Online Expert System for Diagnosis Psychological Disorders Using Case-Based Reasoning Method

Robbi Rahim*, Windania Purba2, Mufida Khairani3, and R Rosmawati4

1Sekolah Tinggi Ilmu Manajemen Sukma, Medan, Indonesia
2Department of Information System, Universitas Prima Indonesia, Medan, Indonesia
3Department of Informatics, Universitas Harapan Medan, Medan, Indonesia
4Department of Industrial Engineering, Institut Teknologi dan Sains TD Pardede, Medan, Indonesia

*usurobbi85@zoho.com

Abstract. Expert system of diagnosis of psychological disorders is a system designed to diagnose early symptoms of psychological disorders that may be suffered by individuals, online-based expert systems by applying the method of Case-Based Reasoning allows users to check the psychological condition directly with the results that can be used as a basis for more examination continue. The use of Case-Based Reasoning method facilitates the examination process for each user consultation because the result of past examination data can be used to compare with consultation data, psychological disorder examination with Case-Based Reasoning method can be done well.

1. Introduction

There are many areas outside the computer field that utilize computer technology to facilitate their work, for example, is the field of health, physical infrastructure, psychology, communications, Virtual Reality, Modelling and many other areas[1]. The field of health is one field that has been widely used computer applications to help work efficiency. One of the forms is an expert system [2], [3]. Expert system application is one of the branches of AI (Artificial Intelligence) which can be described as a computer device that has a knowledge base for a particular field that uses inference reasoning resembles an expert in solving a problem [4], [5].

Psychological disorder [6] is a disease that may be experienced by some people due to various factors such as trauma, stress, environmental conditions and hereditary diseases. Depression, Phobia, Bipolar Disorder are some types of psychological disorder that can be suffered by anyone, to know psychological self can be done in consultation with experts in the field of psychology or by using an expert system.

Expert systems are not a substitute for experts in a particular field, but a method used to adopt specialist knowledge into systems that can be accessed through computers, smartphones or other devices [3], [7], [8]. Case-Based Reasoning (CBR) [9]–[11] Method is one method of solving problems by using a solution that has been used previously against similar issues [11], the use of CBR methods on the diagnosis of psychological disorders will facilitate the process of early examination before a direct consultation to a specialist.
2. Methodology

An expert system is a branch of Artificial Intelligence (AI) developed in mid-1960. Expert system first time appeared was General Purpose Problem Solver (BPS). An expert system is a system that uses human knowledge in which knowledge is incorporated into a computer and then used to solve problems that usually require human skills [2], [12].

2.1 Expert System

Expert systems are designed on a specific knowledge area for expertise to approaching human ability in one field [7]. The expert system was trying to find a satisfactory solution as one expert does. Also, expert systems can also explain each step was taken and provide reasons for suggestions or conclusions that have been found [8], [13], [14].

An expert is a person who has expertise in a particular field, an expert who has the knowledge or unique ability that others do not know or are capable of in the area it has [14]. Knowledge[15], [16] in expert systems may be an expert, or knowledge commonly found in books, magazines and people who know a field. In the expert system, the user delivers the facts or information to the system and then accepts the advice of the expert or the expert answer. The inside of the expert system consists of two main components, the knowledge base which contains the knowledge and the inference engine that illustrates the conclusion. The conclusion is the response of the expert system at the request of the user [12], [14].

2.2 Case-Based Reasoning

Case-Based Reasoning [9] method is one of the ways to build expert systems with decision-making from new cases based on solutions from previous cases. There are four process steps in the Case-Based Reasoning method. Retrieve the most similar case, Reuse (using) information and knowledge of the case to solve the problem, Revise (repair) the proposed solution, and Retain (s) part of the experience that might be useful for solving problems in the future [5], [9], [11], see figure 1 for diagram process Case-Based Reasoning.

![Figure 1. Case-Based Reasoning Method](image)

Case-Based Reasoning process can use several techniques, one of which is the Nearest Neighbor method [11], [17] using equations.
The closeness of the case is determined by the value of 0 to 1, because of Nearest Neighbor calculations using the real calculation is between the values (0.1). A value of 0 means that two similar cases are not absolute and the absolute value of 1 case is similar [5], [9], [18].

3. Results And Discussion

Application of Case-Based Reasoning to a diagnosis of psychological disorder requires several data objects such as symptom data, symptom categories, solutions, and diseases, here are the tables of each data used.

Table 1. Symptom Categories

No	Code	Name
1	S1	Emotional Symptom
2	S2	Physical Symptom
3	S3	Mind Symptom
4	S4	Attitude Symptom

Table 2. Symptom Data

No	ID	Name
1	G01	Speaking less smoothly
2	G02	Rigid and inflexible
3	G03	Selfish
4	G04	Unstable emotional disturbance
5	G05	Respiratory disturbances, shortness of breath
6	G06	Diet disorders
7	G07	Mindset disorder
8	G08	Insomnia
9	G09	Want to kill yourself
10	G10	Loss of memory
11	G11	Antisocial
12	G12	Doing a job/activity over and over again
13	G13	Experiencing convulsions
14	G14	Maintain excessive hygiene
15	G15	Indigestion
16	G16	Feeling heavy on the limbs
17	G17	Excessive suspicion
18	G18	Feeling low self-esteem
19	G19	Feeling worried about excessive disease
20	G20	Feeling weak and tired easily
21	G21	Feeling suffering from a severe illness
22	G22	Feeling body parts pain
23	G23	Feeling hopeless
24	G24	Feel very sinful
25	G25	Feeling very guilty / very afraid to make mistakes
26	G26	Feel very excited
---	---	
27	G27 Feel very smart in a particular field	
28	G28 Feel very afraid of certain objects/conditions	
29	G29 Excessive sadness	
30	G30 Feel happy after pulling hair	
31	G31 Feel happy to grab an eye-catching object	
32	G32 Fear of excessive	
33	G33 Fearing excessive dirty	
34	G34 Feeling not confident	
35	G35 Feeling never guilty	
36	G36 Easy to sweat cold	
37	G37 Easy to panic	
38	G38 Easily offended	
39	G39 Underwent traumatic / violent	
40	G40 Feeling stressed for one thing	
41	G41 Always think badly	
42	G42 Nice to quarrel, hostile and often screwed up	
43	G43 Nice to interfere in other people's business	
44	G44 Often lie	
45	G45 Often counts in the mind	
46	G46 Often thinking is unrealistic	
47	G47 often being attentive	
48	G48 Frequent delusions	
49	G49 Often shaking	
50	G50 Frequent hallucinations	
51	G51 Often angry / irritable	
52	G52 Often check the body for mild problems	
53	G53 Often crying hysterically	
54	G54 Often pull hair until it fall out	
55	G55 Often experience of loss of physical function, suddenly paralyzed, feeling deaf, blind, numb but only briefly	
56	G56 Often have severe cramps	
57	G57 Often experience significant mood swings, very happy to be very sad / vice versa	
58	G58 Often experience pain / health problems	
59	G59 Often hurt yourself	
60	G60 Often feel neglected and inattentive	
61	G61 Often feel uneasy	
62	G62 Often feel anxious, restless and daydreaming	
63	G63 Often feel heart palpitations	
64	G64 Often feel headache	
65	G65 Often happy, excessively cheerful	
66	G66 Often feel tense and anxious	
67	G67 Often feel depressed with the circumstances	
68	G68 lost consciousness	
69	G69 impatient	
70	G70 difficult to speak normally	
Difficult concentration and decreased memory
Unable to adjust / difficult to adjust
Do not have a sense of humor
Never fear

Table 3. Solution

No	Code	Name
71	G71	Difficult concentration and decreased memory
72	G72	Unable to adjust / difficult to adjust
73	G73	Do not have a sense of humor
74	G74	Never fear

Table 4. Psychological Disorders Disease

No	Code	Name
	P01	Ansietas Cemas
	P02	Anorexia Nervosa
	P03	Bipolar Disorder
	P04	Conversion Disorder
	P05	Depresi
	P06	Enosimania
	P07	Fobia
	P08	Hipokondria
	P09	Hysteria
	P10	Multiple personality

A simple case example of using Case-Based Reasoning method can see in table 5.

Table 5. Example Case Based Reasoning

No	Disease	Symptom	Initial Case
1	Anorexia Nervosa	[G06] [G32] [G34] [G58]	Anorexia
2	Anxiety	[G15] [G36] [G37] [G40] [G49] [G61]	Anxiety
The consultation process obtained symptoms as follows:
1. [G06] Diet disorders
2. [G34] Feeling not confident
3. [G58] Often experience pain/health problems
4. [G15] Indigestion
5. [G49] Often shaking

To obtain a diagnostic result, the system compares the symptoms chosen in consultation with the existing symptoms of the previously stored case.

Table 6. Case-Based Reasoning Process

No	Diseases	Case	Weight	Match	Weight
1	Anorexia Nervosa	[G06]	3	[G06]	3
		[G32]	3	[G34]	3
		[G34]	3	[G58]	3
2	Anxiety	[G15]	3	[G15]	3
		[G36]	1	[G49]	1
		[G37]	5		
		[G40]	1		
		[G49]	1		
		[G61]	3		
		[G64]	1		

Based on table 6 data, it means the most likely disease experienced is Anorexia Nervosa with a percentage of 75%, from this data an expert can add the case to a new case on a system that can later be reused or change the existing case data (revision).

The use of case-based reasoning methods in Table 6 is completed in an online expert system.
Figure 1 displays information on symptoms, categories of symptoms, diseases, and solutions. The central section also displays the exact amount of data contained in the database; Figure 2 shows another example of the system.

Testing and implementation done by using case-based reasoning method in the expert system can help to know the psychological disorder.

4. Conclusion

Expert system with Case-Based Reasoning method can be applied well for cases of psychological disorders and can also be used for other cases. Development of this method can also be done by combining with other methods or also compare the results with other expert system methods.

References

[1] Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “3D object modeling using data fusion from laser sensor on quadrotor,” in AIP Conference Proceedings, 2016, vol. 1755.
[2] B. Ruiz-Mezcua, A. Garcia-Crespo, J. L. Lopez-Cuadrado, and I. Gonzalez-Carrasco, “An expert system development tool for non AI experts,” Expert Syst. Appl., vol. 38, no. 1, pp. 597–609, 2011.
[3] N. A. Hasibuan, K. Yusmiarti, F. T. Waruwu, and R. Rahim, “Expert systems with genetics probability,” Int. J. Res. Sci. Eng., vol. 3, no. 2, pp. 112–116, 2017.
[4] K. C. Lee and S. Lee, “A causal knowledge-based expert system for planning an Internet-based stock trading system,” Expert Syst. Appl., vol. 39, no. 10, pp. 8626–8635, 2012.
[5] G. H. Lee, “Rule-based and case-based reasoning approach for internal audit of bank,” Knowledge-Based Syst., vol. 21, no. 2, pp. 140–147, 2008.
[6] R. Retnowati and A. Pujiyanta, “Implementasi Case Base Reasoning Pada Sistem Pakar Dalam Menentukan Jenis Gangguan Kejiwaan,” J. Sarj. Tek. Inform., vol. 1, no. 1, pp. 69–78, 2013.
[7] L. A. Latumakulita, “Sistem Pakar Pendiagnosa Penyakit Anak Menggunakan Certainty Factor (Cf),” J. Ilm. Sains, vol. 12, no. 2, p. 120, 2012.
[8] D. T. Yuwono, A. Fadllil, M. T. Informatika, U. Ahmad, and D. Yogyakarta, “PENERAPAN METODE FORWARD CHAINING DAN CERTAINTY FACTOR PADA SISTEM PAKAR,” vol. 04, no. 02, pp. 136–145, 2017.
[9] I. Watson and F. Marir, “Case-Based Reasoning: A Review,” Knowl. Eng. Rev., vol. 9, no. 4, pp. 327–354, 1994.

[10] C. Diki Andita Kusuma, “Rancang Bangun Sistem Pakar Pendiagnosa Penyakit Paru-Paru Menggunakan Metode Case Based Reasoning,” Infotel, vol. 6, no. 2, pp. 57–62, 2014.

[11] W. Yulianti, “Aptitude Testing Berbasis Case-Based Reasoning Dalam Sistem Pakar Untuk Menentukan Minat Dan Bakat Siswa Sekolah Dasar,” J. Teknol. dan Sist. Inf. UNIVRAB, vol. 1, no. 2, pp. 104–118, 2016.

[12] K. P. Tripathi, “A Review on Knowledge-based Expert System: Concept and Architecture,” Artif. Intell. Tech. - Nov. Approaches Pract. Appl., vol. 4, no. 4, pp. 19–23, 2011.

[13] Roni Pambudi & Sumarno, “Aplikasi Sistem Pakar Diagnosa Penyakit Kanker Menggunakan Metode Certainty Factor,” J. Ilm. Tek. Inf., no. Sistem Pakar, p. IF-64-IF-65, 2015.

[14] A. Keleș, “Expert Doctor Verdis: Integrated medical expert system,” Turkish J. Electr. Eng. Comput. Sci., vol. 22, no. 4, pp. 1032–1043, 2014.

[15] D. Siregar, D. Arisandi, A. Usman, D. Irwan, and R. Rahim, “Research of Simple Multi-Attribute Rating Technique for Decision Support,” J. Phys. Conf. Ser., vol. 930, no. 1, p. 012015, Dec. 2017.

[16] F. Haswan, “Decision Support System For Election Of Members Unit Patients Pamong Praja,” Int. J. Artif. Intell. Res., vol. 1, no. 1, p. 21, Jun. 2017.

[17] J. Papathanasiou, N. P. B. T. Bournaris, and B. Manos, “A Decision Support System for Multiple Criteriar Alternative Ranking Using TOPSIS and VIKOR: A Case Study on Social Sustainability in Agriculture,” ICDSS, vol. 2, pp. 3–15, 2016.

[18] J. Sebestyénová, “Case-based reasoning in agent-based decision support system,” Acta Polytech. Hungarica, vol. 4, no. 1, pp. 127–138, 2007.