Elaboration of Theoretical Methods for Assessment of Isolated and Combined Physical Damage Effects of Technogenic Accident While Transporting Radiological Materials by Multimodal Transport

Aleksander Tumanov 1,2, Sergey Venevsky 2

1The Peter the Great St. Petersburg Politechnic University, St. Petersburg, 195251, Polytechnicheskaya, 29, Russia
2Tsinghua University, Department for Earth System Science, Beijing, China

E-mail: toumanov@mail.ru

Abstract. To enhance the safety of the transport of dangerous goods in tanks, the latter should improve the mechanical (physical) protection to prevent accidental damage to the boilers, such as objects containing dangerous goods directly. Damage to the boiler will almost inevitably lead to such consequences as decompression, the leakage of liquid radioactive waste and radiation pollution of the surrounding area. This article discusses scenarios of accidents when overloading with marine railway transport; the explosion of gas cylinders on board the vessel. Calculation formulas are obtained to determine the speed at which the shards is provided by probabilistic the breakout a certain thickness of the tank walls. Received probability distribution function for the specified parameters shards and material barriers, which was determined by conducting a full-scale experiment. The results of theoretical studies, experiments used to improve designs of tanks carrying LRW and recommendations for improving the security of multimodal transport.

1. Introduction

In accordance with the transportation of dangerous goods terminology – radioactive material (RM) is a moving, including the use of various vehicles and its overload, since his departure from nuclear installation (item storage) and ending with the arrival of the nuclear installation (item storage). Radioactive material is a nuclear materials containing or capable to reproduce the fissile materials (substances) and radioactive substances (not related to nuclear material substances which emit ionizing radiation). As the RM are considered liquid radioactive wastes. Thus, the process of transportation includes the following stages of multimodal transport: loading RM onto a ship at the sea port (port facility); transportation of the vessel; transhipment of cargo RM from ship to rail transport; transportation by rail to destination.

To ensure the safe transport of radioactive materials by different modes of transport currently consists in the establishment of the necessary industrial regulatory framework reflecting the specificity of the sector and organizations effective departmental control. Analysis of foreign statistics showed that in the United States from 1997 to 2011 year happened 128 accidents with cargoes of RM (1 death neradiologicheskaja, 1 case of harm, damage, $2.2 million). With all dangerous goods (og) happened 5 052 170 493 accidents (serious, 138 death 2 825 cases of injury, damage to $635.58 million.

In the United Kingdom gives full statistics. So for 1958-2008 Gg. 913 occurred incidents during 2006-2008 Gg. 90 incidents occurred. Only three cases have been minor accidents, the rest is incorrect marking, documentation, malfunction, contamination, etc. In France for 1997-2007 biennium. happened 900 events (accidents, incidents, accidents). Adverse events occurred in all modes of transport (transportation, loading and unloading, the storage of packages while in transit, transshipment from one mode to another).

In the report, Rosatom in the Forum in Saint Petersburg in 2015, provides data on 33 accidents during transportation. Thus, securing transportation process maritime transport and railways, and especially
when handling processes, security of transported goods, environmental security is a very important issue. The aim of the research is to increase the level of security at transportation and transshipment of liquid radioactive waste in multimodal transport. The object of the study are technical means of transport – tanks for transportation of RM in multimodal transport, and subject — processes for assessing the risk of transportation of liquid radioactive waste in tanks when accidental man-made explosions on floating nuclear thermal power stations (FNTPS).

Given that coastal and floating NAVAL and civilian spent fuel storage locations nuclear fleet is almost completely filled, the path to the burial of several thousand kilometres of marine and rail (fig.1).

Figure 1. Routes of transportation RM arising from multimodal transportation.

In [2-6] are the results of years of research. "The work took place in several stages. In the first phase, an analysis of real accidents during the carriage of dangerous goods and the development of scenarios of possible developments in emergency regimes. In the second phase, analysed structural features of tanks, influencing their behavior when emergency modes and defined the parameters of mechanical or thermal effects on the boiler (vessel) tank at the time of the loss of tightness (destruction) of the boiler.

The third phase consisted in the development of scenarios of the development of "settlement" emergency situations in which it is possible to save the boiler tightness that complemented the normative documentation in designing tanks for dangerous goods. In the fourth stage modeled various modes that can lead to accidents. The study dealt with the problems of strength, stability, thermal effects, thermodynamic processes, dynamic response, taking into account the dynamics of liquid cargo, etc. accompanied by Research experiments, model and full-scale samples. If this were verified and refined theoretical models were validated designs. Next, on the basis of the developed mathematical models for studies of different modes of emergency interventions. Fifth phase included the development of means of protection against accidental impacts. In this experimental and theoretical studies have been carried out on the basis of the developed methods.

It is known that "transportation RM carried out by the railway wagon-literymi container trains consisting of locomotives, wagons, escorts for posting armed guards and attendants, cover wagons and carriages. Routes mainly run from NPP to and Krasnoyarsk (fig. 2). For transportation RM uses the following modifications to the cars.

2. Methods
2.1. Baseline data

Estimated assessment of radiation effects is made using the following source data [19]. Volumes of LRW are: drainage capacity to-4 PCs of 8 M3 = 32 M3; draining tanks-4 PCs of 8 M3 = 32 M3; water tank decontamination unit overload-40 M3; Bucky excerpts-3 PCs for 5.49 M3 + 1.4 m3 (s) = 17.9 m3. The weight of the coolant I contour-20827 kg. The content of radionuclides in thermal liquid (I) at the time of circuit 3 phase is given in table 1.
Table 1. Maximum volumetric activity of LRW and its dose-forming radionuclide

Activity, 10^4 Bq/kg
Corrosion products
54Mn
2

2.2. Construction of storage tanks
For liquid radioactive waste according to the normative requirements of security [1] capacity for LRW consists of an outer protective shell and placed in her tank. Shell is a vertical or horizontal cylindrical container sealed with bottoms. Material-stainless steel 12x18h10t. The gap between the walls of the tank shell and is filled with special sorbent to absorb leaking liquid radioactive waste in the event of damage to the tank or to seal formed holes. The tank is equipped with a mounting for mounting the nodes in the shell. Placed in the tank level sensors LRW injection systems/plum and mixing LRW, ventilation, alarm, outages LRW intensity required when waste level sensor, as well as heating (for preheating LRW and packaging systems in operation it offline in the cold season). At the bottom of the tank is the sump to collect remnants of LRW from pipelines after discharge.

2.3. Characteristics of LRW
LRW is a predominantly mineral solutions with a total salt content of not more than 500 g/l, including suspended matter (insoluble salt and sediments) with the total salt content of not more than 100 g/l density-no more than 1.25 t/m3 pH-6-10, kinematic viscosity of no more than 2.5 centistokes. Volumetric activity waste shall not exceed 3.7×10^6 kBq/M3 (10-4 CI/l) for α-and β-emitting radionuclides with the energy of the radiation is not more than that of 137Cs, and 3.7×10^3 kBq/M3 (10$^{-7}$ CI/l) for the rest of the α-and β-emitting nuclides. The design capacity of the dose from transported LRW, according to Sanpin 2.6.1.1281-03, does not exceed 2 mSv/h at any point on the surface of the package, and 0.1 mSv/h at any point 1 m from the packaging. Overall mass characteristics RM containers allow you to ship by rail rolling stock in sizes 02-VM GOST 9238-83, taking into account existing transportation and handling chain TUK. For example it is possible to transport in the wagon-container TC-13 with minor rework of the design of the car.

Emergency scenarios with LRW during transportation of the RM in scripted accidents lie exploration of possible hazardous effects on an object (packaging, container, etc.), as well as the surrounding Wednesday (exit and the spread of dangerous substances). As hazardous substances were considered.

When designing scenarios of accidents within the conservative approach considered the accident a third category.

Radiation effects Radiation accidents consequences in the form of receipts of LRW in surrounding Wednesday are possible with the following scenarios: partial destruction of transport packing container with LRW: fire and explosion defalgacionnom railway tank when overloading LRW from sea to rail fire in and subsequent explosion of oxygen cylinders on board the vessel during towing and parking; flooding or prolonged landing on the Rocky Shoal in storm conditions when towing along the Northern sea route.

2.4. Explosions of gas cylinders on board
Gas cylinders are sources of potential danger of explosion, which leads to the destruction of hull structures, failure of equipment delivered, and the emergence of a radiation accident. The explosion of cylinders may be caused by the following reasons. Violation of the integrity of the gas cylinder as a result of breakdown of any node (armature), damage or corrosion of the casing, improper operation can lead to an explosion of a cylinder at the working pressure. The probability of explosion of a cylinder (of the vessel) high pressure in this case is 10^{-7} 1/year. Exceeding the limit value of pressure in the event of a fire. For cylinders with nereagirujushhimi gas (air, nitrogen, argon) with the failure of the safety valve pressure of gas when heated increases until a blast. In cylinders with reacting gases (oxygen and acetylene) detonation may occur, resulting in a dramatic increase in pressure and explode.
Methods of evaluating the amount of destruction caused by the explosions of gas cylinders, is based on the provisions set forth in [10]. Affecting factors in the explosive destruction of the pressure vessels are shards, gas-dynamic Jet and overpressure in the emergency room as a result of the expiration of the gas from the vessel. Force the gas Jet, pouring from the vessel, with increasing distance quickly decreases and excess pressure in the emergency room because of the relatively large size of ship premises and the presence of "unloading" openings (doors, hatches, as well as the looseness of the damaged hull constructions) is not dangerous, as does not exceed the thresholds of excess pressure in the shock wave front (50 kPa). Thus, the major destruction of hull constructions and equipment are determined by influence of splinters. In the course of calculation is determined by the speed of fragments damaging the container, the equivalent thickness of a steel impenetrable barriers and the size of the area of devastation.

The study developed a model of accidents of the third category in which the impact of damaging factors on blast tanks with LRW resulted in holes in the wall of the tank. The challenge facing a researcher is to determine the minimum thickness of the wall of obstacles from a particular material, which may impair the integrity of the tank at the specified speed and configuration of the shard. For this purpose it is necessary to explore the mechanism of breaking through barriers and build a model of disruptive actions of the fragments in the explosion of gas cylinders.

Mechanism of breaking through barriers depends on many factors, among which prevail shard speed on approach to target and the ratio of the thickness of the barrier s to characteristic size fragment, for example, \(d_0 = 2 r_0 - r_0 \) (the radius of the spherical fragments equivalent mass). At high speeds the shard and \(d_0 > s \) a powerful shock wave that occurs in hazard, reaches its opposite side and is reflected from it in the form of waves of rarefaction.

![Figure 2. Mechanism of breaking through barriers fragment-the scoop on stages: a-introduction and b-ball movement with stopper](image)

At moderate velocities of impact of a fragment with a metal barrier (100–1300 m/s) and \(s > r_0 \), the process of collision is described by the deformation model of a certain volume of the obstacle material, which depends on the size (mass) of the fragment. The mechanism of the deformation of the barrier in the event of a splinter damage is shown in Figure 2.

Conventionally, it can be divided into two stages. At the first stage, the ball has an initial velocity \(v_0 \) embedded in the barrier, knocks out the tube and moves with it. The mass of the tube at the current time \(t > 0 \) is \(\pi r^2 s \rho_m \). The material of the tube undergoes shear deformations, and the acting force \(R_\tau \) varies linearly and is determined by the shear stress \(\tau \).

\[
R_\tau = 2\pi r s \tau \quad (1)
\]

This force acts at the time of the introduction of the ball to a depth of \(r_0 \). In the future, the resistance force of the barrier will change according to the law (Figure 2, a, b)

\[
R_\tau = 2\pi r_0 (s + r_0 - x) \tau \quad (2)
\]

in which \(x \) is the path traversed by the center of mass of the fragment from the moment of its collision with the obstacle. At the second stage, the motion of the “fragment – cork” system under the action of force (2) is considered, and the path of the center of mass of the fragment varies from \(r_0 \) to \(r_0 + s \).

From the considered collision process, we conclude that the main part of the kinetic energy of the fragment is spent on the deformation of the material of the obstacle. This model does not take into account the energy loss of the fragment to the formation of shock waves in the barrier. Let us reproduce
for our model calculation formulas based on the use of various assumptions. One of the first formulas was based on the assumption of the theory of plastic deformations that the specific deformation energy of the E_1 barrier does not depend either on the mass or on the shape of the striking body, nor on the thickness of the obstacle. The specific strain energy is determined only by the strength characteristics of the material of the obstacle, which is proportional to the magnitude of the destructive shear stresses of the material τ. This allows you to write the following relationship for a given material:

$$E_1 = \frac{E}{V} = a\kappa \tau = \text{const}$$ \hspace{1cm} (3)

where E is the energy expended on the deformation of the material of the barrier; V is the volume of the deformed material; κ – is dynamic amplification factor, which takes into account the hardening of the material in the dynamic nature of shear deformations; a – is a matching factor.

If we assume that all the kinetic energy of a fragment with a mass m and velocity v is spent on the deformation of the material, the volume of which is equal to the volume $S \cdot s$ of the broken cork, then the actual specific energy (energy per unit volume of the destroyed obstacle) in this case will be $\frac{mv^2}{2ss}$. The condition for breaking through the barrier will be determined by the ratio

$$\frac{mv^2}{2ss} \geq E_1$$ \hspace{1cm} (4)

In this expression, the impact area S of a fragment with a target is a random variable. Also, the random value is the depth of penetration of the fragment into the material x with thickness s. At the moment of breaking through $x=s$. We introduce a dimensionless quantity

$$D = \frac{x}{\bar{x}}$$ \hspace{1cm} (5)

Where \bar{x} – the average depth of penetration of the fragment. Using the designation

$$E_s = \frac{mv^2}{2ss}$$ \hspace{1cm} (6)

instead of (5) you can write

$$D \leq \frac{E_s}{E_1}$$ \hspace{1cm} (7)

2.5. Cumulative distribution function

When exposed to objects of the same type of damaging factor, each of them needs to achieve a certain effect of damage. However, due to the individual characteristics of the objects, to achieve a given effect of exposure, each of them will need a well-defined dose of the damaging effect. In this regard, it can be argued that the dose of exposure that causes a given, studied effect (response) of an object on the impact of energy and substances affects the factor is a continuous random variable.

Let us consider methods for describing a random variable dose, causing a given effect on a technical object and a person.

As we noted above, the most complete characteristic of a random variable is its distribution law. It can be specified in one of two forms: in the form of a probability distribution of a random variable (probability density or a differential distribution function of a random variable) and the probability distribution function of a random variable (a function distributions or integral distribution function of a random variable).

The differential function $\phi(D)$ of the distribution of the random variable D – dose of a substance or energy causing a given effect to an object
Fig. 3. The probability density of the random variable dose, causing a given effect of exposure

Fig. 4. The probability distribution function of the random variable dose, causing a given effect of exposure

Factor Impact Law schematically shown in Figure 3. It characterizes the proportion of objects in which the dose of a physiologically active substance that causes a given effect of exposure was in the range of doses from D to $D+dD$

$$\phi(\bar{D}) = \frac{dN}{NdD}.$$ \hspace{1cm} (8)

Cumulative distribution function $F(D)$ of this random variable is schematically represented in Fig. 4. In this case, based on the definition, the distribution function $F(D)$ is the probability that the random variable dose, causing the object to have a given effect, will be less than a certain value, i.e. $F(D) = P(\bar{D} < D)$.

Then (Fig. 5), when a certain dose D of a physiologically active substance is applied to an object with a probability P equal to $F(D)$, the dose of the striking impact factor, which causes the object to have a given effect (the effect of a given force), will be less effective.

Therefore, with a probability of $P = F(D)$, an object will manifest effects not lower than a given one (not lower than a given force).
The correlation between the probability of manifestation of effects not lower than the specified and the magnitude of the dose of a substance or energy acting on an object will be called law of factorial exposure.

In the most general case, it has the form:

\[P = \int_0^D \phi(\tilde{D}) d\tilde{D} \] \hspace{1cm} (9)

The specific type of factorial effect of exposure is determined from experimental data using special tests.

Currently, the literature discusses the application of the following laws \([16-19, 27, 36, 39-41]\) to describe the results of the impact of damaging factors on living organisms and technical objects.

The logarithmically normal law – the density function of the distribution of the random variable dose, as applied to the problem in question, has the following form

\[\phi(\tilde{D}) = \frac{1}{\sqrt{2\pi}\sigma_{lnD}} e^{-\frac{(ln\tilde{D}-lnD_{50})^2}{2\sigma_{lnD}^2}} \] \hspace{1cm} (10)

Law of factorial exposure in this case can be written as follows:

\[P = \int_0^D \frac{1}{\sqrt{2\pi}\sigma_{lnD}} e^{-\frac{(ln\tilde{D}-lnD_{50})^2}{2\sigma_{lnD}^2}} d\tilde{D} = \int_0^D \frac{1}{\sqrt{2\pi}\sigma_{lnD}} e^{-\frac{(ln\tilde{D}-lnD_{50})^2}{2\sigma_{lnD}^2}} dln\tilde{D} \] \hspace{1cm} (11)

Similar to normal density, for a log-normal density distribution of a random variable dose causing a given effect, the factorial effect using the Laplace function, the double Laplace function and the error integral can be written as follows:

using the Laplace function

\[P = \Phi\left(\frac{1}{\sigma_D} \ln \frac{D}{D_{50}}\right) = \Phi\left(\frac{\sqrt{k}}{\sqrt{2}} \ln T\right) \] \hspace{1cm} (12)

using the double Laplace function

\[P = 0.5 \left[1 + F\left(\frac{1}{\sigma_D} \ln \frac{D}{D_{50}}\right)\right] = 0.5 \left[1 + F\left(\frac{\sqrt{k}}{\sqrt{2}} \ln T\right)\right] \] \hspace{1cm} (13)

using the error integral (Crump function)

\[P = 0.5 \left[1 + \text{erf}\left(\frac{1}{\sqrt{2}\sigma_D} \ln \frac{D}{D_{50}}\right)\right] = 0.5 \left[1 + \text{erf}\left(\sqrt{k} \ln T\right)\right] \] \hspace{1cm} (14)

где \(T = \frac{D}{D_{50}} \) – dimensionless quantity (effect) characterizing the amount of \(D_{50} \) of a substance or energy acting on an object;

\(\sqrt{k} \) – law parameter

\[\sqrt{k} = \frac{1}{\sqrt{2}\sigma_{lnD}} \] \hspace{1cm} (15)

The parameters of the logarithmically normal factorial influence law have a statistical and physical interpretation.

Statistical interpretation (statistical meaning) of the parameters of logarithmically normal law of factorial exposure.

\(D_{50} \) – the median value of the random value of the dose that causes a given effect on an object (a given response);
\(\sigma_{\ln D} \) – the standard deviation of the natural logarithm of the random variable dose, causing the object to a given effect of impact (a given response).

Physical interpretation of the parameters of the logarithmically normal:

\(D_{50} \) – the dose of a substance or energy, under the influence of which, with a probability of 0.5, the object will experience a response (effect of impact) not lower than a predetermined force;

\(\sigma_{\ln D} \) or \(\sqrt{k} \) – characterizes the homogeneity (heterogeneity) of similar objects: the smaller \(\sigma_{\ln D} \) (more \(\sqrt{k} \)), the more homogeneous objects of the same type are to the effects of a substance and vice versa, the larger \(\sigma_{\ln D} \) (smaller \(\sqrt{k} \)), the more homogeneous objects of the same type are to the effect of this substance.

Weibull distribution – is the density function of the random variable dose. Weibull distribution has the following view to our problem.

\[
\phi(D) = \lambda \gamma D^{\gamma - 1} e^{-\lambda D^\gamma}
\]

(16)

In this case impact factor law of factorial exposure will look like

\[
P = \int_{0}^{D} \lambda \gamma e^{-\lambda D^\gamma} dD
\]

(17)

We replace the variable \(u = \lambda \gamma D^\gamma \), and get the tabulated integral

\[
P = \int_{0}^{u} e^{-u} du
\]

(18)

Where

\[
P = 1 - e^{-u} = 1 - e^{-\lambda D^\gamma}
\]

(20)

The last expression we write as follows

\[
P = 1 - \left(\frac{D}{D_{\infty}} \right)^{\gamma} \ln 2
\]

(21)

The parameters of the law \(D_{50} \) and \(\gamma \) have the same meaning as the parameters of the log-normal law. There are other, less common models of factorial laws of exposure to chemical and other factors of origin.

Cumulative distribution function \(F(D) \) of this random variable is schematically represented in Figure 6. In this case, on the basis of the definition, distribution function \(F(D) \) there is a probability that a random variable \(D \), calling the object specified effect will be smaller than a certain size. For our task in the light of the conditions of breaking through barriers (4) observations about the randomness of \(x \) values, and therefore \(D \) as well as symbol (5) the probability of breaking through barriers by a \(p_b \) can be defined as the conditional probability that a random variable \(D \) will a value that is not greater than \(D_1 \), i.e. \(p_b = p(D \leq D) = F(D_1) = D_p \), where \(F(D) \) is the distribution function of the random variable \(D \). According to the definition of the function \(F(D) \) is an integrated distribution law of relative values holes (D) made by shrapnel. So, with probability \(P = F(D) \) the object will show no effects below the set (not below the specified force) [9, 11].
In the framework of the study, experiments were carried out, the essence of which consists in shooting identical fragments at a special barrier, determining the relative depths of holes in them and building static dependencies \(F(D1) \). Both methods should lead to the same dependency, although the second one is less cumbersome.

All the above makes it possible to obtain a calculation formula for determining the velocity of the fragment \(v_{np} \), at which the breaking through of the obstacle with thickness \(s \) is provided.

\[
v_{np} = \sqrt{\frac{2E_1s\Phi}{m/3}}\quad (22)
\]

It is also possible to obtain a calculation formula for determining the limiting thickness \(s_{np} \) of an obstacle penetrated by a fragment of a given mass \(m \) and velocity \(v \)

\[
s = \frac{m^{1/3}v^2}{2E_1\Phi}\quad (23)
\]

Writing the formula (23) for an obstacle with a thickness of \(sI \) and \(E_1 = \alpha k_1\tau_1 \) and another obstacle with a thickness of \(s' \) and \(E' = \alpha k'\tau' \) taking the ratio of the right and left sides and resolving with respect to \(s' \), we get the formula

\[
s' = s_1 \frac{k_1\tau_1}{k'\tau}\quad (24)
\]

to find the so-called equivalent thickness \(s' \). Relation (24) shows that it is possible to replace an obstacle with a thickness \(sI \) of this material with an equivalent thickness \(s' \) with a barrier of some other material considered as a reference one. Most often, duralumin is considered as a reference material; for any other obstacle (for example, steel), the so-called duralumin equivalent (24) is found, using the dependence.

3. The experiment

Short description of methodology of the experiment purpose constraints and assumptions, and object of research are determined, the estimated ratio. Figure 7 presents installation diagram for ballistics testing of samples.

3.1 The participants: Peter the Great St. Petersburg Politechnic University, Research-and-production Association of special materials

3.2 Procedure

3.3 This section describes how to complete the pilot session algorithm: procedure for holding the experiment and experimental data processing, etc.

3.4 Variables independent variables (factors). This paragraph provides the names of all IRS, their type (intra-group or intergroup), as well as the number of levels. Dependent variables. Specifies one or more of the RFP, as measured during the experiment. If the RP uses the derived index which is not measured directly during the experience, the way in which it is specified (that is, it is measured, but the indirect method).

Independent variables:
- speed of fragment.
- weight of the fragment.
- mathematical expectation square section
Dependent variable-depth
- implementation in this barrier

Table 2 summarizes the quantitative and qualitative data of the experiment without the elements of interpretation.

Figure 7. Installation diagram for ballistics testing of samples

Serial number	Submunition weight, m, g	Submunition speed, v, m/s	Material barriers	Deformation constraints, depth, x, mm	Deformation of the obstacles, the diameter of the midsection, mm
1	0.49	143	dural	x₁	S₁
2	0.49	152	dural	x₂	S₂
3	0.49	148	dural	x₃	S₃
...					
30	0.49	145	dural	x₃₀	S₃₀
1	0.49	147	Sculptural clay	x₄	S₁
2	0.49	143	Sculptural clay	x₅	S₂
3	0.49	145	Sculptural clay	x₆	S₃
...					
30	0.49	147	Sculptural clay	x₃₀	S₃₀
1	0.49	144	Pine Board	x₇	S₁
2	0.49	150	Pine Board	x₈	S₂
3	0.49	143	Pine Board	x₉	S₃
...					
30	0.49	148	Pine Board	x₃₀	S₃₀

The statistical processing of the sample showed that the distribution function of the probability of the introduction of fragments into an obstacle can be represented in the form of a log-normal law and the Weibul law. The statistical processing of the sample showed that the distribution function of the probability of the introduction of fragments into an obstacle can be represented in the form of a log-normal law and the Weibul law. The verification of the hypothesis about the supposed distribution law was carried out using the Fisher significance criterion. The audit showed that the statistics of the logarithmically normal law are better than those of the Weibul law. Figure 6 shows the graph of the function after the statistical processing of the sample using Microsoft Office spreadsheets.
4. Results

The development of a standardized tank module for multimodal transport of the RM, which can perform various tasks such as transporting a wide range of liquid radioactive waste by different modes of transport with opportunity safe overload, taking into account not only the rules for calculation and design of tank wagons [5, 6, 7, 8], but also taking into account the dependence of thickness of the tank from the probability of penetration by shrapnel. More detailed models and equipment for conducting the experiment can be found in the [12-20].

The main results obtained:
- accident scenarios considered in transfer the marine railway transport;
- mathematical model for determining the speed and weight of vlim shard m at which break through obstacles thickness s, and limiting the thickness of shim barriers easily by a given mass m and velocity v;
- received probability distribution function for the specified parameters shards and material barriers, which was determined by conducting a full-scale experiment.

5. Discussion

The results were discussed at scientific seminars and were presented during national and international conferences.

6. Conclusion

The study examined the construction of tanks and the requirements of the normative documents applicable to transportation LRW rail and sea transport. Emergency scenarios are considered: partial destruction of transport packing container with LRW in transfer of marine to rail transport; the explosion of gas cylinders on board the vessel. Received mathematical model for determining the speed and weight of v_{lim} Shard m at which break through obstacles thickness s, and limiting the thickness of s_{lim} barriers easily by a given mass m and velocity v.

Calculation formulas are obtained to determine the speed at which the shards is provided by probabilistic the breakout a certain thickness of the tank walls. Received probability distribution function for the specified parameters shards and material barriers, which was determined by conducting a full-scale experiment. The results of theoretical studies, experiments used to improve designs of tanks carrying LRW and recommendations for improving the security of multimodal transporte.

Work is performed within the framework of the state job support (project No. 13.8874.2017)
References
[1] Federal rules and regulations in the field of atomic energy. No. 7. Collecting, processing, storage and conditioning of liquid radioactive waste. Security requirements. NP-019-2000. Moscow 2000
[2] Filippov V.N., Popov V., Ponomarev V.M., Shebeko Y.N., Bespalko S.V. 2017 J. Transport, science and technology, 1 21-27.
[3] Popov V.G. Sukhov, F.I., Petrov S.V. 2012 J. World of transport,. 6 (44) 150-155.
[4] Ponomaryov V.M., Shevchenko A.I. 2005 J. Transport, science and technology 2 40-46.
[5] Specialized tanks for transport of dangerous goods. V.N. Koturanova and V.N. Filippov-M.: publishing standards, 1993.
[6] Filippov V.N., Skuratov A.E. 1999. General technical requirements for fittings wagons tanks for dangerous goods. The safety of trains. Proc. Of The MIIT. M.,
[7] Rules for calculation and design of railways wagons of gauge 1520 mm (non-self-propelled) with amendments and additions 2004 r.-m.: GosNIIV-VNIIZHT, 1996. -319 p.
[8] Shebeko Yu N., Bolodian I.A., Easy V.N., Navzenya V.Yu., Kostyuhin A.K., Zamishevski P.M., Tokarev E.D. A. 2000 J. Journal of Hazardous Materials 1-3 43-56.
[9] Karmishin A.M., Kireev V.A. Mathematical methods of Pharmacology and Toxicology: monograph/ed. 2-c, revised. and extras. (M.: MGTU named after n.e.Bauman, 2008. (333 p.; ill.
[10] Moody f. 1971 Maximum consumption of single-component two-phase mixture. Proceedings Of ASME. Heat transfer 2 47-56
[11] Tumanov A.V. Gumenyuk V.I. Scientific methodological fundamentals of risk assessment natural and man-caused emergencies at hazardous technical objects: monograph. Spb.: Polytechnic., 2018. -135 p.
[12] G. Petrov and A. Tarmaev “Modeling of railway vehicles movement having deviations in the content of running parts”. Proceedings of the International Conference «Aviamechanical Engineering and Transport» (AVENT 2018). Series: Advances in Engineering Research, Atlantis Press, 2018, vol. 158, pp. 410-415. DOI:10.2991/avent-18.2018.79
[13] Tumanov A., Gumenyuk V., Tumanov V. Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conference Series: Earth and Environmental Science, 19. С. 012027.
[14] Burlov, V., Lepeshkin, O. Modeling the Process for Controlling a Road Traffic Safety System Based on Potentially Active Elements of Space and Time (2017) Transportation Research Procedia, 20, . DOI: 10.1016/j.trpro.2017.01.02
[15] Pykhthin, K., Simankina, T., Sharmanov, V., Kopytova, A. Risk-based approach in valuation of workplace injury rate for transportation and construction industry (2017) IOP Conference Series: Earth and Environmental Science, 90 (1), статья № 012065, . DOI: 10.1088/1755-1315/90/1/012065
[16] Bardin, A., Korotkov, A., Kazarnovskij, V. Limit of fire resistance of a steel transport structures. Simplified calculation methods (2017) IOP Conference Series: Earth and Environmental Science, 90 (1), № 012207, . DOI: 10.1088/1755-1315/90/1/012207
[17] Korshunov, G.I., Polyakov, S.L., Shunmin, L. Assurance of reliability and safety in liquid hydrocarbons marine transportation and storing (2017) IOP Conference Series: Earth and Environmental Science, 87 (6), № 062009, . DOI: 10.1088/1755-1315/87/6/062009
[18] A. Ustinov, O. Zybina, L. Tanklevsky, V. Lebedev, A. Andreev Intumescent coatings with improved properties for high-rise construction (2018) E3S Web of Conferences,33 (1), статья № 02039 DOI: 10.1051/e3sconf/20183302039
[19] Burlow, V.G., Grachev, M.I., Shilygina, N.S. Adoption of management decisions in the context of the uncertainty of the emergence of threats (2017) Proceedings of 2017 20th IEEE International Conference on Soft Computing and Measurements, SCI 2017, статья № 7970510, pp. 107-108. DOI: 10.1109/SCM.2017.7970510
[20] Bolodian, I., Melikhov, A., Tanklevskiy, L. Fire safety arrangement of inhabited pressurized compartments of manned spacecraft (2017) Acta Astronautica, 135, pp. 92-99. DOI: 10.1016/j.actaastro.2016.10.003