A note on ϕ-Prüfer v-multiplication rings

Xiaolei Zhanga

a. Department of Basic Courses, Chengdu Aeronautic Polytechnic, Chengdu 610100, China
E-mail: zxrlghj@163.com

Abstract

In this note, we show that a strongly ϕ-ring R is a ϕ-PvMR if and only if any ϕ-torsion free R-module is ϕ-w-flat, if and only if any divisible module is nonnil-absolutely w-pure module, if and only if any h-divisible module is nonnil-absolutely w-pure module, if and only if any finitely generated nonnil ideal of R is w-projective.

Key Words: ϕ-PvMRs; ϕ-w-flat modules; nonnil-absolutely w-pure modules; w-projective modules.

2010 Mathematics Subject Classification: 13A15; 13F05.

1. Introduction

Throughout this note, R denotes a commutative ring with identity and all modules are unitary. We always denote by $\text{Nil}(R)$ the nilpotent radical of R, $\text{Z}(R)$ the set of all zero-divisors of R and $\text{T}(R)$ the total ring of fractions of R. An ideal I of R is said to be nonnil if there is a non-nilpotent element in I. A ring R is an NP-ring if $\text{Nil}(R)$ is a prime ideal, and a ZN-ring if $\text{Z}(R) = \text{Nil}(R)$. A prime ideal p is said to be divided prime if $p \not\subseteq (x)$, for every $x \in R - p$. Set $\mathcal{H} = \{R | R$ is a commutative ring and $\text{Nil}(R)$ is a divided prime ideal of $R\}$. A ring R is a ϕ-ring if $R \in \mathcal{H}$. Moreover, a ZN ϕ-ring is said to be a strongly ϕ-ring. For a ϕ-ring R, the map $\phi : \text{T}(R) \rightarrow R_{\text{Nil}(R)}$ such that $\phi(\frac{a}{b}) = \frac{b}{a}$ is a ring homomorphism, and the image of R, denoted by $\phi(R)$, is a strongly ϕ-ring. The notion of Prüfer domains is one of the most famous integral domains that attract many algebraists. In 2004, Anderson and Badawi [1] extended the notion of Prüfer domains to that of ϕ-Prüfer rings which are ϕ-rings R satisfying that each finitely generated nonnil ideal is ϕ-invertible. The authors in [1] characterized ϕ-Prüfer rings from the ring-theoretic viewpoint. In 2018, Zhao [20] characterized ϕ-Prüfer rings using the homological properties of ϕ-flat modules. Recently, Zhang and Qi [17] gave a module-theoretic characterization of ϕ-Prüfer rings in terms of ϕ-flat modules and nonnil-FP-injective modules.

Recall that an integral domain R is called a Prüfer v-multiplication domain (PvMD for short) provided that every nonzero ideal of R is w-invertible (see [12] for example). In 2014, Wang et al. [9] showed that an integral domain R is a
PvMD if and only if R_m is a valuation domain for any maximal w-ideal m of R. In 2015, Wang et al. [13] obtained that an integral domain R is a PvMD if and only if w-$\text{gl.dim}(R) \leq 1$, if and only if every torsion-free R-module is w-flat. In 2018, Xing et al. [16] gave a new module-theoretic characterization of Prüfer v-multiplication domains, i.e., an integral domain R is a Prüfer v-multiplication domain if and only if every divisible R-module is absolutely w-pure, if and only if every h-divisible R-module is absolutely w-pure. In order to extend the notion of PvMDs to that of commutative rings in \mathcal{H}, the author of this paper and Zhao [19] introduced the notion of ϕ-PvMRs as the ϕ-rings in which any finitely generated non-nil ideal is ϕ-w-invertible. They also gave some ring-theoretic and homology-theoretic characterizations of ϕ-PvMRs. In this note, we mainly study the module-theoretic characterizations of ϕ-PvMRs which can be seen a generalization of Wang’s and Xing’s results in [13] and [16] respectively.

As our work involves the w-operation theory, we give a quick review as below. Let R be a commutative ring and J a finitely generated ideal of R. Then J is called a GV-ideal if the natural homomorphism $R \rightarrow \text{Hom}_R(J, R)$ is an isomorphism. The set of all GV-ideals is denoted by $\text{GV}(R)$. Let M be an R-module and define $\text{tor}_{\text{GV}}(M) := \{x \in M | Jx = 0, \text{for some } J \in \text{GV}(R)\}$. An R-module M is said to be GV-torsion (resp., GV-torsion-free) if $\text{tor}_{\text{GV}}(M) = M$ (resp., $\text{tor}_{\text{GV}}(M) = 0$). A GV-torsion free module M is said to be a w-module if, for any $x \in E(M)$, there is a GV-ideal J such that $Jx \subseteq M$ where $E(M)$ is the injective envelope of M. The w-envelope M_w of a GV-torsion free module M is defined by the minimal w-module that contains M. A maximal w-ideal for which is maximal among the w-submodules of R is proved to be prime (see [11, Theorem 6.2.15]). The set of all maximal w-ideals is denoted by w-$\text{Max}(R)$. Let M be an R-module and set $L(M) = (M/\text{tor}_{\text{GV}}(M))_w$. Recall from [10] that M is said to be w-projective if $\text{Ext}^1_R(L(M), N)$ is GV-torsion for any torsion-free w-module N.

An R-homomorphism $f : M \rightarrow N$ is said to be a w-monomorphism (resp., w-epimorphism, w-isomorphism) if for any $p \in \text{Max}(R)$, $f_p : M_p \rightarrow N_p$ is a monomorphism (resp., an epimorphism, an isomorphism). Note that f is a w-monomorphism (resp., w-epimorphism) if and only if $\text{Ker}(f)$ (resp., $\text{Coker}(f)$) is GV-torsion. A sequence $A \rightarrow B \rightarrow C$ is said to be w-exact if, for any $p \in \text{Max}(R)$, $A_p \rightarrow B_p \rightarrow C_p$ is exact. A class C of R-modules is said to be closed under w-isomorphisms provided that for any w-isomorphism $f : M \rightarrow N$, if one of the modules M and N is in C, so is the other. An R-module M is said to be of finite type if there exist a finitely generated free module F and a w-epimorphism $g : F \rightarrow M$, or equivalently, if there exists a finitely generated R-submodule N of
M such that $N_w = M_w$. Certainly, the class of finite type modules is closed under w-isomorphisms.

2. NONNIL-ABSOLUTELY w-PURE MODULES

Recall from [15], a w-exact sequence of R-modules $0 \to N \to M \to L \to 0$ is said to be w-pure exact if, for any R-module K, the induced sequence $0 \to K \otimes_R N \to K \otimes_R M \to K \otimes_R L \to 0$ is w-exact. If N is a submodule of M and the exact sequence $0 \to N \to M \to M/N \to 0$ is w-pure exact, then N is said to be a w-pure submodule of M. Recall from [16], an R-module M is called a absolutely w-pure module provided that M is w-pure in every module containing M as a submodule.

Let R be an NP-ring and M an R-module. Define

$$\phi\text{-}tor(M) = \{x \in M | Ix = 0 \text{ for some nonnil ideal } I \text{ of } R\}.$$

An R-module M is said to be ϕ-torsion (resp., ϕ-torsion free) provided that $\phi\text{-}tor(M) = M$ (resp., $\phi\text{-}tor(M) = 0$). Now we generalize the notions in [15] and [16] to NP-rings. A w-exact sequence $0 \to M \to N \to N/M \to 0$ of R-modules is said to be nonnil w-pure exact provided that $0 \to \text{Hom}_R(T, M) \to \text{Hom}_R(T, N) \to \text{Hom}_R(T, N/M) \to 0$ is w-exact for any finitely presented ϕ-torsion module T. In addition, if M is a submodule of N, then we say M is nonnil w-pure submodule in N.

Definition 2.1. Let R be an NP-ring. An R-module M is called a non-nil-absolutely w-pure module provided that M is nonnil w-pure submodule in every R-module containing M as a submodule.

Following from Xing [16, Theorem 2.6], an R-module M is absolutely w-pure if and only if $\text{Ext}_R^1(F, M)$ is GV-torsion for any finitely presented module F, if and only if M is a w-pure submodule in its injective envelope. Now, we give a ϕ-version of Xing’ result.

Proposition 2.2. Let R be an NP-ring and M an R-module. The following statements are equivalent:

1. M is a non-nil-absolutely w-pure module;
2. $\text{Ext}_R^1(T, M)$ is GV-torsion for any finitely presented ϕ-torsion module T;
3. M is a nonnil w-pure submodule in every injective module containing M;
4. M is a nonnil w-pure submodule in its injective envelope;
5. for any diagram

$$
\begin{array}{c}
M \\
\downarrow f \\
0 \rightarrow K \xrightarrow{i} F \\
\end{array}
$$
with F finitely generated projective, K finitely generated and F/K \(\phi \)-torsion, there is some $J \in GV(R)$ such that any given $c \in J$, there exists $g_c : F \to M$ such that $cf = g_c i$.

Proof. (1) \Rightarrow (3) \Rightarrow (4) : Trivial.

(2) \Rightarrow (1) : Let N be an R-module containing M, and T a finitely presented ϕ-torsion module. Then we have the following exact sequence

$$0 \to \text{Hom}_R(T, M) \to \text{Hom}_R(T, N) \to \text{Hom}_R(T, N/M) \to \text{Ext}^1_R(T, M).$$

Since $\text{Ext}^1_R(T, M)$ is GV-torsion, we have

$$0 \to \text{Hom}_R(T, M) \to \text{Hom}_R(T, N) \to \text{Hom}_R(T, N/M) \to 0$$

is w-exact. Hence M is a nonnil w-pure submodule in N.

(4) \Rightarrow (2) : Let E be the injective envelope of M. Then for any finitely presented ϕ-torsion module T, we have the following exact sequence: $0 \to \text{Hom}_R(T, M) \to \text{Hom}_R(T, E) \to \text{Hom}_R(T, E/M) \to \text{Ext}^1_R(T, M) \to 0$. Thus we have $\text{Ext}^1_R(T, M)$ is GV-torsion by (4).

(2) \Rightarrow (5) : Consider the exact sequence $0 \to K \xrightarrow{i} F \xrightarrow{\pi} F/K \to 0$ with F/K finitely presented ϕ-torsion. we have the following exact sequence: $\text{Hom}_R(F, M) \xrightarrow{i^*} \text{Hom}_R(K, M) \to \text{Ext}^1_R(F/K, M) \to 0$. Since F/K is finitely presented ϕ-torsion, $\text{Ext}^1_R(F/K, M)$ is GV-torsion by (2). Thus i^* is a w-epimorphism. Since $f \in \text{Hom}_R(K, M)$, there exists a GV-ideal J of R such that $Jf \in \text{Im}(i^*)$. So, for any given $c \in J$, there exists $g_c : F \to A$ such that $g_c i = cf$.

(5) \Rightarrow (2) : Let T be a finitely presented ϕ-torsion module. Then exists a short sequence $0 \to K \xrightarrow{i} F \to T \to 0$ with F finitely generated projective and K finitely generated. Consider the exact sequence $\text{Hom}_R(F, M) \xrightarrow{i^*} \text{Hom}_R(K, M) \to \text{Ext}^1_R(T, M) \to 0$. For any $f \in \text{Hom}_R(K, M)$, there is some $J \in GV(R)$ such that any given $c \in J$, there exists $g_c : F \to M$ such that $cf = g_c i$ by (5). So $Jf \subseteq \text{Im}(i^*)$. Thus i^* is a w-epimorphism and so $\text{Ext}^1_R(T, M)$ is GV-torsion. \(\square \)

Recall from [17, Definition 1.2] that an R-module M is called nonnil-FP-injective provided that $\text{Ext}^1_R(T, M) = 0$ for any finitely presented ϕ-torsion module T. Thus we have the following result by Proposition 2.2.

Corollary 2.3. Let R be an NP-ring. Then every nonnil-FP-injective module is nonnil-absolutely w-pure.

Lemma 2.4. Let T be a GV-torsion module. Then T is a absolutely w-pure module.
Proof. Let T be a GV-torsion module and F a finitely presented R-module. Considering the exact sequence $0 \to K \to P \to F \to 0$ with P finitely generated projective and K finitely generated, we have the following exact sequence $\text{Hom}_R(K, T) \to \text{Ext}^1_R(F, T) \to 0$. Since K is finitely generated and T is GV-torsion, $\text{Hom}_R(K, T)$ is GV-torsion. So $\text{Ext}^1_R(F, T)$ is GV-torsion. Consequently, T is an absolutely w-pure module. □

Obviously, we have the following result by Proposition 2.2, [16, Theorem 2.6] and Lemma 2.4.

Corollary 2.5. Let R be an NP-ring. Then every absolutely w-pure module is nonnil-absolutely w-pure. Consequently, every GV-torsion module is a nonnil-absolutely w-pure module.

In order to characterize rings over which every nonnil-absolutely w-pure module is absolutely w-pure, we recall some basic facts.

Lemma 2.6. [19, Lemma 1.6] Let R be a ϕ-ring and I a nonnil ideal of R. Then $\text{Nil}(R) = I\text{Nil}(R)$.

Lemma 2.7. [17, Proposition 1.5] Let R be a ϕ-ring and M an FP-injective $R/\text{Nil}(R)$-module. Then M is nonnil-FP-injective over R.

Let $R\{x\}$ be the w-Nagata ring of R, that is, the localization of $R[X]$ at the multiplicative closed set $S_w = \{f \in R[x] \mid c(f) \in \text{GV}(R)\}$, where $c(f)$ is the content of f (see [10]). Then $\{m(x) \mid m \in w-\text{Max}(R)\}$ is the set of all maximal ideal of $R\{x\}$ by [10, Proposition 3.3(4)]. Set

$$E' = \prod_{m \in w-\text{Max}(R)} \text{E}_R(R\{x\}/m(x))$$

where $\text{E}_R(R\{x\}/m(x))$ is the injective envelope of the R-module $R\{x\}/m(x)$. Since $R\{x\}/m(x)$ is a w-module over R by [11, Theorem 6.6.19(2)], then E' is an injective w-module over R. Set

$$\tilde{E} := \text{Hom}_R(R\{x\}, E').$$

Then \tilde{E} is trivially an $R\{x\}$-module. Since $R\{x\}$ is a flat R-module, \tilde{E} is an injective w-module by [11, Theorem 6.1.18] and [5, Theorem 3.2.9].

Lemma 2.8. [18, Corollary 3.11] Let M be an R-module. The following statements are equivalent:

1. M is GV-torsion;
2. $\text{Hom}_R(M, E) = 0$ for any injective w-module E;
(3) $\text{Hom}_R(M, \bar{E}) = 0$.

Theorem 2.9. Let R be a ϕ-ring. Then R is an integral domain if and only if any nonnil-absolutely w-pure module is absolutely w-pure.

Proof. If R is an integral domain, then any nonnil-absolutely w-pure module is absolutely w-pure obviously.

On the other hand, we have $\text{Hom}_R(R/\text{Nil}(R), \bar{E})$ is an injective $R/\text{Nil}(R)$-module by [5, Theorem 3.1.6]. Thus by Lemma 2.7 $\text{Hom}_R(R/\text{Nil}(R), \bar{E})$ is a nonnil-FP-injective R-module, and so is a nonnil-absolutely w-pure R-module. Thus we have $\text{Hom}_R(R/\text{Nil}(R), \bar{E})$ is an absolutely w-pure R-module by assumption. That is,

$$\text{Ext}_1^R(F, \text{Hom}_R(R/\text{Nil}(R), \bar{E})) \cong \text{Hom}_R(\text{Tor}_1^R(F, R/\text{Nil}(R)), \bar{E})$$

is a GV-torsion module for any finitely presented R-module F as \bar{E} is an injective R-module. Since \bar{E} is a w-module, $\text{Hom}_R(\text{Tor}_1^R(F, R/\text{Nil}(R)), \bar{E})$ is also a w-module by [11, Theorem 6.1.18]. Thus we have $\text{Hom}_R(\text{Tor}_1^R(F, R/\text{Nil}(R)), \bar{E}) = 0$. Hence $\text{Tor}_1^R(F, R/\text{Nil}(R))$ is GV-torsion by Lemma 2.8. Let s be a nilpotent element in R and set $F = R/\langle s \rangle$. Then $\text{Tor}_1^R(F, R/\text{Nil}(R)) = \text{Tor}_1^R(R/\langle s \rangle, R/\text{Nil}(R)) \cong \langle s \rangle \cap \text{Nil}(R)/s\text{Nil}(R) = \langle s \rangle/s\text{Nil}(R)$ is GV-torsion (see [11, Exercise 3.20]). Thus there is a GV-ideal J such that $sJ \subseteq s\text{Nil}(R)$. If J is a GV-ideal, then it is a nonnil ideal, thus $\text{Nil}(R) = J\text{Nil}(R)$ by Lemma 2.6. So $sJ \subseteq s\text{Nil}(R) = sJ\text{Nil}(R) \subseteq sJ$. That is, $sJ = sJ\text{Nil}(R)$. Since sJ is finitely generated, $sJ = 0$ by Nakayama’s lemma. Since $J \in \text{GV}(R)$, $sR \subseteq R$ is GV-torsion free, then $s = 0$. Consequently, $\text{Nil}(R) = 0$ and so R is an integral domain. \hfill \square

Lemma 2.10. Let R be a ring. If R is a (strongly) ϕ-ring, then R_p is a (strongly) ϕ-ring for any prime ideal p of R.

Proof. Let R be a ϕ-ring and p a prime ideal of R. Then $R_p/\text{Nil}(R_p) \cong (R/\text{Nil}(R))_p$ which is certainly an integral domain. So $\text{Nil}(R_p)$ is a prime ideal of R_p. Let $\frac{r}{s} \in R_p - \text{Nil}(R_p)$ and $\frac{r}{s} \in \text{Nil}(R_p)$. Note $r \in R - \text{Nil}(R)$ and $r_1 \in \text{Nil}(R)$. Then $r_1 = rt$ for some $t \in \text{Nil}(R)$. Thus $\frac{r_1}{s_1} = \frac{rt}{s_1} = \frac{rs_1 + ts_1}{s_1} = \frac{ts_1}{s_1} \in \langle \frac{r}{s} \rangle$. So $\text{Nil}(R_p)$ is a divided prime ideal of R_p. Hence R_p is a ϕ-ring. Now suppose R is a strongly ϕ-ring. Let $\frac{r}{s} \in R_p - \text{Nil}(R_p)$. Then r is non-nilpotent, and thus r is regular. Assume $\frac{r^m}{s} = 0$ in R_p. Then there exists $t \in R - p$ such that $rr_1t = 0$. Thus $r_1t = 0$. Hence r_1 and thus $\frac{r}{s}$ is equal to 0 since t is also regular. Consequently, R_p is a strongly ϕ-ring. \hfill \square

Remark 2.11. Note that the converse of Lemma 2.10 is not true in general. Indeed, let R be a von Neumann regular ring which is not a field. Then R_p is a field for any prime ideal p of R. However, R is not a ϕ-ring since $\text{Nil}(R) = 0$ is not a prime ideal in this case.
Let R be an NP-ring. Recall from [21] that an R-module M is said to be ϕ-flat if for every monomorphism $f : A \to B$ with $\text{Coker}(f)$ ϕ-torsion, $f \otimes_R 1 : A \otimes_R M \to B \otimes_R M$ is a monomorphism; a ϕ-ring R is said to be ϕ-von Neumann if every R-module is ϕ-flat. The authors in [21, Theorem 4.1] proved that a ϕ-ring R is ϕ-von Neumann if and only if the Krull dimension of R is 0. It was also shown in [17, Theorem 1.7] that a ϕ-ring R is ϕ-von Neumann if and only if $R/\text{Nil}(R)$ is a field, if and only if every non-nilpotent element is invertible, if and only if every R-module is non-nil-FP-injective. Recall from [19, Definition 1.3] that an R-ring is non-nil-FP-injective. Recall from [21, Theorem 4.1] that a ϕ-ring R is ϕ-von Neumann if and only if every R-module is ϕ-w-flat. Now we give a new characterization of ϕ-von Neumann rings.

Lemma 2.12. Let R be a ϕ-ring. Then R is a ϕ-von Neumann regular ring if and only if R_m is a ϕ-von Neumann regular ring for any $m \in w\text{-Max}(R)$.

Proof. Let R be a ϕ-von Neumann regular ring and m a prime ideal. Let $\zeta \in R_m$ be a non-nilpotent element in R_m. Then r is non-nilpotent. So r is invertible by [17, Theorem 1.7]. Hence ζ is also invertible in R_m implying R_m is a ϕ-von Neumann regular ring by [17, Theorem 1.7] and Lemma 2.10.

Now let r be non-nilpotent element in R. Then ζ is a non-nilpotent element in R_m for any $m \in w\text{-Max}(R)$, since R is a ϕ-ring. By [17, Theorem 1.7], ζ is invertible in R_m. Thus $r \not\in m$ for any $m \in w\text{-Max}(R)$. So $\langle r \rangle_w = R$, and hence r is invertible by [11, Exercise 6.11(2)].

Theorem 2.13. Let R be a ϕ-ring. Then R is a ϕ-von Neumann regular ring if and only if every R-module is nonnil-absolutely w-pure.

Proof. Suppose R is a ϕ-von Neumann regular ring and M is an R-module. Then $R/\text{Nil}(R)$ is a field. By [19, Theorem 3.3] R is a ϕ-Prüfer v-multiplication ring and thus R_m is a ϕ-chained ring for any maximal w-ideal m of R. Let T be a finitely presented ϕ-torsion module. Then $\text{Ext}^1_T(T, M)_m = \text{Ext}^1_{R_m}(T_m, M_m) = \bigoplus_{i=1}^n \text{Ext}^1_{R_m}(R_m/R_m x_i, M_m)$ for some non-nilpotent element $x_i \in R_m$ by [11, Theorem 3.9.11]. By Lemma 2.12, R_m is a ϕ-von Neumann regular ring. Thus x_i is an invertible element by [17, Theorem 1.7]. So $R_m/R_m x_i = 0$ and thus $\text{Ext}^1_{R_m}(R_m/R_m x_i, M_m) = 0$. Hence $\text{Ext}^1_T(T, M)_m = 0$ for any $m \in w\text{-Max}(R)$. It follows that $\text{Ext}^1_T(T, M)$ is GV-torsion. Consequently, M is nonnil-absolutely w-pure.

On the other hand, let I be a finitely generated nonnil ideal of R. Since for any R-module M, $\text{Ext}^1_R(R/I, M)$ is GV-torsion, then R/I is finitely generated w-projective. R_m/I_m is a finitely generated projective R_m-module for any $m \in w\text{-Max}(R)$ by [11]
Theorem 6.7.18]. Then I_m is an idempotent ideal of R_m by [7, Theorem 1.2.15]. By [6, Chapter I, Proposition 1.10], I_m is generated by an idempotent $e_m \in R_m$. Thus R_m is a ϕ-von Neumann regular ring by [21, Theorem 4.1] and Lemma 2.10. So R is ϕ-von Neumann regular by Lemma 2.12.

3. SOME NEW CHARACTERIZATIONS OF ϕ-PRÜFER v-MULTIPLICATION RINGS

Recall from [4] that a ϕ-ring R is said to be a ϕ-chain ring (ϕ-CR for short) if for any $a, b \in R - \text{Nil}(R)$, either $a|b$ or $b|a$ in R. A ϕ-ring R is said to be a ϕ-Prüfer ring if every finitely generated nonnil ideal I is ϕ-invertible, i.e., $\phi(I)\phi(I^{-1}) = \phi(R)$ where $I^{-1} = \{x \in T(R)|Ix \subseteq R\}$. It follows from [1, Corollary 2.10] that a ϕ-ring R is ϕ-Prüfer, if and only if R_m is a ϕ-CR for any maximal ideal m of R, if and only if $R/\text{Nil}(R)$ is a Prüfer domain, if and only if $\phi(R)$ is a Prüfer ring.

Let R be a ϕ-ring. Recall from [8] that a nonnil ideal J of R is said to be a ϕ-GV-ideal (resp., ϕ-w-ideal) of R if $\phi(J)$ is a GV-ideal (resp., w-ideal) of $\phi(R)$. An ideal I of R is ϕ-w-invertible if $(\phi(I)\phi(I^{-1}))_W = \phi(R)$ where W is the w-operation of $\phi(R)$. In order to extend PvMDs to ϕ-rings, the authors in [19] gave the notion of ϕ-Prüfer v-multiplication rings: a ϕ-ring R is said to be a ϕ-Prüfer v-multiplication ring (ϕ-PvMR for short) provided that any finitely generated nonnil ideal is ϕ-w-invertible. They also show that a ϕ-ring R is a ϕ-PvMR if and only if R_m is a ϕ-CR for any $m \in w\text{-Max}(R)$, if and only if $R/\text{Nil}(R)$ is a PvMD, if and only if $\phi(R)$ is a PvMR.

Recall that an R-module E is said to be divisible if $sM = M$ for any regular element $s \in R$, and an R-module M is said to be h-divisible provided that M is a quotient of an injective module. Evidently, any injective module is h-divisible and any h-divisible module is divisible. The author in [17] introduced the notion of nonnil-divisible modules E in which for any $m \in E$ and any non-nilpotent element $a \in R$, there exists $x \in E$ such that $ax = m$.

Lemma 3.1. [17, Lemma 2.2] Let R be an NP-ring and E an R-module. Consider the following statements:

(1) E is nonnil-divisible;
(2) E is divisible;
(3) $\text{Ext}^1_R(R/\langle a \rangle, E) = 0$ for any $a \notin \text{Nil}(R)$.

Then we have (1) \Rightarrow (2) and (1) \Rightarrow (3). Moreover, if R is a ZN-ring, all statements are equivalent.

Lemma 3.2. [17, Lemma 2.4] Let R be an NP-ring and E a nonnil-divisible R-module. Then E_p is a nonnil-divisible R_p-module for any prime ideal p of R.

Let M be an R-module. Recall from [10] that M is said to have w-rank n if, for any maximal w-ideal m of R, M_m is a free R_m-module of rank n. Let τ denote the trace map of M, that is, $\tau : M \otimes_R \text{Hom}(M, R) \to R$ defined by $\tau(x \otimes f) = f(x)$ for $x \in M$ and $f \in M$. M is said to be w-invertible, if the trace map τ is a w-isomorphism. It was proved in [10] Theorem 4.13 that an R-module M is w-invertible if and only if M is of finite type and has w-rank 1, if and only if M is w-projective of finite type and has w-rank 1.

Proposition 3.3. Let R be a strongly ϕ-ring and I a finitely generated nonnil ideal of R. If I is w-projective, then I is ϕ-w-invertible.

Proof. Let I a finitely generated nonnil ideal of the strongly ϕ-ring R. Then I is a regular ideal of R. Let m be a maximal w-ideal of R. Since I is w-projective R-ideal, I_m is a free ideal of R_m by [11] Theorem 6.7.11]. Then $I_m \cong R_m$ or $I_m = 0$. We claim that $I_m \cong R_m$. Indeed, let r be a regular element in I. If $I_m = 0$, then there is an element $s \in R - m$ such that $rs = 0$. So $s = 0$ which is a contradiction. Hence, I_m is of rank 1 for any maximal w-ideal m of R. By [10] Theorem 4.13], $\phi(I) = I$ is w-invertible since R is a strongly ϕ-ring. Hence, I is ϕ-w-invertible. \square

Lemma 3.4. [17] Proposition 2.12] Let R be an NP-ring, p a prime ideal of R and M an R-module. Then M is ϕ-torsion over R if and only if M_p is ϕ-torsion over R_p.

Lemma 3.5. Let R be an NP-ring, M an R-module. Suppose M is ϕ-torsion free over R, M_m is ϕ-torsion free over R_m for any maximal w-ideal m of R. Moreover, if M is GV-torsion free, then the converse also holds.

Proof. Suppose M is a ϕ-torsion free R-module. Let m be a maximal w-ideal of R and $\frac{m}{s} \in M_m$. Suppose I_m is a nonnil ideal of R_m and $I_m\frac{m}{s} = 0$ in M_m. then there exists $t \not\in m$ such that $tIm = 0$ in R. Since I is nonnil in R by [19] Lemma 1.1], we have It is also nonnil as t is non-nilpotent. Since M be an ϕ-torsion free, m and thus $\frac{m}{s}$ is equal to 0.

Suppose M is a GV-torsion free R-module such that M_m is ϕ-torsion free over R_m for any maximal w-ideal m of R. Let $m \in M$ such that $Im = 0$ for some nonnil ideal I of R. Then $I_m\frac{m}{s} = 0$ in M_m. Since I_m is nonnil in R_m by [19] Lemma 1.1], $\langle m \rangle_m = 0$ for any maximal w-ideal m of R. Thus $\langle m \rangle$ is GV-torsion in M by [11] Theorem 6.2.15]. Since M is GV-torsion free by assumption, we have $m = 0$. \square

It is well-known that an integral domain R is a PvMD if and only if every torsion-free R-module is w-flat, if and only if every (h)-divisible R-module is absolutely w-pure (see [13] [16]). Recently, the authors in [17] characterized ϕ-Prüfer rings in terms of nonnil-FP-injective modules, that is, a strongly ϕ-ring R is a ϕ-Prüfer ring
if and only if any ϕ-torsion free R-module is ϕ-flat, if and only if any (h)-divisible module is nonnil-FP-injective. Now, we characterize ϕ-PvMRs in terms of ϕ-w-flat modules, nonnil-absolutely w-pure modules and w-projective modules, which can be seen as a generalization of the results in [13, 16, 17].

Theorem 3.6. Let R be a strongly ϕ-ring. The following statements are equivalent for R:

1. R is a ϕ-PvMR;
2. any ϕ-torsion free R-module is ϕ-w-flat;
3. any nonnil ideal of R is w-flat;
4. any ideal of R is ϕ-w-flat;
5. any divisible module is nonnil-absolutely w-pure module;
6. any h-divisible module is nonnil-absolutely w-pure module;
7. any finitely generated nonnil ideal of R is w-projective;
8. any finite type nonnil ideal of R is w-projective.

Proof.

1 \Rightarrow 2: Let m be a maximal w-ideal of R, M a ϕ-torsion free R-module. By Lemma 3.5, M_m is ϕ-torsion free over R_m. Since R is a ϕ-PvMR, R_m is a ϕ-CR by [19, Theorem 3.3]. Then M_m is ϕ-flat by [20, Theorem 4.3], and thus M is ϕ-w-flat by [19, Theorem 1.4].

2 \Rightarrow 4: It follows from R is ϕ-torsion free since R is a strongly ϕ-ring (see [20, Proposition 2.2]).

4 \iff 3: Let J be a nonnil ideal of R, I an ideal of R. We have

$$\text{Tor}_1^R(R/J, I) \cong \text{Tor}_2^R(R/J, R/I) \cong \text{Tor}_1^R(R/I, J).$$

The result follows the statement that any ideal of R is ϕ-w-flat is equivalence to the statement that any nonnil ideal of R is w-flat.

4 \Rightarrow 1: See [19, Theorem 3.8].

1 \Rightarrow 5: Let T be a finitely presented ϕ-torsion module and m a maximal w-ideal of R. Then by Lemma 3.4, T_m is a finitely presented ϕ-torsion R_m-module. By [19, Theorem 3.3], R_m is a ϕ-chained ring. Thus, by [20, Theorem 4.1], $T_m \cong \bigoplus_{i=1}^{n} R_m/R_m x_i$ for some regular element $x_i \in R_m$ as R_m is a strongly ϕ-ring by Lemma 2.10. Let E be a divisible module. Then E_m is a divisible module over R_m by Lemma 3.1 and Lemma 3.2. Thus $\text{Ext}_R^1(T, E)_m = \text{Ext}_{R_m}^1(T_m, E_m) = \bigoplus_{i=1}^{n} \text{Ext}_{R_m}^1(R_m/R_m x_i, E_m) = 0$ by Lemma 3.1 and [11, Theorem 3.9.11]. It follows that $\text{Ext}_R^1(T, E)$ is a GV-torsion module. Therefore, E is a nonnil-absolutely w-pure module.
(5) ⇒ (6) and (8) ⇒ (7): Trivial.

(6) ⇒ (7): Let N be an R-module, I a finitely generated nil ideal of R. The short exact sequence $0 \to I \to R \to R/I \to 0$ induces a long exact sequence as follows:

$$0 = \text{Ext}^1_R(R, N) \to \text{Ext}^1_R(I, N) \to \text{Ext}^2_R(R/I, N) \to \text{Ext}^2_R(R, N) = 0.$$

Let $0 \to N \to E \to K \to 0$ be an exact sequence where E is the injective envelope of N. There exists a long exact sequence as follows:

$$0 = \text{Ext}^1_R(R/I, E) \to \text{Ext}^1_R(R/I, K) \to \text{Ext}^2_R(R/I, N) \to \text{Ext}^2_R(R/I, E) = 0.$$

Thus $\text{Ext}^1_R(I, N) \cong \text{Ext}^2_R(R/I, N) \cong \text{Ext}^1_R(R/I, K)$ is a GV-torsion module as K is nonnil-absolutely w-pure by (6). It follows that I is a w-projective ideal of R by [14 Corollary 2.5].

(7) ⇒ (1): It follows from Proposition 3.3.

(7) ⇒ (8): Let I be a finite type nil ideal of R, then there is a finitely generated sub-ideal K of I such that K/I is GV-torsion (see [11 Proposition 6.4.2(3)]). Then I is w-isomorphic to K. We claim that K is a nonnil ideal. Indeed, since I is nil, there is a non-nilpotent element $s \in I$. Thus there is a GV-ideal J of R such that $Js \subseteq K$. Since J is nonnil and R is a ϕ-ring, we have K is a nonnil ideal of R. By (7), K is w-projective. And thus I is w-projective by [11 Proposition 6.7.8(1)]. □

Obviously, every nonnil-FP-injective module is nonnil-absolutely w-pure. The following example shows that the converse does not hold in general.

Example 3.7. Let D be a PvMD but not a Prüfer domain, K the quotient field of D. Then the idealization $R = D(+)K$ is a ϕ-PvMR but not a ϕ-Prüfer ring. Note that R is a strongly ϕ-ring by [2] Remark 1. Thus there is a nonnil-absolutely w-pure divisible module M which is not nonnil-FP-injective by Theorem 3.6 and [17] Theorem 2.13.

Acknowledgement.
The first author was supported by the Natural Science Foundation of Chengdu Aeronautic Polytechnic (No. 062026) and the National Natural Science Foundation of China (No. 12061001).

References

[1] D. F. Anderson, A. Badawi, *On ϕ-Prüfer rings and ϕ-Bezout rings*, Houston J. Math. **30** (2004), 331-343.
[2] D. F. Anderson, A. Badawi, *On ϕ-Dedekind rings and ϕ-Krull rings*, Houston J. Math. **31** (2005), 1007-1022.

[3] A. Badawi, *On divided commutative rings*, Comm. Algebra **27** (1999), 1465-1474.

[4] A. Badawi, *On ϕ-chained rings and ϕ-pseudo-valuation rings*, Houston J. Math. **27** (2001), 725-736.

[5] E. E. Enochs, O. M. G. Jenda, *Relative homological algebra*, De Gruyter Exp. Math., vol. **30**. Berlin: Walter de Gruyter Co, 2011.

[6] L. Fuchs, L. Salce, *Modules over Non-Noetherian Domains*, New York: Math Surveys and Monographs, 84. AMS, 2001.

[7] S. Glaz, *Commutative Coherent Rings*, Lecture Notes in Mathematics, vol. **1371**, Berlin: Springer-Verlag, 1989.

[8] H. Kim, F. G. Wang, *On ϕ-strong Mori rings*, Houston J. Math. **38** (2012), no. 2, 359-371.

[9] F. G. Wang, H. Kim, *w-injective modules and w-semi-hereditary rings*, J. Korean Math. Soc. **51** (2014), no. 3, 509-525.

[10] F. G. Wang, H. Kim, *Two generalizations of projective modules and their applications*, J. Pure Appl. Algebra **219** (2015), no. 6, 2099-2123.

[11] F. G. Wang, H. Kim, *Foundations of Commutative rings and Their Modules*, Singapore: Springer, 2016.

[12] F. G. Wang and R. L. McCasland, *On strong Mori domains*, J. Pure Appl. Algebra, **135** (1999), no. 2, 155-165.

[13] F. G. Wang, L. Qiao, *The w-weak global dimension of commutative rings*, Bull. Korean Math. Soc. **52** (2015), no. 4, 1327-1338.

[14] F. G. Wang, L. Qiao, *A new version of a theorem of Kaplansky*, Comm. Algebra **48** (2020), no. 8, 3415-3428.

[15] S.Q. Xing and F.G. Wang, *Purity over Prüfer v-multiplication domains*, J. Algebra Appl. **16** (2018), no 5, 1850100 (11 pages).

[16] S.Q. Xing and F.G. Wang, *Purity over Prüfer v-multiplication domains, II*. J. Algebra Appl. **16** (2018), no 6, 1850223 (11 pages).

[17] X. L. Zhang, W. Qi, *Some Remarks on ϕ-Dedekind rings and ϕ-Prüfer rings*, https://arxiv.org/abs/2103.08278.

[18] X. L. Zhang, F. G. Wang, *On characterizations of w-coherent rings II*, Comm. Algebra **58** (2021), no 4, 1039-1052.

[19] X. L. Zhang, W. Zhao, *On w-ϕ-flat modules and their homological dimensions*, Bull. Korean Math. Soc. **58** (2021), no. 4, 1039-1052.

[20] W. Zhao, *On ϕ-flat modules and ϕ-Prüfer rings*, J. Korean Math. Soc. **55** (2018), no. 5, 1221-1233.

[21] W. Zhao, F. G. Wang and G. H. Tang, *On ϕ-von Neumann regular rings*, J. Korean Math. Soc., **50** (2013), no. 1, 219-229.