Disclosures. All authors: No reported disclosures.

2050. Effect of a Stewardship Intervention on Post-Prescriptive Antibiotic Timeouts in Nursing Homes
Chi-Yin Liao, BS¹; James H. Ford, II, PhD²; David A. Nace, MD, MPH³; Christopher Crnich, MD PhD⁴;¹University of Wisconsin-Madison, Madison, Wisconsin; ²University of Pittsburgh, Pittsburgh, Pennsylvania; ³University of Wisconsin, Madison, Wisconsin

Session: 237. Antibiotic Stewardship: Long-Term Care
Saturday, October 5, 2019: 12:15 PM

Background. Antibiotic overuse and misuse is a common problem in nursing homes (NHs). Meaningful improvements in the quality of antibiotic prescribing in NHs may be improved through post-prescriptive interventions (antibiotic timeouts) focused on stopping, streamlining and/or shortening ongoing antibiotic treatments. A recently completed trial of a complex antibiotic stewardship intervention provided us with an opportunity to explore to what extent NH providers engaged in antibiotic timeouts at baseline and the effects of the intervention on these behaviors.

Methods. Data on antibiotic prescriptions in 11 NHs (6 intervention, 5 control) were collected for 12 months prior and 13 months after intervention introduction. We categorized antibiotic change events (ACEs) as: (1) changes in dose, frequency, or route for the same antibiotic, (2) change to another antibiotic with different spectrum, and (3) early discontinuation (stopped after 2 days or less). Modifications considered to be routine (e.g., Azithromycin dose reduction from 500 to 250 mg) were not considered a meaningful ACE. Frequency of ACEs both overall and by type were compared using a difference in difference (DID) approach.

Results. Of 2647 NH initiated antibiotic events, 376 (14.2%) were modified over the study period. The most common type of modification was a change in spectrum (n = 241, 64.1%) followed by early discontinuation of the antibiotic (n = 118, 31.4%). The difference in ACEs before and after the intervention are as well as DID estimates are detailed in the Table.

Conclusion. The antibiotic stewardship intervention did not impact total ACEs but did appear to increase the frequency of discontinuation ACEs. An inability to capture data on shortening ACEs (e.g., reducing a treatment course from 14 to 7 days) was a limitation of this study. Additional research on how to foster more frequent and effective antibiotic timeouts in NHs is needed.

2051. Frequency of Inappropriate Antibiotic Prescribing in Nursing Homes
Tola Ewers, MS, PhD¹; Marlon P. Mundt, PhD²; Christopher Crnich, MD, PhD³;¹School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; ²University of Wisconsin-Madison, Madison, Wisconsin

Session: 237. Antibiotic Stewardship: Long-Term Care
Saturday, October 5, 2019: 12:15 PM

Background. Inappropriate antibiotic use is a common problem in nursing homes (NHs). Antibiotic decision-making in NHs is complex. Characterizing the patterns and nature of social interactions between providers and nursing staff may offer insights into the factors influencing antibiotic decisions and opportunities to improve their quality in NHs.

Methods. Chart reviews and interviews with key informants were used to identify social interactions between nursing staff and providers associated with antibiotic prescribing decisions in three NHs. Data collection was restricted to provider-nurse exchanges following a resident change in condition recognition up to receipt of an order for an antibiotic. A survey administered to nursing staff was used to collect information on employment tenure and their perceptions about facility team climate. Ucinet software was used to describe network characteristics, including density and centrality.

Results. Urinary tract infections (UTIs) accounted for nearly 40% of antibiotic events across all sites. The number of contacts between nursing staff and providers was approximately two-times greater in treated UTI events when compared with treated soft-tissue infections and were four-times as great as for treated pneumonia events. Network structures were different at each study NH with varying numbers of core team members and network density (Figure 1). Team climate survey responses across SNFs demonstrate generally positive climates (4.1 on a scale of 1 to 5, 5 reflects positive). Future studies should examine influences of different social network structures on antibiotic decision-making in NHs and whether modification of network structures or their characteristics is amenable to change.

Disclosures. All authors: No reported disclosures.

2052. Characterizing Nursing and Provider Social Networks to Develop an Instrument to Improve Antibiotic Stewardship Efforts in Nursing Homes
Tola Ewers, MS, PhD; Marlon P. Mundt, PhD; Christopher Crnich, MD, PhD;¹School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin

Session: 237. Antibiotic Stewardship: Long-Term Care
Saturday, October 5, 2019: 12:15 PM

Background. Inappropriate antibiotic use is a common problem in nursing homes (NHs). Antibiotic decision-making in NHs is complex. Characterizing the patterns and nature of social interactions between providers and nursing staff may offer insights into the factors influencing antibiotic decisions and opportunities to improve their quality in NHs.

Methods. Chart reviews and interviews with key informants were used to identify social interactions between nursing staff and providers associated with antibiotic prescribing decisions in three NHs. Data collection was restricted to provider-nurse exchanges following a resident change in condition recognition up to receipt of an order for an antibiotic. A survey administered to nursing staff was used to collect information on employment tenure and their perceptions about facility team climate. Ucinet software was used to describe network characteristics, including density and centrality.

Results. Urinary tract infections (UTIs) accounted for nearly 40% of antibiotic events across all sites. The number of contacts between nursing staff and providers was approximately two-times greater in treated UTI events when compared with treated soft-tissue infections and were four-times as great as for treated pneumonia events. Network structures were different at each study NH with varying numbers of core team members and network density (Figure 1). Team climate survey responses across SNFs demonstrate generally positive climates (4.1 on a scale of 1 to 5, 5 reflects positive). Future studies should examine influences of different social network structures on antibiotic decision-making in NHs and whether modification of network structures or their characteristics is amenable to change.

Disclosures. All authors: No reported disclosures.