Numerical study of a three-state host-parasite system on the square lattice

Takehisa Hasegawa
Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan

Norio Konno
Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Japan

Naoki Masuda
Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

We numerically study the phase diagram of a three-state host-parasite model on the square lattice motivated by population biology. The model is an extension of the contact process, and the three states correspond to an empty site, a host, and a parasite. We determine the phase diagram of the model by scaling analysis. In agreement with previous results, three phases are identified: the phase in which both hosts and parasites are extinct ($S_0$), the phase in which hosts survive but parasites are extinct ($S_{01}$), and the phase in which both hosts and parasites survive ($S_{012}$). We argue that both the $S_0$–$S_{01}$ and $S_{01}$–$S_{012}$ boundaries belong to the directed percolation class. In this model, it has been suggested that an excessively large reproduction rate of parasites paradoxically extinguishes hosts and parasites and results in $S_0$. We show that this paradoxical extinction is a finite size effect; the corresponding parameter region is likely to disappear in the limit of infinite system size.

PACS numbers: 87.23.Cc, 05.50.+q, 64.60.an

I. INTRODUCTION

In research fields ranging from ecology and epidemiology to sociology, it is important to clarify the effect of the interactions among species or phenotypes on the entire system. Stochastic interacting particle systems, in which each site on a graph takes either of the possible states and is flipped according to the states of other sites, are a useful tool for this purpose. A paradigmatic interacting particle system that describes disease spreading is the contact process (CP; also termed the susceptible-infected-susceptible model) [1–3].

Various interacting particle systems in complex networks have been investigated recently [4, 5]. Nevertheless, in an ecological context, organisms of different scales can be considered to live in a two-dimensional space, often with a small interaction range. Therefore, it is instructive to study models that are more complex than the CP on the Euclidean lattice [3, 6, 7]. A simple extension of the CP in this direction is a three-state spatial host-parasite (HP) model that deals with an ecosystem comprising soil (empty sites), host species living on soil, and pathogen species (parasites) living on hosts. Phase transitions and oscillations in similar models have been studied from the perspective of statistical physics [8–12].

Satō et al. [13] analyzed the HP model on a square lattice. They showed by means of the improved-pair approximation (i-PA) and numerical simulations that a very high reproduction rate of parasites results in the extinction of both hosts and parasites. This phenomenon is called parasite-driven extinction [13, 14]. An intuitive explanation for this paradoxical behavior is that parasites replace hosts so quickly that hosts get extinct, which eventually results in the extinction of parasites. A similar paradoxical behavior, i.e., a decrease in the number of a species caused by an increase in its fertility, is observed in other models, where a sort of rock-scissors-paper competition is prevalent among three species [15–23]. However, the current understanding of the phase diagram of the HP model is not comprehensive, because parasite-driven extinction cannot be predicted by mean field approximation and pair approximation (PA) [24, 25].

In this paper, we numerically investigate the phase diagram of the HP model on the square lattice. They showed by means of the improved-pair approximation (i-PA) and numerical simulations that a very high reproduction rate of parasites results in the extinction of both hosts and parasites. This phenomenon is called parasite-driven extinction [13, 14]. An intuitive explanation for this paradoxical behavior is that parasites replace hosts so quickly that hosts get extinct, which eventually results in the extinction of parasites. A similar paradoxical behavior, i.e., a decrease in the number of a species caused by an increase in its fertility, is observed in other models, where a sort of rock-scissors-paper competition is prevalent among three species [15–23]. However, the current understanding of the phase diagram of the HP model is not comprehensive, because parasite-driven extinction cannot be predicted by mean field approximation and pair approximation (PA) [24, 25].

In this paper, we numerically investigate the phase diagram of the HP model on the square lattice. In particular, we use large lattices and investigate the effect of the system size on parasite-driven extinction. The obtained phase diagram is shown in Fig. 1. We argue that two transition boundaries (solid lines in Fig. 1) belong to the directed percolation (DP) universality class. Another transition boundary (dotted lines) is not characterized by the DP universality class, and its location depends on the system size. We claim that the parasite-driven extinction phase is a finite size effect and that the phase diagram is qualitatively the same as that obtained by the PA rather than that obtained by the i-PA.
The HP model on the square lattice \( \mathbb{Z}^2 \) is defined as a continuous-time Markov process with state space \( \{0, 1, 2\}^{\mathbb{Z}^2} \). Each site takes one of the three states 0, 1, and 2, which represent an empty site, a host, and a parasite, respectively. The rules for the state transition are depicted in Fig. 2. A host and a parasite die at rates \( d_1 \) and \( d_2 \), respectively. For simplicity, we set \( d_1 = d_2 = 1 \). The occurrence of death at any site is independent of the states of the neighboring sites. In contrast, reproduction of hosts and parasites depends on the states of the neighbors. A host emerges at an empty site \( i \) at rate \( \lambda_0 n_1(i) \), where \( n_1(i) \) is the number of hosts in the neighborhood of site \( i \). A host at site \( i \) turns into a parasite at rate \( \lambda_{12} n_2(i) \), where \( n_2(i) \) denotes the number of parasites in the neighborhood of site \( i \). We vary the values of \( \lambda_0 \) and \( \lambda_{12} \) in the numerical simulations. Because parasites feed on hosts, the HP model allows the following three phases in the stationary state:

(i) phase \( S_0 \), in which hosts and parasites are extinct,

(ii) phase \( S_{01} \), in which hosts survive and parasites are extinct, and

(iii) phase \( S_{012} \), in which both hosts and parasites survive.

The HP model with \( \lambda_{12} = 0 \) is equivalent to the CP. In the CP, each site takes either state 0 or 1, and a death event (1 \( \rightarrow \) 0) and a reproduction event (0 \( \rightarrow \) 1) at site \( i \) occur at rate \( d_1 = 1 \) and \( \lambda_{01} n_1(i) \), respectively. In the case of the CP on the square lattice, \( S_0 \) and \( S_{01} \) are realized when \( \lambda_{01} \) is respectively smaller and larger than \( \lambda_{01} \approx 0.4122 \).

The phase diagram of the HP model on the square lattice has been examined using the mean field approximation \( [13] \), the PA, which accounts for pairwise state correlation \( [24] \); and the i-PA, which calibrates the PA to account for the aggregation of the same species in the space \( [13, 14] \). All of the three approximations predict the existence of the three phases of the model. In the mean field approximation and the PA, the system is in \( S_0 \) if \( \lambda_0 \) is less than a critical value that is independent of \( \lambda_{12} \). Otherwise, the system is in \( S_{01} (S_{012}) \) when the value of \( \lambda_{01} \) and \( \lambda_{12} \) is sufficiently small (large). In the mean field approximation and the PA, the boundary between \( S_{01} \) and \( S_{012} \) is given by \( \lambda_{12} = \lambda_{01} \approx 4 \lambda_{01} - 1 \) and \( \lambda_{12} = (12 \lambda_{01}^2 + 4 \lambda_{01} - 1)/(36 \lambda_{01}^2 - 4 \lambda_{01} - 3) \), respectively \([24] \). In particular, only \( S_0 \) and \( S_{012} \) exist when \( \lambda_{12} \to \infty \) in the mean field approximation. In the PA, when \( \lambda_{12} \to \infty \), \( S_0 \), \( S_{01} \), and \( S_{012} \) appear in this order in the PA as \( \lambda_{01} \) increases. The phase diagram obtained from the i-PA is qualitatively distinct from those obtained from the mean field approximation and the PA. When \( \lambda_{12} \) is large, the i-PA predicts \( S_0 \) regardless of the value of \( \lambda_{01} \). This result corresponds to the numerical observation that a large reproduction rate of parasites induces extinction of hosts and parasites \([13, 14] \). We call this phenomenon the parasite-driven extinction. The mean field approximation and the PA do not predict the existence of the parasite-driven extinction.

**III. DP TRANSITION ON THE \( S_{01} - S_{012} \) BOUNDARY FOR SMALL \( \lambda_{12} \)**

In this section, we numerically examine the boundary between \( S_{01} \) and \( S_{012} \) for small values of \( \lambda_{12} \) (the red solid line in Fig. 1). We carry out Monte Carlo simulations for the HP model on the square lattice with \( N = L \times L \) sites, where \( L = 300 \). Periodic boundary conditions are assumed. We run 500 realizations for fixed \( \lambda_{01} \) and \( \lambda_{12} \). At the beginning of each realization, each site independently takes state 0, 1, or 2 with equal probability. We adopt an event-driven update algorithm in which we select one out of all the possible events to occur with the appropriate probability for each time step. Then, we in-
crement the time by an appropriate amount.

First, we focus on the limit $\lambda_{01} \to \infty$, where an empty site adjacent to a host is instantaneously replaced by the host. A cluster of empty sites survives only when they are surrounded by a shell of parasites. When $\lambda_{12}$ is small, parasites rarely form such a shell. Then, the HP model behaves like the CP, where empty sites and hosts in the HP model collectively correspond to the susceptible sites (i.e., state 0) in the CP. Because many spatial stochastic processes including the CP undergo a DP-type phase transition [1, 27, 28], we expect that the HP model also undergoes a DP-type transition from $S_{01}$ to $S_{012}$ as $\lambda_{12}$ is increased to cross $\approx \lambda'_{01} \approx 0.4122$. The time courses of the mean density of parasites $\langle \rho_2 \rangle(t)$ are shown in Fig. 3(a) for various values of $\lambda_{12}$, where $\langle \cdot \rangle$ denotes the average over all the realizations. At $\lambda_{12} = \lambda'_{12} \approx 0.4129$, we obtain

$$\langle \rho_2 \rangle(t) \propto t^{-\delta}.$$  \hspace{1cm} (1)

From Fig. 3(b), which shows the plotting of the local slopes of $\langle \rho_2 \rangle(t)$, we obtain $\delta \approx \log (\langle \rho_2 \rangle(t) / \log t \approx 0.451$, a value indicative of the DP universality class [1]. We also derive $\delta$ via dynamic scaling [27, 28], i.e., by fitting the following scaling form:

$$\langle \rho_2 \rangle(t) \approx t^{-\beta / \nu_1} \rho_2 \left( \Delta \lambda_{12} t^{1 / \nu_1}, \frac{t^{d/z}}{N} \right),$$ \hspace{1cm} (2)

where

$$\Delta \lambda_{12} = \lambda_{12} - \lambda'_{12}.$$  \hspace{1cm} (3)

The critical exponent $\delta$ is given by $\delta = \beta / \nu_1$. The results of the dynamic scaling with the known critical exponents for the (2+1)-dimensional DP universality class $\beta \approx 0.583$ and $\nu_1 \approx 1.295$ [1] are shown in Fig. 3(c). The data for different values of $\lambda_{12}$ collapse onto a single curve separately for subthreshold and suprathreshold values of $\lambda_{12}$. This result also supports that the transition belongs to the DP universality class.

If $\lambda_{01}$ is finite and sufficiently large, we can numerically obtain the transition points and the critical exponents in the same manner. On the critical line, $\langle \rho_2 \rangle(t)$ shows a power law decay with $t$, as shown in Fig. 4(a). When $\lambda_{01} \gtrsim 0.68$, the dynamic scaling yields the DP critical exponents at each examined transition point. The locations of several points on the $S_{01} - S_{012}$ boundary are shown in Fig. 1 and Table I.

We postpone the analysis of the case $\lambda_{01} \lesssim 0.68$ to Sec. VI.

**IV. DEPENDENCE OF BOUNDARY BETWEEN $S_{012}$ AND THE PARASITE-DRIVEN EXTINCTION REGION ON $\lambda_{12}$**

Parasite-driven extinction may occur for large $\lambda_{12}$ [13, 14]. Figure 4(b) shows the surviving probability of hosts $P_1(t)$ and that of parasites $P_2(t)$ for some large values of $\lambda_{12}$ and fixed values of $\lambda_{01} = 10$ and $L = 300$. If $P_1(t)$ approaches zero rapidly, the parasite-driven extinction is considered to have occurred. If the transition from $S_{012}$ to the parasite-driven extinction belongs to the DP universality class, $P_1(t)$ or $P_2(t)$ should decay geometrically on the phase boundary and exponentially for $\lambda_{12}$ slightly larger than the critical value.

However, Fig. 4(b) indicates that this is not the case. Whether extinction of hosts and parasites occurs or not is determined at an early stage, where hosts are rapidly replaced by parasites, resulting in a rapid decrease in the
number of hosts. If the hosts die out, the parasite-driven extinction takes place. In contrast, if hosts survive the initial stage, which occurs with a low probability, the hosts recover from near extinction. In this case, hosts and parasites are likely to coexist for long time. The value of \( \lambda_{12} \) affects the probability that the hosts survive rather than the rate at which the number of hosts and parasites decay.

We state that the parasite-driven extinction is a finite size effect. In order to confirm this statement, we measure the probability of the parasite-driven extinction as a function of linear lattice size \( L \). Because the transient is short, as shown in Fig. 4(b), we measure the fraction of realizations among 2000 realizations in which both hosts and parasites are extinct at \( t = 100 \). Figure 4(a) shows the extinction probability for a range of values of \( \lambda_{12} \) at \( \lambda_{01} = 10 \) and \( L = 100, 200, 300, 500, 700, \) and 1000. The extinction probability indefinitely decreases with \( L \). The value of \( \lambda_{12} \) that has an extinction probability of 1/2, denoted by \( \lambda_{12} = \lambda_{12}^{1/2}(\lambda_{01}, L) \), is plotted against \( L \) in Fig. 5(b). It is observed that \( \lambda_{12}^{1/2}(\lambda_{01}, L) \propto \ln L \). Logarithmic scaling is also observed at other values of \( \lambda_{01} \). In Fig. 5 we show \( \lambda_{12}^{1/2}(\lambda_{01}, L) \) for some values of \( \lambda_{01} \) and \( L \) (dotted lines).

The results obtained in this section indicate that the parameter region of parasite-driven extinction indefinitely shrinks as \( L \) increases. This system-size dependence is distinct from the dependence of the critical value on \( L \) in the usual phase transitions, which is convergent in the limit of infinite system size.

| \( \lambda_{01} \) | 0.509 | 0.543 | 0.591 | 0.651 | 0.680 | 0.942 | 2.000 | 6.000 | 10.000 | 15.000 | 20.000 | \( \infty \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \( \lambda_{12} \) | \( \infty \) | 10.000 | 4.000 | 2.378 | 2.000 | 1.000 | 0.581 | 0.459 | 0.440 | 0.430 | 0.426 | 0.4129 |

### V. DP TRANSITION ON THE S01–S012 BOUNDARY IN THE LIMIT \( \lambda_{12} \rightarrow \infty \)

When \( \lambda_{12} \) is sufficiently large, the mean field approximation predicts that the system transits from \( S_0 \) to \( S_{012} \) as \( \lambda_{01} \) increases \([13]\). The PA predicts that the system
transits from $S_0$ to $S_{01}$ and then to $S_{012}$ as $\lambda_{01}$ increases. The i-PA predicts that the system is in $S_0$ irrespective of the value of $\lambda_{01}$ (see Figure 1 in [14]). To analyze this apparent contradiction, we carry out simulations in the limit $\lambda_{12} \to \infty$.

Irrespective of the value of $\lambda_{12}$, it seems that $\lambda_{01}$ must be larger than $\lambda_{01}'$ for hosts to survive. Therefore, we start by examining the case $\lambda_{01} \approx \lambda_{01}'$. When $\lambda_{01} \approx \lambda_{01}'$ and $\lambda_{12} \to \infty$, a host adjacent to a parasite is instantaneously invaded by the parasite. In such a case, if we start numerical simulations on the equal fraction of empty sites, hosts, and parasites, the number of hosts, if they survive at all, becomes small at the very beginning of a run. For example, the averaged number of hosts on the $300 \times 300$ square lattice decreases from 30000 to $\approx 60$ after a short time. It may not be suitable to measure the decay of the expected number of hosts, which would be $\langle p_1 \rangle(t) \propto t^{-\delta}$ on the critical line; this is because such a measurement necessitates the existence of a sufficiently large number of hosts at the beginning of a run.

Another numerical method for estimating the transition point and critical exponents is to measure the time courses of the system starting from an almost absorbing configuration $[\lambda_{01}]$. For example, we observe the power law behavior of the surviving probability, the number of active sites, and the mean spreading at the transition point, if we run the CP starting from a single active site. Therefore, we assume that the initial configuration of the HP model contains just one host. The other sites are either empty or parasites with a probability of 0.5.

With this one-host configuration, the mean number of hosts follows the power law $\langle N_1 \rangle(t) \propto t^{\theta}$ at $\lambda_{01} \approx \lambda_{01}'$, as shown by the solid lines in Fig. 6(a). On the other hand, parasites rapidly become extinct (dashed line). The surviving probability of hosts also follows the approximate power law $\tilde{P}_1(t) \propto t^{-\delta'}$ in the same parameter range (Fig. 6(b)).

At $\lambda_{01} \approx \lambda_{01}'$, we adopt the dynamic scaling ansatz [1] represented by

$$\langle N_1 \rangle(t) \approx t^\theta \tilde{N}_1 \left( \Delta \lambda_{01} t^{1/\nu_1} \frac{t^{d/z}}{N} \right),$$

$$P_1(t) \approx t^{-\delta'} \tilde{P}_1 \left( \Delta \lambda_{01} t^{1/\nu_1} \frac{t^{d/z}}{N} \right),$$

where

$$\Delta \lambda_{01} = \lambda_{01} - \lambda_{01}'.$$

This dynamic scaling ansatz explains the data shown in Figs. 6(a) and 6(b), respectively. The fitting results with the DP exponents $\theta \approx 0.229$ and $\delta' = \delta \approx 0.451$ (Figs. 6(c) and 6(d)) suggest that the transition from $S_0$ to $S_{01}$ at $\lambda_{01} = \lambda_{01}'$ and $\lambda_{12} \to \infty$ is of the DP type. We consider that this phase transition is independent of the value of $\lambda_{12}$. This result qualitatively agrees with that

FIG. 6: Transitions at $\lambda_{01} \approx \lambda_{01}'$ and $\lambda_{12} \to \infty$. (a) Time courses of $\langle N_1 \rangle(t)$ (solid lines) and $\langle N_2 \rangle(t)$ (dashed lines that almost overlap each other). (b) Surviving probability of hosts $P_1(t)$. (c) Dynamic scaling (Eq. 4) for the data shown in (a). (d) Dynamic scaling (Eq. 5) for the data shown in (b). The lines correspond to $\lambda_{01} = 0.4082, 0.4092, \ldots$, and 0.4182 from the bottom to the top. The number of realizations for a given $\lambda_{01}$ is equal to $10^7$. 
obtained from the PA but not that obtained from the i-PA.

With the random initial configuration, we observe \( \langle N_1(t) \rangle \) and \( P_1(t) \) instead of \( \langle p_1 \rangle \) and obtain the same results as those shown in Fig. 7(a) \( \langle N_1(t) \rangle \) and \( P_1(t) \) decay geometrically at \( \lambda_{01} \approx \lambda^*_{01} \), as shown in Fig. 7(a) and 7(b), respectively. The dynamic scaling (Eq. (4)) with the DP exponents fits \( \langle N_1(t) \rangle \) shown in Fig. 7(a) well (Fig. 7(c)). On the other hand, dynamic scaling of \( P_1(t) \) (Eq. (5)) fails because the number of surviving hosts after a short time is greater than one. To circumvent this case, we assume that the surviving hosts are located away from each other and grow independently on the lattice. We denote the surviving probability of a specified host by \( P_1^{\text{single}}(t) \). Then, we approximate \( P_1(t) \) as

\[
P_1(t) \approx 1 - (1 - P_1^{\text{single}}(t))^n,
\]

that is,

\[
P_1^{\text{single}}(t) \approx 1 - (1 - P_1(t))^{1/n},
\]

where \( n \) is the mean number of surviving hosts after a short time. By replacing \( P_1(t) \) in Eq. (4) by \( P_1^{\text{single}}(t) \) and using the DP critical exponents, we obtain a reasonable scaling, as shown in Fig. 7(d).

**VI. \( S_{012} \) PHASE IN THE LIMIT \( \lambda_{12} \rightarrow \infty \)**

When \( \lambda_{12} \rightarrow \infty \), either the random initial configuration or the one-host configuration yields \( S_0 \) or \( S_{01} \), but not \( S_{012} \), for any value of \( \lambda_{01} \). This remains the case for at least up to \( L = 1000 \). The apparent absence of \( S_{012} \) may be because there are initially too many parasites. In the case of a large \( \lambda_{12} \), parasites replace hosts in a short time, which is likely to lead to the extinction of the parasite.

To examine the possibility of \( S_{012} \) at \( \lambda_{12} \rightarrow \infty \), we adopt the one-parasite configuration, where the remaining sites are either empty or occupied by the host with a probability of 0.5. With this initial configuration, we find that both hosts and parasites can survive when \( L \) is large and \( \lambda_{01} \) is within a certain range. When \( L \lesssim 400 \), neither hosts nor parasites survive.

Time courses of the number of parasites are shown in Fig. 5 for \( L = 700 \) and three values of \( \lambda_{01} \). As \( \lambda_{01} \) increases within this range, the basal number of parasites in a short run increases, but the amplitude of the damped oscillation in the number of parasites also increases. If \( \lambda_{01} \) is sufficiently large, the amplitude of the oscillation is so large that the parasites are likely to disappear in the first cycle of the oscillation (Fig. 5(c)), whereas the basal number of parasites is larger than that in the case of a smaller \( \lambda_{01} \) (e.g., Fig. 5(a)). We remark that, for related spatial stochastic processes, sustainable oscillations [51, 52] and absorption to the unanimity state owing to the blowing out of oscillations [53] were reported as finite size effects.

---

**FIG. 7:** (a) Time courses of \( \langle N_1(t) \rangle \) when \( \lambda_{01} \approx \lambda^*_{01} \). (b) Surviving probability of hosts \( P_1(t) \). (c) Dynamic scaling (Eq. (4)) for the data shown in (a). (d) Dynamic scaling with Eqs. (4) and (5) applied to the data shown in (b). The lines correspond to \( \lambda_{01} = 0.40821, 0.40921, \ldots, \) and 0.41821 from the bottom to the top. The number of realizations for a given \( \lambda_{01} \) is equal to \( 10^7 \).
FIG. 8: Time courses of $N_2(t)$ when $\lambda_{12} = (a) 0.515$, (b) 0.530, and (c) 0.545. We set $\lambda_{12} \to \infty$ and $L = 700$. Each colored line represents a single run, and the results for 4 runs are shown in each panel.

The stationary density of the parasites averaged over the surviving runs, denoted by $\langle \rho_2 \rangle_{\text{surv}}$, is shown for some large values of $L$ in Fig. 9(a). Here $\langle \rangle_{\text{surv}}$ indicates the average over realizations in which parasites survive after a transient of length 1500. We observe that $\langle \rho_2 \rangle_{\text{surv}}$ is positive for $\lambda_{12} \gtrsim 0.509$ and converges to a certain value for $\lambda_{12} \gtrsim 0.518$. We did not determine the transition point and the critical exponents by a scaling argument for $\langle \rho_2 \rangle_{\text{surv}}$ in terms of $\lambda_{12}$ because $\langle \rho_2 \rangle_{\text{surv}}$ is too small for $\lambda_{12} \approx 0.509$. To support the existence of the $S_{012}$ phase in the limit $L \to \infty$, we measure the fraction of surviving runs for various system sizes. As shown in Fig. 9(b), the fraction of surviving runs increases with $L$ for $\lambda_{12} \gtrsim 0.509$. This result supports the fact that $S_{012}$ exists for $\lambda_{12} \gtrsim 0.509$ in the limit $L \to \infty$. As $\lambda_{12}$ increases even further (i.e., $\lambda_{12} \gtrsim 0.524$), the fraction of surviving runs decreases. The parasite-driven extinction for a finite system size gets eminent in this range of $\lambda_{12}$; this parasite-driven extinction is caused by the increasing magnitude of damped oscillations. Similar to the results shown in Sec. IV, the parameter region for the parasite-driven extinction depends on the system size and is likely to disappear in the limit $L \to \infty$. We also observed that the results in the case of finite $\lambda_{12} \gtrsim 2$ are qualitatively the same as those in the case of $\lambda_{12} = \infty$.

Finally, we examine the $S_{01} - S_{012}$ transition line for large $\lambda_{12}$. In this case, we do not obtain a data collapse by the dynamic scaling based on the relaxation of the system, as shown in Fig. 10(a) for $\lambda_{12} = 4$. Therefore, we attempt the dynamic scaling for the parasites in the manner similar to that employed in Sec. V. Consider the neighborhood of the $S_{01} - S_{012}$ transition point for a large fixed $\lambda_{12}$. With the one-parasite configuration, a parasite would quickly invade hosts at an early stage. In this case, the growth rate of the parasite is fairly insensitive to $\lambda_{01}$. Therefore, the scaling argument would not apply.

To avoid such an initial growth of parasites and obtain a clear scaling of $\langle N_2 \rangle(t)$, we proceed as follows. First, we start a simulation from a mixture of independently distributed empty sites and hosts with the equal density...
the single parasite is added at the critical state is reached. Figure 10(b) shows the time course of $\langle N_2(t) \rangle$ for $\lambda_{12} = 4$ and various values of $\lambda_{01}$, where the single parasite is added at $t = 0$. Near the transition point, $\lambda_{01} \sim 0.591$, $\langle N_2(t) \rangle$ seems to follow a power-law. The data for different values of $\lambda_{12}$ collapse onto a single curve with the DP critical exponents, separately for sub-threshold and supratreshold values of $\lambda_{01}$ (Fig. 10(c)). Figure 10(c) suggests that the transition belongs to the DP universality class.

Note that $\langle N_2(t) \rangle$ above the transition point saturates owing to a finite size effect. It is difficult to determine critical properties for large values of $\lambda_{12}$ because we would need increase $L$ to perform the dynamic scaling. Nevertheless, we believe that the $S_{01} - S_{012}$ transition belongs to the DP universality class even for larger $\lambda_{12}$.

VII. SUMMARY

We carried out numerical simulations for a three-state host-parasite model on the square lattice. The obtained phase diagram is shown in Fig. 1. Our numerical results suggest that the $S_0 - S_{01}$ boundary and the $S_{01} - S_{012}$ boundary are of the DP universality class. The parasite-driven extinction occurs for large $\lambda_{01}$ and large $\lambda_{12}$ in relatively small systems. However, for a sufficiently large system, the three states coexist in the parameter region where the parasite-driven extinction occurs for a small system. Therefore, the parasite-driven extinction is a finite size effect. This prediction is consistent with the phase diagram obtained from the PA but not with phase diagrams obtained from the mean field approximation and the i-PA.

Acknowledgments

We thank Alexei Tretiakov for valuable discussions. N.K. acknowledges the support provided by the Japan Society for the Promotion of Science through Grant-in-Aid for Scientific Research (C) (Grant No. 21540118). N.M. acknowledges the support provided by MEXT, Japan through Grants-in-Aid for Scientific Research (Nos. 20760258 and 20540382).

[1] J. Marro and R. Dickman, Nonequilibrium phase transitions in lattice models (Cambridge University Press, 1999).
[2] T. M. Liggett, Interacting particle systems (Springer-Verlag, New York, 1985).
[3] R. Durrett and S. A. Levin, Philos. Trans. Roy. Soc. London Ser. B 343, 329 (1994).
[4] M. E. J. Newman, SIAM Rev. 45, 167 (2003).
[5] A. Barrat, M. Barthélémy, and A. Vespignani, Dynamical processes on complex networks (Cambridge University Press, 2008).
[6] U. Dieckmann, R. Law, and J. A. J. Metz, The geometry of ecological interactions: simplifying spatial complexity (Cambridge University Press, 2000).
[7] R. M. Anderson and R. M. May, *Infectious diseases of humans* (Oxford University Press, 1991).
[8] T. Antal, M. Droz, A. Lipowski, and G. Ódor, Phys. Rev. E **64**, 36118 (2001).
[9] T. Antal and M. Droz, Phys. Rev. E **63**, 56119 (2001).
[10] K. C. de Carvalho and T. Tomé, Mod. Phys. Lett. B **18**, 873 (2004).
[11] K. C. de Carvalho and T. Tomé, Int. J. Mod. Phys. C **17**, 1647 (2006).
[12] M. Peltomäki, V. Vuorinen, M. Alava, and M. Rost, Phys. Rev. E **72**, 46134 (2005).
[13] K. Satô, H. Matsuda, and A. Sasaki, J. Math. Biol. **32**, 251 (1994).
[14] Y. Haraguchi and A. Sasaki, J. Theor. Biol. **203**, 85 (2000).
[15] M. Boots and A. Sasaki, Ecol. Lett. **3**, 181 (2000).
[16] M. Boots and A. Sasaki, Amer. Nat. **159**, 706 (2002).
[17] M. Boots and A. Sasaki, Ecol. Lett. **6**, 176 (2003).
[18] K. Tainaka, Phys. Lett. A **176**, 303 (1993).
[19] K. Tainaka, Phys. Lett. A **207**, 53 (1995).
[20] M. Frean and E. R. Abraham, Proc. R. Soc. London Ser. B **268**, 1323 (2001).
[21] J. J. Ryder, M. R. Miller, A. White, R. J. Knell, and M. Boots, Oikos **116**, 2017 (2007).
[22] A. Lipowski, Phys. Rev. E **60**, 5179 (1999).
[23] M. Kowalik, A. Lipowski, and A. L. Ferreira, Phys. Rev. E **66**, 066107 (2002).
[24] K. Ohtsuka, N. Konno, N. Masuda, and K. Aihara, Int. J. Bifurcation Chaos Appl. Sci. Eng. **16**, 3687 (2006).
[25] K. Satô and N. Konno, J. Phys. Soc. Jpn. **64**, 1866 (1995).
[26] E. Andjel and R. Schinazi, J. Appl. Probab. **33**, 741 (1996).
[27] H. Hinrichsen, Physica A **369**, 1 (2006).
[28] H. Hinrichsen, Adv. Phys. **49**, 815 (2000).
[29] G. Ódor, Rev. Mod. Phys. **76**, 663 (2004).
[30] P. Grassberger and A. de la Torre, Ann. Phys. **122**, 373 (1979).
[31] Y. Itoh and K. Tainaka, Phys. Lett. A **189**, 37 (1994).
[32] S. Morita and K. Tainaka, Popul. Ecol. **48**, 99 (2006).
[33] G. Szabó, A. Szolnoki, and R. Izsák, J. Phys. A: Math. Theor. **37**, 2599 (2004).