RESEARCH ANNOUNCEMENTS

THE TETRAGONAL CONSTRUCTION

BY RON DONAGI

1. Preliminaries. Let \(C \) be a nonsingular curve of genus \(g \), and \(\pi: \tilde{C} \rightarrow C \) an unramified double cover. The Prym variety \(P(C, \tilde{C}) \) is by definition \(\text{ker}^0(Nm) \), where \(Nm: J(\tilde{C}) \rightarrow J(C) \) is the norm map, and \(\text{ker}^0 \) is the connected component of 0 in the kernel. By [M] this is a \((g - 1)\)-dimensional, principally polarized abelian variety. Let \(A_g, M_g, R_g \) denote, respectively, the moduli spaces of \(g \)-dimensional principally polarized abelian varieties, curves of genus \(g \), and pairs \((C, \tilde{C})\) as above. \((R_g) \) is a \((2^{2g - 1})\)-sheeted cover of \(M_g \). The Prym map is the morphism

\[
P = P_g: R_g \rightarrow A_{g-1}, \quad (C, \tilde{C}) \mapsto P(C, \tilde{C}).
\]

It is analogous to the Jacobi map \(J = J_g: M_g \rightarrow A_g \) sending a curve to its Jacobian. The main reason for studying \(P \) is that its image in \(R_{g-1} \) is larger than that of \(J \), hence it allows us to handle geometrically a wider class of abelian varieties than just Jacobians. For instance, \(P_g \) is dominant for \(g \leq 6 \) [W] while \(J_g \) is only dominant for \(g \leq 3 \).

The purpose of this announcement is to describe the fibers of \(P \) in the various genera. Our main tool for this is a simple-minded construction which we describe in some detail in paragraph 6. Let us use "\(n \)-gonal" (trigonal, tetragonal, etc.) to describe a pair \((C, f)\) where \(f: C \rightarrow \mathbb{P}^1 \) is a branched cover of degree \(n \) \((3, 4\) respectively). Briefly, our construction takes the data \((C, \tilde{C}, f)\) where \((C, \tilde{C}) \in R_g \) and \((C, f)\) is tetragonal, and returns two new sets of data, \((C_0, \tilde{C}_0, f_0)\) and \((C_1, \tilde{C}_1, f_1)\), of the same type. This procedure is symmetric: starting with \((C_0, \tilde{C}_0, f_0)\) we end up with \((C, \tilde{C}, f)\) and \((C_1, \tilde{C}_1, f_1)\). It is useful due to the following observation.

Proposition 1.1. The tetragonal construction commutes with the Prym map:

\[
P(C, \tilde{C}) \approx P(C_0, \tilde{C}_0) \approx P(C_1, \tilde{C}_1).
\]
Remark 1.2. A similar construction was studied by Recillas [R], [DS, III]. He starts with a tetragonal pair \((C, f)\) and produces a triplet \((X, \tilde{X}, g)\) where \((X, g)\) is trigonal and \(P(X, \tilde{X}) \approx J(C)\). This becomes the special case of our construction where \(\tilde{C}\) is taken to be the split double cover of \(C\). The resulting \(C_0, C_1\) are then isomorphic to \(X\) with a \(P^1\) attached (in two different ways) and

\[
P(C_i, \tilde{C}_i) \approx P(X, \tilde{X}) \approx J(C) \approx P(C, \tilde{C}).
\]

2. Genus 6. In [DS] the map \(P : R_6 \to A_5\) was studied at length. The main result was that this map is generically finite, of degree 27.

Theorem 2.1. The fibers of \(P : R_6 \to A_5\) have a structure equivalent to the intersection-configuration of the 27 lines on a cubic surface.

An equivalent formulation is

Corollary 2.2. The Galois group of the field extension \(K(A_5) \subset K(R_6)\) is the Weyl group \(W(E_6)\). (Compare [Ma, Theorem 23.9]).

The theorem limits severely the possible degenerations in a fiber of \(P\). For instance

Corollary 2.3. The ramification locus (in \(R_6\)) is mapped six-to-one to the branch locus (in \(A_5\)).

Proof. A line on a cubic surface \(S\) counts twice if and only if it passes through a double point of \(S\). Through such a point there are six lines. \(\square\)

The proof of the theorem depends on the existence of 5 tetragonal maps, \(f_i (1 \leq i \leq 5)\) on a generic curve \(C\) of genus 6. To each triplet \((C, \tilde{C}, f_i)\) the tetragonal construction associates two others; the ten resulting points of \(P^{-1}P(C, \tilde{C})\) are the ones "incident" to \((C, \tilde{C})\).

The same method allows us to recover the main result of [DS] rather painlessly: we show that starting with \((C, \tilde{C}) \in R_6\), choosing a tetragonal \(f\), applying the tetragonal construction to get \((C_0, \tilde{C}_0, f_0)\), changing the tetragonal \(f_0\) to an \(f_0'\) and repeating the process indefinitely, leads to precisely 27 distinct objects: to the original \((C, \tilde{C})\) are added ten after the first cycle, and only sixteen more after the second cycle. (I.e. each of the five first-generation pairs yields the same set of sixteen second-generation objects!) Therefore \(\text{deg}(P)\) is a multiple of 27. This possible multiplicity is eliminated by checking a degenerate case, where \(C\) is a double cover (branched) of an elliptic curve ("elliptic hyperelliptic").

3. Genus 5. The map \(P_5 : R_5 \to A_4\) turns out, surprisingly, to be more intricate than its higher-genus cousin \(P_6\), and until now has eluded description.
By dimension count, the generic fiber is 2 dimensional; we show that in fact it
is a double cover of a Fano surface.

Theorem 3.1. There is a birational isomorphism \(\kappa : \mathbb{A}_4 \rightarrow C \) where \(C \) is
a parameter-space for pairs \((X, \mu)\) consisting of (the isomorphism class of) a
cubic threefold \(X \) together with an "even" point of order two in its intermediate
Jacobian.

Proposition 3.2. There is a natural involution \(\lambda : \mathbb{R}_5 \rightarrow \mathbb{R}_5 \) such that
\(\lambda (C, \tilde{C}) \) is related to \((C, \tilde{C})\) by a succession of two tetragonal constructions;
hence \(\mathcal{P} \circ \lambda = \mathcal{P} \).

Theorem 3.3. For generic \(A \in \mathbb{A}_4 \), the quotient \(\mathcal{P}^{-1}(A)/\lambda \) is isomorphic
to \(\mathcal{F}(\kappa(A)) \), the Fano surface of lines on the cubic threefold \(\kappa(A) \).

The proofs seem to depend heavily on the results for genus 6 and their
various specializations. As a corollary, we have an explicit parametrization of the
family of (rational equivalence classes of) effective symmetric representatives of
the class \([0]^3/3\) in \(H_2(A, \mathbb{Z}) \). This is twice the class of a curve in its Jacobian,
and the smallest class which is effective on generic \(A \).

4. **Prym-Torelli.** For \(g \leq 4 \) the analysis of \(\mathcal{P}_g \) is fairly easy. It can be
done using nothing but Recillas' trigonal construction (1.2), since any \(A \in \mathbb{A}_{g-1} \)
is Jacobian of a tetragonal curve. In the remaining cases \(g \geq 7 \), \(\mathcal{P}_g \) "ought" to
be injective by dimension count. After some inconclusive work of Tjurin \(\textsc{T} \),
counterexamples to this expected Prym-Torelli theorem were exhibited by Beauville \(\textsc{B}_2 \) for \(g \leq 10 \), using Recillas' construction applied to curves which are
tetragonal in two distinct ways. Using the tetragonal construction we exhibit
counterexamples for all \(g \). Without much justification we make the following

Conjecture 4.1. If \(\mathcal{P}(C, \tilde{C}) \approx \mathcal{P}(C', \tilde{C}') \) then \((C', \tilde{C}')\) is obtained from
\((C, \tilde{C})\) by successive applications of the tetragonal construction. In particular,
\(C \) and \(C' \) are tetragonal curves.

5. **Andreotti-Mayer varieties.** In \(\textsc{AM} \), Andreotti and Mayer studied the
Schottky problem of characterizing Jacobians among abelian varieties. Call \(A \in \mathbb{A}_g \) an \(A - M \) variety if its theta divisor \(\theta \) has a \((g - 4)\)-dimensional singular locus,
and let \(N_g \subset \mathbb{A}_g \) be the closure of the locus of \(A - M \) varieties. The main results
of \(\textsc{AM} \) are that \(N_g \) can be explicitly described by equations, and that \(\mathcal{F}(M_g) \) is
an irreducible component of \(N_g \). Perhaps the most spectacular application of
Prym theory was Beauville's refinement of their results \(\textsc{B}_1 \). He obtained a
complete (and lengthy) list of all possible components of \(\mathcal{P}^{-1}(N_g) \), hence, in
principle, a description of \(N_4, N_5 \) (since \(\mathcal{P}_5, \mathcal{P}_6 \) are surjective, when appropriately
compactified). In particular, he showed that N_4 has only one irreducible component other than $J(M_4)$.

Using the tetragonal construction, some remarkable coincidences appear in Beauville's list. In fact

Theorem 5.1. (1) N_4 consists of J_4 and another nine-dimensional irreducible component $[B1]$.
(2) N_5 consists of J_5 and four irreducible, nine-dimensional loci; three of these parametrize Pryms of elliptic-hyperelliptic curves, and the fourth consists of certain abelian varieties isogenous to a product with an elliptic curve.

(3) For $g > 6$, $N_g \cap \overline{P(R_{g+1})}$ consists of J_g, 2 components of Pryms of elliptic-hyperelliptic curves (each $(2g - 1)$ dimensional) and $[(g - 2)/2]$ components of Pryms of reducible curves $C = C_1 \cup C_2$, $(C_1 \cap C_2) = 4$ (each $(3g - 4)$ dimensional).

Corollary 5.2. Any $(C, \tilde{C}) \in \mathbb{P}^{-1}(N_g)$ is either tetragonal (or a degeneration of tetragonals) or reducible. The modified Prym-Torelli Conjecture 4.1 holds over N_g.

Conjecture 5.3. $N_g \subset \overline{P(R_{g+1})}$, hence N_g consists only of the components listed above.

The proof might imitate Andreotti's proof of Torelli's theorem and resurrect Tjurin's work $[T]$: Given $A \in N_g$, there should be some explicit geometric construction yielding a family of doubly covered tetragonal (or reducible) curves, whose Prym is A.

Corollary 5.4. For any canonical curve $C \subset \mathbb{P}^{g-1}$, the system of quadrics containing C is spanned by quadrics of rank 4.

Proof. A refinement of $[AM]$ shows that the truth of the corollary for a given C depends only on the structure of N_g near $J(C)$; in particular the corollary holds if J_g is the only component of N_g containing $J(C)$. By Conjecture 5.3 and Theorem 5.1, this holds for all C except for hyperelliptics and elliptic-hyperelliptics. A special argument works for these.

6. The construction. We sketch the tetragonal construction. Start with an unramified double cover $\pi: \tilde{C} \rightarrow C$ and tetragonal map $f: C \rightarrow \mathbb{P}^1$. Let
\[f_* (\pi): f_* (\tilde{C}) \rightarrow \mathbb{P}^1 \]
be the "pushforward" of $\pi: \tilde{C} \rightarrow C$ via f. This is a $(16 = 2^4)$-sheeted branched cover. Over $p \in \mathbb{P}^1$, its 16 points correspond to the 16 ways of lifting the quadruple $f^{-1}(p) \subset C$ to a quadruple in \tilde{C}. This suggests a convenient way of realizing $f_* (\tilde{C})$ as a curve in $Pic (4)(\tilde{C})$, the Picard variety of line bundles of degree 4: $f_* (\tilde{C})$ is the subvariety parametrizing those effective divisors in \tilde{C} whose norm
(under \(\pi : \tilde{C} \rightarrow C \)) is in the 1-dimensional linear series determined on \(C \) by \(f \).

Note that on the curve \(f_*(\tilde{C}) \) there is a natural involution \(\tau : f_*(\tilde{C}) \rightarrow f_*(\tilde{C}) \). \(\tau \) sends a lifting of \(f^{-1}(p) \) to the complementary lifting, obtained by interchanging the sheets of \(\pi : \tilde{C} \rightarrow C \). (This is induced by the automorphism of \(\text{Pic}^4(\tilde{C}) \) sending a line bundle \(L \) to \(L^{-1} \otimes (f \circ \pi)^* \mathcal{O}_{\mathbb{P}^1}(1) \).) Let \(\tilde{C} \) be the quotient \(f_*(\tilde{C})/\tau \), an 8-sheeted cover of \(\mathbb{P}^1 \).

Lemma. \(\tilde{C} \) is reducible: \(\tilde{C} = C_0 \cup C_1 \), each \(C_i \) is a 4-sheeted branched cover of \(\mathbb{P}^1 \). Correspondingly, \(f_*(\tilde{C}) = \tilde{C}_0 \cup \tilde{C}_1 \), where \(\tilde{C}_i \) is acted upon by \(\tau \) with quotient \(C_i \).

Proof. Define an equivalence relation \(\sim \) on \(f_*(\tilde{C}) \): \(D_1 \sim D_2 \) if \(f_*(\pi)(D_1) = f_*(\pi)(D_2) \) and \(D_1, D_2 \) have an even number of points (0, 2 or 4) in common. The quotient \(f_*(\tilde{C})/\sim \) is a 2-sheeted branched cover of \(\mathbb{P}^1 \). Clearly it can be branched only where \(f : C \rightarrow \mathbb{P}^1 \) is; but a simple monodromy check shows that at such a point \(f_*(\tilde{C})/\sim \) is locally reducible. (I.e. in going around a branch point, an even number of points of \(\tilde{C} \) are exchanged.) Hence the normalization of \(f_*(\tilde{C})/\sim \) is nowhere ramified over \(\mathbb{P}^1 \), hence consists of two disjoint copies, so \(f_*(\tilde{C}) \) itself is reducible. Finally, \(\tau \) acts on each component separately since it changes an even number (all 4) of the points. Q.E.D.

Note. Identifying \(\text{Pic}^4(\tilde{C}) \approx \text{Jac}(\tilde{C}) \), we have that \(f_*(\tilde{C}) \) is contained in the kernel of the norm-homomorphism, which \([M]\) consists of two copies of the Prym variety; \(\tilde{C}_i \) are the intersections with these two components.

Acknowledgements. My warmest thanks to A. Beauville, C. H. Clemens, R. Smith, and R. Varley for numerous conversations, ideas and much encouragement.

References

[AM] A. Andreotti and A. Mayer, *On period relations for abelian integrals on algebraic curves*, Ann. Scuola Norm. Sup. di Pisa 21 (1967), 189–238.

[B1] A. Beauville, *Prym varieties and the Schottky problem*, Invent. Math. 41 (1977), 149–196.

[B2] ————, *Variétés de Prym et Jacobianennes intermédiaires*, Ann. Sci. Ecole Norm. Sup. 10 (1977), 309–391.

[C] C. H. Clemens, *Double solids*, Adv. in Math. (to appear).

[DS] R. Donagi and R. Smith, *The structure of the Prym Map*, Acta. Math. 146 (1980), 25–102.

[M] D. Mumford, *Prym varieties. I*, Contributions to Analysis, Academic Press, New York, 1974.

[Ma] Y. Manin, *Cubic forms*, North-Holland, Amsterdam, 1974.

[R] S. Recillas, *Jacobians of curves with a \(g_4 \) are Prym varieties of trigonal curves*, Bol. Soc. Mat. Mexicana 19 (1974), 9–13.

[T] A. Tjurin, *Geometry of the Poincaré theta-divisor of a Prym variety*, Math. U. S. R. Izv. 9 (1975), 951–986.

[W] W. Wirtinger, *Untersuchungen über Thetafunctionen*, Teubner, Berlin, 1895.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112
