A new Z-eigenvalue localization set for tensors

Jianxing Zhao*

*Correspondence: zjx810204@163.com
College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P.R. China

Abstract
A new Z-eigenvalue localization set for tensors is given and proved to be tighter than those in the work of Wang et al. (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017). Based on this set, a sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.

MSC: 15A18; 15A69

Keywords: Z-eigenvalue; localization set; nonnegative tensors; spectral radius; weakly symmetric

1 Introduction
For a positive integer n, $n \geq 2$, N denotes the set $\{1, 2, \ldots, n\}$. \mathbb{C} (\mathbb{R}) denotes the set of all complex (real) numbers. We call $A=(a_{i_1i_2\cdots i_m})$ a real tensor of order m dimension n, denoted by $\mathbb{R}^{[m,n]}$, if

$$a_{i_1i_2\cdots i_m} \in \mathbb{R},$$

where $i_j \in N$ for $j=1, 2, \ldots, m$. A is called nonnegative if $a_{i_1i_2\cdots i_m} \geq 0$. $A=(a_{i_1\cdots i_m}) \in \mathbb{R}^{[m,n]}$ is called symmetric [2] if

$$a_{i_1\cdots i_m} = a_{\pi(i_1\cdots i_m)}, \quad \forall \pi \in \Pi_m,$$

where Π_m is the permutation group of m indices. $A=(a_{i_1i_2\cdots i_m}) \in \mathbb{R}^{[m,n]}$ is called weakly symmetric [3] if the associated homogeneous polynomial

$$Ax^m = \sum_{i_1i_2\cdots i_m \in N} a_{i_1i_2\cdots i_m}x_{i_1}x_{i_2}\cdots x_{i_m}$$

satisfies $\nabla Ax^m = mAx^{m-1}$. It is shown in [3] that a symmetric tensor is necessarily weakly symmetric, but the converse is not true in general.

Given a tensor $A=(a_{i_1\cdots i_m}) \in \mathbb{R}^{[m,n]}$, if there are $\lambda \in \mathbb{C}$ and $x=(x_1, x_2, \ldots, x_n)^T \in \mathbb{C}^n \setminus \{0\}$ such that

$$Ax^{m-1} = \lambda x \quad \text{and} \quad x^Tx = 1,$$

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
then λ is called an E-eigenvalue of A and x an E-eigenvector of A associated with λ, where Ax^{m-1} is an n dimension vector whose ith component is

$$(Ax^{m-1})_i = \sum_{i_2,\ldots,i_m \in N} a_{i_2\ldots i_m}x_{i_2}\cdots x_{i_m}.$$

If λ and x are all real, then λ is called a Z-eigenvalue of A and x a Z-eigenvector of A associated with λ; for details, see [2, 4].

Let $A = (a_{i_1\ldots i_m}) \in \mathbb{R}^{[m,n]}$. We define the Z-spectrum of A, denoted $\sigma(A)$ to be the set of all Z-eigenvalues of A. Assume $\sigma(A) \neq 0$, then the Z-spectral radius [3] of A, denoted $\varrho(A)$, is defined as

$$\varrho(A) := \sup\{|\lambda| : \lambda \in \sigma(A)\}.$$

Recently, much literature has focused on locating all Z-eigenvalues of tensors and bounding the Z-spectral radius of nonnegative tensors in [1, 5–10]. It is well known that one can use eigenvalue inclusion sets to obtain the lower and upper bounds of the spectral radius of nonnegative tensors; for details, see [1, 11–14]. Therefore, the main aim of this paper is to give a tighter Z-eigenvalue inclusion set for tensors, and use it to obtain a sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors.

In 2017, Wang et al. [1] established the following Geršgorin-type Z-eigenvalue inclusion theorem for tensors.

Theorem 1 ([1], Theorem 3.1) Let $A = (a_{i_1\ldots i_m}) \in \mathbb{R}^{[m,n]}$. Then

$$\sigma(A) \subseteq K(A) = \bigcup_{i \in N} K_i(A),$$

where

$$K_i(A) = \left\{z \in \mathbb{C} : |z| \leq R_i(A) \right\}, \quad R_i(A) = \sum_{i_2,\ldots,i_m \in N} |a_{i_2\ldots i_m}|.$$

To get a tighter Z-eigenvalue inclusion set than $K(A)$, Wang et al. [1] gave the following Brauer-type Z-eigenvalue localization set for tensors.

Theorem 2 ([1], Theorem 3.2) Let $A = (a_{i_1\ldots i_m}) \in \mathbb{R}^{[m,n]}$. Then

$$\sigma(A) \subseteq L(A) = \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} L_{ij}(A),$$

where

$$L_{ij}(A) = \left\{z \in \mathbb{C} : \left(|z| - (R_i(A) - |a_{ij-j}|)\right)|z| \leq |a_{ij-j}||R_j(A)| \right\}.$$

In this paper, we continue this research on the Z-eigenvalue localization problem for tensors and its applications. We give a new Z-eigenvalue inclusion set for tensors and prove that the new set is tighter than those in Theorem 1 and Theorem 2. As an application of this set, we obtain a new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors, which is sharper than some existing upper bounds.
2 Main results

In this section, we give a new Z-eigenvalue localization set for tensors, and establish the comparison between this set with those in Theorem 1 and Theorem 2. For simplification, we denote

\[\Delta_j = \{(i_2, i_3, \ldots, i_m) : i_k = j \text{ for some } k \in \{2, \ldots, m\}, \text{ where } j, i_2, \ldots, i_m \in N \}, \]

\[\overline{\Delta}_j = \{(i_2, i_3, \ldots, i_m) : i_k \neq j \text{ for any } k \in \{2, \ldots, m\}, \text{ where } j, i_2, \ldots, i_m \in N \}. \]

Then \(R_j(A) = r_j^{\Delta_j}(A) + r_j^{\overline{\Delta}_j}(A) \).

Theorem 3 Let \(A = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]} \). Then

\[\sigma(A) \subseteq \Psi(A) = \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \Psi_{ij}(A), \]

where

\[\Psi_{ij}(A) = \{ z \in \mathbb{C} : |z| - r_j^{\overline{\Delta}_j}(A) |z| \leq r_j^{\Delta_j}(A) R_j(A) \}. \]

Proof. Let \(\lambda \) be a Z-eigenvalue of \(A \) with corresponding Z-eigenvector \(x = (x_1, \ldots, x_n)^T \in \mathbb{C}^n \setminus \{0\} \), i.e.,

\[Ax^{m-1} = \lambda x, \quad \text{and} \quad \|x\|_2 = 1. \tag{1} \]

Assume \(|x_t| = \max_{i \in N} |x_i| \), then \(0 < |x_{t}|^{m-1} \leq |x_t| \leq 1 \). For \(\forall j \in N, j \neq t \), from (1), we have

\[\lambda x_t = \sum_{(i_2, \ldots, i_m) \in \Delta_j} a_{i_2 \cdots i_m} x_{i_2} \cdots x_{i_m} + \sum_{(i_2, \ldots, i_m) \in \overline{\Delta}_j} a_{i_2 \cdots i_m} x_{i_2} \cdots x_{i_m}. \]

Taking the modulus in the above equation and using the triangle inequality give

\[|\lambda| |x_t| \leq \sum_{(i_2, \ldots, i_m) \in \Delta_j} |a_{i_2 \cdots i_m}| |x_{i_2}| \cdots |x_{i_m}| + \sum_{(i_2, \ldots, i_m) \in \overline{\Delta}_j} |a_{i_2 \cdots i_m}| |x_{i_2}| \cdots |x_{i_m}| \]

\[\leq \sum_{(i_2, \ldots, i_m) \in \Delta_j} |a_{i_2 \cdots i_m}| |x_j| + \sum_{(i_2, \ldots, i_m) \in \overline{\Delta}_j} |a_{i_2 \cdots i_m}| |x_j| \]

\[= r_j^{\Delta_j}(A)|x_j| + r_j^{\overline{\Delta}_j}(A)|x_j|, \]

i.e.,

\[(|\lambda| - r_j^{\overline{\Delta}_j}(A)) |x_t| \leq r_j^{\Delta_j}(A) |x_j|. \tag{2} \]
If \(|x_j| = 0\), by \(|x_i| > 0\), we have \(|\lambda| - r_i^\lambda (A) \leq 0\). Then
\[
(\lambda - r_i^\lambda (A))|\lambda| \leq r_i^\lambda (A)R_j(A).
\]

Obviously, \(\lambda \in \Psi_1(A)\). Otherwise, \(|x_j| > 0\). From (1), we have
\[
|\lambda||x_i| \leq \sum_{i_1, \ldots, i_m \in N} |a_{j_1 \ldots i_m}||x_{i_1}| \cdots |x_{i_m}| \leq \sum_{i_1, \ldots, i_m \in N} |a_{j_1 \ldots i_m}||x_i|^{m-1} \leq R_j(A)|x_i|.
\]

Multiplying (2) with (3) and noting that \(|x_i||x_j| > 0\), we have
\[
(\lambda - r_i^\lambda (A))|\lambda| \leq r_i^\lambda (A)R_j(A),
\]
which implies that \(\lambda \in \Psi_1(A)\). From the arbitrariness of \(j\), we have \(\lambda \in \bigcap_{j \in N, j \neq i} \Psi_j(A)\). Furthermore, we have \(\lambda \in \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \Psi_i(A)\).

Next, a comparison theorem is given for Theorem 1, Theorem 2 and Theorem 3.

Theorem 4 Let \(A = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}\). Then
\[
\Psi_j(A) \subseteq \mathcal{L}(A) \subseteq \mathcal{K}(A).
\]

Proof By Corollary 3.1 in [1], \(\mathcal{L}(A) \subseteq \mathcal{K}(A)\) holds. Here, we only prove \(\Psi_j(A) \subseteq \mathcal{L}(A)\). Let \(z \in \Psi_j(A)\). Then there exists \(i \in N\), such that \(z \in \Psi_i(A), \forall j \in N, j \neq i\), that is,
\[
(\lambda - r_i^\lambda (A))z \leq r_i^\lambda (A)R_j(A), \quad \forall j \in N, j \neq i.
\]

Next, we divide our subject in two cases to prove \(\Psi_j(A) \subseteq \mathcal{L}(A)\).

Case I: If \(r_i^\lambda (A)R_j(A) = 0\), then we have
\[
(\lambda - (R_i(A) - |a_{j\ldots j}|))z \leq (\lambda - r_i^\lambda (A))z \leq r_i^\lambda (A)R_j(A) = 0 \leq |a_{j\ldots j}|R_j(A),
\]
which implies that \(z \in \bigcap_{j \in N, j \neq i} \mathcal{L}_i(A) \subseteq \mathcal{L}(A)\) from the arbitrariness of \(j\), consequently, \(\Psi_j(A) \subseteq \mathcal{L}(A)\).

Case II: If \(r_i^\lambda (A)R_j(A) > 0\), then dividing both sides by \(r_i^\lambda (A)R_j(A)\) in (4), we have
\[
\frac{|z| - r_i^\lambda (A)}{r_i^\lambda (A)} \leq \frac{|z|}{R_j(A)} \leq 1,
\]
which implies
\[
\frac{|z| - r_i^\lambda (A)}{r_i^\lambda (A)} \leq 1,
\]
or
\[
\frac{|z|}{R_j(A)} \leq 1.
\]
Let \(a = |z|, b = r_i^{\Delta_j}(A), c = r_i^{\Delta_j}(A) - |a_{ij}| \) and \(d = |a_{ij}| > 0 \), when (6) holds and \(d = |a_{ij}| > 0 \), from Lemma 2.2 in [11], we have

\[
\frac{|z| - (R_i(A) - |a_{ij}|)}{|a_{ij}|} = \frac{a - (b + c)}{d} \leq \frac{a - b}{c + d} = \frac{|z| - r_i^{\Delta_j}(A)}{r_i^{\Delta_j}(A)}. \tag{8}
\]

Furthermore, from (5) and (8), we have

\[
\frac{|z| - (R_i(A) - |a_{ij}|)}{|a_{ij}|} \frac{|z|}{R_i(A)} \leq \frac{|z| - r_i^{\Delta_j}(A)}{r_i^{\Delta_j}(A)} \frac{|z|}{R_i(A)} \leq 1,
\]
equivalently,

\[
(|z| - (R_i(A) - |a_{ij}|)|z| \leq |a_{ij}| R_i(A),
\]

which implies that \(z \in \bigcap_{j \in N \setminus \{i\}} \mathcal{L}_j(A) \subseteq \mathcal{L}(A) \) from the arbitrariness of \(j \), consequently, \(\Psi(A) \subseteq \mathcal{L}(A) \). When (6) holds and \(d = |a_{ij}| = 0 \), we have

\[
|z| - r_i^{\Delta_j}(A) - r_i^{\Delta_j}(A) \leq 0, \quad \text{i.e.,} \quad |z| - (R_i(A) - |a_{ij}|) \leq 0,
\]

and furthermore

\[
(|z| - (R_i(A) - |a_{ij}|)|z| \leq 0 = |a_{ij}| R_i(A).
\]

This also implies \(\Psi(A) \subseteq \mathcal{L}(A) \).

On the other hand, when (7) holds, we only prove \(\Psi(A) \subseteq \mathcal{L}(A) \) under the case that

\[
\frac{|z| - r_i^{\Delta_j}(A)}{r_i^{\Delta_j}(A)} > 1. \tag{9}
\]

From (9), we have \(\frac{a}{b + c + d} = \frac{|z|}{R_i(A)} > 1 \). When (7) holds and \(|a_{ji}| > 0 \), by Lemma 2.3 in [11], we have

\[
\frac{|z|}{R_i(A)} = \frac{a}{b + c + d} \leq \frac{a - b}{c + d} = \frac{|z| - r_i^{\Delta_j}(A)}{r_i^{\Delta_j}(A)}. \tag{10}
\]

By (7), Lemma 2.2 in [11] and similar to the proof of (8), we have

\[
\frac{|z| - (R_i(A) - |a_{ji}|)}{|a_{ji}|} \leq \frac{|z|}{R_i(A)}. \tag{11}
\]

Multiplying (10) and (11), we have

\[
\frac{|z| - (R_i(A) - |a_{ji}|)}{|a_{ji}|} \frac{|z|}{R_i(A)} \leq \frac{|z| - r_i^{\Delta_j}(A)}{r_i^{\Delta_j}(A)} \frac{|z|}{R_i(A)} \leq 1;
\]
equivalently,
\[(|z| - (R_j(A) - |a_{j\cdots i}|)|z| \leq |a_{j\cdots i}|R_i(A)).\]

This implies \(z \in \bigcap_{i \in \mathbb{N}, i \neq j} L_j(A) \subseteq L(A) \) and \(\Psi(A) \subseteq L(A) \) from the arbitrariness of \(i \).

When (7) holds and \(|a_{j\cdots i}| = 0 \), we can obtain
\[|z| - R_j(A) \leq 0, \quad \text{i.e.,} \quad |z| - (R_j(A) - |a_{j\cdots i}|) \leq 0\]
and
\[(|z| - (R_j(A) - |a_{j\cdots i}|)|z| \leq |a_{j\cdots i}|R_i(A)).\]

This also implies \(\Psi(A) \subseteq L(A) \). The conclusion follows from Case I and Case II. \(\square \)

Remark 1 Theorem 4 shows that the set \(\Psi(A) \) in Theorem 3 is tighter than \(\mathcal{K}(A) \) in Theorem 1 and \(L(A) \) in Theorem 2, that is, \(\Psi(A) \) can capture all \(Z \)-eigenvalues of \(A \) more precisely than \(\mathcal{K}(A) \) and \(L(A) \).

Now, we give an example to show that \(\Psi(A) \) is tighter than \(\mathcal{K}(A) \) and \(L(A) \).

Example 1 Let \(A = (a_{ijkl}) \in \mathbb{R}^{[4,2]} \) be a symmetric tensor defined by
\[a_{1222} = 1, \quad a_{2222} = 2, \quad \text{and} \quad a_{ijkl} = 0 \quad \text{elsewhere}.\]

By computation, we see that all the \(Z \)-eigenvalues of \(A \) are \(-0.5000, 0 \) and \(2.7000 \). By Theorem 1, we have
\[\mathcal{K}(A) = \mathcal{K}_1(A) \cup \mathcal{K}_2(A) = \{z \in \mathbb{C} : |z| \leq 1\} \cup \{z \in \mathbb{C} : |z| \leq 5\} = \{z \in \mathbb{C} : |z| \leq 5\}.\]

By Theorem 2, we have
\[L(A) = L_{12}(A) \cup L_{23}(A) = \{z \in \mathbb{C} : |z| \leq 2.2361\} \cup \{z \in \mathbb{C} : |z| \leq 5\} = \{z \in \mathbb{C} : |z| \leq 5\}.\]

By Theorem 3, we have
\[\Psi(A) = \Psi_{12}(A) \cup \Psi_{21}(A) = \{z \in \mathbb{C} : |z| \leq 2.2361\} \cup \{z \in \mathbb{C} : |z| \leq 3\} = \{z \in \mathbb{C} : |z| \leq 3\}.\]

The \(Z \)-eigenvalue inclusion sets \(\mathcal{K}(A) \), \(L(A) \), \(\Psi(A) \) and the exact \(Z \)-eigenvalues are drawn in Figure 1, where \(\mathcal{K}(A) \) and \(L(A) \) are represented by blue dashed boundary, \(\Psi(A) \) is represented by red solid boundary and the exact eigenvalues are plotted by ‘+’, respectively. It is easy to see \(\sigma(A) \subseteq \Psi(A) \subseteq L(A) \subseteq \mathcal{K}(A) \), that is, \(\Psi(A) \) can capture all \(Z \)-eigenvalues of \(A \) more precisely than \(L(A) \) and \(\mathcal{K}(A) \).
3 A new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors

As an application of the results in Section 2, we in this section give a new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors.

Theorem 5 Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ be a weakly symmetric nonnegative tensor. Then

$$\varrho(A) \leq \max_{i \in \mathbb{N}} \min_{j \in \mathbb{N}, j \neq i} \Phi_{ij}(A),$$

where

$$\Phi_{ij}(A) = \frac{1}{2} \left\{ r_{ij}^{\Delta}(A) + \sqrt{(r_{ij}^{\Delta}(A))^2 + 4r_{ij}^{\Delta}(A)R_j(A)} \right\}.$$

Proof From Lemma 4.4 in [1], we know that $\varrho(A)$ is the largest Z-eigenvalue of A. It follows from Theorem 3 that there exists $i \in \mathbb{N}$ such that

$$(\varrho(A) - r_{ij}^{\Delta}(A))\varrho(A) \leq r_{ij}^{\Delta}(A)R_j(A), \quad \forall j \in \mathbb{N}, j \neq i.$$ \hspace{1cm} (12)

Solving $\varrho(A)$ in (12) gives

$$\varrho(A) \leq \frac{1}{2} \left\{ r_{ij}^{\Delta}(A) + \sqrt{(r_{ij}^{\Delta}(A))^2 + 4r_{ij}^{\Delta}(A)R_j(A)} \right\} = \Phi_{ij}(A).$$

From the arbitrariness of j, we have $\varrho(A) \leq \min_{j \in \mathbb{N}, j \neq i} \Phi_{ij}(A)$. Furthermore, $\varrho(A) \leq \max_{i \in \mathbb{N}} \min_{j \in \mathbb{N}, j \neq i} \Phi_{ij}(A).$ \hspace{1cm} \square
By Theorem 4, Theorem 4.5 and Corollary 4.1 in [1], the following comparison theorem can be derived easily.

Theorem 6 Let \(A = (a_{i_1 \ldots i_m}) \in \mathbb{R}^{[m,n]} \) be a weakly symmetric nonnegative tensor. Then the upper bound in Theorem 5 is sharper than those in Theorem 4.5 of [1] and Corollary 4.5 of [5], that is,

\[
\varrho(A) \leq \max_{i \in N} \min_{j \in N, j \neq i} \Phi_{ij}(A)
\]

\[
\leq \max_{i \in N} \min_{j \in N, j \neq i} \frac{1}{2} \left(R_i(A) - a_{ij} - j + \sqrt{(R_i(A) - a_{ij} - j)^2 + 4a_{ij}R_j(A)} \right)
\]

\[
\leq \max_{i \in N} R_i(A).
\]

Finally, we show that the upper bound in Theorem 5 is sharper than those in [1, 5–8, 10] by the following example.

Example 2 Let \(A = (a_{ijk}) \in \mathbb{R}^{[3,3]} \) with the entries defined as follows:

\[
A(:,:,1) = \begin{pmatrix}
3 & 3 & 0 \\
3 & 2 & 2.5 \\
0.5 & 2.5 & 0
\end{pmatrix}, \quad A(:,:,2) = \begin{pmatrix}
3 & 2 & 2 \\
2 & 0 & 3 \\
2.5 & 3 & 1
\end{pmatrix},
\]

\[
A(:,:,3) = \begin{pmatrix}
1 & 3 & 0 \\
2.5 & 3 & 1 \\
0 & 1 & 0
\end{pmatrix}.
\]

It is not difficult to verify that \(A \) is a weakly symmetric nonnegative tensor. By both Corollary 4.5 of [5] and Theorem 3.3 of [6], we have

\[
\varrho(A) \leq 19.
\]

By Theorem 3.5 of [7], we have

\[
\varrho(A) \leq 18.6788.
\]

By Theorem 4.6 of [1], we have

\[
\varrho(A) \leq 18.6603.
\]

By both Theorem 4.5 of [1] and Theorem 6 of [8], we have

\[
\varrho(A) \leq 18.5656.
\]

By Theorem 4.7 of [1], we have

\[
\varrho(A) \leq 18.3417.
\]
By Theorem 2.9 of [10], we have

$$\varrho(A) \leq 17.2063.$$

By Theorem 5, we obtain

$$\varrho(A) \leq 15.2580,$$

which shows that the upper bound in Theorem 5 is sharper.

4 Conclusions

In this paper, we present a new Z-eigenvalue localization set $\Psi(A)$ and prove that this set is tighter than those in [1]. As an application, we obtain a new upper bound $\max_{i \in \mathbb{N}} \min_{j \in \mathbb{N}, j \neq i} \Phi_{ij}(A)$ for the Z-spectral radius of weakly symmetric nonnegative tensors, and we show that this bound is sharper than those in [1, 5–8, 10] in some cases by a numerical example.

Competing interests

The author declares that they have no competing interests.

Author’s contributions

The author read and approved the final manuscript.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11501141), the Foundation of Guizhou Science and Technology Department (Grant No. [2015]2073) and the Natural Science Programs of Education Department of Guizhou Province (Grant No. [2016]066).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 February 2017 Accepted: 11 April 2017 Published online: 21 April 2017

References

1. Wang, G., Zhou, G., Caccetta, L.: Z-Eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst., Ser. B 22(1), 187-198 (2017)
2. Qi, LQ: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302-1324 (2005)
3. Chang, KC, Pearson, K, Zhang, T: Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166-4182 (2013)
4. Lim, LH: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), pp. 129-132 (2005)
5. Song, YS, Qi, LQ: Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J. Matrix Anal. Appl. 34, 1581-1595 (2013)
6. Li, W, Liu, DD, Vong, SW: Z-Eigenvpair bounds for an irreducible nonnegative tensor. Linear Algebra Appl. 483, 182-199 (2015)
7. He, J: Bounds for the largest eigenvalue of nonnegative tensors. J. Comput. Anal. Appl. 20(7), 1290-1301 (2016)
8. He, J, Liu, YM, Ke, H, Tian, JK, Li, X: Bounds for the Z-spectral radius of nonnegative tensors. SpringerPlus 5, 1727 (2016)
9. He, J, Huang, TZ: Upper bound for the largest Z-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110-114 (2014)
10. Liu, QL, Li, YT: Bounds for the Z-eigenvpair of general nonnegative tensors. Open Math. 14, 181-194 (2016)
11. Li, CQ, Li, YT: An eigenvalue localization set for tensor with applications to determine the positive (semi-)definiteness of tensors. Linear Multilinear Algebra 64(4), 587-601 (2016)
12. Li, CQ, Li, YT, Kong, X: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39-50 (2014)
13. Li, CQ, Zhou, JJ, Li, YT: A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra 64(4), 727-736 (2016)
14. Li, CQ, Chen, Z, Li, YT: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36-53 (2015)