Diversity of endophytic fungi isolated from different plant parts of *Acacia mangium*, and antagonistic activity against *Ceratocystis fimbriata*, a causal agent of Ceratocystis wilt disease of *A. mangium* in Malaysia

Mohd Farid Ahmad¹, Rozihawati Zahari², Mastura Mohtar³, Wan Azhar Wan-Muhammad-Azrul⁴, Muhammad Syahmi Hishamuddin⁵, Nik Iskandar Putra Samsudin⁵,⁶, Affendy Hassan⁷ and Razak Terhem²*

*Mycology and Pathology Unit, Forest Research Institute Malaysia, Kepong, Malaysia; ¹Laboratory of Forest Pathology and Tree Health, Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang, Malaysia; ²Bio Activity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong, Malaysia; ³Pest and Disease Management Programme, Horticulture Research Centre, Malaysian Agriculture Research and Development (MARDI), Persiaran Mardi–UPM, Serdang, Malaysia; ⁴Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang, Malaysia; ⁵Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia; ⁶Faculty of Tropical Forestry, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.

*Correspondence:
Razak Terhem
razakterhem@upm.edu.my

OPEN ACCESS

Ahmad MF, Zahari R, Mohtar M, Wan–Muhammad–Azrul WA, Hishamuddin MS, Samsudin NP, Hassan A and Terhem R (2022) Diversity of endophytic fungi isolated from different plant parts of *Acacia mangium*, and antagonistic activity against *Ceratocystis fimbriata*, a causal agent of Ceratocystis wilt disease of *A. mangium* in Malaysia. *Front. Microbiol.* 13:887880. doi: 10.3389/fmicb.2022.887880

Acacia mangium is an important wood for commercial products especially pulp and medium-density fibreboard. However, it is susceptible to *Ceratocystis fimbriata* infection, leading to Ceratocystis wilt. Therefore, the present work aimed to (i) establish the diversity of endophytic fungi in different plant parts of *A. mangium* and (ii) evaluate the antifungal potentials of the isolated and identified endophytic fungi against *C. fimbriata*. Endophytic fungal identification was conducted by PCR amplification and sequencing of the internal transcribed spacer 1 (ITS1) and ITS4 regions of nuclear ribosomal DNA. A total of 66 endophytic fungi were successfully isolated from different parts of *A. mangium*: leaf (21), stem (13), petiole (12), root (9), flower (6), and fruit (5). The endophytic fungal isolates belonged to Ascomycota (95.5%) and Zygomycota (4.5%). For Ascomycota 13 genera were identified: *Trichoderma* (28.6%), *Nigrospora* (28.6%), *Pestalotiopsis* (12.7%), *Lasiodiplodia* (9.5%), *Aspergillus* (6.3%), *Sordariomycetes* (3%), and *Neopestalotiopsis*, *Pseudopestalotiopsis*, *Eutiarosporella*, *Curvularia*, *Fusarium*, *Penicillium*, and *Hypoxylon* each with a single isolate. For Zygomycota, only *Blakeslea* sp. (5%) was isolated. Against *C. fimbriata*, *Trichoderma koningiopsis* (AC 1S) from stem, *Nigrospora oryzae* (AC 7L) from leaf, *Nigrospora sphaerica* (AC 3F) from the flower, *Lasiodiplodia* sp. (AC 2U) from fruit, *Nigrospora sphaerica* (AC 4P) from petiole, and *Trichoderma* sp. (AC 9R) from root exhibited strong inhibition for...
C. fimbriata between 58.33 to 69.23%. Thus, it can be concluded that certain endophytic fungi of A. mangium have the potential to be harnessed as anti-Ceratocystis agent in future biotechnological applications.

KEYWORDS

Acacia mangium, endophytic fungi, Ceratocystis fimbriata, Ceratocystis wilt, antagonism

There are no specific methods or guidelines established on how to handle this disease in Malaysia yet up to now. But there were several actions that commonly are used by the plantation managers to prevent the infection of this disease. As Ceratocystis species penetrate and invade the trees by wounds, this problems can be prevent by avoid the occurrence of wound itself (Kile, 1993; Harrington, 2013; Nasution et al., 2019). Silviculture practice should be done in correct way and cautions. The timing of doing work for siliculture is also important to reduce the risk of disease development (Pilotti et al., 2016; Farid et al., 2018). Problems involved with wildlife in plantation areas also are count on in management such as establishment of wildlife management plan to overcome the conflicts occurred (Farid et al., 2018). Chemical control is one of application they used to delay the symptoms of the disease development and help the infected trees to live longer for at least 2 years (Blaedow, 2009; Nasution et al., 2019). Although the use of chemical fungicides are more preferred due to their rapid action, they are often associated with high production and application costs, human health hazards, restriction by domestic and international regulatory limits, trade bans, residual effects, environmental pollution, resistance development in pests, and potential elimination of beneficial natural enemies of the targeted pests (Yazid et al., 2020). Therefore, biological control is seen as a safer and cheaper alternative. Biological control is the use of living organisms (including microorganisms) to eliminate or reduce the density of pests / pathogens to safe levels (Wyckhuys et al., 2013). Often, indigenous organisms or microorganisms are utilised as biological control agent to minimise the risk of introducing foreign species that might grow uncontrollably and in turn become invasive. One such example of indigenous organisms or microorganisms is endophyte. The research is about using a microorganism (endophyte) to fight the pathogen (Ceratocystis fimbriata) which is one of biological control.

Like many other plant species, A. mangium is also associated with endophytes. Endophytes are usually bacteria or fungi that endosymbiotically live within a plant host without causing disease. These endophytes function to enhance the plant host growth and nutrient acquisition improve the plant host's ability to tolerate abiotic stresses or decrease biotic stresses by enhancing the plant host's resistance to infections (Farhat, 2020). Recently, an endophytic actinomycete of the genus Fodinicola was isolated from the roots of A. mangium, and has shown potential activity as
a beneficial plant-growth promoter and specialised secondary metabolite producer (Pham et al., 2020).

Despite endophytic fungi being regarded as new sources of novel bioactive compounds (Daoût et al., 1995; Cui et al., 2015), biological activities, and biotechnological developments, their true potential in controlling *A. mangium* diseases caused by *C. fimbriata* remains underexplored and underreported. Moreover, the leaf and root parts of *A. mangium* have been found to provide the habitats for various endophytic fungi (Mihara et al., 2005; Sarah Shafiei et al., 2017; Pham et al., 2020). Nevertheless, besides leaf and root, other plant parts of the species should also be explored for endophytic fungi which might offer novel species or strains that possess valuable bioactive compounds useful in controlling the Ceratocystis wilt disease. Therefore, the objectives of the present work were (i) to establish the diversity of endophytic fungi in different plant parts of *A. mangium*, and (ii) to evaluate the antifungal potentials of the isolated and identified endophytic fungi against *C. fimbriata*.

Materials and methods

Plant materials

Ten seedlings of *Acacia mangium* (≈30–50 cm in height) and 2 *A. mangium* trees (≈30 cm in diameter at breast height) free from disease and insect infestation were randomly sampled, and identified at Serdang, Selangor (coordinate E 101° 42.6333 N 2° 59.1833). The root, stem, petiole, and leaf from healthy *A. mangium* seedlings were sampled in three replicates, respectively. In addition, three replicates of flower and fruit were also sampled from mature trees, respectively. Each plant part was cut into five 0.5 cm² segments using a blade. These plant parts were washed thoroughly under running tap water to remove adherent debris on the surface.

Isolation of endophytic fungi

Plant part segments were surface-sterilised following the protocol suggested by Nuangmek et al. (2021). Briefly, the plant part segments were washed thoroughly under running tap water, immersed in 70% ethanol (Cerilliant Corporation, United States) for 1 min, rinsed thrice in sterile distilled water, and blot-dried using a sterile filter paper. Next, the surface-sterilised plant part segments were excised 1–2 mm from the edge, and explant-plated onto a Potato Dextrose Agar (PDA; Merck Milipore, Germany). The PDA plates were incubated at 27°C for 7 d. Single hyphae growing out from the cultivated plant part segments were sub-cultured onto fresh PDA. Pure cultures were grouped according to the six types of plant parts (root, stem, petiole, leaf, flower, and fruit). Isolates were group based on colour and morphology on PDA (Yoo and Eom, 2012). Cultures were maintained on PDA for 5 d before sub-cultured into Potato Dextrose Broth (PDB; Neogen®, United States) while shaken at 150 rpm at 26°C for 3–6 d. Following incubation, the culture supernatant was filtered through Whatman filter paper (Cytiva™ Sigma-Aldrich Chemie GmbH, Germany) before being used for genomic DNA extraction.

DNA extraction and PCR amplification

A total of 100 mg of fungal mycelia harvested from PDB was used for fungal genomic DNA extraction. Fungal genomic DNA was extracted as previously described by Landum et al. (2016), in accordance with the manufacturer’s instructions, using the FAVORGEN Fungi/ Yeast Genomic DNA Extraction Mini Kit (Taiwan). The nuclear ribosomal DNA internal transcribed spacer (ITS) of the fungal isolates were amplified using the forward primer, ITS-F (5'-CTT GGT CAT TTA GAG GAA GTA A-3') and the reverse primer, ITS4 (5'-TCC TGC GGT TAT GCA TAT GC-3'); White et al., (1990). The final reaction volume was 25 μl, containing 12.5 μl of 2X PCRBio Tag Mix Red (PCR Biosystems, UK), 0.4 μM of forward and reverse primers, and 10mg of genomic DNA template. For negative control, the DNA was replaced with distilled water to verify the absence of contamination. The PCR was carried out using MyCycler™ (Bio-Rad, USA), programmed for 5 min at 95°C; 30 cycles for 30 s at 95°C, 30 s at 54.8°C, and 1 min at 72°C; and a final 10 min extension at 72°C. The PCR products were separated using 1% agarose gel in 1X TAE buffer (90mM Tris-acetate and 2mM EDTA, pH 8.0), stained with ethidium bromide (0.5 μg/ml), and visualised using FluorChem™ (Alpha Innotech, USA). The PCR products were sequenced by Apical Scientific Sdn. Bhd. (Malaysia). The sequences were deposited in NCBI GenBank, and compared with those already deposited in there via BLAST searches.

Sequence and phylogenetic analyses

The resulting DNA sequences were aligned using MUSCLE software embedded in MEGA software version 10.0.5 (Kumar et al., 2018), and manually trimmed and edited to obtain the complete sequences. Homology searches were carried out using the BLAST program against the NCBI GenBank database.¹ The Maximum Likelihood tree was constructed using MEGA software version 10.0.5 with all positions containing gaps and missing data were included for analysis. Clade supports were calculated based on 1,000 bootstrap replications. A total of 64 sequences of close relatives were downloaded from the NCBI GenBank, and combined with sequences of the 66 endophytic fungi isolated in the present work for phylogenetic tree construction. Two wood

¹ https://blast.ncbi.nlm.nih.gov/Blast.cgi
decay macrofungi namely *Schizophyllum commune* (phylum Basidiomycota, family Schizophyllaceae) and *Phellinus gabonensis* (phylum Basidiomycota, family Hymenochaetaceae) were included as out-group.

Antagonism assay

Endophytic fungal isolates were cultivated on PDA plates at 26°C for 7 days. The antagonistic activity was evaluated through the dual culture assay against *C. fimbriata*. The pathogenic *C. fimbriata* (FRIM1162) isolate used in this study was isolated from an infected *Acacia mangium* (Syzwan et al., 2021) and maintained at 27°C on PDA media at the Mycology & Pathology Unit, Forest Research Institute Malaysia (FRIM). Briefly, a fungal disc of 5 mm in diameter was taken from *C. fimbriata*, and placed 3 cm from the margin of the PDA plate (9 cm in diameter). Next, a 5 mm disc of the endophytic fungus was placed 3 cm from the margin of the PDA plate, and directly opposite of the *C. fimbriata* disc. Inoculated PDA plates were incubated at room temperature for 7 days. PDA plates inoculated with *C. fimbriata* in the absence of endophytic fungus served as negative controls. The assay was performed in triplicates. Observations were carried out for 6 days, after which the mycelial radial growth of test pathogen (*C. fimbriata*) on a control plate (rl) and in the presence of the antagonistic fungus (r2) were measured, and the percentage inhibition (I%) in mycelial growth was calculated as: $I\% = \left(\frac{r1 - r2}{r1} \right) \times 100$ (Hajieghrari et al., 2008). The I% data were analysed statistically with ANOVA using the SAS statistical software. To examine the significance between endophytic fungal isolates, Fisher’s LSD was performed at $p \leq 0.05$.

Results

Identification of endophytic fungi

A total of 66 endophytic fungal isolates were successfully isolated from different parts of healthy *A. mangium* (Table 1); 21 from leaf, 12 from petiole, 13 from stem, nine from root, six from flower, and five from fruit. Correspondingly, 66 isolates were successfully amplified using primers ITS1 and ITS4. The endophytic fungal isolates mostly belonged to Ascomycota (95.5%) followed by Zygomycota (4.5%) based on the BLAST searches analysis (Table 2). For Ascomycota, 13 genera were identified; *Trichoderma* (28.6%), *Nigrospora* (28.6%), *Pestalotiopsis* (12.7%), *Lasidiopodia* (9.5%), *Aspergillus* (6.3%), *Sordariomycetes* (3%), and genera that were represented by a single isolate were *Neopestalotiopsis*, *Pseudopestalotiopsis*, *Eutiarosporella*, *Curvularia*, *Fusarium*, *Penicillium*, and *Hypoxylon*. Only *Blakeslea* sp. (4.5%) of Zygomycota was identified in the present work (Table 1). All the fungal ITS rDNA sequences exhibited high

Plant part	Individual number	Total
Fruit	2	1
Flower	2	1
Leaf	4	2
Petiole	1	1
Stem	1	1
Root	1	1
Total	8	1

Genus	Isolates
Trichoderma	19
Nigrospora	19
Pestalotiopsis	8
Lasidiopodia	6
Aspergillus	4
Sordariomycetes	3
Neopestalotiopsis	1
Pseudopestalotiopsis	1
Eutiarosporella	1
Curvularia	1
Fusarium	1
Penicillium	1
Hypoxylon	1
Blakeslea sp.	3
TABLE 2 Percentage of identity matches of 66 fungal isolates from different plant parts of Acacia mangium based on ITS sequences using BLAST analyses, and their percentage of inhibition against Ceratocystis fimbriata.

No.	Endophytic isolate ID	Plant part	Inhibition activities (%) (mean ± standard error)	GenBank Accession number	ITS region	Phylum, Class, Family	
1	AC 1R	Root	55 ± 0.58	MW254902	99.28	0	Blakeslea trispora
						Zygomycota, Zygomycetes, Choanephoraceae	
2	AC 2R	Root	0 ± 0.00	MW254903	99.63	0	Trichoderma gamsii
						Ascomycota, Sordariomycetes, Hypocreaceae	
3	AC 3R	Root	0 ± 0.00	MW254904	100	0	Aspergillus aculeatinus
						Ascomycota, Eurotiomycetes, Trichosphaeriales	
4	AC 4R	Root	44 ± 2.08	MW254905	99.38	0	Nigrospora sphaerica
						Ascomycota, Sordariomycetes, Trichosphaeriales	
5	AC 5R	Root	20 ± 0.00	MW254913	99.21	0	Aspergillus niger
						Ascomycota, Eurotiomycetes, Trichosphaeriales	
6	AC 6R	Root	8.88 ± 0.66	MW254916	99.63	0	Trichoderma spirale
						Ascomycota, Sordariomycetes, Hypocreaceae	
7	AC 7R	Root	14.28 ± 0.43	MW254942	99.17	0	Sordariomycetes sp.
						Ascomycota, Sordariomycetes, Hypocreaceae	
8	AC 8R	Root	25 ± 2.89	MW254956	99.58	0	Nigrospora oryzae
						Ascomycota, Sordariomycetes, Trichosphaeriales	
9	AC 9R	Root	58.33 ± 5.02 ×10<15	MW254964	99.81	0	Trichoderma sp.
						Ascomycota, Sordariomycetes, Hypocreaceae	
10	AC 1S	Stem	58.33 ± 5.02 ×10<15	MW254907	99.81	0	Trichoderma koningiopsis
						Ascomycota, Sordariomycetes, Hypocreaceae	
11	AC 2S	Stem	33.33 ± 0.29	MW254909	99.79	0	Nigrospora sphaerica
						Ascomycota, Sordariomycetes, Trichosphaeriales	
12	AC 3S	Stem	0 ± 0.00	MW254914	99.63	0	Pestalotiopsis viasiae
						Ascomycota, Sordariomycetes, Sporocadaceae	
13	AC 4S	Stem	0 ± 0.00	MW254920	99.81	0	Pestalotiopsis sp.
						Ascomycota, Sordariomycetes, Sporocadaceae	
14	AC 5S	Stem	45.45 ± 5.02 ×10<15	MW254924	99.45	0	Trichoderma sp.
						Ascomycota, Sordariomycetes, Hypocreaceae	
15	AC 6S	Stem	20 ± 3.61	MW254925	99.15	0	Lasiodiplodia theobromae
						Ascomycota, Dothideomycetes, Botryosphaeraceae	

(Continued)
No.	Endophytic isolate ID	Plant part	Inhibition activities (%) (mean ± standard error)	GenBank Accession number	ITS region	Match identity (%)	E-value	Identification in GenBank	BLAST match in GenBank	Phylum, Class, Family
16	AC 7S	Stem	45 ± 0.00	MW254931	KX009501	Ascomycota,	99.25	Trichoderma gamsii	Ascomycota, Sordariomycetes, Hypocreaceae	
17	AC 8S	Stem	40 ± 0.00	MW254937	MJ38228	Ascomycota,	99.59	Nigrospora oryzae	Ascomycota, Sordariomycetes, Hypocreaceae	
18	AC 9S	Stem	0 ± 0.00	MW254940	FJ442652	Ascomycota,	99.63	Trichoderma ovalisporum	Ascomycota, Sordariomycetes, Trichosphaeriales	
19	AC 10S	Stem	0 ± 0.00	MW254944	MN599950	Ascomycota,	99.8	Aspergillus niger	Ascomycota, Eurotiomycetes, Trichosphaeriales	
20	AC 11S	Stem	45.45 ± 2.60	MW254951	KC178665	Ascomycota,	100	Sordariomycetes sp.	Ascomycota, Sordariomycetes, Trichosphaeriales	
21	AC 12S	Stem	14.28 ± 0.30	MW254954	KX446132	Ascomycota,	97.98	Eutiarosporella sp.	Ascomycota, Sordariomycetes, Dothideomycetes, Botryosphaeriales	
22	AC 13S	Stem	0 ± 0.00	MW254959	MT556677	Ascomycota,	100	Nigrospora sp.	Ascomycota, Sordariomycetes, Trichosphaeriales	
23	AC 11	Leaf	55.55 ± 5.02 ×10⁻¹⁵	MW254906	KM103313	Ascomycota,	99.63	Trichoderma gamsii	Ascomycota, Sordariomycetes, Hypocreaceae	
24	AC 21	Leaf	37.5 ± 1.44	MW254908	MN625838	Ascomycota,	99.38	Nigrospora sphaerica	Ascomycota, Sordariomycetes, Hypocreaceae	
25	AC 31	Leaf	45.45 ± 0.75	MW254910	KX009501	Ascomycota,	99.81	Trichoderma gamsii	Ascomycota, Sordariomycetes, Hypocreaceae	
26	AC 41	Leaf	16.67 ± 9.53	MW254918	MH275056	Ascomycota,	100	Curvularia pandanicola	Ascomycota, Sordariomycetes, Hypocreaceae	
27	AC 51	Leaf	16.67 ± 0.00	MW254919	MT597837	Ascomycota,	99.63	Pestalotiopsis microspora	Ascomycota, Sordariomycetes, Sporocadaceae	
28	AC 61	Leaf	45.45 ± 1.16	MW254921	EU137910	Ascomycota,	99.81	Pestalotiopsis microspora	Ascomycota, Sordariomycetes, Sporocadaceae	
29	AC 71	Leaf	58.3 ± 5.02 ×10⁻¹⁵	MW254922	MN182281	Ascomycota,	98.77	Nigrospora oryzae	Ascomycota, Sordariomycetes, Trichosphaeriales	
30	AC 81	Leaf	28.57 ± 2.51 ×10⁻¹⁵	MW254923	MT448890	Ascomycota,	99.58	Fusarium chlamydosporum	Ascomycota, Sordariomycetes, Nectriaceae	

(Continued)
TABLE 2 (Continued)

No.	Endophytic isolate ID	Plant part	Inhibition activities (%) (mean ± standard error)	GenBank Accession number	Match identity (%)	E-value	Identification in GenBank	BLAST match in GenBank	Phylum, Class, Family
31	AC 9 l	Leaf	0 ± 0.00	MW254926	99.38	0	Nigrospora sphaerica	MN366004	Ascomycota, Sordariomycetes, Trichosphaeriales
32	AC 10 l	Leaf	30 ± 5.77	MW254934	99.57	0	Lasiodiplodia theobromae	KP293981	Ascomycota, Dothideomycetes, Botryosphaeriaceae
33	AC 11 l	Leaf	12.5 ± 6.93	MW254936	99.63	0	Trichoderma koningiopsis	JQ617301	Ascomycota, Sordariomycetes, Hypocreaceae
34	AC 12 l	Leaf	0 ± 0.00	MW254938	99.44	0	Pestalotiopsis neglecta	MN006391	Ascomycota, Sordariomycetes, Sporocadaceae
35	AC 13 l	Leaf	22.22 ± 0.00	MW254939	99.62	0	Trichoderma gamsii	KX009581	Ascomycota, Sordariomycetes, Hypocreaceae
36	AC 14 l	Leaf	0 ± 0.00	MW254943	99.58	0	Nigrospora oryzae	JX966549	Ascomycota, Sordariomycetes, Trichosphaeriales
37	AC 15 l	Leaf	33.33 ± 1.59	MW254945	99.79	0	Nigrospora sp.	MT561433	Ascomycota, Sordariomycetes, Trichosphaeriales
38	AC 16 l	Leaf	45.45 ± 5.02 ×1010	MW254946	99.58	0	Lasiodiplodia theobromae	MK690643	Ascomycota, Sordariomycetes, Trichosphaeriales
39	AC 17 l	Leaf	40 ± 5.77	MW254948	99.43	0	Pestalotiopsis visiae	KP747709	Ascomycota, Sordariomycetes, Sporocadaceae
40	AC 18 l	Leaf	25 ± 0.00	MW254949	99.59	0	Nigrospora sphaerica	MT043797	Ascomycota, Sordariomycetes, Trichosphaeriales
41	AC 19 l	Leaf	0 ± 0.00	MW254950	99.8	0	Aspergillus aculeatus	KJ605160	Ascomycota, Eurotiomycetes, Trichocomaceae
42	AC 20 l	Leaf	40 ± 5.77	MW254962	99.59	0	Nigrospora sphaerica	MH368102	Ascomycota, Sordariomycetes, Trichosphaeriales
43	AC 21 l	Leaf	0 ± 0.00	MW254963	99.58	0	Nigrospora sphaerica	MT561433	Ascomycota, Sordariomycetes, Trichosphaeriales
44	AC 1P	Petiole	0 ± 0.00	MW254917	99.81	0	Trichoderma crustum	MK911703	Ascomycota, Sordariomycetes, Hypocreaceae
45	AC 2P	Petiole	0 ± 0.00	MW254932	99.79	0	Nigrospora sphaerica	MT561433	Ascomycota, Sordariomycetes, Trichosphaeriales

(Continued)
No.	Endophytic isolate ID	Plant part	Inhibition activities (%) (mean ± standard error)	GenBank Accession number	ITS region	Phylum, Class, Family	
46	AC 3P	Petiole	50 ± 4.91	MW254933	97.68	Nigrospora sphaerica	Ascomycota, Sordariomycetes, Trichosphaeriales
47	AC 4P	Petiole	58.33 ± 5.02 ×10^-15	MW254935	99.38	Nigrospora sphaerica	Ascomycota, Sordariomycetes, Trichosphaeriales
48	AC 5P	Petiole	45.45 ± 5.02 ×10^-15	MW254947	99.79	Nigrospora sphaerica	Ascomycota, Sordariomycetes, Trichosphaeriales
49	AC 6P	Petiole	45 ± 5.77	MW254952	99.8	Penicillium rolfii	Ascomycota, Sordariomycetes, Eurotiomycetes, Trichocomaceae
50	AC 7P	Petiole	20 ± 5.77	MW254957	100	Trichoderma longibrachiatum	Ascomycota, Sordariomycetes, Hypocreaceae
51	AC 8P	Petiole	30 ± 5.77	MW254958	99.37	Neopestalotiopsis cubana	Ascomycota, Sordariomycetes, Pestalotiopsidaceae
52	AC 9P	Petiole	45.45 ± 5.02 ×10^-15	MW254961	99.79	Pestalotiopsis sp.	Ascomycota, Sordariomycetes, Pestalotiopsidaceae
53	AC 10P	Petiole	45.45 ± 5.02 ×10^-15	MW254965	99.57	Lasiodiplodia theobromae	Ascomycota, Sordariomycetes, Sporocadaceae
54	AC 11P	Petiole	14.28 ± 0	MW254966	70.1	Trichoderma sp.	Ascomycota, Sordariomycetes, Hypocreaceae
55	AC 12P	Petiole	20 ± 5.77	MW254967	99.44	Trichoderma koningiopsis	Ascomycota, Sordariomycetes, Hypocreaceae
56	AC 1F	Flower	8.88 ± 0.00	MW254911	99.28	Blakeslea trispora	Ascomycota, Zygomycetes, Chonanusporaceae
57	AC 2F	Flower	8.88 ± 5.14	MW254915	94.87	Hypoxylon monticulosum	Ascomycota, Sordariomycetes, Hypoxylaceae
58	AC 3F	Flower	58.33 ± 5.02 ×10^-15	MW254927	100	Nigrospora sphaerica	Ascomycota, Sordariomycetes, Trichosphaeriales
59	AC 4F	Flower	40 ± 0.00	MW254941	99.62	Trichoderma longibrachiatum	Ascomycota, Sordariomycetes, Hypocreaceae
60	AC 5F	Flower	45.45 ± 2.60	MW254953	99.59	Pseudopestalotiopsis theae	Ascomycota, Sordariomycetes, Pestalotiopsidaceae

(Continued)
similarity with existing sequences in the NCBI database (Table 1).

The ITS sequences obtained in the present work were deposited in the NCBI GenBank (MW254902 - MW254967) for future reference. A total of 66 sequences of close relatives were downloaded from the NCBI GenBank, and combined with sequences of the 66 endophytic fungi for phylogenetic tree construction (Figure 1). Nine different orders were observed, of which six belonged to Ascomycota (Amphisphaeriales, Brotryosphaeriales, Eurotiales, Hypocreales, Pleosporales and Trichosphaeriales), one belonged to Zygomycota, and two belonged to Basidiomycota (out-group). Most of the endophytic fungal isolates clustered under the order Trichosphaeriales (20 isolates) belonged to genus Nigrospora, and under the order Hypocreales (19 isolates) belonged to genera Fusarium and Trichoderma. Tables 3 and 4 summarises these results.

Antagonism assay

All 66 endophytic fungal isolates were tested in the antagonism assay against C. fimbriata. After 5 days of incubation, six fungal isolates namely Trichoderma koningiopsis (AC 1S) stem, Nigrospora oryzae (AC 7L) leaf, Nigrospora sphaerica (AC 3F) flower, Lasiodiplodia sp. (AC 2 U) fruit, Nigrospora sphaerica (AC 4P) petiole, and Trichoderma sp. (AC 9R) root were observed to exhibit stronger inhibition where the mycelia of the antagonists had breached into C. fimbriata colony (Figure 2). Of these, four fungal isolates namely T. koningiopsis (AC 1S) stem, Lasiodiplodia sp. (AC 2 U) fruit, N. sphaerica (AC 4P) petiole, and Trichoderma sp. (AC 9R) root colonised almost 99% of the culture plate. Although N. sphaerica (AC 7L) leaf and N. sphaerica (AC 3F) flower did not colonise the entire culture plate, there was no growth of C. fimbriata observed. The inhibition percentages (I%) of endophytic fungi against the pathogen C. fimbriata in dual culture assay are shown in Figure 3. Lasiodiplodia sp. (AC 2 U) isolated from fruit recorded the highest I% (69.23%), followed by Trichoderma sp. (AC 9R) isolated from root, Nigrospora sphaerica (AC 4P) isolated from flower, Trichoderma koningiopsis (AC 1S) isolated from stem, and Nigrospora oryzae (AC 7L) isolated from leaf with value 58.33%, respectively.

Thirteen endophytic fungi from various plant parts of A. mangium showed no inhibition against C. fimbriata (Figure 4) namely A. aculeatinus (AC 3R) isolated from root, A. aculeatus (AC 19L) isolated from leaf, A. niger (AC 10S) isolated from stem, N. oryzae (AC 14L) isolated from leaf, Nigrospora sp. (AC 13S) isolated from stem, N. sphaerica (AC 2P) isolated from petiole, P. neglecta (AC 12L) isolated from leaf, Pestalotiopsis sp. (AC 4S) isolated from stem,
P. visiae (AC 3S) isolated from stem, T. crissum (AC 1P) isolated from petiole, T. gamsii (AC 2R) isolated from root, and T. ovalisporum (AC 9S) isolated from stem.

Diversity of endophytic fungi

Endophytic fungi are ubiquitous, and every plant species examined to date have been found colonised by them (Arnold et al., 2001). A single plant species may harbour hundreds of endophytes which may inhabit all available tissues, including leaves, petioles, stems, twigs, barks, xylems, roots, fruits, flowers, and seeds (Chapela and Boddy, 1988; Fisher et al., 1993; Saikkonen et al., 1998; Jena and Tayung, 2013). In the present work, endophytic fungi were isolated from different plant parts of A. mangium with the highest number of isolates found in leaf and dominated by the genera *Trichoderma* and Nigrospora. *Trichoderma* spp. were present in all plant parts,
while Nigrospora spp. were present in all but fruit. In total, 66 endophytic fungal isolates were obtained from different plant parts of A. mangium.

Trichoderma and Nigrospora have also been reported as endophytes in other plants such as Rauvolfia serpentine, Prosopis cineraria, and Piper nigrum (Gehlot et al., 2008; Dutta et al., 2014; Sopialena et al., 2018). Trichoderma is also found in many ecosystems, and can reduce the severity of plant diseases by inhibiting the plant pathogens in the soil through their highly potent antagonistic and mycoparasitic activities (Hermosa et al.,

No.	ID	GenBank Accession no.	Plant part	Amphisphaeriales
1	AC 3S	MW254914	Stem	Pestalotiopsis vismiae (94% bootstrap)
2	AC 4S	MW254920	Stem	Pestalotiopsis sp.
3	AC 9P	MW254961	Petiole	Pestalotiopsis sp.
4	AC 5L	MW254919	Leaf	Pestalotiopsis microspora
5	AC 6L	MW254921	Leaf	Pestalotiopsis microspora
6	AC 12L	MW254938	Leaf	Pestalotiopsis neglecta
7	AC 1U	MW254912	Fruit	Pestalotiopsis microspora
8	AC 5F	MW254953	Flower	Pseudopestalotiopsis theae
9	AC 17L	MW254948	Leaf	Pestalotiopsis vismiae (77% bootstrap)
10	AC 8P	MW254958	Petiole	Neopestalotiopsis cubana Brotryosphaeriales (77% bootstrap)
11	AC 6S	MW254925	Stem	Lasiodiplodia theobromae (97% bootstrap)
12	AC 10P	MW254965	Petiole	Lasiodiplodia theobromae
13	AC 10L	MW254934	Leaf	Lasiodiplodia theobromae
14	AC 16L	MW254946	Leaf	Lasiodiplodia theobromae
15	AC 2U	MW254928	Fruit	Lasiodiplodia theobromae
16	AC 4U	MW254930	Fruit	Lasiodiplodia venezuelensis
17	AC 12S	MW254954	Stem	Eutiarosporella sp. Eurotiales (97% bootstrap)
18	AC 10S	MW254944	Stem	Aspergillus niger (97% bootstrap)
19	AC 3R	MW254904	Root	Aspergillus aculeatinus
20	AC 5R	MW254913	Root	Aspergillus niger
21	AC 19L	MW254950	Leaf	Aspergillus aculeatus
22	AC 6P	MW254952	Petiole	Penicillium rolfsii Hypocreales (97% bootstrap)
23	AC 2R	MW254903	Root	Trichoderma gamss (95% bootstrap)
24	AC 6R	MW254916	Root	Trichoderma spirale
25	AC 9R	MW254964	Root	Trichoderma sp.
26	AC 1S	MW254907	Stem	Trichoderma koningiopsis
27	AC 5S	MW254924	Stem	Trichoderma sp.
28	AC 7S	MW254931	Stem	Trichoderma gamss
29	AC 9S	MW254940	Stem	Trichoderma ovalisporum
30	AC 1P	MW254917	Petiole	Trichoderma crisuum
31	AC 7P	MW254957	Petiole	Trichoderma longibrachiatum
32	AC 11P	MW254966	Petiole	Trichoderma sp.
33	AC 12P	MW254967	Petiole	Trichoderma koningiopsis
34	AC 1L	MW254906	Leaf	Trichoderma gamss
35	AC 3L	MW254910	Leaf	Trichoderma gamss
36	AC 11L	MW254936	Leaf	Trichoderma koningiopsis
37	AC 13L	MW254939	Leaf	Trichoderma gamss
38	AC 4F	MW254941	Flower	Trichoderma longibrachiatum
39	AC 5U	MW254960	Fruit	Trichoderma harzianum
40	AC 6F	MW254955	Fruit	Trichoderma koningiopsis
41	AC 8L	MW254923	Leaf	Fusarium chlamydosporom Fleosporales (95% bootstrap)
42	AC 4L	MW254918	Leaf	Curvularia pandanicola Hypocreales (95% bootstrap)

(Continued)
Moreover, as revealed by research in recent decades, some *Trichoderma* strains can interact directly with roots, thus increasing plant growth potential, resistance to disease, and tolerance to abiotic stresses (Mastouri et al., 2010; Hermosa et al., 2012; Brotman et al., 2013). *Nigrospora* is also a beneficial member of the foliar endophytic community due to its mutualistic existence with their host plants, and having a potential for biological control strategies (Zakaria et al., 2016). Other than *Nigrospora*, *Pestalotiopsis* also is a beneficial member of the foliar endophytic community due to its ability to switch its nutritional mode, thus able to stay as an endophyte or switch to saprophyte when necessary (Douanla-Meli et al., 2013; Hamzah et al., 2018). Besides *Trichoderma*, *Nigrospora*, and *Pestalotiopsis*, other fungal genera such as *Lasiodiplodia*, *Sordariomycetes*, and *Aspergillus* have also been reported as predominant endophytic fungi in other plants species (Li et al., 2012; del Castillo et al., 2016), and have an antagonism ability (Chen et al., 2010). *Fusarium* too is a common endophytic fungal genus found in trees (Zakaria et al., 2010). Although it is widely available in most tropical plants investigated in past studies (Warman and Aitken, 2018), we recorded a low isolation frequency of *Fusarium*. Our finding also revealed lesser-known fungal genera, namely *Eutiarosporella*, *Curvularia*, *Glomerella*, and *Hypoxylon* in *A. mangium*.

In the present work, ITS sequences identified 63 endophytic fungal isolates from the phylum Ascomycota, and three from Zygomycota. The phylum Ascomycota has been reported to be the most common endophytic fungal phylum when isolated using standard isolation protocols (Koukol et al., 2012; Hamzah et al., 2018). Fungi from the phylum Zygomycota have been reported to be culture-method dependent (Crozier et al., 2006; Hamzah et al., 2018), which might explain the small isolate number reported in the present work. Comparative studies also show that only a small fraction of microorganisms in nature can be cultured using conventional microbiological techniques (Amann et al., 1995). There are many factors that can affect the microbial viability under laboratory conditions, for example the lack of knowledge about their nutritional requirements.

Antagonism activities against Ceratocystis fimbriata

Fungal antagonism can manifest in many ways such as nutrition competition, niche exclusion, mycoparasitism, and the
production of extracellular metabolites (Siameto et al., 2010). These metabolites, especially antibiotics and lytic enzymes, have been widely applied in various fields like crop-pathogen controls. Endophytic microorganisms isolated from plants can produce various novel bioactive metabolites (Ramasamy et al., 2010). The bioactive metabolites produced by plants, microorganisms, and organisms are useful for the discovery and development of new drugs.

In the present work, Lasiodiplodia sp., T. koningiopsis, N. sphaerica and Trichoderma sp. successfully inhibited the pathogen C. fimbriata in the dual culture assay. The ability to out-grow the pathogen in vitro suggested that these fungi competed
for the space and nutrient with the pathogen. In theory, biological agents with antifungal properties are known to secrete certain enzymes which break down their competitors’ cell wall, thus restricting their growth (Sharon et al., 2001). The antagonism displayed by Lasiodiplodia sp. was more aggressive as compared to other endophytic fungi (Figure 3). This could be attributed to the production of lytic enzymes by Lasiodiplodia sp. (Anitha and Rabeeth, 2010). The antagonism displayed by Lasiodiplodia sp., T. koningiopsis, N. sphaerica and Trichoderma sp. could also be explained by their secretion of secondary metabolites into the growth medium, as well as nutrient depletion in the growth medium (Robinson et al., 2014). The antagonism displayed might also be influenced by the antibiotics or hydrolytic enzymes they produced (Kamala and Indira, 2011). The difference in antagonism
magnitude observed in the present work could also be dependent on specific fungal species (Kai et al., 2007). Previously, Lasiodiplodia sp. from the flower of Viscum coloratum also exhibited antimicrobial activity which could be due to the presence of cyclo-(Trp-Ala), ICA, indole-3-carbaldehyde, mullein, and 2-phenylethanol in their extract (Qian et al., 2014). Lasiodiplodia sp. isolated from the twig of Aegle marmelos has also been shown to have in vitro fibrinolytic activities (Meshram and Saxena, 2016). Another plant parts such as bark and leaf of Terminalia sp. has also been isolated with Lasiodiplodia sp. which not only exhibited antimicrobial and antioxidant activities, but also aided the plant to withstand stressful environmental conditions (Patil et al., 2014).

Conclusion

Diversity of endophytic fungi were successfully isolated from different parts of A. mangium, with Trichoderma spp. being the most prevalent, and were isolated from all six plant parts. Against C. fimbriata, the crude extracts from Trichoderma spp., N. sphaeraica, and Lasiodiplodia sp. exhibited strong inhibition in the dual culture assay. Thus, it can be concluded that certain endophytic fungi of A. mangium have the potential to be harnessed as anti-Ceratocystis agent in future biotechnological applications.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Author contributions

RT designed the study, collected, identified plant materials, and edited the manuscript. RT and RZ conducted the experiments, drafted, and revised the manuscript. Data analysis performed by RT, MA, MM, NS, WAW-M-A, and AH. MH assisted in DNA extraction. RT, MA, MM, NS, and AH supervised. RT acquired funding. All authors contributed to the article and approved the submitted version.

Funding

The present work was financially supported by Universiti Putra Malaysia under the Putra Grant Scheme (GP-IPM/2017/9565600).

Acknowledgments

The authors gratefully acknowledge the Laboratory of Wood Deterioration and Protection, Department of Natural Resource Industry, Faculty of Forestry and Environment, Universiti Putra Malaysia for the research facilities.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Amanat, R. I., Ludwig, W., and Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. doi: 10.1128/mr.59.1.143-169.1995

Anuitha, A., and Rabeeth, M. (2010). Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. Afr. J. Plant Sci. 4, 61–66.

Arnold, A. E., Maynard, Z., and Gilbert, G. S. (2001). Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol. Res. 105, 1502–1507. doi: 10.1017/S0953756201004956

Blaedow, R. A. (2009). Use of the systemic fungicide propiconazole for oak wilt management: an assessment of uncharacterized host-pathogen-fungicide interactions. University of Minnesota.

Brawer, J., Japarudin, Y., Lapammi, M., Rauf, R., Boden, D., and Wingfield, M. J. (2015). Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. South. For. 77, 83–90. doi: 10.2898/20702620.2015.1007412

Brotman, Y., Landau, U., Cuadros-Inostroza, Á., Takayuki, T., Fernie, A. R., Chet, I., et al. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 9.1003221. doi: 10.1371/annotation/88b18c15-36f0-4e56-9be2-e4f1de3fae

Chaki, S., Ghosh, B., Bandyopadhyay, S., Mookerjee, M., Das, S., and Dastidar, S. G. (2015). Detection of various phytochemical compounds from seeds of a. auriculiformis for possibilities of obtaining potent antimicrobial agents. Int. J. Biol. Pharm. Res. 6, 120–128.

Chapela, I. H., and Boddy, L. (1988). Fungal colonization of attached beech branches: II. Spatial and temporal organization of communities arising from latent invaders in bark and functional sapwood, under different moisture regimes. New Phytol. 110, 47–57. doi: 10.1111/j.1469-8137.1988.tb00236.x

Chen, X. M., Dong, H. L., Sun, Z. R., Chen, J., and Guo, S. X. (2010). Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrolobium loddigesii Rolfe. J. Plant Growth Regul. 29, 328–337. doi: 10.1007/s00344-010-9139-y

Crozier, J., Thomas, S. E., Aime, M. C., Evans, H. C., and Holmes, K. A. (2006). Molecular characterization of fungal endophytic morphospesies isolated from stems and pods of Theobroma cacao. Plant Pathol. 55, 783–791. doi: 10.1111/j.1365-3059.2006.01446.x
Cai, J., Guo, T., Ren, Z., Zhang, N., and Wang, M. (2015). Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angularis, and R. schachianum. PLoS One 10(1):118240. doi: 10.1371/journal.pone.0118240

Daouk, R. K., Dagheh, S. M., and Sattout, E. J. (1995). Antifungal activity of the essential oil of Origanum syringa L. J. Food Prot. 58, 1147–1149. doi: 10.3380/jfpr.058.11.101147

Del Castillo, D. S., Parra, D., Noceda, C., and Pérez-Martínez, S. (2016). Co-occurrence of pathogenic and non-pathogenic Fusarium decemcellulare and Lasiodiplodia theobromae isolates in cushion galls disease of cacao (Theobroma cacao L.). J. Phytopathol. 164, 129–138. doi: 10.1139/jpp.2016-0200

Douanla-Meli, C., Langer, E., and Mouaf, F. T. (2013). Fungal endophyte diversity and community patterns in healthy and yellowing leaves of citrus Limon. Fungal Ecol. 6, 212–222. doi: 10.1016/j.fuene.2013.01.004

Dutta, D., Puzari, R. C., Gogoi, R., and Dutta, P. (2014). Endophytes exploitation as a tool in plant protection. Braz. Arch. Biol. Technol. 57, 621-629. doi: 10.1590/S1516-8913201402043

Farahat, M. (2020). Alleviation of salinity stress in wheat by ACC deaminase-producing bacillus arrobuthali EWR29 with multifarious plant growth-promoting attributes. Plant Arch. 20, 417–429.

Farida, M., Syazwan, S. A., Arul, W. W. M., Patalahaya, M., Sallee, S. M., and Ong, S. (2010). A novel and rare Fumonisin B1 producing and mycotoxin active alien species (AAS) causing wilt disease on acacia Mangium plantation.

Fischer, P. J., Pettrini, O. S. B. C., and Sutton, B. C. (1993). A comparative study of fungal endophytes in leaves, xylem and bark of eucalyptus in Australia and England. Sydowia 45, 338–345.

Gehlot, P., Bohra, N. K., and Purohit, D. K. (2008). Endophytic mycoflora of inner bark of Prosopis cineraria—a key stone tree species of Indian desert. Am. Eurasian J. Botany 1, 1–4.

Hajieghrari, B., Torabi-Giglou, M., Mohammadi, M. R., and Davari, M. (2008). Biological potential of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. Afr. J. Biotechnol. 7, 967–972.

Hamzah, T. N. T., Lee, S. T., Hidayat, A., Terham, R., Faridah-Hanum, I., and Tah, J. (2016). Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front. Microbiol. 7:1070. doi: 10.3389/fmicb.2016.01070

Harrington, T. C. (2013). “Ceratocystis diseases,” in Infectious forest diseases. ed. P. Gonthier (Wallingford: CABI). 230–255. doi: 10.1007/978-1-1370-4042-02.030

Hermosa, R., Viterbo, A., Chet, I., and Monte, E. (2012). Plant-beneficial effects of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. Microbiol. Res. 168, 100–108. doi: 10.1016/j.micres.2012.05.001

Jena, S. K., and Tayung, K. (2013). Endophytic fungal communities associated with Piper nigrum in the tropical areas: a recent study. Phytother. Res. 27, S7–S12. doi: 10.1002/ptr.5701

Kai, N., Effimert, U., Berg, G., and Piechulla, B. (2007). Volatiles of bacterial inoculum dose. J. Microbiol. Methods 71, 178–183. doi: 10.1016/j.mimet.2007.05.011

Koukol, O., Kolarík, M., Kolárová, Z., and Baldrian, P. (2012). Diversity of foliar fungi from different trees of the Siberian forest in relation to the age of the species and forest stands. Microorganisms 8:467. doi: 10.3390/microorganisms8040467

Kai, N., Effimert, U., Berg, G., and Piechulla, B. (2007). Volatiles of bacterial inoculum dose. J. Microbiol. Methods 71, 178–183. doi: 10.1016/j.mimet.2007.05.011

Koukol, O., Kolarík, M., Kolárová, Z., and Baldrian, P. (2012). Diversity of foliar fungi from different trees of the Siberian forest in relation to the age of the species and forest stands. Microorganisms 8:467. doi: 10.3390/microorganisms8040467

Kilé, G. A. (1993). “Plant diseases caused by species of Ceratocystis sensu stricto and Chalara” in Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. eds. M. Wingfield, K. Siertf and J. Webber (Minnesota USA: The American Phytopathological Society St. Paul). 173–183.

Koulou, O., Kolarík, M., Kolárová, Z., and Baldrian, P. (2012). Diversity of foliar endophytes in wind fallen Picea abies trees. Fungal Divers. 54, 69–77. doi: 10.1007/s11274-011-0112-2

Kumar, C. G., Mongilla, P., and Pombala, S. (2018). Lissaiso, a new exopolysaccharide producer Lasiodiplodia from Acacia BR (MTC04000): structural characterization and biological evaluation. Process Biochem. 72, 162–169. doi: 10.1016/j.procbio.2018.06.014

Landum, M. C., do Rosário Félix, M., Albo, J., Garcia, R., Cabrila, M. J., Rei, F. et al. (2016). Antagonistic activity of fungi of Olea europea L. against Colletotrichum acutatum. Microbiol. Res. 183, 108–108. doi: 10.1016/j.micres.2015.12.001

Lee, S. S. (2018). Observations on the successes and failures of acacia plantations in Sabah and Sarawak and the way forward. J. Trop. For. Sci. 30, 468–475. doi: 10.26555/jfsc.2018.30.5.1004875

Li, H. Y., Shen, M., Zhou, Z. P., Li, T., Wei, Y. L., and Lin, L. B. (2012). Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Divers. 54, 79–86. doi: 10.1007/s11235-012-0153-1

Mandy, M. and Wickneswari, R. (2014). Incidences and severity of vascular wilt in Acacia mangium plantations in Sabah, Malaysia. The 2014 UKM FST Postgraduate Colloquium. AIP Publishing LLC. 784–789.
manginecans and C. acaciivora sp. nov. in Indonesia. S. Afr. J. Bot. 77, 292–304. doi: 10.1016/j.sajb.2010.08.006

Udarbe, M. P., and Hepburn, A. J. (1986). "Development of Acacia mangium as plantation species in Sabah" in Australian acacias in developing countries. Proceedings of international workshop held at the forestry training Centre, Gympie. ed. J. W. Turnbull vol. 16 (Queensland, Australia: Canberra, ACIAR Proceedings), 157–159.

Warman, N. M., and Atikin, E. A. (2018). The movement of fusarium oxysporum f. sp. cubense (sub-tropical race 4) in susceptible cultivars of banana. Frontiers. Plant Sci. 9:1748. doi: 10.3389/fpls.2018.01748

White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocol. 18, 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1

Wyckhuys, K. A. G., Lu, Y., Morales, H., Vazquez, L. L., Legaspi, J. C., Eliopoulos, P. A., et al. (2013). Current status and potential of conservation biological control for agriculture in the developing world. Biol. Control 65, 152–167. doi: 10.1016/j.biocontrol.2012.11.010

Yazid, S. N. E., Selamat, J., Ismail, S. I., Magan, N., and Samsudin, N. I. P. (2020). Phytopathogenic organisms and mycotoxigenic fungi: why do we control one and neglect the other? A biological control perspective in Malaysia. Compr. Rev. Food Sci. Food Saf. 19, 643–669. doi: 10.1111/1541-4337.12541

Yoo, J. I., and Eom, A. H. (2012). Molecular identification of endophytic fungi isolated from needle leaves of conifers in Bohyeon Mountain. Korea. Mycobil. 40, 231–235. doi: 10.5941/MYCO.2012.40.4.231

Zakaria, L., Jamil, M. I. M., and Anuar, I. S. M. (2016). Molecular characterisation of endophytic fungi from roots of wild banana (Musa acuminata). Trop. Life Sci. Res. 27, 153–162. PMID: 27019688

Zakaria, L., Yaakop, A. S., Salleh, B., and Zakaria, M. (2010). Endophytic fungi from paddy Trop. Life Sci. Res. 21, 101–107.