Quality study of the piped water of state company for drugs industry of Samarra and matching with the Iraqi and international drinking specification

Rafah Talal Ahmed Alsamaraay1*, Riadh Abbas Abdul Jabbar1 and Tawos Mohammed Alshawany1

1Department of Biology, Collage of Sciences, Tikrit University, Iraq.

*E-mail: mtawis@yahoo.com

Abstract. The research aimed to evaluate piped water that supply the general company for pharmaceutical industry of Samarra and its suitable for drinking through the comparison with Iraqi and international standard for drinking. The study started from May (2015) until January (2016). Moreover, know the physical, chemical and bacterial properties piped water. The results showed that the piped water was matching of the drinking water by WHO and Iraqi standard. Only calcium quantity was higher than determination. The values rate for: Air and water temperature (29.44, 21.3\,^\circ\text{C}) respectively, EC (431.11) \, \mu\text{S/cm}, TDS (430) \, \text{mg/L}, the pH (7.7), DO (4.75) \, \text{mg/L}, while the BOD5 (1.25) \, \text{mg/L}, while Alkalinity hardness (157.77) \, \text{mg/L}, total hardness (155.55) \, \text{mg/L}, calcium and magnesium hardness (78.66, 72) \, \text{mg/L} Respectively. While chloride (68.22) \, \text{mg/L}, as for the phytonutrient, Nitrate concentration were (1.902) \, \text{Mg/L}, the phosphate concentration values rate (0.050) \, \text{Mg/L}, and silica concentration (1.981) \, \text{Mg/L}. The heavy metals, Cu (0.028) ppm, Iron (0.121) ppm, Zinc (0.203) ppm, Lead (Nil) ppm. And it was free from bacterial growth. Thus, quality of piped water, (completely purity).

Keywords. Piped water, Drugs industry, Samarra, Iraq.

1. Introduction

Water is the most vulnerable environments to pollution because of their distinguished quality, the negative effects of water pollution, are not only on humans, but also on trees and forest surrounding the world. Air and soil pollution is also the destination to watercraft, whether directly or indirectly [1]. In each country its importance, because it is the first coalition of a comprehensive reunion, aspiring to that country, according to professional and integrated development plans. In our Arab world the theme of water is very series, for more than reason, Arab world is the most arid areas and desertified in the world. In the other hand some Arab world are characterized by rain, and snow and many watercraft. Using water properly is a major problem in Arab world [2]. Water has also the potential to purify itself from its implications, with the help of the environmental purposes of self-purification, these pollutants are in the capacity of the source of affected to be affiliated with and processing [3]. Using contaminated water, caused many problems and disease moved to human such as cholera, typhoid and...
dysentery as well as different chemicals accumulated in the soil [4]. Tigris river basement, which is electrical conductivity, and it's freshwater with a low salinity. The concentration of plant nutrients are less than organism needs [5]. Moreover, the research aims to study the environmental and biological factors of the piped water that provide the state company for drugs industry of Samarra.

2. Materials and Methods

Samples of the piped water were collected for 9 months, starting from May (2015) until January (2016). The samples collected monthly during that period. Three repetitions taken for each sample of piped water, to determine the properties of each sample according to standard methods are globally durable [6]. Air and water temperature measurement was measured using Mechanical mercury (0-120) C°. Measurement of Electrical conductivity by using Digital conductivity model WTW German origin, results expressed by µs /cm. Use the pH meter model JENWAY England origin to measurement pH, after calibration with Buffer solution [3, 5, 7]. At the beginning of measurement process. Using Winkler Azid modification method to determine the concentration of Dissolved oxygen in water according to described method [8] results expressed by mg/L. as the same method to measurement BOD₃ using dark bottles. Measurement Total Dissolved Salts by using Digital conductivity model WTW German origin, after filtration the sample, results expressed by mg/L. Measured total hardness, calcium, magnesium and chloride according to described method (9). As well as Measured total alkalinity according to described method [10]. As followed method (11) to determine the nitrate, the active phosphate according to published method [12]. Depending on the American Society, for determine the concentration of active silica by using Spectrophotometer. In addition, heavy metals were determine by using Atomic absorption spectrum (AAS) [13]. The bacteriological testes by Total Plate Count as described in [14].

3. Results and Discussion

The physical properties of piped water as showed in Table (1) that air temperatures were variation and ranged between (10-40) C°, while water temperatures values between (7-31) C°, the high and low temperature surface water is affected by the air temperature [15]. EC values between (350-500) µs /cm, and it has related to the quality and concentration of the solvent ions in the water and increase with increased salinity [16]. TDS values between (350-500) mg/L, this increase maybe due to water containment on organic molecules or useful metals when it has found in the water such as nutrients or maybe cause water pollution by containing harmful material [17]. The physical properties of piped water matched with standard specification of Iraqi and international drinking water [18, 19, 20, 21].

| Table 1. Monthly changed for physical test of piped water during the study period. |
|-------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
Months	May	June	July	August	September	October	November	December	January	
Air temperature C°	35	36	37	40	38	34	23	12	10	29.44
Water temperature C°	25	22	25	31	23	26	20	7	13	21.33
Electrical conductivity µs /cm	370	450	500	440	460	350	450	360	500	431.11
Total dissolved salts mg/L	370	450	500	440	460	350	450	360	500	431.11
The chemical properties showed in Table (2), the pH values ranges between (7.3-8.2), and when compared pH values rate with the Iraqi and International properties in Table (4) which determinate that pH for natural water between (6.5-8.5), so it found within allowed range therefore not cause any problem in natural water [22]. DO values ranges between (4-5.9) mg/L, which suits a reflective with BOD5 that values ranges between (1-1.5) mg/L. As evaluate BOD5 values are typically with the pollution and temperature and inversely with DO concentration [23], that consistent by the Iraqi and International properties for drinking water Table (4). Thus, the water is excellent according to water resources that classified according to BOD5 values to excellent (1-75) mg/L, good (1.5-2.5) mg/L and poor (<2.5) mg/L [24]. The results of total alkalinity values showed between (120-250) mg/L, so it's within the Iraqi and international standard specification for drinking water. The higher of total alkalinity than the total hardness maybe belong to the high concentration of carbon dioxide from the air to water or moderation temperature, helping to soluble CO₂ in the water therefore increase of total alkalinity [25]. The total hardness values between (100-230) mg/L, so it's within the Iraqi and international standard specification for drinking water. The total hardness is close linked with magnesium and calcium salts, and these ions caused the hardness [26]. the results showed of high calcium values comparison with magnesium values, its maybe due to interact CO₂ with calcium more than its interact with magnesium [27], as the calcium values between (60-115)mg/L, which wasn’t within the standard specification for drinking water. While magnesium values between (46-100) mg/L, the reason for low concentration of soluble magnesium than the calcium due to tends the magnesium to precipitation in large quantities [28]. Chloride values between (62-125) mg/L, notes the high quality of chloride in the winter compared to the summer, as well as the chloride levels are a factor for water quality, in the fresh water the flow of chloride is low levels and increasing in concentration in winter clearly, because the drift and ruining that washing the soil [29]. it's found within the Iraqi and international standard specification for drinking water, Table (4).
Table 4. Iraqi and International chemical standard specification for drinking water (18, 19, 20, 21).

References	Central device of the standardization and Quality Control (1996)	US-EPA (2002)	CEOH (2003)	WHO (2004)
pH	8.5-6.5	8.5-6.5	8.5-6.5	8.5-6.5
DO mg/l	—	—	6.5-4	—
BOD₃ Mg/l	1	—	—	—
Total Alkalinity mg/l	170	250	250	200
Total Hardness mg/l	500	250	250	500
Calcium Hardness mg/l	50	50	25	75
Magnesium Hardness mg/l	50	125	50	125
Chloride Ion mg/l	250	500	250	250

As for the phytonutrient results that showed in Table (5), the nitrate values shown between (1.102-2.702) Mg/L, it was noted increase nitrate concentration in winter, that’s belong to the running and high watercraft that would be increase nitrate concentration by strong currents which causes mixing the sediments in water [30]. It’s found within the Iraqi and international standard specification for drinking water. Table (6). The active phosphate values between (0.013-0.140) Mg/L, so it’s found within the Iraqi and international standard specification for drinking water, Table (6). Silica values between (0.15-3.28)Mg/L, notes an increase silica comparison with the other studied phytonutrients, perhaps this increase to be more than (60%) from the earth's crust rocks and its soil contains silica, so its expected found as suitable mounts in natural water between (1-10) mg/L [7].

Table 5. Monthly changed for phytonutrients test of piped water during the study period.

Variables	May	June	July	August	September	October	November	December	January	Rate
Nitrate Mg/l	1.102	1.981	2.486	2.101	1.310	1.479	2.702	1.590	2.465	1.902
Active phosphate Mg/l	0.140	0.027	0.013	0.015	0.026	0.021	0.016	0.120	0.076	0.050
Active Silica Mg/l	3.28	1.24	1.21	3.15	2.20	2.33	0.15	1.26	3.01	1.981

Table 6. Iraqi and International phytonutrients standard specification for drinking water (18, 19, 20, 21).

References	Central device of the standardization and Quality Control (1996)	US-EPA (2002)	CEOH (2003)	WHO (2004)
Active Phosphate Mg/l	0.4	0.5	—	0.4
Nitrate Mg/l	50	45	10	—

The results showed low of heavy metals values in piped water as shown in Table (7); the reason may be tend the heavy metals to adsorb on the surfers of sedimentation or forming complexes with the organic matters [31]. Cupper values between (Nil-0.099) Mg/L. Iron values between (Nil- 0.214)
Mg/L, so the heavy metals found less in pH more than 4 \cite{32}. Zinc values between (Nil-0.811) Mg/L. Lead is most effective elements in the health, it has also proved several studies from which study \cite{33}.

The results showed free piped water during the study, As well as the heavy metals studied were low from the Iraqi and international standard specification for drinking water \cite{18, 19, 20, 21} (Table 8).

Table 7. Monthly changed for heavy metals test of piped water during the study period.

Elements	May	June	July	August	September	October	November	December	January	Rate
Cu Mg/l	0.070	0.045	Nil	0.053	Nil	0.099	Nil	0.084	0.028	
Fe Mg/l	Nil	0.211	0.181	0.172	Nil	0.101	0.214	0.212	0.121	
Zn Mg/l	0.034	0.712	0.023	0.811	Nil	0.053	0.115	0.081	0.203	
Pb Mg/l	Nil	Nil	Nil	Nil	Nil	2.552	2.585	2.852	2.858	

Table 8. Iraqi and International heavy metals standard specification for drinking water \cite{18, 19, 20, 21}.

Elements	Central device of the standardization and Quality Control (1996) Mg/l	US-EPA (2002) Mg/l	CEOH (2003) Mg/l	WHO (2004) Mg/l
Lead Mg/l	50	50	10	10
Copper Mg/l	1000	1000	2000	
Zinc Mg/l	1000	5000	3000	
Iron Mg/l	500	—	3000	

The bacterial testing for water is the important testing, because its indicator for founding or absent the harmful microorganisms for health \cite{34}. Therefore, the total bacterial count that studied, and didn’t record any bacterial growth during the study. So TPC found within the Iraqi and international standard specification for drinking water, which is mount (50) cfu /ml, therefore the piped water is (completely pure), depending on the bacterial properties \cite{35}.

4. References

[1] Alhaag HA 2010 *Biology human* Department of biology sciences- Jordan University, Dar almaesear for publishing, distribution and printing, Amman, Jordan 467.

[2] Allkam FM, Allassady RK and Alkhanny MA 2008 Algae content and underground water for two well from Alrahba wells/ sowth Najaf see/Iraq- accepted for publishing in *The-Qhar Univ. J.*

[3] Almashhadany YD and Alsangary MN 2007 Some of quantity properties for Tigris river water in Mosel, *The first scientific conference for environmental researching center and control on the contamination- Mosel University 5-6 June.*

[4] Saatumoinen K 2006 Reuse of purified wastewater in agriculture *Adv. Stud. Environ. Microbiol. Biotic.*

[5] Altaay RSA 2000 *Study the primary production for phytoplankton and some physical chemical properties in Tigris river water in Salah-Alden province* MSc. thesis, education college-Tikrit University.

[6] Abuwy SM and Hassn MS 1990 *Scientific engineering of ecology water tests.* High education ministry and scientific research, Dar al hekma for printing and publishing. Mosel University-Iraq.
[7] Alsamaraa YFK 2007 Environmental and microbial study for piping water in Salah- Alden MSc. thesis, Science college- Tikrit University.

[8] Mackereth FJH 1963 Some Methods of water analysis for Limnologists Fresh. Wat. Boil. Assoc. Sci. Pub. 21 70.

[9] (ASTM) American Society for testing and Materials 1984 Annual Book of ASTM standard Water Printed in Easton Md, U.S.A. 1129.

[10] Lind OT 1979 Hand Book of Common methods in Limnology C.V. Mos by Co., St. Louis 199.

[11] (ASTM) American Society for testing and Materials 1989 Annual Book of ASTM standards (American Society for Testing and Materials). Philadelphia, USA. 1110.

[12] Strickland JDH and Parsons TR 1972 A practical handbook of seawater analysis-Ottawa Fisheries Research Board of Canada. 310.

[13] APHA (American Public Health Association) 1975 AWWA and WPCF “Standard Methods for Examination of water and wastewater, 14th Edition.

[14] APHA (American Public Health Association) 2003 Standard Methods for the Examination of water and wastewater, 20th Edition.

[15] Almindeel FAMS 2005 Ecological study/limnology of phytoplankton in regulatory lake of Mosul dam MSc thesis, Science college- department of biology science- Mosul University.

[16] Wetzel RG 2001 Limnology, lake and river ecosystems 4th ed. Academic press, An Elsevier Science imprint, San Francisco, New York, London 224.

[17] Hassan FM, Hadi R, Kassim TI and Al-Hassany JS 2012 Systematic study of epiphytic algal after restoration of al-Hawizah marshes, southern of Iraq Int. J. Aquat. Sci. 3 1.

[18] Central device of the standardization and Quality Control 1996 The Iraqi standard specification for drinking water Iraqi specification number 417.

[19] US-EPA (United State–Environmental Protection Agency) 2002 Office in Spector general status Report land Application of biosolids No.2002-s-000004. Retrived May 15.200.

[20] CEOH (Federal-Provicial-Territorial Committee of Environmental and Occupational Health). 2003 Summary of Guidelines for Canada Drinking Water Quality. Healthy Environments and Consumer Safety Branch. Health Canada.

[21] WHO (World Health Organization) 2004 Guide lines for Drinking Water Quality 2004 (3rd Ed.) Geneva.

[22] EPA (Environment Protection Agency) 2004 Ground water and drinking water 19th Edition, List of Drinking Water Contamitantes 70.

[23] Sundaran SM and Pandey M 2002 Trend of eater Quality of river Ghana at Varanasi using WQI Approach Int. J. Ecol. Environ Sci. 28 139.

[24] Iraqi environmental Legislation 1988 Protection and improve Iraqi environmental Ministry of health, Baghdad- Iraq.

[25] Hassn FM, Alsharefy AN, Hindy AK and Saleh MM 2000 Scientific assistant of ecological measurements Biology science- Babel University.

[26] Alssafawy AYT 2007 Study of quantity and quality for liquid wastes that raised from Mosel city and its impact in quantity of Tigris river water. The first scientific conference for environmental researching center and control on the contamination- Mosel University 5-6 June.

[27] Salman JM 2006 Ecological study for probability contamination in Euphrates river between Alhindia Blockage and Alkofa region-Iraq PhD thesis, science college- Babel University.

[28] Allen J, Robert DRBR and Jonathan W 2000 Partial skills in environmental science Pearson Education Asidptelted, Singapre.

[29] Alrubae AAH 2007 Studying of organic contamination problem and biological effective on some of limnology organisms in Baghdad city PhD thesis, education college- Ibn-Alhaetham-Baghdad University.

[30] Alfatlawy YFK 2007 Evaluation of Efficiency projects for piped water in Baghdad PhD thesis, Science college- Baghdad University.
[31] Kaiser E, Arscott DB, Tockner K and Sulzberger B 2004 Sources and distribution of organic carbon and nitrogen in The Tagliamento River Italy Aquat. Sci. 66 103.

[32] Bochnke DN and Delumyea RD 2000 Lab Experiments in Environment Chemistry Prentice hall, Inc., U.S.A. 279.

[33] Avci Halim 2015 Heavy Metal in Vegetables with Irrigated Waste water in Gaziantep, Turkey: A review of Causes and Potential for Human Health Risks. Kilis 7, Aralik University, Science and Art Faculty, Kilis, Turkey.

[34] Aljubouri AHA 2005 Study Germanic indicator for biological contamination and some physical chemical factors for Tigris river and the down zab river in Hawegaa city and Tikrit MSc. thesis, education college- Tikrit University.

[35] Prescott C, Winslow CE and Mccrady MH 1950 Water Bacteriology John wily and Sons. Inc. New York.