Parameters sensitivity analysis of DO in water quality model of QUAL2K

Q S Chen¹, X H Xie¹, Q Y Du¹ and Y Liu¹,²
¹Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu of Sichuan Province, 610000, China
E-mail: 642823770@qq.com

Abstract. QUAL2K is a comprehensive longitudinal one-dimension steady-state water quality model, which considers the effect on dissolved oxygen (DO) through nitrogen circulation, algae growth and sediment oxidation process. And this model integrated hydrological model and temperature model, so it is widely adopted in the overseas. Because of its complexity and multiple parameters, the application of this model is restricted in China. Parameters optimization is inevitable in the usage of the water quality model. The modified Morris screening method is used and DO is selected as study index to proceed sensitivity analysis and further optimize related parameters. The high sensitive parameters, sensitive parameters and low sensitive parameters are determined.

1. Introduction
QUAL2K model is a comprehensive and diversified water quality one-dimensional model developed by the US Environmental Protection Agency. It is widely used not only for complex dendritic river systems, but also for multiple intakes, outlets, and inflows. Applied to the total amount of pollutants in the basin control and water quality management. The basic equation of QUAL2K water quality model is one-dimensional advection-dispersion material delivery and reaction equation that considers advection-dispersion, dilution, self-reactions within water quality components and interactions between them, as well as the impact of external source and sink on the concentration of components, therefore, it is widely adopted in the overseas [1-5]. QUAL2K model contains numerous parameters simultaneously. The determination of these parameters will have a directly impact on applicability of model, which is used to simulate the evolution of characteristics of water quality variables in water [6]. DO is a significant indicator reflecting biological growth status and water pollution level [7], what’s more, it’s a necessary condition in water. So the analysis on related parameters of DO in QUAL2K model has a great importance. In this paper, the Morris screening method and the Modified Morris screening method are used and DO is selected as study index to proceed sensitivity analysis to simplify the parameter determination.

2. Methods

2.1. DO parameter analysis
DO concentration increases with the photosynthesis of bottom algae and phytoplankton, which are
restrictively affected in combined temperature, nutrients and light. It is necessary to consider the nitrogen (N), phosphorus quota, light constant of bottom algae and phytoplankton, salt concentration and the effect of chlorophyll extinction coefficient on phytoplankton etc. [8]. At the same time, the effects of carbonized biochemical oxygen demand (CBOD) oxidation, ammonia nitrogen nitrification, microorganism and plant respiration on the decrease of DO concentration should be premeditated [9]. As well as river concrete conditions such as hydraulic works, river depth, velocity, other related parameters, point source pollution load and river water temperature influences DO concentration. There are hydraulic, hydrological, and water quality parameters relating to DO in table 1.

Table 1. Hydraulic hydrological and water quality parameters of DO and the value.

Category	NO.	Parameter	Unit	Parameter Description	Value
Hydraulic	1	n		Manning roughness	0.0700
	2	Q₀	m³/s	River source discharge	0.713
	3	T₈	°C	B point source of the average water temperature	15.00
	4	Q₈	m³/s	B point source flow	0.5900
	5	adam		Water quality correction factor	1.2500
	6	bdam		Dam type correction factor	0.9000
Hydrological	7	C₋₈(DO)	mgO₂/L	B point source emissions DO average concentration	4.00
	8	CV	%	Algae coverage at the bottom of the river	70
	9	a		River flow velocity section coefficient	0.2457
	10	b		River flow velocity section coefficient	0.451
	11	α		River water depth section coefficient	0.6271
	12	β		River water depth section coefficient	0.435
Water quality	13	rₒc	(gO₂/gC)	Organic carbon oxidation coefficient	2.69
	14	rₒn	(gO₂/gN)	Ammonia nitrification oxygen consumption coefficient	4.57
	15	kₐₐ	(d⁻¹)	Ammonia nitrification rate coefficient	1.649
	16	kₚₕ	(d⁻¹)	Phytoplankton growth rate	2.50
	17	kₚₜ	(d⁻¹)	Phytoplankton respiration rate	0.10
	18	kₒₑₒᶠ	L/mgO₂	CBOD Oxygen inhibition parameters	0.60
	19	kₒₒₒₐₜ₃	L/mgO₂	Nitric oxide inhibition parameters	0.60
	20	kₒₒₒₜ₃	L/mgO₂	Denitrifying oxygen increases the parameters	0.60
	21	kₒₚᵦₕ₃	L/mgO₂	Plant respiratory oxygen inhibition parameters	0.60
	22	kₒₒₑₒₜ₃	L/mgO₂	Algae respiratory oxygen increase parameters	0.60
	23	γ	(d⁻¹)	River reoxygenation coefficient	0
	24	θₒₒ₋₃		CBOD₃ oxidation temperature correction factor	1.047
	25	θₒₜ₃		CBOD₅ Hydrolysis temperature correction factor	1.047
	26	θₒₜ₄		CBOD₇ oxidation temperature correction number	1.047
	27	θₒₜ₅		Ammonia nitrogen nitration temperature correction factor	1.07
	28	θₒₜ₆		Reaeration temperature correction factor	1.024
		kₒₒ₃	(d⁻¹)	Bottom algae death rate	0.09
2.2. Parameter sensitivity analysis method

Sensitivity analysis of model parameters includes local and global sensitivity analysis [10]. In this paper, local sensitivity analysis use the Modified Morse classification screening to test the influence of single parameters [11], the other use the Morse classification screening to test the overall effect of multiple parameters on the model results [12].

2.2.1. Modified Morse classification screening method. The modified Morse classification screening method use independent variables to fixe step-changes. The parameter sensitivity index takes the average of the Morse coefficients calculated over multiple disturbances.

$$S = \frac{1}{n-1} \sum_{i=0}^{n-1} \left(\frac{Y_{i+1} - Y_i}{P_{i+1} - P_i} \right) / 100 \left(n - 1 \right)$$ \hspace{1cm} (1)

In the above formula: \(S \) is Morse coefficient; \(Y_0 \) is the initial calculation result after the parameters determined; \(Y_i \) and \(Y_{i+1} \) respectively is model output value of the \(i \) and \(i+1 \) times operation; \(P_i, P_{i+1} \) respectively is the percent change of the \(i \) and \(i + 1 \) times model parameter relative to the initial value; \(n \) is the number of model runs.

2.2.2. Morse classification screening method. Morse classification screening method selects one of the variables, which named \(x_i \) in the model, and fixes the rest parameters. The value of \(x_i \) is changed randomly within the threshold range of the variable and the value of the objective function \(y(x) = y(x_1, x_2, x_3, \cdots, x_n) \) is obtained by running the model. The influence value \(e_i \) is used to judge the influence of the parameter variation on the output value.

$$e_i = \left(y - y_0 \right) / \Delta i$$ \hspace{1cm} (2)

a water quality model of QUAL2K recommended value
In the above formula: e_i is Morse coefficient; y_0 and y respectively is model output value before and after the change of parameters; Δi is the variation range of the parameter i.

By calculating the influence of water quality concentration under a certain parameter rate of change and comparing its sensitivity. According to the sensitivity degree, this paper identifies the local sensitivity analysis hierarchy [11] as shown in table 2.

Table 2. Delineation of the sensitivity.

Sensitivity level	Sensitivity range	Sensitivity		
I	$0 \leq	s_i	< 0.05$	Insensitive
II	$0.05 \leq	s_i	< 0.2$	Weak sensitive
III	$0.2 \leq	s_i	< 1$	Sensitive
IV	$	s_i	> 1$	Highly sensitive

2.3. River overview

Research chooses Boulder Creek River, abbreviated BC River, which the average width is 12.50 m, total length is 13.53 km and the flow is 0.713 m3/s. The study divided the river into five sections and 25 units according to the sources and hydraulic characteristics, as shown in tables 3, 4, and 5 and the entire river can be summarized as shown in figure 1.

Table 3. Delineation of Boulder Creek river reach and computational element.

Serial number	The upper reaches of the river	The lower reaches of the river	Length of the river	Computational element
1	0.00	0.65	0.65	2
2	0.65	4.32	3.67	7
3	4.32	5.71	1.39	2
4	5.71	8.18	2.47	4
5	8.18	13.53	5.35	10

Table 4. Point source distribution.

Project	Name	A	B	C
Position (km)		0.12	4.46	7.12
Nitrate (µgN/L)		2337.04	1000.00	0.00
Organic phosphorus (µgP/L)		647.96	1000.00	0.00
Inorganic phosphorus (µgP/L)		3932.78	1000.00	0.00
Alkalinity (mgCaCO$_3$/L)		125.74	120.00	0.00
pH		6.84	7.00	0.00
Flow (m3/s)		1.0000	0.5900	1.9000
Average water temperature (℃)		20.06	15.00	0.00
DO (mg/L)		3.57	4.00	0.00
CBOD$_S$ (mg/L)		0.00	2.00	0.00
CBOD$_F$ (mg/L)		26.70	0.00	0.00
Organic nitrogen (µgN/L)		1044.81	1000.00	0.0000
Ammonia nitrogen(µgN/L)		1121.11	1000.00	0.00

Table 5. Non-point source distribution.

Name	Top Flow Average water Conductivity Nitrate Alkalinity pH					
	(km)	Lower (km)	(m3/s)	temperature (℃)	(umhos)	(µgN/L) (mgCaCO$_3$/L)
Figure 1. Delineation of the river.
A and B are point sources; C is farmland water intake; D and E are surface source of pollution; 1, 2, 3, 4, 5 are serial number of river reach; Q_0 is source of BC river flow, C_0 is the source of the BC river of DO concentration, Q_5 is the end of BC river flow, C_5 is the end of the BC river of DO concentration.

3. DO parameter sensitivity analysis

3.1. Local sensitivity analysis

Table 6. Result of local sensitivity analysis.

NO.	Parameter name	Sensitivity
1	n	0.3429
2	Q_0	0.1952
3	T_B	0.1905
4	QB	0.1810
5	adam	0.0000
6	bdam	0.0000
7	$C_{B(DO)}$	0.1143
8	CV	0.1562
9	a	-0.2021
10	b	0.0701
11	α	0.2310
12	β	0.0866
13	r_{OC}	-0.5667
14	r_{on}	-0.2571
15	K_{na}	-0.2667
16	k_{DP}	0.0000
17	k_{Pp}	0.0000
18	K_{socf}	-0.0557
19	K_{sona}	-0.0557
20	k_{soda}	0.0000
21	k_{sodp}	0.0000
22	k_{sodp}	0.0000
23	γ	0.8810
Compare the sensitivity of each parameter through studying the effect of concentration changes on DO from the value of parameters diversification in Table 1. The modified Morse classification screening method was used to analyze the local sensitivity of all the parameters in Table 1, where disturbing every parameter value with fixed step of 5%, respectively, the value was from -20% to 20%, DO output results shown in Table 6:

Through the analysis of the local sensitivity of the parameters, it can be concluded that the θ_6 is the only highly sensitive parameter of DO. The sensitive parameters include the γ, θ_{5a}, θ_{5c}, CBOD_5, θ_{d}, n, K_{mn}, r_{on}, k_{dc}, α and a; The weak sensitive parameters include the Q_{0b}, T_{b}, Q_{a}, CV, C_B (DO), q_{0a}, k_{eb}, K_{Lb}, β, b, K_{socf}, K_{sona} and K_{db}; The others are insensitive parameters.

We can draw eight bottom algal parameters from Table 6, which have less effect on DO, involving q_{0a}, K_{Lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}, K_{db} and k_{dt}. During local sensitivity analysis processing, the mutual interaction of parameters was neglected, therefore, next, it researches the further global sensitivity analysis for these eight parameters.

3.2. Global sensitivity analysis

This analysis selects above eight parameters to get $X = [q_{0a}, K_{Lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}, K_{db}, k_{dt}]$, in order to get credible analysis results and simplify calculations, using the Morse method to assume the parameters increasing or decreasing by 10%. According to the principle of global sensitivity analysis and the method of Section 2.2, the matrix B of 9×8 dimensions is obtained. Then the parameters of each row of the matrix B are respectively brought into the QUAL2 model. Finally calculate the difference between outputs of the model. In line with the principle of sensitivity analysis, different combinations of parameters can be received. Through the data processing, the sensitivity of the interaction among parameters can be got too. The details are shown in Table 7.

Table 7. Result of parameters global sensitivity analysis (a).

Parameter group	Parameter combination	Sensitivity	Parameter group	Parameter combination	Sensitivity
1	q_{0a}	0.0857	19	K_{socf}, K_{sona}, k_{eb}	-0.0821
2	K_{Lb}	0.0616	20	K_{socf}, K_{sona}, k_{db}	0.0043
3	k_{eb}	-0.0845	21	k_{eb}, k_{db}, k_{dt}	0.0041
4	K_{socf}	-0.0568	22	q_{0a}, K_{Lb}, k_{eb}, K_{socf}	0.0063
5	K_{sona}	-0.0565	23	K_{Lb}, k_{eb}, K_{socf}, K_{sona}	-0.1359
6	k_{eb}	0.0323	24	k_{eb}, K_{socf}, K_{sona}, k_{eb}	-0.1658
7	k_{db}	0.0284	25	K_{socf}, K_{sona}, k_{eb}, k_{db}	-0.0524
8	k_{dt}	-0.0567	26	K_{sona}, K_{sona}, k_{db}, k_{dt}	-0.0525
9	q_{0a}, K_{Lb}	0.1475	27	q_{0a}, K_{Lb}, k_{eb}, K_{socf}, K_{sona}	-0.0510
10	K_{Lb}, k_{eb}	-0.0231	28	K_{Lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}	-0.1041
11	k_{eb}, K_{socf}	-0.1420	29	k_{eb}, K_{socf}, K_{sona}, k_{db}	-0.1375
12	K_{socf}, K_{sona}	-0.1130	30	K_{socf}, K_{sona}, k_{eb}, k_{dt}	-0.1095
13	K_{sona}, k_{eb}	-0.0242	31	q_{0a}, K_{Lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}	-0.0180
14	k_{eb}, k_{db}	0.0610	32	K_{Lb}, k_{eb}, K_{socf}, K_{sona}, k_{db}	-0.0760
15	k_{db}, k_{dt}	-0.0281	33	k_{db}, K_{socf}, K_{sona}, k_{db}, k_{dt}	-0.1934
16	q_{0a}, K_{Lb}, k_{eb}	0.0630	34	q_{0a}, K_{Lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}	0.0112
17	K_{Lb}, k_{eb}, K_{socf}	-0.0795	35	K_{Lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}, k_{dt}	-0.1330
18	k_{eb}, K_{socf}, K_{sona}	-0.1979	36	q_{0a}, K_{Lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}, k_{dt}	-0.0471
Table 7 shows the average value about sensitivity of the combination of parameters when all parameters increase or reduce 10% simultaneously. Through the sensitivity analysis of individual parameters in local and global sensitivity analysis, it can be seen that \(q_0 \), \(K_{lb} \), \(k_{eb} \), and \(k_{db} \) are positively correlated with DO and \(k_{eb}, K_{socf}, K_{sona}, k_{dt} \) are negatively correlated with DO. In order to more accurately reflect the sensitivity of the parameter combinations, parameters such as \(q_0 \), \(K_{lb} \), \(k_{eb} \) and \(k_{db} \) positively correlated with DO were increased by 10%, and the parameters \(K_{socf}, K_{sona}, k_{eb} \) and \(k_{dt} \) negatively correlated with DO were decreased by 10%. The results of maximum sensitivity of parameters combination are shown in Table 8.

Parameter group	Parameter combination	Sensitivity	Parameter group	Parameter combination	Sensitivity
1	\(q_0 \)	0.0857	19	\(K_{socf}, K_{sona}, k_{eb} \)	0.1397
2	\(K_{lb} \)	0.0567	20	\(k_{sona}, k_{eb}, k_{db} \)	0.1111
3	\(k_{eb} \)	-0.0845	21	\(k_{db}, k_{dt} \)	0.1105
4	\(K_{socf} \)	-0.0559	22	\(q_0, K_{lb}, k_{eb}, k_{socf} \)	0.2857
5	\(K_{sona} \)	-0.0556	23	\(K_{lb}, k_{eb}, K_{socf}, K_{sona} \)	0.255
6	\(k_{eb} \)	0.0276	24	\(k_{db}, K_{socf}, K_{sona}, k_{eb} \)	0.2254
7	\(k_{db} \)	0.0275	25	\(K_{socf}, K_{sona}, k_{eb}, k_{db} \)	0.1676
8	\(k_{dt} \)	-0.0549	26	\(k_{sona}, k_{eb}, k_{db}, k_{dt} \)	0.1667
9	\(q_0, K_{lb} \)	0.1428	27	\(q_0, K_{lb}, k_{eb}, K_{socf}, K_{sona} \)	0.3429
10	\(K_{lb}, k_{eb} \)	0.1416	28	\(K_{lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb} \)	0.2833
11	\(k_{eb}, K_{socf} \)	0.1408	29	\(k_{eb}, K_{socf}, K_{sona}, k_{eb}, k_{db} \)	0.2535
12	\(K_{socf}, K_{sona} \)	0.1117	30	\(k_{socf}, K_{sona}, k_{eb}, k_{db}, k_{dt} \)	0.2235
13	\(K_{sona}, k_{eb} \)	0.0833	31	\(q_0, K_{lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb} \)	0.3714
14	\(k_{eb}, k_{db} \)	0.0552	32	\(K_{lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}, k_{db} \)	0.3116
15	\(k_{eb}, k_{dt} \)	0.0826	33	\(k_{eb}, K_{socf}, K_{sona}, k_{eb}, k_{db}, k_{dt} \)	0.3099
16	\(q_0, K_{lb}, k_{eb} \)	0.2286	34	\(q_0, K_{lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}, k_{db} \)	0.4000
17	\(K_{lb}, k_{eb}, K_{socf} \)	0.1983	35	\(K_{lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}, k_{db}, k_{dt} \)	0.3683
18	\(k_{eb}, K_{socf}, K_{sona} \)	0.1972	36	\(q_0, K_{lb}, k_{eb}, K_{socf}, K_{sona}, k_{eb}, k_{db}, k_{dt} \)	0.4571

The sensitivity of the combination of weak sensitive parameters is higher than a single parameter in Table 8, indicating that the collective effect of multiple parameters will have a greater impact on the concentration of DO. For example, the sensitivities of \(q_0 \) and \(K_{lb} \) are 0.0857 and 0.0567, respectively, but the sensitivity of their combination is 0.1428. The sensitivity of the combination parameters obtained by the MORSE classification screening method is not a simple numerical addition of a single parameter. The sensitivity of the eight parameter combinations reaches 0.4571, indicating that the QUAL2K model needs to consider the values of the eight weak sensitive parameters when simulating DO, which cannot be neglected in the model definition and calibration. Thus, the method of determining DO related parameters in the QUAL2K water quality model was confirmed as shown in Table 9.

Table 8. Result of different combination-patterns of parameters global sensitivity analysis (b).

The sensitivity of the combination of weak sensitive parameters is higher than a single parameter in table 8, indicating that the collective effect of multiple parameters will have a greater impact on the concentration of DO. For example, the sensitivities of \(q_0 \) and \(K_{lb} \) are 0.0857 and 0.0567, respectively, but the sensitivity of their combination is 0.1428. The sensitivity of the combination parameters obtained by the MORSE classification screening method is not a simple numerical addition of a single parameter. The sensitivity of the eight parameter combinations reaches 0.4571, indicating that the QUAL2K model needs to consider the values of the eight weak sensitive parameters when simulating DO, which cannot be neglected in the model definition and calibration. Thus, the method of determining DO related parameters in the QUAL2K water quality model was confirmed as shown in Table 9.

Table 9. Recommended methods for choosing parameters.
4. Conclusions
Through the local and global sensitivity analysis of DO-related parameters, it can be seen that the most important process affecting DO in the QUAL2K water quality model is the river reoxygenation, CBOD oxidation, ammonia nitrogen nitrification and oxygenation. Algae of bottom photosynthesis also have a certain impact on DO and algae respiration on the impact of DO is relatively small. On this basis, the method of determining the different parameters is confirmed.

Acknowledgments
This research was financially supported by the National Natural Science Foundation of China (No. 51779211 and No. 51209178) and the Fundamental Research Funds for the Central Universities (No. 2682016CX080).

References
[1] Rashed, Ahmed A and El-Sayed E A 2014 Simulating agricultural drainage water reuse using QUAL2K model: Case study of the Ismailia Canal catchment area, Egypt J Irrig Drain Eng 140 05014001-1-9
[2] Jae H C and Sung R H 2010 Parameter optimization of the QUAL2K model for a multiple-reach river using an influence coefficient algorithm Sci. Total Environ 408 1985-91
[3] Chi H F, Chun H K and Wei S W 2009 An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on river water quality simulation J. Manage 90 1824-32
[4] Allam A, Tawfik A, Yoshimura C and Fleifle A 2016 A simulation-based suitability index of the quality and quantity of agricultural drainage water for reuse in irrigation Sci. Total Environ 172 82-96
[5] Georgios D 2014 Water quality of drainage canals and assessment of nutrient loads using QUAL2Kw Environ. Processes 1 369-85
[6] Li C L, Hu M Y, Liu M, Xu Y Y, Sun F Y and Chen T 2014 Local sensitivity analysis of parameters in Storm Water Management Model Chin. J. Eco 33 1076-81 (in Chinese)
[7] Zhen J G, Fu L and You A J 2017 Evaluation and assessment of dissolved oxygen based on the water diversion experiment in River Netwo Environ. Sci. Technol 40(51) 170-5 (in Chinese)
[8] Zheng X H 2012 The influence analysis of total phosphor on algae growing and algae growing on pH and dissolved oxygen in surface water Instrum Anal Monit 3 43-5 (in Chinese)
[9] Zhao H C, Wang S R, Zhao M, Jiao L X and Li Y P 2011 Relationship between the DO and the environmental factors of the water body in Lake Erhai Chin. J. Envir, Sci 32 1952-9(in Chinese)
[10] Jiang Y, Wang X J and Luo D G 2006 Parameters sensitivity analysis of watershed management model-application of WA RMF Model in Chaohu Lake area Res. Soil Water Conserv 13 165-8 (in Chinese)
[11] Tan M H, Yao J J, Zhang Z, Pu P and Wei T 2015 Analysis and application of sensitivity of water quality parameter based on SWMM of Morris J Water Res. & Water Eng 6 117-22 (in Chinese)
[12] Xu C G, Hu M Y, Chang Y, Jiang Y and Li X Z 2014 Sensitivity analysis in ecological modelling Chin. J. Appl. Ecol 15 1056-61 (in Chinese)