Genome sequence of the Lebeckia ambigu‐a‐nodulating “Burkholderia spreintiae” strain WSM5005^T

Wayne Reeve^1, Sofie De Meyer^1, Jason Tepolilli^1, Vanessa Melino^1, Julie Ardley^1, Tian Rui^1, Ravi Tiwari^1, John Howieson^1, Ron Yates^2, Graham O’Hara^1, Megan Lu^1, David Bruce^3, Chris Detter^1, Roxanne Tapia^1, Cliff Han^1, Chia‐Lin Wei^1, Marcel Huntemann^3, James Han^3, I‐Min Chen^3, Konstantinos Mavromatis^3, Victor Markowitz^4, Ernest Szeto^3, Natalia Ivanova^3, Natalia Mikhailova^3, Galina Ovchinnikova^3, Ioanna Pagani^3, Amrita Pati^3, Lynne Goodwin^4, Lin Peters^3, Sam Pitluck^3, Tanja Woyke^3 & Nikos Kyrpides^3.

^1 Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
^2 Department of Agriculture and Food, Western Australia, Australia
^3 DOE Joint Genome Institute, Walnut Creek, California, USA
^4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
^5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA

*Correspondence: Wayne Reeve (W.Reeve@murdoch.edu.au)

Keywords: root‐nodule bacteria, nitrogen fixation, rhizobia, Alphaproteobacteria

“Burkholderia spreintiae” strain WSM5005^T is an aerobic, motile, Gram-negative, non‐spore‐forming rod that was isolated in Australia from an effective N₂‐fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of “Burkholderia spreintiae” strain WSM5005^T, together with the genome sequence and its annotation. The 7,761,063 bp high‐quality‐draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein‐coding genes and 76 RNA‐only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.

Introduction

Legumes of the Fabaceae family of flowering plants have the unique capacity to form a symbiotic N₂‐fixing symbiosis with soil‐inhabiting root nodule bacteria (RNB). This symbiosis supplies leguminous species with the essential bioavailable nitrogen that could otherwise not be obtained from soils that are inherently infertile. The agricultural region of south‐west Western Australia contains such impoverished soils and the successful establishment of effective legume‐RNB symbioses has been exploited to drive plant and animal productivity in this landscape without the reliance on nitrogenous fertilizer [1,2]. This landscape’s rainfall patterns appear to be changing, from a dry Mediterranean‐type distribution to a generally reduced annual rainfall with a less predictable distribution [3]. Due to changes in rainfall patterns, the reproduction of the commercially used annual legume species is challenged. Perennial species might be more able to adapt to climate change, though few commercial perennial forage legumes are adapted to the acid and infertile soils encountered in the region [2]. Therefore, deep‐rooted herbaceous perennial legumes including Rhyrnchosia and Lebeckia species adapted to acid and infertile soils have been investigated for use in this Australian agricultural setting [2,4,5]. The genus Lebeckia Thunb. is part of the Crotalarieae tribe, and refers to a group of 33 species of papilionoid legumes that are endemic to the southern and western parts of South Africa, which have similar soil and climate conditions to Western Australia [6,7]. This genus has recently been revised and is now subdivided into several sections, including Lebeckia s.s., Calobota and Wiborgiella [7]. The Lebeckia s.s. section, which includes L. ambigu‐a, can easily be distinguished from other species by their acicular leaves and 5+5 anther arrangement [7‐9].
In four expeditions to the Western Cape of South Africa, between 2002 and 2007, nodules and seeds of *Lebeckia ambigua* were collected and stored [5]. The isolation of RNB from these nodules gave rise to a collection of 23 microsymbionts that clustered into five groups within the genus *Burkholderia* [5]. Unlike most of the previously studied rhizobial *Burkholderia* strains, this South African group appears to be associated with papilionoid forage legumes (rather than *Mimosa* spp.). One of these *Burkholderia* strains has now been designated as the type strain of the new species *Burkholderia sprentiae* strain WSM5005T [10]. This isolate effectively nodulates *Lebeckia ambigua* and *L. sepiaria* [5]. Here we present a summary classification and a set of general features for "*Burkholderia sprentiae*" strain WSM5005T together with the description of the complete genome sequence and its annotation.

Classification and general features

"*Burkholderia sprentiae*" strain WSM5005T is a motile, Gram-negative, non-spore-forming rod (Figure 1, left and center panels) in the order *Burkholderiales* of the class *Betaproteobacteria* [10]. It is fast growing, forming 2-4 mm diameter colonies within 2-3 days when grown on half Lupin Agar (½LA) [11] at 28°C. Colonies on ½LA are white-opaque, slightly domed, moderately mucoid with smooth margins (Figure 1, right panel).

Minimum Information about the Genome Sequence (MIGS) is provided in Table 1. Figure 2 shows the phylogenetic relationship of "*Burkholderia sprentiae*" strain WSM5005T in a 16S rRNA sequence based tree. This strain clusters closest to *Burkholderia tuberum* STM678T (CIP 108238T) and *Burkholderia kururiensis* KP23T with 98.2% and 96.9% sequence identity, respectively.

Symbiotaxonomy

"*Burkholderia sprentiae*" strain WSM5005T is part of a cadre of *Burkholderia* strains that were assessed for nodulation and nitrogen fixation on three separate *L. ambigua* genotypes (CRSLAM-37, CRSLAM-39 and CRSLAM-41) and on *L. sepiaria* [5]. Representatives of this group of nodule bacteria are generally Nod+ and Fix on *Macroptillium atropurpureum* and appear to have a very narrow host range for symbiosis. They belong to a group of *Burkholderia* strains that nodulate papilionoid forage legumes rather than the classical *Burkholderia* hosts *Mimosa* spp. (*Mimosoideae*) [28].

Genome sequencing and annotation information

Genome project history

This organism was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the Community Sequencing Program at the U.S. Department of Energy, Joint Genome Institute (JGI) for projects of relevance to agency missions. The genome project is deposited in the Genomes OnLine Database [27] and an improved-high-quality-draft genome sequence in IMG. Sequencing, finishing and annotation were performed by the JGI. A summary of the project information is shown in Table 2.
Table 1. Classification and general features of “Burkholderia sprentiae” strain WSM5005\(^1\) according to the MIGS recommendations [12,13].

MIGS ID	Property	Term	Evidence code
	Domain	Bacteria	TAS [13]
	Phylum	Proteobacteria	TAS [14]
	Class	Betaproteobacteria	TAS [15,16]
Current classification	Order	Burkholderiales	TAS [15,17]
	Family	Burkholderiaceae	TAS [15,18]
	Genus	Burkholderia	TAS [19-21]
	Species	“Burkholderia sprentiae”	TAS [10]
	Gram stain	Negative	IDA [22]
	Cell shape	Rod	IDA
	Motility	Motile	IDA
	Sporulation	Non-sporulating	IDA [22]
	Temperature range	Mesophile	IDA [22]
	Optimum temperature	28°C	IDA
	Salinity	Not reported	
MIGS-22	Oxygen requirement	Aerobic	IDA
	Carbon source	Not reported	
	Energy source	Chemoorganotroph	IDA [22]
MIGS-6	Habitat	Soil, root nodule on host	IDA
MIGS-15	Biotic relationship	Free living, symbiotic	IDA
MIGS-14	Pathogenicity	Non-pathogenic	NAS
	Biosafety level	1	TAS [23]
	Isolation	Root nodule	IDA
MIGS-4	Geographic location	South Africa	IDA
MIGS-5	Nodule collection date	October, 2007	IDA
MIGS-4.1	Longitude	18.621111	IDA
MIGS-4.2	Latitude	-31.799722	IDA
MIGS-4.3	Depth	Not recorded	
MIGS-4.4	Altitude	Not recorded	

Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [24].

http://standardsingenomics.org
"Burkholderia sprentiae" strain WSM5005T

Figure 2. Phylogenetic tree showing the relationships of "Burkholderia sprentiae" strain WSM5005 (shown in blue print) with some of the bacteria in the order Burkholderiales based on aligned sequences of the 16S rRNA gene (1,322 bp internal region). All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 5.05 [25]. The tree was built using the maximum likelihood method with the General Time Reversible model. Bootstrap analysis [26] with 500 replicates was performed to assess the support of the clusters. Type strains are indicated with a superscript T. Strains with a genome sequencing project registered in GOLD [27] are in bold print and the GOLD ID is mentioned after the accession number. Published genomes are designated with an asterisk.
Table 2. Genome sequencing project information for “Burkholderia sprentiae” strain WSM5005T

MIGS ID	Property	Term
MIGS-31	Finishing quality	Improved high-quality draft
MIGS-28	Libraries used	Illumina GAii shotgun and paired end 454 libraries
MIGS-29	Sequencing platforms	Illumina HiSeq2000 and 454 GS FLX Titanium technologies
MIGS-31.2	Sequencing coverage	8.4x 454 paired end, 300 x Illumina
MIGS-30	Assemblers	VELVET 1.013, Newbler 2.3, phrap 4.24
MIGS-32	Gene calling methods	Prodigal 1.4, GenePRIMP
GOLD ID		Gi06497
GenBank ID		AXBN01000000
Database: IMG		2510065045
Project relevance		Symbiotic N2 fixation, agriculture

Growth conditions and DNA isolation

“Burkholderia sprentiae” strain WSM5005T was grown to mid logarithmic phase in TY rich medium [29] on a gyratory shaker at 28°C. DNA was isolated from 60 mL of cells using a CTAB (Cetyl trimethyl ammonium bromide) bacterial genomic DNA isolation method [30].

Genome sequencing and assembly

The genome of “Burkholderia sprentiae” strain WSM5005T was sequenced at the Joint Genome Institute (JGI) using a combination of Illumina [31] and 454 technologies [32]. An Illumina GAii shotgun library which generated 76,247,610 reads totaling 5,794.8 Mb, and a paired end 454 library with an average insert size of 13 kb which generated 612,483 reads totaling 112.9 Mb of 454 data were generated for this genome. All general aspects of library construction and sequencing performed at the JGI can be found at [30]. The initial draft assembly contained 420 contigs in 8 scaffolds. The 454 paired end data was assembled with Newbler, version 2.3. The Newbler consensus sequences were computationally shredded into 2 kb overlapping fake reads (shreds). Illumina sequencing data were assembled with VELVET, version 1.0.13 [33], and the consensus sequences were computationally shredded into 1.5 kb overlapping fake reads (shreds). We integrated the 454 Newbler consensus shreds, the Illumina VELVET consensus shreds and the read pairs in the 454 paired end library using parallel phrap, version SPS - 4.24 (High Performance Software, LLC). The software Consed [34-36] was used in the following finishing process. Illumina data was used to correct potential base errors and increase consensus quality using the software Polisher developed at JGI (Alla Lapidus, unpublished). Possible mis-assemblies were corrected using gapResolution (Cliff Han, unpublished), Dupfinisher [37], or sequencing cloned bridging PCR fragments with subcloning. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR (J-F Cheng, unpublished) primer walks. A total of 352 additional reactions were necessary to close gaps and to raise the quality of the finished sequence. The estimated genome size is 7.8 Mb and the final assembly is based on 65.2 Mb of 454 draft data which provides an average 8.4× coverage of the genome and 2,340 Mb of Illumina draft data which provides an average 300× coverage of the genome.

Genome annotation

Genes were identified using Prodigal [38] as part of the DOE-JGI Annotation pipeline [39], followed by a round of manual curation using the JGI GenePRIMP pipeline [40]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) non-redundant database, UniProt, TIGRfam, Pfam, PRIAM, KEGG, COG, and InterPro databases. These data sources were combined to assert a product description for each predicted protein. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [41], RNAMMER [42], Rfam [43], TMHMM [44], and SignalP [45]. Additional gene prediction analyses and functional annotation were performed within the Integrated Microbial Genomes (IMG-ER) platform [46].

Genome properties

The genome is 7,761,063 nucleotides with 63.18% GC content (Table 3) and comprised of 8 scaffolds of 236 contigs. From a total of 7,223 genes, 7,147 were protein encoding and 76 RNA only encoding genes. Within the genome, 377 pseudogenes were also identified. The majority of genes (76.16%) were assigned a putative function whilst the remaining genes were annotated as hypothetical. The distribution of genes into COGs functional categories is presented in Table 4, Figure 3 and Figure 4.
Table 3. Genome Statistics for “Burkholderia sprentiae” strain WSM5005^T.

Attribute	Value	% of Total
Genome size (bp)	7,761,063	100
DNA coding region (bp)	6,514,546	83.94
DNA G+C content (bp)	4,903,511	63.18
Number of scaffolds	8	
Number of contigs	236	
Total genes	7,223	100
RNA genes	76	1.05
Protein-coding genes	7,147	98.95
Genes with function prediction	5,501	76.16
Genes assigned to COGs	5,456	75.54
Genes assigned Pfam domains	5,800	80.30
Genes with signal peptides	687	9.51
Genes with transmembrane helices	1,634	22.62
CRISPR repeats	0	

Figure 3. Graphical map of the chromosome of “Burkholderia sprentiae” strain WSM5005. From the bottom to the top of each scaffold: Genes on forward strand (color by COG categories as denoted by the IMG platform), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC content, GC skew.

Figure 4. Color code for Figure 3.
Table 4. Number of protein coding genes of “Burkholderia sprentiae” strain WSM5005 associated with the general COG functional categories.

Code	Value	%age	Description
J	205	3.34	Translation, ribosomal structure and biogenesis
A	2	0.03	RNA processing and modification
K	566	9.22	Transcription
L	257	4.18	Replication, recombination and repair
B	1	0.02	Chromatin structure and dynamics
D	46	0.75	Cell cycle control, mitosis and meiosis
Y	0	0.00	Nuclear structure
V	70	1.14	Defense mechanisms
T	313	5.10	Signal transduction mechanisms
M	409	6.66	Cell wall/membrane biogenesis
N	114	1.86	Cell motility
Z	0	0.00	Cytoskeleton
W	2	0.03	Extracellular structures
U	154	2.51	Intracellular trafficking and secretion
O	185	3.01	Posttranslational modification, protein turnover, chaperones
C	442	7.20	Energy production conversion
G	486	7.91	Carbohydrate transport and metabolism
E	576	9.38	Amino acid transport metabolism
F	96	1.56	Nucleotide transport and metabolism
H	219	3.57	Coenzyme transport and metabolism
I	288	4.69	Lipid transport and metabolism
P	282	4.59	Inorganic ion transport and metabolism
Q	176	2.87	Secondary metabolite biosynthesis, transport and catabolism
R	738	12.02	General function prediction only
S	515	8.38	Function unknown
-	1,767	24.46	Not in COGS

Acknowledgements
This work was performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. We gratefully acknowledge the funding received from the Murdoch University Strategic Research Fund through the Crop and Plant Research Institute (CaPRI) and the Centre for Rhizobium Studies (CRS) at Murdoch University.

http://standardsingenomics.org
References

1. Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural systems. *Plant Soil* 2008; **311**:1-18. http://dx.doi.org/10.1007/s11104-008-9668-3

2. Howieson JG, Yates RJ, Foster K, Real D, Besier B. Prospects for the future use of legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE, editors. Leguminous Nitrogen-Fixing Symbioses. London, UK: Elsevier; 2008. p. 363-394.

3. George RJ, Speed RJ, Simons JA, Smith RH, Ferdowsian R, Raper GP, Bennett DL. Long-term groundwater trends and their impact on the future extent of dryland salinity in Western Australia in a variable climate. *Salinity Forum* 2008.

4. Garau G, Yates RJ, Deiana P, Howieson JG. Novel strains of nodulating *Burkholderia* have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. *Soil Biol Biochem* 2009; **41**:125-134. http://dx.doi.org/10.1016/j.soilbio.2008.10.011

5. Howieson JG, De Meyer SE, Vivas-Marfisi A, Ratnayake S, Ardley JK, Yates RJ. Novel *Burkholderia* bacteria isolated from *Lebeckia ambigua* – a perennial suffrutescent legume of the fynbos. *Soil Biol Biochem* 2013; **60**:55-64. http://dx.doi.org/10.1016/j.soilbio.2013.01.009

6. Boatwright JS, Wink M, van Wyk BE. The generic concept of *Lotononis* (Crotalarieae, Fabaceae): Reinstatement of the genera *Euchlora*, *Leobordea* and *Listia* and the new genus *Ezoloba*. *Taxon* 2011; **60**:161-177.

7. Le Roux MM, Van Wyk BE. A revision of *Lebeckia* sect. *Lebeckia*: The *L. pauciflora* and *L. wrightii* groups (Fabaceae, Crotalarieae). *S Afr J Bot* 2009; **75**:83-96. http://dx.doi.org/10.1016/j.sajb.2008.08.002

8. Le Roux MM, Van Wyk BE. A revision of *Lebeckia* sect. *Lebeckia*: The *L. sepiaria* group. *S Afr J Bot* 2007; **73**:118-130. http://dx.doi.org/10.1016/j.sajb.2006.09.005

9. Le Roux MM, Van Wyk BE. A revision of *Lebeckia* sect. *Lebeckia*: The *L. plukeni etiana* group (Fabaceae, Crotalarieae). *S Afr J Bot* 2008; **74**:660-676. http://dx.doi.org/10.1016/j.sajb.2008.04.005

10. De Meyer SE, Cnockaert M, Ardley J, Maker G, Yates RJ, Howieson JG, Vandamme P. *Burkholderia sprentiae* sp. nov. isolated from *Lebeckia ambigua* root nodules from South Africa. *Int J Syst Evol Microbiol* (In press).

11. Howieson JG, Ewing MA, D'antuono MF. Selection for acid tolerance in *Rhizobium meliloti*. *Plant Soil* 1988; **105**:179-188. http://dx.doi.org/10.1007/BF002376781

12. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen M, Angiuoli SV, et al. Towards a richer description of our complete collection of genomes and metagenomes "Minimum Information about a Genome Sequence " (MIGS) specification. *Nat Biotechnol* 2008; **26**:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

13. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. *Proc Natl Acad Sci USA* 1990; **87**:4576-4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576

14. Garrity GM, Bell JA, Liburn T. Phylum XIV. *Proteobacteria* phyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), *Bergey's Manual of Systematic Bacteriology*, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.

15. Validation List No. 107. List of new names and new combinations previously effectively, but not validly, published. *Int J Syst Evol Microbiol* 2006; **56**:1-6. PubMed http://dx.doi.org/10.1099/ijs.0.64188-0

16. Garrity GM, Bell JA, Liburn T. Class II. *Betaproteobacteria* class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), *Bergey's Manual of Systematic Bacteriology*, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 575.

17. Garrity GM, Bell JA, Liburn T. Order I. *Burkholderiales* ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), *Bergey's Manual of Systematic Bacteriology*, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 575.

18. Garrity GM, Bell JA, Liburn T. Family I. *Burkholderiaceae* fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), *Bergey's Manual of Systematic Bacteriology*, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 575.

19. Editor L. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 45. *Int J Syst Bacteriol* 1993; **43**:398-399. http://dx.doi.org/10.1007/00207713-43-2-398

20. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of
Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microb. Immunol. 1992; 36:1251-1275. PubMed http://dx.doi.org/10.1111/j.1348-0421.1992.tb0129.x

21. Gillis M, Van TV, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 1995; 45:274-289. http://dx.doi.org/10.1099/00207713-45-2-274

22. Chen WX, Wang ET, Kuykendall LD. The Proteobacteria. New York: Springer - Verlag; 2005.

23. Agents B. Technical rules for biological agents. TRBA (http://www.baua.de:466).

24. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/75556

25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011; 28:2731-2739. PubMed http://dx.doi.org/10.1093/molbev/msr121

26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783-791. http://dx.doi.org/10.2307/2408678

27. Liolios K, Mavromatis K, Tavemarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2008; 36:D475-D479. PubMed http://dx.doi.org/10.1093/nar/gkm884

28. Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martínez-Romero E, Velázquez E, Young JPW, Sprent JI, James EK. Burkholderia spp. are the most competitive symbionts of Mimosas, particularly under N-limited conditions. Environ Microbiol 2009; 11:762-778. PubMed http://dx.doi.org/10.1111/j.1462-2920.2008.01799.x

29. Reeve WG, Tiwari R, Worsley PS, Dilworth MJ, Glenn AR, Howieson JG. Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 1999; 145:1307-1316. PubMed http://dx.doi.org/10.1099/13500872-145-6-1307

30. DOE Joint Genome Institute. http://my.jgi.doe.gov/general/index.html

31. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5:433-438. PubMed http://dx.doi.org/10.1017/14622416.5.4.433

32. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:376-380. PubMed

33. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Current Protocols in Bioinformatics 2010;Chapter 11:Unit 11 5.

34. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8:175-185. PubMed http://dx.doi.org/10.1101/gr.8.3.175

35. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8:175-185. PubMed http://dx.doi.org/10.1101/gr.8.3.175

36. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998; 8:195-202. PubMed http://dx.doi.org/10.1101/gr.8.3.195

37. Han C, Chain P. Finishing repeat regions automatically with Dupfinisher. In: Valafar HRAH, editor. Proceeding of the 2006 international conference on bioinformatics & computational biology: CSREA Press; 2006. p 141-146.

38. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: probacterial gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. PubMed http://dx.doi.org/10.1186/1471-2105-11-119

39. Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC. The DOE-JGI Standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci 2009; 1:63-67. PubMed http://dx.doi.org/10.4056/sigs.632
40. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyprides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. *Nat Methods* 2010; 7:455-457. PubMed http://dx.doi.org/10.1038/nmeth.1457

41. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res* 1997; 25:955-964. PubMed

42. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res* 2007; 35:3100-3108. PubMed http://dx.doi.org/10.1093/nar/gkm160

43. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. *Nucleic Acids Res* 2003; 31:439-441. PubMed http://dx.doi.org/10.1093/nar/gkg006

44. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J Mol Biol* 2001; 305:567-580. PubMed http://dx.doi.org/10.1006/jmbi.2000.4315

45. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. *J Mol Biol* 2004; 340:783-795. PubMed http://dx.doi.org/10.1016/j.jmb.2004.05.028

46. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyprides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. PubMed http://dx.doi.org/10.1093/bioinformatics/btp393
Author/s:
Reeve, W; De Meyer, S; Terpolilli, J; Melino, V; Ardley, J; Rui, T; Tiwari, R; Howieson, J; Yates, R; O'Hara, G; Lu, M; Bruce, D; Detter, C; Tapia, R; Han, C; Wei, C-L; Huntemann, M; Han, J; Chen, I-M; Mavromatis, K; Markowitz, V; Szeto, E; Ivanova, N; Mikhailova, N; Ovchinnikova, G; Pagani, I; Pati, A; Goodwin, L; Peters, L; Pitluck, S; Woyke, T; Kyrpides, N

Title:
Genome sequence of the Lebeckia ambigua-nodulating "Burkholderia sprentiae" strain WSM5005

Date:
2013-01-01

Citation:
Reeve, W., De Meyer, S., Terpolilli, J., Melino, V., Ardley, J., Rui, T., Tiwari, R., Howieson, J., Yates, R., O'Hara, G., Lu, M., Bruce, D., Detter, C., Tapia, R., Han, C., Wei, C. -L., Huntemann, M., Han, J., Chen, I. -M. Kyrpides, N. (2013). Genome sequence of the Lebeckia ambigua-nodulating "Burkholderia sprentiae" strain WSM5005. STANDARDS IN GENOMIC SCIENCES, 9 (2), pp.385-394. https://doi.org/10.4056/sigs.4558268.

Persistent Link:
http://hdl.handle.net/11343/270826

File Description:
Published version

License:
CC BY