Regulation of magnesium balance: lessons learned from human genetic disease

Jeroen H. F. de Baaij, Joost G. J. Hoenderop and René J. M. Bindels

Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Correspondence and offprint requests to: Rene J.M. Bindels; E-mail: r.bindels@fysiol.umcn.nl

Abstract
Magnesium (Mg²⁺) is the fourth most abundant cation in the body. Thus, magnesium homeostasis needs to be tightly regulated, and this is facilitated by intestinal absorption and renal excretion. Magnesium absorption depends on two concomitant pathways found in both in the intestine and the kidneys: passive paracellular transport via claudins facilitates bulk magnesium absorption, whereas active transcellular pathways mediate the fine-tuning of magnesium absorption. The identification of genes responsible for diseases associated with hypomagnesaemia resulted in the discovery of several magnesiotropic proteins. Claudins 16 and 19 form the tight junction pore necessary for mass magnesium transport. However, most of the causes of genetic hypomagnesaemia can be tracked down to transcellular magnesium transport in the distal convoluted tubule. Within the distal convoluted tubule, magnesium reabsorption is a tightly regulated process that determines the final urine magnesium concentration. Therefore, insufficient magnesium transport in the distal convoluted tubule owing to mutated magnesiotropic proteins inevitably leads to magnesium loss, which cannot be compensated for in downstream tubule segments. Better understanding of the molecular mechanism regulating magnesium reabsorption will give new opportunities for better therapies, perhaps including therapies for patients with chronic renal failure.

Keywords: human genetic disease; hypomagnesaemia; magnesium homeostasis; TRPM6

Introduction
As magnesium (Mg²⁺) is a cofactor of many enzymes, it is involved in all major cellular processes such as energy metabolism, DNA transcription and protein synthesis. Physiologically, Mg²⁺ plays an essential role in bone formation, neuromuscular stability and muscle contraction. Therefore, the tight regulation of plasma Mg²⁺ levels is of vital importance. Hypomagnesaemia occurs because of decreased gastrointestinal absorption or increased renal Mg²⁺ excretion and is associated with a wide spectrum of diseases, including Type 2 diabetes, hypertension, osteoporosis, tetany, seizures and depression [1–4]. This issue has been discussed in greater detail in the review by Jahnen-Dechent and Ketteler [5] and Geiger and Wanner [6] in this supplement. Certain drug therapies (e.g. diuretics, aminoglycosides, cetuximab therapy and immunosuppressive agents) can result in acquired renal Mg²⁺ wasting and associated low serum Mg²⁺ levels [7]. Hypomagnesaemia can be treated with oral Mg²⁺ supplements, though at high doses these might cause diarrhoea. Oral Mg²⁺ supplements are also often given with potassium (K⁺) supplements because Mg²⁺ deficiency is frequently associated with hypokalaemia [8]. In severely hypomagnesaemic patients, intravenous supplementation can be essential to restore the patient’s Mg²⁺ levels without discomforting the patient. During the last decade, human hereditary disorders have given great insight into the molecular pathways involved in the regulation of Mg²⁺ homeostasis (Table 1). In this review, we will focus on the regulation of magnesium homeostasis and we will describe the genetic causes of hypomagnesaemia and the underlying molecular mechanisms.

Regulation of magnesium homeostasis

Many studies have shown intestinal Mg²⁺ absorption is balanced against renal Mg²⁺ excretion [9–11]. In times of a temporary Mg²⁺ deficit, the body depends on the availability of Mg²⁺ in bone to maintain constant serum levels [12]. Therefore, Mg²⁺ homeostasis depends on three organs: the intestine, facilitating Mg²⁺ uptake; bone, the Mg²⁺ storage system of the body and the kidneys, which are responsible for Mg²⁺ excretion.

Intestinal magnesium uptake

In healthy people, Mg²⁺ blood plasma concentrations range between 0.65 and 1.05 mmol/L. In order to maintain these levels, a daily Mg²⁺ intake of 320 mg for men and 420 mg for women is recommended by the US Food and Nutrition Board. Approximately 30–50% of dietary Mg²⁺ is absorbed by the intestine (Figure 1). However, when Mg²⁺ intake is low, the absorption percentage can rise to ~80% [13]. Mg²⁺ absorption takes place mainly in the distal small intestine and in the colon [14]. Thus, shortening of
Table 1. Human genetic magnesium transport disorders

Disease	OMIM	Renal segment	Gene	Protein	Protein full name	Serum Mg²⁺	Urine Mg²⁺	Other symptoms
Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis	248250	TAL	Claudin-16 and Claudin-19	Claudin-16 and claudin-19	↓	↑	Nephrocalcinosis and visual impairment	
Bartter’s syndrome	241200	TAL	SLC12A1, BSND, CLCNKB, KCNJ1	NKCC, Birttin, CIC-Kb, ROMK	Na⁺-K⁺-2Cl⁻ cotransporter, Birttin, CIC-Kb Cl channel, ROMK K channel	↓	↑	Hypokalaemic alkalosis, elevated renin and aldosterone
Hypomagnesaemia with secondary hypocalcaemia	602014	DCT	TRPM6	TRPM6	Transient receptor potential melastatin member 6	↓	↑	Epileptic seizures, muscle spasms and mental retardation
Isolated autosomal-recessive hypomagnesaemia	611738	DCT	EGF	EGF	Epidermal growth factor	↓	↑	Epileptic seizures and mental retardation
Autosomal-dominant hypomagnesaemia	176260	DCT	KCNA1	Kv1.1	Voltage-gated K channel 1.1	↓		Muscle cramps, tetany and tremor
Gitelman syndrome	263800	DCT	NCC	NCC	Na⁺-Cl cotransporter	↓	↑	Muscle weakness, tetany and fatigue
Isolated dominant hypomagnesaemia	154020	DCT	FXYD2	Na⁺/K⁺-ATPase	Na⁺/K⁺-ATPase	↓	↑	Convulsions
Maturity-onset diabetes of the young	137920	DCT	HNF1B	HNF1B	Hepatocyte nuclear factor 1	↓	↑	Neonatal diabetes and renal malformation
SeSAME syndrome	612780	DCT	KCNJ10	Kir4.1	Kir4.1 K channel	↓		Sensorineural deafness, seizures and mental retardation

Overview of genetic disease associated with hypomagnesaemia, the genes held responsible. The table shows which proteins are mutated and the renal segment in which they are expressed. Effects on serum and urine Mg²⁺ concentrations and other symptoms of the disease are shown in the last columns. TAL, thick ascending limb of Henle’s loop; DCT, distal convoluted tubule; OMIM, online Mendelian inheritance in man.

The rat ileum, for example, results in a substantial decrease of Mg²⁺ absorption [15].

Absorption pathways. Two Mg²⁺-absorbing pathways have been identified in the mammalian intestine (Figure 2). Paracellular transport involves the absorption of Mg²⁺ through the small spaces between the epithelial cells and is a passive mechanism. Secondly, the transcellular pathway involves the active transport of Mg²⁺ to the blood through the interior of the epithelial cell. This second type of Mg²⁺ transport is subject to tight regulation since the ions have to pass through two cell membranes.

Paracellular Mg²⁺ absorption is responsible for 80–90% of intestinal Mg²⁺ uptake. The driving force behind this passive Mg²⁺ transport is the high luminal Mg²⁺ concentration, which ranges between 1.0 and 5.0 mmol/L, and the lumen-positive transepithelial voltage of ~+5 mV [2]. Paracellular Mg²⁺ absorption relies on tight junction permeability, which is still poorly understood. The ileum and distal parts of the jejunum are known to be the most permeable for ions because of the relatively low expression of ‘tightening’ claudins 1, 3, 4, 5 and 8 [16]. As such, paracellular Mg²⁺ transport seems mainly restricted to these areas that lack the ‘tightening’ claudins. Claudins 16 and 19, known to be involved in Mg²⁺ permeability [17], are not expressed in the intestine [16]. The exact mechanism facilitating paracellular Mg²⁺ absorption, therefore, remains unknown.

Transient receptor potential channel melastatin member 6 (TRPM6) and TRPM7 Mg²⁺ channels mediate transcellular absorption. Whereas TRPM7 is ubiquitously expressed; intestinal TRPM6 expression is mainly detected in the distal small intestine and colon in murine tissue at least, though this result needs to be confirmed in humans [18]. Both TRPM6 and TRPM7 expression is restricted to the luminal membrane of the enterocytes (Figure 2). The basolateral Mg²⁺ extrusion mechanism is unknown, but several publications have suggested that basolateral Mg²⁺ transport is coupled to the Na⁺ gradient, sodium concentrations being lower in the cytoplasm than the blood owing to the action of basolateral Na⁺/K⁺-ATPase [19]. This hypothesis, however, remains to be confirmed by the identification of the basolateral Mg²⁺ transporter.

Regulatory factors. Intestinal Mg²⁺ absorption is regulated by a variety of factors. Mg²⁺ absorption is altered by dietary Mg²⁺ intake, as demonstrated by Mg²⁺ uptake studies [13]. This effect can be attributed, at least partly, to changes in TRPM6 expression in the colon [18]. It also, probably, depends on alterations in paracellular Mg²⁺ transport rates owing to changes in the electrochemical gradient.
Furthermore, it has been shown that 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃] can stimulate intestinal Mg²⁺ absorption [20]. Indeed, patients with chronic renal disease often associated with hypomagnesaemia have low 1,25(OH)₂D₃ levels [21, 22]. However, TRPM6 expression in the kidneys is not regulated by 1,25(OH)₂D₃ [18]. TRPM6 expression in colon in response to 1,25(OH)₂D₃ remains to be determined.

Interestingly, claudins 2 and 12, which are involved in paracellular Ca²⁺ transport, are regulated by 1,25(OH)₂D₃ [23]. As such, one could hypothesize that these claudins are also involved in paracellular Mg²⁺ absorption. As early as in 1943, Mg²⁺ absorption was reported to be regulated by protein intake [24]. Fifty years later, this finding was developed when it was demonstrated that it was not Mg²⁺ absorption but rather intestinal Mg²⁺ excretion that is altered by high protein intake [25]. Finally, experiments in mice showed that low and high dietary Mg²⁺ affects Ca²⁺ balance via the kidney (i.e. increased reabsorption and elimination, respectively) [18]. The mechanisms responsible for these phenomena are unknown, but the authors suggest that a regulatory role for the calcium-sensing receptor (CaSR) could explain the interaction between Mg²⁺ and Ca²⁺.

Magnesium storage

While Mg²⁺ can be stored in muscle fibres, where it plays an important role in the regulation of muscle contraction by antagonizing the action of Ca²⁺ [26], bone tissue is the largest Mg²⁺ store in the human body (Figure 1), where it also contributes to the density and strength of the skeleton. Depletion of Mg²⁺ is, therefore, a risk factor for osteoporosis [27]. A model of Mg²⁺-induced bone loss has been proposed in which low blood plasma Mg²⁺ concentrations lead to activation of bone resorption by osteoclasts and decreased osteoblast bone formation [27]. Moreover, bone surface Mg²⁺ concentrations (of ~30%) are closely related to serum Mg²⁺ concentrations, indicating a continuous exchange of Mg²⁺ between bone and blood [12].

Renal magnesium elimination

Approximately 2400 mg of Mg²⁺ is filtered daily by the glomeruli. Along the nephron, 90–95% of Mg²⁺ is retrieved;
the remaining 100 mg leaves the body via the urine (Figure 1). The specific roles of the various parts of the nephron are considered in the following sections.

Proximal tubule. Surprisingly, little Mg$^{2+}$ is reabsorbed in the proximal tubule in comparison with other electrolytes such as Na$^+$, K$^+$ and Cl$^-$ (Figure 3). Mg$^{2+}$ concentrations increase as water is reabsorbed, but once a high concentration gradient is obtained then Mg$^{2+}$ reabsorption occurs via passive paracellular transport, leading to the reabsorption of 10–25% of Mg$^{2+}$ [28].

Thick ascending limb. The majority of filtered Mg$^{2+}$ is reabsorbed in the loop of Henle, mostly in the thick ascending limb (TAL) of the loop of Henle. Mg$^{2+}$ reabsorption is an active transcellular process that is tightly regulated by several recently discovered factors, each playing an important role in Mg$^{2+}$ homeostasis [33]. The TRPM6 Mg$^{2+}$ channel allows Mg$^{2+}$ to enter the cell [34], and while the basolateral Mg$^{2+}$ extrusion mechanism remains to be identified, it may be dependent on the inward Na$^+$/K$^+$ gradient that is mediated by the Na$^+$/K$^+$-ATPase (Figure 5). Notably, thiazide diuretics mimic the effect of Gitelman’s syndrome by enhancing Na$^+$ excretion via inhibition of the Na$^+$–Cl$^-$ cotransporter (NCC) (Figure 5). In addition, these drugs are known to affect the Mg$^{2+}$ balance, inducing hypomagnesaemia, which may be explained by the down-regulation of TRPM6 expression in response to chronic thiazide treatment [35]. Hypomagnesaemia is frequently linked with hypokalaemia owing to disturbances in renal K$^+$ secretion in the connecting tubule and collecting duct (Figure 3). Low intracellular Mg$^{2+}$ levels release the Mg$^{2+}$-dependent inhibition of ROMK channels, resulting in increased renal K$^+$ secretion, often leading to hypokalaemia [8].

Regulatory factors. Epidermal growth factor (EGF) regulates TRPM6 activity and plasma membrane availability. Interestingly, basolaterally expressed pro-EGF is almost exclusively found in the distal convoluted tubule. Pro-EGF

![Fig. 3. Magnesium reabsorption along the nephron. The glomerulus filters the blood and facilitates thereby the entrance of Mg$^{2+}$ into the tubular system that subsequently mediates the reabsorption of 90–95% of Mg$^{2+}$. Approximately 10–25% of Mg$^{2+}$ is reabsorbed in the proximal tubule (PT). Bulk transport (50–70%) of Mg$^{2+}$ is achieved along the thick ascending limb (TAL) of the loop of Henle. The final Mg$^{2+}$ concentration in urine is determined in the distal convoluted tubule (DCT) where only 10% of Mg$^{2+}$ is reabsorbed [28]. CNT, connecting tubule; CD, collecting duct.](image1)

![Fig. 4. Schematic overview of Mg$^{2+}$ transport pathways in the thick ascending limb of the loop of Henle. The majority of Mg$^{2+}$ is transported in this part of the nephron. Mg$^{2+}$ absorption takes place in a paracellular fashion via claudins-16 and -19 of the tight junction complex. The driving force behind Mg$^{2+}$ transport in the thick ascending limb is the transepithelial voltage gradient.](image2)
is cleaved to yield EGF, activating the EGF receptor (EGFR), which in turn triggers an intracellular cascade that regulates TRPM6 activity [36].

Oestrogen is known to stimulate TRPM6 expression [18]. Thus, oestrogen substitution therapy is used to normalize hypermagnesuria, which occurs frequently in post-menopausal women [37]. Interestingly, TRPM6 expression appears to be regulated by plasma Mg^{2+} levels and oestrogens, but not by 1,25(OH)_{2}D_{3} or parathyroid hormone (PTH) action [18].

- Mg^{2+} homeostasis depends on three organs: the intestine, facilitating Mg^{2+} uptake; bone, the main Mg^{2+} storage system of the body and the kidneys, which are responsible for Mg^{2+} excretion.
- In the intestine, about 80–90% of Mg^{2+} is absorbed passively through paracellular transport. The remaining Mg^{2+} is absorbed via active Mg^{2+} transporters, which account for the fine-tuning of Mg^{2+} regulation.
- Bone tissue constitutes the largest Mg^{2+} store in the human body, though it is also stored in muscle where it acts to antagonize Ca^{2+} during muscle contraction.
- Mg^{2+} is mainly excreted in the kidney. About 90–95% of daily filtrated Mg^{2+} is reabsorbed in the kidney. Again, the interplay between passive mechanisms and adjustment via active transporters determine the final Mg^{2+} concentration.

Magnesium transporters and genetic disease

In the last decade, gene-linkage studies in families with hereditary forms of hypomagnesaemia have helped identify several proteins involved in renal Mg^{2+} reabsorption (Table 1). Causative mutations for several genetic disorders have been described and have provided insight in the molecular regulation of Mg^{2+} transport. In this review, we will present an overview of the implicated diseases and proteins.

Impaired Mg^{2+} reabsorption in the thick ascending limb

Claudins 16 and 19. Claudins are small transmembrane proteins and are regarded as the most important components of the tight junction barrier, which is thought to have a key role in passive paracellular reabsorption (responsible for most Mg^{2+} reabsorption, which occurs in the thick ascending limb). Mutations in the claudin-16 gene (formerly known as paracellin-1 gene) have been shown to be responsible for the rare inherited disorder known as familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) [38]. Claudin-19 was then identified in Swiss and Spanish families without claudin-16 mutations, but who suffered from the same symptoms of nephrocalcinosis, progressive renal failure and visual impairment [39]. Claudin-16 and claudin-19 colocalize in the thick ascending limb to form a cation-specific complex [29]. This complex is involved in paracellular Mg^{2+} reabsorption in the thick ascending limb but is also important in voltage-dependent paracellular Na^{+} transport (reviewed by Hou and Goode-nough [40]). Knockout models showed that mice deficient in claudin-16 and claudin-19 also developed FHHNC [17]. Claudin-16 and claudin-19 mutations reduce the cation specificity of the paracellular pathway, diminishing the transepithelial voltage potential. Ultimately, this reduces the driving force for bulk Mg^{2+} reabsorption in the thick ascending limb and results in renal Mg^{2+} wasting characteristic of patients with FHHNC [17].

Bartter’s syndrome-associated genes. Bartter’s syndrome is a group of autosomal-recessive disorders characterized by reduced salt absorption in the thick ascending limb, the target segment of the furosemide diuretics. This salt wasting often coincides with hypokalaemic metabolic alkalosis, elevated renin and aldosterone levels and low blood pressure [7]. Mutations in five different genes have been shown to induce the Bartter phenotype [41, 42]. Firstly, loss-of-function mutations in NKCC2 are responsible for reduced salt reabsorption. The second gene involved encodes the apical K^{+} channel ROMK that recycles K^{+} into the luminal space. Other gene mutations are those encoding the basolateral Cl^{-} channel (CLC-Kb) responsible for basolateral Cl^{-} extrusion; Barttin, a protein that regulates CLC-Kb activity and finally, gain-of-function mutations in the CaSR, which can cause Bartter’s syndrome via inhibitory action on NKCC2 activity. Bartter’s syndrome is often linked to mild hypomagnesaemia owing to the dissociation of the lumen-positive transepithelial voltage that is the driving force for paracellular Mg^{2+} transport [43]. Compensatory mechanisms in the distal convoluted tubule may, however, at least partly compensate for the impairment of bulk Mg^{2+} reabsorption.

Fig 5. Ion transport pathways in the distal convoluted tubule. The final possibility of Mg^{2+} reabsorption is the tightly regulated transcellular transport in the distal convoluted tubule. In this schematic overview, all the proteins whose mutations cause hypomagnesaemia are shown. Mg^{2+} enters the cell via the TRPM6 Mg^{2+} channel that is regulated by EGF. The Kv1.1 K^{+} channel maintains transmembrane voltage that is the driving force for Mg^{2+} transport. The key molecule at the basolateral membrane is the Na^{+}/K^{+}-ATPase, whose expression is regulated by transcription factor HNF1B (not shown). The Na^{+}/K^{+}-ATPase activity is stimulated by its γ-subunit Kir4.1 is responsible for recycling of K^{+} at the basolateral site of the cell. The basolateral Mg^{2+} transporter remains to be identified. Gitelman’s-associated proteins NCC and CLC-Kb are responsible for Na^{+} and Cl^{-} transport in the distal convoluted tubule.
Impaired Mg\(^{2+}\) reabsorption in the distal convoluted tubule

Transient receptor potential channel melastatin member 6 (TRPM6). Two groups identified TRPM6, simultaneously and independently, as the causative gene in the rare genetic disorder of hypomagnesaemia with secondary hypocalcaemia (HSH) \([44, 45]\). HSH-affected individuals have abnormally low serum Mg\(^{2+}\) levels (<0.40 mmol/L) that indirectly lead to hypocalcaemia, probably because of concomitant parathyroid failure. Patients suffer from neurological symptoms such as seizures and muscle spasms, and eventually, the disorder may be fatal or cause neurological damage if not treated with high-dose Mg\(^{2+}\).

TRPM6 belongs to the family of transient receptor potential channels that facilitate electrolyte transport. TRPM6 consists of six membrane-spanning domains with a pore-forming region and intracellular C- and N-terminal. In the nephron, TRPM6 expression is limited to the apical membrane of distal convoluted tubule cells, whereas intestinal TRPM6 expression is highest in the colon and cecum \([18]\). Patch-clamp analysis showed that TRPM6 is a Mg\(^{2+}\)- and Ca\(^{2+}\)-permeable cation channel, which preferentially transports Mg\(^{2+}\) \([34]\). TRPM6 proteins form homotetrameric functional complexes as well as heterotetrameric complexes with TRPM7, the closest homologue of TRPM6 \([46]\). Recently, there has been controversy about the necessity of TRPM7 in TRPM6 functioning, as TRPM7-dependent as well as TRPM7-independent TRPM6 activity has been reported \([47, 48]\). The TRPM6 protein contains a C-terminal α-kinase domain that seems important in regulatory functions. Interactions between the α-kinase domain and regulatory factors such as receptor for activated C-kinase 1 (RACK1) and repressor of oestrogen domain and regulatory factors such as receptor for activated C-kinase 1 (RACK1) and repressor of oestrogen domain has been reported which leads to a functionally non-functional channel. The asparagine at Position 255 is required for normal channel gating and voltage dependence.

The N255H mutation, leading to the discovery of the disease, is reabsorbed in the distal convoluted tubule.

Thiazide-sensitive Na\(^{+}\)–Cl\(^{-}\) cotransporter (NCC). Gitelman’s syndrome is an inherited disorder of impaired salt transport in the distal convoluted tubule and is associated with hypomagnesaemia, hypocalciuria and secondary aldosteronism \([7]\). Patients generally suffer from tetany, fatigue, chondrocalcinosis and muscle weakness. Gitelman’s syndrome is caused by mutations in the thiazide-sensitive Na\(^{+}\)–Cl\(^{-}\) cotransporter (NCC) gene, resulting in loss of function of the protein. NCC is responsible for apical Na\(^{+}\) and Cl\(^{-}\) entry into distal convoluted tubule cells and is sensitive to thiazide blocking \([59, 60]\). This characteristic of NCC was used in a study investigating the effect of NCC blocking on Ca\(^{2+}\) and Mg\(^{2+}\) reabsorption. The authors showed that thiazide-treated mice have abnormally low expression levels of TRPM6 in the distal convoluted tubule, causing hypomagnesaemia \([35]\). However, the interesting cross-talk mechanism between NCC activity and TRPM6 expression remains to be resolved.

Indirect reduction of Mg\(^{2+}\) transport in the distal convoluted tubule: transmembrane voltage

Kv1.1 K\(^{+}\) channel (KCNA1). Single nucleotide polymorphism-based linkage analysis in a family with autosomal-dominant hypomagnesaemia resulted in the identification of mutations in the KCNA1 gene, encoding the Kv1.1 K\(^{+}\) channel. Affected individuals have severe hypomagnesaemia (<0.40 mmol/L) and suffer from muscle cramps, tetric episodes, tremor and muscle weakness. Kv1.1 is a voltage-gated K\(^{+}\) channel and consists of six transmembrane domains, one of which (S4) interacts with the voltage sensor, but a missense mutation in the pore-forming domain has been reported which leads to a functionally inactive channel \([52]\).

Epidermal growth factor. The first reports of the involvement of EGF in the regulation of Mg\(^{2+}\) reabsorption dates from 2005, when symptomatic hypomagnesaemia was observed in a patient with colorectal cancer who was treated with cetuximab, a monoclonal antibody directed against the EGFR \([53]\). Two years later, EGF was linked to isolated renal hypomagnesaemia (IRH), a rare disorder of low serum Mg\(^{2+}\) concentrations because of renal Mg\(^{2+}\) wasting. Whole-genome linkage analysis and subsequent candidate gene analysis in a family with IRH (Mg\(^{2+}\) serum levels ~0.5 mmol/L) resulted in the identification of mutations in the EGFR gene \([54]\). In addition to hypomagnesaemia, the IRH phenotype consists of moderate mental retardation and epileptic seizures. The EGF gene encodes a membrane-bound precursor molecule, pro-EGF, which is proteolytically cleaved to release the active form of the EGF hormone. Pro-EGF is expressed both on luminal and basolateral membranes of distal convoluted tubule cells, but EGFR itself is found only on the basolateral membrane.

Hypomagnesaemia was also found as a side effect in a prospective study in colorectal cancer patients given cetuximab therapy, and the authors suggested the involvement of EGF in TRPM6 regulation \([55]\). Follow-up studies revealed that EGF increases activity and membrane trafficking of TRPM6, and thus, it is the first hormone directly regulating renal Mg\(^{2+}\) reabsorption \([56]\). The expression of EGF is restricted to the TRPM6-expressing distal convoluted tubule cells. In the kidney, EGF is, therefore, a dedicated hormone regulating the Mg\(^{2+}\) reabsorption in a paracrine fashion. Moreover, Ikari et al. \([36, 57]\) reported that EGF regulates TRPM6 transcription via a MEK/ERK/AP-1 pathway, and activation of TRPM6 expression by EGF was confirmed recently in vivo in a study with EGFR-inhibitor erlotinib \([58]\). The mutation that led to the discovery of EGF as a magnesiotropic hormone causes impaired basolateral expression of pro-EGF as it disrupts the basolateral-sorting motif as a consequence, TRPM6 activity and membrane expression are reduced, and thus less Mg\(^{2+}\) is reabsorbed in the distal convoluted tubule.

Indirect reduction of Mg\(^{2+}\) transport in the distal convoluted tubule: transmembrane voltage

Kv1.1 K\(^{+}\) channel (KCNA1). Single nucleotide polymorphism-based linkage analysis in a family with autosomal-dominant hypomagnesaemia resulted in the identification of mutations in the KCNA1 gene, encoding the Kv1.1 K\(^{+}\) channel. Affected individuals have severe hypomagnesaemia (<0.40 mmol/L) and suffer from muscle cramps, tetric episodes, tremor and muscle weakness. Kv1.1 is a voltage-gated K\(^{+}\) channel and consists of six transmembrane domains, one of which (S4) interacts with the voltage sensor, but a missense mutation in the pore-forming domain has been reported which leads to a functionally inactive channel \([52]\).

Epidermal growth factor. The first reports of the involvement of EGF in the regulation of Mg\(^{2+}\) reabsorption dates from 2005, when symptomatic hypomagnesaemia was observed in a patient with colorectal cancer who was treated with cetuximab, a monoclonal antibody directed against the EGFR \([53]\). Two years later, EGF was linked to isolated renal hypomagnesaemia (IRH), a rare disorder of low serum Mg\(^{2+}\) concentrations because of renal Mg\(^{2+}\) wasting. Whole-genome linkage analysis and subsequent candidate gene analysis in a family with IRH (Mg\(^{2+}\) serum levels ~0.5 mmol/L) resulted in the identification of mutations in the EGFR gene \([54]\). In addition to hypomagnesaemia, the IRH phenotype consists of moderate mental retardation and epileptic seizures. The EGF gene encodes a membrane-bound precursor molecule, pro-EGF, which is proteolytically cleaved to release the active form of the EGF hormone. Pro-EGF is expressed both on luminal and basolateral membranes of distal convoluted tubule cells, but EGFR itself is found only on the basolateral membrane.

Hypomagnesaemia was also found as a side effect in a prospective study in colorectal cancer patients given cetuximab therapy, and the authors suggested the involvement of EGF in TRPM6 regulation \([55]\). Follow-up studies revealed that EGF increases activity and membrane trafficking of TRPM6, and thus, it is the first hormone directly regulating renal Mg\(^{2+}\) reabsorption \([56]\). The expression of EGF is restricted to the TRPM6-expressing distal convoluted tubule cells. In the kidney, EGF is, therefore, a dedicated hormone regulating the Mg\(^{2+}\) reabsorption in a paracrine fashion. Moreover, Ikari et al. \([36, 57]\) reported that EGF regulates TRPM6 transcription via a MEK/ERK/AP-1 pathway, and activation of TRPM6 expression by EGF was confirmed recently in vivo in a study with EGFR-inhibitor erlotinib \([58]\). The mutation that led to the discovery of EGF as a magnesiotropic hormone causes impaired basolateral expression of pro-EGF as it disrupts the basolateral-sorting motif as a consequence, TRPM6 activity and membrane expression are reduced, and thus less Mg\(^{2+}\) is reabsorbed in the distal convoluted tubule.
Regulation of magnesium balance

Na+/K+-ATPase γ-subunit (FXYD2). Patients with dominant renal hypomagnesaemia associated with hypocalciuria suffer from renal Mg$^{2+}$ wasting and convulsions. Linkage studies followed by candidate screening led to the discovery of the FXYD2 gene coding for the γ-subunit of the Na$^{+}$/K$^{+}$-ATPase as the causative gene [65]. The basolateral Na$^{+}$/K$^{+}$-ATPase allows the active transport of Na$^{+}$ and K$^{+}$ transport in the opposite direction (Figure 5). The γ-subunit regulates the kinetics of Na$^{+}$/K$^{+}$-ATPase-mediated exchange of Na$^{+}$ and K$^{+}$. Immunohistochemistry confirmed colocalization of the γa- and γb-subunits at the basolateral membrane of the distal convoluted tubule [66]. Moreover, Na$^{+}$/K$^{+}$-ATPase activity is highest in this part of the nephron [67]. The currently leading hypothesis states that reduced Na$^{+}$ transport lowers the membrane potential across the luminal membrane that acts as the inward electrical driving force for Mg$^{2+}$. As a consequence, Mg$^{2+}$ reabsorption is reduced. The glycine to arginine mutation at amino acid Position 41 (G41R) found in a Dutch family causes misrouting thereby retaining the complex in the cell [68]. A recent study of the G41R mutation proposed a role for FXYD2 as an inward rectifying channel. These findings resulted in the suggestion that FXYD2 mediates basolateral Mg$^{2+}$ extrusion [69]. Future studies, however, need to address the exact role of the γ-subunit of the Na$^{+}$/K$^{+}$-ATPase in the distal convoluted tubule.

Hepatocyte nuclear factor 1 homeobox B (HNF1B). Mutations in the HNF1B transcription factor are associated with many human disorders such as neonatal diabetes and renal malformation. Recently, HNF1B mutations were linked to hypomagnesaemia in a 13-year-old Pakistani boy and a cohort of patients with HFN1B mutations and renal malformations. Forty-four per cent of the HFN1B mutation carriers have hypomagnesaemia, hypermagnesuria and hypocalciuria [70]. Luciferase reporter assays demonstrated that HNF1B stimulates transcriptional expression of the FXYD2α gene [66]. Mutations in HFN1B prevented transcriptional activation of the γa-subunit of the Na$^{+}$/K$^{+}$-ATPase, underlying the importance of the Na$^{+}$/K$^{+}$-ATPase in renal Mg$^{2+}$ reabsorption.

Kir4.1 K$^{+}$ channel (KCNJ10). Quantitative trait loci mapping studies of seizure-sensitive mice led to the nomination of KCNJ10 as the responsible gene [71]. Recently, two groups confirmed that hypomagnesaemia (~0.6 mmol/L) associated with seizures, sensorineural deafness, ataxia, mental retardation and electrolyte imbalance (SeSAME syndrome, also referred to as EAST) is provoked by mutations in the KCNJ10 gene, which encodes the Kir4.1 K$^{+}$ channel [72, 73]. Kir4.1 is expressed in glial cells, epithelium of the inner ear and the basolateral side of kidney distal convoluted tubule cells, where it is involved in K$^{+}$ recycling necessary for optimal Na$^{+}$/K$^{+}$-ATPase activity [74] (Figure 5). By this mechanism, it is indirectly involved in the regulation of the intracellular voltage that is required for Mg$^{2+}$ transport, explaining the hypomagnesaemia observed in patients with Kir4.1 mutations.

Kir4.1 and the CaSR have recently been shown to physically interact in human embryonic kidney cells and in kidney homogenates, and the CaSR appears to regulate Kir4.1 activity by decreasing Kir4.1 membrane availability via a G$^{±}$ and caveolin-dependent pathway [75]. A Kir4.1 knockout mouse model is available, but no data on kidney Mg$^{2+}$ transport from this model has been published. The Kir4.1 mice have severe neurological problems and die prematurely (in the first few weeks after birth) [76, 77]. Several Kir4.1 mutations identified in SeSAME syndrome patients have been studied, and although all mutations modified the channel function, the mechanisms underlying these disturbances are different. Some mutations resulted in a shift in pH sensitivity causing changes in pore gating, while others impaired correct protein folding and decreased surface expression [78].

Conclusions and future perspectives

Mg$^{2+}$ plays a vital physiological role in the body, and therefore control of plasma Mg$^{2+}$ level is of major importance. Mg$^{2+}$ homeostasis depends on its uptake in the intestine, storage in bone tissue and its excretion by the kidneys. When Mg$^{2+}$ intake is low, its absorption can rise from 30 to 50% of dietary Mg$^{2+}$ to ~80%. Within the nephron, filtered Mg$^{2+}$ is mainly reabsorbed in the loop of Henle, particularly in the thick ascending limb. However, the ‘fine-tuning’ of Mg$^{2+}$ reabsorption occurs along the distal convoluted tubule, where ~10% of filtered Mg$^{2+}$ is reabsorbed in a tightly regulated and active transcellular process.

During the last decade, studies of human diseases have helped to extend the understanding of Mg$^{2+}$ reabsorption in the nephron. In the thick ascending limb, claudins 16

- Studies of genetic human diseases associated with hypomagnesaemia have extended our understanding of Mg$^{2+}$ reabsorption in the nephron.
- Claudins are thought to have a key role in passive paracellular reabsorption in the thick ascending limb.
- Active transcellular Mg$^{2+}$ reabsorption occurs in the distal convoluted tubule, where TRPM6 has been identified as the luminal Mg$^{2+}$ channel. The process is regulated by a variety of factors, including EGF.
- Gitelman’s-associated proteins NCC and ClC-Kb are responsible for Na$^{+}$ and Cl$^{-}$ transport in the distal convoluted tubule. The disease is associated with hypomagnesaemia caused by a low TRPM6 expression.
- Kv1.1 K$^{+}$ channel maintains the apical transmembrane voltage, thought to be the driving force behind Mg$^{2+}$ reabsorption via TRPM6 in the distal convoluted tubule.
- The key molecule at the distal convoluted tubule basolateral membrane is the Na$^{+}$/K$^{+}$-ATPase, whose expression is regulated by transcription factor HNF1B.
- Kir4.1 is responsible for recycling of K$^{+}$ at the basolateral site of the cell and so is indirectly involved in intracellular voltage regulation needed for Mg$^{2+}$ transport.
and 19 form the pore permitting paracellular Mg2+ reabsorption, a process which depends on the transepithelial voltage which is maintained by tranacellular salt transport. Active tranacellular Mg2+ reabsorption takes place in the distal convoluted tubule, where TRPM6 has been identified as the luminal Mg2+ channel, and it is regulated by a variety of factors (of which EGF is the best studied). Pro-EGF is cleaved from the distal convoluted tubule cell, releasing EGF, where it can activate the EGFR at the basolateral membrane. TRPM6 can form homotetrameric complexes and heterotetrameric complexes with TRPM7; however, the necessity of TRPM7 for TRPM6 functioning is controversial. TRPM6 activity is dependent on the transmembrane voltage that is kept intact by the luminal K+ channel Kv1.1, but the exact role of Kv1.1 has to be further examined.

The basolateral Mg2+ extrusion mechanism is less well understood but is known to be linked to the basolateral Na+/K+-ATPase. Na+/K+-ATPase activity is regulated by the HNF1B transcriptional factor, which stimulates the expression of FXYD2. Also, the Kir4.1 K+ channel is involved in the Na+/K+-ATPase activity since it facilitates the availability of K+ ions. The involvement of the Na+/K+-ATPase in tranacellular Mg2+ transport is poorly understood. Many genes of transporters and regulatory factors have been identified, but several questions remain unanswered. A review summarizing these newly identified magnesium proteins has been recently published [79]. Most importantly, the basolateral Mg2+ extrusion mechanism still has to be identified. Recently, patients with hypomagnesaemia have been screened for several candidate genes, but without result. New generation DNA sequencing techniques may contribute to the final identification of the missing transporter.

Mg2+ reabsorption in the distal convoluted tubule is tightly regulated by plasma Mg2+ levels [18], suggesting the existence of a Mg2+-sensing mechanism. The pathway that is involved in this mechanism, regulating for instance TRPM6 expression, may be discovered in the near future. The unidentified protein involved in Mg2+-sensing might be regulated by hormones since it has been shown that 1,25(OH)\textsubscript{2}D\textsubscript{3} regulates intestinal Mg2+ absorption [20]. Next to 1,25(OH)\textsubscript{2}D\textsubscript{3}, several other factors, such as PTH or oestrogen, might be involved.

Genetic research in families with hypomagnesaemia has expanded our understanding of renal Mg2+ reabsorption. Understanding these processes can lead to new therapies for chronic hypomagnesaemia, and new state-of-the-art DNA screening techniques can help identify the missing magnesiumotropic genes. Recent developments in renal Mg2+ research are excellent examples of bedside-to-bench research cooperation between clinicians and fundamental researchers and continuation of these collaborations may also allow new insights into the sequence of events that occurs when chronic renal failure develops.

References

1. Musso CG. Magnesium metabolism in health and disease. Int Urol Nephrol 2009; 41: 357–362
2. Quamme GA. Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 2004; 20: 230–235
3. Pham PC, Pham PM, Pham SV et al. Hypomagnesaemia in patients with type 2 diabetes. Clin J Am Soc Nephrol 2007; 2: 366–373
4. Dimke H, Hoenderop JG, Bindels RJ. Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin Sci (Lond) 2010; 118: 1–18
5. Jahnen-Dechent W, Ketteler M, Magnesium basics. Clin Kidney J 2012; 5(Suppl 1): i3–i14
6. Geiger H, Warner C. Magnesium in disease. Clin Kidney J 2012; 5(Suppl 1): i25–i38
7. Knoers NV. Inherited forms of renal hypomagnesaemia: an update. Pediatr Nephrol 2009; 24: 697–705
8. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol 2007; 18: 2649–2652
9. Kesteloot H, Joossens JV. The relationship between dietary intake and urinary excretion of sodium, potassium, calcium and magnesium: Belgian Interuniversity Research on Nutrition and Health. J Hum Hypertens 1990; 4: 527–533
10. Koppole JD, Cobum JW. Metabolic studies of low protein diets in uremia. II. Calcium, phosphorus and magnesium. Medicine (Baltimore) 1973; 52: 597–607
11. Spencer H, Lesniak M, Gafo CA et al. Magnesium absorption and metabolism in patients with chronic renal failure and in patients with normal renal function. Gastroenterology 1980; 79: 26–34
12. Alfrey AC, Miller NL, Trow R. Effect of age and magnesium depletion on bone magnesium pools in rats. J Clin Invest 1974; 54: 1074–1081
13. Graham L, Caesar J, Burgen A. Gastrointestinal absorption and excretion of Mg2+ in man. Metabolism 1960; 9: 646–659
14. Kayne LH, Lee DB. Intestinal magnesium absorption. Miner Electrolyte Metab 1993; 19: 210–217
15. Aliaga IL, Miller DL, Wilson HD et al. Effects of resection on absorption and secretion of divalent cations by small intestine of rat. Am J Clin Nutr 1990; 52: 867–871
16. Amasheh S, Fromm M, Gunzel D. Claudins of intestine and nephron – a correlation of molecular tight junction structure and barrier function. Acta Physiol (Oxf) 2011; 201: 133–160
17. Hau J, Renigunta A, Gomes AS et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci USA 2009; 106: 15350–15355
18. Groenestege WM, Thebault S, van der WJ et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesaemia. J Clin Invest 2006; 117: 2260–2267
19. Romani A. Regulation of magnesium homeostasis and transport in mammalian cells. Arch Biochem Biophys 2007; 458: 90–102
20. Schmule AC, Lerman M, Pak CY et al. Effect of 1,25-(OH)\textsubscript{2}D\textsubscript{3} on jejunal absorption of magnesium in patients with chronic renal disease. Am J Physiol 1980; 238: G349–G352
21. Brannan PG, Vergne-Marini P, Pak CY et al. Magnesium absorption in the human small intestine. Results in normal subjects, patients with chronic renal disease, and patients with absorptive hypercalciuria. J Clin Invest 1976; 57: 1412–1418
22. Mawer EB, Taylor CM, Backhouse J et al. Failure of formation of 1,25-dihydroxycholecalciferol in chronic renal insufficiency. Lancet 1973: 1: 626–628
23. Fujita H, Sugimoto K, Inatomi S et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 2008; 19: 1912–1921
24. McCance RA, Widdowson EM, Lehmann H. The effect of protein intake on the absorption of calcium and magnesium. Biochem J 1942; 36: 686–691
Regulation of magnesium balance

25. Verbeek MJ, Van den Berg GJ, Lemmens AG et al. High protein intake raises apparent but not true magnesium absorption in rats. J Nutr 1993; 123: 1880–1887

26. Potter JD, Robertson SP, Johnson JD. Magnesium and the regulation of muscle contraction. Fed Proc 1981; 40: 2653–2656

27. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem 2004; 15: 710–716

28. Le Grimmel C. Micropuncture study along the proximal convoluted tubule. Electrolyte reabsorption in first convolutions. Pflugers Arch 1975; 354: 133–150

29. Hou J, Renigunta A, Konrad M et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 2008; 118: 619–628

30. Hou J, Shan Q, Wang T et al. Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 2007; 282: 17114–17122

31. Greenberg A. Diuretic complications. Am J Med Sci 2000; 319: 10–24

32. Cohen N, Alon I, Almoznino-Sarafian D et al. Metabolic and clinical effects of oral magnesium supplementation in furosemide-treated patients with severe congestive heart failure. Clin Cardiol 2000; 23: 433–436

33. Nijenhuis T, Vallon V, van der Kemp AW et al. Claudin-6, -15 and -19 are associated with renal NaCl reabsorption and reduced Mg2+ permeability and pH sensitivity in TRPM6 and TRPM7. J Biol Chem 2007; 282: 25817–25830

34. Chubanov V, Schlingmann KP, Waring J et al. Hypomagnesaemia with secondary hypocalemia due to a missense mutation in the putative pore-forming region of TRPM6. J Biol Chem 2007; 282: 7656–7667

35. Schrag D, Chung KY, Flombaum C et al. Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 2005; 97: 1221–1224

36. Ikari A, Sanada A, Okude C et al. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am Soc Nephrol 2007; 17: 1035–1043

37. Tejpar S, Piessevaux H, Claes K et al. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 2007; 8: 387–394

38. Thebault S, Alexander RT, Tiel Groenestege WM et al. EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol 2009; 20: 78–85

39. Ikari A, Sanada A, Okude C et al. Up-regulation of TRPM6 transcriptional activity by AP-1 in renal epithelial cells. J Cell Physiol 2010; 222: 481–487

40. Dimke H, van der WJ, Alexander TR et al. Effects of the EGFR inhibitor erlotinib on magnesium handling. J Am Soc Nephrol 2010; 21: 1309–1316

41. Gamba G, Saltzberg SN, Lombardi M et al. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci USA 1993; 90: 2749–2753

42. Simon DB, Nelson-Williams C, Bia MJ et al. Deletion of the K(V)1.1 KCNA1 gene family. J Clin Invest 1998; 102: 171–178

43. Gomez-Hernandez JM, Larra C, Pardo LA et al. Hypomagnesemia. Molecular basis for different pore properties of potassium channels from the rat brain Kv1.1 gene. J Inherit Metab Dis 2001; 24: 37–42

44. Smart SL, Lopantsev V, Zhang CL et al. Deletion of the Kv1.1 potassium channel causes epilepsy in mice. Neuron 1998; 20: 809–819

45. Meij IC, Koenderink JB, van BH et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+-K+-ATPase gamma-subunit. Nat Genet 2000; 26: 265–266

46. Ferre S, Veenstra GJ, Bouwmeester R et al. HNF-1B specifically regulates the transcription of the gamma a-subunit of the TRPM6 gene causes hypomagnesemia with secondary hypocalemia. Proc Natl Acad Sci USA 2004; 101: 2894–2899
Na⁺/K⁺-ATPase. Biochem Biophys Res Commun 2011; 404: 284–290

67. Katz AI, Doucet A, Morel F. Na⁺/K⁺-ATPase activity along the rabbit, rat, and mouse nephron. Am J Physiol 1979; 237: F114–F120

68. Cairo ER, Friedrich T, Swarts HG et al. Impaired routing of wild type FXYD2 after oligomerisation with FXYD2-G41R might explain the dominant nature of renal hypomagnesemia. Biochim Biophys Acta 2008; 1778: 398–404

69. Sha Q, Pearson W, Burcea LC et al. Human FXYD2 G41R mutation responsible for renal hypomagnesemia behaves as an inward-rectifying cation channel. Am J Physiol Renal Physiol 2008; 295: F91–F99

70. Adalat S, Woolf AS, Johnstone KA et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol 2009; 20: 1123–1131

71. Ferraro TN, Golden GT, Smith GG et al. Fine mapping of a seizure susceptibility locus on mouse Chromosome 1: nomination of Kcnj10 as a causative gene. Mamm Genome 2004; 15: 239–251

72. Bockenhauer D, Feather S, Stanescu HC et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 2009; 360: 1960–1970

73. Scholl UI, Choi M, Liu T et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 2009; 106: 5842–5847

74. Ito M, Inanobe A, Haruo Y et al. Immunolocalization of an inwardly rectifying K⁺ channel, K(AB)-2 (Kir4.1), in the basolateral membrane of renal distal tubular epithelia. FEBS Lett 1996; 388: 11–15

75. Cha SK, Huang C, Ding Y et al. Calcium-sensing receptor decreases cell surface expression of the inwardly rectifying K⁺ channel Kir4.1. J Biol Chem 2011; 286: 1828–1835

76. Neusch C, Rozengurt N, Jacobs RE et al. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 2001; 21: 5429–5438

77. Marcus DC, Wu T, Wangemann P et al. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 2002; 282: C403–C407

78. Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN et al. Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J Biol Chem 2010; 285: 36040–36048

79. Ferre S, Hoenderop JG, Bindels RJ. Insight into renal Mg²⁺ transporters. Curr Opin Nephrol Hypertens 2011; 20: 169–176