Abstract: Biphasic calcium phosphate (BCP) cement, consisting of an α-tricalcium phosphate-tetracalcium phosphate as the only solid phase and a calcium phosphate solution (Ca-P soln) as the liquid phase, was formerly reported. The BCP cement was easy to prepare, and was expected to show desired handling properties and to form hydroxyapatite (HA) for clinical applications. The objective of the study was to evaluate physical properties and HA formation of the BCP cement. The solid phase of the cement was a BCP (Ca/P of 1.8) prepared in a furnace and ground to a median size of 9.96µm. The liquid phase of the BCP cement consisted of an acidic Ca-P soln, which was produced by mixing phosphoric acid with calcium carbonate (CaCO₃) and diluted 3.0-fold, 3.5-fold, 4.0-fold with H₂O. Additionally, trisodium citrate anhydrous and polyvinylpyrrolidone were included as a water reducing agent and washout resistance enhancer, respectively. Cement powder and liquid were mixed (P/L=3.0) to produce samples for setting time, diametral tensile strength (DTS) and compressive strength (CS) measurements. X-ray powder diffraction (XRD) analyses and microscopic observations by FE-SEM and atomic force microscope (AFM) were also performed to identify HA conversion in set samples with time chronologically. BCP cement showed good washout resistance when immersed in water. The setting times (n=5) were 3.0-fold: 5.24±0.01min, 3.5-fold: 7.39±0.01min and 4.0-fold: 9.06±0.01min at 25±1°C. Differences were apparently existed between each sample (p<0.05). One-day wet DTS (n=5) values were 3.0-fold: 7.07±0.51MPa, 3.5-fold: 5.98±0.91MPa and 4.0-fold: 5.07±0.51MPa and CS (n=5) values were 3.0-fold: 46.58±3.21MPa, 3.5-fold: 47.75±2.55MPa and 4.0-fold: 45.53±1.97MPa. No difference was exhibited between DTS results for each sample except between 3.0-fold and 4.0-fold samples (p<0.05), and CS results showed no apparent difference existed among all samples (p<0.05). XRD analyses showed that BCP cement mostly converted to HA and microscopic features exhibited that HA crystals were clearly observed on surfaces of the BCP-cement at 24-hours after mixing. The newly developed BCP cement was found to have adequate physical properties and HA formation for clinical use.

Key words: BCP cement, Physical property, HA conversion

Introduction

A number of calcium phosphate cements (CPCs) have been used for clinical treatments for almost three decades with satisfactory results. In addition to high biocompatibility and osteoconductivity, many advantages of CPCs as a class of bone graft substitute material are derived from their self-hardening properties. The pasty consistency and washout resistance of CPCs allows close adaption or direct contact to the irregular contours of bone surfaces. However, there have been concerns of difficult handling properties and insufficient physical properties to allow perfect placement and shaping of the graft. Thus, CPCs may be made more clinically useful by improvements in their handling and physical properties.

Furthermore, currently available CPCs consist of two or more calcium phosphates, calcium-containing or phosphate-containing compounds as the solid phase and a sodium phosphate solution or organic acid, such as citric, tartaric, malic, lactic acid, as the liquid phase. These CPC’s powder compounds, which need to be manufactured separately and each ground to the required particle size distribution, are then thoroughly blended to produce a homogeneous mixture. The cement powders exhibited poly-modal size distributions. Therefore, the handling, hardening, mechanical, and most importantly in vivo properties of CPC products depend strongly on the composition and size distributions of the CPC powders. In addition, the CPC, the powder was consisted of a tricalcium phosphate (α-TCP)-tetracalcium phosphate (TTCP) at different molar ratio and the liquid consisted of a sodium dihydrogen phosphate, was previously reported. However, the cement took a few weeks to cure and showed insufficient physical strength for clinical use. Even after full cure, most of the hardened cement mass still did not convert to hydroxyapatite (HA).

Biphasic calcium phosphate cement (BCP-cement), consisting of an α-TCP- TTCP as the only solid phase and a calcium phosphate solution (Ca-P soln) as the liquid phase, was previously reported. The powder phase of BCP consists of a single solid-solution compound with a mono-modal size distribution. The compound is synthesized in a single manufacturing process, and ground to a single size distribution. When the hardening reaction of the BCP cement proceeded, the BCP cement mostly converted to HA, which is the main inorganic component of...
bone, as the final product within 24 hours after mixing. Our former study reported that the BCP cement had excellent biocompatibility and osteoconductivity compared to the control cement. Micro-CT results showed the cement maintained its original graft shape and adaptability through the entire experimental period, and also exhibited excellent washout resistance to bodily fluid when applied to bone defects. These results indicated that the BCP cement was successfully retained and had adequate physical properties after the filling.

Physical properties were essentially related to clinical application, and HA conversion was directly related to biocompatibility and bone formation. The purpose of this study was to examine washout resistance, physical properties, HA conversion and microscopic observations of the BCP cement.

Materials and Methods

The materials used in this study are shown in Table 1.

The powder phase of BCP cement was a solid solution of TTCP and α-TCP. BCP powder showed mono-modal particle distribution, and the median particle size of the powder was 9.96 μm.

Additionally, tri-sodium citrate anhydrous (Na₃Cit) in the powder phase and polyvinylpyrrolidone-k25 (PVP-k25) in the liquid phase were included as a water reducing agent and a washout resistance enhancer, respectively. The samples were prepared by mixing BCP powder with the cement liquid at a P/L ratio of 3.0, and then used for washout resistance, setting time (Gilmore needle), diametral tensile strength (DTS) / compressive strength (CS) measurements, XRD analyses and microscopic observations. Experimental procedures are described as bellow.

Washout resistance and setting time

For the measurement of washout resistance, 3.0-fold/3.5-fold/4.0-fold with H₂O, and then used as the cement liquid.
fold cement pastes were manually shaped into a ball and immersed in water at 3 min after mixing. The samples were visibly checked for shape at 10 min after mixing. The cement was considered to pass the washout resistance test if the paste sample kept original shape and did not visibly disintegrate in water.

The setting time of 3.0-fold/3.5-fold/4.0-fold cement paste was estimated by the results of a Gilmore needle method test. The Gilmore needle method test was performed using a needle with a tip diameter of 2.12 mm loaded with 453.5 g. The hand-mixed pastes were filled into the mold (2.0 cm in diameter, 3 mm in thickness) on a glass plate, and were stored in 50% relative humidity at 23±1˚C. In this method, the cement was considered to set when the needle with the load failed to make a perceptible indentation on the surface. The data of each sample was used to calculate the group mean (±SD). A Tukey-Kramer test was used to establish statistical significance (p<0.05).

Mechanical strengths
The 3.0-fold/3.5-fold/4.0-fold cement pastes were filled into a glass mold (6.0 mm in diameter, 12.0 mm in thickness) and kept in 100% humidity at 37˚C for 2 h. After removal from the mold, each sample was stored in 30 ml of H2O for 22 h and used for CS and DTS measurements immediately. The mechanical strength of the sample was measured using a Universal Testing Machine (TG-5KN, Instron Japan Co. LTD, Kanagawa, Japan) at cross head speed of 1 mm/min. DTS values were calculated using the equation; DTS (MPa)=2P/πDH, and CS values were calculated using the equation CS (MPa)=2P/DH. The data of each sample was used to calculate the group mean (±SD) and underwent a Tukey-Kramer test for individual comparison with a 0.05 level of significance. (P: load, D: diameter, H: height)

X-ray diffraction (XRD) analysis
HA formation of the BCP cement was examined by powder X-ray diffraction (XRD) analysis. The 3.0-/3.5-fold/4.0-fold cement pastes were filled into a glass mold (ϕ 6.0 mm × H 12.0 mm) and kept in 100% humidity at 37˚C for 2 h, and then removed from the mold and stored in 30 ml of H2O for 22 h. After storage, the samples were dehydrated in acetone for 1 h and dried in the desiccator for 23 h, and then ground to fine powder by mortar and pestle for XRD. XRD analyses of the 3.5-fold samples at 6, 12, 24 and 48 h were also performed to examine chronological HA conversion.

Powder XRD patterns, obtained with a powder x-ray diffractometer (Multi Flex, Rigaku Corporation, Tokyo, Japan), were used to determine phase compositions of the hardened samples. The XRD patterns were recorded with use of a vertical-mounted diffractometer system with graphite-monochromatized CuKα radiation (λ=0.154nm) generated at 40 kV and 20 mA, and scanning speed 2/˚min. The sample was scanned from 10 to 60 degrees 2θ in a continuous mode, and peak intensities were recorded on a computer. Analysis of the detected diffraction pattern was performed in comparison with standard powder X-ray diffraction data (Powder Diffraction File: PDF) for each substance, and the chronological formation of HA from α-TCP/TTCP as the original substance was confirmed.

Microscopic observations
The 3.5-fold samples were prepared by same procedures as for the XRD samples until drying in the desiccator, and then were broken for fractures. Observations of the fracture surface of the samples were conducted by field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM).

FE-SEM observations for 24 h and 48 h samples were performed us-
ing SEM (SU8020, Hitachi high technologies, Tokyo, Japan) at an accelerating voltage of 07V. Prior to the observation, samples were fixed on stubs without sputtered coating. Observations were carried out up to where the crystalline form of HA could be distinguished. AFM observations for 24 h and 48 h samples were carried out in a completely non-contact state using AFM (NX-20 type, Park Systems Japan, Tokyo, Japan) and cantilever (OMCL-AC160TS, Park Systems Co. Japan, Tokyo, Japan), under conditions of 256×256 and 512×512 pixels and a scan rate of 0.2 - 1Hz. Firstly, observations of the surface of each sample were carried out in the range of 20×10 um, then observations were performed while sequentially increasing the magnification ratio for parts where it was considered to be necessary. Observations were carried out up to the range of magnification whereby objects of about 100 nm could be identified and where the crystalline form of HA could be distinguished. Also, differential image Enhanced Color (EC) displays were made for the purpose of confirming the parts that were difficult to distinguish due to large surface forms and the presence of unevenness etc., and for clarifying three-dimensional discrimination in the AFM image. Furthermore, the surface roughness corresponding to each AFM image was given by line profile.

Results

Washout resistance and setting time

Three kinds of Ca-P soln diluted with 3.0-fold, 3.5-fold and 4.0-fold H2O, were used as cement liquid. After the mixing, all BCP cement pastes were an injectable phase through a cannula (2 mm in diameter), then became a moldable phase with shape integrity, and hardened stiffly. Fig. 3 shows the washout resistance results for the cement pastes. All samples showed that no noticeable disintegration and negligible debris were observed at 10 min after the mixing (A). All samples set into solid masses, so the samples were taken out from water by tweezers without any collapse. The samples were observed in dry condition at 15 min after mixing (B). Observations for the samples, which were continuously preserved in water, made at 24 h later were also the same as (A), with no further disintegration from the 10min-samples.

Following previously studies[18-20], the sample was considered to pass the washout resistance test if the paste did not visibly disintegrate. Therefore, all BCP cements were considered to have excellent washout resistance when preserved in water.

The setting time of each cement paste is shown in Fig. 4. The cement showed injectable phase initially and exhibited moldable phase, and then hardened stiffly. The setting time of each sample (n=5) to harden was 3.0-fold: 5.24±0.006 min, 3.5-fold: 7.39±0.006 min, and 4.0-fold: 9.06±0.006 min at 25±1˚C. The 3.0-fold sample showed the shortest setting time until hardening among all samples, and there were apparent differences between each sample in hardening (p<0.05).

Mechanical strengths

Mechanical strengths of the samples are shown in Figs. 5 and 6. Mean one-day wet DTS (n=4) values were 3.0-fold: 7.07±0.51MPa, 3.5-fold: 5.98±0.91MPa and 4.0-fold: 5.07±0.51MPa, and CS values were 3.0-fold: 46.58±3.21MPa, 3.5-fold: 47.75±2.55MPa and 4.0-fold: 45.53±1.97MPa. DTS results showed that 3.0-fold sample exhibited the largest DTS value in all samples and a clear difference existed between it and 4.0-fold sample (p<0.05). No clear difference existed between 3.0-fold and 3.5-fold cement samples and also 3.5-fold to 4.0-fold samples. CS results showed no apparent difference existed among all samples (p<0.05).

XRD analysis

Powder XRD patterns of 3.0-fold/3.5-fold/4.0-fold samples at 24 h are shown in Fig. 7. The diffraction patterns of all the 24 h samples exhibited that the detection intensities and peaks of HA were quite similar to those of standard powder X-ray diffraction data (Powder Diffraction File: PDF). No apparent difference was found among the samples.
The α-TCP and TTCP diffraction patterns of 3.5-fold samples at 6, 12, 24 and 48 h were reduced and that of HA was clearly detected in 6 h samples. The diffraction pattern of 12 h sample showed that HA was the main phase (Fig. 8). The diffraction pattern of 48 h sample exhibited
Figure 9. FE-SEM micrographs of fracture surfaces of 24 h and 48 h samples. HA crystals were already found on the fracture surface of the 24 h sample, and apparent needle and rod shape crystals were clearly formed on the surface of the 48 h sample.

Figure 10. AFM images of 24 h sample. In the 3×3 μm image, fine HA crystals were formed on the entire surface and did not show constant regular arrangement or orientation. As was clear from the 1×1 μm enlarged image, HA crystals were clearly observed with fine crystallinity and the crystal size of the HA was approximately 20-50 nm in diameter and 200-400 nm in length.
that the intensities and peaks of HA were clearly observed compared with those of 24 h sample. Very small amounts of unreacted α-TCP and TTCP were still found in 24 h and 48h samples. XRD results indicated that the BCP cement formed HA within 6 h and changed into HA chronologically. It was nearly completely converted to HA after 24 h from mixing.

Microscopic observations

FE-SEM micrographs of fracture surfaces of the sample at 24 h and 48 h are shown Fig. 9. Small HA crystals were already found on the fracture surface of the 24 h sample, and apparent needle and rod shape crystals were clearly formed on the surface of the 48 h sample. FE-SEM images not only revealed the presence of HA crystals in the formed samples, but also showed clearly that the density of HA crystals increased with the increase of HA content.

Figs. 10 and 11 show the observed AFM images of 24 h and 48 h samples. In the 3×3 μm image of Fig. 10, it was confirmed that fine needle shape HA crystals were formed on the entire surface of the 24 h sample. It was clearly confirmed by EC that there were some crystals in the region where observation was difficult by AFM. As was clear from the 1×1 μm enlarged image, HA crystals were clearly observed with fine crystallinity. The crystal size of HA observed in the 24 h sample was approximately 20-50 nm in diameter and 200-400 nm in length. In addition, it was confirmed that the HA crystals did not show constant regular arrangement or orientation. In the 3×3 μm image of Fig. 11, the 48 h sample showed that larger density and more matured HA crystals formed on whole surface in comparison to the 24 h sample. The 1×1 μm image exhibited that excellent cylindrical crystalline structures were formed on whole surface.

FE-SEM and AFM images of the 3.0- and 4.0-fold cement samples taken in additional FE-SEM and AFM experiments at 24 h and 48 h exhibited quite similar to those of the 3.5-fold sample at 24 h and 48 h.

![AFM images of 48 h sample.](image)

Figure 11. AFM images of 48 h sample. In the 3×3 μm image, the sample showed that larger density and more matured HA crystals formed on whole surface in comparison to the 24 h sample. The 1×1 μm image exhibited that excellent cylindrical crystalline structures were formed on whole surface.
Discussion

Previous studies have reported that the conventional CPCs were excellent materials for reconstructive surgery for alveolar bone deficiencies, orthopedic, and maxillofacial surgical applications, because most of CPCs formed low crystalline HA which was main inorganic component of bone. CPCs undergo the process of biodegradable and bioreabsorbable nature in vivo, so they work effectively for bone substitute materials. On the other hand, CPCs still had some difficulties for maintaining the original shaped graft and volume at defect site, because they did not have enough washout resistance and viscosity in body fluid. These properties were caused by physical flow and chemical dissolution of the material components in the body fluid. Some CPCs took a long time to harden and showed inadequate physical properties and HA conversion for clinical uses even at 24 h after mixing. They also lack adequate controlled degradability for bone formation when implanted in the bone defect.

Therefore, a new bone substitute material was required to have sufficient physical strength and appropriate cellular affinity along with biodegradable and biore absorbable potential to facilitate the bone remodeling process. Above those reasons, we developed the BCP cement with improved washout resistance in body fluid, handling properties, mechanical strengths and rapid HA conversion compared to the conventional cements. In this experiment, physical properties of BCP cements when used the Ca-P soln diluted with 3.0, 3.5 or 4.0-fold of H2O and mixed at P/L ratio of 3.0, such as DTS, CS, setting time and washout resistance, were examined. All BCP cements showed excellent washout resistance when immersed in water and set stiﬄy within 10 minutes. All BCP cements also showed almost same mechanical strengths, diffraction patterns of XRD and microscopic features. Even until the hardening, the cement paste kept original shape and did not visibly disintegrate in water. After the hardening, the BCP cement had sufficient mechanical strength for various clinical applications.

Based on the mode of bone reaction against HA in the in vivo environment, high temperature HA (HT-HA) with high crystallinity is reported to be suitable for HA coating for implant surfaces due to exhibiting osteoconductivity as a result of its bioactive/non-bioreabsorbable nature. Low temperature HA (LT-HA) with low crystallinity produced at room temperature is reported to be suitable as a bone graft material due to bone substitution properties given by its bioactive/bioreabsorbable nature. When the hardening reaction of the BCP cement proceeded, the BCP cement gradually formed HA and was mostly converted to LT-HA, which is the main inorganic component of bone, as the final product within 24 h after the mixing. Therefore, the cement may show superior biocompatibility and osteoconductivity. HA crystals formed from the BCP cement were low-crystallinity and nano-meter size, which are the magnitude of those contained in bone, so it might be assumed that the HA crystals could be easily resorbed by osteoclasts and converted to natural bone, as which spontaneously occurred in bone remodeling.

Our former study reported that the BCP cement, which was used for artificially created critical bone defects in rat calvaria, combined to residual bone firmly and converted to natural bone chronologically. This binding between the BCP cement and the residual bone increased the mechanical strength of the filling material and reduced its susceptibility to infections. A recent study also reported that the BCP cement formed approximately 5wt% B-type carbonate apatite (CO3-AP), essentially existing at 5-8wt% in natural bone, when implanted in subcutaneous tissues of rat for 8 weeks. These reports also explained that the BCP cement should convert to low crystalline HA like natural bone.

The BCP cement had superior handling properties and hardened stiﬄy and rapidly. It also showed excellent washout resistance and shape integrity in aqueous solution. Therefore, the BCP cement successfully retained the original graft shape. The BCP cement also had adequate physical properties and mostly converted to HA within 24h. These results strongly indicate that BCP cement could be an effective and suitable material for clinical uses.

Acknowledgements

The authors would like to give cordial thanks to Dr. Masahiro Katani, Department of Dental Materials, Nihon University School of Dentistry, and Mr. Hiroaki Okano,Taipei Chemical Industrial Co. Ltd, for their technical supports.

Conflict of Interest

The author has declared that no COI exists.

References
1. Brown WE and Chow LC. Dental restoration cement pastes. US Patent: Patent No.4518430, 1985
2. Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 4: 209-311, 2013
3. Schmitz JP, Hollinger JO and Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 57: 1122-1126, 1999
4. Sariibrahimoglu K, Wolke JG, Leeuwenburgh SC, Yubao L and Jansen JA. Injectable biphasic calcium phosphate cements as a potential bone substitute. J Biomed Mater Res B Appl Biomater 102B: 415-422, 2014
5. Tagaya M, Goto H, Inuma M, Wakamatsu N and Tamura Y. Development of self setting Te-CP/α-TCP cement for pulpotomy. Dent Mater J 24: 555-561, 2005
6. Sugawara A, Fujikawa K and Sato S. Evaluation of biphasic calcium phosphate cement in rat calvarial model. J Hard Tissue Biology 27: 109-116, 2018
7. Sugawara A. Method for controlling work time for forming shape of biphasic self-setting calcium phosphate. US Patent: No.10322211, 2019
8. Sugawara A. Method for controlling work time for forming shape of biphasic self-setting calcium phosphate. Japanese Patent: No. 6490050 , 2015
9. Hirayama S, Sugawara A, Fujikawa K, Okano H and Hirano A. Biphasic calcium phosphate based fast self-setting calcium phosphate cement. J Dent Res (Spec Iss A): 2368, 2015
10. Hirayama S, Iwai H, Sugawara A, Fujikawa K, Hirano A. Physical properties of biphasic calcium phosphate cements (abstract 3103). Jpn J Conserv Dent, Program, 103, 2016 (in Japanese)
11. Sugawara A, Fujikawa K, Koshi R, Ozawa Y, Kubota T, Yamamoto T and Sato S. Evaluation of biphasic calcium phosphate-based cement in rat calvarial model. J Dent Res (Spec Iss A): 3557, 2015
12. Tsukune N, Sugawara A, Fujikawa K, Hirano A, Yamamoto T and Sato S. Osteoconductivity of BCP cement when used for calvarial bone defect of rats. J Dent Res 96 (Spec Iss A): 1925, 2017
13. Ozawa Y, Koshi R, Kubota T, Yamamoto T, Sugawara A, Fujikawa K and Sato S. A new generation bone substitute materials: Histological evaluation of biphasic calcium phosphate-based cement in rat calvarial model (abstract 2504). Jpn J Conserv Dent, Program,
14. Fujikawa K, Sugawara A, Hirano A, Tohyama M, Hayashi M. Histopathological reactions and CO3-AP formation of BCP-cement in subcutaneous tissues. J Dent Res 98 (Spec Iss A): 2523, 2019
15. Fujikawa K and Sugawara A. Histopathological evaluation of BCP-cement on rat calvarial mode. J Dent Res 99 (Spec Iss A): 866, 2020
16. Sugawara A and Fujikawa K. Physical properties and hydroxyapatite formation of biphasic calcium phosphate cement. (abstract 2497). J Dent Res 99 (Spec Iss A): 2497, 2020
17. Sugawara A, Yamamoto T, Fujikawa K, Hirano A, Koshi R and Sato S. Evaluation of TCP-TTCP Cement in Rat Calvarial Model (abstract 1926). J Dent Res (Spec Iss A): 184, 2017
18. Carey LE, Xu HHK, Simon Jr CG, Takagi S and Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomater 26: 5002-5014, 2005
19. Takagi S, Chow LC, Hirayama S and Sugawara A. Premixed calcium phosphate cement pastes. J biomed Mater Res (Appl Biomater) 67B: 689-696, 2003
20. Xu HHK, Takagi S Quinn JB and Chow LC. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res 68A: 725-734, 2004
21. Chow LC, Takagi S, Costantino PD and Friedman CD. Self-setting calcium phosphate cements. Mater Res Soc Symp Proc 179: 3-24, 1991
22. Sugawara A, Nishiyama M, Kusama K, Moro I, Nishimura S, Kudo I, Chow LC and Takagi S. Histopathological reactions of calcium phosphate cement. Dent Mater J 11: 11-16, 1992
23. Sugawara A, Kusama K, Nishimura S, Nishiyama M, Moro I, Kudo I, Takagi S and Chow LC. Histopathological reactions to calcium phosphate cement for bone filling. Dent Mater J 12: 691-698, 1993
24. Sugawara A, Kusama K, Nishimura S, Nishiyama M and Moro I. Histopathological reactions of a calcium phosphate cement root canal filler. J Hard Tissue Biol 4: 1-7, 1995
25. Fujikawa K, Sugawara A, Murai S, Nishiyama M, Takagi S and Chow LC. Histopathological reaction of calcium phosphate cement in periodontal bone defect. Dent Mater J 14: 45-57, 1995
26. Sugawara A, Fujikawa K, Kusama K, Nishiyama M, Morai S, Takagi S and Chow LC. Histopathological reaction to calcium phosphate cement for alveolar ridge augmentation. J Biomed Mater Res 61: 47-52, 2002
27. Fujikawa K, Sugawara A, Kusama K, Nishiyama M, Morai S, Takagi S and Chow LC. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement. Dent Mater J 21: 296-305, 2002
28. Takagi S, Chow LC, Hirayama S and Sugawara A. Premixed calcium-phosphate cement pastes. J Biomed Mater Res B Appl Biomater 67B: 689-696, 2003
29. Sugawara A, Fujikawa K, Takagi S, Chow LC, Nishiyama M and Murai S. Histopathological and cell enzyme studies of calcium phosphate cements. Dent Mater J 23: 613-620, 2004
30. Sugawara A, Fujikawa K, Takagi S and Chow LC. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs. Dent Mater J 27: 787-794, 2008
31. Sugawara A. Bone Regeneration Technology: Newly Revised Edition - Concept and Clinical Application of Bone Regeneration. Zenith Press, Tokyo, 2011. (in Japanese)
32. Sugawara A. Evidential Implantology. Zenith Press, Tokyo, 2013. (in Japanese)
33. Sugawara A. AFM observations and composition analyses of the top surfaces of HA implants. J Hard Tissue Biology 26: 331-346, 2017
34. Zeeshan, Mohamed-Nur Abdallah, Ahmed Abdalla Hanafi, Syed Misbahuddin, Haroon Rashid and Michael Glogauer. Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials 8: 7918-7925, 2015
