Abstract

We study the effect of Lorentz symmetry violation (LSV) on the behaviour at high energy of SU(N) gauge theory with quarks in the fundamental representation. The approach is similar to that for QED treated in a previous paper. In contrast to QED, standard Lorentz invariant QCD is asymptotically free. Our aim is to explore the structure of the renormalisation group at high energy and hence weak coupling without requiring the Lorentz symmetry breaking to be small. The simplest type of LSV leaves the theory invariant under a subgroup of the Lorentz group that preserves a (time-like) 4-vector. We examine this case in detail and find that asymptotic freedom is frustrated. That is, at sufficiently high energy the running coupling constant attains a minimum value before increasing again, while the LSV parameter increases without bound.
1 Introduction

Lorentz symmetry violation (LSV) in QED has been studied by a number of authors concerned with its consistency with causality, unitarity [1, 2, 3], the structure of asymptotic states and renormalisation theory [4, 5, 6]. In previous papers [7, 8] we studied some of these issues in QED starting with a premetric formulation [9, 10] based on an action

\[
S = -\frac{1}{8} \int d^4x U^{\mu\nu\sigma\tau} F_{\mu\nu}(x) F_{\sigma\tau}(x),
\]

where \(F_{\mu\nu}(x) \) is the standard electromagnetic field tensor and the (constant) background tensor \(U^{\mu\nu\sigma\tau} \) has the same symmetry properties as the Riemann tensor in General Relativity, namely

\[
U^{\mu\nu\sigma\tau} = -U^{\nu\mu\sigma\tau} = U^{\sigma\tau\mu\nu},
\]

\[
U^{\mu\nu\sigma\tau} + U^{\mu\sigma\tau\nu} + U^{\mu\tau\nu\sigma} = 0.
\]

This latter condition excludes parity violation. An outcome of the analysis was that even when the Lorentz symmetry violation is not constrained to be small the behaviour of the renormalised theory in the infra-red limit is dominated by the fixed point at zero coupling in a manner consistent with Lorentz symmetry. That is at a sufficiently large scale in spacetime Lorentz symmetry re-emerges. This is consistent with related earlier work [11, 12, 13].

In this paper we study a QCD type model with \(SU(N) \) gauge symmetry. In addition to the gauge field we include a quark field that transforms under the fundamental representation of \(SU(N) \). A closely related model is investigated in reference [14]. The significance of such a theory is that it exhibits asymptotic freedom, that is, its behaviour at high energy is controlled, at least in the standard case of Lorentz invariance, by a weak coupling fixed point [15, 16]. Our aim here is to investigate the manner in which asymptotic freedom is modified by the presence of Lorentz symmetry violation. An investigation with similar aims, in particular comparing QED and QCD is presented in reference [17]. Although we look in detail only at the simplest type of LSV, we set out the general theory in a manner parallel to reference [7] in order to clarify the logical structure of the argument. This prepares a framework for analyses of more complex models.

In the obvious generalisation of the case of QED we take the action for the \(SU(N) \) gauge field to be

\[
S_g = -\frac{1}{8} \int d^4x U^{\mu\nu\sigma\tau} F_{a\mu\nu}(x) F_{a\sigma\tau}(x),
\]

where \(F_{a\mu\nu}(x) \) is the standard gauge field tensor transforming according to the orthogonal representation of \(SU(N) \). For a general choice of \(U^{\mu\nu\sigma\tau} \) this action although gauge invariant is not in general Lorentz invariant. Lorentz invariance with respect to a metric \(g^{\mu\nu} \) can be recovered by choosing

\[
U^{\mu\nu\sigma\tau} = g^{\mu\sigma} g^{\nu\tau} - g^{\nu\sigma} g^{\mu\tau}.
\]

Although there is a priori no metric in the general case with LSV, there is nevertheless, as argued in reference [7], a preferred metric \(g^{\mu\nu} \) that allows us to decompose \(U^{\mu\nu\sigma\tau} \) in the following way

\[
U^{\mu\nu\sigma\tau} = g^{\mu\sigma} g^{\nu\tau} - g^{\nu\sigma} g^{\mu\tau} - C^{\mu\nu\sigma\tau},
\]

where the tensor \(C^{\mu\nu\sigma\tau} \) has the same symmetries as the Weyl tensor in General Relativity. That is

\[
C^{\mu\nu\sigma\tau} = -C^{\nu\mu\sigma\tau} = C^{\sigma\tau\mu\nu},
\]

and

\[
C^{\mu\nu\sigma\tau} + C^{\mu\sigma\tau\nu} + C^{\mu\tau\nu\sigma} = 0.
\]

In addition it satisfies the trace condition

\[
g_{\mu\sigma} C^{\mu\nu\sigma\tau} = 0.
\]
We refer to $C_{\mu\nu\sigma\tau}$ as a Weyl-like tensor (WLT). It follows that the WLT determines the nature of the LSV. As in the case of QED the possible types of LSV can be determined by applying the Petrov classification to the WLT [18]. A useful approach to the Petrov scheme is contained in references [19, 20]. Its application in QED with LSV is presented in reference [7]. There are six cases, conventionally labeled O,N,D,I,II,III. Each case has a canonical form for the WLT [21].

Class O corresponds to the case $C_{\mu\nu\sigma\tau} = 0$ which for pure gauge theory implies no LSV. However as in the case of QED [7], the quark field can engender LSV in the model through its contribution to vacuum polarisation provided the associated metric for quark propagation shares with the gluon metric an invariance under a subgroup of the Lorentz group that is the little group of the given 4-vector [22]. The 4-vector can be time-like, space-like or light-like (with respect to both metrics). The time-like case implies that there is a reference frame in which the theory is invariant under rotations of the spatial axes. This is the case we study in detail. However it is convenient to set out the scheme for quantising and renormalising the theory in a general form. Canonical forms for the WLT in other Petrov classes and the implications for the vector meson dispersion relations are the same as those for photons in QED as described in detail in reference [7].

2 Gauge Fixing and Ghost Fields

In terms of the vector gauge fields $A_{a\mu}(x)$ the tensor fields are given by

$$F_{a\mu\nu}(x) = \partial_\mu A_{a\nu}(x) - \partial_\nu A_{a\mu}(x) + gf_{abc}A_{b\mu}(x)A_{c\nu}(x),$$

(10)

where g is the gauge field coupling constant and f_{abc} are the structure constants of SU(N). In order to deal with the gauge invariance of the action for the vector fields in eq(4) we follow the approach in reference [7] and impose the gauge condition

$$\Lambda_{\mu\nu}\partial_\mu A_{a\nu}(x) = 0.$$

(11)

Here $\Lambda_{\mu\nu}$ is a metric-like tensor which we will find it convenient to distinguish from $g_{\mu\nu}$ because the two tensors behave differently under the renormalisation procedure. We are therefore led to add a gauge fixing term to the action of the form

$$S_{gf} = \frac{1}{2} \int d^4x (\Lambda_{\mu\nu}\partial_\mu A_{a\nu}(x))^2.$$

(12)

In addition and in contrast to the case of QED [7], we must introduce anticommuting ghost fields $c_a(x)$ and $\bar{c}_a(x)$ in order to construct in the standard way the Fadeev-Popov determinant in the path integral formalism for the computation of Greens functions in the gauge theory. We therefore complete the action for the gauge theory by adding a term

$$S_{gh} = -\int d^4x \bar{c}_a(x)\Lambda_{\mu\nu}\partial_\mu D_{ab\nu}c_b(x).$$

(13)

Here $D_{ab\nu} = \delta_{ab}\partial_\nu + gf_{abc}A_{c\nu}(x)$ is the gauge covariant derivative for the ghost fields. The complete action for the theory is S where

$$S = S_g + S_{gf} + S_{gh}.$$

(14)

3 Feynman Rules

The Feynman rules for the theory can be read off from the action S in the standard way. They are in certain respects analogous to the corresponding rules for BIMQED [7].
3.1 Feynman Propagator

The Feynman propagator, illustrated in Fig 1(i), is

$$\Delta_{Fab\mu\nu}(q) = -i\delta_{ab}M_{\mu\nu}(q),$$

(15)

where $M_{\mu\nu}(q)$ is the matrix inverse to $M^{\mu\nu}(q)$ and

$$M^{\mu\nu}(q) = (U^{\mu\nu})^\Lambda + \Lambda^{\mu\sigma}\Lambda^{\nu\beta}q_{\sigma}q_{\beta}.$$

(16)

More explicitly

$$M^{\mu\nu}(q) = q^2 g^{\mu\nu} - q^{\mu}q^{\nu} + Q^{\mu}Q^{\nu} - C^{\mu\alpha\nu\beta}q_{\alpha}q_{\beta}.$$

(17)

Here $Q^{\mu} = \Lambda^{\mu\alpha}q_{\alpha}$. It is easy to verify that when $C^{\mu\alpha\nu\beta}$ vanishes and $\Lambda^{\mu\nu} = g^{\mu\nu}$ this reduces to the standard Lorentz invariant form. Following the analysis for the photon propagator in reference [7], we first introduce $M_{\mu\nu}(q)$ which is the form taken by $M^{\mu\nu}(q)$ when indeed $\Lambda^{\mu\nu}$ is replaced by $g^{\mu\nu}$ that is

$$\mathcal{M}^{\mu\nu}(q) = q^2 g^{\mu\nu} - C^{\mu\alpha\nu\beta}q_{\alpha}q_{\beta}.$$

(18)

The inverse matrix is $M_{\mu\nu}(q)$ (see reference [7]) and it can be used to construct $M_{\mu\nu}(q)$ in the form

$$M_{\mu\nu}(q) = \left(\delta_{\mu}^{-} - \frac{q_{\mu}Q^{-}}{q.Q}\right)M_{\sigma\tau}(q)\left(\delta_{\tau}^{-} - \frac{Q^{-}q_{\tau}}{q.Q}\right) + \frac{q_{\mu}q_{\nu}}{(q.Q)^2}.$$

(19)

A careful analysis [7] shows that the Feynman propagator has the same vector meson poles as $\mathcal{M}_{\mu\nu}(q)$ together with the ghost poles at $q.Q = \Lambda^{\mu\sigma}q_{\sigma}q_{\tau} = 0$. It is straightforward to check that were we to set $\Lambda^{\mu\nu} = g^{\mu\nu}$ then we find

$$M_{\mu\nu}(q) = \mathcal{M}_{\mu\nu}(q).$$

(20)

3.2 Gluon Vertices

The three-gluon vertex, Fig 1(ii), is

$$V^{\mu\nu\sigma}_{abc} = -gf_{abc}(p_{\rho}U^{\rho\mu\sigma} + q_{\rho}U^{\rho\nu\sigma} + k_{\rho}U^{\rho\sigma\mu}).$$

(21)

For the four-gluon vertex Fig 1(iii) we have

$$V^{\mu\nu\sigma\tau}_{abcd} = -ig^2(U^{\mu\nu\sigma\tau}f_{abhd}f_{c} + U^{\mu\nu\sigma\tau}f_{hacd}f_{b} + U^{\mu\nu\sigma\tau}f_{hab}f_{c} + U^{\mu\nu\sigma\tau}f_{hac}f_{bd}).$$

(22)

Of course momentum conservation is enforced at each vertex. Again it is easy to verify that in the absence of LSV these vertices reduce to standard form (see for example [23]).
Figure 2: The ghost propagator is indicated in (i) and the vertex for coupling to gluons in (ii).

Figure 3: The quark propagator is indicated in (i) and the quark gluon coupling in (ii).

3.3 Ghost Propagator and Vertex

The Feynman propagator for the ghost fields, Fig 2(i), is

\[
\Delta_{ab}^{(gh)}(p) = \frac{i\delta_{ab}}{P.p},
\]

where \(P^\mu = \Lambda^{\mu\nu}p_\nu \) and \(P.p = P^\mu p_\mu = \Lambda^{\mu\nu}p_\mu p_\nu \). Momentum follows the ghost direction. From this it is obvious that the mass-shell condition for the ghosts is \(P.p = \Lambda^{\mu\nu}p_\mu p_\nu = 0 \).

The vertex coupling the ghosts to the vector field is indicated in Fig 2(ii) and has the form

\[
V_{abc}^{(gh)\mu} = -gf_{abc}\Lambda^{\mu\nu}p_\nu.
\]

4 Quark Field

The model can be extended by including one or more spinor fields each transforming under \(SU(N) \). For simplicity we will consider the case of one such field. Modifications can be added later. The action for this field is \(S_{qu} \) where

\[
S_{qu} = \int d^4x \bar{\psi}(x)(i\gamma^\mu D_\mu[A] - m)\psi(x).
\]

Here

\[
\gamma^\mu = \gamma^a\bar{e}_\mu^a,
\]

where \(\bar{e}_\mu^a \) is the vierbein associated with the spinor field and \(\{\gamma^a\} \) are the standard Dirac \(\gamma \)-matrices. The metric associated with the spinor field is \(\bar{g}^{\mu\nu} = \eta^{ab}\bar{e}_\mu^a\bar{e}_\nu^b \). This is a second source of LSV in the model. Of course \(D_\mu[A] \) is the gauge covariant derivative appropriate to the spinor field. The Feynman propagator for the spinor field is indicated in Fig 3(i)

\[
S_F(p) = \frac{i}{\bar{\gamma}^\mu p_\mu - m},
\]
and the coupling to the gauge field is indicated in Fig 3(ii)

$$\mathcal{V}_a^\mu = ig\gamma^\mu t_a.$$ (28)

Here t_a is the $SU(N)$ generator appropriate to the representation of the spinor field (see reference [23]).

We use dimensional regularisation [24] in order to deal with the ultraviolet divergences of the theory. The Feynman diagrams for the perturbation series for the Greens functions of the theory are evaluated in n-dimensions. All the parameters of the theory, coupling constant, mass, metrics and WLT are subject to corrections involving UV divergences. We denote the bare quantities with an extra suffix 0. Each bare parameter is expanded in terms of a renormalised coupling constant g. For example

$$g \rightarrow g_0 = \mu^{(4-n)/2}g(1 + \sum_{k=1}^{\infty} g^{(k)}g^{2k}).$$ (29)

Here μ is the scale associated with the renormalised coupling g [24]. The coefficients $g^{(k)}$ depend on the dimension n and exhibit poles of various orders at $n = 4$. For example $g^{(1)}$ has a simple pole at $n = 4$. The other parameters are similarly replaced by bare versions that are expanded in powers of the renormalised coupling g.

$$m_0 = m(1 + \sum_{k=1}^{\infty} b^{(k)}g^{2k})$$

$$g_0^{\mu\nu} = g^{\mu\nu} + \sum_{k=1}^{\infty} g^{(k)\mu\nu}g^{2k}$$

$$\bar{e}_0^{\mu} = \bar{e}^{\mu} + \sum_{k=1}^{\infty} \bar{e}^{(k)\mu}g^{2k}$$

$$C_0^{\mu\nu\sigma\tau} = C^{\mu\nu\sigma\tau} + \sum_{k=1}^{\infty} C^{(k)\mu\nu\sigma\tau}g^{2k}$$

$$\Lambda_0^{\mu\nu} = \Lambda^{\mu\nu} + \sum_{k=1}^{\infty} \Lambda^{(k)\mu\nu}g^{2k}$$ (30)

Again the coefficients in the various expansions exhibit poles at $n = 4$. Note that we are free to assume that $\det g_0^{\mu\nu} = \det g^{\mu\nu} = -1$. This implies that

$$g_{\mu\nu}g^{(1)\mu\nu} = 0.$$ (31)

5 Perturbative Calulations at One-loop

5.1 Renormalisation of Gauge Field Propagator

The vacuum polarisation tensor $\Sigma^{\mu\nu}_{ab}(q)$ determines the renormalisation properties of the (inverse) gluon propagator $\Delta^{\mu\nu}_{ab}(q)$. The (one-loop) diagrams that contribute to $i\Sigma^{\mu\nu}_{ab}(q)$ are shown in Fig 4 (see reference [23]). We have, to $O(g^2)$

$$\Delta^{\mu\nu}_{ab}(q) = \Delta^{\mu\nu}_{F0ab}(q) + i\Sigma^{\mu\nu}_{ab}(q).$$ (32)

Here the inverse Feynman propagator is expressed in terms of the bare parameters,

$$\Delta^{\mu\nu}_{F0ab}(q) = -i\delta_{ab} \left\{ (g_0^{\mu\nu} g_0^{\alpha\beta} - g_0^{\mu\beta} g_0^{\alpha\nu} + \Lambda_0^{\mu\nu} \Lambda_0^{\alpha\beta} - C_0^{\mu\nu\alpha\beta}) q_a q_\beta \right\}.$$ (33)

In principle the contributions to the vacuum polarisation are also computed from the appropriate Feynman diagrams using the bare parameters. However our calculation will be of $O(g^2)$ so we
need only use the lowest order expansions in eqs(30). This amounts to using the renormalised parameters in the vertices and propagators when computing $i\Sigma_{\alpha\beta}^{\mu\nu}(q)$. In addition the UV divergences of $i\Sigma_{\alpha\beta}^{\mu\nu}(q)$ occur only in the lowest terms in its Taylor expansion in q_α. On general grounds then we can exhibit the UV divergences to $O(g^2)$ by writing

$$i\Sigma_{\alpha\beta}^{\mu\nu}(q) = i\delta_{\alpha\beta} - \frac{g^2}{n - 4} W^{\mu\nu\beta} q_\alpha q_\beta + O(q^4),$$

(34)

where the $O(q^4)$ terms are UV-finite. The tensor $W^{\mu\nu\beta}$ has the same symmetry properties as the Riemann tensor. Hence, in a standard fashion, it can be expressed in the form

$$W^{\mu\nu\beta} = \left\{ \frac{1}{12} W(g^{\mu\nu} g^{\alpha\beta} - g^{\mu\beta} g^{\nu\alpha}) + \frac{1}{2} V^{\mu\nu} g^{\alpha\beta} + g^{\mu\nu} V^{\alpha\beta} - V^{\mu\beta} g^{\nu\alpha} - V^{\nu\beta} g^{\mu\alpha} - V^{\mu\nu} \right\},$$

(35)

where

$$W = W^{\alpha\beta} g_{\alpha\beta},$$
$$W^{\alpha\beta} = W^{\mu\nu\beta} g_{\mu\nu},$$
$$V^{\alpha\beta} = W^{\alpha\beta} - \frac{1}{4} W g^{\alpha\beta}.$$

(36)

We have also

$$V^{\mu\nu} g_{\alpha\beta} = 0,$$
$$V^{\mu\nu\beta} g_{\alpha\beta} = 0.$$

(37)

It follows that $V^{\mu\nu\beta}$, having the appropriate symmetries and trace properties, is a WLT. In equations (36) and (37) we have used the 4-D decomposition which is adequate when computing the residues of the pole at $n = 4$. The type of Lorentz symmetry breaking exhibited by the model can be specified by means of the Petrov classification of Weyl tensors. We will return to this point later.

From equations (29), (30) and (33) we see that

$$\Delta_{F\alpha\beta}^{\mu\nu}(q) = \Delta_{F\alpha\beta}^{\mu\nu}(q) + \delta\Delta_{F\alpha\beta}^{\mu\nu}(q),$$

(38)

where $\Delta_{F\alpha\beta}^{\mu\nu}(q)$ is obtained from $\Delta_{F\alpha\beta}^{\mu\nu}(q)$ by replacing the bare parameters with their renormalised versions and

$$\delta\Delta_{F\alpha\beta}^{\mu\nu}(q) = -\delta_{\alpha\beta} g^2 (g^{\alpha\beta} g^{\mu\nu} + g^{\mu\nu} g^{\alpha\beta} - g^{\mu\beta} g^{\nu\alpha} - g^{\nu\beta} g^{\mu\alpha} - V^{\mu\beta} g^{\nu\alpha} - V^{\nu\beta} g^{\mu\alpha} - V^{\mu\nu} g^{\alpha\beta}$$
$$+ \Lambda^{\alpha\beta} \Lambda^{\mu\nu} + \Lambda^{\mu\nu} \Lambda^{\alpha\beta} - \Lambda^{\mu\alpha} \Lambda^{\nu\beta} - \Lambda^{\nu\alpha} \Lambda^{\mu\beta}$$
$$- C^{(1)\mu\nu\beta}(q_\alpha q_\beta).$$

(39)

The renormalisation parameters are fixed by requiring that the renormalisation of $\Delta_{\alpha\beta}^{\mu\nu}(q)$ reduces to an overall multiplicative factor, that is

$$\Delta_{\alpha\beta}^{\mu\nu}(q) = \left(1 - \frac{1}{12} \frac{g^2}{n - 4} \right) \left(\Delta_{F\alpha\beta}^{\mu\nu}(q) + O(q^4)\right).$$

(40)

This is achieved by requiring that

$$g^{(1)\mu\nu} = \frac{1}{2} \frac{1}{n - 4} V^{\mu\nu},$$
$$\Lambda^{(1)\mu\nu} = \frac{1}{24} \frac{1}{n - 4} W \Lambda^{\mu\nu},$$
$$C^{(1)\mu\alpha\nu\beta} = \frac{1}{n - 4} \left(V^{\mu\alpha\nu\beta} - C^{\mu\alpha\nu\beta}\right).$$

(41)
Note that the results in equations (41) do imply that $g^{(1)\mu\nu}g_{\mu\nu} = 0$. Furthermore the renormalisation of $\Lambda_{0}^{\mu\nu}$ is multiplicative and involves the field renormalisation factor $Z^{1/2}$ where

$$Z^{1/2} = 1 + \frac{1}{24} \frac{g^{2}}{n-4} W. \quad (42)$$

This is not necessarily true of the metric renormalisation. For this reason it is conceptually convenient to distinguish the bare metric from the bare ghost metric. However at the level of one loop in perturbation theory it is possible and convenient to allow the two metrics to coincide. Higher order calculations may require the maintenance of the distinction, imposed order by order, between the two metrics.

5.2 Renormalisation of Quark Propagator

The renormalisation of the quark propagator $iS_{0}(p)$ proceeds along similar lines. We have

$$S_{0}^{-1}(p) = S_{F0}^{-1}(p) + \Sigma(p), \quad (43)$$

where

$$S_{F0}^{-1}(p) = \gamma_{0}^{\mu}p_{\mu} + m_{0}, \quad (44)$$

$$\tilde{\gamma}_{0}^{\mu} = \gamma^{a}\epsilon_{0}^{\mu}a \quad (45)$$

and γ^{a} are standard Dirac γ-matrices. The quark propagator is implicitly a unit operator in $SU(N)$ space. The self-energy amplitude $i\Sigma(p)$ can be calculated (at one loop) from the diagram in Fig 5 using the Feynman rules with renormalised parameters. The UV divergences can be exposed in the Taylor expansion

$$\Sigma(p) = \Sigma(0) + \Sigma^{\mu}(0)p_{\mu} + O(p^{2}), \quad (46)$$

where the contribution $O(p^{2})$ is finite at $n = 4$, and we have

$$\Sigma(0) = m g^{2} \frac{\sigma}{n-4}, \quad (47)$$

and

$$\Sigma^{\mu}(0) = \frac{g^{2}}{n-4} H_{\mu\nu} \tilde{\gamma}_{0}^{\nu}. \quad (48)$$

We write

$$H_{\mu\nu} = \frac{1}{n} H \delta_{\mu\nu} + h_{\mu\nu}, \quad (49)$$

where $h_{\mu\nu} = 0$. The term H determines the quark propagator renormalisation Z_{q}, while $h_{\mu\nu}$ fixes the counter-term in $\tilde{e}_{0}^{\mu}a$. More explicitly we have, taking account only of the poles at $n = 4$,

$$Z_{q} = 1 - \frac{1}{4} \frac{g^{2}}{n-4} H. \quad (50)$$

$$g^{2}b^{(1)} = \frac{g^{2}}{n-4} \sigma + \frac{1}{4} \frac{g^{2}}{n-4} H, \quad (51)$$

and

$$g^{2}\tilde{e}_{0}^{(1)} = \frac{g^{2}}{n-4} h_{\mu\nu} \tilde{e}_{0}^{\nu} = 0. \quad (52)$$

That is

$$g^{2}\tilde{e}_{0}^{(1)} = \frac{g^{2}}{n-4} h_{\mu\nu} \tilde{e}_{0}^{\nu} = 0, \quad (53)$$

implying that, to $O(g^{2})$

$$\tilde{g}_{0}^{\mu\nu} = \tilde{g}^{\mu\nu} - \frac{g^{2}}{n-4}(h_{\mu\rho} \tilde{g}^{\rho\nu} + h_{\nu\rho} \tilde{g}^{\rho\mu}). \quad (54)$$

8
5.3 Renormalisation of Coupling Constant

The coupling constant renormalisation is most easily followed by considering the quark-gluon vertex. The relevant diagrams are shown in Fig 6 and yield contributions to the truncated three-point function that render it finite after appropriate field renormalisations. We can anticipate the nature of the divergences by examining the bare vertex

\[V^\mu_0 a = ig_0 \bar{\gamma}^\mu_0 t_a. \]

From eqs (29) and (30) we have

\[V^\mu_0 a = ig_0 \bar{\gamma}^\mu_0 t_a = \frac{i}{2} \left(1 + g^2 g^{(1)} \right) \delta^\mu_\nu - \frac{g^2}{n-4} h^\mu_\nu \bar{\gamma}^\nu t_a. \]

That is

\[V^\mu_0 a = i \frac{\left(4 - n \right)}{2} g \left(1 + g^2 g^{(1)} \right) \delta^\mu_\nu - \frac{g^2}{n-4} h^\mu_\nu \bar{\gamma}^\nu t_a. \]

The point we make here is that the renormalisation of the quark vierbein enters into the vertex calculation and the contribution \(V^\mu_0 a(p, p') \) to the three point function from the diagrams in Fig 6 must be consistent with this. We can expect then that \(V^\mu_0 a(p, p') \) will (at zero external momenta) have the form

\[V^\mu_0 a(0, 0) = i \frac{\left(4 - n \right)}{2} g \left(1 + g^2 g^{(1)} \right) \delta^\mu_\nu - \frac{g^2}{n-4} h^\mu_\nu \bar{\gamma}^\nu t_a. \]

This will be verified in particular calculations. The truncated three point function \(V^{(3)}_a(p, p') \) will, at zero external momentum, satisfy

\[V^{(3)}_a(p, p') = i \frac{\left(4 - n \right)}{2} g \left(1 + g^2 g^{(1)} \right) \delta^\mu_\nu - \frac{g^2}{n-4} h^\mu_\nu \bar{\gamma}^\nu t_a. \]

Finally \(g^{(1)} \) is determined by requiring that the right side of this equation is rendered finite by extracting the field renormalisation factors \(Z^{-1} Z^{-1/2} \), implying

\[g^2 g^{(1)} = \frac{g^2}{n-4} \left(\frac{1}{4} H - \frac{1}{24} W - K \right). \]

We will look at this in more detail when evaluating the vertex in the special case of LSV we consider below.

6 Renormalisation Group

From the results in section 5 we can obtain the renormalisation group equations for the renormalised parameters to lowest non-trivial order in the coupling constant \(g \). These are derived from the requirement that the bare parameters are independent of the renormalisation scale \(\mu \). For the coupling constant we have

\[\mu \frac{\partial}{\partial \mu} g_0 = 0. \]

From eq(57) we then obtain the renormalisation group \(\beta \)-function

\[\beta(\mu) = g \mu \frac{\partial}{\partial \mu} g = -(2 - n/2) g - g^3 \left(\frac{1}{4} H - \frac{1}{24} W - K \right). \]

Note that in deriving eq(61) from eq(60) we have ignored derivatives of \(H, W \) and \(K \) since they are of \(O(g^2) \) and may, and indeed must, be ignored at one loop. Of course the first term on the right of eq(61) vanishes in four dimensions.

Following the same principles we obtain for the gluon metric

\[\frac{\partial}{\partial \mu} g^{\alpha \beta} = -\frac{1}{2} g^2 V^{\alpha \beta}, \]

9
\[\mu \frac{\partial}{\partial \mu} \bar{g}^{\alpha \beta} = g^2 (h^{\alpha \rho} \bar{g}^{\rho \beta} + h^{\beta \rho} \bar{g}^{\rho \alpha}). \] (63)

We obtain also for the renormalised mass
\[\mu \frac{\partial m}{\partial \mu} = -mg^2 (\sigma + \frac{1}{4}H). \] (64)

The renormalisation scheme set out here can be applied to LSV associated with a WLT of any of the Petrov classes. However even at one loop the calculations are rather complex. Partly then for reasons of simplicity we restrict attention in this paper to models in Petrov class O. The results nevertheless remain interesting.

7 Renormalisation for Petrov Class O

As explained above, in the case of Petrov class O, the LSV is due entirely to the difference between the light-cone associated with the gluons and that associated with the quark field. That is, we are assuming that the tensor \(C^{\mu \nu \sigma \tau} \) vanishes. This is possible if there is a reference frame in which rotational invariance holds simultaneously for both metrics. Given the symmetry properties of \(C^{\mu \nu \sigma \tau} \) it is consistent with this rotational invariance only if it is null. Similar remarks apply to situations where the preserved subgroup of the Lorentz group, in a suitable frame, leaves invariant either a purely space-like or light-like vector. We will concentrate on the rotationally invariant case. We have for the gluon metric
\[g^{\mu \nu} = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & -\beta & 0 & 0 \\ 0 & 0 & -\beta & 0 \\ 0 & 0 & 0 & -\beta \end{pmatrix}, \] (65)
and for the quark metric
\[\bar{g}^{\mu \nu} = \begin{pmatrix} \bar{\alpha} & 0 & 0 & 0 \\ 0 & -\bar{\beta} & 0 & 0 \\ 0 & 0 & -\bar{\beta} & 0 \\ 0 & 0 & 0 & -\bar{\beta} \end{pmatrix}, \] (66)
We assume that
\[\alpha \beta^3 = \bar{\alpha} \bar{\beta}^3 = 1, \] (67)
so that \(\det g^{\mu \nu} = \det \bar{g}^{\mu \nu} = -1 \). We have similar forms for the bare metrics \(g_0^{\mu \nu} \) and \(\bar{g}_0^{\mu \nu} \) in terms of the bare parameters \((\alpha_0, \beta_0)\) and \((\bar{\alpha}_0, \bar{\beta}_0)\) which have appropriate expansions in powers of the renormalised coupling. That is
\[\alpha_0 = \alpha + \frac{g^2}{n-4} \alpha^{(1)} + \ldots, \] (68)

We have similar expansions for the other bare parameters. It is convenient to relate the two metrics by setting \(\bar{\alpha} = a \alpha \) and \(\bar{\beta} = b \beta \) with the consequence that \(ab^3 = 1 \). Similar remarks hold in an obvious way for bare parameters \(a_0 \) and \(b_0 \). The significance then of \(b \) is that in a coordinate frame in which the gluon metric is diagonal with entries \((1, -1, -1, -1)\) the quarks have a lightcone associated with a velocity \(c_q = b^2 \). At appropriately high energies we would expect that when \(b > 1 \) the quarks travel faster than the gluons and slower when \(b < 1 \).

7.1 Vacuum Polarisation for Petrov Class O

In order to carry out the renormalisation process we assume the renormalised gauge metric satisfies (to one loop order) \(\Lambda^{\mu \nu} = g^{\mu \nu} \). The vanishing of \(C^{\mu \nu \sigma \tau} \) then yields for the renormalised gluon propagator
\[M_{\mu \nu}(q) = \frac{g_{\mu \nu}}{q^2}. \] (69)
Figure 4: Contributions to vacuum polarisation from (i) gluons, (ii) ghosts, (iii) quarks and (iv) gluon loop.

The vertex factors, as mentioned above, acquire standard form for the gauge theory without (at this stage) any LSV. We can therefore use the discussion of non-abelian gauge theories in reference [23] to evaluate the contributions from the diagrams in Fig 4(i), Fig 4(ii) and Fig 4(iv) to obtain the gauge field contribution to the UV divergence at one loop as

$$i\Sigma^{(g)\mu\nu}(q) = -\frac{10}{3} C_2(G) \frac{i g^2}{(4\pi)^2} \delta_{ab}(g^{\mu\nu}g^{\alpha\beta} - g^{\mu\beta}g^{\alpha\nu}) q_\alpha q_\beta \frac{1}{n-4}, \quad (70)$$

where $C_2(G)$ is the value of the quadratic Casimir operator in the adjoint representation of $SU(N)$. As explained in reference [23] the diagram in Fig 4(iv) does not contribute to this pole residue. In a similar way, we can use the results in reference [23] to evaluate the quark contribution to the vacuum polarisation from Fig 4(iii) provided we use $\bar{g}^{\mu\nu}$ as the appropriate metric. The result is

$$i\Sigma^{(q)\mu\nu}(q) = 4 \frac{3}{(4\pi)^2} \frac{g^2}{2} \delta_{ab}(\bar{g}^{\mu\nu}\bar{g}^{\alpha\beta} - \bar{g}^{\mu\beta}\bar{g}^{\alpha\nu}) \frac{1}{n-4}. \quad (71)$$

From eq(36) we see that contribution to the tensor $W^{\mu\alpha\nu\beta}$ from the gluon field term is

$$W^{(g)\mu\alpha\nu\beta} = -\frac{1}{(4\pi)^2} \frac{10}{3} C_2(G)(g^{\mu\nu}g^{\alpha\beta} - g^{\mu\beta}g^{\alpha\nu}), \quad (72)$$

and

$$W^{(g)} = -\frac{40}{(4\pi)^2} C_2(G). \quad (73)$$

It is immediately obvious $V^{(g)\mu\nu}$ vanishes as does $V^{(g)\mu\alpha\nu\beta}$. From the quark field term we have

$$W^{(q)\mu\alpha\nu\beta} = \frac{1}{(4\pi)^2} \frac{4}{3} (\bar{g}^{\mu\nu}\bar{g}^{\alpha\beta} - \bar{g}^{\mu\beta}\bar{g}^{\alpha\nu}). \quad (74)$$

We have then

$$W^{(q)} = \frac{8}{(4\pi)^2} \frac{\bar{\beta}}{\bar{\alpha}} \left(\frac{\bar{\alpha}}{\bar{\beta}} + \frac{\bar{\beta}}{\bar{\alpha}} \right) = \frac{8}{(4\pi)^2} b(a + b), \quad (75)$$

and

$$V^{(q)\alpha\beta} = \frac{2}{(4\pi)^2} b(a - b) \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta/3 & 0 & 0 \\ 0 & 0 & \beta/3 & 0 \\ 0 & 0 & 0 & \beta/3 \end{pmatrix}. \quad (76)$$

It follows that

$$W = W^{(g)} + W^{(q)} = \frac{8}{(4\pi)^2} b(a + b) - 15 C_2(G). \quad (77)$$

Of course

$$V^{\mu\nu} = V^{(q)\mu\nu}. \quad (78)$$

Finally then from eqs(41) and (78) we have

$$\alpha^{(1)} = \frac{1}{(4\pi)^2} \frac{1}{n-4} b(a - b) \alpha = \frac{1}{(4\pi)^2} \frac{1}{n-4} \left(\frac{1}{b^2} - b^2 \right) \alpha, \quad (79)$$
that is

$$\alpha_0 = \alpha \left(1 + \frac{g^2}{(4\pi)^2} \frac{1}{n-4} \left(\frac{1}{b^2} - b^2 \right) \right),$$ \hspace{1cm} (80)

and

$$\beta_0 = \beta \left(1 - \frac{1}{3} \frac{g^2}{(4\pi)^2} \frac{1}{n-4} \left(\frac{1}{b^2} - b^2 \right) \right).$$ \hspace{1cm} (81)

In the limit of Lorentz invariance $a = b = 1$ and we have $\alpha_0 = \alpha$ and $\beta_0 = \beta$. The field renormalisation factor is

$$Z^{1/2} = 1 + \frac{1}{3} \frac{g^2}{(4\pi)^2} \frac{1}{n-4} \left(\frac{1}{b^2} + b^2 \right) - 5C_2(G).$$ \hspace{1cm} (82)

7.2 Quark Self-Energy for Petrov Class O

The results for the calculations in the previous section, because each term involves only a single metric, can be read off from standard results (see reference [23]). However the one loop self-energy correction to the quark propagator is obtained from the Feynman rules applied to the diagram in Fig 5. Both metrics are involved. A possible conflict with causality might be anticipated. This possibility has been discussed previously and the conclusion is that in the present case there is no difficulty, as is confirmed directly in the calculations [25, 7, 1, 2, 3]. We have then

$$i \Sigma(p) = -g^2 C_2(N) \int \frac{d^n k}{(2\pi)^n} \frac{1}{\gamma^\alpha (p+k)_\alpha - m} \gamma^\mu g_{\mu\nu} k^2.$$ \hspace{1cm} (83)

We require

$$i \Sigma(0) = -g^2 C_2(N) \int \frac{d^n k}{(2\pi)^n} \frac{1}{\gamma^\alpha k^\alpha - m} \gamma^\mu g_{\mu\nu} k^2,$$ \hspace{1cm} (84)

and

$$\frac{\partial}{\partial p^\lambda} i \Sigma(p)|_{p=0} = i \Sigma^\lambda (0) = g^2 C_2(N) \int \frac{d^n k}{(2\pi)^n} \frac{1}{\gamma^\alpha k^\alpha - m} \gamma^\lambda \frac{1}{\gamma^\beta k^\beta - m} \gamma^\mu g_{\mu\nu} k^2.$$ \hspace{1cm} (85)

The evaluation of these terms is along the same lines as the corresponding calculation for QED in [7]. We find for the UV poles at $n = 4$,

$$i \Sigma(0) = im \frac{4g^2}{(4\pi)^2} C_2(N) \frac{1}{n-4} \frac{a+3b}{\sqrt{a+b}},$$ \hspace{1cm} (86)

with the result

$$\sigma = \frac{4}{(4\pi)^2} C_2(N) \frac{1+3b^4}{b^2(1+b^2)}.$$ \hspace{1cm} (87)

We have also

$$i \Sigma^0(0) = i \frac{4g^2}{(4\pi)^2} C_2(N) \frac{1}{n-4} \frac{a-3b}{(\sqrt{a} + \sqrt{b})^2} \gamma^0,$$ \hspace{1cm} (88)

$$i \Sigma^j(0) = -i \frac{4}{3} \frac{g^2}{(4\pi)^2} C_2(N) \frac{1}{n-4} \frac{(a+b)(2\sqrt{a+b})}{\sqrt{b}(\sqrt{a} + \sqrt{b})^2} \gamma^j.$$ \hspace{1cm} (89)
Using $a = b^{-3}$ we find for the mass renormalisation
\[b^{(1)} = -\frac{4}{(4\pi)^2} C_2(N) \frac{1}{n - 4} \frac{1 + 3b^4}{b^2(1 + b^2)}. \]
(90)

We find also
\[H = -\frac{4}{(4\pi)^2} C_2(N) \frac{2(1 - b^2 + 2b^4)}{b^2(1 + b^2)}, \]
(91)

and
\[h^\lambda_{\rho} = \frac{4}{(4\pi)^2} C_2(N) \frac{(1 - b^2)(1 + 3b^2 + 4b^4)}{2b^2(1 + b^2)^2} T^\lambda_{\rho}. \]
(92)

Here T^λ_{ρ} is a traceless diagonal matrix with entries $(1, -1/3, -1/3, -1/3)$. It then follows that
\[\bar{\beta}_0 = \beta \left(1 + \frac{4g^2}{3(4\pi)^2} C_2(N) \frac{1}{n - 4} \frac{(1 - b^2)(1 + 3b^2 + 4b^4)}{b^2(1 + b^2)^2} \right). \]
(93)

Combining this with eq(81) we obtain
\[b_0 = b \left(1 + \frac{g^2}{3(4\pi)^2} \frac{1}{n - 4} \frac{(1 - b^2)}{b^2} \left[(1 + b^2) + 4C_2(N) \frac{(1 + 3b^2 + 4b^4)}{(1 + b^2)^2} \right] \right). \]
(94)

7.3 Coupling Constant Renormalisation for Petrov Class O

The one loop diagrams in Fig 6 yield the coupling constant renormalisation. For the computation of the UV pole divergence it is sufficient to calculate the vertex with $p = p' = 0$. From the first diagram we obtain
\[\mathcal{V}_a^{\lambda}(0, 0) = g^3 t_a t_b g_{\mu
u} I^{\mu\lambda\nu}, \]
(95)

where
\[I^{\mu\lambda\nu} = \int \frac{d^m k}{(2\pi)^n} \bar{\gamma}^{\mu} \frac{1}{\bar{\gamma}^\alpha} \frac{1}{\bar{\gamma}^\beta} \frac{1}{\bar{\gamma}^\nu} \frac{1}{k^2}. \]
(96)

On omitting terms that do not contribute to the UV divergence we have
\[I^{\mu\lambda\nu} = \bar{\gamma}^{\mu} \bar{\gamma}^\alpha \bar{\gamma}^\lambda \bar{\gamma}^\beta \bar{\gamma}^\nu T_{\alpha\beta}, \]
(97)

then
\[T_{\alpha\beta} = \int \frac{d^m k}{(2\pi)^n} \frac{k_\alpha k_\beta}{(\bar{\theta}^{\alpha'} \beta' k_\alpha k_\beta - m^2)^2 k^2}. \]
(98)

The result using $t_a t_b t_b = (C_2(N) - C_2(G)/2) t_a$ and $ab^3 = 1$ is
\[\mathcal{V}_a^0(0, 0) = 4 \frac{ig^3}{(4\pi)^2} \frac{1}{n - 4} \frac{(C_2(N) - C_2(G)/2)}{b^2(1 + b^2)^2} t_a \bar{\gamma}^0. \]
(99)

We have also
\[\mathcal{V}_a^j(0, 0) = -\frac{4}{3} \frac{ig^3}{(4\pi)^2} \frac{1}{n - 4} \frac{(C_2(N) - C_2(G)/2)}{b^2(1 + b^2)^2} t_a \bar{\gamma}^j. \]
(100)
In the case of the second diagram we note that in the limit of zero external momenta the internal three-gluon vertex reduces to

\[V_{abc}^{\lambda\mu\nu} = -g f_{abc} k_\rho (U^{\rho\lambda\mu} - U^{\rho\mu\lambda}) = -g f_{abc} k_\rho (2g^{\rho\lambda} g^{\mu\nu} - g^{\rho\mu} g^{\nu\lambda} - g^{\rho\nu} g^{\mu\lambda}). \] (101)

The contribution to the vertex becomes

\[V_a^0(0,0) = -\frac{1}{2} g^2 t_\alpha \tilde{T}_\alpha^0, \] (102)

where

\[\tilde{T}_\alpha^0 = \int \frac{d^4k}{(2\pi)^4} \frac{k_\alpha k_\rho}{[g^\alpha/ g^\beta / k_\alpha / k_\beta^\prime - m^2](k^2)^2}. \] (103)

We have again omitted terms that do not contribute to the UV pole at \(n = 4 \). The tensor \(\tilde{T}_\alpha^0 \) is closely related to \(T_\alpha^0 \) in eq(98). Finally we have the contributions

\[V_a^0(0,0) = -4 \frac{g^3}{(4\pi)^2} C_2(G) \frac{1}{n-4} \frac{b^2(1 + 2b^2)}{(1 + b^2)^2} t_\alpha \tilde{T}_\alpha^0, \] (104)

and

\[V_a^0(0,0) = -4 \frac{g^3}{3(4\pi)^2} C_2(G) \frac{1}{n-4} \frac{1 + 2b^2 + 4b^4 + 2b^6}{b^2(1 + b^2)^2} t_\alpha \tilde{T}_\alpha^0. \] (105)

Combining the two sets of results we obtain

\[V_a^\lambda(0,0) = 4 \frac{g^3}{(4\pi)^2} \frac{1}{n-4} t_\alpha \tilde{T}_\alpha^0 \left(C_2(N) \frac{1 - 3b^4}{(1 + b^2)^2} - \frac{1}{2} C_2(G) \right). \] (106)

and

\[V_a^\lambda(0,0) = -4 \frac{g^3}{3(4\pi)^2} \frac{1}{n-4} t_\alpha \tilde{T}_\alpha^0 \left(C_2(N) \frac{(1 + b^2)(2 + b^2)}{b^2(1 + b^2)^2} + \frac{3}{2} C_2(G) \right). \] (107)

This leads to

\[V_a^\lambda(0,0) = 4 \frac{g^3}{(4\pi)^2} \frac{1}{n-4} t_\alpha R^\lambda \tilde{T}_\alpha^0, \] (108)

where

\[R^\lambda \tilde{T}_\alpha^0 = -\frac{1}{2} \left(C_2(N) \frac{1 - b^2 + 2b^4}{b^2(1 + b^2)} + C_2(G) \right) \delta_\alpha^\lambda + \frac{1}{2} C_2(N) \frac{(1 - b^2)(1 + 3b^2 + 4b^4)}{b^2(1 + b^2)^2} T^\lambda \tilde{T}_\alpha^0. \] (109)

As expected from eq(56) the second contribution to \(R^\lambda \tilde{T}_\alpha^0 \) yields the correct term \(\propto \lambda h^\lambda \tilde{T}_\alpha^0 \). The bare coupling and the one loop correction yields

\[V_a^\lambda(0,0) + V_a^\lambda(0,0) = i g^{(4-n)/2} \left(1 + g^{(1)} g^2 \right) - \frac{g^2}{(4\pi)^2} \frac{1}{n-4} \frac{1}{2} \left(C_2(N) \frac{1 - b^2 + 2b^4}{b^2(1 + b^2)} + C_2(G) \right) t_\alpha \tilde{T}_\alpha^0. \] (110)

Thus from eq(59) we find that

\[K = -\frac{2}{(4\pi)^2} \left(C_2(N) \frac{1 - b^2 + 2b^4}{b^2(1 + b^2)} + C_2(G) \right). \] (111)

The remaining UV divergences, as shown in eq(59), are removed by appropriate field renormalisation factors and then finally by the pole in the coupling constant expansion. We have then from eq(110) the result for the \(\beta \)-function for the renormalised coupling

\[\beta(g) = -(2 - n/2) - \frac{g^2}{(4\pi)^2} \left(\frac{11}{3} C_2(G) - \frac{1}{3} \left(\frac{1}{b^2} + b^2 \right) \right). \] (112)

Obviously the first term vanishes in four dimensions. The second term reduces to the standard answer when \(b = 1 \) and there is no Lorentz symmetry breaking.
7.4 Renormalisation Group for Petrov class O

In four dimensions then, the important renormalisation group equations are for \(g \) and \(b \). They take the form

\[
\frac{\mu \partial g}{\partial \mu} = -\frac{g^3}{(4\pi)^2} \left(\frac{11}{3} C_2(G) - \frac{1}{3} \left(\frac{1}{b^2} + b^2 \right) \right), \tag{113}
\]

and

\[
\frac{\mu \partial b}{\partial \mu} = -\frac{1}{3} \frac{g^2}{(4\pi)^2} \frac{1 - b^2}{b^2} \left(1 + b^2 + 4C_2(N) \frac{1 + 3b^2 + 4b^4}{(1 + b^2)^2} \right). \tag{114}
\]

In general the two variables influence one another as they evolve along the RG trajectory. However some points in \((g,b)\)-space are particularly significant. The Lorentz invariant situation \(b = 1 \) is stable and is maintained under the RG. The coupling constant \(g \) then runs to zero, its fixed point, in the standard way as \(\mu \) rises to infinity. The rate at which \(g \) drops is the result of a competition between the contributions of the gauge field and the quark field to the vacuum polarisation. When we explore values of \(b \neq 1 \) we see that the effect of the quark field is enhanced with the result that \(\beta(g) \) vanishes when \(b \) satisfies

\[
11C_2(G) - \frac{1}{b^2} - b^2 = 0. \tag{115}
\]

That is

\[
b = b_{\pm} = \left(\frac{1}{2} (R \pm \sqrt{R^2 - 4}) \right)^{1/2}, \tag{116}
\]

where \(R = 11C_2(G) \). On these two lines \(\partial b / \partial \mu \) remains non-vanishing. The RG trajectories cross the lines and at the crossing point the coupling constant attains a minimum value. It increases again as the scaling energy \(\mu \) continues to increase.

If we modify the model so that it contains \(n_f \) quarks, all sharing the same metric, then eq(113) becomes

\[
\frac{\mu \partial g}{\partial \mu} = -\frac{g^3}{(4\pi)^2} \left(\frac{11}{3} C_2(G) - \frac{n_f}{3} \left(\frac{1}{b^2} + b^2 \right) \right), \tag{117}
\]

Eq(114) remains unchanged. The minimum of \(g \) occurs when

\[
11C_2(G) - n_f \frac{1}{b^2} + b^2 = 0, \tag{118}
\]

that is when \(b = b_{\pm} \) where now \(R = 11C_2(G)/n_f \).

The RG equation for the quark mass is obtained from eq(64) and eq(87). It is

\[
\frac{\mu \partial m}{\partial \mu} = -2m \frac{g^2}{(4\pi)^2} C_2(N) \frac{1 + b^2 + 4b^4}{b^2(1 + b^2)}. \tag{119}
\]

8 Discussion

The behaviour of the RG trajectory described above shows that a frustration of asymptotic freedom can arise in the presence of LSV, at least in this model. The question arises as to whether it might be observable experimentally. There are several issues to be considered, for example the relationship of the lab frame to the gluon frame used in the above discussion. We set this matter provisionally aside, though it must ultimately be resolved, and assume that the lab frame is travelling slowly relative to the gluon frame. More significant is the size of the energy range implicit in the model. We introduce an initial energy \(M_I \) and associated LSV parameter \(b_I \), QCD coupling \(\alpha = \alpha_S(M_I) \) and the energy \(M_{\text{min}} \) at which the coupling reaches its minimum value.

In a gesture towards "reality" we consider the case \(SU(3) \) gauge theory, where \(C_2(G) = 3 \) and \(C_2(3) = 4/3 \) [23] with \(n_f = 6 \) quarks. In this case \(b_+ = 2.3947 \) and \(b_- = 0.4339 \). The light cone of the quarks in the gluon frame at minimum coupling is \(c_q = b_+^2 = 5.311 \) for LSV with
\[S = \frac{g^2}{4\pi} \]

Figure 7: The RG-trajectories for SU(3) with \(n_f = 6 \) starting at \(\alpha_S = 0.1 \). The initial values of \(b \) are (i) 1.025, (ii) 1.0125, (iii) 1.00625, (iv) 0.99375. The horizontal line is at \(b = b_+ = 2.3047 \)

\(b > 1 \) and \(c_q = b^2 = 0.1882 \) for LSV with \(b < 1 \). These values for \(c_q \) represent rather severe LSV.

In order that our asymptotic calculation be relevant we must assume \(M_I \) is sufficiently large and in particular is greater than the top quark mass, that is 173 GeV. In this energy regime there is no easy way to relate our calculation to low energy determinations of \(\alpha_S(\mu) \). The story of the running coupling and its relationship to low energy phenomena and \(\Lambda_{QCD} \) is complicated. It is comprehensively reviewed in [26]. An important point is the subtraction scheme used to obtain finite results for physical quantities. We are using the minimal subtraction (\(\overline{MS} \)) scheme [24]. More widely used is the \(\overline{MS} \) scheme introduced in [27] to improve convergence. In that scheme the strong coupling has an evaluation \(\alpha_S(M_Z \approx 90 \text{GeV}) \approx 0.12 \). On the grounds that our calculation is exploratory we feel justified in neglecting the difference in subtraction schemes and propose \(\alpha_S(M_I) = 0.1 \) when \(M_I = 10^2 - 10^3 \text{GeV} \). The qualitative nature of the results is not altered by (relatively) small changes in our initial conditions.

With these initial conditions the results for examples of the renormalisation trajectory, obtained by numerical integration (2nd order Runge-Kutta) of eq(117) and eq(114) are shown in Fig 7. Obviously the closer the initial value \(b_I \) is to unity the closer the renormalisation group trajectory stays near the Lorentz symmetry line and the later it breaks away, heading for its minimum value. These results are illustrated in Fig 8 which shows the connection between \(\log_{10}(M_{\text{min}}/M_I) \) and \(b_I \). The smooth curve is obtained by fitting the rightmost point on the plot. Even for this implausibly high value \(b_I = 1.1 \) at our initial energy scale \(M_I = 10^2 \text{GeV} \) we still find \(M_{\text{min}} \approx 10^{25} M_I \). Tuning \(b_I \) down to potentially more realistic values results in yet greater disparities in the orders of magnitude of \(M_{\text{min}} \) and experimentally attainable values for \(M_I \). The conclusion must therefore be that for \(QCD \) with the known set of quarks there is little hope of observing any of the frustration of asymptotic freedom in accelerator experiments.

However the complex asymptotic behaviour that we encounter in this model may have relevance to very high energy processes at very early times in the initiating big bang of the universe. In view of the fact that the energy range associated with frustration of asymptotic freedom appears to lie well above the Planck mass \((M_P \approx 10^{19} \text{GeV}) \) where gravitational effects must become important, one might question its physical relevance. However it may also be possible and would certainly be interesting to relate the behaviour of \(\alpha_S(M) \) when \(M \approx M_P \) to models of quantum gravity constructed with appropriate running LSV parameters [28, 29].

These considerations do not preclude the possibility of discovering LSV effects in an energy range for which \(b \) remains close to unity. For example if we set \(b = 1 + x \) and assume \(x \) is small
then to lowest order in x eq(117) and eq(114) become

\[\mu \frac{\partial g}{\partial \mu} = -A \frac{g^3}{(4\pi)^2}, \]

(120)

\[\mu \frac{\partial x}{\partial \mu} = B \frac{g^2}{(4\pi)^2} x, \]

(121)

where $A = (11C_2(G) - 2n_f)/3$ and $B = 4(1 + 4C_2(N))/3$. In this approximation

\[\alpha_S(E) = \alpha_I \left(1 + \frac{7\alpha_I}{4\pi} \log \frac{E}{M_I} \right)^{-1}. \]

(122)

the RG trajectories have the form

\[b = 1 + x_I (\alpha_S/\alpha_I)^{-\kappa}, \]

(123)

where x_I is the initial value of x and $\kappa = -B/2A$. Eq(123) exhibits the instability at the fixed point $(\alpha_S, b) = (0, 1)$. Depending on the sign selected for x_I, b will either rise or fall from unity as α_S approaches zero. With our choice of parameters we have $A = 7$ and $B = 8.4444$ with the result $\kappa = 0.6031$. The dependence of x on α_S is therefore relatively weak. When α_S decreases by an order of magnitude x only increases by a factor of roughly 4. A similar approximation for the renormalised mass m yields

\[\frac{m}{m_I} = \left(\frac{\alpha_S}{\alpha_I} \right)^{\tau}, \]

(124)

where $\tau = 0.762$. In the asymptotic energy range then, the renormalised mass reduces, also relatively slowly, with a power of the renormalised coupling. If effective methods were developed for computing the structure and scattering of high energy particles in the model (see references [30, 31] for related discussions in QED and the Standard Model Extension) then possibly it could provide guidance for accelerator experiments and cosmic ray detectors investigating LSV phenomena in a high energy regime of PeV and beyond. For example, if we take (intuitively) the quark metric, diag($a, -b - b - b$), as determining the dispersion relation for quark based states, it would become for a particle with mass m, energy E and momentum P

\[aE^2 - bP^2 = m^2c^4. \]

(125)

Combining the above results we find for the velocity of quark based particles

\[v = \frac{dE}{dp} = \frac{p}{E} \left(1 + Dx_I - F\frac{m_I^2}{E^2} \right), \]

(126)

where

\[D = 4 \left(\frac{\alpha_S}{\alpha_I} \right)^{-\kappa} + \frac{14\kappa\alpha_I}{4\pi} \left(\frac{\alpha_S}{\alpha_I} \right)^{1-\kappa}, \]

(127)

and

\[F = \frac{7\alpha_I}{4\pi} \left(\frac{\alpha_S}{\alpha_I} \right)^{2\tau+1} \left(\tau + 7(\tau - \kappa)x_I \left(\frac{\alpha_S}{\alpha_I} \right)^{-\kappa} \right). \]

(128)

The point here being that the coefficients in the dispersion relation depend only on α_S/α_I and therefore vary only logarithmically with the energy E. The outcome for the velocity of quark based particles shown in eq(126). Omitting all terms $O(\alpha_I)$ that decrease logarithmically, we are left with the simple result

\[v \simeq \frac{p}{E} \left(1 + 4x_I \left(\frac{\alpha_S}{\alpha_I} \right)^{-\kappa} \right) \]

(129)
This is qualitatively different from LSV originating in higher derivative contributions to the QCD Lagrangian [32, 33] or spacetime foam models [34, 35]. These are parametrised by large mass scales and suggest powerlaw increases in energy. In our case eq(129) suggests a slow logarithmic increase that we might expect to be more difficult to detect. However were LSV to have been detected the suggested energy dependence would distinguish this QCD model from such higher derivative models.

9 Conclusions

We have studied an $SU(N)$ QCD model with quarks in the fundamental representation and formulated the perturbation series to one loop with no restriction on the magnitude of the Lorentz symmetry breaking. In the particular case we studied the LSV was due entirely to a mismatch between the lightcones of the quarks and gluons. This is a consistent possibility if the lightcones are generated by two metrics that are both invariant under the same subgroup of the Lorentz group that leaves a 4-vector, time-like in both metrics, invariant, a rotation group in fact. Similar results can be obtained with space-like and light-like vectors.

The renormalisation group equation for the coupling constant α_S and the LSV parameter b was obtained with the result, exhibited in Fig7, that initially α_S decreases with energy just as in the standard Lorentz symmetric case. However b departs from unity increasingly with energy and this enhances the contribution of the quark vacuum polarisation to the β-function for α_S. The outcome is that at sufficiently high energy α_S ceases to decrease, reaches a minimum and then increases again with energy. This constitutes the frustration of asymptotic freedom in QCD with LSV of the kind we have investigated. We suggest plausible values for the energy range $E > M_I$ we are investigating and the associated initial value α_I for the strong coupling. The outcome is that the frustration part of the RG trajectory for (α_S, b) is at energies many orders of magnitude greater than is accessible to accelerator experiments. It is well above the Planck mass. However it is possible that part of the RG trajectory lying near the Lorentz symmetry line $b = 1$ might be attainable in accelerator or cosmic ray observations. The effect on the dispersion relation of particles is through powers of α_S and hence is logarithmic in character and represents a kind of intrinsic LSV rather than one parametrised by higher derivative contributions to the Lagrangian.

There are many variations of the model that might be investigated such as increasing the
number of quarks, varying the quark metrics in ways that induce more complex LSV associated with higher Petrov classes. Of course one should also consider how these results relate to the full structure of the Standard Model and its extensions. Finally it is worth noting that in the context of relatively weak LSV it may be possible to pursue a nonperturbative investigation of our model using the techniques of lattice QCD.

Acknowledgements

This work has been partially supported by STFC consolidated grant ST/P000681/1. I am grateful to R. R. Horgan for discussions concerning the potential relevance of lattice field theory calculations to evaluating LSV in gauge theories.

References

[1] M Schreck. Quantum field theory based on birefringent modified Maxwell theory. *Phys. Rev. D*, **89**:085013, 2014.

[2] F R Klinkhammer and M Schreck. Consistency of isotropic modified Maxwell theory: Microcausality and unitarity. *Nucl. Phys. B*, 848:90–107, 2011.

[3] F R Klinkhammer and M Schreck. Models for low energy Lorentz violation in the photon sector. *Nucl. Phys. B*, 856:666–669, 2012SCHR.

[4] D. Collady and V. A. Kostalecký. Lorentz-violating extension of the standard model. *Phys. Rev. D*, **58**:116002, 1998.

[5] C. D. Lane, V. A. Kostelecký and A. G. M. Pickering. One-loop renormalization of Lorentz-violating electrodynamics. *Phys. Rev. D*, **65**:056006, 2002.

[6] R. Potting, M. Cambiaso, R. Lehnert. Asymptotic states and renormalisation in Lorentz-violating quantum field theory. *Phys. Rev. D*, **90**:065003, 2014.

[7] I. T. Drummond. Bimetric QED. *Phys. Rev. D*, **95**:025006, 2017.

[8] I. T. Drummond. Lorentz symmetry breaking and causality. *J. Phys.: Conf. Ser.*, **952**:012001, 2018.

[9] Y. Itin. On light propagation in premetric electrodynamics. *J. Phys. A: Math. Theor.*, **42**:475402, 2009.

[10] F. A. Asenjo, C. Erices, A. Gomberoff, S. A. Hojman and A. Montecinos. Differential geometry approach to asymmetric transmission of light. *Optics Express*, **25**:26405, 2017.

[11] H. B. Nielsen and M. Ninomiya. β-function in a non-covariant Yang-Mills theory. *Nucl. Phys. B*, **141**:153, 1978.

[12] H. B. Nielsen and I. Picek. Lorentz non-invariance. *Nucl. Phys. B*, **211**:269, 1983.

[13] S. Chada and H. B. Nielsen. Lorentz invariance as a low energy phenomenon. *Nucl. Phys. B*, **217**:125, 1983.

[14] A. J. G. Carvalho, D. R. Granado, J. R. Nascimento and A. Y. Petrov. Non-Abelian aether-like term in four dimensions. arXiv:1908.04873 [hep-th].

[15] D. J. Gross and F. Wilcek. Ultraviolet behavior of non-abelian gauge theories. *Phys. Rev. Lett.*, **30**:1343, 1973.

[16] H. D. Politzer. Reliable perturbative results for strong interactions. *Phys. Rev. Lett.*, **30**:1346, 1973.

[17] A. R. Vieira and N. Sherrill. Lorentz-violating running of coupling constants. arXiv:1911.07780 [hep-ph].

[18] A. Z. Petrov. Classification of spaces defined by gravitational fields. *Uch. Zapisky Kazan Gos. Univ.*, **144**:55, 1954.
[19] J. Stewart. Advanced General Relativity. *Cambridge Monographs on Mathematical Physics, Cambridge University Press*, 1991.

[20] P. O’Donnell. Introduction to 2-spinors in General Relativity. *World Scientific Publishing Co. Pte. Ltd.*, 2003.

[21] R. Penrose and W. Rindler. Spinors and spacetime 2: Spinor and twistor methods in spacetime geometry. *Cambridge University Press, Cambridge*, 1986.

[22] S. Coleman and S. Glashow. High-energy tests of Lorentz invariance. *Phys. Rev. D*, 59:116008–1, 1999.

[23] M. E. Peskin and D. V. Schroeder. An introduction to Quantum Field Theory. *Perseus Books*, 1995.

[24] G. ’t Hooft and M. Veltman. Regularization and renormalization of gauge fields. *Nucl. Phys. B*, 44:189, 1972.

[25] I. T. Drummond. Quantum field theory in a multimetric background. *Phys. Rev. D*, 88:025009, 2013.

[26] S. J. Brodsky A. Duer and G. F. Téramond. The QCD running coupling. *Progress in Particle and Nuclear Physics*, 90:1–74, 2016.

[27] D. W. Duke, W. A. Bardeen, A. J. Buras and T. Muta. Deep inelastic scattering beyond the leading order in asymptotically free gauge theories. *Phys. Rev. D*, 18:3998, 1978.

[28] S. de Alwis, A. Eichhorn, A. Held, J. M. Pawlowski, M. Schiffer and F. Versteegen. Asymptotic safety, string theory and weak gravity conjecture. arXiv:1907.07894 [hep-th].

[29] A. Platania, A. Eichhorn and M. Schiffer. Lorentz invariance violations in the interplay of quantum gravity with matter. arXiv:1911.10066 [hep-th].

[30] D. Collady and V. A. Kostalecký. Cross sections and Lorentz violation. *Phys. Letts. B*, 511:209, 2001.

[31] Hao Fu and R. Lehnert. Moller scattering and Lorentz-violating Z bosons. *Phys. Letts. B*, 762:33, 2016.

[32] V. A. Kostalecký and M. Mewes. Electrodynamics with Lorentz-violating operators of arbitrary dimension. *Phys. Rev. D*, 80:015020, 2009.

[33] V. A. Kostalecký and Zonghao Li. Gauge field theories with Lorentz-violating operators of arbitrary dimension. *Phys. Rev. D*, 99:056016, 2019.

[34] N. E. Mavromatos J. Ellis and D. V. Nanopoulos. Derivation of a refractive index in stringy space-time foam model. *Phys. Lett. B*, 665:412, 2008.

[35] A.S.Sakharov J. Ellis, N. E. Mavromatos and E. K. Sarkisyan-Grinbaum. Limits on Lorentz violation from multimessenger observations of TXS 0506+056. *Astrophys. J.*, 535:139, 2000.