Supplementary Figure 1. Microbiota profiling of non-spiked UHT milk sample units.

Bacterial profile was evaluated on (A) alpha-diversity (“observed species” metric, via a boxplot), (B) average relative abundance at genus level and (C) beta-diversity, represented via Principal Coordinate Analysis (PCoA) of unweighted UniFrac distances, where each point represents a sample unit, ellipses are the SEM-based confidence intervals and colors indicate the extraction protocol.
Supplementary Figure 2. PCoA of unweighted Unifrac distances grouped by milk sample. Each point represents a sample unit, ellipses are the SEM-based confidence intervals and colors indicate the milk sample. The second and third principal coordinates are represented.
Supplementary Table 1. Table reporting the average DNA yield extracted from the raw and UHT milk samples analyzed in the study. For each protocol, we reported the mean yield and standard deviation. A one-way ANOVA was performed to compare the effect of three different extraction protocols on DNA yield.

Type	sample	N\(^1\)	Yield (ng/µl)	ANOVA p-values\(^2\)	PR3
Raw milk	A	5	23.8 (7.8)	<0.001*	0.770
	B	5	15.9 (6.9)	0.002*	0.741
	C	5	29.8 (7.2)	<0.001*	0.501
	All	15	23.2 (7.3)	<0.001*	0.810
UHT milk	mock	7	10.8 (3.0)	<0.001*	0.500
	no mock	7	8.5 (3.5)	<0.001*	0.745

\(^1\) number of replicates for each condition tested

\(^2\) P-value of one-way ANOVA and Tukey’s HSD Test for multiple comparisons. “*” indicates statistical significance (p<0.05).
Supplementary Table 2. Average relative abundance (standard deviation) of the 8 bacterial species composing the mock community in non-spiked UHT milk sample units. These data were used to estimate di “background” in the mock community analysis.

Bacterial genera	PR1	PR2	PR3
Escherichia	0.11 (0.02)	0.13 (0.03)	0.19 (0.04)
Shigella			
Bacillus	0.02 (0.01)	0.03 (0.01)	0.06 (0.03)
Enterococcus	0.05 (0.02)	0.07 (0.02)	0.11 (0.01)
Pseudomonas	1.89 (0.14)	1.97 (0.21)	1.92 (0.08)
Staphylococcus	2.01 (0.18)	2.12 (0.05)	2.12 (0.28)
Lactobacillus	0.2 (0.03)	0.19 (0.07)	0.21 (0.04)
Listeria	0.01 (0.01)	0.01 (0.01)	0.02 (0.01)
Salmonella	0.17 (0.04)	0.17 (0.02)	0.15 (0.02)
Supplementary Table 3. Mock community composition as reported by Zymo Research (ZymoBIOMICS™ Microbial Community Standard Catalog No. D6300).

Species	Genomic DNA	16S only¹	16S & 18S¹	Genome copy²	Cell numbers³
Pseudomonas aeruginosa	12	4.2	3.6	6.1	6.1
Escherichia coli	12	10.1	8.9	8.5	8.5
Salmonella enterica	12	10.4	9.1	8.7	8.8
Lactobacillus fermentum	12	18.4	16.1	21.6	21.9
Enterococcus faecalis	12	9.9	8.7	14.6	14.6
Staphylococcus aureus	12	15.5	13.6	15.2	15.3
Listeria monocytogenes	12	14.1	12.4	13.9	13.9
Bacillus subtilis	12	17.4	15.3	10.3	10.3
Saccharomyces cerevisiae	2	NA	9.3	0.57	0.29
Cryptococcus neoformans	2	NA	3.3	0.37	0.18

¹The theoretical composition in terms of 16S (or 16S & 18S) rRNA gene abundance was calculated from theoretical genomic DNA composition with the following formula: 16S/18S copy number = total genomic DNA (g) × unit conversion constant (bp/g) / genome size (bp) × 16S/18S copy number per genome. Use this as reference when performing 16S targeted sequencing.

²The theoretical composition in terms of genome copy number was calculated from theoretical genomic DNA composition with the following formula: genome copy number = total genomic DNA (g) × unit conversion constant (bp/g) / genome size (bp). Use this as reference when inferring microbial abundance from shotgun sequencing data based on read depth/coverage.
The theoretical composition in terms of cell number was calculated from theoretical genomic DNA composition with the following formula: cell number = total genomic DNA (g) × unit conversion constant (bp/g) / genome size (bp)/ploidy.