Two-dimensional manifold with point-like defects

Vakhid A. Gani,1,2,∗ Alexander E. Dmitriev,1,† and Sergei G. Rubin1,‡

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
2National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia

Abstract

We study a class of two-dimensional extra spaces isomorphic to the S^2 sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

PACS numbers: 04.50.-h, 95.35.+d
I. INTRODUCTION

Many problems of modern cosmology and of the Standard Model, as well as other fundamental questions, can be clarified employing the idea of extra-dimensional gravity [1–8]. Strings, branes, multidimensional black holes and other additional entities open new perspectives in description of various physical phenomena. Nevertheless, many questions can be solved by using the extra space concept only.

Maximally symmetric metric of the extra space as a starting point are among the most popular in the literature. This assumption makes it possible to obtain clear and valuable results, see, e.g., [9–11]. At the same time the space-time foam is supposed to be able to produce various geometries and there is no reason to assume that the extra-space geometry is simple [12, 13]. Random initial conditions — the topology and metric of the manifold formed from the space-time foam — play a key role in defining the properties of the extra space.

In this paper we study different stationary geometries of the two-dimensional sphere type. The Lagrangian we consider is a nonlinear function of the Ricci scalar that allows to stabilize the extra space size. The following situation is of specific interest for us: every point of the three-dimensional physical space has two compactified space dimensions, but the extra space geometry differs from that of the ideal sphere only in a limited domain. As we show, such a domain has an extra vacuum energy, i.e. it can be considered as a dark matter particle. We have also estimated the extra vacuum energy density as a function of the deformation of the extra space. We also discuss the scattering cross sections of such domains of small size interacting with particles of the ordinary matter.

Our paper is organized as follows. In Section II we formulate the problem of gravitation in the six-dimensional space-time with two compactified space dimensions. In Section III we discuss the spherical topology of the extra dimensions: we formulate and solve the problem of the extra space configuration dependence on the initial conditions. Possible phenomenology of the deformed extra space with the spherical topology is discussed in Section IV. We conclude with a discussion of our results and the prospects for future research.
II. SEPARATION OF EXTRA DIMENSIONS

We will assume the characteristic size of the extra space to be small, and its geometry having quickly stabilized after the Universe was born. The stabilization is discussed in [14, 15].

Let’s consider a Riemannian manifold

\[T \times M \times M' \]

with the metric

\[ds^2 = g_{\mu\nu}(x)dx^\mu dx^\nu + G_{ab}(x, y)dy^a dy^b. \]

Here \(T \times M, M' \) are manifolds with the metrics \(g_{\mu\nu}(x) \) and \(G_{ab}(x, y) \) respectively, and \(T \) stands for the time dimension. Coordinates in the subspace \(T \times M \) are denoted by \(x \), while those in \(M' \) by \(y \). The indices \(\mu, \nu (a, b) \) take values from 1 to 4 (5 to 6). The four-dimensional space-time \(T \times M \) is called the “main space”, while the \(n \)-dimensional compact space \(M' \) — the “extra space”.

Hereinafter we consider a metric uniform with respect to the main space, so that \(G_{ab}(x, y) = G_{ab}(t, y) \). The time dependence of the metric tensor \(G_{ab}(t, y) \) is governed by the classical equations of motion, and can vary with initial or boundary conditions. At the same time, the energy dissipation in the main space \(M \) makes the entropy of \(M' \) decrease. This, in turn, leads to an effective friction term arising in the classical equations for the metric \(G_{ab}(t, y) \), see [15] for more details. This term stabilizes the extra space metric. On the other hand, as

\[G_{ab}(t, y) \xrightarrow{t \to \infty} G_{ab}(y), \]

the entropy of the extra space goes to its minimum, i.e. this process is accompanied by the decrease of the entropy and symmetrization of the extra space.

According to (2), the Ricci scalar is a sum of the Ricci scalars of the main 4-dimensional space-time and of the \(n \)-dimensional extra space:

\[R = R_4 + R_n \]

with \(G_{ab} \) independent of \(x \). Below we assume the natural inequality:

\[R_4 \ll R_n. \]
Or more specifically:

\[R_4 = \epsilon(x, y)R_n, \quad \epsilon(x, y) \ll 1 \quad \text{for any } x, y. \]

(6)

Let us consider the multidimensional gravity with higher derivatives and with the action given by (see, e.g., [16, 17]):

\[S = \frac{m_D^{D-2}}{2} \int d^4xd^n y \sqrt{|G(y)g(x)|} f(R), \quad f(R) = \sum_k a_k R^k \]

(7)

with arbitrary parameters \(a_k, k \neq 1 \) and \(a_1 = 1 \). With the inequality (5), the function \(f(R) \) in (7) can be decomposed into the Taylor series:

\[f(R) = f(R_n + R_4) \approx f(R_n) + \epsilon(x, y)R_n f'(R_n). \]

(8)

Then the action becomes

\[S \approx \frac{m_D^{D-2}}{2} \int d^4xd^n y \sqrt{g(x)} \sqrt{G(y)}[\epsilon(x, y)R_n(x) f'(R_n(y)) + f(R_n(y))] \]

\[= \int d^4x \sqrt{g(x)} \left[\frac{M^2_{Pl}}{2} R_4 + \frac{m_D^{D-2}}{2} \int d^n y \sqrt{G(y)} f(R_n) \right], \]

(9)

where \(D = n + 4 \). The Planck mass is given by the following combination

\[M^2_{Pl} = m_D^{D-2} \int d^n y \sqrt{G(y)} f(R_n(y)), \]

(10)

and depends on the specific features of the asymptotically stationary geometry \(G_{ab}(y) \).

According to the effective action (9), the cosmological \(\Lambda \)-term has the form:

\[\Lambda = -\frac{m_D^{D-2}}{2} \int d^n y \sqrt{G(y)} f(R_n). \]

(11)

The parameters \(a_k \) can be fine-tuned to make the \(\Lambda \)-term small enough in order to not spoil the agreement with the observations; we, however, will not address this issue in detail in this work.

The variation of the action with respect to the metric \(G_{ab}(y) \) results in the following system of equations:

\[\frac{\delta S}{\delta G_{ab}(y)} = \frac{\delta S_1}{\delta G_{ab}(y)} + O(\epsilon) = 0, \quad S_1 = \frac{m^2_D}{2} V_4 \int d^n y \sqrt{|G|} f(R_n), \]

(12)

where \(V_4 = \int d^4x \sqrt{g(x)} \). Neglecting terms proportional to the small parameter \(\epsilon(x, y) \), we finally get:

\[f'(R)R_{ab} - \frac{1}{2} f(R)G_{ab} - \nabla_a \nabla_b f' + G_{ab} \Box f' = 0. \]

(13)
If the extra space is two-dimensional, only one of the two equations in (13) remains independent, which substantially simplifies the analysis of (13). This equation can easily be obtained by taking the trace of the system (13):

\[
\Box \frac{df}{dR} = f - R \frac{df}{dR},
\]

where

\[
\Box = \frac{1}{\sqrt{G}} \partial_a \sqrt{G} G^{ab} \partial_b, \quad a, b = 5, 6.
\]

We solve this equation numerically, and the properties of the numerical solutions are discussed below. Eq. (14) that describes the dynamics of the two-dimensional manifold, is a trivial identity if \(f(R) \) is linear in curvature, \(f(R) \propto R \). This equation does not have a solution if a source appears in its right-hand side.

III. THE METRIC OF THE EXTRA SPACE

In line with the main idea formulated above, let us consider a metric corresponding to the extra space being a topological sphere:

\[
ds^2 = r^2(\theta)(d\theta^2 + \sin^2 \theta \, d\phi^2).
\]

The Ricci scalar is now expressed via \(r(\theta) \):

\[
R(\theta) = \frac{2}{r^4 \sin \theta} (-r'r \cos \theta + r^2 \sin \theta + (r')^2 \sin \theta - rr'' \sin \theta),
\]

where the prime denotes differentiation with respect to \(\theta \). In this case the operator (15) has the form:

\[
\Box = \frac{1}{r^2 \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right).
\]

Eqs. (14) and (17) can be considered as a system of two second order ordinary differential equations (ODE) for the functions \(r(\theta) \) and \(R(\theta) \). Obviously this system could be reduced to one fourth order ODE for the function \(r(\theta) \). The system is solved in the segment \(0 \leq \theta \leq \pi \) with the appropriate boundary conditions at \(\theta = 0 \).

Most works that consider compact extra spaces are based on maximally symmetric spaces with a constant Ricci scalar, the latter being a solution of the algebraic equation

\[
f - R \frac{df}{dR} = 0,
\]
FIG. 1: The extra space configurations of the “apple” type at \(r''(0) = 0.05 \) (left panel) and \(r''(0) = 0.15 \) (right panel).

which is a consequence of (14) and \(R = \text{const} \). The solution \(R = R_* \) of this equation of course could be obtained from the main system (14) with the boundary conditions \(R(0) = R_*, \ r(0) = \sqrt{2/R_*}, \ r'(0) = r''(0) = 0. \)

To find the specific geometries of the extra space, we have to choose a form of the function \(f(R) \). The simplest nonlinear in curvature theory is defined by

\[
f(R) = U_1(R - R_0)^2 + U_2,
\]

where \(U_1, U_2, \) and \(R_0 \) are arbitrary parameters. Several numerical solutions of Eq. (14) are presented in Figs. 1 and 2. Depending on the value of \(r''(0) \) we get configurations of the “apple” type at \(r''(0) > 0 \) and of the “beetroot” type at \(r''(0) < 0 \). Apple-shaped geometries were discussed in [18]. The figures indicate the presence of a singularity at \(\theta \to \pi \). Therefore, it is interesting to investigate the asymptotic behavior of the solution at \(\theta \to \pi \) (or at \(\theta \to 0 \), due to the symmetry of the problem).

Let us look for the asymptotic solution in the form

\[
r(\theta) = \frac{C}{\theta^b}, \quad b > 0, \quad \theta \to 0.
\]

Inserting it in (17) we get:

\[
R(\theta) = \frac{2(1 - b/3)}{C^2} \theta^{2b}.
\]

As a result, Eq. (14) takes the simple form

\[
\frac{16U_1b^2(1 - b/3)}{C^4} \theta^{4b-2} = U_2 + U_1R_0^2,
\]

whence the parameters \(b \) and \(C \) may be found:

\[
b = \frac{1}{2}, \quad C = \left(\frac{3}{10} \left(\frac{U_2}{U_1} + R_0^2 \right) \right)^{-1/4}.
\]
Thus a class of metrics with different boundary conditions at $\theta = \pi$ and the same asymptotics at $\theta = 0$ is described by

$$r(\theta) = \frac{C}{\sqrt{\theta}}, \quad \theta \to 0.$$ \hfill (25)

The Ricci scalar

$$R(\theta) = \frac{5}{3C^2} \theta, \quad \theta \to 0$$ \hfill (26)

approaches zero in the vicinity of the point-like defect, hence the conical singularity is present at that point. This is because of δ-functional source of matter in the Einstein gravitation, see \cite{19,21}.

The obvious fact that a set of boundary conditions (and hence a set of solutions of the equation) has the cardinality of the continuum leads to an interesting consequence: a set of the observable Planck masses \cite{10} that depend on the extra space metric also has the cardinality of the continuum. So we arrive to a realization of the landscape idea, see, e.g., \cite{22}. The Planck mass dependence on the initial conditions is shown in Fig. 3. We get the observed value at $U_1 = 10^8 m_D^{-2}$, $U_2 = 1 \cdot m_D^2$ with the six-dimensional Planck mass of order of $m_D = 10^{15}$ GeV of the GUT scale.

It is easy to show that there is a set of the parameters U_1 and U_2 such that the Planck mass has its observed value at some boundary conditions. The region of such values of U_1 and U_2 is shown in Fig. 4. Thus we come to the idea of the inverse landscape proposed in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{The extra space configurations of the “beetroot” type at $r''(0) = -0.01$ (left panel) and $r''(0) = -0.02$ (right panel).}
\end{figure}
FIG. 3: The Plank mass dependence on the parameter $R(0)$, $U_2 > 0$.

FIG. 4: The region of U_1 and U_2 where the Planck mass takes the observed value (here we used $R_0 = \sqrt{3} \cdot 10^{-4}$).

[23, 24], which essentially states that the observed values of the physical parameters do not unambiguously determine parameters of a primary theory, even if the primary parameters widely vary.
IV. DOMAINS WITH THE DEFORMED EXTRA SPACE AS PARTICLES OF DARK MATTER

It is known that the extra space geometry effects could be interpreted as weakly interacting particles of dark matter [25, 26]. Here we briefly discuss this issue. As shown above, properties of the extra space depend on the initial conditions. Within the model with the action (7), (8), the maximally symmetric extra space with the metric (16) and \(r(\theta) \equiv \text{const} \) can be formed as well as more complicated geometries with the metric (16). The set of such geometries has the cardinality of the continuum.

It turns out that the configuration corresponding to the minimum energy density is not a perfect sphere. It can be either “apple” or “beetroot”. Consider a six-dimensional space-time with two spatial dimensions that are compactified into manifolds with the metric (16). What are the possible manifestations of the extra space? Suppose that the prior evolution resulted in the formation of a three-dimensional spatial domain \(U \) of the main space with the extra space being of the “apple” or “beetroot” type at each point of \(U \), while each point of the main space outside \(U \) has the extra dimensions compactified into the ideal spheres, i.e. \(r(\theta) = \text{const}, R = R_0 \). Taking into account (8), the extra space contribution to the energy density outside the domain becomes

\[
\rho_0 = m_D^4 \pi \int r^2(\theta) \sin \theta f(R_0) d\theta = 0, \tag{27}
\]

while the corresponding contribution inside the domain is

\[
\rho = m_D^4 \pi \int r^2(\theta) \sin \theta f(R(\theta)) d\theta. \tag{28}
\]

Therefore a spatial domain of the main space with the extra space compactified into the “apple”- or “beetroot”-type manifolds will be observed as a domain with the extra energy density given above. Mass of such domain of a size \(L \) for a distant observer can be estimated as

\[
M \simeq (\rho - \rho_0)L^3. \tag{29}
\]

It is natural to suppose the minimal size of such domain be of the order of the size \(l \) of the extra space, i.e. less than \(10^{-18} \) cm. Hence, the mass of this particle-like object depends on the initial conditions, see Fig. [5].

The main feature of the dark matter is weakness of its interaction with particles of the ordinary matter. Let us estimate the strength of this interaction. To that end consider
FIG. 5: The mass of the point-like defect as a function of the parameter $R(0), U_2 > 0$.

a domain U of the main space with the deformed extra space. We call such a domain a “point-like defect”, if its size is very small. As above, we assume the minimal size of the domain to be of the order of the size of the extra space, $l \sim 10^{-18}$ cm. Consider the process of scattering of a particle of the ordinary matter on a point-like defect. Below we perform an estimation of the cross section of this process, working within the non-relativistic quantum mechanics.

The Ricci scalar is non-zero in a small vicinity of the point-like defect. Suppose the effective potential the particles are scattered on is

$$V(x) = V_0 \exp \left(- \frac{x^2}{l^2} \right).$$

(30)

In the Born approximation [27] the scattering cross section of a particle of mass m is

$$\sigma \simeq \pi^2 m^2 V_0^2 l^6.$$

(31)

As the only dimensional parameter is the extra space size l, then

$$V_0 = Cl^{-1}, \quad C \sim 1.$$

The extra space size $l \lesssim 10^{-18}$ cm, therefore the scattering cross section for a particle of the mass of 1 GeV is

$$\sigma \sim C^2 \pi^2 m^2 l^4 \lesssim 10^{-43} \text{ cm}^2.$$

(32)

This estimate is consistent with the observational constraints on the mass and the interaction cross section of the dark matter particles.
V. CONCLUSION

In this paper we have considered stationary geometries of two-dimensional manifolds with the sphere topology. By itself, the possibility of stabilization of geometry in the absence of matter fields is a consequence of nonlinearity of the initial Lagrangian. As an example, we discussed the Lagrangian of the second power with respect to the Ricci scalar. We have shown that the sphere metric is a particular case of a more general class of metrics that are parameterized by the boundary condition at the regular center $\theta = 0$. The numerical solution of the corresponding Cauchy problem showed that a singular point (topological defect) occurs at $\theta = \pi$.

The class of metrics found by us consists of two subclasses with different behavior at the singular point. The first class — geometry of the “beetroot” type — has rather simple asymptotic at the singular point that we have been able to analyse analytically. We showed that the Ricci scalar tends to zero with $\theta \to \pi$. At the same time the metric does not depend on the boundary conditions. The second class — geometry of the “apple” type — has more complicated structure and strongly depends on the initial conditions. If this manifold is considered as the extra space extension of our four-dimensional space-time, new opportunities of low energy physics description appear. For example, the dark matter density becomes dependent on the extra space geometry.

If a domain of our space with the deformed extra dimensions is surrounded by space with the maximally symmetric extra dimensions, then such domain has an extra energy density. This domain interacts with the ordinary matter by gravitation only, therefore it can be considered as dark matter candidate.

These dark matter domains move with the average velocity about 250 km/s in the Galaxy. It is an interesting problem to find a method of their detection because ordinary particle detectors are not aimed for such events. Indeed, one can neglect the excitations of the domain during its non-relativistic interaction with the nucleus of the detector provided the multidimensional Planck mass is about $m_D \sim 10^6$ GeV. In this case pure elastic scattering of nuclei on the domain as a whole takes place. The question is whether one can distinguish between such a “Mößbauer” scattering and the ordinary one.

The minimal size of such objects is comparable to the size of the extra space with the mass varying in a wide range depending on the initial conditions and the numerical values
of the model parameters. A more or less natural mass of WIMPs in this model is about 10 TeV. In this case new methods to detect the dark matter have to be developed. The primary estimate of the interaction of such objects with the nucleons leads to the cross section about 10^{-43} cm2, which does not contradict the observational constraints for very massive dark matter particles.

In this paper we estimated the mass of the dark matter particle. To obtain its precise value, it is necessary to find a stationary solution of the Einstein equation in 4+2 dimensions. We are going to study this question in the future.

One more problem discussed in this paper concerns the observable physical parameters, that are usually supposed to be uniquely connected with the initial theory parameters. Within multidimensional theories these are, e.g., the multidimensional Planck mass and the cosmological constant. But the situation is more interesting. We have shown that the observable Planck mass can be obtained depending on the initial (boundary) conditions at very different values of the initial theory parameters.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation, Project No. 3.472.2014/K. The work of V. A. Gani was also supported by the Russian Federation Government under Grant No. NSh-3830.2014.2. The authors are grateful to K. A. Bronnikov and V. I. Dokuchaev for useful discussions, and also to A. I. Bolozdynya and M. D. Skorokhvatov for their interest to this work.

[1] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) arXiv: hep-ph/9905221
[2] D. Stojkovic, Mod. Phys. Lett. A 28, 1330034 (2013) arXiv: 1406.2696 [gr-qc]
[3] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998) arXiv: hep-ph/9803315
[4] K. R. Dienes, E. Dudas, and T. Gherghetta, Nucl. Phys. B 537, 47 (1999) arXiv: hep-ph/9806292
[5] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and J. March-Russell, Phys. Rev. D 65, 024032 (2001) arXiv: hep-ph/9811448
[6] C. Csaki, C. Grojean, J. Hubisz, Yu. Shirman, and J. Terning, Phys. Rev. D 70, 015012 (2004) arXiv: hep-ph/0310355.
[7] G. Cacciapaglia, C. Csaki, C. Grojean, and J. Terning, Phys. Rev. D 71, 035015 (2005) arXiv: hep-ph/0409126.
[8] K. A. Bronnikov, R. V. Konoplich, and S. G. Rubin, Class. Quant. Grav. 24, 1261 (2007) arXiv: gr-qc/0610003.
[9] F. Cianfrani and G. Montani, Int. J. Mod. Phys. D 17, 785 (2008) arXiv: gr-qc/0606040.
[10] A. Mazumdar and J. Rocher, Phys. Rep. 497, 85 (2011) arXiv: 1001.0993 [hep-ph].
[11] S. V. Bolokhov, K. A. Bronnikov, and S. G. Rubin, Phys. Rev. D 84, 044015 (2011) arXiv: 1011.2828 [hep-ph].
[12] A. Linde, Phys. Lett. B 259, 38 (1991).
[13] A. D. Linde, Particle Physics and Inflationary Cosmology, Harwood Academic Publishers, Switzerland, 1990.
[14] B. Greene and J. Levin, JHEP 11, 096 (2007) arXiv: 0707.1062 [hep-th].
[15] A. A. Kirillov, A. A. Korotkevich, and S. G. Rubin, Phys. Lett. B 718, 237 (2012) arXiv: 1205.1108 [gr-qc].
[16] K. Bamba, A. N. Makarenko, A. N. Myagky, S. Nojiri, and S. D. Odintsov, J. Cosmol. Astropart. Phys. 01, 008 (2014) arXiv: 1309.3748 [hep-th].
[17] L. M. Sokolowski, Class. Quant. Grav. 24, 3713 (2007) arXiv: 0707.0942 [gr-qc].
[18] M. Gogberashvili, P. Midodashvili, and D. Singleton, JHEP 08, 033 (2007) arXiv: 0706.0676 [hep-th].
[19] A. Vilenkin, Phys. Lett. B 133, 177 (1983).
[20] I. Kogan, S. Mouslopoulos, A. Papazoglou, and G. Ross, Phys. Rev. D 64, 124014 (2001) arXiv: hep-th/0107086.
[21] I. Navarro, J. Cosmol. Astropart. Phys. 09, 004 (2003) arXiv: hep-th/0302129.
[22] R. Bousso and R. Harnik, Phys. Rev. D 82, 123523 (2010) arXiv: 1001.1155 [hep-th].
[23] S. G. Rubin and A. S. Zinger, Gen. Rel. Grav. 44, 2283 (2012) arXiv: 1101.1274 [gr-qc].
[24] S. G. Rubin, arXiv: 1403.2062 [gr-qc].
[25] G. Panico, E. Pontón, J. Santiago, and M. Serone, Phys. Rev. D 77, 115012 (2008) arXiv: 0801.1645 [hep-ph].
[26] M. E. Kahil and T. Harko, Mod. Phys. Lett. A 24, 667 (2009) arXiv: 0809.1915 [gr-qc].
[27] L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Non-relativistic theory, Volume 3 of Course of Theoretical Physics, Pergamon Press, 1977.