SHORT REPORT

SOX9 chromatin folding domains correlate with its real and putative distant cis-regulatory elements

Marta Smyka, Kadir Caner Akdemir, and Paweł Stankiewicz

*Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; bGenomic Medicine Department, MD Anderson Cancer Center, Houston, TX, USA; cDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA

ABSTRACT

Evolutionary conserved transcription factor SOX9, encoded by the dosage sensitive SOX9 gene on chromosome 17q24.3, plays an important role in development of multiple organs, including bones and testes. Heterozygous point mutations and genomic copy-number variant (CNV) deletions involving SOX9 have been reported in patients with campomelic dysplasia (CD), a skeletal malformation syndrome often associated with male-to-female sex reversal. Balanced and unbalanced structural genomic variants with breakpoints mapping up to 1.3 Mb up- and downstream to SOX9 have been described in patients with milder phenotypes, including acampomelic campomelic dysplasia, sex reversal, and Pierre Robin sequence. Based on the localization of breakpoints of genomic rearrangements causing different phenotypes, 5 genomic intervals mapping upstream to SOX9 have been defined. We have analyzed the publicly available database of high-throughput chromosome conformation capture (Hi-C) in multiple cell lines in the genomic regions flanking SOX9. Consistent with the literature data, chromatin domain boundaries in the SOX9 locus exhibit conservation across species and remain largely constant across multiple cell types. Interestingly, we have found that chromatin folding domains in the SOX9 locus associate with the genomic intervals harboring real and putative regulatory elements of SOX9, implicating that variation in intra-domain interactions may be critical for dynamic regulation of SOX9 expression in a cell type-specific fashion. We propose that tissue-specific enhancers for other transcription factor genes may similarly utilize chromatin folding sub-domains in gene regulation.

KEYWORDS

chromatin looping; long distance gene regulation; non-coding variants; structural variants; tissue-specific enhancers

CONTACT

Dr. Paweł Stankiewicz pawels@bcm.edu Dept. of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm. R809, Houston, TX 77030, USA.

*Equal contribution

Color versions of one or more of the figures in this article can be found online at www.tandfonline.com/knc1.

Supplemental data for this article can be accessed on the publisher’s website.

© 2017 Taylor & Francis

Introduction

The dosage sensitive SOX9 (sex-determining region Y-related high-mobility group box 9) gene at 17q24.3 encodes a transcription factor essential for chondrocyte differentiation and testis development.1 Haploinsufficiency of SOX9 due to inactivating single nucleotide variants (SNVs) or genomic copy-number variant (CNV) deletions has been described in patients with a rare skeletal malformation campomelic dysplasia (CD, MIM 114290) that is frequently lethal and associated with male-to-female sex reversal in two-thirds of XY patients.2-13

Structural genomic variants, e.g. balanced translocations and inversions and unbalanced CNV deletions with breakpoints mapping up to 1.3 Mb up- and downstream to SOX9 have been identified in patients with milder phenotypes, including acampomelic campomelic dysplasia (ACD) and Pierre Robin sequence (PRS), suggesting that distant cis-regulatory elements of SOX9 may be compromised.1,4,6-11,14-16 Alignment of genomic breakpoint clusters in the protein-gene desert region 5’ to SOX9 enabled delineation of 5 genomic intervals associated with different phenotypes: moderate to severe CD (50–375 kb), ACD (789–932 kb),10,17 female-to-male (XXSR, 516–584 kb) and male-to-female (XYSR, 607–640 kb) sex reversals,18 and PRS (1.06–1.23 Mb to SOX9).15,19 More recently, CNV deletions mapping as far as 1.15–2.3 Mb upstream to SOX9 have been reported in patients with isolated congenital cardiac defects and/or PRS.16,20 Interestingly, CNV duplications mapping ~0.78–1.99 Mb 5’ to SOX9 have been reported in...
patients with Cooks syndrome (brachydactyly-anonychia) (OMIM 106995). Another male-to-female sex reversal genomic region was mapped 1.3–1.6 Mb downstream of SOX9.9,12

SOX9 expression has been shown to be regulated by several tissue-specific long distance enhancers/cis-regulatory elements, whose disruption causes bone anomalies and disorders of sex development (DSD). Reporter assay, epigenetic, and bioinformatic analyses have revealed the presence of real and putative distant non-genic evolutionarily conserved cis-regulatory elements of SOX9.7,9,10,15,22,25 Using chromatin conformation capture-on-chip (4C) analyses in Sertoli cells and lymphoblasts, Smyk et al.26 reported several novel cis-interacting regions both up- and downstream to SOX9.

Recent studies using high-throughput chromosome conformation capture (Hi-C) revealed that mammalian genomic nuclear DNA is highly organized and folded in chromosomal topologically associated domains (TADs)27 or CTCF-anchored chromatin loops.28 Genomic regions within a particular domain are interacting more frequently with each other, compared with those located in other domains. Moreover, genes and enhancers inside a domain show a high expression correlation.29 Thus, organization of these chromatin folding domains is important for proper gene regulation. Recently, Lupiáñez et al.30 described patients with limb anomalies due to disruption of TADs by structural genomic variations and referred this phenomenon as “enhancer adoption.”

Here, we report association of SOX9 TADs with its reported regulatory elements, implicating that variation in intra-domain interactions, such as chromatin looping, may be critical for dynamic regulation of gene expression in a cell type-specific fashion.

Results

In silico Hi-C analyses of chromosome 17q24.3 have revealed that this region is organized into several chromatin domains (Fig. 1). SOX9 is the only protein coding gene located inside the ~1.87 Mb TAD spanning through 68.67 to 70.45 Mb on chromosome

Figure 1. Schematic representation of Hi-C in cis genomic interactions within an ~3 Mb genomic region flanking SOX9 at 17q24.3. (A) Hi-C profiles at 25 kb resolution around SOX9 in HMEC, HUVEC, NHEK, and IMR90 cell lines. An ~1.87 Mb SOX9 topologically associated domain (TAD) extending between 68.67 to 70.54 Mb (hg19) is designated by the black dashed lines. (B) Hi-C Juicebox view profiles at 5 kb resolution around SOX9 in HMEC, HUVEC, NHEK, and IMR90 cell lines. (C) Location of the protein coding genes KCNJ2, SOX9 (red), and SLC39A11 is shown. (D, E) Histograms depict CTCF ChIP-seq enrichment levels and chromatin states (ChromHMM output) (active TSS - red, transcribed - green, enhancer - yellow, low – gray, and heterochromatin - purple). (F) Arcs represent “arrowhead” chromatin folding domains reported by Rao et al.28
17q24.3. This TAD is flanked by an upstream TAD containing the KCNJ2 gene and a down-stream TAD encompassing the SLC39A11 gene.\footnote{31} Interestingly, SOX9 domain is further sub-compartmentalized based on the transcriptional and epigenetic status. For example, in umbilical vein endothelia cells (HUVEC), this domain is silenced with the heterochromatic histone modification (Fig. 1a,b). Thus, there is a sole domain formation without any major inter-domain folding. However, in the cell types in which the SOX9 region is transcriptionally more active, such as mammalian epithelial cells (HMEC), epidermal keratinocyte cells (NHEK) cells, or lung fibroblast cells (IMR90), SOX9 is confined into smaller folding domain structures interacting with the several other adjacent domains\footnote{32} (Fig. 1). Interestingly, we have found that distribution of smaller domains observed in the SOX9 genomic region correlates with location of enhancers and genomic intervals associated with different phenotypes (Fig. 2). Therefore, structural alterations impacting the boundary regions between the SOX9 domain and its flanking domains could result in different phenotypic consequences based on alterations effect on chromatin looping domains.\footnote{31}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{(A) Hi-C contact map around the SOX9 locus in NHEK cells at 25 kb resolution. Black dashed lines depict the SOX9 TAD. Vertical arrows show borders of TADs present in NHEK cells (black) and other cells (dotted). (B) The structural variants breakpoint cluster intervals mapping 5' to SOX9 and related to campomelic dysplasia (CD, violet box), Pierre Robin sequence (PRS, blue box), acampomelic campomelic dysplasia (ACD, navy box), and sex reversal (XXSR, red box; XYSR, gray box) are shown. (C) Regulatory elements shown as ellipses found to be active in: mandibular mesenchyme (blue),\footnote{15} testes (red),\footnote{24} node, notochord, gut, bronchial epithelium, and pancreas E1, migrating cranial neural crest cells - E3, fore- and midbrain E7 (brown),\footnote{22} chondrosarcoma cells (navy),\footnote{23} heart (green),\footnote{16} craniofacial and palatal tissue (gray),\footnote{25} somatic tissues (orange),\footnote{37} and cartilage (black).\footnote{38} Note the correlation of these regulatory elements and breakpoint cluster intervals with the SOX9 TADs. (D) Hi-C Juicebox view\footnote{28} contact map around the SOX9 locus in GM12878 cells at 5 kb resolution. Black dashed lines depict the SOX9 TAD. Please note that the SOX9 gene maps inside a CTCF/cohesin loop and that there are several enhancers contained within this loop that interact with the SOX9 promoter.}
\end{figure}
Discussion

Thus far, several regulatory elements and putative tissue-specific enhancers have been characterized in the genomic region upstream to SOX9. E1, located 28 kb 5' to SOX9, has been shown to drive SOX9 expression in node, notochord, gut, bronchial epithelium, and pancreas; E3 (251 kb 5' to SOX9) has been found to direct expression in migrating cranial neural crest cells and the inner ear; and E7 (95 kb 3' to SOX9) has been demonstrated to regulate expression in fore- and midbrain.22 Another putative cis-acting regulatory element called SOX9cre1 has revealed enhancer activity in the reporter constructs in a dose-dependent and tissue-specific manner.9,23 The other 2 highly conserved non-coding elements have been described by Benko et al.15 to have enhancer activity within mandibular mesenchyme of transgenic mice; human orthologs of these elements map 1.25 Mb and 1.44 Mb upstream to SOX9 and centromeric to the clustered breakpoints in patients with nonsyndromic PRS. Furthermore, other regulatory elements have been identified in the mouse models of the syntenic genomic region.32,33

Using a chromosome conformation capture-on-chip (4C) analysis, we have reported that the SOX9 promoter interacts with the upstream enhancer sequences in a tissue specific manner.26 In this study, we show that the Hi-C-defined SOX9 chromatin domain also exhibits the tissue-specific folding pattern. Interactions between the both up- and downstream cis-regulatory regions and SOX9 are dependent on the expression and histone modification status in a given tissue type. For example, when SOX9 domain is silenced with heterochromatic histone modification H3K9me3, such as in HUVEC cells, it loses its internal looping formations and generates only one large folding domain (Fig. 1D). In cells in which SOX9 is transcriptionally more active, there are several folding sub-domains inside the same domain, and alterations interfering with different anchoring points of the each folding sub-domains can result in various SOX9-related misregulations. Supporting this notion, TAD boundaries exhibit conservation across species and remain largely constant in multiple cell types.34

Importantly, we have found that SOX9 sub-domains associate with the genomic intervals harboring its real and putative regulatory elements, implicating that variation in intra-domain interactions, such as chromatin looping, in this genomic region may be critical for dynamic regulation of SOX9 expression in a cell type-specific fashion. These observations suggest that studying effects of variation on chromatin folding domains, it’s crucial taking dynamic regulation of SOX9 gene expression into account as this locus exhibits various chromatin folding patterns in a cell type-specific fashion. Supporting this notion, very recently, Franke et al.31 reported changes of genotype-phenotype correlation in mice due to genomic duplications forming new TADs (neo-TADs) in the Sox9 region. We propose that tissue-specific enhancers for other transcription factor genes may similarly associate with their chromatin domains.

Material and methods

Hi-C interaction data sets for Human Umbilical Vein Endothelial Cells (HUVEC), Normal Human Epidermal Keratinocytes (NHEK), and Human Mammary Epithelial Cells (HMEC), and human fetal lung fibroblasts (IMR90) cell lines were downloaded from the GEO database (GSE63525). Normalized 25 kb resolution Hi-C interaction matrices of chromosome 17 for the aforementioned 4 cell lines were generated by multiplying Knight and Ruiz normalization scores for 2 contacting loci and dividing raw observed values (MAPQGE30 filtered reads) at the interacting positions with this calculated normalization-score.31 IMR90 cell line Pol2 ChIP-Seq was downloaded from UCSC Genome Browser ENCODE portal. Chromatin states calls (ChromHMM) were downloaded from http://compbio.mit.edu/roadmap/. HiCPlotter (https://github.com/ckakdemir/HiCPlotter/) was used to plot Hi-C data with chromatin states.36

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgement

We thank Dr. E. Lieberman-Aiden for helpful discussion.

References

[1] Gordon CT, Tan TY, Benko S, FitzPatrick D, Lyonnet S, Farlie PG. Long-range regulation at the SOX9 locus in development and disease. J Med Genet 2009; 46:649-56; PMID:19473998; http://dx.doi.org/10.1136/jmg.2009.068361
[2] Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994; 372:525-30; PMID:7990924; http://dx.doi.org/10.1038/372525a0

[3] Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Husert E, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994; 79:1111-20; PMID:8001137; http://dx.doi.org/10.1016/0092-8674(94)90041-8

[4] Mansour S, Hall CM, Pembrey ME, Young ID. A clinical and genetic study of campomelic dysplasia. J Med Genet 1995; 32:415-20; PMID:7666392; http://jmg.bmj.com.ezproxyhost.library.tmc.edu/content/32/6/415.long

[5] Wirth J, Wagner T, Meyer J, Pfeiffer RA, Tietze HU, Schemp W, Scherer G. Translocation breakpoints in three patients with campomelic dysplasia and autosomal sex reversal map more than 130 kb from SOX9. Hum Genet 1996; 97:186-93; PMID:8566951; http://link.springer.com.ezproxyhost.library.tmc.edu/article/10.1007/BF02265263

[6] Pfeifer D, Kist R, Dewar K, Devon K, Lander ES, Birren B, Korniszewski L, Back E, Scherer G. Campomelic dysplasia translocation breakpoints are scattered over 1 Mb proximal to SOX9: evidence for an extended control region. Am J Hum Genet 1999; 65:111-24; PMID:10364523; http://dx.doi.org/10.1086/302455

[7] Pop R, Conz C, Lindenberg KS, Blesson S, Schmalenberger B, Briault S, Pfeifer D, Scherer G. Screening of the SOX9 decontrol region by array CGH identifies a large deletion in a case of campomelic dysplasia with XY sex reversal. J Med Genet 2004; 41:e47; PMID:15060123; http://jmg.bmj.com.ezproxyhost.library.tmc.edu/content/41/4/e47.long

[8] Hill-Harfe KL, Kaplan L, Stalker HJ, Zori RT, Pop R, Scherer G, Wallace MR. Fine mapping of chromosome 17 translocation breakpoints >or = 900 Kb upstream of SOX9 in acampomelic campomelic dysplasia and a mild, familial skeletal dysplasia. Am J Hum Genet 2005; 76:663-71; PMID:15717285; http://dx.doi.org/10.1086/429254

[9] Velagali GV, Bien-Willner GA, Northup JK, Lockhart LH, Hawkins JC, Jalal SM, Withers M, Lupski JR, Stankiewicz P. Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 2005; 76:652-62; PMID:15726498; http://dx.doi.org/10.1086/429252

[10] Leipoldt M, Erdel M, Bien-Willner GA, Smyk M, Theurl M, Yatsenko SA, Lupski JR, Lane AH, Shanske AL, Stankiewicz P, et al. Two novel translocation breakpoints upstream of SOX9 define borders of the proximal and distal breakpoint cluster region in campomelic dysplasia. Clin Genet 2007; 71:67-75; PMID:17204049; http://dx.doi.org/10.1111/j.1399-0004.2007.00736.x

[11] Lecointre C, Pichon O, Hamel A, Heloury Y, Michel-Calemard L, Morel Y, David A, LeCaix N, Familial acampomelic form of campomelic dysplasia caused by a 960 kb deletion upstream of SOX9. Am J Med Genet A 2009; 149A:1183-89; PMID:19449405; http://dx.doi.org/10.1002/ajmg.a.32830

[12] Benko S, Gordon CT, Mallet D, Sreenivasan R, Thauvin-Robinet C, Brendehaug A, Thomas S, Bruland O, David M, Niculino M, et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J Med Genet 2011; 48:825-30; PMID:22051515; http://dx.doi.org/10.1136/jmedgenet-2011-100255

[13] White S, Oehnsgor T, Notini A, Roessler K, Hewitt J, Daggad H, Smith C, Turbitt E, Gustin S, van den Bergen J, et al. Copy number variation in patients with disorders of sex development due to 46, XY gonadal dysgenesis. PLoS One 2011; 6:e17793; PMID:21408189; http://dx.doi.org/10.1371/journal.pone.0017793

[14] Moog U, Jansen NJ, Scherer G, Schaedler-Stumpel CT. Acampomelic campomelic syndrome. Am J Med Genet 2001; 104:439-45; PMID:11754051; http://ca.cdx5q5jw.search.serialssolutions.com.ezproxyhost.library.tmc.edu/OpenURL_local?sid=EntrezPubMed&pid=pmid:11754051

[15] Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, Jamshidi N, Essafi A, Heaney S, Gordon CT, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 2009; 41:359-64; PMID:19234473; http://dx.doi.org/10.1038/ng.329

[16] Sanchez-Castro M, Gordon CT, Petit F, Nord AS, Callier P, Andrieux J, Guerin P, Pichon O, David A, Abadie V, et al. Congenital heart defects in patients with deletions upstream of SOX9. Hum Mutat 2013; 34:1628-31; PMID:24115316; http://dx.doi.org/10.1002/humu.22449

[17] Fonseca AC, Bonaldi A, Bertola DR, Kim CA, Otto PA, Vianna-Morgante AM. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia. BMC Med Genet 2013; 14:50; PMID:23648064; http://dx.doi.org/10.1186/1471-2350-14-50

[18] Kim GJ, Sock E, Buchberger A, Just W, Denzer F, Hoepfner W, German J, Cole T, Mann J, Seguin JH, et al. Copy number variation of two separate regulatory regions upstream of SOX9 causes isolated 46, XY or 46, XX disorders of sex development. J Med Genet 2015; 52:825-30; PMID:22051515; http://dx.doi.org/10.1136/jmedgenet-2011-100255

[19] Jakobsen LP, Ullmann R, Christensen SB, Jensen KE, Mølsted K, Henriksen KF, Hansen C, Knudsen MA, Larsen LA, Tommerup N, et al. Pierre Robin sequence may be caused by dysregulation of SOX9 and KCNJ2. J Med Genet 2007; 44:381-6; PMID:17551083; http://dx.doi.org/10.1136/jmg.2006.046177

[20] Smyk M, Roeder E, Cheung SW, Szafranski P, Stankiewicz P. A de novo 1.58 Mb deletion, including MAP2K6...
and mapping 1.28 Mb upstream to SOX9, identified in a patient with Pierre Robin sequence and osteopenia with multiple fractures. Am J Med Genet A 2015; 167A:1842-50; PMID:26059046; http://dx.doi.org/10.1002/ajmg.a.37057

[21] Kurth I, Klopopci E, Stricker S, van Oosterwijk J, Vanek S, Altmann J, Santos HG, van Harssel JJ, de Ravel T, Wilkie AO, et al. Duplications of noncoding elements 5’ of SOX9 are associated with brachydactyly-anonychia. Nat Genet 2009; 41:862-3; PMID:19639023; http://dx.doi.org/10.1038/ng0809-862

[22] Bagheri-Fam S, Barrionuevo F, Dohrmann U, Gdovskiy ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Dunther T, €unther T, €unther R, Kemler R, Günter H, Mallo M, Kanzler B, Scherer G. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 2006; 291:382-97; PMID:16458883; http://dx.doi.org/10.1016/j.ydbio.2005.11.013

[23] Bien-Willner GA, Stankiewicz P, Lupski JR. SOX9cre1, a cis-acting regulatory element located 1.1 Mb upstream of SOX9, mediates its enhancement through the SHH pathway. Hum Mol Genet 2007; 16:1143-56; http://dx.doi.org/10.1093/hmg/ddm06123

[24] Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008; 453:930-4; PMID:17409199; http://dx.doi.org/10.1038/nature06944

[25] Gordon CT, Attanasio C, Bhatia S, Ansari M, Bagheri-Fam S, Barrionuevo F, Dohrmann U, Gdovskiy ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Dunther T, €unther T, €unther R, Kemler R, Günter H, Mallo M, Kanzler B, Scherer G. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 2006; 291:382-97; PMID:16458883; http://dx.doi.org/10.1016/j.ydbio.2005.11.013

[26] Qin Y, Kong LK, Poirier C, Truong C, Overbeek PA, Bishop CE. Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet 2004; 13:1213-8; PMID:15115764; http://dx.doi.org/10.1093/hmg/ddh141

[27] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev Q, Bhattaram P, Dy P, Afelik S, Jensen J, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012; 485:376-80; PMID:22495300; http://dx.doi.org/10.1038/nature11082

[28] Mead TJ, Wang Q, Bhattaram P, Dy P, Afelik S, Jensen J, Lefebvre V. A far-upstream (~70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration. Nucleic Acids Res 2013; 41:4459-4469; PMID:23449223; http://dx.doi.org/10.1093/nar/gkt140

[29] Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drabløs F, Lennartsson A, Rönnerblad M, Hrydziuszko O, Vitezic M, et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 2015; 347:1010-4; PMID:25678556; http://dx.doi.org/10.1126/science.1259418

[30] Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopopci E, Horn D, Kayserili H, Opitz JM, Laxova R, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 2015; 161:1012-25; PMID:25959774; http://dx.doi.org/10.1016/j.cell.2015.04.004

[31] Qiu Y, Kong LK, Poirier C, Truong C, Overbeek PA, Bishop CE. Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet 2004; 13:1213-8; PMID:15115764; http://dx.doi.org/10.1093/hmg/ddh141

[32] Dhonukshe R, Kemler R, Mallo M, Kanzler B, Scherer G. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 2006; 291:382-97; PMID:16458883; http://dx.doi.org/10.1016/j.ydbio.2005.11.013

[33] Qin Y, Kong LK, Poirier C, Truong C, Overbeek PA, Bishop CE. Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet 2004; 13:1213-8; PMID:15115764; http://dx.doi.org/10.1093/hmg/ddh141

[34] Dhonukshe R, Kemler R, Mallo M, Kanzler B, Scherer G. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 2006; 291:382-97; PMID:16458883; http://dx.doi.org/10.1016/j.ydbio.2005.11.013

[35] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev Q, Bhattaram P, Dy P, Afelik S, Jensen J, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012; 485:376-80; PMID:22495300; http://dx.doi.org/10.1038/nature11082

[36] Mead TJ, Wang Q, Bhattaram P, Dy P, Afelik S, Jensen J, Lefebvre V. A far-upstream (~70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration. Nucleic Acids Res 2013; 41:4459-4469; PMID:23449223; http://dx.doi.org/10.1093/nar/gkt140

[37] Qiu Y, Kong LK, Poirier C, Truong C, Overbeek PA, Bishop CE. Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet 2004; 13:1213-8; PMID:15115764; http://dx.doi.org/10.1093/hmg/ddh141

[38] Dhonukshe R, Kemler R, Mallo M, Kanzler B, Scherer G. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 2006; 291:382-97; PMID:16458883; http://dx.doi.org/10.1016/j.ydbio.2005.11.013

[39] Qin Y, Kong LK, Poirier C, Truong C, Overbeek PA, Bishop CE. Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet 2004; 13:1213-8; PMID:15115764; http://dx.doi.org/10.1093/hmg/ddh141

[40] Dhonukshe R, Kemler R, Mallo M, Kanzler B, Scherer G. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 2006; 291:382-97; PMID:16458883; http://dx.doi.org/10.1016/j.ydbio.2005.11.013