The Potential Role of Transposable Elements as Molecular Markers

Y. E. Arvas**, M. M. Abed**3, Q. A. Zaki4, İ. Kocaçalışkan5 and E. K. Haji3,6

1 Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Yıldız Technical University, Istanbul, Turkey.
2 Department of Plant protection, College of Agriculture, University of Anbar, Anbar-Iraq
3 Department of Agricultural Biotechnology, Institute of Science, Ondokuz Mayıs University, Samsun-Turkey.
4 Department of Field crops, University of Anbar, Anbar-Iraq
5 Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Istanbul, Turkey.
6 Department of Horticulture, College Agriculture and Natural resource, Dilla University, Dilla, Ethiopia

*E-mail: muhammed.abed@uolanbar.edu.iq **yunusearvas@gmail.com

Abstract
Molecular markers emerged as very important biotechnological tools in plant biotechnology. Molecular markers represent any gene region or DNA fragment related to the gene region in the genome. Numerous molecular marker techniques have been developed especially after the discovery of the Polymerase Chain Reaction. In agricultural biotechnology studies, they are used effectively in many areas such as physical mapping, gene discovery, labeling and genetic diversity with molecular marker technologies. Transposons can also be used as genetic markers because they cause insertional polymorphism. Transposons are DNA sequences that displace within the genome, causing permanent mutations and responsible for genome size changes. With the development of technologies, new techniques and the completion of genome studies in many species, transposon has been observed that it is found in almost every living species and a large part of the genome of many species consists of transposons. Plants are the living things with the highest percentage of transposons. Transposons are grouped as DNA transposons and retrotransposons according to their working principles. Studies are conducted to determine the relationship between retrotransposon markers and species. For this purpose, many marker methods have been developed; based on IRAP and REMAP retrotransposon insertion polymorphisms.

1-Introduction
Genetic variation analysis has become an integral part of plant genetics, breeding and plant ecology...
from past to present time. Gregor Mendel in his studies on pea plant, revealed that genetic inheritance was transferred by analyzing seven morphologically polymorphic characteristics but, morphological variation is not enough to study genetics. Limited distinctive morphological features and environmental effects on morphological diversity limit the use of morphological features in modern genetic analysis. For these reasons, genetic markers are needed in plant breeding studies. Genetic markers are associated with nonrandom variations in natural or wild populations. With the advancement of molecular genetic methodologies, protein and DNA-based molecular markers associated with genetic variation have been developed[1].

Sequences found in more than one location in the genomes of living organisms are called "repetitive sequences". The term “repetitive sequences” (DNA repeats, repetitive DNA) refers to DNA fragments that are present in multiple copies in the genome [2]. These sequences are different DNA fragments consisting of different structures and origins [3]. Repeated sequences are grouped under two classes as "Tandem" sequences and "Transposons". Tandem sequences are sequential, similar sequences in the genome from top to bottom. Transposons are mobile DNA sequences that cause mutations by displacing on the genome [4, 5, 6]. Since transposon elements cause permanent genomic mutations such as duplication, deletion and insertion, they are transferred to the next generations by fertilization and cause the emergence of new alleles. However, transposons are thought to be involved in processes such as cell differentiation, continuity of differentiated cells and organ development in embryonic development processes [7, 8]. Polymorphisms caused by transposons are mostly used as a determinant genetic marker in areas such as DNA fingerprinting, genetic mapping and molecular phylogeny [9]. Especially studies are carried out to determine the relationship between retrotransposon markers and species. For this purpose, many marker methods have been developed to detect new allele formation caused by retrotransposon insertion polymorphisms by using genetic variation analysis [10] and molecular marker techniques [11,12, 13]. In this review, the potential role of transposon elements as molecular markers and studies using them are discussed here.

2- Transposons and the importance of their application in the plant

Transposons are DNA sequences that displace within the genome and cause mutations and changes in the amount of DNA in the genome [14]. Before 1970 little work has been done on transposons, which were initially thought to be insignificant. Later, in 1970 Drosophila melanogaster and Saccharomyces cerevisiae [15, 16], in 1980 Caenorhabditis elegans [17], in 1990s Transposons in filamentous fungi have been described [18]. A large part of all eukaryotic genomes, primarily plant genomes, are composed of retrotransposons. For example, more than 75% of the maize genome sequence [19], about 45% of the human and rice genome segment [20], and 80% of wheat and barley genome consists of transposons. With some exceptions, transposons are found in all genomes [21,22, 23]. Transposons are grouped into 2 classes according to different structure and transposition mechanism. They are classified as RNA transposons (Class I, also called "retrotransposons") and DNA transposons (Class II) [24, 25]. Retrotransposons can reproduce by RNA mediated copy-paste mechanism and cause an increase in the genome size (Fig 1).
Fig 1. Types of transposons in eukaryotes. This figure was drawn by the authors using Allison (2012) [26]

Transposon research in plants have been focused on studies such as genetic diversity [24, 27, 28]. Most of those studies are mostly carried out using PCR-based marker systems. There are many methods developed to determine the retrotransposons in plants. Those widely used molecular marker methods are: Inter Retrotransposon Amplified Polymorphism (IRAP) [29], Retrotransposon Microsatellite Amplified Polymorphism (REMAP), Retrotransposon Based Insertional Polymorphism (RBIP), Sequence Specific Amplified Polymorphism (SSAP), Random Amplified Polymorphism DNA (RAPD), Inter Primer Binding Site Amplification (iPBS) (Table 1) [30, 31].

Table 1. Comparison of different transposon systems

Marker	Reason	Methods	Inheritance	Detection	Features	Reference
IRAP	DNA insertion	PCR	Dominance (The dominant alleles mask or override the expression of recessive allele)	Multi-locus	Technical simplicity; retrotransposons between two adjacent amplified LTR.	[30]
REMAP	DNA insertion	PCR	Dominance	Multi-locus	Technical simplicity; similar to IRAP but between amplification retrotransposon and Microsatellite locus	[30]
RBIP	DNA insertion	PCR	Codominance (Heterozygotes can be distinguished from homozygotes)	Single-locus	Technical simplicity, sequence knowledge required; very useful for genetic diversity	[32]
-Retrotransposon Based Molecular Markers (IRAP and REMAP)

Retrotransposons are the most common component of plant genomes that show activity at transcription and integration levels. Retrotransposons are simply classified into four groups: LTR region (Long Terminal Repeat), none LTR region, LINE (long intermediate nuclear elements) and SINE (short intermediate nuclear elements). Retrotransposons are found all over the genome in large numbers, and they are used in somaclonal variation studies because they can move on the genome with cut-paste and copy-paste mechanisms [33, 34]. Retrotransposons containing LTR are also known as gypsy and copia-like retrotransposons. Gypsy-like [35] and copia-like [32, 36] retrotransposons have always existed throughout the plant kingdom.

Retrotransposons has a contribution to the development of the molecular marker system due to their long, conserved and defined base sequences [37]. REMAP and IRAP are used successfully in genome mapping [38] and genomic stability studies of allopolyploid species [39]. In addition, these two marker systems can distinguish from one class of the plant group to its species, as well as genetic diversity studies of vegetatively propagated species [40, 41]. IRAP and REMAP are two marker methods based on amplification based on regions that yield LTRs in the genome [37].

Retrotransposons can be used as markers because they create new splice links between genomic DNA and their conserved ends. To detect polymorphism in retrotransposon splices, marker systems generally rely on PCR amplification between these conserved ends and some components of adjacent genomic DNA [42]. REMAP and IRAP does not require restriction enzyme to generate marker bands in the marker system. IRAP marker system products were generated from two near retrotransposons using primers facing outward. REMAP marker system produces marker bands that reproduce between retrotransposons close to simple array repeats (microsatellite) [31].

Retrotransposons can adapt in both directions within the genome. In the head to head or tail to tail direction, PCR products can be produced using a single primer from elements close enough to each other. It is amplified using both 5 and 3’ LTR primers for genomic DNA elements intervening in the head-to-tail direction. The REMAP method is based on an outward facing LTR primer and a second primer from the microsatellite. Primers (GA) /, (CT) /, (CA) /, (CAC) /, (GTG) / and (CAC) / were designed to microsatellites and all but one of the primers were attached to the 3’ end microsatellite by adding a selective base to the 3’ end. In both techniques, polymorphism could be detected in the presence or absence of PCR products. Approximately 30 bands can be displayed following a single PCR reaction. These markers are extremely polymorphic and are used to determine intraspecific kinship [5].

The IRAP technique shows additional polymorphism by completing the segments of DNA between 2 retrotransposons. With this feature, it has been used in many genetic diversity studies [31, 43, 44, 45]. In the study conducted by Tufan et al. (2020), Oryza sativa L. (rice), Brachypodium distachyon L. P. Beauv., Hordeum vulgare L., (barley) and Triticum aestivum L. (wheat) Hopi, Houba, Osr30 and RIRE1 transposons were investigated using the IRAP-PCR molecular marker technique. In these study, although it results different band profiles and polymorphism rates among individuals of each species; it has been stated that significant polymorphism is observed only among the rice types. According to these results, it shows that the 4 retrotransposon varieties used in the study are still active in the rice plant while they are inactive in other species [46].

The IRAP and REMAP markers have been used to determine the similarities between barley, rice, wheat, banana, olive and many different species [27]. In the study done by Haji (2019), Sukkula, Nikita, P-Tst-1, P-Tst-3, P-Tst-6 and Copia like retrotransposon movements were investigated using
IRAP molecular marker technique on traditionally produced "Şencan 9" Solanum lycopersicum L. Varieties in Turkey. In that study, tomato plants were regenerated from seed tissue culture. Next, the first leaf or cotyledon was removed from the regenerated plants and cultured in MS medium supplemented with 2, 4-D hormone to induce callus formation. Polymorphism was determined for Sukkula, Nikita, P-Tst-1, P-Tst-3, P-Tst-6 and Copia like retrotransposons. Conventionally grown tomatoes are highly polymorphic compared to organically grown ones. These results show that herbicide, insecticide and fungicide application can enhance the action of Sukkula, Nikita, P-Tst-1, P-Tst-3, P-Tst-6 and Copia like retrotransposons in the tomato genome. Also, according to the results obtained, it is stated that tomato plant contributes to polymorphism in flowering stage compared to mature seedling and fruiting stage [47].

In the study by Yetgin (2019), she examined the movements of Houba, Osr30, RIRE1, Hopi, Sukkula and Nikita retrotransposons in Turkish upland rice and Bafra Yildiz rice cultivars grown under different boron concentrations using the IRAP molecular marker technique. Polymorphism rates were determined as 0-37%, 0-87%, 0-100%, 0-60%, 0-57% and 0-100% for Houba, Osr30, RIRE1, Hopi, Sukkula and Nikita, respectively. Fewer band formation was observed at low boron concentration. However, more bands were observed in Bafra Yildiz rice samples grown under high boron concentration application. These results showed that different boron concentrations of rice plant can increase retrotransposon movements in Turkish upland rice and Bafra Yildiz rice varieties. In addition, it is thought that the physiological changes observed in rice samples grown under different boron concentrations may be caused by these retrotransposon movements [48].

In the study by Abed (2019), the movements of Sukkula, Nikita, P-Tst-1, P-Tst-3, P-Tst-6 and Copia like retrotransposons were examined using the IRAP-PCR molecular marker technique with samples taken from tuber and leaf tissues of 19 cultivars of potato (Solanum tuberosum L.). The polymorphism between the cultivars was determined using the Jaccard similarity coefficient formula. Polymorphism rates among varieties for Sukkula, Nikita, P-Tst-1, P-Tst-3, P-Tst-6 and Copia like transposons in PCR products obtained from leaf samples were in the range of 0-20%, 0-92%, 0-100%, 0-83%, 0-60% and 0-88% respectively. Polymorphism rates between varieties for Sukkula, Nikita, P-Tst-1, P-Tst-3, P-Tst-6 and Copia like transposons in PCR products obtained from tuber samples were reported that in the range of 0-20%, 0-64%, 0%, of 0-63, 0-57%, 0-40% and 0-20% respectively [49].

Carpentier et al. (2019) conducted a study in which they classified the retrotransposon relationships with rice varieties by using 3000 genomes of rice (Indica, Japonica, Aus / Boro) which cultivated in the Asian continent. They stated that; they detected polymorphisms of more than 50,000 transposable elements in the study carried out using 32 retrotransposon families in 3000 rice genomes. Additionally, they stated that; 7 transposon elements revealed a high rate of polymorphism [50].

3- Future Prospects of Transposon Based Molecular Markers in Plant

In the light of this information, it is understood that there will be progress and development in transposon studies as new analysis tools will be developed [45]. As today’s limited numbers of genome studies completed will increases, the working principles of transposons and their effects on the gene and genome will be better understood. Because; there is an increasing evidence that transposable elements (TE) play a key role in regulating gene expression. In the future with a full-scale transcriptional profiling, whether TE’s will increase gene expression or not will be better understood.

Similarly, it remains to be revealed whether TE’s affect methylation of DNA in the genome or not. In a comprehensive study to be conducted, a conclusion can be reached by looking at the prevalence of each TE in different populations. Thus, the importance of elucidating epigenetic mechanisms will be better understood. Additionally today’s increase of complicated effects of stress factors on plants will cause new results. It is thought that these changes will also affect the active movements of
transposons. All these results show that the movements of transposons are the tools that need to be carefully analyzed in the future [51].

It is thought that the movement mechanisms of transposons at transcriptional, translational and insertional levels will be elucidated by adding or removing processes using the Crispir / cas method, which will have a direct effects on studies such as cancer, yield improvement and resistance to various stress factors. As a result, since arabidopsis thaliana, rice and tomato plants can be used as model plants, it can be said that they will lead to a clearer understanding of mechanisms action for transposons [52].

In recent studies, understanding the effect of transposons on yield and seed size requires understanding the effects of smaller-sized transposons, and it is understood that this will change depending on the development of omic and marker systems [53].

4- Conclusion

Generally, transposon elements have a great role as molecular markers to detect genetic variation among species. Genetical variation (polymorphism) can be created by transposable elements through insertional mutations, regulation of gene expression, deletion, duplication and inversion, the formation of new genomes and new functions. Therefore to study transposon movements several molecular markers had been developed and used in molecular biology. These molecular markers include inter-retro transposon amplified polymorphism (IRAP), retro-transposon microsatellite amplified polymorphism (REMAP), and retro-transposon based insertional polymorphism (RBIP).

References

[1] Marakli S. A Brief Review of Molecular Markers to Analyse Medically Important Plants. International Journal of Life Sciences and Biotechnology. 2018;1(1):29-36.

[2] Pathak, D., & Ali, S. Repetitive DNA: A tool to explore animal genomes/transcriptomes. Functional genomics. InTech. 2012; 155-180.

[3] Padeken J, Zeller P, Gasser SM. Repeat DNA in genome organization and stability. Current opinion in genetics & development. 2015;31:12-9.

[4] Çakmak B. Arpa’da (Hordeum vulgare L.) Endojen Sirevirüs Analizi. İstanbul: İstanbul University; 2014.

[5] Roy NS, Choi J-Y, Lee S-I, Kim N-S. Marker utility of transposable elements for plant genetics, breeding, and ecology: a review. Genes & genomics. 2015;37(2):141-51.

[6] de Koning AJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12):e1002384.

[7] Okamoto H, Hirochika H. Silencing of transposable elements in plants. Trends in plant science. 2001;6(11):527-34.

[8] Moran JV, Malik HS. Diamonds and rust: how transposable elements influence mammalian genomes: Conference on Mobile Elements in Mammalian Genomes. EMBO reports. 2009;10(12):1306-10.

[9] Teama, S. DNA polymorphisms: DNA-based molecular markers and their application in medicine. Genetic Diversity and Disease Susceptibility. 2018; 25.

[10] Huang, X., Lu, G., Zhao, Q., Liu, X., & Han, B. (2008). Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice. Plant physiology. 2008; 148(1), 25-40.

[11] Bennetzen JL. Transposable element contributions to plant gene and genome evolution. Plant molecular biology. 2000;42(1):251-69.

[12] Schulman AH, Flavell AJ, Ellis TN. The application of LTR retrotransposons as molecular markers in plants. Mobile genetic elements: Springer; 2004. p. 145-73.

[13] Bayram E. Arpa (Hordeum vulgare L.) Doku Kültürlerinde Nikita Retrotranspozonunun Hareketleri. İstanbul: İstanbul Universitesi; 2011.

[14] McClintock B. The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences. 1950;36(6):344-55.

[15] Finnegan DJ, Rubin GM, Young MW, Hogness DS, editors. Repeated gene families in Drosophila melanogaster. Cold Spring Harbor Symposia on Quantitative Biology; 1978: Cold Spring Harbor Laboratory Press.

[16] Cameron JR, Loh EY, Davis RW. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell. 1979;16(4):739-51.
[17] Rosenberg E. Origin of Nucleic Acids and the First CellS. In: Rosenberg E, editor. It's in Your DNA From Discovery to Structure, Function and Role in Evolution, Cancer and Aging: Elsevier; 2017. p. 129-38.

[18] Dabousi M-J, Capy P. Transposable elements in filamentous fungi. Annual Reviews in Microbiology. 2003;57(1):275-99.

[19] Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Dargent J-M, et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 2009;5(11):e1000732.

[20] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. 2001.

[21] Kidwell MG, Lisch DR. Transposable elements and host genome evolution. Trends in ecology & evolution. 2000;15(3):95-9.

[22] Deininger PL, Batzer MA. Mammalian retroelements. Genome research. 2002;12(10):1455-65.

[23] Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nature Reviews Genetics. 2009;10(10):691-703.

[24] Feschotte C, Pratham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331-68.

[25] Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics. 2007;8(12):973-82.

[26] Allison LA. Fundamental Molecular Biology, 2e. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2012. p. 372-373

[27] Branco CJ, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, et al. IRAP and REMAP: two new retrotransposon-based molecular markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnology Journal. 2010;8(2):196-210.

[28] Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermeier SR. Copia-like retrotransposons are ubiquitous among plants. Proceedings of the National Academy of Sciences. 1992;89(15):7124-8.

[29] Kumar A, Pearce SR, McLean K, Harrison J, Waugh R, et al. The Ty1-copia group of retrotransposons are ubiquitous and heterogeneous in higher plants Nucleic Acids Research. 1992;20(14):3639-44.

[30] Cakmak B, Marakli S, Gozukirmizi N. SIRE1 retrotransposons in barley (Hordeum vulgare L.). Russian journal of genetics. 2015;51(7):661-72.

[31] Kalendor R, Grob T, Regina M, Suonimi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics. 1999;98(5):704-11.

[32] Kalendor R, Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols. 2006;1(5):2478.

[33] Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant JP, et al. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Journal. 2010;65:68-78.

[34] Kumar A, Pearce SR, McLean K, Harrison J, Waugh R, et al. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Evolution and Impact of Transposable Elements: Springer; 1997. p. 205-17.

[35] Suonimi A, Tanskanen J, Schulman AH. Gypsy-like retrotransposons are widespread in the plant kingdom. The Plant Journal. 1998;13(5):699-705.

[36] Kumaravadi N, Uma M, Saravanap N, Suresh H, editors. Molecular marker-assisted selection and pyramiding genes for gall midge resistance in rice suitable for Tamil Nadu Region. ABSTRACTS 2nd International Rice Congress; 2006.

[37] Kalendor, R. The use of retrotransposon-based molecular markers to analyze genetic diversity. Ratarstvo i povtarstvo; 2011

[38] Manninen O, Kalendor R, Robinson J, Schulman A. Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Molecular and General Genetics MGG. 2000;264(3):325-34.

[39] Baumel A, Ainoche M, Kalendor R, Schulman AH. Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica CE Hubbard (Poaceae). Molecular Biology and Evolution. 2002;19(8):1218-27.

[40] D’Onofrio C, De Lorenzis G, Giordani T, Natali L, Cavallini A, Scalabrelli G. Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genetics & Genomes. 2010;6(3):451-66.

[41] Natali L, Giordani T, Buti M, Cavallini A. Isolation of Ty1-Copia putative LTR sequences and their use as a tool to analyse genetic diversity in Olea europaea. Molecular Breeding. 2007;19(3):255-65.
[42] Kalenda, R., & Schulman, A. H. (2014). Transposon-based tagging: IRAP, REMAP, and iPBS. In Molecular Plant Taxonomy. Springer. 2014; 233-255

[43] Antonius-Klemola K, Kalenda R, Schulman AH. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics. 2006;112(6):999-1008.

[44] Vukich M, Schulman AH, Giordani T, Natali L, Kalenda R, Cavallini A. Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theoretical and Applied Genetics. 2009;119(6):1027-38.

[45] Smýkal P, Hábl M, Corander J, Jarkovský J, Flavell AJ, Griga M. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics. 2008;117(3):413-24.

[46] Tufan AF, Ibisoglu MS, Yilmaz S, Gozukirmizi N. Investigation of rice (Oryza sativa L.) retrotransposons in different taxa. Genetic Resources and Crop Evolution. 2020:1-7.

[47] Haji EK. Determination of Transposon Movements in Organically and Conventionally Produced Tomato. Samsun: Ondokuz Mayıs University; 2019.

[48] Yetgin Ö. Retrotransposon analysis in rice and Turkish upland rice growth under boron stress. Samsun-Turkey: Ondokuz Mayis University; 2019.

[49] Abed MM. Patates (Solanum tuberosum L.) Genotiplerinde Transpozon Hareketlerinin Belirlenmesi. Samsun: Samsun Ondokuz Mayıs University; 2019.

[50] Carpentier M-C, Manfroi E, Wei F-J, Wu H-P, Lasserre E, Llauro C, et al. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nature communications. 2019;10(1):24.

[51] Viana VE, Pegoraro C, Busanello C and Costa de Oliveira A (2019) Mutagenesis in Rice: The Basis for Breeding a New Super Plant. Front. Plant Sci. 10:1326. doi: 10.3389/fpls.2019.01326

[52] Yang and Wu (2013). Genomic resources for functional analyses of the rice genome. Current Opinion in Plant Biology (16): p157–163

[53] Anderson and springer. Potential roles for transposable elements in creating imprinted expression. Current Opinion in Genetics & Development 2018, 49:8–14