ARTICLE TITLE	DECISION MAKING UNDER LINGUISTIC UNCERTAINTY CONDITIONS ON BASE OF GENERALIZED FUZZY NUMBERS
AUTHOR(S)	Salimov Vagif Hasan Oglu
ARTICLE INFO	Salimov Vagif Hasan Oglu. (2021) Decision Making Under Linguistic Uncertainty Conditions on Base of Generalized Fuzzy Numbers. World Science. 8(69). doi: 10.31435/rsglobal_ws/30082021/7655
DOI	https://doi.org/10.31435/rsglobal_ws/30082021/7655
RECEIVED	16 June 2021
ACCEPTED	09 August 2021
PUBLISHED	13 August 2021

LICENSE

This work is licensed under a Creative Commons Attribution 4.0 International License.

© The author(s) 2021. This publication is an open access article.
DECISION MAKING UNDER LINGUISTIC UNCERTAINTY CONDITIONS ON BASE OF GENERALIZED FUZZY NUMBERS

Ph.D., Salimov Vagif Hasan Oglu, assoc. prof. of “Computer engineering department” Azerbaijan state oil and industry university, Baku, Azerbaijan Republic, ORCID ID https://orcid.org/0000-0002-0590-5437

DOI: https://doi.org/10.31435/rsglobal_ws/30082021/7655

ABSTRACT

This article is devoted to the problem of decision making under linguistic uncertainty. The effective method for modelling linguistic uncertainty is the fuzzy set theory. There are several types of fuzzy number types proposed by L. Zadeh: fuzzy type-1, fuzzy type-2, Z-numbers. Chen proposed concept of generalized fuzzy numbers. Generalized trapezoidal fuzzy numbers (GFTN) one of effective approach which can be used for modeling linguistic uncertainty. GFTN very convenient model which allow take in account second order uncertainty. GFTN are formalized and major operations are described as practical problem is considered group decision making for supplier selection. In this case the criteria assessments are expressed by experts in linguistic form. Group decision making model is presented as 2 step aggregation procedure, in first step is aggregated value of alternative by expert, in second step by criteria. Numerical example with four criteria and three alternatives are presented and solved.

KEYWORDS
linguistic uncertainty, decision making, membership function, aggregation, multi attribute decision making, generalized fuzzy numbers.

ARTICLE INFO
Received: 16 June 2021
Accepted: 09 August 2021
Published: 13 August 2021

1. Introduction. Decision making problem with imperfect information is very actual problem. As known in many practical cases we need to be satisfied of expert information and the linguistic assessments. One is effective method of modelling linguistic information is fuzzy set approach. There are many scientific works dedicated to applications of classical fuzzy approach which is named fuzzy type-1 proposed by L. Zadeh (1965) [1]. In 1975 L. Zadeh [2] proposed more general approach fuzzy type-2, which expands the features of classical fuzzy type-1 model. Chen in 1985 proposed generalized fuzzy set concept [3], L. Zadeh in 2011 proposed fuzzy Z-numbers approach [4]. All these approaches allow not only modelling our imprecise knowledge about factors and also take in account our imprecision about membership function. All these models have more powerful features for modelling uncertainty [6-16].

2. Preliminaries. In this article we discuss about application of generalized trapezoidal fuzzy numbers (GFTN) for modelling MADM problem [6].

Definition: General fuzzy number. A fuzzy set \tilde{A}, defined on the universal set of the real numbers \mathbb{R}, is said to be generalized fuzzy number if it is membership function has the following characteristics:

(i) $\mu_{\tilde{A}}: \mathbb{R} \rightarrow [0,1]$ is continuous
(ii) $\mu_{\tilde{A}}(x) = 0$ for all $x \in (-\infty,a) \cup (d, \infty)$
(iii) $\mu_{\tilde{A}}(x)$ is strictly increasing on $[a,b]$ and strictly decreasing on $[c,d]$ for all $x \in [b,c]$, where $0 < w \leq 1$.

Citation: Salimov Vagif Hasan Oglu. (2021) Decision Making Under Linguistic Uncertainty Conditions on Base of Generalized Fuzzy Numbers. World Science. 8(69). doi: 10.31435/rsglobal_ws/30082021/7655

Copyright: © 2021 Salimov Vagif Hasan Oglu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Generalized trapezoidal fuzzy number $\tilde{A} = (a, b, c, d, w)$ is said to be generalized fuzzy number if its membership function is given

$$
\mu_\lambda(x) = \begin{cases}
0 & x < a \\
\frac{x-a}{b-a} & a \leq x \leq b \\
\frac{w}{w} & b \leq x \leq c \\
\frac{x-c}{d-c} & c \leq x \leq d \\
0 & x > d
\end{cases}
$$

Fig 1. Comparison between membership function of TFN and GTFN

Here W plays role of confidence level.
Consider arithmetical operations on two trapezoidal GTFN numbers: \tilde{A}_1 and \tilde{A}_2 numbers are given:

$\tilde{A}_1 = (a_1, b_1, c_1, d_1, w_1)$ $\tilde{A}_2 = (a_2, b_2, c_2, d_2, w_2)$

Addition

$\tilde{A}_1 \oplus \tilde{A}_2 = (a_1 + a_2, b_1 + b_2, c_1 + c_2, d_1 + d_2; \min(w_1, w_2))$

Subtraction

$\tilde{A}_1 \ominus \tilde{A}_2 = (a_1 - a_2, b_1 - b_2, c_1 - c_2, d_1 - d_2; \min(w_1, w_2))$

Scalar Multiplication

$\lambda \tilde{A} = \begin{cases}
(\lambda a, \lambda b, \lambda c, \lambda d; w) \quad \lambda > 0 \\
(\lambda d, \lambda c, \lambda b, \lambda a; w) \quad \lambda < 0
\end{cases}$

Ranking function

For ranking alternatives we have used following centroid method /6/

$$(\bar{x}_0, \bar{y}_0) = \left(a + b + c + d - \frac{dc - ab}{(dc) - (a + b)} \right) \left(1 + \frac{c - b}{(d + c) - (a + b)} \right)$$

Ranking function

$$R(\tilde{A}) = \sqrt{\bar{x}_0^2 + \bar{y}_0^2}$$

Let \tilde{A}_i and \tilde{A}_j two fuzzy numbers,

(i) $R(\tilde{A}_i) > R(\tilde{A}_j)$ then $\tilde{A}_i > \tilde{A}_j$

(ii) $R(\tilde{A}_i) < R(\tilde{A}_j)$ then $\tilde{A}_i < \tilde{A}_j$

(iii) $R(\tilde{A}_i) = R(\tilde{A}_j)$ then $\tilde{A}_i = \tilde{A}_j$

With GTFN we can represent the crisp interval and also imprecise interval. If $a=b$ and $c=d$ and $W \neq 1$ we have imprecise interval with confidence level W.

If $a=b$, $c=d$ and $w=1$ then we have crisp interval.

3. Problem statement and solving method

Let’s consider supplier selection problem with GTFN. This problem is formalized as MADM problem. Exist 3 potential suppliers A_i ($i = 1, 2, 3$) and their activity are described by 4 attributes:

C_1 - raw quality, C_2 - risk factor, C_3 - service level, C_4 - company profile.

Let’s say that for decision making group of 3 experts established E_k ($k = 1, 2, 3$) and corresponding weight coefficients are determined

$$\lambda = (0.3 \ 0.45 \ 0.25)$$
For 4 attributes C_i ($i = 1, 2, 3, 4$) are determined weight coefficients
$
\omega = (0.3 \ 0.15 \ 0.2 \ 0.35)
$
In table 1 are presented linguistic terms which will be used for alternative evaluation “Very Low” (VL), “Low” (L), “Medium” (M), “High” (H), “Very High” (VH) (Fig.2)

Table 1. Linguistic terms for alternative evaluation

Linguistic term	GTFN values
Very Low (VL)	(0.0, 0.1, 0.2, 0.3; 0.6)
Low (L)	(0.1, 0.3, 0.45, 0.7; 0.7)
Medium	(0.4, 0.5, 0.7, 0.8; 0.8)
High (H)	(0.5, 0.6, 0.75, 0.85; 0.85)
Very High (VH)	(0.6, 0.7, 0.8, 0.9; 1)

Fig. 2. Linguistic terms for alternatives evaluation

Experts using these terms have evaluated any potential suppliers and results are presented in following tables 3-5

Table 3 Alternatives evaluation by 1st expert

	C_1	C_2	C_3	C_4
A_1	M	H	VH	VH
A_2	H	M	H	H
A_3	VH	VH	M	H

Table 4 Alternatives evaluation by 2nd expert

	C_1	C_2	C_3	C_4
A_1	H	VH	H	H
A_2	M	H	VH	VH
A_3	H	VH	M	VH

Table 5. Alternatives evaluation by 3rd expert

	C_1	C_2	C_3	C_4
A_1	M	H	H	H
A_2	H	VH	VH	H
A_3	M	H	M	VH

First we carry out aggregation by experts using formula

\[
\tilde{X}_{ij}^k = \Theta_{k=1}^{3}(\lambda_{ij}^{(k)})
\]
and we have achieved following results:

\[
\begin{align*}
\tilde{A}_{11} &= (0.46, 0.57, 0.75, 0.86; 0.8) \\
\tilde{A}_{12} &= (0.55, 0.65, 0.77, 0.87; 0.8) \\
\tilde{A}_{13} &= (0.53, 0.63, 0.77, 0.87; 0.8) \\
\tilde{A}_{14} &= (0.46, 0.56, 0.73, 0.83; 0.8) \\
\tilde{A}_{21} &= (0.50, 0.60, 0.75, 0.85; 0.8) \\
\tilde{A}_{22} &= (0.57, 0.67, 0.79, 0.89; 0.85) \\
\tilde{A}_{23} &= (0.53, 0.63, 0.77, 0.87; 0.8) \\
\tilde{A}_{24} &= (0.55, 0.65, 0.77, 0.87; 0.8) \\
\tilde{A}_{31} &= (0.73, 0.79, 0.87, 0.92; 0.8) \\
\tilde{A}_{32} &= (0.58, 0.68, 0.79, 0.89; 0.85) \\
\tilde{A}_{33} &= (0.40, 0.50, 0.70, 0.80; 0.8) \\
\tilde{A}_{34} &= (0.57, 0.67, 0.79, 0.89; 0.85)
\end{align*}
\]

These results can be presented as collective decision matrix

\[
R = \begin{pmatrix}
\tilde{A}_{11} & \tilde{A}_{12} & \tilde{A}_{13} & \tilde{A}_{14} \\
\tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & \tilde{A}_{24} \\
\tilde{A}_{31} & \tilde{A}_{32} & \tilde{A}_{33} & \tilde{A}_{34}
\end{pmatrix}
\]

On next step we carry out aggregation by attributes using formula

\[
A_i = \Theta_{i=1}^4 (\omega_i \tilde{A}_{ij})
\]

As result we have global evaluation of all alternatives (Table 6)

Alternatives	GTFN values
A_1	(0.51, 0.61, 0.76, 0.87; 0.8)
A_2	(0.52, 0.62, 0.76, 0.86; 0.8)
A_3	(0.58, 0.67, 0.79, 0.88; 0.8)

For comparison alternative decisions we will use Rank function (1)

\[
\text{Rank}(A_1) = 3.52 > \text{Rank}(A_3) = 3.49 > \text{Rank}(A_2) = 3.45
\]

It means that best is supplier A_1

Conclusions. In this article have been considered problem of MADM under linguistic uncertainty. As model of decision making used group decision making approach and as model for modeling uncertainty have been used GTFN model. As test problem for proposed model have been used the supplier selection problem.

REFERENCES

1. L.A. Zadeh (1965), "Fuzzy sets," Information and Control, vol. 8, pp. 338-353. Retrieved from https://doi.org/10.1016/S0019-9958(65)90241-X
2. L.A. Zadeh (1975), The concept of a linguistic variable and its application to approximate reasoning – I, Information Sciences 8 (3), p. 199–249. Retrieved from https://doi.org/10.1016/0020-0255(75)90036-5
3. Chen, S. H. (1985), Operations on fuzzy numbers with function principal. Tamkang Journal of Management Sciences 6, p. 13-25. Retrieved from https://doi.org/10.1016/S0020-0255(97)10070-6
4. Zadeh, L. A. (2011), A note on Z-numbers. Information Science 181, p. 2923–2932. Retrieved from https://doi.org/10.1016/j.ins.2011.02.022
5. L.A. Zadeh (1999), "From computing with numbers to computing with words—from manipulation of measurements to manipulation of perceptions," IEEE Trans. on Circuits and Systems–I, Fundamental Theory and Applications, vol. 4, p. 105–119. Retrieved from https://doi.org/10.1109/7987-3042089-1792-8_5
6. Y. L. P. Thorani, P. Phani Bushan Rao, and N. Ravi Shankar (2012), Ordering Generalized Trapezoidal Fuzzy Numbers, Int. J. Contemp. Math. Sciences, Vol. 7, no. 12, p. 555 – 573.
7. J.M. Mendel, R.I. John, F. Liu (2006), Interval type-2 fuzzy logic systems made simple, IEEE Transactions on Fuzzy Systems 14 (6), p.808–821. Retrieved from http://dx.doi.org/10.1109/TFUZZ.2006.879986
8. Banerjee S., Kumar T. (2012), Arithmetic Operations on Generalized Trapezoidal Fuzzy Number and its Applications, Turkish Journal of Fuzzy Systems (eISSN: 1309–1190) Vol.3, No.1, p.16-44.
9. M.J. Tsai, C.S. Wang (2008), A computing coordination based fuzzy group decision making for web service oriented architecture, Expert Systems with Applications 34 (4), p. 2921–2936. Retrieved from https://doi.org/10.1016/j.eswa.2007.05.017
10. J. Ma, J. Lu, G. Zhang (2010), Decider: a fuzzy multi-criteria group decision support system, Knowledge-Based Systems 23 (1), p. 23–31. Retrieved from https://doi.org/10.1016/j.knosys.2009.07.006
11. I.J. Perez, F.J. Cabrerizo, E. Herrera-Viedma (2011), Group decision making problems in a linguistic and dynamic context, Expert Systems with Applications 38 (3), p. 675–1688. Retrieved from https://doi.org/10.1016/j.eswa.2010.07.092
12. Z.S. Xu (2011), Approaches to multi-stage multi-attribute group decision making, International Journal of Information Technology and Decision Making 10 (1), p.121–146. Retrieved from https://doi.org/10.1142/S0219622011004257
13. J. Pang, J. Liang (2012), Evaluation of the results of multi-attribute group decision making with linguistic information, Omega-International Journal of Management Science 40 (3), p.294–301. Retrieved from https://doi.org/10.1016/j.omega.2011.07.006
14. S.-M. Chen, L.-W. Lee (2010), Fuzzy multiple criteria hierarchical group decision making based on interval type-2 fuzzy sets, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40 (5), p. 1120–1128. Retrieved from https://doi.org/10.1109/TSMCA.2010.2044039