The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes

Sung-Young Shin1,*, Taeyong Kim2,*, Ho-Sung Lee1,3, Jun Hyuk Kang1,3, Ji Young Lee2, Kwang-Hyun Cho1,3 & Do Han Kim2

How cell fate (survival or death) is determined and whether such determination depends on the strength of stimulation has remained unclear. In this study, we discover that the cell fate of cardiomyocytes switches from survival to death with the increase of β-adrenergic receptor (β-AR) stimulation. Mathematical simulations combined with biochemical experimentation of β-AR signalling pathways show that the gradual increment of isoproterenol (a non-selective β1/β2-AR agonist) induces the switching response of Bcl-2 expression from the initial increase followed by a decrease below its basal level. The ERK1/2 and ICER-mediated feed-forward loop is the hidden design principle underlying such cell fate switching characteristics. Moreover, we find that β1-blocker treatment increases the survival effect of β-AR stimuli through the regulation of Bcl-2 expression leading to the resistance to cell death, providing new insight into the mechanism of therapeutic effects. Our systems analysis further suggests a novel potential therapeutic strategy for heart disease.
Recent systems biological studies have greatly advanced our understanding of key biological processes, such as cell fate decisions (survival or death), in various cell lineages1–5. The mechanistic modelling of biological systems has enabled the identification of feedback and feed-forward loops in signalling networks2, which is essential for discovering the basic principles of cell fate decisions. According to Nakakuki et al.3, the distinct cell fate decision occurs through a coherent feed-forward loop that is interlinked with transcriptional negative feedback loops for epidermal growth factor and heresulin, whereas Chen et al.2 found that the homeostatic balance between precursor and differentiated cells is determined by the negative feedback mediated by Ras. In addition, Santos et al.4 found that different types of feedback loops work together for cell fate determination, depending on the type of growth factor stimulation.

In spite of advances in the mechanistic understanding of the cell fate decision through signalling networks, systematic studies to address the dependency of the cell fate decision on the strength of external stimuli for receptors such as the β-adrenergic receptor (β-AR) have not been conducted. The cardiomyocyte is an excellent model system for exploring these questions because cardiac cells are usually exposed to a wide concentration range of external stimuli under physiological conditions6–9. Moreover, multiple lines of experimental evidence have proposed that a prolonged β-AR stimulation can induce the cell death of cardiomyocytes10,11 and that the resulting reduction of cardiac contractility is related to the pathophysiology of heart failure10,12, suggesting the importance of β-AR signalling in controlling the progression of heart failure.

Previous studies have suggested that the β1-adrenergic receptor (β1-AR) transduces the ‘death’ signal via the cAMP-dependent signalling pathway, whereas the β2-AR transduces the ‘survival’ signal via the Gq-coupled signalling pathway13,14. Such distinct roles for β1-AR and β2-AR were further supported by β1-/-β2-AR double knockout mice15 and cardiac-specific overexpression of β1-AR and β2-AR16. Under physiological conditions, however, β-AR agonists such as isoproterenol (ISO) and catecholamine bind non-specifically to both types of receptors, which is puzzling because such non-specific binding should then convey both ‘survival’ and ‘death’ signals simultaneously17. In addition, β1-AR and β2-AR share some of their downstream signalling pathways, which are interlinked with each other through complicated feedback regulations18. Considering the structure of the β-AR signalling network and the non-specific binding characteristics of β-AR agonists, it is unclear how the β-AR subtypes are involved in the decision of cell survival or death. Rather, it is likely that the cell fate decision is the emergent outcome of collective interactions among various signalling molecules in the network.

Since Saucerman et al.19 developed a mathematical model that integrates β-AR signalling with excitation–contraction coupling, the β-AR model has been evolved for various research purposes20,21. All of these models, however, have addressed the functional roles of the β-AR signalling pathway that are associated with excitation–contraction coupling processes in cardiomyocytes without considering the cell fate decision. In the present study, we developed a novel and comprehensive mathematical model for the β-AR signalling network by integrating signal transduction, transcriptional regulation and Ca2+ regulation, all of which are closely associated with the cell fate decision in cardiomyocytes.

Through the model simulation and experimental validation, we found that a gradual increase of ISO induces a switching response of Bcl-2 and the resulting cell fate determination, which shows an initial increase of Bcl-2 and cell survival followed by a subsequent decrease of Bcl-2 and cell death. We further revealed that the ERK1/2 and ICER-mediated incoherent feed-forward loop is primarily responsible for such a differential response of Bcl-2 to the different range of ISO concentration. We also found that β1-blocker enhances the resistance of cardiomyocytes to cell death by expanding the survival range of the switching response curve of Bcl-2, providing a new insight into the mechanism of therapeutic effects and a novel potential therapeutic strategy.

Results

The mathematical model of the β-AR signalling network. We have developed a novel and comprehensive mathematical model of the β-AR signalling network of cardiomyocytes to investigate the hidden cellular decision mechanism of cell survival or death. The reconstructed β-AR signalling network was based on the classical cAMP-protein kinase A (PKA) signalling pathway19,22, where all the interactions between signalling molecules were determined by extensive survey of available experimental data (see Supplementary Note 1 for details). The schematic diagram for the reconstructed β-AR signalling network has four major modules (cAMP-PKA signalling, the central feedback regulation, ERK1/2 signalling and Ca2+ regulation) (Fig. 1).

Our model comprises 32 state variables and 105 kinetic parameters (see Supplementary Tables 1–4). The total protein concentrations (constant values) were estimated from our RNA-seq data23 (see Supplementary Table 5 for details). To estimate the kinetic parameter values, we used time course data for signalling molecules in the network, such as ERK1/2, SOS/Grb2, CREB, ICER, CaMKII, PDE3, cAMP and PKA. As shown in Fig. 2, the simulation data fit well to the experimental data (Fig. 2a–i).

Figure 1 | A schematic diagram for the β-AR signalling network. The β-AR signalling network comprises four modules: the cAMP-PKA signalling module (thick grey arrow), the central feedback regulatory module (thick red arrow and orange square), the ERK1/2 signalling module (thick blue arrow) and the Ca2+ regulatory module (thick purple arrow and purple square). β1-AR, β1-adrenergic receptor; β2-AR, β2-adrenergic receptor; Gs, stimulatory G protein; Gi, inhibitory G protein; AC, adenyl cyclase; CN, calcineurin; ICER, inducible cAMP early repressor; RSK, stress-activated protein kinase; MSK, mitogen-activated protein kinase.
Isoproterenol induces dose-dependent cell survival or death. It has been suggested that the survival or death of cardiomyocytes is determined by the receptor type13,14. For example, β_1- and β_2-AR mediate the death and survival signal, respectively. On the other hand, Henaff et al.24 reported that a specific concentration range (0.01–1 μM) of epinephrine protects cardiomyocytes from apoptosis. To examine the hypothesis that the cell fate of cardiomyocytes depends on the β_2-agonist concentration, we simulated the cellular responses to β-AR signalling by using three representative ISO concentrations: 10 pM, 10 nM and 10 μM. The simulation results showed contrasting time courses of signalling with respect to different ISO concentrations (Fig. 3a–f; see also Supplementary Fig. 2 for the expression patterns of all the signalling components). Active PKA, p-CREB, ICER and PDE3 showed transient response profiles at 10 pM and 10 nM, whereas sustained response profiles appeared at 10 μM. Note that p-ERK1/2 showed a transient response profile at 10 pM but showed sustained response profiles at 10 nM and 10 μM. All of these time course profiles are compatible with the previous findings that showed a transient response to lower ISO stimulation and a sustained response to higher ISO stimulation (Fig. 3a–e). Interestingly, Bcl-2 exhibited distinct response profiles (Fig. 3f); it showed transient and sustained responses for 10 pM and 10 nM, respectively, but it showed an initial increase followed by a subsequent decrease to below its basal level (~50%) on stimulation with 10 μM ISO.

For further investigation of cellular responses over a broad concentration range of ISO, we simulated dose–response profiles for each signalling molecule at ISO concentrations that ranged from 10^{-12} to 10^{-3} M. The active PKA, phospho-CREB, phospho-ERK1/2 and ICER increased monotonically along with the increase of ISO concentration, whereas PDE3 decreased since ICER transcriptionally represses its induction (Fig. 3g–k). However, Bcl-2 exhibited a quite distinct ‘switching response’ profile, with an initial increase at the nanomolar concentration range of ISO followed by a further decrease to below its basal level (~50%) in a micromolar concentration range (Fig. 3l). Bcl-2 is known to inhibit mitochondrial apoptosis and necrosis26,27, and the survival effect of Bcl-2 is largely supported by other findings such as the reduction of ATP consumption and the inhibition of autophagy28–30. Therefore, the increase of Bcl-2 can protect cardiomyocytes from cell death, whereas its decrease can promote cell death31–33. Together our simulation results show that the survival or death of cardiomyocytes might depend on the stimulation strength of β-AR, given by ISO concentration in our study, through the regulation of the expression level of Bcl-2.

To verify this possibility, we stimulated isolated adult cardiomyocytes over a broad concentration range of ISO.
Figure 3 | ISO induces the switching response of Bcl-2. Time-dependent PKA activation (a), CREB phosphorylation (b), ICER expression (c), PDE3 expression (d), ERK1/2 phosphorylation (e) and Bcl-2 expression (f) in response to three different concentrations of ISO: 10 pM (grey line), 10 nM (blue line) and 10 μM (red line). The time courses of these signalling molecules were quite distinct depending on the ISO concentration. The dose-response profile of PKA activation (g), CREB phosphorylation (h), ICER expression (i), PDE3 expression (j), ERK1/2 phosphorylation (k) and Bcl-2 expression (l) for the indicated ISO concentration range are also shown. Each dose response (g–l) was observed at 24 h after the ISO stimulation. Active PKA, p-CREB, ICER, PDE3 and p-ERK1/2 showed sigmoidal dose-response profiles, and Bcl-2 expression increased at the nanomolar concentration range; however, it then decreased to further below its basal level at a micromolar concentration range. The data represent means ± s.e.m. for the repetitive simulations (n = 100) over up to 20% random variation of parameter values. *P < 0.05; **P < 0.01; ***P < 0.001 compared with control group; Student’s t-test.
transcription-PCR (qRT–PCR) analysis of pro- and anti-apoptotic family members that are known to be regulated by cAMP (for example, Bim and IAP family members). The expression levels of the pro-apoptotic proteins Xiap, cIAP2 and Bim did not show any significant changes in response to ISO stimulation even at 1 μM. The anti-apoptotic protein cIAP1 was transiently increased for the initial 12 h and then decreased to its basal level; however, this change does not seem to be relevant to the induction of cell death by ISO at the higher concentration since the upregulation of such anti-apoptotic protein may not cause apoptosis (Supplementary Fig. 5). Taken together, the previous evidence10,34,35 and the present results suggest that Bcl-2 is an important mediator that determines the survival or death of cardiomyocytes depending on the concentration of ISO.

To validate the survival effect of ISO, we counted the number of live cardiomyocytes that contained intact sarcomeric structures by time-lapse live-cell imaging (see Supplementary Movies 2–8) because disruption of the sarcomeric structure is the key morphological feature for apoptotic cardiomyocytes (see Supplementary Movies 9 and 10).31,36 The survival rate of cardiomyocytes increased substantially only at 10 nM (Fig. 4g–j), which is consistent with the ELISA results. Note that the...
contrastng cell fate determination becomes evident for any longer duration than 6 h of stimulation irrespective of the ISO level, while the cell fate determination does not change by the duration of the stimuli (Supplementary Fig. 6). Collectively, these results suggest that the strength of β-AR stimulation determines cell fate in cardiomyocytes.

As shown previously, we also quantified the relative amount of apoptosis by measuring the expression ratio of Bax (a pro-apoptotic counterpart of Bcl-2) to Bcl-2 (refs 37,38). The expression of Bax was almost constant over the indicated concentration range of ISO (Supplementary Fig. 7), but Bcl-2 showed a switching response curve (Fig. 4a,c), as predicted from our model simulation (Fig. 3i).

Identification of the core circuit for cell fate switching. To identify the core regulatory circuit of the β-AR signalling network that is responsible for the Bcl-2 switching response profile, we applied the coarse-graining method that can reduce the complexity of a network while keeping its essential regulatory features39,40. Using this method, we clustered all the signalling components into a set of functional units (Fig. 5a). For instance, β-ARs, Gs, Gi, cAMP and PKA were combined into one functional unit ‘PKA’, and SOS/Grb2, Ras, Raf, MEK and ERK1/2 were grouped into another unit ‘ERK’. Similarly, the transcriptional processes of ICER and PDE3 were combined into ‘ICER’ and ‘PDE’, respectively. The linear signalling cascades consisting of CREB and Bcl-2 were combined into ‘Bcl-2’. Finally, all Ca2+ related components were combined together as one functional unit. As a result, the β-adrenergic signalling network was reduced to a coarse-grained network composed of six functional units and 15 regulatory links (Fig. 5a). In the next, to identify essential regulatory links that are responsible for the switching response profile of Bcl-2, we simulated all possible combinations of the perturbed regulatory circuits, that is, a total of 215 (= 32,768) rewired networks in which each link is either connected or disconnected and, as a result, we found the eight essential regulatory links (that is, 2, 4, 5, 7, 9, 10, 11 and 15) that are primarily responsible for the switching response of Bcl-2 (Fig. 5b).

To further investigate the hidden design principle underlying the switching response, we considered the simplified model composed of five nodes (that is, PKA, PDE, ERK, ICER and Bcl-2) corresponding to the clustered functional units and eight essential regulatory links among them (see Supplementary Note 2 for the simplified ordinary differential equation (ODE) model; Fig. 5b). Then, we produced 28 (= 256) network models by considering all possible rewired structures obtained by perturbing each of the eight essential regulatory links of the simplified model and simulated each rewired network model with 10,000 random parameter sets (Fig. 5c). Note that such different parameter sets can represent various cellular contexts and different cell types. From simulation analysis, we found that only a small set (30 out of 256) of the network models can robustly generate the Bcl-2 switching response profile against such random parameter variations and that the four most robust regulatory circuits commonly include the ERK and ICER-mediated incoherent feed-forward loop (Fig. 5d). Here the robustness of a regulatory circuit was measured by the number of parameter sets (out of 10,000) that allow the model to generate the Bcl-2 switching response profile 40. Together these results suggest that the core regulatory circuit composed of the ERK and ICER-mediated incoherent feed-forward loop plays a crucial role in robustly generating the Bcl-2 switching response of cardiomyocytes and therefore it forms the hidden design principle underlying the switching response of Bcl-2.

To extend our investigation of the core regulatory circuit in producing the switching response profile of Bcl-2, we gradually inhibited the incoherent feed-forward loop by 20 to 80%. The blockade of ICER-mediated negative regulation (Δ in Fig. 5d) remarkably increased Bcl-2 expression only at a micromolar concentration range of ISO (Fig. 6a) whereas the blockade of ERK1/2-mediated positive regulation (i in Fig. 5d) decreased Bcl-2 expression mostly at a nanomolar range of ISO (Fig. 6b). For comparison, we further simulated the switching response profile of Bcl-2 by inhibiting the cAMP-PKA signalling and found that the switching profile of Bcl-2 disappears after the PKA inhibition (Supplementary Fig. 8). Therefore, the ERK1/2 and ICER-mediated incoherent feed-forward loop differentially regulates the Bcl-2 response depending on the concentration range of ISO, which enables the cell to choose a different cell fate depending on the strength of the external stimulus.

To validate the simulation results, we biochemically blocked the ERK1/2- and ICER-mediated feed-forward loop alternately and measured the expression of Bcl-2. First, small interfering RNA (siRNA) was used to block the ICER-mediated negative regulation of the incoherent feed-forward loop, which was expected to inhibit de novo synthesis of the ICER protein efficiently as shown previously41. siRNA transfection into adult cardiomyocytes was successful (Supplementary Fig. 9). ICER siRNA (siICER) completely blocked the induction of ICER protein expression at ISO stimulation for 12 h (Fig. 6c). Three hours after siRNA transfection, cardiomyocytes were stimulated with various concentrations of ISO for 12 h. Then we measured the Bcl-2 protein level by western blotting (Fig. 6c). siICER increased Bcl-2 protein significantly at the micromolar concentration range of ISO compared with siControl. However, it did not affect the Bcl-2 protein level at the nanomolar concentration range, concordant with our prediction (Fig. 6a). Moreover, the concentration-specific effects of siICER were also observed in the survival rate. The survival rate at the nanomolar concentration range of ISO was not affected by siICER, but the survival rate at the micromolar concentration range was significantly decreased (Fig. 6e and Supplementary Movie 11).

In the next, we treated the cells with PD98059 (a MEK inhibitor) to block the ERK1/2-mediated positive regulation of the incoherent feed-forward loop. To assess the effect of PD98059, we measured the protein level of Bcl-2. Semi-quantitative analysis by western blotting showed that the expression of Bcl-2 decreased considerably at the nanomolar concentration range of ISO, whereas the decrement was relatively small at the micromolar concentration range of ISO (Fig. 6f,g), and the measurement of the survival rate showed similar effects (Fig. 6h and Supplementary Movies 12 and 13), which is in accord with the model prediction (Fig. 6b).

In addition, we investigated the functional role of the ERK1/2-mediated positive regulation of the incoherent feed-forward loop using the RSK inhibitor (BRD7389) since the RSK phosphorylation of CREB is an important mechanism by which ERK1/2 promotes cell survival. The RSK inhibition showed the same behaviour; the significant decrease of Bcl-2 at 1–10 nM, compared to the non-treatment group, which is similar to the MEK inhibition (Supplementary Fig. 10). Taken together, the results suggest that the distinct function of ERK and ICER-mediated incoherent feed-forward loop enables the switching of cellular decision from survival to death depending on the level of ISO concentration.

β-blocker enhances the tolerance of cardiomyocytes to death. β-blockers are widely used as effective therapeutic agents for heart failure patients42. Some evidence has shown a positive
Figure 5 | Identification of the core regulatory circuit that robustly generates the switching response profile of Bcl-2. (a) A detailed β-AR signalling network that implements the switching response of the Bcl-2 expression. The grey-shaped circles indicate clustered signalling components. (b) A simplified β-AR signalling network. The eight links are essential for the generation of the switching response of Bcl-2. The circled numbers indicate the indexes of the regulatory links that are same as in a. (c) Identification of models that can robustly generate the switching response profile of Bcl-2 for each combination of circuit design (mth) and parameter set (nth). Inset: the identification is constrained to the switching response of Bcl-2 to the gradual increase of ISO. (d) The four most robust models that can produce the switching response of Bcl-2, in which ERK and ICER-mediated incoherent feed-forward loop is commonly included.
The β-ARs are a class of G protein-coupled receptors that are the targets of catecholamine (for example, norepinephrine and epinephrine) and their subtypes, β₁- and β₂-ARs are thought to mediate the death and survival signals, respectively. However, it has been difficult to understand the net effects of β-agonists on cell fate decisions through traditional biological approaches since both types of β-ARs are the targets of catecholamine. This issue is particularly important from the clinical point of view since heart failure patients are known to have an increased sympathetic activity 45,46, ameliorates myocardial creatine dysregulation 47, improves the biological function of the failing heart muscle 48 and relieves endoplasmic reticulum-stress and endoplasmic reticulum-mediated apoptosis 49. Despite its extensive clinical use and animal experiments, the underlying mechanism by which β-blockers increase survival in heart failure patients remains unclear.

Our experimental results and mathematical simulation suggested that ISO induces the switching response of Bcl-2, and the fate of cardiomyocytes depends on the concentration of ISO (Figs 3–6). Thus, we further simulated the concentration-response profiles of Bcl-2 to ISO for a wide concentration range (10^{-11} to 10^{-4} M) of the β₁-blocker or β₂-blocker. The β₁-blocker broadened the ISO-mediated survival range due to the increased Bcl-2 expression (Fig. 7a). The expanded range of survival was also obvious in the switching response profile of Bcl-2 (Fig. 7c). In contrast, the β₂-blocker narrowed down the survival range (Fig. 7b) by shifting the switching response profile of Bcl-2 to the left (Fig. 7d).

To validate the model prediction, we preincubated cardiomyocytes with 10 μM metoprolol (a selective β₁-blocker) or 500 nM ICI 118,551 (a selective β₂-blocker), and then treated them with the indicated concentrations of ISO. Metoprolol shifted the switching response profile of Bcl-2 to the right (Fig. 7e,g) and significantly enhanced the cell survival rate at higher concentrations (10^{-7} to 10^{-6} M; Fig. 7i, Supplementary Movies 14 and 15) of ISO, which is concordant with the model prediction shown in Fig. 7c. ICI 118,551 significantly suppressed the Bcl-2 expression at lower concentrations of ISO and slightly shifted the response profile to the left, which agrees with the model prediction shown in Fig. 7d. Taken together, these results suggest that β₁-blockers increase the tolerance of cardiomyocytes to cell death by expanding the survival range of the switching response curve of Bcl-2.

Discussion

The β-ARs are a class of G protein-coupled receptors that are the targets of catecholamine (for example, norepinephrine and epinephrine) and their subtypes, β₁- and β₂-ARs are thought to mediate the death and survival signals, respectively. However, it has been difficult to understand the net effects of β-agonists on cell fate decisions through traditional biological approaches since both types of β-ARs are the targets of catecholamine. This issue is particularly important from the clinical point of view since heart failure patients are known to have an increased sympathetic activity. The β₁-ARs are the targets of catecholamine. This issue is particularly important from the clinical point of view since heart failure patients are known to have an increased sympathetic activity.
activity resulting in prolonged β-AR stimulation, which eventually leads to the death of cardiomyocytes. Since the progressive loss of cardiomyocytes is considered to play a major role in heart failure, controlling the cell death of cardiomyocytes caused by β-AR stimulation is one of the principal challenges to cure the disease. In the present study, we attempted to identify the mechanistic principle underlying the cell fate decision process through a systems biological approach.50–52. The proposed approach can be useful for developing new therapeutic strategies since the available data from the conventional reductive approaches are often partial, heterogeneous and sometimes controversial, and thereby it still remained mostly unclear how the signalling molecules coordinate together and make the cell fate decision.

Our findings obtained by developing a comprehensive mechanistic model (Figs 1 and 2) led to the following conclusions: (1) The cell fate of cardiomyocytes is switched from survival to death depending on the stimulation strength of β-ARs, as a result of changes in Bcl-2 expression (Figs 3 and 4); (2) the ERK1/2 pathway at a low concentration range of ISO positively regulates Bcl-2 induction and thus cell survival ensues, while the PKA-CREB-ICER pathway activated at a high concentration range negatively regulates Bcl-2 induction and promotes cell death (Figs 5 and 6); (3) Metoprolol (a β1-blocker) shifts the switching response profile of Bcl-2 towards a high ISO concentration range and therefore significantly enhances the cell survival rate at a high concentration of ISO whereas ICI 118,551 (a β2-blocker) slightly shifts the response profiles towards a low ISO concentration range, providing a critical basis for the development of a better drug (Fig. 7).

Although the ISO concentration in the majority of previous experiments was in the range of 0.1–10 μM where cell death is usually observed10,15,34,53,54, ISO has been widely used for the treatment of bradycardia and heart block55. Given the contrasting effects of ISO that were shown in our study, the adverse effects of ISO might not be necessarily inherent to the drug itself, but depend on the concentration range of its use. Therefore, a large-scale clinical investigation is required to confirm the differential effects of ISO at low and high concentrations and to establish new guidelines for its clinical use.

Although the β-AR system is an essential compensatory mechanism that increases cardiac output under physiological conditions, the prolonged stimulation of β-ARs has been known to induce apoptosis in cardiomyocytes10,12. The survival effect of β-AR stimulation at low agonist concentrations discovered in the present study enables the β-AR system to regulate the cardiac function with substantial stability below the threshold agonist concentration. In the case of heart failure patients who have highly increased norepinephrine content, β1-blocker treatment may raise this threshold, thereby protecting the cardiomyocytes from β-AR-induced apoptosis (Fig. 7).

In the previous study, Ding et al. found that PDE3A is the key mediator of the ICER feedback loop, and it regulates Bcl-2 expression directly. They also showed that the expression of...
PDE3A was decreased significantly in the failing heart and that the overexpression of PDE3A in cardiomyocytes prevented cell death. These observations are consistent with our model prediction and experimental results, as ICER-mediated PDE3 regulation is included in the essential regulatory links that we found (Fig. 5b) and the biochemical blockade of ICER-mediated link markedly increased Bcl-2 expression at micromolar ISO concentrations (Fig. 6d,e), resulting in a significant reduction of the cell death of cardiomyocytes (Fig. 6g). Thus, interruption of the PDE3A-ICER link may be a novel therapeutic strategy.

As shown in Fig. 7c,h, the β2-blocker narrowed down the survival range of the switching response profile of Bcl-2 and decreased the expression of Bcl-2 at low concentrations of ISO. This undesirable effect of the β2-blocker can be explained if the β2-blocker inhibits the coupling of β2-AR to Gβγ, which would prevent the activation of the ERK1/2 signalling module (Fig. 1) and subsequently decrease the expression level of Bcl-2. Hence, the use of β2-blockers would be toxic to the cells, but the use of β2-agonists may be therapeutically beneficial. Our findings are supported by a recent study that demonstrated a cardioprotective effect of a β2-AR agonist and a β2-AR blocker in a rat dilated cardiomyopathy model.

To further investigate the therapeutic targets for heart failure, we performed sensitivity analyses (local sensitivity analysis (LSA) and global sensitivity analysis (GSA)) of the network model by examining the influence of parameter perturbations on Bcl-2 expression (see Methods for details). For this purpose, we selected a set of kinetic parameters that are directly related to the potential therapeutic targets as summarized in Supplementary Table 6. The LSA and GSA sensitivity scores show that the model parameters related to the AC, PDE3 and ICER have significant effects on the Bcl-2 expression (Supplementary Fig. 11a,b). All of these parameters are associated with the eight essential links which are primarily responsible for the Bcl-2 switching response of cardiomyocytes (Fig. 5a,b; the result of additional sensitivity analysis on the Bcl-2 switching response profile is shown in Supplementary Fig. 12 and Supplementary Note 3). To evaluate the therapeutic effects of these three potential targets, we further simulated the switching response of Bcl-2 when we applied putative therapeutic interventions targeting these molecules (for example, an inhibitor of AC, antisense RNA targeting ICER and the overexpression of PDE3). The therapeutic effects of these targets were quite different from the effects obtained using β1-blockers, which expanded the survival range of the switching response profile to the right (Fig. 7c,g). Perturbations of ICER or PDE3 remarkably increased Bcl-2 expression only at high concentrations of ISO (>0.1 μM; Supplementary Fig. 11c,e), whereas the perturbation of AC significantly increased Bcl-2 expression at the whole concentration range of ISO (Supplementary Fig. 11d). Therefore, these results suggest that AC, ICER and PDE3 could be promising therapeutic targets for heart failure.

In this study, we present evidence that the strength of external stimuli for β-ARs plays an important role in the cellular decision for survival or death. On the other hand, Insel et al. provided evidence that the duration of the cAMP signal is important in the decision of cell survival or death by using S49 lymphoma. In their study, the incubation of S49 lymphoma cells with 8-CPT-cAMP (a membrane-permeable cAMP analogue) for 6 h showed significant resistance to apoptosis, but the apoptosis increased at 24-h time point. For further analysis, we conducted an additional simulation study using the protocol presented in the literature. As a result, we found that Bcl-2 level was significantly increased during the initial period of treatment with cAMP analogue, but then it decreased with a longer treatment (Supplementary Fig. 13), suggesting that the duration of the cAMP signal is also important for cell fate determination. Taken together, the duration of cAMP signal as well as the strength of its stimulation might play an important role in the decision of cell survival or death.

Our results collectively suggest that the β-AR signalling network induces a switching response of Bcl-2 expression regulated by the ERK1/2 and ICER-mediated feed-forward loop to wide concentration ranges of β-AR agonists, and that this switching response determines the cell fate of cardiomyocytes (Fig. 8). This study provides a new insight into the concentration-dependent cell fate determination mechanism mediated by β-AR signalling in cardiomyocytes and suggests a novel therapeutic strategy for heart disease.
complex, induction of cAMP and the activity of PKA) are robust to such parameter variations (Fig. 2).

The simplified ODE model composed of five nodes and eight essential regulatory links (Fig. 3b) was developed based on Michaelis–Menten-type functions (Supplementary Note 2). Non-dimensionalization of the model equations was carried out to reduce the number of parameters (Supplementary Note 4). A total of 10,000 sets of random parameters were generated to test the robustness of the model and parameter values were randomly sampled from a log uniform distribution in the ranges of $\tau = 10–100$, $n = 1–10$, $K = 0.01–1$, $K_i = 0.01–1$ and $\beta = 0.1–10$. These parameter ranges were chosen on the basis of the previous study28. All the simulations were carried out with zero initial conditions.

Parameter sensitivity analysis. We carried out sensitivity analyses (LSA and GSA) of the network model to examine the influence of parameter perturbation on the Bcl-2 expression level quantitatively. For this purpose, we quantified the Bcl-2 expression by an integral of the Bcl-2 concentration over the observation time period

$\text{Bcl-2 expression level} = \int_{t_0}^{t_f} \text{Bcl-2}(t) \, dt$

where t_0 is the time-integrated Bcl-2 expression and p_i is the ith model parameter.

The sensitivity score of GSA was obtained by using the partial rank correlation coefficient analysis that measures the correlation between the output (M) and model parameter (P_j) while removing the correlation of the parameter of interest with other parameters64,65. To obtain the partial rank correlation coefficient between P_i and M, we first calculate the correlation coefficient $r_{p_j,m}$ between the two residuals $p_i - \bar{p}_i$ and $m - \bar{m}$, where \bar{P}_i and \bar{M} are the mean of P_i and M, respectively, obtained from the linear regression model as follows:

$$ r_{p_j,m} = \frac{\sum_{i=1}^{N} (p_i - \bar{p}_i)(m_i - \bar{m}) \sqrt{\sum_{i=1}^{N} (p_i - \bar{p}_i)^2 \sum_{i=1}^{N} (m_i - \bar{m})^2}} $$

where N is the number of Sobol’s points sampled from the model parameter space, and p and m are the respective sample means. Note that we generated Sobol’s points by varying all parameter values within a 10-fold range around each nominal value. The negative sensitivity score indicates the quantity of interest decreases if the parameter value increases, whereas the positive sensitivity score means that the quantity increases when the parameter value increases. A large score, whether positive or negative, implies a potentially significant effect on the Bcl-2 expression.

Isolation and culture of adult rat ventricular myocytes. Adult rat ventricular myocytes were isolated from adult (10–to 14-week-old) male Sprague–Dawley rats as described with minor modifications66. In brief, hearts were excised from anesthetized (isoflurane inhalation) adult rats, mounted on a Langendorf apparatus and perfused retrogradely through the aorta with oxygenated Ringer’s solution of the following composition: 125 mM NaCl, 5 mM KCl, 25 mM HEPES, 2 mM KH$_2$PO$_4$, 1.2 mM MgSO$_4$, 5 mM pyruvate, 11 mM glucose, 5 mM creatine, 5 mM t-carnitine and 5 mM taurine (pH 7.4 adjusted with NaOH). Initial perfusion was for 5 min with Ringer’s solution containing 1 mM CaCl$_2$ followed by another 15 min perfusion with calcium-free Ringer’s solution. Calcium-free Ringer’s solution containing 230 mM CaCl$_2$ (Collagenase Type 2 (Worthington) and 60 mM (0.4 mg ml$^{-1}$) hyaluronidase (Sigma) was recirculated through the heart for 30 min. Final perfusion was for 1 min with Ringer’s solution containing 4% BSA (Bovogen) and 10 mM 2,3-butanedione monoxime (Sigma). The cannula was removed from the heart and the ventricles were cut away and diced. Myocytes were filtered through a 100-µm Cell Strainer (BD Biosciences), and then CaCl$_2$ was added to the myocytes to the final concentration of 1.8 mM for 10 min. Myocytes were plated on 13 pm (11 µg ml$^{-1}$) laminin (BD Biosciences)-coated tissue culture dish (Corning) at the density of 105 cells cm$^{-2}$ and incubated at 37°C and 5% CO$_2$ in M199 medium (Sigma) containing 25 mM HEPES, 2.2 g/l$^{-1}$ antibiotics (Gibco), 2.5 mM taurine, 2.5 mM carnitine and 2.5 mM creatine. After 2-h incubation, unattached cells were removed by washing with same media.

All animal experiments were carried out in observance with Gwangju Institute of Science and Technology Animal Care and Use Committee guidelines.

Cell death assay by live-cell imaging. Myocytes were seeded in a 12-well tissue culture plate and allowed to adhere for 2 h. ISO was added to myocytes at the indicated concentrations for 12 h and apoptosis was induced by adding 3.5 mM ionomycin (Sigma) or 100 µM H$_2$O$_2$. Live-cell images of myocytes were captured at 10-min intervals for 5 h at 37°C in M199 medium by using automated microscopy (IN Cell Analyzer 1000 HCS system, GE). Cell survival rate was assessed by counting the number of rod-shaped cells containing intact sarcomeric structure before and after the apoptosis induction. The experiment was conducted using more than three independent primary cultures.

Analysis of cell death by ELISA. Cytoplasmic accumulation of histone-associated DNA fragments (mono- and oligonucleosomes) was quantified by the Cell Death Detection ELISA PLUS kit (Roche Diagnostics) following by the manufacturer’s instructions.

Western blot analysis. After treatment with drugs, cells were lysed in 1% SDS lysis buffer containing protease inhibitor cocktail, Na$_3$VO$_4$ and NaF. Proteins were estimated by using BCA assay kit (Thermo scientific) and 40 µg of proteins were resolved electrophoretically on 10–15% SDS polyacrylamide gels, transferred to polyvinylidene fluoride membrane. The blots were probed with the following antibodies (see the list below) and detected by chemiluminescent substrate (Thermo scientific) and Biomolecular imager, ImageQuant LAS 4000 mini (GE).

The following primary antibodies were used for western blot analysis: phospho-CREB (S-133; dilution 1:1000) (#9197), CREB (#9198; dilution 1:1000), ERK1/2 (dilution 1:100), phosphory-ERK1/2 (dilution 1:100), Bax (#2722; dilution 1:1000) and catalytic subunit of PKA (sc-903; dilution 1:500) were purchased from Santa Cruz Biotechnology. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) from Lab Frontier (dilution 1:5000) and rabbit anti-ICER antibody (dilution 1:10000) from Dr Carlos Molina (Montclair State University) were used for the study.

RNA extraction and quantitative real-time PCR (qRT–PCR). Total RNA extraction, first-strand cDNA synthesis and qRT–PCR were performed as we described previously23. In brief, approximately 10^3 cells were used for the extraction of total RNA with 1 ml Trizol Reagent (Invitrogen, Carlsbad, CA) following the manufacturer’s instructions. First-strand cDNA was synthesized from 500 ng of total RNA with random hexamer and oligo dT using PrimeScript RT reagent Kit (Takara, Japan) following the manufacturer’s instructions. qRT–PCR assays were performed using StepOnePlus Real-Time PCR system (Applied Biosystems). The primers were performed using SYBR Premix Ex TaqTM (TaKaRa) under the following two-step conditions: denaturation at 95°C for 3 s and annealing and extension at 60°C for 40 s, for a total of 40 cycles. GAPDH was used as an endogenous reference to assess the relative level of mRNA transcript.

The following primers were used for PCR analysis: GAPDH, 5′-AGTTCCTCCAGTATGCCTCAGCCAGC-3′ (sense) and 5′-GAAGACACCAGTAGCTCAGGAC-3′ (antisense) (Thermo Scientific) and 5′-TGAAGGGGCTCTTGACAC-3′ (sense) and 5′-CTGTCCTAGAGCAAGCAGAGG-3′ (antisense) (Xnap, 5′-CAAGTGAGAAGGAGGACA-3′ (sense) and 5′-AGTGTTGTCCTCAGTCACCTGATC-3′ (antisense) (Bim, 5′-TCTCCGGCCCTTACCAAGTTA-3′ (sense) and 5′-GACTGCTCTGGGATCTGAGC-3′ (antisense) (PDE5A, 5′-TTGGGCTTTGGAAGATCCTGTCG-3′ (sense) and 5′-AGGAAATGCGCCTTGTGGAATG-3′ (antisense) (sirRNA transfection. Control siRNA (siControl) and ICER siRNA (siCEC) oligonucleotides were synthesized by Bioneer Corporation in a sense-antisense duplex form. For siRNA transfection, 1 µl of a 100 nM stock of siRNAs and 4 µl of Transfecta (Thermo Scientific) were each incubated separately with 50 µl Opti-MEM (Invitrogen) for 5 min, mixed together for 20 min at room temperature, and then 100 µl was applied to the adult cardiomyocyte on the 3.5-mm culture dish (final siRNA concentration was 100 nM). Three hours after transfection, cardiomyocytes were stimulated with various concentrations of ISO.

Previously reported siRNA sequences were used in this study41: siControl, 5′-GAGUACUAACAGAGACGACAUU(DTdT)-3′- (sense) and 5′-AAUAGCUACCCUCAAGAAUC(UdT)-3′- (antisense) siICER, 5′-CUCUAAAGGAGCCUGUAAAGG(UdT)-3′- (sense) and 5′-UUUAAAGGCGUCCUUAAGAU-3′- (antisense) (Reagents. RP-cAMP was purchased from BioLog, and ICI 118,551 was purchased from Santa Cruz Biotechnology. All other reagents including ISO, PD98059, and Metoprolol were synthesized by Bioneer Corporation in a sense-antisense duplex form.

Statistical analysis. Results from at least three independent experiments are expressed as mean ± s.e.m. (or mean ± s.d.). Comparisons between groups were performed by Student’s two-tailed t-test for experiments. Probability values
References

1. Sasagawa, S., Ozaki, Y., Fujita, K. & Kuroda, S. Prediction and validation of the distal 3′-end dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7, 365–373 (2005).

2. Chen, Y. J., Lin, J. R., Cimprich, K. A. & Meyer, T. A two-dimensional ERK-Akt signaling code for an NFG-triggered cell-fate decision. Mol. Cell 45, 196–209 (2012).

3. von Kriegsheim, A. et al. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9, 324–330 (2007).

4. Santos, S. D., Verveer, P. J. & Bastiaens, P. I. Opposing effects of a pertussis toxin-sensitive G protein. Nat. Cell Biol. 10, 1167–1173 (2008).

5. Saucerman, J. J., Brunton, L. L., Michailova, A. P. & McCulloch, A. D. Modeling myocyte apoptosis in response to beta-adrenergic receptor stimulation. Proc. Natl Acad. Sci. USA 106, 2210–2212 (2009).

6. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and an important mediator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation. Circ. Res. 93, 122–2003.)

7. Regitz-Zagrosek, V., Hertrampf, R., Steffen, C., Hildebrandt, A. & Fleck, E. Myocardial cysolic AMP and norepinephrine content in human heart failure. Eur. Heart J. 15 (Suppl D), 7–13 (1994).

8. Manolis, A. J. et al. Suppressing sympathetic activation in congestive heart failure. A new therapeutic strategy. Hypertension 26, 719–724 (1995).

9. Venugopalan, P. & Agarwal, A. K. Plasma catecholamine levels parallel severity of congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73, 613–621 (1986).

10. Nakayama, H. et al. Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a apoptosis toxin-sensitive G protein. Circulation 100, 2210–2212 (1999).

11. Cheshire, A. et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ. Res. 87, 1172–1179 (2000).

12. Zhu, W. Z. et al. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl Acad. Sci. USA 98, 1607–1612 (2001).

13. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in beta(1)-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA 96, 7039–7044 (1999).

14. Homburger, V., Lucas, M., Rosenbaum, E., Vassent, G. & Bockhart, J. Presence of both beta(1)- and beta(2)-adrenergic receptors in a single cell type. Mol. Pharmacol. 20, 463–469 (1981).

15. Hall, R. A. Beta-adrenergic receptors and their interacting proteins. Semin. Cell Dev. Biol. 15, 281–288 (2004).

16. Saucerman, J. J., Brunton, L. L., Michailova, A. P. & McCulloch, A. D. Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J. Biol. Chem. 278, 47979–48003 (2003).

17. Himeno, Y., Sarai, N., Matsuoka, S. & Noma, A. Ionic mechanisms underlying the positive chronotropy induced by beta(1)-adrenergic stimulation in guinea pig sinoatrial node cells: a simulation study. J. Physiol. Sci. 58, 53–65 (2008).

18. Kukin, M. L. et al. Analysis of transgenic mice. Proc. Natl Acad. Sci. USA 111, 2017–2022 (2014).

19. Homa, H. et al. Systems analysis of PKA-mediated phosphorylation gradients in live cardic myocytes. Proc. Natl Acad. Sci. USA 103, 12923–12928 (2006).

20. Song, H. K., Hong, S. E., Kim, T. & Kim, D. H. Deep RNA sequencing reveals novel cardiac transcriptional signatures for physiological and pathological hypertrophy. PLoS ONE 7, e35552 (2012).

21. Henaff, M., Hatem, S. N. & Mercadier, J. J. Low catecholamine concentrations protect adult rat ventricular myocytes against apoptosis through CAMP-dependent extracellular signal-regulated kinase activation. Mol. Pharmacol. 58, 1546–1553 (2000).

22. De Arcangelis, V., Liu, S., Zhang, D., Soto, D. & Xiang, Y. K. Equilibrium between adenylyl cyclase and phosphodiesterase patterns adrenergic agonist dose-dependent spatiotemporal cAMP/protein kinase A activities in cardiomyocytes. Mol. Pharmacol. 78, 340–349 (2010).

23. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

24. Fregno, Y., Shimizu, S., Eguchi, Y., Kamikawa, W. & Matsuda, H. Bcl-2 and Bcl-xL block apoptosis as well as necrosis: possible involvement of common mediators in apoptotic and necrotic signal transduction pathways. Leukemia 11 (Suppl 3), 380–382 (1997).

25. Kim, S. H., Jung, S. H., Chen, X. & Cho, K. H. Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage. Sci. Signal. 5, ra83 (2012).
53. Shizukuda, Y. & Buttrick, P. M. Subtype specific roles of beta-adrenergic receptors in apoptosis of adult rat ventricular myocytes. J. Mol. Cell Cardiol. 34, 823–831 (2002).

54. Zhu, W. Z. et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca\(^{2+}\)/calmodulin kinase II. J. Clin. Invest. 111, 617–625 (2003).

55. ECC Committee SaTfOAH. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 112, IV1–203 (2005).

56. Ahmet, I. et al. Cardioprotective and survival benefits of long-term combined therapy with beta2 adrenoreceptor (AR) agonist and beta1 AR blocker in dilated cardiomyopathy postmyocardial infarction. J. Pharmacol. Exp. Ther. 325, 491–499 (2008).

57. Talan, M. I., Ahmet, I., Xiao, R. P. & Lakatta, E. G. beta(2) AR agonists in treatment of chronic heart failure: long path to translation. J. Mol. Cell. Cardiol. 51, 529–533 (2011).

58. Insel, P. A., Zhang, L., Murray, F., Yokouchi, H. & Zambon, A. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol. (Oxf) 204, 277–287 (2012).

59. Zhang, L. et al. Gene expression signatures of cAMP/protein kinase A (PKA)-promoted, mitochondrial-dependent apoptosis. Comparative analysis of wild-type and cAMP-deathless 549 lymphoma cells. J. Biol. Chem. 283, 4304–4313 (2008).

60. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley Pub. Co., 1989).

61. Coleman, T. F., Branch, M. A. & Grace, A. MathWorks Inc. Optimization Toolbox for Use with MATLAB: User’s Guide (MathWorks, Inc., 1999).

62. Kholodenko, B. N., Demin, O. V. & Westerhoff, H. V. Control analysis of periodic phenomena in biological systems. J. Phys. Chem. B 101, 2070–2081 (1997).

63. Lebedeva, G. et al. Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network. Eur. J. Pharm. Sci. 46, 244–258 (2012).

64. Lebedeva, G. et al. Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network. Eur. J. Pharm. Sci. 46, 244–258 (2012).

65. Kwon, S. J. & Kim, D. H. Characterization of junctate-SERCA2a interaction in murine cardiomyocyte. Biochem. Biophys. Res. Commun. 390, 1389–1394 (2009).

66. Kwon, S. J. & Kim, D. H. Characterization of junctate-SERCA2a interaction in murine cardiomyocyte. Biochem. Biophys. Res. Commun. 390, 1389–1394 (2009).

67. Zou, Y. et al. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J. Biol. Chem. 274, 9760–9770 (1999).

68. Erickson, J. R., Patel, R., Ferguson, A., Bossuyt, J. & Bers, D. M. Fluorescence resonance energy transfer-based sensor Camui provides new insight into mechanisms of calcium/calmodulin-dependent protein kinase II activation in intact cardiomyocytes. Circ. Res. 109, 729–738 (2011).

Acknowledgements
We thank Dr Carlos Molina (Montclair State University, USA) for the generous gift of ICER antibody. We are also grateful to Eun Jeong Kwon and Joo Hee Lee for their excellent technical assistance. This work was supported by the 2014 GIST Systems Biology Infrastructure Establishment Grant and the National Research Foundation of Korea (NRF) grants funded by the Korea Government, the Ministry of Science, ICT and Future Planning (2010-0017662, 2014B1A2A1A10052404, 2013M3A9A7046303, and 2013M3A9A7046297). It was also supported by the KAIST Future Systems Healthcare Project from the Ministry of Science, ICT and Future Planning. J.Y.L. was supported by BK21 Plus program from the Ministry of Education of Korea.

Author contributions
S.-Y.S., T.K., K.-H.C. and D.H.K. designed the study. S.-Y.S., T.K., H.-S.L., J.H.K. and K.-H.C. conducted simulations and analysed the simulation results. T.K. performed most of the experiments and analysed the experimental data. J.Y.L. assisted the experiments. S.-Y.S., T.K., H.-S.L., J.H.K., K.-H.C. and D.H.K. wrote the manuscript. K.-H.C. and D.H.K supervised the study.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/ncomms

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Shin, S.-Y. et al. The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat. Commun. 5:5777 doi: 10.1038/ncomms6777 (2014).