A Simple Proof of an Inequality Connecting the Alternating Number of Independent Sets and the Decycling Number

Vadim E. Levit
Ariel University Center of Samaria, Ariel, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Holon Institute of Technology, Holon, Israel
eugenm@hit.ac.il

Abstract

If \(s_k \) denotes the number of independent sets of cardinality \(k \) and \(\alpha(G) \) is the size of a maximum independent set in graph \(G \), then \(I(G; x) = s_0 + s_1 x + \ldots + s_{\alpha(G)} x^{\alpha(G)} \) is the independence polynomial of \(G \) [8].

In this paper we provide an elementary proof of the inequality \(|I(G; -1)| \leq 2^{\varphi(G)}\), where \(\varphi(G) \) is the decycling number of \(G \).

Keywords: independent set, independence polynomial, decycling number, forest, cyclomatic number.

1 Introduction

Throughout this paper \(G = (V, E) \) is a finite, undirected, loopless and without multiple edges graph, with vertex set \(V = V(G) \) and edge set \(E = E(G) \). By \(G - W \) we mean the subgraph induced by \(V - W \). The set \(N(v) = \{w : w \in V \text{ and } vw \in E\} \) neighborhood of the vertex \(v \in V \), and \(N[v] = N(v) \cup \{v\} \). A leaf is a vertex having a unique neighbor.

A set of pairwise non-adjacent vertices is called independent. The independence number of \(G \), denoted by \(\alpha(G) \), is the cardinality of a maximum independent set.

If \(G \) has \(s_k \) independent sets of size \(k \), then

\[
I(G; x) = s_0 + s_1 x + s_2 x^2 + \ldots + s_{\alpha(G)} x^{\alpha(G)}
\]

is known as the independence polynomial of \(G \) [8]. Some properties of the independence polynomial are presented in [11] [14] [12] [13] [14].

The value of a graph polynomial at a specific point can give sometimes a very surprising information about the structure of the graph [2]. In the case of independence polynomials, let us notice that:

- \(I(G; 1) = s_0 + s_1 + s_2 + \ldots + s_{\alpha} \) equals the number of independent sets of \(G \). It is known as the Fibonacci number of \(G \) [11] [16] [17].
• $I(G; -1) = s_0 - s_1 + s_2 - \ldots + (-1)^n s_n$ is equal to difference of the numbers of independent sets of even and odd sizes. It is known as the alternating number of independent sets [3]. The value of $|I(G; -1)|$ can be any non-negative integer. For instance, $|I(K_{a,a,\ldots,a}; -1)| = n - 1$, where $K_{a,a,\ldots,a}$ is the complete n-partite graph.

• $I(G; -1) = -\chi(\text{Ind}(G))$, where $\chi(\Sigma)$ is the reduced Euler characteristic of the abstract simplicial complex Σ. Recall that an abstract simplicial complex on a finite vertex set A is a subset Σ of 2^A satisfying: $\{v\} \in \Sigma$ for every $v \in A$, and $A \subseteq B \in \Sigma$ implies $A \in \Sigma$. The elements of Σ are faces and the dimension of a face A is $|A| - 1$. For a simplicial complex with s_i faces of dimension $i - 1$, the reduced Euler characteristic equals $-s_0 + s_1 - s_2 + s_3 - \ldots$. The family $\text{Ind}(G)$ of all independent sets of a graph $G = (V, E)$ forms a simplicial complex on V, called the independence complex of G [9].

The cyclomatic number $\nu(G)$ of the graph G is the dimension of the cycle space of G, i.e., the dimension of the linear space spanned by the edge sets of all the cycles of G. The decycling number [3] (or the feedback vertex number [15]) $\varphi(G)$ of a graph G is the minimum number of vertices that need to be removed in order to eliminate all its cycles. While $\varphi(G)$ can be easily computed, since $\nu(G)$ is the decycling number of $\varphi(G)$, it is known that to compute $\varphi(G)$ is an NP-complete problem [10].

The inequality $|I(G; -1)| \leq 2^{\varphi(G)}$ has been established in [15], while a stronger result, namely, $|I(G; -1)| \leq 2^{\nu(G)}$ has been proved in [7].

In this paper we provide a simple proof of the inequality $|I(G; -1)| \leq 2^{\nu(G)}$ using only elementary arguments.

2 Results

Proposition 2.1 [5] If $v \in V(G)$, then $I(G; x) = I(G - v; x) + x \cdot I(G - N[v]; x)$.

Theorem 2.2 For any graph G the alternating number of independent sets is bounded as follows

$$|I(G; -1)| \leq 2^{\varphi(G)},$$

where $\varphi(G)$ is the decycling number of G.

Proof. We establish the inequality by induction on $\varphi(G)$.

• If $\varphi(G) = 0$, then G is a forest, and we have to show that $|I(G; -1)| \leq 1$.

We proceed by mathematical induction on $n = |V(G)|$.

For $n = 0$, $I(G; x) = 1$ and $I(G; -1) = 1$, while for $n = 1$, $I(G; x) = 1 + x$ and $I(G; -1) = 0$. Suppose that G is a forest with $|V(G)| = n \geq 2$.

If G has no leaves, then $I(G; x) = (1 + x)^n$ and $I(G; -1) = 0$. Otherwise, let v be a leaf of G and $N(v) = \{u\}$. According to Proposition 2.1 we obtain that

$$I(G; x) = I(G - u; x) + x \cdot I(G - N[u]; x) = (1 + x) \cdot I(G - \{u, v\}; x) + x \cdot I(G - N[u]; x).$$

Hence, by the induction hypothesis, we finally get

$$|I(T; -1)| = |(-1) \cdot I(T - N[u]; -1)| \leq 1.$$
Assume that the statement is true for graphs with the decycling number $\varphi(G) \leq k$.

Let G be a graph with $\varphi(G) = k + 1$. Clearly, there exists some $v \in V(G)$, such that $\varphi(G - v) < \varphi(G)$. According to Proposition 2.1 we get:

$$I(G; -1) = I(G - v; -1) - I(G - N[v]; -1).$$

By the induction hypothesis, it assures that

$$|I(G; -1)| \leq |I(G - v; -1)| + |I(G - N[v]; -1)| \leq 2 \cdot 2^k = 2^{\varphi(G)},$$

and this completes the proof.

Notice that if $G = qK_3$, then $I(G; x) = (1 + 3x)^q$ and hence, $I(G; -1) = (-2)^{\varphi(G)}$.

Conjecture 2.3 For every positive integer k and each integer q such that $|q| \leq 2^k$, there is a graph G with $\varphi(G) = k$ and $I(G; -1) = q$.

3 Acknowledgements

The authors thank Alexander Engström for drawing their attention to the fact that some of their findings from [15] may be translated to known results in combinatorial topology.

References

[1] Y. Alavi, P. J. Malde, A. J. Schwenk, P. Erdős, The vertex independence sequence of a graph is not constrained, Congressus Numerantium 58 (1987) 15-23.

[2] P. N. Balister, B. Bollobás, J. Cutler, L. Pebody, The interlace polynomial of graphs at -1, European Journal of Combinatorics 23 (2002) 761-767.

[3] L. W. Beineke, R. C. Vandell, Decycling graphs, Journal of Graph Theory 25 (1997) 59-77.

[4] J. I. Brown, K. Dilcher, R. J. Nowakowski, Roots of independence polynomials of well-covered graphs, Journal of Algebraic Combinatorics 11 (2000) 197-210.

[5] M. Bousquet-Mélou, S. Linusson, E. Nevo, On the independence complex of square grids, Journal of Algebraic Combinatorics 27 (2008) 423-450.

[6] M. Chudnovsky, P. Seymour, The roots of the independence polynomial of a clawfree graph, Journal of Combinatorial Theory B 97 (2007) 350–357.

[7] A. Engström, Upper bounds on the Witten index for supersymmetric lattice models by discrete Morse theory, European Journal of Combinatorics 30 (2009) 429-438.

[8] I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983) 97-106.
[9] J. Jonsson, *Simplicial Complexes of Graphs*, Lecture Notes in Mathematics **1928**, Springer, 2008, 378 pp.

[10] R. Karp, *Reducibility among combinatorial problems*, in *Complexity of Computer Computations* (eds. R. E. Miller and J. W. Thatcher), Plenum Press 1972, 85-103.

[11] A. Knopfmachera, R. F. Tichy, S. Wagner, V. Ziegler, *Graphs, partitions and Fibonacci numbers*, Discrete Applied Mathematics **155** (2007) 1175-1187.

[12] V. E. Levit, E. Mandrescu, *The independence polynomial of a graph - a survey*, Proceedings of the 1st International Conference on Algebraic Informatics, Aristotle University of Thessaloniki, Greece, 20-23 October, 2005, pp. 233-254.

[13] V. E. Levit, E. Mandrescu, *Independence polynomials of well-covered graphs: Generic counterexamples for the unimodality conjecture*, European Journal of Combinatorics **27** (2006) 931-939.

[14] V. E. Levit, E. Mandrescu, *On the roots of independence polynomials of almost all very well-covered graphs*, Discrete Applied Mathematics **156** (2008) 478-491.

[15] V. E. Levit, E. Mandrescu, *The independence polynomial of a graph at -1*, E-print, arXiv:0904.4819v1 [math.CO]

[16] A. S. Pedersen, P. D. Vestergaard, *The number of independent sets in unicyclic graphs*, Discrete Applied Mathematics **152** (2005) 246-256.

[17] H. Prodinger, R. F. Tichy, *Fibonacci numbers of graphs*, Fibonacci Quart. **20** (1982) 16-21.

[18] S. Ueno, Y. Kajitani, S. Gotoh, *On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three*, Discrete Mathematics **72** (1988) 355-360.