Complete genome sequence of *Desulfomicrobium baculatum* type strain (X²)

Alex Copeland¹, Stefan Spring², Markus Göker², Susanne Schneider², Alla Lapidus¹, Tijana Glavina Del Rio¹, Hope Tice¹, Jan-Fang Cheng¹, Susan Lucas¹, Feng Chen¹, Matt Nolan¹, David Bruce¹, Lynne Goodwin¹, Sam Pitluck¹, Natalia Ivanova¹, Konstantinos Mavromatis¹, Galina Ovchinnikova¹, Amrita Pati¹, Amy Chen¹, Krishna Palaniappan¹, Miriam Land¹, Loren Hauser¹, Yun-Juan Chang¹, Cynthia C. Jeffries¹, Linda Meincke⁵, David Sims³, Thomas Brettin¹, John C. Detter¹, Cliff Han¹, Patrick Chain¹, Jim Bristow¹, Jonathan A. Eisen¹, Victor Markowitz⁴, Philip Hugenholtz¹, Nikos C. Kyrpides¹, Hans-Peter Klenk², and Susan Lucas¹*

¹ DOE Joint Genome Institute, Walnut Creek, California, USA
² DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
³ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico USA
⁴ Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁵ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁶ Lawrence Livermore National Laboratory, Livermore, California, USA
⁷ University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Susan Lucas

Keywords: Sulfate reducer, Gram-negative, free-living, non-pathogenic, freshwater, anaerobe, mesophile, *Desulfomicrobiaceae*

Desulfomicrobium baculatum is the type species of the genus *Desulfomicrobium*, which is the type genus of the family *Desulfomicrobiaceae*. It is of phylogenetic interest because of the isolated location of the family *Desulfomicrobiaceae* within the order *Desulfovibrionales*. *D. baculatum* strain X² is a Gram-negative, motile, sulfate-reducing bacterium isolated from water-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6% (w/v) are tolerated. The metabolism is respiratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxidized to acetate and CO₂. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family *Desulfomicrobiaceae*, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain X² (DSM 4028 = CCUG 34229 = VKM B-1378) is the type strain of the species *Desulfomicrobium baculatum*, which is the type species of the genus *Desulfomicrobium*. Strain X² was first described as *Desulfovibrio baculatus* by Rozano-va and Nazina [1,2], and later transferred to the novel genus *Desulfomicrobium* (currently containing seven species) [3] (Figure 1) because several phenotypic traits were not consistent with the definition of the genus *Desulfovibrio*. In
Fermented. Vitamins are not required for growth [3]. *D. baculatum* strain 9974 (DSM 1743) is also able to use ethanol as a substrate [10] and sulfur as an electron acceptor [6]. The use of ethanol as an electron donor for sulfate respiration depends on supplementing the medium with the trace elements tungstate or molybdate [10]. Sulfate uptake in symport with sodium ions has been shown in strain 9974, unlike in other fresh water sulfate reducers which use protons [11]. Distinctive features of *D. baculatum* strain XT are: (i) NaCl is not required for growth [3], (ii) fermentation of fumarate and malate to succinate and acetate is preferred against utilization of these substrates as electron donors for sulfate reduction [9], (iii) sulfur is not used as an electron acceptor and (IV) molecular nitrogen can be assimilated [3].

A desulfoviridin-type dissimilatory sulfite reductase, which is a hallmark feature of the genus Desulfovibrio, is absent in strain XT, however a sulfite reductase of the desulforubidin-type was reported for strain 9974 [12]. Cells of *D. baculatum* strain XT contain c- and b-type cytochromes [3]. The tetraheme cytochrome c₅₅ of strain 9974, which is thought to play a role in sulfur reduction and the coupling of electron transfer to hydrogenases, has been analyzed in some detail using advanced biophysical methods [13-15]. Strain 9974 also contains several distinct [NiFeSe] hydrogenases that are located in different cellular compartments [16]. The crystal structure of the periplasmic [NiFeSe] hydrogenase of this strain has been determined [17] and it is proposed that the selenium ion in the active center plays a role in the oxygen-tolerant hydrogen production of this enzyme, which distinguishes it from most [NiFe] hydrogenases [18]. An active selenocysteine system for usage of the 21st amino acid has been studied in detail for *D. baculatum* strain 9974 [19-21]. Pyridoxal-5'-phosphate, the prosthetic group of selenocysteine synthases, is bound to a distinct lysine residue (Lys295) within the active site of the enzyme of this strain [20].

Figure 1 shows the phylogenetic neighborhood of *D. baculatum* strain XT in a 16S rRNA based tree. Analysis of the two 16S rRNA gene sequences in the genome of strain XT indicated that the two genes are almost identical (1 bp difference), and that both genes differed by one nucleotide from the previously published 16S rRNA sequence generated from DSM 4028 (AJ277894).

Classification and features

Cells of *D. baculatum* strain XT are short rods with rounded ends of 0.6 x 1-2 μm (Figure 2). Cells stain Gram-negative, are motile by a single polar flagellum, and do not form endospores. The metabolism is strictly anaerobic and can be respiratory or fermentative [3,9]. Temperature range for growth is 2-41°C (optimum 28-37°C) and NaCl concentrations of 0-6% (w/v) are tolerated (optimum 1% w/v). Sulfate, sulfite and thiosulfate are used as electron acceptors and are reduced to H₂S. Nitrate is not reduced. Simple organic compounds are incompletely oxidized to acetate [3]. Malate, fumarate and pyruvate can be fermented with succinate and acetate as end products. Carbohydrates are not fermented. Vitamins are not required for growth [3].
Figure 1. Phylogenetic tree of *D. baculatum* strain X*T* and all type strains of species within members of the family *Desulfomicrobiaceae*, inferred from 1,457 aligned characters [22, 23] of the 16S rRNA gene sequence under the maximum likelihood criterion [24]. The tree was rooted with all members from the *Desulfonatronaceae*, another family in the order *Desulfovibrionales*. The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support values from 1,000 bootstrap replicates if larger than 60%. Strains with a genome-sequencing project registered in GOLD [25] are printed in blue; published genomes in bold.

Figure 2. Scanning electron micrograph of *D. baculatum* X*T* (Manfred Rohde, Helmholtz Centre for Infection Biology, Braunschweig)
The cellular fatty acid patterns of *D. baculatum* strain X^T^ and the accompanying strains 5174, 9974 and H.L21 [26] were found to be dominated by anteiso- (ai) and iso-methyl branched unsaturated and saturated fatty acids. The most abundant fatty acid is iso-17:1 cis7 (24.2–28.6%), followed by 18:1 cis11 (6.4–12.2%), iso-15:0 (8.2–11.6%), ai-17:0 (4.5–8.3%), ai-15:0 (5.2–7.7%), 18:0 (3.9–7.1%) and 16:0 (3.6–5.7%). Less abundant fatty acids are iso-15:1 (3.1–4.0%), 16:1 cis7 (2.2–5.0%), ai-17:1 (2.4–4.1%), 18:1 cis9 (2.6–4.3%), iso-16:1 (0.5–2.2%), and 17:0 (0.2–0.3%). Branched chain, hydroxylated fatty acids are also present, 3-OH iso-15:0 (1.4–2.4%), 3-OH ai-15:0 (0.7–1.2%), and 3-OH iso-17:0 (1.2–2.2%), which may be derived from a lipopolysaccharide. The polar lipid composition of *D. baculatum* strain X^T^ has not been investigated. The respiratory quinone composition of *D. baculatum* strain X^T^ has also not been investigated, but the presence of MK-6 has been reported in *D. macestii* and *D. norvegicum* [7, 27].

Table 1. Classification and general features of *D. baculatum* X^T^ in accordance to the MIGS recommendations [28]

MIGS ID	Property	Term	Evidence code
	Current classification		
	Domain	Bacteria	
	Phylum	Proteobacteria	
	Class	Deltaproteobacteria	
	Order	Desulfovibrionales	
	Family	Desulfomicrobiaceae	
	Genus	Desulfomicrobium	
	Species	Desulfomicrobium baculatum	TAS [29]
	Type strain	X	
	Gram stain	negative	TAS [1]
	Cell shape	rod-shaped	TAS [1]
	Motility	motile, single polar flagellum	TAS [1]
	Sporulation	non-sporulating	TAS [1]
	Temperature range	mesophilic	TAS [1]
	Optimum temperature	28–37°C	TAS [1]
	Salinity	10 g NaCl/l	TAS [1]
	MIGS-22	Oxygen requirement	
		strictly anerobic	TAS [1]
	MIGS-6	Habitat	
		freshwater to brackish anoxic sediments	TAS [1]
	MIGS-15	Biotic relationship	
		free-living	NAS
	MIGS-14	Pathogenicity	
		none	NAS
	MIGS-4	Biosafety level	
		1	TAS [30]
	MIGS-4.1	Isolation	
		water-saturated manganese carbonate ore	TAS [1]
	MIGS-4.2	Geographic location	
		not reported	
	MIGS-4.3	Sample collection time	
		1975 or earlier	IDA
	MIGS-4.4	Latitude – Longitude	
		not reported	
	MIGS-4.5	Depth	
		not reported	

Evidence codes – IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [31]. If the evidence code is IDA, then the property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements.
The genome was sequenced using a combination of Sanger and 454 sequencing platforms. All general aspects of library construction and sequencing performed at the JGI can be found at the JGI website. 454 Pyrosequencing reads were assembled using the Newbler assembler version 1.1.02.15 (Roche). Large Newbler contigs were broken into 4,375 overlapping fragments of 1,000 bp and entered into assembly as pseudo-reads. The sequences were assigned quality scores based on Newbler consensus q-scores with modifications to account for overlap redundancy and to adjust inflated q-scores. A hybrid 454/Sanger assembly was made using the parallel phrap assembler (High Performance Software, LLC). Possible mis-assemblies were corrected with Dupfinisher or transposon bombing of bridging clones [32]. Gaps between contigs were closed by editing in Consed, custom primer walk or PCR amplification. 731 Sanger finishing reads were produced to close gaps, to resolve repetitive regions, and to raise the quality of the finished sequence. The error rate of the completed genome sequence is less than 1 in 100,000. Together all sequence types provided 37.2 x coverage of the genome.

Genome annotation

Genes were identified using Prodigal [33] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using JGI’s GenePRIMP pipeline [34]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, Uni-
Desulfovicrobium baculatum type strain (XT)

Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation were performed within the Integrated Microbial Genomes (IMG-ER) platform [35].

Genome properties
The genome is 3,942,657 bp long and comprises one circular chromosome with a 58.7% GC content (Table 3 and Figure 3). Of the 3,565 genes predicted, 3,494 were protein coding genes, and 71 RNAs; 58 pseudogenes were also identified. 74.9% of the genes were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The properties and the statistics of the genome are summarized in Table 3. The distribution of genes into COGs functional categories is presented in Table 4.

Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	3,942,657	
DNA Coding region (bp)	3,572,336	90.61%
DNA G+C content (bp)	2,312,250	58.65%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	3565	
RNA genes	71	2.02%
rRNA operons	2	
Protein-coding genes	3494	97.98%
Pseudo genes	58	1.63%
Genes with function prediction	2675	75.01%
Genes in paralog clusters	357	12.82%
Genes assigned to COGs	2689	75.41%
Genes assigned Pfam domains	2688	75.38%
Genes with signal peptides	723	20.27%
Genes with transmembrane helices	897	25.15%
CRISPR repeats	0	

Table 4. Number of genes associated with the 21 general COG functional categories

Code	Value	%	Description
J	166	4.8	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	154	4.4	Transcription
L	116	3.3	Replication, recombination and repair
B	3	0.1	Chromatin structure and dynamics
D	35	1.0	Cell cycle control, mitosis and meiosis
Y	0	0.0	Nuclear structure
V	38	1.1	Defense mechanisms
T	325	9.3	Signal transduction mechanisms
M	221	6.3	Cell wall/membrane biogenesis
N	108	3.1	Cell motility
Z	0	0.0	Cytoskeleton
Table 4. Number of genes associated with the 21 general COG functional categories (cont.)

Code	Value	%	Description
W	0	0.0	Extracellular structures
U	82	2.3	Intracellular trafficking and secretion
O	122	3.5	Posttranslational modification, protein turnover, chaperones
C	241	6.9	Energy production and conversion
G	126	3.6	Carbohydrate transport and metabolism
E	266	7.6	Amino acid transport and metabolism
F	68	1.9	Nucleotide transport and metabolism
H	135	3.9	Coenzyme transport and metabolism
I	52	1.5	Lipid transport and metabolism
P	137	3.9	Inorganic ion transport and metabolism
Q	34	1.0	Secondary metabolites biosynthesis, transport and catabolism
R	319	9.1	General function prediction only
S	221	6.3	Function unknown
-	805	23.0	Not in COGs

Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Acknowledgements

We would like to gratefully acknowledge the help of Maren Schroeder (DSMZ) for growing *D. baculatum* cultures. This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396 as well as German Research Foundation (DFG) INST 599/1-1.

References

1. Rozanova EP, Nazina TN. A mesophilic, sulfate-reducing, rod-shaped, nonsporeforming bacterium. *Mikrobiologiya* 1976; **45**:825-830

2. List Editor. Validation of the publication of new names and new combinations previously effectively published outside the ISJB. *Int J Syst Bacteriol* 1984; **34**:355-357

3. Rozanova EP, Nazina TN, Galushko AS. Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, *Desulfomicrobium apsheronum* gen. nov., sp. nov. *Mikrobiologiya* 1988; **57**:634-641

4. Euzéby JP. Taxonomic note: necessary correction of specific and subspecific epithets according to Rules 12c and 13b of the International Code of Nomenclature of Bacteria (1990 Revision). *Int J Syst Bacteriol* 1998; **48**:1073-1075 doi:10.1099/ijs.0.02574-0

5. Laanbroek HJ, Pfennig N. Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. *Arch Microbiol* 1981; **128**:330-335 PMID:7212933 doi:10.1007/BF00422540

6. Biebl H, Pfennig N.. Growth of sulfate-reducing bacteria with sulfur as electron acceptor. *Arch Microbiol* 1977; **112**:115-117 PMID:843165 doi:10.1007/BF00446664

7. Grabowski A, Nercissian O, Fayolle F, Blanchet D, Jeannot C. Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. *FEMS Microbiol Ecol* 2005; **54**:427-443 PMID:16332340 doi:10.1016/j.femsec.2005.05.007

8. Hippe H, Vainshtein M, Gogotova GI, Stackebrandt E. Reclassification of *Desulfo bacterium macestii* as *Desulfomicrobium macestii* comb. nov. *Int J Syst Evol Microbiol* 2003; **53**:1127-1130 PMID:12892138 doi:10.1099/ijs.0.02574-0

9. Sharak-Genthner BR, Friedman SD, Devereux R. Reclassification of *Desulfovibrio desulfuricans* Norway 4 as *Desulfomicrobium norvegicum* comb. nov. and confirmation of *Desulfomicrobium escambiense* (corr., formerly "escambium") as a new species in the genus *Desulfomicrobium*. *Int J Syst Bacteriol* 1997; **47**:889-892

10. Hensgens CMH, Nienhuis-Kuiper ME, Hansen TA. Effect of tungstate on the growth of *Desulfovibrio gigas* NCIMB 9332 and other sulfate-reducing bacteria with ethanol as a substrate. *Arch Microbiol* 1994; **162**:143-147 doi:10.1007/BF00264388

11. Cyphionka H, Kreke B. Energetics of sulfate transport in *Desulfomicrobium baculatum*. *Arch Microbiol* 1995; **163**:307-309 doi:10.1007/BF00393385

12. Lee JP, Yi CS, LeGall J, Peck HD, Jr. Isolation of a new pigment, desulforubidin, from *Desulfovibrio desulfuricans* (Norway strain) and its role in sulfite reduction. *J Bacteriol* 1973; **115**:453-455 PMID:4717523

13. Fauque G, Herve D, Le Gall J. Structure-function relationship in hemoproteins: the role of cytochrome c3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. *Arch Microbiol* 1979; **121**:261-264 PMID:229785 doi:10.1007/BF00425065

14. Coutinho IB, Turner DL, Legall J, Xavier AV. NMR studies and redox titration of the tetraheme cytochrome c3 from *Desulfomicrobium baculatum*. *J Biol Chem* 2004; **279**:52227-52237 PMID:15456779 doi:10.1074/jbc.M408763200

15. Correia IJ, Paquete CM, Coelho A, Almeida CC, Catarino T, Louro RO, Frazao C, Saraiva LM, Carrrondo MA, Turner DL, et al. Proton-assisted two-electron transfer in natural variants of tetraheme cytochromes from *Desulfomicrobium sp.* *J Biol Chem* 2004; **279**:52227-52237 PMID:15456779 doi:10.1074/jbc.M408763200

16. Teixeira M, Fauque G, Moura I, Lespinat PA, Berlier Y, Prickril B, Peck HD, Jr., Xavier AV, Le Gall J, Moura JJ. Nickel-[iron-sulfur]-selenium-containing hydrogenases from *Desulfovibrio ba-
17. Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. *Eur J Biochem* 1987; 167:47-58 PM-ID:3040402 doi:10.1111/j.1432-1033.1987.tb13302.x

18. Parkin A, Goldet G, Cavazza C, Fontecilla-Camps JC, Armstrong FA. The difference a Se makes? Oxygen-tolerant hydrogen production by the [Ni-FeSe]-hydrogenase from *Desulfomicrobium baculatum*. *J Am Chem Soc* 2008; 130:13410-13416 PMID:18781742 doi:10.1021/ja803657d

19. Tormay P, Wilting R, Heider J, Bock A. Genes coding for the selenocysteine-inserting tRNA species from *Desulfomicrobium baculatum* and *Clostridium thermoacetica*: structural and evolutionary implications. *J Bacteriol* 1994; 176:1268-1274 PMID:8113164

20. Tormay P, Wilting R, Lottspeich F, Mehta PK, Christen P, Bock A. Bacterial selenocysteine synthase - structural and functional properties. *Eur J Biochem* 1998; 254:655-661 PMID:9688279 doi:10.1046/j.1432-1327.1998.2540655.x

21. Kromayer M, Wilting R, Tormay P, Bock A. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. *J Mol Biol* 1996; 262:413-420 PMID:8893853 doi:10.1006/jmbi.1996.0525

22. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. *Bioinformatics* 2002; 18:452-464 PMID:11934745 doi:10.1093/bioinformatics/18.3.452

23. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol Biol Evol* 2000; 17:540-552 PM-ID:10742046

24. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. *Syst Biol* 2008; 57:758-771 PMID:18853362 doi:10.1080/10635150802429642

25. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2008; 36:D475-479 PMID:17981842 doi:10.1093/nar/gkm884

26. Vainshtein M, Hippe H, Kroppenstedt RM. Cellular fatty acid composition of *Desulfovibrio* species and its use in classification of sulfate-reducing bacteria. *Syst Appl Microbiol* 1992; 15:554-566

27. Collins MD, Widdel F. Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. *Syst Appl Microbiol* 1986; 8:8-18

28. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; 26:541-547 PMID:18464787 doi:10.1038/nbt1360

29. Kuever J, Rainey FA, Widdel F. Family II Desulfovicrobiaceae fam. nov. NR Krieg JS, GM Garrity, editor. New York: Springer; 2005. 944

30. Anonymous. Biological Agents: Technical rules for biological agents. <www.baua.de>.

31. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 2000; 25:25-29 PMID:10802651 doi:10.1038/75556

32. Sims D, Brettin T, Detter JC, Han C, Lapidus A, Copeland A, Del Rio TG, Nolan M, Chen F, Lucas S, et al. Complete genome of *Kytococcus sedentarius* type strain (541'). *SIGS* 2009; 1:12-20 doi:10.4056/sigs.761

33. Anonymous. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. Oak Ridge National Laboratory and University of Tennessee 2009 <http://compbio.ornl.gov/prodigal>.

34. Pati A. GenePRIMP: A GenePrediction Improvement Pipeline for microbial genomes; 2009 (In press)

35. Markowitz V, Mavromatis K, Ivanova N, Chen IM, Chu K, Palaniappan K, Szeto E, Anderson I, Lykidis A, Kyrpides N. Expert Review of Functional Annotations for Microbial Genomes. (Submitted)