WIENER’S LEMMA FOR INFINITE MATRICES OF
GOHBERG-BASKAKOV-SJÖSTRAND CLASS

Chang Eon Shin

Abstract. In this paper, we introduce a quasi-Banach algebra of infinite matrices, which is inverse-closed in the Banach algebra $B(ℓ^2)$ of all bounded operators on $ℓ^2$.

1. Introduction

N. Wiener showed that if f is a periodic function with an absolutely convergent Fourier series and it vanishes nowhere on the real line, then $1/f$ has an absolutely convergent Fourier series too [23]. This is now called the classical Wiener’s lemma.

Define the Gohberg-Baskakov-Sjöstrand class $C(\mathbb{Z}^d, \mathbb{Z}^d)$ by

$$C(\mathbb{Z}^d, \mathbb{Z}^d) := \left\{ \left(a(i,j) \right)_{i,j \in \mathbb{Z}^d} : \sum_{k \in \mathbb{Z}^d} \left(\sup_{i-j=k} |a(i,j)| \right) < \infty \right\},$$

and the Wiener class $W(\mathbb{Z}^d, \mathbb{Z}^d)$ by

$$W(\mathbb{Z}^d, \mathbb{Z}^d) := \left\{ (a(i,j))_{i,j \in \mathbb{Z}^d} \in C(\mathbb{Z}^d, \mathbb{Z}^d) : a(i+k, j+k) = a(i,j) \text{ for all } i, j, k \in \mathbb{Z}^d \right\}.$$

Then the classical Wiener’s lemma can be reformulated as follows: $W(\mathbb{Z}^d, \mathbb{Z}^d)$ is an inverse-closed subalgebra of $B(ℓ^2)$, the space of all bounded operators on the space $ℓ^2$ of square-summable sequences. Here a (quasi-)Banach algebra \mathbb{B}, which is a subalgebra of \mathbb{A}, is called inverse-closed if any $A \in \mathbb{B}$ with the inverse $A^{-1} \in \mathbb{A}$ implies $A^{-1} \in \mathbb{B}$.

Wiener’s lemma has various extensions and applications. Define Gröchenig-Schur class $S(\mathbb{Z}^d, \mathbb{Z}^d)$ by

$$S(\mathbb{Z}^d, \mathbb{Z}^d) := \left\{ (a(i,j))_{i,j \in \mathbb{Z}^d} : \sum_{k \in \mathbb{Z}^d} \left(\sup_{i-j=k} |a(i,j)| \right) < \infty \right\}.$$
\begin{equation}
\max \left(\sup_{i \in \mathbb{Z}^d} \sum_{j \in \mathbb{Z}^d} |a(i,j)|, \sup_{j \in \mathbb{Z}^d} \sum_{i \in \mathbb{Z}^d} |a(i,j)| \right) < \infty,
\end{equation}

and the Beurling class \(\mathcal{B}(\mathbb{Z}^d, \mathbb{Z}^d) \) by
\begin{equation}
\mathcal{B}(\mathbb{Z}^d, \mathbb{Z}^d) := \left\{ \left(a(i,j) \right)_{i,j \in \mathbb{Z}^d} : \sum_{k \in \mathbb{Z}^d} \left(\sup_{|i-j| \geq |k|} |a(i,j)| \right) < \infty \right\},
\end{equation}
where we set \(|x| = \max(|x_1|, \ldots, |x_d|)\) for \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d\). The Gröchenig-Schur class is not inverse-closed in \(\mathcal{B}(\ell^2) \) but the weighted Gröchenig-Schur class is when the weight satisfies the GRS-condition \([2, 6, 7, 9, 17, 19, 22]\). The Gohberg-Baskakov-Sjöstrand class \(\mathcal{C}(\mathbb{Z}^d, \mathbb{Z}^d) \) and the Beurling class \(\mathcal{B}(\mathbb{Z}^d, \mathbb{Z}^d) \) are inverse-closed in \(\mathcal{B}(\ell^2) \) \([3, 19, 20]\). The inverse-closed property has important applications in dual wavelet frames, dual Gabor frames, and algebra of pseudo-differential operators \([1, 5, 8, 10, 12, 13, 18, 21]\). The reader may refer to \([6, 11, 16]\) and references therein for historical remarks, recent advances and applications.

For \(0 < q \leq 1\) and a weight \(w\), Motee and Sun considered the Gröchenig-Schur class \(S_{q,w}(G) \) on a graph \(G\),
\begin{equation}
S_{q,w}(G) = \{ A = (a(i,j))_{i,j \in G} : \|A\|_{S_{q,w}} < \infty \},
\end{equation}
where
\begin{equation}
\|A\|_{S_{q,w}} := \max \left\{ \left(\sup_{i \in G} \sum_{j \in G} |(a(i,j))^q w(i,j)^q \right)^{1/q}, \right.
\end{equation}
\begin{equation}
\left. \left(\sup_{j \in G} \sum_{i \in G} |(a(i,j))^q w(i,j)^q \right)^{1/q} \right\}.
\end{equation}
The above class \(S_{q,w}(G) \) of matrices catches sparsity and localization of infinite matrices simultaneously. It does not form a Banach algebra, but it is a quasi-Banach algebra. More importantly, it is an inverse-closed subalgebra of \(\mathcal{B}(\ell^2) \) under proper assumption on the weight \(w\).

In this paper, we consider a general index set \(\Lambda \subset \mathbb{R}^d \) satisfying
\begin{equation}
\alpha = \sup_{k \in \mathbb{Z}^d} \sum_{\lambda \in \Lambda} \chi_{k+[-2,2]^d}(\lambda) < \infty.
\end{equation}
Unlike the index set \(\mathbb{Z}^d \) in \((1.1)\), our index set \(\Lambda \) may not form a group. The prime models are paraboloids
\[(x, y, z) : z = ax^2 + by^2, x, y \in \mathbb{Z}\]
and elliptical hyperboloids
\[(x, y, z) : z^2 = ax^2 + by^2, x, y \in \mathbb{Z},\]
where \(a, b > 0\). For \(0 < q \leq 1\) and a weight \(w\), we define the Gohberg-Baskakov-Sjöstrand class \(\mathcal{C}_{q,w} \), GBS class for short, on \(\Lambda \) by
\begin{equation}
\mathcal{C}_{q,w} = \{ A = (a(i,j))_{i,j \in \Lambda} : \|A\|_{\mathcal{C}_{q,w}} < \infty \},
\end{equation}
In this paper, we prove that $C_{q,w}, 0 < q \leq 1$, are inverse-closed quasi-Banach algebras of $B(\ell^2)$ under proper hypotheses on the weight w.

2. Quasi-Banach algebras

Let $\Lambda \subset \mathbb{R}^d$ satisfy (1.5). Then for any integer k

\[(2.1) \quad \max \left\{ \sup_{\lambda' \in \Lambda} \chi_{k+(-1,1)}(\lambda - \lambda'), \sup_{\lambda \in \Lambda} \sum_{\lambda' \in \Lambda} \chi_{k+(-1,1)}(\lambda - \lambda') \right\} \leq \alpha.\]

We say that w is a weight if

\[(2.2) \quad w(\lambda, \lambda') \geq 1 \quad \text{for any } \lambda, \lambda' \in \Lambda,\]

\[(2.3) \quad w(\lambda, \lambda') = w(\lambda', \lambda) \quad \text{for any } \lambda, \lambda' \in \Lambda,\]

and

\[(2.4) \quad \sup_{\lambda \in \Lambda} w(\lambda, \lambda) < \infty.\]

The Gohberg-Baskakov-Sjöstrand class $C_{q,w}$ of infinite matrices has the following basic properties.

Proposition 2.1. Let $0 < q \leq 1$ and w be a weight.

(i) If $A \in C_{q,w}$, then $cA \in C_{q,w}$ for any $c \in \mathbb{R}$ and $\|cA\|_{C_{q,w}} = |c|\|A\|_{C_{q,w}}$.

(ii) If $A \in C_{q,w}$, then $\|A\|_{B(\ell^2)} \leq \|A\|_{C_{q,w}}$, so $A \in B(\ell^2)$.

(iii) For $A, B \in C_{q,w}$, $\|A + B\|_{C_{q,w}}^q \leq \|A\|_{C_{q,w}}^q + \|B\|_{C_{q,w}}^q$, so $A + B \in C_{q,w}$.

(iv) If there exists a positive constant C_0 such that

\[(2.5) \quad w(\lambda, \lambda') \leq C_0 w(\tilde{\lambda}, \tilde{\lambda})w(\lambda', \lambda') \quad \text{for all } \lambda, \lambda, \tilde{\lambda} \in \Lambda,\]

then for any $A, B \in C_{q,w}$

\[(2.6) \quad \|AB\|_{C_{q,w}}^q \leq 2^d C_0 \|A\|_{C_{q,w}}^{q/2} \|B\|_{C_{q,w}}^{q/2}.\]

Proof. (i) Trivial.

(ii) It is well known that

$$\|A\|_{B(\ell^2)} \leq \max \left(\sup_{\lambda \in \Lambda} \sum_{\lambda' \in \Lambda} |a(\lambda, \lambda')|, \sup_{\lambda' \in \Lambda} \sum_{\lambda \in \Lambda} |a(\lambda, \lambda')| \right).$$

Since $(a + b)^q \leq a^q + b^q$ for any $a, b \geq 0$, and $w(\lambda, \lambda') \geq 1$ for any $\lambda, \lambda' \in \Lambda$, we have that

$$\sup_{\lambda \in \Lambda} \sum_{\lambda' \in \Lambda} |a(\lambda, \lambda')| \leq \left(\alpha \sum_{k \in \mathbb{Z}^d} \sup_{\lambda, \lambda' \in \Lambda} |a(\lambda, \lambda')|^q \chi_{k+[0,1]^d}(\lambda - \lambda') \right)^{1/q}$$

$$\leq \left(\alpha \sum_{k \in \mathbb{Z}^d} \sup_{\lambda, \lambda' \in \Lambda} |a(\lambda, \lambda')|^q w(\lambda, \lambda') \chi_{k+[0,1]^d}(\lambda - \lambda') \right)^{1/q}$$
Similarly
\[
\sup_{\lambda \in \Lambda} \sum_{\lambda' \in \Lambda} |a(\lambda, \lambda')| \leq \|A\|_{C_{q,w}}.
\]

(iii) For \(A = (a(\lambda, \lambda'))_{\lambda, \lambda' \in \Lambda}\) and \(B = (b(\lambda, \lambda'))_{\lambda, \lambda' \in \Lambda}\),
\[
\|A + B\|_{C_{q,w}}^q = \alpha \sum_{k \in \mathbb{Z}^d} \sup_{\lambda, \lambda' \in \Lambda} |a(\lambda, \lambda') + b(\lambda, \lambda')|^q w(\lambda, \lambda') \chi_{k + \{0,1\}^d}(\lambda - \lambda')
\leq \alpha \sum_{k \in \mathbb{Z}^d} \sup_{\lambda, \lambda' \in \Lambda} |a(\lambda, \lambda')|^q w(\lambda, \lambda') \chi_{k + \{0,1\}^d}(\lambda - \lambda')
+ \alpha \sum_{k \in \mathbb{Z}^d} \sup_{\lambda, \lambda' \in \Lambda} |b(\lambda, \lambda')|^q w(\lambda, \lambda') \chi_{k + \{0,1\}^d}(\lambda - \lambda')
= \|A\|_{C_{q,w}}^q + \|B\|_{C_{q,w}}^q.
\]

(iv) Let \(A = (a(\lambda, \lambda'))_{\lambda, \lambda' \in \Lambda} \in C_{q,w}, B = (b(\lambda, \lambda'))_{\lambda, \lambda' \in \Lambda} \in C_{q,w}\) and \(C = AB\). Then
\[
C = \left(\sum_{\lambda \in \Lambda} a(\lambda, \tilde{\lambda})b(\tilde{\lambda}, \lambda') \right)_{\lambda, \lambda' \in \Lambda}.
\]

Observe that if \(\lambda - \lambda' \in k + \{0,1\}^d\) and \(\lambda - \tilde{\lambda} \in \ell + \{0,1\}^d\) for some \(k, \ell \in \mathbb{Z}^d\),
then \(\lambda - \lambda' \in k - \ell + (-1,1)^d\). Then we have from (2.1) that
\[
\|C\|_{C_{q,w}}^q = \alpha \sum_{k \in \mathbb{Z}^d} \sup_{\lambda, \lambda' \in \Lambda} \left| \sum_{\lambda \in \Lambda} a(\lambda, \tilde{\lambda})b(\tilde{\lambda}, \lambda') \right|^q w(\lambda, \lambda') \chi_{k + \{0,1\}^d}(\lambda - \lambda')
\leq C_0^q \alpha^2 \sum_{k \in \mathbb{Z}^d} \sum_{\lambda, \lambda' \in \Lambda} (\sup_{\lambda, \lambda' \in \Lambda} \left| a(\lambda, \tilde{\lambda}) \right|^q w(\lambda, \tilde{\lambda}) \chi_{k + \{0,1\}^d}(\lambda - \tilde{\lambda})
\times (\sup_{\lambda, \lambda' \in \Lambda} \left| b(\tilde{\lambda}, \lambda') \right|^q w(\tilde{\lambda}, \lambda') \chi_{k - \ell + (-1,1)^d}(\tilde{\lambda} - \lambda'))
\leq 2^d C_0^q \|A\|_{C_{q,w}}^q \|B\|_{C_{q,w}}^q.
\]
This proves the conclusion (iv). \(\square\)

By Proposition 2.1, there exists a positive constant \(K\) such that
\[
\|A + B\|_{C_{q,w}} \leq K(\|A\|_{C_{q,w}} + \|B\|_{C_{q,w}}) \quad \text{for all } A, B \in C_{q,w}.
\]
So \(\|\cdot\|_{C_{q,w}}\) is a quasi-norm [4, 14]. Therefore \((C_{q,w}, \|\cdot\|_{C_{q,w}})\) forms a quasi-Banach algebra by Proposition 2.1.

Corollary 2.2. Let \(0 \leq q \leq 1\). Assume that \(w\) is a weight satisfying the submultiplicative condition (2.5). Then \(C_{q,w}\) is a quasi-Banach algebra.
3. Wiener’s lemma

In this section, we will show that $C_{q,w}$ is an inverse-closed subalgebra of $B(ℓ^2)$. To do it, we first establish paracompact estimate for matrices in $C_{q,w}$.

Let w be a weight. A weight u is called a companion matrix of w if

$$w(\lambda, \lambda') = w(\lambda, \tilde{\lambda})u(\tilde{\lambda}, \lambda') + u(\lambda, \tilde{\lambda})w(\tilde{\lambda}, \lambda') \quad \text{for all } \lambda, \lambda', \tilde{\lambda} \in \Lambda.$$ \hfill (3.1)

Proposition 3.1. Let $0 < q < 1$, w be a weight, and u be a companion weight of w. We assume that there exist a positive constant C_1 and $0 < \theta < 1$ such that

$$\inf_{t \geq 0} \left\{ \alpha \sum_{|k| \leq t+1, \lambda, \lambda' \in \Lambda} \sup_{\tilde{\lambda}} u(\tilde{\lambda} - \lambda')\chi_{k+[0,1)^q}(\tilde{\lambda} - \lambda') + t \sup_{|\tilde{\lambda} - \lambda'| > t} u(\tilde{\lambda}, \lambda') \right\} \leq C_1 t^\theta$$

for all $t \geq 1$. Then there exists a positive constant C_2 such that for any $A, B \in C_{q,w}$

$$\|AB\|_{C_{q,w}}^q \leq C_2\|A\|_{C_{q,w}}^q\|B\|_{C_{q,w}}^q \left(\left(\frac{\|A\|_{B(ℓ^2)}}{\|A\|_{C_{q,w}}} \right)^{q(1-\theta)} + \left(\frac{\|B\|_{B(ℓ^2)}}{\|B\|_{C_{q,w}}} \right)^{q(1-\theta)} \right).$$

Proof. Take $A = (a(\lambda, \lambda'))_{\lambda, \lambda' \in \Lambda}$ and $B = (b(\lambda, \lambda'))_{\lambda, \lambda' \in \Lambda}$. Then

$$AB = \left(\sum_{\lambda \in \Lambda} a(\lambda, \tilde{\lambda})b(\tilde{\lambda}, \lambda') \right)_{\lambda, \lambda' \in \Lambda}.$$

We obtain from (3.1) that

$$\|AB\|_{C_{q,w}}^q \leq \alpha \sum_{k \in \mathbb{Z}^d, \lambda, \lambda' \in \Lambda} \sup_{\tilde{\lambda} \in \Lambda} \sum_{\lambda \in \Lambda} |a(\lambda, \tilde{\lambda})|^q |b(\tilde{\lambda}, \lambda')|^q w(\lambda, \lambda')\chi_{k+[0,1)^q}(\lambda - \lambda')$$

$$\leq \alpha \sum_{k \in \mathbb{Z}^d} \sup_{\tilde{\lambda}} \left(\sum_{\lambda \in \Lambda} |a(\lambda, \tilde{\lambda})|^q w(\lambda, \tilde{\lambda}) |b(\tilde{\lambda}, \lambda')|^q u(\tilde{\lambda}, \lambda')\chi_{k+[0,1)^q}(\lambda - \lambda') \right) + \sum_{\lambda \in \Lambda} |a(\lambda, \tilde{\lambda})|^q u(\tilde{\lambda}, \lambda') |b(\tilde{\lambda}, \lambda')|^q w(\lambda, \lambda')\chi_{k+[0,1)^q}(\lambda - \lambda')$$

$$=: I_1 + I_2.$$

Let $r \geq 0$. Since for any $\lambda, \lambda' \in \Lambda$, $|b(\tilde{\lambda}, \lambda')| \leq \|B\|_{B(ℓ^2)}$, we have that

$$I_1 \leq \alpha \|B\|_{B(ℓ^2)}^q \sum_{k \in \mathbb{Z}^d} \sup_{\tilde{\lambda}} \left(\sum_{\lambda \in \Lambda} |a(\lambda, \tilde{\lambda})|^q w(\lambda, \tilde{\lambda}) u(\tilde{\lambda}, \lambda')\chi_{k+[0,1)^q}(\lambda - \lambda') \right)$$

$$+ \alpha \sum_{k \in \mathbb{Z}^d} \sup_{\tilde{\lambda}} \left(\sum_{|\tilde{\lambda} - \lambda'| > r} |a(\lambda, \tilde{\lambda})|^q w(\lambda, \tilde{\lambda}) |b(\tilde{\lambda}, \lambda')|^q u(\tilde{\lambda}, \lambda')\chi_{k+[0,1)^q}(\lambda - \lambda') \right)$$

$$\leq \alpha^2 \|B\|_{B(ℓ^2)}^q \sum_{k \in \mathbb{Z}^d} \sum_{\tilde{\lambda}, \lambda \in \Lambda} |a(\lambda, \tilde{\lambda})|^q w(\lambda, \tilde{\lambda})\chi_{k-r+(-1,1)^q}(\lambda - \tilde{\lambda}).$$
This together with (3.2) implies that

\begin{align*}
I_1 & \leq 2^d \|A\|_{C_{q,w}}^q \|B\|_{B(L^2)}^q \sup_{|\tilde{\lambda} - \lambda' - \tau| \leq \tau} u(\tilde{\lambda}, \lambda') + (\tilde{\lambda} - \lambda')^{q(1 - \theta)} \\
I_2 & \leq 2^d \|A\|_{C_{q,w}}^q \|B\|_{B(L^2)}^q \sup_{|\tilde{\lambda} - \lambda' - \tau| > \tau} u(\tilde{\lambda}, \lambda') + (\tilde{\lambda} - \lambda')^{q(1 - \theta)} .
\end{align*}

Combining (3.4), (3.5) and (3.6) proves (3.3).

We remark that the assumption (3.2) on a weight u is stronger than the submultiplicative condition (2.5). In fact, putting $\tau = 0$ and $t = 1$ in (3.2), we get

\begin{equation}
(3.7) \quad u(\lambda, \lambda') \leq C_1 w(\lambda, \lambda') \quad \text{for any } \lambda, \lambda' \in \Lambda.
\end{equation}

This together with (3.1) implies that

\begin{equation}
(3.8) \quad u(\lambda, \lambda') \leq 2C_1 w(\lambda, \tilde{\lambda}) w(\tilde{\lambda}, \lambda') \quad \text{for any } \lambda, \lambda', \tilde{\lambda} \in \Lambda,
\end{equation}

and hence (2.5) holds with $C_0' = 2C_1$. Therefore

\begin{equation}
(3.9) \quad \|AB\|_{C_{q,w}}^q \leq 2^{d+1} C_1 \|A\|_{C_{q,w}}^q \|B\|_{C_{q,w}}^q \quad \text{for all } A, B \in C_{q,w}
\end{equation}

by Proposition 2.1.

To prove the inverse-closedness of $C_{q,w}$ in $B(L^2)$, we need estimate powers of a matrix A in $C_{q,w}$.
Proposition 3.2. Under the assumptions of Proposition 3.1,
\[\|A^n\|_{C_{q,w}} \leq (2^{d+1}C_1C_2)\log_2 n \left(\frac{\|A\|_{C_{q,w}}}{\|A\|_{B(\ell^2)}} \right)^q \left(1 + \theta \right)^{n(1+\theta)} \|A\|_{B(\ell^2)}^{nq} \]
for all \(A \in C_{q,w} \) and integers \(n \geq 1 \).

Proof. Let \(A \in C_{q,w} \) and \(n \) be a positive integer. We write \(n = \sum_{j=0}^{N} \varepsilon_j 2^j \), where \(\varepsilon_N = 1 \) and \(\varepsilon_j \in \{0,1\} \). We put
\[n_\ell = \varepsilon_\ell + 2n_{\ell+1} \text{ and } n_N = \varepsilon_N \text{ for } \ell = 0, \ldots, N-1. \]
Without loss of generality, we assume that \(\|A\|_{B(\ell^2)} = 1 \), otherwise replace \(A \) by \(A/\|A\|_{B(\ell^2)} \). Then setting \(A = B \) in (3.3) gives
\[\|A^2\|_{C_{q,w}}^q \leq 2C_2 \|A\|_{C_{q,w}}^{q(1+\theta)} . \]
By (3.8), (3.10) and the observation that \(N \leq \log_2 n \), we have
\[\sum_{k=0}^{N} \varepsilon_k (1+\theta)^k \leq 1 + (1+\theta) + \cdots + (1+\theta)^N \leq \frac{1+\theta}{\theta} (1+\theta)^N, \]
and
\[\|A^n\|_{C_{q,w}}^q \leq 2^{d+1}C_1 \|A\|_{C_{q,w}}^{q_0} \|A\|_{C_{q,w}}^{2n_1} \|A\|_{C_{q,w}}^{(1+\theta)} \]
\[\leq 2^{d+1}C_1 (2C_2) \|A\|_{C_{q,w}}^{q_0+q_1(1+\theta)} \|A\|_{C_{q,w}}^{2n_2} \|A\|_{C_{q,w}}^{(1+\theta)^2} \]
\[\leq (2^{d+1}C_1)^2 (2C_2)^2 \|A\|_{C_{q,w}}^{q_0+q_1(1+\theta)} \|A\|_{C_{q,w}}^{2n_2} \|A\|_{C_{q,w}}^{(1+\theta)^2} \]
\[\cdots \]
\[\leq (2^{d+1}C_1)^N (2C_2)^N \|A\|_{C_{q,w}}^{q_0+q_1(1+\theta) + \cdots + q_N(1+\theta)^N} . \]
(3.11)
This proves (3.9).

Finally, we prove inverse-closedness of the subalgebra \(C_{q,w} \) in \(B(\ell^2) \).

Theorem 3.3. Let \(0 < q < 1 \). Under the assumptions of Proposition 3.1, the quasi-Banach algebra \(C_{q,w} \) is inverse-closed in \(B(\ell^2) \), that is, if \(A \in C_{q,w} \) and \(A^{-1} \in B(\ell^2) \), then \(A^{-1} \in C_{q,w} \).

Proof. Let \(A \in C_{q,w} \) and \(A^{-1} \in B(\ell^2) \). We put \(B = I - \|A\|_{C_{q,w}}^{-2} A^T A \). Then \(\|B\|_{B(\ell^2)} \leq 1 - \|A\|_{C_{q,w}}^{-2} \|A\|_{B(\ell^2)}^{-2} \leq r_0 \), where \(r_0 = 1 - \|A\|_{C_{q,w}}^{-2} \|A^{-1}\|_{B(\ell^2)}^{-2} \in [0,1) \). Since from (3.9) \(\lim_{n \to \infty} \|B^n\|_{C_{q,w}}^{q/n} \leq r_0^q < 1 \), \(\sum_{n=1}^{\infty} \|B^n\|_{C_{q,w}}^{q} < \infty \). Observing that \(A^{-1} = (A^T A)^{-1} A^T = \|A\|_{C_{q,w}}^{-2} (I - B)^{-1} A^T \), we have that
\[\|A^{-1}\|_{C_{q,w}}^{q} \leq \|A\|_{C_{q,w}}^{-q} (\|I\|_{C_{q,w}}^{q} + \sum_{n=1}^{\infty} \|B^n\|_{C_{q,w}}^{q}) < \infty, \]
and
where \(\| I \|_{\mathcal{C}_{q,w}} = \sup_{\lambda \in \Lambda} w(\lambda, \lambda) \). Hence \(A^{-1} \in \mathcal{C}_{q,w} \). \(\square \)

We conclude this section with remarks on polynomial weights and subexponential weights that satisfy \((3.1)\) and \((3.2)\).

Remark 3.4. For \(\alpha > 0 \), consider polynomial weights \(w_\alpha := (1 + |i - j|)^\alpha \), \(i, j \in \mathbb{Z}^d \).

The constant weight \(u_\alpha \) with \(u_\alpha(i, j) = 2^\alpha \) for any \(i, j \in \mathbb{Z}^d \) satisfies the companion weight condition \((3.1)\). Also,

\[
\begin{align*}
\inf_{\tau \geq 0} \left\{ \sum_{|k| \leq \tau + 1} \sup_{\lambda, \lambda' \in \Lambda} u(\lambda - \lambda') \chi_{k+[0,1]^d}(\lambda - \lambda') + t \sup_{|\lambda - \lambda'| > \tau} \frac{u(\lambda, \lambda')}{w(\lambda, \lambda')} \right\} \\
\leq \inf_{\tau \geq 0} \left\{ \sum_{|k| \leq \tau + 1} 2^\alpha + t \cdot 2^\alpha (1 + \tau)^{-\alpha} \right\} \\
\leq \inf_{\tau \geq 0} \left\{ 2^\alpha \left((2\tau + 3)^d + t(1 + \tau)^{-\alpha} \right) \right\} \\
\leq \inf_{\tau \geq 0} \left\{ 2^{\alpha + 2d} \left((\tau + 1)^d + t(1 + \tau)^{-\alpha} \right) \right\} \\
\leq 2^{\alpha + 2d + 1} \tau^d \text{ for all } \tau \geq 1,
\end{align*}
\]

where in the last inequality \(\tau \) satisfies the equation \((\tau + 1)^d = t(\tau + 1)^{-\alpha}\). Hence the polynomial weights \(w_\alpha, \alpha > 0 \), satisfy \((3.2)\).

Next, for \(D > 0 \) and \(0 < \delta < 1 \), we consider the subexponential weight \(e_{D,\delta} = (e^{D|\cdot|}\delta)_{i,j \in \mathbb{Z}^d} \). The weight \(e_{D(2^\delta - 1),\delta}(i, j) := u(i, j) = e^{D(2^\delta - 1)|i - j|}\delta \) satisfies the companion weight condition \((3.1)\). Choose \(C' > 1 \) and \(\tau' > 0 \) such that \(C'(2^\delta - 1) < 1 \) and \((\tau' + 1)^\delta < C' \) for \(\tau \geq \tau' \). If \(\tau' > (\log t/D)^{1/\delta} \), that is, \(t \) is bounded, then for \(0 < \theta < 1 \), there exists \(C_1 > 0 \) such that for \(1 \leq t < e^{D(\tau')^\delta} \),

\[
\begin{align*}
\inf_{\tau \geq 0} \left\{ \sum_{|k| \leq \tau + 1} \sup_{\lambda, \lambda' \in \Lambda} u(\lambda - \lambda') \chi_{k+[0,1]^d}(\lambda - \lambda') + t \sup_{|\lambda - \lambda'| > \tau} \frac{u(\lambda, \lambda')}{w(\lambda, \lambda')} \right\} \\
\leq \inf_{\tau \geq 0} \left\{ \sum_{|k| \leq \tau + 1} e^{D(2^\delta - 1)|k|\delta} + t \cdot e^{D(2^\delta - 2)|\tau|\delta} \right\} \leq C_1 t^\theta,
\end{align*}
\]

where we let \(\tau = 0 \) in the third equality.

For \(t \geq 1, \tau' \leq (\log t/D)^{1/\delta} \) and

\[
\begin{align*}
\inf_{\tau \geq 0} \left\{ \sum_{|k| \leq \tau + 1} \sup_{\lambda, \lambda' \in \Lambda} u(\lambda - \lambda') \chi_{k+[0,1]^d}(\lambda - \lambda') + t \sup_{|\lambda - \lambda'| > \tau} \frac{u(\lambda, \lambda')}{w(\lambda, \lambda')} \right\} \\
\leq \inf_{\tau \geq 0} \left\{ \sum_{|k| \leq \tau + 1} e^{D(2^\delta - 1)|k|\delta} + t \cdot e^{D(2^\delta - 2)|\tau|\delta} \right\} \\
\leq e^{C't(2^\delta - 1)|\tau|\delta}(2\tau + 3)^d + t^{2^\delta - 1} \\
\leq C'(2^\delta - 1)(2\tau + 3)^d + t^{2^\delta - 1} \\
\leq C'(2^\delta - 1)((2\tau + 3)^d + 1)
\end{align*}
\]
(3.14) \[= t^{C'(2^\delta - 1)} ((3 + 2 \left(\frac{\ln f}{\delta}\right)^{1/\delta})^\delta + 1), \]

where in the third inequality \(\tau \geq \tau' \) satisfies the equation \(\tau^\delta = \frac{\ln f}{\delta} \). Hence for any \(\theta \) with \(C'(2^\delta - 1) < \theta < 1 \) there exists \(C_1 > 0 \) such that (3.2) holds. Combining (3.12) and (3.14) proves (3.2).

Acknowledgement. The author is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2005402).

References

[1] R. Balan, P. G. Casazza, C. Heil and Z. Landau, Density, overcompleteness and localizations of frames I. theory, II. Gabor System, J. Fourier Anal. Appl. 12 (2006), no. 2, 105–143; no. 3, 309–344.
[2] B. A. Barnes, The spectrum of integral operators on Lebesgue spaces, J. Operator Theory 18 (1987), no. 1, 115–132.
[3] A. G. Baskakov, Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen 24 (1990), no. 3, 64–65; translation in Funct. Anal. Appl. 24 (1990), no. 3, 222–224.
[4] M. E. Gordji and M. B. Savadkouhi, Approximation of generalized homomorphisms in quasi-Banach algebras, An. St. Univ. Ovidius Constanta 17 (2009), 203–214.
[5] K. Gröchenig, Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam. 22 (2006), no. 2, 703–724.
[6] , Wiener’s lemma: theme and variations, an introduction to spectral invariance and its applications, In Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis, pp. 175–233, Edited by P. Massopust and B. Forster, Birkhauser, Boston 2010.
[7] K. Gröchenig and A. Klotz, Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices, Constr. Approx. 32 (2010), no. 3, 429–466.
[8] K. Gröchenig and M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17 (2003), 1–18.
[9] , Symmetry of matrix algebras and symbolic calculus for infinite matrices, Trans. Amer. Math. Soc. 358 (2006), 2695–2711.
[10] K. Gröchenig and T. Strohmer, Pseudo-differential operators on locally compact Abelian groups and Sjöstrand’s symbol class, J. Reine Angew. Math. 613 (2007), 121–146.
[11] I. Krishtal, Wiener’s lemma: pictures at exhibition, Rev. Un. Mat. Argentina 52 (2011), no. 2, 61–79.
[12] K. Krishtal and K. A. Okoujou, Invertibility of the Gabor frame operator on the Wiener amalgam space, J. Approx. Theory 153 (2008), no. 2, 212–224.
[13] V. G. Kurbatov, Algebras of difference and integral operators, Funkt. Anal. Prilozh. 24 (1990), no. 2, 87–88.
[14] N. Motee and Q. Sun, Sparsity measures for spatially decaying systems, arXiv: 1402.4148v3.
[15] C. E. Shin and Q. Sun, Stability of localized operators, J. Funct. Anal. 256 (2009), no. 8, 2417–2439.
[16] , Wiener’s lemma: localization and various approaches, Appl. Math. J. Chinese Univ. Ser. A 28 (2013), no. 4, 465–484.
[17] Q. Sun, Wiener’s lemma for infinite matrices with polynomial off-diagonal decay, C. Acad. Sci. Paris Ser I 340 (2005), no. 8, 567–570.
[18] , Nonuniform average sampling and reconstruction of signals with finite rate of innovation, SIAM J. Math. Anal. 38 (2006/07), no. 5, 1389–1422.
[19] Wiener’s lemma for infinite matrices, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3099–3123.

[20] Wiener’s lemma for infinite matrices II, Constr. Approx. 34 (2011), no. 2, 209–235.

[21] Frames in spaces with finite rate of innovations, Adv. Comput. Math. 28 (2008), no. 4, 301–329.

[22] R. Tessera, The Schur algebra is not spectral in $B(\ell^2)$, Monatsh. Math. 164 (2010), 115–118.

[23] N. Wiener, Tauberian theorem, Ann. of Math. 33 (1932), no. 1, 1–100.

Department of Mathematics
Sogang University
Seoul 121-742, Korea
E-mail address: shinc@sogang.ac.kr