Standards of the Polish Ultrasound Society – update. Ultrasound examination of the visceral arteries

Michał Elwertowski¹, Robert Lechowicz²

¹ Department of General Surgery and Chest Diseases, Medical University of Warsaw, Poland
² Department of General and Transplantation Surgery, Medical University of Warsaw, Poland
Correspondence: Michał Elwertowski, MD, PhD, Mila Medical Center, Mila 6, 00-180 Warsaw, Poland, e-mail: elwertowski.michal@gmail.com, tel.: +48 600 330 511

DOI: 10.15557/JoU.2015.0007

Abstract
Ultrasound examination is a valuable method in diagnosing visceral vasoconstriction of atherosclerotic origin, as well as constriction related to the compression of the celiac trunk. Given the standard stenosis recognition criteria of >70%, the increase in peak systolic velocity (PSV) over 200 cm/s in the celiac trunk; of PSV > 275 cm/s in the superior mesenteric artery, and of PSV > 250 cm/s in the inferior mesenteric artery, the
皮质下动脉供血到结肠，见于中段结肠动脉（Drummond动脉）。

超声成像

这是在正常呼吸和深呼吸期间，以及在血液供应异常时，评估这些参数变化的可靠方法，以及测量门静脉、肝动脉、脾动脉、胰腺动脉和其相互连接情况。

皮质下动脉和肠系膜上动脉（SMA）由腔静脉连接，此动脉通常与股动脉共用。超声成像可用于在腹腔内结构：胃、十二指肠、胰腺、脾脏、胆囊（和胆管）、肝脏形成、十二指肠和近端结肠的图像。通过十二指肠的图像，可以检查十二指肠和近端结肠。

超声成像

超声成像使用标准的2–5 MHz探头。在需要记录高流速（2–5 MHz）的健康受试者中，以及在一些病例中（超过4 m/s的血管），超声成像使用三重模式。在腹部解剖中，超声成像可以用于在多普勒模式下，即B模式图像被冻结。
Standards of the Polish Ultrasound Society – update. Ultrasound examination of the visceral arteries

Przygotowanie do badania

The patient should refrain from eating for 6–8 hours before the examination. Due to the nature of evaluation of abdominal vascular structures, the patients should also abstain from taking any fluids for at least 2 hours prior to the examination.

Examination procedure

The examination is performed by positioning the patient in the supine position, with the patient breathing freely; the probe is positioned over the celiac trunk during exhalation, the recording speed is set to triplex mode. Due to changes in blood flow to the celiac trunk during deep breathing, the assessment of stenosis during inspiration is impossible.

The examination is typically carried out in the longitudinal plane – along the axis of the middle-upper section of the vessel – which is necessary for the proper determination of the angle between the axis of the blood stream and the direction of the Doppler wave (Fig. 2 A, B). In the absence of clearly identifiable stenosis or a post-stenotic dilation, the scanning probe should also be positioned over the entire length of the vessel in order to check for significant

Examination preparation

The patient should refrain from eating for 6–8 hours before the examination. Due to the nature of evaluation of abdominal vascular structures, the patients should also abstain from taking any fluids for at least 2 hours prior to the examination.

Technika badania

The examination is performed by positioning the patient in the supine position, with the patient breathing freely; the probe is positioned over the celiac trunk during exhalation, the recording speed is set to triplex mode. Due to changes in blood flow to the celiac trunk during deep breathing, the assessment of stenosis during inspiration is impossible.

The examination is typically carried out in the longitudinal plane – along the axis of the middle-upper section of the vessel – which is necessary for the proper determination of the angle between the axis of the blood stream and the direction of the Doppler wave (Fig. 2 A, B). In the absence of clearly identifiable stenosis or a post-stenotic dilation, the scanning probe should also be positioned over the entire length of the vessel in order to check for significant

Przygotowanie do badania

The patient should refrain from eating for 6–8 hours before the examination. Due to the nature of evaluation of abdominal vascular structures, the patients should also abstain from taking any fluids for at least 2 hours prior to the examination.

Technika badania

The examination is performed by positioning the patient in the supine position, with the patient breathing freely; the probe is positioned over the celiac trunk during exhalation, the recording speed is set to triplex mode. Due to changes in blood flow to the celiac trunk during deep breathing, the assessment of stenosis during inspiration is impossible.

The examination is typically carried out in the longitudinal plane – along the axis of the middle-upper section of the vessel – which is necessary for the proper determination of the angle between the axis of the blood stream and the direction of the Doppler wave (Fig. 2 A, B). In the absence of clearly identifiable stenosis or a post-stenotic dilation, the scanning probe should also be positioned over the entire length of the vessel in order to check for significant

Ryc. 1. Wspólne odejście pnia trzewnego i tętnicy kręgowej górnej
Fig. 1. Common origin of coeliac artery and superior mesenteric artery

Ryc. 2 A. Morfologiczny obraz zwężenia. B. Morfologiczny obraz zwężenia PD
Fig. 2 A. Morphological image – stenosis. B. Morphological image – stenosis PD
istotne zmiany prędkości przepływu w jego obrębie. Przy
zwężeniach widocznych w prezentacji B bramkę pomia-
rową należy ustawiać przy górnej krawędzi zwężenia, przed
poststenotycznym poszerzeniem, lub w przypadku bezwidoc-
nego ucisku – sprawdzić całość zagięcia naczynia pod kątem
zmian prędkości. Następnie trzeba powtórzyć pomiary na
szczycie głębokiego wdechu. W zwężeniu związanym z uci-
skiem przez więzadła łukowate wdech spowoduje ich wyższe
ustawienie i „odblokowanie” pnia trzeciego oraz istotny
spadek prędkości przepływu w jego obrębie, w większości
przypadków do wartości prawidłowych (ryc. 3 A–G). Przy
istniejących wyraźnych zwężeniach wskazane jest uzupeł-
nienie badania o wykonanie pomiarów przepływów w tęp-
nicy wątrobowej i śledzionowej, najlepiej podczas swobod-
nego oddychania oraz maksymalnego wdechu.

Technical aspects of the examination

Correct preparation for the examination is essential for the
analysis of the measured velocity levels. Any food intake
can significantly alter the flows in both – the celiac trunk,
and the mesenteric arteries. In the case of the celiac trunk a
slight increase in the flow rate can be observed; in the
case of the mesenteric arteries, a clearly observed increase
in flow velocity is complemented by a reduction in the flow
resistance (which is caused by the increase – by a factor of
2 or more – in end-diastolic velocity, EDV). Due to the
differences between individuals’ responses to food, the cur-
rent guidelines do not recommend comparing flow velocities
before and after a meal(2).

Obrazy prawidłowe

Ze względu na zmiany prędkości przepływu związane ze spo-
życiem posiłku pomiary muszą być wykonywane u pacjentów
pozostających na czczo. W przypadku pnia trzeciego przy
braku ucisku przebieg naczynia jest zwykle prosty, a odejście
od aorty pod kątem przekraczającym najczęściej 30° pozwała
a uzyskanie korzystnych interpretacyjnie obrazów.

Tętnica krezkowa góra poza początkowym, zagiętym
odecinkiem w środkowo-górnej części przebiega równolegle
do przedniej ściany aorty, co powoduje trudności w uzy-
skuaju odpowiedniego kąta pomiaru, nieprzekraczającego
60°. W większości przypadków na uzyskanie korzystnych
interpretacyjnie obrazów pozwalają silniejszy ucisk i ugię-
cie sondy.

When assessing the arcuate ligament syndrome, it is essen-
tial to perform the examination with the patient breathing
freely. The probe should be positioned over the celiac trunk,
and – when the patient exhales – the recording should be
performed. This is not a problem in the duplex mode; how-
ever, in a situation where the equipment does not allow for
live high-speed measurements, the probe must be placed
and the aorta joint lies at an angle greater
leading to normal images being registered.

Normal images

Due to changes in the flow velocity caused by the con-
sumption of food, measurements must be performed with
patients remaining on an empty stomach. In the case of
the celiac trunk – in the absence of pressure – the artery is
usually straight, and the aorta joint lies at an angle greater
than 30°, leading to normal images being registered.

Beyond its initial, curved segment in the middle-upper part,
the superior mesenteric artery runs parallel to the front
wall of the aorta, causing difficulties in obtaining adequate
recording angle not exceeding 60°. In most cases, in order
to record images that can be properly assessed, a stronger
pressure and deflection of the probe is necessary.
Fig. 3
A. The morphological – celiac trunk stenosis – median arcuate ligament syndrome.
B. The increase in flow velocity in the pressure region.
C. Normalization of the flow during inspiration.
D. Low-resistance hepatic artery flow.
E. Normalization of the hepatic artery flow during inspiration.
F. Low-resistance flow in the splenic artery.
G. Normalization of the splenic artery flow during inspiration.
Tętnica krejkowa dolna w warunkach prawidłowych jest cienkim, niekiedy trudnym do uwidocznienia naczyniem, które przy braku patologii w pozostałych dwóch tętnicach nie wymaga dokładniejszej oceny.

Prędkości przepływu w prawidłowych naczyńach trzewnych według danych literaturowych są następujące:\(^1\):

- pień trzewny: PSV – 98–105 cm/s;
- SMA: PSV – 97–142 cm/s;
- IMA: PSV – 93–189 cm/s.

Zgodnie z obserwacjami własnymi PSV w pniu trzewnym u młodych, szczupłych pacjentów bez zespołu wątropadła łukowatego wynosi do 150 cm/s.

Wraz z wiekiem prędkości przepływu w naczyńach trzewnych ulegają zmniejszeniu. Należy pamiętać, że współistniejące schorzenia mogą modyfikować przepływy w naczyńach trzewnych. W przypadku pnia trzewnego dotyczy to przede wszystkim marskości pozapulmonalnej z redukcją przepływu wrotnego oraz skomplikowanym wzrostem przepływu w tętnicy wątrobowej oraz śledzionowej (spowodowanej przez portalne zwężenie śledzionowego). Wszystko patologii przebiegających z wyraźniejszym powiększeniem śledziony (powyżej 15 cm) oraz hipersplenizm powodują wyraźny wzrost przepływu w tętnicy śledzionowej (osiągający niekiedy ponad 2 l/min), w istotny sposób modyfikując przepływy w pniu trzewnym. Podobny efekt obserwowany jest w przypadkach wzrostu przepływu w tętnicy wątrobowej u chorych z unaczynionymi przerzutami do wątroby.

Ocena zmian patologicznych

Ze względu na liczne połączenia pomiędzy naczyńami trzewnymi pacjenci mogą nie wykazywać objawów niedokrwienia narządów mimo obecności istotnych zwężen. Generalnie uważa się, że do wystąpienia dolegliwości potrzebne jest zwężenie co najmniej dwóch z trzech naczyń, jednak to twierdzenie stanowi znaczne uproszczenie często skomplikowanego problemu klinicznego(5).

Należy również pamiętać, że przewlekłe niedokrwienie krzegi jelita spowodowane zmianami miażdżycowymi, widocznych zwykle w początkowych odcinkach naczyń trzewnych, jest jedną z kilku przyczyn niedokrwienia. Pozostałe to: zator/ostra zakrzepica, wstrząs hipotensyjny i sepsa oraz zaburzenia odpływu żłynego aż do zakończenia naczyń krzegowych. We wszystkich tych przypadkach ultrasonografia ma niewielką wartość diagnostyczną.

Wartość diagnostyczną badanie USG ma natomiast w ocenie przewlekłego niedokrwienia jelit spowodowanego zmianami miażdżyłowymi w głównych naczyńach trzewnych oraz w zespole wątropadła łukowatego (median arcuate ligament syndrome, MALS).

Klinicznie możliwość przewlekłego niedokrwienia spowodowanego miażdżyłowym zwężeniem naczyń trzewnych należy rozpatrywać u starszych pacjentów z niewyjaśnionymi

The inferior mesenteric artery normally is a thin vessel, sometimes difficult to visualize; in the absence of pathological changes in the other two arteries it does not require a more detailed assessment.

According to the literature review, the normal levels of flow velocities in visceral vessels are as follows:\(^1\):

- celiac trunk: PSV – 98–105 cm/s;
- SMA: PSV – 97–142 cm/s;
- IMA: PSV – 93–189 cm/s.

Based on the observations of the celiac trunk performed by the authors on young, slim patients without the arcuate ligament syndrome, PSV can reach levels up to 150 cm/s.

With age, the visceral vessels flow velocity decreases. It should be noted that any comorbidities may affect the flow in the visceral vessels. In the case of the celiac trunk, this means mainly post-inflammatory cirrhosis with reduced portal flow and a compensatory increase in hepatic and splenic arteries (caused by splenomegaly). Most pathological changes occurring with strongly pronounced splenomegaly (above 15 cm) and hypersplenism cause a marked increase in splenic artery (sometimes reaching more than 2 l/min), significantly altering the flow in the celiac trunk. A similar effect is observed in the case of increasing the flow in the hepatic artery in patients with vascularized metastases to the liver.

Assessment of pathological changes

Due to the numerous connections between the visceral vessels, patients may not show signs of organ ischemia despite the presence of significant stenosis. Generally it is considered that in order for the pathological changes to occur, the narrowing of at least two of the three vessels must take place; this assertion, constitutes a considerable simplification of a (quite often very complex) clinical problem(5).

It should also be noted that chronic mesenteric ischemia caused by atherosclerosis usually detectable in the initial section of visceral vessels, is just one of several causes of ischemia. Other causes include: congestion/acute thrombosis, hypotensive shock and sepsis, venous outflow obstruction, and mesenteric vascular thrombosis. In all these cases, ultrasound examination provides negligible diagnostic usefulness.

In contrast, ultrasound examination offers considerable diagnostic value in the assessment of chronic intestinal ischemia caused by atherosclerosis in major vessels of the visceral, as well as in the cases of the median arcuate ligament syndrome (MALS).

From the clinical perspective, the possibility of chronic ischemia caused by atherosclerotic narrowing of the visceral vessels should be considered in elderly patients with unexplained abdominal pain and loss of body
bólami brzucha i utratą wagi ciała (ryc. 4 A, B). Takie zmiany dotyczące przynajmniej jednego z naczyń trzewnych występują u kilkunastu procent pacjentów po 65 roku życia, trzykrotnie częściej u kobiet (ryc. 5 A–C).

Diagnostyka zwężen tętnic trzewnych opiera się na pomiarach PSV. Za kryterium zwężenia pnia trzewnego i tętnicy krzewowej górnej przekraczającego 70% przyjmuje się wzrost prędkości szczytowo-skurczowej PSV w naczyniach >200 cm/s w TC i PSV >275 cm/s w SMA.

Diagnostyka zwężen tętnic trzewnych opiera się na pomiarach PSV. Za kryterium zwężenia pnia trzewnego i tętnicy krzewowej górnej przekraczającego 70% przyjmuje się wzrost prędkości szczytowo-skurczowej PSV w naczyniach >200 cm/s w TC i PSV >275 cm/s w SMA.

Diagnostics of celiac artery stenosis is based on PSV measurements. The criterion of stenosis of the celiac and superior mesenteric artery exceeding 70% is the increase in peak systolic velocity in the vessels: PSV >200 cm/s for CT, and PSV >275 cm/s for SMA.
W odniesieniu do pnia trzewnego czułość, specyficzność i wskaźnik pozytywnego rozpoznania (PPV) według tego kryterium wynoszą: 75–100%, 87–89% i 85%. Cennym uzupełnieniem badania jest ocena wskaźników oporności i pulsacyjności RI oraz PI (resistant index, pulsatility index) w tętnicach wątrobowej właściwej i śledzionowej. Spadek RI poniżej 0,65 oraz PI poniżej 1,0 wskazuje na istotne zwężenie. U osób z długotrwałymi zmianami z rozwiniętym krążeniem obocznym przepływy w tych naczyńach (lub jednym z nich) mogą pozostać niezmienione pomimo zwężenia pnia trzewnego powyżej 80%.

W przypadku tętnicy krzekowej górnej przy wzroście prędkości przepływu powyżej 275 cm/s czułość, specyficzność i wskaźnik pozytywnego rozpoznania (PPV) wynoszą 89–100%, 92–100% i 80%.

W przypadku IMA kryterium istotnego hemodynamicznie zwężenia (>50%) jest wzrost PSV >250 cm/s, ze wskaźnikami czułości i specyficzności odpowiednio 90% i 96% oraz całkowitą dokładnością 95%. Przy ilorazie prędkości w IMA i aorty powyżej 4,0 wskaźnik całkowitej dokładności wynosi 93%.

Ponadto należy pamiętać, że zwężenie jednego z naczyń trzyczowo powoduje zwykle wzrost przepływu w pozostałych naczyńach, przy czym o ile wzrost przepływu w sąsiedztwie zwężenia zmienia się szybko za zwężeniem w wolny przepływ o zaburzonej strukturze, o tyle przy kompensacyjnym wzroście przepływu jest on widoczny na całym jego odcinku dostępnym w badaniu.

W diagnostyce zwieńczeń naczyń trzyczowych o etiologii miążdżowej trzeba pamiętać, że przepływ przez te naczyńca, wynoszący około 20% objętości wyrzutowej serca, może się podwajać po obfitym posiłku oraz przeciwnie – ulegać dwukrotnie redukcji w przypadku zmian chorobowych (szok, hipovolemia) czy przy submaximalnym wysiłku wykonywanym na czczo.

Niedrożność dolnego odcinka aorty (zespół Leriche’a) jest często związana z niedrożnością IMA.

Ocena morfologiczna stopnia zwężenia pnia trzewnego przy podejrzeniu zespołu więzadła łukowatego (median arcuate ligament syndrome, MALS) obejmuje zmiany kształtu górnego odcinka naczynia, uciskanego przez odnogi przepony, co utrudnia niekiedy uzyskanie właściwego kąta do pomiarów prędkości oraz przede wszystkim związane z uciskiem poststenotyczne poszerzenie tętnicy, w którego obrębie widoczne są wyraźne zawierania krwi (rejestrowane również w obrazie spektralnym).

Morfologicznie ucisk o różnym stopniu jest widoczny u 20–70% osób kierowanych na badanie z powodu dolegliwości brzusznych, głównie młodych i szczupłych. U 1% z nich ucisk jest na tyle duży, że powoduje bóle brzucha, nudności, wymioty po spożyciu posiłku oraz utratę wagi ciała. Objawy mogą występować w trakcie wysiłku fizycznego i po nim. Kryteria rozpoznania to wzrost prędkości przepływu PSV >250 cm/s i EDV >55 cm/s. Prędkości przepływu istotnie się

According to this criterion, with respect to the visceral trunk, the sensitivity, specificity, and positive predictive value (PPV) are as follows: 75–100%, 87–89% and 85%. A valuable addition to the examination procedure is the evaluation of resistance and pulsatility indices (RI and PI) in the proper hepatic artery and spleen. A decrease in RI below, and in PI below 1.0 are symptoms of significant stenosis. In patients with long-term changes in the developed collateral circulation flow in these vessels (or one of them) the flows may remain unchanged despite celiac trunk stenosis above 80%.

In the case of the superior mesenteric artery, with the flow velocity increasing above 275 cm/s, sensitivity, specificity and PPV are at: 89–100%, 92–100% and 80%.

In the case of IMA, the criterion for hemodynamically significant stenoses (>50%) is the increase in PSV >250 cm/s, with sensitivity and specificity at 90% and 96%, and the overall accuracy of 95%. When the velocity quotient in IMA and aorta is above 4.0, the overall accuracy is 93%.

It should also be underscored that a stenosis in one of the visceral vessels will usually increase the flow in other vessels; and whereas the increased flow in the vicinity of stenosis quickly changes to free flow with a distorted spectrum, the compensating increase in flow is visible throughout the entire section being examined.

In the study and diagnostics of visceral vasoconstriction of atherosclerotic it is crucial the flow through these vessels, amounting to about 20% of stroke volume, may double after a heavy meal, and – in contrast – is also subject to double reduction in the cases of pathological changes (shock, hypovolemia) or during a submaximal effort performed on an empty stomach.

Oclusion of the lower aorta (Leriche syndrome) is often associated with the occlusion of the IMA.

Morphological evaluation of the degree of stenosis of the celiac trunk in cases where median arcuate ligament syndrome (MALS) is anticipated involves changes in the shape of the upper section of the vessel, oppressed by a branch of the diaphragm, which sometimes makes it difficult to obtain a proper angle for velocity estimation, mainly due to the widening of the post-stenotic artery compression, within which there are clear turbulence of blood (also recorded in the spectral image).

Morphologically, varying degrees of pressure can be observed in 20–70% of people referred for examination due to abdominal pain, mostly young and slim. In 1% of this group, the occlusion is severe enough to cause abdominal pain, nausea, vomiting after a meal, and weight loss. The symptoms may occur during and after physical workout. Diagnostic criteria include the increase in PSV above 250 cm/s and EDV >55 cm/s. The velocities drop significantly (often to normal levels) with the examination performed during maximal inspiration. The diagnosis may be reached more easily by assessing
zmniejszając (czysto do wartości prawidłowych) przy pomiarach wykonywanych na szczycie wdechu. W ustaleniu rozpoznania pomaga ocena przepływów w tętnicy wątrobowej i śledziona, w których widoczne są zmiany RI i PI poniżej 0,65 oraz 1,0; wzrost oporów i prędkości przepływu podczas wdechu potwierdza diagnozę (material własny).

Należy pamiętać, że zespół więźdła łukowatego jest obecnie najczęściej przyczyną operacji pnia trzewnego w przebiegu zespołu przewlekłego niedokrwienia.

Badanie USG jest również przydatne w ocenie pooperacyjnej stanu naczyń trzewnych oraz po zabiegach stentowania. W takich przypadkach kryteria rozpoznawania restenozy to wzrost PSV >300 cm/s i EDV >50–70 cm/s, a przy zaawansowanych zwężeniach spadek PSV <40 cm/s (ryc. 6 i 7).

Opis badania

Opis badania pnia trzewnego obejmuje ocenę morphologiczną naczynia: średnica prawidłowa/nierównowa z przewężeniem/poststenotyczne poszerzenie. Kolejnym elementem jest podanie prędkości skurczowej i rozkurczowej przepływu w miejscu zwężenia podczas normalnego oddychania i w czasie wdechu. Przy wykonywaniu pomiarów w tętnicy wątrobowej oraz śledzionowej należy podać, czy występują w nich zaburzenia przepływu związane z obecnym powyższym zwężeniem – zmiany prędkości przepływu, obniżenie wskaźnika oporności RI.

W przypadku zwężenia miążdżycowego naczyń trzewnych w opisie trzeba ponadto uwzględnić stan aorty brzusznej, w tym wielkość i echogeniczność blaszek miążdżycowych oraz ich stosunek do odchodzących naczyń.

Opis tętnic krzękowych obejmuje ocenę ich drożności oraz rejestrację prędkości przepływu i ewentualnie wzrostu/obniżenia oporów przepływu w ich świątłą.

W przypadku zwężen tętnic krzękowych należy ocenić wszystkie trzy naczynia trzewne. Przy zwężeniach pnia the flow in the hepatic and splenic arteries – in which changes in RI and PI are visible, reaching levels below 0.65 and 1.0; the increase in resistance and flow rate during inspiration further validates the diagnosis (own material).

It should be noted that the arcuate ligament syndrome is now the leading reason for celiac trunk surgery in the course of chronic ischemia.

Ultrasound examination is also useful in assessing the postoperative state of vascular vessels, also after stenting. In such cases, the criteria for identifying restenosis are: the increase of PSV above 300 cm/s and EDV above 50–70 cm/s, and – in more severe cases – a decrease in PSV below 40 cm/s (Fig. 6 and 7).

Impression

Description of the celiac trunk examination includes morphological assessment of vessel: correct/incorrect diameter with narrowing/post-stenotic widening. Another aspect is the velocity of systolic and diastolic flow in the stenosis during normal breathing and during inspiration. While checking the hepatic and splenic arteries the description should state whether any disorder associated with the current above stenosis occur, including: changes in flow rate, and the reduction of RI.

In the case of atherosclerotic vascular stenosis, the report should also take into account the state of the abdominal aorta, including the size and echogenicity of atherosclerotic plaques, and their relationship to the outgoing vessels.

The description of the mesenteric arteries includes the assessment and recording of flow velocity and possibly an increase/reduction in the flow resistance.

In the case of mesenteric artery stenosis the report impression should evaluate all three visceral vessels. In cases of...
trzewnego wskazane jest sprawdzenie przepływu w tętnicy kreżkowej górnej.

Dokumentacja

Dokumentacja badania pnia trzurnego w przypadku braku patologii obejmuje jedynie rejestrację przepływu podczas normalnego oddychania.

Przy istniejących zwężeniach należy udokumentować morfologiczny obraz pnia trzewnego i tętnic kreżkowych, widno przepływu w miejscu maksymalnego zwężenia/ucisku wraz z oceną prędkości w czasie spokojnego oddychania, pomiar prędkości w tym samym miejscu podczas maksymalnego wdechu oraz opcjonalnie ocenę prędkości

Documentation

Documentation of celiac trunk examination in the absence of pathological changes covers only the recording of blood flow during normal breathing.

In cases when stenosis is identified, the morphological image of the celiac trunk and mesenteric arteries should be recorded, together with the flow spectrum in the point of maximum constriction/pressure with the assessment of velocity during quiet breathing, and during maximum inspiration; and – optionally – with the assessment of flow

Ryc. 7 A. Obraz pnia trzewnego i tętnicy kreżkowej górnej po implantacji stentów. **B.** Stent w pniu trzewnym. **C.** Patologiczny wzrost prędkości przepływu w stencie w pniu trzewnym – zwężenie. **D.** Stent w tętnicy kreżkowej górnej. **E.** Przepływ w stencie w tętnicy kreżkowej górnej – na pograniczu normy

Fig. 7 A. Celiac trunk and superior mesenteric artery after stent implantation. **B.** Stent implanted in the visceral trunk. **C.** Pathological increase in the flow velocity in the visceral trunk stent – stenosis. **D.** Stent implanted in the superior mesenteric artery. **E.** Flow velocity in the superior mesenteric artery stent – borderline values
przepływu w tętnicy wątrobowej i śledzioniczej w trakcie normalnego oddychania i wdechu. Stwierdzenie zwężenia w jednym z naczyń wymaga oceny pozostałych.

W zwężeniach miażdżycowych wskazane jest wykonanie dokumentacji zmian w aorcie brzusznej.

Podsumowanie

Badanie dopplerowskie naczyń trzewnych jest w stanie określić znaczenie hemodynamiczne uwidocznionych zwężen poprzez ocenę zmian przepływów powyżej, w miejscu oraz poniżej zwężenia z charakterystycznymi zaburzeniami spektrum. Badanie jest szczególnie przydatne w ocenie zmian związanych z uciskiem pnia trzewnego przez odnogi przepony – więzadła łukowate, umożliwia bowiem zarówno określenie stopnia zwężenia, jak i rozwoju krążenia oboczego. Pozwala to na szybkie wdrożenie właściwego dalszego postępowania diagnostycznego i terapeutycznego.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo / References

1. Pellerito J, Polak JF: Introduction to vascular sonography. Elsevier, Philadelphia 2012.
2. Moneta GL, Taylor DC, Helton WS, Mulholland MW, Strandness DE Jr et al.: Duplex ultrasound measurement of postprandial intestinal blood flow: effect of meal composition. Gastroenterology 1988; 95: 1294–1301.
3. Jäger K, Bollinger A, Valli C, Ammann R: Measurements of mesenteric blood flow by duplex scan. J Vasc Surg 1986; 3: 462–469.
4. Baxter BT, Pearce H: Diagnosis and surgical management of chronic mesenteric ischemia. In: Strandness DE, van Breda A (eds.): Vascular Diseases: Surgical and Interventional Therapy. Churchill Livingstone, New York 1994.
5. Cronenwett JL, Johnston KW: Rutherford’s Vascular Surgery. Saunders Elsevier, Philadelphia 2010.
6. Pellerito JS, Revzin MV, Tsang JC, Greben CR, Naidich JB: Doppler sonographic criteria for the diagnosis of inferior mesenteric artery stenosis. J Ultrasound Med 2009; 28: 641–650.
7. Cronenwett JL, Johnston KW: Rutherford’s Vascular Surgery. Saunders Elsevier, Philadelphia 2014.
8. Armstrong PA: Visceral duplex scanning: evaluation before and after artery intervention for chronic mesenteric ischemia. Perspect Vasc Surg Endovasc Ther 2007; 19: 386–392.