HYPERSPACES OF DIMENSION 1

ALFREDO ZARAGOZA

Abstract. In a previous paper the author asked if there exists a one-dimensional space X that is not almost zero-dimensional, such that the dimension of the hyperspace of compact subsets of X is one-dimensional. In this short note we give examples of spaces X that are not almost zero-dimensional such that X is one-dimensional and their hyperspace of compacta of X also is one-dimensional.

1. Introduction

All spaces will be assumed to be separable and metrizable. A space X is zero-dimensional if it has a base of clopen sets. A space X is one-dimensional if and only if it has a base β of neighborhoods such that $bd_X(U)$ and is zero-dimensional and nonempty for any $U \in \beta$. If X has dimension one we write $dim(X) = 1$. In general we can define the dimension of a space X for any $n \in \mathbb{N}$ (see [7]) but in this work we will only use the definition of dimension 0 and 1. For a space X, $K(X)$ denotes the hyperspace of non-empty compact subsets of X with the Vietoris topology; for any $n \in \mathbb{N}$, $\mathcal{F}_n(X)$ is the subspace of $K(X)$ consisting of all the non-empty subsets that have cardinality less or equal to n; and $\mathcal{F}(X)$ is the subspace of $K(X)$ of finite subsets of X. For $n \in \mathbb{N}$ and subsets U_1, \ldots, U_n of a topological space X, we denote by $\langle U_1, \ldots, U_n \rangle$ the collection $\{F \in K(X) : F \subset \bigcup_{k=1}^{n} U_k, F \cap U_k \neq \emptyset \text{ for } k \leq n \}$. Recall that the Vietoris topology on $K(X)$ has as its canonical base all the sets of the form $\langle U_1, \ldots, U_n \rangle$ where U_k is a non-empty open subset of X for each $k \leq n$. Note that if X is a separable metrizable space, then they every subspace of $K(X)$ is also a separable metrizable space (see [5] Theorem 3.3 and Propositions 4.4 and 4.5.2). In [9] it was shown that if X is a almost-zero dimensional space, then $\dim(X) = \dim(K(X))$. We are going to show spaces X of one dimension that are not almost zero dimensional such that $\dim(K(X)) = 1$. The main results of this work are:

1.1. Theorem There exists a connected space X such that $\dim(X) = \dim(K(X)) = 1$.

1.2. Theorem There exists a totally disconnected space X which is not AZD such that $\dim(X) = \dim(K(X)) = 1$.

2010 Mathematics Subject Classification. Primary: 54F65, Secondary: 54F50, 54A10, 54B20, 54H05.

Key words and phrases. Erdős space, almost zero-dimensional space, cohesive space, Vietoris hyperspace, one-dimensional.

This work is part of the doctoral work of the author at UNAM, Mexico city, under the direction of the Hernández-Gutiérrez. This research was supported by a CONACyT doctoral scholarship with number 696249.
The Theorem[14] was suggested in a letter by Roman Pol.

2. Preliminaries

A space \((X, T)\) is almost zero-dimensional (AZD) if there is a zero-dimensional topology \(W\) in \(X\) such that \(W\) is coarser than \(T\) and has the property that every point in \(X\) has a local neighborhood base consisting of sets that are closed with respect to \(W\). This concept was introduced by Oversteegen and Tymchatyn in [3]. They proved that almost zero-dimensional spaces are at most 1-dimensional. Recall that Erdős space is defined as:

\[
E = \{(x_n)_{n \in \omega} \in \ell^2 : x_i \in \mathbb{Q}, \text{for all } i \in \omega\};
\]

and complete Erdős space as

\[
E_c = \{(x_n)_{n \in \omega} \in \ell^2 : x_i \in \{0\} \cup \{1/n : n \in \mathbb{N}\}, \text{for all } i \in \omega\}
\]

when \(\ell^2\) is the Hilbert space of all square summable real sequences. It’s known that Erdős space, and complete Erdős space are almost zero-dimensional spaces which are not zero-dimensional spaces (see [1]). A space \(X\) is called cohesive if every point of the space has a neighborhood that does not contain nonempty proper clopen subsets of \(X\).

2.1. Lemma[2] \(E\) and \(E_c\) are cohesive spaces.

A one-point connectification of a space \(X\) is a connected extension \(Y\) of the space such that the remainder \(Y \setminus X\) is a singleton.

2.2. Example Let \(p\) be a point outside \(E_c\), consider \(E_c^+ = E_c \cup \{p\}\) whose neighbourhoods of \(\{p\}\) are the complements of closed bounded sets of \(E_c\). Then \(E_c^+\) is metric separable connected space.

It is known that if a space admits a one-point connectification, then it is cohesive. Moreover if an almost zero-dimensional space is cohesive, then it admits a one point connectification (see [1] Proposition 5.4, p. 22)

Let \(X\) be an AZD and cohesive space (for example \(E, E_c\)), then \(X\) has a one-point connectification. Suppose that \(Y = \{p\} \cup X\) where \(p \notin X\). Since \(Y\) is connected then \(Y\) is not an AZD space.

Now let us consider \(E_c^+\) of example 2.2 and \(N = \{0\} \cup \{1/n : n \in \mathbb{N}\}\). Let

\[
P = [E_c^+ \times \{1/n : n \in \mathbb{N}\}] \cup (p, 0)
\]

with the topology inherited from \(E_c^+ \times N\), then is a totally disconnected and is not an AZD space (see [1] Example 3.6). The spaces \(Y\) and \(P\) are the spaces we will use to prove the main result.

Another important result for proving the main Theorems is the following:

2.3. Proposition [3] Proposition 2.2] \(X\) is an AZD space if only if \(K(X)\) is an AZD space.

3. Proof of main Theorems

Let \(Z \in \{P, Y\}\) and \(d\) a metric for \(Z\). For each \(n \in \mathbb{N}\), let \(B_n = \{z \in Z : d(z, q) < 1/n\}\) and let \(E_n = Z \setminus B_n\), where \(q = p\) if \(Z = Y\) or \(q = (p, 0)\) if \(Z = P\).
Note that for any \(n \in \mathbb{N} \), \(E_n \) is an AZD space and, by Proposition 2.3, \(K(E_n) \) is an AZD space. Let \(\mathcal{N} = \prod_{n} \{ K(E_n) \cup \{ \emptyset \} \} \), then \(\mathcal{N} \) is an AZD space (let's consider the set \(\{ \emptyset \} \) as an isolated point of \(K(E_n) \cup \{ \emptyset \} \)).

Let
\[
\mathcal{L} = \{ (K_1, K_2, \ldots) \in \mathcal{N} : \text{for } m \geq n, K_m \cap E_n = K_n \}, \text{ and } \\
\mathcal{S} = \{ H \in K(Z) : q \in H \}
\]

Let's consider the following functions \(\mathcal{G} : \mathcal{L} \to \mathcal{S} \) and \(\mathcal{G}_n : \mathcal{S} \to \pi_n[\mathcal{L}] \) (where \(\pi_n \) is the projection to the \(n \)-th coordinate) such that
\[
\mathcal{G}(K_1, K_2, \ldots) = \{ q \} \cup \bigcup_{n} K_n, \text{ and } \\
\mathcal{G}_n(K) = K \cap E_n
\]

3.1. Lemma

\(\mathcal{G} \) is well defined and is a homeomorphism.

Proof. To prove that \(\mathcal{G} \) is well defined, let \(\mathcal{U} \) be an open cover of \(\{ q \} \cup \bigcup_{n} K_n \) in \(Z \). Since \(q \in \{ q \} \cup \bigcup_{n} K_n \), we can suppose that \(B_m \in \mathcal{U} \) for some \(m \). Note that \((\{ q \} \cup \bigcup_{n} K_n) \setminus K_m \subset B_m \), since \(Z \setminus K_m \subset B_m \). As \(\{ U \cap E_m : U \in \mathcal{U} \} \) is an open cover of \(K_m \) and \(K_n \) is a compact subset of \(E_m \), then there exists \(U_1, \ldots, U_k \), such that \(K_m \subset \bigcup_{i \leq k} (U_i \cap E_m) \). Therefore \(\{ B_m, U_1, \ldots, U_k \} \) is a finite subcover of \(\mathcal{U} \), that is \(\{ q \} \cup \bigcup_{n} K_n \) is a compact subset of \(Z \). Therefore \(\mathcal{G} \) is well defined.

Let's prove that \(\mathcal{G} \) is injective, let \(\hat{K} = (K_1, K_2, \ldots), \hat{H} = (H_1, H_2, \ldots) \in \mathcal{L} \) such that \(\hat{H} \neq \hat{K} \), then there exists \(k \in \mathbb{N} \) so that \(H_k \neq K_k \). Therefore there exists \(x \in H_k \setminus K_k \), then \(x \in \mathcal{G}(\hat{H}) \) and \(x \notin \mathcal{G}(\hat{K}) \). That is, \(\mathcal{G} \) is injective. Now let's see that \(\mathcal{G} \) is surjective, let \(\mathcal{K} \in \mathcal{S} \). We define \(K_n = \mathcal{K} \cap E_n \), since \(E_n \) is a closed subset in \(Z \), then \(K_n \) is empty or is a compact subset of \(E_n \). Then \(K_n \in K(E_n) \cup \{ \emptyset \} \) for each \(n \in \mathbb{N} \), therefore \((K \cap E_1, \ldots) \in \mathcal{L} \) and \(\mathcal{G}((K \cap E_1, \ldots)) = \mathcal{K} \). That is, \(\mathcal{G} \) is surjective. Before proving that \(\mathcal{G} \) is a homeomorphism, let's show that
\[
\mathcal{B} = \{ \langle U_1, \ldots, U_n, B_k \rangle \cap \mathcal{S} : n, k \in \mathbb{N} \text{ and } U_1, \ldots, U_n \text{ are open subsets of } Z \setminus \{ p \} \} \cup \{ \langle B_k \rangle : k \in \mathbb{N} \}
\]
is a basis for \(\mathcal{S} \).

Let \(\mathcal{K} \in \mathcal{S} \) and \(\mathcal{W} = \{ W_1, \ldots, W_n \} \) an open subset of \(K(Z) \) such that \(\mathcal{K} \in \mathcal{W} \). If \(K_n \neq \emptyset \) for some \(n \in N \), then \(H_r \neq \emptyset \) for \(r \geq n \), without loss of generality we can assume that \(n = 1 \). As \(p \in K \in \mathcal{W} \), then there exist \(j \leq n \) such that \(p \in \bigcap \{ W_j : j \leq n, p \in W_j \} \), and \(k \in \mathbb{N} \) such that \(p \in B_k \subset \bigcap \{ W_j : j \leq n, p \in W_j \} \). To find an element \(\mathcal{V} \) of the base \(\mathcal{B} \) such that \(\mathcal{K} \in \mathcal{V} \subset \mathcal{W} \), we consider two cases. If \(K \setminus B_k = \emptyset \) or if \(K \setminus B_k \neq \emptyset \). If \(K \setminus B_k = \emptyset \) then \(K \subset B_k \). Therefore \(K \in \langle B_k \rangle \subset \mathcal{W} \). If \(K \setminus B_k \neq \emptyset \) then for each \(x \in K \setminus B_k \) there exist \(U_x \) such that \(x \in U_x \subset \bigcap \{ W_j : j \leq n, x \in W_j \} \), as \(K \setminus B_k \) is compact and \(\{ U_x : x \in K \setminus B_k \} \) is an open cover of \(K \setminus B_k \), there exist \(x_1, \ldots, x_i \) such that \(K \setminus B_k \subset \{ U_{x_1}, \ldots, U_{x_i} \} \). Let \(\mathcal{V} = \{ U_{x_1}, \ldots, U_{x_i}, B_k \} \cap \mathcal{S} \), note that \(\mathcal{K} \in \mathcal{V} \), and \(\mathcal{V} \subset \mathcal{W} \cap \mathcal{S} \). On the other hand if \(K = \{ p \} \), there exist \(k \in \mathbb{N} \) such that \(p \in B_k \) and \(p \in B_k \subset \bigcap \{ W_j : j \leq n, p \in W_j \} \) this implies that \(K \in \langle B_k \rangle \subset \mathcal{W} \). Therefore \(\mathcal{B} \) is a basis for \(\mathcal{S} \).

Let \(\mathcal{K} = (H_1, \ldots, H_n, \ldots) \in \mathcal{L} \), and \(\mathcal{U} \in \mathcal{B} \) such that \(\mathcal{K} = \mathcal{G}(K) \in \mathcal{U} \). If \(H = \{ p \} \), then \(\mathcal{U} = \langle B_k \rangle \) for some \(k \in \mathbb{N} \) and \(H_n = \emptyset \) for each \(n \in \mathbb{N} \). Let \(\mathcal{W} = \{ \emptyset \} \times \prod_{k} [\langle K(E_{k+1}) \cup \{ \emptyset \} \rangle] \times \prod_{m, k+1} [\langle K(E_m) \cup \{ \emptyset \} \rangle] \), note that \(\mathcal{W} \in \mathcal{W} \), and \(\mathcal{G}(\mathcal{W}) \subset \mathcal{U} \). If \(H_i \neq \emptyset \) for some \(i \in \mathbb{N} \), then \(H_r \neq \emptyset \) for \(r \geq n \), without loss
of generality we can assume that $i = 1$, and that $U = \langle U_1, \ldots, U_n, B_k \rangle$ for some $n, k \in \mathbb{N}$. Let $A = \{ j \in \mathbb{N} : U_l \cap H_j \neq \emptyset \text{ for all } l \leq n \}$ and as \{ $H_k : k \in \mathbb{N} \}, \text{ is not finite, then } A \neq \emptyset$. Let $r = \min A$, if $r < k$, then $F_k \cap U_j = \emptyset$ for some $j \leq n$, so $F_r \cap U_j \neq \emptyset$ and $F_r \cap U_j \subset B_k$. Let

$$N = \{(F_1, F_2, \ldots) \in \mathcal{L} : F_r \in \langle U_1, \ldots, U_n, B_k \rangle \}.$$

Note that $K \in N$, if $F = (F_1, F_2, \ldots) \in N$ and $G(F_1, F_2, \ldots) = F$, then $p \in F \setminus F_k \subset B_r \subset B_k$, so $F \in \mathcal{U}$. If $r \leq k$, then $H_k \setminus H_r \subset \bigcup_{j \leq n} U_j$ and $H \setminus H_k \subset B_k$. Let

$$N = \{(F_1, F_2, \ldots) \in \mathcal{L} : F_k \in \langle U_1, \ldots, U_n \rangle \}.$$

Note that $K \in N$. If $(F_1, \ldots, F_k, \ldots) \in N$, and $G(F_1, F_2, \ldots) = F$, then $p \in F \setminus F_k \subset B_k$, so $F \in \mathcal{U}$. This implies that G is a continuous function.

Finally we will show that G^{-1} is a continuous function, if U is a basic open subset of \mathcal{L}, then $U = (\bigcap_{j \in F} \pi_j^n[W_j]) \cap \mathcal{L}$, where W_j is an open subset of $K(E_j) \cup \{\emptyset\}$ and F is a finite subset of N. Hence

$$(G^{-1})^{-1}[U] = \bigcap_{j \in F} (G^{-1})^{-1}[\pi_j^n[W_j]] \cap \mathcal{S} = \bigcap_{j \in F} G^{-1}_n[W_j].$$

So that is enough to show the continuity of G_n for any n. To prove that G_n is continuous, it is sufficient to show that $G_n^{-1}[(U_1, \ldots, U_k) \cap K(E_n)]$ and $G_n^{-1}(\{\emptyset\})$ are open subsets of \mathcal{S}, where U_1, \ldots, U_k are open subsets of $Z \setminus \{p\}$ such that $E_n \cap U_j \neq \emptyset$ for each $j \leq k$. We will show that

$$G_n^{-1}[(U_1, \ldots, U_k) \cap K(E_n)] = \mathcal{S} \cap \langle U_1, \ldots, U_k, B_n \rangle$$

and that

$$G_n^{-1}(\{\emptyset\}) = \mathcal{S} \cap (B_n).$$

Let $H \in \mathcal{S} \cap \langle U_1, \ldots, U_k, B_n \rangle$, then $H_n \neq \emptyset$, $H \setminus H_n \subset B_n$, and $H_n \in [(U_1, \ldots, U_k) \cup \{\emptyset\}] \cap K(E_n)$, thus $H \in G_n^{-1}[(U_1, \ldots, U_k) \cap K(E_n)]$. Let $F \in G_n^{-1}[(U_1, \ldots, U_k) \cap K(E_n)]$, then $F_n = F \cap E_n \in (U_1, \ldots, U_k) \cap K(E_n)$ and $F \setminus F_n \subset B_n$, thus $F \in \langle U_1, \ldots, U_k, B_n \rangle$. Let $H \in \mathcal{S} \cap (B_n)$, then $H_n = \emptyset$, therefore, $H_n \in \{\emptyset\}$, thus $H \in G_n^{-1}(\{\emptyset\})$. Let $F \in G_n^{-1}(\{\emptyset\})$, then $F_n = F \cap E_n = \emptyset$, thus $F \subset B_n$ then $F \in (B_n)$. This implies that G_n is a continuous function. Therefore G is a homeomorphism.

\[\square \]

3.2. Theorem $\dim(Z) = \dim(K(Z)) = 1$

\textbf{Proof.} Note that $K(Z) = K(Z \setminus \{q\}) \cup \mathcal{S}$. As $K(Z \setminus \{q\})$ is an AZD cohesive space, then $\dim(K(Z \setminus \{q\})) = 1$. By Theorem 3.1 S is homeomorphic to \mathcal{L} and $\dim(\mathcal{L}) = 1$ because \mathcal{L} is an AZD, but \mathcal{L} is not zero dimensional space. This implies that $\dim(\mathcal{S}) = 1$. Thus $\dim(K(Z)) = 1$. \[\square \]

Proof of Theorem 1.1

\textbf{Proof.} Let Y be a one-point connectification of \mathcal{E}. By Theorem 3.2 we have the result. \[\square \]

3.3. Corollary Let X be an cohesive and AZD space. If Y is a one-point connectification of X, then $\dim(Y) = \dim(K(Y)) = 1$.

\textbf{Proof.} By Theorem 3.2 we have the result. \[\square \]
Proof of Theorem 1.2

Proof. Consider the space P. By Theorem 3.2 we have the result. \hfill \square

Note that the spaces given in the Corollaries 1.1 and 1.2 are unions of AZD spaces. A natural question is:

Does every space Z of dimension 1 that is not AZD and is a finite union of subspaces AZD satisfy that $\dim(K(Z)) = 1$? The answer to this question is negative because $[0, 1]$ is not an AZD space, but is a union of $\mathbb{Q} \cap [0, 1]$ and $\mathbb{P} \cap [0, 1]$ which are AZD spaces, and $\dim(K([0, 1]))$ is not 1.

On the other hand it is known that if X is a compact space of dimension 1, then the dimension of $K(X)$ is not finite (see [8, pag 123]). This implies that if a space X has a compact subset of dimension 1 then the dimension of $K(X)$ is not finite. Then for $K(X)$ to have dimension 1 each $A \in K(X)$ must have dimension zero. With the following Theorem, we will show that it is not enough that the compact subsets of a space X of dimension 1 have dimension 0 for that hyperspace of compact subsets of X to have dimension 1.

3.4. Theorem [6, Theorem 4.1] There exists a space X of dimension 1 such that all its compacta have dimension 0 and $\dim(X^2) = 2$.

3.5. Example Let $Y = X \times \{0, 1\}$ where X is as in Theorem 3.3 then $\dim(Y) = 1$ and for each compact subset F of X we have that $\dim(F) = 0$. Let $f : X^2 \to K(X)$ given by $f(x, y) = \{(x, 0), (y, 1)\}$. Note that f is an embedding. This implies that $\dim(K(Y)) \geq 2$.

3.6. Question Let X be a space of dimension 1, such that $\dim(X^\omega) = 1$ and for each $A \in K(X)$, $\dim(A) = 0$. Does $K(X)$ have dimension 1?

4. Acknowledgement

I would like to thank Roman Pol for useful suggestions concerning the topic of this paper.

References

[1] J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, Mem. Amer. Math. Soc. 208 (2010), no. 979.
[2] P. Erdős, The dimension of the rational points in Hilbert space, Ann. of Math. (2) 41 (1940), 734–736.
[3] K. Kawamura, L. Oversteegen and E. D. Tymchatyn; On homogeneous totally disconnected 1-dimensional spaces. Fund. Math. 150 (1996), no. 2, 97–112.
[4] Mohammad Abry Jan J. Dijkstra Jan van Mill, Sums of almost zero-dimensional spaces, Topology Proceedings 29(1)1-12.
[5] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
[6] van Mill and Pol On spaces without non-trivial subcontinua and the dimension of their products, Topology and Applications 142 (2004),31-48.
[7] van Mill, J.; The Infinite-Dimensional Topology of Function Spaces. North-Holland Mathematical Library, 64. North-Holland Publishing Co., Amsterdam, 2001. xii+630 pp. ISBN: 0-444-50557-1
[8] Nadler Sam B. Jr. Dimension theory: an introduction with exercises. Sociedad Matemática Mexicana. México 2002.
[9] A. Zaragoza, Symmetric products of Erdős space and complete Erdős space. Topology Appl. 284 (2020), 107355, 10 pp.
(A. Zaragoza) Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico

Email address, A. Zaragoza: soad151192@icloud.com