A generalization of carries processes and Eulerian numbers

Fumihiko Nakano1 and Taizo Sadahiro2

Abstract

We study a generalization of Holte’s amazing matrix, the transition probability matrix of the Markov chains of the 'carries' in a non-standard numeration system. The stationary distributions are explicitly described by the numbers which can be regarded as a generalization of the Eulerian numbers and the MacMahon numbers. We also show that similar properties hold even for the numeration systems with the negative bases.

MSC: 60C05, 60J10, 05E99
Keywords: Carries, Markov chain, Eulerian number.

1 Introduction and statements of results

The transition probability matrix so-called 'amazing matrix' of the Markov chain of the 'carries' has very nice properties [5], and has unexpected connection to the Markov chains of riffle shuffles [2, 3]. Diaconis and Fulman [3] studies a variant of the carries process, type \(B \) carries process. Novelli and Thibon studies the carries process in terms of noncommutative symmetric functions [7]. This paper studies a generalization of the carries process which includes Diaconis and Fulman’s type \(B \) carries process as a special case. We study the transition probability matrices of the Markov chains of the carries in the numeration systems with non-standard digit sets. We show that the matrices have the eigenvectors which can be perfectly described by a generalization of Eulerian numbers and the MacMahon numbers [8, 6, 1, 3]. We also show that similar properties hold even for the numeration systems with negative bases.

1.1 Numeration system

Throughout the paper, \(b \) denotes a positive integer and \(\mathcal{D} = \{ d, d+1, \ldots, d+b-1 \} \) denotes a set of integers containing 0. Therefore, \(-b < d < b\). Then, we have a numeration system \((b, \mathcal{D})\): Suppose that an integer \(x \) has a representation of the form,

\[
x = (x_kx_{k-1}\cdots x_0)_b \overset{\text{def}}{=} x_0 + x_1b + x_2b^2 + \cdots + x_kb^k, \quad x_0, x_1, \ldots, x_k \in \mathcal{D}, x_k \neq 0.
\]

Then, it can be easily shown that this representation is uniquely determined for \(x \) and

\[
\{(x_kx_{k-1}\cdots x_0)_b \mid k \geq 0, x_0, x_1, \ldots, x_k \in \mathcal{D}\} = \begin{cases} \mathbb{Z} & d \neq 0, -b + 1, \\ \mathbb{N} & d = 0, \\ -\mathbb{N} & d = -b + 1. \end{cases}
\]

is closed under the addition, where \(\mathbb{N} \) denotes the set of non-negative integers.

1Department of Mathematics, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan. e-mail : fumihiko@math.gakushuin.ac.jp

2Department of Computer Science, Tsuda Colledge, Tokyo, Japan. e-mail : sadahiro@tsuda.ac.jp
1.2 Carries process

Let \(\{X_{i,j}\}_{1 \leq i \leq n, j \geq 0} \) be the set of independent random variables each of which is distributed uniformly over \(\mathcal{D} \). Define the two stochastic processes \((A_0, A_1, A_2, \ldots)\) and \((C_0, C_1, C_2, \ldots)\) in the following way: \(C_0 = 0 \) with probability one. \((A_i)_{i \geq 0}\) is a sequence of \(\mathcal{D} \)-valued random variables satisfying

\[
A_i \equiv C_i + X_{1,i} + \cdots + X_{n,i} \pmod{b}, \quad i = 0, 1, 2, \ldots
\]

and

\[
C_i = \frac{C_{i-1} + X_{1,i-1} + \cdots + X_{n,i-1} - A_{i-1}}{b}, \quad i = 1, 2, 3, \ldots
\]

(See Figure 1.) It is obvious that \((C_0, C_1, C_2, \ldots)\) is a Markov process, which we call the carries process with \(n \) summands or simply \(n \)-carry process over \((b, \mathcal{D})\).

1.3 A generalization of Eulerian numbers

Let \(p \geq 1 \) be a real number and \(n \) a positive integer. Then we define an array of numbers \(v^{(p)}_{i,j}(n) \) for \(i = 0, 1, \ldots, n \) and \(j = 0, 1, \ldots, n+1 \) by

\[
v^{(p)}_{i,j}(n) = \sum_{r=0}^{j} (-1)^r \binom{n+1}{r} [p(j-r)+1]^{n-i},
\]

(2)

and define \(v^{(p)}_{i,i-1}(n) = 0 \). We denote

\[
\binom{n}{j}_p = v^{(p)}_{0,j}(n),
\]

which can be regarded as a generalization of the Eulerian numbers. In fact, \(\{\binom{n}{j}_p\}_p \) forms the array of the ordinary Eulerian numbers when \(p = 1 \), and MacMahon numbers \([8, 6, 1, 3]\) when \(p = 2 \).

1.4 Statement of the result

Throughout the paper, \(\Omega = \Omega_n(b, \mathcal{D}) \) denotes the state space of the \(n \)-carry process over \((b, \mathcal{D})\), that is, the set of possible values of carries, and \(p_{i,j} \) denotes the transition probability \(\Pr(C_{i+1} = j \mid C_i = i) \) for \(i, j \in \Omega_n(b, \mathcal{D}) \). For computational convenience, it is desirable for the transition probability matrix to have indices starting from 0. We define \(\tilde{p}_{i,j} = p_{i+s,j+s} \), where \(s \) is the minimal element of \(\Omega_n(b, \mathcal{D}) \). Then, we define the matrix \(P \) by

\[
P = (\tilde{p}_{i,j})_{0 \leq i,j \leq \#\Omega-1},
\]

(3)
where \(\#\Omega \) denotes the size of the state space, which is explicitly computed in Lemma 1. \(P \) is the central object of this paper.

Remark 1. As we will show in the later sections, this matrix \(P \) which we regard as a generalization of Holte’s amazing matrix is determined only by \(b, n \) and \(p \), and therefore these amazing matrices with same \(n \) and \(p \) form a commutative family. Holte’s amazing matrix corresponds to the case when \(p = 1 \) and Diaconis and Fulman’s type B carries process corresponds to the case when \(p = 2 \).

Theorem 1. Let \(\Omega = \Omega_n(b,D) \) be the state space of the \(n \)-carry process over \((b,D)\), and \(m = \#\Omega_n(b,D) \). let \(p \) be defined by

\[
p = \begin{cases}
 \frac{1}{(n-1)(-l)} & (n-1)l \notin \mathbb{Z}, \\
 1 & (n-1)l \in \mathbb{Z},
\end{cases}
\]

where \(l = d/(b-1) \) and \(\{x\} = x - \lfloor x \rfloor \), and let \(V = \left(v_{i,j}^p(n)\right)_{0 \leq i,j \leq m-1} \). Then, the transition probability matrix \(P \) is diagonalized by \(V \):

\[VPV^{-1} = \text{diag}(1, b^{-1}, \ldots, b^{-(m-1)}) .\]

In particular, by Lemma 5, the probability vector \(\pi \) of the stationary distribution of the carries process is

\[
\pi = (\pi(s), \pi(s+1), \ldots, \pi(s+m-1)) = \frac{1}{p^nn!} \left\langle \begin{array}{c}
n \\
0 \\
\vdots \\
m-1
\end{array} \right\rangle^p .
\]

Remark 2. It is remarkable that our amazing matrix has the eigenvalues of the same form \(1, 1/b, 1/b^2, \ldots \) as those of Holte’s amazing matrix.

Corollary 1. Let \(S_n \) be the sum of \(n \) independent random variables each of which is distributed uniformly over the unit interval \([0,1]\). Then, for all positive real numbers \(p \geq 1 \) and integers \(k \), the probability of \(S_n \) being in the interval \(\frac{1}{p} + [k-1,k] \) is

\[
\Pr \left(S_n \in \frac{1}{p} + [k-1,k] \right) = \frac{1}{p^nn!} \left\langle \begin{array}{c}
n \\
k-1
\end{array} \right\rangle^p .
\]

Remark 3. This corollary can be derived directly from the formula of the distribution of sums of independent uniform random variables in [4], and it is shown for the case \(p = 2 \) in [3].

Example 1. Let \(p \geq 1 \) be a real number. As will be shown in the later section, the array of generalized Eulerian numbers satisfies the following recursive relations

\[
\left\langle \begin{array}{c}
n+1 \\
k
\end{array} \right\rangle^p = (pk+1)\left\langle \begin{array}{c}
n \\
k
\end{array} \right\rangle^p + (p(n+1-k)-1)\left\langle \begin{array}{c}
n \\
k-1
\end{array} \right\rangle^p ,
\]

and the boundary conditions

\[
\left\langle \begin{array}{c}
n \\
0
\end{array} \right\rangle^p = 1, \quad \text{and} \quad \left\langle \begin{array}{c}
n \\
k
\end{array} \right\rangle^p = 0 \text{ for } k > n .
\]

(See Figure 2.)
The probability density function of S_3 described in Theorem 1 is

$$f(x) = \begin{cases}
 x^2/2 & \text{if } 0 \leq x < 1, \\
 -(x - \frac{3}{2})^2 + \frac{3}{4} & \text{if } 1 \leq x < 2, \\
 (x - 3)^2/2 & \text{if } 2 \leq x \leq 3, \\
 0 & \text{otherwise.}
\end{cases}$$
The probability vectors appear in the third rows of the triangles of the generalized Eulerian numbers (Figure 2).

2 Proof

2.1 State space and transition probability

Lemma 1. Let \(\Omega = \Omega_n(b, \mathcal{D}) \) be the state space of the \(n \)-carry process over the numeration system \((b, \mathcal{D})\). Then, \(\Omega = \{s, s+1, \ldots, t\} \) with

\[
s = -[(n-1)(-l)] = [(n-1)l], \quad t = [(n-1)(l+1)],
\]

where \(l = d/(b-1) \). Therefore, the size of the state space \(\Omega \) is

\[
\#\Omega = \begin{cases} n+1 & (n-1)l \not\in \mathbb{Z}, \\ n & (n-1)l \in \mathbb{Z}. \end{cases}
\]

Proof. Suppose that we add \(n \) numbers,

\[
(x_1, x_1, x_1, \ldots, x_1, x_{1,0})_b, (x_2, x_2, x_2, x_2, \ldots, x_2, x_{2,0})_b, \ldots, (x_n, x_n, x_n, x_n, \ldots, x_n, x_{n,0})_b,
\]

and get the sum \((a_{i+1}, a_0, a_1, a_0)_b\) and the carries \(c_0, c_1, c_2, \ldots \). That is, \(c_0 = 0 \) and

\[
c_{i+1} = \frac{c_i + x_{1,i} + \cdots + x_{n,i} - a_i}{b},
\]

where \(a_i \in \mathcal{D} \) and \(a_i \equiv c_i + x_{1,i} + \cdots + x_{n,i} \pmod{b} \). Let \(F \) be defined by

\[
F = \{x_1 b^{-1} + x_2 b^{-2} + \cdots + x_m b^{-m} \mid x_i \in \mathcal{D}_b, m > 0 \in \mathbb{Z}\}.
\]
Then, F is a dense subset of the interval $(l, l + 1)$, where $l = d/(b - 1)$.

$$c_i = c \iff \frac{(x_{1,i-1} \cdots x_{1,0})_b + \cdots + (x_{n,i-1} \cdots x_{n,0})_b}{b^i} = \frac{c b^i + (a_{i-1} \cdots a_0)_b}{b^i}$$

Since $(x_{1,i-1} \cdots x_{1,0})_b, \ldots, (x_{n,i-1} \cdots x_{n,0})_b \in F$, we have $c \in nF - F \subset ((n-1)l - 1, (n-1)(l+1) + 1)$. Conversely, if $c \in ((n-1)l - 1, (n-1)(l+1) + 1) \cap \mathbb{Z}$, then $c+F \subset nF$. Therefore s is the smallest integer strictly greater than $(n-1)l - 1$ and t is the greatest integer strictly smaller than $(n-1)(l+1) + 1$, that is,

$$s = -[(n-1)(-l)], \quad t = [(n-1)(l+1)].$$

\[\square\]

Theorem 2.

$$p_{i,j} = \frac{1}{b^n} \sum_{k=0}^{\left\lfloor \frac{d(n-1)+1}{b} \right\rfloor} (-1)^k \binom{n+1}{k} \left(n + b(j + 1 - k) - d(n-1) - i - 1 \right), \quad i, j \in \Omega_n(b, \mathcal{D}).$$

Proof. This proof is essentially the same as that of Holte [5] for the case when $\mathcal{D} = \{0, 1, \ldots, b-1\}$. $p_{i,j}$ is the probability of $C_{k+1} = j$ under $C_k = i$ for some $k > 0$. $C_{k+1} = j$ and $C_k = i$ implies there exists a number $a \in \mathcal{D}$, such that,

$$j = \frac{i + X_{1,k} + X_{2,k} + \cdots + X_{n,k} - a}{b}.$$

We count the number N of the solutions $(x_1, x_2, \ldots, x_n, a) \in \mathcal{D}^{n+1}$ of the equation

$$bj + a = i + x_1 + x_2 + \cdots + x_n.$$

This is equal to the number of solutions $(x_1, x_2, \ldots, x_n, y) \in \mathcal{D}^n \times \{0, 1, \ldots, b-1\}$ for the equation

$$bj + d + b - 1 - i = x_1 + x_2 + \cdots + x_n + y.$$

By adding d to the both sides, N is equal to the number of solutions $(x_1, \ldots, x_n, z) \in \mathcal{D}^{n+1}$ for

$$b(j + 1) + 2d - 1 - i = x_1 + x_2 + \cdots + x_n + z.$$

Thus, N is the coefficient of $x^{b(j+1)+2d-1-i}$ in $(x^d + x^{d+1} + \cdots + x^{d+b-1})^{n+1}$. Since

$$\sum_{k=0}^{\left\lfloor \frac{d(n-1)+1}{b} \right\rfloor} (-1)^k \binom{n+1}{k} x^{b(k)k} \left(\sum_{r=0}^{\infty} \binom{n+r}{n} x^r \right),$$

$$= x^{d(n+1)} \left(\frac{1 - x^b}{1 - x} \right)^{n+1}$$

$$= x^{d(n+1)} \left(\frac{n+1}{k} \right) x^{bk} \left(\sum_{r=0}^{\infty} \binom{n+r}{n} x^r \right),$$

$$= x^{d(n+1)} \left(\frac{n+1}{k} \right) x^{bk} \left(\sum_{r=0}^{\infty} \binom{n+r}{n} x^r \right),$$

$$= x^{d(n+1)} \left(\frac{n+1}{k} \right) x^{bk} \left(\sum_{r=0}^{\infty} \binom{n+r}{n} x^r \right),$$

$$= x^{d(n+1)} \left(\frac{n+1}{k} \right) x^{bk} \left(\sum_{r=0}^{\infty} \binom{n+r}{n} x^r \right),$$
we have

\[N = \sum_{d(n + 1) + bk + r = (j + 1) + 2d - 1 - i} (-1)^k \binom{n + 1}{k} \binom{n + r}{n} x^r \]

\[= \sum_{b(j + 1) + 2d - 1 - i - d(n + 1) - bk \geq 0} (-1)^k \binom{n + 1}{k} \binom{n + b(j + 1) + 2d - 1 - i - d(n + 1) - bk}{n} x^r \]

\[j + 1 + \left\lfloor \frac{-1 + i + d(n-1)}{b} \right\rfloor = j - \left\lfloor \frac{i + d(n-1)}{b} \right\rfloor, p_{i,j} = \frac{N}{b^r} \text{ and the theorem follows.} \]

Lemma 2. Let \(P = (\tilde{p}_{i,j}) \) be the matrix defined by (3) and let \(p \) be defined by (4). Then,

\[\tilde{p}_{i,j} = \frac{1}{b^p} \sum_{r=0}^{j} (-1)^r \binom{n + 1}{r} \binom{n + b(j + 1 - r) + \frac{b-1}{p} - i}{n} \]

Proof. Let \(s \) be the minimal element of the state space \(\Omega_n(b,D) \) of the \(n \)-carry process. Then, recall that

\[s = - \left\lfloor (n - 1) \frac{-d}{b-1} \right\rfloor = \left\lfloor (n - 1) \frac{d}{b-1} \right\rfloor. \]

Therefore,

\[\tilde{p}_{i,j} = p_{i+s,j+s} = \frac{1}{b^p} \sum_{r=0}^{j} (-1)^r \binom{n + 1}{r} \binom{n + b(j + s + 1 - r) - d(n - 1) - i - s - 1}{n} \]

\[= n + (b - 1) s + b(j + 1 - r) - d(n - 1) - i - 1 \]

\[= n + (b - 1) \left\lfloor (n - 1) \frac{-d}{b-1} \right\rfloor + b(j + 1 - r) - d(n - 1) - i - 1 \]

\[= n + (b - 1) \left((n - 1) \frac{-d}{b-1} \right) + b(j + 1 - r) - d(n - 1) - i - 1 \]

\[= n + (b - 1) \frac{(n-1)d - (n-1)d \pmod{b-1} + b(j + 1 - r) - d(n - 1) - i - 1}{b-1} \]

\[= n + (b - 1) \frac{(b-1) - (n-1)d \pmod{b-1} + b(j + 1 - r) - d(n - 1) - i - 1}{b-1} \]

\[= n + (b - 1) \frac{(n-1)(-d)}{b-1} + b(j + 1 - r) - i \]

\[= \begin{cases} n + (b - 1) \frac{(n-1)(-d)}{b-1} + b(j + 1 - r) - i & \frac{(n-1)(-d)}{b-1} \in \mathbb{Z}, \\ n + (b - 1) + b(j + 1 - r) - i & \frac{(n-1)(-d)}{b-1} \notin \mathbb{Z}. \end{cases} \]

Here, \(x \pmod{N} \) denotes the integer \(y \in \{0, 1, \ldots, N - 1\} \) such that \(x - y \in N \mathbb{Z} \). Then, we calculate a common upper bound of the range of the summation in (5):

\[n + b(j + 1 - r) + \frac{b-1}{p} - i \geq n \iff r \leq j + \frac{b-1}{pb} - \frac{i}{p}. \]

Since \(p \geq 1 \) and \(b > 1 \), \(j + \frac{b-1}{pb} - \frac{i}{p} \leq j \). \qed
2.2 Generalized Eulerian numbers

Lemma 3. \[v^{(p)}_{i,n+1} = 0. \]

Proof. \[v^{(p)}_{i,n+1}(n) = \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} [p(n+1-r)+1]^{n-i} \]

This is a linear combination of \[\sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} r^k = 0, \quad k = 0, 1, \ldots, n. \]

Lemma 4. \[v^{(p)}_{i,j}(n) = [p(n+1-j)-1]v^{(p)}_{i,j-1}(n-1) + (pj+1)v^{(p)}_{i,j}(n-1). \] (7)

Proof. The first term \(T_1 \) of right hand side of (7) can be rewritten as

\[T_1 = \sum_{k=1}^{j} (-1)^{k-1} \binom{n}{k-1} [p(n+1-j)-1][p(j-k)+1]^{n-1-i}, \]

and the second term \(T_2 \)

\[T_2 = \sum_{k=1}^{j} (-1)^k \binom{n}{k} (pj+1)[p(j-k)+1]^{n-1-i} + (pj+1)(pj+1)^{n-1-i}. \]

Thus the right hand side of (7) is

\[T_1 + T_2 = \sum_{k=1}^{j} (-1)^k \left\{ -\binom{n}{k-1} [p(n+1-j)-1] + \binom{n}{k} (pj+1) \right\} [p(j-k)+1]^{n-1-i} + (pj+1)^{n-i} \]

\[\sum_{k=1}^{j} (-1)^k \binom{n+1}{k} [p(j-k)+1]^{n-i} + (pj+1)^{n-i} \]

\[= v^{(p)}_{i,j}(n). \]

Lemma 5. \[\sum_{j=0}^{n} v^{(p)}_{i,j}(n) = \begin{cases} p^n n! & \text{if } i = 0, \\ 0 & \text{if } i > 0. \end{cases} \]
Proof. By Lemma 4, we have

\[
\sum_{j=0}^{n} v_{i,j}^{(p)}(n) = \sum_{j=0}^{n} \left\{ [p(n+1-j) - 1]v_{i,j-1}^{(p)}(n-1) + (pj+1)v_{i,j}^{(p)}(n-1) \right\}
\]

\[
= \sum_{j=0}^{n-1} [p(n-j) - 1]v_{i,j}^{(p)}(n-1) + \sum_{j=0}^{n-1} (pj+1)v_{i,j}^{(p)}(n-1)
\]

\[
= \sum_{j=0}^{n-1} pnv_{i,j}^{(p)}(n-1)
\]

\[
= pn \sum_{j=0}^{n-1} v_{i,j}^{(p)}(n-1)
\]

\[
= \left\{ \begin{array}{ll}
p^n n! & \text{if } i = 0, \\
0 & \text{if } i > 0.
\end{array} \right.
\]

The following Proposition 1 shows a symmetry of the generalized Eulerian number.

Proposition 1. Let \(n \) be a positive integer. Then

\[
v_{i,n-1-j}^{(1)} = (-1)^i v_{i,j}^{(1)}(n) \quad \text{for } 0 \leq j \leq n-1.
\]

Let \(p > 1 \) and \(p^* \) be the real number satisfying

\[
\frac{1}{p} + \frac{1}{p^*} = 1.
\]

Then,

\[
v_{i,n-j}^{(p^*)}(n) = (-1)^i \left(\frac{p^*}{p} \right)^{n-i} v_{i,j}^{(p)}(n) \quad \text{for } 0 \leq j \leq n.
\]

Proof. We show the proof only for the second part. The first part can be proved in the same manner.
If \(p > 1 \) then \(p^* = p/(p - 1) \).

\[
v_{i,n-j}^{(p^*)}(n) = \sum_{k=0}^{n-j} (-1)^k \left(\begin{array}{c} n+1 \\ k \end{array} \right) (p^*(n-j-k)+1)^{n-i}
= \sum_{k=n+1-j}^{n+1} (-1)^k \left(\begin{array}{c} n+1 \\ k \end{array} \right) (p^*(n-j-k)+1)^{n-i}
= \sum_{k=0}^{j} (-1)^{n+1-k'} \left(\begin{array}{c} n+1 \\ n+1-k' \end{array} \right) (p^*(n-j-(n+1-k'))+1)^{n-i}
= \sum_{k=0}^{j} (-1)^{n+1-k'} \left(\begin{array}{c} n+1 \\ k' \end{array} \right) \left(\frac{p}{p-1} (k' - j - 1) + 1 \right)^{n-i}
= (-1)^n \left(\frac{1}{p-1} \right)^{n-i} \sum_{k=0}^{j} (-1)^k \left(\begin{array}{c} n+1 \\ k \end{array} \right) (p(j-k+1) - p + 1)^{n-i}
= \frac{(-1)^i}{(p-1)^{n-i}} \sum_{k=0}^{j} (-1)^k \left(\begin{array}{c} n+1 \\ k \end{array} \right) (p(j-k) + 1)^{n-i}
\]

\[\Box\]

2.3 Left eigenvectors

Proof of Theorem 1. The proof is essentially the same as that of Holte [5]. It suffices to show that

\[
\sum_{k=0}^{m-1} v_{i,k}^{(p)}(n) \tilde{p}_{k,j} = \frac{1}{b^0} v_{i,j}^{(p)}(n).
\]

We prove the theorem for the case in which \(p \neq 1 \), i.e., \(m = n + 1 \), and the other case can be proved in the same manner. By Lemma 2 we have

\[
\tilde{p}_{k,j} = \frac{1}{b^0} \sum_{r=0}^{j} (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array} \right) \left(n + K(j,r) - k \right),
\]

where we put \(K(j,r) = b(j - r) + \frac{b-1}{p} \) for the simplicity of the notation.

\[
\sum_{k=0}^{n} v_{i,k}^{(p)}(n) \tilde{p}_{k,j} = \sum_{k=0}^{n} \frac{1}{b^0} \sum_{r=0}^{j} (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array} \right) \left(n + K(j,r) - k \right) v_{i,k}^{(p)}(n)
= \frac{1}{b^0} \sum_{r=0}^{j} (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array} \right) \sum_{k=0}^{n} \left(n + K(j,r) - k \right) v_{i,k}^{(p)}(n)
= \frac{1}{b^0} \sum_{r=0}^{j} (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array} \right) \{pK(j,r) + 1\}^{n-i}.
\]
The third equality in the above transformation is derived as follows: First recall that \(v_{i,k}(n) \) is the coefficient of \(x^k \) in
\[
\left(\sum_{\nu=0}^{n+1} (-1)^\nu \binom{n+1}{\nu} x^\nu \right) \left(\sum_{\mu=0}^\infty (p\mu + 1)^{n-i} x^\mu \right) = (1 - x)^{n+1} \left(\sum_{\mu=0}^\infty (p\mu + 1)^{n-i} x^\mu \right),
\]
and
\[
\frac{1}{(1 - x)^{n+1}} = \sum_{k=0}^\infty \binom{n+k}{n} x^k.
\]
Therefore, \(\sum_{k=0}^{K(j,r)} \binom{n+K(j,r)-k}{n} v_{i,k}(n) \) is the coefficient of \(x^{K(j,r)} \) in \(\sum_{\mu=0}^\infty (p\mu + 1)^{n-i} x^\mu \).

It can be easily confirmed that \(pK(j, r) + 1 = b(p(j - r) + 1) \) which completes the proof. \(\square \)

Theorem \(\square \) gives a way of finding a numeration system \((b, D)\) whose \(n\)-carry process has the stationary distribution of the form
\[
\pi = (\pi(s), \pi(s+1), \ldots, \pi(s+m-1)) = \frac{1}{p^n n!} \left(\begin{array}{c} n \\ 0 \\ \vdots \\ m-1 \end{array} \right)_p
\]
for any given \(n \) and rational \(p \geq 1 \). For instance, if \(p = \frac{K}{L} \) where \(K \) and \(L \) are coprime positive integers such that \(K \geq L \), then we can choose \(b \) and \(d \) as
\[
b = (n-1)K + 1, \quad d = -L.
\]

Example 2. We construct numeration systems for \(p = 2 \) and \(5/3 \).

\(n \)	\(b \)	\(D \)	\(P \)	\(V \)
2	3	\{-1, 0, 1\}	\(\frac{1}{3} \begin{pmatrix} 3 & 6 & 0 \\ 1 & 7 & 1 \\ 0 & 6 & 3 \end{pmatrix} \)	\(\frac{1}{3} \begin{pmatrix} 1 & 6 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \)
3	5	\{-1, 0, 1, 2, 3\}	\(\frac{1}{5} \begin{pmatrix} 10 & 80 & 35 & 0 \\ 4 & 68 & 52 & 1 \\ 1 & 52 & 68 & 4 \\ 0 & 35 & 80 & 10 \end{pmatrix} \)	\(\frac{1}{5} \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix} \)
4	7	\{-1, 0, 1, 2, 3, 4, 5\}	\(\frac{1}{7} \begin{pmatrix} 35 & 826 & 1330 & 210 & 0 \\ 15 & 640 & 1420 & 325 & 1 \\ 5 & 470 & 1451 & 470 & 5 \\ 1 & 325 & 1420 & 640 & 15 \\ 0 & 210 & 1330 & 826 & 35 \end{pmatrix} \)	\(\frac{1}{7} \begin{pmatrix} 1 & 76 & 230 & 76 & 1 \\ 1 & 22 & 0 & -22 & -1 \\ 1 & 4 & -10 & 4 & 1 \\ 1 & -2 & 0 & 2 & -1 \\ 1 & -4 & 6 & -4 & 1 \end{pmatrix} \)

Table 1: Amazing matrices with \(p = 2 \)
\[
\begin{array}{c|c|c|c|c}
 n & b & D & P & V \\
\hline
2 & \{-3, -2, \ldots, 2\} & \frac{1}{p^2} \begin{pmatrix} 10 & 25 & 1 \\ 6 & 27 & 3 \\ 3 & 27 & 6 \end{pmatrix} & \begin{pmatrix} 1 & 37/9 & 4/9 \\ 1 & -1/3 & -2/3 \\ 1 & -2 & 1 \end{pmatrix} \\
3 & \{-3, -2, \ldots, 7\} & \frac{1}{p^3} \begin{pmatrix} 84 & 804 & 439 & 4 \\ 56 & 745 & 520 & 10 \\ 35 & 676 & 600 & 20 \\ 20 & 600 & 676 & 35 \end{pmatrix} & \begin{pmatrix} 1 & 404/27 & 311/27 & 8/27 \\ 1 & 28/9 & -11/3 & -4/9 \\ 1 & -4/3 & -1/3 & 2/3 \\ 1 & -3 & 3 & -1 \end{pmatrix} \\
4 & \{-3, -2, \ldots, 12\} & \frac{1}{p^4} \begin{pmatrix} 715 & 20176 & 37390 & 7240 & 15 \\ 495 & 18000 & 38326 & 8680 & 35 \\ 330 & 15900 & 38960 & 10276 & 70 \\ 210 & 13900 & 39280 & 12020 & 126 \\ 126 & 12020 & 39280 & 13900 & 210 \end{pmatrix} & \begin{pmatrix} 1 & 3691/81 & 8891/81 & 2321/81 & 16/81 \\ 1 & 377/27 & -31/9 & -101/9 & -8/27 \\ 1 & 19/9 & -61/9 & 29/9 & 4/9 \\ 1 & -7/3 & 1 & 1 & -2/3 \\ 1 & -4 & 6 & -4 & 1 \end{pmatrix} \\
\end{array}
\]

Table 2: Amazing matrices with \(p = \frac{5}{3} \)

2.4 Sum of independent uniform random variables

Proof of Corollary 1 Let \(X_{i,j} (i = 1, 2, \ldots, n, j = 1, 2, \ldots) \) be independent random variables each distributed uniformly on \(D \). Then, for each integer \(k \geq 1 \), the random variables

\[
X_i^{(k)} = \frac{X_{i,1}}{b} + \frac{X_{i,2}}{b^2} + \cdots + \frac{X_{i,k}}{b^k}, \quad i = 1, 2, \ldots, n
\]

are independent random variables uniformly distributed over the set

\[
R_k = \left\{ \frac{x_1}{b} + \frac{x_2}{b^2} + \cdots + \frac{x_k}{b^k} \mid x_i \in D \right\}.
\]

Therefore

\[
\lim_{k \to \infty} \Pr(X_i^{(k)} \in [a, b]) = b - a, \quad \text{for } a \geq b \in [l, l+1] \text{ and } i = 1, 2, \ldots, n.
\]

Let \(X_1, X_2, \ldots, X_n \) be independent random variables each of which is distributed uniformly over \([l, l+1]\). Then, for any integer \(c \in \Omega \),

\[
\lim_{k \to \infty} \Pr(X_1^{(k)} + X_2^{(k)} + \cdots + X_n^{(k)} \in c + [l, l+1]) = \Pr(X_1 + X_2 + \cdots X_n \in c + [l, l+1]).
\]

Since

\[
\lim_{k \to \infty} \Pr(X_1^{(k)} + X_2^{(k)} + \cdots + X_n^{(k)} \in c + [l, l+1]) = \pi(c),
\]

we have

\[
\pi(c) = \Pr(X_1 + X_2 + \cdots X_n \in c + [l, l+1]).
\]

Let \(p > 1 \) be a non-integral rational number, and suppose that we choose \(b \) and \(d \) so that

\[
p = \frac{1}{(n-1)(-l)}
\]
holds, which is always possible by (8). Then, we have
\[
\frac{1}{p} = (n-1)(-l) - \lfloor (n-1)(-l) \rfloor \iff nl + \frac{1}{p} = l - \lfloor (n-1)(-l) \rfloor = l + 1 - \lfloor (n-1)(-l) \rfloor \\
\iff nl + \frac{1}{p} + [k-1,k] = (s+k) + [l,l+1].
\]

Let \(Y_1, Y_2, \ldots, Y_n \) be independent random variables each uniformly distributed on the unit interval \([0,1] \).
\[
\Pr(Y_1 + Y_2 + \ldots + Y_n \in \frac{1}{p} + [k-1,k]) = \Pr((Y_1 + l) + \ldots + (Y_n + l) \in nl + \frac{1}{p} + [k-1,k])
\]
\[
= \Pr(X_1 + X_2 + \ldots + X_l \in nl + \frac{1}{p} + [k-1,k])
\]
\[
= \Pr(X_1 + X_2 + \ldots + X_l \in (s+k) + [l,l+1])
\]
\[
= \pi(s+k)
\]
\[
= \frac{1}{p^n n!} \left\langle \frac{n}{k} \right\rangle^p.
\]

When \(p \) is an integer, the statement is proved by a similar argument. Since both sides of the equation (5) are continuous function of \(p \), the statement of the theorem holds when \(p \) is irrational. \(\square\)

Remark 4. Corollary 1 gives a different proof and a new interpretation for Proposition 1 for the case \(i = 0 \).

3 Negative base

In this section, we consider carries processes over the numeration systems with the negative bases. Let \(b > 1 \) be an integer and \(\mathcal{D} = \{d, d + 1, \ldots, d + b - 1\} \) a set of integers containing 0. Suppose an integer \(x \) can be represented in the form:
\[
x = (x_l x_{l-1} \cdots x_0)_{-b} = x_l(-b)^l + x_{l-1}(-b)^{l-1} + \cdots + x_1(-b) + x_0,
\]
where \(l \) is a non-negative integer and \(x_l \neq 0 \). Then this representation is unique and the set
\[
\{(x_l x_{l-1} \cdots x_0)_{-b} | l \geq 0, x_k \in \mathcal{D}\}.
\]
is closed under the addition. We can define the \(n \)-carry process over the numeration system \((-b, \mathcal{D})\) in the same manner as the positive base case. Let \(\{X_{i,j}\}_{1 \leq i \leq n, j \geq 0} \) be a set of i.i.d. random variables each distributed uniformly on \(\mathcal{D} \). Then the carries process \((C_0, C_1, C_2, \ldots)\) is defined as follows:
\[
\Pr(C_0 = 0) = 1 \text{ and } \quad C_i = \frac{C_{i-1} + X_{1,j-1} + \cdots + X_{n,j-1} - A_{i-1}}{-b} \text{ for } i > 0,
\]
where \(A_j \) is \(\mathcal{D} \)-valued. These carries processes have the properties similar to those of the positive base cases. The proofs of the following Lemma 6, Theorem 3, and Lemma 7 are similar to those of Lemma 1, Theorem 2, and Lemma 2. The proof of Theorem 4 needs an additional combinatorial argument.
Lemma 6. Let $\Omega = \Omega_n(-b, D)$ be the state space of the n-carry process over the numeration system $(-b, D)$. Then, $\Omega = \{s, s + 1, \ldots, t\}$ with

$$s = -[(n - 1)(n)] = [(n - 1)|l], \ t = [(n - 1)(l + 1)],$$

where $l = -(d - b)/(b + 1)$. Therefore, the size of the state space Ω is

$$\#\Omega = \begin{cases} n + 1 & (n - 1)|l \notin \mathbb{Z}, \\ n & (n - 1)|l \in \mathbb{Z}. \end{cases}$$

Theorem 3. Let $i, j \in \Omega(-b, D)$. Then the transition probability $p_{i,j} = \Pr(C_{t+1} = j | C_{t} = i)$ for $t > 0$ is

$$p_{i,j} = \frac{1}{b^n} \left[\frac{-1 + (1 - n)d}{b} \right]_{0}^{n} (-1)^r \binom{n + 1}{r} \binom{n - b(j - 1 + r) - i - 1 + (1 - n)d}{n}.$$

We denote

$$\tilde{p}_{i,j} = p_{i+s,j+s},$$

where s is the minimal element of the state space $\Omega(-b, D)$ of the n-carry process over $(-b, D)$.

Lemma 7. Let p be defined by

$$p = \begin{cases} \frac{1}{\{1\}} (n - 1)|l \notin \mathbb{Z} & (\Leftrightarrow m = n + 1), \\ 1 & (n - 1)|l \in \mathbb{Z} & (\Leftrightarrow m = n). \end{cases}$$

where $l = -(d - b)/(b + 1)$ and $m = \#\Omega_n(-b, D)$. Then,

$$\tilde{p}_{i,j} = \frac{1}{b^n} \sum_{r=0}^{n-j} (-1)^r \binom{n + 1}{r} \binom{n + b(n + 1 - j - r) - \frac{b+1}{p} - i}{n}. $$

Theorem 4. Let $P = (\tilde{p}_{i,j})_{0 \leq i, j \leq m-1}$ be the transition probability matrix of the n-carry process over the numeration system $(-b, D)$, and $m = \#\Omega(-b, D)$ be the size of the state space. Let p be defined by

$$p = \begin{cases} \frac{1}{\{1\}} (n - 1)|l \notin \mathbb{Z} & (\Leftrightarrow m = n + 1), \\ 1 & (n - 1)|l \in \mathbb{Z} & (\Leftrightarrow m = n). \end{cases}$$

where $l = -(d - b)/(b + 1)$ and $\{x\} = x - \lfloor x \rfloor$. Let $V = (V_{i,j}^{(p)})_{0 \leq i, j \leq m-1}$. Then, we have

$$VPV^{-1} = \text{diag}(1, (-b)^{-1}, \ldots, (-b)^{m-1}).$$

In particular, the n-carry process over $(-b, D)$ has the stationary distribution

$$\pi = (\pi(s), \pi(s + 1), \ldots, \pi(s + m - 1)) = \frac{1}{p^m n!} \left(\begin{array}{c} n \\ 0 \\ 0 \\ \vdots \\ n \\ m - 1 \end{array} \right).$$

Proof. It suffices to show that

$$\sum_{k=0}^{m-1} V_{i,k}^{(p)}(n) \tilde{p}_{k,j} = \frac{1}{(-b)^{n}} V_{i,j}^{(p)}(n).$$

(10)
Recall that
\[\tilde{p}_{k,j} = \frac{1}{b^n} \sum_{r=0}^{n-j} (-1)^r \binom{n+1}{r} \binom{n+K(j,r)-k}{n}, \]
where, we put \(K(j,r) = b(n+1-j-r) - \frac{b+1}{b} \) for the simplicity of the notation. Therefore,

\[
\text{L.H.S. of (10)} = \sum_{k=0}^{m} \frac{1}{b^n} \sum_{r=0}^{n-j} (-1)^r \binom{n+1}{r} \binom{n+K(j,r)-k}{n} v_{i,k}(p)(n) \\
= \frac{1}{b^n} \sum_{r=0}^{n-j} \sum_{k=0}^{K(j,r)} (-1)^r \binom{n+1}{r} \binom{n+K(j,r)-k}{n} v_{i,k}(p)(n) \\
= \frac{1}{b^n} \sum_{r=0}^{n-j} (-1)^r \binom{n+1}{r} K(j,r) \sum_{k=0}^{K(j,r)} \binom{n+K(j,r)-k}{n} v_{i,k}(p)(n) \\
= \frac{1}{b^n} \sum_{r=0}^{n-j} (-1)^r \binom{n+1}{r} [pK(j,r) + 1]^n - i \\
\hspace{2cm} \text{(We use the same argument as in the proof of Theorem 2)} \\
= \frac{1}{b^n} \sum_{r'=j+1}^{n+1} (-1)^{n+1-r'} \binom{n+1}{r+1-r'} [pK(j,n+1-r') + 1]^n - i \\
\hspace{2cm} \text{(We use the transformation } r' = n+1-r.) \\
= \frac{1}{b^n} \sum_{r=j+1}^{n+1} (-1)^{n+1-r} \binom{n+1}{r} [-b(p(j-r') + 1)]^n - i.
\]

\(\square \)

4 Concluding remarks

Many natural questions arise.

In the forthcoming paper, we will show a formula for the right eigenvectors, which involves Stirling numbers.

Our theorems hold only for the numeration systems \((b,D)\), where \(D\) consists of consecutive integers containing 0. For example, the 2-carry process over \((3,\{-1,0,4\})\) has rather large state space

\[\Omega_2(3,\{-1,0,4\}) = \{-5,-4,\ldots,4\}, \]
and the transition probability matrix

\[
P = \frac{1}{9} \begin{pmatrix}
1 & 2 & 0 & 3 & 0 & 2 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & 2 & 1 & 4 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & 3 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 3 & 0 & 2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 & 2 & 1 & 4 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 3 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 2 & 1 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 3 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & 0 & 3 & 0 & 2 & 1
\end{pmatrix},
\]
whose characteristic polynomial \(\det(xI - P) \) is

\[
(x - 1)(3x - 1)(9x - 1)(531441x^7 - 19683x^5 + 5103x^4 - 1944x^3 - 297x^2 + 24x + 2).
\]

Although there are eigenvalues of the form \(1, 1/3, 1/3^2 \), we have no knowledge on the rest of the eigenvalues. The difficulty comes from the geometric structure of the fundamental domain \(\{(x_l | x_{l-1} \ldots x_0)_b | l \geq 0, x_k \in \mathbb{D}\} \).

Diaconis and Fulman \([2,3]\) shows the relation between carries processes and shufflings for the case when \(p = 1 \) and \(2 \). We do not know whether there exist some shufflings corresponding to the cases with \(p \neq 1, 2 \).

References

[1] C. Chow, I. M. Gessel, On the descent numbers and major indices for the hyperoctahedral group, Adv. Appl. Math., 38 (2007) 275–301.

[2] P. Diaconis, J. Fulman, Carries, shuffling, and an amazing matrix, Amer. Math. Monthly, 116 (2009) 780–803.

[3] P. Diaconis, J. Fulman, Carries, shuffling, and symmetric functions, Adv. App. Math., 43 (2009) 176–196.

[4] W. Feller, An Introduction to Probability Theory and its Applications, volume II, 2nd edition, John Wiley & Sons, Inc., New York-London-Sydney 1971.

[5] J. Holte, Carries, combinatorics, and an amazing matrix, Amer. Math. Monthly, 104 (1997) 138–149.

[6] P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., 19 (1921) 305–340.

[7] J.-C. Novelli, J.-Y. Thibon, Noncommutative symmetric functions and an amazing matrix, Adv. App. Math., 48 (2012) 528–534.

[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A060187.