Length-Weight Relationship and Condition Factor of African Big Barb *Labeobarbus intermedius* (Rüppell, 1836) in Ethiopian Freshwater Bodies: A Review

Agumassie Tesfahun, Mathewos Temesgen, L. Prabhadevi
Department of Biology, Ambo University, Ethiopia

Corresponding author Email: agumase2012@yahoo.com

International Journal of Aquaculture, 2018, Vol.8, No.3 doi: 10.5376/ija.2018.08.0003
Received: 30 Nov., 2017
Accepted: 04 Jan., 2018
Published: 19 Jan., 2018

Copyright © 2018 Tesfahun et al., This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preferred citation for this article:
Tesfahun A., Temesgen M., and Prabhadevi L., 2018, Length-weight relationship and condition factor of African big barb *Labeobarbus intermedius* (Rüppell, 1836) in Ethiopian freshwater bodies: a review, International Journal of Aquaculture, 8(3): 17-22 (doi: 10.5376/ija.2018.08.0003)

Abstract

The investigations on length-weight relationship and condition factor of the African big barb *Labeobarbus intermedius* (Rüppell, 1836) in Ethiopian water bodies have shown varied pattern including nearly isometric (b ≈ 3), negative (b < 3) and positive (b > 3) allometric. The Fulton condition factor (K) of *L. intermedius* is high (1.73) in Lake Ziway, however, declined in most rivers and lakes and also exhibits seasonal variation. Fish had a better body condition (2.73) during wet season in Angereb and Sanja Rivers. There is variation in condition factor with respect to sex in which females had better body condition (1.88) in Lake Ziway. The length-weight relationship and condition factor of *L. intermedius* is correlated with availability of food and water quality parameters justifying the need for effective management of this fish stock for conservation and continued fishing.

Keywords Fulton Condition Factor; Length-weight; *L. intermedius*

1 Background

The African big barb *Labeobarbus intermedius* is a widely distributed fish species in Northern Kenya and in most parts of Ethiopian drainage basin (Dadebo et al., 2013). It is widely distributed in the rift valley basin, Abay basin and Baro-Akobo basin part of Ethiopia, of which Lake Tana harbors the largest number of big barb species (Vijverberg et al., 2012; Awoke, 2015). It is one of the most commercially important fish species in the country (LFDP4, 1997; Bjorklis, 2004; Desta et al., 2006). The total annual yield of *L. intermedius* from the total inland water bodies is estimated to be about 365 tons per year (LFDP, 1997). However, recently *L. intermedius* catch from rift valley lakes (Lake Hawassa and Lake Koka) declined and reported to be unsafe for human consumption due to high mercury concentration (Mengesha, 2009). The decline of the fish species due to overfishing and parasitic infection has result the less accessibility of the fish on the local markets (Desta et al., 2006; Mengesha, 2009; Dadebo et al., 2013).

Length-weight relationship (LWR) is one of the most important biological tools in fishery management. It is used to estimate the average weight at which a fish can attain the given length (Lawson et al., 2013). Relationship between the two also indicates the wellbeing of fishes (Hamid et al., 2015). The difference in LWR is based on the inherited body shape and condition of individual fish. Condition factor shows the degree of wellbeing of fishes in their habitat, which is expressed by coefficient of body condition. It is a measure of various biological and ecological factors with regard to their feeding conditions (Nehemia et al., 2012). High values of condition factor indicate better body condition. However it is affected by stress, sex, season, availability of food and the quality of water where it grows (Ighwela et al., 2011).

The study of length-weight relationship and condition factor of freshwater fish species is a subject of continuous research as it is a basis for the development of a successful management program on fish capture and culture (Shalloof et al., 2009) in wild and controlled environments. In addition, the information is vital for management of the fish taken from different habitat types, feeding habits and species interaction under culture systems. The length-weight relationship and condition factor of *L. intermedius* have been reported from several water bodies (Admasu and Dadebo, 1997; Tesfaye, 2006; Anteneh, 2007; Berie, 2007; Gebremedhin et al., 2012; Dadebo et al., 2013).
Wakjira, 2013; Engdaw, 2014; Gebremedhin and Mengist, 2014; Awoke et al., 2015; Teshome et al., 2015; Abera, 2016; Melaku et al., 2017; Temesgen, 2017). However, there is no compiled information on the length-weight relationship and condition factor of *L. intermedius* in different Ethiopian water bodies. Therefore, this review paper is aimed to assess the length-weight relationship and condition factor of the African big barb *Labeobarbus intermedius* in Ethiopian water bodies.

2 Materials and Methods

Data sources were collected from June, 2017 through November, 2017. A range of literature sources were used for this review including journal articles, books and book chapters, workshop proceedings, FAO reports, bulletins, legal documents, and unpublished reports including PhD dissertations. The documents were collected from University libraries and Ethiopian Ministry of Livestock and fishery, from individual researchers, and from the Internet data bases.

2.1 Some biological parameters of *L. intermedius* in lentic and lotic systems

2.1.1 Length-weight relationship

The length-weight relationship indicates the wellbeing of fishes (Hamid et al., 2015). Fish can attain either isometric, negative allometric or positive allometric growth in its life (Nehemia et al., 2012). Isometric growth (b=3) is the type of growth when all the body parts grow at an approximately the same rate as the fish grows. The isometric growth pattern was reported from Lake Tana and tributaries of Blue Nile (Tesfaye, 2006; Gebremedhin et al., 2012; Gebremedhin and Mengist, 2014; Engdaw, 2014; Awoke et al., 2015) (Figure 1). Negative allometric growth (b<3) is the type of growth in which fish become slender as it increases in weight. *Labeobarbus intermedius* caught from Lake Langano, Gilgel Gibe reservoir and some tributaries of White Nile (Wakjira, 2013; Abera, 2016; Melaku et al., 2017; Temesgen, 2017) (Figure 1) such negative pattern. Positive allometric growth (b>3) in which fish become relatively deeper-bodied as it increases in length (Riedel et al., 2007) has been found in Gelgel Beles and koka reservoir population (Dadebo et al., 2013; Berie, 2007) (Figure 1). According to Bagenal and Tesch (1978) the differences in regression coefficient b (growth parameters) might be due to seasonal fluctuations in water quality parameters, food availability, feeding rate, gonad development and spawning period. The nearly isometric growth pattern in most common for this species are in both riverine and lacustrine environments (Figure 1).

![Figure 1 Regression coefficient (b) values of *L. intermedius*](image)

2.1.2 Fulton Condition Factor (FCF)

Condition factor expresses the degree of wellbeing of fishes in their habitat. On the other hand it is a measure of various biological and ecological factors with regard to their feeding conditions (Nehemia et al., 2012). Food availability in the water bodies are influenced by the changes in the water chemistry due to variations in the atmosphere and the surrounding environments (Pothoven et al., 2001). The condition factor of *L. intermedius*
showed variations among the populations in the rivers and reservoirs. It was comparatively high (1.14, 1.1, 1.05) respectively in Angereb (Tesfaye, 2006) in Beles and Sanja Rivers (Berie, 2007) than Gilgel Beles (0.99) (Dadebo et al., 2013) and Nile River (0.99) (Awoke et al., 2015). Higher condition is associated with high energy content, adequate food availability, reproductive potential and favorable environmental conditions. Relatively higher condition factors were reported from Lake Ziway (1.73) (Abera, 2016), in Lake Langeno (1.33) (Temesgen, 2017), Arno-Garno River (1.3), Aveya River (1.22) (Gebremedhin et al., 2012), (Wakjira, 2013) Geba and Sor Rivers (1.21) (Melaku et al., 2017) and Gilgel Gibe Reservoir (1.18) (Gebremedhin and Mengist, 2014) (Figure 2). The condition factor from Lake Koka was (1.0) (Dadebo et al., 2013) lower than Lake Ziway and Lake Langeno (Figure 2).

Ighwela et al. (2011) stated that seasonal fluctuations in food quantity and quality, water level, flow rate and temperature affect the condition factor of fishes. The mean Fulton condition factor of this species was greater in dry season (1.1) than wet (0.9) in Lake Koka (Dadebo et al., 2013) period. Similar seasonality was observed in Arno-Garno River (Gebremedhin et al., 2012) however, the values were higher (1.39 in dry season) (1.28 wet season) than Lake Koka. Comparatively high condition factor values during wet season than dry season were observed in Angereb and Sanja Rivers (Tesfaye, 2006), Aveya River (Gebremedhin and Mengist, 2014), Gilgel Gibe Reservoir (Wakjira, 2013). The condition factor of the species did not varied very much between the seasons in Geba and Sor Rivers (Melaku et al., 2017), Beles and Gilgel Beles (Berie, 2007) and in Nile River (Awoke et al., 2015) (Figure 3).
The body condition of fish is affected during peak spawning season the energy requirement for egg development in females and sperm production in males (Ighwela et al., 2011; Gebremedhin et al., 2012). Based on this male fishes were found in better condition (1.36) than females (1.28) in Arno-Garno River (Gebremedhin et al., 2012).

However, females were in better condition in Beles River (Berie, 2007) Aveya River (Gebremedhin and Mengist, 2014) (Figure 4). In Lake Ziway, female fishes showed the highest mean condition factor (1.88) than males (1.52) (Abera, 2016). Whereas in Lake Koka (Dadebo et al., 2013) the condition factor did not vary considerably among the sexes. Such a condition was reported from Nile River (Awoke et al., 2015) and Gilgel Beles River (Berie, 2007). It leads to conclude that high condition index of fish is associated with the amount of energy (fat) content, type of food available, reproductive potential and favorable environmental conditions (Paukert and Rogers, 2004).

Figure 4 Fulton Condition Factor (Mean) male and female *L. intermedius*

3 Conclusion

Growth pattern of fish varied in the different water bodies however, comparatively good condition factor was found in the fishes collected from Lake Ziway and Lake Langano than those observed from the rivers. The body condition of fish also varied with seasons and sex in the water bodies considered. Therefore, proper management of aquatic ecosystems is vital for sustainable fish stock utilization in the country.

Authors’ contributions

Agumassie Tesfahun and Mathewos Temesgen have compiled the data and prepared the manuscript. Dr. Prabhadevi has edited and contributed in the finalization of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We acknowledged the efforts made by the earlier researchers and express my gratitude for permitting to use the required data from their publications.

References

Abera L., 2016, Current status and trends of fishes and fishery of a shallow rift valley Lake, Lake Zeway, Ethiopia, PhD Dissertation submitted to Department of Zoological Sciences, Addis Ababa University, Ethiopia, pp. 90-95

http://etd.aau.edu.et/bitstream/123456789/16235/1/Lemma%20Abera.pdf

Admassu D., Dadebo E., 1997, Diet composition, length-weight relationship and condition factor of *Barbus* species (Rüppell, 1836) (Pisces: Cyprinidae) in Lake Awassa, Ethiopia, SINET: Ethiop J. Sci., 20: 13-30

http://dx.doi.org/10.4314/sinet.v20i1.18089

Anteneh W., 2007, The spawning migration of Laobeobarbus (Cyprinidae: Teleostei) of Lake Tana to Dirma and Megech Rivers, Ethiopia. MSc Thesis, Department of Biology, Addis Ababa University, Ethiopia, 85-86

http://etd.aau.edu.et/bitstream/123456789/10834/1/Wassie%20Anteneh.pdf

Awoke T., 2015, Fish Species Diversity in Major River Basins of Ethiopia: A Review, World Journal of Fish and Marine Sciences, 7: 365-374

http://www.ikou.org/wjfms/wjfms7/365-374.pdf
Awoke T., Mingist M., and Getahun A., 2015, Some aspects of the biology of dominant fishes in blue Nile River, Ethiopia, International Journal of Fisheries and Aquatic Studies, 3(1): 62-67.
http://www.fisheriesjournal.com/volissue1/Pdf/3-1-30.1.pdf

Bagan TL., and Tesch F.W., 1978, Methods of Assessment of Fish Production in Fresh Waters, IBP Handbook No 3, 3rd ed. Oxford Blackwell Scientific Publication, London
https://troye.nia.gov.et/version/42210355

Berie Z., 2007, Diversity, relative abundance and biology of fishes in Beles and Gelgel Beles Rivers, Abay basin Ethiopia, MSc. Thesis, Addis Ababa University, Ethiopia, 84-85
http://etd.aau.edu.et/bitstream/123456789/10997/1/Zeleke%20Berie.pdf

Bjerkli G., 2004, The fisheries in Lake Awassa, Ethiopia; estimation of annual yield, Unpublished M. Sc Thesis, Department of Plant and Environmental Sciences, Norwegian University Life Sciences, Ås, Norway
http://www.ribarian.net/navon/paper/MSc_thesis_Svein_Gunnar_Bj_rkli_2004.pdf?paperid=7028503

Dadebo E., Tesfahun A., and Teklegioris Y., 2013, Food and feeding habits of African big barb L. intermedius (Rüppell, 1836) (Pisces: Cyprinidae) in Lake Koka, Ethiopia, Journal of Agricultural Research and Development, 3: 49-58
http://e3journals.org/cms/articles/1372659180_Dadebo.pdf

Desta Z., Bärgström R., Rosseland B.O., Zinab G.M., 2006, Major difference in mercuric concentrations of the African big barb, Barbus intermedius (R.) due to shifts in trophic position, Ecol., Freshwat., Fish., 15: 532-543
https://doi.org/10.1111/j.1600-6633.2006.00193.x

Engdaw F., 2014, Morphometric relations, diet composition and ontogenetic dietary shift of Labeobarbus intermedius (Rüppell, 1836) in Lake Tana gulf of Gorgora, Ethiopia, International Journal of Fisheries and Aquaculture, 6(11): 124-132
http://www.academicjournals.org/article/article1416303880_FLipos.pdf

Gebremedhin S., Mingist A., Getahun A., and Anteneh W., 2012, Spawning migration of Labeobarbus spp. (Pisces: Cyprinidae) of Lake Tana Lake Tana to Arno-Garno River, Lake Tana Sub-basin, Ethiopia, SINET: Ethiop. J. Sci., 35(2): 95-106
https://www.aol.info/index.php/sinet/article/view/87315/77032

Gebremedhin S., and Mingist M., 2014, Diversity and abundance of fishes in Aveya River, Blue Nile basin, Ethiopia, International Journal of Current Research, 6(5): 6466-6473
http://www.journalcera.com/sites/default/files/5379.pdf

Hamid M.A., Morsan M., and Nor S., 2015, Length-weight relationship and Condition Factor of Fish Populations in Temengor reservoir: Indication of Environmental Health, Sains Malaysia, 44: 61-66
https://doi.org/10.17576/jsm.2015.4401.09

Ighwela K., Ahmed A., and Abol-Munafi A., 2011, Condition Factor as an Indicator of Growth and Feeding Intensity of Nile Tilapia Fingerlings (O. niloticus) feed on Different Levels of Maltose, American-Eurasian Journal Agri. & Environmental Science, 11: 559-563
https://www.idosi.org/jaes/11(4)12/1.pdf

Nehemia A., Magamira J.D., and Rumisha C., 2012, Length-weight relationship and condition factor of tilapia species grown in marine and fresh water ponds, Agriculture and Biology Journal of North America, 3: 117-124
https://doi.org/10.5251/abjna.2012.3.3.117.124

Lawson E.O., Akintola S.L., and Awe F.A., 2013, Length-weight Relationships and Morphometry for Eleven (11) Fish Species from Ogundu Creek, Lagos, Nigeria, Advances in Biological Research, 7: 122-128
http://www.idosi.org/abj/7(4)132.pdf

Lakes Fisheries Development Program (LDFP) 1997, Lake Management Plans: Phase II, Working Paper 23: MOA, pp. 23
http://www.eap.gov.et/sites/default/files/lake%20fisheries%20WP23.pdf

Mengesha M., 2009, Heavy metal pollution in the rift valley Lakes of Awassa and Koka, Unpublished M. Sc Thesis, University of Bremen, Germany
http://agris.fao.org/agrisearch/search.do?recordID=ET2008000003

Melaku S., Getahun A., and Wakjira M., 2017, Population aspects of fishes in Gheb and Sor Rivers, White Nile System in Ethiopia, East Africa. International Journal of Biodiversity, Article ID 1252604, pp. 7
https://doi.org/10.11155/2017/1252604

Paukert C.P., and Rogers, S.R., 2004, Factors affecting condition of Flannel mouth Suckers in Colorado River, Grand Canyon, Arizona. North American J. of Fisheries Management, 24: 648-653
https://doi.org/10.1577/M03-087.1

Pothoven S.A., Nalepa T.F., Scheenenger P.J., and Brandt S.B., 2001, Changes in diet and body composition of Lake Whitefish in southern Lake Michigan associated with changes in benthos, North America Journal of Fishery Management, 21: 876-883
https://doi.org/10.1577/1548-8678(2001)021<0876:CIDABC>2.0.CO;2

Riedel R., Caskey L.M., and Hurlbert S.H., 2007, Length-weight relations and growth rates of dominant fishes of the Salton Sea: implications for predation by fish-eating birds, Lake and Reservoir Management, 23: 528-535
https://doi.org/10.1080/07438140709354036
Shalloof K.A.Sh., and Khalifa N., 2009, Stomach contents and feeding habits of Oreochromis niloticus (L.) from Abu-Zabal Lakes, Egypt, World Applied Journal of Science, 6: 1-5
http://www.idosi.org/wasj/wasj6(1)/1.pdf

Temesgen M., 2017, Length-weight relationship and condition factor of fishes in Lake Langena, Ethiopia, PhD dissertation, Addis Ababa University, Ethiopia, pp. 10-13

Teshome G., Getahun A., Mengist M., and Hailu B., 2015, Some biological aspects of spawning migratory Labeobarbus species in some tributary rivers of Lake Tana, Ethiopia, International Journal of Fisheries and Aquatic Studies, 3: 136-141
http://www.fisheriesjournal.com/archives/2015/vol3issue2/PartB/3-2-11.pdf

Tesfaye G., 2006, Diversity, Relative abundance and biology of fishes in Sanja Rivers, Ethiopia, MSc thesis submitted to School of Zoological Sciences, Addis Ababa University, Ethiopia, pp. 80-84
http://etd.aau.edu.et/handle/123456789/39?mode=full

Vijverberg J., Dejen E., Getahun A., and Nagelkerke L.A.J., 2012, The composition of fish communities of nine Ethiopian Lakes along a north-south gradient: threats and possible solutions, Animal Biology, 62: 315-335
https://doi.org/10.1163/157075611X618246

Wakjira M., 2013, Feeding habits and some biological aspects of fish species in Gilgel Gibe Reservoir, Ethiopia, International Journal of Current Research, 5: 4124-4132
http://www.journalcra.com/sites/default/files/Download%204532.pdf