Analytical study on Air India Traffic Using Artificial Neural Networks

Pushpalatha Sarla¹, D Mallikarjuna Reddy², Manohar D³, Ravikiran G⁴

¹ Department of Mathematics, Sumathi Reddy Institute of Technology for Women, Warangal, India
² Department of Mathematics, GITAM University, Hyderabad, India
³ Department of Mathematics, Anurag University, Hyderabad, India
⁴ Department of Mathematics, SR Engineering College, Warangal, India

E-mail: pushpa.sarla@gmail.com

Abstract: In the past few years, Artificial Neural Networks (ANNs) have become more popular as a revolutionary approach to forecasting the time series. The present paper discusses Artificial Neural Networks to forecast air traffic. In this study, we developed an Artificial Neural Network (ANN) model to predict the air traffic of Air India by using a Multi-Layer Perceptron network. For this, we have considered the number of passengers traveling monthly in different seasons from January 2012 to December 2019 by air India domestic flights. The results provided through the model were entirely satisfactory.

1. Introduction
In the fore studies, various stochastic models and exponential smoothing models have been discussed to analyze and forecast air traffic. In recent times Artificial Neural Networks (ANNs) have gradually more popular as a revolutionary approach to forecasting the time series. The present paper discusses Artificial Neural Networks to forecast air traffic. The field of Neural Network was established before the invention of computers, but Neural Network limitations are contemporary evolution. In 1943 the elemental artificial neuron was invented by Warren McCulloch, neurophysiologist [1]. Subsequently, artificial neurons were proposed by Hebbian [2] and perceptron [3]. The single-layer networks, which are called perceptron's, were introduced by Frank Rosenblatt [4]. Neural Network solves the problem by different approach than conventional computers [5]. Neural Network exercise instruction alike as human brain exercises [6]. The ANN comprises an immense amount of inter-linked neurons, which are the processing elements they work parallel in solving a particular problem. ANN is the processing of information patterns influenced by how organic neurological schemes like the spinal cord and brain exercise the information. Artificial Neural Network (ANN) has broader applications to real-world problems [7]. They are well suited for structure identification and categorization. ANNs got greater prominence in the analysis of time series as well as forecasting [8]. The ANN aims to pursue to identify structures in a given set. Afterward, the NN trained on a given data set detects a similar pattern in future data to make predictions (Mohie El-Din et al., 2017) [9].

Additionally, the study presents ANN application challenges, contributions, compare performances, and critiques methods. The study covers many ANN techniques applications in various disciplines, including computing, science, engineering, medicine, environmental, agriculture, mining, technology, climate, business, arts, and nanotechnology, etc. The study found that neural-network models such as feedforward and feedback propagation artificial neural networks are performing better in its application to human problems. Therefore, we proposed feedback propagation ANN models for research focus
based on data analysis like accuracy. Moreover, we recommend that instead of applying a single method, future research can focus on combining ANN models into one network-wide application. ANNs' full applications can be evaluated concerning data analysis factors such as accuracy, processing speed, latency, performance, fault tolerance, volume, scalability, and convergence [10].

2. Experimental Program

2.1. Materials and Methods

Air passengers' data for the years 2012 to 2018 indicates the number of passengers itinerant monthly by Air India on planned Domestic services, which explored in the introduction. The data had taken from the official DGCA (Director General of Civil Aviation) website. The monthly traveling data of air passengers by Air India has been deliberated. Table 1. Illustrate the number of Passengers traveled monthly by AIR INDIA Scheduled Domestic Flights from January 2012 to December 2018.

Sno.	Month/Year	Passengers	Sno.	Month/Year	Passengers	Sno.	Month/Year	Passengers
1	Jan-12	796467	29	May-14	983898	57	Sep-16	1117959
2	Feb-12	738710	30	Jun-14	931132	58	Oct-16	1030490
3	Mar-12	767293	31	Jul-14	885447	59	Nov-16	1068768
4	Apr-12	773982	32	Aug-14	878178	60	Dec-16	1245063
5	May-12	756425	33	Sep-14	909531	61	Jan-17	1265046
6	Jun-12	754231	34	Oct-14	1079368	62	Feb-17	1084609
7	Aug-12	684959	35	Nov-14	959403	63	Mar-17	1089418
8	Jul-12	691686	36	Dec-14	1133456	64	Apr-17	1086116
9	Sep-12	669342	37	Jan-15	1104361	65	May-17	1219997
10	Oct-12	852892	38	Feb-15	1010005	66	Jun-17	1149333
11	Nov-12	913426	39	Mar-15	996246	67	Jul-17	1179933
12	Dec-12	880300	40	Apr-15	999526	68	Aug-17	1176397
13	Jan-13	907261	41	May-15	1043708	69	Sep-17	1163026
14	Feb-13	804577	42	Jun-15	934155	70	Oct-17	1216153
15	Mar-13	907432	43	Jul-15	1032276	71	Nov-17	1271612
16	Apr-13	852743	44	Aug-15	1058866	72	Dec-17	1298442
17	May-13	933573	45	Sep-15	990986	73	Jan-18	1369342
18	Jun-13	809681	46	Oct-15	1015358	74	Feb-18	1259379
19	Jul-13	803943	47	Nov-15	1119595	75	Mar-18	1365653
20	Aug-13	908224	48	Dec-15	1217671	76	Apr-18	1345592
21	Sep-13	809330	49	Jan-16	1157645	77	May-18	1333851
22	Oct-13	799041	50	Feb-16	1085634	78	Jun-18	1238131
23	Nov-13	861128	51	Mar-16	1086743	79	Jul-18	1255241
24	Dec-13	911763	52	Apr-16	1117795	80	Aug-18	1265214
25	Jan-14	874549	53	May-16	1246137	81	Sep-18	1173238
26	Feb-14	839258	54	Jun-16	1156490	82	Oct-18	1276807
27	Mar-14	951993	55	Jul-16	1177504	83	Nov-18	1242223
28	Apr-14	856146	56	Aug-16	1134913	84	Dec-18	1372904

(Source: Official Website of DGCA, http://www.dgca.nic.in)
2.2. Multi-Layer Perceptron
MLP is the most extensively used network structure of Artificial Neural Network in time series analysis, and it is a class of feed-forward Artificial Neural Network [11]. An MLP incorporates not less than three layers of nodes: one Input layer, one output layer, as well as one or higher hidden layers [12] (Masters T, 1983). The input layer acquires the action. The output layer creates a resolution or projection on the inserted data and allaying those two, a discretionary number of hidden layers, which are the Multi-Layer perceptron’s accurate reckoning mechanism. MLP implements a supervised studying course of action called backpropagation to train. Backpropagation is a prominent mathematical kit to upgrade the precision of projections in machine learning and data mining. ANN cultivates the action of the inserted data further along with its parameters in the direction of the instant of the resolution, after that back propagates instruction on the error, inverse by way of a network, with this it will revise the parameters. It arises in stages
• Network creates speculation on data based on the parameters.
• Error of network is enumerated using loss function.
• This error is backpropagated to regulate the erroneous specified parameters.

2.3. Backpropagation Algorithm
Backpropagation captures the error related to erroneous speculation via neural networks, as well as utilizes the error to regulate the parameters of neural networks in the track of minimum error. The weights for a specific node are altered in direct proportion to the connected units of the node. By applying an activation function to the weighted sum of inputs of a neuron, Output is produced. The activation function employed in this investigation is the sigmoid function represents the Equation (1).

$$Sigmoid\ function: \ \frac{1}{1+e^{-x}} \quad (1)$$

The Back-propagation rule of the Multi-Layer Perceptron learning algorithm includes starting weights are usually small random values and transfer function and adjust weights by starting from the output layer and working backward.

$$W_{ij}(t+1) = W_{ij}(t) + \eta \delta_{pj} O_{pj} \quad (2)$$

Equation (2) is used to measure the aggregate input to the neuron. The $W_{ij}(t)$ function represents the weights from the ith node to node jth node at time t, η is an expansion term, and δ_{pj} is an error term for the pattern p and the jth node. In Equation (3) and (4), the sum is over the k nodes in the following input and output layer units.

For output layer units: $\delta_{pj} = kO_{pj}(1 - O_{pj}) \ (t_{pj} - O_{pj}) \quad (3)$

For hidden layer units: $\delta_{pj} = kO_{pj}(1 - O_{pj}) \ \Sigma \delta_{pk}W_{jk} \quad (4)$

A component in the output layer directs its activity by ensuing a 2-step procedure.

Step1: It measures the total weighted input $X(j)$ using the formula
Where, y_i is the activity level in the previous layer of the j^{th} unit.

Step2: From equation (5), calculate the activity y_j of the total weighted input, the activities of all output units have been determined at once, the network computes the error E by using the Equation (6).

$$y_j = \frac{1}{1+e^{-x_j}}$$ \hspace{1cm} (5)

$$E = \frac{1}{2} \sum (y_i - d_i)^2$$ \hspace{1cm} (6)

In Equation (6), y_i indicates the activity intensity of the j^{th} element in the peak layer, and d_j indicates the expected result of the j^{th} element.

3. Numerical Results and Discussion

In the investigation, Multi-Layer Perceptron (MLP) network was chosen for the prediction of air traffic flow. For expanding the Artificial Neural Network (ANN) model, 84 months of data concerning the number of passengers traveled by Air India domestic services have been taken. Air traffic was considered as the input variable, and one hidden layer and output layer. Various Artificial Neural Network (ANN) models have been developed on the data set. In this study, ERROR, MSE, RMSE, and MAE values have been used to estimate the performance of the model and predicted the results. The specification of the models has been presented in table 2. It can be observed from table 2 that model 3, i.e., a neural network with three hidden neurons has minimum Error, Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) values. Therefore, it is used to predict future air traffic.

Table 2. Different Neural Network models' ERROR, MSE, RMSE, and MAE values of Air India.

Model	Hidden layer	Hidden neurons	ERROR	MSE	RMSE	MAE
M1	1	1	0.31842	5917114685.869600	76922.7839	64112.5062
M2	1	2	0.31776	5903147003.622080	76831.9400	63991.8400
M3	1	3	0.31696	5887281357.835080	76728.6215	63805.4018

From table 1, actual data of the number of passengers traveled monthly by air India scheduled domestic flights during January 2012 to December 2018 and predicted the number of passengers calculated by model 3 had been presented in Fig. 2. the representation of Original air traffic and Predicted air traffic data had been presented in Fig. 3. It is shown that there is a positive correlation between the actual and predicted traffic data. Fig. 4. Shown the Residual graph of the number of passengers traveled monthly by air India during the year Jan 2012 to Dec 2018.
4. Conclusions

In this study, we offered an Artificial Neural Network (ANN) model for predicting air traffic of Air India by using a Multi-Layer Perceptron (MLP) network. The results revealed by the model remained satisfactory. For Air India, the ANN architecture with one input layer, one hidden layer carrying three hidden neurons, and one output layer has been identified as the best model. For Indigo, the ANN architecture with one input layer, one hidden layer carrying four hidden neurons as well as one output layer has been identified as the best model. This kind of Analytical study is helpful for air carriers to revise their services.

5. References

[1] McCulloch, Warren and Walter Pitts 1943 A Logical Calculus of Ideas Immanent in Nervous Activity Bulletin of Mathematical Biophysics 5 115–33
[2] Hebb Donald 1949 The Organization of Behavior New York Wiley 978-1-135-63190-1
[3] Rosenblatt F and Perceptron 1958 The Perceptron A Probabilistic Model for the Organization of a Perceptron 65 43-98
[4] Rosenblatt F 1957 The perceptron A perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory

[5] Huang T J 2017 Imitating the brain with neurocomputer a new way towards artificial general intelligence International Journal Autom Comp 14 520-31

[6] Abid F Hamami L 2018 A survey of neural network-based automated systems for human chromosome classification Artif. Intell. Rev 49 41-56

[7] Hertz J A 2018 Introduction to the Theory of Neural Computation CRC Press

[8] Panarat S, Glenn S and Graham W 2015 Forecasting demand for Low-cost Carriers in Australia Using an Artificial Neural Network Approach Aviation 19 90–103

[9] Mohie El-Din M M, Farag M S and Abouzeid A 2017 Airline passenger forecasting in EGYPT (Domestic and International) International Journal of Computer Applications 165

[10] Dave V S and Dutta K 2014 Neural network-based models for software effort estimation A review: Artificial Intelligence Review 42 295-307

[11] Sing G, M Sachan Multi-layer perceptron (MLP) neural network technique for offline handwritten Gurmukhi character recognition IEEE International Conference on Computational Intelligence and Computing Research 1-5

[12] Lawrence R, Travis Gentry W and Bogdan Wilamowski, Neural network forecasting airlines: A comparative analysis Journal of Revenue and Pricing Management 14

[13] Irina Klevecka 2011 Short- Term traffic forecasting with Neural Networks Transport and Telecommunication 12 2

[14] Zeng D et al 2008 Short-term traffic flow prediction using hybrid ARIMA and ANN models Workshop on power electronics and intelligent transportation system 621–25

[15] Zheng W, Lee DH and Shi Q 2006 Short-term freeway traffic flow prediction Bayesian combined neural network approach Journal of Transportation Engineering 132 114–21

[16] Kranti Kumar, Manoranjan P and Vinod Kumar Katiyar 2015 Short Term traffic flow in Heterogeneous condition using Artificial Neural Network Transport 30 397-405

[17] Gooijer J G and Hyndman R J 2006 25 years of time series forecasting International Journal of Forecasting 22 443-73

[18] Holt C C 2004 Authors retrospective on Forecasting seasonal sand trends by exponentially weight moving averages (Discussion) International Journal of Forecasting 20 33

[19] Alamdari F and Fagan S 2005 Impact of the adherence to the original low-cost model on the profitability of low-cost airlines. Transport Reviews 25 377–92

[20] London Franke M 2004 Competition between network carriers and low-cost carriers-retreat battle or breakthrough to a new level of efficiency? Journal of air transport Management 10 15–21

[21] Gallego G and Van Ryzin G 1994 Optimal dynamic pricing of inventories with stochastic demand over finite horizons Management Science 40 999–1020

[22] Gudmundsson, S V 2004 Management emphasis and performance in the airline industry: an exploratory multilevel analysis Transportation Research E 40 443–46

[23] Saravanan K, Sasithra S Review 2014 on classification based on artificial neural networks International Journal Ambient Syst Appl (IIASA) 2 11-18

[24] Gallego G and Van Ryzin G 1994 Optimal dynamic pricing of inventories with stochastic demand over finite horizons Management Science 40 999–1020

[25] Gudmundsson S V 2004 Management emphasis and performance in the airline industry: an exploratory multilevel analysis. Transportation Research E 40 443–446

[26] Manohar Dingari, D.Mallikarjuna Reddy and V. Sumalatha “Air traffic Forecasting Using Artificial Neural Networks” International Journal of Scientific and Technology Research (ISSN: 2277-8616), Vol. 8, Issue.10, October 2019.