Kawasaki disease (KD) is an acute febrile vasculitis of an unknown origin, often found in children under 5 years old. It was first reported by Dr. Tomisaku Kawasaki in 1967 (1). Although KD had been considered “a benign disease,” the first national KD survey at 1970 in Japan indicated 1.4% of cardiac deaths due to coronary artery involvement (2). KD has become a commonly acquired heart disease worldwide in children over the past five decades, and the highest disease prevalence is found in Japan. Post-KD patients with coronary sequelae over time from childhood to adulthood develop ischemic heart disease. There are undoubtedly some asymptomatic adult patients with coronary artery lesions (CALs) caused by KD who remain undiagnosed, although the number of patients with acute coronary syndrome due to KD-related CALs is very small (3, 4).

Acute KD vasculitis and cardiac sequelae

Acute KD vasculitis is a hypercytokinemia involving general medium-sized vessels. The occurrence of this disease depends on abnormal immunologic responses and on hereditary factors. Recently, some susceptible genes related to activated T-cells have been identified (5). Acute KD vasculitis is a self-limiting disease subsiding within two weeks in most patients (1), and has six major principal symptoms: 1) fever persisting for ≥5 days; 2) bilateral conjunctival congestion; 3) changes in the lips and oral cavity; 4) polymorphous exanthema; 5) changes to the peripheral extremities; and 6) acute non-purulent cervical lymphadenopathy. However, some patients have a recrudescent fever with recurring relapses and symptoms that are widespread throughout the body; the diffuse nature of the disease may lead the physician to making an incorrect diagnosis. Further, KD may be associated with coronary artery aneurysms (CAAs) in about 20% of the patients without appropriate treatment (6).

Standard therapy for acute KD involves high-dose intravenous immunoglobulin (IVIG) (2 g/kg/day) with aspirin (7). However, one fifth of IVIG recipients have a persistent or recrudescent fever, and additional IVIGs are needed in these cases. Some patients require further adjunctive therapies; resistant cases may receive corticosteroids, cyclosporine, tumor necrosis factor-alpha blockers, and plasmapheresis (8). However, there is no current therapy guaranteed to be effective, and the above drugs are often used in combination.

Pathologically, coronary arteritis begins at 6 to 8 days after the onset of KD, resulting in neutrophils and lymphocytes infiltrating into the arterial wall from the media and adventitia (2). When the structural components of the arterial wall are damaged, arterial dilation occurs (~12 days after the onset of
KD). Therefore, the goal is to alleviate the fever within 10 days of illness. We believe that the optimal time for the initial IVIG is five to seven days after the onset of KD, because a recurrent and persisting fever can be the cause of CAAs. In Japan, the annual number of KD patients has increased to approximately 15,000 people. The proportion of patients with CAAs in the acute phase is 5.6%, and one month after KD onset it is 1.3%. Further, giant aneurysms exceeding 8 mm account for only 0.13% of the patients, and giant aneurysms are three times more prevalent in males.

Characteristics of CALs caused by KD

The following characteristics are commonly observed in KD-related CALs. First, a giant aneurysm is commonly found in the proximal portion of the major coronary arteries (Figure 1A and B). Second, thrombotic occlusion and segmental stenosis such as “braid-like appearance” are likely to occur in the first year of acute KD (Figure 1A) (9, 10). Third, a progressive coronary wall that thickens over time with calcification exists (Figure 1B, 1C) (11). Fourth, asymptomatic occlusion due to developed collateral arteries is present (Figure 1C). These morphologic changes of the coronary arteries in the late period depend on the degree of injury due to acute vasculitis to the coronary artery wall. The initial maximal diameter of the CAAs, <100 days after the onset of KD in the selective coronary angiograms (CAGs), reflects on the extent of injury in the coronary artery wall during the acute phase, and can be used as a marker to predict morphologic changes in the late period (Figure 2A, 2B) (10).

Regression of CAAs in the CAGs of the late period refers to “apparently angiographical normal coronary arteries” (Figure 1A and B). It does not necessarily indicate “normal coronary arteries”. Regression often leads to complete coronary occlusion, which occurs in acute coronary syndrome. Late,
severe, localized stenosis due to intimal thickening of the vessel walls, reflecting myofibroblastic proliferation, may eventually be completely occlusive and lead to myocardial ischemia. The time of the appearance of localized stenosis varies, ranging from several months to more than 10 years after the acute KD episode in a given patient. Giant aneurysms (>8 mm) are likely to occlude the vessel with thrombosis, especially during the first year, which often leads to acute myocardial infarction (Figure 2A and B). Acute myocardial infarction can occasionally cause sudden death or impair left ventricular function. Myocardial involvement due to myocardial infarction in childhood can lead to late sudden death in adults, becoming a major determinant of outcomes for this population (12).
Role of imaging in patients with CALs caused by KD

Recognition of CALs caused by KD depends on the imaging technique. The detection of CAAs and the cardiac function by two-dimensional echocardiography is both convenient and repeatable at the bedside in the acute phase. While the gold standard technique for coronary artery imaging is selective coronary angiography, the management of CALs is greatly assisted by the application of non-invasive methods such as computed tomography angiography (CTA), magnetic resonance angiography (MRA), and nuclear imaging. Additionally, the diagnosis of CALs and measurement of the coronary arteries by CTA and MRA have been shown to be reliable. The diagnostic accuracy of CTA comparing with CAG was excellent (k=0.93) (13). Over the past four decades in this population of patients, nuclear imaging has also been performed as an acceptable imaging modality to evaluate myocardial involvement (14).

Usefulness of nuclear imaging

Myocardial perfusion imaging (MPI) by quantitative gated single photon emission computed tomography (SPECT) has two major roles, when evaluating the myocardial involvement caused by CALs due to KD. One is the detection of myocardial ischemia, and the other is assessing for the existence of irreversible myocardial damage (15). Therefore, the evaluation of the myocardial viability by MPI has become a prominent tool for decision of coronary revascularization, in combination with stress testing results (Figure 1D) (16). MPI has also been used as a non-invasive evaluation method in children. Total and regional myocardial blood flow measured by 13N-NH3 PET positron emission tomography (PET) is the gold standard for evaluating myocardial viability, and is possible in patients with multi-vessel coronary artery disease (17, 18). Although hybrid cardiac imaging such as SPECT/CT and PET/CT are useful, radiation exposure by the examinations should be minimized in children (14). The detection of vascular inflammation in adults with the history of KD was reported by 18F-fluorodeoxyglucose-PET/CT (19).

The radionuclear tracer of 201Tl in the past and 99mTc currently have been used. The use of 99mTc-tracer has improved the quality of imaging and the reduced exposure to radiation. Pharmacological and exercise stress imaging are common methods of stress-induced myocardial ischemia, and pharmacological stress MPI is often performed in small children with dipyridamole (0.56 mg/kg/4 min) (15). Adenosine and dobutamine are also used (14, 16, 20). In exercise stress MPI, the ergometer is often used in school-aged patients (21).

Recently, the assessment of the various parameters by MPI has been used to predict future cardiac events in patients with coronary artery disease. Cardiac events are based on myocardial defects during stress testing and on the left ventricular ejection fraction. The following parameters of myocardial perfusion defects used are: summed rest score (SRS); summed stress score (SSS); summed difference score (SDS); and extent score. Further, multivariate risk models including age and other variables have developed. The extent of myocardial hypoperfusion in patients with CALs after KD is significantly related to the appearance of non-sustained ventricular tachycardia in the late period (22). The following describes the extent score: short axis images of the left ventricle were obtained after reconstruction, then, in each short axis image the ischemic lesions were analyzed in the circumferential area. Hypoperfusion <2 standard deviation from the mean was defined as an ischemic lesion, and its area was the extent of hypoperfusion. Summation of the extent from the apical layer to the basal layer was defined as the extent score. Extent scores were automatically calculated by Quantitative Perfusion SPECT (QPS) software developed by the Cedars-Sinai Medical Center. Adolescence and young adults with extent score ≥11% have a risk of fatal ventricular arrhythmia (12, 22).

Conclusion

MPI is a non-invasive and acceptable modality for the evaluation of myocardial viability and cardiac function. Additionally, findings on nuclear imaging are useful in the decision for coronary revascularization surgery and in prediction of the future events in patients with multi-vessel disease caused by KD.

Acknowledgments

We thank Dr. Keisuke Kiso and the staff of radioisotope section in our hospital for their suggestions.

Sources of funding

None.

Conflicts of interest

None.

Reprint requests and correspondence:

Etsuko Tsuda, MD, PhD
National Cerebral and Cardiovascular Center, 6-1 Kishibeshimachi, Suita, Osaka, 564-8565, Japan
E-mail: etsuda@ncvc.go.jp

References

1. Kawasaki T, Kosaki F, Okawa S, et al. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 1974; 54: 271–6.
2. Naoe S, Takahashi K, Masuda H, et al. Kawasaki disease.
With particular emphasis on arterial lesions. Acta Pathol Jpn 1991; 41: 785–97.

3. Tsuda E, Abe T, Tamaki W. Acute coronary syndrome in adult patients with coronary artery lesions caused by Kawasaki disease: review of case reports. Cardiol Young 2011; 21: 74–82.

4. Gordon JB, Daniels LB, Kahn AM, et al. The spectrum of cardiovascular lesions requiring intervention in adults after Kawasaki disease. JACC Cardiovasc Interv 2016; 9: 687–96.

5. Onouchi Y, Ozaki K, Burns JC, et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 2012; 44: 517–21.

6. Furusho K, Kamiya T, Nakano H, et al. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet 1984; 324: 1055–8.

7. McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017; 135: e927–99.

8. Saji B, Ayusawa M, Miura M, et al. The clinical guideline for medical treatment of acute stage Kawasaki disease from the scientific committee. JSPCCS 2012; 28 Supp 3: S3-22.

9. Suzuki A, Kamiya T, Tsuda E, et al. Natural history of coronary artery lesions in Kawasaki disease. Prog Pediatr Cardiol 1997, 6: 211–8.

10. Tsuda E, Tsuji N, Hayama Y. Stenotic lesions and the maximum diameter of coronary artery aneurysms in Kawasaki disease. J Pediatr 2018; 194: 165–70. e2.

11. Tsuji N, Tsuda E, Kanzaki S, et al. Late wall thickening and calcification in patients after Kawasaki disease. J Pediatr 2017; 181: 167–71. e2.

12. Tsuda E, Hirata T, Matsu O, et al. The 30-year outcome for patients after myocardial infarction due to coronary artery lesions caused by Kawasaki disease. Pediatr Cardiol 2011; 32: 176–82.

13. Tsuji N, Tsuda E, Kanzaki S, et al. Measurements of coronary artery aneurysms due to Kawasaki disease by Dual-Source Computed Tomography (DSCT). Pediatr Cardiol 2016; 37: 442–7.

14. Koizumi K, Masaki H, Matsuda H, et al. Japanese consensus guidelines for pediatric nuclear medicine. Part 1: Pediatric radiopharmaceutical administered doses (JSNM pediatric dosage card). Part 2: Technical considerations for pediatric nuclear medicine imaging procedures. Ann Nucl Med 2014; 28: 498–503.

15. Kondo C, Hiroe M, Nakamishi T, et al. Detection of coronary artery stenosis in children with Kawasaki disease. Usefulness of pharmacologic stress 201TI myocardial tomography. Circulation 1989; 80: 615–24.

16. Ogawa S, Fukazawa R, Ohkubo T, et al. Silent myocardial ischemia in Kawasaki disease: evaluation of percutaneous transluminal coronary angioplasty by dobutamine stress testing. Circulation 1997; 96: 3384–9.

17. Yoshibayashi M, Tamaki N, Nishioka K, et al. Regional myocardial perfusion and metabolism assessed by positron emission tomography in children with Kawasaki disease and significance of abnormal Q waves and their disappearance. Am J Cardiol 1991; 68: 1638–45.

18. Muzik O, Paridon SM, Singh TP, et al. Quantification of myocardial blood flow and flow reserve in children with a history of Kawasaki disease and normal coronary arteries using positron emission tomography. J Am Coll Cardiol 1996; 28: 757–62.

19. Suda K, Tahara N, Kudo Y, et al. Persistent coronary arterial inflammation in a patient long after the onset of Kawasaki disease. Int J Cardiol 2012; 154: 193–4.

20. Karasawa K, Miyashita M, Taniguchi K, et al. Detection of myocardial contractile reserve by low-dose dobutamine quantitative gated single-photon emission computed tomography in patients with Kawasaki disease and severe coronary artery lesions. Am J Cardiol 2003; 92: 865–8.

21. Ishikawa Y, Fujiwara M, Ono Y, et al. Exercise- or dipyridamole-loaded QGS is useful to evaluate myocardial ischemia and viability in patients with a history of Kawasaki disease. Pediatr Int 2005; 47: 505–11.

22. Abe T, Tsuda E, Sugiyama H, et al. Risk factors of non-sustained ventricular tachycardia by technetium-perfusion imaging in patients with coronary artery lesions caused by Kawasaki disease. J Cardiol 2019; 73: 358–62.