Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes

Maja G. Rydahl¹, Aleksander R. Hansen¹, Stjepan K. Kračun¹,² and Jozef Mravec*¹

¹ Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark, ² GlycoSpot IVS, Frederiksberg, Denmark

Plant cell walls are highly complex structures composed of diverse classes of polysaccharides, proteoglycans, and polyphenolics, which have numerous roles throughout the life of a plant. Significant research efforts aim to understand the biology of this cellular organelle and to facilitate cell-wall-based industrial applications. To accomplish this, researchers need to be provided with a variety of sensitive and specific detection methods for separate cell wall components, and their various molecular characteristics in vitro as well as in situ. Cell wall component-directed molecular detection probes (in short: cell wall probes, CWPs) are an essential asset to the plant glycobiology toolbox. To date, a relatively large set of CWPs has been produced—mainly consisting of monoclonal antibodies, carbohydrate-binding modules, synthetic antibodies produced by phage display, and small molecular probes. In this review, we summarize the state-of-the-art knowledge about these CWPs; their classification and their advantages and disadvantages in different applications. In particular, we elaborate on the recent advances in non-conventional approaches to the generation of novel CWPs, and identify the remaining gaps in terms of target recognition. This report also highlights the addition of new “compartments” to the probing toolbox, which is filled with novel chemical biology tools, such as metabolic labeling reagents and oligosaccharide conjugates. In the end, we also forecast future developments in this dynamic field.

Keywords: cell wall, polysaccharide, molecular probe, monoclonal antibody, carbohydrate-binding module, metabolic labeling, glycan microarray, imaging

INTRODUCTION TO TOOLS FOR PROBING CELL WALLS

Plant cell walls play an important role in numerous cellular functions and developmental processes including the mediation of cell-to-cell adhesion, provision of mechanical support, and interaction with pathogens and the environment (Albersheim et al., 2010; Wolf et al., 2012; Malinovsky et al., 2014; Chebli and Geitmann, 2017; Höfte and Voeur, 2017). Cell walls can contribute up to 90%
of the dry matter of a plant and are a crucial component of nature-derived industrial feedstock. This is becoming increasingly important for sustainable energy and novel biomaterials (Marriott et al., 2016). Due to the requirement for their multi-functionality, cell walls are complex and heterogeneous structures with a high level of spatiotemporal dynamics (Drakakaki, 2015; Barnes and Anderson, 2017; Höfte and Voeur, 2017). In addition, cell wall composition and architecture varies between different cell types, developmental stages (Wilson et al., 2015; Moniaux and Hay, 2016; Mravec et al., 2017a), and also between species (Sørensen et al., 2011; Fangel et al., 2012; Popper et al., 2014; Leroux et al., 2015; Harbolt et al., 2016). The cell wall is, for the most part, built from polysaccharides (cellulose, hemicelluloses, and pectins), proteoglycans (extensins and arabinogalactan proteins), and, in some cells, polyphenolics (lignin) and polymers (cutin and suberin). Each of these components has its own particular function(s) within the intricate cell wall structure (Albersheim et al., 2010; Burton et al., 2010). However, scientists still face many open-ended questions regarding the biology of plant cell walls, particularly with respect to the compartmentalized synthesis of cell wall components, in muro dynamic co-ordination of the cell wall architecture, the relationship between different cell wall components, and the activity of regulatory loops coupled to intrinsic cellular, developmental and pathogenesis-related pathways.

The diverse techniques used to study cell walls relies heavily on detection probes that are specific for cell wall components (Cell Wall Probes-CWPs). In this review, a CWP will be defined as any molecule with the ability to specifically bind (or be incorporated into) a cell wall component, therefore allowing subsequent selective detection, quantification or visualization. Here it is important to note that "chemical probe," in the field of chemical biology, is a wider term that can also be used to describe molecules that are able to influence the function of the target, e.g., by altering its activity via specific binding (Garbaccio and Parmee, 2016).

Although many biochemical and biophysical techniques, such as mass spectroscopy (MS) or nuclear magnetic resonance (NMR), can accurately decipher the detailed structure of cell wall components, they are not high-throughput (HTP) and usually require homogenization of samples, harsh pre-treatments or extractions, and a high-level of expertise from the operating personnel. By contrast, CWPs can be used to detect various cell wall components (specifically, their relative abundance and structural alterations) in a HTP manner, whilst simultaneously providing insights into their molecular structure and interactions with other glycans. In addition, this understanding of the cell wall material can often be acquired by detecting polymers in their native context without having to deconstruct the cell wall. As such, CWPs are vital for the study of different aspects of cell wall microstructure in muro (Knox, 2008; Lee et al., 2011), and can be used to follow the dynamics of the cell wall, and its components, in planta (Wallace and Anderson, 2012; Voiniciuc et al., 2018). The current set of available CWPs (Figure 1) consists of anti-glycan monoclonal antibodies (mAbs), phage display-based probes, carbohydrate-binding modules (CBMs), and small molecular probes such as fluorophores, oligosaccharide conjugates, and building blocks for metabolic labeling. In the following sections we will review the developments in this field, and discuss technical aspects and the important features of various classes of CWPs.

PROTEINACEOUS PROBES—COMBINING DIVERSITY WITH VERSATILITY

Antibodies—The Largest Compartment of the CWP Tool Box

Antibodies are the largest, and possibly the most important, component of the CWP tool box. They are highly specific, versatile, and can be applied to a diverse range of techniques (Cummings et al., 2017; Figure 2). One of the biggest advantages of antibodies is that they can be developed against virtually any antigen, as long as there is a significant immune response in the host. The production of antibodies against plant carbohydrates was initiated in the 1980’s and, to date, hundreds of plant cell wall-related antibodies have been reported, covering all classes of the major polymeric components and some of their molecular characteristics (Pattathil et al., 2012). Tables 1–5 provide an overview of the most notable antibodies related to pectins (Table 1), hemicelluloses (Table 2), proteoglycans (Table 3), cell wall phenolics (Table 4), and algal polysaccharides (Table 5). The website1 curated by the CCRC, at the University of Georgia, is another great resource for mining information regarding cell wall related antibodies, including their specificities.

The majority of these are mAbs produced from rat or mouse hybridoma cells, resulting from cell-based isolation procedures (Köhler and Milstein, 1975; Knox, 2008). However, a handful have also been generated as polyclonal Abs (pAbs). The standard procedure for the generation of an anti-glycan mAb is depicted in Figure 2A, where the immunogen is generated through conjugation of the target molecule to a carrier, which is usually bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH). The protocols used are not significantly different from those for the generation of anti-protein or anti-peptide mAbs. Hybridoma, as immortalized cells, can in theory be cultivated indefinitely, thus supplying high affinity mAbs in relatively large quantities. However, the loss of production capability or specificity in some hybridoma lines over time is a serious problem. To overcome these problems, switching to recombinant mAb production

1<http://glycomics.ccrcc.uga.edu/wall2/antibodies/antibodyHome.html>

Abbreviations: AGP, arabinogalactan protein; AP, alkaline phosphatase; CBM, carbohydrate-binding module; CDTA, cyclohexanediaminetetraacetic acid; CoMP, comprehensive microarray polymer profiling; COS, chitosan oligosaccharide; DE, degree of esterification; DP, degree of polymerisation; HG, homogalacturonan; HRP, horse radish peroxidase; HTP, high throughput; KLH, keyhole limpet hemocyanin; KDO, 3-Deoxy-D-manno-oct-2-ulonic acid; NDP, nucleotide diphosphate; OG, oligogalacturonide; PI, propidium iodide; PS4B, Pontamine Scarlet 4B; RG-I/II, rhamnogalacturonan I/II; XET, xylelucan endotransglycosylases; XGO, xyloglucan oligosaccharide.
is recommended. In addition, new quality standards for the characterization, propagation, and tracking of cell lines are being implemented in the immuno-biotechnology field (Weller, 2016).

Unlike polyclonal sera, mAbs only bind one epitope (a recognized motif on the antigen molecule), a feature that is especially important in plant glycobiology. Many polysaccharides are not homogeneous polymers and instead exhibit various molecular alterations to their backbone. A classic example of this is homogalacturonan (HG), which can have different levels and patterns of methyl-esterification (Willats et al., 2001). The current set of anti-HG antibodies available can distinguish between these patterns (Verhertbruggen et al., 2009a) and some can even recognize HG in its supramolecular conformation (Table 1). For example, mAb 2F4 recognizes HG with a low DE but when it is in a complex with a divalent calcium (e.g., egg boxes, pectin gel) (Liners et al., 1989). The epitope of a carbohydrate-recognizing antibody varies in size depending on the mAb, from a single monosaccharide moiety up to a complex glycan or a long stretch of more than 10 monomeric units. Most mAbs used in the cell wall field recognize molecular structures consisting of 2–6 monosaccharide units, which is enough for them to distinguish between different types of polysaccharides. For mAbs that recognize cell wall proteoglycans, the epitope may contain a protein, a glycan part or a combination of both. See Figure 3A for an example of epitopes that can appear on one type of polysaccharide, in this case rhamnogalacturonan I (RG-I). It is important to note that some epitopes can be present on different classes of cell wall components, for example arabinogalactan chains, which are typical for both RG-I and arabinogalactan proteins (AGPs) (Pattathil et al., 2010).

mAbs are relatively easy to manipulate or modulate, and can be used in various forms. For example, expressed and purified variable small fragments of native antibodies can be utilized as a version of mAbs with a significantly reduced size (∼15–55 kDa as opposed to a 150 kDa full protein) (Figure 1). Depending on the end-application, the use of a secondary antibody, or protein A or G allows for different indirect detection methods. Microarray and ELISA-based applications usually allow detection through the use of a chromogenic enzymatic reaction via horse radish peroxidase (HRP) or alkaline phosphatase (AP) conjugated to the secondary antibody (Pattathil et al., 2015a,b; Kracun et al., 2017; Figure 2B). By contrast, for in situ immunohistochemistry, fluorescent conjugates of secondary antibodies are usually the first choice while for transmission electron microscopy (TEM), nanogold conjugates of secondary antibodies or protein A/G are required (Wilson and Bacic, 2012) (Figure 2C). A curious fact is that the names of most mAbs are based on the names of the institutes where they have been generated: JIM, John Innes Centre Monoclonal; LM, University of Leeds Monoclonal; INRA, Institut National de la Recherche Agronomique; CCRC, Complex Carbohydrate Research Center; BS, Biosupplies; KM- Kyoto University and, finally,
Recent Additions to the Repertoire of mAbs

Several new additions to the repertoire of mAbs that recognize land plant polysaccharide structures have been reported over the last 5 years, such as the INRA-AGI-1 mAb, which recognizes the RGI-related arabinogalactan linear chain (Buffetto et al., 2015), and the new xylan-related mAbs LM27 and LM28 (Cornuault et al., 2015). Lignin is a highly heterogeneous phenolic polymer, which is of great scientific interest as it has a strong influence on the effectiveness of bioconversion of plant cell walls to biofuels (Li et al., 2016). However, the number of lignin immunological probes with well-defined specificities has been limited (Table 4).

In 2013, it was reported that the KM1 and KM2 antibodies could recognize two distinct phenolic linkages present in lignin (Kiyoto et al., 2013), therefore representing an important, but hitherto relatively overlooked, addition to CWPs related to cell wall components of land plants.

At present, there is an appreciable shift of interest into research on algal cell walls. Increasing our knowledge about them is essential with respect to our basic understanding of the evolution of cell walls (Popper et al., 2014; Harholt et al., 2016), and the biology of algae as a whole. Algal cell wall polysaccharides are also becoming increasingly important as pharmaceuticals, nutraceuticals and food additives (Wells et al., 2016). Recently, two sets of mAb designated as Brown Alga Monoclonal (BAM) antibodies have been developed; one against fucoidans (Torode et al., 2015) and one set against alginates (Torode et al., 2016). The latest addition to the algal probe repertoire is a mAb against the green algae polysaccharide ulvan (Rydahl et al., 2017; Table 5). However, algal polysaccharides are highly diverse molecules and there are still many potential targets. For instance, no antibodies have been reported against red algae polysaccharides agarose and its derivative porphyran. The current set of mAbs should still be extended with those having well-defined specificities against special structural conformations of algal polysaccharides, substitutions on the backbone and other occurring variable molecular features. Recent advances in HTP screening platforms reviewed in the
Detailed Characterization of Recognized Epitopes by Chemical Synthesis and HTP Screening

One of the most challenging aspects of mAb development is the precise determination of the recognized epitopes. Large series of mAbs have been generated in the past but the descriptions of their binding patterns were often vague. This led to the development of HTP screening platforms of mAbs. Over the last 10 years, they have been already used for extensive hierarchical clustering analysis of antibody specificities (Moller et al., 2008; Pattathil et al., 2010), and in combination with chemical synthesis of pure oligosaccharides, have enabled a more detailed characterization of epitope structures (Moller et al., 2008; Pedersen et al., 2012; Andersen et al., 2016; Dallabernardina et al., 2017; Ruprecht et al., 2017). The following paragraph could be highly beneficial in generating such CWPs.

TABLE 1 | A selection of commonly used antibodies related to pectins.

Ab	Epitope	Source	References
Homogalacturonan	JIM5 HG with a low DE (range of partially methyl-esterified/unesterified HG)	Rat	Knox et al., 1990; Willats et al., 2000; Clausen et al., 2003; Verhertbruggen et al., 2009a
	JIM7 HG with a high DE	Rat	Knox et al., 1990; Willats et al., 2000; Clausen et al., 2003; Verhertbruggen et al., 2009a
	LM18 HG, partially methyl-esterified or unesterified	Rat	Verhertbruggen et al., 2009a
	LM19 HG, preferably unesterified (more selective than JIM5)	Rat	Verhertbruggen et al., 2009a
	LM20 HG with a high DE (more selective than JIM7)	Rat	Verhertbruggen et al., 2009a
	CCRC-M130/M34 HG with a high DE (cluster with JIM7)	Mouse	Pattathil et al., 2010
	LM19 Unesterified HG; DP>5	Mouse	Liners et al., 1989
	LM20 Xylogalacturonan	Rat	Willats et al., 2004
	CCRC-M130/M34 HG with a high DE (cluster with JIM7)	Mouse	Pattathil et al., 2010
	LM19 Unesterified HG; DP>5	Mouse	Liners et al., 1989
	CCRC-M2 Rhamnogalacturonan Ia (1→4)-β-D-galactan with at least three galactose units at non-reducing end.	Mouse	Pattathil et al., 2010
	XG3 (1→4)-β-D-galactan	Phage (scFv)	Shinohara et al., 2015
	OCRC-M7 6-linked β-D-Gal oligomers that contain arabinose	Mouse	Pattathil et al., 2010
	CM6 (1→4)-β-D-Gal substituted with β-(1→6)galactosyl residue(s) on RG backbones (galactosidase sensitive)	Mouse	Willats et al., 1998; Verhertbruggen et al., 2009b
	LM13 Specific subset of unbranched pectic (1→5)-α-L-arabinan / AGP epitopes	Rat	Moller et al., 2008; Verhertbruggen et al., 2009b
	LM16 Processed α-(1→5)-α-L-arabinan. Epitope might be part of galactosyl residue(s) on RG backbones (galactosidase sensitive)	Rat	Verhertbruggen et al., 2009b
	LM26 (1→4)-β-D-galactan substituted with β-(1→6)galactosyl, three galactose residues required as backbone.	Rat	Torode et al., 2017
	INRA-AGI-1 RGI related linear chain of (1→4)-linked Gal and (1→5)-linked Ara	Mouse	Buffetto et al., 2015
	OCRC-M11/M12/M15 Arabinogalactan epitope on RG-I and AGP	Mouse	Pattathil et al., 2010
	RG-II Rhamnogalacturonan II	Rabbit (pAb)	Matoh et al., 1998
	OCRC-R1 Rhamnogalacturonan II (unesterified)	Phage (Fab)	Williams et al., 1996

Rydahl et al. Probes for Plant Cell Walls
TABLE 2 | A selection of commonly used antibodies related to hemicelluloses.

Ab	Epitope	Source	References
Mannans			
BS-400-4	(1→4)-β-D-(galacto)mannan	Mouse	Pettolino et al., 2001
LM21	(1→4)-β-D-(galacto)(gluco)mannan; DP2 to DP5	Rat	Marcus et al., 2010
LM22	(1→4)-β-D-(gluco)mannan; DP2 to DP5	Rat	Marcus et al., 2010
CCRC-M70	Galactomannan	Mouse	Pattathil et al., 2010
CCRC-M169	Acetylated mannan	Mouse	Pattathil et al., 2012; Zhang et al., 2014
CCRC-M170	Acetylated glucomannan	Mouse	Pattathil et al., 2012; Zhang et al., 2014
Beta glucans			
BS-400-2	(1→3)-β-D-glucan (callose and laminarin)	Mouse	Meikle et al., 1991
BS-400-3	(1→3), (1→4)-β-D-glucan (MLG)	Mouse	Meikle et al., 1994
LM15	Xyloglucan (XXXG motif), non-fucosylated (can accommodate a single Gal residue) Requires a single unsubstituted Glc on the non-reducing end	Rat	Marcus et al., 2008; Ruprecht et al., 2017
LM24	Xyloglucan (XLLG motif)	Rat	Pedersen et al., 2012
LM25	Xyloglucan	Rat	Pedersen et al., 2012
CCRC-M1	α-L-fucosylated xyloglucan (also RG-I)	Mouse	Puhlmann et al., 1994; Pattathil et al., 2010
CCRC-M86/100/103	Internal xyloglucan chain, requires non-substituted Glc residue toward non-reducing end.	Mouse	Ruprecht et al., 2017
CCRC-M93/95/96/101/104	Xyloglucan with Gal substitution	Mouse	Dallabernardina et al., 2017
Xylans			
LM10	(1→4)-β-D-xylan	Rat	McCartney et al., 2005; Ruprecht et al., 2017
LM11/CCRC-M147/149	(1→4)-β-D-xylan/arabinoxylan, high tolerance of backbone substitutions	Rat	McCartney et al., 2005; Ruprecht et al., 2017
CCRC-M140/160/137/139/152	(1→4)-β-D-xylan, low tolerance for substitutions	Rat	Ruprecht et al., 2017
CCRC-M108/109/110	(1→4)-β-D-xylan substituted with Ara on the 2-position.	Mouse	McCartney et al., 2005; Ruprecht et al., 2017
LM23	Non-acetylated xylosyl residues, pectic xylogalacturonan and xylan	Rat	Ruprecht et al., 2017
LM27	Grass glucuronorabinoxylan (GAX)	Rat	Cornuault et al., 2015
LM28	(1→4)-β-D-xylan with GlcA substitution on 2-position, both methyl or non-methylsterified	Rat	Cornuault et al., 2015
INRA-AX1	Backbone of xylans	Mouse	Guillon et al., 2004
INRA-UX1	Alkali treated glucuronoxylan	Mouse	Koutaniemi et al., 2012
CCRC-M150	(1→4)-β-D-xylan with GlcA substitution which is not methylesterified	Mouse	Ruprecht et al., 2017
CCRC-M144/145/146/155	(1→4)-β-D-xylan which substitution which is methylesterified at 4-O-position	Mouse	Ruprecht et al., 2017

Notably, a large set of CCRC antibodies have recently been characterized in detail using 88 artificial oligosaccharides related to xylan, xyloglucan, RG-I, and arabinogalactan chains, and some patterns were resolved in high resolution (Ruprecht et al., 2017). Another recent study more deeply deciphered the epitopes of two galactan-specific mAbs: LM5 and LM26. This study showed that LM5 requires at least three galactose units at the non-reducing end of the galactan chain (Andersen et al., 2016) while LM26 requires a single substitution with a Gal residue via a β-(1→6) bond and at least three units of the backbone (Torode et al., 2017; Figure 3A). Both antibodies also exhibit interesting complementary labeling patterns in phloem (Torode et al., 2017) that relates to the mechanical properties of the cells in this tissue. Similarly, a group of xyloglucan-specific mAbs requiring Gal substitutions were characterized by Dallabernardina et al. (2017). We expect that these valuable efforts, which show the great potential of HTP platform in characterizing mAbs, will...
TABLE 3 | A selection of antibodies related to proteoglycans.

Ab	Epitope	Source	References
Extensins			Smallwood et al., 1995
LM1	Extensins and hydroxyproline-rich glycoproteins (HRGP)	Rat	Smallwood et al., 1994
JIM11	Extensins, periodate sensitive epitope	Rat	Smallwood et al., 1994
JIM12	Extensins, epitope includes a protein component (proteinase sensitive)	Rat	Smallwood et al., 1994
JIM20	Extensins, periodate sensitive epitope	Rat	Smallwood et al., 1994
JIM19	Extensins, periodate sensitive epitope	Rat	Knox et al., 1995, Wang et al., 1995
Arabinogalactan and AGP	AGP, (1→6)-β-D-galactan chain with terminally attached GlcA.	Rat	Yates et al., 1996; Ruprecht et al., 2017
LM14	Arabinogalactan and AGP	Rat	Moller et al., 2007
JIM4	AGP (β-D-GlcA-(1→3)-α-D-GalA-(1→2)-α-D-Rha competes for binding)	Rat	Knox et al., 1989; Yates et al., 1996; Ruprecht et al., 2017
JIM13	AGP, periodate sensitive epitope	Rat	Knox et al., 1991; Yates et al., 1996; Ruprecht et al., 2017
JIM14	AGP, unsubstituted (1→6)-β-D-galactan chain	Rat	Knox et al., 1991; Yates et al., 1996; Ruprecht et al., 2017
JIM16	AGP, (1→3)-β-D-galactan chain when substituted with a single β-D-(1→6)-linked Gal residue	Rat	Knox et al., 1991; Yates et al., 1996; Ruprecht et al., 2017
PN 16.1B3	AGP	Mouse	Norman et al., 1986
MH4.3E5	Arabinogalactan and AGPs	Mouse	Hahn et al., 1987
MAC207	AGP from pea (β-D-GlcA-(1→3)-α-D-GalA-(1→2)-α-D-Rha competes for binding)	Rat	Yates et al., 1996
XD27	AGP	Phage (scFv)	Shinohara et al., 2015
CCRC-M133	Arabinogalactan (cluster 2), (1→4)-β-D-galactan with DP ≥6	Mouse	Pattathil et al., 2010; Ruprecht et al., 2017
CCRC-M85	Arabinogalactan (cluster 3)	Mouse	Pattathil et al., 2010
CCRC-M78	Arabinogalactan (cluster 4)	Mouse	Pattathil et al., 2010

TABLE 4 | A selection of antibodies related to cell wall phenolics.

Ab	Epitope	Source	References
LM12	Feruloylate/ferulic acid on any polymer and heteroxylan	Rat	Pedersen et al., 2012
LM9	Feruloylated (1→4)-β-D-galactan	Rat	Clausen et al., 2004
INRA-COU1	Free p-coumaric acids and coumarate esters	Mouse	Tranquet et al., 2009
INRA-COU2	Esterified p-coumaric acids	Mouse	Tranquet et al., 2009
Anti-H	Raised against synthetic lignin with H unit	Rabbit (pAb)	Ruel et al., 1994; Joseleau and Ruel, 1997
Anti-G	Raised against synthetic lignin with G unit	Rabbit (pAb)	Ruel et al., 1994; Joseleau and Ruel, 1997
Anti-GS	Raised against synthetic lignin with GS unit	Rabbit (pAb)	Ruel et al., 1994; Joseleau and Ruel, 1997
Anti-S	Raised against syringyl polymer	Rabbit (pAb)	Joseleau et al., 2004
KM1	Lignin (dehydridiconiferyl alcohol, 8-5′ linkage)	Mouse	Kyoto et al., 2013
KM2	Lignin (piperosinol, 8-8′ linkage)	Mouse	Kyoto et al., 2013

TABLE 5 | A selection of antibodies related to algal polysaccharides and starch.

Ab	Epitope	Source	References
B3	Carrageenan (preference for i-carrageenan chains in a helical conformation)	Phage (scFv)	Liners et al., 2005
BAM1-BAM4	Fucoidans (different levels of sulfation)	Rat	Torode et al., 2015
BAM6-BAM11	Aignates (different rations of mannnuronic and guluronic acid)	Rat	Torode et al., 2016
INCH2	Ulvan, epitope contain the ulvanoburonic acid 3-sulfate B structure, sensitive to ulvan lyase	Mouse	Rydahl et al., 2017
INCH1	Starch, α-(1→4)-linked glucan chains; DP>4	Mouse	Rydahl et al., 2017
continue in providing a refined specificity data set for most mAbs.

Remaining Gaps in mAb Availability

Despite the existence of a large panel of mAbs, there are still significant gaps with respect to target recognition. These gaps limit research efforts to understanding the biological role of some polysaccharides but also their endogenous chemical modifications. This is especially true for O-acetylation, a common modification that has a significant negative effect on biomass bioconversion. Although acetyl esters appear on many polymers (Gille and Pauly, 2012; Nafisi et al., 2015), so far only mAbs against acetylated mannan have been reported (CCRCM169 and CCRC-M170) (Pattathil et al., 2012; Zhang et al., 2014).

Interestingly, no antibody has yet been generated toward the most abundant polymer in nature—cellulose. CBM3a is currently used but lacks a high-degree of specificity toward cellulose (Blake et al., 2006; Hernandez-Gomez et al., 2015). The development of highly specific mAbs as tools truly capable of discriminating between amorphous and crystalline cellulose would dramatically advance the study of cell walls and allow a deeper understanding their dynamics during development. Hopefully, the recent success in the generation of anti-starch mAbs (Rydahl et al., 2017) might invoke a necessary momentum and optimism for the initiation of such efforts.

Polyesters, like cutin or suberin, are also deposited in the extracellular space of some specialized tissues where they play an essential role in water management and the formation of a semipermeable barrier between the plant and environment (Andersen et al., 2015; Fich et al., 2016). These compounds are constructed from various monomeric units and present in highly localized cell wall microdomains, such as the Casparian strip (Andersen et al., 2015). Currently, their visualization in situ relies solely on cytological staining. If developed in the future, CWPs for these special cell wall components and their numerous structural variants, could be used in conjunction with immunolocalization of relevant biosynthetic enzymes. This can help to unravel how these compounds are synthesized and spatially deposited in a very site-restrictive manner.

The lack of specific detection tools is not only limited to above mentioned cell wall components but also to their fine in muro arrangement. Cell walls are constructed as an intricate array where different polysaccharides are mutually interconnected to form desired spatial 3D configurations. These linkages can form through covalent bonding (Tan et al., 2013; Cornuault et al., 2015) or non-covalent association (e.g., hydrogen bonding) between various classes of polymers (Cosgrove, 2016). Visualization and quantification of these intermolecular linkages with probes would dramatically advance the study of cell walls and allow a deeper understanding their dynamics during development. This is especially true for the cell wall remodeling during cell elongation that involves rapid dissociation of xyloglucan and cellulose microfibrils after apoplastic acidification (Cosgrove, 2016; Höfte and Voxeur, 2017). To visualize this elusive biological phenomenon in real-time using CWPs, would require highly unorthodox approaches, some of which are discussed later in this review.

Non-conventional Approaches in the Generation of Novel mAbs

Antibody development is often limited because some molecules do not induce an adaptive immune response in the immune system of the host animal. The level of immunogenicity of plant polysaccharides is known to be much lower than for proteins,
partially due to the fact that their 3D molecular structure is not as complex as those of proteins. In addition, different pathways are induced in response to carbohydrate and protein structures (Cunto-Amesty et al., 2001). The lack of a sufficient immune response to certain carbohydrate moieties can, in some cases, be explained by the fact that some of these molecules are a part of an animal’s daily feed. Low immunogenicity is a well-known, although relatively surprising, problem in the case of rhamnogalacturonan II (RG-II) despite its highly complex molecular structure (Albersheim et al., 2010; Pabst et al., 2013). Although, polyclonal antibodies specific to RG-II have been produced (Matoh et al., 1998), no reliable anti-RG-II mAbs have been reported thus far. It has been speculated that this is due to the high-degree of variation in its structure and the level of methylation in different subdomains (Pabst et al., 2013).

One way to circumvent these obstacles could be to develop antibodies in a more randomized manner, where instead of using a single well-defined antigen, a complex mixture of antigens (e.g., whole cell wall extracts) is used in a form of “shotgun” immunization. An antigen overload, or presentation of the antigen in the context of the whole cell wall glycome, might hijack the host’s immune response (Rydahl et al., 2017). This has recently been proven to be a successful way to overcome the barrier of the limited immunogenicity of starch (Rydahl et al., 2017). Such an approach could also be a way to remove the existing bias toward well-known carbohydrates, which are found in the primary and secondary cell walls of higher plants. Immunization using crude non-separated samples from e.g., algae, living fossils, less studied or rare species, followed by simultaneous characterization of the mAbs generated and the antigens by HTP analytical techniques may lead to the identification of completely new polysaccharides, or other cell wall components, by having probes for them already in hand.

In Vitro Applications of mAbs

One of the most powerful applications of anti-glycan mAbs is in HTP glycan profiling, either in nitrocellulose-based microarrays (also called comprehensive microarray polymer profiling, CoMPPP) or ELISA-based methods (Moller et al., 2007; Pattathil et al., 2015a; Kracun et al., 2017). Since its introduction, HTP cell wall profiling has proved to be extremely beneficial in the characterization of the cell walls of different species (Sørensen et al., 2011; Fangel et al., 2012; Hervé et al., 2016), elucidation of the properties and composition of biomass (Pattathil et al., 2015b; Djaajadi et al., 2017), analysis of the tissue specific distribution of given epitopes (Leroux et al., 2015; Wilson et al., 2015), and for studying enzymatic characteristics (Vidal-Melgosa et al., 2015; Walker et al., 2017). During CoMPPP, the extracted material is printed in the form of a microarray using a nitrocellulose matrix. In the case of ELISA-based assays, the extractions are immobilized on an immunosorbent plate and probed. Glycan profiling can be done in tandem with other biochemical methods thus expanding the data obtained such as for example, more structural information. This includes, for instance, epitope detection chromatography (EDC), which couples size-exclusion or anion-exchange chromatography and immunodetection (Cornuault et al., 2014), or HTP analysis of enzymes with cell wall degrading activities using microarray printing and profiling of the reaction products (Vidal-Melgosa et al., 2015).

One of the major limitations of these applications is the semi-quantitative nature of mAb probing. The data produced are usually presented as normalized relative values but they do little to account for the different avidity and affinity of the various mAbs. This can lead to the risk of misinterpretation of results. Affinity is the strength of the interaction between an epitope and its corresponding paratope, while avidity is the total strength of the interaction between the antigen and the entire immunoglobulin and is dependent on its valence. Two antibodies can have different affinities and avidities even when recognizing the same epitope. In other words, value signals obtained for two different antibodies do not necessarily reflect the actual difference in epitope abundance. Moreover, the quantification of an antigen’s absolute concentration by comparison to known standards is hindered by the non-linear nature of color product development in e.g., HRP or AP-based secondary probing. Taken together, caution should be exercised when comparing different antibodies, as well as when different detection methods are used for the same antibody.

In Situ Applications of mAbs

mAbs are also usually a researcher’s first choice for use in in situ analysis (Hervé et al., 2011; Avci et al., 2012; Verhertbruggen et al., 2017). mAbs can be used either with whole mounts, for instance, for surface labeling of Arabidopsis roots (Larson et al., 2014) or pollen tubes (Chebi et al., 2012) on fresh hand- or vibratome-sectioned material, or on embedded and (ultra-, cryo-) microtome sectioned material. Figures 3B,C shows resin-embedded and sectioned pea root apices that have been probed with two mAbs (LM5 and LM6) as an example of in situ analysis of the heterogeneity of cell walls. There are considerable methodological differences between the various methods for sectioning and their applications to address particular scientific questions. These have been extensively compared by Verhertbruggen et al. (2017). The large size of mAbs is sometimes an obstacle for accurate analysis, even in very thinly sectioned material. A phenomenon described as “masking” can affect the results of in situ localization studies (Marcus et al., 2008). Cell wall polysaccharides are arranged in a very compact way in the cell wall, interacting though weak interactions (hydrogen bonds, van der Waals interactions), which limits the accessibility of the antibodies to the epitopes (Figure 3D). However, pre-treatment of samples with various hydrolytic enzymes can reveal, or “unmask,” the hidden epitopes (Marcus et al., 2008, 2010; Xue et al., 2013; Kozlova et al., 2014; Buffetto et al., 2015). Although masking is often considered to be an experimental hurdle, a detailed elucidation of this phenomenon may provide important, and otherwise elusive, information about the nature of tight arrays of polysaccharides and their mutual interaction in muro. mAbs are also less efficient than other smaller probes (discussed below) for in planta studies, not only because of their size. For instance, mAbs are produced at mammalian pH, which is much higher than the normal acidic pH of the apoplast (Cosgrove, 2005). This could limit the binding of
some antibodies when used directly in growth media or generate artifacts. Furthermore, preservatives like sodium azide—present in commercial antibody preparations—may have a toxic effect on the living sample.

Phage Display—Generation of Cell Wall Binders Without Immunization

In the late 1980’s, the expansion of molecular biology methods and DNA cloning also allowed the development of innovative ways to produce synthetic antibodies. Phage display technology is a recombinant technique for the screening and selection of recombinant paratopes against a desired compound (McCafferty et al., 1990). Unlike traditional antibody production, which uses the host system for antibody selection, this approach requires potential binders to be expressed and presented on the surface of a phage (bacterial virus; most commonly the M13 phage). A library of DNA sequences of VfC fragments are cloned into a phagemid vector and the fragment is then expressed in fusion with one of the phage capsid proteins (Figure 1, Nissim et al., 1994). Several rounds of panning steps with an immobilized antigen and E. coli host reinfection can allow selection of the strongest and most specific binders. In terms of advantages, this method of production can be targeted against any molecule. It is a valuable second choice when classical antibody production is unsuccessful due to a low immunological response in the host. Finally, the use of phage display has a strong bioethical advantage over classical antibody production as it does not use laboratory animals.

However, the current selection of reported phage display-based probes is not yet extensive. The CCRC-R1 phage was the first attempt to overcome the low immunogenicity of RG-II (Williams et al., 1996), and was followed by the better known and more widely used PAM1, which recognizes long stretches of HG lacking ester groups (more than 30) (Willats et al., 1999, 2000). Other phage display-generated probes include B3 (anti-carrageenan) (Liners et al., 2005), XD3 [anti-(1→4)-β-D-galactan], and XD27 (anti-AGP) (Shinohara et al., 2015). One of the main disadvantages of the phage display approach is that the panning selection requires the binding of whole phage particles (see Figure 1 dashed square for size comparison to mAbs) and, therefore, strongly relies on the strength of the paratope-epitope interaction. Experience shows that charged molecules (e.g., sulfated polysaccharides or HG with low DE) that are able to form strong polar interactions are usually the best target for phage display. Another limitation is that only small variable fragments, like scFv or random peptide libraries, are suitable for bacterial expression in phage display. Due to the size limitations of the phagemid vector, whole antibodies cannot be presented on phages (Steinwand et al., 2014).

CBMs—Proteinaceous Probes With a Moderate Size and High Manipulability

Some proteins, or parts of proteins, exhibit an affinity for carbohydrates as an essential feature of their activity. As such, they can be also used as probes (Figure 4; Table 6). For instance, carbohydrate-active enzymes (CAZymes) are frequently appended with non-catalytic carbohydrate-binding modules (CBMs), typically 5–20 kDa in size (Gunnarsson et al., 2004), through a highly flexible linker (Gilbert et al., 2013; Figure 4A). CBMs are, by the CAZy database (The CAZYpedia Consortium, 2018) definition, a contiguous amino acid sequence within a carbohydrate-active enzyme with a discrete fold having carbohydrate-binding activity. In some cases, large multi-enzyme complexes known as celluloses, with several CBMs appended, have also been described (>3 MDa) (Fontes and Gilbert, 2010; Smith et al., 2017). Currently, known CBMs are grouped into 83 families based on their amino acid sequence. These can further be sub-grouped into CBM A-, B-, or C-type depending on their binding properties to polysaccharides (Figure 4B). Type A, B, and C CBMs are defined as binding crystalline surfaces, glycans, and short oligosaccharides respectively (Boraston et al., 2004). Through substrate targeting, CBMs have the ability to enhance the activity of appended enzymes (Hervé et al., 2010). Although the convergent binding specificity may assign a CBM to a certain family, the function of the specific structure might be divergent (Montanier et al., 2009).

Expressed separately, these modules can be utilized in the context of the CWP as recombinant proteins (Figure 4C). Their detection is accomplished via an immunological tag (His, myc, GST, or other), or they can be used directly as fusion proteins with fluorescent proteins (Porter et al., 2007; Kawakubo et al., 2010; Badruna et al., 2017) or as conjugates to fluorophores (Dagel et al., 2011; Ding et al., 2012; Khatri et al., 2016). Interestingly, His-tagged CBMs can also be detected using quantum dots (brightly fluorescent semiconductor particles) with an outer shell that contains ZnS, which allows direct coordination by binding directly to a His-tag (Ding et al., 2006; Figure 4C).

The possibility of the mutational manipulation of the protein sequences of CBMs generates a momentum for engineering new specificities, which has already been explored to some extent leading to the creation of xylan and xyloglucan-specific CBMs (Gunnarsson et al., 2006), amongst others. This was accomplished by generating a combinatorial library of CBMs using limited substitution of specific amino acids in the binding cleft of the module (Gunnarsson et al., 2004, 2006). Consequently, the potential for diversification of CBMs as molecular probes has been shown. A major challenge in the post-genomic era is the analysis of ligand specificity for predicted CBMs, derived from genomic sequencing. While there is a growing list of over 80,000 modules that are assigned as CBMs in the CAZY database, only a minute fraction of these have been studied in detail and empirically tested (Gilbert et al., 2013; Venditto et al., 2016), and only a handful are regularly used as probes.

Labeled Cell Wall Degradating Enzymes as Probes

Cell wall component-degrading enzymes usually exhibit high levels of substrate specificity (Obeng et al., 2017) and the
FIGURE 4 | The nature and versatility of CBMs as probes. (A) CBMs are often a part of glycosyl hydrolases connected to the catalytic unit with a flexible linker. (B) Different types of cellulose-specific CBMs. Some binding is planar, such as to the crystalline part of cellulose. Some require amorphous parts and their binding can be characterized as “endo” and some bind ends of chains and can be characterized as “exo” binders. (C) CBMs offer a variety of secondary detection methods: (i) detection via immunotags (His, GST), (ii) as fusion constructs with fluorescent proteins, (iii) through coordination binding of the His tag with ZnS shell of quantum dots, (iv) CBMs can also be directly conjugated to fluorophores.

TABLE 6 | Examples of carbohydrate-binding modules.

Molecular probe	Epitope	References
CBM3a	Cellulose/xyloglucan	Blake et al., 2006; Hernandez-Gomez et al., 2015
CBM4-1	Cellulose (amorphous)	Blake et al., 2006
CBM4-2	Xylan	Simpson et al., 2002
CBM9-2	End of glucan chains	Boraston et al., 2001
CBM20	Starch/glycogen	Jiang et al., 2010
CBM27	Mannan	Boraston et al., 2003
CBM61	Galactan	Cid et al., 2010
CBM76	Xyloglucan	Venditto et al., 2016
CBM77	HG with a low DE	Venditto et al., 2016

3D molecular structure of many enzymes, and their different functional domains, have been described. Site-directed mutation can inactivate catalytic sites, leaving the binding site intact and functional, creating a possibility for novel proteinaceous probes. This has, for example, been explored by Dornez et al. (2011), who created an arabinoxylan-specific probe using an inactivated and fluorophore-labeled xylanase from Bacillus subtilis. It has also been shown that labeled active enzymes, like cellulases, can be used, particularly to study different aspects of the spatiotemporal dynamics of cellulose degradation (Ding et al., 2012; Wang et al., 2012; Luterbacher et al., 2013). Although these proteinaceous probes have been shown to provide high levels of resolution and specificity (Ding et al., 2012; Wang et al., 2012), they are still waiting for a more widespread usage in fields outside of biomass biotechnology.

SMALL MOLECULAR CWPS—A NEW SET OF FINE TOOLS

Many of the proteinaceous CWPs mentioned above are suitable for many applications but have serious limitations with respect to the tracking of polysaccharides in living systems, and in the real-time study of the dynamics of cell wall architecture. Small direct molecular probes can negate some of the shortcomings of typically much larger proteinaceous CWPs. Developments in this field have been very successful over the last decade with some innovative solutions.

Fluoro(Chromo)Phores—The Smallest Specific Binders Available

One of the most classical cytological methods to detect cell wall components is the use of dyes and stains. Although these stains are useful for morphological studies (especially
Toluidine Blue (which is dichromatic), they usually do not provide sufficiently high-resolution images and their specificity is often questioned. Despite this caveat, some are strongly favored and are not yet replaceable. Such an example of this would be the Yariv reagent for diagnostic detection and purification of arabinogalactan proteins (AGPs), or phloroglucinol (Wiesner stain), an easy and inexpensive reagent to detect lignin. For an overview of cell wall cytological staining methods see Krishnamurthy (1999).

Unlike classical stains for light microscopy, fluorophores, also called fluorochromes, or simply fluorescent dyes, can provide higher resolution images (Paës, 2014). Moreover, due to their low toxicity, they are sometimes suitable for in vivo imaging, even when using spinning disc or super-resolution confocal microscopy (Anderson et al., 2010; Liesche et al., 2013). They are relatively small but, although this is advantageous for in vivo studies, this feature can also significantly limit their specificity. The most commonly used fluorophores are listed in Table 7 and their structures and examples of their uses in situ are shown in Figure 5. Calcofluor White has been traditionally used as a general cell wall counterstain in immunohistological analyses. However, it is important to point out that it is not a cellulose dye as sometimes claimed—it binds all sorts of plant cell wall, bacterial, and fungal β-glucans including chitin. The advantages of Calcofluor White is its ease of visibility, rapid labeling, inexpensiveness, and its spectral properties that make it suitable for multichannel confocal imaging (Harrington and Hageage, 2003). Unlike Calcofluor White, some fluorochromes exhibit relatively high levels of specificity. Pontamine Scarlet 4B, for example, is more target-specific and its binding to cellulose can be successfully used for high-resolution in situ studies (Anderson et al., 2010; Liesche et al., 2013), such as studying the deposition and orientation of cellulose microfibrils during cellular elongation (Anderson et al., 2010). Sirofluor is an essential fluorophore for in situ visualization of callose deposition (Evans and Hoyne, 1982; Stone et al., 1982). Propidium iodide (PI) has been used for a long time as a cell wall-illuminating counterstain for in vivo imaging of genetic markers with fluorescent proteins. One report more closely elaborated on PI binding and reported that PI competes with calcium in association with negatively charged pectins (Rounds et al., 2011). However, plant cell walls also contain other types of charged molecules and PI specificity has not been determined by more elaborate in vitro methods. Here it is important to note that PI staining of cell walls works only during in vivo imaging but not on fixed and sectioned material. PI exhibits a strong affinity for nucleic acids (this property of PI is used in other models), and prefers them over any cell wall material in fixed samples (Figure 5).

Oligosaccharide Conjugates—Emerging Probes

Interestingly, certain oligosaccharides can also be used as CWPs (Table 8, Figure 6). For example, it has been known for a long time that defined fragments of xyloglucan (XGO) are substrates for “cut and paste” enzymes – xyloglucan endotransglycosylases (XETs) (Franková and Fry, 2013). When tagged XGOs are applied to plants their incorporation localizes the XET activity in vivo but also demonstrates the presence of the acceptor—the xyloglucan backbone (Vissenberg et al., 2000, 2001; Figure 6B). Particular physicochemical properties of oligosaccharides can be exploited as well. Recently, we introduced the chitosan oligosaccharide (COS) and oligogalacturonide (OG)-based probes (Mravec et al., 2014, 2017b, Figure 6A). Chitosan is a de-acetylated form of chitin and it bears positive charges in a spatial configuration that can interact with carboxyl groups on HG lacking methyl esters. Through a strong ionic interaction, the long OGs have been shown to be able to generate complexes with endogenous homogalacturonan in the presence of divalent cations, and can therefore mark sites with the ability for de novo egg box-formation (Mravec et al., 2017b; Figure 6A). This approach has demonstrated the dynamics of pectin conformation in tip growing structures: pollen tubes and root hairs. It is important to note that both probes can also be elicitors of cellular responses; chitin is a pathogen associated molecular pattern (PAMP) while OGs are damage-associated molecular patterns (DAMPs) (Malinovsky et al., 2014). Despite this disadvantage, they provide versatility in terms of different tags due to the possibility of conjugation to various florescent tags and even nanogold particles (Mravec et al., 2014). They are smaller than antibodies and exhibit a better penetration capacity than mAbs (Mravec et al., 2014). Unfortunately, these types of probes are currently limited to certain polysaccharides with special physicochemical properties. However, the association of two oligo(poly)saccharides can actually be governed by other molecular interactions, including hydrogen bonding or van der Waals forces. This means that structural modeling in combination with chemical synthesis of diverse artificial oligosaccharides might in theory expand this section of the toolbox in the future.

TABLE 7 | Examples of fluorophores binding cell wall components.

Molecular probe	Binding site	Spectral Properties	References
Calcofluor White M2R (Fluorescent Brightener 28)	β-D-glucans (e.g. cellulose and chitin)	λ_{ex} 347 nm/λ_{em} 430 nm	Harrington and Hageage, 2003
Aniline Blue Fluorophore (sirouflouor)	1→3)-β-D-glucan (callose)	λ_{ex} 390 nm/λ_{em} 480 nm	Evans and Hoyne, 1982; Stone et al., 1982
Propidium iodide (PI)	Acidic polymers	λ_{ex} 482 nm/λ_{em} 608 nm	Rounds et al., 2011
Pontamine Scarlet 4B (direct red23)	Cellulose microfibrils	λ_{ex} 510 nm/λ_{em} 570 nm	Anderson et al., 2010; Liesche et al., 2013
The most common cell wall-related fluorophores. (A) Molecular structures of four fluorophores. (B) Propidium iodide (PI) is traditionally used as cell wall counterstain for in vivo imaging of expression and localization of fluorescent proteins. Scan of the Arabidopsis columella root cap expressing YFP marker (green) counterstained with PI (red). (C, D) The fluorophores can be used in tandem and are compatible with other detection methods like immunolocalization. (C) Staining of the section of resin embedded pea root cap with INCh1 (anti-starch antibody, starch granules), Calcofluor White (blue; cell walls), and PI (red, staining nuclei). For the original experiments see Rydahl et al. (2017). (D) Sirofluor is specific for callose (Stone et al., 1982) which is present also in newly made cell walls. Example of a resin section of a root epidermis stained with Sirofluor (green) and Calcofluor White (blue). Note the septum-specific staining of Sirofluor.

Molecular probe	Binding site	References
Chitosan	HG with a low DE	Mravec et al., 2014
Oligosaccharide (COS)		
Oligogalacturonide (OG)	HG with a low DE capable of	Mravec et al., 2017b
DP7-13	de novo formation of egg boxes	
XGO, DP 7-9 (XLLG, XLLG, XXXG)	Acceptor xyloglucan backbone	Vissenberg et al., 2000, 2001

New Toolbox Compartments Filled With the Metabolic Labeling-Ready Reagents

Tagging of cell wall components by so-called metabolic labeling involves the incorporation of the fluorescent analog/conjugate of a tagged building block into a native molecule in planta and subsequent tracking, a technique which is becoming increasingly important (Figure 7). The introduction of click chemistry technology to cell biology has been hugely effective, and facilitated the tracking of molecules in living models. Click chemistry is a term that was coined by Prof. Sharpless in the early 90’s (Kolb et al., 2001). By this definition, the reaction can be called “click” when it is highly specific and efficient, and can be performed under mild conditions. For in situ probing, the most commonly used reaction is the Huisgen bipodal cycloaddition—a reaction between alkyne and azide in the presence of monovalent copper as a catalyst (Rostovtsev et al., 2002; Figure 7B). The ingenious idea behind the method is that one of these biorthogonal (biologically inert) groups can be part of a building block or a molecule of interest, and the other one can be the detection tag, usually a fluorophore. It is important to bear in mind that the copper catalyst is toxic for plants. However, this can be overcome by using a copper-free system, such as strained alkynes (Baskin et al., 2007), which can be used for tracking in live cells.

Metabolic Reagents for Polysaccharides and Proteoglycans

Click chemistry has numerous applications in glycobiology studies of animal and yeast systems (Yoon et al., 2017). In 2012, this method was also introduced into the field of plant cell wall biology (Anderson et al., 2012). An alkyne-containing derivative of fucose (FucAl), previously used in animal glycosylation, has been shown to be incorporated into pectin chains (as part of RG-I), which has enabled visualization of the arrangement and sites of pectin delivery at the plasma membrane-cell wall.
interface (Anderson et al., 2012). A dramatic increase in the panel of available click chemistry-enabled monomers has been reported in the past 2 years and now encompasses almost the whole spectrum of monosaccharides. For example, it now includes azido-KDO, which is incorporated into RG-II chains (Dumont et al., 2016), and alkyne-glucose (McClosky et al., 2016), which is incorporated into a non-specified component of the root hair cell walls and arrests their growth (Figure 7C). These constructs were recently followed by many more, including those that can be used to study O- and N-glycosylation of cell wall proteoglycans (Hoogenboom et al., 2016; Zhu and Chen, 2017). Although these monosaccharide analogs have been evaluated in situ and some clearly generate cell wall staining, the precise targets have not yet been elucidated by other genetic, physiological, or analytical methods. We consider this a major challenge for the future work within the field of plant polysaccharide and proteoglycan metabolic labeling.

Metabolic Labeling Reagents for Lignin

The expansion of metabolic labeling tools can be also seen in the area of lignin biology. The first such reagents reported, were direct conjugates of fluorophores to monolignols (three types of hydroxycinnamyl alcohols). In glycan structures a large fluorophore molecule on the monomer would likely hinder the activity of the necessary glycosyltransferase as it would not be recognized as an appropriate natural donor. However, lignin polymerization is based on radical coupling and fluorescently labeled monolignols have been shown to be efficiently incorporated into lignin in stem cells undergoing formation of secondary cell walls (Tobimatsu et al., 2011, 2013; Figure 7D). Moreover, these reagents even enabled visualization of local deposition of polyphenolics within the Casparian strip of root endodermis (Tobimatsu et al., 2013). In addition to these fluorescent monolignols, several different click chemistry-ready monolignols, have been synthesized recently (Bukowski et al., 2014; Tobimatsu et al., 2014; Pandey et al., 2015). The latest publication (Lion et al., 2017) provided the most striking demonstration, how a variety of click chemistry reagents can be used for in situ studies of tissue specific lignification and formation of distinct types of lignin. The utilization of two types of clickable monolignols, H unit tagged with an azide group and G unit tagged with an alkyne group in tandem, enabled researchers to follow the dynamics of lignification in flax stems. We believe that by a similar approach, many of the less understood phenomena, such as turnover and salvage pathways of cell wall components (Barnes and Anderson, 2017), can be deciphered using either glycan or polyphenolic metabolic labeling.

Conclusions and Future Directions

Recent progress in plant glycobiology, chemical biology, and HTP analytical methods has expanded the probing tool box plant
researchers can use in their studies. However, the development of new CWPs is still progressing, and will undoubtedly mimic the great boost in biomedical probing technologies that we have seen in the past 20 years. We expect that the antibody field will benefit from the recently explored approach of a more biology- than researcher-driven selection process, shifting the current paradigm of anti-glycan antibody production requiring predefined targets. The more widespread use of synthetic antibodies, using recombinant methods and expression, might pave the way for complex targets to be addressed, such as those for which the deconstruction of their native 3D context is an issue in conventional procedures. This is especially relevant for non-covalent interlinks within cell walls. The large collection of mAbs available, as well as CBMs, offer a hitherto unexplored resource for generating genetic probes. In this approach, the DNA coding sequences of the known proteinaceous binders are expressed in planta via stable transgenic constructs as fusion proteins with a small immunotag or fluorescent protein. Although this approach might be problematic for visualization of epitopes in the context of the whole organism, or tissues, due to the constant and ubiquitous expression, it might be useful for studying the dynamics of cell wall microdomains. It is well-known that the binding of an antibody can influence the antigen’s expected biological activity so the genetic approach can also provide entirely new tools for functional analyses of cell wall components. Proteinaceous probes can be further engineered by random or via site-directed mutagenesis to widen the diversity of specificities or to modulate their affinity.

Other tools that have already found important uses in biomedical research, like aptamer and affimer technologies, can also be applied to cell wall components, thus opening new frontiers for replenishing the shortage of probes against supramolecular conformations, intermolecular linkages, and fine 3D arrays of polysaccharides in muro. Aptamers are DNA/RNA oligonucleotides (Zhang et al., 2016) while affimers are small proteins (Tiede et al., 2017) exhibiting levels of affinity and specificity similar to mAbs. Due to their small-size, they can be beneficial in applications where accessibility of the epitope is an issue. Furthermore, since they can be developed against a target in its native state, aptamers also offer the possibility for quantification using standard molecular biology methods like qPCR. Interestingly, several anti-glycan DNA aptamers have already been generated, such as those against cellulose (Yang et al., 1998). However, they have not yet been fully investigated as CWPs. The future work will certainly also involve further development of the HTP methods to analyze the specificity and sensitivity of the generated CWPs. HTP profiling platforms, especially those involving synthesized defined oligosaccharides, are a relatively recent advance and their potential has not been fully explored. The combination of HTP screening with large chemical libraries and combinatorial synthesis of fluorophores or artificial oligosaccharides can be another valuable source of exciting new tools for the cell wall probing toolbox.

AUTHOR CONTRIBUTIONS

MR: drafted the part dealing with mAbs and CBMs; AH: drafted the part about phage display; SK and JM: drafted the parts dealing...
REFERENCES

Albersheim, P., Darvill, A., Roberts, K., Sederoff, R., and Staelin, A. (2010). Plant Cell Walls. New York, NY: Garland Science.

Andersen, M. C., Boos, I., Marcus, S. E., Kračun, S. K., Rydahl, M. G., Willats, W. G., et al. (2016). Characterization of the LM5 pectic galactan epitope with synthetic analogues of β-1,4-d-galactotetraose. Carbohydr. Res. 436, 36–40. doi: 10.1016/j.carres.2016.10.012

Andersen, T. G., Barberon, M., and Geldner, N. (2015). Suberization - the second life of an endodermal cell. Curr. Opin. Plant Biol. 28, 9–15. doi: 10.1016/j.coppl.2015.08.004

Andersen, C. T., Carroll, A., Akhmetova, L., and Somerville, C. (2010). Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol. 152, 787–796. doi: 10.1104/pp.109.150128

Anderson, C. T., Wallace, I. S., and Somerville, C. R. (2012). Metabolic click-detection chromatography: a method to dissect the structural heterogeneity and inter-connections of plant cell-wall matrix glycans. Plant J. 78, 715–722. doi: 10.1111/tpj.12504

Barnes, W. J., and Anderson, C. T. (2017). Release, recycle, rebuild: cell wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Mol. Plant. 11, 31–46. doi: 10.1016/j.molp.2017.08.011

Baskin, J. M., Prescher, J. A., Burton, R. A., Gidley, M. J., and Fincher, G. B. (2010). Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732. doi: 10.1038/nchembio.439

Burton, R. A., Gidley, M. J., and Fincher, G. B. (2010). Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732. doi: 10.1038/nchembio.439

Chebli, Y., and Geitmann, A. (2017). Cellular growth in plants requires regulation of cell wall biochemistry. Curr. Opin. Cell Biol. 44, 28–35. doi: 10.1016/j.cceb.2017.01.002

Chebli, Y., Kaneda, M., Zerzour, R., and Geitmann, A. (2012). The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol. 160, 1940–1955. doi: 10.1104/pp.111.199729

Cid, M., Pedersen, H. L., Kaneko, S., Coutinho, P. M., and Henriassat, B., Willats, W. G., et al. (2010). Recognition of the helical structure of beta-1,4-galactan by a new family of carbohydrate-binding modules. J. Biol. Chem. 285, 35999–36009. doi: 10.1074/jbc.M110.166330

Clausen, M. H., Ralet, M.-C., Willats, W. G., McCartney, L., Marcus, S. E., Thibault, J.-F., et al. (2004). A monoclonal antibody to feruloylated-(1-4)-beta-D-galactan. Planta 219, 1036–1041. doi: 10.1007/s00425-004-1309-3

Clausen, M. H., Willats, W. G., and Knox, J. P. (2003). Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr. Res. 338, 1797–1800. doi: 10.1016/S0008-6215(03)00272-6

Cornuault, V., Buffetto, F., Rydahl, M. G., Marcus, S. E., Torode, T. A., Xue, J., et al. (2015). Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycan families of plant cell walls. Planta 242, 1321–1334. doi: 10.1007/s00425-015-2375-4

Cornuault, V., Manfield, I. W., Ralet, M.-C., and Knox, J. P. (2014). Epitope detection chromatography: a method to dissect the structural heterogeneity and inter-connections of plant cell-wall matrix glycans. Plant J. 78, 715–722. doi: 10.1111/tpj.12504

Cosgrove, D. J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861. doi: 10.1038/nrm1746

Cosgrove, D. J. (2016). Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67, 463–476. doi: 10.1093/jxb/erv511

Cummings, R. D., Darvill, A. G., Etzler, M. E., and Hahn, M. G. (2017). “Glycan-recognizing probes as tools,” in Essentials of Glycobiology, Chapter 48, 3rd Edn, eds A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebersold, A. G. Darvill, T. Kinoshita, N. H. Parker, J. H. Prestegard, R. L. Schnaar, and P. H. Seeberger (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), 611–621.

Cunto-Amestoy, G., Dam, T. K., Luo, P., Monzavi-Karbassi, B., Brewer, C. F., Van Gott, T. C., et al. (2011). Deflecting the immune response to carbohydrate antigens. J. Biol. Chem. 276, 30490–30498. doi: 10.1074/jbc.M103257200

Dagel, D. J., Liu, Y. S., Zhong, L. L., Luo, Y. H., Himmel, M. E., Xu, Q., et al. (2011). In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J. Phys. Chem. B 115, 635–641. doi: 10.1021/jp10978p

Dallabonnardina, P., Ruprecht, C., Smith, P. J., Hahn, M. G., Urbanowicz, B. R., and Pfleger, F. (2017). Automated glycan assembly of galactosylated xyloglucan oligosaccharides and their recognition by plant cell wall glycan-directed antibodies. Org. Biomol. Chem. 15, 9996–10000. doi: 10.1039/C7OB02605F

Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., and Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338, 1055–1060. doi: 10.1126/science.1227491

Ding, S. Y., Xu, Q., Ali, M. K., Baker, J. O., Bayer, E. A., and Barak, Y. (2006). Versatile derivatives of carbohydrate-binding modules for imaging of complex (17489), and The Innovation Fund Denmark project BioValue SPIR (0603-00522B).

ACKNOWLEDGMENTS

We would like to thank Dr. Claire Holland for her help in editing the manuscript.

with small molecular probes while JM assembled the figures, and performed the compilation and editing.
carbohydrates approaching the molecular level of resolution. BioTechniques 41, 435–442. doi: 10.2144/000112244
Djajadi, D. T., Hansen, A. R., Jensen, A., Thygesen, L. G., Pinelo, M., Meyer, A. S., et al. (2017). Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks. Biotechnol. Biofuels 10, 15293–15298. doi: 10.1037/tnaps.10057.3107
Dornez, E., Kuyvers, S., Holopainen, U., Nordlund, E., Poutanen, K., Delcour, J. A., et al. (2011). Inactive fluorescently labeled xylosanase as a novel probe for microscopic analysis of arabinoxylan containing cereal cell walls. J. Agric. Food Chem. 59, 6369–6375. doi: 10.1021/jf200746q
Drakakaki, G. (2015). Polysaccharide deposition during cytokinesis: challenges and future perspectives. Plant Sci. 236, 177–184. doi: 10.1016/j.plantsci.2013.03.018
Dumont, M., Lehner, A., Vauzeilles, B., Malassis, J., Marchant, A., Smyth, K., et al. (2016). Plant cell wall imaging by metabolic click-mediated labelling of rhogamnoglucuronarotan II using azido 3-deoxy-D-manno-2-ulosonic acid. Plant J. 85, 437–447. doi: 10.1111/tjp.13104
Evans, N. A., and Hoyne, P. A. (1982). A fluorochrome from aniline blue: microscopic analysis of arabinoxylan containing cereal cell walls. Methods Mol. Biol. 715, 103–113. doi: 10.1007/978-1-61779-008-9_7
Hervé, C., Rogowski, A., Blake, A. W., Marcus, S. E., Gilbert, H. J., and Knox, J. P. (2010). Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc. Natl. Acad. Sci. U.S.A. 107, 15293–15298. doi: 10.1073/pnas.10057.3107
Hervé, C., Siméon, A., Jam, M., Cassin, A., Johnson, K. L., Salméa, A. M., et al. (2016). Arabinoxylactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development. New Phytol. 209, 1428–1441. doi: 10.1111/nph.13786
Høfte, H., and Voxeur, A. (2017). Plant cell walls.Curr. Pharm. Biol. 27, R865–R870. doi: 10.1016/j.cub.2017.05.025
Hoogenboom, I., Berghuis, N., Crum, D., Geurts, R., Zuilhof, H., and Wennekes, T. (2016). Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides. BMC Plant Biol. 16:220. doi: 10.1186/s12870-016-0907-0
Jiang, S., Heller, B., Tagliabue, V. S., Zhai, L., Irimia, J. M., and DePaoli-Roach, A. A. (2010). Starbhch domain-containing protein 1/genrethionin 1 is a novel antigen in glycogen metabolism. J. Biol. Chem. 285, 34960–34971. doi: 10.1074/jbc.M110.158089
Jones, L., Seymour, G. B., and Knox, J. P. (1997). Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to [1→4]-[beta-D-galactan. Plant Physiol. 113, 1405–1412.
Joseloue, J. P., Faix, O., Kuroda, K., and Ruel, K. (2004). A polyclonal antibody directed against syringylpropane epoxides of native lignins. C. R. Biol. 327, 809–815. doi: 10.1016/j.cribo.2004.06.003
Joseloue, J. P., and Ruel, K. (1997). Study of lignification by noninvasive techniques in growing maize internodes. An investigation by Fourier transform infrared cross-polarization-magic angle spinning 13C-nuclear magnetic resonance spectroscopy and immunocytochemical transmission electron microscopy. Plant Physiol. 114, 1123–1133. doi: 10.1104/pp.114.3.1123
Kawakubo, T., Karita, S., Araki, Y., Watanabe, S., Oyadomari, M., and Takada, R. (2010). Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (CBM)-cyan fluorescent protein (CFP). Biotechnol. Bioeng. 105, 499–508. doi: 10.1002/bit.22550
Khatri, V., Hébert-Ouellet, Y., Meddeb-Mouelli, F., and Beareguard. M. (2016). Specific tracking of xylan using fluorescent-tagged carbohydrate-binding module 15 as molecular probe. Biotechnol. Biofuels. 9:74. doi: 10.1186/s13068-016-0486-1
Kiyoto, S., Yoshinaga, A., and Takabe, K. (2013). Immunolocalization of 8′-5′ and 8′-8′ linked structures of lignin in cell walls of Chamaecyparis monosococcal antibodies. Plant Physiol. 237, 705–715. doi: 10.1104/pp.120.01784-x
Knox, J. P. (2008). Revealing the structural and functional diversity of plant cell walls. Curr. Opin. Plant Biol. 11, 308–313. doi: 10.1016/j.pbi.2008.03.001
Knox, J. P., Day, S., and Roberts, K. (1989). A set of cell surface glycoproteins forms an early marker of cell position, but not cell type, in the root apical meristem of Daucus carota L. Development 106, 47–56.
Knox, J. P., Linstead, P. J., King, J., Cooper, J. P. C., and Roberts, K. (1990). Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181, 512–521. doi: 10.1007/BF00193004
Knox, J. P., Linstead, P. J., Peart, J., Cooper, C., and Roberts, K. (1991). Developmentally-regulated epitopes of cell surface arabinoxylactan-proteins and their relation to root tissue pattern formation. Plant J. 1, 317–326. doi: 10.1046/j.1365-315X.1991.900999.x
Knox, J. P., Peart, J., and Neill, S. J. (1995). Identification of novel cell surface epitopes using a leaf epidermal-strip assay system. Planta 196, 266–270.
Köhler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497. doi: 10.1038/256495a0
Kolk, H. C., Finn, M. G., and Sharpless, K. B. (2001). Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021. doi: 10.1002/anie.20000423-5
Koutaniemi, S., Guillon, F., Tranquet, O., Bouchet, B., Tuomainen, P., Viriki, L., et al. (2012). Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species. Planta 236, 739–751. doi: 10.1007/s00425-012-1653-7
Frontiers in Plant Science | www.frontiersin.org 17 May 2018 | Volume 9 | Article 581
Liesche, J., Ziomkiewicz, I., and Schulz, A. (2013). Super-resolution imaging with
Liners, F., Helbert, W., and Van Cutsem, P. (2005). Production and
Liners, F., Letesson, J. J., Didembourg, C., and Van Cutsem, P. (1989). Monoclonal
Leroux, O., Sørensen, I., Marcus, S. E., Viane, R. L., Willats, W. G., and Knox, J.
P. (2015). Antibody-based screening of cell wall matrix glycans in ferns reveals
taxon, tissue and cell-type specific distribution patterns. BMC Plant Biol. 15:56.
doi: 10.1186/s12870-014-0362-8
Li, M., Pu, Y., and Ragauskas, A. J. (2016). Current understanding of the
correlation of lignin structure with biomass recalcitrance. Front. Chem. 4:45.
doi: 10.3389/fchem.2016.00045
Liese, J., Ziomkiewicz, I., and Schulz, A. (2013). Super-resolution imaging with
Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation
and cell connection architecture in onion epidermis cells. BMC Plant Biol. 13:226.
doi: 10.1186/1471-2229-13-226
Liners, F., Helbert, W., and Van Cutsem, P. (2005). Production and
characterization of a phage-display recombinant antibody against
carrageenans: evidence for the recognition of a secondary structure of
carrageenan chains present in red algal tissues. Glycobiology 15, 849–860.
doi: 10.1093/glycob/cwi072
Liners, F., Letessier, J. J., Didembourg, C., and Van Cutsem, P. (1989). Monoclonal
antibodies against pectin: recognition of a conformation induced by calcium.
Plant Physiol. 91, 1419–1424. doi: 10.1104/pp.91.4.1419
Lion, C., Simon, C., Huss, B., Blervacq, A. S., Tirot, L., Toybou, D., et al. (2017).
BLISS: a bioorthogonal dual-labeling strategy to unravel lignification dynamics
in plants. Cell Chem. Biol. 24, 326–338. doi: 10.1016/j.chembiol.2017.02.009
Luterbacher, J. S., Walker, L. P., and Moran-Mirabal, J. M. (2013). Observing
and modeling BMCC degradation by commercial inearise cocktails with
fluorescence labeled Trichoderma reesi CellErA through confocal microscopy.
Biotechnol. Bioeng. 110, 108–117. doi: 10.1002/bit.24597
Malinsons, F. G., Fangel, J. U., and Willats, W. G. (2014). The role of the cell wall
in plant immunity. Front. Plant Sci. 5:178. doi: 10.3389/fpls.2014.00178
Manfield, I. W., Bernal, A. J., Moller, I., Marcus, S. E., Knox, J. P., et al. (2005).
Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble, versatile anti-homogalacturonan scFv. Plant Physiol. 169, 1090–1095. doi: 10.1104/pp.105.07.008
Marcus, S. E., Blake, A. W., Benians, T. A., Lee, K., Ogden, E. M., Adam, S. N. N.,
Budiman, C., Ongkudon, C. M., Maas, R., and Jose, J. (2017). Lignocelluloses: a review of emerging and developing enzymes, systems, and practices. Bioprocess. Bioproc. 4:16. doi: 10.1186/s40463-017-0146-8
Pabst, M., Fischl, R. M., Brecker, L., Morelle, W., Fauland, A., Köfeler, H., et al. (2015). Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant J. 76, 61–72. doi: 10.1111/tpj.12271
Paës, G. (2014). Fluorescent probes for exploring plant cell wall deconstruction: a
review. Molecules 19, 9380–9402. doi: 10.3390/molecules19079380
Pandey, J. L., Wang, B., Diehl, B. G., Richard, T. L., Chen, G., and
Anderson, C. T. (2015). A versatile click-compatible monolignol probe to
study lignin deposition in plant cell walls. PLoS ONE 10:e0121334.
doi: 10.1371/journal.pone.0121334
Pattathil, S., Avci, U., Baldwin, D., Swennes, A. G., McGill, J. A., Popper, Z.,
and Hahn, M. G. (2012). "Immunological approaches to plant cell wall and biomass characterization: glycome profiling," in Biomass Conversion: Methods and Protocols, ed M. Himmel (New York, NY: Springer Science + Business Media, LLC), 61–72.
Pattathil, S., Avci, U., Zhang, T., Cardenas, C. L., and Hahn, M. G. (2015a). Immunochemical approaches to biomass characterization and utilization. Front. Bioeng. Biotechnol. 3:173. doi: 10.3389/fbioe.2015.00173

Pattathil, S., Hahn, M. G., Dale, B. E., and Chundawat, S. P. (2015b). Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEX™-pre-treated biomass. J. Exp. Bot. 66, 4279–4294. doi: 10.1093/jxb/erv107

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M.-C. C., Tranquet, O., Poulain, D., Moise, A., Guillon, F., Moïse, A., et al. (2010). Monoclonal antibodies to rhamnogalacturonan I backbone. Plant J. 231, 1373–1383. doi: 10.1007/s00214-010-1116-y

Porter, S. E., Donohoe, B. S., Beery, K. E., Xu, Q., Ding, S. Y., Vinzant, T. B., et al. (2007). A synthetic glycan microarray enables epitope mapping of native and AFEX™-pre-treated biomass. Plant Physiol. 144, 151–160. doi: 10.1104/pp.12.7.1229

Rydahl et al. Probes for Plant Cell Walls

Steinwand, M., Droste, P., Frenzel, A., Huest, M., Düböl, S., and Schirrmann, T. (2014). The influence of antibody fragment format on phage display based affinity maturation of IgG. Mabs. 6, 204–218. doi: 10.4161/mabs.27227

Stone, B. A., Evans, N. A., Bonig, L., and Clarke, A. E. (1982). The application of Silofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 122, 191–195. doi: 10.1007/BF01281696

Tan, L., Eberhard, S., Pattathil, S., Warder, C., Glushka, J., Yuan, C., Hao, Z., et al. (2013). An Arabidopsis cell wall proteoglycan consists of pectin and arabinosylan covalently linked to an arabinogalactan protein. Plant Cell. 25, 227–280. doi: 10.1105/tpc.112.107334

The CAZYpedia Consortium (2018). Ten years of CAZYpedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology 28, 3–8. doi: 10.1093/glycob/cwz089

Tiede, C., Bedford, R., Heseltine, S. J., Smith, G., Wisjutena, I., Ross, R., AlQallaf, D., et al. (2017). Affimer proteins are versatile and reliable affinity reagents. Elife 6:e24903. doi: 10.7554/eLife.24903

Tobimatsu, Y., Davidson, C. L., Grabber, J. H., and Ralph, J. (2011). Fluorescence-tagged monolignols: synthesis and application to studying in vitro lignification. Biosimulacromolecules 12, 1752–1761. doi: 10.1021/bm201316x

Tobimatsu, Y., Van de Wouwer, D., Allen, E., Kumpf, R., Vanholme, B., Boerjan, W., et al. (2014). A click chemistry strategy for visualization of plant cell wall lignification. Chem. Commun. 50, 12262–12265. doi: 10.1039/C4CC04692G

Tobimatsu, Y., Wagner, A., Donaldson, L., Mitra, P., Nicaules, D., Dima, O., et al. (2013). Visualization of plant cell wall lignification using fluorescence-tagged monolignols. Plant J. 76, 357–366. doi: 10.1111/tpi.12299

Torode, T. A., Marcus, S. E., Jam, M., Tonon, T., Blackburn, R. S., Hervé, C., et al. (2015). Monoclonal antibodies directed to fucooidin preparations from brown algae. PLoS ONE 10:e0118366. doi: 10.1371/journal.pone.0118366

Torode, T. A., O’Neill, E. R., Marcus, S. E., Cornuault, V., Pose-Albacete, S., Lauder, R. P., et al. (2017). Branched pectic galactan in phloem-sieve-element cell walls: implications for cell mechanics. Plant Physiol. 176, 1547–1558. doi: 10.1104/pp.17.01568

Torode, T. A., Siméon, A., Marcus, S. E., Jam, M., Le Moigne, M. A., Duffieux, D., et al. (2016). Dynamics of cell wall assembly during early embryogenesis in the brown alga Fucus. J. Exp. Bot. 67, 6089–6100. doi: 10.1093/jxb/erw369

Tranquet, O., Saulnier, L., Utile, J.-P., Ralph, J., and Guillon, F. (2009). Monoclonal antibodies to p-coumarate. Phytochemistry 70, 1366–1373. doi: 10.1016/j.phytochem.2009.06.019

Venditti, I., Luis, A. S., Rydahl, M., Schüückel, J., Fernandes, V. O., Vidal-Melgosa, S., et al. (2016). Complexity of the Ruminococcus flavefaciens cellulose reflects an expansion in glycan recognition. Proc. Natl. Acad. Sci. U.S.A. 113, 7136–7141. doi: 10.1073/pnas.1605581113

Verherbruggen, Y., Marcus, S. E., Hæger, A., Ordaz-Ortiz, J. J., and Knox, J. P. (2009a). An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr. Res. 344, 1858–1862. doi: 10.1016/j.carres.2008.11.010

Verherbruggen, Y., Marcus, S. E., Hæger, A., Verhoef, R., Schols, H. A., McCleary, B. V., et al. (2009b). Developmental complexity of arabian polysaccharides and their processing in plant cell walls. Plant J. 59, 413–425. doi: 10.1111/j.1365-313X.2009.03876.x

Verherbruggen, Y., Walker, J. L., Guillan, F., and Scheller, H. V. (2017). A comparative study of sample preparation for staining and immunodetection of plant cell walls by light microscopy. Front. Plant Sci. 8:1505. doi: 10.3389/fpls.2017.01505

Vidal-Melgosa, S., Pedersen, H. L., Schüückel, J., Arnal, G., Dumon, C., Amby, D., et al. (2015). A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes. J. Biol. Chem. 290, 9020–9036. doi: 10.1074/jbc.M114.630673

Vissenberg, K., Fry, S. C., and Verbelen, J. P. (2001). Root hair initiation is associated with the developmental anatomy of the carrot root apex. Plant Cell. 13, 237–246. doi: 10.1105/tpc.12.7.1229

Frontiers in Plant Science | www.frontiersin.org 19 May 2018 | Volume 9 | Article 581
Voinicu, C., Pauly, M., and Usadel, B. (2018). Monitoring polysaccharide dynamics in the plant cell wall. Plant Physiol. 176, 2590–2600. doi: 10.1104/pp.17.01776

Walker, J. A., Patattih, S., Bergeman, L. F., Beebe, E. T., Deng, K., Mirzai, M., et al. (2017). Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling. Biotechnol. Biofuels 10:31. doi: 10.1186/s13068-017-0703-6

Wallace, I. S., and Anderson, C. T. (2012). Small molecule probes for plant cell wall polysaccharide imaging. Front. Plant Sci. 3:89. doi: 10.3389/fpls.2012.00089

Wang, L., Wang, Y., and Ragauskas, A. J. (2012). Determination of colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy. Analyst 137, 1319–1324. doi: 10.1039/c2an15938d

Wang, M., Heimovaara-Dijkstra, S., van der Meulen, R. M., Knox, J. P., and Neill, S. J. (1995). The monoclonal antibody JIM19 modulates abscisic acid action in barley aleurone protoplasts. Planta 196, 271–276. doi: 10.1007/BF00201384

Weller, M. G. (2016). Quality issues of research antibodies. Anal. Chem. Insights 11, 21–27. doi: 10.4137/ACI.S1614

Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., et al. (2016). Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Physiol. 29, 949–982. doi: 10.1152/japplphysiol.00794.15

Wills, W. G., Limberg, G., Buchholt, H. C., van Alebeek, G. J., Benen, J., Christensen, T. M., et al. (2000). Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydr. Res. 327, 309–320. doi: 10.1016/S0008-6215(00)00039-2

Wills, W. G., Marcus, S. E., and Knox, J. P. (1998). Generation of monoclonal antibody specific to 1→5-alpha-L-arabinan. Carbohydr. Res. 308, 149–152. doi: 10.1016/S0008-6215(98)00070-6

Wills, W. G., McCartney, L., Steele-King, C. G., Marcus, S. E., Mort, A., Huisman, M., et al. (2004). A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta 218, 673–681. doi: 10.1007/s00425-003-1147-8

Wills, W. G., Orfila, C., Limberg, G., Buchholt, H. C., van Alebeek, G. J., Voragen, A. G., et al. (2001). Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J. Biol. Chem. 276, 19404–19413. doi: 10.1074/jbc.M0111242200

Wills, W. G., Gilmartin, P. M., Mikkelsen, J. D., and Knox, J. P. (1999). Cell wall antibodies without immunization: generation and use of de-esterified homogalacturonan block-specific antibodies from a naive phage display library. Plant J. 18, 57–65. doi: 10.1046/j.1365-313X.1999.00427.x

Williams, M. N., Freshour, G., Darvill, A. G., Albersheim, P., and Hahn, M. G. (1996). An antibody Fab selected from a recombinant phage display library detects deesterified pectic polysaccharide thiamogalacturonan II in plant cells. Plant Cell 8, 673–685. doi: 10.1105/tpc.8.4.673

Wilson, M. H., Holman, T. J., Sørensen, I., Cancho-Sanchez, E., Wells, D. M., Swarup, R., et al. (2015). Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Front. Cell Dev. Biol. 3:10. doi: 10.3389/fcel.2015.00010

Wilson, S. M., and Bacie, A. (2012). Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes. Nat. Protoc. 7, 1716–1727. doi: 10.1038/nprot.2012.096

Wolf, S., Hématy, K., and Höfte, H. (2012). Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63, 381–407. doi: 10.1146/annurev-arplant-042811-105449

Xue, J., Bosch, M., and Knox, J. P. (2013). Heterogeneity and glycan masking of cell wall microstructures in the stems of Miscanthus x giganteus, and its parents M. sinensis and M. sacchariflorus. PLoS ONE 8:e82114. doi: 10.1371/journal.pone.0082114

Yang, Q., Goldstein, I., Mei, H. Y., and Engelke, D. R. (1998). DNA ligands that bind tightly and selectively to cellulose. Proc. Natl. Acad. Sci. U.S.A. 95, 5462–5467. doi: 10.1073/pnas.95.10.5462

Yates, E. A., Valdor, J. F., Haslam, S. M., Morris, H. R., Dell, A., Mackie, W., et al. (1996). Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6, 131–139. doi: 10.1093/glycob/6.2.131

Yoon, H. Y., Koo, H., Kim, K., and Kwon, I. C. (2017). Molecular imaging based on metabolic glycoengineering and click chemistry. Biomaterials 132, 28–36. doi: 10.1016/j.biomaterials.2017.04.003

Zhang, H., Zhou, L., Zhu, Z., and Yang, C. (2016). Recent progress in aptamer-based functional probes for bioanalysis and biomedicine. Chemistry 22, 9886–9890. doi: 10.1002/chem.201503543

Zhang, X., Rogowski, A., Zhao, L., Hahn, M. G., Avci, U., Knox, J. P., et al. (2014). Understanding how the complex molecular architecture of mannan degrading glycosylates contributes to plant cell wall degradation. J. Biol. Chem. 289, 2002–2012. doi: 10.1074/jbc.M113.527770

Zhu, Y., and Chen, X. (2017). Expanding the scope of metabolic glycan labeling in Arabidopsis thaliana. Chembiochem 18, 1286–1296. doi: 10.1002/cbic.201700069

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Rydahl, Hansen, Kračun and Mravec. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.