Riemann-Roch Theorem and Index Theorem in Non-commutative Geometry *

Do Ngoc Diep

Institute of Mathematics
National Centre for Science and Technology of Vietnam

1 The classical Riemann-Roch Theorem

The classical Riemann-Roch Theorem is well-known in the function theory as [M.F. Atiyah and Hirzebruch, Riemann-Roch Theorem for differential manifolds, Bull. Amer. Math. Soc. 1959, Vol. 65, 276-281]

Theorem 1 (The Riemann-Roch Theorem)

\[r(-D) - i(D) = d(D) - g + 1, \]

where \(D \) is a fixed divisor of degree \(d(D) \) on a Riemann surface \(X \) of genus \(g \), \(r(-D) \) is the dimension of the space of meromorphic functions of divisor \(\geq -D \) on \(X \), \(i(D) \) the dimension of the space of meromorphic 1-forms of divisor \(\geq D \) on \(X \).

This theorem can be considered as computing the Euler characteristics of the sheaf of germs of holomorphic sections of the holomorphic bundle, defined by the divisor \(D \), over \(X \). It plays also an important role in classical algebraic geometry.

Theorem 2 Let \(X \) be a nonsingular complex projective algebraic variety, \(c \) its first Chern class, \(\xi \) a holomorphic bundle over \(X \).

*The text was presented at the ICM2002-Satellite Conference “Abstract and Applied Analysis 2002”, August 13-17, 2002, Hanoi, the author expresses his sincere and deep thanks to the organizers, and especially Professor Dr. DSc. Nguyen Minh Chuong for invitation.
Then the value on $[X]$ of the cohomological class
\[e^{c/2}.ch\xi.A^{-1}(p_1(X), p_2(X), \ldots) \]
equal to the Euler characteristic of the sheaf of holomorphic sections of the bundle ξ.

2 The Riemann-Roch Theorem in Algebraic Topology

In algebraic topology the Riemann-Roch theorem appeared as some measure of noncommutativity of some diagrams relating two generalized homology theories. Let us remind the most general setting of the Riemann-Roch Theorem.

Consider two generalized (co)homology theories $k(X)$ and $h(X)$ and $\tau : h \to k$ be a multiplicative map, sending $1 \in h^0(pt)$ to $1 \in k^0(pt)$. Consider a vector bundle ξ, oriented with respect to the both theories, over the base X. Denote $T(\xi)$ the Thom space of ξ, i.e. the quotient of the corresponding disk bundle $D(\xi)$ modulo its boundary $Sph(\xi)$. Let us consider an h-oriented vector bundle $\xi = (E, X, V, p)$. Denote E' the complement to the zero section of E. It is easy to see that $h^r(T(\xi)) = h^r(E, E')$.

Theorem 3 (Thom Isomorphism) The Thom homomorphism

\[t : h^g(X) = h^g(E) \to h^{g+n}(E, E') = \tilde{h}^{g+n}(T(\xi)) \]
is an isomorphism.

Following the Thom isomorphism theorem, there are Thom isomorphisms $t_h^\xi : \tilde{h}^*(T(\xi)) \to h^*(X)$ and $t_k^\xi : \tilde{k}^*(T(\xi)) \to \tilde{k}^*(X)$. The Todd class is defined as $T_\tau(\xi) := (t_k^\xi)^{-1} \circ \tau \circ t_h^\xi(1)$. The most general Riemann-Roch Theorem states:

Theorem 4 For every $\alpha \in h^*(X)$, one has

\[(t_k^\xi)^{-1} \circ \tau \circ t_h^\xi(\alpha) = \tau(\alpha)T_\tau(\xi)\]
The Todd class is therefore some noncommutativity measure of the diagram

\[
\begin{array}{ccc}
\tilde{h}^*(T(\xi)) & \xrightarrow{\tau} & \tilde{k}^*(T(\xi)) \\
\uparrow_{h}^{\xi} & & \uparrow_{k}^{\xi} \\
h^*(X) & \xrightarrow{\tau} & k^*(X)
\end{array}
\]

Example: \(h = k = H^*([.,\mathbb{Z}_2]), \tau = Sq = 1 + Sq^1 + Sq^2 + \ldots, \) then \(T_\tau^\xi = w(\xi) = 1 + w_1(\xi) + w_2(\xi) + \ldots \) - the full Stiefel-Whitney class.

3 The Riemann-Roch Theorem and the Index Theorem of pseudo-differential operators

One of the consequences of the Riemann-Roch Theorem is the fact that the index of the Dirac operator on \(X \) is exactly the Euler characteristics of \(X \). Let us review the classical results from algebraic topology and topology of pseudo-differential operators. With the Riemann-Roch Theorem it is convenient to define the direct image map \(f! \) as the special case of the composition map

\[
\begin{array}{cccc}
h^*(X) & \xrightarrow{t_h} & \tilde{h}^*(T(\nu(X)))) & \xrightarrow{g^*} & \tilde{h}^*(T(\nu(Y)))) & \xrightarrow{t_h^{-1}} & h^*(Y), \\
\end{array}
\]

where \(h \) is the ordinary co-homology, \(X \) and \(Y \) are the oriented manifolds and \(g = f : X \rightarrow Y \).

Theorem 5 Let \(X \) and \(Y \) be two closed manifold, oriented with respect to the both generalized (co)homology theories \(h \) and \(k \) and \(f : X \rightarrow Y \) a continuous map. Then the Todd classes \(T(X) \) and \(T(Y) \) measure noncommutativity of the diagram

\[
\begin{array}{ccc}
h^*(X) & \xrightarrow{\tau} & k^*(X) \\
\downarrow f! & & \downarrow f! \\
h^*(Y) & \xrightarrow{\tau} & h^*(Y)
\end{array}
\]

and more precisely, \(f!(\tau(x)T(X)) = \tau(f!(x)).T(Y) \).

The index of an arbitrary pseudo-differential operator \(D \) is re-
Theorem 6 (Atiyah-Singer-Hirzebruch Index Theorem)

\[\text{index} D = \langle (\text{ch} \ D \circ \mathcal{T}^{-1}(\mathcal{C}_\tau(X))), [X] \rangle, \]

where \(\mathcal{T}(\mathbb{C}_\tau(X)) \) is the Todd class of complexified tangent bundle, \(\mathcal{T}^{-1}(\mathbb{C}_\tau(X)) = U(p_1(x), p_2(x), \ldots) \), and

\[U(e_1(x^2), e_2(x^2), \ldots) = -\prod_i \frac{x^2}{(1 - e^{-x^2})(1 - e^{-x^2})}. \]

As a consequence of the previous theorem we have the following result. Let \(X \) denote a \(2n \)-dimensional oriented closed smooth manifold with spin structure, i.e. a fixed Hermitian structure on fibers, smoothly depending of points on the base \(X \). Denote \(\Omega^k(X) \) the space of alternating differential \(k \)-forms on \(X \), and \(d : \Omega^k(X) \to \Omega^{k+1}(X) \) the exterior differential, \(* \) the Hodge star operator and \(\delta = * \delta \) : \(\Omega^{k-1}(X) \to \Omega^k(X) \) the adjoint to \(d \) operator. The Dirac operator is \(d + \delta \) is a first order elliptic operator and its index is just equal to the Euler characteristic \(\chi(X) \) of the manifold.

\[\chi(X) := \sum_r (-1)^r \dim H^r(X, \eta). \]

Theorem 7

\[\text{ind}(d + \delta) = \chi(X) \]

4 Riemann-Roch Theorem in non-commutative geometry

Let us consider an arbitrary algebra \(A \) over the ground field of complex numbers \(\mathbb{C} \) and \(G \) a locally compact group and denote \(dg \) the left-invariant Haar measure on \(G \). The space \(C_c^\infty(G) \) of all continuous functions with compact support on \(G \) with values in \(A \) under ordinary convolution

\[(f \ast g)(x) := \int_G f(y)g(y^{-1}x)dy, \]

involution
and norm
\[\| f \| = \sup_{x \in G} |f(x)| \]
form a the so called cross-product \(A \times G \) of \(A \) and \(G \).

Theorem 8 (Connes-Thom Isomorphism)
\[t_K : K_{*+1}(A \times \mathbb{R}) \cong K_*(A), \]
\[t_{HC} : HC_{*+1}(A \times \mathbb{R}) \cong HC_*(A), \]
\[t_{HP} : HP_{*+1}(A \times \mathbb{R}) \cong HP_*(A). \]

A consequence of this theorem is the existence of some noncommutative Todd class

Theorem 9 There exists some Todd class
\[(T_\tau = (t_K)^{-1} \circ \tau \circ t_{HP}(1) \]
which measures the noncommutativity of the diagram
\[
\begin{array}{ccc}
K_{*+1}(A \times \mathbb{R}) & \xrightarrow{\tau} & HP_{*+1}(A \times \mathbb{R}) \\
\downarrow t_{\mathbb{K}} & & \downarrow t_{HP} \\
K_*(A) & \xrightarrow{\tau} & HP_*(A)
\end{array}
\]

5 Deformation quantization and periodic cyclic homology

Deformation quantization gives us some noncommutative algebras which are deformation of the classical algebras of holomorphic functions on \(X \). For an arbitrary noncommutative algebra \(A \) there are at least two generalized homology theories: the K-theory and periodic cyclic homology. The Connes-Thom isomorphism gives us a possibility to compare the two theories. There appeared some Todd class as the measure of noncommutativity. Let us review some results of P.Bressler, R. Nest and B. Tsygan [alg-geom/9705014v2 3 Jun 1997].

Deformation quantization of a manifold \(M \) is a formal one pa-
algebras A^h_M flat over $\mathbb{C}[[h]]$ together with an isomorphism of algebras $A^h_M \otimes \mathbb{C}[[h]] \mathbb{C} \to \mathcal{O}_M$. The formula
\[
\{f, g\} = \frac{1}{h} \{\hat{f}, \hat{g}\} + h.A^h_M,
\]
where f and g are two local sections of \mathcal{O}_M and \hat{f}, \hat{g} are their respective lifts in A^h_M, defines a Poisson structure associated to the deformation quantization A^h_M.

It is well-known that all symplectic deformation quantization of M of dimension $\dim_{\mathbb{C}} M = 2d$ are locally isomorphic to the standard deformation quantization of \mathbb{C}^{2d}, i.e. in a neighborhood U' of the origin in \mathbb{C}^{2d} there is an isomorphism
\[
A^h_{\mathbb{C}^{2d}}(U') = \mathcal{O}_{\mathbb{C}^{2d}}(U')[[h]] \cong A^h_M(U)
\]
of algebras over $\mathbb{C}[[h]]$, continuous in the h-adic topology, where the product on $A^h_{\mathbb{C}^{2d}}(U')$ is given in coordinates $x_1, \ldots, x_d, \xi_1, \ldots, \xi_d$ on \mathbb{C}^{2d} by the standard Weyl product $(f \ast g)(x, \xi) =$
\[
\exp\left(\frac{\sqrt{-1}}{2} \sum_{i=1}^{d} \left(\frac{\partial}{\partial \xi_i} \frac{\partial}{\partial y_i} - \frac{\partial}{\partial \eta_i} \frac{\partial}{\partial x_i}\right)\right) f(x, \xi) g(y, \eta)|_{x=y, \xi=\eta}
\]

Theorem 10 (RRT for periodic cyclic cycles) The diagram
\[
\begin{array}{ccc}
CC^\text{per}_* (A^h_M) & \xrightarrow{\sigma} & CC^\text{per}_* (\mathcal{O}_M) \\
\downarrow i & & \downarrow \mu_{\mathcal{O}} \cup \hat{A}(TM) \cup e^\theta \\
CC^\text{per}(A^h_M)[h^{-1}] & \xrightarrow{\mu^h_{A^h_M}} & \prod_{p=\infty}^{\infty} \mathbb{C}_M[h^{-1}, h][-2p]
\end{array}
\]
is commutative.

For \mathcal{D}- and \mathcal{E}-modules of the ring of pseudo-differential operators, take $M = T^*X$ for a complex manifold X, and $A^h_{T^*X}$ is the deformation quantization with the characteristic class $\theta = \frac{1}{2} \pi^* c_1(X)$, then $\hat{A}(TM) \cup e^\theta = \pi^* T(TM)$. After the use of Gelfand-Fuch cohomology the computation become available.
6 Noncommutative Chern characters of some quantum algebras

Let us demonstrate the indicated scheme to some concrete cases of quantum half-planes and quantum punctured complex planes. We indicate some results, computed by Do Ngoc Diep and Nguyen Viet Hai [Contributions to Algebra and Geometry, Vol. 42, No 2] and Do Ngoc Diep and Aderemi O. Kuku [arXiv.org/math.QA/0109042].

Canonical coordinates on the upper half-planes. Recall that the Lie algebra \(g = \text{aff}(R) \) of affine transformations of the real straight line is described as follows, see for example [D2]: The Lie group \(\text{Aff}(R) \) of affine transformations of type

\[
x \in R \mapsto ax + b, \text{ for some parameters } a, b \in R, a \neq 0.
\]

It is well-known that this group \(\text{Aff}(R) \) is a two dimensional Lie group which is isomorphic to the group of matrices

\[
\text{Aff}(R) \cong \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a, b \in R, a \neq 0 \}.
\]

We consider its connected component

\[
G = \text{Aff}_0(R) = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a, b \in R, a > 0 \}
\]

of identity element. Its Lie algebra is

\[
g = \text{aff}(R) \cong \{ \begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix} | \alpha, \beta \in R \}
\]

admits a basis of two generators \(X, Y \) with the only nonzero Lie bracket \([X, Y] = Y\), i.e.

\[
g = \text{aff}(R) \cong \{ \alpha X + \beta Y | [X, Y] = Y, \alpha, \beta \in R \}.
\]

The co-adjoint action of \(G \) on \(g^* \) is given (see e.g. [AC2], [Ki1]) by

\[
\langle K(g)F, Z \rangle = \langle F, \text{Ad}(g^{-1})Z \rangle, \forall F \in g^*, g \in G \text{ and } Z \in g.
\]
Denote the co-adjoint orbit of G in \mathfrak{g}, passing through F by
\[\Omega_F = K(G)F := \{K(g)F | F \in G\} \].

Because the group $G = \text{Aff}_0(\mathbb{R})$ is exponential (see [D2]), for $F \in \mathfrak{g}^* = \text{aff}(\mathbb{R})^*$, we have
\[\Omega_F = \{K(\exp(U))F | U \in \text{aff}(\mathbb{R})\} \].

It is easy to see that
\[\langle K(\exp U)F, Z \rangle = \langle F, \exp(-\text{ad}_U)Z \rangle \].

It is easy therefore to see that
\[K(\exp U)F = \langle F, \exp(-\text{ad}_U)X \rangle X^* + \langle F, \exp(-\text{ad}_U)Y \rangle Y^* \].

For a general element $U = \alpha X + \beta Y \in \mathfrak{g}$, we have
\[\exp(-\text{ad}_U) = \sum_{n=0}^{\infty} \frac{1}{n!} \begin{pmatrix} 0 & 0 \\ \beta & -\alpha \end{pmatrix}^n = \begin{pmatrix} 1 & 0 \\ L & e^{-\alpha} \end{pmatrix}, \]
where $L = \alpha + \beta + \frac{\alpha}{\beta}(1 - e^\beta)$. This means that
\[K(\exp U)F = (\lambda + \mu L)X^* + (\mu e^{\alpha})Y^* \].

From this formula one deduces [D2] the following description of all co-adjoint orbits of G in \mathfrak{g}^*:

- If $\mu = 0$, each point $(x = \lambda, y = 0)$ on the abscissa ordinate corresponds to a 0-dimensional co-adjoint orbit
 \[\Omega_\lambda = \{\lambda X^*\}, \quad \lambda \in \mathbb{R}\].

- For $\mu \neq 0$, there are two 2-dimensional co-adjoint orbits: the upper half-plane \{(\lambda, \mu) \mid \lambda, \mu \in \mathbb{R}, \mu > 0\} corresponds to the co-adjoint orbit
 \[\Omega_+ := \{F = (\lambda + \mu L)X^* + (\mu e^{-\alpha})Y^* \mid \mu > 0\}, \quad (1)\]
 and the lower half-plane \{(\lambda, \mu) \mid \lambda, \mu \in \mathbb{R}, \mu < 0\} corresponds to the co-adjoint orbit
 \[\Omega_- \subseteq \{F = (\lambda + \mu L)Y^* + (\mu e^{-\alpha})X^* \mid \mu < 0\} \quad (2)\].
Denote by ψ the indicated symplectomorphism from \mathbb{R}^2 onto Ω_+

$$(p, q) \in \mathbb{R}^2 \mapsto \psi(p, q) := (p, e^q) \in \Omega_+$$

Proposition 11

1. Hamiltonian function $f_Z = \tilde{Z}$ in canonical coordinates (p, q) of the orbit Ω_+ is of the form

$$\tilde{Z} \circ \psi(p, q) = \alpha p + \beta e^q, \text{ if } Z = \begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix}.$$

2. In the canonical coordinates (p, q) of the orbit Ω_+, the Kirillov form ω_Y is just the standard form $\omega = dp \wedge dq$.

Computation of generators $\hat{\ell}_Z$ Let us denote by Λ the 2-tensor associated with the Kirillov standard form $\omega = dp \wedge dq$ in canonical Darboux coordinates. We use also the multi-index notation. Let us consider the well-known Moyal \star-product of two smooth functions $u, v \in C^\infty(\mathbb{R}^2)$, defined by

$$u \star v = u.v + \sum_{r \geq 1} \frac{1}{r!} \left(\frac{1}{2r} \right)^r P^r(u, v),$$

where

$$P^r(u, v) := \Lambda^{i_1 j_1} \Lambda^{i_2 j_2} \ldots \Lambda^{i_r j_r} \partial_{i_1 i_2 \ldots i_r} u \partial_{j_1 j_2 \ldots j_r} v,$$

with

$$\partial_{i_1 i_2 \ldots i_r} := \frac{\partial^r}{\partial x^{i_1} \ldots \partial x^{i_r}}, \quad x := (p, q) = (p_1, \ldots, p_n, q^1, \ldots, q^n)$$

as multi-index notation. It is well-known that this series converges in the Schwartz distribution spaces $S(\mathbb{R}^n)$. We apply this to the special case $n = 1$. In our case we have only $x = (x^1, x^2) = (p, q)$.

Proposition 12 In the above mentioned canonical Darboux coordinates (p, q) on the orbit Ω_+, the Moyal \star-product satisfies the relation

$$i \tilde{Z} \circ i \tilde{T} - i \tilde{T} \circ i \tilde{Z} = i [Z, T], \quad \forall Z, T \in \text{aff}(\mathbb{R}).$$
Consequently, to each adapted chart ψ in the sense of [AC2], we associate a G-covariant \star-product.

Proposition 13 (see [G]) Let \star be a formal differentiable \star-product on $C^\infty(M, \mathbb{R})$, which is covariant under G. Then there exists a representation τ of G in $\text{Aut} \ N[[\nu]]$ such that

$$\tau(g)(u \star v) = \tau(g)u \star \tau(g)v.$$

Let us denote by $F_p u$ the partial Fourier transform of the function u from the variable p to the variable x, i.e.

$$F_p(u)(x, q) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ipx} u(p, q) dp.$$

Let us denote by $F_p^{-1}(u)(x, q)$ the inverse Fourier transform.

Lemma 14

1. $\partial_p F_p^{-1}(p.u) = iF_p^{-1}(x.u)$,
2. $F_p(v) = i\partial_x F_p(v)$,
3. $P^k(\tilde{Z}, F_p^{-1}(u)) = (-1)^k \beta e^q \frac{\partial^k F_p^{-1}(u)}{\partial p^k}$, with $k \geq 2$.

For each $Z \in \text{aff}(\mathbb{R})$, the corresponding Hamiltonian function is $\tilde{Z} = \alpha p + \beta e^q$ and we can consider the operator ℓ_Z acting on dense subspace $L^2(\mathbb{R}^2, \frac{d^2 p dq}{2\pi})^\infty$ of smooth functions by left \star-multiplication by $i\tilde{Z}$, i.e. $\ell_Z(u) = i\tilde{Z} \star u$. It is then continued to the whole space $L^2(\mathbb{R}^2, \frac{d^2 p dq}{2\pi})$. It is easy to see that, because of the relation in Proposition (12), the correspondence $Z \in \text{aff}(\mathbb{R}) \mapsto \ell_Z = i\tilde{Z} \star$ is a representation of the Lie algebra $\text{aff}(\mathbb{R})$ on the space $N[[\nu]]$ of formal power series in the parameter $\nu = \frac{i}{2}$ with coefficients in $N = C^\infty(M, \mathbb{R})$, see e.g. [G] for more detail.

We study now the convergence of the formal power series. In order to do this, we look at the \star-product of $i\tilde{Z}$ as the \star-product of symbols and define the differential operators corresponding to $i\tilde{Z}$. It is easy to see that the resulting correspondence is a representation of g by pseudo-differential operators.
Proposition 15 For each $Z \in \text{aff}(\mathbb{R})$ and for each compactly supported C^∞ function $u \in C_0^\infty(\mathbb{R}^2)$, we have

$$\hat{\ell}_Z(u) := \mathcal{F}_p \circ \ell_Z \circ \mathcal{F}_p^{-1}(u) = \alpha \left(\frac{1}{2} \partial_q - \partial_x \right) u + i \beta e^{q - \frac{x}{2}} u.$$

The associate irreducible unitary representations

Our aim in this section is to exponentiate the obtained representation $\hat{\ell}_Z$ of the Lie algebra $\text{aff}(\mathbb{R})$ to the corresponding representation of the Lie group $\text{Aff}_0(\mathbb{R})$. We shall prove that the result is exactly the irreducible unitary representation T_{Ω^+} obtained from the orbit method or Mackey small subgroup method applied to this group $\text{Aff}(\mathbb{R})$. Let us recall first the well-known list of all the irreducible unitary representations of the group of affine transformation of the real straight line.

Theorem 16 ([GN]) Every irreducible unitary representation of the group $\text{Aff}(\mathbb{R})$ of all the affine transformations of the real straight line, up to unitary equivalence, is equivalent to one of the pairwise non-equivalent representations:

- the infinite dimensional representation S, realized in the space $L^2(\mathbb{R}^*, \frac{dy}{|y|})$, where $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ and is defined by the formula

$$ (S(g)f)(y) := e^{iby} f(ay), \quad \text{where } g = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, $$

- the representation U^ε_λ, where $\varepsilon = 0, 1$, $\lambda \in \mathbb{R}$, realized in the 1-dimensional Hilbert space C^1 and is given by the formula

$$ U^\varepsilon_\lambda(g) = |a|^{i\lambda} (\text{sgn } a)^\varepsilon. $$

Let us consider now the connected component $G = \text{Aff}_0(\mathbb{R})$. The irreducible unitary representations can be obtained easily from the orbit method machinery.

Theorem 17 The representation $\exp(\hat{\ell}_Z)$ of the group $G = \text{Aff}_0(\mathbb{R})$ is exactly the irreducible unitary representation T_{Ω^+} of $G = \text{Aff}_0(\mathbb{R})$.
associated following the orbit method construction, to the orbit \(\Omega_+ \), which is the upper half-plane \(\mathbb{H} \cong \mathbb{R} \times \mathbb{R}^* \), i. e. +

\[
(\exp(\hat{\ell}_Z)f)(y) = (T_{\Omega_+}(g)f)(y) = e^{iby}f(ay), \forall f \in L^2(\mathbb{R}^*, \frac{dy}{|y|}),
\]

where \(g = \exp Z = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \).

By analogy, we have also

Theorem 18 The representation \(\exp(\hat{\ell}_Z) \) of the group \(G = \text{Aff}_0(\mathbb{R}) \) is exactly the irreducible unitary representation \(T_{\Omega_-} \) of \(G = \text{Aff}_0(\mathbb{R}) \) associated following the orbit method construction, to the orbit \(\Omega_- \), which is the lower half-plane \(\mathbb{H} \cong \mathbb{R} \times \mathbb{R}^* \), i. e.

\[
(\exp(\hat{\ell}_Z)f)(y) = (T_{\Omega_-}(g)f)(y) = e^{iby}f(ay), \forall f \in L^2(\mathbb{R}^*, \frac{dy}{|y|}),
\]

where \(g = \exp Z = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \).

6.1 The group of affine transformations of the complex straight line

Recall that the Lie algebra \(g = \text{aff}(\mathbb{C}) \) of affine transformations of the complex straight line is described as follows, see [D].

It is well-known that the group \(\text{Aff}(\mathbb{C}) \) is a four (real) dimensional Lie group which is isomorphism to the group of matrices:

\[
\text{Aff}(\mathbb{C}) \cong \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a, b \in \mathbb{C}, a \neq 0 \right\}
\]

The most easy method is to consider \(X, Y \) as complex generators, \(X = X_1 + iX_2 \) and \(Y = Y_1 + iY_2 \). Then from the relation \([X, Y] = Y, \text{ we get } [X_1, Y_1] - [X_2, Y_2] + i([X_1 Y_2] + [X_2, Y_1]) = Y_1 + iY_2\). This mean that the Lie algebra \(\text{aff}(\mathbb{C}) \) is a real 4-dimensional Lie algebra, having 4 generators with the only nonzero Lie brackets: \([X_1, Y_1] - [X_2, Y_2] = Y_1; [X_2, Y_1] + [X_1, Y_2] = Y_2\) and we can choose
another basic noted again by the same letters to have more clear Lie brackets of this Lie algebra:

\[[X_1, Y_1] = Y_1; [X_1, Y_2] = Y_2; [X_2, Y_1] = Y_2; [X_2, Y_2] = -Y_1\]

Remark 19 Let us denote:

\[H_k = \{ w = q_1 + iq_2 \in C | -\infty < q_1 < +\infty; 2k\pi < q_2 < 2k\pi + 2\pi \}; k = 0, \pm 1, \ldots \]

\[L = \{ \rho e^{i\varphi} \in C | 0 < \rho < +\infty; \varphi = 0 \} \text{ and } C_k = C \setminus L \]

is a univalent sheet of the Riemann surface of the complex variable multi-valued analytic function \(\text{Ln}(w), (k = 0, \pm 1, \ldots)\) Then there is a natural diffeomorphism \(w \in H_k \Longleftrightarrow e^w \in C_k\) with each \(k = 0, \pm 1, \ldots\) Now consider the map:

\[C \times C \longrightarrow \Omega_F = C \times C^* \]

\[(z, w) \longmapsto (z, e^w),\]

with a fixed \(k \in \mathbb{Z}\). We have a local diffeomorphism

\[\varphi_k : C \times H_k \longrightarrow C \times C_k\]

\[(z, w) \longmapsto (z, e^w)\]

This diffeomorphism \(\varphi_k\) will be needed in the all sequel.

On \(C \times H_k\) we have the natural symplectic form

\[\omega = \frac{1}{2}[dz \wedge dw + d\bar{z} \wedge d\bar{w}], \quad (3)\]

induced from \(C^2\). Put \(z = p_1 + ip_2, w = q_1 + iq_2\) and \((x^1, x^2, x^3, x^4) = (p_1, q_1, p_2, q_2) \in \mathbb{R}^4\), then

\[\omega = dp_1 \wedge dq_1 - dp_2 \wedge dq_2.\]

The corresponding symplectic matrix of \(\omega\) is

\[\wedge = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \quad \text{and} \quad \wedge^{-1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}\]
We have therefore the Poisson brackets of functions as follows. With each \(f, g \in C^\infty(\Omega) \)

\[
\{f, g\} = \theta_{ij} \frac{\partial f}{\partial x^i} \frac{\partial g}{\partial x^j} = \theta_{12} \frac{\partial f}{\partial p_1} \frac{\partial g}{\partial q_1} + \theta_{21} \frac{\partial f}{\partial q_1} \frac{\partial g}{\partial p_1} + \theta_{34} \frac{\partial f}{\partial p_2} \frac{\partial g}{\partial q_2} + \theta_{43} \frac{\partial f}{\partial q_2} \frac{\partial g}{\partial p_2} = \\
= \frac{\partial f}{\partial p_1} \frac{\partial g}{\partial q_1} - \frac{\partial f}{\partial q_1} \frac{\partial g}{\partial p_1} - \frac{\partial f}{\partial p_2} \frac{\partial g}{\partial q_2} + \frac{\partial f}{\partial q_2} \frac{\partial g}{\partial p_2} = \\
= 2\left[\frac{\partial f}{\partial z} \frac{\partial g}{\partial w} - \frac{\partial f}{\partial w} \frac{\partial g}{\partial z} \right]
\]

Proposition 20
Fixing the local diffeomorphism \(\varphi_k (k \in \mathbb{Z}) \), we have:

1. For any element \(A \in \text{aff}(\mathbb{C}) \), the corresponding Hamiltonian function \(\tilde{A} \) in local coordinates \((z, w)\) of the orbit \(\Omega_F \) is of the form

\[
\tilde{A} \circ \varphi_k (z, w) = \frac{1}{2} [\alpha z + \beta e^w + \overline{\alpha z} + \overline{\beta e^w}]
\]

2. In local coordinates \((z, w)\) of the orbit \(\Omega_F \), the symplectic Kirillov form \(\omega_F \) is just the standard form \((1)\).

Computation of Operators \(\ell_A^{(k)} \).

Proposition 21
With \(A, B \in \text{aff}(\mathbb{C}) \), the Moyal \(*\)-product satisfies the relation:

\[
i \tilde{A} * i \tilde{B} - i \tilde{B} * i \tilde{A} = i[\tilde{A}, \tilde{B}]
\]

(4)

For each \(A \in \text{aff}(\mathbb{C}) \), the corresponding Hamiltonian function is

\[
\tilde{A} = \frac{1}{2} [\alpha z + \beta e^w + \overline{\alpha z} + \overline{\beta e^w}]
\]

and we can consider the operator \(\ell_A^{(k)} \) acting on dense subspace \(L^2(\mathbb{R}^2 \times (\mathbb{R}^2)^*, \frac{dp_1 dq_1 dp_2 dq_2}{(2\pi)^2}) \) of smooth functions by left \(*\)-multiplication by \(i \tilde{A} \), i.e.

\[
\ell_A^{(k)} (f) = i \tilde{A} * f
\]

Because of the relation in Proposition 3.1, we have

Corollary 22

\[
\ell_A^{(k)} = \ell_A^{(k)} + \ell_A^{(k)}\]

(5)
From this it is easy to see that, the correspondence $A \in \text{aff}(C) \mapsto \ell_A^{(k)} = i\tilde{A}$. is a representation of the Lie algebra $\text{aff}(C)$ on the space $N[[\frac{1}{2}]]$ of formal power series, see [G] for more detail.

Proposition 23 For each $A = \begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix} \in \text{aff}(C)$ and for each compactly supported C^∞-function $f \in C^\infty_0(C \times H_k)$, we have:

$$\ell_A^{(k)} f := \mathcal{F}_z \circ \ell_A^{(k)} \circ \mathcal{F}_z^{-1}(f) = [\alpha(\frac{1}{2} \partial_w - \partial_\xi) f + \bar{\alpha}(\frac{1}{2} \partial_w - \partial_\xi) f + \frac{i}{2}(\beta e^w - \frac{1}{2} \xi + \bar{\beta} e^w - \frac{1}{2} \bar{\xi}) f]$$

(6)

Remark 24 Setting new variables $u = w - \frac{1}{2} \bar{\xi}; v = w + \frac{1}{2} \bar{\xi}$ we have

$$\hat{\ell}_A^{(k)}(f) = \alpha \frac{\partial f}{\partial u} + \bar{\alpha} \frac{\partial f}{\partial u} + \frac{i}{2}(\beta e^u + \bar{\beta} e^\bar{u}) f|_{(u,v)}$$

(7)

i.e $\hat{\ell}_A^{(k)} = \alpha \frac{\partial}{\partial u} + \bar{\alpha} \frac{\partial}{\partial u} + \frac{i}{2}(\beta e^u + \bar{\beta} e^\bar{u})$, which provides a (local) representation of the Lie algebra $\text{aff}(C)$.

The Irreducible Representations of $\tilde{\text{Aff}}(C)$. Since $\hat{\ell}_A^{(k)}$ is a representation of the Lie algebra $\tilde{\text{Aff}}(C)$, we have:

$$\exp(\hat{\ell}_A^{(k)}) = \exp(\alpha \frac{\partial}{\partial u} + \bar{\alpha} \frac{\partial}{\partial u} + \frac{i}{2}(\beta e^u + \bar{\beta} e^\bar{u}))$$

is just the corresponding representation of the corresponding connected and simply connected Lie group $\tilde{\text{Aff}}(C)$.

Let us first recall the well-known list of all the irreducible unitary representations of the group of affine transformation of the complex straight line, see [D] for more details.

Theorem 25 Up to unitary equivalence, every irreducible unitary representation of $\tilde{\text{Aff}}(C)$ is unitarily equivalent to one the following one-to-another non-equivalent irreducible unitary representations:

1. The unitary characters of the group, i.e the one dimensional unitary representation $U_\lambda, \lambda \in \mathbb{C}$, acting in \mathbb{C} following the formula

$$U_\lambda(z,w) = e^{i \lambda(z \bar{w} - \bar{z} w)}, \forall (z,w) \in \tilde{\text{Aff}}(C), \lambda \in \mathbb{C}.$$
2. The infinite dimensional irreducible representations \(T_\theta, \theta \in S^1 \), acting on the Hilbert space \(L^2(\mathbb{R} \times S^1) \) following the formula:

\[
[T_\theta(z, w)f](x) = \exp(i(\Re(wx) + 2\pi\theta[\frac{\Im(x+z)}{2\pi}]))f(x \oplus z), \quad (8)
\]

Where \((z, w) \in \tilde{\text{Aff}}(C); x \in \mathbb{R} \times S^1 = C \setminus \{0\}; f \in L^2(\mathbb{R} \times S^1); x \oplus z = \Re(x + z) + 2\pi i\{\frac{\Im(x+z)}{2\pi}\}\]

In this section we will prove the following important Theorem which is very interesting for us both in theory and practice.

Theorem 26 The representation \(\exp(\hat{\ell}^{(k)}_A) \) of the group \(\tilde{\text{Aff}}(C) \) is the irreducible unitary representation \(T_\theta \) of \(\tilde{\text{Aff}}(C) \) associated, following the orbit method construction, to the orbit \(\Omega \), i.e:

\[
\exp(\hat{\ell}^{(k)}_A)f(x) = [T_\theta(\exp A)f](x),
\]

where \(f \in L^2(\mathbb{R} \times S^1); A = \begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix} \in \text{aff}(C); \theta \in S^1; k = 0, \pm 1, \ldots \)

Remark 27 We say that a real Lie algebra \(g \) is in the class \(MD \) if every K-orbit is of dimension, equal 0 or \(\dim g \). Further more, one proved that ([D, Theorem 4.4]) Up to isomorphism, every Lie algebra of class \(MD \) is one of the following:

1. Commutative Lie algebras.
2. Lie algebra \(\text{aff}(\mathbb{R}) \) of affine transformations of the real straight line
3. Lie algebra \(\text{aff}(\mathbb{C}) \) of affine transformations of the complex straight line.

Thus, by calculation for the group of affine transformations of the real straight line \(\text{Aff}(\mathbb{R}) \) in [DH] and here for the group affine transformations of the complex straight line \(\text{Aff}(\mathbb{C}) \) we obtained a description of the co-adjoint \(MD \) orbits.
6.2 MD_4-groups

We refer the reader to the results of Nguyen Viet Hai [H3]-[H4] for the class of MD_4-groups (i.e. 4-dimensional solvable Lie groups, all the co-adjoint of which are of dimension 0 or maximal). It is interesting that here he obtained the same exact computation for \ast-products and all representations.

6.3 $SO(3)$

As an typical example of compact Lie group, the author proposed Job A. Nable to consider the case of $SO(3)$. We refer the reader to the results of Job Nable [Na1]-[Na3]. In these examples, it is interesting that the \ast-products, in some how as explained in these papers, involved the Maslov indices and Monodromy Theorem.

6.4 Exponential groups

Arnal-Cortet constructed star-products for this case [AC1]-[AC2].

6.5 Compact groups

We refer readers to the works of C. Moreno [Mo].

7 Algebraic Noncommutative Chern Characters

Let G be a compact group, $\text{HP}_\ast(C\ast(G))$ the periodic cyclic homology introduced in §2. Since $C\ast(G) = \lim_{N} \prod_{i=1}^{N} \text{Mat}_{n_i}(\mathbb{C})$, $\text{HP}_\ast(C\ast(G))$ coincides with the $\text{HP}_\ast(C\ast(G))$ defined by J. Cuntz-D. Quillen [CQ].

Lemma 28 Let $\{I_N\}_{N \in \mathbb{N}}$ be the above defined collection of ideals in $C\ast(G)$. Then

$$K_\ast(C\ast(G)) = \lim_{N} K_\ast(I_N) = K_\ast(\mathbb{C}(\mathcal{T})).$$
where T is the fixed maximal torus in G.

First note that the algebraic K-theory of C^*-algebras has the stability property
\[K_\ast(A \otimes M_n(C)) \cong K_\ast(C(T)). \]

Hence,
\[\lim_{\to} K_\ast(I_{n_i}) \cong K_\ast(\prod_{w = \text{highest weight}} C_w) \cong K_\ast(C(T)), \]
by Pontryagin duality.

J. Cuntz and D. Quillen [CQ] defined the so-called X-complexes of C^*-algebras and then used some ideas of Fedosov product to define algebraic Chern characters. We now briefly recall their definitions. For a (non-commutative) associate C^*-algebra A, consider the space of even non-commutative differential forms $\Omega^+(A) \cong RA$, equipped with the Fedosov product
\[\omega_1 \circ \omega_2 := \omega_1 \omega_2 - (-1)^{\omega_1} d\omega_1 d\omega_2, \]
see [CQ]. Consider also the ideal $IA := \oplus_{k \geq 1} \Omega^{2k}(A)$. It is easy to see that $RA/IA \cong A$ and that RA admits the universal property that any based linear map $\rho : A \to M$ can be uniquely extended to a derivation $D : RA \to M$. The derivations $D : RA \to M$ bijectively correspond to lifting homomorphisms from RA to the semi-direct product $RA \oplus M$, which also bijectively correspond to linear map $\bar{\rho} : \bar{A} = A/C \to M$ given by
\[a \in \bar{A} \mapsto D(\rho a). \]

From the universal property of $\Omega^1(RA)$, we obtain a bimodule isomorphism
\[RA \otimes \bar{A} \otimes RA \cong \Omega^1(RA). \]

As in [CQ], let $\Omega^- A = \oplus_{k \geq 0} \Omega^{2k+1} A$. Then we have
\[\Omega^- A \cong RA \otimes \bar{A} \cong \Omega^1(RA)_\# := \Omega^1(RA)/[(\Omega^1(RA), RA)]. \]
Theorem 29 ([CQ], Theorem 1): There exists an isomorphism of \(\mathbb{Z}/(2) \)-graded complexes
\[
\Phi : \Omega A = \Omega^+ A \oplus \Omega^- A \cong RA \oplus \Omega^1(RA),
\]
such that
\[
\Phi : \Omega^+ A \cong RA,
\]
is defined by
\[
\Phi(a_0 da_1 \ldots da_{2n}) = \rho(a_1) \omega(a_1, a_2) \ldots \omega(a_{2n-1}, a_{2n}),
\]
and
\[
\Phi : \Omega^- A \cong \Omega^1(RA),
\]
\[
\Phi(a_0 da_1 \ldots da_{2n+1}) = \rho(a_1) \omega(a_1, a_2) \ldots \omega(a_{2n-1}, a_{2n}) \delta(a_{2n+1}).
\]
With respect to this identification, the product in \(RA \) is just the Fedosov product on even differential forms and the differentials on the \(X \)-complex
\[
X(RA) : \quad RA \cong \Omega^+ A \to \Omega^1(RA) \cong \Omega^- A \to RA
\]
become the operators
\[
\beta = b - (1 + \kappa)d : \Omega^- A \to \Omega^+ A,
\]
\[
\delta = -N \kappa^2 b + B : \Omega^+ A \to \Omega^- A,
\]
where
\[
N \kappa^2 = \sum_{j=0}^{n-1} \kappa^{2j}, \quad \kappa(da_1 \ldots da_n) := da_n \ldots da_1.
\]
Let us denote by \(IA \triangleleft RA \) the ideal of even non-commutative differential forms of order \(\geq 2 \). By the universal property of \(\Omega^1 \)
\[
\Omega^1(RA/IA) = \Omega^1 RA/((IA)\Omega^1 RA + \Omega^1 RA.(IA) + dIA).
\]
Since \(\Omega^1 RA = (RA)dRA = dRA.(RA) \), then
\[
\Omega^1 RA(IA) \cong IA\Omega^1 RA \mod [RA, \Omega^1 R].
\]
\[
\Omega^1(RA/IA) \# = \Omega^1 RA/([RA, \Omega^1 RA] + IA.dRA + dIA).
\]
For \(IA \)-adic tower \(RA/(IA)^{n+1} \), we have the complex \(\mathcal{X}(RA/(IA)^{n+1}) \):
Define $\mathcal{X}^{2n+1}(RA, IA)$:

$$RA/\left(IA\right)^{n+1} \rightarrow \Omega^1 RA/\left([RA, \Omega^1 RA] + (IA)^{n+1}dRA + d(IA)^{n+1}\right) \rightarrow RA/\left(IA\right)^{n+1},$$

and $\mathcal{X}^{2n}(RA, IA)$:

$$RA/\left((IA)^{n+1} + [RA, IA^n]\right) \rightarrow \Omega^1 RA/\left([RA, \Omega^1 RA] + d(IA)^ndRA\right) \rightarrow RA/\left((IA)^{n+1} + [RA, IA^n]\right).$$

One has

$$b((IA)^ndIA) = [(IA)^n, IA] \subset (IA)^{n+1},$$

$$d(IA)^{n+1} \subset \sum_{j=0}^{n}(IA)^j d(IA)(IA)^{n-j} \subset (IA)^ndIA + [RA, \Omega^1 RA].$$

and hence

$$\mathcal{X}^1(RA, IA) = X(RA, IA),$$

$$\mathcal{X}^0(RA, IA) = (RA/IA)\#.$$}

There is an sequence of maps between complexes

$$\ldots \rightarrow X(RA/IA) \rightarrow \mathcal{X}^{2n+1}(RA, IA) \rightarrow \mathcal{X}^{2n}(RA, IA) \rightarrow X(RA/IA) \rightarrow \ldots$$

We have the inverse limits

$$\hat{X}(RA, IA) := \lim_{\leftarrow} X(RA/\left(IA\right)^{n+1}) = \lim_{\leftarrow} \mathcal{X}^n(RA, IA).$$

Remark that

$$\mathcal{X}^q = \Omega A/F^q\Omega A,$$

$$\hat{X}(RA/IA) = \hat{\Omega} A.$$}

We quote the second main result of J. Cuntz and D. Quillen ([CQ], Thm2), namely:

$$H_i \hat{X}(RA, IA) = HP_i(A).$$

We now apply this machinery to our case. First we have the following.
Lemma 30

\[\lim_{N \to \infty} HP^*(I_N) \cong HP^*(C(T)). \]

By similar arguments as in the previous lemma 28. More precisely, we have

\[HP(I_{n_i}) = HP(\prod_{w=\text{highest weight}} C_w) \cong HP(C(T)) \]

by Pontryagin duality.

Now, for each idempotent \(e \in M_n(A) \) there is an unique element \(x \in M_n(\widehat{RA}) \). Then the element

\[\tilde{e} := x + (x - \frac{1}{2}) \sum_{n \geq 1} \frac{2^n(2n - 1)!!}{n!} (x - x^{2n})^{2n} \in M_n(\widehat{RA}) \]

is a lifting of \(e \) to an idempotent matrix in \(M_n(\widehat{RA}) \). Then the map \([e] \mapsto \text{tr}(\tilde{e})\) defines the map \(K_0 \to H_0(X(\widehat{RA})) = HP_0(A) \). To an element \(g \in \text{GL}_n(A) \) one associates an element \(p \in \text{GL}(\widehat{RA}) \) and to the element \(g^{-1} \) an element \(q \in \text{GL}_n(\widehat{RA}) \) then put

\[x = 1 - qp, \ \text{and} \ y = 1 - pq. \]

And finally, to each class \([g] \in \text{GL}_n(A)\) one associates

\[\text{tr}(g^{-1}dg) = \text{tr}(1 - x)^{-1}d(1 - x) = d(\text{tr}(\log(1 - x))) = \]

\[= -\text{tr} \sum_{n=0}^{\infty} x^n dx \in \Omega^1(A) \# . \]

Then \([g] \mapsto \text{tr}(g^{-1}dg)\) defines the map \(K_1(A) \to HH_1(A) = H_1(X(\widehat{RA})) = HP_1(A) \).

Let \(HP(I_{n_i}) \) be the periodic cyclic cohomology defined by Cuntz-Quillen. Then the pairing

\[K^\text{alg}_*(C^*(G)) \times \bigcup_N HP^*(I_N) \to \mathbb{C} \]

defines an algebraic non-commutative Chern character.
which gives us a variant of non-commutative Chern characters with values in HP-groups.

Theorem 31 Let G be a compact group and T a fixed maximal compact torus of G. Then, the Chern character

$$\text{ch}_{\text{alg}} : K_*(C^*(G)) \to HP_*(C^*(G))$$

is an isomorphism, which can be identified with the classical Chern character

$$ch : K_*(C(T)) \to HP_*(C(T))$$

which is also an isomorphism.

References

[AC1] D. Arnal and J. C. Cortet, \ast-product and representations of nilpotent Lie groups, J. Geom. Phys., 2(1985), No 2, 86-116.

[AC2] D. Arnal and J. C. Cortet, Représentations \ast des groupes exponentiels, J. Funct. Anal. 92(1990), 103-135.

[Ar] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer Verlag, Berlin - New York - Heidelberg, 1984.

[BGV] N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften, Corrected 2nd Printing 1996, No. 298, Springer-Verlag,1992.

[B] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Annals of Math., 57(1953), 115–207.

[CP] V. Chari and A. Pressley, A guide to Quantum Groups, Cambridge Univ. Press, 1995.
[Ca] A. Connes, *Non commutative Geometry*, Academic Press, 1994.

[Co] A. Connes, *Entire cyclic cohomology of Banach algebras and characters of \(\theta \)-summable Fredholm modules*, K-theory, 1(1988), 519–548.

[C] J. Cuntz, *A survey of some aspects of non-commutative geometry*, Mathematisches Inst. Uni. Heidelberg, 35(1992), pp.1–29.

[CQ] J. Cuntz and D. Quillen, *The \(\mathcal{X} \) complex of the universal extensions*, Preprint Math. Inst. Uni. Heidelberg, 1993.

[D1] Do Ngoc Diep, *A survey of noncommutative geometry methods for group algebras*, J. of Lie Theory, 3(1993), ...-...

[D2] Do Ngoc Diep, *Methods of Noncommutative Geometry for Group C*-Algebras*, Chapman and Hall/CRC Press Research Notes in Mathematics Series, # 416, 1999.

[D3] Do Ngoc Diep, *Multidimensional quantization and Fourier integral operators*, Forchergruppe “Topologie und nichtkmmutative Geometrie”, Uni Heidelberg, Heft 42, Oktober 1992, pp 9.

[D4] Do Ngoc Diep, *Quantum strata of coadjoint orbits*, arXiv:math.QA/0003100.

[DH1] Do Ngoc Diep and Nguyen Viet Hai, *Quantum half-plane via Deformation Quantization*, math. QA/9905002, 2 May 1999.

[DH2] Do Ngoc Diep and Nguyen Viet Hai *Quantum coadjoint orbits of the group of affine transformations of the complex straight line*, math.QA/9908046.

[DKT1] Do Ngoc Diep, Aderemi O. Kuku and Nguyen Quoc Tho, *Noncommutative Chern characters of compact Lie group C*-
[DKT2] Do Ngoc Diep, Aderemi O. Kuku and Nguyen Quoc Tho, Noncommutative Chern characters of compact quantum groups, to appear in Journal of Algebra, math.QA/9807099

[DHK] Do Ngoc Diep, Phung Ho Hai and Aderemi O. Kuku Compact quantum group C*-algebras as Hopf algebras with approximate unit, math.QA/9904175.

[DT1] D. N. Diep and N. V. Thu, Homotopy invariance of entire current cyclic homology, Vietnam J. of Math., 25(1997), No 1.

[DT2] D. N. Diep and N. V. Thu, Entire homology of noncommutative de Rham currents, ICTP, IC/96/214, 1996, 23pp; to appear in Publication of CFCA, Hanoi-City Vietnam National University, 1997.

[Di] J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1982.

[Du1] M. Duflo, Construction de gros ensemble de représentations unitaires irréductibles d’un groupe de Lie quelconque, Proc. Conf. Neptune, Romanie (1980, Pitman Co), 147-155.

[Du2] M. Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta math. 149(1982), 153-213.

[F] B. Fedosov, Deformation quantization and index theory, Akademie der Wissenschaften Verlag 1993.

[FT] F. Feng and B. Tsygan, Hochschild and cyclic homology of quantum groups, Commun. Math. Phys. 140(1991), 481–521.

[G] S. Gutt, Deformation quantization, ICTP Workshop on Representation Theory of Lie groups, SMR 686/14, 1993.
[GN] I. M. Gelfand and M. A. Naimark, *Unitary representations of the group of affine transformations of the straight line*, Dokl. AN SSSR, 55(1947), No 7, 571-574.

[G-R] E. C. Gootman and J. Rosenberg, *The structure of crossed products C*-algebras: A proof of the generalized Effros-Hahn conjecture*, Invent. math. 52(1979), 283-198.

[H] L. Hodgkin, *On the K-theory of Lie groups*, Topology, 6(1967), 1-36.

[H3] Nguyen Viet Hai, *Quantum coadjoint orbits of real diamond Lie group*, arXiv:math.QA/0001046.

[H4] Nguyen Viet Hai, *Quantum coadjoint orbits of MD4-groups*, arXiv:math.QA/0003058.

[Kh1] M. Khalkhali, *On the entire cyclic cohomology of Banach algebras: I. Morita invariance*, Mathematisches Inst. Uni. Heidelberg, 54(1992), pp 24.

[Kh2] M. Khalkhali, *On the entire cyclic cohomology of Banach algebras: II. Homotopy invariance*, Mathematisches Inst. Uni. Heidelberg, 55(1992), pp 18.

[Ka1] A. Karabegov, *Deformation quantization with separation of variables on a Kähler manifold*, Comm. Math. Phys. 180(1996) 745–755.

[Ki1] A. A. Kirillov, *Elements of the theory of representation*, Springer Verlag, Berlin - New York - Heidelberg, 1976.

[Ki2] A. A. Kirillov, *Unitary representations of nilpotent Lie groups*, Russian Math. Survey, 1962, 17-52.

[Ko] B. Kostant, *On certain unitary representations which arise from a quantization theory*, Lecture Notes in Math., 170(1970), 237-.....
[Li] R. L. Lipsman, *Generic representations are induced from square-integrable representations*, Trans. A.M.S. 285(1984), 845-854.

[Mo] C. Moreno, *Invariant star Products and representations of compact semisimple Lie groups*, Letters in Math. Physics, 12(1986), 217-229.

[Na1] Job A. Nable, *⋆-product and unitary representations of the rotation group*, Preprint

[Na2] Job A. Nable, *⋆-product and unitary representations of the complex rotation group*, Preprint

[Na3] Job A. Nable, *⋆-product and unitary representations of SU(1,1)*, Preprint

[Ng1] Nghiem Xuan Hai, *Algèbres de Heidelberg et géométrie symplectique des algèbres de Lie*, Publication Math. Orsay, No 78-08 (1978).

[Ng2] Nghiem Xuan Hai, *Une variante de la conjecture de gel’fand-Kirillov et la transformation de Fourier-Plancherel*, C. R. Acad. Sci. Paris, Série I, 293(1981), 381-384.

[Ng3] Nghiem Xuan Hai, *La transformation de Fourier-Plancherel analytique des groupes de Lie I. Algèbres de Weyl et opérateurs différentiels*, Prépublication No 81T22, Univ. Paris XI, Orsay (1981).

[Ng4] Nghiem Xuan Hai, *La transformation de Fourier-Plancherel analytique des groupes de Lie II. Les groupes nilpotents*, Prépublication No 81T23, Univ. Paris XI, Orsay (1981).

[Ng5] Nghiem Xuan Hai, *La transformation de Fourier-Plancherel analytique des groupes de Lie résolubles*, Prépublication No 80T39, Univ. Paris XI, Orsay (1982).
[P] H. Poincaré, *Sur les groupes continus*, Oeuvres de Poincaré, vol. III, Paris, Gauthier-Villars, 1934, pp 173-212.

[R1] M. A. Rieffel, *Deformation quantization of Heisenberg manifolds* Comm. Math. Phys. **122**(1989), 531-562.

[R2] M. A. Rieffel, *Lie group convolution algebras as deformation quantization of linear Poisson structures* Amer. J. of Math. **112**(1990), 657-686.

[ReTa] N. Reshetikhin and L. A. Takhtajan, *Deformation quantization of Kähler manifolds*, [math.QA/9907171](http://arxiv.org/abs/math.QA/9907171).

[TDV] Tran Dao Dong and Tran Vui, *On the procedure of multidimensional quantization*, Acta Math. Vietnam., **14**(1989), No 2, 19-30.

[Th1] N. V. Thu, *Morita invariance of entire current cyclic homology*, Vietnam J. Math. (to appear).

[Th2] N. V. Thu, *Exactness of entire current cyclic homology*, Matimyas Mathematica (to appear).

[TrV] Tran Vui, *Multidimensional quantization and U(1)-covering*, Acta Math. Vietnam. **16**(1991), No 2.

[TrV2] Tran Vui, *A reduction of the procedure of multidimensional quantization*, Tap Chi Toan Hoc (Vietnam J. of Math.), **19**(1991), No 2.

[W1] T. Watanabe, *On the Chern characters of symmetric spaces related to SU(n)*, J. Math. Kyoto Univ. **34**(1994), 149–169.

[W2] T. Watanabe, *Chern characters on compact Lie groups of low rank*, Osaka J. Math. **22**(1985), 463–488.