Data Article

Data of heavy metals in soil and groundwater at Kiwi gardens of Amlash in Guilan Province, Iran

Dariush Naghipour a, Seyed Davoud Ashrafi a,b, Kamran Taghavi a,*

a School of Health, Guilan University of Medical Sciences, Rasht, Iran
b Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran

A R T I C L E I N F O

Article history:
Received 5 March 2018
Received in revised form 9 April 2018
Accepted 13 April 2018
Available online 21 April 2018

Keywords:
Heavy metals
Chemical fertilizer
Soil & groundwater pollution
Amlash

A B S T R A C T

Data on this paper describe the concentrations of arsenic, cadmium, copper, nickel, lead and zinc in the surface soils and groundwater's of Kiwi gardens and its relation to chemical fertilizers in Amlash city, Guilan Province, in Iran. The results of this study showed that the average concentration of heavy metals in groundwater and soils of the studied areas was less than the national standards of Iran for irrigation water, Dutch MPA for soils (except Cu and Ni) and Canadian MAC for inorganic fertilizers. Considering that after fertilizing to soils used in gardening, the concentration of heavy metals in groundwater and soil can be increased significantly, so that chemical fertilizers can be considered as an effective factor in increasing the amount of heavy metals in water and soil. The results of this research can be used by who concern about water and soil quality related to fertilizing and also can be used by Rural Water and Wastewater Company and Ministry of Jahad Agriculture of Iran.

* Corresponding author.
E-mail address: k.taghavi@gums.ac.ir (K. Taghavi).
Specifications table

Subject area	Environmental Sciences
More specific subject area	Heavy metals in ground water soil and fertilizer
Type of data	Figure and table
How data was acquired	As, Cd, Cu, Ni, Pb and Zn measurements were carried out by ICP-OES – Spectro (Model ARCOS FHE12, Germany) based on standard procedures [1]. Samples of this study were prepared and analyzed from rural ground waters, soils and fertilizers. Digital pH meter (Metrohm) was applied for pH regulation after digestion for sample preparations.
Data format	Raw, analyzed
Experimental factors	The data were obtained in two season, spring and summer, and pH was measured in field, and for heavy metals analyzing the samples in poly-ethylene bottles were stored in a dark place at 4 °C temperature until the analysis [1].
Experimental features	As, Cd, Cu, Ni, Pb and Zn were determined and compared with Iranian standards for irrigation water, Dutch MPA for soils and Canadian MAC for inorganic fertilizers [2–4].
Data source location	Amlash, Guilan Province, Iran.
Data accessibility	The data are available within this paper.

Value of the data

- The results obtained from this research can be used by the Food and Drug Administration, Iran’s Gardening Department.
- The results of this research can be used by Rural Water and Wastewater Company and Ministry of Jahad Agriculture of Iran.
- The results of this research can be used by the Iranian Environmental Protection Agency, Ministry of Health for human health risk assessment of Gardening products.

1. Data

Environmental pollution like drinking water and soil pollution by organic and inorganic materials is one of the most important issues in the world [5–16]. Before fertilizing the fruit gardens, average concentration of Cd, Cu, Ni, Pb and Zn in groundwater samples was 0.185, 0.579, 3.407, 0.238 and 2.490 µg/l, respectively, but, after the fertilization the mean concentration increased to 0.216, 0.717, 5.435, 0.435 and 4.652 µg/l, respectively. It should be noted that the amount of As in groundwater samples was not detectable due to the accuracy of the device. The average pH of well water in the samples was 6.9. The concentration of heavy metals in groundwater samples before and after fertilization is presented in Table 1. The concentration of heavy metals studied in well water samples, in both sampling stages was lower than the national standards of Iran for irrigation [2].

Before the fertilization, the mean concentration of As, Cd, Cu, Ni, Pb and Zn in soil samples was 0.517, 0.066, 18.386, 10.151, 13.091 and 39.745 mg/kg, respectively, but, after the fertilization the mean concentration was 0.273, 0.085, 25.048, 14.555, 16.226 and 52.186 mg/kg, respectively. The concentration of heavy metals studied in soil samples in both sampling stages was lower than the Dutch MPA for soils [3]. According to the soil texture analysis in the region, the average soil pH was 6.5. The concentration of metals in soil samples before and after fertilization is presented in Table 2.
The concentration of heavy metals in five fertilizers used in kiwi gardens is presented in Table 3. The Average concentration of heavy metals in fertilizer samples was lower than the Canadian MAC standards (except for Zn) [4].

Average of five highly used fertilizers of Kiwi Gardens in 7 villages in Amlash is presented in Table 4, and showed that urea, triple super phosphate, potassium sulfate, zinc sulfate and full fertilizer in the Kiwi gardens were 420, 380, 200, 90 and 75 kg/yr.

2. Experimental design, materials and methods

2.1. Study area description

The study area is located in the east of Giulan, Amlash city, 75 km from Rasht, the center of the province. According to the last census of Statistical Center of Iran at 2017 the population of the city of Amlash has been declared to be 43,225 people. The studied area is under cultivation of fruit gardens, which is about 20 ha. These gardens are located in 7 villages called Chamanestan, Nerke, Hardoab, Legmog, Balange, Holosara and Azarin. Sampling zone and point of this research was presented in Fig. 1.

2.2. Sample collection and analytical procedures

Samples collected at 21 stations from wells and soils of Kiwi gardens before and after adding fertilizers (Urea, triple superphosphate, potassium sulfate, zinc sulfate and full fertilizer). Data obtained with two methods which were questionnaire and analyzing. Questionnaires were provided to farmers in order to obtain information about the type, amount, manner of fertilizer use, and area of cultivation for kiwi gardens. The distribution of fertilizers was collected from the Jahad Agricultural
Organization and the fertilizer distribution cooperatives, and the fertilizers were purchased from its supply stores. In water sampling of wells as a source for irrigation of the farms, samples took from well discharge. However, in fields where their irrigation water were supplied from various sources, such as springs and rivers, especially during well dehydration, the samples were prepared in a composite form. After filtering well water (with Whatman filter 42) and condensation process at 90°C in polyethylene bottles, samples labeled. Then, with 1 ml of concentrated nitric acid, pH of samples decreased to less than 2. The samples were transferred to the laboratory using ice bag and kept in the refrigerator [1]. In soil sampling, samples were collected at the stations designated by the combined

Table 2

Heavy metal concentrations in soil samples before and after fertilization in Kiwi Gardens, Amlash City in 2017 (mg/kg).

Number of samples	As	Cd	Cu	Ni	Pb	Zn
before	after	before	after	before	after	before
1	ND	0.680	0.020	0.120	28.580	35.970
2	0.007	ND	ND	17.680	19.730	8.860
3	ND	ND	0.050	14.900	37.030	9.890
4	ND	ND	24.660	35.740	6.390	13.880
5	0.300	ND	0.004	19.050	23.490	9.330
6	ND	ND	0.002	23.250	23.400	11.900
7	0.090	ND	0.310	8.070	42.25	16.450
8	0.130	ND	ND	24.580	26.380	12.250
9	ND	ND	0.04	20.850	24.410	10.09
10	ND	ND	0.001	16.440	24.200	10.600
11	0.140	ND	ND	17.420	25.710	10.03
12	ND	ND	20.930	23.110	10.290	24.280
13	ND	ND	21.890	24.850	14.200	16.360
14	0.780	ND	0.340	4.240	16.670	8.270
15	0.600	ND	0.130	14.180	16.410	9.850
16	0.500	ND	18.090	20.050	8.900	11.910
17	ND	ND	22.490	22.990	11.870	16.780
18	0.72	ND	ND	20.180	21.600	9.500
19	1.260	0.090	0.050	14.03	21.900	7.110
20	1.16	0.050	ND	0.050	17.030	17.510
Average	0.517	0.273	0.066	0.085	18.386	25.048
Min	0.007	0.050	0.020	0.001	3.420	14.670
Max	1.260	0.680	0.130	0.310	28.580	42.250
S.D	0.431	0.352	0.056	0.098	5.790	7.280

The Dutch MPA for soils

Parameters	As	Cd	Cu	Ni	Pb	Zn
Urine	0.668	0.027	0.642	12.100	1.220	8.770
Triple superphosphate	9.060	0.013	5.260	9.130	1.650	7.030
Potassium sulfate	0.160	0.078	0.601	13.940	0.420	1570.950
Zinc sulfate	0.118	3.530	0.524	66.050	2.554	28592.300
Complete	1.137	0.047	4.086	13.203	0.420	610.700
Average	2.228	0.739	2.222	22.884	1.252	1017.950
SD	3.841	1.560	2.275	24.199	0.899	1227.319
Min	0.668	0.013	0.524	9.130	0.420	7.030
Max	9.060	3.530	5.260	66.050	2.554	28592.300
Canadian MAC	75	20	–	180	500	1850
method. Samples of surface soils were prepared at a depth of 0–20 cm and mixed together and shaking in the laboratory for one hour. Soil samples were mixed with distilled water at a rate of 2.5:1 in the laboratory. Then the pH of the mixture was measured using pH meter. Preparation of fertilizer samples was done as well as soil samples [17].

To prepare a fertilizer sample, 5 fertilizers were selected for harvesting fruit gardens and from each kind of fertilizer 3 different brands were prepared on the market and each brand was harvested with equal ratio and mixed together and finally 5 fertilizer samples (sample weight; 1 Kg), were prepared and tested. Digestion of soil and fertilizer samples were carried out using nitric acid and concentrated hydrochloric acid of Merck Germany and deionized distilled water. Heavy metals of samples were digested with a mixture of three parts of hydrochloric acid and one nitric acid fraction. All samples, prepared, digested and measured according to standard methods [1,18].

Funding sources

This paper was a part of faculty approved research project and supported financially by a grant (No: 93122606) from Guilan University of Medical Sciences, Rasht, Iran.

Table 4:
Average of five highly used fertilizers of Kiwi Gardens, Amlash City in 2017 (kg/yr.).

Name of village	Urine	Triple super-phosphate	Potassium sulfate	Zinc sulfate	Full fertilizer
Balangheh	27	32	15	5	15
Hardoab	33	28	25	10	5
Tarkeh	45	42	20	12	17
Azarin	64	58	35	10	10
Lagnoj	73	64	28	13	8
Holosara	80	73	32	20	10
Chamanestan	98	83	45	20	10
Total	420	380	200	90	75

Fig. 1. Sampling zone and point of research, Amlash, Guilan Province.
Acknowledgments

The authors would like to thank the staff of the laboratory of the Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences.

Transparency document. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.09.054.

References

[1] W.E. Federation, A.P.H. Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, DC, USA, 2005.
[2] Industrial Research and Standard Institute of Iran, ISIRI NO:2439, 1st Edition.
[3] Y.N. Vodyanitski, Standards for the contents of heavy metals in soils of some states, Ann. Agrar. Sci. 14 (2016) 257–263. http://dx.doi.org/10.1016/j.aasci.2016.08.011.
[4] N.U. Benson, W.U. Anake, U.M. Etesin, Trace metals levels in inorganic fertilizers commercially available in Nigeria, J. Sci. Res. Rep. 3 (2014) 610–620. http://dx.doi.org/10.9734/JSSR/2014/7465.
[5] M. Vatandoost, D. Naghipour, S. Omidi, S.D. Ashrafi, Survey and mapping of heavy metals in groundwater resources around the region of the Anzali International Wetland; a dataset, Data Brief 18 (2018) 463–469. http://dx.doi.org/10.1016/j.dib.2018.03.058.
[6] D. Naghipour, S.D. Ashrafi, A. Mojtahedi, M. Vatandoost, L. Hosseinzadeh, E. Roohbakhsh, Data on microbial and physicochemical characteristics of inlet and outlet water from household water treatment devices in Rasht, Iran, Data Brief 16 (2018) 1005–1009. http://dx.doi.org/10.1016/j.dib.2017.12.038.
[7] S. Hosseinipour Dizgah, K. Taghavi, J. Jaafari, E. Roohbakhsh, S.D. Ashrafi, Data on pollutants content in the influent and effluent from wastewater treatment plant of Rasht in Guilan Province, Iran, Data Brief 16 (2018) 271–275. http://dx.doi.org/10.1016/j.dib.2017.11.042.
[8] J. Alimoradi, D. Naghipour, H. Kamani, G. Asgari, M. Naimi-Joubani, S.D. Ashrafi, Data on corrosive water in the sources and distribution network of drinking water in north of Iran, Data Brief 17 (2018) 105–118. http://dx.doi.org/10.1016/j.dib.2017.12.057.
[9] S.D. Ashrafi, H. Kamani, A.H. Mahvi, The optimization study of direct red 81 and methylene blue adsorption on NaOH-modified rice husk, Desalin. Water Treat. 57 (2016) 738–746.
[10] A. Mohseni-Bandpei, S.D. Ashrafi, H. Kamani, A. Paseban, Contamination and ecological risk assessment of heavy metals in surface soils of Esfarayen city, Iran, Health Scope 6 (2) (2017) e39703. http://dx.doi.org/10.5812/jhealthscope.39703.
[11] H. Kamani, S.D. Ashrafi, S. Izazadeh, J. Jaafari, M. Hoseini, F. Kord Mostafapour, E. Bazrafshan, S. Nazmara, A.H. Mahvi, Heavy metal contamination in street dusts with various land uses in Zahedan, Iran, Bull. Environ. Contam. Toxicol. 94 (3) (2015) 385–386.
[12] D. Naghipour, J. Jaafari, S.D. Ashrafi, A.H. Mahvi, Remediation of heavy metals contaminated silty clay loam soil by column extraction with ethylenediaminetetraacetic acid and nitrito triacetic acid, J. Environ. Eng. 143 (8) (2017) 04017026. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001219.
[13] H. Kamani, A.H. Mahvi, M. Seyedsalehi, J. Jaafari, M. Hoseini, G.H. Safari, A. Dalvand, H. Aslani, N. Mirzaei, S.D. Ashrafi, Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran, Int. J. Environ. Sci. Technol. 14 (2017) 2675–2682. http://dx.doi.org/10.1007/s13762-017-1327-x.
[14] D. Naghipour, K. Taghavi, M. Moslemzadeh, Removal of methylene blue from aqueous solution by Artist’s Bracket fungi: kinetic and equilibrium studies, Water Sci. Technol. 73 (2016) 2832–2840. http://dx.doi.org/10.2166/wst.2016.147WW.
[15] K. Taghavi, D. Naghipour, A. Mohagheghian, M. Moslemzadeh, Photochemical degradation of 2,4-dichlorophenol in aqueous solutions by Fe2+ /Peroxydisulfate/ UV process, Int. J. Eng. (IJE) Trans. A: Basics 30 (2017) 15–22. http://dx.doi.org/10.5829/idosi.ije.2017.30.01a.03.
[16] K. Taghavi, S. Purkareim, A.R. Pendashteh, Optimized removal of sodium dodecyl benzene sulfonate by fentron-like oxidation using response surface methodology, Iran J. Chem. Chem. Eng. 35 (2016) 113–124.
[17] RK Lu, Soil Agrochemistry and Analytical Methods, Chinese Agricultural Science and Technology Press, Beijing (in Chinese), 2000.
[18] Z.Y. Hseu, Evaluating heavy metal contents in nine composts using four digestion methods, Bioresour. Technol. 95 (2004) 53–59. http://dx.doi.org/10.1016/j.biortech.2004.02.008.