FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR Imaging

Sibi Catley-Chandar, Thomas Tanay, Lucas Vandroux, Aleš Leonardis, Gregory Slabaugh, Eduardo Pérez-Pellitero

Abstract—High dynamic range (HDR) imaging is of fundamental importance in modern digital photography pipelines and used to produce a high-quality photograph with well exposed regions despite varying illumination across the image. This is typically achieved by merging multiple low dynamic range (LDR) images taken at different exposures. However, over-exposed regions and misalignment errors due to poorly compensated motion result in artefacts such as ghosting. In this paper, we present a new HDR imaging technique that specifically models alignment and exposure uncertainties to produce high quality HDR results. We introduce a strategy that learns to jointly align and assess the alignment and exposure reliability using an HDR-aware, uncertainty-driven attention map that robustly merges the frames into a single high quality HDR image. Further, we introduce a progressive, multi-stage image fusion approach that can flexibly merge any number of LDR images in a permutation-invariant manner. Experimental results show our method can produce better quality HDR images with up to 1.1dB PSNR improvement to the state-of-the-art, and subjective improvements in terms of better detail, colours, and fewer artefacts.

Index Terms—High dynamic range imaging, set processing, permutation invariance

I. INTRODUCTION

Despite recent advances in imaging technology, capturing scenes with wide dynamic range still poses several challenges. Current camera sensors suffer from limited or Low Dynamic Range (LDR) due to inherent hardware limitations. The maximum dynamic range a camera can capture is closely related to (a) the sensor’s photosite full well electron capacity or saturation point, and (b) the black point, which is generally constrained by the uncertainty in the reading due to the dominant presence of noise.

Different solutions have been proposed to overcome these limitations. The principle behind most of them relies on capturing observations of the same scene with different exposure values. This enables a richer coverage of the scene’s original dynamic range, but also requires a mechanism to align and unify the different captured observations [1]. Some approaches make use of multi-sensor or multi-camera configurations, e.g., Tocci et al. [2], McGuire et al. [3], Froehlich et al. [4], where a beam splitter enables the light to be captured by multiple sensors. However, such setups are normally expensive, fragile, with bulky and cumbersome rigs, and they may suffer from double contours, light flares, or polarization artefacts [4].

More pragmatic solutions include only a single sensor and obtain multiple exposures by either spatial (i.e. per-pixel varying exposure) [5], [6] or temporal multiplexing (i.e. capturing differently exposed frames) [1]. This simpler hardware setup (and related algorithms) has recently seen widespread adoption, and is now found in cameras ranging from professional DSLR to low-cost smartphones.

Early multi-frame exposure fusion algorithms work remarkably well for almost-static scenes (e.g. tripod, reduced motion) but result in ghosting and other motion-related artefacts for dynamic scenes. Various approaches have achieved success in reducing artefacts such as patch-based methods [7], [8], noise-based reconstruction [9], sparse correspondences [10] and image synthesis [11] but in recent years, Convolutional Neural Networks (CNNs) have greatly advanced the state-of-the-art for HDR reconstruction, especially for complex dynamic scenes [12].

Most HDR CNNs rely on a rigid setup with a fixed, ordered set of LDR input images, which assumes the medium exposure to be the reference image. The most common mechanism for the merging step is image or feature concatenation, and thus for methods where the feature encoder is not shared among differently exposed frames [13], there is a dependency between reference frame choice, relative exposure and input image ordering. Optimal exposure parameters [14] or fast object motion might constrain the amount of relevant frames available, and in
In general, broader flexibility in terms of number of frames and choice of reference is necessary to extend applicability without the burden of model tweaking or retraining.

As for frame registration, previous models largely rely on pre-trained or classical off-the-shelf optical flow methods that are rarely designed or optimized for the characteristics of exposure-bracketed LDR images. Recent pixel rejection or attention strategies are disconnected from the alignment stage and mostly ignore uncertainty in exposure or motion.

In this paper, we propose a novel algorithm that addresses these limitations in a holistic and unified way. First, we design a HDR-specific optical flow network which can predict accurate optical flow estimates even when the input and target frames are under- or over-exposed. We do this by using symmetric pooling operations to share information between all input frames, so any missing information in one frame can be borrowed from other frames. Further, we propose models of exposure and alignment uncertainties which are used by our flow and attention networks to regulate contributions from unreliable and misaligned pixels. Finally we propose a flexible architecture that can process any number of input frames provided in any order.

The contributions of this paper are threefold:

1) A lightweight HDR-specific optical flow network which can estimate accurate pixel correspondences between LDR frames, even when improperly exposed, by sharing information between all input frames with symmetric pooling operations, and is trained using an HDR-aware self-supervised loss that incorporates exposure uncertainty.
2) Models of exposure and alignment uncertainty which we use to regulate contributions from unreliable and misaligned pixels and greatly reduce ghosting artefacts.
3) A flexible architecture with a multi-stage fusion mechanism which can estimate an HDR image from an arbitrary set of LDR input images.

II. RELATED WORK

In this section we review the HDR literature with a focus on relevant deep-learning multi-frame exposure fusion methods. For a broader overview we refer the reader to [15], [16].

The seminal work of [12] was the first to introduce a training and testing dataset with dynamic scene content. Their proposed method for learning-based HDR fusion is composed of two stages: first, input LDR images are aligned using a classical optical flow algorithm [17] and then a CNN is trained to both merge images and potentially correct any errors in the alignment. Shortly after, [13] proposed a similar approach that does not perform a dense optical flow estimation, but rather uses an image-wide homography to perform background alignment, leaving the more complex non-rigid foreground motions to be handled by the CNN. However, this method is highly dependent on the structure of the reference image, and the magnitude and complexity of the motion. Thus, if certain regions are saturated in the reference image, it fails to accurately reconstruct them in the final result. Both [12] and [13] rely on the optimisation of the HDR reconstruction loss to implicitly learn how to correct ghosting and handle the information coming from different frames. However, neither provides an explicit mechanism to prevent incorrect information (e.g. overexposed regions) from influencing the final HDR estimation. Despite the noteworthy performance improvement over existing methods at the time, these approaches still suffer from ghosting, especially for fast moving objects and saturated or near-saturated regions.

Yan et al. [18] address some limitations of its predecessors by establishing an attention mechanism to suppress undesired information before the merging stage, e.g. misalignments, overexposed regions, and focus instead on desirable details of non-reference frames that might be missing in the reference frame. In the work of Prabhakar et al. [19] parts of the computation, including the optical flow estimation, are performed in a lower resolution and later upscaled back to full resolution using a guide image generated with a simple weight map, thus saving some computation. [20] propose the first end-to-end deep learning based video HDR algorithm which drastically improved inference speeds compared to classical methods.

More recently, the state of the art in HDR imaging has been pushed to new highs. [21] propose the first GAN-based approach to HDR reconstruction which is able to synthesize missing details in areas with disocclusions. Liu et al. [22] introduce a method which uses deformable convolutions as an alignment mechanism instead of optical flow and was the winning submission to the 2021 NTIRE HDR Challenge [23]. Contemporary work has explored and pioneered new training paradigms, such as the weakly supervised training strategy proposed by [24].

Extending these methods to an arbitrary number of images requires changes to the model definition and re-training. Set-processing neural networks [25] can naturally handle those requirements. In [26], a permutation invariant CNN is used to deblur a burst of frames which present only rigid, 0-mean translations with no explicit motion registration. For the HDR task, [27] proposed a method that uses symmetric pooling aggregation to fuse any number of images, but requires pre-alignment [28] and artefact correction by networks which only work on image pairs.

III. PROPOSED METHOD

Given a set of n LDR images with different exposure values \(\{I_1, I_2, \ldots, I_n\}\) our aim is to reconstruct a single HDR image \(H\) which is aligned to a reference frame \(I_r\). To simplify notation, we denote \(I_r = I_t\), but any input frame can be chosen as the reference frame. To generate the inputs to our model, we follow the work of [12], [13], [18] and form a linearized image \(L_i\) for each \(I_i\) as follows:

\[
L_i = I_i/t_{i},
\]

where \(t_i\) is the exposure time of image \(I_i\) with power-law non-linearity \(\gamma\). Setting \(\gamma = 2.2\) inverts the CRF, while dividing by the exposure time adjusts all the images to have consistent brightness. We concatenate \(I_t\) and \(L_i\) in the channel dimension to form a 6 channel input image \(X_i = [I_i, L_i]\). Given a set of
domain. Our network accepts any number of frames \(n \) and training.

The merging network then combines the max-pooling operations to share information between frames with pooling operations. We then model exposure and alignment uncertainties which are used by our attention network to suppress untrustworthy regions. Finally, the merging network consists of a grouped residual dense block with multi-stage max-pooling operations for gradual merging of input frames.

\(\{X_1, X_2, \ldots, X_n\} \) our proposed network estimates the HDR image \(\hat{H} \) by:

\[
\hat{H} = h(\{X_i\}; \theta),
\]

where \(h(\cdot) \) denotes our network, \(\theta \) the learned weights of the network and \(\hat{H} \) is the predicted radiance map in the linear domain. Our network accepts any number of frames \(n \) and is invariant to the order of the non-reference inputs. This is different from the work of [12], [13], [18] where the value of \(n \) is fixed to 3 and the order of inputs is fixed, and the work of [27] where only the fusion stage is performed on \(n \) inputs, but frame alignment and attention are performed on image pairs only. Our method performs alignment, regulates the contribution of each frame based on related alignment and exposure uncertainties and flexibly fuses any number of input frames in a permutation-invariant manner. Our network is also trained end-to-end and \(\theta \) is learned entirely during the HDR training.

A. Architecture Overview

Our architecture is composed of: Learnable Exposure Uncertainty (Sec. III-C), HDR Iterative Optical Flow (Sec. III-D), Alignment Uncertainty and Attention (Sec. III-E), and Merging Network (Sec. III-F). An overview of the architecture can be seen in Figure 2. Our architecture makes use of max-pooling operations to share information between frames and to fuse frames together (Sec. III-B). This improves the accuracy of our flow and attention networks and gives us the advantage of an architecture that is flexible enough to accept an arbitrary number of images. The flow network and the attention network work together to align non-reference frames to the reference frame and suppress artefacts from misaligned and over-exposed regions. The merging network then combines the aligned features to predict a single HDR image. By explicitly modelling the two most common sources of error, motion and exposure, we create a network that is aware of uncertainty and is able to greatly reduce artefacts compared to state-of-the-art methods, as shown in Figure 1.

B. Flexible Set Processing

Many state-of-the-art CNN HDR reconstruction methods require a fixed number of inputs in fixed order of exposure [12], [13], [18]. To overcome this limitation, we design a set-processing network that can naturally deal with any number of input images. Related concepts have previously shown strong benefits for problems such as deblurring [26] and we here propose to leverage set-processing and permutation invariance tools for HDR fusion.

Given \(n \) input images, our network uses \(n \) identical copies of itself with shared weights to process each image separately in its own stream. We use a multi-stage fusion mechanism, where features \(F_i^k \) of each individual stream \(i \) at an arbitrary point \(k \) within the network can share information with each other as follows:

\[
F_i^{\text{max}} = \text{conv}(\left[F_i^k, \max(F_1^k, \ldots, F_n^k) \right]),
\]

where \(\max(\cdot) \) denotes a max-pooling operation, \([\cdot] \) denotes concatenation and \(\text{conv}(\cdot) \) denotes a convolutional layer (see Fig. 5). This operation is repeated at multiple points in the network. Finally, the outputs of each stream are then pooled together into a single stream with a global max-pooling operation \(F_i^{\text{max}} \). This result is processed further in the final layers of our network to obtain the HDR prediction. This allows the network to process any number of frames in a permutation invariant manner while still being informed by the other frames.
that improperly exposed regions in an image can have on our result.

D. HDR Specific Efficient Iterative Optical Flow Network

Recent learning based optical flow methods [29] typically do not work well for HDR. Successive frames can have large amounts of missing information due to overexposure, which makes aligning frames difficult. This is especially true if the reference and non-reference frames are both overexposed. We solve this issue by using max-pooling operations to share information between all n input frames in our flow network’s encoder, as described in Eq. (3). This lets the network fill in missing information from any of the n available input frames and predict more accurate flows.

The architecture of our proposed flow network is inspired by RAFT [29], however we design the network to be lightweight and efficient. We do not use a context encoder, a correlation layer or a convolutional gated recurrent unit, instead using only simple convolutional layers to predict our optical flow field.

Given an input X_i and an exposure mask E_i, we use a convolutional layer to extract features F_i from X_i. The inputs into the flow network are then concatenated as follows: $[F_i, F_r, E_i]$, where F_r corresponds to the features extracted from the reference image. The flow network is informed by E_i so that our predictions are aware of the exposure uncertainty in the image. As recurrent convolutions can be computationally expensive at full resolution, the flow network first downsamples the input features by $8 \times$ using strided convolutions. It then iteratively refines the predicted flow over 16 iterations, with a flow initialized to zero, to obtain the optical flow field O_i via:

$$O_i = f([F_i, F_r, E_i]),$$ \hspace{1cm} (5)

where $f(\cdot)$ denotes our optical flow network. The optical flow field is resized to the original resolution with bilinear upsampling and used to warp our features F_i:

$$F_i^w = w(F_i, O_i),$$ \hspace{1cm} (6)

where F_i^w are the warped features and $w(\cdot)$ denotes the function of warping an image with an optical flow field. The architecture of our flow network can be seen in Figure 3.

Unlike other methods which use fixed alignment [13], [27], our flow network is trained in a fully self-supervised manner. As ground truth optical flows for our datasets are unavailable, we use the self-supervised photometric loss between the reference features F_i and the warped features F_i^w as supervision to guide the learning of the flow network. We multiply the loss by E_r so that the reference frame is only used as supervision in regions where it is well exposed. We also apply the optical flow field to the exposure mask, so it remains spatially aligned with the warped features:

$$E_i^w = w(E_i, O_i),$$ \hspace{1cm} (7)

where E_i^w is the warped exposure mask.
Our merging network takes the regulated features obtained from Equation 10 and merges them into a single HDR image. The merging network is based on a Grouped Residual Dense Block (GRDB) [30], which consists of three Residual Dense Blocks (RDBs) [31]. We modify the GRDB so that each stream can share information with the other streams for a multi-stage fusion of features. An overview of the fusion mechanism can be seen in Figure 5. Specifically, we add a max-pooling operation after each RDB which follow the formulation described in Equation 3. This allows the network to progressively merge features from different streams, instead of merging them together in a single concatenation step where information might be lost. This is followed by a final global max-pooling operation which collapses the n streams into one. The merging network then processes this result further with a global residual connection and refinement convolutions.

G. Loss Function

As HDR images are not viewed in the linear domain, we follow previous work and use the μ-law to map from the linear HDR image to the tonemapped image:

$$T(H) = \frac{\log(1 + \mu H)}{\log(1 + \mu)} ,$$

where H is the linear HDR image, $T(H)$ is the tonemapped image and $\mu = 5000$. We then estimate the ℓ_1-norm between the prediction and the ground truth to construct a tone mapped loss as follows:

$$\mathcal{L}_{tm} = \|T(\hat{H}) - T(H)\|_1 .$$

To improve the quality of reconstructed textures we also use the perceptual loss as in [32]. We pass the tonemapped images through a pre-trained VGG-19 [33] and extract features from three intermediate layers. We reduce the ℓ_1-norm between the features of the ground truth and our prediction:

$$\mathcal{L}_{vgg} = \|\phi(T(\hat{H})) - \phi(T(H))\|_1 ,$$

where ϕ is a pre-trained VGG-19 network. Finally, to provide supervision for our optical flow network, we calculate a simple photometric loss between the warped features F_i^w and the reference features F_r, and multiply by E_r to limit supervision to well exposed regions in the reference frame:

$$\mathcal{L}_{phot} = \|F_i^w - F_r\|_1 ,$$

where abs is the elementwise absolute value. Our total loss function can be expressed as:

$$\mathcal{L}_{tot} = \mathcal{L}_{tm} + \mathcal{L}_{phot} + 10^{-3} \mathcal{L}_{vgg} .$$

H. Implementation details

During training, we take a random crop of size 256×256 from the input image. We perform random horizontal and vertical flipping and random rotation by 0°, 90°, 180° or 270° degrees to further augment the training data. We train using a batch size of 16 and a learning rate of 0.0001 with the Adam optimizer. During test time, we run inference on the full test image of size 1500×1000 for the Kalantari et al. dataset, and 1536×813 for the Chen et al. dataset. We implement the model in PyTorch, and train the model on 4 Nvidia V100 GPUs for approximately 2 days.
IV. RESULTS

We conduct several experiments both comparing against well-known state-of-the-art algorithms and also individually validating the contributions in an extensive ablation study. The experimental setup is described below.

Datasets: We use the dynamic training and testing datasets provided by Kalantari and Ramamoorthi [12] which includes 89 scenes in total. Each of these scenes include three differently exposed input LDR images (with EV of -2.00, 0.00, +2.00 or -3.00, 0.00, +3.00) which contain dynamic elements (e.g. camera motion, non-rigid movements) and a ground-truth image aligned with the medium frame captured via static exposure fusion. Additionally we use the dynamic testing dataset provided by Chen et al. [34] for further evaluation. As this dataset does not have a corresponding training set, all methods are trained on the Kalantari dataset and evaluated on the Chen dataset. We test on the 3-Exposure setting which has the ground truth aligned to the middle exposure. To keep it consistent with training, we restrict the number of input frames to three with EVs of -2.00, 0.00, +2.00. For purely qualitative evaluation of our method, we include testing sequences from the Tursun [35] dataset.

Metrics: We include seven different objective metrics in our quantitative evaluation. First, we compute the PSNR-L, which is a fidelity metric computed directly on the linear HDR estimations. HDR linear images are normally tonemapped for visualization, and thus we include PSNR-µ, which evaluates PSNR on images tonemapped using the µ-law, as defined in Eq. (11), which is a simple canonical tonemapper. We also calculate PSNR-PU, which uses the perceptual uniform encoding (PU21) for HDR images introduced by [36] which aims to improve the correlation between standard metrics and subjective scores on HDR images. For each of the three image domains (linear, µ-tonemapped, PU21), we also calculate the SSIM (Structural Similarity Index) metric introduced by [37] which aims to evaluate perceived changes in the underlying structure of the image. This gives us three further metrics, namely SSIM-L, SSIM-µ and SSIM-PU. Lastly, we also compute the HDR-VDP 2.2 [38], which estimates both visibility and quality differences between image pairs. For each metric, we also report a confidence interval calculated using a t-test at the 95% significance level. We compute the confidence intervals per image and report the mean across the test set.

A. Ablation Studies

We evaluate the contribution of the different parts of our model architecture on the Kalantari dataset. In Table I we evaluate the quantitative impact of using our multi-stage fusion mechanism as well as the performance gain from our proposed flow network and our uncertainty modelling. Our baseline model uses the same architecture...
as our proposed method, but with the flow network, uncertainty modelling and multi-stage max-pooling removed, instead using concatenation as the fusion mechanism, and the attention mechanism from [18]. We also qualitatively evaluate the impact of our contributions in Figures 6, 7 and 8.

Fusion Mechanism. We show in Table I that using our multi-stage fusion mechanism (MSM) outperforms concatenation (Baseline Model) by 0.39dB PSNR-L and 0.27dB PSNR-\(\mu\). The progressive sharing of information between streams allows the network to retain more information and produce sharper, more detailed images.

Motion Alignment and Modelling Uncertainty. We look at the performance of our proposed flow network and uncertainty modelling in Table I. Our flow network (MSM + Flow) improves PSNR-L by a large 0.7dB, and PSNR-\(\mu\) by 0.05dB, compared to using just MSM. We validate the contribution of our learnable model of exposure uncertainty by comparing it to the non-learnable fixed exposure model used by [12]. We fix the values of \(\alpha\) and \(\beta\) to match the triangle functions used to generate the ground truths of the Kalantari dataset, which are in essence the oracle \(\alpha\) and \(\beta\) parameters. Our learnable exposure modelling (MSM + Flow + Exposure Uncertainty) shows an improvement in PSNR-\(\mu\) of 0.07dB and PSNR-L of 0.08dB compared to the fixed exposure model (MSM + Flow + Fixed Exposure). In this case, the gain from learning exposure values is small as it is possible to easily fix the values to their optima due to prior knowledge of how the dataset was created. However, this is not always possible, especially in scenarios with different numbers of input images and exposure levels, where the underlying ideal weights are not known. Our decision to learn the weights allows our model to handle any number of input frames without any manual tuning. We also validate the contribution of our alignment uncertainty (MSM + Flow + Fixed Exposure + Alignment Uncertainty), which gives an improvement in PSNR-\(\mu\) of 0.07dB and PSNR-L of 0.32dB when compared to using only exposure uncertainty.

B. Performance Evaluation

We evaluate the performance of our proposed method for the HDR estimation task and compare it to other state-of-the-art methods both quantitatively and qualitatively. The methods included in our benchmark cover a broad range of approaches, namely: the patch-based method of Sen et al. [7], methods which use traditional alignment followed by CNNs to correct dense and global alignment, [12], [13], [24], the flexible aggregation approach of [27] that also uses dense alignment, methods which rely on attention or feature selection followed by a CNN to deghost and merge images [18], [40], a GAN-based approach which can synthesize missing details in areas with occlusions [22] and a method which uses deformable convolutions as an alignment mechanism [22]. For the Chen et al. test set, we also compare against the HDR video method proposed by [34], which uses a coarse to fine architecture to align and reconstruct input frames. As this method requires seven input frames for the three exposure setting, we do not re-train this on the Kalantari dataset and instead use the pre-trained weights provided by the authors. We show in Table II the quantitative evaluation on the Kalantari test set. The differences in PSNR between our method and the runners up on
the Kalantari dataset are large (i.e. +1.1dB PSNR-PU, +0.4dB PSNR-\(\mu\), +0.8dB PSNR-L). Similarly, the HDR-VDP-2 score obtained by our method outperforms all others by a wide margin (i.e. 0.8). Furthermore, we outperform all methods on all seven metrics, showing our method is consistently better across different evaluation criteria. To further evaluate the consistency of our improvement over other methods, we look at the distribution of PSNRs per image across the Kalantari test set. In Figure \(\text{12}\) we show the improvement achieved in PSNR-\(\mu\) of our method and other top performers over AHDR \(\text{18}\), which is a well known and strong baseline method in HDR imaging. Our method demonstrates a consistent and significant improvement over AHDR, being the only method which achieves an improvement in performance on every single test image. Apart from a few exceptions, our method also outperforms the existing state-of-the-art methods for most images. We observe similar performance on the Chen et al. dynamic test set, demonstrating the generalization ability of our model on out of domain data. Our method is best or second best in six out of seven metrics, with a significant improvement in PSNR-\(\mu\) (i.e. 0.5dB) over the runner up Chen et al. \(\text{34}\). We outperform Chen et al. on several key metrics such as PSNR-PU, SSIM-PU and SSIM-L despite the fact their method is trained on video data and has an in-domain advantage.

We also quantitatively evaluate the performance of our optical flow network compared to previous optical flow methods in Table \(\text{V}\). We compare against the traditional method introduced by Liu et al. \(\text{17}\) which is used by \(\text{12}\) and \(\text{24}\) in their HDR pipelines, as well as the deep learning based approach introduced by Sun et al. \(\text{28}\) which is used by \(\text{27}\) to pre-align input frames. We substitute our optical flow

Table II

Quantitative results on the Kalantari et al. \(\text{12}\) dataset. Best performer denoted in bold and runner-up in underscored text. † values as reported by authors.

Method	PSNR-\(\mu\) ± \(t_{0.95}\)	PSNR-PU ± \(t_{0.95}\)	PSNR-L ± \(t_{0.95}\)	SSIM-\(\mu\) ± \(t_{0.95}\)	SSIM-PU ± \(t_{0.95}\)	SSIM-L ± \(t_{0.95}\)	HDR-VDP-2 ± \(t_{0.95}\)
Sen \(\text{7}\)	40.98 ± 0.031	33.27 ± 0.038	38.38 ± 0.140	0.9880 ± 4.58 \(\times 10^{-5}\)	0.9782 ± 7.24 \(\times 10^{-5}\)	0.9758 ± 8.37 \(\times 10^{-5}\)	60.54 ± 1.17
Kalantari \(\text{12}\)	42.70 ± 0.030	33.86 ± 0.037	41.23 ± 0.146	0.9915 ± 3.48 \(\times 10^{-5}\)	0.9832 ± 5.66 \(\times 10^{-5}\)	0.9858 ± 5.85 \(\times 10^{-5}\)	64.63 ± 1.23
Wu \(\text{13}\)	42.01 ± 0.024	30.82 ± 0.015	41.62 ± 0.145	0.9898 ± 3.13 \(\times 10^{-5}\)	0.9805 ± 5.17 \(\times 10^{-5}\)	0.9872 ± 5.20 \(\times 10^{-5}\)	65.78 ± 1.15
AHDR \(\text{18}\)	43.57 ± 0.031	33.46 ± 0.023	41.16 ± 0.181	0.9922 ± 2.98 \(\times 10^{-5}\)	0.9843 ± 5.23 \(\times 10^{-5}\)	0.9871 ± 5.82 \(\times 10^{-5}\)	64.83 ± 1.19
Prabhakar \(\text{27}\)	42.79 ± 0.027	29.06 ± 0.017	40.31 ± 0.211	0.9912 ± 3.08 \(\times 10^{-5}\)	0.9762 ± 5.51 \(\times 10^{-5}\)	0.9874 ± 5.14 \(\times 10^{-5}\)	62.95 ± 1.24
Pu \(\text{29}\)	43.85	-	41.65	0.9986	-	0.9970	-
Prabhakar \(\text{27}\)	43.08	-	41.68	-	-	-	-
NHDRR \(\text{30}\)	42.4	-	-	-	-	-	-
Prabhakar \(\text{27}\)	41.94 ± 0.027	32.18 ± 0.022	41.80 ± 0.141	0.9901 ± 3.20 \(\times 10^{-5}\)	0.9813 ± 5.26 \(\times 10^{-5}\)	0.9892 ± 4.87 \(\times 10^{-5}\)	65.30 ± 1.15
ADNet \(\text{22}\)	43.87 ± 0.031	30.68 ± 0.014	41.69 ± 0.156	0.9925 ± 2.88 \(\times 10^{-5}\)	0.9845 ± 4.96 \(\times 10^{-5}\)	0.9885 ± 5.34 \(\times 10^{-5}\)	65.56 ± 1.14
HDR-GAN \(\text{21}\)	43.96 ± 0.032	34.04 ± 0.032	41.76 ± 0.164	0.9926 ± 2.90 \(\times 10^{-5}\)	0.9853 ± 5.00 \(\times 10^{-5}\)	0.9884 ± 5.43 \(\times 10^{-5}\)	65.07 ± 1.14
Ours	44.35 ± 0.033	35.13 ± 0.030	42.60 ± 0.165	0.9931 ± 2.72 \(\times 10^{-5}\)	0.9865 ± 4.57 \(\times 10^{-5}\)	0.9902 ± 4.61 \(\times 10^{-5}\)	66.56 ± 1.18
network with the comparison methods but we keep the rest of our proposed architecture the same. We show that our flow network improves on the runner up by 0.55dBs in PSNR-μ and 0.12dBs in PSNR-L, while having the additional advantages of being end-to-end trainable and requiring no pre-training with ground truth optical flows.

In Figures 9, 10, and 13 we show some visualizations of our algorithm compared with the benchmarked methods for qualitative, subjective evaluation. All other methods present traces of ghosting artefact around the edges near a moving object, especially where disocclusions happen and one or more frames have overexposed values in those locations (e.g. moving head, moving arm). Our method tackles such challenges effectively thanks to the exposure confidence awareness, and strongly suppresses the ghosting artefact. Additionally, our method also demonstrates better performance when it comes to edges and textures (e.g. building facade), as well as out of domain low-light performance.
The improvement in image quality from including the extremely overexposed long frame is not able to completely hallucinate details in large overexposed regions. The short frame is essential to reconstruct the missing details. There is no noticeable improvement in image quality from including the extremely overexposed long frame.

C. Flexible Imaging

We show that our model is flexible enough to accept an arbitrary number of images without the need for re-training. In Table IV we evaluate the performance of our proposed model when trained and tested on different numbers of images with different exposures. We use the following input frame configurations for training and testing: Short + Medium + Long (S + M + L), Short + Medium (S + M), Medium + Long (M + L), Medium (M). The reference frame in all settings is the medium frame, which is spatially aligned to the ground truth. As expected, performance is best when the testing configuration is seen during training. Our model trained on all permutations achieves competitive cross-setting performance, obtaining the best results for the S + M and M + L settings. It is also competitive with our best model for the M and S + M + L settings, without needing any extra training time, and is capable of accepting a range of different input configurations without the need for re-training. In fact, we show that our model using only two frames (S + M) can obtain results outperforming current state-of-the-art methods using all three frames in PSNR-µ [21] and PSNR-L [24]. We qualitatively show the performance gains from our methods using all three frames in PSNR-µ and PSNR-L.

Fig. 14. Qualitative comparison of our model trained on all permutations with different input frames. When the medium frame is well exposed, our model can attain a high quality prediction with just one frame. There is no noticeable increase in image quality when more inputs are provided.

Fig. 15. Qualitative comparison of our model trained on all permutations with different input frames. When the medium frame is overexposed, our model is not able to completely hallucinate details in large overexposed regions. The short frame is essential to reconstruct the missing details. There is no noticeable improvement in image quality from including the extremely overexposed long frame.

Method	PSNR-µ ± to.95	PSNR-PU ± to.95	PSNR-L ± to.95	SSIM-µ ± to.95	SSIM-PU ± to.95	SSIM-L ± to.95	HDR-µ ± to.95
Sen	40.79 ± 0.011	34.33 ± 0.012	39.58 ± 0.043	0.9862 ± 2.35 × 10⁻⁵	0.9617 ± 6.41 × 10⁻⁵	0.9912 ± 5.86 × 10⁻⁵	68.83 ± 0.77
AHDR	39.56 ± 0.019	26.71 ± 0.006	35.09 ± 0.058	0.9144 ± 3.84 × 10⁻⁵	0.9632 ± 7.08 × 10⁻⁵	0.9900 ± 5.74 × 10⁻⁵	63.78 ± 0.75
Prabhakar [24]	40.89 ± 0.015	29.66 ± 0.008	38.19 ± 0.052	0.9857 ± 3.17 × 10⁻⁵	0.9670 ± 6.16 × 10⁻⁵	0.9989 ± 6.27 × 10⁻⁵	65.48 ± 0.69
ADNet	38.14 ± 0.042	30.45 ± 0.029	40.97 ± 0.042	0.9797 ± 4.30 × 10⁻⁵	0.9622 ± 7.14 × 10⁻⁵	0.9935 ± 4.15 × 10⁻⁵	70.00 ± 0.66
HDR-GAN [21]	40.60 ± 0.018	27.37 ± 0.007	36.19 ± 0.048	0.9984 ± 2.06 × 10⁻⁵	0.9730 ± 5.28 × 10⁻⁵	0.9957 ± 6.37 × 10⁻⁵	66.33 ± 0.72
Chen*	41.47 ± 0.014	33.37 ± 0.011	42.33 ± 0.038	0.9883 ± 2.65 × 10⁻⁵	0.9898 ± 5.53 × 10⁻⁵	0.9945 ± 5.40 × 10⁻⁵	71.87 ± 0.82

*Chen is trained on a synthetic video dataset while all other methods are trained on Kalantari.
Fig. 16. Qualitative evaluation of our model using just the short frame as input. When the input frame is severely underexposed (top), we see quantization and noise related artefacts. However when the input frame is well exposed (bottom), the output is free of artefacts.

Fig. 17. Our method is flexible enough to accept any frame as the reference frame without re-training, providing superior choice to the user.

TABLE IV

Comparison of different training regimes on the Kalantari test set using our proposed model. * Batches sampled uniformly from the two options. ** Batches sampled uniformly from all four options. The four options are: S + M + L, S + M, M + L, M.

Training Frames	Test Frames	PSNR-µ ± tv.05	PSNR-L ± tv.05
S + M + L	S + M + L	44.35 ± 0.033	42.60 ± 0.165
S + M / M + L*	S + M + L	43.44 ± 0.033	40.58 ± 0.144
M	S + M + L	40.86 ± 0.006	24.66 ± 0.030
All Permutations **	S + M + L	44.24 ± 0.031	42.30 ± 0.170
S + M + L	S + M	40.24 ± 0.028	41.15 ± 0.158
S + M / M + L*	S + M	44.11 ± 0.032	42.17 ± 0.167
M	S + M	27.68 ± 0.005	25.38 ± 0.037
All Permutations **	S + M	44.18 ± 0.031	42.29 ± 0.168
S + M + L	M	41.85 ± 0.025	37.60 ± 0.148
S + M / M + L*	M	42.58 ± 0.031	38.32 ± 0.234
M	M	27.03 ± 0.006	25.00 ± 0.032
All Permutations **	M	42.74 ± 0.030	38.38 ± 0.222
S + M + L	M	33.10 ± 0.010	32.84 ± 0.032
S + M / M + L*	M	28.26 ± 0.005	22.44 ± 0.019
M	M	42.86 ± 0.031	38.79 ± 0.226
All Permutations **	M	42.67 ± 0.030	38.40 ± 0.216

TABLE V

Quantitative comparison of different optical flow methods on the Kalantari test set.

Method	PSNR-µ ± tv.05	PSNR-L ± tv.05
Liu et al.	43.68 ± 0.030	42.48 ± 0.157
PWC-Net.	43.80 ± 0.031	42.72 ± 0.143
Ours	44.35 ± 0.033	42.60 ± 0.165

TABLE VI

A comparison of runtimes of our method on different input resolutions and number of input frames, computed on an NVIDIA V100 GPU.

Input Resolution	# Input Frames	Runtime (s)
1024x682	1	0.24
1024x682	2	0.48
1024x682	3	0.70
1280x720	1	0.32
1280x720	2	0.58
1280x720	3	0.92
1500x1000	1	0.51
1500x1000	2	0.97
1500x1000	3	1.55

D. Parameters and Runtime

We provide a breakdown of our model parameters by sub-components in Table VII and provide a comparison of our flow network with state-of-the-art optical flow methods in Table VIII. Our flow network is an order of magnitude smaller than [28], which is used by [27] to align images, and 6× smaller than RAFT [29]. We also explore how the runtime of our model varies depending on both the input resolution and the number of input frames in Table VI. The model runtime grows approximately linearly with the number of input frames, and quadratically with the input resolution.

E. Limitations

One limitation of our method is that it is not able to hallucinate details in large over-exposed regions, as seen in Figure 15. The missing information needs to be provided in one of the input frames for our model to be able to accurately reconstruct the HDR image. This is not surprising given that the loss functions used during training have a focus on HDR reconstruction. There is potential to improve our single image HDR performance by exploring a training strategy similar to those used for inpainting. Similarly our model can not fully
denoise extremely underexposed regions, as shown in Figure 11.

frames. On a single Nvidia V100 GPU, we can process up to

memory required increases linearly with the number of input

accept any number of input frames, the amount of activation

is non-trivial. Finally, although our model can theoretically

performance of our model, especially for cases where the CRF

is non-trivial. Finally, although our model can theoretically

accept any number of input frames, the amount of activation

memory required increases linearly with the number of input

frames. On a single Nvidia V100 GPU, we can process up to

nine full sized input frames from the Tursun dataset as shown in Figure 11.

V. CONCLUSION

In this paper we explored modelling exposure and alignment uncertainties to improve HDR imaging performance. We presented (1) an HDR-specific optical flow network which is capable of accurate flow estimations, even with improperly exposed input frames, by sharing information between input images with a symmetric pooling operation. (2) We also presented models of exposure and alignment uncertainty which we use to regulate contributions from unreliable and misaligned pixels and greatly reduce ghosting artefacts. (3) Lastly a flexible architecture which uses a multi-stage fusion to estimate an HDR image from an arbitrary set of LDR input images. We conducted extensive ablation studies where we validate individually each of our contributions. We compared our method to other state-of-the-art algorithms obtaining significant improvements for all the measured metrics and noticeably improved visual results.

REFERENCES

[1] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM SIGGRAPH 2008 Class., 2008.

[2] M. D. Tocci, C. Kiser, N. Tocci, and P. Sen, “A versatile hdr video production system,” in SIGGRAPH, 2011.

[3] M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Computer Graphics and Applications, vol. 27, no. 2, 2007.

[4] J. Froehlich, S. Grandinetti, B. Eberhardt, S. Walter, A. Schilling, and H. Brendel, “Creating cinematic wide gamut hvr-video for the evaluation of tone mapping operators and hdr-displays,” in Proc. of SPIE Electronic Imaging, 2014.

[5] F. Heide, M. Steinberger, Y.-T. Tsai, M. Rouf, D. Pajak, D. Reddy, O. Gallo, J. Liu, W. Heidrich, K. Egiazarian, J. Kautz, and K. Pulli, “FlexISP: A flexible camera image processing framework,” ACM Trans. Graph., vol. 33, no. 6, 2014.

[6] S. Hajishirif and J. Kronander, J,and Unger, “Adaptive dualiso hrr reconstruction,” EURASIP Journal on Image and Video Processing, no. 41, 2015.

[7] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman, and E. Shechtman, “Robust patch-based hrr reconstruction of dynamic scenes.” ACM Trans. Graph., vol. 31, no. 6, pp. 203–1, 2012.

[8] J. Zheng, Z. Li, Z. Zhu, S. Wu, and S. Rahardja, “Hybrid patching for a sequence of differently exposed images with moving objects,” IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 5190–5201, 2013.

[9] M. Granados, K. I. Kim, J. Tompkin, and C. Theobalt, “Automatic noise modeling for ghost-free hrr reconstruction,” ACM Trans. Graph., vol. 32, no. 6, pp. 201.1–201.10, 2013. [Online]. Available: https://doi.org/10.1145/2503863.2504810

[10] O. Gallo, A. J. Tocciol, J. Hu, K. Pulli, and J. Kautz, “Locally non-rigid registration for mobile hrr photography,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 2015, pp. 48–55. [Online]. Available: https://doi.org/10.1109/CVPRW.2015.7301366

[11] J. Hu, O. Gallo, K. Pulli, and X. Sun, “Hrr deghosting: How to deal with saturation?” in 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013. IEEE Computer Society, 2013, pp. 1163–1170. [Online]. Available: https://doi.org/10.1109/CVPR.2013.154

[12] N. K. Kalantari and R. Ramamoorthy, “Deep high dynamic range imaging of dynamic scenes.” ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017), vol. 36, no. 4, 2017.

[13] S. Wu, J. Xu, Y. Tai, and C. Tang, “End-to-end deep hrr imaging with large foreground motions,” in European Conference on Computer Vision, 2018.

[14] S. W. Hasinoff, F. Durand, and W. T. Freeman, “Noise-optimal capture for high dynamic range photography,” in IEEE Conference on Computer Vision and Pattern Recognition, 2010.

[15] T. E. Alessandro Artusi, Thomas Richter and R. K. Mantiuk, “High dynamic range imaging technology,” IEEE Signal Processing Magazine, vol. 34, no. 5, 2017.

[16] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High Dynamic Range Imaging, 2nd ed. Morgan Kaufmann, 2010.

[17] C. Liu, “Beyond pixels: Exploring new representations and applications for motion analysis,” Ph.D. dissertation, Massachusetts Institute of Technology, 2009.

[18] Q. Yan, D. Gong, Q. Shi, A. van den Hengel, C. Shen, I. D. Reid, and Y. Zhang, “Attention-guided network for ghost-free high dynamic range imaging,” in Computer Vision and Pattern Recognition, 2020.

[19] K. R. Prabhakar, S. Agrawal, D. K. Singh, B. Ashworth, and R. V. Babu, “Towards practical and efficient high-resolution hrr deghosting with CNN,” in European Conference Computer Vision, ser. Lecture Notes in Computer Science, vol. 12366. Springer, 2020, pp. 497–513. [Online]. Available: https://doi.org/10.1007/978-3-030-58509-1_20

[20] N. Kalantari and R. Ramamoorthy, “Deep hrr video from sequences with alternating exposures,” Comput. Graph. Forum, vol. 38, no. 2, pp. 193–205, 2019. [Online]. Available: https://doi.org/10.1111/cgf.13630

[21] Y. Niu, J. Wu, L. Liu, W. Guo, and R. W. H. Lau, “Hrr-gan: Hrr image reconstruction from multi-exposed ldr images with large motions,” IEEE Transactions on Image Processing, vol. 30, pp. 3885–3896, 2021.

[22] Z. Liu, W. Lin, X. M. H. Fan, J. Sun, and S. Liu, “Adnet: Attention-guided deformable convolutional network for high dynamic range imaging,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, pp. 463–470.

[23] E. Perez-Pellitero, S. Catley-Chandar, A. Leonardis, R. Timofte, X. Wang, Y. Li, T. Wang, F. Song, Z. Liu, T. Lin, X. Li, Q. Rao, T. Jiang, M. Han, H. Fan, J. Sun, S. Liu, X. Chen, Y. Liu, Z. Zhang, Y. Qiao, C. Dong, E. Y. Lyn Chee, S. Shen, Y. Duan, G. Chen, M. Sun, Y. Gao, L. Zhang, A. K. A, J. C. V, S. M. A. Sharif, R. A. Naqvi, M. Biswas,
S. Kim, C. Xia, B. Zhao, Z. Ye, X. Lu, Y. Cao, J. Yang, Y. Cao, G. R. K. S, S. Deepak Lomte, N. Krishnan, and B. H. Pawan Prasad, “Ntire 2021 challenge on high dynamic range imaging: Dataset, methods and results,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, pp. 691–700.

[24] K. R. Prabhakar, G. Senthil, S. Agrawal, R. V. Babu, and R. K. S. S. Gorthi, “Labeled from unlabeled: Exploiting unlabeled data for few-shot deep hdr deghosting,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 4873–4883.

[25] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,” in Advances in Neural Information Processing Systems, vol. 30, 2017.

[26] M. Aittala and F. Durand, “Burst image deblurring using permutation invariant convolutional neural networks,” in European Conference on Computer Vision, ser. Lecture Notes in Computer Science, vol. 11212. Springer, 2018, pp. 748–764. [Online]. Available: https://doi.org/10.1007/978-3-030-01237-3_45

[27] K. R. Prabhakar, R. Arora, A. Swaminathan, K. P. Singh, and R. V. Babu, “A fast, scalable, and reliable deghosting method for extreme exposure fusion,” in IEEE International Conference on Computational Photography, ICCP 2019, Tokyo, Japan, May 15-17, 2019. IEEE, 2019, pp. 1–8. [Online]. Available: https://doi.org/10.1109/ICCPHOT.2019.8747329

[28] D. Sun, X. Yang, M. Liu, and J. Kautz, “Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[29] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for optical flow,” in European Conference on Computer Vision, 2020.

[30] D.-W. Kim, J. R. Chung, and S.-W. Jung, “Grdn:grouped residual dense network for real image denoising and gan-based real-world noise modeling,” in Computer Vision and Pattern Recognition Workshops, 2019.

[31] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-resolution,” in Computer Vision and Pattern Recognition, 2018.

[32] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision, 2016.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations, 2015.

[34] J. Chen, Z. Yang, T. N. Chan, H. Li, J. Hou, and L.-P. Chau, “Attention-guided progressive neural texture fusion for high dynamic range image restoration,” 2021.

[35] O. Tursun, A. O. Akyüz, A. Erdem, and E. Erdem, “An objective deghosting quality metric for hdr images,” Computer Graphics Forum, vol. 35, 2016.

[36] R. Mantuik and M. Azimi, “Ptu21: A novel perceptually uniform encoding for adapting existing quality metrics for hdr,” 06 2021, pp. 1–5.

[37] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[38] M. Narwaria, R. K. Mantuik, M. P. D. Silva, and P. L. Callet, “HDR-VDP-2.2: a calibrated method for objective quality prediction of high-dynamic range and standard images,” J. Electronic Imaging., vol. 24, no. 1. p. 010501, 2015. [Online]. Available: https://doi.org/10.1117/1.JEI.24.1.010501

[39] Z. Pu, P. Guo, M. S. Asif, and Z. Ma, “Robust high dynamic range (hdr) imaging with complex motion and parallax,” in Proceedings of the Asian Conference on Computer Vision (ACCV), November 2020.

[40] Q. Yan, L. Zhang, Y. Liu, Y. Zhu, J. Sun, Q. Shi, and Y. Zhang, “Deep hdr imaging via a non-local network,” IEEE Transactions on Image Processing, vol. 29, pp. 4308–4322, 2020.

[41] M. Grossberg and S. Nayar, “Modeling the space of camera response functions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1272–1282, 2004.

[42] J.-Y. Lee, Y. Matsushita, B. Shi, I. S. Kweon, and K. Ikeuchi, “Radiometric calibration by rank minimization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 144–156, 2013.