BIM Technology Based on the Cost of Landscape Engineering

Zheng Wang1,*, Cheng Ma1
1Shandong Youth University of Political Science, School of Information Engineering, Jinan, Shandong, China, 250100

*Corresponding author e-mail: wangzheng@sdyu.edu.cn

Abstract. With the development of science and technology, the number of robots manufactured is increasing day by day. Exploration into uncharted territory also arises, which poses great challenges for contemporary robot creation. Ordinary robots are not yet able to give people much of the help they need. In this paper, the dynamic direction of the robot through multiple linear reinforcement learning and the robot based on this reinforcement learning will help people to solve the problems in work will be discussed from the current situation, future trend and many different perspectives of the development of robots in China. Secondly, also put forward the need to prevent hidden trouble both solutions.

Keywords: Diversity, Linear Learning, Reinforcement Learning, Dynamic Path

1. Introduction
In the middle of the 20th century, the rapid development of computer technology and automation technology made robotics research possible. In China, the beginning of the study of robot technology is in the 1980s, when a large number of production to promote the development of automation technology, CNC machine tools emerged at the historic moment, and CNC machine tools related control, mechanical parts research for the development of robots laid a foundation. The following aspects (as shown in Figure 1) are used to plan the dynamic path of the robot [1]. Dynamic paths are very different from static paths. A static path is a pre-planned route that goes all the way to the end, stopping if there is an unknown accident along the way. Dynamic paths differ in that they have alternative ways to achieve their goals in the face of unknown contingencies.

![Figure 1. Three directions of robot path planning](image)

2. Domestic robot development status and future development trend
The range of robots is too broad, mainly divided into working, learning and life of the machine.
2.1. Work class
This kind of robot is mainly distributed in the former manual labor positions, which not only saves the cost of wages (i.e. reduces the cost of completing the same task), but also improves the work efficiency. The disadvantage is that the machine has no learning function and has problems in distinguishing some things. The robots of the future will be able to distinguish things more easily, and will be able to distinguish people or things by many different characteristics, rather than a single point of differentiation.

2.2. Them
There are many kinds of electronic machines for children's enlightenment, which are equivalent to robots in nature [2]. These electronic machines have many functions under the condition of electricity -- telling stories, listening to children's songs, transforming and so on. There are also machines suitable for middle school, high school or adults, such as Xiaoai, Tmall genie and so on. Then these learning robots can help children learn in a healthy environment.

2.3. Lifestyle
Some households now have a variety of smart homes, including voice-controlled ones, also known as robots, that have their own intelligent systems that respond to people's needs.

The above three methods can also meet some requirements of people at present, but when robots have multiple linear reinforcement learning, it will inevitably enter a more advanced era.

3. The following three perspectives talk about the help to people after multiple linear reinforcement learning
Working robots have more and more diverse jobs and more and more workload. Office workers have no more free time to go shopping, and young people are shopping on the Internet more and more frequently. The decline in manual Courier sorting contradicts the large volume of packages. Therefore, the following robot learning work in logistics company gives an example to illustrate how it learns and what kind of dynamic path.

The use of robots in real logistics companies is to learn the route according to the address, sorting, distribution points have corresponding codes, according to the address of the delivery, many times is the same point code to deliver, learning success. According to the address to learn the delivery route and sorting is linear learning, repeated learning this will achieve the effect of reinforcement [3-4]. Diversification, as the name implies, is a variety of ways to learn, can learn to classify different items in the robot express sorting, so that fragile items or other liquid items can also be classified and processed. Robot express delivery has not yet been implemented, or manual delivery. I think the robot needs too much attention in the delivery process, even though it has learned the delivery route, it may not be able to safely deliver.

In short, the multiple linear reinforcement learning of logistics robots can learn more about sorting destinations and goods classification, and the parcels delivered by the robot can also be divided. Under the multiple learning classification, reinforcement learning is no longer a problem. Its realization path lies in a large number of Courier sorting and distribution network classification.

With the progress of The Times and various innovations of machines, I learned about the bad situation of a primary school student. Machine technology is keeping pace with the pace of society, but some primary school students in order not to think, some simple arithmetic problems are also through voice control to let the robot help solve [5]. The reason intelligent robots can solve such simple arithmetic problems is because they have learned the operational logic during creation. To solve this problem, a learning robot would need to learn reinforcement in many ways -- to be able to tell which ones are unsolvable while learning various kinds of logic. Repeat the request multiple times, and the chances of machine learning success increase. Second, such machines will have a wider range of knowledge under multiple linear reinforcement learning. It is believed that such robots will provide corresponding help to students in their studies.
The types of robots used in life are also diverse. Sweeping robot now has, is the development trend of the future trend in processing of all the housework, like cooking, child care, etc., this doesn't seem that there may be some practical now, but think carefully, and machine of this sort of thing is a strong learning ability and memory, as long as give it in learning the style of this aspect to continuous, enough, enough With many times of learning and memorizing, one must be able to learn successfully and put it to work.

4. Need to pay attention to the hidden dangers and solutions

Robots are really intelligent electrical appliances [6]. There are many kinds of accidental injuries caused by robots, such as:

On September 6, 1978, a technician was accidentally injured by a robot in a German automobile company. The technician, a Volkswagen contractor, was working with colleagues to place the robot, the first such incident in the world.

On July 4, 1981, a repair worker in a factory in Japan accidentally touched the robot start button, immediately the robot work, workers as a gear clamp, on the processing table. This is another tragedy.

Happened in 1985, the former Soviet union a intelligent robot players "killing", at that time, all the Soviet chess champion and robot chess wins three innings, the machine internal program suddenly, originally is not very perfect system into a tailspin, seemed to have the sentiment, only humans have a sudden release the current into the metal board will be the master down [7-8]. There is a Bayesian formula for artificial intelligence (e.g. Formula 1).

\[
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
\]

1. A robot may not harm a human being or do nothing to see a human being come to harm;
2. Subject to the first law, he must absolutely obey all orders given by man;
3. A robot must try to protect itself as long as it does not violate the first and second laws.

According to the investigation, these accidents are caused by the ignorance of the robot can not distinguish between human and industrial products, accidental errors. There is also a kind of robot because of the interference of electromagnetic wave, so that the good program has been written disorder, so that the robot out of control and accident. Some people think that the robot is too intelligent, just have the emotions and self-awareness, in a moment of impulse to cause harm to human beings. Elon Marx said: "We need to be very wary of ARTIFICIAL intelligence, they are more dangerous than nuclear weapons!".

Robot attacks have been particularly rare since the 1990s. Because of the progress of technology and the improvement of people's safety awareness, the chance of accidents has been greatly reduced.

However, historical accidents will not disappear, and pay attention to many potential dangers. Although the accidents mentioned above are not from China, we must always keep a heart of risk estimation, and pay attention to the reasonable use of the robot when using, so as not to cause any accidents due to misoperation [9-10]. To prevent robot humanization, once found that the robot has human thinking must be returned to the factory in time. When encountering some other obstacles without much impact or some part of the machine is out of control, the robot can adjust and try to return to a normal state by learning some abilities.

As individuals, there are several steps we can take (see Figure 2) to become masters of new technology, rather than being manipulated by it.
5. Conclusion
In general, this paper gives a reasonable plan for the robot's future work path, and expounds the main uses of the robot under the system's multiple linear reinforcement learning from three perspectives: work, study and life. Work robots do a lot of the sorting and most of the manual work. The post of design thinking is still held by human beings, and robots are designed to better help human beings rather than replace them. Learning robot although can not completely promote the progress of education in China, but it can play a supporting role in the learning process of children. And that's what these robots are for after multiple linear reinforcement learning. To say nothing of life, a clean and tidy house can also reduce a lot of unnecessary worries after people come home from work after a busy day. In the future, the role of robots in family life may be slightly higher than the first two, with more kinds and heavier tasks. Robots based on multiple linear reinforcement learning will play its biggest role in any aspect and contribute to social progress.

References
[1] Xu Xiaosu, Yuan Jie. Mobile Robot Path Planning Method Based on Improved Reinforcement Learning [J]. Journal of Chinese Inertial Technology, 2019, (3).
[2] Dong Yao, Ge Yingying, Guo Hongyong, et al. Path Planning for Mobile Robot Based on Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2019, 55 (13): 21-25 + 163.
[3] Xiong Juntao, Li Zhongxing, Chen Shumian, Zheng Zhenhui. Obstacle Avoidance Planning for Virtual Robot Picking Path Based on Deep Reinforcement Learning. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (S2): 8-17.
[4] Wu Yunxiong, Zeng Bi. Trajectory Tracking and Dynamic Obstacle Avoidance for Mobile Robots Based on Deep Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2019, 36 (01): 46-54.
[5] Chen Shuang, Li Long, Luo Hainan. Research on Reinforcement Learning in Service Robot Navigation Based on Neural Network. Modern Computers (Professional Edition), 2020, 000 (012): 62-67.
[6] Zhang Fuhai, Li Ning, Yuan Rupeng, et al. Robot Path Planning Algorithm Based on Reinforcement Learning. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2018, 46 (12): 65-70.
[7] Li Zijian, Xu Ya. Application of Reinforcement Learning Algorithm in Mobile Robot Path Planning [J]. Digital Design (PART 1), 2019, 000 (011): 205-206.
[8] Fu Jian, Teng Xiang, Cao Ce, et al. Robot Intelligent Trajectory Planning Based on KCCA Inference Reinforcement Learning [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, (11).
[9] Fang Yongchun, Zhu Wei, Guo Xian. Pattern Recognition and Artificial Intelligence, 2019, 32 (001): 1-9.

[10] Jiang Qizhou, Zeng Bi. Research on Navigation Strategy of Mobile Robot Based on Deep Reinforcement Learning [J]. Computer Measurement and Control, 2019, (8).