Original Research Article

Prophylactic procedure tract radiotherapy for malignant pleural mesothelioma: A systematic review and meta-analysis

Sarah Bergamin,⇑ Martin Tio, Mark John Stevens

Northern Sydney Cancer Centre – Radiation Oncology Unit, Northern Sydney Cancer Centre, Level 1, Royal North Shore Hospital, Reserve Rd. St Leonards, NSW, 2065, Australia

Northern Sydney Cancer Centre – Medical Oncology Unit, Northern Sydney Cancer Centre, Level 1, Royal North Shore Hospital, Reserve Rd. St Leonards, NSW, 2065 Australia

Article info

Background and purpose: Malignant pleural mesothelioma (MPM) is an aggressive cancer with a propensity for seeding procedure tracts, leading to symptomatic metastases. There is conflicting evidence on the value of prophylactic procedure tract radiotherapy in reducing tract metastases. We performed a systematic review and meta-analysis to estimate the benefit of radiotherapy in this setting.

Materials and methods: Electronic databases were searched to January 1, 2018 for prospective randomized control trials with prophylactic procedure tract radiotherapy as the intervention arm. Pooled odds ratios and 95% confidence intervals were calculated using a random effects model. Study heterogeneity was assessed using the I² statistic, and publication bias was evaluated by funnel plot and Egger’s regression model.

Results: Five studies were included for meta-analysis. Prophylactic radiotherapy did not have a statistically significant reduction on the risk of procedure site recurrence, with a pooled relative risk of 0.69 (95% CI 0.33–1.43). There was moderate heterogeneity between trials. All trials were assessed as moderate or high risk of bias overall.

Conclusion: This systematic review has confirmed that there is no role for prophylactic procedure tract radiotherapy in MPM. In the absence of effective prophylactic procedures, patients need to be monitored closely, and palliative interventions delivered in a timely manner to reduce morbidity associated with procedure tract metastases.

Crown Copyright © 2018 Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer, with a five year relative survival of only 5.8% [1]. Australia and the United Kingdom have the highest annual rates of disease with approximately 30 cases per million, though epidemiological data is not available for many countries [2].

MPM is diagnosed by cyto-histological confirmation from either pleural fluid or tissue. The latter requiring large bore pleural procedures ranging from CT-guided core biopsy, thoracoscopy, video-assisted thoracoscopic surgical interventions, or open pleural biopsy. At diagnosis over 90% patients report dyspnoea due to malignant pleural effusion, which is usually palliatively managed from the outset with repeated pleurocentesis, continuous indwelling catheter drainage, or tcalc pleurodesis. More rarely pleurectomy is attempted.

MPM however has a propensity to spread along needle or trans-thoracic trocar procedure tracts to skin puncture or incision sites, with tumour cell seeding leading to symptomatic subcutaneous metastases in up to 51% of patients [3,4]. Prophylactic procedure tract radiation therapy has been utilised with the aim of reducing the incidence of these metastatic (or implantation) deposits. Although in vitro studies suggest that mesothelioma cells are radiosensitive [5], and procedure tract radiation therapy is invariably safe and technically feasible, evidence from observational studies and randomised control trials has been conflicting, leading to uncertainty regarding its efficacy. This is reflected in variation in international treatment recommendations [4]. Given the uncertainty, we performed a systematic review and quantitative meta-analysis of the role of prophylactic radiation therapy to procedure tract sites in MPM.

https://doi.org/10.1016/j.ctro.2018.09.004

2405-6308(Crown Copyright © 2018 Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Methods

2.1. Search strategy and data sources

We followed the preferred reporting items in systematic reviews and meta-analyses (PRISMA) guidelines [6]. MEDLINE, EMBASE, CENTRAL, and PubMed were searched from inception to January 2018 by two reviewers (M.T. and S.B.). The search included the terms ‘mesothelioma’ and ‘radiation therapy’ or ‘radiation therapy’. Reference lists of included articles, systematic reviews, and narrative reviews were hand searched.

The International Clinical Trials Registry Platform, Clinicaltrials.gov, European Union Clinical Trials Register, and Australian New Zealand Clinical Trials Registry were searched for unpublished trials. There were no language restrictions. Disagreements were resolved by a third reviewer (M.J.S).

2.2. Study selection and data extraction

Eligible studies were included if they described: (1) Prospective randomization; (2) An intervention arm of prophylactic radiation therapy to procedure sites in mesothelioma patients; (3) A control arm of no prophylactic radiation therapy or sham radiation therapy; (4) Rates of mesothelioma recurrence at procedure sites.

2.3. Data extraction

Two reviewers (M.T. and S.B.) extracted data from included studies. Last name of first author, year of publication, country of origin, inclusion and exclusion criteria, intervention and control treatments, sample size of intervention and control arms, total sample size, survival, adverse events, quality of life, and study design methodology were extracted.

2.4. Risk of bias assessment

Risk of bias was assessed by two reviewers (M.T. and S.B). The assessment was conducted using the Cochrane Collaboration’s tool for assessing risk of bias [7]. Disagreements were resolved by a third reviewer (M.J.S.).

2.5. Statistical analysis

Pooled relative risk and 95% confidence intervals of risk of mesothelioma recurrence at intervention sites was calculated using the random-effects model of DerSimonian and Laird [8]. Heterogeneity across included studies was assessed using the I² statistic [9]. Publication bias was assessed by visual inspection of funnel plots, and using Egger’s regression model [10]. A two tailed p < 0.05 was used as the threshold for statistical significance. All analyses were performed using Comprehensive Meta-analysis (version 2.2), Englewood, NJ, USA (2005).

3. Results

The search strategy identified 4398 studies, from which 5 randomized controlled trials were included for meta-analysis (Fig. 1) [11–15]. One included study has been reported in abstract form only [15].

Table 1 shows the characteristics of the included studies. Patient characteristics and inclusion criteria were similar across trials, however there was variability of timing and dosage of the prophylactic radiation therapy. All trials were designed to detect differences in procedure site recurrence rates.

Two trials reported on overall survival [11,14]. The reporting of adverse events was variable between trials. Only one trial reported a single grade 3 adverse event of radiation dermatitis [15], with the remaining trials reporting grade 2 or lower adverse events only. Two trials reported quality of life measures [13,14].

Meta-analysis of survival, adverse events, and quality of life measures was not attempted due to variability in reporting. Table 2 shows the risk of bias assessment, with all trials assessed as either moderate or high risk of bias overall.

Fig. 2 shows the meta-analysis of 5 trials with a total sample size of 737 patients, on the risk of procedure site mesothelioma recurrence with prophylactic radiation therapy. Prophylactic radiation therapy did not have a statistically significant reduction on the risk of procedure site recurrence, with a pooled relative risk of 0.69 (95% CI 0.33–1.43), p = 0.32. There was moderate heterogeneity between trials, with I² = 41.0. There was no evidence of publication bias on visual inspection, or Eggers test p = 0.69.

4. Discussion

Our systematic review found that there is no significant benefit of prophylactic procedure tract radiation therapy in MPM patients. There was however significant heterogeneity in radiation therapy dose, technique and timing in the included trials. Four studies treated patients with 21 Gy in three fractions on consecutive working days, using clinical mark-up and electron or photon therapy with energies adapted to patient anatomy and procedure tract topography [11,13–15]. No study however used modern CT-simulation to define target volumes, which may limit applicability to current clinical settings. One study delivered 10 Gy in a single fraction using 9 MeV electrons [12]. Previous reviews have argued that this dose is suboptimal [16–18]. The uniform use of 9 MeV may have also led to underdosing in patients with thicker chest walls. One of the trials has been criticised for using a field size of 6 cm [13], with an argument that this was relatively small, explaining the lack of effect [17]. Delivery of radiation therapy ranged from 10 to 42 days post intervention, within the maximum two month latency from intervention thought to be necessary for reduction of chest wall metastasis recurrence [17].
Study	Year	Country of origin	Age	No prophylactic RT (n)	Recurrence with prophylactic RT (%)	No prophylactic RT (n)	Recurrence without prophylactic RT (%)	Median time to metastasis from intervention with RT	Median time to metastasis from intervention without RT	Inclusion/exclusion criteria	Procedure type	Intervention	Control	Median Survival Intervention	Median Survival Control	Adverse Events	Quality of Life
Boutin et al. (1995)	1995 France	66 (mean)	20	20	0 (0%)	8 (40%)	Not applicable	6 months	Diagnosis of mesothelioma; Thoracoscopy and tract biopsy within one month; life expectancy >3 months	Prophylactic EBRT; 21 Gy in 3 fractions; 12.5–15 MeV; Given after wound healing, 10–15 days post thoracoscopy	Nil EBRT	14 months	8 months	Adverse events of EBRT arm described only. Grade of events not described. Skin discoloration in 100% of EBRT arm. 0% inflammation or edema. Other adverse events not described. Grade 1 adverse events not described. Nil grade 2–4 adverse events in EBRT arm	Not described		
Bydder et al. (2004)	2004 Australia	70 (mean)	28	30	2 (7%)	3 (10%)	Not reported	Not reported	Adults with pathological diagnosis of mesothelioma; Identifiable procedure site	Thoracic drainage/ thoracoscopy, FNA, Abrams needle	Prophylactic EBRT; 10 Gy in 1 fraction, 9MeV; Given within 15 days of procedure	Nil EBRT	Not reported	Not reported	Adverse events of EBRT arm described only. Grade of events not described. Nil grade 2–4 adverse events in EBRT arm	Not described	
O’Rourke et al. (2007)	2007 UK	70 (median)	31	30	7 (23%)	3 (11%)	2.4 months	6.4 months	Pathological diagnosis of mesothelioma; Procedure performed within 21 days of trial enrolment; Exclusion of prior radiation therapy or prior chemotherapy, expected survival <3 months	Pleural biopsy, chest drain, thoracoscopy	Prophylactic EBRT; 21 Gy in 3 fractions; 9–12 MeV or 2500kV photons; Given within 21 days of procedure	Nil EBRT	Not reported	Not reported	Adverse events of EBRT arm described only. Grade of events not described. 10% skin discoloration; 3% nausea and vomiting; 3% nausea, anaemia, chest discomfort; 2% patient self report of any side effect	Not described	
Clive et al. (2016)	2016 UK	70 (mean)	102	101	9 (9%)	16 (16%)	179 days	224 days	Pathological diagnosis of mesothelioma; Large bore pleural procedure within 35 days; Exclusion of age <18 years, pregnant or lactating, prior radiation therapy, survival <4 months	Thoracoscopy, video-assisted thoracoscopic surgery, thoracoscopy, indwelling pleural catheter	Prophylactic EBRT; 21 Gy in 3 fractions; Given within 42 days of procedure	Deferred palliative EBRT to recurrence site; 21 Gy in 3 fractions; Given within 35 days of recurrence	357 days	365 days	Within 3 months and >3 months adverse events described for patients receiving EBRT. 545 grade 1 and 4% grade 2 skin toxicity within 3 months; 52% grade 1 and 1% grade skin toxicity after 3 months; 11% nausea within 3 months; 4% nausea after 3 months; 30% fatigue within 3 months; 23% after 3 months; 1% anorexia within 3 months; 2% pain within 3 months	Chest pain VAS; QLQ-C30 score; EQ-5D score; Morphine-equivalent dose score. Nil significant differences between arms	
per protocol analysis of the SMART trial, which excluded patients with serious protocol deviations, showed that procedure tract metastasis incidence was significantly lower in the prophylactic radiotherapy group than in the deferred group (6% vs. 16%) [14]. This suggested that adequate radiation therapy may have an impact on metastatic deposit development, though the ability to deliver the trial protocol in real clinical settings is untested.

Radiation therapy appeared to be relatively well tolerated, with no grade 4 or greater adverse events. Skin toxicity was the most common radiotherapy-related adverse event, with rates of Grade 1 toxicity in up to 54% and Grade 2 in up to 10.2% of patients. One trial reported a single Grade 3 radiation dermatitis (0.5%) [15]. Other reported acute toxicities included lethargy, nausea, loss of appetite and chest discomfort. Late toxicities included subcutaneous tissue toxicity, nausea and lethargy.

Median time from intervention to chest wall metastasis was reported in three trials [11,13,14]. This ranged from 2.4 to 5.8 months in the prophylactic radiation therapy group, and 6 to 7.4 months in the control group. No significant difference was seen in the time to development of metastasis between the groups in any trial.

Two trials reported the location of chest wall recurrence in relation to the radiation field [13,14]. One reported that 75% of metastases occurred overlying or adjacent to the intervention tract site [13]. The other reported that the minimum distance between the intervention site and the edge of the metastasis was longer in the prophylactic radiation therapy group compared to the control group (mean 4.6 cm vs. 1.3 cm) suggesting a radiation field effect [14].

The incidence of procedure tract metastasis varies widely in the literature. Larger bore procedure tracts have been associated with an increased risk of tract metastasis (4% for image guided core needle biopsy versus 22% for surgical biopsy) [19], though this correlation was not demonstrated in the included trials. Three studies reported the rates of metastases for different baseline procedures, including FNA, Abrams needles, thoracic drains, thoracoscopy, and open thoracic surgery [12–14]. There was no statistically significant association between type of baseline procedure and development of metastatic deposits. There was heterogeneity in interventions included in each trial, and incomplete data in one trial [13]. The difference in incidence in the literature is likely explained by other factors, such as procedural technique, disease biology, systemic treatment and host factors.

MPM is associated with a poor prognosis and short lifespan. As such, treatment should be rationalised to maximise benefit and minimise patient inconvenience, time cost and potential side effects. There was significant heterogeneity in symptom assessment in the trials, with three reporting pain outcomes [13–15]. One utilised visual analogue scale (VAS) pain scores, and analgesia use to assess chest pain, with no difference found between the radiation therapy and control groups at baseline and during follow-up [14]. Another employed a swelling questionnaire for patients with metastatic deposits, with a 58% completion rate (seven patients) [13]. Two patients reported that the metastatic deposit was uncomfortable “quite a lot”, whilst one stated “not very much” and four “not at all”. The rate of symptomatic metastases in these trials was low (range 25–32%) [13,14], suggesting that a significant number of patients may not require palliation during their disease course. The third trial recorded VAS pain scores at the time of development of chest wall metastases [15]. The evaluable patients reported a median score increase of 0, and a mean increase of 13.3 compared to baseline. This is suggestive of a right skewed distribution, with a significant proportion of patients having little to no increase in pain. There was no comparison of pain scores between those who received prophylactic procedure tract radiation therapy, and those who did not, which is a...
Table 2
Assessment of risk of bias.

Study	Sequence generation	Allocation concealment	Blinding of patients & staff	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other risks of bias
Boulin et al. (1995)	Not described. Unclear risk	Not concealed. High risk	Not blinded. High risk	Not described. High risk	Not described. Unclear risk	Adverse events not fully described. Unclear risk	–
Bydder et al. 2004	Not described. Unclear risk	Not concealed. High risk	Not blinded. High risk	Not described. High risk	Not described. Unclear risk	Adverse events not fully described. Unclear risk	Intention to treat analysis used. Low risk
O’Rourke et al. (2007)	Centralized computer sequence generation. Low risk	Not concealed. High risk	Not blinded. High risk	Not described. High risk	Not described. Unclear risk	Adverse events partially described. Low risk	Intention to treat analysis used. Low risk
Clive et al. (2016)	Centralized computer sequence generation. Low risk	Not concealed. High risk	Not blinded. High risk	Not described. High risk	Not described. Unclear risk	Adverse events described. Low risk	Intention to treat analysis used. Low risk
Bayman et al. (2017)	Centralized computer sequence generation. Low risk	Not concealed. High risk	Not blinded. High risk	Not described. Unclear risk	Adverse events described. Low risk	Intention to treat analysis used. Low risk	–

Fig. 2. Risk of procedure site recurrence with prophylactic radiation therapy versus no prophylactic radiotherapy.

clinically relevant question. This may become available with the full publication of the Prophylactic Irradiation of Tracts (PIT) data. Two trials reported health-related quality of life [13,14]. One found no significant differences between the treatment groups in the 12 month follow-up period [14]. Conversely, the other identified significantly worse anxiety levels in the prophylactic radiation therapy group suggesting a synergistic contribution of chemotherapy at the site of chest wall intervention.

None of the included trials were sufficiently powered to determine whether certain subgroups would benefit from prophylactic procedure tract radiation therapy, however there were trends within the SMART trial that may warrant further investigation [14]. Those with epithelioid-only histology appeared to derive more benefit from prophylactic radiation therapy than other histologic subtypes. Epithelioid histology is associated with improved survival for all stages of malignant mesothelioma, and it is postulated that this subtype is more responsive to treatment. The patients who did receive chemotherapy also had a reduced incidence of procedure tract metastases in the prophylactic radiation therapy group suggesting a synergistic contribution of chemotherapy at the site of chest wall intervention.

One trial reported the health economics of prophylactic radiation therapy [14]. No significant differences were seen in mean total cost or mean QALYs of radiation therapy in the prophylactic setting versus deferred radiation therapy at the time of metastatic nodule development.

5. Conclusion

This systematic review has confirmed that there is no role for prophylactic procedure tract radiation therapy in MPM. Although patient selection and treatment technical factors remain confounding variables in several of the trials examined, prophylactic radiotherapy does not appear to reduce the rate of procedure tract metastases. Furthermore, there do not appear to be symptom or quality of life benefits, which are of particular importance in this aggressive disease. There is still some uncertainty regarding whether certain subgroups derive a greater benefit from prophylactic procedure tract radiotherapy. The final publication of the PIT study data may clarify this matter. Procedure tract metastases however remain a potential morbidity for MPM patients. In the absence of effective prophylactic interventions, patients need to be monitored closely, and managed promptly with the development of symptoms.

Conflicts of interest

None.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ctro.2018.09.004.

References

[1] Australian Institute of Health and Welfare 2017. Cancer in Australia 2017. Cancer series no. 101. Cat. No. CAN 100. Canberra: AIHW.
[2] Robinson BM. Malignant pleural mesothelioma: an epidemiological perspective. Ann Cardiothorac Surg 2012;1(4):491–6.
[3] Ung YC, Yu E, Falckson C, et al. The role of radiation therapy in malignant pleural mesothelioma: a systematic review. Radiother Oncol 2006;80:13–8.
[4] van Thiel E, Gaafar R, van Meerbeeck J. European guidelines for the management of malignant pleural mesothelioma. J Adv Res 2012;1(4):281–8.
[5] Carmichael J, DeRaffel WG, Gamson J, et al. Radiation sensitivity of human lung cancer cell lines. Eur J Cancer Clin Oncol 1989;25:527–34.
[6] Mohler D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
[7] Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomized trials. BMJ 2011;343:d5928.
[8] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(3):177–88.
[9] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557–60.
Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315(7109):629–34.

Boutin C, Rey F, Viallat JR. Prevention of malignant seeding after invasive diagnostic procedures in patients with pleural mesothelioma. A randomized trial of local radiotherapy. Chest 1995;108(3):754–8.

Bydder S, Phillips M, Joseph DJ, et al. A randomized trial of single-dose radiotherapy to prevent procedure tract metastasis by malignant mesothelioma. Br J Cancer 2004;91(1):9–10.

O'Rourke N, Garcia JC, Lawless C, et al. A randomized trial of intervention site radiotherapy in malignant pleural mesothelioma. Radiother Oncol 2007;84(1):18–22.

Clive AO, Taylor H, Dobson L, et al. Prophylactic radiotherapy for the prevention of procedure-tract metastases after surgical and large-bore pleural procedures in malignant pleural mesothelioma (SMART): a multicenter, open-label, phase 3, randomized controlled trial. Lancet Oncol 2016;17(8):1094–104.

Bayman N, Appel W, Ashcroft L, et al. Prophylactic Irradiation of Tracts (PIT) in Patients with Pleural Mesothelioma: results of a multicenter phase III trial. J Thorac Oncol 2017;12(11)(Suppl 2):S1747.

Arnold BT, Clive AO. Prophylactic radiotherapy for procedure tract metastases in mesothelioma: a review. Curr Opin Pulmonary Med 2017;23(4):357–64.

Di Salvo M, Gambaro G, Pagella S, et al. Prevention of malignant seeding at drain sites after invasive procedures (surgery and/or thoracoscopy) by hypofractionated radiotherapy in patients with pleural mesothelioma. Acta Oncol 2008;47:1094–8.

Janssen S, Schonhofer B, Rades D. Prophylactic radiotherapy to intervention sites in malignant pleural mesothelioma—single-institution experience and literature review. Anticancer Res 2015;35:4151–4.

Agarwal PP, Seely JM, Matzinger FR, MacRae RM, Peterson RA, Maziak DE, et al. Pleural mesothelioma: sensitivity and incidence of needle track seeding after image-guided biopsy versus surgical biopsy. Radiology 2006;241(2):589–94.