Abstract

Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a novel coronavirus termed SARS-CoV. Due to the severity of this disease, the World Health Organization (WHO) recommends that manipulation of active viral cultures of SARS-CoV be performed in containment laboratories at biosafety level 3 (BSL3). The virus was inactivated by ultraviolet light (UV) at 254 nm, heat treatment of 65 °C or greater, alkaline (pH > 12) or acidic (pH < 3) conditions, formalin and glutaraldehyde treatments. We describe the kinetics of these efficient viral inactivation methods, which will allow research with SARS-CoV containing materials, that are rendered non-infectious, to be conducted at reduced safety levels.

Keywords: SARS; Coronavirus; Virus inactivation; Tissue culture

1. Introduction

In late 2002, an outbreak of unusual life-threatening respiratory disease of unknown etiology began in Guangdong Province, China. This disease was designated severe acute respiratory syndrome (SARS) and was later determined by Drosten et al. (2003), Ksiazek et al. (2003), and Rota et al. (2003), to be caused by a novel coronavirus, termed SARS-CoV. Since the identification of coronavirus as the infectious agent for SARS, numerous laboratories have begun research on this virus. According to the WHO, 8098 people were diagnosed with SARS and 774 people died of this disease during the initial outbreak of 2003. Due to the severity of SARS disease and the contagious nature of the causal agent, the WHO website (http://www.who.int/csr/sars/biosafety2003_12_18/en/) has provided guidelines for working safely with this coronavirus. The WHO recommends biosafety level 3 (BSL3) as the appropriate containment level for working with live SARS-CoV, and there is a concern that another SARS outbreak could occur following an accidental exposure in a laboratory. Since the end of the SARS epidemic in July 2003, there have been three known cases of SARS in laboratory researchers due to accidental exposure to the virus (Normile, 2004). Successful inactivation of the virus allows the transfer of material from a BSL3 to a BSL2 environment and may reduce the risk of accidental infections through unsafe laboratory practices. Inactivated cell-culture derived viral stocks may also be useful for the development of vaccines and the study of their safety and immunogenicity. We examined the efficiency of several methods of viral inactivation, including methods that may inhibit viral replication or entry.

2. Materials and methods

2.1. Virus and cells

We infected African green monkey kidney (Vero E6) cells with SARS-CoV (Urbani strain) that was kindly provided by Drs. L.J. Anderson and T.G. Ksiazek from the
Centers for Disease Control and Prevention, Atlanta, GA. Briefly, Vero E6 monolayer cells were infected by inoculating cultures with 50μl of virus (10^{6.33} TCID_{90} per ml) in a final volume of 5 ml Dulbecco’s modified Eagle’s medium (DMEM) (Biosource International, Camarillo, CA) in T150 flasks for 1 h at 25 °C. Dulbecco’s modified Eagle’s medium containing supplements (10% fetal bovine serum, 2 mM/l-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and 0.5 μg/ml fungizone) (Biosource International) was added to the flask and the cells were incubated at 37 °C for 3 days. Supernatant was collected, clarified by centrifugation, and stored at −70 °C as the viral stock. The Vero cells were maintained in DMEM with supplements. All personnel were powered air-purifying respirators (3 M, Saint Paul, MN) and worked with infectious virus inside a biosafety cabinet, within a BSL3 containment facility.

2.2. Quantitation of viral titers

Viral titers were determined in Vero cell monolayers on 24 and 96-well plates using a 50% tissue culture infectious dose assay (TCID_{90}). Serial dilutions of virus samples were incubated at 37 °C for 4 days and subsequently examined for cytopathic effect (CPE) in infected cells, as described by Ksiazek et al. (2003). Briefly, SARS-CoV-induced CPE of infected cells was determined by observing rounded, detached cells in close association to each other. Evidence of inactivation was determined by absence of CPE in Vero cells, indicating loss of infectivity.

2.3. UV light treatment

Ultra violet light (UV) treatment was performed on 2 ml aliquots of virus (volume depth = 1 cm) in 24-well plates (Corning Inc., Corning, NY). The UV light source (Spectronics Corporation, Westbury, NY) was placed above the plate, at a distance of 3 cm from the bottom of the wells containing the virus samples. At 3 cm our UVC light source (254 nm) emitted 4016 μW/cm² (where μW = 10^{-9} J/s) and the UVA light source (365 nm) emitted 2133 μW/cm², as measured by radiometric analysis (Spectronics Corporation). After exposure to the UV light source, virus was frozen for later analysis by TCID_{90} assay using CPE as the endpoint.

2.4. Gamma irradiation treatment

We prepared 400 μl samples of SARS-CoV and kept them on dry ice during transport. Test samples were subjected to gamma radiation (3000, 5000, 10,000, and 15,000 rad) from a 60Co source, while control samples were protected from exposure. Test and control samples were handled and transported identically, except test samples were exposed to the gamma radiation source. Samples were kept frozen until analysis of inactivation by TCID_{90} assay.

2.5. Heat treatment of virus

We incubated 320 μl aliquots of virus in 1.5 ml polypropylene cryotubes using a heating block to achieve three different temperatures (56, 65 and 75 °C). After heat treatment, samples were frozen for later analysis by TCID_{90} assay using CPE as an endpoint.

2.6. Formaldehyde and glutaraldehyde treatment

Formaldehyde (37%, Mallinckrodt Baker Inc., Paris, KY) and glutaraldehyde (8%, Sigma, Saint Louis, MO) were diluted 1:10 and 1:40 in sterile PBS. These diluted aldehydes were added to virus samples to achieve final dilutions of 1:1000 and 1:4000 in 400 μl. The final concentrations of formaldehyde were 0.037% (1:1000) and 0.009% (1:4000), and the final concentrations of glutaraldehyde were 0.008% (1:1000) and 0.002% (1:4000). The virus and aldehyde samples were incubated at 4, 25, and 37 °C, for up to 3 days. The samples were mixed briefly with a vortex on each day. The samples were stored at −70 °C until analysis by TCID_{90} assay.

2.7. pH treatment

Virus aliquots were adjusted to the desired pH using 5 M and 1 M HCl or 5N and 1N NaOH. Subsequently, they were divided into three aliquots, incubated at the desired temperature (4, 25, and 37 °C), neutralized to a pH 7, and analyzed for viral titer using the TCID_{90} assay.

2.8. Infectivity of viral RNA and detergent-disrupted virions

Infected Vero cells were prepared by inoculation with 20 μl of virus at a 10^{6.37} TCID_{90} per ml of SARS-CoV in a final volume of 2 ml in a T25 flask for 1 h at 25 °C. DMEM with supplements was added to the flask and the cells were incubated at 37 °C for 3 days. The monolayer was washed with 1X phosphate buffered saline (PBS), cells were lysed with the addition of 2.5 ml of a phenol and guanidine isothiocyanate solution (TRizol, Reagent, Sigma), and cytoplasmic RNA was isolated according to the manufacturer’s specifications. Vero cells were inoculated with 10μl of purified RNA in 0.5 ml DMEM. After an hour, DMEM with supplements was added. Additionally, Vero cells were transfected with cytoplasmic RNA using DMIIE-C (Invitrogen Life Technologies, Carlsbad, CA) according to the manufacturer’s instructions. Cells were incubated at 37 °C, and observed for CPE on days 3 and 4.

To examine the infectivity of detergent-disrupted virions, SARS-CoV infected Vero monolayer cells were washed and dissociated with trypsin/versene, pelleted by centrifugation, and washed with PBS. After centrifugation, the pellet was lysed with sodium dodecyl sulfate/nonider P-40 (SDS/NP-40; 0.1% SDS, 0.1% NP-40, in 0.1x PBS, Sigma), frozen
at −70 °C, thawed, and clarified by centrifugation. The supernatant was used to infect Vero cell monolayers in 6-well plates, such that the final concentration of SDS was 0.002 or 0.018%. Three and four days following the inoculation, cells were observed for evidence of CPE.

3. Results

3.1. Effect of radiation on the infectivity of SARS-CoV

UV light is divided into three classifications: UVA (320–400 nm), UVB (280–320 nm), and UVC (200–280 nm). UVC is absorbed by RNA and DNA bases, and can cause the photochemical fusion of two adjacent pyrimidines into covalently linked dimers, which then become non-pairing bases (Perdiz et al., 2000). UVB can cause the induction of pyrimidine dimers, but 20–100-fold less efficiently than UVC (Perdiz et al., 2000). UVA is weakly absorbed by DNA and RNA, and is much less effective than UVC and UVB in inducing pyrimidine dimers, but may cause additional genetic damage through the production of reactive oxygen species, which cause oxidation of bases and strand breaks (Tyrrell et al., 2001).

To examine the inactivation potential of UVA and UVC, virus stocks were placed in 24-well tissue culture plates and exposed to UV irradiation on ice for varying amounts of time, as indicated in Fig. 1A. Exposure of virus to UVC light resulted in partial inactivation at 1 min with increasing efficiency up to 6 min (Fig. 1A), resulting in a 400-fold decrease in infectious virus. No additional inactivation was observed from 6 to 10 min. After 15 min the virus was completely inactivated to the limit of detection of the assay, which is ≤1.0 TCID₅₀ (log₁₀) per ml. In contrast, UV A exposure demonstrated no significant effects on virus inactivation over a 15 min period. Our data show that UVC light inactivated the SARS virus at a distance of 3 cm for 15 min.

A standard procedure to inactivate viruses during the manufacture of biological products is gamma irradiation (Grieb et al., 2002). To investigate the effect of gamma irradiation on SARS-CoV, we subjected 400 μl of SARS-CoV to gamma radiation (3000, 5000, 10,000, and 15,000 rad) from a 60Co source, while control samples were protected from exposure. No effect on viral infectivity was observed within this range of gamma irradiation exposure (Fig. 1B).

We found that at 56 °C most of the virus was inactivated after 20 min (Fig. 2A). However, the virus remained infectious at a level close to the limit of detection for the assay, for at least 60 min, suggesting that some virus particles were stable at 56 °C (Fig. 2A and C). At 65 °C, most of the virus was inactivated if incubated for longer than 4 min (Fig. 2B). Again, some infectious virus could still be detected close to the limit of detection for the assay, after 20 min at 65 °C. While virus was incompletely inactivated at 56 and 65 °C even at 60 min, it was completely inactivated at 75 °C in 45 min (Fig. 2C). Surprisingly, at both 56 and 65 °C the virus was inactivated at early time points but at 60 min a small amount of virus was detected. One possible explanation for this result may be the presence and subsequent dissociation of aggregates. Taken together, these results suggest that viral inactivation by pasteurization may be very effective.

3.3. Effects of formaldehyde and glutaraldehyde on the infectivity of SARS-CoV

Formalin (dilute formaldehyde) has been used for a number of years to inactivate virus for use in vaccine products, such as the widely used and very effective polio vaccine (Salk and Salk, 1984). Other attempts at using formalin inactivation for generation of vaccines for respiratory syncytial virus (Kim
et al., 1969) and measles virus (Fulginiti et al., 1967) were not useful, as they induced an aberrant immune response resulting from formalin-induced perturbations of the viruses. Formalin inactivation occurs when nonprotonated amino groups of amino acids, such as lysine, combine with formaldehyde to form hydroxymethylamine. The hydroxymethylamine combines with the amino, amide, guanidyl, phenolic, or imidazole group of amino acids to create inter- or intramolecular methylene crosslinks (for review, see Jiang and Schwendeman, 2000). Fraenkel-Conrat (1954) observed the absorption spectra of several plant viruses and determined that formalin also binds in a reversible manner to RNA, blocking reading of the genome by RNA polymerase. Glutaraldehyde can also be used to inactivate virus and is used as a disinfecting agent of medical instruments, such as endoscopes (Tandon, 2000), and as a fixative for electron microscopy (McDonnell and Russell, 1999).

We examined formalin and glutaraldehyde inactivation of the SARS-CoV by incubating virus samples with formalin or glutaraldehyde at two different dilutions (1:1000 and 1:4000). Each of the diluted aldehydes was incubated with virus at 4, 25 or 37 °C. Both of the aldehydes exhibited temperature-dependent inactivation. The effects of heat treatment on the infectivity of SARS-CoV are shown in Figure 2.

Table 1: Effect of formaldehyde and glutaraldehyde inactivation of SARS-CoV

Virus Dilution	Day 1	Day 2	Day 3
Formaldehyde treatment			
Yes 1:1000	4.45 ± 0.29	1.31 ± 0.29	1.31 ± 0.29
Yes 1:4000	2.70 ± 0.13	1.14 ± 0.29	1.14 ± 0.29
Glutaraldehyde treatment			
No 1:1000	≤ 1.0	≤ 1.0	≤ 1.0
Yes 1:1000	≤ 1.0	≤ 1.0	≤ 1.0
Yes 1:4000	5.28 ± 0.29	5.09 ± 0.58	4.86 ± 0.14

Formalin treatment fixed the cells in the TCID50 assay so virus could not be detected. The limit of detection for the TCID50 assay was ≤ 1.0.
3.4. Effect of pH changes on the infectivity of SARS-CoV

Weismiller et al. (1990) determined that a pH of 8.0 induces a conformational change in the spike protein of the coronavirus, mouse hepatitis virus (MHV), which enables fusion of the virion with the host cell. However, Xia et al. (2003) determined that the spike protein of SARS-CoV mediates fusion with the host cell at a neutral pH. These data suggest that different pH conditions affect the spike proteins of coronaviruses, and the activity of the spike protein of the SARS-CoV may be sensitive to changes in pH, possibly by changing the infectious nature of the viral particles. Therefore, we investigated the effect of different pH exposures on the infectivity of SARS-CoV. After exposing SARS-CoV to extreme alkaline conditions of pH 12 and 14 for 1 h, and subsequently reversing the conditions to a neutralized, buffered solution, the virus was completely inactivated (Fig. 3). Moderate variations of pH conditions from 5 to 9 had little effect on virus titer, regardless of the temperature. However, highly acidic pH conditions of 1 and 3 completely inactivated the virus at 25 and 37°C. At 4°C, a pH of 3 did not fully inactivate the virus. These data indicate that the infectivity of SARS-CoV is sensitive to pH extremes.

3.5. Infectivity of isolated viral RNA and isolated proteins

Biochemical and molecular biology experiments may require the isolation of nucleic acids or proteins from virus-infected cells. We used a phenol and guanidine thiocyanate solution (TRIzol, Sigma) to isolate cytoplasmic RNA from SARS-CoV-infected Vero cells. After inoculation of Vero cells with the isolated RNA, we determined that SARS-CoV RNA was not able to produce CPE in the cells (data not shown). We also found that transfection of the cells with this RNA, using a liposome-based transfection reagent (DMRIE-C, Invitrogen, as per manufacturer’s instructions for RNA transfection), was also not sufficient to cause infection of Vero cells (data not shown).

Additionally, we tested the effectiveness of SDS/NP-40 treatment on inactivation of the SARS-CoV. Briefly, SARS-CoV-infected Vero cells were lysed with an SDS/NP-40 solution, clarified by centrifugation, and the supernatant was used to infect Vero cell monolayers. No CPE was observed in the cells after 3 and 4 days, indicating that SDS/NP-40-induced disruption of the virions was sufficient to prevent survival of infectious particles.

4. Discussion

Inactivation of SARS-CoV can be achieved through a number of techniques, given sufficient time and appropriate temperature conditions. We caution that the inactivation procedures discussed above were performed under specific conditions. Due to the grave consequences of a potential SARS-CoV human infection, great care should be taken to ensure that any inactivation procedures used to make the virus safe for BSL2 conditions are effective for each viral stock.

We determined that greater than 15 min of UVC treatment inactivated the virus while UVA light had no effect on viability, regardless of duration of exposure. Duan et al. (2003) examined the effect of UVC light on SARS-CoV at an intensity of >90 μW/cm² and a distance of 80 cm, and determined that inactivation of the virus occurred at 60 min. Inactivation may have occurred more efficiently in our study due to the greater intensity of UVC light and the closer proximity of the light source. We also examined the effect of gamma irradiation on SARS-CoV, and found no decrease in infectivity at the highest dose of 15,000 rad. This result was not surprising, as the Centers for Disease Control and Prevention have used a much higher dose of 2 × 10⁶ rad to inactivate potential SARS-CoV-infected serum specimens for study in BSL2 laboratories (Kuzarek et al., 2003). This dosage is in the same range (3–4.5 × 10⁶ rad) that is necessary to inactivate viruses in monoclonal antibody preparations (Grieb et al., 2002) and bone diaphysis transplants (Pnuss et al., 2002).

Our experiments showed that heat treatment of SARS-CoV for 45 min at 75°C resulted in inactivation of the virus, while 90 min at 56 and 65°C was required for virus inactivation. Laude (1981) determined that thermal inactivation of another coronavirus, transmissible gastroenteritis virus of swine, also occurred faster at higher temperatures, such as 47 and 55°C, than at the lower temperature of 31°C. Our data are similar to those of Kuzarek et al. (2003), wherein viral
Leung et al. (2003) have shown enteric inactivation of SARS-CoV in a temperature- and time-dependent manner. While incubation at 4°C inhibited the effect of these chemicals, at 37°C or room temperature, formalin significantly decreased the infectivity of the virus on day 1, while glutaraldehyde inactivated SARS-CoV after incubations of 1–2 days. As glutaraldehyde is commonly used to disinfect medical instruments, especially endoscopes, care should be taken to analyze time, temperature, and concentration requirements necessary for complete SARS-CoV inactivation.

Weisneller et al. (1990) determined that a pH of 8.0 induces a conformational change in the spike protein of the coronavirus MHV that enables fusion of the virus with the host cell. However, Xiao et al. (2003) determined that the spike protein of SARS-CoV mediated fusion with the host cell at a neutral pH. These data suggest that different pH conditions affect the spike proteins of coronaviruses, and the activity of the spike protein of SARS-CoV may be sensitive to changes in pH, possibly by changing the infectious nature of the viral particles. We determined that exposure of SARS-CoV to extreme basic or acidic conditions caused inactivation, while the virus remained stable within a range of neutral pH. The pH of gastric secretions of the stomach ranges from 1.0 to 3.5, while the small and large intestines range from pH 7.5 to 8.0 (Guyton and Hall, 1997). Taken together, these data suggest that ingestion of SARS-CoV would probably result in inactivation of most virions by stomach acid. However, acidic conditions of the stomach may be partially able to result in inactivation of most virions by stomach acid.

We also thank Spectronics Corporation for the use of UV lamps and radiometer. We also thank Leatrice Vogel and Josephine McAllister for technical assistance. Montserrat Puig for helpful suggestions and Kathryn Carbone. Jesse Goodman, Bill Egan and Jerry Weir for their support.

References

Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.-R., Becker, S., Rabenau, H., Panning, M., Klenk, H.-D., Osterhaus, A.D.M.E., Schmitz, H., Doerr, H.W., 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976.

Duan, S.-M., Zhao, X.-X., Wen, R.-F., Bhung, J.-J., Pi, G.-H., Zhang, S.-X., Han, J., Bi, S.-L., Buan, L., Dong, X.-P., and SARS Research Team, 2003. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. 16, 246–255.

Friedel-Conrat, H., 1954. Reaction of mucic acid with formaldehyde. Biochim. Biophys. Acta 15, 307–309.

Fulginiti, V.A., Ellison, J.J., Domone, A.W., Kempe, C.H., 1967. Altered reactivity to measles virus: atypical measles in children previously immunized with inactivated measles virus vaccine. JAMA 202, 1075–1080.

Grisch, T., Forst, R.-Y., Brown, B., Owolabi, T., Madden, E., McEachin, A., Drohan, W.N., Munn, D.M., Burgoon, W.H., 2002. Effective use of gamma irradiation for pathogen inactivation of monoclonal antibody preparations. Biotechnol. 30, 207–216.

Guyton, A.C., Hall, J.E., 1997. Secretory function of the alimentary tract. Human Physiology and Mechanisms of Disease, sixth ed. W.B. Saunders Company, Philadelphia (pp. 524–536).

Jiang, W., Schwendsen, S.P, 2000. Formaldehyde-mediated aggregation of protein antigens: comparison of untreated and formalized model antigens. Biotechnol. Bioeng. 70, 507–517.

Kim, H.W., Canchola, J.G., Brandt, C.D., Pyles, G., Chanock, R.M., Jensen, K., Parrott, R.H., 1969. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 100, 422–438.

Kissack, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, J., Urbani, C., Comer, J.A., Lam, W., Rollin, P.E., Dowell, S.F., Long, A.E., Humphrey, C.D., Stich, W.J., Guenter, J., Pabs, C.D., Roma, P., Fields, B.D., DeRisi, J., Yang, J.Y., Cox, N., Hughes, J.M., LeDuc, J.W., Bellini, W.J., Anderson, L.J., and the SARS Working Group, 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966.

Laude, H., 1981. Thermal inactivation studies of a coronavirus, transmissible gastroenteritis virus. J. Gen. Virol. 56, 235–240.

Leel, P.N., Rezvink, H.W., Lucas, C.J., 1987. Inactivation of 12 viruses by heating steps applied during manufacture of a hepatitis B vaccine. J. Med. Virol. 23, 297–301.

Leung, W.K., To, K.-F., Chan, P.K.S., Chan, H.L.Y., Wu, A.K.L., Lee, N., Yuen, K.Y., Sung, J.J.Y., 2003. Enteric involvement of severe acute
respiratory syndrome-associated coronavirus infection. Gastroenterology 125, 1011–1017.
McDonnell, G., Russell, A.D., 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Micro. Rev. 12, 147–179.
Normile, D., 2004. Mounting lab accidents raise SARS fears. Science 304, 654–661.
Perdiz, D., Grof, P., Mezzina, M., Nikaido, O., Moustacchi, E., Sage, E., 2000. Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. J. Biol. Chem. 275, 26732–26742.
Pruss, A., Kao, M., Gobo, U., Koscielny, J., von Versen, R., Pauli, G., 2002. Effect of gamma irradiation on human cortical bone transplants contaminated with enveloped and non-enveloped viruses. Biologics 30, 125-133.
Rota, P.A., Oberto, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Klenk, H., Pizarro, B., Bankamp, B., Maher, K., Chen, M., Tong, S., Tamarin, A., Lowe, L., Freer, M., DelRos, J.L., Chen, Q., Wang, D., Erdman, D.D., Prest, T.C.T., Burns, C., Kolacek, T.G., Rollin, P.E., Sanchez, A., Laffick, S., Holloway, B., Limer, J., McCaustland, K., Olsen-Rasmussen, M., Foucher, R., Gauntner, S., Oberhaus, A.D.M.E., Drosten, C., Pallansch, M.A., Anderson, L.J., Bellini, W.J., 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399.
Salk, D., Salk, J., 1984. Vaccinology of poliomyelitis. Vaccine 2, 59–74.
Schlegel, A., Immelmann, A., Kempf, C., 2001. Virus inactivation of plasma-derived proteins by pasteurization in the presence of guanidine hydrochloride. Transfusion 41, 382–389.
Tandon, R.K., 2000. Disinfection of gastrointestinal endoscopes and accessories. J. Gastroenterol. Hepatol. 15, 69–72.
Tyrrell, J.L., Diak, T., Cadet, J., 2001. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobio. B 63, 88–102.
Weismiller, D.J., Sturman, L.S., Buchmeier, M.J., Fleming, J.O., Holmes, K.V., 1990. Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions. J. Virol. 64, 3051–3055.
Xiao, X., Chakraborti, S., Dimitrov, A.S., Gramatikoff, K., Dimitrov, D.S., 2003. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun. 312, 1159–1164.
Efficacy of an automated multi-emitter whole room UV-C disinfection system against Coronaviruses MHV and MERS-CoV

Kurt Bedell¹, Adam Buchaklian, PhD², and Stanley Perlman, MD, PhD¹,³
¹Department of Microbiology University of Iowa, Iowa City, IA 52242
²Surfacide LLC, Waukesha, Wisconsin
³Department of Microbiology Pediatrics, University of Iowa, Iowa City, IA 52242

Abstract

The virus responsible for Middle Eastern respiratory syndrome, MERS-CoV is a lineage C betacoronavirus similar to the mouse hepatitis virus type A59 (MHV-A59). The first reported case of MERS occurred in Saudi Arabia in 2012 and resulted in 76 deaths¹. Outbreaks of MERS have since occurred not only in the Middle East but South Korea as well². Rapid, efficient, and automated methods of disinfecting surfaces contaminated with the MERS-CoV virus may prevent the spread of the virus in the healthcare setting. Here we report on the use of an automated triple-emitter whole room disinfection system to inactivate the MHV-A59 and the MERS-CoV viruses on surfaces with a greater than 5 log₁₀ reduction on MERS in 5 minutes of UV-C exposure.

Introduction

Coronaviruses like MHV-A59 were first identified as the causative agents in outbreaks of Severe Acute Respiratory Syndrome (SARS) in 2002 in China, and Middle Eastern Respiratory Syndrome (MERS) in the Middle East in 2012 ³⁻⁵. Since that time outbreaks of MERS have continued to occur in both the Middle East as well as in South Korea and China. MERS has a reported mortality rate of approximately 40%⁴⁻⁶.

MERS is thought to be transmitted from camels to humans through direct contact, however obvious camel to human interaction has not been documented in all cases. Human-human transmission has also been identified in hospital and household transmission during MERS outbreaks. The ability of Coronaviruses to rapidly mutate increases the risk of a pandemic outbreak in the near future ⁴. MHV-A59 is structurally similar to the MERS-CoV but causes hepatic and neuronal tropic disease in mice. It has been shown to also induce acute pneumonia and severe lung injuries similar to MERS in humans when given by intranasal inoculation to mice⁷. The MHV-A59 virus is an ideal model virus to study the effects of Surfacide UV-C against MERS. Along with studies of MHV-A59 the Surfacide multiple emitter system was also tested against the MERS-CoV virus.

Corresponding author: Adam Buchaklian, PhD, Surfacide, LLC, 407 Pilot Ct., Waukesha, WI 53188, adam.buchaklian@surfacide.com.
The Study

Triplicate 10μl aliquots of MHV-A59 were loaded onto sterile glass coverslips at a concentration of 1.6e8 pfu/ml and allowed to dry. MHV-A59 was stable when dried on glass coverslips for at least 60 minutes. Coverslips containing dried virus were then placed in a UV transparent petri dish (Sarstedt) and either left untreated or exposed to UV-C radiation from the Surfacide system for predetermined times between 0 and 60 minutes. The coverslips containing dried virus were then placed in DMEM media on ice to re-suspend the virus. Serial 1:10 dilutions were inoculated onto Hela cells and allowed to incubate for 45 minutes at 37°C. Media containing virus was removed and the cells were allowed to incubate overnight in D10 media. Plaque counts were determined the following day by combining 1% neutral red with 2x media plus agarose and incubating the cells for approximately 3 hours. All studies were conducted in triplicate with replicate experiments. Plaque counts indicated that the UV-C energy emitted from the Surfacide disinfection device was able to reduce the viral titers by an average of 2.71 log_{10} in 5 minutes and 6.11 log_{10} in 10 minutes of exposure (Figure 1).

Testing MERS-CoV sensitivity to UV-C virus was conducted under strict containment protocols due to the infective nature of the virus and all steps were carried out above bleach soaked pads to prevent virus spread. The presence of bleach in the biosafety cabinet prevented drying of the virus onto glass coverslips. MERS-CoV was therefore loaded onto glass coverslips as small droplets, placed in UV-C permeable dishes and exposed to UV-C energy from the Surfacide emitter at a distance of 4-feet (1.22) and samples removed at several time points between 0 and 30 minutes. Virus resuspension and dilution was carried out as described above. Virus dilutions were placed onto 90% confluent Vero cells at 37°C for 40 minutes. Following the 40 min incubation media containing virus was removed and replaced with 2x medium plus 1.2% agarose and allowed to solidify. DMEM was then layered on top to prevent drying and the plates incubated at 37°C for 3 days to allow for plaque formation. On the third day formalin was added to fix the cells for 20 minutes. Formalin, media, and agarose were then removed and replaced with 0.1% crystal violet for a 5 min incubation followed by a PBS wash prior to counting plaques. Again all samples were prepared in triplicate. A UV-C exposure time of only 5 minutes resulted in undetectable virus levels that remained undetectable following 30 minutes of total exposure for a 5.9 log_{10} reduction. (Figure 2).

Conclusions

The Surfacide triple emitter continuous UV-C disinfection system was greater than 99.999% effective against MHV-A59, a mouse analog of MERS-CoV and SARS-CoV in 10 minutes. Applying those same studies to droplets of MERS-CoV resulted in undetectable levels of MERS-CoV virus after only 5 minutes of exposure to the Surfacide UV-C emitter or a percent reduction of greater than 99.999%. This study is the first to document the effectiveness of the Surfacide automated whole room UV-C system or any whole room disinfection system against RNA viruses like MHV-A59, MERS-CoV and SARS-CoV. The use of the Surfacide whole room UV-C disinfection system during MERS outbreaks may prevent the nosocomial spread of the virus and protect staff in the process.
References

1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RaM. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N Engl J Med. 2012; 367(19):1814–1820. DOI: 10.1056/NEJMoa1211721 [PubMed: 23075143]

2. Khan A, Farooqui A, Guan Y, Kelvin DJ. Lessons to learn from MERS-CoV outbreak in South Korea. J Infect Dev Ctries. 2015; 9(06):7–10. DOI: 10.3855/jidc.7278

3. Nie QH, Luo XD, Hui WL. Advances in clinical diagnosis and treatment of severe acute respiratory syndrome. World J Gastroenterol. 2003; 9(6):1139–1143. http://www.ncbi.nlm.nih.gov/pubmed/12800213. [PubMed: 12800213]

4. De Groot RJ, Baker SC, Baric RS, et al. Middle East Respiratory Syndrome Coronavirus (MERS-CoV); Announcement of the Coronavirus Study Group. J Virol. 2013; 5(May):13–15. DOI: 10.1128/JVI.01244-13

5. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015; 386(9997):995–1007. DOI: 10.1016/S0140-6736(15)60454-8 [PubMed: 26049252]

6. Memish, Za, Al-Tawfiq, Ja, Alhakeem, RF., et al. Middle East respiratory syndrome coronavirus (MERS-CoV): A cluster analysis with implications for global management of suspected cases. Travel Med Infect Dis. 2015; 13(4):311–314. DOI: 10.1016/j.tmaid.2015.06.012 [PubMed: 26211569]

7. Yang Z, Du J, Chen G, et al. Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice. Virol Sin. 2014; 29(6):393–402. DOI: 10.1007/s12250-014-3530-y [PubMed: 25547683]
Figure 1.
Log reduction of MHV-A59 following Surfacide UV-C exposure at a 4-foot distance (1.22 meters). Virus was reduced by $2.71 \log_{10}$ in 5 minutes and $6.11 \log_{10}$ reduction in 10 minutes to undetectable levels.
Figure 2.
Log reduction of MERS-CoV following Surfacide UV-C exposure at a 4-foot distance. Virus was reduced to $5.91 \log_{10}$ in 5 minutes to undetectable levels.