Fundamental stellar parameters and metallicities from Bayesian spectroscopy: application to low- and high-resolution spectra

Ralph Schönpich1,2*, and Maria Bergemann3,4
1 Hubble Fellow, Department of Astronomy, The Ohio State University, 140 West 8th Avenue, 43210 Columbus, Ohio, USA
2 Rudolf-Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, United Kingdom
3 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
4 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA, Cambridge, United Kingdom

ABSTRACT
We present a unified framework to derive fundamental stellar parameters by combining all available observational and theoretical information for a star. The algorithm relies on the method of Bayesian inference, which for the first time directly integrates the spectroscopic analysis pipeline based on the global spectrum synthesis and allows for comprehensive and objective error calculations given the priors. Arbitrary input datasets can be included into our analysis and other stellar quantities, in addition to stellar age, effective temperature, surface gravity, and metallicity, can be computed on demand. We lay out the mathematical framework of the method and apply it to several observational datasets, including high- and low-resolution spectra (UVES, NARVAL, HARPS, SDSS/SEGUE). We find that simpler approximations for the spectroscopic PDF, which are inherent to past Bayesian approaches, lead to deviations of several standard deviations and unreliable errors on the same data. By its flexibility and the simultaneous analysis of multiple independent measurements for a star, it will be ideal to analyse and cross-calibrate the large ongoing and forthcoming surveys, like Gaia-ESO, SDSS, Gaia and LSST.

Key words: stars: fundamental parameters – stars: distances – techniques: photometric – techniques: spectroscopic – methods: statistical – methods: data analysis

1 INTRODUCTION
Observations are a central source of knowledge on almost any entity in astrophysics. Over several centuries of intense research, several principal observational techniques have been developed that are now routinely used to study stars and stellar populations in the Milky Way and other galaxies. We have information from astrometry, photometry, spectroscopy, but also interferometry, and astroseismology, that give complementary information on the physical parameters of stars (detailed chemical composition, gravities, temperatures, masses and ages) and their kinematics (radial velocities, distances, and orbital characteristics). However, in contrast to e.g. cosmology, where sophisticated Bayesian schemes are well-established (e.g. Drell et al. 2000, Kitaura & Enßlin 2008), stellar parameter determinations are still based on best-fit estimates and simple averages between different methods.

The advent of large stellar spectroscopic and photometric surveys like SEGUE/SDSS (Yanny et al. 2009), RAVE (Steinmetz et al. 2006), APOGEE (Majewski et al. 2007), GCS (Nordström et al. 2004), and the Gaia-ESO survey (Gilmore et al. 2012), as well as astroseismic surveys like Kepler (Chaplin et al. 2011), makes it necessary to develop fully automated methods for data analysis and determination of stellar parameters. Standard spectroscopic inversion methods are commonly assumed to be accurate, however, they usually involve subjective and hardly reproducible elements, like line fitting and normalisation, or decisions on spectral diagnostic features. Manual analysis of stars is limited to sample sizes of ~1000 stars, unsuitable for large surveys. Existing automated methods usually suffer from weakly constrained systematics as well as idealised error estimates. So far, most attempts to overcome these problems have concentrated on simple weighted averaging between different methods (e.g. Lee et al. 2008a).n

The large stellar surveys change stellar astronomy into a precision science, where we cannot limit ourselves to pointing out structures in diagrams, but where knowledge of the error distributions is key to make meaningful model comparisons, e.g. of Galactic evolution and stellar structure. The approach we need must be flexible, objective, applicable to very large datasets, and provide an optimal combination of the different bodies of observational data. The only mathematical apparatus known to permit a systematic combination of different quantities are Bayesian frameworks. The first steps in this direction were made by Pont & Eyer (2004), Jørgensen & Lindegren (2005), Shkedy et al. (2007), Bailer-Jones (2011), Burnett & Binney (2010), Casagrande et al.

* E-mail: ralph.schoenrich@physics.ox.ac.uk
In this first paper of the series, our main goal is to determine effective temperature, surface gravity, metallicity, mass, age and distances of individual stars. Thus, we limit the input data to spectroscopy, photometry, stellar evolution models and facilitate parallax measurements. However, the method can be readily generalised to any number of parameters, such as kinematics or stellar rotation, and include other input information, e.g. astero-seismology and interferometric angular diameters. Furthermore, it is straightforward to analyse star formation history of a whole stellar population, e.g. a young cluster or an old galaxy, using its integrated colours and spectra. Thus the Bayesian method has a very broad scope to applications both in the context of Galactic and extra-galactic research.

The paper is structured as follows. In Sections 2 and 3, we present the details of the algorithm and its implementation, illustrated on two examples. In Section 4 we apply the method to a sample of stars with very high-resolution observations and for a sub-sample of calibration stars from the SEGUE catalogue. Section 5 compares to the use of a simplified spectroscopic PDF. Discussion of the algorithm and results and Conclusions are found in the last two Sections.

2 METHOD OUTLINE

2.1 Bayesian scheme

So far, the majority of observational studies of stars, be it photometric or spectroscopic, have focussed on providing best-fit estimates of stellar parameters. However, accurate comparisons to theoretical models of e.g. galaxy evolution, require the full probability distribution of the derived parameters given the available observations.

This demands a Bayesian formalism. In this context we need to express the probability of a set of parameters $X = X_1, \ldots, X_n$ given a set of observations $O = O_1, \ldots, O_n$ by the probability that this observation could take place given the set of parameters. By definition the conditional probability $P(X|O)$, that X given O, derives from the combined probability $P(X,O)$ as: $P(X,O) = P(X|O)P(O)$. We can hence write down:

$$P(X|O) = \frac{P(X)P(O|X)}{P(O)},$$

(1)

where the posterior probability $P(X|O)$ is the conditional probability of the parameter set X given O, $P(O|X)$, which we call observed likelihood, is the probability of making the set of observations O given the set of parameters X and $P(X)$ is the prior probability we ascribe to that set of parameters. $P(O)$ is the probability that the set of observations was made, which we set to 1. This simplifies our problem to

$$P(X|O) = P(X|O_1, \ldots, O_n|X),$$

(2)

where $P(X|O)$ is the posterior probability distribution function (PDF) on the chosen parameter space. In our work, observations are conditionally independent given the parameters, i.e. if all parameters are perfectly known, the observations do not provide additional information about each other. Hence we can disentangle the observations by:

$$P'(X) = P(O_1, \ldots, O_n|X) = \prod_{j=1}^{m} P(O_j|X).$$

(3)

2.2 Parameter space

The parameter set X contains all parameters relevant to the problem under investigation and important to the description of a star. This may include surface and interior structure parameters (effective temperature, surface gravity, mean density, etc) as well as any other pieces of information like chemical composition, age, distance, position in the sky, etc. Since we are dealing with a single object, all these parameters are related in some way. However, we can break their dependencies into main groups, using the fact that each type of observations constraints only a sub-set of these parameters, whereas it bears no information on others.

In this work, we define the ‘core’ parameter space $R_c \equiv ([\text{Fe/H}], T_{\text{eff}}, \log(g))$ of metallicity (expressed by iron abundance), effective temperature and surface gravity. The parameters in R_c impact all our observations and models.

Other parameters are constrained by only a subset of observations: e.g. detailed abundances are of importance for spectroscopic observations, while stellar magnitudes in different colour bands C span the space of the photometric parameters. Age τ, initial mass M_{ini}, and present mass M fall into the domain of stellar models. Distance s and parallax ϖ are determined either from direct astrometric observations or via the distance modulus when comparing stellar models with photometry.

Thus the full parameter space can be disentangled into individual contributions:

$$R \equiv R_c + R_{\text{sp}} + R_{\text{phot}} + R_{\text{mod}} + R_{\text{others}},$$

(4)

where R_c is the core parameter space the other R_i are the parameters of importance to different types of observations or prior expectations (see Sec. 3.2 to 3.6).
2.3 Observations

In contrast to parameters, which span the n-dimensional space of the posterior probability distribution, the nature of observations is irrelevant. Observations can be anything, from the numbers of electrons on a CCD to a needle on a scale. Each observation puts a constraint on our parameter space, which is its corresponding observed likelihood \(P(O|X) \) as a function on parameter space.

Instead of just writing down an observational likelihood, the common approach in astronomy is to "simplify" this by the introduction of "observables". While this term is not well-defined in a Bayesian context, "observables" commonly denote best-fit values for some parameters (like \(T_{	ext{eff}} \)), which appear to be relatively well-constrained by (single) observations. Some studies, like (e.g. \cite{burnett2010}), go even further to introduce the errors on those "observables" as further variables in their formalism. From an aesthetic point of view, this results in a rather clumsy and complicated bulk of variables to achieve a single goal: describing the real observed likelihood. It has two practical consequences. First, "observables" lead to an oversimplification of the observational likelihood, usually with the unjustified (and damaging, see Section 3) approximation as a product of separate Gaussians in each parameter termed "observable". Second, their introduction artificially introduces a "better" class of parameters, raising the wrong suggestion that their values are fixed. This is not true. For any parameter the Bayesian formalism will in general give an estimate different from the best-fit value.

While selection functions are in most cases essential for understanding observations with theoretical models, this does not apply to the discussed Bayesian schemes. Yet, some studies introduce a selection function in their equations (see a longer discussion in Sec. 7.7 of the Appendix). We refrain from using such a selection function, because only selection criteria based on the parameter space would affect the Bayesian scheme, while a survey selection must be based on random choice or previous observations.

2.4 Summary of notation

To facilitate reading the equations we quickly summarize the main notations: We denote the set of observations by \(O \), the set of parameters by \(X \), the parameter space by \(R \) and all probability distributions by \(P \). To cope with the different sources of information, we introduce indices: "ph" for photometry, "sp" for spectroscopy, "astr" for astrometry (parallaxes), in addition we use "mod" for knowledge from stellar models and "pr" for priors. Hence the observational likelihood in full parameter space from spectroscopic observations reads \(P(O_{\text{sp}}|X) \). To facilitate the reading we contract the notation for the conditional probabilities by decorating \(P \) with a prime: e.g. \(P_{\text{mod}} \equiv P_{\text{mod}}(X|X) \equiv P(O_{\text{sp}}|X) \).

Commonly used variables are age \(\tau \), stellar mass \(M \), solar mass \(M_{\odot} \), initial mass \(M_{\text{init}} \), logarithmic iron abundance \([\text{Fe/H}]\), general metallicity \([\text{Me/H}]\), parallax \(p \), distance \(s \), and distance modulus \(\mu \).

3 DETAILLED ALGORITHM

In this pilot study, we restrict ourselves to the most important basic case: the calculation of stellar parameters, when we have spectroscopic, and/or photometric observations. We will show how to expand this to include parallax measurements. After validating the method on the high-resolution spectroscopic data of nearby stars, we apply it to a sample of low-resolution spectra from SEGUE/SDSS \cite{yanny2009,allende2008} calibration sample.

3.1 Contributors to the posterior PDF

With the conditional independence (equation 3) we simplify the calculation of our posterior:

\[
P(X|O_{\text{ph}}, O_{\text{astr}}) \sim P(O_{\text{ph}}|X) \cdot P(O_{\text{astr}}|X) \cdot P_{\text{mod}}(X) \cdot P_{\text{pr}}(X)
\]

\[
\sim P_{\text{sp}} \cdot P_{\text{ph}} \cdot P_{\text{astr}} \cdot P_{\text{mod}} \cdot P_{\text{pr}},
\]

where \(O_{\text{ph}}, O_{\text{astr}} \) denote the photometric and spectroscopic and astrometric observations, \(P_{\text{mod}} \) the probability derived from stellar models and \(P_{\text{pr}} \) the prior probability distribution function. In the second line we abbreviate our observational likelihoods, representing their conditional nature based on the observations in short by a prime. Note that any combination of observational constraints can be dropped from these equations, as well as new observations (e.g. interferometry) can be added by multiplication.

The PDFs from Eq. 5 have two interesting qualities:

- some PDFs describe sharp structures in the n-dimensional parameter space, thus lowering the dimensionality of the probability distribution and reducing computational costs (by the multiplication, the combined PDF cannot have higher dimensionality than its components). In other words, the space volume where their PDF is non-negligible has a lower dimensionality than the overall space.
- for example, stellar models together with model atmospheres map directly from the fundamental stellar parameters \((M_{\text{init}}, \tau, [\text{Me/H}] \) to their observed space \((T_{\text{eff}}, \log(g), C) \).

- some PDFs constrain only a subset of \(j < n \) parameters, i.e. they are flat the other dimensions. Though they can be generalised to the n-dimensional space of the aggregate PDF, most of these dimensions will be redundant, i.e. we have \(P(X_1, \ldots, X_j|O) \sim P(X_1, \ldots, X_j|O) \). It can be efficient to merge them in an early step with another PDF that carries more dimensions. An especially valuable case are parameters that are nearly conditionally independent from the other parameters. E.g. the detailed abundances for the majority of chemical elements hardly affect temperature and gravity estimates.

The meaning and structure of the single contributors to the posterior \(P \) will be examined below.

3.2 Priors \(P_{\text{pr}} \)

The priors encode our previous knowledge on the distribution of the examined stellar population in parameter space. The model knowledge \(P_{\text{mod}} \) will be treated here as a separate prior, though it could be in fact understood as an observation. Appropriate priors are essential to avoid biases in weakly constrained data (see Fig. 11 for an example). Further, to have set "no prior" means to have adopted a flat prior, which is not fixed under parameter transformations. However, priors must be handled with great caution to obey Cromwell’s rule (avoid excluding any outcomes a priori \cite{lindley1982} and to avoid overconfidence biases and reproducibility problems.

How can one cope with uncertainties in a priori parameter distributions? Making a prior just "shallower" or adopting a completely flat prior is not useful, since it actually adopts a worse probability distribution claiming the same certainty on this information as the original prior. However, one typically has estimates on how
uncertain the distribution in a set of parameters is. If, within those uncertainties, the precise shape of a prior has important impacts on results, there are two strategies: The uncertainty of a prior can be constrained by demanding consistency with calibration data (data of higher quality, where the prior has less impact) and by imposing internal consistency between different subsamples (e.g. red versus blue stars). The remaining uncertainty in a prior can be covered by hyper-parameters: The shape of the prior can be parametrised and a probability distribution function estimated on these parameters.

There are strong dependencies between most parameters. As the posterior PDF has lower effective dimensionality than the parameter space R, we can not set constraints on every single dimension in R without risk of over-constraining the priors. We circumvent this problem by limiting our effective priors to age, initial mass M_{init}, metallicity $[\text{Me/H}]$, and distance s; all other dimensions are indirectly constrained by these priors and we adopt no additional constraints on them.

Throughout this work we will use the following priors:

$$P_{\text{prior}}(X) := p(\tau, M, [\text{Fe/H}], s) \sim P(\tau|\text{[Fe/H]}), P(M_{\text{init}}), P(s, l, b) \cdot P([\text{Me/H}], [\text{Fe/H}])$$

$P([\text{Me/H}], [\text{Fe/H}])$ is a fixed relation between metallicity (required for the isochrones) and the iron abundance, which we have to introduce, since we do not make detailed abundances in this paper. The adopted relation is given in Sec. 9.2 of the Appendix. For $P(M_{\text{init}})$ we employ a Salpeter IMF (Salpeter 1955), with exponent -2.35 and independent from metallicity and age. We account for the metallicity-dependent age distribution by adopting a shorter timescale in the star formation history of metal-poor stars. Details are given in the Appendix.

Due to its importance we need to discuss the spatial prior $P(s, l, b)^{[1]}$. In general, every sample will cover some fixed angle on the sky (be it so-called pencil beams like in SEGUE or a complete sky coverage), so the actual volume is a cone that covers an effective area $A(s) = k \cdot s^2$, where s is the distance. The constant k, given by the sky coverage and selection probabilities, is irrelevant in our context. However, the likelihood to end up in the sample is also proportional to the density of the population in the observed region, so that we obtain:

$$P_{\text{s}}(s) = k s^2 \int \rho(s, \omega)d^2\omega$$

where we integrate over the sky position ω, and ρ is the spatial density of stars at position ω and distance s. In our formulation, this must be multiplied by another factor of distance s, since a fixed magnitude range samples a spatial depth proportional to s (formally this derives from a parameter transformation of the probability density from magnitudes to distances). Neglect of this prior is not equivalent to a flat distance prior, but one that drops steeply with the third power of the distance, and hence in the absence of parallax measurements would give a strong (and uncertainty dependent) bias towards lower surface gravities.

3.3 Stellar models P_{mod}

Stellar models describe an effectively three-dimensional constraint in the full parameter space. The corresponding PDF can be represented in the core parameter space $R_{\text{c}} = (T_{\text{eff}}, \log(g), [\text{Fe/H}])$. In this work, we neglect other dimensions, adopting a simple relationship for alpha enhancement and neglecting initial/present stellar rotation.

The calculation of the PDF is performed by summing the weights of available stellar model points falling into the cells of a dense grid in the target space R. Throughout this work we fold the models with a Gaussian kernel with widths $\sigma_\tau = (30 \text{ K}, 0.04 \text{ dex}, 0.02 \text{ dex})$ in $(T_{\text{eff}}, \log(g), [\text{Fe/H}])$. This error represents the internal uncertainty of the stellar models in parameter space and fills gaps caused by the discrete data representation. In addition, the effective width is augmented by the grid spacing on which the PDF is calculated.

We use a dense grid of stellar isochrones from the BASTI database (Pietrinferni et al. 2004, 2006, 2009), kindly provided to us by S. Cassisi for the stellar parameter determinations in Casagrande et al. (2011). We interpolate the models in the initial mass M_{init} to ensure a narrow mass spacing, but do not attempt an interpolation in age τ or metallicity $[\text{Me/H}]$. When summing over the isochrones, we assign to each point i a weight W_i proportional to the parameter space volume it represents:

$$W_i = N_\omega \Delta[\text{Me/H}] \cdot \Delta \tau \cdot \Delta M_{\text{init}},$$

where N_ω is the normalisation, $\Delta M_{\text{init}} = 0.5(M_{\text{init},i+1} - M_{\text{init},i-1})$ is the average distance to its neighbours in initial mass, $\Delta[\text{Me/H}]$ is the average distance in metallicity between the isochrone and its nearest neighbours, and $\Delta \tau$ is the average distance in age τ. On the boundary of the grid we take the distance to the neighbouring point. Note that the approach is identical for stellar tracks instead of isochrones. The model probability at each point X in our parameter space can then be represented as a weighted sum over all relevant models points i:

$$P_{\text{mod}}(X) = \sum_i W_i \, g(X - X_i),$$

where X_i is the vector in parameter space given by the model grid. Here we represent the uncertainty of the models by an n-dimensional Gaussian g with a dispersion vector σ. Specifically, we assume σ_τ on our core parameter space as above, and no additional uncertainties in the other dimensions.

3.4 Photometric data P_{ph}

Stellar models couple photometric colours with other parameters (see Marconi et al. 2006, for details on the colour calibrations in SDSS filters of BASTI models). Thus we best calculate the photometric PDF simultaneously with the stellar models. Denoting the stellar model magnitudes at model point i and colour band k by $C_{i,k}$ and the photometric observation in band k with O_k, we have:

$$P_i(O_k|C_{\cdot,k},s,r) = \prod_{\tau} P_i(O_k|C_{i,k},s,r),$$

with distance s and reddening r. Lacking sufficient data on the true PDFs, we represent the observational likelihoods of photometric colours, the reddening values and the model uncertainties by a Gaussian $g(s - \mu, \sigma) = \exp(-(s - \mu)^2/(2\sigma^2))$, which enables us to combine them into:

$$P_i(O_k|C_{\cdot,k},s,r) = g(C_{i,k} + \mu(s) + r \cdot \delta_k - C_{\cdot,k}, \sigma_k),$$

with the distance modulus $\mu(s) = 5 \log(s/10 \text{ pc})$, the reddening strength r multiplied with the reddening vector (for SDSS colours, see Girardi et al. 2004; An et al. 2008) in each colour δ_k, and with
Bayesian spectroscopy

\[\sigma^2_h = \sigma^2_{\text{mod}} + \sigma^2_{\text{obs}} + \sigma^2_{e_{\nu}} \]

as the combined variance/uncertainty of models, observations and reddening. We assume a magnitude uncertainty on stellar models \(\sigma_{\text{mod}} = 0.01 \) mag for the high-res sample, neglecting this term for the low-resolution sample. Partly, \(\sigma_{\text{mod}} \) covers the same uncertainties as our error term \(\sigma_c \) on stellar parameters (see Section 3.2). We stress that this uncertainty cannot and should not comprise systematic deviations in stellar models, as those uncertainties should be explored on a larger sample, using hyper-parameters as discussed in Section 3.2.

The other assumption is the universal reddening vector. This may have to be relaxed when dealing with very different ISM environments. The dust peak and the slope of the reddening spectrum can be shifted, or stars may be individually reddened, e.g. by a circumstellar envelope.

We note that this method can be used to create reddening maps. Since that is beyond the scope of this work, we restrict the sample to stars with relatively low reddening, use reddening values from other sources assuming a fractional reddening error of 10%.

3.5 Spectroscopic data \(P'_{\text{sp}} \)

The observational likelihood \(P_{\text{sp}}' \) in Eq. (5) incorporates all available spectral information. This comprises spectral type, element abundances, rotation, stellar activity (chromospheric emission in cores of strong lines, magnetic effects), inter- and circum-stellar reddening, convection characteristics, etc. A spectrum offers by far the largest information content we can obtain on a star. However, this information is limited by incomplete physical knowledge and approximations in modelling the theoretical spectra. At present, calculations of large spectral grids are only possible with 1D hydrostatic codes assuming local thermodynamical equilibrium (LTE), while full hydrodynamic 3D non-LTE calculations are slowly becoming feasible (Bergemann et al. 2012; Magic et al. 2013). Further, the high dimensionality of the problem forbids computing separate grids for all possible chemical compositions.

Here we use the MAFAGS-ODF (Grupp 2004a,b) grid of model atmospheres designed for late-type (spectral type FGKM) stars, with \(4400 < T_{\text{eff}} < 6800 \) K, \(1.4 < \log(g) < 4.6 \), \(-3.9 < [\text{Fe/H}] < 0.9 \). The synthetic spectra are computed with the revised version of the SIU code (Reetz 1992; Bergemann et al. 2012), which has been extensively used during the past two decades for high-precision stellar spectroscopy (see e.g. Korn et al. 2003, Bergemann & Gehren 2008, Önehag et al. 2011, Shi et al. 2014).

In comparison to the other three available spectrum analysis codes, MOOG (Sneden 1973), SYNTHE (Kurucz 2005), and Turbospectrum (Piecz 2012), SIU already has an implementation of NLTE line formation for any element with pre-computed NLTE level populations. We can thus more easily update it with more realistic physics.

For our grid of theoretical spectra, we use a spacing of \(200 \) K, \(0.4 \) dex, \(0.3 \) dex in \((T_{\text{eff}}, \log(g), [\text{Fe/H}]) \) to make linear interpolation between the points reasonable. While the grid covers 4 values of micro-turbulence from 1 to 2.5 km s\(^{-1}\), for this pi-

Figure 1. A priori densities from stellar models \(P_{\text{model}} \) at metallicities \([\text{Fe/H}] = -2, -1, 0\) from left to right and accounting for a Salpeter IMF prior, and the metallicity-dependent age prior.

Figure 2. Prior probability densities from stellar models at any metallicity in the \((T_{\text{eff}}, \log(g))\)-plane (upper panel). We use the Salpeter IMF prior and the metallicity-dependent age prior. The lower panel shows the metallicity expectation value \(<[\text{Fe/H}]> (T_{\text{eff}}, \log(g))\) at each point in the \((T_{\text{eff}}, \log(g))\)-plane. The structures are dominated by the metallicity-dependent \(T_{\text{eff}} \)-shift and evolutionary differences on the giant branch, e.g. the absence of a horizontal branch for metal-rich stars in exchange for the enhanced red clump.
lot study we adopt a fixed micro-turbulence of 2 km s\(^{-1}\) for giants and 1 km s\(^{-1}\) for dwarfs (log(g) ≥ 3.5) (Bergemann et al. in prep), and an \(\alpha\)-enhancement of 0.4 dex for [Fe/H] < −0.6 (e.g. Gehren et al. 2004). Such hard cuts and changes in assumed parameters will introduce anomalies in the derived PDF, as exemplified by the micro-turbulence cut at log(g) = 3.5 in Fig. 8. In total, the three-dimensional ([Me/H], \(T_\text{eff}\), log(g)) grid contains 6912 theoretical spectra and covers the full HRD, as shown in Fig. 5. Any other model grid can be easily implemented, with no requirement on symmetry or shape, since our code includes a robust interpolation scheme. Alternatively, one could perform calculations of line formation on the fly using a grid of model atmospheres. This latter approach is cleaner, however, it is still computationally too costly. We sample the wavelength windows around the spectral features important for diagnostic of FGKM stars: 3850–4050 Å (Ca I lines), 4350–4450 Å (G-band, CN sensitive), 4600–4900 Å (\(H_\beta\)), 5100–5300 Å (Mg I triplet, main gravity diagnostics), 6400–6640 Å (\(H_\alpha\)), 8400–8800 Å (Ca II triplet, also used in Gaia and in RAVE stellar survey). However, not all pixels in these intervals are used in the analysis. The high-resolution observed spectra (see Sec. 4.3.1) do not cover the regions below 4800 and above 6800 Å. We exclude from our statistics all regions which contain spectral lines of chemical elements other than the temperature- and pressure-sensitive wings of Balmer and Mg I triplet lines, and the Fe I and Fe II lines. Precisely, the weight of all other spectral features, is set to zero. The flat regions are used for the iterative continuum normalization and are not masked out. To avoid over-confident estimates, we demand that either the temperature uncertainty \(\sigma_T_\text{eff} > 80\) K or the metallicity uncertainty \(\sigma_[Fe/H] > 0.08\) dex, and otherwise flatten the PDF by multiplying the \(\chi^2\) distribution with a fixed factor until the condition is met. Before evaluating the test statistics, the spectra are continuum-normalised and radial-velocity corrected by cross-correlating with the template theoretical spectrum for each input combination of stellar parameters.

To obtain the spectroscopic observational likelihood \(P(O \mid X_i)\) at each point in parameter space, we resample the synthetic spectrum to the wavelength scale and resolution of the observations and evaluate the goodness-of-fit-statistics \(\chi^2\) at each pixel \(i\) of the observed spectrum:

\[
\chi^2 = \sum_{i=1}^{N} \frac{(O_i - S_i)^2}{\sigma^2},
\]

where \(S\) the template comparison spectrum, \(O\) the observed spectrum, \(\sigma\) the weighted observational uncertainty. Noisy and uninformative regions are given less weight using special masks. The final PDF is gained by summing over all pixels within a given segment, and over all segments.

The original resolution of the synthetic grid is 500 000. Thus, the method can be potentially applied to any observed dataset, e.g., low-resolution and high-resolution spectra. For the analysis of the SEGUE spectra, we post-convolved the spectral grids with instrumental resolution, \(R = 2000\). A typical fit to a SEGUE spectrum is shown in Fig. 5. In the high-resolution mode, we use the resolution of the UVES-instrument (\(R = 50\) 000).

3.6 Parallaxes and other additional data

The Gaia mission will derive parallax measurements for nearly all stars with spectroscopic information. Parallax measurements only affect the distance \(s\) (and distance modulus \(m\)), so that it is straightforward to combine the observational likelihood from parallax measurements \(P_{\text{astr}}\) with the photometric and model information.

In the following, we assume a Gaussian parallax error. Cromwell’s rule does not apply to mathematical truths, so negative parallaxes are excluded by setting the prior to 0. This yields:

\[
P_{\text{astr}} = P(O \mid p) = N\Theta(p) g(p - p_0, \sigma_p),
\]

where \(N\) is a normalisation, \(\Theta\) is the Heaviside-function (1 for \(p > 0\) and 0 for \(p < 0\)), \(g(p - p_0, \sigma_p)\) is again a Gaussian distribution around the measured parallax \(p_0\) (which can be negative) with standard deviation \(\sigma\).

It is important not to clip negative values of \(p_0\); a small negative value of \(p_0\) has still a different information content than a large negative value. In the case of a Gaussian error distribution, the probability ratio between a smaller parallax and a larger parallax rises, the further the measurement is away from zero. Or to use an example: the likelihood ratio between having failed by 3\(\sigma\) and by 4\(\sigma\) is larger than the likelihood ratio between having failed by 3\(\sigma\) and by 2\(\sigma\). Fig. 4 demonstrates how the parallax distri-

2 This would only not be true if the error distribution gives constant like-
Under the real parallax \(p \), assuming a Gaussian error distribution with standard deviation \(\sigma_p \). The distributions become significantly narrower around the 0 for more negative parallax values, reducing the parallax expectation value and raising the expected distance.

To combine \(P'_{\text{ast}} \) it with the photometric and model PDF, we integrate over the possible distance moduli \(\mu \), at each stellar model point \(i \):

\[
P'_{\text{ast.ph}} = \int P_i(O_{pb}|C_i, \mu(s), r)P'_{\text{ast}}(\mu)J_{\mu/p}d\mu,
\]

with the Jacobian \(J_{\mu/p} = 20 \ln(10)^{0.5}\sigma_p \).

In this work, \(P_{\text{ast}} \) is considered for the stars with high-resolution spectra only (Sec. 4.4).

3.7 Combining the PDFs

Equipped with these results, we can now assemble the combined PDF in equation \(5 \).

In simple words, the strategy is separate all PDFs into PDFs on the core parameter space \(R_c = (T_{\text{eff}}, \log(g), [\text{Me/H}]) \) and the conditional PDFs on the remaining parameter space given that point in \(R_c \). Depending on our needs we can then represent those remaining parameter estimates either as simple moments (expectation value, variance, etc.) at each point in \(R_c \), or as full distributions.

Formalising this is a bit tedious, since it involves a conditional probability derived from a conditional probability. To simplify the notation, we use the previous abbreviation of observational dependence with a prime. The combined calculation of photometric and model part yields:

\[
P'_{\text{ast.mod.ph}} = P'_{\text{ast.ph}} \cdot P_{\text{mod}} \cdot P_{\text{pr}} = P'_{\text{ast.mod.ph}}(X_i)P'_{\text{ast.mod.ph}}(a_{ph}|X_i),
\]

where \(X_i \) is the vector of parameters in our core parameter space \(R_c \) and \(a_{ph} \) is the vector of remaining parameters constrained by the photometric and astrometric observations, models and priors, i.e.

\[
a_{ph} = (M_r, \tau, C, r, s, \ldots).
\]

Similarly, we separate the spectroscopic information:

\[
P'_{\text{sp}} = P'_{\text{sp}}(X_i)P'_{\text{sp}}(a_{sp}|X_i), \tag{16}
\]

where \(a_{sp} \) denotes all other parameters constrained by spectroscopic observations, like detailed abundances, or stellar rotation. In this work we do not use this supplementary information, so that we can drop the term \(P'_{\text{sp}}(a_{sp}|X_i) \). Most of the parameters in \(a_{sp} \) will not coincide with the parameters in \(a_{ph} \), but if they correspond, they must be written into the core parameter space. For example, rotation and stellar activity available from high-quality spectra constrain stellar ages. We will discuss this in a future work.

We can now calculate the final probability distribution function:

\[
P(X|O) = P'_{\text{ast.mod.ph.pr}}(X_i)P'_{\text{sp}}(a_{sp}|X_i)P_{\text{ast.mod.ph}}(a_{ph}|X_i). \tag{17}
\]

where

\[
P'_{\text{ast.mod.ph.pr}}(X_i) = P'_{\text{sp}}(X_i)P'_{\text{ast.mod.ph}}(X_i). \tag{18}
\]

3.8 Calculating projections, central values, and uncertainties

We can gain the conditional probability distribution in a lower number of parameters by marginalising, i.e. by integrating out the other dimensions in the joint conditional probability distribution function. E.g., to exclude the parameter \(x_{j+1} \), we write:

\[
P(X_1, \ldots, X_j, X_{j+2}, \ldots, X_n|O) = \int P(X_1, \ldots, X_j, X_{j+1}|O)dx_{j+1} \tag{19}
\]

From this we can obtain the moments of the probability distribution in each variable or group of variables:

\[
\langle X_j \rangle = \int x_j P(X|O)dx_j \tag{21}
\]

\[
\sigma^2_{X_j} = \int \langle X_j^2 \rangle P(X|O)dx_j - \langle X_j \rangle^2 \tag{22}
\]

where \(\langle X_j \rangle \) denotes the expectation value of the parameter \(X_j \), and the standard deviation \(\sigma_{X_j} = \sqrt{\langle X_j^2 \rangle - \langle X_j \rangle^2} \).

3.9 Short recipe of the algorithm

In short the steps are as follows:

- 1) Combine photometric and astrometric information together with the priors and sum over all stellar model points to obtain a preliminary PDF \(P_{\text{prel}} \) in core parameter space, calculate moments or full PDFs for the remaining dimensions.
- 2) In regions of parameter space, where the probability is larger than a threshold value \(4 \) calculate a coarse grid of spectroscopic probabilities and approximate the PDF \(P_{\text{sp}} \) by interpolation.
- 3) Multiply \(P_{\text{prel}} \) with \(P_{\text{sp}} \) to obtain an approximate posterior PDF \(P \). Determine a refined grid in parameter space to better sample the spectroscopic PDF and iterate steps 2) + 3) (Fig. 5).

\[\]
of rare objects, which will have low preliminary probabilities. As an example SEGUE star (plate 2038, fiber 564). Most points in the $(T_{\text{eff}}, \log(g))$-plane have several metallicity values.

The threshold value on a binned PDF was chosen as $t \ll 1/(N \cdot M)$ where N is the number of stars and M is the effective number of bins, because in a large sample we have to expect the presence of rare objects, which will have low preliminary probabilities. As a different condition one can formulate that the integral of the PDF over parameter space must be

$$N \cdot \int_{P(X)>t} P(X) dX \ll 1.$$ \hspace{1cm} (24)

3.10 Selected examples

To illustrate the algorithm, we describe here the results for two stars. One is β Hyi from our high resolution data sample, for which we have basic Johnson photometry, high resolution spectroscopy and a Hipparcos parallax. The other star, randomly selected from the SEGUE data sample (plate number 2038 and fiber number 564), is a turn-off subgiant. In this case we have SDSS photometry and a low-resolution spectrum from SEGUE.

The resulting probability distribution functions in the $(T_{\text{eff}}, \log g)$-plane are shown in Fig. 7 and in Fig. 8. The top left panel shows the combined PDF from photometry, prior and stellar evolution; the top right panel shows the spectroscopic PDF in photometrically allowed space. These two estimates combine to the final posterior PDF in the bottom left panel. The corresponding metallicities are shown by colour coding in the bottom right panel. The individual probability densities from photometry-stellar evolution and spectroscopy are clearly different in shape and in location.

The Hipparcos parallax combined with photometry and stellar models puts tight constraints on the surface gravity of β Hyi in Fig. 4. This leads also to a tight correlation between metallicity and gravity as evident from the coloured dots in the bottom right panel. A moderate step in the spectroscopic PDF at $\log(g) \sim 3.5$ is produced by a step in micro-turbulence in our current grid of theoretical spectra, which will disappear with the improved grids in preparation. The calculation does not cover the full allowed region of the spectroscopic PDF (see the coarse behaviour at smaller gravities in the top right panel), saving computation time, since the joint PDF (lower left panel) is fully represented. The final expectation values and uncertainties are $T_{\text{eff}} = (5837 \pm 72) \text{ K}$, $\log(g) = (3.981 \pm 0.068) \text{ dex}$, and $[\text{Fe/H}] = (-0.196 \pm 0.074) \text{ dex}$ versus $T_{\text{eff}} = (5873 \pm 38) \text{ K}$, $\log(g) = (3.98 \pm 0.02) \text{ dex}$, and $[\text{Fe/H}] = (-0.08 \pm 0.02) \text{ dex}$ in the reference sample (described in the next Section).

While neither the photometric part nor the spectroscopic constraints are very tight for the SEGUE star in Fig. 8 the combined PDF is very well defined. This shows the benefits of solving the problem in the full parameter space R. While points in the $(T_{\text{eff}}, \log g)$ plane may be allowed by both derivations, the corresponding limits on the third dimension $[\text{Fe/H}]$ are in disagreement, ruling them out. These are the regions in the bottom right panel of Fig. 8, where the colours are mismatched. To stress this point we show the one-dimensional probability distributions in T_{eff} in Fig. 9. While our parameters are nicely between the values of the SEGUE follow-up study Allende Prieto et al. (2008) and SEGUE DR9 (see Sec. 4.1), the behaviour of our PDF is more interesting: The combined PDF is not even remotely a simple combination of its two contributors. Most interestingly, the expectation value of the combined estimate is not situated between the estimates from each spectroscopy (6027 K) and photometry (6021 K), but significantly...

Figure 5. The grid of synthetic spectra.

Figure 6. The process of iterative grid refinement in our pipeline for our example SEGUE star (plate 2038, fiber 564). Most points in the $(T_{\text{eff}}, \log(g))$-plane have several metallicity values.

Figure 7. While our parameters are nicely between the values of the SEGUE follow-up study Allende Prieto et al. (2008, light blue) and from SEGUE DR9 (orange). Note how the combined estimate differs from a naive expectation when looking at photometric and spectroscopic information separately.

Figure 8. The combined PDF is very well defined. This shows the benefits of solving the problem in the full parameter space R. While points in the $(T_{\text{eff}}, \log g)$ plane may be allowed by both derivations, the corresponding limits on the third dimension $[\text{Fe/H}]$ are in disagreement, ruling them out. These are the regions in the bottom right panel of Fig. 6 where the colours are mismatched. To stress this point we show the one-dimensional probability distributions in T_{eff} in Fig. 9. While our parameters are nicely between the values of the SEGUE follow-up study Allende Prieto et al. (2008) and SEGUE DR9 (see Sec. 4.1), the behaviour of our PDF is more interesting: The combined PDF is not even remotely a simple combination of its two contributors. Most interestingly, the expectation value of the combined estimate is not situated between the estimates from each spectroscopy (6027 K) and photometry (6021 K), but significantly...
Our final expectation values and uncertainties for this SEGUE test star are $T_{\text{eff}} = 6066 \pm 44 \, \text{K}$, $\log(g) = 3.83 \pm 0.15$, $[\text{Fe}/\text{H}] = -0.47 \pm 0.07$, for comparison SEGUE DR9 provides $T_{\text{eff}} = 6181 \pm 19 \, \text{K}$, $\log(g) = 3.90 \pm 0.03$, $[\text{Fe}/\text{H}] = -0.459 \pm 0.006$. Note that we add the reported uncertainties from the SEGUE pipeline just for the sake of completeness. Their formally reported errors cannot be considered realistic. They are severely under-estimated (by about an order of magnitude or more) as shown by the comparisons in Lee et al. (2008b) as well the discussion later in this work.

This discussion also shows that even a relatively uncertain information can give an improvement to more precise values that is beyond a simple one-dimensional combination. More importantly, mismatches between different sources of information help to flag pathologies in a sample by unexpectedly small overlap of the contributing PDFs.

4 APPLICATION TO OBSERVATIONS

Our approach is most needed and also most powerful, when different observations are available for a star and the information content is complementary but limited. With this in mind and to test the stability of our method, we choose both a sample featuring high-resolution spectra ($R \geq 40000$), from observations with VLT, as well as one with low-resolution spectra ($R \sim 2000$) from SDSS/SEGUE. We start this Section with a description of the datasets in use. Then, we first show the performance of the approach when limiting ourselves to photometric data with and without astrometry, followed by the full approach on low- and high-resolution spectra. In the last subsection we compare derived quantities, like distances and ages, and assess the resulting distribution of stars in the temperature-gravity plane.

4.1 Datasets

For the high-resolution sample we obtained a comparison set of stellar parameters from Jofre et al. (2013). Their effective temperatures were derived from the interferometric angular diameters or calibration relations. The gravities stem from astroseismology or Hipparcos parallaxes, and their metallicities are based on the anal-
aysis of Fe II lines, which are not significantly affected by non-LTE effects (Bergemann et al. 2012).

The high-resolution sample comprises 87 high-resolution spectra of 40 nearby stars including the Sun, taken with the HARPS and UVES instruments at VLT, and with NARVAL at the Pic du Midi observatory. This dataset was kindly provided by P. Jofre. In addition, there are Hipparcos parallaxes (van Leeuwen 2007), making the sample closely resemble future data from Gaia astrometry combined with Gaia-ESO spectroscopy. The sample is particularly valuable because the spectra were taken on different instruments and there are independent parameter determinations, including interferometric angular diameters and astroseismic surface gravities (Jofre et al. 2013). The stars cover a very wide range in metallicities, gravities and temperatures in parameter space (see a complete description in Blanco-Cuaresma et al. 2014). Photometry in the U, B, V, I, J, H, K bands, was compiled from the Hipparcos catalogue (Perryman et al. 1997), from 2MASS (Skrutskie et al. 2006), and from Johnson et al. (1966). U-band photometry for HD22879 stems from Koen et al. (2010), improved JHK-photometry for ξ Hya from Laney, Joner & Pietrzyński (2012). Solar photometry was adopted from Binney & Merrifield (1998), updated with the values of Ramirez et al. (2012). We increased the errors in light of the general uncertainty of the Sun’s photometry to 0.03 mag.

Figure 8. The PDFs for one of the sample stars from the SEGUE sub-sample (see Sec. 3.10). Top left: the combined PDF from photometry-prior-stellar evolution projected onto (T_{\text{eff}},\log g)-space; top right: the spectroscopic PDF in photometrically allowed space. These two estimates combine to the overall PDF in the bottom left panel. The bottom right: metallicity expectation values from spectroscopy (coloured area) and the photometric/model part (coloured dots).

Our low-resolution sample was selected from SEGUE by Allende Prieto et al. (2008), who did an intermediate-resolution follow-up analysis. It consists of 78 stars within the parameter range −2.5 < [Fe/H] < 0.3, 4000 < T_{\text{eff}} < 7000 K, and 1.5 < \log g < 4.5. For these stars, we have low-resolution SEGUE spectra, (R ∼ 2000), photometry in the SDSS ugriz bands, Schlegel, Finkbeiner & Davis (1998) reddening estimates and positional data from SDSS DR9 (Ahn et al. 2012). One star was removed from the sample, as it was flagged for strongly disagreeing observational information (very low quality measure Q < −20, cf. equation 25, resulting partly from a strong cosmic in the spectrum). Throughout the text we refer to the parameters from Allende Prieto et al. (2008) as ”AP08” and from SEGUE DR9 as ”DR9”.

Two important remarks should be made about these compari-

We hence have sets of comparison values, with a mild preference for the SEGUE DR9, since it is very difficult to assess the accuracy and homogeneity of AP08; different parts of the sample were analysed with different methods (equivalent width method for the higher-resolution stars vs spectrum synthesis for the lower-resolution stars). For most of these stars, the spectra were degraded to R ∼ 7000 from the original R ∼ 15000 with unclear consequences.
son sets: While they are great tools for comparisons, they are subject to uncertainties and systematics that can exceed the quoted errors. Second, the quoted errors are fundamentally different from ours. They just report internal errors from pipelines or spectroscopic fitting routines, which are typically far smaller than realistic error estimates. The most extreme case is the SEGUE parameter pipeline. This is fundamentally different from our error calculations, which attempt to calculate all uncertainties.

4.2 Photometry with and without Astrometry

Before we explore the performance of the full algorithm against our reference samples, we test it for the simpler case, where spectroscopic information is not available. For the vast majority of stars in the Galaxy, we will have no or very limited spectral information (e.g. 4MOST will cover only of order ~ 2% of the stars in the Gaia catalogues). However, we find that the Bayesian method is capable of deriving stellar parameters also when restricted to photometric and astrometric information.

In Fig. 10 we compare temperatures, gravities and metallicities derived from Johnson photometry and parallaxes only with our high resolution reference sample (top row), and from SDSS photometry alone with values from SEGUE DR9 (bottom row).

For the high-resolution reference sample (top row) the applied photometry is not competitive with what can be expected from modern photometric surveys: For most stars we are restricted to Johnson B, V, I colours at ~ 0.03 mag precision, and, due to their brightness, very uncertain $2MASS$ photometry. Nevertheless, the photometry gives a good handle on effective temperatures: while our temperatures are mildly higher than the reference, the random scatter is as low as ~ 110 K. The excellent agreement for log(g) is a consequence of using Hipparcos parallaxes. We note that for most stars even uncertain parallaxes suffice to fix log(g), as they constrain the stellar branch, i.e. whether a star is on the main-sequence or e.g. on the red giant branch. Metallicities are per se very weakly determined with Johnson broad band filters, and particularly without decent U-band measurements. The large uncertainties concentrate the values towards the centre of our grid. This underlines the need for intermediate or narrow band photometric surveys to constrain stellar parameters.

The precise SDSS photometry and the location of SDSS colour bands allow for a better handle on metallicities, as well as for good temperatures. In absence of parallax measurements, photometry alone offers a rough classification of stars, as seen in the bottom row of Fig. 10 with a rms scatter against the SEGUE parameter pipeline of around 0.5 dex. While there is significant photometric information, it is not strong enough to be insensitive to the priors. This motivates a closer look at the importance of our assumptions.

In Fig. 11 we compare our photometric metallicities (y-axis) to the metallicities from Allende Prieto et al. (2008) (x-axis; for the standard SEGUE DR9 comparison, see Fig. 10) for the SEGUE sample, plotting stars with clean photometry with larger discs and stars with bad photometry with smaller triangles. Colours encode the error estimates from the Bayesian method. Evidently, there is enough information to constrain metallicities at least in the higher metallicity range to an accuracy of about 0.2 dex. Contrary to common derivations like Ivčić et al. (2008), which fail at metallicities ≥ -0.5 (cf. Arnadóttir, Felzting & Lundström 2014), our approach is valid throughout the entire metallicity range. However, it is important to realize how important the age prior becomes in this case. In the lower panel we show the same data with a fully flat age prior instead of using eq. 30. This flat age prior implies a far larger uncertainty in the gravity of a star, which severely affects objects that cannot be clearly identified as subgiants, or main sequence stars. Via the degeneracy of v_rms information, their potential lower gravities allow for a wider range of (mostly lower) metallicities, which lowers the expectation values and boosts the error estimates. Despite this problem, the situation is far better than in the traditional approach: the classical metallicity calibrations like Ivčić et al. (2008) or An et al. (2013) rely on stars falling not only on a fixed age bin, but also onto a single evolutionary sequence. This leads to a metallicity bias and overconfidence concerning the uncertainties. In contrast, the full Bayesian approach makes optimal use of all available colour information, accounts for all sources of uncertainty and allows to explore the effects of prior assumptions.

Figure 11. Photometric metallicities (expectation values of the posterior distributions) in the SEGUE/SDSS sample versus the determinations from Allende Prieto et al. (2008). Top panel includes the age prior from eq. 30 while the bottom panel does not, resulting in a bias towards younger ages. Colours code the standard deviation of the posterior distributions, capped at 0.8 dex. Stars with clean photometry according to the SDSS database are depicted with discs, while stars with problematic photometry are shown as smaller triangles.
4.3 SDSS/SEGUE: Photometry and low-resolution Spectra

Fig. 12 shows the comparison of our parameter expectation values with the SEGUE DR9 data release. Colour codes the quality measure \(Q \), as in Fig. 13.

\[
Q = \log_{10} \left(\frac{\int P_{\text{ph,mod,pr,ast}} \cdot P_{\text{sp}} dX}{\int P_{\text{sp}}^2 dX + \int P_{\text{sp}} dX} \right),
\]

which gives a simplified indication on how well the spectroscopic PDF agrees with the remaining information.

Our temperatures are systematically colder than SEGUE DR9 by about 135 K. This is a consequence of our spectral and photometric \(T_{\text{eff}} \) scales being 160 K and respectively 80 K colder, suggesting that SEGUE DR9 overestimates stellar temperatures. Our spectroscopic temperature scale is nearly identical with that of (Allende Prieto et al. 2008, hereafter AP08), which is on average \(\sim 170 \) K below SEGUE DR9 derivations. The strength of our full approach becomes apparent in the residual scatter of the temperature values after correcting for the systematic offset: while spectroscopic and purely photometric temperatures give a residual rms of \(\sim 138 \) K and \(\sim 174 \) K relative to SEGUE DR9, the full approach excels with 87 K.

The Bayesian gravities are systematically higher for suspected main sequence stars (\(\log(g) > 4 \) in both determinations), reflecting the systematic gravity underestimates of SEGUE DR9 in this range (also confirmed by SEGUE not matching expectations for the main sequence). The purely spectroscopic gravities of our method are significantly lower than DR9 and AP08 by \(\sim 0.45 \) dex in the intermediate and lower gravity range (using \(\log(g) < 4.0 \) in AP08). This is clearly identified as a bias, since the Bayesian approach reports too young ages, especially for several metal-poor stars. Though the Bayesian approach cannot completely eradicate a systematic bias in one of its inputs, it strongly reduces this problem by systematically increasing the surface gravities by an average of 0.25 dex compared to the purely spectroscopic value.

The Bayesian metallicity determinations for [Fe/H] between \(-2 \) and \(-0.6 \) dex are robust. However, metal-rich stars have a recognizable metallicity difference between our photometric and our spectroscopic determinations, with the latter being systemat-
the Bayesian method is clearly superior to the traditional analysis in all quantities is reduced, by more than half. This implies that only mic derivations (Stello et al. 2006). This leaves 20 stars with 53 values (Leonis, which have with which is typical for most G and K stars (Fuhrmann 2004). Hence, the value by the photometric information, which has intrinsic un-importance of fair error assessment: overconfident, i.e. too small, certainty of 0.

For the open cluster M67 ([Fe/H] ~ 0.0 or ~ 0.05 Magic et al. 2010; Gratton 2000) our spectroscopy alone gives [Fe/H] ~ 0.17 versus a photometric estimate of ~ 0.05. As in the case of the gravities, the Bayesian method partly mitigates this problem: photometric metallicities in this range push the combined estimates towards higher values; however, due to the intrinsic uncertainty of 0.2 dex, the corrections are minor. This also shows the importance of fair error assessment: overconfident, i.e. too small, error estimates from spectroscopy prevent a stronger correction of the value by the photometric information, which has intrinsic uncertainties of ~ 0.25 dex in this range. Tests show stability of our results down to a signal to noise ratio of ~ 30 and checks on the continuum placement yielded no conclusive evidence. It is very likely that a finer resolution of the grid of synthetic spectra, its extension to a larger wavelength coverage, and allowing for α-enhancement will solve the problem. This work is in progress and will be presented in a future paper dealing specifically with the analysis of SEGUE spectra.

The most important result is, that even with systematic biases present in the inputs, the Bayesian method itself remains robust, i.e. other parameters are not strongly affected, and the solutions are pushed towards a significantly less biased result.

4.4 Photometry, Parallaxes and high-resolution Spectra

Figure 14 compares the reference parameters (x-axis) to the expectation values from our full Bayesian analysis (y-axis). Again colours encode the value of the quality measure Q from equation 25. We also give statistics in Table 1.

parameter	$\Delta \mu$	σ	$\Delta \mu_{\text{astros.}}$	$\sigma_{\text{astros.}}$
$T_{\text{eff}} / \text{K}$	(65 ± 19)	141	(69 ± 13)	66
log(g)/ dex	(−0.024 ± 0.017)	0.13	(0.031 ± 0.009)	0.046
[Fe/H]/ dex	(−0.099 ± 0.026)	0.19	(−0.049 ± 0.014)	0.07

Table 1. Differences in the mean expectation values of our sample minus the reference sample $\Delta \mu$ and rms scatter of σ for the entire reference sample (left two columns) and the subsample with astroseismic determinations. While the astroseismic subset has competitive accuracy and precision, the remainder of the reference sample strongly scatters against our values.

on comparable data. Some of the reference gravities were derived from Hipparcos parallaxes, which should make them similar to our results. In this case, our fully Bayesian determinations in gravity appear more reliable than the less sophisticated reference because they also take into account physical information from colours and spectra. Interferometric T_{eff}, although they are usually taken to be mildly model-dependent, still require an estimate of limb darkening and bolometric fluxes. The former are determined with 1D LTE model atmospheres, whereas Chiavassa et al. (2010) showed that 3D hydrodynamical models predict different centre-to-limb variation, which may cause systematic biases in angular diameter estimates. Bolometric fluxes are estimated by interpolating between observed photometric magnitudes with the help of theoretical spectra, giving rise to another systematic uncertainty.

It is instructive to compare the full method results to the spectroscopic results. In the bottom row of Fig. 13 we show expectation values and parameter uncertainty from purely spectroscopic information (green error bars) and when using spectroscopy plus the model prior (coloured points with blue error bars). Spectroscopic surface gravities alone are generally too low by $(0.17 ± 0.06)$ dex with a residual scatter of about 0.4 dex compared to the full solution (see Ruchti 2013 for discussion of similar spectroscopic underestimates). Using spectra in combination with stellar evolution models in the Bayesian framework, but excluding the parallax and photometric information, improves the residual scatter to ~ 0.3 dex and fully removes the systematic offset. Hence, while spectroscopic information alone cannot compete with astrometric information, it gives sufficient information on surface gravity to allow for decent values derived by the Bayesian framework.

In Table 2 we provide the stellar parameters and ages from the full Bayesian method. When more than one spectrum is present for a star, we provide the weighted average of the expectation values and errors (we have to assume that the errors between the single determinations are highly dependent) for single spectra. Where no spectral information is available, we fill in the results from the combination of photometry and parallax measurements.

4.5 Temperature-gravity Plane, Ages and Distances

Inspection of sample distributions in parameter space, like in the temperature-gravity planes shown in Fig. 16, provides clues about

5 Currently we effectively use less than 1% of the SEGUE spectral range.
Figure 13. Expectation values from our Bayesian parameter determinations versus the reference values for stars with high-resolution spectra. In the top row we show the full Bayesian determinations using all available information, i.e. parallaxes, photometry, spectroscopy and stellar model compared to reference values from Heiter et al. (in prep.), which are derived from interferometry, asteroseismology and parallaxes. The bottom row depicts the parameter expectation values from spectroscopy alone (green error bars) and from spectroscopy + the model prior (but no photometry or astrometry).

Figure 15. Distance error estimates for the Bayesian method in the temperature-gravity plane. Evidently, distance errors and classification uncertainties are not a clear function of magnitude. While clearly identified main sequence stars offer the best accuracy, even stars with high gravity estimates can have low confidence in their actual classification and distance estimates.

sequence, while SEGUE DR9 does not attain main sequence values. Even more striking is the appearance of unphysical stars: Both SEGUE DR9 and the reference sample from Heiter et al. have stars in highly unphysical positions, with the error estimates not even close to the offset from the nearest evolutionary sequence. E.g. both SEGUE DR9 and the high-resolution reference sample place three stars around [Fe/H] = −1 far right of the turn-off or respectively right of the main-sequence. The plot suggests that the gravity offsets between the high-resolution reference values and the Bayesian method track back to a neglected metallicity effect in the reference sample. In principle the Bayesian method could yield stars in between the sequences, since we here give expectation values. A hint of this tendency can be seen, but by construction our errors will correspond to the offset, because the actual likelihood at the unphysical points is near zero.

The resulting age-metallicity relation for the high-resolution sample is displayed in Fig. 14. To make the plot easier to read, we merged the entries for different spectra as in Table 2. The picture very much resembles the results of Casagrande et al. (2011). The younger expectation values for one of the very metal-poor stars corresponds to a larger error estimate, forcing the expectation value away from the hard boundary given by the age of the universe. Further there is no striking trend in metallicity at younger ages.

The importance of a reliable assessment of all stellar parameters in one single approach is demonstrated in Fig. 15. Here we plot the same stars from SEGUE as in the top left panel of Fig. 13 but now colour coded with the estimated fractional distance error. It is apparent that even some very high gravity estimates are no guarantee for a good main sequence classification, vice versa stars with lower gravity can have high distance confidence. As expected, these stars are usually cleanly identified subgiants, giants, or even better, red-clump stars. While the distance and its uncertainty are in principle enough to support estimates of mean motion and velocity dispersions in a population, we point out that an investigation of

the reliability of each parameter determination. In this figure we show the HR diagrams in the (Teff, log(g))-plane with expectation values from the Bayesian method (top row), versus the reference parameters (bottom), for both the SEGUE sample (left hand side) and the high-resolution reference sample (right). To facilitate the interpretation, we plot isochrones at 10 and 13 Gyr at three different metallicities (−2, −1, 0), matching the colour scale of the stars.

The key differences between our results and those determined by conventional methods are obvious. Despite the mildly biased spectroscopic gravity estimates, our results show a clearly superior performance in this plot. The Bayesian results cover the main parameters and show the best accuracy, even stars with high gravity estimates can have low confidence in their actual classification and distance estimates.
velocity distributions themselves requires accurate estimates of the exact shape of the probability distribution in distance space, which the Bayesian method can deliver.

5 COMPARISON TO SIMPLIFIED APPROACH

In this Section we attempt to compare our implementation of spectroscopic information to an approximation by one-dimensional Gaussian uncertainties. While this is certainly not the only point by which our algorithm differs from other studies in the literature, the simplification of the spectroscopic information is common to the works we are aware of.

We perform this experiment on the SEGUE sample. To degrade our spectroscopic results, we calculate the uncertainties \(\sigma \) and mean/expectation values \(\langle \mu_{T_{\text{eff}}}, \mu_{\log(g)}, \mu_{[\text{Fe/H}]} \rangle \) of each quantity separately and then change the spectroscopic PDF to a product of one-dimensional Gaussians in each parameter:

\[
P_{\text{sp}}(X|O_{\text{sp}}) = N \cdot \exp \left(-\sum_i \frac{(X_i - \mu_i)^2}{2\sigma_i^2} \right)
\]

where \(i = [T_{\text{eff}}, \log(g), [\text{Fe/H}]] \) and \(N \) is the normalisation.

As we see from the spectroscopic PDFs in the top right panels of Fig. 8 and Fig. 7, the spectroscopic information can by no means be described as a product of Gaussian errors in \(T_{\text{eff}}, \log(g), \) and \([\text{Fe/H}]\) separately: the PDF is not even remotely aligned with the coordinate axes and, for most stars we examined, shows a highly irregular shape.

The top panel in Fig. 17 shows the relative shifts between our full approach and the more conventional approximation in \(T_{\text{eff}} \) and \(\log(g) \) for each star, normalised by the errors derived in our normal method, i.e.

\[
\epsilon_{T_{\text{eff}}} = \frac{(\langle T_{\text{eff}} \rangle - \langle T_{\text{eff}} \rangle_{\text{classic}})}{\sigma_{T_{\text{eff}}}}.
\]

Intuitively one might expect very small changes, because apart from approximating the spectroscopic PDF, we left all information untouched. The contrary is true, since the shape of the spectroscopic PDF gets distorted and now intersects the other constraints in parameter space at different locations (this problem is aggravated with higher dimensionality of parameter space and a more irregular PDF). Consequently the expectation values of the parameters scatter by more than 1 \(\sigma \).

6 DISCUSSION AND FUTURE DEVELOPMENTS

The method presented in this work is essential for accurate determination of astrophysical parameters of stars. Though the demonstrated scheme is essential to obtain accurate and objective error determination, the computational cost is affordable. The algorithm is parallelized and without efforts to make it more efficient took about 20 CPU-minutes per star way to extract information from the
current and upcoming Galactic surveys, several shortcomings need and will be addressed.

- We are working on extending the grids of stellar spectrum models, i.e. wider wavelength coverage (UV to IR) and finer grid resolution, inclusion of α-enhancement and rotation as extra dimensions in the grids.
- Especially on the low-resolution side, the continuum finding algorithms need to be improved.
- Parameters, like micro-turbulence, which in fact parametrise the deficits of the current 1D-models in physical realism, must be better constrained or best be made obsolete by the use of more physical models. In the short and intermediate range we will find smoother corrections on a denser grid that allow for more precise evaluation. In the far future, this problem should be solved by better physics, i.e. 3D-NLTE calculations for stars, which are at present still too costly.
- It is also interesting to include age- and mass-sensitive diagnostics (such as, Ca UV lines), that would in principle allow us to choose spectroscopic models which are more appropriate in a given domain of the HRD. At present, the analysis of OBA stars relies on NLTE model atmospheres, whereas LTE models are standard for FGK stars.
- The stellar evolution models still apply rather simplistic (frequently grey) atmosphere models. Consequent systematics can be explored via residuals from this Bayesian method e.g. in magnitude space, as well as aberrations of physical parameters. A long-term goal would be to gear the stellar evolution codes with the same atmosphere models used for the spectroscopic modelling to avoid biases by partly contradictory models.
- The photometric information in our scheme is affected by reddening. Colour distortions and mismatches between the photometric and other information can be directly used to determine reddening, in addition spectral information can be extracted at high resolution e.g. from interstellar Na D lines. Since we simultaneously derive probability distribution functions for stellar distances, the method can be adapted for reddening reconstructions (like the ones by Schlafly, Green & Finkbeiner 2013).

7 CONCLUSIONS

In this paper we present the first generalised Bayesian approach for stellar parameter determination.

The essence of the Bayesian method is a combination of several probability distribution functions in the multi-dimensional parameter space, which can be expanded arbitrarily depending on a) the available observational information for a star, and b) the
desired physical quantities. The presented framework simultaneously evaluates the spectroscopic informations (gained from comparisons to theoretical spectra) and all other sources of information. This allows to calculate the full probability distributions in parameter space and helps to cut computational costs by pre-constraining the parameter space that has to be searched with the spectroscopic method.

In this work we showed how to combine low or high-resolution spectroscopy, photometry, parallax measurements and reddening estimates to estimate central physical parameters \(T_{\text{eff}}, \log(g), [\text{Me/H}] \) of a star, as well as its mass, age, distance, or detailed chemical composition. The exploitation of theoretical constraints like stellar models, as well as strong mutual dependence or independence of different parameters reduce the complexity and effective dimensionality of the problem and make the computation possible. The scheme can be easily expanded to other sources of information, in particular to astroseismic e.g. from CoRoT or Kepler.

The presented method has unique advantages compared to other available approaches:

- It makes an optimal and unbiased use of all observational data and theoretical information for a star, thus providing the parameter estimates that satisfy all observational constraints;
- The method is robust with respect to missing data, such as low quality or missing spectral or photometric information;
- The method is vital to gain a grip on derived quantities. E.g. to determine the distance of a star, it is not sufficient to know its best-fit values for surface gravity, temperature, metallicity and their errors; a fair assessment is only possible if we know the full combined PDF in all parameters. We showed that indeed the Bayesian estimates in particular for uncertainties differ from simple expectations.
- Data from different surveys can be analysed with exactly the same scheme: stellar models are available in most photometric systems and the synthetic spectra grids can be folded with any instrument response function. This avoids systematic offsets caused by applying different analysis methods to different surveys and the Bayesian method can serve as a benchmark for cross-calibration between surveys.

We compared our approach to the results of a traditional Bayesian analysis on the SEGUE sample. We use the same photometric input, priors and even spectroscopic analysis, but approximate the spectroscopic PDF by a Gaussian distribution, as usually done in the literature. We find substantial shifts in all parameters, frequently by several standard deviations. This demonstrates that neglect of the full PDFs leads to wrong parameter estimates and unreliable estimates of their errors. Use of our or an equivalent method, which is able to map out the true shape of the full spectroscopic (or any other) PDF, is hence mandatory for any analysis of stellar parameters.

The method requires unbiased assessments from all its sources of information. However, we know that systematic biases (e.g. theoretical atmosphere flaws, stellar evolution uncertainties like convection, nuclear reaction rates, etc.) currently affect these sources. This vulnerability can bias the entire derived parameter set. To test the performance of our method we compared both to reference samples for low-resolution and for high-resolution spectra. In all cases where we encounter problems, e.g. lower spectroscopic gravitites, the Bayesian method remains robust and pushes all values towards the benchmark. Comparisons with each astroseismically and traditionally derived parameters shows that the Bayesian method provides excellent results on the astroseismic sample and clearly superior performance compared to the traditionally derived reference. We provide parameter estimations for these stars in Table 2.

Similarly the photometric information is affected by reddening. However, this impact can be directly used to determine reddening especially in a larger sample. By the simultaneous determination of distance distributions, the method offers an excellent basis for reddening measurements similar to Schlafly, Green & Finkbeiner (2013).

Up to the last decade, sample sizes of Galactic surveys determined the scope of model comparisons: at sample sizes of \(\sim 1000 \) stars, Poisson noise was usually of the same importance as systematic uncertainties and knowledge of the detailed error distributions. In the future we can advance from a more qualitative understanding of best-fit parameters for our Galaxies to full quantitative analysis. The implies, however, that progress in evaluating the upcoming and present large stellar surveys for the Milky Way critically depends on our ability to cope both with the systematic biases and more importantly derive precise and accurate error distributions, and hence on the development and success of methods like the presented.

8 ACKNOWLEDGEMENTS

We thank the referee for a very helpful report and for suggesting the comparison to the classical Bayesian scheme. It is a pleasure to thank David Weinberg and Sergey Koposov for fruitful discussions and advice and James Binney for helpful comments to the text. We thank U. Heiter, P. Jofre, and S. Cuaresma for providing the observed high-resolution data, and T. Gehren, and F. Grupp for providing stellar atmosphere models used in this work. R.S. acknowledges financial support by NASA through Hubble Fellowship grant HF-51291.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. This work was partly supported by the European Union FP7 programme through ERC grant number 320360. We thank for the great hospitality of the Aspen physics center, where parts of this paper were written.

REFERENCES

Ahn C.P. et al., 2012, ApJS, 203, 21
Allende Prieto, C., Sivarani, T., Beers, T. C., et al. 2008, AJ, 136, 2070
An D. et al., 2008, ApJS, 179, 326
An D. et al., 2013, ApJ, 763, 65
Ámadóttir A.S., Feltzing S., Lundström I., 2010, A&A, 521, 40
Aumer M., Binney J., 2009, MNRAS, 397, 1286
Bailer-Jones C., 2011, MNRAS, 411, 435
Bergemann M., Gehren T., 2008, A&A, 492, 823
Bergemann M., Lind K., Collet R., Magic Z., Asplund M., 2012, MNRAS, 427, 27
Bevington P.R., Robertson D.K., 1992, Data reduction and error analysis for the physical sciences, McGraw-Hill, New York
Binney J., Merrifield M., 1998, Galactic Astronomy, PUP, Princeton, NJ
Binney J. et al., 2013, MNRAS, tmp.2584B, arXiv: 1309.4270
Blanco-Cuaresma S., Soubiran C., Jofrő P., Heiter U., 2014, arXiv: 1403.3090
Burnett B., Binney J., 2010, MNRAS, 407, 339

Bayesian spectroscopy 17

8 ACKNOWLEDGEMENTS

We thank the referee for a very helpful report and for suggesting the comparison to the classical Bayesian scheme. It is a pleasure to thank David Weinberg and Sergey Koposov for fruitful discussions and advice and James Binney for helpful comments to the text. We thank U. Heiter, P. Jofre, and S. Cuaresma for providing the observed high-resolution data, and T. Gehren, and F. Grupp for providing stellar atmosphere models used in this work. R.S. acknowledges financial support by NASA through Hubble Fellowship grant HF-51291.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. This work was partly supported by the European Union FP7 programme through ERC grant number 320360. We thank for the great hospitality of the Aspen physics center, where parts of this paper were written.

REFERENCES

Ahn C.P. et al., 2012, ApJS, 203, 21
Allende Prieto, C., Sivarani, T., Beers, T. C., et al. 2008, AJ, 136, 2070
An D. et al., 2008, ApJS, 179, 326
An D. et al., 2013, ApJ, 763, 65
Ámadóttir A.S., Feltzing S., Lundström I., 2010, A&A, 521, 40
Aumer M., Binney J., 2009, MNRAS, 397, 1286
Bailer-Jones C., 2011, MNRAS, 411, 435
Bergemann M., Gehren T., 2008, A&A, 492, 823
Bergemann M., Lind K., Collet R., Magic Z., Asplund M., 2012, MNRAS, 427, 27
Bevington P.R., Robertson D.K., 1992, Data reduction and error analysis for the physical sciences, McGraw-Hill, New York
Binney J., Merrifield M., 1998, Galactic Astronomy, PUP, Princeton, NJ
Binney J. et al., 2013, MNRAS, tmp.2584B, arXiv: 1309.4270
Blanco-Cuaresma S., Soubiran C., Jofrő P., Heiter U., 2014, arXiv: 1403.3090
Burnett B., Binney J., 2010, MNRAS, 407, 339
9 APPENDIX

9.1 Selection function

Previous approaches (e.g., [Burnett & Binney 2010]) introduced a selection function. With our choice of symbols, this would read:

\[P(X|S, O) = P(O|X)P(X) \frac{P(S|O, X)}{P(S|O)} \] (28)

where \(S \) denotes the selection function. Burnett & Binney (2010) then split the selection function into two parts: the one that depends on the parameters \(X \) and the other one, that does not and is thus of no importance. However, there appears to be no reason to introduce the other term: selections of a sample are nearly almost made on observations and not on stellar parameters that are not known apriori. The one example of such a selection function acting on parameter space we could find in the literature, is actually based on a misunderstanding by Burnett & Binney (2010): Knowing the available parallax measurement and its error for a star, they try to mimic a typical kinematic quality cut in a sample by zeroing all probability that produces too low parallaxes in proportion to the measured parallax error. However, it is not clear why one should not use the full parallax information here: applying the selection function implies that one has the knowledge necessary to compute the full likelihood, the selection function instead gives an undesirable one-sided constraint against far-away stars, and when pretending not to have the parallax information for testing purposes, the selection function will arbitrarily cut away the tail of effective distance overestimates, leading to wrong confidence and biased error estimates.

9.2 Details on priors

For the metallicity-iron abundance prior we assume a fixed alpha enhancement. It is known that also alpha enhanced stellar models are very well approximated by scaled solar abundance models (cf.
Bayesian spectroscopy

Figure 18. Probability distributions for the SEGUE star on plate 2041, fibre 8 from photometry and stellar models (left column), and from spectroscopy only (centre column), once in our full approach (top) and in the Gaussian approximation (bottom) are combined into the final PDF (right). Note that the approximated result on the right hand side is a simple multiplication of the spectroscopic and model/photometric PDFs, while the left hand side is not, because it is a projection of a combination in a higher dimensional space.

Chieffi et al. (1991), Salaris & Weiss (1998). We use this fact by setting the relation:

\[
[\text{Fe/H}] = [\text{Me/H}] = \begin{cases}
-0.2([\text{Fe/H}] + 0.5) & \text{if } -1.0 < [\text{Fe/H}] < -0.5 \\
-1.0 & \text{if } [\text{Fe/H}] < -1.0 \\
[\text{Fe/H}] & \text{if } [\text{Fe/H}] > -0.5
\end{cases}
\]

The combined prior probability density of age and metallicity is used as:

\[
P(\tau, [\text{Me/H}]) = N \cdot P([\text{Me/H}]) \cdot \begin{cases}
0 & \text{if } \tau > 14 \text{ Gyr} \\
1 & \text{if } 11 \text{ Gyr} \leq \tau \leq 14 \text{ Gyr} \\
\exp\left(-\frac{1100}{\sigma_{\tau}}\right) & \text{if } \tau < 11 \text{ Gyr}
\end{cases}
\]

where

\[
\sigma_{\tau} = \begin{cases}
1.5 & \text{if } [\text{Me/H}] < -0.9 \\
1.5 + 7.5 \cdot \frac{0.9 + [\text{Me/H}]}{0.4} & \text{if } -0.9 \leq [\text{Me/H}] \leq -0.5 \\
9 \text{ Gyr} & \text{else}
\end{cases}
\]

SEGUE measures mostly stars in the high disc, so we describe the spatial distribution for our stars by a primitive thick disc plus halo model, i.e.:

\[
\rho(R, z) = e^{-z/\bar{z}} e^{-(R-R_d)/R_0} + 0.03 \left(\frac{R}{R_0}\right)^{-2.5}
\]

(32)

where \(R \) is the cylindrical galactocentric radial coordinate, \(r \) the galactocentric distance, \(z \) the altitude above the plane, \(z_d = 0.9 \text{ kpc} \) the assumed scale height of the Galactic disc, \(R_d = 2.5 \text{ kpc} \) the scale length of the Galactic disc, \(R_0 = 8.27 \text{ kpc} \) the assumed galactocentric distance of the Sun from McMillan (2011), Schönrich (2012).

For the sake of simplicity we give each population the same upper limit of 14 Gyr and allow for a constant density in age down to 11 Gyr. Cosmological studies as well as observations in the Milky Way disc (Madau, Pozzetti & Dickinson 1998, Aumer & Binney 2009, Schönrich & Binney 2009) measure a significant decline of star formation rates with time even for Galactic disc stars. Observations and these theoretical models also derive a significantly older age for more metal-poor populations, which motivates the decreasing time constant towards lower metallicities. The high altitude of the SDSS/SEGUE sample additionally favours older ages (cf. Just & Jahrreiss 2007), but in order not to conflict with Cromwell’s rule on the other hand, we lean towards a relatively moderate decline with time.
name	HIP spectra	[Fe/H]	σ [Fe/H]	T eff	σ T eff	log (g)	σ log (g)	τ	σ τ	remark
HD 107238	60172	0	-0.14	0.26	4473	81	2.04	0.20	6.3	3.3 phot.
HD 122563	68594	4	-2.650	0.076	4809	47	1.54	0.13	9.7	2.9 comb., bad photometric T
HD 140283	76976	4	-2.73	0.11	5608	40	3.539	0.056	13.49	0.47 comb.
HD 173819	92202	0	-0.42	0.64	4240	95	1.05	0.25	2.9	4.0 phot.
HD 190056	98842	0	-0.11	0.29	4449	94	2.07	0.17	5.8	4.0 phot.
HD 220009	115227	0	-0.43	0.28	4369	85	1.67	0.19	6.2	3.9 phot.
HD 22879	17147	3	-0.592	0.024*	6006	19*	4.316	0.044*	12.1	1.2* comb.1
HD 84937	48152	1	2.11	0.14	6242	70	3.931	0.082	13.57	0.41 comb.
HD 85633	56343	1	-0.458	0.032*	4933	35	2.476	0.080	3.9	1.6 comb., metallicity fit questionable
Procyon	37279	4	-0.161	0.078	6515	79	3.993	0.073	2.44	0.53 comb.
alpha Cen A	71683	2	0.275	0.063	5939	79	4.380	0.066	3.7	2.5 comb.
alpha Cen B	71681	1	0.175	0.072	5364	58	4.482	0.041	6.6	4.4 comb.
Psi Phe	8837	0	0.14	0.36	3586	31*	0.65	0.22	4.9	4.5 phot.3
Sun	0	4	-0.013	0.046	5842	49	4.464	0.063	4.3	2.9 comb.
18 Sco	79672	2	-0.050	0.059	5849	54	4.492	0.064	4.3	3.2 comb.
61 Cyg A	104214	0	-0.45	0.43	4563	83	4.717	0.060	6.8	4.0 phot.
alpha Tau	21421	0	0.09	0.22	3889	57	1.21	0.14	5.9	3.8 phot.
Arcturus	69673	0	-0.27	0.31	4399	91	1.82	0.19	4.2	1.9 phot.
alpha Cet	14135	0	-0.53	0.26	3723	41	0.50	0.16	5.5	3.7 phot.
tau Cet	8102	1	-0.520	0.047	5515	32	4.612	0.053	7.8	3.9 comb.
beta Ara	85258	0	-0.07	0.36	4118	83	1.02	0.20	3.3	1.3 phot.
mu Ara	86796	1	0.379	0.073	5950	97	4.334	0.077	3.9	2.3 comb.
Pollux	37826	1	-0.376	0.043	4846	53	2.66	0.12	4.3	2.1 comb., high macroturbulence
eps For	14086	2	-0.479	0.049	5218	68	3.614	0.072	7.2	2.0 comb.
eps Vir	63608	2	-0.457	0.050	5024	58	2.62	0.12	1.11	0.75 comb., high macroturbulence
beta Vir	57557	1	-0.037	0.080	5225	93	4.163	0.077	3.8	1.1 comb.
eta Boo	67927	0	0.12	0.37	6332	162	3.868	0.093	2.8	1.7 phot., fast rotator
delta Eri	17378	2	0.047	0.050	5139	59	3.791	0.071	6.99	0.88 comb.4
eps Eri	16537	3	-0.202	0.050	5184	27	4.562	0.049	6.5	3.8 comb.
gam Ser	98337	0	-0.13	0.25	3942	83	1.15	0.19	5.6	3.9 phot.
gmb 1830	57093	1	-1.56	0.11	5304	36	4.649	0.060	7.8	4.1 comb.
mu Cas	5336	1	-0.598	0.010*	5584	39	4.601	0.053	5.6	3.6 comb.1
mu Leo	48455	0	0.24	0.22	4607	74	2.43	0.11	4.7	3.7 phot., low T eff and rotating
beta Hyi	2021	3	-0.189	0.081	5848	79	3.997	0.074	6.89	0.58 comb.

Table 2. Parameter expectation values and errors for metallicity [Fe/H] in dex, temperature T_{eff} in K, surface gravity log (g) in dex, and age τ in Gyr, all values rounded to two significant digits in the formal error. The second column provides the Hipparcos catalogue number for each star, the third column the number of spectra involved. Stars outside the spectral grid or with bad spectra have 0 used spectra and are denoted with phot. in the last column, as their parameters stem from photometry, stellar models and parallax measurements, while "comb." in the last column denotes a full Bayesian approach. Detailed remarks on single stars: 1 internal rim solution by [α/Fe] step at −0.6 dex, metallicity and errors biased. 2 UVES and HARPS spectra dropped. 3 Outside model grid (rim solution). 4 NARVAL bad spectral fit. disregarded, though Bayesian values in line with other estimates.