Repeated loss of variation in insect ovary morphology highlights the role of development in life-history evolution

Samuel H. Church¹, Bruno A. S. de Medeiros¹,², Seth Donoughe¹,³, Nicole L. Márquez Reyes⁴ and Cassandra G. Extavour¹,⁵

¹Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
²Smithsonian Tropical Research Institute, Panama City, Panama
³Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
⁴Department of Biology, Universidad de Puerto Rico en Cayey, Cayey 00736, Puerto Rico
⁵Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA

The number of offspring an organism can produce is a key component of its evolutionary fitness and life history. Here we perform a test of the hypothesized trade-off between the number and size of offspring using thousands of descriptions of the number of egg-producing compartments in the insect ovary (ovarioles), a common proxy for potential offspring number in insects. We find evidence of a negative relationship between egg size and ovariole number when accounting for adult body size. However, in contrast to prior claims, we note that this relationship is not generalizable across all insect clades, and we highlight several factors that may have contributed to this size-number trade-off being stated as a general rule in previous studies. We reconstruct the evolution of the arrangement of cells that contribute nutrients and patterning information during oogenesis (nurse cells), and show that the diversification of ovariole number and egg size have both been largely independent of their presence or position within the ovariole. Instead, we show that ovariole number evolution has been shaped by a series of transitions between variable and invariant states, with multiple independent lineages evolving to have almost no variation in ovariole number. We highlight the implications of these invariant lineages on our understanding of the specification of ovariole number during development, as well as the importance of considering developmental processes in theories of life-history evolution.

1. Introduction

Offspring number is a fundamental parameter in the study of life history [1]. This number differs widely between organisms [1], and its variation is the foundation for several hypotheses about life-history evolution, including the prediction that there is an evolutionary trade-off between the number of offspring and their size (e.g. egg size) [1–3]. In insects, the number of egg-producing compartments in the ovary, called ovarioles, has been used as a proxy for potential offspring number in the study of life history [4–6]. However, without an understanding of the phylogenetic distribution of ovariole number, this hypothesized relationship cannot be assessed across insects. Here, we tested for the presence of a general trade-off between ovariole number and egg size by collecting thousands of records of ovariole number from the published literature, placing them in a phylogenetic context, and comparing them to other datasets of insect reproductive morphology.

The insect female reproductive system includes a pair of ovaries, each of which contains a number of ovarioles [7] (figure 1a). Each ovariole consists of an anterior germarium containing the stem cell niche or resting oogonia,
developing oocytes arranged in an ontogenic series from anterior to posterior, and a posterior connection to a common oviduct. The number of ovarioles varies across species [6], and can vary across individuals in a population [4], as well as between the left and right ovary within a single individual [8]. Therefore, total ovariole number may be an even or odd integer for an individual female insect. In addition to variation in the number of ovarioles, the tissue morphology within ovarioles varies across insects, and has been classified into several modes of oogenesis based on the presence and position of special oocyte-associated cells called nurse cells [7].

Here, we compiled 3355 records of ovariole number from across 28 orders, 301 families and 2103 species of insects. We combined these data with published datasets of egg size [9], fecundity [10,11] and body size [12], to test hypotheses about the evolutionary trade-off between offspring size and number. In these analyses, we used an existing phylogeny of insects [13] to analyse evolutionary patterns in ovariole number, and found that hypotheses about life-history evolution do not hold generally true across insects. We then combined these data with published observations of the mode of oogenesis [7], and reconstructed the evolutionary history of the presence and position of nurse cells that contribute to the oocyte during oogenesis. We tested whether patterns in the distribution of ovariole number, egg size or egg shape were driven by the evolution of nurse cells, and found no significant results.

Instead, we observed that the phylogenetic distribution of ovariole number suggests a model where the developmental mechanisms that govern ovariole number have shifted between variable and invariant states several times over the course of insect evolution. Based on this finding, we propose that the developmental mechanisms used to establish ovariole number in well-studied insects such as Drosophila melanogaster are unlikely to regulate ovariole number in all insects.

2. Methods

(a) Gathering trait data
We searched the published literature for references to insect ovariole number using a predetermined set of 131 search terms, entered into Google Scholar (scholar.google.com) between June and October of 2019. Each search term comprises an insect taxonomic group and the words ‘ovariole number’. The taxonomic groups used in the search process included all insect orders, many large insect families, and taxonomic groups that are well represented in the insect egg dataset [9]. For each Google Scholar search, we evaluated the first 10 publications in the search results. For 61 search terms that had a large number of informative hits, significant representation in the egg dataset, or that corresponded to very speciose groups, we evaluated an additional 20 publications. The list of search terms is available in the electronic supplementary file ‘ovariole_number_search_terms.tsv’.

Figure 1. The diversity of ovariole number across insects. (a) Schematic of a generalized insect female reproductive system, showing a pair of ovaries, each with four ovarioles. (b) The range of total adult ovariole number, log10 scale, across nine groups of insects, arranged with random jitter on the y-axis within each group. Groups are, from top to bottom: Apterygota, Palaeoptera, Polynoeptera, Condylognatha, Psocodea, Amphiesmenoptera, Antliophora, Neuropteroidea and Hymenoptera.
Using this approach, we gathered 3355 records for ovariole number from 28 insect orders, 301 families and 2103 species, using 448 publications that are listed in the electronic supplementary file ‘ovariole_number_bibliography.pdf’. We matched these records to additional taxonomic information using the software TaxReformer [14]. For all subsequent analyses, we excluded observations made in non-reproductive individuals from eusocial species (e.g. workers), as well as two observations that represented significant outliers and could not be validated using additional sources [15,16]. See the electronic supplementary material, methods §1 for details.

For records of ovariole number that reported intraspecific variation in ovariole number, we calculated the per cent difference as follows: if ovariole number was reported as a range, per cent difference was calculated as 100 \(\times \) (range max – range min)/median; if ovariole number was reported as an average with deviations, per cent difference was calculated as 100 \(\times \) (deviation)/median. When independent observations of ovariole number for a given species were available from multiple published records, we calculated the per cent difference as 100 \(\times \) (range max – range min)/median.

We combined the data we collected on total ovariole number with existing datasets of egg size and shape [9], insect lifetime fecundity and dry adult body mass [10,11,17], average adult body length per insect family [12], several lineage-specific measures of adult body size [18–22], and the mode of oogenesis [7]. See the electronic supplementary material, methods §3.1 for details.

All continuous traits (ovariole number, egg volume, lifetime fecundity and all measures of body size) were log\(_{10}\) transformed for subsequent analyses.

(b) Phylogenetic analyses

The analyses in this manuscript were performed using the insect phylogeny published in Church et al. [13], unless otherwise specified. For regressions involving body size data that were reported as insect family-level averages, we used the insect phylogeny published in Rainford et al. [23]. Analyses of Drosophilidae ovariole number, egg size and body size were performed using a phylogeny newly assembled for this study. See the electronic supplementary material, methods §2 for details.

To evaluate the robustness of our results to uncertainty in the phylogenetic relationships, all phylogenetic generalized least squares (PGLS) analyses were performed 1000 times over a posterior distribution of trees, using a Brownian Motion based covariance matrix in the R package ape (v. 5.4.1) [24] and nlme (v. 3.1.151) [25]. For regressions at the species and genus level, we reshuffled and matched records for each iteration to account for variation across records for the same taxon. For regressions at the family level, we recalculated the average ovariole number per insect family, randomly downsampling the representation for each family by half. To weight traits by body size, we calculated the phylogenetic residuals [26] of each trait to body size, and then compared the evolution of these residuals using a PGLS regression. See the electronic supplementary material, methods §3.2 for details.

For two regressions comparing egg size to ovariole number while accounting for adult body size, we tested alternative hypotheses of evolution by simulating new data. We considered two such hypotheses: no evolutionary correlation with ovariole number, and a strong correlation with ovariole number (slope of \(-1\)). For each trait, we simulated 1000 datasets using evolutionary parameters fitted under a Brownian Motion model in the R packages geiger (v. 2.0.7) [27] and phylom (v. 2.6.2) [28].

Ancestral state reconstruction of oogenesis mode was performed with the R package corHMM (v. 1.22) [29], and models of trait evolution were compared using the R package Ouvie (v. 1.57) [30]. Ancestral state reconstruction and model comparison were repeated 100 times over a posterior distribution of trees and resampling data to account for variation across records for the same taxon. See the electronic supplementary material, methods §4.3.

Other comparisons of model fit were performed using the R package package geiger (v. 2.0.7) [27] and validated using a parametric bootstrap with the R package arbutus (v. 0.1) [31]. See the electronic supplementary material, methods §5.1.

Analyses of evolutionary rate were performed using BAMM (v. 2.5.0) [32]. For this analysis, we calculated the average ovariole number (log\(_{10}\) transformed) for each genus present in the phylogeny (507 taxa). We used the R package BAMMtools (v. 2.1.7) [33] to select appropriate priors, and ran BAMM for the maximum number of generations (2 \(\times \) 10\(^9\)), sampling every 10\(^7\) generations. Convergence was evaluated both visually (electronic supplementary material, figure S12) and numerically. Running BAMM for the maximum possible number of generations and selecting the optimum burn-in (electronic supplementary material, figure S13) resulted in an effective size for the number of shifts of 482.51, and for the log-likelihood of 149.15. Repeated BAMM analyses showed similar distributions of high and low rate regimes, indicating the implications for ovariole number evolution are robust to uncertainty in rate estimates. See the electronic supplementary material, methods §5.2 for details.

We visualized the results from the BAMM analysis to establish a threshold (10\(^{-4}\)) for assigning a binary rate regime to each node in the phylogeny, categorizing them as above (‘variable’) or below (‘invariant’) a threshold that separates these two peaks.

(c) Statistical significance

All phylogenetic regressions were performed using the maximum clade credibility tree (the tree with highest credibility score from the posterior distribution of the Bayesian analysis). We considered a relationship significant when the \(p\)-value was below the threshold 0.01. To assess the robustness of results to uncertainty in phylogenetic relationships, we also repeated these analyses over the posterior distribution of phylogenetic trees and report the number of regressions that gave a significant result (see the electronic supplementary material, table S1).

For two comparisons, we validated that our tests had sufficient statistical power using the selected threshold by comparing the distribution of \(p\)-values from regressions of observed data to regressions of data simulated under alternative hypotheses. We compared the results of analyses of our observed data to those based on simulated data to evaluate the likelihood of false positives (comparing to data simulated under no correlation) and false negatives (comparing to data simulated with strong correlation).

Model comparisons of trait evolution were also performed over a posterior distribution and accounting for phenotypic uncertainty. For these analyses, we considered a model to have significantly better fitted the data than other models when the difference in the corrected Akaike information criterion (AICc) was greater than two in every analysis iteration.

3. Results

(a) Ovariole number diversity

Ovariole number varies by at least four orders of magnitude across insect species (figure 1b). We identified seven insect families with species that have been reported to have more than 1000 total ovarioles, including several eusocial insects (e.g. queens of the termite species Hypotermes obscuriceps, Blattodea: Termitidae [34], and several ant species, Hymenoptera: Formicidae) [35,36] and non-eusocial insects (e.g. the blister beetle Meloe proscarabaeus, Coleoptera: Meloidae) [37]. We also find two independent lineages that have evolved to have...
only one functional ovariole: dung beetles in the tribe Scarabaeinae (Coleoptera: Scarabaeidae) [38], and grass flies in the genus Pachylophus (Diptera: Chloropidae) [39,40]. In these insects, one of the two ovaries presumably established during embryogenesis is reported to atrophy during development [40,41], resulting in an asymmetric adult reproductive system. We also evaluated intraspecific variation in ovariole number, and found that, for species for which it has been reported, the average per cent difference number within species is between 10% and 100% of the median value (electronic supplementary material, figure S1).

(b) Ovariole number, egg size and body size

Ovariole number has been hypothesized to be negatively correlated with egg size [5,21,42]. This hypothesis is based on the predictions that (i) female reproduction is resource-limited, therefore egg size should trade off with egg number, and (ii) ovariole number can serve as a proxy for egg number [2,42]. We did not observe a significant negative relationship when comparing egg size and ovariole number across insect species (figure 2a; electronic supplementary material, table S1; \(p \)-value 0.195, \(n = 306 \)). We also compared egg size and ovariole number, combining data from species within the same genus to increase sample size, and again did not observe a significant relationship (electronic supplementary material, figure S2; \(p \)-value 0.066, \(n = 482 \)). To verify this finding was not driven by the high ovariole numbers seen in the queens of some eusocial insects, we repeated this comparison excluding insects from families with eusocial representatives, with the same result (electronic supplementary material, figure S3; \(p \)-value 0.209, \(n = 415 \)).

Given that this predicted relationship is often conditioned on body size, which is predicted to limit total potential reproductive
investment [21,43], we combined data on ovariole number and egg size with data on insect adult body mass [10,11,17] and length [12]. When accounting for adult body mass, we observed a significant negative relationship between egg size and ovariole number across genera and species (figure 2d; electronic supplementary material, figure S4; p-value 0.003, slope -0.399, $n = 61$). To evaluate the robustness of this result, we repeated the analysis 1000 times, taking into account uncertainty in both the phylogeny and trait measurements. Out of 1000 regressions, 995 indicated a significant negative relationship (electronic supplementary material, table S1). We performed the same comparison accounting for adult body length, and likewise observed a significant negative relationship (electronic supplementary material, figure S5; p-value < 0.001, slope -0.52, $n = 126$), supported by 966 of 1000 repeated analyses (electronic supplementary material, table S1).

We further explored these results using two methods. First, to evaluate our findings against alternative evolutionary hypotheses, we compared these results to regressions based on simulated data. Our results showed that when considering body size, the slope of the regression of egg size and ovariole number is more negative than we would expect to observe by chance, as assessed by comparing to data simulated with no evolutionary correlation (electronic supplementary material, figure S6). However, for both adult body length and dry mass, the slope of the regressions on observed data are not within the range that would be expected under a strong negative correlation (slope of -1 in log-log space; electronic supplementary material, figure S6). This suggests the presence of a weak evolutionary relationship between ovariole number and egg size, when accounting for body size.

Second, we assessed the relationship between egg size and ovariole number, accounting for body size, within four subclades of insects. We found that across Drosophilidae fly species, egg size is indeed strongly negatively correlated with ovariole number when accounting for body size (figure 2c; electronic supplementary material, table S2; p-value < 0.001, slope -0.809, $n = 30$). By contrast, across grasshoppers and crickets (Orthoptera), beetles (Coleoptera) and wasps (Hymenoptera), we observed no significant relationship between ovariole number and egg size, even when accounting for body size (figure 2d; electronic supplementary material, figure S7 and table S2; Orthoptera: p-value 0.485, $n = 40$; Coleoptera: p-value 0.384, $n = 30$; Hymenoptera: p-value 0.139, $n = 21$). This indicates that, while a strong negative correlation between egg size and ovariole number exists for some insects, it does not represent a universal pattern across insect clades.

Finally, we tested whether ovariole number is positively correlated with adult body size, and in contrast to previous studies [4], we found no correlation between ovariole number and adult body mass or length across insects (electronic supplementary material, figure S8 and table S3; body mass: p-value 0.618, $n = 61$; body length: p-value 0.031, $n = 98$). Of the four subclades considered, only insects in the order Orthoptera had a positive relationship between body size and ovariole number (electronic supplementary material, table S3; p-value 0.001, slope 0.35, $n = 40$).

(c) Ovariole number and fecundity
If the hypothesized trade-off between the number and size of offspring is true for insects, then one explanation for the lack of a consistent negative relationship between ovariole number and egg size is that ovariole number may not be a reasonable proxy for offspring number. Previous research has shown that, across individuals within the same species, ovariole number is correlated with certain measurements of fecundity, such as maximum daily rate of egg production for Drosophila [44,45], but not others, such as lifetime fecundity [46] or fitness in competition assays [47]. Few studies have compared fecundity and ovariole number across species [43], probably owing to the difficulties of measuring fecundity consistently across insects, many of which lay eggs singly and continuously rather than in distinct clutches.

Using a previously reported dataset of lifetime fecundity measurements across insects [10,11], we assessed the relationship between lifetime fecundity and ovariole number. We observed a significant positive relationship (figure 3, p-value 0.002, slope 1.233, $n = 65$); however, a substantial fraction of repeat analyses show these results are not robust to uncertainty (733 of 1000 regressions are not significant; electronic supplementary material, table S4). We note that this relationship is largely defined by the absence of insects with high ovariole number and low fecundity (figure 3, empty bottom right corner), while for insects with low ovariole number, fecundity varied over more than three orders of magnitude. We interpret our results, in conjunction with those previously reported, to suggest that ovariole number, when variable across insects in a lineage, may be one factor among many influencing the number of eggs produced. However, we caution against using ovariole number as a direct mathematical proxy for offspring number.

(d) Evolution of nurse cells
In addition to the number of ovarioles, insect ovary morphology has been classified into several modes of oogenesis based on the presence and position of cells that provide nutritive and patterning molecules to the oocyte, which are called nurse cells [7] (figure 4c). Egg formation in the well-studied species D. melanogaster is an example of a meroistic oogenesis.
mode, meaning that its ovarioles contain nurse cells of germ line origin that are connected to developing oocytes via cytoplasmic bridges [48]. In insects with a polytrophic meroistic arrangement, these nurse cells are clonally related and immediately adjacent to each oocyte. An alternative arrangement is seen in telotrophic meroistic ovaries, where oocytes in each ovariole are connected to a common pool of nurse cells located in germaria; black, unique meroistic ovary type observed in Strepsiptera. Insect taxonomic groups are, from top to bottom: Apopterygota, Palaeoptera, Polynoptera, Condylognatha, Psocidea, Hymenoptera, Neopteroidea, Amphiesmenoptera and Antiophora.

Using this ancestral state reconstruction, we then compared models of trait evolution to test whether evolutionary transitions in oogenesis mode helped explain the diversification of ovariole number and egg morphology. We found that, for the traits studied here, models that take into account evolutionary changes in mode of oogenesis do not consistently demonstrate a significant improvement over models that do not take these changes into account (ΔAIC < 2; electronic supplementary material, table S5). In other words, the evolution of nurse cells and their position within the ovary do not explain the diversification of egg size, egg shape, or ovariole number.

To analyse the robustness of these results to uncertainty in the tree topology and in the inference of ancestral states, we repeated each analysis over a posterior distribution of trees. For egg asymmetry and curvature, but not for volume or aspect ratio, we observed a few iterations where a model that takes into account oogenesis mode evolution was significantly favoured over models that did not (ΔAIC > 2; electronic supplementary material, table S5). However, this result was infrequent over 100 repetitions of the analysis. We, therefore, interpret these results as suggestive of a possible relationship between mode of oogenesis and egg asymmetry and curvature, but one which cannot be confirmed given the current data available.

(e) Modelling ovariole number evolution

Using the dataset compiled here and a previously published phylogeny of insects (figure 5a) [13], we modelled the rate of evolutionary change in ovariole number (electronic supplementary material, figures S11–S14). We observed substantial rate heterogeneity in the evolution of ovariole number (electronic supplementary material, figure S14), meaning that for some lineages ovariole number has evolved rapidly where in others, ovariole number has evolved very slowly or not at all. The most striking example of this is the multiple lineages which have independently evolved invariant or near-invariant ovariole number across taxa (e.g. nearly all Lepidoptera have exactly eight ovarioles, figure 5c; Lepidoptera are part of Amphiesmenoptera, in cyan), from an ancestral variable state. These invariant lineages were identified by finding regions of the phylogeny that experience extremely low rates of ovariole number diversification (electronic supplementary material, figures S14 and S15). Using this approach, we found that invariant ovariole numbers have evolved at least nine times independently across insects, with several subsequent reversals from invariant to variable states (figure 5a).

We found that the rate of evolutionary change in ovariole number is correlated with the number of ovarioles: lineages with relatively low ovariole number also experience relatively low degrees of ovariole number change (electronic supplementary material, figure S11). This is evidenced by the fact that, of the nine invariant lineages, none have greater than seven ovarioles per ovary (figure 5c). However, we note that not all insects with low ovariole counts are in invariant lineages; many insects with fewer than 14 total ovarioles are in lineages with relatively high rates of intra- and interspecific ovariole number variation (figure 5).

The distribution of ovariole numbers across insects is enriched for even numbers of total ovarioles (figure 5c). While many insects show asymmetries in the number of ovarioles between the left and right ovaries, all of the invariant lineages are symmetric (at 4, 6, 8, 10, 12 and 14 total ovarioles). Additionally, for the insects identified as part of invariant lineages, none have any reported intraspecific variation in ovariole number. Therefore, invariant lineages have near-zero variation when comparing between species, between individuals within a species, and between the left and right ovary within an individual.

Using these results, we propose a multi-rate model, where the rate of ovariole number evolution differs based on the evolution of a discrete trait representing invariant or variable status. We propose that the evolution of this discrete trait is governed by a model where the likelihood of transitions from a variable to an invariant state is negatively correlated with the current number of ovarioles. Here, we demonstrate that a multi-rate Brownian motion model far outperforms a single rate model in fitting the data (ΔAICc 1770.93). In addition, using a parametric bootstrap to evaluate model fit, we find evidence that processes beyond Brownian motion processes are probably at play (electronic supplementary material, figure S10).
number are often used as proxies for offspring fitness [50] and number [44,45], respectively, and therefore it has been predicted that insects with more ovarioles lay smaller eggs than insects with fewer ovarioles [5,6,21,42]. Our results, using a dataset that spans 3355 observations across 2103 species, and that takes into account phylogenetic relationships, indicate that a generalized trade-off between insect egg size and ovariole number does not exist (figure 2).

Lineages of insects with invariant ovariole number illustrate this point. Despite having the same ovariole number, these lineages contain a range of egg sizes that is comparable to the four orders of magnitude observed across all insects (figure 2a). Furthermore, we observed no relationship between the evolutionary rates of change for ovariole number and egg size (electronic supplementary material, figure S17). Therefore, if a trade-off between egg size and fecundity exists, factors beyond variation in ovariole number must contribute to fecundity. These factors might include variation in the rate of egg production per ovariole [51–54], among others [55,56].

We suggest that considering the evolution of developmental processes that govern ovariole number specification may be more useful in explaining patterns of diversity than predictions based on metabolic trade-offs. As evidence of this, we point to the fact that invariant lineages appear to have near-zero variation not only across species, but also within species, and between the left and right ovaries within individuals. This suggests that the mechanism which determines ovariole number has become canalized in these groups. By contrast, much of the existing research on how ovariole number is regulated has studied D. melanogaster, where the number of ovarioles can vary between the left and right ovaries within an individual, as well as across individuals within a population [57,58]. In this species, adult ovariole number is determined by cell proliferation and rearrangement during larval development [59,60]. Variation in adult number is derived primarily from variation in the number of ‘terminal filament precursor cells’ [61,62], as well as from variation in the number of those precursor cells that group together to form the structure that initiates ovariole formation, known as a ‘terminal filament’ [63]. Across species of Drosophila, variation in average adult ovariole number results primarily from variation in the average number of terminal filament precursor cells [62].

When considering the developmental processes that could give rise to invariant ovariole number, we propose that the major determinants of ovariole number known from Drosophila may not apply. To achieve an invariant ovariole number, these processes might instead include mechanisms for strict counting of individual cells or discrete cell subpopulations. In the former, if the cells that ultimately comprised a terminal filament were derived by mitotic division from a single progenitor, rather than by cellular rearrangements as is the case in Drosophila [59], then an invariant ovariole number could be achieved via strict control of the number of precursor cells. Alternatively, an invariant ovariole number could be achieved by partitioning the starting population of precursor cells into a tightly regulated number of subpopulations. This would again be a departure from known mechanisms in Drosophila, in which a variable number of precursor cells are gathered into terminal filaments until the population is depleted [59,63]. The determining factor for partitioning the precursor pool could be, for example, a spatially variable morphogen emanating from adjacent tissues [64] or a reaction–diffusion patterning process [65] within the developing supplementary material, figure S11) [31]. We suggest that as researchers continue to develop non-Gaussian models for continuous trait evolution [49], those models will be useful for describing the evolution of ovariole number.

4. Discussion

A frequently invoked life-history prediction is that, given a finite set of metabolic resources, organisms can either produce few offspring, each with high fitness, or many low-fitness offspring [1–3]. In insects, egg size and ovariole
evolution of invariance involves convergent canalization of shared molecular mechanisms.

Data accessibility. The dataset of insect ovariole number is available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.59zw3r253 [75]. The code and phylogenetic trees required to reproduce all the analyses, figures, and generate the manuscript files are available at https://github.com/shchurch/insect_ovaicicle_number_evolution_2020, commit 6c44fa46a. All analyses performed in R (v. 4.0.3) were done so in a clean environment, built with conda (v. 4.9.2), and instructions for rebuilding this environment are provided in the same repository.

Authors’ Contributions. S.H.C. led the data collection, analysis and writing of the manuscript. N.M. performed the initial literature search, data collection and analysis. B.A.S.d.M. assembled all phylogenies for analysis. S.D., B.A.S.d.M. and C.G.E. contributed to data analysis, visualization, discussion and writing. All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Competing interests. The authors declare no competing interests.

Funding. This work was supported by NSF GRFP DGE1745303 to S.H.C. and funds from Harvard University to support S.H.C. and C.G.E. N.M. was supported by the E3 REU program at Harvard University.

Acknowledgements. We thank members of the Extavour Laboratory for discussion.

References

1. Stearns SC. 1992 The evolution of life histories. Oxford, UK: Oxford University Press.
2. Smith CC, Fretwell SD. 1974 The optimal balance between size and number of offspring. Am. Nat. 108, 499–506. (doi:10.1086/282529)
3. Lack D. 1947 The significance of clutch-size. Oxf. Surv. 10, 302–352. (doi:10.1111/j.1476-919X.1947.tb01455.x)
4. Hon K. 1955 The comparative anatomy of the ovary and body size evolution are independent in insects. BMC Evol. Biol. 16, 1–17. (doi:10.1186/s12862-015-0570-3)
5. Hodin J. 2009 She shapes events as they come: reversals back to variability from an invariant ancestral history of morphogenetic counting mechanisms is poorly understood. The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], variability in arthropod segment number [69,70], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], vertebrate digit number [71,72], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], vertebrate digit number [71,72], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], vertebrate digit number [71,72], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], vertebrate digit number [71,72], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], vertebrate digit number [71,72], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], vertebrate digit number [71,72], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], vertebrate digit number [71,72], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quantitative traits across multicellular life, including patterns of variability and invariance in arthropod segment number [69,70], vertebrate digit number [71,72], or the number of angiosperm floral organs [73,74]. Across these systems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that insect ovariole number presents an ideal case study to investigate this phenomenon. In particular, we note the evidence that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back to variability from an invariant ancestral state (figure 5). These convergent lineages provide an opportunity to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent ovariole, as these have been shown to generate fixed numbers of multicellular structures in other developmental contexts [66–68]. These predictions could be tested by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons to corresponding data from their variable relatives.
Repeated loss of variation in insect ovary morphology highlights the role of development in life-history evolution - Supplementary Methods

Samuel H. Church¹*, Bruno A. S. De Medeiros¹,², Seth Donoughe¹,³, Nicole L. Márquez Reyes⁴, Cassandra G. Extavour¹,⁵*

Contents

1 Gathering ovariole number records 2
2 Phylogenetic trees 3
3 Phylogenetic regressions 4
 3.1 Combining datasets ... 4
 3.2 Phylogenetic Generalized Least Squares (PGLS) analyses 5
4 Evolution of nurse cells 12
 4.1 Combining datasets .. 12
 4.2 Reconstructing evolutionary shifts in oogenesis mode 13
 4.3 Oogenesis mode model comparison 14
5 Modeling rate of ovariole number change 15
 5.1 Parametric bootstrap of Brownian Motion model 15
 5.2 Assessing rate heterogeneity .. 16
 5.3 Rate model comparison .. 19
 5.4 Comparing rates of trait diversification 20

References 22

¹ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
² Smithsonian Tropical Research Institute, Panama City, Panama
³ Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
⁴ Department of Biology, Universidad de Puerto Rico en Cayey, Cayey 00736, PR
⁵ Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA

* Corresponding author
1 Gathering ovariole number records

We searched the published literature for references to insect ovariole number using a predetermined set of 131 search terms, entered into Google Scholar (scholar.google.com) between June and October of 2019. Each search term consisted of an insect taxonomic group and the words “ovariole number”. This list was created to include all insect orders, many large insect families, and groups well-represented in the insect egg dataset. The list of search terms is available in the supplementary file ‘ovariole_number_search_terms.tsv’.

For each search term, we evaluated all publications in the first page of results (ten publications). For 61 search terms that had a large number of informative hits, significant representation in the egg dataset, or that corresponded to very speciose groups, we evaluated an additional 20 publications. If a publication reported ovariole number for one or more insect species, we recorded the following information: (1) genus, (2) species name, when available, (3) taxonomic order, (4) sample size, when available, (5) ovariole number, and (6) additional notes (e.g. for eusocial insects, whether the observation was made in a reproductive or non-reproductive individual). This dataset is made publically available at Dryad (doi:10.5061/dryad.59zw3r253).

Ovariole number was recorded as either an average with deviations, a range, or a single total value. When multiple types of data were available from a single publication, we recorded only a single type, with priority given to averages over ranges, and to both over single total values. Ovariole number was recorded as the total number of ovarioles per female, summing over both the left and right adult ovaries. When authors reported ovariole number from a single ovary, the total value was calculated by doubling the reported value. When authors described differences between the two ovaries, this information was recorded in an additional notes column.

For records of ovariole number that reported intraspecific variation in ovariole number, we calculated the percent difference as follows: if ovariole number was reported as a range, percent difference was calculated as the $100 \times \frac{(\text{max} - \text{min})}{\text{median}}$; if ovariole number was reported as an average with deviations, percent difference was calculated as $100 \times \frac{(2 \times \text{deviation})}{\text{mean}}$. When independent observations of ovariole number for a given species were available across multiple published records, we calculated the percent difference as the $100 \times \frac{(\text{max} - \text{min})}{\text{median}}$ (Fig. S1).

Using this approach, we gathered 3355 records for ovariole number from 448 publications. A full list of publications is provided in the supplementary file ‘ovariole_number_bibliography.pdf’. We matched the scientific names to additional taxonomic information using the software TaxReformer and found additional taxonomic data for 3252 of the 3355 records. We verified that TaxReformer had found a valid match by comparing the originally recorded taxonomic order to the order populated by online databases, and removed 22 taxonomic records for which these values did not match. For all subsequent analyses, we also excluded observations made in non-reproductive individuals from eusocial species (workers), as well as two observations which represented significant outliers and could not be validated using additional sources orfigures.
Figure S1: Intraspecific variation in ovariole number.

2 Phylogenetic trees

The analyses herein were performed using the insect phylogeny published in Church et al, 20194, unless otherwise specified. This phylogeny was constructed by combining ribosomal genetic data from 1726 insect genera, published originally in the SILVA database5, with constrained, time-calibrated nodes for each insect order, published originally in Misof et al, 20146. This phylogeny is enriched for insect genera with records in the egg trait dataset, and also has considerable overlap with the genera included in this ovariole number dataset (508 genera). For generalized least squares analyses and trait model comparisons, analyses were performed over a posterior distribution of trees associated with this published phylogeny4.

For regressions involving body size data that were reported as insect family-level averages, we used the insect phylogeny published in Rainford et. al, 20147.

Analyses of Drosophilidae ovariole number, egg size, and body size were performed using a phylogeny newly assembled for this study. Published genetic data for 317 Drosophilidae species were retrieved from NCBI in June of 20198–16. These data encompassed 41 gene regions including mitochondrial, nuclear, and ribosomal genes. When multiple sequences for a gene region were available from the same species, the one with the least amount of missing data was selected. Each gene region was aligned using the program MAFFT17, model auto selected). Alignments were concatenated and trimmed to 3% occupancy across species using the program phyutility18. Documentation including accession numbers, sequence files, and alignments are available in the supplementary directory ‘https://github.com/shchurch/insect_ovariole_number_evolution_2020/phylogeny/Drosophilidae_sequences/’.

Phylogenetic estimation of the Drosophilidae data were performed using RAxML (model GTRGAMMA), setting the split between Hawaiian Drosophila and Scaptomyza as the root of the tree8,11. The final tree was pruned to remove undescribed species (e.g. Drosophila nr dorsigera), and was time-calibrated using the R package ape, function chronos (default parameters, version 5.4.1)20. This tree is available in the supplementary file ‘https://github.com/shchurch/insect_ovariole_number_evolution_2020/phylogeny/Drosophilidae_time_calibrated.tre’.

To the extent possible, sequence data were not curated beyond what was downloaded from NCBI, with the following exceptions: [1] two sequences labeled as 16S that did not align to other 16S sequences were removed manually. [2] COI sequences were trimmed to remove regions with large quantities of missing sites prior to alignment. [3] One species name (D. albovittata) was corrected for typographical error. [4] Sequences identified as Drosophila crassifemur were taxonomically corrected to Scaptomyza crassifemur19.
3 Phylogenetic regressions

3.1 Combining datasets

We combined the data we collected on total ovariole number with existing datasets of egg size and shape21, insect lifetime fecundity and dry adult body mass22–24, average adult body length per insect family25, and several lineage-specific measures of adult body size26–30.

Ovariole number and egg size4 data were combined by matching records across datasets for the same insect species (Fig 2a). When multiple records existed for a given species, the dataset was randomly shuffled and a single matching record was selected. This variation across records for the same species was accounted for in regressions by reshuffling and matching records at each iteration of the analysis. We also matched records for insects in the same genus following the same reshuffling method, which allowed us to test whether results were robust with a larger sample size when an exact species match was not available (Fig. S2).

Average adult body length per insect family25 was matched to the average ovariole number for the corresponding families (Fig. S5). The Rainford et al, 201625 dataset contains a small number of average adult body lengths at the order level (e.g. Strepsiptera), which were matched to their equivalent group in the ovariole number dataset. To test the effect of uncertainty in the estimated average ovariole number on our results, the dataset for each family was downsampled by half at each iteration of the regression analysis.

Ovariole number, egg volume, lifetime fecundity, and adult body mass22–24 were combined by matching records at the species level and genus level, using the same method as described above (Figs. 2b, 3, and S4). We excluded one value from this dataset which appeared to include a typographical error for lifetime fecundity (Hymenoptera: Trichogrammatidae, lifetime fecundity recorded as 0.122).

Several lineage-specific measurements for body size were matched to the ovariole number and egg size datasets, as follows: Drosophilidae thorax length29 was matched at the species level (Fig. 2c), Orthoptera body length28 was matched at the genus level (Fig. 2d), Hymenoptera mesosoma width27 was matched at the genus level, and Curculonoidea elytra length26 was matched at the genus level (Fig. S7).
3.2 Phylogenetic Generalized Least Squares (PGLS) analyses

Figure S2: Egg volume vs ovariole number, matching records at the genus level.
Figure S3: Egg volume vs ovariole number, matching records at the genus level, excluding records from families with eusocial insects.

Figure S4: Egg volume vs ovariole number, phylogenetic residuals to dry adult body mass, matching records at the species level.
Figure S5: Family average egg volume vs ovariole number, phylogenetic residuals to adult body length.

We ran each Phylogenetic Generalized Least Squares (PGLS) regression over the Maximum Clade Credibility (MCC) tree. For each regression, we also repeated each PGLS analysis 1000 times, accounting for phylogenetic and phenotypic uncertainty, using the R packages ape (version 5.4.1)20 and nlme (version 3.1.151)31. In these analyses we used a Brownian Motion based covariance matrix for traits.

For regressions using data matched across species or genera, we reshuffled and matched records at each iteration to account for variation across records for the same taxon. For regressions on family-level average data, we recalculated the average ovariole number per insect family, downsampling the representation for each family by half. No posterior distribution was available with the previously published family level phylogeny7.

To account for body size, we calculated the phylogenetic residuals32 of each trait to body size, and then compared the evolution of these residuals using a PGLS regression.

For regressions of egg size and ovariole number when accounting for adult body size, we compared the results of our regression analyses to distributions estimated using simulated data under alternative hypotheses. We fit a Brownian motion model to the phylogenetic residuals of egg size and body size (R package geiger, version 2.0.7)33, and then used the parameters of this fitted model to simulate new datasets (R package phylolm, version 2.6.2)34. We performed this resimulation using the datasets of egg size and body length at the family level, and egg size and body mass at the genus level. We simulated 1000 datasets each under two hypotheses: no correlation (slope=0) and a strong negative correlation (slope=-1). We performed the regressions as described above and compared the distribution of p-values and slopes to values from regressions on observed data.
Figure S6: **Using simulated data to test alternative hypotheses of evolutionary relationships.** Top row, distributions of p-values over 1000 replicate regressions, dashed black line indicates threshold of 0.01. Bottom row, distribution of estimated slopes between egg size and ovariole number, dashed lines indicate 95% interval of simulated distributions. Left, comparing egg size and ovariole number, accounting for body length at the family level. Right, comparing egg size and ovariole number, accounting for body mass at the genus level. The slope of regressions on observed egg size and ovariole number (red) is more negative than we would expect to observe by chance, as assessed by comparing to data simulated with no evolutionary correlation (gray), but also not within the range that would be expected under an strong negative correlation (black). Red=observed values, gray=simulated with no correlation, black=simulated with a -1:1 correlation. n=1000 regressions.
Figure S7: Additional lineage-specific comparisons of egg volume vs ovariole number, phylogenetic residuals to body size, matching records at the genus level. Weevils (Curculionoidea, left) were measured using elytra length and wasps (Hymenoptera, right) were measured using mesosoma width.

Figure S8: Adult body size vs ovariole number. Adult body mass, matching records at the genus level (left), and family-level average adult body length (right).
Figure S9: **Lifetime fecundity vs ovariole number, matching records at the species level.**

Table S1: Results of PGLS analysis of ovariole number and egg size across a posterior distribution. The ‘data match’ columns describes how observations were matched across datasets, e.g. matching records for the same species, genera, or using family-level averages.

analysis	data match	slope	MCC p-value	num. sig. / 1000 taxa	
ovariole number vs egg volume	species	-0.426 – -0.082	0.195	43	306
ovariole number vs egg volume	genus	-0.356 – -0.128	0.066	470	482
ovariole number vs egg volume, residuals to body mass	species	-0.646 – -0.333	0.003	833	24
ovariole number vs egg volume, residuals to body mass	genus	-0.769 – -0.284	0.003	995	61
ovariole number vs egg volume, residuals to body length	family average	-0.685 – -0.304	<0.001	966	98

Table S2: Results of PGLS analysis of ovariole number and egg size across a posterior distribution.

analysis	data match	slope	MCC p-value	num. sig. / 1000 taxa	
Drosophilidae ovariole number vs egg volume, residuals to thorax length	species	-0.814 – -0.799	<0.001	1000	30
Orthoptera ovariole number vs egg volume, residuals to body length	genus	-0.315 – 0.379	0.485	0	40
Curculionoidea ovariole number vs egg volume, residual to elytra length	genus	-0.293 – 0.633	0.384	0	30
Hymenoptera ovariole number vs egg volume, residuals to mesosoma width	genus	-2.131 – -0.288	0.139	13	21
Table S3: Results of PGLS analysis of ovariole number and body size across a posterior distribution.

analysis	data match	slope	MCC p-value	num. sig. / 1000	taxa
ovariole number vs body length	species	0.025 – 0.208	0.618	0	24
ovariole number vs body mass	genus	0.095 – 0.299	0.546	0	61
ovariole number vs body mass	family average	0.123 – 0.177	0.031	29	98
Drosophilidae ovariole number vs thorax length	species	0.223 – 0.223	0.031	0	30
Orthoptera ovariole number vs body length	genus	0.132 – 0.450	0.001	993	40
Curculionoidea ovariole number vs elytra length	genus	-0.211 – 0.257	0.917	0	30
Hymenoptera ovariole number vs mesosoma width	genus	-0.112 – 0.355	0.482	0	21

Table S4: Results of PGLS analysis of ovariole number and fecundity across a posterior distribution.

analysis	data match	slope	MCC p-value	num. sig. / 1000	taxa
ovariole number vs lifetime fecundity	species	0.324 – 0.542	0.011	311	37
ovariole number vs lifetime fecundity	genus	-0.275 – 0.601	0.002	267	65
4 Evolution of nurse cells

4.1 Combining datasets

We used the descriptions of the mode of oogenesis recorded by Büning35. This author catalogued the ovary morphology for 136 insect genera, categorizing them into four modes: those without nurse cells (panoistic), with nurse cells adjacent to each clonally related, developing oocyte (polytrophic meroistic), with all nurse cells located in the germarium (telotrophic meroistic), and a unique mode of oogenesis reported only in Strepsiptera (reduced polytrophic meroistic ovaries).

Of the 136 genera observed by Büning, 70 are represented in the phylogeny used here4. Another 36 come from families or orders that have representative genera in the phylogeny, and within which all observations have the same recorded mode of oogenesis, when more than one was recorded. Therefore, we used a substitute genus as the phylogenetic tip for these 36 groups, bringing the total overlap between dataset and phylogeny to 106 taxa.
4.2 Reconstructing evolutionary shifts in oogenesis mode

Using these 106 records for ovary type, we reconstructed the ancestral state at each node of the published phylogeny of 1705 insect genera using an equal-rates model that allows for missing data (Fig. S10, R package corHMM, version 1.2236 function rayDISC, node.states = ‘marginal’).

Figure S10: Ancestral state reconstruction of oogenesis mode, full phylogeny. Scale bar indicates 100 million years. Gray = panoistic, red = telotrophic meroistic, cyan = polytrophic meroistic, black = unique meroistic mode found in Strepsiptera.
4.3 Oogenesis mode model comparison

Table S5: Average corrected AIC (AICc) value from model comparison

analysis name	BM1	BMS	OU1	OUM
ovariole number	477.20195	473.03372	479.22592	482.42889
egg volume	3295.74949	3281.71001	3297.75729	3299.52446
egg aspect ratio	-1486.86444	-1506.89208	-1484.85630	-1483.01934
egg asymmetry	-763.10658	-785.44797	-808.70150	-810.07385
egg curvature	62.36224	35.70801	63.46489	64.20869

Table S6: Results of model comparison analysis over posterior distribution, showing the number of iterations out of 100 where the difference in model fit (ΔAICc) was greater than 2.

analysis name	BMS vs. BM1	OU1 vs. BM1	OUM vs. BM1	OUM vs. OU1	taxa
ovariole number	90	0	0	0	506
egg volume	100	0	0	0	1567
egg aspect ratio	100	0	0	0	1488
egg asymmetry	100	100	100	20	844
egg curvature	100	1	1	1	781

Using the ancestral state reconstruction of evolutionary shifts in the mode of oogenesis, we inferred the most likely mode of oogenesis for all nodes and unobserved extant tips in the phylogeny (Fig. S10). We then compared the fit of models of trait evolution that take into account these shifts in oogenesis mode against those that do not. These comparisons were performed with the R package OUwie (version 1.57)37.

Each analysis compared four models of evolution: single-rate Brownian Motion (BM1), multi-rate Brownian Motion (BMS), single-optimum Ornstein-Uhlenbeck (OU1), and an Ornstein-Uhlenbeck model with different optima for each mode of oogenesis (OUM).

These comparisons were repeated 100 times over a posterior distribution of trees. At each iteration we selected a random representative trait record for each genus in the phylogeny, when multiple records were available.
5 Modeling rate of ovariole number change

5.1 Parametric bootstrap of Brownian Motion model

Figure S11: Bootstrap analysis of Brownian Motion model for ovariole number evolution, using the R package arbutus. In each panel the red line represents the observed value and the black distribution represents the bootstrap simulation. See Section 5 for details on each parameter.

We evaluated the fit of a Brownian Motion (BM) model for ovariole number evolution using the R package arbutus (version 0.138, Fig. S11). In this approach, a BM model is fit to the data (R package geiger, version 2.0.733), and the resulting parameters of the model are used to simulate 1000 new datasets. Six statistical parameters are used to compare the phylogenetic contrasts of the observed data to the simulated data, and their interpretations are as follows38:

1. **Mean of squared contrasts.** The rate of evolution of ovariole number can be well estimated by the Brownian Motion model (the observed value falls within the null distribution).
2. **Coefficient of variation of the absolute value of the contrasts.** There is substantially more variation in contrasts than expected by chance, indicating heterogeneity in the rate of evolution beyond what a single-rate Brownian Motion model predicts (the observed value falls well outside the null distribution).
3. **Slope of a linear model fitted to the absolute value of the contrasts against their expected variances.** Contrasts are larger than expected on short branches in the phylogenetic tree, resulting in a negative slope. This could be explained by error in estimation of branch lengths.
4. **Slope of a linear model fitted to the absolute value of the contrasts against the ancestral state at the corresponding node.** The number of ovarioles is more correlated with contrast values than would be expected by chance. Phylogenetic nodes with a low ovariole number experience lower rates of evolution.
5. \textit{Slope of a linear model fitted to the absolute value of the contrasts against node depth.} Contrast values are not correlated with time, falling within the null distribution. Therefore the rate of ovariole number change is not increasing or decreasing over time.

6. \textit{The D statistic from a Kolmogorov-Smirnov test comparing the distribution of contrasts to an expected normal distribution.} The data do not fit a normal distribution of contrasts well, suggesting there are likely non-Brownian motion based processes at play (e.g. jump-diffusion processes).

5.2 Assessing rate heterogeneity

Given the result that our dataset contains substantial rate heterogeneity, we identified regions of the tree with high and low rates of ovariole number evolution using the software BAMM (version 2.5.0)39. For this analysis, we calculated the average ovariole number for each genus in the insect phylogeny4. Average ovariole number was log\textsubscript{10} transformed, and the tree was filtered to include only tips for which there were corresponding ovariole number data (sample size = 508). We used the R package BAMMtools (version 2.1.7)40 to select priors, and ran BAMM for the maximum number of generations (2×10^9), sampling every 10^6 generations.

![Figure S12: Convergence of trait diversification rate analysis](image)

16
Figure S13: **Comparison of burn-in proportions.** The burn-in proportion that maximized the effective size was used in subsequent analyses.

Convergence was evaluated both visually (Fig. S12) and numerically by comparing the effective sample size for number of shifts and log-likelihood to the standard recommended by the software (>200). We determined the most appropriate burn-in proportion to use by finding the maximum effective sample size of the log-likelihood across an array of possible burn-in proportions (Fig. S13). Running BAMM for the maximum possible number of generations and selecting the optimum burn-in (Fig. S13) resulted in an effective size for the number of shifts of 482.51, and for log-likelihood of 149.15. Repeated BAMM analyses showed similar distributions of high and low rate regimes, indicating the implications for ovariole number evolution are robust to uncertainty in rate estimates. See Supplemental Methods Section 5.2 for details.
Figure S14: **Best rate shift configuration from BAMM trait diversification analysis on ovariole number.** Purple = low rate of evolution, yellow = high rate of evolution.
The best configuration of rate shift regimes shows multiple independent clades with very low rates of evolution (Fig. S14). Visualizing the distribution of mean rates along branches revealed a discontinuous distribution, with one peak at a moderate rate of evolution and several clusters at extremely low rates, separated from the first peak by over six orders of magnitude (Fig. S15). We used this visualization to establish a threshold (10^{-4}) for assigning a binary rate regime to each node in the phylogeny, categorizing them as above (variable) or below (invariant) a threshold that separates these two peaks.

5.3 Rate model comparison

We tested whether a BM model of evolution that incorporates the binary state (variable or invariant) as independent rate regimes can better explain the distribution of ovariole numbers than a single rate BM model, by comparing model fit using the R package OUwie (version 2.5)37. We find that a multi-rate model is significantly favored over a single-rate model (Δ AICc 1770.93).
5.4 Comparing rates of trait diversification

Figure S16: Best rate shift configuration from BAMM trait diversification analysis on egg volume. Purple = low rate of evolution, yellow = high rate of evolution.
We assessed the rate of egg volume diversification across insects using the same method of assessing rate heterogeneity as described in Section 5.2 (Fig. S16). This analysis converged in 7×10^9 generations (the effective size for the number of shifts and log-likelihood were >200, 670.2 and 753.42 respectively). We compared the correlation between the rates of trait diversification for ovariole number and egg volume by matching the mean rate predicted for each insect genus (the tips of the phylogeny from the BAMM analyses, Fig. S17).
References

1. Medeiros, B. A. S. de. TaxReformer. https://github.com/brunoasm/TaxReformer (2019).

2. Su, X. H. et al. Testicular development and modes of apoptosis during spermatogenesis in various castes of the termite Reticulitermes labralis (Isoptera: Rhinotermitidae). *Arthropod Structure and Development* **44**, 630–638 (2015).

3. Hernandez, L. C., Fajardo, G., Fuentes, L. S. & Comoglio, L. Biology and reproductive traits of Drymoea veliterna (druce, 1885) (lepidoptera: Geometridae). *Journal of Insect Biodiversity* **5**, 1–9 (2017).

4. Church, S. H., Donoughe, S., Medeiros, B. A. de & Extavour, C. G. Insect egg size and shape evolve with ecology but not developmental rate. *Nature* **571**, 58–62 (2019).

5. Yilmaz, P. et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. *Nucleic Acids Research* **42**, 643–648 (2014).

6. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. *Science* **346**, 763–767 (2014).

7. Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P. J. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. *PLoS One* **9**, e109085 (2014).

8. Katoh, T., Izumitani, H. F., Yamashita, S. & Watada, M. Multiple origins of Hawaiian drosophilids: Phylogeography of Scaptomyza Hardy (Diptera: Drosophilidae). *Entomological Science* **20**, 33–44 (2017).

9. Magnacca, K. N. & Price, D. K. Rapid adaptive radiation and host plant conservation in the Hawaiian picture wing Drosophila (Diptera: Drosophilidae). *Molecular Phylogenetics and Evolution* **92**, 226–242 (2015).

10. Lapoint, R. T., Magnacca, K. N. & O’Grady, P. M. Phylogenetics of the antopocerus-modified tarsus clade of Hawaiian Drosophila: Diversification across the Hawaiian islands. *PLoS One* **9**, (2014).

11. O’Grady, P. M. et al. Phylogenetic and ecological relationships of the Hawaiian Drosophila inferred by mitochondrial DNA analysis. *Molecular Phylogenetics and Evolution* **58**, 244–256 (2011).

12. Lapoint, R. T., Gidaya, A. & O’Grady, P. M. Phylogenetic relationships in the spoon tarsus subgroup of Hawaiian Drosophila: Conflict and concordance between gene trees. *Molecular Phylogenetics and Evolution* **58**, 492–501 (2011).

13. Bonacum, J., O’Grady, P. M., Kambsysellis, M. & DeSalle, R. Phylogeny and age of diversification of the planitibia species group of the Hawaiian Drosophila. *Molecular Phylogenetics and Evolution* **37**, 73–82 (2005).

14. O’Grady, P. M. & Zilversmit, M. Phylogenetic relationships within the Drosophila haleakala species group inferred by molecular and morphological characters (diptera: Drosophilidae). *Bishop Museum Bulletin In Entomology* **12**, 117–134 (2004).

15. Lapoint, R. T., O’Grady, P. M. & Whiteman, N. K. Diversification and dispersal of the Hawaiian Drosophilidae: The evolution of Scaptomyza. *Molecular Phylogenetics and Evolution* **69**, 95–108 (2013).

16. Baker, R. H. & DeSalle, R. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. *Systematic Biology* **46**, 654–673 (1997).

17. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Molecular Biology and Evolution* **30**, 772–780 (2013).

18. Smith, S. A. & Dunn, C. W. Phyutility: A phyloinformatics tool for trees, alignments and molecular data. *Bioinformatics* **24**, 715–716 (2008).

19. O’Grady, P., Bonacum, J., DeSalle, R. & Do Val, F. The placement of Engiscaptomyza, Grimshawomyia, and Titanochaeta, three clades of endemic Hawaiian Drosophilidae (Diptera). *Zootaxa* **159**, 1–16 (2003).
20. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. *Bioinformatics* **20**, 289–290 (2004).

21. Church, S. H., Donoughe, S., Medeiros, B. A. de & Extavour, C. G. A dataset of egg size and shape from more than 6,700 insect species. *Scientific Data* **6**, 1–11 (2019).

22. Gilbert, J. D. J. PhD Thesis: The evolution of parental care in insects. (University of Cambridge, 2007).

23. Gilbert, J. D. & Manica, A. Parental care trade-offs and life-history relationships in insects. *The American Naturalist* **176**, 212–226 (2010).

24. Gilbert, J. D. J. Insect dry weight: Shortcut to a difficult quantity using museum specimens. *Florida Entomologist* **94**, 964–970 (2011).

25. Rainford, J. L., Hofreiter, M. & Mayhew, P. J. Phylogenetic analyses suggest that diversification and body size evolution are independent in insects. *BMC Evolutionary Biology* **16**, 8 (2016).

26. Iwata, K. Large-sized eggs in Curculionoidea (Coleoptera). *Research Bulletin of Hyogo Agricultural College* **7**, 43–45 (1966).

27. Iwata, K. & Sakagami, S. F. Gigantism and dwarfism in bee eggs in relation to the mode of life, with notes on the number of ovarioles. *Japanese Journal of Ecology* **16**, 4–16 (1966).

28. Waloff, N. Number and development of ovarioles of some Acridoidea (Orthoptera) in relation to climate. *Physiologia Comparata et Oecologia* vol. 3 370–390 (1954).

29. Starmer, W. T. et al. Phylogenetic, geographical, and temporal analysis of female reproductive trade-offs in Drosophilidae. *Evolutionary Biology* **33**, 139–171 (2003).

30. Reinhardt, K., Köhler, G., Maas, S. & Detzel, P. Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: The Orthoptera of Germany. *Ecography* **28**, 593–602 (2005).

31. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team (2014) nlme: Linear and nonlinear mixed effects models. R package version 3.1-117. Available at http://cran.r-project.org/package=nlme (2014).

32. Revell, L. J. Size-correction and principal components for interspecific comparative studies. *Evolution: International Journal of Organic Evolution* **63**, 3258–3268 (2009).

33. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: Investigating evolutionary radiations. *Bioinformatics* **24**, 129–131 (2007).

34. Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-gaussian trait evolution models. *Systematic Biology* **63**, 397–408 (2014).

35. Büning, J. *The insect ovary: Ultrastructure, previtellogenic growth and evolution*. (Springer Science & Business Media, 1994).

36. Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. *Systematic Biology* **62**, 725–737 (2013).

37. Beaulieu, J. M., Jhwueng, D.-C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: Expanding the Ornstein–Uhlenbeck model of adaptive evolution. *Evolution* **66**, 2369–2383 (2012).

38. Pennell, M. W., FitzJohn, R. G., Cornwell, W. K. & Harmon, L. J. Model adequacy and the macroevolution of angiosperm functional traits. *The American Naturalist* **186**, E33–E50 (2015).

39. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. *PLoS One* **9**, e89543 (2014).

40. Rabosky, D. L. *et al*. BAMM tools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. *Methods In Ecology and Evolution* **5**, 701–707 (2014).
Ovariole number bibliography

Samuel H. Church1,*, Bruno A. S. de Medeiros1,2, Seth Donoughe1,3, Nicole L. Márquez Reyes4, Cassandra G. Extavour1,*

References

Adams, A. J. “The photoperiodic induction of ovarian diapause in the cabbage whitefly, Aleyrodes proletella (Homoptera: Aleyrodidae)” Journal of Insect Physiology 31.9 (1985): 693–700.
Adams, C. L. and R. B. Selander. “The biology of blister beetles of the vittata group of the genus Epicauta (Coleoptera, Meloidae).” Bulletin of the American Museum of National History 162.4 (1979): 137–266.
Adams, T. “Effect of diet and mating status on ovarian development in a predaceous stink bug Perillus bioculatus (Hemiptera: Pentatomidae).” Annals of The Entomological Society of America 93.3 (2000): 529–535.
Afzal, M. and Z. Salihah. “Sex ratio, occurrence of parthenogenesis, ovarian development and oviposition behaviour of the primary reproductives of Bifiditermes beesoni (Gardner) (Isoptera, Kalotermitidae) 1”. Zeitschrift Für Angewandte Entomologie 100.1-5 (1985): 132–146.
Ahmad, A., N. Gupta, and A. K. Saxena. “Reproductive system of an ischnoceran species, Ardeicola expallidus infesting cattle egret (Bubulcus ibis)” The Bioscan 8.2 (2013): 443–446.
Albuquerque, G. S., M. J. Tauber, and C. A. Tauber. “Life-history adaptations and reproductive costs associated with specialization in predacious insects”. Journal of Animal Ecology 66.3 (1997): 307–317.
Alloway, T. M., A. Buschinger, M. Talbot, R. Stuart, and C. Thomas. “Polygyny and polydomy in three North American species of the ant genus Leptothorax Mayr (Hymenoptera: Formicidae)”. Psyche: A Journal of Entomology 89.3-4 (1982): 249–274.
Ananthakrishnan, T. “Oocyte—Follicle cell dynamics in Arrhenothrips ramakrishnai Hood (Insecta: Thysanoptera)-1”. Proceedings: Animal Sciences 97.1 (1988): 1–12.
Andersen, N. M. “The coral bugs, genus Halovelia Bergroth (Hemiptera, Veliidae). II. Taxonomy of the H. malaya-group, cladistics, ecology, biology, and biogeography”, Insect Systematics and Evolution 20.2 (1989): 179–227.
Andrade, G. S., A. H. Sousa, J. C. Santos, F. C. Gama, J. E. Serrão, and J. C. Zanuncio. “Oogenesis pattern and type of ovariole of the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae)”. Anais da Academia Brasileira de Ciências 84.3 (2012): 767–774.
Anstead, J. A. “PhD Thesis: Genetic and biotypic diversity of greenbug Schizaphis graminum (Rondani) populations on non-cultivated hosts”. Diss. Oklahoma State University, 2000.
Asaba, H. and H. Ando. “Ovarian structures and oogenesis in Lepidocampa weberi Oudemans (Diplura: Campodeidae)”. International Journal of Insect Morphology and Embryology 7.5-6 (1978): 405–414.
Avilla, J. and M. Copland. “Development rate, number of mature oocytes at emergence and adult size of Encarsia tricolor at constant and variable temperatures”. Entomophaga 33.3 (1988): 289–298.
Baba, M. “Oviposition habits of Simulium kawamurae (Diptera: Simuliidae), with reference to seasonal changes in body size and fecundity”. Journal of Medical Entomology 29.4 (1992): 603–610.

1 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
2 Smithsonian Tropical Research Institute, Panama City, Panama
3 Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
4 Department of Biology, Universidad de Puerto Rico en Cayey, Cayey 00736, PR
5 Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
* Correspondence to church@g.harvard.edu and extavour@oeb.harvard.edu
Baker, G. “The biology of A species of Doleschalla (Diptera: Tachinidae), A parasite of Pantorhytes”. Pacific Insects 19.1-2 (1978): 53–64.

Barbosa, P. and E. Frongillo Jr. “Photoperiod and temperature influences on egg number in Brachymeria intermedia (Hymenoptera: Chalcididae), a pupal parasitoid of Lymantria dispar (Lepidoptera: Lymantriidae)”. Journal of the New York Entomological Society 87.2 (1979): 175–180.

Barratt, B., A. Evans, D. Stoltz, S. Vinson, and R. Easingwood. “Virus-like Particles in the Ovaries of Microtonus aethiopoides Loan (Hymenoptera: Braconidae), a Parasitoid of Adult Weevils (Coleoptera: Curculionidae)”. Journal of Invertebrate Pathology 73.2 (1999): 182–188.

Bellinger, R. G. and R. L. Pienkowski. “Interspecific variation in ovariule number in Melanopline grasshoppers (Orthoptera: Acrididae)”. Journal of the New York Entomological Society 87.2 (1979): 175–180.

Bian, N. B. and W. T. Wcislo. “Notes on the reproductive morphology of the parasitic bee Megalopta byroni (Hymenoptera: Halictidae), and a tentative new host record”. Journal of The Kansas Entomological Society 80.4 (2007): 392–395.

Biliński, S. and B. Petryszak. “The ultrastructure and function of follicle cells in Foucartia squamulata (Herbst) (Curculionidae)”. Cell and Tissue Research 189.2 (1978): 347–353.

Biliński, S. “Oogenesis in Acentomon gallicum Jonescu (Protura)”. Cell and Tissue Research 179.3 (1977): 401–412.

Biliński, S. “Oogenesis in Campodea sp. (Diplura)”. Cell and Tissue Research 202.1 (1979): 133–143.

Biliński, S. M. and J. Büning. “Structure of ovaries and oogenesis in the snow scorpionfly Boreus hyemalis (Linne) (Mecoptera: Boreidae)”. International Journal of Insect Morphology and Embryology 27.4 (1998): 333–340.

Biliński, S. M. and T. Szklarzewicz. “The ovary of Catajapyx aquilonaris (Insecta, Entognatha): ultrastructure of germarium and terminal filament”. Zoomorphology 112.4 (1992): 247–251.

Blowers, V., et al. “Notes on the female reproductive system of the South African citrus psylla, Triósa erytreae (Del Guercio) (Homoptera: Psyllidae)”. Journal of The Entomological Society of Southern Africa 30.1 (1967): 75–81.

Bong, L.-J., K.-B. Neoh, C.-Y. Lee, and Z. Jaal. “Effect of diet quality on survival and reproduction of adult Paederus fuscipes (Coleoptera: Staphylinidae)”. Journal of Medical Entomology 51.4 (2014): 752–759.

Bourchier, R. “Growth and development of Compsilura concinnata (Meigan) (Diptera: Tachinidae) parasitizing gypsy moth larvae feeding on tannin diets”. The Canadian Entomologist 123.5 (1991): 1047–1055.

Branson, S. and K. Yeargan. “Reproductive strategies of primary parasitoids of the green cloverworm (Lepidoptera: Noctuidae)”. Environmental Entomology 20.1 (1991): 349–353.

Brandmayr, P. and T. Zetto-Brandmayr. “The evolution of parental care phenomena in Pterostichine ground beetles, with special reference to the genera Abax and Molops (Coleoptera, Carabidae)”. Miscellaneous Papers Landbouwhogeschool. Wageningen 18 (1979): 35–49.

Branston, D. H. “Influence of individual body size on reproductive traits in melanopline grasshoppers (Orthoptera: Acrididae)”. Journal of Orthoptera Research 17.2 (2008): 259–264.

Branston, D. H. “Life-history responses of Ageneotettix deorum (Scudder) (Orthoptera: Acrididae) to host plant availability and population density”. Journal of The Kansas Entomological Society 79.2 (2006): 146–156.

Brent, C. S. and J. F. Traniello. “Effect of enhanced dietary nitrogen on reproductive maturation of the termite Zootermopsis angusticollis (Isoptera: Termopsidae)”. Environmental Entomology 31.2 (2002): 313–318.

Brent, C. S., J. F. Traniello, and E. L. Vargo. “Benefits and costs of secondary polygyny in the dampwood termite Zootermopsis angusticollis”. Environmental Entomology 37.4 (2008): 883–888.

Brothers, D. J. “Alternative life-history styles of mutillid wasps (Insecta, Hymenoptera)”. Alternative life-history styles of animals (1989): 279–291.
Browne, J. and C. H. Scholtz. “Evolution of the scarab hindwing articulation and wing base: a contribution toward the phylogeny of the Scarabaeidae (Scarabaeoidea: Coleoptera)”. *Systematic Entomology* 23.4 (1998): 307–326.

Brunt, A. M. “The histology of the first batch of eggs and their associated tissues in the ovariole of *Dysdercus fasciatus* Signoret (Heteroptera: Pyrrhocoridae) as seen with the light microscope”. *Journal of Morphology* 134.1 (1971): 105–129.

Bugnion, E. “Le *Cissites testaceus* Vab. des Indes et de Ceylon”. *Bulletin de la Société entomologique d’Égypte* 1.8 (1909): 182–204.

Bugnion, É. and N. Popoff. “Anatomie de la reine et du roi-termite”. *Mémoires de La Société Zoologique de France* 25 (1912): 210–232.

Bünning, J. and S. Sohst. “Ultrastructure and cluster formation in ovaries of bark lice, *Peripsocus phaeopterus* (Stephens) and *Stenopsocus stigmaticus* (Imhof and Labram) (Insecta: Psocoptera)”. *International Journal of Insect Morphology and Embryology* 19.5-6 (1990): 227–241.

Bünning, J. “Morphology, ultrastructure, and germ cell cluster formation in ovarioles of aphids”. *Journal of Morphology* 186.2 (1985): 209–221.

Bünning, J. “Ovariole structure supports sistergroup relationship of Neuropterida and Coleoptera”. *Arthropod Systematics and Phylogeny* 64.2 (2006): 115–126.

Bünning, J. “The ovary of *Raphidia flavipes* is telotrophic and of the *Sialis* type (Insecta, Raphidioptera)”. *Zoomorphologie* 95.2 (1980): 127–131.

Bünning, J. “The telotrophic nature of ovarioles of polyphage Coleoptera”. *Zoomorphologie* 93.1 (1979): 51–57.

Bünning, J. “The telotrophic ovary known from Neuropterida exists also in the myxophagan beetle *Hydroscapha natans*”. *Development Genes and Evolution* 215.12 (2005): 597–607.

Bünning, J. “The trophic tissue of telotrophic ovarioles in polyphage Coleoptera”. *Zoomorphologie* 93.1 (1979): 33–50.

Bünning, J. and S. Sohst. “The flea ovary: ultrastructure and analysis of cell clusters”. *Tissue and Cell* 20.5 (1988): 783–795.

Butler, L. “Biology of the half-wing geometer, *Phigalia titea* Cramer (Geometridae), as a member of a looper complex in West Virginia”. *Journal Lepidopterists Society* 39 (1985): 177–186.

Calder, A. A. “Gross morphology of the soft parts of the male and female reproductive systems of Curculionoidea (Coleoptera)”. *Journal of Natural History* 24.2 (1990): 453–505.

Callahan, P. S. “Serial morphology as a technique for determination of reproductive patterns in the corn earworm, *Heliothis zea* (Boddie)”. *Annals of The Entomological Society of America* 51.5 (1958): 413–428.

Cao, S., S. Shang, Y. Zhang, et al. “Anatomy of the reproductive system of *Pieris melete* Ménétriès (Lepidoptera: *Pieridae*).” *Journal of Northwest A and F University-Natural Science Edition* 40.9 (2012): 151–157.

Carlberg, U. “Evolutionary and ecological aspects on ovarian diversity in Phasmida (Insecta).” *Zoologische Jahrbücher. Abteilung für Systematic Okologie und Geographie der Tiere*. Jena 114.1 (1987): 45–63.

Carlberg, U. “Ovary anatomy in Phasmida (Insecta)”. *Zoologische Jahrbücher. Abteilung für Systematic Okologie und Geographie der Tiere*. Jena 115.1 (1987): 77–84.

Carlberg, U. “Ovary anatomy in Phasmida (Insecta). II”. *Zoologische Jahrbücher. Abteilung für Systematic Okologie und Geographie der Tiere*. Jena 118.1 (1989): 9–14.

Cassidy, J. D. and R. C. King. “Ovarian development in *Habrobracon juglandis* (Ashmead) (Hymenoptera: Braconidae). I. The origin and differentiation of the oocyte nurse cell complex”. *The Biological Bulletin* 143.3 (1972): 483–505.

Catts, E. “Field Behavior of Adult *Cephenemyia* (Diptera: Oestridae) 1, 2”. *The Canadian Entomologist* 96.3 (1964): 579–585.
Cave, M. D. “Absence of amplification of ribosomal DNA in the polytrophic meroistic ovary of the giant silkworm moth, *Antheraea pernyi* (Lepidoptera: Saturniidae)”. *Wilhelm Roux’s Archives of Developmental Biology* 184.2 (1978): 135–142.

Cervera, A., A. C. Maymo, R. Martínez-Pardo, and M. D. Garcerá. “Vitellogenesis inhibition in *Oncopeltus fasciatus* females (Heteroptera: Lygaeidae) exposed to cadmium”. *Journal of Insect Physiology* 51.8 (2005): 895–911.

Chanda, S. and S. Chakravorty. “Morphogenetic derangements in the reproductive system of *Bracon hebetor*, a beneficial parasitoid, bred on juvenoid treated host (Corcyra cephalonica) larvae”. *Indian Journal of Experimental Biology* 38 (2000): 700–794.

Charlwood, J. d. and J. A. Rafael. “Autogeny in the river negro horse fly, *Lepiselaga crassipes*, and un undescribed species of *Stenotabanus* (Diptera: Tabanidae) from Amazonas, Brazil”. *Journal of Medical Entomology* 17.6 (1980): 519–521.

Chiang, R. “Functional anatomy of the vagina muscles in the adult western conifer seed bug, *Leptoglossus occidentalis* (Heteroptera: Coreidae), and its implication for the egg laying behaviour in insects”. *Arthropod Structure and Development* 39.4 (2010): 261–267.

Chiu, M.-C., C.-G. Huang, W.-J. Wu, and S.-F. Shiao. “Morphological allometry and intersexuality in horsehair-worm-infected mantids, *Hierodula formosana* (Mantodea: Mantidae)*”. *Parasitology* 142.8 (2015): 1130–1142.

Clift, A. and F. McDonald. “Morphology of the internal reproductive system of *Lucilia cuprina* (Wied.) (Diptera: Calliphoridae) and a method of determining the age of both sexes”. *International Journal of Insect Morphology and Embryology* 2.4 (1973): 327–333.

Coninck, E. de and R. Coessens. “The structure of the internal genitalia of *Acrorhitis intermedia* (Gillm., 1845) (Col. Ptiliidae)”. *Deutsche Entomologische Zeitschrift* 29.1-3 (1982): 51–55.

Coombs, M. T. “Influence of adult food deprivation and body size on fecundity and longevity of *Trichopoda giamommelii*: A South American parasitoid of *Nezara viridula*”. *Biological Control* 8.2 (1997): 119–123.

Cooper, K. W. “A southern Californian *Boreus, B. notoperates* n. sp. I. Comparative morphology and systematics (Mecoptera: Boreidae)”. *Psyche: A Journal of Entomology* 79.4 (1972): 269–283.

Cooper, K. W. “The genital anatomy and mating behavior of *Boreus brumalis* Fitch (Mecoptera)”. *American Midland Naturalist* 23.2 (1940): 354–367.

Coppel, H. and M. Maw. “Studies on dipterous parasites of the spruce budworm, *Choristoneura fumiferana* (Clem.) (Lepidoptera: Tortricidae): III. *Ceromasia auricaudata* n. sp. (Diptera: Tachinidae)”. *Canadian Journal of Zoology* 32.3 (1954): 144–156.

Cox, M. and D. Windsor. “The first instar larva of *Aulacoscelis appendiculata* n. sp. (Coleoptera: Chrysomelidae: Aulacoscelinae) and its value in the placement of the Aulacoscelinae”. *Journal of Natural History* 33.7 (1999): 1049–1087.

Craddock, E. M. and M. P. Kambysellis. “Adaptive radiation in the Hawaiian *Drosophila* (Diptera: Drosophilidae): Ecological and reproductive character analyses”. *Pacific Science* 51.4 (1997): 475–489.

Cruz-Landim, C. d., R. D. Reginato, and V. L. Imperatriz-Fonseca. “Variation on ovariole number in Meliponinae (Hymenoptera, Apidae) queen’s ovaries, with comments on ovary development and caste differentiation”. *Papeis Avulsos de Zoologia* (São Paulo) 40 (1998): 289–296.

Danks, H. “Seasonal cycle and biology of *Winthemia rufopicta* (Diptera: Tachinidae) as a parasite of *Heliotis* spp. (Lepidoptera: Noctuidae) on tobacco in North Carolina”. *The Canadian Entomologist* 107.6 (1975): 639–654.

Daumal, J. and H. Boinel. “Variability in fecundity and plasticity of oviposition behavior in *Anagasta kuehnitella* (Lepidoptera: Pyralidae)*”. *Annals of The Entomological Society of America* 87.2 (1994): 250–256.

Davies, R. “The postembryonic development of the female reproductive system in *Limothrips cerealium* Haliday (Thysanoptera: Thripidae)*”. *Proceedings of the Zoological Society of London* 136.3 (1961): 411–437.

Davis, N. T. and R. L. Usinger. “The biology and relationships of the Joppeicidae (Heteroptera)”. *Annals of The Entomological Society of America* 63.2 (1970): 577–587.
Dhileepan, K. and T. Ananthakrishnan. “Ovarian polymorphism in relation to reproductive diversity and associated histological and histochemical attributes in some sporophagous tubuliferan Thysanoptera”. *Proceedings: Animal Sciences* 96.1 (1987): 1–13.

Diefenbach, L. M. G., L. R. Redaelli, and D. N. Gassen. “Characterization of the internal reproductive organs and their state as diapause indicator in *Phytalus sanctipauli* Blanchard, 1850 (Coleoptera, Scarabaeidae)”. *Revista Brasileira de Biologia* 58.3 (1998): 541–546.

Dinan, L. “Ecdysteroids in adults and eggs of the house cricket, *Acheta domestica* (Orthoptera: Gryllidae)”. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* 116.2 (1997): 129–135.

Dowell, R. “Ovary structure and reproductive biology of larval parasitoids of the alfalfa weevil (Coleoptera: Curculionidae)”. *The Canadian Entomologist* 110.5 (1978): 507–512.

Dowell, R. V. and D. J. Horn. “Adaptive strategies of larval parasitoids of the alfalfa weevil (Coleoptera: Curculionidae)”. *The Canadian Entomologist* 109.5 (1977): 641–648.

Dowell, R. V. and T. K. Wood. “Ovary structure, fecundity and mating receptivity in *Umbonia crassicornis* Amyot and Serville 1843 (Hemiptera: Membracidae)”. *The Pan-Pacific Entomologist* 85.4 (2009): 187–190.

Dunham, R. S. “A life history study of *Caecilius aurantiacus* (Hagen) (Psocoptera: Caeciliidae)”. *The Great Lakes Entomologist* 5.1 (2017): 17–27.

Dunlap-Pianka, H., C. L. Boggs, and L. E. Gilbert. “Ovarian dynamics in heliconiine butterflies: programmed senescence versus eternal youth”. *Science* 197.4302 (1977): 487–490.

Dutrillaux, A. M., D. Pluot-Sigwalt, and B. Dutrillaux. “Ovo-viviparity in the darkling beetle, *Alegoria castelnaui* (Tenebrioninae: Ulomini), from Guadeloupe.” *European Journal of Entomology* 107.4 (2010): 481–485.

Edmonds, W. “Internal anatomy of *Coprophanaeus lancifer* (L.) (Coleoptera: Scarabaeidae)”. *International Journal of Insect Morphology and Embryology* 3.2 (1974): 257–272.

Eguagie, W. E. “PhD Thesis: Studies on the ecology of thistle lace bugs, in particular *Tingis ampliata* (Heteroptera: Tingidae)”. Diss. Imperial College London, 1969.

Eidmann, H. “Morphologische und physiologische Untersuchungen am weiblichen Genitalapparat der Lepidopteren: I. Morphologischer Teil”. *Zeitschrift Für Angewandte Entomologie* 15.1 (1929): 1–66.

Emin, A. E., A. M. Abdalla, A. M. El Naim, et al. “The biology of senegalese grasshopper (*Oedaleus senegalensis*, Krauss, 1877) (Orthoptera: Acrididae)”. *International Journal of Advances in Life Science and Technology* 1.1 (2014): 6–15.

Elelimy, H., N. Ghazawy, A. Omar, and A. Meguid. “Morphology, histology and ovary development of the female reproductive system of *Spilostethus pandurus* (Scopoli) (Hemiptera: Lygaeidae)”. *African Entomology* 25.2 (2017): 515–523.

Eliaopoulos, P. A., J. A. Harvey, C. G. Athanassiou, and G. J. Stathas. “Effect of biotic and abiotic factors on reproductive parameters of the synovigenic endoparasitoid *Venturia canescens*”. *Physiological Entomology* 28.4 (2003): 268–275.

Elliott, H. and R. Bashford. “The life history of *Mnesampela privata* (Guen.) (Lepidoptera: Geometridae) a defoliator of young eucalypts”. *Australian Journal of Entomology* 17.3 (1978): 201–204.

Emeljanov, A., N. Golub, and V. Kuznetsova. “Birdlice, and Sucking Lice (Psocoptera, Phthiraptera: Mallophaga, Anoplura)”. *Entomological Review* 81.7 (2001): 767–785.

Etman, A. A. and G. Hooper. “Developmental and reproductive biology of *Spodoptera litura* (F.) (Lepidoptera: Noctuidae)”. *Australian Journal of Entomology* 18.4 (1980): 363–372.

Faille, A. and D. Pluot-Sigwalt. “Convergent reduction of ovariole number associated with subterranean life in beetles”. *PloS One* 10.7 (2015): 1–14.

Farder-Gomes, C. F., H. C. P. Santos, M. A. Oliveira, J. C. Zanuncio, and J. E. Serrão. “Morphology of ovary and spermathecae of the parasitoid *Eibesfeldtphora tonhascai* Brown (Diptera: Phoridae)”. *Protosoma* 256.1 (2019): 3–11.
Farrow, R. “Population dynamics of the Australian plague locust, *Chortoicetes terminifera* (Walker) in central western New South Wales. II. Factors influencing natality and survival.” *Australian Journal of Zoology* 30.2 (1982): 199–222.

Fátima Ribeiro, M. de, P. de Souza Santos-Filho, and V. L. Imperatriz-Fonseca. “Size variation and egg laying performance in *Plebeia remotana* queens (Hymenoptera, Apidae, Meliponini)”. *Apidologie* 37.6 (2006): 653–664.

Fatzinger, C. W. “Morphology of the reproductive organs of *Dioryctria abietella* (Lepidoptera: Pyralidae (Phycitinae))”. *Annals of The Entomological Society of America* 63.5 (1970): 1256–1261.

Ferrar, P. “Macrolarviparous reproduction in Euphemosia (Diptera: Calliphoridae)”. *Australian Journal of Entomology* 17.1 (1978): 13–17.

Fink, T. J., T. Soldán, J. G. Peters, and W. L. Peters. “The reproductive life history of the predacious, sand-burrowing mayfly *Dolania americana* (Ephemeroptera: Behningiidae) and comparisons with other mayflies”. *Canadian Journal of Zoology* 69.4 (1991): 1083–1093.

Fisher, R. M. and B. J. Sampson. “Morphological specializations of the bumble bee social parasite *Psithyrus ashtoni* (Cresson) (Hymenoptera: Apidae)”. *The Canadian Entomologist* 124.1 (1992): 69–77.

Fitt, G. P. “Comparative fecundity, clutch size, ovariole number and egg size of *Dacus tryoni* and *D. jarvisi*, and their relationship to body size”. *Entomologia Experimentalis Et Applicata* 55.1 (1990): 11–21.

Fitt, G. P. “Variation in ovariole number and egg size of species of *Dacus* (Diptera; Tephritidae) and their relation to host specialization”. *Ecological Entomology* 15.3 (1990): 255–264.

Fitt, G. P. “Variation in ovariole number and egg size of species of *Dacus* (Diptera; Tephritidae) and their relationship to body size”. *Entomologia Experimentalis Et Applicata* 55.1 (1990): 11–21.

Fitt, G. P. “Variation in ovariole number and egg size of species of *Dacus* (Diptera; Tephritidae) and their relation to host specialization”. *Ecological Entomology* 15.3 (1990): 255–264.

Fitt, G. P. “Variation in ovariole number and egg size of species of *Dacus* (Diptera; Tephritidae) and their relationship to body size”. *Entomologia Experimentalis Et Applicata* 55.1 (1990): 11–21.

Force, D. C. and M. L. Thompson. “Parasitoids of the immature stages of several southwestern yucca moths”. *The Southwestern Naturalist* 29.1 (1984): 45–56.

Fortes, P., G. Salvador, and F. Consoli. “Ovary development and maturation in *Nezara viridula* (L.) (Hemiptera: Pentatomidae)”. *Neotropical Entomology* 40.1 (2011): 89–96.

Freeman, B. and A. Geoghgen. “Size and fecundity in the Jamaican gall-midge *Asphondylia boerhaavae*”. *Ecological Entomology* 12.3 (1987): 239–249.

Fremlin, M. “Single mothers: Minotaur beetle females *Typhaeus typhoeus* (L.) (Coleoptera: Geotrupidae) nest on their own”. *Bulletin of the Amateur Entomologists’ Society* 76 (2017): 87–95.

Gaikwad, S. M., Y. J. Koli, and G. P. Bhawane. “Histomorphology of the Female Reproductive System in *Papilio polytes polytes* Linnaeus, 1758 (Lepidoptera: Papilionidae)”. *Proceedings of The National Academy of Sciences, India Section B: Biological Sciences* 84.4 (2014): 901–908.

Gaines, D. N. “PhD Thesis: Studies on *Conura torvina* (Hymenoptera: Chalcididae) reproduction and biology in relation to hosts in Brassica Crops.” Diss. Virginia Tech, 1997.

Gaino, E. and M. Rebora. “Detection of apoptosis in the ovarian follicle cells of *Ecdyonurus venosus* (Ephemeroptera, Heptageniidae)”. *Italian Journal of Zoology* 70.4 (2003): 291–295.

Galbraith, D. and C. Fernando. “The life history of *Gerris remigis* (Heteroptera: Gerridae) in a small stream in southern Ontario”. *The Canadian Entomologist* 109.2 (1977): 221–228.

Garbiec, A., J. Kubrakiewicz, M. Mazurkiewicz-Kania, B. Simiczjew, and I. Jkedrzejowska. “Asymmetry in structure of the eggshell in *Osmylus fulvicephalus* (Neuroptera: Osmylidae): an exceptional case of breaking symmetry during neuropteran oogenesis”. *Protosplasma* 253.4 (2016): 1033–1042.

Gardner, J. A. “Revision of the genera of the tribe Stigmoderini (Coleoptera: Buprestidae) with a discussion of phylogenetic relationships”. *Invertebrate Systematics* 3.3 (1989): 291–361.

Gauld, I. D., D. B. Wahl, and G. R. Broad. “The suprageneric groups of the Pimplinae (Hymenoptera: Ichneumonidae): a cladistic re-evaluation and evolutionary biological study”. *Zoological Journal of The Linnean Society* 136.3 (2002): 421–485.

Genc, H. and J. L. Nation. “An artificial diet for the butterfly *Phyciodes phaon* (Lepidoptera: Nymphalidae)”. *Florida Entomologist* 87.2 (2004): 194–199.
Gerber, G. “Reproductive behaviour and physiology of *Tenebrio molitor* (Coleoptera: Tenebrionidae): II. Egg development and oviposition in young females and the effects of mating”. *The Canadian Entomologist* 107.5 (1975): 551–559.

Gerber, G. and N. Church. “The reproductive cycles of male and female *Lytta nuttalli* (Coleoptera: Meloidae) 13”. *The Canadian Entomologist* 108.10 (1976): 1125–1136.

Gerber, G., N. Church, and J. Rempel. “The anatomy, histology, and physiology of the reproductive systems of *Lytta nuttalli* Say (Coleoptera: Meloidae). I. The internal genitalia”. *Canadian Journal of Zoology* 49.4 (1971): 523–533.

Gerber, G., G. Neill, and P. Westdal. “The anatomy and histology of the internal reproductive organs of the sunflower beetle, *Zygogramma exclamationis* (Coleoptera: Chrysomelidae)”. *Canadian Journal of Zoology* 56.12 (1978): 2542–2553.

Gerling, D. and H. Hermann. “The oviposition and life cycle of *Anthrax tigrinus*, [Dipt.: Bombyliidae] a parasite of carpenter bees [Hym.: Xylocopidae]”. *Entomophaga* 21.3 (1976): 227–233.

Ghoneim, K. S. “Embryonic and postembryonic development of blister beetles (Coleoptera: Meloidae) in the world: A synopsis”. *International Journal of Biological Sciences* 2 (2013): 6–18.

Gil-Fernandez, C. and L. Black. “Some aspects of the internal anatomy of the leafhopper *Agallia constricta* (Homoptera: Cicadellidae)”. *Annals of The Entomological Society of America* 58.3 (1965): 275–284.

Gnatzy, W., W. Volknandt, and A. Dzwoneck. “Egg-laying behavior and morphological and chemical characterization of egg surface and egg attachment glue of the digger wasp *Ampulex compressa* (Hymenoptera, Ampulicidae)”. *Arthropod Structure and Development* 47.1 (2018): 74–81.

Goldson, S., M. McNeill, J. Proffitt, and A. Hower. “An investigation into the reproductive characteristics of *Microtonus hyperodae* (Hym.: Braconidae), a parasitoid of *Listronotus bonariensis* (Col.: Curculionidae)”. *Entomophaga* 40.3-4 (1995): 413–426.

Golub, N. and S. Nokkala. “Chromosome numbers of two sucking louse species (Insecta, Phthiraptera, Anoplura)”. *Hereditas* 141.1 (2004): 94–96.

Gottanka, J. and J. Büning. “Mayflies (Ephemeroptera), the most “primitive” winged insects, have telotrophic meroistic ovaries”. *Roux’s Archives of Developmental Biology* 203.1-2 (1993): 18–27.

Gottanka, J. and J. Büning. “Oocytes develop from interconnected cystocytes in the panoistic ovary of *Nemoura* sp. (Pictet) (Plecoptera: Nemouridae)”. *International Journal of Insect Morphology and Embryology* 19.5-6 (1990): 219–225.

Gôukon, K., Y. Maeta, and S. F. Sakagami. “Seasonal changes in ovarian state in a eusocial halictine bee, *Lasioglossum duplex*, based on stages of the oldest oocytes in each ovariole (Hymenoptera: Halictidae)”. *Researches On Population Ecology* 29.2 (1987): 255–269.

Gower, A. “A study of *Limnephilus lunatus* Curtis (Trichoptera: Limnephilidae) with reference to its life cycle in watercress beds”. *Transactions of The Royal Entomological Society of London* 119.10 (1967): 283–302.

Grandi, G., R. Barbieri, and G. Colombo. “Oogenesis in *Kalotermes flavicollis* (Fabr.) (Isoptera: Kalotermitidae). I. Differentiation and maturation of oocytes in female supplementary reproductives”. *Italian Journal of Zoology* 55.1-4 (1988): 103–122.

Gray, B. and K. Lamb. “Some observations on the Malpighian tubules and ovarioles in *Myrmecia dispar* (Clark) (Hymenoptera: Formicidae)”. *Australian Journal of Entomology* 7.1 (1968): 80–81.

Grenier, A.-M. and P. Nardon. “The genetic control of ovariole number in *Sitophilus oryzae* L (Coleoptera, Curculionidae) is temperature sensitive”. *Genetics Selection Evolution* 26.5 (1994): 1–18.

Griffith, C. and J. Lai-Fook. “The ovaries and changes in their structural components at the end of vitellogenesis and during vitelline membrane formation in the butterfly, Calpodes”. *Tissue and Cell* 18.4 (1986): 575–588.

Grodowitz, M. J., T. D. Center, and J. E. Freedman. “A physiological age-grading system for *Neochetina eichhorniae* (Warner) (Coleoptera: Curculionidae), a biological control agent of water hyacinth, *Eichhornia crassipes* (Mart.) Solms.” *Biological Control* 9.2 (1997): 89–105.
Grosch, D. S., R. G. Kratsas, and R. M. Petters. “Variation in Habrobracon juglandis ovariole number: I. Ovariole number increase induced by extended cold shock of fourth-instar larvae”. *Development* 40.1 (1977): 245–251.

Grozeva, S. and N. Simov. “Cytogenetic Studies of Bryocorinae Baerensprung, 1860 True Bugs (Heteroptera: Miridae)”. *Acta Zool Bulg Suppl* 2 (2008): 61–70.

Grozeva, S. and V. Kuznetsova. “Karyotypes and some structural properties of the reproductive system of bugs of the subfamily Artheneinae (Heteroptera, Pentatomomorpha, Lygaeidae)”. *Entomological Research* 69 (1990): 14–26.

Habluetzel, A., F. Carnevali, L. Lucantoni, L. Grana, A. R. Attili, F. Archilei, M. Antonini, A. Valbonesi, V. Abbadessa, F. Esposito, et al. “Impact of the botanical insecticide Neem Azalon survival and reproduction of the biting louse Damalinia limbata on angora goats”. *Veterinary Parasitology* 144.3-4 (2007): 328–337.

Hafeez, M. and B. Gardiner. “The internal morphology of the adult of Tribolium anaphe Hinton (Coleoptera: Tenebrionidae)”. *Proceedings of the Royal Entomological Society of London. Series A, General Entomology* 39.10-12 (1964): 137–145.

Hafllter, G., W. D. Edmonds, et al. “The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach.” *Journal of the New York Entomological Society* 91.4 (1982): 512–515.

Hafllter, G., C. Huerta, R. de Ma. Ribeiro Sarges, and A. D. Rojas. “Reversal to a Two-Ovaries State in Scarabaeinae (Coleoptera: Scarabaeidae)”. *The Coleopterists Bulletin* 67.2 (2013): 94–96.

Hallman, G., C. Morales, and M. Duque. “Biology of Acrosternum marginatum (Heteroptera: Pentatomidae) on common beans”. *Florida Entomologist* 75.2 (1992): 190–196.

Hatakeyama, M., M. Sawa, and K. Oishi. “Ovarian development and vitellogenesis in the sawfly, Athalia rosae ruficornis Jakovlev (Hymenoptera, Tenthredinidae)”. *Invertebrate Reproduction and Development* 17.3 (1990): 237–245.

Heather, N. “Studies on female genitalia of Queensland Phasmida”. *Australian Journal of Entomology* 4.1 (1965): 33–38.

Hébert, C., C. Cloutier, J. Régnière, and D. F. Perry. “Seasonal biology of Winthemia fumiferanae Toth. (Diptera: Tachinidae), a larval–pupal parasitoid of the spruce budworm (Lepidoptera: Tortricidae)”. *Canadian Journal of Zoology* 67.10 (1989): 2384–2391.

Heming-van Battum, K. E. and B. Heming. “Structure, function and evolution of the reproductive system in females of Hebrus pusillus and H. ruficeps (Hemiptera, Gerromorpha, Hebridae)”. *Journal of Morphology* 190.2 (1986): 121–167.

Heming, B. S. “History of the germ line in male and female thrips”. *Thrips biology and management* 276 (1995): 505–535.

Heming, B. and E. Huebner. “Development of the germ cells and reproductive primordia in male and female embryos of Rhodnius prolixus Staal (Hemiptera: Reduviidae)”. *Canadian Journal of Zoology* 72.6 (1994): 1100–1119.

Hemptinne, E. B. and Jean-Louis. “Development of ovaries, allometry of reproductive traits and fecundity of Epizyphyss baleatus (Diptera: Syrphidae)”. *European Journal of Entomology* 97 (2000): 165–170.

Henry, C. S. “Eggs and rapagula of Ululodes and Acaleptynx (Neuroptera: Acalaphidae): a comparative study”. *Psyche: A Journal of Entomology* 79.1-2 (1972): 1–22.

Henry, E. V., A. Alvarez-Zapata, A. C. Gonzales, E. F. Martins, L. C. Martinez, and J. E. Serrao. “Anatomy and histology of the alimentary canal and ovarioles of Cerœobryrsa cubana adults”. *Bulletin of Insectology* 70.2 (2017): 181–188.

Hernandez, L. C., G. Fajardo, L. S. Fuentes, and L. Comoglio. “Biology and reproductive traits of Drymoea veliterna (Druce, 1885) (Lepidoptera: Geometridae)”. *Journal of Insect Biodiversity* 5.12 (2017): 1–9.

Higley, L. G. “Morphology of Reproductive Structures in Cicindela repanda (Coleoptera: Cicindelidae)”. *Journal of The Kansas Entomological Society* 59.2 (1986): 303–308.

Hill, R. I., C. M. Penz, and P. DeVries. “Phylogenetic analysis and review of Panacea and Batesia butterflies (Nymphalidae)”. *Journal of The Lepidopterists' Society* 56.4 (2002): 199–215.
Hoc, T. and T. Wilkes. “Age determination in the blackfly *Simulium woodi*, a vector of onchocerciasis in Tanzania”. *Medical and Veterinary Entomology* 9.1 (1995): 16–24.

Hodin, J. “Plasticity and constraints in development and evolution”. *Journal of Experimental Zoology* 288.1 (2000): 1–20.

Hodin, J. “She shapes events as they come: plasticity in female insect reproduction”. *Phenotypic plasticity of insects: mechanisms and consequences*. Edited by D. W. Whitman and T. N. Ananthakrishnan. Enfield, NH: Science Publishers, 2009. 423–521.

Hodin, J. and L. M. Riddiford. “Different mechanisms underlie phenotypic plasticity and interspecific variation for a reproductive character in drosophilids (Insecta: Diptera)”. *Evolution* 54.5 (2000): 1638–1653.

Hopkins, J., C. Steelman, and C. Carlton. “Anatomy of the adult female lesser mealworm *Alphitobius diaperinus* (Coleoptera: Tenebrionidae) reproductive system”. *Journal of The Kansas Entomological Society* 65.3 (1992): 299–307.

Houston, T. F. “Observations of the biology and immature stages of the sandgrouper *Cylindraustralia kochii* (Saus-sure), with notes on some congeners (Orthoptera: Cylindrachetidae)”. *Records-Western Australian Museum* 23.3 (2007): 219–234.

Hünefeld, F. and N. P. Kristensen. “The female postabdomen and internal genitalia of the basal moth genus *Agathiphaga* (Insecta: Lepidoptera: Agathiphagidae): morphology and phylogenetic implications”. *Zoological Journal of The Linnean Society* 159.4 (2010): 905–920.

Hummel, N. A., F. G. Zalom, and C. Y. Peng. “Anatomy and histology of reproductive organs of female *Homalodisca coagulata* (Hemiptera: Cicadellidae: Proconiini), with special emphasis on categorization of vitellogenic oocytes”. *Annals of The Entomological Society of America* 99.5 (2006): 920–932.

Hünefeld, F. and N. P. Kristensen. “The female postabdomen and genitalia of the basal moth family Heterobathmiidae (Insecta: Lepidoptera): Structure and phylogenetic significance”. *Arthropod Structure and Development* 41.4 (2012): 395–407.

Ichikawa, Y. and M. Watanabe. “Changes in the number of eggs loaded in *Pantala flavescens* females with age from mass flights (Odonata: Libellulidae)”. *Zoological Science* 31.11 (2014): 721–725.

Ikeda, H., T. Kagaya, K. Kubota, and T. Abe. “Evolutionary relationships among food habit, loss of flight, and reproductive traits: life-history evolution in the Silphinae (Coleoptera: Silphidae)”. *Evolution: International Journal of Organic Evolution* 62.8 (2008): 2065–2079.

Imperatriz-Fonseca, V. L., C. d. Cruz-Landin, and R. S. de Moraes. “Dwarf gynes in *Nannotrigona testaceicornis* (Apidae, Meliponinae, Trigonini). Behaviour, exocrine gland morphology and reproductive status”. *Apidologie* 28.3-4 (1997): 113–122.

Ito, F. “Colony composition and specialized predation on millipedes in the enigmatic ponerine ant genus *Probolomyrmex* (Hymenoptera, Formicidae)”. *Insectes Sociaux* 45.1 (1998): 79–83.

Iwata, K. “Ovarian eggs in Scarabaeoidea (Coleoptera)”. *Seibutsu Kenkyu* 10 (1966): 1–3.

Iwata, K. “The comparative anatomy of the ovary in Hymenoptera. Part I. Aculeata”. *Mushi* 29 (1955): 17–34.

Iwata, K. “The comparative anatomy of the ovary in Hymenoptera. Part II. Symphyta”. *Mushi* 31 (1958): 47–60.

Iwata, K. “The comparative anatomy of the ovary in Hymenoptera. Part IV. Proctotrupoidea and Agriotypidae (Ichneumoidea) with descriptions of ovarian eggs”. *Entomological society of Japan* 27.1 (1959): 18–27.

Iwata, K. “The comparative anatomy of the ovary in Hymenoptera. Part V. Ichneumonidae.” *Acta Hymenopterologica* 1 (1960): 115–169.

Iwata, K. “The comparative anatomy of the ovary in Hymenoptera. Supplement of Aculeata with descriptions of ovarian eggs of certain species”. *Acta Hymenopterologica* 1 (1960): 205–211.

Iwata, K. “The comparative anatomy of the ovary in Hymenoptera. VI. Chalcidoidea with descriptions of ovarian eggs”. *Acta Hymenopterologica* 1.4 (1962): 383–391.

Iwata, K. and S. F. Sakagami. “Gigantism and dwarfism in bee eggs in relation to the modes of life, with notes on the number of ovarioles”. *Japanese Journal of Ecology* 16.1 (1966): 4–16.
Jablonska, A. and S. M. Bilinski. “Structure of ovarioles in adult queens and workers of the common wasp, Vespu
germanica (Hymenoptera: Vespidae)”. Folia Biologica-Krakow 49.3/4 (2001): 191–198.
Jackson, J. T., D. R. Tárpy, and S. E. Fahrbach. “Histological estimates of ovariLE number in honey bee
queens, Apis mellifera, reveal lack of correlation with other queen quality measures”. Journal of Insect Science 11
(2011): 1–11.
Jahnke, S. M., L. R. Redaelli, and L. Diefenbach. “Internal reproductive organs of Cosmodopus nigroannulatus
(Hemiptera: Reduviidae)”. Brazilian Journal of Biology 66.2A (2006): 509–512.
Jean—Louis Hemptinne, A. F., J.-L. Doucet, and J.-E. Petersen. “Optimal foraging by hoverflies (Diptera:
Syrphidae) and ladybirds (Coleoptera Coccinellidae): Mechanisms”. European Journal of Entomology 903
(1993): 451–455.
Jennener, W. H. “PhD Thesis: European parasitoids of the cherry bark tortrix: assessing the ichneumonid,
Campoplex dubitator, as a potential classical biological control agent for North America”. Diss. Simon Fraser
University, 2003.
Jervis, M. and N. Kidd. “Host-feeding strategies in hymenopteran parasitoids”. Biological Reviews 61.4 (1986):
395–434.
Jiang, L. and B. Hua. “Morphology and chaetotaxy of the immature stages of the scorpionfly Panorpa liui Hua
(Mecoptera: Panorpidae) with notes on its biology”. Journal of Natural History 47.41-42 (2013): 2691–2705.
Kafatos, F., J. Regier, G. Mazur, M. Nadel, H. Blau, W. Petri, A. Wyman, R. Gelinias, P. Moore, M. Paul, et al. “The
Eggshell of Insects: Differentiation-Specific Proteins and the Control of Their Synthesis and Accumulation
During”. Biochemical Differentiation in Insect Glands 8 (2013): 45–145.
Kai, W. S. and I. W. Thornton. “The internal morphology of the reproductive systems of some psocid species”.
Proceedings of the Royal Entomological Society of London. Series A, General Entomology 43.1-3 (1968): 1–12.
Karban, R. “Effects of local density on fecundity and mating speed for periodical cicadas”. Oecologia 51.2 (1981):
260–264.
Karlsson, M. “Master’s Thesis: Relationship between mate guarding strategies and ovarile number in Libellulidae
(Odonata)”. Diss. Halmstad University, 2007.
Karlsson, M., G. Sahlén, and K. Koch. “Continuous and stepwise oocyte production in Libellulidae (Anisoptera)”.
Odonatologica 39.2 (2010): 107–119.
Kasap, H. and R. Crowson. “Bruchidae ve Chrysomelidae (Coleoptera) familyalarinin dicisi üreme organlari”.
Türkiye Entomoloji Derneği 4.2 (1980): 85–102.
Kaufmann, T. “Ecological and biological studies on the West African firefly Luciola disciolillis (Coleoptera:
Lampyridae)”. Annals of The Entomological Society of America 58.4 (1965): 414–426.
Kaufmann, T. “Ecology, biology and gonad morphology of Gerris rufoscutellatus (Hemiptera: Gerridae) in Fairbanks,
Alaska”. American Midland Naturalist 86.2 (1971): 407–416.
Kaur, A., B. K. Rao, S. Thakur, and S. Raja. “Factors inducing oocyte resorption in Leptocoris coimbatorensis
Gross (Hemiptera: Coreidiae)”. Journal of The Kansas Entomological Society 60.3 (1987): 353–360.
Kenis, M. and N. Mills. “Evidence for the occurrence of sibling species in Euubazus spp. (Hymenoptera: Braconidae),
parasitoids of Pisosodes spp. weevils (Coleoptera: Curculionidae)”. Bulletin of Entomological Research 88.2
(1998): 149–163.
Klemperer, H. “Life history and parental behaviour of a dung beetle from neotropical rainforest, Copris laeviceps
(Coleoptera, Scarabaeidae)”. Journal of Zoology 209.3 (1986): 319–326.
Klemperer, H. “Subsocial behaviour in Oniticellus cinctus (Coleoptera, Scarabaeidae): effect of the brood on parental
care and oviposition”. Physiological Entomology 8.4 (1983): 393–402.
Kobayashi, Y. “Ovarian Structure of a Zeuglopteran Moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Mi-
cropterigidae)”. Japanese Journal of Entomology 62.1 (1994): 93–100.
Koçakoğlu, N. Ö., S. Candan, and Z. Suludere. “Notes on the morphology and histology of the ovarioles of Gerris
lacticrus (L.) (water strider) (Insecta: Hemiptera: Heteroptera: Gerridae)”. Zoologischer Anzeiger 278 (2019):
84–89.
Koch, K., M. Quast, and G. Sahl. “Morphological differences in the ovary of Libellulidae (Odonata)”. International
Journal of Odonatology 12.1 (2009): 147–156.
Koi, S. and J. Daniels. “New and revised life history of the Florida hairstreak *Eumaeus atala* (Lepidoptera: Lycaenidae) with notes on its current conservation status”. *Florida Entomologist* 98.4 (2015): 1134–1148.

Konagaya, T., N. Mutoh, M. Suzuki, R. Rutowski, and M. Watanabe. “Estimates of female lifetime fecundity and changes in the number and types of sperm stored with age and time since mating in the monandrous swallowtail butterfly, *Battus philenor* (Lepidoptera: Papilionidae) in the Arizona desert”. *Applied Entomology and Zoology* 50.3 (2015): 311–316.

Koteja, J., G. Pyka-Fosciak, M. Vogelgesang, and T. Szklarzewicz. “Structure of the ovary in *Steingelia* (Sternorrhyncha: Coccinea), and its phylogenetic implications”. *Arthropod Structure and Development* 32.2-3 (2003): 247–256.

Krüger, K. and N. Mills. “Observations on the biology of three parasitoids of the spruce bark beetle, *Ips typographus* (Col., Scolytidae): *Coeloides bostrychorum, Dendrosoter middendorfii* (Hym., Braconidae) and *Rhopalicus tutela* (Hym., Pteromalidae)”. *Journal of Applied Entomology* 110.1-5 (1990): 281–291.

Kudo, S.-i., T. Nakahira, and Y. Saito. “Morphology of trophic eggs and ovarian dynamics in the subsocial bug *Adonorus triguttulus* (Heteroptera: Cydnidae)”. *Canadian Journal of Zoology* 84.5 (2006): 723–728.

Kugler, J. and Y. Nitzan. “Biology of *Clausicella suturata* [Dipt.: Tachinidae] a parasite of *Ectomyelois ceratoniae* [Lep.: Phycitidae]”. *Entomophaga* 22.1 (1977): 93–105.

Kugler, J., T. Orion, and J. Ishay. “The number of ovarioles in the Vespinae (Hymenoptera)”. *Insectes Sociaux* 23.4 (1976): 525–533.

Kuropatkin, A., K. Klass, G. Uhl, and M. Eberhard. “Comparative morphology of the internal female genitalia in two species of Mantophasmatodea”. *Zoomorphology* 138.1 (2019): 73–83.

Kuznetsova, V. G., S. Nokkala, and D. E. Shcherbakov. “Karyotype, reproductive organs, and pattern of gametogenesis in *Zorotypus hubbardi* Caudell (Insecta: Zoraptera, Zorotypidae), with discussion on relationships of the order”. *Canadian Journal of Zoology* 80.6 (2002): 1047–1054.

Kvamme, T. E. and S. B. Bruns. “Oogenesis and radiosensitivity in *Cobblomyia hominivorax* (Diptera: Calliphoridae)”. *The Biological Bulletin* 124.1 (1963): 65–83.

Lachmann, A. “Sexual receptivity and post-emergence ovarian development in females of *Coproica vagans* (Diptera: Sphaeroceridae)”. *Physiological Entomology* 23.4 (1998): 360–368.

Lal, K. “The biology of Scottish Psyllidae”. *Transactions of The Royal Entomological Society of London* 82.2 (1934): 363–385.

Launois-Luong, M.-H. and M. Lecoq. “Sexual maturation and ovarian activity in *Rhammatocerus schistocercoides* (Orthoptera: Acrididae), a pest grasshopper in the state of Mato Grosso in Brazil”. *Environmental Entomology* 25.5 (1996): 1045–1051.
Lauziere, I., J. C. Legaspi, B. C. Legaspi, J. W. Smith, and W. A. Jones. “Life-history studies of Lydella jalisco (Diptera: Tachinidae), a parasitoid of Eoreuma loftini (Lepidoptera: Pyralidae)”. BioControl 46.1 (2001): 71–90.

Laws, A. and A. Joern. “Variable effects of dipteran parasitoids and management treatment on grasshopper fecundity in a tallgrass prairie”. Bulletin of Entomological Research 102.2 (2012): 123–130.

Leather, S., P. W. Wellings, and K. Walters. “Variation in ovariole number within the Aphidoidea”. Journal of Natural History 22.2 (1988): 381–393.

Lemos, W. d. P., F. d. S. Ramalho, J. E. Serrão, and J. C. Zanuncio. “Morphology of female reproductive tract of the predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) fed on different diets”. Brazilian Archives of Biology and Technology 48.1 (2005): 129–138.

Lemos, W., J. Zanuncio, F. Ramalho, V. Zanuncio, and J. Serrão. “Herbivory affects ovarian development in the zoophytophagous predator Brontocoris tabidus (Heteroptera, Pentatomidae)”. Journal of Pest Science 83.2 (2010): 69–76.

Leprince, D. and L. Foil. “Relationships among body size, blood meal size, egg volume, and egg production of Tabanus fuscicostatus (Diptera: Tabanidae)”. Journal of Medical Entomology 30.5 (1993): 865–871.

Leprince, D. and D. Lewis. “Aspects of the biology of female Chrysops univittatus (Diptera: Tabanidae) in southwestern Quebec”. The Canadian Entomologist 115.4 (1983): 421–425.

Lisboa, L., J. Serrão, C. Cruz-Landim, and L. Campos. “Effect of larval food amount on ovariole development in queens of Trigona spinipes (Hymenoptera, Apinae)”. Anatomia, Histologia, Embryologia 34.3 (2005): 179–184.

Liu, W.-X., W. Wang, L.-S. Cheng, J.-Y. Guo, and F.-H. Wan. “Contrasting patterns of ovarian development and oogenesis in two sympatric host-feeding parasitoids, Diglyphus isaea and Neochrysocharis formosa (Hymenoptera: Eulophidae)”. Applied Entomology and Zoology 49.2 (2014): 305–314.

Livingstone, D. and M. Yacoob. “Female accessory glands and sperm reception in Tingidae (Heteroptera)”. Proceedings: Animal Sciences 99.6 (1990): 431–446.

Llorente-Bousquets, J., S. Nieves-UrIBE, A. Flores-Gallardo, B. C. Hernández-Mejia, and J. Castro-Gerardino. “Chorionic sculpture of eggs in the subfamily Dismorphiinae (Lepidoptera: Papilionoidea: Pieridae)”. Zootaxa 2018.4429 (2018): 201–246.

Loan, C. and F. Holdaway. “Microctonus aethiops (Nees) auctt. and Perilitus rutilus (Nees) (Hymenoptera: Braconidae), European parasites of Sitona weevils (Coleoptera: Curculionidae)”. The Canadian Entomologist 93.12 (1961): 1057–1079.

Louis, D. and R. Kumar. “Morphology of the alimentary and reproductive organs in Reduviidae (Hemiptera: Heteroptera) with comments on interrelationships within the family”. Annals of The Entomological Society of America 66.3 (1973): 635–639.

Luft, P. A. “Experience affects oviposition in Goniozus nigrifemur (Hymenoptera: Bethylidae)”. Annals of The Entomological Society of America 86.4 (1993): 497–505.

Lumbreras, C., E. Galante, and J. Mena. “Ovarian condition as an indicator of the phenology of Bubas bubalus (Coleoptera: Scarabaeidae)”. Annals of The Entomological Society of America 84.2 (1991): 190–194.

Ma, N., L. Cai, and B. Hua. “Comparative morphology of the eggs in some Panorpidae (Mecoptera) and their systematic implication”. Systematics and Biodiversity 7.4 (2009): 403–417.

Ma, N. and B. Hua. “Fine structure and formation of the eggshell in scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae)”. Microscopy Research and Technique 72.7 (2009): 495–500.

Ma, W. and S. Ramaswamy. “Histological changes during ovarian maturation in the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae)”. International Journal of Insect Morphology and Embryology 16.5-6 (1987): 309–322.

MacDonald, J. F. and R. Matthews. “Nesting biology of the southern yellowjacket, Vespula squamosa (Hymenoptera: Vespidae): social parasitism and independent founding”. Journal of The Kansas Entomological Society 57.1 (1984): 134–151.
Makert, G. R., R. J. Paxton, and K. Hartfelder. “Ovariole number—a predictor of differential reproductive success among worker subfamilies in queenless honeybee (Apis mellifera L.) colonies”. Behavioral Ecology and Sociobiology 60.6 (2006): 815–825.

Mangan, R. L. “Reproductive behavior of the cactus fly, Odontoloxozus longicornis, male territoriality and female guarding as adaptive strategies”. Behavioral Ecology and Sociobiology 4.3 (1979): 265–278.

Marchini, D., G. D. Bene, and R. Dallai. “Functional morphology of the female reproductive apparatus of Stephanitis pyrioides (Heteroptera, Tingidae): a novel role for the pseudospermathecae”. Journal of Morphology 271.4 (2010): 473–482.

Martínez, I. and M. Cruz. “Effects of nourishment on the gonadal maturation in Canthion cyanellus cyanellus LeConte (Coleoptera: Scarabaeidae: Scarabaeinae)”. The Coleopterists’ Bulletin 52.3 (1998): 237–244.

Martínez, I. and C. Huerta. “Coordinated activity of the ovary, pars intercerebralis and corpus allatum during the prenesting and nesting cycles of Copris incertus Say (Coleoptera: Scarabaeidae: Scarabaeinae)”. The Coleopterists’ Bulletin 51.4 (1997): 351–363.

Martins, G. F. and J. E. Serrão. “A comparative study of the ovaries in some Brazilian bees (Hymenoptera: Apoidea)”. Papeis Aeculos de Zoologia (São Paulo) 44.3 (2004): 45–53.

Mason, L., S. Johnson, and J. Woordring. “Seasonal and ontogenetic examination of the reproductive biology of Pseudoplusia includens (Lepidoptera: Noctuidae)”. Environmental Entomology 18.6 (1989): 980–985.

Mason, P. C. “PhD Thesis: Alpine grasshoppers (Orthoptera: Acrididae) in the southern alps of Canterbury, New Zealand”. Diss. University of Canterbury. Zoology, 1971.

Masuko, K. “Thelytokous parthenogenesis in the ant Strumigenys hexamera (Hymenoptera: Formicidae)”. Annals of The Entomological Society of America 106.4 (2013): 479–484.

Matesco, V. C., C. F. Schwertner, and J. Grazia. “Morphology of the immatures and biology of Chinavia longicorialis (Breddin) (Hemiptera: Pentatomidae)”. Neotropical Entomology 38.1 (2009): 74–82.

Mateus, S., F. B. Noll, and R. Zucchi. “Morphological caste differences in the neotropical swarm-founding polistine wasps: Parachartergus smithii (Hymenoptera: Vespidae)”. Journal of The New York Entomological Society 62.4 (1997): 129–139.

Mathai, S., V. Nair, et al. “Histomorphological changes induced in the ovary of Spodoptera mauritia Boisd. (Lepidoptera: Noctuidae) by treatment with a juvenile hormone analogue”. Proceedings of The National Academy of Sciences, India Section B: Biological Sciences 856.3 (1990): 253–258.

Matsuzaki, M. “Electron microscopic studies on the oogenesis of dragonfly and cricket with special reference to the panoistic ovaries”. Development, Growth and Differentiation 13.4 (1971): 379–398.

Matsuzaki, M. and H. Ando. “Ovarian structures of the adult alderfly, Sialis mitsuhashii Okamoto (Megaloptera: Sialidae)”. International Journal of Insect Morphology and Embryology 6.1 (1977): 17–29.

Mazurkiewicz-Kania, M. “Differentiation of follicular cells in polytrophic ovaries of Pieridae and Nymphalidae (Insecta: Lepidoptera)”. Acta Biologica Cracoviensia. Series Botanica. Supplement 52.1 (2010): 1–98.

Mazurkiewicz-Kania, M., B. Simiczżyjew, and I. Jkedrzejowska. “Differentiation of follicular epithelium in polytrophic ovaries of Pieris napi (Lepidoptera: Pieridae)—how far to Drosophila model”. Protoplasma 256.5 (2019): 1–15.

McLintock, J. and K. Depner. “A review of the life-history and habits of the horn fly, Siphona irritans (L.) (Diptera: Muscidae)”. The Canadian Entomologist 86.1 (1954): 20–33.

Meats, A., H. Holmes, and G. Kelly. “Laboratory adaptation of Bactrocera tryoni (Diptera: Tephritidae) decreases mating age and increases protein consumption and number of eggs produced per milligram of protein”. Bulletin of Entomological Research 94.6 (2004): 517–524.

Meier, R., M. Kotrba, and P. Ferrar. “Ovoviviparity and viviparity in the Diptera”. Biological Reviews 74.3 (1999): 199–258.

Melo, G. a., J. G. Rozen, et al. “Biology and immature stages of the bee tribe Tetrapediini (Hymenoptera: Apidae)”. American Museum Novitates 2002.3377 (2002): 1–45.
Mendes, L. “Sur deux nouvelles Nicoletiidae (Zygentoma) cavernicoles de Grèce et de Turquie et remarques sur la systématique de la famille”. *Revue Suisse de Zoologie* 95.3 (1988): 751–772.

Mercer, C. and P. King. “Ovarian development in black beetle, *Heteronychus arator* (Coleoptera: Scarabaeidae)”. *New Zealand Entomologist* 6.2 (1976): 165–170.

Messina, F. J. “Comparative biology of the goldenrod leaf beetles, *Tririblada virgata* Leconte and *T. borealis* Blake (Coleoptera: Chrysomelidae)”. *The Coleopterists’ Bulletin* 36.2 (1982): 255–269.

Michalk, A., M. Kalandýk-Kołodziejczyk, E. Simon, M. Kobialka, and T. Szkłarzewicz. “Ovaries of *Puto superbus* and *Ceroputo pilosellae* (Hemiptera: Coccoidea): Morphology, ultrastructure, phylogenetic and taxonomic implications”. *European Journal of Entomology* 110.3 (2013): 527–534.

Mizumoto, M. and F. Nakasuji. “Egg size manipulation in the migrant skipper, *Parnara guttata guttata* (Lepidoptera: Hesperiidae), in response to different host plants”. *Population Ecology* 49.2 (2007): 135–140.

Murad, H. and M. S. Ansari. “Histomorphology of the Female Reproductive Organ of the Cattle Fly, *Hippobosca maculata* Lch (Diptera: Hippoboscidae)”. *Netherlands Journal of Zoology* 31.2 (1980): 466–471.

Nalepa, C., K. Kidd, and K. Ahlstrom. “Biology of *Harmonia axyridis* (Coleoptera: Coccinellidae) in winter aggregations”. *Annals of The Entomological Society of America* 89.5 (1996): 681–685.

Nandchahal, N. “Reproductive organs of *Gryllodes sigillatus* (Walker) (Orthoptera: Gryllidae)”. *Journal of Natural History* 6.2 (1972): 125–131.

New, T. “Communal oviposition and egg-brooding in a psocid, *Peripsocus nitens* (Insecta: Psocoptera) in Chile”. *Journal of Natural History* 19.3 (1985): 419–423.

New, T. “Ovariolar dimorphism and repagula formation in some South American Ascalaphidae (Neuroptera)”. *Journal of Entomology Series A, General Entomology* 46.1 (1971): 73–77.

Ngernsiri, L., W. Piyajaraprasert, W. Wisoram, and D. J. Merritt. “Structure of the female reproductive system of the lac insect, *Kerria chinensis* (Sternorrhyncha, Coccoidea: Kerriidae)”. *Acta Zoologica* 96.3 (2015): 312–318.

Nokkala, S. “Cytological characteristics of chromosome behaviour during female meiosis in *Sphinx ligustri* L. (Sphingidae, Lepidoptera)”. *Hereditas* 106.2 (1987): 169–179.

Noll, F. B., J. W. Wenzel, and R. Zucchi. “Evolution of caste in Neotropical swarm-founding wasps (Hymenoptera: Vespidae, Epiponini)”. *American Museum Novitates* 2004.3467 (2004): 1–24.

O’Connell, C. V. “PhD Thesis: A study of the internal anatomy of *Acanthocephala thomasi* Uhler (Hemiptera, Coreidae)”. Diss. The University of Arizona, 1959.

O’Neill, K. M., C. M. Delphia, and R. P. O’Neill. “Oocyte size, egg index, and body lipid content in relation to body size in the solitary bee *Megachile rotundata*”. *PeerJ* 2 (2014): 1–15.

Obata, S. “Mating refusal and its significance in females of the ladybird beetle, *Harmonia axyridis*”. *Physiological Entomology* 13.2 (1988): 193–199.

Oberhauser, K. S. “Fecundity, lifespan and egg mass in butterflies: effects of male-derived nutrients and female size”. *Functional Ecology* 11.2 (1997): 166–175.

Odendaal, F. J. “Mature egg number influences the behavior of female *Battus philenor* butterflies”. *Journal of Insect Behavior* 2.1 (1989): 15–25.

Ogorzalek, A. and A. Trochimczuk. “Ovary structure in a presocial insect, *Elasmucha grisea* (Heteroptera, Acanthosomatidae)”. *Arthropod Structure and Development* 38.6 (2009): 509–519.

Oguchi, K., H. Shimoji, Y. Hayashi, and T. Miura. “Reproductive organ development along the caste differentiation pathways in the dampwood termite *Hodotermpsis sjostedti*”. *Insectes Sociaux* 63.4 (2016): 519–529.
Ohl, M. and D. Linde. “Ovaries, ovarioles, and oocytes in apoid wasps, with special reference to cleptoparasitic species (Hymenoptera: Apoidea: Sphecidae)”. *Journal of The Kansas Entomological Society* 76.2 (2003): 147–159.

Olton, G. and E. Legner. “Biology of *Tachinaaeugas zealandicus* (Hymenoptera: Encyrtidae), parasitoid of synanthropic Diptera”. *The Canadian Entomologist* 106.8 (1974): 785–800.

Osbrink, W. L. and M. K. Rust. “Fecundity and longevity of the adult cat flea, *Ctenocephalides felis felis* (Siphonaptera: Pulicidae)”. *Journal of Medical Entomology* 21.6 (2004): 111–117.

Perveen, F. “Effects of sublethal doses of Chlorfluazuron on ovarioles in the common cutworm, *Spodoptera litura* (Lepidoptera: Noctuidae)”. *Journal of Life Sciences* 5.8 (2011): 609–613.

Perez-Mendoza, J., J. Throne, and J. Baker. “Ovarian physiology and age-grading in the rice weevil, *Sitophilus oryzae* (Coleoptera: Curculionidae)”. *Journal of Stored Products Research* 40.2 (2004): 179–196.

Piven, F. “Effects of sublethal doses of Chlorfluazuron on ovarioles in the common cutworm, *Spodoptera litura* (Lepidoptera: Noctuidae)”. *Journal of Life Sciences* 5.8 (2011): 609–613.

Popen, J. “The structure and maturation of the ovaries in British Acrididae (Orthoptera).” *Transactions of The Royal Entomological Society of London* 100.9 (1996): 219–233.

Pohl, L. “Additional chromosome duplication in female meiotic prophase of *Sipyloidea sipylus* Westwood (Insecta, Phasmida), and its absence in male meiosis”. *Experientia* 34.12 (1978): 1558–1560.

Polillo, A. “Anatomy of the smallest Coleoptera, featherwing beetles of the tribe Nanosellini (Coleoptera, Ptiliidae), and limits of insect miniaturization”. *Entomological Review* 88.1 (2008): 26–33.

Pollack, J. “Viviparous adaptations in the acalyprate genera Pachyphus (Chloropidae) and Cyrtona (Curtonotidae) (Diptera: Schizophora)”. *Annals of The Natal Museum* 37.1 (1996): 183–189.

Portman, S., J. Frank, R. McSorley, and N. Leppla. “Fecundity of *Larva bicolor* (Hymenoptera: Crabronidae) and its implications in parasitoid: host interaction with mole crickets (Orthoptera: Gryllotalpidae: Sapteriscus)*”. *Florida Entomologist* 92.1 (2009): 58–64.

Price, P. W. “Energy allocation in ephemeral adult insects”. *The Ohio Journal of Science* 74.6 (1974): 380–387.

Price, P. W. “Parasitoids utilizing the same host: adaptive nature of differences in size and form”. *Ecology* 53.1 (1972): 190–195.

Price, R. and H. Brown. “Reproductive performance of the African migratory locust, *Locusta migratoria* migratorioides (Orthoptera: Acrididae), in a cereal crop environment in South Africa”. *Bulletin of Entomological Research* 80.4 (1990): 465–472.

Pritsch, M. and J. Büning. “Germ cell cluster in the panoistic ovary of *Thysanoptera* (Insecta)”. *Zoomorphology* 108.5 (1989): 309–313.
Punacker, L. P. and J. Godeke. “Development of ovarian follicle cells of the stick insect, *Carausius morosus* Br. (Phasmatodea), in relation to their function”. *International Journal of Insect Morphology and Embryology* 13.1 (1984): 21–28.

Pyka-Fosciak, G. and T. Szklarzewicz. “Germ cell cluster formation and ovariole structure in viviparous and oviparous generations of the aphid *Stomaphis quercus*”. *International Journal of Developmental Biology* 52.2-3 (2003): 259–265.

Quednau, F. and H. Guevremont. “Observations on mating and oviposition behaviour of *Priopoda nigricolli* (Hymenoptera: Ichneumonidae), a parasite of the birch leaf-miner, *Fenusa pusilla* (Hymenoptera: Tenthredinidae)”. *The Canadian Entomologist* 107.11 (1975): 1199–1204.

Rabeeth, M., T. Sakthivel, and S. Janarthanan. “The internal reproductive organs of Lygaeid bug, *Spilostethus pandurus* (Heteroptera: Lygaeidae)-gross morphology and histomorphology”. *Journal of Entomological Research* 40.4 (2016): 347–356.

Ramaswamy, S., G. Mbata, and N. Cohen. “Necessity of juvenile hormone for choriogenesis in the moth, *Heliothis virescens* (Noctuidae)”. *Invertebrate Reproduction and Development* 17.1 (1990): 57–63.

Ramírez-Cruz, A., C. Llanderal-Cázares, and R. Racotta. “Ovariole structure of the coxineal scale insect, *Dactylopius coccus*”. *Journal of Insect Science* 8.20 (2008): 2–5.

Ray, A. and P. Ramamurty. “Sources of RNA supply to the oocytes in *Cynodes peregrinus* Fuessly (Coleoptera: Chrysomelidae)”. *International Journal of Insect Morphology and Embryology* 8.2 (1979): 113–122.

Reed, H. C. and R. D. Akre. “Morphological comparisons between the obligate social parasite, *Vespula austriaca* (Panzer), and its host, *Vespula acadica* (Sladen) (Hymenoptera: Vespidae)”. *Psyche: A Journal of Entomology* 89.1-2 (1982): 183–195.

Regis, L. “Functional compensatory hypertrophy resulting from spontaneous or induced atrophy disconnecting one of the ovaries of *Triatoma infestans* (Heteroptera, Reduviidae, Triatominae)”. *Annales de Biologie Animale Biochimie Biophysique* 17.6 (1977): 961–969.

Reichardt, T. R. and T. D. Galloway. “Seasonal occurrence and reproductive status of *Opisocrostis bruneri* (Siphonaptera: Ceratophyllidae), a flea on Franklin’s ground squirrel, *Spermophilus franklinii* (Rodentia: Sciuridae) near Birds Hill Park, Manitoba”. *Journal of Medical Entomology* 31.1 (1994): 105–113.

Reinhardt, K., G. Köhler, S. Maas, and P. Detzel. “Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany”. *Ecography* 28.5 (2005): 593–602.

Richards, K. W. “Ovarian development, ovariole number, and relationship to body size in *Psithyrus* spp. (Hymenoptera: Apidae) in Southern Alberta”. *Journal of The Kansas Entomological Society* 67.2 (1994): 156–168.

Richter, P. and C. Baker. “Ovariole number in Scarabaeoidea (Coleoptera: Lucanidae, Passalidae, Scarabaeidae)”. *Proceedings of The Entomological Society of Washington* 76.4 (1974): 480–498.

Riley, C. V., A. S. Packard, C. Thomas, et al. *First annual report of the United States entomological commission for the year 1877: Relating to the Rocky Mountain locust and the best methods of preventing its injuries and of guarding against its invasions, in pursuance of an appropriation made by congress for this purpose*. US Government Printing Office, 1878.

Robertson, H. “Sperm transfer in the ant *Carebara vidua* F. Smith (Hymenoptera: Formicidae)”. *Insectes Sociaux* 42.4 (1995): 411–418.

Robertson, J. “Ovariole numbers in Coleoptera”. *Canadian Journal of Zoology* 39.3 (1961): 245–263.

Root, R. B. and F. J. Messina. “Defensive adaptations and natural enemies of a case-bearing beetle, *Exema canadensis* (Coleoptera: Chrysomelidae)”. *Psyche: A Journal of Entomology* 90.1-2 (1983): 67–80.

Rouibah, M., A. López-López, J. J. Presa, and S. Doumandji. “A molecular phylogenetic and phylogeographic study of two forms of *Calliptamus barbarus* (Costa 1836) (Orthoptera: Acrididae, Calliptaminae) from two regions of Algeria”. *Annales de la Société entomologique de France (NS)* 52.2 (2016): 77–87.

Rozen Jr, J. G. “New taxa of brachynomadine bees (Apidae, Nomadinae)”. *American Museum Novitates* 1997.3200 (1997): 1–26.
Rozen Jr, J. G., A. Roig-Alsina, and B. A. Alexander. “The cleptoparasitic bee genus *Rhopalolemma*: with reference to other Nomadinae (Apidae), and biology of its host *Protodufourea* (Halictidae, Rophitinae)”. *American Museum Novitates* 1997.3194 (1997): 1–28.

Rozen, J. G. “Eggs, ovariole numbers, and modes of parasitism of cleptoparasitic bees, with emphasis on Neotropical species (Hymenoptera: Apoidea)”. *American Museum Novitates* 2003.3413 (2003): 1–36.

Rozen, J. G. “Ovarian formula, mature oocyte, and egg index of the bee *Ctenopectra* (Hymenoptera: Apoidea: Apidae)”. *Journal of The Kansas Entomological Society* 76.4 (2003): 640–642.

Rozen, J. G. and H. G. Hall. “Nesting and developmental biology of the cleptoparasitic bee *Stelis ater* (Anthidiini) and its host, *Osmia chalybea* (Osmiini) (Hymenoptera: Megachilidae)”. *American Museum Novitates* 2011.3707 (2011): 1–38.

Rozen, J. G. and S. M. Kamel. “Investigations on the biologies and immature stages of the cleptoparasitic bee genera *Radoszkowskiana* and *Coelioxys* and their *Megachile* hosts (Hymenoptera: Apoidea: Megachilidae: Megachilini)”. *American Museum Novitates* 2007.3573 (2007): 1–43.

Rozen, J. G. and S. M. Kamel. “Last larval instar and mature oocytes of the Old World cleptoparasitic bee *Stelis murina*, including a review of *Stelis* biology (Apoidea: Megachilidae: Anthidiini)”. *American Museum Novitates* 2009.3666 (2009): 1–19.

Rozen, J. G., G. A. Melo, A. J. C. Aguiar, and I. Alves-dos-Santos. “Nesting biologies and immature stages of the tapinotaspidine bee genera *Monoeca* and *Lanthanomelissa* and of their osirine cleptoparasites *Protosiris* and *Parepeolus* (Hymenoptera: Apidae: Apinae)”. *American Museum Novitates* 2006.3501 (2006): 1–60.

Rozen, J. G., J. Straka, and K. Rezkova. “Oocytes, larvae, and cleptoparasitic behavior of *Biastes emarginatus* (Hymenoptera: Apidae: Nomadinae: Biastini)”. *American Museum Novitates* 2009.3667 (2009): 1–15.

Rozen, J. G., S. B. Vinson, R. Coville, and G. Frankie. “Biology and morphology of the immature stages of the cleptoparasitic bee *Coelioxys chichimeca* (Hymenoptera: Apoidea: Megachilidae)”. *American Museum Novitates* 2010.3679 (2010): 1–26.

Rubio G, J. D., A. E. Bustillo P, L. F. Vallejo E, J. R. Acuña Z, and P. Benavides M. “Alimentary canal and reproductive tract of *Hypothenemus hampei* (Ferrari) (Coleoptera: Scolytinae)”. *Neotropical Entomology* 37.2 (2008): 143–151.

Rübsam, R. and J. Bünning. “Germ cell proliferation and cluster behavior in ovarioles of *Sialis flavideta* (Megaloptera: Sialidae) during larval growth”. *Arthropod Structure and Development* 46.2 (2017): 246–264.

Sadeghi, H. “The relationship between oviposition preference and larval performance in an aphidophagous hover fly, *Syrisphus ribes* L. (Diptera: Syrphidae)”. *Journal Agricultural Science* 4 (2002): 1–10.

Sakagami, S. F., R. Zucchi, S. Yamane, F. Noll, and J. Camargo. “Morphological caste differences in *Agelaia vicina*, the neotropical swarm-founding polistine wasp with the largest colony size among social wasps (Hymenoptera; Vespidae)”. *Sociobiology* 28.2 (1996): 207–224.

Sanderson, A. R. “Cytological investigations of parthenogenesis in gall wasps (Cynipidae, Hymenoptera)”. *Genetica* 77.3 (1988): 189–216.

Sands, D. “A new genus, *Acrodipsas*, for a group of Lycaenidae (Lepidoptera) previously referred to *Pseudodipsas* C. and R. Felder, with descriptions of two new species from northern Queensland”. *Australian Journal of Entomology* 18.3 (1980): 251–265.

Santeshwari. “Effect of methanolic extracts from the leaves of tulsi (*Ocimum sanctum*) on the ovary of *Gonocephalum brachyelytra* (Kaszab),(Coleoptera: Tenebrionidae)”. *The Bioscan* 7.4 (2012): 705–709.

Santos, R. S. d., L. R. Redaelli, L. Diefenbach, H. P. Romanowski, and H. F. Prando. “Characterization of the imaginal reproductive diapause of *Oebalus poecilus* (Dallas) (Hemiptera: Pentatomidae)”. *Brazilian Journal of Biology* 63.4 (2003): 695–703.

Sato, H. and M. Imamori. “Nesting behaviour of a subsocial African ball-roller *Kheper platynotus* (Coleoptera, Scarabaeidae)”. *Ecological Entomology* 12.4 (1987): 415–425.

Satoh, T. “Comparisons between two apparently distinct forms of *Camponotus nawai* Ito (Hymenoptera: Formicidae)”. *Insectes Sociaux* 36.4 (1989): 277–292.
Saunders, D. “The ovulation cycle in Glossina morsitans Westwood (Diptera: Muscidae) and a possible method of age determination for female tsetse flies by the examination of their ovaries”. Transactions of The Royal Entomological Society of London 112.9 (1960): 221–238.

Scheepens, M. and M. Wysoki. “Reproductive organs of the giant looper, Boarmia selenaria Schiffermüller (Lepidoptera: Geometridae)”. International Journal of Insect Morphology and Embryology 15.1-2 (1986): 73–81.

Schilder, K., J. Heinze, and B. Hölldobler. “Colony structure and reproduction in the thelytokous parthenogenetic ant Platythyrea punctata (F. Smith) (Hymenoptera, Formicidae)”. Insectes Sociaux 46.2 (1999): 150–158.

Schultner, E., E. Blanchet, C. Pagès, G. U. Lehmann, and M. Lecoq. “Development, reproductive capacity and diet of the Mediterranean grasshopper Arcyptera brevipennis vicheti Harz 1975 (Orthoptera: Caelifera: Gomphocerinae)”. Annales de la Société entomologique de France 48.3-4 (2012): 299–307.

Serrão, J. E., A. P. Naves, and J. C. Zanuncio. “Modifications in the oviducts of workers and queens of Melipona quadrifasciata anthidioides (Hymenoptera: Apidae) with different ages”. Protoplasma 248.4 (2011): 767–773.

Smith, D. “Ovarioles and developing eggs in grasshoppers”. The Canadian Entomologist 96.9 (1964): 1255–1258.

Smith, E. and E. Salkeld. “Ovary development and oviposition rates in the plum curculio, Conotrachelus nenuphar (Coleoptera: Curculionidae)”. Annals of The Entomological Society of America 57.6 (1964): 781–787.

Soares, M. A., J. D. Batista, J. C. Zanuncio, J. Lino-Neto, and J. E. Serrão. “Ovary development, egg production and oviposition for mated and virgin females of the predator Podisus nigrispinus (Heteroptera: Pentatomidae)”. Acta Scientiarum. Agronomy 33.4 (2011): 597–602.

Spradbery, J. and D. Sands. “Reproductive system and terminalia of the Old World screw-worm fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae)”. International Journal of Insect Morphology and Embryology 5.6 (1976): 409–421.
Srinivasa Rao Vattikonda, M. M. and S. Raja. “Effect of Andrographolide on ovarian development of *Papilio demoleus* L. (Lepidoptera: Papilionidae) larvae”. *International Journal of Entomology Research* 3.2 (2018): 23–27.

Stadler, B. and A. Dixon. “Ant attendance in aphids: why different degrees of myrmecophily?” *Ecological Entomology* 24.3 (1999): 363–369.

Starmer, W. T., M. Polak, S. Pitnick, S. F. McEvey, J. S. F. Barker, and L. L. Wolf. “Phylogenetic, geographical, and temporal analysis of female reproductive trade-offs in *Drosophila*”. *Evolutionary Biology* 33 (2003): 139–171.

Stańczyk, B. and A. Diószeghy. “Meiosis and reproductive strategy in the parthenogenetic gall wasp *Diplolepis rosae* (L.) (Hymenoptera, Cynipidae)”. *Hereditas* 92.2 (1980): 353–362.

Susa, K. and M. Watanabe. “Egg production in *Costelytra zealandica* (White) (Coleoptera: Scarabaeidae: Melolonthinae)”. *New Zealand Journal of Zoology* 15.4 (1988): 513–533.

Svensson, B. G. and E. Petersson. “Sex-role reversed courtship behaviour, sexual dimorphism and nuptial gifts in the dance fly, *Empis borealis* (L.)” *Annales Zoologici Fennici* 24.4 (1987): 323–334.

Syme, P. D. “Observations on the longevity and fecundity of *Orgilus obscurator* (Hymenoptera: Braconidae) and the effects of certain foods on longevity”. *The Canadian Entomologist* 109.7 (1977): 995–1000.

Szkłarzewicz, T. “Structure and development of the telotrophic ovariole in ensign scale insects (Hemiptera, Cocco-morpha: Ortheziidae)”. *Tissue and Cell* 29.1 (1997): 31–38.

Szkłarzewicz, T. “Oogenesis of *Nicoletia phytophila* (Zygentoma, Nicoletiidae). Preliminary studies”. *Recent Advances in Insect Embryology in Japan and Poland* (1987): 69–76.

Szkłarzewicz, T., A. Jabłońska, and S. M. Biliński. “Ovaries of *Petriobius brevistylis* (Archeognatha, Machilidae) and *Tricholepidion gertschi* (Zygentoma, Lepidotrichidae): morphology, ultrastructure and phylogenetic implications”. *Pedobiologia* 48.5-6 (2004): 477–485.

Szkłarzewicz, T., M. Kalandy-Kołodziejczyk, M. Kot, and A. Michalik. “Ovary structure and transovarial transmission of endosymbiotic microorganisms in *Marchalina hellenica* (Insecta, Hemiptera, Coccimorpha: Marchaliniidae)”. *Acta Zoologica* 94.2 (2013): 184–192.

Szkłarzewicz, T., A. Michalik, A. Czaja, et al. “Germ cell cluster formation and ovariole structure in *Puto albicans* and *Crypticerya morrilli* (Hemiptera: Coccinea). Phylogenetic implications.” *European Journal of Entomology* 107.4 (2010): 589–595.

Szkłarzewicz, T., A. Michalik, M. Kalandy-Kołodziejczyk, M. Kobiałka, and E. Simon. “Ovary of *Matsucoccus pini* (Insecta, Hemiptera, Coccinea: Matsucoccidae): morphology, ultrastructure, and phylogenetic implications”. *Microscopy Research and Technique* 77.5 (2014): 327–334.

Szkłarzewicz, T., A. Wnęk, and S. M. Biliński. “Structure of ovarioles in *Adelges laricis*, a representative of the primitive aphid family Adelgidae”. *Acta Zoologica* 81.4 (2000): 307–313.

Tachi, T. and H. Shima. “Molecular phylogeny of the subfamily Exoristinae (Diptera, Tachinidae), with discussions on the evolutionary history of female oviposition strategy”. *Systematic Entomology* 35.1 (2010): 148–163.

Taddei, C., M. Chicca, M. G. Maurizzi, and V. Scali. “The germarium of panoistic ovarioles of *Bacillus rossius* (Insecta Phasmatodea): Larval differentiation”. *Invertebrate Reproduction and Development* 21.1 (1992): 47–56.
Talhouk, A. “Contributions to the knowledge of almond pests in East Mediterranean countries: I. Notes on *Eriogaster amygdali* Wilts. (Lepid., Lasiocampidae) with a description of a new subspecies by EP Wiltshire 1”. *Zeitschrift Für Angewandte Entomologie* 78.1-4 (1975): 306–312.

Tanaka, M. “Developmental stages of egg follicles in *Parnassius glacialis* Butler (Lepidoptera, Papilionidae)”. *Lepidoptera Science* 40.3 (1989): 167–181.

Tanton, M. and J. Epila. “Effects of DDT and Fenitrothion on field-collected larvae of a eucalypt-defoliating beetle, *Paropsis atomaria* Ol. I. Mortality, relative toxicity, development of treated larvae, and effect of the primary parasitoids.” *Australian Journal of Zoology* 32.3 (1984): 325–336.

Tay, J.-W. and C.-Y. Lee. “Influences of pyriproxyfen on fecundity and reproduction of the pharaoh ant (Hymenoptera: Formicidae)”. *Journal of Economic Entomology* 107.3 (2014): 1216–1223.

Taylor, B. J. and D. W. Whitman. “A test of three hypotheses for ovariole number determination in the grasshopper *Romalea microptera*”. *Physiological Entomology* 35.3 (2010): 214–221.

Terkanian, B. “Effect of host deprivation on egg quality, egg load, and oviposition in a solitary parasitoid, *Chetogena edwardsii* (Diptera: Tachinidae)”. *Journal of Insect Behavior* 6.6 (1993): 699–713.

Togashi, K. “Lifetime fecundity and female body size in *Paraglenea fortunei* (Coleoptera: Cerambycidae)”. *Applied Entomology and Zoology* 42.4 (2007): 549–556.

Togashi, K., J. E. Appleby, H. Oloumi-Sadeghi, and R. B. Malek. “Age-specific survival rate and fecundity of adult *Monochamus carolinensis* (Coleoptera: Cerambycidae) under field conditions”. *Applied Entomology and Zoology* 44.2 (2009): 249–256.

Togashi, K. and M. Itabashi. “Maternal size dependency of ovariole number in *Dastarcus helophoroides* (Coleoptera: Colydiidae)”. *Journal of Forest Research* 10.5 (2005): 373–376.

Togashi, K. and H. Yamashita. “Effects of female body size on lifetime fecundity of *Monochamus urussovii* (Coleoptera: Cerambycidae)”. *Applied Entomology and Zoology* 52.1 (2017): 79–87.

Tourneur, J.-C. “Factors affecting the egg-laying pattern of *Forficula auricularia* (dermaptera: Forficulidae) in three climatologically different zones of North America”. *The Canadian Entomologist* 150.4 (2018): 511–519.

Tourneur, J.-C. “Oogenesis in the adult of the European earwig *Forficula auricularia* (dermaptera: Forficulidae)”. *The Canadian Entomologist* 131.3 (1999): 323–334.

Trauner, J. and J. Büning. “Germ-cell cluster formation in the telotrophic meroistic ovary of *Tribolium castaneum* (Coleoptera, Polyphaga, Tenebrionidae) and its implication on insect phylogeny”. *Development Genes and Evolution* 217.1 (2007): 13–27.

Tripp, H. A. “The biology of a hyperparasite, *Euceros frigidus* Cress. (Ichneumonidae) and description of the planidial stage”. *The Canadian Entomologist* 93.1 (1961): 40–58.

TRL, B. “Karyotypes of some Lepidoptera chromosomes and changes in their holokinetic organisation as revealed by new cytological techniques”. *Cytologia* 40.3-4 (1975): 713–726.

Tschoinkel, W. R. “Relationship between ovariole number and spermathecal sperm count in ant queens: a new allometry”. *Annals of The Entomological Society of America* 80.2 (1987): 208–211.

Tsutsumi, T., M. Matsuzaki, and K. Haga. “Formation of germ cell cluster in tubuliferan thrips (Thysanoptera)”. *International Journal of Insect Morphology and Embryology* 24.3 (1995): 287–296.

Twardziol, W., S. M. Bilinski, P. Kocwárek, and F. Haas. “Ovaries and germ line cysts and their evolution in Dermaptera (Insecta)”. *Arthropod Structure and Development* 39.5 (2010): 360–368.

Twardziol, W., E. Kisiel, W. Jankowska, and S. M. Bilinski. “Morphology and ultrastructure of the germarium in panoistic ovarioles of a basal “apterygous” insect, *Thermobia domestica*”. *Zoology* 117.3 (2014): 200–206.

Uckan, F., E. Ergin, S. Sinan, and O. Sak. “Morphology of the reproductive tract and ovariole histology of *Apanteles galleriae* (Hymenoptera: Braconidae) reared on two host species”. *Pakistan Journal of Biological Sciences* 6.16 (2003): 1389–1395.

Ueno, T. “Adult size and reproduction in the ectoparasitoid *Agrothereutes lanceolatus* Walker (Hym., Ichneumonidae)”. *Journal of Applied Entomology* 123.6 (1999): 357–361.
Ueno, T. “Reproduction and host-feeding in the solitary parasitoid wasp Pimpla nipponica (Hymenoptera: Ichneumonidae)”. *Invertebrate Reproduction and Development* 35.3 (1999): 231–237.

Ueno, T. and T. Tanaka. “Comparative biology of six polyphagous solitary pupal endoparasitoids (Hymenoptera: Ichneumonidae): differential host suitability and sex allocation”. *Annals of The Entomological Society of America* 87.5 (1994): 592–598.

Ullman, D. E., D. M. Westcot, W. B. Hunter, and R. F. Mau. “Internal anatomy and morphology of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with special reference to interactions between thrips and tomato spotted wilt virus”. *International Journal of Insect Morphology and Embryony* 18.5-6 (1989): 289–310.

Ullmann, S. L. “Oogenesis in Tenebrio molitor: histological and autoradiographical observations on pupal and adult ovaries”. *Development* 30.1 (1973): 179–217.

Uzsák, Á. and C. Schal. “Differential physiological responses of the German cockroach to social interactions during the ovarian cycle”. *Journal of Experimental Biology* 215.17 (2012): 3037–3044.

Van Dijk, T. S. “The significance of the diversity in age composition of Calathus melanocephalus L. (Col., Carabidae) in space and time at Schiermonnikoog”. *Oecologia* 10.2 (1972): 111–136.

Van Rensburg, N. “A technique for rearing the black pine aphid, Cinara cronartii T and P, and some features of its biology (Homoptera: Aphididae)”. *Journal of The Entomological Society of Southern Africa* 44.2 (1981): 367–379.

Vargadarasan, S. and T. Ananthakrishnan. “Biological studies on some gall thrips”. *Proceedings of The National Academy of Sciences, India Section B: Biological Sciences* 48 (1982): 35–43.

Vargas, R. I., L. Leblanc, R. Putoa, and J. C. Piñero. “Population dynamics of three Bactrocera spp. fruit flies (Diptera: Tephritidae) and two introduced natural enemies, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), after an invasion by Bactrocera dorsalis (Hendel) in Tahiti”. *Biological Control* 60.2 (2012): 199–206.

Vianen, A. v. and J. v. Lenteren. “The parasite-host relationship between Encarsia formosa Gahan (Hym., Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Hemiptera, Aleyrodidae) XIV. Genetic and environmental factors influencing body-size and number of ovarioles of Encarsia formosa”. *Journal of Applied Entomology* 101.1-5 (1986): 321–331.

Villet, M. “Qualitative relations of egg size, egg production and colony size in some ponerine ants (Hymenoptera: Formicidae)”. *Journal of Natural History* 24.5 (1990): 1321–1331.

Wada, T., M. Kobayashi, and M. Shimazu. “Seasonal changes of the proportions of mated females in the field population of the rice leaf roller, Cnaphalocrocis medinalis Guené (Lepidoptera: Pyralidae)”. *Applied Entomology and Zoology* 15.1 (1980): 81–89.

Wagenhoff, E., R. Blum, and H. Delb. “Spring phenology of cockchafers, Melolontha spp. (Coleoptera: Scarabaeidae), in forests of south-western Germany: results of a 3-year survey on adult emergence, swarming flights, and oogenesis from 2009 to 2011”. *Journal of Forest Science* 60.4 (2014): 154–165.

Waloff, N. “Number and Development of Ovarioles of Some Acridoidea (Orthoptera) in Relation To Climate”. *Physiologia comparata et ecologia* 3.2 (1954): 370–390.

Ware, R. L., B. Yguel, and M. E. Majerus. “Effects of larval diet on female reproductive output of the European coccinellid Adalia bipunctata and the invasive species Harmonia axyridis (Coleoptera: Coccinellidae)”. *European Journal of Entomology* 105.3 (2008): 437–443.

Watanabe, M. and S. Matsu’ura. “Fecundity and oviposition in Mortonagrion hirosei Asahina, M. selenion (Ris), Ischnura asiatica (Brauer) and I. senegalensis (Rambur), coexisting in estuarine landscapes of the warm temperate zone of Japan (Zygoptera: Coenagrionidae)”. *Odonatologica* 35.2 (2006): 159–166.

Watanabe, M. “Multiple matings increase the fecundity of the yellow swallowtail butterfly, Papilio xuthus L., in summer generations”. *Journal of Insect Behavior* 1.1 (1988): 17–29.

Wensler, R. J. and J. Rempel. “The morphology of the male and female reproductive systems of the midge, Chironomus plumosus L.” *Canadian Journal of Zoology* 40.2 (1962): 199–229.
West, R. and M. Kenis. “Screening four exotic parasitoids as potential controls for the eastern hemlock looper, *Lambdina fiscellaria fiscellaria* (Guené) (Lepidoptera: Geometridae)”. *The Canadian Entomologist* 129.5 (1997): 831–841.

Weyda, F. “Female reproductive system of the first-instar nymphs of *Macblis belleri* (Verh.) (Thysanura: Machilidae) with special reference to the segmental arrangement of ovariolo in arthropods”. *International Journal of Insect Morphology and Embryology* 18.2-3 (1989): 85–96.

White, M. and N. Contreras. “Cytogenetics of the parthenogenetic grasshopper *Warramaba* (formerly *Moraba*) *virgo* and its bisexual relatives. V. Interaction of *W. virgo* and a bisexual species in geographic contact”. *Evolution* 67.4 (1979): 85–94.

Wightman, J. “Ovariolo microstructure and vitellogenesis in *Lygocoris pabulinus* (L.) and other mirids (Hemiptera: Miridae)”. *Journal of Entomology Series A, General Entomology* 48.1 (1973): 103–115.

Wikars, L.-O. “Effects of forest fire and the ecology of fire-adapted insects”. Diss. Universitas Upsaliensis Uppsala, 1997.

Wojcik, D. P. and D. Habeck. “Fire ant Myrmecophiles: Breeding period and ovariolo number in *Myrmecaphodius excavaticollis* (Blanchard) and *Euparia castanea* Serville (Coleoptera: Scarabaeidae)”. *The Coleopterists’ Bulletin* 31.4 (1977): 335–338.

Woolley, T. A. “Studies on the internal anatomy of the Box elder bug, *Leptocoris trivittatus* (Say) (Hemiptera, Coreidae)”. *Annals of The Entomological Society of America* 42.2 (1949): 203–226.

Xider, K. M. and H. M. Amin. “Ovarian Development of House Fly (*Musca domestica* L.) (Diptera: Muscidae)”. *Kurdistan Journal of Applied Research* 3.1 (2018): 45–51.

Yamauchi, H. and N. Yoshitake. “Origin and differentiation of the oocyte-nurse cell complex in the germarium of the earwig, *Anisolabis maritima* Borelli (dermaptera: Labiduridae)”. *International Journal of Insect Morphology and Embryology* 11.5-6 (1982): 293–305.

Yasumatsu, K. and A. Taketani. *Some remarks on the commonly known species of the genus Diplolepis Geoffroy in Japan*. 1967.

Yel, M., E. Eren, et al. “The anatomic and histologic structure of the female reproduction systems *Pieris rapae* (L.) (Lepidoptera: Pieridae).” *Türk Hijyen ve DeneySEL Biyoloji Dergisi* 57.1 (2000): 25–34.

Yuan, W., W. Li, Y. Li, and K. Wu. “Combination of plant and insect eggs as food sources facilitates ovarian development in an omnivorous bug *Apolygus lucorum* (Hemiptera: Miridae)”. *Journal of Economic Entomology* 106.3 (2013): 1200–1208.

Zaviezo, T. and N. Mills. “Aspects of the biology of *Hyosopus pallidus* (Hymenoptera: Eulophidae), a parasitoid of the codling moth (Lepidoptera: Olethreutidae)”. *Environmental Entomology* 28.4 (1999): 748–754.

Zawadzka, M., W. Jankowska, and S. Biliński. “Egg shells of mallophagans and anoplurans (Insecta: Phthiraptera): morphogenesis of specialized regions and the relation to F-actin cytoskeleton of follicular cells”. *Tissue and Cell* 29.6 (1997): 665–673.

Zelazowska, M. and S. Biliński. “Distribution and transmission of endosymbiotic microorganisms in the oocytes of the pig louse, *Haematopinus suis* (L.) (Insecta: Phthiraptera)”. *Protoplasma* 209.3-4 (1999): 207–213.
Zhang, L., Z. Wu, J. Fan, G. Wang, et al. “Reproductive characteristics of female *Tetrastichus hagenowii* (Ratzeburg) (Hymenoptera: Eulophidae).” *Acta Entomologica Sinica* 53.1 (2010): 76–81.

Ziegler, R. and R. Van Antwerpen. “Lipid uptake by insect oocytes”. *Insect Biochemistry and Molecular Biology* 36.4 (2006): 264–272.

Zrzavy, J. “Four chapters about the monophyly of insect ‘orders’: A review of recent phylogenetic contributions”. *Acta Entomol Musei Nat Pragae* 48 (2008): 217–232.