Pros and cons of the roentgenium nanoparticles for human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Alireza Heidari1,2*, Katrina Schmitt1, Maria Henderson1 and Elizabeth Besana1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract

In the current study, thermoplasmonic characteristics of Roentgenium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Roentgenium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Roentgenium nanoparticles by solving heat equation. The obtained results show that Roentgenium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.

Introduction

In recent decade, metallic nanoparticles have been widely interested due to their interesting optical characteristics [1-8]. Resonances of surface Plasmon in these nanoparticles lead to increase in synchrotron radiation emission as a function of the beam energy scattering and absorption in related frequency [9,10]. Synchrotron radiation emission as a function of the beam energy absorption and induced produced heat in nanoparticles has been considered as a side effect in plasmonic applications for a long time [11-15]. Recently, scientists find that thermoplasmonic characteristic can be used for various optothermal applications in cancer, nanoflows and photonic [16-22]. In optothermal human cancer cells, tissues and tumors treatment, the descendent laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendent light converse to heat in nanoparticles [23-25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any hurt to sound tissues [26,27]. Regarding the simplicity of ligands connection to Roentgenium nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28-74]. In the current paper, thermoplasmonic characteristics of spherical, core-shell and rod Roentgenium nanoparticles are investigated.
Heat generation in synchrotron radiation emission as a function of the beam energy-roentgenium nanoparticles interaction

When Roentgenium nanoparticles are subjected to descendent light, a part of light scattered (emission process) and the other part absorbed (non-emission process). The amount of energy dissipation in non-emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section [75-123].

Roentgenium nanoparticles absorb energy of descendent light and generate some heat in the particle. The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation [124-202].

Simulation

To calculate the generated heat in Roentgenium nanoparticles, COMSOL software which works by Finite Element Method (FEM) was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [203-283]. In all cases, Roentgenium nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendent light is 1 mW/μm². Dielectric constant of Roentgenium is dependent on particle size [284-442].

Firstly, calculations were made for Roentgenium nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The results show that by increase in nanoparticles size, extinction cross section area increases and maximum wavelength slightly shifts toward longer wavelengths. The maximum increase in temperature of nanospheres in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 (nm) nanoparticles (sphere with 50 (nm) radius), the maximum increase in temperature is 83 (K). When nanoparticles size reaches to 150 (nm), increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanospheres in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to decrease in ratio of light absorption to total energy of descendent light so that for 150 (nm) nanoparticle, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendent light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution (Figure 3) shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Roentgenium.

In this section, core-shell structure of Roentgenium and silica is chosen. The core of a nanosphere with 45 (nm) radius and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.

According to Figure 4, silica shell causes to considerable increase in temperature of Roentgenium nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution (Figure 5) shows that temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer prohibits heat transfer from metal to the surrounding aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuate in increase in nanoparticles temperature.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This
fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.

Variations of temperature in Roentgenium nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.

Figure 3. Maximum increase in temperature for spherical nanoparticles with radius of 45 (nm) at Plasmon wavelength of 685 (nm)

Figure 4. Maximum increase in temperature for core–shell Roentgenium nanospheres with various thicknesses of silica shell
Heidari A (2019) Pros and cons of the roentgenium nanoparticles for human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000316

Volume 5: 4-17

Figure 5. Maximum increase in temperature for core–shell nanoparticles with radius of 45 (nm) and silica thickness of 10 (nm) at Plasmon wavelength of 701 (nm)

Figure 6. Extinction cross section area for Roentgenium nanorods with effective radius of 45 (nm) and various dimension ratios

Figure 7. Maximum increase in temperature for nanorods with effective radius of 20 and 45 (nm) and various dimension ratios

Conclusion and summary

The calculations showed that in Roentgenium nanoparticles, light absorption in Plasmon frequency causes to increase in temperature of the surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Roentgenium nanospheres increases their temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostructure is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT12010093734737. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Synchrotron Light Source (NSLS-II) under the merit-based proposal scheme.

References

1. Yu, P; Wu, J; Liu, S; Xiong, J; Jagadish, C; Wang, Z MDesign and Fabrication of Silicon Nanowires towards Efficient Solar Cells Nano Today2016, 11, 704–737, 101016/jnantod201610001

2. Sandhu, S; Fan, SCurrent-Voltage Enhancement of a Single Coaxial Nanowire Solar Cell ACS Photonics2015, 2, 1698–1704, 101021/acsphotonics5b00236

3. van Dam, D; Van Hoof, N J J; Cui, Y; van Veldhoven, P J; Bakkers, E P M; Gómez Rivas, J; Haverkort, J E MHigh-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers ACS Nano2016, 10, 11414–11419, 101021/acsnano6b06874

4. Luo, S; Yu, W B; He, Y; Ouyang, GSize-Dependent Optical Absorption Modulation of Si/Ge and Ge/Si Core/shell Nanowires with Different Cross-Sectional Geometries Nanotechnology2015, 26, 085702, 101088/0957-4484/26/8/085702

5. Yu, P; Yao, Y; Wu, J; Niu, X; Rogach, L; Wang, ZEFfects of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells SciRep2017, 7, 7696, 101038/s41598-017-08077-9
Heidari A (2019) Pros and cons of the roentgenium nanoparticles for human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000316

165. Heidari, “A Novel Approach to Future Horizon of Top Seven Biomedical Research Topics to Watch in 2017: Alzheimer’s, Ebola, Hypersomnia, Human Immunodeficiency Virus (HIV), Tuberculosis (TB), Microbiome/Anibiotic Resistance and Endovascular Stroke”, J Bioengineer & Biomedical Sci 7: e127, 2017

166. Heidari, “Opinion on Computational Fluid Dynamics (CFD) Technique”, Fluid Mech Open 4: 157, 2017

167. Heidari, “Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au329(SR)84, Au329-xAgx(SR)84, Au144(SR)36, Au90(SR)18, Au102(SP)44, Au38(SR)24, Au38(SR)184, Au215SAdm115, Au36(SMBA)24 and Au25(SMBA)18 Nano Clusters”, J Surgery Emerg Med 1: 21, 2017

168. Heidari, “Developmental Cell Biology in Adult Stem Cells Death and Autophagy to Trigger a Preventive Allergic Reaction to Common Airborne Allergens under Synchrotron Radiation Using Nanotechnology for Therapeutic Goals in Particular Allergy Shots (Immunotherapy)”, Cell Biol (Henderson, NV) 6: 1, 2017

169. Heidari, “Changing Metal Powder Characteristics for Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins Adjustment in Cancer Metastases Induced by Osteosarcoma, Chondrosarcoma, Carcinoid, Carcinoma, Ewing’s Sarcoma, Fibrosarcoma and Secondary Hematopoietic Solid or Soft Tissue Tumors”, J Powder Metall Min 6: 170, 2017

170. Heidari, “Nanomedicine-Based Combination Anti-Cancer Therapy between Nucleic Acids and Anti-Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for Selective Imaging and Treatment of Human Brain Tumors Using Hyaluronic Acid, Alguronic Acid and Sodium Hyaluronate as Anti-Cancer Nano Drugs and Nucleic Acids Delivery under Synchrotron Radiation”, Am J Drug Deliv 5: 2, 2017

171. Heidari, “Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human Cancer Cells’ Metabolism and Metabolomics: New Discoveries, Unique Features Inform New Therapeutic Opportunities, Biotechnology’s Bumpy Road to the Market and Elucidating the Biochemical Programs that Support Cancer Initiation and Progression”, J Bio Med Science 1: e103, 2017

172. Heidari, “The Design Graphene-Based Nanosheets as a New Nanomaterial in Anti-Cancer Therapy and Delivery of Chemotherapeutics and Biological Nano Drugs for Liposomal Anti-Cancer Nano Drugs and Gene Delivery”, Br Biomed Bull 5: 305, 2017

173. Heidari, “Integrative Approach to Biological Networks for Emerging Roles of Proteomics, Genomics and Transcriptomics in the Discovery and Validation of Human Colorectal Cancer Biomarkers from DNA/RNA Sequencing Data under Synchrotron Radiation”, Transcriptomics 5: e117, 2017

174. Heidari, “Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins and Cell Adhesion Intelligent Nanomolecules Adjustment in Cancer Metastases Using Metalloenzymes and under Synchrotron Radiation”, Lett Health Biol Sci 2 (2): 1–4, 2017

175. Heidari, “Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in S itu During the Polymetization of Amine Monogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation”, Br J Res, 4 (3): 16, 2017

176. Heidari, “Sedative, Analgesic and Ultrasound-Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal Endoscopic Procedure, Nano Drug-Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity”, Res Rep Gastroentrol 1: 1, 2017

177. Heidari, “Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Orphan Nano Drugs to Treat High Cholesterol and Related Conditions and to Prevent Cardiovascular Disease under Synchrotron Radiation”, J Pharm Sci Emerg Drugs 5: 1, 2017

178. Heidari, “Non-Linear Compact Proton Synchrotrons to Improve Human Cancer Cells and Tissues and Diagnostics through Particle Therapy Accelerators under Synchrotron and X-Ray Radiations with the Passage of Time Using Mathematica”, Current Trends Anal Bioanal Chem, 1 (1): 36–41, 2017

179. Heidari, “Pros and Cons Controversy on Molecular Imaging and Dynamics of Double-Standard DNA/RNA of Human Preserving Stem Cells-Binding Nano Molecules with Androgens/Anabolic Steroids (AAS) or Testosterone Derivatives through Tracking of Helium Nucleus (Alpha Particle) Using Synchrotron Radiation”, Arch Biotechnol Biomed 1 (1): 067-0100, 2017

180. Heidari, “Visualizing Metabolic Changes in Probing Human Cancer Cells and Tissues Metabolism Using Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy and Self-Organizing Maps under Synchrotron Radiation”, SOJ Mater Sci Eng 5 (2): 1–6, 2017

181. Heidari, “Cavity Ring-Down Spectroscopy (CRDS), Circular Dichroism Spectroscopy, Cold Vapour Atomic Fluorescence Spectroscopy and Correlation Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Elsevier: Challenges Cancer Detect Ther 4 (2): e001, 2017

Dent Oral Maxillales Res, 2019 doi: 10.15761/DOMR.1000316 Volume 5: 9-17
Heidari A (2019) Pros and cons of the roentgenium nanoparticles for human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000316

196. Heidari, “Laser Spectroscopy, Laser-Induced Breakdown Spectroscopy and Laser-Induced Plasma Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Hepatol Gastroenterol, 3 (4): 079–084, 2017

197. Heidari, “Time-Resolved Spectroscopy and Time-Shift Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Environ: Pharmacovigilance and Drug Safety 4 (3): e001, 2017

198. Heidari, “Overview of the Role of Vitamins in Reducing Negative Effect of Decapropy (Triptolizin Acetate or Parnoxo Salts) on Prostate Cancer Cells and Tissues in Prostate Cancer Treatment Process through Transformation of Malignant Prostate Tumors into Benign Prostate Tumors under Synchrotron Radiation”, Open J Anal Bioanal Chem 1 (1): 021–026, 2017

199. Heidari, “Electron Phenomenological Spectroscopy, Electron Paramagnetic Resonance (EPR) Spectroscopy and Electron Spin Resonance (ESR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Austin J Nan Tech Sci 2 (2): 77–83, 2017

200. Heidari, “Therapeutic Nanomedicine Different High-Resolution Experimental Imaging (MRI, CT, PET, SPECT, X-ray) and Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Cancer Sci Res Open Access 4 (2): 1–8, 2017

201. Heidari, “Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmacological and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations”, J Oral Cancer Res 1 (1): 12–17, 2017

202. Heidari, “Vibrational Decibertz (dHz), Gigahertz (GHz), Nanohertz (nHz), Picoherertz (pHz), Femtoherertz (fHz), Attoherertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, International Journal of Biomedicine, 7 (4), 335–340, 2017

203. Heidari, “Force Spectroscopy and Fluorescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White Synchrotron Radiation”, Cancer Sci Res Open Access 4 (2): 1–8, 2017

204. Heidari, “A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 0555603, 2017

205. Heidari, “A Modern Comparative and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy”, Open Acc J Oncol Med 1 (1), 2018

206. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple–Quantum Correlation Spectroscopy (HMOC) and Heteronuclear Multiple–Bond Correlation Spectroscopy (HMIBM) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018

207. Heidari, “Nuclear Resonance Vibrational Spectroscopy (NRS), Nuclear Inelastic Scattering Spectroscopy (NIS), Nuclear Inelastic Absorption Spectroscopy (NIA) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioorg Chem Mol Biol 6 (1): 1–5, 2018

208. Heidari, “A Novel and Modern Experimental Approach to Vibrationally Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Mol Struct Anal 3 (1): 101–107, 2017

209. Heidari, “Vibrational Decahertz (dHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Prog Biophys Mol Biol 120 (1): 1–15, 2018

210. Heidari, “Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy and Non-Linear Two-Dimensional Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, J Mater Sci Nanotechnol 6 (1): 101, 2018

211. Heidari, “Fourier Transform Infrared (FTIR) Spectroscopy, Near-Infrared Spectroscopy (NIRS) and Mid-Infrared Spectroscopy (MIRS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Int J Nanotechnol Nanomed, Volume 3, Issue 1, Pages 1–6, 2018

212. Heidari, “Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Austin Pharmaco Post 3 (1): 1011, 2018

213. Heidari, “Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Interaction among Human Blood Cancer Cells, Tissues, Tumors and Metastases with Synchrotron Radiation under Anti-Cancer Nano Drugs Delivery Efficacy Using MATLAB Modeling and Simulation”, Madridge J Drug Res, 1 (1): 18–24, 2017

214. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Open Access J Trans Med Res, 2 (1): 00026–00032, 2018

215. M R R Gobato, R Gobato, Heidari, “Planting of Jatobacica trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, Vol 3, No 1, 2018, Pages 1–9, 2018

216. Heidari, “Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, SM J Clin Med Imaging, 4 (1): 1018, 2018

217. Heidari, “Nuclear Inelastic Scattering Spectroscopy (NIS) and Nuclear Inelastic Absorption Spectroscopy (NIA) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Pharm Sci, 2 (1): 1–14, 2018

218. Heidari, “X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersiv X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Oncol Res; 2 (1): 1–14, 2018

219. Heidari, “Correlation Two-Dimensional Magnetic Nuclear Resonance (NMR) (2D–NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Can Sci, 1–1–001, 2018

220. Heidari, “Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macrospectroscopy and Photothermal Macroscopic Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018

221. Heidari, “A Modern and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy”, Open Acc J Oncol Med 1 (1), 2018

222. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple–Quantum Correlation Spectroscopy (HMOC) and Heteronuclear Multiple–Bond Correlation Spectroscopy (HMIBM) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018

223. Heidari, “Nuclear Resonance Vibrational Spectroscopy (NRS), Nuclear Inelastic Scattering Spectroscopy (NIS), Nuclear Inelastic Absorption Spectroscopy (NIA) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioorg Chem Mol Biol 6 (1): 1–5, 2018

224. Heidari, “A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Mater Sci Nanotechnol 6 (1): 101, 2018

225. Heidari, “Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple–Quantum Correlation Spectroscopy (HMOC) and Heteronuclear Multiple–Bond Correlation Spectroscopy (HMIBM) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Pharma J 1 (1): 002–008, 2018

226. Heidari, “A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Amyt Molcelech Tech 3 (1): 8, 2018

227. Heidari, “Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, European Modern Studies Journal, Vol 2, No 1, 13–29, 2018
Heidari A (2019) Pros and cons of the roentgenium nanoparticles for human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000316

286. Heidari, “Terphenyl-Based Reversible Receptor with Rhodamine, Rhodamine–Based Molecular Probe, Rhodamine-Based Using the Spiroloctam Ring Opening, Rhodamine–Based with Ferrocene Substituent, CalixArene-Based Receptor, Thioether + Aniline-Derived Ligand Framework Linked to a Fluorescin Platform, Mercury-aff–1 (Fluorescent Probe), N,N–Dihenyl–1,4,10,13–Tetraazaful–7,16–Diazaacyclooctadecane and Terphenyl-Based Reversible Receptor with Pyrene and Quinoline as the Fluorphores–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Glob Imaging Insights, Volume 3 (5): 1–9, 2018

287. Heidari, “Small–Angle X–Ray Scattering (SAXS), Ultra–Small Angle X–Ray Scattering (USAXS), Fluctuation X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), Grazing–Incidence Small–Angle X–Ray Scattering (GISAXS), Grazing–Incidence Wide–Angle X–Ray Scattering (GIWAXS), Small–Angle Neutron Scattering (SANS), Grazing–Incidence Small–Angle Neutron Scattering (GISANS), X–Ray Diffraction (XRD), Powder X–Ray Diffraction (PXRD), Wide–Angle X–Ray Diffraction (WAXD), Grazing–Incidence X–Ray Diffraction (GIXD) and Energy–Dispersive X–Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (5): 1–10, 2018

288. Heidari, “Nuclear Resonant Inelastic X–Ray Scattering Spectroscopy (NRIXSS) and Nuclear Resonance Vibrational Spectroscopy (NRVS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (5): 1–7, 2018

289. R Gobato, M R R Gobato, Heidari, Mitra, “Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2Se via Quantum Chemistry Using Ab Initio, Hartree–Fock Methods in the Basis Set CC–pVTZ and 6–31G**/3d, 3p”, Org Arch Inorg Chem Sci 3 (5), Pages 402–409, 2018

290. Heidari, “Curious Chloride (CmcCl3) and Titanic Chloride (Tic4) Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapies”, J Cancer Research and Therapeutic Interventions, Volume 1, Issue 1, Pages 01–10, 2018

291. R Gobato, M R R Gobato, Heidari, R Gobato, “Three–Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors Treatment Process to Benign Human Cancer Cells, Tissues and Tumors”, Trends in Res, Volume 2 (1): 1–8, 2019

292. Heidari, “Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadmium Oxide (CdO) Nanoparticles”, J Toxicol Risk Assess 4: 1, 012–025, 2018

293. Heidari, “Human Malignant and Benign Human Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation Using Anti–Cancer Nano Drugs Delivery”, Integr Mol Med, Volume 5 (5): 1–13, 2018

294. Heidari, “Evaluation of the Effect of Anti–Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia Vera Levels on Trend of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation”, Trends in Res, Volume 2 (1): 1–8, 2019

295. Heidari, “Assessing the Activity of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment”, Trends in Res, Volume 2 (1): 1–8, 2019

296. Heidari, “Three–Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors Treatment Process to Benign Human Cancer Cells, Tissues and Tumors”, Trends in Res, Volume 2 (1): 1–8, 2019

297. Heidari, “High–Resolution Mapping of DNA/RNA Hypermethylation and Hypomethylation Process in Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation”, Integr Mol Med, Volume 5 (5): 1–8, 2018

298. Heidari, “A Modern and Comprehensive Investigation of Inelastic Electron Tunneling Spectroscopy (IETS) and Scanning Tunneling Spectroscopy on Malignant and Benign Human Cancer Cells, Tissues and Tumors through Optimizing Synchrotron Microbeam Radiotherapy for Human Cancer Treatments and Diagnostics: An Experimental Biospectroscopic Comparative Study”, Glob Imaging Insights, Volume 3 (6): 1–8, 2018

299. R Gobato, M R R Gobato, Heidari, Mitra, “Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2Se via Quantum Chemistry Using Ab Initio, Hartree–Fock Methods in the Basis Set CC–pVTZ and 6–31G**/3d, 3p”, American Journal of Quantum Chemistry and Molecular Spectroscopy, Vol 2, No 1, pp 9–17, 2018

300. Heidari, “Production of Electrochemoluminescence (ECL) Biosensor Using Os/Pd–HFC Nanocomposites for Detecting and Tracking of Human Gastroenterological Cancer Cells, Tissues and Tumors”, Int J Med Nano Res 5: 1, 022–034, 2018

301. Heidari, “Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadmium Oxide (CdO) Nanoparticles”, J Toxicol Risk Assess 4: 1, 012–025, 2018

302. Heidari, “Human Malignant and Benign Human Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation Using Anti–Cancer Nano Drugs Delivery”, Integr Mol Med, Volume 5 (5): 1–13, 2018

303. Heidari, “Analogous Nano Compounds of the Form M(CH3H2)2 Exist for M = (Nd, Tb, Pu, Pa, Np, Th, and Yb)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Integr Mol Med, Volume 5 (5): 1–8, 2018

304. Heidari, “Haron Spectroscopy, Baryon Spectroscopy and Meson Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Integr Mol Med, Volume 5 (5): 1–8, 2018

305. Heidari, “Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadmium Oxide (CdO) Nanoparticles”, J Toxicol Risk Assess 4: 1, 012–025, 2018

306. Heidari, R Gobato, “Evaluating the Effect of Anti–Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia Vera Levels on Trend of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation”, Trends in Res, Volume 2 (1): 1–8, 2019

307. Heidari, R Gobato, “Assessing the Activity of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment”, Trends in Res, Volume 2 (1): 1–8, 2019

308. Heidari, R Gobato, “Three–Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors Treatment Process to Benign Human Cancer Cells, Tissues and Tumors”, Trends in Res, Volume 2 (1): 1–8, 2019

309. Heidari, R Gobato, “Three–Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors Treatment Process to Benign Human Cancer Cells, Tissues and Tumors”, Trends in Res, Volume 2 (1): 1–8, 2019

310. Heidari, R Gobato, “Investigation of Energy Production by Synchrotron, Synchrocyclotron and LASER Radiations in Human Cancer Cells, Tissues and Tumors Evaluation of Their Effective on Human Cancer Cells, Tissues and Tumors Treatment Trend”, Trends in Res, Volume 2 (1): 1–8, 2019

311. Heidari, R Gobato, “Novel and Comprehensive Study on Manufacturing and Fabrication Nanoparticles Methods and Techniques for Processing Cadmium Oxide (CdO) Nanoparticles Colloidal Solution”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019

312. Heidari, R Gobato, “A Combined Experimental and Computational Study on the Catalytic Effect of Aluminum Nitride Nanocrystal (AlN) on the Polymerization of Benzene, Naphthalene, Anthracene, Phenanthrene, Chrysene and Tetracene”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019

313. Heidari, “Novel Experimental and Three–Dimensional (3D) Multiphysics Computational Framework of Michaelis–Menten Kinetics for Catalyst Processes Innovation, Characterization and Carrier Applications”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019

314. Heidari, “The Hydrolysis Constants of Copper (I) (Cu+) and Copper (II) (Cu2+) in Water Solutions Measured under Synchrotron Radiation”, Trends in Res, Volume 2 (2): 1–9, 2019

315. Heidari, “A Combined Experimental and Computational Study on the Catalytic Effect of Aluminum Nitride Nanocrystal (AlN) on the Polymerization of Benzene, Naphthalene, Anthracene, Phenanthrene, Chrysene and Tetracene”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019

316. Heidari, “Novel Experimental and Three–Dimensional (3D) Multiphysics Computational Framework of Michaelis–Menten Kinetics for Catalyst Processes Innovation, Characterization and Carrier Applications”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000316 Volume 5: 13-17
Heidari A (2019) Pros and cons of the roentgenium nanoparticles for human gum cancer cells, tissues and tumors treatment under synchrotron radiation.
416. Heidari, K Schmitt, M Henderson, E Besana, “Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Bohrium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, Current Research in Biochemistry and Molecular Biology, 1 (1), 17-44, 2019

417. Heidari, K Schmitt, M Henderson, E Besana, “Investigation of Interaction between Synchrotron Radiation and Thulium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment”, European Journal of Scientific Exploration, Volume 2, Issue 3, Pages 1-8, 2019

418. Heidari, K Schmitt, M Henderson, E Besana, “The Effectiveness of the Treatment Human Cancer Cells, Tissues and Tumors Using Darmstadtium Nanoparticles and Synchrotron Radiation”, International Journal of Advanced Engineering and Science, Volume 9, Number 1, Pages 9-39, 2020

419. Heidari, K Schmitt, M Henderson, E Besana, “Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment in Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Uranium Nanoparticles”, Nano Prog. 1 (2), 1-6, 2019

420. Heidari, K Schmitt, M Henderson, E Besana, “A New Approach to Interaction between Beam Energy and Erbium Nanoparticles”, Saudi J Biomed Res, 4 (11): 372-396, 2019

421. Heidari, K Schmitt, M Henderson, E Besana, “Consideration of Energy Functions and Wave Functions of the Synchrotron Radiation and Samarium Nanoparticles Interaction During Human Cancer Cells, Tissues and Tumors Treatment Process”, Sci Int (Lahore), 31 (6), 885-908, 2019

422. Heidari, K Schmitt, M Henderson, E Besana, “An Outlook on Optothermal Human Cancer Cells, Tissues and Tumors Treatment Using Lanthanum Nanoparticles under Synchrotron Radiation”, Journal of Materials Physics and Chemistry, Vol 7, No 1, 29-45, 2019

423. Heidari, K Schmitt, M Henderson, E Besana, “Effectiveness of Einsteinium Nanoparticles in Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Journal of Analytical Oncology, 8, 1, 43-62, 2019

424. Heidari, K Schmitt, M Henderson, E Besana, “Study of Relation between Synchrotron Radiation and Dubnium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment Process”, Int Res J Applied Sci, Volume 1, Number 4, Pages 1-20, 2019

425. Heidari, K Schmitt, M Henderson, E Besana, “A Novel Prospect on Interaction of Synchrotron Radiation Emission and Europium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment”, European Modern Studies Journal, 3 (5), 11-24, 2019

426. Heidari, K Schmitt, M Henderson, E Besana, “Advantages, Effectiveness and Efficiency of Using Neodymium Nanoparticles by 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, International Journal of Advanced Chemistry, 7 (2) 119-135, 2019

427. Heidari, K Schmitt, M Henderson, E Besana, “Role and Applications of Promethium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment”, Scientific Modelling and Research, 4 (1): 8-14, 2019

428. Heidari, J Esposito, Caisutti, “Maitotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti-Cancer Drug”, Glob Imaging Insights 4 (2), 1-13, 2019

429. Heidari, J Esposito, Caisutti, “Biotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019

430. Heidari, J Esposito, Caisutti, “Time-Resolved Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra of Nanopolypeptide Macromolecule beyond the Multi-Dimensional Franck-Condon Integrals Approximation and Density Matrix Method”, Glob Imaging Insights 4 (2), 1-14, 2019

431. Heidari, J Esposito, Caisutti, “Cholera Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019

432. Heidari, J Esposito, Caisutti, “Nodularin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019

433. Heidari, J Esposito, Caisutti, “Cangitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-13, 2019

434. Heidari, J Esposito, Caisutti, “Ciguatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019

435. Heidari, J Esposito, Caisutti, “Brevetoxin (a) and (b) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti-HIV Drug”, Scientific Drug Delivery Research 1 (2), 11–16, 2019

436. Heidari, J Esposito, Caisutti, “Cobotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1-13, 2019

437. Heidari, J Esposito, Caisutti, “Cylindrospermopsin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1-14, 2019

438. Heidari, J Esposito, Caisutti, “Anthrax Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1-14, 2019

439. Heidari, K Schmitt, M Henderson, E Besana, “Investigation of Moscovium Nanoparticles as Anti-Cancer Nano Drugs for Human Cancer Cells, Tissues and Tumors Treatment”, Elixir Appl Chem 137A, 53943-53963, 2019

440. Heidari, K Schmitt, M Henderson, E Besana, “Study of Function of the Beam Energy and Holmium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, European Journal of Advances in Engineering and Technology, 6 (12): 34-62, 2019

441. Heidari, K Schmitt, M Henderson, E Besana, “Human Cancer Cells, Tissues and Tumors Treatment Using Dysprosium Nanoparticles”, Asian J Mat Chem 4 (3–4), pp 47-51, 2019

442. Heidari, K Schmitt, M Henderson, E Besana, “Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Plutonium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, J Cancer Research and Cellular Therapeutics, Volume 2 (4), Pages 1–19, 2019

Copyright: ©2019 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.