Selection of suitable candidate genes for mRNA expression normalization in bulbil development of *Pinellia ternata*

Haoyu Fan¹², Qiuling He¹²*, Yiheng Dong³, Wenxin Xu¹, Yanlin Lou³, Xuejun Hua¹ & Tao Xu¹²

Pinellia ternata (Thunb.) Breit. (Abbreviated as *P. ternata*). It is a commonly prescribed Chinese traditional medicinal herb for the treatment of phlegm, cough, and morning sickness. Bulb reproduction is one of the main reproductive methods of *P. ternata*. The accurate quantification of gene expression patterns associated with bulbil development might be helpful to explore the molecular mechanisms involved in *P. ternata* reproduction. Quantitative real-time PCR was the most preferred method for expression profile and function analysis of mRNA. However, the reference genes in different tissues of *P. ternata* in different periods of bulbil development have not been studied in detail. In present study, the expression stability of eight candidate reference genes were determined with programs: geNorm, NormFinder, BestKeeper, and reffinder. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the top rated reference gene in all samples of *P. ternata*, while different combinations of reference gene proved to be the most stable depending on development stage and tissue type. Furthermore, the reliability of GAPDH expression was verified by six *P. ternata* related genes in hormone and nutrient biosynthesis pathways, and the expression profiles of these genes were agreed with the results of RNA-seq digital gene expression analysis. These results can contribute to studies of gene expression patterns and functional analysis of *P. ternata* involved in bulbil development.

Pinellia ternata (Thunb.), belongs to the Araceae family, is mainly distributed in China, Japan and Korea¹. The dried tuber of *P. ternata* that called *Pinellia rhizome* (PR) can be used as medicinal materials after processing to reduce its toxicity. Pharmacological investigations have demonstrated that the chemical constituents of *P. ternata* extract contains various biological activities, such as sedative, cytotoxic, anti-tumor, hypnotic, antiemetic and anticonvulsant activities²³. In recent years, the increasing demand of *P. ternata* has made the wild resources decreased sharply, and the problem of continuous cropping obstacle has not been effectively solved, leading to the shortage of market resources⁴. The reproductive methods of *P. ternata* include seed, tuber and bulbil. The offspring produced by asexual reproduction of bulbils can stably inherit the excellent traits of the parent plant, have the characteristics of high germination rate and non-dormancy, which provide a safe strategy for asexual reproduction⁴⁵.

Gene expression analysis is an important technique for elucidation of biological genetics, signaling, metabolic pathways, and complex regulatory networks for biotic and abiotic stress responses⁶. The development of sequencing technology provides a large amount of sequence information of plant species, which makes the study of plant gene expression more frequent and convenient⁷. qRT-PCR is an important tool for efficient, sensitive, and reliable analysis of gene expression level in biological samples⁸. However, the researchers found that the results of qRT-PCR are often affected by various factors, such as RNA quality, reverse transcription efficiency, amplification efficiency⁹. In the process of data processing, the experimental data needed to be calibrated¹⁰. The most commonly used method for calibrating target expression is to use internal control genes as a reference, namely reference genes (RGs). The important characteristic of the ideal reference gene is that the gene expression level is stable in different experimental conditions, different tissues and different developmental stages¹¹. The commonly used RGs include 18S rRNA, β-actin, GAPDH, EF1-α, α-tubulin and β-tubulin¹¹¹⁶. However, researchers have found that there are no ideal RGs that can be stably expressed under any experimental conditions. Thus, it is

¹Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China. ²These authors contributed equally: Haoyu Fan and Qiuling He. *email: qlhe@zstu.edu.cn; xutao@zstu.edu.cn*
necessary to screen the best RGs according to different plant species, tissues or various experimental conditions17. RGs have been reported in many plant species, such as the model plant Arabidopsis thaliana18, Oryza sativa19, Glycine max20. Furthermore, the identification of RGs have been reported in many medicinal plants, such as Scutellaria baicalensis21, Dendrobium officinale22 and Glycyrrhiza8. Screening suitable RGs has greatly facilitated functional studies of plant growth and development, but the research on the screening of RGs in \textit{P. ternata} has not been reported.

Based on published reference gene screening and their application in other plant species, 8 candidate reference genes (CRGs) were selected from \textit{P. ternata} transcriptome database generated by previous studies of our group for this study. These CRGs were investigated to determine the most suitable candidate gene(s) as the reference(s) for gene expression analysis using qRT-PCR technique in different developmental stages and including different tissues of \textit{P. ternata} (Fig. 1). These genes include elongation factor β subunit (\textit{EF1-beta}), nicotinic phosphate ribose transferase (\textit{NAPRT}), large subunit ribosomal protein L25 (L25), phosphoenolpyruvate carboxykinase (\textit{PEPCK}), glyceraldehyde-3-phosphate dehydrogenase (\textit{GAPDH}), tubulin β (\textit{TUB}), elongation factor α subunit (\textit{EF1-alpha}) and ADP ribosylation factor 8b (\textit{ARL8B}). The average cycle threshold (Ct) values of CRGs were used to determine the gene expression stability using four statistical software tools: \textit{geNorm}23, \textit{NormFinder}24, \textit{Bestkeeper}25, and \textit{refFinder}26. This study screened and validated the best RGs will help researchers to improve the accuracy and reliability of gene expression analysis for qRT-PCR analysis of bulbil development in \textit{P. ternata}, and laid a foundation for revealing the molecular mechanism related to the development of \textit{P. ternata} in the future.

Results

Candidate reference genes screening and primer design. Refer to the RGs commonly used in the research of plant gene expression, four commonly used CRGs and four new genes were selected. Homologous sequences of these CRGs in \textit{P. ternata} identified through BLASTX against GenBank which obtained from our unpublished \textit{P. ternata} transcriptomic data. According to the identity of the annotation of each gene with its ortholog, we selected eight candidate genes including those encoding elongation factor β subunit (\textit{EF1-beta}), nicotinic phosphate ribose transferase (\textit{NAPRT}), large subunit ribosomal protein L25 (L25), phosphoenolpyruvate carboxykinase (\textit{PEPCK}), glyceraldehyde-3-phosphate dehydrogenase (\textit{GAPDH}), tubulin β (\textit{TUB}), elongation factor α subunit (\textit{EF1-alpha}) and ADP ribosylation factor 8b (\textit{ARL8B}). Among the eight CRGs, commonly used RGs and new CRGs account for half of each (Table 1).

Validation of primers. The PCR amplification specificities of primers were confirmed by agarose gel electrophoresis with single bands of the expected size, with no primer-dimer being observed. (Fig. 2a). The melting...
curve of each product has a single peak, which proves the specificity of primers (Fig. 2b). Amplification efficiency (E) of PCR reactions varied between 90.6 and 115.0 and the regression coefficient (R²) ranged from 0.943 to 0.999 (Table 1), indicated that primers of each gene exhibited significant specificity and high amplification efficiency.

Expression profiles of candidate reference genes. The expression profiles of each candidate reference gene were determined by qRT-PCR during different development stages and in different tissues. The expression abundance of each gene varied across the samples of *P. ternata*. The average Ct values derived from three biological repetitions of the eight CRGs ranged from 17 to 29. The results indicated that the expression of *GAPDH* had the highest expression abundance in all the samples, with an average Ct value of 17.654, while *L25* showed the lowest expression abundance, with the Ct values being 25.8 of minimum and 31.3 of maximum. The Ct values of *GAPDH* (3.23 ± 0.57) and *TUB* (3.56 ± 0.66) with minimum SD values indicated that the stability of these genes was the best of all the candidates. CRGs with more variable expression levels included *L25* and *PCKA* (Fig. 3, Table S1).

Analysis of candidate reference genes expression stability. The average Ct values derived from three biological replicates of the eight candidate genes were used to evaluate stability for three evaluation methods, and refFinder was used to integrate the results of the above three methods to get the comprehensive index ranking.

M-value was calculated by geNorm algorithm, the gene with the lowest M value was the best reference gene. The results of analysis showed that, for DP, most genes showed high stability, with an M value far below the default limit of 1.5. (Fig. 4a, Table S2). However, L25 gene had the lowest stability in period 1, 3 and 4, and *ARL8B* at 1.64 in period 2 exceeded the threshold (Fig. 4a, Table S2). The calculation showed that for different tissues, the most stable genes are *GAPDH* (0.84) and followed by *EF1-alpha* (0.90) and *EF1-beta* (0.92) (Fig. 5a, Table S2). The evaluation results of geNorm showed that *L25* exhibited low stability in all samples (Fig. 6a, Table S2). NormFinder analyzed the expression stability of all CRGs mainly based on the results of variance analysis and ranked them in accordance with their stability. In different development periods, *GAPDH* was the most stable gene followed by *NAPRT* exhibited more stable expression in Period 2 and 4 (Fig. 4b, Table S3). *EF1-beta* and *GAPDH* were the most stable genes in Dt (Fig. 5b, Table S3). In all samples, the more stable gene is *GAPDH* (0.16), followed by *EF1-beta* (0.28) and *EF1-alpha* (0.31), and the most unstable gene was *L25* (1.059) (Fig. 6b, Table S3). The order of gene expression stability from high to low was *GAPDH*, *EF-alpha*, *EF1-beta*, *NAPRT*, *ARL8B*, *TUB*, *PEPCK*, *L25* (Table 2).

Gene symbol	Homolog locus	Annotation	Primer sequences (forward/reverse, 5′–3′)	Efficiencies (E %)	Product size (bp)	R²
EF1-beta	XM_015791225	Elongation factor EF-1 beta subunit	TGGGATGACGAGACGACAT TTGCAGGGGCTCAAC TGTCA	106.0	198	0.949
NAPRT	XM_015780447	Nicotinate phosphoribosyltransferase	ACCACTCGTGGAAAC GTAC CTCTCTCAAAAATGC CACGGA	90.6	182	0.999
L25	XM_015772552	Large subunit ribosomal protein L25	GACAGCAAGCGAGATC GTCAC GCAAGGAGCAAC GTTCA	115.0	180	0.961
PEPCK	XM_015775203	Phosphoenolpyruvate carboxykinase (ATP)	TCTGCGATCGAGTCG ATTTG TTCGGTTGGGTTGAC ATTAT	95.0	183	0.990
GAPDH	XM_015772221	Lyceraldehyde-3-phosphate dehydrogenase	ACTTTGATGACGCT TCTG TTGGAACCTGGATG ACAT	100.6	151	0.998
TUB	XM_015765391	Tubulin beta	AACAAAGTCAAAGTCC AGCCT CTGGAACCTCAT CCTG	93.9	192	0.999
ARL8B	XM_015775919	ADP-riboylation factor-like 8b	GTACCCCCCGCATCCT TTCGA GCAAGGCTACATCGA CAGCA	114.0	180	0.943
EF1-alpha	XM_015774317	Elongation factor EF-1 alpha subunit	GGGCGCAACATGATCGAG GTTGTTCAACAGGAC AACGG	109	181	0.971

Table 1. Delineations of eight candidate reference genes in *P. ternata* and parameters gained by qRT-PCR analysis.
Figure 2. Specificity of qRT-PCR amplification. (a) Agarose gel (1%) showing amplification of a single product of expected size for each candidate reference gene. (b) Melt curves of eight candidate reference genes.
The excel-based program BestKeeper was used to rank the candidate genes, the lower the SD value, the higher the stability of gene expression. NAPRT is the most stable gene expressed in Dp (Fig. 4c, Table S4), while GAPDH is the most suitable genes in Dt (Fig. 5c, Table S4). For all samples, the most stable gene was TUB (0.47), followed by GAPDH (0.48) (Fig. 6c). This result is slightly different from the ranking of expression stability of all candidate reference genes in all samples by the other two software. BestKeeper analysis revealed SD values greater than 1 for L25, disqualifying them as RGs. The stability ranking results of BestKeeper for CRGs showed similarities that obtained from Normfinder and geNorm.

A comprehensive evaluation of the three methods was made by using refFinder to eliminate the deviation caused by a single method. According to the evaluation results, the expression of GAPDH and NAPRT was the most stable in Dp, while GAPDH and EF1-alpha are the most stable in Dt (Table 2). In all samples, EF1-alpha and GAPDH were also the most stable ones (Fig. 6d, Table 2). Moreover, GAPDH was the most stable according to the comprehensive ranking in all samples, while L25 was the least.

Figure 3. Expression levels of different candidate reference genes. Expression data displayed as qRT-PCR quantification cycle values for each reference gene in P. ternata. The line across the box is depicted as the median. The box indicates the 25th and 75th percentiles and whisker caps represent the maximum and minimum values. The higher the boxes and whisker are, the greater the variations.

Figure 4. Expression stability of eight candidate reference genes in Dp of P. ternata as calculated by geNorm (a), NormFinder (b) and Bestkeeper (c), P1 = Period 1; P2 = Period 2; P3 = Period 3; P4 = Period 4.
Figure 5. Expression stability of eight candidate reference genes in Dt of *P. ternata* as calculated by geNorm (a), NormFinder (b) and Bestkeeper (c). L = Leaf; P = Petiole; R = Root.

Figure 6. Expression stability of eight candidate reference genes in total of *P. ternata* as calculated by GeNorm (a), NormFinder (b), BestKeeper (c) and refFinder (d).

Minimum number of reference genes. To select the optimal minimum number of RGs for credible normalization, the paired variation value \(V_{N/V_{N+1}} \) was calculated by geNorm.27 The best reference gene combinations in the gene expression studies of different tissues of \(P. ternata \) were GAPDH and EF1\(-\alpha\), and the best reference gene combinations in the gene expression studies of different periods of \(P. ternata \) were GAPDH and NAPRT. In the gene expression studies covering Dp and Dt of \(P. ternata \) (Fig. 7), \(V_{6/V_7} \) was 0.134, less than 0.15, but \(V_{2/V_3} \) (0.172) was close to 0.15. Considering the cost of the experiment, we believed that two RGs (GAPDH and EF1\(-\alpha\)) were also competent for the calibration of these samples. Except for the first period, the values of \(V_{2/V_3} \) in other Dp and Dt samples were all lower than 0.15 (Fig. 7), which suggested that the best reference gene combinations in Dp and Dt were GAPDH, NAPRT and GAPDH, EF1\(-\alpha\), respectively (Table 2).

Validation of the selected reference gene expression. To evaluate the reliability of the most stable gene GAPDH, expression of potential bulbil development related genes in energy metabolism pathways and hormone response pathways were normalized. These genes have been obtained from transcriptome sequencing data (Table 3). In different periods (Dp), only \(B\text{I}O2 \) showed a decreasing trend with the growth of \(P. ternata \) (Fig. 8A). However, with the growth of \(P. ternata \), \(L\text{I}P1 \), \(G\text{S} \), \(A\text{CO} \) and \(S\text{S}3 \) showed a trend of decreasing firstly and then increasing trend in later periods (Fig. 8A). Only the \(C\text{Y}P734\text{A} \) gene showed a trend of increase and then decreasing tendency with the growth of \(P. ternata \) (Fig. 8A).

In different tissues (Dt), P (petiole) was used as the control group and L and R as the experimental group to calculate the relative expression levels of the six genes. Among them, the expression abundance of \(B\text{I}O2 \), \(L\text{I}P1 \) and \(C\text{Y}P734\text{A} \) genes was the lowest in R and the highest in L, while the expression abundance of \(A\text{CO} \) was the lowest in L and the highest in R (Fig. 8B). The expression level of \(S\text{S}3 \) in P was higher than that of L and R, while the expression level of \(G\text{S} \) was the lowest in P (Fig. 8B). The different and specific expression pattern conformed with the previous reports or the digital gene expression profile from our transcriptomic data.28

Discussion

Although a great deal of research work has been done on tissue culture, identification and separation of active components and medicinal mechanism of \(P. ternata \), there are still some problems in the production of \(P. ternata \), such as low yield, continuous cropping obstacle and so on. It has a great influence on the medicinal resources

Table 2. Expression stability of the candidate reference genes in samples of \(P. ternata \) as calculated by geNorm, NormFinder, BestKeeper and RefFinder. All samples are a combination of samples from different tissues (Dt) and different periods (Dp).

Rank	GeNorm	NormFinder	BestKeeper	RefFinder							
Dp	Dt	All samples	Dp	Dt	All samples	Dp	Dt	All samples	Dp	Dt	All samples
1	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	TUB	GAPDH	GAPDH	GAPDH	GAPDH	
2	NAPRT	EF1-beta	NAPRT	GAPDH	EF1-alpha	TUB	GAPDH	EF1-alpha	NAPRT	EF1-alpha	
3	EF1-alpha	EF1-beta	TUB	EF1-beta	ARL88	TUB	EF1-alpha	EF1-beta	EF1-beta	EF1-beta	
4	EF1-beta	PEPCk	NAPRT	EF1-alpha	PEPCk	NAPRT	TUB	PEPCk	NAPRT	PEPCk	
5	ARL88	TUB	ARL88	EF1-alpha	ARL88	TUB	TUB	EFL-beta	ARL88	ARL88	
6	TUB	L25	TUB	L25	PEPCk	L25	L25	PEPCk	L25	L25	
7	L25	NAPRT	L25	NAPRT	PEPCk	L25	L25	PEPCk	L25	L25	
8	PEPCk	ARL88	L25	PEPCk	ARL88	L25	L25	PEPCk	L25	L25	

Figure 7. GeNorm calculated the minimum number of reference genes necessary for reliable and accurate normalization. Determination of the optimal number of reference genes for qRT-PCR normalization in all samples, different tissues and different periods.
of *P. ternata*. To solve these problems, it is necessary to analyze the expression patterns of genes related to the development of *P. ternata*, then further explore molecular mechanism involved in it.

In the post-genomic era, qRT-PCR has become one of the essential technologies in gene transcription and functional genomics study, because of its high specificity and sensitivity. The study of gene expression profile can help us to understand the role of genes involved in a particular biological process. qRT-PCR is often used to detect the expression level of low abundance mRNA and to verify the effectiveness of RNA interference in gene functional study, and help us to further study the gene expression in plant growth and developmental processes, stress response, and other biological processes. However, it is essential to normalize the expression data of target genes with the help of RGs for a particular tissue type, independent of the developmental stage or experimental treatment conditions. The data obtained by using unverified RGs cannot be trusted. The screening of various plant RGs has been widely carried out, but so far, it has not been found that a reference gene has a stable expression profile under all conditions of experimental. Therefore, screening and evaluating the most stable RGs in specific research models were great significance to improve the accuracy of qRT-PCR experiments and clarify the scientific problems represented by qRT-PCR results in these models.

Although the best RGs of many plants have been successfully screened under different experimental conditions, the RGs that can be stably expressed in different tissues and different developmental stages of *P. ternata* have not been reported. Eight CRGs were screened in present study. Among the candidate genes, GAPDH, TUB, EF1-alpha and EF1-beta are commonly used RGs in plants. However, using NAPRT, L25, PEPCK and ARL8B as RGs in plants has not been well studied. In this study, the results indicated that common RGs (such as GAPDH, EF1-alpha and TUB) showed more stabilities than newly explored CRGs. Discrepancy was observed in gene stability ranking and validation generated by the different algorithms (geNorm, NormFinder and BestKeeper). Thus, the refFinder algorithm was used to aggregate the evaluation results of the three algorithms to minimize the bias. The result of refFinder demonstrated that GAPDH was the most reliable reference gene in different periods and different tissues of *P. ternata* (Table 2). GAPDH was commonly used RGs in many species and tissues.

Gene symbol	Homolog locus	Size(bp)	Annotation	Primer sequences (forward/reverse, 5′-3′)	Product size(bp)
BIO2	XM_015792856	1155	Biotin synthetase	TAGAAGGGAACAAAGCGGCGCTTCCCAAGGCCAATT	194
LIP1	XM_015777878	1176	Lipoic acid synthetase	TGTTGCGTTGTTGTTAGACTGAGGCCACATATCGAAGCG	199
GS	XM_015770616	981	Glutamine synthetase	CGGACACAGGAGAGATGAGATGAGTCGCTTGGGGTATAGG	194
CYP734A	XM_015764261	1581	Cytochrome P450 734A	GGATTGCTCTCTGGGGTTTCTAATGCTCCCTGTTACCTTT	196
ACO	XR_003238359	912	1-Aminocyclopropane-1-carboxylate oxidase	CTGTCGCTACAATCGGAGATGACTGTGGTGTGACTCCTG	192
SS3	XM_015780729	927	Starch synthase	TCACACACCGCGATTTAGGGTGCAGACCGCGTCACATAGG	199

Table 3. Delineations of six differentially expressed genes in bulbil formation of *P. ternata*.

Figure 8. Relative expression levels of selected genes in different tissues and stages of bulbil development of *P. ternata*. The results were normalized using the selected stable reference gene in sample sets. The bars indicate the standard error (± SE) evaluated from three biological replicates. (A) Different periods. P1 = Period 1; P2 = Period 2; P3 = Period 3; P4 = Period 4. (B) Different tissues. L = Leaf; P = Petiole; R = Root. a, b, c, differences in expression levels of the same gene in different tissues and at different periods, according to the least significant difference (LSD) test *p* ≤ 0.01.
The process of bulbil formation involved complex molecular mechanism, and plant hormones play a key role in the process, such as IAA, GA, ABA and ZR \(^{39–41}\). During the development of the bulbil, various nutrients continue to accumulate, providing nutrition supply for the mature bulbil to develop into a new individual. To verify the reliability of the best reference gene GAPDH in data normalization and to explore the molecular mechanism of the occurrence and development of \(P. \text{ternata}\) bulbil, we screened six significant differential genes with potential role in the development of \(P. \text{ternata}\) from the early transcriptome data of \(P. \text{ternata}\), and evaluated the relative expression levels of six genes in different tissues and different developmental stages of \(P. \text{ternata}\).

The purpose of this study was to lay a foundation for the follow-up study on the molecular mechanism of bulbil formation in \(P. \text{ternata}\). BIO2 (Biotin synthase), which catalyzes the conversion of desulfurized biotin to biotin in the process of biotin synthesis. Biotin is an essential micronutrient and a cofactor of several carboxylase involved in glucose, fatty acid and amino acid metabolism \(^{42,43}\). In different tissues of \(P. \text{ternata}\), the expression abundance of BIO2 in the aboveground part was higher than that in the underground part, showing a decreasing trend (Fig. 8B), which was consistent with the phenomenon that biotins were synthesized in the aboveground parts of \(Arabidopsis thaliana\) and then transported to roots by transporters to promote root growth \(^{44}\). SS3 can encode a starch synthase, which not only participates in starch biosynthesis, but also negatively regulates instantaneous starch biosynthesis \(^{45}\). With the growth of \(P. \text{ternata}\), the expression level of SS3 gene increased as a whole, and the expression abundance of SS3 gene was the highest in the fourth stage (Fig. 8A). In Dt, the expression abundance of SS3 in petiole (P) was close to that in leaf, but higher than that in root (Fig. 8B). It was suggested that there was an increase trend of the synthesis of starch nutrients in petiole during development process, which accumulates nutrients for bulbil maturation.

GS, a glutamine synthetase, plays a critical role in the complex substrate of plant nitrogen utilization, and can protect leaves from excessive ammonia toxicity \(^{46}\). The expression level of GS increased with the development of \(P. \text{ternata}\), and the expression level of GS in the fourth stage was much higher than that in the first stage (Fig. 8A), indicating that a large number of nitrogen-containing components such as amino acids, proteins and nucleic acids were needed in the process of \(P. \text{ternata}\) growth and bulbil development.

\(P. \text{ternata}\) seeds were collected from Qingshui County, Gansu Province (CHN, latitude 34.56 N, longitude 105.45 E) under the permission of the competent authority. All experimental procedures, including investigation and collection, were conducted under relevant institutional, national, and international guidelines and regulations. Professor Tao Xu (College of Life Sciences and Medicine, Zhejiang Sci-Tech University, China) identified the seeds of \(P. \text{ternata}\) GAPDH was the best reference gene in developmental periods and different tissues of \(P. \text{ternata}\). All the results of this study laid a foundation for the further study of the mechanism of bulbil formation of \(P. \text{ternata}\).

Conclusion

Based on the high-throughput transcriptome sequencing data and the statistics of commonly used RGs in plants, eight CRGs were selected and validated for qRT-PCR normalization in different tissues and four developmental stages in \(P. \text{ternata}\). GAPDH was observed as the most stable reference gene in all samples. GAPDH and EF-alpha was the best combination for different tissues and developmental stage of \(P. \text{ternata}\). The relative expression analysis of target genes that related to bulbil development, which selected from the transcriptome data of \(P. \text{ternata}\), confirmed GAPDH was the best reference gene in developmental periods and different tissues of \(P. \text{ternata}\). All the results of this study laid a foundation for the further study of the mechanism of bulbil formation of \(P. \text{ternata}\).

Materials and methods

Plant materials. Seeds (bulbil) of \(P. \text{ternata}\) were collected from Qingshui County, Gansu Province (CHN, latitude 34.56 N, longitude 105.45 E) under the permission of the competent authority. All experimental procedures, including investigation and collection, were conducted under relevant institutional, national, and international guidelines and regulations. Professor Tao Xu (College of Life Sciences and Medicine, Zhejiang Sci-Tech University, China) identified the seeds of \(P. \text{ternata}\). Seeds of \(P. \text{ternata}\) were stored in the medicinal plant germplasm resource bank of Zhejiang Sci-Tech University (CHN, latitude: 30.32 N, longitude: 120.35 E) with dry sand at low temperatures. \(P. \text{ternata}\) cultivar ‘0012’ was used as plant materials, and its seedlings were used to study the gene expression of \(P. \text{ternata}\) in different bulbil stages. Seeds were grown in a greenhouse of Zhejiang Sci-Tech University with a temperature range of 25 ± 1 °C and 12 h photoperiod. After germination, the seedlings of \(P. \text{ternata}\) were irrigated with water every three days and 1/5 MS solution once a week to maintain adequate moisture and nutrition. Referring to the research results of bulbil development by Luo et al. \(^{31}\), and according to our experimental settings, the leaves, petioles and roots of the four early stages of bulbil development were selected as samples (Fig. 1). All the harvested samples of \(P. \text{ternata}\) were immediately immersed in liquid nitrogen for freezing and stored at -80°C.

RNA extraction and cDNA synthesis. Total RNA was extracted from 200 mg samples by using RNA prep Pure Plant Plus Kit (TIANGEN, China) refer to the manufacturer's instructions. The purity and concentration of each RNA sample were examined using NanoDrop 2000 spectrophotometer (Thermo Scientific, China). The reverse transcription reaction was processed using \(\text{Evo M-MLV}\) reverse transcription kit II (ACCUARATE BIOLOGY, China) in a 20 μL volume system containing 500 ng RNA followed the kit instructions.

Candidate reference genes selection and primer design. According to the related research literature on the plant RGs \(^{44–48}\), GAPDH, EF1-alpha, EF1-beta and TUB were selected as a reference gene. Besides, PEPCK,
L25, ARL8B, NAPRT were selected from transcripts data of *P. ternata* (Unpublished) as new CRGs (Table 1). Moreover, we identified the homologous nucleotide sequences of CRGs in *P. ternata* by BLAST. The primer of CRGs was designed using NCBI/Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) based on the following parameters: amplicon length of 180–200 bp; 18–22 bp of primer length; melting temperature (Tm) of 59–62 °C; GC content of 45–55%. All primer pairs of CRGs were synthesized by Youkang Biotechnology Company (Zhejiang, Hangzhou). Taq PCR Mix (2 ×) kits (Sangon biotech, Hangzhou, China) was firstly used for semi-quantitative RT-PCR to detect the specificity and validity of all primers. The amplified products of PCR were identified by 1% agarose gel electrophoresis and observed in gel Image System 1600 (Tanon, China).

qRT-PCR conditions and Primer amplification efficiency. The reaction of qRT-PCR was performed using SYBR® Green Premix Pro Taq HS qPCR Kit (Accurate biology, China) and run on 96-wells plates with the Applied Biosystems 7500 Real-Time PCR System (Applied Biosystems, CA, USA) in comparative C_{T} (ΔΔC_{T}) of experiment type. PCR amplification system were prepared in 20 µL volumes containing:10µL of 2 × SYBR® Green Pro Taq HS Premix, 2μL of cDNA, 0.4μL of each primer, 0.4 μ L ROX reference dye, and 6.8 μ L ddH2O. The reaction conditions of qRT-PCR consisted of initial step of 30 s at 95°C for pre-denaturation, and followed by 40 cycles at 95°C for 5 s, 60°C for 30 s. Subsequently, the melting curve of product was analyzed according to the default parameters of the instrument. Negative controls with RNase-free water instead of cDNA were included.

Standard curves from a serial dilution of pooled cDNA (mixture of leaf, petiole and root; 1,10,102,103,104 × dilutions) were constructed to calculate the amplification efficiency of each pair of primers and the correlation coefficient (R²) estimates of each pair of primers calculated in Microsoft Excel 2019 using the equation E (%) = [10^{(−1/slope) − 1}] × 100\%

The average cycle threshold (Ct) of each gene was derived from the three biological repeats, and each biological repeat was composed of three technical repeats.

Analysis of gene expression stability. The stability of the expression of each candidate gene was analyzed using geNorm\(^{23}\), NormFinder\(^{24}\), BestKeeper\(^{25}\), and refFinder\(^{26}\). The analysis results were comprehensively evaluated using the comprehensive ranking platform refFinder (https://www.heartcure.com.au/reffinder/) combined with the geometric mean of the ranking to avoid the one-sidedness of a single analysis method.

Validation of reference genes. Six genes related to the regulation of *P. ternata* bulb growth were used to validate the selected GAPDH, the most stable gene in total samples of *P. ternata*, that determined by the refFinder algorithm. The reaction conditions and primer design parameters of qRT-PCR were consistent with those mentioned before. Information of six genes selected from the transcriptome of *P. ternata* was listed in Table 3 and Table S5. Formula 2^{−ΔΔC_{T}} was used to calculate the relative expression levels of target genes\(^{58}\).

Data availability

We confirm that all the data associated with this manuscript are freely available and are presented either within the main manuscript file or in the Supplementary Materials section.

Received: 14 January 2022; Accepted: 3 May 2022

Published online: 25 May 2022

References

1. Li, X., Huang, B., Wang, G. & Zhang, C. The ethnobotanical, phytochemical and pharmacological profile of the genus Pinellia. *Fitoerapia* **93**, 1–17 (2014).
2. Zuo, Z., Fan, H., Wang, X., Zhou, W. & Li, L. Purification and characterization of a novel plant lectin from Pinellia ternata with antineoplastic activity. *Springerplus* **1**, 13 (2012).
3. Mao, R. & He, Z. Pinellia ternata (Thunb.) Breit: a review of its germplasm resources, genetic diversity and active components. *J. Ethnopharmacol.* **263**, 113252 (2021).
4. Walck, J. L., Cofer, M. S. & Hidayati, S. N. Understanding the germination of bulbils from an ecological perspective: a case study on Chinese yam (Dioscorea polystachya). *Ann. Bot.* **106**, 945–955 (2010).
5. Arisaga, S. & Escurra, E. Propagation mechanisms in Agave macroacantha (Agavaceae), a tropical arid-land succulent rosette. *Am. J. Bot.* **89**, 632–641 (2002).
6. Li, Y., Ye, F., Hu, Y., Lu, W. G. & Xie, X. Identification of suitable reference genes for gene expression studies of human serous ovarian cancer by real-time polymerase chain reaction. *Anal. Biochem.* **394**, 110–116 (2009).
7. Ben-Amar, A., Daldoul, S., Reustle, G. M., Krzcal, G. & Mliki, A. Reverse genetics and high throughput sequencing methodologies for plant functional genomics. *Curr. Genomics* **17**, 460–475 (2016).
8. Li, Y. et al. Selection of reference genes for qRT-PCR analysis in medicinal plant Glycyrrhiza under abiotic stresses and hormonal treatments. *Plants (Basel)* **9**, 1441 (2020).
9. You, S. et al. Selection and validation reference genes for qRT-PCR normalization in different cultivars during fruit ripening and softening of peach (Prunus persica). *Sci. Rep.* **11**, 7302 (2021).
10. Zhao, Z. et al. Appropriate reference genes for RT-qPCR normalization in various organs of *Aconitum carmichaeli* at different growing stages. *Genes (Basel)* **12**, 459 (2021).
11. Chen, M. et al. Candidate reference genes for quantitative gene expression analysis in Lagerstroemia indica. *Mol. Biol. Rep.* **48**, 1677–1685 (2021).
12. Ferradas, Y., Rey, L., Martinez, O., Rey, M. & Gonzalez, M. V. Identification and validation of reference genes for accurate normalization of real-time quantitative PCR data in kiwifruit. *Plant Physiol. Biochem.* **102**, 27–36 (2016).
13. Kong, Q. et al. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. *PLoS One* **9**, e90612 (2014).
14. Li, W., Qian, Y. Q., Han, L., Liu, J. X. & Sun, Z. Y. Identification of suitable reference genes in buffalo grass for accurate transcript normalization under various abiotic stress conditions. *Gene* **547**, 55–62 (2014).
15. Song, H. et al. Selection and validation of reference genes for measuring gene expression in *Toona ciliata* under different experimental conditions by quantitative real-time PCR analysis. *BMC Plant Biol.* **20**, 430 (2020).
Maroufi, A., Van Bockstaele, E. & De Loose, M. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol. 11, 15 (2010).

Yin, X. et al. Comprehensive evaluation of candidate reference genes for quantitative real-time PCR-based analysis in Caucasian clover. Sci. Rep. 11, 3269 (2021).

Czechowski, T., Stitt, M., Altman, T., Udvardi, M. K. & Scheible, W. R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

Kubo, T. et al. Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants. Genes Genet. Syst. 91, 111–125 (2016).

Libault, M. et al. Identification of four Soybean reference genes for gene expression normalization. Plant Genome https://doi.org/10.3835/plantgenome2008.02.0091 (2008).

Wang, W., Hu, S., Cao, Y., Chen, R. & Wang, Z. Selection and evaluation of reference genes for qRT-PCR of Scutellaria baicalensis Georgi under different experimental conditions. Mol. Biol. Rep. 48, 1115–1122 (2021).

Chen, J. et al. Genome-wide identification of ubiquitin proteasome subunits as superior reference genes for transcript normalization during receptacle development in strawberry cultivars. BMC Genomics 22, 88 (2021).

Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 1–12 (2002).

Brunner, A. M., Yakovlev, I. A. & Strauss, S. H. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 4, 14 (2004).

Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515 (2004).

Xie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol https://doi.org/10.1007/s11103-011-9885-2 (2012).

Etschmann, B., Wilcken, B., Stoevesand, K., von der Schulenburg, A. & Sterner-Kock, A. Selection of reference genes for quantitative real-time PCR analysis in canine mammary tumors using the GeNorm algorithm. Vet. Pathol. 43, 934–942 (2006).

Wang, L. Effects of Calcium on Physiological and Biochemical Characteristics of Pinella Ternata and the Differential Expression of Jasmionic Acid in Pinella Bulbils. Master's dissertation of Zhejiang sci-tech University (2018) (in Chinese).

Torres, S., Lama, C., Mantecon, L., Fernetakis, E. & Infante, C. Selection and validation of reference genes for quantitative real-time PCR in the green microalgae Tetraselmis chui. PLoS One 16, e0245495 (2021).

Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193 (2000).

Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

Reddy, D. S., Bhatnagar-Mathur, P., Cindhuri, K. S. & Sharma, K. K. Evaluation and validation of reference genes for quantification of normalised real-time PCR based gene expression studies in peanut. PLoS One 8, e78555 (2013).

Borges, A. F., Fonseca, C., Ferreira, R. B., Lourenco, A. M. & Monteiro, S. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera. Plant Mol Biol 2035–2044 (2012).

Yu, Y. et al. Selection of reference genes for qPCR analyses of gene expression in ramie leaves and roots across eleven abiotic/biotic treatments. Sci. Rep. 9, 20004 (2019).

Maroniche, G. A., Saddini, M., Mongelli, V. C., Truol, G. A. & del Vas, M. Reference gene selection for gene expression studies by RT-qPCR in virus-infected planthoppers. Virol. J. 8, 308 (2011).

Rogério, L. A. et al. Reference genes for gene expression studies by RT-qPCR in Brevipalpus yothersi (Acari: Tenuipalpidae), the mite vector of citrus leprosis virus. Sci. Rep. 9, 6536 (2019).

Karuppayai, P. et al. Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Iatrophora curcas - a biodiesel plant. PLoS One 12, e0172460 (2017).

Kumar, D., Das, P. K. & Sarmah, B. K. Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition. J. Appl. Genet. 59, 419–430 (2018).

Fan, D. M. & Yang, Y. P. Altitudinal variations in flower and bulbil production of an alpine perennial, Polygonum viviparum L. (Polygonaceae). Plant Biol. (Stuttg) 11, 493–497 (2009).

Steiner, B. L., Armbruster, G. F., Scheepens, J. F. & Stocklin, J. Distribution of bulbil- and seed-producing plants of Poa alpina (Pooaceae) and their growth and reproduction in common gardens suggest adaptation to different elevations. Am. J. Bot. 99, 2035–2044 (2012).

Abraham Juarez, M. J. et al. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana. J. Exp. Bot. 66, 3893–3905 (2015).

Tanabe, Y. et al. Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis. J. Biol. Chem. 286, 30455–30461 (2011).

Kamiyama, S. et al. The effects of light and temperature on biotin synthesis in pea sprouts. J. Nutr. Sci. VitaminoL (Tokyo) 62, 19–25 (2016).

Wang, Y. et al. Biotin plays an important role in Arabidopsis thaliana seedlings under carbonate stress. Plant Sci. 300, 110639 (2020).

Szydlowski, N. et al. Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21, 2443–2457 (2009).

Elyris, A. S., Abdo, A. I. E., Abdel-Hamed, E. M. W. & Desoky, E. M. Integrative application of licorice root extract or licopoid with fulvic acid improves wheat production and defenses under salt stress conditions. Ecotoxicol. Environ. Saf 190, 110144 (2020).

Sasaki, E. et al. Uniconazole, a cytochrome P450 inhibitor, inhibits trans-zeatin biosynthesis in Arabidopsis. Phytochemistry 87, 30–38 (2013).

Bradford, K. J. & Yang, S. F. Xylem transport of 1-Aminocyclopropane-1-carboxylic Acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol. 65, 322–326 (1980).

Ishibata, M. & Sugimoto, K. A gene regulatory network for root hair development. J. Plant Res. 132, 301–309 (2019).

Qin, H., He, L. & Huang, R. The coordination of ethylene and other hormones in primary root development. Front Plant Sci. 10, 874 (2019).

Luo, R., Du, Y., Sun, Y. & Cao, Z. Morphological observation and anatomical study on bulbil development of Pinella ternata. Acta Botan. Boreali-Occident. Sin. 9, 1776–1781 (2014) (in Chinese).

Warychov, B. A. & Migocka, M. Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition. PLoS One 8, e72887 (2013).

Zhao, Y. et al. Selection of reference genes for gene expression normalization in Pseudanum pruarii explained under different stress conditions and different tissues. PLoS One 11, e0152356 (2016).

Zheng, T. et al. Reference gene selection for qRT-PCR analysis of flower development in Lagerstroemia indica and L. speciosa. PLoS One 13, e0195004 (2018).

Chi, C. et al. Selection and validation of reference genes for gene expression analysis in Vigna angularis using quantitative real-time RT-PCR. PLoS One 11, e0168479 (2016).
56. Monteiro, F., Sebastiana, M., Pais, M. S. & Figueiredo, A. Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars. *PLoS One* **8**, e72998 (2013).

57. Radonic, A. *et al.* Guideline to reference gene selection for quantitative real-time PCR. *Biochem. Biophys. Res. Commun.* **313**, 856–862 (2004).

58. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-(ΔΔC(T)) method. *Methods* **25**, 402–408 (2001).

Acknowledgements

The authors thank Professor Yuqiang Sun of Zhejiang Sci-Tech University for providing instrumental support. This work was supported by the Natural Science Foundation of Zhejiang Province (LGN21H280004), the scientific research Fund of Zhejiang Sci-Tech University (16042093-Y, 2019Q052).

Author contributions

For this study, author H.Y.F. carried out the experiment and executed the analyses. Y.H.D. carried out parts of the experiment. W.X.X. and Y.L.L. carried out parts of the analyses. Q.L.H. and T.X. designed the experiment and directed the work. The authors would like to thank Q.L.H. and X.J.H. for the great help in English improving. All authors approved the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-12782-5.

Correspondence and requests for materials should be addressed to Q.H. or T.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022