Type of the Paper (Article)

Prevalence and Multidimensional Risk Factors of Physical Frailty in Korean Community-Dwelling Older Adults: Findings from Korean Frailty and Aging Cohort Study

Heeeun Jung 1, Miji Kim 2*, Yunhwan Lee 3 and Chang Won Won 4*

1 Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea; heeeun.jung@khu.ac.kr
2 Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea
3 Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon, Republic of Korea; yhlee@ajou.ac.kr
4 Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
* Correspondence: mijak@khu.ac.kr (M.K.); chunwon62@naver.com (C.W.W.); Tel.: +82-2-958-2840 (M.K.); +82-2-958-8700 (C.W.W.); Fax: +82-2-958-2836 (M.K.); +82-2-958-8699 (C.W.W.)

Abstract: Frailty is defined as a state of increased vulnerability to stressors, and it predicts the disability and mortality in the older population. This study aimed to investigate standardized prevalence and multidimensional risk factors associated with frailty among the Korean community-dwelling older adults. We analyzed the baseline data of 2,907 adults aged 70–84 years (mean age 75.8±3.9 years, 57.8% women) in the Korean Frailty and Aging Cohort Study. The Fried frailty phenotype was used to define frailty. Analyzed data included sociodemographic, physical, physical function, biological, lifestyle, health condition, medical condition, psychological, and social domains. Data were standardized using the national standard population composition ratio based on the Korean Population and Housing Census. The standardized prevalence of frailty and pre-frailty was 7.9% (95% confidence interval [CI] 6.8–8.9%) and 57.2% (95% CI 45.1–48.8%), respectively. The following 14 risk factors had a significant association with frailty: at risk of malnutrition, sarcopenia, severe mobility limitation, poor social capital, rural dwellers, depressive, poor self-perceived health, polypharmacy, elevated high-sensitivity C-reactive protein, elevated glycosylated hemoglobin, low 25-hydroxy vitamin D level, longer timed up and go, and low short physical performance battery score (p<0.05). Physico-nutritional, psychological, sociodemographic, and medical factors are strongly associated with frailty.

Keywords: community-dwelling older adults; physical frailty; prevalence; risk factors

1. Introduction

Frailty is characterized by a significant decline in the functional reserve capacity of multiple organ systems with an increased vulnerability to stressors, leading to a higher risk of adverse health outcomes such as falls, disability, hospitalization, and mortality in older adults [1, 2]. In a systematic review, the prevalence of frailty in community-dwelling older adults aged ≥65 years was found to vary from 4.0 to 59.1% [3]. This wide range in prevalence among the studies is owing to the different definitions of frailty. Identifying frailty is important for individual health as well as from a social and public health perspective. Various frailty criteria, such as the Fried frailty phenotype (FFP) and frailty index (FI), have been used in large research studies [3, 4]. The most widely used frailty criterion was proposed by Fried, which has five components [1]. FFP has been adapted and modified according to the study design, settings, participants, and methodology.
There is a rapid increase in the number of older adults aged ≥65 years globally [5]. According to Statistics Korea, the prevalence of older adults aged ≥65 years in Korea was 14.3% in 2018 and is expected to double by 2028 [6]. Recently, the Korean Longitudinal Study on Health and Aging Study performed in hospital-based populations residing in the city of Seongnam in Korea, reported that the prevalence of frailty and pre-frailty was 13.2% and 59.4%, respectively [7]. The aging study of Pyeongchang Rural Area in older adults of Pyeongchang reported the prevalence of frailty and pre-frailty as 17.4% and 52.6%, respectively [8]. They identified instrumental activities of daily living (IADL) and activities of daily living (ADL) disability, depression symptoms, dysmobility, malnutrition, incontinence, and medical aid as risk factors for frailty. However, these studies were restricted to a selected residential area in Korea, and do not represent the community-dwelling older adults.

Several risk factors for frailty have been identified. Previous studies have focused on sociodemographic factors such as age, sex, marital status, education level, and physical factors such as body composition and physical function [9-11]. However, more recent studies have identified a wider range of risk and protective factors, including biological, lifestyle, and psychological factors [12]. Since frailty is complex and has multiple domains, comprehensive risk factors must be investigated. It is necessary to find the influential risk factors comprehensively to prioritize targets.

This study aimed to investigate the age-, sex-, and residence- adjusted prevalence and characteristics of physical frailty in the Korean Frailty and Aging Cohort Study (KFACS). We also identified the risk factors with a significant association with physical frailty using multidimensional domains in the Korean community-dwelling older adults.

2. Materials and Methods

2.1 Study population

The KFACS is a nation-wide, longitudinal study, with the baseline survey conducted in 2016-2017 [13]. The KFACS recruited participants using quota sampling methods stratified by sex (male and female in a ratio of 1:1) and age (70–74, 75–79, and 80–84 years in a ratio of 6:5:4, respectively). The participants were recruited from among community-dwelling residents in urban and rural areas in 10 study centers covering different residential locations (urban, suburban and rural): three from Seoul Metropolitan Area, two from Gyeonggi Province and one from each of Gangwon Province, Chungcheong-buk Province, Jeolla-nam Province, Gyeongsang-nam Province and Jeju Island in South Korea. Of the 3,014 participants who were enrolled at 10 centers at baseline, 2,907 participants completed the assessment of 5 components of FFP and were selected for the final analysis, after excluding 109 with missing frailty assessment components. KFACS protocol was approved by the by the Clinical Research Ethics Committee of Kyung Hee University Hospital (IRB number: 2015-12-103). All participants were given prior explanations and signed consent forms. This study had an IRB approval from the Clinical Research Ethics Committee of Kyung Hee University Hospital (IRB number: 2020-06-062).

2.2 Frailty Assessment

Physical frailty was defined using FFP based on weight loss, weakness, slowness, exhaustion, and low physical activity with modified cutoff points [1, 13]. Physical frailty scores range from 0 to 5. Participants with scores ≥3, 1-2, and 0 were classified as frail, pre-frail, and robust, respectively.

2.3 Measurements

We obtained information on sociodemographic (age, sex, education level, living status, marital status, residential area, social security benefits, and occupation), lifestyle (smoking status, alcohol
consumption, and sleep habits), self-perceived health status, history of fall and hospitalization in the past year, current use of prescription medications, oral health, and self-reported history of medical conditions based on Charlson’s classification [14].

Underweight was defined as a body mass index (BMI) of <18.5 kg/m². Appendicular skeletal muscle (ASM) was measured using dual-energy X-ray absorptiometry (DXA) (Lunar, GE Healthcare, Madison, WI, USA and Hologic DXA, Hologic Inc., Bedford MA, USA) or bioelectrical impedance analysis (InBody 72, InBody Co., Ltd., Seoul, Korea, and X-SCAN PLUS II, Jawon Medical Inc., Seoul, Korea). Low ASM mass was defined as the lowest 20% of the KFACS participants. Sarcopenia was defined according to the consensus report of the Asian Working Group for sarcopenia based on low muscle strength, low muscle mass, and/or low physical performance [15]. Low calf circumference was defined as <32 cm [16]. High waist circumference was defined as ≥102 cm for men and ≥88 cm for women [17].

Severe mobility limitation was defined if the patient found it “very difficult” or “impossible” to either walk about 400 meters or climb 10 steps without resting [18]. The disability of ADL was defined as answering at least one dependency in 7 domains (bathing, continence, dressing, eating, transfer, and washing face and hands). Disability of IADL was defined as answering two or more dependencies in 10 domains (food preparation, household chores, going out for a short distance, grooming, handling finances, laundry, taking personal medication, shopping, using public transportation, and using the telephone) [19]. Physical function assessed included timed up and go (TUG) [20], usual gait speed, grip strength [21], and short physical performance battery (SPPB) [22]. Nutritional status was assessed using the Korean version of the Mini-nutritional Assessment Short Form (MNA-SF) [23]. The risk of malnutrition was defined as an MNA-SF score of ≤11 [24].

Comorbidity was determined as ≥2 of the following chronic diseases: hypertension, diabetes, myocardial infarction, peripheral vascular disease, angina, cerebrovascular disease, congestive heart failure, dyslipidemia, rheumatoid arthritis, osteoarthritis, osteoporosis, asthma, or chronic obstructive pulmonary disease [14]. Polypharmacy was defined as taking ≥5 medications [25]. Hearing impairment was defined as the minimum pure-tone average value of >40 dB [26]. Visual impairment was defined as the maximum visual acuity of <0.3 [27]. Blood samples were tested at 8 am after fasting for 8 hours.

A participant was determined to depressive if she/he had a score of ≥6 on the Korean version of the Short Form Geriatric Depression Scale (SGDS-K) [28]. Global cognitive dysfunction was diagnosed if the Korean version of the Mini-Mental State Examination (MMSE-KC) score was ≤24 [29]. Cognitive impairment was defined as a score of 1.5 standard deviations below the score of the age, sex, and education–matched controls on the cognitive function tests: processing speed (trail making test A), executive function (Frontal Assessment Battery), verbal episodic memory (word list recall test), and working memory (digit span backward) [30]. Quality of life was determined using the EuroQol 5‐dimension scale (EQ‐5D) [31], EuroQol Visual Analogue Scale (EQ‐VAS) [32], and 12‐items Short Form Health Survey (SF‐12) [33]. SF‐12 was used to measure physical and mental health summary [34].

Poor social capital was defined by the lack of participation in social gatherings. Social support was assessed using the Enhancing Recovery in Coronary Artery Disease Social Support Instrument [35, 36]. The social network was assessed using the Practitioner Assessment of Network Type Instrument [37]. Interaction with family, friends, and neighbors was dichotomized as high (every day, 2–3/week, or ≥1/week) and low (≤1/month).

2.4 Statistical Analysis

We developed the age-, sex-, and residence-standardized prevalence. The KFACS population is of nation-wide community-dwelling older adults, but the quota sampling stratified by age and sex
can limit generalization of prevalence rate. To ensure generalization, we performed post-stratification adjusting by using general population distribution data from the Korean Population and Housing Census conducted by Statistics Korea in 2017. We computed the post-stratification adjustments by calibrating the distribution of age (3 groups: 70–74, 75–79, and 80–84 years), sex (2 groups: male and female), and residence (2 groups: urban and rural) in the general population. We calculated mean with standard errors (SE) for continuous variables and frequencies with percentage and 95% confidence intervals (CIs) for categorical variables to investigate the prevalence and characteristics of frailty. We used analysis of variance tests for continuous variables and the Chi-square test for categorical variables.

In the unweighted sample, we performed multiple forward stepwise logistic regression analyses to identify the most influential risk factors for frailty. First, we identified the risk factors in each of the 9 domains. Then, we identified the risk factors with the strongest association with frailty using the variables selected in the 9 domains. We performed statistical analyses using SPSS version 25.0 (SPSS Inc., Chicago, IL, USA) and SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). We determined statistical significance by using a two-sided p value of <0.05.

3. Results

3.1. Sociodemographic characteristics of the study population

Sociodemographic characteristics of the unstandardized and standardized samples are shown in Table 1. The mean age was 75.8 years, and the majority of the participants were aged between 70–74 years in both the unweighted (39.7%) and weighted (41.8%) sample populations. There was a significant difference in the regional proportions between men and women in the unweighted sample (p = 0.035), but not in the weighted sample (p = 0.72).

3.2 Prevalence of frailty

In the standardized sample, the prevalence of frailty and pre-frailty was 7.9% (95% CI 6.8–8.9%) and 45.2% (95% CI 45.1–48.8%), respectively. Among the individual frailty components, the prevalence was highest for exhaustion (32.5%), followed by slowness (20.1%) and weakness (19.7%). There was a higher prevalence of exhaustion (40.8% vs. 21.0%) and weakness (21.0% vs. 18.0%) among women compared to men, respectively. However, there was no significant difference in low physical activity, slowness, and unintentional weight loss between women and men. Overall, 54.8% of participants had ≥1 frailty component (Table 2). The prevalence of frailty increased significantly in the 80–84 compared to 70–74 years (16.1% vs. 2.7%) (Figure 1). The prevalence of frailty was significantly higher in women than men in the unstandardized (8.5% and 7.1%) and standardized samples (9.2% and 6.0%) (Table 2 and Table S1). The prevalence of frailty was significantly higher in rural compared to cities in the unstandardized (12.0% and 6.2%) and standardized samples (12.7% and 6.0%) (Data not shown).
3.3 Characteristics of the study population across frailty status

The characteristics across frailty status in standardized sample are presented in Table 3. There were significant differences in sociodemographic (p <0.05), physical (p <0.05), physical function (p <0.001), health condition (p <0.05), and psychological (p <0.001) domains between the three groups. Biological domains, except serum creatinine, cortisol, vitamin B12, thyroid-stimulating hormone (TSH), and low-density lipoprotein (LDL) cholesterol were significantly different between the three groups (all, p <0.05). The prevalence of hypertension, diabetes, incontinence, cardiovascular disease, osteoarthritis, osteoporosis, rheumatoid arthritis, digestive system ulceration, and depressive disorder were significantly higher in the frail group (p <0.05). There was a significant difference in lifestyle domain except current smoking (p = 0.238) across frailty status. Social domain except for low interaction with neighbors (p = 0.294) and social activities (p = 0.491) was also was significantly different.

3.4 Risk factors associated with physical frailty

Table 4 shows the significant influential risk factors in a multivariate forward logistic regression analysis. Risk factors for frailty were at risk of malnutrition (odds ratio [OR] 2.51; 95% confidence interval [CI] 1.57–4.03), sarcopenia (OR 2.39, 95% CI 1.61–3.56), severe mobility limitation (OR 2.13, 95% CI 1.45–3.15), poor social capital (OR 1.99, 95% CI 1.13–3.56), rural residence (OR 1.89, 95% CI 1.13–2.76), depressive symptoms (OR 1.89, 95% CI 1.29–2.76), poor self–perceived health (OR 1.65, 95% CI 1.12–2.44), polypharmacy (OR 1.61, 95% CI 1.13–2.30), elevated high-sensitivity C-reactive protein (hs-CRP) (OR 1.29, 95% CI 1.07–1.55), elevated glycated hemoglobin (HbA1c) (OR 1.28, 95% CI 1.04–1.56), longer TUG time (OR 1.27, 95% CI 1.17–1.37), increasing age (OR 1.08, 95% CI 1.03–1.14). High 25-hydroxy vitamin D (OR 0.98, 95% CI 0.96–1.00), and high SPPB scores (OR 0.87, 95% CI 0.76–0.98) were preventable factors. Based on these results, the frequency and percentage of risk factors among frail individuals (n = 214) are shown in Figure 2. The risk factors of frailty were classified as physico-nutritional, psychological, sociodemographic, and medical domains. About one-third (27.1%) of the frail participants had all of the four risk domains. Overlapping physico-nutritional, psychological, and medical risk domains were found in 46.6% of participants. The prevalence of risk domains in frail participants was as follows: physico-nutritional (90.7%), medical (82.2%), psychological (78.0%), and sociodemographic (44.9%) (all, p <0.001) (Figure S1).
Figure 2. Venn diagram displaying the extent of overlap of risk domains in the frail group (unstandardized sample; A total of 214 adults aged 70–84 years were frail. The physico-nutritional domain was defined as having ≥1 risk of malnutrition, sarcopenia, severe mobility limitation, longer timelapse up and go (>12 seconds), and low short physical performance battery (≤9 scores). The psychological domain was defined as having ≥1 depressive symptom and poor self-perceived health. The sociodemographic domain was defined as having ≥1 of rural residence and poor social capital. The medical domain was defined as having ≥1 of polypharmacy, elevated hs-CRP (≥3 mg/L), elevated HbA1c (≥6.5%), and low 25-hydroxyvitamin D (≤20 ng/mL).
Variable	Unstandardized sample, n (%)	Standardized sample, (%)
	Overall n = 2,907	Overall n = 2,907
	Men n = 1,383	Men n = 1,383
	Women n = 1,524	Women n = 1,524
	n (%)	n (%)
	(47.6%)	(52.4%)
Age (years)		
70–74	1,154 (39.7)	41.8
	505 (36.5)	45.4
	649 (42.6)	39.2
75–79	1,080 (37.2)	36.1
	529 (38.3)	35.8
	551 (36.2)	36.3
	<0.001	<0.001
80–84	673 (23.2)	22.1
	349 (25.2)	18.8
	324 (21.3)	24.5
Low education level (<7 years)	1,265 (43.5)	45.5
	361 (26.1)	25.5
	904 (31.1)	60.5
	<0.001	<0.001
Live alone	659 (22.7)	24.3
	120 (8.7)	8.2
	539 (35.4)	36.2
	<0.001	<0.001
Marital status (without partner)	948 (32.6)	35.2
	145 (10.5)	9.9
	803 (52.7)	53.7
	<0.001	<0.001
Residence		
Urban	822 (28.4)	28.4
	387 (28.1)	29.1
	435 (28.7)	27.9
Suburban	1,250 (43.2)	43.6
	569 (41.4)	43.5
	681 (45.0)	43.6
	0.035	0.720
Rural	819 (28.3)	28.0
	420 (30.5)	27.3
	399 (26.3)	28.4
Social security recipient	204 (7.0)	7.2
	86 (6.2)	6.3
	118 (7.8)	7.9
	0.058	0.055
Current worker	758 (26.1)	25.8
	425 (30.8)	31.1
	333 (21.9)	21.9
	<0.001	<0.001
Table 2. Prevalence of frailty status and component (standardized sample)

Variable	Overall	Men (42.2%)	Women (57.8%)	p Value
Frailty status				
Robust	45.2 (43.3–47.0)	52.8 (50.1–55.5)	39.6 (37.1–42.0)	<0.001
Pre-frail	47.0 (45.1–48.8)	41.1 (38.5–43.8)	51.3 (48.7–53.8)	
Frail	7.9 (6.8–8.9)	6.0 (4.9–7.2)	9.2 (7.7–10.7)	
Frailty component				
Exhaustion	32.5 (30.7–34.2)	21.1 (18.9–23.2)	40.8 (38.3–43.3)	<0.001
Low physical activity	10.2 (8.7–11.8)	10.7 (9.1–12.3)	10.5 (9.4–11.6)	0.695
Slowness	20.1 (18.6–21.6)	18.8 (16.8–20.8)	21.1 (19.0–23.2)	0.131
Weakness	19.7 (18.3–21.2)	18.0 (16.0–20.0)	21.0 (18.9–23.1)	0.042
Unintentional weight loss	4.9 (4.1–5.7)	5.2 (4.0–6.3)	4.6 (3.5–5.7)	0.527
Frailty score				
0	45.2 (43.3–47.0)	52.8 (50.1–55.5)	39.6 (37.1–42.0)	
1	32.1 (30.3–33.8)	28.8 (26.3–31.2)	34.5 (32.1–36.9)	
2	15.0 (13.6–16.3)	12.4 (10.7–14.1)	16.8 (14.9–18.7)	<0.001
3	5.8 (4.9–6.7)	4.5 (3.4–5.5)	6.8 (5.5–8.1)	
4	1.9 (1.4–2.4)	1.5 (1.0–2.1)	2.2 (1.4–2.9)	
5	0.1 (0.0–0.3)	0.1 (0.0–0.2)	0.2 (0.0–0.4)	

CI, confidence interval.
Table 3. Characteristics of the standardized study sample according to frailty status

Variable	Overall	Robust (45.2%)	Pre‑frail (47.0%)	Frail (7.9%)	p Value	
Sociodemographic						
Age (years)	75.8 ± 0.07	74.9 ± 0.09	76.3 ± 0.10	78.5 ± 0.23	<0.001	
70–74	41.8	51.0	37.7	14.5		
75–79	36.1	36.2	35.2	40.4	<0.001	
80–84	22.1	12.8	27.1	45.2		
Female sex	57.8	50.6	63.1	67.5	<0.001	
Low education level (< 7 years)	45.5	33.7	52.5	71.8	<0.001	
Live alone	24.3	19.4	27.5	33.6	<0.001	
Marital status (without partner)	35.3	29.3	39.2	46.2	<0.001	
Residence	28.4	34.2	25.5	13.2		
Urban	43.6	43.9	43.6	41.7	<0.001	
Suburban	28.0	21.9	30.9	45.2		
Social security recipient	7.2	5.8	8.0	11.1	0.017	
Current worker	25.8	26.2	26.6	17.9	0.010	
Physical						
Underweight (BMI < 18.5 kg/m²)	1.6	1.1	1.7	4.0	0.030	
Low appendicular skeletal muscle (lower 20%)	22.3	16.3	25.9	35.6	<0.001	
Low calf circumference (< 32 cm)	27.6	19.5	31.9	48.1	<0.001	
High waist circumference (M ≥ 102 cm; F ≥ 88 cm)	51.4	48.1	54.1	53.6	0.007	
Sarcopenia (AWGS‑defined)	10.1	1.1	14.6	34.5	<0.001	
Severe mobility limitation	17.8	5.4	22.3	62.7	<0.001	
ADL disability (> 1 point)	2.2	0.8	2.1	10.2	<0.001	
IADL disability (> 2 points)	6.3	3.9	6.8	17.3	<0.001	
Falls in the past year	20.6	16.0	22.3	36.6	<0.001	
Physical function						
Timed Up and Go (seconds)	10.5 ± 0.05	9.4 ± 0.04	10.8 ± 0.1	14.9 ± 0.3	<0.001	
Short Physical Performance Battery (score)	10.8 ± 0.03	11.4 ± 0.02	10.6 ± 0.04	8.6 ± 0.15	<0.001	
Gait speed (m/s)	1.10 ± 0.00	1.22 ± 0.01	1.04 ± 0.00	0.76 ± 0.01	<0.001	
Grip strength (kg)	25.7 ± 0.1	28.7 ± 0.2	24.0 ± 0.2	18.9 ± 0.4	<0.001	
Biological						
Albumin (g/dL)	4.4 ± 0.00	4.4 ± 0.01	4.3 ± 0.01	4.3 ± 0.02	<0.001	
Serum creatinine (mg/dL)	0.84 ± 0.01	0.83 ± 0.01	0.84 ± 0.01	0.87 ± 0.02	0.271	
HbA1c (%)	6.0 ± 0.02	6.0 ± 0.02	6.0 ± 0.02	6.2 ± 0.08	<0.001	
WBC (X1000/uL)	5.9 ± 0.03	5.7 ± 0.04	6.0 ± 0.05	6.2 ± 0.12	<0.001	
RBC (Mil/uL)	4.4 ± 0.01	4.4 ± 0.01	4.3 ± 0.01	4.2 ± 0.03	<0.001	
Variable	Mean ± SEM	Mean ± SEM	Mean ± SEM	Mean ± SEM	p-value	
--------------------------------	------------------	------------------	------------------	------------------	---------	
Cortisol (ug/dL) at 8 am	10.1 ± 0.08	10.2 ± 0.10	10.1 ± 0.11	10.2 ± 0.30	0.740	
hs-CRP (mg/L)	1.34 ± 0.04	1.29 ± 0.05	1.31 ± 0.05	1.85 ± 0.19	<0.001	
Vitamin B12 (pg/mL)	610.1 ± 5.34	614.8 ± 7.77	608.3 ± 7.77	593.4 ± 22.02	0.551	
TSH (uU/mL)	2.8 ± 0.10	2.9 ± 0.20	2.6 ± 0.07	2.7 ± 0.22	0.306	
Insulin (uU/mL)	8.0 ± 0.18	7.3 ± 0.20	8.3 ± 0.21	9.9 ± 1.41	<0.001	
Triglyceride (mg/dL)	122.6 ± 1.15	120.3 ± 1.69	122.5 ± 1.60	137.1 ± 5.15	0.004	
Total cholesterol (mg/dL)	174.6 ± 0.68	176.5 ± 1.01	173.1 ± 1.01	172.5 ± 2.26	0.037	
HDL-cholesterol (mg/dL)	52.5 ± 0.26	53.4 ± 0.39	52.0 ± 0.38	50.5 ± 0.93	0.003	
LDL-cholesterol (mg/dL)	108.2 ± 0.63	109.7 ± 0.95	107.1 ± 0.92	106.0 ± 2.10	0.069	
25-hydroxy vitamin D (mg/mL)	23.2 ± 0.19	23.6 ± 0.28	23.2 ± 0.27	21.0 ± 0.56	0.001	
eGFR (mL/min/1.73m²)	77.5 ± 0.27	78.9 ± 0.35	76.9 ± 0.41	73.3 ± 1.14	<0.001	
Lifestyle						
Current smoker	5.2	4.7	5.3	7.7	0.238	
Alcohol intake (≥ 2-3 time/week)	16.3	19.1	14.1	13.4	0.001	
Sleep latency (> 1 hour)	4.3	3.1	4.9	7.0	0.019	
Long night-time sleep (> 8 hours)	5.9	4.8	6.5	9.2	<0.001	
Dairy products (not every day)	60.9	56.3	62.8	74.0	<0.001	
Legumes and eggs intake (< 2 times/week)	19.7	13.8	22.8	33.5	<0.001	
Meat, fish and poultry intake (not every day)	80.8	78.0	83.2	82.0	0.045	
Risk of malnutrition (MNA score ≤ 11)	8.0	3.7	10.0	20.0	<0.001	
Health condition						
Number of drugs	4.4 ± 0.06	3.9 ± 0.08	4.7 ± 0.09	5.7 ± 0.23	<0.001	
Comorbidity (≥ 2 diseases)	55.6	48.3	61.3	63.2	<0.001	
Polypharmacy (≥ 5 medications)	32.2	24.4	36.0	55.0	<0.001	
Hospitalization in the past year	12.9	8.6	15.8	20.5	<0.001	
Hearing impairment	15.3	13.9	15.7	21.2	0.033	
Visual impairment	2.6	1.4	3.4	4.4	0.002	
Low chewing ability	46.7	39.1	48.8	64.0	<0.001	
Low pronouncing ability	25.0	18.9	27.4	45.5	<0.001	
Medical condition						
Hypertension	58.4	54.0	61.4	66.2	<0.001	
Diabetes	21.9	18.3	23.9	31.3	<0.001	
Urinary incontinence	4.1	2.2	5.0	10.4	<0.001	
Cardiovascular disease a	13.3	11.2	14.4	18.6	0.004	
Dyslipidemia	33.6	34.2	33.7	29.1	0.326	
Osteoarthritis	26.7	20.1	31.6	34.8	<0.001	
Osteoporosis	17.5	13.2	20.6	23.4	<0.001	
Rheumatoid arthritis	2.2	1.0	3.0	4.2	<0.001	
Digestive system ulceration	6.3	4.9	7.5	7.2	0.019	
Chronic obstructive pulmonary disease	0.9	0.9	0.8	1.3	0.703	
Condition	Mean 1	Mean 2	Mean 3	Mean 4	Mean 5	p-value
-----------------------------------	--------	--------	--------	--------	--------	---------
Allergic rhinitis	4.1	4.8	3.6	3.3	3.3	0.241
Bronchitis	1.5	1.0	1.9	2.1	2.1	0.137
Asthma	3.6	3.1	3.7	5.2	5.2	0.369
Thyroid disease	4.7	4.9	4.5	4.4	4.4	0.889
Kidney disease	1.5	1.0	1.8	2.8	2.8	0.087
Prostate disease	14.7	16.8	13.0	12.6	12.6	0.011
Depressive disorder	3.0	1.9	2.8	10.7	10.7	<0.001
Psychological						
EQ-5D index	0.88±0.00	0.92±0.00	0.86±0.00	0.73±0.01	<0.001	
EQ-VAS	74.2±0.33	79.6±0.40	71.3±0.49	60.1±1.49	<0.001	
SF-12	±	±	±	±	±	<0.001
Physical health	43.3±0.21	48.1±0.23	40.9±0.30	30.7±0.72	<0.001	
Mental health	52.7±0.20	55.6±0.22	51.3±0.32	44.7±0.87	<0.001	
Poor self-perceived health	31.0	17.2	37.9	68.9	<0.001	
Depressive symptoms (GDS score ≥ 6)	22.7	9.4	29.8	57.0	<0.001	
Cognitive dysfunction (MMSE score < 24)	22.3	12.4	27.3	49.6	<0.001	
Cognitive impairment	24.4	17.9	27.7	41.7	<0.001	
Social						
Social support	5.5±0.02	5.5±0.03	5.4±0.04	5.3±0.10	0.026	
Poor social capital	6.4	5.2	6.3	13.7	0.002	
Social network						
Low interaction with family	39.5	37.1	40.6	46.4	0.019	
Low interaction with friends	23.1	17.1	25.8	41.9	<0.001	
Low interaction with neighbor	28.7	30.2	27.6	26.9	0.294	
Religious activities (none)	41.7	41.5	40.6	49.8	0.044	
Social activities (none)	21.6	20.6	22.3	23.3	0.491	

Values are presented as mean ± standard error or percentage.

1. eGFR, estimated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine equation; M, male; F, female.
2. Cardiovascular diseases were included myocardial infarction, congestive heart failure, angina, peripheral vascular disease, and cerebrovascular disease.
3. ADL, activities of daily living; IADL, instrumental activities of daily living; HbA1c, glycosylated hemoglobin; WBC, white blood cell; RBC, red blood cell; hs-CRP, high-sensitivity C-reactive protein; TSH, thyroid-stimulating hormone; HDL-cholesterol, high-density lipoprotein; LDL-cholesterol, low-density lipoprotein; eGFR, estimated glomerular filtration rate; MNA, mini nutritional assessment; EQ-5D, EuroQol-5 dimension; EQ-vas, EuroQol visual analogue scale; SF-12, 12 item short form health survey; GDS, global deterioration scale; MMSE, mini-mental state exam.
| Variable | B | S.E. | p Value | OR | Lower | Upper |
|--|------|------|---------|------|-------|-------|
| At risk of malnutrition a | 0.922| 0.240| <0.001 | 2.51 | 1.57 | 4.03 |
| Sarcopenia b | 0.872| 0.202| <0.001 | 2.39 | 1.61 | 3.56 |
| Severe mobility limitation c | 0.758| 0.199| <0.001 | 2.13 | 1.45 | 3.15 |
| Poor Social capital d | 0.687| 0.287| 0.017 | 1.99 | 1.13 | 3.49 |
| Residence | | | | | | |
| Urban | | | | | | |
| Suburban | 0.571| 0.259| 0.027 | 1.77 | 1.07 | 2.94 |
| Rural | 0.673| 0.265| 0.016 | 1.89 | 1.13 | 3.18 |
| Depressive e | 0.634| 0.194| 0.001 | 1.89 | 1.29 | 2.76 |
| Poor self-perceived health | 0.502| 0.199| 0.012 | 1.65 | 1.12 | 2.44 |
| Polypharmacy f | 0.478| 0.181| 0.008 | 1.61 | 1.13 | 2.30 |
| hs-CRP, mg/L | 0.252| 0.095| 0.008 | 1.29 | 1.07 | 1.55 |
| HbA1c, % | 0.243| 0.103| 0.018 | 1.28 | 1.04 | 1.56 |
| Timed Up and Go, sec | 0.236| 0.039| <0.001 | 1.27 | 1.17 | 1.37 |
| Age, years | 0.081| 0.025| 0.001 | 1.08 | 1.03 | 1.14 |
| 25-hydroxyvitamin D, ng/mL | -0.023| 0.010| 0.024 | 0.98 | 0.96 | 1.00 |
| Short Physical Performance Battery | -0.144| 0.064| 0.025 | 0.87 | 0.76 | 0.98 |

Independent forward stepwise logistic regression analysis with adjustment for multiple comparisons. Controlled age, education level, residence, current worker, low calf circumference, sarcopenia, severe mobility limitation, ADL disability, IADL disability, fall in the past year, timed up and go, short physical performance battery, albumin, serum creatinine, hemoglobin A1c, HbA1c, red blood cell, free thyroxine, triglyceride, 25-hydroxyvitamin D, estimated glomerular filtration rate, risk of malnutrition, polypharmacy, hospitalization in the past year, low pronouncing ability, diabetes, urinary incontinence, osteoarthritis, rheumatoid arthritis, EuroQol-5 dimensions, depressive symptoms, cognitive impairment, social support, poor social capital, low interaction with friends, and social activities.

a At risk of malnutrition: Mini-nutritional Assessment Short Form score of ≤11.
b Sarcopenia: defined according to the consensus report of the Asian Working Group for sarcopenia.
c Severe mobility limitation: “very difficult” or “impossible” to either walk about 400 meters or climb 10 steps without resting.
d Poor social capital: any lack of participation in social gatherings.
e Depressive: a score of ≥26 on the Korean version of the Short Form Geriatric Depression Scale (SGDS-K).
f Polypharmacy: taking ≥5 medications.
hs-CRP, high-sensitivity C-reactive protein; HbA1c, glycosylated hemoglobin; B, regression coefficient; S.E., standard error; OR, odds ratio; CI, confidence interval.
4. Discussion

Our study was designed to estimate the standardized prevalence of physical frailty using the national standard population composition ratio and to explore comprehensive risk factors for physical frailty among older adults in Korea. Our study showed that the age-, sex-, and residence-standardized prevalence of physical frailty among older adults aged 70–84 years in Korea is 7.9%, and increased with age, and is higher among women and those living in rural areas. Furthermore, our study indicates that physico-nutritional, medical, psychological, and sociodemographic risk domains were most relevant to physical frailty.

Our study used the FFP to define physical frailty that has been used in many countries and found to predict adverse health outcomes among the older population. In a systematic review, the prevalence of frailty using the FFP varied from 4.0–17.0% in community-dwelling older adults aged ≥65 years [3]. The prevalence of physical frailty among the Korean community-dwelling adults is comparatively lower than the pooled prevalence of 9.9% (95% CI 9.6–10.2%) in 15 studies [3]. Several studies have estimated the prevalence of frailty using population structure ratio. Recent epidemiological studies report that the weighted prevalence of frailty using the FFP in community-dwelling older adults varies from 5.2–15.2% in Asian countries [10, 38, 39]. The weighted prevalence of frailty among older adults aged ≥60 years in Singapore was 5.7% (95% CI 4.6–7.1%) and increased significantly with age with no difference among men and women [10]. In a longitudinal cohort study of a nationally representative sample of community-dwelling adults from 28 provinces in China, the weighted prevalence of frailty was 7.0%, and was higher among women compared to men (8.0% vs. 5.9%) [39]. This study also observed a geographic heterogeneity and urban-rural difference in the prevalence of frailty. In Sri Lanka rural areas, the weighted prevalence of frailty was 15.2% in community-dwelling adults aged ≥60 years, which was higher compared to high- and upper-middle-income countries [38]. The differences in prevalence across countries could be due to the modified components used to define frailty in different studies. The wide variation in the prevalence of frailty has been attributed to the characteristics of a population such as an environment, ethnicity, and social culture.

The KFACS recruited participants using quota sampling stratified by age and sex in 10 study centers. To avoid biased results caused by the disproportionate sampling design, adjusting was performed by adjusting for age, sex, and residential areas using the Korean Population and Housing Census conducted by Statistics Korea in 2017. Our study recruited men and women in a 1:1 ratio, with 47.6% men and 52.4% women. However, the proportion of women increased to 57.8% in the standardized sample. These results were consistent with the previous studies where the proportion of women increased after age- and sex-adjustment [38]. Further, the regional distribution of the overall sample is similar in unstandardized and standardized samples. However, the distribution of residence between men and women was significantly different in the unstandardized sample, but not in the standardized sample. Since the participants were recruited without considering the sex ratio of the residential areas, there may be differences in the residential distribution by sex between unstandardized and standardized samples. The prevalence of physical frailty in the overall samples, in urban and rural areas, was similar regardless of standardization. However, age-, sex-, and residence-adjusted prevalence of frailty was estimated to be lower in men and higher in women than in the unstandardized sample. Similarly, the prevalence of frailty differed after weighting in the community-dwelling aged ≥65 years in Beijing, China [40]. The overall weighted and unweighted prevalence of frailty was estimated at 9.1%, and 12.3%, respectively. Additionally, the prevalence of frailty according to sex and residential area was estimated to be lower after sex- and age-adjustment.

In this nation-wide community-dwelling population of Korean older adults, we found 7.9% of Korean adults aged 70–84 years were frail. A similar prevalence (7.8%) was reported in the Korean community-dwelling older adults aged 65 years and older using the data from the Living Profiles of
Older People Survey based on home visit in 2008 [41]. Contrary, the prevalence in our study was lower than reported by a previous Korean hospital based study [7]. This could be because our study population (70–84 years) was younger than that in the previous study population involving oldest-old (≥85 years). Moreover, the KFACS participants are ambulatory community-dwelling older adults who may be less frail compared to the hospital-based participants. Our study showed that the standardized prevalence of frailty in rural areas was 12.7% and it was lower compared to that in the Pyeongchang rural area in Korea (12.7% vs. 17.4%). However, the prevalence of pre-frailty was similar (52.0% vs. 52.6%) [8]. Both studies recruited ambulatory community-dwelling older adults. The prevalence of frailty may differ depending upon the residential areas.

Frailty is a multifactorial syndrome with diverse domains and dimensions. Our study shows that physico-nutritional, psychological, sociodemographic, and medical domains are risk factors for frailty in older adults. Our findings that the prevalence of frailty increased with increasing age, and was higher among women, participants with a low education level, and living alone are consistent with previous studies [3]. A higher prevalence among women could be due to a lower average muscle mass and strength compared with men [1]. Previous studies show that sarcopenia, which includes low muscle mass and physical function, has a significant overlap with frailty [42, 43]. Therefore, the prevalence of sarcopenia in frail older adults might be higher. Interestingly, gender was not a remaining risk factor after multivariate forward logistic regression with factors including sarcopenia. In previous reports, gender was not a strong risk factor for frailty [10, 44, 45]. Based on our results, gender has an effect on frailty, but interaction with other risk factors may offset its influence on frailty.

Our results show that malnutrition has the strongest association with frailty. This association is also reported in recent cross-sectional studies [46]. Malnutrition is an important pathogenic factor of frailty [47]. International clinical practice guidelines recommend a broad nutritional assessment as part of an appropriate approach to frailty [48-50]. Also, we report a relationship between a low concentration of 25-hydroxyvitamin D and frailty. Because vitamin D deficiency in older adults increases the risk of adverse outcomes such as osteoporosis and low muscle strength, vitamin D might be associated with frailty [51]. We observed a strong correlation between frailty and biological factors. Previous studies report a relationship between inflammatory markers and frailty [52-54] that is consistent with our results. Additionally, HbA1c, indicator of diagnosing diabetes was associated with frailty in our study. Several studies show that older adults with diabetes are more likely to be frail than those without diabetes [55, 56]. We show that social capital is related to frailty. Poor social capital can lead to social isolation and loneliness, and finally frailty among older adults [57]. Our findings of a strong correlation between frailty and age, residence, polypharmacy, and depressive symptoms is consistent with previous studies [10, 44, 58, 59]. Our study found that the prevalence of frailty was significantly higher among women than men, consistent with a previous systematic review [3].

There are several limitations to our study. Due to the cross-sectional design, a causal relationship between risk factors and frailty cannot be determined. The characteristics of the oldest-old (≥85 years) population were unexplored in this paper. Despite these limitations, we standardized the study population by sex, age, and residence based on the Korean Population and Housing Census conducted by Statistics Korea in 2017. Furthermore, we examined a comprehensive range of risk factors for frailty status in a homogeneous population. We determined the strongest risk factors associated with frailty.

5. Conclusions

In conclusion, our study estimated the standardized prevalence of physical frailty and identified the comprehensive risk factors in a nationally representative population of Korean older adults aged 70–84 years. Physical frailty increases with age, and is more common among women and in rural areas. Furthermore, our study shows that multiple domains such as physico-nutritional,
psychological, sociodemographic, and medical domains are strongly associated with physical frailty. Management of modifiable risk factors might help in multidimensional prevention and intervention to reduce frailty among the older population in Korea.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: The proportion of risk domains across the frailty status (unstandardized sample), Table S1: Prevalence of frailty status and component (unstandardized sample).

Author Contributions: Conceptualization, H.J. and M.K.; methodology, H.J., M.K. and Y.L.; formal analysis, H.J.; investigation and data curation, H.J., M.K., Y.L. and C.W.W.; writing—original draft preparation, H.J.; funding acquisition, C.W.W.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant from the Korea Health Technology R&D Project through the Korean Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: HI15C3153).

Acknowledgments: We would like to thank the study participants and the staff of the Korean Frailty and Aging Cohort Study for their cooperation in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fried, L. P.; Tangen, C. M.; Walston, J.; Newman, A. B.; Hirsch, C.; Gotttdiener, J.; Seeman, T.; Tracy, R.; Kop, W. J.; Burke, G., Frailty in older adults: evidence for a phenotype. *J Gerontol A Biol Sci Med Sci.* 2001, 56, (3), M146-M157, https://doi.org/10.1093/gerona/56.3.M146.

2. Vermeiren, S.; Vella-Azzopardi, R.; Beckwee, D.; Habbig, A.-K.; Scafoglieri, A.; Jansen, B.; Bautmans, I.; Verté, D.; Beyer, I.; Petrovic, M., Frailty and the prediction of negative health outcomes: a meta-analysis. *J. Am. Med. Dir. Assoc.* 2016, 17, (12), 1163. e1-1163. e17, https://doi.org/10.1016/j.jamda.2016.09.010.

3. Collard, R. M.; Boter, H.; Schoevers, R. A.; Oude Voshaar, R. C., Prevalence of frailty in community-dwelling older persons: a systematic review. *J Am Geriatr Soc.* 2012, 60, (8), 1487-1492, https://doi.org/10.1111/j.1532-5415.2012.04054.x.

4. Cesari, M.; Gambassi, G.; Abellan van Kan, G.; Vellas, B., The frailty phenotype and the frailty index: different instruments for different purposes. *Age Ageing.* 2014, 43, (1), 10-12, https://doi.org/10.1093/ageing/aft160.

5. Cesari, M.; Prince, M.; Thiagarajan, J. A.; De Carvalho, I. A.; Bernabei, R.; Chan, P.; Gutierrez-Robledo, L. M.; Michel, J.-P.; Morley, J. E.; Ong, P., Frailty: an emerging public health priority. *J. Am. Med. Dir. Assoc.* 2016, 17, (3), 188-192, https://doi.org/10.1016/j.jamda.2015.12.016.

6. Statistics Korea, Population Projections for Korea (2017-2067). *Statistics Korea.* 2017.

7. Jung, H.-W.; Kim, S.-W.; Ahn, S.; Lim, J.-Y.; Han, J.-W.; Kim, T.-H.; Kim, K.-W.; Kim, K.-i.; Kim, C.-H., Prevalence and outcomes of frailty in Korean elderly population: comparisons of a multidimensional frailty index with two phenotype models. *PLoS One.* 2014, 9, (2), e87958, https://doi.org/10.1371/journal.pone.0087958.

8. Jung, H.-W.; Jang, I.-Y.; Lee, Y. S.; Lee, C. K.; Cho, E.-I.; Kang, W. Y.; Chae, J. H.; Lee, E. J.; Kim, D. H., Prevalence of frailty and aging-related health conditions in older Koreans in rural communities: a cross-sectional analysis of the aging study of Pyeongchang rural area. *J Korean Med Sci.* 2016, 31, (3), 345-352, 10.3346/jkms.2016.31.3.345.

9. Poli, S.; Cella, A.; Puntoni, M.; Musacchio, C.; Pomata, M.; Torriglia, D.; Vello, N.; Molinari, B.; Pandolfini, V.; Torrigiani, C., Frailty is associated with socioeconomic and lifestyle factors in
community-dwelling older subjects. Aging Clin Exp Res. 2017, 29, (4), 721-728, https://doi.org/10.1007/s40520-016-0623-5.

10. Vaingankar, J. A.; Chong, S. A.; Abdin, E.; Picco, L.; Chua, B. Y.; Shafie, S.; Ong, H. L.; Chang, S.; Seow, E.; Heng, D., Prevalence of frailty and its association with sociodemographic and clinical characteristics, and resource utilization in a population of Singaporean older adults. Geriatr Gerontol Int. 2017, 17, (10), 1444-1454, https://doi.org/10.1111/ggi.12891.

11. Wong, C. H.; Weiss, D.; Sourial, N.; Karunananthan, S.; Quail, J. M.; Wolfson, C.; Bergman, H., Frailty and its association with disability and comorbidity in a community-dwelling sample of seniors in Montreal: a cross-sectional study. Aging Clin Exp Res. 2010, 22, (1), 54-62, https://doi.org/10.1007/BF03324816.

12. Feng, Z.; Lugtenberg, M.; Franse, C.; Fang, X.; Hu, S.; Jin, C.; Raat, H., Risk factors and protective factors associated with incident or increase of frailty among community-dwelling older adults: a systematic review of longitudinal studies. PLoS One. 2017, 12, (6), e0178383, https://doi.org/10.1371/journal.pone.0178383.

13. Won, C. W.; Lee, S.; Kim, J.; Chon, D.; Kim, S.; Kim, C.-O.; Kim, M. K.; Cho, B.; Choi, K. M.; Roh, E., Korean frailty and aging cohort study (KFACS): cohort profile. BMJ open. 2020, 10, (4), e035573, 10.1136/bmjopen-2019-035573.

14. Charlson, M. E.; Pompei, P.; Ales, K. L.; MacKenzie, C. R., A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987, 40, (5), 373-83, 10.1016/0021-9681(87)90171-8.

15. Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Au yeung, T.-W.; Bahyah, K. S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O., Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014, 15, (2), 95-101, https://doi.org/10.1016/j.jamda.2013.11.025.

16. Kim, S.; Kim, M.; Lee, Y.; Kim, B.; Yoon, T. Y.; Won, C. W., Calf circumference as a simple screening marker for diagnosing sarcopenia in older Korean adults: the Korean frailty and aging cohort study (KFACS). J Korean Med Sci. 2018, 33, (20), 10.3346/jkms.2018.33.e151.

17. Lean, M.; Han, T.; Morrison, C., Waist circumference as a measure for indicating need for weight management. BMJ. 1995, 311, (6998), 158-161, https://doi.org/10.1136/bmj.311.6998.158.

18. Cesari, M.; Demougeot, L.; Boccalon, H.; Guyonnet, S.; Van Kan, G. A.; Vellas, B.; Andrieu, S., A self-reported screening tool for detecting community-dwelling older persons with frailty syndrome in the absence of mobility disability: the FiND questionnaire. PLoS One. 2014, 9, (7), e101745, https://doi.org/10.1371/journal.pone.0101745.

19. Won, C. W.; Yang, K. Y.; Rho, Y. G.; Kim, S. Y.; Lee, E. J.; Yoon, J. L.; Cho, K. H.; Shin, H. C.; Cho, B. R.; Oh, J. R., The development of Korean activities of daily living (K-ADL) and Korean instrumental activities of daily living (K-IADL) scale. J Korean Geriatr Soc. 2002, 6, (2), 107, e67, 10.3346/jkms.2019.34.e67.

20. Podsiadlo, D.; Richardson, S., The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991, 39, (2), 142-148, https://doi.org/10.1111/j.1532-5415.1991.tb01616.x.

21. Chainani, V.; Shaharyar, S.; Dave, K.; Choksi, V.; Ravindranathan, S.; Hanno, R.; Jamal, O.; Abdo, A.; Rafeh, N. A., Objective measures of the frailty syndrome (hand grip strength and gait speed) and cardiovascular mortality: A systematic review. Int J Cardiol. 2016, 215, 487-493, https://doi.org/10.1016/j.ijcard.2016.04.068.
22. Guralnik, J. M.; Simonsick, E. M.; Ferrucci, L.; Glynn, R. J.; Berkman, L. F.; Blazer, D. G.; Scherr, P. A.; Wallace, R. B., A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994, 49, (2), M85-M94, https://doi.org/10.1093/geronj/49.2.M85.

23. Kaiser, M. J.; Bauer, J. M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D. R.; Anthony, P.; Charlton, K. E.; Maggio, M., Validation of the Mini Nutritional Assessment Short-Form (MNA®-SF): A practical tool for identification of nutritional status. J Nutr Health Aging. 2009, 13, (9), 782, https://doi.org/10.1007/s12603-009-0214-7.

24. Kim, J.; Lee, Y.; Won, C.; Lee, K.; Chon, D., Nutritional status and frailty in community-dwelling older Korean adults: the Korean Frailty and Aging Cohort Study. J Nutr. 2018, 22, (7), 774-778, https://doi.org/10.1007/s12603-018-1005-9.

25. Gnjidic, D.; Hilmer, S. N.; Blyth, F. M.; Naganathan, V.; Waite, L.; Seibel, M. J.; Cumming, R. G.; Handelsman, D. J.; Le Couteur, D. G., Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol. 2012, 65, (9), 989-995, https://doi.org/10.1016/j.jclinepi.2012.02.018.

26. Yoo, M.; Kim, S.; Kim, B.; Yoo, J.; Lee, S.; Jang, H.; Cho, B.; Son, S.; Lee, J.; Park, Y., Moderate hearing loss is related with social frailty in a community-dwelling older adults: the Korean frailty and aging cohort study (KFACS). Arch Gerontol Geriatr. 2019, 83, 126-130, https://doi.org/10.1016/j.archger.2019.04.004.

27. Maberley, D.; Hollands, H.; Chuo, J.; Tam, G.; Konkal, J.; Roesch, M.; Veselinovic, A.; Witzigmann, M.; Bassett, K., The prevalence of low vision and blindness in Canada. Eye. 2006, 20, (3), 341-346, https://doi.org/10.1038/sj.eye.6701879.

28. Bae, J. N.; Cho, M. J., Development of the Korean version of the Geriatric Depression Scale and its short form among elderly psychiatric patients. J Psychosom Res. 2004, 57, (3), 297-305, https://doi.org/10.1016/j.jpsych Res.2004.01.004.

29. Lee, D. Y.; Lee, K. U.; Lee, J. H.; Kim, K. W.; Jhoo, J. H.; Kim, S. Y.; Yoon, J. C.; Woo, S. I.; Ha, J.; Woo, J. I., A normative study of the CERAD neuropsychological assessment battery in the Korean elderly. J Int Neuropsychol Soc. 2004, 10, (1), 72-81, 10.1017S1355617704010194.

30. Won, C. W.; Lee, Y.; Kim, S.; Yoo, J.; Kim, M.; Ng, T.-P.; Kim, H.; Son, S. J., Modified criteria for diagnosing “cognitive frailty”. Psychiatry Investig. 2018, 15, (9), 839, 10.30773/pi.2018.05.22.

31. Jo, M.-W.; Yun, S.-C.; Lee, S.-I., Estimating quality weights for EQ-5D health states with the time trade-off method in South Korea. Value Health. 2008, 11, (7), 1186-1189, https://doi.org/10.1111/j.1524-4733.2008.00348.x.

32. Kim, S.; Won, C. W.; Kim, B.; Yoo, J.; Byun, S.; Jang, H. C.; Cho, B.; Son, S.; Lee, J.; Park, Y., EuroQol Visual Analogue Scale (EQ-VAS) as a Predicting Tool for Frailty in Older Korean Adults: The Korean Frailty and Aging Cohort Study (KFACS). J Nutr. 2018, 22, (10), 1275-1280, https://doi.org/10.1007/s12603-018-1077-6.

33. Kim, S. H.; Jo, M. W.; Ahn, J.; Ock, M.; Shin, S.; Park, J., Assessment of psychometric properties of the Korean SF-12 v2 in the general population. BMC Public Health. 2014, 14, 1086, https://doi.org/10.1186/1471-2458-14-1086.

34. Brazier, J. E.; Roberts, J., The estimation of a preference-based measure of health from the SF-12. Med Care. 2004, 851-859, 10.2307/4640827.
35. Mitchell, P. H.; Powell, L.; Blumenthal, J.; Norton, J.; Ironson, G.; Pitula, C. R.; Froelicher, E. S.; Czajkowski, S.; Youngblood, M.; Huber, M., A short social support measure for patients recovering from myocardial infarction: the ENRICHD Social Support Inventory. *J Cardiopulm Rehabil Prev.* 2003, 23, (6), 398-403, 10.1097/00008483-200311000-00001.

36. Shin, N.; Kang, Y., The relationships among health locus of control and resilience, social support and health promoting behavior in patients with newly diagnosed coronary artery diseases. *Korean J Adult Nurs.* 2015, 27, (3), 294-303, https://doi.org/10.7475/kjan.2015.27.3.294.

37. Wenger, G. C.; Tucker, I., Using network variation in practice: identification of support network type. *Health Soc Care Community.* 2002, 10, (1), 28-35, https://doi.org/10.1046/j.0966-0410.2001.00339.x.

38. Siriwardhana, D. D.; Weerasinghe, M. C.; Rait, G.; Falcaro, M.; Scholes, S.; Walters, K. R., Prevalence of frailty in rural community-dwelling older adults in Kegalle district of Sri Lanka: a population-based cross-sectional study. *BMJ open.* 2019, 9, (1), bmjopen-2018-026314, http://dx.doi.org/10.1136/bmjopen-2018-026314.

39. Wu, C.; Smit, E.; Xue, Q.-L.; Odden, M. C., Prevalence and correlates of frailty among community-dwelling Chinese older adults: the China Health and Retirement Longitudinal Study. *J Gerontol A Biol Sci Med Sci.* 2018, 73, (1), 102-108, https://doi.org/10.1093/gerona/glx098.

40. Zheng, Z.; Guan, S.; Ding, H.; Wang, Z.; Zhang, J.; Zhao, J.; Ma, J.; Chan, P., Prevalence and incidence of frailty in community-dwelling older people: Beijing Longitudinal Study of Aging II. *J Am Geriatr Soc.* 2016, 64, (6), 1281-1286, https://doi.org/10.1111/jgs.14135.

41. Lee, Y.; Kim, J.; Han, E. S.; Ryu, M.; Cho, Y.; Chae, S., Frailty and body mass index as predictors of 3-year mortality in older adults living in the community. *Gerontology.* 2014, 60, (6), 475-482, https://doi.org/10.1159/000362330.

42. Cruz-Jentoft, A. J.; Kiesswetter, E.; Drey, M.; Sieber, C. C., Nutrition, frailty, and sarcopenia. *Aging Clin Exp Res.* 2017, 29, (1), 43-48, https://doi.org/10.1007/s40520-016-0709-0.

43. Samper-Ternent, R.; Reyes-Ortiz, C.; Ottenbacher, K. J.; Cano, C. A., Frailty and sarcopenia in Bogotá: results from the SABE Bogotá Study. *Aging Clin Exp Res.* 2017, 29, (2), 265-272, https://doi.org/10.1007/s40520-016-0561-2.

44. Ma, L.; Tang, Z.; Zhang, L.; Sun, F.; Li, Y.; Chan, P., Prevalence of frailty and associated factors in the community-dwelling population of China. *J Am Geriatr Soc.* 2018, 66, (3), 559-564, https://doi.org/10.1111/jgs.15214.

45. Puts, M. T.; Lips, P.; Deeg, D. J., Sex differences in the risk of frailty for mortality independent of disability and chronic diseases. *J Am Geriatr Soc.* 2005, 53, (1), 40-47, https://doi.org/10.1111/j.1532-5415.2005.53008.x.

46. Pérez-Ros, P.; Vila-Candell, R.; López-Hernández, L.; Martínez-Arnau, F. M., Nutritional Status and Risk Factors for Frailty in Community-Dwelling Older People: A Cross-Sectional Study. *Nutr.* 2020, 12, (4), 1041, 10.3390/nu12041041.

47. Walston, J.; Hadley, E. C.; Ferrucci, L.; Guralnik, J. M.; Newman, A. B.; Studenski, S. A.; Ershler, W. B.; Harris, T.; Fried, L. P., Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. *J Am Geriatr Soc.* 2006, 54, (6), 991-1001, https://doi.org/10.1111/j.1532-5415.2006.00745.x.

48. Dent, E.; Kowal, P.; Hoogendijk, E. O., Frailty measurement in research and clinical practice: a review. *Eur J Intern Med.* 2016, 31, 3-10, https://doi.org/10.1016/j.ejim.2016.03.007.
49. Dent, E.; Lien, C.; Lim, W. S.; Wong, W. C.; Wong, C. H.; Ng, T. P.; Woo, J.; Dong, B.; de la Vega, S.; Poi, P. J. H., The Asia-Pacific clinical practice guidelines for the management of frailty. J Am Med Dir Assoc. 2017, 18, (7), 564-575, https://doi.org/10.1016/j.jamda.2017.04.018.

50. Turner, G.; Clegg, A., Best practice guidelines for the management of frailty: a British Geriatrics Society, Age UK and Royal College of General Practitioners report. Age Aging. 2014, 43, (6), 744-747, https://doi.org/10.1093/ageing/afu138.

51. Holick, M. F., Vitamin D deficiency. N Engl J Med. 2007, 357, (3), 266-281, 10.1056/NEJMra070553.

52. Hubbard, R. E.; O'Mahony, M. S.; Savva, G. M.; Calver, B. L.; Woodhouse, K. W., Inflammation and frailty measures in older people. J Cell Mol Med. 2009, 13, (9b), 3103-3109, https://doi.org/10.1111/j.1582-4934.2009.00733.x.

53. Leng, S.; Chaves, P.; Koenig, K.; Walston, J., Serum interleukin-6 and hemoglobin as physiological correlates in the geriatric syndrome of frailty: a pilot study. J Am Geriatr Soc. 2002, 50, (7), 1268-1271, https://doi.org/10.1046/j.1532-5415.2002.00731.x.

54. Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A. T.; Manzato, E.; Maggi, S., Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev. 2016, 31, 1-8, https://doi.org/10.1016/j.arr.2016.08.006.

55. Hubbard, R.; Andrew, M.; Fallah, N.; Rockwood, K., Comparison of the prognostic importance of diagnosed diabetes, co-morbidity and frailty in older people. Diabet Med. 2010, 27, (5), 603-606, https://doi.org/10.1111/j.1464-5491.2010.02977.x.

56. Ottenbacher, K. J.; Graham, J. E.; Al Snih, S.; Raji, M.; Samper-Terenent, R.; Ostir, G. V.; Markides, K. S., Mexican Americans and frailty: findings from the Hispanic established populations epidemiologic studies of the elderly. Am J Public Health Nations Health. 2009, 99, (4), 673-679, https://doi.org/10.2105/AJPH.2008.143958.

57. Gale, C. R.; Westbury, L.; Cooper, C., Social isolation and loneliness as risk factors for the progression of frailty: the English Longitudinal Study of Ageing. Age Ageing. 2018, 47, (3), 392-397, https://doi.org/10.1093/ageing/afx188.

58. Herr, M.; Robine, J. M.; Pinot, J.; Arvieu, J. J.; Ankri, J., Polypharmacy and frailty: prevalence, relationship, and impact on mortality in a French sample of 2350 old people. Pharmacoepidemiol Drug Saf. 2015, 24, (6), 637-646, https://doi.org/10.1002/pds.3772.

59. Soysal, P.; Veronese, N.; Thompson, T.; Kahl, K. G.; Fernandes, B. S.; Prina, A. M.; Solmi, M.; Schofield, P.; Koyanagi, A.; Tseng, P.-T., Relationship between depression and frailty in older adults: A systematic review and meta-analysis. Ageing Res Rev. 2017, 36, 78-87, https://doi.org/10.1016/j.arr.2017.03.005.