Laurent Clozel

Minoration universelle de certaines intégrales quadratiques des fonctions L automorphes

Volume 360 (2022), p. 1087-1092

https://doi.org/10.5802/crmath.327

This article is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l’édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569
Minoration universelle de certaines intégrales quadratiques des fonctions L automorphes

Laurent Clozel*,a

a Mathématiques, Université Paris-Sud, Bâtiment 307, rue Michel Magat, 91405 Orsay Cedex, France
Courriel: clozel@math.u-psud.fr

Résumé. Soit π une représentation cuspidale unitaire de $GL(m, \mathbb{A})$, où \mathbb{A} désigne l’anneau des adèles du corps \mathbb{Q} des rationnels. Soit $L(s, \pi)$ sa fonction L. On introduit une minoration universelle des intégrales
\[\int_{-\infty}^{+\infty} \left| L(1/2 + it, \pi) \right|^{2} \left(1/2 + it - s \right) \frac{dt}{1 + it} \geq \pi \log 2 (A) \]

\[\int_{-\infty}^{+\infty} \left| L(1/2 + it, \pi) \right|^{2} \frac{dt}{1 + it} \geq \pi (C) \]

où s est égal à 0 ou à un zéro de $L(s, \pi)$ dans la bande critique. On esquisse la démonstration pour $m \leq 2$ et sous quelques hypothèses sur π. Celle–ci repose sur la transformation de Mellin. On donne une application à l’abscisse de convergence de la série de Dirichlet $L(s, \pi)$. Des résultats plus complets seront donnés dans un article à paraître ainsi que son Appendice.

Manuscrit reçu le 8 décembre 2021, révisé le 11 janvier 2022, accepté le 12 janvier 2022.

Abridged version

Let π be a cuspidal, unitary representation of $GL(m, \mathbb{A})$, where \mathbb{A} denotes the ring of adèles of the rational field \mathbb{Q}. Let $L(s, \pi)$ be its L–function. In this section, we exclude the case where $L(s, \pi)$ has a pole, i.e., where $m=1$ and π is a character of the idèle group factoring through the idèle norm.

The paper is concerned with the following universal inequalities:
\[\int_{-\infty}^{+\infty} \left| L(1/2 + it, \pi) \right|^{2} \left(1/2 + it - s \right) \frac{dt}{1 + it} \geq 2\pi \log 2 (A) \]

\[\int_{-\infty}^{+\infty} \left| L(1/2 + it, \pi) \right|^{2} \frac{dt}{1 + it} \geq \pi \left(\frac{\pi}{2}\right) (C) \]

The Note studies the case where these integrals are known to be finite, i.e., $m \leq 2$.

The proof relies on a relation between these quotients of $L(s, \pi)$ and a certain function $H_s(x)$. Let $L(s, \pi) = \sum_{n} a_n n^{-s}$; we define, for $x \geq 0$ and π satisfying our assumptions:
\[A_{\pi}(x) \equiv \sum_{n \leq x} a_n n^{-s}, \]
\[H_{\pi}(x) = x^{s-1} \sum_{n \leq x} a_n n^{-s}. \]

* Auteur correspondant.
The basic relation is, $\mathcal{M} f(w)$ denoting the Mellin transform of a function f on \mathbb{R}_+:

$$
\mathcal{M} H_s(w) = \frac{L(1-w, \pi)}{1-w-s}
$$

where $s = 0$ (identity (C)) or s is a zero of $L(s, \pi)$ in the critical strip (identity (A)).

In order to make sense of this identity for $\Re(w) = \frac{1}{2}$, we need a growth estimate for A_s when $x \to \infty$. If $s = 0$, such estimates are due to Landau (1915) and to Friedlander and Iwaniec [2]. In the paper [1] announced in this Note, we extend the Friedlander–Iwaniec method to the case where s is in the critical strip. If furthermore $L(s, \pi) = 0$, we are then able for $m \leq 2$ to obtain the identity (3) in a vertical strip containing the critical line. In both cases, the inequalities (A) and (C) then follow from the Parseval equality for the Mellin transform.

The estimate on (A) can also be used to show that the abscissa of convergence σ_c of $L(s, \pi)$ verifies $\sigma_c \leq 1 - \frac{2}{m+1}$ (for any m).

1. Introduction

1.1.

Soit π une représentation unitaire cuspidale de $GL(m, \mathbb{A})$ où \mathbb{A} est l’anneau des adèles de \mathbb{Q}. Soit $L(s, \pi)$ sa fonction L. Plus généralement, on peut considérer une représentation $\pi = \pi_1 \times \pi_2 \times \cdots \times \pi_r$, où $m = m_1 + m_2 + \cdots + m_r$, π_i est une représentation cuspidale unitaire de $GL(m_i, \mathbb{A})$, et \times désigne l’induction à partir du parabolique de blocs (m_1, \ldots, m_r). Ainsi

$$
L(s, \pi) = L(s, \pi_1) \cdots L(s, \pi_r).
$$

Nous supposons que $L(s, \pi)$ a au plus un pôle simple, en $s = 1$. Ainsi il y a plus une occurrence de $m_i = 1$, $\pi_i(x) = |x|^c (x \in \mathbb{A}^\times)$; et nous supposons alors que $c = 0$, de sorte que $L(s, \pi_1) = \zeta(s)$. On dira alors que $L(s, \pi)$ contient un facteur ζ.

Rappelons que $L(s, \pi)$ peut être complétée par un facteur archimédien $L(s, \pi_\infty)$, qui peut être écrit

$$
L(s, \pi_\infty) = c(\pi_\infty)^s \prod_{i=1}^m \Gamma \left(\frac{s+c_i}{2} \right)
$$

où $c(\pi_\infty)$ est une constante. On associe aussi à π un conducteur D, entier positif. Voir Jacquet [4] ainsi que [5]. On pose

$$
\Lambda(s, \pi) = D^{s/2} L(s, \pi_\infty) L(s, \pi);
$$

alors $\Lambda(s, \pi)$ vérifie l’équation fonctionnelle

$$
\Lambda(s, \pi) = \varepsilon(\pi) \Lambda(1-s, \bar{\pi})
$$

où $|\varepsilon(\pi)| = 1$ et $\bar{\pi}$ est la représentation duale.

Nous énonçons les théorèmes annoncés dans cette Introduction sous l’hypothèse suivante.

Hypothèse H.

(i) $m \leq 2$

(ii) Le facteur archimédien π_∞ de π est autodual

(iii) π vérifie la conjecture de Ramanujan : les facteurs π_v de π sont tempérés (en toutes les places v de \mathbb{Q}).

Si $m = 1$, π est donc un caractère de Dirichlet. Si $m = 2$, $L(s, \pi)$ est le produit de deux fonctions L de Dirichlet (dont peut-être la fonction ζ) ou π est cuspidale tempérée, π_∞ étant autoduale.

Soit $s = \frac{1}{2} + i \tau$ un zéro de $L(s, \pi)$ sur la droite critique.
Theorem A. \((L(s,\pi) \text{ sans facteur } \zeta)\)

\[
\int_{-\infty}^{+\infty} \left| \frac{L(1/2+it,\pi)}{1/2+it-s} \right|^2 dt > 2\pi \log 2.
\]

(on ne confondra pas la représentation \(\pi\) et le nombre \(\pi = 3,141592\ldots\))

Si \(L(s,\pi)\) contient un facteur \(\zeta\), le résultat est différent :

Theorem B.

\[
\int_{-\infty}^{+\infty} \left| \frac{L(1/2+it,\pi)}{1/2+it-s} \right|^2 dt > 2\pi \left(\log 2 - \frac{2|\kappa|}{1-s} \right)
\]

où \(\kappa\) est le résidu en \(s = 1\) de \(L(s,\pi)\).

Les deux résultats qui suivent ont été suggérés par Peter Sarnak. On remarquera que \(s = 0\) n'est pas en général un zéro de \(L(s,\pi)\).

Theorem C. \((L(s,\pi) \text{ sans facteur } \zeta)\).

\[
\int_{-\infty}^{+\infty} \left| \frac{L(1/2+it,\pi)}{1/2+it-s} \right|^2 dt > \pi
\]

Theorem D. Dans le cas général

\[
\int_{-\infty}^{+\infty} \left| \frac{L(1/2+it,\pi)}{1/2+it} \right|^2 dt > \frac{\pi}{2}.
\]

1.2.

Sous l’hypothèse que \(m \leq 2\), les intégrales figurant dans les théorèmes A–D sont finies. Ceci résulte de théorèmes classiques quand les fonctions \(L\) sont des fonctions \(L\) de Dirichlet, et d’un théorème de Michel et Venkatesh [6] pour \(L(s,\pi)\), \(\pi\) étant une représentation cuspidale de \(GL(2)\). En général, la finitude résulterait évidemment d’une approximation de l’hypothèse de Lindelöf généralisée, cf. [3, Corollary 5.20]. On peut cependant considérer que les théorèmes A–D sont vrais si les intégrales sont infinies. Avec cette interprétation, Peter Sarnak a remarqué qu’ils pouvaient être démontrés, sans hypothèse sur \(\pi\) autre que d’être induite de cuspidales unitaires. La démonstration figurera dans l’Appendice de [1].

2. Esquisse de démonstrations \((m = 2)\)

2.1.

Nous nous limitons dans cette Note au cas où \(\pi\) est une représentation de \(GL(2,A)\) vérifiant l’hypothèse \(H\). Pour \(s = 0\), ou \(Re(s) \in]0,1[,\) posons pour \(x \geq 0\)

\[
A_s(x) = \sum_{n \leq x} a_n n^{-s} \quad (4)
\]

\[
H_s(x) = x^{s-1} \sum_{n \leq x} a_n n^{-s} - \frac{\kappa}{1-s}. \quad (5)
\]

\(\text{Le cas où } m = 1\) est évidemment plus facile. Voir [1, § 1.4, § 3.2].
On considère la transformée de Mellin de H_s :

$$\mathcal{M}H_s(w) = \int_0^\infty H_s(x)x^{w-1}\,dx.$$

(6)

Pour définir $\mathcal{M}H_s$, nous avons besoin d’estimer la croissance de $H_s(x)$.

Considérons tout d’abord H_0. Dans ce cas (pour m arbitraire, $m > 1$, et π vérifiant nos conditions), Friedlander et Iwaniec ont démontré le théorème suivant [2].

Théorème 1 (Friedlander–Iwaniec). On suppose $m > 1$.

$$A_0(x) - \kappa x = O_\varepsilon \left(x^{1-\frac{2}{m+1}+\varepsilon}\right)$$

(i)

$$H_0(x) = O_\varepsilon \left(x^{-\frac{2}{m+1}+\varepsilon}\right).$$

(ii)

(Les constantes implicites ne dépendent que de ε, du conducteur arithmétique D de π et du paramètre de Langlands de π_∞). Un résultat analogue, sous des hypothèses différentes sur π_∞, est dû à Landau (1915) ; voir [1, Theorem 2.1].

Pour $m = 2$, on voit donc que $H_0 \in L^2(\mathbb{R}_+)$, et que $\mathcal{M}H_0(w)$ est défini et holomorphe pour $0 < Re\,w < \frac{2}{3}$. Il résulte alors de la formule de Parseval pour la transformée de Mellin [7, Theorem 71] que $\mathcal{M}H_0(\frac{1}{2} + it)$ est une fonction L^2 de t et que

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left|\mathcal{M}H_0\left(\frac{1}{2} + it\right)\right|^2 \,dt = \int_0^\infty |H_0(x)|^2 \,dx.$$

(7)

Il reste à calculer

$$\mathcal{M}H_0(w) = \int_0^\infty \left(x^{-1} \sum_{n \leq x} a_n - \kappa\right) x^{w-1}\,dx.$$

Le calcul est élémentaire, en utilisant l’estimée du théorème 1 On obtient

$$\mathcal{M}H_0(w) = \frac{L(1-w, \pi)}{1-w}.$$

Il résulte alors de (7) que

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left|\frac{L(1/2 + it, \pi)}{1/2 + it}\right|^2 \,dt = \int_0^\infty |H_0(x)|^2 \,dx.$$

Si $\kappa = 0$, l’intégrale de droite est minorée par $\int_1^2 x^{-2}\,dx = \frac{1}{2}$; en général, un calcul simple montre que $\int_0^1 |k|^2 \,dx + \int_1^2 |x^{-1} - \kappa|^2 \,dx \geq \frac{1}{4}$. D’où les théorèmes C et D.

Remarque. Il résulte en particulier de ce calcul que $\frac{L(1/2+it, \pi)}{1/2+it}$ est une fonction L^2 de t. On a en fait, d’après un résultat de sous–convexité de Michel et Venkatesh [6], $|L(1/2 + it)| = O(|t|^{1/2-\delta})$ pour $\delta > 0$.

Remarque. En fait, on l’a vu, $\mathcal{M}H_{0}$ est définie et holomorphe pour $\tau = Re(w) < \frac{2}{3}$, de plus $H_0(x)x^{\tau+i-t-1} \in L^2(\mathbb{R})$. Il résulte de nouveau des propriétés de la transformée de Mellin [7] que $\int_{-\infty}^{+\infty} \left|\frac{L(\tau+it, \pi)}{\tau+it}\right|^2 \,dt < \infty$ si $\tau > \frac{1}{3}$ (par le changement de variable $w \rightarrow 1 - w$). On peut vérifier que ceci n’est pas impliqué par le résultat de sous–convexité.

2.2.

Pour démontrer, de façon analogue, les théorèmes A et B, il nous faut obtenir une estimée pour $A_s(x)$ et $H_s(x)$. Nous sommes donc amené à reprendre la démonstration de Friedlander–Iwaniec. Le résultat est le suivant. Nous revenons au cas de m arbitraire (> 1) et nous supposons que π vérifie l’hypothèse H (hormis $m \leq 2$.)

Théorème 2. Soit $s = \sigma + it$, $0 < \sigma < 1$. On suppose $m > 1$. Alors, pour x assez grand,

$$A_s(x) = \frac{\kappa}{1-s} x^{1-s} + L(s, \pi) + O\left(x^{1-\frac{2}{m+1}-\sigma+\varepsilon}\right).$$

La démonstration est donnée dans [1, Theorem 2.2]. (Pour x supérieur à une constante X de l’ordre de $D^{1/2}$, la constante implicite ne dépend que de ε, D, τ et des paramètres de π_{∞}.)

Corollaire. *Sous les mêmes hypothèses, si $L(s, \pi) = 0$,*

\[H_s(x) = O \left(x^{-\frac{1}{2m} + \varepsilon} \right). \]

On a donc la même majoration que pour H_0. Revenons au cas $m = 2$. Alors $\mathcal{M} H_4(w)$ est, de nouveau, défini et holomorphe pour $0 < Re(w) < \frac{2}{3}$. La fonction $H_s(x)$ appartient à $L^2(\mathbb{R}_+)$; on calcule explicitement sa transformée de Mellin ; si $L(s, \pi) = 0$,

\[\mathcal{M} H_4(w) = \frac{L(1 - w, \pi)}{1 - s - w}. \]

En particulier on a alors

\[\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left| L(\frac{1}{2} + it, \pi) \right|^2 \left| \frac{1}{2} + it - s \right| dt = \int_0^{\infty} |H_s(x)|^2 \, dx. \quad (8) \]

Si $L(s, \pi)$ n’a pas de pôle, le membre de droite est minoré par $\int_1^2 x^{2\sigma - 2} \, dx = \log 2$ si $\sigma = \frac{1}{2}$; d’où le théorème A (noter qu’on obtient une minoration explicite même si s n’est pas sur la droite critique). Si $\kappa \neq 0$, un calcul simple montre que $\int_0^2 |H_s(x)|^2 \, dx$ est minoré, si $\sigma = \frac{1}{2}$, par $\frac{1}{2} \log 2$. On a aussi $\int_1^2 |x^{s-1} - \frac{s}{1-x^2}|^2 > \log 2 - \frac{2|s|}{1-|s|}$, estimée meilleure pour $|s|$ grand.

Comme dans le cas où $s = 0$, on peut étendre l’identité (8), en remplaçant l’abscisse $\tau = \frac{1}{2}$ par $\tau > \frac{1}{2}$ (cf. les remarques suivant le théorème 1).

3. Applications et extrapolations du théorème 2

3.1.

Pour m arbitraire, supposons π cuspidale (et non triviale si $m = 1$), ainsi que l’hypothèse H, hormis $m \leq 2$.

D’après le théorème 2, on a alors

\[\sum_{n \leq x} a_n n^{-s} = L(s, \pi) + O \left(x^{1-\frac{2}{m+1} - \sigma + \varepsilon} \right). \]

On en déduit :

Théorème 3. *Pour π cuspidale (vérifiant l’hypothèse H) et non triviale, la série de Dirichlet $L(s, \pi)$ est convergente pour $\sigma > 1 - \frac{2}{m+1}$.*

On peut affirmer davantage sous une conjecture de Friedlander–Iwaniec [2, Conjecture 2] :

Conjecture (Friedlander–Iwaniec). *Pour x assez grand, $A_0(x) \ll x^{\frac{m-1}{2m}} + \varepsilon$.*

En admettant que ceci donne, comme dans le théorème 2, la majoration $A_s(x) \ll x^{\frac{m-1}{2m} - \sigma + \varepsilon}$, on peut alors conjecturer, pour l’abscisse de convergence σ_ε de $L(s, \pi)$,

\[\sigma_\varepsilon \leq \frac{1}{2} - \frac{1}{2m}. \quad (9) \]

Un argument simple de convexité montre d’ailleurs (inconditionnellement) que

\[\sigma_\varepsilon \geq \frac{1}{2} - \frac{1}{m}. \quad (10) \]

(En particulier $\sigma_\varepsilon \geq 0$ si $m \geq 2$, et aussi bien sûr si $m = 1$). Je ne sais pas quelle devrait être la valeur correcte de σ_ε. En supposant la conjecture précédente, et l’amélioration correspondante du reste dans le théorème 2, on peut alors reprendre l’argument de la remarque 2.1. On trouve (grâce à la transformation de Mellin) que $\frac{L(i+1 \tau)}{\pi(i+1 \tau)}$ est une fonction L^2 de t si $\frac{1}{2} - \frac{1}{2m} < \tau \leq \frac{1}{2}$. Il est facile de voir que ceci est impliqué par l’hypothèse de Lindelöf généralisée.
4. Questions

On peut évidemment se demander si, par exemple, les minorations du théorème A et du théorème C sont optimales. Dans le cas du théorème A ou B, on peut aussi demander si l’intégrale quadratique peut rester bornée quand le zéro \(s \) tend vers l’infini. Ceci semble peu probable. Pour la fonction \(\zeta \) de Riemann, on a par exemple le résultat suivant.

Soit \(\mu \) un ordre de \(\zeta(s) \) sur la droite \(\sigma = 1/2 : |\zeta(1/2 + it)| \ll |t|^{\mu + \epsilon} (|t| \to \infty) \); par exemple \(\mu = \frac{1}{6} \).

Théorème 4. Supposons que, pour une suite \((s) \) de zéros de \(\zeta \) sur la droite critique,

\[
I(s) = \int_{-\infty}^{+\infty} \left| \frac{\zeta(1/2 + it)}{1/2 + it - s} \right|^2 dt
\]

reste borné. Soit \(\mu \) un ordre de \(\zeta \) sur la droite critique.

Alors, pour de tels \(s = 1/2 + i\tau \),

\[
\zeta'(s) \ll \tau^{\mu / 3 + \epsilon}.
\]

Bien que la conclusion soit probablement vraie, il semble peu plausible qu’elle puisse être ainsi démontrée.

Terminons en remarquant que pour un corps global \(F \) de fonctions, on a un analogue évident du théorème C; dans ce cas on trouve que la borne inférieure peut être approchée arbitrairement si \(m, F \) et \(\pi \) sont convenablement choisis.

Références

[1] L. Clozel, P. Sarnak, « A universal lower bound for certain quadratic integrals of automorphic \(L \)-functions », https://arxiv.org/abs/2203.12475, 2022.
[2] J. B. Friedlander, H. Iwaniec, « Summation formulae for coefficients of \(L \)-functions », *Can. J. Math.* 57 (2005), n° 3, p. 494-505.
[3] H. Iwaniec, E. Kowalski, *Analytic number theory*, Colloquium Publications, vol. 53, American Mathematical Society, 2004.
[4] H. Jacquet, « Principal \(L \)-functions of the linear group », in *Automorphic forms, representations and \(L \)-functions*, Proceedings of Symposia in Pure Mathematics, vol. 33, American Mathematical Society, 1979, p. 63-86.
[5] H. Jacquet, I. I. Piatetski-Shapiro, J. A. Shalika, « Conducteur des représentations du groupe linéaire », *Math. Ann.* 256 (1981), n° 2, p. 199-214.
[6] P. Michel, A. Venkatesh, « The subconvexity problem for \(GL_2 \) », *Publ. Math., Inst. Hautes Étud. Sci.* 111 (2010), p. 171-271.
[7] E. C. Titchmarsh, *Introduction to the theory of Fourier integrals*, third éd., Chelsea Publishing, 1986.