Trends in Pharmacological Sciences

Acknowledgments
This work was supported by US National Institutes of Health (NIH) grant (HL095722) to J.M.K.

Disclaimer Statement
J.M.K. has been a paid consultant and/or equity holder for multiple biotechnology companies (listed here https://www.karplab.net/team/jeff-karp). The interests of J.M.K. were reviewed and are subject to a management plan overseen by his institutions in accordance with its conflict of interest policies.

Forum
In Vitro and Animal Models for SARS-CoV-2 research
Kazuo Takayama1,*

Basic research on SARS-CoV-2 is essential to understand its detailed pathophysiology and identify best drug targets. Models that can faithfully reproduce the viral life cycle and reproduce the pathology of COVID-19 are required. Here, we briefly review the cell lines, organoids, and animal models that are currently being used in COVID-19 research.

Overview of SARS-CoV-2
In December 2019, pneumonia of an unknown etiology was confirmed in China [1]. The Chinese Center for Disease Control and Prevention (CCDC) identified a novel coronavirus infection as the cause of this pneumonia [2]. The World Health Organization (WHO) named the disease ‘2019-new coronavirus disease’ (COVID-19) and the International Committee on Taxonomy of Viruses named the virus ‘severe acute respiratory syndrome coronavirus 2’ (SARS-CoV-2) [3]. The WHO soon declared that COVID-19 was a fast-evolving pandemic [4]. As of 26 May 2020, it is estimated that 5 406 282 people have been infected with COVID-19 and 343 562 people have died globally [5]. However, primary human airway epithelial cells are expensive and do not proliferate indefinitely [6]. Several infinitely proliferating cell lines, such as Caco-2 [6], Calu-3 [7], HEK293T [8], and Huh7 [7] have been utilized in SARS-CoV-2 infection experiments. These cell lines do not accurately mimic human tissues or faithfully reproduce the behavior of the virus and do not proliferate indefinitely [7]. Several infinitely proliferating cell lines, such as Caco-2 [6], Calu-3 [7], HEK293T [8], and Huh7 [7] have been utilized in SARS-CoV-2 infection experiments. These cell lines do not accurately mimic human physiological conditions and generate low titer of infectious SARS-CoV-2 [6–8]. Despite this limitation, valuable information about the virus infection and replication can be learned from studies using these cell lines. However, Vero cells have given high titer of viral particles [8]. For efficient SARS-CoV-2 research, a cell line, such as Vero cells, that

References
1. Hu, B. et al. (2019) Clinical advances of siRNA therapeutics. J. Gene Med. 21, e3007
2. Whitehead, K.A. et al. (2009) Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138
3. Beilhartz, G.L. et al. (2017) Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochem. Pharmacol. 142, 13–20
4. Dyer, P.D.R. et al. (2015) Efficient delivery of structurally diverse protein cargo into mammalian cells by a bacterial toxin. Mol. Pharm. 12, 2962–2971
5. Dyer, P.D.R. et al. (2015) Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity. J. Control. Release 220, 316–328
6. Arnold, A.E. et al. (2020) Attenuated diphtheria toxin mediates siRNA delivery. Sci. Adv. 6, eaaz4848
7. Choe, S. et al. (1992) The crystal structure of diphtheria toxin. Nature 357, 216–222
8. Rabideau, A.E. et al. (2014) Translocation of non-canonical polypeptides into cells using protective antigen. Sci. Rep. 5, 11944
9. Bachman, G. and Leplia, S.H. (2016) Tumor targeting and drug delivery by anthrax toxin. Toxins (Basel) 8, 197
10. Barati, S. et al. (2002) Hybrid tetanus toxin C fragment-diphtheria toxin translocation domain allows specific gene transfer into PC12 cells. Exp. Neurol. 177, 75–87
11. Abi-habib, R.J. et al. (2004) A urokinase-activated recombinant diphtheria toxin targeting the granulocyte-macrophage colony-stimulating factor receptor is selectively cytotoxic to human acute myeloid leukemia blasts. Blood 104, 2143–2148

© 2020 Elsevier Ltd. All rights reserved.

© 2020 Elsevier Ltd. All rights reserved.
Type	Origin	Key points	Refs
Human airway epithelial cells	Commercially available from various vendors	Human airway epithelial cells can isolate SARS-CoV-2 and mimic infected human lung cells. After SARS-CoV-2 infection, cytopathic effects were observed.	[5]
Vero E6 cells	Wild type cells	Vero E6 cells are the most widely used clone used to replicate and isolate the SARS-CoV-2.	[11]
TMPRSS2-overexpressing cells	Isolated from kidney epithelial cells of an African green monkey	Viral RNA copies in the culture supernatants of these cells were >100 times higher than those of wild type Vero E6 cells.	[12]
Caco-2 cells	Isolated from human colon adenocarcinoma	SARS-CoV-2 could replicate in Caco-2 cells (data not shown).	[6]
Calu-3 cells	Isolated from non-small cell lung cancer	Compared with mock control, SARS-CoV-2 S pseudovirions showed an over 500-fold increase in luciferase activities in Calu3 cells.	[7]
HEK293T cells	Isolated from human embryonic kidney (HEK) cells grown in tissue culture	Cells showed only modest viral replication.	[8]
Huh7 cells	Isolated from hepatocyte-derived cellular carcinoma	Cells showed about a tenfold increase in luciferase activity when transduced by SARS-CoV-2 S pseudovirions.	[7]
Human bronchial organoids	Generated from commercially available human bronchial epithelial cells	After SARS-CoV-2 infection, not only the intracellular viral genome, but also progeny virus, cytotoxicity, pyknotic cells, and moderate increases of the type I interferon signal can be observed.	[17]
Human lung organoids	Generated from human embryonic stem cells	The lung organoids, particularly alveolar type II cells, are permissive to SARS-CoV-2 infection.	[18]
Human kidney organoids	Generated from human embryonic stem cells	Human kidney organoids produce infectious progeny virus.	[19]
Human liver ductal organoids	Generated from primary bile ducts isolated from human liver biopsies	Human liver ductal organoids are permissive to SARS-CoV-2 infection, and SARS-CoV-2 infection impairs the bile acid transporting functions of cholangiocytes.	[20]
Human intestinal organoids	Generated from primary gut epithelial stem cells	Human intestinal organoids were readily infected by SARS-CoV-2, as demonstrated by confocal and electron microscopy. Significant titer of infectious viral particles were detected.	[22,23]
Human blood vessel organoids	Generated from human induced pluripotent stem cells	SARS-CoV-2 can directly infect human blood vessel organoids.	[19]

Animal models

Animal species	Key points	Refs
Mice	SARS-CoV-2 cannot invade cells through mouse Ace2.	[11]
Human ACE2 transgenic mice	After SARS-CoV-2 infection, the mice show weight loss, virus replication in the lungs, and interstitial pneumonia.	[25]
Syrian hamster	After SARS-CoV-2 infection, the hamsters show rapid breathing, weight loss, and diffuse alveolar damage with extensive apoptosis.	[26]
Ferrets	After SARS-CoV-2 infection, acute bronchiolitis was observed in the lungs.	[27]
Cats	After SARS-CoV-2 infection, intra-alveolar edema and congestion in the interalveolar septa were observed. Abnormal arrangement of the epithelium with loss of cilia and lymphocytic infiltration into the lamina propria were also observed.	[28]
Cynomolgus macaques	SARS-CoV-2 can infect both type I and type II pneumocytes. After SARS-CoV-2 infection, pulmonary consolidation, pneumonia, and edema fluid in alveolar lumina were observed.	[29]
Rhesus macaques	Infected macaques had high viral loads in the upper and lower respiratory tract, humoral and cellular immune responses, and pathologic evidence of viral pneumonia. The therapeutic effects of adenovirus-vectorized vaccine, DNA vaccine candidates expressing S protein, and remdesivir treatment could be evaluated.	[30–33]
can easily replicate and isolate the virus is essential. These cells were isolated from the kidney epithelial cells of an African green monkey in 1963 and have been shown to not produce interferon (IFN) when infected with Newcastle disease virus, rubella virus, and other viruses [9]. A homozygous ~9 Mbp deletion on chromosome 12 causes the loss of the type I interferon (IFN-I) gene cluster and of cyclin-dependent kinase inhibitor genes [10]. The IFN deficiency allows SARS-CoV-2 to replicate in Vero cells. Among the several Vero cell clones, Vero E6 is the most widely used to replicate and isolate SARS-CoV-2 [11], because these cells highly express ACE2 on the apical membrane domain. However, the expression level of TMPRSS2, the receptor that the virus uses to prime the S protein (spike protein of SARS-CoV-2) [4], is quite low in this clone. To enhance the replication and isolation efficiencies of SARS-CoV-2 in Vero E6 cells, Matsuyama et al. have used TMPRSS2-overexpressing Vero E6 cells [12]. They reported that the viral RNA copies in the culture supernatants of these cells were >100 times higher than those of Vero E6 cells, suggesting that it would be possible to isolate higher titer virus using TMPRSS2-overexpressing Vero E6 cells.

Organoids
Organoids are composed of multiple cell types and model the physiological conditions of human organs. Because organoids have the ability to self-replicate, they are also suitable models for large-scale screening in drug discovery and disease research [13]. Besides the lung damage caused by pneumonia, SARS-CoV-2 affects several organs like the kidney [14], liver [15], and the cardiovascular system [16]. Monteil et al. have shown that the supernatant of SARS-CoV-2 infected kidney organoids differentiated from human embryonic stem cells can efficiently infect Vero E6 cells, showing that the kidney organoids produce infectious virus [19]. In addition, Zhao et al. have demonstrated that human liver ductal organoids are permissive to SARS-CoV-2 infection and support replication [20]. Interestingly, virus infection impaired the bile acid transporting functions of cholangiocytes [20]. This effect might be the reason for the bile acid accumulation and consequent liver damage in patients with COVID-19. Furthermore, it is expected that the intestine is another viral target organ [21]. Lamers et al. and Zhou et al. have reported that human intestinal organoids, which were established from primary gut epithelial stem cells, support SARS-CoV-2 replication [22,23]. Moreover, Monteil et al. have also demonstrated that SARS-CoV-2 can directly infect human blood vessel organoids differentiated from human induced pluripotent stem cells [19]. Consistently, Varga et al. confirmed the presence of viral elements within endothelial cells and an accumulation of inflammatory cells [24]. Taken together, the two studies suggest that SARS-CoV-2 infection induces endothelitis in several organs as a direct consequence of virus involvement. However, while organoids can reproduce the pathology of COVID-19 in specific tissues on which they are modeled, they cannot reproduce the systemic symptoms associated with whole body responses to the viral infection.

Animal Models for SARS-CoV-2 Research
The complex pathophysiology of the disease will only be understood by reproducing tissue-specific and systemic virus-host interactions. While cell lines and
Organoids are faster systems to study the virus and its interactions inside host cells, these can only reproduce the symptoms of COVID-19 in a specific cell type or organ, respectively. However, the pathology of COVID-19 can be reproduced and observed in a tissue-specific and systemic manner in animal models. Several different animals are being used to study the disease and to test candidate therapeutic compounds (Table 1 and Figure 1).

Small Animals

One of the works that set the pace for discovery of animal models was by Zhou et al. who conducted SARS-CoV-2 infection experiments using HeLa cells that expressed ACE2 proteins taken from multiple animal species, from mice to humans [11]. Interestingly, SARS-CoV-2 could use all ACE2 proteins, except for mouse ACE2. Therefore, Bao et al. used transgenic mice that express human ACE2 [25]. The team found that such mice, after SARS-CoV-2 infection, showed weight loss, virus replication in the lungs, and interstitial pneumonia [25]. In the search of alternative small animal models, molecular docking studies were performed on the binding between ACE2 of various mammals and the S protein of SARS-CoV-2, with the finding that the Syrian hamster might be suitable [26]. After infection, these hamsters show rapid breathing, weight loss, and alveolar damage with extensive apoptosis [26].

Large Animals

Small animals like mice and Syrian hamster are advantageous to study SARS-CoV-2, as they reproduce faster; however, to faithfully reproduce COVID-19 pathology in humans, larger animal models are preferred. Kim et al. reported nonlethal acute bronchiolitis in the lungs of a ferret model [27]. Another study showed that SARS-CoV-2 can replicate in ferrets and cats when selecting large experimental animals rather than rodents.

Another model that can be used for COVID-19 studies and is currently the closest to humans in pathophysiology, is the primate cynomolgus macaques. Rockx et al. used cynomolgus macaques to compare MERS-CoV, SARS-CoV, and SARS-CoV-2 [29]. Although MERS-CoV mainly infected type II pneumocytes, both SARS-CoV and SARS-CoV-2 infect type I and II pneumocytes. After SARS-CoV-2 infection, damage on type I pneumocytes led to pulmonary edema and the formation of hyaline membranes. Thus, cynomolgus macaques can be infected with SARS-CoV-2 and reproduce some of the human pathologies of COVID-19.

Rhesus macaques have also been used in COVID-19 studies [30] where the therapeutic effects of adenosine-vectorized vaccine [31], DNA vaccine candidates expressing S protein [32], and remdesivir treatment [33] were confirmed. While these models probably are best in replicating virus–human host interactions, a major limitation is that the reproduction rate in cynomolgus and rhesus monkeys is less and slower. Hence this can be preceded by experiments with transgenic mice and Syrian hamsters.

Concluding Remarks

COVID-19 has spread rapidly all over the world in the past 5 months. Even now, the number of infected people and deaths continues to rise. At this time, there are no therapeutic prevention or intervention methods available. The only ways to control the pandemic and reduce associated loss of lives has been to change peoples’ behavior, like quarantine and social distancing. Therapeutic strategies for prevention and/or intervention is the need of the hour. While multiple clinical trials are currently underway, in parallel, preclinical research on in vitro and model organisms is also needed, both to understand the virus and to test therapeutic agents for safety and efficacy. We believe that this overview will help researchers select suitable cell and animal models for SARS-CoV-2 research (Table 1 and Figure 1) and help assess the advantages and disadvantages of each towards discovery of better models.

Acknowledgments

We thank Dr Peter Karagiannis (Kyoto University), Dr Yoichi Miyamoto (National Institutes of Biomedical Innovation, Health and Nutrition), Dr Sachiyu Yoshio (National Center for Global Health and Medicine), Dr Koji Morishita (University of Yamanashi), and Dr Toru Okamoto (Osaka University) for critical reading of the manuscript. We also thank Dr Eiri Ono (Kyoto University) for creating the figure.

Resources

https://apps.who.int/iris/handle/10665/330893
https://talk.ictvonline.org/information/w/news/1300/page
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.fishersci.se/shop/products/human-bronchial-epithelial-cells-nhbe/13499079

© 2020 Elsevier Ltd. All rights reserved.

References

1. Lu, H. et al. (2020) Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J. Med. Virol. 92, 401–402
2. Li, Q. et al. (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207
3. Lythgoe, M.P. and Middleton, P. (2020) Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol. Sci. 41, 393–398
4. Hoffmann, M. et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280
5. Zhu, N. et al. (2020) A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733
6. Kim, J-M. et al. (2020) Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong Public Health Res. Perspect. 11, 3
7. Ou, X. et al. (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun. 11, 1–12
8. Hancourt, J. et al. (2020) Isoylation and characterization of SARS-CoV-2 from the first US COVID-19 patient. bioRxiv Published online March 3, 2020. https://doi.org/10.1101/2020.03.02.972935

© 2020 Elsevier Ltd. All rights reserved.
10. Osada, N. et al. (2014) The genome landscape of the African green monkey kidney cells (Vero). J. Virol. 2, 955–961
11. Zhou, P. et al. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273
12. Matsuyama, S. (2010) Osada, N. et al. (2014) The genome landscape of the African green monkey kidney cells (Vero). J. Virol. 2, 955–961
13. Ranga, A. et al. (2014) Drug discovery through stem cell-based organoid models. Adv. Drug Deliv. Rev. 69, 19–28
14. Li, Z. et al. (2020) Caution on kidney dysfunctions of COVID-19 patients. medRxiv Published online May 1, 2020. https://doi.org/10.1038/s41591-020-0912-6
15. Fan, Z. et al. (2020) Clinical features of COVID-19-related liver damage. Clin. Gastroenterol. Hepatol. 18, 1561–1568
16. Zheng, Y.-Y. et al. (2020) COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 17, 259–260
17. Suzuki, T. et al. (2020) Generation of human bronchial organoids for SARS-CoV-2 research. bioRxiv Published online May 26, 2020. https://doi.org/10.1101/2020.05.25.119600
18. Han, Y. et al. (2020) Identification of candidate COVID-19 therapeutics using hPSC-derived lung organoids. bioRxiv Published online May 5, 2020. https://doi.org/10.1101/2020.05.05.079065
19. Montell, V. et al. (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913.e7
20. Zhao, B. et al. (2020) Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Proteor Cell Published online April 17, 2020. https://doi.org/10.1007/s12338-020-00718-6
21. Zhou, Z. et al. (2020) Effect of gastrointestinal symptoms on patients infected with COVID-19. Gastroenterology 158, 2294–2297
22. Lamers, M.M. et al. (2020) SARS-CoV-2 productively infects human gut enterocytes. Science Published online May 1, 2020. https://doi.org/10.1126/science.abc1669
23. Zhou, J. et al. (2020) Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. Published online May 13, 2020. https://doi.org/10.1038/s41591-020-0912-6
24. Varga, Z. et al. (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418
25. Xiao, L. et al. (2020) The pathogenicity of SARS-CoV-2 in HACE2 transgenic mice. Nature Published online May 7, 2020. https://doi.org/10.1038/s41598-020-2312-y
26. Chan, J.F.W. et al. (2020) Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. Published online March 26, 2020. https://doi.org/10.1093/cid/ciaa555
27. Kim, Y.-L. et al. (2020) Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 27, 704–709.e5
28. Shi, J. et al. (2020) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science Published online April 8, 2020. https://doi.org/10.1126/science.abc7015
29. Rockx, B. et al. (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science Published online April 17, 2020. https://doi.org/10.1126/science.abb7314
30. Chandrashekar, A. et al. (2020) SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science Published online May 20, 2020. https://doi.org/10.1126/science.abc4776
31. van Doremalen, N. et al. (2020) ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv Published online May 13, 2020. https://doi.org/10.1101/2020.05.13.093195
32. Yu, J. et al. (2020) DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science Published online May 20, 2020. https://doi.org/10.1126/science.abc6284
33. Williamson, B.N. et al. (2020) Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv Published online April 22, 2020. https://doi.org/10.1101/2020.04.15.043166