ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data

Gilles Dauby, Tariq Stévart, Vincent Droissart, Ariane Cosiaux, Vincent Deblauwe, Murielle Simo-Droissart, Marc S. M. Sosef, Peter P. Lowry, Georg E. Schatz, Roy E. Gereau, et al.

To cite this version:

Gilles Dauby, Tariq Stévart, Vincent Droissart, Ariane Cosiaux, Vincent Deblauwe, et al.. ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecology and Evolution, Wiley Open Access, 2017, 7 (24), pp.11292–11303. 10.1002/ece3.3704. hal-02140914

HAL Id: hal-02140914
https://hal.archives-ouvertes.fr/hal-02140914
Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data

Gilles Dauby1,2,3,* Tariq Stévart4,5,6* Vincent Droissart6,7 Ariane Cosiaux1,8 Vincent Deblauwe6,9,10 Murielle Simo-Droissart8 Marc S. M. Sosef5 Porter P. Lowry II4,11 George E. Schatz4 Roy E. Gereau4 Thomas L. P. Couvreur1,8*

1Institut de Recherche pour le Développement (IRD), Université Montpellier, UMR DIADE, Montpellier, France
2Evolutionary Biology and Ecology Unit, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
3French Foundation for Research on Biodiversity (FRB) through its Center for Synthesis and Analysis of Biodiversity data (CESAB) program, Domaine du Petit Arbois, Aix-en-Provence, France
4Africa and Madagascar Department, Missouri Botanical Garden, St. Louis, MO, USA
5Botanic Garden Meise, Meise, Belgium
6Herbarium et Bibliothèque de Botanique Africaine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
7Institut de Recherche pour le Développement (IRD), UMR AMAP, Montpellier, France
8Plant Systematics and Ecology Laboratory, Higher Teachers Training College, University of Yaoundé I, Yaoundé, Cameroon
9Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
10International Institute of Tropical Agriculture, Yaoundé, Cameroon
11Institut de Systématique, Évolution et Biodiversité (ISYEB), Unité Mixte de Recherche 7205 (Centre National de la Recherche Scientifique/Muséum National d’Histoire Naturelle/École Pratique des Hautes Études/Université Pierre et Marie Curie), Muséum national d’Histoire naturelle, Sorbonne Universités, Paris, France

Abstract
The Red List Categories and the accompanying five criteria developed by the International Union for Conservation of Nature (IUCN) provide an authoritative and comprehensive methodology to assess the conservation status of organisms. Red List criterion B, which principally uses distribution data, is the most widely used to assess conservation status, particularly of plant species. No software package has previously been available to perform large-scale multispecies calculations of the three main criterion B parameters [extent of occurrence (EOO), area of occupancy (AOO) and an estimate of the number of locations] and provide preliminary conservation assessments using an automated batch process. We developed ConR, a dedicated R package, as a rapid and efficient tool to conduct large numbers of preliminary assessments, thereby facilitating complete Red List assessment. ConR (1) calculates key geographic range parameters (AOO and EOO) and estimates the number of locations sensu IUCN needed for an assessment under criterion B; (2) uses this information in a batch process to generate preliminary assessments of multiple species; (3) summarize the parameters

*These authors contributed equally.

Correspondence
Gilles Dauby, Institut de Recherche pour le Développement (IRD), Université Montpellier, UMR DIADE, Montpellier, France.
Email: gildauby@gmail.com

Funding information
CEntre de synthèse et d’analyse sur la biodiversité (CESAB) Fondation pour la Recherche sur la Biodiversité (FRB); Agropolis Fondation (France), Grant/Award Number: 1403-026; Agence Nationale de la Recherche, Grant/Award Number: ANR-15-CE02-0002-01; Belgian Fund for Scientific Research
and preliminary assessments in a spreadsheet; and (4) provides a visualization of the results by generating maps suitable for the submission of full assessments to the IUCN Red List. ConR can be used for any living organism for which reliable georeferenced distribution data are available. As distributional data for taxa become increasingly available via large open access datasets, ConR provides a novel, timely tool to guide and accelerate the work of the conservation and taxonomic communities by enabling practitioners to conduct preliminary assessments simultaneously for hundreds or even thousands of species in an efficient and time-saving way.

KEYWORDS
area of occupancy, criterion B, distribution range, extent of occurrence, IUCN, location, preliminary status, threatened taxa

1 INTRODUCTION

As we attempt to address the modern biodiversity crisis, assessing the conservation status of species has become an invaluable tool for biodiversity conservation. Evaluating threat based on the Red List Categories and Criteria of the International Union for Conservation of Nature (IUCN, 2012) is an authoritative, comprehensive and widely used approach in conservation biology (Rodrigues, Pilgrim, Lamoreux, Hoffmann, & Brooks, 2006). Indeed, many decisions made by governments, natural resource managers, and conservation planners (Rodrigues et al., 2006) rely (often solely) on the “Red List” published by IUCN (http://www.iucnredlist.org/). For example, programs such as Important Bird Areas (IBA), Important Plant Areas (IPA, Anderson, 2002) or Tropical Important Plant Areas (TIPA, Darbyshire et al., 2017) all rely directly on threat assessments based on IUCN criteria. In parallel, there is also an urgency in listing threatened species in the near future. This is, for example, the case of Target 2 of the Global Strategy for Plant Conservation (GSPC) of the United Nation’s Convention on Biological Diversity, which calls for assessing the conservation status of all known plant species by 2020 (https://www.cbd.int/gspc/targets.shtml).

However, as of 2016, the Red List included assessments of just 21,898 plant species (IUCN Standards and Petitions Subcommittee, 2016), ca. 6.2% of the estimated global total (~352,000 flowering plant species; Paton et al., 2008). The ThreatSearch database (www.bgci.org/threat_search.php) documents the conservation assessments of ca. 150,000 taxa, including assessments at the species and infraspecific levels based on both older or current IUCN criteria; preliminary, global or regional assessments; and assessments based on other non-IUCN criteria. Thus, ThreatSearch represents an uncritical, high-end estimate of the total number of plant taxa assessed to date. Hence, over the last three decades, progress toward this target has been slow largely because the process of performing and publishing full Red List assessments is time-consuming. Accelerating global conservation assessments is urgently needed (Krupnick, Kress, & Wagner, 2009; Miller et al., 2012). While alternative methods have been developed to streamline and simplify large-scale conservation assessments (e.g., Krupnick et al., 2009; Miller et al., 2012; Ocampo-Péñuela, Jenkins, Vijay, Li, & Pimm, 2016; Ter Steege et al., 2015), none are based on the theoretical framework provided by IUCN, and they thus have little immediate impact for concrete conservation actions.

The International Union for Conservation of Nature employs five complementary criteria (A, B, C, D and E) under which a species can be evaluated, and, when not already extinct, assessments assign species to three threatened categories (Critically Endangered (CR); Endangered (E); VU (Vulnerable)), or otherwise to LC (Least Concerned), NT (Near Threatened) or DD (Data Deficient, when insufficient data are available). Among these five criteria, criterion B is the most widely used. For example, in 2007, almost half of all organisms whose status was published on the IUCN Red List were assessed solely based on criterion B (Gaston & Fuller, 2009). Unlike the others, Criterion B is suitable for estimating conservation status even when the distribution of a taxon is only known from georeferenced herbarium or museum collections and with limited information on local threats and potential continuing decline (Schatz, 2002), and it plays a prominent role in describing global trends in extinction risk. Even though some have suggested that Criterion B is the most misapplied of the five (IUCN Standards and Petitions Subcommittee 2016, p. 62), it nevertheless has the significant advantage of allowing assessments to be undertaken using distribution data only (Schatz, 2002), which are in many cases the only information available (in contrast, for example, to abundance data).

Assessing the conservation status of taxa under IUCN Red List criterion B (IUCN, 2012; IUCN Standards and Petitions Subcommittee 2016) nevertheless presents particular challenges based on recorded primary occurrences (typically obtained by compiling herbarium/museum records). Criterion B involves two subcriteria (B1 and B2), which reflect two different kinds of geographic range size estimates [subcriterion B1 is based on extent of occurrence (EOO) while B2 is based on area of occupancy (AOO)], and three additional conditions (a, b and c) that describe aspects of the biology and potential decline of the taxon as a result of the impact of threats. Threshold levels for at least one subcriterion and two conditions must be met for a taxon to be assigned a threatened conservation status (see Table 1).
1.1 Extent of occurrence

Extent of occurrence (EOO) is defined as "the area contained within the shortest continuous imaginary boundary that can be drawn to encompass all the known, inferred or projected sites of present occurrence of a taxon, excluding cases of vagrancy (IUCN, 2012)." EOO is generally measured by a minimum convex polygon, or convex hull, defined as "the smallest polygon in which no internal angle exceeds 180° and which contains all the sites of occurrence (IUCN, 2012)." Alternatively, in certain situations, EOO can be calculated as an alpha Hull (see IUCN Standards and Petitions Subcommittee 2016).

1.2 Area of occupancy

The Area of occupancy (AOO) is defined as "the area within its extent of occurrence that is occupied by a taxon, excluding cases of vagrancy (IUCN, 2012)." AOO differs from EOO (see above) as it reflects the fact that a taxon will not usually occur throughout its EOO, that is, there will be areas where the taxon is absent, including (unsuitable areas). The AOO will be a function of the scale or grid cell size at which it is measured, and which should reflect relevant biological aspects of the taxon. For example, the impact of a threat is not identical if we consider tree or herb species.

1.3 Location

A “location” is defined as "a geographically or ecologically distinct area in which a single threat can rapidly affect all individuals of the taxon present (IUCN, 2012).” Thus, the size of a location depends on the threat (mining, deforestation, poaching, etc.). EOO and AOO, the two main parameters of Criterion B, can be generated automatically (Table 1). However, assessing the number of locations requires contextual information about threats. This information, which is usually obtained from field observations, expert knowledge, and/or precise data on the size and nature of a taxon’s range (e.g., continuous vs. severely fragmented), can thus only be applied properly using a “taxon-by-taxon” process to obtain a fully informed IUCN Red List assessment.

1.4 Subpopulations

"Subpopulations" are defined as "geographically or otherwise distinct groups in the population between which there is little demographic or genetic exchange (IUCN, 2012; Rivers, Bachman, Meagher, Lughadha, & Brummitt, 2010)." Although the number of subpopulations is not directly taken into account for assessments based on criterion B, this information is requested during the submission process to the IUCN Red List.

Below, we describe ConR, an R package to generate batch preliminary assessments of conservation status following the IUCN guidelines using multiple species datasets based on Criterion B. ConR makes it possible to: (1) calculate or estimate the key parameters needed for an assessment under criterion B; (2) generate preliminary assessments of multiple species using a batch process; and (3) summarize the estimated parameters and preliminary assessments in a spreadsheet and spatially visualize the results on generated maps. ConR implements a novel method to approximate the number of “locations” sensu IUCN, one of the key Criterion B parameters (see below).

2 THE ConR PACKAGE

ConR allows users to estimate the above parameters automatically for any list of taxa and then assigns each taxon to a preliminary IUCN threat category according to Criterion B. These preliminary assessments are
based on calculations of EOO and AOO and an estimate of the number of locations for each taxon [condition (a); Table 1]. The rationale behind ConR is to facilitate preliminary conservation assessments based on large sets of species distribution data. In order to achieve this, ConR uses a number of assumptions about certain parameters or future trends that would have to be inferred on a taxon-by-taxon basis for a full IUCN assessments. The results obtained from ConR therefore should not be taken as full or definitive Red List IUCN assessments.

Under Criterion B, the assessment of a taxon is based on the calculation of its EOO (B1) and/or AOO (B2). In addition, at least two of the following conditions must be taken into consideration: (1) the number of locations; (2) the decreasing or increasing trend of different aspects of its distribution (EOO, AOO, number of locations, etc.); and (3) extreme fluctuation of certain aspects of the taxon's distribution (Table 1). Calculation of the two key range parameters, EOO and AOO, can be easily automated either using a taxon-by-taxon approach, as provided by the web service GeoCAT (Bachman, Moat, Hill, de la Torre, & Scott, 2011), or in batch mode, for example in other R packages such as speciesgeocodeR (Töpel et al., 2017) or RED (https://CRAN.R-project.org/package=red; see Table 2).

However, none of these packages are designed to estimate the number of locations, a fact that hinders their utility in assigning taxa to a threat category under Criterion B. The notion of "location" remains a complex and sometimes confusing concept. It has been interpreted in many different ways depending on the type of organism studied, the general landscape in which a taxon occurs and the type of threat to its populations. In ConR we have, for the first time, attempted to estimate the number of locations automatically so that it can be calculated simultaneously for a large number of taxa. This automation comes with a number of assumptions detailed below.

The number of locations for each taxon can be approximated using two complementary approaches in ConR. First, a grid with cells of a chosen size is overlaid on taxa occurrences and the number of locations is estimated by the number of occupied cells. The grid cell size must be defined by the user and should represent the scale at which subpopulations are equally affected by a given threat. For example, a cell size of 10 km² may be considered a good estimate of the scale at which a particular serious threat event such as mining could equally affect individuals of a given taxon (Durán et al. 2013). The user can choose a fixed cell size across the whole multispecies dataset (e.g. 10 km²) or can use a species-specific sliding scale approach (Rivers et al., 2010). In the latter approach, cell size is defined as 1/x of the maximum interoccurrence distance, where x is the maximum distance between two occurrences (e.g. 5% (0.05) of the max distance between the known occurrences). In both cases, the cell grid is overlaid on the total distribution of the taxon in a way that results in the minimum number of estimated locations. Finally, as cell size is user defined, alternative estimates of the scale at which a given threat operates can be compared.

In the second approach, ConR integrates information about protected areas (PAs). The underlying rationale for this is that subpopulations within a PA will not be treated in the same way as those located outside a PA. ConR deals with PA in two ways (method_protected_area argument). First, occurrences within a given PA are assumed to fall within the same location irrespective of the size of the PA ("no_more_than_one"). Subpopulations within a PA are thus assumed to be subject to the same threat. For example, protected area downgrading, downsizing, or degazetting (PADD), a common occurrence throughout the tropics (Mascia et al., 2014), is assumed to affect all individuals within that PA in the same manner (one threat, PADD affecting the whole of the PA). Similarly, if illegal exploitation takes place in a PA, it is assumed that this could potentially impact all individuals of the taxon. Second, the number of locations situated within PAs is estimated separately from those occurring outside PAs ("other"), thereby decoupling the estimation of locations within and outside of PAs. Thus, two individuals could be geographically close (separated by less than the selected grid cell size) but in separate locations, one in a PA and the other not, because the nature of the threat is not the same.

Features	Definition (IUCN Standards and Petitions Subcommittee, 2016)	GeoCAT	speciesgeocodeR	RED	ConR
Batch or multispecies estimates	Extent of occurrence (EOO) calculation	Area of occupancy (AOO) calculation	Estimate of number of subpopulations	Estimate of number of locations	IUCN ready maps
	Intended to "measure the degree to which risks from threatening factors are spread spatially across the taxon’s geographical distribution"	Area within a taxon’s EOO that is occupied by the taxon	"Geographically or otherwise distinct groups in the population between which there is little demographic or genetic exchange"	"Geographically or ecologically distinct area in which a single threatening event can rapidly affect all individuals of the taxon present"	
Both approaches used by ConR to estimate the number of locations (Cell_size_locations and method_protected_area) are customizable by the user, who can decide what cell size to use, whether or not to include PAs, and if so, how to take them into account. Also, if alternative shapefiles are available for the PAs, the user can select which one to use, such as the World Database on Protected Areas (WDPA, https://www.protectedplanet.net).

For each preliminary assessment, in addition to estimating the “number of locations” condition, at least one of the two remaining conditions relates to the future trend of a taxon’s distribution or structure must be taken into consideration: continuing decline and/or extreme fluctuation. ConR assumes by default a continuing future decline in habitat quality [condition (b) (iii), Table 1]. While this assumption might appear as an oversimplification, it would seem to be valid in most cases. The validity of this assumption is also intuitively acknowledged by the IUCN guidelines, which recognize a criterion for assessing threat status specifically on the basis of very small or restricted populations (Criterion D). This assumption is also reasonable when one considers that wilderness areas are in rapid decline throughout the world, especially in the tropics (Watson et al., 2016), suggesting that future decline may be anticipated for any given range-restricted species.

Finally, ConR also provides an estimate of the number of subpopulations of a taxon by implementing a circular buffer method (Resol_sub_pop in km²). This buffer is user defined and can be adapted to different groups of taxa depending on their different dispersal characteristics but also gene flow (if known).

3 | ConR FEATURES

ConR includes four functions, two sample occurrence datasets, and two sample shapefile datasets. All functions operate on a mandatory single data frame providing taxon occurrences and on optional user-provided shapefiles of land/sea and protected area limits. Occurrence data and shapefiles must be provided using the WGS84 reference coordinate system. The input data frame requires three mandatory fields: latitude and longitude (in decimal degrees), and taxon name. The collection year can also be added, thereby allowing graphic visualization of a taxon’s collecting history (Figure 1). Additional information, such as higher taxonomic rank, can also be provided. By default, ConR saves all results in the user’s R working directory. A step by step tutorial (R vignette) describing all options is provided as supplementary material and on the CRAN website.

3.1 | IUCN.eval

This is the main ConR function, which provides values for all parameters, including EOO, AOO and an estimate of number of locations, needed for assessing the preliminary conservation status of taxa based on selected conditions and subcriteria of criterion B (Table 1). All options are flexible and can be user defined. The number of locations can be estimated using a fixed or sliding grid approach (Rivers et al., 2010). In addition, PA information can also be taken into account if an appropriate PA shapefile is provided (see above). The output is a table in a comma-separated values (CSV) file summarizing the different parameters calculated for each taxon. Besides all of the parameters calculated or estimated, ConR explicitly assigns a preliminary threat category for each taxon under the validated criteria (B1 and/or B2). In addition, one can see the threat assignments based either on EOO (B1) or AOO (B2). The output provides the user with a clear presentation of all the basic information needed to undertake a full IUCN assessment. Results can also be visualized graphically (see Figure 1) via the argument DrawMap. A folder is automatically generated with a figure for each taxon. Figures are generated in PNG format, which minimizes output size for large-scale multitaxon studies (each map is on average 100 kb). The figure for each taxon contains a summary of the estimated parameters and the threat assignment, along with a distribution map. If PA information was included, the map also depicts the distribution of PAs as well as occurrences within (blue dots) or outside (black dots) them (see Figure 1). This map can be used for the submission of a formal assessment to the IUCN.

3.2 | EOO.computing

The EOO.computing function calculates EOO. It operates with a minimum of three unique occurrences; otherwise, it returns “NA.” In ConR, EOO can be estimated either using a “convex hull” or an “alpha. hull” method, as recommended by IUCN Standards and Petitions Subcommittee (2016). Cropping of unsuitable areas (e.g., water bodies) before the calculation of EOO is available via the argument exclude.area. It is important to note, however, that excluding areas from the EOO calculation and the estimate EOO with alpha Hull are explicitly discouraged by the IUCN guidelines (2016) when using Criterion B. Finally, if the EOO is less than the AOO, then the EOO is set to be equal to the AOO, as recommended by the IUCN Standards and Petitions Subcommittee (2016).

In the very infrequent case that occurrences form a straight segment, the EOO will be zero, representing an underestimate of its surface (IUCN Standards and Petitions Subcommittee 2016). In this specific case, ConR outputs a warning. The EOO is then estimated using a different method: A polygon is built by adding a buffer of a predefined size of 0.1° to the segment, which can be adjusted by the argument buff.alpha. Also, the EOO cannot be computed when there are less than three unique occurrences; a warning is returned in such case. Finally, it should be noted that the way in which ConR estimates the EOO may be biased for species with wide distributions and cannot be applied to species whose distribution spans the 180th meridian (see R documentation).

3.3 | subpop.comp

This function estimates the number of subpopulations using the circular buffer method (Rivers et al., 2010). Each unique occurrence is buffered with a circle of a defined radius and overlapping circles are merged to form a single subpopulation, while nonoverlapping circles are considered to represent separate subpopulations. For batch processing of species, while the circular buffer method does not take into consideration the dispersal abilities of each taxon, it was recommended.
by Rivers et al. (2010) after testing various methods. The output must be considered as an approximation of the total number of subpopulations. Although the number of subpopulations is not directly taken into account for assessments based on criterion B, this information is requested for the submission of full assessments to the IUCN Red List.

3.4 | map.res

The `map.res` function allows a graphical summary and geographical exploration of the results of the `IUCN.eval` function by generating maps with user-specified unit sizes (Figure 2). These maps can show, for

FIGURE 1 Two examples of map outputs generated by the `IUCN.eval` function of ConR for two species of Malagasy amphibians that were chosen from the example dataset: (a) *Aglyptodactylus madagascariensis* and (b) *Blommersia sarotra*. The top main inset shows a map of the region concerned with the occurrences of the species shown as black dots (records situated outside protected areas) and as blue dots (within protected areas). The delimitation of locations is shown by pink squares and of subpopulations by circles. For the species in (a), the convex hull used for calculating the EOO is shown for the first species as a gray polygon. For the species in (b), the EOO was not calculated because it has a single known occurrence. The bottom left gray inset summarizes all the information calculated by the `IUCN.eval` function. The bottom middle inset situates the species’ distribution on a world map, with red crosses representing its occurrences. Finally, the bottom right inset shows the number of collections per year as a bar plot, when these data are available [e.g., in (a)]. In both examples, the status of the preliminary assessments provided by ConR would be the same as those from the formal assessments.
each unit, the number of records, number of taxa, number of threatened taxa, and proportion of threatened taxa.

CASE STUDY

In order to illustrate the usefulness and limits of ConR, we tested the package on a high-quality dataset of continental African palm distributions for 60 species (of the 68 currently known; Stauffer et al., 2017). A large part of the data were extracted from the RAINBIO database (Dauby et al., 2016), which contains nearly all herbarium collections for African palms. Additional recent collections were added when available, resulting in a dataset of 4,234 unique occurrence records. The dataset was first used for the preparation and submission (as of April 2017) of full, species by species IUCN Red Listing assessments, mainly under Criterion B. Second, using ConR (with default parameters) and the same data for all 60 species, but excluding any “nonherbarium” occurrences (such as those based on satellite imagery or population censuses), we performed preliminary assessments as a batch operation. We also ran the dataset with and without PA information (downloaded and filtered from https://www.protectedplanet.net) using the "protect.areas" default option. ConR analyzed the dataset in less than 5 minutes using a standard laptop.

The results of the full IUCN assessments and those generated by ConR (with and without PA information), summarized in Table 3, are quite congruent. Factoring in PAs did not alter the outcomes,
expect for a single species: Oncocalamus wrightianus was assessed as EN in the full assessment and by ConR when no PA information was included, but as VU with PA information. Regarding whether a species was assessed as threatened (i.e., CR, EN or VU) or not (NT or LC), we see that for 43 species (71%), the results from ConR and the full assessments agreed. For seven species, the ConR assessment indicated a threatened status, whereas the full assessment was LC. Finally, for eight species, the full assessment yielded a status of Data Deficient (DD) while ConR suggested either EN (5 species) or CR (3 species).

In addition to this case study, we also undertook a preliminary conservation assessment of amphibians of Madagascar using a dataset that contained 7,657 georeferenced records representing 201 species, downloaded on February 9, 2016, from www.gbif.org (https://doi.org/10.15468/dl.2tkoae). This analysis was performed mainly to demonstrate the graphical outputs of ConR (Figures 1 and 2). This dataset is available within ConR as an example data frame (Malagasy_amphibian).

5 | DISCUSSION

ConR provides for the first time a dedicated, multispecies conservation assessment package based specifically on IUCN criterion B and using only species geographic distribution. It provides an efficient tool to help accelerate the work of the conservation community by enabling practitioners to conduct preliminary assessments that are both reliable and informative. We stress that ConR does not (and is not intended too) replace the full IUCN Red Listing process; it can, however, assist and facilitate this process. ConR uses a number of assumptions in order to automate category assignment, especially the estimation of the number of locations sensu IUCN. Notwithstanding these assumptions, detailed above, which must be understood and acknowledged by the user, ConR is flexible in their implementation, allowing the user to explore various approaches and methodologies and to customize values for each option. As shown in our case study on African palms (Table 3), the results of the full and ConR assessments are generally congruent. The differences observed between them can be linked primarily to the way in which ConR estimates the number of locations. For example, Eremospatha barendii is known from three collections made at localities more than 10 km apart. ConR thus infers (with a resolution of 10 km²) two locations, whereas in the full assessment, we estimated a single location (because both localities were considered to be subjected to the same threat). Another difference lies in whether locations were used or not for the full assessment. For example, Eremospatha dransfieldii is inferred by ConR to have eight locations, and it is therefore assessed as VU. However, the subpopulations of this species are severely fragmented (Cosiaux et al., 2017), which also triggers subcriterion “a” (Table 1), which was used along with continuing decline (subcriterion “b”), and thus the number of locations was not used for the full assessment. In contrast, for some species, ConR indicated a status of CR, EN or VU, whereas the full assessment was LC (e.g., Raphia gentiliana and R. monbutturom; Table 3). These mismatches occurred for species with broad geographic distributions but for which there were few collections (and thus fewer than 10 locations were inferred by ConR), while field data provided no clear evidence of highly fragmented populations.

This case study clearly illustrates that ConR (1) can be used to generate fairly reliable preliminary conservation assessments on large datasets, but (2) has limitations when, for example, a species is widespread and common but poorly collected or is widespread but severely fragmented. It is important to stress that the accuracy of the georeferencing in such datasets is crucial for estimating risk. Two recently released R packages, Bioge (Robertson, Visser, & Hui, 2016) and
TABLE 3 Comparison of preliminary (ConR) versus full conservation assessments using a case study of Africa palm species (excluding Madagascar). *Hyphaene macrosperma*, only known from the type specimen, for which the location is very vague, was not included in the ConR analysis (indicated as NA in the table). For *Laccosperma cristalensis*, a single collection is known, but with precise coordinates, so this taxon was retained for ConR analysis but the EOO was not calculated (indicated as NA).

Species	Individual Red List assessment	Automatic Red List assessment without PA information	Automatic Red List assessment ConR with PA information
Borassus aethiopum Mart.	LC B2	LC B1a + B2a	LC B1a + B2a
Borassus akeassii Bayton, Ouédr. & Guinko	LC B2	LC B1a + B2a	LC B1a + B2a
Calamus deerratus G. Mann & H. Wendel.	LC B2	LC B1a + B2a	LC B1a + B2a
Elaeis guineensis Jacq.	LC B2	LC B1a + B2a	LC B1a + B2a
Eremospatha barendii Sunderl.	CR B1ab(iii) + B2ab(ii)	EN B1a + B2a	EN B1a + B2a
Eremospatha cabrae (T. Durand & Schinz) De Wild.	LC B2	LC B1a + B2a	LC B1a + B2a
Eremospatha cuspidata (G. Mann & H. Wendl.) G. Mann & H. Wendl.	LC B2	LC B1a + B2a	LC B1a + B2a
Eremospatha dransfieldii Sunderl.	EN B2ab(iii)	VU B2a	VU B2a
Eremospatha haulevillieana De Wild.	LC B2	LC B1a + B2a	LC B1a + B2a
Eremospatha hookeri (G. Mann & H. Wendl.) H. Wendl.	LC B2	LC B1a + B2a	LC B1a + B2a
Eremospatha laurentii De Wild	LC B2	LC B1a + B2a	LC B1a + B2a
Eremospatha macrocarpa (G. Mann & H. Wendl.) H. Wendl.	LC B2	LC B1a + B2a	LC B1a + B2a
Eremospatha quinquecostulata Becc.	LC B2	VU B2a	VU B2a
Eremospatha tessmanniana Becc.	LC B2	EN B2a	EN B2a
Eremospatha wendlandiana Dammer ex Becc.	LC B2	LC B1a + B2a	LC B1a + B2a
Hyphaene compressa H. Wendl.	LC B2	LC B1a + B2a	LC B1a + B2a
Hyphaene coriacea Gaertn.	LC B2	LC B1a + B2a	LC B1a + B2a
Hyphaene guineensis Schumach. & Thonn.	LC B2	LC B1a + B2a	LC B1a + B2a
Hyphaene macrosperma H. Wendl.	DD	NA	NA
Hyphaene petersiana Klotzsch ex Mart.	LC B2	LC B1a + B2a	LC B1a + B2a
Hyphaene reptans Becc.	DD	EN B2a	EN B2a
Hyphaene thebaica (L.) Mart.	LC B2	LC B1a + B2a	LC B1a + B2a
Laccosperma acutiflorum (Becc.) J. Dransf.	LC B2	LC B1a + B2a	LC B1a + B2a

(Continues)
TABLE 3 (Continued)

Species	Individual Red List assessment	Selected	Following B2 based on EOO	Following B1 based on AOO	Automatic Red List assessment ConR without PA information	Selected	Following B2 based on EOO	Following B1 based on AOO	Automatic Red List assessment ConR with PA information	Selected
Laccosperma cristalensis	DD	CR B2a	NA	CR	CR B2a	NA	CR			
Laccosperma korupense	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Laccosperma laeve	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Laccosperma opacum	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Laccosperma robustum	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Laccosperma secundiflorum	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Livistona carinensis	EN B2ab(iii,v) A2ac	EN B1a + B2a	EN	EN	EN B1a + B2a	EN	EN			
Medemia argun	VU B2ab(iii)	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Onocalamus macropathus	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Onocalamus mannii	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Onocalamus tuleyi	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Onocalamus wrightianus	EN B1ab(iii) + B2ab(iii)	EN B1a + B2a	EN	EN	VU B1a + B2a	VU	VU			
Phoenix caespitosa	LC B2	VU B2a	NT or LC	VU	VU B2a	NT or LC	VU			
Phoenix reclinata	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Podococcus acaulis	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Podococcus barteri	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Raphia africana	DD	EN B2a	NA	EN	EN B2a	NA	EN			
Raphia farinifera	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Raphia gentiliana	LC B2	VU B2a	NT or LC	VU	VU B2a	NT or LC	VU			
Raphia hookeri	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Raphia laurentii	LC B2	VU B2a	NT or LC	VU	VU B2a	NT or LC	VU			
Raphia longiflora	DD	CR B2a	NA	CR	CR B2a	NA	CR			
Raphia mambillensis	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Raphia mannii	DD	CR B2a	NA	CR	CR B2a	NA	CR			
Raphia matombo De Wild.	DD	EN B2a	VU	EN	EN B2a	VU	EN			
Raphia monbuttorum	LC B2	VU B2a	NT or LC	VU	VU B2a	NT or LC	VU			
Raphia palma-pinus	NT B2b(iii)	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Raphia regalis	LC B2	LC B1a + B2a	NT or LC	NT or LC	LC B1a + B2a	NT or LC	NT or LC			
Raphia rostrata	DD	EN B1a + B2a	EN	EN	EN B1a + B2a	EN	EN			

(Continues)
TABLE 3 (Continued)

Species	Individual Red List assessment	Automatic Red List assessment ConR without PA information	Automatic Red List assessment ConR with PA information			
	Selected	Following B2 based on EOO	Following B1 based on AOO	Selected	Following B2 based on EOO	Following B1 based on AOO
Raphia ruwenzorica Otedoh	DD	EN B2a	EN	EN	EN B2a	EN
Raphia sese De Wild.	LC B2	LC B1a + B2a	NT or LC	VU B2a	NT or LC	VU
Raphia sudanica A. Chev.	NT B2b(v)	LC B1a + B2a	NT or LC	NT	LC B1a + B2a	NT or LC
Raphia textilis Welw.	LC B2	EN B2a	NT or LC	EN	EN B2a	NT or LC
Raphia vinifera P. Beauv.	LC B2	LC B1a + B2a	NT or LC	LC	LC B1a + B2a	NT or LC
Sclerosperma mannii H. Wendl.	LC B2	LC B1a + B2a	NT or LC	LC	LC B1a + B2a	NT or LC
Sclerosperma profizianum Valk.	LC B2	LC B1a + B2a	NT or LC	LC	LC B1a + B2a	NT or LC
Sclerosperma walkeri A. Chev.	LC B2	LC B1a + B2a	NT or LC	LC	LC B1a + B2a	NT or LC

ACKNOWLEDGMENTS

This work was supported by the French Foundation for Research on Biodiversity (FRB) through its Center for Synthesis and Analysis of Biodiversity data (CESAB) program, as part of the RAINBIO research project, the RAPHIA project (grant number 1403-026) funded by Agropolis Fondation (France) and the Agence Nationale de la Recherche (grant number ANR-15-CE02-0002-01) to TLPC. GD was supported by the Belgian Fund for Scientific Research (F.R.S.-FNRS). We are also grateful to the office of the Chair of IUCN Species Survival Commission (SSC, IUCN), which made valuable resources available via the Environment Agency of Abu Dhabi (United Arab Emirates) for the African palm assessments. The authors also wish to thank Alexander Zizka and an anonymous reviewer for suggestions that helped improve an earlier version of this MS.

DATA ACCESSIBILITY

The ConR package is written in R (R development Core Team 2016) and is available on the Comprehensive R Archive Network (https://cran.r-project.org/package=ConR) and on a github repository (https://github.com/gdauby/ConR).

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

TLPC, TS, PPL, GES, REG and GD conceived the study; GD wrote the package; AC and TLPC analysed the palm data; MSD, VDr, MSMS, AC, TS, GD, VDe and TLPC tested the package; and all authors contributed to writing the article.
REFERENCES

Anderson, S. (2002). Identifying important plant areas. London, UK: Plantlife International.

Bachman, S., Moat, J., Hill, A., de la Torre, J., & Scott, B. (2011). Supporting Red List threat assessments with GeoCAT: Geospatial conservation assessment tool. ZooKeys, 150, 117–126. https://doi.org/10.3897/zookeys.150.2109

Cosiaux, A., Gardiner, L., Ouattara, D., Stauffer, F., Sonké, B., & Couvreur, T. (2017). An endangered West African rattan palm: Eremospatha trans-fieldii. Biodiversity Data Journal, 5, e11176.

Darbyshire, L., Anderson, S., Asatryan, A., Byfield, A., Cheek, M., Clubbe, C., … Radford, E. A. (2017). Important plant areas: Revised selection criteria for a global approach to plant conservation. Biodiversity and Conservation, 26, 1767–1800. https://doi.org/10.1007/s10531-017-1336-6

Daby, G., Zais, R., Blach-Overgaard, A., Catarino, L., Damen, T., Deblauwe, V., … Couvreur, T. L. P. (2016). RAINBIO: A mega-database of tropical African vascular plants distributions. PhytoKeys, 74, 1–18.

Durán, A. P., Rauch, J., & Gaston, K. J. (2013). Global spatial coincidence between protected areas and metal mining activities. Biological Conservation, 160 (Supplement C), 272–278. https://doi.org/10.1016/j.biocon.2013.02.003.

Forest, F., Crandall, K. A., Chase, M. W., & Faith, D. P. (2015). Phylogeny, extinction and conservation: Embracing uncertainties in a time of urgency. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370, 20140002.

Gaston, K. J., & Fuller, R. A. (2009). The sizes of species’ geographic ranges. Journal of Applied Ecology, 46, 1–9. https://doi.org/10.1111/j.1365-2664.2008.01596.x

IUCN (2012). IUCN Red List categories and criteria (version 3.1), 2nd ed. Gland, Switzerland and Cambridge, UK: IUCN.

IUCN Standards and Petitions Subcommittee (2016). Guidelines for Using the IUCN Red List Categories and Criteria. Version 12.

Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K., & Mooers, A. O. (2014). Global distribution and conservation of evolutionary-ary distinctness in birds. Current Biology, 24, 919–930. https://doi.org/10.1016/j.cub.2014.03.011

Krupnick, G. A., Kress, W. J., & Wagner, W. L. (2009). Achieving target 2 of the global strategy for plant conservation: Building a preliminary assessment of vascular plant species using data from herbarium specimens. Biodiversity and Conservation, 18, 1459–1474. https://doi.org/10.1007/s10531-008-9494-1

Leão, T. C. C., Fonseca, C. R., Peres, C. A., & Tabarelli, M. (2014). Predicting extinction risk of Brazilian Atlantic Forest angiosperms. Conservation Biology, 28, 1349–1359. https://doi.org/10.1111/cobi.12286

Marshall, C. A. M., Wieringa, J. J., & Hawthorne, W. D. (2016). Bioquality hotspots in the tropical African flora. Current Biology, 26, 3214–3219. https://doi.org/10.1016/j.cub.2016.09.045

Mascia, M. B., Pailler, S., Krithivasan, R., Roshchanka, V., Burns, D., Mlotha, M. J., … Peng, N. (2014). Protected area downgrading, downsizing, and degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean, 1900–2010. Biological Conservation, 169, 355–361. https://doi.org/10.1016/j.biocon.2013.11.021

Miller, J. S., Porter-Morgan, H. A., Stevens, H., Boom, B., Krupnick, G. A., Acevedo-Rodriguez, P., … Gensler, M. (2012). Addressing target two of the global strategy for plant conservation by rapidly identifying plants at risk. Biodiversity and Conservation, 21, 1877–1887. https://doi.org/10.1007/s10531-012-0285-3

Ocampo-Peñuela, N., Jenkins, C. N., Vijay, V., Li, B. V., & Pimm, S. L. (2016). Incorporating explicit geospatial data shows more species at risk of extinction than the current Red List. Science Advances, 2, e1601367. https://doi.org/10.1126/sciadv.1601367

Paton, A. J., Brummitt, N., Govaerts, R., Harman, K., Hinchcliffe, S., Allkin, B., & Lughadha, E. N. (2008). Towards target 1 of the global strategy for plant conservation: A working list of all known plant species—progress and prospects. Taxon, 57, 602–611.

R Development Core Team (2016). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Larsen, S. C., Bachman, S. P., Meagher, T. R., Lughadha, E. N., Brummitt, N. A. (2010). Subpopulations, locations and fragmentation: Applying IUCN red list criteria to herbarium specimen data. Biodiversity and Conservation, 19, 2071–2085. https://doi.org/10.1007/s10531-010-9826-9

Robertson, M. P., Visser, V., & Hui, C. (2016). Biogeoo: An R package for assessing and improving data quality of occurrence record datasets. Ecography, 39, 394–401. https://doi.org/10.1111/ecog.02118

Rodriguez, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M., & Brooks, T. M. (2006). The value of the IUCN Red List for conservation. Trends in Ecology & Evolution, 21, 71–76. https://doi.org/10.1016/j.tree.2005.10.010

Schätz, G. E. (2002). Taxonomy and herbaria in service of plant conservation: Lessons from madagascar’s endemic families. Annals of the Missouri Botanical Garden, 89, 145–152. https://doi.org/10.2307/3298559

Stauffer, F. W., Ouattara, D. N., Roguet, D., da Giau, S., Michon, L., Bakayoko, A., & Epe, P. (2017). An update to the African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region. Webbia, 72, 17–30. https://doi.org/10.1080/00837792.2017.1313381

Ter Steege, H., Pitman, N. C. A., Killeen, T. J., Laurance, W. F., Peres, C. A., Guevara, J. E., … Gamarr, L. V. (2015). Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 1, e1500936. https://doi.org/10.1126/sciadv.1500936

Tópö, M., Zizka, A., Callio, M. F., Scharn, R., Silvestro, D., & Antonelli, A. (2017). SpeciesGeoCoder: fast categorization of species occurrences for analyses of biodiversity, biogeography, ecology, and evolution. Systematic & Evolutionary Biology, 66, 145–151.

Watson, J. E. M., Shanahan, D. F., Di Marco, M., Allan, J., Laurance, W. F., Sanderson, E. W., … Venter, O. (2016). Catastrophic declines in wilderness areas undermine global environment targets. Current Biology, 26, 2929–2934. https://doi.org/10.1016/j.cub.2016.08.049

How to cite this article: Dauby G, Stévat T, Droissart V, et al. ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol Evol. 2017;7:11292–11303. https://doi.org/10.1002/eece3.3704