A SHARP CARATHÉODORY’S INEQUALITY
ON THE RIGHT HALF PLANE

BÜLENT NAFI ÖRNEK

Abstract. In this paper, a boundary version of Carathéodory’s inequality on the right half plane is investigated. Here, the function \(Z(s) \), is given as \(Z(s) = 1 + c_1 (s - 1) + c_2 (s - 1)^2 + \ldots \) be an analytic in the right half plane with \(\Re Z(s) \leq A (A > 1) \) for \(\Re s \geq 0 \). We derive inequalities for the modulus of \(Z(s) \) function, \(|Z'(0)| \), by assuming the \(Z(s) \) function is also analytic at the boundary point \(s = 0 \) on the imaginary axis and finally, the sharpness of these inequalities is proved.

1. Introduction

The most classical version of the Schwarz Lemma examines the behavior of a bounded, analytic function mapping the origin to the origin in the unit disc \(D = \{ z : |z| < 1 \} \). It is possible to see its effectiveness in the proofs of many important theorems. The Schwarz Lemma, which has broad applications and is the direct application of the maximum modulus principle, is given in the most basic form as follows:

Let \(D \) be the unit disc in the complex plane \(\mathbb{C} \). Let \(f : D \to D \) be an analytic function with \(f(z) = c_1 z + c_2 z^2 + \ldots \). Under these conditions, \(|f(z)| \leq |z| \) for all \(z \in D \) and \(|f'(0)| \leq 1 \). In addition, if the equality \(|f(z)| = |z| \) holds for any \(z \neq 0 \), or \(|f'(0)| = 1 \), then \(f \) is a rotation; that is \(f(z) = ze^{i\theta}, \theta \) real ([6], p.329). The Schwarz lemma is one of the most important results in the classical complex analysis, which has become a crucial theme in many branches of mathematical research for over a hundred years. On the other hand, in the book [7], Sharp Real-Parts Theorem’s (in particular Carathéodory’s inequalities), which are frequently used in the theory of entire functions and analytic function theory, have been studied. Also, a boundary version of the Carathéodory’s inequality is considered in unit disc and novel results are obtained in [16, 17]. As being assumed that the value of 1 at \(s = 1 \) of the function, at first, as in Schwarz lemma, Carathéodory’s inequality at right half plane will be presented. Mercer [13] prove a version of the Schwarz lemma where the images of two points are known. Also, he considers some Schwarz and Carathéodory inequalities at the boundary, as consequences of a lemma due to Rogosinski [14].

Let \(Z(s) = 1 + c_1 (s - 1) + c_2 (s - 1)^2 + \ldots \) be an analytic in the right half plane with \(\Re Z(s) \leq A (A > 1) \) for \(\Re s \geq 0 \).

Mathematics subject classification (2010): 30C80, 32A10.

Keywords and phrases: Carathéodory’s inequality, analytic function, Schwarz lemma on the boundary.
Consider the function
\[f(z) = \frac{Z(s) - 1}{Z(s) + 1 - 2A}, \quad z = \frac{s - 1}{s + 1}. \]
Here, the function \(f(z) \) is an analytic function in \(D \), \(f(0) = 0 \) and \(|f(z)| < 1 \) for \(z \in D \). Now, let us show that \(|f(z)| < 1 \) for \(|z| < 1 \). Since
\[
\left| Z\left(\frac{1+z}{1-z}\right) - 1 \right|^2 = \left(Z\left(\frac{1+z}{1-z}\right) - 1 \right) \left(\overline{Z\left(\frac{1+z}{1-z}\right)} - 1 \right)
\]
and
\[
\left| Z\left(\frac{1+z}{1-z}\right) + 1 - 2A \right|^2 = \left(Z\left(\frac{1+z}{1-z}\right) + 1 - 2A \right) \left(\overline{Z\left(\frac{1+z}{1-z}\right)} + 1 - 2A \right)
\]
we obtain
\[
\left| Z\left(\frac{1+z}{1-z}\right) - 1 \right|^2 - \left| Z\left(\frac{1+z}{1-z}\right) + 1 - 2A \right|^2
\]
\[
= -2 (1 - A) \left(Z\left(\frac{1+z}{1-z}\right) + \overline{Z\left(\frac{1+z}{1-z}\right)} \right) + 4A - 4A^2
\]
\[
= -4 (1 - A) \Re Z\left(\frac{1+z}{1-z}\right) + 4A - 4A^2
\]
\[
\leq -4 (1 - A) A + 4A - 4A^2 = 0.
\]
Therefore, we have \(|f(z)| < 1 \) for \(|z| < 1 \).
Consider the product
\[B(z) = \prod_{i=1}^{n} \frac{z - z_i}{1 - z_i}. \]
The function \(B(z) \) is called a finite Blaschke product, where \(z_1, z_2, \ldots, z_n \in D \).
Let
\[g(z) = \frac{f(z)}{\prod_{i=1}^{n} \frac{z - z_i}{1 - \overline{z_i}}}, \quad z_i = \frac{s_i - 1}{s_i + 1}. \]
Here, \(s_1, s_2, \ldots, s_n \) are points in the right half of the \(s \)-plane with \(Z(s_i) = 1 \) and \(z_1, z_2, \ldots, z_n \) are zeros \(f(z) \). In addition, \(g(z) \) is an analytic function in \(D \), \(g(0) = 0 \) and \(|g(z)| < 1 \) for \(z \in D \). Therefore, \(g(z) \) satisfy the conditions of the Schwarz lemma. Thus, from the Schwarz lemma, we obtain

\[
g(z) = \frac{Z(\frac{1+z}{1-z}) - 1}{Z(\frac{1+z}{1-z}) + 1 - 2A} \prod_{i=1}^{n} \frac{z - z_i}{1 - z_i} = \frac{c_1 \frac{2z}{1-z} + c_2 \frac{4z^2}{(1-z)^2} + \ldots}{2(1 - A) + c_1 \frac{2z}{1-z} + c_2 \frac{4z^2}{(1-z)^2} + \ldots} \prod_{i=1}^{n} \frac{z - z_i}{1 - z_i},
\]

and

\[
|g'(0)| = \frac{|c_1|}{A - 1} \prod_{i=1}^{n} \frac{1}{z_i} \leq 1.
\]

Since \(|c_1| = |Z'(1)| \) and \(z_i = \left| \frac{s_i - 1}{s_i + 1} \right| \), we get

\[
|Z'(1)| \leq (A - 1) \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right|.
\]

This result is sharp and the extremal function is

\[
Z(s) = \frac{1 + (1 - 2A) \frac{s - 1}{s + 1} \prod_{i=1}^{n} \frac{\frac{s_i - 1}{s_i + 1}}{\frac{s_i - 1}{s_i + 1} + \frac{s_i - 1}{s_i + 1}}}{1 - \frac{s - 1}{s + 1} \prod_{i=1}^{n} \frac{\frac{s_i - 1}{s_i + 1}}{\frac{s_i - 1}{s_i + 1} + \frac{s_i - 1}{s_i + 1}}},
\]

where \(s_1, s_2, \ldots, s_n \) are positive real numbers.

We thus obtain the following lemma.

Lemma 1. Let \(Z(s) = 1 + c_1 (s - 1) + c_2 (s - 1)^2 + \ldots \) be an analytic in the right half plane with \(\Re Z(s) \leq A \) \((A > 1) \) for \(\Re s \geq 0 \). Assume that \(s_1, s_2, \ldots, s_n \) are points in the right half of the \(s \)-plane with \(Z(s_i) = 1 \), \(i = 1, 2, \ldots, n \). Then we have the inequality

\[
|Z'(1)| \leq (A - 1) \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right|. \tag{1.1}
\]
This result is sharp and the extremal function is

\[
Z(s) = \frac{1 + (1 - 2A)\frac{s}{s+1} \prod_{i=1}^{n} \frac{s_i - 1}{s_i + 1}}{1 - \frac{s}{s+1} \prod_{i=1}^{n} \frac{s_i - 1}{s_i + 1}},
\]

where \(s_1, s_2, \ldots, s_n\) are positive real numbers.

It is an elementary consequence of Schwarz lemma that if \(f\) extends continuously to some boundary point \(c\) with \(|c| = 1\), and if \(|f(c)| = 1\) and \(f'(c)\) exists, then \(|f'(c)| \geq 1\), which is known as the Schwarz lemma on the boundary. In [15], R. Osserman proposed the boundary refinement of the classical Schwarz lemma as follows:

Let \(f : D \rightarrow D\) be an analytic function with \(f(z) = c_1 z + c_2 z^2 + \ldots\). Assume that there is a \(c \in \partial D\) so that \(f\) extends continuously to \(c\), \(|f(c)| = 1\) and \(f'(c)\) exists. Then

\[
|f'(c)| \geq \frac{2}{1 + |f''(0)|}.
\]

The equality in (1.2) holds if and only if \(f\) is of the form \(f(z) = z^{k-\frac{k-2}{1-k}}\), for some constant \(k \in (-1,0)\). Inequality (1.2) and its generalizations have important applications in geometric theory of functions and they are still hot topics in the mathematics literature [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 14, 15, 18, 19, 20].

In this paper, we studied “a boundary Carathéodory’s inequalities” on the right half plane as analog the Schwarz lemma at the boundary [15]. We present an analytic to understand the behaviour of the derivative of \(Z(s)\) function at the zero on the right half plane. In the resulting theorems of the analysis, assuming that \(\Re Z(0) = A\), a lower boundary for modulus of the derivative of the \(Z(s)\) function at the zero on right half plane, \(|Z'(0)|\), are obtained.

Also, we target to find the answer of the question: "What can be said about \(Z'(s)\) when it is considered at the boundary? The answer of the question relies on the boundary analysis of the Carathéodory’s inequality, that is, analysis of \(Z(s)\) function at \(s = 0\). As a result, in our study, we give a bounded version of Caratheodory inequality on the right half-plane. Moreover, by assuming \(Z(s)\) is also analytic at the boundary point \(s = 0\) on the imaginer axis, we shall give an estimate for \(|Z'(0)|\) from below using Taylor expansion coefficients. The sharpness of this inequality is also proved.

2. Main results

In this section, a boundary version of Carathéodory’s inequality on the right half plane is investigated. Here, the function \(Z(s)\), is given as \(Z(s) = 1 + c_1 (s-1) + c_2 (s-1)^2 + \ldots\) be an analytic in the right half plane with \(\Re Z(s) \leq A\) (\(A > 1\)) for \(\Re s \geq 0\). We derive inequalities for the modulus of \(Z(s)\) function, \(|Z'(0)|\), by assuming the \(Z(s)\) function is also analytic at the boundary point \(s = 0\) on the imaginer axis and finally, the sharpness of these inequalities is proved. We have following results, which
can be offered as the boundary refinement of Carathéodory’s inequality on the right half plane. Also, in the following inequalities, the value of 1 at point \(s = 1 \) and the Taylor coefficient that, is different from the first zero, are used.

Theorem 1. Let \(Z(s) = 1 + c_1 (s - 1) + c_2 (s - 1)^2 + \ldots \) be an analytic in the right half plane with \(\Re Z(s) \leq A \) for \(\Re s \geq 0 \). Suppose that \(Z(s) \) is analytic at the point \(s = 0 \) of the imaginary axis with \(\Re Z(0) = A \). Assume that \(1, s_1, s_2, \ldots, s_n \) are points in the right half of the \(s \)-plane with \(Z(s_i) = 1, i = 1, 2, \ldots, n \). Then we have the inequality

\[
|Z'(0)| \geq (A - 1) \left(1 + \frac{n}{|s_i|} \sum_{i=1}^{n} \frac{\Re s_i}{|s_i|} \right)
\]

\[
+ \frac{2 \left((A - 1) \prod_{i=1}^{n} \frac{|s_i - 1|}{|s_i + 1|} - |c_1| \right)^2}{(A - 1) \prod_{i=1}^{n} \frac{|s_i - 1|}{|s_i + 1|} - |c_1|^2 + (A - 1) \prod_{i=1}^{n} \frac{|s_i - 1|}{|s_i + 1|} |2c_2 + c_1(1 + \sum_{i=1}^{n} \frac{4\Re s_i}{|s_i|^2 + 2\Re s_i - 1})|}.
\]

Moreover, the equality in (2.1) occurs for the function

\[
Z(s) = \frac{1 + (1 - 2A) \left(\frac{s - 1}{s + 1} \right)^2 \prod_{i=1}^{n} \frac{s_i - 1}{s_i + 1}}{1 - \left(\frac{s - 1}{s + 1} \right)^2 \prod_{i=1}^{n} \frac{s_i - 1}{s_i + 1}}
\]

where \(s_1, s_2, \ldots, s_n \) are positive real numbers.

Proof. Let

\[
f(z) = \frac{Z \left(\frac{1+z}{1-z} \right) - 1}{Z \left(\frac{1+z}{1-z} \right) + 1 - 2A} z = \frac{s - 1}{s + 1}
\]

and \(z_1, z_2, \ldots, z_n \) be the zeros of the function \(f(z) \) in \(D \) that are different from zero. The function

\[
\Theta(z) = z \prod_{i=1}^{n} \frac{z - z_i}{1 - \bar{z}_i z}
\]

is analytic in \(D \), \(|\Theta(z)| < 1 \) for \(z \in D \). From the maximum principle, for each \(z \in D \), we have \(|f(z)| \leq |\Theta(z)| \). The composite function

\[
\varphi(z) = \frac{f(z)}{\Theta(z)}
\]
is analytic in the unit disc D and $|\varphi(z)| < 1$ for $z \in D$. In particular,

$$\varphi(z) = \frac{Z\left(\frac{1+z}{1-z}\right) - 1}{Z\left(\frac{1+z}{1-z}\right) + 1 - 2A} \prod_{i=1}^{n} \frac{1}{z - \frac{z_i}{z_i^*}}$$

$$= \frac{c_1 \frac{2z}{1-z} + c_2 \frac{4z^2}{(1-z)^2} + \ldots}{2(1-A) + c_1 \frac{2z}{1-z} + c_2 \frac{4z^2}{(1-z)^2} + \ldots} \prod_{i=1}^{n} \frac{1}{\frac{z-z_i}{z_i^*}}$$

$$= \frac{c_1 \frac{2z}{1-z} + c_2 \frac{4z^2}{(1-z)^2} + \ldots}{2(1-A) + c_1 \frac{2z}{1-z} + c_2 \frac{4z^2}{(1-z)^2} + \ldots} \prod_{i=1}^{n} \frac{1}{\frac{z-z_i}{z_i^*}}$$

$$|\varphi(0)| = \frac{|c_1|}{(A - 1) \prod_{i=1}^{n} |z_i|}$$

and

$$|\varphi'(0)| = \frac{2c_2 + c_1 \left(1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{z_i}\right)}{(A - 1) \prod_{i=1}^{n} |z_i|}.$$

Moreover, it can be easily seen that

$$\frac{c f'(c)}{f(c)} = |f'(c)| \geq |\Theta'(c)| = \frac{c \Theta'(c)}{\Theta(c)}, \quad c \in \partial D.$$

The auxiliary function

$$\phi(z) = \frac{\varphi(z) - \varphi(0)}{1 - \varphi(0) \varphi(z)}$$

is an analytic function in D, $|\phi(z)| < 1$ for $|z| < 1$, $\phi(0) = 0$ and $|\phi(c)| = 1$ for $-1 = c \in \partial D$. From (1.2), we obtain

$$\frac{2}{1 + |\phi'(0)|} \leq |\phi'(-1)| = \frac{1 - |\phi(0)|^2}{\left|1 - \varphi(0) \varphi(-1)\right|^2} |\phi'(-1)|$$

$$\leq \frac{1 + |\phi(0)|}{1 - |\phi(0)|} \{ |f'(-1)| - |\Theta'(-1)| \}.$$

Since

$$\phi'(z) = \frac{1 - |\phi(0)|^2}{\left(1 - \varphi(0) \varphi(z)\right)^2} \phi'(z),$$
\[
|\phi'(0)| = \frac{|\phi'(0)|}{1 - |\phi(0)|^2} = \frac{2c_2 + c_1 \left(1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{z_i}\right)}{(A-1) \prod_{i=1}^{n} |z_i|}
\]

\[
|\phi'(0)| = (A - 1) \prod_{i=1}^{n} |z_i| \frac{2c_2 + c_1 \left(1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{z_i}\right)}{(A-1) \prod_{i=1}^{n} |z_i|} - |c_1|^2
\]

and

\[
|\Theta'(-1)| = 1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{1 + |z_i|^2},
\]

we obtain

\[
2 \left(\prod_{i=1}^{n} |z_i| \right) \left(\prod_{i=1}^{n} |z_i| \right) - |c_1|^2 + (A - 1) \prod_{i=1}^{n} |z_i| \left(2c_2 + c_1 \left(1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{z_i}\right) \right)
\]

\[
\leq \frac{(A - 1) \prod_{i=1}^{n} |z_i| + |c_1|}{(A - 1) \prod_{i=1}^{n} |z_i| - |c_1|} \left\{ \frac{|Z'(0)|}{A - 1} - \left(1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{1 + |z_i|^2} \right) \right\},
\]

\[
\leq \frac{(A - 1) \prod_{i=1}^{n} |z_i| + |c_1|}{(A - 1) \prod_{i=1}^{n} |z_i| - |c_1|} \left\{ \frac{|Z'(0)|}{A - 1} - \left(1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{1 + |z_i|^2} \right) \right\},
\]

\[
2 \left(\prod_{i=1}^{n} |z_i| \right) - |c_1|^2 + (A - 1) \prod_{i=1}^{n} |z_i| \left(2c_2 + c_1 \left(1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{z_i}\right) \right)
\]

\[
\leq \frac{(A - 1) \prod_{i=1}^{n} |z_i| + |c_1|}{(A - 1) \prod_{i=1}^{n} |z_i| - |c_1|} \left\{ \frac{|Z'(0)|}{A - 1} - \left(1 + \sum_{i=1}^{n} \frac{1-|z_i|^2}{1 + |z_i|^2} \right) \right\},
\]
and

\[
2 \left(\left((A - 1) \prod_{i=1}^{n} |z_i| \right) - |c_1| \right)^2 \\
\left((A - 1) \prod_{i=1}^{n} |z_i| \right)^2 - |c_1|^2 + (A - 1) \prod_{i=1}^{n} |z_i| \left(2c_2 + c_1 \left(1 + \sum_{i=1}^{n} \frac{1 - |z_i|^2}{z_i} \right) \right)
\]

\[
\leq |Z'(0)| \frac{1}{A - 1} - \left(1 + \sum_{i=1}^{n} \frac{1 - |z_i|^2}{|1 + z_i|^2} \right).
\]

Also, for \(z_i = \frac{s_i - 1}{s_i + 1} \), we have

\[
1 - |z_i|^2 = 1 - \left| \frac{s_i - 1}{s_i + 1} \right|^2 = \frac{4Re s_i}{|s_i + 1|^2},
\]

\[
|1 + z_i|^2 = \left| 1 + \frac{s_i - 1}{s_i + 1} \right|^2 = \frac{4|s_i|^2}{|s_i + 1|^2}.
\]

\[
\frac{1 - |z_i|^2}{z_i} = \frac{\frac{4Re s_i}{|s_i + 1|^2}}{s_i - 1} = \frac{4Re s_i}{s_i + 1 - 2i\Im s_i - 1}
\]

and

\[
\frac{1 - |z_i|^2}{|1 + z_i|^2} = \frac{Re s_i}{|s_i|^2}.
\]

Therefore, we obtain

\[
2 \left(\left((A - 1) \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| \right) - |c_1| \right)^2 \\
\left((A - 1) \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| \right)^2 - |c_1|^2 + (A - 1) \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| \left(2c_2 + c_1 \left(1 + \sum_{i=1}^{n} \frac{4Re s_i}{|s_i|^2 + 2i\Im s_i - 1} \right) \right)
\]

\[
\leq |Z'(0)| \frac{1}{A - 1} - \left(1 + \sum_{i=1}^{n} \frac{Re s_i}{|s_i|^2} \right).
\]

Now, we shall show that the inequality (2.1). Let

\[
Z \left(\frac{1 + z}{1 - z} \right) = \frac{1 + (1 - 2A)z^2 \prod_{i=1}^{n} \left(\frac{z - z_i}{1 - z_i} \right)}{1 - z^2 \prod_{i=1}^{n} \left(\frac{z - z_i}{1 - z_i} \right)} = 2A - 1 + \frac{2(1 - A)}{1 - z^2 \prod_{i=1}^{n} \left(\frac{z - z_i}{1 - z_i} \right)}.
\]

Then we obtain

\[
\frac{2}{(1 - z)^2} Z' \left(\frac{1 + z}{1 - z} \right) = 2(1 - A) \left(\frac{2z \prod_{i=1}^{n} \left(\frac{z - z_i}{1 - z_i} \right) + z^2 \sum_{i=1}^{n} \frac{1 - |z_i|^2}{(1 - z_i)(z - z_i)} \prod_{i=1}^{n} \left(\frac{z - z_i}{1 - z_i} \right)}{1 - z^2 \prod_{i=1}^{n} \left(\frac{z - z_i}{1 - z_i} \right)} \right).
\]
For $z = -1$, we get
\[
\frac{Z'(0)}{2} = 2(1 - A) \left(\frac{2(-1) \prod_{i=1}^{n} \frac{-1 - z_i}{1 + z_i} + (-1)^2 \sum_{i=1}^{n} \frac{1 - |z_i|^2}{(1 + z_i)(1 - z_i)} \prod_{i=1}^{n} \frac{-1 - z_i}{1 + z_i}}{1 - (-1)^2 \prod_{i=1}^{n} \frac{-1 - z_i}{1 + z_i}} \right)^2.
\]
\[
Z'(0) = 4(1 - A) \left(\frac{2 \prod_{i=1}^{n} \frac{1 + z_i}{1 + z_i} + \sum_{i=1}^{n} \frac{1 - |z_i|^2}{(1 + z_i)(1 + z_i)} \prod_{i=1}^{n} \frac{1 + z_i}{1 + z_i}}{1 + \prod_{i=1}^{n} \frac{1 + z_i}{1 + z_i}} \right)^2.
\]

Since z_1, z_2, \ldots, z_n are positive real numbers, we obtain
\[
Z'(0) = 4(1 - A) \left(2 + \sum_{i=1}^{n} \frac{1 - z_i}{1 + z_i} \right)^2.
\]

And
\[
|Z'(0)| = (A - 1) \left(2 + \sum_{i=1}^{n} \frac{1 - z_i}{1 + z_i} \right).
\]

Also, for $z_i = \frac{s_i - 1}{s_i + 1}$, we take
\[
|Z'(0)| = (A - 1) \left(2 + \sum_{i=1}^{n} \frac{1 - s_i - 1}{1 + s_i} \right)
= (A - 1) \left(2 + \sum_{i=1}^{n} \frac{1}{s_i} \right).
\]

Moreover, from (2.2), we have $|c_1| = 0$ and $|c_2| = \frac{4}{2} \prod_{i=1}^{n} |z_i| = \frac{4}{2} \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right|$.

Therefore, we obtain
\[
(A - 1) \left(1 + \sum_{i=1}^{n} \frac{\Re s_i}{|s_i|^2} \right)
+ \frac{2 \left(\left(A - 1 \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| - |c_1| \right)^2}{\left(A - 1 \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| \right)^2 - |c_1|^2 + \left(A - 1 \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| \right)^2} \left(2c_2 + c_1 \left(1 + \sum_{i=1}^{n} \frac{4 \Re s_i}{|s_i|^2 + 2i3s_i - 1} \right) \right)
= (A - 1) \left(1 + \sum_{i=1}^{n} \frac{\Re s_i}{|s_i|^2} \right) \left(\frac{2 \left(A - 1 \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| \right)^2}{\left(A - 1 \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| \right)^2 + \left(A - 1 \prod_{i=1}^{n} \left| \frac{s_i - 1}{s_i + 1} \right| \right)^2} \right).
\[(A - 1) \left(2 + \sum_{i=1}^{n} \mathbb{R}s_i \right) = (A - 1) \left(2 + \sum_{i=1}^{n} \frac{1}{s_i} \right) . \] □

REFERENCES

[1] T. ALIYEV AZEROĞLU AND B. N. ÖRNEK, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations 58 (2013), 571–577.
[2] H. P. BOAS, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770–785.
[3] D. M. BURNS AND S. G. KRantz, Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7(1994), 661–676.
[4] D. CHELST, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), 3275–3278.
[5] V. N. DUBININ, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623–3629.
[6] G. M. GOLUSIN, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.
[7] G. KRESIN AND V. MAZ’YA, Sharp real-part theorems. A unified approach., Translated from the Russian and edited by T. Shaposhnikova. Lecture Notes in Mathematics, 1903. Springer, Berlin, 2007.
[8] M. MATELJEVIC, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press.
[9] M. MATELJEVIC, Schwarz type inequalities for harmonic and related functions in the disk and the ball, IV Conference of Mathematics and Computer Science (Konferencja Matematyczno-Informatyczna) Congressio-Mathematica September 20–23, 2018, at Mierki.
[10] M. MATELJEVIC, Schwarz lemma and distortion for harmonic functions via length and area, arXiv:1805.02979v1 [math.CV] 8 May 2018.
[11] M. MATELJEVIC, A. KHALFALLAH, Schwarz lemmas for mappings with bounded Laplacian, arXiv:1810.08823v1 [math.CV].
[12] M. MATELJEVIC AND M. SVETLIK, Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings, Submitted on 20 Aug 2018, arXiv:1808.06647v1 [math.CV].
[13] P. R. MERCER, Sharpened Versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications, 205 (1997), 508–511.
[14] P. R. MERCER, Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis, 12 (2018), 93–97.
[15] R. ÖSSERMAN, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), 3513–3517.
[16] B. N. ÖRNEK, The Carathéodory’s inequality on the boundary for the holomorphic functions in the unit disc, Journal of Mathematical Physics, Analysis, Geometry 12 (2016), 287–301.
[17] B. N. ÖRNEK, Carathéodory’s inequality on the boundary, J. Korean Soc. Math. Ser. B: Pure Appl. Math. 22(2015), 169–178.
[18] B. N. ÖRNEK, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), 2053–2059.
[19] B. N. ÖRNEK AND T. DÜZENLI, Boundary Analysis for Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs. 65(9)(2018), 1149–1153.
[20] B. N. ÖRNEK AND T. DÜZENLI, Bound Estimates for the Derivative of Driving Point Impedance Functions, Filomat. 32(18)(2018), 6211–6218.

(Received August 3, 2018)

Bülent Nafi Örnek
Department of Computer Engineering
Amasya University
Merkez-Amasya 05100, Turkey

e-mail: nafiornek@amasya.edu.tr, e-mail: nafiornek@gmail.com