Identification and Characterization of a Membrane Protein (y⁺L Amino Acid Transporter-1) That Associates with 4F2hc to Encode the Amino Acid Transport Activity y⁺L

A CANDIDATE GENE FOR lysINURIC PROTEIN INtOLERANCE*

David Torrents‡‡, Raúl Estévez‡‡, Marta Pineda§§, Esperanza Fernández‡‡, Jorge Lloberas†, Yun-Bo Shi**, Antonio Zorzano, and Manuel Palacin‡‡

From the Departament de Bioquímica i Biologia Molecular and the Departament de Fisiologia (Immunologia), Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain and the **Laboratory of Molecular Embryology NICHD, National Institutes of Health, Bethesda, Maryland 20892-5431

We have identified a new human cDNA (y⁺L amino acid transporter-1 (y⁺LAT-1)) that induces system y⁺L transport activity with 4F2hc (the surface antigen 4F2 heavy chain) in oocytes. Human y⁺LAT-1 is a new member of a family of polytopic transmembrane proteins that are homologous to the yeast high affinity methionine permease MUP1. Other members of this family, the Xenopus laevis IU12 and the human KIAA0245 cDNAs, also co-express amino acid transport activity with 4F2hc in oocytes, with characteristics that are compatible with those of systems L and y⁺L, respectively. y⁺LAT-1 protein forms a ~135-kDa, disulfide bond-dependent heterodimer with 4F2hc in oocytes, which upon reduction results in two protein bands of ~85 kDa (i.e. 4F2hc) and ~40 kDa (y⁺LAT-1). Mutation of the human 4F2hc residue cysteine 109 (Cys-109) to serine abolishes the formation of this heterodimer and drastically reduces the co-expressed transport activity. These data suggest that y⁺LAT-1 and other members of this family are different 4F2 light chain subunits, which associated with 4F2hc, constitute different amino acid transporters. Human y⁺LAT-1 mRNA is expressed in kidney => peripheral blood leukocytes => lung > placenta = spleen > small intestine. The human y⁺LAT-1 gene localizes at chromosome 14q11.2 (17cR) ~ 374 kb from D14S1350), within the lysinuric protein intolerance (LPI) locus (Lauteala, T., Sistonen, P., Savontaus, M. L., Mykkänen, J., Simell, J., Lukkarinen, M., Simmell, O., and Aula, P. (1997) Am. J. Hum. Genet. 60, 1479–1486). LPI is an inherited autosomal disease characterized by a defective dibasic amino acid transport in kidney, intestine, and other tissues. The pattern of expression of human y⁺LAT-1, its co-expressed transport activity with 4F2hc, and its chromosomal location within the LPI locus, suggest y⁺LAT-1 as a candidate gene for LPI.

* This research was supported in part by EU BIOMED 2 Grant PL963514, Dirección General de Investigación Científica y Técnica Research Grants PM96/0060, and Generalitat de Catalunya (Spain) Grant 1997 SGR 121. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1724 solely to indicate this fact.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBank™/EBI Data Bank with accession number(s) AF092032.

‡‡ These two authors contributed equally to this work.

§§ To whom correspondence should be addressed. Tel.: 34-93-4021543; Fax: 34-93-4021559.

1 F. Verrey, personal communication.
Identification and Characterization of y'LAT-1

(between 26 and 31%) with the mammalian transporters for cationic amino acids CAT1 and CAT2 (18, 19). Human E16 was first identified from peripheral blood leukocytes and related to lymphocyte activation (13). Rat TAI1 was cloned later on the basis of its differential expression between hepatoma cells and normal liver (14). E16, TAI1, and ASUR4 cDNA were first described as proteins 241 amino acids long. The presence in the data base of a thyroid hormone regulated X. laevis cDNA, termed IU12 (AF019906) (20), which was 507 amino acids long and practically identical to ASUR4 (only one amino acid was different in the corresponding protein region), suggested that the former three cDNAs were indeed longer. Very recently, F. Verrey has submitted a new ASUR4 cDNA GenBank entry (accession number Y12716), which also has 507 amino acids. Although IU12 and the new entry of ASUR4 still differ in four disperse amino acids, we can consider that both sequences correspond to the same gene in Xenopus. We can now assume that E16 and TAI1 are actually longer proteins.

In this study, we have identified a new human member of this group of amino acid permease-related proteins. This protein, which we have named y'LAT-1 does not induce transport of amino acids in oocytes when injected alone, but y'LAT activity is co-expressed when it is injected with 4F2hc. We demonstrate here that it forms a heterodimer with 4F2hc linked by disulfide bridges with residue cysteine 109 of human 4F2hc. Its pattern of expression and its chromosomal localization indicate that this gene could be responsible for lysinuric protein intolerance (21), an inherited disorder of cationic amino acid transport.

EXPERIMENTAL PROCEDURES

Oocytes, Injections, and Uptake Measurements—Oocyte origin, management, and injections were as described elsewhere (1, 2). Defolliculated stage VI X. laevis oocytes were injected with different amounts of human 4F2hc, human y'LAT-1, human y'LAT-2 (KIAA0245), or X. laevis IU12 cRNA. Amino acid transport rates obtained with oocytes injected with water (50 nl) were similar to those of uninjected oocytes (data not shown). Synthesis of human 4F2hc cRNA (22) was as described (11). IU12 was a gift from Shi and co-workers (20), and the cRNA was obtained by cutting the cDNA amplified from primary X. laevis cDNA clone 727811 cloned in the vector pT7T3 between the restriction sites XhoI and EcoRI with ApoI and using T3 polymerase. The open reading frame of y'LAT-1 was obtained from the Integrated and Molecular Analysis of Genomes and their Expression (IMAGE) cDNA clone 727811 cloned in the vector pT7T3 between the restriction sites EcoRI and NotI. To obtain the y'LAT-2 cRNA, because it has a long 3'-untranslated region and is not expressed properly in Xenopus oocytes, we used the open reading frame deduced from region 1 sequence P(I/V)(V/F)F(I/C)(I/L) (corresponding to residues 429–434 of KIAA0245) and cloned in pBluescript SK+ in another vector with shorter 3' tail. Subcloning was done by cutting pBluescript-KIAA0245 with ApaI and filling with Klenow; the clone was then ethanol-precipitated, cut again with PstI, and finally ligated into pSPORT1 human β-gal that had been cut with PstI and Bst1107I. Influent rates of LE [3H]leucine, L-E[3H]leucine were measured in 100 mM NaCl or 100 mM choline Cl medium at the indicated days after injection and under linear conditions. When presented, the induced uptake was calculated by subtracting uptake values in uninjected oocytes from those of the corresponding cRNA-injected oocytes.

PCR Amplification and Sequencing—For PCR amplification, first strand cDNA was synthesized from 5 μg of total RNA purified from opossum kidney (23) cells using the SuperScript II kit (Life Technologies, Inc.). Two degenerate forward and reverse primers were designed based on two highly conserved regions among KIAA0245, IU12, E16, TAI1, and SPRM1 proteins. From region 1 sequence (A/S)REGHLP and (corresponding to residues 347–353 of KIAA0245), a forward 5'-C(C/T)-CAG(A/G)A(G/A)GAG(A/G)C/G/C/CT/G/CT/ACC-3' primer (1F) was synthesized, as well as a reverse (2R) 5'-ATG/G(A/C)/CTA(A/G)-AA/CA/G/CA/G/CA/G/CT/TA/G/GG-3' primer deduced from region 2 sequence PU/V/V/F/UC(I/L) (corresponding to residues 429–434 of KIAA0245). Amplification was carried out in a Perkin-Elmer 9600 thermocycler, and conditions were as follows: hot start of 3 min at 94 °C; 15 cycles of denaturing (94 °C for 35 s), annealing (50 °C lowering 1 °C each cycle for 30 s), and extension (74 °C for 70 s); 25 cycles of denaturing (94 °C for 25 s), annealing (50 °C for 30 s), and extension (74 °C for 70 s); and a final extension of 4 min at 72 °C. PCR-amplified DNA fragments with the expected length were subcloned into pGEM-T easy vector (Promega) and sequenced in one direction. DNA sequence obtained and all frames of the deduced amino acid sequences were then compared with DNA and protein sequence database data. All sequences carried out in this work were performed in one or both directions (in the case of clone 727811) with D-Rhodamine Dye Terminator Cycle Sequencing Ready Reaction (Perkin-Elmer). Analysis of the sequence reactions was done with an Abi Prism 377 DNA sequencer.

Computer Analysis—Amino acid or nucleotide sequence homology searching was performed using basic local alignment tool (BLAST) via on-line connection to the National Center of Biotechnology Information. The programs BLASTn, BLASTp, and BLASTx were run using default parameters. Data base searching was done against nonredundant or dbEST, when searching for nucleotide sequence homology, and versus nonredundant when comparing to peptide sequences. E-mail sequence Tag and EST assembly machine tools. Multiple nucleotide or amino acid sequence comparisons were done with CRUSTALW via on-line connection to the Genome World Wide web server (University of Tokyo) and to the Baylor College of Medicine Search Launcher (University of Texas). Amino acid sequence deduction and other sequence analysis were done with Genetics Computer Group utilities.

The prediction of transmembrane segments of the proteins y'LAT-1, y'LAT-2, IU12, and SPRM1 was established on the basis of the combination of three criteria: (i) the prediction of transmembrane segments by the programs of Aloy (23) and TopPred II (24) using the algorithms of G. von Heijne (25), Goldman, Engelman, and Steitz (26), and K. (27) to determine the position of hydrophobicity peaks; (ii) the prediction of α-helix in the predicted secondary structure using a program that combines the algorithms of Chou-Fasman and Rose (28); and (iii) the surface probability and flexibility index plots, according to the algorithms of Boger (29) and Karplus and Schulz (30), respectively.

Northern Blot Analysis—A human adult poly(A)+ membrane containing different tissues purchased from CLONTECH (Palo Alto, CA) was used. Insert of clone 727811 was separated from the pT7T3D-727811 vector with ApaI-NotI digestion. This 2250-bp-long DNA fragment was purified, labeled with [α-32P]dCTP (Amersham) using a random oligonucleotide-priming labeling kit (Amersham), and used as a probe. Hybridization, carried out in Express HybTM Hybridization solution (CLONTECH), and wash conditions were as recommended by the supplier. The positions of KIAA0245, IU12, E16, and X. laevis cDNA sequences on chromosome 17 were deduced from the Express HybTM Hybridization solution (CLONTECH) and chromosome 17 were hybridized with human β-actin probe. A nonradioactive fluorescein and anti-fluorescein peroxidase-conjugated antibody detection kit was used (Amersham). Hybridization, washes, and detection conditions were as suggested by the supplier.

Chromosome Mapping—Chromosome mapping was done using the Stanford Human Genome Center G3 Radiation Hybrid panel (medium resolution). DNA samples of this panel, along with total genomic DNA and pTT3-727811 (used as a positive controls), were PCR-screened for the presence of the genomic sequences flanked by the primers F7 (5'-GAGGATGGGAAAAAGAACG-3') and R7 (5'-AAGGAGACAGGAAAT-TGG-3'), which are located at the 3'-untranslated region of the cDNA. PCR amplifications were carried out in a Perkin-Elmer 9600 thermocycler, using 200 μM dNTP, 3 pmol of each primer and DNA Taq polymerase (Boehringer Mannheim) in PCR buffer. Amplification conditions were as follows: 35 cycles of denaturing (94 °C for 30 s), annealing (56 °C for 40 s), and extension (74 °C for 30 s). PCR results were classified as 0 (for no amplification), 1 (for positive amplification), or r (for uncertain) and submitted to the Radiation Hybrid Mapping E-mail server at the Stanford Human Genome Center (SHGC). Resulting chromosomal location, referred to a SHGC marker, was obtained automatically via E-mail from this server.

Site-directed Mutagenesis—Construction of the mutants C109S and C330S of human 4F2hc was as described in Ref. 11.

Immunoprecipitation of Methionine-labeled Proteins from Xenopus Oocytes—Oocytes were injected with 10 ng of human 4F2hc or C109S human 4F2hc (CS1) or C330S human 4F2hc (CS2) alone or in combi-
Identification and Characterization of y\(^{+}\)LAT-1

32439

nation with 10 ng of y\(^{+}\)LAT-1 cRNA. After 24 h, \(^{[35]S}\)methionine (0.5 \(\mu\)Ci in 50 nl of water; ICN) was injected, and the oocytes (usually 20 oocytes) were incubated for 48 h at 18 °C in 1 ml of modified Barth's solution. Oocytes were then harvested and lysed in a buffer containing 50 mM Tris-HCl, pH 8.0, 120 mM NaCl, 0.5% Nonidet P-40, and 1 mM phenylmethylsulfonyl fluoride. Extracts were centrifuged twice at 1000 \(\times\) g in order to remove the yolk granules. Aliquots of 100 \(\mu\)l were rotated overnight at 4 °C with 20 \(\mu\)l of human 4F2hc antibody (Immunootech, Marseille, France) previously bound to protein G-Sepharose (Sigma). The beads were washed five times in a buffer containing 20 mM M sodium salicylate.

RESULTS

Our goal was to identify any new member of the amino acid transporter-related family expressed in kidney and potentially involved in reabsorption of amino acids. For this purpose reverse transcription PCR amplification of total RNA from opossum kidney cells (32) was performed. Degenerated primers were designed on the basis of two highly conserved protein regions (see under “Experimental Procedures”) revealed after a multiple amino acid sequence comparison among KIAA0245, E16, TA1, IU12, and SPRM1 proteins. Electrophoretic analysis of the PCR showed one band of 228 bp, which was subcloned into pGEMT-easy vector and amplified in Escherichia coli. Several clones were then analyzed by sequencing. Nucleotide sequence of clone b4c2 showed a significant degree of identity to the amino acid transporter-related proteins when compared, using BLASTx program, to nonredundant peptide data bases. The deduced amino acid sequence comparison showed an identity of 75, 52, 49, 47, and 20% for b4c2 with KIAA0245, IU12, TA1, E16, and SPRM1, respectively. This high degree of identity with KIAA0245 suggested that we had cloned a fragment of the KIAA0245 ortholog cDNA in opossum. To rule out the presence of other human genes having high homology to KIAA0245, the coding region sequence of this gene was run as a query with BLASTn program against dbEST data bases. Flanking 3’- and 5’-untranslated regions were avoided to minimize the presence of KIAA0245 EST in the results. We identified an IMAGE EST cluster (46303) that corresponds to a new unidentified human gene with a high degree of identity (75%) to KIAA0245. EST AA939448 (located 5’ of this cluster) and EST AA400789 (located 3’ of this cluster and presenting a poly(A)’ tail) are flanking regions of IMAGE cDNA clone 727811 and comprised the whole cDNA. We named this clone y\(^{+}\)LAT-1 (y\(^{+}\)L amino acid transporter), and KIAA0245 tentatively as a y\(^{+}\)LAT-2 because they yielded system y\(^{+}\)L amino acid transport activity when co-injected with 4F2hc in oocytes (see below).

Two direction sequencing of clone 727811 (Fig. 1) showed a cDNA 2245 bp long. Sequence comparison of the corresponding region of y\(^{+}\)LAT-1 with the opossum b4c2 clone revealed 82 and 81% identity for DNA and protein, respectively. We then assumed that b4c2 clone is a fragment of the corresponding y\(^{+}\)LAT-1 in opossum. The size of the human y\(^{+}\)LAT-1 cDNA corresponds to the transcript seen in Northern blots (see Fig. 5). The first ATG codon lies within a good consensus initiation sequence (5’-CCACC) (33). The open reading frame continues to the first stop codon (TAA) at base 1820 and codes for a protein of 511 amino acid residues with a predicted molecular mass of 55,988 Da. The nucleotide sequence of y\(^{+}\)LAT-1 has been deposited in the GenBank data base (accession number: AF092032).

Hydropathy studies (see under “Experimental Procedures”) show 12 transmembrane domains with both C- and N-terminal segments intracytoplasmatic, a typical protein structure similar to some previously reported organic solute transporters (34–36). There is only one putative N-glycosylation site underlined in Fig. 1 (Asn-Ala-Ser) between the putative transmembrane segments VIII and IX. In our prediction model, this segment is cytoplasmic and cannot be glycosylated. There are also two putative casein kinase II phosphorylation sites (threonine 8 and serine 11, located in the putative cytoplasmic N-terminal segment) and one putative protein kinase C phosphorylation site (threonine 96, located intracellularly between the putative transmembrane segments II and III). A multiple sequence alignment of the predicted amino acid sequence of y\(^{+}\)LAT-1, y\(^{+}\)LAT-2 (KIAA0245), IU12, E16, and SPRM1 is shown in Fig. 2. The percentages of identity between y\(^{+}\)LAT-1 and y\(^{+}\)LAT-2, E16, IU12, SPRM1, and the yeast permease MUP1 are 75, 51, 53, 39, and 31%, respectively. The predicted structural model of these proteins is also very similar. Only the consensus for the position of the transmembrane segment III can vary for the proteins presented in Fig. 2. For y\(^{+}\)LAT-1 and y\(^{+}\)LAT-2, this segment could be located in the position indicated in Fig. 2. However, in the case of IU12, the fragment is displaced 10 amino acids to the N-terminal end, and in the protein SPRM1, the fragment is moved 5 amino acids to the N-terminal end. Because 4F2hc is associated with y\(^{+}\)LAT-1 in a disulfide bond-dependent manner (see Fig. 7), we looked for cysteine residues conserved in these proteins. There are only two cysteines conserved in all these proteins: cysteine 151 of y\(^{+}\)LAT-1, located extracellularly in our structure model prediction, corresponding to residues 159, 164, and 137 of y\(^{+}\)LAT-2, IU12, and SPRM1, respectively; and cysteine 174, located in the transmembrane domain IV and corresponding to residues 182, 187, and 160 of y\(^{+}\)LAT-2, IU12, and SPRM1, respectively. These two cysteines are not conserved in the yeast permease MUP1.

The human y\(^{+}\)LAT-1 gene was chromosome mapped by using a radiation hybrid panel (see under “Experimental Procedures”) with primers corresponding to the 3’-untranslated region of the y\(^{+}\)LAT-1 cDNA. From this screening, we obtained 13 positive, 70 negative and 2 uncertain results. Chromosome mapping results, obtained from the SGHC server, linked y\(^{+}\)LAT-1, with a logarithm odds score of 10.4, to a distance of 17 cR (374 kb) from the marker SHGC-13532 (D14S1350) located at chromosome 14q11.2. When uncertain samples were submitted as positive, the localization was linked to the T-cell receptor \(\alpha\) chain marker, which lies \(\sim\)150 kb telomic of SHGC-13532.

cRNA from y\(^{+}\)LAT-1, y\(^{+}\)LAT-2, and IU12 was prepared and injected into oocytes alone or in combination with an equimolar quantity of human 4F2hc cRNA and tested for transport of arginine and leucine (50 \(\mu\)M) in the presence or in the absence (choline) of sodium (100 mM) (Fig. 3). These three proteins do not induce any amino acid transport activity when injected alone, but interestingly, they induce different activities when co-injected with 4F2hc. In the case of y\(^{+}\)LAT-1 and y\(^{+}\)LAT-2 (KIAA0245), the pattern of induced activity resembles that described as system y\(^{+}\)L (37) (i.e. sodium-independent uptake of dibasic amino acids and sodium-dependent uptake of some neutral amino acids). IU12, by contrast, induced an activity above that of 4F2hc alone, which is compatible with the activity described as system L (i.e. sodium-independent uptake of neutral amino acids). For y\(^{+}\)LAT-1, the induced activity is very similar to the component of y\(^{+}\)L activity induced by 4F2hc alone, but the level of induction is higher. From 10 independent experiments, the average fold induction relative to the induction of 4F2hc alone was 3.8 \(\pm\) 0.9 (range, 2–14-fold). To explain this increase, we performed kinetic analysis, and from an-
individual experiment, the kinetic parameters showed an increase in V_{max} without apparent change in the $K_{0.5}$ parameter (4F2hc-induced uptake: $K_{0.5}$, 55 ± 15 μM; V_{max}, 18 ± 4 pmol of arginine (choline medium)/15 min per oocyte; 4F2hc plus y$^+$LAT-1-induced uptake: $K_{0.5}$, 45 ± 18 μM; V_{max}, 36 ± 5 pmol of arginine (choline medium)/15 min per oocyte). A further characterization of this transport activity co-expressed by y$^+$LAT-1 and y$^+$LAT-2 is in progress.³

To further characterize the uptake activity co-expressed by y$^+$LAT-1 and 4F2hc, we measured the inhibition of arginine uptake by different amino acids at a 100-fold excess concentration (5 mM). As shown in Table I, dibasic amino acids inhibit 50 μM arginine uptake in a sodium-independent manner, but in contrast, neutral amino acids inhibit more in the presence of sodium. In order to define better the effect of sodium on the inhibition by neutral amino acids, the uptake of L-arginine (50 μM) was measured in the presence or absence of sodium and in the presence of different concentrations of L-leucine (Fig. 4).

These results showed clearly that sodium increased the affinity of L-leucine. This effect is indistinguishable in 4F2hc alone or

³ M. Pineda, R. Estévez, and M. Palacín, manuscript in preparation.
4F2hc plus y\(^+\)LAT-1-injected oocytes. All of this is consistent with the expression of y\(^+\)L transport activity (38).

The tissue expression of the mRNA corresponding to y\(^+\)LAT-1 was examined by Northern blot analysis at high stringency conditions (Fig. 5). The mRNA species of ~2.4 kb hybridizes with the y\(^+\)LAT-1 cDNA. Transcript expression is as follows: kidney > peripheral blood leukocytes > lung > placenta > spleen > small intestine.

Recently (11), we have postulated that residue cysteine 109 of human 4F2hc could be involved in the formation of a disulfide bond with a putative membrane protein already present in the Xenopus oocyte to express system y\(^+\)L transport activity. To test whether this is also the case with human y\(^+\)LAT-1 protein, we performed co-injection experiments with C109S (CS1) or C330S (CS2) human 4F2hc mutants (Fig. 6). The CS1 mutant injected alone led to a decrease of 56% in the induced activity compared with the wild type. This agrees with previous results (11) that showed a V\(_{\text{max}}\) decrease of 50% without changes in the K\(_{\text{m}}\) parameter for this mutant. Moreover, CS1 co-injected with y\(^+\)LAT-1 showed a 74% decrease in transport expression compared with wild type 4F2hc co-injected with y\(^+\)LAT-1. In contrast, the CS2 4F2hc mutant showed no decrease in the induced activity when injected alone (similar to previous results; Ref. 11) or co-injected with y\(^+\)LAT-1.

In the batch of oocytes used in the experiment shown in Fig. 6, we checked whether y\(^+\)LAT-1 and 4F2hc proteins could form a heterodimeric structure via a disulfide bond. This was done by \(^{35}\)S\text{-}methionine labeling and immunoprecipitation using a monoclonal antibody directed to human 4F2hc (Fig. 7). Under nonreducing conditions, two 4F2hc-specific protein bands were detected in 4F2hc-injected oocytes with ~85- and ~169-kDa electrophoretic mobilities. A band of ~110 kDa was also visible, but it did not correspond to 4F2hc because it was also detected after immunoprecipitation of extracts from oocytes co-expressing 4F2hc and y\(^+\)LAT-1 with protein G-Sepharose without 4F2hc antibody. The 85-kDa band corresponds to 4F2hc, as detected in activated lymphocytes (9). This band is also detected in oocytes not injected with 4F2hc cRNA, suggesting that Xenopus oocytes express a homologous 4F2hc protein. The 169-kDa band is not visible in reducing conditions or in oocytes expressing CS1 4F2hc, suggesting that this band might represent 4F2hc homodimers linked by a disulfide bridge involving cysteine residue 109. In oocytes co-injected with wild type or CS2 4F2hc plus y\(^+\)LAT-1, a new 4F2hc-specific band of ~135 kDa appears. Under reducing conditions, this band is drastically reduced and a new y\(^+\)LAT-1-specific ~40-kDa band appears (Fig. 7). In contrast, neither the 135- nor the 40-kDa band is visible, even after very long film exposures, in oocytes co-injected with CS1 4F2hc and y\(^+\)LAT-1. This indicates that the 135-kDa band corresponds to a heterodimer of 4F2hc and

![Fig. 2: Amino acid sequence comparison of five members of the family of amino acid transporter-related proteins. Multialignment was done using the program CLUSTALW Sequence Alignment from Baylor College of Medicine. The thin horizontal lines indicate the putative 12 transmembrane domains determined by computer analysis (see under "Experimental Procedures"). The amino acid residues identical to y\(^+\)LAT-1 sequence are indicated by gray boxes. The solid frame box indicates a potential N-glycosylation site, but according to our membrane topology prediction, this site is intracellular and cannot be glycosylated. Two cysteine residues conserved in all the proteins presented here are indicated by a star.](image-url)
Identification and Characterization of y\(^+\)LAT-1

\[\text{FIG. 3. Different co-expressed transport activities with three members of the family of amino acid transporter-related proteins and 4F2hc. Oocytes were injected with 10 ng of y\(^+\)LAT-1 (IMAGE clone 727811), y\(^+\)LAT-2 (KIAA0245), or I12 alone or co-injected with 10 ng of human 4F2hc. Three days after the injection, the uptake of 50 \(\mu\)M l-\([\text{3H}]\)arginine (Arg) and 50 \(\mu\)M l-\([\text{3H}]\)leucine (Leu) in the presence (+, closed bars) or absence (−, open bars) of 100 mM NaCl was determined for 5 min. Amino acid uptake (pmol/oocyte \(\times 5\) min) was calculated by subtracting the uptake in un.injected oocytes from that of the cRNA injected groups. Amino acid uptake in uninjected oocytes was as follows: (i) l-\([\text{3H}]\)arginine uptake: 1.1 \(\pm\) 0.2 (choline medium) and 3.5 \(\pm\) 0.5 (sodium medium); (ii) l-\([\text{3H}]\)leucine uptake: 3.1 \(\pm\) 0.6 (choline medium) and 3.8 \(\pm\) 0.4 (sodium medium).}

\[\text{TABLE I}

Inhibition of y\(^+\)LAT-1/4F2hc-induced transport activity by different amino acids

Uptake was measured at 50 \(\mu\)M arginine concentration in either the absence (choline medium) or the presence (sodium medium) of 100 mM sodium and inhibited by different amino acids at a concentration of 5 mM. Each data point is the mean of values obtained in seven oocytes and expressed as the residual percentage of uptake. Basal values of uptake (mean \(\pm\) S.E.), expressed in pmol/10 min per oocyte, were 32.7 \(\pm\) 2.3 (choline medium) and 43.3 \(\pm\) 3.3 (sodium medium) for y\(^+\)LAT-1 plus 4F2hc-injected oocytes and 3.4 \(\pm\) 0.2 (choline medium) and 7.8 \(\pm\) 0.5 (sodium medium) for uninjected oocytes.

Inhibitor (5 mM)	Residual arginine (50 \(\mu\)M) uptake	Choline medium	Sodium medium
Arginine	2 \(\pm\) 0.3	ND\(^a\)	
Lysine	2 \(\pm\) 0.3	1 \(\pm\) 0.2	
Ornithine	0 \(\pm\) 0.6	ND	
Leucine	48 \(\pm\) 5	3 \(\pm\) 0.9	
Isoleucine	43 \(\pm\) 3	16 \(\pm\) 2	
Glutamine	73 \(\pm\) 9	15 \(\pm\) 2	
Valine	69 \(\pm\) 9	40 \(\pm\) 9	

\(^a\) ND, not determined.

\[\text{FIG. 4. Inhibition by l-leucine of the y\(^+\)LAT-1 and 4F2hc co-expressed transport activity. Three days after injection of 10 ng of human 4F2hc alone or human 4F2hc plus 10 ng of y\(^+\)LAT-1, the uptake of 50 \(\mu\)M l-\([\text{3H}]\)arginine in the absence (choline medium) (open squares) or in the presence (closed squares) of 100 mM sodium was measured for 10 min in the presence of different concentrations of leucine (0, 250 \(\mu\)M, 500 \(\mu\)M, 1 mM, 2.5 mM, 5 mM, and 10 mM). The percentage of the amino acid residual uptake was calculated by subtracting the uptake of un-injected oocytes and dividing by the uptake of 4F2hc alone or 4F2hc plus y\(^+\)LAT-1-injected oocytes without leucine in the medium. The basal values of the uptake of 50 \(\mu\)M l-arginine were 3.4 \(\pm\) 0.2 and 7.8 \(\pm\) 0.5 pmol/10 min for un-injected oocytes in choline or in sodium medium, respectively, 19.5 \(\pm\) 5.0 and 27.4 \(\pm\) 3.0 pmol/10 min for 4F2hc-injected oocytes in choline or in sodium medium, respectively, and 32.7 \(\pm\) 2.3 and 43.2 \(\pm\) 3.3 pmol/min for 4F2hc plus y\(^+\)LAT-1-injected oocytes in choline or in sodium medium, respectively.}

y\(^+\)LAT-1, linked by a disulfide bridge involving cysteine 109 of 4F2hc. The 135-kDa band is also visible after very long film exposures in 4F2hc-injected oocytes and might represent the association of 4F2hc with a Xenopus y\(^+\)LAT-1 homologous protein (data not shown). It is worth mentioning that this band is the only one that correlates with the induced y\(^+\)L transport activity (see Figs. 6 and 7).

\[\text{DISCUSSION}

In this study, we have identified a new member (y\(^+\)LAT-1) of a family of amino acid transporter-related proteins also composed in humans by y\(^+\)LAT-2 (KIAA0245) and E16. We have characterized the human y\(^+\)LAT-1 cDNA sequence, chromosomal location, and pattern of expression of its mRNA and demonstrated that when co-expressed with 4F2hc, it yields y\(^+\)L amino acid transport activity and forms a disulfide bond-dependent complex with 4F2hc through residue Cys-109 in oocytes. Therefore, y\(^+\)LAT-1 is a putative light subunit of the surface antigen 4F2hc. Moreover, we also present human y\(^+\)LAT-1 as a strong candidate for the lysinuric protein intolerance (LPI) gene.

The surface antigen 4F2 from lymphocytes has been previously immunoprecipitated as a complex of 125 kDa, which upon reduction resulted in two protein bands of 85 kDa (the heavy chain of 4F2 surface antigen, or 4F2hc) and an unidentified light chain with an electrophoretic mobility of 40 kDa; this light chain is known to be nonglycosylated and very hydrophobic (9,
We have recently demonstrated that system y1L transport activity induced by 4F2hc in oocytes requires association, most probably by disulfide bridges, with a plasma membrane endogenous protein (11). Here we demonstrated that human y1LAT-1 and 4F2hc combine to generate system y1L amino acid transport activity in oocytes and form a heterodimeric complex of \sim135 kDa. Moreover, this complex correlates with the induction of y1L transport activity by 4F2hc and y1LAT-1 co-expression in oocytes. Interestingly, immunoprecipitation of the 135-kDa complex and subsequent reduction results in the appearance of a y1LAT-1-specific \sim40-kDa protein band. All of this strongly indicates that human y1LAT-1 is a light chain of the surface antigen 4F2hc.

Three proteins, y1LAT-1 and y1LAT-2 (present study) and IU12 (present study, and for the equivalent protein ASUR4 or the human ortholog E16)2 induce with 4F2hc several amino acid transport activities in oocytes: system y1L activity for y1LAT-1 and y1LAT-2, or system L-type for IU12 or E16. This suggests that at least these three proteins (human y1LAT-1, y1LAT-2, and E16) might be light subunits of 4F2hc with associated amino acid transport activities. This is in full agreement with the fact that both y1L and L transport activities have been associated with the expression of 4F2hc cRNA or 4F2hc-containing mRNA (2, 40–42, 5–6, 43). Interestingly, y1LAT-1 is expressed in tissues where mRNA-induced y1L activity has been reported (small intestine, placenta and lung) (41, 42). The final demonstration that y1LAT-1, y1LAT-2, and E16 are light subunits of the surface antigen 4F2hc awaits co-immunoprecipitation studies from tissue or cell samples.

Our data strongly suggest that the 4F2hc and y1LAT-1 heterodimeric complex is linked by a disulfide bridge involving 4F2hc residue cysteine 109. Thus, both 4F2hc-induced (present study and Ref. 11) and 4F2hc-y1LAT-1-induced system y1L transport activity is drastically reduced when the 4F2hc resi-
due cysteine 109 is mutated to serine. In parallel to this, the formation of the 4F2hc/\(y^L\)-AT1 heterodimer is abolished by this mutation. This suggests that C109S 4F2hc mutant is able to form an active transporter heterodimer with \(y^L\)-AT1, albeit with lower efficiency than wild type 4F2hc. Most probably, weak protein-protein interactions between C109S 4F2hc and \(y^L\)-AT1 are destabilized during detergent solubilization prior to immunoprecipitation. In favor of this, the 4F2hc-induced \(y^L\) transport activity is not sensitive to \(\beta\)-mercaptoethanol treatment, even though this increases sensitivity to inactivation by cysteine-specific reagents (11). Two cysteine residues of \(y^L\)-AT1 (residues 151 and 174) are conserved among the known full-length protein members of this family. Site-directed mutagenesis studies are currently in progress to identify the \(y^L\)-AT1 residue involved in the disulfide bridge with the Cys-109 residue of 4F2hc.

One intriguing question is why \(y^L\)-AT1 does not induce amino acid transport when injected alone in oocytes and why 4F2hc does. One possible explanation is that the exogenous 4F2hc may constitute a functional \(y^L\) transporter with a homologous protein of the \(y^L\)-AT1 family already present in the oocyte. The oocyte would synthesize more \(y^L\)-AT1-like subunits than 4F2hc-like subunits. This would be similar to the activation of the oocyte catalytic \(\alpha\) subunit of the Na\(^+\)/K\(^+\) ATPase by expression of foreign \(\beta\) subunits (44). By analogy to Na\(^+\)/K\(^+\) ATPase (45, 46), the oocyte \(y^L\)-AT1-like subunits might be present in the endoplasmic reticulum and would be transported to the plasma membrane when exogenous 4F2hc is added. In this sense, the \(y^L\) activity is already present in the Xenopus oocyte (2), and we can visualize an immunoprecipitated 4F2hc antibody protein with the same molecular weight as 4F2hc in uninjected oocytes (Fig. 7).

Structural and functional evidence suggested that rBAT also associates with an oocyte plasma membrane protein to express system b\(^{+}\)-like amino acid transport activity (see under “Introduction,” and see Refs. 47 and 48 for recent reviews). Therefore, it will be interesting to determine whether some of the members of the transporter-related family can also interact with the rBAT protein. Preliminary results indicate that \(y^L\)-AT1, \(y^L\)-AT2, and IU12 do not cause b\(^{+}\)-like amino acid transport activity with rBAT in oocytes.

LPI is an autosomal recessive disease in which transport of the cationic amino acids lysine, arginine, and ornithine is defective. This defect has been localized at the basolateral membrane of epithelial cells in small intestine (49, 50) and in the renal tubules (51). Simell and co-workers (52) reported that LPI fibroblast showed a reduced trans-stimulated efflux of cationic amino acids. Clinical signs of LPI include hyperammonemia and episodes of stupor, immunological abnormalities (53), growth retardation, and muscle hypotonia. Potentially fatal intermittent lung disease and progressive renal failure may occur at any age (54). Recently, Lutenela et al. (55) have assayed, through linkage analysis of 20 Finnish LPI families, the LPI gene locus to the proximal long arm of chromosome 14. In this work, recombination studies placed the locus between LPI and the rBAT protein. Preliminary results indicate that the human \(y^L\)-AT1 gene is a good candidate for LPI. (i) 4F2hc is expressed at the basolateral membrane of proximal tubule epithelial cells in the kidney (57). (ii) The \(y^L\) activity induced by 4F2hc in oocytes is an exchanger activity that mediates the influx of cationic amino acids and the influx of neutral amino acids plus sodium (58). This would explain why the efflux and not the influx (because of the presence of a member of the CAT family of transporters) is affected. (iii) The expression pattern of this gene is consistent with the tissues in which some defect in LPI has been detected (lung, immune system cells, kidney, and intestine). (iv) Finally, its chromosomal localization is within the locus of the LPI gene (55). Mutational analysis to prove this hypothesis is currently in progress.

Acknowledgments—We thank Benel Peral for helping and making possible the radiation hybrid analysis and Núria Reig for helping in reviewing the manuscript. We also thank Robin Rycroft for editorial help.

Note Added in Proof—After this paper was accepted for publication for the observations by Verrey and co-workers were published (Mastroberardino, I. Spindler, B., Pfeiffer, R., Skelly, P. J., Loffing, J., Shoemaker, C. B., and Verrey, F. (1998) Nature 395, 288–291).
Identification and Characterization of γ^{+}LAT-1

32445

941–945

35. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., Davidson, N., Lester, H. A., and Kanner, B. I. (1990) Science 249, 1303–1306

36. Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., Singh, S. K., Boron, W. F., and Hediger, M. A. (1994) Nature 368, 563–566

37. Cañadas, R., Chavez, P., and Boyd, C. A. R. (1992) J. Physiol. 454, 497–501

38. Deves, R., and Boyd, C. A. R. (1998) Physiol. Rev. 78, 487–545

39. Luscher, B., Rousseaux, M., Lees, R., MacDonald, H. R., and Bron, C. (1985) J. Immunol. 135, 3951–3957

40. Wills, R. G., Lee, W. Kanai, Y., Leiden, J. M., and Hediger, M. A. (1992) J. Biol. Chem. 267, 15285–15288

41. Magagnin, S., Bertran, J., Werner, A., Markovich, D., Biber, J., Palacín, M., and Murer, H. (1992) J. Biol. Chem. 267, 15384–15390

42. Fey, Y-J., Prasad, P. D., Leibach, F. H., and Ganapathy, V. (1995) Biochemistry 34, 8744–8751

43. Yao, S. Y., Muzyka, W. R., Elliot, J. F., Cheeseman, C. I., and Young, J. D. (1996) Biochem. J. 320, 745–752

44. Geering, K., Theulaz, I., Verrey, F., Haupl, M. T., and Rossier, B. C. (1989) Am. J. Physiol. 257, C651–C658

45. Geering, K., Theulaz, I., Verrey, F., Haupl, M. T., and Rossier, B. C. (1989) Am. J. Physiol. 257, C651–C658

46. Ackermann, U., and Geering, K. (1992) J. Biol. Chem. 267, 577–585

47. Palacin, M., Estévez, R., Bertran, J., and Zorzano, A. (1998) Physiol. Rev. 78, 969–1054

48. Palacin, M., Estévez, R., and Zorzano, A. (1998) Curr. Opin. Cell Biol. 10, 455–461

49. Desjexes, J. F., Simell, R. O., Dumontier, A. M., and Perheentupa, J. (1980) J. Clin. Invest. 65, 1219–1221

50. Rajantie, J., Simell, O., and Perheentupa, J. (1980) Lancet 1, 1219–1221

51. Rajantie, J., Simell, O., and Perheentupa, J. (1981) J. Clin. Invest. 67, 1078–1082

52. Smith, D. W., Scrivner, C. R., Tenenhouse, H. S., and Simell, O. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 7711–7715

53. Yoshida, Y., Machigashira, K., Suehara, M., Arimura, H., Moritoyo, T., Nagamatsu, K., and Osame, M. (1995) J. Neurol. Sci. 134, 178–182

54. Santamarina, F., Parenti, G., Guidi, G., Rotondo, A., Grillo, G., Larroca, M. R., Celentano, L., Strisciuglio, P., Sebastiani, G., and Andria, G. (1996) Am. J. Respir. Crit. Care Med. 153, 731–735

55. Lauteala, T., Sistonen, P., Savontaus, M. L., Mykkänen, J., Simell, J., Lukkarinen, M., Simmell, O., and Aula, P. (1997) Am. J. Hum. Genet. 60, 1479–1486

56. Lauteala, T., Horelli-Kuitunen, N., Class, E., Savontaus, M. L., Lukkarinen, M., Simell, O., Cunningham, J., Palotie, A., and Aula, P. (1997) Hum. Genet. 100, 80–83

57. Quackenbush, E. J., Goigos, A., Bauml, R., and Letarte, M. (1986) J. Immunol. 136, 118–124

58. Chillarón, J., Estévez, R., Mora, C., Wagner, C. A., Suessbrich, H., Lang, F., Gelpi, J. L., Testar, X., Busch, A. E., Zorzano, A., and Palacín, M. (1996) J. Biol. Chem. 271, 17761–17770