A global assessment of freshwater mollusk shell oxygen isotope signatures and their relation to precipitation and stream water

L. Pfister1, C. Grave3, J.-N. Beisel3,4 & J. J. McDonnell5,6,7

Records of δ18O in stream flow are critical for understanding and modeling hydrological, ecological, biogeochemical and atmospheric processes. However, the number of such records are extremely limited globally and the length of such time series are usually less than a decade. This situation severely handicaps their use in model testing and evaluation. Here we present a global assessment of freshwater mollusk (bivalves & gastropods) isotope data from 25 river basins that have stream water isotope values, water temperature data and shell material isotope signatures. Our data span a latitude range of 37.50°S to 52.06°N. We show that δ18O signatures in freshwater mollusks are able to explain 95% of the variance of stream water δ18O. We use shell δ18O values and water temperature data to reconstruct stream water δ18O signatures. With freshwater mussel life expectancy ranging from a few years up to 200 years, this translation of mollusk metabolic properties into long term stream water isotope records is a promising approach for substantially extending global stream water isotope records in time and space.
Here we present a global assessment of mollusk shell $\delta^{18}O$ isotope signatures and their corresponding precipitation and stream water $\delta^{18}O$ isotope data. We base this on published oxygen isotope signatures obtained from growth bands of freshwater mollusk shells (bivalves & gastropods) collected in 25 river basins (33 sampling sites; ~100 analysed aragonitic mollusk shells) with contrasting elevations and climates.

Results

From an initial list of 170 individual studies with published isotope signatures in freshwater mollusks, only 15 studies on 25 rivers and 33 sampling sites had both stream water isotope values and shell material isotope values. We relied on these 15 studies for conducting our comparative analysis (Table S1). For 22 rivers water temperature data was also available for a subsequent shell-based reconstruction of stream water $\delta^{18}O$ signals. The mollusk sampling sites spanned a latitudinal range of 37.50°S to 52.06°N and an elevational range of 2 to 3250 m.a.s.l. Maximum elevations for the river basins ranged from 2 to 7620 m.a.s.l. and catchment areas ranged from ~75 km² (Fleming Creek, South Carolina) to 400.000 km² (Niger River in Africa).

In most sites, the $\delta^{18}O$ signatures (without correction for temperature effects) in mollusks mirrored the $\delta^{18}O$ values found in stream water, with mean values plotting close to the 1:1 line (slope of regression line = 0.82) and standard deviations below 1.5‰ (Fig. 1; Table S2). Overall, shell $\delta^{18}O$ explained 95% of the variance of stream water $\delta^{18}O$. As a corollary, the $\delta^{18}O$ signatures in mollusks largely reflected $\delta^{18}O$ values and latitudinal gradients in precipitation – here represented by $\delta^{18}O$ ranges in precipitation across Köppen-Geiger climate zones (Figs S2b, S2e; Table S2). Notwithstanding regional topographic effects, $\delta^{18}O$ signatures in freshwater mollusks appear largely controlled by the climate conditions (as defined in the Köppen-Geiger classification) prevailing along a latitudinal gradient in the 25 river basins – spanning from equatorial to polar climates (Fig. 1). While such relations have been suggested at specific field sites, our study is the first to show such a relationship across catchment sizes, latitudes, elevations and ecoregions.

Outliers to the general pattern included sites located at higher elevations [e.g. ET Köppen climate zone], where stream water would be slightly more depleted than shell material (Fig. 1). Alternatively, sites located at lower latitudes and elevations [e.g. Aw Köppen climate zone] had stream water that tended to be slightly more enriched in comparison to shell material. In some sites, reported $\delta^{18}O$ values in streamflow and mollusks showed large variability (as expressed by their respective standard deviations in Table S2). The Amazon River for instance, showed a very strong altitudinal gradient between the basin’s headwaters located in the Andean mountains (5220 m.a.s.l.) and the mollusk sampling site (106 m.a.s.l.). This led to a pronounced seasonality in isotopic signatures, as well as

Figure 1. $\delta^{18}O$ signals in stream water vs. freshwater mollusk shells [mean $\delta^{18}O$ values with standard deviations] for 33 sampling sites across 25 river basins [map] and 9 Köppen-Geiger climate zones. Shell $\delta^{18}O$ = oxygen isotopic composition of the carbonate, expressed as a deviation in ‰ from a standard carbonate, the VPDB (Vienna Pee Dee Belemnite). Water $\delta^{18}O$ = oxygen isotopic composition of the water, expressed as a deviation in ‰ from the Vienna Standard Mean Ocean Water (VSMOW). Grey line: 1:1 line. Black dashed line: regression line (slope = 0.82). Colored dots: Köppen-Geiger climate zones in mollusk sampling locations ([Main climate–Precipitation–Temperature]; Af: Equatorial–fully humid; Aw: Equatorial–winter dry; Rs: Arid–summer dry–cold arid; Cfa: Temperate–fully humid–hot summer; Cfb: Temperate–fully humid–warm summer; Cwa: Temperate–winter dry–hot summer; Dfa: Cold–fully humid–hot summer; Dfb: Cold–fully humid–warm summer; ET: polar tundra. Dot size is proportional to the latitude of the shell and water sampling site. The map was created in ArcGIS version 10.5 (http://desktop.arcgis.com/) using free vector and raster map data [ne_50m_rivers_lake_centerlines; ne_110m_coastline; ne_110m_ocean; MSR_50M] made available by Natural Earth (http://naturalleardata.com). All maps are in the public domain (http://www.naturalleardata.com/about/terms-of-use/).
a strong altitudinal control on the depletion effect in precipitation. We hypothesize that this in turn, may lead to a strong seasonality in both stream water δ18O values (snow melt) and mollusk shell δ18O signatures – as expressed in high standard deviations of both precipitation and stream water isotope signatures (3 and 4‰, respectively; Fig. 1 & Table S2). For the Niger River, mean δ18O values in stream water and mollusk shells differed by nearly 2.5‰ and standard deviations were close to 3‰ – reflecting contrasting within-watershed climate zones, ranging from gaining rivers (defined as flow increasing with basin area) in the humid rain fed headwaters, to losing sections (defined as flow losses with increasing basin area) near the Sahara, finally leading into more humid regions and gaining flow further downstream.

Depending on the species and the prevailing climate (temperature) and environmental (e.g. salinity) conditions, bivalves may reduce or even cease their growth during more or less prolonged periods of time. This may eventually lead to an increasing discrepancy between shell and stream water δ18O, with shell δ18O signals exhibiting truncated patterns across potentially reduced growth periods. As a corollary this may lead to larger differences between stream water and shell δ18O signals, as noticed for both low and high latitudes in our set of 25 river basins (Fig. 1). At low latitudes, amplitudes of seasonal stream water temperature are rather small, whilst mean annual water temperatures are high (Table S2; Fig. S2a). As an example, the Oubangui River (4.21°N lat.) has a mean annual water temperature of 28.6 °C and a seasonal amplitude of stream water temperature of 6.4 °C. The rather small variability in stream water temperature (standard deviation σ = 1.2 °C for the Oubangui River) could favor the overall representativeness of δ18O values measured in shells, even in case of intermittent growth periods (caused by very high stream water temperatures, or severe low flow conditions). Towards higher latitudes, amplitudes of stream water temperature tend to increase, whilst mean annual water temperatures decrease (Fig. S2a). The Huron River (42.33°N) has a mean annual water temperature of 14.2 °C and a seasonal amplitude of stream water temperature of 2.9 °C. The large variability in stream water temperature (σ = 9.2 °C for the Huron River) increases the probability of a reduced representativeness of δ18O values measured from shell growth bands excluding periods with water temperatures below a species-specific threshold (10.14).

Given the strong control of stream water temperature on mollusk shell growth, stream water δ18O and temperature are a common tool for reconstructing shell δ18O values. We adapted this approach to reconstruct stream water δ18O for a subset of 22 rivers for which both shell mean δ18O and mean stream water temperature were available (Table S2). Our results show that estimated water δ18O closely mirrored δ18O values found in stream water (slope of the regression line = 1.00) – the reconstructed data explaining 93% of the variance of measured stream water δ18O (Fig. 2). These reconstructed stream water δ18O data reflected without any notable deviations, the difference in δ18O values of waters from different basins across a wide range of latitudes and climate settings (Table S2; Figs S2c & S2d). As expected, rivers at higher latitudes and/or elevations, with colder and wetter climates [e.g. ET Köppen climate zone], exhibited the most depleted reconstructed and measured isotope signatures; also as expected, stream water temperatures were lowest (mean annual ~5 °C) and δ18O values most depleted (~17‰ to ~15‰) in the glacier and snowmelt Andean rivers of the Mendoza province (Argentina; lat. 35–37°S). At lower latitudes the warm and drier climate conditions [e.g. Aw Köppen climate zone] signals were more enriched in reconstructed and measured isotope signatures in stream water (Figs 2; S2c,d). In African river basins, stream water temperatures were very high (e.g. Oubangui River at ~29 °C) and δ18O signatures were among the most enriched (e.g. ~0‰ in the Niger River) of our dataset (Table S2). When accounting for the variability in stream water temperature (as expressed through ± 1σ) and δ18O (± 1σ) for calculating stream water δ18O (Fig. S2d), we found the smallest range of uncertainty for river basins located at low latitudes (e.g. ± 1.2‰ for the Oubangui River). In river basins located at higher latitudes the range of uncertainty in δ18O was much larger (e.g. ±3‰ for the Huron River). A notable exception to this pattern is the Niger River, where a considerable uncertainty (± 3.6‰) is triggered by the large variability in shell δ18O (σ = 2.89‰), despite a rather small seasonal stream water temperature amplitude (12.6 °C). The Amazon River equally exhibits a large uncertainty in estimated stream water δ18O (± 3.3‰), with the effect of a small seasonal stream water amplitude (6.2 °C) outweighed by a large variability in shell δ18O (σ = 3.01‰).

Discussion

Our global assessment of mollusk shell δ18O data across a latitudinal sequence of 33 sampling sites reveals the strong links between precipitation, stream water and shell signatures – suggesting the potential for freshwater mussels to serve as archives of past isotopic signatures in rivers over a wide range of hydro-climatological settings. Long records of δ18O series are of great value for gaining a better understanding of long-term variability and/or non-stationary hydrological, ecological, biogeochemical and atmospheric responses to global change. However, the numbers of such records remain extremely limited globally and the length of such time series are usually less than a decade. An estimated 1000 freshwater bivalve species (order Unionoida) populate a large variety of river systems and lakes around the globe. Freshwater mussels are long-lived organisms, living an average of 10 years – with many species living 20 to 30 years and some up to two centuries (e.g. Margaritifera margaritifera). Such high longevity gives them the potential for recording across their successive growth bands long-term changes in environmental conditions. While past work has used mussels for paleo-temperature reconstructions, our analysis shows that mollusk shells formed in isotopic equilibrium with the surrounding water may serve as new tools for reconstructing stream water δ18O signatures over several decades from δ18O data series measured across mollusk shell increments.

In our global assessment of mollusk shell δ18O data, four studies relied on whole-shell analyses for determining time-averaged δ18O values. Another eleven studies had analyzed successive growth increments, delivering either seasonal or inter-annual variability in δ18O signals over multiple years. A limitation to the full reconstruction of stream water δ18O data is the sensitivity of freshwater mussels to stream water temperature or salinity that may induce growth periods of different lengths depending on latitude, elevation and prevailing climate conditions. Aestivation and growth interruption may eventually cause a limited representativeness of shell δ18O data for...
reconstruction of annual or inter-annual stream water δ¹⁸O signatures. Various studies on freshwater bivalves have shown that shell growth ceases at temperatures below 12 °C. At high latitudes/elevations, shell δ¹⁸O signals exhibit an increasingly truncated sinusoidal pattern with narrow peaks (essentially due to shell growth cessation in winter) and wide troughs. At lower latitudes/elevations, elevated water temperatures (20 to 35 °C) may substantially modify metabolic rates in freshwater mollusks and compromise biological processes such as survival, growth and reproduction. In tropical regions with typically small temperature variations the dominant control on shell δ¹⁸O variations are the changes in stream water δ¹⁸O or monsoonal influences. High discharge or low water conditions may lead to more or less prolonged growth gaps, extending up to 150 days in the Oubangui and Niger river basins.

An additional source of uncertainty relates to the water sampling protocols applied in the 33 mollusk collection sites used in our study. While water had been sampled at, or nearby shell collection sites, sampling frequency differed strongly – ranging from unique grab samples of water to fortnightly water sampling protocols extending over several years.

The highly variable temporal resolution in shell δ¹⁸O (time-averaged vs. successive growth increments) and river water δ¹⁸O (grab samples vs. continuous sampling) across our set of 33 sampling sites resulted in substantial differences between the related standard deviations of observed and reconstructed δ¹⁸O values. Ultimately, water and mollusk shell sampling frequency, as well as individual mollusk species’ physiology, ecology and life cycle are crucial for the interpretation of observed and reconstructed isotope signatures.

When considering the effects of mollusk shell analysis for reconstructing historical data series, it is also important to consider that aragonite is thermodynamically unstable – with a gradual recrystallization to calcite leading to a ‘resetting’ of isotopic signatures. A thorough mineralogical assessment of the degree of preservation of aragonitic mollusk shells is therefore strongly recommended (e.g. via X-ray diffraction). An important next step in this context is the implementation of calibration studies – either via controlled experiments or field surveys – contributing to a better understanding of the relationships between stable isotope signals and ecological and/or environmental variables. This will eventually lead to an improved interpretation of measured variability as ecological and/or environmental ‘signal’ or stochastic ‘noise’.

Regardless of current limitations, δ¹⁸O records from mollusk shells have the potential to open up new research avenues for quantifying climate change impacts on the long-term isotope time series of precipitation and stream water, leading to new mechanistic understanding of processes controlling water flow and quality, or serving for the calibration and validation of flow and transport models.
Methods
We used the search terms SHELL, ISOTOPES, FRESHWATER and OXYGEN in Web of Science and found 170 individual studies on isotope signatures in mollusks. This list was reduced to 15 studies carried out on 25 rivers (lakes were ruled out), for which stable isotope data was available for both stream water and shell material (from 28 different freshwater mollusk species; Fig. S1; Table S1). Stream water temperature data was extracted from the retained list of studies, except for the regions of Northwestern Mendoza, Central-eastern Mendoza and Southern Mendoza, for which water temperature data was taken from Scheibler et al.13.

The protocols used for mollusk shell preparation, shell material sampling and isotope analyses slightly differed among the 15 studies (Table S3). Four out of the 15 studies relied on analytical protocols that consisted in crushing one or several mollusk shells and subsequent δ^{18}O analysis of the collected shell material via a mass spectrometer (Table S3). In eleven studies shell annual growth bands were sampled either with micromilling devices, dental drills, or scalpel blades. The collected shell material was then analyzed with a mass spectrometer. Secondary Ion Mass Spectrometry has been recently used for obtaining high-resolution records of isotope signatures in mollusk shells.32–34. Prior to isotope analysis, growth bands are identified through dyeing with Mutvei’s solution.

For the 33 mollusk sampling sites of our global assessment, δ^{18}O values were either integrated (i.e. obtained via whole-shell analyses) or spanning over successive growth increments (i.e. years of growth bands). For an individual site, mean values either correspond to an average of δ^{18}O values from several shells or to an average of δ^{18}O values sampled across shell growth increments.

For converting δ^{18}O in shell material to δ^{18}O in stream water, the reported studies relied on equations relating water temperature and δ^{18}O in stream water (e.g. Dettman et al.35, Gonfiantini et al.35, Friedman and O’Neil15), such as:

$$1000 \ln \alpha = 2.559(10^6 T^{-2}) - 0.715$$

(1)

where T = stream water temp. (in °K) and α = fractionation between water and aragonite

$$\frac{\text{aragonite}}{\text{water}} = \frac{[1000 + \delta^{18} \text{O}_{\text{ar}}(\text{VSMOW})]}{[1000 + \delta^{18} \text{O}_{\text{w}}(\text{VSMOW})]} , \text{ where } \text{ar} \text{ is shell aragonite and } w \text{ is water}$$

(2)

Since $\delta^{18} \text{O}_{\text{ar}}$ values are first made relative to the Vienna Pee Dee Belemnite (VPDB) reference, they are commonly converted to the Vienna Standard Mean Ocean Water (VSMOW) as per Gonfiantini et al.15:

$$\delta^{18} \text{O}_{\text{ar}}(\text{VSMOW}) = \frac{\text{aragonite}}{\text{water}}(1000 + \delta^{18} \text{O}_{\text{ar}}(\text{VPDB})-1000$$

(3)

On the basis of equations (1) and (2) we were able to estimate stream water δ^{18}O from shell δ^{18}O and stream water temperature:

$$\delta^{18} \text{O}_{\text{w}}(\text{VSMOW}) = \frac{[1000 + \delta^{18} \text{O}_{\text{w}}(\text{VSMOW})]}{\text{aragonite}} - 1000$$

(4)

We extracted the isotopic values in stream water and mollusk shells and stream water temperature data from the primary literature via the data extraction software PlotDigitizer, as well as from tables (Tables S1–S3).

For the 25 river basins, we relied on the Köppen-Geiger climate zones as per Rubel and Kottek12 to determine δ^{18}O ranges in precipitation (Table S2 and Fig. S2).

Data Availability
The datasets are available from the individual studies retained for this work, as well as from the authors of this manuscript upon request.

References
1. Klaus, J. & McDonnell, J. J. Hydrograph separation using stable isotope: Review and evaluation. Journal of Hydrology 505, 47–64 (2013).
2. Sprenger, M., Volkman, T. H. M., Blume, T. & Weiler, M. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes. Hydrology and Earth System Sciences 19, 2617–2635 (2015).
3. IAEA. Monitoring isotopes in rivers: creation of the global network of isotopes in rivers (GNIR). IAEA-TECDOC-1673. ISBN 978-92-0-126810-5. 258 pages (IAEA, 2012).
4. Vitvar, T., Aggarwal, P. K. & Herczeg, A. L. Global network is launched to monitor isotopes in rivers. Eos, Transactions, American Geophysical Union 88, 325–332 (2007).
5. Halder, J., Terzer, S., Wassenaar, L. I., Aragúas-Aragúas, L. J. & Aggarwal, P. K. The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrology and Earth System Sciences 19, 3419–3431 (2015).
6. Helama, S. & Nielsen, J. K. Construction of statistically reliable sclerochronology using subfossil shells of river pearl mussel. Journal of Paleolimnology 40, 247–261 (2008).
7. Versteegh, E., Troelstra, S., Vonhof, H. & Kroon, D. Oxygen isotope composition of bivalve seasonal growth increments and ambient water in the rivers Rhine and Meuse. PALAIOS 24, 497–504 (2009).
8. Versteegh, E., Vonhof, H. B., Troelstra, S. R., Kaandorp, R. J. G. & Kroon, D. Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope chemistry. Geochimica, Geophysics, Geosystems. 11 (2010).
9. Kelemen, Z. et al. Calibration of hydroclimate proxies in freshwater bivalve shells from Central and West Africa. Geochimica et Cosmochimica Acta 208, 41–62 (2017).
10. Gajurel, A. P., France-Lanord, C., Huayhe, P., Guilmette, C. & Gurung, D. C and O isotope compositions of modern fresh-water mollusc shells and river waters from the Himalaya and Ganga plain. Chemical Geology 223, 156–183 (2006).
11. Urey, H. C. The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 562–581 (1947).
12. Rubel, E. & Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift 19, 135–141 (2010).
13. Ingraham, N. L., Caldwell, E. A. & Verhagen, B. Th. Arid catchments. In Isotope tracers in catchment hydrology (Elsevier, 1998).
14. Dettman, D. L., Reische, A. K. & Lohmann, K. C. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionoidae). Geochimica et Cosmochimica Acta 63, 1049–1057 (1999).

15. Gonfiantini, R., Kozdon, J. & Peters, S. E. Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. Reference and intercomparison materials for stable isotopes of light elements. IAEA-TECDOC-825. 13–29 (IAEA, 1995).

16. Anthony, J. L., Kesler, D. H., Downing, W. L. & Downing, J. A. Length-specific growth rates in freshwater mussels (Bivalvia: Unionoidae): extreme longevity or generalized growth cessation? Freshwater Biology 46, 1349–1359 (2001).

17. Dunca, E., Söderberg, H. & Norrgrann, O. Shell growth and age determination in the freshwater pearl mussel Margaritifera margaritifera in Sweden: natural versus limed streams. Ferraria 64, 48–58 (2011).

18. Goodwin, D. H., Schöne, B. R. & Dettman, D. L. Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. PALAIOS 18, 110–125 (2003).

19. Leng, M. J. & Lewis, J. P. Oxygen isotopes in Molluscan shell: applications in environmental archaeology. Environmental Archaeology 21, 295–306 (2016).

20. Caroll, M., Romanek, C. & Paddock, L. The relationship between the hydrogen and oxygen isotopes of freshwater bivalve shells and their home streams. Chemical Geology 234, 211–222 (2006).

21. Ganser, A. M., Newton, T. J. & Haro, R. J. Effects of elevated water temperature on physiological responses in adult freshwater mussels, Freshwater Biology 60, 1705–1716 (2015).

22. Kaandorp, R. J. G. Seasonal stable isotope variations of the modern Amazonian freshwater bivalve Anodontites trapesialis. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 339–354 (2003).

23. Shanahan, T. M., Pigati, J. S., Dettman, D. L. & Quade, J. Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition. Geochimica et Cosmochimica Acta 69, 3949–3966 (2005).

24. Leng, M. J. & Marshall, J. D. Palaeoclimatic interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, 811–831 (2004).

25. Leng, M. J., Lamb, A. L., Lamb, H. F. & Telford, R. J. Palaeoclimatic implications of isotopic data from modern and early Holocene shells of the freshwater snail Melanopsis tuberculata, from lakes in the Ethiopian Rift Valley. Journal of Paleolimnology 21, 97–106 (1999).

26. Van Hardenbroek, M. et al. The stable isotopic composition of organic and inorganic fossils in lake sediment records: Current understanding, challenges, and future directions. Quaternary Science Reviews 196, 154–176 (2018).

27. Rank, D., Wyhlidal, S., Schott, K., Weigand, S. & Oblin, A. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers. Isotopes in Environmental and Health Studies 54, 115–136 (2018).

28. Darling, W. G. & Bowes, M. J. A long-term study of stable isotopes as tracers of processes governing water flow and quality in a lowland river basin: the upper Thames, UK. Hydrological Processes 30, 2178–2195 (2016).

29. Reckert, A., Stichler, W., Schmidt, A. & Stumpp, C. Long-term data set analysis of stable isotopic composition in German rivers. Journal of Hydrology 552, 718–731 (2017).

30. Risi, C. et al. The water isotopic version of the land-surface model ORCHIDEE: Implementation, evaluation, sensitivity to hydrological parameters. Hydrology and Earth System Sciences 20, 1000258 (2016).

31. Scheibler, E. E., Claps, M. C. & Roig-Juñent, S. A. Temporal and altitudinal variations in benthic macroinvertebrate assemblages in an Andean river basin of Argentina. Journal of Limnology 73, 92–108 (2014).

32. Linzmeier, B. J., Kozdon, R., Peters, S. E. & Valley, J. W. Oxygen isotope variability within Nautilus shell growth bands. PLoS One 11, e0153890 (2016).

33. Vihtakari, M. et al. Decoding the oxygen isotope signal for seasonal growth patterns in Arctic bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 446, 263–283 (2016).

34. Pfister, L. et al. Freshwater pearl mussels as a stream water stable isotope recorder. Eco-hydrology, e007 (2018).

35. Friedman, I. & O’Neil, J. R. Data of geochemistry – Compilation of stable isotope fractionation factors of geochemical interest. Geological Survey Professional Paper 440-KK (1977).

Acknowledgements
We thank Núria Martinez-Carreras for preparing the world maps with locations of isotopes in freshwater mussel studies. Stan Schymanski and Ryan Teuling provided valuable comments on an earlier version of the manuscript. We thank Kim Janzen for editing assistance. Part of this work was funded through the National Research Fund of Luxembourg (grant INTER Mobility/15/10948104 JEDI).

Author Contributions
L.P. has designed the study, contributed to the data analysis and interpretation and wrote the manuscript. C.G. has extracted the stable isotope datasets from the 15 retained studies and contributed to data analysis. J.N.B. and J.M.D. participated in the data analysis, interpretation of data and results, as well as in manuscript revisions.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-40369-0.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019