Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts

Xuesheng Han ¹, Tory L Parker ¹

Affiliations
PMID: 28407719 PMCID: PMC6130734 DOI: 10.1080/13880209.2017.1314513

Free PMC article

Abstract

Context: Clove (Eugenia caryophyllata Thunb. [Myrtaeae]) essential oil (CEO) has been shown to possess antimicrobial, antifungal, antiviral, antioxidant, anti-inflammatory and anticancer properties. However, few studies have focused on its topical use.

Objective: We investigated the biological activity of a commercially available CEO in a human skin disease model.

Materials and methods: We evaluated the effect of CEO on 17 protein biomarkers that play critical roles in inflammation and tissue remodelling in a validated human dermal fibroblast system, which was designed to model chronic inflammation and fibrosis. Four concentrations of CEO (0.011, 0.0037, 0.0011, 0.00037, 0.00011) were investigated.

Results: CEO inhibited inflammation-related protein expression in a concentration-dependent manner. Anti-inflammatory effects were evident at all concentrations tested, with maximal inhibition observed at 0.0037% CEO.

Conclusion: This study provides evidence for the anti-inflammatory properties of clove essential oil in vitro.

Follow NLM

National Library of Medicine
8600 Rockville Pike
Bethesda, MD 20894

Copyright
FOIA
Privacy
Help
Accessibility
0.0012, and 0.00041%, v/v) were studied. The effect of 0.011% CEO on genome-wide gene expression was also evaluated.

Results and discussion: CEO at a concentration of 0.011% showed robust antiproliferative effects on human dermal fibroblasts. It significantly inhibited the increased production of several proinflammatory biomarkers such as vascular cell adhesion molecule-1 (VCAM-1), interferon γ-induced protein 10 (IP-10), interferon-inducible T-cell α chemoattractant (I-TAC), and monokine induced by γ interferon (MIG). CEO also significantly inhibited tissue remodelling protein molecules, namely, collagen-I, collagen-III, macrophage colony-stimulating factor (M-CSF), and tissue inhibitor of metalloproteinase 2 (TIMP-2). Furthermore, it significantly modulated global gene expression and altered signalling pathways critical for inflammation, tissue remodelling, and cancer signalling processes. CEO significantly inhibited VCAM-1 and collagen III at both protein and gene expression levels.

Conclusions: This study provides important evidence of CEO-induced anti-inflammatory and tissue remodelling activity in human dermal fibroblasts. This study also supports the anticancer properties of CEO and its major active component eugenol.

Keywords: Anti-inflammation; cancer signalling; collagen III; eugenol; immune response; interferon γ-induced protein 10; interferon-inducible T-cell α chemoattractant; monokine induced by γ interferon; skin health; vascular cell adhesion molecule-1.

Figures
Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal...