEYL STRUCTURES
IN 3-DIMENSIONS

JOEL MERKER AND PAWEŁ NUROWSKI

ABSTRACT. On a 3D manifold, a Weyl geometry consists of pairs \((g, A)\) = (metric, 1-form) modulo gauge \(\hat{g} = e^{2\varphi} g, \hat{A} = A + d\varphi\). In 1943, Cartan showed that every solution to the Einstein-Weyl equations \(R_{(\mu\nu)} - \frac{1}{2} R g_{\mu\nu} = 0\) comes from an appropriate 3D leaf space quotient of a 7D connection bundle associated with a 3rd order ODE \(y''' = H(x, y, y', y'')\) modulo point transformations, provided 2 among 3 primary point invariants vanish:

\[Wünschmann(H) \equiv 0 \equiv \text{Cartan}(H). \]

We find that point equivalence of a single PDE \(\partial_{\mu} F = F_{\mu} + z_{\mu} F_{\nu} \equiv 0 \) leads to an isomorphic 7D Cartan bundle and connection.

Then magically, the (complicated) equation \(Wünschmann(H) \equiv 0 \equiv \text{Cartan}(H)\) becomes:

\[0 \equiv \text{Monge}(F) := 9 F_{pp} F_{pppp} - 45 F_{ppp} F_{ppppp} + 40 F_{ppppp} \quad (p := z_k), \]

whose solutions are just conics in the \((p, F)\)-plane. As an Ansatz, we take:

\[F(x, y, z, p) := \frac{\alpha(y)(p-2)(y-z)(y-z)(p+2)(y-z)(p+2)(y-z)(p+2)}{\lambda(y)(y+2)(y+2)(y+2)(y+2)} \]

with 9 arbitrary functions \(\alpha, \ldots, \psi\) of \(y\). This \(F\) satisfies \(DF \equiv 0 \equiv \text{Monge}(F)\), and we show that the condition \(\text{Cartan}(H) \equiv 0 \) passes to a certain \(K(F) \equiv 0\) which holds for any choice of \(\alpha(y), \ldots, \psi(y)\). Descending to the leaf space quotient, we gain \(\infty\)-dimensional functionally parametrized and explicit families of Einstein-Weyl structures \(\{g, A\}\) in 3D.

These structures are nontrivial in the sense that \(dA \neq 0\) and \(\text{Cotton}(\{g\}) \neq 0\).

1. INTRODUCTION

On an \(n\)-manifold \(M\), a Weyl geometry is a pair \(\{g, A\}\) of a signature \((k, n-k)\) pseudo-Riemannian metric tensor \(g\) together with a 1-form \(A\) modulo \(\hat{A} = A + d\varphi\), where \(\varphi: M \to \mathbb{R}\) is any function. As in Riemannian geometry, a symmetric Ricci tensor \(R_{(\mu\nu)}\) with scalar curvature \(R\) can be defined (see [2, 11, 10] or Section 2).

The Einstein-Weyl equations in vacuum:

\[R_{(\mu\nu)} - \frac{1}{n} R g_{\mu\nu} = 0 \quad (1 \leq \mu, \nu \leq n), \]

which depend only on the class \(\{(g, A)\}\), have raised interest, specially in dimension \(n = 3\). We find various functionally parametrized explicit families of solutions. On \(\mathbb{R}^3 \ni (x, y, z)\), take for instance 5 free arbitrary functions \(b, c, k, l, m\) of \(y\) with derivatives \(b', b''\), \(k', k''\).

Theorem 1.1. All pairs \((g, A)\) with \(g\) Lorentzian of signature \((2, 1)\):

\[g := (k+bz)^2 \ dx^2 + x^2 \ (l^2 - cm) \ dy^2 + x^2 b^2 \ dz^2 + 2x \ (ckz - blz + kl - bm) \ dx \ dy - 2xb \ (k + b) \ dx \ dz - 2x^2 \ (ck - bl) \ dy \ dz, \]

\[A := \frac{-ck + bl + b' k - bk'}{x \ (ck^2 - 2bkl + b'm)} \ (xb \ dz - (k + b) \ dx) + \frac{bl^2 - cbm - b'kl + bb'm + ckk' - bk'l}{ck^2 - 2bkl + b'm} \ dy, \]

satisfy equations \(1.1\), hence define a Lorentzian Einstein-Weyl structure on \(\mathbb{R}^3\).

This collaboration is supported by the National Science Center, Poland, grant number 2018/29/B/ST1/02583.
Moreover, all such examples are generically conformally non-flat, and each of the 5 independent components of the Cotton tensor of the underlying conformal structure \((\cal M, [g])\) is not identically zero.

Previous examples ([4] [13] [14] [21] [19] [22] [6] [5] [18] [11] [15] [10]) depended on a finite number of constants and were often conformally flat. We discover in fact even more general explicit families of solutions depending on 9 free arbitrary functions of 1 variable y.

Our main approach is to study point equivalences of a single PDE of the form:

\[z_y = F(x, y, z, z_x), \]

with unknown \(z = z(x, y) \). From para-CR geometry ([16] [12]), an integrability condition is required, namely:

\[DF := F_x + z_x F_z \equiv 0. \]

To exclude trivial PDEs, another point invariant condition must be assumed:

\[F_{pp} \neq 0 \] (abbreviate \(p := z_x \)).

In Theorem 5.1, we construct a 7-dimensional Cartan bundle/connection \(P_7 \to J_4 \ni (x, y, z, p) \) canonically associated to point equivalences of such PDEs \(z_y = F(x, y, z, z_x) \), we determine a canonical coframe \(\{ \theta^1, \theta^2, \theta^3, \theta^4, \Omega_1, \Omega_2, \Omega_3 \} \) on \(P_7 \), and we find that its structure equations \([4] [4]\) incorporate exactly 3 primary invariants, named \(A_1, B_1, C_1 \).

Quite unexpectedly, we realize that these structure equations are exactly the same as the structure equations of the canonical 7-dimensional Cartan bundle/connection associated with point equivalences of 3\(^{rd}\) order ODEs \(y''' = H(x, y, y', y'') \). Furthermore, it is known that quite similarly, 3 primary differential invariants govern such geometries. Two among them are: the \textit{Wünschmann invariant} \(W(H) \) and the \textit{Cartan invariant} \(C(H) \). Since Cartan 1943, it is also known ([4] [13] [9] [11] [10]) that all solutions to the Einstein-Weyl structure equations \([1.1]\) can be obtained from ODEs satisfying \(W(H) \equiv 0 \equiv C(H) \). Translating what is known for ODEs or performing computations from scratch, we will set up and state Cartan’s construction \textit{from the PDE side, see Theorem 5.2.}

But from the ODE side unfortunately, it is quite difficult to solve Wünschmann’s nonlinear equation incorporating 25 differential monomials:

\[0 \equiv W(H) := -18 q H q H y q + 9 p H y q + 18 q H H y q q + 9 q H p H y q - 18 p q H y H y q - 18 p H H y q q - 18 H H y q q - 18 H q H y q - 18 H H H y q q - 18 H y q H y q - 18 H H H y H y q - 18 H q H y q - 18 H H H y H H y q - 27 H H y + 4 H^4 q + 9 p^2 H y q q + 27 H y p + 9 q H y q + q^2 H p p q - 27 H q p - 18 H H p q + 9 H^2 H y q q + 54 H y. \]

This inspired us to try to work on the PDE side \(z_y = F(x, y, z, z_x) \), instead of the ODE side. Then \textit{magically,} \(W(H) \equiv 0 \) transforms into the much simpler classical invariant equation:

\[0 \equiv \text{Monge}(F) := 9 F^2_{pp} F_{ppppp} - 45 F_{pp} F_{ppp} F_{pppp} + 40 F^3_{ppp}, \]

When \(F_{pp} \neq 0 \), it is known that \(M(F) \equiv 0 \) holds if and only if there exist functions \(A, B, C, K, L, M \) of \(x, y, z \) such that:

\[0 \equiv A F^2 + 2 B F p + C p^2 + 2 K F + 2 L p + M. \]

Assuming \(A := 0 \), we then solve the problem completely.
Proposition 1.2. The general solution \(F = F(x, y, z, p) \) to:
\[
0 \equiv F_x + p F_z, \\
0 \equiv 0 + 2B F_p + c p^2 + 2k F + 2\tau p + M,
\]
is:
\[
F = \frac{\alpha(y)(z - xp)^2 + \beta(y)(z - xp)p + \gamma(y)(z - xp) + \delta(y)p^2 + \epsilon(y)p + \zeta(y)}{\lambda(y)(z - xp) + \mu(y)p + \nu(y)},
\]
with 9 arbitrary functions \(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \lambda, \mu, \nu \) of \(y \).

Of course, to the Cartan invariant \(C(H) \) from the ODE side there corresponds from the PDE side a certain invariant we name \(K(F) \): its expression appears in Theorem 5.1. Miraculously, then, a direct calculation shows that no further constraint is imposed.

Proposition 1.3. For any choice of \(\alpha(y), \beta(y), \gamma(y), \delta(y), \epsilon(y), \zeta(y), \lambda(y), \mu(y), \nu(y) \), the second condition:
\[
K(F_{\alpha,\ldots,\nu}) = 0
\]
for obtaining Weyl pairs \([(g, A)] \) satisfying the Einstein-Weyl field equations (1.1) holds automatically.

We then get — quite a bit long — formulas for pairs \([(g, A)] \) expressed explicitly in terms of \(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \lambda, \mu, \nu \). The subfamily for which \(\beta = 0, \delta = 0, \epsilon = 0, \mu = 0 \) corresponds (with different notations) to Theorem 1.1.

Theorem 1.4. Same conclusion as in Theorem 1.1 with:
\[
g := \tau^1 \otimes \tau^2 + \tau^2 \otimes \tau^1 + \tau^3 \otimes \tau^3,
\]
\[
A := \tau^3 \frac{1}{2} \Pi \left(\gamma \lambda x - \gamma \mu + \chi \lambda \nu' + \beta \lambda z + \lambda \mu' z - 2 \alpha \mu z - \lambda' \mu z - \mu' \nu' - \chi \lambda' \nu - 2 \chi \alpha \nu + \beta \nu + \mu' \nu \right),
\]
with the coframe:
\[
\tau^1 := dx + \frac{dy}{\chi \lambda - \mu} (x \beta - \gamma - x^2 \alpha),
\]
\[
\tau^2 := \frac{2}{\chi \lambda - \mu} dy, \\
\tau^3 := (- \lambda z - \nu) dx + \frac{1}{\chi \lambda - \mu} dy \left(- \epsilon \mu + 2 \chi^2 \alpha \nu + \chi \gamma \mu - 2 \chi \beta \nu - \beta \mu z + 2 \delta \lambda z + 2 \chi \alpha \mu z + \chi \epsilon \lambda + 2 \chi \delta - x^2 \gamma \lambda - \chi \beta \lambda \nu \right),
\]
and the function:
\[
\Pi := x^2 \zeta \lambda^2 + \alpha \mu z^2 + 2x \alpha \mu \nu z + x^2 \alpha \nu^2 - \beta \lambda \mu z^2 - x \beta \lambda \nu z + \delta \lambda^2 z^2 + x \epsilon \lambda^2 z - 2x \zeta \lambda \mu - \beta \mu \nu z - x \beta \nu^2 + 2 \delta \lambda \nu z - \epsilon \lambda \mu z + \chi \epsilon \lambda z - x^2 \gamma \lambda \nu + \zeta \mu z + \delta \nu^2 - \epsilon \mu \nu + \gamma \mu^2 z + \chi \gamma \nu,
\]
again with \(dA \neq 0 \) and Cotton([g]) \(\neq 0 \).

At the end, we also present other families of functionally parametrized solutions, when \(A \neq 0 \).
2. WEYL GEOMETRY: A SUMMARY

In Einstein’s theory, gravity is described in terms of a (pseudo-)riemannian metric \(g \) called the gravitational potential. In Maxwell’s theory, the electromagnetic field is described in terms of a 1-form \(A \) called the Maxwell potential.

In his attempt Raum, Zeit, Materie \[23\] of unifying gravitation and electromagnetism, Weyl was inspired to introduce the synthetic geometric structure on any \(n \)-dimensional manifold \(M \) which consists of classes of such pairs \([(g, A)] \) under the equivalence relation:

\[
(g, A) \sim (\tilde{g}, \tilde{A})
\]

holding by definition if and only if there exists a function \(\varphi : M \rightarrow \mathbb{R} \) such that:

1. \(\tilde{g} = e^{2\varphi} g \);
2. \(\tilde{A} = A + d\varphi \).

Clearly, the electromagnetic field \(F := dA \) depends only on the class. The signature \((k, n-k) \) of \(g \) with \(p+q = n \) can be arbitrary. Einstein-conformal structures are a special class of Weyl structures, corresponding to the choice of a closed — hence locally exact — 1-form \(A \).

Inspired by Levi-Civita, Weyl established that to such a Weyl structure \((M, [(g, A)]) \) is associated a unique connection \(D \) on \(TM \) satisfying:

(A) \(D \) has no torsion;

(B) \(Dg = 2A \, g \) for any representative \((g, A) \) of the class \([(g, A)] \).

In any (local) coframe \(\omega^\mu, \mu = 1, \ldots, n \), for the cotangent bundle \(T^*M \) in which \(g = g^{\mu\nu} \omega^\mu \otimes \omega^\nu \), the connection 1-forms \(\Gamma^\mu_\nu \) of \(D \), or equivalently the \(\Gamma^\mu_\nu := g^{\mu\rho} \Gamma^\rho_\nu \), are indeed uniquely defined from the more explicit conditions:

(A') \(d\omega^\mu + \Gamma^\mu_\nu \wedge \omega^\nu = 0 \);

(B') \(Dg^{\mu\nu} := dg^{\mu\nu} - \Gamma^\mu_\nu - \Gamma^\nu_\mu = 2A \, g^{\mu\nu} \).

Then the curvature of this Weyl connection identifies with the collection of \(n^2 \) curvature 2-forms:

\[\Omega^\mu_\nu := d\Gamma^\mu_\nu + \Gamma^\mu_\rho \wedge \Gamma^\rho_\nu, \]

which produce the curvature tensor \(R^\mu_{\nu\rho\sigma} \) by expanding in the given coframe \(\omega^\mu \):

\[\Omega^\mu_\nu = \frac{1}{2} R^\mu_{\nu\rho\sigma} \, \omega^\rho \wedge \omega^\sigma. \]

It turns out that \(R^\mu_{\nu\rho\sigma} \) is a tensor density, which means in particular that its vanishing is independent of the choice of a representative \((g, A) \), and hence as such, serves as a starting point for all invariants of a Weyl geometry \((M, [(g, A)]) \), produced by covariant differentiation.

Other invariant objects are:

- the (Weyl-)Ricci tensor \(R_{\mu\nu} := R^\rho_{\mu\rho\nu} \);
- its symmetric part \(R_{[\mu\nu]} := \frac{1}{2} (R_{\mu\nu} + R_{\nu\mu}) \);
- its antisymmetric part \(R_{\{\mu\nu\}} := \frac{1}{2} (R_{\mu\nu} - R_{\nu\mu}) \).

In particular, an appropriately contracted Bianchi identity shows that in 3-dimensions:

\[R_{[\mu\nu]} = -\frac{3}{2} F_{\mu\nu}, \]

where \(F = dA = \frac{1}{2} F_{\mu\nu} \omega^\mu \wedge \omega^\nu. \)
In [4], Élie Cartan proposed dynamical Einstein equations for a Weyl geometry \((M, ([g, A]])\) postulating that the trace-free part of the symmetric Ricci tensor vanishes:

\[R_{(\mu \nu)} - \frac{1}{n} R g_{\mu \nu} = 0, \]

where \(R := g^{\mu \nu} R_{\mu \nu}\), with \(g^{\mu \rho} g_{\rho \nu} = \delta_{\mu \nu}\) and \(n = \dim M\).

These equations (2.1) are called Einstein-Weyl equations, and a Weyl geometry satisfying (2.1) is called an Einstein-Weyl structure. The reason for this name is as follows. Since a Weyl structure \((M, [g, A])\) with vanishing \(F = dA \equiv 0\) is equivalent to a plain (pseudo-)conformal structure \((M, [g])\) and since the Weyl connection then reduces to the Levi-Civita connection, these equations (2.1) are a natural generalization of Einstein’s field equations. According to Weyl’s approach, a gravity potential \(g\) is thereby coupled with an electromagnetic field \(F = dA\).

3. CARTAN’S SOLUTION TO THE EINSTEIN-WEYL VACUUM EQUATIONS

In [3], Cartan gave a geometric description of all solutions to the Einstein-Weyl equations (2.1) in 3-dimensions. In particular, he showed that there is a one-to-one correspondence between 3rd-order ODEs \(y''' = H(x, y, y', y'')\) considered modulo point transformations of variables which satisfy certain two point-invariant conditions:

(Wünschmann) \(W(H) \equiv 0 \)

(Cartan) \(C(H) \equiv 0 \)

and 3-dimensional Einstein-Weyl structures with Lorentzian metrics \(g\) of signature \((2, 1)\). Abbreviating \(p := y', q := y''\), in terms of the total differentiation operator:

\[D := \partial_x + p \partial_y + q \partial_p + H \partial_q, \]

their explicit expressions are:

\[W := 9 D D H_q - 27 D H_p - 18 H_q D H_q + 18 H_q H_p + 4 H^3_q + 54 H_q, \]

(3.1)

\[C := 18 H_{qq} D H_q - 12 H_{qq} H^2_q - 54 H_{qq} H_p + 36 H_{pq} H_q - 108 H_{yq} + 54 H_{pp}. \]

(3.2)

Although Cartan’s geometric arguments (4) offer, in the Lorentzian setting, a complete — but abstract — understanding of the space of all solutions of the Einstein-Weyl equations (2.1), it is quite difficult to find explicit solutions to the Wünschmann-Cartan equations \(0 \equiv W(H) \equiv C(H)\), which would provide workable formulas for such Einstein-Weyl structures.

Some particular solutions are known, e.g.:

\[H = \frac{3 q^2}{2 q}, \quad H = \frac{3 q^2 p}{p^2 + 1}, \quad H = q^{3/2}, \quad H = \alpha \left(\frac{2 q y - p^2}{y^2}\right)^{3/2} \quad (\alpha \in \mathbb{R}), \]

or the ‘horrible’:

\[H = \frac{pq (-12 + 3pq - 8\sqrt{T-pq}) + 8(1 + \sqrt{T-pq})}{p^3}. \]

They were all obtained by rather \textit{ad hoc} methods.

In fact, the main difficulty in getting a systematic approach to finding the solutions is an annoying nonlinearity of the Wünschmann condition \(W \equiv 0\).
4. Third-Order ODEs Modulo Point Transformations of Variables

It was Cartan ([3]) who solved the equivalence problem for 3rd order ODEs considered modulo point transformations. Nowadays, the result may be stated more elegantly in terms of a certain Cartan connection ([11, 10]), as follows.

To any 3rd order ODE:

\[
y''' = H(x, y, y', y'')
\]

(4.1)

one associates a contact-like coframe on the space \(J_4 \ni (x, y, p, q) \) of 2-jets of graphs \(x \mapsto y(x) \):

\[
\begin{align*}
\omega^1 & := dy - p \, dx, \\
\omega^2 & := dx, \\
\omega^3 & := dp - q \, dx, \\
\omega^4 & := dq - H(x, y, p, q) \, dx.
\end{align*}
\]

(4.2)

It follows that if a 3rd order ODE (4.1) undergoes a point transformation of variables:

\[
(x, y) \mapsto (\bar{x}, \bar{y}) = (\bar{x}(x, y), \bar{y}(x, y)),
\]

then the 1-forms \((\omega^1, \omega^2, \omega^3, \omega^4)\) transform as:

\[
\begin{pmatrix}
\omega^1 \\
\omega^2 \\
\omega^3 \\
\omega^4
\end{pmatrix}
\mapsto
\begin{pmatrix}
u_1 & 0 & 0 & 0 \\
u_2 & u_3 & 0 & 0 \\
u_4 & 0 & u_5 & 0 \\
u_6 & 0 & u_7 & u_8
\end{pmatrix}
\begin{pmatrix}
\omega^1 \\
\omega^2 \\
\omega^3 \\
\omega^4
\end{pmatrix} =:
\begin{pmatrix}
\theta^1 \\
\theta^2 \\
\theta^3 \\
\theta^4
\end{pmatrix},
\]

(4.3)

where the \(u_i\) are certain functions on \(J_4\).

Actually, Cartan assures us that the entire equivalence problem for 3rd order ODEs considered modulo point transformations of variables is the same as the equivalence problem for 1-forms (4.2), considered modulo transformations (4.3). There is a unique way of reducing these eight group parameters \(u_i\) to only three \(u_3, u_5, u_7\), the other ones being expressed in terms of them. This is achieved by forcing the exterior differentials of the \(\theta^\mu\)'s to satisfy the EDS (4.4) below.

Theorem 4.1. [3, 11, 10] A 3rd order ODE \(y''' = H(x, y, y', y'')\) with its associated 1-forms:

\[
\begin{align*}
\omega^1 & := dy - p \, dx, & \omega^2 & := dx, & \omega^3 & := dp - q \, dx, & \omega^4 & := dq - H(x, y, p, q) \, dx,
\end{align*}
\]

uniquely defines a 7-dimensional fiber bundle \(P_7 \rightarrow J_4\) over the space of second jets \(J_4 \ni (x, y, p, q)\) and a unique coframe \(\{\theta^1, \theta^2, \theta^3, \theta^4, \Omega_1, \Omega_2, \Omega_3\}\) on \(P_7\) enjoying structure
three primary invariants vanish identically:

\[M = \Omega_1 \wedge \Omega_2 \wedge \Omega_3. \]

between the corresponding bundles \(P_7 \rightarrow J_4 \) and \(\overline{P}_7 \rightarrow J_4 \) satisfying:

\[\Phi^* \overline{\Omega}^\mu = \Omega_i \quad (\mu = 1, 2, 3, 4; \ i = 1, 2, 3). \]

Exactly 3 (boxed) invariants are primary: \(A_1, B_1, C_1 \), while others express in terms of them and their covariant derivatives. Point equivalence to \(\overline{y}'''' = 0 \) is characterized by \(0 = A_1 = B_1 = C_1 \). Two relevant explicit expressions are:

(W in (3.1)) \[A_1 = \frac{1}{3^4} \frac{u^1}{u_1} W, \]

(C in (3.2)) \[C_1 = \frac{1}{3^4} \frac{u^2}{u_1} \left(C + \frac{1}{27} W^q \right). \]

The seven 1-forms \((\theta^1, \theta^2, \theta^3, \theta^4, \Omega_1, \Omega_2, \Omega_3) \) set up a Cartan connection \(\tilde{\omega} \) on \(P_7 \) via:

\[
\tilde{\omega} := \begin{pmatrix}
\frac{1}{2} \Omega_1 & \frac{1}{2} \Omega_2 & 0 & 0 \\
-\theta^2 & \Omega_3 - \frac{1}{2} \Omega_1 & 0 & 0 \\
\theta^3 & -\theta^4 & \frac{1}{2} \Omega_1 - \frac{1}{2} \Omega_3 & -\frac{1}{2} \Omega_2 \\
2 \theta^1 & \theta^3 & & \\
\end{pmatrix},
\]

and the structure equations (4.4) are just the equations for the curvature \(\tilde{K} \) of this connection:

\[d\tilde{\omega} + \tilde{\omega} \wedge \tilde{\omega} =: \tilde{K}. \]

Now, the structure equations (4.4) guarantee that the bundle \(P_7 \) is foliated by a 4-dimensional distribution annihilating the three 1-forms \((\theta^1, \theta^2, \theta^3) \), and that the leaf space \(M_3 \) of this foliation is equipped with a natural Weyl geometry, if and only if two among three primary invariants vanish identically:

\[0 = A_1(H) = C_1(H). \]
A representative \((g, A)\) of the concerned Weyl class \([[(g, A)]]\) on \(M_3\) has then the signature \((2, 1)\) symmetric bilinear form:

\[g := \theta^3 \otimes \theta^3 + \theta^1 \otimes \theta^4 + \theta^4 \otimes \theta^1, \]

which is obtained as the determinant of the lower-left \(2 \times 2\) submatrix of the connection matrix \(\hat{\omega}\), while the 1-form is defined as:

\[A := \Omega^3. \]

It is thanks to the hypothesis \(A_1 \equiv 0 \equiv C_1\) that \(g\) and \(A\), originally defined on \(P_7\), descend on \(M_3\).

Furthermore, it is the result of Cartan in \([4]\) that any such Weyl geometry \([[(g, A)]]\) defined on such a leaf space \(M_3\) is automatically Einstein-Weyl!

We stress that given \(H = H(x, y, p, q)\) satisfying \(A_1 \equiv 0 \equiv C_1\), or equivalently:

\[W(H) \equiv 0 \equiv C(H), \]

one can in principle set up explicit formulae for the corresponding forms \(\theta^1, \theta^3, \theta^4, \Omega_3\) on \(P_7\), and this in turn can provide explicit formulae for \((g, A)\) on \(M_3\). However, one substantial obstacle is the:

Question 4.2. How to solve \(W(H) \equiv 0 \equiv C(H)\)?

5. PDE ON THE PLANE \(z_y = F(x, y, z, z_x)\) MODULO POINT TRANSFORMATIONS

In \([12]\), it was shown that the equivalence problem for 3rd-order ODEs considered modulo point transformations of variables can be embedded into an equivalence problem for 4-dimensional para-CR structures of type \((1, 1, 2)\), cf. also \([17]\). This thus suggests us a new approach here to constructing Lorentzian Einstein-Weyl structures via para-CR structures of type \((1, 1, 2)\).

Let us therefore associate a para-CR structure with PDEs on the plane of the form:

\[z_y = F(x, y, z, z_x), \]

for an unknown function \(z = z(x, y)\). Using the abbreviation \(z_x =: p\), we will consider such PDEs modulo point transformations of variables:

\[(x, y, z) \mapsto (\bar{x}, \bar{y}, \bar{z}) = (\bar{x}(x, y, z), \bar{y}(x, y, z), \bar{z}(x, y, z)). \]

This conducts to an equivalence problem for the four 1-forms:

\[
\begin{cases}
\omega_1^0 := dz - p \, dx - F(x, y, z, p) \, dy,
\omega_2^0 := dp,
\omega_3^0 := dx,
\omega_4^0 := dy,
\end{cases}
\]

given up to transformations:

\[
\begin{pmatrix}
\omega_1^0 \\
\omega_2^0 \\
\omega_3^0 \\
\omega_4^0
\end{pmatrix} \mapsto \begin{pmatrix}
u_1 & 0 & 0 & 0 \\
u_2 & u_3 & 0 & 0 \\
u_4 & 0 & u_6 & 0 \\
u_7 & u_8 & u_9 & 0
\end{pmatrix}
\begin{pmatrix}
\omega_1^0 \\
\omega_2^0 \\
\omega_3^0 \\
\omega_4^0
\end{pmatrix}.
\]

Within this coframe \(\{\omega_1^0, \omega_2^0, \omega_3^0, \omega_4^0\}\), in terms of the two operators:

\[D := \partial_x + p \, \partial_z \quad \text{and} \quad \Delta := \partial_y + F \partial_z, \]
The exterior differential of any function $F = F(x, y, z, p)$ rewrites as:

$$\text{d}F = F_z \omega^1_0 + F_p \omega^2_0 + \text{DF} \omega^3_0 + \Delta F \omega^4_0.$$

The only nontrivial integrability condition for such an equivalence problem to constitute a true para-CR structure of type $(1, 1, 2)$ comes from:

$$0 = \text{d} \omega^1_0 \wedge \omega^1_0 \wedge \omega^3_0 = -\text{DF} \omega^1_0 \wedge \omega^2_0 \wedge \omega^3_0 \wedge \omega^4_0,$$

hence is:

$$0 \equiv \text{DF} = F_x + p F_z.$$

From now on, we will only consider PDEs $z_y = F(x, y, z, z_x)$ satisfying $\text{DF} \equiv 0$. Furthermore, we will also assume that another point-invariant condition holds:

$$0 \neq F_{pp} \quad \text{(everywhere)}.$$

Cartan’s process conducts to choose more convenient representatives of these forms:

$$\omega^1 := \omega^1_0,$$

$$\omega^2 := \omega^2_0 - \frac{\Delta F_{ppp} F_{pp} - \Delta F_{pp} F_{ppp} + 3 F_p F_{pp} F_{zpp} - 3 F_{pp}^2 F_{zp} - 2 F_p F_{ppp} F_{zp}}{6 F_{pp}^3} \omega^1_0,$$

$$\omega^3 := \omega^3_0 + F_p \omega^4_0 - \frac{1}{3} \frac{F_{ppp}}{F_{pp}} \omega^1_0,$$

$$\omega^4 := F_{pp} \omega^4_0 + \frac{4 F_{pp}^2 - 3 F_{pp} F_{pppp}}{18 F_{pp}^2} \omega^1_0,$$

and we will use this choice in the sequel. Using Cartan’s method, it is then straightforward to solve the equivalence problem for point equivalence classes of such PDEs $z_y = F(x, y, z, z_x)$. The solution is summarized in the following

Theorem 5.1. A PDE system $z_y = F(x, y, z, z_x)$ satisfying the two point-invariant conditions:

$$\text{DF} \equiv 0 \neq F_{z_x z_x},$$

with its associated 1-forms ω^1, ω^2, ω^3, ω^4 as above, uniquely defines a 7-dimensional principal bundle $H_3 \to P_7 \to J_4 \ni (x, y, z, p)$ with the (reduced) structure group H_3 consisting of matrices:

$$\begin{pmatrix} u_3 u_5 & 0 & 0 & 0 \\ 0 & u_3 & 0 & 0 \\ -u_3 u_8 & 0 & u_5 & 0 \\ -u_3 u_8^2 & 0 & u_8 & u_3 & \end{pmatrix} \quad (u_3 \in \mathbb{R}^+, u_5 \in \mathbb{R}^+, u_8 \in \mathbb{R}),$$

together with a unique coframe \{\theta^1, \theta^2, \theta^3, \theta^4, \Omega_1, \Omega_2, \Omega_3\} on P_7 where:

$$\begin{pmatrix} \theta^1 \\ \theta^2 \\ \theta^3 \\ \theta^4 \end{pmatrix} := \begin{pmatrix} u_3 u_5 & 0 & 0 & 0 \\ 0 & u_3 & 0 & 0 \\ -u_3 u_8 & 0 & u_5 & 0 \\ -u_3 u_8^2 & 0 & u_8 & u_3 \end{pmatrix} \begin{pmatrix} \omega^1 \\ \omega^2 \\ \omega^3 \\ \omega^4 \end{pmatrix},$$

such that the coframe enjoys precisely the structure equations \{4.4\}. This time however, the curvature invariants $A_1, A_2, A_3, B_1, B_2, B_3, B_4, C_1, C_2, C_3, E_1, E_2$ depend on $F = F(x, y, z, p)$ and its derivatives up to order 6.
Two relevant explicit expressions are:

\[
A_1 = -\frac{1}{\Xi F_{pp}^2} M F_{pp}^2,
\]

\[
C_1 = \frac{1}{3 \Xi F_{pp}^2} K F_{pp}^3,
\]

where:

\[
M := 9 F_{ppppp} F_{pp}^2 - 45 F_{ppppp} F_{pp} F_{ppp} + 40 F_{ppppp},
\]

\[
K := 4 \Delta F_{ppppp} F_{pp}^2 - 5 \Delta F_{ppppp} F_{pp}^2 F_{ppp} + 12 \Delta F_{ppppp} F_{pp} F_{ppp}^2 - 12 \Delta F_{ppp} F_{pp}^3 - 4 \Delta F_{ppp} F_{ppp} F_{ppppp} F_{ppp} - 5 \Delta F_{ppp} F_{ppp} F_{ppppp} F_{ppppp} + 6 \Delta F_{ppp} F_{ppppp} - 20 \Delta F_{ppp} F_{ppp} F_{ppppp} F_{ppppp} - 12 \Delta F_{ppp} F_{ppp} F_{ppppp} F_{ppppp} + 36 \Delta F_{ppp} F_{ppp} F_{ppppp} F_{ppppp} + 8 \Delta F_{ppp} F_{ppp} F_{ppppp} + 24 F_{ppp} F_{ppp} F_{ppp} - 3 F_{ppp} F_{ppp} F_{ppppp} F_{ppppp} - 2 F_{ppp} F_{ppp} F_{ppppp} F_{ppppp}.
\]

Two equations \(z_y = F(x, y, z, z_\chi) \) and \(\bar{z}_{\bar{y}} = F_\bar{y}(\bar{x}, \bar{y}, \bar{z}, \bar{z}_\chi) \) satisfying \(D F = 0 \neq F_{zzzz} \) and \(D F \neq 0 \neq F_{zzzz} \) are locally point equivalent if and only if there exists a bundle isomorphism \(\Phi: \mathcal{P}_7 \rightarrow \mathcal{P}_7 \) between the corresponding principal bundles \(\mathcal{H}_3 \rightarrow \mathcal{P}_7 \rightarrow \mathcal{J}_4 \) and \(\mathcal{H}_3 \rightarrow \mathcal{P}_7 \rightarrow \mathcal{J}_4 \) satisfying:

\[
\Phi^* \bar{\Omega}^i = \Omega_i \quad (\mu = 1, 2, 3, 4; i = 1, 2, 3).
\]

This theorem shows that the geometry of \(3^{rd} \) order ODEs \(y'''' = H(x, y, y', y'') \) considered modulo point transformations of variables is the same as the geometry of PDEs \(z_y = F(x, y, z, z_\chi) \) with \(D F \equiv 0 \neq F_{zzzz} \), also considered modulo point transformations. Thus provided that \(M(|F|) \equiv 0 \), there should exist a conformal Lorentzian metric on the leaf space of the integrable distribution in \(\mathcal{P}_7 \) annihilated by \(\{ \theta^1, \theta^3, \theta^4 \} \), and when moreover \(K(|F|) \equiv 0 \), all this should produce (new) Einstein-Weyl geometries. Actually, we gain the following

Theorem 5.2. A PDE \(z_y = F(x, y, z, z_\chi) \) defines a bilinear form \(\bar{g} \) of signature \((+, +, -, 0, 0, 0, 0) \) on the bundle \(\mathcal{P}_7 \ni (x, y, z, p, u_3, u_5, u_8) \):

\[
\bar{g} = \theta^3 \otimes \theta^3 + \theta^1 \otimes \theta^4 + \theta^4 \otimes \theta^1
\]

\[
= \frac{u_3^2}{F_{pp}^2} \left\{ \left(3 F_{pp} [dx + F_p dy] - F_{ppppp} [dz - p dx - F dy] \right)^2 + (dz - p dx - F dy) \left(18 F_{pp}^2 dy + [4 F_{ppppp} - 3 F_{ppp} F_{ppppp}] [dz - p dx - F dy] \right) \right\},
\]

degenerate along the rank 4 integrable distribution \(D_4 \) which is the annihilator of \(\theta^1, \theta^3, \theta^4) \). The PDE \(z_y = F(x, y, z, z_\chi) \) also defines the 1-form

\[
\Omega_3 := r_x dx + r_y dy + r_z dz + \frac{1}{3} d \left[\log \left(u_3^2 F_{pp} \right) \right],
\]
where:
\[
\begin{align*}
 r_x & := \frac{1}{3F_p} \left\{ \Delta F_{ppp} F_p^2 - \Delta F_{pp} F_p F_{ppp} + 3 F_p F_{pp} F_{ppp} - F_{pp}^3 F_p - 2 F_{pp} F_{ppp} F_p z \\
& \quad - \Delta F_{pppp} F_p^2 p + 3 \Delta F_{ppp} F_p F_{ppp} p - 3 \Delta F_{pp} F_p F_{ppp} p + \Delta F_{pp} F_p F_{pppp} p \\
& \quad - 4 F_p F_{pp} F_{ppp} p - 2 F_{pp}^3 p + 9 F_p F_{pp} F_{ppp} F_{ppp} p + F_{pp}^2 p \right. \\
& \quad \left. - 6 F_p F_{ppp} F_{ppp} p + 2 F_{pp} F_{pppp} F_p p \right\} \\
 r_y & = \frac{1}{3F_p} \left\{ - \Delta F_{pppp} F_p^2 F_p + \Delta F_{ppp} F_p F_p F_{ppp} + \Delta F_{pp} F_p F_{ppp} - 3 \Delta F_{pp} F_p F_{ppp} - 3 \Delta F_{pp} F_p F_{pppp} \\
& \quad + 3 F_p F_{ppp} F_p - 2 F_p F_{ppp} F_{ppp} - 2 F_{pp} F_{ppp} F_p - 9 F_p F_{pp} F_{ppp} F_p - 3 F_{pp}^3 F_p \\
& \quad - 2 F_p F_{ppp} F_{ppp} F_p + F_p F_{ppp} F_{pppp} F_p - 6 F_p F_{ppp} F_{pppp} F_p + 2 F_{pp} F_{ppp} F_{pppp} F_p \right. \\
& \quad \left. + 3 F_{pp} F_p \right\}, \\
 r_z & = \frac{1}{3F_p} \left\{ \Delta F_{pppp} F_p^2 - 3 \Delta F_{ppp} F_p F_{ppp} - \Delta F_{pp} F_p F_{ppp} F_p - 3 \Delta F_{pp} F_p F_{pppp} F_p \\
& \quad + 4 F_p F_{ppp} F_p F_{ppp} - 2 F_{pp} F_{ppp} F_p - 9 F_p F_{pp} F_{ppp} F_{ppp} - F_{pp}^2 F_p - F_p F_{ppp} F_p \right. \\
& \quad \left. + 6 F_p F_{ppp} F_{ppp} F_p - 2 F_p F_{ppp} F_{pppp} F_p \right\}.
\end{align*}
\]

The degenerate bilinear form \(\tilde{g} \) descends to a Lorentzian conformal class \([g]\) on the leaf space \(M_3 \) of the distribution \(D_4 \), if and only if the Monge invariant \(M(F) = 0 \) vanishes identically.

When \(M(F) = 0 \), the local coordinates on \(M_3 \) are \((x, y, z)\) with the projection:
\[
\begin{align*}
P_7 & \rightarrow M_3 \\
(x, y, z, p, u_3, u_5, u_8) & \mapsto (x, y, z),
\end{align*}
\]
and the conformal class \([g]\) has a representative which is explicitly expressed in terms of \(dx, dy, dz \), with coefficients depending only on \((x, y, z)\).

Next, \(\Omega_3 \) descends to a 1-form denoted \(\tilde{A} \) given up to the differential of a function on \(M_3 \ni (x, y, z) \), if and only if \(K(F) = 0 \).

Moreover, the pair \((\tilde{g}, \Omega_3)\) descends to a representative of a Einstein-Weyl structure \(([g, A])\) on \(M_3 \), if and only if both \(M(F) = 0 \) and \(K(F) = 0 \).

Finally, this Weyl structure is actually Einstein-Weyl, namely it satisfies \((2.1)\), and all Einstein-Weyl structures in 3-dimensions emerge from this construction.

6. Transformation of the Wünschmann Invariant
Into the Monge Invariant

In particular, PDEs with \(A_1 = 0 \equiv C_1 \) always define an Einstein-Weyl geometry on the leaf space \(M_3 \) of the integrable distribution in \(P_7 \) annihilated by \(\{ \theta^1, \theta^3, \theta^4 \} \).

The advantage of looking at this Weyl geometry from the PDE point of view \(z_9 = F(x, y, z, z_z) \) rather than from the ODE side \(y'' = H(x, y, y', y'') \), is that now the Wünschmann invariant of the ODE becomes the much simpler and classical Monge invariant:
\[
A_1(H) \sim M(F) = 9 F_{pp}^2 F_{ppppp} - 45 F_{pp} F_{pppp} F_{ppp} + 40 F_{ppp}^3.
\]
Serendipitously, the identical vanishing $M(F) \equiv 0$ is well known to be equivalent to the condition that the graph of $p \mapsto F(p)$ is contained in a conic of the (p, F)-plane, with parameters (x, y, z). More precisely:

\[
\begin{align*}
0 \equiv M(F) & \iff A F^2 + 2 B F p + C p^2 + 2 k F + 2 l p + m \equiv 0,
\end{align*}
\]

for some functions A, B, C, k, l, m depending only on (x, y, z).

Thus, passing from the formulation of Einstein-Weyl’s equations in terms of a 3rd order ODE $y''' = H(x, y, y', y'')$ to the — equivalent! — formulation in terms of a PDE $z_\mu = F(x, y, z, z_\nu)$, we are able to find the general solution to the equation:

\[
W(H) \equiv 0!
\]

By replacing $W(H) \rightsquigarrow M(F)$, the general solution \eqref{eq:6.1} is just conical!

7. How to Construct New Explicit Lorentzian Einstein-Weyl Metrics

But remember we also have to assure that:

\[
0 \equiv DF = \partial_x F + p \partial_z F.
\]

The simultaneous conditions $DF \equiv 0 \equiv M(F)$ can be achieved for instance by taking F satisfying:

\[
a F^2 + 2b F (z - px) + c (z - px)^2 + 2k F + 2l (z - px) + m \equiv 0,
\]

with a, b, c, k, l, m being now functions of y only!

From now on, we will analyze this special solution for $M(F) \equiv 0 \equiv DF$. The simplest case occurs when avoiding square root by choosing:

\[
a := 0,
\]

so that:

\[
F := -\frac{c(z-xp)^2 - 2l(z-xp) - m}{2b(z-xp)+2k}.
\]

Here:

\[
b = b(y), \quad c = c(y), \quad k = k(y), \quad l = l(y), \quad m = m(y)
\]

are free arbitrary differentiable functions of one variable y.

A direct check shows that magically this solution \eqref{eq:7.1} also satisfies $K(F) \equiv 0$!

Proposition 7.1. All such $F := -\frac{c(z-xp)^2 - 2l(z-xp) - m}{2b(z-xp)+2k}$ with any functions b, c, k, l, m of y, lead to Einstein-Weyl structures in 3-dimensions.

Performing the Cartan procedure to determine the coframe $\{\theta^1, \theta^2, \theta^3, \theta^4, \Omega_1, \Omega_2, \Omega_3\}$, projecting both $\theta^3 \otimes \theta^3 + \theta^1 \otimes \theta^4 + \theta^4 \otimes \theta^1$ and Ω_3 to the leaf space of the annihilator M_3 of $\{\theta^1, \theta^3, \theta^4\}$, equipping $M_3 \equiv \mathbb{R}^3$ with coordinates (x, y, z), we therefore obtain functionally parameterized Einstein-Weyl structures (g, A) on $\mathbb{R}^3 \ni (x, y, z)$ represented by the signature $(2, 1)$ Lorentzian metric:

\[
g := (k + b z)^2 dx^2 + x^2 (l^2 - cm) dy^2 + x^2 b^2 dz^2
\]

\[
+ 2x (ckz - blz + kl - bm) dx dy - 2xb(k + b z) dx dz - 2x^2 (ck - bl) dy dz,
\]
together with the differential 1-form:
\[\Lambda := \frac{-ck + bl + b'k - bk'}{x(ck^2 - 2bkl + b'm)} (xb\ dz - (k + b\ z)\ dx) + \frac{bl^2 - cbm - b'kl + bb'm + ckk' - bk'l}{ek^2 - 2bkl + b'm} \ dy. \]

An independent direct check confirms that equations (1.1) are indeed identically fulfilled!

About the Cotton tensor, we compute their 5 components, and realize that they are not identically zero. Hence the obtained Einstein-Weyl structures are generically conformally non-flat. Thus, Theorem 1.1 is established. The story for Theorem 1.4 is quite similar. □

Next, without assuming \(\Lambda \equiv 0 \) in (6.1), let us now make the Ansatz that:
\[(7.2) \quad a\ F^2 + 2b\ F(z - xp) + c\ (z - xp)^2 + 2k\ F + 2l\ (z - xp) + m \equiv 0, \]
for some arbitrary functions \(a, b, c, k, l, m \) of \(y \). The (two) solutions \(F \) automatically satisfy \(DF \equiv 0 \equiv M(F) \).

Since the solutions to Monge’s equation are conics in the \((p, F)\)-plane, we can rewrite in a hyperbolic setting:
\[(a\ F + b\ (z - xp) + c\ y)^2 - (k\ F + l\ (z - xp) + m)^2 \equiv 1, \]
with changed functions \(a, b, c, k, l, m \) of \(y \). To avoid transcendental functions in computations, we parametrize \(\cosh t = \frac{1 + a^2}{2q} \) and \(\sinh t = \frac{1 - a^2}{2q} \), and then, solving for \(F \) and for \(z - xp \), we may start from:
\[F = a(y) \frac{1 + a^2}{2q} + b(y) \frac{1 - a^2}{2q} + c(y), \]
\[z - xp = k(y) \frac{1 + a^2}{2q} + l(y) \frac{1 - a^2}{2q} + m(y), \]
again with (changed) free functions \(a, b, c, k, l, m \) of \(y \). Taking:
\[\omega_0 := d(z - xp) + x\ dp - F\ dy, \quad \omega_0^2 := dx, \quad \omega_0^3 := dy, \quad \omega_0^4 := dp, \]
and performing para-CR Cartan reduction to an \{e\}-structure/connection, we obtain the

Proposition 7.2. The second invariant condition \(K(F) \equiv 0 \) holds precisely in the following two cases:

1. \(k = l; \)
2. \(c = m' \) and \(a = \frac{bl + kk' - ll'}{k}. \)

In case (1), we obtain Einstein-Weyl structures for all free functions \(a, b, c, l, m \) of \(y \) given by:
\[g := 2\tau^1\ \tau^2 + (\tau^3)^2, \]
\[\Lambda := -\frac{2(a + b)}{x(a - b)l}\ \tau^2 - \frac{c - m'}{x(a - b)}\ \tau^3, \]
where:
\[\tau^1 := x(a + b)\ dy - 2l\ dx, \]
\[\tau^2 := -\frac{1}{x} x(a - b)\ dy, \]
\[\tau^3 := xc\ dy - x\ dz + (z - m)\ dx. \]

We verify that these Einstein-Weyl structures have nontrivial \(F = dA \neq 0 \) and nontrivial \(\text{Cotton}([g]) \neq 0 \).

In case (2), we obtain Einstein-Weyl structures given by:
\[g := 2\tau^1\ \tau^2 + (\tau^3)^2, \quad A := d\left[\log(x^2\ e)\right], \]
where:
\[\tau_1 := (k + l)k \, dx + x(bk - bl + kk' - ll') \, dy, \]
\[\tau_2 := \frac{1}{2} (k - l)k \, dx + \frac{1}{2} x(bk - bl + kk' - ll') \, dy, \]
\[\tau_3 := -(z - m)k \, dx - xkm \, dy + xk \, dz. \]

But this structure, which depends on 3 functions \(b, k, l \) of \(y \), is flat:
\[dA \equiv 0 \equiv \text{Cotton}(\langle g \rangle). \]

Finally, without replacing \(p \) by \(z - xp \), let us make the Ansatz that:
\[(7.3) \]
\[a F^2 + 2b F p + c p^2 + 2k F + 2l p + m \equiv 0. \]

Dealing similarly with the hyperbolic case,
\[F = a(y) \frac{1+q^2}{2 q} + b(y) \frac{1-q^2}{2 q} + c(y), \]
\[p = k(y) \frac{1+q^2}{2 q} + l(y) \frac{1-q^2}{2 q} + m(y), \]

we obtain nontrivial Einstein-Weyl structures. For instance, when \(k = l \) as in (1) above:
\[g := 2 \tau_1 \tau_2 + (\tau_3)^2, \quad A := -\frac{m'}{[a-b]l} \tau_3, \]
where:
\[\tau_1 := 2l \, dx + (a + b) \, dy, \]
\[\tau_2 := -\frac{1}{2} (a - b) \, dy, \]
\[\tau_3 := dz - m \, dx + (a + b) \, dy. \]

Note that this is again nontrivial:
\[dA \not\equiv 0 \not\equiv \text{Cotton}(\langle g \rangle). \]

and note that we do not have \(x, z \) dependence here.

REFERENCES

[1] Calderbank, D.M.J.; Pedersen, H.: *Einstein-Weyl geometry*. Surveys in differential geometry: essays on Einstein manifolds, 387–423, Surv. Differ. Geom., 6, Int. Press, Boston, MA, 1999.

[2] Cartan, É: *Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre*, Ann. Sc. Éc. Norm. Sup. 27 (1910), 109–192.

[3] Cartan, É: *La geometria de las ecuaciones diferenciales de tercer orden*, Rev. Mat. Hispano-Amer. 4 (1941), 1–31. Œuvres Complètes, Partie III, Vol. 2, pp. 1535–1565.

[4] Cartan, É: *Sur une classe d’espaces de Weyl*, Ann. Sci. École Norm. Sup. 60 (1943), no. 3, 1–16. Œuvres Complètes, Partie III, Vol. 2, pp. 1621–1636.

[5] Dunajski, M.; Mason, L.; Tod, P.: *Einstein-Weyl geometry, the dKP equation and twistor theory*, J. Geom. Phys. 37 (2001), no. 1, 63–93.

[6] Eastwood, M.G.; Tod, K.P.: *Local constraints on Einstein-Weyl geometries: the 3-dimensional case*, Ann. Global Anal. Geom. 18 (2000), no. 1, 1–27.

[7] Engel, F: *Sur un groupe simple à quatorze paramètres*, C. R. Acad. Sci. 116 (1893), 786–788.

[8] Freeman, M.: *Real submanifolds with degenerate Levi form*. Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Williams Coll., Williamstown, Mass., 1975), Part 1, pp. 141–147. Amer. Math. Soc., Providence, R.I., 1977.

[9] Frittelli, S.; Kozameh, C.; Newman, E.T.: *Differential geometry from differential equations*, Commun. Math. Phys. 223 (2001), no. 2, 383–408.

[10] Godlinski, M.; Nurowski, P.: *Geometry of third order ODEs*, arxiv.org/abs/0902.4128, 2009, 45 pages.

[11] Godlinski, M.: *Geometry of third-order ordinary differential equations and its applications in General Relativity*, arxiv.org/abs/0810.2234, 2008, 80 pages.

[12] Hill, D.; Nurowski, P: *Differential equations and para-CR structures*, Bollettino dell’Unione Matematica Italiana, (9) III (2010), 25–91.
NEW EXPLICIT LORENTZIAN EINSTEIN-WEYL STRUCTURES IN 3-DIMENSIONS

[13] Hitchin, N.: Complex manifolds and Einstein's equations. Twistor geometry and nonlinear systems (Primorsko, 1980), 73–99, Lecture Notes in Math., 970, Springer, Berlin-New York, 1982.
[14] Jones, P.E.; Tod, K.P.: Minitwistor spaces and Einstein-Weyl spaces, Classical Quantum Gravity 2 (1985), no. 4, 565–577.
[15] LeBrun, C.; Mason, L.J.: The Einstein-Weyl equations, scattering maps, and holomorphic disks, Math. Res. Lett. 16 (2009), no. 2, 291–301.
[16] Merker, J.: Lie symmetries of partial differential equations and CR geometry, Journal of Mathematical Sciences (N.Y.) 154 (2008), 817–922.
[17] Merker, J.; Pocchiola, S.: Explicit absolute parallelism for 2-nondegenerate real hypersurfaces $M^5 \subset \mathbb{C}^3$ of constant Levi rank 1, Journal of Geometric Analysis, 10.1007/s12220-018-9988-3.
[18] Nurowski, P.: Differential equations and conformal structures, J. Geom. Phys. 55 (2005), 19–49.
[19] Pedersen, H.; Tod, K.P.: Three-dimensional Einstein-Weyl geometry, Adv. Math. 97 (1993), no. 1, 74–109.
[20] Strazzullo, F.: Symmetry analysis of general rank–3 Pfaffian systems in five variables, (2009), PhD Thesis, Utah State University, Logan, Utah.
[21] Tod, K.P.: Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. 45 (1992), no. 2, 341–351.
[22] Einstein-Weyl spaces and third-order differential equations, J. Math. Phys. 41 (2000), no. 8, 5572–5581.
[23] Weyl, H.: Raum, Zeit, Materie, Springer, Berlin, 1919, viii+272 pp.
[24] Wünschmann, K.: Über Berührungsbedingungen bei Integralkurven von Differentialgleichungen, Inaug. Dissert. (Leipzig: Teubner).

LABORATOIRE DE MATHEMATIQUES D’ORSAY, UNIVERSITE PARIS-SUD, CNRS, UNIVERSITE PARIS-SACLAY, 91405 ORSAY CEDEX, FRANCE.
E-mail address: joel.merker@math.u-psud.fr

CENTRUM FIZYKI TEORETYCZNEJ, POLSKA AKADEMIA NAUK, AL. LOTNIKÓW 32/46, 02-668 WARSZAWA, POLAND.
E-mail address: nurowski@cft.edu.pl