Minimal volume entropy of RAAG’s

Matthew Haulmark\(^1\) \quad | \quad Kevin Schreve\(^2\)

\(^1\)Department of Mathematics, SUNY-Binghamton, Binghamton, New York, USA
\(^2\)Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA

Correspondence
Kevin Schreve, Department of Mathematics, Louisiana State University, Baton Rouge, LA 70806, USA.
Email: kschreve@lsu.edu

Funding information
NSF, Grant/Award Number: DMS-2203325

Abstract
Bregman and Clay recently characterized which right-angled Artin groups with geometric dimension 2 have vanishing minimal volume entropy. In this note, we extend this characterization to higher dimensions.

MSC 2020
20F65 (primary)

1 INTRODUCTION

Let \(X \) be a finite complex with a piecewise Riemannian metric \(g \) (i.e., a collection of Riemannian metrics on cells which agree on intersections). Fix a basepoint \(x_0 \) in the universal cover \(\tilde{X} \), and let \(\tilde{g} \) be the pulled-back metric on \(\tilde{X} \). The associated volume entropy of \((X, g)\) is the exponential growth rate of the balls \(B_{x_0}(t) \) in the universal cover:

\[
\text{ent}(X, g) = \lim_{t \to \infty} \frac{1}{t} \log \text{Vol}(B_{x_0}(t), \tilde{g})
\]

This limit does not depend on the choice of basepoint. We now define the minimal volume entropy \(\omega(X) \) to be

\[
\omega(X) = \inf_{g} \text{ent}(X, g) \frac{\text{Vol}(X, g)^{1/\dim X}}{\text{Vol}(X, g)}
\]

where we minimize over all piecewise Riemannian metrics \(g \). Normalizing by the volume guarantees this does not change under scaling \(g \). This invariant was initially defined for Riemannian manifolds in [8].

Now, suppose \(G \) is a group with a finite classifying space \(BG \). Let \(\text{gdim}(G) \) be the geometric dimension of \(G \), that is, \(\text{gdim}(G) \) is the minimal dimension of such a \(BG \). We define the minimal
volume entropy of G, denoted $\omega(G)$, to be the infimum of $\omega(BG)$ over all finite classifying spaces BG of dimension $= \text{gdim}(G)$. We say a classifying space BG is minimal dimensional if $\text{dim} BG = \text{gdim}(G)$.

In this note, we study this invariant for right-angled Artin groups (from now on RAAG’s). If L is a flag simplicial complex, recall that the associated RAAG A_L has a presentation with generators corresponding to vertices, and where two generators commute if and only if the two vertices span an edge in L. We give an almost complete characterization of the (non)vanishing of $\omega(A_L)$ based on the topology of the defining flag complex L. The geometric dimension of A_L is equal to $\text{dim} L + 1$ (an n-simplex in L corresponds to an \mathbb{Z}^{n+1} subgroup of A_L, so this is an obvious lower bound). We prove the following theorem:

Theorem 1.1. Let L be a d-dimensional flag complex and A_L be the corresponding RAAG. Then

1. If $H^d(L, \mathbb{Z}) \neq 0$, then $\omega(A_L) > 0$.
2. If L embeds into a d-dimensional contractible complex, then $\omega(A_L) = 0$.

Bregman and Clay had previously proved this theorem when L is 1-dimensional; in this case $\omega(A_L)$ vanishes if and only if L is a forest [Theorem 1.2, [4]]. If $d \neq 2$, then $H^d(L, \mathbb{Z}) = 0$ is equivalent to L embedding into a d-dimensional contractible complex, hence these conditions are complementary [Remark 1.26, [6]]. By the universal coefficient theorem, $H^d(L, \mathbb{Z}) = 0$ is equivalent to $H_d(L, \mathbb{Z}) = 0$ and $H_{d-1}(L, \mathbb{Z})$ being free abelian. Also, again by universal coefficients, it’s equivalent to $H_d(L, \mathbb{F}_p) = 0$ for all primes p.

Remark. This embedding condition was used in [6] to construct manifold models for BA_L of dimension $2 \text{gdim}(A_L) - 1$ (classical arguments for any type F group G guarantee manifold models of dimension $2 \text{gdim}(G)$). It would be interesting to further relate nonvanishing of minimal entropy with “low”-dimensional manifold models of BG.

Remark. Kevin Li has recently shown that if L is a 2-complex with $H^2(A_L, \mathbb{Z}) = 0$, then $\omega(A_L) = 0$ [9, Theorem 3.9]. This completes the characterization of nonvanishing $\omega(A_L)$. The method in [9] works in all dimensions as well, so provides an alternative proof of Theorem 1.1.

Example. Here is a curious example. Suppose L_1 is a flag triangulation of $\mathbb{R}P^2$, and suppose that L_2 is a flag triangulation of a two-dimensional $\mathbb{Z}/3$-Moore space (for instance, L_2 is obtained by attaching a disc to a circle by a degree 3 map). By Theorem 1.1, both A_{L_1} and A_{L_2} have nonvanishing minimal volume entropy. On the other hand, again by Theorem 1.1, their product has vanishing minimal volume entropy (as the join $L_1 \ast L_2$ has $H_5(L, \mathbb{F}_p) = 0$ for all p). This is in contrast with the simplicial volume $||M||$ of a closed manifold M; Gromov proved in [8] the inequality

$$||M|| ||N|| \leq ||M \times N|| \leq \left(\frac{\dim M + \dim N}{\dim M}\right)||M|| ||N||.$$

For a closed m-manifold M, Gromov also showed the inequality

$$\omega(M)^m \geq C_m ||M||$$

for a constant C_m only dependent on m. In particular, the product of any two manifolds $M \times N$ with $||M||, ||N|| > 0$ has $\omega(M \times N) > 0$.
To prove Theorem 1.1, we use the following fibering criteria of Babenko-Sabourau [2]. Bregman and Clay used the same criteria in [4] to compute $\omega(A_L)$ in the one-dimensional case.

Definition 1.2. Let X be a simplicial complex. We say X has FCA (short for fiber collapsing assumption) if there is a simplicial complex P with $\dim P < \dim X$ and a simplicial map $f : X \to P$ so that for all $p \in P$, if F_p is a component of $f^{-1}(p)$ then the image subgroup $i_*(\pi_1(F_p))$ in $\pi_1(X)$ is subexponentially growing with subexponential growth rate $\leq 1 - \frac{\dim P}{\dim X}$.

Babenko and Sabourau show that if X has FCA then $\omega(X) = 0$ [Theorem 1.3, [2]]. If X is a minimal dimensional classifying space for G, this of course implies that $\omega(G) = 0$. In our setting, all subexponentially growing subgroups of RAAG’s are free abelian (this follows from a theorem of Baudisch described below). The subexponential growth rate of a finitely generated free abelian group is 0, so we do not require going into the details of this rate.

Definition 1.3. A group G has uniform exponential growth if there is a $\delta > 0$ so that the growth of G with respect to any finite generating set S is exponential with growth rate $> \delta$. We say X has FNCA (fiber non-collapsing assumption) if there is a $\delta > 0$ so that every map $f : X \to P$ with $\dim P < \dim X$ has a connected component F_p of a point preimage $f^{-1}(p)$ with the image subgroup $i_*(\pi_1(F_p))$ in $\pi_1(X)$ having uniform exponential growth $> \delta$.

Babenko and Sabourau also show that if X has FNCA, then $\omega(X) > \epsilon_m$, where ϵ_m only depends on the dimension m of X and δ [Theorem 1.5, [2]]. The conditions FCA and FNCA are almost, but not quite, complementary. On the other hand, Bregman and Clay [4] show that they are for classifying spaces of RAAG’s. This follows from the following facts: RAAG’s have so-called uniform uniform exponential growth, in the sense that there is a $\delta > 0$ so that every non-abelian finitely generated subgroup of a given RAAG has uniform exponential growth $> \delta$ (every non-abelian subgroup on two generators is free by a theorem of Baudisch [3]). Now, if a classifying space for a RAAG does not have the FCA, then any map to a smaller dimensional complex has a point preimage whose image in π_1 is non-abelian. Hence, this subgroup has uniform exponential growth $> \delta$, and in particular has the FNCA. It follows that for a RAAG A_L, if we can show that every minimal dimensional classifying space BA_L has FNCA, this will imply that $\omega(A_L) > 0$ (in fact, in this case it suffices to exhibit FNCA for one model of BA_L, see Proposition 3.9 of [4]).

Part (2) of Theorem 1.1 follows from an explicit construction of BA_L. This model for BA_L is built by gluing together tori of various dimensions corresponding to the simplices of L. If L embeds into a contractible complex L' of the same dimension, then this model for BA_L naturally maps to L', and the preimages of points are homotopic to tori or points. Therefore, this model for BA_L has FCA. To prove part (1), we consider the mod p homology growth in residual chains of finite index subgroups. For RAAG’s, this was recently computed by Avramidi, Okun, and the second author [1]. If there is a minimal dimensional model for BA_L with FCA, it will follow from a result of Sauer’s that this growth vanishes in the top dimension for all p [13]. The computation in [1] then shows that the top F_p-homology of L vanishes for all p.

2 Classifying Spaces of RAAG’s

Our calculation of $\omega(A_L)$ relies on the following construction of models for BA_L. Let L be the defining flag complex of the RAAG, and let K be the geometric realization of the poset of simplices
of L. Then K is isomorphic to the cone on the barycentric subdivision of L, where the cone point corresponds to the empty simplex. Given a simplex $\sigma \in L$, let A_{σ} be the corresponding free abelian subgroup of A_L. A point $x \in K$ is contained in some minimal simplex, which corresponds to a chain of simplices of L. Let $\sigma(x)$ be the smallest element in this chain. The basic construction $\mathcal{U}(A_L,K)$ is defined to be

$$\mathcal{U}(A_L,K) := A_L \times K / \sim$$

where $(g, x) \sim (g', x')$ if and only if $x = x'$ and $gA_{\sigma(x)} = g'A_{\sigma(x)}$.

Then G acts on $\mathcal{U}(A_L,K)$ with strict fundamental domain $1 \times K$, which we identify with K. † For RAAG’s, it is known that $\mathcal{U}(A_L,K)$ is contractible, in fact it admits a natural CAT(0) cubical structure.

The stabilizer of a simplex $\tau \subset K$ is the free abelian special subgroup $A_{\min \tau}$, where $\min \tau$ is the smallest element in the corresponding chain of simplices of L. In particular, the stabilizer is trivial if and only if τ contains the cone point corresponding to the empty simplex.

Let $\mathcal{U} = \mathcal{U}(A_L,K)$. To build a classifying space BA_L, we use the Borel Construction $EA_L \times_{A_L} \mathcal{U}$ (if X and Y are two G-spaces, then $X \times_G Y$ is the direct product $X \times Y$ quotiented by the diagonal G-action). Since \mathcal{U} is contractible, this produces a (noncompact) model of BA_L.

The action of the stabilizer of any cell in \mathcal{U} fixes the cell. It follows that $EA_L \times_{A_L} \mathcal{U}$ naturally maps to $\mathcal{U}/A_L = K$. The preimage of an open simplex τ in K is homeomorphic to $\tau \times EA_L/A_{\min \tau}$, hence homotopy equivalent to a torus $T^{\min \tau}$. A rebuilding procedure of Geoghegan lets us build a compact model for BA_L, denoted X_L, which maps to K and the preimage of a simplex τ is homeomorphic to $\tau \times T^{\min \tau}$ [Chapter 6, [7]]. Note that X_L is $(\dim L + 1)$-dimensional; it follows that the geometric dimension of A_L is $\dim L + 1$.

In particular, we can assume that if τ is a simplex in K which contains the cone point, then the preimage in X_L is a copy of τ. Therefore, $X_L = \text{Cone}(L) \cup Y_L$, where Y_L is the preimage of L in BA_L. We say Y_L is the toral subcomplex of X_L. The following lemma is immediate from the discussion.

Lemma 2.1. If L is contractible, then Y_L is a model for BA_L.

3 | $\omega(A_L)$

3.1 | Vanishing of entropy for RAAG’s

Theorem 3.1. Let A_L be a RAAG based on a d-dimensional flag complex L. Suppose that L embeds into a d-dimensional contractible complex. Then $\omega(A_L) = 0$.

Proof. First, suppose that L is contractible. We use the model X_L of BA_L as in the previous section. In particular, Lemma 2.1 guarantees a $(d + 1)$-dimensional model for BA_L which projects to L, and the preimage of a point in L is homotopy equivalent to a torus of some dimension. Therefore, this model satisfies FCA, and hence $\omega(A_L) = 0$ [2].

† A strict fundamental domain for a group action on a CW-complex is a subcomplex which intersects each orbit in a single point.
Now, suppose L is d-dimensional and embeds into a d'-dimensional contractible complex L'. Let Y_L be the toral subcomplex for L. Then a model for $B\mathcal{A}_L$ can be obtained by forming the amalgam $X_L = Y_L \cup L' \cup L$ (this follows from Lemma 1.21 and Lemma 1.23 in [6], see the discussion there in Section 1.4). This is $(d+1)$-dimensional, and naturally projects to L'. The preimage of a point is homotopy equivalent to a torus of some dimension (a_0-torus if the point is in $L' - L$). This shows that this model satisfies FCA, and hence $\omega(A_L) = 0$.

3.2 Nonvanishing of entropy for RAAG’s

We now show that non-vanishing of ω for RAAG’s follows from work of Sauer on mod p-homology growth in residual, finite index normal chains [13], and the calculation of this growth for RAAG’s in [1].

First, assume that X is a simplicial complex with residually finite fundamental group G. Let

$$G = \Gamma_0 \geq \Gamma_1 \geq \Gamma_2 \geq \ldots$$

be a chain of finite index normal subgroups with $\cap_k \Gamma_k = 1$, and let X_k be the corresponding covers of X (we say Γ_k is a residual chain). We say that X has nonvanishing \mathbb{F}_p-homology growth in degree i if

$$\limsup_k \frac{b_i(X_k, \mathbb{F}_p)}{[G : \Gamma_k]} > 0$$

If one instead considers the \mathbb{Q}-homology growth, the limsup coincides with the ith L^2-Betti number of X by a theorem of Lück [10]. If $X = BG$ is aspherical, then we will write $b_i(\Gamma_k, \mathbb{F}_p)$ instead of $b_i(B\Gamma_k, \mathbb{F}_p)$.

We now relate the FCA property to amenable coverings, see Proposition 2.13 of [2]. Suppose that we have a simplicial complex X which satisfies FCA; hence we have a map $f : X \to P$ with $\dim P < \dim X$. If we cover P by open stars of vertices, then we can use f to pull back this cover to X. In particular, if we cover X by connected components of preimages of open stars, the multiplicity of this cover is equal to $\dim P + 1 \leq \dim X$. Each open set in the cover deformation retracts to a connected component of $f^{-1}(p)$. Therefore, the image of the fundamental group of each set in the cover is a subexponentially growing subgroup of $\pi_1(X)$. More generally, we say an open set U in a topological space X is amenable if the image subgroup $\pi_1(U)$ in $\pi_1(X)$ is amenable.

The following theorem follows immediately from the proof of Theorem 1.6 in [13].

Theorem 3.2. Let G be residually finite, and let Γ_k be a residual sequence of finite index normal subgroups. Suppose that there is a finite BG with an amenable cover of multiplicity n. Then

$$\lim_{k \to \infty} \frac{b_i(\Gamma_k, \mathbb{F}_p)}{[G : \Gamma_k]} = 0 \quad \text{for } i \geq n.$$
Corollary 3.3. Let G be a type F, residually finite group with $\operatorname{gdim}(G) = d$. Suppose that $\{\Gamma_k\}$ is a residual chain in G with nontrivial d-dimensional \mathbb{F}_p-homology growth for some prime p. Then any d-dimensional model for BG does not have the FCA property.

Note that in [Theorem 1.6, [13]], Sauer shows that if an aspherical n-manifold M has an open cover by amenable sets of multiplicity n, then the \mathbb{F}_p-homology growth of $\pi_1(M^n)$ vanishes in all degrees (for all finite index normal chains). To do this, Sauer constructs complexes $S(k)$ which homotopy retract\(^1\) onto \bar{M}^n / Γ_k and have sublinear (in $[G : \Gamma_k]$) number of n-cells. The construction of these complexes does not require the manifold structure. Therefore, the same argument shows that if an aspherical n-complex X has an open cover by amenable sets of multiplicity n, then the \mathbb{F}_p-homology growth of $\pi_1(X)$ vanishes in degree n (for the usual L^2-Betti numbers, this is Theorem C of [12]).

In [1], Avramidi, Okun, and the second author computed the \mathbb{F}_p-homology growth of RAAG’s; the analogous theorem for $b_i^{(2)}(A_L)$ was proved earlier by Davis and Leary [5].

Theorem 3.4. Let A_L be a RAAG based on a flag complex L. Let $\{\Gamma_k\}_{k \in \mathbb{N}}$ be a residual chain of finite index normal subgroups. Then

$$\lim_{k \to \infty} \frac{b_i(\Gamma_k, \mathbb{F}_p)}{[A_L : \Gamma_k]} = \bar{b}_{i-1}(L, \mathbb{F}_p),$$

where $\bar{b}_{i-1}(L, \mathbb{F}_p)$ is the reduced Betti number of L with \mathbb{F}_p-coefficients.

Combining these results gives our main theorem characterizing the nonvanishing of $\omega(A_L)$.

Theorem 3.5. Suppose that A_L is a RAAG based on a d-dimensional flag complex L. If $H_d(L, \mathbb{F}_p) \neq 0$ for some p, then $\omega(A_L) > 0$. Hence if $H_d(L, \mathbb{Z}) \neq 0$, then $\omega(A_L) > 0$.

Proof. By Theorem 3.4, if $H_d(L, \mathbb{F}_p) \neq 0$, then A_L has nonvanishing \mathbb{F}_p-homology growth in dimension $d + 1$. By Corollary 3.3, any minimal dimensional classifying space for A_L will not have FCA. Therefore, any minimal dimensional classifying space has FNCA, and by Babenko and Sabourau’s results (plus the fact that RAAG’s have uniform uniform exponential growth) we obtain $\omega(A_L) > 0$.

Remark. Matt Clay pointed out to us that Proposition 3.9 in [4] implies that $\omega(A_L) > \epsilon$ for ϵ only depending on $\dim L$.

Remark. The computation of \mathbb{F}_p-homology growth in [1] was extended in [11]. The correct context for these computations seems to be a group G acting on a contractible complex with strict fundamental domain Q. For example, a similar computation works for any residually finite Artin group which satisfies the $K(\pi, 1)$-conjecture. By the same argument as above, if the nerve L of these Artin groups has $H^{\dim L}(L, \mathbb{Z}) \neq 0$, then the minimal volume entropy will be strictly positive. The corresponding vanishing result for Artin groups seems harder to prove.

\(^1\)That is, there are maps $f : \bar{M}^n / \Gamma_k \to S(k)$ and $g : S(k) \to \bar{M}^n / \Gamma_k$ so that $g \circ f \sim \operatorname{id}_{\mathbb{R}^n / \Gamma_k}$.
ACKNOWLEDGEMENTS
We thank Roman Sauer for answering a question about his work in [12] and [13], and Matt Clay for helpful comments on an earlier draft. We thank for the referee for a careful reading and helpful comments.

The second author was supported by the NSF grant DMS-2203325.

JOURNAL INFORMATION
The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES
1. G. Avramidi, B. Okun, and K. Schreve, Mod \(p \) and torsion homology growth in nonpositive curvature, Invent. Math. 226 (2021), 15.
2. I. Babenko and S. Sabourau, Minimal volume entropy of simplicial complexes, preprint, arXiv:math/2002.11069 (2021).
3. A. Baudisch, Subgroups of semi-free groups, Acta Math. Hungar. 38 (1981), 19–28.
4. C. Bregman and M. Clay, Minimal volume entropy of free-by-cyclic groups and 2-dimensional right-angled Artin groups, Math. Ann. 381 (2021), 1253–1281.
5. M. W. Davis and I. J. Leary, The \(L^2 \)-cohomology of Artin groups, J. Lond. Math. Soc. (2) 68 (2003), no. 2, 493–510.
6. M. W. Davis, G. Le, and K. Schreve, The action dimension of simple complexes of groups, J. Topol. 12 (2019), 1266–1314.
7. R. Geoghegan, Topological methods in group theory, Grad. Texts Math. vol. 243, Springer, New York, 2008.
8. M. Gromov, Volume and bounded cohomology, Publ. Math. Inst. Hautes Études Sci. 56 (1983), 5–99.
9. K. Li, Amenable covers of right-angled Artin groups, preprint, arXiv:2204.01162 (2022).
10. W. Lück, Approximating \(L^2 \)-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455–481.
11. B. Okun and K. Schreve, Torsion invariants of complexes of groups, preprint, arXiv:2108.08892 (2021).
12. R. Sauer, Amenable covers, volume and \(L^2 \)-Betti numbers of aspherical manifolds, J. Reine Angew. Math. 636 (2009), 47–92.
13. R. Sauer, Volume and homology growth of aspherical manifolds, Geom. Topol. 20 (2016), 1035–1059.