ON THE CLASSIFICATION OF WEAKLY INTEGRAL MODULAR CATEGORIES

PAUL BRUILLARD, CÉSAR GALINDO, SIU-HUNG NG, JULIA PLAVNIK, ERIC ROWELL, AND ZHENGHAN WANG

Abstract. In this paper we classify all modular categories of dimension $4m$, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension $4m$, with m an odd square free integer, so their classification is an application of our main result.

1 Introduction

In this paper we study weakly integral modular categories—that is, modular categories C with $\dim C \in \mathbb{Z}$. We completely classify such categories when the number of simple objects (up to isomorphism) is 6 or 7. This is facilitated by a more general theorem in which we classify modular categories of dimension $4m$, where m is an odd square-free integer.

A pivotal fusion category C is called integral if the dimensions d_X of simple objects X are integers, whereas C is weakly integral if and only if $(d_X)^2 \in \mathbb{Z}$, for all simple objects X. We will say that a pivotal fusion category is strictly weakly integral if it is weakly integral but not integral, i.e. if some simple object X has $d_X \not\in \mathbb{Z}$. Interestingly, it is somewhat easier to classify strictly weakly integral modular categories of low rank than integral modular categories.

Our results are summarized in:

Theorem 1.1. Suppose that C is a weakly integral modular category either of rank ≤ 7 or of dimension $4m$ where m is an odd square-free integer. Then C is equivalent to a Deligne product of the following: pointed categories, Ising categories and \mathbb{Z}_2 de-equivariantizations of Tambara-Yamagami categories.

These classes of categories are described below.

2 Preliminaries

Several classes of modular categories will play a prominent role in this paper, so we establish notation for them:
(i) An Ising modular category I is a non-pointed modular category with $\dim I = 4$.

(ii) A pointed modular category with fusion rules like those of $\text{Rep}(\mathbb{Z}_n)$ will be denoted P_n. Notice that $P_1 \cong \text{Vec}$.

(iii) A Tambara-Yamagami fusion category corresponding to an abelian group A, a symmetric bi-character χ and a sign choice ν will be denoted $TY(A, \chi, \nu)$.

(iv) A metaplectic modular category C is a modular category with same fusion rules as the (weakly integral) modular category $SO(N)_2$, and will be denoted M_N.

Remark 2.1. There is an important distinction between the Ising category $SU(2)_2$ and an Ising category, which is any category with the same fusion rules as $SU(2)_2$. These are classified in [6, Appendix B]. It follows from [11] that, for N odd, the \mathbb{Z}_2 de-equivariantization $TY(\mathbb{Z}_N, \chi, \nu)\mathbb{Z}_2$ is a metaplectic modular category.

Some well-known identities will be frequently used. Fix a labelling set $\text{Irr}(C) = \{X_0 = 1, X_1, \ldots, X_{r-1}\}$ for the isomorphism classes of simple objects in a rank r modular category C. We denote by S_{ij} the (i,j)-entry of the unnormalized S-matrix and by $d_i = \dim(X_i)$ the categorical dimension of the object X_i. The fusion coefficients are given by $N_{k}^{ij} := \dim \text{Hom}(X_i \otimes X_j, X_k)$ and the twists are denoted $\theta_i := \theta_{X_i}$.

(i) **Twist equation** (see [2, Equation 2.6]):

\[p^+ S_{ij} = \theta_i \theta_j \sum_k S_{ki} S_{kj} \theta_k, \quad (2.1) \]

where $p^+ = \sum_i d_i^2 \theta_i$.

(ii) **Balancing equation** (see [2, Equation 2.3]):

\[S_{ij} \theta_i \theta_j = \sum_k N_{i}^{kj} d_k \theta_k. \quad (2.2) \]

(iii) **Orthogonality:**

\[SS^\dagger = \dim(C) I_r, \quad (2.3) \]

where \dagger is the conjugate-transpose operation.

A fusion category C is G-graded (G a finite group) if $C = \bigoplus_{g \in G} C_g$ as an abelian category and $C_g \otimes C_h \subset C_{gh}$. If each C_g is non-empty, the grading is called faithful. It was proved in [12, Theorem 3.5] that any fusion category C is naturally graded by a group $U(C)$, called the universal grading group of C, and the adjoint subcategory C_{ad} is the trivial component of this grading. Moreover, any other faithful grading of C arises from a quotient of $U(C)$ [12, Corollary 3.7]. For a modular category, the universal grading group $U(C)$ is isomorphic to the group $G(C)$ of invertible simple objects of C [12, Theorem 6.2]. The fusion subcategory generated by the group of invertible objects is the maximal pointed subcategory of C and it is denoted C_{pt}. A strictly weakly integral fusion category is faithfully graded by an elementary abelian 2-group [12 Theorem 3.10]. Indeed, as each simple object has dimension \sqrt{k}, for some $k \in \mathbb{Z}$, one may partition the simple objects into finitely many non-empty sets of the form $A_n := \{X : d_X \in \sqrt{n} \mathbb{Z}\}$, where n is square-free, and this partition induces a faithful grading by an elementary 2-group. The trivial component C_e with respect to this grading is the subcategory C_{int} generated by the simple objects of C of integral dimension.
Two objects X and Y of a braided fusion category \mathcal{C} (with braiding c) are said to centralize each other if $c_{Y,X}c_{X,Y} = \text{id}_{X\otimes Y}$. The centralizer \mathcal{D}' of a subcategory $\mathcal{D} \subseteq \mathcal{C}$ is defined to be the full subcategory of objects of \mathcal{C} that centralize every object of \mathcal{D}, that is

$$\mathcal{D}' = \{X \in \mathcal{C} | c_{Y,X}c_{X,Y} = \text{id}_{X\otimes Y}, \forall Y \in \mathcal{D}\}.$$

The M"uger (or symmetric) center $Z_2(\mathcal{C})$ of \mathcal{C} is the centralizer of \mathcal{C}, that is $Z_2(\mathcal{C}) = \mathcal{C}'$, which is a symmetric fusion subcategory of \mathcal{C}. A braided fusion category \mathcal{C} is called symmetric when $Z_2(\mathcal{C}) = \mathcal{C}$. A premodular fusion category is called modular when $Z_2(\mathcal{C}) = \text{Vec}$.

Let \mathcal{C} be a modular category with admissible modular data (S, T). We define the Galois group $\text{Gal}(\mathcal{C})$ of \mathcal{C} as $\text{Gal}(\mathcal{C}) = \text{Gal}(\mathbb{K}_C/\mathbb{Q}) = \text{Gal}(S)$, where $\mathbb{K}_C = \mathbb{Q}(\sqrt{S_{ij}}, | i, j \in I_C) = \mathbb{F}_S$ is the splitting field of the Grothendieck ring $K_0(\mathcal{C})$ of \mathcal{C}. Roughly speaking, the Galois group of the number field \mathbb{K}_C is the abelian extension of \mathbb{Q} obtained by adjoining all the entries of the matrix S. Notice that this group is isomorphic to an abelian subgroup of the symmetric group S_n, where n is the rank of \mathcal{C}.

3 $\dim \mathcal{C} = 4m$, m odd square-free

Theorem 3.1. Suppose that \mathcal{C} is a modular category with $\dim \mathcal{C} = 4m$, with m an odd square-free integer. Then either

(a) \mathcal{C} contains an object of dimension $\sqrt{2}$ and $\mathcal{C} \cong \mathcal{I} \boxtimes \mathcal{P}_m$, with \mathcal{I} an Ising modular category or

(b) \mathcal{C} is non-integral and contains no objects of dimension $\sqrt{2}$ and $\mathcal{C} \cong TY(\mathbb{Z}_k, \chi, \nu)^{Z_2} \boxtimes \mathcal{P}_n$, where $1 \leq n = \frac{m}{k} \in \mathbb{Z}$ or

(c) \mathcal{C} is pointed and equivalent to \mathcal{P}_{4m} or $\mathcal{P}_{2} \boxtimes \mathcal{P}_{2m}$.

All equivalences are as balanced braided fusion categories.

Proof. Since spherical (balancing) structures are in 1-1 correspondence with invertible order 2 objects and may be chosen independently from the braiding on the category (see [2, Lemma 2.4]), we may assume we are given the unique spherical structure on \mathcal{C} such that $\text{FPdim}(X) = \dim(X)$, for every object X.

First suppose that \mathcal{C} is integral. Then every simple object must have dimension 1 or 2 (by [8, Lemma 1.2], [10, Proposition 8.27], [9, Proposition 2.11(i)]). If there are s distinct isomorphism classes of simple objects of dimension 2, the equation $4m = \dim(\mathcal{C}) = \dim(C_{pt}) + 4s$ implies $\dim(C_{pt})$ is a multiple of 4. Therefore, with respect to the universal grading by $U(\mathcal{C})$, each component has odd dimension. In particular, the trivial component $\mathcal{C}_e = C_{ad}$ is pointed so that \mathcal{C} is nilpotent. As such, by [8, Theorem 1.1], \mathcal{C} decomposes as a Deligne product of braided fusion categories of prime-power dimension. This implies that \mathcal{C} itself is pointed, since m is square-free and any integral braided fusion category of dimension 4 is pointed. These categories are described in (c).

Therefore, we may assume that \mathcal{C} contains a simple object X_1 with $\dim(X_1) \not\in \mathbb{Z}$. By considering the possible dimension of \mathcal{C}_{pt}, we see that $|U(\mathcal{C})| = 2^n a$ where $a \leq 2$ and $n | m$ is odd and square-free. If $a = 2$, by the above argument, we conclude that \mathcal{C} is nilpotent and hence pointed, which can not happen because we assumed \mathcal{C} not to be integral. By [12]
Theorem 3.10] $a \neq 0$, so we must have $a = 1$ and $U(C) \cong \mathbb{Z}_{2n}$. If $n = 1$, $\dim(C_{pt}) = 2$. Moreover, $C_{ad} = C_{int}$ and the only possible dimensions for the simple objects in it are 1 or 2. Then, $2m = \dim(C_{ad}) = 2 + 4b$, but this can not happen if $m > 1$. If $m = 1$, C is an Ising modular category. Assume now that $n \neq 1$. Let $p \mid n$ be prime, and let $C_{pt}(p)$ be a pointed subcategory of dimension p. Observe that $C_{pt}(p)$ is either symmetric or modular since its Müger center is either all of $C_{pt}(p)$ or Vec. If $C_{pt}(p) \cong \text{Rep}(\mathbb{Z}_p)$ is symmetric then it is also Tannakian, since p is odd [7, Corollary 2.50 (i)]. The corresponding \mathbb{Z}_p-de-equivariantization of C is \mathbb{Z}_p-graded with trivial component $C^0_{\mathbb{Z}_p}$ must have dimension $\dim C/p^2$, contradicting n square-free. Therefore $C_{pt}(p)$ is modular. Then, we have $C \cong C_{pt}(p) \boxtimes D$ for some modular subcategory $D \subset C$, by [13, Theorem 4.2], [7, Theorem 3.13]. By induction on the number of (distinct) primes factors of n, we have $C \cong D \boxtimes P_n$, where D is modular with $\dim D = 4k$ with $\dim D_{pt} = 2$.

We now proceed to classify such D. First suppose that $m = n$. Then, D is not pointed and $\dim D = 4$ so it is an Ising modular category [7, Appendix B]. In this case, C corresponds to (a).

Now suppose that $m = nk$, where $1 < k \leq m$ (i.e. $1 \leq n < m$). Since $U(D) \cong \mathbb{Z}_2$, we have a \mathbb{Z}_2-grading with components $D_e = D_{ad}$ and D_g where $g \in D$ is a (self-dual) invertible object of order 2. In this case, the universal grading coincides with the faithful grading described in [12, Theorem 3.10]. Then, any simple object X_i in D_g has $\dim(X_i) = \alpha_i \sqrt{\ell}$, with ℓ square-free and $\alpha_i \in \{1, 2\}$, since D is modular and k is square free. So, D_e contains all of the objects of integral dimension, which consist of two 1-dimensional objects and $(k - 1)/2$ objects Y_i of dimension 2. We claim that $\theta_g = 1$. To see this, first observe that if Y is simple and $\dim(Y) = 2$ then, by dimension counting, $Y \otimes Y^* = 1 \oplus g \oplus Y'$, where Y' is a 2-dimensional simple object. Thus, $N^g_{Y,Y'} = N^g_{Y,Y} = 1$ so that $Y \otimes g = Y$, for all 2-dimensional simple object Y. Next, note that the second row of the S-matrix must be the Galois conjugate of the first row since $S_{g,1} = 1$. That is, the second row is:

$$(1, 1, 2, \ldots, 2, -\alpha_1 \sqrt{\ell}, \ldots, -\alpha_\ell \sqrt{\ell}).$$

The balancing equation (2.2) gives:

$$2 = S_{g,Y} = \theta_g^{-1} \theta_{Y'}^{-1} N^g_{Y,Y} \dim(Y) \theta_Y = 2 \theta_g,$$

so that $\theta_g = 1$, as claimed.

Now, we use the balancing equation (2.2) again:

$$-\alpha_i \sqrt{\ell} = S_{g,X_i} = \theta_g \theta_{X_i}^{-1} \theta_{g \otimes X_i} \dim(g \otimes X_i) = \alpha_i \sqrt{\ell} \theta_{X_i}^{-1} \theta_{g \otimes X_i},$$

which implies that $\theta_{X_i} = -\theta_{g \otimes X_i}$. In particular, $g \otimes X_i \neq X_i$ and $g \otimes X_i \neq X_i^*$, since $\theta_{X_i} = 1$. Then X_i is self-dual, for all i. We claim that $\text{rank}(D_g) = 2$. First, notice that $\text{rank}(D_g) \neq 1$ because g does not fix any X_i. Let X_1 and X_i be simple objects of dimension $\sqrt{\ell}$. Since $\dim(X_1 \otimes X_i) = \ell$ is odd, either 1 or g (and not both) is a subobject of $X_1 \otimes X_i$. Since all X_i are self-dual, $N^1_{X_1,X_i} = 1$ implies $X_i = X_1$. If $N^g_{X_1,X_i} = 1$ then $X_i = g \otimes X_1$. Therefore, X_1 and $g \otimes X_1 \neq X_1$ represent the only two non-isomorphic simple objects in D_g. Thus, we have seen that $\ell = k$, and D has two 1-dimensional objects $1, g; (k - 1)/2$ simple 2-dimensional objects $Y_1, \ldots Y_{k-1}$ and
two \sqrt{k}-dimensional objects X_1 and X_2. Moreover, since $\theta_g = 1$, the subcategory generated by g is Tannakian. This induces an action of \mathbb{Z}_2 on D by interchanging 1 and g, fixing all Y_i and interchanging X_1 and X_2. Then, the \mathbb{Z}_2-de-equivariantization $D_{\mathbb{Z}_2}$ has k objects of dimension 1 (one from $1 \oplus g$ and two from each Y_i) and one object of dimension \sqrt{k} (from $X_1 \oplus X_2$). As a fusion category $D_{\mathbb{Z}_2}$ must be $TY(\mathbb{Z}_k, \chi, \nu)^{\mathbb{Z}_2}$. As these categories are described in (b), the proof is complete. □

Remark 3.2. An alternative description of the categories obtained in Theorem 3.1 (b) is as follows. The non-pointed factor $D := TY(\mathbb{Z}_k, \chi, \nu)^{\mathbb{Z}_2}$ can be recovered from the formula

$$D \boxtimes \mathcal{P}_k \cong \mathcal{Z}(TY(\mathbb{Z}_k, \chi, \nu)),$$

obtained from [4, Cor. 3.30]. Here \mathcal{P}_n is the maximal pointed modular subcategory of the Drinfeld center of $TY(\mathbb{Z}_k, \chi, \nu)$. We see that there are a total of 8 possible categories up to balanced braided tensor equivalences: 4 for the choices of χ and ν (two each) and then an overall two choices of spherical structure.

The following result will be useful later:

Lemma 3.3. If \mathcal{C} is a weakly integral modular category of rank $r \geq 3$ in which there is a unique simple isomorphism class of objects X such that $\text{FPdim } X \notin \mathbb{Z}$ then \mathcal{C} is equivalent to an Ising modular category.

Proof. Let \mathcal{C} be such a category. Since $\text{FPdim } X = \sqrt{m}$, the Frobenius-Perron dimension of each component \mathcal{C}_i in any faithful grading of \mathcal{C} should be at least m. It follows from [12, Theorem 3.10] that the category \mathcal{C} has a faithful \mathbb{Z}_2-grading, with \mathcal{C}_0 integral and the unique simple object in the non-trivial component \mathcal{C}_1 being X. Then, $FPdim(\mathcal{C}) = 2m$. Therefore, the universal grading group $U(\mathcal{C})$ must be of order 2. In particular, $G(\mathcal{C}) \simeq \mathbb{Z}_2$ [12, Theorem 6.2].

Clearly, both X and the non-trivial invertible object g are self-dual. Now, we look at the S-matrix associated to the modular data of \mathcal{C}. We consider the canonical positive spherical structure on \mathcal{C}, with respect to which categorical dimensions of simple objects coincide with their Frobenius-Perron dimensions [18, Proposition 8.23]. Then, the first column is given by the Frobenius-Perron dimensions of the simple objects of \mathcal{C}. We order the entries of the S-matrix in the following way: the index 0 corresponds to the unit object, the index 1 corresponds to g, the last index to the non-integral object X, and the middle ones to the non-invertible integral simple objects.

By [2, Lemma 4.9], the Galois automorphism σ that sends \sqrt{m} to $-\sqrt{m}$ interchanges the first two columns of the S-matrix. Since the matrix is symmetric we already know that the first two entries of the last column are $\pm \sqrt{m}$. Since the last column corresponds to the self-dual object X, all its entries are real numbers. But since the norm of each column is equal to $2m$, all the other entries of the last column must be equal to zero. Thus the S-matrix of \mathcal{C} has
Applying the twist equation (2.1) to the entry $S_{X,X} = 0$, we get that $0 = \theta_X^2 \sum_i \theta_i S_{i,X}^2 = (m\theta_1 + m\theta_g)\theta_X^2$. We conclude that $\theta_g = -\theta_1 = -1$. Next, we apply the twist equation (2.1) to the entry $S_{g,X} = -\sqrt{m}$ obtaining:

$$p_+(-\sqrt{m}) = \theta_g \theta_X^2 \sum_i \theta_i S_{i,g} S_{i,X} = -\theta_X^2 \sqrt{m}.$$

It follows that $|p_+| = 2|\theta_X| = 2$ and $D^2 = 4$. Then, \mathcal{C} is equivalent to an Ising modular category.

Lemma 3.4. Let \mathcal{C} be a modular category of square-free (integral) Frobenius-Perron dimension. Then \mathcal{C} is pointed.

Proof. The only possible integral FP-dimension of a simple object is 1, since FPdim(\mathcal{C}) is square-free. Therefore, the integral subcategory \mathcal{C}_{ad} is pointed, hence \mathcal{C} is nilpotent. Thus, by [7, Theorem 1.1], \mathcal{C} is a Deligne product of braided subcategories of prime dimension. Such categories are pointed, by [10, Corollary 8.30]. Then, \mathcal{C} is pointed. \qed

4 Technical results

4.1 G-grading of a modular category

Let $G = G(\mathcal{C})$ be the group of isomorphism classes of invertible objects of a modular category \mathcal{C}. Let \hat{G} denote the character group of G. The modular category \mathcal{C} admits a faithful \hat{G}-grading ([12, Theorem 6.2]) which is given by $\mathcal{C} = \bigoplus_{\chi \in \hat{G}} \mathcal{C}_\chi$, where the set of simple objects in \mathcal{C}_χ is given by:

$$\text{Irr}\mathcal{C}_\chi = \left\{ V_j \in \text{Irr}\mathcal{C} \mid \frac{S_{ij}}{d_i d_j} = \chi(i), \text{ for all } i \in G \right\}.$$

This natural \hat{G}-grading on \mathcal{C} induces a canonical \hat{H}-grading on \mathcal{C}, for any subgroup H of G. More precisely, for $\chi \in \hat{H}$, the set of simple objects in each component of the grading is:

$$\text{Irr}\mathcal{C}_\chi = \left\{ V_j \in \text{Irr}\mathcal{C} \mid \frac{S_{ij}}{d_i d_j} = \chi(i), \text{ for all } i \in H \right\}.$$

Since the restriction map $\hat{G} \to \hat{H}$ is surjective, this H-grading is also faithful and $\dim\mathcal{C}_\chi = \frac{\dim\mathcal{C}}{|H|}$, for all $\chi \in \hat{H}$. See [10, Proposition 8.20].

The group G also acts on $\Pi_\mathcal{C}$ by tensor product. For $g \in G$ and $j \in \Pi_\mathcal{C}$, $g \cdot j \in \Pi_\mathcal{C}$ is defined by $V_{g \cdot j} \cong V_{g}^* \otimes V_j$. We are particular interested in the subgroups H of G which generates a symmetric full subcategory of \mathcal{C}. In this case, we will simply call H a self-centralizing subgroup of G.

6
Remark 4.1. If H is a self-centralizing subgroup of G then $S_{g,h} = d_g d_h = 1$, for all $g, h \in H$. Therefore, $H \subseteq C_e$, where C_e is the trivial component of the \hat{H}-grading of C associated to the trivial character. If H generates a Tannakian subcategory of C then H is a self-centralizing subgroup and $d_h = 1 = \theta_h$, for all $h \in H$.

Lemma 4.2. Let H be a self-centralizing subgroup of G. Then $H \cdot j \subseteq \text{Irr}(C_\chi)$, for all $j \in \text{Irr}(C_\chi)$, for any $\chi \in \hat{H}$. If, in addition, H generates a Tannakian subcategory of C and χ is not trivial then $H \cdot j$ is not a singleton. In particular, $|H|$ divides $|\text{Irr}(C_\chi)|$ when H has prime order and χ is not trivial.

Proof. Since $H \subseteq C_e$ and the action of H is induced by the tensor product, it follows immediately from the definition of grading that $\hat{H} \cdot \text{Irr}(C_\chi) \subseteq \text{Irr}(C_\chi)$.

Now, we assume that H generates a Tannakian subcategory of C. Thus $\theta_h = 1$, for all $h \in H$. Suppose that $j \in \text{Irr}(C_\chi)$ is fixed by H. Then $N_{h,j}^k = \delta_{k,j}$, $\forall h \in H$, $\forall k \in \Pi_C$. Using the balancing equation (2.2), we get that
\[
\chi(h) = \frac{S_{h,j}}{d_j} = \frac{\sum_k N_{h,j}^k d_k \theta_k}{\theta_h \theta_j d_j} = 1,
\]
since $d_h = 1$, $\forall h \in H$. Therefore, χ is trivial.

Notice that if H is a group of prime order p then H generates a Tannakian subcategory of C, by [7 Corollary 2.50]. In addition, $|H| = p$ implies that each H-orbit in $\text{Irr}(C_\chi)$ has exactly p simple objects. Therefore, the last statement follows.

Lemma 4.3. Suppose H is a self-centralizing subgroup of G. If $\text{Irr}(C_\psi)$ consists of only one H-orbit, for some $\psi \in \hat{H}$, then C_e is integral. If, in addition, $k \in \text{Irr}(C_\chi)$ is fixed by H then $\frac{|H|}{|H_0|} \mid d_k$, where H_0 is the stabilizer of the H-orbit $\text{Irr}(C_\psi)$.

Proof. Since H is self-centralizing then $H \subseteq C_e$, see Remark 4.1. Let $R = \sum_{i \in \text{Irr}_C} d_i V_i$ be the virtual regular object of C. Then $R = \sum_{\chi \in \hat{H}} R_\chi$, where R_χ is the regular object of the component C_χ.

Suppose $\text{Irr}(C_\psi) = H \cdot j$, with $j \in \text{Irr}(C_\psi)$. Let H_0 be the stabilizer of the H-orbit $\text{Irr}(C_\psi)$. Note that the quotient group H/H_0 acts on j as $h \cdot j = h \cdot j$, where $h \in H/H_0$. Thus $R_\psi = d_j \sum_{\pi \in H/H_0} V_{\pi,j}$, since $d_h = 1$ implies $d_{\pi,j} = d_j$. For $V_k \in \text{Irr}(C_e)$, $V_k \otimes R = d_k R$ and so $V_k \otimes R_\chi = d_k R_\chi$, for all $\chi \in \hat{H}$. On the other hand,
\[
V_k \otimes R_\psi = d_j \sum_{\pi \in H/H_0} V_{\pi,j} \otimes V_k = d_j \sum_{h,h' \in H/H_0} n_{h^{-1}h'} V_{h^{-1}h',j} \otimes V_{h^{-1}h',j} = d_j \sum_{h,h' \in H/H_0} n_{h^{-1}h'} V_{h^{-1}h',j} = n R_\psi, \quad (4.1)
\]
where $n = \sum_{\pi \in H/H_0} n_{\pi}$ is a non-negative integer. Therefore, $d_k = n \in \mathbb{Z}_+$ and C_e is integral, as we stated.
If k is fixed by H then
\[
d_k R_\psi = V_k \otimes R_\psi = d_{j} \sum_{\overline{h} \in H/H_0} V^*_h \otimes V_j \otimes V_k = d_{j} \frac{|H|}{|H_0|} V_j \otimes V_k = d_{j} \frac{|H|}{|H_0|} \sum_{\overline{h} \in H/H_0} n_{\overline{h}} V^*_{\overline{h}} \otimes V_j \otimes V_k.
\]
Thus, $\frac{|H|}{|H_0|} n_{\overline{h}} = d_k$, for all $\overline{h} \in H/H_0$. In particular, $\frac{|H|}{|H_0|} | d_k$ and $n_{\overline{h}} = n_{\overline{h}'}$, $\forall h, h' \in H/H_0$. □

4.2 Support cycles Let n be a positive integer. We define $v_p(n) = a$ if $p^a \parallel n$, and when p is odd $k_p(n) = \frac{\varphi(p^n)}{2}$, where φ is the Euler’s totient or phi function.

Suppose p is a prime factor of $N = \text{FSexp}(C)$ of a modular category C with $a = v_p(N)$. Let $N = p^a m$ and $\sigma \in \text{Gal}(Q_{ab})$, where Q_{ab} is the abelian closure of Q in C, such that σ fixes Q_{4q} and $\sigma|_{Q_{4q}}$ generates a maximal cyclic subgroup of $\text{Gal}(Q_{p^a}/Q)$. We call σ a p-automorphism of C. Suppose (s, t) is a normalized data of C whose associated modular representation is of level n. By [3], n can be chosen to be N if $4 \nmid N$, and $2N$ otherwise. We simply call this type of normalized data of C minimal.

A cycle C in the disjoint cycle decomposition of $\hat{\sigma}$ is called a p^i-support cycle of σ if $v_p(\text{ord}(t_j)) = \ell$ for some $j \in C$. If $a = v_p(n)$, a p^a-support cycle of σ is called a maximal power support cycle of σ.

If (s', t') is another normalized data of C, then $(s', t') = (sx^{-3}, tx)$ for some 12-th root of unity x. Therefore, all prime power support cycles, except 2, 4 are 3, independent of the choice of the normalized pair (s, t).

Lemma 4.4. Suppose C is a modular category, p is an odd prime factor of $N = \text{FSexp}(C)$, and σ is a p-automorphism of C. Let (s, t) be a minimal normalized modular data of level $n = p^a q$. Then σ admits a maximal power support cycle. For any p^i-support cycle C of σ with $1 \leq i \leq a$, we have
\[
\frac{\varphi(p^i)}{2} | \text{ord}(C) | 2k_p(N).
\]
Hence, $\frac{k_p(N)}{2} | \text{ord}(\hat{\sigma}) | 2k_p(N)$.

If 1 is in a p^i-support cycle C of σ and $t_1 = x \zeta$ for some primitive p^i-th root unity ζ and $x^q = 1$, $t_{\sigma^j(1)} = x \sigma^{2j}(\zeta)$ for all j. In particular, $v_p(\text{ord}(t_j)) = i$ for all $j \in C$.

Proof. Let $k = k_p(N)$. Since $\text{ord}(\sigma|_{Q_{p^a}}) = 2k$, $\text{ord}(\hat{\sigma}) | 2k$ and the length of each disjoint cycle of $\hat{\sigma}$ is a divisor of $2k$.

Since $\text{ord}(t) = p^a q$, there exists a simple object, say V_{j_0} such that $\text{ord}(t_{j_0})$ is a multiple of p^a. Therefore, the disjoint cycle of $\hat{\sigma}$ containing j_0 is a p^a-support cycle of σ.

Suppose C is a p^i-support cycle of σ, for some $i \leq a$, with $1 \in C$ and $t_1 = x \zeta$ for some q-th root of unity x and a primitive q^i-th root unity ζ. Let $k' = \varphi(p^i)/2$. Note that
\[
t_1, \sigma^2(t_1), \ldots, \sigma^{2(k'-1)}(t_1)
\]
are distinct, and $\sigma^{2k'}(t_1) = t_1$ By Galois symmetry, they are eigenvalues of t and
\[
t_{\sigma^j(1)} = \sigma^{2j}(t_1) = x \sigma^{2j}(\zeta) \text{ for all } j.
\]
In particular, \(1, \sigma(1), \ldots, \sigma^{k'-1}(1)\) are distinct, and \(v_p(\text{ord}(t_{\sigma(1)})) = i\). Therefore, the length of the cycle \(C\) is a multiple \(k'\) and so

\[k' \mid \text{ord}(C) \mid \text{ord}(\sigma) \mid 2k. \]

For \(i = a\), we find \(k \mid \text{ord}(C) \mid \text{ord}(\sigma) \mid 2k. \)

If the anomaly \(\alpha = \frac{p_+}{p_-}\) of \(C\) is such that \(3 \nmid \text{ord}(\alpha)\), one can choose a 6-th root \(\lambda\) of \(\alpha\) such that \(\frac{p_+}{\alpha} = D = \sqrt{\dim C}\) and \(3 \nmid \text{ord}(\lambda)\). The normalization \((s, t) = (\frac{S}{D}, \frac{T}{D})\) not be minimal but the 3-support cycle of a 3-automorphism of \(C\) will be independent of these normalization. Moreover, the level \(n\) of \((s, t)\) will satisfies \(\text{FSexp}(C) \mid n \mid 4 \text{FSexp}(C)\).

We are particularly interested in weakly integral modular categories as their anomaly \(\alpha = \frac{p_+}{p_-}\) can only be an 8-th root of unity. For any weakly integral modular category \(C\), we only consider the normalized modular data \((s, t) = (\frac{S}{D}, \frac{T}{D})\) with \(\lambda = \sqrt[4]{\alpha}\) where \(\sqrt[4]{D} = p_+\). Since \(\alpha \in \mathbb{Q}N\), the level of \((s, t)\) is a divisor of \(4N\). In particular, there is not any ambiguity for a 3-support cycle for a 3-automorphism of \(C\). We have a more refined statement for \(p^i\)-support cycles for a weakly integral modular category.

Lemma 4.5. Suppose \(\sigma\) is a \(p\)-automorphism of a weakly integral modular category \(C\) with \(p\) an odd prime, and \(\text{FSexp}(C) = p^d q\) for some integer \(q\) relative prime to \(p\). Then, integer \(i\) with \(1 \leq i \leq a\), the following statements are equivalent:

(i) \(C\) is a \(p^i\)-support cycle of \(\sigma\);

(ii) \(v_p(\text{ord}(\theta_j)) = p^i\) for some \(j \in C\);

(iii) \(v_p(\text{ord}(\theta_j)) = p^i\) for all \(j \in C\).

In particular, \(0 \notin C\). If \(C = (1, 2, \ldots, l)\) and \(\theta_1 = x\zeta\) for some primitive \(p^i\)-root of unity \(\zeta\) and \(x^4 = 1\), then \(\theta_j = x^{\sigma^{2j}}(\zeta)\).

Proof. Let \(t = \sqrt[p]{\sigma^5}T\) where \(\sqrt[p]{\sigma} = p_+/D\) is 16-th root of unity. Then \(v_p(\text{ord}(t_j)) = v_p(\text{ord}(\theta_j))\) for all \(j\), and so the equivalence of the three conditions follows. Note that \(t_0\) is a \(6\)-th root but \(p \mid \text{ord}(t_j)\) for any \(j\) in a \(p^i\)-support cycle \(C\) of \(\sigma\) \((i > 0)\). Therefore, \(0 \notin C\). If \(C = (1, 2, \ldots, l)\) and \(\theta_1 = x\zeta\) for some primitive \(p^i\)-root of unity \(\zeta\) and \(x^4 = 1\), then \(t_1 = \sqrt[p]{\sigma^5} x\zeta\) and so \(t_j = \sqrt[p]{\sigma^5} x^{\sigma^{2j}}(\zeta)\). Thus, \(\theta_j = x^{\sigma^{2j}}(\zeta)\).

Theorem 4.6. Let \(C\) be a weakly integral modular category, \(p\) an odd prime factor of \(N = \text{FSexp}(C)\) and \(\sigma\) a \(p\)-automorphism of \(C\). Suppose \(pq = N\) for some integer \(q\) relatively prime to \(p\), and \(\sigma\) has only one \(p\)-support cycle \(C_1 = (1, \ldots, l)\). Then:

(i) \(\dim C = \left(\frac{l}{p-1}\right)^2 d_1^4 p\), \(d_1 \in \mathcal{O}_q\), and \(\theta_1 = x\zeta\) for primitive \(p\)-th root of unity \(\zeta\) and \(x^{16} = 1\). In particular, if \(l = \frac{p-1}{2}\), then \(2 \mid d_1^2\).

(ii) If \(C\) is integral and \(\text{Gal}(C)\) is generated by \(\sigma\), then \(\sigma\) is cycle of length \(p - 1\) and \(C\) is pointed of rank \(p\).

(iii) If \(C\) is a strictly weakly integral and \(\text{Gal}(C)\) is generated by \(\sigma\), then \(\sigma = (0, 1)(2, \ldots, \frac{p+1}{2})\), up to relabeling of the simple objects, and \(C\) is a prime modular category of \(\dim C = 4p\). In particular, and of rank \(\frac{p+1}{2}\).
Proof. Let \(\theta_1 = x \zeta \) for some primitive \(p \)-root of unity \(\zeta \) and \(x^q = 1 \), then \(\theta_j = x \sigma^{2j}(\zeta) \) for \(j = 1, \ldots, l \). By Lemma 4.5, \(l = p - 1 \) or \(\frac{p-1}{2} \). Suppose \(\hat{\sigma} = C_0 C_1 C_2 \ldots C_m \) where \(C_0 \) is the cycle containing 0. Note that \(d_j = d_{C_i} \) for all \(j \in C_i \). In particular, and \(d_{C_1} = d_1 \). Since \(C_1 \) is the only \(p \)-support cycle of \(\sigma \), we also have \(\theta_j = \theta_{C_i} \in \mathcal{O}_q \) for all \(j \in C_i \) if \(i \neq 1 \). Let us denote \(l_i = \text{ord}(C_i) \) and \(C_i = (c_i, \hat{\sigma}(c_i), \sigma^2(c_i), \ldots) \). Now we consider the twist equation for any \(j \):

\[
p_{+} d_{j} \bar{\theta}_{j} = d_1 \sum_{r=1}^{l} S_{jr} \theta_{r} + \sum_{i \neq 1} d_{C_i} \theta_{C_i} \sum_{r \in C_i} S_{jr} = d_{1} \sum_{r=0}^{l-1} \frac{S_{j,1+r}}{d_1} \sigma^{2r}(\zeta) + \sum_{i \neq 1} d_{C_i} \theta_{C_i} \sum_{r \in C_i} \frac{S_{jr}}{d_r}.
\]

For any \(i \), we denote

\[
S_{j,C_i} = \sum_{r \in C_i} \frac{S_{jr}}{d_r} = \sum_{r=0}^{l-1} \sigma^{r-1} \left(\frac{S_{j,C_i}}{d_{C_i}} \right) \in \mathcal{O}_q,
\]

and so \(\sum_{i \neq 1} d_{C_i} \theta_{C_i} S_{j, C_i} \in \mathcal{O}_q \). Therefore, for \(j = 0 \), we have

\[
\sqrt{\alpha}D = p_{+} = d_{1} \sum_{r=0}^{l-1} \sigma^{2r}(\zeta) + \sum_{i \neq 1} d_{C_i} \theta_{C_i} l_i
\]

\[
= \frac{2 \sqrt{d_{1}} x}{p - 1} \left(-\frac{-1 \mp \sqrt{p}}{2}\right) + \sum_{i \neq 1} d_{C_i} \theta_{C_i} l_i
\]

\[
= \pm \frac{\sqrt{d_{1}} x}{p - 1} \sqrt{p} + \frac{- \sqrt{d_{1}} x}{p - 1} + \sum_{i \neq 1} d_{C_i} \theta_{C_i} l_i
\]

where \(\varepsilon = \sqrt{\left(\frac{-1}{p}\right)} \). Since \(\left\{1, \sqrt{p}\right\} \) is linearly independent over \(\mathbb{Q}_q \), it follows from (4.6) that

\[
\sqrt{\alpha}D = \pm \frac{\sqrt{d_{1}} x l}{p - 1} \sqrt{p} \quad \text{and} \quad \frac{\sqrt{d_{1}} x}{p - 1} = \sum_{i \neq 1} d_{C_i} \theta_{C_i} l_i.
\]

This implies \(\alpha = x^2 \left(\frac{-1}{p}\right), \quad \dim C = \left(\frac{1}{p-1}\right)^2 d_1^1 p, \quad \text{and} \quad \sigma(p_{+}) = -p_{+} \). Therefore,

\[
2p_{+} = d_{1} \sum_{r=0}^{l-1} \sigma^{2j}(\zeta) - \sigma^{2j+1}(\zeta) = 0.
\]

Let \(\mathcal{I} = \{i \mid d_{C_i} \in \mathbb{Z}\} \setminus \{1\} \). Suppose \(j \in C_i \) for some \(i \in \mathcal{I} \). By (4.3), we have

\[
p_{+} d_{j} \bar{\theta}_{j} = d_{1} \sum_{r=0}^{l-1} S_{j,r+1} \sigma^{2r}(\zeta) + \sum_{i \neq 1} d_{C_i} \theta_{C_i} S_{j, C_i}.
\]

Therefore,

\[
2p_{+} d_{j} \bar{\theta}_{j} = d_{1} \sum_{r=0}^{l-1} \sigma^{r} \left(\frac{S_{j,1}}{d_1}\right) \sigma^{2r}(\zeta) - \sigma^{r+1} \left(\frac{S_{j,1}}{d_1}\right) \sigma^{2r+1}(\zeta),
\]
and so

\begin{equation}
2l_i p_+ d_{C_i} \theta_{C_i} = d_{l_i} d_{C_i} x \sum_{r=0}^{l-1} \left(\sigma^r \left(\frac{S_{1,C_i}}{d_1} \right) \sigma^{2r}(\zeta) - \sigma^{r+1} \left(\frac{S_{1,C_i}}{d_1} \right) \sigma^{2r+1}(\zeta) \right) \tag{4.10}
\end{equation}

\begin{equation}
= d_{l_i} d_{C_i} x S_{1,C_i} \sum_{r=0}^{l-1} \left(\left(\frac{\sigma(d_1)}{d_1} \right)^r \sigma^{2r}(\zeta) - \left(\frac{\sigma(d_1)}{d_1} \right)^{r+1} \sigma^{2r+1}(\zeta) \right). \tag{4.11}
\end{equation}

Suppose \(d_1 \not\in \mathcal{O}_q \), then \(\sigma(d_1) = -d_1 \) as \(d_1 \) is square root of an integer. Since \(\sigma^2(d_i) = d_i \) for all \(i \), \(C_0 = (0,0) \) and so

\[S_{1,C_0} = d_1 + S_{1,0} = d_1 - d_1 = 0. \]

By (4.11), this implies \(2p_+ = 0 \), a contradiction. Therefore, \(d_1 \in \mathcal{O}_q \). This completes the proof of (i).

We now assume \(\text{Gal}(\mathcal{C}) = \langle \sigma \rangle \). Then, \(d_1, S_{C_i} \in \mathbb{Z} \) for all \(i \), and \(d^2 \theta_{C_i} S_{C_i} \in \mathcal{O}_q \) for \(i \neq 1 \).

Next, we show that \(\theta_{C_i} = 1 \) for \(i \in \mathcal{I} \). Now, (4.11) becomes

\begin{equation}
2l_i p_+ d_{C_i} \theta_{C_i} = d_{l_i} d_{C_i} x S_{1,C_i} \sum_{r=0}^{l-1} \left(\sigma^{2r}(\zeta) - \sigma^{2r+1}(\zeta) \right). \tag{4.12}
\end{equation}

By (4.8), we find \(S_{1,C_i} = l_i d_1 \theta_{C_i} \). Hence \(\theta_{C_i} = \pm 1 \) and \(S_{1,j} = d_1 d_j \theta_j \in \mathbb{Z} \) for \(j \in C_i \). Thus, \(S_{r,j} = S_{1,j} \) for all \(j \in C_i \) and \(1 \leq r \leq l \).

Now, for \(a, b \in \mathcal{I}, j' \in C_a \) and \(j \in C_b \), we have the twist equation:

\[p_+ S_{j,j'} = \theta_j \theta_{j'} \left(x \sum_{r=0}^{l-1} S_{j,1+r} S_{j',1+r} \sigma^{2r}(\zeta) + \sum_{i \neq 1} \sum_{r \in C_i} S_{j,r} S_{j',r} \theta_{C_i} \right). \]

Therefore,

\[
\sum_{j \in C_b} \sum_{j' \in C_a} p_+ S_{j,j'} = d_{C_a} l_b p_+ S_{c_b,C_a}
\]

\[
= \theta_{C_b} \theta_{C_a} \left(xd_{C_a} l_b \sum_{r=0}^{l-1} S_{1+r,C_b} S_{1+r,C_a} \sigma^{2r}(\zeta) + d_{C_a} d_{C_b} \sum_{i \neq 1} \sum_{r \in C_i} S_{r,C_b} S_{r,C_a} \theta_{C_i} \right)
\]

\[
= \theta_{C_b} \theta_{C_a} \left(xd_{C_a} d_{C_b} S_{1,C_b} S_{1,C_a} \sum_{r=0}^{l-1} \sigma^{2r}(\zeta) + d_{C_a} d_{C_b} \sum_{i \neq 1} l_i S_{c_i,C_b} S_{c_i,C_a} \theta_{C_i} \right)
\]

\[
= xd_{C_a} d_{C_b} l_b l_d l_i \sum_{r=0}^{l-1} \sigma^{2r}(\zeta) + \theta_{C_b} \theta_{C_a} d_{C_a} d_{C_b} \sum_{i \neq 1} l_i S_{c_i,C_b} S_{c_i,C_a} \theta_{C_i}
\]

Since \(S_{c_b,C_a} \in \mathbb{Z} \), we find

\[2d_{C_a} l_b p_+ S_{c_b,C_a} = xd_{C_a} d_{C_b} l_b l_d \sum_{j=0}^{l-1} \left(\sigma^{2j}(\zeta) - \sigma^{2j+1}(\zeta) \right) = 2p_+ d_{C_a} d_{C_b} l_a l_b \]
and hence $S_{cb,c_a} = l_a d_{cb}$. It follows from \cite{19} that

\[
\begin{align*}
l_{bp} d_{cb} \theta_{cb} &= d_1 d_{cb} x \sum_{r=0}^{l-1} S_{r,cb} \sigma^{2r}(\zeta) + \sum_{j \in cb \ i \neq 1} d_i^2 \theta_{ci} S_{j,ci} \\
&= d_1 d_{cb} x S_{1,cb} \sum_{r=0}^{l-1} \sigma^{2r}(\zeta) + l_b d_{cb} \sum_{i \neq 1} d_i^2 \theta_{ci} l_i \\
&= l_b d_i^2 d_{cb} \theta_{cb} x \sum_{r=0}^{l-1} \sigma^{2r}(\zeta) + l_b d_{cb} \sum_{i \neq 1} d_i^2 \theta_{ci} l_i.
\end{align*}
\]

Therefore,

\[
p_+ = d_i^2 x \sum_{r=0}^{l-1} \sigma^{2r}(\zeta) + \theta_{cb} \sum_{i \neq 1} d_i^2 \theta_{ci} l_i = d_i^2 x \sum_{r=0}^{l-1} \sigma^{2r}(\zeta) + \sum_{i \neq 1} d_i^2 \theta_{ci} l_i.
\]

This forces $\theta_{cb} = 1$ for all $b \in I$.

Let I be the set of all simple objects of C with integral dimension, $\tilde{I} = \{V_j \mid j \in C_i \text{ for some } i \in I\}$. In particular, $I = \{V_1, \ldots, V_l\} \cup \tilde{I}$. Our preceding paragraphs have shown $S_{V_j, V_r} = d_j d_r$ if $V_j \in \tilde{I}$ and $V_r \in I$. Let $\langle I \rangle$ be the tensor subcategory generated by I. Then the centralizer V_j is the centralizer $C_C(\langle I \rangle)$ for all $V_j \in \tilde{I}$.

If C is integral, then $\langle I \rangle = C$ and so $\tilde{I} = \{V_0\}$ by the modularity of C. Therefore, $I = \{V_0, \ldots, V_l\}$ and we have

\[
\left(\frac{l}{p-1}\right)^2 d_1^4 p = 1 + ld_1^2.
\]

The equation has no integral solution for d_1 if $l = \frac{p-1}{2}$. For $l = p - 1$, $d_1 = 1$ is the only integer solution. Thus, C pointed of rank p, and the proof of (ii) is completed.

Now, we assume C is strictly weakly integral. Since d_j is a square root of a positive integer, say $C_0 = (0, l + 1)$. Moreover, $\dim \langle I \rangle = \dim C / 2$. By \cite{13}, $\dim C_C(\langle I \rangle) = 2$. Since $V_0, V_{i+1} \in C_C(\langle I \rangle)$ and $d_0^2 + d_{i+1}^2 = 2$, $\tilde{I} = \{V_0, V_{i+1}\}$, and so $I = \{V_0, \ldots, V_{i+1}\}$. Now, we have

\[
\left(\frac{l}{p-1}\right)^2 d_1^2 p = \frac{\dim C}{2} = 2 + ld_1^2.
\]

The equation has no integral solution for $l = p - 1$ $\langle I \rangle = C$ and so $\tilde{I} = \{V_0\}$ by the modularity of C. Therefore, $I = \{V_0, \ldots, V_l\}$ and we have

\[
\left(\frac{l}{p-1}\right)^2 d_1^4 p = 1 + ld_1^2.
\]

The equation has no integral solution for d_1 if $l = p - 1$. For $l = \frac{p-1}{2}$, $d_1 = 2$ is the only integer solution. Thus, $\dim C = 4p$. It follows from Theorem \cite{3.1} that C is one of the four prime modular categories of dimension $4p$. This completes the proof of (iii). \hfill $$

Lemma 4.7. Suppose C is a weakly modular category, $v_p(\text{FSexp}(C)) = 1$ for some odd prime p, and σ is a p-automorphism. If σ has exactly two p-support cycles and they both have length $k = \frac{p-1}{2}$, say $C_1 = (1, \ldots, k)$ and $C_2 = (k + 1, \ldots, 2k)$ then either
(i) $v_p(\dim C)$ is even and $d_1 = \cdots = d_{p-1}$, or

(ii) $v_p(\dim C)$ is odd and $\dim C = \frac{1}{4}(d_1^4 + d_2^4 + \epsilon d_1^2 d_2^2)p$ for some $\epsilon \in \{0, 1, -1\}$.

Proof. Suppose $\hat{\sigma} = (1, \ldots, k)(k+1, \ldots, 2k) \prod_i Z_i$ for some disjoint cycles Z_i. Since all for Z_i are not support cycles of σ, $\sigma(\theta_j) = \theta_j$ for any j in any of these cycles Z_i. Now we assume, $\theta_1 = x\zeta$ and $\theta_2 = y\zeta^k$ for some q-th roots of unity x, y, primitive p-th root of unity ζ, and positive integer $\ell < p$. Let $u = \sum_{i=1}^{k-1} \sigma^2i(\zeta) = \frac{1-\epsilon\sqrt{y}}{2}, u' = \sum_{i=1}^{k-1} \sigma^2i(\zeta') = \frac{-1\pm(\frac{y}{x})\sqrt{y}}{2}$ where $\epsilon = \sqrt{\left(\frac{1}{p}\right)}$. Then

$$\sqrt{\alpha D} = p_+ = 1 + d_1^2 x u + d_2^2 y u' + \sum_{j>2k} d_j^2 \theta_j,$$

$$= \pm \frac{1}{2}(d_1^2 x + \left(\frac{\ell}{p}\right) d_2^2 y)\sqrt{p} - \frac{1}{2}(d_1^2 x + d_2^2 y) + 1 + \sum_{j>2k} d_j^2 \theta_j.$$

Note that $1 + \sum_{j>2k} d_j^2 \theta_j \in \mathbb{Q}_4$. If $v_p(\dim C)$ is even, then $p_+ \in \mathbb{Q}_4$, the \mathbb{Q}_4-linear independence of $\{1, \sqrt{p}\}$ implies $d_2^2 x + \left(\frac{\ell}{p}\right) d_2^2 y = 0$, and so $d_2^2 = d_2^2$. On the hand, If $v_p(\dim C)$ is odd, then $D \notin \mathbb{Q}_4$, and so

$$\sqrt{\alpha D} = \pm \frac{1}{2}(d_1^2 x + \left(\frac{\ell}{p}\right) d_2^2 y)\epsilon \sqrt{p}.$$

Hence, by considering the product of conjuagates, we have

$$\frac{4 \dim C}{p} = \left(d_1^2 + \left(\frac{\ell}{p}\right) d_2^2 \frac{y}{x}\right) \left(d_1^4 + \left(\frac{\ell}{p}\right) d_2^2 \frac{y}{x}\right) = d_1^4 + d_2^4 + \left(\frac{\ell}{p}\right) d_1^2 d_2^2 \left(\frac{y}{x} + \frac{x}{y}\right).$$

This implies y/x is either a 4-th root or a 6-th root of unity and so we obtain

$$\frac{4 \dim C}{p} = d_1^4 + d_2^4 + \epsilon d_1^2 d_2^2,$$

where $\epsilon \in \{0, 1, -1\}$. \hfill \Box

5 Weakly integral modular categories of rank 6 and 7

We now apply the results of previous sections to the classification of weakly integral modular categories of rank 6 and 7.

5.1 Weakly integral modular categories of rank 6

Theorem 5.1. A weakly integral rank 6 modular category C is equivalent (as balanced braided fusion category) to one of the following:

(a) $\mathcal{I} \boxtimes \mathcal{P}_2$, with \mathcal{I} an Ising modular category,

(b) $\mathcal{I} \boxtimes \mathcal{P}_3$, with \mathcal{I} an Ising modular category,

(c) $TY(\mathbb{Z}_5, \chi, \nu)^{\mathbb{Z}_2}$, or

(d) \mathcal{P}_6.

13
Proof. If \mathcal{C} is integral, it follows from [3] Theorem 4.2 that \mathcal{C} is in fact pointed (alternative (d)). Therefore, we may assume that there is an object with non-integral dimension. Moreover, by Lemma 3.3 there are at least two objects with non-integral dimensions. In addition, [12] Theorem 3.10 implies that \mathcal{C} is faithfully graded by an elementary 2-group, so that there are at least two invertible objects. Thus, the potential universal grading groups $U(\mathcal{C})$ have order 2 or 4. The properties of a grading and the pigeonhole principle immediately imply that if $\dim C_{\text{pt}} = |U(\mathcal{C})| = 4$ then $\dim \mathcal{C} = 8$ and \mathcal{C} has 4 invertible objects and 2 simple objects of dimension $\sqrt{2}$. In this case, \mathcal{C} is a modular category with generalized Tambara-Yamagami fusion rules. More precisely, in this case \mathcal{C} is equivalent to $\mathcal{I} \boxtimes \mathcal{P}_2$, by [14] Theorem 5.5. Then, by Theorem 5.1 it is enough to show that $\dim \mathcal{C} \in \{12, 20\}$ if \mathcal{C} is strictly weakly integral and the group $U(\mathcal{C})$ has order 2.

If $\dim C_{\text{pt}} = |U(\mathcal{C})| = 2$ then $\mathcal{C}_{\text{ad}} = \mathcal{C}_e$ is an integral premodular category containing exactly two isomorphism classes of invertible objects. Then, the rank of \mathcal{C}_{ad} is 3 or 4. In the first case, such categories have been classified by Ostrik and all have simple dimensions 1, 1, 2 $[16]$. In particular, $\dim \mathcal{C} = 12$. Now, assume that $\text{rank} \mathcal{C}_{\text{ad}} = 4$. The complete classification of these categories was given in [11] and all have simple dimensions 1, 1, 2, 2. It follows that $\dim \mathcal{C} = 20$. Now, the statement follows from Theorem 5.1. \qed

5.2 Weakly Integral Rank 7
The goal of this subsection is to give a classification, up to Grothendieck equivalences, of weakly integral rank 7 modular categories. Applying the results of subsection 4.1 we have:

Proposition 5.2. Suppose \mathcal{C} is a modular category of rank 7. If \mathcal{C} admits a Tannakian subcategory equivalent to $\text{Rep}(H)$, for some nontrivial subgroup H of $G(\mathcal{C})$, then \mathcal{C} is strictly weakly integral of dimension 28.

Proof. Since \mathcal{C} has a faithful \hat{H}-grading, the pigeon principle implies that $|H| \leq 4$. If $|H| = 4$ then $|\text{Irr}(\mathcal{C}_\chi)| = 1$, for any non-trivial character χ of H, by Remark 4.2. In particular, H fixes all the simple objects not in $\text{Irr}(\mathcal{C}_e)$, but this contradicts Lemma 4.2. Thus, $|H| = 2$ or 3. Lemma 4.2 implies that if $|H| = 3$ then $3 | |\text{Irr}(\mathcal{C}_\chi)|$, for each non-trivial character χ of H. However, this means $\text{rank} \mathcal{C} \geq 9$. Therefore, $|H| = 2$.

Suppose $H = \{0, h\}$ and $\hat{H} = \{e, \chi\}$. In particular, $\chi(h) = -1$. In view of Lemma 4.2 $\text{Irr}(\mathcal{C}_\chi)$ can only have 1 or 2 H-orbits.

We first show that $\text{Irr}(\mathcal{C}_\chi)$ must have only one H-orbit. Assume contrary. Let $\text{Irr}(\mathcal{C}_e) = \{1, h, V_1\}$ and $\text{Irr}(\mathcal{C}_\chi) = \{V_2, V_3, V_4, V_5\}$ with $h \cdot V_2 = V_3$ and $h \cdot V_4 = V_5$. Note that V_1 cannot be invertible and so V_1 is fixed by H. In particular, $d_1^2 - nd_1 - 2 = 0$, and $d_1 \neq \pm 1$. Moreover, V_1 is self-dual.

If $d_1 \notin \mathbb{Z}$, then d_1 is a square root of an integer and $x^2 - nx - 2$ must be the minimal polynomial of d_1. This implies $n = 0$ and $d_1 = \sqrt{2}$, and hence h must be fermionic, a contradiction. Therefore, $d_1 \in \mathbb{Z}$. Since n is a non-negative integer, the equation $d_1^2 - nd_1 - 2 = 0$ implies $d_2 = 2$ and $n = 1$. In particular, $\dim \mathcal{C}_\chi = 6 = \dim \mathcal{C}_\psi$. Hence, \mathcal{C} is weakly integral and $3 = d_2^2 + d_1^2$. Up to renumbering, $(d_2^2, d_1^2) = (1, 2)$ and hence $G = G(\mathcal{C})$ has order 4. Thus, for $\psi \in \hat{G}$, the homogeneous component \mathcal{C}_ψ has $\dim \mathcal{C}_\psi = 3$ but this is not possible as $d_2^2 = 4 > \dim \mathcal{C}_\psi$. Therefore, $\text{Irr}(\mathcal{C}_\chi)$ consists of a single H-orbit.
Let \(\text{Irr}(C_e) = \{1, h, V_1, V_2, V_3\} \) and \(\text{Irr}(C_\chi) = \{V_4, V_5\} \) with \(h \cdot V_4 = V_5 \). Then one of \(V_1, V_2, V_3 \) must be fixed by \(H \). We may assume \(V_2 \) is fixed by \(H \). Since the stabilizer of \(\text{Irr}(C_\chi) \) is trivial, it follows from Lemma 4.3 that \(d_2 = 2n_2 \) for some positive integer \(n_2 \). Moreover, \(d_1, d_3 \in \mathbb{Z}_+ \). Following the dimension equation, we find \(\text{dim}C = 4d_1^2, \quad n_2^2 \mid d_1^2 \) and
\[
2d_1^2 = 2 + d_1^2 + 4n_2^2 + d_3^2 \tag{5.1}
\]
The equation modulo 2 implies \((d_1, d_3, d_3^2) \equiv (1, 1, 0) \mod 2 \).

We first show that \((d_1, d_3, d_3^2) \neq (1, 1, 0) \mod 2 \) is not possible. Assume contrary. Then \(d_1, d_3 \) is odd and so \(d_1^2 \mid d_3^2 \). By Lemma 4.3 \(V_1 \) is not fixed by \(H \). Therefore, \(h \cdot V_1 = V_3 \) and hence \(d_1 = d_3 \). Now, (5.1) becomes
\[
d_1^4 = 1 + d_1^2 + 2n_2^2 \tag{5.2}
\]
and hence \(d_1^2 \) is even. Moreover, \(n_2^2 \) and \(d_1^2 \) are relatively prime, and \(d_1^2 n_2^2 = \text{lcm}(d_1^2, n_2^2) \). If \(d_1^2 \equiv 2 \mod 4 \), then \(n_2^2 \equiv 0 \mod 4 \) and hence \(4 \mid d_1^2 \), a contradiction. Therefore, \(4 \nmid d_1^2 \), and so \(n_2 \) must be odd. Now, we find
\[
4 \mid \frac{d_1^4}{d_1^2 n_2^2} = \frac{1}{d_1^2 n_2^2} + \frac{1}{n_2^2} + \frac{2}{d_1^2}.
\]
This forces \(n_2^2 = d_1^2 = 1 \) and hence \(d_1^2 = d_1^2 = 4 \) and \(\text{dim}C = 16 \). Thus, \(G = G(C) \) has order 4 and the homogeneous component \(C_\psi \) has \(\text{dim}C_\psi = 4 \) for all \(\psi \in \hat{G} \). In particular, \(|\text{Irr}(C_\psi)| = 1 \) for any non-trivial character \(\psi \) of \(G \). Therefore, \(V_4 \) must be fixed by \(G \), this contradicts that \(V_4 \) is not fixed by \(H \).

Now, we have \((d_1, d_3, d_3^2) \equiv (0, 0, 1) \mod 2 \), we proceed to show that \(C \) is strictly weakly integral of \(\text{dim}C = 28 \). Let \(n_i = d_i/2 \) for \(i = 1, 2, 3 \). Then \(n_i^2 \mid d_3^2 \) and hence \(n_i \) is odd for \(i = 1, 2, 3 \). (5.1) becomes
\[
d_1^4 = 1 + 2n_1^2 + 2n_3^2 \tag{5.3}
\]
Now, this equation implies \(d_1^4 \equiv 7 \mod 8 \). Therefore, \(d_1 \not\in \mathbb{Z} \). Let \(l = \text{lcm}(n_1^2, n_2^2, n_3^2) \). Then \(l \) is the square of an odd integer and hence \(l \equiv 1 \mod 8 \). Since \(n_i^2 \mid d_3^2 \), \(m = \frac{d_3^2}{l} \equiv 7 \mod 8 \). Therefore,
\[
7 \leq m = \frac{d_3^2}{l} = \frac{1}{l} + \frac{2n_1^2}{l} + \frac{n_2^2}{l} + \frac{2n_3^2}{l} \leq 7.
\]
This forces \(n_1^2 = n_2^2 = n_3^2 = 1 \). Hence \(d_1 = d_2 = d_3 = 2 \), \(d_1^4 = 7 \) and \(\text{dim}C = 28 \).

From this we obtain:

Theorem 5.3. The only strictly weakly integral rank 7 categories are \(TY(\mathbb{Z}_7, \chi, \nu)^{\mathbb{Z}_2} \).

Proof. Assume that \(C \) is weakly integral of rank 7. By \([12, \text{Theorem 3.10}]\) we have that \(2 \mid |G(C)| \) and by Lemma \([3, \text{Lemma 3.3}]\) \(|G(C)| \leq 5 \). So there are two cases to consider: \(G(C) = U(C) \cong \mathbb{Z}_2 \) or \(|G(mcC)| = 4 \).

First suppose \(D := C_{\text{pt}} \) has rank 2. Clearly \(D \) is not modular, as \([13]\) implies that \(C \) can have no modular subcategories. In particular \(D \) is premodular, and hence symmetric. If \(D \) is Tannakian, \(i.e. \ D \cong \text{Rep}(\mathbb{Z}_2) \) then Prop. \([5, \text{Proposition 5.2}]\) implies that \(\text{dim}C = 28 \) and we are done by Theorem \([3, \text{Theorem 3.1}]\). Otherwise \(D \cong s\text{Vec} \) and we have \(C_{\text{ad}} = D \) hence \(C_{\text{ad}} \) is slightly degenerate.
(9). In particular C_{ad} must have even rank by [9] Cor. 2.7. It follows from [11] that C_{ad} has dimension 10, so $\dim C = 20$. This is impossible in rank 7.

Now if $|G(C)| = 4$, consider the possible categories $C_{ad} = C_e$ corresponding to the universal grading. Clearly C_{ad} has rank at least 2 and at most 4 (by the pigeonhole principle) and even dimension. Combining this with the classification of low-rank ribbon categories [1, 15, 17] we see that this is impossible.

It remains to consider integral modular categories of rank 7. For this we employ the methods of subsection 4.2.

Lemma 5.4. Let C be a weakly integral modular category of rank ≤ 7. If p is an odd prime factor of $\text{FSexp}(C)$ then $p \leq 7$ and $v_p(\text{FSexp}(C)) = 1$. If rank $C = 6$, $2 < p \mid \text{FSexp}(C)$ implies $p \leq 5$.

Proof. Suppose C is a weakly integral modular category of rank ≤ 7, and p is the largest odd prime factor of $\text{FSexp}(C)$, and σ is a p-automorphism. Then, by Lemma 4.4, $p \leq 13$. For any prime $p = 5, 7, 11, 13$, $v_p(\text{FSexp}(C)) \leq 1$ otherwise $\hat{\sigma}$ admits a support cycle of length $(p^2 - p)/2 \leq 10$ by Lemma 4.4. This certainly won’t happen in ranks ≤ 7.

If $p = 13$, then $\hat{\sigma} = (1, 2, 3, 4, 5, 6)$ by Lemma 4.5. Since the centralizer of $(1, 2, 3, 4, 5, 6)$ in S_7 is $\langle (1, 2, 3, 4, 5, 6) \rangle$, $\text{Gal}(C) = \langle (1, 2, 3, 4, 5, 6) \rangle$. However, this contradicts Theorem 4.6. Therefore, $p < 13$.

If $p = 11$, then $(1, 2, 3, 4, 5)$ is the unique p-support cycle of σ. Thus,

$$\hat{\sigma} = (1, 2, 3, 4, 5) \text{ or } (1, 2, 3, 4, 5)(0, 6).$$

By Theorem 4.6, $\text{Gal}(C) = \langle \hat{\sigma} \rangle$ implies rank $C = 11$ or 9. Therefore, $\langle \hat{\sigma} \rangle \subsetneq \text{Gal}(C)$ and $\dim C = \frac{11d^4}{4}$. Since the centralizer of $\langle \hat{\sigma} \rangle$ is $\langle (1, 2, 3, 4, 5), (0, 6) \rangle$, $\text{Gal}(C) = \langle (1, 2, 3, 4, 5), (0, 6) \rangle$, and we have

$$\frac{11d^4}{4} = 2 + 5d_1^2.
$$

However, the equation has no integral solution for d_1^2. Therefore, $p \leq 7$.

If rank $C = 6$ and $p = 7$, then σ has a unique support cycle $(1, 2, 3)$ and $\langle \hat{\sigma} \rangle \subsetneq \text{Gal}(C)$ by Theorem 4.6. Thus, $\text{Gal}(C) = \langle (1, 2, 3), (0, 5) \rangle$ or $\langle (1, 2, 3), (4, 5) \rangle$. The second case implies C is integral and

$$\frac{7d_1^4}{4} = 3d_1^2 + 2d_2^2 + 1,$$

by Theorem 4.6(i). However, the equation modulo 2 implies $0 \equiv 1 \mod 2$. Therefore, $\text{Gal}(C) = \langle (1, 2, 3), (0, 5) \rangle$ and

$$\frac{7d_1^4}{4} = 3d_1^2 + d_2^2 + 2.$$

By the lemma, $d_4 \in \mathbb{Z}$ otherwise C is the Ising modular category. Thus, $d_1 \notin \mathbb{Z}$ and so $\frac{7d_1^4}{8} = 3d_1^2$ but this implies $d_1^2 = 0$ or $\frac{24}{7}$, a contradiction.

Remark 5.5. If C is a weakly integral modular category but not pointed, then $d_{\text{max}}^2 = \max_i d_i^2$, then $\frac{\dim C}{d_{\text{max}}}$ is a positive integer strictly less than rank C.

□
Lemma 5.6. Suppose C is a weakly integral modular category of rank 7 such that $d_1 = d_2 = d_3 \leq d_4 = d_5 = d_6$. Then, one of the following statements holds:

(i) $(d_1, d_4) = (1, 1)$ and $\dim C = 7$.
(ii) $(d_1, d_4) = (1, \sqrt{2})$ and $\dim C = 10$.
(iii) $(d_1, d_4) = (1, 2)$ and $\dim C = 16$.

Proof. The assumption implies the equality

$$\dim C = 1 + 3d_1^2 + 3d_4^2.$$ \hfill (5.4)

Thus d_1^2, d_4^2 are relatively prime and so $d_1^2 d_4^2 \mid \dim C$. By the symmetry of the equation, we may assume $d_4 \geq d_1$. Then

$$d_2 \mid \frac{\dim C}{d_4^2} = \frac{1}{d_4^2} + \frac{3d_1^2}{d_4^2} \in \mathbb{Z}$$

implies $\frac{\dim C}{d_4^2} \leq 4$. The equality holds if, and only if, $d_1 = d_4^2$, and $d_i = 1$ for all i. In this case, $\dim C = 7$. If $\frac{\dim C}{d_4^2} \leq 3$, then $d_1^2 < d_4^2$ and so $(d_1^2, d_4^2) = (1, 4), (1, 2)$ by (5.4). The associated $\dim C$ are 16 and 10.

Proposition 5.7. If C is a weakly integral modular category of rank 7 and $\dim C = 28$, then C is either pointed or $\dim C = 28$.

Proof. Assume C is not pointed. We first show that $\text{Gal}(C)$ does not contain any permutation of type $(1, 3, 3)$ or $(1, 6)$ with 0 fixed. Assume contrary. Then $d_1 = d_2 = d_3$, $d_4 = d_5 = d_6$ and we have

$$\dim C = 1 + 3d_1^2 + 3d_4^2.$$ \hfill (5.5)

By Lemma 5.6, C must be pointed, a contradiction.

Let $p = 7$, σ the p-automorphism of C and C_1 a p-support cycle of σ. Then In view of Lemma 4.5, $\text{ord}(C_1) = 3$, say $C_1 = (1, 2, 3)$. Since all the 7-support cycle must have length ≥ 3, C_1 is the unique 3-support cycle of σ and all other disjoint cycles are of length less than 3. In view of Theorem 4.6, $\dim C = \frac{7d_1^4}{4}$ and $2 \mid d_1^2$. Moreover,

$$\hat{\sigma} = (1, 2, 3), (1, 2, 3)(4, 5), (0, 6)(1, 2, 3)(4, 5) \text{ or } (0, 6)(1, 2, 3)$$

up to renumbering the non-zero labels.

If $\hat{\sigma}$ were one of the first three cases, then $\langle \hat{\sigma} \rangle \neq \text{Gal}(C)$ otherwise it will contradicts Theorem 4.6. Since $\text{Gal}(C)$ is an abelian subgroup of S_7 containing $\hat{\sigma}$, there exists an element of the form $C_1^i(4, 5), (0, 6)C_1^i(4, 5)$ in $\text{Gal}(C)$ for some $i = 1, 2$. In particular, we have the equation

$$\frac{7d_1^4}{4} = 1 + 3d_1^2 + 2d_4^2 + d_6^2.$$ \hfill (5.5)

with $2 \mid d_1^2$.

We claim that if the dimensions the simple objects of C satisfy (5.5), then C is a prime modular category of dimension 28. We first observe that the equation (5.5) modulo 2 implies the parities of $\frac{d_1^2}{2}$ and d_6^2 are opposite. Since $d_6^2 \mid \frac{7d_1^4}{4}$, d_6^2 must be odd and $d_1^2/2$ is even. Thus,

$$28n_1^2 = 1 + 12n_1 + 2d_4^2 + d_6^2.$$ \hfill (5.6)
where \(d_1^2 = 4n_1 \) for some positive integer \(n_1 \). If \(d_6^2 \equiv 3 \pmod{4} \), then \(d_6 \not\in \mathbb{Z} \) and so there exists \(\tau \in \text{Gal}(C) \) which admits a transposition of the form \((0, j) \), and in particular, \(d_j = 1 \). Thus, \(j \) can only be 4 or 5 but this does not balance the equation \((5.6)\) modulo 4. Therefore, \(d_6^2 \equiv 1 \mod 4 \) and hence \(d_4^2 \) is odd.

Since \(d_6^{max} \mid \text{dim} \ C = 28n_1^2 \) and \(\frac{\text{dim} \ C}{d_6^{max}} < 7 \), \(d_6^{max} \neq \frac{\text{dim} \ C}{2} \) and so \(d_6^{max} = d_4^2 \) or \(d_6^2 \). In particular, \(d_6^{max} \) is odd. Thus, \(\frac{\text{dim} \ C}{d_6^{max}} = 4 \) or \(\frac{\text{dim} \ C}{d_6^{max}} = 7n_1^2 \equiv 3 \mod 4 \). Hence, \(d_6^{max} = d_4^2 \) and \((5.6)\) becomes

\[
14n_1^2 = 1 + 12n_1 + d_6^2.
\]

In particular, \(d_6^2 \) and \(n_1 \) are relatively prime. Since \(d_6^2 | 28n_1^2 \) and \(d_6^2 \equiv 1 \mod 4, \) \(d_6^2 = 1 \) and so

\[
7n_1^2 - 6n_1 - 1 = 0.
\]

This equation forces \(n_1 = 1 \) and hence \((d_1^2, d_3^2, d_5^2) = (4, 7, 1) \). Therefore, \(C \) is a prime modular category of dimension 28, and this proves the claim.

As a consequence of the preceding claim, \(\hat{\sigma} = (0, 6)(1, 2, 3) \). To complete the proof, it suffices to show that \(\langle \hat{\sigma} \rangle = \text{Gal}(C) \). If not, then \(\text{Gal}(C) \) contains \((4, 5)\) and so the dimensions of \(C \) satisfy \((5.5)\) again. This implies \(C \) is a prime modular category of dimension 28 but then \(\text{Gal}(C) = \langle \hat{\sigma} \rangle \), a contradiction. \(\Box \)

Theorem 5.8. If \(C \) is an integral modular category of rank 7, then \(C \) is pointed.

Proof. Let \(C \) be an integral modular category of rank 7. By Lemma \(5.4 \) the prime factors of \(\text{FSexp}(C) \) can only be 2, 3, 5, 7. By the Cauchy Theorem, the prime factors of \(\text{dim} \ C \) can only be 2, 3, 5, 7. In view of Proposition \(5.7 \), it suffices to prove that \(7 \mid \text{dim} \ C \). Equivalently, it enough to show none of 2, 3 or 5 is a prime factor of \(\text{dim} \ C \). In view of Proposition \(5.2 \) it is not possible that only two the these primes are factors of \(\text{dim} \ C \). It suffices to show that \(\text{dim} \ C = 2^a 3^b 5^c \) with \(abc \geq 1 \) is not possible.

Suppose \(\text{dim} \ C = 2^a 3^b 5^c \) with \(abc \geq 1 \). Let \(\sigma \) be a 5-automorphism of \(C \), and \(C_1 \) a 5-support cycle of \(\sigma \). We first show that length of \(C_1 \) must be 2. If not, then \(\text{ord}(C_1) = 4 \) and so the dimensions of \(C \) satisfy the equation

\[
\text{dim} \ C = 1 + 4d_1^2 + d_3^2 + d_5^2
\]

where we simply assume \(C_1 = (1, 2, 3, 4) \). This equation modulo 2 implies

\[
0 \equiv 1 + d_3^2 + d_5^2 \mod 2.
\]

Without loss of generality, we may assume \(d_3 \) is odd and \(d_5 \) is even. In particular, \(4 \mid \text{dim} \ C \) as \(d_6^2 \mid \text{dim} \ C \). However, we then find \(0 \equiv 2 \mod 4 \), a contradiction. Therefore, the dimensions of \(C \) do not satisfy \((5.7)\), and so \(\text{Gal}(C) \) does not contain any permutation which admits a disjoint cycle of length \(\geq 4 \). In particular, \(\text{ord}(C_1) < 4 \)

Now, we may assume \(C_1 = (1, 2) \) and proceed to show that this is a unique 5-support cycle of \(\sigma \). Then \(\hat{\sigma} = (1, 2)(3, 4) \) or \(\hat{\sigma} = (1, 2)(3, 4)(5, 6) \). However, if \(\text{Gal}(C) \) contain any permutation of type \((1, 2, 2, 2)\) with 0 fixed, then the dimensions of \(C \) satisfy the equation:

\[
\text{dim} \ C = 1 + 2d_1^2 + 2d_3^2 + 2d_5^2 \equiv 1 \mod 2.
\]

This is not possible, and it also implies that \(\text{Gal}(C) \) does not contain any permutation of type \((1, 2, 2, 2)\) with 0 fixed. In particular, \(\hat{\sigma} = (1, 2)(3, 4) \).
If \((3, 4)\) is also a 5-support cycle of \(\hat{\sigma}\), then by Lemma 4.7 the dimensions of \(C\) satisfy (5.7) or
\[
1 + 2d_1^2 + 2d_2^2 + d_5^2 + d_6^2 = \frac{1}{4}(d_1^4 + d_4^4 + \epsilon d_1^2 d_4^2) \text{ with } 2 \mid d_1, d_2 \text{ and } \epsilon = 0, 1, -1. \tag{5.9}
\]
We have shown that the dimensions of \(C\) do not satisfy (5.7). By considering (5.9) modulo 2, we may assume that \(d_5\) is odd and \(d_6\) is even. Then the equation modulo 4 becomes
\[
0 \equiv 1 + d_5^2 \mod 4,
\]
but this is impossible. Therefore, \((3, 4)\) is not a 5-support cycle if \(\hat{\sigma} = (1, 2)(3, 4)\). In particular, \((1, 2)\) is the unique 5-support of \(\sigma\). By Theorem 4.6 we find \(\dim C = \frac{5d_1^2}{4}\) and \(d_1 = 2n_1\) for some positive integer \(n_1\).

Suppose there exists a permutation \(\tau \in \text{Gal}(C)\) which admits a cycle of length \(\geq 2\) and disjoint from \((1, 2)\), say \((3, 4, \ldots)\). Then the dimensions of \(C\) must satisfy the equation:
\[
20n_1^4 = 1 + 8n_2^2 + 2d_4^2 + d_5^2 + d_6^2. \tag{5.10}
\]
Then \(d_5\) or \(d_6\) must have opposite parities for otherwise the left hand side of (5.10) would be congruent to 1 modulo 2. We may assume \(d_5\) is odd and \(d_6 = 2n_6\) for some positive integer \(n_6\). Now, (5.10) modulo 4 yields
\[
0 \equiv 2 + 2d_4^2 \mod 4.
\]
This forces \(d_4\) to be odd, and we have
\[
\dim C = 4 + 4n_6^2 \mod 8.
\]
Thus, \(n_6\) must be odd, \(8 \mid \dim C\), and so \(n_1\) is also even. Let \(d_1 = 4m_1\) for some positive integer \(m_1\). Now, \(\dim C = \frac{20^5m_1^4}{d_j^4} > 7\) for \(j = 1, \ldots, 6\), but this contradicts that \(\frac{\dim C}{d_{\max}} \leq 7\).

Therefore, no permutation \(\tau \in \text{Gal}(C)\) admits a non-trivial cycle disjoint from \((1, 2)\). Hence, \(\text{Gal}(C) = \langle \hat{\sigma} \rangle\) and \(\hat{\sigma} = (1, 2)\), but this contradicts Theorem 4.6. \(\square\)

References

[1] Paul Bruillard. Rank 4 premodular categories.
[2] Paul Bruillard, Siu-Hung Ng, Eric C. Rowell, and Zhenghan Wang. On modular categories.
[3] Paul Bruillard and Eric Rowell. Modular categories, integrality and egyptian fractions. Proc. Amer. Math. Soc., 140(4):1141–1150, 2012.
[4] A. Davydov, M Müger, D. Nikshych, and V. Ostrik. The witt group of non-degenerate braided fusion categories.
[5] Chongying Dong, Xingjun Lin, and Siu-Hung Ng. Congruence property in conformal field theory.
[6] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Group-theoretical properties of nilpotent modular categories.
[7] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. On braided fusion categories i. Selecta Math., 16(1):1–119, 2010.
[8] Pavel Etingof and Shlomo Gelaki. Some properties of finite-dimensional semisimple hopf algebras. Math. Res. Lett. 5:191–197, 1998.
[9] Pavel Etingof, Dmitri Nikshych, and Victor Ostrik. Weakly group-theoretical and solvable fusion categories. Adv. Math., 226(1):176–205, 2011.
[10] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik. On fusion categories. Ann. of Math., 162(2):581–642, 2005.
[11] S. Gelaki, D. Naidu, and D. Nikshych. Centers of graded fusion categories. Algebra Number Theory, 3:959–990, 2009.
[12] S. Gelaki and D. Nikshych. Nilpotent fusion categories. *Adv. Math.*, 217:1053–1071, 2008.

[13] Michael Müger. On the structure of modular categories. *Proc. London Math. Soc.*, 87(2):291–308, 2003.

[14] Sonia Natale. Faithful simple objects, orders and gradings of fusion categories. *Algebr. Geom. Topol.*, 3(13):1489–1511, 2013.

[15] Victor Ostrik. Module categories, weak hopf algebras and modular invariants. *Transform. Groups*, 8(2):177–206, 2003.

[16] Victor Ostrik. Pre-modular categories of rank 3. *Mosc. Math. J.*, 8(1):111–118, 2008.

[17] Viktor Ostrik. On fusion categories of rank 2. *Math. Res. Lett.*, 10(2–3):177–183, 2003.