Bariatric and Metabolic Endoscopy: A New Paradigm

Andrea Telesse, MD1, Vinay Sehgal, PhD1, Cormac G. Magee, MB, BChir, MA1–2, S. Naik, MD3, S.A. Alqahtani, MD4–5, L.B. Lovat, PhD1–6 and Rehan J. Haidry, MD, FRCP1

The prevalence of obesity, type 2 diabetes mellitus, and metabolic syndromes is increasing globally. Minimally invasive metabobariatric (MB) endoscopic therapies are adjunct treatments that can potentially bridge the gap between surgical interventions and medical therapy. A growing number of MB techniques are becoming available, allowing for more personalized and patient-targeted treatment options for specific disease states. MB techniques are less invasive than surgery and can precisely target different parts of the gastrointestinal tract that may be responsible for the pathophysiology of obesity and metabolic syndromes such as type 2 diabetes mellitus. These alternatives should be selected on an individualized patient basis to balance the expected clinical outcomes and desired anatomical targets with the level of invasiveness and degree of acceptable risk. Each MB intervention presents great flexibility allowing for a tailored intervention and different levels of patient engagement. Patient awareness and motivation are essential to avoid therapy withdrawal and failure. Differences between MB procedures in terms of weight loss and metabolic benefit will be discussed in this review, along with the insights on clinical decision-making processes to evaluate the potential of further evolution and growth of bariatric and metabolic endoscopy.

INTRODUCTION

The gastrointestinal (GI) tract modulates nutrient absorption and glycemic control, releasing several important regulatory hormones (Figure 1) (1). Interestingly, different hormonal responses have been observed after common bariatric surgeries such as Roux-en-Y gastric bypass and sleeve gastrectomy. Roux-en-Y gastric bypass which bypasses the duodenum results in higher levels of glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and fibroblast growth factor-19 (FGF-19) compared with sleeve gastrectomy, which demonstrates higher levels of gastrin (Figure 2) (2). Different hormonal responses support the role of the GI tract in glucose homeostasis and metabolic control. Metabolic changes after bariatric surgery persist over time, and they are not merely associated with weight loss (WL), suggesting additional weight-independent mechanisms of hormone regulation and glycemic control (3–6). Surgical interventions targeting the stomach and small intestine can have a significant and durable impact on WL and type 2 diabetes mellitus (T2DM).

Surgical interventions offer a greater WL but potentially have a greater impact on patients in terms of their invasive nature, associated postoperative morbidity, and adverse events (AEs). However, although bariatric surgical interventions are proven to be effective, only 1% of eligible patients undergo surgery (7). On the other hand, medical, lifestyle, and pharmacological therapies are largely available and cost-effective but might fail to treat all patients, and compliance remains indifferent (8,9). The advent of metabobariatric (MB) endoscopic interventions for bariatric and metabolic patients may bridge the treatment gap that exists between these therapeutic options, providing several minimally invasive interventions that could optimize treatment (Figure 3). These MB endoscopic procedures present different levels of efficacy, durability, risk, and AEs (Table 1) but are being increasingly explored to tackle the growing global pandemic of obesity and metabolic syndromes.

Transmural and volume reduction therapies—procedures that result in high levels of total body WL

The following permanent or semipermanent treatments usually achieve high levels of total body WL (TBWL) involving all layers of the target organ, either creating an artificial transmural food passage or full-thickness plication. These may be justified when higher TBWL is aimed and when the alternative treatment with more invasive surgical intervention is less desirable.

Aspiration therapy

Aspiration devices reduce caloric intake by active aspiration of ingested food from the gastric cavity through an endoscopically placed percutaneous gastrostomy. AspireAssist (AA) (Aspire Bariatrics, Exton, PA) has been approved by the Food and Drug Administration (FDA) for treatment of class II and III obesity in patients failing conservative treatment. This device acts a long-term reversible treatment. Although active patient involvement has a possible negative impact on the quality of life, it allows for gradual therapy withdrawal. Thompson et al. (10) evaluated AA in a randomized controlled trial (RCT) on patients with a body mass index (BMI) of 35–55 kg/m². A total of 74% of patients who were on AA (82/111 patients) completed 52 weeks of treatment. Per-protocol
analysis showed a percentage of TBWL (%TBWL) of >10% in 70% of patients in the treatment group compared with 19% in the control group; the mean %TBWL was 14.2 ± 9.8% vs 4.9 ± 7.0%, respectively. The serious adverse event (SAE) rate was 3.6% and included mild peritonitis, severe abdominal pain, and prepyloric ulcers likely related to mucosal contact of the intragastric portion of the gastrostomy tube. Several non-SAEs were reported, including peristomal granulation tissue (45%), abdominal pain (37%), nausea and vomiting (17%), peristomal irritation (17%), and infection (13%). Compared with controls, AA achieved glycated hemoglobin (HbA1c) reduction (−0.36% relative to 5.7% P < 0.0001) (10). A total of 58 patients continued the treatment beyond 12 months, and 15 patients concluded 4-year treatment showing sustained WL with an 18.7% TBWL on a per-protocol analysis (11). Similarly, data from a multicenter European registry showed that aspiration therapy provides sustained WL with a safety profile similar to percutaneous endoscopic gastrostomy (12).

Endoscopic gastroplasty
Endoscopic gastroplasty alters the anatomy and physiology of the stomach by plicating the gastric walls and reducing the intragastric volume by up to 75%. The functional exclusion of part of the stomach results in a reduction of both gastric volume and motility (13). Two devices have been FDA-approved: the Over-Stitch (Apollo Endosurgery, Austin, TX) used for endoscopic sleeve gastropasty (ESG) and Primary Obesity Surgery Endoluminal (POSE) (USGI Medical, San Clemente, CA) (14). Differences between these 2 techniques are shown in Figure 4. A meta-analysis published by Gys et al. (15) compared ESG vs POSE, where the percentage of excess WL (%EWL) was 68.3% vs 44.9% at 12 months. More recently, Lopez-Nava et al. (16) have modified of the POSE technique suturing the gastric body aiming to alter its motility (POSE-2). Their preliminary experience on 73 patients has shown a %TBWL of 15.7% at 6 months with no AEs. Further studies are needed to evaluate the efficacy of this technique compared with ESG and control groups.

A recent meta-analysis published by Khan et al. showed no significant WL difference between AA and endoscopic gastric plication (17). ESG has a significantly lower rate of AEs compared with laparoscopic sleeve (2.9% vs 11.8%, P = 0.001) and lower % TBWL at 12 months (17% vs 30.5%, P = 0.001) (18). The safety and efficacy of ESG were confirmed in 3 recent systematic reviews and meta-analyses, showing a %TBWL at 12 months between 16.1% and 16.5% with an SAE rate between 2.2% and 2.3% (19–21). WL at 24 months seems to be sustained with a %TBWL of 20.01% (21). Long-term data are promising, and abstract-based results presented by Hajifathalian et al. showed that 69% of the patients maintained a %TBWL ≥10% at 60 months (22). Their quadratic regression models a maximum WL at 24 months. After achieving minimum weight, patients regained 2.4 kg–14% (22).

Other cardiometabolic effects of gastric plication were reported by Brethauer et al. (23). Metabolic parameters, including mean systolic and diastolic blood pressure, mean triglyceride and fasting insulin values, decreased by 15.2 mm Hg (P = 0.0012) and 9.7 mm Hg (P = 0.0051), 27.9 mg/dL and 4.5μIU/mL, respectively. Sullivan et al. (24) published an RCT, including 332 patients with a significant decrease of both fasting glucose and low-density lipoprotein levels. Espinós et al. (25) showed improved glucose/insulin ratio, a post-prandial increase of PYY, increased baseline ghrelin, and enhanced postprandial decrease. Interestingly, the gastric emptying time was longer at 2 months and returned to baseline at 6 months; this transient delay was associated with greater and sustained WL.

Figure 1. Mechanisms regulating food intake, nutrient absorption, and metabolic control originating from the gastrointestinal tract. The enteric nervous system, autonomic nervous system, and neuroendocrine cells can directly sense and regulate nutrients intake (i.e., orexigenic and anorexigenic hormones), as well as regulate nutrient metabolism with incretins (GLP-1 and GIP). GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; PYY, peptide YY.

Figure 2. Effects of bariatric surgery (different hormonal changes after sleeve gastrectomy and Roux-en-Y gastric bypass). The BRAVE effects include bile flow changes, restriction of gastric size, anatomical gastrointestinal rearrangement, vagal manipulation, and enteric hormonal modulation. These changes induced by bariatric surgery are mimicked with endoscopic interventions.
Intragastric balloons (IGBs) have been the most widespread minimally invasive endoscopic intervention for WL. Several IGBs are available, each presenting unique features (30) (Table 2). A retrospective study comparing IGB with ESG showed a significantly lower %TBWL at 6 months (15.0 vs 19.5%, respectively) and 12 months (13.9% vs 21.3%, respectively) with higher AE rates of 17% vs 5.2%, respectively (P = 0.048) (31). A recent meta-analysis confirmed that IGB might be clinically inferior to EGS in terms of WL and AEs (32).

Most literature for liquid-filled balloons refers to Orbera (Apollo Endosurgery). Orbera achieved 11.27% TBWL (95% confidence interval, 8.17%–14.36%) at 12 months after implantation and a significant WL over controls (26.9% EWL; P < 0.01) as showed in the American Society for Gastrointestinal Endoscopy systematic review and meta-analysis, including 1,683 patients from 17 studies (33). Trang et al. reported a rate of nausea and vomiting of 63% and 55%, respectively, with the highest accommodative symptoms rate for Orbera compared with other IGBs (34).

Lower rates of explantation and intolerance can be obtained using gas-filled IGB, but this may compromise on WL (35). Indeed, in a recent meta-analysis, the gas-filled balloon does not achieve superior WL compared with lifestyle modification (36). Previously, Sullivan et al. conducted an RCT comparing Obalon, a swallowable gas-filled balloon and lifestyle therapy vs lifestyle therapy alone. Patients completing the treatment achieved a %TBWL of 7.1 ± 5.0% vs 3.6 ± 5.1% in the controls (P = 0.0085), and the SAE rate was 0.4%. At 48 weeks, 88.5% of the TWL was maintained (37). Over time, up to 3 balloons can be accommodated in the stomach to progressively reduce the volume of the gastric cavity.

Limited literature is available for other CE-marked IGBs that might present unique features. For instance, Elipse (Allurion, Natick, MA) is a swallowable liquid-filled balloon with a self-deflating valve mechanism with no endoscopy required; Spatz3 (Spatz, Fort Lauderdale, FL) is a liquid-filled balloon with adjustable volume and dwelling time up to 12 months. Retrospective studies and case series showed that down-volume adjustment might alleviate balloon intolerance, whereas up-volume adjustment may contrast the plateau effect facilitating additional WL (38–40) and provide a further delay of gastric emptying (41). A more recent, cross-sectional study showed that obese patients achieved greater WL with nonadjustable IGB, whereas overweight (BMI > 27) achieved greater WL with adjustable IGB (42). Additional prospective studies are needed to quantify the advantages of adjustable balloons in terms of WL and address safety concerns of catheter impaction as was seen in previous generations of devices (39,43).

In addition to WL, IGBs achieve other metabolic benefits. Popov et al. (44) published a large systematic review of 10 RCTs and 30 observational studies, including 5,668 patients, showing improvements in metabolic parameters that included fasting glucose, triglycerides, and diastolic blood pressure. In addition, Guedes et al. (45) reported a reduction of leptin, high-sensitivity C-reactive protein, glucose, insulin, and homeostatic model assessment of insulin resistance (shortly) with a concomitant increase of adiponectin/leptin ratio. Nguyen et al. (46) showed a significative reduction of alanine aminotransferase (ALT) and gamma-glutamyl transferase in obese patients with nonalcoholic steatohepatitis. A similar result was obtained by Folini et al. (47), showing liver steatosis reduction at magnetic resonance imaging. Bazerbachi et al. (48) reported a reduction of HbA1c (1.3% ± 0.5% P = 0.02), nonalcoholic fatty liver activity score, and liver fibrosis.

Transpyloric shuttle

The transpyloric shuttle (BAROnova) device consists of 2 silicon-based bulbs connected by a tether across the pylorus (Figure 3e). It intermittently obstructs the pylorus and delays the gastric emptying. Following initial safety concerns, it has been redesigned and is currently FDA-approved for a treatment period of 12 months (49). Marinos et al. (50) tested this device in an open-label trial of 20 patients assigned to 3- or 6-month treatment. The 6-month group achieved 14.5% TBWL. Overall, 10 gastric ulcers were noted; 2 required early device removal. More recently, a sham-controlled study was conducted by Rothstein et al. (51), where 270 patients were randomized in a 2:1 ratio to 12-month treatment or sham procedure. Abstract-based results showed 30.9% EWL in the treatment group vs 9.8%
EWL in controls ($P < 0.0001$). Early device removal was required in 10.3% of patients, and the SAE rate was 2.5% (52).

Duodenal bypass liner

The duodenal bypass liners are impermeable sleeves interposed between the mucosa and GI lumen to impede nutrient digestion and absorption (Figure 3f–g). Currently, these devices are not FDA-approved. Most literature refers to EndoBarrier, a duodenal-jejunal bypass sleeve (DJBS) measuring 60 cm in length. During the placement, the self-expanding nitinol anchor is positioned into the duodenal bulb, and the impermeable fluorine polymer liner is deployed distally into the proximal jejunum. Similarly, ValenTx is a gastro-duodenal-jejunal bypass measuring 120 cm that is anchored to the gastroesophageal junction and extends to the jejunum. This second device requires laparoscopic assistance for its placement (53,54).

An American Society for Gastrointestinal Endoscopy pooled analysis of 4 RCTs has shown significant WL difference compared with the control group (9.4% EWL; 95% confidence interval, 8.26–10.65). Notably, the duration of these studies was 12 and 24 weeks, which were shorter than the recommended dwelling time of 12 months. This analysis also showed significant HbA1c reduction compared with controls (33). The availability of alternative and highly effective medical therapy might not justify its use; however, DJBS has shown potential in improving metabolic parameters.

After DJBS implantation, a rapid improvement of T2DM and glycemic control has been noted as well as hormonal changes (55,56). Muñoz et al. (57) suggest additional weight-independent

| Table 1. Endoscopic intervention for WL and dysmetabolic conditions |
|------------------------|--------|----------------------------------|----------------|----------------|----------------|--------------------|----------------|
| **Name** | **Target** | **Availability and literature** | **Primary effect(s)** | **Metabolic effect(s)** | **Dwelling time** | **Advantage(s)** | **Disadvantage(s)** |
| Intragastric balloon | Stomach | ++ + | Early satiety | Delayed gastric emptying | 6–12 mo | Easy and widely diffuse | Temporary effect with weight regain |
| | | | Possible hormonal | | | | Patient compliance |
| Endoscopic gastroplasty| Stomach | + | Early satiety | Delayed gastric motility | Flexible procedure allowing for different suturing patterns | Longer effect |
| | | | Possible hormonal | | | | Complex procedure |
| Aspiration device | Stomach | + | Decreased caloric intake | | 12–24 mo | Patient-controlled procedure | Patient-dependent aspiration |
| Transpyloric shuttle | Stomach | + | Transient pyloric obstruction | | 12 mo | Limited data | Limited data |
| Botox injection | Stomach | + | Delayed gastric motility | | N/A | Easy and widely diffuse minimally invasive | Temporary effect |
| Duodenal bypass liner | Small bowel | ++ | Hormonal changes with restoration of incretin effect | HbA1c reduction Cardiometabolic marker improvement | 12 mo | Rapid improvement of glycemic control | Complex procedure with safety profile concerns |
| Duodenal mucosal resurfacing | Small bowel | + | | HbA1c reduction with improved insulin sensitivity Liver improvement | N/A | Limited data | Hepatic abscess, acute pancreatitis, bleeding, and perforation |
| Incisionless partial jejunal diversion | Small bowel | + | Enteric diversion | HbA1c reduction | N/A | Limited data | Limited data |

AE, adverse event; HbA1c, glycated hemoglobin; N/A, not applicable; TBC, to be confirmed WL, weight loss.
mechanisms of glycemic control. Jirapinyo et al. (58) published a meta-analysis of 4 RCTs showing 1.3% HbA1c reduction, with a significant reduction by 0.9% compared with control. This reduction was sustained after 6 months. Pooled data from observational and RCTs showed a total WL of 18%, which remained significant after 1 year; GLP-1, PYY, and ghrelin increased, whereas glucose-dependent insulinotropic polypeptide decreased. In addition, EndoBarrier improved liver enzymes (59,60) and liver elastography (61). van Nierop et al. (62) showed an increase of unconjugated bile acid and increase in GLP-1; similarly, Kavalkova et al. (63) showed an increase of FGF-19 and bile acids with the restoration of postprandial peak of GLP-1 as well as an improved lipid and glucose regulation, and FGF-19 and GLP-1 can regulate lipid and glucose metabolism; upregulation of this pathway might contribute to restoring the incretin effect, which is downregulated in dysmetabolic conditions.

Moreover, EndoBarrier placement reduced triglyceride to high-density lipoprotein ratio (64) and serum low-density lipoprotein levels (65). More recently, Roehlen et al. (66) showed improvement of other cardiovascular markers, including high-sensitive C-reactive protein, lipoprotein-associated phospholipase A2, and small dense lipoprotein fraction. Studies attempting to prolong metabolic benefits by increasing the implantation duration registered higher AE rate. The authors of both studies recommended an implantation time of 12 months (67,68).

This device still has safety concerns that need to be addressed. Betzel et al. (69) published a systematic review including 1,057 patients, 33 of which had an SAE rate of 3.7%, including 11 hepatic abscesses, 8 GI hemorrhages, 4 esophageal perforations, and 3 acute pancreatitis. Surgery was required in 8 patients, but no deaths were reported. Despite these risks, Laubner et al. (70) showed possible positive risk-benefit ratio in favor of DJBL for T2DM treatment.

Endoluminal non–device-based therapies—lower AE profile
The need for safer procedures has led to the development of less invasive, nonimplantable, and deviceless techniques. These focus on manipulation of the mucosal environment of the stomach and small bowel to achieve sustained benefits on metabolic control that are so intricately linked to the hormonal signals that this part of the GI tract regulates.

Intragastric injection
Botulinum toxin A (BTA) injection can temporarily inhibit gastric peristalsis. Conflicting evidence has been published on the efficacy of this intervention. Initial studies showed a delay in gastric emptying with WL without AE (71–73). In 2015, a meta-analysis of 8
studies concluded that BTA is effective in the treatment of obesity (74). Other data showed no impact on BTA injection on WL (75,76). More recently, 2 meta-analyses have concluded that intragastric injection of BTA is not effective (36,77).

Duodenal mucosal resurfacing
Duodenal mucosal resurfacing (DMR) is a novel procedure, which selectively ablates the duodenal mucosa and aims to revert mucosal changes present in T2DM (Figure 5).

Most literature refers to Revita (Fractyl Laboratories) (Figure 3a). This catheter creates a circumferential mucosal lift with submucosal injection followed by thermal mucosal hydroablation. Initial studies conducted on diabetic rats showed that duodenal mucosal abrasion reduces hyperglycemia. The same publication showed complete mucosal healing in a pig model treated with mucosal hydroablation after 6 weeks (78).

The FIH open-label trial evaluating safety and efficacy was conducted on a total of 39 patients; of which, 28 had long-segment ablation (average length = 9.3 cm), and 11 had short-segment ablation (average length = 3.4 cm). The pooled HbA1c reduction was 1.2% at 6 months ($P < 0.001$). The patients in the long-segment subgroup achieved greater HbA1c reduction compared with the short-segment group (2.5% vs 1.2% at 3 months ($P < 0.05$) and 1.4% vs 0.7% ($P = 0.3$) at 6 months. Within the long-segment group, patients with baseline HbA1c of 7.5%–10%, maintaining stable antidiabetic medications, achieved even greater HbA1c reduction (1.8% ± 0.5% at 6 months). Interestingly, HbA1c reduction was not significantly related to WL. Three patients experienced duodenal stenosis that was successfully treated with endoscopic balloon dilatation (79).

More recently, van Baar et al. (80) conducted a single-arm multicenter trial; in which, 9 of 46 patients were excluded from the final analysis because of technical failure. Per-protocol analysis on 36 patients showed 0.9% ± 0.2% HbA1c reduction ($P < 0.001$) and liver enzyme improvement (ALT from 40 ± 4U/L to 31 ± 2U/L). Changes were sustained and statistically significant up to 12 months. Once again, metabolic improvements were not related to WL. No DMR-related SAEs were reported. The same author published a pooled analysis of these 2 studies, showing a mean reduction of HbA1c of 1.1% at 6 months, with improvement in liver function tests, including ALT, AST, and fibrosis-4 index. Analysis of a subcohort of 14 patients showed additional metabolic effects at 3 months compared with baseline with improved mixed meal tolerance test and insulin sensitivity, improved lipid profile as well as a higher level of antioxidant and lower level of inflammatory molecules (81).

A multicentric RCT is currently evaluating comparative safety and efficacy. Abstract-based results showed a significant reduction of liver fat content measured with magnetic resonance proton density at 12 weeks as well as a significant reduction of HbA1c compared with the sham procedure (−0.6% [DMR] vs −0.3% [Sham]) at 24 weeks. Patients with baseline fasting plasma glucose ≥180 mg/dL achieved greater HbA1c reduction: −1.2% [DMR] vs −0.3% [Sham] ($P = 0.005$)) (82).

The DiaGone (Digma, San Diego, CA) is a through-the-scope laser-based system for duodenal ablation. An FIH multicenter, open-label study is ongoing (NCT03390322).
Factors guiding clinical decision-making and role of multidisciplinary approach

MB procedural selection is a multifactorial decision process that should be performed on an individualized basis with a multidisciplinary approach taking into consideration several factors including fitness for surgery and anesthetic risk (i.e., comorbid or super obese patients), technical feasibility (i.e., frozen abdomen or anatomical variation), patient’s preference and BMI, desired TBWL and metabolic endpoints, and reversibility of the intervention (i.e., younger patients). The willingness and appropriateness of implanting a device to support WL is another important factor to be evaluated. Those factors involved in the choice among surgical procedures and other MB endoscopic interventions are summarized in our proposed algorithm (Figure 6).

Among MB procedures, AA and endoscopic gastroplasty can ensure higher and sustained WL in a more consistent fashion. Those techniques are relatively newer and less widely available compared with IGBs. In particular, ESG and POSE require a higher level of technical skills and dedicated training to be performed, but adoption will grow with structured training and data. In addition, those patients with a very high BMI who are not suitable for surgery, MB such as AA, IGBs, and endoscopic gastroplasty may also be used as a bridge to surgery or other endoscopic procedures that require a lower initial BMI.

Along with WL, other weight-independent benefits and indications for ESG (83), IGBs (44,48), and DMR are emerging including improved insulin sensitivity and improvement of liver pathology. Indeed, DMR and other techniques targeting the duodenum, once properly evaluated, could be introduced for DM2 and nonalcoholic fatty liver disease and favored for those patients with a lower BMI (80).

Implants may require a higher level of patient involvement, which may not be suitable for some patients. Of course, all techniques require patients’ participation in postprocedure dietary changes and follow-up visits, but this may be particularly important for implantable devices. For these reasons, a careful evaluation of patient’s personality, attitude, and approach toward their condition as well as other social factors such as time availability and access to the center has to be taken into account.

A multidisciplinary approach should consider all these different aspects. Bariatric surgeons and endoscopists can evaluate the technical aspects of the procedures. The involvement of an obesity physician is preferred, although a physician with an associated specialty such as diabetes with a particular focus on obesity can be an alternative. Furthermore, dietitians, an anesthetist with experience of bariatric procedures, a psychologist, and specialist nurses all play important roles in the various aspects of these decisions. This is particularly important when considering the long-term follow-up of these patients including quality of life and ongoing dietary changes. This approach should be followed at all stages in the patient’s care including before and after procedure.

CONCLUSION

MB endoscopic interventions could represent an alternative to surgery for treatment of dysmetabolic conditions. RCTs are needed to evaluate their long-term efficacy and exclude confounders for metabolic parameter improvement. Those results will help to position those techniques in the decision-making algorithm. Multidisciplinary decision-making on a per-patient level is key to the success of these innovations.

CONFLICTS OF INTEREST

Guarantor of the article: Rehan J. Haidry MD.

Specific author contributions: A.T. and R.H. conceptualized and drafted the manuscript; C.M., S.A.A., L.B.L, and R.J.H revised critically for intellectual content. A.T., V.S., C.M., S.N., S.A.A., L.B.L., and R.J.H. provided intellectual contribution and were involved in the review of the final manuscript.
morbid obesity; effect of weight loss obtained with intragastric balloon gastric banding. Acta Diabetol 2014;51(3):361–8.
48. Bazerbachi F, Vargas EJ, Rizik M, et al. Intragastric balloon placement induces significant metabolic and histologic improvement in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2021;19(1):146–54.e4.
49. FDA. TransPyloric Shuttle/TransPyloric Shuttle Delivery Device—P180024[FDA: @US_FDA (https://www.fda.gov/medical-devices/recently-approved-devices/transpyloric-shuttletranspyloric-shuttle-delivery-device-p180024)]. Accessed October 23, 2020.
50. Marinos G, Eliades C, Raman Muthusamy V, et al. Weight loss and improved quality of life with a nonsurgical endoscopic treatment for obesity: Clinical results from a 3- and 6-month study. Surg Obes Relat Dis 2014;10(5):929–34.
51. clinicaltrials.gov. ENDObesity® II Study: TransPyloric Shuttle® System for Weight Loss—Study Results (https://clinicaltrials.gov/ct2/show/results/NCT02518685). Accessed October 23, 2020.
52. obesityweek2018. T-P-3277|Weight Reduction in Patients with Obesity Using the TransPyloric Shuttle (https://2018.obesityweek.com/abstract/weight-reduction-in-patients-with-obesity-using-the-transpyloric-shuttle-endobesity-ii-study/index.html). Accessed October 23, 2020.
53. Sandler BJ, Rumbaut R, Swain CP, et al. One-year human experience with an endoluminal, endoscopic, gastrojejunal bypass sleeve. Surg Endosc 2011;25(9):3028–33.
54. Sandler BJ, Rumbaut R, Swain CP, et al. Human experience with an endoluminal, endoscopic, gastrojejunal bypass sleeve. Surg Endosc 2011;23(9):1354–60.
55. Cohen RV, Neto MG, Correa JL, et al. A pilot study of the duodenal-jejunal bypass liner implanted for up to 3 years. Surg Endosc 2018;32(1):260
56. Cohen RV, Neto MG, Correa JL, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes. Obes Surg 2013;23(9):1354–60.
57. Muñoz R, Escalona A. Duodenal-jejunal bypass liner to treat type 2 diabetes mellitus in morbidly obese patients. Curr Cardiol Rep 2014;16(3):454.
58. Jirapinyo P, Haas AV, Thompson CC. Effect of the duodenal-jejunal bypass liner on glycemic control in patients with type 2 diabetes with obesity: A meta-analysis with secondary analysis on weight loss and hormonal changes. Diabetes Care 2018;41(5):1106–15.
59. Ryan PM, Hayward NE, Sless RT, et al. Effect of bariatric surgery on circulating FGF-19: A systematic review and meta-analysis. Obes Rev 2020;21(8):e13038.
60. de Jonge C, Rensen SS, Koeck GH, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves plasma parameters of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2013;11(11):1517–20.
61. Gallischi KS, Lindhorst A, Raddatz D. EndoBarrier gastrointestinal enteroendocrine cells and activation of the vagal afferent pathway in a rodent model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 2015;303(8):R1278–86.
62. de Moura EG, Orso IR, Martins BC, et al. Improvement of insulin resistance and reduction of cardiovascular risk among obese patients with type 2 diabetes with the duodenaljejunal bypass liner. Obes Surg 2011;21(7):941–7.
63. Rouxen B, Coomen ML, Aarts EO, et al. Clinical follow-up on weight loss, glycemic control, and safety aspects of 24 months of duodenal-jejunal bypass liner implantation. Surg Endosc 2020;34(1):209–15.
64. Betzel B, Drenth JPH, Siersma PD. Adverse events of the duodenal-jejunal bypass liner: A systematic review. Obes Surg 2018;28(11):3669–77.
92. Lopez-Nava G, Asokkumar R, Rull A, et al. Bariatric endoscopy procedure type or follow-up: What predicted success at 1 year in 962 obese patients? Endosc Int Open 2019;7(12):E1691–E1698.

93. Lopez-Nava G, Laster J, Negi A, et al. Endoscopic gastroplasty: An effective solution in a high-risk patient with morbid obesity. Clin J Gastroenterol 2021;14(2):489–93.

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.