RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code

Sonali Bhakta1, Matomo Sakari1, and Toshifumi Tsukahara*1

Supplementary Data 1, S1:

List of candidate genes involved in diseases caused by T-to-C mutations
RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code

Sonali Bhakta¹, Matomo Sakari¹, and Toshifumi Tsukahara*¹

Supplementary Data 2, S2:

RNA-sequencing (RNA-seq) reads from BFP_1 HEK 293
RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code

Sonali Bhakta1, Matomo Sakari1, and Toshifumi Tsukahara*1

Supplementary Data 3, S3:

RNA-sequencing (RNA-seq) from experimental HEK 293_1
RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code

Sonali Bhakta¹, Matomo Sakari¹, and Toshifumi Tsukahara*¹

Supplementary Data 4, S4:

Calculation of editing efficiency based on peak area and peak height of the Sanger sequencing (N=5)
	Height	mean height	Width	Mean Width	Mean area	Mean total	STDv of Height	STDv of width	Ratio of edited and unedited	From the peak height
Original C	431	48								
	384	59								
	410	406.2	38	47.6	19335.12	17.824	8.142			
	395	42								
	411	51							0.21	
									23490	0.215
									21.5	21%
Edited T	120	42								
	110	35							21.5%	
	95	108.2	38	38.4	4154.88	9.859	3.049			
	102	36								
	114	41								
RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code
Sonali Bhakta¹, Matomo Sakari¹, and Toshifumi Tsukahara*¹

Supplementary Figure 5, S5:
Comparison of editing efficiency and off target effects when using gRNA of different lengths and different positions of the target in the guide
ADAR1-DD 250 ng
Guide 19 bp
upstream 500 ng

ADAR1-DD 250 ng
Guide 21 bp
upstream 500 ng

ADAR1-DD 250 ng
Guide 23 bp
upstream 500 ng
Editing %

- 5’ position of target in guideRNA
- Middle position of target in guideRNA
- 3’ position of target in guideRNA
RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code

Sonali Bhakta¹, Matomo Sakari¹, and Toshifumi Tsukahara*¹

Supplementary Data 6, S6:

Mutation reads at different positions in BFP stably transformed in HEK 293 cells- target/control
Pattern	Count
T>G	1536
A>C	1469
A>G	1107
T>C	921
G>T	634
C>A	625
T>A	534
A>T	481
G>A	405
C>T	396
G>C	361
C>G	298

Pattern	Count
AA>GG	69
TT>CC	41
GA>TT	17
AG>CC	15
CT>GG	12
AG>TT	9
GA>CC	9
CC>GG	6
TC>AA	5
AA>CC	5
CT>AA	5
TC>GG	5
AT>TG	4
GG>CC	4
GT>CG	4
AC>CG	4
AAA>GGG	3
TG>AT	3
TT>AA	3
GG>AA	3
AT>CG	3
AT>CC	3
TT>CG	3
CG>AC	2
GC>TA	2
CA>AT	2
AT>CA	2
TA>GG	2
CA>TG	2
GA>TC	2
GG>TT	2
CC>TG	2

Pattern	Count
TTT>AAA	1
TA>CC	1
TT>GG	1
TTT>CCC	1
TC>GA	1
GAA>CGG	1
AA>TT	1
TC>CT	1
AT>GG	1
TC>GT	1
CT>GC	1
AAAA>GGCC	1
CTC>AAA	1
CT>TA	1
AT>GA	1
ATC>CAA	1
CAC>TGG	1
TG>GC	1
TC>CG	1
AC>TG	1
CG>GC	1
AGA>TTT	1
AC>CA	1
GA>AG	1
CC>TT	1
GAT>TTG	1
GA>AC	1
TG>CC	1
GA>AT	1
GT>AG	1
CA>GG	1
GT>CC	1
AA>CG	1
Supplementary Figure, S6: Whole BFP sequencing by placing different primers at different positions and also there were overlapped positions. In total 1109bp were amplified, among these at the position of 200-527 only at this position one off-target event was found, which was located upstream of the targeted C which was to be edited.
RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code

Sonali Bhakta¹, Matomo Sakari¹, and Toshifumi Tsukahara*¹

Supplementary Data 7, S7:
Mutation reads at different positions in restored GFP in HEK 293 cells-tested/ experimental
Pattern	Count
T > G	2401
A > C	2355
T > C	1972
A > G	1915
G > T	1745
C > A	1698
G > A	1271
C > T	1238
F > A	1134
A > T	1042
C > G	702
G > C	648

Pattern	Count
T > G	2401
A > C	2355
T > C	1972
A > G	1915
G > T	1745
C > A	1698
G > A	1271
C > T	1238
F > A	1134
A > T	1042
C > G	702
G > C	648

Pattern	Count
AA > GG	58
TT > CC	51
GA > TT	31
TC > AA	23
CT > GG	20
AG > CC	16
AA > CC	14
AG > TT	12
AT > CA	10
AT > TG	10
CT > AA	9
TC > GG	8
CA > TG	8
TG > CA	8
GG > CC	7
CC > GG	6
AC > CG	6
GA > CC	5
TT > CG	5
GT > CG	4
CA > AT	4
CA > GC	3
AC > GT	3
CT > TC	3
TA > GG	3
AAA > GG	3
AG > GC	3
AA > TT	2
AT > CC	2
TC > CT	2
TA > AC	2
AT > GG	2
GG > TT	2

Pattern	Count
T > G	2401
A > C	2355
T > C	1972
A > G	1915
G > T	1745
C > A	1698
G > A	1271
C > T	1238
F > A	1134
A > T	1042
C > G	702
G > C	648

Pattern	Count
AA > CT	1
CTC > AAA	1
TTT > AA	1
GAT > TTG	1
GC > TG	1
CG > AT	1
GA > TC	1
GTT > CGG	1
CC > AG	1
TT > AG	1
TC > GA	1
AAG > GTT	1
GT > CC	1
TCG > AAA	1
TA > CG	1
GGG > CCC	1
AG > GT	1
CC > GT	1
AGT > CTC	1
CT > AG	1
AGA > CCC	1
CTC > GGG	1
AGT > CCG	1
TCT > AAA	1
TA > GT	1
CA > AC	1
AC > TG	1
CCCA > GG GT	1
TT > CA	1
GT > TC	1
ATC > CA	1
TT > GA	1
GT > CA	1
RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code

Sonali Bhakta¹, Matomo Sakari¹, and Toshifumi Tsukahara*¹

Supplementary Figure 8, S8

Schematic diagram of the editing by guideRNA (Complementary to the target sequence) and APOBEC 1 deaminase
RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code

Sonali Bhakta1, Matomo Sakari1, and Toshifumi Tsukahara*1

Supplementary Data 9, S9:

PCR-RFLP raw gel image without cropping