Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Advanced “lab-on-a-chip” to detect viruses – Current challenges and future perspectives

Jianjian Zhuang, Juxin Yin, Shaowu Lv, Ben Wang, Ying Mu

* Corresponding author. Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
E-mail address: muying@zju.edu.cn (Y. Mu).

ABSTRACT

Massive viral outbreaks draw attention to viruses that have not been thoroughly studied or understood. In recent decades, microfluidic chips, known as “lab-on-a-chip”, appears as a promising tool for the detection of viruses. Here, we review the development of microfluidic chips that could be used in response to viral detection, specifically for viruses involved in more recent outbreaks. The advantages as well as the disadvantages of microfluidic systems are discussed and analyzed. We also propose ideas for future development of these microfluidic chips and we expect this advanced technology to be used in the future for viral outbreaks.

1. Introduction

Viruses infect millions of individuals each year resulting in serious morbidity (Hutchinson, 2018), birth defects (Rasmussen et al., 2016), and mortality (Campos et al., 2015). Viruses have the ability to rapidly evolve and transmit through multiple modes such as the respiratory tract (Mazur et al., 2015; Young et al., 2015), digestive tract (Ferrari et al., 2017) and skin (Hamel et al., 2015). Despite many discoveries related to the understanding of different aspects in virology, viruses are still a major cause of disease (Suratane et al., 2010). In recent years, life-threatening viruses such as COVID-19 (Corman et al., 2020; Lorusso et al., 2020), Zika virus (ZIKV) (He et al., 2017; Petersen et al., 2016) and Ebola virus (EBOV) (Baize et al., 2014; Gire et al., 2014) have unexpectedly emerged and were difficult to tackle since there were no approved vaccines or effective treatments for the treatment of these viruses. In general, viruses cause significant economic burden to society and most are recognized as a public health emergency of international concern (PHEIC) by the World Health Organization (WHO) (Gostin et al., 2014; Gulland, 2016; Patel and Jernigan, 2020).

Traditional methods used for virus detection mainly involve cell culture (Hematian et al., 2016; Leland and Ginocchio, 2007), nucleic acids (Dominguez et al., 2018; Payungporn et al., 2006) and antigen-antibodies (Liao et al., 2009; Senthilkumaran et al., 2017). These methods, especially for nucleic acid detection methods, require expensive equipment and well-trained operators (Eivazzadeh-Keihan et al., 2019; Yeh et al., 2020). Moreover, these methods are unable to meet the needs of clinical diagnosis as well as provide timely details necessary for large viral outbreaks. Point of care (POC) enables simple, fast, autonomous and sensitive virus detection (Gervais et al., 2011; Gubala et al., 2012; Kumar et al., 2019; Yetisen et al., 2013). The POC device is currently available in the market (Chin et al., 2012), which is expected to reach USD 52.6 BN by 2025 and will experience a robust compound annual growth rate of 9.75% from 2019 to 2026. In response to viral outbreaks, advanced POC diagnostic technology must be equipped for both the home and clinical use.

Microfluidic chips, or “Lab on a chip”, are versatile and promising technology (Bruinjs et al., 2016; Koo et al., 2017; Li et al., 2017; Medlin and Orozco, 2017; Tangchiheneeree et al., 2017) that have the ability to integrate sample preparation, reactions and detection on a micron-scale chip (Basha et al., 2017; Kim et al., 2009; Kovarik et al., 2013; Toren et al., 2016). This advanced technology has both integrated and miniaturized characteristics, which can integrate a traditional laboratory...
into a small chip. It uses a small amount of detection reagents and samples to obtain accurate test results in a short period of time, which is especially suitable for POC. Recently, dramatic paper-based microfluidics (Ahn et al., 2018; Reboud et al., 2019), centrifugal microfluidics (Lee et al., 2006; Li et al., 2019a), wearable microfluidic devices (Gao et al., 2017; Koh et al., 2016; Nyein et al., 2018), digital nucleic acid detection chips (Song et al., 2018; Zhu et al., 2014) and others have been proposed for pathogen detection (Tsougeni et al., 2019) as well as disease screenings (Shuler, 2019) and additional applications (Yin et al., 2019). These microfluidic technologies have been systematically classified and summarized by lots of reviews (Bruijns et al., 2016; Kim et al., 2009; Koo et al., 2017; Koh et al., 2016; Nyein et al., 2018), digital nucleic acid detection methods, was used to detect the virus (Broadhurst et al., 2016), but was found to be time-consuming as well as expensive (Kaushik et al., 2016; Pinsky et al., 2015).

Recently, microfluidics represents a promising technology for the detection of EBOV. One study (Magro et al., 2017) reported a paper microfluidic chip based on reverse transcription recombinase polymerase amplification (RT-RPA). This paper chip has both a positive and negative control area and can detect EBOV in 30 min. Moreover, results from 43 patient samples in Guinea showed that this paper chip has a 90% sensitivity compared to RT-PCR. Du et al. (2017b) proposed a microfluidic platform to extract and capture EBOV RNA using a photo-cleaveable capture probe. This chip has the ability to perform 80 assays in parallel and its analytical method contains a LOD of 800 aM. Qin et al. (2019) proposed an automated and multiplexing system to detect EBOV RNA (Fig. 3 A). This system can complete 24 assays while using use Cas13a to generate fluorescent reporter RNAs resulting in a LOD of 20 pfu/mL from 10 μL EBOV RNA within 5 min.

There are five types of EBOV including the Bundibugyo Ebola virus (BDBV), Reston virus (RESTV), Zaire Ebola virus (ZEOB), Tai Forest Ebola virus (TAFV) and Sudan Ebola virus (SUDV) (Taniguchi et al., 2012). Four (EBOV, SUDV, BDBV, TAFV) of the five subtypes are extremely severe and detrimental to humans (Khan et al., 2015). It is necessary to study microfluidic system capabilities for the detection of various EBOV types. Magro et al. also developed a multiplex paper chip to detect three types of EBOV based on RPA (Magro et al., 2017) (Fig. 3 B). Piraino et al. (2016) developed a microfluidic chip that combined digital and analog technologies. This chip contains a high dynamic range and can simultaneously detect three types of EBOV with a LOD of 1pM from 5 μL of serum. Brangel et al. (Brangel et al., 2018) reported a paper and smartphone-based platform to detect IgG antibodies against the virus in sera. Detection results testing 90 survivors and 31 uninfected individuals revealed 100% sensitivity (Fig. 3 C). Moreover, this platform was able to detect three types of EBOV. More recently, Lin et al. (Lin

![Image](https://example.com/image.png)

Fig. 1. Advanced microfluidics chip for efficient detection of viruses. Lab on a chip technology integrate various miniaturized laboratory functions on a single chip for the completion of steps in the traditional laboratory. The cooperation between clinical lab and individual users is crucial when faced the virus outbreaks. The microfluidics chip can be equipped for both the clinical and home use. It can be regarded as one of the most promising solutions in response to viral outbreaks.
et al., 2019) developed a disc chip to detect the four EBOVs using the reverse transcription loop-mediated isothermal amplification (RT-LAMP) method (Fig. 3 D). The LOD of this system is 1 copy/μL for SUDV, 100 copies/μL for EBOV, 1000 copies/μL for BDBV and 10 copies/μL for TAFV detected in 50 min.

State-of-the-art microfluidic detection systems can achieve cost-effective, quick (reported at 5 min) and accurate (as low as 1 copy) detection for EBOV at POC. However, some chips lack sample preparation or require additional instrumentation, which is not suitable in resource-limited settings for POC. Moreover, due to the high contagious rate and characteristics of the multiple EBOV subtypes, low-cost multiplex detection chips should be developed.

2.2. Human immunodeficiency virus (HIV)

HIV is a single-stranded RNA virus that results in acquired immunodeficiency syndrome (AIDS) (Watts et al., 2009). HIV attacks T lymphocytes and integrates into the chromosomes of its host, which in turn leads to defects in the human immune system causing irreparable damage to the body (Druce et al., 2016; Kuznetsov et al., 2003; Shourian

Fig. 2. Schematic representation of the structure of representative viruses. A: Ebola virus de (de Wit et al., 2011); B: Human immunodeficiency virus (Druce et al., 2016); C: Influenza virus (Kaiser, 2006); D: Zika virus (Qadir et al., 2018); E: Dengue virus (Koznetti et al., 2018); F: SARS-CoV-2 (Kim et al., 2020).

Fig. 3. Microfluidic system to detect EBOV. A: Microfluidic chips proposed by Qin et al., in 2018. This chip can detect 24 samples and contains pneumatic and fluidic layers. RNA was pumped into the chip and reacts with Cas13a-crRNA in the detection reservoir. Adapted from ref. 62 with permission from ACS Publications. B: Schematic of multiplexed paper-based microfluidic chips (Magro et al., 2017) Enlarged view and top view. This multilayered paper device contains 8 layers and 9-outlets. The detection method is based on RPA. RT-RPA reagents and three different primers for detection are freeze-dried in the chip. Adapted from ref. 60 with permission from Nature Publications. C: Paper chip proposed by Brangel et al. Serum forms complexes between the labeled gold nanoparticles (AuNPs) and the target analytes. Targeted IgG serum antibodies against single or multiple recombinant Ebola viral proteins bind to preprinted test lines, forming a visible red-purple line. A control line is used to validate assay function for the detection of antihuman antibody-gold nanoparticle conjugates. Results can be obtained in 15 min. Adapted from ref. 66 with permission from Nature Publications. D: Schematic of the microfluidic chip for detection of four EBOV species (Lin et al., 2019). Sample was placed into the chip through centrifugation. Primers were embedded into the chip and the amplified products were detected by a fluorescent marker. Adapted from ref. 67 with permission from Nature Publications. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
and Qureshi, 2019). More than 37 million people live with HIV and infect about 2 million more every year (Anampa et al., 2020). This has been occurring since the first case of HIV infection in the early 1980s (Bao and Shao, 2018). Early HIV diagnosis can reduce transmission through behavioral preventive measures and aid in the treatment of infected individuals through treatment strategies such as anti-retroviral therapies (ART) (Choi et al., 2014). However, only 10%–51% of infected individuals are aware they are infected, most of who live in resource-limited areas where they are not able to readily be tested (WHO, 2010). Therefore, POC for early diagnosis of HIV is particularly important.

Investigators have applied microfluidics to POC for HIV and achieved encouraging results (Mauk et al., 2017). Glynn et al. (Glynn et al., 2014) reported a microfluidic chip based on the number of CD4+ cells and magnetophoresis to detect AIDS (Fig. 4 A). This chip uses CD4+ cell numbers to judge HIV infection in the blood and contains a capture efficiency of 93.0%. It does not need an additional pump and can be operated manually. Liu et al. also proposed microfluidic chips based on the number of CD4 + cells as well as immunomagnetic separation to detect HIV infection. However, DNA content was used to quantify CD4+ cells. This chip can obtain accurate results from 10 μL of whole blood, which is consistent with flow cytometry analysis. Based on the principle of CD4+ cell detection, Alere Pima ™ CD4 was launched in 2010 and provides results within 20 min.

RT-LAMP is widely used for the detection of HIV RNA in a microfluidic system (Jangam et al., 2013; Sun et al., 2013; Zanoli and Spoto, 2013). Damhorst et al., (2015) developed a microfluidic platform that integrated RT-LAMP and the smartphone to detect HIV load (Fig. 4 B). Cell lysis buffer combined with a microfluidic chip was used to treat whole blood and complete RT-LAMP On-chip. As long as a concentration of 670 viral particles are contained in each microliter of whole blood, the virus can be detected. In more recent studies, Phillips et al. (Phillips et al., 2019) engineered an autonomous analysis device (microRAAD) instrument that detects HIV in whole blood (Fig. 4 C). A lateral flow immunoassay (LFIA) was used to visualize the product of RT-LAMP. This instrument achieves a limit of detection (LOD) of 100 HIV-1 RNA copies within 90 min. Chen et al. (Chen et al., 2016) developed a chip that can detect anti-HIV antibodies and HIV RNA, simultaneously. This chip meets serological requirements and detects HIV RNA as low as 10^3 viral particles/ml from saliva or blood.

Paper-based microfluidics is also an effective tool for HIV detection. Zhao and Liu, (2016) proposed a paper electrochemical microfluidic system for the diagnosis of an HIV/HCV co-infection. This paper system contains multi-channels and uses ELISA to detect antibodies in serum samples. This system can detect 300 pg/ml HIV and 750 pg/ml Hepatitis C virus (HCV) within 20 min. Kurdekar et al. (Kurdekar et al., 2016) use carbon dots, Whatman filter paper and nitrocellulose paper to detect the HIV antigen. Results suggest that assays using nitrocellulose paper have higher detection ranges (10 μg/ml to 250 pg/ml) and sensitivities (fourfold) compared to assays using Whatman filter paper. Li et al. (Li et al., 2016) (Fig. 4 D) developed an origami nanobiosensor based on paper and zinc oxide nanowires (ZnO NWs) to detect HIV. ZnO NWs was used to increase the surface area of electrodes as well as binding capacity. This biosensor utilizes an electrochemical impedance spectroscopy (EIS) method to achieve a LOD of 60 fg mL–1. In addition, OraQuick®, developed by OraSure Technologies™, can detect the HIV antibodies in saliva and the specificity can reach 99.98%.

With the goal of detecting HIV, these studies were mainly performed analyzing CD4 + cells, nucleic acids and antigen-antibody reactions in microfluidic chips. Other methods such as RPA (Crannell et al., 2014; Lillis et al., 2016) and helicase dependent amplification (HDA) (Jordan et al., 2012) are also available in microfluidic chips. These chips demonstrate quicker detection speeds, lower detection limits and more optimal portability when compared to traditional laboratory methods. However, some chips do not integrate sample preparation and are not suitable for POC. Moreover, based on the presence of a maternal
antibody or absence of a host antibody, methods to detect antibodies cannot be used to accurately diagnose HIV early (Rosenberg et al., 2015; Shafiee et al., 2015; Yan et al., 2019). Therefore, more innovative microfluidic technologies need to be developed, specifically ones that are user-friendly and affordable.

2.3. Influenza virus

The influenza virus results in significant morbidity and mortality causing a major public health concern worldwide (Bedford et al., 2015). The virulence of the influenza virus is reflected in the immunogen of its enveloped protein (Kaiser, 2006). Infected individuals suffer from severe viral pneumonia and acute lung injury (Guo and Thomas, 2017). The WHO estimates that influenza viruses infect approximately 5–15% of the world population and cause 250,000–500,000 deaths each year (Vemula et al., 2016). There are four types of influenza viruses including influenza A, B, C, and D. Among these, influenza virus A infects humans and other animals such as pigs and birds. Influenza viruses B and C only infects humans. Influenza virus A can be presented in 144 various subtypes based on combinations of 18 hemagglutinin (HA,H1–H18) and neuraminidase (NA,N1–N11) (Petrova and Russell, 2018; Tewawong et al., 2017). To prevent the spread of influenza and reduce economic and health burdens, accurate and rapid detection methods for the virus are necessary.

Currently, the influenza virus is a health concern for “lab on a chip” (Anderson et al., 2019; Singh et al., 2017; Vemula et al., 2016; Xu et al., 2010; Zhe et al., 2020). In 2016, Lee’s group developed an integrated microfluidic method based on the sandwich-based aptamer that can detect H1N1 at a LOD of 0.032 hemagglutination units (HAU) within 30 min (Tseng et al., 2016). In 2020, their group (Lu et al., 2020) also proposed a more automated digital microfluidic platform to detect H1N1 (Fig. 5 A). This method utilizes electromagnetically-driven magnetic beads and enzyme-linked immunosorbent (ELISA)-like assays on the platform to detect H1N1 viruses. This system can also reach a LOD of 0.032 HAU within 40 min. Ma et al., (2019) proposed a simple self-driven microfluidic chip to detect H1N1 (Fig. 5 B). This system integrated nucleic acid extraction and RT-LAMP and was able to detect 3 × 10⁻⁸ HAU units/reaction in 40 min through colorimetric detection. Xia et al., (2019) developed a smartphone-based microfluidic system for the detection of avian influenza virus. This system uses gold nanoparticles to detect virus at a LOD of 2.7 × 10⁻⁸ EID₅₀/mL.

The various characteristics of the multiple influenza virus strains make development of microfluidic systems more complicated (Zhang and Miller, 2019). More recently, Han et al., (2016) reported a microfluidic electrochemical system to multiplex detect the influenza A virus. This group established the electrochemical immunosensor through three electrodes arrangements and ZnO nanorods (NRs) on the inner surface of PDMS. This system can simultaneously detect the H1N1, H5N1, and H7N9 viruses in the 1 pg/ml - 10 ng/ml range. Wang et al., (2020) developed a microfluidic system based on magnetism mediated separation and size mediated signal detection to multiplex detect influenza A (Fig. 5 C). The LOD of this system reaches 3.4 ng/mL for H7N9 HA and 4.5 ng/mL for H9N2 HA. The disc chip proposed by Liu et al., (2018) can detect three avian influenza viruses and two influenza viruses on a single chip within 70 min. Shen et al., (2019) also proposed an integrated microfluidic system that contains sample preparation and a RT-PCR module (Fig. 5 D). This system uses glycan-coated magnetic beads to capture all influenza viruses in samples and can simultaneously detect twelve influenza subtypes with LODs ranging from 40 to 3000 copies within 100 min. Wu et al., (2019) developed a digital microarray system to multiplex detect H9N2, H1N1 and H7N9 avian influenza viruses. This system uses antibodies to modify the microarray fluorescent magnetic nanospheres to achieve multiplex detection with a LOD of 0.02 pg/mL. The commercial product Cobas® has been used for the detection of
influenza. This instrument uses qRT-PCR detection, which can detect and distinguish between influenza A and influenza B viruses within 20 min using RNA detection of nasopharyngeal swab specimens.

Microfluidic chips have widely focused on the detection of influenza viruses. Both detection time and LOD have significantly improved through this advanced technology. Since there are various subtypes of the influenza viruses, multiplex detection ability of these chips still need improvement. Moreover, rapid and ongoing evolution of influenza viruses will make this even more challenging. Furthermore, portability and cost should be further improved since influenza viruses are common and universal.

2.4. Zika virus (ZIKV)

ZIKV is a single-stranded, RNA virus that belongs to flaviviridae and is a causative agent of Zika fever (Metz et al., 2019; Qadir et al., 2018). This mosquito-borne virus was identified in 1947 (Nicolini et al., 2017) and 84 countries so far have been affected (Nelson et al., 2019). The WHO has announced that ZIKV is a PHEIC (Xu et al., 2016). ZIKV can be transmitted through human contact and has been detected in urine, blood, semen, amniotic fluid, cerebrospinal fluid, saliva and even tears (Paixao et al., 2016; Wu et al., 2018). ZIKV infection is generally asymptomatic. A small number of people will have mild clinical symptoms such as mild fever, fatigue, headache, joint pain and a rash, which will rarely lead to serious illness or complications. In recent years, it has been found that the virus can cause teratogenicity and Guillain-Barre syndrome (Cugola et al., 2016; van den Berg et al., 2014). The high contagious rate of the virus led to over 2 million humans being infected globally (Santiago et al., 2018). The most recent outbreak (Petersen et al., 2016) highlights that early diagnosis of ZIKV is extremely important to control epidemic situations, which is extremely challenging (Janahi et al., 2017; Ricotta et al., 2019).

In recent years, microfluidics has also shown to be an effective tool for the early diagnosis of ZIKV. Microfluidic chips based on nucleic acid detection have important applications in ZIKV detection (Pardee et al., 2016). For example, Song et al., (2016) reported a cassette microfluidic system based on RT-LAMP (Fig. 6 A). This chip is chemically heated to eliminate the need for electricity. Moreover, it uses a visualization method to observe the virus. These characteristics make this system extremely suitable for POC. This system also achieved detection of 5 plaque-forming units (PFU) in 40 min. Ganguli et al., (2017) generated a microfluidic chip based on a RT-LAMP and smartphone combination. This chip has the ability to multiplex detect ZIKV and other viruses for precise results. The LOD of this system is 1.56e5 PFU/mL in blood under 35 min. Kaarj et al., (2018) developed a paper microfluidic chip combined with RT-LAMP and a smartphone to detect ZIKV RNA. This system is sensitive and can detect 1 copy/μL in 15 min with high specificity. However, this system requires additional purification steps. Yang et al., (2019) proposed a wearable microfluidic system to detect the Zika virus (Fig. 6 B). This system integrates RPA on a bandage-like sensor. Body heat can activate the sensor since the RPA can react at room temperature. It has also been demonstrated that the wearable biosensor reaches a detection limit of 10 copies/μL within 10 min. This method has proven to be very convenient, low-cost and easy-to-receive. If equipped with a sample preparation function in the future, it will have very broad application value. More recently, Batule et al. (Batule et al., 2020) reported a two-step paper chip strategy used for RNA extraction and RT-LAMP. This method can detect 10 copies in the serum within 1 h.

On-chip immunological testing remains an important diagnostic measure for Zika virus infection. Draz et al., (2018) reported a paper chip that used platinum nanoparticles. The platinum nanoparticles used antibodies on paper that improved sensitivity and specificity. This chip
was able to detect ZIKV with a LOD of 10^4 copies/μL. Rong et al., (2019) developed a paper microfluidic system based on quantum dot probes and smartphones. This chip shows limited cross-reactivity with other viruses and can reach a LOD of 0.15 ng/mL in serum within 20 min. Meena et al., (2018) developed an optofluidic chip based on magnetic beads and optical detection to simultaneously detect ZIKV nucleic acids and proteins. This method contained a LOD of 8 fm and ruled out potential interference from other viruses.

Microfluidic technology has provided a new route for the detection of ZIKV. Although qRT-PCR is still the gold standard for ZIKV detection, microfluidics has shown fast and accurate advantages and continued development will demonstrate their practical utility in response to ZIKV outbreaks. In addition, compared to other viruses such as EBOV and the influenza virus, ZIKV does not have multiple subtypes. However, to date, ZIKV infection is still difficult to diagnose because of its cross-reactivity with other flaviviruses, such as dengue virus (Wu et al., 2018). Therefore, in the continued development of improved microfluidic methods, the detection of other flaviviruses or arboviruses need to be ruled out for cross-reactivity (Chang et al., 2017).

2.5. Dengue virus (DENV)

DENV is a mosquito-borne virus that causes dengue fever (DF), dengue hemorrhagic fever and dengue shock syndrome (DSS) (Lang et al., 2016; Nakhapakorn and Tripathi, 2005). DENV belongs to the flaviviridae group and has four serotypes (DENV1-4) (Zonetti et al., 2018). Dengue fever usually has a 10-day incubation period. Patients usually have typical symptoms such as fever, severe headache, post-ophthalmal pain, muscle and joint pain, a rash, nausea, abdominal pain and swollen glands (Adimy et al., 2020; Chan and Johansson, 2012; Halstead, 2008). Currently, the main detection methods used in laboratories for dengue virus rely on cell culture, PCR and ELISA assays. These time-consuming, low sensitivity methods cannot quickly respond to DENV outbreaks (Suthanthiraraj et al., 2019).

Microfluidic based methods can give more precise and efficient results compared to electrochemical methods for the early detection of DENV (Eivazzadeh-Kelhan et al., 2019). Recently, Yoo et al., (2020) proposed a microfluidic system that integrated direct sample preparation and LAMP to detect dengue virus (Fig. 7 A). This strategy used bead binding and heating procedures to obtain stable RNA directly from whole blood, which could be used to detect viruses. In this system, direct buffer was used to extract RNA from whole blood and obtain a LOD of 10^4 PFU/200 μL in less than 1 h. Yin et al., (2020) reported a microfluidic system that integrated RNA extraction and multiplex PCR to detect four DENV serotypes (Fig. 7 B). In this system, chitosan-modified paper chip to extra RNA and on-chip PCR product was detected using a membrane sensor. This system detected 100 RNA copies per mL of plasma within 90 min. Choi et al., (2017) developed a paper chip that applied agarose into paper to achieve flow control and improve detection sensitivity (Fig. 7 C). Moreover, this chip integrated RNA extraction and RT-LAMP to detect DENV RNA in blood samples. Using this chip, DENV RNA was detected at 50 RNA copies.

Non-structural protein 1 (NS1) antigen detection was universally used in serological tests for DENV. NS1 is a highly conserved glycoprotein with a molecular weight of 45–55 kDa (Lai et al., 2019). For immunological tests on chip, Hosseini et al., (2015) fabricated a disk chip equipped with polymethacrylate microspheres and microballloon mixing systems. This chip can manipulate 54 samples in parallel and can detect 1.9 pfu/mL in serum. A dielectrophoresis chip was also proposed by Iswardy et al., (2017) (Fig. 7 D). A dielectrophoresis force was used in this chip to capture beads and an immunoreaction was used to capture the virus. This chip only requires 5 min to detect the virus with a LOD of 10^6 PFU/mL from 15 μL samples. Yu-zoon et al. (Yuzon et al., 2019) generated a paper chip using cellulose acetate film and a nitrocellulose membrane to detect the NS1 antigen. This chip reached a LOD 84.66 ng/mL in 2 min.

Microfluidics can be regarded as a capable candidate of POC for DENV. Since DENV easily cross-reacts with ZIKV, multiplex and precise
Biosensors and Bioelectronics 163 (2020) 112291

8

J. Zhuang et al.

2.6. COVID-19 and commercialised products

In the 21st century, two highly pathogenic human coronaviruses including Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) have emerged and triggered global pandemics that resulted in high morbidity and mortality. COVID-19 is also a type of coronavirus that belongs to the β-Coronavirus (Kim et al., 2020). Currently, COVID-19, which is caused by the severe acute SARS-CoV-2, poses a major threat to human health as well as economies world-wide. SARS-CoV-2 is believed to infect host cells through the angiotensin-converting enzyme 2 (ACE2), resulting in COVID-19. SARS-CoV-2 has a stronger transmission capacity compared to SARS and has a similar pathogenicity compared to MERS-COV (Zheng et al., 2020). COVID-19 symptoms include a dry cough, fatigue and fever that is followed by anorexia, myalgia and dyspnea. In addition, COVID-19, Xpert SARS-CoV-2 nucleic acid detection reagent has obtained EVA from FDA for the qualitative detection of SARS-CoV-2. This system has been used for the detection of HIV. In response to this outbreak, The National Medical Products Administration (NMPA) announced nucleic acid testing as the gold standard for virus detection. Antibody testing is used as a supplementary test for suspected cases where nucleic acid detection was negative and is not used as a basis for initial diagnosis or exclusion of new coronavirus infection.

To detect the virus, qRT-PCR is still used as the mainstream detection method. However, due to the rapid development of the epidemic, qRT-PCR can no longer meet the demands associated with needed testing. POC instruments that based on the microfluidic technology play important roles in diagnosing the virus during this epidemic. For example, The ID NOW™ instrument proposed by Abbott™ in USA can detect positive samples in 5 min and negative results in 13 min. This product has received emergency use authorization (EUA) from the U.S. Food and Drug Administration (FDA). The detection principle is based on the RPA technology and the instrument only weighs 3 kg, which is very suitable for POC. Filmarray®, a product of BioFire™, uses microfluidic technology that integrates nucleic acid extraction, purification and PCR amplification into a single chip and results in sequential and accurate detection. This instrument has been previously used for the detection of EBOV. Currently, the COVID-19 test kit has been approved by the FDA for EUA based on this system and can be used for rapid detection. The test is specifically designed and ran on existing Filmarray® 2.0 and Filmarray® Torch platforms. GeneXpert® developed by Cepheid™ can integrate sample preparation, nucleic acid amplification and detection into a small detection kit, where even those without professional skills can perform complex molecular detection analyses. This system has been used for the detection of HIV. In response to COVID-19, Xpert SARS-CoV-2 nucleic acid detection reagent has obtained EVA from FDA for the qualitative detection of SARS-CoV-2 nucleic acid. RTisochip® proposed by CapitalBio™ in China can detect 6 common respiratory viruses including COVID-19 in a single chip within 1.5 h. This system not only detects SARS-CoV-2, but also effectively identifies patients with influenza and COVID-19. The POC instrument developed by Cannon™ in Japan can detect the SARS-CoV-2 in 35 min. The instrument only weighs 2.4 kg and DNA can be amplified in as little as 10 min using respiratory samples.

Microfluidic technology can both be automated and miniaturized to detect viruses. This advanced technology in POC will change current medical methods. Compared to the SARS-CoV and MERS-CoV outbreaks, lab on a chip has played a crucial role in the COVID-19 outbreak. Countries including the USA, China and Japan have approved the use of this technology, which fully demonstrates the application value of lab on a chip in POC.

2.7. Other representative viruses

HBV is highly contagious and spreads through bodily fluids such as blood, saliva and semen. HBV infection can cause cirrhosis, liver failure or hepatocellular carcinoma (Estevez et al., 2017; Lavanchy, 2004; Sarrazin, 2016). Investigators also use microfluidics to perform convenient and accurate diagnoses for these viruses (Chang et al., 2015; Vaghi et al., 2016). Li et al. (Li et al., 2019b) described a disc chip to detect HBV in whole blood. This disc chip integrated sample preparation and qRT-PCR. Detection reagents were pre-steriled into the chip and the freeze-dried reagents were kept in 2–8 °C for 6 months in the disc chip. Moreover, the separation step of plasma or serum is avoided since it is directly detected from whole blood. This system can detect 10² copies/mL HBV DNA in ~48 min from 500 μL of whole blood. Our group also proposed a digital isothermal chip for the quantitative detection of HBV. This chip has 120576 reaction chambers and the dynamic range of the detection template is up to 6 orders of magnitude. The maximum detectable template amount is 1.13 × 10⁶ copy numbers in 36 μL (Wu et al., 2017). Hepatitis C (HCV) is the major cause of chronic liver disease and is often associated with the development of liver cirrhosis, hepatocellular carcinoma, liver failure and death (Pawlotsky, 2015; Petruzziello et al.). Mu et al. (Mu et al., 2014) developed a paper chip to detect HCV (Fig. 8 A). This method was based on the detection IgG antibodies against HCV and an 8-plex paper chip was designed to yield additional information about the HCV infection. On this chip, 267 amol was detected using chemiluminescence and 26.7 fmol was detected using colorimetry.

African swine fever virus (ASFV) is a large double stranded DNA virus that contains a high mortality rate in domestic pigs and wild boar (Hubner et al., 2018). Virulence can be divided into high, moderate, low and without clinical symptoms. High virulence ASFV can lead to the rapid death of infected animals, where moderate or low virulence may lead to a persistent infection and continuous detoxification (Nurmoja et al., 2017; Tulman et al., 2009). Recently, He et al. (2020) developed a cartridge system that uses CRISPR-Cas12a and CRISPR RNA to detect ASFV DNA. Using this method, the amplification of nucleic acid is not needed. The LOD of this system is 1 pm in 2 h and 100 fm in 24 h. Ye et al. (2019) proposed a portable disc system (Fig. 8 B) to detect the ASFV using a circular fluorescent probe-mediated isothermal nucleic acid amplification (CFPA) method. This system has a LOD of 10 copies/μL and 100% specificity for pig samples in 10.8 min.

3. Challenges in using microfluidics for viral detection

3.1. Integrated sample preparation

Sample preparation is crucial for precise virus detection. Microfluidic systems even have quicker and more accurate advantages compared to traditional methods when it comes to virus outbreaks, where many of these methods ignore sample preparation, which is not suitable for POC. In addition, compared to other detection objects, nano-level and RNA-coded viruses pose greater challenges for sample preparation. In recent years, virus sample preparation has also attracted more attention and there have been different proposals for viral sample preparation strategies. For different detection methods, sample preparation have different meanings such as sample enrichment (Surawathanawises et al., 2016) or nucleic acid extraction (Chen et al., 2019; Zhang et al., 2019). Recently, Du et al. (Du et al., 2017a) proposed an automated sample preparation microfluidic system that utilized air bubbles and magnetic beads to achieve efficient capture of the Ebola virus. Vaghi et al. (2016) reported a PDMS chip for HCV RNA purification and detection from plasma. Capture efficiency was improved with two orders of magnitude and LOD was improved 10-fold using this system. Kim et al. (2019) proposed a microfluidic system to concentrate
Viral particles. In this system, the poly (ethylene glycol) methacrylate (PEGMA) membrane was integrated into the chip and the virus was concentrated through autonomous and continuous perfusion. Yeh et al. (Yeh et al., 2020) developed a microfluidic chip for rapid virus capture and in situ detection. This chip uses carbon nanotube arrays with differential filtration porosity to concentrate the virus and uses surface-enhanced Raman spectroscopy (SERS) to detect the virus. This research demonstrates that an effective virus sample preparation method in chip will give more precise results.

In addition, the integration of sample preparation with detection is important especially for nucleic acid-based detection methods (Yin et al., 2019). However, very few studies have been able to integrate virus sample preparation into chips. Integrated sample preparation will reduce testing time, improve accuracy and minimize labor. Moreover, sample-in-answer-out is the ideal detection process. Therefore, sample preparation should be considered in a single chip. Whether Lab-on-a-chip is used in the clinic or the home, sample preparation integration is necessary. In addition, affordable and user-friendly qualities should be considered especially for POC in resource-limited settings. Automated and high-throughput microfluidics should also be considered. Therefore, additional sample preparation methods should be tested and integrated into chips that will be used for virus outbreaks.

3.2. High throughput and multiplex detection

Virus outbreaks are characterized by a rapid spread and large scale infection. For example, DENV causes 50–100 million infections, with ~2.5% of individuals passing away (Yu et al., 2015). SARS-CoV-2 has spread to 25 countries across 4 continents and over 40,000 cases have been confirmed in only 3 months (Li and De Clercq, 2020). These characteristics pose a huge challenge for detection methods. The gold standard detection method qRT-PCR can achieve a throughput of 96 or 384 samples (Bustin and Mueller, 2005), which is higher than current microfluidic-based methods. Moreover, studies have shown that when there is a viral outbreak, increased deaths are due to a large number of infections, not increased toxicity (Harris et al., 2008). Therefore, microfluidic chips used for clinically-oriented virus detection face a throughput challenge.

Multiplex detection can improve the accuracy of early detection (Seok et al., 2017) and give additional details for infected patients (Goktas and Sirin, 2016) since most viruses have various subtypes and pathogenicity. However, many studies have ignored the fact that there are virus subtypes and only target one or more subtypes, which affects accuracy in practical applications. For example, some viruses such as influenza virus have nearly 200 subtypes, which poses a great challenge for microfluidic chip. To achieve multiple detection in chips, multiple colors or different division areas are used (Gu et al., 2018; Pang et al., 2018; Yan et al., 2017; Zhang et al., 2016). However, these methods generally need expensive instrument and reagents, which limit the application of the chip. Therefore, multiple detection capabilities are challenges in the clinical application of microfluidic chip.

3.3. Quantitative methods

The development of microfluidic technology makes “sample-in-answer-out” possible for virus detection. Most research and commercial products obtain results according to the standard curve, which is a relative quantitative method. This type of quantitative method is often limited by several factors including inhibitors and amplification efficiency (Bian et al., 2015). Digital quantitative methods such as digital PCR and digital LAMP can achieve absolute quantification and do not depend on the standard curve to obtain high sensitivity (Sreejith et al., 2018). Recently, studies have shown the accuracy of digital quantitative methods and this emerging technology has been widely used in clinical diagnoses (Salipante and Jerome, 2019; Tian et al., 2015; Yin et al., 2019). However, due to limitations related to instruments, costs and sample preparation, it is difficult to apply this quantitative method in POCT. Therefore, the use of digital quantitative methods such as digital RPA and digital Elisa to achieve “sample-in-digital-answer-out” results pose great challenges in virus detection.

4. Summary

In this review, viral outbreaks were introduced as well as a discussion of the advantages and disadvantages of various microfluidic systems in response to these viruses. These life-threatening viruses have different characteristics that influence different microfluidic chips in early virus detection. In summary, after decades of work, microfluidic technology has made its breakthrough in LOD, time and speed for virus detection. This technology will significantly transform virus testing for POC in the...
5. Future perspectives

Despite many challenges, these technologies are gradually changing the POC of viruses. There has been some progress in the detection of viruses such as wearable chips, paper chips, disc chips and the emergence of commercial products such as the FilmArray®. To overcome these challenges, the material and design of microfluidic chips, the innovation of detection methods and the miniaturization of instruments need to be all be improved, which requires collaboration between scientists with different expertise. In addition, research should not be limited to microfluidic technology. If the microfluidic chip is further combined with the “Biological mobile phone”, “Mobile detection station”, or “Artificial Intelligence”, its potential for virus detection will be extended even further.

In the future, microfluidic products that meet the criteria for POC proposed by WHO including (1) being affordable to those at risk of infection, containing (2) high sensitivity, (3) high specificity, (4) user-friendly capabilities, being (5) rapid and robust, (6) equipment-free, and (7) delivered to those who need it (Blacksell, 2012; Huppert et al., 2015) will be readily available. To apply microfluidic chips clinically, professional users can use microfluidic technology with simple operations and detect a large number of samples in a short time while obtaining accurate information early. Early detection of viruses using microfluidic technology can help reduce the scale of viral outbreaks and improve response to infection.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are grateful for the financial support from the National Key Research Project of China (SQ2019YFE010999) as well as European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 861917-SAFFI, the National Key R&D Program of China (2018YFF0102100), the Fundamental Research Funds for the Zhejiang Provincial Universities (2-2050205-19-007) and the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China.

References

Adimy, M., Mancera, P.F.A., Rodrigues, D.S., Santos, F.L.P., Ferreira, C.P., 2020. Human Immunodeficiency Virus (HIV) Infection and Cancer. Abelson’s Clinical Oncology, pp. 694-903. e894. Anderson, C.E., Buser, J.R., Fleming, A.M., Strauch, E.M., Ladd, P.D., England, J., Baker, D., Yager, P., 2019. An integrated device for the rapid and sensitive detection of the influenza hemagglutinin. Lab Chip 19 (5), 885-896. Bai, S., Pannetier, D., Gesteri, L., Bieger, T., Kogut, J., Magassouba, N., Soropogui, B., Sow, M.S., Keita, S., De Clerck, H., Tiffany, A., Domiguez, G., Laos, M., Traore, A., Kolie, M., Malano, E.R., Heleze, E., Bocquin, A., Mely, S., Raoul, H., Caro, V., Cador, D., Gabriel, M., Fahlmann, T., Tappe, D., Schmidt-Chanasit, J., Impouna, B., Diallo, A.K., Foremny, P., Van Herp, M., Gunther, S., 2014. Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 371 (15), 1418-1425. Bao, S., Zhao, S., 2018. Otorhinolaryngological profile and surgical intervention in patients with HIV/AIDS. Sci. Rep. 8 (1), 12045.
Du, K., Cai, H., Park, M., Wall, T.A., Stott, M.A., Alison, K.J., Griffiths, A., Carrion, R., Patterson, J.L., Hawkins, A.R., Schmidt, H., Mathies, R.A., 2017a. Multiplexed efficient on-chip purification and sensitive amplification-free detection of Ebola virus. Biosens. Bioelectron. 91, 489–496.

Du, K., Park, M., Griffiths, A., Carrion, R., Patterson, J., Schmidt, H., Mathies, R., 2017b. Microfluidic system for detection of viral RNA in blood using a barcode fluorescence reporter and a phosphate-activated signaling complex. Chem. 89 (22), 12433–12440.

Evazadeh-Zadeh, R., Panahzadeh-Panah, P., Mahmoudi, T., Chenen, K.K., Baradaran, B., Hashemzade, M., Radinek, F., Mohktarzadeh, A., Maleki, A., 2019. Dengue virus: a review on advances in detection and trends - from conventional methods to novel biosensors. Micromachines. Acta 186 (6), 329.

Estevé, J., Chen, V.L., Podlaha, O., Li, B., Le, A., Vutien, P., Chang, E.T., Rosenberg-Hasson, Y., Zhang, J., Pfann, S.J.S., 2017. Differential serum cytokine profiles in patients with chronic hepatitis b, c, and hepatocellular carcinoma. Sci. Rep. 7 (1), 1–11.

Ferrari, A., Signoroni, S., Silva, M., Gaggiotto, P., Veneroni, L., Clerici, C.A., Massimino, M., 2017. Viral: the propagation of a cancerous cell produced by advanced cancer patients at the istituto nazionale tumori in milan. Pediatrics.

Gulland, A., 2016. Zika virus is a global public health emergency, declares WHO. BMJ Br. Med. J. (Clin. Res. Ed.) 352.

Gire, S.K., Goba, A., Andersen, K.G., Sealfon, R.S.G., Park, D.J., Kanneh, L., Jalloh, S., He, D.H., Gao, D.Z., Lou, Y.J., Zhao, S., Ruan, S.G., 2017. A comparison study of Zika virus disease in Sierra Leone compared with dengue fever in Liberia. Sci. Rep. 8 (1), 1449.

Gostin, L.O., Lucey, D., Phelan, A., 2014. The Ebola epidemic A global health emergency. BMJ.

Gubala, V., Harris, L.F., Ricco, A.J., Tan, M.X., Williams, D.E., 2012. Point of care micro-actuator. B Chem. 228, 36–45.

Hasson, Y., Jiang, Z., Pflanz, S.J.S., 2017. Differential serum cytokine profiles in patients with chronic hepatitis b, c, and hepatocellular carcinoma. Sci. Rep. 7 (1), 1–11.

Hubner, A., Peter, D., Niemann, M., Hettenleutcher, T.C., Fuchs, W., 2018. Efficient inhibition of African swine fever virus replication by CRISPR-Cas9 targeting of the viral p30 gene (CP204L). Sci. Rep. 8 (1), 1449.

Haupt, J., Hesse, E., Gaydos, C.A., 2010. What’s the point? How point-of-care STI tests can impact infected patients. Point Care 9 (1), 36–46.

Hwang, L.S., Consumer, E.C., 2018. Influenza virus. Annual Reviews. Palo Alto.

Hsu, Y.M., Fang, Y.C., Hsiao, M.L., Lin, C.C., 2019. Development of an enzyme-linked immunosorbent assay on Whatman filter paper and nitrocellulose paper in the detection of dengue virus. Microfluid. Nanofluid. 2745.

Iswardy, S., Tsai, T.C., Cheng, H., Ho, T.C., Perng, C.C., Chang, H.C., 2017. A bead-based immunofluorescence-assay on a microfluidic dielectrophoresis platform for rapid dengue virus detection. Biosens. Bioelectron. 95, 174–180.

Jalloh, F., Robert, W., Massally, J.L.B., Chapman, S.B., Bochicchio, J., Murphy, C., Kanneh, F., Kargbo, K., Foday, M., Yillah, M., Koivumaa, J., Sandoh, A., Alhassan, A., Koning, F., Konuwa, E., Sellu, J., 2014. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345 (6202), 1369–1372.

Kaushik, A., Tiwari, S., Jayant, R.D., Marty, A., Nair, M., 2016. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens. Bioelectron. 75, 254–272.

Kim, A., Naveed, M., Dur-e-Abdham, M., Imran, M., 2015. Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone. Infect Dis Poverty 4.

Kim, D., Lee, J.-Y., Yang, J.-S., Kim, J.-W., Kim, V.-H., Chang, H., 2020. The architecture of SARS-CoV-2 transcriptome. Cell. https://doi.org/10.1016/j.cell.2020.04.011.

Kim, J., Johnson, M., Hill, P., Gale, B.K., 2009. Microfluidic virus sample preparation: cell lysis and nucleic acid purification. Integrative Biol 1 (10), 574–585.

Ko, J., Deblinger, D., Pein, S., Hennig, K., Wohlgemuth, M., Wannenmacher, M., Matta, M., Fussenegger, J., Yu, A., Shusteff, M., Davenport, M., Naraghi-Arani, P., Wheeler, E., 2019. Virus concentration and purification using a microfluidic filtering system with an integrated PE-gated antifoaming membrane. Microfluid. Nanofluidics 23 (1), 9.

Koo, K.M., Wee, E.J.H., Wang, Y., Trau, M., 2017. Enabling miniaturized personalised diagnostics: from lab-on-a-chip to lab-in-a-drop. Lab Chip 17 (19), 3200–3220.

Kumar, R., Dev, S., Saha, S., Saha, P., 2016. Towards detection and diagnosis of Zika virus using smartphone detection on paper. Anal. Chem. 88, 1096–1102.

Lang, J., Vera, D., Cheng, Y., Tang, H.J.S., 2016. Modeling dengue virus-hepatic cell interactions using human pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev Regul 3 (7), 341–354.

Lavanchy, D., 2004. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 11 (2), 97–107.

Lee, S.K., Yi, G.R., Yang, S.-M., 2006. High-speed fabrication of patterned colloidal photonic structures in microfluidic channels. Adv. Mater. 18 (10), 1503–1506.

Li, X., Zhou, J., Xu, W., Liu, H., Zhang, L., 2017. Research progress on detection and diagnosis of hepatitis b virus. Advances in Microanalysis 4 (1), 1096.

Li, F., Zheng, Y., Wu, J., Zhao, L., Shui, L., Pu, Q., Liu, S.J.T., 2019a. Smartphone assisted dengue virus detection. Biosens. Bioelectron. 95, 174–180.

Li, B., Yang, J., Zhao, F.M., Zhi, L.L., Wang, X.Q., Liu, L., Bi, Z.H., Zhao, Y.H., 2020. A microfluidic tuberculosis sputum test with label-free detection. Adv. Mater. 32 (39), 1701985.

Li, J., Vera, D., Cheng, Y., Tang, H., 2019. Smartphone-assisted detection of Hepatitis B virus DNA from dried blood spots for use in resource-limited settings. J. Clin. Virol. 54 (1), 107–111.

Li, G., Wu, J., Zhang, X., Yang, F.M., Zhi, L.L., Wang, X.Q., Liu, L., Bi, Z.H., Zhao, Y.H., 2020. A microfluidic tuberculosis sputum test with label-free detection. Adv. Mater. 32 (39), 1701985.

Li, L., Miao, B., Li, Z., Sun, Z., Peng, N., 2019b. Sample-to-answer hepatitis B virus DNA detection using smartphone-based lateral flow immunochromatographic strip. Biosens. Bioelectron. 124 (1), 254–261.

Li, Y., Jiang, Z., Pflanz, S.J.S., 2017. Cell lysing and nucleic acid purification. Integrative Biol 1 (10), 574–585.

Lecoin, M., Surasombatpattana, P., Talignani, L., Thomas, F., Cao-Lormeau, V., Hutchinson, E.C., 2018. Influenza virus. Trends Microbiol. 26 (9), 809–810.
Liao, R., Tomalty, L., Majury, A., Zoutman, D.E., 2009. Comparison of viral isolation and multiplex real-time reverse transcription-PCR for confirmation of respiratory syncytial virus infection in infant viral detection by antigen immunoassays. J. Clin. Microbiol. 47 (3), 527–533.

Lillis, L., Lehman, D.A., Siverson, J.B., Weis, J., Cantera, J., Parker, M., Piepenburg, O., Overbaugh, J., Boyle, D.S., 2016. Cross-type detection of HIV-1 using reverse transcription and recombinase polymerase amplification. J. Virol Methods 220, 28–35.

Lin, X., Jin, X., Xu, B., Wang, R., Pu, R., Su, Y., Jiang, K., Yang, H., Lu, Y., Guo, Y., Hu, J., 2019. Fast and parallel detection of four Ebola virus species on a microfluidic-chip-based portable reverse transcription loop-mediated isothermal amplification system. Micromachines 10 (11).

Liu, S., Zhang, X.L., Chen, P., Yu, A., Zhu, X., Sun, L., 2020. A structure-free digital microfluidic platform for detection of influenza virus a by using magnetic beads and electromagnetic forces. Lab Chip 789–797.

Ma, Y.-D., Chen, Y.-S., Lee, G.-B., 2019. An integrated self-driven microfluidic device for rapid detection of the influenza A (H1N1) virus by reverse transcription loop-mediated isothermal amplification. Sensor. Actuator. B Chem. 296.

Magoz, L., Jacqueline, B., Escadafal, C., Garneret, P., Kwambisoli, A., Manuquenga, J.C., Monti, F., Sakunthala, A., Vanhomwegen, J., Lafaye, P., Taberlet, P., 2019. Paper-based RNA detection and multiplexed analysis for Ebola virus diagnostics. Sci. Rep. 7 (1), 1347.

Malvy, D., McElroy, A.K., de Clerck, H., Gunther, S., van Griensven, J., 2019. Ebola virus disease: an acute and an educational resource underserved rural communities. Proc. Natl. Acad. Sci. Unit. States Am. 116 (11), 270, 371-378.

Mauk, C., Song, J., Bau, H.H., Gross, R., Bushman, F.D., Collman, R.G., Liu, C., 2017. Miniaturized devices for point of care molecular detection of HIV. Lab Chip 17 (8), 382–394.

Mazar, N., Martinon-Torres, F., Baraldi, E., Pau, L., Mijailovic, O., Mizoguchi, E., Julkunen, T., 2016. Cross-subtype detection of HIV-1 using reverse transcription loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets. Microfluidics and Nanofluidics 20, 1266–1281.

McElroy, A.K., de Clerck, H., Gunther, S., van Griensven, J., 2019. Ebola virus disease: an acute and an educational resource underserved rural communities. Proc. Natl. Acad. Sci. Unit. States Am. 116 (11), 270, 371-378.

Mazur, N., Martinon-Torres, F., Baraldi, E., Pau, L., Mijailovic, O., Mizoguchi, E., Julkunen, T., 2016. Cross-subtype detection of HIV-1 using reverse transcription loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets. Microfluidics and Nanofluidics 20, 1266–1281.
