Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Beyond protein structure determination with MicroED
Chi Nguyen¹ and Tamir Gonen¹,²,³

Microcrystal electron diffraction (MicroED) was first coined and developed in 2013 at the Janelia Research Campus as a new modality in electron cryomicroscopy (cryoEM). Since then, MicroED has not only made important contributions in pushing the resolution limits of cryoEM protein structure characterization but also of peptides, small-organic and inorganic molecules, and natural-products that have resisted structure determination by other methods. This review showcases important recent developments in MicroED, highlighting the importance of the technique in fields of studies beyond protein structure determination where MicroED is beginning to have paradigm shifting roles.

Addresses
¹ Department of Biological Chemistry, University of California Los Angeles, 615 Charles E Young Drive South, Los Angeles, CA90095, United States
² Department of Physiology, University of California Los Angeles, 615 Charles E Young Drive South, Los Angeles, CA90095, United States
³ Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA90095, United States

Corresponding author: Gonen, Tamir ([ggonen@g.ucla.edu])

Current Opinion in Structural Biology 2020, 64:xx–yy
This review comes from a themed issue on Cryo electron microscopy
Edited by Daniela Rhodes and Sara Sandin

https://doi.org/10.1016/j.sbi.2020.05.018
0959-440X/© 2020 Elsevier Ltd. All rights reserved.

Introduction
MicroED [¹,²] has been pushing the limits of cryoEM in determining structures of macromolecular protein assemblies, peptides, and chemical compounds [¹,³,⁴,⁵]. Prior the technological advancements in detectors [⁶–⁹] and software [¹⁰–¹³] that made the ‘cryoEM resolution revolution [¹⁴]’ possible, structure determination of biological assemblies, peptides, and chemical compounds has been dominated X-ray crystallography. To date, there are close to 150 000 depositions in the Protein Data Bank (PDB), comprised of roughly 90% X-ray, 8% NMR, and 2% EM structures. The first near atomic resolution structure by cryoEM reported in 2005 [¹⁵] set the stage for the highest growth in transmission electron microscopy (TEM) structure deposition that occurred in the last five years.

The field of cryoEM includes at least four major techniques: cryo-electron tomography (cryoET) [¹⁶,¹⁷], single-particle-analysis (SPA) [¹⁸–²⁰], 2-dimensional (2D) electron crystallography [²¹,²²], and MicroED [¹,²] (Figure 1). All of these cryoEM techniques exploit the advantage that electrons interact orders of magnitude more strongly with materials than X-rays, allowing the application of samples that are not tractable by other methods [²³]. While CryoET and SPA use imaging, the crystallographic cryoEM methods of 2D electron crystallography and MicroED also take advantage of electron diffraction. 2D-electron crystallography is typically used for structure determination of molecules in 2D arrays, which traditionally have been of membrane proteins that are crystallized within the native environment of the lipid bilayer [²²]. In contrast, MicroED uses 3D crystals and data collection by continuous rotation to yield structures of a wide range of samples including soluble and membrane proteins, peptides, small organic and inorganic molecules, semi-conductors, and natural-products [⁵].

During MicroED experiments, crystals are harvested and prepared in a number of ways for embedment on EM grids (discussed below) [¹] (Figure 2). Biological samples, which are more sensitive to radiation, are typically vitrified to prevent from radiation damage and to withstand the high-vacuum within the electron microscope [¹,²²]. Once well-diffracting crystals are detected, MicroED datasets are collected by exposure of the sample to an electron beam in diffraction mode during continuous rotation of the stage [²] (Figure 2). MicroED data are then collected on a fast camera as a movie, where each frame contains a diffraction pattern that represents a wedge of the reciprocal space [²²]. Because continuous rotation for MicroED is analogous to the rotation method in X-ray crystallography, the data collected can be directly processed by existing standard X-ray crystallography software such as Mosflm [²⁸], DLS [²⁹], DIALS [³⁰], SHELX [³¹] and HKL2000 [³²] (Figure 2).

After data-processing, the phases are determined and structures are built using the electron density maps [¹]. Given its wide-application and ability to extract structural information from nanocrystals, often a billionth the volume of those needed for X-ray crystallography, there are a growing number of structures determined by MicroED. Since its inception in 2013, there are close to 100 PDB entries produced by MicroED, with the highest growth in the just the past two years. To date, several laboratories have published MicroED studies and the number of practitioners are growing. Still, there are several challenges that lay ahead for MicroED including additional methodologies for sample preparation and technological developments for
data collection that currently limit widespread usage of the technique. Below we discuss the most recent developments and strategies to expand the use of the MicroED.

Protein structure determination by MicroED

Formation of large crystals continue to be the most challenging and time-consuming step for X-ray crystallography, especially for membrane proteins and protein complexes [33]. The small crystals that are typically formed by membrane proteins and protein complexes can often diffract electrons using very low exposures to minimize radiation damage (0.01 e⁻/Å²) [1*]. One of the earliest membrane protein structures determined by MicroED was the Ca²⁺ ATPase (PDB 3J7T/U) [34**] (Figure 3a). The Ca²⁺ ATPase structure illustrated the utility of MicroED for generating Coulomb potential (charge density) maps to detail information about the charged-states of amino-acid sidechains, cofactors, metals, and ligands [34**]. Since Ca²⁺ ATPase, there have been several important structures determined by MicroED including the non-selective sodium-potassium (NaK) channel (PDB 6CPV) [35**] and the complex of the transforming growth factor beta paired type II (TGF-βm:TβRII) (PBD 5TY4) [36] (Figure 3a,b). The MicroED structure of NaK is similar to those previously determined X-ray crystallography [37]. However, like Ca²⁺
ATPase, the structure of NaK by MicroED allowed generation of Coulomb potential maps to unambiguously place Na⁺ within the channel and to visualize a new transient state of the channel [35**]. The heterodimeric complex between TGF-βm and TβRII plays essential roles in the adaptive immune response and maintenance of the extracellular matrix [38]. Unlike Ca²⁺ ATPase and NaK, which formed nanocrystals, the structure of TGF-βm:TβRII was obtained from fragmentation of large, imperfect crystals (discussed below) [36]. Compared with the imperfect, large parent crystals, this approach led to better MicroED data from well-ordered microcrystal fragments that ultimately yielded atomic-resolution structures [36]. This study expanded the application of MicroED to include a wider range of crystal sizes.

MicroED in drug discovery

MicroED has already made important contributions to drug discovery by determining structures of protein–drug complexes and supra-resolution of small-molecules and natural products. Representative MicroED structures of membrane proteins, protein complexes, small-molecules, and natural products are shown in Figure 3.
natural-products, often directly from powders, bypassing crystallization experiments. The MicroED structure of HIV-GAG, which plays important roles in the life-cycle of HIV, was solved in complex with the antiviral drug, bevirimat (PDB 6N3U) [39*] (Figure 3c). The HIV-GAG-bevirimat complex provided important information about the antiviral drug mechanism and was the first demonstration of drug discovery using MicroED.

MicroED was originally intended for studying protein assemblies [26], however, it was rapidly recognized that this technique is a powerful tool for the characterization of small-molecules and natural-products. In 2016, the structure of the sodium channel blocker carbamezapine was determined to ~1 Å resolution [40] (Figure 3d). In 2018, a method for small-molecule sample preparation using a "powder to structure" pipeline was described for carbamezapine [33] and later expanded to several small organic molecules [4**]. The structure of MBBF4 [41*], a methylene blue derivative with wide medical applications including its activity as a photo-activatable antimicrobial agent [42], was also solved. Since then, several structures of small-molecules have been reported by MicroED. These MicroED structures include Grippostad [41*], an antiviral drug for the treatment of the common cold and the flu [43], and a recent example of the non-fullerene acceptor (NFA) semi-conductive material ITIC-Th (Figure 3d).

MicroED has also proven its usefulness for the structure characterization of several natural-products that have previously been challenging or, in some cases, impossible to determine by other techniques. Unlike their synthetic small-molecules counterparts, biosynthesized natural-products are typically larger, structurally dynamic, obtained in small amounts, and difficult to crystallize, posing considerable challenges for X-ray studies. Even when natural-products form lattices, these crystals are often too small and are not useful for X-ray diffraction [44**,45**]. Brucine is an alkaloid toxin currently being tested for its anticancer properties [46] (Figure 3e). The MicroED structure of brucine at 0.9 Å resolution allowed for definitive assignment of its two chiral centers, key for understanding its toxicity and anticancer properties [4**] (Figure 3). Brucine, while large compared to small-molecules, is relatively small compared to amino-acid derived natural-products called ribosomally synthesized and post-translationally modified peptides (RiPPs), including 3-thiaGlu [4**] and thiostreptin [47] (Figure 3e). Glutamylated thiols, similar to the peptide modification on 3-thiaGlu, have been shown to block jasmonate and ethylene signaling pathways [48]. Thiostreptin is an antibiotic currently used in veterinary medicine [47] (Figure 3e). When efforts failed by X-ray crystallography, MicroED readily provided a 0.9 Å resolution of the 3-thiaGlu peptide (PDB 6PO6) [44**]. While thiostreptin has been studied by NMR [44**] and X-ray crystallography [49] previously, the ease of its characterization speaks to the robustness of MicroED for structure determination of large, flexible natural-products (Figure 3e). Like the difficulties encountered for 3-thiaGlu, the structures of 3-substituted oxindole derivatives (Figure 3e), that contain a new stereocenter at the γ carbon installed by an enzyme through directed-evolution, was only solved with the application of MicroED [45**]. These recent studies demonstrate that MicroED provides an additional strategy for more complete analysis of absolute configuration based on internal markers [44**,45**].

Strategies for crystal preparation for MicroED
Electrons interact much more strongly with material than X-ray [23]. This phenomenon, however, results in high absorption and, thus, electrons can only penetrate very thin materials. Crystals that are greater than 500 nm in thickness must be thinned before MicroED data can be collected [36]. There are two strategies for trimming large crystals to thicknesses suitable for MicroED diffraction including mechanical fragmentation (typically by sonication, vigorous pipetting, or vortexing) [36] and milling with a focused ion beam (FIB) [50,51,52*]. Mechanical

Figure 4

FIB milling of crystals for MicroED. (a) Image of select proteinase K crystals at high magnification before milling. The arrow indicates the crystal that was milled. (b) FIB image after milling the top of the crystal. (c) FIB image after milling and cleaning both the top and bottom of the crystal leaving a lamella indicated by an arrow (Reprint from Ref. [52*]).
fragmentation has been successful for determining protein structures from large crystals of lysozyme, TGF-βm TβRII, xylanase, thaumatin, trypsin, proteinase K, thermolysin, and a segment of the protein tau [36]. Moving forward, the most current and promising technique for trimming large crystals for MicroED is FIB milling [50,51,52]. During FIB milling, a crystal is repeatedly exposed a gallium beam to trim away the surrounding materials and generate lamellas with controllable thicknesses. As proof of principle, the structures of several proteins, including lysosome and proteinase K, have been determined by FIB mill and MicroED [50,51,52,53,54] (Figure 4). Currently, FIB milling crystals is a relatively slow process but, even then, about ten crystal lamellas can be prepared per day.

Outrunning radiation damage and phasing MicroED data

Radiation damage in structural studies continue to be a major challenge leading to poor processing statistics and map quality [55,56]. When electrons penetrate materials, they deposit energy that can deteriorate the samples, a process referred to as radiation damage. Radiation damage can be categorized into two forms: global and

![Figure 5](https://www.sciencedirect.com/current-opinion-in-structural-biology/2020, 64:1–8)

MicroED radiation damage and experimental phasing.
(a) Disulfide bonds of the proteinase K structures determined from data collected on Falcon III and CetaD. The 2mFo-DFc densities (blue meshes) are contoured at 1.5σ (Reprint of Ref. [63]). (b) Fourier difference maps between the damaged and undamaged structure of a peptide, contoured at 3σ (Top left). Maps of the experimental phases of the peptide extended to 1.4 Å (Top right). Maps of an intermediate model-building step (Bottom left) to generate the final peptide structure at 1.4 Å (Bottom right) (Reprint from Ref. [64]).
site-specific. Global radiation damage typically results in the disruption of the crystal lattice which can be detected during data-processing when decreases in overall diffraction intensities and increases in B-factors are observed [57,58]. On the other hand, site-specific radiation damage is not uniform, is not typically detected during data-processing, and observable only during examination of the real-space map [59]. The degree of radiation damage depends, among other things, on the content of the sample, the surrounding solution, and is proportional to the amount of energy used during diffraction studies. For MicroED, site-specific radiation damage has been illustrated to occur on specific amino-acids including cysteines, glutamates, and aspartic acids [60*]. To curb the effects of radiation damage, samples are often vitrified [61]. However, even the combination of vitrification and exposure to extremely low doses of electrons (0.01 e⁻/Å²/s) during MicroED experiments can still lead to detectable radiation damage [60*].

TEMs for cryo-EM studies are typically equipped with highly-sensitive direct-electron detectors designed for imaging [9,14,62]. These highly sensitive cameras, however, have not been used extensively for MicroED because of concerns of damage to the sensors. As such, MicroED data are typically collected on indirect-electron detectors such as the complementary metal oxide semiconductor (CMOS)-based CetaD and TVIPS TemCam-F416 cameras. This strategy, however, limits the availability of MicroED because most facility TEMs are typically outfitted with top-of-the-line direct-electron detectors for imaging and not CMOS cameras. Recently, the Falcon III direct-electron camera was tested for MicroED data collection [63**]. This study demonstrates that MicroED data collected at lower electron exposure, to avoid camera damage of Falcon III, lead to greater mean completeness relative to CMOS detectors and to higher quality maps. As proof of principle, examination of the maps of proteinase K from data collected on the Falcon III camera preserved the disulfide bonds, which are highly susceptible to radiation damage [63**] (Figure 5a). A similar approach has been used recently with a Gatan K2 direct-electron detector in counting mode with an exposure 25 times less than for the Falcon III detector and a seemingly damage-free structure of Proteinase K has been determined.

Outrunning radiation damage using the direct electron detector Falcon III has been instrumental in determining the structures of samples that are highly susceptible to damage [44**,45**] and we believe that many more such examples would be forthcoming. Radiation damage was recently exploited to establish a pipeline for phasing MicroED data [64**] (Figure 5b). A low-damage followed by a high-damage data sets were taken from the same crystal. A difference Patterson was calculated and allowed for generation of initial phases. Following cycles of manual model building and refinement, the structure of a peptide was determined (Figure 5b). This study demonstrates the ability to extract meaningful phase information using radiation damage in MicroED.

Concluding remarks
MicroED is proving to be an important new tool in structural biology not only in determining structures of proteins but also of peptides, small organic and inorganic molecules, and natural-products. Continuous rotation MicroED is paradigm shifting because it has proven to be a robust, fast, and efficient method for structure determination of small molecules and natural products, even without crystallization and directly from mixtures [4**]. To our knowledge, no other structural biology method is capable of determining atomic resolution structures directly from mixtures, making MicroED a useful and powerful tool for an array of problems that are yet to be explored. Moving forward, the application of FIB-milling and fast-cameras will certainly expand MicroED for structure determination of varying types of samples with a wide-range of crystal sizes and to facilitate time resolved studies. These advancements could ultimately be applied to establish automated pipelines that mirror those for X-ray crystallography to facilitate obtaining MicroED structures. Early examples of automation in MicroED has already reported in which several hundred data sets could be collected overnight to demonstrate similar throughput as synchrotrons [65].

Conflict of interest statement
Nothing declared.

Acknowledgements
We would like to thank the Gonen laboratory and all collaborators who worked with us on MicroED applications. The Gonen lab is funded by the Howard Hughes Medical Institute and the National Institutes of Health P41-GM136508.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest
** of outstanding interest

1. Shi D, Nannenga BL, Iadanza MG, Gonen T: Three-dimensional electron crystallography of protein microcrystals. eLife 2013, 2:1-17.

 These studies mark the development and launch of MicroED from Janelia Research Campus for protein structure determination. Using lysozyme as a model system, the first MicroED structure of this protein was solved to 2.9 Å resolution.

2. Nannenga BL, Shi D, Leslie AGW, Gonen T: High-resolution structure determination by continuous-rotation data collection in MicroED. Nat Methods 2014, 11:927-930.

 Important accompanying studies to the launch of MicroED in 2013 that illustrates continuous-rotation data collection. This work demonstrates that continuous-data collection for MicroED leads to better processing statistics, which can be achieved using already existing X-ray crystallography software.

3. Rodríguez JA et al.: Structure of the toxic core of α-synuclein from invisible crystals. Nature 2015, 525:486-490.
4. Jones CG et al.: The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent Sci 2018, 4:1587-1592.

After the successful application of MicroED for proteins, this technique was applied for structure determination of small-molecules and natural-products. These studies tout a "powder to structure" pipeline where structures of small-molecules and natural-products were obtained minutes after sample preparation and MicroED data collection. Further, this work illustrates the precision of MicroED in obtaining structures from polymeric mixtures of small-molecules and natural-products.

5. Nannenga BL, Gonen T: The cryo-EM method microcrystal
 • Electron diffraction (MicroED). Nat Methods 2019, 16:369-379.
 This review outlines the development of MicroED form 2013 to 2019, highlighting important achievements that establish MicroED as an important addition to the field of cryoEM.

6. Bai XC, Fernandez IS, McMullan G, Scheres SHW: Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2013, 2:1-13.

7. Herzik MA, Wu M, Lander GC: Achieving better-than-3Å resolution by single-particle cryo-EM at 200 keV. Nat Methods 2017, 14:1075-1078.

8. Li X et al.: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 2013, 10:584-590.

9. Myasnikov A, Zheng S, Bulkley D, Cheng Y, Agard D: K3 - a first look at the new direct electron detection camera from Gatan company. Microsc Microanal 2018, 24:890-891.

10. Wagner T et al.: SPHERE-cryoYOLQ is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2019, 2:1-13.

11. Zivanov J et al.: New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 2018, 7:1-22.

12. Tegunov D, Cramer P: Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 2019, 16:1146-1152.

13. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA: CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 2017, 14:290-296.

14. Kulhbrandt W: The resolution revolution. Science (80-) 2014, 343:1443-1444.

15. Gonen T et al.: Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 2005, 438:633-638.

16. Komeili A, Li Z, Newman DK, Jensen GJ: Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science (80-) 2006, 311:242-246.

17. Murphy GE, Jensen GJ: Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes. Structure 2005, 13:1765-1773.

18. Frank J: The Cavendish Laboratory, Free School Lane, Cambridge CB2 3RQ, UK 1975, vol 1159-162.

19. Schultz P: Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 1988, 21:129-228.

20. Taylor DW et al.: Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science (80-) 2015, 348:581-586.

21. Wisedchaisri G, Reichow SL, Gonen T: Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 2011, 29:1381-1393.

22. Henderson R et al.: Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 1990, 213:899-929.

23. Henderson R: The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 1995, 28:171-193.

24. Mahamid J et al.: Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science (80-) 2016, 351:969-972.

25. Wrapp D et al.: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-) 2020, 367:1260-1263.

26. Nannenga BL, Shi D, Hattne J, Reyes FE, Gonen T: Structure of catalase determined by MicroED. eLife 2014, 3:e03500.

27. Shi D et al.: The collection of microED data. Nat Protoc 2016, 11:935-940.

28. Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr Sect D Biol Crystallogr 2011, 67:271-281.

29. Kabsch W et al.: XDS. Acta Crystallogr Sect D Biol Crystallogr 2010, 66:125-132.

30. Waterman DG et al.: Diffraction-geometry refinement in the DIALS framework. Acta Crystallogr Sect D Struct Biol 2016, 72:558-575.

31. Sheldrick GM, Gould RO: Structure solution by iterative peaklist optimization and tangent expansion in space group P1. Acta Crystallogr Sect B 1995, 51:423-431.

32. Otwinowski Z, Minor W: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997, 276:307-326.

33. Fromme P, Spence JCH: Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination. Curr Opin Struct Biol 2011, 21:509-516.

34. Yonekura K, Kato K, Ogawara M, Tomita M, Toyoshima C: Electron crystallography of ultrathin 3D protein crystals: an atomic model with charges. Proc Natl Acad Sci U S A 2015, 112:3368-3373.

These studies successfully launch the application of MicroED for structure determination of membrane proteins. Further, Cootoub maps generated from electron diffraction allow assignment of charges in Ca2+ ATPase.

35. Liu S, Gonen T: MicroED structure of the NaK ion channel reveals a Na+ partition process into the selectivity filter. Commun Biol 2018, 1:1-6.

These studies firmly establish the application of MicroED for structure determination of membrane proteins. Using nanocrystals, MicroED captured two new conformations of NaK and visualization of the sodium within the channel, important missing links in the study of this family of proteins.

36. De La Cruz MJ et al.: Atomic-resolution structures from fragmented protein crystals with the cryoEMEM method MicroED. Nat Methods 2017, 14:399-402.

37. Alam A, Jiang Y: Structural analysis of ion selectivity in the NaK channel. Nat Struct Mol Biol 2009, 16:35-41.

38. Morikawa M, Derynck R, Miyazono K: TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 2016, 8.

39. Purdy MD et al.: MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bezirvim. Proc Natl Acad Sci U S A 2018, 115:13258-13263.

The structure of HIV-GAG bound the anti-viral drug bezirvim provided important insights into its mechanism of action. Using MicroED for structures determination of protein-drug complexes establishes its application for structures-based drugs design.

40. Van Genderen E et al.: Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr Sect A Found Adv 2016, 72:230-242.

41. Gruene T et al.: Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew Chem Int Ed 2018, 57:16313-16317.

These studies also establish that MicroED is a powerful tool for structure determination using powders of small molecules. These studies illustrate the expanded use of MicroED in the field biology and chemistry.

42. Wainwright M: Methylene blue derivatives - suitable photoantimicrobials for blood product disinfection? Int J Antimicrob Agents 2000, 16:381-394.
43. Koytchev R et al.: Evaluation of the efficacy of a combined formulation (Grippostad®-C) in the therapy of symptoms of common cold: a randomized, double-blind, multicenter trial. Int J Clin Pharmacol Ther 2003, 41:114-125.

44. Ting CP et al.: Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science (80-) 2019, 365:260-284

45. Dick M, Sarai NS, Martynowycz MW, Gonen T, Arnold FH: Tailoring tryptophan synthase TrpB for selective quaternary carbon bond formation. J Am Chem Soc 2019, 141:19817-19822

46. Qin J et al.: Antitumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma in vivo. Oncol Lett 2018, 15:6137-6146.

47. Kutscher AH, Seguin L, Zegarelli EV, Piro JD: Antimicrobial activity of thioistreptone: tube dilution studies. J Am Dent Assoc 1959, 59:715-720.

48. Arebola E, Cazorla FM, Perez-Garcia A, de Vicente A: Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins (Basel) 2011, 3:1089-1110.

49. Anderson B, Hodgkin DC, Viswamitra MA: The structure of thioistreptone. Nature 1970, 225:233-235.

50. Martynowycz MW et al.: Collection of continuous rotation MicroED data from ion beam-milled crystals of any size. Structure 2019, 27:545-548.

51. Duyvesteyn HM et al.: Machining protein microcrystals for structure determination by electron diffraction. Proc Natl Acad Sci U S A 2018, 115:9569-9573.

52. Martynowycz MW, Zhao W, Hattnie J, Jensen GJ, Gonen T: Qualitative analyses of polishing and precooling FIB milled crystals for MicroED. Structure 2019, 27:1594-1600.e2

53. Li X, Zhang S, Zhang J, Sun F: In situ protein micro-crystal fabrication by cryo-FIB for electron diffraction. Biophys Rep 2018, 4:339-347.

54. Zhou H, Luo Z, Li X: Using focus ion beam to prepare crystal lamella for electron diffraction. J Struct Biol 2019, 205:59-64.

55. Carugo O, Carugo KD: When X-rays modify the protein structure: radiation damage at work. Trends Biochem Sci 2005, 30:213-219.

56. Baker LA, Rubinstein JL: Radiation damage in electron cryomicroscopy. Methods Enzymol 2010, 481 Elsevier Masson SAS.

57. Kmetko J, Hussein NS, Naides M, Kalin Y, Thorne RE: Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures. Acta Crystallogr Sect D Biol Crystallogr 2006, 62:1030-1038.

58. Ravelli RBG, Thenevain P, McSweeney S, Caffrey M: Unit-cell volume change as a metric of radiation damage in crystals of macromolecules. J Synchrotron Radiat 2002, 9:355-360.

59. Weik M et al.: Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 2000, 97:623-628.

60. Hattnie J et al.: Analysis of global and site-specific radiation damage in Cryo-EM. Structure 2018, 26:759-766.e4

61. Karuppasy M, Karimi Nejadasl F, Vulovic M, Koster AJ, Ravelli RBG: Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate. J. Synchrotron Radiat 2011, 18:398-412.

62. Wu S, Armache JP, Cheng Y: Single-particle cryo-EM data acquisition by using direct electron detection camera. Reprod Syst Sex Disord 2016, 65:35-41.

63. Hattnie J, Martynowycz MW, Penczek PA, Gonen T: MicroED with the Falcon III direct electron detector. IUCrJ 2019, 6:921-926

64. Martynowycz MW, Hattnie J, Gonen T: Experimental phasing of MicroED data using radiation damage. Structure 2020, 28:468-464.e2

65. de la Cruz MJ, Martynowycz MW, Hattnie J, Gonen T: MicroED data collection with SerialEM. Ultramicroscopy 2019, 201:77-80.