Dynamical Systems Method (DSM) for solving nonlinear operator equations in Banach spaces

A G Ramm
Department of Mathematics
Kansas State University, Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract

Let \(F(u) = h \) be an operator equation in a Banach space \(X \), \(\|F'(u) - F'(v)\| \leq \omega(\|u - v\|) \), where \(\omega \in C([0, \infty)) \), \(\omega(0) = 0 \), \(\omega(r) > 0 \) if \(r > 0 \), \(\omega(r) \) is strictly growing on \([0, \infty)\). Denote \(A(u) := F'(u) \), where \(F'(u) \) is the Fréchet derivative of \(F \), and \(A_a := A + aI \). Assume that (*) \(\|A_a^{-1}(u)\| \leq \frac{c_0}{|a|^b} \), \(|a| > 0 \), \(b > 0 \), \(a \in L \). Here \(a \) may be a complex number, and \(L \) is a smooth path on the complex \(a \)-plane, joining the origin and some point on the complex \(a \)-plane, \(0 < |a| < \epsilon_0 \), where \(\epsilon_0 > 0 \) is a small fixed number, such that for any \(a \in L \) estimate (*) holds. It is proved that the DSM (Dynamical Systems Method)

\[
\dot{u}(t) = -A_{a(t)}^{-1}(u(t))[F(u(t)) + a(t)u(t) - f], \quad u(0) = u_0, \quad \dot{u} = \frac{du}{dt},
\]

converges to \(y \) as \(t \to +\infty \), where \(a(t) \in L \), \(F(y) = f \), \(\tau(t) := |a(t)| \), and \(\tau(t) = c_4(t + c_2)^{-c_3} \), where \(c_j > 0 \) are some suitably chosen constants, \(j = 2, 3, 4 \). Existence of a solution \(y \) to the equation \(F(u) = f \) is assumed. It is also assumed that the equation \(F(w_a) + aw_a - f = 0 \) is uniquely solvable for any \(f \in X \), \(a \in L \), and \(\lim_{|a| \to 0, a \in L} \|w_a - y\| = 0 \).

MSC 2000, 47J05, 47J06, 47J35
Key words: Nonlinear operator equations; DSM (Dynamical Systems Method); Banach spaces

1 Introduction

Consider an operator equation

\[
F(u) = f,
\]

where \(F \) is an operator in a Banach space \(X \). By \(X^* \) denote the dual space of bounded linear functionals on \(X \).

Assume that \(F \) is continuously Fréchet differentiable, \(F'(u) := A(u) \), and

\[
\|A(u) - A(v)\| \leq \omega(\|u - v\|), \quad \omega(r) = c_0 r^\kappa, \quad \kappa \in (0, 1],
\]

\[
\text{MSC 2000, 47J05, 47J06, 47J35}
\]

Key words: Nonlinear operator equations; DSM (Dynamical Systems Method); Banach spaces

1 Introduction

Consider an operator equation

\[
F(u) = f,
\]

where \(F \) is an operator in a Banach space \(X \). By \(X^* \) denote the dual space of bounded linear functionals on \(X \).

Assume that \(F \) is continuously Fréchet differentiable, \(F'(u) := A(u) \), and

\[
\|A(u) - A(v)\| \leq \omega(\|u - v\|), \quad \omega(r) = c_0 r^\kappa, \quad \kappa \in (0, 1],
\]
that the norm of the resolvent A^{-1} introduced in [10], Chapter 8. This spectral assumption says, that the set A is satisfied for the class of linear operators $A|L$ on a complex plane \mathbb{C}, consisting of regular points of the operator $A(u)$, such that the norm of the resolvent $A^{-1}(u)$ grows, as $a \to 0$, not faster than a power $|a|^{-b}$. Thus, assumption (3) is a weak assumption. For example, assumption (3) is satisfied for the class of linear operators A, satisfying the spectral assumption, introduced in [10], Chapter 8. This spectral assumption says, that the set $\{a : |\arg a - \pi| \leq \phi_0, 0 < |a| < \epsilon_0\}$ consists of the regular points of the operator A. This assumption implies the estimate $||A^{-1}|| \leq \frac{c_1}{a}$, $0 < a < \epsilon_0$, similar to estimate (3).

Assume additionally that the equation

$$F(w_a) + aw_a - f = 0, \quad a \in L,$$

is uniquely solvable for any $f \in X$, and

$$\lim_{a \to 0, a \in L} ||w_a - y|| = 0, \quad F(y) = f.$$

All the above assumptions are standing and are not repeated in the formulation of Theorem 2.7 which is our main result.

These assumptions are satisfied, e.g., if F is a monotone operator in a Hilbert space H and L is a segment $[0, \epsilon_0]$, in which case $c_1 = 1$ and $b = 1$ (see [10]).

Every equation (1) with a linear, closed, densely defined in a Hilbert space H operator $F = A$ can be reduced to an equation with a monotone operator A^*A, where A^* is the adjoint to A. The operator $T := A^*A$ is selfadjoint and densely defined in H. If $f \in D(A^*)$, where $D(A^*)$ is the domain of A^*, then the equation $Au = f$ is equivalent to $Tu = A^*f$, provided that $Au = f$ has a solution, i.e., $f \in R(A)$, where $R(A)$ is the range of A. Recall that $D(A^*)$ is dense in H if A is closed and densely defined in H. If $f \in R(A)$ but $f \notin D(A^*)$, then equation $Tu = A^*f$ still makes sense and its normal solution y, i.e., the solution with minimal norm, can be defined as

$$y = \lim_{a \to 0} T_a^{-1}A^*f.$$

One proves that $Ay = f$, and $y \perp N(A)$, where $N(A)$ is the null-space of A. These results are proved in [11], [13], [14].

Our aim is to prove convergence of the DSM (Dynamical Systems Method) for solving equation (1), which is of the form:

$$\dot{u} = -A_{a(t)}^{-1}[F(u(t)) + a(t)u(t) - f], \quad u(0) = u_0,$$

$c_0 > 0$ is a constant. The function $\omega(r)$, in general, is a continuous strictly growing function, $\omega(0) = 0$.

Assume that

$$\|A_a^{-1}(u)\| \leq \frac{c_1}{|a|}; \quad |a| > 0, \quad A_a := A + aI, \quad c_1 = \text{const} > 0, \quad b > 0.$$

Here a may be a complex number, $|a| > 0$, and there exists a smooth path L on the complex plane \mathbb{C}, such that for any $a \in L$, $|a| < \epsilon_0$, where $\epsilon_0 > 0$ is a small fixed number independent of u, estimate (3) holds, and L joins the origin and some point $a_0, 0 < |a_0| < \epsilon_0$. Assumption (3) holds if there is a smooth path L on a complex a-plane, consisting of regular points of the operator $A(u)$, such that the norm of the resolvent $A_a^{-1}(u)$ grows, as $a \to 0$, not faster than a power $|a|^{-b}$. Thus, assumption (3) is a weak assumption. For example, assumption (3) is satisfied for the class of linear operators A, satisfying the spectral assumption, introduced in [10], Chapter 8. This spectral assumption says, that the set $\{a : |\arg a - \pi| \leq \phi_0, 0 < |a| < \epsilon_0\}$ consists of the regular points of the operator A. This assumption implies the estimate $||A_a^{-1}|| \leq \frac{c_1}{a}$, $0 < a < \epsilon_0$, similar to estimate (3).
where \(u_0 \in X \) is an initial element, \(a(t) \in C^1[0,\infty) \), \(a(t) \in L \). Our main result is formulated in Theorem 2.1 in Section 2.

The DSM for solving operator equations has been developed in the monograph [10] and in a series of papers [11]-[27]. It was used as an efficient computational tool in [5]-[9]. One of the earliest papers on the continuous analog of Newton’s method for solving well-posed nonlinear operator equations was [3].

The novel points in the current paper include the larger class of the operator equations than earlier considered, and the weakened assumptions on the smoothness of the nonlinear operator \(F \). While in [10] it was often assumed that \(F''(u) \) is locally bounded, in the current paper a weaker assumption (2) is used.

Our proof of Theorem 2.1 uses the following result from [4].

Lemma 1. Assume that \(g(t) \geq 0 \) is continuously differentiable on any interval \([0,T]\) on which it is defined and satisfies the following inequality:

\[
\dot{g}(t) \leq -\gamma(t)g(t) + \alpha(t)g^p(t) + \beta(t), \quad t \in [0,T),
\]

where \(p > 1 \) is a constant, \(\alpha(t) > 0 \), \(\gamma(t) \) and \(\beta(t) \) are three continuous on \([0,\infty)\) functions. Suppose that there exists a \(\mu(t) > 0 \), \(\mu(t) \in C^1[0,\infty) \), such that

\[
\alpha(t)\mu^{-p}(t) + \beta(t) \leq \mu^{-1}(t)[\gamma(t) - \dot{\mu}(t)\mu^{-1}(t)], \quad t \geq 0,
\]

and

\[
\mu(0)g(0) < 1.
\]

Then \(T = \infty \), i.e., \(g \) exists on \([0,\infty)\), and

\[
0 \leq g(t) \leq \mu^{-1}(t), \quad t \geq 0.
\]

This lemma generalizes a similar result for \(p = 2 \) proved in [10].

In Section 2 a method is given for a proof of the following conclusions: there exists a unique solution \(u(t) \) to problem (7) for all \(t \geq 0 \), there exists \(u(\infty) := \lim_{t \to \infty} u(t) \), and \(F(u(\infty)) = f \):

\[
\exists u(t) \quad \forall t \geq 0; \quad \exists u(\infty); \quad F(u(\infty)) = f.
\]

The assumptions on \(u_0 \) and \(a(t) \) under which (12) holds for the solution to (7) are formulated in Theorem 2.1 in Section 2. Theorem Theorem 2.1 in Section 2 is our main result. Roughly speaking, this result says that conclusions (12) hold for the solution to problem (7), provided that \(a(t) \) is suitably chosen.

2 Proofs

Let \(|a(t)| := r(t) > 0 \). If \(a(t) = a_1(t) + a_2(t) \), where \(a_1(t) = \text{Re}a(t), \quad a_2(t) = \text{Im}a(t) \), then

\[
|\dot{r}(t)| \leq |\dot{a}(t)|.
\]
Indeed,
\[|\dot{r}(t)| = \frac{|a_1\dot{a}_1 + a_2\dot{a}_2|}{r(t)} \leq \frac{r(t)|\dot{a}(t)|}{r(t)}, \tag{14} \]
and (14) implies (13).

Let \(h \in X^* \) be arbitrary with \(\|h\| = 1 \), and
\[g(t) := (z(t), h); \quad z(t) := u(t) - w_a(t), \tag{15} \]
where \(u(t) \) solves (7) and \(w_0(t) \) solves (4) with \(a = a(t) \). By the assumption, \(w_a(t) \) exists for every \(t \geq 0 \). The local existence of \(u(t) \), the solution to (7), is the conclusion of Lemma 2.

Lemma 2. If (4)-(5) hold, then \(u(t) \), the solution to (7), exists locally.

Proof. Differentiate equation (5) with respect to \(t \). The result is
\[A_{a(t)}(w_a(t))\dot{w}_a(t) = -\dot{a}(t)w_a(t), \tag{16} \]
or
\[\dot{w}_a(t) = -\dot{a}(t)A_{a(t)}^{-1}(w_a(t))w_a(t). \tag{17} \]
Denote
\[\psi(t) := F(u(t)) + a(t)u(t) - f. \tag{18} \]
For any \(\psi \in H \) equation (18) is uniquely solvable for \(u(t) \) by the inverse function theorem, because, by our assumption (3), the Fréchet derivative \(F'(u(t)) + a(t)I \) is boundedly invertible, and (2) implies that the solution \(u(t) \) to (18) is continuously differentiable with respect to \(t \) if \(\psi(t) \) is. One may solve (18) for \(u \) and write \(u = G(\psi) \), where the map \(G \) is continuously Fréchet differentiable because \(F \) is.

Differentiate (18) and get
\[\dot{\psi}(t) = A_{a(t)}(u(t))\dot{u}(t) + \dot{a}(t)u. \tag{19} \]
If one wants the solution to (18) to be a solution to (7), then one has to require that
\[A_{a(t)}(u(t))\dot{u} = -\psi(t). \tag{20} \]
If (20) holds, then (19) can be written as
\[\dot{\psi}(t) = -\dot{\psi} + \dot{a}(t)G(\psi), \quad G(\psi) := u(t), \tag{21} \]
where \(G(\psi) \) is continuously Fréchet differentiable. Thus, equation (21) is equivalent to (7) at all \(t \geq 0 \) if
\[\psi(0) = F(u_0) + a(0)u_0 - f. \tag{22} \]
Indeed, if \(u \) solves (7) then \(\psi \), defined in (18), solves (21)-(22). Conversely, if \(\psi \) solves (21)-(22), then \(u(t) \), defined as the unique solution to (18), solves (7). Since the right-hand side of (21) is Fréchet differentiable, it satisfies a local Lipschitz condition. Thus, problem (21)-(22) is locally, solvable. Therefore, problem (7) is locally solvable.
Lemma 2 is proved. \(\square \)
To prove that the solution \(u(t) \) to (7) exists globally, it is sufficient to prove the following estimate
\[
\sup_{t \geq 0} \| u(t) \| < \infty. \tag{23}
\]

Lemma 3. Estimate (23) holds.

Proof. Denote
\[
z(t) := u(t) - w(t), \tag{24}
\]
where \(u(t) \) solves (7) and \(w(t) \) solves (4) with \(a = a(t) \). If one proves that
\[
\lim_{t \to \infty} \| z(t) \| = 0, \tag{25}
\]
then (23) follows from (25) and (5):
\[
\sup_{t \geq 0} \| u(t) \| \leq \sup_{t \geq 0} \| z(t) \| + \sup_{t \geq 0} \| w(t) \| < \infty. \tag{26}
\]

To prove (25) we use Lemma 1.

Let
\[
g(t) := \| z(t) \|. \tag{27}
\]
Rewrite (7) as
\[
\dot{z} = -\dot{w} - A_{u(t)}^{-1}(u(t))[F(u(t)) - F(w(t)) + a(t)z(t)]. \tag{28}
\]
Note that:
\[
\sup_{h \in X^*, \|h\| = 1} (\langle \dot{w}(t), h \rangle) = \| \dot{w}(t) \|. \tag{29}
\]

Lemma 4. If the norm \(\| w(t) \| \) in \(X \) is differentiable, then
\[
\| w(t) \| \leq \| \dot{w}(t) \|. \tag{30}
\]

Proof. The triangle inequality implies:
\[
\frac{\| w(t + s) \| - \| w(t) \|}{s} \leq \frac{\| w(t + s) - w(t) \|}{s}, \quad s > 0. \tag{31}
\]
Passing to the limit \(s \searrow 0 \), one gets (30).

Lemma 4 is proved.

The norm is differentiable if \(X \) is strictly convex (see, e.g. [1]). A Banach space \(X \) is called strictly convex if \(\| u + v \| < 2 \) for any \(u \neq v \in X \) such that \(\| u \| = \| v \| = 1 \). A Banach space \(X \) is called uniformly convex if for any \(\epsilon > 0 \) there is a \(\delta > 0 \) such that for all \(u, v \in B(0,1) \) with \(\| u - v \| = \epsilon \) one has \(\| u + v \| \leq 2(1 - \delta) \). Here \(B(0,1) \) is the closed ball in \(X \), centered at the origin and of radius one.
Various necessary and sufficient conditions for the Fréchet differentiability of the norm in Banach spaces are known in the literature (see [2], starting with Shmulian’s paper of 1940, see [28].

Hilbert spaces, $L^p(D)$ and ℓ^p-spaces, $p \in (1, \infty)$, and Sobolev spaces $W^{l,p}(D)$, $p \in (1, \infty)$, $D \subset \mathbb{R}^n$ is a bounded domain, have Fréchet differentiable norms. These spaces are uniformly convex and they have the E–property, i.e., if $u_n \rightharpoonup u$ and $||u_n|| \to ||u||$ as $n \to \infty$, then $\lim_{n \to \infty} ||u_n - u|| = 0$.

From (17), (29) and (3) one gets

$$\|\dot{w}\| \leq c_1|\dot{a}(t)|r^{-b}(t)\|w(t)\|, \quad r(t) = |a(t)|,$$

where $w(t) = w_a(t)$. Since $\lim_{t \to \infty} |a(t)| = 0$, (32) and (5) imply

$$\|\dot{w}\| \leq c_2|\dot{a}(t)|r^{-b}(t), \quad c_2 = \text{const} > 0,$$

because (5) implies the following estimate:

$$c_1\|w(t)\| \leq c_2, \quad t \geq 0. \quad (34)$$

Inequality (33) implies that inequality (38) holds if

$$\|\dot{w}\| \leq c_2|\dot{r}(t)|r^{-b}(t), \quad t \geq 0. \quad (35)$$

Note that

$$F(u) - F(w) = \int_0^1 F'(w + sz)dsz = A(u)z + \int_0^1 [A(w + sz) - A(u)]dsz. \quad (36)$$

Apply h to (28), take $\sup_{h \in X^*, \|h\| = 1}$, and use Lemma 4, relation (36), estimate (3), and inequality (2), to get:

$$\dot{g}(t) \leq \|\dot{z}(t)\| \leq c_2|\dot{r}(t)|r^{-b}(t) + c_3r^{-b}(t)g^p - g, \quad (37)$$

where $g(t)$ is defined in (27),

$$p = 1 + \kappa, \quad c_3 := c_0c_1. \quad (38)$$

Inequality (37) is of the form (8) with

$$\gamma(t) = 1, \quad \alpha(t) = c_2r^{-b}(t), \quad \beta(t) = c_2|\dot{r}(t)|r^{-b}(t). \quad (39)$$

Choose

$$\mu(t) = \lambda r^{-k}(t), \quad \lambda = \text{const} > 0, \quad k = \text{const} > 0. \quad (40)$$

Then

$$\dot{\mu}\mu^{-1} = -kr^{-1}. \quad (41)$$

Let us assume that

$$r(t) \searrow 0, \quad \dot{r} < 0, \quad |\dot{r}| \searrow 0. \quad (42)$$
Condition (10) implies
\[g(0) \frac{\lambda}{r^k(0)} < 1, \quad (43) \]
and inequality (49) holds if
\[\frac{c_3 r^{-b}(t) r^k}{\lambda} + c_2 |\dot{r}(t)| r^{-b}(t) \leq \frac{r^k(t)}{\lambda} (1 - k |\dot{r}(t)| r^{-1}(t)), \quad t \geq 0. \quad (44) \]
Inequality (44) can be written as
\[\frac{c_3 r^{k(p-1)-b}(t)}{\lambda^{p-1}} + \frac{c_2 \lambda |\dot{r}(t)|}{r^{k+b}(t)} + k |\dot{r}(t)| \leq 1. \quad (45) \]

Let us choose \(k \) so that
\[k(p - 1) - b = 1, \]
that is,
\[k = \frac{b + 1}{p - 1}. \quad (46) \]
Choose \(\lambda \) as follows:
\[\lambda = \frac{r^k(0)}{2g(0)}. \quad (47) \]
Then inequality (43) holds, and inequality (45) can be written as:
\[c_3 \frac{r(t)[2g(0)]^{p-1}}{[r^k(0)]^{p-1}} + c_2 \frac{r^k(0)}{2g(0)} \frac{|\dot{r}(t)|}{r^{k+b}(t)} + k |\dot{r}(t)| \leq 1, \quad t \geq 0. \quad (48) \]
Note that (46) implies:
\[k + b = kp - 1. \quad (49) \]
Choose \(r(t) \) so that relations (42) hold and
\[k |\dot{r}(t)| \leq \frac{1}{2}, \quad t \geq 0. \quad (50) \]
Then inequality (48) holds if
\[c_2 \frac{[2g(0)]^{p-1}}{r^b+1(0)} + c_2 \frac{r^k(0)}{2g(0)} \frac{|\dot{r}(t)|}{r^{kp-1}} \leq \frac{1}{2}, \quad t \geq 0. \quad (51) \]
Denote
\[c_2 \frac{r^k(0)}{2g(0)} = c_2 \lambda := c_4. \quad (52) \]
Let
\[c_4 \frac{|\dot{r}(t)|}{r^{kp-1}} = \frac{1}{4}, \quad t \geq 0, \quad (53) \]
and $kp > 2$. Then equation (53) implies

$$r(t) = \left[t + \frac{4c_4}{kp - 2} \right]^{-\frac{1}{p-2}} \left(\frac{kp - 2}{4c_4} \right)^{-\frac{1}{p-2}}.$$ \hspace{1cm} (54)

This $r(t)$ satisfies conditions (42), and equation (53) implies:

$$k \frac{\dot{r}(t)}{r(t)} = kr_{kp-2}(t), \quad t \geq 0.$$ \hspace{1cm} (55)

Recall that $r(t)$ decays monotonically. Therefore, inequality (50) holds if

$$kr_{kp-2}(0) \leq \frac{1}{2}.$$ \hspace{1cm} (56)

Inequality (56) holds if

$$k \frac{r_{kp-2}(0)}{2} \leq \frac{2g(0)}{c_2} = \frac{kg(0)}{c_2} r^{(p-1)-2}(0) \leq 1.$$ \hspace{1cm} (57)

Note that (46) implies:

$$k(p-1) - 2 = b - 1.$$ \hspace{1cm} (58)

Condition (57) holds if $g(0)$ is sufficiently small or $r^{b-1}(0)$ is sufficiently large:

$$g(0) \leq \frac{c_2}{k} r^{b-1}(0).$$ \hspace{1cm} (59)

If $b > 1$, then condition (59) holds for any fixed $g(0)$ if $r(0)$ is sufficiently large. If $b = 1$, then (59) holds if $g(0) \leq \frac{c_2}{k}$. If $b \in (0, 1)$ then (59) holds either if $g(0)$ is sufficiently small or $r(0)$ is sufficiently small.

Consequently, if (54) and (59) hold, then (53) holds. Therefore, (51) holds if

$$c_3 \frac{[2g(0)]^{p-1}}{r^{b+1}(0)} \leq \frac{1}{4}.$$ \hspace{1cm} (60)

It follows from (59) that (60) holds if

$$c_3 2^{p-1} \left(\frac{c_2}{k} \right)^{p-1} \frac{1}{r^{p+2b-2}(0)} \leq \frac{1}{4}.$$ \hspace{1cm} (61)

If $b \in (0, 1]$ then

$$p - pb + 2b > 0.$$ \hspace{1cm} (62)

Thus, (61) always holds if $r(0)$ is sufficiently large, specifically, if

$$r(0) \geq \left[4c_3 (2c_2 k^{-1})^{p-1} \right]^\frac{1}{p-1-b+2b}.$$ \hspace{1cm} (63)

We have proved the following theorem.
Theorem 2.1. If \(r(t) = |a(t)| \) is defined in (54), and if (59) and (63) hold, then

\[
\|z(t)\| < r^k(t)\lambda^{-1}, \quad \lim_{t \to \infty} \|z(t)\| = 0.
\]

Thus, problem (7) has a unique global solution \(u(t) \) and

\[
\lim_{t \to \infty} \|u(t) - y\| = 0,
\]

where

\[
F(y) = f.
\]
References

[1] M. Day, *Normed linear spaces*, Springer-Verlag, Berlin, 1958.

[2] N. Dunford, J. Schwartz, *Linear operators*, Part 1: General theory, Interscience, New York, 1958.

[3] M. Gavurin, Nonlinear functional equations and continuous analysis of iterative methods, Izvestiya VUSSH, Mathem., 5, (1958), 18-31 (in Russian)

[4] N.S. Hoang and A.G. Ramm, A nonlinear inequality and applications, Nonlinear Analysis: Theory, Methods and Appl., 71, (2009), 2744-2752.

[5] N.S. Hoang and A.G. Ramm, An iterative scheme for solving nonlinear equations with monotone operators, BIT Numer. Math. 48, N4, (2008), 725-741.

[6] N.S. Hoang and A.G. Ramm, Dynamical systems method for solving linear finite-rank operator equations, Ann. Polon. Math., 95, N1, (2009), 77-93.

[7] N.S. Hoang and A.G. Ramm, Dynamical Systems Gradient method for solving nonlinear equations with monotone operators, Acta Appl. Math., 106, (2009), 473-499.

[8] N.S. Hoang and A.G. Ramm, A new version of the Dynamical Systems Method (DSM) for solving nonlinear equations with monotone operators, Diff. Eqns and Appl., 1, N1, (2009), 1-25.

[9] N.S. Hoang and A.G. Ramm, Dynamical Systems Method for solving nonlinear equations with monotone operators, Math. of Comput., 79, 269, (2010), 239-258.

[10] A.G. Ramm, *Dynamical systems method for solving operator equations*, Elsevier, Amsterdam, 2007.

[11] A.G. Ramm, Ill-posed problems with unbounded operators, Journ. Math. Anal. Appl., 325, (2007), 490-495.

[12] A.G. Ramm, Dynamical systems method (DSM) for selfadjoint operators, Jour. Math. Anal. Appl., 328, (2007), 1290-1296.

[13] A.G. Ramm, Iterative solution of linear equations with unbounded operators, Jour. Math. Anal. Appl., 330, N2, (2007), 1338-1346.

[14] A.G. Ramm, On unbounded operators and applications, Appl. Math. Lett., 21, (2008), 377-382.

[15] A.G. Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (2010), 1916-1921.

[16] A.G. Ramm, Dynamical systems method (DSM) and nonlinear problems, in the book: Spectral Theory and Nonlinear Analysis, World Scientific Publishers, Singapore, 2005, 201-228. (ed J. Lopez-Gomez).
[17] A.G. Ramm, Dynamical systems method for solving nonlinear operator equations, International Jour. of Applied Math. Sci., 1, N1, (2004), 97-110.

[18] A.G. Ramm, Dynamical systems method for solving operator equations, Communic. in Nonlinear Sci. and Numer. Simulation, 9, N2, (2004), 383-402.

[19] A.G. Ramm, Dynamical systems method and surjectivity of nonlinear maps, Communic. in Nonlinear Sci. and Numer. Simulation, 10, N8, (2005), 931-934.

[20] A.G. Ramm, Discrepancy principle for the dynamical systems method, Communic. in Nonlinear Sci. and Numer. Simulation, 10, N1, (2005), 95-101

[21] A.G. Ramm, Dynamical systems method for nonlinear equations in Banach spaces, Communic. in Nonlinear Sci. and Numer. Simulation, 11, N3, (2006), 306-310.

[22] A.G. Ramm, Dynamical systems method and a homeomorphism theorem, Amer. Math. Monthly, 113, N10, (2006), 928-933.

[23] A.G. Ramm, Dynamical systems method (DSM) for unbounded operators, Proc.Amer. Math. Soc., 134, N4, (2006), 1059-1063.

[24] A.G. Ramm, Discrepancy principle for DSM II, Comm. Nonlin. Sci. and Numer. Simulation, 13, (2008), 1256-1263.

[25] A.G. Ramm, Dynamical systems method (DSM) for general nonlinear equations, Nonlinear Analysis: Theory, Methods and Appl., 69, N7, (2008), 1934-1940.

[26] A.G. Ramm, Dynamical systems method for solving linear ill-posed problems, Ann. Polon. Math., 95, N3, (2009), 253-272.

[27] A.G. Ramm, A DSM proof of surjectivity of monotone nonlinear mappings, Annal. Polon. Math., 95, N2, (2009), 135-139.

[28] V.Shmulian, On differentiability of the norm in Banach space, Doklady Acad. Sci. USSR, 27, (1940), 643-648.