A Systematic Review of Reported Outcomes in ADPKD Studies

Sara S. Jdiaa¹, Nedaa M. Husainat², Razan Mansour³, Mohamad A. Kalot⁴, Kerri McGreal³, Fouad T. Chebib⁵, Ronald D. Perrone⁶, Alan Yu³ and Reem A. Mustafa³

¹Division of Nephrology, University of Toronto, Toronto, Ontario, Canada; ²SSM Health-St. Mary’s Hospital, St Louis, Missouri, USA; ³Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; ⁴State University of New York at Buffalo, New York, USA; ⁵Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; and ⁶Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is a progressive genetic kidney disease. Studies of ADPKD presented results using different outcome measures. We aimed to summarize outcomes reported in ADPKD studies, including composite outcomes.

Methods: We conducted a systematic review of published studies that included patients with ADPKD and measured kidney-related outcomes. We searched published databases and included all studies regardless of design with at least 100 participants for observational studies. We excluded studies that were limited to dialysis, transplant, or pregnancy outcomes in patients with ADPKD.

Results: This review includes data from 175 published articles (49 randomized controlled trials, 2 interventional clinical trials, 30 post hoc analyses, and 94 observational studies). We identified 214 different outcomes, and we categorized them into the 24 main outcome domains. In addition, the review identified 13 articles that reported 9 different composite outcomes.

Conclusion: The finding highlights the inconsistency in the outcomes reported by researchers and how they are measured in ADPKD studies. The variability in the outcomes reported supports the need to standardize outcomes in ADPKD studies.

Kidney Int Rep (2022) 7, 1964–1979; https://doi.org/10.1016/j.ekir.2022.06.012

KEYWORDS: ADPKD; PKD; polycystic kidney disease

© 2022 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ADPKD is the leading inheritable cause of end-stage kidney disease (ESKD) among adults.¹,² The risk of developing ADPKD has been estimated to be between 1 in 400 and 1 in 1000.¹ There are differences in the standards of care, diagnosis, and even modalities of renal replacement therapy.³ With approval of the first treatment of ADPKD in the United States and other treatment options in the pipeline, patients and clinicians are excited about the potential to change the trajectory of ADPKD outcomes.⁴

The physical and psychologic burdens to patients with ADPKD are significant, yet they are incompletely characterized and difficult to quantify.⁵ In addition, there is considerable variability in priorities for polycystic kidney disease (PKD) outcomes between clinical researchers and patients with kidney disease;⁶ and there is an unclear appreciation of the significance of patient-centered outcomes in PKD research. Most ADPKD studies report outcomes concerning kidney function, change in total kidney volume (TKV), change in creatinine clearance, and the development of ESKD.⁷ Nevertheless, there has been little reporting or discussion of patient-centered outcomes in the PKD literature.⁸ Though efforts are underway to expand the role of patient-reported outcomes, validated patient-reported outcome measures for ADPKD are limited and mostly lacking.⁹,¹⁰ In this review, we aimed to summarize reported outcomes and their measurements and to highlight composite outcomes and their components in ADPKD studies.

METHODS

Data Sources and Searches

We conducted this systematic review in accordance with a prespecified protocol. We reported the results according to Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines (Supplementary Table S4).¹¹
We conducted a comprehensive database search from inception (January 1, 1958) to May 24, 2021, of PubMed/ Medline, Cochrane, and Web of Science. The detailed search strategy is available in the supplemental material. We reviewed the reference lists of relevant articles and reviews as well as trials registered on the clinicaltrials.gov website.

Study Selection and Data Collection Process
This review included all studies regardless of design. For observational studies and post hoc analysis, we only included studies with more than 100 patients. We included studies that assessed at least one patient-centered outcome in adult and pediatric patients with ADPKD. We excluded prevalence studies, risk assessment studies, genotype phenotype correlation, conference proceedings, abstracts, protocols of unpublished studies and duplicate reports. In addition, we excluded studies that only reported dialysis, transplant or pregnancy outcomes in patients with ADPKD and studies in which patients with ADPKD were represented as a subgroup. We excluded studies of kidney volume reduction procedures including nephrectomy and arterial embolization. Two investigators independently screened the search results for articles based on title or title and abstract. At least 2 investigators then independently assessed the eligibility of each article by using a pilot-tested, standardized form with written instructions. Any disagreement was resolved by discussion until consensus was reached.

Data Extraction
We extracted data using a pilot-tested and standardized form. Two investigators independently abstracted all relevant data from each included study. Any discrepancy was resolved by discussion until consensus was reached. We collected the following information from each study: study characteristics (author name, year of publication, design, country, language, patient characteristics, number of patients included, and their age groups), intervention and comparison characteristics, and the outcomes measured in the study, including both composite and individual outcomes as well as the measures used to assess these outcomes.

Data Synthesis and Analysis
We aimed to summarize all patient-centered outcomes reported in ADPKD studies and how they were measured. As quantitative synthesis for this type of review would not be informative, the results were summarized qualitatively.

RESULTS

Study Selection
We identified 916 records. After reviewing 320 full text articles, we included 175 eligible studies with outcomes reported in patients with ADPKD. Details about study selection is presented in Figure 1. Summary of ADPKD patient-centered outcomes per category as well as components of composite outcomes is shown in Figure 2.

Study Characteristics
The studies included in this review are summarized in Table 1. The included studies were conducted across 32 countries, including a few that were multicenter international trials. We included 49 randomized controlled trials, 2 interventional clinical trials, 94 observational studies, and 30 post hoc analyses. A total of 6 studies were conducted in pediatric populations, 2 studies in adult and pediatric population, and the rest were among adults. Patient-centered outcomes in ADPKD are summarized in Supplementary Table S1. The details about characteristics of included studies are presented in Supplementary Table S2. Reported kidney outcomes by categories are illustrated in Supplementary Table S3.

Reported Kidney Outcomes

Blood Pressure (BP)

Number of BP Measurements. Multiple BP readings were measured in studies either to calculate the average or to select one of the readings that fulfilled certain criteria. Most of these studies calculated the average of 3 BP readings. Nevertheless, some studies measured the mean of 2 or 5 BP readings. Two studies calculated the average of selected BP values chosen according to specific criteria such as the mean of the last 3 BP readings or the average of the second and third BP measurements.

Resting Time. The resting time before BP measurements ranged between 5 minutes to 20 minutes in different studies.

Setting and Modality of BP Measurement. The settings of BP assessment in different ADPKD studies included home BP, hospital or office BP, the combination of both, and ambulatory BP monitoring, which was used in 5 studies. Reported ambulatory BP monitoring outcomes include nondipping, daytime, nighttime, 24-hour, and isolated nocturnal hypertension.

Time of Measurement in Relation to Medications. Most studies did not specify the time of BP measurement in relation to timing of medications. One study specified that BP was taken 24 hours after the last medication dose or 12 hours after the last medication dose for twice
daily dosing. Others stated that BP was measured in the morning before medication intake.

BP Parameters. BP outcome was reported as either systolic, diastolic, mean arterial pressure, or any combination of them. Others examined central BP and pulse pressure.

Hypertension. Whereas some studies examined the presence of hypertension in patients with ADPKD, others focused on the onset or worsening of hypertension, age at hypertension diagnosis, early onset hypertension, and duration of hypertension.

Hormonal Evaluation
Several neurohormonal biomarkers were checked in ADPKD studies. These biomarkers include plasma renin and aldosterone, urinary aldosterone excretion, and plasma angiotensin II levels.

Kidney Function
Kidney function was assessed using measured or estimated glomerular filtration rate (GFR), serum creatinine, specific kidney function reduction cutoff, GFR trajectory, and development of ESKD.

Measured GFR. Modalities for GFR measurement include inulin infusion, iohexol plasma clearance, chromium 51-ethylenediamine tetraacetic acid (51Cr-EDTA clearance), iothalamate, and creatinine clearance based on 24-hour urine creatinine.

Estimated GFR. GFR estimation was performed using measured or estimated glomerular filtration rate (GFR), serum creatinine, specific kidney function reduction cutoff, GFR trajectory, and development of ESKD.

Modification of Diet in Renal Disease calculator, Cockcroft—Gault and Schwartz formula.
One study calculated the mean of 3 baseline serum creatinine values to estimate GFR. Four studies used cystatin C to estimate GFR.

Serum Creatinine. Both serum creatinine and reciprocal of serum creatinine were used as kidney function outcomes.

Kidney Function Reduction Cutoff. Different cutoffs were applied in measuring kidney function change, including 57%, 50%, 40%, 33%, 30%, 20%, and 10% change in GFR, GFR decline to less than 90 ml/min per 1.73 m², and 25 % change in the reciprocal of the serum creatinine level and doubling serum creatinine.

GFR Trajectory. One study examined the GFR trajectory in patients with PKD and classified it as progressive linear, progressive nonlinear, and nonprogressive.

Development of ESKD. The development of ESKD was reported in multiple studies.

Kidney survival definition varied from the time to dialysis, transplantation or death, to time to ESKD or renal replacement therapy, or time of serum creatinine value up to 10 mg/dl.

Proteinuria

Albuminuria and proteinuria were evaluated in most studies by measuring either spot urine albumin-to-creatinine ratio or protein-to-creatinine ratio. spot urine protein-to-creatinine ratio, urinary albumin excretion measured by 24-hour urine albumin, or 24-hour urine protein. Nevertheless, 4 studies assessed albuminuria and proteinuria by calculating the mean of 2 different 24-hour urine collections.

Kidney Hemodynamics

Examined kidney hemodynamic parameters include kidney plasma flow which was measured either by para-aminohippuric acid infusion or 131I-hippuran clearance, kidney blood flow by magnetic resonance imaging (MRI), calculated kidney blood flow, kidney vascular resistance, resistive index, kidney function reserve capacity, peak systolic velocity, and end diastolic velocity.

In regard to glomerular hyperfiltration, 2 studies defined glomerular hyperfiltration as creatinine clearance or estimated GFR of equal or more than 140 ml/min per 1.73 m². another study used the definitions of increased filtration fraction and loss of kidney function reserve capacity.

Kidney Volumes

Modality of Kidney Volume Measurement. Modalities to evaluate kidney volumes included MRI.
Table 1. Summary of included studies

Study characteristic	Number (%) of studies
RCT	49 (28%)
Clinical trial	2 (1.1%)
Observational	94 (53.7%)
Post hoc analysis	30 (17.1%)
Yr of publication	
1981–1990	6 (3.4%)
1991–2000	15 (8.5%)
2001–2010	41 (23.4%)
2011–2021	113 (64.5%)
Country	
Albania	2 (1.1%)
Australia	2 (1.1%)
Belgium	1 (0.5%)
Brazil	2 (1.1%)
Canada	2 (1.1%)
China	2 (1.1%)
Denmark	3 (1.7%)
Egypt	1 (0.5%)
Finland	1 (0.5%)
France	3 (1.7%)
Germany	2 (1.1%)
Italy	9 (5.1%)
Japan	12 (6.8%)
Multicenter international	24 (13.7%)
Netherlands	13 (7.4%)
Saudi Arabia	1 (0.5%)
Spain	3 (1.7%)
South Korea	4 (2.2%)
Switzerland	6 (3.4%)
Taiwan	1 (0.5%)
Turkey	5 (2.8%)
United Kingdom	3 (1.7%)
United States	74 (42.2%)
Participants	
Adults	167 (95.4%)
Pediatics	6 (3.4%)
Adults and pediatrics	2 (1.1%)
Number of participants	
< 100	41 (23.4 %)
100–199	51 (29.1%)
200–299	25 (14.2%)
300–399	12 (6.8%)
400–499	10 (5.7%)
500–999	16 (9.1%)
≥1000	20 (11.4%)

RCT, randomized controlled trials.

31, 33, 34, 36, 37, 40, 41, 44, 46, 47, 52, 57, 58, 63–66, 72, 75, 76, 78–80, 88–91, 93–97, 99, 101–104, 112, 113, 116–119, 121–130, 134–139, 141, 144, 145, 149, 158–164
computed tomography scans 13, 14, 22, 87, 92, 105, 106, 111, 132, 139, 163, 165
or a combination of 2 modalities.

Kidney volume assessment was performed by studying TKV, 13, 14, 22, 26, 29, 31, 33, 34, 36, 37, 40, 41, 44, 47, 57, 58, 63–66, 72, 75, 76, 78, 80, 82, 83–87, 90, 92, 93, 99, 101, 102, 104–106, 112, 113, 116, 117, 119, 121, 124, 125, 127–131, 137, 139, 142–145, 157, 158, 162–164
height-adjusted TKV, 22, 36, 52, 57, 63, 79, 91, 94–97, 103, 118, 121–123, 126, 129, 132, 134–137, 161, 162, 166
TKV normalized to the body surface area, 32, 83, 108, 138, 142, 144
age-adjusted TKV, 144
kidney volume adjusted for sex and height, 12
mean kidney volume, 14, 22, 36, 65, 74, 109–111
height-adjusted mean kidney volume, 68
age-adjusted mean kidney volume, 30, 45, 48, 49
mean kidney volume adjusted to body surface area, 28
single kidney volume, 26, 64, 65, 90, 102, 144
total cysts volume, 164
single kidney cysts volume, 64, 144
percent cyst volume, 26, 102
single cyst volume, 46, 48, 65, 109, 110, 157
parenchymal volume, 141, 144, 109, 110, 157
intermediate volume, 87, 105
residual volume, 14
and noncyst volume.

Methods of Kidney Volume Measurement and Segmentation. Kidney volume measurements were analyzed using the ellipsoid formula, 28, 30, 32, 39, 43, 45, 48, 49, 66, 82, 83, 95, 108, 109, 121, 131, 132, 141, 157–159, 163, 165
mid-slice method, 52
dereology method, 25, 31, 33, 34, 36, 37, 41, 79, 88, 90, 91, 95, 96, 101, 102, 106, 134, 141, 145, 158, 164
manual planimetry, 24, 27, 57, 58, 64, 72, 87, 92, 97, 105, 112, 122, 125, 126, 130, 144, 162
or semiautomated methods. 46, 134
Kidney segmentation was conducted by either Otsu’s thresholding method 24, 87, 105 or by region-based threshold method. 25, 31, 33, 34, 36, 64, 90, 101, 102, 144, 145, 158, 164

Other Imaging Parameters
Other reported kidney parameters were the number of kidney cysts, 32, 45, 48, 49, 73, 109, 110, 157, 160
cyst score, 14
kidney length, 53, 73, 95, 109, 121
nephromegaly, 73
d and architectural severity index. 109, 110

Liver Volume
Liver volume was assessed as total liver volume, 63, 88, 89, 105, 161–163, 166
height-adjusted total liver volume, 63, 116, 132, 135, 162
total hepatic cyst volume, 63, 164
height-adjusted hepatic cyst volume, 63
hepatic parenchymal volume, 63
height-adjusted hepatic parenchymal volume, 63
maximal hepatic cyst size, 110
combined total liver and kidney volume, 159, 162, 163
and height-adjusted combined liver and kidney volume. 132, 161, 162, 165
Four studies looked at the presence of hepatic cysts 70, 73, 74, 110
and 2 studies examined hepatic cysts number. 73, 110

Splenic and Pancreatic Cysts
Few studies examined the presence of pancreatic cysts, 63, 73
splenic cysts, splenic cyst volume, and height-adjusted splenic volume. 63

Cardiac Evaluation
Nineteen studies assessed left ventricular mass indexed to body surface area, 16, 23, 27, 28, 30, 32, 35–37, 40, 45, 50, 54, 55, 62, 74, 142, 167, 168
whereas 2 studies evaluated left ventricular mass. 167, 168
only one study evaluated percent predicted left ventricular mass based on height, weight, and biological sex. 167
Both left ventricular mass and left ventricular mass index were measured by either echocardiography, 16, 23, 27, 28, 30, 32, 35, 45, 50, 54, 55, 62, 74, 168 or
by MRI.36,37,40,167 Other evaluated cardiac parameters include epicardial adipose tissue thickness,168,169 left ventricular twist and untwisting rate23 left atrial volume, left ventricular ejection fraction,23 mitral valve prolapse,27,54,74,110 and other valvular abnormalities.27 The full list of the evaluated cardiac outcomes is illustrated in Supplementary Table S3.

Vascular Parameters

Examined vascular parameters in ADPKD include carotid intima media thickness measurement,71,169,170 pulse wave velocity,20,71 flow mediated vasodilation,51,71 peripheral augmentation index,171 carotid artery compliance, carotid β-stiffness index,71 carotid integrated backscatter signal, and fibromatosis percentage.170

Cardiovascular Events

Two studies examined acute myocardial infarction,172,173 its clinical characteristics, management and/or mortality in patients with ADPKD.173

Pain

Studies evaluated kidney pain,66,75–78,80,114,124,130,132,161,174 nonkidney pain,57,66,76,80,114,132,161,166 PKD-specific pain,37,66,75–78,80,101,114,124,130,132,134,157,161,166,174 and non-PKD pain.66,76,80 Pain definition was variable among studies.161,174

Pain assessment was performed by either questionnaires and scales,37,134,166 the need for intervention,72,75–78,134,174 adjudication or physician judgment.174 The used tools included Modified Wisconsin Brief Pain Survey166 and HALT-PKD pain questionnaire.37,38

The severity of pain was assessed using one to 10 scale,66,161 interference with daily life, medical leave, the need for documentation of clinical signs, the need for medical intervention, and the need for pharmacologic treatment, surgical or invasive radiological procedures.66,75–78,134,174 One study reported pain outcome as area under the concentration-time curve.66 Some studies did not specify the modality of pain assessment.38,80,114,130

Quality of Life (QoL)

Different questionnaires were used to assess QoL. Whereas many ADPKD studies applied Short Form 36 Questionnaire,37,38,63,72,88,89,135,159,166 others followed either QoL EuroQol questionnaire,105 12-item questionnaire to evaluate ADPKD specific symptoms159 ADPKD-impact scale,126,175 standardized Kidney Disease QoL Short Form questionnaire176 or PKD-9 questionnaire.134

Gastrointestinal Symptoms

Symptom specific scores and questionnaires were used to assess the ADPKD-related gastrointestinal symptoms.105,132,135,161 Satiety, abdominal fullness, nausea, and vomiting were also reported.132,166

Mass Pressure Related Symptoms and Complications

One study examined mass pressure related symptoms and mass pressure related complications such as leg edema, ascites, and hernia.132

Nephrolithiasis

One study compared the detection of nephrolithiasis between ultrasound kidney and computed tomography scan in patients with ADPKD.157 The metabolic profile was also examined in these patients.148,157

Hematuria and Cyst Hemorrhage

Both cyst hemorrhage,177 and hematuria28,45,48,67,74,80,101,114,144,148,157 were reported in different ADPKD studies.

Intracranial Aneurysm (ICA)

One study looked at the influence of ICA on progression of kidney disease.74 Another examined the role of magnetic resonance angiography screening in ICA diagnosis, prophylactic repair, ICA rupture events, and cost effectiveness in patients with ADPKD patients with and without familial risk for ICA.178 In addition, the size and location of ICAs78 and the risk of ICA treatment by endovascular coil embolization and clipping179 were also studied.

Infections

Infection types that were examined in ADPKD studies included kidney cyst infection,147,163,177,180 liver cyst infection,132,147,163,177,180 urinary tract infection,67,74,114,133,147,148,157 and infection as a side effect of medications.22,25,31,46,57,66,75,92,112,114,126,139,162 Other reported parameters are cyst infection intractability,163 used antibiotic regimen,147,163 and blood, urine and/or cyst culture results.147,163,177,180

Hospitalization

Five studies reported on frequency and duration of hospitalizations.37,38,114,163,179 The cause of hospitalization was cyst infection in one study,163 however, it was not clear if the hospitalizations were PKD-related in the others.

Death

Fifteen studies reported death.31,37,38,81,82,113,114,116,118,124,133,154,163,178,181 Death was secondary to PKD and non-PKD related causes. The PKD causes of death were cardiovascular, neurologic, and infectious.31,38,124,163,181

Predictive Models Development

A number of models and tools were developed and used to predict ADPKD outcomes including the PROPKD Score,119,121,150 Mayo imaging classification,78,
Table 2. Reported composite end points in ADPKD studies

Study	Composite end points
116	- Time to death - ESKD - 50% reduction from the baseline estimated GFR by CKD-EPI
36	Equal or more than 20% increase over the 3 yr interval in: - HtTKV (by abdominal MRI) - Left ventricular mass index (by cardiac MRI) - Urinary albumin excretion by (24-h urine collection)
118	- Time to death - ESKD - 50% reduction from the baseline estimated GFR by CKD-EPI
Devuyst et al., post hoc TEMPO	- Worsening kidney function (a 25% reduction in the reciprocal of the serum creatinine level from the value at the end of the dose-adjustment period, reproduced after at least 2 wks) - Clinically significant kidney pain necessitating medical leave, pharmacologic treatment (narcotic or last-resort analgesic agents), or invasive intervention - Worsening hypertension (changes in blood-pressure category, as defined in the protocol, or worsening of hypertension requiring an increase in hypertensive treatment) - Worsening albuminuria (according to sex-specified categories as defined in the protocol)
Irazabal et al., TEMPO 3:4	- Worsening kidney function (a 25% reduction in the reciprocal of the serum creatinine level from the value at the end of the dose-adjustment period, reproduced after at least 2 wks) - Clinically significant kidney pain necessitating medical leave, pharmacologic treatment (narcotic or last-resort analgesic agents), or invasive intervention - Worsening hypertension (changes in blood-pressure category, as defined in the protocol, or worsening of hypertension requiring an increase in hypertensive treatment) - Worsening albuminuria (according to sex-specified categories as defined in the protocol)
Muto et al., TEMPO 3:4	Time to investigator reported multiple ADPKD clinical progression events - Onset or progression of hypertension, need for hypertensive treatment - Severe kidney pain (requiring medical intervention) - Worsening albuminuria (by category) - Worsening kidney function (33% increase in serum creatinine) for tolvaptan (combining all doses) relative to placebo while on treatment
107	The primary outcome measure of this study was a composite endpoint of - Patient's serum creatinine levels increased two-fold over baseline or - Creatinine clearance decreased to half of the baseline - Doubling of serum creatinine - ESKD
80	A 4-component composite disease progression endpoint was assessed, including - Onset/worsening of hypertension - Kidney pain - Proteinuria - Kidney function (defined as a 25% change from baseline in reciprocal serum creatinine levels)
Torres et al., TEMPO	- Worsening kidney function (a 25% reduction in the reciprocal of the serum creatinine level from the value at the end of the dose-adjustment period, reproduced after at least 2 wks) - Clinically significant kidney pain necessitating medical leave, pharmacologic treatment (narcotic or last-resort analgesic agents), or invasive intervention - Worsening hypertension (changes in blood-pressure category, as defined in the protocol, or worsening of hypertension requiring an increase in hypertensive treatment); and - Worsening albuminuria (according to sex-specified categories as defined in the protocol)
Torres et al., HALT-PKD B	- Time to death - ESKD; defined as the initiation of dialysis or preemptive transplantation - 50% reduction from the baseline estimated GFR by CKD-EPI
76	The composite secondary endpoint was the time to multiple investigator assessed ADPKD-related progression events. These events included - Worsening kidney function (a 25% reduction in the reciprocal of the serum creatinine level from the value at the end of the dose-adjustment period, reproduced after at least 2 wks) - Clinically significant kidney pain requiring medical intervention - Worsening hypertension (changes in BP category or worsening of hypertension requiring an increase in hypertensive treatment) - Worsening albuminuria (according to sex-specified categories) - Doubling of serum creatinine - 50% reduction in GFR, or need for renal replacement therapy

ADPKD, autosomal dominant polycystic kidney disease; BP, blood pressure; CKD-EPI, chronic kidney disease epidemiology; ESKD, end-stage kidney disease; GFR, glomerular filtration rate; HtTKV, height-adjusted total kidney volume; MRI, magnetic resonance imaging.

Abraham et al.182 developed clinical patient reporting tool to inform patients about their ADPKD indicators, disease current state, and disease trajectory.
Composite Endpoints
The reported composite endpoints in ADPKD studies and the different components of each of the composite are summarized in Table 2. We identified 13 articles that reported 9 different composite outcomes.

DISCUSSION
In this review, we summarize different reported outcomes and how they were measured in ADPKD studies. The most reported patient-centered outcomes in ADPKD studies are BP, kidney volume, and kidney function, with less focus on other important endpoints like pain and QoL.

TKV was assessed in multiple studies. This finding supported its utility as a surrogate for disease progression for approval by the US Food and Drug Administration in PKD drug trials. Whereas earlier studies relied on ultrasound to assess kidney volumes, more recent trials use MRI and computed tomography scans. MRI and computed tomography scans are more precise in measuring small yet clinically important changes in TKV. In addition, both the time-consuming planimetry and stereology methods which are considered the reference standard and the fast, easy-to-implement ellipsoid method, which is less sensitive in detecting small changes in kidney volumes, were used to measure TKV in the studies.

We observed the same inconsistency in assessments of kidney function. The different methods of kidney function measurement in ADPKD were compared in 5 studies. Patients with ADPKD face many challenges because of their disease and pain remains one of the most common symptoms they must deal with. Pain severity varies, which can be a frustrating problem that adversely affects QoL. However, despite the significance of pain on patients’ daily living, criteria to diagnose different types of PKD-related pain is absent. In addition, the available questionnaires and tools used for assessment of pain severity are not PKD-specific. Our findings of considerable variation among BP measurement are consistent with other reviews. However, it remains unclear how the early and high prevalence of hypertension among patients with PKD can affect major adverse cardiac events outcomes.

Our review highlights the paucity of data about psychological and mental health-related outcomes among patients with ADPKD despite the high prevalence of depression and anxiety in this population. Our review emphasizes the need for establishing validated patient-reported outcomes in ADPKD and developing tools better tailored to accurately assess PKD-related pain and the psychological impact of PKD similar to ADPKD-impact scale that was built to evaluate the effect of ADPKD on health-related QoL.

Development and validation of scores to identify patient groups that would benefit from regular screening for cerebral aneurysms and cardiac valvular disease is also urgently needed in clinical practice. Moreover, we think future studies should include major adverse cardiovascular events as a hard outcome in PKD studies.

To our knowledge, this review is the first review to highlight composite outcomes and their components in ADPKD studies. We hope that this study will help shed light on the significance of the utilization of these patient-centered outcomes in future PKD research. This review could also affect the considerations for future clinical trials and inform investigators’ decisions about outcomes when planning ADPKD studies. Guidance on optional endpoints that are feasible, and a clear regulatory pathway may stimulate further development in this area and ultimately support more treatments for ADPKD to successfully reach the market.

This review addresses an evidence gap by providing information about the outcomes reported in PKD studies and their measurement methods, which is usually missing. Our review extends beyond other PKD reviews because it summarizes details about outcomes measurement. The Standardized Outcomes in Nephrology initiative aims at building core outcome sets that are of interest to all stakeholders. Whereas the Standardized Outcomes in Nephrology initiative is key in highlighting the importance of minimizing outcome reporting bias, this review is unique in its focus on the specifics regarding outcomes measures.

Our review is complementary to the Standardized Outcomes in Nephrology-PKD systematic review, because both reviews provide a more complete picture of the status of outcome reporting in ADPKD. Our review has novelty by adding the following important elements: (i) we systematically reviewed both randomized controlled trials and nonrandomized studies, (ii) we focused on composite outcomes with detailed presentation of outcome components that are shared between trials, (iii) we reviewed studies that included both adults and children, (iv) our review is more updated with a date of last search ending on May 24, 2021, and (v) we focused on summarizing the granularity of outcome reporting, including different outcome measures rather than the outcome categories, which we believe is of added value to the reader and to researchers who will be informed by this review to design future studies, whereas Standardized Outcomes in Nephrology-PKD reported on the outcome measure of 3 most frequently reported domains in each outcome category. We outlined in detail the different measures of all patient-centered outcomes and we reported on composite outcomes.
Systematic reviews are an essential first step before discussing issues about outcomes and their measurements in any field.

Published reviews have highlighted concerns about inconsistency in outcomes reporting in chronic kidney disease and hemodialysis studies.

This review has a few limitations. Studies that only reported dialysis, transplant, or pregnancy outcomes in patients with ADPKD were excluded. Though studies including such patient groups are important, these studies were beyond the scope of our review as including these important populations would require considerable focus on additional outcomes. This highlights the need for future reviews that address different outcomes in these patient groups. Our findings are limited to studies that included at least one patient-centered outcome. Therefore, we are not able to decisively comment on trends of reporting biomarkers in PKD studies. In addition, we did not assess the risk of bias in the included studies, which hinders our ability to associate study quality with the reported outcomes.

DISCLOSURE

All the authors declared no competing interests.

SUPPLEMENTARY MATERIAL

Table S1. Summary of patient-centered outcomes per category.
Table S2. Characteristics of included studies with intervention, comparison, outcomes with outcome measures.
Table S3. Reported kidney outcomes by categories.
Table S4. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) Checklist

REFERENCES

1. Ong AC, Devuyst O, Knebelmann B, et al. Autosomal dominant polycystic kidney disease: the changing face of clinical management. *Lancet*. 2015;385:1993–2002. https://doi.org/10.1016/s0140-6736(15)60907-2

2. Spithoven EM, Kramer A, Meijer E, et al. Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival-an analysis of data from the ERA-EDTA Registry. *Nephrol Dial Transplant*. 2014;29(suppl 4):iv15–iv25. https://doi.org/10.1093/ndt/gfu017

3. Chapman AB, Devuyst O, Eckardt KU, et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: improving Global Outcomes (KDIGO) Controversies Conference. *Kidney Int*. 2015;88:17–27. https://doi.org/10.1038/ki.2015.59

4. Chebib FT, Torres VE. Recent advances in the management of autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol*. 2018;13:1765–1776. https://doi.org/10.2215/CJN.09860318

5. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. *Lancet*. 2007;369:1287–1301. https://doi.org/10.1016/s0140-6736(07)60601-1

6. Tong A, Turnicilffe DJ, Lopez-Vargas P, et al. Identifying and integrating consumer perspectives in clinical practice guidelines on autosomal-dominant polycystic kidney disease. *Nephrol (Carlton)*. 2016;21:122–132. https://doi.org/10.1111/nep.12579

7. Sautenet B, Cho Y, Gutman T, et al. Range and variability of outcomes reported in randomized trials conducted in patients with polycystic kidney disease: a systematic review. *Am J Kidney Dis*. 2020;76:213–223. https://doi.org/10.1053/j.ajkd.2019.12.003

8. Tong A, Rangan GK, Ruospo M, et al. A painful inheritance-patient perspectives on living with polycystic kidney disease: thematic synthesis of qualitative research. *Nephrol Dial Transplant*. 2015;30:790–800. https://doi.org/10.1093/ndt/gfv010

9. Tong A, Craig JC, Nagler EV, et al. Composing a new song for trials: the Standardized Outcomes in Nephrology (SONG) initiative. *Nephrol Dial Transplant*. 2017;32:1963–1966. https://doi.org/10.1093/ndt/gfx288

10. Cho Y, Sautenet B, Rangan G, et al. Standardised Outcomes in Nephrology—polycystic Kidney Disease (SONG-PKD): study protocol for establishing a core outcome set in polycystic kidney disease. *Trials*. 2017;18:560. https://doi.org/10.1186/s13063-017-2298-4

11. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ*. 2009;339:b2700. https://doi.org/10.1136/bmj.b2700

12. Dijk M, Breunin D, Duerst R, et al. No effect of enalapril on progression in autosomal dominant polycystic kidney disease. *Nephrol Dial Transplant*. 2003;18:2314–2320. https://doi.org/10.1093/ndt/gfu417

13. Ruggenenti P, Gentile G, Perico N, et al. Effect of sirolimus on disease progression in patients with autosomal dominant polycystic kidney disease and CKD stages 3b-4. *Clin J Am Soc Nephrol*. 2016;11:785–794. https://doi.org/10.2215/CJN.09900915

14. Ruggenenti P, Remuzzi A, Onde P, et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Clinical Trial; Randomized Controlled Trial. *Kidney Int*. 2005;68:206–216. https://doi.org/10.1111/j.1523-1755.2005.00395.x

15. Boertien WE, Meijer E, de Jong PE, et al. Short-term renal hemodynamic effects of tolvaptan in subjects with autosomal dominant polycystic kidney disease at various stages of chronic kidney disease. *Kidney Int*. 2013;84:1278–1286. https://doi.org/10.1038/ki.2013.285

16. Schrier R, McFann K, Johnson A, et al. Cardiac and renal effects of standard versus rigorous blood pressure control in autosomal-dominant polycystic kidney disease: results of a seven-year prospective randomized study. *Am Soc Nephrol*. 2002;13:1733–1739. https://doi.org/10.1097/01.asn.0000018407.60002.b9

17. Ecder T, Chapman A, Brosnahan G, et al. Effect of antihypertensive therapy on renal function and urinary albumin excretion in hypertensive patients with autosomal dominant
polycystic kidney disease. *Am J Kidney Dis.* 2000;35:427–432. https://doi.org/10.1016/S0272-6386(00)70195-8

18. Chapman AB, Johnson A, Gabow PA, Schrier RW. The renin-angiotensin-aldosterone system and autosomal dominant polycystic kidney disease. *N Engl J Med.* 1990;323:1091–1096. https://doi.org/10.1056/nejm199010183231602

19. Barrett B, Foley R, Morgan J, et al. Differences in hormonal and renal vascular responses between normotensive patients with autosomal dominant polycystic kidney disease and unaffected family members. *Kidney Int.* 1994;46:1118–1123. https://doi.org/10.1038/ki.1994.374

20. Al TS, Malmberg M, Rosenbaek J, et al. Effect of tolvaptan on renal handling of water and sodium, GFR and central hemodynamics in autosomal dominant polycystic kidney disease during inhibition of the nitric oxide system: a randomized, placebo-controlled, double blind, crossover study. *BMC Nephrol.* 2017;18:268. https://doi.org/10.1186/s12882-017-0686-3

21. Doulton T, Saggar-Malik A, He F, et al. The effect of sodium and angiotensin-converting enzyme inhibition on the classic circulating renin-angiotensin system in autosomal-dominant polycystic kidney disease patients. *J Hypertens.* 2006;24:939–945. https://doi.org/10.1097/01.jhyp.0000222765.30348.0d

22. Perico N, Ruggenenti P, Perna A, et al. Octreotide-LAR in later-stage autosomal dominant polycystic kidney disease (ALADIN 2): a randomized, double-blind, placebo-controlled, multicenter trial. *PLOS Med.* 2019;16:e1002777. https://doi.org/10.1371/journal.pmed.1002777

23. Spinelli L, Pisani A, Giugliano G, et al. Left ventricular dysfunction in ADPKD and effects of octreotide-LAR: a cross-sectional and longitudinal substudy of the ALADIN trial. *Int J Cardiol.* 2019;275:145–151. https://doi.org/10.1016/j.ijcard.2018.10.063

24. El-Damanawi R, Lee M, Harris T, et al. High water vs. ad libitum water intake for autosomal dominant polycystic kidney disease: a randomized controlled feasibility trial. *Qjm.* 2020;113:258–265. https://doi.org/10.1093/qjmed/hec2278

25. Serra A, Kistler A, Poster D, et al. Safety and tolerability of sirolimus treatment in patients with autosomal dominant polycystic kidney disease. *Nephrol Dial Transplant.* 2009;24:3334–3342. https://doi.org/10.1093/ndt/gfp280

26. King BF, Torres VE, Brummer ME, et al. Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease. *Kidney Int.* 2003;64:2214–2221. https://doi.org/10.1046/j.1523-1755.2003.00326.x

27. Bardaji A, Martinez-Vea A, Valero A, et al. Cardiac involvement in autosomal-dominant polycystic kidney disease: a hypertensive heart disease. *Clin Nephrol.* 2001;56:211–220.

28. Chapman AB, Johnson AM, Gabow PA, Schrier RW. Overt proteinuria and microalbuminuria in autosomal dominant polycystic kidney disease. *J Am Soc Nephrol.* 1994;5:1349–1354. https://doi.org/10.1681/ASN.1994241349

29. Gansevoort R, Meijer E, Chapman A, et al. Albuminuria and tolvaptan in autosomal-dominant polycystic kidney disease: results of the TEMPO 3: 4 Trial. *Nephrol Dial Transplant.* 2016;31:1887–1894. https://doi.org/10.1093/ndt/gfv422

30. Chapman AB, Johnson AM, Rainguet S, et al. Left ventricular hypertrophy in autosomal dominant polycystic kidney disease. *J Am Soc Nephrol.* 1997;8:1292–1297. https://doi.org/10.1681/ASN.19971292

31. Walz G, Budde K, Mannaa M, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. *N Engl J Med.* 2010;363:830–840. https://doi.org/10.1056/NEJMoa1003491

32. Cadnapaphornchai M, McFann K, Strain J, et al. Prospective change in renal volume and function in children with ADPKD. *Clin J Am Soc Nephrol.* 2009;4:820–829. https://doi.org/10.2215/CJN.02810608

33. Torres VE, King BF, Chapman AB, et al. Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol.* 2007;2:112–120. https://doi.org/10.2215/cjn.00910306

34. Torres VE, Grantham JJ, Chapman AB, et al. Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol.* 2011;6:640–647. https://doi.org/10.2215/cjn.03250410

35. Ulusoy S, Ozkan G, Orem C, Kaynar K, Koşçu P, Kiriş A. A comparison of the effects of ramipril and losartan on blood pressure control and left ventricle hypertrophy in patients with autosomal dominant polycystic kidney disease. *Ren Fail.* 2010;32:913–917. https://doi.org/10.3109/0886022X.2010.502777

36. Cadnapaphornchai M, George D, McFann K, et al. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol.* 2014;9:889–896. https://doi.org/10.2215/CJN.08350813

37. Schrier R, Abebe K, Perrone R, et al. Blood pressure in early autosomal dominant polycystic kidney disease. *N Engl J Med.* 2014;371:2255–2266. https://doi.org/10.1056/NEJMoa1402685

38. Torres VE, Abebe KZ, Chapman AB, et al. Angiotensin blockade in late autosomal dominant polycystic kidney disease. *N Engl J Med.* 2014;371:2267–2276. https://doi.org/10.1056/NEJMoA1402686

39. Fick-Brosnahan GM, Belz MM, McFann KK, et al. Relationship between renal volume growth and renal function in autosomal dominant polycystic kidney disease: a longitudinal study. *Am J Kidney Dis.* 2002;39:1127–1134. https://doi.org/10.1016/S0272-6386(02)00379-2

40. Dad T, Abebe KZ, Bae KT, et al. Longitudinal assessment of left ventricular mass in autosomal dominant polycystic kidney disease. *Kidney Int Rep.* 2018;3:619–624. https://doi.org/10.1016/j.ekir.2017.12.011

41. Boertien WE, Meijer E, Li J, et al. Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. *Am J Kidney Dis.* 2013;61:420–429. https://doi.org/10.1053/j.ajkd.2012.08.038

42. Fassett R, Coombes J, Packham D, et al. Effect of pravastatin on kidney function and urinary protein excretion in autosomal dominant polycystic kidney disease. *Scand J Urol Nephrol.* 2010;44:56–61. https://doi.org/10.3109/00365590903359908
43. Gabow PA, Chapman AB, Johnson AM, et al. Renal structure and hypertension in autosomal dominant polycystic kidney disease. *Kidney Int*. 1990;38:1177–1180. https://doi.org/10.1038/ki.1990.330

44. Klahr S, Breyer J, Beck G, et al. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. *J Am Soc Nephrol*. 1995;5:2037–2047. https://doi.org/10.1681/ASN.V5122037

45. Chamshiraz AA, Reza Bekheirnia M, Kamgar M, et al. Autosomal-dominant polycystic kidney disease in infancy and childhood: progression and outcome. *Kidney Int*. 2005;68:2218–2224. https://doi.org/10.1111/j.1523-1755.2005.00678.x

46. Stallone G, Infante B, Grandalano G, et al. Rapamycin for treatment of type I autosomal dominant polycystic kidney disease (RAPYD-study): a randomized, controlled study. *Nephrol Dial Transplant*. 2012;27:3560–3567. https://doi.org/10.1093/ndt/gfs264

47. Meijer E, Rook M, Tent H, et al. Early renal abnormalities in autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol*. 2010;5:1091–1098. https://doi.org/10.2215/cjn.00360110

48. Fick-Brosnaham GM, Tran ZV, Johnson AM, et al. Progression of autosomal-dominant polycystic kidney disease in children. *Kidney Int*. 2001;59:1654–1662. https://doi.org/10.1046/j.1523-1755.2001.0590051654.x

49. Sharp C, Johnson A, Gabow P. Factors relating to urinary protein excretion in children with autosomal dominant polycystic kidney disease. *J Am Soc Nephrol*. 1998;9:1908–1914. https://doi.org/10.1681/ASN.V9101908

50. Zeltner R, Poliak R, Stiasny B, et al. Renal and cardiac effects of antihypertensive treatment with ramipril vs metoprolol in autosomal dominant polycystic kidney disease. *Nephrol Dial Transplant*. 2008;23:573–579. https://doi.org/10.1093/ndt/gfm731

51. Kocyigit I, Yilmaz MI, Orsvelik O, et al. Serum uric acid levels and endothelial dysfunction in patients with autosomal dominant polycystic kidney disease. *Nephron Clin Pract*. 2013;123:157–164. https://doi.org/10.1159/000353730

52. Kocyigit I, Ozturk F, Erogul E, et al. Dysmetabolic markers predict outcomes in autosomal dominant polycystic kidney disease. *Clin Exp Nephrol*. 2019;23:1130–1140. https://doi.org/10.1007/s10157-019-01748-z

53. Massella L, Mekahil D, Paripović D, et al. Prevalence of hypertension in children with early-stage ADPKD. *Clin J Am Soc Nephrol*. 2018;13:874–883. https://doi.org/10.2215/cjn.11401017

54. Ivy DD, Shaffer EM, Johnson AM, et al. Cardiovascular abnormalities in children with autosomal dominant polycystic kidney disease. *J Am Soc Nephrol*. 1995;5:2032–2036. https://doi.org/10.1681/ASN.V5122032

55. Ecker T, Edelstein C, Chapman A, et al. Reversal of left ventricular hypertrophy with angiotensin converting enzyme inhibition in hypertensive patients with autosomal dominant polycystic kidney disease. *Nephrol Dial Transplant*. 1999;14:1113–1116. https://doi.org/10.1093/ndt/14.5.1113

56. Nakamura T, Sugaya T, Kawagoe Y, et al. Candesartan reduces urinary fatty acid-binding protein excretion in patients with autosomal dominant polycystic kidney disease. *Am J Med*. 2005;330:161–165. https://doi.org/10.1097/0000441-200510000-00002

57. Caroli A, Perico N, Perna A, et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. *Lancet*. 2013;382:1485–1495. https://doi.org/10.1016/s0140-6736(13)61407-5

58. Soliman A, Zamal S, Lotfy A, Ismail E. Sirolimus produced S-shaped effect on adult polycystic kidneys after 2-year treatment. *Transplant Proc*. 2012;44:2936–2939. https://doi.org/10.1016/j.transproceed.2012.06.073

59. Nakamura T, Ushiyama C, Takahashi Y, et al. Effect of diuretics on urinary albumin excretion in excretion in patients with autosomal dominant polycystic kidney disease. *Nephron*. 2001;88:80–82. https://doi.org/10.1159/000045963

60. Nakamura T, Sato E, Fujivara N, et al. Changes in urinary albumin excretion, inflammatory and oxidative stress markers in ADPKD patients with hypertension. *Am J Med Sci*. 2012;343:46–51. https://doi.org/10.1097/MAJ.0b013e31821f0552

61. Taylor J, Hamilton-Reeves J, Sullivan D, et al. Diet and polycystic kidney disease: a pilot intervention study. *Clin Nutr*. 2017;36:458–466. https://doi.org/10.1016/j.clnu.2016.01.003

62. Lumiaho A, Pihlajamäki J, Hartikainen J, et al. Insulin resistance is related to left ventricular hypertrophy in patients with polycystic kidney disease type 1. *Am J Kidney Dis*. 2003;41:1219–1224. https://doi.org/10.1016/s0272-6386(03)00354-8

63. Hogan MC, Abeke K, Torres VE, et al. Liver involvement in early autosomal-dominant polycystic kidney disease. *Clin Gastroenterol Hepatol*. 2015;13:155–164.e6. https://doi.org/10.1016/j.cgh.2014.07.051

64. Chen D, Ma Y, Wang X, et al. Clinical characteristics and disease predictors of a large Chinese cohort of patients with autosomal dominant polycystic kidney disease. *PLoS One*. 2014;9:e92232. https://doi.org/10.1371/journal.pone.0092232

65. Irazabal MV, Torres VE, Hogan MC, et al. Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. *Kidney Int*. 2011;80:295–301. https://doi.org/10.1038/kj.2011.119

66. Torres V, Chapman A, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. *N Engl J Med*. 2012;367:2407–2418. https://doi.org/10.1056/NEJMo1205511

67. Ozkok A, Akpinar TS, Tufan F, et al. Clinical characteristics and predictors of progression of chronic kidney disease in autosomal dominant polycystic kidney disease: a single center experience. *Clin Exp Nephrol*. 2013;17:345–351. https://doi.org/10.1007/s10157-012-0706-3

68. Schrier RW, Johnson AM, McFann K, Chapman AB. The role of parental hypertension in the frequency and age of diagnosis of hypertension in offspring with autosomal-dominant polycystic kidney disease. *Kidney Int*. 2003;64:1792–1799. https://doi.org/10.1046/j.1523-1755.2003.00264.x

69. Schrier RW, McFann KK, Johnson AM. Epidemiological study of kidney survival in autosomal dominant polycystic kidney disease. *Kidney Int*. 2003;63:678–685. https://doi.org/10.1046/j.1523-1755.2003.00776.x
70. Choukroun G, Itakura Y, Albouze G, et al. Factors influencing progression of renal failure in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1995;6:1634–1642. https://doi.org/10.1681/ASN.V661634

71. Nowak KL, Gitomer B, Farmer-Bailey H, et al. Mineralocorticoid antagonism and vascular function in early autosomal dominant polycystic kidney disease: A randomized controlled trial. Am J Kidney Dis. 2019;74:213–223. https://doi.org/10.1053/j.ajkd.2018.12.037

72. Rizk D, Jurkovicz C, Veledar E, et al. Quality of life in autosomal dominant polycystic kidney disease patients not yet on dialysis. Clin J Am Soc Nephrol. 2009;4:560–566. https://doi.org/10.2215/CJN.02410508

73. Nicolau C, Torra R, Bianchi L, et al. Abdominal sonographic study of autosomal dominant polycystic kidney disease. J Clin Ultrasound. 2000;28:277–282. https://doi.org/10.1002/1097-0096(200007/08)28:6<277::AID-ju2>3.0.CO;2-I

74. Gabow PA, Johnson AM, Kaehny WD, et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 1992;41:1311–1319. https://doi.org/10.1038/ki.1992.195

75. Torres VE, Higashihara E, Devuyst O, et al. Effect of tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial. Clin J Am Soc Nephrol. 2016;11:803–811. https://doi.org/10.2215/CJN.06300615

76. Muto S, Kawano H, Higashihara E, et al. The effect of tolvaptan on autosomal dominant polycystic kidney disease patients: a subgroup analysis of the Japanese patient subset from TEMPO 3: 4 trial. Clin Exp Nephrol. 2015;19:867–877. https://doi.org/10.1007/s10157-015-1086-2

77. Devuyst O, Chapman A, Gansevoort R, et al. Urine Osmolarity, Response to Tolvaptan, and Outcome in Autosomal Dominant Polycystic Kidney Disease: results from the TEMPO 3: 4 Trial. J Am Soc Nephrol. 2017;28:1592–1602. https://doi.org/10.1681/ASN.2016040448

78. Irazabal MV, Blais JD, Perrone RD, et al. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the TEMPO 3: 4 clinical trial. Kidney Int Rep. 2016;1:213–220. https://doi.org/10.1016/j.ekir.2016.08.001

79. Nowak KL, Cadenapaphornchai MA, Chonchol MB, et al. Long-term outcomes in patients with very-early onset autosomal dominant polycystic kidney disease. Am J Nephrol. 2016;44:171–178. https://doi.org/10.1159/000448695

80. Tesar V, Ciechanowski K, Pei Y, et al. Bosutinib versus Placebo for Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol. 2017;28:3404–3413. https://doi.org/10.1681/ASN.2016111232

81. Nowak KL, Chonchol M, You Z, et al. Affected parent sex and severity of autosomal dominant polycystic kidney disease: a retrospective cohort study. Clin Nephrol. 2018;89:196–204. https://doi.org/10.5414/cn.109247

82. Reed B, Helal I, McFann K, et al. The impact of type II diabetes mellitus in patients with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2012;27:2862–2865. https://doi.org/10.1093/ndt/gfr744

83. Helal I, McFann K, Reed B, et al. Serum uric acid, kidney volume and progression in autosomal-dominant polycystic kidney disease. Nephrol Dial Transplant. 2013;28:380–385. https://doi.org/10.1093/ndt/gfs417

84. Dijk M, Kamper A, Veen S, et al. Effect of simvastatin on renal function in autosomal dominant polycystic kidney disease. 2001;16:2152-2157. doi:10.1093/ndt/16.11.2152

85. Florijn K, Barendregt J, Lentjes E, et al. Glomerular filtration rate measurement by “single-shot” injection of inulin. Kidney Int. 1994;46:252–259. https://doi.org/10.1038/ki.1994.267

86. Yamaguchi T, Higashihara E, Okegawa T, et al. Optimal equation for estimation of glomerular filtration rate in autosomal dominant polycystic kidney disease: influence of tolvaptan. Clin Exp Nephrol. 2018;22:1213–1223. https://doi.org/10.1007/s10157-018-1574-2

87. Perico N, Antiga L, Caroli A, et al. Sirolimus therapy to halt the progression of ADPKD. J Am Soc Nephrol. 2010;21:1031–1040. https://doi.org/10.1681/ASN.2009121302

88. Hogan M, Masuyk T, Page L, et al. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol. 2010;21:1052–1061. https://doi.org/10.1093/ASN.2009121291

89. Hogan M, Masuyk T, Bergstrahl E, et al. Efficacy of 4 years of octreotide long-acting release therapy in patients with severe polycystic liver disease. Mayo Clin Proc. 2015;90:1030–1037. https://doi.org/10.1016/j.mayocp.2015.05.011

90. Grantham JJ, Torres VE, Chapman AB, et al. Volume progression in polycystic kidney disease. N Engl J Med. 2006;354:2122–2130. https://doi.org/10.1056/NEJMoa054341

91. Chapman AB, Bost JE, Torres VE, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7:479–486. https://doi.org/10.2215/cjn.09500911

92. Braun W, Schold J, Stephany B, et al. Low-dose rapamycin (sirolimus) effects in autosomal dominant polycystic kidney disease: an open-label randomized controlled pilot study. Clin J Am Soc Nephrol. 2014;9:881–888. https://doi.org/10.2215/CJN.02650313

93. Boertien WE, Meijer E, de Jong PE, et al. Short-term effects of tolvaptan in individuals with autosomal dominant polycystic kidney disease at various levels of kidney function. Am J Kidney Dis. 2015;65:833–841. https://doi.org/10.1053/j.ajkd.2014.11.010

94. Yu ASL, Shen C, Landsittel DP, et al. Baseline total kidney volume and the rate of kidney growth are associated with chronic kidney disease progression in autosomal dominant polycystic kidney disease. Kidney Int. 2018;93:691–699. https://doi.org/10.1016/j.kint.2017.08.027

95. Bhattu H, Smith V, Rahbari-OskouI F, et al. A comparison of ultrasound and magnetic resonance imaging shows that kidney length predicts chronic kidney disease in autosomal dominant polycystic kidney disease. Kidney Int. 2015;88:146–151. https://doi.org/10.1038/ki.2015.71

96. McKenzie KA, El Ters M, Torres VE, et al. Relationship between caffeine intake and autosomal dominant polycystic kidney disease progression: a retrospective analysis using the CRISP cohort. BMC Nephrol. 2018;19:378. https://doi.org/10.1186/s12882-018-1182-0

97. Messchendorp AL, Spithoven EM, Castleijn NF, et al. Association of plasma somatostatin with disease severity and progression in patients with autosomal dominant polycystic kidney disease. BMC Nephrol. 2018;19:368. https://doi.org/10.1186/s12882-018-1176-y
98. Messchendorp AL, van Londen M, Taylor JM, et al. Kidney function reserve capacity in early and later stage autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol*. 2018;13:1680–1692. https://doi.org/10.2215/cjn.03650318

99. Meijer E, Bakker SJ, van der Jagt EJ, et al. Copetin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol*. 2011;6:361–368. https://doi.org/10.2215/cjn.04560510

100. Zand L, Torres VE, Larson TS, et al. Renal hemodynamic effects of the HMG-CoA Reductase Inhibitors in autosomal dominant polycystic kidney disease. *Nephrol Dial Transplant*. 2016;31:1290–1295. https://doi.org/10.1093/ndt/gfv394

101. Rule AD, Torres VE, Chapman AB, et al. Comparison of methods for determining renal function decline in early autosomal dominant polycystic kidney disease: the consortium of radiologic imaging studies of polycystic kidney disease cohort. *J Am Soc Nephrol*. 2006;17:854–862. https://doi.org/10.1681/asn.2005070687

102. Chapman AB, Guay-Woodford LM, Grantham JJ, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISIP) cohort. *Kidney Int*. 2003;64:1035–1045. https://doi.org/10.1046/j.1523-1755.2003.00185.x

103. Zittema D, van den Berg E, Meijer E, et al. Kidney function and plasma copetin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients. *Clin J Am Soc Nephrol CJASN*. 2014;9:1553–1562. https://doi.org/10.2215/cjn.08690813

104. Meijer E, Boertien WE, Nauta FL, et al. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. *Am J Kidney Dis*. 2010;56:883–895. https://doi.org/10.1053/j.ajkd.2010.06.023

105. Gevers TJG, Hoi JC, Monshouwer R, et al. Effect of lanreotide on polycystic liver and kidneys in autosomal dominant polycystic kidney disease: an observational trial. *Liver Int*. 2015;35:1607–1614. https://doi.org/10.1111/liv.12726

106. Higashihiara E, Nutahara K, Horie S, et al. The effect of eicosapentaenoic acid on renal function and volume in patients with ADPKD. *Nephrol Dial Transplant*. 2008;23:2847–2852. https://doi.org/10.1093/ndt/gfn144

107. Nutahara K, Higashihiara E, Horie S, et al. Calcium channel blocker versus angiotensin II receptor blocker in autosomal dominant polycystic kidney disease. *Nephron Clin Pract*. 2005;99:c18–c23. https://doi.org/10.1159/000081790

108. Helal I, Reed B, McFann K, et al. Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol*. 2011;6:2439–2443. https://doi.org/10.2215/cjn.01010211

109. Gabow PA, Kaehny WD, Johnson AM, et al. The clinical utility of renal concentrating capacity in polycystic kidney disease. *Kidney Int*. 1989;35:675–680. https://doi.org/10.1038/ki.1989.38

110. Gabow PA, Johnson AM, Kaehny WD, et al. Risk factors for the development of hepatic cysts in autosomal dominant polycystic kidney disease. *Hepatology*. 1990;11:1033–1037. https://doi.org/10.1002/hep.1840110619

111. Gabow PA, Duley I, Johnson AM. Clinical profiles of gross hematuria in autosomal dominant polycystic kidney disease. *Am J Kidney Dis*. 1992;20:140–143. https://doi.org/10.1016/S0272-6386(12)80541-5

112. Serra A, Poster D, Kistler A, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. *N Engl J Med*. 2010;363:820–829. https://doi.org/10.1056/NEJMoa0907419

113. Torres V, Abebe K, Schrier R, et al. Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease. *Kidney Int*. 2017;91:493–500. https://doi.org/10.1016/j.kint.2016.10.018

114. Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. *N Engl J Med*. 2017;377:1910–1942. https://doi.org/10.1056/NEJMoa1710030

115. Brosnahan GM, Abebe KZ, Moore CG, et al. Patterns of kidney function decline in autosomal dominant polycystic kidney disease: A post hoc analysis from the HALT-PKD trials. *Am J Kidney Dis*. 2018;71:666–676. https://doi.org/10.1053/j.ajkd.2017.10.023

116. Brosnahan GM, Abebe KZ, Rahbari-Oskoui FF, et al. Effect of statin therapy on the progression of autosomal dominant polycystic kidney disease. A secondary analysis of the HALT PKD trials. *Curr Hypertens Rev*. 2017;13:109–120. https://doi.org/10.2174/1573402113666170427142815

117. Brosnahan GM, Abebe KZ, Moore CG, et al. Determinants of progression in early autosomal dominant polycystic kidney disease: is it blood pressure or renin-angiotensin-aldosterone-system blockade? *Curr Hypertens Rev*. 2018;14:39–47. https://doi.org/10.2174/1573402114666180322110209

118. Chonchol M, Gitomer B, Isakova T, et al. Fibroblast growth factor 23 and kidney disease progression in autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol CJASN*. 2017;12:1461–1469. https://doi.org/10.2215/cjn.12821126

119. Corne-C-Le Gall E, Blais JD, Irazabal MV, et al. Can we further enrich autosomal dominant polycystic kidney disease clinical trials for rapidly progressive patients? Application of the PROPKD score in the TEMPO trial. *Nephrol Dial Transplant*. 2018;33:645–652. https://doi.org/10.1093/ndt/gfx188

120. Edwards ME, Chebib FT, Irazabal MV, et al. Long-term administration of tolvaptan in autosomal dominant polycystic kidney disease. *Clin J Am Soc Nephrol*. 2018;13:1153–1161. https://doi.org/10.2215/cjn.01520218

121. Furlano M, Loscos I, Marti T, et al. Autosomal dominant polycystic kidney disease: clinical assessment of rapid progression. *Am J Nephrol*. 2018;48:308–317. https://doi.org/10.1159/000493325

122. Girardat-Rotar L, Puhau MA, Braun J, Serra AL. Long-term effect of coffee consumption on autosomal dominant polycystic kidneys disease progression: results from the Suisse ADPKD, a Prospective Longitudinal Cohort Study. *J Nephrol*. 2018;31:87–94. https://doi.org/10.1007/s40620-017-0396-8

123. Kim K, Trott JF, Gao G, et al. Plasma metabolites and lipids associate with kidney function and kidney volume in hypertensive ADPKD patients early in the disease course. *BMC Nephrol*. 2019;20:66. https://doi.org/10.1186/s12882-019-1249-6
124. Torres VE, Chapman AB, Devuyst O, et al. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4/4 Trial. *Nephrol Dial Transplant*. 2018;33:477–489. https://doi.org/10.1093/ndt/gfx043

125. Ozkurt S, Dogan I, Ozcan O, et al. Correlation of serum galectin-3 level with renal volume and function in adult polycystic kidney disease. *Int Urol Nephrol*. 2019;51:1191–1197. https://doi.org/10.1007/s10157-019-02568-6

126. Meijer E, Visser FW, van Aerts RMM, et al. Effect of Lanreotide on Kidney Function in Patients With Autosomal Dominant Polycystic Kidney Disease: the DIPAK 1 Randomized Clinical Trial. *JAMA*. 2018;320:2010–2019. https://doi.org/10.1001/jama.2018.15870

127. Nowak KL, You Z, Gitomer B, et al. Overweight and obesity are predictors of progression in early autosomal dominant polycystic kidney disease. *J Am Soc Nephrol*. 2018;29:571–578. https://doi.org/10.1681/asn.2017070819

128. McEwan P, Bennett Wilton H, Ong ACM, et al. A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD Outcomes Model. *BMC Nephrol*. 2018;19:37. https://doi.org/10.1186/s12882-017-0804-2

129. Petzold K, Poster D, Krauer F, et al. Urinary biomarkers at early ADPKD disease stage. *PLoS One*. 2015;10:e0123555. https://doi.org/10.1371/journal.pone.0123555

130. Gansevoort RT, van Gastel MDA, Chapman AB, et al. Plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. *Kidney Int*. 2019;96:159–169. https://doi.org/10.1016/j.kint.2018.11.044

131. Han M, Park HC, Kim H, et al. Hyperuricemia and deterioration of renal function in autosomal dominant polycystic kidney disease. *BMC Nephrol*. 2014;15:63. https://doi.org/10.1186/1471-2369-15-63

132. Kim H, Park HC, Ryu H, et al. Clinical correlates of mass effect in autosomal dominant polycystic kidney disease. *PLoS One*. 2015;10:e0144526. https://doi.org/10.1371/journal.pone.0144526

133. Hwang JH, Park HC, Jeong JC, et al. Chronic asymptomatic pyuria precedes overt urinary tract infection and deterioration of renal function in autosomal dominant polycystic kidney disease. *BMC Nephrol*. 2013;14:1. https://doi.org/10.1186/1471-2369-14-1

134. El Ters M, Zhou X, Lepping RJ, Lu P, Karcher RT, Mahnken JD, Brooks WM, Winkhofer FT, Li X, Yu ASL. Biological efficacy and safety of niacinamide in patients with ADPKD. *Kidney Int Rep*. 2020;5:1271–1279.

135. Hogan MC, Chamberlin JA, Vaughan LE, et al. Panomotostatin agonist pasireotide long-acting release for patients with autosomal dominant polycystic kidney or liver disease with severe liver involvement a randomized clinical trial. *Clin J Am Soc Nephrol*. 2020;15:1267–1278. https://doi.org/10.2215/CJN.13661119

136. Griffin BR, You Z, Noureddine L, et al. KIM-1 and kidney disease progression in autosomal dominant polycystic kidney disease: HALT-PKD results. *Am J Nephrol*. 2020;51:473–479. https://doi.org/10.1159/000508051

137. Horie S, Muto S, Kawano H, et al. Preservation of kidney function irrelevant of total kidney volume growth rate with tolvaptan treatment in patients with autosomal dominant polycystic kidney disease. *Clin Exp Nephrol*. 2021;25:467–478. https://doi.org/10.1007/s10157-020-02009-0

138. Klawitter J, Reed-Gitomer B, McFann K, et al. Endothelial dysfunction and oxidative stress in polycystic kidney disease. *Am J Physiol Renal Physiol*. 2014;307:F1198–F1206. https://doi.org/10.1152/ajprenal.00327.2014

139. Higashihara E, Torres VE, Chapman AB, et al. Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience. *Clin J Am Soc Nephrol*. 2011;6:2499–2507. https://doi.org/10.2215/cjn.03530411

140. Perrone RD, Moukssassi MS, Romero K, et al. Total kidney volume is a prognostic biomarker of renal function decline and progression to end-stage renal disease in patients with autosomal dominant polycystic kidney disease. *Kidney Int Rep*. 2017;2:442–450. https://doi.org/10.1016/j.ekir.2017.01.003

141. Higashihara E, Yamamoto K, Kaname S, et al. Age- and height-adjusted total kidney volume growth rate in autosomal dominant polycystic kidney diseases. *Clin Exp Nephrol*. 2019;23:100–111. https://doi.org/10.1007/s10157-018-1617-8

142. Klawitter J, Klawitter J, McFann K, et al. Bioactive lipid mediators in polycystic kidney disease. *J Lipid Res*. 2014;55:1139–1149. https://doi.org/10.1194/jlr.P042176

143. Vendramini LC, Nishiura JL, Baxmann AC, Heilberg IP. Caffeine intake by patients with autosomal dominant polycystic kidney disease. *Braz J Med Biol Res*. 2012;45:834–840. https://doi.org/10.1590/S0100-879X2012007000120

144. Kistler AD, Poster D, Krauer F, et al. Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. *Kidney Int*. 2009;75:235–241. https://doi.org/10.1038/ki.2008.558

145. Davis S, Gralla J, Chan L, et al. Effect of sirolimus on native total kidney volume after transplantation in patients with autosomal dominant polycystic kidney disease: A randomized controlled pilot study. *Transplant Proc*. 2018;50:1243–1248. https://doi.org/10.1016/j.transproceed.2018.02.060

146. Gretz N, Zeier M, Geberth S, et al. Is gender a determinant for evolution of renal failure? A study in autosomal dominant polycystic kidney disease. *Am J Kidney Dis*. 1989;14:178–183. https://doi.org/10.1016/0272-6386(89)90068-x

147. Idrizi A, Barbullushi M, Koroshi A, et al. Urinary tract infections in polycystic kidney disease. *Med Arh*. 2011;65:213–215. https://doi.org/10.5455/medarch.2011.65.213-215

148. Idrizi A, Barbullushi M, Petrela E, Kodra S, Koroshi A, Thereska N. The influence of renal manifestations to the progression of autosomal dominant polycystic kidney disease. *Hippokratia*. 2009;13:161–164.

149. Kline TL, Korfiatis P, Edwards ME, et al. Image texture features predict renal function decline in patients with autosomal dominant polycystic kidney disease. *Kidney Int*. 2017;92:1206–1216. https://doi.org/10.1016/j.kint.2017.03.026

150. Cornec-Le Gall E, Audrezet MP, Rousseau A, et al. The PROPKD score: A new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. *J Am Soc Nephrol*. 2016;27:942–951. https://doi.org/10.1681/asn.2015010016
177. Neuville M, Hustinx R, Jacques J, Krzesinski J-M, Jouret F. Diagnostic Algorithm in the management of acute febrile abdomen in patients with autosomal dominant polycystic kidney disease. PLoS one. 2016;11. https://doi.org/10.1371/journal.pone.0161277.e0161277-e0161277.

178. Flahault A, Trystram D, Nataf F, et al. Screening for intracranial aneurysms in autosomal dominant polycystic kidney disease is cost-effective. Kidney Int. 2018;93:716–726. https://doi.org/10.1016/j.kint.2017.08.016

179. Rahman E, Niaz FA, Al-Suwaida A, et al. Analysis of causes of mortality in patients with autosomal dominant polycystic kidney disease: a single center study. Saudi J Kidney Dis Transpl. Sep 2009;20:806–810.

180. Suwabe T, Araoka H, Ubara Y, et al. Cyst infection in autosomal dominant polycystic kidney disease: causative microorganisms and susceptibility to lipid-soluble antibiotics. Eur J Clin Microbiol Infect Dis. 2015;34:1369–1379. https://doi.org/10.1007/s10096-015-2361-6

181. Rahman E, Nia FA, Al-Suwaida A, et al. Analysis of causes of mortality in patients with autosomal dominant polycystic kidney disease: a single center study. Saudi J Kidney Dis Transpl. Sep 2009;20:806–810.

182. Abraham AG, Girardat-Rotar L, Ziegler S, et al. A Clinical Patient Reporting Tool: giving ADPKD patients back their data. Praxis. 2018;107:425–434. https://doi.org/10.1024/1661-8157/a002946

183. Bakker J, Olree M, Kaatee R, et al. Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology. 1999;211:623–628. https://doi.org/10.1148/radiology.211.3.r99jn19623

184. Sharma K, Caroli A, Quach LV, et al. Kidney volume measurement methods for clinical studies on autosomal dominant polycystic kidney disease. PLoS One. 2017;12:e0178488. https://doi.org/10.1371/journal.pone.0178488

185. Ruggenenti P, Gaspari F, Cannata A, et al. Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLoS One. 2012;7:e32533. https://doi.org/10.1371/journal.pone.0032533

186. Shen C, Landsittel D, Irazabal MV, et al. Performance of the CKD-EPI equation to estimate GFR in a longitudinal study of autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2017;69:482–484. https://doi.org/10.1016/j.amjkd.2016.10.021

187. Orskov B, Borresen ML, Feldt-Rasmussen B, Østergaard O, Laursen I, Strandgaard S. Estimating glomerular filtration rate using the new CKD-EPI equation and other equations in patients with autosomal dominant polycystic kidney disease. Am J Nephrol. 2010;31:53–57. https://doi.org/10.1159/000256657

188. Spithoven EM, Meijer E, Boertien WE, et al. Tubular secretion of creatinine in autosomal dominant polycystic kidney disease: consequences for cross-sectional and longitudinal performance of kidney function estimating equations. Am J Kidney Dis. 2013;62:531–540. https://doi.org/10.1053/j.ajkd.2013.03.030

189. Hogan MC, Norby SM. Evaluation and management of pain in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis. 2010;17:e1–e16. https://doi.org/10.1053/j.ackd.2010.01.005

190. Giorgini P, Weder AB, Jackson EA, Brook RD. A review of blood pressure measurement protocols among hypertension trials: implications for “evidence-based” clinical practice. J Am Soc Hypertens. 2014;8:670–676. https://doi.org/10.1016/j.jash.2014.07.024

191. Perez Dominguez TS, Rodriguez Perez A, Buset Rios N, et al. Psychonephrology: psychological aspects in autosomal dominant polycystic kidney disease. Nefrologia. 2011;31:716–722. https://doi.org/10.3265/Nefrologia.pre2011.Jul.10847

192. Griffiths J, Mills MT, Ong AC. Long-acting somatostatin analogue treatments in autosomal dominant polycystic kidney disease and polycystic liver disease: a systematic review and meta-analysis. BMJ Open. 2020;10:e032620. https://doi.org/10.1136/bmjopen-2019-032620

193. Tong A, Manns B, Hemmelgarn B, et al. Establishing core outcome domains in hemodialysis: report of the standardized outcomes in nephrology-hemodialysis (SONG-HD) Consensus Workshop. Am J Kidney Dis. 2017;69:97–107. https://doi.org/10.1053/j.amjkd.2016.05.022

194. Sautenet B, Tong A, Manera KE, et al. Developing consensus-based priority outcome domains for trials in kidney transplantation: a multinational delphi survey with patients, caregivers, and health professionals. Transplantation. 2017;101:1875–1886. https://doi.org/10.1097/tp.0000000000001776

195. Sautenet B, Cho Y, Gutman T, et al. Range and variability of outcomes reported in randomized trials conducted in patients with polycystic kidney disease: a systematic review. Am J Kidney Dis. doi:https://doi.org/10.1053/j.ajkd.2019.12.003

196. Chong LSH, Sautenet B, Tong A, et al. Range and Heterogeneity of Outcomes in Randomized Trials of Pediatric Chronic Kidney Disease. J Pediatr. 2017;186:110–117.e11. https://doi.org/10.1016/j.jpeds.2017.03.034

197. Viecelli AK, O’Lone E, Sautenet B, et al. Vascular access outcomes reported in maintenance hemodialysis trials: a systematic review. Am J Kidney Dis. 2018;71(3):382–391. https://doi.org/10.1053/j.ajkd.2017.09.018

198. Sautenet B, Tong A, Williams G, et al. Scope and consistency of outcomes reported in randomized trials conducted in adults receiving hemodialysis: a systematic review. Am J Kidney Dis. 2018;72:62–74. https://doi.org/10.1053/j.ajkd.2017.11.010