The nuclear matter density functional under the nucleonic hypothesis

Chiranjib Mondal
Hoa Dinh Thi & Francesca Gulminelli

“XXIInd Colloque GANIL”
September 28, 2021
Theory and experiment/observation

Jumping across scales

Jumping across the scales!

Density

10^{18} g/cm3

10^{14} g/cm3

Observation

Astro model

EoS, Reaction rate

Nuclear experiment

Nuclear theory

constraint

prediction

constraint

prediction

constraint

prediction

$L(m)$

10^3

10^{-3}

10^{-9}

10^{-15}
J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485–515 (2012)
Equation of State
One-to-one correspondence

GR imposes a one-to-one correspondence between the nuclear EoS and static properties of NS.

J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485–515 (2012)
Equation of State
One-to-one correspondence

- GR imposes a one-to-one correspondence between the nuclear EoS and static properties of NS.
- Do we need an underlying theory for EoS?

J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485–515 (2012)
GR imposes a one-to-one correspondence between the nuclear EoS and static properties of NS.

Do we need an underlying theory for EoS?

What about composition? Hyperons? Quarks?

J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485–515 (2012)
Equation of State
One-to-one correspondence

GR imposes a one-to-one correspondence between the nuclear EoS and static properties of NS.

Do we need an underlying theory for EoS?

What about composition? Hyperons? Quarks?

Reactions ⇒ nucleosynthesis ⇒ kilonova as well as cooling ⇒ X-ray spectra.

J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485–515 (2012)
Equation of State

One-to-one correspondence

- GR imposes a one-to-one correspondence between the nuclear EoS and static properties of NS.
- Do we need an underlying theory for EoS?
- What about composition? Hyperons? Quarks?
- Reactions ⇒ nucleosynthesis ⇒ kilonova as well as cooling ⇒ X-ray spectra.
- Impact of new observations like M(R) (NICER), Λ(R) (LIGO/VIRGO).

J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485–515 (2012)
Features

- Flexible functional $e(\rho_n, \rho_p)$ able to reproduce existing effective nucleonic models and interpolate between them.
- Expansion in powers of the Fermi momentum or of the density.
- Expansion around saturation: Parameter space = emp. par. \vec{X}.
- Beta-equilibrium!!!
Nucleonic meta-modelling
Founding aspects (Based on J. Margueron et. al., PRC 97, 025805 (2018))

Features

- Flexible functional $e(\rho_n, \rho_p)$ able to reproduce existing effective nucleonic models and interpolate between them.
- Expansion in powers of the Fermi momentum or of the density.
- Expansion around saturation: Parameter space = emp. par. \vec{X}.

Beta-equilibrium!!!

- The energy per particle is given by ($x = \frac{n_b-n_{sat}}{3n_{sat}}$, $n_b = \rho_n + \rho_p$, $\delta = \frac{\rho_n-\rho_p}{n_b}$)

$$e(\rho_n, \rho_p) \approx e_{SNM}(n_b, 0) + e_{sym}(n_b)\delta^2$$
Nucleonic meta-modelling
Founding aspects (Based on J. Margueron et. al., PRC 97, 025805 (2018))

Features

- Flexible functional $e(\rho_n, \rho_p)$ able to reproduce existing effective nucleonic models and interpolate between them.
- Expansion in powers of the Fermi momentum or of the density.
- Expansion around saturation: Parameter space = emp. par. \vec{X}.
- Beta-equilibrium!!!

- The energy per particle is given by ($x = \frac{n_b-n_{sat}}{3n_{sat}}$, $n_b = \rho_n + \rho_p$, $\delta = \frac{\rho_n-\rho_p}{n_b}$)

$$e(\rho_n, \rho_p) \simeq e_{SNM}(n_b, 0) + e_{sym}(n_b)\delta^2$$
$$e_{SNM}(n_b) \simeq E_{sat} + \frac{1}{2}K_{sat}x^2 + \frac{1}{6}Q_{sat}x^3 + \frac{1}{24}Z_{sat}x^4$$
$$e_{sym}(n_b) \simeq J_{sym} + Lx + \frac{1}{2}K_{sym}x^2 + \frac{1}{6}Q_{sym}x^3 + \frac{1}{24}Z_{sym}x^4.$$
Impact of recent data on Meta-model

Obtaining the filters

Prior = Nuclear physics informed prior with AME2016 fit.
Impact of recent data on Meta-model

Obtaining the filters

Prior = Nuclear physics informed prior with AME2016 fit.
Impact of recent data on Meta-model

Obtaining the filters

Prior = Nuclear physics informed prior with AME2016 fit.

Filters in Bayesian Analysis

- **LD** = EFT energy band at low density.

EFT

![Graph showing the relationship between energy (e) and density (n) in the EFT model.](image)
Impact of recent data on Meta-model

Obtaining the filters

Prior = Nuclear physics informed prior with AME2016 fit.

Filters in Bayesian Analysis

- **LD** = EFT energy band at low density.
- **HD+LVC** = HD (causality, thermodynamic stability, M_{max} constraint) + LVC tidal deformability $\tilde{\Lambda}$ PDF.

![EFT and LVC graphs](image_url)
Impact of recent data on Meta-model

Obtaining the filters

Prior = Nuclear physics informed prior with AME2016 fit.

Filters in Bayesian Analysis

- **LD** = EFT energy band at low density.
- **HD+LVC** = HD (causality, thermodynamic stability, M_{max} constraint) + LVC tidal deformability $\tilde{\Lambda}$ PDF.
- **All** = EFT + HD + LVC + NICER.

Graphs

- **EFT**
 - e [MeV] vs. n [fm$^{-3}$]
 - ρ [MeV/fm3] vs. n [fm$^{-3}$]

- **LVC**
 - P_{LVC} vs. Λ
Impact of recent data on Meta-model EoS

The nuclear matter ... nucleonic hypothesis
Impact of recent data on Meta-model

Hoa Dinh Thi, CM & F. Gulminelli (In press, Universe)
Impact of recent data on Meta-model
Isovector parameters

![Graphs showing the impact of recent data on meta-model parameters.](image)
Impact of recent data on Meta-model

Isoscalar parameters

[Graphs showing PDF distributions for various parameters]
More precise mass-radius observation. But that is not enough.
Wish list

- More precise mass-radius observation. But that is not enough.
- Lower order NMPs very very precise.
Wish list

- More precise mass-radius observation. But that is not enough.
- Lower order NMPs very very precise.
- Information on SNM pressure at high densities.
Wish list

- More precise mass-radius observation. But that is not enough.
- Lower order NMPs very very precise.
- Information on SNM pressure at high densities.

Thank You