Peptidyl arginine deiminase immunization induces anticitrullinated protein antibodies in mice with particular MHC types

Fanny Arnoux, Charlotte Mariot, Elisa Peen, Nathalie Lambert, Nathalie Balandraud, Jean Roudier, and Isabelle Auger

INSERM UMR 1097, Aix Marseille University, 13009 Marseille, France; and Service de Rhumatologie, Hôpital Sainte Marguerite, Assistance Publique Hôpitaux de Marseille, 13009 Marseille, France

Autoantibodies to citrullinated proteins (ACPAs) are present in two-thirds of patients with rheumatoid arthritis (RA). ACPAs are produced in the absence of identified T cell responses for each citrullinated protein. Peptidyl arginine deiminase 4 (PAD4), which binds proteins and citrullinates them, is the target of autoantibodies in early RA. This suggests a model for the emergence of ACPAs in the absence of detectable T cells specific for citrullinated antigens: ACPAs could arise because PADs are recognized by T cells, which help the production of autoantibodies to proteins bound by PADs, according to a “hapten/cARRIER” model. Here, we tested this model in normal mice. C3H are healthy mice whose IEβk chain is highly homologous to the β1 chain HLA-DRB1*04:01, the allele most strongly associated with RA in humans. C3H mice immunized with PADs developed antibodies and T cells to PAD and IgG antibodies to citrullinated fibrinogen peptides, in the absence of a T cell response to fibrinogen. To analyze the MHC background effect on hapten/cARRIER immunization, we immunized DBA/2 mice (whose IEβd chain is similar to that of HLA-DRB1*04:02, an HLA-DR4 subtype not associated with RA). DBA/2 mice failed to develop antibodies to citrullinated fibrinogen peptides. Thus, T cell immunization to PAD proteins may trigger ACPAs through a hapten/cARRIER mechanism. This may constitute the basis for a new mouse model of ACPA-positive RA.

The presence and development of autoantibodies to citrullinated proteins (ACPAs) are highly associated with rheumatoid arthritis (RA). The mechanisms leading to the production of ACPAs are unknown. Here, we propose a model to explain the emergence of anticitrullinated protein autoantibodies in RA. Indeed, we could trigger the development of anticitrullinated fibrinogen autoantibodies in normal mice by immunization with peptidyl arginine deiminase (PAD), most likely through a hapten/cARRIER mechanism in which the carrier is the PAD enzyme that performs citrullination and the hapten is any protein being citrullinated (hence bound) by PAD. Our results allow us to understand the birth of anticitrullin autoimmunity.

Significance

Editored by Dennis A. Carson, University of California, San Diego, La Jolla, CA, and approved October 18, 2017 (received for review July 26, 2017)
In C3H mice immunized with murine PAD2, the average background OD was 0.06, and the average test OD was 1 after the first immunization, 1.4 after the second immunization, 1.8 after the third immunization, and 1.7 after the fourth immunization (Fig. 2B).

In C3H mice immunized with human PAD2, the average background OD was 0.06, and the average test OD was 0.8 after the first immunization, 0.9 after the second immunization, 1.5 after the third immunization, and 1.6 after the fourth immunization (Fig. 2B).

Fig. 1. Model and methods. Shown are the immunization protocol (A) and antibody and T cell analysis kinetic (B).

Fig. 2. IgG responses to PADs in C3H mice. IgG responses to murine PAD2 or human PAD2 or human PAD4 were analyzed by ELISAs. Plates were coated with PADs and blocked with BSA. Sera from primed mice were obtained at 15, 35, 55, and 65 d postimmunization and were diluted at 1/40. (A) For PBS-immunized mice, 15 sera were tested for murine PAD2, 8 sera were tested for human PAD2, and 9 sera were tested for human PAD4. (B) For PAD-immunized mice, each serum was tested against the same PAD used for each immunization. After washing, peroxidase-conjugated antimurine IgG was added. The OD was read at 405 nm. The background OD was obtained by adding each serum to a well without PAD (negative). Positive sera were defined as an OD value higher than twice the background OD.
In C3H mice immunized with human PAD4, the average background OD was 0.07, and the average test OD was 1.1 after the first immunization, 1.8 after the second immunization, 1.6 after the third immunization, and 1.3 after the fourth immunization (Fig. 2B).

The presence of anti-PAD antibodies was confirmed by titration assays for 12 C3H mice immunized with PADs (Fig. S1).

T Cell Responses to PADs in C3H Mice Immunized with PADs. Spleen and lymph nodes were obtained 65 d after immunizations with murine PAD2 or human PAD2 or human PAD4 or PBS. T cell proliferation to PADs, native or citrullinated fibrinogen, or phytohemagglutinin (PHA) was evaluated by bromodeoxyuridine incorporation. Positive responses were defined by OD values higher than twice the background OD obtained for cells cultured without antigen.

T cell responses to PADs were detected in 24/28 C3H mice immunized with PADs versus 4/20 C3H mice immunized with PBS (Fisher’s test, P = 6 × 10^{-6}) (Fig. 3).

Indeed, 11/13 C3H mice immunized with murine PAD2, 4/4 C3H mice immunized with human PAD2, and 9/11 C3H mice immunized with human PAD4 developed immunizing PAD-specific T cell responses (Fig. 3B). No T cell response was detected for native or citrullinated fibrinogen in mice immunized with PADs or PBS. Among the four mice immunized with PBS who responded to PADs, two recognized murine PAD2, one recognized human PAD2, and one recognized murine PAD2, human PAD2, and human PAD4 (Fig. 3).

Antibodies to Citrullinated Peptides from Human Fibrinogen in C3H Mice Immunized with PADs. To test whether anticitrullinated peptide antibodies were produced in C3H mice after PAD immunization, we screened sera from 28 mice immunized with murine PAD2 or human PAD2 or human PAD4 and sera from 20 mice immunized with PBS with 46 citrullinated peptides from the alpha, beta, and gamma chain of human fibrinogen. These

![Fig. 3.](image_url) T cell responses to PADs in C3H mice. Spleen and lymph nodes were obtained at 65 d postimmunization for PBS-immunized mice (A) or PAD-immunized mice (B). Cells were extracted and cultured at 5 x 10^6 cells per well with 2 μg of proteins or PHA. T cell responses were evaluated by bromodeoxyuridine incorporation. Positive responses were defined as an OD value higher than twice the OD for cells cultured without protein.
peptides were 17 15-mers from the alpha chain of human fibrinogen (locus NP_000499) with 50–100% identity with their murine counterparts, 28 15-mers from the beta chain of human fibrinogen (locus NP_005132) with 70–100% identity with their murine counterparts, and one 15-mer from the gamma chain of human fibrinogen (locus NP_068656.2) with 100% identity with its murine counterpart.

We identified four major citrullinated epitopes: peptides 4C, 5C, 6C, and 8C (Fig. 4). These peptides encompassing residues 420–479 of the beta chain of human fibrinogen were recognized by 8/28 sera from mice immunized with PADs versus 0/20 sera from mice immunized by PBS (Fisher’s test, \(P = 0.014\)).

The presence of anticitrullinated peptide antibodies was confirmed by titration assays for six C3H mice immunized with PADs (Figs. S2–S4).

To check for the presence of citrullin residue-specific antibodies, we then screened the same sera from 28 mice immunized with murine PAD2 or human PAD2 or human PAD4 and from 20 mice immunized with PBS, with peptides 4, 5, 6, and 8 under their native and citrullinated form (Fig. 5).

IgG responses to native peptides were detected in 10/28 mice immunized with PADs versus 2/20 mice immunized with PBS (Fisher’s test, \(P = 0.05\)) (Fig. 5).

Citrullinated peptide-specific IgG responses were detected in 6/28 mice immunized with PADs versus 0/20 mice immunized with PBS (Fisher’s test, \(P = 0.03\)) (Fig. 5).

Influence of MHC Background on Anticitrullinated Peptide Immunization.

To test whether polymorphism of the I\(\epsilon\) chain influences the development of T cell responses to PAD and antibody responses to citrullinated peptides from fibrinogen, we immunized mice expressing an I\(\epsilon\) chain allele other than I\(\epsilon\)k with PAD.

We chose DBA2 mice whose I\(\epsilon\) chain is similar to that of non-RA–associated HLA-DRB1*0402 (16) (Fig. S5). IgG responses to PADs were analyzed by ELISA. Sera were diluted at 1/40. DBA/2 mice were immunized with murine PAD2 or human PAD4 proteins, which had given the highest anti-PAD antibody titers in C3H mice after PAD immunization.

We detected IgG responses to PADs in 10/10 DBA/2 mice immunized with murine PAD2 and human PAD4 and 0/9 DBA/2 mice immunized with PBS (Fisher’s test, \(P = 1 \times 10^{-5}\)) (Fig. 6).

In DBA/2 mice immunized with PBS, the average background OD was 0.06, and the average test OD was 0.06 when adding each serum to a well with murine PAD2 or human PAD4 (Fig. 6).

Fibrinogen	Peptide number	Citrullinated peptide sequence	PBS Immunized C3H mice (n=20)	mPAD2 Immunized C3H mice (n=13)	hPAD2 Immunized C3H mice (n=4)	hPAD4 Immunized C3H mice (n=11)
alpha chain	1A	EEGVR*GPR*VYR*YQH				
alpha chain	5A	GQVR*GPR*VYR*YQHA				
alpha chain	41A	GPR*VYR*QAHG				
alpha chain	42A	SQCR*MKGLIEYND				
alpha chain	43A	FTMQ*WSKLELFY				
alpha chain	44A	EILRSDTASQNLID				
alpha chain	46A	TYNSPEEDLRS*EDI				
alpha chain	129A	EVLK*SDQYKH				
alpha chain	46A	LKV*KEKVE*QHGL				
alpha chain	47A	DVMWRAQ*YKPM				
alpha chain	48A	DODK*CSQ*SCS				
alpha chain	130A	SCGR*ARL*EVLQD				
alpha chain	49A	P*ARL*EVLQDTEYQ				
alpha chain	131A	LPSR*RD*QH*PMLMK				
alpha chain	50A	R*DR*PLHLMK*PP				
alpha chain	51A	PEKAL*NTQPMIFERME				
alpha chain	62A	LER*PQNEITR*GQST				
beta chain	9B	GHR*YLDK*QEEAFBLS				
beta chain	9B	R*QAPFR*PGQD*AR				
beta chain	100B	PAKAATQ*DR*V*KA				
beta chain	101B	LGGER*FYP*NSVDE				
beta chain	101B	EPRK*NVSELNNV				
beta chain	107B	NSNIF*LRL*Y*STL				
beta chain	109B	TNL*V*LSL*LEN*RS				
beta chain	109B	L*YPL*LSL*LEN*RS				
beta chain	109B	L*NL*SKQK*ELEY				
beta chain	104B	DKLEDSV*SQAEMYOR				
beta chain	106B	DVSQMEYRCT*FCTV				
beta chain	151B	QMEYRC*I*PCTVSCNI				
beta chain	152B	VSQKEED*P*YKGG				
beta chain	163B	VQNR*QDSQVDFGR*K				
beta chain	160B	EECQWF*KGETSEIM				
beta chain	106B	YLPQSDSWKPP*RVY				
beta chain	164B	NKY*Y*STGNAVMDSQ				
beta chain	107B	R*QDSQVDFGR*KQDPY				
beta chain	108B	SGR*GTGQTTEL*IEW				
beta chain	110B	LMDNIR*TMTH*GNDF				
beta chain	111B	FSTOR*ENDGMLTSO				
beta chain	155B	LTSDFP*KQGSKEDGG				
beta chain	4C	PKY*KSC*EGKEDGWW				
beta chain	5C	WYNF*CHAINFA*RY				
beta chain	6C	NRC*CHAFN*G*Y YW				
beta chain	8C	VVNNM*KWSKYSMRR				
gamma chain	107B	WYSSM*KF*SKSMK*FF				
gamma chain	115B	MSMIK*FF*PPOQ				
gamma chain	3G	VAT*RQDN*COLDER*FG				

Fig. 4. Citrullinated peptides recognized by the sera of C3H mice immunized with PADs. ELISA plates were coated with 46 citrullinated peptides and blocked with BSA. Sera from primed mice obtained at 55 and 65 d postimmunization were diluted at 1/80. After washing, peroxidase-conjugated antimurine IgG was added. The OD was read at 405 nm. The background OD was obtained by adding each serum to a well without peptide. Positive sera were defined as an OD value higher than twice the background OD. A column corresponded to one mouse. IgG to citrullinated peptide is indicated in red.
In DBA/2 mice immunized with murine PAD2, the average background OD was 0.05, and the average test OD was 0.27 after the first immunization, 0.77 after the second immunization, 0.7 after the third immunization, and 0.8 after the fourth immunization (Fig. 6B).

In DBA/2 mice immunized with human PAD4, the background OD was 0.06, and the average test OD was 0.44 after the first immunization, 0.47 after the second immunization, 0.88 after the third immunization, and 0.93 after the fourth immunization (Fig. 6B).

Anti-PAD antibody levels (as indicated by test ODs) were lower in DBA/2 than in C3H mice after immunization with PADs.

The presence of anti-PAD antibodies was confirmed by titration assays for 10 DBA/2 mice immunized with PADs (Fig. S6).

T cell responses to PADs were detected in 8/10 DBA/2 mice immunized with murine PAD2 and human PAD4 and 3/9 DBA/2 mice immunized with PBS (Fisher’s test, P = 0.07) (Fig. 7).

Indeed, in DBA/2 mice immunized with PBS, the average background OD was 0.15 in cells cultured without antigen, and the average test ODs were 0.2 in cells cultured with murine PAD2 or human PAD4, 0.14 in cells cultured with native or citrullinated fibrinogen, and 0.35 in cells cultured with PHA (Fig. 7).

In DBA/2 mice immunized with murine PAD2, the average background OD was 0.18 in cells cultured without antigen, and the average test OD was 0.17 in cells cultured with murine PAD2, 0.17 in cells cultured with native or citrullinated fibrinogen, and 0.6 in cells cultured with PHA (Fig. 7).

In DBA/2 mice immunized with human PAD4, the average background OD was 0.18 in cells cultured without antigen, and the test ODs were 0.53 obtained in cells cultured with human PAD4, 0.18 in cells cultured with native or citrullinated fibrinogen, and 0.61 in cells cultured with PHA (Fig. 7).

T cell responses (as indicated by test ODs) to murine PAD2 were lower in DBA/2 mice immunized with murine PAD2 than in C3H mice immunized with murine PAD2. T cell responses (as indicated by test ODs) to human PAD4 were similar in DBA/2 and C3H mice immunized with human PAD4. No T cell responses were detected in native or citrullinated fibrinogen in DBA/2 mice immunized with PBS or PHA (as indicated by test ODs) were lower in DBA/2 than in C3H mice. DBA/2 mice are known to have the lowest PHA responsiveness of all classical mouse strains, whereas C3H are among the low responders (17).

Finally, we screened sera from mice immunized with PBS or murine PAD2 or human PAD4 on the 46 citrullinated peptides from the alpha, beta, and gamma chain of human fibrinogen with 50–100% homology with their murine counterparts. No IgG response to citrullinated fibrinogen peptides was detected in any of the DBA/2 mice immunized with PADs or PBS (Fig. 5). The lack of anticitrullinated peptide antibodies was confirmed by titration assays for seven DBA/2 mice immunized with PADs (Figs. S2–S4).

Discussion

In this study, we tested whether immunization to PAD proteins triggers ACPAs through a hapten/carrier mechanism in which the carrier is PAD, which performs citrullination, and the hapten is any protein being citrullinated by PAD.

Indeed, the sera of two-thirds of patients with RA contain anticitrullinated peptide autoantibodies. These IgG antibodies recognize citrullin residues on different proteins. ACPAs are central to the development of RA. However, the mechanisms leading to the production of ACPAs are unknown.

A tentative model proposes that cigarette smoking may induce citrullination of proteins in the lungs. HLA-DRB1 alleles associated with RA would then bind citrullinated peptides and present them to helper T cells. This mechanism would explain anticitrullinated protein immunization in patients whose HLA-DRB1 molecules express the shared epitope. However, this model has serious limitations:

In DBA/2 mice immunized with murine PAD2, the average background OD was 0.05, and the average test OD was 0.27 after
i) RA may occur in nonsmokers.

ii) IgG antibodies against citrullinated proteins usually develop in the absence of identified helper T cell response.

iii) The preferential binding of citrullinated peptides to shared epitope-positive HLA-DRB1 alleles has never been properly demonstrated. Indeed, the article that was supposed to have demonstrated the point studied the binding of one unique citrullinated vimentin peptide to three shared epitope-positive and five shared epitope-negative HLA-DRB1 alleles (11). Conversely, thorough studies of the binding of hundreds of peptides to shared epitope-positive or -negative HLA-DRB1 alleles did not show preferential binding of citrullinated peptides to shared epitope-positive alleles, compared with their native counterparts (12–14).

Thus, the identity of the antigen(s) whose recognition by T cells can help the development of IgG autoantibodies directed at citrullinated proteins is still unknown.

We focused on PAD2 and PAD4 as candidate antigens in anticitrullinated protein immunization for several reasons:

i) Anti-PAD4 IgG autoantibodies are detectable during the preclinical phase of RA in one-third of patients and are associated with ACPA positivity (18–24).

ii) PAD2 and PAD4 expressed in the RA synovium (25) are involved in the citrullination of fibrin, the major synovial autoantigen in RA (10).

iii) PADI4, the gene encoding PAD4, is a susceptibility locus for RA in Asians and in some, but not every, Western populations.
Increased susceptibility to develop RA might be due by higher stability of PAD4 transcripts and thus higher expression of PAD4 (27).

To test whether we could induce ACPAs by immunizing normal mice with PADs, we used C3H mice whose Iεβk chain is similar to that of RA-associated HLA-DRB1*04:01. We immunized C3H mice with four PAD proteins (murine and human PAD2 and PAD4) and obtained IgG and T cell responses to PAD after immunization with murine and human PAD2 or with human PAD4.

No T cell response was observed to native or citrullinated fibrinogen in C3H mice immunized with PADs.

To detect anticitrullinated protein antibodies, we used 46 citrullinated peptides from human fibrinogen with 50–100% homology with their murine counterparts. Among these 46 peptides, four were preferentially recognized by sera from primed mice. These peptides are located in the C-terminal domain of human beta fibrinogen (amino acids 420–479). IgG responses to citrullinated fibrinogen peptides were only detected in C3H mice immunized with murine or human PAD2 or human PAD4.

![Fig. 7.](image1.png)

Fig. 7. T cell responses to PADs in DBA/2 mice. Spleen and lymph nodes were obtained at 65 d postimmunization. Cells were extracted and cultured at 5 × 10^6 cells per well with 2 μg of proteins or PHA. T cell responses were evaluated by bromodeoxyuridine incorporation. Positive responses were defined as an OD value higher than twice the OD for cells cultured without protein.

![Fig. 8.](image2.png)

Fig. 8. Citrullinated peptide detection in the sera of DBA/2 mice immunized with PADs or PBS. ELISA plates were coated with 46 citrullinated peptides and blocked with BSA. Sera from primed mice obtained at 55 and 65 d postimmunization were diluted at 1/80. After washing, peroxidase-conjugated antimurine IgG was added. The OD was read at 405 nm. The background OD was obtained by adding each serum to a well without peptide. Positive sera were defined as an OD value higher than twice the background OD. A column corresponded to one mouse.
C3H/HeNHsd and DBA/2 mice were purchased from Envigo Laboratories. Mice were housed at the Luminy INSERM Institute, Marseille (A13 01303). All experiments were approved by the Animal Ethics Committee of Marseille and the Ministère de l’Enseignement Supérieur et de la Recherche.

Proteins. Murine PAD2 and PAD4 and human PAD2 and PAD4 proteins were purchased from Proteogenix. They were produced in baculovirus and purified. Their activity and autocitrullination status were tested before immunization.

Citrullinated Proteins. Citrullinated fibrinogen, the most likely target antigen of ACPA, expressed in the synovial tissue of RA patients, allows ACPA detection with the same efficiency as the anticyclic peptide antibody kits (anti-CCP2) in RA. Citrullinated human fibrinogen (Calbiochem and Oxford Bio-medical Research) was obtained after incubation in 1 M Tris-HCl (pH 7.4), 100 mM CaCl2, 50 mM DTT buffer at a concentration of 1 mg/mL with rabbit PAD2 (Sigma Aldrich), for 2 h at 37 °C. Noncitrullinated proteins were treated identically, except that water was added instead of rabbit PAD2.

Immunization Protocols. C3H or DBA2 mice were immunized s.c. with 100 μg of murine or human PAD2, or murine or human PAD4, or PBS in CFA. Three booster injections with 100 μg of PADs or PBS in IFA were given s.c. 15, 35, and 55 d later.

Detection of Anti-PAD Antibodies. Sera from primed mice were obtained at days 15, 35, 55, and 65 and tested by ELISA. Plates were coated overnight with PADs. Plates were blocked with 2% BSA. Sera were incubated. After washing with Tween 20, peroxidase-conjugated antimurine IgG was added. The OD was read at 405 nm. Background OD was obtained by adding each serum to a well without protein. Positive sera were defined as an OD value higher than twice the background OD.

Synthetic Peptides. Each peptide was synthesized using a solid-phase system (Neosystem) and purified. We started with 46 citrullinated peptides from the alpha, beta, and gamma chain of human fibrinogen and used them for ELISAs in 67 mice. We tested 17 15-mers from the alpha chain of human fibrinogen (locus NP_000499) with 50–100% identity with their murine counterparts, 28 15-mers from the beta chain of human fibrinogen (locus NP_0005132) with 70–100% identity with their murine counterparts, and one 15-mer from the gamma chain of human fibrinogen (locus NP_006856.2) with 100% identity with its murine counterpart. Peptides 4C, 5C, 6C, and 8C from the beta chain of human fibrinogen were the targets of all of the anticitrullinated fibrinogen peptide antibody responses. They are 93–100% identical to their murine counterparts. They encompass residues 420–479 of the beta chain of human fibrinogen (locus NP_0005132). The arginine version of these four peptides was used to confirm citrullinated peptide specificity of anticitrullinated fibrinogen antibodies.

Detection of Anticitrullinated Peptide Antibodies. Sera from primed mice were obtained at days 55 and 65 and tested for anticitrullinated peptide antibodies by ELISA. Plates were coated with human fibrinogen peptides under citrullinated and native forms. After blocking, sera from primed mice were incubated with peptides. After washing, peroxidase-conjugated antimurine IgG was added. The OD was read at 405 nm. Background OD was obtained by adding each serum to a well without peptide. Positive sera were defined as an OD value higher than twice the background OD.

T Cell Proliferation Assays. Spleen and lymph nodes were obtained at day 65 postimmunization and used in antigen-specific proliferation assays. T cell responses to PADs, native or citrullinated fibrinogen, or PHA were evaluated using the colorimetric bromodeoxyuridine kit (Roche Diagnostics). Background OD was obtained for cells cultured without antigen. Positive responses were defined as an OD value higher than twice the background OD.

Statistical Analysis. Comparisons between groups were performed using Fisher’s exact test.

ACKNOWLEDGMENTS. This study was supported by INSERM and Fondation Arthritis Courtin.

1. Symmons DPM (1995) What is rheumatoid arthritis? Br Med Bull 51:243–248.
2. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213.
3. Ollier W, Thomson W (1992) Population genetics of rheumatoid arthritis. Rheum Dis Clin North Am 18:741–759.
4. Balandraud N, et al. (2013) HLA-DRB1 genotypes and the risk of developing anti-citrullinated protein antibody (ACPAs) positive rheumatoid arthritis. PloS One 8: e64108.
5. Schellekens GA, de Jong BA, van den Hoogen FH, van der Putte LB, van Venrooij WJ (1998) Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 101:273–281.
6. van Venrooij WJ, Pruijn GJ (2000) Citrullination: A small change for a protein with great consequences for rheumatoid arthritis. Arthritis Res 2:249–251.
7. Simon M, et al. (1993) The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies,” autoantibodies specific for rheumatoid arthritis. J Clin Invest 92:1387–1393.
8. Girbal-Neuhauser E, et al. (1999) The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deamination of arginine residues. J Immunol 162:585–594.
9. Vossenaar ER, et al. (2004) Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. Arthritis Res Ther 6:R142–R150.
10. Masson-Bessière C, et al. (2001) The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deaminated forms of the alpha- and beta-chains of fibrin. J Immunol 166:4177–4184.
11. Hill JA, et al. (2003) Cutting edge: The conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 171:538–541.
12. Auger I, et al. (2005) Influence of HLA-DR genes on the production of rheumatoid arthritis-specific autoantibodies to citrullinated fibrinogen. Arthritis Rheum 52:3424–3422.
13. Pratesi F, et al. (2012) Effect of rheumatoid arthritis (RA) susceptibility genes on the immune response to viral citrullinated peptides in RA. J Rheumatol 39:1490–1493.
14. Sidney J, et al. (2017) Citrullination only infrequently impacts peptide binding to HLA class II MHC. PLoS One 12:e0177140.
15. Auger I, et al. (2009) New autoantigens in rheumatoid arthritis (RA): Screening 8268 protein arrays with sera from patients with RA. Ann Rheum Dis 68:591–594.
16. Wilder G, Flavell RA (1984) The nucleotide sequence of the murine I-E beta gene of the major histocompatibility complex. EMBO J 3:1221–1225.
17. Heiniger HJ, Taylor BA, Hards EJ, Meier H (1975) Heritability of the phytohemagglutinin responsiveness of lymphocytes and its relationship to leukemogenesis. Cancer Res 35:825–831.
18. Takizawa Y, et al. (2005) Peptidylarginine deiminase 4 (PADI4) identified as a conformation-dependent autoantigen in rheumatoid arthritis. Scand J Rheumatol 34:212–215.
19. Roth EB, Stenberg P, Book C, Sjöberg K (2006) Antibodies against transglutaminases, peptidylarginine deiminase and citrulline in rheumatoid arthritis-New pathways to epitope spreading. Clin Exp Rheumatol 24:12–18.
20. Halvorsen EH, et al. (2008) Serum IgG antibodies to peptidylarginine deiminase 4 in rheumatoid arthritis and associations with disease severity. Ann Rheum Dis 67:414–417.
21. Zhao J, Zhao Y, He J, Jia R, Li Z (2008) Prevalence and significance of anti-peptidylarginine deiminase 4 antibodies in rheumatoid arthritis. J Rheumatol 35:969–974.
22. Auger I, Martin M, Balandraud N, Rouiller J (2010) RA specific autoantibodies to PAD4 inhibit citrullination of fibrinogen. Arthritis Rheum 62:126–131.
23. Koifman MZ, et al. (2010) Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis Rheum 62:2633–2639.
24. Pollmann S, et al. (2012) Anti-PAD4 autoantibodies in rheumatoid arthritis: Levels in serum over time and impact on PAD4 activity as measured with a small synthetic substrate. Rheumatol Int 32:1271–1276.
25. Foulquier C, et al. (2007) Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 56:3541–3553.
26. Koushik S, et al. (2017) PAD4: Pathophysiology, current therapeutics and future perspective in rheumatoid arthritis. Expert Opin Ther Targets 21:433–447.
27. Suzuki A, et al. (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34:395–402.
28. Raychaudhuri S, et al. (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296.
29. Kim K, et al. (2015) Interactions between amino acid-defined major histocompatibility complex II variants and smoking in seropositive rheumatoid arthritis. Arthritis Rheum 67:2611–2623.
30. Arquinti F, Clavel C, Oger F, Serre G, Sebago M (2015) IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anti-citrullinated protein autoantibodies. J Immunol 194:3664–3674.
31. Porstmann T, Ternynck T, Avrameas S (1985) Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: An enzyme immunoassay for the assessment of the lymphoid cell proliferative response. J Immunol Methods 82:169–179.