Objective — To assess associations of sex hormones with impaired fasting glucose (IFG) and type 2 diabetes in men.

Research Design and Methods — A total of 3,156 African American, Non-Hispanic white, Hispanic, and Chinese-American men aged 45–84 years who participated in the baseline visit of the Multi-Ethnic Study of Atherosclerosis (MESA) were included. Odds ratios and 95% CIs for type 2 diabetes and IFG compared with normal fasting glucose for quartiles of hormones were estimated.

Results — After adjusting for age, ethnicity, BMI, and waist circumference, IFG and diabetes were associated inversely with total testosterone and sex hormone–binding globulin (SHBG) and positively with estradiol (E2). Dehydroepiandrosterone was positively associated with IFG but not with diabetes. Associations did not differ across ethnic groups.

Conclusions — Regardless of obesity, total testosterone and SHBG were associated inversely and E2 was associated positively with IFG and diabetes in men. Further research is warranted to better understand the underlying biological mechanisms.

Sex hormones have been associated with type 2 diabetes in men (1,2). Some studies (1,2) have shown that these associations were independent of obesity. In the Third National Health and Nutrition Examination Survey (NHANES III) (2), the only study to include a multiethnic sample, power was insufficient to determine whether associations differed by ethnicity. The population-based Multi-Ethnic Study of Atherosclerosis (MESA), initiated in 2000, provides an opportunity to evaluate cross-sectional associations of sex hormones with both type 2 diabetes and impaired fasting glucose (IFG) in men aged 45–84 years while taking into consideration measures of obesity and ethnicity. Similar analyses examining associations in postmenopausal women (3) were conducted separately because previous research has shown that there is a sex dimorphism in hormone associations with type 2 diabetes (1).
Table 1—Association of quartiles of sex hormones with normal fasting glucose, IFG, and type 2 diabetes status: Multi-Ethnic Study of Atherosclerosis (2000–2002)

Hormone	Q1 (min–max)	Q2 (min–max)	Q3 (min–max)	Q4 (min–max)	Q1 (min–max)	Q2 (min–max)	Q3 (min–max)	Q4 (min–max)	P_trend*
Testosterone (nmol/l)	8.90 (0.03–11.35)	12.81 (11.38–14.23)	15.87 (14.26–17.77)	22.05 (17.80–68.36)	8.90 (0.03–11.35)	12.81 (11.38–14.23)	15.87 (14.26–17.77)	22.05 (17.80–68.36)	0.0054
Chinese	0.88 (0.33–1.27)	1.07 (0.67–1.71)	1.26 (1.07–2.14)	1.50 (1.26–2.78)	0.86 (0.33–1.27)	1.07 (0.67–1.71)	1.26 (1.07–2.14)	1.50 (1.26–2.78)	0.14
Non-Hispanic white	0.86 (0.68–1.08)	1.05 (0.76–1.61)	1.26 (0.96–2.42)	1.50 (1.26–2.78)	0.86 (0.68–1.08)	1.05 (0.76–1.61)	1.26 (0.96–2.42)	1.50 (1.26–2.78)	0.0002
SHBG (nmol/l)	25.3 (8.6–31.8)	36.1 (23.5–40.8)	46.4 (39.0–52.7)	70.1 (52.8–108.9)	25.3 (8.6–31.8)	36.1 (23.5–40.8)	46.4 (39.0–52.7)	70.1 (52.8–108.9)	0.0001
E2 (pmol/l)	67.4 (29.4–84.4)	99.4 (88.1–110.1)	125.4 (113.8–139.5)	178.2 (143.2–661.8)	67.4 (29.4–84.4)	99.4 (88.1–110.1)	125.4 (113.8–139.5)	178.2 (143.2–661.8)	0.005
Chinese	0.91 (0.35–1.56)	1.04 (0.35–1.56)	1.04 (0.35–1.56)	1.04 (0.35–1.56)	0.91 (0.35–1.56)	1.04 (0.35–1.56)	1.04 (0.35–1.56)	1.04 (0.35–1.56)	0.81
Non-Hispanic white	0.91 (0.35–1.56)	1.04 (0.35–1.56)	1.04 (0.35–1.56)	1.04 (0.35–1.56)	0.91 (0.35–1.56)	1.04 (0.35–1.56)	1.04 (0.35–1.56)	1.04 (0.35–1.56)	0.81
Dehydroepiandrosterone (nmol/l)	7.1 (0.9–9.1)	10.2 (8.4–12.0)	13.3 (11.8–16.9)	21.4 (17.8–49.1)	7.1 (0.9–9.1)	10.2 (8.4–12.0)	13.3 (11.8–16.9)	21.4 (17.8–49.1)	0.0055

Data are OR (95% CI) unless otherwise indicated. ORs are adjusted for age, BMI, waist circumference, and in the pooled analysis, ethnicity. IFG: 100 mg/dl fasting glucose; type 2 diabetes: fasting glucose ≥126 mg/dl or current use of diabetes medication. *P-value from a model treating hormone as a continuous variable. Q, quartile.
RESULTS — The prevalence of IFG and diabetes was 30 and 21% in African Americans, 32 and 9% in non-Hispanic whites, 35 and 20% in Hispanics, and 40 and 15% in Chinese, respectively.

Interactions between ethnicity and hormones for diabetes or IFG were not statistically significant when using quartiles of sex hormones (P > 0.28) or continuous hormone variables (P > 0.19). Because this may be a consequence of limited power, analyses are presented by ethnicity and also pooled (Table 1). For total testosterone, the ORs for the highest quartile compared with those for the lowest ranged from 0.26 to 0.77 for diabetes and from 0.50 to 0.85 for IFG. Similarly, all ORs for the highest quartile of sex hormone–binding globulin (SHBG) were <1.0 for diabetes and IFG. In contrast, ORs for estradiol (E2), especially in Chinese men, indicated positive associations with IFG and diabetes.

In the pooled analysis, the inverse associations of total testosterone and SHBG, and the positive association of E2, with type 2 diabetes were strong. SHBG was significantly but not linearly associated with IFG. Dehydroepiandrosterone was positively associated with IFG but not with diabetes. Adjustment for other confounders did not attenuate these associations (data not shown).

CONCLUSIONS — Despite adjustment for BMI and waist circumference, in analyses pooling ethnicities, we observed significant inverse associations of total testosterone and SHBG with diabetes and IFG, whereas E2 was positively associated. Our findings are consistent with the results of a meta-analysis. NHANES III results for BMI and waist circumference, in diabetes. Adjustment for other confounders did not attenuate these associations (data not shown).

Acknowledgments — This work was supported by grant RO1 HL074338 and contracts NO1-HC-95159 through NO1-HC-95165 and NO1-HC-95169 from the National Heart, Lung, and Blood Institute. S.H.G. serves on the U.S. Clinical Diabetes Advisory Board and receives financial compensation from Merck. No other potential conflicts of interest relevant to this article were reported.

We thank the other investigators, staff, and participants of the MESA study for their valuable contributions.

References
1. Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes. JAMA 2006; 295:1288–1290
2. Selvin E, Feinleib M, Zhang L, Rohrmann S, Rifai N, Nelson WG, Dobs A, Basarta S, Golden SH, Platz EA. Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 2007;30:234–238
3. Golden SH, Dobs AS, Vaidya D, Szeiko M, Gapsir S, Kopp P, Liu K, OuYang P. Endogenous sex hormones and glucose tolerance status in postmenopausal women. J Clin Endocrinol Metab 2007;92:1289–1295
4. Bild DE, Blum P, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacobs DR Jr, Krommel R, Liu K, Nelson JC, O’Leary D, Saad MF, Shea S, Slezko M, Tracy RP. Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol 2002;156:871–881
5. Wang C, Christenson P, Spherd G. Clinical relevance of racial and ethnic differences in sex steroids (Editorial). J Clin Endocrinol Metab 2007;92:2433–2435
6. Kapoor D, Malkin CJ, Channer KS, Jones TH. Androgens, insulin resistance and vascular disease in men. Clin Endocrinol (Oxf) 2005;63:239–250
7. Pitteloud N, Hardin M, Dryer AA, Valassi E, Yialamas M, Elahi D, Hayes FJ. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J Clin Endocrinol Metab 2005;90:2636–2641
8. Jackson FL, Hutson JC. Altered responses to androgen in diabetic male rats. Diabetes 1984;33:819–824
9. Benitez A, Perez Diaz J. Effect of streptozotocin-diabetes and insulin treatment on regulation of Leydig cell function in the rat. Horm Metab Res 1985;17:5–7
10. Holmang A, Bjornorp P. The effects of testosterone on insulin sensitivity in male rats. Acta Physiol Scand 1992;146:505–510
11. Morimoto S, Fernandez-Meijia C, Romero-Navarro G, Morales-Peza N, Diaz-Sanchez V. Testosterone effect on insulin content, messenger ribonucleic acid levels, promoter activity, and secretion in the rat. Endocrinology 2001;142:1442–1447
12. Nair KS, Rizza RA, O’Brien P, Dhutanya K, Short KR, Neher A, Vittone JL, Klee GG, Basu A, Basu R, Cobelli C, Toffolo G, Dalla Man C, Tindall DJ, Melton LJ 3rd, Smith GE, Khosla S, Jensen MD. DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med 1995;335:1647–1650
13. Basu R, Dalla Man C, Campioni M, Basu A, Nair KS, Jensen MD, Khosla S, Klee G, Toffolo G, Cobelli C, Rizza RA. Effect of 2 years of testosterone replacement on insulin secretion, insulin action, glucose effectiveness, hepatic insulin clearance, and postprandial glucose turnover in elderly men. Diabetes Care 2007;30:1972–1978
14. Yialamas MA, Dryer AA, Hanley E, Lee H, Pitteloud N, Hayes FJ. Acute sex steroid withdrawal reduces insulin sensitivity in healthy men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2007;92:4254–4259