Contemporary Trends in Global Mortality of Sepsis Among Young Infants Less Than 90 Days: A Systematic Review and Meta-Analysis

Ming Ying Gan¹, Wen Li Lee², Bai Jun Yap¹, Shu Ting Tammie Seethor¹, Rachel G. Greenberg³, Jen Heng Pek⁴, Bobby Tan⁵, Christoph Paul Vincent Hornik⁶, Jan Hau Lee⁷,⁸ and Shu-Ling Chong¹,⁸*

¹ Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, Singapore, ² Duke-NUS Medical School, Singapore, Singapore, ³ Department of Paediatrics, Duke University School of Medicine, Durham, NC, United States, ⁴ Emergency Medicine, Sengkang General Hospital, Singapore, Singapore, ⁵ Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, ⁶ Division of Critical Care Medicine, Department of Paediatrics, Duke University School of Medicine, Durham, NC, United States, ⁷ Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore, Singapore, ⁸ Department of Emergency Medicine, KK Women's and Children's Hospital, Singapore, Singapore

Objective: Current knowledge on the global burden of infant sepsis is limited to population-level data. We aimed to summarize global case fatality rates (CFRs) of young infants with sepsis, stratified by gross national income (GNI) status and patient-level risk factors.

Methods: We performed a systematic review and meta-analysis on CFRs among young infants < 90 days with sepsis. We searched PubMed, Cochrane Central, Embase, and Web of Science for studies published between January 2010 and September 2019. We obtained pooled CFRs estimates using the random effects model. We performed a univariate analysis at patient-level and a meta-regression to study the associations of gestational age, birth weight, age less than 28 days, early onset sepsis, hospital acquired infections and sepsis in middle- and low-income countries. Study setting in middle-income countries was an independent predictor of high CFRs. We found a widening disparity in CFRs between countries of different GNI over time.
INTRODUCTION

Infant sepsis is an important public health challenge with a significant burden of disease. Globally, an estimated 1.3–3.9 million young infants experience sepsis and 400,000–700,000 die from sepsis-related conditions annually (1). In the Sub-Saharan African region alone, young infant sepsis incurs an economic burden of US$10–$469 billion annually (2).

Sepsis remains a significant cause for death and accounts for up to 15% of all young infant deaths (3). One of the targets in the United Nations Sustainable Developmental Goals 3 (SDG 3) is to reduce neonatal mortality to 12 per 1,000 livebirths and under-5 mortality to 25 per 1,000 livebirths by 2030 (4, 5). The World Health Organization (WHO) has reported that an estimated 84% of young infant deaths due to sepsis are preventable (1). Reducing young infant sepsis mortality can contribute to achieving the SDG3 targets by 2030. Pediatric sepsis survivors are at higher risk of poor neurodevelopmental sequelae including neurocognitive deficits and developmental delay (6–8). A better understanding of young infant sepsis can provide valuable insights to inform strategies that span prevention, diagnosis and intervention to mitigate long term mortality and morbidity.

The recent population-based systematic review and meta-analysis on young infant sepsis mortality performed by Fleischmann et al. reviewed data from 1979 to 2019 and reported a population rate of 2824 (95% CI, 1892–4194) neonatal sepsis cases per 100,000 livebirths worldwide with a mortality of 17.6% (95% CI, 10.3–28.6%) (9). Sepsis incidence was reported to be highest in preterm and very low birth weight (VLBW) infants. However, this seminal study only included 14 countries with available population-level data with majority originating from middle-income countries. In addition, there is still a gap in morbidity data in low-income countries. This limits the accurate estimate of the global burden of young infant sepsis (10). A comprehensive systematic review and meta-analysis on young infant sepsis case fatality rates (CFRs) from different income level countries will allow for a timely update to previously published literature on the global burden of young infant sepsis, and provide a more complete understanding on the global burden of young infant sepsis.

We therefore aimed to summarize global CFRs for young infants (<90 days) with sepsis, published from January 2010 to September 2019. We also aimed to describe any differences in young infant sepsis mortality among countries of different gross national income (GNI) status over time.

METHODS

We performed a systematic review and meta-analysis using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines (11). This study is registered with PROSPERO (CRD42020164321). The protocol is available online (12).

Eligibility Criteria

We included randomized controlled trials (RCTs), cohort studies and cross-sectional studies that were published between January 2010 and September 2019. This range was chosen to provide an update on a previously published systematic review on the global burden of neonatal sepsis (10). We excluded studies published before January 2010 in view of the substantial changes in neonatal sepsis diagnosis and management over time.

We identified studies that contained the following specified elements of population, exposure, outcome and study design. We defined the population as infants less than 90 days old, regardless of gestational age. The neonatal period was defined as the first 28 postnatal days in term and post-term newborns, and day of birth through the expected date of delivery plus 27 days for preterm newborns (13). We chose to study infants less than 90 days old to obtain a comprehensive picture of sepsis burden, as serious infections in the young infant population can present past 28 postnatal days (14). If a study included both pediatric and adult population, it was included only if data pertaining to the infant population (<90 days) could be extracted. We defined the exposure as sepsis, which could be of bacterial, viral or fungal origin (15). We included viral infections because young infants can suffer from long term deficits from invasive viral illnesses (16, 17). Due to the lack of a gold standard for diagnosis of young infant sepsis (18), we decided to include all studies with sepsis as defined by study authors. However, we documented if the study defined sepsis according to the International Paediatric Sepsis Consensus Conference (15). We defined our primary outcome as the CFR, which was computed based on the number of deaths divided by the number of infants with sepsis.

We excluded case-control studies, case reports, animal studies, laboratory studies and publications that were not in English. We excluded studies with a primary focus on necrotising enterocolitis, respiratory distress syndrome without a primary sepsis study population, leukemia or other malignancies. We also excluded studies with a sample size of less than 50 to avoid small study effects (19).

Conclusion: Young infant sepsis remains a major global health challenge. The widening disparity in young infant sepsis CFRs between GNI groups underscore the need to channel greater resources especially to the lower income regions.

Systematic Review Registration: [www.crd.york.ac.uk/prospero], identifier [CRD42020164321].

Keywords: pediatrics, infant, mortality, infections, sepsis, global health
Information Sources and Search Strategy
We searched PubMed, Cochrane Central, Embase and Web of Science to identify eligible studies. The search was conducted on 17 September 2019 with a search strategy developed in consultation with research librarians experienced in systematic reviews and meta analyses. Strategic keywords used include “neonates,” “infants,” “sepsis,” “neonatal sepsis,” and “mortality.” The detailed search strategy can be found in Supplementary Table 1. We ensured that there were no completed or ongoing trials evaluating global burden of neonatal sepsis by searching PROSPERO, ClinicalTrials.gov, International Standard Randomized Controlled Trial Number (ISRCTN) registry, World Health Organization International Clinical Trials Registry Platform (ICTRP), and European Union Clinical Trials Register.

Study Selection Process
Covidence (Australia) was used for the review of articles. Three reviewers (MG, BY, SS) independently conducted the database search and screened the title and abstracts for relevance, and subsequently assessed the full-text of shortlisted articles for eligibility. Any conflict on study eligibility were resolved in discussion with the senior author (S-LC). Reason(s) for exclusion of each article was (were) recorded.

Data Collection Process and Data Items
Four reviewers (MG, BY, SS, and WL) independently carried out the data extraction using a standardized data collection form, and any conflict was resolved by discussion. Study variables included were study characteristics (e.g., study year, study design, geographical origin, sepsis definition, sample size), patient demographics (e.g., age, gender, gestational age, birth weight), patient characteristics (e.g., severity of sepsis, comorbidities, FIGURE 1 | PRISMA flow diagram.
maternal risk factors, microbiological data, sources of infection, onset of sepsis, interventions, duration of hospital stay and blood markers), and outcome (deaths, timeframe to mortality). GNI was determined according to the World Bank Country Classification (20). We contacted the corresponding authors for any missing or unreported data via email. A second reminder email was sent 2 weeks later. When there was no reply 1 month from the first email we considered the team to be un-contactable.

Study Risk of Bias Assessment
We assessed the risk of bias using the Cochrane risk-of-bias tool for RCTs (21), and the Newcastle-Ottawa Scale for all observational studies (22). Two assessors (SS and WL) independently carried out the assessment, and any conflict was resolved by discussion or with input from a third independent reviewer (MG). An overall rating of high, moderate or low risk was given to each study.

Effect Measures and Synthesis Methods
Categorical variables were summarized as frequencies and percentages while continuous variables were summarized as means with standard deviations (SD). We generated pooled CFRs and the 95% confidence intervals (95% CI) using the DerSimonian and Laird method (23). We performed a univariate analysis at patient-level to assess the association between the CFRs and each variable (birth weight, age, gestational age, type of sepsis, source of infection either hospital or community acquired and culture-proven sepsis). We also performed a multivariable meta-regression at study level to assess the association between CFRs and each variable (birth weight, age, gestational age, type of sepsis, source of infection either hospital or community acquired and culture-proven sepsis). For each variable in the multivariable meta-regression analysis, only studies that exclusively looked at high risk groups [preterm infants, infants with low birth weight (LBW), early onset sepsis, countries with middle- and low-income, age <28 days and culture-proven sepsis] were selected. These studies were compared to reference groups of lower risk, and included studies that did not exclusively contain the high risk groups. For example, when studying the effect of birth weight, we compared studies that only included LBW and VLBW infants, as compared to studies that included infants of normal birth weight. For GNI status, we took high-income groups as the reference group. For study design, we took RCTs as the reference group.

All statistical analysis was done using Stata (v16.1, College Station, TX, United States). We used I^2 statistics to quantify heterogeneity between studies. We performed two sensitivity analyses in which we included: (1) only studies with culture-proven sepsis; and (2) only studies with low risk of bias, evaluating CFRs and temporal trends limiting to these studies.

RESULTS

Study Selection
Among 6314 articles screened, 240 studies (with a total of 437,796 patients) met the inclusion criteria and were included for analysis (Figure 1).

Study Characteristics
Characteristics of the included studies and study population are summarized in Tables 1, 2 and Supplementary Table 2. The studies originate from 77 countries and six continents (Figure 2). The greatest number of studies were conducted in Asia with 133 studies (63042 patients), followed by Europe with 53 studies (23639 patients), North America (40 studies, 253786 patients),

TABLE 1 | Characteristics of studies.

Study design	High-income countries (n = 99)	Upper-middle-income countries (n = 44)	Lower-middle-income countries (n = 82)	Low-income countries (n = 6)	Multiple income level countries (n = 9)	All studies (n = 240)
Cross sectional study, n (%)	3 (1)	5 (2)	11 (5)	1 (0.4)	2 (0.8)	22 (9)
Randomized controlled trial, n (%)	2 (0.8)	2 (0.8)	9 (4)	1 (0.4)	1 (0.4)	15 (6)
Prospective cohort study, n (%)	31 (13)	14 (6)	34 (14)	1 (0.4)	5 (2)	85 (35)
Retrospective cohort study, n (%)	63 (26)	23 (10)	27 (11)	3 (1)	1 (0.4)	117 (49)
Continents*						
Africa, n (%)	3 (1)	8 (3)	20 (8)	3 (1)	4 (2)	38 (16)
Asia, n (%)	33 (14)	23 (10)	70 (29)	1 (0.4)	6 (3)	133 (55)
Australia, n (%)	4 (2)	0	0		3 (1)	7 (3)
Europe, n (%)	34 (14)	13 (5)	2 (0.8)		4 (2)	53 (22)
North America, n (%)	28 (12)	4 (2)	2 (0.8)		6 (3)	40 (17)
South America, n (%)	0	7 (3)	0		6 (3)	13 (5)
Studies that include culture-proven sepsis, n (%)	91 (38)	40 (17)	74 (31)	4 (2)	6 (3)	215 (90)

*Some countries are transcontinental and hence total n for countries does not add up to 240.
Characteristics of study population.

Age of patients	High-income countries (n = 99)	Upper-middle-income countries (n = 44)	Lower-middle-income countries (n = 82)	Low-income countries (n = 6)	Multiple income level countries (n = 9)	All studies (n = 240)
Age of patients, mean ± SD, days	27.9 ± 20.4	16.2 ± 15.6	9.8 ± 10.7	1.7	–	13.2 ± 15.5
Studies that exclusively studied neonates (<28 days), n (%)	55 (23)	31 (13)	70 (29)	5 (2)	3 (1)	164 (68)

Birth weight of patients

Birth weight of patients	High-income countries (n = 99)	Upper-middle-income countries (n = 44)	Lower-middle-income countries (n = 82)	Low-income countries (n = 6)	Multiple income level countries (n = 9)	All studies (n = 240)
Birth weight of patients, mean (SD), g	978 ± 356	1397 ± 522	2328 ± 666	–	–	1481 ± 517
Studies that exclusively studied low birth weight infants (<2500 g), n (%)	17 (7)	4 (2)	3 (1)	0	2 (0.8)	26 (11)

Gestational age of patients

Gestational age of patients	High-income countries (n = 99)	Upper-middle-income countries (n = 44)	Lower-middle-income countries (n = 82)	Low-income countries (n = 6)	Multiple income level countries (n = 9)	All studies (n = 240)
Gestational age, mean (SD), weeks	28.0 ± 3.0	29.8 ± 3.1	35.7 ± 2.9	–	37.0 ± 4.0	30.4 ± 3.0
Studies that exclusively studied preterm infants (<37 weeks), n (%)	13 (5)	6 (3)	5 (2)	0 (0)	0 (0)	24 (10)

Types of sepsis

Types of sepsis	High-income countries (n = 99)	Upper-middle-income countries (n = 44)	Lower-middle-income countries (n = 82)	Low-income countries (n = 6)	Multiple income level countries (n = 9)	All studies (n = 240)
Studies that exclusively studied early onset sepsis (based on author’s definition), n (%)	15 (6)	3 (1)	7 (3)	0	1 (0.4)	26 (11)

Predominant Causative Organisms

Predominant Causative Organisms	High-income countries (n = 99)	Upper-middle-income countries (n = 44)	Lower-middle-income countries (n = 82)	Low-income countries (n = 6)	Multiple income level countries (n = 9)	All studies (n = 240)
Gram-positive bacteria, n (%)	62 (26)	17 (7)	15 (6)	2 (0.8)	6 (3)	102 (43)
Gram-negative bacteria, n (%)	20 (8)	18 (8)	48 (20)	4 (2)	1 (0.4)	91 (38)
Viral, n (%)	1 (0.4)	0	0	0	0	1 (0.4)
Fungal, n (%)	6 (3)	2 (0.8)	3 (1)	0	1 (0.4)	12 (5)

Africa (38 studies, 39554 patients), South America (13 studies, 160386 patients) and Australia (7 studies, 3270 patients).

Of the 240 studies, 99 (24–122) (41%) were conducted in high-income countries, 44 (123–166) (18%) in upper-middle-income countries, 82 (167–248) (34%) in lower-middle-income countries, and 6 (249–254) (3%) in low-income countries. Nine (255–263) (4%) studies were conducted in countries with multiple income levels.

Among all studies, 215/240 studies (90%) included culture-proven sepsis in their study population while 175/240 (73%)
used a combination of clinical and laboratory criteria. 164/240 (68%) studies exclusively studied neonates (<28 days), 24/116 (21%) studies exclusively studied preterm infants, 26/125 (21%) exclusively studied LBW infants and 26/160 (16%) exclusively studied early onset sepsis. Out of 240 studies, 55 (23%) studies reported CFRs stratified by preterm versus term, 28 (12%) studies reported CFRs in community versus hospital acquired sepsis, 107 (45%) studies reported CFRs defined by early or late onset sepsis, and 56 (23%) studies reported birth weight related specific CFRs.

Patient Characteristics
Overall mean age of the study population was 13.2 ± 15.5 days. Mean birth weight and gestational age of the study population was 1480 ± 516 grams and 30.4 ± 3.0 weeks, respectively.

One hundred and two studies (43%) reported gram positive organisms as the predominant organisms causing sepsis. Among the studies conducted in high-income countries, 62 of 99 studies (63%) reported gram positive organisms as the predominant causative organisms, while gram negative organisms were the predominant causative organisms in studies conducted in middle- or low-income countries – 18/44 (41%) in upper-middle-income countries, 48/82 (59%) in lower-middle-income countries, 4/6 (67%) in low-income countries.

Amongst the 200 studies that reported pathogens causing infant sepsis, the most common organisms reported were Coagulase-negative staphylococci (28%), followed by Klebsiella pneumoniae (24%), Staphylococcus aureus (10%), Group B Streptococcus (8%), Escherichia coli (7%), and Candida albicans (6%). Among 24 studies that exclusively studied preterm infants, 21 studies reported the most common organism, in which the most common organism was coagulase-negative staphylococci, reported by 10/21 (48%) studies (Figure 3). Among 26 studies that exclusively studied LBW infants, 24 studies reported the most common organism, in which the most common organism was coagulase-negative staphylococci, reported by 13/24 (54%) studies.

Outcomes
Overall, the pooled CFR was 18% (95% CI, 17–19%). The CFR was lowest for high-income countries [12% (95% CI, 11–13%)], as compared to upper-middle-income countries [21% (95% CI, 18–24%)] and lower-middle-income countries [24% (95% CI, 21–26%)]. Low-income countries had the highest CFR [25% (95% CI, 7–43%)]. Pooled CFR for continents was highest for Africa 24% (95% CI, 21–27%) and lowest in Australia 14% (95% CI, 10–18%) (Table 3). For study designs, cross sectional studies had a higher CFR of 22% (95% CI, 16–28%), while RCTs had a CFR of 13% (95% CI, 10–17%). Studies with a low risk of bias had a pooled CFR of 17% (95% CI, 16–18%).

Among studies that reported CFRs by birth weight, the highest CFR was for VLBW infants [24% (95% CI, 21–26%) in comparison to LBW infants [23% (95% CI, 21–26%)] and normal birth weight infants [15% (95% CI, 10–21%)]. Studies exclusively on neonates had a higher CFR of 18% (95% CI, 17–19%) compared to studies that included older infants [15% (95% CI, 14–17%)]. Studies on preterm infants had a CFR of 23% (95% CI, 19–26%), more than double compared to term infants with a CFR of 10% (95% CI, 8–13%) (Figure 4). Infants with early onset sepsis (<72 h of life) had a CFR of 20% (95% CI, 17–24%), while infants with early and late onset sepsis had a CFR of 16% (95% CI, 14–18%). Infants with hospital-acquired infections had a CFR of 23% (95% CI, 17–29%), higher than those with community-acquired infections [14% (95% CI, 9–19%)]. Infants with culture-proven sepsis had a CFR of 20% (95% CI, 19–22%) (Table 4).

There was an overall increasing trend in young infant sepsis CFRs over time (Figure 5 and Supplementary Figure 1). When annual pooled CFRs were stratified according to GNI status, there was a widening of the disparity between GNI and young infant CFRs, with time. This is consistent with the sensitivity analysis including only studies with low risk of bias (Figure 5).

Meta Regression
Nine (4%) studies that were conducted in countries with multiple income levels were excluded from the analysis. Independent predictors of higher CFRs include upper-middle- and lower-middle-income countries [regression coefficient 0.12 (95% CI, 0.04–0.21); p = 0.003 and 0.14 (95% CI, 0.06–0.22); p = 0.001 respectively] (Table 5).

Heterogeneity among studies were high with I^2 ranging 91–99%. This was persistent even with our sensitivity analyses that included only studies with culture-proven sepsis, and only studies with low risk of bias.

Reporting Biases
Five (33%) of the 15 RCTs and 179 (80%) of the 225 observational studies were assigned low risk of bias respectively (Supplementary Tables 3, 4). RCTs that were assigned moderate or high risk of bias were mainly due to the lack of blinding of participants or outcome assessors. Observational studies that were assigned moderate or high risk of bias were mainly due to either undefined or poorly defined clinical sepsis criteria, lack of a sufficient duration of follow up for assessing mortality or lack of adequate follow up rate.

DISCUSSION
In this systematic review and meta-analysis, we provide an update to previously published literature on the global burden of young infant sepsis. To the best of our knowledge, this is the largest systematic review and meta-analysis of young infant sepsis CFRs, comprising 240 studies from 77 countries over six continents, which are not limited to population-based studies. Of the 240 studies included, 132 (55%) studies from 36 countries were conducted in middle and low-income countries, compared to 22 studies from 11 countries that were included in the prior systematic review by Fleischmann et al. (9). Our data bridge the knowledge gap on young infant sepsis particularly from low- and middle-income countries. This is also the first study that reflects global young infant sepsis CFRs over time stratified by GNI – with a decreasing trend in high-income countries but a worrying increasing trend in low-income countries, providing new insights into global young infant sepsis CFR trajectories.
We found a widening disparity in young infant sepsis outcomes between countries of different GNI. Our study revealed that Africa with a majority of low-income countries bore the highest burden of young infant sepsis with a CFR of 24% compared to Europe and Australia with a CFR burden of 16 and 14% respectively. The WHO Global Report on the Epidemiology and Burden of Sepsis 2020 showed similar results where low- and middle-income countries shoulder a higher incidence and mortality burden of young infant sepsis, particularly in Sub-Saharan Africa and South East Asia (1). Fleischmann-Struzek et al. also reported that young infant sepsis mortality rates were two times higher in middle-income countries than high-income countries (10). Young infants from lower middle- and low-income countries often present with...
comorbidities such as malnutrition and dehydration that can increase the risk of severe sepsis and death (264). Furthermore, unrecognized or untreated perinatal infections increase the risk of young infant sepsis (264). Limited access to high-quality healthcare results in delays to diagnosis and treatment of young infant sepsis (265–267). This includes the lack of adequately equipped and staffed healthcare institutions (19), and insufficient subsidized healthcare services for the poor (268).

There is currently limited epidemiological data on infant sepsis, especially in low-middle- and low-income countries (9, 10). The WHO has repeatedly called for a global effort to generate sepsis epidemiological data, especially in low-income countries (1). This requires early and accurate diagnosis of sepsis, as well as an improved coordination between like-minded groups doing research in these countries. Systems-based changes to strengthen each country’s health system should target the achievement of universal health coverage (269). This will ensure the availability of essential health-care services that are safe, effective and affordable to all in low-income countries (270). With a global commitment to robust infant sepsis surveillance, universal health coverage and greater resources channeled to low-income countries, we can work toward reducing young infant CFRs globally, especially in low-income countries.

Our overall CFR of 18% for young infants with sepsis was consistent with prior reports (11–29%) (9, 10). Of potential concern is that our time trend analysis of young infant sepsis CFRs showed an overall increasing trend over time from 1998 to 2018. In contrast, the Global Burden of Disease study 2019 showed a decreasing trend of −11.5% (95% CI, −23.6% to −4.3%) change in deaths due to neonatal sepsis from 2009 to 2019 (271). The limited number of studies from middle- and low-income countries represented in the earlier time period in our meta-analysis could have resulted in falsely low global young infant CFRs. Notably, all studies with a reference year prior to 2002 (Figure 5) were conducted in high-income countries.
countries. In addition, a global shift in focus to better understand young infant sepsis epidemiology in recent years could have resulted in an increased reporting of young infant sepsis mortality in lower-middle- and low-income countries (1, 272), contributing to the increasing trend of young infant CFRs in the lower-middle- and low-income countries, and also the overall trend.

Our study highlighted several factors associated with higher CFRs in young infant sepsis, namely prematurity, LBW, age less than 28 days, early onset sepsis and hospital acquired infections and sepsis in middle- and low-income countries. Previous literature similarly demonstrated prematurity and LBW to be major risk factors of young infant sepsis (273). In addition, neonates aged less than 28 days reported higher CFRs. This could be attributed to a relatively immature immune system resulting in neonates being more susceptible to infections (274). Studies have also shown that early onset sepsis disproportionately affects preterm infants who are already at a higher risk for mortality, and can result in fulminant, multisystemic infections (275). Infants who develop hospital acquired infections often have lower birth weights, lower gestational age and greater comorbidities compared to community acquired infections (37, 276). This translates to lower functional reserves and decreased immunity defenses, resulting in infants who develop hospital acquired infections having more severe infections and poorer outcomes.

Our study focused on the association between geographical gross income status and CFRs. Nonetheless, we recognize the impact of social determinants of health on young infant sepsis CFRs. A previous study reported that patients of lower socioeconomic status and those who paid out-of-pocket (as compared to privately insured patients) experienced a greater risk of young infant sepsis mortality (39). In another study, it was reported that young infants born to mothers with lower education experienced higher young infant sepsis death rate (101). Young infants of non-White ethnicity have been reported to have higher odds ratio of young infant sepsis mortality as compared to infants of White ethnicity (109). Currently, few studies detail the impact of specific social determinants of health on young infant sepsis incidence and CFRs. Further research in this area may be helpful in informing strategies regarding resource distribution and utilization.

Table 4: Pooled Case Fatality Rates for study population characteristics.

Birth weight	Pooled CFRs (95% Confidence Interval)
<1500 g (45)‡	24% (21–26%)
<2500 g (51)	23% (21–26%)
≥2500 g (16)	15% (10–21%)

Figure 5: Time trend analysis of Case Fatality Rates (including only low risk of bias studies).

The size of the bubble is proportionate to the number of infants in the study, while the line represents the trends of case fatality rates over time. There is an increasing trend for low-income countries and decreasing trend for middle- and high-income countries overtime. The overall trend for young infant sepsis case fatality rates is increasing.
Normal birthweight is defined as ≥ 2500 g, low birthweight is defined as < 2500 g.

Term is defined as 37 weeks or more, preterm is defined as less than 37 weeks.

Limitations
Firstly, due to the lack of a gold standard for diagnosis of young infant sepsis, we accepted a wide range of sepsis definitions but categorized them into clinical, laboratory or culture-proven (18). Future studies utilizing a standardized sepsis definition that can be widely applied to all regions will facilitate comparative studies. Secondly, there was considerable heterogeneity in our meta-analysis, ranging from 91 to 99%. A sensitivity analysis including only studies with low risk of bias revealed similar results. We attributed this to variability in study populations, availability and delivery of health services, and outcome measures used. Thirdly, we excluded non-English studies which may have resulted in us missing useful data. We also excluded any studies with sample size less than 50 to reduce small study effects (19), which may have resulted in relevant studies being excluded. Finally, a lack of studies from the low- and middle-income countries in the earlier time period resulted in limited interpretation of the overall trend of young infant sepsis.

CONCLUSION
Our review showed an overall global burden of young infant sepsis CFR of 18%, with an increasing disparity between low- and middle-income countries compared to high-income countries over time. Factors associated with higher CFRs included prematurity, LBW, age less than 28 days, early onset sepsis, hospital acquired infections and sepsis in middle- and low-income countries, of which sepsis in middle-income countries was an independent predictor of higher CFRs. The findings from our study serve as a global call to action to achieve further reductions in young infant sepsis mortality. Future initiatives should focus on improving the delivery of care to infants at higher risk of sepsis, especially in the low- and middle-income countries.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS
MG, WL, BY, and S-LC coordinated the study. MG, BY, JP, BT, and S-LC developed the search strategy and registered the protocol. MG, WL, BY, SS, and BT reviewed the studies and extracted data from the studies. WL and SS conducted risk of bias assessments. RG conducted the statistical analyses. MG, WL, RG, CH, JL, and S-LC performed the data interpretation. MG and WL wrote the original draft of the manuscript with revision from BY and SS. BY, SS, RG, JP, BT, CH, JL, and S-LC helped to revise the manuscript. All authors read and approved the final manuscript.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fped.2022.890767/full#supplementary-material
Hsu JF, Lai MY, Lee CW, Chu SM, Wu IH, Huang HR, et al. Comparison of the incidence, clinical features and outcomes of invasive candidiasis in children and neonates. BMC Infect Dis. (2018) 18:194. doi: 10.1186/s12879-018-3100-z

Gilkman D, Dagan R, Barkai G, Averbuch D, Guri A, Givon-Lavi N, et al. Dynamics of severe and non-severe invasive pneumococcal disease in young children in israel following PCV7/PCV13 introduction. Pediatr Infect Dis J. (2018) 37:1048–53. doi: 10.1097/INF.0000000000002100

Giannoni E, Aygemen PKA, Stocker M, Posfay-Barbe KM, Heiningger U, Spycher BD, et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study. J Pediatr. (2018) 201:106–14.e4. doi: 10.1016/j.jpeds.2018.05.048

Cantey JB, Anderson KR, Kalagiri RR, Mallett LH. Morbidity and mortality of coagulase-negative staphylococcal sepsis in very-low-birth-weight infants. World Pediatr. (2018) 16:269–73. doi: 10.1016/j.wped.2018.01.015-7

Bohanon FJ, Nunez Lopez O, Adhukari D, Mehta HB, Rojas-Khalil Y, Bowen-Bohanon FJ, et al. Incidence, clinical features, and implications on outcomes of neonatal late-onset sepsis mortality and healthcare resource utilization. Pediatr Infect Dis J. (2018) 37:e178–84. doi: 10.1097/INF.000000000001846

Benedict K, Roy M, Kabhani S, Anderson EJ, Farley MM, Harb S, et al. Neonatal and pediatric candidemia: results from population-based active surveillance in four US locations, 2009-2015. J Pediatr Infect Dis Soc. (2018) 7:e78–85. doi: 10.1016/j.pidj.2018.09.009

Al-Mouqdad MM, Aljobair F, Alaklobi FA, Taha MY, Abdelrahim A, Al-Mouqdad MM, et al. Comparative effectiveness of linezolid versus vancomycin as definitive antibiotic therapy for heterogeneously resistant vancomycin-intermediate coagulase-negative staphylococcal central-line-associated bloodstream infections in a neonatal intensive care unit. J Antimicrob Chemother. (2017) 72:1812–7. doi: 10.1093/jac/dkx059

Aygemen PKA, Schlapbach LJ, Giannoni E, Stocker M, Posfay-Barbe KM, Heiningger U, et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health. (2017) 1:124–33. doi: 10.1016/S2552-4642(17)30010-X

Verstraete EH, Mahieu L, De Coen K, Vogelaers D, Blot S. Impact of healthcare-associated sepsis on mortality in critically ill infants. Eur J Pediatr. (2016) 175:943–52. doi: 10.1007/s00431-016-2726-6

Tsai MH, Lee CW, Chu SM, Lee IT, Lien R, Huang HR, et al. Infectious complications and morbidities after neonatal bloodstream infections: an observational cohort study. Medicine (Baltimore). (2016) 95:e3078.

Schrag SJ, Farley MM, Petit S, Reingold A, Westen EJ, Pondo T, et al. Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Pediatr. (2016) 138:e20162013. doi: 10.1542/peds.2016-2013

Pugni L, Ronchi A, Bizzarri B, Consomni D, Pietrasanta C, Gihrardi B, et al. Exchange transfusion in the treatment of neonatal septic shock: a ten-year experience in a neonatal intensive care unit. Int J Mol Sci. (2016) 17:695. doi: 10.3390/ijms17050695

Lauterbach R, Wilk B, Bochenska A, Hurlka J, Radziszewska R. Nonactivated protein C in the treatment of neonatal sepsis: a retrospective analysis of outcome. Pediatr Infect Dis J. (2016) 35:967–71. doi: 10.1097/INF.0000000000001247

Ivady B, Kenesei E, Toth-Heyn P, Kertesz G, Tarkanyi K, Kassa C, et al. Factors influencing antimicrobial resistance and outcome of Gram-negative bloodstream infections in children. Infection. (2016) 44:309–21. doi: 10.1007/s10156-015-0857-8

Fjeldstad JW, Stensvold HJ, Bergseng H, Simonsen GS, Salvesen B, Ronnestad AE, et al. Early-onset sepsis and antibiotic exposure in term infants: a nationwide population-based study in Norway. Pediatr Infect Dis J. (2016) 35:1–6. doi: 10.1097/INF.0000000000001096

Deshpande P, Jain A, Shah PS. Outcomes associated with early removal versus retention of peripherally inserted central catheters after diagnosis of catheter-associated infections in neonates. J Matern Fetal Neonatal Med. (2016) 29:4082–7. doi: 10.3109/14767058.2016.1157578

Bulkwowski S, Ben-Shimol S, Givon-Lavi N, Melamed R, Shany E, Greenberg D. Comparison of early onset sepsis and community-acquired late onset sepsis in infants less than 3 months of age. BMC Pediatr. (2016) 16:82. doi: 10.1186/s12876-016-0618-6

Berardi A, Baroni L, Baschi Reggiani ML, Ambretti S, Biasucci G, Bolognesi S, et al. The burden of early-onset sepsis in Emilia-Romagna (Italy): a 4-year, population-based study. J Matern Fetal Neonatal Med. (2016) 29:3126–31. doi: 10.3109/14767058.2015.1114093

Ben Said M, Hays S, Bonfils M, Jourdes E, Rasigade JP, Laurent F, et al. Late-onset sepsis due to Staphylococcus capitis ‘neonatalis’ in low-birthweight infants: a new entity? J Hosp Infect. (2016) 94:95–8. doi: 10.1016/j.jhin.2016.06.008

Yen MH, Huang YC, Chen MC, Liu CC, Chu NC, Lien R, et al. Effect of intravenous immunoglobulin for neonates with severe enteroviral infections with emphasis on the timing of administration. J Clin Virol. (2015) 64:49–2. doi: 10.1016/j.jcv.2015.01.013

Weil HM, Hsu YL, Lin HC, Hsieh TH, Yen TY, Lin HC, et al. Multidrug-resistant Acinetobacter baumannii infection among neonates in a neonatal intensive care unit at a medical center in central Taiwan. J Microbiol Immunol Infect. (2015) 48:531–9. doi: 10.1016/j.jmii.2014.08.025

Tsai MH, Chu SM, Hsu JF, Lien R, Huang HR, Chiang MC, et al. Breakthrough bacteremia in the neonatal intensive care unit: incidence, risk factors, and attributable mortality. Am J Infect Control. (2015) 43:20–5. doi: 10.1016/j.ajic.2014.09.022
69. Shah J, Jeffries AL, Yoon EW, Lee SK, Shah PS, Canadian Neonatal N. Risk factors and outcomes of late-onset bacterial sepsis in preterm neonates born at < 32 weeks. *Gestation. Am J Perinatol.* (2015) 32:675–82. doi: 10.1055/s-0034-1393936

70. Schwab F, Zibell R, Piening B, Geffers C, Gastmeier P. Mortality due to bloodstream infections and necrotizing enterocolitis in very low birth weight infants. *Pediatr Infect Dis J.* (2015) 34:235–40. doi: 10.1097/INF.0000000000000532

71. Schlaphaj LJ, Straney L, Alexander J, MacLaren G, Festa M, Schibler A, et al. Mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002–13: a multicentre retrospective cohort study. *Lancet Infect Dis.* (2015) 15:46–54. doi: 10.1016/S1473-3099(14)70003-5

72. Mitsiakos G, Pana Z-D, Chatziioannidis I, Piltsouli D, Lazaridou E, et al. Five-decade trend analysis of nosocomial bloodstream infections in neonates with gram-negative sepsis. *J Pediatr Hematol Oncol.* (2015) 37:199–23. doi: 10.1097/MPH.0000000000000367

73. Lee SM, Chang M, Kim KS. Blood culture proven early onset sepsis and late onset sepsis in very-low-birth-weight infants in Korea. *J Koran Med Sci.* (2015) 30(Suppl. 1):S67–74. doi: 10.3346/jkms.2015.30.S1.S67

74. Lai MY, Tsai MH, Lee CW, Chiang MC, Lien R, Fu RH, et al. Characteristics of neonates with culture-proven bloodstream infection who have low levels of C-reactive protein (<=10 mg/L). *BMJ Infect Dis.* (2015) 15:320. doi: 10.1186/s12879-015-1069-7

75. Hsu JF, Chu SM, Yang PH, Lien R, Chiang MC, et al. Incidence, clinical characteristics and attributable mortality of persistent bloodstream infection in the neonatal intensive care unit. *PLoS One.* (2015) e0124567. doi: 10.1371/journal.pone.0124567

76. Cobos-Carrascosa E, Soler-Palacin P, Nieves Larroso M, Bartolome R, Martin-Nalda A, Antoinette Frick M, et al. *Staphylococcus aureus* bacteraemia in children: changes during eighteen years. *Pediatr Infect Dis J.* (2015) 34:1329–34. doi: 10.1097/INF.0000000000000907

77. Bergin SP, Thaden JT, Ericson JE, Cross H, Messina J, Clark RH, et al. Leadership, neonatal *Escherichia coli* bloodstream infections: clinical outcomes and impact of initial antibiotic therapy. *Pediatr Infect Dis J.* (2015) 34:933–6. doi: 10.1097/INF.0000000000000769

78. Chmielarczyk A, Pobiega M, Wójcikowska-Mach J, Romaniszyn D, Hezcko PB, Bulanda M. Bloodstream infections due to *Enterobacteriaceae* among neonates in poland – molecular analysis of the isolates (Chmielarczyk) (2015).pdf. *Polish J Microbiol.* (2015) 64:217–25.

79. Verstraete E, Boelens J, De Coen K, Claeys G, Vogelaers D, Vanhaesebrouck PJ, et al. Septicemia mortality reduction in neonates in a heart rate management in neonates with bloodstream infection and a percutaneously inserted central venous catheter in situ: removal or not? *Pediatr Infect Dis J.* (2013) 32:675–82. doi: 10.1055/s-0032-1324701

80. Balamuth F, Weiss SL, Neuman MI, Scott H, Brady PW, Paul R, et al. Pediatric severe sepsis in U.S. children's hospitals. *Pediatr Crit Care Med.* (2014) 15:798–805. doi: 10.1097/PCC.0000000000000225

81. Wynn JL, Hansen NI, Das A, Cotten CM, Goldberg RN, Sanchez PJ, et al. Early sepsis does not increase the risk of late sepsis in very low birth weight neonates. *Pediatr.* (2015) 162:942–8.e1–3. doi: 10.106/j.jpeds.2013.11.027

82. Prieto CL, Colomer BE, Sastre JB. Prognostic factors of mortality in very low-birth-weight infants with neonatal sepsis of nosocomial origin. *Am J Perinatol.* (2013) 30:353–8. doi: 10.1055/s-0032-1324701

83. Luthander J, Bennet R, Giske CG, Nilsson A, Eriksson M. Age and risk factors influence the microbial aetiology of bloodstream infection in children. *Acta Paediatr.* (2013) 102:182–6. doi: 10.1111/apa.12077

84. Hammond MS, Al-Taair A, Fouad M, Raina A, Khan Z. Persistent candidemia in neonatal care units: risk factors and clinical significance. *Int J Infect Dis.* (2013) 17:624–8. doi: 10.1016/j.ijid.2012.11.020

85. Fairchild KD, Schelonka RL, Kaufman DA, Carlo WA, Kattwinkel J, Porcelli PJ, et al. Septicemia mortality reduction in neonates in a heart rate characteristics monitoring trial. *Pediatr Res.* (2013) 74:570–5. doi: 10.1038/prr.2013.136

86. Ergaz Z, Benenson S, Cohen MJ, Braunstein R, Bar-Oz B. No change in antibiotic susceptibility patterns in the neonatal ICU over two decades. *Pediatr Crit Care Med.* (2013) 14:164–70. doi: 10.1097/PCC.0b013e318284fbcb9

87. de Haan TR, Beckers L, de Jonge RC, Spanjaard L, van Toledo L, Pajkrt D, et al. Neonatal gram negative and Candida sepsis survival and neurodevelopmental outcome at the corrected age of 24 months. *PLoS One.* (2013) 8:e59214. doi: 10.1371/journal.pone.0059214

88. Ahmed A, Lutfi S, Al-Hail M, Al-Saadi M. Antibiotic susceptibility patterns of microbial isolates from blood culture in the neonatal intensive care unit of Hamad Medical Corporation (HMC), Doha, Qatar. *Asian J Pharm Clin Res.* (2013) 6(Suppl. 2):191–5.

89. dams-Chapman IA, Bann CM, Das A, Goldberg RN, Stoll BJ, Walsh MC, et al. Neurodevelopmental outcome of extremely low birth weight infants with *Candida* infection. *Pediatr.* (2013) 163:961–7.e3.

90. Wong J, Dow K, Shah PS, Andrews W, Lee S. Percutaneously placed central venous catheter-related sepsis in Canadian neonatal intensive care units. *Am J Perinatol.* (2012) 29:629–34. doi: 10.1055/s-0032-1311978

91. Villa J, Alba C, Barrado L, Sanz F, Del Castillo EG, Viedma E, et al. Long-term evolution of multiple breakthroughs of *Serratia marcescens* bacteraemia in a neonatal intensive care unit. *Pediatr Infect Dis J.* (2012) 31:1298–300. doi: 10.1097/INF.0b013e3182678441

92. Tsai MH, Hsu JF, Lien R, Huang HR, Chiang CC, Chu SM, et al. Catheter management in neonates with bloodstream infection and a percutaneously inserted central venous catheter in situs: removal or not? *Am J Infect Control.* (2012) 40:59–64. doi: 10.1016/j.ajic.2011.04.051

93. Sood BG, Shankaran S, Schelonka RL, Saha S, Benjamin DK Jr, Sanchez PJ, et al. Cytokine profiles of preterm neonates with fungal and bacterial sepsis. *Pediatr Res.* (2012) 71:212–20. doi: 10.1038/pr.2012.56

Gan et al. Global Mortality of Young Infant Sepsis

Frontiers in Pediatrics | www.frontiersin.org 13 June 2022 | Volume 10 | Article 890767
106. Shane AL, Hansen NI, Stoll BJ, Bell EF, Sánchez PJ, Shankaran S, et al. Methicillin-resistant and susceptible Staphylococcus aureus bacteremia and meningitis in preterm infants. *Pediatrics*. (2012) 129:e914–22. doi: 10.1542/peds.2011-0966

107. Morioka I, Matsuzawa S, Miwa A, Minami H, Yoshii K, Kugo M, et al. Culture-proven neonatal sepsis in Japanese neonatal care units in 2006-2008. *Neonatology*. (2012) 102:75–80. doi: 10.1159/000337833

108. Livorsi DJ, Macneil JR, Cohn AC, Bareta J, Zansky S, Petit S, et al. Invasive *Haemophilus influenzae* in the United States, 1999-2008: epidemiology and outcomes. *J Infect*. (2012) 65:496–504.

109. Hornik CP, Fort P, Clark RH, Watt K, Benjamin DK, Smith PB, et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. *Early Hum Dev*. (2012) 88:569–74. doi: 10.1016/S0377-3782(12)70019-1

110. Hammond MS, Al-Taiar A, Thalib L, Al-Sweih N, Pathan S, Isaacs D. Incidence, aetiology and resistance of late-onset neonatal sepsis: a five-year prospective study. *J Paediatr Child Health*. (2012) 48:604–9. doi: 10.1111/j.1440-1754.2012.02432.x

111. Grisaru-Soen G, Friedman T, Dollberg S, Mishali H, Carmeli Y. Late-onset bloodstream infections in preterm infants: a 2-year study. *Pediatri Int*. (2012) 54:748–53. doi: 10.1111/j.1442-0050.2012.03679.x

112. Ahmed A, Lutfi S, Pr V, Ra H, Malik S, Ahamad W. Incidence of bacterial isolates from blood culture in the neonatal intensive care unit of tertiary care hospital. *Int J Drug Dev Res*. (2012) 4:359–67.

113. Weston EJ, Pondio T, Lewis MM, Martell-Cleary P, Morin C, Jewell B, et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005-2008. *Pediatr Infect Dis J*. (2011) 30:937–41. doi: 10.1097/INF.0b013e318224f2b2

114. Vergano S, Menson E, Smith Z, Embleton N, Clarke P, et al. Characteristics of invasive *Staphylococcus aureus* in United Kingdom neonatal units. *Pediatr Infect Dis J*. (2011) 30:850–4.

115. van den Broek P, Verkade H, Hulzebos CV. Hyperbilirubinemia in infants with gram-negative sepsis does not affect mortality. *Early Hum Dev*. (2011) 87:57–9.

116. Stoll BJ, Hansen NI, Sánchez PI, Faix RG, Poindexter BB, Meares K, P, Van, et al. Early onset neonatal sepsis: the burden of group B Streptococcal and *E. coli* disease continues. *Pediatrics*. (2011) 127:817–26.

117. Schlaphaus LJ, Aebischer M, Adams M, Nattualli G, Bonhoeffer J, Litzin P, et al. Impact of sepsis on neurodevelopmental outcome in a swiss national cohort of extremely premature infants. *Pediatrics*. (2011) 128:e348–57. doi: 10.1542/peds.2010-3338

118. Al-Ta'Air A, Hammoud MS, Thalib L, Isaacs D. Pattern and etiology of culture-proven early-onset neonatal sepsis: a five-year prospective study. *Int J Infect Dis*. (2011) 15:e93–4. doi: 10.1016/j.ijid.2011.07.006

119. van den Broek P, Verkade H, Hulzebos CV. Hyperbilirubinemia in infants with gram-negative sepsis does not affect mortality. *Early Hum Dev*. (2011) 87:57–9.

120. Metsvaht T, Ilmoja ML, Parm U, Maipuu L, Merila M, Lutsar I. Comparison of clinical and bacteriological data over 6 years in France. *Rev Inst Med Trop Sao Paulo*. (2018) 60:e61. doi: 10.1590/S1678-9962018000061

121. Quintanilla NE, RA, Hamacher S, Japiassu AM. Epidemiology of sepsis in Brazil: incidence, lethality, costs, and other indicators for Brazilian unified health system hospitalizations from 2006 to 2015. *PLoS One*. (2018) 13:e0195873. doi: 10.1371/journal.pone.0195873

122. Ozug S, Oncel M, Halil H, Cakir U, Sekurtan B, Okur N, et al. Can endocan predict late-onset neonatal sepsis? *J Pediatr Infect Dis*. (2018) 14:996–102. doi: 10.3855/jidc.11660

123. Escalante MJ, Ceriani-Cernadas JM, D’Apremont I, Bancalari A, Webb V, Genes L, et al. Late onset sepsis in very low birth weight infants in the South American NEOCOSUR network. *Pediatr Infect Dis J*. (2018) 37:1022–7. doi: 10.1097/INF.0000000000001958

124. Softic I, Tahirovic H, Di Ciommo V, Auriti C. Bacterial sepsis in neonates: single centre study in a Neonatal intensive care unit in Bosnia and Herzegovina. *Acta Med Acad*. (2017) 46:7–15. doi: 10.5644/ama2006-124.181

125. Siavashi V, Asadian S, Taheri-asl M, Keshavarz S, Zamani-ahmadmahmudi M, Nassiri SM. Endothelial progenitor cell mobilization in preterm infants with sepsis is associated with improved survival. *J Cell Biochem*. (2018) 118:3299–307. doi: 10.1002/jcb.23981

126. Olugbaju O, Shabu K, Roberts P, Christie C, Kissoon N. Burden of paediatric sepsis in a tertiary centre from a developing country. *West Indian Med J*. (2017) 66(6):137–42.

127. Fu J, Ding Y, Wei B, Wang L, Xu S, Qin P, et al. Epidemiology of *Candida albicans* and non- *C. albicans* of neonatal candidemia at a tertiary care hospital in western China. *BMC Infect Dis*. (2017) 17:329. doi: 10.1186/s12887-017-243-8

128. Cagan E, Kiray Bas E, Askar HS. Use of colistin in a neonatal intensive care unit: a cohort study of 65 patients. *Med Sci Monit*. (2017) 23:554–58. doi: 10.12659/msm.989213

129. Zhou B, Liu X, Wu JB, Jin B, Zhang YY. Clinical and microbiological profile of babies born with risk of neonatal sepsis. *Exp Ther Med*. (2016) 12:3621–5. doi: 10.3892/etm.2016.3836

130. Turhan EE, Gursoy T, Ovali F. Factors which affect mortality in neonatal sepsis. *Turk Pediatr Ars*. (2015) 50:170–5. doi: 10.5152/turkpediatars.2015.2627

131. Mosayebi Z, Movahedian AH, Ebrahim B. Epidemiological features of early onset sepsis in neonatal ward of Shabih Khani hospital in Kashan. *Iran J Neonatol*. (2015) 5:19–23.

132. Daramowski A, Madde A, Bekker A. Neonatal nosocomial bloodstream infections at a referral hospital in a middle-income country: burden, pathogens, antimicrobial resistance and mortality. *Paediatr Int Child Health*. (2015) 35:265–72. doi: 10.1179/2046905515Y.0000000029

133. Daramowski A, Cotton ME, Rabie H, Whiteal A. Trends in paediatric bloodstream infections at a South African referral hospital. *BMC Pediatr*. (2015) 15:33. doi: 10.1186/s12887-015-0354-3
182. Shobowale EO, Solarin AU, Elikwu CJ, Onyedibe KI, Akinola II, Faniran AA. Neonatal sepsis in a Nigerian private tertiary hospital: bacterial isolates, risk factors, and antibiotic susceptibility patterns. *Ann Afr Med.* (2017) 16:52–8.

183. Shabaan AE, Nour I, Elsayed Eldega H, Nasr N, Shouman B, Abdel-Hady H. Conventional versus prolonged infusion of meropenem in neonates with gram-negative late-onset sepsis: a randomized controlled trial. *Pediatr Infect Dis J.* (2017) 36:358–63.

184. Banupriya N, Vishnu Bhat B, Benet BD, Sridhar MG, Parija SC. Efficacy of zinc supplementation on serum calprotectin, inflammatory cytokines and outcome in neonatal sepsis – a randomized controlled trial. *J Matern Fetal Neonatal Med.* (2016) 30:1627–31. doi: 10.1080/14767058.2016.122 0524

185. Shabaan AE, Obiero CW, Jones KD, Barsosio HC, Thitiri J, Ngari M, et al. Should syndrome evaluation system (SES) versus blood culture (BACTEC) use in neonatal sepsis from a tertiary care centre of a resource-limited country. *Clin Lab.* (2016) 60:295–302. doi: 10.1007/s12098-013-1314-2

186. Ahmad MS, Kappad R, Wahid A, Mehboob N, Ali N, Nazir W. Prevalence of neutropenia in cases of neonatal sepsis. *J Pak Pediatr Soc.* (2014) 34:43–55.

187. Chellani H, Kaur C, Kumar S, Aryan S. Acute kidney injury in neonatal sepsis: a hospital based study of NICU. *J Evol Med Dent Sci.* (2014) 8:1049–54. doi: 10.3855/jd.4248

188. Banupriya N, Vishnu Bhat B, Benet BD, Sridhar MG, Parija SC. Efficacy of zinc supplementation on serum calprotectin, inflammatory cytokines and outcome in neonatal sepsis – a randomized controlled trial. *J Matern Fetal Neonatal Med.* (2016) 30:1627–31. doi: 10.1080/14767058.2016.122 0524

189. Arowoogbe AO, Ojo DA, Dedeko JO, Shittu OR, Akingbade OA. Neonatal sepsis in a Nigerian tertiary hospital: clinical features, clinical outcome, aetiology and antibiotic susceptibility pattern. *Southern Afr J Infect Dis.* (2017) 32:127–31.

190. Pradhan R, Jain P, Paria A, Saha A, Sahoo J, Sen A, et al. Ratio of neutrophilic CD64 and monocytic HLA-DR: a novel parameter in diagnosis and prognostication of neonatal sepsis. *Cytometry B Clin Cytom.* (2016) 99:295–302. doi: 10.1002/cyto.b.21244

191. Kumar Debbarma S, Majumdar T, Kumar Chakrabarti S, Islam N. Proportion of neonatal sepsis among study subjects with or without jaundice in a tertiary care centre of Agartala, Tripura. *Indian J Med Res.* (2014) 95:308–15.

192. Kabwe M, Tembo J, Chilukutu L, Chilufya M, Ngulube F, Lukwesa C, et al. Etiology, antibiotic resistance and risk factors for neonatal sepsis in a large referral center in Zambia. *Pediatr Infect Dis J.* (2016) 35:e191–8. doi: 10.1097/INF.0000000000001154

193. Jasani B, Kannan S, Nanavati R, Gogtay NJ, Thatte U. An audit of colistin use in neonatal sepsis from a tertiary care centre of a resource-limited country. *Indian J Med Res.* (2016) 144:433–9. doi: 10.4103/0971-5916.19 8682

194. Shabab AE, Nasf N, Shouman B, Nour I, Mesbah A, Abdel-Hady H. Pentoxifylline therapy for late-onset sepsis in preterm infants: a randomized controlled trial. *Pediatr Infect Dis J.* (2015) 34:e143–8. doi: 10.1097/INF.0000000000000698

195. Mandavi D, Jain N. Clinicico – bacteriological profile of late onset septicemia in M.Y. H. nursery, *J Evol Med Dent Sci.* (2015) 16:6250–4.

196. Rajendraprasad M, Basavaraj K, Antony B, Patel B. Bacterial spectrum of neonatal sepsis in a tertiary care hospital in Southern India. *Ann Trop Pediatr Med Public Health.* (2013) 6:96–9.

197. Mehta K, Bhatta N, Majhi S, Shrivastava M, Singh RR. Oral zinc supplementation for reducing mortality in probable neonatal sepsis: a double
in young infants: a multi-country observational study. *BMC Pediatr.* (2015) 15:143. doi: 10.1186/s12874-015-0460-2

259. Hamer DH, Darmstadt GL, Carlin JB, Zaidi AK, Yeboah-Antwi K, Saha SK, et al. Etiology of bacteremia in young infants in six countries. *Pediatr Infect Dis J.* (2015) 34:e1–8. doi: 10.1097/INF.0000000000000549

260. Santolaya ME, Álvarez T, Quezroz-Telles F, Colombo AL, Zurita J, Tiraboschi IN, et al. Active surveillance of candidemia in children from Latin America: a key requirement for improving disease outcome. *Pediatr Infect Dis J.* (2018) 33:e40–4. doi: 10.1097/INF.0000000000000339

261. Mularoni A, Madrid M, Arzamendia A, Valls i Soler A. The role of coagulase-negative staphylococci in early onset sepsis in a large European cohort of very low birth weight infants. *Pediatr Infect Dis J.* (2014) 33:e121–5. doi: 10.1097/INF.000000000000175

262. Al-Taiar A, Hammoud MS, Cuiqing L, Lee JK, Lui KM, Nakwan N, et al. Neonatal infections in China, Malaysia, Hong Kong and Thailand. *Arch Dis Child Fetal Neonatal Ed.* (2013) 98:F249–55. doi: 10.1136/archdischild-2012-301762

263. Inis Collaborative Group, Brocklehurst P, Farrell B, King A, Juszczak E, Darlow B, et al. Treatment of neonatal sepsis with intravenous immune globulin. *N Engl J Med.* (2011) 365:1201–11.

264. Popescu CR, Cavanagh MMM, Tembo B, Chiume M, Lufesi N, Goldfarb DM, et al. Neonatal sepsis in low-income countries: epidemiology, diagnosis and prevention. *Expert Rev Anti Infect Ther.* (2020) 18:443–52. doi: 10.1080/14787271.2020.1732818

265. Waters D, Jawad I, Ahmad A, Lukšić I, Nair H, Zgaga L, et al. Aetiology of community-acquired neonatal sepsis in low and middle income countries. *J Glob Health.* (2011) 1:154–70.

266. Edmond K, Zaidi A. New approaches to preventing, diagnosing, and treating neonatal sepsis. *PLoS Med.* (2010) 7:e1000213. doi: 10.1371/journal.pmed.1000213

267. Zee-Vera A, Ochoa TJ. Challenges in the diagnosis and management of neonatal sepsis. *J Trop Pediatr.* (2015) 61:1–13. doi: 10.1093/tropej/fmu079

268. Orach CG. Health equity: challenges in low income countries. *Afr Health Sci.* (2009) 9(Suppl. 2):549–51.

269. United Nations. *Universal Health Coverage.* (2019). Available online at: https://www.un.org/gga/73/event/universal-health-coverage/#-{}text=As%20part%20of%20the%202030%20and%20affordable%20essential%20medicines%20and%20(accessed November 2, 2021).

270. Pearson M, Colombo F, Murakami Y, James C. Universal health coverage and health outcomes in Paris. In: *Final Report for the G7 Health Ministerial Meeting.* Organisation for Economic Co-operation and Development (2016).

271. GBD. *GBD Cause and Risk Summaries: Neonatal Sepsis and Other Neonatal Infections – Level 4 Cause.* (2019). Available online at: https://www.thelancet.com/gbd/summaries (accessed April 12, 2021)

272. WHO. *World Health Assembly Secretariat Report A70/13: Improving the Prevention, Diagnosis and Clinical Management of Sepsis.* Geneva: WHO (2017).

273. Liang LD, Kotadia N, English L, Kissoon N, Ansermino JM, Kabakhyenga J, et al. Predictors of mortality in neonates and infants hospitalized with sepsis or serious infections in developing countries: a systematic review. *Front Pediatr.* (2018) 6:277. doi: 10.3389/fped.2018.00277

274. Vishnu Bhat B, Manoj Kumar Kingsley S. Chapter 2 – innate immunity at birth: implications for inflammation and infection in Newborns. In: Chatterjee S, Jungraithmayr W, Bagchi D editors. *Immunity and Inflammation in Health and Disease.* London: Academic Press (2018). p. 15–35.

275. Stoll BJ, Puopolo KM, Hansen NI, Sánchez PJ, Bell EE, Carlo WA, et al. Early-onset neonatal sepsis 2015 to 2017, the rise of *Escherichia coli*, and the need for novel prevention strategies. *JAMA Pediatr.* (2020) 174:e200593.

276. Vergnano S, Sharland M, Kazembe P, Mwansambo C, Heath PT. Neonatal sepsis: an international perspective. *Arch Dis Childhood Fetal Neonatal Ed.* (2005) 90:F220–4.

277. Imrey PB. Limitations of meta-analyses of studies with high heterogeneity. *JAMA Netw Open.* (2020) 3:e1919325. doi: 10.1001/jamanetworkopen.2019.19325

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Gan, Lee, Yap, Seelhor, Greenberg, Pek, Tan, Hornik, Lee and Chong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.