Submanifolds of Sasakian Manifolds with Concurrent Vector Field

Pradip Mandal, Yadab Chandra Mandal and Shyamal Kumar Hui

Abstract. The submanifolds of Sasakian manifolds with a concurrent vector field have been studied. Applications of such submanifolds to Ricci solitons and Yamabe solitons has also been showed.

1 Introduction

Sasakian manifold \bar{M} is a $(2n + 1)$-dimensional almost contact metric manifold such that [1]

\begin{align}
(\nabla_X \phi)Y &= g(X, Y)\xi - \eta(Y)X, \\
\nabla_X \xi &= -\phi X,
\end{align}

where (ϕ, ξ, η, g) is the almost contact metric structure and ∇ is the Riemannian connection on \bar{M}. A vector field X on \bar{M} is said to be conformal if

$$L_X g = 2\alpha g,$$

where $\alpha \in C^\infty(\bar{M})$ and L_X denotes the Lie derivative along X. In particular, if $\alpha = 0$ then X is Killing. And X is said to be concurrent if

$$\nabla_Z X = Z$$

for any $Z \in \chi(\bar{M})$.

Let M be an m-dimensional submanifold of \bar{M}. A Ricci soliton on M is a triplet (g, W, σ) such that [12]

$$L_W g + 2S + 2\sigma g = 0,$$
where S is the Ricci tensor on M, W is the potential vector field and $\sigma \in \mathbb{R}$. An Yamabe soliton on M is a triplet (g, W, λ) such that

$$\frac{1}{2}L_W g = (r - \lambda)g,$$

(1.6)

where r is the scalar curvature on M and $\lambda \in \mathbb{R}$. If the dimension of M is 2 then the notions of Ricci soliton and Yamabe soliton are equivalent. However, when the dimension of M is greater than 2, they are different.

Chen and his co-author studied Euclidean submanifold whose canonical vector field are concurrent [4], concircular [11], conformal [10], torse-forming [9] and also in ([3], [5], [6]). Ricci soliton and Yamabe soliton whose canonical vector field are concurrent and conformal studied in ([2], [7], [8]).

The object of the present paper is to study of submanifolds of Sasakian manifolds with concurrent vector field. We also apply such submanifolds to Ricci solitons and Yamabe solitons.

2 Preliminaries

An odd dimensional smooth manifold \tilde{M}^{2n+1} is said to be an almost contact metric manifold if the following relations hold: [1]

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0,$$

(2.1)

$$g(X, \xi) = \eta(X), \quad \phi \circ \eta = 0,$$

(2.2)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

(2.3)

for all $X, Y \in \chi(M)$, where ϕ is a tensor of type $(1, 1)$, ξ is a vector field, η is an 1-form and g is a Riemannian metric on \tilde{M}.

Let ∇ and ∇^\perp be the induced connections on the tangent bundle TM and the normal bundle $T^\perp M$ of M, respectively. Then we have

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

(2.4)

$$\bar{\nabla}_X V = -A_V X + \nabla^\perp_X V,$$

(2.5)

where h and A_V are second fundamental form and shape operator respectively for the immersion of M into \tilde{M} and they are related by the following equation, see [13]

$$g(h(X, Y), V) = g(A_V X, Y)$$

(2.6)
for any \(X, Y \in \Gamma(TM) \) and \(V \in \Gamma(T^\perp M) \). If \(h = 0 \), then \(M \) is said to be totally geodesic.

Let \(\{ e_i : 1 \leq i \leq m \} \) be an orthonormal basis to the tangent space at any point of \(M \). Then the mean curvature of \(M \) is

\[
H = \frac{1}{m} \sum_{i=1}^{m} h(e_i, e_i). \tag{2.7}
\]

And \(M \) is said to be totally umbilical if

\[
h(X, Y) = g(X, Y)H. \tag{2.8}
\]

Again \(M \) is said to be umbilical with respect to \(V \in T^\perp M \) if

\[
g(h(X, Y), V) = \mu g(X, Y) \tag{2.9}
\]

for some function \(\mu \). In particular if \(g(h(X, Y), H) = \mu g(X, Y) \) holds then \(M \) is said to be pseudo-umbilical. Consider

\[
\phi X = PX + FX, \tag{2.10}
\]

where \(PX \) and \(FX \) are the tangential and normal components of \(\phi X \). And \(M \) is called generalized self-similar submanifold of \(\bar{M} \) if

\[
FX = fH, \tag{2.11}
\]

where \(f \in C^\infty(M) \).

3 Results

We now prove the followings:

Theorem 3.1. Let \(M \) be a submanifold of \(\bar{M} \) with a concurrent vector field \(X \) such that \(\xi \) is normal to \(M \). Then \(PX \) is conformal if and only if \(M \) is umbilical with respect to \(FX \).

Proof. Since \(X \) is concurrent vector field of \(\bar{M} \), we have from (1.4) that

\[
\phi Z = \phi \nabla_Z X
= \nabla_Z \phi X - (\nabla_Z \phi) X. \tag{3.1}
\]

Using (1.1), (2.4), (2.5) and (2.10) in (3.1) we have

\[
PZ + FZ = \nabla_Z (PX + FX) - g(X, Z)\xi
= \nabla_Z PX + h(Z, PX) + \nabla_Z^\perp FX - \nabla_Z^\perp FX - A_{FX}Z - g(X, Z)\xi
\]
Comparing the tangential component of (3.2) we have
\[\nabla_Z PX = PZ + A_{FX} Z. \] (3.3)

Now we have
\[
(L_{PX} g)(Y, Z)
= g(\nabla_Y PX, Z) + g(Y, \nabla_Z PX)
= g(PY + A_{FX} Y, Z) + g(Y, PZ + A_{FX} Z)
= g(A_{FX} Y, Z) + g(A_{FX} Z, Y).
\] (3.4)

Using (2.6) in (3.4) we have
\[
(L_{PX} g)(Y, Z) = 2g(h(Y, Z), FX).
\] (3.5)

Suppose PX is conformal. Then from (1.3) and (3.5) we have
\[g(h(Y, Z), FX) = \alpha g(Y, Z), \] (3.6)
which implies that M is umbilical with respect to FX.

Conversely, assume that M is umbilical with respect to FX. Then from (2.9) and (3.5) we have
\[
(L_{PX} g)(Y, Z) = 2\mu g(Y, Z),
\] (3.7)
which means that PX is conformal.

Theorem 3.2. Let M be a submanifold of \bar{M} with a concurrent vector field X. Then X is a homothetic vector field.

Proof. Since X is a concurrent vector field, so we have from (1.4) and (2.4) that
\[\nabla_Z X + h(X, Z) = Z. \] (3.8)

Equating tangential and normal components of (3.8) we get
\[\nabla_Z X = Z, \ h(X, Z) = 0. \] (3.9)

Now we have
\[
(L_X g)(Y, Z) = g(\nabla_Y X, Z) + g(Y, \nabla_Z X).
\] (3.10)

Using (3.9) in (3.10) we have
\[
(L_X g)(Y, Z) = 2g(Y, Z),
\] (3.11)
which implies that X is conformal vector field of M with constant function $\alpha = 1$, i.e. X is homothetic.
Theorem 3.3. Let M be a submanifold of \bar{M} with a concurrent vector field X. If (g, X, σ) is a Ricci soliton on M then M is Einstein and such a soliton is shrinking.

Proof. Since (g, X, σ) is a Ricci soliton on M, we have the equation (1.5). Using (3.11) in (1.5) we get $S(Y, Z) = -(\sigma + 1)g(Y, Z)$, which implies that M is Einstein.

By virtue of (3.9) we get

$$R(Y, Z)X = \nabla_Y \nabla_Z X - \nabla_Z \nabla_Y X - \nabla_{[Y, Z]} X = 0,$$

and hence $S(Y, X) = 0$. So, $\sigma + 1 = 0$, i.e., $\sigma = -1$. Hence the given Ricci soliton is shrinking. \hfill \Box

Theorem 3.4. Let M be a submanifold of \bar{M} with a concurrent vector field X. If (g, X, λ) is a Yamabe soliton on M then such soliton is shrinking, steady and expanding according as $r < 1$, $r = 1$ and $r > 1$ respectively.

Proof. Since (g, X, λ) is an Yamabe soliton on M, we have the equation (1.6). Using (3.11) in (1.6) we get $\lambda = r - 1$. Hence the result. \hfill \Box

Theorem 3.5. Let M be a submanifold of \bar{M} with a concurrent vector field X such that ξ is normal to M. If (g, PX, λ) is an Yamabe soliton on M, then PX is conformal.

Proof. Let (g, PX, λ) be an Yamabe soliton on M. Then from the equation (1.6), we get

$$\frac{1}{2}(\mathcal{L}_{PX} g)(Y, Z) = (r - \lambda)g(Y, Z).$$

(3.12)

From (3.5) and (3.12) we have

$$g(h(Y, Z), FX) = (r - \lambda)g(Y, Z)$$

(3.13)

for all $Y, Z \in \Gamma(TM)$, which implies that M is umbilical with respect to FX. Then by virtue of Theorem 3.1, it follows that PX is conformal. \hfill \Box

Theorem 3.6. Let M be a generalized self-similar submanifold of \bar{M} with a concurrent vector field X such that ξ is normal to M. Then PX is conformal vector field if and only if M is pseudo-umbilical.

Proof. Let M be a generalized self-similar submanifold of \bar{M}, then we have the equation (2.11). If PX is conformal vector field, then we have the equation (3.6). From (2.11) and (3.6) we can say that M is pseudo-umbilical.

Conversely, if M is pseudo umbilical submanifold then from equation (2.11) we say that M is umbilical with respect to FX. So, by virtue of Theorem 3.1 it follows that PX is conformal vector field. \hfill \Box
Theorem 3.7. Let \(M \) be a submanifold of \(\bar{M} \) with a concurrent vector field \(X \) such that \(\xi \) is normal to \(M \). Then \((g, PX, \sigma)\) is a Ricci soliton on \(M \) if and only if the following condition holds:

\[
S(Y, Z) = -\sigma g(Y, Z) - g(h(Y, Z), FX)
\]

(3.14)

for any \(Y, Z \) tangent to \(M \).

Proof. Using (3.5) in (1.5), we get the equation (3.14). \(\square \)

Theorem 3.8. Let \(M \) be a submanifold of \(\bar{M} \) with a concurrent vector field \(X \) such that \(\xi \) is normal to \(M \) and \((g, PX, \sigma)\) is a Ricci soliton on \(M \). Then \(PX \) is conformal if and only if \(M \) is umbilical.

Proof. Since \((g, PX, \sigma)\) is a Ricci soliton on \(M \), then we have (3.14). Also since \(PX \) is conformal, using (3.7) in (1.5) we have

\[
S(Y, Z) = -\sigma g(Y, Z) - \mu g(Y, Z).
\]

(3.15)

From (3.14) and (3.15) we can say that \(M \) is umbilical.

Conversely, suppose \(M \) is umbilical. Then we have the equation (2.9). Using (2.9) in (3.14) we get

\[
S(Y, Z) = -\sigma g(Y, Z) - \mu g(Y, Z).
\]

(3.16)

Using (3.16) in (1.5), we obtain

\[
(\mathcal{L}_{PX} g)(Y, Z) = 2\mu g(Y, Z),
\]

(3.17)

which means that \(PX \) is conformal. \(\square \)

Acknowledgement. The authors are thankful to the referee for her/his valuable suggestions towards to the improvement of the paper.

References

[1] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.

[2] B.-Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bulletin of the Korean Mathematical Society, 52(50) (2015), 1535–1547.

[3] B.-Y. Chen, Topics in differential geometry associated with position vector fields on Euclidean submanifolds, Arab J. Math. Sci., 23 (2017), 1–17.
Submanifolds of Sasakian Manifolds with Conformal Vector Field

[4] B.-Y. Chen, *Differential geometry of rectifying submanifolds*, Int. Electron. J. Geom. **9** (2) (2016), 1–8, Addendum to **10** (1) (2017), 81–82.

[5] B.-Y. Chen, *Euclidean submanifolds with incompressible canonical vector field*, Serdica Math. J. **43** (3) (2017), 321–334.

[6] B.-Y. Chen, *Harmonicity of 2-distance functions and incompressibility of canonical vector fields*, Tamkang J. Math. **49** (2018), 339–347.

[7] B.-Y. Chen and S. Deshmukh, *Classification of Ricci solitons on Euclidean hypersurfaces*, Intern. J. Math. **25** (11) (2014), 1450104 (22 pages).

[8] B.-Y. Chen and S. Deshmukh, *Ricci solitons and concurrent vector fields*, Balkan J. Geom. Appl. **20**(1) (2015), 14–25.

[9] B.-Y. Chen and S. Deshmukh, *Yamabe and quasi-Yamabe solitons on Euclidean submanifolds*, Mediterr. J. Math., **15** (2018), 194, doi.org/10.1007/s00009-018-1237-2.

[10] B.-Y. Chen and S. Deshmukh, *Euclidean submanifolds with conformal canonical vector field*, Bulletin of the Korean Mathematical Society, **55** (2018), 1823–1834.

[11] B.-Y. Chen and S. W. Wei, *Differential geometry of concircular submanifolds of Euclidean spaces*, Serdica Math. J., **43** (2017), 35–48.

[12] R. S. Hamilton, *The Ricci flow on surfaces*, Mathematics and general relativity, Contemp. Math., American Math. Soc., **71** (1988), 237–262.

[13] K. Yano and M. Kon, *Structures on manifolds*, World Sci. Publ. Co., Singapore, **1984**.

Pradip Mandal Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
E-mail: pradip2621994@rediffmail.com

Yadab Chandra Mandal Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
E-mail: myadab436@gmail.com

Shyamal Kumar Hui Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
E-mail: skhui@math.buruniv.ac.in