Highly accurate analytical solution for free vibrations of strongly nonlinear Duffing oscillator

Gamal Mohamed Ismail1,2, Mahmoud Abul-Ez1, Mohra Zayed3, Hijaz Ahmad4,5 and Maha El-Moshneb1

Abstract
Based on the suggested parameter, a new analytical perturbation technique is presented to obtain highly ordered accurate analytical solutions for nonlinear Duffing oscillator with nonlinearity of high order. Comparing the obtained results with the numerical and other previously published results reveals the usefulness and correctness of the present technique. It is shown that the results are valid for small and large amplitudes. Indeed, it is found that our proposed technique produces more accurate and computationally results than the rival known methods. The obtained results show the efficiency and capability of the present perturbation technique to be applied to various strongly nonlinear differential equations.

Keywords
Analytical solution, perturbation technique, nonlinear Duffing oscillator, energy balance method, frequency amplitude formulation

Introduction
Duffing harmonic oscillator is an ideal system; it is a common model for strongly nonlinear phenomena in engineering and science. It is a mathematical model used to describe the motion of a damped oscillator with a more complicated potential than in simple harmonic motion.

Duffing oscillators have been extensively applied to represent many physical systems which include the vibrations of beams and plates, the free vibration of a restrained uniform beam carrying intermediate lumped mass and undergoing large amplitudes of oscillation, the large amplitude oscillations of centrifugal governor systems, and the vibrations induced on different structures by fluid flow (see Refs. 1–6 and references therein).

Recently, the study of nonlinear Duffing oscillators has received much attention due to a variety of different engineering applications. Many researchers have applied various approximate methods to analyze different types of nonlinear Duffing oscillator equations. Some of these methods are multiple scales Lindstedt–Poincare method,7 homotopy analysis method,8 homotopy Pade technique,9 stiffness analytical approximation method,10 homotopy perturbation method,10–15 frequency amplitude formulation,16–20 energy balance method,21 straightforward expansion method,22 global error minimization method,23 max–min approach,24 global residue harmonic balance method,25–28 variational approach,29 perturbation method,30,31 Hamiltonian approach32–34 harmonic balance method,35 and coupled homotopy-variational approach.36

1Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
2Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
3Mathematics Department, College of Science, King Khalid University, Abha, Saudi Arabia
4Section of Mathematics, International Telematic University Uninettuno, Roma, Italy
5Department of Basic Sciences, University of Engineering and Technology, Peshawar, Pakistan

Corresponding author:
Gamal Mohamed Ismail, Department of Mathematics, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
Email: gamalm2010@yahoo.com
The purpose of the current work is to apply a suggested perturbation technique to obtain higher order approximate periodic solutions for strongly nonlinear Duffing oscillators. Generally, the second-order approximate frequency has been determined which contains a few harmonic terms with lower order terms. Approximate frequencies up to second-order give high accuracy for both small and large amplitudes of oscillation, which considered more efficient than other known methods.

The suggested research work in this direction has several opportunities with the higher order nonlinear differential equations. In the future, we can develop several analytical methods conformable with fractional nonlinear differential equations and simulate the results using other known analytical and numerical methods.

This article is organized as follows. In the Duffing Oscillator with Nonlinearity of High Order section, we introduce a new analytical perturbation technique to obtain highly ordered accurate analytical solutions for the nonlinear Duffing oscillator with nonlinearity of high order. Numerical results and discussion are demonstrated in the Numerical Results and Discussion section. Finally, we provide our conclusions in the Conclusion section.

Duffing oscillator with nonlinearity of high order

To illustrate the provided technique, we consider the nonlinear Duffing oscillator with high order

\[u'' + u + \varepsilon (au^3 + bu^5 + cu^7) = 0, \quad u(0) = A, \quad u'(0) = 0 \]

where \(a, b, c, \) and \(\varepsilon \) are arbitrary constants.

By using the transformation \(\tau = \Omega t \), one can obtain from (1)

\[\Omega^2 u'' + u + \varepsilon (au^3 + bu^5 + cu^7) = 0, \quad u(0) = A, \quad u'(0) = 0 \]

Consider the following parameter

\[\alpha = \frac{\varepsilon h_1}{1 + \varepsilon h_1} \]

such that

\[\varepsilon = \frac{\alpha}{h_1(1 + \alpha)} \]

Then for equation (1), the solution is assumed to be in the form

\[u = u_0 + \alpha u_1 + \alpha^2 u_2 + \ldots \]

and the fundamental frequency is given as follows

\[\Omega^2 = 1 + \varepsilon h_1 + \varepsilon^2 h_2 + \ldots \]

From equation (3), the fundamental frequency \(\Omega \) becomes

\[\Omega^2 = \left(\frac{1}{1 - \alpha} \right) (1 + \lambda_2 \alpha^2 + \lambda_3 \alpha^3 + \ldots) \]

where \(h_1, \lambda_2, \lambda_3, \ldots \) are unknown constants which will be determined afterward by perturbation steps successively. Inserting equations (5) and (6) into equation (1) and comparing the coefficients of \(\alpha^0, \alpha^1, \alpha^2 \ldots \) etc., we get

\[\alpha^0: \quad u_0'' + u_0 = 0, \quad u_0(0) = A, \quad u_0'(0) = 0 \]

\[\alpha^1: \quad u_1'' + u_1 = u_0 - \frac{1}{h_1} (au_0^3 + bu_0^5 + cu_0^7), \quad u_1(0) = 0, \quad u_1'(0) = 0 \]

\[\alpha^2: \quad u_2'' + u_2 = u_1 - \lambda_2 u_0 - \frac{1}{h_1} (3au_0^2 u_1 + 5bu_0^4 u_1 + 7cu_0^6 u_1), \quad u_2(0) = 0, \quad u_2'(0) = 0 \]

The zero-order approximation to equation (8) can be written in the form

\[u_0 = A \cos \tau \]

where \(u_0 = A \cos \tau \)
By inserting the above approximation into equation (9) and eliminating the secular term, the first approximate solution to equation (1) is

\[u_1 = \frac{A}{48(4a + 40bA^2 + 35cA^4)^\frac{1}{2}} \left[(-96a - 128bA^2 - 141cA^4) \cos \tau + (96a + 120bA^2 + 126cA^4) \cos 3\tau \right. \]

\[+ (8bA^2 + 14cA^4) \cos 5\tau + cA^4 \cos 7\tau \] \hfill (12)

and

\[h_1 = \frac{A^2 (48a + 40bA^2 + 35cA^4)}{64} \] \hfill (13)

Substituting equations (11) and (12) into equation (10), and on further simplification with eliminating the secular term, the second approximate solution to equation (1) becomes

\[
\begin{align*}
\frac{1}{(48a + 40bA^2 + 35cA^4)^\frac{1}{2}} & \left[(-4a^2A - \frac{19abA^3}{3} - \frac{49b^2A^5}{56} - \frac{29acA^7}{8} + \frac{9053bcA^9}{58080} + \frac{18048457c^2A^{11}}{5234944}) \right. \\
\times \cos \tau - \left(\frac{40abA^3}{8} + \frac{160b^2A^5}{24} + \frac{71acA^7}{8} + \frac{309bcA^9}{16} + \frac{171c^2A^{11}}{128} \right) \\
\times \cos 3\tau + \left(\frac{96a^2A^2}{24} + \frac{248abA^4}{24} + \frac{160b^2A^6}{24} + \frac{253acA^8}{24} + \frac{3907bcA^{10}}{288} + \frac{329c^2A^{12}}{48} \right) \\
\times \cos 5\tau + \left(\frac{48abA^3}{48} + \frac{190b^2A^5}{144} + \frac{85acA^7}{48} + \frac{544bcA^9}{128} + \frac{245c^2A^{11}}{96} \right) \\
\times \cos 7\tau + \left(\frac{10b^2A^4}{240} + \frac{15acA^6}{80} + \frac{32bcA^8}{80} + \frac{525c^2A^{10}}{128} \right) \cos 9\tau + \left(\frac{19bcA^6 + 35c^2A^{12}}{1452} + \frac{7c^2A^{12}}{8112} \right) \cos 11\tau + \frac{7c^2A^{12}}{8112} \cos 13\tau \right]
\end{align*}
\] \hfill (14)
Figure 1. The comparison between analytical solution (red line), energy balance method (green line), frequency amplitude formulation (black line), and numerical solution (blue line) for $\varepsilon = 1$.
and

$$\lambda_2 = \frac{-4608 a^2 - 12288 abA^2 - 8320 b^2A^4 - 13536 acA^4 - 18528 bcA^6 - 10395 c^2A^8}{48 \left(48a + 40bA^2 + 35cA^4\right)^2}$$

Thus, equation (7) becomes

$$\Omega = \frac{1}{8} \sqrt{64 + A^2(48a + 40bA^2 + 35cA^4)\varepsilon} \sqrt{1 + \frac{\Delta_1}{\Delta_2}}$$

where

$$\Delta_1 = A^2(-4608a^2 - 12288abA^2 - 8320b^2A^4 - 13536acA^4 - 18528bcA^6 - 10395c^2A^8)\varepsilon^2$$

$$\Delta_2 = 48(64 + A^2(48a + 40bA^2 + 35cA^4))\varepsilon^2$$

Inserting equations (11), (12), and (14) into equation (5) produces a second-order approximation

$$u(t) = u_0 + au_1 + a^2u_2$$

The validity of equation (17) is tested by solving equation (1) numerically. The results of the present technique are in good agreement with the numerical solution, as shown in Tables 1 and 2 and Figure 1.

Numerical results and discussion

In order to ensure the validity of the present technique, we compare the obtained analytical solutions with the exact numerical solutions and with existing results which have been obtained by known analytical approximate methods and tabulated in Tables 1 and 2 and Figure 1, which indicates that the obtained solutions here are feasible, effective, and more accurate than the corresponding existing results obtained by previously mentioned methods. As can be seen in Figure 1, it is...
found that the proposed technique has excellent agreement with the numerical solution. Therefore, we conclude that the analytical technique presented in this article gives a high precision solution for the nonlinear Duffing oscillations. In addition, the present technique can be utilized in studying many other nonlinear oscillators.

Conclusion
An analytical amplitude–frequency relation has been enhanced up to the second-order approximations by introducing a new analytical perturbation technique to obtain an approximate solution of the nonlinear Duffing oscillator with high order. It turns out that all the results presented in this study agree perfectly with those obtained by the numerical solutions and improve the ones given by other methods. It is worth mentioning that our suggested method is simply applicable and leads to high accuracy of the obtained results.

Acknowledgment
Mohra Zayed appreciates the support provided by the Deanship of Scientific Research at King Khalid University, Saudi Arabia, through the General Research Program with grant GRP-29–42.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: FundRef Funding Sources King Khalid University (Grant/Award Number: “GRP-29-42.”).

ORCID iDs
Hijaz Ahmad https://orcid.org/0000-0002-5438-5407
Gamal Mohamed Ismail https://orcid.org/0000-0002-9060-4371

References
1. Nayfeh AH and Mook DT. Nonlinear Oscillators. New York: John Wiley, 1973.
2. Ogata K. System Dynamics. Minneapolis, MN: University of Minnesota, 2005.
3. Elias-Zúñiga A. Exact solution of the cubic-quintic duffing oscillator. Appl Math Model 2013; 37: 2574–2579.
4. Kovacic I and Brennan MJ. Duffing Equation: Nonlinear Oscillations and their Behaviour. Chichester: Wiley, 2011.
5. Baisheng WU and Pengongli LI. A method for obtaining approximate analytic periods for a class of nonlinear oscillators. Meccanica 2001; 36: 167–176.
6. Guo Z, Leung AYT and Yang HX. Iterative homotopy harmonic balancing approach for conservative oscillator with strong odd-nonlinearity. Appl Math Model 2011; 35: 1717–1728.
7. Karahan MMF and Pakdemirli M. Free and forced vibrations of the strongly nonlinear cubic-quintic Duffing oscillators. Z für Naturforschung A 2017; 72(1): 59–69.
8. Qian Y, Ren D, Chen S, et al. Homotopy analysis method for large-amplitude free vibrations of strongly nonlinear generalized Duffing oscillators. Mod Mech Eng 2012; 02: 167–175.
9. Pirbodaghi T, Hoseini SH, Ahmadian MT, et al. Duffing equations with cubic and quintic nonlinearities. Comput Math Appl 2009; 57: 500–506.
10. Sedighi HM, Shirazi KH and Attarzadeh MA. A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches. Acta Astronaut 2013; 91: 245–250.
11. He JH and El-Dib YO. The reducing rank method to solve third-order Duffing equation with the homotopy perturbation. Numer Methods Partial Differ Equations 2020; 37: 1800–1808.
12. He JH and El-Dib YO. The enhanced homotopy perturbation method for axial vibration of strings. Facta Univ Ser Mech Eng 2021; Impress. DOI: 10.22190/FUME210125033H.
13. He JH and El-Dib YO. Homotopy perturbation method with three expansions. J Math Chem 2021; 59: 1139–1150.
14. Anjum N, He JH, Ain QT, et al. Le-he’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams based microelectromechanical system. Facta Univ Ser Mech Eng 2021; Impress. DOI: 10.22190/FUME210112025A.
15. Anjum N and He JH. Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and microelectromechanical systems’ oscillators particularly. Int J Mod Phys B 2020; 34: 2050313.

16. Younesian D, Askari H, Saadatnia Z, et al. Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency-amplitude formulation and He’s energy balance method. Comput Math Appl 2010; 59: 3222–3228.

17. Qie N, Houa WF and He JH. The fastest insight into the large amplitude vibration of a string. Rep Mech Eng 2010; 2: 1–5.

18. He JH, Hou WH, Qie N, et al. Hamiltonian based frequency amplitude formulation for nonlinear oscillators. Facta Univ Ser Mech Eng; 2021; 19: 199–208.

19. El-Naggar AM and Ismail GM. Applications of He’s amplitude-frequency formulation to the free vibration of strongly nonlinear oscillators. Appl Math Sci 2012; 6: 2071–2079.

20. He JH and Jin X. A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube. Math Methods Appl Sci 2020; 1–8. DOI: 10.1002/mma.6321.

21. Hosen MD, Ismail GM, Yıldırım A, et al. A modified energy balance method to obtain higher-order analytical approximations to the oscillators with cubic and harmonic restoring force. J Appl Comput Mech 2020; 6: 320–331.

22. Ozis T and Yıldırım A. Determination of limit cycles by a modified straightforward expansion for nonlinear oscillators. Chaos Solitons Fractals 2007; 32: 445–448.

23. Ismail GM and Abu-Zinadah H. Analytic approximations to non-linear third order Jerk equations via modified global error minimization method. J King Saud Univ Sci 2021; 33: 101219.

24. Yazdi MK, Ahmadian H, Mirzabeigy A, et al. Dynamic analysis of vibrating systems with nonlinearities. Commun Theor Phys 2012; 57: 183–187.

25. Qian YH, Pan JL, Chen SH, et al. The spreading residue harmonic balance method for strongly nonlinear vibrations of a restrained cantilever beam. Adv Math Phys 2017; 2017(1-2): 5214616.

26. Ju P. Global residue harmonic balance method for Helmholtz-Duffing oscillator. Appl Math Model 2015; 39: 2172–2179.

27. Mohammadian M and Akbarzade M. Higher-order approximate analytical solutions to nonlinear oscillatory systems arising in engineering problems. Archive Appl Mech 2017; 87: 1317–1332. DOI: 10.1007/s00419-017-1252-y.

28. Ismail GM, Abul-Ez M, Farea NM, et al. Analytical approximations to nonlinear oscillation of nano-electro-mechanical resonators. Eur Phys J Plus 2019; 134: 47.

29. Liu JF. He’s variational approach for nonlinear oscillators with high nonlinearity. Comput Math Appl 2009; 58: 2423–2426.

30. El-Naggar AM and Ismail GM. Analytical solution of strongly nonlinear Duffing oscillators. Alexandria Eng J 2016; 55: 1581–1585.

31. Sedighi HM and Daneshmand F. Static and dynamic pull-in instability of multi-walled carbon nanotube probes by he’s iteration perturbation method. J Mech Sci Tech 2014; 28: 3459–3469.

32. Ismail GM and Cveticanin L. Higher order Hamiltonian approach for solving doubly clamped beam type N/MEMS subjected to the van der Waals attraction. Chin J Phys 2021; 72: 69–77.

33. Mohammadian M. Nonlinear free vibration of damped and undamped bi-directional functionally graded beams using a cubic-quintic nonlinear model. Compos Struct 2021; 255: 112866.

34. Sedighi HM and Shirazi KH. Asymptotic approach for nonlinear vibrating beams with saturation type boundary condition. Proc Inst Mech Eng C: J Mech Eng Sci 2013; 227: 2479–2486.

35. Cveticanin L and Ismail GM. Higher order approximate periodic solutions for the oscillator with strong nonlinearity of polynomial type. Eur Phys J Plus 2019; 134: 266.

36. Ismail GM. An analytical coupled homotopy-variational approach for solving strongly nonlinear differential equation. J Egypt Math Soc 2017; 25: 434–437.

37. He CH, Liu C, He JH, et al. Low frequency property of a fractal vibration model for a concrete beam. Fractals 2021; Impress. DOI: 10.1142/S0218348X21501176.

38. He JH, Kou SJ, He CH, et al. Fractal oscillation and its frequency-amplitude property. Fractals 2021; 29: 2150105. DOI: 10.1142/S0218348X2150105X.

39. Zuniga AE, Romero OM, Trejo DO, et al. Investigation of the steady-state solution of the fractal forced Duffing’s oscillator using an ancient Chinese algorithm. Fractals 2021; Impress. DOI: 10.1142/S0218348X21501334.

40. Marinca V and Herisanu N. Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches. Dordrecht London, New York: Springer Heidelberg, 2011.

41. Hu H. A classical perturbation technique which is valid for large parameters. J Sound Vib 2004; 269: 409–412.

42. Cheung YK, Chen SH and Lau SL. A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators. Int J Non-Linear Mech 1991; 26: 367–378.

43. He JH. Modified Lindstedt-Poincare methods for some strongly non-linear oscillations. Int J Non-linear Mech 2002; 37: 315–320.