Wld^S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice

Laura Conforti, Anna Wilbrey, Giacomo Morreale, Lucie Janeckova, Bogdan Beirowski, Robert Adalbert, Francesca Mazzola, Michele Di Stefano, Robert Hartley, Elisabetta Babetto, Trevor Smith, Jonathan Gilley, Richard A. Billington, Armando A. Genazzani, Richard R. Ribchester, Giulio Magni, and Michael Coleman

1 Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK
2 Istituto di Biotecnologie Biochimiche, Università Politecnica delle Marche, 60131 Ancona, Italy
3 Centre for Neuroscience Research, University of Edinburgh, Edinburgh EH8 9DZ, Scotland, UK
4 Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche, e Farmacologiche and 5 Drug and Food Biotechnology Center, Università del Piemonte Orientale, 28100 Novara, Italy

Introduction

Axons are indispensable for neuronal function but degenerate early in nervous system disorders (Conforti et al., 2007a). Distal stumps of injured axons undergo Wallerian degeneration (Waller, 1850), a regulated, nonapoptotic death program that models disease processes (Coleman, 2005).

The slow Wallerian degeneration (Wld^S) gene dominantly delays Wallerian degeneration 10-fold (Mack et al., 2001; Ferri et al., 2003; Samsam et al., 2003; Coleman, 2005). Wld^S was identified by positional cloning (Coleman et al., 1998; Conforti et al., 2000) and replicates the protective phenotype in transgenic (Tg) mice (Mack et al., 2001), rats, and Drosophila melanogaster (Adalbert et al., 2005; Hoopfer et al., 2006; MacDonald et al., 2006). It fuses the N-terminal 70 amino acids (N70) of multiubiquitination factor Ube4b in frame to the NAD^+ -synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1), separated by a short Wld18 linker sequence. The requirement for these components and the mechanism of Wld^S-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld^S VCP-binding domain with an alternative ataxin-3–derived VCP-binding sequence restores its protective function. Enzyme-dead Wld^S is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld^S requires both of its components to protect axons from degeneration.
Results and discussion

Variant Wlda Tg mice with an altered VCP-binding region

First, we tested the need for the VCP-binding sequence, expressing Wlda without amino acids 2–16 in \(\Delta N16\))Wlda Tg mice (Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb.200807175/DC1). Two of the four lines expressed protein on brain Western blots (Fig. 1 A; Samsam et al., 2003). Line 1 homozygotes expressed similar levels to Wlda heterozygotes. Line 2 could not breed to homozygosity. Hemizygotes expressed slightly less, but still at a level where Wlda delays axon degeneration significantly (Mack et al., 2001). Nmnat activity matched or exceeded that in Wlda (Fig. 1 E), and lumbar spinal cord motor neurons, whose axons in the sciatic nerve we lesioned, expressed the protein (Fig. 1 D). The \(\Delta N16\)Wlda variant showed a clear cytoplasmic signal, with no significant difference in neurodegeneration in vivo without enzyme activity contrasts with primary culture data on axon degeneration, so a classical mammalian in vivo approach is needed to resolve this (Araki et al., 2004; Zhai et al., 2008).

N70 binds AAA ATPase valosin-containing protein (VCP) through a VCP-binding motif (VBM) in its N-terminal 16 amino acids (N16; Boeddrich et al., 2006; Morreale et al., 2009). In nuclei, in which Wlda is most easily visualized, VCP influences local Wlda targeting (Wilbrey et al., 2008). Recent data indicate that Wlda function in cytoplasm (Beiroukski et al., 2009), in which VCP is extremely abundant. Thus, VCP interaction also likely affects local targeting of cytoplasmic Wlda.

Early embryonic lethality precludes testing a role for VCP in null mice (Mulher et al., 2007). Thus, we generated Tg mice expressing variant Wlda with altered VCP-binding properties and lesioned their nerves. In view of the controversies over Nmnat activity, we also generated enzyme-dead Tg mice.
In contrast, $\Delta N16Wld^S$ was indistinguishable from wild type. Line 1 homozygotes and line 2 hemizygotes showed $2.3 \pm 0.2\%$ and $0.9 \pm 0.2\%$ surviving axons, respectively (Fig. 2, a–d; and Fig. S1). Axons lost continuity, as assessed by crossing to YFP-H Tg mice (Beirowski et al., 2004), by 72 h. [e–h] Transmission electron microscopy of distal sciatic nerve 3 d after lesion. i) Myelinated and unmyelinated axons are well preserved in Wld^S heterozygotes, which are indistinguishable from unlesioned nerves (l). [j] In wild type, myelin collapsed to form ovoids, the cytoskeleton is flaccid or absent, and mitochondria are swollen or absent. (k) Nerves from $\Delta N16Wld^S$ line 1 homozygotes are indistinguishable from wild types. Bars: [a–d] 20 μm; [e–h] 50 μm; [i–l] 2 μm.

Effect of the VCP-binding region on phenotype

5 d after sciatic nerve lesion, Wld^S heterozygotes retained $69.7 \pm 1.8\%$ of axons with normal cytoskeleton, unswollen mitochondria, and a regular myelin sheath of normal thickness compared with only $1.2 \pm 0.4\%$ in wild-type mice (Fig. 2 and Fig. S1). In contrast, $\Delta N16Wld^S$ was indistinguishable from wild type. Line 1 homozygotes and line 2 hemizygotes showed $2.3 \pm 0.2\%$ and $0.9 \pm 0.2\%$ surviving axons, respectively (Fig. 2, a–d; and Fig. S1). Axons lost continuity, as assessed by crossing to YFP-H Tg mice (Beirowski et al., 2004), by 72 h. [e–h] Transmission electron microscopy of distal sciatic nerve 3 d after lesion. i) Myelinated and unmyelinated axons are well preserved in Wld^S heterozygotes, which are indistinguishable from unlesioned nerves (l). [j] In wild type, myelin collapsed to form ovoids, the cytoskeleton is flaccid or absent, and mitochondria are swollen or absent. (k) Nerves from $\Delta N16Wld^S$ line 1 homozygotes are indistinguishable from wild types. Bars: [a–d] 20 μm; [e–h] 50 μm; [i–l] 2 μm.

We then replaced N16 with a 16-amino acid VCP-binding sequence from polyglutamine protein ataxin-3 (Atx-3; 277–291 plus start Met, ATX3) sharing only five residues (Fig. S1; Boeddrich et al., 2006). At least 5 of 12 lines expressed protein, and most experiments used line 1 and 6 homozygotes. Again, we confirmed protein expression and enzyme activity similar to or exceeding Wld^S heterozygotes (Fig. 1). Despite some variability, subcellular localization of ATX3Wld was not significantly different from Wld^S or $\Delta N16Wld^S$ ($n = 3$; Fig. 1 C), and the protein was in neuronal nuclei in the lumbar spinal cord (Fig. 1 D, v–vii).

nuclear/cytoplasmic distribution relative to Wld^S at $n = 3$ (Fig. 1, C and D, i–iv).

Figure 2. Rapid Wallerian degeneration in $\Delta N16Wld^S$ Tg mice. [a–d] Semithin sections of distal sciatic nerve 5 d after lesion. [a] Axons are well preserved in Wld^S heterozygotes, with intact myelin sheaths, uniform and regularly spaced cytoskeleton, and normal-shaped mitochondria. (b) Wild-type axons are degenerated, with collapsed myelin and disorganized or vacuolized cytoskeleton. (c and d) $\Delta N16Wld^S$ line 1 homozygous and line 2 hemizygous nerves are indistinguishable from wild type. (e–h) Tibial nerves from mice crossed to YFP-H show rapid loss of axon continuity in $\Delta N16Wld^S$. (e) Wld^S heterozygotes 3 d after lesion show axon continuity. [f–h] In contrast, all lesioned wild-type and $\Delta N16Wld^S$ line 1 and line 2 axons lose continuity within 72 h. [i–l] Transmission electron microscopy of distal sciatic nerve 3 d after lesion. i) Myelinated and unmyelinated axons are well preserved in Wld^S heterozygotes, which are indistinguishable from unlesioned nerves (l). [j] In wild type, myelin collapsed to form ovoids, the cytoskeleton is flaccid or absent, and mitochondria are swollen or absent. (k) Nerves from $\Delta N16Wld^S$ line 1 homozygotes are indistinguishable from wild types. Bars: [a–d] 20 μm; [e–h] 50 μm; [i–l] 2 μm.

5 d after sciatic nerve lesion, Wld^S heterozygotes retained $69.7 \pm 1.8\%$ of axons with normal cytoskeleton, unswollen mitochondria, and a regular myelin sheath of normal thickness compared with only $1.2 \pm 0.4\%$ in wild-type mice (Fig. 2 and Fig. S1).
We then applied more stringent tests to verify that ATX3-Wld\(^S\) mice have a full Wld\(^S\) phenotype. 14 d after sciatic lesion, distal axons on semithin sections were structurally preserved, as in Wld\(^S\) (P > 0.05). In whole-mount nerves, many YFP-H–labeled axons retained continuity (Fig. 3 B and Fig. S1). Little but debris remained in wild-type nerves. We then confirmed that lesioned axons and their neuromuscular synapses remained functional for at least 3 d. Evoked action potentials in tibial nerve/flexor digitorum brevis (FDB) preparations provoked robust contractile and electromyographic responses (Fig. 4 A and Video 1, available at

Figure 3. ATX3-Wld\(^S\) Tg mice show a Wld\(^S\) phenotype. (A, i–iv) Semithin sections of distal sciatic nerve 5 d after lesion. (i and ii) Most axons are well preserved in Wld\(^S\) heterozygotes [i], but wild-type nerves [ii] are completely degenerated. [iii and iv] Nerves from ATX3-Wld\(^S\) line 1 and line 6 show preservation similar to Wld\(^S\) heterozygotes. (v–viii) Confocal images of tibial nerve 5 d after sciatic lesion from mice crossed to YFP-H. (v) Wld\(^S\) heterozygotes maintain axon continuity. (vi) All wild-type axons are highly fragmented. (vii and viii) Many lesioned ATX3-Wld\(^S\) axons maintain continuity. (B, i, iii, and iv) Semithin sections of distal sciatic nerve show preserved axons (arrowheads) 14 d after lesion in Wld\(^S\) heterozygotes [i] and ATX3-Wld\(^S\) [iii and iv]. (ii) Wild-type axons are completely degenerated and highly vacuolized. (v–viii) Confocal images of tibial nerves 14 d after sciatic nerve lesion in mice crossed to YFP-H. (v) Wld\(^S\) axons maintain continuity in contrast to the few remnants of the fragmented wild-type axons (vi). (vii and viii) Many axons in ATX3-Wld\(^S\) were also continuous at this stringent time point. Bars: [i–iv] 20 \(\mu\)m; [v–viii] 50 \(\mu\)m.
Nmnat enzyme activity is required for the Wld^S phenotype

Having shown that N16 is necessary for the Wld^S phenotype in mice, we then tested the requirement for Nmnat activity in vivo and whether N16 and other N-terminal sequences, including Wld18, are sufficient. We made Tg mice expressing enzyme-dead Wld^S (W258A; Fig. S1) but retaining all N-terminal sequences.

Tg-expressing lines 2 and 4 showed no increase in brain Nmnat activity over wild type, whereas activity in Wld^S heterozygotes increased two- to threefold (Fig. 5, A and C). As before, we confirmed protein expression in motor neuron nuclei (Fig. 5 B) and we lesioned sciatic nerves. At the 3-d (low stringency) time point, homogeneous axoplasm and unswollen mitochondria could no longer be identified in semithin sections (Fig. 5 D, i and ii), and neither line retained axon continuity (Fig. 5 D, v and vi). The third expressing line showed similar wild-type–like behavior (unpublished data). In contrast, Wld^S heterozygous
Figure 5. Rapid Wallerian degeneration in W258AWldS Tg mice. (A) Brain Western blots from W258AWldS, WldS, and wild-type mice probed with Wld18. W258AWldS lines 2 and 4 express a 43-kD band, which is absent in wild type. (B) Wld18 immunofluorescence (red) of lumbar spinal cord. Motor neuron nuclear signal strength and distribution in W258AWldS lines match WldS heterozygotes. Identical laser intensities and camera settings were used for each image. (C) Nmnat1 activity is unaltered in the W258AWldS brain. (D, i and ii) Semithin sections of W258AWldS distal sciatic nerve 72 h after lesion. Axons are degenerated, similar to wild-type or L14WldS axons (Fig 2). (iii–vi) In mice crossed to YFP-H, tibial nerve axons lose continuity within 72 h of sciatic lesion, except in WldS (iii). (E) SCG explants untreated (i–iv) or treated (v–viii) with 100 nM FK866 for 72 h and then cut. Unlike wild-type
mice expressing a similar level of Wld6 protein showed strong axon protection (Fig. 5 D, iii; and Fig. S1).

We confirmed rapid degeneration of injured W258AWld6 neurites in SCG explant cultures and added 1 mM exogenous NAD+ either 24 or 0 h before cutting. As we previously found in wild-type neurites (Conforti et al., 2007b), neither treatment altered the rate of degeneration (Fig. S3 A, available at http://www.jcb.org/cgi/content/full/jcb.200807175/DC1). Although we cannot be sure how much NAD+ entered the cells, these data are consistent with the notion that N16 and Nmnat activity must be physically linked in the same molecule to deliver Nmnat activity to a specific site. Thus, an intact VCP-binding region in N16 is not sufficient to confer any Wld6 phenotype in vivo without associated Nmnat activity, nor is N70 or even N70 + Wld18.

To test the causal link between NAD+ production and axon protection, we then used FK866 to block the enzyme nicotinamide phosphoribosyltransferase. Nicotinamide phosphoribosyltransferase catalyzes the rate-limiting step for NAD+ salvage from nicotinamide. FK866 strongly reduced NAD+ or NADP+ levels in Wld6 SCG cultures (Fig. 5 G), and this was accompanied by a modest, partial reversion of the phenotype. Very few morphologically normal neurites remained in FK866-treated Wld6 cultures 72 h after cutting (Fig. 5 E, vii and viii), whereas significantly more intact neurites remained in untreated Wld6 cultures (Fig. 5, E [iii and iv] and F). After 6 d, there remained an obvious, statistically significant difference (Fig. S3 B). These data suggest that NAD+ synthesis is required for the Wld6 phenotype, but the incomplete reversion also suggests a need to consider other actions of Nmnat and/or other downstream metabolites. Alternatively, NAD+ may be tightly regulated at specific loci in a way that the whole cell measurements do not reflect.

Finally, we tested whether Nmnat1 chaperone activity contributes to axon protection by Wld6. Chaperone activity in the W258A mutant protein was similar to that reported for enzyme-dead Nmnat (n = 3; Zhai et al., 2008; and unpublished data), but as the mice show no axon protection, this is unlikely to be sufficient for the Wld6 phenotype.

By refining the N-terminal sequence needed for Wld6 protein to preserve injured axons in mice and showing that Nmnat enzyme activity is also required to protect axons in vivo, we conclude that Wld6 protects axons through a mechanism involving both of its parts. The absence of axon protection in ΔN16Wld6 mice confirms and extends our earlier data that Nmnat1 cannot substitute for Wld6 protein at a similar expression level (Conforti et al., 2007b). The accompanying paper shows that the two proteins are also not equivalent in Drosophila (see Avery et al. on p. 501 of this issue). However, Nmnat activity is required, and in Wld6, it works together with the N-terminal VCP-binding sequence to protect axons. The function of N16 now holds essential clues as to where this enzyme activity is needed and why, and it will be interesting to find out whether other changes or additions to Nmnat1 can make it protective in vivo.

The only known biochemical property of N16 is binding VCP (Laser et al., 2006). The VBM is highly conserved among vertebrates and some invertebrates (Morreale et al., 2009), including Drosophila, which could help explain how murine Wld6 can function there through a mechanism involving VCP (Avery et al., 2009). At the cellular level, recent data indicate that Wld6 can function outside nuclei (Beirousski et al., 2009), so we tested whether N16 binding to VCP (which is abundant in the cytoplasm as well as the nucleus) tethers some Wld6 in the cytoplasm. ΔN16 variant is abundant in cytoplasm (Fig. 1 C), indicating that the functional importance of N16 is not solely to retain the protein in the cytoplasm. Instead, we propose a finer targeting role. As N16 binding to VCP influences local targeting of Wld6 within nuclei (Wilbrey et al., 2008), it likely has a similar local effect in cytoplasm. Thus, the critical function of N16 may be local targeting of Nmnat1 to a cytoplasmic site where it is needed for axon protection.

Such a model may explain why overexpressing wild-type Nmnat1 without N16 fails to produce any Wld6 phenotype in Tg mice (Conforti et al., 2007b), whereas overexpression in lentiviral-transduced cultures or in Drosophila does reproduce the phenotype to some extent (Araki et al., 2004; Hoopfer et al., 2006; MacDonald et al., 2006). In higher expressing systems with shorter axons, Nmnat1 may reach levels at which focal targeting becomes unnecessary. However, high Nmnat1 expression levels could also trigger unrelated mechanisms.

The local targeting model raises two important questions: what is the critical site, and what does Nmnat1 do there? A local bioenergetics mechanism for NAD+ within mitochondria has been proposed (Wang et al., 2005). However, the ability of Wld6 to maintain axonal NAD+ and ATP levels could be an effect of axon survival rather than a cause, and how VCP binding and N16 fit such a model is not clear. Further investigations of VCP in mitochondria could shed light on this issue (Braun et al., 2006). An alternative location that does connect VCP and NAD+ is the ER. VCP is particularly abundant here (Ye et al., 2005), and NAD+ is a key upstream regulator of calcium signaling in this organelle through enzymes such as CD38 (Macgregor et al., 2007).

NAD+ is also a substrate for the sirtuin family of histone deacetylases (Yang and Sauve, 2006) and for the ADP ribosylase PARP-1 (Kim et al., 2005), and Nmnat protects against reactive oxygen species (Press and Milbrandt, 2008). A Sirt1-mediated mechanism (Araki et al., 2004) is not supported by subsequent data (Wang et al., 2005; Conforti et al., 2007b; Avery et al., 2009), but these other possibilities remain plausible. However, a chaperone-mediated mechanism for axon protection (Zhai et al., 2008) is not supported by our data.

Other functions of VCP include roles in the cell cycle, homotypic membrane fusion, nuclear envelope reconstruction, postmitotic Golgi reassembly, DNA damage response, suppression of apoptosis, ER-associated protein degradation, and ubiquitin-dependent protein degradation (Watts et al., 2004). Thus, if the critical function of N16 is binding to VCP, one or more of these sites

\[497\] SEQUENCES REQUIRED FOR THE WLD6 PHENOTYPE • Conforti et al. 497

axons [i, ii, v, and vi], untreated Wld6 axons are intact 72 h after being cut [iv] but when treated with FK866 are more degenerated [viii]. If \[\text{Quantification of continuous neurites [or neurite bundles]. ***}, P < 0.0001 \text{[one-way analysis of variance followed by Bonferroni post hoc test];} n = 8 \text{[wild type [WT]} and 9 \text{[Wld6]. [G]} NAD+ or NADP+ levels in wildtype and Wld6 explants ± FK866 at 1–100 nM. Mean of three different experiments. [C, F, and G] Mean ± SD. Bars: [B, D, i and ii, and E] 10 μm, [D, iii–vi] 100 μm.\]
could be important. VCP also has many associations with neurodegenerative disease as a component of intranuclear and cytoplasmic aggregates (Kobayashi et al., 2007), as the mutated gene in the rare neurological disorder inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (Watts et al., 2004), and through binding to Atx-3 and other polyglutamine proteins (Hirabayashi et al., 2001; Boeddrich et al., 2006).

As there are no null or conditional null VCP mice, VCP-independent mechanisms cannot be tested further using in vivo mouse experiments. We cannot rule out a role for other amino acids in common between the Atx-3–derived VCP-binding sequence and N16 or an influence on Wldd turnover. However, in Drosophila, where targeted RNAi in specific neurons overcomes lethality, VCP knockdown significantly weakens the Wldd phenotype (Avery et al., 2009). Collectively, these data strongly suggest that VCP binding is the critical property of this sequence that is required for the phenotype.

Like other chimeric proteins, Wldd has a biological activity that requires both of its parts. In other cases, this can be the result of a conformational change that confers a new property such as affinity for a different receptor in the case of a ligand (Campbell et al., 1997). The combination of two different proteins to form a chimera often arises from chromosome translocations or gene duplications and has evolutionary relevance. Wldd arose in the laboratory mouse, so it is not the result of generations of adaptive mutations. Nevertheless, this is another intriguing example of how protein domains can be combined to produce a completely new function.

The impressive correlation between the phenotypes of Wldd mice, rats, and Drosophila, each carrying the mouse cDNA, indicates that the degenerative pathway that it blocks is well conserved in evolution. Even in Drosophila, Nmnat1 cannot fully substitute for Wldd in conferring axon protection, although a weak effect can be obtained from Nmnat1 sequence. Nevertheless, this is another intriguing example of how protein domains can be combined to produce a completely new function.

In summary, we show that N16, which contains a VBM, is necessary for Wldd to delay Wallerian degeneration, and this sequence acts together with Nmnat1 activity. In this study, we propose a new model for Wldd action that explains the requirement of both N-terminal Ube4b-derived sequence and Nmnat1 enzyme activity. Having strongly implicated VCP binding in the protective mechanism and having shown that VCP binding helps direct the subcellular distribution of Wldd, we suggest that the role of the N-terminal region is to deliver Nmnat activity to an important, specific subcellular site. Further studies are necessary to identify this specific site and to understand what Nmnat1 does there to produce the Wldd phenotype.
and Alexa Fluor 568. Nuclei were stained with DAPI. All images were acquired at room temperature.

Nerve lesion
Mice were anesthetized with a mixture of 100 mg/kg ketamine (Fort Dodge Animal Health) and 5 mg/kg xylazine (Pfizer). Right sciatic nerves were transected at the upper thigh, and mice were killed by cervical dislocation or by a lethal dose of sodium pentobarbital (Nembutal, Niagara Chemicals). All procedures were performed as aseptically as possible.

Electrophysiology
Mice were killed by cervical dislocation. Isometric tension recordings were performed using 50–200-μs pulses, with 0.1–1-mA intensity at 1–20 Hz either from the Powerlab unit or using an isolated pulse stimulator (model 210; A-M Systems) supplying variable 1–10V pulses for 200 μs in duration and at frequencies of 1–40 Hz. In some experiments, muscle nerves were stimulated using a suction electrode and tension, or EMG recordings were made on a laptop computer (Macintosh G4; Apple) using Chart version 4.1.1 [ADInstruments Ltd.] and Scope version 3.6.8 [ADInstruments Ltd.] software via a Powerlab 4/20T interface [ADInstruments Ltd.]. Nerves were stimulated using 50–200-μs pulses, with 0.1–1-mA intensity at 1–20 Hz either from the Powerlab unit or using an isolated pulse stimulator (model 210; A-M Systems) supplying variable 1–10V pulses for 200 μs in duration and at frequencies of 1–40 Hz. In some experiments, muscle contractions were also recorded as short videos through a dissecting microscope [Wild MSA; Spectra Services] using a digital camera (CoolPix 4500; Nikon).

Analysis of YFP-labeled nerves
Sciatic and Tibial nerves were quickly removed from humanely killed mice, processed, and imaged as described previously [Conforti et al., 2007b].

SGC explant cultures and NAD+ or NADP+ assay
SCG explants were dissected, cultured, and lesioned as previously described [Buckmaster et al., 1995]. Neurites were allowed to extend for 7 d in all cultures before any treatment. In vincristine experiments, this was used at a 0.02-μM final concentration, and the day of treatment was considered time 0. In experiments with FKB86, the appropriate concentration was applied, and the cultures were kept for 72 h in the presence of the drug. At this time, some of the explants were collected in 100 ml H2O for NAD+ or NADP+ determination as described in Billington et al. (2008). Other explants were cut, and the degeneration of the distal axons followed for another 72 h.

Online supplemental material
Fig. S1 shows the constructs used to generate Tg mice and the quantification of axon survival. Fig. S2 shows the survival of ATX3Wld and ΔN16Wld axons in vivo and in vitro. Fig. S3 shows the effects of increasing and decreasing NAD+. Videos 1 and 2 show the contraction of stimulated ATX3Wld and wild-type FDB muscle, respectively, 3 d after sciatic nerve lesion. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200807175/DC1.

We thank Dr. Anne Segonds-Pichon for statistical advice and Dr. Marc Freeman for helpful discussion and for sharing unpublished data.

This work was funded by the Biotechnology and Biological Sciences Research Council, Medical Research Council, and a Royal Society of Edinburgh/Scottish Executive Support Research Fellowship held by R.R. Ribchester during this study.

Submitted: 31 July 2008
Accepted: 21 January 2009

References
Adaltberg, R., T.H. Gillingwater, J.E. Haley, K. Bridge, B. Beiroussou, L. Berek, D. Wagner, D. Grumme, D. Thomson, A. Celik, et al. 2005. A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses. J. Neurosci. 21:271–277.
Araki, T., Y. Sasaki, and J. Milbrandt. 2004. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 305:1010–1013.
Avery, M.A., A. Sheehan, K.S. Kerr, J. Wang, and M. Freeman. 2009. Wldr requires Nmnat1 enzymatic activity and N16–VCP interactions to suppress Wallerian degeneration. J. Cell Biol. 184:501–513.
Barry, J.A., and R.R. Ribchester. 1995. Persistent polynuclear innervation in partially denervated rat muscle after reinnervation and recovery from prolonged nerve conduction block. J. Neurosci. 15:6327–6339.
Beiroussou, B., L. Berek, R. Adaltberg, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman. 2004. Quantitative and qualitative analysis of Wallerian degeneration when used restricting axonal labelling in YFP-H mice. J. Neurosci. Methods. 134:23–35.
Beiroussou, B., E. Babett, J. Gilley, F. Mazolla, L. Conforti, L. Janeckova, G. Magni, R.R. Ribchester, and M.P. Coleman. 2009. Non-nuclear WldS determines its neuroprotective efficacy for axons and synapses in vivo. J. Neurosci. 29:653–668.
Billinga, R., C. Travelli, E. Ercolano, U. Galli, C.B. Roman, A.A. Grolla, P.L. Canonicco, F. Condorelli, and A.A. Genazzani. 2008. Characterization of NAD uptake in mammalian cells. J. Biol. Chem. 283:6367–6374.
Boeddrich, A., S. Gaumer, A. Haacke, N. Tzvetkov, M. Albrecht, B.O. Evert, E.C. Muller, R. Lurz, P. Breuer, N. Schugardt, et al. 2008. An arginine/ lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J. 25:1547–1556.
Braun, R.J., H. Zischka, F. Madoe, T. Eisenberg, S. Wissing, S. Buttner, S.M. Engelhardt, D. Büringer, and M. Ueffing. 2006. Crucial mitochondrial impairment upon CDC48 mutation in apoptotic yeast. J. Biol. Chem. 281:25757–25767.
Buckmaster, E.A., V.H. Perry, and M.C. Brown. 1995. The rate of Wallerian degeneration in cultured neurons from wild-type and C57B1/Wld(S) mice depends on time in culture and may be extended in the presence of elevated K+ levels. Eur. J. Neurosci. 7:1596–1602.
Campbell, R.K., E.R. Bergert, Y. Wang, J.C. Morris, and W.R. Moyle. 1997. Chimeric proteins can exceed the sum of their parts: implications for evolution and protein design. Nat. Biotechnol. 15:439–443.
Coleman, M. 2005. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6:889–898.
Coleman, M.P., L. Conforti, E.A. Fotini, A. Tarlton, R.M. Ewing, M.C. Brown, M.F. Lyon, and V.H. Perry. 1998. An 85-kb tandem triplication in normal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 14:116–127.
Conforti, L., A. Tarlton, T.G. Mack, W. Mi, E.A. Buckmaster, D. Wagner, V.H. Perry, and M.P. Coleman. 2000. A Utd2/D4Col1e1 chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc. Natl. Acad. Sci. USA. 97:9985–9990.
Conforti, L., A. Tarlton, T.G. Mack, W. Mi, E.A. Buckmaster, D. Wagner, V.H. Perry, and M.P. Coleman. 2000. A Utd2/D4Col1e1 chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc. Natl. Acad. Sci. USA. 97:11377–11382.
Conforti, L., R. Adaltberg, and M.P. Coleman. 2007a. Neuronal death: where does the end begin? Trends Neurosci. 30:159–166.
Conforti, L., G. Fang, B. Beiroussou, M.S. Wang, L. Sorci, S. Assres, R. Adaltberg, A. Silva, K. Bridge, X.P. Huang, et al. 2007b. NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for WldS to delay Wallerian degeneration. Cell Death Differ. 14:116–127.
Costanzo, E.M., J.A. Barry, and R.R. Ribchester. 1999. Co-regulation of synaptic efficacy at stable polynervously innervated neuromuscular junctions in reinnervated rat muscle. J. Physiol. 521:365–374.
Feng, G., R.H. Mellor, M. Bernstein, C. Keller-Peck, Q.T. Nguyen, M. Wallace, J.M. Nerbonne, J.W. Lichtman, and J.R. Sanes. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28:41–51.
Ferré, A., J.R. Sanes, M.P. Coleman, J.M. Cunningham, and A.C. Kato. 2003. Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr. Biol. 13:669–673.
Gillingwater, T.H., D. Thomson, T.G. Mack, E.M. Soffin, R.J. Mattison, M.P. Coleman, and R.R. Ribchester. 2002. Age-dependent synapse withdrawal at axotomised neuromuscular junctions in Wlds mutant and Ube4b/Nmnat transgenic mice. J. Physiol. 543:739–755.
Hirabayashi, M., K. Inoue, K. Tanaka, N. Nakadate, Y. Ohsawa, Y. Kamei, A.H. Popiel, A. Sinohara, A. Iwamatsu, Y. Kimura, et al. 2001. VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 8:977–984.

Hooper, E.D., T. McLaughlin, R.J. Watts, O. Schuldiner, D.D. O’Leary, and L. Luo. 2006. Wilds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron. 50:883–895.

Kim, M.Y., T. Zhang, and W.L. Kraus. 2005. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 19:1951–1967.

Kobayashi, T., A. Manno, and A. Kakizuka. 2007. Involvement of valosin-containing protein (VCP)/p97 in the formation and clearance of abnormal protein aggregates. Genes Cells. 12:889–901.

Laser, H., L. Conforti, G. Morreale, T.G. Mack, M. Heyer, J.E. Haley, T.M. Wishart, B. Beirowski, S.A. Walker, G. Haase, et al. 2006. The slow Wallerian degeneration protein, Wilds, binds directly to VCP/p97 and partially redistributes it within the nucleus. Mol. Biol. Cell. 17:1075–1084.

MacDonald, J.M., M.G. Beach, E. Porpiglia, B. Frazier, and J.D. Glass. 2006. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron. 50:869–881.

Macgregor, A.T., S. Rakovic, A. Galione, and D.A. Terrar. 2007. Dual effects of cyclic ADP-ribose on sarcoplasmic reticulum Ca2+ release and storage in cardiac myocytes isolated from guinea-pig and rat ventricle. Cell Calcium. 41:537–546.

Mack, T.G., M. Reiner, B. Beirowski, W. Mi, M. Emanuelli, D. Wagner, D. Thomson, T. Gillingwater, F. Court, L. Conforti, et al. 2001. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4:1199–1206.

Morreale, G., L. Conforti, J. Coadwell, A.L. Wilbrey, and M.P. Coleman. 2009. Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteins. PLoS J. doi:10.1111/j.1422-4658.2008.06858.x.

Muller, J.M., K. Deinhardt, I. Rosewell, G. Warren, and D.T. Shima. 2007. Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem. Biophys. Res. Commun. 354:459–465.

Press, C., and J. Milbrandt. 2008. Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J. Neurosci. 28:4861–4871.

Ravula, S.K., M.S. Wang, M.A. McClain, S.A. Assress, B. Frazier, and J.D. Glass. 2007. Spatiotemporal localization of injury potentials in DRG neurons during vincristine-induced axonal degeneration. Neurosci. Lett. 415:34–39.

Samsam, M., W. Mi, C. Weissig, J. Zielasek, K.V. Toyka, M.P. Coleman, and R. Martin. 2003. The Wilds mutation delays robust loss of motor and sensory axons in a genetic model for myelin-related axonopathy. J. Neurosci. 23:2833–2839.

Waller, A. 1850. Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog, and observations of the alternatives produced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. Lond. (1776–1886). 140:423–429.

Wang, J., Q. Zhai, Y. Chen, E. Lin, W. Gu, M.W. McBurney, and Z. He. 2005. A local mechanism mediates NAD-dependent protection of axon degeneration. J. Cell Biol. 170:349–355.

Wang, M.S., G.F. Fang, D.G. Culver, A.A. Davis, M.M. Rich, and J.D. Glass. 2001. The Wilds(S) protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy. Ann. Neurol. 50:773–779.

Watts, G.D., J. Wymer, M.J. Kovach, S.G. Mehta, S. Mumm, D. Darvish, A. Pestronk, M.P. Whyte, and V. E. Kimonis. 2004. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36:377–381.

Wilbrey, A.L., J.E. Haley, T.M. Wishart, L. Conforti, G. Morreale, B. Beirowski, E. Babetto, R. Adalbert, T.H. Gillingwater, T. Smith, et al. 2008. VCP binding influences intracellular distribution of the slow Wallerian degeneration protein, Wilds(S). Mol. Cell. Neurosci. 38:325–340.

Yang, T., and A.A. Sauve. 2006. NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity. AAPS J. 8:E632–E643.

Ye, Y., Y. Shibata, M. Kikkert, S. van Voorden, E. Wiertz, and T.A. Rapoport. 2005. Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA. 102:14132–14138.

Zhai, R.G., F. Zhang, P.K. Hiesinger, Y. Cao, C.M. Haueter, and H.J. Bellen. 2008. NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature. 452:887–891.