Prevalence of Trachoma and Associated Risk Factors among Yello Elementary School Students, In Loma Woreda, Dawro Zone, Ethiopia, 2015

Wosen Admasu1, Bekana Fekecha Hurissa2* and Ayanos Taye Benti2

1Loma Woreda, Dawro Zone, Ethiopia
2Jimma University College of Public Health and Medical Sciences, Jimma, Ethiopia

*Corresponding author: Bekana Fekecha Hurissa, Lecturer, Jimma University College of Public Health and Medical Sciences, Nursing and Midwifery, Jimma, Jimma 370, Ethiopia, Tel: +251910716731, E-mail: bekf@rocketmail.com

Rec date: Oct 12, 2015, Acc date: Nov 25, 2015, Pub date: Dec 03, 2015

Copyright: © 2015 Admasu W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Trachoma is a communicable disease and usually has chronic course. It greatly affects children below age of 10 and especially school and preschool children. It is the leading cause of preventable blindness in developing countries and particularly main cause for blindness in Ethiopia.

Methods: A cross-sectional school based study design was conducted among Yello elementary school students in March 2015. A sample of 267 students were involved in the study by stratified sampling technique and finally selected by systematic random sampling. Data collection tool were structured questionnaires and check lists for eye examination. The data were collected by health professionals, then processed and analyzed manually using tally sheet and scientific calculator. Possible associations and statistical significance between and among variables were measured using chi-square test, P value <0.05 was used to declare statistical significance.

Result: From the total of 267 study population, 61 (22.85%) of children had signs of trachoma and it was mainly associated to age ($X^2 = 18.4$, $P = 0.000$) with more prevalence among age group 7-9 (75.38%). Variables such as age, face washing habit, practice of towel usage, eye problem in the family, and site of waste disposal were statistically associated with trachoma at ($P= 0.000$). Moreover mothers and fathers literacy status hadn’t contribute to trachoma morbidity with ($P = 0.793$).

Conclusion: Findings of this study support majority of ideas that are commonly accepted as transmission factors of the disease except some. Trachoma had significant association with age, face washing habit, towel usage practice, history of eye problem in the family and site of waste disposal. Promotion of health information on prevention of trachoma at community and institution level with emphasis for children and women should be given. Early case identification and treatment by health sector and inter-sectional collaboration with others against trachoma is crucial.

Keywords: Trachoma; Infectious eye disease; Chlamydia trachomatis; Trichiasis

Introduction

Trachoma is a form of kerato-conjunctivitis which is communicable and usually has chronic course. Its causative agent bacterial Chlamydia trachomatis spreads through contact with eye discharge from the infected person (on towels, hand kerchiefs, fingers, etc.) and through transmission by eye-seeking flies. The distribution over the eye ranges from conjunctivitis (of the follicular) to most disabling forms of trichiasis formation, corneal scarring, complete corneal opacity and blindness [1].

Trachoma was eliminated from developed countries through improvements of hygiene and sanitation but still a problem of developing countries. It is endemic in more than 50 countries. According to the WHO (2007) report, globally close to 1.3 million people are blind due to trachoma, while about 84 million people suffer from active trachoma (Trachomatous inflammation, follicular (TF) and/or intense (TI)). Active infection is mostly seen in young children.
with a peak incidence of around four to six years, while subsequent scarring and blindness is seen in adults [2].

The national survey (2007) of Ethiopia showed a prevalence of 40.1% active trachoma among children aged 1–9 years. Amhara region had the highest prevalence of active trachoma among children aged 1–9 years (62.6%) and trichiasis in 15 years and above adults (5.2%) [3].

The bacteria that cause the disease can be spread by both direct and indirect contact with an affected person’s eyes or nose. Indirect contact includes through clothing or flies that have come into contact with an affected person’s eyes or nose. Many infections are usually needed over a period of years before scarring of the eyelid becomes so great that the eyelashes begin to rub against the eye. Children spread the disease more often than adults. Poor sanitation, crowded living conditions, and not enough clean water and toilets also increase spread [4].

Trachoma spreads easily, primarily from child to child, and child to caregiver. The infection starts in young children and heals after a couple of months. However, after years of repeated infection, the inside of the eyelid may be scarred so severely that the eyelid turns inward and the lashes rub on the eyeball, scarring the cornea (the front clear part of the eye). If untreated, this condition leads to the formation of irreversible corneal opacities and blindness. Blindness occurs usually in adult hood; however blindness from trachoma has also been seen in children much younger. Though trachoma is widespread, it is also little-known outside of affected communities. Trachoma mainly thrives in isolated rural communities where people live with limited access to water and health care. In some communities, the disease is so common that blindness from trachoma is simply accepted as a fact of life [5].

Trachoma occurs in areas with poor personal and family hygiene. Many factors are indirectly linked to the presence of trachoma including lack of water, absence of latrines or toilets, poverty in general, flies, close proximity to cattle, crowding, and so forth. However, the final common pathway seems to be the presence of dirty faces in children that facilitates the frequent exchange of infected ocular discharge from one child’s face to another. Most transmission of trachoma occurs within the family [6].

Although effective prevention strategies and treatment are available, trachoma still remains the major cause of infectious blindness worldwide [7]. The 2014 estimate for the global population at risk of trachoma is 232 million; 29 countries of Africa are thought to be endemic and they account for 77% of the total population estimated to be living in endemic areas worldwide [8].

The outcome indicator targets for elimination of blinding trachoma as a public health problem are: 1) <1 case of trachomatous trichiasis (TT) unknown to the health system per 1000 total population and 2) a prevalence of the active trachoma sign trachomatous inflammation-follicular (TF) 4 of <5% in children aged 1–9 years [9].

In Ethiopia trachoma is the main cause of blindness accounting for 35% of all causes of blindness. In addition to its severe damage to eye, trachoma has social, psychological, physiological, educational and economic impacts to the individual family and community. Blindness, as part from the stigma it brings on the individual socio-economic impacts to the individual family and community. Blindness, in addition to its severe damage to eye, trachoma has social, psychological, physiological, educational and economic impacts to the individual family and community. Blindness, as part from the stigma it brings on the individual socio-economic impacts to the individual family and community. Blindness, in addition to its severe damage to eye, trachoma has social, psychological, physiological, educational and economic impacts to the individual family and community. Blindness, as part from the stigma it brings on the individual socio-economic impacts to the individual family and community.

Therefore, it is logical to give emphasis on this case pertaining to its prevalence studies searching for and avoiding risk factors and early treatment, so that the long term outcome can be prevented. This can be achieved by long term objective of eliminating and control of trachoma through the action of combination of prevention strategies aimed at antibiotics, facial hygiene and environmental improvement [11].

Therefore identifying the prevalence of trachoma and associated risk factors in elementary school children is one promising strategy to further reduce trachoma transmission.

Materials and Methods

An institution based cross- sectional study design was conducted at Yello Elementary school, in Yello Lala Kebele, Loma Woreda, Dawro Zone from March 02/2015 to March 06/2015. Yello elementary school had a total of 876 students registered on the 2014/ 2015 first half academic year which include grade 1 up to grade 8. The single population formula was used to calculate a sample size, by using 50% of the proportion of expected prevalence of trachoma among elementary school students. Stratified sampling technique was used for allocating a probability proportionate to sample size for each class of students. Finally, study participants were selected from each class through systematic random sampling technique.

Data was collected using structured and semi structured questionnaire. First interview was made based on the structured questionnaire to identify trachoma risk factors at individual level and then, physical examination was proceeded for general inspection of eye and nasal discharge; eye lid, eye lashes and cornea for: entropion, trichiasis, and opacity respectively.

The data was analyzed and processed using scientific calculators so that percentages and rates were identified. Association between variables was done using chi square test. The result was presented in written and different form of presentations like: tables, and charts.

Ethical clearance letter was obtained from ethical review board of Jimma University College of health sciences and had delivered to the study site school director. Explanation about the objective, method as well as the benefit of the study was given to the study population for their full-co-operation.

Result

Socio-demographic factors

Students involved in the study were 267 in which most of their age is in a range of 10-14years (37.45%), and most of their families occupation was farmer (43.07%) (Table1).

Socio-demographic characteristics	Number	Percent (%)
Age		
7-9years	97	36.33
10-14years	100	37.45
15-19years	64	23.97
>20years	6	2.25
Sex		
Total	267	100
Male	113	42.32
Female	154	57.68
Table 1: Distribution of socio-demographic characteristics of the students and their parents of Yello elementary school students in Yello Lala kebele, Loma woreda, Ethiopia 2015; Others* (= Konta, Gurage and Tigre; ** = Private workers)

Characteristics	No	%
Face washing habit		
Some times	7	2.62
Once per day	24	8.99
Twice per day	58	21.22
3 times per day	178	66.67
Total	267	100
Practice of towel usage		
Private	140	52.44
Common	36	13.48
None	91	34.08
Total	267	100
Eye problem in the family		
Present	69	25.84
Absent	198	74.16
Total	267	100
Overcrowding index		
2 rooms	39	14.61
3 rooms	56	20.91
> 4 rooms	172	64.42
Total	267	100
Water availability		
In the compound	44	16.48
Outside compound	92	34.46
Communal	131	49.56
Total	267	100
Time taken to fetch water		
< 5 min	97	36.33
6-10 min	90	33.7
11-19 min	32	11.99
> 20 min	48	17.98
Total	267	100
Daily household water consumption (L)		
< 20	90	33.71
21-40	100	37.45
41-60	50	18.73
61-80	17	6.37
> 80	10	3.74
Total	267	100
Latrine availability		
Yes	237	88.76
No	30	11.34
Total	267	100

Care related behaviors and sanitary conditions

Methods of waste disposal were: Open field 21.72% and pit 78.28%. Large numbers of flies were found around the home 26.5% of houses and no flies in 73.41%. (Table 2).
Table 2: Percentage distribution of students’ eye care related behaviors and sanitary conditions among Yello elementary school students, Yello Lala kebele, Loma woreda, Ethiopia 2015

Housing condition

House floor was earthen in (77.53%) population. Seventeen percent of the population cook and live in the same (main) room and (82.77%) use different room for cooking. 16.48% of students lived in the same room as the cattle (Table 3).

Table 3: Percentage Distribution of housing conditions of the students’ parents among Yello elementary school students, Yello Lala kebele, Loma woreda, Ethiopia 2015; Others* = Clay, Plastic

Students with signs of trachoma and with no signs of trachoma

From the total of 267 studied population, 61(22.85%) were diagnosed to have signs of trachoma even though 11 students were with mixed signs (TF-Trachomatous inflammation-follicular) And (TI- Trachomatous inflammation-intense), (TF and TS- Trachomatous scarring) look Figure 1.

Figure 1: The percentage distribution of students with signs of trachoma and with no signs of trachoma

Trachoma stages distribution by Percentage

The overall prevalence is found to be 22.85% (61), but there were students with mixed symptoms (11 students). TS account the highest percentage (41.67%) from all stages of trachoma followed by TF (37.50%), TI was (19.44%) and CO- Corneal opacity (1.39%) but TT - Trachomatous trichiasis were not diagnosed (Figure 2).

Figure 2: Trachoma stages distribution by Percentage

Relationship of trachoma with risk factors

Trachoma was higher in the age group of 7-9 years, constituting (57.38%) followed by from 10-14 years (32.79%) (Table 4).
Table 4: Percentage distribution of age and sex of students by grade of trachoma among Yello elementary school students, Yello Lala kebele, Loma woreda, Ethiopia 2015.

There is a significant association between trachoma morbidity and age distribution ($X^2 = 18.4, P = 0.000$). Trachoma positivity was more seen in females than males (34.43% males and 65.57% females). Mothers and fathers literacy status have no statistical association with trachoma morbidity ($X^2 = 3.37, P=0.337$ for fathers) (Table 5).

CHARACTERISTICS	TRACHOMA						
	POSITIVE	NEGATIVE	TOTAL	X2	P- VALUE		
	No	%	No	%	Total	No	%
Age							
7-9 years	35	57.38	62	30.1	97		36.33
10-14years	20	32.79	80	38.83	100		37.45
15-19years	5	8.2	59	28.64	64		23.97
≥20years	1	1.63	5	2.43	6		2.25
Total	61	100	256	100	267		100
Sex							
Male	21	34.43	92	44.66	113		42.32
Female	40	65.57	114	55.34	154		57.68
Total	61	100	206	100	267		100
Family size							
3-Jan	21	34.43	80	38.83	101		37.83
6-Apr	29	47.54	88	42.72	117		43.82
9-Jul	8	13.11	23	11.17	31		11.61
>10	3	4.92	15	7.28	18		6.74
Total	61	100	206	100	267		100
Mothers literacy status							
Illiterate	19	31.15	52	25.24	71		26.59
Grade 1-6	30	49.18	86	41.75	116		43.44
Grade7-12	9	14.75	52	25.24	61		22.85
12+	3	4.92	16	7.77	19		7.12
Total	61	100	206	100	267		100
Fathers literacy status							
Illiterate	21	34.43	49	23.79	70		26.22
Grade 1-6	19	31.15	84	40.78	103		38.58
Grade7-12	16	26.22	52	25.24	68		25.47
12+	5	8.2	21	10.19	26		9.73
Total	61	100	206	100	267		100

Table 5: Relationship between socio-demographic characteristics and occurrence of trachoma among Yello elementary school students, Yello Lala kebele, Loma woreda, Ethiopia 2015
The highest percentage of trachoma morbidity was seen on those who wash their face once per day (58.33%). The association between face washing habit and trachoma morbidity was statistically significant ($X^2 = 20.8, P= 0.000$). Practice of towel usage also showed statistically significant association with trachoma morbidity ($X^2 = 16.3, P= 0.000$). The positivity was (15.71%) for those who use towel privately (47.22%) for those who use commonly, and (14.18%) for those who do not use it. History of eye problem in their family obtained among (42.03%) positive students, and (16.16%) do not have eye problem in their family. It also showed statistically significant association with trachoma morbidity ($X^2 = 19.4, P= 0.000$).

Site of waste disposal system showed significant association with trachoma morbidity. It was (32.76%) for open field and (20.10%) for who had waste disposal pit, ($X^2 = 4.13, P= 0.047$). The overcrowding index and availability of toilet showed no statistical significant association with trachoma (Table 6).

Table 6: EYE CARE RELATED BEHAVIORS AND SANITARY CONDITIONS

EYE CARE RELATED BEHAVIORS AND SANITARY CONDITIONS	TRACHOMA					
	POSITIVE	NEGATIVE	TOTAL	X2	P-VALUE	
	No	%	No	%	No	%
Face washing habit						
Sometimes	2	3.28	5	2.43	7	2.62
Once per day	14	22.95	10	4.85	24	8.99
Twice per day	15	24.59	43	20.87	58	21.72
>3 times per	30	49.18	148	71.85	178	66.67
Total	61	100	206	100	267	100
Towel usage practice						
Private	22	36.07	118	57.28	140	52.44
Common	17	27.86	19	9.22	36	13.48
None	22	36.07	69	33.5	91	34.08
Total	61	100	206	100	267	100
Eye problem in the family						
Present	29	47.54	40	19.42	69	25.84
Absent	32	52.46	166	80.58	198	74.16
Total	61	100	206	100	267	100
Over crowded						
2 rooms	10	16.39	29	14.08	39	14.61
3 rooms	16	26.23	40	19.42	56	20.97
>4 rooms	35	57.38	137	66.5	172	64.42
Total	61	100	206	100	267	100
Water Availability						
In compound	6	9.83	38	18.45	44	16.48
Outside compound	22	36.07	70	33.98	92	34.48
Communal	33	54.1	98	47.57	131	49.66
Total	61	100	206	100	267	100
Latrine availability						
Yes	52	85.25	185	89.81	237	88.76
No	9	14.75	21	10.19	30	11.24
Total	61	100	256	100	267	100
Time taken to fetch water						
< 5 min	20	32.79	77	37.38	97	36.33
6-10 min	24	39.34	66	32.04	90	33.7
11-19 min	8	13.11	24	11.65	32	11.99
>20 min	9	14.76	39	18.93	48	17.98
Total	61	100	256	100	267	100
Discussion

The study showed that trachoma affected a large segment of the children population in Yello elementary school students by 22.85%; this is nearest to study conducted in Baso Liben in East Gojam 24.1% [12]. But this value is higher than the study conducted in Dangla town of Amhara Region which was (12%) [13]. But lower than the study conducted in Ethiopia and Niger on 2006, with prevalence of 40.1% and 43% respectively [14,15].This variation may be due to residence of the population and seasonal variation of the disease, meaning that there are variation in environmental cleanliness status and differences in availability of a standard latrine and garbage disposal facility among each study site of resident populations as well as differences related to the time or season when those studies conducted. For instance, in autumn there are large amount of flies in Ethiopia (the highest flies reproduction season) [3].

This study showed that there is statistically significant association between prevalence of Trachoma and age groups at (P<0.05). This is similar to the study done in Brazil, Dangla Amhara Region and Tigray Region in Ethiopia [16,14,17]. The prevalence of the disease decreases as the age increase (Table 4). This is because as age increases awareness to keep personal hygiene increases which decreases trachoma morbidity.

The prevalence of trachoma is more in female 40 (65.57%) than in males 21 (34.43%). In other words, male to female ratio is 1:1.91. But this value has statistically insignificant association with trachoma morbidity (P>0.05). Similar studies done in Ethiopia by MOH revealed that the prevalence of trachoma was higher among women than men 1:2.56 [14]. In contrast, the study done in Baso Liben District of East Gojjam of Ethiopia showed that trachoma among girls (24.7%) and boys (23.5%) which were almost similar [12]. The reason might be due to the close relation of females with sibling with infected children.

This study also revealed that trachoma prevalence has statistically significant association with face washing habit, eye problem in the family and site of waste disposal (P<0.05). From face washing habit, among those washing once per day, from 24(8.99%), 14(58.33%) had signs of trachoma, the same study was conducted in different areas including Niger, Southern Sudan, Dangla and Baso Liben [15,16,18,14,12]. But study conducted in Tigray showed that , having no latrine was not a risk to develop trachoma (31); the reason might be due to the study method which encompassed environmental health workers for onsite observation to determine the presence of a standard latrine and garbage disposal facility.

Among population of 46 who cook in the main room, 19 (31.15%) were positive for trachoma; and from 44 population who live with cattle in the same room, (32.79%) were positive for trachoma. This is also similar to previous studies done in Niger, Southern Sudan and Tigray Region [15,17,18]. It might be due to the smoke of biomass energy produced while cooking and fumigating their room to alter the smell of animals waste and dung; resulting in increases of ocular discharge and enhance trachoma transmission.

Conclusion

The prevalence of active trachoma was high in the study area which indicates that trachoma is still a major public health concern among school age children in Yello. This study also showed that there is...
significant association between trachoma morbidity and age, face washing habit, practice of towel usage, eye problem in the family, and site of waste disposal.

Competing interests
The authors declare that they have no competing interests

Authors’ contributions
Both WA, AT and BF participated in the design and analysis of the study. WA searched the databases, and wrote the first and second draft of the article. All authors reviewed proposal development activities and each drafts of the result article and finally revised the manuscript and approved the final version.

Acknowledgements
First and foremost we would like to greatly thank the almighty God, the foundation of knowledge and wisdom for enabling us to achieve this task.

We would like to extend our acknowledgement to Jimma University Department of Nursing and Midwifery for their support in different ways for conducting this research.

Moreover, we would like to express our respect to Yello elementary school teachers for their permission to carry out this study in their institution and for all our associates involved in this research work.

References
1. Ngondi J, Gebre T, Sharpie EB, Graves PM, Ejigsemahu Y, et al. (2008) Risk factors for active trachoma in children and trichiasis in adults: a household survey in Amhara Regional State, Ethiopia. Trans R Soc Trop Med Hyg 102: 432-438.
2. Burton MJ, Mabey DC (2009) The global burden of trachoma: a review. PLoS Negl Trop Dis 3: e460.
3. Berhane Y, Adamu Y, Ayalew A, Badri A (2007) Prevalence and causes of blindness and Low vision in Ethiopia. Ethiop J Health Dev. 21: 211–215.
4. WHO. Blinding Trachoma. Fact sheet.2013; 382.
5. International Coalition for Trachoma Control: Transmission routes.
6. Taylor H (2008) Trachoma: A Blinding Scourge from the Bronze Age to the Twenty – first Century. Centre for Eye Research Australia.
7. Ogden S, Emerson P (2012) How communities can control trachoma without a big budget. Community Eye Health 25: 80-81.
8. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96: 614-618.
9. [No authors listed] (2014) WHO Alliance for the Global Elimination of Blinding Trachoma by the year 2020. Progress report on elimination of trachoma, 2013. Wkly Epidemiol Rec 89: 421-428.
10. Baral K, Osaki S, Shrestha B, Panta CR, Boulter A, et al. (1999) Reliability of clinical diagnosis in identifying infectious trachoma in a low-prevalence area of Nepal. Bull World Health Organ 77: 461-466.
11. Jeremiah N, Fiona M, Mark, Samson B, Carol B, Paul E. (2008) Associations between Active Trachoma and Community Intervention with Antibiotics, Facial Cleanliness, and Environmental Improvement (A,F,E). PLoS Negl Trop Dis. 2: 229.
12. Ketema K, Tiruneh M, Woldeyohannes D, Muluye D (2012) Active trachoma and associated risk factors among children in Baso Liben District of East Gojjam, Ethiopia. BMC Public Health 12: 1105.
13. Molla G, Ali S, Zelalem A, Amsalu E, Toegaw F, Kiros A. (2013) Current state of active trachoma among elementary school students in the context of ambitious national growth plan: The case of Ethiopia. Health. 5: 1768-1773.
14. Yemane B, Alemayehu W, Abebe B. (2006) National Survey on Blindness, Low Vision and Trachoma in Ethiopia. Federal Ministry of Health of Ethiopia. 2.
15. Abdou A, Kadri B, Munoz BE, Moussa F, Nasiroy B, Opong E. Prevalence and risk factors for trachoma and ocular Chlamydia trachomatis infection in Niger. Br J Ophthalmology. 2007; 91:13-17.
16. Lopes Mde F, Luna EJ, Medina NH, Cardoso MR, Freitas HS, et al. (2013) Prevalence of trachoma in Brazilian schoolchildren. Rev Saude Publica 47: 451-459.
17. Mesfin MM, de la Camera J, Tareke IG, Amanuel G, Araya T, et al. (2006) A community-based trachoma survey: prevalence and risk factors in the Tigray region of northern Ethiopia. Ophthalmic Epidemiol 13: 173-181.
18. Ngondi J, Matthews F, Reacher M, Onsarigo A, Matende L, et al. (2007) Prevalence of risk factors and severity of active trachoma in southern Sudan: an ordinal analysis. Am J Trop Med Hyg 77: 126-132.