Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties
Sophie Morier-Genoud

To cite this version:
Sophie Morier-Genoud. Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties. 2005. hal-00004804v3

HAL Id: hal-00004804
https://hal.science/hal-00004804v3
Preprint submitted on 19 Oct 2005
GEOMETRIC LIFTING OF THE CANONICAL BASIS AND SEMITORIC DEGENERATIONS OF RICHARDSON VARIETIES

SOPHIE MORIER-GENOUD

Abstract. In the \mathfrak{sl}_n case, A. Berenstein and A. Zelevinsky studied in [3] the Schützenberger involution in terms of Lusztig’s canonical basis. We generalize their construction and formulas for any semisimple Lie algebra. We use the geometric lifting of the canonical basis, on which an analogue of the Schützenberger involution can be given. As an application, we construct semitoric degenerations of Richardson varieties, following a method of P. Caldero, [5].

Contents

Introduction 2
1. Notations and preliminaries 3
 1.1. Main data and notations 3
 1.2. Weyl group and reduced words 3
 1.3. PBW-bases 3
 1.4. Canonical/global basis and its Lusztig parametrization 4
 1.5. Kashiwara operators and string parametrization 4
 1.6. Transition maps $R_{\pm i}^{\pm i^\prime}$ 5
 1.7. Canonical basis in the modules 5
 1.8. Examples in the \mathfrak{A}_n case 5
2. Action of w_0 and geometric lifting 6
 2.1. Modules twisted by automorphism 6
 2.2. Schützenberger involution 7
 2.3. Geometric lifting and tropicalization 8
 2.4. Totally positive subvariety of G 9
 2.5. Geometric lifting of the maps $R_{\pm i}^{\pm i^\prime}$ 10
 2.6. Geometric lifting of ϕ_A 12
 2.7. Geometric lifting of η_A 14
 2.8. Formulas of inverse maps 15
3. Toric and semitoric degenerations of Richardson varieties 16
 3.1. Problem of toric degenerations 16
 3.2. Flag varieties 16
 3.3. Schubert varieties 17
 3.4. Richardson varieties 18
 3.5. Particular case of toric degenerations 19
 3.6. Example in the \mathfrak{A}_2 case 19
 3.7. Examples in the \mathfrak{B}_2 case 20
References 22

Date: April 26, 2005.
1991 Mathematics Subject Classification. 14M25, 16W35, 14M15.
Introduction

Let G be a semisimple simply connected complex Lie group. Fix opposite Borel subgroups B and B^- of G. In this paper we consider subvarieties of the flag variety G/B known as Richardson varieties. They first appear in [15]. Our problem is to construct toric or semitoric degenerations of these varieties. Such constructions have already be done in the special cases of the flag variety and the Schubert varieties, see [9], [8] and [5]. Our approach consists to extend the method introduced by [5]. Let us mention that the method of [5] was recently extend for the degenerations of spherical varieties, see [1].

A Richardson variety X^w_τ is the intersection of a Schubert variety $X^w := BwB/B$ and an opposite Schubert variety $X^-_\tau := B^-\tau B/B$, where w and τ are elements in the Weyl group W of G. The opposite Schubert variety X^-_τ is the image of a Schubert variety under the action of the longest element w_0 of W. This element plays an important role in our study. In order to construct toric degenerations of these varieties, we define filtrations on the homogeneous coordinates algebras associated to the varieties (Sections 3.2, 3.3 and 3.4). All these algebras are direct sums of subspaces of G-modules. The algebra R^-_τ associated to the opposite Schubert variety X^-_τ is related to the algebra R^w_τ associated to the Schubert variety X^w via the action of w_0. It is then important to understand the action of w_0 on the G-modules.

An important tool in our work is the canonical/global basis of Lusztig and Kashiwara. This basis B lays in the negative nilpotent part of the enveloping algebra $U(g)$, where g is the Lie algebra of G, and has remarkable compatibility properties with the simple G-modules of highest weight. The basis B provides good bases of simple G-modules. And this provides good bases to study the homogenous coordinates algebras of the varieties.

By a result of Lusztig, we know that w_0 acts by a permutation on the elements of the bases of the G-modules induced by B. To have explicit results we use a combinatorics of B, given in terms of string parametrization and Lusztig parametrization. These parametrizations depend on a choice of a reduced decomposition of w_0. In the case where $G = SL_n(\mathbb{C})$, for a convenient choice of the decomposition of w_0, this combinatorics is the same as the combinatorics given in terms of Young tableaux. In this case, the action of w_0 is given by the involution of Schützenberger described on the tableaux in [16], and we have explicit formulas. This was done in [3]. We generalize these results (Corollary 2.8 and Corollary 2.17) to any group G and to any choice of a reduced decomposition. A part of our results was already announced in [14], and applied in [7].

The generalized Schützenberger involution is understood via the geometric lifting, i.e a geometric version of the canonical basis which gives a combinatorics of totally positive subvarieties in G. We give (Theorem 2.13) a geometric analogue of the Schützenberger involution in the totally positive subvarieties of G. The formulas in the geometric version can be easily computed. These formulas are closely related to similar formulas in the algebraic version by a "tropicalization" application. We strongly use the results of [2] and [4].

This paper is organized as follows. Section 1 provides a construction of the canonical basis and their parametrizations. It also recalls the compatibility property with the simple highest weight G-modules. In Section 2, we define the action of w_0 on the modules and we give its geometric analogue. We obtain explicit formulas in terms of parametrizations of the canonical basis. In Section 3, we recall the
constructions of degenerations of the flag variety and the Schubert varieties due to 3. We then construct semitoric degenerations of the Richardson varieties.
I wish to thank P.Caldero for introducing me the statement of this problem and for his constant help. I am deeply grateful to P.Baumann for enlightening discussions and for his help with Lemma 3.6.

1. Notations and preliminaries

1.1. Main data and notations. Let G be a semisimple simply connected complex Lie group. Fix a torus T and a Borel subgroup B of G such that $T \subset B \subset G$. Let N be the unipotent radical of B. Denote by B^- the opposite Borel subgroup and N^- its unipotent radical. The complex Lie algebras associated to G, T, N, N^- will be denoted by \mathfrak{g}, \mathfrak{h}, \mathfrak{n}, \mathfrak{n}^- respectively. There is a triangular decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}$. Let $\{\alpha_i\}_{1 \leq i \leq n}$ be the set of simple roots corresponding to this decomposition, where n is the rank of \mathfrak{g}. This set provides a basis of the dual vector space \mathfrak{h}^*. The simple coroots in \mathfrak{h} are denoted by $\{\alpha_i^\vee\}_{1 \leq i \leq n}$. The weight lattice $P := \{\lambda \in \mathfrak{h}^*, \lambda(\alpha_i^\vee) \in \mathbb{Z}, \forall 1 \leq i \leq n\}$ is generated by the fundamental weights ω_i, $1 \leq i \leq n$, defined such that $\omega_i(\alpha_j^\vee) = \delta_{i,j}$. Let $P^\pm := \mathbb{N}_\omega \mathfrak{h}$ be the semigroup of integral dominant weights. The natural bilinear form on $\mathfrak{h}^* \times \mathfrak{h}$ is denoted by $\langle \cdot , \cdot \rangle$. The Cartan matrix associated to \mathfrak{g} is $(a_{ij})_{1 \leq i,j \leq n}$; one has $a_{ii} = (\alpha_i, \alpha_i^\vee)$.

Recall that $a_{ii} = 2$, $a_{ij} \leq 0$, for all $1 \leq i \neq j \leq n$, and there exist nonnegative integers $(d_i)_{1 \leq i \leq n}$ such that $d_i a_{ij} = d_j a_{ji}$.

1.2. Weyl group and reduced words. The Weyl group W is the subgroup of $\text{End}(\mathfrak{h}^*)$ generated by the reflections s_i, $1 \leq i \leq n$, such that $s_i(\lambda) = \lambda - \langle \lambda, \alpha_i^\vee \rangle \alpha_i$, $\forall \lambda \in \mathfrak{h}^*$. We identify s_i with its adjoint so we also have $s_i(h) = h - \langle \alpha_i, h \rangle \alpha_i^\vee$, $\forall h \in \mathfrak{h}$. The form $\langle \cdot , \cdot \rangle$ is W-invariant. A reduced word for $w \in W$ is a finite sequence of indices $i = (i_1, \cdots, i_l)$ such that $w = s_{i_l} \cdots s_{i_1}$ and the length $\ell(w) := \ell$ is the shortest possible length. Let w_0 be the unique element of W with maximal length; set $N := \ell(w_0)$. Reduced words for $w = w_0$ will be called reduced words for short. The involution $i \mapsto i^*$ of the set $\{1, \ldots, n\}$ is defined by $w_0(\alpha_i) = -\alpha_i^\vee$. Given a reduced word $i = (i_1, \cdots, i_N)$, we set $i^* := (i_1^*, \cdots, i_N^*)$. It is clear that i^* is also a reduced word. Given $\lambda \in P^+$, we set $\lambda^* := -w_0(\lambda)$.

1.3. PBW-bases. Now, let us introduce the quantum enveloping algebras. They will be useful in Sections 1.3, 1.4 and 1.5 for the definition of the canonical basis and there parametrizations. After these sections, we will only consider the classical algebras which are the specializations at $q = 1$. Let q be an indeterminate. The quantum enveloping algebra $\mathcal{U}_q(\mathfrak{g})$ of \mathfrak{g}, over $\mathbb{C}(q)$, is defined with generators E_i, F_i, K_i, $1 \leq i \leq n$ and quantum Serre relations. We also have a triangular decomposition $\mathcal{U}_q(\mathfrak{g}) = \mathcal{U}_q(\mathfrak{n}^-) \otimes \mathcal{U}_q(\mathfrak{h}) \otimes \mathcal{U}_q(\mathfrak{n})$. One can construct bases of $\mathcal{U}_q(\mathfrak{g})$ called Poincaré-Birkhoff-Witt type bases as follows.

For all $1 \leq i \leq n$ and all $k \in \mathbb{N}$, we set $q_i := q^{d_i}$, $[k]_i := \frac{q_i^k - q_i^{-k}}{q_i - q_i^{-1}}$ and:

$$E_i^{(k)} := \frac{1}{[k]_i[k-1]_i \cdots [1]_i} E_i^k, \quad F_i^{(k)} := \frac{1}{[k]_i[k-1]_i \cdots [1]_i} F_i^k$$
Define automorphisms $T_i, 1 \leq i \leq n$ of $\mathcal{U}_q(\mathfrak{g})$ as follows:

\[
T_i(K_j) = K_j K_i^{-a_{ij}}, \quad 1 \leq j \leq n
\]

\[
T_i(E_i) = -K_i^{-1} F_i, \quad T_i(F_i) = -E_i K_i,
\]

\[
T_i(E_j) = \sum_{k+l=-a_{ij}} (-1)^k q_i^{-k} E_i^{(k)} E_j E_i^{(l)}, \quad 1 \leq j \neq i \leq n
\]

\[
T_i(F_j) = \sum_{k+l=-a_{ij}} q_i^k F_i^{(k)} F_j F_i^{(l)}, \quad 1 \leq j \neq i \leq n
\]

One can check the compatibility with Serre’s relations. Now fix a reduced word $\mathbf{i} = (i_1, \ldots, i_N)$. For all k, $1 \leq k \leq N$, set $\beta_{k, k} := s_{i_k} \cdots s_{i_{k-1}}(\alpha_{i_k})$. It is well known that $\{\beta_{k, k}, 1 \leq k \leq N\}$ is the set of positive roots and that the ordering

\[
\beta_{1,1} < \beta_{1,2} < \ldots < \beta_{1,N}
\]

is a convex ordering on R^+. For all k, we define $E^{\beta_{k, k}} = T_{i_1} \cdots T_{i_{k-1}}(E_{i_k})$. Furthermore, for all $t = (t_1, \cdots, t_N) \in \mathbb{N}^N$, we set $E^t := E^{\beta_{t_1,1}} \cdots E^{\beta_{t_N, N}}$, where $E^{\beta_{t_k, k}} := \frac{1}{\prod_{i=1}^{N} B_{\beta_{t_k, k}}} E^{\beta_{t_k, k}}$. The set $\{E^t, t \in \mathbb{N}^N\}$ is the so-called Poincaré-Birkhoff-Witt type basis of $\mathcal{U}_q(n)$ associated to the reduced word \mathbf{i}. In the same way, we define a Poincaré-Birkhoff-Witt basis $\{F^t, t \in \mathbb{N}^N\}$ of $\mathcal{U}_q(n^-)$.

1.4. Canonical/global basis and its Lusztig parametrization

Lusztig, and independently Kashiwara, constructed a basis called canonical (or global) basis of the nilpotent part $\mathcal{U}_q(n^-)$ which have good compatibility properties with the \mathfrak{g}-modules. Following Lusztig’s construction, let us introduce the ”bar” automorphism of $\mathcal{U}_q(\mathfrak{g})$ over \mathbb{C}, denoted $\bar{\ }$ and defined by:

\[
\bar{E}_i = E_i, \quad \bar{K}_i = K_i^{-1}, \quad \bar{F}_i = F_i, \quad \bar{q} = q^{-1}, \quad 1 \leq i \leq n
\]

Proposition 1.1. Let \mathbf{i} be a reduced word. For all $t \in \mathbb{Z}_{\geq 0}^N$, there exists a unique element $b = b(t) \in \mathcal{U}_q(n^-)$ such that $\bar{b} = b$ and $b - F^t(\bar{b}) \in q^{-1} \sum \mathbb{Z}[q^{-1}] F^t(t')$. The set $\mathcal{B} := \{b(t), t \in \mathbb{Z}_{\geq 0}^N\}$ does not depend on the choice of the reduced word \mathbf{i}. Moreover \mathcal{B} is a basis of $\mathcal{U}_q(n^-)$.

The set \mathcal{B} as above is namely the canonical basis of $\mathcal{U}_q(n^-)$.

Given a reduced word \mathbf{i}, the map $t \mapsto b(t)$ is a bijection from $\mathbb{Z}_{\geq 0}^N$ to \mathcal{B}, it gives a parametrisation of the canonical basis that we call Lusztig’s parametrisation.

1.5. Kashiwara operators and string parametrization

Kashiwara’s operators acting on the canonical basis may be defined as follows. For all i in $\{1, \cdots, n\}$, there exists a unique injective map $\tilde{f}_i : \mathcal{B} \to \mathcal{B}$, such that if \mathbf{i} starts with $i_1 = i$, then:

\[
\tilde{f}_i(b(t_1, t_2, \ldots, t_N)) = b(t_1 + 1, t_2, \ldots, t_N).
\]

We also define $\tilde{e}_i : \mathcal{B} \to \mathbb{B} \cup \{0\}$ by $\tilde{e}_i(b) = b'$ if there exists b' such that $\tilde{f}_i(b') = b$ and $\tilde{e}_i(b) = 0$ otherwise. We set $\varepsilon_i(b) = \text{Max}\{k \mid \tilde{e}_i^k(b) \neq 0\}$.

The string parametrization of an element $b \in \mathcal{B}$ associated to a reduced word $\mathbf{i} = (i_1, \cdots, i_N)$ is the N-tuple $\mathcal{C}_\mathbf{i}(b) := (t_1, t_2, \cdots, t_N)$ defined recursively by

\[
t_1 = \varepsilon_{i_1}(b), \quad t_2 = \varepsilon_{i_2}(\tilde{e}_{i_1}(b)), \quad \ldots, \quad t_N = \varepsilon_{i_N}(\tilde{e}_{i_{N-1}}(\cdots \tilde{e}_{i_1}(b))).
\]

We denote by $\mathcal{C}_\mathbf{i}$ the image of \mathcal{B} in $\mathbb{Z}_{\geq 0}^N$ under the map ε_i.
Proposition 1.2. Let $i = (i_1, \cdots, i_N)$ be a reduced word, and let b be an element of B with string parameter $c_i(b) = (t_1, t_2, \cdots, t_N)$. One has

(i) $\tilde{f}_{i_1}(\cdots)\tilde{f}_{i_N}(1) = b$,
(ii) $c_i(\tilde{f}_{i_1}(b)) = (t_1 + 1, t_2, \cdots, t_N)$

1.6. Transition maps $R_{i,i'}^{\lambda}$. Let us now introduce the various reparametrization maps. Let i and i' be reduced words, define:

$$R_{i}^{i'} = (b_i)^{-1} \circ b_i : \mathbb{N}^N \to \mathbb{N}^N,$$
$$R_{-i}^{i'} = c_i \circ (c_i)^{-1} : C_i \to C_{i'},$$
$$R_{i}^{i'} = (b_i)^{-1} \circ (c_i)^{-1} : C_i \to \mathbb{N}^N,$$
$$R_{-i}^{i'} = c_i \circ b_i : \mathbb{N}^N \to C_{i'}.$$

Example 1.3. In the case $G = SL_3$, there are exactly two reduced words, namely $i = (1, 2, 1)$ and $i' = (2, 1, 2)$. The map $R_{i}^{i'}$ was calculated by Lusztig, see [12]. If $b_i(a, b, c) = b_{i'}(a', b', c')$, then:

$$\begin{align*}
\begin{cases}
a' &= b + c - \min(a, c) \\
b' &= \min(a, c) \\
c' &= a + b - \min(a, c)
\end{cases}
\end{align*} \quad (1.1)$$

The methods of computation and explicit formulas of all the previous maps are given in [4], we will recall them in section 2.7.

1.7. Canonical basis in the modules. Given a weight λ in P^+, the Weyl module denoted by $V(\lambda)$ is a simple finite dimensional $U(g)$-module with highest weight λ. From now on, we fix for any $\lambda \in P^+$, a highest weight vector v_λ and a lowest weight vector v^λ_{low} in every $V(\lambda)$. One has $V(\lambda) = U(n) \cdot v_\lambda = U(n) \cdot v^\lambda_{\text{low}}$. It is known that the module $V(\lambda)$ satisfies the Weyl character formula. Let w be an element in W, fix an extremal vector v_w_λ in $V(\lambda)$ of weight $w \lambda$. We introduce the Demazure module $V_w(\lambda) := U(n) \cdot v_w_\lambda$ which is a $U(b)$-submodule of $V(\lambda)$.

The canonical basis and the above modules are compatible, by [10] and [11].

Theorem 1.4. One has:

1. If $B(\lambda) := \{b \in B, bv_\lambda \neq 0\}$, then $B(\lambda)v_\lambda$ is a basis of $V(\lambda)$.
2. There exists a subset $B_w(\lambda)$ of B, which does not depend on λ, such that $B_w(\lambda)v_\lambda$ generates $V_w(\lambda)$.

We will use abbreviation b instead of bv_λ and $B(\lambda)$ instead of $B(\lambda)v_\lambda$ when no confusion occurs. Denote $B_w(\lambda) := B(\lambda) \cap B_w$.

Now, we may suppose that v^λ_{low} and v_w_λ belong to $B(\lambda)$.

We still denote by e_i and f_i the Kashiwara operators define from $B(\lambda)$ to $B(\lambda) \cup \{0\}$ by $e_i(bv_\lambda) = e_i(b)v_\lambda$ and $f_i(bv_\lambda) = f_i(b)v_\lambda$.

1.8. Examples in the A_n case. In this section, we study the case where $G = SL_{n+1}$. In this case the Weyl group is isomorphic to the group of permutations S_n. The element w_0 has length $n(n + 1)/2$ and the special reduced word $i = (1, 2, 1, \cdots, n, n - 1, \cdots, 2, 1)$ will be called standard reduced word. Recall that in the case $G = SL_{n+1}$, one has a combinatoric model of Young tableaux. The Lusztig parametrization and the string parametrization generalize this combinatorial. They coincide when the parametrizations are considered with the standard reduced word.
Definition 1.5. Let $\lambda = \lambda_1 \varpi_1 + \lambda_2 \varpi_2 + \cdots + \lambda_n \varpi_n$ be an element of P^+. The Young tableau of shape λ is a collection of boxes, arranged from left to right, from λ_n columns with n boxes to λ_1 columns with one box. Further, a tableau filled with entries in $\{1, \ldots, n + 1\}$ such that the entries increase across each row and strictly increase down each column, is called a semi-standard Young tableau of shape λ.

Example 1.6. Let $n \geq 3$,

\[
\begin{array}{cccc}
1 & 2 & 2 & 3 \\
2 & 3 & 3 & 4 \\
\end{array}
\]

is a semi-standard Young tableau of shape $\varpi_1 + 2 \varpi_2 + \varpi_3$.

Denote by $Y(\lambda)$ the set of all semi-standard Young tableaux of shape λ. One knows (see [10]) that the set $Y(\lambda)$ gives a parametrization of the canonical basis $B(\lambda)$. Let us precise this fact.

Let T be a tableau $Y(\lambda)$ and denote by b_T the element associated to the tableau T. Let i be the standard reduced word, introduce Lusztig’s parameters of b_T:

\[
t(1,1), t_{22}, t_{23}, t_{33}, t_{1n}, \ldots, t_{nn}) := b_T^{-1}(b_T)
\]

and the string parameters of b_T:

\[
(c_{11}, c_{22}, c_{12}, c_{33}, c_{23}, c_{13}, \ldots, c_{nn}, \ldots, c_{1n}) := c_i(b_T)
\]

The link between all these parametrizations is the following.

Proposition 1.7. \(\square \) One has,

\[
\begin{align*}
t_{ij} &= (\text{the number of } j+1 \text{ in the } i\text{-th row of } T), \quad 1 \leq i \leq j \leq n \\
c_{ij} &= (\text{the number of } j+1 \text{ in the } i \text{ first rows of } T), \quad 1 \leq i \leq j \leq n
\end{align*}
\]

One can deduce explicit formulas for the maps R_i^1 and R_i^\pm in this special case.

Corollary 1.8. One has:

\[
\begin{align*}
t_{ij} &= c_{i+1,j} - c_{ij}, \quad 1 \leq i \leq j \leq n \\
c_{ij} &= t_{ij} + t_{2j} + \cdots + t_{ij}, \quad 1 \leq i \leq j \leq n
\end{align*}
\]

Example 1.9. Figure 2.1 describes the canonical basis $B(\varpi_1 + \varpi_2)$ in the case A_2. For each element of the basis, we give the Young tableau associated, the string parameters and the Lusztig’s parameters for the standard reduced word $i = (1, 2, 1)$. In this figure, the simple arrows between two elements $b \rightarrow b'$ mean that $b' = f_i(b)$, and the double arrows $b \Rightarrow b'$ mean that $b' = \tilde{f}_i(b)$.

2. Action of w_0 and geometric lifting

2.1. Modules twisted by automorphism. Let us consider the three automorphisms of $U(\mathfrak{g})$ defined on the generators by:

\[
\begin{align*}
\phi(E_i) &= F_i, \quad \phi(F_i) = E_i, \quad \phi(H_i) = -H_i \\
\delta(E_i) &= E_i, \quad \delta(F_i) = F_i, \quad \delta(H_i) = H_i \\
\eta(E_i) &= F_i, \quad \eta(F_i) = E_i, \quad \eta(H_i) = -H_i
\end{align*}
\]

Notice that the automorphism η coincides with the action of w_0 up to a multiplicative constant.

In the sequel, let us fix a dominant weight $\lambda \in P^+$.
Given an automorphism χ of $\mathcal{U}(\mathfrak{g})$, one can define the twisted module $V(\lambda)^\chi$ as the vector space $V(\lambda)$ with the following action: $u \ast v = \chi(u)v$, $u \in \mathcal{U}(\mathfrak{g})$, $v \in V(\lambda)$. The module $V(\lambda)^\chi$ is simple since $V(\lambda)$ is simple. And one has $V(\lambda)^\chi \simeq V(\lambda^\chi)$, for a certain $\lambda^\chi \in P^\ast$. The automorphism χ leads an isomorphism of vector spaces $\chi_\lambda : V(\lambda) \rightarrow V(\lambda^\chi)$, verifying $\chi_\lambda(uv) = \chi(u)\chi_\lambda(v)$. Such isomorphism is unique up to multiplicative constant by Schur’s lemma.

Let us describe these isomorphisms in the cases where $\chi = 0, \delta$ and ϕ. The isomorphism $\eta_\lambda : V(\lambda) \rightarrow V(\lambda^\phi)$ satisfies $\eta_\lambda(u,v) = \eta(u)\eta_\lambda(v)$, thus one has:

$$F_i \eta_\lambda(v_\lambda) = \eta(E_i^\phi) \eta_\lambda(v_\lambda) = \eta_\lambda(E_i^\phi v_\lambda) = 0, \forall 1 \leq i \leq n$$

The vector $\eta_\lambda(v_\lambda)$ is therefore a lowest weight vector in the corresponding twisted module $V(\lambda^\phi)$. Let us determine the weight of $\eta_\lambda(v_\lambda)$. For all $1 \leq i \leq n$, one has:

$$H_i \eta_\lambda(v_\lambda) = \eta_\lambda(-H_i^\phi v_\lambda) = \eta_\lambda(\langle \lambda, \alpha_i^\vee \rangle v_\lambda) = \langle \lambda, \alpha_i^\vee \rangle \eta_\lambda(v_\lambda) = \langle w_0(\lambda), \alpha_i^\vee \rangle \eta_\lambda(v_\lambda)$$

Hence, $\eta_\lambda(v_\lambda)$ is a lowest weight vector of weight $w_0(\lambda)$. One deduces that $V(\lambda^\phi) \simeq V(\lambda)$ and that $\eta_\lambda(v_\lambda)$ is proportional to v_λ^{low}.

From now on, set $\eta_\lambda(v_\lambda) = v_\lambda^{low}$. To summarize, one has:

$$\eta_\lambda : V(\lambda) \rightarrow V(\lambda)\text{ with } \eta_\lambda(uv_\lambda) = \eta(u)v_\lambda^{low}, \forall u \in \mathcal{U}(\mathfrak{g})$$

In the same way, the automorphisms ϕ and δ induce the following isomorphisms of vector spaces (normalized by the choice of the image of v_λ):

$$\phi_\lambda : V(\lambda) \rightarrow V(\lambda^\phi)\text{ with } \phi_\lambda(uv_\lambda) = \phi(u)v_\lambda^{low}, \forall u \in \mathcal{U}(\mathfrak{g})$$

$$\delta_\lambda : V(\lambda) \rightarrow V(\lambda^\phi)\text{ with } \delta_\lambda(uv_\lambda) = \delta(u)v_\lambda^{low}, \forall u \in \mathcal{U}(\mathfrak{g})$$

The isomorphism ϕ_λ is compatible with the canonical basis in the following sense:

Proposition 2.1. [12, §21] One has:

(i) $\phi_\lambda(B(\lambda)v_\lambda) = B(\lambda^\phi)v_\lambda$.

(ii) $\forall 1 \leq i \leq n, \forall b \in B(\lambda)$, $\hat{e}_i \phi_\lambda(b) = \phi_\lambda \hat{f}_i(b)$

It is clear from the definitions that $\delta(h_i(t)) = \delta(h_i^\ast(t))$, thus we also have $\delta_\lambda(B(\lambda)v_\lambda) = B(\lambda^\phi)v_\lambda$. It is also clear that $\eta_\lambda = \phi_\lambda \delta_\lambda$, and thus $\eta_\lambda(B(\lambda)v_\lambda) = B(\lambda)v_\lambda$.

2.2. Schützenberger involution

Fix a dominant weight $\lambda \in P^+$. The isomorphism η_λ generalizes the Schützenberger involution defined in the case $G = SL(n)$ in terms of Young tableaux. Schützenberger described (see [16]) an involution $S : Y(\lambda) \rightarrow Y(\lambda)$ with an algorithm called "jeu de taquin".

In the case where $G = SL(n)$, the link between η_λ and S is the following:

Proposition 2.2. [3] Given $T \in Y(\lambda)$ and the associated element $b_T \in B(\lambda)$, one has:

$$\eta_\lambda(b_T) = b_{S(T)}$$

Example 2.3. Figure [2.1] describes the Schützenberger involution on the basis of the \mathfrak{sl}_2-module $V(\varpi_1 + \varpi_2)$.

Figure [2.1]

Diagram of the Schützenberger involution on the basis of the \mathfrak{sl}_2-module $V(\varpi_1 + \varpi_2)$.
2.3. **Geometric lifting and tropicalization.** In the sequel, we wish to compute explicit formulas for the isomorphism η_λ in terms of parametrizations of the canonical basis. We first consider the isomorphism ϕ_λ, and then we use the composition $\eta_\lambda = \delta_\lambda \ast \phi_\lambda$.

Our goal is to give explicit formulas for the application $b_i^{-1} \phi_\lambda c_i^{-1}$ which expresses Lusztig’s parameters $t' = (t'_1, \cdots, t'_N)$ of the element $\phi_\lambda(b) \in B(\lambda^*)$ in terms of the string parameters $t = (t_1, \cdots, t_N)$ of an element $b \in B(\lambda)$.

For this end we use the methods and the results of [2] and [4] on geometric lifting and tropicalization.
We consider semifield structures, i.e. commutative multiplicative groups equipped with an additive law which is associative, commutative and distributive on the product.

The main example of semifield is the set of integers \mathbb{Z} endowed with the operations: $a \oplus b := \min(a, b)$, $a \odot b := a + b$, $a, b \in \mathbb{Z}$, it is called tropical structure of \mathbb{Z}. It induces a semifield structure on the set $F(\mathbb{Z}^N_{\geq 0}, \mathbb{Z})$ of all maps from $\mathbb{Z}^N_{\geq 0}$ to \mathbb{Z} with the operations:

$$f \odot g : (t_1, \ldots, t_N) \mapsto f(t_1, \ldots, t_N) + g(t_1, \ldots, t_N),$$

$$f \oplus g : (t_1, \ldots, t_N) \mapsto \min(f(t_1, \ldots, t_N), g(t_1, \ldots, t_N))$$

for all $f, g \in F(\mathbb{Z}^N_{\geq 0}, \mathbb{Z})$.

We denote by $p_i \in F(\mathbb{Z}^N_{\geq 0}, \mathbb{Z})$ $1 \leq i \leq N$, the projections defined by $p_i(t_1, \ldots, t_N) = t_i$. Let $Q_{>0}(t_1, \ldots, t_N)$ be the set of rational subtraction-free expressions in indeterminates t_1, \ldots, t_N. This set is a semifield (the smallest one containing the indeterminates t_1, \ldots, t_N) for the usual laws $+$ and \times. The tropicalization is defined by:

Theorem 2.4 ([3]). There exists a unique homomorphism of semifields, denoted by $[\cdot]_{\mathrm{Trop}}$, such that:

$$[\cdot]_{\mathrm{Trop}} : Q_{>0}(t_1, \ldots, t_N) \rightarrow F(\mathbb{Z}^N_{\geq 0}, \mathbb{Z}),$$

$$t_i \mapsto p_i, 1 \leq i \leq n,$$

In other words, if $f(t_1, \ldots, t_N)$ is a subtraction-free expression, the tropicalization $[f]_{\mathrm{Trop}}(t_1, \ldots, t_N)$ is the expression obtained from $f(t_1, \ldots, t_N)$ by changing the $+$ in \min, the \times in $+$, and $+$ in \cdot. Let us give an example taken from [2].

Example 2.5. Consider the expression $f(t_1, t_2) := t_1^2 - t_1 t_2 + t_2^2$. It is a rational subtraction-free expression since $f(t_1, t_2) = \min(3t_1, 3t_2) - \min(t_1, t_2) = \min(2t_1, 2t_2)$.

The element f is called geometric lifting of $[f]_{\mathrm{Trop}}$.

Notice that geometric lifting is not uniquely determined by $[f]_{\mathrm{Trop}}$ as we can see in the above example. Indeed, $\frac{t_1^2 + t_2^2}{t_1 + t_2}$ and $t_1^2 + t_2^2$ are both geometric lifting of $\min(2t_1, 2t_2)$.

To finish this subsection, let us introduce the following notation.

Let $f_1, f_2, \ldots, f_n \in Q_{>0}(t_1, \ldots, t_N)$, we set

$$[[f_1, f_2, \ldots, f_n]]_{\mathrm{Trop}} := ([f_1]_{\mathrm{Trop}}, [f_2]_{\mathrm{Trop}}, \ldots, [f_n]_{\mathrm{Trop}}).$$

2.4. Totally positive subvariety of G. For any $1 \leq i \leq n$, denote by $\varphi_i : SL_2 \rightarrow G$ the natural injective map corresponding to the simple root α_i. Consider the one-parameter subgroups of G defined by

$$x_i(t) = \varphi_i \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right), \quad y_i(t) = \varphi_i \left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array} \right), \quad t \in \mathbb{C}^*.$$

$$t^{\alpha_i} = \varphi_i \left(\begin{array}{cc} t & 0 \\ 0 & t^{-1} \end{array} \right), \quad t \in \mathbb{C}^*.$$

Clearly, $x_i(t)$’s, (resp. $y_i(t)$, t^{α_i}) generate N, (resp. N^-, T). One has the following relations of commutation:

$$t^{\alpha_i} x_j(t') = x_j(t^{\alpha_i} t') t^{\alpha_i}, \quad t^{\alpha_i} y_j(t') = y_j(t^{-\alpha_i} t') t^{\alpha_i}.$$

\[(2.4)\]
One defines two involutive antiautomorphisms of G: $x \mapsto x^T$, called transposition, and $x \mapsto x^c$, called inversion, as follows:

\[x_i(t)^T = y_i(t), \quad y_i(t)^T = x_i(t), \quad (t^\alpha)^T = t^{\alpha^\vee} \]

\[x_i(t)^c = x_i(t), \quad y_i(t)^c = y_i(t), \quad (t^\alpha)^c = t^{-\alpha^\vee} \]

Let $G_0 := N^-TN$ be the set of all elements in G which admit a Gaussian decomposition. Given $x \in G_0$, the Gaussian decomposition is unique and we will write $x = [x]_-[x]_0[x]_+$, where $[x]_- \in N^-$, $[x]_0 \in T$, $[x]_+ \in N^+$. Let $G_{\geq 0}$ be the submonoid of G generated by $x_i(t), y_i(t), t^\alpha$ for all $t > 0$. Given a word $i = (i_1, \cdots, i_m)$ and an m-tuple $t = (t_1, \cdots, t_m)$ in $\mathbb{C}_{\neq 0}^m$, we set:

\[
 x_i(t) := x_{i_1}(t_1) \cdots x_{i_m}(t_m), \quad \text{and} \quad x_{-i}(t) := y_{i_1}(t_1)t_1^{-\alpha_{i_1}^\vee} \cdots y_{i_m}(t_m)t_m^{-\alpha_{i_m}^\vee}
\]

Consider the following reduced double Bruhat cells.

\[L_{c,w}^0 := N \cap B_-w_0B_- \quad \text{and} \quad L_{w,0,c} := Nw_0N \cap B_- \]

Denote by $L_{c,w}^0$, resp. $L_{w,0,c}$, their intersections with $G_{\geq 0}$. The maps x_i and x_{-i} parametrize these subvarieties of G. More precisely,

Theorem 2.6. \[4\] For any reduced word i, the map x_i, resp. x_{-i}, is a birational isomorphism between $C_{\geq 0}^N$ and $L_{c,w}^0$, resp. $L_{w,0,c}$. It restricts to a bijection between $\mathbb{R}_{\geq 0}^N$ and $L_{c,w}^0$, resp. $L_{w,0,c}$.

2.5. **Geometric lifting of the maps $R_i^{l_{1_{\cap}}}$**. In the sequel we will use the notation $(\cdot)^\vee$ that means we consider the analogous maps in the Langlands dual G^\vee of G. Recall that the Langlands dual G^\vee is the semisimple Lie group with transposed Cartan’s matrix. The simple roots of G^\vee can be naturally identified with the simple coroots of G and conversely. Thus the Weyl groups are naturally identified with each other.

Let us introduce the reparametrization maps $\tilde{R}_i^l := x_i^{-1} \circ x_1$ and $\tilde{R}_{-i}^{-l} := x_{-i}^{-1} \circ x_{-i}$ from $C_{\geq 0}^N$ to itself. An important result from \[4\] is that these maps are geometric liftings of R_i^l and R_{-i}^{-l}. More precisely,

Theorem 2.7. The components of $(\tilde{R}_i^l)^\vee(t_1, \cdots, t_N)$ and $(\tilde{R}_{-i}^{-l})^\vee(t_1, \cdots, t_N)$ are expressed as rational subtraction-free expressions in t_1, \cdots, t_N, and one has:

(i) $[\tilde{R}_i^l]^\vee|_{\text{Trop}}(t) = R_i^l(t)$ \quad (ii) $[\tilde{R}_{-i}^{-l}]^\vee|_{\text{Trop}}(t) = R_{-i}^{-l}(t)$

Example 2.8. Explicit formulas in the case $G = SL_3(\mathbb{C})$ are:

\[
 x_1(t) = \begin{pmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad x_2(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}, \quad t \in \mathbb{C}
\]

\[
 t^{\alpha_1^\vee} = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad t^{\alpha_2^\vee} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t^{-1} \end{pmatrix}, \quad t \in \mathbb{C}_{\neq 0}
\]
For any \((t_1, t_2, t_3) \in \mathbb{C}^3_{\neq 0}\) and \((t'_1, t'_2, t'_3) \in \mathbb{C}^3_{\neq 0}\):

\[
x_{121}(t_1, t_2, t_3) = x_1(t_1)x_2(t_2)x_1(t_3) = \begin{pmatrix} 1 & t_1 + t_3 & t_1t_2 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{pmatrix}
\]

\[
x_{212}(t'_1, t'_2, t'_3) = x_2(t'_1)x_1(t'_2)x_2(t'_3) = \begin{pmatrix} 1 & t'_2 & t'_2t'_3 \\ 0 & 1 & t'_1 + t'_3 \\ 0 & 0 & 1 \end{pmatrix}
\]

If \(x_1(t_1)x_2(t_2)x_1(t_3) = x_2(t'_1)x_1(t'_2)x_2(t'_3)\) then:

\[
(t'_1, t'_2, t'_3) = \left(\frac{t_2t_3}{t_1 + t_3}, t_1 + t_3, \frac{t_1t_2}{t_1 + t_3} \right).
\]

Hence,

\[
[(t'_1, t'_2, t'_3)]_{\text{trop}} = (t_2 + t_3 - \min(t_1, t_3), \min(t_1, t_3), t_1 + t_2 - \min(t_1, t_3)).
\]

This is precisely the formulas (1.1) which give the reparametrization \(R_{121}^{121}\).

Example 2.9. As in the previous example, we can also compute:

\[
x_{-121}(t_1, t_2, t_3) = x_{-212}(t'_1, t'_2, t'_3)
\]

One obtains:

\[
(t'_1, t'_2, t'_3) = \left(\frac{t_2t_3}{t_2 + t_1t_3}, t_1t_3, \frac{t_2 + t_1t_3}{t_3} \right)
\]

Hence:

\[
[(t'_1, t'_2, t'_3)]_{\text{trop}} = (t_2 + t_3 - \min(t_2, t_1 + t_3), t_1 + t_3, \min(t_2, t_1 + t_3) - t_3)
\]

These formulas give the reparametrization \(R_{-121}^{-212}\).

We can also give a geometric lifting of the maps \(R^{12}_{-1}\). This geometric lifting is an isomorphism between the subvarieties \(L^{w_0,e}\) and \(L^{e,w_0}\). To define this isomorphism, we need to introduce a representative of \(w_0\) in \(G\).

Recall that \(W \simeq \text{Norm}(T)/T\). Fix a representative \(\overline{w_0} \in \text{Norm}(T)\) of \(w_0\). In the sequel, the results will not depend on the choice of this representative.

For instance, choose \(\overline{w_0} := \overline{s_{i_1} s_{i_2} \cdots s_{i_N}}\), where \(\mathbf{i} = (i_1, \cdots, i_N)\) is a reduced word and

\[
\overline{s_i} := \varphi_i \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = x_i(-1)y_i(1)x_i(-1), \quad 1 \leq i \leq n
\]

We know that \(\overline{w_0}\) does not depend on the choice of the reduced word. An easy computation shows that \(\overline{s_i^T} = \overline{s_i}^{-1}\) and \(\overline{s_i} = \overline{s_i}^{-1}\). Furthermore,

\[
\overline{w_0^T} = \overline{w_0}^{-1} = \overline{w_0} = \overline{w_0^T}
\]

Following [4], we define for \(x \in G\)

\[
\eta^{w_0,e}(x) := [\overline{(w_0x^T)}^{-1}]_+,
\]

and

\[
\eta^{e,w_0}(x) := [(\overline{w_0^{-1}}x)_0(\overline{w_0^{-1}}x)_-^{-1}]
\]
Theorem 2.10. \[\text{(1)}\] The map \(\eta^{w_0,e}\) is a birational isomorphism between \(L^{w_0,e}\) and \(L^{c,w_0}\), which restricts to a bijection from \(L^{w_0,e}_{>0}\) to \(L^{c,w_0}_{>0}\); the inverse map is \(\eta^{c,w_0}\).

(2) The components of \((x_i^{-1} \circ \eta^{w_0,e} \circ x_{-i})^\vee\) are rational subtraction-free expressions, and

\[
R_{-i}^i(t) = \left[(x_i^{-1} \circ \eta^{w_0,e} \circ x_{-i})^\vee \right]_{\text{Trop}}(t)
\]

Example 2.11. In the case \(G = SL_3(\mathbb{C})\), one has the following explicit formulas:

\[
\underline{w}_0 = \begin{pmatrix}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{pmatrix}, \quad x_{-121}(t_1, t_2, t_3) = \begin{pmatrix}
t_1^{-1}t_3^{-1} & 0 & 0 \\
t_3^{-1} + t_1t_2^{-1} & t_1t_2^{-1}t_3 & 0 \\
t_3 & t_2
\end{pmatrix}
\]

\[
(\underline{w}_0 x_{-121}(t_1, t_2, t_3)^T)^{-1} = \begin{pmatrix}
1 & (t_2 + t_1 t_3) & t_1 t_3 \\
-t_1^{-1} & -t_2 t_1^{-1} & 0 \\
t_2^{-1} & 0 & 0
\end{pmatrix}
\]

\[
y_1(-t_2 t_1^{-1}s^{-1})y_2(-s t_2^{-1}t_3^{-1})y_1(-t_3 s^{-1})x_1(t_1)x_2(t_3)x_1(t_2 t_3^{-1})
\]

where \(s = t_2 + t_1 t_3\).

Hence, if \(x_{121}(t'_1, t'_2, t'_3) = \eta^{w_0,e}(x_{-121}(t_1, t_2, t_3))\) then

\[
(t'_1, t'_2, t'_3) = (t_1, t_3, t_2 t_3^{-1})
\]

Hence,

\[
[(t'_1, t'_2, t'_3)]_{\text{Trop}} = (t_1, t_3, t_2 - t_3)
\]

This is precisely the formulas \([13]\) which give the changing of parametrization \(R_{121}^{121}\).

2.6. Geometric lifting of \(\phi_\lambda\). Now we fix a dominant weight \(\lambda = \lambda_1 \varpi_1 + \cdots + \lambda_n \varpi_n\) to the end of the section.

Given \(x \in G\), we set \(\zeta(x) := [x^T]_+\). Our first observation is

Proposition 2.12.

(i) Let \(i = (i_1, \cdots, i_N)\) be a reduced word. If \(x = x_{-i}(t_1, \cdots, t_N)\) then \(\zeta(x) = x_i(t'_1, \cdots, t'_N)\), where

\[
t'_k = t_k^{-1} \prod_{j > k} t_j^{-\alpha_{ij}}
\]

(ii) The application \(\zeta\) defines a bijection from \(L^{w_0,e}_{>0}\) to \(L^{c,w_0}_{>0}\).

Proof: (i) follows from the relations \([2.4]\) and (ii) follows from Theorem 2.6 and \([2.7]\).

Now we can give a geometric lifting and an explicit formula for \(\phi_\lambda\):

Theorem 2.13. Let \(i\) and \(i'\) be reduced words.

(i) Components of \((x_i^{-1} \circ \zeta \circ x_{-i'})^\vee\) are rational subtraction-free expressions.

(ii) One has,

\[
b_i^{-1} \phi_\lambda(x_i^{-1})(t) = \left[(x_i^{-1} \circ \zeta \circ x_{-i'})^\vee \right]_{\text{Trop}}(t) + b_i^{-1} \phi_\lambda(v_{i})
\]

As a consequence of the above proposition and the above theorem, we have:
Corollary 2.14. If \((t'_1, \ldots, t'_N) = b^{-1}_i \phi \lambda c^{-1}_i (t_1, \ldots, t_N)\), then
\[
(2.8) \quad t'_k = l_k - t_k - \sum_{j > k} a_{kj} t_j
\]
where \((l_1, \ldots, l_N) := b^{-1}_i \phi \lambda (v_\lambda)\).

Remark 2.15. The constants \((l_1, \ldots, l_N)\) can be computed in different ways. One can use [4, §4.1] or one can compute directly from the above formula. Indeed, one knows, [2, §28.1], that \((t'_1, \ldots, t'_N) := c_i(v'^{low}_\lambda)\) are given by \(t'_k = (\lambda^*, s_{i_1} s_{i_2} \cdots s_{i_{k-1}} (\alpha_{i_k}^*))\), \(1 \leq k \leq N\) and resolving \((0) = b^{-1}_i \phi \lambda c^{-1}_i (t'_1, \ldots, t'_N)\) one obtains the constants \((l_1, \ldots, l_N) = b^{-1}_i (v'^{low}_\lambda)\). These constants are given by \(l_k = (\lambda, \alpha_{i_k}^*) = \lambda_{i_k}\).

Proof of the theorem: Fix a weight \(\lambda\) in \(P^+\). Let \(\Phi_{i, \lambda}: C_i(\lambda) \to \mathbb{Z}^N\) be a family of applications indexed by two reduced words, satisfying the following properties:

1. \(\Phi_{i, \lambda}(0, \ldots, 0) = b^{-1}_i \phi \lambda (v_\lambda)\)
2. \(\Phi_{i, \lambda} = R^i_{\nu} \circ \Phi_{i', \lambda'} = \Phi_{i', \lambda'} \circ R^{-i'}_{\nu'}\)
3. If \(\Phi_{i, \lambda}(t_1, \ldots, t_N) = (t'_1, \ldots, t'_N)\), then \(t'_1 + t_1\) and the \(t'_k's, k \neq 1\) only depend on \(t_2, \ldots, t_N\).

The theorem is a consequence of the following proposition:

Proposition 2.16. One has,

1. If \(\Phi_{i, \lambda}\) is a family satisfying conditions (1), (2), (3), then
\[
\Phi_{i, \lambda} = b^{-1}_i \phi \lambda c^{-1}_i
\]
2. The family \(\Phi_{i, \lambda}\) defined by
\[
\Phi_{i, \lambda}(t) = [x^{-1}_i \circ \zeta \circ x_{-i}]_{\text{Trop}} (t) + b^{-1}_i \phi \lambda (v_\lambda)
\]
satisfies conditions (1), (2), (3).

Proof: Let us first prove (ii). Given a rational subtraction-free expression \(Q\), one has \([Q]_{\text{Trop}} (0, \ldots, 0) = 0\), so condition (1) is clear. Using (2.7) and (2.12) the conditions (2) and (3) are also clear. Let us now prove (i). Let \((\Phi_{i, \lambda'})\) be a family satisfying the conditions (1), (2), (3). We define maps \(F_i : B(\lambda) \to \mathbb{Z}^N\) by \(F_i(b) = \Phi_{i, \lambda} \circ c_i(b), b \in B(\lambda)\). Condition (2) implies that the maps do not depend on the choice of \(i\). By induction on the weight of \(b\), we show that for every reduced word \(i\) one has \(F_i(b) = b^{-1}_i (\phi \lambda (b))\). Indeed, if \(b = v_\lambda\), this is clear by (1). If \(i = f_i(b')\), we can choose a reduced word \(i'\) starting with \(i\), namely \(i' = (i, i_2', \ldots, i_N')\). By Proposition 1.2, one has \(c_i(f_i(b')) = c_{i'}(b') + (1, 0, \cdots, 0)\), so \(b\) and \(b'\) have the same string parameters, except the first parameters which differ by \(1\). Hence, by (3) we have \(\Phi_{i, \lambda'} \circ c_i(f_i(b')) = \Phi_{i, \lambda'}(c_{i'}(b') + (1, 0, \cdots, 0)) = \Phi_{i, \lambda'}(c_{i'}(b') - (1, 0, \cdots, 0))\) and so \(F_i(b) = F_i(b') - (1, 0, \cdots, 0)\). Furthermore, by induction hypothesis one has \(F_i(b) = b^{-1}_i (\phi \lambda (b'))\). Using Proposition 1.2 and Theorem 2.1(ii), one obtains \(F_i(b) = b^{-1}_i (\phi \lambda (f_i(b'))) = b^{-1}_i (\phi \lambda (f_i(b))) = b^{-1}_i (\phi \lambda (b))\). Finally, by (2) one deduces \(F_i(b) = b^{-1}_i (\phi \lambda (b))\) for any reduced word \(i\).
2.7. Geometric lifting of η_λ. Let \mathbf{i} be a reduced word and let $\lambda = \lambda_1 \varpi_1 + \cdots + \lambda_n \varpi_n$ be a dominant weight. One knows that \mathbf{i}^* is also a reduced word. And it is clear that the isomorphism δ_{λ^*} (see section 2.1) induced by δ on $V(\lambda^*)$ satisfies $\delta_{\lambda^*} (h(t)) = b_{\mathbf{i}^*}(t)$.

Now we can give an explicit formula for the Schützenberger involution $\eta_\lambda = \delta_{\lambda^*} \phi_\lambda$ in terms of parametrizations of the canonical basis:

Corollary 2.17. If $(t'_1, \cdots, t'_N) = b_{\mathbf{i}^*}^{-1} \eta_\lambda (c_{\mathbf{i}^*}^{-1} (t_1, \cdots, t_N))$, then

$$t'_k = \lambda_i - t_k - \sum_{j > k} a_{ik} t_j$$

It is remarkable that the application $b_{\mathbf{i}^*}^{-1} \eta_\lambda c_{\mathbf{i}^*}^{-1}$ is affine, and that its linear part does not depend on λ.

We define a linear map Ω_1 as follows: for all $(\lambda, t) = (\lambda_1, \cdots, \lambda_n, t_1, \cdots, t_N) \in \mathbb{R}^{n+N}$,

$$\Omega_1(\lambda, t) = (\lambda_1, \cdots, \lambda_n, t'_1, \cdots, t'_N), \text{ where } t'_k = \lambda_i - t_k - \sum_{j > k} a_{ik} t_j$$

In other words, if b is an element of $\mathcal{B}(\lambda)$ then $\Omega_1(\lambda, c_{\mathbf{i}^*} (b)) = (\lambda, b_{\mathbf{i}^*}^{-1} \eta_\lambda (b))$.

We can also give a geometric lifting of η_λ.

Given $x \in G$, we set $\xi(x) := [x]_+[x^{-1}]$.\\

Proposition 2.18.\\

(i) The application ξ defines a bijection from $L_{>0}^{w_0} \to L_{>0}^{w_0}$,\\

(ii) Components of $(x^{-1} \circ \xi \circ x^{-1})^\vee$ are rational subtraction-free expressions,\\

(iii) One has,

$$b_{\mathbf{i}^*}^{-1} \eta_\lambda c_{\mathbf{i}^*}^{-1} (t) = [(x^{-1} \circ \xi \circ x^{-1})^\vee]_{\text{Trop}} (t) + b_{\mathbf{i}^*}^{-1} \eta_\lambda (v_\lambda).$$

Proof: It suffices to notice that $\overline{w_0 y(t) w_0^{-1}} = x^{-1}(-t)$ and $\overline{w_0 t^\alpha w_0^{-1}} = t^{-\alpha}$. Then one has $\xi(x^{-1}(t_1, \cdots, t_N)) = \xi(x^{-1}(t_1, \cdots, t_N))$. The proposition then follows from Proposition 2.12 and Theorem 2.13.

Example 2.19. In the \mathfrak{a}_2 case, let b be an element of $\mathcal{B}(\lambda_1 \varpi_1 + \lambda_2 \varpi_2)$. If we denote $(t_1, t_2, t_3) = c_{1212} (b)$ and $\eta_\lambda (b) = b_{2122}(t'_1, t'_2, t'_3)$ then,

$$
\begin{align*}
(t'_1) &= \lambda_1 - t_1 + t_2 - 2t_3 \\
(t'_2) &= \lambda_2 - t_2 + t_3 \\
(t'_3) &= \lambda_1 - t_3
\end{align*}
$$

And if $(t_1, t_2, t_3) = c_{1212} (b)$ and $\eta_\lambda (b) = b_{1212}(t''_1, t''_2, t''_3)$ then,

$$
\begin{align*}
(t''_1) &= \lambda_2 + t_1 - t_2 + 2t_3 - \min (t_1 + t_3, t_2) \\
(t''_2) &= \lambda_1 - t_1 - 2t_3 + \min (t_1 + t_3, t_2) \\
(t''_3) &= \lambda_2 + t_3 - \min (t_1 + t_3, t_2)
\end{align*}
$$

Example 2.20. In the \mathfrak{b}_2 case, let b be an element of $\mathcal{B}(\lambda_1 \varpi_1 + \lambda_2 \varpi_2)$. If we denote $(t_1, t_2, t_3, t_4) = c_{1212} (b)$ and $\eta_\lambda (b) = b_{1212}(t'_1, t'_2, t'_3, t'_4)$ then,

$$
\begin{align*}
(t'_1) &= \lambda_1 - t_1 + t_2 - 2t_3 + t_4 \\
(t'_2) &= \lambda_2 - t_2 + 2t_3 - 2t_4 \\
(t'_3) &= \lambda_1 - t_3 + t_4 \\
(t'_4) &= \lambda_2 - t_4
\end{align*}
$$

(ii) Components of $(x^{-1} \circ \xi \circ x^{-1})^\vee$ are rational subtraction-free expressions,
2.8. Formulas of inverse maps. In this section we study the inverse maps $c_i \phi_\lambda h_1$ and ζ^{-1}. We have explicit formulas:

Proposition 2.21. Let i be a reduced word and let $\lambda = \lambda_1 \varpi_1 + \cdots + \lambda_n \varpi_n$ be a dominant weight. One has:

(i) If $(t_1, \ldots, t_N) = x_{\lambda-1}^{-1} \zeta^{-1} x_1(t_1', \ldots, t_N')$, then

\[
t_k = t_k' - \sum_{j > k} a'_{i,j,k}, \quad 1 \leq k \leq N
\]

where $a'_{i,j,k} = (\beta_i, \beta_j, \beta_k)$.

(ii) If $(t_1, \ldots, t_N) = c_i \phi_\lambda h_i(t_1', \ldots, t_N')$ then

\[
t_k = t_k' - \sum_{j > k} a_{i,j,k}, \quad 1 \leq k \leq N
\]

where $a_{i,j,k} = (\beta_i, \beta_j, \beta_k)$ and $t_k' = (\lambda, \beta_{i,k})$.

Now we determine the inverse map ζ^{-1} viewed as a map from $L_{>0}^{w_0}$ to $L_{>0}^{w_0}$.

Proposition 2.22. The map $\zeta^{-1} : L_{>0}^{w_0} \to L_{>0}^{w_0}$ is given by:

\[
\zeta^{-1}(x) = [\overline{w_0}x^T]_{0}x^T
\]

Proof: Let us check that $\zeta^{-1}(x)$ is well defined. We use definitions (2.3) and relations (2.4). Given $x \in L_{>0}^{w_0}$, set $y := [\overline{w_0}x^T]_{0}x^T$ and let us show that $y \in L_{>0}^{w_0}$. One can express x as:

\[
x = n_1 h_1 w_0 h_2 n_2, \quad \text{with } n_1, n_2 \in N^-, h_1, h_2 \in T.
\]

Thus,

\[
[\overline{w_0}x^T]_{0}x^T = [\overline{w_0}x^T]_{0}x^T h_1 n_1 T e \in T e \in N^-.\]

Hence,

\[
y = [\overline{w_0}x^T]_{0}x^T = [\overline{w_0}x^T]_{0}x^T h_1 n_1 T h_1 h_1 T h_2 n_2
\]

Let us commute the above two elements in T and N:

\[
y = n_1 n_2 T w_0 h_2 n_2 T h_1 n_1 T h_1 h_1 T h_2 n_2
\]

Since x is in T, then $y = [\overline{w_0}x^T]_{0}x^T$ is in B^-. Hence y belongs to $L_{>0}^{w_0}$ by definitions (2.3). It remains to check the positivity of y. Fix a reduced word i and let us use Theorem 2.6 for x and y. One can write $y = x-i(t_1, \ldots, t_N) = y_{i_1}(t_1) \cdots y_{i_N}(t_N) t_N^{\alpha_{i_N}}$ with $(t_1, \ldots, t_N) \in \mathbb{C}_x^{N}$. Using relations (2.4) we write $y = h y_{i_1}(t_1') \cdots y_{i_N}(t_N')$ with a certain $h \in T$ and $t_k' = \prod_{j > k} t_j^{-1}$. But there also exists $(t_1', \ldots, t_N') \in \mathbb{R}_x^{N}$ such that $x = x_1(t_1', \ldots, t_N')$. Then $y = [\overline{w_0}x^T]_{0}x^T = [\overline{w_0}x^T]_{0}x^T y_{i_1}(t_1') \cdots y_{i_N}(t_N')$. Identifying both expressions one deduces that (t_1, \ldots, t_N) belongs to \mathbb{R}_x^{N} and thus $y = [\overline{w_0}x^T]_{0}x^T \in L_{>0}^{w_0}$. Hence the
definition makes sense. Furthermore it is easy to see from the definitions that we have \(\zeta([\omega_0 x^T]_0 x^T) = x \). It means that the map \(x \mapsto [\omega_0 x^T]_0 x^T \) is precisely the inverse map of \(\zeta \).

3. Toric and semitoric degenerations of Richardson varieties

3.1. Problem of toric degenerations. A complex projective variety \(X \) degenerates into a toric variety, resp. semi-toric variety (i.e a variety whose irreducible components are toric varieties), if there exists a variety \(\mathcal{X} \) and a regular map \(\pi : \mathcal{X} \to \mathbb{C} \) such that \(\pi^{-1}(z) \cong X \) for all \(z \in \mathbb{C}^* \) and \(\pi^{-1}(0) = X_0 \), where \(X_0 \) is a toric variety, resp. semi-toric variety.

One can construct toric degenerations of varieties in the following way. Denote by \(R \) the algebra of regular functions on \(X \). Endow \(R \) with an increasing filtration \((R_n)_{n \geq 0} \) such that the associated graded algebra \(\text{Gr} R \) is isomorphic to one algebra of semigroup. Consider \(\mathcal{R} := \oplus_{n \geq 0} R_n t^n \subset R[t] \) where \(t \) is an indeterminate over \(R \). One has \(\mathcal{R}/t\mathcal{R} \simeq \oplus_{n \geq 0} R_{n+1}/R_n \simeq \text{Gr} R \) and \(\mathcal{R}/(t-z)\mathcal{R} \simeq R \), for all \(z \in \mathbb{C}^* \). Thus if \(\mathcal{X} := \text{Proj} \mathcal{R} \), \(\pi := t \) and \(X_0 := \text{Proj} \text{Gr} R \), then we have a (flat) toric degeneration of \(X \) in \(X_0 \).

3.2. Flag varieties. Consider the flag variety \(G/B \) and denote by \(R \) its algebra of homogenous coordinates. Let \(\lambda_0 \) be a regular dominant weight and denote by \(L_{\lambda_0} \) the corresponding ample line bundle on \(G/B \). Recall that:

\[
R = \bigoplus_{n \in \mathbb{N}} H^0(G/B, L_{\lambda_0}^{\otimes n}) = \bigoplus_{\lambda \in \mathbb{N} \cdot \lambda_0} V^*(\lambda) \otimes v_\lambda
\]

where \(\mathbb{N} \cdot \lambda_0 \) is the cone of all the multiples of \(\lambda_0 \).

From now on, we fix a regular dominant weight \(\lambda_0 = \lambda_1 \varpi_1 + \lambda_2 \varpi_2 + \cdots + \lambda_n \varpi_n \). One can identify each element of \(\mathbb{N} \cdot \lambda_0 \) with the \(n \)-tuple of its coordinates on the fundamental weights \(\varpi_1, \ldots, \varpi_n \). The set \(\mathbb{N} \cdot \lambda_0 \) is naturally identified with \(\mathbb{N}^n \).

The set \(\{ (b v_\lambda)^* \otimes v_\lambda, b \in B(\lambda), \lambda \in \mathbb{N} \cdot \lambda_0 \} \) is the canonical basis of \(R \). The product on \(R \) is given by:

\[
((b v_\lambda)^* \otimes v_\lambda)((b' v_{\mu})^* \otimes v_\mu) = (b b' v_{\lambda+\mu})^* \otimes v_{\lambda+\mu}
\]

Given a reduced word \(i \), one parametrize an element \((b v_\lambda)^* \otimes v_\lambda \) of the canonical basis of \(R \) by \((\lambda, c_i(b)) \in \mathbb{Z}^{n+N} \geq 0 \) and one introduce the set of all parameters:

\[
\Gamma_i := \{ (\lambda, c_i(b)) \in \mathbb{Z}^{n+N}_{\geq 0}, \lambda \in \mathbb{N} \cdot \lambda_0, b \in B(\lambda) \}
\]

One has

Theorem 3.1. \(\Gamma_i \) is the set of all integral points in a rational polyhedral convex cone of \(\mathbb{R}^{n+N} \).

We will use the notation \(b_{\lambda,t}, (\lambda, t) \in \Gamma_i \), for the element \((b v_\lambda)^* \otimes v_\lambda \in R \) where \(b \in B(\lambda) \) is such that \(c_i(b) = t \).

The following multiplicative property of two elements of the canonical basis, is due to Caldero:
Proposition 3.2. Given \((\lambda,t), (\lambda',t')\) in \(\Gamma_1\),
\[
\bar{b}_{\lambda,t}b_{\lambda',t'} = b_{\lambda+\lambda',t+t'} + \sum_{s \in \mathbb{Z}^{n+N}_+} d^s_{\lambda,t,\lambda',t'} b_{\lambda+\lambda',s}
\]
with \(d^s_{\lambda,t,\lambda',t'} \neq 0 \Rightarrow s < t + t',\) where \(<\) is the usual lexicographic order of \(\mathbb{Z}^N_0\).

Using this property one can construct in a first step, a \(\Gamma_1\)-filtration of \(R\) such that the associated graded algebra is isomorphic to the algebra of the semigroup \(\mathbb{C}[\Gamma_1]\). In a second step, using an adapted linear form \(e : \mathbb{Z}^N_0 \rightarrow \mathbb{N}\) (see \([3]\)) one constructs a \(\mathbb{N}\)-filtration \(F_1 := (F_{1,m})_{m \in \mathbb{N}}\) of \(R\) such that the associated graded algebra is isomorphic to \(\mathbb{C}[\Gamma_1]\). Denote by \(\text{Gr} R\) the graded algebra associated to this filtration and denote by \(\bar{b}_{\lambda,t}\) the image of \(b_{\lambda,t}\) in \(\text{Gr} R\). The elements \(\bar{b}_{\lambda,t}\) satisfy \(\bar{b}_{\lambda,t} \bar{b}_{\lambda',t'} = \bar{b}_{\lambda+\lambda',t+t'}\), thus one has \(\text{Gr} R = \oplus_{(\lambda,t) \in \Gamma_1} \mathbb{C} \bar{b}_{\lambda,t} = \mathbb{C}[\Gamma_1]\).

Remark 3.3. The toric variety \(\text{Proj}(\mathbb{C}[\Gamma_1])\) is the same as the toric variety constructed from the convex polytope \(\mathcal{C}(\lambda_0) := c_1(\mathcal{B}(\lambda_0)) = \lambda_0 \times \mathbb{Z}^N_0 \cap \Gamma_1\). By \([1]\), one knows equations of the polytope \(\mathcal{C}(\lambda_0)\). One has \(\mathcal{C}(\lambda_0) = \{(t_1, \cdots, t_N) \in \mathbb{C}_1 \mid t_k = \lambda_{i_k} - \sum_{j \geq k} a_{i_k j} t_j, 1 \leq k \leq N\}\) where \(\lambda_i\) is the coordinate of \(\lambda_0\) on \(w_i\) (note that one can also obtain these equations with the formula \((2.8)\) using the positivity of the \(t_k\)'s). In the cases where \(G\) is of type \(A_n\) or \(G\) arbitrary and \(\mathfrak{i}\) is a nice decomposition of \(w_0\), one also has equations for the string cone \(\mathcal{C}\) (see \([4\, \S 3.4], [1\, \S 4]\)).

3.3. Schubert varieties. Consider the Bruhat cellular decompositions:

\[
G/B = \bigcup_{w \in W} B w B/B = \bigcup_{\tau \in W} B^- \tau B/B
\]

Closures \(X_w := B w B/B, w \in W,\) in \(G/B,\) are the so-called Schubert varieties. It is well known that \(\dim(X_w) = \ell(w)\). Let us denote by \(X^\tau := w_0(X_{\tau}) = B^- w_0 \tau B/B, \tau \in W,\) the opposite Schubert varieties in \(G/B\). Recall that \(G/B = X_{w_0} = X_{w_0}.\)

In the sequel, let us fix two elements \(w\) and \(\tau\) in \(W\). The algebra \(R_w\) associated to \(X_w\) is a quotient of \(R\) by a certain ideal \(I_w := \bigoplus_{\lambda \in \mathbb{N}, \lambda_0} V_w(\lambda)^+ \otimes v_\lambda,\) where \(V_w(\lambda)^+\) is the orthogonal of \(V_w(\lambda)\) in \(V(\lambda)^*\). By Theorem 3.2 the ideal \(I_w\) is compatible with the canonical basis of \(R\). More precisely, \(\{(b v_\lambda)^+ \otimes v_\lambda, \lambda \in \mathbb{N} \cap \lambda, b \notin B_w(\lambda)\}\) is a basis of \(I_w\). Denote by \(\pi_w\) the canonical projection of \(R\) onto \(R/I_w = R_w\). The set \(\{\pi_w(b v_\lambda^+ \otimes v_\lambda), b \in B_w(\lambda), \lambda \in \mathbb{N} \cap \lambda_0\}\) is a basis of \(R_w\). Let \(\mathfrak{i}\) be a reduced word, define

\[
\Gamma^\mathfrak{i}_1 := \{(\lambda, c_1(b)) \in \mathbb{Z}_0^{n+N}, \lambda \in \mathbb{N} \cap \lambda_0, b \notin B_w(\lambda)\}
\]

We will say that a reduced word \(\mathfrak{i} = (i_1, i_2, \cdots, i_N)\) is adapted to \(w,\) if \(w = s_{i_1} s_{i_2} \cdots s_{i_p}\) is a reduced decomposition.

Theorem 3.4. \([1]\) If the reduced word \(\mathfrak{i}\) is adapted to \(w\) then \(\Gamma^\mathfrak{i}_1\) is a face of the cone \(\Gamma_1\). Moreover, \(\Gamma^\mathfrak{i}_p = \Gamma_{1} \cap (\mathbb{Z}_0^{n+N} \times \{0\}^{N-p})\) where \(p = \ell(w)\). In particular, \(\Gamma^\mathfrak{i}_1\) is the set of all integer points in a rational polyhedral convex cone of \(\mathbb{R}^{n+N}\).

Using the above filtration \(F_1,\) one can construct a filtration \(F^w_{1,m}\) of \(R_w,\) as follows \(F^w_{1,m} := F_{1,m} + I_w, m \in \mathbb{N}.\) The associated graded algebra \(\text{Gr} R_w\) is such that \(\text{Gr} R_w = \text{Gr} R/\text{Gr} I_w.\) The ideal \(\text{Gr} I_w\) of \(\text{Gr} R\) is generated by \(\{\bar{b}_{\lambda,t}, (\lambda, t) \notin \Gamma^\mathfrak{i}_1\}\).

In the case where \(\mathfrak{i}\) is adapted to \(w\) one has \(\text{Gr} R_w = \mathbb{C}[\Gamma^\mathfrak{i}_1]\) which is the algebra of a semigroup. Therefore one obtains toric degenerations of Shubert varieties \(X_w.\)
In the case where i is not adapted to w, we will see in the next paragraph that Γ^w_i is a union of faces of Γ_i. Thus, we will deduce semitoric degenerations of the Schubert varieties X_w.

Regarding opposite Shubert varieties we denote by R^τ the algebra associated. This algebra is obtained from R by the w_0-action; one has $R^\tau = w_0 R w_0$. The ideal $\Gamma^\tau := w_0(\Gamma_i) = \bigoplus_{\lambda \in \mathbb{N}, \lambda_0} \eta_{\lambda}(V_{\tau}(\lambda))^\perp \otimes v_{\lambda}$ of R has the basis $\{(bv_{\lambda})^\perp \otimes v_{\lambda}, \lambda \in \mathbb{N}, \lambda_0, b \notin \eta_{\lambda}(B_\tau(\lambda))\}$. Denote by π^τ the canonical projection of R onto R/I^τ. The elements $\{\pi^\tau(\eta_{\lambda}(bv_{\lambda})^\perp \otimes v_{\lambda}), \lambda \in \mathbb{N}, \lambda_0, b \in B_\tau(\lambda)\}$ constitute a basis of R^τ. We set:

$$\Gamma^w_1 := \{(\lambda, c_1(b)) \in \mathbb{Z}_{\geq 0}^{n + N}, \lambda \in \mathbb{N}, \lambda_0, b \in \eta_{\lambda}(B_\tau(\lambda))\}$$

We will also show that Γ^w_1 is a union of faces of Γ_i.

3.4. **Richardson varieties.** More generally, consider Richardson varieties $X^w_i := X_w \cap X^\tau, w, \tau \in W$. Since $G/B = X_w \times X^{w_0}$ the Schubert varieties, resp opposite Schubert variety, are the particular cases corresponding to $\tau = w_0$, resp. $w = w_0$. Recall that if $\ell(w) + \ell(\tau) < N$ then the intersection X^w_i is empty.

For the sequel we fix w and τ in W such that $X^w_i \neq \emptyset$, and an arbitrary reduced word i. Denote by $I^w_i := I_w + I^\tau$ and $R^w_i := R/I^w_i$. The ideal I^w_i is generated by $\{(bv_{\lambda})^\perp \otimes v_{\lambda}, \lambda \in \mathbb{N}, \lambda_0, b \notin \eta_{\lambda}(B_\tau(\lambda)) \cap B_w(\lambda)\}$. We set:

$$\Gamma^{w, \tau}_{1,i} := \Gamma^w_i \cap \Gamma^{w}_{1} = \{(\lambda, c_1(b)) \in \mathbb{Z}_{\geq 0}^{n + N}, \lambda \in \mathbb{N}, \lambda_0, b \in \eta_{\lambda}(B_\tau(\lambda)) \cap B_w(\lambda)\}$$

Then $I^w_i = \langle b_{\lambda, t}, (\lambda, t) \notin \Gamma^{w, \tau}_{1,i} \rangle$. The set $\{\pi^w_i(\eta_{\lambda}(bv_{\lambda})^\perp \otimes v_{\lambda}), \lambda \in \mathbb{N}, \lambda_0, b \in \eta_{\lambda}(B_\tau(\lambda)) \cap B_w(\lambda)\}$, where π^w_i is the canonical projection of R onto R/I^w_i, is a basis of R^w_i.

One constructs a filtration \mathcal{F}_i of R^w_i using the previous filtration \mathcal{F}_i of R, as follows $\mathcal{F}_i^{w, \tau}_{1,m} = \mathcal{F}_{i, m} + I^w_i$, $m \in \mathbb{N}$. The associated graded algebra GrR^w_i is the quotient $GrR^w_i = Gr R/Gr I^w_i$. The ideal $Gr I^w_i$ of $Gr R$ is generated by $\{b_{\lambda, t}, (\lambda, t) \notin \Gamma^{w, \tau}_{1,i}\}$.

Proposition 3.5. The set $\Gamma^{w, \tau}_{1,i}$ is a union of faces of Γ_i. In particular $\Gamma^{w, \tau}_{1,i}$ is the set of all integer points in a rational polyhedral convex cone of $\mathbb{R}^{n + N}_{\geq 0}$.

This proposition is a consequence of the following lemma.

Lemma 3.6. Let Γ_R be a rational polyhedral convex cone of $\mathbb{R}^{n}_{\geq 0}$ and let Γ'_R be an arbitrary subset of Γ_R. Consider $\Gamma := \Gamma_R \cap \mathbb{Z}^{n}_{\geq 0}$ and $\Gamma' := \Gamma'_R \cap \mathbb{Z}^{n}_{\geq 0}$. If Γ' satisfies the following conditions:

(a) For all $\gamma \in \Gamma$ and $\delta \notin \Gamma'$, one has $\gamma + \delta \notin \Gamma'$

(b) For all $\gamma \in \Gamma'$ and $m \in \mathbb{N}$, one has $m\gamma \notin \Gamma'$

then Γ' is a union of faces of Γ_R intersected with $\mathbb{Z}^{n}_{\geq 0}$.

Proof: Given $\gamma \in \Gamma'$ consider a face Φ_R of Γ_R (eventually $\Phi_R = \Gamma_R$) such that γ belongs to the relative interior of Φ_R. It suffices to prove that all elements of $\Phi := \Phi_R \cap \mathbb{Z}^{n}_{\geq 0}$ belongs to Γ'. Assume $\delta \in \Phi$. Since γ lies in the interior of Φ_R, there exists $m \in \mathbb{N}$ such that $\gamma - \frac{1}{m}\delta$ is in Φ_R. Hence $\gamma' := m\gamma - \delta \in \Phi_R \cap \mathbb{Z}^{n}_{\geq 0}$, and therefore $\gamma' \in \Gamma$. If $\delta \notin \Gamma'$ then by condition (a) one has $\gamma' + \delta \notin \Gamma'$, but one also has $\gamma' + \delta = m\gamma \notin \Gamma'$ by (b), this is contradiction. Therefore one has $\delta \notin \Gamma'$. This proves Lemma 3.6.

Proof of the proposition: Let us apply Lemma 3.6 with $\Gamma^{w, \tau}_{1,i} \subset \Gamma_i$. Taking into account that $Gr I^w_i = \langle b_{\lambda, t}, (\lambda, t) \notin \Gamma^{w, \tau}_{1,i} \rangle$ is an ideal of $Gr R$, one concludes that the
set $\Gamma_i^{w,\tau}$ satisfies condition (a) of the lemma. Condition (b) is also satisfied. Indeed, fix $(\lambda, t) \in \Gamma_i^{w,\tau}$ and $m \in \mathbb{N}$.

First of all, choose i' adapted to w and use the reparametrization $R^{-i'}_{-i} = c_{i'}(c_i)^{-1}$. One has $(\lambda, t) \in \Gamma_i^{w}$, hence $(\lambda, R^{-i'}_{-i}t) \in \Gamma_i^{w}$. On the one hand, as a consequence of Theorem 2.7 the reparametrization verifies $R^{-i'}_{-i}(mt) = mR^{-i'}_{-i}(t)$. On the other hand Γ_i^{w} is a cone by Theorem 3.1. Therefore $(m\lambda, R^{-i'}_{-i}(mt)) \in \Gamma_i^{w}$. One easily deduces that $m(\lambda, t) = (m\lambda, mt) \in \Gamma_i^{w}$. Next, choose i'' adapted to \(\tau \) and use the reparametrization $R^{(i'')}_{-i} = b_{(i'')}^{-1} \circ c_{i''}^{-1}$. Since $(\lambda, t) \in \Gamma_i^{w}$ there exists $b \in B_r(\lambda)$ such that $(\lambda, t) = (\lambda, c_1\eta_1(b))$. Thus $(\lambda, R^{(i'')}_{-i}t) = (\lambda, b_{(i'')}^{-1}\eta_1(b)) = \Omega^{\nu'}(\lambda, c_1(b))$, where $\Omega^{\nu'}$ is the map defined in section 2.7. One has $(\lambda, R^{(i'')}_{-i}t) \in \Omega^{\nu'}\Gamma_i^{w}$. As a consequence of Theorem 2.10 one also has $mR^{(i'')}_{-i}t = R^{(i'')}_{-i}(mt)$. Hence there exists $b' \in B_r(\lambda)$ such that $(m\lambda, R^{(i'')}_{-i}(mt)) = \Omega^{\nu'}(m\lambda, c_{i'}(b'))$. In other words, we have $(m\lambda, b_{(i'')}^{-1}\circ c_{i''}^{-1}(mt)) = (m\lambda, b_{(i'')}^{-1}\eta_1(b')).$ Hence $(m\lambda, mt) = (m\lambda, c_{i'}\eta_1(b')) \in \Gamma_i^{w}$. Finally, we obtain $(m\lambda, mt) \in \Gamma_i^{w,\tau}$, that shows that the hypothesis of the Lemma 3.6 are satisfied. We deduce that $\Gamma_i^{w,\tau}$ is a union of faces of Γ_i.

We are now ready to prove the main result of this section.

Theorem 3.7. Richardson varieties $X_i^{w,\tau}$ degenerate in union of irreducible toric varieties which are given by the faces of $\Gamma_i^{w,\tau}$.

Proof: By Proposition 3.5 there exists faces of Γ_i, namely Φ^k_i, $k=1\cdots r$, such that $\Gamma_i^{w,\tau} = \bigcup_k \Phi^k_i$. Thus, one has $\text{Gr}_{\Gamma_i} = (\{b_{\lambda,t}, (\lambda, t) \notin \cup_k \Phi^k_i\} = \cap_k \{b_{\lambda,t}, (\lambda, t) \notin \Phi^k_i\}$. Spaces $\mathcal{I}^k_i := \{b_{\lambda,t}, (\lambda, t) \notin \Phi^k_i\}$ are prime ideals of $\text{Gr}_R = \{b_{\lambda,t}, (\lambda, t) \in \Gamma_i\}$ since Φ^k_i are faces of Γ_i. The algebras $\text{Gr}_R/\mathcal{I}^k_i = \mathbb{C}[\Phi^k_i]$ give irreducible toric varieties which are the irreducible components of the variety associated to Gr_{Γ_i}.

3.5. **Particular case of toric degenerations.** In the case where $G = SL_n$, one can construct toric degenerations of the Richardson varieties $X_i^{w,\tau}$ for a suitable choice of (w, τ) as follows.

Proposition 3.8. Let $i = (1,2,1,\cdots,n,n-1,\cdots,2,1)$ be the standard reduced word, and let $w, \tau \in W$. If i is adapted to w and i' is adapted to τ then $\Gamma_i^{w,\tau}$ is at most one face of Γ_i.

Proof: In the case where i is the standard reduced word, the map R^-_{-i} is linear by Corollary 1.3. The map Ω_{τ} is always linear by definition Section 2.7. By Theorem 2.4 one knows that Γ_i^{τ} is a face of Γ_i, thus one deduces that $\Gamma_{\nu}^{\tau} = (id \times R^{-i}_{-i})\Omega_{\tau}(\Gamma_i^{\tau})$ is a face of Γ_i. Hence, $\Gamma_i^{w,\tau} := \cap^w_i \Gamma_i^{w,\tau}$ is only one face of Γ_i when it is not empty.

3.6. **Example in the A_2 case.** Let us study the case where $G = SL_3$. Let us fix $\lambda_0 = \varpi_1 + \varpi_2$ and $i = (1,2,1)$. Figure 3.2 represents the polytope $C_i(\lambda_0)$ of all string parameters of $B(\varpi_1 + \varpi_2)$. The cone Γ_i is the cone over this polytope. The flag variety G/B degenerates in the toric variety associated to this polytope.

Given w,τ in W, denote by $C_i^{w,\tau}(\lambda_0) := \lambda_0 \times \mathbb{Z}_{\geq 0}^{\infty} \cap \Gamma_i^{w,\tau}$ the set of all string parameters of the elements lying in $\eta_0(B_r(\lambda_0)) \cap B_w(\lambda_0)$. By Theorem 3.7, $C_i^{w,\tau}(\lambda_0)$
Figure 3.2. Polytope $c_1(B(\varpi_1 + \varpi_2))$

is a face or a union of faces (see Fig.3.3) of $C_1(\lambda_0)$ corresponding to the toric or semitoric degeneration of the subvariety X_w^τ. Some of the starting varieties X_w^τ are already toric, if they degenerate in toric varieties then the varieties are the same.

Let us describe this polytope more detailly in terms of degeneration of Richardson varieties. The vertices A, B, C, D, E, F of the polytope correspond to the T-fixed points wB/B of G/B, for respectively $w = id$, s_1, s_1s_2, s_2, s_2s_1, $s_1s_2s_1$. Note that there is an extra vertex, G, resulting from the degeneration.

The Richardson curves are X_{s_1}, X_{s_2}, X^{s_1}, X^{s_2}, $X_{s_1s_2}$, $X_{s_1s_2}$, $X_{s_2s_1}$, $X_{s_2s_1}$, and correspond respectively to the edges $[AB]$, $[AD]$, $[CF]$, $[EF]$, $[BC]$, $[CD]$, $[DE]$, $[EG] \cup [BG]$. The point G correspond to the intersection of the irreducible components of the degeneration of $X_{s_2s_1}$. There are also two extra edges, namely $[AG]$ and $[FG]$, which will be understood as the intersection of the irreducible components of the degeneration of Richardson surfaces.

The Richardson surfaces are $X_{s_1s_2}$, $X_{s_2s_1}$, $X^{s_2s_1}$, $X^{s_1s_2}$ and correspond to the faces represented Figure 3.3.

The edge $[AG]$ corresponds to the intersection of the irreducible components of $X_{s_2s_1}$, and the edge $[FG]$ corresponds to the intersection of the irreducible components of $X^{s_1s_2}$.

3.7. Examples in the \mathbf{B}_2 case. In the \mathbf{B}_2 case there are two reduced words for w_0, namely $i = (1, 2, 1, 2)$ and $i' = (2, 1, 2, 1)$. There is no non trivial diagramm automorphism thus $i^* = i$ and $i'^* = i'$. We will use the word i. Using [13], §4, one
describes the string cone \mathcal{C}_i in $\mathbb{Z}_{\geq 0}^4$ as follows:

$$ \mathcal{C}_i : \begin{cases} t_1 \geq 0 & (\Phi_1) \\ t_2 - t_3 \geq 0 & (\Phi_2) \\ t_3 - t_4 \geq 0 & (\Phi_3) \\ t_4 \geq 0 & (\Phi_4) \end{cases} $$

Let us fix a regular dominant weight $\lambda_0 = \varpi_1 + \varpi_2$. By [11, §1] the polytope $\mathcal{C}_i(\lambda_0)$ is the intersection between \mathcal{C}_i and the following affine cone:

$$ \begin{cases} t_1 - t_2 + 2t_3 - t_4 \leq 1 & (\hat{\Phi}_1) \\ t_2 - 2t_3 + 2t_4 \leq 1 & (\hat{\Phi}_2) \\ t_3 - t_4 \leq 1 & (\hat{\Phi}_3) \\ t_4 \leq 1 & (\hat{\Phi}_4) \end{cases} $$

Denote by Φ_i, resp. $\hat{\Phi}_i$, the face of the polytope $\mathcal{C}_i(\lambda_0)$ determined by the inequality (Φ_i), resp. $(\hat{\Phi}_i)$.

The flag variety G/B degenerates in the toric variety associated to the polytope $\mathcal{C}_i(\lambda_0)$. The subvarieties X^+_w degenerate in toric or semitoric varieties which are associated to face or union of faces of the polytope. We describe some of them.
The variety $X_{s_1 s_2 s_3 s_1}$ is associated to the face Φ_4. It is a 3-dimensional polytope whose vertices are $\{(0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 3, 1, 0), (2, 1, 0, 0), (2, 3, 1, 0), (0, 1, 1, 0)\}$. The variety $X_{s_1 s_2 s_3}$ is associated to the faces $\tilde{\Phi}_2 \cup \tilde{\Phi}_4$. And the variety $X_{s_1 s_2 s_3 s_1 s_2}$ is associated to the face $\Phi_4 \cap \tilde{\Phi}_2$. It is a plane polytope whose vertices are $\{(0, 0, 0, 0), (2, 1, 0, 0), (2, 3, 1, 0), (0, 3, 1, 0)\}$.

The variety $X_{s_1 s_2}$ is associated to the face $\Phi_3 \cap \Phi_4$. It is a plane polytope whose vertices are $\{(0, 0, 0, 0), (0, 1, 0, 0), (2, 1, 0, 0), (1, 0, 0, 0)\}$ (in this case the degeneration is trivial). The variety $X_{s_1 s_2}$ is associated to the face $\tilde{\Phi}_2 \cap \tilde{\Phi}_3$. It is a plane polytope whose vertices are $\{(1, 3, 2, 1), (2, 3, 1, 0), (0, 3, 1, 0), (0, 3, 2, 1)\}$.

References

[1] V. Alexeev, M. Brion. Toric degenerations of spherical varieties. ArXiv math.AG/0403379

[2] A. Berenstein, S. Fomin and A. Zelevinsky. Parametrization of canonical Bases and totally positive matrices. Adv. Math., 122, (1996), 49-149.

[3] A. Berenstein, A. Zelevinski. Canonical bases for the quantum group of type A_r, and piecewise-linear combinatorics. Duke Math., 143 (1996), 473-502.

[4] A. Berenstein and A. Zelevinsky. Tensor product multiplicities, Canonical bases and Totally positive varieties. Invent. Math., 143 (2001), 77–128.

[5] P. Caldero. Toric degenerations of Schubert varieties. Transf. Groups, Vol. 7, No 1, 51-60, 2002.

[6] P. Caldero. On the q-commutations in $U_q(\mathfrak{g})$ at roots of one. J. Algebra, Vol 210, (1998), 557-576.

[7] P. Caldero, R. Marsh, S. Morier-Genoud. Realisation of Lusztig cones. Represent. Theory 8 (2004), 458-478.

[8] R. Chirivi. LS Algebras and applications to Schubert varieties, Transform. Groups 5, No. 3, 2000.

[9] N. Gonciulea, V. Lakshmibai. Degenerations of flag and Schubert varieties to tori varieties. Transform. Groups 1, no.3, 215-248, 1996.

[10] M. Kashiwara. On Crystal Bases. Canad. Math. Soc., Conference Proceed., 16, 155-195, 1995.

[11] P. Littelmann. Cones, crystals and patterns. Transformation Groups, 3, No 2, 145-179, 1998.

[12] G. Lusztig. Introduction to quantum groups. Progress in Mathematics, 110, Birkhäuser, 1993.

[13] G. Lusztig. Braid group action and canonical bases. Adv. Math., 122, 237-261, 1996.

[14] S. Morier-Genoud. Relèvement géométrique de la base canonique et involution de Schützenberger. C.R. Acad. Sci. Paris. Ser. I337, 371-374, 2003.

[15] R.W. Richardson. Intersections of double cosets in algebraic groups. Indag. Math., 3, 69-77, 1992.

[16] M. P. Schützenberger. Promotion des morphismes d’ensembles ordonnés. Discrete Math., 2, 73-94, 1972.

DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ CLAUDE BERNARD LYON I, 69622 VILLEURBANNE CEDEX, FRANCE

E-mail address: morier@math.univ-lyon1.fr