Multiple periodic solutions of Lagrangian systems of relativistic oscillators

BIAGIO RICCERI

Abstract. - Let B_L the open ball in \mathbb{R}^n centered at 0, of radius L, and let ϕ be a homeomorphism from B_L onto \mathbb{R}^n such that $\phi(0) = 0$ and $\phi = \nabla \Phi$, where the function $\Phi : \overline{B_L} \to [-\infty, 0]$ is continuous and strictly convex in $\overline{B_L}$, and of class C^1 in B_L. Moreover, let $F : [0, T] \times \mathbb{R}^n \to \mathbb{R}$ be a function which is measurable in $[0, T]$, of class C^1 in \mathbb{R}^n and such that $\nabla_x F$ satisfies the L^1-Carathéodory conditions. Set

$$K = \{ u \in \text{Lip}([0, T], \mathbb{R}^n) : |u'(t)| \leq L \text{ for a.e. } t \in [0, T], u(0) = u(T) \} ,$$

and define the functional $I : K \to \mathbb{R}$ by

$$I(u) = \int_0^T (\Phi(u'(t)) + F(t, u(t)))dt$$

for all $u \in K$. In [1], Brezis and Mawhin proved that any global minimum of I in K is a solution of the problem

$$\begin{cases}
(\phi(u'))' = \nabla_x F(t, u) & \text{in } [0, T] \\
u(0) = u(T), \quad u'(0) = u'(T) .
\end{cases}$$

(P$_{\phi, F}$)

In the present paper, we provide a set of conditions under which the functional I has at least two global minima in K. This seems to be the first result of this kind. The main tool of our proof is the well-posedness result obtained in [3].

1. - Introduction

As the reader can notice, the title of the present paper is, intentionally, almost identical to the one of [1].

Actually, it is our aim to show how to obtain the multiplicity of periodic solutions for the systems mentioned in the title making a joint use of the theory developed by Brezis and Mawhin in [1] with that we developed in [3].

To be more precise, we now fix some notations that we will keep throughout the paper and recall the main result of [1].

L, T are two fixed positive numbers. For each $r > 0$, we set $B_r = \{ x \in \mathbb{R}^n : |x| < r \}$ ($|\cdot|$ being the Euclidean norm on \mathbb{R}^n) and $\overline{B_r}$ is the closure of B_r.

We denote by A the family of all homeomorphisms ϕ from B_L onto \mathbb{R}^n such that $\phi(0) = 0$ and $\phi = \nabla \Phi$, where the function $\Phi : \overline{B_L} \to [-\infty, 0]$ is continuous and strictly convex in $\overline{B_L}$, and of class C^1 in B_L. Notice that 0 is the unique global minimum of Φ in $\overline{B_L}$.

We denote by B the family of all functions $F : [0, T] \times \mathbb{R}^n \to \mathbb{R}$ which are measurable in $[0, T]$, of class C^1 in \mathbb{R}^n and such that $\nabla_x F$ is measurable in $[0, T]$ and, for each $r > 0$, one has $\sup_{x \in \overline{B_r}} |\nabla_x F(\cdot, x)| \in L^1([0, T])$.

Given $\phi \in A$ and $F \in B$, we consider the problem

$$\begin{cases}
(\phi(u'))' = \nabla_x F(t, u) & \text{in } [0, T] \\
u(0) = u(T), \quad u'(0) = u'(T) .
\end{cases}$$

(P$_{\phi, F}$)
A solution of this problem is any function $u : [0, T] \to \mathbb{R}^n$ of class C^1, with $u'(t) \in B_L$, $u(0) = u(T)$, such that the composite function $\phi \circ u'$ is absolutely continuous in $[0, T]$ and one has $(\phi \circ u')(t) = \nabla_x F(t, u(t))$ for a.e. $t \in [0, T]$.

Now, we set
$$K = \{ u \in \text{Lip}([0, T], \mathbb{R}^n) : |u'(t)| \leq L \text{ for a.e. } t \in [0, T], u(0) = u(T) \},$$

$\text{Lip}([0, T], \mathbb{R}^n)$ being the space of all Lipschitzian functions from $[0, T]$ into \mathbb{R}^n.

Clearly, one has
$$\sup_{[0, T]} |u| \leq LT + \inf_{[0, T]} |u|$$

for all $u \in K$. To see this, take $t_0 \in [0, T]$ such that $|u(t_0)| = \inf_{[0, T]} |u|$ and observe that, for each $t \in [0, T]$, one has
$$|u(t) - u(t_0)| = \left| \int_{t_0}^{t} u'(\tau) d\tau \right| \leq LT.$$

Next, consider the functional $I : K \to \mathbb{R}$ defined by
$$I(u) = \int_{0}^{T} (\Phi(u'(t)) + F(t, u(t))) dt$$

for all $u \in K$.

The basic result of the theory developed in [1] is as follows:

THEOREM 1.1 ([1], Theorem 5.2). - *Any global minimum of I in K is a solution of problem $(P_{\phi, F})$.*

Well, the aim of the present paper is to provide a set of conditions under which the functional I has at least two global minima in K.

As far as we know, this is the first result of this kind, and so we cannot do any proper comparison with previous ones.

Notice that some multiplicity results for problem $(P_{\phi, F})$ are already available in the literature. In this connection, we refer to the numerous references contained in the very recent survey by Mawhin [2] and in [4]. But, as we repeat, in those papers the multiple solutions of problem $(P_{\phi, F})$ are not shown to be global minima of the functional I in K.

As we said at the beginning, our main tool is provided by the main result obtained in [3] which is recalled in the next section.

Finally, Section 3 contains the statement of our multiplicity result, its proof and various related remarks.

2. - A well-posedness theorem

In this section, we summarize the theory developed in [3].

So, let X be a Hausdorff topological space, J, Ψ two real-valued functions defined in X, and a, b two numbers in $[-\infty, +\infty]$, with $a < b$.

If $a \in \mathbb{R}$ (resp. $b \in \mathbb{R}$), we denote by M_a (resp. M_b) the set of all global minima of the function $J + a\Psi$ (resp. $J + b\Psi$), while if $a = -\infty$ (resp. $b = +\infty$), M_a (resp. M_b) stands for the empty set. We adopt the conventions $\inf \emptyset = +\infty$, $\sup \emptyset = -\infty$.

We also set
$$\alpha = \max \left\{ \inf_{X} \Psi, \sup_{M_a} \Psi \right\},$$
$$\beta = \min \left\{ \sup_{X} \Psi, \inf_{M_b} \Psi \right\}.$$

One proves that $\alpha \leq \beta$.

2
As usual, given a function \(f : X \to \mathbb{R} \) and a set \(C \subseteq X \), we say that the problem of minimizing \(f \) over \(C \) is well-posed if the following two conditions hold:
- the restriction of \(f \) to \(C \) has a unique global minimum, say \(\hat{x} \);
- every sequence \(\{x_n\} \) in \(C \) such that \(\lim_{n \to \infty} f(x_n) = \inf_C f \), converges to \(\hat{x} \).

A set of the type \(\{x \in X : f(x) \leq r\} \) is said to be a sub-level set of \(f \).

The main result of [3] is as follows:

THEOREM 2.1 ([3], Theorem 1). - Assume that \(\alpha < \beta \) and that, for each \(\lambda \in [a, b] \), the function \(J + \lambda \Psi
\) has sequentially compact sub-level sets and admits a unique global minimum in \(X \).

Then, for each \(r \in [\alpha, \beta] \), the problem of minimizing \(J \) over \(\Psi^{-1}(r) \) is well-posed.

Moreover, if we denote by \(\hat{x}_r \) the unique global minimum of \(J_{\Psi^{-1}(r)} \) (\(r \in [\alpha, \beta] \)), the functions \(r \to \hat{x}_r \) and \(r \to J(\hat{x}_r) \) are continuous in \([\alpha, \beta] \), and, for some \(\hat{\lambda}_r \in [a, b] \), \(\hat{\lambda}_r \) is the global minimum in \(X \) of the function \(J + \hat{\lambda}_r \Psi \).

3. - The main result

Here is our main result:

THEOREM 3.1. - Let \(\phi \in \mathcal{A} \), \(F \in \mathcal{B} \), \(G \in C^1(\mathbb{R}^n) \), \(\psi \in L^1([0, T]) \setminus \{0\} \), with \(\psi \geq 0 \). Moreover, let \(\gamma : [0, +\infty] \to \mathbb{R} \) be a convex strictly increasing function such that \(\lim_{s \to +\infty} \frac{\gamma(s)}{s} = +\infty \). Assume that the following assumptions are satisfied:

(i) for a.e. \(t \in [0, T] \) and for every \(x \in \mathbb{R}^n \), one has
\[
\gamma(|x|) \leq F(t, x) ;
\]

(ii) \(\liminf_{|x| \to +\infty} \frac{G(x)}{|x|^2} > -\infty ; \)

(iii) the function \(G \) has no global minima in \(\mathbb{R}^n ; \)

(iv) there exist two points \(x_1, x_2 \in \mathbb{R}^n \) such that
\[
\inf_{x \in \mathbb{R}^n} \int_0^T F(t, x) dt < \max \left\{ \int_0^T F(t, x_1) dt, \int_0^T F(t, x_2) dt \right\}
\]
and
\[
G(x_1) = G(x_2) = \inf_{B_c} G
\]
where
\[
c = LT + \gamma^{-1} \left(\frac{1}{T} \max \left\{ \int_0^T F(t, x_1) dt, \int_0^T F(t, x_2) dt \right\} \right) .
\]

Then, there exist \(\hat{\lambda} > 0 \) such that the problem
\[
\begin{cases}
(\phi(u'))' = \nabla_x (F(t, u) + \hat{\lambda} \psi(t)G(u)) & \text{in } [0, T] \\
u(0) = u(T), \ u'(0) = u'(T)
\end{cases}
\]
has at least two solutions which are global minima in \(K \) of the functional
\[
u \to \int_0^T (\Phi(u'(t)) + F(t, u(t)) + \hat{\lambda} \psi(t)G(u(t))) dt .
\]

PROOF. Let \(C^0([0, T], \mathbb{R}^n) \) be the space of all continuous functions from \([0, T] \) into \(\mathbb{R}^n \), with the norm \(\sup_{[0, T]} |u| \). We are going to apply Theorem 2.1 taking: \(a = 0, \ b = +\infty, \ X = K \) regarded as a subset of \(C^0([0, T], \mathbb{R}^n) \) with the relative topology and
\[
J(u) = \int_0^T \psi(t)G(u(t)) dt ,
\]
\[\Psi(u) = \int_0^T (\Phi(u'(t)) + F(t, u(t)))dt \]

for all \(u \in K \). Fix \(\lambda > 0 \). By \((i_2)\), for a suitable constant \(\delta > 0 \), we have

\[-\delta(|x| + 1) \leq G(x) \]

for all \(x \in \mathbb{R}^n \). For each \(u \in K \), in view of \((i_1)\), \((1.1)\) and of the convexity of \(\gamma \), using Jensen inequality, we get

\[
\begin{align*}
\int_0^T \psi(t)G(u(t))dt + \lambda \int_0^T (\Phi(u'(t)) + F(t, u(t)))dt & \geq -\delta \int_0^T \psi(t)|u(t)|dt + \lambda \int_0^T \gamma(|u(t)|)dt - \delta \int_0^T \psi(t)dt + \lambda \Phi(0)T \\
& \geq -\delta \int_0^T \psi(t)dt \sup_{[0,T]} |u| + \lambda T \gamma \left(\frac{1}{T} \int_0^T |u(t)|dt \right) - \delta \int_0^T \psi(t)dt + \lambda \Phi(0)T \\
& \geq -\delta \int_0^T \psi(t)dt \sup_{[0,T]} |u| + \lambda T \gamma \left(\inf_{[0,T]} |u| \right) - \delta \int_0^T \psi(t)dt + \lambda \Phi(0)T \\
& = -\delta \int_0^T \psi(t)dt \sup_{[0,T]} |u| + \lambda T \gamma \left(\sup_{[0,T]} |u| - LT \right) - \delta \int_0^T \psi(t)dt + \lambda \Phi(0)T .
\end{align*}
\] \((3.1)\)

In turn, since \(\lim_{s \to +\infty} \frac{\gamma(s) - LT}{s} = +\infty \), we infer from \((3.1)\) that, for every \(\rho \in \mathbb{R} \), there is \(M > 0 \) such that

\[
\left\{ u \in K : \int_0^T \psi(t)G(u(t))dt + \lambda \int_0^T (\Phi(u'(t)) + F(t, u(t)))dt \leq \rho \right\} \subseteq \left\{ u \in K : \sup_{[0,T]} |u| \leq M \right\} . \quad (3.2)
\]

Now, observe that \(K \) is a closed subset of \(C^0([0,T], \mathbb{R}^n) \). On the other hand, from Lemma 4.1 of \([1]\), it follows that the functional \(J + \lambda \Psi \) is lower semicontinuous in \(K \). Summarizing: the functions belonging to any sub-level set of \(J + \lambda \Psi \) are equi-continuous (since they are in \(K \)) and equi-bounded in view of \((3.2)\). Hence, by the Ascoli-Arzelà theorem, any sub-level set of \(J + \lambda \Psi \) is relatively sequentially compact in \(C^0([0,T], \mathbb{R}^n) \). But, for the remarks above, the same set is closed in \(C^0([0,T], \mathbb{R}^n) \), and so it is sequentially compact in \(K \). Next, observe that the functional \(J \) ha no global minima in \(K \). Since the constant functions lie in \(K \), it is clear that

\[
\inf_K J = \inf_{\mathbb{R}^n} G \int_0^T \psi(t)dt .
\]

Hence, if \(G \) is unbounded below, so \(J \) is too. Now, suppose that \(G \) is bounded below. Arguing by contradiction, assume that \(\hat{u} \in K \) is a global minimum of \(J \). Then, we would have

\[
\int_0^T \psi(t) \left(G(\hat{u}(t)) - \inf_{\mathbb{R}^n} G \right) dt = 0 ,
\]

and so, since the integrand is non-negative, it would follow

\[
\psi(t) \left(G(\hat{u}(t)) - \inf_{\mathbb{R}^n} G \right) = 0
\]

for a.e. \(t \in [0,T] \). Therefore, since \(\psi \neq 0 \), for some \(t \in [0,T] \), we would have \(G(\hat{u}(t)) = \inf_{\mathbb{R}^n} G \), against \((i_3)\). Notice that the absence of global minima for \(J \) implies that

\[
\beta = \sup_K \Psi .
\]

Moreover, since \(\lim_{s \to +\infty} \gamma(s) = +\infty \), from \((i_1)\) it follows that

\[
\sup_K \Psi = +\infty .
\]
Furthermore, since \(b = +\infty \), we have
\[
\alpha = \inf_{K} \Psi .
\]

Clearly
\[
\inf_{K} \Psi \leq \inf_{x \in \mathbb{R}^n} \int_{0}^{T} F(t,x)dt + \Phi(0)T .
\]

Now, put
\[
r = \max \left\{ \int_{0}^{T} F(t,x_1)dt, \int_{0}^{T} F(t,x_2)dt \right\} + \Phi(0)T .
\]

By the above remarks and by the inequality in (i4), we have
\[
\alpha < r < \beta .
\]

Fix \(u \in \Psi^{-1}([-\infty, r]) \). By (i1) and Jensen inequality again, we have
\[
r \geq \int_{0}^{T} (\Phi(u'(t)) + F(t,u(t)))dt \geq \int_{0}^{T} \gamma(|u(t)|)dt + \Phi(0)T \geq T \gamma \left(\frac{1}{T} \int_{0}^{T} |u(t)|dt \right) + \Phi(0)T ,
\]
and so
\[
\gamma \left(\frac{1}{T} \int_{0}^{T} |u(t)|dt \right) \leq \frac{1}{T} \max \left\{ \int_{0}^{T} F(t,x_1)dt, \int_{0}^{T} F(t,x_2)dt \right\} .
\]

Applying \(\gamma^{-1} \), we get
\[
\frac{1}{T} \int_{0}^{T} |u(t)|dt \leq \gamma^{-1} \left(\frac{1}{T} \max \left\{ \int_{0}^{T} F(t,x_1)dt, \int_{0}^{T} F(t,x_2)dt \right\} \right)
\]
and hence
\[
\inf_{[0,T]} |u| \leq \gamma^{-1} \left(\frac{1}{T} \max \left\{ \int_{0}^{T} F(t,x_1)dt, \int_{0}^{T} F(t,x_2)dt \right\} \right) .
\]

In view of (1.1), we then infer that
\[
\sup_{[0,T]} |u| \leq LT + \gamma^{-1} \left(\frac{1}{T} \max \left\{ \int_{0}^{T} F(t,x_1)dt, \int_{0}^{T} F(t,x_2)dt \right\} \right) . \tag{3.3}
\]

In turn, in view of (i4), (3.3) implies that
\[
J(x_1) = J(x_2) \leq J(u) .
\]

Since \(x_1, x_2 \in \Psi^{-1}([-\infty, r]) \), we then conclude that \(x_1, x_2 \) are two distinct global minima of \(J|_{\Psi^{-1}([-\infty, r])} \).

Now, arguing by contradiction, assume that, for every \(\lambda > 0 \), the functional \(J + \lambda \Psi \) has a unique global minimum in \(K \). Then, by Theorem 2.1 (recall that \(J + \lambda \Psi \) has sequentially compact sub-level sets), there would exist \(\hat{\lambda}_r > 0 \) and \(\hat{u}_r \in \Psi^{-1}(r) \) such that \(\hat{u}_r \) is the unique global minimum of \(J + \hat{\lambda}_r \Psi \) in \(K \). Then, for \(i = 1, 2 \), we would have
\[
\inf_{u \in K} (J(u) + \hat{\lambda}_r \Psi(u)) \leq J(x_i) + \hat{\lambda}_r \Psi(x_i) \leq J(\hat{u}_r) + \hat{\lambda}_r \Psi(\hat{u}_r) = \inf_{u \in K} (J(u) + \hat{\lambda}_r \Psi(u)) .
\]

That is to say, \(x_1 \) and \(x_2 \) would be two distinct global minima in \(K \) of the functional \(J + \hat{\lambda}_r \Psi \), a contradiction. So, there exists some \(\lambda > 0 \) such that the functional \(J + \lambda \Psi \) has at least two global minima in \(K \). To conclude the proof, take \(\hat{\lambda} = \frac{1}{\lambda} \) and apply Theorem 1.1. \(\triangle \)
In the sequel, the following further result from [1] will be useful:

PROPOSITION 3.1 ([1], Proposition 3.2). - Let $\phi \in \mathcal{A}$, $p > 1$ and $\mu > 0$. Then, for every $\omega \in L^1([0,T],\mathbb{R}^n)$, the problem

$$\begin{cases}
(\phi(u'))' = \mu|u|^{p-2}u + \omega(t) & \text{in } [0,T] \\
u(0) = u(T), \ u'(0) = u'(T)
\end{cases}$$

has a unique solution.

The next three examples (where $\phi \in \mathcal{A}$) show that, in Theorem 3.1, none of $(i_2) - (i_4)$ can be removed at all.

EXAMPLE 3.1. - Take: $F(x) = |x|^2$, $G(x) = \langle z, x \rangle$, with $z \in \mathbb{R}^n \setminus \{0\}$, $\psi = 1$, $\gamma(s) = \frac{s^2}{2}$. Clearly, $(i_1) - (i_3)$ are satisfied, but, for every $\lambda \in \mathbb{R}$, the problem

$$\begin{cases}
(\phi(u'))' = u + \lambda z & \text{in } [0,T] \\
u(0) = u(T), \ u'(0) = u'(T)
\end{cases}$$

has a unique solution by Proposition 3.1.

EXAMPLE 3.2. - Take: $F(x) = \frac{|x|^2}{2}$, $G = 0$, $\gamma(s) = \frac{s^2}{2}$. Clearly, (i_1), (i_2) and (i_4) are satisfied, but, by Proposition 3.1, 0 is the unique solution of the problem

$$\begin{cases}
(\phi(u'))' = u & \text{in } [0,T] \\
u(0) = u(T), \ u'(0) = u'(T)
\end{cases}$$

EXAMPLE 3.3. - Take: $F(x) = |x|^2$, $G(x) = \begin{cases} 0 & \text{if } |x| \leq LT + 1 \\
-(|x| - LT - 1)^3 & \text{if } |x| > LT + 1 \end{cases}$, $\psi = 1$, $\gamma(s) = s^2$. Clearly, (i_1), (i_3) and (i_4) are satisfied. In particular, (i_4) is satisfied by any pair of distinct points $x_1, x_2 \in \mathbb{R}^n$ such that $|x_1| = |x_2| \leq 1$. However, for each $\lambda > 0$, the functional $u \to \int_0^T (\Phi(u'(t)) + |u(t)|^2 + \lambda G(u(t)))dt$ is unbounded below in K.

We conclude with a joint consequence of Theorem 3.1 and Proposition 3.1.

THEOREM 3.2. - Let $\phi \in \mathcal{A}$, $p > 1$, $G \in C^1(\mathbb{R}^n)$, $\psi \in L^1([0,T]) \setminus \{0\}$, with $\psi \geq 0$. Assume that G satisfies assumptions (i_2), (i_3) of Theorem 3.1 and the following:

(j_1) there is $\rho > LT$ such that G is constant in B_ρ.

Then, there exists $\tilde{\lambda} > 0$ such that the problem

$$\begin{cases}
(\phi(u'))' = |u|^{p-2}u + \tilde{\lambda}\psi(t)\nabla G(u) & \text{in } [0,T] \\
u(0) = u(T), \ u'(0) = u'(T)
\end{cases}$$

has at least one solution which is a global minimum in K of the functional

$$u \to \int_0^T \left(\Phi(u'(t)) + \frac{|u(t)|^p}{p} + \tilde{\lambda}\psi(t)G(u(t)) \right) dt$$

and whose range is contained in $\mathbb{R}^n \setminus \overline{B_{\rho-LT}}$.

PROOF. Apply Theorem 3.1 with $F(t, x) = \frac{|x|^p}{p}$ and $\gamma(s) = \frac{s}{p}$. Concerning (i_4), notice that it is satisfied by any pair of distinct points $x_1, x_2 \in \mathbb{R}^n$, such that $|x_1| = |x_2| \leq \rho - LT$. This comes from (j_1) after observing that $\gamma^{-1} \left(\frac{1}{T} \int_0^T F(t, x_1) dt \right) = |x_1|$. So, by Theorem 3.1, there exists $\tilde{\lambda} > 0$ such that the problem

\[
\begin{cases}
(\phi(u'))' = |u|^{p-2} u + \tilde{\lambda} \psi(t) \nabla G(u) & \text{in } [0, T] \\
u(0) = u(T) , \ u'(0) = u'(T)
\end{cases}
\]

has at least one non-zero solution which is a global minimum in K of the functional

\[
u \rightarrow \int_0^T \left(\Phi(u'(t)) + \frac{|u(t)|^p}{p} + \tilde{\lambda} \psi(t) G(u(t)) \right) dt .
\]

Denote by w such a solution. To complete the proof, we have to show that $\inf_{[0, T]} |w| > \rho - LT$. Arguing by contradiction, assume that $\inf_{[0, T]} |w| \leq \rho - LT$. Then, by (1.1), we would have

\[
\sup_{[0, T]} |w| \leq \rho .
\]

By (j_1), this would imply that w is a solution of the problem

\[
\begin{cases}
(\phi(u'))' = |u|^{p-2} u & \text{in } [0, T] \\
u(0) = u(T) , \ u'(0) = u'(T)
\end{cases}
\]

and hence $w = 0$ by Proposition 3.1, which is a contradiction. The proof is complete. \(\triangle\)
References

[1] H. BREZIS and J. MAWHIN, *Periodic solutions of Lagrangian systems of relativistic oscillators*, Commun. Appl. Anal., 15 (2011), 235-250.

[2] J. MAWHIN, *Multiplicity of solutions of relativistic-type systems with periodic nonlinearities: a survey*, Electron. J. Differ. Equ. Conf., 23 (2016), 77-86.

[3] B. RICCERI, *Well-posedness of constrained minimization problems via saddle-points*, J. Global Optim., 40 (2008), 389-397.

[4] X. WANG, Q. LIU and D. QIAN, *Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian via a geometric approach*, Bound. Value Probl. 2016, 2016:47.

Department of Mathematics
University of Catania
Viale A. Doria 6
95125 Catania, Italy
e-mail address: ricceri@dmi.unict.it