PRE-OPERATIVE GASTRIC GIST DOWNSIZING: THE IMPORTANCE OF NEOADJUVANT THERAPY

Redução tumoral pré-operatória do GIST gástrico: a importância da terapia neoadjuvante

João Bernardo Sancio Rocha RODRIGUES1 Renato Gomes CAMPANATI1 Francisco NOLASCO1, Athos Miranda BERNARDES1 Soraya Rodrigues de Almeida SANCHES1 Paulo Roberto SAVASSI-ROCHA1

How to cite this article: Rodrigues JBSR, Campanati RG, Nolasco F, Bernardes AM, Sanches SRA, Savassi-Rocha PR. Pre-operative gastric GIST downsizing: the importance of neoadjuvant therapy. ABCD Arq Bras Cir Dig. 2019;32(1):e1427. DOI: /10.1590/0102-672020180001e1427

ABSTRACT - Introduction: Gastric gastrointestinal tumors (GIST) are a rare and usually asymptomatic neoplasm that can present as abdominal mass in more advanced scenarios. Since surgical resection is the main aspect of the treatment, locally advanced tumors require multivisceral resection and, therefore, higher postoperative morbidity and mortality. Objective: To perform a review the literature on the topic, with emphasis on the neoadjuvant therapy. Methods: Literature review on the Medline database using the following descriptors: gastrointestinal stromal tumors, neoadjuvant therapy, imatinib mesylate and molecular targeted therapy. Results: Surgical resection remains the cornerstone for the treatment of GISTs; however, tyrosine kinase inhibitors have improved survival as an adjuvant therapy. More recently, neoadjuvant therapy have been described in the treatment of locally advanced tumors in order to avoid multivisceral resection. Conclusion: Despite surgical resection remains as the most important aspect of the treatment of GISTs, adjuvant and neoadjuvant therapy with tyrosine kinase inhibitors have shown to both improve survival and resectability, respectively.

INTRODUCTION

The gastrointestinal stromal tumor (GIST) is the most frequent mesenchymal tissue tumor of the gastrointestinal tract, accounting for up to 1 to 1.5 cases every 100,000 people/year, with a mean age of 60 years at diagnosis16. It originates from the Cajal cells, which are located at the muscle layers of the bowel wall and are involved in peristalsis15. Despite being also described outside the digestive tract, the most frequent location are the stomach (60% of cases) and the small bowel (around 20-30%)15,16. Usually asymptomatic, most of GISTs are an incidental diagnosis during surgical or image exams, but it can lead to abdominal swelling and pain in more advanced scenarios15,16. At the pathology exam, the defining factor for diagnosis other than morphological traits is the expression of the receptor of the proto-oncogene KIT (CD117)16. Despite surgical resection is still considered the cornerstone of treatment, target therapies with tyrosine kinase inhibitors have also contributed to a greater...
improvement, since its use as adjuvant therapy have shown to increase overall and disease free-survival\cite{4,7,15,16}. However, the preoperative therapy with such drugs can aid in specific cases with predicted higher morbidity, in order to enable more conservative surgical approaches and better oncological and functional results\cite{1}.

METHODS

This study was approved by ethical board of the institution and by the patient depicted with specific consent. Literature review was performed using Medline database with the following descriptors: gastrointestinal stromal tumors, neoadjuvant therapy, imatinib mesylate and molecular targeted therapy.

RESULTS

The imatinib mesylate is the first line of treatment for inoperable, recurred of metastatic GIST\cite{4,13}. Surgical resection remains the best treatment for tumors that can be completely removed with free surgical margins\cite{3,4,11,16}. Since lymphatic spread is rare, lymphadenectomy is not routinely performed\cite{16}. Minimally invasive procedures are indicated, mainly in small gastric lesions, regarding its known benefits of early operative recovery and lower morbidity, but larger masses are less likely to be resected from laparoscopic approach due to higher perforation risk\cite{3,11,12,16}.

Surgical resection with microscopically free margins is related with a 5-year overall survival rate of around 60%\cite{16}. Since 2008, imatinib mesylate has been indicated as adjuvant therapy after surgical resection with a significant reduction in local recurrence\cite{5}. A trial from DeMatteo *et al.*\cite{3} randomized patients with GIST of up to 3 cm after R0 resection to receive 400 mg/day of imatinib vs. placebo, showing a significant improvement in 1-year disease free-survival (98% vs. 83%, \(p<0.001\)). Interestingly, overall survival rated did not differed between groups, probably due to short follow-up period.

Therefore, the definition of high-risk groups that are amenable to adjuvant therapy is of foremost importance and classically it takes into account the mitotic rate, tumor size and primary site, as well as tumor perforation during surgery\cite{1}. Regarding these factors, several classification systems have been proposed, including that of Miettinen and Lasota\cite{3} that stratifies patients as very low risk, low risk, intermediate risk and high risk of postoperative progression\cite{3,5,13,14}. On the other hand, the 2016 Asian consensus\cite{13} adopts the classification by Joensuu\cite{4}, from 2008. High risk tumors, regarding the Joensuu classification, are amenable to adjuvant therapy with 400 mg of imatinib mesylate (Table 1).

TABLE 1 - Prognostic classification of recurrence risk for the selection of adjuvant therapy in patients with GIST

Risk category	Tumor size in largest dimension	Mitotic count (per 50 HPFs§)	Primary site
Very low risk	<2 cm	≤5	Any
Low risk	>2 and ≤5 cm	≤5	Any
Intermediate risk	>2 and ≤5 cm	>5	Gastric
	<5 cm	>5 and ≤10	Any
	>5 and ≤10 cm	≤5	Gastric
High risk	Tumoral Rupture	Any	Any
	>10 cm	Any	Any
	>5 cm	>5	Any
	>2 and ≤5 cm	>5	Non-gastric
	>5 and ≤10 cm	≤5	Non-gastric

* Adapted from Joensuu\cite{4}; § number of mitosis per 50 high-power fields

Therefore, it is defined that patients with gastric GIST that should receive adjuvant therapy with imatinib mesylate, 400 mg/day, are those in which there was tumor rupture during intraoperative time, tumors greater than 10 cm or with a mitotic count greater than 10 mitoses per 50 high-power fields (HPFs), as well as those larger than 5 cm associated with a mitotic count greater than five mitoses per 50 HPFs\cite{11}.

Regarding the extent of the adjuvant therapy, another multicentric randomized trial compared 1 vs. 3 years of duration and demonstrated a greater 5-year disease free and overall survival for the longer duration group (47.9 vs. 65.6%, \(p<0.001\) and 81.7 vs. 92.0%, \(p=0.02\), respectively)\cite{6}. Therefore, if adjuvant therapy is indicated, it should be performed for three years and, according to the main current consensus, its initiation should occur as soon as possible after the operation, once the patient has oral intake\cite{4,11}.

More recently, neoadjuvant therapy has been considered in cases of locally advanced tumors, where is predicted positive resection margins and, therefore, a higher chance of bleeding and perforation. Other than that it can also be indicated to avoid multivisceral resections in order to minimize postoperative morbidity and to enable the surgical approach\cite{4,11,19,20}.

Gene sequencing methods are indicated before the therapy since it can predict response and the most common ones are located at the KIT gene in exons 11 (65%) and 9 (6%). Exons 11 and 13 mutations in this gene is associated with better response and prognosis and the exon 9 mutation, on the other hand, with lower response to imatinib and more aggressive tumors. The mutation on the gene PDGFRA (D842V) and the other 10% of tumors that does not present with any other mutations show minimal or no response after tyrosine kinase inhibitors therapy, hence the importance of gene sequencing\cite{10}.

Neoadjuvant therapy can be maintained for 4-12 months and does not require preemptive suspension before surgical approach\cite{11}. Usually, imaging exams are repeated after the first month of therapy, specially when gene sequencing was not performed, in order to detect non-response (Figure 1)\cite{11}.

FIGURE 1 – A) Magnetic resonance imaging of the abdomen before neoadjuvant therapy showing a tumor with 22.8 cm in its greater diameter; B) computed tomographic image after neoadjuvant therapy.

There is no specific criteria to measure tumor response on image exams and, particularly, to determine the behavior of the GIST.

Another interesting finding is an unexpectedly good response of some patients with metastatic disease after imatinib therapy making it even amenable to surgical resection\cite{18}.

To this very moment, there is no good quality evidence on the follow up of patients with GISTs after surgical resection and most of the data are based on expert opinion. Since extra-abdominal metastatic dissemination is quite uncommon in gastrointestinal stromal tumors, computed tomography
(CT) of the abdomen and pelvis appears to be sufficient as a method of imaging during follow-up, and may be replaced by magnetic resonance imaging in younger patients, in order to decrease exposure to excessive radiation. For intermediate or low-risk patients, an annual CT scan during the first five years after resection is considered adequate. The typical recommendation for high-risk patients is to perform an image exam every six months in the first two years and subsequently every 6-12 months.

CONCLUSION

Surgical resection of gastric GIST remains the cornerstone of the treatment of these tumors, with minimally invasive approaches being the usual choice whenever possible. Adjuvant therapy with tyrosine kinase inhibitors is indicated in high-risk patients in order to decrease exposure to excessive radiation. For intermediate or low-risk patients, an annual CT scan during the first three years after operation and, more recently, neoadjuvant therapy presents as a reasonable option in locally advanced tumors, in order to reduce postoperative morbidity and to increase resectability.

REFERENCES

1. Asif S, Gupta N, Gupta G, Mehta A, Singh S. Effective Dowsizing of a Gastroesophageal GIST Using Neoadjuvant Imatinib Mesylate: a Case Report. J Gastrointest Cancer. 2017 Jun;48(2):198-200.
2. DeMatteo RP, Ballman KV, Antonescu CR, et al. Placebo-Controlled Randomized Trial of Adjuvant Imatinib Mesylate Following the Resection of Localized, Primary Gastrointestinal Stromal Tumor (GIST). Lancet. 2009;373(9669):1097-1104.
3. Eisenberg BL, Trent JC. Adjuvant and neoadjuvant imatinib therapy: current role in the management of gastrointestinal stromal tumors. Int J Cancer. 2011 Dec 1;129(11):2533-42.
4. ESMO/European Sarcoma Network/Working Group. Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014 Sep;25 Suppl 3:i3:i1-5. doi: 10.1093/annonc/mdu255. Erratum in: Ann Oncol. 2015 Sep;26 Suppl 5:v174-7.
5. Gold JS, Gönen M, Gutiérrez A, et al. Development and Validation of a Prognostic Nomogram for Recurrence-Free Survival after Complete Surgical Resection of Localized, Primary Gastrointestinal Stromal Tumor (GIST): A Retrospective Analysis. The lancet oncology. 2009;10(11):1045-1052.
6. Joensuu H, Eriksson M, Sundby Hall K, et al. One vs Three Years of Adjuvant Imatinib for Operable Gastrointestinal Stromal Tumor: A Randomized Trial. JAMA. 2012;307(12):1265-1272.
7. Joensuu H, Martin-Broto J, Nishida T, Reichardt P, Schöffski P, Maki RG. Follow-up strategies for patients with gastrointestinal stromal tumour treated with or without adjuvant imatinib after surgery. Eur J Cancer. 2015 Aug;51(12):1611-7.
8. Joensuu H. Risk stratification of patients diagnosed with gastrointestinal stromal tumor, Hum Pathol. 2008 Oct;39(10):1411-9.
9. Kim JJ, Lim JY, Nguyen SQ. Laparoscopic resection of gastrointestinal stromal tumors: Does laparoscopic surgery provide an adequate oncologic resection? World Journal of Gastrointestinal Endoscopy. 2017;9(9):448-455.
10. Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumours show phenotypic characteristics of the interstitial cells of Cajal. The American Journal of Pathology. 1998;152(5):1259-69.
11. Koo D-H, Ryu M-H, Kim K-M, et al. Asian Consensus Guidelines for the Diagnosis and Management of Gastrointestinal Stromal Tumor. Cancer Research and Treatment: Official Journal of Korean Cancer Association. 2016;48(4):1153-1166.
12. Loureiro M de P, de Almeida RAA, Claus CMP, et al. Laparoscopic Resection Of Gastrointestinal Stromal Tumors (GIST). Arquivos Brasileiros de Cirurgia Digestiva: ABCD. 2016;29(1):1-4.
13. Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol. 2006 May;23(2):70-83.
14. Miettinen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med. 2006 Oct;130(10):1466-78.
15. Navarrete A, Mombián D, Almenara R, Lacy A. Giant Gastric Gastrointestinal Stromal Tumor (GIST). J Gastrointest Surg. 2017 Jan;21(1):202-4.
16. Nishida T, Blay J-Y, Hirota S, Kitagawa Y, Kang Y-K. The standard diagnosis, treatment, and follow-up of gastrointestinal stromal tumors based on guidelines. Gastric Cancer. 2016;19(1):3-14.
17. Patil S, Jain S, Kaza RCM, Chamberlain RS. Giant Gastrointestinal Stromal Tumor Presenting as a Palpable Abdominal Mass: An Unusual Presentation. ISRN Surgery. 2011;2011:894829.
18. Ramaswamy A, Jain D, Sahu A, et al. Neoadjuvant imatinib: longer the better, need to modify risk stratification for adjuvant imatinib. Journal of Gastrointestinal Oncology. 2016;7(4):624-631.
19. Rutkowski P, Gronchi A, Hohenberger P, et al. Neoadjuvant imatinib in locally advanced gastrointestinal stromal tumors (GIST): the EORTC STBSG experience. Ann Surg Oncol. 2013 Sep;20(9):2937-43.
20. Rutkowski P, Hompes D. Combined Therapy of Gastrointestinal Stromal Tumors. Surg Oncol Clin N Am. 2016 Oct;25(4):735-59.