On acceleration of the k-ary GCD Algorithm

Ismail Amer
Institute of Computational Mathematics and Informational Technologies, Kazan Federal University, Kremlevskaya 18, Kazan, 410008, Russia
E-mail: safadi121979@yahoo.com

Abstract. In our paper we analyze a method of acceleration of the k-ary Algorithm of finding the greatest common divisor for long natural numbers. The k-ary GCD algorithm was invented in 1990 by J. Sorenson. We show that a small modification of Sorenson’s Algorithm gives a sufficient acceleration of its work. This is useful for applications using the GCD operation like calculations in finite fields, generation of Cryptography keys etc.

1. Introduction

The k-ary GCD algorithm (briefly, KARY) was invented by J. Sorenson [1], [2]. Jebelean and Weber independently improved it in [3], [4] by adding a new operation $dmod$, which is applied when A is sufficiently larger than B.

Let $k > 1$ be any natural and $A \geq B > 0$ be integers that have no common divisors with k. The main idea of a step of the algorithm is to find small integers x and y such that

$$Ax + By \equiv 0 \mod k,$$

then compute $C = |Ax + By|/k$ and replace the pair (A,B) by a minor pair (B,C) or (C,B) depending on whether $B > C$ holds. Additionally it may require a reduction of C by $gcd(C,k)$. The algorithm is based on the following theorem:

Theorem 1: (J. Sorenson). For any $A \geq B > 0$ incomparable with k there exist non-zero, $y, |x|, |y| \leq m, m = \lceil \sqrt{k} \rceil$, such that relation

$$Ax + By \equiv 0 \mod k$$

holds.

Proof. Fix A and B such as in the theorem and define set $M = \{x,y\}$ to consist of all pairs (x,y) satisfying $-[\lfloor m/2 \rfloor] < x, y < \lfloor m/2 \rfloor, x \neq 0, y \neq 0$.

Note that the power of M is greater or equal to k. Define a function h realizing a map from M to $[0; k-1]$ as follows:

$$h(x,y) = (Ax + By) \mod k.$$

Let consider two possible cases:

- Function h is injective. Then h performs a 1-1 map from M to Z_k and there exist non-zero x, y with $h(x,y) = 0$. Clearly, (x, y) satisfies the theorem. In this case $|x|, |y| \leq \lfloor m/2 \rfloor$.

• Function h is not injective. Then there exist different pairs (x_1, y_1) and (x_2, y_2) such that $h(x_1, y_1) = h(x_2, y_2)$. Define $x = x_1 - x_2$ and $y = y_1 - y_2$, then

$$Ax + By \mod k = ((Ax_1 + By_1) - (Ax_2 + By_2)) \mod k = 0$$

This proves the theorem.

Remark. The KARY has a minor disadvantage that the GCD of pair $(B; C = (Ax + By) \mod k)$ is not obligatory to be equal to the origin GCD of (A, B). But $gcd(A, B)$ is a factor of $gcd(B, C)$. So the final value of GCD in k-ary method has the origin GCD as a factor. To find the origin GCD d we need to add at the end a final calculation:

$$d' = gcd(B, d''), d = gcd(A, d'),$$

where d'' is the gcd obtained by the k-ary algorithm and d, d' are calculated with the classical Euclidian GCD Algorithm.

2. Analysis of the k-ary GCD Algorithm

The effectiveness of the KARY depends on the ratio A/C reached at steps of the algorithm. By theorem 1 it exceeds $\sqrt{k}/2$. Indeed,

$$\frac{A}{C} = \frac{kA}{xA + yB} \geq \frac{kA}{2\sqrt{k}A} = \frac{\sqrt{k}}{2}$$

Since, k is usually chosen to be a power of $2 k = 2^l$ with L equal to 16, 32 or even 64, then the KARY essentially overcomes the classical Euclidian Algorithm that has the ratio A/C by a D.Knuth's remark not exceeding 3 in more than 70 percents iterations if we compare the number of iterations. But in general the KARY loses to the EA since the latter implements operation $C = A \mod B$ faster than the KARY computes its C.

Sorenson in [2] suggested several ways to speed up the implementation of the KARY. The simplest way is to use precomupted tables. Let (1) hold and $q = AB^{-1} \mod k$ then

$$Ax + By \equiv 0 \rightarrow y \equiv -qx \mod k \rightarrow y = -qx + ks \text{ for some } s \in Z.$$

Since choice of x and y in relation (1) completely depends on $q \in [1; k)$ then we can build a table function

$$f: [1; k) \rightarrow D = ((x, y)|1 \leq x \leq \sqrt{k}, |y| \leq \sqrt{k}, y \equiv -qx \mod k).$$

At a stage of the KARY we compute $q = AB^{-1} \mod k$ and choose the corresponding values of x and y from the table f. An additional speed-up can be reached if we pre-compute table of inverses by module k. Since k is a power of 2 $k = 2^l$ then we do not need to keep the complete table of inverses but keep the table of inverses by module $2^{l'}$ for some $l' < L$ and compute inverses by a large L using so called Henzel's Lifting. This algorithm is described in [6].

With such modification at large numbers the KARY begins to work faster than the classical EA.

3. An acceleration of the KARY

A. Shift of the interval of $y - \text{values}$.

We add an additional hint allowing the KARY to work faster. Let return to theorem 1. If we analyze possible decision (x, y) of relation (1) we see that value $C = |(Ax + By)|/k$ is less when $y < 0$ since additives Ax and By have opposite signs and reduce one another. By theorem 1, case $y < 0$ occurs in average in a half of all computations. The our idea is to enlarge the portion of cases $y < 0$ in computations of (x, y).

We note that by theorem 1 values of variable x are restricted by set $[1; \sqrt{k}]$ while y is varying in the interval $D = [-\sqrt{k}; \sqrt{k}]$. In fact, we can replace set D by a set $D_t = [-\sqrt{k} - t; \sqrt{k} - t]$ for $t > 0$ with
remaining theorem 1 valid. Direct computations show the speed-up of the KARY when we force \(t \) to take subsequently values 0, 1, 2, … Notice that case \(t = 0 \) corresponds to the usual implementation of the KARY algorithm.

The question arises what value of parameter \(t \) is optimal for the KARY speed? The answer depends on length of sets \(A, B \) and value of parameter \(k \).

B. Analysis of values of \(x \) and \(y \) in relation (1).

As we see earlier, values of \(x \) and \(y \) in the standard KARY depends on values of \(q \in [1; k] \), and conversely. For each \(x \leq \sqrt{k} \) there is a list of possible \(q \) and \(y \) corresponding to \(x \). Lists corresponding to different \(x \) can be intersected. Indeed, if \((x, y) = (1, 1) \) is a decision of (1) then pair \((x, y) = (2, 2) \) is also a decision, so choice of pair \((x, y) \) depends on the traversal way. We use the following procedure:

- Force values of \(x \) subsequently take values \(1, 2, \ldots, \sqrt{k} \).
- For each \(x \) compute \(y_1 = -qx \mod k \) and \(y_2 = y_1 + k \). Notice that \(y_1 < 0 \) and \(y_2 > 0 \).
- Check, if \(|y_i| \leq \sqrt{k} \) for \(i = 1, 2 \). If it holds, take the found pair \((x, y) \) as decision to (1) and stop computation.

Now we consider possible \(q \) and \(y \) corresponding to different \(x \). We assume \(k = 2^L \) for even \(L \) so \(m = \sqrt{k} = 2^{L/2} \) is integer.

1. \(x = 1 \). Then, \(y = -qx = -q \), or \(y = -q + k \). From \(|y| \leq m \) we obtain \(1 \leq q \leq m \) or \(k - m \leq q < k \).
2. \(x = 2 \). Then, \(y = -2q \) or \(y = -2q + k \), and \((k - m)/2 < q < (k + m)/2 \).
3. \(x = 3 \). Then, \((k - m)/3 < q < (k + m)/3 \), or \(2(k - m)/3 < q < 2(k + m)/3 \).

We illustrate this procedure at \(k = 16 \). When \(x = 1 \) \(q \) satisfies \(1 \leq q \leq 4 \) or \(12 \leq q < 16 \). If \(q \in [6; 10] \). At \(x = 3 \) \(q = 5 \) or \(q = 9 \). This finishes the procedure since all possible values of \(q \) are already found. So at \(k = 16 \) and chosen way of enumeration of \(x \) from 1 to \(m \) the last possible value \(x = 4 \) is not reached.

Assume now that we shifted set of possible values of \(y, D = [-m; m] \) to the left by 1. Then, value \(y = m \) is not possible. At \(k = 16 \) this case corresponds to \(m = 4 \) and \(q = 12 \). In the shifted case pair \((x, y) \) takes value \(3, -4 \). and choice \(C = (3A - 4B)/16 \) is sufficiently better than original \(C = (A + 4B)/16 \).

This remark shows benefits of the shifting operation. The last problem is to find an optimal \(t \), on which set \(D \) should be shifted. Clearly, this \(t \) depends on length of numbers \(A, B \) and value of \(k \). The best case for pair \((x, y) \) is reached at pair \((x, y) \) when \(Ax \approx -By \). So relation \(x/|y| \) is inversely proportional to \(\alpha = A/B \).

As we mentioned earlier, an average value of \(\alpha \) in the classical Euclid Algorithm is small and changes between 2 and 3. In the KARY it depends on \(k \) and exceeds \(m/2 \). In the Approximating k-ary Algorithm by A. Ishmukhametov [5] it is compatible with \(2k/3 \). So, the best shifting number \(t \) depends on \(k \) and current value of \(\alpha = A/B \). It can be chosen from a precomputed table of pairs \((x, y) \) in which each value \(q \) is connected with several possible pairs \((x, y) \). The best pair can be chosen from the table after computation of \(\alpha = A/B \). Since only elder digits of \(\alpha \) play a significant role, the parameter \(\alpha \) can be calculated with a rough approximation using several elder digits of \(A \) and \(B \).

Simple statistical observations lead us to a conclusion that best results should be concentrated near the middle of interval \([1; k]\). This was confirmed by experimental results.

4. Experimental results

We took \(k = 64 \) and performed a hundred GCD computations for pairs \((A, B) \) containing 1000 decimal digits for each shift \(t \) taking values from 0 to \(k \). Then we computed an average time of GCD computation for each \(t \) and collected all results in figure 1.
We see that the interval shifting used at $k = 64$ helps to decrease time of computation from 1264 ms to 1001 ms saving about 25 percents of full time. Optimal value is observed at the middle of interval $[1; 64)$ at $t = 30$.

In our experiments we performed a common shift of interval $[-\sqrt{k}; \sqrt{k}]$ for y to the left relative to all stages of GCD computation. An individual shifting at each stage of GCD computation should give a greater effect. But this requires a deeper analysis.

Our results can be applied to improve various algorithms using the GCD operation. In [6] an application of the KARY to computation of module inverses is investigated.

Acknowledgment

The research was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project № 1.12878.2018/12.1.

References

[1] Sorenson J 1990 *The k-ary GCD Algorithm* (Univ.Wisc-Madison Tecn.Report) pp 1-20
[2] Sorenson J 1994 Two fast GCD Algorithms *J.Alg.* 16 110-44
[3] Jebelean T A 1993 Generalization of the binary GCD algorithm *Proceedings of the 1993 international symposium on Symbolic and algebraic computation* 1993 Aug 1 pp 111-6
[4] Weber K 1995 The accelerated integer GCD algorithm *ACM Transacations of Math.Software* 21 (1) 1-12
[5] Ishmukhametov S 2016 An approximating k-ary GCD algorithm *Lobachevskii Journal of Mathematics* 37(6) 723-9
[6] Ishmukhametov S and Mubarakov B 2017 Calculation of Bezout’s coefficients for the k-ary algorithm of finding GCD *Rus.Math.* 61 26-33