Research Article

Clinical Application of Restrictive Brace Combined with Psychological Intervention after Replantation of Severed Fingers in Children

Guangxian Chen*, Wei Wang, Ping Wang, Ning Zhang, Xiaolei Xiu, and Jianyong Zhao

Cangzhou Hospital of integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei 061000, China

Correspondence should be addressed to Guangxian Chen; 18403022@masu.edu.cn

Received 24 May 2022; Revised 6 June 2022; Accepted 10 June 2022; Published 30 June 2022

Academic Editor: Gang Chen

Copyright © 2022 Guangxian Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. After replantation of severed fingers in infants, the utility model patent upper limb restrictive brace-assisted bed rest braking, combined with psychological intervention, can alleviate children’s anxiety, so as to reduce the occurrence of vascular crisis.

Methods. The study period was from April 2015 to July 2018. In this paper, 30 children with finger injuries in hand surgery in the CIS electronic medical record system of Cangzhou Integrated Traditional Chinese and Western Medicine Hospital were selected as the research objects. Replantation was performed in 30 infants with severed fingers. Among them, 15 cases were applied with the method of aircraft chest arm gypsum splint combined with sedative drug braking and the utility model patented product upper limb restrictive brace fixation-assisted bed rest braking, and the method of psychological intervention was applied at the same time.

Results. Among the 15 fingers in the control group, 6 had vascular crisis and 1 in the experimental group. The incidence of vascular crisis in the experimental group was lower, and the difference between the two groups was statistically significant ($P < 0.05$). The patients were followed up for 9–18 months, with an average of 9.72 ± 1.07 months. In the control group, 15 cases of severed fingers survived, and there were 13 cases of replantation finger necrosis in 2 cases of intractable arterial crisis. In the experimental group, 14 cases of severed fingers survived in 15 cases and there was 1 case of replanted finger necrosis in intractable arterial crisis after operation. There was no significant difference in the survival rate between the two groups ($P > 0.05$). In addition, the replanted finger function was evaluated. In the control group, 9 cases were excellent, 4 cases were good, and 1 case was fair. In the experimental group, 14 cases were excellent, 1 case was good, and 0 case was fair. The functional evaluation of the experimental group was better than that of the control group, and the difference between the two groups was statistically significant ($P < 0.05$).

Conclusion. For infants after replantation of severed fingers, the application of the utility model patented product upper limb restrictive brace can effectively make up for the insufficient fixation of aircraft chest arm gypsum splint, reduce the occurrence of vascular crisis, and assist children in bed. In addition, the application of psychological intervention can reduce children’s postoperative crying and is conducive to children’s postoperative recovery.

1. Introduction

Finger injury is the most common type of injury in children in emergency department, which has a certain impact on their body and mind [1, 2]. Although most children have mild finger injuries, severe finger injuries still need surgical treatment [3, 4] and may lead to serious complications such as infection, soft tissue defect, fracture nonunion, and amputation, resulting in serious sequelae such as finger deformity, nail dysplasia, and intractable pain [5–7].

Due to lively nature, strong curiosity, lack of life cognition and defense ability, or parents’ neglect of care, the proportion of hand trauma in children’s trauma is high [8–10]. Replantation of severed fingers is the most complicated in the treatment of children’s hand trauma. Children’s finger blood vessels and nerves are small, which requires...
high replantation [11, 12]. With the development of micro-
surgical technology and the breakthrough of age factors
and disconnection level of severed finger replantation, the
survival rate of severed finger replantation in infants and
young children is also higher and higher. Postoperative bed
braking and baking lamp insulation have become the con-
sensus of hand surgeons [13, 14]. Due to the specificity of
this group of infants, their postoperative compliance is poor.
In such infants, sedatives and thoracic casts have been the
most commonly used interventions in the past to limit the
infant’s voluntary movements in bed [15, 16]. From April
2015 to July 2018, 30 infants with severed fingers were
replanted. Among them, 15 cases applied the method of air-
craft chest arm gypsum splint combined with sedative drug
braking. The other 15 cases used a new patented product-
upper limb restrictive support fixation to assist bed rest
braking. At the same time, psychological intervention was
used to reduce the anxiety and tension of postoperative chil-
dren and this new method reduced the occurrence of arte-
rioenous crisis. It has achieved good curative effect, which
is reported as follows.

1.1. General Clinical Data. The study period was from April
2015 to July 2018. In this paper, 30 children with finger inju-
ries in hand surgery in the CIS electronic medical record sys-
tem of Cangzhou Integrated Traditional Chinese and
Western Medicine Hospital were selected as the research objects. Collect and sort out the data of children’s gender,
age, injury type, and location. There were 15 cases in the
control group, 12 males and 3 females. The age ranged from
11 months to 2 years, with an average of 1.37 ± 0.04 years.
All are completely disconnected. The thumb was severed in
3 cases, and other fingers were severed in 12 cases. There
were 4 cases of proximal segment avulsion, 5 cases of middle
segment avulsion, and 6 cases of distal segment avulsion.
Causes of injury are as follows: chain crush injury in 8 cases,
triangular belt crush injury in 4 cases, and iron door crush
injury in 3 cases. The time from injury to operation was
1–6 h, with an average of 3.64 ± 0.09 h. There were 15 cases
in the experimental group, 13 males and 2 females. The age
ranged from 10 months to 2 years, with an average of 1.27
± 0.05 years. All are completely disconnected. The thumb
was severed in 4 cases, and other fingers were severed in
11 cases. There were 5 cases of proximal segment avulsion,
4 cases of middle segment avulsion, and 6 cases of distal seg-
ment avulsion. Causes of injury are as follows: chain crush
injury in 7 cases, triangular belt crush injury in 5 cases, and
iron door crush injury in 3 cases. The time from injury to
operation was 1–6 h, with an average of 3.45 ± 0.07 h. The
general data of the two groups were not statistically signifi-
cant (P > 0.05).

1.2. Control Group. Surgical methods are as follows: all oper-
ations were performed under general anesthesia. The inflat-
able tourniquet was used to stop bleeding. After thorough
debridement of the affected limb, the contaminated tissue
was trimmed, and the phalanges were fixed with cross or
longitudinal Kirschner wire. If the interphalangeal joint
was severed, the patients underwent cartilage fusion. The
method was to cut off part of the articular surface with a sur-
gical blade, retain the epiphysis, and fix with longitudinal
Kirschner wire. Anastomose flexor and extensor tendons,
anastomose 4-6 needles of the dominant digital artery of
the finger under a 12-fold microscope, and anastomose 2-3
palmar or dorsal veins. After the operation, relax the tourni-
quett, check the blood supply recovery of each replanted fin-
ger, and wrap and fix it only after ensuring that the blood
supply of each finger is good. The bandage and fixation
should be carried out under the anesthesia state of the child.
When the child wakes up from anesthesia, he will be agi-
tated, which will lead to inaccurate bandage and fixation,
affect the blood supply and treatment after operation, and
even cause vasospasm. The binding shall be soft, and the
"sandwich cake" shall be made of gauze and Vaseline. Cut
the lining into 1 cm², and wrap it with gauze, cotton pad,
and bandage. We used "aircraft" plaster fixation of the super
contralateral shoulder joint. Postoperative treatment is as
follows: the patients were placed in the replantation ward
after operation, and the occipital supine position was
removed. For the children after general anesthesia, the head
was biased to one side to keep the respiratory tract unob-
structed. For children who are emotionally unstable, crying,
and unable to cooperate, subhibernation therapy shall be
adopted. The subhibernation therapy is as follows: chlor-
promazine 50 mg + promethazine 50 mg, combined with
500 ml intravenous drip of 0.9% normal saline. 1/2–1/4
amount can be used according to the weight of children
every day. It can be input at a constant speed with an adjust-
able infusion set or infusion pump for 24 hours, and it can be
used for 5–7 days. When using the hibernation mixture, it
is necessary to closely observe the respiratory rate and
consciousness of the children and keep the respiratory tract
unobstructed, because the hibernation mixture has laryngeal
regurgitation inhibition, which can lead to the fall of the root
of the tongue. In addition, it is necessary to explain to the
family members of the children that they should wake up
the children in time to eat, drink water, and drink milk.

1.3. Experimental Group. In the preoperative psychological
nursing, the nurse actively explained the disease-related
knowledge, treatment methods, and functional rehabilita-
tion to the children and their parents and told the parents
that the finger injury of the children is expected to recover
completely after scientific treatment. Share the treatment
process and imaging data of previous successful cases, so
as to eliminate the concerns of children and parents and
promote them to actively cooperate with treatment and
nursing. Through psychological nursing, children and par-
ents have alleviated their inner tension. The operation
method is as follows: the operation process was the same
as that of the control group. After the operation, bandage
the affected hand and wear self-made restrictive brace
before anesthesia resuscitation. In the postoperative treat-
ment and nursing, the patients were treated with "preven-
tion of infection, anticoagulant, and antivasospasm" and
kept warm by a baking lamp. They were kept in bed for
7–10 days under the protection of brace. After 6–8 weeks,
the internal fixation Kirschner wire was pulled out for
functional exercise. Closely observe the movement of the affected limbs: (1) for the children who are clever and cooperative, ask their families to pay close attention to the movement of the affected limbs of the children, and stop them in time when the children want to move the affected limbs, especially at night. The nurse should closely observe the blood circulation of the severed finger, use subhibernation therapy to make the child fall asleep for the children who are crying seriously and do not cooperate, and strengthen the psychological care of the children. When the children are crying, the nurse should eliminate the discomfort factors such as urination, defecation, and hunger. When it is determined that the pain causes the crying, first, guide the close family members of the children to accompany and comfort them, or distract the children’s attention by using toys, mobile phones, games, and other ways of interest, reducing pain and discomfort.

1.4. Observation Indexes. After operation, the blood supply of replanted fingers was regularly observed by the color, tension, temperature, and capillary filling time of replanted fingers, so as to judge whether there was vascular crisis in time. The survival rate of severed fingers in the two groups was calculated, and the function of replanted fingers was evaluated according to the trial standard of replantation function evaluation of severed fingers of hand surgery branch of Chinese Medical Association [17].

1.5. Statistical Method. SPSS analysis software was used for statistical processing, and the X^2 test was used to compare the rates between the two groups and multiple groups. $P < 0.05$ indicates that the difference between the two groups is statistically significant.

2. Results

2.1. Incidence of Vascular Crisis in the Two Groups. Of the 15 fingers in the control group, 6 had vascular crisis, and the incidence of crisis was lower. One case of vascular crisis occurred in the experimental group. There was significant difference in the incidence of vascular crisis between the two groups, and the difference between the two groups was statistically significant ($P < 0.05$) (Table 1).

2.2. The Survival Rate of Severed Fingers in the Two Groups. The patients were followed up for 9–18 months, with an average of 9.72 ± 1.07 months. In the control group, 15 cases of severed fingers survived, and there were 13 cases of replantation finger necrosis in 2 cases of intractable arterial crisis. In the experimental group, 14 cases of severed fingers survived in 15 cases and there was 1 case of replanted finger necrosis in postoperative intractable arterial crisis. There was no significant difference in the survival rate between the two groups ($P > 0.05$) (Table 2).

2.3. Functional Evaluation of Replantation of Severed Fingers in Two Groups. In addition, the replanted finger function was evaluated. In the control group, 9 cases were excellent, 4 cases were good, and 1 case was fair. In the experimental group, 14 cases were excellent, 1 case was good, and 0 case was fair. The functional evaluation of the experimental group was better than that of the control group, and the difference between the two groups was statistically significant ($P < 0.05$) (Table 3).

3. Discussion

Children are young, ignorant, and curious and have lack of risk awareness; the number of left behind children is increasing; and adults are neglected. The cases of complete amputation were significantly more than those of incomplete amputation. The index finger and middle finger were severed most. Because the children are not engaged in labor, the injuries of children are mostly caused by playing beside agricultural machinery and being injured by agricultural machinery, mostly caused by mechanical injuries such as hay cutter, thrasher, and electric saw, and a small part by knife cutting, car door clamping injury, animal bite, door crush injury, instrument smashing, etc. Most of them are life accidents. Children’s fingers are small, blood vessels are thin, and it is difficult to replant [18, 19]. In recent years, many hospitals in my country have carried out microsurgery technology, which makes this technology develop rapidly in China. The small-vessel anastomosis technology for infants is relatively mature, and the postoperative blood vessels can be guaranteed to be unobstructed. However, due to the special physiological characteristics of this group of infants, the probability of postoperative vascular crisis is higher than that of adults [20, 21]. The main reasons are incomplete debridement during operation and poor suture quality. Children’s postoperative crying leading to vasospasm is also a special reason different from adults. Therefore, it is recommended to apply 3–5 days of subhibernation and limb immobilization after replantation of severed fingers in children to prevent vascular crisis [22, 23].

Compared with adults, the indications for replantation of severed fingers in children should be relaxed appropriately [24, 25]. Traumatic severed fingers in children are mainly accidental injuries in life, with local tissue damage and light pollution. Parents require replantation; children are still in the stage of growth and development and have strong ability to repair and compensate tissue damage. The function after replantation is better than that of adults. As long as there are no obvious contusion and multiple fractures at the far and near ends of the severed finger in

Groups	Occurrence of vascular crisis (n)	Incidence (%)
Experience group	Occurred: 1 Not occurred: 14	6.7
Control group	Occurred: 6 Not occurred: 9	40
X^2	$/$ /	4.658
P	$/$ /	0.031
Table 2: Survival rate of severed fingers in two groups (n, %).

Groups	Severed finger survival (n)	Incidence (%)	
	Survival	Necrosis	
Experience group	14	1	6.7
Control group	13	2	13.3
X^2	/	/	0.371
P	/	/	0.543

Table 3: Functional evaluation of severed finger replantation in two groups (n, %).

Groups	Replanted finger function (n)		
	Excellent	Good	Fair
Experience group	14	1	0
Control group	8	6	1
X^2	/	/	6.208
P	/	/	0.045

children, the finger with relatively complete body should be replanted. Replantation of severed fingers in children is different from that in adults [26, 27]. Due to the existence of epiphysis, the replanted fingers can continue to grow, and the injury of epiphysis will affect the bone growth. Children should pay attention to the protection of epiphysis during replantation. If the joint is broken, as long as the joint and epiphysis are still intact, they should be retained. Except for serious injury of the joint, joint fusion is generally not performed. At the same time, the shortening of the phalanx should be minimized. If there is a soft tissue defect, various skin flaps should be used for repair [28, 29].

After replantation of severed fingers, infants need to stay in bed for 7–10 days. Infants are naturally active and have poor compliance. Parents are often required to hug them. Changes in body position and irregular waving of affected limbs will not only induce vascular crisis but also lead to the failure of replantation of severed fingers. There is also the risk of naked Kirschner wire scratching the eyes and face. In the past, in order to deal with this situation, the “aircraft” like gypsum splint was often used for fixation, and the bilateral upper limbs of children were fixed with dorsal and ventral over trunk gypsum splints [30]. It can effectively prevent children from turning over and waving their hands, but it has the following disadvantages: (1) bandage fixation and complicated disassembly during dressing change; (2) the plaster has poor adherence and inaccurate fixation, and the affected hand often retracts into the plaster, which is not conducive to the observation of blood supply; and (3) the ventilation of gypsum is poor, and the affected limbs are prone to eczema, sweat rash, etc. [31, 32]. In view of this situation, we designed and invented an upper limb restrictive brace, which is a national utility model patent (Patent No. ZL 2016 2 0854728.5). It is made of low-temperature thermoplastic plate and elastic fastening belt. It is composed of five parts: supporting arm plate, covering arm plate, elastic connecting belt, chest, and arm fixing belt. The brace can assist children in bed braking and prevent turning over and hand waving. The utility model effectively solves the problems of fixed air permeability and comfort, can effectively prevent the retraction of the affected limb, is conducive to the dressing change operation and blood supply observation, and greatly improves the comfort. In the current study, we confirmed that compared with the traditional “aircraft” like gypsum splint fixation, the newly designed and invented upper limb restrictive brace can alleviate the occurrence of vascular crisis, and the functional evaluation of severed finger replantation is also better. This may be because the upper limb restrictive brace of the new design and invention can effectively brake and improve the blood circulation of the affected limb. However, there was no significant difference in survival rate, which may be related to rapid development of microscopy.

Psychological factors are also key factors affecting the survival rate of severed finger replantation in children. Children’s mental development is not mature. In the face of sudden trauma, regret and fear after making trouble, pain, bleeding, and fear of strange environment, children often cry loudly because of panic and tension [33, 34]. From the perspective of stress theory of clinical psychology, negative emotions such as tension and anxiety will lead to vascular crisis of severed finger replantation and reduce the survival rate. Through the action of psychoneuroendocrine regulation axis, the level of vasoconstrictor monoamines such as adrenaline, catecholamine, and serotonin in the human body increases, the blood viscosity increases, and the blood hypercoagulable state and the incidence of vascular crisis increase [35, 36]. In order to cope with this situation, the nursing team should pay attention to the causes of pain after the operation, ask the family members to place the children’s favorite toys, watch cartoons and other methods to distract the children’s attention, often praise the children, and appropriately apply subhibernation therapy to the children with serious crying.

In conclusion, upper limb restraint brace combined with psychological care can improve children’s symptoms, relieve children’s anxiety, and increase parents’ confidence, which is worthy of promotion.

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
References

[1] G. A. Lamaris and M. K. Matthew, “The diagnosis and management of mallet finger injuries,” Hand (N Y), vol. 12, no. 3, pp. 223–228, 2017.

[2] A. Duarte, “Optimising the conservative management of closed tendinous mallet finger injury,” Emergency Nurse, vol. 28, no. 5, pp. 35–40, 2020.

[3] J. S. Lin and J. B. Samora, “Surgical and nonsurgical management of mallet finger: a systematic review,” The Journal of Hand Surgery, vol. 43, no. 2, pp. 146–163.e2, 2018.

[4] S. Özkan and Ö. Berköz, “Comparison of four different immobilization methods in the treatment of tendinous mallet finger injury,” Ulusal Travma ve Acil Cerrahi Dergisi, vol. 27, no. 3, pp. 356–361, 2021.

[5] Y. Hamada, H. Takai, R. Satoh, N. Hibino, Y. Ueda, and Y. Minamikawa, “Swan neck deformity due to chronic radial collateral ligament injury of the little finger proximal interphalangeal joint,” J Hand Surg Eur, vol. 43, no. 5, pp. 513–517, 2018.

[6] H. Liu, R. Li, C. Yuan, and J. Gu, “Treatment of tendinous mallet finger deformity with a part of the flexor digitorum profundus tendon,” ANZ Journal of Surgery, vol. 90, no. 11, pp. 2325–2328, 2020.

[7] M. Sosin, L. A. Weiner, B. C. Robertson, and R. A. Dejesus, “Treatment of a recurrent neurorauma within nerve allograft with autologous nerve reconstruction,” Hand (N Y), vol. 11, no. 2, p. NP9, 2016.

[8] J. Zhou, Y. Zheng, Z. Wei et al., “Free transplantation of medial plantar flow-through venous flap for primary repairing children’s finger wounds with digital artery defect,” Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, vol. 35, no. 9, pp. 1182–1185, 2021.

[9] R. Faderani, M. Kanapathy, and A. Mosahebi, “Hand injury: investigating the accuracy of referrals to a specialist trauma centre,” Emergency Nurse, vol. 29, no. 3, pp. 29–33, 2021.

[10] J. M. McBride, K. S. Romanowski, S. Sen, T. L. Palmieri, and D. G. Greenhalgh, “Contact hand burns in children: still a major prevention need,” Journal of Burn Care & Research, vol. 41, no. 5, pp. 1000–1003, 2020.

[11] J.-G. Delvaque, V. Mas, A.-L. Simon, B. Ilharreborde, and P. Jehanno, “Resections metacarpennes simples apres echec de reimplantation des doigts medians en pediatrie,” Hand Surg Rehabil., vol. 40, no. 5, pp. 670–674, 2021.

[12] N. L. Berlin, C. T. Tuggle, J. G. Thomson, and A. Au, “Digit replantation in children: a nationwide analysis of outcomes and trends of 455 pediatric patients,” Hand (N Y), vol. 9, no. 2, pp. 244–252, 2014.

[13] A. Imaiizumi, K. Ishida, K. Arashiro, and O. Nishizeki, “Validity of exploration for suitable vessels for replantation in the distal fingertip amputation in early childhood: replantation or composite graft,” Journal of Plastic Surgery and Hand Surgery, vol. 47, no. 4, pp. 258–262, 2013.

[14] N. Lindfors and I. Marttila, “Replantation or revascularisation injuries in children: incidence, epidemiology, and outcome,” Journal of Plastic Surgery and Hand Surgery, vol. 46, no. 5, pp. 359–363, 2012.

[15] N. Patel, L. Wilson, and G. Wansbrough, “Do split paediatric forearm POP casts need to be completed? A biomechanical study,” Injury extra, vol. 46, no. 7, pp. 1231–1237, 2015.

[16] J. Donato, K. Rao, and T. Lewis, “Pharmacology of common analgesic and sedative drugs used in the neonatal intensive care unit,” Clinics in Perinatology, vol. 46, no. 4, pp. 673–692, 2019.

[17] F. Haas, M. Hubmer, T. Rapp, H. Koch, I. Parvizi, and D. Parvizi, “Long-term subjective and functional evaluation after thumb replantation with special attention to the Quick DASH questionnaire and a specially designed trauma score called modified Mayo score,” The Journal of Trauma, vol. 71, no. 2, pp. 460–466, 2011.

[18] N. Scott, “Pediatric fingertip injuries,” Pediatric Fingertip Injuries. Hand Clin., vol. 37, no. 1, pp. 107–116, 2021.

[19] Y. Wei, “Fingertip injuries in children: a review of the literature,” Emergency Nurse, vol. 26, no. 3, pp. 17–20, 2018.

[20] E. Georgakarakos and K.-M. Tasopoulos, “A clampless technique to facilitate successful end-to-end anastomosis in small vessels with anastomosis,” Annals of Vascular Surgery, vol. 75, pp. 527–530, 2021.

[21] H. Tian, D. Song, H. Jin et al., “Repair of soft tissue and extensor tendon defects on the dorsum of the hand by transfer of dorsal foot flap and extensor digitorum brevis tendon in a 3-year-old child: a case report,” Medicine (Baltimore), vol. 99, no. 34, article e21837, 2020.

[22] S. Regus, V. Almási-Sperling, and W. Lang, “Pediatric patients undergoing arteriovenous fistula surgery without intraoperative heparin,” The Journal of Vascular Access, vol. 17, no. 6, pp. 494–498, 2016.

[23] L. R. Sun, W. Zhai, P. Brown et al., “Intrathecal chemotherapy-associated cerebral vasospasm in children with hematologic malignancies,” Pediatric Research, vol. 89, no. 4, pp. 858–862, 2021.

[24] F.-H. Yan, J. Liao, P.-L. Shan, Z. F. Liu, and R. Fang, “Clinical analysis on replantation of severed palm in 45 patients,” Zhongguo Gu Shang, vol. 27, no. 6, pp. 475–477, 2014.

[25] C.-H. Lin, N. Aydyn, Y.-T. Lin, C. T. Hsu, C. H. Lin, and J. T. Yeh, “Hand and finger replantation after protracted ischemia (more than 24 hours),” Annals of Plastic Surgery, vol. 64, no. 3, pp. 286–290, 2010.

[26] N. F. Jones and J. E. Clune, “Thumb amputations in children: classification and reconstruction by microsurgical toe transfers,” The Journal of Hand Surgery, vol. 44, no. 6, pp. 519.e1–519.e10, 2019.

[27] S. Feng, A. Wang, Z. Zhang et al., “Efficacy observation on repair of finger pulp defects and sensory reconstruction of children with the perforator propeller flaps based on the end dorsal branch of digital proper artery in the same finger,” Zhonghua Shao Shang Za Zhi, vol. 31, no. 5, pp. 345–348, 2015.

[28] J. B. Tang, “Fingertip repair methods: choices for different fingers and sides emphasizing sensation,” J Hand Surg Eur, vol. 44, no. 10, pp. 1109–1111, 2019.

[29] P. F. Liang, P. H. Zhang, M. H. Zhang et al., “Repair methods and clinical effects of full-thickness burn wounds deep to tendon or even bone in fingers,” Zhonghua Shao Shang Za Zhi, vol. 37, no. 7, pp. 614–621, 2021.

[30] J. L. Chen, L. J. Zhang, Y. Xu, S. B. Zhu, and X. D. Zheng, “Clinical research of percutaneous K-wires fixation after manipulative reduction combining with gypsum or splint fixation for treatment of the Barton fractures of aged people,” Zhongguo Gu Shang, vol. 29, no. 1, pp. 8–12, 2016.
[31] S. M. Athar, N. Ashwood, G. Aerealis, and G. I. Bain, “Is external fixation a better way than plaster to supplement K-wires in non-comminuted distal radius fractures?,” Postgraduate Medical Journal, vol. 94, no. 1107, pp. 20–24, 2018.

[32] M. A. Mulders, M. M. Walenkamp, J. C. Goslings, and N. W. Schep, “Internal plate fixation versus plaster in displaced complete articular distal radius fractures, a randomised controlled trial,” BMC Musculoskeletal Disorders, vol. 17, no. 1, p. 68, 2016.

[33] S. Jones, S. Tyson, J. Yorke, and N. Davis, “The impact of injury: the experiences of children and families after a child’s traumatic injury,” Clinical Rehabilitation, vol. 35, no. 4, pp. 614–625, 2021.

[34] H. Yu, C. Nie, Y. Zhou, X. Wang, H. Wang, and X. Shi, “Epidemiological characteristics and risk factors of posttraumatic stress disorder in Chinese children after exposure to an injury,” Disaster Medicine and Public Health Preparedness, vol. 14, no. 4, pp. 486–493, 2020.

[35] T. J. Stewart, W. Tong, and M. J. Whitfeld, “The associations between psychological stress and psoriasis: a systematic review,” International Journal of Dermatology, vol. 57, no. 11, pp. 1275–1282, 2018.

[36] E. Orion and R. Wolf, “Psychological factors in skin diseases: stress and skin: facts and controversies,” Clinics in Dermatology, vol. 31, no. 6, pp. 707–711.