A Distinct Dexamethasone-Dependent Gene Expression Profile in the Lungs of COVID-19 Patients

Ulrik Fahnøe,1,2,4,6 Andreas Ronit,3,5,8 Ronan M. G. Berg,1,4,6 Sofie E. Jørgensen,7,9 Trine H. Mogensen,7,9,10 Alexander P. Underwood,1,2,11 Troels K. H. Scheel,1,2,10 Jens Bühk,1,2,10 and Ronni R. Ploving1,12

1Copenhagen Hepatitis C Program, Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 2Department of Infectious Diseases, Copenhagen University Hospital–Amager and Hvidovre Hospitals, Hvidovre, Denmark; 3Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 4Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Righospital, Copenhagen, Denmark; 5Centre for Physical Activity Research, Copenhagen University Hospital–Righospital, Copenhagen, Denmark; 6Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom; 7Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; 8Department of Biomedicine, Aarhus Research Center for innate Immunology, Aarhus University, Aarhus, Denmark; 9Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 10Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA; 11Department of Anesthesiology and Intensive Care, Copenhagen University Hospital–Amager and Hvidovre Hospitals, Hvidovre, Denmark; and 12Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

The effects of dexamethasone (DXM) treatment on pulmonary immunity in COVID-19–associated acute respiratory distress syndrome (ARDS) remain insufficiently understood. We performed transcriptomic RNA-seq analysis of bronchoalveolar lavage fluid from 20 mechanically ventilated patients: 12 with CARDS (with or without DXM) and 8 non–COVID-19 critically ill controls. CARDS with DXM was characterized by upregulation of genes related to B-cell and complement pathway activation, antigen presentation, phagocytosis, and FC-γ receptor signaling. Most interferon-stimulated genes were upregulated in CARDS, particularly in CARDS without DXM. In conclusion, DXM treatment was not associated with regulation of proinflammatory pathways in CARDS but with regulation of other local immune responses.

Clinical Trials Registration. NCT04354584.

Keywords. acute respiratory distress syndrome; bronchoalveolar lavage fluid; coronavirus disease 2019; inflammation; interferon stimulated genes; transcriptome profiling.

Coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is associated with a mortality rate of 40%–50%, which may be even higher in patients requiring invasive mechanical ventilation [1]. Understanding of CARDS immunopathology was improved by a few studies in particular of bronchoalveolar lavage fluid (BALF) and showing prominent pulmonary immune cell invasion, most notably inflammatory myeloid cells [2–4], and expression of several proinflammatory mediators. However, a more detailed understanding of the specific mechanisms of COVID-19–mediated lung injury is pertinent to uncover how various immunomodulatory therapies, including dexamethasone (DXM), affect lung immunity.

We investigated the transcriptomic profiles of the local pulmonary host responses during early-stage severe CARDS by per protocol BALF sampling early after intubation. Specifically, we compared the immune transcriptomic profile of CARDS patients, with and without DXM treatment, and non–COVID-19 critically ill patients (controls) to elucidate how this specific immune-targeted treatment modifies the pulmonary host defense, including the gene expression profiles of proinflammatory mediators and interferon-stimulated genes (ISGs).

METHODS

Study Population and Ethics

Inclusion criteria of CARDS patients were age >18 years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection confirmed by reverse transcription polymerase chain reaction (RT-PCR), presence of ARDS (Berlin definition 2012), and less than 72 hours of invasive mechanical ventilation. All patients were recruited during admission to the intensive care unit (ICU) at Hvidovre Hospital, Denmark. All patients were recruited between 6 April 2020 and 12 April 2021. This period included the first and second COVID-19 wave in Denmark, which corresponded to a time prior to and after DXM treatment was introduced as standard of care. Thus, patients recruited during the first wave did not receive DXM treatment. Supportive ICU treatment was not changed during this period. We have previously presented flow cytometric results of 4 CARDS patients, who were also included in the present study [3]. None of the previous published data was reused in the present study.

Patients with ARDS from bacterial respiratory pathogens as well as mechanically ventilated patients with sepsis but without ARDS were included as controls. Except for SARS-CoV-2 infection, inclusion criteria were identical for CARDS and controls. All controls had ARDS and/or sepsis according to consensus criteria (Berlin definition 2012; Sepsis-3 2016). All patients were sedated and unable to provide oral and written informed consent, which was obtained from next of kin [3].
study was approved by the Regional Ethics Committee of Copenhagen (H-20023159/H-22011021/H-22009131) and the Knowledge Center for Data Review of Copenhagen (P-2020-399) and registered at ClinicalTrials.gov (NCT04354584).

Bronchoalveolar Lavage Procedure and Sample Processing

The BAL procedure was performed per protocol in a standardized fashion as described in the Supplementary Material.

RNA Extraction and Sequencing

Information about RNA extraction and library preparation [5] has been included in the Supplementary Material. Differential gene analysis was performed in R, as described previously [6]. Briefly, we used the Limma-voom and DeSeq2 package for preprocessing and principal component (PC) analysis, respectively. The following 4 contrasts were compared: CARDS versus controls, CARDS with DXM treatment versus controls, CARDS without DXM treatment versus controls, and CARDS with DXM treatment versus CARDS without DXM treatment. Gene ontology analysis was performed using Goseq on differentially expressed genes separately for each contrast. Analysis of ISGs was performed using ROAST for each contrast using a curated list of 399 ISGs [7]. Finally, we analyzed selected inflammatory, including interleukin (IL)-1A, IL-1B, IL-2, IL-6, IL-8, IL-11, IL-17A, IL-17B, IL-18, tumor necrosis factor-α (TNF-α), interferon-λ (IFN-λ), granulocyte-macrophage colony-stimulating factor (GM-CSF), monocyte chemoattractant protein-1 (MCP-1), interferon-λ-induced protein (IP-10), and macrophage inflammatory protein-1 (MIP-1-α), which were selected based on previous BALF-based studies.

RESULTS

Patient Characteristics and Bronchoalveolar Lavage Procedure

The BAL procedures in CARDS and critically ill control patients were carried out after a mean of 28.8 hours (range, 6–72 hours) after intubation by the same physician (author, R. R. P.). All samples were obtained from the right middle lobe. A total of 13 CARDS patients and 8 controls were included (Supplementary Table 1). One DXM-treated CARDS patient was excluded from analysis due to insufficient RNA extraction.

Transcriptional Features in the Lungs During DXM Treatment

The levels of viral RNA in samples from CARDS patients varied from 0.001% to 1.378% (Supplementary Figure 1). The 7
samples with high fractions (above 0.1%) of viral reads showed
differential coverage distribution skewed towards higher depth
at the 3’ end of the viral genome compared to coverage at the 5’
end. This was concordant with the presence of subgenomic
RNA from replicating genomes indicating active infection.
Furthermore, we found traces of negative-strand RNA in those
samples indicating active viral replication. PC analysis did not
reveal clustering of human gene expression related to high ver-
sus low viral load and was not accounted for in subsequent
analysis.

PC analysis showed controls clustering closely together,
thus justifying grouping of these patients, while CARDS
clustered more broadly but distinctly separate from the con-
trols (Figure 1B). Furthermore, CARDS without DXM treat-
ment clustered more closely than CARDS with DXM
treatment. In the CARDS patients compared to the controls,
852 genes were differentially upregulated and 827 downre-
gulated (false discovery rate, < 0.05). Similar analysis per-
formed with only CARDS with DXM treatment revealed 317 up- and 233 downregulated genes, while
CARDS with DXM treatment had 1613 up- and 560 downre-
gulated genes (Figure 1C and 1D, and Supplementary
Figure 2). This indicated DXM as a primary driver of tran-
scriptome changes in CARDS.

Functional Signatures in the Lungs During DXM Treatment
CARDS with DXM treatment gene signatures were enriched
for several B-cell activation and antigen-presenting pathways,
leukocyte migration, and activation of complement.
Interestingly, phagocytosis was also upregulated, especially
FC-γ receptor signaling (Figure 2A). Only few downregulated
gene categories were found, including lysozyme function,
MHC class II responses, and neutrophil degranulation.

IFN-Stimulated Genes in CARDS
ISGs were enriched among upregulated genes in CARDS, but
specifically for CARDS patients without DXM treatment
(Supplementary Figure 3). Among genes differentially ex-
pressed across any condition (CARDS with DXM treatment,
CARDS without DXM treatment, controls), 42 ISGs were iden-
tified (Figure 2B). Most of these (36 genes) were elevated for
CARDS (both with and without DXM treatment) and included
typical responders to acute viral infection like ADAR, ATF3,
IFITM3, IRF1, IRF7, ISG20, and TRIM56. A subset primarily
enriched for CARDS with DXM treatment included ABTB2,
CNP, DDIT4, GALNT2, MAP3K14, PRKD2, SPSB1, SQUE,
SSBP3, and TNK2. Six genes, FCGR1A, FKBPs, GLRX,
LEPR, MSR1, and MT1L, were specifically upregulated for con-
trols and may represent responses to bacterial infection. One
control patient (C07) had an ISG expression signature similar to CARDS patients, suggesting a putative undiagnosed viral infection in that patient.

Inflammatory Signatures During DXM Treatment

When comparing cytokine/chemokine gene expression of IL-1A, IL-1B, IL-2, IL-6, IL-8, IL-11, IL-17A, IL-17B, IL-18, TNF, IFN-α, GM-CF, GCSF, MCP-1, IP-10, and MIP-1-α, only the IL-18 gene was differentially expressed (downregulated) in CARDS compared to controls. None of the genes were differentially regulated in CARDS with DXM treatment versus CARDS without DXM treatment.

DISCUSSION

We identified a distinct RNA expression profile of DXM-treated CARDS patients. Functional analysis of CARDS with DXM treatment revealed upregulation of cellular metabolism and rearrangement functions, enriched pathways for B-cell activation, antigen presentation, and complement responses. ISGs were particularly upregulated in nontreated CARDS patients and contrary to our expectations, key proinflammatory genes did not differ according to DXM treatment.

ARDS involves complex immunopathogenesis, which include influx of inflammatory cells (most notably neutrophils and macrophages), proinflammatory cytokines, proteases, and procoagulant factors in the lungs. A local hyperactive immune response has also been noted in CARDS and the term “cytokine storm” has been widely used to describe its pathophysiology. Although we and others have previously shown a high expression of inflammatory cytokines and chemokines in CARDS patients compared to healthy controls [3, 8], we did not find a differential expression when compared to critically ill controls. However, here we did find a total of 1613 and 317 other differentially expressed genes in CARDS patients with and without DXM treatment, respectively, of which only 53 were upregulated in both groups compared to controls. Although glucocorticoid treatment is known to suppress the production of at least some inflammatory cytokines in other diseases, and has indeed been posited to improve outcome in CARDS by suppressing the “cytokine storm”, we did not observe a differential gene expression according to DXM treatment of proinflammatory mediators in the lungs.

Clinical trials have provided evidence that treatment with DXM reduces mortality in patients hospitalized with COVID-19. Glucocorticoid treatment has, on the other hand, also been associated with increased mortality in other infectious diseases, including influenza. This discrepancy suggests a COVID-19–specific response profile that renders DXM effective, and it has been hypothesized that COVID-19 may induce glucocorticoid insensitivity in the process of modulating host cell activities. In our gene ontology analysis, complement responses, particularly genes related to the classical pathway initiated by antigen-antibody complexes, were upregulated in CARDS with DXM treatment. Complement activation is an important component of the innate immune response to viral infections. However, the clinical role of local complement activation in CARDS remains insufficiently understood. One study found increased levels of soluble C5a correlating with severity of COVID-19 with high expression levels of C5aR1 receptors in blood and pulmonary myeloid cells [9]. In contrast to our finding, studies unrelated to COVID-19 have shown reduced local complement activation following DXM treatment [10]. In addition, we found enriched B-cell signatures in gene ontology analysis, suggesting that DXM preferentially stimulates B-cell immunity to SARS-CoV-2. In line with this, early studies have revealed a direct effect of glucocorticoids on human B-cell survival and development [11]. We also found upregulation of the phagocytic pathway especially FC-γ receptor signaling, which is associated with antibody-bound viruses and concomitant phagocytosis.

Type I IFNs (eg, IFN-α and IFN-β) provide protective immunity against SARS-CoV-2 as highlighted by studies showing that inborn errors of TLR3- and TLR7-dependent antiviral innate immune pathways may underlie severe COVID-19 [12]. Previous in vitro studies of other viral infections have shown that glucocorticoids may suppress type-I IFN-mediated responses by inhibiting intracellular signaling pathways and subsequent expression of ISGs [13]. This correlated well with our observation of enrichment of ISGs specifically in the BALF of CARDS patients without DXM treatment. In addition, we found one distinct cluster of ISGs to be upregulated in CARDS patients with DXM treatment (TNK2, SSBP3, MAP3K14, PPKD2, ABTB2, GALNT2, CNP, SPSB1, SQLE, and DDIT4). Whether differential expression of these ISGs can be exclusively attributed to DXM, or whether enrichment of ISGs in these patients is beneficial, is unknown. Another study performing single-cell RNA sequencing revealed higher levels of ISGs in peripheral blood monocyte-macrophages and T cells from mild versus severe COVID-19 [14], which could suggest that an increased IFN response may be beneficial. Moreover, lung expression profiles in autopsy material from COVID-19 patients found a significantly longer hospitalization time for patients with low ISG expression compared to patients with high ISG expression [15]. Taken together, these results could point toward a dual and time-dependent role of the interferon response.

In contrast to prior COVID-19 studies assessing the local pulmonary immune response, in which BALF was primarily collected on clinical indication at a later stage and at the clinician’s discretion regarding site and volume of lavage, a strength of our study is the per protocol BAL sampling in the early course of severe disease progression using a uniform cross-sectional approach. Although we were able to identify specific DXM treatment effects, our sample size is small, which prevents us from adjusting for certain clinical factors such as
symptom or treatment duration, and results should be con-
Firmed in larger studies with several time points. Our results
provide further insight into the pulmonary host response of
CARDs and potential effects of DXM treatment, but they
also raise several important questions and specifically challenge
the idea that DXM damps a local “cytokine storm”.

Supplementary Data

Supplementary materials are available at *The Journal of
Infectious Diseases* online (http://jid.oxfordjournals.org/).
Supplementary materials consist of data provided by the author
that are published to benefit the reader. The posted materials
are not copyedited. The contents of all supplementary data
are the sole responsibility of the authors. Questions or messages
regarding errors should be addressed to the author.

Notes

Acknowledgments. We thank all the patients and their fam-
ilies for their participation. We thank Anna Louise Sørensen for
her outstanding technical laboratory assistance. We thank the
clinical staff and nurses at the Department of Anesthesiology
and Intensive Care for their dedicated contribution.

Author contributions. U. F., A. R., R. M. G. B., J. B., and
R. R. P. contributed to the initial analysis protocol and design
of the study. R. R. P. was responsible for patient recruitment. A. R., A. U.,
and R. R. P. were responsible for bronchoalveolar lavage fluid collection and processing. U. F.
was responsible for transcriptomic experiments and U. F.,
A. R., and T. K. H. S. were responsible for transcriptomic analyses
and data processing. U. F. and A. R. prepared the first draft of
the manuscript and completed all revisions. R. M. G. B., J. B.,
and R. R. P. handled funding. All authors provided critical in-
put at all stages, interpreted the data, and were involved in
drafting and editing of the manuscript.

Financial support. The study was supported by the
Lundbeck Foundation (grant number R349-2020-540 to
A. R., R. P., and R. M. G. B.); the Independent Research
Fund Denmark (grant number 8020-00391B to J. B.); the
Danish Cancer Society (grant number R204-A12639 to J. B.);
and the Novo Nordisk Foundation (grant numbers
NNF19OC0054518 and NNF19OC0055462 to J. B.,
NNF21OC0067157 to T. H. M.).

Potential conflicts of interest. All authors: No reported con-
flicts of interest. All authors have submitted the ICMJE Form
for Disclosure of Potential Conflicts of Interest. Conflicts that
the editors consider relevant to the content of the manuscript
have been disclosed.

Data availability. All data produced in the present study are
available upon reasonable request to the authors.

References

1. Tzotzos SJ, Fischer B, Fischer H, Zeitlinger M. Incidence of
ARDS and outcomes in hospitalized patients with
COVID-19: a global literature survey. Crit Care 2020;
24:516.

2. Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bron-
choalveolar immune cells in patients with COVID-19. Nat
Med 2020; 26:842–84.

3. Ronit A, Berg RMG, Bay JT, et al. Compartmental immu-
no-phenotyping in COVID-19 ARDS: a case series. J
Allergy Clin Immunol 2021; 147:81–91.

4. Saris A, Reijnders TDY, Nossent EJ, et al. Distinct cellular
immune profiles in the Airways and blood of critically ill
patients with COVID-19. Thorax 2021; 76:1010–19.

5. Ramírez S, Fernandez-Antunez C, Galli A, et al. Overcoming
culture restriction for SARS-CoV-2 in human
cells facilitates the screening of compounds inhibiting viral
replication. Antimicrob Agents Chemother 2021; 65:
e009721.

6. Tomlinson JE, Wolfsberg R, Fahnoe U, et al. Pathogenesis,
microRNA-122 gene-regulation, and protective immune
responses after acute equine hepacivirus infection.
Hepatology 2021; 74:1148–63.

7. Dittmann M, Hoffmann HH, Scull MA, et al. A serpin
shapes the extracellular environment to prevent influenza
virus maturation. Cell 2015; 160:631–43.

8. Zhou Z, Ren L, Zhang L, et al. Heightened innate immune
responses in the respiratory tract of COVID-19 patients.
Cell Host Microbe 2020; 27:883–90.

9. Carvelli J, Demaria O, Vély F, et al. Association of
COVID-19 inflammation with activation of the C5a–
C5aR1 axis. Nature 2020; 588:146–50.

10. Surace L, Lysenko V, Fontana AO, et al. Complement is a
central mediator of radiotherapy-induced tumor-specific
immunity and clinical response. Immunity 2015; 42:767–77.

11. Kovacs WJ. To B or not to B? Glucocorticoid impact on B
lymphocyte fate and function. Endocrinology 2014; 155:
339–41.

12. Zhang Q, Liu Z, Moncada-Velez M, et al. Inborn errors of
type I IFN immunity in patients with life-threatening
COVID-19. Science 2020; 370:eabd4570.

13. Marcellini A, Swieboda D, Guedán A, et al. Glucocorticoids
impair type I IFN signalling and enhance rhinovirus repli-
ation. Eur J Pharmacol 2021; 893:173839.

14. Xu G, Qi F, Li H, et al. The differential immune responses
to COVID-19 in peripheral and lung revealed by single-cell
RNA sequencing. Cell Discov 2020; 6:73.

15. Nielsen R, Ciani Y, Koelzer VH, et al. Two distinct
immunopathological profiles in autopsy lungs of
COVID-19. Nat Commun 2020; 11:5086.