Polynomial in Non-Commutative Algebra

Aleks Kleyn

Abstract. I considered definition and properties of polynomial in non-commutative algebra. There exists polynomial which has finite, infinite or empty set of roots. For instance, the polynomial
\[p_1(x) = ix - xi - 1 \]
have no root and the polynomial
\[p_k(x) = ix - xi - k \]
has the set of roots
\[x = C_1 + C_2i + \frac{1}{2}j \]
I considered division of polynomials with remainder.

Contents
1. Linear Map 1
2. Polynomial 3
3. Operations with Polynomials 4
4. Linear Equation 5
5. Left-sided Polynomial 7
6. Square Root 8
7. Polynomial with Given Roots 9
8. Division with Remainder 11
9. Examples of Division of Polynomials .. 13
10. More Questions 16
11. Division of Polynomials in Non-associative Algebra 19
12. References 22
13. Index 23
14. Special Symbols and Notations 24

1. Linear Map

Convention 1.1. If the map
\[f : A \to A \]
of D-algebra A is linear map, then I use notation
\[f \circ a = f(a) \]
for image of the map f.
Definition 1.2. Linear map \(f : A \to A \) of \(D \)-algebra \(A \) satisfies to equalities
\[
\begin{align*}
&f \circ (a + b) = f \circ a + f \circ b \\
&f \circ (da) = d(f \circ a)
\end{align*}
\]
a, b \in A \quad d \in D
Let us denote \(\mathcal{L}(D; A \to A) \) set of linear maps of \(D \)-algebra \(A \). \(\square \)

Let \(H \) be quaternion algebra.

Theorem 1.3. Let product in algebra \(H \otimes H \) be defined according to rule
\[
(p_0 \otimes p_1) \circ (q_0 \otimes q_1) = (p_0 q_0) \otimes (q_1 p_1)
\]
A representation
\[
h : H \otimes H \longrightarrow \mathcal{L}(R; H \to H) \\
h(p) : g \to p \circ g
\]
of \(R \)-algebra \(H \otimes H \) in Abelian group \(\mathcal{L}(R; H \to H) \) defined by the equality
\[
(a \otimes b) \circ g = a g b \\
a, b \in H \quad g \in \mathcal{L}(R; H \to H)
\]
is left \(H \otimes H \)-module. If we put \(g = E \) where \(E \in \mathcal{L}(R; H \to H) \) is identity map, then we indentify the linear map \(f : H \to H \) of quaternion algebra and tensor
\[
f = f_{s \cdot 0} \otimes f_{s \cdot 1} \in H \otimes H
\]
using the following equality
\[
f \circ a = (f_{s \cdot 0} \otimes f_{s \cdot 1}) \circ a = f_{s \cdot 0} a f_{s \cdot 1}
\]
Proof. The theorem follows from the statement that the map
\[
E \circ x = x
\]
generates any linear map of quaternion algebra. \(\square \)

Definition 1.4. Expression \(f_{s \cdot p} \), \(p = 0, 1 \), in equality (1.7) is called component of linear map \(f \).
\[
(1.7) \\
f = f_{s \cdot 0} \otimes f_{s \cdot 1} \in H \otimes H
\]

Definition 1.5. The polylinear map of \(D \)-algebra \(A \)
\[
f : A^n \to A
\]
satisfies to equalities
\[
\begin{align*}
&f \circ (a_1, ..., a_i + b_i, ..., a_n) = f \circ (a_1, ..., a_i, ..., a_n) + f \circ (a_1, ..., b_i, ..., a_n) \\
&f \circ (a_1, ..., p a_i, ..., a_n) = p f \circ (a_1, ..., a_i, ..., a_n)
\end{align*}
\]
\[
1 \leq i \leq n \\
a_i, b_i \in A \\
p \in D
\]
Let us denote \(\mathcal{L}(D; A^n \to A) \) set of \(n \)-linear maps of \(D \)-algebra \(A \). \(\square \)
Theorem 1.6. A representation
\[h : H^{n+1} \otimes S_n \rightarrow \mathcal{L}A(R; H^n \rightarrow H) \]
of algebra \(H^{n+1} \) in module \(\mathcal{L}A(R; H^n \rightarrow H) \) defined by the equality
\[(a_0 \otimes \ldots \otimes a_n, \sigma) \circ (f_1 \otimes \ldots \otimes f_n) = a_0 \sigma(f_1)a_1\ldots a_{n-1}\sigma(f_n)a_n \]
\[a_0, \ldots, a_n \in H \quad \sigma \in S_n \quad f_1, \ldots, f_n \in \mathcal{L}(R; H \rightarrow H) \]
allows us to identify tensor \(d \in A^{n+1} \) and transposition \(\sigma \in S^n \) with map
\[(1.12) \quad (d, \sigma) \circ (f_1, \ldots, f_n) = f = \delta \in \mathcal{L}(R; H \rightarrow H) \]
where \(\delta \in \mathcal{L}(R; H \rightarrow H) \) is identity map.

2. Polynomial

Definition 2.1. Let
\[f : A^n \rightarrow A \]
be polylinear map of \(D \)-module \(A \). The map
\[p : A \rightarrow A \]
defined by the equality
\[p \circ x^n = f \circ (x_1, \ldots, x_n) \]
x_1 = \ldots = x_n = x
is called homogeneous polynomial of power \(n \).

Theorem 2.2. The set \(A_n[x] \) of homogeneous polynomials of power \(n \) is Abelian group.

Proof. The theorem follows from the statement that sum of \(n \)-linear maps is \(n \)-linear map.

Theorem 2.3. Let \(A \) be \(D \)-algebra. Then for any homogeneous polynomial
\[p : A \rightarrow A \]
of power \(n \) there exists tensor \(p' \in A^{n+1} \) such that
\[p \circ x^n = p' \circ x^n = p' \circ (x_1, \ldots, x_n) \]
x_1 = \ldots = x_n = x

Proof. The theorem follows the theorem 1.6. Hereinafter we will identify homogeneous polynomial \(p \) and corresponding tensor \(p' \).

Definition 2.4. If the tensor \(p \) has form \(p = p_0 \otimes \ldots \otimes p_n \), then polynomial \(p \circ x^n \) is called monomial.

Theorem 2.5. Let \(p_k(x) \) be monomial of power \(k \) over associative \(D \)-algebra \(A \). Then
2.5.1: Monomial of power 0 has form $p_0(x) = a_0$, $a_0 \in A$.

2.5.2: If $k > 0$, then

\begin{equation}
 p_k(x) = p_{k-1}(x)x^{a_k}
\end{equation}

where $a_k \in A$.

Proof. We prove the theorem by induction over power n of monomial. Let $n = 0$. We get the statement 2.5.1 since monomial $p_0(x)$ is constant.

Let $n = k$. Last factor of monomial $p_k(x)$ is either $a_k \in A$, or has form x^l, $l \geq 1$. In the later case we assume $a_k = 1$. Factor preceding a_k has form x^l, $l \geq 1$. We can represent this factor as $x^{l-1}x$. Therefore, we proved the statement. \(\Box\)

Remark 2.6. In the theorem 2.5, I considered recursive representation of a monomial in associative D-algebra. Since product is independent of the way in which brackets are placed, recursive representation of a monomial is not unique in associative D-algebra. For instance, I can use any of the following forms

\begin{equation}
 ax^2bxcx^3d = ax(bxcx^3) = (ax)x(bxcx^3d) = (ax^2b)x(cx^3d)
 = (ax^2bxc)x(x^2d) = (ax^2bxcx)x(xd) = (ax^2bxcx^2)xd
\end{equation}

to represent monomial ax^2bxcx^3d. I chose the equality (2.3) as the most simple for algorithm of division of polynomials. \(\Box\)

Definition 2.7. We denote

$$ A[x] = \bigoplus_{n=0}^{\infty} A_n[x] $$

direct sum\(^{2.1}\) of Abelian groups $A_n[x]$. An element $p(x)$ of Abelian group $A[x]$ is called **polynomial** over D-algebra A. \(\Box\)

Therefore, we can present polynomial of power n in the following form

\begin{equation}
 p(x) = p_0 + p_1 \circ x + ... + p_n \circ x^n \quad p_i \in A^{i+1} \quad i = 0, ..., n
\end{equation}

3. Operations with Polynomials

Definition 3.1. Let

$$ p(x) = p_0 + p_1 \circ x + ... + p_n \circ x^n \quad p_i \in A^{i+1} \quad i = 0, ..., n $$

$$ r(x) = r_0 + r_1 \circ x + ... + r_n \circ x^n \quad r_i \in A^{i+1} \quad i = 0, ..., n $$

be polynomials. \(^{3.1}\) We introduce the sum of polynomials p and r by the equality

\begin{equation}
 (p + r)(x) = p_0 + r_0 + (p_1 + r_1) \circ x + ... + (p_n + r_n) \circ x^n
\end{equation}

\(\Box\)

\(^{2.1}\) See the definition of direct sum of Abelian groups in [1], pages 36, 37. On the same page, Lang proves the existence of direct sum of Abelian groups.

\(^{3.1}\) If the coefficient, let’s say p_i, is absent, then we assume $p_i = 0$.\(\Box\)
Definition 3.2. Bilinear map

\(* : A^{n\otimes} \times A^{m\otimes} \to A^{n+m-1\otimes} \)

is defined by the equality

\[
(a_1 \otimes ... \otimes a_n) * (b_1 \otimes ... \otimes b_n) = a_1 \otimes ... \otimes a_{n-1} \otimes a_n b_1 \otimes b_2 \otimes ... \otimes b_n
\]

\[\square\]

Theorem 3.3. For any tensors \(a \in A^{n+1\otimes}, \ b \in A^{m+1\otimes} \), product of homogeneous polynomials \(a \circ x^n, b \circ x^m \) is defined by the equality

\[
(a * b) \circ x^{n+m} = (a \circ x^n)(b \circ x^m)
\]

4. LINEAR EQUATION

Let \(\vec{e} \) be the basis of finite dimensional algebra \(A \) over field \(F \) and \(C^k_{ij} \) be structural constants of algebra \(A \) relative to the basis \(\vec{e} \).

Consider the linear equation

\[
a \circ x = b
\]

where \(a = a_{s,0} \otimes a_{s,1} \in A^{2\otimes} \). According to the theorem [3]-6.4.1, we can write the equation (4.1) in standard form

\[
a^j e_i x e_j = b
\]

\[
a^j i = a^j_0 a^j_1 \quad a_{s,0} = a^j_0 e_i \quad a_{s,1} = a^j_1 e_i
\]

According to the theorem [3]-6.4.5, equation (4.2) is equivalent to equation

\[
a^j i x^j = b^j
\]

\[
a^j i = a^j r C^r_{kj} C^j_{pr} \quad x = x^i e_i \quad b = b^i e_i
\]

According to the theory of linear equations over field, if determinant

\[
det|a^j_i| \neq 0
\]

then equation (4.1) has only one solution.

\[
(4.1) \quad a \circ x = b
\]

\[\square\]

[3] Aleks Kleyn, Linear Map of D-Algebra, eprint arXiv:1502.04063 (2015)

Definition 4.1. The tensor \(a \in A^{2\otimes} \) is called nonsingular tensor if this tensor satisfies to condition (4.6).

\[\square\]

Theorem 4.2. Let \(a \in A^{2\otimes} \) be nonsingular tensor. If we consider the equation (4.2) as transformation of algebra \(A \), then we can write the inverse transformation in form

\[
x = c^p q e_p b e_q
\]
where components c^{pq} satisfy to equation

\[(4.8) \quad \delta^p_a \delta^q_b = a^{ij} c^{pq} C^r_{ip} C^s_{qj} \]

Proof. The theorem follows from the theorem [2]-6.7. □

\[(4.1) \quad a \circ x = b \quad (4.2) \quad a^{ij} e_i x e_j = b \]

[2] Aleks Kleyn, Polynomial over Associative D-Algebra, eprint arXiv:1302.7204 (2013)

Definition 4.3. Let $a \in A^{2 \otimes}$ be nonsingular tensor. The tensor

\[(4.9) \quad a^{-1} = c^{pq} e_p \otimes e_q \]

is called tensor inverse to tensor a. □

Theorem 4.4. Let $a \in A^{2 \otimes}$ be nonsingular tensor. Then linear equation

\[(4.10) \quad a \circ x = b \]

has unique solution

\[(4.11) \quad x = a^{-1} \circ b \]

If a is singular tensor, then the equation (4.10) has solution only when $b \in \ker a$. In this case the equation (4.10) has infinitely many solutions.

Example 4.5. The tensor

\[i \otimes 1 \otimes 1 \in H^{2 \otimes} \]

corresponds to the matrix

\[(4.12) \quad \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 2 & 0 \end{pmatrix} \]

Therefore, the polynomial

\[(4.13) \quad p_1(x) = ix - xi - 1 \]

have no root and the polynomial

\[(4.14) \quad p_k(x) = ix - xi - k \]

has the set of roots

\[(4.15) \quad x = C_1 + C_2 i + \frac{1}{2} j \]
5. LEFT-SIDED POLYNOMIAL

In the book [6] on the page 48, professor Cohn wrote that the study of polynomials over skew field is difficult problem. For this reason professor Ore considered skew right polynomial ring \(^{(5.1)}\) where Ore introduced the transformation of monomial

\[
(5.1) \quad at = ta^\alpha + a^\delta
\]

The map

\[
\alpha : a \in A \rightarrow a^\alpha \in A
\]

is endomorphism of \(D\)-algebra \(A\) and the map

\[
\delta : a \in A \rightarrow a^\delta \in A
\]

is \(\alpha\)-derivation of \(D\)-algebra \(A\)

\[
(5.2) \quad (a + b)^\delta = a^\delta + b^\delta \quad (ab)^\delta = a^\delta b^\alpha + ab^\delta
\]

In such case all coefficients of polynomial can be written on the right. Such polynomials are called right-sided polynomials.

The same way we may consider the transformation of monomial

\[
(5.3) \quad ta = a^\alpha t + a^\delta
\]

In such case all coefficients of polynomial can be written on the left. Such polynomials are called left-sided polynomials. \(^{(5.2)}\)

The point of view proposed by Ore allows us to get qualitative picture of the theory of polynomials in non-commutative algebra. However, there exist algebras where this point of view is not complete.

Example 5.1. If there exist transformation \((5.1)\) in \(D\)-algebra \(A\), then we can map any polynomial \(p\) of power \(1\) into right-sided polynomial \(p'\) of power \(1\) such way that

\[
p(t) = p'(t)
\]

The polynomial \(p'\) may have the following form

\[
(5.4) \quad p'(t) = ta_1 + a_0 \quad a_1 \neq 0
\]

\[
(5.5) \quad p'(t) = t0 + a_0 \quad a_0 \neq 0
\]

\[
(5.6) \quad p'(t) = t0 + 0
\]

The polynomial \((5.4)\) has unique solution. The polynomial \((5.5)\) has no solution. Any \(A\)-number is root of the polynomial \((5.6)\).

It is evident that we missed the case when the polynomial \(p\) has infinitely many roots, but not any \(A\)-number is the root of the polynomial \(p\). Therefore the question about the existence of transformation \((5.1)\) in quaternion algebra arises. \(\square\)

\(^{(5.1)}\) See also the definition on pages [6]-(48 - 49).

\(^{(5.2)}\) See also the definition on the page [5]-3.
Example 5.2. Let

\[p(x) = \sum_{i=0}^{n} p_i x^i \]

and

\[r(x) = \sum_{j=0}^{m} r_j x^j \]

be left-sided polynomials. We introduce product of polynomials \(p \) and \(r \) by the equality 5.3

\[p(x) \ast r(x) = (p \ast r)(x) = \sum_{j=0}^{m+n} \left(\sum_{i=0}^{j} p_i r_{j-i} \right) x^j \]

Consider polynomials 5.8

\[L(x) = x - i \]

5.9

\[R(x) = x - j \]

The equality 5.10

\[P(x) = (L \ast R)(x) = x^2 - (i + j)x + k \]

follows from equalities (5.7), (5.8), (5.9). Let

\[h = R(i) = i - j \]

\[\tilde{x} = h x h^{-1} = (i - j)x(i - j)^{-1} = \frac{1}{2}(i - j)x(j - i) \]

5.11

\[L(\tilde{x}) = \frac{1}{2}(i - j)x(j - i) - i \]

According to the theorem 5.1-1, item (ii), the polynomial 5.12

\[P_1(x) = L(\tilde{x})R(x) = \left(\frac{1}{2}(i - j)x(j - i) - i \right)(x - j) \]

coincides with the polynomial \(P(x) \), \(P_1(x) = P(x) \)

5.13

\[x^2 - (i + j)x + k = \left(\frac{1}{2}(i - j)x(j - i) - i \right)(x - j) \]

However, the equality (5.13) is not true. Let \(x = i + j \). Equalities 5.14

\[(i + j)^2 - (i + j)(i + j) + k = \left(\frac{1}{2}(i - j)(i + j)(j - i) - i \right)(i + j - j) \]

5.15

\[k = \left(\frac{1}{2}(i^2 + ij - ji - j^2)(j - i) - i \right)i \]

\[= (k(j - i) - i)i = (-i - j - i)i \]

follow from the equality (5.13). □

6. Square Root

5.3 See also the definition on the page [5]-3.
Definition 6.1. The root \(x = \sqrt{a} \) of the equation
\[
x^2 = a
\]
in \(D \)-algebra \(A \) is called square root of \(A \)-number \(a \). □

Theorem 6.2. Let \(H \) be quaternion algebra and \(a \) be \(H \)-number.
6.2.1: Since \(\text{Re} \sqrt{a} \neq 0 \), then the equation
\[
x^2 = a
\]
has roots \(x = x_1, x = x_2 \) such that
\[
x_2 = -x_1
\]
6.2.2: Since \(a = 0 \), then the equation
\[
x^2 = a
\]
has root \(x = 0 \) with multiplicity 2.
6.2.3: Since conditions 6.2.1, 6.2.2 are not true, then the equation
\[
x^2 = a
\]
has infinitely many roots such that
\[
x \in \text{Im} H, \quad a \in \text{Re} H, \quad |x| = \sqrt{-a}
\]
Proof. The theorem follows from the theorem [4]-8.5. □

Theorem 6.3. Let quaternion \(a \) be a root of the polynomial
\[
r(x) = x^2 + 1
\]
Then
\[
\sqrt{a} = \pm \frac{1}{\sqrt{2}} (1 + a)
\]
Proof. The equality
\[
(a + 1)^2 = a^2 + 2a + 1 = 2a
\]
follows from the statement that \(a \) is a root of the polynomial (6.4). The equality (6.5) follows from the equality (6.6) and from the statement 6.2.1. □

7. Polynomial with Given Roots

In commutative algebra, if I have two roots of polynomial of second order, then this polynomial is unique. The case is different in non-commutative algebra.

Theorem 7.1. Let \(x_1, x_2 \in A \),
\[
x_1 x_2 \neq x_2 x_1
\]
Then
\[
p_{12}(x) = (x - x_1)(x - x_2) = x^2 - x_1 x - x_2 + x_1 x_2
\]
\(p_{21}(x) = (x - x_2)(x - x_1) = x^2 - x_2 x - x x_1 + x_2 x_1 \)

are unequal polynomials

\(p_{12} \neq p_{21} \)

Proof. Let

\(x = x_1 + x_2 \)

The equality

\(p_{12}(x_1 + x_2) = (x_1 + x_2 - x_1)(x_1 + x_2 - x_2) = x_2 x_1 \)

follows from equalities (7.2), (7.5). The equality

\(p_{21}(x_1 + x_2) = (x_1 + x_2 - x_2)(x_1 + x_2 - x_1) = x_1 x_2 \)

follows from equalities (7.3), (7.5). The statement (7.4) follows from equalities (7.6), (7.7) and from the statement (7.1).

Theorem 7.2. Let \(a_1, a_2 \in A \otimes A \). Then the polynomial

\(p(x) = a_1 \circ p_{12}(x) + a_2 \circ p_{21}(x) \)

has roots \(x = x_1, x = x_2 \).

Proof. The theorem follows from the statement that polynomials \(p_{12}, p_{21} \) have roots \(x = x_1, x = x_2 \).

Question 7.3. Does polynomial (7.8) have roots which are different from values \(x = x_1, x = x_2 \)?

Question 7.4. Are there other polynomials that have roots \(x = x_1, x = x_2 \)?

It looks like the answer to the question 7.4 is positive.

Example 7.5. Consider the set of polynomials

\(p(x) = a_1 \circ ((x - i)(x - j)) + a_2 \circ ((x - j)(x - i)) \)

which, according to the theorem 7.2, have roots \(x = i, x = j \). The polynomial

\(r(x) = x^2 + 1 \)

also has roots \(x = i, x = j \).

Question 7.6. Does polynomial (7.10) belong to the set of polynomials (7.9)?

The theorem 7.7 answers the question 7.6.

Theorem 7.7. There is no tensors \(a_1, a_2 \in A \otimes A \) such that

\(a_1 \circ (x^2 - ix - xj + k) + a_2 \circ (x^2 - jx - xi - k) = x^2 + 1 \)

Proof. Let the theorem be not true.
Statement 7.8. Let there exist tensors \(a_1, a_2 \in A \otimes A \) such that the equality (7.11) is true.

Equalities

\[
(7.12) \quad a_1 \circ x^2 + a_2 \circ x^2 = x^2
\]

\[
(7.13) \quad a_1 \circ (ix) + a_1 \circ (xj) + a_2 \circ (jx) + a_2 \circ (xi) = 0
\]

\[
(7.14) \quad a_1 \circ k - a_2 \circ k = 1
\]

follow from the equality (7.11).

Let \(x = 1 \). The equality

\[
(7.15) \quad a_1 \circ i + a_1 \circ j + a_2 \circ j + a_2 \circ i = 0
\]

follow from equalities (7.13).

According to the theorem 6.3, there exists \(x \) such that \(x^2 = i \). The equality

\[
(7.16) \quad a_1 \circ i + a_2 \circ i = i
\]

follows from the equality (7.12).

According to the theorem 6.3, there exists \(x \) such that \(x^2 = j \). The equality

\[
(7.17) \quad a_1 \circ j + a_2 \circ j = j
\]

follows from the equality (7.12).

The equality

\[
(7.18) \quad a_1 \circ i + a_2 \circ i + a_1 \circ j + a_2 \circ j = i + j
\]

follows from equalities (7.16), (7.17) and contradicts the equality (7.15). Therefore, the statement 7.8 is not true and we proved the theorem.

\[\square\]

8. Division with Remainder

Definition 8.1. A-number \(a \) is left divisor of A-number \(b \), if there exists A-number \(c \) such that

\[
(8.1) \quad ac = b
\]

\[\square\]

Definition 8.2. A-number \(a \) is right divisor of A-number \(b \), if there exists A-number \(c \) such that

\[
(8.2) \quad ca = b
\]

\[\square\]

It is evident that there is symmetry between definitions 8.1 and 8.2. The difference between left and right divisors is also evident since the product is noncommutative. However we can consider a definition generalizing definitions 8.1 and 8.2.
Definition 8.3. A-number a is divisor of A-number b, if there exists $A⊗A$-number c such that
\[(8.3)\]
$$c ∘ a = b$$
$A ⊗ A$-number c is called quotient of A-number b divided by A-number a. □

Definition 8.4. Let division in the D-algebra A is not always defined. A-number a divides A-number b with remainder, if the following equation is true
\[(8.4)\]
$$c ∘ a + f = b$$
$A ⊗ A$-number c is called quotient of A-number b divided by A-number a. A-number f is called remainder of the division of A-number b by A-number a. □

Theorem 8.5. Let
$$p(x) = x - a$$
be polynomial of power 1. Let
$$r(x) = r_0 + r_1 ∘ x + ... + r_k ∘ x^k$$
be polynomial of power $k > 0$. Then
\[(8.5)\]
$$r(x) = s_0 + (q_0 + q_1(x) + ... + q_{k-1}(x)) ∘ p(x)$$
where $q_i ∈ A_i[x] ⊗ A, i = 0, ..., k - 1,$ is homogeneous polynomial of power i.

Proof. Let
\[(8.6)\]
$$r_k = r_{k.0,s} ⊗ ... ⊗ r_{k.k.s}$$
According to the theorem 2.5,
\[(8.7)\]
$$r_k ∘ x^k = ((r_{k.0,s} ⊗ ... ⊗ r_{k.k-1.s}) ∘ x^{k-1}) ∘ x ∙ r_{k,k.s}$$
Let
\[(8.8)\]
$$q_{k-1}(x) = ((r_{k.0,s} ⊗ ... ⊗ r_{k,k-1.s}) ∘ x^{k-1}) ∘ r_{k,k.s}$$
To prove the theorem, it is enough to note that power of the polynomial
\[(8.9)\]
$$s_{k-1}(x) = r(x) - q_{k-1}(x) ∘ (x - a)$$
is less than k. The equality
\[(8.10)\]
$$r(x) = s_{k-1}(x) + q_{k-1}(x) ∘ (x - a)$$
follows from the equality (8.9). We will apply algorithm considered in proof to the polynomial $s_{k-1}(x)$. After a finite number of steps, we will get the polynomial s_0 of power 0. The equality (8.5) follows from the equality (8.10). □

The algorithm considered in the proof of the theorem is called standard algorithm of division of polynomials.
9. Examples of Division of Polynomials

In following examples, we use standard algorithm of division of polynomials.

Example 9.1. Let

\[p(x) = x - i \]

(9.1)

\[r(x) = (x - j)(x - i) = x^2 - jx - xi - k \]

According to the theorem 8.5, we set \(q_1(x) = x \otimes 1 \). Then

\[s_1(x) = r(x) - q_1(x) \cdot p(x) = r(x) - (x \otimes 1) \cdot (x - i) \]

(9.2)

\[= x^2 - jx - xi - k - x(x - i) = x^2 - jx - xi - k - x^2 + xi \]

\[= -jx - k \]

Now we set \(q_0 = -j \otimes 1 \). Then

\[s_0 = s_1(x) - q_0 \cdot p(x) = s_1(x) - (-i \otimes 1 - 1 \otimes j + 1 \otimes i) \cdot (x - i) \]

(9.3)

\[= -ix - xj + k + xi + i(x - i) + (x - i)j - (x - i)i \]

\[= -ix - xj + k + xi + ix + 1 + xj - k - xi - 1 = 0 \]

The equality

\[r(x) = s_1(x) + (x \otimes 1) \cdot (x - i) \]

(9.4)

\[= (-j \otimes 1 + x \otimes 1) \cdot (x - i) \]

follows from equalities (9.2), (9.3). We can reduce expression in the equality (9.4)

(9.5)

\[r(x) = ((x - j) \otimes 1) \cdot (x - i) = (x - j)(x - i) \]

We see that the representation of the polynomial \(r(x) \) in the equality (9.5) is the same as the representation of the polynomial \(r(x) \) in the equality (9.1). □

The answer (9.5) in the example 9.1 is evident because I intentionally chose divisor \(p(x) \) to be equal second factor of the polynomial \(r(x) \).

\[
\begin{align*}
p(x) &= x - i \\
r(x) &= (x - j)(x - i) = x^2 - jx - xi - k
\end{align*}
\]

The example 9.2 is more interesting because I considered different order of factors.

Example 9.2. Let

\[p(x) = x - i \]

(9.6)

\[r(x) = (x - i)(x - j) = x^2 - ix - xj + k \]

According to the theorem 8.5, we set \(q_1(x) = x \otimes 1 \). Then

\[s_1(x) = r(x) - (x \otimes 1) \cdot (x - i) \]

(9.7)

\[= x^2 - ix - xj + k - x(x - i) = x^2 - ix - xj + k - x^2 + xi \]

\[= -ix - xj + k + xi \]

Now we set

\[q_0 = -i \otimes 1 - 1 \otimes j + 1 \otimes i \]

(9.8)

Then

\[s_0 = s_1(x) - q_0 \cdot p(x) = s_1(x) - (-j \otimes 1) \cdot (x - i) \]

(9.9)

\[= -jx - k + j(x - i) = -jx - k + jx + k = 0 \]
The equality
\[(9.10)\]
\[r(x) = s_1(x) + (x \otimes 1) \circ (x - i)\]
\[= (-i \otimes 1 -1 \otimes j + 1 \otimes i + x \otimes 1) \circ (x - i)\]
follows from equalities (9.7), (9.9). We can reduce expression in the equality (9.10)
\[(9.11)\]
\[r(x) = -i(x - i) - (x - i)j + (x - i)i + x(x - i)\]
\[= (x - i)(i - j) + (x - i)(x - i)\]
\[= (x - i)(x - i + i - j)\]
\[= (x - i)(x - j)\]
We see that the representation of the polynomial \(r(x)\) in the equality (9.11) is the same as the representation of the polynomial \(r(x)\) in the equality (9.6). \(\square\)

The quotient of polynomial \(r(x)\) divided by polynomial \(p(x)\) in the example 9.2 has a more complicated structure than the quotient in the example 9.1. This is because I am trying to write down the divisor \(p(x)\) to the right of the quotient, although initially the polynomial \(p(x)\) was left factor. Nevertheless, as a result of simple transformations, factorization in the equality (9.11) took the expected form.

\[
\begin{align*}
p(x) &= x - i \\
r(x) &= (x - i)(x - j) = x^2 - ix - xj + k
\end{align*}
\]
In the example 9.3, I consider division of the left-sided polynomial
\[
r(x) = x^2 - ix - jx - k
\]
over the polynomial
\[
p(x) = x - i
\]
I know that the polynomial \(r(x)\) has solution \(x = i\) and want to find another solution.

Example 9.3. Let
\[
p(x) = x - i
\]
\[
r(x) = x^2 - ix - jx - k
\]
According to the theorem 8.5, we set \(q_1(x) = x \otimes 1\). Then
\[
s_1(x) = r(x) - (x \otimes 1) \circ (x - i)
\]
\[= x^2 - ix - jx - k - x(x - i) = x^2 - ix - jx - k - x^2 + xi
\]
\[= -ix - jx - k + xi
\]
Now we set
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[
(9.12)
\]
\[
(9.13)
\]
\[
(9.14)
\]
\[
(9.15)
\]
Then
\[
s_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-i \otimes 1 - j \otimes 1 + 1 \otimes i) \circ (x - i)
\]
\[= -ix - jx - k + xi + i(x - i) + j(x - i) - (x - i)i
\]
\[= -ix - jx - k + xi + ix + 1 + jx + k - xi - 1 = 0
\]
The equality
\[
r(x) = s_1(x) + (x \otimes 1) \circ (x - i) = q_0 \circ (x - i) + (x \otimes 1) \circ (x - i)
\]
\[= (-i \otimes 1 - j \otimes 1 + 1 \otimes i + x \otimes 1) \circ (x - i)\]
follows from equalities (9.12), (9.14). We can reduce expression in the equality (9.15)

\[
r(x) = -i(x - i) - j(x - i) + (x - i)i + x(x - i) \\
= (x - i)i + (x - i - j)(x - i)
\]

□

Question 9.4. Does the polynomial

\[
r(x) = x^2 - ix - jx - k
\]

have root different from \(x = i\)?

We verify immediately that \(x = i\) is the root of the polynomial \(r(x)\). According to the example 9.3, we can represent the polynomial \(r(x)\) as

\[
(9.17) \quad r(x) = (1 \otimes i + (x - i - j) \otimes 1) \circ (x - i)
\]

Therefore, in order for the polynomial \(p(x)\) to have the root different from \(x = i\), it is necessary that linear map

\[
(9.18) \quad 1 \otimes i + (x - i - j) \otimes 1
\]

has non-trivial kernel and quaternion \(x - i\) belongs to the kernel of the linear map (9.18). The linear map (9.18) has the matrix

\[
\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}
+
\begin{pmatrix}
x^0 & x^1 & -x^2 + 1 & -x^3 \\
x^1 - 1 & x^0 & -x^3 & x^2 - 1 \\
x^2 - 1 & x^3 & x^0 & -x^4 + 1 \\
x^3 & -x^2 + 1 & x^4 - 1 & x^0
\end{pmatrix}
\]

\[
(9.19) \quad =
\begin{pmatrix}
x^0 & -x^1 & -x^2 + 1 & -x^3 \\
x^1 & x^0 & -x^3 & x^2 - 1 \\
x^2 - 1 & x^3 & x^0 & -x^4 + 2 \\
x^3 & -x^2 + 1 & x^4 - 2 & x^0
\end{pmatrix}
\]

Search of a value of \(x\) for which the matrix (9.19) is not singular is not simple task. However I hope to do research in this direction.

In the example 9.5, I consider division of the left-sided polynomial

\[
r(x) = x^2 - ix - jx - k \quad r(j) = -2k
\]

over the polynomial

\[
p(x) = x - j
\]

Example 9.5. Let

\[
p(x) = x - j \\
r(x) = x^2 - ix - jx - k
\]
According to the theorem 8.5, we set \(q_1(x) = x \otimes 1 \). Then
\[
s_1(x) = r(x) - (x \otimes 1) \circ (x - i)
\]
(9.20)
\[
= x^2 - ix - jx - k - x(x - j) = x^2 - ix - jx - k - x^2 + xj
\]
\[
= -ix - jx - k + xj
\]
Now we set
(9.21)
\[
q_0 = -i \otimes 1 - j \otimes 1 + 1 \otimes j
\]
Then
\[
s_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-i \otimes 1 - j \otimes 1 + 1 \otimes j) \circ (x - j)
\]
(9.22)
\[
= -ix - jx - k + xj + i(x - j) + j(x - j) - (x - j)j
\]
\[
= -ix - jx - k + xj + ix - k + jx + 1 - xj - 1 = -2k
\]
The equality
\[
r(x) = s_1(x) + (x \otimes 1) \circ (x - j)
\]
(9.23)
\[
= s_0 + q_0 \circ (x - j) + (x \otimes 1) \circ (x - j)
\]
\[
= -2k + (-i \otimes 1 - j \otimes 1 + 1 \otimes j + x \otimes 1) \circ (x - j)
\]
follows from equalities (9.20), (9.22). We can reduce expression in the equality (9.23)
(9.24)
\[
r(x) = -2k + (1 \otimes j + (x - i - j) \otimes 1) \circ (x - j)
\]
\[\square\]

10. More Questions

In the example 10.1, I considered the polynomial \(r(x) \) of power 3 in order to find quotient of the polynomial \(r(x) \) divided by two polynomials. First I will find a quotient of the polynomial
\[
r(x) = (x - j)(x - k)(x - j - k)
\]
divided by the polynomial
\[
p(x) = x - k
\]

Example 10.1. Let
\[
p(x) = x - k
\]
\[
r(x) = (x - j)(x - k)(x - j - k) = (x^2 - jx - xk + i)(x - j - k)
\]
\[
= x^2(x - j - k) - jx(x - j - k) - xk(x - j - k) + i(x - j - k)
\]
\[
= x^3 - x^2j - x^2k - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j
\]
\[
= x^3
\]
\[
+ (-1 \otimes 1 \otimes j - 1 \otimes 1 \otimes k - j \otimes 1 \otimes 1 - 1 \otimes k \otimes 1) \circ x^2
\]
\[
+ (j \otimes j + j \otimes k - 1 \otimes i - 1 \otimes 1 + i \otimes 1) \circ x
\]
\[
- k + j
\]
According to the theorem 8.5, we set \(q_2(x) = (x^2) \otimes 1 \). Then
\[
\begin{align*}
s_2(x) &= r(x) - q_2(x) \circ (x - k) = r(x) - (x^2 \otimes 1) \circ (x - k) \\
&= x^3 - x^2 j - x^2 k - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j \\
&- x^3 + x^2 k \\
&= -x^2 j - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j
\end{align*}
\]
(10.1)

According to the theorem 8.5, we set
\[
 q_1(x) = -x \otimes j - jx \otimes 1 - xk \otimes 1
\]
(10.2)

The equality
\[
\begin{align*}
s_1(x) &= s_2(x) - q_1(x) \circ (x - k) \\
&= -x^2 j - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j \\
&- (-x \otimes j - jx \otimes 1 - xk \otimes 1) \circ (x - k) \\
&= -x^2 j - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j \\
&+ x(x - k)j + jx(x - k) + xk(x - k) \\
&= -x^2 j - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j \\
&+ x^2 j - xkj + jx^2 - jxk + xkx - xkk \\
&= jxj + ix - k + j
\end{align*}
\]
(10.3)

follows from equalities (10.1), (10.2). According to the theorem 8.5, we set
\[
 q_0(x) = j \otimes j + i \otimes 1
\]
(10.4)

The equality
\[
\begin{align*}
s_0 &= s_1(x) - q_0(x) \circ (x - k) \\
&= jxj + ix - k + j - (j \otimes j + i \otimes 1) \circ (x - k) \\
&= jxj + ix - k + j - j(x - k)j - i(x - k) \\
&= jxj + ix - k + j - jxj + jkj - ix + ik \\
&= -k + j + jkj + ik = 0
\end{align*}
\]
(10.5)

follows from equalities (10.3), (10.4). The equality
\[
 r(x) = s_0 + (q_0 + q_1(x) + q_2(x)) \circ (x - k) \\
 = (j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1) \circ (x - k)
\]
(10.6)

follows from equalities (10.1), (10.2), (10.4), (10.5).

The quotient
\[
 q(x) = j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1
\]
(10.7)

of the polynomial
\[
r(x) = (x - j)(x - k)(x - j - k)
\]
divided by the polynomial
\[
p(x) = x - k
\]
is a tensor depending on \(x \), not a polynomial. That is why we cannot use the theorem 8.5.
Question 10.2. It is easy to see that
\[
q(j) = (j \otimes j + i \otimes 1 - j \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1)(j)
\]
\[
= j \otimes j + i \otimes 1 - j \otimes j - j^2 \otimes 1 - jk \otimes 1 + j^2 \otimes 1 = 0
\]
Therefore, the question arises of how to select in the tensor factor \(x - j\).

Example 10.3. One possible answer to the question 10.2 is the transformation
\[
q(j) = j \otimes j - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1
\]
Consider the polynomial
\[
i - jx - xk + x^2
\]
According to the theorem 8.5, we set \(q_1(x) = x \otimes 1\). Then
\[
s_1(x) = r(x) - q_1(x) \circ (x - j) = r(x) - (x \otimes 1) \circ (x - j)
\]
\[
i - jx - xk + x^2 + xj
\]
Now we set
\[
q_0 = -j \otimes 1 - 1 \otimes k + 1 \otimes j
\]
Then
\[
q_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-j \otimes 1 - 1 \otimes k + 1 \otimes j) \circ (x - j)
\]
\[
i - jx - xk + xj + j(x - j) + (x - j)k - (x - j)j
\]
\[
i - jx - xk + xj + jx - j^2 + xk - jk - xj + j^2
\]
\[
i - jk = 0
\]
The equality
\[
r(x) = s_1(x) + (x \otimes 1) \circ (x - j)
\]
\[
= (-j \otimes 1 - 1 \otimes k + 1 \otimes j + x \otimes 1) \circ (x - j)
\]
follows from equalities (10.12), (10.14). The equality
\[
j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1
\]
\[
= - (x - j) \otimes j + ((-j \otimes 1 - 1 \otimes k + 1 \otimes j + x \otimes 1) \circ (x - j)) \otimes 1
\]
\[
= ((-1 \otimes j - j \otimes 1 - 1 \otimes k + 1 \otimes j + x \otimes 1) \circ (x - j)) \otimes 1
\]
\[
= ((-j \otimes 1 - 1 \otimes k + x \otimes 1) \circ (x - j)) \otimes 1
\]
follows from equalities (10.10), (10.15).

We see that quotient in the example 10.3 is \(H^{3\otimes}\)-number.
Example 10.4. The equality
\[
 r(x) = ((-j \otimes 1 - 1 \otimes k + 1 \otimes j + x \otimes 1) \circ (x - j)) \otimes 1 \circ (x - k) \\
= (-j \otimes 1 \otimes 1 \otimes k \otimes 1 + 1 \otimes j \otimes 1 + x \otimes 1 \otimes 1) \circ (x - j, x - k)
\]
follows from equalities (10.6), (10.16). □

Question 10.5. The equality (10.17) is an answer to the question 10.2. We see that factorization of the polynomial \(r(x) \) is bilinear map of polynomial \(x - j, x - k \). However this answer is not complete. According to the remark 2.6, the representation (8.5) of polynomial is not unique. The question of the choice of factors and their order is open. At the same time there is relation between different representations of polynomial as product of factors. □

If the polynomial \(p(x) \) has form \(p(x) = p_1 \circ x + p_0 \) where \(p_1 \) be nonsingular tensor, then we can use the theorem 8.5 to divide by the polynomial \(p(x) \), if we consider the equality
\[
(10.18) \\
p(x) = p_1 \circ (x + p_1^{-1} \circ p_0)
\]

Question 10.6. The polynomial
\[
(10.19) \\
p_1(x) = ix - xi - 1
\]
is divisor of the polynomial
\[
 p(x) = (x - j)(ix - xi - 1)(x - k) \\
= ((x - j)ix - (x - j)xi - x + j)(x - k) \\
= xix(x - k) - jix(x - k) - x^2i(x - k) \\
+ jxi(x - k) - x(x - k) + j(x - k)
\]
\[
(10.20) \\
= xix^2 - xixk + kx^2 - kxk - x^2ix + x^2ik \\
+ jxix - jxik - x^2 + xk + jx - jk \\
= (1 \otimes i \otimes 1 \otimes 1 - 1 \otimes 1 \otimes i \otimes 1) \circ x^3 \\
+(j \otimes i \otimes 1 - 1 \otimes i \otimes k + k \otimes 1 \otimes 1 \otimes 1 - 1 \otimes 1 \otimes j - 1 \otimes 1 \otimes 1) \circ x^2 \\
+(1 \otimes k + j \otimes (1 + j) \circ x + 1 - i)
\]

However, we cannot use the theorem 8.5 to find quotient, because the tensor
\[
i \otimes 1 - 1 \otimes i \in H^{2\otimes}
\]
is singular. Therefore, we need additional research to solve this problem. □

11. Division of Polynomials in Non-associative Algebra

Remark 11.1. In non-associative algebra, brackets determine in what order we perform the multiplication. So monomial can be written as follows

\[
(11.1) \\
(p(x)q(x))r(x)
\]
\[
(11.2) \\
p(x)(q(x)r(x))
\]
where p, q, r are also monomials. This imposes a limitation on the possibility to divide polynomial by a polynomial.

In the example 11.2, I considered the polynomial $r(x)$ of power 3 in octonion algebra. Because order of factors in product is important for defining structure of tensor, I will explicitly write brackets even when the order is evident. For instance, since, in general,

\begin{equation}
(a \otimes b) \circ x = (ax)b \neq a(xb) = (a \otimes b) \circ x
\end{equation}

then expressions $(a \otimes b)$ and $a \otimes b$ represent different linear maps.

Example 11.2. Let

\begin{equation}
p(x) = x - k
\end{equation}

\begin{equation}
r(x) = ((x - j)(x - k))(x - jl) = (x^2 - jx - xk + i)(x - jl)
\end{equation}

According to the theorem 8.5, we set $q_2(x) = (x^2)(\otimes 1)$. Then

\begin{equation}
s_2(x) = r(x) - q_2(x) \circ (x - k) = r(x) - ((x^2)(\otimes 1)) \circ (x - k)
\end{equation}

\begin{equation}
= (x^2)x - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\end{equation}

According to the theorem 8.5, we set

\begin{equation}
q_1(x) = (x \otimes k) - (x \otimes jl) - (jx)(\otimes 1) - (xk)(\otimes 1)
\end{equation}

\begin{equation}
The equality
\end{equation}

\begin{equation}
s_1(x) = s_2(x) - q_1(x) \circ (x - k)
\end{equation}

\begin{equation}
= (x^2)k - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\end{equation}

\begin{equation}
- ((x \otimes k - (x \otimes jl - (jx)(\otimes 1) - (xk)(\otimes 1))) \circ (x - k)
\end{equation}

\begin{equation}
= (x^2)k - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\end{equation}

\begin{equation}
- (x(x - k))k + (x(x - k))jl + (jx)(x - k) + (xk)(x - k)
\end{equation}

\begin{equation}
= (x^2)k - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\end{equation}

\begin{equation}
= (x^2)k + (xk)k + (x^2)jl - (xk)jl + (jx)x - (xk)x - (xk)k
\end{equation}

\begin{equation}
= (jx)(jl - k) + ix + kl
\end{equation}

follows from equalities (11.5), (11.6). According to the theorem 8.5, we set

\begin{equation}
q_0(x) = (j \otimes)(jl - k) + i(\otimes 1)
\end{equation}

The equality

\begin{equation}
s_0 = s_1(x) - q_0(x) \circ (x - k)
\end{equation}

\begin{equation}
= (jx)(jl - k) + ix + kl - ((j \otimes (jl - k)) + i(\otimes 1))) \circ (x - k)
\end{equation}

\begin{equation}
= (jx)(jl - k) + ix + kl - (jx)(jl - k)(jl - k) - i(x - k)
\end{equation}

\begin{equation}
= (jx)(jl - k) + ix + kl - (jx - jk)(jl - k) - (jx - jk)(jl - k) - ix + ik
\end{equation}

\begin{equation}
= (jx)(jl - k) + ix + kl - (jx)(jl - k) + (jx)(jl - k) - (jx)(jl - k) - (jx)(jl - k) - ix - j
\end{equation}

\begin{equation}
= kl + i j l - i k - j = 0
\end{equation}
follows from equalities (11.7), (11.8). The equality
\[r(x) = s_0 + (q_0 + q_1(x) + q_2(x)) \circ (x - k) \]
(11.10)
\[= ((j \otimes)(jl - k) + i(\otimes 1)
+ (x \otimes)k - (x \otimes)jl - (jx)(\otimes 1) - (xk)(\otimes 1) + (x^2)(\otimes 1)) \circ (x - k) \]
follows from equalities (11.5), (11.6), (11.8), (11.9).

\[\square \]

Example 11.3. The quotient of the polynomial (11.4) divided by the polynomial
\[p(x) = x - k \]
has the following form
\[q(x) = (j \otimes)(jl - k) + i(\otimes 1)
+ (x \otimes)k - (x \otimes)jl - (jx)(\otimes 1) - (xk)(\otimes 1) + (x^2)(\otimes 1) \]
(11.11)
\[= ((x - j)(\otimes)(k - jl) + (x^2 - jx - xk + i)(\otimes 1) \]
(11.4) \[r(x) = ((x - j)(x - k))(x - jl) \]
The first term of the tensor \(q(x) \) has factor \(x - j \). To check if the second term has factor \(x - j \), consider the polynomial
\[r_1(x) = x^2 - jx - xk + i \]
According to the theorem 8.5, we set \(q_1(x) = x(\otimes 1) \). Then
\[s_1(x) = r_1(x) - (x(\otimes 1)) \circ (x - j) \]
(11.13)
\[= x^2 - jx - xk + i - x(x - j) = x^2 - jx - xk + i - x^2 + xj \]
\[= -jx - xk + xj + i \]
Now we set
\[q_0 = -j(\otimes 1) - (1 \otimes)k + (1 \otimes)j \]
Then
\[s_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-j(\otimes 1) - (1 \otimes)k + (1 \otimes)j) \circ (x - j) \]
(11.15)
\[= -jx - xk + xj + i + j(x - j) + (x - j)k - (x - j)j \]
\[= -jx - xk + xj + i + jx + 1 + xk - i - xj - 1 = 0 \]
The equality
\[r_1(x) = s_1(x) + (x(\otimes 1)) \circ (x - j) \]
(11.16)
\[= (-j(\otimes 1) - (1 \otimes)k + (1 \otimes)j + x(\otimes 1)) \circ (x - j) \]
\[= ((1 \otimes)(j - k) + (x - j)(\otimes 1)) \circ (x - j) \]
follows from equalities (11.13), (11.15).

From equalities (11.11), (11.16), it follows that the quotient of the polynomial (11.4) divided by the polynomial
\[p(x) = x - k \]
has the following form
\[
q(x) = ((x - j) \otimes (k - jl)) \\
+ (((1 \otimes (j - k)) + (x - j)(\otimes 1)) \circ (x - j))(\otimes 1) \\
= (((1 \otimes 1 \otimes 1)(k - jl)) \\
+ ((1 \otimes 1)(j - k)))(\otimes 1) + ((x - j)(\otimes 1))(\otimes 1)) \\
\circ (x - j)
\]
(11.17)
\[
(11.4) \quad r(x) = ((x - j)(x - k))(x - jl)
\]
Therefore, we can represent the polynomial (11.4) as follows
\[
r(x) = (((1 \otimes 1)1 \otimes 2)(k - jl) \\
+ ((1 \otimes 1)(j - k))(\otimes 1) + ((x - j)(\otimes 1))(\otimes 1)) \\
\circ (x - j, x - k)
\]
(11.18)

12. References

[1] Serge Lang, Algebra, Springer, 2002
[2] Aleks Kleyn, Polynomial over Associative D-Algebra, eprint arXiv:1302.7204 (2013)
[3] Aleks Kleyn, Linear Map of D-Algebra, eprint arXiv:1502.04063 (2015)
[4] Aleks Kleyn, Quadratic Equation over Associative D-Algebra, eprint arXiv:1506.00061 (2015)
[5] M. Irene Falcão, Fernando Miranda, Ricardo Severino, M. Joana Soares, Weierstrass method for quaternionic polynomial root-finding, eprint arXiv:1702.04935 (2017)
[6] Paul M. Cohn, Skew Fields, Cambridge University Press, 1995
13. **Index**

component of linear map \(2\)

division with remainder \(12\)

homogeneous polynomial \(3\)

monomial of power \(k\) \(3\)

nonsingular tensor \(5\)

polynomial \(4\)

quotient \(12, 12\)

remainder of the division \(12\)

square root \(9\)

tensor inverse to tensor \(6\)
14. Special Symbols and Notations

- $A[x]$ \hspace{1em} A-algebra of polynomials over D-algebra A \hspace{1em} 4
- a^{-1} \hspace{1em} tensor inverse to tensor a \hspace{1em} 6
- $A_n[x]$ \hspace{1em} set of homogeneous polynomials \hspace{1em} 3
- \sqrt{a} \hspace{1em} square root \hspace{1em} 9
- f_{xp} \hspace{1em} component of linear map f of division ring \hspace{1em} 2
- $\mathcal{L}(D; A \rightarrow A)$ \hspace{1em} set of linear maps \hspace{1em} 2
- $\mathcal{L}(D; A^n \rightarrow A)$ \hspace{1em} set of n-linear maps \hspace{1em} 2
Многочлен в некоммутативной алгебре

Александр Клейн

Аннотация. Я рассмотрел определение и свойства многочлена в некоммутативной алгебре. Многочлен может иметь конечное или бесконечное, а также пустое множество корней. Например, многочлен

\[p_1(x) = ix - xi - 1 \]

не имеет корней и многочлен

\[p_k(x) = ix - xi - k \]

имеет множество корней

\[x = C_1 + C_2i + \frac{1}{2}j \]

Рассмотрена операция деления многочленов с остатком.

СОДЕРЖАНИЕ

1. Линейное отображение .. 1
2. Многочлен ... 3
3. Операции с многочленами .. 5
4. Линейное уравнение .. 5
5. Левосторонний многочлен .. 7
6. Квадратный корень .. 9
7. Многочлен с заданными корнями 10
8. Деление с остатком .. 11
9. Примеры деления многочленов 13
10. Новые вопросы .. 17
11. Деление многочленов в неассоциативной алгебре 20
12. Список литературы .. 23
13. Предметный указатель ... 24
14. Специальные символы и обозначения 25

1. Линейное отображение

Соглашение 1.1. Если отображение

\[f : A \to A \]
D-алгебры A является линейным отображением, то я пользуюсь обозначением
\[(1.1) \quad f \circ a = f(a) \]
для образа отображения f. \[□ \]

Определение 1.2. Линейное отображение
\[f : A \to A \]
D-алгебры A удовлетворяет равенствам
\[(1.2) \quad f \circ (a + b) = f \circ a + f \circ b \]
\[(1.3) \quad f \circ (da) = d(f \circ a) \]
$a, b \in A \quad d \in D$

Обозначим $\mathcal{L}(D; A \to A)$ множество линейных отображений D-алгебры A. \[□ \]

Пусть H - алгебра кватернионов.

Теорема 1.3. Пусть произведение в алгебре $H \otimes H$ определено согласно правилу
\[(1.4) \quad (p_0 \otimes p_1) \circ (q_0 \otimes q_1) = (p_0 q_0) \otimes (q_1 p_1) \]

Представление
\[(1.5) \quad h : H \otimes H \to \mathcal{L}(R; H \to H) \quad h(p) : g \to p \circ g \]

R-алгебры $H \otimes H$ в общей группе $\mathcal{L}(R; H \to H)$, определённое равенством
\[(1.6) \quad (a \otimes b) \circ g = a g b \quad a, b \in H \quad g \in \mathcal{L}(R; H \to H) \]

является левым $H \otimes H$-модулем. Если мы положим $g = E$, где $E \in \mathcal{L}(R; H \to H)$ - тождественное отображение, то мы можем отождествить линейное отображение $f : H \to H$ алгебры кватернионов и тензор
\[(1.7) \quad f = f_{s,0} \otimes f_{s,1} \in H \otimes H \]
опираясь на равенство
\[(1.8) \quad f \circ a = (f_{s,0} \otimes f_{s,1}) \circ a = f_{s,0} a f_{s,1} \]

Доказательство. Теорема является следствием утверждения что отображение $E \circ x = x$

порождает любое линейное отображение алгебры кватернионов. \[□ \]

Определение 1.4. Выражение $f_{s,p}$, $p = 0, 1$, в равенстве (1.7) называется компонентой линейного отображения f. \[□ \]
Определение 1.5. Полилинейное отображение D-алгебры A

$$f : A^n \rightarrow A$$

удовлетворяет равенствам

(1.9) $$f \circ (a_1, ..., a_i + b_i, ..., a_n) = f \circ (a_1, ..., a_i, ..., a_n) + f \circ (a_1, ..., b_i, ..., a_n)$$

(1.10) $$f \circ (a_1, ..., pa_i, ..., a_n) = pf \circ (a_1, ..., a_i, ..., a_n)$$

$1 \leq i \leq n$ \[a_i, b_i \in A, p \in D\]

Обозначим $L(D; A^n \rightarrow A)$ множество n-линейных отображений D-алгебры A.

Teorema 1.6. Представление

$$h : H^{n+1} \times S_n \rightarrow \mathcal{L}(R; H^n \rightarrow H)$$

алгебры H^{n+1} в модуле $\mathcal{L}(R; H^n \rightarrow H)$, определённое равенством

(1.11) $$ (a_0 \otimes ... \otimes a_n, \sigma) \circ (f_1 \otimes ... \otimes f_n) = a_0 \sigma(f_1)a_1...a_{n-1}\sigma(f_n)a_n$$

$ a_0, ..., a_n \in H$ \[\sigma \in S_n, f_1, ..., f_n \in \mathcal{L}(R; H \rightarrow H)\]

позволяет отождествить тензор $d \in A^{n+1}$ и перестановку $\sigma \in S^n$ с отображением

(1.12) $ (d, \sigma) \circ (f_1, ..., f_n) \quad f_i = \delta \in \mathcal{L}(R; H \rightarrow H)$

где $\delta \in \mathcal{L}(R; H \rightarrow H)$ - тождественное отображение.

2. Многочлен

Определение 2.1. Пусть

$$f : A^n \rightarrow A$$

полилинейное отображение D-модуля A. Е. Отображение

$$p : A \rightarrow A$$

определённое равенством

(2.1) $$p \circ x^n = f \circ (x_1, ..., x_n) \quad x_1 = ... = x_n = x$$

называется однородным многочленом степени n.

Teorema 2.2. Множество $A_n[x]$ однородных многочленов степени n является абелиевой группой.

Доказательство. Теорема является следствием утверждения, что сумма n-линейных отображений является n-линейным отображением.

Teorema 2.3. Пусть A - D-алгебра. Тогда для любого однородного многочлена

$$p : A \rightarrow A$$
степени n существует тензор $p' \in A^{n+1}$ такой, что

\begin{equation}
 p \circ x^n = p' \circ x^n = p' \circ (x_1, \ldots, x_n) \quad x_1 = \ldots = x_n = x
\end{equation}

Доказательство. Теорема является следствием теоремы 1.6. В дальнейшем мы будем отождествлять однородный многочлен p и соответствующий тензор p'.

Определение 2.4. Если тензор p имеет вид $p = p_0 \otimes \ldots \otimes p_n$, то многочлен $p \circ x^n$ называется одночленом.

Теорема 2.5. Пусть $p_k(x)$ - одночлен степени k над ассоциативной D-алгеброй A. Тогда

2.5.1: Одночлен степени 0 имеет вид $p_0(x) = a_0$, $a_0 \in A$.

2.5.2: Если $k > 0$, то

\begin{equation}
 p_k(x) = p_{k-1}(x)a_k
\end{equation}

где $a_k \in A$.

Доказательство. Мы докажем утверждение теоремы индукцией по степени n одночлена.

Пусть $n = 0$. Так как одночлен $p_0(x)$ является константой, то мы получаем утверждение 2.5.1.

Пусть $n = k$. Последний множитель одночлена $p_k(x)$ является либо $a_k \in A$, либо имеет вид x^l, $l \geq 1$. В последнем случае мы положим $a_k = 1$. Множитель, предшествующий a_k, имеет вид x^l, $l \geq 1$. Мы можем представить этот множитель в виде $x^{l-1}x$. Следовательно, утверждение доказано.

Замечание 2.6. В теореме 2.5 я рассмотрел рекурсивное представление одночлена в ассоциативной D-алгебре. Так как скобки в произведении я могу расставлять произвольно, то в ассоциативной D-алгебре рекурсивное представление одночлена неоднозначно. Например, одночлен ax^2bxcx^3d может быть записан в любой из следующих форм

\begin{equation}
 ax^2bxcx^3d = ax(xbxcx^3) = (ax)x(bxcx^3) = (ax^2)b(xc^3d) = (ax^2)bxcx^3d = (ax^2bxc)x(xd) = (ax^2bxcx^2)xd
\end{equation}

Я выбрал равенство (2.3) как самое простое для алгоритма деления многочленов.

Определение 2.7. Обозначим

$$A[x] = \bigoplus_{n=0}^\infty A_n[x]$$

прямую сумму $A_n[x]$. Элемент $p(x)$ абелевой группы $A[x]$ называется многочленом над D-алгеброй A.

2.1 Смотрите определение прямой суммы абелевых групп в [1], страница 55. Согласно теореме 1 на той же странице, прямая сумма абелевых групп существует.
Следовательно, многочлен степени n может быть записан в виде
\[(2.5) \quad p(x) = p_0 + p_1 \circ x + ... + p_n \circ x^n \quad p_i \in A^{i+1} \quad i = 0, ..., n\]

3. ОПЕРАЦИИ С МНОГОЧЛЕНЯМИ

Определение 3.1. Пусть
\[p(x) = p_0 + p_1 \circ x + ... + p_n \circ x^n \quad p_i \in A^{i+1} \quad i = 0, ..., n\]
\[r(x) = r_0 + r_1 \circ x + ... + r_n \circ x^n \quad r_i \in A^{i+1} \quad i = 0, ..., n\]
многочлены. Мы определим сумму многочленов p и r равенством
\[(3.1) \quad (p + r)(x) = p_0 + r_0 + (p_1 + r_1) \circ x + ... + (p_n + r_n) \circ x^n\]

Определение 3.2. Билинейное отображение
\[(3.2) \quad \ast : A^{n} \times A^{m} \to A^{n+m-1}\]
определен равенством
\[(3.3) \quad (a_1 \otimes ... \otimes a_n) \ast (b_1 \otimes ... \otimes b_n) = a_1 \otimes ... \otimes a_{n-1} \otimes a_n b_1 \otimes b_2 \otimes ... \otimes b_n\]

Теорема 3.3. Для любых тензоров $a \in A^{n+1}$, $b \in A^{m+1}$, произведение однородных многочленов $a \circ x^n$, $b \circ x^m$ определено равенством
\[(3.4) \quad (a \ast b) \circ x^{n+m} = (a \circ x^n)(b \circ x^m)\]

4. ЛИНЕЙНОЕ УРАВНЕНИЕ

Пусть \mathbb{E} - базис конечно мерной алгебры A над полем F и C_{ij}^k - структурные константы алгебры A относительно базиса \mathbb{E}.

Рассмотрим линейное уравнение
\[(4.1) \quad a \circ x = b\]
где $a = a_{s,0} \otimes a_{s,1} \in A^{2\otimes}$. Согласно теореме [3]-6.4.1, мы можем записать уравнение (4.1) в стандартной форме
\[(4.2) \quad a^{ij} e_i x e_j = b\]
\[(4.3) \quad a^{ij} = a_{s,0} a_{s,1} e_i \quad a_{s,0} = a_{s,0} e_i \quad a_{s,1} = a_{s,1} e_i\]
Согласно теореме [3]-6.4.5, уравнение (4.2) эквивалентно уравнению
\[(4.4) \quad a^i x^i = b^i\]
\[(4.5) \quad a^i = a^{kr} C_{ki}^p C_{pr} \quad x = x^i e_i \quad b = b^i e_i\]

3.1 Если коэффициент, допустим p_i, отсутствует, то мы полагаем $p_i = 0$.
Согласно теории линейных уравнений над полем, если определитель
(4.6) \[\det \|a_j^i\| \neq 0 \]
то уравнение (4.1) имеет единственное решение.

\[a \circ x = b \]

Определение 4.1. Тензор \(a \in A^{2\otimes} \) называется невырожденным тензором, если этот тензор удовлетворяет условию (4.6).

Теорема 4.2. Пусть \(a \in A^{2\otimes} \) - невырожденный тензор. Если равенство (4.2) рассматривать как преобразование ассоциативной \(D \)-алгебры, то обратное преобразование можно записать в виде
(4.7) \[x = c^{pq}e_pe_q \]
где компоненты \(c^{pq} \) удовлетворяют уравнению
(4.8) \[\delta^r_0 \delta^s_0 = a^{ij} c^{ip} c^{jq} \]

Доказательство. Теорема является следствием теоремы [2]-6.7.

Определение 4.3. Пусть \(a \in A^{2\otimes} \) - невырожденный тензор. Тензор
(4.9) \[a^{-1} = c^{pq} e_p \otimes e_q \]
называется тензором, обратным тензору \(a \).

Теорема 4.4. Если \(a \in A^{2\otimes} \) - невырожденный тензор, то линейное уравнение
(4.10) \[a \circ x = b \]
имеет единственное решение
(4.11) \[x = a^{-1} \circ b \]
Если \(a \) - невырожденный тензор, то уравнение (4.10) имеет решение только при условии \(b \in \ker a \). В этом случае уравнение (4.10) имеет бесконечно много решений.

Пример 4.5. Тензор
\[i \otimes 1 - 1 \otimes i \in H^{2\otimes} \]
Многочлен в некоммутативной алгебре

соответствует матрице

\[
\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
\end{pmatrix}
\]

(4.12)

\[
\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
\end{pmatrix}
\] =

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 \\
0 & 0 & 2 & 0 \\
\end{pmatrix}
\]

Следовательно многочлен

(4.13) \[p_1(x) = ix - xi - 1 \]
не имеет корней и многочлен

(4.14) \[p_k(x) = ix - xi - k \]
имеет множество корней

(4.15) \[x = C_1 + C_2i + \frac{1}{2}j \]

5. Левосторонний многочлен

[6] Paul M. Cohn, Skew Fields, Cambridge University Press, 1995

В книге [6] на странице 48, профессор Кон писал, что изучать многочлены над некоммутативным полем - сложная задача. Поэтому профессор Оре рассмотрел кольцо правых косых многочленов \(^{5.1}\) где Оре определил преобразование одночлена

(5.1) \[at = ta^\alpha + a^\delta \]

Отображение

\[\alpha : a \in A \rightarrow a^\alpha \in A \]
является эндоморфизмом \(D\)-алгебры \(A\) и отображение

\[\delta : a \in A \rightarrow a^\delta \in A \]
является \(\alpha\)-дифференцированием \(D\)-алгебры \(A\)

(5.2) \((a + b)^\delta = a^\delta + b^\delta \)
\((ab)^\delta = a^\delta b^\alpha + ab^\delta \)

В этом случае все коэффициенты многочлена могут быть записаны справа.
Подобные многочлены называются правосторонними многочленами.
Аналогично мы можем рассматривать преобразование одночлена

(5.3) \[ta = a^\alpha t + a^\delta \]

В этом случае все коэффициенты многочлена могут быть записаны слева. Подобные многочлены называются левосторонними многочленами. \(^{5.2}\)

Точку зрения, предложенную Оре, позволила получить качественную картину теории полиномов в некоммутативной алгебре. Однако существуют алгебры где рассматриваемая картина не完好.

\(^{5.1}\) Смотрите также определение на страницах [6]-48 - 49.

\(^{5.2}\) Смотрите также определение на странице [5]-3.
Пример 5.1. Если преобразование (5.1) определено в D-алгебре A, то мы можем любой многочлен p степени 1 отобразить в правосторонний многочлен p’ степени 1 таким образом, что

\[p(t) = p'(t) \]

Многочлен p’ может иметь следующий вид

\[p'(t) = ta_1 + a_0, \quad a_1 \neq 0 \]
\[p'(t) = t + a_0, \quad a_0 \neq 0 \]
\[p'(t) = t + 0 \]

Многочлен (5.4) имеет единственное решение. Многочлен (5.5) не имеет решений. Любое A-число является корнем многочлена (5.6).

Очевидно, что мы упустили случай, когда многочлен p имеет бесконечно много корней, но не любое A-число является корнем многочлена p. Поэтому возникает вопрос о существовании преобразования (5.1) в алгебре кватернионов.

\[\square \]

Пример 5.2. Пусть

\[p(x) = \sum_{i=0}^{n} p_i x^i \]

и

\[r(x) = \sum_{j=0}^{m} r_j x^j \]

левосторонние многочлены. Мы определим произведение многочленов p и r равенством 5.3

\[p(x) \ast r(x) = (p \ast r)(x) = \sum_{j=0}^{m+n} \left(\sum_{i=0}^{j} p_i r_{j-i} \right) x^j \]

Рассмотрим многочлены

\[L(x) = x - i \]

\[R(x) = x - j \]

Равенство

\[P(x) = (L \ast R)(x) = x^2 - (i + j)x + k \]

является следствием равенств (5.7), (5.8), (5.9). Пусть

\[h = R(i) = i - j \]

\[\hat{x} = hxh^{-1} = (i - j)x(i - j)^{-1} = \frac{1}{2}(i - j)x(j - i) \]

\[L(\hat{x}) = \frac{1}{2}(i - j)x(j - i) - i \]

Согласно теореме 5.1, пункт (ii), многочлен

\[P_1(x) = L(\hat{x})R(x) = \left(\frac{1}{2}(i - j)x(j - i) - i \right)(x - j) \]
Многочлен в некомутативной алгебре 9

(5.13) \[x^2 - (i + j)x + k = \left(\frac{1}{2}(i - j)x(j - i) - i\right)(x - j) \]

Однако равенство (5.13) не верно. Пусть \(x = i + j \). Равенства

(5.14) \[(i + j)^2 - (i + j)(i + j) + k = \left(\frac{1}{2}(i - j)(i + j)(j - i) - i\right)(i + j - j) \]

(5.15) \[k = \left(\frac{1}{2}(i^2 + ij - ji - j^2)(j - i) - i\right)i = (k(j - i) - i)i = (-i - j - i)i \]

являются следствием равенства (5.13).

6. Квадратный корень

Определение 6.1. Решение \(x = \sqrt{a} \) уравнения

(6.1) \[x^2 = a \]
в \(D \)-алгебре \(A \) называется квадратным корнем \(A \)-числа \(a \).

Теорема 6.2. Пусть \(H \)-алгебра квaternionов и \(a \)-\(H \)-число.

6.2.1: Если \(\text{Re} \sqrt{a} \neq 0 \), то уравнение
\[x^2 = a \]
имеет корни \(x = x_1, x = x_2 \) такие, что

(6.2) \[x_2 = -x_1 \]

6.2.2: Если \(a = 0 \), то уравнение
\[x^2 = a \]
имеет корень \(x = 0 \) кратности 2.
6.2.3: Если условия 6.2.1, 6.2.2 не верны, то уравнение
\[x^2 = a \]
имеет бесконечно много корней таких, что

(6.3) \[x \in \text{Im} H \quad a \in \text{Re} H \quad |x| = \sqrt{-a} \]

Доказательство. Теорема является следствием теоремы [4]-8.5.

Теорема 6.3. Пусть квaternion \(a \) является корнем многочлена

(6.4) \[r(x) = x^2 + 1 \]

Тогда

(6.5) \[\sqrt{a} = \pm \frac{1}{\sqrt{2}}(1 + a) \]

5.3 Смотри также определение на странице [5]-3.
Доказательство. Равенство
(6.6) \[(a + 1)^2 = a^2 + 2a + 1 = 2a\]
следует из утверждения, что \(a\) является корнем многочлена (6.4). Равенство
(6.5) является следствием равенства (6.6) и утверждения 6.2.1. □

7. Многочлен с заданными корнями

В коммутативной алгебре, если я имею два корня многочлена второй степени, то этот многочлен определён однозначно. Ситуация несколько иная в некоммутативной алгебре.

Теорема 7.1. Пусть \(x_1, x_2 \in A\),
(7.1) \[x_1x_2 \neq x_2x_1\]
Тогда
(7.2) \[p_{12}(x) = (x - x_1)(x - x_2) = x^2 - x_1x - x_2x + x_1x_2\]
(7.3) \[p_{21}(x) = (x - x_2)(x - x_1) = x^2 - x_2x - x_1x + x_2x_1\]
неравные многочлены
(7.4) \[p_{12} \neq p_{21}\]

Доказательство. Пусть
(7.5) \[x = x_1 + x_2\]
Равенство
(7.6) \[p_{12}(x_1 + x_2) = (x_1 + x_2 - x_1)(x_1 + x_2 - x_2) = x_2x_1\]
является следствием равенств (7.2), (7.5). Равенство
(7.7) \[p_{21}(x_1 + x_2) = (x_1 + x_2 - x_2)(x_1 + x_2 - x_1) = x_1x_2\]
является следствием равенств (7.3), (7.5). Утверждение (7.4) является следствием равенств (7.6), (7.7) и утверждения (7.1). □

Теорема 7.2. Пусть \(a_1, a_2 \in A \otimes A\). Тогда многочлен
(7.8) \[p(x) = a_1 \circ p_{12}(x) + a_2 \circ p_{21}(x)\]
имеет корни \(x = x_1, x = x_2\).

Доказательство. Теорема является следствием утверждения, что многочлены \(p_{12}, p_{21}\) имеют корни \(x = x_1, x = x_2\). □

Вопрос 7.3. Имеет ли многочлен (7.8) корни отличные от значений \(x = x_1, x = x_2\) ? □

Вопрос 7.4. Существуют ли другие многочлены, которые имеют корни \(x = x_1, x = x_2\) ? □

Похоже, что ответ на вопрос 7.4 положителен.
Пример 7.5. Рассмотрим множество многочленов

\[p(x) = a_1 \circ ((x - i)(x - j)) + a_2 \circ ((x - j)(x - i)) \]

которые, согласно теореме 7.2, имеют корни \(x = i, x = j \). Многочлен

\[r(x) = x^2 + 1 \]

также имеет корни \(x = i, x = j \). □

Вопрос 7.6. Принадлежит ли многочлен (7.10) множеству многочленов (7.9)? □

Теорема 7.7 отвечает на вопрос 7.6.

Теорема 7.7. Не существует тензоров \(a_1, a_2 \in A \otimes A \) таких, что

\[a_1 \circ (x^2 - ix - jx + k) + a_2 \circ (x^2 - jx - xi - k) = x^2 + 1 \]

Доказательство. Предположим, что теорема не верна.

Утверждение 7.8. Пусть существуют тензоры \(a_1, a_2 \in A \otimes A \) таких, что равенство (7.11) верно.

Равенства

(7.12) \[a_1 \circ x^2 + a_2 \circ x^2 = x^2 \]
(7.13) \[a_1 \circ (ix) + a_1 \circ (xj) + a_2 \circ (jx) + a_2 \circ (xi) = 0 \]
(7.14) \[a_1 \circ k - a_2 \circ k = 1 \]

следуют из равенства (7.11).

Пусть \(x = 1 \). Равенство

(7.15) \[a_1 \circ i + a_1 \circ j + a_2 \circ j + a_2 \circ i = 0 \]

следуют из равенств (7.13).

Согласно теореме 6.3, существует \(x \) такой, что \(x^2 = i \). Равенство

(7.16) \[a_1 \circ i + a_2 \circ i = i \]

следует из равенства (7.12).

Согласно теореме 6.3, существует \(x \) такой, что \(x^2 = j \). Равенство

(7.17) \[a_1 \circ j + a_2 \circ j = j \]

следует из равенства (7.12).

Равенство

(7.18) \[a_1 \circ i + a_2 \circ i + a_1 \circ j + a_2 \circ j = i + j \]

следует из равенств (7.16), (7.17) и противоречит равенству (7.15). Следовательно, утверждение 7.8 не верно и теорема доказана. □

8. Деление с остатком
Определение 8.1. A-число a называется левым делителем A-числа b, если существует A-число c такое, что
\[(8.1) \quad ac = b \]

Определение 8.2. A-число a называется правым делителем A-числа b, если существует A-число c такое, что
\[(8.2) \quad ca = b \]

Симметрия между определениями 8.1 и 8.2 очевидна. Также как очевидно различие между левым и правым делителями в связи с некоммутативностью произведения. Однако мы можем рассмотреть определение, обобщающее определения 8.1 и 8.2.

Определение 8.3. A-число a называется делителем A-числа b, если существует $A \otimes A$-число c такое, что
\[(8.3) \quad c \circ a = b \]

$A \otimes A$-число c называется частным от деления A-числа b на A-число a.

Определение 8.4. Пусть деление в D-алгебре A не всегда определено. A-число a делит A-число b с остатком, если следующее равенство верно
\[(8.4) \quad c \circ a + f = b \]

$A \otimes A$-число c называется частным от деления A-числа b на A-число a. A-число d называется остатком от деления A-числа b на A-число a.

Теорема 8.5. Пусть $p(x) = x - a$

- многочлен степени 1. Пусть
\[r(x) = r_0 + r_1 \circ x + \ldots + r_k \circ x^k \]

многочлен степени $k > 0$. Тогда
\[(8.5) \quad r(x) = s_0 + (q_0 + q_1(x) + \ldots + q_{k-1}(x)) \circ p(x) \]

где $q_i \in A_1[x] \otimes A$, $i = 0, \ldots, k - 1$, - однородный многочлен степени i.

Доказательство. Пусть
\[(8.6) \quad r_k = r_{k.0,s} \otimes \ldots \otimes r_{k.k,s} \]

Согласно теореме 2.5,
\[
r_k \circ x^k = ((r_{k.0,s} \otimes \ldots \otimes r_{k,k-1,s}) \circ x^{k-1}) x r_{k.k,s} \]
\[
= (((r_{k.0,s} \otimes \ldots \otimes r_{k,k-1,s}) \circ x^{k-1}) \otimes r_{k,k,s}) \circ x \]
Положим
\[q_{k-1}(x) = (r_{k,0} \otimes \ldots \otimes r_{k,k-1,s}) \circ x^{k-1} \otimes r_{k,k,s} \]
Для доказательства теоремы достаточно обратить внимание, что степень многочлена
\[s_{k-1}(x) = r(x) - q_{k-1}(x) \circ (x - a) \]
меньше \(k \). Равенство
\[r(x) = s_{k-1}(x) + q_{k-1}(x) \circ (x - a) \]
является следствием равенства (8.9). Мы применим рассуждения доказательства к многочлену \(s_{k-1}(x) \). После конечного числа шагов мы получим многочлен \(s_0 \) степени 0. Равенство (8.5) является следствием равенства (8.10). □

Алгоритм, рассмотренный в доказательстве теоремы называется стандартный алгоритм деления многочленов.

9. Примеры деления многочленов

В последующих примерах мы применим стандартный алгоритм деления многочленов.

Пример 9.1. Пусть
\[p(x) = x - i \]
(9.1) \[r(x) = (x - j)(x - i) = x^2 - jx - xi - k \]
Согласно теореме 8.5, положим \(q_1(x) = x \otimes 1 \). Тогда
\[s_1(x) = r(x) - q_1(x) \circ p(x) = r(x) - (x \otimes 1) \circ (x - i) \]
(9.2) \[= x^2 - jx - xi - k - x(x - i) = x^2 - jx - xi - k - x^2 + xi \]
\[= -jx - k \]
Теперь мы положим \(q_0 = -j \otimes 1 \). Тогда
\[s_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-i \otimes 1 - 1 \otimes j + 1 \otimes i) \circ (x - i) \]
(9.3) \[= -ix - xj + k + xi + i(x - i) + (x - i)j - (x - i)i \]
\[= -ix - xj + k + xi + ix + 1 + xj - k - xi - 1 = 0 \]
Равенство
\[r(x) = s_1(x) + (x \otimes 1) \circ (x - i) \]
(9.4) \[= (-j \otimes 1 + x \otimes 1) \circ (x - i) \]
является следствием равенства (9.2), (9.3). Мы можем упростить выражение в равенстве (9.4)
(9.5) \[r(x) = ((x - j) \otimes 1) \circ (x - i) = (x - j)(x - i) \]
Мы видим, что представление многочлена \(r(x) \) в равенстве (9.5) совпадает с представлением многочлена \(r(x) \) в равенстве (9.1). □

Ответ (9.5) в примере 9.1 очевиден, так как я намеренно выбрал делитель \(p(x) \) равным второму множителю многочлена \(r(x) \).

\[
\begin{align*}
p(x) &= x - i \\
r(x) &= (x - j)(x - i) = x^2 - jx - xi - k
\end{align*}
\]
Пример 9.2 более интересен, так как я изменил порядок множителей.
Пример 9.2. Пусть

\[p(x) = x - i \]

(9.6)

\[r(x) = (x - i)(x - j) = x^2 - ix - xj + k \]

Согласно теореме 8.5, положим \(q_1(x) = x \otimes 1 \). Тогда

\[s_1(x) = r(x) - (x \otimes 1) \circ (x - i) \]

(9.7)

\[= x^2 - ix - xj + k - x(x - i) = x^2 - ix - xj + k - x^2 + xi \]

\[= -ix - xj + k + xi \]

Теперь мы положим

(9.8)

\[q_0 = -i \otimes 1 - 1 \otimes j + 1 \otimes i \]

Тогда

\[s_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-j \otimes 1) \circ (x - i) \]

\[= -jx - k + j(x - i) = -jx - k + jx + k = 0 \]

Равенство

(9.10)

\[r(x) = s_1(x) + (x \otimes 1) \circ (x - i) \]

(9.11)

является следствием равенств (9.7), (9.9). Мы можем упростить выражение в равенстве (9.10)

\[r(x) = -i(x - i) - (x - i)j + (x - i)i + x(x - i) \]

\[= (x - i)(i - j) + (x - i)(x - i) \]

\[= (x - i)(x - i + i - j) \]

\[= (x - i)(x - j) \]

Мы видим, что представление многочлена \(r(x) \) в равенстве (9.11) совпадает с представлением многочлена \(r(x) \) в равенстве (9.6). \(\square \)

Частное от деления многочлена \(r(x) \) на многочлен \(p(x) \) в примере 9.2 имеет более сложную структуру чем частное в примере 9.1. Это связано с тем, что я пытаюсь записать делитель \(p(x) \) справа от частного, хотя изначально многочлен \(p(x) \) был левым множителем. Тем не менее, в результате несложных преобразований разложение на множители в равенстве (9.11) приняло ожидаемый вид.

\[p(x) = x - i \]

\[r(x) = (x - i)(x - j) = x^2 - ix - xj + k \]

В примере 9.3 я рассматриваю деление левостороного многочлена

\[r(x) = x^2 - ix - jx - k \]

на многочлен

\[p(x) = x - i \]

Я знаю, что многочлен \(r(x) \) имеет корень \(x = i \), и хочу найти другой корень.

Пример 9.3. Пусть

\[p(x) = x - i \]

\[r(x) = x^2 - ix - jx - k \]
Согласно теореме 8.5, положим \(q_1(x) = x \otimes 1 \). Тогда
\[
s_1(x) = r(x) - (x \otimes 1) \circ (x - i)
\]
(9.12)

Тогда
\[
s_1(x) = x^2 - ix - jx - k - x(x - i) = x^2 - ix - jx - k - x^2 + xi
\]

Теперь мы положим
(9.13)

\[
q_0 = -i \otimes 1 - j \otimes 1 + 1 \otimes i
\]

Тогда
(9.14)

\[
s_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-i \otimes 1 - j \otimes 1 + 1 \otimes i) \circ (x - i)
\]

Равенство
(9.15)

является следствием равенств (9.12), (9.14). Мы можем упростить выражение в равенстве (9.15)
(9.16)

Вопрос 9.4. Имеет ли многочлен
\[
r(x) = x^2 - ix - jx - k
\]
корень, отличный от \(x = i \)?

Утверждение, что \(x = i \) является корнем многочлена \(r(x) \) проверяется непосредственно. Согласно примеру 9.3, мы можем представить многочлен \(r(x) \) в виде
(9.17)

\[
r(x) = (1 \otimes i + (x - i - j) \otimes 1) \circ (x - i)
\]

Следовательно, для того чтобы многочлен \(p(x) \) имел корень, отличный от \(x = i \), необходимо чтобы линейное отображение
(9.18)

\[
1 \otimes i + (x - i - j) \otimes 1
\]
имело нетривиальное ядро и кватернион \(x - i \) принадлежал ядру линейного отображения (9.18). Линейное отображение (9.18) имеет матрицу

\[
\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix} + \begin{pmatrix}
x^0 & -x^1 & -x^2 & -x^3 \\
x^1 & x^0 & -x^3 & x^2 - 1 \\
x^2 - 1 & x^3 & x^0 & -x^1 + 1 \\
x^3 & -x^2 + 1 & x^1 & x^0
\end{pmatrix}
\]

(9.19)

\[
\begin{pmatrix}
x^0 & -x^1 & -x^2 & -x^3 \\
x^1 & x^0 & -x^2 & x^3 - 1 \\
x^2 - 1 & x^3 & x^0 & -x^1 + 2 \\
x^3 & -x^2 + 1 & x^1 - 2 & x^0
\end{pmatrix}
\]

Определить значение \(x \), для которого матрица (9.19) вырождена - задача непростая. Но я надеюсь провести дополнительное исследование.

В примере 9.5 я рассмотрел деление левосторонего многочлена

\[
r(x) = x^2 - ix - jx - k \quad r(j) = -2k
\]

на многочлен

\[
p(x) = x - j
\]

Пример 9.5. Пусть

\[
p(x) = x - j \\
r(x) = x^2 - ix - jx - k
\]

Согласно теореме 8.5, положим \(q_1(x) = x \otimes 1 \). Тогда

\[
s_1(x) = r(x) - (x \otimes 1) \circ (x - i)
\]

(9.20)

\[
s_1(x) = x^2 - ix - jx - k - x(x - j) = x^2 - ix - jx - k - x^2 + xj
\]

\[
= -ix - jx - k + xj
\]

Теперь мы положим

\[
q_0 = -i \otimes 1 - j \otimes 1 + 1 \otimes j
\]

(9.21)

Тогда

\[
s_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-i \otimes 1 - j \otimes 1 + 1 \otimes j) \circ (x - j)
\]

(9.22)

\[
s_0 = -ix - jx - k + xj + i(x - j) + j(x - j) - (x - j)j
\]

\[
= -ix - jx - k + xj + ix - k + jx + 1 - xj - 1 = -2k
\]

Равенство

\[
r(x) = s_1(x) + (x \otimes 1) \circ (x - j)
\]

(9.23)

\[
r(x) = s_0 + q_0 \circ (x - j) + (x \otimes 1) \circ (x - j)
\]

\[
= -2k + (-i \otimes 1 - j \otimes 1 + 1 \otimes j + x \otimes 1) \circ (x - j)
\]

является следствием равенства (9.20), (9.22). Мы можем упростить выражение в равенстве (9.23)

\[
r(x) = -2k + (1 \otimes j + (x - i - j) \otimes 1) \circ (x - j)
\]

□
10. НОВЫЕ ВОПРОСЫ

В примере 10.1 я рассмотрел многочлен \(r(x) \) степени 3 для того, чтобы найти частное от деления многочлен \(r(x) \) на два многочлена. Сперва я найду частное от деления многочлена

\[
r(x) = (x - j)(x - k)(x - j - k)
\]

на многочлен

\[
p(x) = x - k
\]

Пример 10.1. Пусть

\[
p(x) = x - k
\]

\[
r(x) = (x - j)(x - k)(x - j - k) = (x^2 - jx - xk + i)(x - j - k)\]

\[
= x^2(x - j - k) - jx(x - j - k) - xk(x - j - k) + i(x - j - k)
\]

\[
= x^3 - x^2j - x^2k - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j
\]

\[
= x^3 + (-1 \odot 1 \odot j - 1 \odot 1 \odot k - j \odot 1 \odot 1 - 1 \odot k \odot 1) \odot x^2
\]

\[
+ (j \odot j + j \odot k - 1 \odot i - 1 \odot 1 + i \odot 1) \odot x
\]

\[-k + j\]

Согласно теореме 8.5, положим \(q_2(x) = (x^2) \odot 1 \). Тогда

\[
s_2(x) = r(x) - q_2(x) \circ (x - k) = r(x) - (x^2 \odot 1) \circ (x - k)
\]

(10.1)

\[
= x^3 - x^2j - x^2k - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j
\]

\[
- x^3 + x^2k
\]

\[
= -x^2j - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j
\]

Согласно теореме 8.5, положим

(10.2)

\[
q_1(x) = -x \odot j - jx \odot 1 - xk \odot 1
\]

Равенство

\[
s_1(x) = s_2(x) - q_1(x) \circ (x - k)
\]

(10.3)

\[
= -x^2j - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j
\]

\[-(x \odot j - jx \odot 1 - xk \odot 1) \circ (x - k)
\]

\[
= -x^2j - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j
\]

\[
+ x(x - k)j + jx(x - k) + xk(x - k)
\]

\[
= -x^2j - jx^2 + jxj + jxk - xkx + xkj - x + ix - k + j
\]

\[
+ x^2j - xkj + jx^2 - jxk + xkx - xk
\]

\[
= jxj + ix - k + j
\]

является следствием равенств (10.1), (10.2). Согласно теореме 8.5, положим

(10.4)

\[
q_0(x) = j \odot j + i \odot 1
\]
Равенство
\[s_0 = s_1(x) - q_0(x) \circ (x - k) \]
\[= jxj + ix - k + j - (j \otimes j + i) \circ (x - k) \]
\[= jxj + ix - k + j - jxj - jk + jk - i(x - k) \]
\[= jxj + ix - k + j - jxj + jk - i(x - k) \]
\[= -k + j + jk + ik = 0 \]
является следствием равенств (10.3), (10.4). Равенство
\[r(x) = s_0 + (q_0 + q_1(x) + q_2(x)) \circ (x - k) \]
\[= (j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1) \circ (x - k) \]
является следствием равенств (10.1), (10.2), (10.4), (10.5).
\[\square \]
Частное
\[q(x) = j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1 \]
от деления многочлена
\[r(x) = (x - j)(x - k)(x - j - k) \]
на многочлен
\[p(x) = x - k \]
является тензором зависящим от \(x \), а не многочленом. Поэтому мы не можем применить теорему 8.5.

Вопрос 10.2. Нетрудно убедиться, что
\[q(j) = (j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1)(j) \]
\[= j \otimes j + i \otimes 1 - j \otimes j - j^2 \otimes 1 - jk \otimes 1 + j^2 \otimes 1 = 0 \]
Поэтому возникает вопрос как выделить в тензоре
\[j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1 \]
множитель \(x - j \).
\[\square \]

Пример 10.3. Один из возможных ответов на вопрос 10.2 состоит в преобразовании
\[j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1 \]
\[= j \otimes j - x \otimes j + i \otimes 1 - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1 \]
\[= - (x - j) \otimes j + (i - jx - xk + x^2) \otimes 1 \]
Рассмотрим многочлен
\[i - jx - xk + x^2 \]
Согласно теореме 8.5, положим \(q_1(x) = x \otimes 1 \). Тогда
\[s_1(x) = r(x) - q_1(x) \circ (x - j) = r(x) - (x \otimes 1) \circ (x - j) \]
\[= i - jx - xk + x^2 - x^2 + xj \]
\[= i - jx - xk + xj \]
Многочлен в некомутативной алгебре

Теперь мы положим

\[(10.13)\]
\[q_0 = -j \otimes 1 - 1 \otimes k + 1 \otimes j\]

Тогда

\[(10.14)\]
\[s_0 = s_1(x) - q_0 \circ p(x) = s_1(x) - (-j \otimes 1 - 1 \otimes k + 1 \otimes j) \circ (x - j)\]
\[= i - jx - xk + jx - j^2 + xk - jx + j^2\]
\[= i - jk = 0\]

Равенство

\[(10.15)\]
\[r(x) = s_1(x) + (x \otimes 1) \circ (x - j) = (-j \otimes 1 - 1 \otimes k + 1 \otimes j + x \otimes 1) \circ (x - j)\]

является следствием равенств \((10.12), (10.14)\). Равенство

\[(10.16)\]
\[j \otimes j + i \otimes 1 - x \otimes j - jx \otimes 1 - xk \otimes 1 + x^2 \otimes 1\]
\[= - (x - j) \otimes j + ((-j \otimes 1 - 1 \otimes k + 1 \otimes j + x \otimes 1) \circ (x - j)) \otimes 1\]
\[= ((-1 \otimes j - j \otimes 1 - 1 \otimes k + 1 \otimes j + x \otimes 1) \circ (x - j)) \otimes 1\]
\[= ((-j \otimes 1 - 1 \otimes k + x \otimes 1) \circ (x - j)) \otimes 1\]

является следствием равенств \((10.10), (10.15)\).

Мы видим, что частное в примере \(10.3\) является \(H^{3\otimes}\)-числом.

Пример 10.4. Равенство

\[(10.17)\]
\[r(x) = ((-j \otimes 1 - 1 \otimes k + 1 \otimes j + x \otimes 1) \circ (x - j)) \otimes 1) \circ (x - k)\]
\[= (-j \otimes 1 \otimes 1 - 1 \otimes k + 1 \otimes j \otimes 1 + x \otimes 1 \otimes 1) \circ (x - j, x - k)\]

является следствием равенств \((10.6), (10.16)\).

Вопрос 10.5. Равенство \((10.17)\) является ответом на вопрос \(10.2\). Мы видим, что разложение многочлена \(r(x)\) является билinearным отображением многочленов \(x - j, x - k\). Однако этот ответ не полный. Согласно замечанию \(2.6\), представление \((8.5)\) многочлена не единственно. Остаётся открытым вопрос о выборе множителей и их порядке. В то же время существует связь между различными представлениями многочлена в виде произведения множителей.

Если многочлен \(p(x)\) имеет вид \(p(x) = p_1 \circ x + p_0\) где \(p_1\) - невырожденный тензор, то деление на многочлен \(p(x)\) можно свести к теореме \(8.5\), если мы воспользуемся равенством

\[(10.18)\]
\[p(x) = p_1 \circ (x + p_1^{-1} \circ p_0)\]

Вопрос 10.6. Многочлен

\[(10.19)\]
\[p_1(x) = ix - xi - 1\]
является делителем многочлена

\[
p(x) = (x - j)(ix - xi - 1)(x - k)
\]

\[
= (x - j)ix - (x - j)xi - x + j(x - k)
\]

\[
= xix(x - k) - jix(x - k) - x^2i(x - k)
\]

\[
+ jxi(x - k) - x(x - k) + j(x - k)
\]

\[
= xix^2 - xixk + kx^2 - kxk - x^2ix + x^2ik
\]

\[
+ jxix - jxik - x^2 + xk + jx - jk
\]

\[
= (1 \otimes i \otimes 1 \otimes 1 - 1 \otimes 1 \otimes i \otimes 1) \circ x^3
\]

\[
+ (j \otimes i \otimes 1 - 1 \otimes i \otimes k + k \otimes 1 \otimes 1 - 1 \otimes 1 \otimes j - 1 \otimes 1 \otimes 1) \circ x^2
\]

\[
+ (1 \otimes k + j \otimes (1 + j) \circ x + 1 - i)
\]

Однако мы не можем воспользоваться теоремой 8.5 для нахождения частного, так как тензор

\[
i \otimes 1 - 1 \otimes 1 \in H^{2\otimes}
\]

вырожден. Поэтому необходимо дополнительное исследование, чтобы решить эту задачу. □

11. Деление многочленов в неассоциативной алгебре

Замечание 11.1. В неассоциативной алгебре скобки определяют в каком порядке мы выполняем умножение. Поэтому одночлен может иметь следующий вид

(11.1)

\[(p(x)q(x))r(x)\]

(11.2)

\[p(x)(q(x)r(x))\]

где \(p, q, r\) также одночлены. Это накладывает ограничение на возможность деления многочленов. □

В примере 11.2 я рассмотрел многочлен \(r(x)\) степени 3 в алгебре октонионов. Так как порядок множителей в произведении важен для определения структуры тензора, я буду явно указывать скобки даже в тех случаях, когда порядок очевиден. Например, поскольку, вообще говоря,

(11.3)

\[(a \otimes b) \circ x = (ax)b \neq a(xb) = (a(\otimes b)) \circ x\]

to выражения \((a \otimes b)\) и \(a(\otimes b)\) описывают различные линейные отображения.

Пример 11.2. Пусть

\[
p(x) = x - k
\]

\[
r(x) = ((x - j)(x - k))(x - jl) = (x^2 - jx - xk + i)(x - jl)
\]

\[
= (x^2)(x - jl) - (jx)(x - jl) - (xk)(x - jl) + i(x - jl)
\]

\[
= (x^2)x - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix - i jl
\]
Согласно теореме 8.5, положим \(q_2(x) = (x^2)(\otimes 1) \). Тогда

\[
s_2(x) = r(x) - q_2(x) \otimes (x - k) = r(x) - ((x^2)(\otimes 1)) \otimes (x - k)
\]

(11.5)

\[
= (x^2)x - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\]

\[- (x^2)x + (x^2)k
\]

(11.6)

\[
= (x^2)k - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\]

Согласно теореме 8.5, положим

\[q_1(x) = (x \otimes k) - (x \otimes)jl - (jx)(\otimes 1) - (xk)(\otimes 1)\]

Равенство

\[
s_1(x) = s_2(x) - q_1(x) \otimes (x - k)
\]

(11.7)

\[
= (x^2)k - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\]

\[- ((x \otimes)k - (x \otimes)jl - (jx)(\otimes 1) - (xk)(\otimes 1)) \otimes (x - k)
\]

\[
= (x^2)k - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\]

\[- (x(x - k))k + (x(x - k))jl + (jx)(x - k) + (xk)(x - k)
\]

\[
= (x^2)k - (x^2)jl - (jx)x - (xk)x + (jx)jl + (xk)jl + ix + kl
\]

\[- (x^2)k + (xk)k + (x^2)jl - (jx)x + (jx)jl + (xk)x - (xk)k
\]

\[= (jx)(jl - k) + ix + kl
\]

является следствием равенств (11.5), (11.6). Согласно теореме 8.5, положим

(11.8)

\[q_0(x) = (j \otimes)(jl - k) + i(\otimes 1)\]

Равенство

\[
s_0 = s_1(x) - q_0(x) \otimes (x - k)
\]

(11.9)

\[
= (jx)(jl - k) + ix + kl - ((j \otimes (jl - k)) + i(\otimes 1)) \otimes (x - k)
\]

\[= (jx)(jl - k) + ix + kl - (j(x - k))(jl - k) - i(x - k)
\]

\[= (jx)(jl - k) + ix + kl - (jx - jk)(jl - k) - i\overline{x} + ik
\]

\[= (jx)(jl - k) + ix + kl - (jx)(jl - k) + i(jl - k) - i\overline{x} - j
\]

\[= kl + ijl - ik - j = 0
\]

является следствием равенств (11.7), (11.8). Равенство

\[
r(x) = s_0 + (q_0 + q_1(x) + q_2(x)) \otimes (x - k)
\]

(11.10)

\[= ((j \otimes)(jl - k) + i(\otimes 1)
\]

\[+ (x \otimes)k - (x \otimes)jl - (jx)(\otimes 1) - (xk)(\otimes 1) + (x^2)(\otimes 1)) \otimes (x - k)
\]

является следствием равенств (11.5), (11.6), (11.8), (11.9).

\[\square\]

Пример 11.3. Частное от деления многочлена (11.4) на многочлен

\[p(x) = x - k\]

имеет вид

\[q(x) = (j \otimes)(jl - k) + i(\otimes 1)
\]

(11.11)

\[+ (x \otimes)k - (x \otimes)jl - (jx)(\otimes 1) - (xk)(\otimes 1) + (x^2)(\otimes 1)
\]

\[= ((x - j) \otimes)(k - jl) + (x^2 - jx - xk + i)(\otimes 1)\]
Первое слагаемое тензора $q(x)$ имеет множитель $x − j$. Чтобы проверить, имеет ли второе слагаемое множитель $x − j$, рассмотрим многочлен

$$r_1(x) = x^2 − jx − xk + i$$

Согласно теореме 8.5, положим $q_1(x) = x(\otimes 1)$. Тогда

$$s_1(x) = r_1(x) − (x(\otimes 1)) \circ (x − j)$$

тогда

$$s_0 = s_1(x) − q_0 \circ p(x) = s_1(x) − (−j(\otimes 1) − (1\otimes k + (1\otimes j)) \circ (x − j)$$

Из равенств (11.11), (11.16) следует, что частное от деления многочлена (11.4) на многочлен

$$p(x) = x − k$$

имеет вид

$$q(x) = ((x − j)(x − k)) \otimes (k − jl)$$

$$+ (((1\otimes j)(j − k) + (x − j)(\otimes 1)) \circ (x − j))(\otimes 1)$$

$$= (((1\otimes 1)(1\otimes)(k − j))$$

$$+ ((1\otimes)(j − k) + (x − j)(\otimes 1))(\otimes 1)) \circ (x − j)$$

(11.17)

$$= (((1\otimes 1)(1\otimes)(k − j))$$

$$+ ((1\otimes(k − j))(\otimes 1) + ((x − j)(\otimes 1))(\otimes 1))$$

$$\circ (x − j)$$

$$= r_1(x) = (x(\otimes 1)\otimes (k − j)) = (1\otimes 1)\otimes (1\otimes 2)(k − j))$$

(11.4)

Следовательно, мы можем представить многочлен (11.4) в виде

$$r(x) = (((1\otimes 1)\otimes (k − j))$$

(11.18)

$$+ ((1\otimes 1)(j − k))(\otimes 2)1 + ((x − j)(\otimes 1))(\otimes 2)1)$$

$$\circ (x − j, x − k)$$
12. СПИСОК ЛИТЕРАТУРЫ

[1] Серж Ленг, Алгебра, М. Мир, 1968

[2] Александр Клейн, Многочлен над ассоциативной D-алгеброй, eprint arXiv:1302.7204 (2013)

[3] Александр Клейн, Линейное отображение D-алгебры, eprint arXiv:1502.04063 (2015)

[4] Александр Клейн, Квадратное уравнение над ассоциативной D-алгеброй, eprint arXiv:1506.00061 (2015)

[5] M. Irene Falcão, Fernando Miranda, Ricardo Severino, M. Joana Soares, Weierstrass method for quaternionic polynomial root-finding, eprint arXiv:1702.04935 (2017)

[6] Paul M. Cohn, Skew Fields, Cambridge University Press, 1995
13. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

dеление с остатком 12
квадратный корень 9
компонент линейного отображения 2
многочлен 4
невырожденный тензор 6
однородный многочлен 3
одночлен степени k 4
остаток от деления 12
тензор, обратный тензору 6
частное от деления 12, 12
14. Специальные символы и обозначения

\[A[x] \] \(A \)-алгебра многочленов над \(D \)-алгеброй \(A \) 4
\[a^{-1} \] тензор, обратный тензору \(a \) 6
\[A_n[x] \] множество однородных многочленов 3
\[\sqrt{a} \] квадратный корень 9
\[f_{sp} \] компонента линейного отображения \(f \) тела 2
\[\mathcal{L}(D; A \to A) \] множество линейных отображений 2
\[\mathcal{L}(D; A^n \to A) \] множество \(n \)-линейных отображений 3