Efficacy and biological safety of lopinavir/ritonavir based anti-retroviral therapy in HIV-1-infected patients: a meta-analysis of randomized controlled trials

Xiaojie Huang1*, Yuanlong Xu1,2*, Qiuying Yang3,4, Jieqing Chen5, Tong Zhang1, Zaicun Li1, Caiping Guo1, Hui Chen3,4, Hao Wu1 & Ning Li1

1Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China, 2Guangxi Longtan Hospital, Liuzhou, Guangxi 545005, China, 3School of Biomedical Engineering, Capital Medical University, Beijing 100069, China, 4Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China.

Lopinavir/ritonavir (LPV/r) is the first ritonavir-boosted protease-inhibitor used in second-line anti-retroviral treatment (ART) in resource-limited regions. To evaluate the efficacy and safety outcomes of LPV/r in treatment-naïve and -experienced HIV-infected adults and pregnant women, we performed a meta-analysis of randomized controlled trials. Ten cohorts from 8 articles involving 2,584 ART-naïve patients, 5 cohorts from 4 articles involving 1,124 ART-experienced patients, and 8 cohorts from 7 articles involving 2,191 pregnant women were selected for the meta-analyses. For ART-naïve patients, the virologic response rate (72.3%) of LPV/r combined with tenofovir (TDF) plus lamivudine/emtricitabine (3TC/FTC) arms was significantly greater than that of LPV/r plus non-TDF-FTC arms (65.5%, \(p < 0.047 \)). For ART-experienced patients, the use of LPV/r revealed a 55.7% probability of virologic success. The incidence of abnormal total cholesterol (6.9%) for ART-experienced patients was significantly lower than that for ART-naïve patients (13.1%, \(p < 0.001 \)). The use of LPV/r in pregnant women revealed a mother-to-child transmission (MTCT) rate of 1.1%, preterm birth rate of 13.2%, and low birth weight rate of 16.2%. Our meta-analysis indicated that LPV/r was an efficacious regimen for ART-naïve patients and was more tolerable for ART-experienced patients. LPV/r also displayed a significant effect in preventing MTCT.

Antiretroviral therapy (ART) is a kind of treatment using anti-HIV drugs for people who infect with human immunodeficiency virus (HIV). Continuous improvements in ART have transformed HIV infection from a debilitating fatal disease into a chronic treatable disease. In spite of the fact that majority of acquired immunodeficiency syndrome (AIDS) patients benefit from ART, in resource-limited countries, the proportion of patients who switch their ARTs from first-line to second-line when failing the first-line regimen is increasing. Earlier detection of treatment failure and switching to second-line protease-inhibitor (PI) -based ART probably reduces mortality. LPV/r (a co-formulation of lopinavir and ritonavir) is the first ritonavir-boosted PI and is most widely used as a standard comparator for other boosted PI regimens. Several randomized controlled trials (RCTs) have described clinical outcomes of patients on first-line and second-line therapy. Hence, the primary purpose of the present meta-analysis is to evaluate the effectiveness of lopinavir/ritonavir (LPV/r)-based regimens for treatment-naïve HIV-1-infected patients or ART-experienced patients from reported RCTs. PI-based and nucleoside reverse transcriptase inhibitors (NRTI)-containing regimens have also been associated with metabolic perturbations, including hyperlipidemia, insulin resistance, and fat redistribution. Considering these metabolic perturbations, another important objective of the study is to evaluate the toxicity related to LPV/r-based ART regimen, focusing on the lipid profile.

Further, it was noticed that there are no adequate studies related to HIV-infected pregnant women. Clinical studies have shown that wherever ART is available widely, it has reduced the mother-to-child transmission...
(MTCT) rates to 0–3.6%19–25. According to the most recent guidelines from US Department of Health and Human Services, LPV/r is the preferred PI for use in HIV-infected pregnant women9. Consequently, along with the growing number of HIV-infected women giving birth, concern has been raised on HIV-1 infection in newborns and the associated birth defects. Hence, considering these facts, the third objective of our study is to evaluate the effects of LPV/r in preventing MTCT of HIV, and also to evaluate its effect on the preterm and low body weight birth rates.

Results

General study information. The search strategy initially identified 1,128 articles in total, of which 768 articles from Google Scholar and 360 articles from PubMed/Medline. Out of the total retrieved articles, the studies excluded after reviewing the titles and abstracts were 924 and 161, respectively. Of the remaining 43 studies that assessed LPV combined with other ART drugs to treat HIV-infected patients, 23 studies were finally excluded from the present study after detailed review for various reasons. Therefore, 8 articles17–14 involving 2,584 studies in total, of which 768 articles from Google Scholar and 81% for LPV/TDF and LPV/non-TDF arms, respectively. The baseline CD4+ cell counts and the changes in CD4+ cell counts after 48-weeks’ treatment from baselines in each study are shown in Table 3.

Efficacy of LPV/r in pregnant women. Seven studies assessed the anti-retroviral effects of LPV/r in 8 cohorts of pregnant women. The assessment included the MTCT rate of HIV and the rates of preterm and low birth weight (\textlt;2500 g). In studies reporting MTCT, preterm delivery and low birth weight, rates ranged from 0.6 to 1.8%, 8.7 to 25% and 11.4 to 20.3%, respectively. Other information about these studies is shown in Table 4. The combined preterm delivery rate, low birth weight rate, and MTCT rate were 13.2% (95% CI: 10.9–15.5%), 16.2% (95% CI: 12.9–19.5%), and 1.1% (95% CI: 0.4–1.7%), respectively (Figure 4).

Discussion

At present, boosted PIs are the most recommended first-line therapy for NRTI- or non-nucleoside reverse-transcriptase inhibitors (NNRTI)-resistant patients and also the suggested therapy during the planning of pregnancy17–5. LPV/r is the first ritonavir-boosted PI and is most widely used as a standard comparator for other boosted PI regimens. Many RCT studies focused on the assessment of the effectiveness of LPV/r. Though RCTs can provide the highest levels of evidence, single studies still have insufficient statistical power. Therefore, we conducted a meta-analysis to evaluate and describe the efficacy, safety, and tolerability of LPV/r-based ART regimens in a large number of HIV-infected patients. Overall, HIV-infected people on an LPV/r-containing regimen experienced significant virologic and immunologic responses through their first year of therapy.

In the ITT analysis for ART-na\textperiodcentered{}ve patients, the proportion of individuals with respect to virologic response rate was slightly different between LPV/r plus TDF and LPV/r plus non-TDF arms (72.3% vs. 65.5%, \textit{p} = 0.047). However, other studies (one RCT44 and two non-RCTs20,22) comparing ABC/3TC- and TDF/FTC-based therapy with LPV/r in ART-na\textperiodcentered{}ve patients suggested no difference (68% vs. 67%, 63% vs. 67%, and 88% vs. 95%, respectively) in virologic response to HIV-1 RNA below 50 copies/mL after receiving therapy for 48 weeks. Our meta-analysis was based on a large number of patients from RCT studies, so the result will be more reliable. In

Insert Figure 1
this meta-analysis, the use of LPV/r in HIV-infected subjects with a first-line ART led to virological success in most patients. Even a previous study showed that 98% of patients reached the virological response level after receiving therapy for 48 weeks. On the other hand, the use of LPV/r in subjects failing a first-line ART also led to a virological success in more than half (55.7%) of the patients. Therefore, LPV/r played a major role in ushering in the era of boosted PI therapy, and in offering the first good option to patients who had failed prior therapy.

In addition, our results indicated that LPV/r can effectively improve the immunological outcome. After treatment for 48 weeks, CD4+ counts increased to 141–239 cells/mm³ from baseline. In the CASTLE study, a prospective, open-label, randomized study to determine the safety and efficacy of atazanavir/ritonavir compared to LPV/r, CD4+ counts increased to 219 cells/mm³ from baseline. Even for patients with severely impaired baseline immune function, in whom the initial median level of CD4+ count was only 54 cells/mm³, LPV/r showed significant immunological efficacy by boosting CD4+ counts to 239 cells/mm³ from baseline to week 48. More importantly, ART-experienced patients showed remarkable immunological efficacy with elevated CD4+ counts of 121–169 cells/mm³. Hence, even in the ART-experienced patients, LPV/r still showed robust efficacy to elevate CD4+ counts with few virological failures.

Grade 3 or 4 treatment-related hyperlipemia was reported in ART patients. In 2 studies carried out by Ortiz et al. and Molina et al., the incidence of dyslipidemia in ART-naive patients was 23% and 18%, respectively. Similarly, a greater risk of hypertriglyceridemia was found in ART-naive patients in our analysis. We are encouraged that these data demonstrate that LPV/r was well tolerated in ART-experienced patients in terms of lipid levels, as the incidence of abnormal total cholesterol in ART-experienced patients was 6.9%, which was 13.1% in ART-naive patients (p < 0.001). Other drugs that could potentially influence triglyceride levels were well balanced between at baseline and during follow-up. However, in the meta-analysis, the number of individuals with available low-density lipoprotein measurements was lower than with the two other lipid factors, especially in the ART-experienced arm; nevertheless, in a clinical setting our results confirmed that LPV/r is a valid option which presents a good tolerability among the ART-experienced patients. Therefore, LPV/r is used as the second-line regimen with good tolerated in China. Consequently, it is highly recommended that lipid levels are measured before commencement of therapy and should be monitored periodically during follow-up.

Table 1 | General information of studies included in the meta-analysis

Authors	Publication year	Number of patients	Drug combination	Analytic method	Study design
ART-naive patients					
Walmsley S et al.7	2002	326	d4T-3TC + LPV/r/EFV	ITT/PP	RCT
Ortiz R et al.8	2008	346	TDF-TTC + LPV/r/darunavir/r	ITT	RCT
Delfraissy JF et al.9	2008	53	AZT-3TC + LPV/r	ITT/PP	RCT
Johnson MA et al.10	2006	115	TDF-TTC + LPV/r	ITT/PP	RCT
Johnson MA et al.11	2006	75	TDF-TTC + LPV/r	ITT/PP	RCT
Smith K et al.11	2009	345	TDF-TTC + LPV/r	ITT/PP	RCT
Smith K et al.11	2009	343	ABC-3TC + LPV/r	ITT/PP	RCT
Molina JM et al.12	2008	443	TDF-TTC + LPV/r/ddanavir/r	ITT	RCT
Eron Jr et al.13	2006	444	ABC-3TC + LPV/r/fosamprenavir/r	ITT	RCT
Sierra-Madero J et al.14	2010	94	AZT-3TC + LPV/r/EFV	ITT/PP	RCT

ART-experienced patients

Authors	Publication year	Number of patients	Drug combination	Analytic method	Study design
Cohen C et al.15	2005	150	AZT-3TC/d4T-3TC/AZT-DDI/d4T-DDI + LPV/r	ITT/PP	RCT
Zaidenverg R et al.16	2010	300	≥2 NRTIs (AZT/3TC/ABC/DDI/d4T/TDF/FTC) + LPV/r	ITT/PP	RCT
Zaidenverg R et al.16	2010	299	≥2 NRTIs (AZT/3TC/ABC/DDI/d4T/TDF/FTC) + LPV/r	ITT/PP	RCT
Johnson M et al.17	2005	123	TDF + one NRTI/DDI/d4T/3TC/AZT + LPV/r	ITT/PP	RCT
De Meyer S et al.18	2007	252	[NRTI + one NNRTI] + LPV/r	ITT/PP	RCT
Pregnant women					
Roberts SS et al.19	2009	890	LPV/r	ITT	Retrospective
Senise J et al.20	2008	64	AZT-3TC + LPV/r	ITT	Retrospective
de Vincenzi P1	2011	401	AZT-3TC + LPV/r	ITT	RCT
Azria E et al.22	2009	100	AZT-3TC/AZT-other NRTI/AZT-alone + LPV/r	ITT/PP	RCT
Peixoto MF et al.23	2011	164	LPV/r	ITT	RCT
Peixoto MF et al.23	2011	70	LPV/r	ITT	RCT
Villatoro CM et al.24	2012	219	LPV/r alone or AZT-3TC + LPV/r	ITT/PP	RCT
Shapiro RL et al.24	2010	283	AZT-3TC/ABC-3TC + LPV/r	ITT/PP	RCT

ITT: intention-to-treat; PP: per-protocol; RCT: randomized controlled trial.

There were two different dose groups of ART-experienced patients with LPV/r tablets 800/200 mg QD (n = 300) or 400/100 mg BID (n = 299) in one study conducted by Zaidenverg R et al.

1LPV/r in combination with an optimized background regimen of at least 2 nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs). The most commonly used drugs are TDF/ATZ/ABC/DDI/TDF/FTC.

Table 2 | Virologic response rates for ART-naive and -experienced patients using intention-to-treat analysis and pre-protocol analysis

	Using ITT analysis	Using PP analysis		
	Range	Combined rate (95% CI)	Range	Combined rate (95% CI)
ART-naive patients	53–78%	68.8% (64.8–72.9%)	62–98%	83.8% (73.6–94.0%)
ART-experienced patients	46–71%	55.7% (47.1–64.2%)	54–76%	66.4% (57.3–75.6%)

ITT: intention-to-treat; PP: per-protocol; CI: confidence interval.

1Compared to ART-experienced patients, p = 0.018.

2Compared to ART-experienced patients, p = 0.019.
Figure 2 | Meta-analysis of virologic response rates for ART-naive patients under (a) intention-to-treat analysis (heterogeneity: $I^2 = 78.9\%$ and $p < 0.001$; publication bias: $p = 0.721$); and (b) pre-protocol analysis (heterogeneity: $I^2 = 92.6\%$ and $p < 0.001$; publication bias: $p = 0.221$).

Study	Rate (95% CI)	% Weight
TDF		
Johnson MA, et al. (2006)	0.70 (0.62, 0.78)	15.77
Smith KY, et al. (2009)	0.68 (0.63, 0.73)	23.00
Molina JM, et al. (2008)	0.76 (0.72, 0.80)	25.10
Johnson MA, et al. (2006)	0.64 (0.53, 0.75)	11.88
Ortiz R, et al. (2008)	0.78 (0.74, 0.82)	24.25
Subtotal (I-squared = 71.4\%, $p = 0.007$)	0.72 (0.67, 0.77)	100.00

Study	Rate (95% CI)	% Weight
TDF		
Johnson MA, et al. (2006)	0.65 (0.61, 0.69)	27.29
Smith KY, et al. (2008)	0.53 (0.43, 0.63)	12.33
Walmsley S, et al. (2002)	0.67 (0.62, 0.72)	24.94
Subtotal (I-squared = 56.2\%, $p = 0.058$)	0.66 (0.61, 0.70)	100.00
Overall (I-squared = 78.9\%, $p = 0.000$)	0.69 (0.65, 0.73)	

Study	Rate (95% CI)	% Weight
TDF		
Johnson MA, et al. (2006)	0.85 (0.76, 0.94)	29.83
Subtotal (I-squared = 0.0\%, $p = 0.380$)	0.89 (0.83, 0.94)	100.00

Study	Rate (95% CI)	% Weight
Sierra-Madero J, et al. (2010)	0.62 (0.51, 0.72)	31.08
Walmsley S, et al. (2002)	0.81 (0.76, 0.86)	34.39
Delfraissy JF, et al. (2008)	0.98 (0.94, 1.02)	34.53
Subtotal (I-squared = 92.6\%, $p = 0.000$)	0.81 (0.64, 0.98)	100.00
Overall (I-squared = 92.6\%, $p = 0.000$)	0.84 (0.74, 0.94)	

Study	Rate (95% CI)	% Weight
Zajdenverg R, et al. (2010)	0.55 (0.50, 0.61)	20.83
Zajdenverg R, et al. (2010)	0.52 (0.46, 0.57)	20.81
Cohen C, et al. (2005)	0.53 (0.45, 0.61)	19.09
Johnson M, et al. (2005)	0.46 (0.37, 0.55)	18.42
De Meyer S, et al. (2007)	0.71 (0.65, 0.77)	20.85
Overall (I-squared = 88.4\%, $p = 0.000$)	0.56 (0.47, 0.64)	100.00

NOTE: Weights are from random effects analysis.
Different studies have provided different answers to the question of whether the use of LPV/r-based ART during pregnancy confers an increased risk of preterm delivery. The meta-analysis of eight cohorts of 2,191 pregnant women with LPV/r resulted in a relatively low MTCT rate of 1.1%, preterm birth rate of 13.2%, and a low birth weight rate of 16.2%, which were similar to those of HIV-negative women in a small prospective cohort of six US centers. However, it was lower than previously reported values which showed a prematurity rate of 19.1% in ART-treated HIV-infected women. These meta-analysis findings showed that ART regimens currently being used to treat HIV-infected women during pregnancy are not associated with an increased risk of premature delivery and low birth weight. Therefore, it can be said that the LPV/r regimen is a relatively safe treatment option in terms of newborn health. The results from

Figure 3 | Meta-analysis of virologic response rates for treatment-experienced patients under (a) intention-to-treat analysis (heterogeneity: $I^2 = 88.4\%$ and $p < 0.001$; publication bias: $p = 0.086$); and (b) pre-protocol analysis (heterogeneity: $I^2 = 85.1\%$ and $p < 0.001$; publication bias: $p = 0.089$).

Table 3 | Changes in CD4$^+$ count and blood lipid levels (48-weeks post-treatment)

Study	Total cholesterol (mg/dL)	Triglycerides (mg/dL)	Low-density lipoprotein (mg/dL)	CD4$^+$ count (cells/mm3)
	Baseline 48	Baseline 48	Baseline 48	Baseline 48
	Rate (95% CI) % Weight	Rate (95% CI) % Weight	Rate (95% CI) % Weight	Rate (95% CI) % Weight
ART-naive patients				
Walmsley S et al.	NA 53	NA	NA 125	260
Ortiz R et al.	NA 23	NA	NA 11	218
Johnson MA et al.	159 27	NA	137 82	214 (116–380) 185
Johnson MA et al.	168 27	NA	136 76	232 (95–339) 188
Molina JM et al.	147 185	18	110 168	204
Eron J Jr et al.	157 210	9	117 195	194 (79–287) 191 (124–287) 239
Sierra-Madero J et al.	NA 63	NA	NA 116	52 (37.1–66.8) 239
ART-experienced patients				
Cohen C et al.	167 190	NA	162 211	256
Zajdenverg R et al.	NA 6.5	NA	NA 4.8	239.3
Zajdenverg R et al.	NA 7.5	NA	NA 6.4	268.3

*Elevated value;
Grade 3 or 4 abnormal: defined as >300 mg/dL except for Molina’s study (Ref. 12);
Grade 3 or 4 abnormal: defined as >750 mg/dL;
Grade 3 or 4 abnormal was not mentioned;
median (quartiles).
Table 4 | General information about LPV/r treatment of pregnant women

Study	Age at delivery (year)	Baseline CD4 count (cells/mm³)	Baseline viral load (log10 copies/mL)	Vaginal delivery (%)	MTCT (%)	PD (%)	LBW (%)
Roberts SS et al.	13–48	NA	NA	NA	NA	NA	13.4
Senise J et al.	27.4 (16–41)*	289 (13–811)*	4.28 (0–5.88)*	11	0.8	25.0	20.3
de Vincenzi I	27 (24–31)*	336 (282–408)	4.23 (3.66–4.75)	89	1.8	13.2	11.4
Azria E et al.	32.4 ± 5.0³	361 (8–858)*	3.6 (<1.7–5.4)*	45	1.0	21.0	17.0
Peixoto MF et al.	29.6 ± 5.5³	486.1 ± 292.7 ³	2.6 ± 1.0³	NA	0.6	9.8	20.2
Peixoto MF et al.	27.1 ± 6.4³	535.4 ± 303.9 ³	3.0 ± 0.7³	NA	0.7	8.7	15.9
Villatoro CM et al.	26 (16–43)*	329 (2–1034)*	4.82 (0–6.26)*	4	1.4	10.6	NA
Shapiro RL et al.	25	403 (297–514)	3.96 (3.34–4.60)	NA	NA	14.8	13.1

*Mean (range); *median (range); †median (quartiles); $mean ± standard deviation.

MTCT: mother-to-child transmission; PD: preterm delivery (<37 weeks gestation); LBW: low birth weight (<2,500 g).

Figure 4 | Meta-analysis of the efficacy for pregnant women in terms of (a) preterm birth rate (heterogeneity: $I^2 = 51.7\%$ and $p = 0.043$, publication bias: $p = 0.536$), (b) low birth weight rate (heterogeneity: $I^2 = 67.4\%$ and $p = 0.005$, publication bias: $p = 1.000$) and (c) mother-to-child transmission rate of HIV (heterogeneity: $I^2 = 0\%$ and $p = 0.828$, publication bias: $p = 0.707$).
another systematic review further suggested that there were no unique safety or efficacy concerns with the use of standard dose LPV/r as part of ART regimens in pregnant women.

A limitation of this study is that it only included publications in English. Moreover, for the meta-analysis of the efficacy of LPV/r for HIV-infected pregnant women, observational studies are prone to bias because the groups compared may be dissimilar in characteristics. Factors including local medical environments, maternal race, age, and previous obstetric history other than treatment might also be responsible for premature birth. It is also possible that different ART classes of agents, or even agents within each class, inconsistent research durations, and different time points of therapy might have different effects on the risk of premature delivery.

This study demonstrated sufficient evidence to show that LPV/r was an efficacious regimen for ART-naive patients and was more tolerable for ART-experienced patients. In addition, LPV/r displayed a significant effect in preventing MTCT.

Methods

Strategy for literature search. A computer-based literature search was conducted using search engines including Google Scholar and PubMed/Medline with ‘lopinavir/ritonavir’ and HIV/AIDS as the search terms in the titles. Subsequently, literature on ART using LPV/r combined with other drugs was collected.

Study selection. Studies that assessed the effectiveness of LPV/r-based ART in HIV-infected patients, recruited adult HIV-infected patients, and gave the efficacy and/or safety outcomes were included in the current meta-analysis. Whereas the reviews of studies that recruited HIV-infected children, duplicate publications or studies with safety outcomes were included in the current meta-analysis. They came to a consensus through discussion after any other systematic review further suggested that there were no unique safety or efficacy concerns with the use of standard dose LPV/r as part of ART regimens in pregnant women.

A limitation of this study is that it only included publications in English. Moreover, for the meta-analysis of the efficacy of LPV/r for HIV-infected pregnant women, observational studies are prone to bias because the groups compared may be dissimilar in characteristics. Factors including local medical environments, maternal race, age, and previous obstetric history other than treatment might also be responsible for premature birth. It is also possible that different ART classes of agents, or even agents within each class, inconsistent research durations, and different time points of therapy might have different effects on the risk of premature delivery.

This study demonstrated sufficient evidence to show that LPV/r was an efficacious regimen for ART-naive patients and was more tolerable for ART-experienced patients. In addition, LPV/r displayed a significant effect in preventing MTCT.

Methods

Strategy for literature search. A computer-based literature search was conducted using search engines including Google Scholar and PubMed/Medline with ‘lopinavir/ritonavir’ and HIV/AIDS as the search terms in the titles. Subsequently, literature on ART using LPV/r combined with other drugs was collected.

Study selection. Studies that assessed the effectiveness of LPV/r-based ART in HIV-infected patients, recruited adult HIV-infected patients, and gave the efficacy and/or safety outcomes were included in the current meta-analysis. Whereas the reviews of studies that recruited HIV-infected children, duplicate publications or studies with safety outcomes were included in the current meta-analysis. They came to a consensus through discussion after any other systematic review further suggested that there were no unique safety or efficacy concerns with the use of standard dose LPV/r as part of ART regimens in pregnant women.

A limitation of this study is that it only included publications in English. Moreover, for the meta-analysis of the efficacy of LPV/r for HIV-infected pregnant women, observational studies are prone to bias because the groups compared may be dissimilar in characteristics. Factors including local medical environments, maternal race, age, and previous obstetric history other than treatment might also be responsible for premature birth. It is also possible that different ART classes of agents, or even agents within each class, inconsistent research durations, and different time points of therapy might have different effects on the risk of premature delivery.

This study demonstrated sufficient evidence to show that LPV/r was an efficacious regimen for ART-naive patients and was more tolerable for ART-experienced patients. In addition, LPV/r displayed a significant effect in preventing MTCT.

Methods

Strategy for literature search. A computer-based literature search was conducted using search engines including Google Scholar and PubMed/Medline with ‘lopinavir/ritonavir’ and HIV/AIDS as the search terms in the titles. Subsequently, literature on ART using LPV/r combined with other drugs was collected.

Study selection. Studies that assessed the effectiveness of LPV/r-based ART in HIV-infected patients, recruited adult HIV-infected patients, and gave the efficacy and/or safety outcomes were included in the current meta-analysis. Whereas the reviews of studies that recruited HIV-infected children, duplicate publications or studies with safety outcomes were included in the current meta-analysis. They came to a consensus through discussion after any other systematic review further suggested that there were no unique safety or efficacy concerns with the use of standard dose LPV/r as part of ART regimens in pregnant women.

A limitation of this study is that it only included publications in English. Moreover, for the meta-analysis of the efficacy of LPV/r for HIV-infected pregnant women, observational studies are prone to bias because the groups compared may be dissimilar in characteristics. Factors including local medical environments, maternal race, age, and previous obstetric history other than treatment might also be responsible for premature birth. It is also possible that different ART classes of agents, or even agents within each class, inconsistent research durations, and different time points of therapy might have different effects on the risk of premature delivery.

This study demonstrated sufficient evidence to show that LPV/r was an efficacious regimen for ART-naive patients and was more tolerable for ART-experienced patients. In addition, LPV/r displayed a significant effect in preventing MTCT.

Acknowledgments

This work was supported by Major Project of Beijing Municipal Science and Technology Committee (14111000314005, 14111000314002), the Chinese Government 12th Five-Year Plan (2012ZX10001-003, 2012ZX10001-006 and 2012ZX10004904-002-002, 2012ZX10004904-002-002).
Beijing Key Laboratory (No: BZ0089, 2014AZYJ01) and Basic-clinical Cooperative Research Project of Capital Medical University (14JL16).

Author contributions
X.H. and H.W. wrote the main manuscript text, Q.Y., J.C., T.Z. and Y.X. searched the library and reviewed all articles, J.C. and H.C. conducted all meta-analysis, Z.L. and C.G. prepared all figures, N.L. wrote part of the manuscript. All authors reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Huang, X. et al. Efficacy and biological safety of lopinavir/ritonavir based anti-retroviral therapy in HIV-1-infected patients: a meta-analysis of randomized controlled trials. Sci. Rep. 5, 8528; DOI:10.1038/srep08528 (2015).