In vivo transport of Gd-DTPA(2-) into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

Sigurdsson, Ulf; Siversson, Carl; Lammentausta, Eveliina; Svensson, Jonas; Tiderius, Carl Johan; Dahlberg, Leif

Published in:
BMC Musculoskeletal Disorders

DOI:
10.1186/1471-2474-15-226

2014

Link to publication

Citation for published version (APA):
Sigurdsson, U., Siversson, C., Lammentausta, E., Svensson, J., Tiderius, C. J., & Dahlberg, L. (2014). In vivo transport of Gd-DTPA(2-) into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). BMC Musculoskeletal Disorders, 15, [226]. https://doi.org/10.1186/1471-2474-15-226

Total number of authors:
6

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In vivo transport of Gd-DTPA$^{2-}$ into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

Ulf Sigurdsson1*, Carl Siversson2, Eveliina Lammentausta3, Jonas Svensson4, Carl-Johan Tiderius5 and Leif E Dahlberg6

Abstract

Background: Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA$^{2-}$.

Methods: The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA$^{2-}$ (0.2 or 0.3 mmol/kg body weight). The relaxation time (T_1) and relaxation rate ($R_1 = 1/T_1$) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR_1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation.

Results: The triple dose yielded higher concentrations of Gd-DTPA$^{2-}$ in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR_1 were similar for double and triple doses of the contrast agent. ΔR_1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR_1 increased until 90-180 minutes in both the cartilage and the meniscus ($p < 0.05$), and was lower in the medial than in the lateral meniscus at all time points ($p < 0.05$). A faster increase in ΔR_1 was observed in the vascularized peripheral region of the posterior medial meniscus, than in the avascular central part of the posterior medial meniscus during the first 60 minutes ($p < 0.05$).

Conclusion: It is feasible to examine undamaged meniscus and cartilage simultaneously using dGEMRIC, preferably 90 minutes after the injection of a double dose of Gd-DTPA$^{2-}$ (0.2 mmol/kg body weight).

Keywords: dGEMRIC, Glycosaminoglycans, Meniscus, Cartilage

* Correspondence: ulf.sigurdsson@skane.se

1Department of Orthopaedics, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden

Full list of author information is available at the end of the article

© 2014 Sigurdsson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
In knee osteoarthritis (OA) a substantial risk factor is impaired stability [1]. Several studies have demonstrated that the meniscus plays an important role in knee stability, in addition to providing congruity and the capacity to bear load [2-4]. Knee OA is traditionally diagnosed based on clinical symptoms and radiographic signs. Radiographic changes are late events in the process during which the menisci and cartilage gradually deteriorate [5,6]. It is therefore important to develop diagnostic methods that can identify these degenerative changes in the meniscus and cartilage matrix, to enable detection and treatment of OA before irreversible damage or loss of tissue has occurred. The medial meniscus has attracted particular interest, and patients with meniscus injury are commonly used as a model to study early events in the development of OA [7-9].

Meniscus and articular cartilage consist of 60-80% water and 20-40% organic matter [10,11]. The main components of the organic matter are collagen and proteoglycan (a core protein with glycosaminoglycans attached). The contents of collagen and proteoglycan differ in the meniscus and articular cartilage, and also between regions within these tissues. The peripheral, vascular one-third of the meniscus consists almost exclusively of type I collagen, (80% by dry weight) [12]. In the avascular, central two-thirds of the meniscus, 70% is collagen (by dry weight), of which 40% is type I and 60% is type II [12]. The proteoglycan content in the meniscus is about 15% (dry weight) [12,13]. In articular cartilage, type II collagen is predominant, with a content of about 50-60% (dry weight); the other main component being proteoglycan, which constitutes about 15-30% (dry weight) [14]. The glycosaminoglycan (GAG) concentration in the meniscus is only 0.3-0.8% (wt weight), compared with 2.0% (wt weight) in articular cartilage [13,15].

Changes in cartilage GAGs are often studied to identify early changes in the tissue matrix and to study the progression of OA. The methods used today to detect pre-radiographic OA include the assessment of biochemical markers in synovial fluid, serum, and urine, as well as new molecular imaging techniques by MRI, such as delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), glycosaminoglycan chemical exchange saturation transfer (gagCEST) and sodium magnetic resonance imaging (Na-MRI) [16-22]. dGEMRIC has been used to estimate the depletion of GAG in articular cartilage during the early stages of OA in research and in the clinical setting [23-25]. In dGEMRIC, the fixed charge density of GAG is studied in vivo by quantitative measurements of the longitudinal relaxation time (T1) of articular cartilage in the presence of the ionic contrast agent Gd-DTPA2− (T1(Gd)). Gd-DTPA2−-distribution, which is inversely related to the concentration of negatively charged GAGs in the cartilage, is suggested as a measure of cartilage quality [18,19]. Longer T1 values correspond to lower concentrations of Gd-DTPA2−, and hence higher cartilage quality.

The dGEMRIC technique has rarely been applied to the meniscus, and in the few studies published a dose of 0.2 mmol/kg of Gd-DTPA2−, a so-called double dose, has been used [26,27]. In the present study we have compared double and triple doses to investigate the feasibility of dGEMRIC in clinical meniscus diagnostics.

The specific aims of this study were to investigate:

1. whether a triple dose provided any addition information, not provided by the double dose,
2. whether there was a difference between the uptake of contrast agent in the meniscus and joint cartilage, regarding the amount and when after injection the maximum level was attained, and
3. whether there was a difference in the uptake of contrast agent within the meniscus and in the meniscus at different locations in the knee joint.

Methods
Subjects
Twelve asymptomatic healthy volunteers (5 males and 7 females), aged 23-28 years (mean 25 years), were included after diagnostic MRI, demonstrating no pathological changes. Before inclusion, the nature of the procedure was fully explained to all subjects and written informed consent was obtained. The exclusion criteria were: 1. history of injury or pain in the knee; 2. contraindications for MRI (i.e. metal prosthesis, claustrophobia, serious allergy to contrast agent); 3. abnormality at physical examination of the knee; 4. abnormality in renal function. The study was approved by the ethics review board at Regionala Etikprövningskommittéen, Lund, Sweden.

MRI
Intravenously injected Gd-DTPA2− (Magnevist®, Bayer Schering Pharma AG, Berlin, Germany) was used as contrast agent. The injection of Gd-DTPA2− was given in an antecubital vein. Zero time was defined as the end of the injection. After injection, the subjects walked for ten minutes at a slow pace, to optimize the distribution of Gd-DTPA2− in the meniscus and cartilage.

Each subject was examined using both double (0.2 mmol/kg body weight) and triple (0.3 mmol/kg body weight) doses, administered on two different occasions separated by 5-6 months. Each subject was randomized to receiving the double or triple dose at the first examination. All imaging was performed on a Siemens Magnetom Sonata 1.5 T scanner with a CP extremity coil (Siemens Healthcare, Erlangen, Germany). Identical MRI
protocols were used on both occasions. Each examination included quantitative T1 measurements which were performed before and 60, 90, 120 and 180 min after the injection of the contrast agent. A 3D Look-Locker sequence (FOV 160 × 160 × 90 mm, matrix 256 × 256 × 30 pixels, TR 2500 ms, flip angle 6°, 10 TIs), was used to acquire the 3D T1 maps. The acquisition time was 10 minutes and 42 seconds. T1 was calculated using the pre-calculated flip angle correction method, and the associated flip angle slice profile was acquired from previous phantom measurements [28]. All data were evaluated using software programmed in MATLAB (The MathWorks Inc., Natick, MA, USA).

Evaluation of MRI measurements

T1 was measured before (T1pre) and four times after (T1(Gd)) contrast agent injection (60, 90, 120 and 180 minutes). From these T1 values, the change in relaxation rate, ΔR1, was calculated according to:

\[\Delta R_1 = \frac{1}{T_{1(Gd)}} - \frac{1}{T_{1pre}} \]

which reflects the post injection concentration of Gd-DTPA2− in the tissue. The primary advantage of using 3D rather than 2D measurements in this study was that it was possible to choose the exact slice on which the regions of interest (ROIs) are defined after image acquisition.

Two sagittal slices, one in the lateral and one in the medial compartment, were selected from the 3D volume to enable analysis of the weight-bearing parts of the meniscus and femoral cartilage. ROIs were drawn to cover the lateral and medial anterior and posterior regions of the meniscus, and the lateral and medial anterior and posterior femoral cartilage (Figure 1), in accordance with a scheme partly derived from Eckstein et al. [29]. The value of T1 for each ROI was calculated. The meniscus was also divided into a peripheral vascular region (the outer one-third of the meniscus) and a central avascular region (the inner two-thirds of the meniscus) to enable calculations of T1 in these parts of the meniscus (Figure 1). All ROIs were drawn by a single investigator. The paired t-test and analysis of variance (ANOVA) were used for statistical evaluation. The results are presented in the figures as mean values and 95% confidence interval (95% CI). A p-value <0.05 was considered to indicate statistical significance.

Results

Relaxation time of the meniscus and femoral cartilage before contrast agent injection

A difference was found in the average value of T1pre between the meniscus and femoral cartilage. Similar values of T1pre were seen in each tissue on the two measurement occasions. The mean values of T1pre over the four compartments of the meniscus using the double dose of contrast agent were 617 ± 67 and 624 ± 65 ms, on occasions one and two, respectively. The corresponding mean values of T1pre in the articular cartilage were 662 ± 75 ms and 655 ± 57 ms.

Effect of contrast agent dose on meniscus image enhancement

The uptake of contrast agent was clearly visible in the meniscus after both double and triple doses. The triple dose resulted in higher values of ΔR1 than the double dose in all four compartments of the meniscus, as exemplified by the posterior medial compartment in Figure 2. It can also be seen from this figure that ΔR1 increased until 90 minutes post injection (p < 0.05). Evaluation with the paired t-test revealed no significant increase between 90 and 120 minutes (p = 0.308) or between 120 and 180 minutes (p = 0.085). However, the values at 90 and 180 minutes were significantly different (p = 0.008). Similar patterns were seen in the other compartments (data not shown).

Comparison of relaxation time of the meniscus and femoral cartilage after contrast agent injection

The results in Figure 3 show that the change in relaxation rate in the posterior medial meniscus was generally higher than in the corresponding femoral cartilage, at all times after the double dose injection (0.001 ≤ p ≤ 0.017). Similar results were seen in the posterior lateral compartment at all times post injection (0.001 ≤ p ≤ 0.008). In the anterior...
compartments, a significant difference was seen in the lateral (p < 0.001) but not in the medial compartment (0.001 ≤ p ≤ 0.720). Similar patterns were observed after the triple dose injection (data not shown).

Comparison of relaxation time of different parts of the meniscus after contrast agent injection

Comparisons of different parts of the posterior medial and lateral meniscus revealed a faster increase in ΔR₁ (i.e. steeper curve) during the first 60 minutes in the peripheral vascular region, than in the central avascular region (p = 0.022 medial, p = 0.007 lateral). This is illustrated for the medial meniscus in Figure 4. Furthermore, the mean values of ΔR₁ over time were significantly higher in the peripheral than in the central part of the posterior medial meniscus (p = 0.024). A difference was seen in the lateral meniscus, but it was not significant (p = 0.175).

Comparison of ΔR₁ in the posterior and the anterior horn of the meniscus showed a lower value in the posterior horn, reflecting a lower concentration of Gd-DTPA²⁻. Similar results were seen in the medial and lateral compartments (Figure 5A) (p = 0.015 in both compartments). ΔR₁ was lower in the posterior medial meniscus than in the posterior lateral meniscus (Figure 5B). Similar results were seen in the anterior horn of the meniscus, (p = 0.049 and p = 0.003).

Similar results were observed within and between different parts of the meniscus in different compartments after the triple dose (data not shown).

Discussion

The dGEMRIC method includes an injection of contrast agent and the patient also need to wait after the injection to do the MRI scan. In clinical use it would be better with a non-invasive MRI technique. T2 mapping and T1rho are such techniques. Both T2 and T1rho are thought to be sensitive to tissue hydration and matrix macromolecular architecture. T2 has been shown to be increased in subjects with pre-OA and also in subjects at risk for developing OA [30]. Reports indicate that T1rho may be more sensitive to cartilage degeneration than T2 mapping [31]. Those results are promising but further investigations are needed to evaluate the relative strengths and weaknesses of T2 and T1rho before they can be in clinical use.

In this study of contrast distribution in the meniscus and femoral joint cartilage, ΔR₁ values, reflecting the
Gd-DTPA$_{2}^{-}$ concentration, were considerably higher in the meniscus than in the femoral cartilage 90 to 180 minutes after injection. The triple dose yielded higher concentrations of Gd-DTPA$_{2}^{-}$ in the meniscus and cartilage than the double dose, but provided no additional information. The double dose of Gd-DTPA$_{2}^{-}$ was sufficient to detect all compartmental and regional differences, and appears to be adequate in dGEMRIC analysis of both the meniscus and cartilage. This is consistent with previous results in articular cartilage [18,32].

No statistically significant increase in ΔR_1 was seen in the meniscus between 90 and 120 minutes or between 120 and 180 minutes. However, there was a difference between the values at 90 and 180 minutes. Thus, there was a trend of increasing ΔR_1 after 90 minutes in the meniscus, but the increase between successive points in time was not significant. Mayerhoefer et al. suggested that 2.5-4.5 hours was a suitable time window for T1(Gd) mapping of the meniscus, based on the investigation of six healthy volunteers over a period of 1-9 hours [27]. From a clinical point of view, it is advantageous to be able to examine the patient as soon as possible after injection. It is also desirable to be able to examine the cartilage and meniscus simultaneously. The results of the present study indicate that a delay of approximately 1½ hour after the injection of contrast agent is sufficient to allow uptake of Gd-DTPA$_{2}^{-}$ into both the cartilage and meniscus. This is in good agreement with previously published in vivo data [18,26].

It may be argued that an increase in the level of Gd-DTPA$_{2}^{-}$ in meniscus blood vessels affects the relaxation rate. The negligible volume of the blood vessels compared to the total volume of the meniscus, in combination with the fact that measurements were made up to 180 minutes post injection (the half-life of Gd-DTPA$_{2}^{-}$ in plasma is approximately 20 minutes), suggest that Gd-DTPA$_{2}^{-}$ in the blood vessels is not a source of bias [33].

The distribution of Gd-DTPA$_{2}^{-}$ in the cartilage, as well as different parts of the meniscus, depends on several factors that are currently not fully understood. Experimental studies on cartilage suggest that the distribution is determined to a large extent by the GAG content of the tissue [24,25]. Thus, the higher concentration of contrast agent observed in the meniscus in this study suggests that the meniscus contains less GAG than femoral cartilage. Similar results have been reported in several experimental studies of cartilage in the meniscus of dogs and rabbits [34,35]. A larger contact area with the synovial fluid, possibly facilitating the influx of contrast agent from both sides of the meniscus, may also contribute to the higher Gd-DTPA$_{2}^{-}$ concentration in the meniscus. Moreover, the fact that the peripheral one-third of the meniscus is vascularized probably facilitates the uptake of Gd-DTPA$_{2}^{-}$ by the meniscus, at least in the peripheral layer, leading to higher values than seen in the femoral cartilage. This explanation is supported by the faster increase in ΔR_1 seen in the vascularized part of the meniscus during the first 60 minutes post injection. Other factors may also contribute to the Gd-DTPA$_{2}^{-}$ distribution. For example, it was recently shown that cartilage thickness strongly affects the bulk cartilage contrast agent concentration [36].

GAG content is related to differences in load distribution and weight-bearing between joint surfaces [37]. A higher content of GAG has been reported in the central zone than in the peripheral zone of the meniscus in rabbits and humans [38,39]. Due to the need for compressive integrity, cells in the central two-thirds of the meniscus synthesize more GAG than those in the peripheral one-third [40]. Thus, the differences in the distribution of contrast agent in the different compartments of the knee joint and in the different parts of the meniscus observed in this study may reflect spatial differences in GAG content caused by adaptation to biomechanical demands.
Increased GAG content, associated with early degenerative changes (Gr I or Gr II according to the Outerbridge classification), has been reported following a histochemical study using Safranin-O staining of the inner body of the meniscus in human knees [41]. Although no degenerative changes were seen in the menisci in this study, minor lesions with no symptoms, not detectable with MRI, may have been present. This may partly explain the spread in ΔR1 values observed in the menisci in the present study (as shown by the wide range of the 95% CIs in Figure 2, Figure 3, Figure 4 and Figure 5). A wide range of post injection T1 values was also reported in a previously published dGEMRIC study of the meniscus [26], while Mayerhoefer et al. did not report or discuss a wide variation in values [27]. To determine the diagnostic value of dGEMRIC in predicting meniscal degeneration consistent with early OA, the change in relaxation rate in patients with a diseased meniscus must be compared with a well-defined reference range of values obtained from healthy menisci.

Conclusions
A triple dose of contrast agent yielded higher concentrations of Gd-DTPA²⁻ in the meniscus and cartilage than the double dose, but provided no additional information. It is feasible to examine undamaged meniscus and cartilage simultaneously using dGEMRIC at 90 minutes after the injection of Gd-DTPA²⁻ at a dose of 0.2 mmol/kg body weight. The uptake of contrast agent differs both within the meniscus, and in the meniscus at different locations in the knee joint.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
US, CJT and LED participated in the design of the study. CS and JS developed the pulse sequence used to acquire the 3D T1 maps. EL and CS developed the software to enable the analyses of the MRI images. US analysed the MRI images and performed the statistical analysis. All the authors conceived the aspects of this study, and participated in its coordination. All authors read and approved the final manuscript.

Acknowledgements
I would like to thank Jeanette Nilsson for helping me with the administration work (contacting and mailing the subjects). Further there would not have been an article without Jan-Åke Nilssons statistical contribution- thank you. I would like to thank Jeanette Nilsson for helping me with the administration work (contacting and mailing the subjects). Further there would not have been an article without Jan-Åke Nilssons statistical contribution- thank you. I would also like to thank Pernilla Carlsson for your endless reading and comments. The persons above are all employees at Lund University, Sweden.

Author details
1Department of Orthopaedics, Lund University, Skåne University Hospital, SE-220 85 Lund, Sweden. 2Department of Diagnostic Radiology, Ölrum University Hospital, P.O. Box 50, FI-90029 OYS Oulu, Finland. 3Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden. 4Department of Orthopaedics, Lund University, Skåne University Hospital, SE-221 85 Lund, Sweden. 5Department of Orthopaedics, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden. 6Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden. 7Department of Orthopaedics, Lund University, Skåne University Hospital, SE-220 85 Lund, Sweden. 8Department of Orthopaedics, Clinical Sciences Lund, Lund University, Skåne University Hospital, SE-221 85 Lund, Sweden.

Received: 11 October 2013 Accepted: 9 July 2014
Published: 9 July 2014

References
1. Roos H, Adalberth T, Dahlberg L, Lohmander LS: Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil 1995, 3(4):261–267.
2. Shrive NG, O’Connor JJ: Goodfellow JW: Load-bearing in the knee joint. Clin Orthop Relat Res 1978, (131):279–287.
3. Walker PS, Hajek M: The load-bearing area in the knee joint. J Biomech 1972, 5(6):581–589.
4. Walker PS, Erkmann MJ: The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 1975, (109):184–192.
5. Boegård T, Rudling O, Petersson IF, Jonsson K: Joint-space width in the weight-bearing radiogram of the tibiofemoral joint: should the patient stand on one leg or two? Acta Radiol 1998, 39(1):32–35.
6. Davies AP, Calder DA, Marshall T, Glasgow MM: Plain radiography in the degenerate knee: a case for change. J Bone Joint Surg Br 1999, 81(4):632–635.
7. Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE: Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. J Bone Joint Surg Am 2008, 90(8):1717–1725.
8. Penin J, Verdonk P, Selmi TAS, Massin P, Neyert P: Long-term follow-up of 24.5 years after intra-articular anterior cruciate ligament reconstruction with lateral extra-articular augmentation. Am J Sports Med 2010, 38(5):1094–1102.
9. Kessler MA, Behrend H, Henz S, Stutz C, Rukavina A, Kuster MS: Function, osteoarthritis and activity after ACL-rupture: 11 year follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 2008, 16(5):442–448.
10. Brindle T, Nyland J, Johnson DL: The meniscus: review of basic principles with application to surgery and rehabilitation. J Athl Train 2001, 36(2):160–169.
11. Guilak F, Setton LA, Kraus VB: Structure and function of articular cartilage, in Principles And Practice Of Orthopaedic Sports Medicine. Edited by Garrett WE, et al., Philadelphia, PA: Lippincott Williams & Wilkins, 2000.
12. Cheung HS: Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine meniscus. Connect Tissue Res 1987, 16(4):343–356.
13. Henwig J, Egner E, Buddecke E: Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis 1984, 43(6):635–640.
14. Darling EM, Athanasiou KA: Articular cartilage bioreactors and bioprocesses. Tissue Eng 2003, 9(1):9–26.
15. McNicol D, Roughley P: Extracation and characterization of proteoglycan from human meniscus. Biochim J 1980, 185(3):705–713.
16. Petersson IF, Boegård T, Dahlström J, Svensson B, Heinegärd D, Saene T: Bone scan and serum markers of bone and cartilage in patients with knee pain and osteoarthritis. Osteoarthr Cartil 1998, 6(1):33–39.
17. Sweering CA, Carpenter JW, Siegel R, Brittain JJ, Dotzlaw J, Durham TB, Toth JL, Laska DA, Marinuthu J, Liu C, Brown DP, Carter QL, Wiley MR, Muffin KL, Mitchell PG, Thirunavukkarasu K: Development of a novel clinical biomarker assay to detect and quantify aggreganase-generated aggregan fragments in human synovial fluid, serum and urine. Osteoarthr Cartil 2010, 18(9):1150–1158.
18. Tiderius CJ, Olsson LE, Deverdier H, Leander P, Ekberg O, Dahlberg L: Gd-DTPA²⁻-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med 2001, 46(5):1067–1071.
19. Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L: Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 2003, 49(5):489–492.
20. Lohmander SL, Lark MW, Dahlberg L, Walakoviits LA, Roos H: Cartilage matrix metabolism in osteoarthritis: markers in synovial fluid, serum and urine. Clin Biochem 1992, 25:167–174.
21. Schmitt B, Zbym S, Stelzeneder D, Jellus V, Paul D, Lauer L, Bachert P, Trattning S: Cartilage quality assessment by using glycosaminoglycan
chemical exchange saturation transfer and Na MR Imaging at 7 T. Radiology 2011, 260(1):257–264.
22. Ling W, Regatte RR, Navon G, Jenschow A: Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 2008, 105(7):2266–2270.
23. Li W, Schiedegger R, Wu Y, Yu A, Prasad PV: Accuracy of T1 measurement with 3-D look-locker technique for dGEMRIC. J Magn Reson Imaging 2008, 27(3):678–682.
24. Bashir A, Gray ML, Burstein D: Gd-DTPA2– as a measure of cartilage degradation. Magn Reson Med 1996, 36(5):665–673.
25. Bashir A, Gray ML, Boutin RD, Burstein D: Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA) (2-)enhanced MR imaging. Radiology 1997, 205(2):551–558.
26. Krishnan N, Sanjay KS, Williams A, Mikulis B, McKenzie C, Burstein D: Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration? Arthritis Rheum 2007, 56(5):1507–1511.
27. Mayerhofer ME, Marnisch TC, Riegler G, Welsch GH, Dobrocky T, Weber M, Apprich S, Scheuerrek G, Szomolanyi P, Puchner S, Trattinn S: Gadolinium diethylene triaminopentaacetic enhancement kinetics in the menisci of asymptomatic subjects: a first step towards a dedicated dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like protocol for biochemical imaging of the meniscus. NMR Biomed 2011, 24(10):2010–2015.
28. Swerson C, Tiderius CJ, Dahlberg L, Swerson J: Local flip angle correction for improved volume T1-qantification in three-dimensional dGEMRIC using the look-locker technique. J Magn Reson Imaging 2009, 30:834–841.
29. Eckstein F, Ateshian G, Burgkart R, Burstein D, Cucitini F, Dardzinski B, Gray M, Link TM, Majumdar S, Mosher T, Peterly C, Tooterman S, Waterton J, Winalski S, Felton D: Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage 2006, 14(10):974–983.
30. Mosher TJ, Dardzinski BJ, Smith MB: Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2–preliminary findings at 3 T. Radiology 2000, 214(1):259–266.
31. Li X, Benjamin MA, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballo-Gamio J, Ries M, Majumdar S: In vivo T(1)rho and T(2) mapping of articular cartilage in osteoarthritics of the knee using 3 T MRI. Osteoarthritis Cartilage 2007, 15(5):789–797. Epub 2007 Feb 16.
32. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML: Protocol issues for delayed Gd(DTPA) (2-)enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001, 45(1):36–41.
33. Tiderius C, Hori M, Williams A, Sharma L, Prasad PV, Finell M, McKenzie C, Burstein D: dGEMRIC as a function of BMI. Osteoarthritis Cartilage 2006, 14(11):1091–1097.
34. Adams ME, Muir H: The glycosaminoglycans of canine menisci. Biochem J 1981, 197(2):385–389.
35. Naumann A, Dennis JE, Awadallah A, Carino DA, Mansour JM, Kastenbauer E, Caplan AI: Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem 2002, 50(8):1049–1058.
36. Hawes ZK, Lammertstaufa E, Svensson J, Dahlberg LE, Tiderius CJ: In vivo transport of Gd-DTPA2– in human knee cartilage assessed by depth-wise dGEMRIC analysis. J Magn Reson Imaging 2011, 34(8):1352–1358.
37. Samosky JT, Burstein D, Grimson EW, Howe R, Martin S, Gray ML: Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J Orthop Res 2005, 23(1):93–101.
38. Killan ML, Lepinski NM, Haut RC, Haut Donahue TL: Regional and zonal histo-morphological characteristics of the lapine menisci. Anat Rec (Hoboken) 2010, 293(12):1991–2000.
39. Chevrier A, Nelea M, Hurtig MB, Hoermann CD, Buschmann MD: Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res 2005, 27(9):1197–1203.
40. Tanaka T, Fuji K, Kuramagae Y: Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer of the human meniscus. Knee Surg Sports Traumatol Arthroscopy 1999, 7(2):75–80.
41. Pauli C, Grogan SP, Patil S, Richland B, Winsor K, Lotz MK, D’Lima DD: Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 2011, 19(9):1132–1141.

Cite this article as: Sigurdsson et al. In vivo transport of Gd-DTPA2– into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). BMC Musculoskeletal Disorders 2014 15:226.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit