Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors

Thomas J. M. Beenakker,‡ Dennis P. A. Wander,* Wendy A. Offen,* Marta Artola,† Lluís Raich,∥ Maria J. Ferraz,‡ Kah-Yee Li,‡ Judith H. P. M. Houben,‡ Erwin R. van Rijssel,‡ Thomas Hansen,‡ Gisbert A. van der Marel,§ Maria J. Ferraz, Thomas J. M. Beenakker,* Gideon J. Davies,* and Herman S. Overkleeft†

†Department of Bio-organic Synthesis and ‡Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
§Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K.
∥Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
¶Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain

Supporting Information

ABSTRACT: The conformational analysis of glycosidases affords a route to their specific inhibition through transition-state mimicry. Inspired by the rapid reaction rates of cyclophellitol and cyclophellitol aziridine—both covalent retaining β-glucosidase inhibitors—we postulated that the corresponding carba “cyclopropyl” analogue would be a potent retaining β-glucosidase inhibitor for those enzymes reacting through the 4H3 transition-state conformation. Ab initio metadynamics simulations of the conformational free energy landscape for the cyclopropyl inhibitors show a strong bias for the 4H3 conformation, and carba-cyclophellitol, with an N-(4-azidobutyl)-carboxamide moiety, proved to be a potent inhibitor (Kᵢ = 8.2 nM) of the Thermotoga maritima TmGH1 β-glucosidase. 3-D structural analysis and comparison with unreacted epoxides show that this compound indeed binds in the 4H3 conformation, suggesting that conformational strain induced through a cyclopropyl unit may add to the armory of tight-binding inhibitor designs.

The diverse conformational pathways of glycosidases1,2 (for example, Figure 1A) coupled to their phenomenal transition-state stabilization3 offer a powerful route to selective enzyme inhibition. One of the main goals of the field—very rarely achieved—is to design and apply conformationally restricted inhibitors in order to provide both potency and specificity; conformationally biased inhibitors that target specific classes of glycoside hydrolase (GH) would be of considerable use as cellular and mechanistic probes with potential as starting points for therapeutic compounds. Cyclophellitol (1, Figure 1), isolated in 1990 from the mushroom Phellinus sp.,4 is a potent mechanism-based inhibitor of retaining β-glucosidases. It finds primary use as a covalent inactivator of β-glucosidases.5 Cyclophellitol is a configurational analogue of β-glucopyranose, but its configurational behavior is different. Whereas β-glucopyranoses prefer to adopt a 4C₁ conformation, the epoxide annulation in 1 likely enforces a preferred 4H₃ half-chair conformation onto the cyclitol moiety.

Figure 1. (A) Mechanistic itinerary of retaining β-glucosidases. (B) Structure of cyclophellitol (1) adopting a 4H₃ conformation and its proposed mechanism of binding. (C) Structure of carba-cyclophellitol (2) in 4H₃ conformation.

Cyclophellitol (1) is thus a potential conformational analogue of the oxocarbenium ion transition-state during β-glucosidase-mediated hydrolysis of a β-glucosidic linkage. Although the mode of action of 1 is covalent (Figure 1B), its potency and specificity as a retaining β-glucosidase inhibitor

Received: February 24, 2017
Published: May 2, 2017

DOI: 10.1021/jacs.7b01773
J. Am. Chem. Soc. 2017, 139, 6534−6537
and its mode of action (entering the enzyme active site as a 4H$_1$
half-chair transition-state analogue followed by S$_n$2 displacement
of the epoxide heteroatom) led us to consider whether
the corresponding carba analogue (that is, substitution of the
oxygen for carbon) would result in competitive inhibitors in
which potency and potentially specificity would be accrued by
virtue of partial transition-state mimicry (Figure 1C).

To test this hypothesis, a set of carba-cyclophellitols was
designed. Here we present the synthesis of carba-cyclophellitols
3–5 (Figure 2), the quantum mechanical analysis of their
favored conformation, and their structural and inhibitory
dissection toward β-glucosidases. Carba-cyclophellitols are
shown to be low μM inhibitors. Furthermore, exploiting the
possibility of incorporating pseudoxial R groups—consistent
with the catalytic itinerary—that bearing a hydrophobic moiety
at the terminal cyclopropyl carbon (5) was indeed a potent
(low nM) inhibitor of a classical model β-glucosidase, namely
Thermotoga maritima TmGH1.5,6 The crystal structure of
TmGH1 containing carba-cyclophellitol 5 was determined and
compared with that of an unreacted cyclophellitol derivative; as
predicted, both bind in 4H$_1$ conformation, which is the
presumed transition-state conformation during the TmGH1-
catalyzed hydrolysis of β-glucosidic linkages.

The synthesis of compounds 3–5 commenced with the easy
access of key intermediate 7, which was obtained via the
synthetic procedure described by the group of Madsen9
and optimized in our laboratory (Scheme 1).8 Global benzylation
of 7 gave cyclohexene 8, and cyclopropanation with ethyl
diazooacetate (EDA) under the agency of Cu(acac)$_2$ resulted
in the formation of product 9 as a mixture of α- and β-isomers
(α/β, 2:1). After the reduction step,12 the β-isomer could be
isolated by column chromatography to give alcohol 10, which
was oxidized, and ensuing esterification yielded enantio-
merically pure β-ester 11. Sequential one-pot formation and
Grignard addition onto the Weinreb amide yielded β-ketone
12. Both benzyl-protected ester 11 and ketone 12 were
subjected to palladium-catalyzed hydrogonylation conditions in
ethyl acetate and acetic acid (11) or in methanol (12) to obtain
target compounds 3 and 4. The mixture of α- and β-esters 9
was saponified, and the resulting carboxylates were condensed
with 4-azidobutan-1-amine (see Supporting Information (SI)).
The mixture of α- and β-amides was separated by preparative
HPLC purification. Finally, the benzyl groups were removed in
the presence of the azide with anhydrous BCl$_3$ in dichloro-
methane to afford β-amide 5.

Having carba-cyclopropane 3–5 in hand, we studied their
inhibition potency in comparison with deoxynojirimycin
(DNJ), a known competitive TmGH1 inhibitor and AMP-
DNM (MZ-21), a known human retaining β-glucosidase
inhibitor.13 Initial binding constant (K_i) values were deter-
mined on TmGH1 by monitoring the UV absorbance of p-
nitrophenolate from p-nitrophenyl β-D-glucopyranoside using

\[\text{Scheme 1. The synthesis of carba-cyclophellitols 3–5} \]

![Scheme 1](image)

Table 1. Apparent IC$_{50}$ Values and Inhibitory Constants (K_i) for in Vitro Inhibition of α- and β-Glucosidase Activity by Compounds 3–5, DNJ, and AMP-DNM

compound	TmGH1	GBAl	GAA
3	22.3 μM	>150 μM	>150 μM
4	88.9 μM	>150 μM	>150 μM
5	8.20 nM	99 ± 1.9 μM	>150 μM
DNJ	2.50 μM3	109 ± 1.0 μM	1.5 μM3
AMP-DNM (MZ-21)	4.97 μM	156 ± 16 μM	0.4 μM

aReagents and conditions: (a) BnBr, NaH, TBAI, DMF, 0 °C to rt, 24 h, 94%; (b) EDA, Cu(acac)$_2$, EtOAc, (35%, 2:1, as a mixture of α/β); (c) DIBAL, THF, 30 min at 0 °C and then 1 h at rt, 13%; (d) Jones reagent, acetone, 0 °C, 3 h, 53%; (e) EtOH, N,N-diisopropylcarbo-
dimide, 4-dimethylaminopyridine, toluene, rt, 4 h, 62%; (f) Pd(OH)$_2$/C, H$_2$, EtOAc, AcOH, rt, overnight, 81%; (g) N,O-dimethylhydroxyl-
amine hydrochloride, EtMeBr, THF, 48%; (h) Pd(OH)$_2$/C, H$_2$, MeOH, rt, overnight, (58%); (i) i) LiOH, MeOH, H$_2$O, rt, overnight; ii) 4-azidobutan-1-amine (see SI), DIPEA, HCTU, CH$_2$Cl$_2$, rt, overnight; (j) BCl$_3$, DCM, 99%.

The Lineweaver–Burk method. Carba-cyclophellitol 3 and 4 showed micromolar inhibition, consistent with our design
strategy and similar to that displayed by the charged species
DNJ, whereas 5 proved to be a strong reversible binding
TmGH1 inhibitor with a K_i value of 8.2 nM, much more potent than DNJ14 and AMP-DNM (low micromolar) (Table 1 and

Figure S4). We then explored the activity of compound 5 in
human lysosomal retaining β-glucosidase, GBAl (deficiency of
which is causative of the human lysosomal storage disorder,
Gaucher disease) with an apparent IC$_{50}$ ≈ 100 μM. No
apparent inhibition of the human lysosomal α-glucosidase,
GAA (deficient in the human glycogen storage disease, Pompe
disease) was observed at final concentrations of 5 up to 150 μM.
Thus, although less potent for GBAl than for the bacterial
enzyme tested, compound 5 appears to have selectivity for the
human lysosomal β-glucosidase over the human lysosomal α-
glucosidase, which is opposite of the selectivity observed for
DNJ (Table 1).
Inspired by the low μM to nM inhibition of TmGH1 by the carba-cyclopropanes, we sought to determine whether the cyclopropyl moiety indeed biased the conformation to \(\text{H}_3 \). We calculated the conformational free energy landscape (FEL) for generic cyclopropyl (2, R = H) by ab initio metadynamics (see SI), and the Cremer-Pople puckering coordinates \(\theta \) and \(\phi \) were used as collective variables, yielding a Mercator representation for the FEL. As used previously for diverse glycosidase inhibitors\(^{8-20}\), Figure 3A. Compound 2 clearly favors the \(\text{H}_1 \) conformation in vacuo, with the flipped \(\text{H}_4 \) form in another local energy minimum. Subsequent to FEL calculation, we compared the experimental \(J \) values of several (cyclohexane) ring protons of compound 4 with their calculated counterparts, in which calculations were performed on compound 4 in the \(\text{H}_4 \) conformation. Both sets of values are in good agreement, which underscores the notion that compound 4, and by extension also the other compounds subject of this Communication (whose \(^1 \text{H} \) NMR spectra give broadened signals due to the amide present—see SI) do indeed adopt the \(\text{H}_3 \) conformation in solution.

Structural dissection of the inhibitory action of 5, and the conceptual link through to cyclophellitol 1, was achieved first by rapid soaking (as opposed to preincubation as used previously to trap the covalent adduct\(^9\) of crystals of TmGH1 with cyclophellitol derivative KY170\(^{21,22}\) (6). Serendipitously, this indeed afforded the unreacted cyclophellitol KY170 in \(\text{H}_4 \) conformation, with the nucleophile poised to attack, Figure 3B, confirming our hypothesis that (unreacted) cyclophellitols adopt a transition-state like \(\text{H}_3 \) conformation. In order to dissect similar mimicry by carba-cyclopropane 5, and confirm the FEL calculated by ab initio metadynamics, TmGH1 crystals were soaked with carba-cyclophellitol 5 and the subsequently obtained structure was analyzed and solved with X-ray crystallography. The obtained electron density pattern clearly demonstrates the presence of carba-cyclophellitol 5 in the active site in \(\text{H}_3 \) conformation (Figure 3C; the butyl azide moiety is mobile and differently disordered in the structure and not shown for clarity).

Overlay of cyclophellitol derivative KY170 with carba-cyclophellitol 5 (Figure 3D) shows almost perfect coincidence of atomic positions, showing that, as suggested by the FEL, 5 is a permanent mimic of cyclophellitol posted in the active site prior to nucleophilic attack.

The improved binding of 5, relative to 3 and 4 presumably stems from desolvation caused by the alkyl-azido “tail” sitting in the aglycone site. One of the design advantages of the carba-cyclopropanes is that any pendant R groups are disposed pseudoaxial to the sugar ring, consistent with the distortions seen during catalysis which presumably adds to their augmentation of binding. The 3-D structure with 5 confirms this and shows a lateral, antitrajectory interaction of the catalytic amino acid Glu166 with the pseudoaxially disposed amide of 5. There are four molecules of TmGH1 in the crystallographically observed asymmetric unit. While they all show the R group axial, they all show different degrees of disorder of this alkyl region itself. In one molecule, there is essentially no electron density for the tail, while in two molecules the chain passes through the aglycon region (that is flanked by Val169, Trp168, and Trp324), making nonspecific interactions with this region. In the fourth molecule of the AU, the alkyl azido chain appears to follow two separate routes along each hydrophobic flank of the substrate binding cleft.

Bicyclic cyclopropyl glucosidase inhibitors, with the bridge between the “C6” and “O5” atoms, were first proposed by Tanaka and co-workers\(^21\) and later developed in galacto configuration by Bennet and co-workers and found to be good \(\alpha \)-glucosidase and galactosidase inhibitors, respectively.\(^{22}\) More recently, activated forms of these compounds have been used as covalent inhibitors.\(^{23}\) In these cases the conformational restriction limits the accessible conformations to “off-pathway” \(\text{H}_2 \) and \(\text{H}_3 \) half-chairs\(^{25}\) (or perhaps their related 1,4 boats) recently elegantly revealed by X-ray crystallography.\(^{24}\) Further, Stick and Stubbs\(^25\) synthesized a bicyclic cyclopropyl inhibitor with the bridge between the “anomeric” C1 carbon position and the “C2” atom with a millimolar \(K_\text{i} \) value. The carba-cyclophellitol derivatives presented here offer, by virtue of the advantage of their conformational restriction between the “O5” and “anomeric” C1 carbon positions, a potent inhibitor in which the conformational restraint is a glycosidase reaction coordinate relevant \(\text{H}_3 \). Given the large number of glycosidase inhibitors in medical use, including those being developed as pharmacological chaperones and as diagnostic tools, the harnessing of appropriate conformation restraint, coupled to

Figure 3. (A) A mercator representation for the computed free energy landscape (FEL) of cyclopropyl (2, R = H) (\(\theta \) and \(\phi \) are given in degrees). (B) Crystal structure of TmGH1 in complex with unreacted 6, KY170. (C) Crystal structure of TmGH1 in complex with carba-cyclophellitol 5, showing the carba-cyclophellitol CO-NH group. Electron density maps for both (B) and (C) are maximum likelihood/ \(\sigma \) weighted 2\(F_{\text{obs}} - F_{\text{calc}} \) syntheses contoured at 1\(\AA \). (D) Overlay of (B) in ice blue on (C) in coral.
correct stereochemistry, should add greatly to the enzymological, cellular, and, ultimately, therapeutic toolbox.

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b01773.

Primary NMR data files for 3−5, 8, 10−14 (ZIP)

Experimental procedures, Figures S1−S5 and Table S1, and 1H and 13C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

* h.s.overkleeft@lic.leidenuniv.nl
* gideon.davies@york.ac.uk

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank The Netherlands Organization for Scientific Research (NWO-CW, Chem Them grant to J.M.A. and H.S.O.), the European Research Council (ERC-2011-AdG-290836 “Chembiosphing” to H.S.O., and ERC-2012-AdG-32294 “Glycopoise” to G.J.D.), the Spanish Ministry of Economy and Competitiveness (CTQ2014-55174-P to C.R.), and the Generalitat de Catalunya (2014SGR-987 to C.R.) for financial support. L.R. thanks the University of Barcelona for an APIF predoctoral fellowship. We gratefully acknowledge the computer resources at MareNostrum and the technical support provided by BSC-CNS (RES-QCM-2016-3-00017). We thank the European Synchrotron Radiation Facility at Grenoble for access to beamline ID23-2 and the Diamond Light Source for access to beamline IO2 (proposal no. mx-13587) that contributed to the results presented here.

REFERENCES

(1) Davies, G. J.; Planas, A.; Rovira, C. Acc. Chem. Res. 2012, 45, 308.
(2) Speciale, G.; Thompson, A. J.; Davies, G. J.; Williams, S. J. Curr. Opin. Struct. Biol. 2014, 28, 1.
(3) Wolfenden, R.; Snider, M. J. Acc. Chem. Res. 2001, 34, 938.
(4) Atsumi, S.; Umezawa, K.; Inuma, H.; Nagawa, H.; Nakamura, H.; Itaka, Y.; Takeuchi, T. J. Antibiot. 1990, 43, 49.
(5) Gloster, T. M.; Madsen, R.; Davies, G. J. Org. Biomol. Chem. 2007, 5, 444.
(6) Gloster, T. M.; Meloncelli, P.; Stick, R. V.; Zechel, D.; Vasella, A.; Davies, G. J. J. Am. Chem. Soc. 2007, 129, 2345.
(7) Witte, M. D.; Kallemeijn, W. W.; Aten, J.; Li, K.-Y.; Strijland, A.; Donker-Koopman, W. E.; van den Nieuwendijk, A. M. C. H.; Bleijlevens, B.; Kramer, G.; Florea, B. I.; Hooibrink, B.; Hollak, C. E. M.; Ottenhof, R.; Boot, R. G.; van der Marel, G. A.; Overkleeft, H. S.; Aerts, J. M. F. G. Nat. Chem. Biol. 2010, 6, 907.
(8) Li, K.-Y.; Jiang, J.; Witte, M. D.; Kallemeijn, W. W.; van den Elst, H.; Wong, C.-S.; Chander, S. D.; Hoogendoorn, S.; Beenakker, T. J. M.; Codée, J. D. C.; Aerts, J. M. F. G.; van der Marel, G. A.; Overkleeft, H. S. Eur. J. Org. Chem. 2014, 2014, 6030.