Extracellular vesicle-orchestrated crosstalk between cancer-associated fibroblasts and tumors

Chuansi He a,1, Linling Wang a,1, Ling Li a, Guiquan Zhu b,∗

a Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
b State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China

ARTICLE INFO

Keywords:
Extracellular vesicle
Cancer-associated fibroblasts
Tumor microenvironment
Signal transduction

ABSTRACT

Communication networks in the tumor microenvironment (TME) play a crucial role in tumor progression. Cancer-associated fibroblasts (CAFs) are among the most abundant stromal cells in the TME. Bidirectional signal transduction between cancer cells and CAFs within the TME is important for cancer development and treatment responsiveness. Extracellular vesicles (EVs) carrying proteins, miRNAs, and other biomolecules are secreted into the extracellular matrix (ECM), which has been demonstrated to be an important communication medium between tumors and CAFs. Tumors regulate the activation of CAFs by secreting EVs. Conversely, CAFs can also affect tumor proliferation, metastasis, and therapeutic resistance through EVs. Here, we will classify EV cargoes and discuss the role of EV-mediated interactions between CAFs and tumors, reviewing current knowledge in combination with our confirmed results.

Introduction

Tumor progression is closely related to the tumor microenvironment (TME). Endothelial cells, fibroblasts, immune cells, and other non-tumor cells exist in the TME [1]. Cytokines, growth factors, hormones, extracellular matrix (ECM), and other extracellular components are also important components of the microenvironment [1]. Tumors recruit stromal cells by secreting growth-stimulating agents and intermediate metabolites to reshape the tissue structure [2]. Conversely, stromal cells also regulate tumor growth, invasion, metastasis, and therapeutic resistance by secreting cytokines [3]. Communication networks in TME play a crucial role in tumor progression.

Cancer-associated fibroblasts (CAFs) are one of the most abundant stromal cells in the TME and are derived from the pathological activation of persistent fibroblasts, mesenchymal stem cells, and adipocytes in the microenvironment matrix [4]. CAFs promote tumor migration and invasion by reconstructing ECM and participating in proteolysis, cross-linking, and assembly of the ECM [5]. In addition, tumors can promote stromal cell activation into the CAF phenotype [6]. The interaction between tumors and CAFs has a profound influence on tumorigenesis and the microenvironment components.

Extracellular vesicles (EVs), which carry proteins, miRNAs, and

1 Corresponding author.
E-mail address: zhugq@scu.edu.cn (G. Zhu).
1 These authors contributed equally to this work.

https://doi.org/10.1016/j.tranon.2021.101231
Received 28 May 2021; Received in revised form 4 September 2021; Accepted 25 September 2021
1936-5233/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
other biomolecules, are secreted into the ECM, to be taken up by recipient cells to perform physiological functions [7]. A growing body of evidence has shown that EVs are an important communication medium between tumors and CAFs [8]. In this review, we focus on the role of EVs in the TME by reviewing current knowledge in combination with the results that we have confirmed, and discuss the role of EV-mediated interactions between tumors and CAFs (Fig. 1).

Extracellular vesicles (EVs)

EVs are typically cup-shaped, negative-staining, and round-shaped under transmission and cryogenic electron microscopy [9]. According to size and biogenic process, EVs can be divided into three main subgroups: (i) exosomes (30–100 nm), (ii) microvesicles (20–1000 nm), and (iii) apoptotic bodies (50–5000 nm) [10]. We will focus on the roles of exosomes and microvesicles in intercellular communication in the TME in this review. Exosome biogenesis begins with the budding of the membrane of multivesicular bodies (MVBs) to form intracellular vesicles (ILVs) [11]. The MVBs are then transported to the plasma membrane of the cell, where they fuse with the plasma membrane to release the exosomes [11]. The formation of microvesicles is initiated from the outward budding and plasma membrane fusion, subsequently, vesicles are released into the extracellular space [12]. EVs carry a variety of signaling molecules, which are important mediators of cell-to-cell communication and play important roles in many physiological and pathological processes, including stem cell maintenance, tissue repair, immune regulation, and tumor growth.

EVs originating from different cells contain diverse contents that exert different functions. For example, EVs secreted by metastatic melanoma cells spontaneously metastasize to the lung and brain, activating pro-inflammatory signals in lung fibroblasts and astrocytes, suggesting that EV-mediated stromal cell reprogramming is a general mechanism for regulating metastatic sites in multiple distal organs [13]. In contrast, EVs derived from immune cells inherit the antitumor activity of parent cells to some extent. Activated CD8+ T cells from healthy mice instantaneously release cytotoxic EVs and significantly reduce tumor invasion and metastasis by reducing stromal cell apoptosis [14]. In addition, EVs derived from body fluids are of great interest to researchers; plasma-derived EVs from Plasmodium vivax infected patients are preferentially absorbed by human splenic fibroblasts in vitro; this uptake induces specific upregulation of ICAM-1 and is associated with nuclear transport of NF-κB [15]. Although EVs show great potential in the regulation of physiological and pathological functions, the current exploration of EV-mediated communication between cells is still limited to the basic mechanisms. Owing to the instability of EVs themselves and their low efficiency in physiological function regulation, EVs are still very rare in clinical translational applications. These problems are also a bottleneck that researchers need to overcome at present.

Cancer-associated fibroblasts (CAFs)

CAFs are the key components of the TME. However, due to the lack of specific markers for fibroblasts, there are inherent difficulties in determining their biological origin [16]. The simplest view from biopsy analysis at this stage is that cells with elongated epithelial, endothelial, and leukocyte markers that lack the mutations found in cancer cells may be considered as CAFs [16]. At present, the most common positive molecular markers in experiments are α-smooth muscle actin (α-SMA), fibroblast activating protein (FAP), podoplanin, vimentin, and platelet-derived growth factor receptor (PDGFR). The negative characteristics were CD31 and cytokeratin [17].

As the name suggests, CAFs are defined by their association with cancer cells within the TME [17]. According to the existing literature, the occurrence and development of CAFs can be simply summarized as follows: fibroblasts are activated in the initial stage of tumorigenesis to produce CAFs, and then reshape the TME to induce tissue repair, thus possibly playing an anti-tumor function [17]. However, as tumors grow, this repair process may, in turn, promote tumor growth, as cancer cells use growth factors secreted by CAFs to promote their own survival and proliferation [17]. Therefore, in order to better understand the markers of CAFs, the activation of related signaling pathways, and their role in tumor progression and treatment, it is crucial to further explore the origin of CAFs.

CAFs activation

The exact sources of CAFs are not entirely clear and may be mixed. CAFs can be derived from TME cells (e.g., fibroblasts, epithelial cells, endothelial cells, pericytes, and adipocytes) and distal cells (e.g., bone marrow-derived mesenchymal stem cells) [17, 18]. Because of the

Fig. 1. EV-mediated communication between CAFs and tumors.
considerable heterogeneity of the origin of CAFs, the mechanisms of activation of different CAFs are highly varied.

Fibroblast activation signals include TGF-β family ligands and lipid-mediated lysophosphatidic acids, which promote the activity of Smad transcription factor and serum response factor (SRF), respectively; these polymerize to drive the expression of the activated fibroblast marker αSMA and increase the activity of the cytoskeleton contraction [17]. In addition, various inflammatory modulators can also promote the activation of CAFs, among which IL-1 acts through NF-κB [19]. IL-6 mainly acts on signal transduction and transcriptional activator STAT (signal transducer and transcriptional activator STAT) transcription factors [20]. Activation of CAFs is further enhanced by changes in the contractile cytoskeleton and histone acetylation, including crosstalk and positive feedback of the Janus kinase (JAK)-STAT signal. CAFs can also be activated by physical changes in the ECM [21]. Overproliferation of transformed epithelial cells may lead to fibroblast stretch, which can activate Srf-driven transcription and YES-associated protein 1 (YAP1)–TEAD-driven transcription [17]. These transcription factors cooperatively drive the expression of a variety of CAF-related genes, including the genes encoding connective tissue growth factor (CTGF; also known as CCN2) and cysteine-rich angiogenic inducer 61 (CYR61; also known as CCN1) [22]. In addition, stromal cell molecules, such as CTGF and CYR61, and the contractile cytoskeleton cooperate to increase tissue hardness, further driving SRF- and YAP1-dependent transcriptional programs, thus forming a self-sustaining positive feedback loop for CAFs [16]. Signals from other cells in the TME may also influence CAF activation, in addition to tumor cells. Furthermore, routine chemoradiotherapy can promote the production of CAFs and regulate their function [23]. These results suggest that CAFs have the potential to be effective targets for the clinical treatment of cancer.

CAFs function

The best-known function of CAFs is deposition and remodeling of the ECM in the TME [16]. This process is mainly achieved through Rho and Rab GTPase, which regulate integrin-mediated adhesion and actomyosin cytoskeleton, and is associated with downregulation of the transmembrane receptor CD36 (also known as platelet glycoprotein 4) [16]. In addition, CAFs also produce stromal cross-linking enzymes and combine with force to mediate ECM remodeling, which contributes to increasing the hardness of tumor tissues [24]. The remodeling of ECM by CAFs can not only promote the local invasion of tumors, but also provide the necessary survival conditions for distant metastasis [24]. Reactivation of CAFs in secondary sites produces stromal components (e.g., tenasin and peristin) through a variety of mechanisms that provide support signals for metastatic cancer cells [25]. The increase in tissue hardness mediated by CAFs triggers pro-survival and proliferation signals in cancer cells [26]; combined with increased mechanical stress, blood vessels collapse, leading to local hypoxia, which promotes a more aggressive cancer phenotype [27].

CAFs are also important sources of growth factors, cytokines, and soluble factors that promote tumor growth and regulate therapeutic responses [28]. The production of TGF-β, leukemia inhibitory factor (LIF), growth retardant specific protein 6 (GAS6), fibroblast growth factor 5 (FGF5), growth differentiation factor 15 (GDF15), and hepatocyte growth factor (HGF) promote the invasion and proliferation of cancer cells [29]. In contrast, CAF secretion also affects other components of the TME. In hepatocellular carcinoma, CAFs have been reported to promote angiogenesis through vascular endothelial growth factor (VEGF) secretion, which is related to the upregulation of the enhancer of zeste homolog 2 (EZH2) and further inhibition of vasohibin 1 (VASH1) [30].

Furthermore, many cytokines and chemokines are produced by CAFs, which act on a range of immune cells, leading to immunosuppressive and pro-immune outcomes [31]. Tumor cells are first destroyed by immune cells; then, tumor cells and immune cells coexist; finally, tumor cell subcloning changes its immunogenicity, evades immune recognition, and promotes tumor progression [32]. In this case, CAFs modulate tumor immune responses to promote tumor progression, including interactions with a variety of immune cells, such as CD8+ T cells, regulatory T (Treg) cells, macrophages, and dendritic cells [32]. Xu et al. performed transcriptional RNA sequencing and reverse transcription-quantitative polymerase chain reaction analysis on human periodontal ligament fibroblasts (HPLFs) that had ingested salivary adenoid cystic carcinoma cell-derived EVs, and the results confirmed that HPLFs were cultured as a pre-tumorigenetic phenotype [33]. This phenomenon is associated with EV-mediated stimulation of proinflammatory cytokines and secretion of nerve growth factor (NGF) [33]. In addition, secretion analysis of EVs collected from Hodgkin’s lymphoma (HL) cells revealed enhanced release of pro-inflammatory cytokines (such as IL-1α, IL-6, and TNF-α), growth factors (G-CSF and GM-CSF), and pro-angiogenic factors (such as VEGF) [34]. CAFs form a network with a variety of immune cells in the TME through related cytokines, making the mechanism of their regulation of immunity and inflammation extremely complex, which still needs to be further explored.

As an important medium of information communication between cells, direct interaction between EVs and cancer cells has been extensively discussed in the literature. Previous studies have shown that tumor cell-derived EVs can regulate the activation of CAFs [35]. Conversely, CAFs can also affect tumor progression, metastasis, and treatment by secreting EVs [36]. This review summarizes the roles of different components carried by EVs in the interaction between CAFs and tumor cells.

Role of tumor-derived EV contents on CAFs

Tumor-derived EVs play an important role in the formation of local microenvironments, including fibrosis, angiogenesis, escape from immune surveillance, and even metastasis. Interestingly, EVs derived from the body fluids of tumor patients have been shown to promote the proliferation of normal fibroblasts [37]. As the main component of the TME, signal communication between fibroblasts and tumor cells plays an important role in the occurrence and development of tumors. Goulet et al. demonstrated that healthy primary bladder fibroblasts treated with EVs of bladder cancer showed high expression of α-SMA and FAP as CAFs [38]. In addition, the phenomenon in which tumor-derived EVs promote the activation of CAFs may be related to the aggressiveness of tumors [39], and the physical characteristics of the TME (such as the hardness of surrounding stroma) [40]. On the other hand, CAFs from different sources have different responses to EVs secreted by tumors. For example, the number of CAFs differentiated from human umbilical vein endothelial cells (HUVECs) increases with melanoma-derived EVs, showing significant morphological and molecular changes and marked moveability [41]. Mesenchymal stem cell (MSC)-derived EVs inhibit colorectal to mesenchymal transition, induce angiogenesis and maintain endovascular homeostasis [41]. EVs carry different biomolecules to perform different physiological functions in recipient cells. We will classify the current common EV carriers and elaborate on the effects of different components carried by tumor-derived EVs on CAFs.

Protein

As previously mentioned, the TGF-β family of ligands is a major signaling molecule for the activation of CAFs. Tumor-derived EVs promote the activation of CAFs by carrying TGF-β-related proteins [42]. TGF-β was found to be expressed on the surface of EVs and related to the transmembrane proteoglycan I-glycan, which plays a role in stimulating Smad-dependent signaling [42]. On the other hand, Gu et al. confirmed that gastric cancer cells trigger the differentiation of human umbilical cord-derived MSCs to CAFs through TGF-β transfer mediated by EVs and activation of the TGF-β1/Smad pathway [43]. This phenomenon also
illustrates the diversity of CAFs from another perspective. In addition, Antonyak et al. found that EVs secreted in two types of cancer cells impart transformational characteristics to normal fibroblasts and epithelial cancer cells, which require the transporter cross-linking enzyme tissue transglutaminase (tTG) to cooperate with the substrate fibronectin (FN) [44]. Furthermore, FN levels in the ECM have been shown to be involved in the dynamic relationship between tumors and stromal cells in the TME [45]. The results enrich the CAF activation mechanism and provide new ideas for CAFs as tumor therapeutic targets.

In addition to regulating the local TME, tumor-derived EVs can also provide a growth-friendly supporting environment for tumor metastasis by promoting the activation of CAFs in distal tissues. Circulating EVs isolated from the plasma of patients with metastatic prostate cancer induced reprogramming of normal human prostate fibroblasts to express fibronectin (FN) [44]. Furthermore, FN levels in the ECM have been shown to be involved in the dynamic relationship between tumors and stromal cells in the TME [45]. The results enrich the CAF activation mechanism and provide new ideas for CAFs as tumor therapeutic targets.

Changes in the environment affect the EV cargo, which in turn affects their physiological function [49]. Ramteke et al. analyzed the role of EVs from hypoxic prostate cancer cells in promoting the CAF phenotype in prostatic stromal cells (PRSC) [50]. The expression of multiple PRSC signaling molecules (TGF-β1, TNFα, IL6, TSG101, Akt, ILK1, and β-catenin) was increased after treatment with EVs [50]. Combined with the characteristics of hypoxia in the TME, the synergistic interaction between the tumor and stromal cells in the microenvironment may be more obvious. Interestingly, we have shown that tumor cells can secrete TGF-β1 in an EV-independent manner and that hypoxia promotes this process [6]. Hence, tumor cells secrete TGF-β and EVs to mediate CAF-like differentiation of fibroblasts. This conclusion provides a new perspective for exploring the mechanism of CAF activation, while also providing a new idea for the participation of EVs in information communication between tumor and stromal cells.

Table 1

Type of cancer	miRNA	Main effects	Ref.
Breast cancer	miR-9	Triple-negative breast cancer-secreted miR-9 can be transferred via extracellular vesicles to recipient normal fibroblasts and this uptake results in enhanced cell motility.	[58]
-	miR-125b	MiR-125b is transferred through extracellular vesicles from breast cancer cells to normal fibroblasts within the tumor microenvironment and contributes to their development into cancer-associated fibroblasts.	[56]
-	miR-146a	Breast cancer-derived extracellular vesicles regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer-associated fibroblasts.	[57]
Liver cancer	miR-124-3p	Hepatocellular carcinoma-derived extracellular vesicle miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts.	[61]
Lung cancer	miR-142-3p	Extracellular vesicles associated miR-142-3p promote the cancer-associated fibroblast phenotype in lung fibroblasts which is independent of TGFβ signaling.	[64]
Ovarian cancer	miR-124	Extracellular vesicle transfer of miR-124 inhibits normal fibroblasts to cancer-associated fibroblasts transition by targeting sphingosine kinase 1 in ovarian cancer.	[55]
Skin cancer	miR-375	Merkel cell carcinoma-derived extracellular vesicle-shuttle miR-375 induces fibroblast polarization by inhibition of RBPJ and p53.	[100]

In conclusion, using these small molecules as targets to cut off tumor reprogramming of fibroblasts into CAFs [53]. Although tumor angiogenesis is regulated by a variety of factors, EV delivery of miR-155 may be a potential target for the control of melanoma angiogenesis and could be used to develop new strategies for the treatment of melanoma [53]. Besides, several miRNAs have also been shown to activate CAFs through EVs in different cancers, such as miR-1423p in lung cancer [54] and miR-124 in ovarian cancer [55]. We will elucidate the regulatory role of EVs derived from different tumors on CAFs.

MIRNA

In addition to proteins, miRNAs play an important role in the EV-mediated activation of CAFs in tumors (Table 1). Zhou et al. confirmed that EVs secreted by melanoma cells can induce the reprogramming of fibroblasts into CAFs [53]. Although tumor angiogenesis is regulated by a variety of factors, EV delivery of miR-155 may be a potential target for the control of melanoma angiogenesis and could be used to develop new strategies for the treatment of melanoma [53]. Besides, several miRNAs have also been shown to activate CAFs through EVs in different cancers, such as miR-1423p in lung cancer [54] and miR-124 in ovarian cancer [55]. We will elucidate the regulatory role of EVs derived from different tumors on CAFs.

Breast cancer

Vu et al. demonstrated that mir-125b was transferred from breast cancer cells to normal fibroblasts in the tumor microenvironment by EVs and promoted their development into cancer-associated fibroblasts in a mouse triple negative breast cancer model [56]. In addition, breast-cancer-derived EVs promote the activation of CAFs through the miR-146a/TXNIP axis, which activates the Wnt pathway, thereby enhancing the invasion and metastasis of tumor cells [57]. MiR-9 has also been shown to have similar functions in breast cancer models [58]. In conclusion, using these small molecules as targets to cut off tumor metastasis can provide a new direction for the prevention and treatment of cancer metastasis in clinical practice.

Metabolic regulation of the TME

Metabolic regulation of the TME is important for tumor development. CAF-mediated metabolic reprogramming contributes to the sustained growth of tumors by regulating the shared metabolic environment. Yan et al. demonstrated a mechanism model involving EV-encapsulated miR-105 secreted by breast cancer, in which miR-105 is induced by the oncoprotein Myc in cancer cells, which in turn activates Myc signaling in CAFs to induce metabolic programming [59]. Interestingly, when nutritionally adequate, miR-105-programmed CAFs enhance glucose and glutamine metabolism, thereby providing fuel for neighboring cancer cells [59]. When nutrients are scarce and metabolic
by-products accumulate, CAFs are detoxified by converting metabolic waste (including lactic acid and ammonium) into energy-rich metabolites [59]. The different metabolic characteristics of miR-105-mediated CAFs during changes in the metabolic environment have led to a new understanding of the physiological functions of CAFs.

Digestive system tumor

MiRNAs analysis of EVs from gastric cancer revealed that several miRNAs play a role in the induction of fibroblast chemokines such as CXCL1 and CXCL8 [60]. Moreover, abnormal activation of CXCL1 and CXCL8 in clinical CAFs is associated with poor survival in patients with gastric cancer, and this association may provide a new target for anti-cancer therapy [60]. In addition to fibroblasts, tumor-derived EVs can also activate other cell types to transform into CAFs by the delivery of miRNAs. EVs of hepatocellular carcinoma carry miRNA-21 to transform hepatocellular stellate cells into cancer-associated fibroblasts and promote tumor progression [61].

A variety of miRNAs have been shown to regulate the expression of TP53, one of the most studied tumor suppressor genes, thus playing a role in tumor progression. Yoshiii et al. demonstrated from another perspective that miRNAs and TP53 play a role in fibroblast activation [62]. After fibroblasts were treated with EVs from TP53-deficient colon cancer cells in vivo, the CAF phenotype in fibroblasts was promoted [62]. Microarray analysis of EVs confirmed that several microRNAs (miR-1249-5p, miR-6377-5p, and miR-6819-5p) were upregulated in TP53-deprived EVs [62]. These miRNAs have been shown to functionally inhibit TP53 expression in fibroblasts [62]. In addition, TP53-induced nucleoprotein 1 (TP53InP1) has also been shown to be a target of miR-155 in fibroblasts, while downregulation of TP53InP1 protein levels contributes to fibroblast activation [63]. The down-regulation of TP53 enhances the chemotaxis of fibroblasts to the CAF phenotype, which can be regulated by miRNAs. The results provide a theoretical basis and a new perspective for CAFs to become clinical tumor therapeutic targets.

MiRNA also play a key role in the establishment of EV-mediated microenvironments in distal metastases. Similarly, highly metastatic HCC was more capable of converting normal lung fibroblasts to CAFs than those with low metastatic HCC, which was mediated by miR-1247–3p delivered via EVs [64]. Furthermore, clinical data have shown that high serum EV miR-1247–3p levels are associated with lung metastasis in HCC patients [64].

Head and neck cancer

Hypoxia, one of the main characteristics of the TME, plays an important role in the regulation of EVs from tumor cells. We have demonstrated that hypoxic head and neck squamous cell carcinoma (HNSCC) cells can induce CAF-like differentiation of fibroblasts by secreting TGF-β and EVs containing miR-192/215 miRNA levels [6]. The target gene of the miR-192/215 family is caveolin 1 (CAV1), which regulates CAF-like differentiation of fibroblasts by inhibiting TGF-β/Smad signaling [6]. Restoration of CAV1 levels with CAV1 scaffolding domain (CSD) peptides inhibited hypoxic EV- and TGF-β-induced CAF-like differentiation [6]. Finally, we measured miR-192 and miR-215 levels in EVs of patients with HNSCC and found that miR-192/215 expression levels in tumor tissue-derived EVs were significantly correlated with nuclear HIF-1α and aSMA expression levels [6]. Furthermore, miR-215 levels in tumor tissue-derived EVs were significantly associated with poorer overall survival in patients with HNSCC, suggesting that tumor tissue-derived EVs may contain substances that are indicative of hypoxia and aggressive TME [6]. The use of CSD peptides to restore CAV1 levels may be a potential therapeutic strategy for treating HNSCC in hypoxic microenvironments [6].

Effects of CAF-derived EV contents on tumors

As one of the major components of the TME, the role of CAFs in tumor progression has not been fully clarified. The conditioned medium (CM) of CAFs verified that CAFs promoted the invasive phenotype of non-invasive bladder cancer cells by secreting IL-6-induced epithelial-mesenchymal transition (EMT), which proved that the secretion of CAFs could play a regulatory role in tumor growth [38]. EVs play an important role in the regulation of CAFs in tumors as an important medium of information communication between cells. EVs derived from primary human CAFs have been shown to influence the proliferation, survival, migration, and invasion of oral squamous cell carcinoma (OSCC) cells [65]. Ioh et al. found that CAFs induced apoptosis in gastric cancer cells, thereby preventing the expansion and invasion of cancer cells, which ultimately promoted CAF-dominated tumor invasion [66]. Therefore, CAFs not only promote tumors, but also have certain anti-tumor effects. In addition, metabolomic analysis of EVs from CAFs revealed that they contained complete metabolites (including amino acids, lipids, and TcaCycle intermediates), which were used by cancer cells for central carbon metabolism and tumor growth under nutrient deficiency or nutrient stress conditions [67]. The results substantiate the mechanism of metabolic reprogramming of the TME by CAFs. The reason why CAFs have become one of the important targets of clinical transformation is closely related to the role they play in tumor progression, metastasis, and drug resistance [68]. Next, we summarize the effects of the different components carried by CAF-derived EVs on tumors.

Protein

Tumors and CAFs are interdependent and complement each other during growth. In fact, there are many ways in which CAFs promote tumor metastasis by secreting EVs. For example, the promotion of lung fibroblast activation by CAF-derived EVs is a key event in the pre-metastatic niche. Kong et al. demonstrated that integrin α2β1 mediated the uptake of CAF-derived EVs by lung fibroblasts in transplanted tumor mice, reducing the formation of a pre-metastatic niche in mice, thereby increasing lung metastasis in salivary adenoid cystic carcinoma (SACC) [69]. The significant increase in plasma EV integrin β1 in transplanted tumor mice with lung metastasis risk suggests that plasma EV integrin β1 may be a promising biomarker for early prediction of SACC metastasis [69].

Another mechanism is that the uptake of CAF-derived EVs by tumor cells improves their migration and invasion ability, thus leading to enhanced metastasis of tumors. However, the same EV protein mediates motor ability enhancement of tumors, but the mechanism of action is not the same. The formation of the ANXA6/LRP1/TSP1 complex is limited to CAFs, so the enhanced aggressiveness of PDA is mediated by the uptake of the CAF-derived EV-carrying complex by tumor cells [70]. In addition, CD9-positive EVs from CAFs may stimulate the migration ability of scirrhous-type gastric cancer cells [71]. However, CD81-positive EVs can activate the autocrine Wnt-PCP signal to drive the invasive behavior of breast cancer cells [72]. There seems to be similarities in the end results despite different mechanisms of cancer invasion. A better understanding of the mechanism of tumor metastasis will provide a more abundant theoretical basis for clinical cancer treatment.

CAFs are currently sought-after targets for clinical cancer therapy, and their roles in regulating the therapeutic sensitivity of tumors have attracted extensive attention. CAFs promote dryness and increase radiation resistance in colorectal cancer (CRC) cells, and EVs from CAFs play a key role in this process by activating the TGF-β signaling pathway [73]. The molecular mechanism of tumor drug resistance induced by CAFs is complex. EVs of CAFs carry Annexin A6, which plays a key role in network formation and drug resistance in ECM cells by activating FAK-YAP [74]. In addition, Wnt proteins in EVs can induce dedifferentiation of cancer cells, thereby promoting chemotherapeutic resistance in CRC [75]. Therefore, exploring the mechanism of CAF-mediated tumor therapy resistance is the only way to improve the clinical efficacy of
translational therapy.

Furthermore, to better understand the role of CAFs in the stroma of TME, Principe et al. performed a comprehensive proteomic analysis of the secreted factors of CAFs, including EVs, which resulted in the identification of 4247 proteins [76]. It provides a useful resource for future research on the mechanisms of CAFs and biomarker studies. However, investigations on the regulation mechanism of EV-proteins in tumor microenvironment are limited currently (Table 2), and more efforts are being devoted to further exploration.

Table 2

Type of cancer	Protein	Main effects	Ref.
Osteosarcoma	TGF-β1	Human lung fibroblasts showed more	[48]
		aggressiveness when stimulated	
		by osteosarcoma cell-derived EVs, which	
		was closely related to the presence of TGF-β1	
		in osteosarcoma cell-derived EVs.	
Liver cancer	Nidogen 1	Nidogen 1 in EVs derived from	[47]
		metastatic liver cancer cells activates	
		fibroblasts, which promoting lung	
		colonization of tumor cells and	
		enhancing the growth and viability	
		of hepatocellular carcinoma cells.	
Gastric cancer	TGF-β	Gastric cancer cells trigger the	[43]
	Annexin A6	differentiation of human umbilical cord-	
		derived MSCs to CAFs through TGF-β transfer	
		mediated by EVs and activation of TGF-β/Smad	
		pathway. EVs of CAFs carry Annexin A6, which	[74]
		plays a key role in network formation	
		and drug resistance in ECM cells by	
		activating FAK-YAP.	
Head and neck cancer	integrin	Integrin α2β1 mediated the uptake of CAF-	[69]
	α2β1	derived EVs by lung fibroblasts,	
		inducing the formation of a pre-	
		metastatic niche, thereby increasing	
		lung metastasis in salivary adenoid	
		cystic carcinoma.	
Colorectal cancer	Wnt	Wnt proteins in EVs can induce	[75]
		dedifferentiation of colorectal cancer cells,	
		thereby promoting chemotherapy	
		resistance in CRC.	

miRNAs have been found to be involved in TME remodeling and tumor-stromal cell interactions [77]. EVs were purified from the co-culture system of cancer cell lines and normal fibroblasts, and their miRNA expression profiles were analyzed [78]. The results suggested that the pathways involved in cell adhesion, endocytosis, and cell junctions might be related to the CAF phenotype and tumor progression [78]. Therefore, it can be inferred that CAFs regulate tumor progression by carrying miRNAs through EVs, but their physiological function needs to be analyzed in detail. MiR-10a-5p in CAF-EVs promoted angiogenesis and tumorigenicity of cervical squamous cell carcinoma (CSCC) cells by inhibiting the activation of Hh signaling by TBX5[79]. Just as the initial impression of CAFs themselves is consistent, the EVs secreted by CAFs still have the function of tumor promotion, but the specific types of miRNAs and the mechanism of their mediation still need to be further explored.

MiRNAs derived from CAF-EVs promote tumor migration and invasion

Among the many tumor-promoting effects of CAFs, the ability of tumor migration and invasion, which represents the metastatic potential of tumors, has always been a focus of research. Wang et al. found that 13 miRNAs were significantly upregulated in EVs from CAFs and corresponding paracancerous fibroblasts (PAFs) through miRNA microarray analysis [80]. CAF-derived EVs deliver miR-1228 to promote the invasion and migration of osteosarcoma by targeting Sca1 [80]. Similarly, CAFs can improve tumor migration and invasion by delivering miR-382–5p (OSCC) [81], miR-139 (gastric cancer) [82], and miR-369 (lung squamous cell carcinoma) [83]. Using these miRNAs as therapeutic targets may improve the inhibitory effect of cancer metastasis in clinical practice.

CAC-FV-miRNAs enhance the therapeutic resistance of tumors

Therapeutic resistance of the tumor is also one of the reasons for its popularity in therapeutic effectiveness research. Exploring the mechanism of tumor drug resistance has become an urgent obstacle for researchers and clinicians. EV-derived miR-27a produced by primary prostate fibroblasts can increase chemotherapy resistance by inhibiting P53 expression [84]. The role of CAFs in tumor drug resistance has attracted increasing attention, and they play an important role in the regulation of tumor drug resistance mediated by EVs [85]. Hormone therapy is a conventional treatment method for breast cancer, and its effects are closely related to the body’s estrogen receptor (ER). Regulation of ER expression by miR-221 has been repeatedly demonstrated [86,87]. CAFs deliver miR-221 to breast cancer cells via EVs, thereby inhibiting ER expression and reducing tumor sensitivity to hormone therapy [86]. The results provide an adjuvant therapeutic target for breast cancer hormone therapy, which, in combination with gene therapy, may produce a complementary effect. The fact that the same miRNA had the same function in different tumors should have made the results even more compelling. MiR-21 has been shown to be resistant to chemotherapy mediated by CAF-derived EVs in colorectal [88] and ovarian [89] cancers. In addition, CAFs can target specific drugs or treatment modalities through EV-mediated tumor therapy resistance, making the results more accurate. For example, pancreatic cancer has gencatibine resistance (miR-106b) [90], HNSCC cisplatin resistance (miR-196a) [91], and CRC radiation resistance (miR-93–5p) [92].

Negative tumor regulation of miRNAs derived from CAF-EVs

The above-mentioned contents are almost all the positive regulation of miRNAs carried by EVs of CAFs on the tumor-promoting effect. In fact, some miRNAs are negatively correlated with tumor progression. For example, CAF-EVs aggravate breast cancer in vitro and in vivo by decreasing miR-30e expression and upregulating CTHR1 [93]. Li et al. revealed that CAF-mediated endometrial cancer progression is related to the loss of miR-148b in the EVs of CAFs, and promoting the metastasis of stromal cell-derived miR-148b may be a potential therapeutic approach to prevent the progression of endometrial cancer [94]. Similarly, miR-34a-5p expression was significantly reduced in CAF-derived EVs [36]. The miR34a-5p/Δx axis promotes the progression of OSCC through the Act/GSK-3β/β-catenin signaling pathway, thereby inducing EMT to promote cancer cell metastasis [36]. In fact, these miRNAs, which are expressed at low levels in CAFs, have the potential to be biomarkers for good prognosis of cancer in clinical practice and effective targets for gene therapy. This viewpoint has been verified in animal experiments [95].

At present, there are relatively many research results on miRNAs carried by EVs from CAFs (Table 3), and the explanation of their function and the exploration of their mechanisms are relatively comprehensive. However, the overall experimental design is relatively consistent, and the conditions in the microenvironment are not completely simulated, which makes the results too ideal. For example, the tumor microenvironment is characterized by hypoxia, acidity, and inflammation. Applying these conditions to CAFs may lead to a more realistic conclusion. The treated CAFs may be closer to the body’s internal environment through the pro-tumor effect mediated by EVs.

Other components

In addition to proteins and miRNAs, several EV carriers play a key role in regulating the microenvironment and promoting tumor progression. For example, CAF-EVs suppress the proliferation of breast cancer cells by promoting miR-10a expression [100], which inhibits the activation of PI3K/AKT and-effects. Furthermore, CAF-EVs can promote the proliferation of lung cancer cells by inhibiting the expression of miR-338 and miR-494 [101]. These miRNAs play an important role in the regulation of tumor drug resistance mediated by EVs. The results indicate that CAF-EVs can deliver miRNAs to target tumor cells, thereby inhibiting tumor cell proliferation and migration. In conclusion, EVs have the potential to be a new therapeutic target for cancer treatment.
Table 3 Effects of miRNA carried by cancer-associated fibroblasts-derived extracellular vesicles on tumors.

Type of cancer	miRNA	Main effects	
Head and neck cancer	miR-382-5p, miR-196a	Cancer-associated fibroblast-derived extracellular vesicle miR-382-5p promotes the migration and invasion of oral squamous cell carcinoma.	[81]
Lung cancer	miR-369	Cancer-associated fibroblast-derived extracellular vesicle miRNA-369 potentiates migration and invasion of lung squamous cell carcinoma cells via NF-κ-mediated MAPK signaling pathway.	[83]
Breast cancer	miR-221	Cancer-associated fibroblast-secreted extracellular vesicle miRNA221 is directly involved in ER-repression, and may contribute to the MAPK-induced ER repression in breast cancer cells.	[86]
Gastric cancer	miR-139	Extracellular vesicle miRNA-139 in cancer-associated fibroblasts inhibits gastric cancer progression by repressing MMP11 expression.	[82]
Pancreatic cancer	miR-106b	Extracellular vesicle miRNA-106b from cancer-associated fibroblast promotes gencitabine resistance in pancreatic cancer.	[90]
Colorectal cancer	miR-93-5p	Extracellular vesicle-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFβ3.	[92]
Cervical cancer	miR-10a-5p	Extracellular vesicle-encapsulated microRNA-10a-5p shed from cancer-associated fibroblast facilitates cervical squamous cell carcinoma cell angiogenesis and tumorigenicity via Hedgehog signaling pathway.	[79]
Ovarian cancer	miR-21	Extracellular vesicle transfer of cancer-associated fibroblast-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1.	[89]
Osteosarcoma	miR-1228	Extracellular vesicle miR-1228 from cancer-associated fibroblasts promotes cell migration and invasion of osteosarcoma by directly targeting SCAL1.	[80]

Perspectives

At present, the understanding of CAFs is still relatively shallow, and many of the mechanisms involved in the activation and function of CAFs have not been elucidated. As the main component of the TME, CAFs play an irreplaceable role in tumor progression. However, the current exploration of the interaction between tumors and CAFs has not fully simulated the physiological state of the microenvironment to a certain extent. As mentioned earlier, regardless of whether the sources of EVs are tumor or stroma, the parent cells are not completely pure. When we explore the role of EVs in information communication between cells, the type or quantity of EVs may be affected by the presence of certain microenvironmental characteristics, such as hypoxia and acidity, on the parent cells. Previously, we have demonstrated that hypoxic HNSCC cells could induce CAF-like differentiation of fibroblasts through the secretion of TGF-β and EVs containing enhanced levels of miR-192/215 family miRNAs [6]. TGF-β and miR-192/215-rich EVs synergistically mediate tumor-promoting differentiation of fibroblasts [6]. Hypoxia promotes the expression of miR-215 and miR-192 through HIF-1α and NF-κB, respectively [6]. Conversely, if we apply the characteristics of the microenvironment to CAFs, it will be closer to the actual state of the microenvironment and may help explore the real mechanism of the involvement CAF-derived EVs in tumor progression.

Many clinical sample studies have shown how the amount or function of CAF correlates with outcome, so being able to target CAF would be an attractive new idea for the antitumor therapeutic family [6]. However, the wide range of CAF functions and possible interchangeability between subtypes pose challenges to the field. Therefore, patient benefits may require targeting CAF subtypes or reprogramming CAFs into normal fibroblasts or anti-tumor CAF phenotypes. In addition, EVs have been shown to play an important role in cell-to-cell communication, affecting stromal cell regulation of the TME. However, most of the evidence regarding the role of EVs in CAF involvement in tumorigenesis comes from in vitro and animal model studies. Therefore, it is necessary to develop new tools and research methods to apply these findings to clinical settings in order to elucidate the molecular mechanisms underlying the interaction between CAFs and cancer cells during tumorigenesis [16–18].

CRediT authorship contribution statement

Chuanshi He: Investigation, Validation, Software, Resources, Visualization, Methodology. Linlin Wang: Investigation, Validation. Ling Li: Conceptualization, Funding acquisition, Project administration. Guiquan Zhu: Conceptualization, Methodology, Data curation, Writing – review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81772900, 81872196, and 81972541) and the Department of Science and Technology of Sichuan Province (Grant No. 2020ZYD033).

role in CAF-mediated tumor progression. For example, stromal cells shed EVs containing an RNA named RNS7SL1, which drove anti-viral signaling in recipient breast cancer cells in protein-free form, ultimately resulting in tumor growth and therapeutic resistance [96]. Besides, Herrera et al. reported for the first time that the expression of certain biomolecules, many of the mechanisms involved in the activation and function of CAFs have not been elucidated. As the main component of the TME, CAFs play an irreplaceable role in tumor progression. However, the current exploration of the interaction between tumors and CAFs has not fully simulated the physiological state of the microenvironment to a certain extent. As mentioned earlier, regardless of whether the sources of EVs are tumor or stroma, the parent cells are not completely pure. When we explore the role of EVs in information communication between cells, the type or quantity of EVs may be affected by the presence of certain microenvironmental characteristics, such as hypoxia and acidity, on the parent cells. Previously, we have demonstrated that hypoxic HNSCC cells could induce CAF-like differentiation of fibroblasts through the secretion of TGF-β and EVs containing enhanced levels of miR-192/215 family miRNAs [6]. TGF-β and miR-192/215-rich EVs synergistically mediate tumor-promoting differentiation of fibroblasts [6]. Hypoxia promotes the expression of miR-215 and miR-192 through HIF-1α and NF-κB, respectively [6]. Conversely, if we apply the characteristics of the microenvironment to CAFs, it will be closer to the actual state of the microenvironment and may help explore the real mechanism of the involvement CAF-derived EVs in tumor progression.

Many clinical sample studies have shown how the amount or function of CAF correlates with outcome, so being able to target CAF would be an attractive new idea for the antitumor therapeutic family [6]. However, the wide range of CAF functions and possible interchangeability between subtypes pose challenges to the field. Therefore, patient benefits may require targeting CAF subtypes or reprogramming CAFs into normal fibroblasts or anti-tumor CAF phenotypes. In addition, EVs have been shown to play an important role in cell-to-cell communication, affecting stromal cell regulation of the TME. However, most of the evidence regarding the role of EVs in CAF involvement in tumorigenesis comes from in vitro and animal model studies. Therefore, it is necessary to develop new tools and research methods to apply these findings to clinical settings in order to elucidate the molecular mechanisms underlying the interaction between CAFs and cancer cells during tumorigenesis [16–18].

CRediT authorship contribution statement

Chuanshi He: Investigation, Validation, Software, Resources, Visualization, Methodology. Linlin Wang: Investigation, Validation. Ling Li: Conceptualization, Funding acquisition, Project administration. Guiquan Zhu: Conceptualization, Methodology, Data curation, Writing – review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81772900, 81872196, and 81972541) and the Department of Science and Technology of Sichuan Province (Grant No. 2020ZYD033).
References

[1] L. Hui, Y. Chen, Tumor microenvironment: sanctuary of the devil, Cancer Lett. 568 (2015) 7–13.

[2] J. Paggetti, F. Haderk, M. Seiffert, B. Janui, U. Distler, W. Ammerlaan, Y.J. Kim, J. Adam, P. Lichter, E. Solary, G. Burchem, E. Moussay, Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts, Blood 126 (2015) 1162–1177.

[3] J.M. Houthuijzen, J. Jonkers, Cancer-associated fibroblasts as key regulators of tumor progression and metastasis, Nat. Med. 19 (2013) 1423–1437.

[4] T. Liu, Z. Zhou, D. Li, T. Andl, Y. Zhang, Cancer-associated fibroblasts build and maintain the tumor microenvironment upon irradiation, Cancer Biol. Med. 18 (2021) 21–33.

[5] C. Thery, K.W. Witwer, E. Akawa, M.J. Alcaraz, J.D. Anderson, A. Andriantsitohaina, et al., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines, J. Extracell. Vesicles 8 (2019), 1599680.

[6] C. He, L. Li, L. Wang, V. Hao, G. Zhu, Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation, Cancer Biol. Med. 18 (2021) 2761–2769.

[7] C. Thery, L. Zitvogel, A. Amigorena, Exosomes: composition, biogenesis and function, Nat. Rev. Immunol. 2 (2002) 569–579.

[8] C. Tricarico, J. Clancy, C. D’Souza-Schorey, Biology and biogenesis of shed microvesicles, Small GTPases 8 (2017) 220–223.

[9] T. Gener Lahav, O. Adler, Y. Zait, O. Shani, M. Amer, H. Doron, L. Abramovitz, C. Tricarico, J. Clancy, C. D’Angelo, et al., Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p, EBioMedicine 36 (2018) 4091–4099.

[10] R.D. Schreiber, L.J. Old, M.J. Smyth, Cancer immunotherapy: integrating immunity’s roles in cancer suppression and promotion, Science 331 (2011) 1565–1570.

[11] Z. Xu, X. Zheng, J. Zheng, Tumor-derived exosomes educate fibroblasts to promote salivary adenoid cystic carcinoma metastasis via NGF-NTRK1 pathway, Oncol. Lett. 18 (2019) 4082–4091.

[12] Y. Bubnov, W. Lin, T. Oskarsson, S. Acharyya, X.H. Zhang, S. Vanharanta, S.F. Tavazoie, P.G. Morris, A. Reinhart-King, Matrix stiffness regulates microvesicle-induced fibroblast phenotype, Front. Immunol. 9 (2018) 1358.

[13] Y. Jiang, D. Wang, M. Huang, Q.i. Li, Cancer-associated fibroblasts promote angiogenesis of hepatocellular carcinoma by VEGF-Mediated EZH2/VASH1 pathway, Technol. Cancer Res. Treat. 18 (2019), 153033819879905.

[14] A. Giglio, J. Extracell. Vesicles 8 (2019), 1599680.

[15] Y. Kang, Cancer-derived exosomes trigger endothelial to mesenchymal transition through paracrine IL-6 signalling, BMC Cancer 19 (2019) 629–640.

[16] L.Y. Li, Y.W. Tao, G. Bernard, V. Saldanha, F. Poulriot, S. Belduc, Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling, BMC Cancer 19 (2019) 1976–1990.

[17] L. Di Francesco, S. D’Ascenzo, G.M. Palmerini, G. Macchiarella, G. Carta, V. Dolo, Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior, Cancer Biol. Ther. 19 (2018) 722–734.

[18] S.C. Schwager, F. Bordeleau, J. Zhang, M.A. Antonyak, R.A. Cerione, C. Reinhart-King, Matrix stiffness regulates microvesicle-induced fibroblast activation, Am. J. Physiol. Cell Physiol. 317 (2019) C82–c92.

[19] J.H. Heo, H.E. Jeong, H. Seo, S. Cho, K. Kim, D. Na, S. Chung, P. Park, J. Kang, Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts, Acta Biomater. 76 (2018) 146–153.

[20] C. He, et al., Translational Oncol. 14 (2021) 101231.
[47] X. Sao, S.K. Tey, C.L.S. Yeung, E.M.L. Kwong, Y.M.E. Fung, C.Y.S. Chung, L. Y. Mak, D.K.H. Wong, M.F. Yuen, J.C.M. Ho, H. Fang, P.M. Wong, C.O. Leung, T. K. Lam, V. F. Chiu, S. Wu, Y.P. Yam, N. Doida, Unenriched extracellular vesicles facilitate extrahepatic metastasis of liver cancer by activating pulmonary fibroblasts to secrete tumor necrosis factor receptor 1, Adv. Sci. (2020) 2002157. Weinr.

[48] A. Marumadar, J.J. Abreu, J. Mijlavacajka, M.J.E. Arlt, R. Muff, B. Fuchs, J.G. Snedeker, A. Gvozdencovic, Osteosarcoma-derived extracellular vesicles induce lung fibroblast reprogramming. Int. J. Mol. Sci. 21 (2020).

[49] D. Novo, N. Heath, L. Mitchell, G. Celignari, A. MacFarlane, D. Reijneveld, L. Charlton, J. Knight, M. Calka, E. McGee, D. Domier, D. Sumpton, S. Mason, A. Echard, K. Klinkert, J. Seckelker, F. Kruiswijk, K. Vouden, I.R. Macpherson, K. Blyth, P. Bailey, H. Yin, L.M. Carlin, J. Morton, S. Zanivan, J.C. Norman, Mutant p53 regulates chemotactic responses by influencing exosome podocalyxin levels. Nat. Commun. 9 (2018) 5069.

[50] A. Ramteke, H. Ting, C. Agarwal, S. Mateen, R. Somasgar, A. Hussain, M. Graner, B. Frederick, R. Agrawar, G. Deep, Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol. Carcinog. 54 (2015) 554-565.

[51] A. Rai, D.W. Greening, M. Chen, R. Xu, H. Ji, R.J. Simpson, Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics 19 (2019), e1800144.

[52] J.S. Sung, C.W. Kang, S. Kang, Y. Jang, Y.C. Chae, B.G. Kim, N.H. Cho, ITGB4-promoted exosomal transfer of miR-124 mediates epithelial–mesenchymal transition of colorectal cancer stem cells. J. Exp. Clin. Cancer Res. 37 (2018) 242.

[53] Z. Shao, Z. Shang, Melanoma cell-secreted exosomal miR-155-5p induce functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics 19 (2019), e1800148.

[54] Y. Zhang, H. Cai, S. Chen, D. Sun, D. Zhang, Y. He, Exosomal transfer of miR-124 inhibits normal fibroblasts to cancer-associated fibroblasts transition by targeting splotch pigmentine 1 in ovarian cancer. J. Cell Biochem. 120 (2019) 11873-11821.

[55] L.T. Vu, B. Peng, D.X. Zhang, V. Ma, C.A. Mathay-Andrews, C.K. Lam, T. Kimtourniotis, J. Jin, M. Reynolds, L. Huang, A. Grimson, W.C. Cho, J. Lieberman, M.T. Le, Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125B. J. Extrachel. Vesicles 8 (2019), 1596680.

[56] S.S. Yang, S. Ma, H. Dou, F. Liu, S.Y. Zhang, C. Jiang, M. Xiao, Y.X. Huang, Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer-associated fibroblasts in a paracrine manner. Exp. Cell Res. 391 (2020), 111958.

[57] S. Baroni, S. Romero-Cordoba, I. Plamantula, M. Dugo, E. D'ippolito, A. Cataldo, G. Costantino, V. Angeloni, A. Rossini, M.G. Daidone, M.V. Iorio, Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7 (2016) e2312.

[58] W. Yan, X. Wu, W. Zhou, M.Y. Fong, M. Cao, J. Liu, X. Liu, C.H. Chen, O. Fadare, D.P. Pizzio, J. Zhou, T. Xu, X. Liu, A.R. Chilton, S. W. Chen, Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat. Cell. Biol. 20 (2018) 597-609.

[59] Y. Naito, Y. Yoshida, Y. Makino, T. Sakamoto, I. Shimomura, A. Kogure, M. Kumazaki, Y. Naito, Y. Yamamoto, N. Sakamoto, I. Shimomura, A. Kogure, M. Kumazaki, J.S. Sung, C.W. Kang, S. Kang, Y. Jang, Y.C. Chae, B.G. Kim, N.H. Cho, Y. Zhang, H. Cai, S. Chen, D. Sun, D. Zhang, Y. He, Exosomal transfer of miR-124 inhibits normal fibroblasts to cancer-associated fibroblasts transition by targeting splotch pigmentine 1 in ovarian cancer. J. Cell Biochem. 120 (2019) 11873-11821.

[60] L. Liu, Z. Zhang, L. Zhou, L. Hu, C. Yin, D. Qing, S. Huang, X. Cai, Y. Chen, Breast cancer-associated fibroblasts-derived exosomes contribute to radioresistance through promoting colorectal cancer stem cells phenotype. Exp. Cell Res. 391 (2020), 111956.

[61] T. Uchihara, K. Miyake, A. Yonemura, K. Irohaya, M. Koiva, T. Yasuda, K. Arima, K. Harada, K. Eto, H. Hayashi, M. Ivatsubuki, S. Iwagami, Y. Baba, N. Yoshida, T. Harashima, L. Yu, T. Li, T. Ishidomo, Extracellular vesicles from cancer-associated fibroblasts containing annexin A6 induces FAP-KY activation by stabilizing α1 integrin, enhancing drug resistance. Cancer Res. 80 (2020) 3222-3235.

[62] Y.B. Li, Y. Zhao, H. Hu, C. Yan, L.M. Li, D.D. Tao, Y.Q. Wu, J. P. Gong, J.C. Qin, Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance, Oncogene 38 (2019) 1951–1965.

[63] S. Prinsin, S. Mejia-Guerrero, V. Ignatchenko, A. Sinha, A. Ignatchenko, W. Shi, K. Perezita, S. Su, S.H. Huang, B. O’ Sullivan, W. Xu, D.P. Goldstein, J. Weinreb, L. Ailles, F.F. Liu, T. Kislinger, Proteomic Analysis of Cancer-Associated Fibroblasts Reveals a Paracrine Role for MFAP5 in Human Oral Tongue Squamous Cell Carcinoma, J. Proteome Res. 17 (2018) 2045–2055.

[64] S. Josson, M. Gururajan, S.Y. Sung, H.C. Hsu, H.E. Zhou, C. Liu, J. Lichterman, P. Duan, Q. Li, A. Rogatko, E.M. Posadas, C.L. Hagua, L.W. Chung, Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis, Oncogene 34 (2015) 2690–2699.

[65] N. Nouraei, S. Khazaei, M. Vasel, S.F. Razavipour, M. Sadeghizadeh, S.J. Mowla, MicroRNA contribution in tumor microenvironment of esophageal cancer, Cancer Biomark 16 (2016) 367-376.

[66] Z. Zhang, Y. Wang, X. Wang, B. Zou, J. Mei, X. Feng, Z. Wu, Extracellular vesicles-encapsulated microRNA-10a-5p seed from cancer-associated fibroblast facilitates cervical squamous cell carcinoma cell angiogenesis and tumorigenicity via Hedgehog signaling pathway, Cancer Gene Ther. 28 (2021) 529-542.

[67] L. Shi, Q. Wang, X. Liu, J. Chen, J.W. Li, Cancer-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat. Cell. Biol. 20 (2018) 597-609.

[68] L. Ailles, F.F. Liu, T. Kislinger, Proteomic Analysis of Cancer-Associated Fibroblasts Reveals a Paracrine Role for MFAP5 in Human Oral Tongue Squamous Cell Carcinoma, J. Proteome Res. 17 (2018) 2045–2055.

[69] L. Liu, Z. Zhang, L. Zhou, L. Hu, C. Yin, D. Qing, S. Huang, X. Cai, Y. Chen, Breast cancer-associated fibroblasts-derived exosomes contribute to radioresistance through promoting colorectal cancer stem cells phenotype. Exp. Cell Res. 391 (2020), 111956.

[70] L. Liu, Z. Zhang, L. Zhou, L. Hu, C. Yin, D. Qing, S. Huang, X. Cai, Y. Chen, Breast cancer-associated fibroblasts-derived exosomes contribute to radioresistance through promoting colorectal cancer stem cells phenotype. Exp. Cell Res. 391 (2020), 111956.

[71] M. Buchanan, A.N. Hosein, M. Basik, J.L. Wrana, Exosomes mediate stromal microenvironment, Exp. Cell Res. 391 (2020) 111956.
C. He et al.

Wever, N. Shomron, A.E. Sayan, A.H. Mirmozami, Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression, Aging (Albany NY) 9 (2017) 2666–2674.

[89] C.L. Au Yeung, N.N. Co, T. Tsuruga, T.L. Yeung, S.Y. Kwan, C.S. Leung, Y. Li, E. S. Lu, K. Kwan, K.K. Wong, R. Schmandt, K.H. Lu, S.C. Mok, Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1, Nat. Commun. 7 (2016) 11156.

[90] Y. Fang, W. Zhou, Y. Rong, T. Kuang, X. Xu, W. Wu, D. Wang, W. Lou, Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer, Exp. Cell Res. 383 (2019), 111543.

[91] X. Qin, H. Guo, X. Wang, X. Zhu, M. Yan, X. Wang, Q. Xu, J. Shi, E. Lu, W. Chen, J. Zhang, Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5, Genome Biol. 20 (2019) 12.

[92] X. Chen, J. Liu, Q. Zhang, B. Liu, Y. Cheng, Y. Zhang, Y. Sun, H. Ge, Y. Liu, Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFBR3, J. Exp. Clin. Cancer Res. 39 (2020) 65.

[93] C. Xi, J. Wang, H. Sun, X. Zhang, H. Kang, Loss of microRNA-30e induced by extracellular vesicles from cancer-associated fibroblasts promotes breast cancer progression by binding to CTNRC1, Exp. Mol. Pathol. 118 (2021), 104586.

[94] B.L. Li, W. Lu, J.J. Qu, L. Ye, G.Q. Du, X.P. Wan, Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis, J. Cell Physiol. 234 (2019) 2943–2953.

[95] L. Li, K. Piontek, M. Ishida, M. Fausther, J.A. Drainoff, R. Fu, E. Mezey, S.J. Gould, F.K. Fordjour, S.J. Melzner, A.E. Sirica, F.M. Selaru, Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma and improve survival in a rat model, Hepatology 65 (2017) 501–514.

[96] B.Y. Nabet, Y. Qiu, J.E. Shabason, T.J. Wu, T. Yoon, B.C. Kim, J.L. Benci, A. M. Demichele, J. Tschou, J. Marcotrigiano, Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer, Cell 170 (2017) 352–366, e313.

[97] M. Herrera, C. Llorens, M. Rodríguez, A. Herrera, R. Ramos, B. Gil, A. Candiola, M. J. Larriba, F. Garre, J. Earl, M. Rodríguez-Garrute, T. Caldes, F. Bousilla, A. Carrato, V. García-Barberán, C. Pena, Differential distribution and enrichment of non-coding RNAs in exosomes from normal and Cancer-associated fibroblasts in colorectal cancer, Mol. Cancer 17 (2018) 114.

[98] J. Ren, L. Ding, D. Zhang, G. Shi, Q. Xu, S. Shen, Y. Wang, T. Wang, Y. Hou, Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal IncRNA H19, Theranostics 8 (2018) 3932–3948.

[99] X. Deng, H. Ruan, X. Zhang, X. Yu, Y. Zhu, H. Peng, X. Zhang, F. Kong, M. Guan, Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells, Int. J. Cancer 146 (2020) 1700–1716.

[100] K. Fan, I. Spatxova, J. Gravemeyer, C. Ritter, K. Horny, A. Lange, T. Gambichler, N. Ödum, D. Schrama, D. Schadendorf, S. Ugurel, J.C. Becker, Merkel cell carcinoma-derived exosome-shuttle miR-375 induces fibroblast polarization by inhibition of RBPJ and p53, Oncogene 40 (2021) 980–996.