MicroRNAs as the critical regulators of cell migration and invasion in thyroid cancer

Amir Abbas Hamidi1, Negin Taghechian2, Zahra Basirat3, Amir Sadra Zangouei1 and Meysam Moghbeli2,3*

Abstract
Thyroid cancer (TC) is one of the most frequent endocrine malignancies that is more common among females. Tumor recurrence is one of the most important clinical manifestations in differentiated TC which is associated with different factors including age, tumor size, and histological features. Various molecular processes such as genetic or epigenetic modifications and non-coding RNAs are also involved in TC progression and metastasis. The epithelial-to-mesenchymal transition (EMT) is an important biological process during tumor invasion and migration that affects the initiation and transformation of early-stage tumors into invasive malignancies. A combination of transcription factors, growth factors, signaling pathways, and epigenetic regulations affect the thyroid cell migration and EMT process. MicroRNAs (miRNAs) are important molecular factors involved in tumor metastasis by regulation of EMT-activating signaling pathways. Various miRNAs are involved in the signaling pathways associated with TC metastasis which can be used as diagnostic and therapeutic biomarkers. Since, the miRNAs are sensitive, specific, and non-invasive, they can be suggested as efficient and optimal biomarkers of tumor invasion and metastasis. In the present review, we have summarized all of the miRNAs which have been significantly involved in thyroid tumor cells migration and invasion. We also categorized all of the reported miRNAs based on their cellular processes to clarify the molecular role of miRNAs during thyroid tumor cell migration and invasion. This review paves the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in aggressive and metastatic TC patients.

Keywords: Thyroid cancer, miRNA, Invasion, Metastasis, Migration, Panel marker
factors including age, tumor size, histological features, and metastasis influence the recurrence of differentiated TC [5–7].

Environmental factors, lifestyles, or a combination of these factors are supposed to be possible causes for the raising trend of TC incidence [8]. Gender, weight, diabetes mellitus, ionizing radiation, pregnancy, genetic factors, thyroid disorders, hormones, and dietary pattern are among the risk factors of TC [9–11]. Various molecular processes such as genetic or epigenetic modifications and non-coding RNAs are involved in TC progression and metastasis [3]. The epithelial-to-mesenchymal transition (EMT) is an important biological process during tumor invasion and migration in which the epithelial cells can lose their cell-cell adhesion and turn into mesenchymal phenotype. It affects the initiation and transformation of early-stage tumors into invasive malignancies [12]. EMT is triggered by the down regulation of epithelial markers like CDH1 and up regulation of mesenchymal markers like vimentin and CDH2 [13]. EMT can be the basic cause of tumor invasion and migration [14]. A combination of transcription factors, growth factors, signaling cascades, epigenetic regulations and tumor environment affect the thyroid cell migration and EMT process [14]. There is a correlation between TC poor prognosis and genetic alterations in EMT-related genes and transcription factors. EMT-related factors suppress the expression of E-cadherin (E-CAD) and are related to tumor progression, local invasion, and metastasis [15, 16]. Molecular mechanisms of EMT and cell migration are regulated by WNT, TGFβ, MAPK, and phosphatidylinositol-3-kinase (PI3K) pathways [14, 17]. Some of the essential transcription factors such as Twist, Snail1-2, and ZEB1-2 are the main triggers of the EMT process [18–21]. WNT, NOTCH, and TGF-β are also the major signaling pathways to activate the EMT-promoting transcription factors [22, 23]. Snail-2 is positively regulated by NOTCH signaling that results in EMT induction following the CDH1 inhibition [24].

MicroRNAs (miRNAs) are important molecular factors involved in tumor metastasis by regulation of EMT-activating signaling pathways [25]. Specific patterns of miRNA expression have been identified in thyroid carcinomas [26–28]. MiRNA profiling is widely being introduced as biomarkers in a variety of diseases which can be used as prognostic and predictive factors in the clinical research [29]. Various studies have demonstrated that miRNAs deregulation plays a pivotal role in tumor cell invasion and migration [30, 31]. Different miRNAs have been participated in the signaling pathways of thyroid tumor metastasis and migration which could be applied as novel biomarkers for treatment and early stage diagnosis [32]. Since, the miRNAs are sensitive, specific, and non-invasive; they can be suggested as efficient and optimal biomarkers of tumor invasion and metastasis. The miRNAs expression can be recognized in body fluids and tissues which are associated with developmental stages, tissues, and external stimulation. Circulating miRNAs in body fluids are frequently used as non-invasive tumor biomarkers [33, 34]. There are different miRNA quantification methods including sequencing, hybridization, and amplification based methods. NGS, microarray, and real-time PCR have been widely employed to discover circulating miRNAs [35]. Bead-based flowcytometry assays were also developed to solve the cross-hybridization challenge of miRNAs in the microarray procedures [33, 36]. Some other amplification methods such as rolling circle amplification (RCA), strand displacement amplification (SDA), and loop-mediated isothermal amplification (LAMP) have been also employed to assess the miRNAs functions [37]. Liquid biopsy has minimal invasion for the assessment of tumor profile in comparison with tumor biopsy. However, this method has some limitations including short half-life of circulating miRNAs, low concentration, and contamination with normal cells [38–40]. In present review, we have summarized all of the miRNAs that have been involved in thyroid tumor cells migration and invasion to pave the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in TC. We have categorized all of the reported miRNAs based on their cellular processes to clarify the molecular role of miRNAs during thyroid tumor cell migration and invasion (Table 2).

Table 1 Histopathological classification of thyroid cancer

Thyroid cancer	metastatic cancer
➢ Follicular origin	➢ Hurthle cell cancer
• Undifferentiated	▪ Poorly differentiated
+ Anaplastic thyroid cancer	+ Medullary thyroid cancer
▫ Differentiated	
• Well differentiated	
+ Papillary thyroid cancer	
+ Follicular thyroid cancer	
+ Hurthle cell cancer	
+ Poorly differentiated	
➢ Para follicular origin	

MiRNAs involved in regulation of PI3K/AKT signaling

Cell migration is a critical process in normal and tumor cells. The PI3K kinases regulate cell migration through directly or through activation of other signaling pathways [124]. MiRNAs have critical roles in regulation of thyroid tumor cell migration through PI3K/AKT signaling.
microRNA	Target	Results	Clinical Application	Samples	Country	Year	Study
PI3K/AKT Signaling	miR-497	MiR-497 inhibited PTC cells migration and invasion through AKT3 suppression.	Diagnosis	43 patients	China	2017	Zhuang [41]
	miR-145	MiR-145 targeted the AKT3, N-cadherin, and HIF1a during TC progression.	Diagnosis and prognosis (liquid biopsy)	3 cell lines	USA	2014	Boufraqech [42]
	miR-217	The miR-217 down regulation was also associated with clinical stage and lymphatic metastasis.	Diagnosis and prognosis	58 patients	China	2017	Lin [43]
	miR-203	MiR-203 up regulation and AKT3 down regulation reduced tumor cell migration.	Diagnosis	105 patients	China	2020	You [44]
	miR-338-3p	MiR-338-3p significantly suppressed the cell migration of TC cells by targeting AKT3.	Diagnosis and prognosis	48 patients	China	2017	Sui [45]
	miR-29a	MiR-29a suppressed PTC cell migration and invasion by targeting AKT3.	Diagnosis and prognosis	30 patients	China	2016	Li [46]
	Let-7a	Let-7a significantly inhibited the PTC migration and invasion by targeting AKT2.	Diagnosis	47 patients	China	2017	Zhou [47]
	miR-718	MiR-718 suppressed PTC cell migration through PDPK1 targeting.	Diagnosis	15 patients	China	2018	Wang [48]
	miR-125b	MiR-125b targets PIK3CD and inhibits the ATC cell migration.	Diagnosis	30 patients	China	2017	Bu [49]
	miR-363-3p	MiR-363-3p repressed migratory and invasive behaviors of PTC cells via PIK3CA targeting.	Diagnosis and prognosis	30 patients	China	2017	Liu [50]
	miR-135a-5p	LINC01087 induced TC cell migration via miR-135a-5p/PPM1E axis.	Diagnosis	30 patients	China	2022	Yin [51]
	miR-646	CircTAM1 induced PTC cell migration through the miR-646/HNRNPA1 axis	Diagnosis	60 patients	China	2022	Zhang [52]
	MiR-30b-5p	MiR-30b-5p inhibited PTC cell proliferation and migration by GALNT7 targeting	Diagnosis and prognosis	60 patients	China	2021	Wang [53]
	miR-141	MiR-141 inhibited cell migration and invasive capability of thyroid tumor cells by IRS2 targeting.	Diagnosis and prognosis	30 patients	China	2016	Dong [54]
	miR-766	MiR-766 inhibited the malignant activity of PTC cells through IRS2 suppression.	Diagnosis and prognosis	47 patients	China	2019	Zhao [55]
microRNA	Target	Results	Clinical Application	Samples	Country	Year	Study
------------	----------	---	---------------------------------------	------------------	---------	------	----------------
miR-215	ARFGEF1	Mir-215 suppressed PTC metastasis by regulating the AKT/GSK-3β/Snail cascade and ARFGEF1 targeting.	Diagnosis and prognosis	48 patients 4 cell lines	China	2019	Han [56]
miR-451a	MIF	Mir-451a down regulation in PTC samples was significantly correlated with the aggressive PTC and advanced TNM stage.	Diagnosis and prognosis	19 patients 5 cell lines	Italy	2016	Minna [57]
miR-146b	PTEN	Mir-146b is involved in regulation of PTEN/PI3K/AKT pathway during thyroid tumor aggressiveness.	Diagnosis	2 cell lines	Spain	2018	Ramírez-Moya [58]
miR-671-5p	TRIM14	Mir-671-5p inhibited the PTC cell migration by TRIM14 targeting.	Diagnosis	2 cell lines	China	2021	Wang [59]
miR-215-5p	TRIM44	CircWDR27 increased PTC cell migration by regulation of the miR-215-5p/TRIM44 axis.	Diagnosis	42 patients 2 cell lines	China	2021	Wang [60]
miR-627	TRIM44	LINC00958 increased PTC cell migration by miR-627 sponging and TRIM44 up regulation.	Diagnosis	10 patients 3 cell lines	China	2022	Li [61]
WNT and Hippo Signaling							
miR-3619-3p	b-catenin	Mir-3619-3p promoted the migratory and invasive capability of PTC cells through increased b-catenin mRNA stability.	Diagnosis and prognosis	36 patients 4 cell lines	China	2019	Yu [62]
miR-126	LRP6	Mir-126 up regulation suppressed PTC cells migration and in vivo tumor growth through LRP6 suppression.	Diagnosis and prognosis	30 patients 2 cell lines	China	2015	Wen [63]
miR-381-3p	LRP6	Mir-381-3p was associated with PTC metastasis through LRP6 down regulation.	Diagnosis and prognosis	8 patients 4 cell lines	China	2018	Kong [64]
miR-26a-5p	WNT5a	Mir-26a-5p inhibited the PTC cell growth, invasion, and metastasis via WNT5a suppression.	Diagnosis	58 patients 3 cell lines	China	2019	Shi [65]
miR-329	WNT1	Mir-329 inhibited the cell migration, invasion, and in vivo tumor growth via WNT1 suppression.	Diagnosis	20 patients 3 cell lines	China	2018	Wu [66]
miR-574-5p	FOXN3	Mir-574-5p mediated TC cell proliferation and migration through the Wnt/β-catenin pathway by targeting FOXN3.	Diagnosis	2 cell lines	China	2020	Zhang [67]
miR-1270	SCAI	Mir-1270 was involved in PTC progression through SCAI targeting.	Diagnosis	16 patients 5 cell lines	China	2019	Yi [68]
microRNA	Target	Results	Clinical Application	Samples	Country	Year	Study
-----------	---------------	---	----------------------	------------------	---------	------	-------------
miR-625-3p	AEG1	MiR-625-3p enhanced TC cell migration and invasion by AEG-1 up regulation and triggering WNT pathway.	Diagnosis	20 patients 2 cell lines	China	2018	Fang [69]
miR-564	AEG1	Negative role of miR-564 on PTC migration and invasion via AEG1 inhibition.	Diagnosis and prognosis	47 patients 4 cell lines	China	2019	Song [70]
miR-205	YAP1	MiR-205 inhibited the Hippo signaling by targeting YAP1 and prevented TC cell migration and invasion.	Diagnosis	132 patients 4 cell lines	China	2018	Li [71]
miR34c5p	CRABP2	LINCO1816 increased TC cell migration and EMT process via miR34c5p/CRABP2 axis.	Diagnosis	10 patients 5 cell lines	China	2021	Zhao [72]

TGFβ Signaling

miR-663	TGFβ	MiR-663 reduced PTC cell invasion, migration, and EMT via TGFβ inhibition.	Diagnosis and prognosis	91 patients 2 cell lines	China	2016	Wang [73]
miR-146b-5p	SMAD4	MiR-146b-5p was involved in PTC cell migration through SMAD4 targeting.	Diagnosis	2 cell lines	Brazil	2016	Lima [74]
miR-483	PARD3	MiR-483 up regulated the Tiam1-Rac1 signals through PARD3 down regulation.	Diagnosis	80 patients 4 cell lines	China	2019	Zhang [75]

Cytokines

miR-155	SOCS1	MiR-155 enhanced tumor progression by SOCS1 suppression.	Diagnosis and prognosis	31 patients 2 cell lines	China	2019	Zhang [76]
miR-25	SOCS4	MiR-25 enhanced the TC migration via targeting SOCS4.	Diagnosis	35 patients 2 cell lines	China	2015	Mei [77]
miR-126	CXCR4	MiR-126 reduced tumor cell migration and invasion via CXCR4 targeting.	Diagnosis	20 patients 2 cell lines	China	2016	Qian [78]
miR-223-3p	CXCR4	DUXAP8 induced PTC cell migration and proliferation through the regulation of miR-223-3p/CXCR4 axis.	Diagnosis	4 cell lines	China	2021	Liu [79]
miR-137	CXCL12	MiR-137 inhibited PTC cell proliferation, migration, and invasion by targeting CXCL12.	Diagnosis and prognosis	30 patients 1 cell line	China	2016	Dong [80]
MiR-455-5p	CXCL12	MiR-455-5p suppressed EMT and invasion in MTC cells by CXCL12 targeting.	Diagnosis and prognosis	28 patients 2 cell lines	China	2021	Zheng [81]
miR-1	CXCR4 and SDF-1	MiR-1 regulated the TC cell migration through CXCR4 and SDF-1 suppression.	Diagnosis	6 cell lines	Italy	2011	Leone [82]
miR-873-5p	CXCL16	MiR-873-5p inhibited PTC cells migration and invasion by targeting CXCL16.	Diagnosis	30 patients 6 cell lines	China	2020	Wang [83]

Kinases
Table 2 (continued)

microRNA	Target	Results	Clinical Application	Samples	Country	Year	Study
miR-497	BDNF	MiR-497 suppressed cells migration through BDNF targeting.	Diagnosis and prognosis	48 patients 1 cell line	China	2017	Wang [84]
miR-26b-5p	MET	Circ-0079558 promoted the PTC cell proliferation and migration, while reduced apoptosis via miR-26b-5p/MET/AKT axis.	Diagnosis	30 patients 2 cell lines	China	2021	Zheng [85]
miR-375	ERBB2	MiR-375 reduced PTC cell migration and invasion through ERBB2 suppression.	Diagnosis	60 patients 3 cell lines	China	2016	Wang [86]
miR-195	VEGFA	CircPVT1 promoted the PTC cell migration by miR-195 sponging and subsequent VEGFA up regulation.	Diagnosis	50 patients 4 cell lines	China	2021	Zeng [87]
miR-520a-3p	JAK1	MiR-520a-3p inhibited the JAK-STAT signaling by JAK1 suppression which inhibited EMT and migration of PTC cells.	Diagnosis	137 patients 6 cell lines	China	2019	Bi [88]
miR-361-5p	ROCK1	MiR-361-5p inhibited PTC cells migration by ROCK1 targeting.	Diagnosis and prognosis	48 patients 4 cell lines	China	2018	Li [89]
miR-150-5p	ROCK1	MiR-150-5p inhibited PTC cell migration through ROCK1 targeting.	Diagnosis and prognosis	45 patients 5 cell lines	China	2017	Cheng [90]
miR-128	SPHK1	MiR-128 reduced TC cell migration and invasion via targeting SPHK1.	Diagnosis	30 patients 8 cell lines	China	2019	Cao [91]
miR-577	SPHK2	MiR-577 inhibited PTC cells migration and invasion through SPHK2 suppression.	Diagnosis	35 patients 4 cell lines	China	2017	Xue [92]
miR-613	SPHK2	MiR-613 inhibited the PTC cell migration, invasion, and in vivo growth by targeting SPHK2.	Diagnosis	20 patients 4 cell lines	China	2016	Qu [93]
miR-539	CARMA1	MiR-539 is a modulator of TC cell migration and invasion by targeting CARMA1.	Diagnosis	31 patients 1 cell line	China	2015	Gu [94]
miR-675	MAPK1	MiR-675 inhibited PTC cell migration and in vivo growth through MAPK1 regulation.	Diagnosis and prognosis	57 patients 4 cell lines	China	2019	Wang [95]
miR-7	PAK1	MiR-7 inhibited TC cells migration and invasion through targeting PAK1.	Diagnosis and prognosis	32 patients 2 cell lines	China	2016	Yue [96]
miR-101	RAC1	MiR-101 repressed PTC cell invasion and migration through RAC1 targeting.	Diagnosis	16 patients 3 cell lines	China	2014	Wang [97]

Transcriptional Regulation And Transcription Factors

| let-7b | HMGA2 | Let-7b inhibited PTC cell migration and invasion through HMGA2 targeting. | Diagnosis | 20 patients 5 cell lines | China | 2017 | Li [98] |
microRNA	Target	Results	Clinical Application	Samples	Country	Year	Study
let-7e	HMGB1	Let-7e suppressed PTC migration through HMGB1 targeting.	Diagnosis	2 cell lines	China	2019	Ding [99]
miR-212	SIRT1	MiR-212 inhibited cell proliferation, migration, and in vivo growth through SIRT1 targeting.	Diagnosis and prognosis	42 patients 4 cell lines	China	2018	Li [100]
miR-144	ZEB1 and ZEB2	MiR-144 suppressed migration of thyroid tumor cells through targeting ZEB1 and ZEB2.	Diagnosis	42 patients 2 cell lines	China	2015	Guan [101]
miR-429	ZEB1	MiR-429 suppressed TC cell migration through ZEB1 targeting.	Diagnosis	59 patients 3 cell lines	China	2019	Wu [102]
miR-335	ZEB2	MiR-335 suppressed TC cell migration through ZEB2 targeting.	Diagnosis	59 patients 5 cell lines	China	2017	Kan [103]
miR-194	ZEB1	CircVANGL1 promoted PTC cell migration and EMT process miR-194 sponging and ZEB1 up regulation.	Diagnosis and prognosis	77 patients 3 cell lines	China	2022	Xiang [104]
miR-30a	E2F7	MiR-30a inhibited the PTC cell migration by targeting E2F7.	Diagnosis	15 patients 2 cell lines	China	2019	Guo [105]
miR-544	YY1	MiR-544 suppressed tumor metastasis by targeting YY1.	Diagnosis	40 patients 4 cell lines	China	2019	Wang [106]
miR-211-5p	SOX11	MiR-211-5p suppressed TC cells migration and invasion by SOX11 targeting.	Diagnosis	40 patients 4 cell lines	China	2018	Wang [107]
miR-423-5p	SOX4	Circ_0039411 increased PTC cell migration through the regulation of miR-423-5p/SOX4 axis.	Diagnosis	51 patients 2 cell lines	China	2021	Wen [108]
miR-25 and miR-30d	EZH2	MiR-25 and miR-30d had a crucial role in ATC progression through EZH2 targeting.	Diagnosis	11 patients 3 cell lines	France	2012	Esposito [109]
miR-524-5p	FOXE1	MiR-524-5p modulated the PTC cell invasion, migration, and proliferation through FOXE1 suppression.	Diagnosis	57 patients 3 cell lines	China	2019	Liu [110]
miR-206	MRTFA	MiR-206 suppressed ATC cells migration through MRTFA targeting.	Diagnosis	19 patients 2 cell lines	China	2015	Zhang [111]
miR-637	LMO4	Knockdown of circLDLR reduced PTC cell migration, while promoted apoptosis by miR-637/LMO4 axis.	Diagnosis	45 patients 2 cell lines	China	2021	Jiang [112]

Membrane Associated And Extra Cellular Factors

| miR-206 | RAP1B | MiR-206 significantly decreased TPC-1 migration through RAP1B targeting. | Diagnosis | 60 patients 5 cell lines | China | 2019 | Wang [113] |
AKT is a component of the PI3K/AKT pathway involved in cell proliferation, programmed death, migration, invasion, and metabolism [125–128]. A significant inverse correlation has been reported between miR-497 and AKT3 in PTC. MiR-497 also inhibited PTC cells migration and invasion through AKT3 suppression [41]. The tumor-suppressive role of miR-145 has been suggested in various cancers. Moreover, miR-145 has been revealed to participate in cell differentiation and proliferation [129, 130]. It has been reported that there were significant reduced levels of miR-145 expressions in PTC, PDTC, and ATC compared with normal thyroid tissue. MiR-145 targeted the AKT3, N-cadherin, and HIF1α during thyroid cancer progression. Although, there were increased serum levels of miR-145, it was under expressed in tissue samples [42]. MiR-217 expression has been also revealed to be significantly reduced compared with normal tissues in TC patients. The miR-217 down regulation was also associated with clinical stage and lymphatic metastasis. MiR-217 also suppressed the growth of the tumors in vitro and in vivo through the AKT3 targeting in TC [43]. MiR-203 has a cardioprotective role through inhibiting the PI3K/AKT in diabetic cardiomyopathy [131]. It has been reported that the miR-203 up regulation and AKT3 down regulation reduced tumor cell migration, increase E-cadherin, and reduce vimentin expression levels in PTC cells [44]. A significant miR-338-3p up regulation in TC tissues in comparison
with normal margins was inversely correlated with the clinical stage and lymphatic metastasis. The miR-338-3p also significantly suppressed the cell migration of TC cells and repressed tumor development in vivo by targeting AKT3 [45]. Another study has been observed that there was miR-29a down regulation in PTC tissues which was inversely correlated with TNM stage, tumor size, and lymphatic metastasis. It also suppressed PTC cell migration and invasion by targeting AKT3 [46]. AKT2 is an oncogenic serine/threonine kinase with SH2 domains capable of phosphorylating downstream targets. The upregulation of Let-7a expression has been revealed to significantly inhibit the PTC migration and invasion by targeting AKT2. There was also Let-7a down regulation in PTC compared with healthy tissues [47]. AKT is a member of AGC family regulated by PDPK1 that is involved in insulin and growth factors signaling [132]. PDPK1 has a significant role in regulation of AGC protein kinases family, which controls cell proliferation, growth, and metabolism [133]. MiR-718 is a critical negative regulator for the PTC cell proliferation and migration through PDPK1 targeting [48].

PI3K family is involved in regulation of cellular growth, proliferation, and glucose homeostasis. MiR-125b has been reported to be significantly down regulated in the ATC tissues and cell lines. It directly targets PIK3CD and inhibits the migratory and invasive capacity of tumor cells via PI3K-Akt-mTOR cascade. While up regulated
miR-125b significantly inhibited the invasive and migratory behavior of cells, its knockdown promoted the invasion and migration of ATC cells [49]. Another group has been shown that there was miR-363-3p under expression in TC tissues and cell lines which was inversely associated with clinical stage and lymph node metastases. It significantly repressed migratory and invasive behaviors of PTC cells and prevented in vivo tumorigenesis. There was a significant negative relationship between PIK3CA and miR-363-3p expression, indicating PIK3CA as a target of miR-363-3p in PTC [50]. PPM1E is a serine/threonine-protein phosphatase that has important role in cell proliferation by regulation of AMPK-mTOR signaling [134]. There was LINC01087 up regulation and miR-135a-5p down regulation in TC tissues and cell lines compared with normal margins and cells. LINC01087 induced TC cell migration via miR-135a-5p/PPM1E axis [51]. HnRNP A1 as a substrate for S6K2 in AKT/mTOR signaling has a pivotal anti-apoptotic function [135]. CircTIAM1 induced PTC cell migration through the miR-646/HNRNA1 axis [52]. GALNT7 induces cell proliferation and migration via the activation of EGFR/Pi3K/AKT pathway. MiR-30b-5p down regulation was correlated with poor clinicopathological features in PTC. MiR-30b-5p inhibited PTC cell proliferation and migration by GALNT7 targeting [53].

MiR-141 acts as an anti-oncogene by targeting EphA2, E2F3, ZEB2, Tiam1, KEAP1, and SOX17 [136–141]. IRS2 belongs to the IRS protein family that interacts with the SH2-domain-containing proteins, primarily PI3K during insulin signal transduction [142, 143]. It is a multifunctional oncogene that regulates cell proliferation, invasion, and EMT [144–146]. It has been shown that miR-141 inhibited cell migration and invasive capability of thyroid tumor cells. It also triggered cell death, and repressed tumor growth by IRS2 targeting. Moreover, miR-141 down regulation was significantly correlated with TNM stage and lymph node involvement [54]. Another study also showed that the miR-766 inhibited the malignant activity of PTC cells through IRS2 suppression. There was a significant miR-766 down regulation in PTC tissues and cell lines which was correlated with TNM staging and lymph node involvement [55].

Succinate dehydrogenase (SDH) is a crucial enzyme in the mitochondrial citric acid cycle [147–149]. This enzyme is involved in succinate to fumarate oxidation and electron transport [150, 151]. SDHB deregulation is involved in oxidative phosphorylation in several cancers [147, 152, 153]. The SDHB dysfunction elevates TGFβ-mediated colorectal cancer invasion and metastasis via the SNAIL1-SMAD3/4 transcriptional repressor complex [154]. It has been reported that there was increased levels of miR-96-3p expressions in PTC tissues in comparison with normal margins which was associated with advanced tumor stage. The miR-96-3p up regulation increased tumor cell invasion and TC metastasis by regulating SDHB/AKT/mTOR pathway [155]. It has been observed that there were decreased levels of miR-215 expressions in PTC tissues that were correlated with tumor size and invasion. In vivo and in vitro studies have also shown that the miR-215 up regulation significantly repressed the proliferation and metastasis of PTC cells through targeting ARFGEF1. MiR-215 suppressed PTC metastasis by regulating the AKT/GSK-3β/Snail cascade and ARFGEF1 targeting [56].

MiF is a pivotal pro-inflammatory cytokine during tumor progression and growth by AKT activation [156]. It has been shown that there was miR-451a down regulation in PTC samples which was significantly correlated with the aggressive PTC and advanced TNM stage. There was also an inverse association between the levels of MiF and miR-451a expressions that suggested the MiF as the target of miR-451a [57]. The miR-146b is correlated with tumor aggressiveness and poor prognosis of PTC [157]. MiR-146b up regulation enhances cell migration, EMT, and metastasis [158]. It is involved in regulation of PTEN/Pi3K/AKT pathway during thyroid tumor aggressiveness. PTEN suppression by miR-146b revealed some information about the processes and positive feedback loops mediating the PI3K pathway activation in thyroid tumorigenesis. MiR-146b also reduced pSTAT3 and E-cadherin levels. TWIST as an important EMT factor, may mediate the effect of miR-146b on invasion and migration since its expression level is up regulated in cells with miR-146b up regulation. In contrast, E-cadherin is down regulated in cells with miR-146b overexpression [58]. TRIM14 is involved in regulation of Pi3K/AKT pathway by the PTEN inhibition [159]. MiR-671-5p inhibited the PTC cell migration by TRIM14 targeting [59]. CircWDR27 increased PTC cell migration by regulation of the miR-215-5p/TRIM44 axis [60]. There was an inverse association between the levels of LINC00958 and miR-627 expressions in PTC samples. LINC00958 increased PTC cell migration by miR-627 sponging and TRIM44 up regulation [61].

MiRNAs involved in regulation of WNT and Hippo signaling pathways

WNT/b-catenin is a pivotal signaling pathway involved in cell proliferation, polarity, embryogenesis, and tumor progression [160–162]. It participates in the neoplastic transformation from low grade to high-grade or ATC with poor prognosis [163]. MicroRNAs are critical factors in thyroid tumor cell migration by regulation of WNT signaling pathway (Fig. 2). It has been revealed that there were correlations between miR-3619-3p up
regulation, extra thyroidal extension, and lymphatic metastases in PTC tissues. The miR-3619-3p also promoted the migratory and invasive capability of PTC cells through increased b-catenin mRNA stability [62]. LRP6 is a co-receptor of the WNT signaling, which induces the WNT target genes by increased rate of b-catenin nuclear transport [164, 165]. It has been shown that the miR-126 up regulation suppressed PTC cells migration and in vivo tumor growth through LRP6 suppression. There was also a significant miR-126 down regulation in PTC tissues and cell lines which was significantly associated with lymph node involvement, tumor size, and TNM stage. Moreover, suppression of LRP6 by miR-126 resulted in downregulation of CCND1, MMP7, and C-myc [63]. Another group observed that the miR-381-3p was associated with PTC metastasis through LRP6 down regulation. There were also significant decreased miR-381-3p expression in PTC tissues and cell lines [64]. WNTs are secretory glycoproteins with pivotal roles during cell differentiation, proliferation, and migration [166]. WNT5A is a positive regulator of classical or non-classical WNT pathways. It has been reported that there was a miR-26a-5p down regulation in PTC cells and tissues compared with healthy thyroid cells and tissues. It also inhibited the PTC cell growth, invasion, and metastasis via WNT5a suppression [65]. MiR-329 is reported to be down regulated in PTC samples and cell lines compared with normal margins and healthy cell lines. It also inhibited the cell migration, invasion, and in vivo tumor growth via WNT1 suppression. Moreover, there was an inverse correlation between the levels of miR-329 and WNT1 mRNA expressions in PTC samples [66].

Forkhead Box N3 (FOXN3) has a crucial role as a transcriptional repressor in cell cycle regulation and carcinogenesis [167]. It has been reported that the miR-574-5p mediated TC cell proliferation and migration through the Wnt/β-catenin pathway by targeting FOXN3. MiR-574-5p silencing prevented the cell proliferation and migration, while enhanced apoptosis in TC [67]. SCAI is a tumor suppressor that inhibits cell migration through β1-integrin and WNT signaling suppression [168, 169]. Abnormal miR-1270 up regulation has been revealed in...
human PTC cell lines and tumors. Down regulation of miR-1270 suppressed the PTC tumor cells migration and in vivo transplantation. It has been shown that the miR-1270 was involved in PTC progression through SCAI targeting [68]. MiR-625-3p is an oncogene in various cancers that induce the tumor cell proliferation, migration, and drug tolerance [170, 171]. AEG-1 is correlated with PTC metastasis by up regulations of MMP2 and MMP9 [172]. It has been reported that there was miR-625-3p up regulation in PTC tissues compared with normal margins. MiR-625-3p up regulation enhanced the migratory and invasive capability of SW579 and TPC-1 cell lines. Besides, AEG-1 was up regulated by miR-625-3p in SW579 and TPC-1 cell lines. AEG-1 up regulation also enhanced cell migration, and activated the WNT and JNK signaling pathways. Moreover, there were significant up regulations of BAX, CASP3, and CASP9 following miR-625-3p suppression in SW579 and TPC-1 cells. Therefore, miR-625-3p enhanced TC cell migration and invasion by AEG-1 up regulation and triggering WNT and JNK pathways [69]. Another group showed the negative role of miR-564 on PTC migration and invasion via AEG1 inhibition. There was also miR-564 under expression in PTC tissues and cell lines which was significantly correlated with lymph node involvement and the TNM stage [70].

YAP1 (yes-associated protein 1) is one of the key effectors of Hippo signaling pathway which is involved in regulation of OCT4 and SOX2 to promote self-renewal capability [173]. It has been reported that there was miR-205 down regulation in PTC samples. It also inhibited the Hippo signaling cascade by targeting YAP1 and suppressed TC cell migration and invasion [71]. SNHG15 is a competitively endogenous RNA (ceRNA) that regulates the Hippo signaling pathway through miR-200a-3p sponging in PTC [174]. It has been shown that there was miR-510 up regulation in TC tissues and cell lines compared with the healthy thyroid tissues and cell lines. There was an inverse association between SNHG15 and miR-510-5p expression. The miR-510-5p also promoted the TC cell migration and invasion via SNHG15 targeting. Moreover, miR-510-5p up regulation has been reported in advanced stage tumors with lymphatic metastasis [15]. CRABP2 is a positive regulator of EMT by inhibition of Hippo pathway [175]. LINC01816 increased TC cell migration and EMT process via miR34c5p/CRABP2 axis [72].

MiRNAs involved in regulation of TGFβ signaling pathway

TGFβ1 is a cytokine that functions as a tumor suppressor in the early stages of tumor progression and as an oncogene during advanced stages of tumors [176, 177]. It regulates the tumor cell migration and invasion by Smad-dependent or Smad-independent signaling pathways [176, 178]. It has also a critical role in EMT, characterized by E-cadherin and vimentin down regulations and increased expressions of N-cadherin and vimentin [176, 179, 180]. MicroRNAs are involved in TC cell migration through the regulation of TGFβ signaling (Fig. 3). It has been reported that there was miR-663 down regulation in PTC cases which was correlated with extra thyroidal extension, age, tumor size, and poor prognosis. It also reduced PTC cell invasion, migration, and EMT via TGFβ inhibition. The overexpressed-miR-663 PTC cell lines had E-cadherin over expression, while N-cadherin, vimentin, MMP-2, and MMP-9 down-regulations [73]. MiR-146b-5p is involved in regulation of TGF-b signal transduction through suppressing SMAD4 in PTC [181] and enhancing tumor metastasis through ZNRF3 targeting [158]. It has been shown that there was miR-146b-3p up regulation in PTC samples. It also promoted cell migration and invasion via NF2 suppression [182]. Another study has been shown that miR-146b-5p was involved in tumor cell migration through SMAD4 targeting in PTC [74]. PARD protein family regulates the polarity, migration, and cell proliferation [183]. Cell polarity disruption in various cancers has been suggested to be influenced by PARD impairment. Interaction of PARD3 and TGF-β may alter the PARD complex, leading to a neoplastic transformation [184]. PARD3 prevented the actin polymerization triggered by Tiam1-Rac1 and thus stabilized cell-cell contacts and repressed the tumor cells migration. It has been reported that miR-483 up regulated the Tiam1-Rac1 signals through PARD3 down regulation. Although, PARD3 inhibited the TGFβ1-mediated EMT and invasion, it’s down regulation via miR-483 stimulated Tiam1-Rac1 and facilitated EMT and migration of TC cells. Moreover, MiR-483 and PARD3 have been reported to be up regulated and down regulated in thyroid tumor samples, respectively [75].

MiRNAs involved in regulation of cytokines

Cytokines have a pivotal role in TC cell migration and metastasis that can be regulated by the microRNAs (Fig. 3). IL-22 is a member of IL-10 family cytokines that is mainly produced by activated Th17 or Th22 cells [185–187]. It is involved in antimicrobial defense in the gastrointestinal tract, tissue regeneration, and injury protection [188–190]. It is correlated with tumor progression and metastasis in breast, lung, and gastric cancers [191–193]. SOX17 belongs to the SOX family of transcription factors and has a crucial role in human tumorigenesis [194]. It has been found that the IL-22 induced miR-595 expression which resulted in SOX17 down regulation and increased PTC cell migration [195]. The chemokine superfamily is small and structurally related...
proteins, capable of binding and interacting with G-protein coupled receptors, leading to cytoskeletal rearrangement and directional cell migration [196]. SOCS1 is a negative regulator of cytokine signal transduction [197]. The miR-155 up regulation was reported among ATC tissues. There were also correlations between miR-155 expression and extra thyroidal invasion. Moreover, Overexpression of miR-155 enhanced tumor progression by SOCS1 suppression [76]. IL-23 is a type 1 cytokine which is a member of the IL-6 superfamily [198]. It has been shown that IL-23 regulated the migratory and invasive behavior of TC cells through miR-25/SOCS4 signaling. MiR-25 enhanced the TC migration via targeting SOCS4. Moreover, it regulates the expression of IL-23-associated SOCS4 in TC cells [77].

Chemokines and their receptors have critical roles in tumor cell migration and metastasis [199]. MicroRNAs are involved in regulation of TC cell migration by chemokine targeting (Fig. 1). It has been reported that there was miR-126 down regulation in TC tissues and cell lines. It also reduced tumor cell migration and invasion via CXCR4 targeting [78]. DUXAP8 induced PTC cell migration and proliferation through the regulation of miR-223-3p/CXCR4 axis [79]. CXCL12 is a potent chemo attractant for hematopoietic cells and essential for the migration of tumor cells [200]. It binds with its CXCR4 receptor to activate the PI3K/AKT and ERK signaling pathways leading to cell migration [201]. A significant down regulation of miR-137 has been revealed in PTC tissues which were negatively associated with tumor TNM classification and lymph node metastasis. It also inhibited PTC cell migration by targeting CXCL12 [80]. There was an inverse association between the levels of miR-455-5p and circPVT1 that was correlated with MTC prognosis. MiR-455-5p suppressed EMT and invasion in MTC cells by CXCL12 targeting [81]. It has been observed that there were decreased levels of miR-1 expressions in benign and malignant thyroid neoplasms compared with healthy thyroid tissue. MiR-1 regulated the TC cell migration through CXCR4, SDF-1, and MET suppression [82]. CXCL16-CXCR6 interaction is crucial during tumor progression of the aggressive cancers [202]. It has been reported that there was miR-873-5p down regulation and CXCL16 up regulation in PTC samples that introduced CXCL16 as a target of miR-873-5p. MiR-873-5p also inhibited PTC cells migration by targeting CXCL16 [83].
MiRNAs involved in regulation of kinases

BDNF is a member of neurotrophin family of tyrosine kinase receptors which is involved in regulation of PI3K/AKT, RAS/ERK, PLC/PKC, and JAK/STAT signaling pathways during tumor progression [203]. It has been shown that there was miR-497 down regulation in TC samples compared with normal margins which was inversely associated with lymph node involvement and advanced clinical stage. It also suppressed cells colony-forming, migration, and invasion through BDNF targeting and PI3K-AKT inhibition [84]. MET belongs to the tyrosine kinase receptor protein family that regulates cell growth. It has been reported that there were circ-0079558 and MET up regulations in PTC tissues and cell lines. Circ-0079558 promoted the PTC cell proliferation and migration, while reduced apoptosis via miR-26b-5p/MET/AKT axis [85]. ERBB2 is a tyrosine kinase receptor associated with tumor progression [204]. It has been reported that the miR-375 was down regulated in PTC tissues and cell lines. It also suppressed the proliferative capability of PTC cell lines by apoptosis induction. Moreover, miR-375-mimic transfection significantly reduced PTC cell migration and invasion through ERBB2 suppression [86]. FGF2 is a ligand of FGFR that is associated with tumor cell migration and invasion [205]. It has been reported that there were significant miR-195 down regulation in PTC tissues and cell lines. It also suppressed PTC cell migration through CCND1 and FGF2 suppression. Moreover, miR-195 enhanced the phosphorylation of β-catenin which inhibited WNT signaling in PTC [206]. ATC is an aggressive, malignant neoplasm, distinguished by poor prognosis [207–209]. EGFR is a tyrosine kinase up regulated in the majority of ATC samples [210]. The EGFR is produced by the thyroid gland and promotes the migratory and invasive behaviors of thyroid cancer cells [209, 211–214]. It has been shown that the EGF/EGFR activation reduced E-cadherin and up regulated vimentin. EGFR pathogenesis modulated the aggressive behaviors of SW1736 cells by regulating miR-200 in which, EGFR reduced miR-200, increased Rho/Rock activity, and increased EMT in TC cells [215]. VEGFA is a tyrosine kinase receptor involved in angiogenesis. CircPVT1 promoted the PTC cell migration by miR-195 sponging and subsequent VEGFA up regulation [87].

CARMA1 is a serine/threonine kinase belonging to the Rho-associated kinase family (ROCK) that participates in various cellular processes such as mitochondrial fission, cell signaling, and cytoskeletal organization [216, 217]. It has been shown that there were significant correlations between miR-361-5p down regulation, lymphatic metastasis, and TNM stage in PTC cases. The miR-361-5p up regulation also inhibited the migration and invasion of PTC-1 cells. Besides, miR-361-5p diminished in vivo tumor development in PTC xenografts. Moreover, the miR-361-5p under expression was correlated with poor prognosis in PTC cases. There was an inverse correlation between the expression level of ROCK1 and miR-361-5p which showed miR-361-5p prevented PTC cells migration by ROCK1 targeting [89]. Another group also showed that the miR-150-5p inhibited PTC cell migration through ROCK1. There was a reduced levels of miR-150 expression in PTC tissues and cell lines compared with controls. The miR-150-5p down regulation was also correlated with TNM stages and lymph node metastasis [90].

Sphingolipids consist of a wide variety of hydrophobic molecules including Ceramide, Sphingoid, Ceramide Phosphates, and Sphingoid Base Phosphates [218]. The proliferative and invasive behavior are associated with dynamic equilibrium between ceramide phosphates and sphingoid phosphates [219]. Sphingosine kinases (SPHKs) involve two different variants, including SPHK1 and SPHK2 [220, 221]. SPHK1 catalyzes S1P (Sphingosine 1-phosphate) formation from pro-apoptotic sphingolipid [219]. It has been shown that there were decreased levels of miR-128 expressions in PTC, FTC, and TC cell lines. The miR-128 reduced TC cell migration and invasion via targeting SPHK1. Besides, the up regulation of miR-128 significantly induced cell death in TC cell lines through CASP-3 up regulation. MiR-128 up regulated and down regulated the E-cadherin and N-cadherin, respectively [91]. Another group showed that the miR-577 up regulation suppressed PTC cells migration and invasion through SPHK2 suppression. There were also significant miR-577 down regulations in PTC tissues and cell lines [92]. MiR-613 significantly inhibited the PTC cell migration, invasion, and in vivo growth by targeting SPHK2. Moreover, there was miR-613 down regulation in PTC cell lines and tissues [93].

CARMA1 is a member of membrane-associated guanylate kinase family that functions as membrane scaffolds. It has a vital function in NF-kB regulation which is induced by antigen-receptor in T and B lymphocytes [222, 223]. CARMA1 is phosphorylated by protein kinase C-theta (PKC-θ) following T cell receptor and CD28 binding, leading to the formation of an active complex that consists of CARMA1 as well as downstream
signaling scaffolding adaptor proteins, including BCL10 and MALT1 [224, 225]. Subsequently, these molecules are recruited into the lipid micro-domains at the immune synapse, which results in activating KK complex and NF-κB [226]. It has been reported that the CARMA1 was targeted and down regulated by miR-539, thereby inhibiting thyroid tumor cell metastasis. Therefore, miR-539 is a modulator of TC cell migration and invasion by targeting CARMA1 [94].

MAPK1 is a serine/threonine kinase involved in MAP/ERK signaling pathway. MiR-675 down regulation has been observed in PTC tissues and cell lines that were significantly associated with lymphatic metastases and the TNM stage. It also inhibited PTC cell migration and in vivo growth through MAPK1 regulation [95]. The p21-activated kinase (PAK1) is also a serine/threonine kinase that regulates cytoskeletal remodeling, directional motility, metastasis, and cell cycle progression. It has a pivotal role in interaction between Rho GTPases and cytoskeletal reorganization [227]. The miR-7 down regulation has been shown in TC tissues which were correlated with stage. It also inhibited TC cells migration and invasion through targeting PAK1 [96]. RAC1 as a Rho GTPase is involved in cell proliferation, adhesion, and migration [228, 229]. RAC1/PAK1 signaling is associated with high glucose-induced podocyte EMT through β-catenin and Snail induction [230]. It has been reported that there was miR-101 down regulation in PTC samples compared with normal margins. It also repressed PTC cell invasion and migration through RAC1 targeting [97].

miRNAs associated with transcriptional regulation and transcription factors

Signaling pathways mainly exert their role in regulation of tumor cell migration by specific transcription factors. It has been shown that the miRNAs have key roles in thyroid tumor cell migration and EMT by regulation of transcription factors (Fig. 4). High-mobility group-A2 gene (HMGA2) is a non-histone chromatin protein that regulates the chromatin remodeling to induce or suppress transcriptional enhancer activity through binding with AT-rich DNA sequences [231]. HMGA2 has a vital role in tumor growth through regulation of EMT and metastasis [232, 233]. It has been reported that there was significant decreased levels of let-7b in PTC cell lines and tissues. Let-7b inhibited PTC cell migration.

![Fig. 4](Role of miRNAs in thyroid tumor cell migration and EMT by regulation of transcription factors. (Created with BioRender.com))
and invasion through HMGA2 targeting [98]. HMGB1 is also an important chromatin binding protein that interacts with transcription factors and histones to regulate the chromatin remodeling and transcription [234]. It has been reported that the let-7e suppressed PTC migration through HMGB1 targeting [99]. SIRT1 is a NAD-dependent deacetylase involved in regulation of cell-cycle, death, and tumor metastases through MYC, TP53, and NF-κB [235, 236]. It inhibits ovarian tumor cell migration and invasion via HMGB1 deacetylation and down regulation [237]. It has been reported that there was miR-212 down regulation in TC. The miR-144 suppression of E2F-driven G1/S target genes during cell cycle [248]. It acts as a critical component of the inhibitory loop which is needed to switch off the transcription of E2F-driven G1/S target genes during cell cycle [249]. It has been shown that there was miR-30a down regulation in PTC cells. It also inhibited the PTC cell migration by targeting E2F7 [105]. Yin Yang 1 (YY1) is belonged to the GLI-Kruppel family of zinc-finger transcription factors involved in various cellular processes such as embryogenesis, cell proliferation, cell death, and DNA repair [250]. It has been reported that there was miR-544 down regulation in ATC tissues. It also suppressed tumor metastasis by targeting YY1. The YY1 knockdown repressed cell viability and proliferation and substantially reduced ATC cell migration and invasion [106]. SOX11 is a developmental transcription factor involved in neurodevelopment, neural cell survival, and neurite outgrowth [251]. It has been reported that the miR-211-5p suppressed TC cells migration and invasion by SOX11 targeting [107]. There was circ_0039411 up regulation in PTC tissues and cell lines in comparison with normal margins and cells. Circ_0039411 increased PTC cell migration through the regulation of miR-423-5p/SOX4 axis [108].

EZH2 belongs to the Polycomb-group (PcG) family that is involved in transcriptional repression by histone methylation and chromatin condensation. MiR-25 and miR-30d prevented ATC cell proliferation and colony formation through G2/M arrest. It has been observed that there were inverse correlations between EZH2 protein levels and miR-25 and miR-30d expressions in ATC specimens. MiR-25 and miR-30d had a crucial role in ATC progression through EZH2 targeting [109]. FOXA1 as a transcriptional activator is belonged to the forkhead family of DNA-binding proteins. It has been shown that there were reduced expression levels of miR-132 in TC tissue samples and cell lines, in which the miR-132 inhibited TC cell migration and invasion by suppressing FOXA1 [252]. FOXE1 is also a member of forkhead transcription factors that acts as an important factor during thyroid morphogenesis. It enables polarized epithelial cells to transfer into the cellular matrices, which is required for the tumor invasion and metastasis. It has been observed that the miR-524-5p modulated the PTC cell invasion, migration, and proliferation through FOXE1 and ITGA3 suppression [110].

MRTFA is a transcriptional coactivator involved in cytoskeletal dynamics during cell migration. It has been reported that there was MRTFA up regulation in ATC tissues in comparison with primary tumor tissue. MiR-206 suppressed ATC cells migration through MRTFA targeting [111]. LMO4 is a transcription factor involved in regulation of cell proliferation. There was significant circLDLR up regulation in PTC tissues and cell lines. Knockdown of circLDLR reduced PTC cell migration, while promoted apoptosis by miR-637/LMO4 axis [112].
MiRNAs involved in regulation of membrane associated and extra cellular factors

RAP1B is a member of RAS-family GTPases that has a vital role in cell proliferation, migration, and invasion. As a membrane associated GTPase, it regulates integrin-mediated signaling. It has been reported that there were significant reduced levels of miR-206 expressions in TC tissues and cell lines compared with healthy tissues. The miR-206 also significantly decreased TPC-1 migration through RAP1B targeting [113]. SLC7A5 is a membrane transporter involved in thyroid hormones transportation [253]. ADAM9 belongs to the ADAM family, which has a crucial role in the shedding of membrane-bound proteins [254]. It has been shown that the miR-126-3p suppressed TC cell proliferation, migration, and distant metastasis through SLC7A5 and ADAM9 targeting. Moreover, there was a significant correlation between miR-126-3p down regulation, aggressiveness, tumor size, local invasion, and recurrence [114].

ATC has a survival rate of fewer than six months following diagnosis and is one of the deadliest malignancies [255, 256]. More than two-thirds of ATC patients suffer from locally advanced and metastatic ATC [256, 257]. LOX protein belongs to the amine oxidases family involved in tumors progression [258]. As an ECM remodeling enzyme, LOX is essential for the lysine deamination in collagen and elastin. Although, the ECM modulation has been regarded as the main role of LOX, it also participates in regulation of migration, adhesion, and gene transcription [259–261]. It has been reported that there were miR-30a down regulations in ATC samples which was correlated with aggressive TC and increased mortality. It also inhibited ATC cell migration and invasion via LOX suppression [115]. Transgelin-2 (TAGLN2) is an actin-bundling protein involved in regulation of cell migration. There was significant miR-613 down regulation in PTC tissues that was correlated with lymph node metastasis. MiR-613 inhibited PTC cell invasion and EMT via TAGLN2 targeting [116]. Glutathione peroxidase 4 (GPX4) is a phospholipid hydroperoxidase that protects membranes toward the lipid peroxidation. CircKIF4A promoted the PTC cell migration while inhibited ferroptosis by miR-1231 sponging and subsequent GPX4 up regulation [117].

MiRNAs involved in apoptosis and protein degradation

XIAP belongs to the family of apoptosis inhibitor proteins. It has been reported that the miR-618 over expression repressed ATC cell migration and invasion by targeting XIAP [118]. B-cell lymphoma 2 (BCL-2) belongs to the BCL-2 family that either inhibits or induces apoptosis. It has been shown that there was significant miR-15 up regulation in TC cells. It enhanced the MDA-T35 apoptosis and was also correlated with BCL-2 suppression. Migration assay confirmed the inhibitory role of miR-15 on MDA-T35 cells migration [119]. TP73 belongs to the p53 protein family that is involved in cell cycle and apoptosis regulation. CASC7 suppressed the PTC cell proliferation and migration by miR-34a-5p sponging and TP73 up regulation [120].

PSMD10 is one of the components of 26 S proteasome that negatively regulates tumor progression [262]. It has been reported that there was a significant reduced levels of miR-214 in PTC tissues and cells. It also suppressed PTC cell migration and EMT via PSMD10 targeting. Moreover, miR-214 down regulation was associated with lymph node involvement, tumor size, and TNM stage. Down regulation of PSMD10 also suppressed the Akt/GSK-3β/b-catenin cascade in PTC cells [121]. SMURF1 functions as an ubiquitin ligase that participates in viral autophagy, embryogenesis, and bone homeostasis [263–265]. It has been reported that there were miR-4319 down regulations in TC tissues and cell lines which were correlated with tumor size, lymphatic metastasis, and TNM clinical stage. The miR-4319 also repressed the TC cell migration and EMT through SMURF1 targeting [122]. SH3RF3 is an ubiquitin ligase involved in regulation of JNK pathway. There was miR-192-5p down regulation in PTC tissues and cell lines. MiR-192-5p reduced PTC cell migration and EMT, while increased apoptosis by SH3RF3 targeting [123].

Conclusions

Despite recent progresses in TC diagnosis and treatment, there is still a high rate of tumor relapse and metastasis in these patients. Since, the early stage tumor detection can significantly reduce the tumor cell migration and relapse; it is necessary to suggest novel tumor markers for the early detection. MiRNAs as the critical regulators of tumor cell migration and progression, have higher stability in body fluids compared with mRNAs. Therefore, miRNAs can be suggested as non-invasive markers to predict the tumor relapse in TC patients. MiRNA-based treatment can be performed by targeting the deregulated miRNAs via anti-miRNA oligonucleotides and molecular sponges. However, the side effects can be observed because of the negative impact of anti-miRs on normal physiological functions. Therefore, site-specific delivery of anti-miRs by the effective methods is an important issue to reduce optimal concentration and side effects. Vectors and nano-carriers are the main delivery methods for the anti-miRs that can be effective in combination with chemotherapy drugs in TC treatment.

Taking miRNAs from bench to clinic requires safe delivery methods, restriction of off-target effects, and reduced toxicity and immune responses. The
development of miRNA based treatments consists of the preclinical studies and clinical trials. Expression analysis of specific miRNA is quantified through PCR-based methods. MiRNAs are validated via reporter gene assays vectors, miRNA mimics, or inhibitors. Design of therapeutic miRNAs requires regulating the expression of candidate miRNAs through stabilization and encapsulation into nano-carriers and characterization for specific targeting. In vitro studies are also required to evaluate the selectivity, affinity, toxicity, dose-response, and the effects of miRNA-loaded nano-carriers on multiple biological processes in cell lines. Animal studies for candidate therapeutic miRNAs are also needed to evaluate the toxicity and biosafety, animal behavior, and pharmacokinetics. The clinical trial studies require a powerful evaluation of single and multiple doses, side effects, and long-term follow-ups in pre-clinical studies.

In present review, we have summarized all of the miRNAs that have been involved in thyroid tumor cells migration and invasion to pave the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in TC. We categorized the reported miRNAs based on their involved molecular processes to clarify their roles during thyroid tumor cells migration. It was observed that the miRNAs mainly exert their roles in thyroid tumor cell migration and invasion through regulation of PI3K/AKT and WNT signaling pathways. However, whether miRNA based treatment can be effective in suppression of TC tumor relapse and migration, needs further animal studies to approve the long-term safety of delivery tools in clinical practice. Moreover, the majority of clinical studies about the role of miRNAs in thyroid tumor cell migration have been based on the expressional analysis in tumor tissues. Indeed, it is also necessary to evaluate the circulating levels of miRNAs in TC patients to suggest them as non-invasive diagnostic markers.

Abbreviations

TC: Thyroid cancer; WDTC: Well-differentiated TC; PDTC Poorly-differentiated TC; ATC: Anaplastic thyroid carcinomas; PTC: Papillary thyroid carcinoma; FTC: Follicular thyroid carcinoma; MiFTC: Minimally invasive FTC; WiFTC: Widely invasive FTC; EMT: Epithelial-to-mesenchymal transition; E-CAD: E-cadherin; PI3K: Phosphatidylinositol-3-kinase; FOXN3: Forkhead Box N3; YAP1: Yes-associated protein 1; cTFF1: Competitively endogenous RNA; JAK: Janus kinases; ROCK: Rho-associated kinase family; SPHKs: Sphingosine kinases; PKC-θ: Protein kinase C-theta; PAK1: P21-activated kinase; HMIG2A: High-mobility group A2 gene; ncRNAs: Non-coding RNAs; IncRNAs: Long non-coding RNAs; miRNAs: MicroRNAs; circRNAs: Circular RNAs; YY1: Yin Yang 1; PCG: Polycistrionic group; BCL-2: B-cell lymphoma 2; RCA: Rolling circle amplification; SDA: Strand displacement amplification; LAMP: Loop-mediated isothermal amplification; TGLN2: Transgelin-2; GPX4: Glutathione peroxidase 4.

Acknowledgements

Not applicable.

Authors’ contributions

AHH, NT, ZB, and ASZ were involved in search strategy and drafting. MM supervised the project and revised and edited the manuscript. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
2 Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
3 Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Received: 4 January 2022 Accepted: 7 May 2022 Published online: 04 June 2022

References

1. Goodarzi E, et al. Epidemiology, incidence and mortality of thyroid cancer and their relationship with the human development index in the world: an ecology study in 2018. Adv Hum Biology. 2019;9(2):162.
2. Maha R, et al. Association of polymorphisms in estrogen and thyroid hormone receptors with thyroid cancer risk. J Recept Signal Transduction. 2009;29(2):113–8.
3. Liu Y, et al. Bioinformatics analysis to screen key genes in papillary thyroid carcinoma. Oncol Lett. 2020;19(1):195–204.
4. Wu J, et al. Expression of EMT regulators TWIST, SLUG, and SNAIL in follicular thyroid tumours may relate to widely invasive, poorly differentiated, and distant metastasis. Histopathology. 2019;74(5):780–91.
5. Sharifi A, et al. Predictors of regional lymph node recurrence after initial thyroidectomy in patients with thyroid cancer. J thyroid res. 2016;2016:4127278.
6. Jukkola A, et al. Prognostic factors in differentiated thyroid carcinomas and their implications for current staging classifications. Endocrine-related Cancer. 2004;11(3):571–9.
7. Holler T, et al. Prognostic factors in patients with multiple recurrences of well-differentiated thyroid carcinoma. J Oncol. 2009;2009:650340.
8. Liu Y, Su L, Xiao H. Review of factors related to the thyroid cancer epidemic. Int j endocrinol. 2017;2017:5308635.
9. La Vecchia C, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136(9):2187–95.
10. Lehner S, Rosenzweig KE. Cold climate is a risk factor for thyroid cancer. Clin Thyroidol. 2014;26(10):273–6.
11. Bray F, et al. Global cancer statistics 2018. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. cancer j clin. 2018; 68(6):394–424.
12. Lan L, et al. Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int J Oncol. 2013;43(1):113–20.
13. Chen L, et al. Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating β-catenin. Pharmacol Res. 2017;123:130–42.
14. Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine. 2019;66(3):435-55.

15. Liu Y, et al. microRNA-510-5p promotes thyroid cancer cell proliferation, migration, and invasion through suppressing SNHG15. J Cell Biochem. 2019;120(11):1738.

16. Mikami S, et al. Expression of Snail and Slug in renal cell carcinoma: E-cadherin repressor Snail is associated with cancer invasion and progression. Lab Invest. 2019;119(10):1443–58.

17. Oliveto S, et al. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8(1):45.

18. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.

19. Sánchez-Tilló E, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci. 2012;69(20):3429–56.

20. De Craene B, Berx G. Regulatory networks defining EMT during cancer progression. Nat Rev Cancer. 2013;13(2):97–110.

21. Forghanifard MM, et al. TWIST1 upregulates the MAGEA4 oncogene. Mol Carcino. 2017;56(6):877–85.

22. Tang H, et al. AKT-ions with a TWIST between EMT and MET. Onco-Death Discip. 2022;8(1):21.

23. Moghbeli M, et al. Role of MAML1 in targeted therapy against the TWIST1 target. 2016;7(38):62767–77.

24. Leong KG, et al. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med. 2007;204(12):2935–48.

25. Díaz-López A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manage Res. 2014;6:205.

26. Fuziwara CS, Kimura ET. MicroRNA deregulation in anaplastic thyroid cancer biology. Int J endocrinol. 2014;2014:743450.

27. Stokowy T, Gawel D, Wojtas B. Differences in miRNA and mRNA profile of papillary thyroid cancer variants. Int J endocrinol. 2016;2016:1427042.

28. Celano M, et al. MicroRNAs as biomarkers in thyroid carcinoma. Int J Genom. 2017;2017:6496570.

29. Price C, Chen J. MicroRNAs in cancer biology and therapy: current status and perspectives. Genes & diseases. 2014;1(1):53–63.

30. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.

31. Boufraqech M, Klubo-Gwiezdzinska J, Kebebew E. MicroRNAs in the thyroid. Best Pract Res Clin Endocrinol Metab. 2016;30(3):603–19.

32. Zhu G, Xie L, Miller D. Expression of MicroRNAs in thyroid cancer. In: Bioinformatics in MicroRNA Research. Springer, 2017. p. 261–80.

33. Siddika T, Heinemann IU. Bringing MicroRNAs to light: methods for MicroRNA quantification and visualization in live cells. Front Bioeng Biotechnol. 2021;8:1334.

34. Cui M, et al. Circulating microRNAs in cancer: potential and challenge. Front Genet. 2019;10:626.

35. Liu J, et al. Next-generation sequencing for profiling expression of miRNAs: technical progress and applications in drug development. J Biomed Sci Eng. 2011;4(10):666.

36. Miska EA, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 2004;5(9):1–13.

37. Xu H, et al. DNA nanostructures from palindromic, rolling circle amplification for the fluorescent detection of cancer-related microRNAs. Talanta. 2019;192:175–81.

38. Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics. 2019;13(1):1–10.

39. Preethi KA, et al. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer. 2022;21(1):1–15.

40. Shigeyasu K, et al. Emerging role of microRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clin Cancer Res. 2017;23(10):2391–9.

41. Zhuang J, et al. MicroRNA–497 inhibits cellular proliferation, migration and invasion of papillary thyroid cancer by directly targeting AKT3. Mol Med Rep. 2017;16(5):5815–22.

42. Boufraqech M, et al. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr Relat Cancer. 2014;21(4):517–31.

43. Lin Y, et al. miR-217 inhibits proliferation, migration, and invasion via targeting AKT3 in thyroid cancer. Biomed Pharmacother. 2017;95:1718–24.
70. Song Z, et al. microRNA-564 inhibits the aggressive phenotypes of papillary thyroid cancer by directly targeting astrocyte-elevated gene-1. Oncol Targets Ther. 2019;12:4869–81.
71. Li D, et al. miR-205 targets VAP1 and inhibits proliferation and invasion in thyroid cancer cells. Mol Med Rep. 2018;19(2):1674–81.
72. Zhao H, et al. LINC01816 promotes the migration, invasion and epithelial-mesenchymal transition of thyroid carcinoma cells by sponging mir-34c-5p and regulating CRABP2 expression levels. Oncol Rep. 2021;45(5):81.
73. Wang Z, et al. MicroRNA-663 suppresses cell invasion and migration by targeting transforming growth factor beta 1 in papillary thyroid carcinoma. Tumour Biol. 2016;37(6):7633–44.
74. Lima CR, et al. MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells. BMC Cancer. 2016;16:108.
75. Zhang X, et al. MicroRNA-483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial–mesenchymal transition in anaplastic thyroid cancer cells. Oncogene. 2019;38(5):699–715.
76. Zhang W, Ji W, Zhao X. MiR-155 promotes anaplastic thyroid cancer progression by directly targeting SOCS1. BMC Cancer. 2019;19(1):1093.
77. Mei Z, et al. Interleukin-23 Facilitates Thyroid Cancer Cell Migration and Invasion by Inhibiting SOCS4 Expression via MicroRNA-25. PLoS ONE. 2015;10(10):e0139456.
78. Qian Y, et al. MicroRNA–126 is downregulated in thyroid cancer cells, and regulates proliferation, migration and invasion by targeting CXCR4. Mol Med Rep. 2016;14(1):453–9.
79. Liu Y, et al. Long non-coding RNA DUXAP6 promotes the cell proliferation, migration, and invasion of papillary thyroid carcinoma via miR-223-3p mediated regulation of CXCR4. Bioengineered. 2021;12(2):11795–810.
80. Dong S, et al. MiR-137 acts as a tumor suppressor in papillary thyroid carcinoma by targeting CXCL12. Oncol Rep. 2016;35(4):2151–8.
81. Zheng X, et al. circPVT1 regulates medullary thyroid cancer growth and metastasis by targeting miR-455-5p to activate CXCL12/CXCR4 signaling. J Exp Clin Cancer Res. 2021;40(1):157.
82. Leone V, et al. MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCL20, CXCR4, and SDF-1α. J Clin Endocrinol Metab. 2011;96(9):E1388-98.
83. Wang Z, et al. miR-873-5p Inhibits Cell Migration and Invasion of Papillary Thyroid Cancer via Regulation of CXCL16. Onco Targets Ther. 2016;9:2019–20.
84. Wang P, et al. MicroRNA-497 inhibits thyroid cancer tumor growth and invasion by suppressing BDNF. Oncotarget. 2017;8(2):2825–34.
85. Zheng H, et al. Circ_0079558 promotes papillary thyroid cancer progression by binding to miR-26b-5p to activate MET/AKT signaling. Endocr J. 2021;68(11):1247–66.
86. Wang XZ, et al. Over-expression of microRNA-375 inhibits papillary thyroid carcinoma cell proliferation and induces cell apoptosis by targeting ERBB2. J Pharmocol Sci. 2016;130(2):78–84.
87. Cheng Q, et al. Circular RNA VANGL1 Facilitates Migration and Invasion of Anaplastic Thyroid Cancer Cells by Directly Targeting CARMA1. Biochem Biophys Res Commun. 2018;501(2):799–806.
88. Bi CL, et al. MicroRNA-520a-3p suppresses epithelial-mesenchymal transition, invasion, and migration of papillary thyroid carcinoma cells via the JAK1-mediated JAK/STAT signaling pathway. J Cell Physiol. 2019;234(4):4054–67.
89. Cheng L, et al. MicroRNA-150 targets Rho-associated protein kinase 1 to inhibit cell proliferation, migration and invasion in papillary thyroid carcinoma. Mol Med Rep. 2017;16(2):2127–24.
90. Cao XZ, Bin H, Zang ZN. MiR-128 suppresses the growth of thyroid carcinoma by directly targeting astrocyte-elevated gene-1. Oncol Targets Ther. 2015;8(2):1128–33.
91. Wang J, Xiao T, Zhao M. MicroRNA-675 directly targets MAPK1 to suppress the oncogenicity of papillary thyroid cancer and is sponged by long non-coding RNA RMRP. Oncol Targets Ther. 2019;12:7307–21.
92. Yue K, et al. microRNA-7 regulates cell growth, migration and invasion via direct targeting of PAK1 in thyroid cancer. Mol Med Rep. 2016;14(3):2127–34.
93. Wang C, et al. Hsa-microRNA-101 suppresses migration and invasion by targeting Rac1 in thyroid cancer cells. Oncotarget. 2014;5(4):1815–21.
94. Gu L, Sun W. MiR-539 inhibits thyroid cancer cell migration and invasion by directly targeting CARMA1. Biochem Biophys Res Commun. 2015;464(4):1128–33.
120. Sun W, Yin D. Long noncoding RNA CASC7 inhibits the proliferation and migration of papillary thyroid cancer cells by inhibiting miR-34a-5p. J Physiol Sci. 2021;71(1):9.

121. Liu F, et al. miR-214 regulates papillary thyroid carcinoma cell proliferation and metastasis by targeting PSMD10. Int J Mol Med. 2018;42(6):3027–36.

122. Bian S. miR-4319 inhibited the development of thyroid cancer by modulating FUS-stabilized SMURF1. J Cell Biochem. 2020;121(1):174–82.

123. Fu S, et al. MiR-192-5p inhibits proliferation, migration, and invasion in papillary thyroid cancer cells by regulation of SH3RF3. Biosci Rep. 2021;41(9):BSR20213542.

124. Cain RJ, Ridley AJ. Phosphoinositide 3-kinases in cell migration. Biol Cell. 2009;101(13):13–29.

125. Xia P, Xu Y, PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602–9.

126. Petrulea MS, et al. PI3K/Akt/mTOR: A promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev. 2015;41(8):707–13.

127. Agarwal V, Bratagain MG, Chowdhury S. Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell Signal. 2013;25(8):1711–9.

128. Kang B, et al. Evaluation of hepatic-metastasis risk of colorectal cancer patients with long non-coding RNA MEG3 and Down-regulating E2F3 by targeting Tiam1. PLoS ONE. 2014;9(2):e88393.

129. Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential tumor suppressor in primary non-small cell lung cancer. Int J Clin Oncol. 2012;17(4):341–5.

130. Volinia S, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Nat Acad Sci. 2006;103(7):2257.

131. Yang X, et al. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene. 2019;715:143995.

132. Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in reprogramming of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun. 2014;448(2):206–11.

133. Chen L, et al. Succinate dehydrogenase subunit B inhibits the AMPK-HIF-1α pathway in human ovarian cancer in vitro. J Ovarian Res. 2014;7:115.

134. Nye P, et al. RPRP inhibits the PI3K/Akt/mTOR pathway in prostate cancer cells. Prostate. 2008;78(18):1979–90.

135. Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential tumor suppressor in primary non-small cell lung cancer. Int J Clin Oncol. 2012;17(4):341–5.

136. Chen X, et al. miR-141 is a key regulator of renal cell carcinoma proliferation and metastasis regulation by Akt signaling in colorectal cancer. Cell Signal. 2013;25(8):1711–9.

137. Kang B, et al. Evaluation of hepatic-metastasis risk of colorectal cancer patients with long non-coding RNA MEG3 and Down-regulating E2F3 by targeting Tiam1. PLoS ONE. 2014;9(2):e88393.

138. Liu H, et al. The upregulation of miRNA-146a inhibited biological behaviors of ESCC through inhibition of IRS2. Tumor Biology. 2016;37(4):4641–7.

139. Pollard PJ, Wortham NC, Tomlinson IP. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med. 2003;35(8):632–9.

140. Miettinen M, Lasota J. Succinate dehydrogenase deficient gastro-intestinal stromal tumors (GISTs) - a review. Int J Biochem Cell Biol. 2014;53:514–9.

141. Jia Y, et al. Inhibition of SOX17 by microRNA 141 and methylation activates the Wnt/β-catenin pathway in ESCC. Tumor Biology. 2016;37(4):4641–7.

142. Tsuji Y, et al. Subcellular localization of insulin receptor substrate family members in pancreatic islets and adipocytes. Diabetes. 2001;50(6):1455–63.

143. Sesti G, et al. Defects of the insulin receptor substrate 1 (IRS) system in human metabolic disorders. Faseb J. 2001;15(12):2099–111.

144. Zhang P, et al. MiR-338-5p inhibits the growth and invasion of non-small cell lung cancer cells by targeting IRS2. Am J Cancer Res. 2017;7(1):53–63.

145. Kirschner MB, et al. Increased circulating miR-625-3p: a potential biomarker for patients with malignant pleural mesothelioma. J Thorac Oncol. 2012;7(7):1184–91.
171. Rasmussen MH, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436.

172. Huang LL, et al. AEG-1 associates with metastasis in papillary thyroid cancer through upregulation of MMP2/9. Int J Oncol. 2017;51(3):812–22.

173. Bora-Singhal N, et al. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells. Stem Cells. 2015;33(1):705–18.

174. Wu DM, et al. LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma. Cell Death Dis. 2018;9(10):947.

175. Feng Y, et al. CRABP2 regulates invasion and metastasis of breast cancer through hippo pathway dependent on ER status. J Exp Clin Cancer Res. 2019;38(1):361.

176. Al-Azayzih A, Gao F, Somanath PR. P21 activated kinase-1 mediates transforming growth factor β1-induced prostate cancer cell epithelial to mesenchymal transition. Biochem Biophys Acta. 2015;1853(5):1229–39.

177. Morrison CD, Parvani JG, Schiemann WP. The relevance of the TGF-β Paradox to EMT-MET programs. Cancer Lett. 2013;341(1):30–40.

178. Gudey SK, et al. TRAF6 stimulates the tumor-promoting effects of TGFβ signaling by repressing SMAD4 in thyroid cancer. Oncogene. 2021;31(15):1910–22.

179. Eloy C, et al. TGF-beta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch. 2012;460(6):587–600.

180. Liu F, et al. TGF-β1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes. Cancer Lett. 2015;359(2):288–98.

181. Geraldo MV, Yamashita AS, Kimura ET. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene. 2012;31(15):1910–22.

182. Yu C, et al. MicroRNA-146b-3p Promotes Cell Metastasis by Directly Targeting NF2 in Human Papillary Thyroid Cancer. Thyroid. 2018;28(12):1627–41.

183. Suzuki A, Ohno S. The PAR-APKC system: lessons in polarity. J Cell Sci. 2006;119(Pt Pt 6):979–87.

184. Aranda V, Nolan ME, Muthuswamy SK. Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene. 2011;30(4):454–67.

185. Elroy-Stein O, et al. TGF-β and cancer. Cancer Lett. 2001;165(2):122–31.

186. Gudey SK, et al. TRAF6 stimulates the tumor-promoting effects of TGFβ signaling by repressing SMAD4 in thyroid cancer. Oncogene. 2012;31(15):1910–22.

187. Nishimura T. CXCL12/SDF-1 and CXCR4. Front Immunol. 2015;6:301.

188. Deng L, et al. CXCR6/CXCL16 functions as a regulator in metastasis signaling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37(Suppl 4):S3–8.

189. Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular epithelial and mesenchymal signaling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37(Suppl 4):S3–8.

190. Wolk K, et al. IL-22 regulates the expression of genes responsible for cell growth and survival in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Exp Clin Cancer Res. 2016;37(9):11753–62.

191. Oh J, et al. Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-κB and mitochondrial Bcl-1 in leukemic T cells. J Immunol. 2012;189(12):5361–71.

192. Oppermann B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immumun. 2000;10(3):715–25.

193. Yarden Y. The EGFR family and its ligands in human cancer. signaling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37(Suppl 4):S3–8.

194. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28(4):454–67.

195. Patel KN, Shaha AR. Poorly differentiated and anaplastic thyroid cancer. Cancer Control. 2006;13(2):119–28.

196. Blonska M, Lin X. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;38(2):1363–6.

197. Blonska M, Lin X. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;38(2):1363–6.

198. Venkata JK, et al. Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood. 2014;124(1):1915–25.

199. Shida D, et al. Targeting SphK1 as a new strategy against cancer. Curr Drug Targets. 2008;9(8):662–73.

200. Oskeritzian CA, et al. Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood. 2008;111(8):4193–200.

201. Liu H, et al. Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol. 2002;71:493–511.

202. Lin X. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;38(2):1363–6.
224. Hara H, et al. The molecular adapter Carma1 controls entry of IkappaB kinase into the central immune synapse. J Exp Med. 2004;200(9):1167–77.

225. Wang D, et al. CD3/CD28 costimulation-induced NF-IkappaB activation is mediated by recruitment of protein kinase C-theta, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1. Mol Cell Biol. 2004;24(1):164–71.

226. Blonska M, et al. The CARMA1-Bcl10 signaling complex selectively regulates IKKz2 kinase in the T cell receptor-signaling pathway. Immunity. 2007;26(1):55–66.

227. Vadamuthu RK, Kumar R. P21-activated kinases in human cancer. Cancer Metastasis Rev. 2003;22(4):385–93.

228. del Pozo MA, et al. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. Embo J. 2000;19(9):2008–14.

229. Chung CY, et al. Role of Rac in controlling the actin cytoskeleton and chemotaxis in motile cells. Proc Natl Acad Sci U S A. 2000;97(10):5225–30.

230. Lv Z, et al. Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering beta-catenin transcriptional activity under high glucose conditions. Int J Biochem Cell Biol. 2013;45(2):255–64.

231. Shi Z, et al. Silencing of HMG2A promotes apoptosis and inhibits migration and invasion of prostate cancer cells. J Biosci. 2016;41(2):229–36.

232. Morishita A, et al. HMG2A is a driver of tumor metastasis. Cancer Res. 2013;73(14):4289–99.

233. Thuault S, et al. Transforming growth factor-beta employs HMG2A to elicit epithelial-mesenchymal transition. J Biol Chem. 2006;174(2):175–83.

234. Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev. 2005;15(3):496–506.

235. Deng CX. SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci. 2009;5(2):147–52.

236. Palmiotto R, et al. Sirtuins and Cancer: Role in the Epithelial–Mesenchymal Transition. Oxid Med Cell Longev. 2016;2016:3031459.

237. Jiang W, et al. Functional role of SIRT1-induced HMGB1 expression and acetylation in migration, invasion and angiogenesis of ovarian cancer. Eur J Med Pharmacol. 2018;22(14):4431–9.

238. Uddin MH, et al. Involvement of PSMO10, CDK4, and Tumor Suppressor 1 in Development of Intrahepatic Cholangiocarcinoma of Syrian Golden Hamsters Induced by Clonorchis sinensis and N-Nitrosodiethylamine. PLoS Negl Trop Dis. 2015;9(8):e0004008.

239. Narimatsu M, et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell. 2009;137(2):295–307.

240. Orvedahl A, et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature. 2011;480(7375):113–7.

241. Thuault S, et al. Transforming growth factor-beta employs HMG2A to elicit epithelial-mesenchymal transition. J Biol Chem. 2006;174(2):175–83.

242. Hurt EM, et al. Expression of the ZEB2 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem. 2008;318(1–2):89–99.

243. Meng S, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16(1):94.

244. Uddin MH, et al. Involvement of PSMO10, CDK4, and Tumor Suppressor 1 in Development of Intrahepatic Cholangiocarcinoma of Syrian Golden Hamsters Induced by Clonorchis sinensis and N-Nitrosodiethylamine. PLoS Negl Trop Dis. 2015;9(8):e0004008.

245. Bielerina E, et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103(7):1330–5.

246. Mayerca-Guallini A, Erler JT. The potential for targeting extracellular LOX proteins in human malignancy. Onco Targets Ther. 2013;6:1729–35.

247. Li W, et al. Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J Cell Biochem. 2000;78(6):550–7.

248. Kinne A, Schülein R, Krause G. Primary and secondary thyroid hormone transporters. Thyroid Res. 2011;4(Suppl 1):S7. Suppl 1.

249. Smallridge RC, et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2012;22(1):1104–39.

250. Bonavida B, Kaufhold S. Prognostic significance of YY1 protein expression and mRNA levels by bioinformatics analysis in human cancers: a therapeutic target. Pharmacol Ther. 2015;150:149–68.

251. Lu TX, Li JY, Xu W. The role of SOX11 in mantle cell lymphoma. Leuk Res. 2013;37(11):1412–9.

252. Chen X, et al. miR-132 Targets FOXA1 and Exerts Tumor-Suppressing Functions in Thyroid Cancer. Oncol Res. 2019;27(4):431–7.

253. Kinne A, Schulen R, Krause G. Primary and secondary thyroid hormone transporters. Thyroid Res. 2011;4(Suppl 1):S7. Suppl 1.

254. O'Shea C, et al. Expression of ADAM9 mRNA and protein in human breast cancer. Int J Cancer. 2003;105(6):754–61.

255. McIver B, et al. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery. 2001;130(6):1028–34.

256. Mayorca-Guallini A, Erler JT. The potential for targeting extracellular LOX proteins in human malignancy. Onco Targets Ther. 2013;6:1729–35.

257. Li W, et al. Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J Cell Biochem. 2000;78(6):550–7.

258. O'Shea C, et al. Expression of ADAM-9 mRNA and protein in human breast cancer. Int J Cancer. 2003;105(6):754–61.

259. McIver B, et al. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery. 2001;130(6):1028–34.

260. Mayerca-Guallini A, Erler JT. The potential for targeting extracellular LOX proteins in human malignancy. Onco Targets Ther. 2013;6:1729–35.

261. Gilliapuzza M, Oelligini R, Di Donato A. Altered adhesion features and signal transduction in NRK-49F cells transformed by down-regulation of lysyl oxidase. Biochim Biophys Acta. 2003;1647(1–2):239–44.

262. Payne SL, Hendrix MJ, Kirschmann DA. Paradoxical roles for lysyl oxidases in cancer—a prospect. J Cell Biochem. 2007;101(6):1338–54.

263. Uddin MH, et al. Involvement of PSMO10, CDK4, and Tumor Suppressor 1 in Development of Intrahepatic Cholangiocarcinoma of Syrian Golden Hamsters Induced by Clonorchis sinensis and N-Nitrosodiethylamine. PLoS Negl Trop Dis. 2015;9(8):e0004008.

264. Comijn J, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78.

265. Li X, et al. Circular RNA: A new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–8.

266. Meng S, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16(1):94.

267. Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biolett. 2021;26(1):39.

268. Zhuang J, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7(2):e30733.

269. Li X, et al. CircNUP214 sponges miR-145 to promote the expression of ZEB2 in thyroid cancer cells. Biochem Biophys Res Commun. 2018;507(1–2):168–72.

270. Jung H, et al. TMPRSS5 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition. Oncogene. 2008;27(18):2635–47.

271. Wang LJ, Cai HQ. miR-125b: a novel microRNA that controls TMPRSS5 expression is associated with malignant progression of papillary thyroid carcinoma. Endokrynol Pol. 2020;71(2):146–52.

272. Westendorp B, et al. E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res. 2012;40(8):3511–23.

273. Mitxelena J, et al. An E2F7-dependent transcriptional program modulates DNA damage repair and genomic stability. Nucleic Acids Res. 2018;46(9):4546–59.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.