Research Article

Prevalence of common mental disorders and associated factors among adults with Glaucoma attending University of Gondar comprehensive specialized hospital tertiary eye care and training center, Northwest, Ethiopia 2020

Mikias Mered Tilahun¹, Betelhem Temesgen Yibekal²*, Habtamu Kerebih², Fisseha Ademassu Ayele³

¹ Department of Optometry, School of Medicine, College of Medicine and Health Science, University of Gondar Comprehensive specialized hospital, Gondar Town, Ethiopia, ² Department of Psychiatry, School of Medicine, College of Medicine and Health Science, University of Gondar Comprehensive Specialized Hospital, Gondar Town, Ethiopia, ³ Department of Ophthalmology, School of Medicine, College of Medicine and Health Science, University of Gondar Comprehensive Specialized Hospital, Gondar Town, Ethiopia

* betelhementesgen28@gmail.com

Abstract

Purpose

This study aimed to assess the prevalence of common mental disorders and associated factors among adults with glaucoma at Gondar university comprehensive specialized hospital tertiary eye care and training center. Glaucoma predisposes patients to common mental problems and leads to wasteful, costly and inefficient use of medical services and complications of the diagnoses. So, determining the level and factors associated with common mental disorders among glaucoma patient would help to improve and integrate comprehensive ophthalmic services which address common mental disorder in a follow-up visit.

Methods

An institution-based cross-sectional study was conducted on 495 glaucoma patients selected by using systematic random sampling. Data were collected through face-to-face interview and chart review. Self-reported questionnaire (SRQ-20) was used to assess the presence of common mental disorders. Binary logistic regression analysis was done to identify factors associated with common mental disorders. Variables with P<0.05 were considered as factors significantly associated with common mental disorders.

Result

Four hundred sixty-eight patients were included in this study with a response rate of 94.54%. The mean age of the participant was 58 ± 14.11 years. The prevalence of common

OPEN ACCESS

Citation: Tilahun MM, Yibekal BT, Kerebih H, Ayele FA (2021) Prevalence of common mental disorders and associated factors among adults with Glaucoma attending University of Gondar comprehensive specialized hospital tertiary eye care and training center, Northwest, Ethiopia 2020. PLoS ONE 16(5): e0252064. https://doi.org/10.1371/journal.pone.0252064

Editor: Markos Tesfaye, St. Paul’s Hospital Millenium Medical College, ETHIOPIA

Received: January 22, 2021
Accepted: May 7, 2021
Published: May 20, 2021

Copyright: © 2021 Tilahun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript.

Funding: The author(s) received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.
mental disorders was found to be 29.5% (95% CI 25.4–33.3). Female sex (AOR = 3.79, 95% CI: 1.66–8.62) (p-value = 0.001), average monthly income of less than 1200 birr (AOR = 6.05 95% CI: 2.26–16.22) (p-value = 0.001), poor level of social support (AOR = 17.39 95% CI: 7.79–38.82) (p-value = 0.001), moderate and high risk of alcohol use (AOR = 10.42 95% CI: 2.74–39.54) (p-value = 0.001), presence of chronic medical illness (AOR = 3.85 95% CI: 2.07–7.16) (p-value = 0.001), receiving both drug and surgical treatment (AOR = 2.50, 95%CI: 1.30–4.83) (p-value = 0.006) and presence of systemic carbonic anhydrase inhibitors use (AOR = 3.16, 95%CI: 1.65–6.06) (p-value = 0.001) were significantly associated with increased level of common mental disorders.

Conclusion

Significant numbers of glaucoma patients have CMD and found significantly associated with socio-economic, ocular and systemic clinical factors. Therefore, the integration of psychosocial care into the current treatment of patients with glaucoma would have a significant advantage to help these patients.

Introduction

Glaucoma is a chronic, progressive, heterogeneous optic neuropathy, which leads to visual field loss, disabilities, and irreversible blindness [1]. Glaucoma is the second cause of irreversible blindness in the world with a prevalence of 3.54% between the populations of 40–80 years of age [2].

Africa takes the most prevalence of primary open-angle glaucoma in the world (4.20%) [2]. The disease is also one of the leading causes of blindness and visual impairment in Ethiopia [3].

Common mental disorders are a group of distress states manifesting with anxiety, depression, and unexplained somatic symptoms. They usually manifest with shifting combination of symptoms over time indicating emotional or mental abnormality [4, 5].

Several studies conducted across the world reported the prevalence of common mental disorders among glaucoma patients ranging from 18%-36% [6, 7]. A study done in Ethiopia revealed that 23.2% of adult glaucoma patients had CMD [8]. According to WHO’s report in 2011, CMDs are predicted to be the first leading cause of disease burden by the year 2030 [5]. They have been recognized as a common co-morbid illness with other medical conditions, particularly the disease which has chronic nature [4].

Progressive vision loss, lifelong application of multiple medications, frequent follow-ups, expenses related with those issues and productive loss due to visual loss lead glaucoma patients to comorbid common mental disorders (CMDs) [9–12]. Moreover, the studies also revealed that a chemical change initiated by the disease can have the ability to cause mental problems [13]. Vision loss is one of the leading causes of disability and is associated with reduced quality of life and increased depressive and anxiety symptoms [14, 15]. Depression and anxiety may cause a further decline in quality of life, may aggravate disability caused by the visual impairment and may increase vulnerability for health decline [16].

Depression and anxiety constitute a greater percentage of these co-morbid psychiatric disorders in glaucoma patients, which are often not considered by eye care practitioners who commonly emphasize on ophthalmic care of their patient [10, 13, 17–19].
Neglected comorbid mental problems impose an extra burden on the patient who struggles from the visual problem of the disease [11]. So those untreated and disregard comorbid psychiatric illnesses lead to worsening of the condition, a longer hospital stay, and increased costs of care [20]. This often leads to wasteful, costly, and inefficient use of medical services and complications of the diagnosis [7, 21, 22].

There is limited information about common mental disorders among glaucoma patients in Ethiopia in general and in the study area in particular. So this study will be used as reference for further studies and be of assistance in assessing the psycho-social burden of the disease which helps to tackle these comorbidities which vantage to decrease the quality of life of the patient. So this study aimed to assess the prevalence of the common mental disorder among adults with glaucoma and factors contributing to its future integrated and comprehensive intervention.

Methods

Study design and period
An institutional-based cross-sectional study conducted from June to August 2020.

Study area
The study was conducted at University of Gondar comprehensive specialized hospital tertiary eye care and training center in Gondar town, Ethiopia. This tertiary eye care is divided into 8 subspecialty clinics, which are anterior segment, Glaucoma, Retina, Pediatrics and strabismus, oculoplasty, Refraction, binocular vision, and low vision. Glaucoma clinic is a major subspecialty which provides care for about 960 glaucoma follow-up patient in a month.

Source population
All adult glaucoma patients (age ≥18 years) who had glaucoma follow-up at the University of Gondar comprehensive specialized hospital tertiary eye care and training center.

Study population
All adult glaucoma patients (≥18 years) who had glaucoma follow-up at the University of Gondar comprehensive specialized hospital tertiary eye care and training center who came during the data collection period were included. Glaucoma patients linked to the clinic for less than one month, prior clinical diagnosis of patients with depression or anxiety, and patients unable to answer the questionnaire due to general disability were excluded.

Sample size determination
This study had two specific objectives which were to estimate the prevalence of common mental disorders among adult glaucoma patients and to identify factors associated with common mental disorders. So sample size was calculated for the two objectives separately. The sample size for the first objective was calculated by considering the prevalence of common mental disorders among adult glaucoma patients as 23.2%(which is taken from a similar study done in Addis Ababa, Ethiopia(8) so P = 0.23 and q = 0.77

\[
\text{Sample size (n)} = \frac{(Z_{\alpha/2})^2 \times p(1-p)}{d^2} = \frac{(1.96)^2 \times 0.23 \times (1-0.23)}{(0.04)^2} = 428
\]
Where \(n = \) estimated sample size, \(p = \) prevalence of common mental disorder, \(Z_{\alpha/2} = \) value (Z-statistic) at the 95% confidence level (\(\alpha = 0.05 \)) which is 1.96, \(d = \) margin of error 4% (0.04).

The sample size for objective two was calculated by considering factors that shows a consistent significant association with a common mental disorder in previous studies. By taking a similar study done in Addis Ababa Ethiopia, gender, monthly income, and duration of illness were significantly associated factors with common mental disorders [8]. By using open epi computer software and considering 95% CI, 80% power the sample size calculated considering the duration of illness was larger. It was calculated by considering the ratio of patients without CMD to patients with CMD 4:1, 9.1% unexposed with the outcome, 14% exposed with the outcome, and odds ratio of 2.01 which gives the generated sample size of 450.

Since the calculated sample size for objective two was larger it was used to determine the final sample size. After considering a 10% non-response rate the final sample size becomes 495.

Sampling procedure

A systematic random sampling method was used to select the study participants. The glaucoma clinic gives service to patients on Monday, Wednesday, and Friday. From the available information, the glaucoma patients attending the center are 120 per week, which are about 40 in each day. The patients follow-up registration book was used as a sampling frame. Among these patients, the sampling fraction \(K \) was calculated using the total number of glaucoma patients in two months = 960 (so \(K = 960/495 = 2 \)). The first patient was selected by using the lottery method then the next patient was selected at 2 intervals on each day within the study period.

Data collection tool and procedure

A structured interviewer-administered questionnaire was used to collect the data. It has questions on socio-demographic characteristics, symptoms of common mental disorders, ocular health status, systemic health conditions, level of social support and substance use. Except for questions on ocular health status which was collected by chart review other questions we translated to the local language Amharic. Self-reported questionnaire (SRQ-20), which was developed by the WHO was used to assess the presence of common mental disorders. The SRQ was originally designed as a self-administered scale, but was also found to be suitable for interviewer-administered questionnaires because of the low literacy rate in developing countries [23]. It was also translated Amharic language and validated for use in Addis Ababa Ethiopia [24]. The instrument performed well in detecting common mental disorders, with an area under the curve (AUC) of 0.879 (SE = 0.23, 95% CI 0.83–0.92) to the overall sample and with an optimal cut-off score at 5/6 with a sensitivity of 78.6% and specificity 81.5%. Each of the 20 items is scored 0 or 1. A score of 1 indicates that the symptom presents during the past month, a score of 0 indicates that the symptoms absent. A cutoff point of 11 and above was considered as having CMD. It is most commonly used in developing countries and also in Ethiopia among patients in health care settings [25].

Social support was measured by the Oslo-3 scale as lower, moderate, and strong levels of social support. Its internal consistency could be regarded as acceptable with \(\alpha = 0.640 \) [26].

Substance use was measured by Alcohol, Smoking, and Substance Involvement Screening Test (ASSIST) which was developed by WHO. The ASSIST accurately identified tobacco, alcohol, and cannabis use disorders (sensitivities = 95%-100%; specificities = 79%-93%; area under the curve [AUC] = 0.90–0.94). It determines a risk score for each substance which ranges from 0–27 then the score obtained for each substance falls into a lower, moderate or high risk category [27].
The questionnaire also included an additional question assessing patients’ general health status. A chart review was done to get information on the ocular health related factors. The interview was done by 4 trained optometrists.

Operational definitions

Common mental disorders. A score of eleven or more on the SRQ-20 in the past four weeks was considered as having common mental disorders [23].

Level of social support. Support at a time when difficulties and critical conditions like financial, social, and psychological problems arise. Based on the Oslo 3 scale Poor support: 3–8, moderate support: 9–11, and Strong support: 12–14 [28].

Substance use. Using the Alcohol, Smoking, and substance involvement screening test (ASSIST) lower risk 0–10, moderate risk 11–26, and high risk 27+ [27].

Data processing and analysis

The collected data was entered into Epi-info version 7 and exported to SPSS version 20 for analysis. Summary statistics, frequencies, and cross-tabulations were performed for the descriptive data. Binary logistic regression was conducted to identify factors associated with CMD. The model fitness was checked using the Hosmer and Lemeshow model fitness test. An adjusted odds ratio with 95% confidence interval was used to measure the strength of association between dependent & independent variables. Variables with a p-value less than 0.05 were considered statistically significant.

Ethical consideration

The study was conducted as per the Declaration of Helsinki and approved by the University of Gondar Ethical Review Board. Ethical clearance was obtained from the institutional review board of the University of Gondar, college of medicine and health science, school of medicine ethical review committee. A permission letter was also obtained from the hospital administration and ophthalmology department. An informed verbal consent was obtained from each participant after giving a clear explanation about the purpose of the research.

Study participants were assured their response will be kept confidential and no personal identifiers were used. During the data collection 32 patients who had relatively higher CMD scores and ASSIST score were linked to the hospital’s psychiatry clinic for further psychiatric evaluation.

Results

Socio-demographic and economic characteristics of the study participants

Four hundred sixty-eight adult glaucoma patients participated in the study with a response rate of 94.54%. The mean age of the participants was 58 ± 14.11 years. Majority of them were male (65%). Married participants account 77.2% of the respondents. Around 44.7% of the participants had an average family income of greater than 1200 ETB per month. (Table 1).

Level of social support, substance use, and comorbid chronic medical illness among study participants

Among the study participant, 53.6% had a poor level of social support, 73.5% had lower risk of alcohol use and 19.2% of them had Diabetes Mellitus. (Table 2). All individuals who participated in this study had a lower risk of Tobacco and Amphetamines type of stimulants use.
Ocular clinical characteristics of study participants

Regarding the ocular clinical characteristics, the most prevalent type of glaucoma was primary open-angle glaucoma 209 (44.6%) followed by Pseudoexfoliative glaucoma 159 (34%). Most of them had moderate glaucoma 216 (46.2%) and the majority of the patients had bilateral glaucoma 376 (80.3%). (Table 3).

Table 1. Socio-demographic and economic characteristics of study participants.

Characteristic	Frequency	Percent
Sex		
Male	304	65
Female	164	35
Age		
18–39	45	9.6
40–59	181	38.7
>60	242	51.7
Marital status		
Married	362	77.4
Single	23	4.8
Divorced	28	6
Widowed	55	11.8
Educational status		
Cannot read and write	131	28
Read and Write	128	27.4
Primary school	55	11.8
Secondary school	62	13.2
College and Above	92	19.6
Religion		
Orthodox	389	83.1
Muslim	74	15.8
Others	5	1.1
Occupation		
Farmer	158	33.7
Housewife	109	23.3
Self-employee	95	20.3
Government employee	63	13.5
Retired	43	9.2
Residence		
Rural	239	51.1
Urban	229	48.9
Family average income		
<750 ETB	143	30.8
750–1200 ETB	116	24.5
>1200 ETB	209	44.7
Family size		
1–3	26	5.6
4–6	361	77.1
7–10	81	17.3

https://doi.org/10.1371/journal.pone.0252064.t001

Ocular clinical characteristics of study participants

Regarding the ocular clinical characteristics, the most prevalent type of glaucoma was primary open-angle glaucoma 209 (44.6%) followed by Pseudoexfoliative glaucoma 159 (34%). Most of them had moderate glaucoma 216 (46.2%) and the majority of the patients had bilateral glaucoma 376 (80.3%). (Table 3).

https://doi.org/10.1371/journal.pone.0252064.t001
Type and duration of glaucoma treatment among study participants

Most of the study participants 378(80.8%) had only medication therapy and the majority of them 422(90.2%) had monotherapy. From those who had surgical treatment majority of them had trabeculectomy. (Table 4).

The prevalence of common mental disorders

The prevalence of CMD among glaucoma patients was 29.5% (95%CI 25.4–33.3).

Factors associated with common mental disorders among study participants

The result of multivariable logistic regression showed that gender, monthly income, level of social support, alcohol use, type of treatment, systemic carbonic anhydrase inhibitors use, and presence of systemic comorbidity had a significant association with common mental disorders. (Table 5).

The likelihood of CMDs was about four-fold higher among women as compared to men (AOR = 3.79 95%CI: 1.66–8.62) (p-value = 0.001). Subjects who had <750ETB monthly income were six times more likely to have CMD compared to those who had >1200ETB per month (AOR = 6.05 95%CI: 2.26–16.22) (p-value = 0.001).

The likelihood of common mental disorders among study participants with poor level of social support was seventeen times higher than participants with moderate level of social support (AOR = 17.39 95%CI: 7.79–38.82) (p-value = 0.001). A subject with high risk of alcohol use were ten times more likely to have CMD than participants with low risk of alcoholic beverage user (AOR = 10.42 95%CI: 2.74–39.54) (p-value = 0.001).

Respondents who were on drugs and surgical treatment were about three times more likely to experience CMDs compared to those who were only on drug therapy (AOR = 2.50, 95%CI: 1.30–4.83) (p-value = 0.006). Study participants on systemic carbonic anhydrase inhibitors were three times more likely to develop CMD compared with a client without systemic carbonic anhydrase inhibitors (AOR = 3.16, 95%CI: 1.65–6.06) (p-value = 0.001).
Participants with chronic medical illness were more than three times more likely to have CMDs compared with those without chronic illness (AOR = 3.85 95%CI: 2.07–7.16) (p-value = 0.001).

Discussion

This study assessed common mental disorders using SRQ-20 among glaucoma patients. Common mental disorders were observed in 138 (29.5% (95% CI 25.4–33.3) participants. This was lower than the study done in Nigeria [7], which concluded 36.9% of glaucoma patients had comorbid CMD. This might be due to the difference in sample size which is larger in the current study, and difference in population characteristic. A relatively higher prevalence of CMD was observed in the current study than reports from Egypt (18.3%), Nigeria (22%), and Addis Ababa, Ethiopia (23.2%) [6, 8, 29]. The possible reason for this could be difference in study design, and study setting. For instance, the study in Ethiopia include only 423 individuals, about (83%) of the study participant came from urban which is higher than (48.9%) in the current study, (69%) had >1200 ETB monthly income which is higher than current study where only (44.7%) and population characteristic difference.

Women were about four times more likely to experience CMD compared with men. This finding is consistent with studies done in Ethiopia [8], Egypt [6], Turkey [11], and USA [10].
has been shown that mental health problems particularly depression, anxiety, and somatic complaints affect women to a greater extent than men across diverse societies and social contexts [30]. The reason might be women are responsible for most of the household chores and child education [31], in addition to performing functions resulting from their inclusion in the formal job market, thus causing a work overload in the female population. The excess of attributions can create conflicting situations, stress and suffering and also be associated with greater psychiatric morbidity [31, 32]. Low income had a significant association with common mental disorders. This result is in line with studies done in Ethiopia [8] and China [33]. This might be due to the fact that having low-income leads to lack of financial resources to afford the frequent care needed in glaucoma treatment alongside fulfilling basic needs to maintain basic living standards. In addition, since the economic burden of glaucoma is substantial and increases as the disease progresses [34] this might predispose patients to CMD.

The likelihood of developing common mental disorders among those with poor level of social support was seventeen folds higher as compared to a moderate level of social support. This finding is in agreement with a study done in Nigeria [7]. The reason for this could be the ability of good social support to protect people from CMD through emotional support and positive interaction between peers, family, and within a community [35]. A high risk of alcohol use had a significant association with CMD. This might be due to issues related to alcohol drinking such as financial problem, sickness, job loss, minor conviction, accident, and injury which result in poor economic level and inability to afford health care causing CMD [36, 37].

Having both medical and surgical therapy is significantly associated with the prevalence of CMD this might be related to expenses and to the fear and expectations arising from the combined treatment [38]. Taking systemic carbonic anhydrase inhibitors had a significant association with the prevalence of CMD. Most patients on systemic carbonic anhydrase inhibitors had high intraocular pressure which creates stress and discomfort which give rise to stress and worries [39], these and the drugs’ side effects like fatigue, tingling, anorexia, and weight loss contribute to the development of CMD. This finding was consistent with a study done in Taiwan [40]. Having a chronic medical illness is significantly associated with the prevalence of

Table 4. Type and duration of glaucoma treatment among study participants.

Type of Treatment	Number	Percentage
Drugs only	378	80.8
Drug and Surgery	90	19.2
Types of Glaucoma surgery		
Trabeculectomy	78	16.6
Laser PI	12	2.6
Number of Eye Drops		
One	422	90.2
More than one	46	9.8
Systemic carbonic anhydrase inhibitors		
Yes	120	25.6
No	348	74.4
Duration of treatment		
≤12 month	216	46.2
> 12 month	252	53.8
Past eye surgery		
Yes	117	25
No	351	75

https://doi.org/10.1371/journal.pone.0252064.t004
Table 5. Factors associated with common mental disorders among study participants.

Characteristics	CMD	COR (95%)	AOR (95%)	p-value	
	Yes	No			
				0.001	
Sex					
Male	76	228	1		
Female	62	102	1.82(1.21–2.74)	3.79(1.66–8.62)	
Occupation					
Farmer	52	106	2.60(1.22–5.52)	0.55(0.13–2.36)	0.42
House Wife	38	71	2.84(1.29–6.2)	0.59(0.14–2.35)	0.45
Self employee	22	73	1.59(0.66–3.6)	1.39(0.43–4.51)	0.58
Retired	16	27	3.14(1.25–7.89)	0.37(0.08–1.67)	0.19
Government	10	53	1	1	
Residence				0.12	
Rural	81	158	0.64(0.43–0.96)	0.15(0.05–0.41)	
Urban	57	172	1	1	
Family average income					
< 750 ETB	65	78	3.52(2.19–5.67)	6.05(2.26–16.22)	0.001
750–1200 ETB	33	83	1.68(0.99–2.85)	3.74(1.44–9.70)	0.007
> 1200 ETB	40	169	1	1	
Level of social support				0.001	
Poor	121	130	10.95(6.29–19.04)	17.39(7.79–38.82)	
Moderate	17	200	1	1	
Alcoholic beverage use					
Lower risk	85	259	1	1	
Moderate risk	38	64	1.80(1.13–2.89)	1.97(0.93–4.19)	0.075
High risk	15	7	6.52(2.57–16.55)	10.42(2.74–39.54)	0.001
Visual Acuity					
No visual impairment	44	159	1	1	
Moderate visual impairment	54	117	2.33(1.21–4.48)	0.97(0.38–2.46)	0.95
Severe visual impairment	20	23	3.14(1.58–6.24)	1.72(0.65–4.59)	0.27
Blindness	20	31	1.66(1.04–2.65)	0.93(0.47–1.86)	0.85
IOP in mmHg					
< 18	16	47	1	1	
18–30	104	260	1.17(0.64–2.16)	1.90(0.80–4.53)	0.14
> 30	18	23	2.29(0.99–5.31)	1.33(0.39–4.45)	0.64
Type of Glaucoma					
Primary open-angle glaucoma	48	161	1	1	
Pseudoexfoliative glaucoma	57	102	1.87(1.18–2.96)	1.56(0.80–3.03)	0.19
Other secondary open-angle glaucoma	25	53	1.58(0.98–2.81)	0.79(0.35–1.81)	0.58
Angle-closure glaucoma	8	14	1.91(0.76–4.84)	0.88(0.18–4.21)	0.87
Severity of Glaucoma					
Mild	10	26	1	1	
Moderate	50	166	0.78(0.35–1.73)	0.43(0.14–1.28)	0.13
Advanced	62	112	1.44(0.65–3.18)	0.69(0.23–2.05)	0.50
Absolute	16	26	1.60(0.61–4.17)	0.33(0.08–1.33)	0.12
Type of Treatment				0.006	
Drugs only	92	286	1	1	
Drugs and Surgery	46	44	3.25(2.02–5.22)	2.50(1.30–4.83)	

(Continued)
CMDs. The reason might be those living with chronic medical illness might have limited activity, experience dissatisfaction in life which may expose them to depression and anxiety [8]. This result is consistent with studies done in Ethiopia [8] and Taiwan [40].

Since this study findings showed the prevalence of common mental disorders is associated with different socio-demographic, behavioral and ocular factors it is recommended planning for creating and organizing mental health gap action program training for health professionals working at glaucoma clinic to improve patients’ ocular and mental condition simultaneously. Furthermore, longitudinal studies should be conducted with larger sample size and with other tools that were designed to assess a specific types of psychological disorders.

This study has some limitations. Since cross-sectional study design was used it is difficult to establish a causal relationship between dependent and significant independent variables. The study was conducted in a single institution; it limits its generalizability to general glaucoma patients. Recall bias and social desirability bias were another issues due to the nature of the questionnaires to assess CMD and substance use. In addition, the tool (SRQ -20) used to assess CMD have limitation in screening specific types of CMD.

Conclusion

The current study revealed a significant number of glaucoma patients have CMD, and it was associated with socio-demographic characteristics (sex and income), level of social support, alcohol use, ocular characteristics (type of treatment, use of systemic carbonic anhydrase inhibitors) and presence of chronic medical illness. Strategies that enable the incorporation of psychosocial care into the current treatment of patients with glaucoma will be beneficial in combating the burden of this comorbidity in glaucoma patients.

Characteristics	CMD	COR (95%)	AOR (95%)	p-value	
Number of eye drops					
	Yes	No	0.57		
	One	112	310	1	1
	More than one	26	20	3.99(2.27–6.99)	1.28(0.54–3.04)
Systemic carbonic anhydrase inhibitors			0.001		
	Yes	65	55	4.45(2.86–6.92)	3.16(1.63–6.06)**
	No	73	275	1	1
Duration of Treatment			0.99		
	≤12 month	53	163	0.64(0.43–0.96)	1.00(0.55–1.80)
	>12 month	85	167	1	1
Ocular Co-morbid condition			0.62		
	Yes	102	214	1.53(0.99–2.39)	0.84(0.41–1.71)
	No	36	116	1	1
Past Eye Surgery			0.52		
	Yes	42	75	1.48(0.95–2.32)	0.80(0.41–1.58)
	No	96	255	1	1
Chronic medical illness			0.001		
	Yes	60	251	4.13(2.71–6.29)	3.85(2.07–7.16)**
	No	78	79	1	1

**P<0.01
*p<0.05.

https://doi.org/10.1371/journal.pone.0252064.t005
Author Contributions

Conceptualization: Mikias Mered Tilahun, Fisseha Ademassu Ayele.

Formal analysis: Mikias Mered Tilahun, Betelhem Temesgen Yibekal.

Investigation: Mikias Mered Tilahun, Habtamu Kerebih, Fisseha Ademassu Ayele.

Methodology: Mikias Mered Tilahun, Betelhem Temesgen Yibekal, Habtamu Kerebih, Fisseha Ademassu Ayele.

Resources: Mikias Mered Tilahun.

Supervision: Betelhem Temesgen Yibekal, Habtamu Kerebih, Fisseha Ademassu Ayele.

Validation: Mikias Mered Tilahun.

Visualization: Mikias Mered Tilahun.

Writing – original draft: Mikias Mered Tilahun.

Writing – review & editing: Betelhem Temesgen Yibekal.

References

1. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. British journal of ophthalmology. 2002; 86(2):238–42. https://doi.org/10.1136/bjo.86.2.238 PMID: 11815354

2. Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121(11):2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013 PMID: 24974815

3. Berhane Y, Worku A, Bejiga A, Adamu L, Alemayehu W, Bedri A, et al. Prevalence and causes of blindness and low vision in Ethiopia. Ethiopian Journal of Health Development. 2007; 21(3):204–10.

4. Goldberg DP, Huxley P. Common mental disorders: a bio-social model: Tavistock/Routledge; 1992.

5. Funk M. Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. Retrieved on. 2016;30.

6. El-Mogy A, El-Hadidy MA, El-Kaneshy A. Comorbid psychiatric disorders with glaucoma. Middle East Current Psychiatry. 2014; 21(4):252–7.

7. NWAKANMA NC. PREVALENCE OF PSYCHIATRIC MORBIDITY, QUALITY OF LIFE AND FAMILY SUPPORT AMONG GLAUCOMA PATIENTS IN PORTHARCOURT, NIGERIA. Faculty of Psychiatry. 2012.

8. Bedasso K, Bedaso A, Feyera F, Gebeeyehu A, Yohannis Z. Prevalence of common mental disorders and associated factors among people with glaucoma attending outpatient clinic at Menelik II Referral Hospital, Addis Ababa, Ethiopia. PLoS One. 2016; 11(9):e0161442. https://doi.org/10.1371/journal.pone.0161442 PMID: 27584147

9. Agorastos A, Skevas C, Matthai M, Otte C, Klemm M, Richard G, et al. Depression, anxiety, and disturbed sleep in glaucoma. The Journal of neuropsychiatry and clinical neurosciences. 2013; 25(3):205–13. https://doi.org/10.1176/appi.neuropsych.12020030 PMID: 24026713

10. Musch DC, Niziol LM, Janz NK, Gillespie BW. Trends in and predictors of depression among participants in the Collaborative Initial Glaucoma Treatment Study (CIGTS). American journal of ophthalmology. 2019; 197:128–35. https://doi.org/10.1016/j.ajo.2018.09.015 PMID: 30248311

11. Tastan S, Iyigun E, Bayer A, Acikel C. Anxiety, depression, and quality of life in Turkish patients with glaucoma. Psychological reports. 2010; 106(2):343–57. https://doi.org/10.2466/PR0.106.2.343-357 PMID: 20524533

12. Zhang X, Olson DJ, Le P, Lin F-C, Fleischman D, Davis RM. The association between glaucoma, anxiety, and depression in a large population. American journal of ophthalmology. 2017; 183:37–41. https://doi.org/10.1016/j.ajo.2017.07.021 PMID: 28760639

13. Agorastos A, Huber CG. The role of melatonin in glaucoma: implications concerning pathophysiological relevance and therapeutic potential. Journal of pineal research. 2011; 50(1):1–7. https://doi.org/10.1111/j.1600-079X.2010.00816.x PMID: 21073517

14. Mariotti SP. Global data on visual impairments 2010. World Health Organization. 2012; 20.
15. Tsai S-Y, Cheng C-Y, Hsu W-M, Su T, Liu H, Chou P. Association between visual impairment and depression in the elderly. Journal of the Formosan Medical Association. 2003; 102(2):86–90. PMID: 12709736

16. Jones GC, Rovner BW, Crews JE, Danielson ML. Effects of depressive symptoms on health behavior practices among older adults with vision loss. Rehabilitation Psychology. 2009; 54(2):164. https://doi.org/10.1037/a0015910 PMID: 19469606

17. Cumurcu T, Cumurcu BE, Celikel FC, Etikan I. Depression and anxiety in patients with pseudoexfoliative glaucoma. General hospital psychiatry. 2006; 28(6):509–15. https://doi.org/10.1016/j.genhosppsych.2006.09.004 PMID: 17088167

18. Lim N, Fan CH, Yong MK, Wong EP, Yip LW. Assessment of depression, anxiety, and quality of life in Singaporean patients with glaucoma. Journal of glaucoma. 2016; 25(7):605–12. https://doi.org/10.1097/IJG.0000000000000393 PMID: 26950574

19. Mabuchi F, Yoshimura K, Kashiwagi K, Shioe K, Yamagata Z, Kanba S, et al. High prevalence of anxiety and depression in patients with primary open-angle glaucoma. Journal of glaucoma. 2008; 17(7):552–7. https://doi.org/10.1097/IJG.0b013e31816299d4 PMID: 18854732

20. Gomez J. Liaison psychiatry: mental health problems in the general hospital Buckingham. UK: Croom and Helm Publications. 1987; 3:356–59.

21. Investigators EM, Alonso J, Angermeyer M, Bernert S, Bruffaerts R, Brugha T, et al. Disability and quality of life impact of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatrica Scandinavica. 2004; 109:38–46. https://doi.org/10.1046/j.0001-690x.2003.00217.x PMID: 14674957

22. Pelčić G, Ljubičič R, Barać J, Biuk D, Rogočić V. Glaucoma, depression and quality of life: multiple comorbidities, multiple assessments and multidisciplinary plan treatment. Psychiatria Danubina. 2017; 29(3):351–9. https://doi.org/10.24869/psyd.2017.351 PMID: 28949316

23. Beusenberg M, Orley JH, Organization WH. A User’s guide to the self reporting questionnaire (SRQ). World Health Organization. 1994.

24. Youngmann R, Zilber N, Workneh F, Giel R. Adapting the SRQ for Ethiopian populations: a culturally-sensitive psychiatric screening instrument. Transcultural Psychiatry. 2008; 45(4):566–89. https://doi.org/10.1177/1363461508100783 PMID: 19091726

25. van der Westhuizen C, Wyatt G, Williams JK, Stein DJ, Sorosdahl K. Validation of the self reporting questionnaire 20-item (SRQ-20) for use in a low-and middle-income country emergency centre setting. International journal of mental health and addiction. 2016; 14(1):37–48. https://doi.org/10.1007/s11469-015-9566-x PMID: 26957953

26. Abiola T, Udofia O, Zakari M. Psychometric properties of the 3-item oslo social support scale among clinical students of Bayero University Kano, Nigeria. Malaysian Journal of Psychiatry. 2013; 22(2):32–41.

27. Group WAW. The alcohol, smoking and substance involvement screening test (ASSIST): development, reliability and feasibility. Addiction. 2002; 97(9):1183–94. https://doi.org/10.1046/j.1360-0443.2002.00185.x PMID: 12199834

28. Kocalevent R-D, Berg L, Beutel ME, Hinz A, Zenger M, Härter M, et al. Social support in the general population: standardization of the Oslo social support scale (OSSS-3). BMC psychology. 2018; 6(1):1–8. https://doi.org/10.1186/s40359-017-0211-2 PMID: 29301561

29. Dawodu O, Otakpor A, Ukpongwan C. Common psychiatric disorders in glaucoma patients as seen at the University of Benin Teaching Hospital, Benin City, Nigeria. Journal of Medicine and Biomedical Research. 2004; 3(1):42–7.

30. Health WHOD, Abuse S, Organization WH, Health SAM, Evidence WHOMH, Team R. Mental health atlas 2005: World Health Organization; 2005.

31. Patel V, Araya R, Chowdhary N, King M, Kirkwood B, Nayak S, et al. Detecting common mental disorders in primary care in India: a comparison of five screening questionnaires. Psychological medicine. 2008; 38(2):221. https://doi.org/10.1017/s0033291707002334 PMID: 18047768

32. Araujo TMd, Pinho PdS, Almeida MMGd. Prevalence of psychological disorders among women according to socio demographic and housework characteristics. Revista Brasileira de Saúde Materno Infantil. 2005; 5(3):337–48.

33. Zhou C, Qian S, Wu P, Qiu C. Anxiety and depression in Chinese patients with glaucoma: sociodemographic, clinical, and self-reported correlates. Journal of psychosomatic research. 2013; 75(1):75. https://doi.org/10.1016/j.jpsychores.2013.03.005 PMID: 23751243

34. Bramley T, Peeperes P, Walt JG, Juhasz M, Hansen JE. Impact of vision loss on costs and outcomes in medicare beneficiaries with glaucoma. Archives of ophthalmology. 2008; 126(6):849–56. https://doi.org/10.1001/archoptht.126.6.849 PMID: 18541852
35. Stansfeld S, Candy B. Psychosocial work environment and mental health—a meta-analytic review. Scandinavian journal of work, environment & health. 2006;443–62. https://doi.org/10.5271/sjweh.1050 PMID: 17173201

36. Bellos S, Skapinakis P, Rai D, Zitko P, Araya R, Lewis G, et al. Cross-cultural patterns of the association between varying levels of alcohol consumption and the common mental disorders of depression and anxiety: Secondary analysis of the WHO Collaborative Study on Psychological Problems in General Health Care. Drug and alcohol dependence. 2013; 133(3):825–31. https://doi.org/10.1016/j.drugalcdep.2013.08.030 PMID: 24156883

37. Kaila-Kangas L, Koskinen A, Leino-Arjas P, Virtanen M, Härkänen T, Lallukka T. Alcohol use and sickness absence due to all causes and mental- or musculoskeletal disorders: a nationally representative study. BMC public health. 2018; 18(1):152. https://doi.org/10.1186/s12889-018-5059-8 PMID: 29343233

38. Nijkamp M, Kenens C, Dijker A, Ruiter R, Hiddema F, Nuijts R. Determinants of surgery related anxiety in cataract patients. British journal of ophthalmology. 2004; 88(10):1310–4. https://doi.org/10.1136/bjo.2003.037788 PMID: 15377557

39. Swenson ER. Safety of carbonic anhydrase inhibitors. Expert Opin Drug Saf. 2014; 13(4):459–72. https://doi.org/10.1517/14740338.2014.897328 PMID: 24611470

40. Abe RY, Silva LNP, Silva DM, Vasconcellos JPC, Costa VP. Prevalence of depressive and anxiety disorders in patients with glaucoma: a cross-sectional study. Arquivos Brasileiros de Oftalmologia. 2021; 84(1):31–6. https://doi.org/10.5935/0004-2749.20210006 PMID: 33470339