Supplemental Information File

Synthesis-Enabled Exploration of Chiral and Polar Multivalent Quaternary Sulfides

Georgiy Akopov1,2, Nethmi W. Hewage2, Philip Yox1,2, Gayatri Viswanathan1,2, Shannon J. Lee1,2, Liam P. Hulsebosch1,3, Sarah D. Cady2, Alexander L. Paterson1, Frédéric A. Perras1, Wenqian Xu4, Kui Wu5, Yaroslav Mudryk1, Kirill Kovnir1,2,*

1Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, United States.

2Department of Chemistry, Iowa State University, Ames, IA 50011, United States.

3Department of Physics, The State University of New York College at Buffalo, Buffalo, NY 14222.

4X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, IL 60439, United States

5Hebei University, Baoding City, Hebei Province, 830011, China.

*Corresponding authors: kovnir@iastate.edu
Table of Contents

Experimental Details

S1.1. Synthesis
 S1.1.1. Metal Silicide Precursors
 S1.1.2. Single Crystals
 S1.1.3. Bulk Powders
 S1.1.4. Test Reactions from Elements and Binary Precursors

S1.2. X-ray Diffraction

S1.3. Synchrotron Experiments at Advanced Photon Source at Argonne National Laboratory

S1.4.1. ^{29}Si and ^{45}Sc Solid State Nuclear Magnetic Resonance (NMR)

S1.4.2. Density Functional Theory

S1.5. Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS)

S1.6. Solid-State Diffuse Reflectance Spectroscopy

S1.7. Superconducting Quantum Interference Device (SQUID) Magnetometry

S1.8. Electron Paramagnetic Resonance (EPR) Analysis

S1.9. Second Harmonic Generation (SHG) and Laser Damage Threshold (LDT)
Figures

S1 Correlation of hexagonal unit cell parameters (a and c), unit cell volume, and ionic radii for metals for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) (x = 2 – 0.5).

S2 \textit{Ex-situ} PXRD patterns showing phase formation in the La\(_6\)CoSi\(_2\)S\(_{14}\) system

S3A PXRD patterns for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) (x = 2 – 0.5): TM = Sc - Cr, Zr - W, Tt = Si and Ge

S3B PXRD patterns for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) (x = 2 – 0.5): TM = Re, Mn and Fe; Tt = Si, Ge and Sn

S3C PXRD patterns for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) (x = 2 – 0.5): TM = Co, Ni, Ru and Rh; Tt = Si, Ge and Sn

S3D PXRD patterns for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) (x = 2 – 0.5): TM = Pd, Ir, Pt and Cu; Tt = Si, Ge and Sn

S3E PXRD patterns for (RE)\(_6\)(TM)\(_x\)Tt\(_2\)S\(_{14}\) (x = 2 – 0.5): RE = Y and La, TM = Cr-Cu, Ag, Au, Tt = Si, Ge, and Sn

S3F PXRD patterns for quaternary phases for Ti and Rh prepared from elements and binary sulfides

S4 Optical images and band gap values (eV) for La\(_6\)(TM)\(_x\)Tt\(_2\)S\(_{14}\) (TM = group 7 - 11; Tt = Si, Ge, and Sn; x = 2 – 0.5)

S5 Tau plots for select compositions for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) (TM = Fe, Co, Ru, Rh, Ir, Pt, Cu, Ag and Au; x = 2 – 0.5) plotted as direct band gap materials

S6 SEM BSE images of crystals of La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) (TM = Ni, Cu, Pd and Au; x = 2 – 0.5)

S7 Optical microscope images of select crystals for La\(_6\)(TM)\(_x\)Tt\(_2\)S\(_{14}\) (TM = Sc, Ti, Ni, Co, Pd and Au; Tt = Si and Ge; x = 2 – 0.5)

S8 EPR data for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) (TM = Ti and Cr)

S9 Magnetic data (\(\chi\), \(\chi'\) and \(\chi''\)) for La\(_6\)V\(_{0.77}\)Si\(_2\)S\(_{14}\) and moment versus field at 2 K for La\(_6\)V\(_{0.77}\)Si\(_2\)S\(_{14}\) and La\(_6\)Ir\(_{0.67}\)Si\(_2\)S\(_{14}\).

Tables

S1A SCXRD data collection and refinement parameters for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) \((TM = \text{Sc, Ti, V, Cr, Mn, Fe, Co, and Ni}; x = 2 – 0.5)\)

S1B SCXRD data collection and refinement parameters for La\(_6\)(TM)\(_x\)(Tt)\(_2\)S\(_{14}\) \((TM = \text{Zr, Rh, Pd, Hf, Pt, Cu, Ag, and Au}; Tt = \text{Si, Ge, and Sn}; x = 2 – 0.5)\)

S2 Phase composition of precursors used for the synthesis of quaternary phases

S3A Synthesis conditions for best results for phase formation of La\(_6\)(TM)\(_x\)(Tt)\(_2\)S\(_{14}\) \((TM = \text{Group 3 – 11, Tt = Si, Ge and Sn}; x = 2 – 0.5)\)

S3B Synthesis conditions for best results for phase formation of (RE)\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\) \((RE = \text{Sc and Y}; TM = \text{Ti, Cr – Ni, Rh, Ir, Cu, Ag, and Au}; x = 2 – 0.5)\)

S3C Synthesis conditions for best results for phase formation of La\(_6\)(TM)\(_x\)Si\(_2\)Te\(_{14}\) \((TM = \text{Co, Ni, and Cu}; x = 2 – 0.5)\)

S4 EDS composition summary for La\(_6\)(TM)\(_x\)(Tt)\(_2\)S\(_{14}\) \((TM = \text{Group 3 – 11, Tt = Si, Ge and Sn})\)

S5 Experimental and DFT-calculated \(^{29}\text{Si}\) chemical shifts

S6 Experimental and DFT-calculated \(^{45}\text{Sc}\) NMR parameters

S7 Second harmonic generation (SHG) signal for select compounds

S8A A summary of structural data for La\(_6\)(TM)\(_x\)Si\(_2\)S\(_{14}\)

S8B Ionic radii for select TM in O\(_6\) environment.
S1. Experimental Details

S1.1. Synthesis

The powders of \((RE)_6(TM)_x(Tt)_Q\) \((RE = Sc, Y and La; TM = all transition metals except for Y, Te, and Os; Tt = Si, Ge and Sn; Q = S and Te)\) were synthesized using pre-arc-melted precursors and sulfur without flux, while crystals were grown using a salt flux synthesis from a pre-arc-melted precursor and sulfur.

Materials used: Tin powder (99.8%, Strem, USA), Sulfur powder (99.5%, Alfa Aesar, USA), Tellurium powder (99.5%, Matheson, Coleman & Bell, USA), Lanthanum Sulfide (99.9%, Strem, USA), Silicon powder (99.99%, Strem, USA), Titanium powder (99.9%, Strem, USA). Scandium, yttrium, and lanthanum pieces as well as all transition metals, silicon and germanium were acquired from the Materials Preparation Center at Ames Laboratory, which is supported by the US DOE Basic Energy Sciences: Scandium chunk (99.99%), Yttrium chunk (99.9999%), Lanthanum chunk (99.9999%), Titanium pellets (99.999%), Vanadium dish (99.95%), Chromium flakes (99.99%), Manganese pieces (99.99+%), Iron lumps (99.95%), Cobalt buttons (99.9%), Nickel pellets (99.99%), Copper pellets (99.995%), Niobium chunks (99.9%), Molybdenum rod (99.95%), Ruthenium powder (99.99%), Rhodium powder (99.99%), Palladium pieces (99.99%), Silver shot (99.99%), Hafnium plate (99.95%), Tantalum sheet (99.995%), Tungsten wire (99.95%), Rhenium pieces (99.9%), Iridium pieces (99.99%), Platinum shot (99.99%), Gold shot (99.99%), Silicon lumps (99.9999996%), and Germanium lumps (99.999%).

S1.1.1. Metal Silicide Precursors

\(RE-TM-Tt\) precursors were prepared using pieces of appropriate metals and tetrel. Samples with a total mass of 0.6 - 1 g were weighed out in a ratio of \(RE : TM : Tt = 6 : 1 : 2.05\) \((RE = Sc, Y and...\)
La; $T_i = $ Si, Ge and Sn; for all TM. Additionally, $(TM)_{x}Si_y$ ($TM = $ Sc, Ti, V, Cr, Mn, Zr, Nb, Mo, Ru, Pd, La, Hf, Ta, and Re) precursors were prepared. **Table S1** lists the phase composition for most precursors used. Slight excess of tetrel was used to account for its evaporation during arc melting. The samples were then placed in an arc-melter on a copper hearth along with oxygen getter materials (zirconium metal). The arc-melter chamber was later sealed and evacuated for 20 minutes followed by purging with argon; this process was repeated 3 times to ensure no oxygen was present in the chamber. During arc-melting, the getters were melted first to ensure the absorbance of any trace oxygen, and then the samples were heated for $T \sim 1$ minute at a current of $I \sim 80$ Amperes (A) until molten, allowed to solidify, flipped and re-arced 2 more times to ensure homogeneity under a current of $I \sim 100$ A. The precursor ingots were then crushed into a powder using a steel Plattner-style diamond crusher.

Stability: The precursors were kept in desiccators outside of a glovebox. Most La-TM-Si precursors are stable with about a year shelf life. Samples more than a year old have been found to contain small amounts of lanthanum hydroxide. The notable exceptions are compositions with $TM = $ Fe and Mn as well as Ge analogous, where most of the La is converted into the hydroxide at approximately 3 months mark.

S.1.1.2. Single Crystals

Single crystals of most compositions were grown using pre-arc-melted precursor, sulfur powder, and potassium iodide (KI) salt flux. The ratio of (precursor + sulfur) to KI flux was kept at 1 to 30 ratio by mass (for 0.1g of reactants 3g of KI was used). The reactants and KI salt were added to a silica ampule, which was sealed under vacuum. The samples were heated to 950 – 1050°C (depending on the transition metal used) over 12 hours, allowed to dwell over 72 - 120 hours and then cooled down to room temperature over 8 hours. The KI flux was washed with deionized water,
the sample was then vacuum filtered and allowed to dry. In most cases the crystals resemble rods with a hexagonal cross section, either narrow and long (1-3 mm) or short and bulky (1-2 mm). The crystals are typically dark colored, almost black, with a slight hint of color. The crystals with Cu, Ag, and Au have a transparent yellow-gold appearance. Some compositions, which produced clean bulk powder failed in crystal growth with KI: La₆(TM)ₓSi₂S₁₄ (TM = Ru, Pd, and Ir).

S.1.1.3. Bulk Powders

Bulk powders of the materials were synthesized using pre-arc melted precursor and sulfur powder. Samples were prepared by loading the metal silicide precursor and sulfur in a fused silica ampoule in a 1:14 precursor to sulfur ratio. The ampoules were then flame sealed under vacuum. The samples were heated over 12 hours to 950 – 1050°C (depending on the transition metal used), dwelled for 72 - 120 hours and then allowing them to cool to room temperature over 8 hours.

S.1.1.4. Control Test Reactions from Elements and Binary Precursors

Binary sulfides of Ti, Rh, and Si were prepared by combining powders of corresponding metal with S in 1:2.1 ratio. The ampoules were then flame sealed under vacuum. The samples were heated over 12 hours to 700 °C and dwelled for 72 hours and then allowing them to cool to room temperature over 8 hours. The products of the reactions were (TiS₂ + Ti₈S₃(impurity)) and (Rh₂S₃ + RhS₂(min)). The synthesis of SiS₂ was unsuccessful.

The synthesis of quaternary phases was performed from elements using the following ratio of reactants: 6La : 0.67(TM) : 2Si : 14S (TM = Ti and Rh). Furthermore, the synthetic attempt was performed using binary sulfides in the following ratio: 3La₂S₃ : 0.67TiS₂ : 2Si : 4S and 3La₂S₃ : 0.33Rh₂S₃ : 2Si : 4S. Elemental Si and S were used in lieu of SiS₂. The ampoules were then flame
sealed under vacuum. The samples were heated over 12 hours to 1050 °C and dwelled for 72 hours and then allowing them to cool to room temperature over 8 hours (Figure S3F).

S1.2. X-ray Diffraction

Powder X-ray diffraction (PXRD) was performed using a Rigaku Miniflex 600 with Cu-\(K_\alpha\) radiation and a Ni-\(K_\beta\) filter. Sample holders were composed of zero-background silicon plates.

Single crystal X-ray diffraction (SCXRD) was performed using a Bruker D8 Venture diffractometer using Mo-\(K_\alpha\) radiation. All crystal datasets were collected at 100 K under a \(N_2\) stream. All datasets had \(\omega\)-scans recorded at a 0.3 - 0.6 ° step width and were integrated with the Bruker SAINT software package.

Structure determination and refinement of the crystal structures were carried out using the SHELX suite of programs.\(^1\) The site occupancy of transition metal was refined in all cases. For mono- and divalent metals occupancy of the two-fold site was found to be close to 100% and 50%, correspondingly, within few e.s.d. For trivalent metals, such as Sc, Ti, V, Cr, and Rh the refined occupancy was close to 33% (except for V). In addition, S3 atoms coordinating \(TM\) were found to have extremely elongated atomic displacement parameters (ADPs). This sulfur atom was further refined isotropically revealing a significant difference electron density peak indicating a split S site. Further refinement was performed with the constrains of 100% total occupancy and equivalent ADPs for split S3/S33 site which reduces the \(R\)-values and difference electron density peaks substantially. Occupancy of the split sites were found to be close to 67%/33% demonstrating good correlation with transition metal occupancy. In some cases, S33 site occupancy was restrained to be identical to the transition metal site occupancy. For \(TM = Sc\), additional splitting of La site with 67/33% occupancy was necessary to properly describe electron density in the vicinity of La atomic
site. La site ADPs for other 3+ and 4+ metals were elongated in ab plane, but Sc case was the extreme. Final refinement was performed anisotropically for all atoms including transition metal and split S3/S33 site. Similar refinement logic was used for 4+ metal (Pt, Zr, Hf) which occupancy was close to 25%. Further details are provided in Table S1 and corresponding CIFs.

S1.3. Synchrotron Experiments at Advanced Photon Source at Argonne National Laboratory (APS ANL)

In-situ variable temperature PXRD experiments were carried out at the 17-BM beamline at APS ANL, $\lambda = 0.24155$ Å. To study the mechanism of formation of La$_6$Rh$_{0.7}$Si$_2$S$_{14}$, a small amount of precursor (with a nominal composition of La$_6$Rh$_{0.7}$Si$_2$) was ground in an agate mortar with S in 1 : 14 ratio, loaded in a 0.5mm (ID) capillary, and sealed under vacuum using a flame. For synthesis experiments, the following profile was used: heating at 10 °C/min to 1000°C, hold 10 minutes, then cooling at 100 °C/min to room temperature.

S1.4.1. 29Si and 45Sc Solid State NMR

All solid-state nuclear magnetic resonance (NMR) spectroscopy experiments were carried out using a Bruker AVANCE III 400 MHz spectrometer using a 3.2 mm low-temperature magic angle spinning (MAS) probe operated at a temperature of approximately 100 K. 29Si MAS NMR spectra were acquired with the use of a rotor-synchronized Hahn echo pulse sequence with a radiofrequency (rf) power of 50 kHz, a relaxation delay of 130 s, and an MAS frequency of 8 kHz. 45Sc NMR experiments utilized a Bloch decay sequence, with a 10 μs central transition-selective excitation pulse, a 300 s relaxation delay, and an MAS rate of 14 kHz.

45Sc NMR data were processed using the two-dimensional one-pulse (TOP) approach, as implemented in dmfit. This enables for the separation of centerband signals belonging to the
central transition (CT) and satellite transitions (ST). The observed chemical shift of a given resonance from a specific transition of a quadrupolar nucleus is given by

$$\delta_{\text{obs}} = \delta_{\text{iso}} - \frac{3P_Q^2 I(I + 1) - 9m(m - 1) - 3}{40v_0^2 I^2(2I - 1)^2} 10^6 \text{ppm/Hz}$$

where $I = 7/2$ for ^{45}Sc and $m = 1/2$ for the central transition (CT) and $3/2$ (or -1/2) for the inner satellite transitions (ST). As such we have the following peak positions for the CT and inner ST:

$$\delta_{\text{obs},\text{CT}} = \delta_{\text{iso}} - \frac{P_Q^2 10^6 \text{ppm/Hz}}{v_0^2 \cdot 392}$$

$$\delta_{\text{obs},\text{ST}} = \delta_{\text{iso}} - \frac{P_Q^2 10^6 \text{ppm/Hz}}{v_0^2 \cdot 980},$$

and their difference is given by

$$\delta_{\text{obs},\text{ST}} - \delta_{\text{obs},\text{CT}} = \frac{3P_Q^2 10^6 \text{ppm/Hz}}{v_0^2 \cdot 1960}.$$

Having extracted the inner ST and CT centerbands through TOP, the quadrupolar product (P_Q) is readily determined, along with the isotropic chemical shift δ_{iso}. P_Q is related to the quadrupolar coupling constant (C_Q) as $P_Q = C_Q \sqrt{1 + \frac{\eta^2}{3}}$ and ranges from C_Q to $1.15C_Q$; η is the quadrupolar asymmetry parameter.

S1.4.2. Density Functional Theory

Density-functional theory (DFT) calculations were carried out using the CASTEP software package. Simulations of NMR parameters were performed using the gauge-including projector-augmented wave (GIPAW) approach, as implemented in CASTEP. The default on-the-fly-
generated ultrasoft pseudopotentials were used for all atoms, and the Perdew-Burke-Ernzerhof (PBE)7 generalized gradient approximation exchange-correlation functional was used for all calculations. Prior to performing magnetic shielding and electric field gradient calculation, the fractional coordinates of the atoms were optimized using a plane-wave kinetic energy cut-off of between 360 eV and 570 eV, depending on the identity of the transition metal, and a $2 \times 2 \times 2 \Gamma$-centered k-point mesh. The atomic positions were optimized using a total energy convergence tolerance of 5×10^{-6} eV/atom, a maximum ionic force tolerance of 0.01 eV/Å, and a maximum atomic displacement tolerance of 5×10^{-4} Å. Subsequent NMR parameter calculations used a similar plane-wave energy cut-off, but a much denser k-point grid, with a k-point spacing of 0.03 Å-1.

29Si magnetic shielding constants (σ_{iso}) were converted to chemical shifts (δ_{iso}) through the usual relation: $\delta_{\text{iso}} = \sigma_{\text{ref}} - \sigma_{\text{iso}}$, where σ_{ref} is the shielding of a reference compound with a known chemical shift. In this study the shielding of SiS$_2$ ($\sigma_{\text{ref}} = 315.87$ ppm, $\delta_{\text{iso}} = -21.1$ ppm8) was used as a secondary reference (relative to tetramethylsilane), based on the structure reported by Evers et al.945Sc shielding was not studied computationally due to the difficulty in finding a suitable reference material.

45Sc EFGs were calculated by generating several $2 \times 2 \times 2$ supercells with varying occupancy of the Sc TM site. The C_Q and η for each individual Sc site were calculated for each structure. The average values are reported in Table S6.

S.1.5. Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS)

Elemental analysis of samples was conducted using a FEI Quanta 250 field emission-SEM with EDS detector (Oxford X-Max 80, ThermoFischer Scientific, Inc., USA) and analyzed using the
Aztec software. Powder samples were mounted in epoxy, polished to a level surface, and coated with a conductive layer of carbon. Large crystals were mounted on double-sided carbon tape. An accelerating voltage of 15kV was used to study all samples.

S1.6. Solid-State Diffuse Reflectance Spectroscopy

The UV/Vis diffuse reflectance spectra were measured from 200-1080 nm with a BLACK-Comet C-SR-100 spectrometer. Powder samples were finely ground and flattened on a microscope slide. Band gaps were estimated through extrapolation of the linear slope in the corresponding Tauc plots by plotting \((A\hbar\nu)^{1/r}\) vs \(\hbar\nu\) where \(r = \frac{1}{2}\) for direct and \(r = 2\) for indirect band gaps.

S1.7. SQUID Magnetometry

Magnetic properties were obtained using SQUID magnetometer, model MPMS XL-7, manufactured by Quantum Design. The powder samples were placed into quartz sample holders and sealed with Teflon tape. Magnetization was measured as a function of temperature in applied magnetic field of \(H = 1\) kOe and 20 kOe from 2 to 300 K (on heating) and, isothermally, as a function of applied magnetic field at 2 and 300 K between -70 and 70 kOe (full hysteresis loop). AC susceptibility was measured between 2 and 50 K wit \(H_{dc} = 5\) Oe, \(H_{dc} = 0\), and \(f = 100\) Hz.

S1.8. EPR Analysis

Electron paramagnetic resonance (EPR) spectra were collected using an X-band ELEXYS E580 EPR Spectrometer (Bruker BioSpin) equipped with an SHQE resonator operating at 9.4 GHz, and a Bruker variable temperature accessory for heating/cooling. Powder samples were loaded into a 4 mm suprasil synthetic quartz tube (SP Wilmad-LabGlass) to minimize background signal from naturally occurring metals. Spectra were acquired with a sweep width of 4000 G, center field of 3350 G, receiver gain of 40 dB, 4096 points, sweep time of 83.9 s, time constant of 0.04 ms, and
5 G modulation amplitude. The 298 K spectrum was acquired with 1.986 mW microwave power and 1 scan, while the 110 K spectrum was acquired with 4.975 mW microwave power and 4 scans.

S1.9 Second Harmonic Generation (SHG) and Laser Damage Threshold (LDT)

Through the Kurtz and Perry method, powder SHG responses were investigated by a Q-switch laser (2.09 μm, 3 Hz, 50 ns) with different particle sizes, including 38–55, 55–88, 88–105, 105–150, 150–200, and 200–250 μm. The AgGaS₂ crystal was ground and sieved into the same size range as the reference. The LDTs were evaluated on powder sample (150–200 μm) with a pulsed YAG laser. Similar size of AgGaS₂ was chosen as the reference. To adjust different laser beams, an optical concave lens is added into the laser path. The damage spot is measured by the scale of optical microscope.
Table S1A. SCXRD data collection and refinement parameters for La₆(TM)ₓSi₂S₁₄ (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni; x = 2 – 0.5)

CSD-number	La₆Sc₀.₆₅(1)Si₂S₁₄	La₆Ti₀.₆₂(1)Si₂S₁₄	La₆V₀.₇₇(1)Si₂S₁₄	La₆Cr₀.₆₆(1)Si₂S₁₄	La₆Mn₀.₉₈(1)Si₂S₁₄	La₆Fe₁.₀₅(1)Si₂S₁₄	La₆Co₁.₀₁(1)Si₂S₁₄	La₆Ni₀.₉₉(1)Si₂S₁₄
Space group	P6₃							
λ (Å)								
T (K)								
a (Å)	10.338(5)	10.2970(5)	10.2960(4)	10.2888(12)	10.3337(4)	10.2991(3)	10.3141(11)	10.2725(6)
c (Å)	5.7459(4)	5.7720(3)	5.7356(3)	5.7503(9)	5.7285(3)	5.7389(3)	5.7313(10)	5.7287(4)
V (Å³)	531.85(6)	529.95(5)	526.56(5)	527.17(15)	529.76(5)	527.18(4)	528.02(15)	523.53(7)
Z								
ρ (g•cm⁻³)	4.269	4.287	4.345	4.324	4.364	4.401	4.395	4.432
Absorption correction	multi-scan							
μ (mm⁻¹)	13.437	13.515	13.704	13.690	13.860	14.062	14.105	14.333
θ (°)	2.27 – 40.13	2.29 – 32.99	2.28 – 40.24	2.29 – 33.05	2.28 – 40.36	2.28 – 40.23	2.18 – 33.07	2.29 – 32.95
Data / param.	1805/46	1339/43	1789/40	1340/42	1795/38	1787/38	1337/38	1340/38
R₁	0.019	0.015	0.020	0.021	0.026	0.019	0.011	0.037
wR₂	0.031	0.028	0.036	0.034	0.044	0.036	0.025	0.047
Goodness-of-fit	1.05	1.05	1.05	1.05	1.03	1.12	1.13	1.05
Flack Param.	0.01(1)	0.03(2)	-0.006(11)	-0.01(1)	0.02(3)	0.01(2)	0.010(8)	0.01(3)
Diff. peak/hole (e•Å⁻³)	1.09/-1.21	0.93/-1.29	2.02/-1.83	1.76/-2.07	1.25/-1.78	0.83/-1.52	0.71/-0.60	1.67/-1.51
Table S1B. SCXRD data collection and refinement parameters for La₆(TM)ₓ(Tt)₂S₁₄ (TM = Zr, Rh, Pd, Hf, Pt, Cu, Ag, and Au; Tt = Si, Ge, and Sn; x = 2 – 0.5)

CSD-number	La₆Zr₁.₅₂(1)₆S₁₄	La₆Rh₁.₆₉(1)₆S₁₄	La₆Hf₁.₄₈(2)₆S₁₄	La₆Pt₁.₅₃(1)₆S₁₄	La₆Cu₁.₉₇(1)₆S₁₄	La₆Au₁.₉₂(3)₆S₁₄	La₆Au₁.₉₈(2)₆Ge₆S₁₄	La₆Au₁.₉₄(2)₆Sn₆S₁₄
λ (Å)	Mo-Kα: 0.71073							
T (K)	100(2)							
a (Å)	10.3189(6)	10.2507(5)	10.3188(6)	10.2530(3)	10.3231(14)	10.3804(15)	10.3905(16)	10.4001(19)
c (Å)	5.7543(4)	5.7490(3)	5.7612(5)	5.7717(3)	5.7991(8)	5.8250(14)	5.8848(10)	6.0178(14)
V (Å³)	530.63(7)	523.15(16)	531.25(8)	525.46(4)	535.19(16)	543.6(2)	550.22(19)	563.7(2)
Z	1							
ρ (g•cm⁻³)	4.337	4.474	4.451	4.557	4.541	5.238	5.479	5.597
μ (mm⁻¹)	13.522	13.996	15.644	16.921	15.074	25.789	28.446	27.056
θ (°)	2.28 – 32.78	2.29 – 33.11	2.28 – 32.49	2.29 – 33.05	2.28 – 33.18	2.27 – 33.18	2.27 – 33.24	2.27 – 33.25
Data / param.	1189/42	1340/43	1289/41	1220/42	1362/39	1372/39	1364/39	1436/39
R₁	0.024	0.018	0.026	0.039	0.012	0.013	0.013	0.016
wR₂	0.036	0.029	0.043	0.086	0.023	0.025	0.024	0.025
Goodness- of-fit	1.05	1.07	1.07	1.11	1.11	0.97	1.09	1.02
Flack Param.	0.03(3)	0.02(3)	0.04(4)	0.04(5)	0.026(15)	0.012(6)	0.019(6)	0.020(6)
Diff. peak/hole (e•Å⁻³)	0.97/1.10	1.51/-1.96	1.05/-1.49	2.56/-2.04	0.62/-0.49	1.81/-0.74	0.95/-0.76	2.12/-0.96
Table S2. Phase composition of precursors used for the synthesis of quaternary phases.

RE	TM	Nominal Composition	Crystalline Phases Identified by PXRD in Brittle Fraction of Precursor		
Sc	-	5Sc : 3Si	Sc5Si3 + Sc		
	Ti	6Sc : Ti : 2Si	Sc5Si3 + Sc + ScMn		
Mn		6Sc : Mn : 2Si	Sc5Si3 + Fe + FeSi2 + ScFe		
Fe		6Sc : Fe : 2Si	Sc5Si3 + FeSi2 + ScFe		
Co		6Sc : Co : 2Si	Sc5Si3 + ScCo + ScCo		
Ni		6Sc : Ni : 2Si	Sc5Si3 + ScNiSi3		
Cu		6Sc : 2Cu : 2Si	Sc5Si3 + ScCu		
Rh		6Sc : Rh : 2Si	Sc5Si3 + Sc55.8Rh13.8		
Ag		6Sc : 2Ag : 2Si	ScAg + ScSi3		
Ir		6Sc : Ir : 2Si	Sc5Si3 + ScIrSi3 + Ir3Si5		
Au		6Sc : 2Au : 2Si	ScAu + Sc5Si3		
Y		5La : 3Si	La5Si3 + La3Si4		
	Sc	6La : Sc : 2Si	La5Si3 + ScSi3 + LaScSi		
		6La : Sc : 2Ge	La5Ge3 + LaScGe + Ge		
Ti		6La : Ti : 2Si	La5Si3 + La + Ti		
Mn		6La : Mn : 2Si	La5Si3 + YSi3 + Y + Si + YSi2		
Fe		6La : Fe : 2Si	Y5Si3 + Y + Fe + Y		
Co		6La : Co : 2Si	Y5Si3 + Y3Co		
Ni		6La : Ni : 2Si	Y5Si3 + Y3Ni + Si + Y		
Cu		6La : 2Cu : 2Si	Y5Si3 + YCu + YSi2		
Cr		5La : 3Si	La5Si3 + La3Si4		
	Sc	6La : Sc : 2Si	La5Si3 + ScSi3 + LaScSi		
		6La : Sc : 2Ge	La5Ge3 + LaScGe + Ge		
La		6La : Mn : 2Si	La5Si3 + La + Mn		
Mn		6La : Mn : 2Si	La5Si3 + La + Mn		
		6La : Mn : 2Si	La5Si3 + La + Mn + LaFe10.6Si2		
		6La : Mn : 2Ge	La5Si3 + La + Mn + LaFe10.6Si2		
		6La : Mn : 2Sn	La5Si3 + La + Mn + LaFe10.6Si2		
Fe		6La : Fe : 2Si	La5Si3 + La + Mn		
		6La : Fe : 2Ge	La5Si3 + La + Mn		
		6La : Fe : 2Sn	La5Si3 + La + Mn		
Co		6La : Co : 2Si	La5Co3 + La3Co + La3Co + La3Co		
Ni		6La : Ni : 2Si	La5Ni0.26Si2 + La3Ni		
		6La : Ni : 2Ge	Ge + La3Ni + La5Ge		
		6La : Ni : 2Sn	Ge + La3Ni + La5Ge		
Cu		6La : 2Cu : 2Si	La5Si3 + LaCu4		
		6La : 2Cu : 2Ge	Ge + La5Ge + La(CuGe)		
Element	Composition	Reaction			
---------	-------------	----------			
Zr	6La : 2Cu : 2Sn	La₅Sn₃ + LaCu + Cu₆Sn₅			
	6La : Zr : 2Si	La₅Si₃ + Zr₅Si₃			
	Zr : Si	ZrSi + Zr₅Si₃			
Nb	6La : Nb : 2Si	La₅Si₃ + Nb₅Si₃			
	Nb : Si	Nb₅Si₃ + NbSi₂			
Mo	6La : Mo : 2Si	La₅Si₃ + Si			
	Mo : 2Si	Mo₅Si₂ + Mo + Si			
Ru	6La : Ru : 2Si	Ru + La₅Si₃ + Si			
	Ru : Si	Ru₅Si + Ru₅Si₃ + Ru₅Si₃			
	6La : Ru : 2Ge	Ru + LaGe + La₃Ge			
Ru	6La : Ru : 2Sn	La₅Sn₃ + Sn + La + LaRuSn₃ + La₃Ru₄Sn₁₃			
Rh	6La : Rh : 2Si	La₅Si₃ + La₇Rh₃			
	6La : Rh : 2Ge	La₅Ge + La₇Rh + Ge			
	6La : Rh : 2Sn	La₅Sn₃ + Sn + La₇Rh₃ + La₁₆Rh₆Sn₃			
Pd	6La : Pd : 2Si	Si + La + La₅Si₂ + La₇Pd₃			
	2Pd : Si	Pd₅Si			
	6La : Pd : 2Ge	La₅Ge₃ + La₇Pd₃			
	6La : Pd : 2Sn	La₅Sn₃ + La₇Pd₃ + La₅Sn₄			
Ag	6La : 2Ag : 2Si	LaAg + La₅Si₂ + Si + La			
	6La : 2Ag : 2Ge	La₄Ge₃ + LaAg + LaGe + Ge			
	6La : 2Ag : 2Sn	La₅Sn₃ + LaAg			
Hf	6La : Hf : 2Si	La₅Si₃ + Hf₃Si₃			
	Hf : Si	Hf₅Si + Hf₃Si₄ + Hf₃Si₂			
Ta	6La : Ta : 2Si	La₅Si₃ + Ta₃Si₃			
	Ta : Si	Ta₅Si₃ + Ta₅Si₂ + Ta₂Si			
W	6La : W : 2Si	La₅Si₃			
	W : 2Si	WS₁₃ + W₅Si₃ + Si			
Re	6La : Re : 2Si	La₅Si₃ + La + Re			
	4Re : 7Si	Re₅Si₂ + ReSi + Si + Re			
	6La : Re : 2Ge	La₅Ge + La₅Ge₃ + ReGe₂			
	6La : Re : 2Sn	La₅Sn₃			
Ir	6La : Ir : 2Si	La₅Si₃ + La + Si + Ir₂Si			
	6La : Ir : 2Ge	La₅Ge₃ + La + Ge + La₅Ir₂ + La₃Ir₇ + La₅Ir₂			
	6La : Ir : 2Sn	IrSn₂ + La₅Sn₃ + La₅Sn + Sn			
Pt	6La : Pt : 2Si	La₅Si₃ + La₇Pt₃			
	6La : Pt : 2Ge	La₅Ge₃ + La + Ge + Pt₃Ge			
	6La : Pt : 2Sn	La₅Sn₃ + La₇Pt₃ + La₁₁Sn₁₀			
Au	6La : 2Au : 2Si	La₅Si₂ + La₅Si₂ + Au₅La₁₄ + Si			
	6La : 2Au : 2Ge	Ge + La₅Ge₄ + LaAuGe + AuLa₂			
	6La : 2Au : 2Sn	La₅Sn + Sn + La₅Sn₃ + AuSn₂			
TM	Tt	Precursor	Max. Temp. (°C)	Dwell Time (hrs)	Phases in Product
------	--------	--------------------	-----------------	------------------	---
Sc	Si	La₆Sc₀.₇Si₂	1000	72	La₆Sc₀.₆₇Si₂S₁₄ + S₈ + LaScS₃
	Ge	La₆ScGe₂ + KI	1000	72	La₆Sc₀.₆₇Ge₂S₁₄ + S₈ + LaS₂₃ + LaScS₃
Ti	Si	La₆Ti₀.₇Si₂	1050	72	La₆Ti₀.₆₇Si₂S₁₄
V	Si	La₅Si₃ + V₅Si₃	1000	72	La₅V₀.₇₇Si₂S₁₄ + LaS₂ + S₈
Cr	Si	La₆Cr₀.₇Si₂	1050	72	La₆Cr₀.₆₇Si₂S₁₄ + S₈
Zr	Si	La₅Si₃ + ZrSi	1000	72	La₅Zr₀.₅Si₂S₁₄ + La₂Si₅ + ZrS₂ + La₂ZrS₅
Nb	Si	La₅Si₃ + NbSi	1000	72	La₂Si₅ + La₅Nb₇S₂₂ + S₈
Mo	Si	La₅Si₃ + MoSi₂	1000	72	La₂Si₅ + S₈ + MoS₂
Hf	Si	La₅Si₃ + 0.5HfSi	1000	72	La₆Hf₀.₅Si₂S₁₄ + La₂Si₅
Ta	Si	La₅Si₃ + TaSi	1000	72	La₂Si₅ + TaSi2
W	Si	La₅Si₃ + WSi₂	1000	72	La₂Si₅ + WSi₂
Mn	Si	La₅Si₃ + MnSi	1000	72	La₆MnSi₂S₁₄ + La₂Si₅(min)
Ge	La₅MnGe₂	1050	72	La₄MnGe₂S₁₄ + La₂S₁ + MnS	
Sn	La₆MnSn₂	1050	72	La₆MnSn₂S₁₄	
Fe	Si	La₆FeSi₂	1050	72	La₆FeSi₂S₁₄ + La₂S
Ge	La₆FeGe₂	1000	72	La₆FeGe₂S₁₄ + GeS₂ + S₈	
Sn	La₆FeSn₂	1000	72	La₆FeSn₂S₁₄ + La₂S₃	
Co	Si	La₆CoSi₂	1050	0	La₆CoSi₂S₁₄ + LaS₂
Ge	La₆CoGe₂	1000	72	La₆CoGe₂S₁₄ + S₈	
Sn	La₆CoSn₂	1000	72	La₆CoSn₂S₁₄ + La₄CoS₇ + SnS	
Ni	Si	La₆NiSi₂	1050	72	La₆NiSi₂S₁₄ + La₄NiS₇
Ge	La₆NiGe₂	1000	72	La₆NiGe₂S₁₄	
Sn	La₆NiSn₂	1000	72	La₆NiSn₂S₁₄ + La₂S₃	
Ru	Si	La₆RuSi₂	1050	72	La₆RuSi₂S₁₄ + S₈
Ge	La₆RuGe₂	1050	72	La₆RuGe₂S₁₄ + La₂S₃ + S₈	
Sn	La₆RuSn₂	1100	72	La₆Sn₄ + La₂Sn₅ + RuS₂	
Rh	Si	La₆Rh₀.₇Si₂	1000	72	La₆Rh₀.₆₇Si₂S₁₄ + S₈
Ge	La₆RhGe₂	1000	72	La₆RhGe₂S₁₄ + LaS + GeS₂	
Sn	La₆RhSn₂	1050	72	La₆RhSn₂S₁₄ + La₄Rh₈Sn₃	
Pd	Si	La₆PdSi₂	1050	72	La₆PdSi₂S₁₄ + La₄PdS₇ + Pd₃S₂
Ge	La₆PdGe₂	1050	72	La₆PdGe₂S₁₄ + LaPd₃S₄ + La₂S₃	
Sn	La₆PdSn₂	900	72	La₄Pd₄S₄ + La₂Sn₅ + La₂S + Sn	
Re	Si	La₆ReSi₂	1000	72	La₂Si₅ + ReS₂ + S₈
Ge	La₆ReGe₂	1000	72	La₂GeS₅ + La₄Ge₃S₁₂ + La₂S₃ + Ge	
Sn	La₆ReSn₂	1050	72	La₂S₃ + ReS₂ + Sn + S₈	
Ir	Si	La₆Ir₀.₇Si₂	1000	72	La₆Ir₀.₆₇Si₂S₁₄ + La₂S + S₈
Ge	La₆IrGe₂	1000	72	La₆Ir₃Ge₂S₁₄ + La₂S₃ + Ge	
Sn	La₆IrSn₂	900	72	La₂Sn₅ + La₂S₃ + IrS + SnS	
Pt	Si	La₆PtSi₂	1000	72	La₆Pt₀.₅Si₂S₁₄ + PtS + La₂S₃

Table S3A. Synthesis conditions for phase formation of La₆(TM)₆(Tt)₆S₁₄ (TM = Group 3 – 11, Tt = Si, Ge and Sn; x = 2 – 0.5). Quaternary phases are highlighted in bold for cases where they are the major products.
Ge	La₆PtGe₂	1000	72	La₆Pt₆Ge₂S₁₄ + PtGeS + La₂S₃	
Sn	La₆PtSn₂	1050	72	PtSnS + La₂S₃ + La₂SnS₅ + LaSn₃	
Cu	Si	La₆Cu₂Si₂	1000	72	La₆Cu₂Si₂S₁₄
	Ge	La₆Cu₂Ge₂	1000	72	La₆Cu₂Ge₂S₁₄ + S₈
	Sn	La₆Cu₂Sn₂	1000	72	La₆Cu₂Sn₂S₁₄ + CuSnS₃.₆
Ag	Si	La₆Ag₂Si₂	1000	72	La₆Ag₂Si₂S₁₄
	Ge	La₆Ag₂Ge₂	1000	72	La₆Ag₂Ge₂S₁₄ + S₈
	Sn	La₆Ag₂Sn₂	1000	72	La₆Ag₂Sn₂S₁₄ + SnS
Au	Si	La₆Au₂Si₂	1000	72	La₆Au₂Si₂S₁₄ + LaS₂
	Ge	La₆Au₂Ge₂	1000	72	La₆Au₂Ge₂S₁₄
	Sn	La₆Au₂Sn₂	1000	72	La₆Au₂Sn₂S₁₄ + SnS
Table S3B. Selected results for the attempts to form Sc₆(TM)₆Si₂S₁₄ (unsuccessful) and Y₆(TM)₆Si₂S₁₄ (successful) for TM = Ti, Cr – Ni, Rh, Ir, Cu, Ag, and Au. Quaternary phases are highlighted in bold for cases where they are the major products.

RE	TM	Precursor	Max. Temp. (°C)	Dwell Time (hrs)	Phases in Product
Sc	Ti	Sc₆TiSi₂	900	72	Sc₂S₃
			1050	72	ScS + Sc₂S₃ + TiS₁₅ + S₈
	Mn	Sc₆MnSi₂	750	72	Sc₂S₃ + MnS + MnSc₂S₄
			1000	72	MnS + MnSc₂S₄ + Mn₂SiS₄ + SiS₂ + Sc₂S₃
	Fe	Sc₆FeSi₂	750	72	Sc₂S₃ + FeC₂S₄ + Sc₅Si₃
			1000	72	FeScS₄ + Sc₂S₃
	Co	Sc₆CoSi₂	750	72	Sc₂S₃ + CoS₂
			1000	72	Sc₂S₃ + CoS₂ + SiS₂
	Ni	Sc₆NiSi₂	750	72	Sc₂S₃ + S₈ + NiSc + NiS₂
			1000	72	Sc₂S₃ + Rh₂S₃ + RhS₂
	Rh	Sc₆RhSi₂	900	72	Sc₂S₃ + Rh₂S₃ + ScS + S₈
			1050	96	Sc₂S₃ + Sc₂S₃ + Rh₂S₃ + RhS₂
	Ir	Sc₆IrSi₂	900	72	Sc₂S₃ + IrS₂ + SiS₂
			1050	96	Sc₂S₃ + IrS₂ + Sc₂S₃ + SiS₂
	Cu	Sc₆Cu₂Si₂	900	72	ScS + Sc₂S₃ + Si + Sc + Cu₅Si₃S₈
			1050	96	ScS + CuSc₂S₂ + Sc + S₈ + Sc₂S₃ + SiO₂
	Ag	Sc₆Ag₂Si₂	900	72	ScS + Sc₂S₃ + Si
			1050	96	Sc₂S₃ + SiO₂ + SiS₂
	Au	Sc₆Au₂Si₂	900	72	Au + ScS + Sc₂S₃ + S₈
			1050	96	Au + ScS + Sc₂S₃
Y	Cr	Y₆CrSi₂	1050	72	Y₆Cr₀.₆₇Si₂S₁₄ + Y₂S₃
	Mn	Y₆MnSi₂	1050	72	Y₆MnSi₂S₁₄ + Y₃S₃
	Fe	Y₆FeSi₂	1050	72	Y₆FeSi₂S₁₄ + Y₂S₃
	Co	Y₆CoSi₂	1050	72	Y₆CoSi₂S₁₄ + Y₂S₃
	Ni	Y₆NiSi₂	1050	72	Y₆NiSi₂S₁₄ + Y₂S₃
	Cu	Y₆Cu₂Si₂	1050	72	Y₆Cu₂Si₂S₁₄
Table S3C. Synthesis conditions for the attempts to form tellurides La₆(TM)ₓSi₂Te₁₄.

TM	Precursor	Max. Temp. (°C)	Dwell Time (hrs)	Phases in Product
Co	La₆CoSi₂	750	72	LaTe₂ + La₂Te₅ + LaTe₃ + CoTe₂
		900	72	(La₂Te₃)₀.₉ + LaTe₂ + Si + Co
		1050	72	LaTe₂ + LaTe₃ + CoSi₂
Ni	La₆NiSi₂	750	72	LaTe₂ + NiTe₂ + Te
		900	72	LaTe₂ + NiTe₂ + Si
		1050	72	LaTe₂ + LaTe₃ + LaNi₁Si₆ + La₆Ni₂Si₃ + LaTe
Cu	La₆Cu₂Si₂	750	72	LaTe₂ + Si₂Te₃ + Cu₂Si₃Te₃ + Cu + LaTe₃ + Cu₃Si
		900	72	LaTe₂ + Cu₃Te₃ + Cu₃Si
		1050	72	LaTe₂ + Cu₇Te₄

Table S4. EDS composition summary for La₆(TM)ₓ(Tt)₂S₁₄ (TM = Group 3 – 11, Tt = Si, Ge and Sn). All compositions are normalized to 6 La atoms. Errors are given in parenthesis.

RE	TM	Tt	Average EDS Composition	TM content from SCXRD
La	Sc	Si	La₆Sc₀.₆₅(1)Si₀.₉₅(6)S₁₃.₅₈(10)	0.67
La	Ti	Si	La₆Ti₀.₆₄(5)Si₁₂.₀₁(7)S₁₃.₁₈(7)	0.67
La	V	Si	La₆V₀.₆₉(4)Si₁₁.₉₆(2)S₁₃.₁₃(10)	0.77
La	Cr	Si	La₆Cr₀.₆₄(3)Si₁₁.₉₄(2)S₁₃.₁₆(10)	0.67
La	Mn	Sn	La₆Mn₀.₉₁(5)Sn₂₁.₁₃(1)S₁₃.₀₉(1₃)	1.0
La	Co	Si	La₆Co₀.₉₂(2)Si₂₀.₅₂(2)S₁₃.₇₁(1₇)	1.0
La	Ni	Si	La₆Ni₀.₉₃(3)Si₁₁.₉₃(6)S₁₃.₁₇(2₄)	1.0
La	Zr	Si	La₆Zr₀.₄₈(2)Si₁₁.₉₇(5)S₁₁.₉₅(4)	0.5
La	Ru	Si	La₆Ru₀.₈₆(6)Si₁₂.₀₁(7)S₁₃.₁₅(1₁)	N/A
La	Rh	Si	La₆Rh₀.₆₇(2)Si₁₁.₉₅(3)S₁₁.₀₄(1₂)	0.67
La	Rh	Ge	La₆Rh₀.₆₇(2)Ge₁₇.₇₈(2)S₁₃.₁₅(9)	0.67
La	Rh	Sn	La₆Rh₀.₅₄(2)Sn₂₁.₁₇(7)S₁₁.₈₃(1₃)	N/A
La	Pd	Si	La₆Pd₀.₉₉(4)Si₁₁.₉₈(4)S₁₁.₁₂(1₂)	1.0
La	Hf	Si	La₆Hf₀.₄₇(3)Si₂₀.₀₈(2)S₁₁.₀₄(1₆)	0.5
La	Ir	Si	La₆Ir₀.₆₉(2)Si₁₁.₉₄(3)S₁₁.₁₈(8)	0.67
La	Ir	Ge	La₆Ir₀.₇₆(₈)Ge₁₈.₈₀(₅)S₁₃.₃₀(₂₃)	N/A
La	Pt	Si	La₆Pt₀.₅₈₁Si₁₀.₉₆(₂)S₁₁.₄₃(₄)	0.5
La	Cu	Si	La₆Cu₁₈.₁₅(₅)Si₁₀.₀₄(₄)S₁₁.₇₀(₁₆)	2.₀
La	Cu	Ge	La₆Cu₁₈.₆₃(₅)Ge₂₂.₃₉(₃₂)S₁₄.₁₇(₇₁)	2.₀
La	Au	Si	La₆Au₁₉.₈₂(₂)Si₂₂.₄₄(₅)S₁₄.₁₆(₅)	2.₀
La	Au	Ge	La₆Au₁₈.₈₈(₂)Ge₁₇.₇₄(₂)S₁₁.₇₈(₆)	2.₀
La	Au	Sn	La₆Au₁₇.₇₆(₆)Sn₂₀.₄₄(₄)S₁₁.₃₄(₁₃)	2.₀
Table S5. Experimental and DFT-calculated 29Si chemical shifts.

Sample	Experimental	Calculated	
	$\delta_{\text{iso}}(^{29}\text{Si}) / \text{ppm}$	$\delta_{\text{iso}}(^{29}\text{Si}) / \text{ppm}$	$\sigma_{\text{iso}}(^{29}\text{Si}) / \text{ppm}$
$\text{La}_6\text{Cu}_2\text{Si}_2\text{S}_7$	3.0	2.6	313.3
$\text{La}_6\text{Ag}_2\text{Si}_2\text{S}_7$	4.9	9.8	306.1
$\text{La}_6\text{Au}_2\text{Si}_2\text{S}_7$	7.7	12.5	303.5
$\text{La}_6\text{RhSi}_2\text{S}_14$	0.4		
$\text{La}_6\text{Sc}_{0.66}\text{Si}_2\text{S}_14$	0.6		

The magnetic shielding constants for these materials could not be calculated due to the positional disorder in the crystal structure.

Table S6. Experimental and DFT-calculated 45Sc NMR parameters.

Sample	Experimental	Calculated								
	$\delta_{\text{iso}}(^{45}\text{Sc}) / \text{ppm}$	C_Q / MHz	P_Q / MHz	$	C_Q	/ \text{MHz}$	η	$	P_Q	/ \text{MHz}$
$\text{La}_6\text{Sc}_{0.67}\text{Si}_2\text{S}_14$	472.2		3.0	2.0(2)	0.17(5)	2.0(2)				
$\text{La}_6\text{Sc}_{0.67}\text{Ge}_2\text{S}_14$	474.5		2.8							
LaScS_3	377.2	8.4	0.28	8.5	6.52	0.28	6.60			

Table S7. Second harmonic generation (SHG) signal for select compounds.

Particle size (µm)	38.5-54	54-88	88-105	105-150	150-200
Phase	SHG Intensity (mV)				
AgGaS_2	15.0	26.0	35.0	80.0	113.0
$\text{La}_6\text{CoSi}_2\text{S}_14$	0.8	0.8	0.8	0.8	0.8
$\text{La}_6\text{Rh}_{0.67}\text{Si}_2\text{S}_14$	14.0	12.8	13.6	-	13.0
$\text{La}_6\text{Ir}_{0.67}\text{Si}_2\text{S}_14$	13.5	13.6	13.2	12.2	12.6
$\text{La}_6\text{Cu}_2\text{Si}_2\text{S}_14$	1.5	1.3	0.8	0.75	0.8
$\text{La}_6\text{Cu}_2\text{Ge}_2\text{S}_14$	20	24	37	-	-
$\text{La}_6\text{Ag}_2\text{Si}_2\text{S}_14$	0.4	0.4	0.3	-	-
$\text{La}_6\text{Au}_2\text{Si}_2\text{S}_14$	7.7	6.8	-	1.5	2.4
Table S8A. A summary of structural data for La₆(TM)₆Si₂S₁₄. O₉ = octahedron

Metal	Ox. State/Spin state	R_{ion}a (Å)	R_{calc}b	V_{Oh-full}(Å³)	V_{Oh-empty}(Å³)	V_{full}/V_{empty}	d_{M-S} for filled O₉	a/c	V (Å³)		
Sc	3	0.75	0.77	23.53	28.94	0.81	2.605	2.608	0.999	1.798	531.9
Ti	3	0.67	0.73	22.49	29.91	0.75	2.562	2.569	0.997	1.784	529.9
V	2	0.79	0.71	22.12	27.27	0.81	2.551	2.552	1.000	1.795	526.6
	3	0.64									
Cr	3	0.62	0.70	21.87	28.95	0.76	2.537	2.546	0.996	1.789	527.2
Mn	2/hs	0.83	0.81	24.77	-	-	2.640	2.660	0.992	1.804	529.9
	2/ls	0.67									
Fe	2/hs	0.61	0.78	23.87	-	-	2.610	2.620	0.996	1.795	527.2
	2/ls	0.78									
Co	2/hs	0.65	0.78	23.91	-	-	2.610	2.630	0.992	1.793	523.5
	2/ls	0.75									
Ni	2	0.69	0.75	23.14	-	-	2.590	2.590	1.000	1.793	523.5
Zr	4	0.72	0.81	24.62	28.53	0.86	2.636	2.659	0.991	1.793	530.6
Rh	3	0.67	0.70	21.83	28.93	0.76	2.538	2.541	0.999	1.783	523.2
Hf	4	0.71	0.72	22.3	27.30	0.82	2.538	2.579	0.984	1.791	531.2
Pt	4	0.63	0.76	23.35	30.60	0.76	2.594	2.604	0.996	1.776	525.5

a Ionic radii taken from Shannon,10 min and max observed values are highlighted in bold.

b Radii are calculated by subtracting ionic radius of S²⁻ (Shannon¹⁰) from the average value of TM-S bond.
Table S8B. Ionic radii for select transition metals in octahedral environment. Values highlighted in green lie between 0.63 and 0.83 Å, a proposed range to form target quaternary sulfides La6(TM)xSi2S14.

Metal	Ox. State	R_{ion}, Å^a
Pd	2 square planar 0.64	
	2 O_h 0.86	
Ru	3 0.68	
	4 0.62	
Ir	3 0.68	
Nb	3 0.72	
	4 0.68	
	5 0.64	
Mo	3 0.69	
	4 0.65	
	5 0.61	
	6 0.59	
Ta	3 0.72	
	4 0.68	
	5 0.64	
W	4 0.66	
	5 0.62	
	6 0.60	
Re	4 0.63	
	5 0.58	
	6 0.55	
	7 0.53	
Os	4 0.63	
	5 0.58	
	6 0.55	
	7 0.53	

^a Ionic radii taken from Shannon¹⁰.
Figure S1. Correlation of hexagonal unit cell parameters (a and c), unit cell volume and ionic radii10 for metals for La$_6$(TM)$_x$Si$_2$S$_{14}$ ($x = 2 – 0.5$).

Figure S2. *Ex-situ* PXRD patterns showing phase formation in the La$_6$CoSi$_2$S$_{14}$ system. Each pattern represents a different reaction with corresponding maximum reaction temperature. The pre-arc-melted “La$_6$CoSi$_2$” and S reactants form La$_6$CoSi$_2$S$_{14}$ (*P6$_3$*) at ~750 ºC.
Figure S3A. PXRD patterns for La₆(TM)ₓ(Tt)₂S₁₄ (x = 2 – 0.5) samples: (top) TM = Sc - Cr, Tt = Si and Ge; (bottom) TM = Zr – W, Tt = Si. Patterns in black and grey are for reference. Pattern for La₂SiS₅ is taken from ICSD 240952. Experimental conditions are given in Table S3A.
Figure S3B. PXRD patterns for La₆(TM)ₓ(Tt)₂S₁₄ (x = 2 – 0.5) samples: (top) TM = Re, Tt = Si; (bottom) TM = Mn and Fe, Tt = Si, Ge and Sn. Patterns in black and grey are for reference. Pattern for La₂SiS₅ is taken from ICSD 240952. Experimental conditions are given in Table S3A.
Figure S3C. PXRD patterns for La$_6(TM)_x(Tt)_2S_{14}$ ($x = 2 - 0.5$) samples: (top) $TM = \text{Co and Ni}$, $Tt = \text{Si, Ge, and Sn}$; (bottom) $TM = \text{Ru and Rh}$, $Tt = \text{Si, Ge and Sn}$. Patterns in black and grey are for reference. Experimental conditions are given in Table S3A.
Figure S3D. PXRD patterns for La₆(TM)ₓ(Tt)₂S₁₄ (x = 2 – 0.5) samples: (top) TM = Pd and Ir, Tt = Si, Ge and Sn; (bottom) TM = Pt and Cu, Tt = Si, Ge and Sn. Patterns in black and grey are for reference. Experimental conditions are given in Table S3A.
Figure S3E. PXRD patterns for $(RE)_6(TM)_x(Tt)_2S_{14}$ $(x = 2 - 0.5)$ samples: (top) $RE = La$, $TM = Ag$ and Au, $Tt = Si$, Ge, and Sn; (bottom) $RE = Y$, $TM = Cr$ - Cu. Patterns in black and grey are for reference. Pattern for $Y_6Cr_xSi_2S_{14}$ is taken from ICSD 626629. Experimental conditions are given in Table S3A.
Figure S3F. PXRD patterns for La₆(TM)₀.₆₇Si₂S₁₄ prepared from elements and binary sulfides and compared to the PXRD pattern for synthesis using a metal silicide precursor. (Top) TM = Ti; (bottom) TM = Rh. Patterns in black are calculated from single crystal data. Reaction conditions such as sample scale, ampoule size, ramping and annealing time, and temperature are identical for all shown samples.
Figure S4. Optical images and band gap values (eV) for La₆(TM)ₓ(Tt)₂S₁₄ (TM = group 7 - 11; Tt = Si, Ge, and Sn; x = 2 – 0.5) samples. Only cases where single-phase bulk samples could be acquired were measured. For each metal, the first column is data for Si, second for Ge, and third for Sn. NSP = not a single-phase sample; No phase = quaternary phase formation was not observed. Extensive temperature optimization was not performed for Sn-containing samples which require lower synthetic temperatures than Si- and Ge-containing analogues.
Figure S5. Tauc plots for select compositions for La₆(TM)₂S₁₄ (TM = Fe, Co, Ru, Rh, Ir, Pt, Cu, Ag and Au; x = 2 – 0.5) plotted as direct band gap materials.
Figure S6. SEM BSE images of select crystals of La₆(TM)₃S₁₄ (TM = Ni, Cu, Pd and Au; x = 2 – 0.5). The magnifications are 50x, 150x, 150x and 80x, for Ni, Cu, Pd and Au, respectively.
Figure S7. Optical microscope images of select crystals for La₆(TM)ₓ(Tt)₂S₁₄ (TM = Sc, Ti, Ni, Co, Pd and Au; Tt = Si and Ge; x = 2 – 0.5). Each cell on the graph paper is 1×1 mm.
Figure S8. EPR data for La₆(TM)₀.₆₇Si₂S₁₄ (TM = Ti and Cr), showing Ti³⁺ and Cr³⁺ with g values of 2.01246 and 1.99336, respectively. La₆V₀.₇₇Si₂S₁₄ sample did not produce a good-intensity signal down to 6 K.
Figure S9. Top: Magnetic data (χ, χ^{-1} and χ^*T) for La$_6$V$_{0.77}$Si$_{2}$S$_{14}$; Bottom: isothermal moment versus field at 2 K for La$_6$V$_{0.77}$Si$_{2}$S$_{14}$ and La$_6$Ir$_{0.67}$Si$_{2}$S$_{14}$ (bottom).
References

(1) Sheldrick, G. M. A Short History of SHELX. *Acta Crystallogr A Found Crystallogr* **2008**, *64* (1), 112–122. https://doi.org/10.1107/S0108767307043930.

(2) Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR Spectra: Modelling 1D and 2D Solid-State NMR Spectra. *Magn. Reson. Chem.* **2002**, *40* (1), 70–76. https://doi.org/10.1002/mrc.984.

(3) Massiot, D.; Hiet, J.; Pellerin, N.; Fayon, F.; Deschamps, M.; Steuernagel, S.; Grandinetti, P. J. Two-Dimensional One Pulse MAS of Half-Integer Quadrupolar Nuclei. *Journal of Magnetic Resonance* **2006**, *181* (2), 310–315. https://doi.org/10.1016/j.jmr.2006.05.007.

(4) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. *Zeitschrift für Kristallographie* **2005**, *220*, 567–570.

(5) Pickard, C. J.; Mauri, F. All-Electron Magnetic Response with Pseudopotentials: NMR Chemical Shifts. *Phys. Rev. B* **2001**, *63* (24), 245101. https://doi.org/10.1103/PhysRevB.63.245101.

(6) Yates, J. R.; Pickard, C. J.; Mauri, F. Calculation of NMR Chemical Shifts for Extended Systems Using Ultrasoft Pseudopotentials. *Phys. Rev. B* **2007**, *76* (2), 024401. https://doi.org/10.1103/PhysRevB.76.024401.

(7) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77* (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.

(8) Eckert, H.; Zhang, Z.; Kennedy, J. H. Glass Formation in Non-Oxide Chalcogenide Systems. Structural Elucidation of Li$_2$S-SiS$_2$-LiI Solid Electrolytes by Quantitative 29Si, 6Li and 7Li High Resolution Solid State NMR Methods. *Journal of Non-Crystalline Solids* **1989**, *107*, 271–282.

(9) Evers, J.; Mayer, P.; Möckl, L.; Oehlinger, G.; Köppe, R.; Schnöckel, H. Two High-Pressure Phases of SiS$_2$ as Missing Links between the Extremes of Only Edge-Sharing and Only Corner-Sharing Tetrahedra. *Inorg. Chem.* **2015**, *54* (4), 1240–1253. https://doi.org/10.1021/ic501825r.

(10) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallographica Section A Foundations of Crystallography* **1976**, *A32*, 751–767. https://doi.org/10.1107/S0567739476001551.

(11) Galeev, A. A.; Khasanova, N. M.; Rudowicz, C.; Shakurov, G. S.; Bykov, A. B.; Bulka, G. R.; Nizamutdinov, N. M.; Vinokurov, V. M. Multifrequency EPR Study of Cr$^{3+}$ Ions in LiScGeO$_4$. *J. Phys.: Condens. Matter* **2000**, *12* (20), 4465–4473. https://doi.org/10.1088/0953-8984/12/20/302.

(12) Lombard, P.; Ollier, N.; Boizot, B. EPR Study of Ti3+ Ions Formed under Beta Irradiation in Silicate Glasses. *Journal of Non-Crystalline Solids* **2011**, *357* (7), 1685–1689. https://doi.org/10.1016/j.jnoncrysol.2010.12.015.