Characterization of classes of graphs with large general position number

Elias John Thomas a Ullas Chandran S. V. b

April 10, 2020

a Department of Mathematics, Mar Ivanios College, Thiruvananthapuram-695015, Kerala, India; eliasjohnkalarickal@gmail.com

b Department of Mathematics, Mahatma Gandhi College, Kesavadasapuram, Thiruvananthapuram-695004, Kerala, India; svuc.math@gmail.com

Abstract

Getting inspired by the famous no-three-in-line problem and by the general position subset selection problem from discrete geometry, the same is introduced into graph theory as follows. A set S of vertices in a graph G is a general position set if no element of S lies on a geodesic between any two other elements of S. The cardinality of a largest general position set is the general position number $\text{gp}(G)$ of G. In [7] graphs G of order n with $\text{gp}(G) \in \{2, n, n-1\}$ were characterized. In this paper, we characterize the classes of all connected graphs of order $n \geq 4$ with the general position number $n-2$.

Key words: diameter; girth; general position set; general position number

AMS Subj. Class: 05C12; 05C69.

1 Introduction

The general position problem in graphs was introduced by P. Manuel and S. Klavžar [4] as a natural extension of the well known century old Dudeney’s no-three-in-line problem and the general position subset selection problem from discrete geometry [2, 3, 6]. The general position problem in graph theory was introduced in [4] as follows. A set S of vertices in a graph G is a general position set if no element of S lies on a geodesic between any two other elements of S. A largest general position set
is called a gp-set and its size is the general position number (gp-number, in short), \(\text{gp}(G) \), of \(G \).

The same concept was in use two years earlier in [7] under the name geodetic irredundant sets. The concept was defined in a different method, see the preliminaries below. In [7] it is proved that for a connected graph of order \(n \), the complete graph of order \(n \) is the only graph with the largest general position number \(n \); and \(\text{gp}(G) = n - 1 \) if and only if \(G = K_1 + \bigcup_j m_j K_j \) with \(\sum m_j \geq 2 \) or \(G = K_n - \{e_1, e_2, \ldots, e_k\} \) with \(1 \leq k \leq n - 2 \), where \(e_i \)'s all are edges in \(K_n \) which are incident to a common vertex \(v \). In [11], certain general upper and lower bounds on the gp-number are proved. In the same paper it is proved that the general position problem is NP-complete for arbitrary graphs. The gp-number for a large class of subgraphs of the infinite grid graph, for the infinite diagonal grid, and for Beneš networks were obtained in the subsequent paper [5]. Anand et al. [1] gives a characterization of general position sets in arbitrary graphs. As a consequence, the gp-number of graphs of diameter 2, cographs, graphs with at least one universal vertex, bipartite graphs and their complements were obtained. Subsequently, gp-number for the complements of trees, of grids, and of hypercubes were deduced in [1]. Recently, in [8] a sharp lower bound on the gp-number is proved for Cartesian products of graphs. In the same paper the gp-number for joins of graphs, coronas over graphs, and line graphs of complete graphs are determined. Recent developments on general position number can be seen in [9].

2 Preliminaries

Graphs used in this paper are finite, simple and undirected. The distance \(d_G(u, v) \) between \(u \) and \(v \) is the minimum length of an \(u, v \)-path. An \(u, v \)-path of minimum length is also called an \(u, v \)-geodesic. The maximum distance between all pairs of vertices of \(G \) is the diameter, \(\text{diam}(G) \), of \(G \). A subgraph \(H \) of a graph \(G \) is isometric subgraph if \(d_H(u, v) = d_G(u, v) \) for all \(u, v \in V(H) \). A The interval \(I_G[u, v] \) between vertices \(u \) and \(v \) of a graph \(G \) is the set of vertices that lie on some \(u, v \)-geodesic of \(G \). For \(S \subseteq V(G) \) we set \(I_G[S] = \bigcup_{u, v \in S} I_G[u, v] \). We may simplify the above notation by omitting the index \(G \) whenever \(G \) is clear from the context.

A set of vertices \(S \subseteq V(G) \) is a general position set of \(G \) if no three vertices of \(S \) lie on a common geodesic in \(G \). A gp-set is thus a largest general position set. Call a vertex \(v \in T \subseteq V(G) \) to be an interior vertex of \(T \), if \(v \in I[T - \{v\}] \). Now, \(T \) is a general position set if and only if \(T \) contains no interior vertices. In this way general position sets were introduced in [7] under the name geodetic irredundant sets. The maximum order of a complete subgraph of a graph \(G \) is denoted by \(\omega(G) \). Let \(\eta(G) \) be the maximum order of an induced complete multipartite subgraph of
the complement of G. Finally, for $n \in \mathbb{N}$ we will use the notation $[n] = \{1, \ldots, n\}$.

In this paper, we make use of the following results.

Theorem 2.1 [7] Let G be a connected graph of order n and diameter d. Then $\text{gp}(G) \leq n - d + 1$.

Theorem 2.2 [7] For any cycle C_n ($n \geq 5$), $\text{gp}(C_n) = 3$.

We recall the characterization of general position sets from [1], for which we need some additional information. Let G be a connected graph, $S \subseteq V(G)$, and $P = \{S_1, \ldots, S_p\}$ a partition of S. Then P is distance-constant if for any $i, j \in [p]$, $i \neq j$, the distance $d(u, v)$, where $u \in S_i$ and $v \in S_j$ is independent of the selection of u and v. If P is a distance-constant partition, and $i, j \in [p]$, $i \neq j$, then let $d(S_i, S_j)$ be the distance between a vertex from S_i and a vertex from S_j. Finally, we say that a distance-constant partition P is in-transitive if $d(S_i, S_k) \neq d(S_i, S_j) + d(S_j, S_k)$ holds for arbitrary pairwise different $i, j, k \in [p]$.

Theorem 2.3 [1] Let G be a connected graph. Then $S \subseteq V(G)$ is a general position set if and only if the components of $G[S]$ are complete subgraphs, the vertices of which form an in-transitive, distance-constant partition of S.

Theorem 2.4 [1] If $\text{diam}(G) = 2$, then $\text{gp}(G) = \max\{\omega(G), \eta(G)\}$.

3 The characterization

In the following, we characterize all connected graphs G of order $n \geq 4$ with the gp-number $n - 2$. Since the complete graph K_n is the only connected graph of order n with the gp-number n, by Theorem 2.1, we need to consider only graphs with diameter 2 or 3. First, we introduce four families of graphs with the diameter 3; and four families of graphs with the diameter 2.

Let \mathcal{F}_1 be the collection of all graphs obtained from the cycle $C : u_1, u_2, u_3, u_4, u_1$ by adding k new vertices $v_1, v_2, \ldots, v_k (k \geq 1)$ and joining each $v_i, i \in [k]$ to the vertex u_1. Graphs from the family \mathcal{F}_1 are presented in Figure 1.

Let \mathcal{F}_2 be the collection of all graphs obtained from the path $P_2 : x, y$ and complete graphs $K_{n_1}, K_{n_2}, \ldots, K_{n_r} (r \geq 1)$, $K_{m_1}, K_{m_2}, \ldots, K_{m_s} (s \geq 1)$ and $K_{l_1}, K_{l_2}, \ldots, K_{l_t}$ (possibly complete graphs of this kind may be empty), by joining both x and y to all vertices of $K_{l_1}, K_{l_2}, \ldots, K_{l_t}$; joining x to all vertices of $K_{n_1}, K_{n_2}, \ldots, K_{n_r}$; and joining y to all vertices of $K_{m_1}, K_{m_2}, \ldots, K_{m_s}$. Graphs from the family \mathcal{F}_2 are presented in Figure 2. Trees with diameter 3 are called double stars and they belong to the class \mathcal{F}_2.

3
Figure 1: Family \mathcal{F}_1

Figure 2: Family \mathcal{F}_2
Let F_3 be the collection of all graphs obtained from the path $P_4 : u, x, y, v$ and a complete graph $K_r (r \geq 1)$ by joining both u and x to all vertices of K_r and joining y to a subset S of vertices of $V(K_r)$ (possibly S may be empty or $S = V(K_r)$). Graphs from the family F_3 are presented in Figure 3.

Let F_4 be the collection of all graphs obtained from the path $P_3 : x, y, v$ and complete graphs $K_q, K_{n_1}, K_{n_2}, \ldots, K_{n_r} (r \geq 1), K_{m_1}, K_{m_2}, \ldots, K_{m_s} (s \geq 1)$ by joining x to all vertices of $K_{n_1}, K_{n_2}, \ldots, K_{n_r}$; joining x and v to all vertices of $K_{m_1}, K_{m_2}, \ldots, K_{m_s}$; joining x and y to all vertices of K_q. Graphs from the family F_4 are presented in Figure 4.

Next, we introduce four families of graphs with diameter 2.

Let F_5 be the collection of all graphs obtained from the complete graph $K_{n-2} (n \geq 5)$ by adding two new vertices u and v, joining u to all vertices of non-empty subset S of $V(K_{n-2})$ of size at most $n - 3$; and joining v to all vertices of non-empty subset T of $V(K_{n-2})$ of size at most $n - 3$. The set S must intersect with the set T so that, the diameter of each graph from the family F_5 is 2. Graphs from the family F_5 are presented in Figure 5.

Let F_6 be the collection of all graphs obtained from the family F_5 by adding the edge uv. Moreover; in this case, the set S may be disjoint with the set T. Graphs from the family F_6 are presented in Figure 6.

Let F_7 be the collection of all graphs obtained from the complete graphs $K_{n_1}, K_{n_2}, \ldots, K_{n_r} (r \geq 2)$ by adding two new vertices x and y, joining x to a non-empty subset S_i of $V(K_{n_i})$ for all $i \in [r]$; and y to a non-empty subset T_i of $V(K_{n_i})$ for all $i \in [r]$ (the edges are in a way that for any $u \in V(K_{n_i})$ and $v \in V(K_{n_j})$ with $i \neq j$ must have a common neighbor). Moreover, for some $i \in [r]$; the set S_i must intersect with the set T_i so that, the diameter of each graph from the family F_7 is 2. Graphs from
Figure 4: Family \mathcal{F}_4

Figure 5: Family \mathcal{F}_5
the family \mathcal{F}_7 are presented in Figure 7. It is clear that both C_4 and C_5 belong to class \mathcal{F}_7.

Let \mathcal{F}_8 the collection of all graphs obtained from the family \mathcal{F}_7 by adding the edge xy. In this case, the set S_i may be disjoint with the set T_i for all $i \in [r]$. Graphs from the family \mathcal{F}_8 are presented in Figure 8.
Figure 7: Family \mathcal{F}_7

Figure 8: Family \mathcal{F}_8
Theorem 3.1 Let G be a connected graph of order $n \geq 4$, then $gp(G) = n - 2$ if and only if G belongs to the family $\cup_{i=1}^{8} F_i$.

Proof. First, suppose that G is a connected graph of order n with $gp(G) = n - 2$. Then it follows from Theorem 2.1 that $diam(G)$ is either 2 or 3. We consider the following two cases.

Case 1: $diam(G) = 3$. If G is a tree, then G is a double star and hence it belongs to F_2. So, assume that G has cycles. Let $girth(G)$ denotes the length of a shortest cycle in G.

Let C be any shortest cycle in G. Then it is clear that C is an isometric subgraph of G. This shows that if S is a general position set in G, then $S \cap V(C)$ is a general position set in C. Hence it follows from Theorem 2.2 that any general position set of G contains at most three vertices from the cycle C. Now, since $gp(G) = n - 2$, we have that the length of C is at most 5 and so $girth(G) \leq 5$.

Next, we claim that there is no connected graph of order n with $girth(G) = 5$ and $gp(G) = n - 2$. For, assume the contrary that there is a connected graph of order n with $girth(G) = 5$ and $gp(G) = n - 2$. Let $C : u_1, u_2, u_3, u_4, u_5, u_1$ be a shortest cycle of length 5 in G. Since $girth(G) = 5$, it follows that the vertices from $N(u_i)$ are independent for all $i \in [5]$. Also, as above we have that any general position set of G has at most three vertices from the cycle C. Let S be a general position set in G. Since $gp(G) = n - 2$, we have that $S = V(G) \setminus \{u_i, u_j\}$. If u_i and u_j are successive vertices in C, then it follows that the induced subgraph of S has a P_3, which is impossible. Hence without loss of generality, we may assume that $i = 1$ and $j = 3$. So $S = V(G) \setminus \{u_1, u_3\}$. Now, since $u_2, u_4, u_5 \in S$ and $N(u_i)$ is independent, by Theorem 2.3, it follows that $deg(u_i) \leq 3$ for $i = 2, 4, 5$. Now we claim that $deg(u_2) = deg(u_4) = deg(u_5) = 2$. Otherwise, we may assume that $deg(u_2) = 3$ and let x be the neighbour of u_2 different from u_1 and u_3. Since $girth(G) = 5$, it follows that x is not adjacent with the remaining vertices of C. Now, since $u_2, u_5, x \in S$, by Theorem 2.3, $d(u_5, x) = d(u_5, u_2) = 2$. Let $P : u_5, y, x$ be a u_5, x-geodesic of length 2. Then it is clear that $y \notin V(C)$ and so $y \in S$. This leads to the fact that induced subgraph of S has a P_3, impossible in a general position set. Hence $deg(u_2) = 2$. Similarly $deg(u_4) = deg(u_5) = 2$.

Now, if $N(u_1) \neq \emptyset$, then $u_5 \in I[x, u_4]$ for all $x \in N(u_1)$ (otherwise S contains an induced P_3), impossible. Hence $N(u_1) = \emptyset$. Similarly, $N(u_2) = \emptyset$. Hence $G \cong C_5$. But $gp(C_5) = 3 = n - 2$ and $diam(G) = diam(C_5) = 2$. Hence there is no connected graph of order n with $diam(G) = 3$, $girth(G) = 5$ and $gp(G) = n - 2$. Hence $girth(G)$ is at most 4.

Now, assume that $girth(G) = 4$ and let $C : u_1, u_2, u_3, u_4, u_1$ be a shortest cycle of length 4 in G. Since $diam(G) = 3$, we have that $G \not\cong C_4$. Now, we may assume that $u_1 \in V(C)$ be a vertex such that $deg(u_1) \geq 3$ and let x be a neighbour of u_1 such that
$x \notin V(C)$. Since S is a general position set and $|S| = n - 2$, we have that S contains exactly 2 vertices from C. We claim that $u_1 \notin S$. For otherwise assume that $u_1 \in S$. Since $|S| = n - 2$ and $x, u_1 \in S$, it follows from Theorem 2.3 that $u_2, u_4 \notin S$ and $u_3 \in S$. This shows that the path x, u_1, u_2, u_3 must be a x, u_3-geodesic (otherwise, since $|S| = n - 2$, S contains an induced P_3. Hence $d(x, u_3) \neq d(u_1, u_3)$, which is impossible in a general position set. Hence $u_1 \notin S$.

Now, we claim that u_1 is the unique vertex in C with degree at least 3. Assume the contrary that there exists $u_j \in C$ with $j \neq 1$ and $\text{deg}(u_j) \geq 3$. Then as above we have that $u_j \notin S$. Now, if u_i and u_j are adjacent vertices in C, then we can assume that $j = 2$. It follows from the fact that S is a general position set of size $n - 2$, $d(u_3, x) = 3$ and u_3, u_1, x is a geodesic in G, where x is a neighbour of u_1 such that $x \notin V(C)$. This shows that the vertices x, u_4, u_3, x lie on a common geodesic, a contradiction. Similarly if u_1 and u_j are non-adjacent vertices in C then $u_j = u_3$ and u_2, u_4 belong to S. Moreover, as above S is a general position set of size $n - 2$, we have that $x, y \in S$ and $d(x, y) = 4$, where $x \in N(u_1) \setminus V(C)$ and $y \in N(u_4) \setminus V(C)$, which is impossible. Thus u_1 is the unique vertex in C with $\text{deg}(u_1) \geq 3$. Also, since $\text{girth}(G) = 4$, we have that $N(u_1)$ induces an independent set. Hence the graph belongs to \mathcal{F}_1.

Now, consider $\text{girth}(G) = 3$ and $\text{diam}(G) = 3$. Let $P : u, x, y, v$ be a u, v-shortest path in G of length 3. Then S contains atmost 2 vertices from $V(P)$. Since $|S| = n - 2$, we have that S contains exactly two vertices from $V(P)$. We consider the following four cases.

Subcase 1.1: $u, v \in S$. Then $x, y \notin S$. Moreover, $S = V(G) \setminus \{x, y\}$. Now, let z be any neighbour of u. Since S is a general position set of size $n - 2$, it follows that $I[z, v] \subseteq V(P)$. This shows that $d(z, v) \leq 3$. If $d(z, v) = 2$, then z must be adjacent with y and so u, z, y, v is a $u - v$ geodesic, which contradicts the fact that S is a general position set. Hence $d(z, v) = 3$ and since $I[z, v] \subseteq V(P)$, we have that z is adjacent with x but it is not adjacent with y. Similarly, we have that any neighbour of v is adjacent with y but non-adjacent with x. Now, assume that z be any vertex in G such that $z \notin V(P)$ and z is non-adjacent with both u and v. Then as in the previous case, we have that $I[z, v] \subseteq V(P)$. Also, we have $d(z, v) \in \{2, 3\}$ and $d(z, u) \in \{2, 3\}$. Hence it follows that z is adjacent to x or y or both. Also, by Theorem 2.3, we have that the components of S are in-transitive distance-constant cliques. Hence the graph reduces to the class \mathcal{F}_2.

Subcase 1.2: $u, x \in S$. Then $y, v \notin S$ and $S = V(G) \setminus \{y, v\}$. Now, let z be any vertex in G such that $z \notin V(P)$. Then, we have that $I[z, u] \subseteq V(P)$. Moreover, by Theorem 2.3, $d(z, u) = d(z, x)$. If $d(z, x) = 2$, then $I[z, x] \subseteq V(P)$, we have that z is adjacent to y. But in this case $d(z, u)$ cannot be equal to 2. Similarly, if $d(z, x) = 3$ then z is adjacent with v but not y. Then it is clear that $d(z, u) \neq 3$. Hence it follows that $d(z, u) = d(z, x) = 1$. Again by Theorem 2.3, $V(G) \setminus \{y, v\}$ induces a clique.
Hence the graph reduces to the class \mathcal{F}_3.

Subcase 1.3: $u, y \in S$. Then $x, v \not\in S$ and $S = V(G) \setminus \{x, v\}$. Now, for any $z \not\in V(P)$, we have that $I[z, y] \subseteq V(P)$ and $I[z, u] \subseteq V(P)$. Thus $d(z, y) \leq 3$ for all $z \not\in V(P)$. If $d(z, y) = 3$, then z must be adjacent to u and so by Theorem 2.3, $d(u, y) = 3$, a contradiction. Thus $d(z, y) \in \{1, 2\}$. If $d(z, y) = 1$, then again by Theorem 2.3, we have that $d(u, z) = 2$ and so z must be adjacent to x. Moreover, $\{z \not\in V(P) : d(z, y) = 1\}$ induces a clique. Now, if $d(z, y) = 2$, then by using the same argument, we have that z is either adjacent to x or z is adjacent to both x and v. Hence the graph reduces to class \mathcal{F}_4.

Subcase 1.4: $x, y \in S$. Then $u, v \not\in S$ and $S = V(G) \setminus \{u, v\}$. Now, for any $z \not\in V(P)$, as in the previous case we have that $I[z, x] \subseteq V(P)$ and $I[z, y] \subseteq V(P)$. Moreover, by Theorem 2.3, $d(z, x) = d(z, y)$. Now, if $d(z, x) \neq 1$, then $d(z, y) \neq 1$. This shows that z must be adjacent to both u and v, which is impossible. Hence $d(z, x) = d(z, y) = 1$. Hence it follows from Theorem 2.3, $V(G) \setminus \{u, v\}$ induces a clique. Moreover, since both x and y belong to S, it is clear that $d(u, z) = d(v, z) = 2$ for all $z \not\in V(P)$. Hence in this case the graph reduces to the family \mathcal{F}_2.

Case 2: $\text{diam}(G) = 2$. Then by Theorem 2.4 we have $\text{gp}(G) = \max\{\omega(G), \eta(G)\} = n - 2$. We consider the following two subcases.

Subcase 2.1: $\omega(G) \geq \eta(G)$. Then $\text{gp}(G) = \omega(G) = n - 2$. Let K be a clique of order $n - 2$ and let $u, v \in V(G)$ be such that $u, v \not\in V(K)$. Then it is clear that $1 \leq \deg(u) \leq n - 3$ and $1 \leq \deg(v) \leq n - 3$. Now, if u and v are adjacent in G, then G belongs to the family \mathcal{F}_6. Otherwise, G belongs to the family \mathcal{F}_5.

Subcase 2.2: $\eta(G) > \omega(G)$. Then $\text{gp}(G) = \eta(G) = n - 2$. This shows that the complement of G has complete multipartite subgraph H of order $n - 2$. Thus the components of the induced subgraphs of H in G are cliques, say $K_{n_1}, K_{n_2}, \ldots, K_{n_s}$. Moreover $d(u, v) = 2$ for all $u \in V(K_{n_i})$ and $v \in V(K_{n_j})$. Now, let x and y be the vertices in G such that $x, y \not\in V(H)$. Then it is clear that the graph reduces to the family \mathcal{F}_9, when x and y are adjacent in G. Otherwise it belongs to the family \mathcal{F}_7.

On the other hand, if G belongs to the family $\bigcup_{i=1}^{9} \mathcal{F}_i$, by Theorems 2.1 and 2.3, one can easily verify that $\text{gp}(G) = n - 2$. This completes the proof.

\[\square\]

Acknowledgements

The authors are grateful to the anonymous referees for their valuable suggestions and comments. E.J. acknowledges the University of Kerala for providing JRF for the research work.
References

[1] B. S. Anand, U. Chandran S. V., M. Changat, S. Klavžar, E. J. Thomas, A characterization of general position sets and its application to cographs and bipartite graphs, Appl. Math. Comput., 359 (2019), 84-89.

[2] H. E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.

[3] V. Froese, I. Kanj, A. Nichterlein, R. Niedermeier, Finding points in general position, Internat. J. Comput. Geom. Appl., 27 (2017), 277–296.

[4] P. Manuel, S. Klavžar, A general position problem in graph theory, Bull. Aust. Math. Soc., 98 (2018), 177–187.

[5] P. Manuel, S. Klavžar, The graph theory general position problem on some interconnection networks Fund. Inform., 163 (2018), 339–350.

[6] M. Payne, D. R. Wood, On the general position subset selection problem, SIAM J. Discrete Math., 27 (2013), 1727–1733.

[7] U. Chandran S. V., G. J. Parthasarathy, The geodesic irredundant sets in graphs, Int. J. Math. Combin., 4 (2016), 135–143.

[8] M. Ghorbani, S. Klavžar, H. R. Maimani, M. Momeni, F. Rahimi-Mahid, G. Rus, The general position problem on Kneser graphs and on some graph operations. arXiv:1903.04286.

[9] B. Patkos, On the general position problem on Kneser graphs, arXiv:1903.08056.