Concomitant spine trauma in patients with traumatic brain injury: Patient characteristics and outcomes

Lennart Riemann†, Obada T. Alhalabi†, Andreas W. Unterberg, Alexander Younsi* and The CENTER-TBI investigators and participants

Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany

Objective: Spine injury is highly prevalent in patients with poly-trauma, but data on the co-occurrence of spine trauma in patients with traumatic brain injury (TBI) are scarce. In this study, we used the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) database to assess the prevalence, characteristics, and outcomes of patients with TBI and a concurrent traumatic spinal injury (TSI).

Methods: Data from the European multi-center CENTER-TBI study were analyzed. Adult patients with TBI (≥18 years) presenting with a concomitant, isolated TSI of at least serious severity (Abbreviated Injury Scale; AIS ≥3) were included. For outcome analysis, comparison groups of TBI patients with TSI and systemic injuries (non-isolated TSI) and without TSI were created using propensity score matching. Rates of mortality, unfavorable outcomes (Glasgow Outcome Scale Extended; GOSe < 5), and full recovery (GOSe 7–8) of all patients and separately for patients with only mild TBI (mTBI) were compared between groups at 6-month follow-up.

Results: A total of 164 (4%) of the 4,254 CENTER-TBI core study patients suffered from a concomitant isolated TSI. The median age was 53 [interquartile range (IQR): 37–66] years and 71% of patients were men. mTBI was documented in 62% of cases, followed by severe TBI (26%), and spine injuries were mostly cervical (63%) or thoracic (31%). Surgical spine stabilization was performed in 19% of cases and 57% of patients were admitted to the ICU. Mortality at 6 months was 11% and only 36% of patients regained full recovery. There were no significant differences in the 6-month rates of mortality, unfavorable outcomes, or full recovery between TBI patients with and without concomitant isolated TSI. However, concomitant non-isolated TSI was associated with an unfavorable outcome and a higher mortality. In patients with mTBI, a negative association with full recovery could be observed for both concomitant isolated and non-isolated TSI.

Conclusion: Rates of mortality, unfavorable outcomes, and full recovery in TBI patients with and without concomitant, isolated TSIs were comparable after 6 months. However, in patients with mTBI, concomitant TSI was a negative
predictor for a full recovery. These findings might indicate that patients with moderate to severe TBI do not necessarily exhibit worse outcomes when having a concomitant TSI, whereas patients with mTBI might be more affected.

**KEYWORDS**
traumatic brain injury, traumatic spine injury, outcome, CENTER-TBI, spine trauma

**Introduction**

Traumatic brain injury (TBI) contributes to the global burden of disease in a sizeable manner (1). The incidence of TBI has risen in the past years (2) and is estimated to become even more relevant with increasing events of traffic accidents and falls of the elderly (3, 4).

Traumatic brain injury can be complicated by additional injuries, such as traumatic spinal injuries (TSIs). When studying patients with spinal cord injury, the rate of concomitant TBI was estimated between 40 and 74% (5, 6). TBI in most of these patients was classified as mild (7). It is postulated that in the context of spine trauma, simultaneous TBI events are underdiagnosed (8). Unsurprisingly, TBI pertaining to spinal cord injury was found to be most frequent when the cervical and thoracic spine are affected (9).

Although various reports on TBI from a spinal injury perspective exist, little is known about the converse case of concomitant isolated spine trauma in patients suffering primarily from TBI. A recent meta-analysis found the rate of concomitant TSI in patients with TBI to be at around 13%, with cervical spinal injury amounting to almost half of the injuries diagnosed (10). This consolidates previous reports on cervical spine injury in larger patient cohorts with TBI (11). Indeed, patients with severe TBI were found to be at a particularly higher risk for sustaining injuries to the cervical spine (12).

Previous literature, while epidemiologically describing the prevalence of and risk factors for concomitant TBI and TSI, rarely elucidates the neurological outcomes of affected patients. In a retrospective analysis, patients with simultaneous TBI and TSI were reported to show increased motor deficits and limited functional gains in rehabilitation (13). Nevertheless, the question whether patients with concomitant TBI and TSI bear an inherent risk for a worse neurological outcome or a higher rate of mortality has yet to be tackled by prospectively collected observational data.

This study hence aimed at assessing the prevalence and characteristics of patients with TBI and concurrent, isolated TSI and comparing outcomes of such patients with TBI only in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) cohort.

**Methods**

**Study design**

In the present study, data collected as part of the CENTER-TBI core study were analyzed. CENTER-TBI is a European multi-center, observational, longitudinal cohort study of patients presenting with TBI of all severities. Patients were eligible for enrollment when presenting with a clinical diagnosis of TBI to a participating study center within 24 h and when a computed tomography (CT) scan was performed at admission. Informed consent was required from all patients and had to be obtained prior to enrollment. The study protocol adhered to all national and local ethical committee requirements of participating study centers. Patients were enrolled from December 2014 to December 2017 in 59 centers across Europe and Israel. More details on the CENTER-TBI study and main descriptive findings have been published elsewhere (14, 15).

**Study cohort and outcome parameters**

For this study, we included adult CENTER-TBI core study patients (i.e., 18 years or older) with TBI that presented with a concomitant, isolated TSI. TSI was defined by an Abbreviated Injury Scale (AIS) score of ≥3 (indicating an injury of at least serious severity) in the cervical, thoracic, or lumbar spine. To study the impact of the TSI separately from poly-traumatic injuries, patients were excluded when also suffering from serious injuries (also defined as an AIS score of ≥3) in other body regions, namely, injuries to the thorax and chest, abdomen, pelvis, upper and lower extremities, or skin. As a complementary investigation, the same analyses were repeated for patients with non-isolated TSI, i.e., those with spine injuries (AIS scores ≥3) and concomitant injuries (AIS scores ≥3) in any of the other body regions. Primary outcome parameters were mortality [i.e., Glasgow Outcome Scale Extended (GOSe) = 1], unfavorable outcomes (i.e., GOSe < 5), and full recovery (i.e., GOSe = 7–8). All data were retrieved from the CENTER-TBI core study database in version 3.0 via the accessing tool Neurobot (RRID: SCR_017004).
Statistical analysis

Patient characteristics were analyzed using descriptive statistics. Continuous variables are reported as medians and interquartile ranges (IQRs), while ordinal and categorical variables are presented as numbers and frequencies unless stated otherwise. The completeness of data is reported in Supplementary Table S1. Prior to outcome analysis, multiple imputation with 100 imputed datasets was used to address missing data in the control variables (age, sex, baseline Glasgow Coma Scale [GCS], performed cranial surgery, intracranial CT abnormality (mass lesion, extra-axial hematoma, epidural hematoma, acute subdural hematoma, chronic and subacute subdural hematoma, a subdural collection of mixed density, contusion, traumatic axonal injury, traumatic subarachnoid hemorrhage, intraventricular hemorrhage, midline shift, or cisternal compression), and American Society of Anesthesiologists (ASA) class) and the primary outcome variables (GOSe). Missing data were assumed to be missing at random. GCS and GOSe were defined as ordinal variables. The mortality, unfavorable outcomes, and full recovery of the variables were subsequently derived from imputed GOSe scores. After multiple imputation, propensity score matching with the above-named control variables and GOSe at 6-month follow-up as outcome variable was performed to create a matched comparison group of patients with TBI without concomitant TSI. The control variables were chosen a priori based on clinical expertise. Matching was performed within each imputed dataset. Effect estimates of concomitant TSI to outcomes were analyzed using weighted logistic regression models in each dataset. Additionally, logistic multivariable regression with (isolated or non-isolated) TSI as predictor and adjustment for the same control variables used in the propensity score analysis were performed for the three outcomes as a complementary analysis. Finally, effect estimates from each model were pooled according to Rubin’s rules (16). The statistical software R was used for all analyses (https://www.r-project.org/ - version 4.1.1) (17).

Results

Patient characteristics, injury details, and prehospital course

A total of 164 adult patients with TBI and concomitant TSI were included in this study, representing about 4% of the entire CENTER-TBI study population (Figure 1). The median age in this subgroup of patients with simultaneous head and isolated spine injury was 53 years (IQR: 37–66 years) and 116 (71%) were men. The majority of injuries were caused by either incidental falls (47%, n = 77) or by road-traffic incidents (42%, n = 68). Alcohol intoxication confirmed by increased alcohol blood levels was found in 16% of patients (n = 26) and suspected in another 8% (n = 13). Most patients were brought to the hospital by ambulance (76%, n = 123) or by helicopter (12%, n = 19). Some patients even presented as walk-ins or drop-offs (6%, n = 9). Endotracheal intubation at the scene of an accident was performed in 22% of patients (n = 33). In total, 86% of patients (n = 141) were directly transported to the study center, while the remainder were referred to the study center from another hospital (see also Figure 2).

Clinical presentation and clinical course of TBI patients with concomitant TSI

Upon admission at the study center, severe TBI (GCS 3–8) was present in 26% of patients (n = 42), while moderate or mild TBI (mTBI) was documented in 10% (n = 16) and 62% (n = 101) of cases, respectively. A traumatic spine injury of at least serious severity was located in the lumbar spine in 32 patients (20%), in the thoracic spine in 51 patients (31%), and in the cervical spine in 104 patients (63%). In 21 patients (13%), more than one region of the spine was affected (e.g., both cervical and thoracic spine injuries). The majority of patients (57%, n = 93) were admitted to the ICU, while 63 patients (38%) were admitted to the regular ward. Among patients admitted to the ICU, the requirement for mechanical ventilation was named as the primary reason in 40 patients (43%), followed by the need for frequent neurological observations in 22 patients (24%) and neurosurgical intervention in 13 patients (14%). Spine stabilization surgery was performed in 32 patients (20%). During the hospital stay, respiratory complications were documented in 14 patients (12%), making it the most common type of complication. Further complications included seizures in 5 patients (4%), cardiac complications in 4 patients (3%), and urinary tract infections in 6 patients (5%). Patients with TBI and concomitant TSI stayed in the hospital for a median of 9 (3–20) days. Most patients could be discharged home (56%, n = 70), while 26 patients (21%) were discharged to a rehabilitation facility, and 24 patients (19%) were transferred to another hospital (see also Figure 2).

Outcomes of TBI patients with concomitant TSI

In this cohort of patients with TBI and concomitant TSI, 18 of 164 patients were dead after 6 months, yielding a mortality rate of 11%. Of those, 13 died in the ICU. In 9 patients, the initial head injury was documented as the cause of death whereas secondary intracranial damage was documented in 2 patients. For the remaining deceased patients, no cause of death was documented. A total of 48 patients (29%) were considered to have an unfavorable outcome (GOSe < 5). Approximately,
Riemann et al. /one.tnum/zero.tnum./three.tnum/three.tnum/eight.tnum/nine.tnum/fneur./two.tnum/zero.tnum/two.tnum/two.tnum./eight.tnum/six.tnum/one.tnum/six.tnum/eight.tnum/eight.tnum

FIGURE /one.tnum
Study design. Adult patients in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) database were screened. Patients with poly-trauma were excluded. Only patients sustaining TBI along with isolated traumatic spine injury (TSI) without the presence of further trauma were included in the analyses.

FIGURE /two.tnum
Traumatic brain injury (TBI)-traumatic spine injury (TSI) study cohort. Selected variables of the /one.tnum/six.tnum/four.tnum patients included in the analysis are depicted. Rows represent representative variables, and each column represents one patient. Sub-cohorts are separated based on TBI severity (severe TBI: GCS < /eight.tnum; moderate TBI: GCS /nine.tnum–/one.tnum/two.tnum; and mild TBI: GCS /one.tnum/three.tnum–/one.tnum/five.tnum). In the sub-cohorts, patients are sorted by age from youngest (/one.tnum/nine.tnum years) to oldest (/nine.tnum/five.tnum years). A heat-map was utilized to visualize the length of stay (green: short, red: long) and GCS (dark blue: /one.tnum/five.tnum, light blue: /three.tnum). ICU, intensive care unit; GOSe, Glasgow Outcome Scale Extended. *Confirmed or suspected alcohol consumption. Gray represents missing data.

one-third of the patients achieved a full recovery (GOSe 7 or 8). To compare the outcomes of TBI patients with and without isolated, concomitant TSI, we performed propensity score matching with subsequent weighted logistic regression to estimate the effect of the simultaneous spine injury on patient outcomes. Patients were matched with age, sex, baseline GCS, performed cranial surgery, intracranial CT abnormalities, and ASA class as covariables (see Supplementary Tables S2, S3 for balance statistics and exemplary descriptions of the matched cohorts). In the outcome analysis, the presence of an isolated, concomitant TSI was neither significantly associated with mortality [\( \beta = -0.12 (-0.84\) to 0.59), \( p = 0.732\)] nor with unfavorable outcomes [\( \beta = 0.28 (-0.21\) to 0.77), \( p = 0.270\)], or full recovery [\( \beta = -0.29 (-0.76\) to 0.18), \( p = 0.228\)].

Frontiers in Neurology 04 frontiersin.org
Similar results were obtained in the logistic regression analysis (Supplementary Table S4), which showed that an isolated TSI, when controlling for age, sex, baseline GCS, performed cranial surgery, intracranial CT abnormalities, and ASA class, was neither a significant predictor of full recovery \( (p = 0.084) \) nor of unfavorable outcomes \( (p = 0.184) \) or death \( (p = 0.355) \) in our cohort. To put these results into a broader context, we performed a similar analysis but examined patients with TBI and concomitant TSI in conjunction with systemic injuries (i.e., non-isolated TSI) instead of an isolated TSI. In comparison with a matched cohort, TSI with concomitant systemic injuries in patients with TBI was negatively associated with full recovery \( (p \leq 0.001) \), but not with unfavorable outcomes \( (p = 0.130) \) or mortality \( (p = 0.282) \). In logistic regression analysis, a TSI with systemic injuries was a significant negative predictor of full recovery \( (p < 0.001) \) and unfavorable outcomes \( (p = 0.003) \), but not mortality \( (p = 0.355; \text{Supplementary Table S4}) \).

When only patients with mTBI were included in a subgroup analysis, no significant associations between isolated TSI and full recovery \( \beta = -0.468 (-1.127 \text{ to } 0.190), p\text{-value} = 0.160 \) and unfavorable outcomes \( \beta = 0.899 (-0.175 \text{ to } 1.973), p\text{-value} = 0.099 \) were seen when using propensity score matching. In the logistic regression analysis, isolated TSI was a significant negative predictor of full recovery \( \beta = -0.507 (-0.994 \text{ to } 0.012), p = 0.042 \) and a predictor of unfavorable outcomes \( \beta = 0.770 (0.145 \text{ to } 1.394), p = 0.016 \). In mTBI patients with TSI and systemic injuries, TSI was significantly associated with unfavorable outcomes \( \beta = 0.853 (0.006 \text{ to } 1.699), p\text{-value} = 0.048 \) and inversely with full recovery \( \beta = -1.311 (-1.925 \text{ to } -0.698), p\text{-value} < 0.001 \) in the propensity score-matching analysis. Similarly, in the logistic regression analysis, a TSI in mTBI patients with systemic injuries was significantly associated with unfavorable outcomes \( \beta = 1.150 (0.610 \text{ to } 1.691), p < 0.001 \) and, in a negative direction, with full recovery \( \beta = -1.345 (-1.772 \text{ to } -0.918), p < 0.001 \). The outcome analysis was not performed for mortality in the subgroup analysis of patients with mTBI due to the very low mortality rate (i.e., zero, and three patients among mTBI patients with isolated and non-isolated TSI were dead at the follow-up timepoint after 6 months, respectively) in this subgroup.

**Discussion**

While there is a wealth of epidemiological data on TBI studied from an SCI perspective, the potential role of a simultaneous TSI in exacerbating neurological deficits in patients with TBI remains largely unexplored. This study reported on concomitant TSI using data from a large prospectively followed up cohort of patients presenting with TBI as their main diagnosis and provided propensity-matching analyses to determine the influence of such injury on their global functional outcomes.

In this cohort, the rate of patients with TBI sustaining further isolated injury of at least serious intensity to the spine was found to be 4%. The rift between our current findings and previous analyses indicating higher rates of TSI in patients with TBI of up to 13% \( (10) \) could well be attributed to differences in the applied methodology, especially as to what is defined as an “injury.” One key difference could be the AIS used in this study. The AIS is a standardized tool to reliably classify injuries and assess their severity \( (18, 19) \). Patients with TBI were regarded to have suffered a concomitant TSI when the AIS score of the cervical, thoracic, or lumbar spine satisfied at least serious severity. In this functional outcome-oriented analysis, thresholds for defining TSI were set as a trade-off between including patients with very minor and clinically negligible injuries that would otherwise skew the analysis and over-estimate TSI in patients with TBI vs. solely including patients undergoing surgical spinal stabilization and hence overlooking patients sustaining TSI with a “relevant” burden of disease that was managed non-surgically.

In a similar vein, an analysis excluding patients showing further injuries beyond TSI was envisaged to help eliminate possible confounders through further injuries (for example, to the skeletal system), and, therefore, yield a less-biased analysis that could compare characteristics and outcomes of isolated TSI+TBI vs. TBI-only patients. Indeed, further propensity-matching and logistic regression analyses compared patients with TBI, and systemic injuries (that included TSI) did show systemic injuries to be associated with unfavorable outcomes and to prevent full recovery.

Confirming data in previous studies, more than 60% of the spinal injuries diagnosed in our cohort were cervical \( (10) \). This was previously linked to the physiological bio-mechanical proximity of the cervical spine to the head \( (20) \), rendering concomitant injury to the cervical spine in TBI cases more likely than to other regions of the spine \( (10) \). Regarding injury causes, incidental falls and road traffic accidents accounted for the majority of TBIs \( (47 \text{ and } 40\%), \text{respectively} \). On the one hand, the rate of road traffic accidents seems to be higher in this cohort than what has been previously reported in (isolated) TBI in high-income countries \( (21) \), which lends grounds for speculation that road accidents (which are usually poly-traumas in nature), might contribute to an increased risk of concomitant injury, especially with previous studies showing a high proportion of SCI patients with TBI to be victims of road traffic accidents \( (9) \). In addition, motor traffic accidents and herein old age, in particular, have been associated with higher odds of cervical spine injury \( (22) \). On the other hand, the larger proportion of incidental falls confirms a worldwide trend of increasing TBI rates secondary to falls of the elderly \( (4) \). In this cohort, patients with suspected or confirmed alcohol use amounted to 26%. Indeed, alcohol has been previously shown to be the strongest risk factor for clinical TBI in patients with SCI \( (7) \), hinting at the possibility that this could be another factor that fosters concomitant injury.
Missed diagnosis of simultaneous spinal injury in patients with TBI was deemed detrimental in the past and accounted for further neurological deterioration (11), especially because patients suffering severe TBI are difficult to assess clinically and possess a higher risk of sustaining injuries to the cervical spine (12). In terms of prognosis, this observation is, however, not reflected by the data we present, in which outcomes were comparable between TBI+TSI and TBI-only patients. Rather, it is conceivable that the probability of missing relevant spine trauma in the wake of comprehensive CT and MRI imaging (that was less available 20 years earlier (11)) in the participating study centers should be low. This is further supported by the fact that in this cohort, 86% of the patients were primarily transported to a more specialized trauma center (part of the CENTER-TBI study group) where the availability of the necessary infrastructure for diagnosis and treatment of spine trauma (especially spine stabilization surgery) is expected to be higher. It is therefore advisable that given the relevant rate of TSI in patients with TBI and the complex spine surgery these patients might potentially require, patients with TBI are primarily presented to specialized trauma centers of maximum care, especially when concomitant TSI is suspected. This effect could indeed be of even more relevance in the context of patients with mTBI since our analysis demonstrated how in the case of the subgroup of patients with mTBI, isolated TSI (or TSI in conjunction with systemic injuries) does indeed hinder full recovery and negatively influence outcomes.

Although most of the patients in the TBI+TSI cohort were admitted to the ICU, there was no significant difference in mortality when comparing them to patients with isolated TBI in our study. This hints at the possibility that in TBI patients with concomitant TSI, the intracranial injury still represents the main prognosis-limiting factor, especially in severe and moderate TBI. The disparity between the findings on patients with mTBI and all patients of the cohort emphasizes on how the prognosis of patients with moderate and severe TBI is limited by their cranial injury and how TSI becomes more relevant in patients sustaining mTBI, that are otherwise less limited in terms of their neurological outcomes. The question is to whether the necessity of intubation and mechanical ventilation is a result of loss of consciousness owing to TBI or of respiratory failure secondary to injury of the cervical spine remains and cannot be explored using the data provided, although previous reports have indicated the presence of the latter patient group (12).

Similarly, two-thirds of the patients in the TBI+TSI cohort showed a favorable outcome (divided in half between complete recovery and incomplete recovery with a GOSe > 5), leaving a third with unfavorable outcomes in our current analysis. Interestingly, an older study estimated patients with the recovery of neurological function after severe and moderate TBI and concomitant cervical TSI (no mTBI included) to be at about a third (11), which is very comparable to the data we present.

Apart from that, little data have been provided in previous epidemiological studies on the specific functional outcomes of TBI patients with concomitant TSI. This once again emphasizes the importance of the data presented in this study, in which the rates of mortality and unfavorable outcomes in TBI patients with concomitant TSI were comparable to the respective rates observed in a matched group of TBI patients without TSI.

In summary, this analysis of prospective observational data sheds light on the current prognosis of patients suffering from TBI with a concomitant isolated or non-isolated TSI in the CENTER-TBI participating centers, showing an outcome that is comparable with what is known in the literature (15). The data presented underscore the role of specialized trauma care centers in preventing further neurological deterioration owing to concomitant TSI especially in patients with mTBI through early detection and adequate therapy of spine trauma.

Limitations

Several important limitations must be noted. As an observational study focused on TBI, in general, no additional information on the exact nature of the spine injury or its treatment (that included surgical details) was recorded in the CENTER-TBI database. Thus, injuries to the spinal cord could have been present in some patients but not in others, potentially leading to a considerable heterogeneity for the variable “spine trauma.” This should be considered when interpreting our current results. Additional studies are needed to assess how different types of spine and spinal cord injuries relate to outcomes in patients with TBI. To the same end, detailed parameters assessing specifically the spine function, such as motor and sensory function of the extremities, as well as the function of the autonomic nerve system, were not available but would be desirable both for the description of the baseline clinical status and for the evaluation of recovery at follow-up. In terms of outcome analysis, the matching process is dependent on the chosen covariables and unmeasured covariables that might play an important role are not accounted for. Finally, as only TBI patients with concomitant spine trauma were included, the sample sizes of the different subgroups of patients in our analyses were limited. Larger cohorts are needed for a more robust generalizability and to possibly detect more subtle effects of a concomitant spine injury on outcomes in patients with TBI.

Data availability statement

The data analyzed in this study was obtained from the CENTER-TBI database; the following licenses/restrictions apply: Upon a reasonable request, access to the dataset must first be reviewed and approved by the CENTER-TBI Management Committee and should be directed to https://www.center-tbi.eu/data.
Ethics statement

Ethical approval was obtained for each recruiting site. A complete list is given on https://www.center-tbi.eu/project/ethical-approval or as available as a Supplementary file. All participants had to give their written informed consent before enrollment in CENTER-TBI.

Author contributions

Study concept and design and data collection and analysis: LR and AY. Data interpretation and reviewing and editing: LR, OA, AU, and AY. Writing the manuscript: LR and OA. Supervision: AY. All authors approved the final version of the submitted manuscript.

Funding

CENTER-TBI was supported by the European Union 7th Framework program (EC Grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from Onemind (USA), and Integra LifeSciences Corporation (USA). Those funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication.

CENTER-TBI investigators and participants

Cecilia Åkerlund1, Kristzina Amrein2, Nada Andelic3, Lasse Andressen1, Audnya Anke3, Anna Antoni4, Gérard Audibert5, Philippe Azouvi8, Maria Luisa Azzolini9, Ronald Bartels10, Pål Barzó11, Romuald Beauvais12, Ronny Beer13, Bo-Michael Bellander14, Antonio Bello15, Habib Benali16, Maurizio Berardino17, Luigi Beretta9, Morten Blaabjerg18, Peter Bragge19, Alexandra Brazinova20, Vibeke Brinck21, Joanne Brooker22, Camilla Brorsson23, Andras Bukó24, Monika Bullinger25, Manuel Cabeleira26, Alessio Caccioppola27, Emiliana Calappi27, Maria Rosa Calvi9, Peter Cameron28, Guillermo Carbayo Lozano29, Marco Carbonara27, Simona Cavallo17, Giorgio Chevallard30, Arturo Chiaregato30, Giuseppe Citerio31,22, Hans Clusmann13, Mark Coburn34, Jonathan Coles35, Jamie D. Cooper36, Marta Correia37, Andras Covic38, Nicola Curry39, Endre Czeiter40, Marek Czosnyka41, Claire Dahoyt-Fizelier40, Paul Dark41, Helen Dawes42, Véronique De Keyser43, Vincent Degos16, Francesco Della Corte44, Hugo den Boogert10, Bart Depiret45, Dula Dilves46, Abhishek Dixit47, Emma Donoghue22, Jens Dreier48, Guy-Loup Dulière49, Ari Ercol47, Patrick Esser42, Erzsébet Ezső50, MartinFabricius51, Valery L. Feigin62, Kelly Foks53, Shirin Frisvold54, Alex Furmanov55, Pablo Gagliardo56, Damien Galanaud16, Dashiell Gantner28, Guoyi Gao57, Pradeep George58, Alexandre Ghuysen59, Lelede Giga60, Ben Gloeck61, Jagoš Golubovic46, Pedro A. Gomez62, Johannes Gratza3, Benjamin Gravesteijn64, Francesca Grossi44, Russell L. Gruen65, Deepak Gupta66, Juanita A. Haagsm64, Iain Haitsma67, Raimund Helbok13, Eirik Helseth68, Lindsay Horton69, Jilské Huijben64, Peter J. Hutchinson70, Bram Jacobs71, Stan Jankowski72, Mike Jarrett21, Ji-yao Jiang58, Faye Johnson73, Kelly Jones25, Mladen Karan46, Angelos G. Kolias70, Erwin Kompanje74, Daniel Kondziella51, Evgenios Kornaropoulos67, Lars-Owe Koskinen75, Noémi Kovács76, Ana Kowark77, Alfonso Lagares62, Linda Lanyon28, Steven Laureys78, Fiona Lecky79,80, Didier Ledoux78, Rolf Lefering81, Valerie Legrand82, Aurelie Lejeune83, Leon Levi84, Roger Lightfoot85, Hester Lingsma86, Andrew I.R. Maas43, Ana M. Castaño-León62, Marc Maegle86, Marek Majdan20, Alex Manara87, Geoffrey Manley88, Costanza Martino89, Hugues Maréchal90, Julia Mattern90, Catherine McMahon91, Béla Melegh92, David Menon47,7, Tomas Menovský43, Ana Mikolíc64, Benoît Missel78, Visakh Muraleedharan98, Lynnette Murray88, Anastasia Negru35, David Nelson1, Virginia Newcombe47, Daan Nieboer64, Józef Nyrårdi4, Otsile Olubukola73, Matej Oresic94, Fabrizio Ortolano27, Aarno Palotie56,9,97, Paul M. Parizel98, Jean-François Payen99, Natascha Perera12, Vincent Perlberg16, Paolo Persona100, Wilco Peul101, Anna Piippo-Karjalainen102, Matti Pirinen95, Dana Piscia64, Horia Ples93, Suzanne Polinder64, Inigo Pomposo29, Jussi P. Posti103, Louis Puypebasest104, Andreea Radoi105, Arminas Ragauskas106, Rahul Raj107, Malinka Rambasadagolla107, Isabel Retel Helmrich64, Jonathan Rhodes108, Sylvia Richardson109, Sophie Richter47, Samuli Ripatti105, Saulius Rocka106, Cecilia Roe110, Olav Roise111,112, Jonathan Rosand113, Jeffrey V. Rosenfeld114, Christina Rosenlund115, Guy Rosenthal55, Rolf Rossaint77, Sandra Rossi100, Daniel Rueckert61, Martin Rusnak116, Juan Sahuquillo105, Olivier Sakowitz27,117, Renan Sanchez-Porras117, Janos Sandor118, Nadine Schäfer81, Silke Schmidt119, Herbert Schocch120, Guus Schoonman121, Rico Frederik Schou122, Elisabeth Schwendenwein66, Charlie Sewale6, Ranjit D. Singh101, Toril Skandsen123,124, Peter Smielewski66, Abayomi Solon125, Emmanuel Stamatakis17, Simon Stannworth39, Robert Stevens126, William Stewart127, Ewout W. Steyerberg66,128, Nino Stocchetti129, Nina Sundström130, Rikka Takala131, Viktória Tamás125, Tomas Tamosiutis132, Mark Steven Taylor20, Braden Te Ao52, Olli Tenovuo133, Alice Theadom52, Matt Thomas87, Dick Tibboel33, Marjolein Timmers74, Christos Tolias134, Tony Trapani28, Cristina Maria Tudora93, Andreas Unterberg90, Peter Vajkoczy35, Shirley Vallance28, Egils Valeinis60, Zoltán Vámó60, Mathieu van der Jagt136, Gregory Van der Steen43, Jouke van der Naalt71, Jeroen T.J.M. van Dijck101, Inge A. van Erp101, Thomas A. van Essen101, Wim Van Hecke37, Caroline van Heugten42, Dominique Van Praag138, Ernest van Veen84, Thijs Vande Vyver137, Roel P. J. van Wijk101, Alessia Vargiolu12, Emmanuel Vega93, Kimberley Veh43, Jan Verheyden137, Paul M. Vespa139, Anne Vl123,140, Rimantas Vilcinis132,
Victor Volovic67, Nicole von Steinbüchel38, Daphne Voormolen64, Petar Vulekovic46, Kevin K.W. Wang141, Daniel Whitehouse47, Eveline Wiegers64, Guy Williams47, Lindsay Wilson69, Stefan Winzeck47, Stefan Wolf142, Zhihui Yang113, Peter Ylen143, Alexander Young90, Frederick A. Zelej47,144, Veronika Zelinkova20, Agate Ziverte60, Tommaso Zoerle27
1 Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
2 János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
3 Division of Surgery and Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
4 Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway
5 Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway, Tromso, Norway
6 Trauma Surgery, Medical University Vienna, Vienna, Austria
7 Department of Anesthesiology & Intensive Care, University Hospital Nancy, Nancy, France
8 Raymond Poincare hospital, Assistance Publique – Hopitaux de Paris, Paris, France
9 Department of Anesthesiology & Intensive Care, S Raffaele University Hospital, Milan, Italy
10 Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
11 Department of Neurosurgery, University of Szeged, Szeged, Hungary
12 International Projects Management, ARTTIC, Munchen, Germany
13 Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
14 Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska University Hospital, Stockholm, Sweden
15 NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
16 Anesthesie-Réanimation, Assistance Publique – Hopitaux de Paris, Paris, France
17 Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino - Orthopedic and Trauma Center, Torino, Italy
18 Department of Neurology, Odense University Hospital, Odense, Denmark
19 BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria, Australia
20 Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
21 Qugesen Systems Inc., Burlingame, CA, United States
22 Australian & New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
23 Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden
24 Department of Neurosurgery, Medical School, University of Pécs, Hungary and Neurotrauma Research Group, János Szentágothai Research Centre, University of Pécs, Hungary
25 Department of Medical Psychology, Universitätshospital Hamburg-Eppendorf, Hamburg, Germany
26 Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
27 Neuro ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
28 ANZIC Research Centre, Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, Victoria, Australia
29 Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain
30 Neurolntensive Care, Niguarda Hospital, Milan, Italy
31 School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy
32 Neurolntensive Care, ASST di Monza, Monza, Italy
33 Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
34 Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
35 Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
36 School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
37 Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom
38 Institute of Medical Psychology and Medical Sociology, Universitätmedizin Göttingen, Göttingen, Germany
39 Oxford University Hospitals NHS Trust, Oxford, United Kingdom
40 Intensive Care Unit, CHU Poitiers, Poitiers, France
41 University of Manchester NIHR Biomedical Research Centre, Critical Care Directorate, Salford Royal Hospital NHS Foundation Trust, Salford, United Kingdom
42 Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
43 Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
44 Department of Anesthesia & Intensive Care, Maggiore della Carità Hospital, Novara, Italy
45 Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
46 Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
47 Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
48 Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
49 Intensive Care Unit, CHR Citadelle, Liège, Belgium
50 Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary
51 Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region Hovedstaden Righospitalet, Copenhagen, Denmark
52 National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
53 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
54 Department of Anesthesiology and Intensive care, University Hospital Northern Norway, Tromso, Norway
55 Department of Neurosurgery, Hadassah-hebrew University Medical center, Jerusalem, Israel
56 Fundación Instituto Valenciano de Neurorehabilitación (FIVAN), Valencia, Spain
57 Department of Neurosurgery, Shanghai Renji hospital, Shanghai Jiaotong University/school of medicine, Shanghai, China
58 Karolinska Institute, INCF International Neuroinformatics Coordinating Facility, Stockholm, Sweden
59 Emergency Department, CHU, Liège, Belgium
60 Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia
61 Department of Computing, Imperial College London, London, United Kingdom
62 Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
63 Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Austria
64 Department of Public Health, Erasmus Medical Center – University Medical Center, Rotterdam, The Netherlands
65 College of Health and Medicine, Australian National University, Canberra, ACT, Australia
66 Department of Neurosurgery, Neurosciences Centre & JPN Apex trauma centre, All India Institute of Medical Sciences, New Delhi, India
67 Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands
68 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
69 Division of Psychology, University of Stirling, Stirling, United Kingdom
70 Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital & University of Cambridge, Cambridge, United Kingdom
71 Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
72 Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
73 Salford Royal Hospital NHS Foundation Trust Acute Research Delivery Team, Salford, United Kingdom
74 Department of Intensive Care and Department of Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
75 Department of Clinical Neuroscience, Neurosurgery, Umeå University, Umeå, Sweden
76 Hungarian Brain Research Program - Grant No. KTIA_13_NAP-A-II/8, University of Pécs, Pécs, Hungary
77 Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany
78 Cyclotron Research Center, University of Liège, Liège, Belgium
79 Centre for Urgent and Emergency Care Research (CURE), Health Services Research Section, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
80 Emergency Department, Salford Royal Hospital, Salford, United Kingdom
81 Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, Germany
82 VP Global Project Management CNS, ICON, Paris, France
83 Department of Anesthesiology-Intensive Care, Lille University Hospital, Lille, France
84 Department of Neurosurgery, Rambam Medical Center, Haifa, Israel
85 Department of Anesthesiology & Intensive Care, University Hospitals Southampton NHS Trust, Southampton, United Kingdom
86 Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic Surgery and Sportmedicine, Witten/Herdecke University, Cologne, Germany
87 Intensive Care Unit, Southmead Hospital, Bristol, Bristol, United Kingdom
88 Department of Neurological Surgery, University of California, San Francisco, CA, United States
89 Department of Anesthesia & Intensive Care,M. Bufalini Hospital, Cesena, Italy
90 Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
91 Department of Neurosurgery, The Walton centre NHS Foundation Trust, Liverpool, United Kingdom
92 Department of Medical Genetics, University of Pécs, Pécs, Hungary
93 Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara, Romania
Riemann et al.

94 School of Medical Sciences, Örebro University, Örebro, Sweden
95 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
96 Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
97 Program in Medical and Population Genetics; The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, United States
98 Department of Radiology, University of Antwerp, Edegem, Belgium
99 Department of Anesthesiology & Intensive Care, University Hospital of Grenoble, Grenoble, France
100 Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di Padova, Padova, Italy
101 Dept. of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Dept. of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
102 Department of Neurosurgery, Helsinki University Central Hospital
103 Division of Clinical Neurosciences, Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland
104 Department of Anesthesiology and Critical Care, Pitié-Salpêtrière Teaching Hospital, Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France
105 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Barcelona, Spain
106 Department of Neurosurgery, Kaunas University of technology and Vilnius University, Vilnius, Lithuania
107 Department of Neurosurgery, Rezekne Hospital, Latvia
108 Department of Anaesthesia, Critical Care & Pain Medicine NHS Lothian & University of Edinburgh, Edinburgh, United Kingdom
109 Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, United Kingdom
110 Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University of Oslo, Oslo, Norway
111 Division of Orthopedics, Oslo University Hospital, Oslo, Norway
112 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
113 Broad Institute, Cambridge MA Harvard Medical School, Boston MA, Massachusetts General Hospital, Boston MA, United States
114 National Trauma Research Institute, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
115 Department of Neurosurgery, Odense University Hospital, Odense, Denmark
116 International Neurotrauma Research Organisation, Vienna, Austria
117 Klinik für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany
118 Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary
119 Department Health and Prevention, University Greifswald, Greifswald, Germany
120 Department of Anaesthesiology and Intensive Care, AUV Trauma Hospital, Salzburg, Austria
121 Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Netherlands
122 Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital, Odense, Denmark
123 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
124 Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
125 Department of Neurosurgery, University of Pécs, Pécs, Hungary
126 Division of Neuroscience Critical Care, John Hopkins University School of Medicine, Baltimore, USA
127 Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, United Kingdom
128 Dept. of Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
129 Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milano, Italy
130 Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
131 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
132 Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania
133 Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
134 Department of Neurosurgery, Kings college London, London, United Kingdom
135 Neurologie, Neurochirurgie und Psychiatrie, Charité – Universitätsmedizin Berlin, Berlin, Germany
136 Department of Intensive Care Adults, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
137 icoMetrix NV, Leuven, Belgium
138 Psychology Department, Antwerp University Hospital, Edegem, Belgium
139 Director of Neurocritical Care, University of California, Los Angeles, United States
that could be construed as a potential conflict of interest.

Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2022.861688/full#supplementary-material

Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships.

References
1. James SL, Theadom A, Ellenbogen RG, Bannick MS, Mountjoy-Venning WC, Lucches LR. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. (2019) 18:56-87. doi: 10.1016/S1474-4422(18)30415-0
2. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill Summ. (2017) 66:1-16. doi: 10.15585/mmwr.ss6609a1
3. Maas AIR, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. (2008) 7:728-41. doi: 10.1016/S1474-4422(08)70164-9
4. Iaccarino C, Carretta A, Nicolosi F, Morselli C. Epidemiology of severe traumatic brain injury. J Neurosurg Sci. (2018) 62:535-41. doi: 10.23736/S0390-5616.18.04532-0
5. Macciocchi S, Seel RT, Thompson N, Byams R, Bowman B. Spinal cord injury and co-occurring traumatic brain injury: assessment and incidence. Arch Phys Med Rehabil. (2008) 89:1350-7. doi: 10.1016/j.apmr.2007.11.055
6. Tolonen A, Turkka J, Salonen O, Ahoniemi E, Alaranta H. Traumatic brain injury is under-diagnosed in patients with spinal cord injury. J Rehabil Med. (2007) 39:622-6. doi: 10.2340/16501977-0101
7. Hagen EM Eide GE, Rekand T, Gilhus NE, Gronning M. Traumatic spinal cord injury and concomitant brain injury: a cohort study. Acta Neurol Scand Suppl. (2010) (190):51-7. doi: 10.1111/j.1600-0404.2010.01376.x
8. Sharma B, Bradbury C, Mikulski D, Green R. Missed diagnosis of traumatic brain injury in patients with traumatic spinal cord injury. J Rehabil Med. (2014) 46:370-3. doi: 10.2340/16501977-1261
9. Budisin B, Bradbury CC, Sharma B, Hitzig SL, Mikulski D, Craven C, et al. Traumatic brain injury in spinal cord injury: frequency and risk factors. J Head Trauma Rehabil Jul-Aug. (2016) 31:E33-42. doi: 10.1097/HTR.0000000000000153
10. Pandrich MJ, Demitreades AK. Prevalence of concomitant traumatic cranio-spinal injury: a systematic review and meta-analysis. Neurosurg Rev. Feb. (2020) 43:69-77. doi: 10.1007/s10143-018-0998-3
11. Holly LT, Kelly DR, Counsell GS, Blinnman T, McArthur DL, Cryer HG. Cervical spine trauma associated with moderate and severe head injury: incidence, risk factors, and injury characteristics. J Neurosurg. (2002) 96:285-91. doi: 10.3171/spi.2002.96.3.0285
12. Tian HL, Guo Y, Hu J, Rong BY, Wang G, Gao WW, et al. Clinical characterization of comatose patients with cervical spine injury and traumatic brain injury. J Trauma Acute Care Surg. (2009) 67:1305-10. doi: 10.1097/TA.0b013e31819db57c
13. Macciocchi SN, Bowman B, Coker I, Apple D, Leslie D. Effect of co-morbid traumatic brain injury on functional outcome of persons with spinal cord injuries. Am J Phys Med Rehabil Jan. (2004) 83:22-6. doi: 10.1097/01.PHM.0000104661.86307.91
14. Maas AI, Menon DK, Steyerberg EW, Citerio G, Lecky F, Manley GT, et al. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery. (2015) 76:67-80. doi: 10.1227/NEU.0000000000000575
15. Steyerberg EW, Wiegars E, Sewalt C, Buki A, Citerio G, De Keyser Y, et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. (2019) 18:923-34. doi: 10.1016/S1474-4422(19)30232-7
16. Gladizt J, Rubin, Donald B.: multiple imputation for nonresponse in surveys. John Wiley & Sons, Chichester – New York – Boston – Toronto – Singapore 1987, xxx, 258 S., 6 Abb., £ 30.25, ISSN 0271-6232.
17. Team RC. R: A Language and Environment for Statistical Computing. (2021). Available online at: https://www.r-project.org/ (accessed January 12, 2022).
18. Gennarelli TA, Wodzin E, AIS. 2005: a contemporary injury scale. Injury Dec. (2006) 37:1083–91. doi: 10.1016/j.injury.2006.07.009
19. Salottolo K, Settell A, Uribe P, Akin S, Stone DS, O’Neal E, et al. The impact of the AIS 2005 revision on injury severity scores and clinical outcome measures. Injury Sep. (2009) 40:999–1003. doi: 10.1016/j.injury.2009.05.013
20. Swartz EE, Fordy RT, Cendoma M. Cervical spine functional anatomy and the biomechanics of injury due to compressive loading. J Athl Trau Jul-Sep. (2005) 40:155–61.
21. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurol. (2018) 1:11-18. doi: 10.3317/2017.10.11.NS17352
22. Fujii T, Paul M, Sasser S. Risk factors for cervical spine injury among patients with traumatic brain injury. J Emerg Trauma Shock. (2013) 6:252-8. doi: 10.4103/0974-2700.120365