INTRODUCTION

Channa striata, belonging to the family Channidae, also known as murrel or striped snakehead fish species which are native to South Asian and African countries (Ng, 1990). It is a commercially important freshwater fish species in India, Philippines, Thailand, Cambodia, and Vietnam and accounts for 13% among the marketable freshwater fish in India (Aliyu-Paiko, Hashim, & Shu-Chien, 2010). According to the international union for conservation (IUCN) Red list data, C. striata population has been declined rapidly and it is considered under the least concern category.

The genus Aeromonads are Gram-negative, rod-shaped facultative anaerobe, and nonspore-forming bacteria which are widely distributed in the aquatic environment (Daskalov, 2006). There...
are two groups of Aeromonads: Psychrophiles which are characterized as *Aeromonas salmonicida* and mesophilic *Aeromonas* such as *A. hydrophila* which causes the disease to warm and cold-blooded animals (Seshadri et al., 2006). *Aeromonas* sp. have been found in surface water, groundwater, sewage, sewage effluents, and sewage-contaminated waters (Khajanchi et al., 2010). They are clinically important due to its ability to cause septicemia, gastrointestinal infections, soft tissue infections, and wound to the host (Janda & Abbott, 2010).

Aeromonas hydrophila is a zoonotically important primary fish pathogen, which is considered as a causative agent of motile aero-monad septicaemia in freshwater fish (Chu & Lu, 2005) and eventually lead to the mortality in many fish species, particularly among South Asia’s most economically important fish species *C. striata*.

The use of antibiotics for controlling *A. hydrophila* infection in farmed fish pose threats to humans and increased the incidence of antibiotic-resistant bacteria from the environment can be observed (Yildirim-Aksoy & Beck, 2017). Therefore, it is necessary to control bacterial disease in aquaculture in an eco-friendly manner. Chitosan obtained by partial N-deacetylation of chitin, the second most naturally available biopolymer after cellulose (Dutta, Ravikumar, & Dutta, 2002). Chitosan is extracted from the exoskeleton of crustaceans such as crab, shrimp, and lobsters, also from insects such as cockroaches, ladybird, butterfly, silkworm, and wax worm. In addition, it can also be collected from the exoskeleton of oysters, squid pen, krill, and microorganisms such as Aspergillus niger, *Penicillium notatum*, *P. chrysogenum*, and *Saccharomyces cerevisiae* were used as the sources of fungal chitosan (Arbia, Arbia, Adour, & Amrane, 2013). Though chitosan was obtained from the waste materials, increased attention has been made in recent times due to its biocompatibility, biodegradability, nontoxic to the biological organisms it is widely used in biomedical applications, immunological properties such as immune-modulatory, immunoadjuvant (Zaharoff, Rogers, Hance, Schlem, & Greiner, 2007), anti-oxidant, and antitumour (Azuma, Osaki, Minami, & Okamoto, 2015). Chitosan has been tested (in vitro) as an ideal antimicrobial agent for controlling of warm water fish bacterial pathogens (Yildirim-Aksoy & Beck, 2017; Zheng & Zhu, 2003).

Therefore, the present study was aimed to identify and characterize the freshwater fish pathogen *A. hydrophila* from diseased *C. striata* in river Cauvery and evaluate the antimicrobial property of extracted shrimp chitosan (CHS) against virulent *A. hydrophila* Ah17.

2 MATERIALS AND METHODS

2.1 Collection of naturally infected fish

Channa striata displayed with the clinical signs of disease were collected from the river Cauvery, Pallipalayam, Erode District, Tamil Nadu, India (lat: 11°21’39.1N and long: 77°44’35.2E).

2.2 Isolation of virulent Aeromonas hydrophila

Ulcerated regions (skin-lesions/muscle) of infected *C. striata* were wiped with a sterile cotton swab and suspended in physiological saline (0.85% NaCl) under aseptic conditions. The suspension was serial diluted and plated on RS agar medium (supplemented with novobiocin (5mg/L)) and incubated at 37ºC. After overnight incubation, isolates were patched on tryptic soy agar (TSA) medium for further analysis.

2.3 Screening of β hemolysin–positive isolates

For β-hemolysis activity, isolates were plated on blood agar medium containing 5% (v/v) defibrinated sheep blood and the activity was observed after 24 hr at 37ºC (Santos, González, Otero, & García-López, 1999). The β hemolysin–producing positive isolates were selected for further analysis.

2.4 PCR amplification of 16S rRNA region of β hemolysin–positive isolates

16S rRNA region was amplified for all the β hemolysin–positive isolates using the primers as described by Dorsch, Ashbolt, Cox, and Goodman (1994), and *A. hydrophila* ATCC 7966 strain was used as the positive control. Briefly, genomic DNA was extracted from β hemolysin–positive isolates using Bacterial Genomic DNA Purification Kit (HiMedia, Mumbai, India). Quality and quantity of genomic DNA were measured using Nanodrop™ (Thermo Fisher Scientific) and resolved using 0.7% agarose gel electrophoresis. Details of the primers and their product size are provided in Table 1. 16S rRNA gene was amplified using SureCycler 8,800 Thermal Cycler (Agilent Technologies), and the PCR product was eluted using PureLink™ Quick Gel Extraction Kit (Thermo Fisher Scientific). The eluted PCR product was cloned into TA cloning vector pXcmKn12 (Thermo Fisher Scientific) and transformed into *Escherichia coli* DH5α. Transformants were selected on Luria Bertani (LB) agar ampicillin (50 µg/ml) plate by Blue-white selection method and confirmed by colony PCR. All the clones were sequenced in automated DNA sequencer (Xcelris Labs Limited, Ahmedabad, India).

2.5 Molecular evolutionary relationship of A. hydrophila Ah17

Similarity search was carried out for 16S rRNA nucleotide sequences of the selected isolates in nucleotide BLAST search engine tool on NCBI database (https://blast.ncbi.nlm.nih.gov/). The molecular phylogenetic tree was constructed using the 16S rRNA sequence of *A. hydrophila* Ah17 (GenBank Accession no: KY646209), by Neighbor-Joining method (Kimura, 1980) using MEGA 7 software.
indicating 10 nucleotide replacements per site. Horizontal branch lengths were drawn to scale the bar from NCBI database; KC150866, KU605566, KU605575, KU605578, KU605581, FN997627, EU913854, EU913855, EU913856, HM991866, AB473043, KC812105, KC812106, KF146349, KF146350, EU913851, DQ095200, DQ095201, AY538658, LC200778, KC812104, JN559379, JN561162, KX980436, KX980452, KC800792, X60404, Identity) from NCBI database; KC150866, AM992197, KC793904, ila as protease-positive agar (HiMedia) and incubated at 37ºC. The appearance of the zone indicated as lipase-positive isolate (Collee, Duguid, Fraser, Marmion, & Simmons, 1996). For lipase activity, the isolate was patched on tributyrin agar (HiMedia) containing 10 ml of tributyrin and incubated at 37°C. The appearance of the zone of clearance around the colonies was indicated as lipase-positive isolate (Yang & Fang, 2003).

2.6 | Screening of extracellular enzymes

Production of extracellular enzymes such as amylase, lipase, and protease was screened in A. hydrophila Ah17. Briefly, for amylase activity, the isolate was patched on starch agar medium (HiMedia) and incubated at 37°C. After incubation, the surface of the culture was flooded with Gram’s iodine (HiMedia), and appearance of the zone of clearance around the colonies was indicated as amylase-positive isolate (Yang & Fang, 2003).

For proteolytic activity, the isolate was patched on skim milk agar (HiMedia) and incubated at 37°C. The appearance of the zone of clearance around the colonies was indicated as protease-positive isolate (Yang & Fang, 2003). A. hydrophila ATCC 7966 was used as the positive control for the study.

Gene	Primer sequence (5’−3’)	Reference	Product size (bp)
Ah16S	Ah16S F- GAAAAGTTGGATGCCAATACGTA Ah16S R- CGTGCGGCAACAAGGACAG	Dorsch et al., 1994	686

2.7 | Biochemical characterization

Biochemical characterization of A. hydrophila Ah17 was performed by Bergey’s manual of systematic bacteriology (Garrity, 2007), and A. hydrophila ATCC 7966 was used as the reference strain for the study.

2.8 | Antibiotic susceptibility profile

Antibiotic susceptibility profile for A. hydrophila Ah17 was determined by the Kirby-Bauer disk diffusion method (Bauer, Kirby, Sherris, & Turck, 1966). The following antibiotics were tested: Amikacin (AK: 30 μg), Amoxicillin (AMC: 30 μg), Ampicillin (AMP: 10 μg), Azithromycin (AZM: 15 μg), Cefixime (CFM: 5 μg), Cefoperazone (CPZ: 75 μg), Cefpodoxime (CPD: 10 μg), Ciprofloxacin (CIP: 5 μg), Clarithromycin (CLR: 15 μg), Co-Trimoxazole (COT: 25 μg), Doxycycline hydrochloride (DO: 30 μg), Fusidic acid (FC: 10 μg), Gentamicin (GEN: 10 μg), Imipenem (IPM: 10 μg), Kanamycin (K: 30 μg), Moxalactam (MI: 30 μg), Nitrofurantoin (NIT: 300 μg), Norfloxacin (NX: 10 μg), Penicillin G (P: 10 μg), Pristinomycin (RP: 15 μg), Rifampicin (RIF: 5 μg), Streptomycin (S: 10 μg), Teicoplanin (TEI: 30 μg), Tetracycline (TE: 30 μg), Trimethoprim (TR: 5 μg), Tobramycin (TOB: 10 μg), and Vancomycin (VA: 30 μg) (HiMedia).

Gene	Primer sequence (5’−3’)	Reference	Product size (bp)
hly	Hly F- GCCGGGCGCGCCAGAAGGTGAGTT Hly R- GACGGCTGGATGCTGTTGT	Wang et al. (2003)	130
act	Act F- GAGAAGGTTGGCACCAAAAGAACA Act R - AAATGACATCGGCTGAACCTC	Kingombe et al. (1999)	232
aer	Aer F- CAGCCCAATATGCGTCGGAAAG Aer R- GTCACCTTCTCGCTCACGC	Singh, Rathore, Kapoor, Mishraa, and Lakra (2008)	326
ast	Ast F- TCTCCATGCTTCTCTCTCCTAACT Ast R - GTTGGAGATTGAAGAAGCGG	Sen and Rodgers (2004)	331
abyB	Eba F- ACACGGCTCAGAGAGATCAAC Eba R - CGCTGCTTTGGCAGGACAG	Sen and Rodgers (2004)	513
lip	Lip F- AATCTTTCTCCAGCTGTTTGGC Lip R - CCGTGCAGGACTGGGTCTT	Sen and Rodgers (2004)	382
Identification of putative virulent factors

Virulent factors present in *A. hydrophila* Ah17 were identified using PCR-based approach. Briefly, virulent genes such as cytolytic heat-labile enterotoxin (*act*), cytotoxic heat-stable enterotoxin (*ast*), aerolysin (*aer*), hemolysin (*hly*), elastase (*ahyB*) and lipase (*lip*) were amplified by the respective gene-specific primers. *A. hydrophila* ATCC 7966 was used as the positive control for this study. Sequences of primers and the respective product sizes were provided in Table 2.

Characterization of *A. hydrophila* Ah17 against shrimp chitosan (*Penaeus indicus*)

2.10.1 Chitosan stock preparation

Chitosan was extracted from the exoskeleton of *Penaeus indicus* and reported in our earlier study (Samayanpaulraj, Vijay, Muthukumar, Krishnaveni, & Ramesh, 2019). Stock solution of chitosan (degree of deacetylation (DD), 84%) was prepared using 1% acetic acid and adjusted to the final concentrations of 0.05%, 0.1%, 0.15%, and 0.2% at pH-6.5.

2.10.2 Antimicrobial activity of shrimp chitosan against *A. hydrophila* Ah17

Antibacterial activity of CHS against *A. hydrophila* Ah17 was studied at pH-6.5. Briefly, *A. hydrophila* Ah17 culture was taken and cells were harvested by centrifugation at 10,000 rpm for 10 min. Pellet was washed with phosphate buffer saline (PBS, pH-7.4), and finally, the bacterial cell suspension was adjusted to 1 O.D (measured at 600 nm). 1 ml of *A. hydrophila* Ah17 cell suspension was suspended in 9 ml of PBS and incubated at 37°C for 48 hr. After incubation, CHS was added (0.5 mg/ml) on each well and incubated for 4.5 hr. Finally, the formazan product was solubilized by adding 100 μL of dimethyl sulphoxide (DMSO, HiMedia, India) and incubated for 30 min. After incubation, formazan product was quantified at 590 nm using microplate absorbance reader (iMark, Bio-Rad). The quantified dissolved formazan crystals are directly proportional to the number of relative cell viability of *A. hydrophila* Ah17 against shrimp chitosan. All the experiments were performed in triplicates, and *A. hydrophila* ATCC 7966 was used as the control strain for the study.

2.11 Statistical analysis

One-way analysis of variance (ANOVA) and Dunnett’s multiple comparison test were performed to scrutinize the data of bacterial cell viability assay. For all comparison, *p* < .05 was considered as statistically significant. All the statistical analysis was performed using the GraphPad Prism 7.0 software.
3 RESULTS

3.1 Identification of A. hydrophila Ah17 strain in the river Cauvery

Satellite view of the collection site and representative image of naturally infected C. striata from the river Cauvery are represented in (Figure 1a,b). A total of 430 colonies were obtained from the infected C. striata after screening with the RS agar medium. Among 430 colonies, 20 isolates were positive for β-hemolytic activity on blood agar medium (Table 3). Out of twenty isolates (β-hemolysin-positive isolates), five isolates were amplified (686 bp, data not shown) using Aeromonas sp.-specific 16S rRNA primers (Figure 2).

Based on nucleotide sequencing and BLAST analysis, one isolate was identified as A. hydrophila (named as A. hydrophila Ah17 strain, Gen Bank Accession no: KY646209.1), and the rest of the isolates were identified as other Aeromonas sp. such as A. veronii and A. veronii biovar sobria.

Molecular evolutionary relationship studies showed that A. hydrophila strain Ah17 was aligned on the separate branch with KC150866 and AM9992197 sequence id whereas, both KC150866 and AM9992197 were found in the same clade of the Indian origin A. hydrophila strains. Overall, molecular evolutionary relationship of A. hydrophila Ah17 showed that the strain Ah17 aligned with Indian origin A. hydrophila strains except for JN561162 strain (Figure 3).

3.2 Screening of extracellular enzymes and biochemical characterization in A. hydrophila Ah17

The appearance of the zone of clearance on starch, tributyrin, and skim milk agar medium indicated the production of extracellular enzymes such as amylase, lipase, and protease in A. hydrophila Ah17 (Figure 4). Biochemical properties such as ornithine decarboxylase were negative whereas oxidase, Voges Proskauer, motility, H₂S production, glucose fermentation (D-glucose), lysine decarboxylase, and arginine dihydrolase were positive for A. hydrophila Ah17 (Table 4).

3.3 Antimicrobial susceptibility profile of A. hydrophila Ah17

Antimicrobial susceptibility profile of A. hydrophila Ah17 is provided in Figure 5. A. hydrophila Ah17 showed resistance to β-lactam antibiotics such as amoxicillin, ampicillin, methicillin and penicillin G. The resistance was also observed with glycopeptide class of antibiotics (teicoplanin and vancomycin). Further, A. hydrophila Ah17 conferred resistance against various classes of antibiotics such as macrolides (clarithromycin), phosphonic (fosfomycin), fucidin (fusidic acid), oxazolidinone (linezolid). Aminoglycoside (amikacin, gentamicin, and kanamycin), cephalosporins (cefoperazone and cefpodoxime), streptogramins (pristinamycin), tetracycline (minocycline), and nitrofurans (nitrofurantoin) showed an intermediate response against A. hydrophila Ah17.

Antibiotics such as fluoroquinolones (ciprofloxacin and norfloxacin), carbapenems (Imipenem), β-lactam third-generation antibiotic cephalosporins (cefixime), aminoglycoside (streptomycin and tobramycin), tetracycline (tetracycline and doxycycline), dihydrofolate reductase (DHFR) inhibitors (trimethoprim), quinolones (naldixidic acid), rifampicin, chloramphenicol, co-trimoxazole, and azithromycin were sensitive to A. hydrophila Ah17.

3.4 Putative virulent factors in A. hydrophila Ah17

PCR-based identifications of putative virulent factors such as cytotoxins, hemolysins, lipases, and proteases were evaluated in A. hydrophila Ah17 (Figure 6a-f). Since A. hydrophila Ah17 is a β hemolysin-positive strain, aer and hly genes were amplified with the product size of 326 bp and 130 bp, respectively (Figure 6a,b).

Virulent factors such as cytotoxic enterotoxin (act) and heat-stable cytotoxic enterotoxin (ast) in A. hydrophila Ah17 were confirmed with the isolate harbours both act (232 bp) and ast (331 bp) genes (Figure 6c,d). In addition, the presence of elastase (ahyB) and lipase (lip) genes was confirmed in A. hydrophila Ah17 with a product size of 513 bp and 382 bp, respectively (Figure 6e,f).

3.5 Characterization of A. hydrophila Ah17 against shrimp chitosan

Antimicrobial activity of CHS revealed that the growth of A. hydrophila Ah17 was inhibited in a dose-dependent manner at 48 hr (0.2%, 0.15%, and 0.1%), 24 hr (0.2% and 0.15%) and 12h (0.2%) (Figure 7a). On the

Observed hemolysis	No. of isolates
β-hemolysis	20
α-hemolysis	15
γ-hemolysis	25

FIGURE 2 PCR amplification of Aeromonas sp.-specific 16S rRNA region. Lane 1 represents 100bp ladder; Lanes 2–6 represent the amplification of Aeromonas sp.-specific 16S rRNA region from the isolates. Lane 7 16S rRNA region from Aeromonas hydrophila ATCC 7966 (positive control)
other hand, the growth of *A. hydrophila* ATCC 7966 was inhibited at 6 hr (0.2%), 12 hr (0.2% and 0.15%), 24 hr (0.2%, 0.15%, and 0.1%), and 48 hr (0.2%, 0.15%, 0.1%, and 0.05%) in a dose-dependent manner (Figure 7b).

The viable cell population of CHS-treated *A. hydrophila* Ah17 group was significantly decreased in 0.2% and 0.15% (*p* < .001) and 1% (*p* < .01%) group when compared to the control group. No significant difference was observed in 0.05% CHS-treated *A. hydrophila*
Ah17 group (Figure 8a). In A. hydrophila ATCC 7966 group, the viable cell population was significantly decreased in 0.2% and 0.15% (p < .001), 0.1% (p < .01), and 0.05% (p < .5) group when compared to the control group (Figure 8b).

4 | DISCUSSION

In recent year’s great attention have been made to the genus Aeromonas due to its pathogenic nature in aquatic organisms as well as in humans (Furmanek-Blaszk, 2014). Generally, it is difficult to screen pathogenic A. hydrophila directly from the environmental sources. Hemolytic activity is considered as one of the major characteristics property to distinguish virulent and avirulent strains in A. hydrophila (Wang et al., 2003). Production of the hemolytic toxin has been considered as the pathogenic potential trait in Aeromonads (Santos et al., 1999), and moreover, β-hemolysin has been reported as one of the major virulent factors in motile Aeromonads (Majeed & MacRae, 1993). In line with these arguments, the identified A. hydrophila Ah17 strain in the river Cauvery showed characteristic β-hemolytic activity in blood agar medium.

Over the last decades, strategies have been employed for the rapid and direct identification of foodborne pathogenic A. hydrophila strains from the environmental sources. PCR-based microbial typing emerged as the most rapid and reliable ways to characterize and identify microbes from the environmental source (Van Belkum, Struelens, Visser, Verbrugh, & Tibayrenc, 2001). Earlier studies showed that the 16S rRNA signature sequence helps to identify Aeromonas sp. from the environment (Dorsch et al., 1994; Pandove, Sahota, Vikal, & Kaur, 2013). Hence, in the present study, Aeromonas sp.-specific 16S rRNA oligonucleotide primers followed by nucleotide sequencing confirmed the presence of A. hydrophila Ah17 strain from the naturally infected C. striata in the river Cauvery.

With the help of molecular markers, identification of specific microbial taxa and their phylogeny was explored over several decades (Bartual et al., 2005). Among these molecular markers, 16S rRNA gene sequencing is widely used for the assessment of phylogenetic relatedness of organisms due to its functional constancy, and thus, it is considered as an effective molecular chronometer for the molecular evolutionary studies. In addition to that, it has conserved and variable regions which are evolving at a different time point that assist to measure the phylogenetic relationships. With these characteristic features, 16S rRNA region is considered as one of the useful tools for constructing evolutionary relationship at the genus level.
and even at the species level (Cole et al., 2008). *A. hydrophila* Ah17 is closely related to KC150866 and AM992197 and rest of the Indian isolates along with the strain KM396315 (isolated from Pakistan) formed a separate branch. Overall, all the *A. hydrophila* strains from Indian origin except JN561162 are grouped together. Thus, using 16S rRNA nucleotide sequences (based on N-J method), evolutionary relatedness was drawn for *A. hydrophila* Ah17 strain.

Secretion system plays an important role in the pathogenicity of *A. hydrophila* into the host organism. Type II secretion system (T2SS) present in almost all members of *A. hydrophila* and it secretes extracellular enzymes such as amylase, protease etc., which contributes pathogenicity to the eukaryotic system. Earlier studies proved that highly virulent strains of *A. hydrophila* such as NJ-35, J-1, ML09-119, AL09-71 produce amylase and protease which contributes pathogenicity to the host organism (Sandkvist, 2001). In addition, extracellular lipase has been reported with virulence in many pathogens (Stehr, Kretschmar, Kröger, Hube, & Schäfer, 2003). In the present study, *A. hydrophila* Ah17 secretes amylase, lipase, and protease and it may contribute pathogenicity to the host. Ulcerative lesions and depigmentation on the caudal fins were observed during the course of *A. hydrophila* Ah17 infection in *C. striata*, which showed the pathogenic potential of the strain against freshwater fish (Samayanpaulraj, Velu, & Uthandakalapandian, 2019).

Generally, *Aeromonas* sp. exhibited high resistance toward wide groups of antibiotics which are considered as the concerning factor for the treatment of *Aeromonas* infection. *A. hydrophila* Ah17 showed resistance toward most of the β-lactam antibiotics except third-generation antibiotics such as cephalosporins, cefixime which are displaying antagonistic property. It was observed that antibiotic resistance of *A. hydrophila* was mediated by chromosome-associated β-lactamase gene (Jacobs & Chenia, 2007). The resistance pattern was also observed with glycopeptide, macrolides, phosphonic, fucidin, oxazolidinone classes of antibiotics. Antibiotics resistance profile varies among strain-specific traits such as the source of the isolates (clinical or nonclinical), aquatic environments (Henriques, Fonseca, Alves, Saavedra, & Correia, 2006), and environmental selective pressure (Janda & Abbott, 2010). Amikacin and gentamicin showed intermediate responses against *A. hydrophila* Ah17 which are in good agreement with the earlier reports (Furmanek-Blaszk, 2014). The intermediate responses are related to uncertain susceptibility toward the therapeutic effect of antibiotics against *A. hydrophila* Ah17.
(Rodloff, Bauer, Ewig, Kujath, & Müller, 2008). Thus, these variations are due to the sampling sites and type of antimicrobial agents used specifically against A. hydrophila infection in that vicinity (Aravena-Roman, Inglis, Henderson, Riley, & Chang, 2012).

In general, A. hydrophila outbreaks are linked with the changes in host susceptibility which are caused by the environmental changes such as hypoxic conditions and increased nitrite levels in farmed fishes, as well as the significant rise in temperature. They are thought to be linked with the production of virulence factors, such as cytotoxins and hemolysins (Janda & Abbott, 2010; Mateos, Anguita, Naharro, & Paniagua, 1993).

Pathogenesis of A. hydrophila is multifactorial, associated with the number of virulent factors (Albert et al., 2000). PCR-based approach identified possible virulent genes which are associated with the pathogenicity of any A. hydrophila strains. Therefore, in the present study, PCR-based approaches have been carried out to detect one or more virulent genes which contribute to the pathogenicity of A. hydrophila Ah17, in agreement with the previous reports (Furmanek-Blaszk, 2014; Kingombe et al., 1999; Sechi, Deriu, Falchi, Fadda, & Zanetti, 2002; Sen & Rodgers, 2004; Wang, Tyler, Munro, & Johnson, 1996). Based on epidemiological studies, the presence of these virulent factors is being used as the genetic markers to

FIGURE 7 Antibacterial activity of CHS (shrimp chitosan) against A. hydrophila at pH-6.5. (a) CHS-treated A. hydrophila Ah17. (b) CHS-treated A. hydrophila ATCC 7966 (positive control). Concentration of CHS (0.05%, 0.1%, 0.15%, and 0.2%). Values are represented as mean ± SD

FIGURE 8 MTT assay of relative viable cell population of A. hydrophila (a) Relative viable cell population of A. hydrophila Ah17 treated with CHS (shrimp chitosan). (b) Relative viable cell population of A. hydrophila ATCC 7966 (positive control) treated with CHS (shrimp chitosan). Each bar represents the mean ± SD. Significant differences were observed between the test and control groups (*p < .05, **p < .01, ***p < .001) in comparison with control
discriminate between pathogenic and nonpathogenic strains of *Aeromonas* sp. (Kingombe et al., 1999; Sen & Rodgers, 2004; Wang et al., 2003).

Virulent *A. hydrophila* produces two types of hemolysin (aerolysin, pore-forming toxins (PFTs) and hemolysin, nonpore-forming toxins) (Wang et al., 2003). They are the founding members of a large superfamily (p-PFTs) that span all the kingdom of life (Szczesny et al., 2011). Studies on cryo-electron microscopy showed that the bacterial PFTs are generally secreted as water soluble monomers and binds with target membranes and assemble into the circular oligomers, which undergoes the conformational changes that allow membrane insertion leading to pore formation and finally potential cell death (Iacovache et al., 2016). In the present study, the strain Ah17 harbors both aerolysin (aer) and hemolysin (hly) genes and these presence of these genes evidently supports the pathogenic nature of *A. hydrophila* Ah17.

Studies showed that enterotoxins, cytotoxic enterotoxin (act), and heat-stable cytotoxogenic enterotoxin (ast) play a major role in diarrheal disease (Albert et al., 2000; Sha, Koziola, & Chopra, 2002). Besides, cytotoxic enterotoxin act exhibits hemolytic activity and the gene encoding these activities different from aerolysin and hemolysin (Chopra & Houston, 1999). In the present study, act and ast were identified in *A. hydrophila* Ah17 and our results are in good agreement with the earlier studies (Kingombe et al., 1999; Sen & Rodgers, 2004).

In addition to that, the presence of elastase and lipase was evaluated in *A. hydrophila* Ah17 strain which is responsible for the invasion of intestinal mucosa and establishment of the infection into the host. Mutation studies confirmed that the presence of temperature stable metalloprotease with elastolytic activity becomes more important for *A. hydrophila* virulence when tested against cold water fish *Oncorhynchus mykiss* (Cascon et al., 2000). Earlier reports confirmed that the presence of phospholipase contributes to the virulent nature of bacterial pathogens (Konig, Jaeger, Sage, Vasil, & König, 1996; Merino et al., 1999). Pathogenic strains with lipase and aerolysin genes together involved in altering the structure of the cytoplasmic membrane of the host and thereby, aggravate the pathogenic nature of *A. hydrophila* (Nawaz et al., 2010). Both *ahyB* and *lip* genes were identified in *A. hydrophila* Ah17.

Studies proved that chitosan acts as the antimicrobial agent against many foodborne pathogens such as *Candida* sp. (Rhoades & Roller, 2000), *Staphylococcus aureus*, *E. coli* (Chung, Kuo, & Chen, 2005), *Streptococcus parauberis* (Kim & Je, 2015) *Vibrio cholera* (Paredes-Aguilar, Avila-Sosa, & Nevárez-Moorillón, 2017). Generally, the antimicrobial activity of chitosan depends on positive charge (polycationic amino group) on its surface molecule and these charges are mainly dependent on DD value of chitosan molecule. In the present study, CHS exhibited better antimicrobial activity and therefore inhibited the growth of virulent *A. hydrophila* Ah17 in a dose-dependent manner. Studies proved that the growth of pathogenic *S. aureus* inhibited when DD of chitosan is high (Takahashia, Imai, Suzuki, & Sawai, 2008). Further, CHS significantly reduced the viable cell population of *A. hydrophila* Ah17 when compared to the control group. Our study is in good agreement with the study conducted by Lin, Lin, and Chen (2009) in which, viable cell populations of *A. hydrophila* were reduced at higher concentrations. Thus, the present study confirmed that the CHS with DD value of 84% showed good antimicrobial response against virulent *A. hydrophila* Ah17.

CONCLUSION

In conclusion, *A. hydrophila* Ah17 was isolated from naturally infected freshwater fish harbouring six virulent factors (aer, hly, act, ast, ahyB, and lip). In vitro characterization demonstrated that shrimp chitosan can able to control the growth of virulent *A. hydrophila* Ah17 in a dose-dependent manner. In future, it is necessary to recognize and monitor the potential reservoirs of pathogenic bacteria and ensure their control measurements in an eco-friendly manner, which are essentially important in epidemiological and environmental studies to prevent possible health risks.

ACKNOWLEDGMENTS

The authors would like to acknowledge DBT-MKU IPLS programme for the financial support and Genomics Common Instrumentation facility at SBS, MKU.

CONFLICTS OF INTEREST

We declare that we have no conflict of interest.

ETHICAL STATEMENT

This study does not involve any human or animal testing.

ORCID

Uthandakalaipandian Ramesh ORCID: https://orcid.org/0000-0002-5100-2191

REFERENCES

Albert, M. J., Ansaruzzaman, M., Talukder, K. A., Chopra, A. K., Kuhn, I., Rahman, M., ... Mollby, R. (2000). Prevalence of enterotoxin genes in *Aeromonas* spp. isolated from children with diarrhea, healthy controls, and the environment. *Journal of Clinical Microbiology*, 38(10), 3785–3790.

Aiyu-Paiko, M., Hashim, R., & Shu-Chien, A. C. (2010). Influence of dietary lipid/protein ratio on survival, growth, body indices and digestive lipase activity in Snakehead (*Channa striatus*, Bloch 1793) fry reared in re-circulating water system. *Aquaculture Nutrition*, 16(5), 466–474. https://doi.org/10.1111/j.1365-2095.2009.00683.x

Aravena-Román, M., Inglis, T. J., Henderson, B., Riley, T. V., & Chang, B. J. (2012). Antimicrobial susceptibilities of *Aeromonas* strains isolated from clinical and environmental sources to 26 antimicrobial agents. *Antimicrobial Agents and Chemotherapy*, 56(2), 1110–1112. https://doi.org/10.1128/AAC.05387-11

Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods—a review. *Food Technology and Biotechnology*, 51(1), 12–25.

Azuma, K., Osaki, T., Minami, S., & Okamoto, Y. (2015). Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. *Journal of Functional Biomaterials*, 6(1), 33–49. https://doi.org/10.3390/jfb6010033

Bartual, S. G., Seifert, H., Hippler, C., Luzon, M. A. D., Wisplinghoff, H., & Rodriguez-Valera, F. (2005). Development of a multilocus sequence

[45x51]SAMAYANPAULRAJ et AL .
[45x77]produced the viable cell population of *A. hydrophila* (Takahashia, Imai, Suzuki, & Sawai, 2008). Further, CHS significantly reduced the viable cell population of *A. hydrophila* Ah17 when compared to the control group. Our study is in good agreement with the study conducted by Lin, Lin, and Chen (2009) in which, viable cell populations

of *A. hydrophila* were reduced at higher concentrations. Thus, the present study confirmed that the CHS with DD value of 84% showed good antimicrobial response against virulent *A. hydrophila* Ah17.

CONCLUSION

In conclusion, *A. hydrophila* Ah17 was isolated from naturally infected freshwater fish harbouring six virulent factors (aer, hly, act, ast, ahyB, and lip). In vitro characterization demonstrated that shrimp chitosan can able to control the growth of virulent *A. hydrophila* Ah17 in a dose-dependent manner. In future, it is necessary to recognize and monitor the potential reservoirs of pathogenic bacteria and ensure their control measurements in an eco-friendly manner, which are essentially important in epidemiological and environmental studies to prevent possible health risks.

ACKNOWLEDGMENTS

The authors would like to acknowledge DBT-MKU IPLS programme for the financial support and Genomics Common Instrumentation facility at SBS, MKU.

CONFLICTS OF INTEREST

We declare that we have no conflict of interest.

ETHICAL STATEMENT

This study does not involve any human or animal testing.

ORCID

Uthandakalaipandian Ramesh ORCID: https://orcid.org/0000-0002-5100-2191

REFERENCES

Albert, M. J., Ansaruzzaman, M., Talukder, K. A., Chopra, A. K., Kuhn, I., Rahman, M., ... Mollby, R. (2000). Prevalence of enterotoxin genes in *Aeromonas* spp. isolated from children with diarrhea, healthy controls, and the environment. *Journal of Clinical Microbiology*, 38(10), 3785–3790.

Aiyu-Paiko, M., Hashim, R., & Shu-Chien, A. C. (2010). Influence of dietary lipid/protein ratio on survival, growth, body indices and digestive lipase activity in Snakehead (*Channa striatus*, Bloch 1793) fry reared in re-circulating water system. *Aquaculture Nutrition*, 16(5), 466–474. https://doi.org/10.1111/j.1365-2095.2009.00683.x

Aravena-Román, M., Inglis, T. J., Henderson, B., Riley, T. V., & Chang, B. J. (2012). Antimicrobial susceptibilities of *Aeromonas* strains isolated from clinical and environmental sources to 26 antimicrobial agents. *Antimicrobial Agents and Chemotherapy*, 56(2), 1110–1112. https://doi.org/10.1128/AAC.05387-11

Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods—a review. *Food Technology and Biotechnology*, 51(1), 12–25.

Azuma, K., Osaki, T., Minami, S., & Okamoto, Y. (2015). Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. *Journal of Functional Biomaterials*, 6(1), 33–49. https://doi.org/10.3390/jfb6010033

Bartual, S. G., Seifert, H., Hippler, C., Luzon, M. A. D., Wisplinghoff, H., & Rodriguez-Valera, F. (2005). Development of a multilocus sequence
Samayanpaulraj, V., Velu, V., & Uthandakalaipandiyan, R. (2019). Determination of lethal dose of Aeromonas hydrophila Ah17 strain in snake head fish Channa striata. Microbial Pathogenesis, 127, 7–11. https://doi.org/10.1016/j.micpath.2018.11.035

Samayanpaulraj, V., Vijay, V., Muthukumar, S., Krishnaveni, G., & Ramesh, U. (2019). Extraction and recovery response of P. aeruginosa enterotoxin against Aeromonas hydrophila Ah17 infected snakehead murrel Channa striata. Aquaculture International, 1–16.

Sandkvist, M. (2001). Type II secretion and pathogenesis. Infection and Immunity, 69(6), 3523–3535. https://doi.org/10.1128/IAI.69.6.3523-3535.2001

Santos, J. A., González, C. J., Otero, A., & García-López, M. L. (1999). Hemolytic activity and siderophore production in different Aeromonas species isolated from fish. Applied and Environmental Microbiology, 65(12), 5612–5614. https://doi.org/10.1128/AEM.65.12.5612-5614.1999

Sechi, L. A., Deriu, A., Falchi, M. P., Fadda, G., & Zanetti, S. (2002). Distribution of virulence genes in Aeromonas spp. isolated from Sardinian waters and from patients with diarrhoea. Journal of Applied Microbiology, 92(2), 221–227.

Sen, K., & Rodgers, M. (2004). Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: A PCR identification. Journal of Applied Microbiology, 97(5), 1077–1086. https://doi.org/10.1111/j.1365-2672.2004.02398.x

Seshadri, R., Joseph, S. W., Chopra, A. K., Sha, J., Shaw, J., Graf, J., … Heidelberg, J. F. (2006). Genome sequence of Aeromonas hydrophila ATCC 7966T: Jack of all trades. Journal of Bacteriology, 188(23), 8272–8282. https://doi.org/10.1128/JB.00621-06

Sha, J., Kozlova, E. V., & Chopra, A. K. (2002). Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: Generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity. Infection and Immunity, 70(4), 1924–1935. https://doi.org/10.1128/IAI.70.4.1924-1935.2002

Singh, V., Rathore, G., Kapoor, D., Mishra, B. N., & Lakra, W. S. (2008). Detection of aerolysin gene in Aeromonas hydrophila isolated from fish and pond water. Indian Journal of Microbiology, 48(4), 453–454. https://doi.org/10.1007/s12088-008-0056-8

Stehr, F., Kretschmar, M., Kröger, C., Hube, B., & Schäfer, W. (2003). Microbial lipases as virulence factors. Journal of Molecular Catalysis B: Enzymatic, 22(5–6), 347–355. https://doi.org/10.1016/S1381-1177(03)00049-3

Szczesny, P., Iacovache, I., Muszewska, A., Ginalska, K., Van Der Goot, F. G., & Gryenberg, M. (2011). Extending the aerolysin family: From bacteria to vertebrates. PLoS ONE, 6(6), e20349. https://doi.org/10.1371/journal.pone.0020349

Takahashi, T., Imai, M., Suzuki, I., & Sawai, J. (2008). Growth inhibitory effect on bacteria of chitosan membranes regulated with deacetylation degree. Biochemical Engineering Journal, 40(3), 485–491. https://doi.org/10.1016/j.bej.2008.02.009

Van Belkum, A., Struelens, M., de Visser, A., Verbrugh, H., & Tibayrenc, M. (2001). Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clinical Microbiology Reviews, 14(3), 547–560. https://doi.org/10.1128/CMR.14.3.547-560.2001

Wang, G., Clark, C. G., Liu, C., Pucknell, C., Munro, C. K., Kruk, T. M. A., … Rodgers, F. G. (2003). Detection and characterization of the hemolysin genes in Aeromonas hydrophila and Aeromonas sobria by multiplex PCR. Journal of Clinical Microbiology, 41(3), 1048–1054. https://doi.org/10.1128/JCM.41.3.1048-1054.2003

Wang, G., Tyler, K. D., Munro, C. K., & Johnson, W. M. (1996). Characterization of cytotoxic, hemolytic Aeromonas caviae clinical isolates and their identification by determining presence of a unique hemolysin gene. Journal of Clinical Microbiology, 34(12), 3203–3205. https://doi.org/10.1128/JCM.34.12.3203-3205.1996

Yang, Z. S., & Fang, H. (2003). Human and animal pathogenic bacteriology (pp. 1550–1610). Shijiazhuang, China: Hebei Science and Technology Press.

Yıldırım-Aksoy, M., & Beck, B. H. (2017). Antimicrobial activity of chitosan and a chitosan oligomer against bacterial pathogens of warm-water fish. Journal of Applied Microbiology, 122(6), 1570–1578. https://doi.org/10.1111/jam.13460

Zaharoff, D. A., Rogers, C. J., Hance, K. W., Schlam, J., & Greiner, J. W. (2007). Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 25(11), 2085–2094. https://doi.org/10.1016/j.vaccine.2006.11.034

Zheng, L. Y., & Zhu, J. F. (2003). Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 54(4), 527–530. https://doi.org/10.1016/j.carbpol.2003.07.009

How to cite this article: Samayanpaulraj V, Sivaramapillai M, Palani SN, Govindaraj K, Velu V, Ramesh U. Identification and characterization of virulent Aeromonas hydrophila Ah17 from infected Channa striata in river Cauvery and in vitro evaluation of shrimp chitosan. Food Sci Nutr. 2020;8:1272–1283. https://doi.org/10.1002/fsn3.1416

https://doi.org/10.1111/jam.13460