Association between High Platelet Reactivity Following Dual Antiplatelet Therapy and Ischemic Events in Japanese Patients with Coronary Artery Disease Undergoing Stent Implantation

Masakatsu Nishikawa¹, Yoshihiro Takeda², Naoei Isomura³, Takashi Tanigawa⁴, Mamoru Nanasato⁵, Kengo Tsukahara⁶, Kazuo Kimura⁶, Tadateru Takayama⁷, Atsushi Hirayama², Masafumi Kato⁸, Hideo Nishikawa⁶, Yuki Nishimura¹, Takaaki Ishii⁹ and Hiroyoshi Yokoi¹⁰,¹¹, for the j-CHIPS group

¹Clinical Research Support Center, Mie University Hospital, Mie, Japan
²Department of Cardiology, Rinku General Medical Center, Osaka, Japan
³Department of Cardiology, Showa University Northern Yokohama Hospital, Japan
⁴Department of Cardiology, Mie University Faculty of Medicine, Mie, Japan
⁵Cardiovascular Center, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
⁶Yokohama City University Medical Center, Yokohama, Japan
⁷Department of Cardiovascular Medicine, Nihon University Itabashi Hospital, Tokyo, Japan
⁸Mie Heart Center, Mie, Japan
⁹Division of Cardiology, Teikyo University Hospital, Tokyo, Japan
¹⁰Cardiovascular Center, Fukuoka Sanno Hospital, Fukuoka, Japan
¹¹Division of Cardiology, Kokura Memorial Hospital, Kokura, Japan

Aim: Although high on-treatment platelet reactivity (HTPR) with dual antiplatelet therapy (DAPT) correlates with long-term adverse outcomes in patients undergoing percutaneous coronary intervention, the correlation in Japanese patients remains unclear. Therefore, we examined the relationship between platelet reactivity during DAPT with aspirin and clopidogrel and 1-year clinical outcomes following successful coronary stent implantation.

Methods: A prospective, multicenter registry study (j-CHIPS) was conducted in patients undergoing coronary stenting and receiving aspirin and clopidogrel at 16 hospitals in Japan. A VerifyNow point-of-care assay was used to assess platelet reactivity, and a cutoff value to define HTPR was established.

Results: Between February 2011 and May 2013, 1047 patients were prospectively enrolled, of which 854 patients with platelet function evaluation at 12–24 h after PCI were included in the final analysis. After 1 year of follow-up, the incidence of the primary endpoint (a composite of all-cause mortality, myocardial infarction, stent thrombosis, and ischemic stroke) was significantly higher in patients with HTPR than in those without (5.9% vs. 1.5%, *p* = 0.008), and HTPR showed a modest ability to discriminate between patients who did and did not experience major adverse cardiac and cerebrovascular events (area under the curve, 0.60; 95% confidence interval, 0.51–0.688, *p* = 0.039). HTPR status did not identify patients at risk for major or minor bleeding events.

Conclusion: HTPR was significantly associated with adverse ischemic outcomes at 1 year after PCI in Japanese patients receiving maintenance DAPT, indicating its potential as a prognostic indicator of clinical outcomes in this high-risk patient population.

See editorial vol. 27: 1-3

Key words: Dual antiplatelet therapy, High on-treatment platelet reactivity, Coronary stent implantation

Introduction

Dual antiplatelet therapy (DAPT) with aspirin and a P2Y12 receptor antagonist such as clopidogrel is the most commonly used antiplatelet strategy to prevent stent thrombosis in patients with coronary artery
disease (CAD) undergoing percutaneous coronary intervention (PCI)\(^1,2\), for reasons that include its safety profile following long-term use\(^3\). However, in spite of the use of DAPT, many patients go on to develop adverse ischemic events after PCI\(^4\). Clopidogrel, a prodrug, is absorbed from the small intestine and, subsequently, metabolized by CYP2C19 to its activated form\(^5,6\). A large variability in response to clopidogrel has been reported, ranging from high on-treatment platelet reactivity (HTPR) in patients designated as low responders, to low on-treatment platelet reactivity\(^7-12\). HTPR is associated with a higher risk of ischemic events, such as death from cardiovascular causes, nonfatal myocardial infarction, stent thrombosis, and ischemic stroke\(^7-12\), highlighting the importance of optimal platelet inhibition in patients with CAD undergoing PCI. VerifyNow-P2Y12 (Accumetrics, San Diego, California) is a point-of-care platelet reactivity assay for determining a patient’s response to antiplatelet therapy that has been used to demonstrate an association between HTPR and ischemic events\(^7,8,12\). Previous studies have reported optimal cutoff values for HTPR of 208–230 IU of the P2Y12 reaction unit (PRU)\(^8,12\). Several mechanisms of HTPR have been described, including genetics such as CYP2C19 loss-of-function gene polymorphism\(^(*2\text{ and } *3\text{ variants})\) and cellular and clinical factors\(^13-17\). Although Japanese patients appear to have a higher rate of CYP2C19 loss-of-function gene alleles compared with Caucasian patients, and typically receive a lower loading dose of clopidogrel\(^18\), the incidence of adverse cardiovascular events, especially stent thrombosis, has been reported as low in this population\(^19\). This may partly be attributable to recent developments in stent technology and the routine use of intravascular ultrasound or optical coherence tomography to verify adequate deployment of the stent within the coronary artery. Low on-treatment platelet reactivity seems to be associated with a higher risk of bleeding\(^7,14\), and present evidence for a bleeding threshold appears insufficient\(^20\), with bleeding likely related to heterogeneous underlying diseases. Therefore, in Japanese patients receiving current PCI, it is necessary to establish the HTPR cutoff values to minimize both ischemic events and bleeding.

Aim

We sought to determine the optimal HTPR cutoff value for predicting cardiovascular events in Japanese patients undergoing PCI with a 1-year follow-up. Additionally, we investigated the relationship between on-treatment platelet reactivity and thrombosis in myocardial infarction (TIMI) major/minor bleeding.
stent thrombosis, and ischemic stroke. Death was defined as unequivocal cardiovascular death and non-cardiovascular death that could be confirmed. Myocardial infarction was defined according to the criteria of the American College of Cardiology as elevated serum troponin I or increased creatine kinase-myocardial band isoenzyme to at least twice the upper normal limit, accompanied by at least one of the following: acute onset of prolonged (≥ 20 min) typical ischemic chest pain; ECG changes comprising ST-segment elevation of at least 1 mm in two or more contiguous electrocardiographic leads or ST-segment depression ≥ 0.5 mm in more than two contiguous leads; or T-wave inversion ≥ 1 mm in leads with predominant R waves. Stent thrombosis was defined as “definite” or “probable” according to definitions established by the Academic Research Consortium. Safety outcomes included non-coronary artery bypass graft-related bleeding events that occurred during 1 year. The following types of bleeding events were assessed: TIMI major bleeding (intracranial bleeding or bleeding leading to a decrease in hemoglobin of ≥ 5 g/dl), TIMI minor bleeding (bleeding leading to a decrease in hemoglobin of 3–<5 g/dl), and TIMI minimal bleeding (any clinically overt sign of bleeding leading to a decrease in hemoglobin of < 3 g/dl).

Platelet Function Assays

Blood samples for platelet function analysis were collected by atraumatic venipuncture of the antecubital vein via a 21-gage needle. To avoid measuring platelet activation induced by needle puncture, the initial blood sample drawn was used for blood chemistry analysis. Blood was collected into a Venoject® (Terumo, Tokyo, Japan) containing 3.8% trisodium citrate, a Vacutette® (Greiner Bio-One International, Kremsmünster, Austria) containing 3.2% sodium citrate, and a Neotube® (Nipro, Osaka, Japan) containing ACD-A and EDTA-2Na. Platelet function testing was performed within 2 h after blood sampling. Blood sampling points for the assessment of platelet function were (1) immediately prior to PCI, (2) at 12–24 h post PCI, (3) at 14–56 days post PCI, and (4) at 5–7 months post PCI. Patients with no blood sampling data at 14–56 days after stenting were not included in the final analysis, as these data were required to determine the periprocedural events (stent thrombosis, MI, and bleeding). VerifyNow P2Y12 assay to distinguish between P2Y1 and P2Y12 platelet receptors, while prostaglandin E1 was used to suppress the ADP-induced P2Y1-mediated increase in intracellular calcium levels, thereby reducing the activation contributed by P2Y1 and increasing assay sensitivity.

Statistical Analysis

Continuous variables are presented as means ± SD. Categorical variables are presented as frequencies (percentage) and were compared using Fisher’s exact test and the χ² test. Values of p < 0.05 were considered statistically significant. To evaluate the ability of the VerifyNow P2Y12 assay to distinguish between patients who did and did not meet the primary endpoint by the 1-year follow-up, a receiver operating characteristic (ROC) curve analysis was calculated for each test. The optimal cutoff level was calculated by determining the smallest distance between the ROC curve and the upper left corner of the graph. Patients above the optimal cutoff level were considered to exhibit HTPR. A survival analysis for patients determined to exhibit HTPR or not (no-HTPR) was performed using the Kaplan–Meier method, and the differences between groups were assessed by the log-rank test, with calculation of odds ratios (OR) and 95% confidence intervals (CI) associated with the 1-year rates of outcomes of interest. After assessment of the proportional hazard assumption, the Cox regression model for multivariate analysis was used to identify risk factors for outcome and adjust for potential founders associated with endpoints upon univariate analysis (age, sex, DM, chronic kidney disease, C-reactive protein level of 3 mg/L, AMI setting, HTPR, reduced left ventricular ejection fraction, multi-vessel disease, total length of stent, and bifurcation lesions). A second ROC curve analysis was performed based on the 1-year primary safety endpoint, combining TIMI major/minor/minimal bleeding. SPSS version 18.0 for Windows (SPSS Institute, Chicago, IL, USA) was used to perform statistical analysis.

Results

Patients

Between February 2011 and May 2013, 1047 patients were enrolled at 16 hospitals in Japan. Of these, 34 patients were subsequently excluded in accordance with the protocol inclusion/exclusion criteria, or for withdrawal of consent. A further 159 patients with missing platelet aggregation data from 12–24 h after PCR were excluded from the final analysis. Therefore, the final study population for evaluation of the primary endpoint consisted of 854 patients (Fig. 1).
patients at 5–7 months post PCI. Platelet reactivity (PRU values) at 12–24 h post PCI were significantly higher than those at 14–56 days or at 5–7 months post PCI (Fig. 2A and 2B). Higher mean on-treatment platelet reactivity at 12–24 h post PCI was observed in patients with acute coronary syndrome (ACS) versus those with stable CAD (273.1 ± 76.3 PRU vs. 247.4 ± 79.3 PRU, \(p < 0.001 \)) (Fig. 2A).

There was no difference in platelet reactivity before PCI and post PCI in clopidogrel loading versus non-loading patients (Fig. 2B). However, platelet reactivity at 12–24 hours after PCI was higher in patients with composite ischemic events at the 1-year follow-up than in patients with no events, although the difference was not statistically significant (281.3 ± 63.2 PRU vs. 260.0 ± 79.7 PRU, \(p = 0.051 \)) (Fig. 2A). There was no difference in platelet reactivity before PCI and post PCI in clopidogrel loading versus non-loading patients (Fig. 2B). However, platelet reactivity at 12–24 hours after PCI was higher in patients with composite ischemic events at the 1-year follow-up than in patients with no events, although the difference was not statistically significant (281.3 ± 63.2 PRU vs. 260.0 ± 79.7 PRU, \(p = 0.051 \)).

Platelet Reactivity and ROC Curve Analyses

Platelet reactivity data were obtained for 405 patients before PCI, 854 patients at 12–24 h post PCI, 1006 patients at 14–56 days post PCI, and 587 patients at 5–7 months post PCI. Platelet reactivity (PRU values) at 12–24 h post PCI were significantly higher than those at 14–56 days or at 5–7 months post PCI (Fig. 2A and 2B). Higher mean on-treatment platelet reactivity at 12–24 h post PCI was observed in patients with acute coronary syndrome (ACS) versus those with stable CAD (273.1 ± 76.3 PRU vs. 247.4 ± 79.3 PRU, \(p < 0.001 \)) (Fig. 2A). There was no difference in platelet reactivity before PCI and post PCI in clopidogrel loading versus non-loading patients (Fig. 2B). However, platelet reactivity at 12–24 hours after PCI was higher in patients with composite ischemic events at the 1-year follow-up than in patients with no events, although the difference was not statistically significant (281.3 ± 63.2 PRU vs. 260.0 ± 79.7 PRU, \(p = 0.051 \)). ROC curve analysis of platelet reactivity at 12–24 h post PCI in 854 patients demonstrated that a PRU value of 221 (AUC=0.613, 95% CI: 0.532–0.695, \(p = 0.023 \)) represented a cutoff for HTPR that provided sensitivity of 91.4% and specificity of 31.9%. The cutoff value of platelet reactivity in 1006 patients at 14–56 days post PCI was estimated as 231 PRU (AUC=0.591, 95% CI: 0.501–0.681, \(p = 0.09 \), sensitivity 66.7%, specificity 54.3%), so the PRU value of 221 was selected as the optimal cutoff value. **Table 1** summarizes baseline clinical and procedural characteristics by
Table 1. Baseline clinical and procedural characteristics of study patients by HTPR status

Demographics	All patients, n = 854	No-HTPR, n = 264	HTPR, n = 590	P-value
Age, years	67.7 (10.0)	66.0 (10.4)	68.5 (9.7)	0.001
≥ 75 years	221 (25.9%)	55 (6.4%)	166 (19.4%)	0.024
Male	663 (77.6%)	232 (27.2%)	431 (50.5%)	<0.001
Height, cm	161.7 (9.0)	164.0 (8.6)	160.7 (9.0)	<0.001
Weight, kg	63.8 (12.2)	66.1 (12.3)	62.8 (12.0)	<0.001
≤ 60 kg	345 (40.5%)	82 (9.6%)	263 (30.9%)	<0.001
Body mass index*, kg/m²	24.3 (3.4)	24.4 (3.2)	24.2 (3.5)	0.476
≥ 25 kg/m²*	339 (39.8%)	111 (13.0%)	228 (26.8%)	0.345
Risk factors				
Current smoker	205 (24.0%)	82 (9.6%)	123 (14.4%)	0.001
Smoking history	531 (62.2%)	184 (21.5%)	347 (40.6%)	0.002
Diabetes mellitus	370 (43.3%)	115 (13.5%)	255 (29.9%)	0.926
Dyslipidemia	664 (77.8%)	194 (22.7%)	470 (55.0%)	0.045
Hypertension	681 (79.7%)	215 (25.2%)	466 (54.6%)	0.409
eGFR < 60 mL/min/1.73 m²	358 (41.9%)	106 (12.4%)	252 (29.5%)	0.483
PCI	260 (30.4%)	94 (11.0%)	166 (19.4%)	0.028
CABG	14 (1.6%)	6 (0.7%)	8 (0.9%)	0.383
MI	178 (20.8%)	59 (6.9%)	119 (13.9%)	0.469
AP	288 (33.7%)	100 (11.7%)	188 (22.0%)	0.086
PAD	89 (10.4%)	33 (3.9%)	56 (6.6%)	0.184
Ischemic stroke	76 (8.9%)	29 (3.4%)	47 (5.5%)	0.152
HF	16 (1.9%)	2 (0.2%)	14 (1.6%)	0.170
Medication				
Calcium channel blocker	378 (44.3%)	110 (12.9%)	268 (31.4%)	0.307
ACE inhibitor	181 (21.2%)	57 (6.7%)	124 (14.5%)	0.850
ARB	432 (50.6%)	133 (15.6%)	299 (35.0%)	0.936
Beta blocker	334 (39.1%)	101 (11.8%)	233 (27.3%)	0.733
Statin	592 (69.3%)	174 (20.4%)	418 (48.9%)	0.148
Cilostazol	80 (9.4%)	33 (3.9%)	47 (5.5%)	0.036
Proton pump inhibitor	503 (58.9%)	137 (16.0%)	366 (42.9%)	0.005
Presentation and treatment				
Stable CAD	532 (62.3%)	188 (22.0%)	344 (40.3%)	<0.001
ACS	322 (37.7%)	76 (8.9%)	246 (28.8%)	<0.001
Unstable angina	123 (14.4%)	35 (4.1%)	88 (10.3%)	0.598
Non-ST elevation MI	26 (3.0%)	7 (0.8%)	19 (2.2%)	0.830
ST elevation MI	173 (20.3%)	34 (4.0%)	139 (16.3%)	<0.001
Number of diseased vessels				
1	715 (83.7%)	218 (25.5%)	497 (58.2%)	0.548
2	117 (13.7%)	37 (4.3%)	80 (9.4%)	0.914
3	22 (2.6%)	9 (1.1%)	13 (1.5%)	0.350
Diseased vessel				
RCA	280 (32.8%)	85 (10.0%)	195 (22.8%)	0.806
LAD	476 (55.7%)	148 (17.3%)	328 (38.4%)	0.899
LCX	199 (23.3%)	68 (8.0%)	131 (15.3%)	0.256
LMT	55 (6.4%)	16 (1.9%)	39 (4.6%)	0.762
HL	5 (0.6%)	2 (0.2%)	3 (0.4%)	0.647
Bifurcation diseased vessel	383 (44.8%)	113 (13.2%)	270 (31.6%)	0.422
ment were associated with HTPR. The prevalence of concurrent use of medications between the two groups was similar, except for cilostazol and proton pump inhibitors (both of which were taken more frequently by patients with HTPR).

Outcome at 1 Year by HTPR Status
Clinical follow-up at 1 year was completed by all

HPTR: high on-treatment platelet reactivity, eGFR: estimated glomerular filtration rate, PCI: percutaneous coronary intervention, CABG: coronary artery bypass grafting, MI: myocardial infarction, AP: angina pectoris, PAD: peripheral arterial disease, HF: heart failure, ACE: angiotensin converting enzyme, ARB: angiotensin II receptor blocker, CAD: coronary artery disease, ACS: acute coronary syndrome, MI: myocardial infarction, RCA: right coronary artery, LAD: left anterior descending coronary artery, LCX: left circumflex coronary artery, LMT: left main trunk, HL: high lateral branch, EES: everolimus-eluting stent, PES: paclitaxel-eluting stent, SES: sirolimus-eluting stent, ZES: zotarolimus-eluting stent, BES: biolimus-eluting stent.

Table 2. One-year outcome rates by platelet reactivity

	All patients, n = 854	No-HTPR, n = 264	HTPR, n = 590	OR	95% CI lower	95% CI upper	P-value
MACCE							
Death, all-cause	39 (4.1%)	4 (1.5%)	35 (5.9%)	4.099	1.442	11.654	0.008
Cardiovascular death	7 (0.8%)	0 (0.0%)	7 (1.2%)				
Stent thrombosis	4 (0.5%)	0 (0.0%)	4 (0.7%)				
Non-fatal myocardial infarction	22 (2.6%)	3 (1.1%)	19 (3.2%)				
Ischemic stroke	4 (0.5%)	1 (0.4%)	3 (0.5%)				
Revascularization	37 (4.3%)	8 (3.0%)	29 (4.9%)	1.654	0.746	3.669	0.216
Bleeding	18 (2.1%)	5 (1.9%)	13 (2.2%)	1.167	0.412	3.308	0.771
TIMI scale							
Major	9 (1.1%)	5 (1.9%)	4 (0.7%)				
Minor	2 (0.2%)	0 (0.0%)	2 (0.3%)				
Minimal	7 (0.8%)	0 (0.0%)	7 (1.2%)				

Values are either mean (SD) or n (%)
*examined in 851 patients (263 patients in No-HTPR and 588 patients in HTPR).

HTPR status. In the overall population, the incidence of HTPR was 69.1%. Patients with HTPR were older (68.5 ± 9.7 years vs. 66.0 ± 10.4 years, p = 0.001) and more likely to be male (50.0% vs 27.2%, p < 0.001). More patients were current smokers (14.4% vs. 9.6%, p = 0.001) among the HTPR population. The presence of dyslipidemia, having undergone PCI previously, and clopidogrel loading or non-loading treatment were associated with HTPR. The prevalence of concurrent use of medications between the two groups was similar, except for cilostazol and proton pump inhibitors (both of which were taken more frequently by patients with HTPR).
Platelet Reactivity in Coronary Stenting

Fig. 2. Platelet reactivity before and after PCI

A: Platelet reactivity in patients with ACS (●) or with stable CAD (○).

B: Platelet reactivity in patients treated with loading (■) or non-loading (▲) doses of clopidogrel.
Multivariate Cox regression analysis of ischemic clinical events showed that HTPR (\(\geq 221\) PRU) was associated with a significantly higher risk of MACCE at 1-year (HR: 4.168, 95% CI: 1.469–11.827, \(p = 0.007\)) after adjusting for potential confounders associated with endpoints on univariate Cox regression analysis (age, sex, body mass index [BMI], DM, chronic kidney disease, C-reactive protein level of 3 mg/L, ACS presentation, and multi-vessel disease). HTPR, three-vessel disease, eGFR \(\leq 15\) mL/min/1.73 m\(^2\), ACS presentation, and BMI (kg/m\(^2\)) were independent predictors for 1-year composite ischemic events. Statin treatment was significantly associated with a reduced risk of composite ischemic events (Table 4).

Multivariate Cox regression analysis of TIMI major/minor/minimal bleeding events showed that age \(\geq 75\) years and eGFR <15 mL/min/1.73 m\(^2\) were associated with a significantly higher risk of bleeding events at 1 year (HR: 4.168, 95% CI: 1.469–11.827, \(p = 0.007\)) after adjusting for potential confounders associated with endpoints on univariate Cox regression analysis (age, sex, body mass index [BMI], DM, chronic kidney disease, C-reactive protein level of 3 mg/L, ACS presentation, and multi-vessel disease). HTPR, three-vessel disease, eGFR <15 mL/min/1.73 m\(^2\), ACS presentation, and BMI (kg/m\(^2\)) were independent predictors for 1-year composite ischemic events. Statin treatment was significantly associated with a reduced risk of composite ischemic events (Table 4).

When we applied an alternative definition of HTPR (\(\geq 208\) PRU), as used in the ADAPT-DES study\(^{12}\), HTPR was significantly associated with an increased rate of MACCE (OR: 4.086, 95% CI: 1.245–13.407, \(p = 0.02\)), indicating that analogous results to those using \(> 221\) PRU were obtained. However, the incidence of HTPR \(> 208\) PRU was 75.4% (644/854) in our study compared with 42.8% (3,610/8,449) in the ADAPT-DES study.
study population at proportions similar to those included in a recent meta-analysis (ACS, 41.5%; stable CAD, 58.5%) and, thus, were considered representative of the actual clinical population.23) Platelet reactivity at 12–24 hours post PCI in patients with ACS was higher than in those with stable CAD, although platelet reactivity following clopidogrel loading was similar to that without loading. The cutoff value of 221 PRU determined using the VerifyNow-P2Y12 assay had relatively high sensitivity but low specificity for the prognostic risk of MACCE. Given that the majority of evaluated patients showed HTPR (>221 PRU), the prognostic value of platelet reactivity alone might be limited.

Discussion

HTPR in patients receiving DAPT after coronary intervention has been associated with an increased risk for ischemic events, although the relationship has been less characterized in Japanese patients. The primary finding of this prospective observational study was that the presence of HTPR (>221 PRU) at 12–24 h after PCI was significantly and independently associated with an increased risk for ischemic events (death, stent thrombosis, myocardial infarction, and ischemic stroke) and mortality. Of note, patients with ACS (37.7%) or stable CAD (62.3%) were included in the study population at proportions similar to those included in a recent meta-analysis (ACS, 41.5%; stable CAD, 58.5%) and, thus, were considered representative of the actual clinical population. Platelet reactivity at 12–24 hours post PCI in patients with ACS was higher than in those with stable CAD, although platelet reactivity following clopidogrel loading was similar to that without loading. The cutoff value of 221 PRU determined using the VerifyNow-P2Y12 assay had relatively high sensitivity but low specificity for the prognostic risk of MACCE. Given that the majority of evaluated patients showed HTPR (>221 PRU), the prognostic value of platelet reactivity alone might be limited.
Multivariate Cox hazard analysis revealed that three-vessel disease, HTPR (>221 PRU), eGFR < 15 mL/min/1.73 m², and BMI (kg/m²) were independent predictive factors for MACCE, but that statin treatment was a negative risk factor. These data support the possibility that statin treatment may lead to fewer cardiovascular events owning to the LDL-cholesterol lowering effect as well as several pleotropic protective effects against the progression of atherosclerosis, although the extent of attainment of LDL-cholesterol guideline-recommended levels in post-PCI patients is unclear in this study.

In the present study in Japanese patients, the incidence of HTPR was markedly higher at 69.1% than that reported in previous studies in patients in Europe and the US [10-12], in which the incidence of HTPR was approximately 40%. A similar high prevalence (61.8%) of HTPR (>235 PRU) has also been reported among patients in Korea [24], while a post hoc analysis of the PRASFIT-ACS study in Japanese patients undergoing PCI also reported a high prevalence (69.6%) of HTPR (>262 PRU) among patients receiving clopidogrel [25]. Several reports have indicated ethnic differences in genetic polymorphisms for CYP2C19, clopidogrel treatment, OCT/IVUS usage, HTPR incidence, use of intravascular ultrasound/optical coherence tomography, and rate of clinical outcomes [7, 14]. Furthermore, platelet response can vary over time, and some studies have reported intra-individual variability in the P2Y12-ADP receptor blockade during maintenance therapy [26]. Although the acute effects of P2Y12-ADP receptor antagonist loading are well known, less has been reported on the long-term effects of loading doses, particularly in Japanese patients. It is of clinical relevance to determine these effects because optimized antiplatelet therapy during the maintenance phase after PCI can clearly determine the clinical outcome. Furthermore, a large proportion of patients with ACS require an additional PCI during the maintenance phase as a result of multi-vessel disease, and few studies to date have examined the optimal use of P2Y12-ADP receptor antagonists in this high-risk patient population [27].

The present study indicated that the TIMI major/minor/minimal bleeding cutoff point was not captured by the VerifyNow assay, consistent with the findings of the TRIAGE study [28]. The present study included more patients than the TRIAGE study; however, the results are comparable. Our findings also indicate that platelet function testing does not provide the necessary prognostic information to identify patients with higher bleeding risk, as, overall, few patients reported TIMI major/minor bleeding. Multivariate Cox hazard analysis revealed that age ≥ 75 years and eGFR < 15 mL/min/1.73 m² were independent predictive factors for TIMI major/minor/minimal bleeding in the present study. Therefore, unlike the relationship of HTPR with thrombotic events, we found that on-treatment platelet reactivity appeared to have no association with TIMI major/minor bleeding events. Further studies in a larger population may be required to identify such a relationship.

By using prasugrel, which is not affected by the CYP2C19 polymorphism [29], instead of clopidogrel, it may be possible to overcome the effects of HTPR which may have implications for the prognostic utility of the VerifyNow P2Y12 assay and the identification of clinically effective strategies for P2Y12 antagonist therapy in Japanese PCI patients.

This study had several limitations. First, a relatively small number of patients were included, meaning that the study may have been underpowered to assess clinical outcome. Second, we measured platelet reactivity only using the VerifyNow P2Y12 assay, and different outcomes may have been obtained using other platelet function tests such as the vasodilator-stimulated phosphoprotein assay. Third, bleeding endpoints were assessed by TIMI criteria, such as the occurrence of the composite of TIMI major or minor bleeding. Fourth, we did not collect data regarding PCI access sites. The frequency of bleeding complications was too low, however, to determine clinical or laboratory predictors of hemorrhagic events. Finally, genetic testing, particularly for the CYP2C19 polymorphism, was not performed. The response to clopidogrel treatment is closely linked to the CYP2C19 polymorphism, and Japanese patients appear to have a higher rate of CYP2C19 loss-of-function gene alleles compared with Caucasian patients [18]. A high prevalence of the CYP2C19 polymorphism in our study population might have confounded the results of our study.

Conclusion

HTPR was significantly associated with adverse ischemic outcomes at 1 year after PCI in Japanese patients receiving maintenance DAPT, indicating its potential as a prognostic indicator of clinical outcomes in this high-risk patient population.

Acknowledgments

We thank Clare Cox, PhD, of Edanz Medical Writing, for providing medical writing support, which was funded by Daiichi Sankyo Company Ltd. (Tokyo, Japan).
The j-CHIPS study was an academic research project supported by a research grant from Daiichi Sankyo Company Ltd. (Tokyo, Japan). The study sponsor was not involved in the study design, or the collection, analysis, or interpretation of data.

Conflict of Interest

M Nishikawa has received honoraria from Daiichi Sankyo and clinical research funding from Daiichi Sankyo and Otsuka Pharmaceutical. K Kimura has received honoraria from AstraZeneca and Daiichi Sankyo, clinical research funding from Daiichi Sankyo, and a scholarship grant from Daiichi Sankyo. T Takayama has received clinical research funding from Daiichi Sankyo and Tanabe Mitsubishi. A Hirayama has received honoraria from TOA Eiyo, Boehringer Ingelheim Japan, Sanofi, Astellas Pharma, Sumitomo Dainippon Pharma, Bristol-Myers Squibb, Agen Astellas Biopharma, AstraZeneca, Daiichi Sankyo and Bayer Yakuhin, and teaches courses endowed by Boston Scientific Japan, St. Jude Medical Japan, Medtronic Japan, and Japan Lifeline. T Isshiki has received patent royalties from Nipro, honoraria from Sanofi and Daiichi Sankyo, and clinical research funding from Daiichi Sankyo. H Yokoi has received honoraria from Daiichi Sankyo, Sanofi, Bayer Yakuhin, Terumo, and a scholarship grant from Daiichi Sankyo. The other authors have no conflicts of interest to declare.

References

1) Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, Granger CB, Lange RA, Mack MJ, Mauri L, Mehran R, Mukherjee D, Newby LK, O’Gara PT, Saba tine MS, Smith PK, Smith SC Jr.: 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of STElevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-STElevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation, 2016; 134: e123-155

2) Valgimigli M, Bueno H, Byrne RA, Collet JP, Costa F, Jeppsson A, Jüni P, Kastrati A, Kolh P, Mauri L, Montalescot G, Neumann FJ, Petriccione M, Roffi M, Steg PG, Windecker S, Zamorano JL, Levine GN; ESC Scientific Document Group; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies: 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J, 2018; 39: 213-260

3) Mauri L, Kereiakes DJ, Yeh RW, Driscoll-Shempp P, Cutlip DE, Steg PG, Normand SL, Braunwald E, Wiviotti SD, Cohen DJ, Holmes Jr DR: Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. NEJM, 2014; 371: 2155-2166

4) Wiviotti SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J: Prasugrel versus clopidogrel in patients with acute coronary syndromes. NEJM, 2007; 357: 2001-2015

5) Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, Ikeda T, Kurihara A: Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos, 2010; 38: 92-99

6) Mega JL, Close SL, Wiviotti SD, Shen L, Walker JR, Simon T, Antman EM, Braunwald E, Sabatine MS: Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet, 2010; 376: 1312-1319

7) Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH, Angiolillo DJ, Stone GW, Curzen N, Geisler T, Ten Berg J, Kirtane A, Siller-Matula J, Mahla E, Becker RC, Bhatt DL, Waksman R, Rao SV, Alexopoulos D, Marcucci R, Reny JL, Trenk D, Sibbing D, Gurbel PA; Working Group on On-Treatment Platelet Reactivity: Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol, 2013; 62: 2261-2273

8) Price MJ, Angiolillo DJ, Teirstein PS, Lillie E, Manoukian SV, Berger PB, Tanguay JF, Cannon CP, Topol EJ: Platelet reactivity and cardiovascular outcomes after percutaneous coronary intervention: a time-dependent analysis of the Gauging Responsiveness with a VerifyNow P2Y12 assay: Impact on Thrombosis and Safety (GRAVITAS) trial. Circulation, 2011; 124: 1132-1137

9) Jakubowski JA, Payne CD, Li YG, Brandt JT, Small DS, Farid NA, Salazar DE, Winters KJ: The use of the VerifyNow P2Y12 point-of-care device to monitor platelet function across a range of P2Y12 inhibition levels following prasugrel and clopidogrel administration. Thromb Haemost, 2008: 99: 409-415

10) Breet NJ, van Werkum JW, Bouman HJ, Kelder JC, Ruven HJ, Bal ET, Deneer VH, Harmsje AM, van der Heyden JA, Rensing BJ, Suttorp MJ, Hackeng CM, ten Berg JM: Comparison of platelet function tests in predict-
ing clinical outcome in patients undergoing coronary stent implantation. JAMA, 2010; 303: 754-762

11) Brar SS, ten Berg J, Marcucci R, Price MJ, Valgimigli M, Kim HS, Patti G, Breet NJ, DiSciascio G, Cuisset T, Dangas G: Impact of platelet reactivity on clinical outcomes after percutaneous coronary intervention. A collaborative meta-analysis of individual participant data. J Am Coll Cardiol, 2011; 58: 1945-1954

12) Stone GW, Witzenbichler B, Weisz G, Rinaldi MJ, Neumann FJ, Metzger DC, Henry TD, Cox DA, Duffy PL, Mazzafferi E, Gurbel PA, Xu K, Parise H, Kirtane AJ, Brodie BR, Mehran R, Stuckey TD; ADAPT-DES Investigators: Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet, 2013; 382: 614-623

13) Angiolillo DJ: Variability in responsiveness to oral antiplatelet therapy. Am J Cardiol, 2009; 103: 27A-34A

14) Siller-Matula JM, Trenk D, Schrö R, Gawaz M, Kristensen SD, Storey RF, Huber K; EPA (European Platelet Academy): Response variability to P2Y12 receptor inhibitors: expectations and reality. JACC Cardiovasc Interv, 2013; 6: 1111-1128

15) Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD; CLOSE Investigators: Platelet reactivity and bleeding events following percutaneous coronary intervention. Thromb Res, 2015; 136: 947-954

16) Holmes MV, Perel P, Shah T, Hingorani AD, Casas JP, Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Micas W, Braunwald E, Sabatine MS: Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med, 2009; 360: 354-362

17) Nakamura M, Isshiki T, Kimura T, Ogawa H, Yokoi H, Nanto S, Takayama M, Kitagawa K, Ikeda Y; Saito S; Oikawa A: Influence of cytochrome P450 polymorphisms on the antiplatelet effects of prasugrel in patients with or without acute coronary syndromes: an individual patient data pairwise and network meta-analysis of six randomized trials and 11 473 patients. Eur Heart J, 2017; 38: 1034-1043

18) Kurose K, Sugiyama E, Saito Y: Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet, 2012; 27: 9-54

19) Saito S, Ishihito T, Kimura T, Ogawa H, Yokoi H, Nanto S, Takayama M, Kitagawa K, Nishikawa M, Miyazaki S, Nakamura M: Efficacy and safety of adjusted-dose prasugrel compared with clopidogrel in Japanese patients with acute coronary syndrome. Circ J, 2014; 78: 1684-1692

20) Nishikawa M, Ishihito T, Kimura T, Ogawa H, Yokoi H, Miyazaki S, Ikeda Y, Nakamura M, Takita A, Saito S; PRASIT-ACS (PRASugrel compared with clopidogrel For Japanese patIenTs with Acute Coronary Syndrome undergoing percutaneous coronary intervention) Investigators: No association between on-treatment platelet reactivity and bleeding events following percutaneous coronary intervention and antiplatelet therapy: A post hoc analysis. Thromb Res, 2015; 136: 947-954

21) Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es GA, Steg PG, Morel MA, Mauri L, Vranckx P, McFadden E, Lansky A, Hamon M, Krucoff MW, and Serruys PW; Academic Research Consortium: Clinical end points in coronary stent trials: a case for standardized definitions. Circulation, 2007; 115: 2344-2351

22) Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, Delan J, Dodge HT, Francis CK, Hillis D, Luddbrook P; Thrombolysis In Myocardial Infarction (TIMI) trial, phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation, 1987; 76: 142-154

23) Palmerini T, Della Riva D, Benedetto U, Bacchi Reggiani L, Feres F, Abizaid A, Gilard M, Morice MC, Valgimigli M, Hong MK, Kim BK: Three, six, or twelve months of dual antiplatelet therapy after DES implantation in patients with or without acute coronary syndromes: an individual patient data pairwise and network meta-analysis of six randomized trials and 11 473 patients. Eur Heart J, 2017; 38: 1034-1043

24) Park DW, Ahn JM, Song HG, Lee JY, Kim WJ, Kang SJ, Yun SC, Lee SW, Kim YH, Lee CW, Park SW, Park SJ: Differential prognostic impact of high on-treatment platelet reactivity among patients with acute coronary syndromes versus stable coronary artery disease undergoing percutaneous coronary intervention. Am Heart J, 2013; 165: 34-42

25) Nakamura M, Ishihito T, Kimura T, Ogawa H, Yokoi H, Nanto S, Takayama M, Kitagawa K, Ikeda Y, Saito S: Optimal cutoff value of P2Y12 reaction units to prevent major adverse cardiovascular events in the acute periprocedural period: post-hoc analysis of the randomized PRASFIT-ACS study. Int J Cardiol, 2015; 182: 541-548

26) Arméro S, Camoin Jau L, Ait Moloktar O, Mancini J, Burignat-Bonello C, Tahirou I, Arques S, Dignat-George F, Paganelli F, Bonello L: Intra-individual variability in clopidogrel responsiveness in coronary artery disease patients under long term therapy. Platelets, 2010; 21: 503-507

27) Bonello L, Laine M, Thuny F, Paganelli F, Lemesle G, Roch A, Kerbaul F, Dignat-George F, Berbis J, Frere C: Platelet reactivity in patients receiving a maintenance dose of P2Y12-ADP receptor antagonists undergoing elective percutaneous coronary intervention. Int J Cardiol, 2016; 216: 190-193

28) Chandras Chandrasekhar J, Baber U, Mehran R, Aquino M, Sartori S, Yu J, Kini A, Sharma S, Skurc K, Shlofmitz RA, Witzenbichler B: Impact of an integrated treatment algorithm on platelet function testing and clinical risk assessment: results of the TRIAGE Patients Undergoing Percutaneous Coronary Interventions To Improve Clinical Outcomes Through Optimal Platelet Inhibition study. J Thromb Thrombolysis, 2016; 42: 186-196

29) Kitazono T, Ikeda Y, Nishikawa M, Yoshiba S, Abe K, Ogawa A: Influence of cytochrome P450 polymorphisms on the antiplatelet effects of prasugrel in patients with non-cardioembolic stroke previously treated with clopidogrel. J Thromb Thrombolysis, 2018; 46: 488-495