BIOMOLECULAR INTERACTIONS WITH NANOPARTICLES: APPLICATIONS FOR COVID-19

Authors: Mohammed A. H. Farouq*, Mohammed M. Al Qaraghuli*, Karina Kubiak-Ossowska, Valerie A. Ferro, Paul A. Mulheran

Affiliations:

aDepartment of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK

bDepartment of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG/Archie-West HPC

cStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK

*Correspondence: Mohammed A. H. Farouq, haider.farouq@strath.ac.uk
Schematic representation of the SARS-CoV-2 spike protein receptor binding domain decorating a nanoparticle. The proteins are shown as a secondary structure coloured in pink, while one of them is represented as a red surface complexed with the ACE2 receptor, which is shown in dark blue.
ABSTRACT

Nanoparticles are small particles sized 1 to 100 nm, which have a large surface to volume ratio, allowing efficient adsorption of drugs, proteins and other chemical compounds. Consequently, functionalised nanoparticles have potential diagnostic and therapeutic applications. A variety of nanoparticles have been studied, including those constructed from inorganic materials, bio-polymers, and lipids. In this review, we focus on recent work targeting the SARS-CoV-2 virus that causes COVID-19. Understanding the interactions between coronavirus-specific proteins (such as the spike protein and its host cell receptor ACE2) with different nanoparticles paves the way to the development of new therapeutics and diagnostics that are urgently needed for the fight against COVID-19, and indeed for related future viral threats that may emerge.

Keywords: nanoparticles, COVID-19, SARS-CoV-2, proteins, therapeutics, diagnostics
1. INTRODUCTION

Nanoparticles (NPs) are very small materials with a dimension between 1 and 100 nm. Their key physicochemical properties include a high surface area to volume ratio, solubility, surface topology/morphology and controllable aggregation, making them suitable for application in a variety of commercial and domestic sectors including electronics, catalysis, environment, imaging, energy, automotive and healthcare (1). There are various types of NPs, from inorganic materials such as gold, silica, graphene, and iron oxide, to organic materials where the main groups include liposomes, micelles, protein/peptides, and dendrimers. They are particularly useful in healthcare applications, mainly due to their high capacity for adsorbing biomolecules (2).

Pharmaceutical nanotechnology is the development of therapeutic materials and devices at a nanometre scale, and there are several advantages to exploiting NPs in drug delivery. These include, but are not limited to: (i) improvement in the solubility of certain drugs; (ii) controlled, sustained release of drugs for a long-term effect; (iii) reduction of the side effects of some drugs; (iv) targeting of specific cells; (v) administration routes; and (vi) delivery of drugs in a secure manner, so that they are protected from degradation in the body and can effectively reach the target cells intact (3). NPs can display efficient adsorption of proteins, drugs molecules, and a variety of other chemical compounds. Therefore, NPs can carry a varied cargo load (4), making them efficient not only for drug delivery, but also diagnostic and therapeutic applications.

In this review, we explore how NPs have been used to develop approaches to tackling COVID-19, focusing on the interactions between NPs and adsorption of molecules such as proteins and drugs. We start with a brief overview of NP properties and their potential anti-viral applications. We then review the SARS coronavirus (SARS-CoV-2) that causes COVID-19 and its proteins that are the targets for new technologies, before turning to the various types of NPs that can be used as the basis for these technologies. Alternative approaches to treating COVID-19, for example by repurposing drugs that were previously successful against other viruses, is discussed, followed by an overview
of developments in diagnostics. We finish the review with a summary and forward look as to how understanding the interactions between the different molecules and NPs could be used to rationally design new technologies to help tackle this pandemic and future coronavirus disease.

2. Nanoparticle-biomolecule interactions and applications

2.1. Physicochemical Properties

Selective and targeted delivery of modified NPs could enable specific detection and even destruction of viruses. To ensure this happens efficiently, it is important that the NPs are correctly optimised to ensure maximum efficacy and correct bioavailability, as well as negating any toxic effects, particularly those related to the formation of reactive oxygen species (ROS) (5). Furthermore, the rate of cellular uptake of the NPs depends on their physicochemical properties and the membrane characteristics at the site of interaction (6).

The key properties of NPs (Figure 1) make them ideal for a variety of effective systems. They can be porous or even hollow, and are often amenable to surface chemistry modification. Proteins adsorbed on NPs normally form a dynamic corona, and protein conformational changes associated with the adsorption influence the overall in vivo bioreactivity (7). The nature of NPs can influence the folding and unfolding properties of the protein, and by tuning the properties of the NPs, it can open new prospects in producing biologically active molecules. Thus, understanding the properties of the corona is essential (8). The interactions between NPs and a particular protein can utilise a noncovalent route, with the solvent having a critical role to facilitate the interaction (8). Consequently, it is vital to utilise a solvent in vitro that mediates the same interactions in vivo (9).
Figure 1: A schematic diagram showing drug loading options in NP targeted drug delivery.

The biodegradation of NPs also requires attention, as uniform bio-distribution kinetics and sustained drug release are key elements in the drug design process. Absorption, distribution, metabolism and excretion are pharmacokinetic features linking directly to the nature and profile of these systems, and it is therefore crucial to account for all these factors when designing a nanoparticulate therapy (10).

2.2. Anti-viral applications

Several inorganic NPs have been explored previously for their applications in drug delivery for viral infections. Gold NPs have a particular advantage in nano-vaccines as they can function as adjuvants (compounds to boost an immune response) in immunisation. For example, their use was investigated against influenza A virus, to combat mutations which made the virus resistant to existing anti-viral drugs (11). Silica NPs were investigated as a vaccine platform against human immunodeficiency virus.
(HIV) (12), and Quantum dots, which have excellent sensing properties, can be used for anti-viral therapeutics as well as for detection and diagnosis (13).

Silver NPs have also been investigated for their anti-viral activity (14) (15). Anti-viral activity against *Peste des petits ruminants* virus depends on the NP interaction with virion surface, and this interaction impairs viral entry into target cells (14). These NPs may lead to better anti-viral activity when used in conjunction with bronchodilators in the lungs, and this technology could have promising applications in treating COVID-19 patients (15).

Several organic NPs have also been used in pharmaceutical applications, e.g. **Cyclodextrin** NPs, which are cyclic oligosaccharides with a hydrophilic outer surface and a lipophilic central cavity. Garrido *et al.* (16) suggested the use of cyclodextrins against COVID-19. These NPs may be particularly helpful due to their physical properties with polar hydroxy groups oriented specifically, allowing increased solubility and decreased toxicity of the associated drug. Furthermore, they are highly biocompatible, meaning they do not generate an immune response. **Lipid** NPs (LNPs), often used in novel pharmaceutical formulations, are readily integrated in medicines. This is due to their high biocompatibility, low toxicity, ability to cross membranes and seamless integration with hydrophobic/hydrophilic drugs.

NPs can be readily made with a similar size to the virus, and may interact with proteins associated with the *SARS-CoV-2* virus, disrupting viral replication and disease prognosis (17). The use of NPs against *SARS-CoV-2* has tremendous potential due to their specific properties including: i) precise targeting of cellular entry pathways; ii) targeted binding to the viral genome; iii) modulation of viral transcription; iv) triggering the production of ROS; and v) activation of signalling pathways at a mitochondrial level (18).

Tabish (18) explored the multivalent nature of nanomedicines and how this may be particularly useful in the fight against COVID-19. Multivalent NPs have several advantages over standard monovalent drugs, including a high density of binding sites on each NP, the ability to form multivalent ligand receptor pairs, multi-fold RNA
hybridisation, and the transformation of inactive NPs into multivalent conjugates (18).

Multivalency may work against SARS-CoV-2 effectively with cell entry through receptor-mediated endocytosis (19). Hassanzadeh (20) also suggested the use of multivalent NPs against COVID-19. Given the similarities in shape of synthetic NPs and SARS-CoV-2, they could be particularly useful for investigation with drug repurposing, enhancing properties of existing drugs and compounds against COVID-19. However, caution is required, since SARS-CoV-2 may induce a hyperinflammatory response, driven by a dysregulated macrophage response (21). Therefore, it is important to look at the properties of any material to make sure it does not interact negatively in vivo.

3. SARS-CoV-2

3.1. Description of the virus and its function

SARS-CoV-2 is spread predominantly from person to person, by droplets generated when an infected person coughs, sneezes or talks. Infection may also occur by touching contaminated surfaces and then the face without first washing hands, and the faecal-oral route may also be a source of transmission for the virus (22). The base symptoms include fever, cough, shortness of breath, fatigue, and loss of taste and/or smell. Depending on other factors such as infection level, age and ethnicity, the symptoms may be extended to include headache, haemoptysis, or diarrhoea. This highlights the severity of the virus, which can be fatal (23). Therefore, the development of a new treatment for this virus is a priority for researchers globally.

Analysis of the genomic sequence of SARS-CoV-2 (24) shows there are at least six open reading frames (ORFs), which are segments of an RNA molecule that can be translated, allowing production of four main structural proteins: a Spike protein (S), Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N). There is also the viral haemagglutinin-acetylesterase (HE) glycoprotein receptor, as illustrated in Figure 2. The M and E proteins are involved in virus morphogenesis and assembly (25). The N protein guards the RNA inside the M and E proteins, and the S protein is on the outside and the focal point of infection.
Figure 2: Diagram showing the structural proteins of the SARS-CoV-2 virus.

3.2. Potential Biomolecular Targets

The S protein is an important therapeutic and diagnostic target, as it is responsible for entry into and infiltration of the host cell. It is a homotrimer with two domains, S1 and S2 on each monomer. Analysis of these monomers shows they are highly glycosylated (26), protecting the protein from the biological environment and allowing evasion from the host immune system. The S1 subunit contains the receptor binding domain (RBD) that binds to the peptidase domain of angiotensin-converting enzyme 2 (ACE2) (Figure 3), a cellular receptor expressed on several cell types in human tissues, and this allows entry of SARS-CoV-2 into the cell (27).

Upon cell entry, two ORFs, 1a and 1b, translate to two polypeptides (1a and 1ab) and this further encodes two proteases, the main protease (Mpro), also known as the chymotrypsin-like cysteine protease (3CLpro), and papain-like protease (PLpro) (28). These represent significant drug targets, since inhibition of these will stop production of proteins that are critical to viral transcription and replication (29-31).

The S1 subunit allows entry of the virus into the host cell, and inhibition of this will block the protein from interacting with the ACE2 receptor (32). For example, immunoadhesins have been investigated for their interactions with the S protein through MD simulations.
Another potential target for therapeutics development is transmembrane protease serine 2 (TMPRSS2) found on host cells. It cleaves (primes) the S protein into its subunits to enable cell entry, and inhibition of this process may prevent the initial entry of the virus.

High density lipoproteins (HDLs) are particles consisting of several proteins which transport all fat molecules around the body. HDL-scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor, which has been shown to facilitate ACE2-dependent entry of SARS-CoV-2, and further enhance uptake and increase rate of virus entry. Wei et al. suggested that blockage of the cholesterol binding site on the S1 subunit or treatment with SR-B1 antagonists inhibits HDL enhanced SARS-CoV-2 infection. Therefore, SR-B1 could also potentially be a target for therapeutic designs. Patel et al. have also suggested HE as a target to inhibit the virus invasion mechanism.

The residues responsible for the interaction between the S protein and the ACE2 receptor have been investigated by Veeramachaneni et al. This information is important for designing any medicine, since the residues required for interaction with the target should remain free to bind to the therapeutic molecule, to allow effective inhibition. Their analysis has identified the key residues that interact with the ACE2 receptor (see Figure 3).
4. Nanoparticle-biomolecular systems for COVID-19

4.1. Inorganic nanoparticles

The potential of NPs for the treatment of COVID-19 is promising due to their various properties. Iron oxide NPs, which have previously been investigated for their anti-viral activity, were simulated for their interaction with the RBD of the S1 subunit (39). It was found that a model Fe₃O₄ NP forms a stable complex with the protein, interacting through several hydrophobic interactions primarily with residues Leu455, Ser494 and Phe497. Therefore, these NPs, which are currently an approved treatment for anaemia, could be repurposed to treat COVID-19 (39).

Carbon nanotubes (CNTs) have a large load capacity and good bioavailability, allowing for easy interaction with biological barriers in the body (40). The electrical and thermal properties of these materials could be used to develop a CNT functionalised complex, raising the local cellular temperature using a photodynamic thermal effect and treating COVID-19 by inhibiting viral replication (41). The binding of the S protein to biomedically relevant surfaces has been examined computationally, and it was found that the RBD of the S protein interacts with negatively charged silica surfaces so that the epitope (part of the antigen molecule, RBD in this instance, to which an antibody binds) is exposed. A model gold surface has also shown good interaction with the protein (42). The use of charged or hydrophobic surfaces in developing therapies may therefore be significant as they show good adsorption (42).

4.2. Organic nanoparticles

As researchers globally are working to develop an immediate treatment for this new virus, the development of effective vaccines is also vital. One approach for mRNA vaccines comprises mRNA (encoding a specific protein) encapsulated in organic NPs,
most commonly LNPs. Once LNP conjugates reach the host cell, the cell machinery
follows the encapsulated mRNA instructions and produces the target protein, which is
then displayed on the cell surface and can eventually trigger an immune response (43).

The obvious target for the SARS-CoV-2 virus is the S protein, and an example of
mRNA-based vaccine has been developed by BioNTech in collaboration with Pfizer. It
has been approved by the United States Food and Drug Administration (FDA), the
United Kingdom Medicines and Healthcare products Regulatory Agency (MHRA) and
the European Medicines Agency (EMA), demonstrating an estimated efficacy of 95%
(44) (45). Another mRNA-based vaccine was developed by Moderna, a US based
biotech firm (46). Phase 3 clinical trial demonstrated that the vaccine has 94.1% efficacy
in preventing COVID-19 (47). At the time of writing, this has been approved by the FDA
for emergency use, and by MHRA and EMA.

Self-amplifying RNA (saRNA), is a newer type of RNA vaccine which contains a viral
replication enzyme (replicase), allowing it to amplify (48). The saRNA enters the host
cell, translates the replicase, making a negative copy of the mRNA. The mRNA strand is
used by the replicase to synthesise more saRNA, while simultaneously binding to a sub-
genomic promoter in the negative strand. This synthesises sub-genomic mRNA at a 10-
fold greater concentration than genomic RNA, encoding the viral antigen more
effectively and making a more efficient vaccine.

McKay et al. investigated the vaccine potential of a saRNA molecule encoding the S
protein, encapsulated within LNPs (49). A high concentration of SARS-CoV-2 specific
antibody titres in mice was observed. When compared to the results from a natural
immune response in recovered COVID-19 human patients, the vaccine resulted in much
higher antibody titres, which were able to neutralise both a pseudo and wild type SARS-
CoV-2 virus. Furthermore, there was no observation of antibody-dependent
enhancement (ADE) (49), which could result in enhanced respiratory disease and acute
lung injury after respiratory virus infection. This is a common concern when developing
antibody dependent vaccines, which could reverse amplify the infection (50).

4.3. Administration routes
Nanoparticles can open up a variety of administration routes beyond injection. For example, liposomes can be designed for ingestion, protecting the drug from the acidic environment of the digestive tract to release it into the tissue of the gut wall (51). In addition, liposomes have been used to protect sensitive materials like mRNA encoding SARS-CoV-2 spike protein, and this technology was adapted in SARS-CoV-2 vaccines developed by Pfizer and Moderna (44-47).

For COVID-19, nasal administration would seem to be an attractive proposition. Since the virus primarily enters by breathing in particles, providing protection at the site of infection would appear beneficial. One existing flu vaccine, FluMist (https://www.flumistquadrivalent.com/) is sprayed into the patient’s nose where the weakened virus induces mucosal immunity represented by IgA antibodies, as well as systemic immunity of the IgG antibodies (52). This means that the immunised patient has two layers of defence against the virus, and reduced likelihood of being able to carry and transmit the virus. Nanoparticulate systems could similarly be administered through inhalation or nasal spray, providing an attractive administration route with potential for greater protection for the patient, and more feasible storage conditions for healthcare providers.

5. Potential new approaches

5.1. Repurposing existing drugs

Drug repurposing represents the concept of implementing an investigational drug for new uses beyond the original intention (53). Repurposing drugs for COVID-19 is an attractive approach given the need to explore all the available options to immediately reduce mortality rates. This approach allows avoidance of the financial, resource, and time implications associated with the novel drug discovery process, and researchers and pharmaceutical companies are increasingly relying on drug repurposing. Repurposing brings several other advantages, since it can lower the risk of failure as the drug has already been evaluated for its toxicity profile. In addition, it can save additional time as many of the drugs have already undergone preclinical and safety assessments. Moreover, the drugs have already undergone trials, so they may be able
to accelerate phases 1 and 2, and progress to large-scale phase 3 trials. Furthermore, drug repurposing experiments do not always need major laboratory work, and any required work can often be performed *in silico*. The identification of suitable effective drugs is an exciting prospect, and further combination with NPs may enhance their biocompatibility and physicochemical properties. Despite the aforementioned advantages, repurposing a drug must be approached with caution as some drugs can cause poly-pharmacological side effects, and intellectual property issues may arise (53).

As already discussed, the ACE2 receptor, expressed on many cell types, is key to the initial cellular entry by *SARS-CoV-2*. Therefore, Khelfaoui (54) used molecular docking combined with MD simulations to study drugs similar in structure to chloroquine and hydroxychloroquine, which are both approved medicines, aiming to block the ACE2 receptor. The studies were performed using two structures, the ACE2 receptor and *SARS-CoV-2* bound to the ACE2 receptor, and the results showed that ramipril, lisinopril, and delapril, ACE2 receptor inhibitors currently used to treat hypertension, could bind with the ACE2 receptor better than hydroxychloroquine. Drugs that have been investigated for repurposing against key proteins associated with the *SARS-CoV-2* virus are summarised in **Table 1**. These could then be used in isolation or conjugated to NPs to enhance their properties.

Table 1: A summary of FDA approved and other anti-viral drugs that have been investigated for repurposing against key proteins involved in the replication of *SARS-CoV-2*.

Drug(s)	Existing Use	SARS-CoV-2 target protein	Binding residues
Paritaprevir/Simeprevir (55)	Hepatitis C virus	M_{pro}	His41/Cys145
Remdesivir (56)	Ebola Virus	RdRp	Ser759, Asp760, Asp761
Hydroxychloroquine (57)	Malaria,	M_{pro}	His41/Cys145
(58) | rheumatoid arthritis, and lupus
---|---
Pyronaridine (59) | Anti-malarial agent | Mpro | His41/Cys145
Epirubicin, Saquinavir (60) (61) (62) | Chemotherapy, HIV/AIDS | Mpro | His41/Cys145
Mitoxantrone, Leucovorin, Birinapant, Dynasore (63) | Chemotherapy, rectal cancer, breast cancer, perturbs endocytosis | Mpro | His41/Cys145, Glu166
Noscapine ligand 23B (64) | Chemotherapeutic Agent | Mpro | Arg40, Tyr54, Cys85, Phe181, Arg188, Glu55, Met82 and Asn84
Lopinavir-Ritonavir, Tipranavir, Raltegravir (65) (66) | HIV/AIDS, HIV, HIV/AIDS | Mpro | His41/Cys145
TMB607, TMC310911 (67) | HIV-1 protease inhibitor, HIV/AIDS | Mpro | His41/Cys145
Atazanavir, Darunavir (62) | HIV/AIDS | Mpro | His41/Cys145

5.2. Application of natural compounds

Natural compounds have long been studied for their application in treating disease, and have a wide range of diversity in their chemical structures. Their use with drug delivery
systems and other technologies might accelerate their exploitation (68). Han (69) studied peptide inhibitors against the SARS-CoV-2 RBD. The inhibitors were based on the protease domain of ACE2 receptor, and it was shown through MD simulation that the peptides are stable when bound to the RBD, blocking the virus from attaching to the actual ACE2 receptor expressed in human cells, thereby having the potential to stop infection. Of the 4 inhibitors studied, the work identified high stability with 3, which retained their secondary structures and therefore their fits to the RBD.

In a separate study, Chen et al. (70) looked at the prospect of using polysaccharides in developing treatments for COVID-19. These compounds have several advantages including low toxicity and good biocompatibility, and they are potential targets for the development of anti-viral treatments. This is because they may interfere with the viral pathways by blocking the positive charge on the host cell surface to prevent viral entry (71). For example, chitosan NPs were investigated against the hepatitis C virus (72).

The applications of natural compounds against COVID-19 are summarised in Table 2. The versatility of natural compounds may allow for easier interaction with NPs compared to pre-existing drugs.

Table 2: A summary of natural compounds that have been studied against COVID-19.

Natural Compound(s)	Origin	Target	Key residues	
Oridonin (36)	Compound from the Naturally Occurring Plant-Based Anti-cancer Compound-Activity-Target (NPACT) Database	HE	The114, Thr159, Leu161, Ala176, Arg177, Tyr184, Phe211, Leu212, Ser213, Asn214, Leu267	
----------------	------------------------------	----------	-------------------------	
Epigallocatechin gallate, epicatechin-gallate, gallocatechin-3-gallate (73)	Green tea polyphenols	M^{pro}	His41/Cys145	
Peonidin 3-O-glucoside, kaempferol 3-O-beta-rutinoside, 4-(3,4-dihydroxyphenyl)-7-methoxy-5-[(6-O-b-D-xylopyranosyl-b-D-glucopyranosyl)oxy]-2H-1-benzopyran-2-one, quercetin-3-D-xyloside, and quercetin 3-O-a-L-arabinopyranoside (74)	Plant-based compounds from the Sigma-Aldrich chemical library	M^{pro}	His41/Cys145, Leu141, Asn142, Ser144, His163, Glu166	
procyanidin-a (75)	Flavonoid from plants	$ACE2, M^{pro}$	Ser44, Ser47, Asp350, Asp382, Tyr385, Arg393, Asn394, His401, Phe40, Phe390	
Melatonin (76)	Natural hormone	M^{pro}	His41/Cys145	
C1 and C2 (77)	Natural compounds from *Curcuma longa* L.	M^{pro}	His41/Cys145, Thr190, Thr25, Glu166, Thr45, Cys44, Ser46, Cys145, Pro168, Met165	
Substance	Source	Target	Modification	Active Site(s)
---	--	--------	--------------	---------------------------------
Hesperidin, sesamin (78)	Natural herbal medicines	Mpro	His41/Cys145	
Theaflavin di-gallate (66) (62)	Plant-derived natural drug	Mpro	His41/cys145	
Azurin, peptides p18 and p28 (79)	Blue copper bacterial protein produced by Pseudomonas aeruginosa	S protein, Mpro and PLpro	N-terminal region	
Human Intestinal Defensin 5 (80)	Innate defence mechanism	ACE2		Asp30 and Lys31
NPRL-334 (81)	Natural compound from the Natural Products Research Laboratories (NPRL) library	Mpro	His41/Cys145, His3304, Met3428, Pro3431, Gln3452, Glu3429	
TCM 57025, TCM 3495, TCM 20111, TCM 31007 and TCM 5376 (30)	Traditional Chinese medicine database	N7-MTase	Asn306, Arg310, Trp385, Asn388	
Luteolin (82)	Flavonoid in Honeysuckle	Mpro	His41/Cys145, Gln189, Leu4, Asn142, Thr26, Met49, Val3	
5.3. Promising synthetic chemicals

The drug repurposing approach can also be used to analyse synthetic chemical compounds that might prove to be effective anti-virals. This can be achieved by screening a database of small molecules against viral drug targets to identify molecules with possible anti-viral activity, or by developing chemical compounds in-house.

Promising synthetic chemicals which have been investigated against COVID-19 are summarised in Table 3.

Table 3: Summary of promising synthetic chemical compounds.

Chemical(s)	Origin	Target	Key residues
IH-009 and IH-027 (83)	Inhouse chemicals	PLpro	Pro247, Pro248
Neohesperidin (84)	Selleckchem Database	TMPRSS2	Arg55, Gly97, Asn51
Ligand F2679-0163, Ligand F6355-0442, Ligand 8250 (85)	Life Chemicals Library, Asinex database	Mpro	Leu141, Glu166, Thr190, Gln192, Gly143, Ser144, His41/Cys145
ZINC00793735 (86)	ZINC database	Mpro	His41/Cys145, Hie163, Hie41, Met49, Hie164, Glu166, Met165, Thr26, Gly143, Asn142, Leu141, Gln189
α-ketoamide 13b ligand (87) (88) (89)	Inhouse molecule	Mpro	His41/Cys145
ZINC64606047, ZINC05296775	ZINC Database	TMPRSS2	His296, Asp345, Ser441, Asp435
6. Other Nanoscale Material Applications

Nano biosensor technology has a potential to enhance testing, giving rapid and accurate detection of viruses. This technology works on the premise that the biomolecule of interest selectively binds to the target conjugated to a detector, producing a sensing signal that can be digitally interpreted (90). Though limited studies have been reported so far, this technology has the potential to offer a better and alternative approach to existing polymerase chain reaction (PCR) testing that is used to diagnose COVID-19.

A dual-functional plasmonic photothermal biosensor, combining localised surface plasmon resonance (LSPR) with a plasmonic photothermal (PPT) effect, can detect viral proteins. Qiu et al. (91) integrated the technologies on a two dimensional gold nano-island chip, finding that the sensitivity and reliability of the sensor was enhanced when the angle of incidence of the illuminating light was changed. This is because the plasmonic resonances of the two technologies are excited at different wavelengths, giving a real-time and label-free detection of viral sequences from SARS-CoV-2 including: RdRp, ORF1ab, and E genes. Furthermore, the in situ PPT enhancement on the chip improved the specificity of genomic detection, meaning similar sequences of RdRp genes from SARS-CoV (Previous pandemic between 2002-2004) and SARS-CoV-2 can be accurately distinguished. This dual-functional LSPR sensor represents a simple and rapid diagnostic tool, which could improve the accuracy of SARS-CoV-2 testing in clinical diagnosis settings. In addition, it can help or even replace existing PCR tests, which often need several days to obtain results, may return false results, and need professional staff to perform the assay and interpret the results (92).

Lanthanides, a series of rare earth elements, possess unique physical and electronic features, giving rise to properties such as long luminescence lifetimes and other optical characteristics. Chen et al. (93) investigated lanthanide-doped NPs with a lateral flow immunoassay (LFIA) as a biosensor, to detect anti-SARS-CoV-2 IgG antibodies in
human sera. The LFIA also included mouse anti-human IgG and rabbit IgG. A nitrocellulose membrane was used as the template to mount a recombinant phosphoprotein of SARS-CoV-2 to confine the IgG. Nineteen samples tested previously with reverse transcription PCR (RT-PCR) were then re-tested with the LFIA, which was found to detect anti-SARS-CoV-2 IgG in ~10 minutes. Therefore, the LFIA can allow positive identification of SARS-CoV-2 in potential cases, and be effectively used to monitor COVID-19 progression and patient responses to treatment.

Biosensor technology is generally promising, however, there are many challenges to overcome, emphasising why the technology still needs comprehensive research to develop a high-quality sensor for point-of-care diagnostics. These challenges include reproducibility, surface preparation and immobilisation conditions, incubation time and temperature, type of biological fluid used, and sample loading. Further, insufficient selectivity and specificity of many of these tests means they are currently unreliable. These factors may restrict the effective use of this technology for overall SARS-CoV-2 detection (94).

7. Conclusions

This review has primarily focussed on the applications of NPs, and their interactions with relevant SARS-CoV-2 proteins, as well as suggestions on how NPs maybe used to combat COVID-19. Furthermore, existing drugs that maybe repurposed against COVID-19, and natural and synthetic compounds that might be enhanced in conjunction with NPs have also been included. Little is currently known about NP-based drug delivery systems for SARS-CoV-2, and a thorough understanding of the pathogenesis of this novel coronavirus is required to aid development of effective agents. A collaborative global effort is required to find treatments, and the over-arching aim should be to develop anti-virals based on previous work, as not only will this save time, but is likely to work. Further enhancement of these through combination with NPs may well allow effective application of the drug.

As SARS-CoV-2 is a recently identified virus, any attempts to tackle this should be complemented with in silico studies, to optimise the NP-drug interaction. Computer
simulations have allowed effective interpretation of experimental data (95), e.g. the widely used carrier protein bovine serum albumin (BSA) adsorbing to a silica surface. Simulation has also previously facilitated the development of a new model NP-based vaccine using gonadotrophin releasing hormone 1 (GnRH-I) with silica NPs (96). Computer simulation is currently being used widely to aid efforts against the COVID-19 pandemic, be that in exploring the repurposing of existing drugs (58) (56) (67) (63) (66), or the development of new systems with natural compounds (79) (66) (87). In our view, this approach will help design and deliver new therapies and diagnostics, not only to fight COVID-19, but future viral threats that may emerge.
REFERENCES

1. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7):908-31.

2. Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence. 2016;3(1):1.

3. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American journal of respiratory and critical care medicine. 2005;172(12):1487-90.

4. Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. International journal of nanomedicine. 2007;2(2):129-41.

5. Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, et al. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Research Letters. 2020;15(1):115.

6. Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, et al. Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. International Journal of Molecular Sciences. 2020;21(21).

7. Oh JY, Kim HS, Palanikumar L, Go EM, Jana B, Park SA, et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nature Communications. 2018;9(1):4548.

8. Treuel L, Nienhaus GU. Toward a molecular understanding of nanoparticle-protein interactions. Biophysical reviews. 2012;4(2):137-47.

9. Bresme F, Lehle H, Oettel M. Solvent-mediated interactions between nanoparticles at fluid interfaces. The Journal of Chemical Physics. 2009;130(21):214711.

10. Patil VM, Singhal S, Masand N. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sciences. 2020;254:117775.

11. Kim J, Yeom M, Lee T, Kim H-O, Na W, Kang A, et al. Porous gold nanoparticles for attenuating infectivity of influenza A virus. Journal of Nanobiotechnology. 2020;18(1):54.

12. Thalhauser S, Peterhoff D, Wagner R, Breunig M. Presentation of HIV-1 Envelope Trimers on the Surface of Silica Nanoparticles. Journal of Pharmaceutical Sciences. 2020;109(1):911-21.

13. Kostarelos K. Nanoscale nights of COVID-19. Nature Nanotechnology. 2020;15(5):343-4.

14. El-Mohamady RS, Ghattas TA, Zawrah MF, Abd El-Hafeiz YGM. Inhibitory effect of silver nanoparticles on bovine herpesvirus-1. International Journal of Veterinary Science and Medicine. 2018;6(2):296-300.
15. Subhasish S. Silver Nanoparticles with Bronchodilators through Nebulisation to Treat Covid 19 Patients. Journal of Current Medical Research and Opinion. 2020;3(4):449-50.

16. Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, et al. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. International Journal of Pharmaceutics. 2020;588:119689.

This article looks at the various properties of cyclodextrins which make these nanoparticles suitable for a variety of applications in treating COVID-19. This includes acting as encapsulating agents for other drugs used to treat COVID-19, as adjuvants to stabilise molecules involved in infection and use as adjuvants in vaccines.

17. Sportelli MC, Iazzi M, Kukushkina EA, Imen SL, Picca RA, Ditaranto N, et al. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? Nanomaterials (Basel). 2020;10(4).

18. Tabish TA, Hamblin MR. Multivalent nanomedicines to treat COVID-19: A slow train coming. Nano Today. 2020;35:100962.

19. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(27):9469.

20. Hassanzadeh P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. Journal of Controlled Release. 2020;328:112-26.

21. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-62.

22. Mohan SV, Hemalatha M, Kopperi H, Ranjith I, Kumar AK. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. Chemical Engineering Journal. 2021;405:126893.

This is an interesting article because it discusses the transmission routes of SARS-CoV-2. As well as the common transmission route by droplets, this article suggests the faecal-oral route as a possible source of SARS-CoV-2 transmission, and suggests strategies to combat the enteric virus.

23. Hanley B, Naresh KN, Roufoss C, Nicholson AG, Weir J, Cooke GS, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. The Lancet Microbe. 2020;1(6):e245-e53.

24. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.

25. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology Journal. 2019;16(1):69.

26. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 262020. p. 450-2.
27. Lam SD, Bordin N, Waman VP, Scholes HM, Ashford P, Sen N, et al. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals. Scientific Reports. 2020;10(1):16471.

28. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020.

29. Gui M, Liu X, Guo D, Zhang Z, Yin C-C, Chen Y, et al. Electron microscopy studies of the coronavirus ribonucleoprotein complex. Protein & Cell. 2017;8.

30. Selvaraj C, Dinesh DC, Panwar U, Abhirami R, Boura E, Singh SK. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. Journal of Biomolecular Structure and Dynamics. 2020:1-12.

31. Grottesi A, Bešker N, Emerson A, Manelfi C, Beccari AR, Frigerio F, et al. Computational Studies of SARS-CoV-2 3CLpro: Insights from MD Simulations. International journal of molecular sciences. 2020;21(15):5346.

32. Nayak SK. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARS-CoV-2 Infection (COVID-19). Mini Rev Med Chem. 2020.

*33. Bernardi A, Huang Y, Harris B, Xiong Y, Nandi S, McDonald KA, et al. Development and simulation of fully glycosylated molecular models of ACE2-Fc fusion proteins and their interaction with the SARS-CoV-2 spike protein binding domain. PLOS ONE. 2020;15(8):e0237295.

This article looks at the development and potential use of ACE2-Fc fusion proteins and their use against SARS-CoV-2. This structure could effectively compete with the actual ACE2 receptor, preventing viral entry and infection.

34. Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future oncology (London, England). 2020;16(27):2029-33.

**35. Wei C, Wan L, Yan Q, Wang X, Zhang J, Yang X, et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab. 2020.

This article suggests the HDL scavenger receptor B type 1 (SR-B1) facilitates and enhances the ACE2 dependent entry of SARS-CoV-2. The S1 subunit binds to the cholesterol, and blockage of the binding site with a monoclonal antibody or treatment with an SR-B1 antagonist could represent a new and interesting target for therapeutics.

36. Patel CN, Kumar SP, Pandya HA, Rawal RM. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Mol Divers. 2020:1-13.
37. Veeramachaneni GK, Thunuguntla VBSC, Bobbillapati J, Bondili JS. Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor. Journal of Biomolecular Structure and Dynamics. 2020:1-11.

38. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20.

39. Abo-zeid Y, Ismail NSM, McLean GR, Hamdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. European Journal of Pharmaceutical Sciences. 2020;153:105465.

40. Mehra NK, Mishra V, Jain NK. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials. 2014;35(4):1267-83.

41. Yang J. Inhibition of SARS-CoV-2 Replication by Acidizing and RNA Lyase-Modified Carbon Nanotubes Combined with Photodynamic Thermal Effect. Journal of Exploratory Research in Pharmacology 2020;5(2):18-23.

*42. Cerofolini L, Fragai M, Luchinat C, Ravera E. Orientation of immobilized antigens on common surfaces by a simple computational model: Exposition of SARS-CoV-2 Spike protein RBD epitopes. Biophysical Chemistry. 2020;265:106441.

This article looks at the immobilisation of a protein complex of the receptor binding domain of SARS-CoV-2 S protein to several surfaces computationally. This is interesting as the findings can be used to direct experimental efforts in developing nano therapy.

43. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery. 2018;17(4):261-79.

44. Mahase E. Covid-19: Pfizer and BioNTech submit vaccine for US authorisation. BMJ. 2020;371:m4552.

45. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine. 2020;383(27):2603-15.

This article basically contains the safety and efficacy data for the BioNTech/Pfizer vaccine. This is an interesting article because it is the first COVID-19 vaccine incorporating LNPs to prove its efficacy and provides 95% protection in two doses.

46. Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Medical science monitor : international medical journal of experimental and clinical research. 2020;26:e924700-e.

47. Mahase E. Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ. 2020;371:m4471.
48. Ballesteros-Briones MC, Silva-Pilipich N, Herrador-Cañete G, Vanrell L, Smerdou C. A new generation of vaccines based on alphavirus self-amplifying RNA. Current opinion in virology. 2020;44:145-53.

49. McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature Communications. 2020;11(1):3523.

50. Arvin AM, Fink K, Schmid MA, Cathcart A, Sprefico R, Havenar-Daughton C, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature. 2020;584(7821):353-63.

51. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology. 2016;44(1):381-91.

52. Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunology. 2011;4(6):603-11.

53. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nature Reviews Drug Discovery. 2019;18(1):41-58.

54. Khelfaoui H, Harkati D, Saleh BA. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. Journal of Biomolecular Structure and Dynamics. 2020:1-17.

55. Alamri MA, Tahir ul Qamar M, Mirza MU, Bhadane R, Alqahtani SM, Muneer I, et al. Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro. Journal of Biomolecular Structure and Dynamics. 2020:1-13.

56. Koulgi S, Jani V, Uppuladinne MVN, Sonavane U, Joshi R. Remdesivir-bound and ligand-free simulations reveal the probable mechanism of inhibiting the RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2. RSC Advances. 2020;10(45):26792-803.

57. Mukherjee S, Dasgupta S, Adhikary T, Adhikari U, Panja SS. Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: inhibitor modelling study through molecular docking and MD-simulation study. Journal of Biomolecular Structure and Dynamics. 2020:1-13.

58. Procacci P, Macchiagodena M, Pagliai M, Guarnieri G, Iannone F. Interaction of hydroxychloroquine with SARS-CoV2 functional proteins using all-atoms non-equilibrium alchemical simulations. Chemical Communications. 2020;56(62):8854-6.

59. Hosseini FS, Amanlou M. Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study. Life Sciences. 2020;258:118205.
60. Khan MA, Mahmud S, Alam ASMRU, Rahman ME, Ahmed F, Rahmatullah M. Comparative molecular investigation of the potential inhibitors against SARS-CoV-2 main protease: a molecular docking study. Journal of Biomolecular Structure and Dynamics. 2020:1-7.

61. Khan A, Ali SS, Khan MT, Saleem S, Ali A, Suleman M, et al. Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS-CoV-2 main protease (3CLpro). Journal of Biomolecular Structure & Dynamics. 2020:1-12.

62. C S, S DK, Ragunathan V, Tiwari P, A S, P BD. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics. 2020:1-27.

63. Lokhande KB, Doiphode S, Vyas R, Swamy KV. Molecular docking and simulation studies on SARS-CoV-2 Mpro reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as potent drugs against COVID-19. Journal of Biomolecular Structure and Dynamics. 2020:1-12.

64. Kumar D, Kumari K, Jayaraj A, Kumar V, Kumar RV, Dass SK, et al. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. Journal of Biomolecular Structure and Dynamics. 2020:1-14.

65. Kumar Y, Singh H, Patel CN. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health. 2020;13(9):1210-23.

66. Peele KA, Potla Durthi C, Srihansa T, Krupanidhi S, Ayyagari VS, Babu DJ, et al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked. 2020;19:100345.

67. Ancy I, Sivanandam M, Kumaradhas P. Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: a molecular docking, molecular dynamics and binding free energy simulation study. Journal of Biomolecular Structure and Dynamics. 2020:1-8.

68. Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv. 2017;8(11):947-56.

69. Han Y, Kráľ P. Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2. ACS Nano. 2020;14(4):5143-7.

70. This article looks at peptide inhibitors to be used against the RBD of SARS-CoV-2, preventing virus action. The inhibitors were formed by a bundle of alpha helices found in the RBD; these were extracted from the ACE-2 receptor.

71. Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. International journal of biological macromolecules. 2020;164:331-43.
71. Chen L, Huang G. The antiviral activity of polysaccharides and their derivatives. International Journal of Biological Macromolecules. 2018;115:77-82.

72. Loutfy SA, Elberry MH, Farroh KY, Mohamed HT, Mohamed AA, Mohamed EB, et al. Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines. International journal of nanomedicine. 2020;15:2699-715.

73. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics. 2020:1-13.

74. Majumder R, Mandal M. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. Journal of Biomolecular Structure and Dynamics. 2020:1-16.

75. Maroli N, Bhasuran B, Natarajan J, Kolandaivel P. The potential role of procyanidin as a therapeutic agent against SARS-CoV-2: a text mining, molecular docking and molecular dynamics simulation approach. Journal of Biomolecular Structure and Dynamics. 2020:1-16.

76. Al-Zaqri N, Pooventhiran T, Alsalme A, Warad I, John AM, Thomas R. Structural and physico-chemical evaluation of melatonin and its solution-state excited properties, with emphasis on its binding with novel coronavirus proteins. Journal of Molecular Liquids. 2020;318:114082.

77. Gupta S, Singh AK, Kushwaha PP, Prajapati KS, Shuaib M, Senapati S, et al. Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure and Dynamics. 2020:1-12.

78. Kodchakorn K, Poovorawan Y, Suwannakarn K, Kongtawelert P. Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2. Journal of Molecular Graphics and Modelling. 2020;101:107717.

79. Sasidharan S, Selvaraj C, Singh SK, Dubey VK, Kumar S, Fialho AM, et al. Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: insights from molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics. 2020:1-16.

80. Wang C, Wang S, Li D, Wei D-Q, Zhao J, Wang J. Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2. Gastroenterology. 2020;159(3):1145-7.e4.

This article suggests the Human Intestinal Defensin 5 (HD5), an antibiotic enteric peptide, can effectively mask key interaction sites on the ACE2 receptor protein. These sites, key amino acid residues, are important for the S protein to bind and allow viral entry and infection.

81. Yang J-S, Chiang J-H, Tsai SC, Hsu Y-M, Bau D-T, Lee K-H, et al. In Silico De Novo Curcuminoid Derivatives From the Compound Library of Natural Products Research Laboratories Inhibit COVID-19 3CLpro Activity. Natural Product Communications. 2020;15(9):1934578X20953262.
Yu R, Chen L, Lan R, Shen R, Li P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents. 2020;56(2):106012.

Amin SA, Ghosh K, Gayen S, Jha T. Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors. Journal of Biomolecular Structure and Dynamics. 2020:1-10.

Chikhale RV, Gupta VK, Eldesoky GE, Wabaidur SM, Patil SA, Islam MA. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics. 2020:1-16.

Yadav R, Imran M, Dhamija P, Chaurasia DK, Handu S. Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics. 2020:1-16.

Kumar D, Kumari K, Vishvakarma VK, Jayaraj A, Kumar D, Ramappa VK, et al. Promising inhibitors of main protease of novel corona virus to prevent the spread of COVID-19 using docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics. 2020:1-15.

Liang J, Pitsillou E, Karagiannis C, Darmawan KK, Ng K, Hung A, et al. Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: Molecular dynamic simulations highlight the stability of the ligand-protein complex. Computational biology and chemistry. 2020;87:107292-.

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368(6489):409-12.

Sk MF, Roy R, Jonniya NA, Poddar S, Kar P. Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamics. 2020:1-13.

Bellan LM, Wu D, Langer RS. Current trends in nanobiosensor technology. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology. 2011;3(3):229-46.

Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano. 2020;14(5):5268-77.

This study looks at the development of a dual-functional plasmonic photothermal biosensor which can detect viral sequences from SARS-CoV-2. The sensor gave a label-free, real time detection of RdRp, ORF1ab, and E genes. This represents a promising simple, yet rapid diagnostic tool.

Liu HY, Hopping GC, Vaidyanathan U, Ronquillo YC, Hoopes PC, Moshirfar M. Polymerase Chain Reaction and Its Application in the Diagnosis of Infectious Keratitis. Medical hypothesis, discovery & innovation ophthalmology journal. 2019;8(3):152-5.
Chen Z, Zhang Z, Zhai X, Li Y, Lin L, Zhao H, et al. Rapid and Sensitive Detection of anti-SARS-CoV-2 IgG, Using Lanthanide-Doped Nanoparticles-Based Lateral Flow Immunoassay. Analytical Chemistry. 2020;92(10):7226-31.

Demeke Teklemariam A, Samaddar M, Alharbi MG, Al-Hindi RR, Bhunia AK. Biosensor and molecular-based methods for the detection of human coronaviruses: A review. Molecular and Cellular Probes. 2020;54:101662.

Kubiak-Ossowska K, Tokarczyk K, Jachimska B, Mulheran PA. Bovine Serum Albumin Adsorption at a Silica Surface Explored by Simulation and Experiment. The Journal of Physical Chemistry B. 2017;121(16):3975-86.

Connell DJ, Gebril A, Khan MAH, Patwardhan SV, Kubiak-Ossowska K, Ferro VA, et al. Rationalising drug delivery using nanoparticles: a combined simulation and immunology study of GnRH adsorbed to silica nanoparticles. Scientific Reports. 2018;8(1):17115.