ARTICLE; MEDICAL BIOTECHNOLOGY

Bulgarian version of the Audit of Diabetes-Dependent Quality of Life (ADDQoL-19)

Boryana Angelova Levterova, Georgi Evstatiev Levterov, Elena Angelova Dragova, Tania Stoyanova Grudevad and Yordan Lubomirov Kostourkov

ABSTRACT
The aims of this study were to translate and culturally adapt the UK English Audit of Diabetes-Dependent Quality of Life version 19 (ADDQoL-19) into Bulgarian and explore the psychometric properties of the ADDQoL-19 BUL. The formalized linguistic procedure was used to develop the Bulgarian version of the ADDQoL-19 BUL. The ADDQoL was assessed for the following: internal consistency (Cronbach’s alpha); test–retest reliability (intraclass correlation coefficient (ICC)); factor structure and known-groups validity (insulin requiring vs. non-insulin requiring, with vs. without diabetes-related complications, overweight/obese vs. not overweight/obese). A total of 423 adults with type 2 diabetes mellitus (T2DM) participated in the study. The mean age was 59.92 years (standard deviation (SD) 11.60, range 28–88 years), and 52.6% were male. Internal consistency (α = 0.922) and the 3-week test–retest stability (intraclass correlation = 0.99) were high. Confirmatory factor analysis indicated that the one-factor structure of the ADDQoL-19 fits moderately (χ² = 230.63, df = 136, p < 0.001, SRMR (Standardized Root Mean Square Residual) of 0.05, RMSEA (Root Mean Square Error of Approximation) of 0.06, CFI (Comparative Fit Index) of 0.95). Standardized coefficients showed that all domains loaded 0.4, except for one item. The total score was negatively associated with HbA1c (r = −0.10; p < 0.05), indicating that lower scores were related to poorer glycaemic control. In conclusion, the Bulgarian version of the ADDQoL-19 has good psychometric properties and provides clinicians and researchers with a useful tool for comprehensive assessment of the quality of life in adults with diabetes mellitus.

Introduction
Diabetes mellitus (DM) is a global public health problem. The world is facing an epidemic of type 2 diabetes mellitus (T2DM): 382 million people have diabetes and the disease is set to rise beyond 592 million in fewer than 25 years [1]. The International Diabetes Federation (IDF) recently reported that the number of people with diabetes in the European Region is estimated to be 9.1% of the adult population and this is expected to increase to over 35.6% by 2035 [2].

Diabetes prevalence is increasing among all age groups in Bulgaria, mainly due to the rise in overweight and obesity, because of unhealthy diet and low physical activity. The rates of DM increased from 8.36% in 2006 up to 9.6% in 2014 (population >20 years of age) as patients with T2DM were 90.4% of all [3–5].

Diabetes has a profound impact on the quality of life (QOL) of patients in terms of physical, social and psychological well-being [6]. QoL is described as a multidimensional construct incorporating an individual’s subjective perception of physical, emotional and social well-being, including both a cognitive component and an emotional component, and it changes over time as a result of various influences [7]. QoL issues are considered important, because they may powerfully predict an individual’s capacity to manage his/her conditions and maintain long-term health and well-being. QoL is increasingly recognized as an important health outcome in its own right, representing the ultimate goal of all health interventions [8,9].

In many countries, valid instruments for measuring patient-reported outcomes (PROMs) in DM have been developed and are widely used in practice [10–14]. Disease-specific instruments are recommended for use in conjunction with a generic measure to assess particular problems of any given long-term condition.
The Audit of Diabetes-Dependent Quality of Life (ADDQoL) questionnaire is a third-generation individualized QoL instrument. It is a disease-specific measure, which is increasingly being used to examine the patient’s perspective of the impact of diabetes on their quality of life across a range of domains. ADDQoL is a valid and reliable questionnaire originally developed in the United Kingdom [15]. What makes this questionnaire unique in relation to others is that patients are able to indicate whether potentially affected domains of life apply to them and to rate their impact together with the perceived importance of each domain for their QoL [16–18]. The ADDQoL is linguistically validated into many languages and is well accepted in different populations, ethnic groups and cultures [10,19–31].

Measuring QoL in patients with T2DM is a widespread practice in many countries. A review of available literature showed that, in Bulgaria, studies evaluating QoL are still quite scarce and disease-specific QoL measures for DM were not available prior to the present work [32–37]. Diabetes imposes a large economic burden on patients, their families and national health systems. Treatment of the disease is very expensive, but the real impact of diabetes is in the treatment of its complications. In Bulgaria, a growing number of patients with DM complicate the work of the health system because of limited financial resources [38,39].

The aims of this study were to translate and culturally adapt the UK English Audit of Diabetes-Dependent Quality of Life version 19 (ADDQoL-19) into Bulgarian and explore the psychometric properties of the Bulgarian version of the 19-item ADDQoL (ADDQoL-19 BUL).

Subjects and methods

Instrument

The ADDQoL is a 19-domain disease-specific instrument that attempts to evaluate comprehensively diabetes-specific QoL by assessing how individuals perceive diabetes. How the disease is interfering with their well-being or, contrarily, how diabetes may be having a positive effect on some aspects of life [15].

The ADDQoL allows the respondents to indicate aspects of life that are not applicable (N/A) to them, rate the amount of impact of diabetes, positive or negative, on the applicable aspects of life, and rate the perceived importance of each applicable aspect of life for their QoL. The impact rating is multiplied by the importance rating for each applicable aspect of life to provide weighted impact scores, which can be averaged across all applicable domains to form a single, average-weighted impact (AWI) score [19]. The ADDQoL begins with two items, assessing “present QoL” and “diabetes-dependent QoL”. The subsequent items are concerned with assessing 19 more specific domains. The impact of each domain is scored on a five-point scale (from −3 to 1), and the corresponding importance is rated on a four-point scale (3 to 0). The weighted score of each applicable domain is calculated by multiplying the impact and importance rating ranging from −9 to +3. Of the 19 domains, there are five with N/A options. When these items are said to be N/A, they are scored as such. As a result, domains that are not relevant to respondents are excluded from the mean ADDQoL weighted score. Finally, the mean weighted score is converted to a final score on a 0–100 scale. A higher score indicates a better diabetes-specific QoL [15,18].

Linguistic validation procedure

The developers of ADDQoL (Bradley et al. [CB179/26th SEP2012] from the Health Psychology Research Ltd., University of London, Egham, Surrey, UK) were contacted in order to obtain permission for its translation and use. A formalized linguistic validation procedure was applied following the principles of good practice [40].

Step 1. Written permission from the authors, Bradley et al., to translate the ADDQoL was obtained.

Step 2. **Forward translation.** Two bilingual persons living in Bulgaria with mother tongue Bulgarian, both fluent in English, translated the ADDQoL independently to produce FT1 and FT2 translated from English into Bulgarian. After completion of the FT1/2, the project coordinator (a PhD student), together with the translators, produced a preliminary consensus version of the ADDQoL in Bulgarian (ADDQoL-BUL).

Step 3. **Reconciliation.** A consensus meeting addressing any discrepancies in the translations resulted in a reconciled version FT-rev of the ADDQoL. A written report documented the issues addressed and decisions made.

Steps 4–5. Version FT-rev was back-translated to English (BT) by one translator trained and working in an English-speaking country (Bulgarian/English). The version was compared with the original English version of the questionnaire as a validity check of semantic and conceptual equivalence. Discrepancies and any unclear wording resulted in revision of the reconciled version. The project manager carried out the review together with the back-translator.

Step 6. **Harmonization.** The harmonization committee consisted of linguists, back-translators, a
researcher (PhD student), clinicians (endocrinologist, psychiatrist) and a psychologist. Due to geographical and time issues, the members of the committee met individually with the project manager once and the pre-final version was developed through e-mail correspondence. Discrepancies were resolved by consensus. All reports and drafts of the BT-rev were sent to all members in the harmonization committee to ensure transparency. The original developers were contacted in order to clarify any possible misunderstandings at each stage of the process. The preliminary version and a written report were agreed upon by all the members. Steps 7–8. Test and review of the preliminary version by cognitive interviewing were performed at the University Hospital of Plovdiv. The interviews and the coding of the cognitive interviews were performed by two experienced interviewers, of whom one was the clinical psychologist. Five patients (including two men and three women, aged 38–72 years; duration of T2DM of 1–15 years; education, primary to college) were asked about their view on the impact of diabetes on their lives and the relevance of each item to themselves. In addition, the participants were asked about possible difficulties in understanding the items. Results generated a cognitive debriefing (CD) report. Steps 9–10. The original developer then did a review to ensure the authenticity of the translation. After an agreement was reached, the final version of the Bulgarian ADDQoL was produced.

Study design and participants

The cross-sectional study was conducted at outpatient practices from October 2013 to March 2015. T2DM patients were recruited as respondents from nine randomly selected practices specializing in endocrinology and metabolic diseases (25%) drawn from all practices under contract to the Regional Health Insurance Fund Plovdiv (the second largest region in Bulgaria).

The study was approved by the Research and Ethics Committee of the Medical University–Plovdiv (R-1551/13-03-2014) and performed according to the Declaration of Helsinki. All patients with T2DM were invited to participate in the study (n = 540). Inclusion criteria were as follows: age over 18 years, diagnosed with T2DM for at least 1 year and able to complete a questionnaire written in Bulgarian. We excluded patients with cognitive impairment and severe illness. Of those fulfilling the criteria, 78% (n = 423) gave written informed consent to participate in the study and completed the questionnaire. We examined the test–retest reliability among 41 patients who completed the questionnaire twice with an interval of 3 weeks (response rate 90.24% (n = 37)).

The respondents were asked to complete the ADDQoL-19 BUL and questions on socio-demographic information. We collected clinical parameters data and laboratory measurements.

Data analysis

We performed statistical analysis of reliability and construct validity using AMOS and SPSS. Cronbach’s alpha was used to determine internal consistency [41]. Confirmatory factor analysis (CFA) was performed to examine the assumed single-factor construct of the ADDQoL-19 intraclass correlation coefficient (ICC) and Bland–Altman plot was used to examine the test–retest stability. We examined convergent validity using Pearson’s correlations (r). Statistical significance was set at p < 0.05 for the data analysis, and p < 0.01 or p < 0.001 was also reported where applicable. Patients with six or more missing items in the ADDQoL were excluded from all analyses.

Results and discussion

A total of 423 adults with T2DM participated in the study. We further excluded another 12 respondents who missed out more than six items in QoL and AWI scores on the ADDQoL. Hence, the final number of responses analyzed was 411. The mean age was 59.92 years (standard deviation (SD) 11.60, range 28–88 years), 53% were males, 72% Bulgarian ethnic group, 59% were with diabetes duration of over 5 years, the mean HbA1c was 8.1 (SD 0.85) and 38% used insulin. The characteristics of the respondents are shown in Table 1.

It is becoming acknowledged that PROMs are replacing the focus from classical outcomes for clinical decision-making. They should be the basis of person-centred decision-making founded on valid, reliable and clinically useful measurement delivered by the patient to the health care providers. Physicians need more education and further research to improve the ability to interpret and apply PROMs and QoL outcome. This ability is viewed as having an unreleased potential to contribute to a better understanding of patients well-being [42]. The ADDQoL is a diabetes-specific scale widely used around the world [10–14,34,43]. We were the first to introduce and develop the Bulgarian version of ADDQoL-19 (ADDQoL-19 BUL). Although diabetes is known to be a serious burden on the Bulgarian public health
system, the studies on the impact of diabetes on the patients’ QoL are still scarce [32,35–39,44].

The final version of the Bulgarian ADDQoL was produced as a five-point Likert scale including 19 domain-specific items with five options for each impact rating scale and the same four options for each importance rating scale as shown in Table S1 (Online Supplement).

The mean present QoL score was 0.59 (SD 0.90) on a scale from 3 to −3 indicating a mean response between ‘neither good nor bad’ and ‘good’. The diabetes-related QoL mean score was −1.80 (SD 0.80), where the most negative possible score would be −3 and −2 would indicate that QoL would be ‘much better’ if the person did not have diabetes. Overall, the presence of diabetes negatively affected all 19 ADDQoL domains.

The perception of QoL among Bulgarian patients with DM has been well demonstrated by several local studies [32,35–37]. The relevance of the 19 domains to the Bulgarian diabetes patients was confirmed by two local diabetes experts and respondents during the CD. The results suggested that the items can be used in the Bulgarian version without modification other than translation. The robustness of our findings is also strengthened because the procedure was performed according to the principles of good practice and the guidelines of the developers of the instrument [40].

Some phrases in the ADDQoL that were particularly difficult to translate into Bulgarian included ‘management’, ‘local or long-distance journeys’, ‘physically can do’, ‘close personal relationship’, ‘depend on others’ and ‘freedom to eat’. The equivalence of intensity across the adverbs scale was a challenging issue. The challenge of achieving semantic equivalence with these phrases was overcome through many rounds of discussion between the translators and developers, as well as CD among the patients.

Cronbach’s alpha indicates a measure of internal consistency. In this study, the Cronbach’s alpha for the overall items was 0.92, which indicated excellent reliability. CFA indicated that a one-factor structure fitted moderately ($\chi^2 = 230.63, df = 136, p < 0.001, SRMR$ (Standardized Root Mean Square Residual) of 0.05, $RMSEA$ (Root Mean Square Error of Approximation) of 0.06, CFI (Comparative Fit Index) of 0.95). Standardized coefficients showed that all domains loaded more than 0.4 on a single dimension, except for one item (freedom to drink).

In the original version, a high internal consistency was reported, and an exploratory factor analysis with a forced one-factor solution showed that all domains loaded >0.40. Compared with the acceptable level of a good comparative fit index in confirmatory factor analyses of 0.95 or higher and our study also indicated moderate support for a one-factor structure [45].

As for the known-group validity, the results showed that the participants who required insulin, experienced DM-related complications or obesity reported lower present QoL, diabetes-dependent QoL and AWI scores than the participants who did not, but in the obesity groups, the differences were not statistically significant (Table 2).

The subsample used to explore the test–retest reliability had higher prevalence of males (64.86%), but otherwise did not differ from the rest of the participants in terms of age (mean 58.9, SD 9.5), BMI (mean 31.1, SD

Table 1. Characteristics of participants.

Characteristics	n	%
Sex		
Male	216	52.55
Marital status		
Married	271	65.94
Single/Widowed/Divorced	140	34.06
Education		
Primary education	15	3.65
Secondary education	298	72.50
College and Higher	98	23.85
Ethnicity		
Bulgarian	296	72.02
Other Bulgarian ethnic group	115	27.98
Diabetes duration > 5 years	244	59.37
Complications	379	92.21
DM treatment		
Diet	2	0.49
Oral only	252	61.31
Oral + insulin injections	111	27.01
Insulin injections	46	11.19

Table 2. Known-groups validity results.

Participant group	Present QoL score	Diabetes-dependent QoL score	AWI score
Insulin requiring			
Yes (n = 111)	0.52 (0.97)	−1.88 (0.78)	−3.08 (1.57)
No (n = 300)	0.62 (0.87)	−1.79 (0.77)	−2.43 (1.55)
p-Value	p < 0.05	p < 0.05	p < 0.05
Complications			
Yes (n = 379)	0.56 (0.89)	−1.84 (0.76)	−2.86 (1.75)
No (n = 32)	1 (0.88)	−1.50 (0.95)	−2.98 (1.54)
p-Value	p < 0.05	p < 0.05	p < 0.05
Obesity (BMI > 30 kg/m²)			
Yes (n = 231)	0.61 (0.92)	−1.87 (0.81)	−3.05 (1.61)
No (n = 175)	0.56 (0.87)	−1.73 (0.73)	−2.87 (1.47)
p-Value	p > 0.9	p > 0.5	p > 0.7

Data are means (SD) and p-value; n = 411; underweighted were excluded (n = 5).
5.1), HbA1c (mean 8.0, SD 1.0) or other important demographic characteristics.

Only 19 of a total of 41 patients had complete data allowing calculation of AWI scores. The 3-week test–retest reliability of the ADDQoL AWI was high (ICC = 0.999, 95% CI: 0.997, 1.000). Figure 1 shows a Bland–Altman plot of the difference between the test and retest AWI scores. The mean of the difference was 0.01 (SD = 0.06). The 95% limits of agreement (−0.108 to 0.125) contained 89.47% (17 of 19) of the participants. There was no evidence of proportional bias in the Bland–Altman plot (trend: \(B = -0.01 \), \(SE = 0.01 \), \(t = -0.99 \), \(p = 0.338 \)) (Figure 1).

The results of the conceptual equivalence, semantic equivalence and measurement equivalence listed above indicated that a reasonable degree of equivalence was achieved in all areas.

Conclusions

The results from this exploratory study suggest that this Bulgarian version of the ADDQoL has achieved functional equivalence with the original English ADDQoL by demonstrating conceptual equivalence, item equivalence, semantic equivalence, operational equivalence and measurement equivalence. The Bulgarian version of ADDQoL-19 has good psychometric properties and will provide clinicians and researchers with a useful tool for comprehensive assessment of QoL in adults with DM. Our study provides justification for further research with large sample sizes among the patients with T2DM in Bulgaria.

Acknowledgments

The authors are grateful to the author of the original English version of ADDQoL, Prof. Clare Bradley of the Health Psychology Research Unit, Royal Holloway, University of London, London, UK, for permission to use and translate the ADDQoL. The ADDQoL19 in the original English and other available languages can be obtained from the copyright holder, Professor Clare Bradley, via her website (http://www.healthpsychologyresearch.com). The authors thank Associate Prof. Donka Dimitrova, MSc, MSSc, PhD (Faculty of Public Health, Medical University–Plovdiv) and Ms Svetla Tsonkova (MSc) for their support. We gratefully acknowledge the endocrinologists for their dedicated participation in data collection and the diabetic patients for their willingness to participate in the study.

Disclosure statement

The authors have no conflicts of interest that are directly relevant to the content of the article.

ORCID

Boryana Angelova Levterova http://orcid.org/0000-0002-0215-6119
Georgi Evtatlev Levterov http://orcid.org/0000-0001-6163-2763

References

[1] Guariguata L, Whiting DR, Hambleton I et al., Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–149.
[2] International Diabetes Federation. IDF diabetes atlas. 7th ed. Brussels: International Diabetes Federation; 2015. Available from: http://www.diabetesatlas.org
[3] Borisova A-M, Zaharieva S, Tankova T. Preporaki za dobra klinichna praktika pri zaharen diabet [Recommendations for good clinical practice in diabetes]. Sofia: Bulgarian Society of endocrinology; 2013. Bulgarian.
[4] Borissova A-M, Shinkov A, Kovatcheva R, et al., Changes in the prevalence of diabetes mellitus in Bulgaria (2006–2012). Clin Med Insights Endocrinol Diab. 2015;8:41–45.
[5] Borissova A-M, Shinkov A, Vlahov J, et al., Razprostranenie na zaharnia diabet i prediabet v Bulgaria dnes [Prevalence of diabetes mellitus and prediabetes in Bulgaria today]. Endocrinologa. 2012;12(4):182–192. Bulgarian.
[6] Snoek FJ. Quality of life: a closer look at measuring patients’ well-being. Diabetes Spectr. 2000;13:24–28.
[7] Joyce CR, Hickey A, McGee HM, et al., A theory-based method for the evaluation of individual quality of life: the SEIQoL. Qual Life Res. 2003;12(3):275–280.
[8] Rubin RR. Diabetes and quality of life. Diabetes Spect. 2000;13(1):21–23.

Figure 1. Bland–Altman plot for the 3-week test–retest reliability of the ADDQoL-19. The y-axis represents the difference between the first-week AWI score and the third-week AWI score. The x-axis represents the average of the first-week total score and the third-week total score. Data are \(n = 19 \); ADDQoL, Audit of Diabetes-Dependent Quality of Life; AWI, average-weighted impact score.
[9] Bradley C. Importance of differentiating health status from quality of life. Lancet. 2001;357(9249):7–8.
[10] Turk E, Rupel VP, Tapanajer A, et al., An audit of diabetes-dependent quality of life (ADDQoL) in older patients with diabetes mellitus type 2 in Slovenia. Value Health Reg Issues. 2013;2(2):248–253.
[11] El Achhab Y, Nejjari C, Chikri M, et al., Disease-specific health-related quality of life instruments among adults diabetic: a systematic review. Diabetes Res Clin Pract. 2008;80(2):171–184.
[12] Garratt AM, Schmidt L, Fitzpatrick R. Patient-assessed health outcome measures for diabetes: a structured review. Diabet Med. 2002;19(1):1–11.
[13] Hörmqvist JO, Wikby A, Stenström U, et al., Type II diabetes and quality of life: a review of the literature. Pharmacoeconomics. 1995;8(Suppl 1):12–16.
[14] Tang TS, Yusuf FL, Polonsky W, et al., Assessing quality of life in diabetes: II. Deconstructing measures into a simple framework. Diabetes Res Clin Pract. 2016;106:18227(16) 30455–30457. DOI:10.1016/j.diabres.2016.10.007
[15] Bradley C, Todd C, Gorton T, et al., The development of an individualized questionnaire measure of perceived impact of diabetes on quality of life: the ADDQoL. Qual Life Res. 1999;8(1–2):79–91.
[16] Bradley C, Speight J. Patient perceptions of diabetes and diabetes therapy: assessing quality of life. Diabetes Metab Res Rev. 2002;18(Suppl 3):S64–S69.
[17] Speight J, Reaney MD, Barnard KD. Not all roads lead to Rome—a review of quality of life measurement in adults with diabetes. Diabet Med. 2009;26(4):315–327.
[18] Speight J, Sinclair AJ, Browne JL, et al., Assessing the impact of diabetes on the quality of life of older adults living in a care home: validation of the ADDQoL Senior. Diabet Med. 2013;30(1):74–80.
[19] Singh H, Bradley C. Quality of life in diabetes. Int J Diab Dev Countries. 2006;26(1):7–10.
[20] Iversen MM, Espehaug B, Rokne B, et al., Psychometric properties of the Norwegian version of the Audit of Diabetes-Dependent Quality of Life. Qual Life Res. 2013;22(10):2809–2812.
[21] Kamarul Imran M, Ismail AA, Naing L, et al., The reliability and validity of the Malay version of the 18-item audit of Diabetes Dependent Quality of Life (the Malay ADDQoL) questionnaire. Southeast Asian J Trop Med Public Health. 2007;38(2):396–405.
[22] Costa FA, Guerreiro JP, Duggan C. An Audit of Diabetes Dependent Quality of Life (ADDQoL) for Portugal: exploring validity and reliability. Pharm Pract (Granada). 2006;4(3):123–128.
[23] Kong D, Ding Y, Zuo X, et al., Adaptation of the Audit of Diabetes-Dependent Quality of Life questionnaire to people with diabetes in China. Diabetes Res Clin Pract. 2011;94(1):45–52.
[24] Holmanová E, Ziakóvá K. Audit diabetes-dependent quality of life questionnaire: usefulness in diabetes self-management education in the Slovak population. J Clin Nurs. 2009;18(9):1276–1286.
[25] Jannoo Z, Yap BW, Musa KI, et al., An audit of diabetes-dependent quality of life in patients with type 2 diabetes mellitus in Malaysia. Qual Life Res. 2015;24(9):2297–2302.
[26] Ozder A, Sekeroğlu M, Eker HH. Quality of life and satisfaction with treatment in subjects with type 2 diabetes: results from primary health care in Turkey. Int J Clin Exp Med. 2014;7(12):5715–5722.
[27] Ostini R, Dower J, Donald M. The Audit of Diabetes-Dependent Quality of Life 19 (ADDQoL): feasibility, reliability and validity in a population-based sample of Australian adults. Qual Life Res. 2012;21(8):1471–1477.
[28] Soon SS, Goh SY, Bee YM, et al., Audit of Diabetes-Dependent Quality of Life (ADDQoL) [Chinese version for Singapore] questionnaire: reliability and validity among Singaporeans with type 2 diabetes mellitus. Appl Health Econ Health Policy. 2010;8(4):239–249.
[29] Wee HL, Tan CE, Goh SY et al., Usefulness of the Audit of Diabetes-Dependent Quality-of-Life (ADDQoL) questionnaire in patients with diabetes in a multi-ethnic Asian country. Pharmacoeconomics. 2006;24(7):673–682.
[30] Wang HF, Yeh MC. The quality of life of adults with type 2 diabetes in a hospital care clinic in Taiwan. Qual Life Res. 2013;22(3):577–584.
[31] Hirose AS, Fujihara K, Miyamasu F, et al., Development and evaluation of the Japanese version of the Audit of Diabetes-Dependent Quality of Life for patients with diabetes. Diabetol Int. 2016;7(4):384–390.
[32] Tankova T, Dakovska G, Koev D. Education and quality of life in diabetic patients. Patient Educ Couns. 2004;53(3):285–290.
[33] Levterova B, Foreva G, Dimitrova D, et al., Priloženje na instrumenti za otsenka na kachestvoto na zhivot pri hronični zabolyavanja v bulgarskata meditsinska praktika [Use of instruments for assessment of the quality of life in chronic diseases in the Bulgarian medical practice]. Gen Med. 2014;16(2):12–18. Bulgarian.
[34] Levterova BA, Dimitrova DD, Levterov GE, et al., Instruments for disease-specific quality-of-life measurement in patients with type 2 diabetes mellitus—a systematic review. Folia Med (Plovdiv). 2013;55(1):83–92.
[35] Yordanova S, Petkova V, Petrova G, et al., Comparison of health-related quality-of-life measurement instruments in diabetic patients. Biotechnol Biotechnol Equip. 2014;28(4):769–774.
[36] Yordanova S. Kachestvo na zhivot pri vavezhdane na farmatsevtichni grizhi pri patientsi s diabet [Study on quality of life in the introduction of pharmaceutical care for patients with diabetes] [dissertation]. Sofia: Medical University of Sofia; 2014. Bulgarian.
[37] Vizeva M. Kachestvo na zhivot i menidzhment na zdravnite grizhi pri zaharen diabet vtori tip [Quality of life and management of health care in type 2 diabetes mellitus] [dissertation]. Sofia: Medical University of Sofia; 2014. Bulgarian.
[38] Doneva M, Valov V, Borissova AM, et al., Comparative analysis of the cost of insulin treated patients in Bulgaria. Biotechnol Biotechnol Equip. 2013;27(2):3748–3752.
[39] Valov V, Doneva M, Borissova AM, et al., Regional differences in diabetic patients’ pharmacotherapy in Bulgaria. Eur Rev Med Pharmacol Sci. 2014;18(10):1499–1506.
[40] Acquadro C, Conway K, Girouard C, et al., Linguistic validation manual for patient reported outcomes (PRO) instruments. Lyon: MAPI Research Trust; 2004.
[41] Terwee CB, Bot SD, de Boer MR, et al., Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60(1):34–42.
[42] Søreide K, Søreide AH. Using patient-reported outcome measures for improved decision-making in patients with gastrointestinal cancer—the last clinical frontier in surgical oncology? Front Oncol. 2013;3:157.

[43] Watkins K, Connell CM. Measurement of health-related QOL in diabetes mellitus. Pharmacoeconomics. 2004;22 (17):1109–1126.

[44] Rencz F, Gulácsi L, Drummond M, et al., EQ-SD in Central and Eastern Europe: 2000–2015. Qual Life Res. 2016;29 (7):1–18.

[45] Satorra A, Bentler P. A scaled difference chi-square test statistic for moment structure analysis. Psychometrika. 2001;66(4):507–514.