Research Article

Degree-Based Indices of Some Complex Networks

Lei Ding,1 Syed Ahtsham Ul Haq Bokhary2, Masood Ur Rehman13, Usman Ali12, Hirra Mubeen,2 Quaid Iqbal,4 and Jia-Bao Liu5

1School of Computer Engineering, Anhui Wenda University of Information Engineering, Hefei 231201, China
2Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
3Department of Basic Sciences, Balochistan University of Engineering and Technology Khuzdar, Khuzdar 89100, Pakistan
4Department of Mathematical Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
5School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, Anhui, China

Correspondence should be addressed to Masood Ur Rehman; masood@mail.ustc.edu.cn

Received 26 January 2021; Revised 28 February 2021; Accepted 3 March 2021; Published 17 March 2021

A topological index is a numeric quantity assigned to a graph that characterizes the structure of a graph. Topological indices and physico-chemical properties such as atom-bond connectivity (ABC), Randić, and geometric-arithmetic index (GA) are of great importance in the QSAR/QSPR analysis and are used to estimate the networks. In this area of research, graph theory has been found of considerable use. In this paper, the distinct degrees and degree sums of enhanced Mesh network, triangular Mesh network, star of silicate network, and rhenium trioxide lattice are listed. These edge partitions of these families of networks are tabulated which depend on the sum of degrees of end vertices and the sum of the degree-based edges. Utilizing these edge partitions, the closed formulae for some degree-based topological indices of the networks are deduced.

1. Introduction and Preliminary Results

A molecular graph is a representation of the structural formula of a chemical compound in terms of graph theory, whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds between atoms.

In the modern age, network structures have great significance in the field of chemistry, information technology, communication, and physical structures. Each network can be distinguished by a numeric quantity associated with it by defined rules under certain parameters. These rules are known as topological indices. Any numerical value allocated to a graph, which classifies the structure of a graph, is called a topological index. Popular and well-studied types of topological indices are degree-based topological indices, distance-based topological indices, and counting-related polynomials and indices of graphs. Degree-based topological indices are of great importance among these groups and play a strong role in chemical graph theory and in chemistry. More specifically, to guess the biological activity of various chemical compounds, these topological indices are used. In the evaluation of quantitative structure-activity (QSAR) and structure-property (QSPR), topological indices and physico-chemical properties such as atom-bond connectivity (ABC), Wiener index, Szeged index, Randić index, Zagreb indices [1], and geometric-arithmetic (GA) index are of great importance which are used to guess the bioactivity and properties of various chemical compounds.

The Wiener index is originally the first and most studied topological index. It was the first molecular topological index that was used in chemistry. Wiener shows that the Wiener index number is closely correlated with the boiling points of alkane molecules [2]. Later, work on the quantitative structure-activity relationships showed that it is also correlated with other quantities including the parameters of its critical point, the density, surface tension, and viscosity of its liquid phase, and the Van der Waals surface area of the molecule. After the Wiener index, the theory of topological indices began. In mathematical chemistry, there is a huge amount of topological indices of the form...
where d_i is the degree of each v_i and F is a pertinently picked function with the characteristic $F(x, y) = F(y, x)$. A huge amount of topological indices were introduced by various chemists in the advanced studies of indices. For different molecular families, several researchers have shown different computational and theoretical results related to certain topological indices and related them with energies of the graphs. If f_1, f_2, \ldots, f_d are the eigenvalues of the matrix TI, then energy can be defined as

$$e_{TI}(G) = \sum_{\lambda \in \sigma(T)} |\lambda|.$$

The most extensively studied graph energy is the Randic index. J. Rad et al. [3] analyzed the energy (Zagreb energy) and Estrada (Zagreb Estrada) index of a graph, and both are based on the Zagreb matrix’s eigenvalues. Furthermore, for these new graph invariants, they define upper and lower limits and relationships between them. The relationship between the Kirchhoff index and Laplacian graph energy is introduced by Das et al. [4]. Milovanovic et al. [5] gave some lower bound for Kirchhoff index as well some new lower bounds for the Laplacian graph of a graph in the same article. For any connected graph G, Bozkurt et al. [6] acquired an upper bound for distance energy. For the distance energy of connected diameter 2 graphs with given numbers of vertices and edges, they gave an upper bound. In addition, they also provide a lower bound for the distance energy of unicyclic graphs having odd girth. Alikhani et al. [7] compute the ABC index for some families of nanostars and unicyclic graphs having odd girth. Alikhani et al. [7] also compute the ABC index and defined

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{d_u + d_v - 2},$$

where G is a graph, d_u and d_v are the degrees of the vertices u and v.

Because of their great importance in chemistry, these topological indices are extensively studied by various mathematicians. Hayat and Imran compute the first Zagreb, GA, and GA5 indices of carbon nanotube network and fullerene networks. Mekadi and Hayat [11] compute the ABC index for these nanotubes. Similarly, they compute the ABC4 and GA5 indices of H-naphthalene nanotubes and chain silicate, silicate, oxide, polygonal, and honeycomb networks in [20, 21].

This paper deals with a specific organization form of matter. Other forms and description are given and discussed by different authors. For example, for the first time, Ali and Mehdi compute the GA index of $TUZC_6[p, q]$, $TUAC_6[p, q]$, $HC_5C_7[p, q]$, and $SC_5C_7[p, q]$ nanotubes in [22]. In [23], W. Lin et al. disprove Dimitrov’s “mo du luo7conjecture.” Shang established lower bounds for the Gaussian Estrada index in terms of the first Zagreb index and the number of vertices and edges in [24]. Also, Shang obtained the upper and lower bounds for the Laplacian Estrada index of G based on the vertex degrees of the graph G in [25]. The rest of the paper breaks as follows. Sections 2–5 contain the degree-based topological indices of enhanced mesh, triangular mesh, star of silicate network, and rhenium trioxide lattice, respectively. In Section 6, we give the conclusion of the paper and pose some open problems. Throughout this paper, (d_u, d_v) represents the number of edges of the graph G with end vertices of each edge having degrees d_u and d_v, respectively. Similarly, (S_u, S_v) denotes the number of edges of the graph G with end vertices of each edge having degree sum S_u and S_v, respectively. By degree sum S_u, it is meant to be the sum of degrees of all vertices adjacent to the vertex u.

Vukičević et al., in [15], introduced a well-known connectivity topological descriptor is geometric-arithmetic (GA) index and defined

$$GA(G) = \sum_{uv \in E(G)} \sqrt{d_u + d_v - 2}.$$
2. Enhanced Mesh

In this section, we study the degree-based topological descriptors of enhanced mesh network [26].

2.1. Construction. The graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates in the range 1, 2, . . . , n and y-coordinates in the range 1, 2, . . . , m and two vertices are connected by an edge whenever the corresponding points are at distance 1, is a common form of lattice graph. In other words, for the point set mentioned, it is a unit distance graph. The term n-mesh has also been given to various other types of graphs with a certain structure in the literature, such as the Cartesian product of a number of path graphs. The Cartesian product of paths of order \(a_1, a_2, \ldots, a_n\) is an n-mesh \(M(a_1, a_2, \ldots, a_n)\), which is defined as

\[
M(a_1, a_2, \ldots, a_n) = P_{a_1} \times P_{a_2} \times \cdots \times P_{a_n}
\]

For n-mesh, \(M(a_1, a_2, \ldots, a_n)\) has order

\[
|V(M(a_1, a_2, \ldots, a_n))| = a_1 a_2 \cdots a_n
\]

and size

\[
E(M(a_1, a_2, \ldots, a_n)) = a_1 a_2 \cdots a_n (n - \frac{1}{a_1} - \frac{1}{a_2} - \cdots - \frac{1}{a_n}).
\]

Here, we are going to discuss the enhanced 2-mesh network. A 2-mesh \(M(P_a \times P_a)\) has vertex set

\[
V = \{(i, j); 1 \leq i \leq m, 1 \leq j \leq n\}
\]

and the set

\[
E = \{((i, j), (i, j + 1)); 1 \leq i \leq m, 1 \leq j \leq n - 1\} \cup \{((i, j), (i + 1, j)); 1 \leq i \leq m - 1, 1 \leq j \leq n\},
\]

is an edge set. An enhanced mesh \(EM(P_a \times P_a)\) is resulted by replacing each 4-cycle of \(M(P_a \times P_a)\) by a wheel \(W_4\) on 4 vertices. Thus, a wheel \(W_4\) is a graph retrieved by joining the central vertex to each vertex of cycle \(C_4\). The hub (central vertex) of \(W_4\) is a new vertex.

Assume that \(h_{ij}, 1 \leq i \leq m - 1, 1 \leq j \leq n - 1\), is the collection of all hub (central) vertices.

Theorem 1. For \(m, n \geq 5\) and \(a, b, c \in R\), the ABC index of enhanced mesh \(EM(P_a \times P_a)\) is

\[
ABC(EM(P_a \times P_a)) = abm + bmn + cnm = 3.1715mn - 2.2641 (m + n) + 1.7492.
\]

Proof. Suppose that \(G\) is a graph of enhanced mesh. The set of all distinct degrees \(d_u\) for \(u \in V(EM(m, n))\) is \{3, 4, 5, 8\}. From Figure 1, we see that the number of edges of type (3, 4) and (3, 5) are 4 and 8, respectively.

Every vertex that is lying on the boundary of the graph \(EM(m, n)\), except the corner vertices, are of degree 5 and the oblique edges which are adjacent to the vertex of degree 4 are edges of type (4, 5). There are total \(2(m - 2) + 2(n - 2) = 2m + 2n - 8 = 2(m + n - 4)\) vertices on the boundary of degree 5, and each vertex induces two edges of type (4, 5). Thus, the number of edges of type (4, 5) is \(4(m + n - 4)\).

The central vertex of each wheel graph \(W_4\) is of degree 4. This implies that there are total \((m - 1)(n - 1)\) vertices of degree 4. The 4 corner vertices of degree 4 induces one edge of type (4, 8), and the remaining \(2(m - 3) + 2(n - 3) = 2(m + n - 6)\) vertices lying adjacent to the boundary vertices induces 2 edges of type (4, 8). Each of the remaining \((m - 3)(n - 3)\) vertices of degree 4 induces 4 edges of type (4, 8). Thus, the number of edges of type (4, 8) is \(4 + 4(m + n - 6) + 4(m - 3)(n - 3) = 4(mn - 2m - 2n + 4)\).

There are total \(2(m + n - 4)\) vertices on the boundary of the graph \(G\) which are of degree 5. Each vertex induces one edge of type (5, 8) and two edges of type (4, 5). Thus, the number of edges of type (5, 8) are \(4(m + n - 4)\). Furthermore, there are total \(4(m + n - 6)\) edges of type (5, 5). This edge partition of enhanced mesh based on the degrees of end vertices is shown in Table 1.

Now, by using this edge partition, we compute the ABC index of enhanced mesh as follows:

\[
ABC(G) = \sum_{u \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_ud_v}}
\]

This implies that

\[
ABC(G) = 4\sqrt[4]{\frac{3 + 4 - 2}{3 \cdot 4} + \frac{3 + 5 - 2}{3 \cdot 5} + 4(m + n - 4)\sqrt[4]{\frac{4 + 5 - 2}{4 \cdot 5} + 4(mn - 2m - 2n + 4)\sqrt[4]{\frac{4 + 8 - 2}{4 \cdot 8}}}} + 2(m + n - 6)\sqrt[4]{\frac{5 + 5 - 2}{5 \cdot 5} + 2(m + n - 4)\sqrt[4]{\frac{5 + 8 - 2}{5 \cdot 8} + (2mn - 5m - 5n + 12)\sqrt[4]{\frac{8 + 8 - 2}{8 \cdot 8}}}.
\]
For any \(m, n \geq 5 \) and \(\eta, \nu = \mu, c_1 \in R \), the GA index of enhanced mesh \(EM(P_{a_1} \times P_{a_2}) \) is
\[
GA(EM(P_{a_1} \times P_{a_2})) = \eta mn + \nu m + \mu n + c_1 \approx 6.7712mn - 4.6212(m + n) + 11.8948.
\]

Proof. Suppose that \(G \) is a graph of enhanced mesh. The corner vertices have degree sum 14. The corner hub vertex has degree sum 21. The vertices adjacent to corner vertices have degree sum 24. The remaining vertices lying on the boundaries of the graph and the adjacent hub vertices (except the corner hub vertices) has degree sum 26. The remaining hub vertices has degree sum 32. The 8 degree vertices adjacent to the corner hub has degree sum 42. The 8 degree vertices adjacent to the corner vertices lying on the boundary of graph have degree sum 45. All the remaining 8 degree vertices has degree sum 48. Thus, the set of all distinct degree sums \(S_u \) for \(u \in V(EM(m, n)) \) is \(\{14, 21, 24, 26, 32, 42, 45, 48\} \). Using this information, the edge
Table 2: Edge partition of EM\((m, n)\) on the basis of the sum of vertices which is a distance unit from the end vertices of each edge.

\((S_u, S_v)\) where \(uv \in E(G)\)	Number of edges
\((14, 21)\)	4
\((14, 24)\)	8
\((21, 24)\)	8
\((21, 42)\)	4
\((24, 26)\)	16
\((24, 42)\)	8
\((26, 26)\)	2\((3m + 3n - 26)\)
\((26, 42)\)	8
\((26, 45)\)	6\((m + n - 8)\)
\((32, 42)\)	4
\((32, 45)\)	4\((m + n - 8)\)
\((32, 48)\)	4\((m + n - 10)\)
\((42, 45)\)	8
\((45, 48)\)	2\((m + n - 8)\)
\((48, 48)\)	2\((2m - 9m - 9n + 40)\)

Now, we compute the formula for \(\text{ABC}_4\) index for \(G\) by using the edge partition given in Table 2, since

\[
\text{ABC}_4(G) = \sum_{uv \in E(G)} \sqrt[4]{S_u + S_v - 2} \sqrt[8]{S_u S_v}.
\]

This implies that

\[
\text{ABC}_4(G) = 4\sqrt{\frac{14 + 21 - 2}{14 \cdot 21}} + 8\sqrt{\frac{14 + 24 - 2}{14 \cdot 24}} + 8\sqrt{\frac{21 + 24 - 2}{21 \cdot 24}} + 4\sqrt{\frac{21 + 42 - 2}{21 \cdot 42}} + 16\sqrt{\frac{24 + 26 - 2}{24 \cdot 26}} + 8\sqrt{\frac{24 + 42 - 2}{24 \cdot 42}} + 2\(3m + 3n - 26\)\sqrt{\frac{26 + 26 - 2}{26 \cdot 26}} + 8\sqrt{\frac{26 + 42 - 2}{26 \cdot 42}} + 6\(m + n - 8\)\sqrt{\frac{26 + 45 - 2}{26 \cdot 45}} + 4\sqrt{\frac{32 + 42 - 2}{32 \cdot 42}} + 4\sqrt{\frac{32 + 45 - 2}{32 \cdot 45}} + 4\(m + n - 8\)\sqrt{\frac{32 + 45 - 2}{32 \cdot 45}} + 4\(m + n - 4m - 4n + 16\) \sqrt{\frac{32 + 48 - 2}{32 \cdot 48}} + 8\sqrt{\frac{42 + 45 - 2}{42 \cdot 45}} + 2\(m + n - 10\)\sqrt{\frac{45 + 45 - 2}{45 \cdot 45}} + 2\(m + n - 8\)\sqrt{\frac{45 + 48 - 2}{45 \cdot 48}} + (2\(2m - 9m - 9n + 40\))\sqrt{\frac{48 + 48 - 2}{48 \cdot 48}}.
\]

After a simple calculation, the above equation can be reduced as

\[
\text{ABC}_4(G) = \left(\frac{\sqrt{13}}{4} + \frac{\sqrt{47}}{12\sqrt{2}}\right)m + \left(\frac{30}{13\sqrt{2}} + 6\sqrt{\frac{13}{390}} - \sqrt{\frac{13}{6}} + \sqrt{\frac{91}{6\sqrt{15}}} + \frac{5}{6} - \frac{3\sqrt{47}}{8\sqrt{2}} + \frac{4\sqrt{22}}{45}\right)n + \left(\frac{3}{7} + \frac{4\sqrt{11}}{7\sqrt{2}} + 16\sqrt{\frac{1}{13}} + \frac{4\sqrt{43}}{3\sqrt{14}} - 20\sqrt{\frac{1}{13}} + 8\sqrt{\frac{11}{182}} + \frac{4\sqrt{61}}{21\sqrt{2}} + \frac{8\sqrt{17}}{3\sqrt{42}} - 48\sqrt{\frac{23}{390}} + 2\sqrt{\frac{3}{14}} + 4\sqrt{\frac{13}{3\sqrt{14}} - \frac{4\sqrt{91}}{3\sqrt{15}} - \frac{5}{6} + \frac{5\sqrt{47}}{3\sqrt{2}} - \frac{40\sqrt{22}}{45}\right)
\]

\[
= 1.3054mn - 0.9559\(m + n\) - 1.6792.
\]
The following theorem gives the GA$_5$ index of enhanced mesh $M(m,n)$.

Theorem 4. For $m,n \geq 5$ and $\kappa, \lambda = \sigma, c_3 \in R$, the GA$_3(G)$ index of enhanced mesh $EM(P_n \times P_n)$ is $GA_3(EM(P_n \times P_n)) = kmn + \lambda m + \alpha n + c_3 = 4.9192mn + 25.6994(m + n) + 3.7338$.

Proof. Following the information given in Table 2 and the formula $\sum_{uv \in E(G)} (\sqrt{S_u S_v} / S_u + S_v)$, we easily get the required proof.

3. Triangular Mesh

In this section, we are going to study the degree-based topological descriptors for the triangular mesh network [26].

ABC(T_n) = $\left(\frac{\sqrt{5}}{2\sqrt{2}}\right) n^2 + \left(\frac{3\sqrt{3}}{2\sqrt{2}} + 6\sqrt{\frac{2}{3}}/2\sqrt{2}\right) n + \left(\frac{6}{\sqrt{2}} - 3\sqrt{\frac{2}{3}}/2 - 18 + 6\sqrt{\frac{5}{2}}\right)$

Proof. The set of all distinct degrees d_u for $u \in V(G)$ is {2, 4, 6}. The edge partition of the graph G based on the degrees of the end vertices lying at distance one from the end vertices of each edge is shown in Table 3.

By using the edge partition above, we calculate the triangular mesh ABC index as follows:

ABC(G) = $6\sqrt{\frac{2 + 4 - 2}{2 \cdot 4} + 3(n - 2)\sqrt{\frac{4 + 4 - 2}{4 \cdot 4} + 6(n - 3)^2} - \frac{3(n^2 - 7 \cdot n + 12)}{2} \cdot \sqrt{\frac{6 + 6 - 2}{6 \cdot 6}}$.

After simplification, we obtain

ABC(T_n) = $\left(\frac{\sqrt{5}}{2\sqrt{2}}\right) n^2 + \left(\frac{3\sqrt{3}}{2\sqrt{2}} + 6\sqrt{\frac{2}{3}}/2\sqrt{2}\right) n + \left(\frac{6}{\sqrt{2}} - 3\sqrt{\frac{2}{3}}/2 - 18 + 6\sqrt{\frac{5}{2}}\right)$

We will compute the GA index of the triangular mesh in the following theorem.

GA(G) = $3n^2 + \left(\frac{12\sqrt{6}}{5} - 18\right) n + \left(4\sqrt{2} - \frac{36\sqrt{6}}{5} - 42\right)$ = $3n^2 - 12.1212n - 53.9795$.

Theorem 5. For $n \geq 4$, the ABC index of G is

ABC(G) = $\sum_{uv \in E(G)} (d_u + d_v - 2) / d_u d_v$.

This implies that

ABC(G) = $\sum_{uv \in E(G)} (d_u + d_v - 2) / d_u d_v$.

Theorem 6. For $n \geq 4$, we denote the radix $-n$ triangular mesh network by T_n having node set $V(T_n) = \{(x, y) \mid 0 \leq x, y \leq n \text{ and } 0 \leq x + y \leq n\}$, and there exists a mesh arc between nodes (x_1, y_1) and (x_2, y_2) if $|x_1 - x_2| + |y_1 - y_2| \leq n - 1$ and $x_1 + y_1 \leq x_2 + y_2$. The number of vertices (nodes) in a T_n is $n(n + 1)/2$. The degree of node in the aforementioned network may be 2, 4, or 6. There exist three vertices of degree 2, which we call as corner vertices. Throughout this section, we represent G by the graph of triangular mesh network T_n. The graph of triangular mesh T_3 is shown in Figure 2.

We denote the radix $-n$ triangular mesh network by T_n having node set $V(T_n) = \{(x, y) \mid 0 \leq x, y \leq n \text{ and } 0 \leq x + y \leq n\}$, and there exists a mesh arc between nodes (x_1, y_1) and (x_2, y_2) if $|x_1 - x_2| + |y_1 - y_2| \leq n - 1$ and $x_1 + y_1 \leq x_2 + y_2$. The number of vertices (nodes) in a T_n is $n(n + 1)/2$. The degree of node in the aforementioned network may be 2, 4, or 6. There exist three vertices of degree 2, which we call as corner vertices. Throughout this section, we represent G by the graph of triangular mesh network T_n. The graph of triangular mesh T_3 is shown in Figure 2.

Theorem 4. For $m, n \geq 5$ and $\kappa, \lambda = \sigma, c_3 \in R$, the GA$_3(G)$ index of enhanced mesh $EM(P_n \times P_n)$ is $GA_3(EM(P_n \times P_n)) = kmn + \lambda m + \alpha n + c_3 = 4.9192mn + 25.6994(m + n) + 3.7338$.

Proof. Following the information given in Table 2 and the formula $\sum_{uv \in E(G)} (\sqrt{S_u S_v} / S_u + S_v)$, we easily get the required proof.

3. Triangular Mesh

In this section, we are going to study the degree-based topological descriptors for the triangular mesh network [26].

$$\text{ABC}(T_n) = \left(\frac{\sqrt{5}}{2\sqrt{2}}\right) n^2 + \left(\frac{3\sqrt{3}}{2\sqrt{2}} + 6\sqrt{\frac{2}{3}}/2\sqrt{2}\right) n + \left(\frac{6}{\sqrt{2}} - 3\sqrt{\frac{2}{3}}/2 - 18 + 6\sqrt{\frac{5}{2}}\right)$$

Proof. The set of all distinct degrees d_u for $u \in V(G)$ is {2, 4, 6}. The edge partition of the graph G based on the degrees of the end vertices lying at distance one from the end vertices of each edge is shown in Table 3.

By using the edge partition above, we calculate the triangular mesh ABC index as follows:

$$\text{ABC}(G) = 6\sqrt{\frac{2 + 4 - 2}{2 \cdot 4} + 3(n - 2)\sqrt{\frac{4 + 4 - 2}{4 \cdot 4} + 6(n - 3)^2} - \frac{3(n^2 - 7 \cdot n + 12)}{2} \cdot \sqrt{\frac{6 + 6 - 2}{6 \cdot 6}}}$$

After simplification, we obtain

$$\text{ABC}(T_n) = \left(\frac{\sqrt{5}}{2\sqrt{2}}\right) n^2 + \left(\frac{3\sqrt{3}}{2\sqrt{2}} + 6\sqrt{\frac{2}{3}}/2\sqrt{2}\right) n + \left(\frac{6}{\sqrt{2}} - 3\sqrt{\frac{2}{3}}/2 - 18 + 6\sqrt{\frac{5}{2}}\right)$$

We will compute the GA index of the triangular mesh in the following theorem.

GA(G) = $3n^2 + \left(\frac{12\sqrt{6}}{5} - 18\right) n + \left(4\sqrt{2} - \frac{36\sqrt{6}}{5} - 42\right)$ = $3n^2 - 12.1212n - 53.9795$.

Theorem 6. For $n \geq 4$,
Theorem 7. The ABC_4 index of the graph G, for $n \geq 8$, is computed as

$$\text{ABC}_4(G) = \frac{\sqrt{35}}{12\sqrt{2}}n^2 + \left(\frac{3\sqrt{5}}{4} + \frac{3\sqrt{31}}{16\sqrt{2}} + \frac{3\sqrt{19}}{10\sqrt{2}} + \frac{3\sqrt{11}}{4\sqrt{3}} - \frac{13\sqrt{35}}{12\sqrt{2}}\right)n$$

$$+ \left(\frac{3\sqrt{11}}{4\sqrt{2}} + \frac{3\sqrt{13}}{8\sqrt{2}} + \frac{3\sqrt{7}}{2\sqrt{10}} + \frac{3\sqrt{3}}{2\sqrt{2}} + 3\sqrt{\frac{23}{70}} - \frac{15\sqrt{5}}{4} - \frac{15\sqrt{31}}{16\sqrt{2}} + \frac{3\sqrt{29}}{4\sqrt{7}} - \frac{3\sqrt{19}}{2\sqrt{3}} - \frac{9\sqrt{11}}{2\sqrt{2}}\right).$$

(24)

This implies that

$$\approx 0.3486n^2 + 0.2441n - 3.5606.$$

Proof. We use the information given in Table 4 to compute the formula for ABC_4 index for G.

\begin{equation}
\text{ABC}_4(G) = \sum_{uv \in E(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}
\end{equation}

(25)

Table 4: Edge partition of T_n centred on the number of the vertices of the degree lying at distance 1 from the end vertices of each edge.

(S_u, S_v) where $uv \in E(G)$	Number of edges
(8, 16)	6
(16, 16)	3
(16, 20)	6
(16, 28)	6
(20, 20)	3(n - 5)
(20, 28)	6
(20, 32)	6(n - 5)
(28, 32)	6
(32, 32)	3(n - 5)
(32, 36)	6(n - 6)
(36, 36)	$(3(n^2 - 13n + 42)/2)$

After a simple calculation, the above equation can be reduced as

$$\text{ABC}_4(G) = 6\sqrt{\frac{8 + 16 - 2}{8 \cdot 16}} + 3\sqrt{\frac{16 + 16 - 2}{16 \cdot 16}} + 6\sqrt{\frac{16 + 20 - 2}{16 \cdot 20}} + 6\sqrt{\frac{16 + 28 - 2}{16 \cdot 28}} + 3(n - 5)\sqrt{\frac{20 + 20 - 2}{20 \cdot 20}}$$

$$+ 6\sqrt{\frac{20 + 28 - 2}{20 \cdot 28}} + 6(n - 5)\sqrt{\frac{20 + 32 - 2}{20 \cdot 32}} + 6\sqrt{\frac{28 + 32 - 2}{28 \cdot 32}} + 3(n - 5)\sqrt{\frac{32 + 32 - 2}{32 \cdot 32}}$$

$$+ 6(n - 6)\sqrt{\frac{32 + 36 - 2}{32 \cdot 36}} + \left(\frac{3(n^2 - 13n + 42)}{2}\right)\sqrt{\frac{36 + 36 - 2}{36 \cdot 36}}$$

(26)
In the present section, we explore the degree-based topological descriptors for the star of silicate network. We define the creation of a new star of a silicate network from the star of the David network in Figure 3.

Step1: construct a star of David graph H of dimension 1 (Figure 3).
Step2: by inserting $2n - 2$ vertices at every edge of H, divide each edge into $2n - 1$ edges.
Step3: if one is the mirror image of the other and if they are at an odd distance $1, 3, 5, 7, \ldots, (6n - 1)$ from one corner vertex except the pairs at a distance $(2n - 1)$, connect any two vertices u and v by an edge.
Step4: at each new crossing of the edge, insert a new vertex. The resulting network is called the n-dimensional star of David network, which is denoted by $SD(n)$.
Step5: replacing each $K3$ subgraph with a tetrahedron.

Throughout this section, we denote the graph of star silicate network $SSL(n)$ by G.

In the graph of star silicate network, the 6 corner vertices and the central vertex of each tetrahedron is of degree 3. The vertices inserted in step two of the construction have degree 4. All the remaining vertices have degree 6. Thus, the set of all distinct degrees d_u for $u \in V(SSL(n))$ is $\{3, 4, 6\}$. The following table give the edge partition of G.

The ABC and GA indices of star of silicate network are computed in the next two theorems.

Theorem 8. For $n \geq 8$, we have

$$\text{GA}_S(G) = \left(\frac{3}{2}\right)n^2 + \left(\frac{24\sqrt{10}}{13} - \frac{27}{2}\right)n + \left(4\sqrt{2} + \frac{8\sqrt{5}}{3} + \frac{24\sqrt{7}}{11} + \sqrt{35} - \frac{120\sqrt{10}}{13} + \frac{8\sqrt{14}}{5} + \frac{72\sqrt{2}}{17} + 36\right) \approx 1.5n^2 - 7.6619n + 42.0943.$$

Proof. Table 4 and formula $\sum_{uv \in E(G)} 2(\sqrt{S_uS_v} + S_u + S_v)$ supply the proof of the statement.

4. Star of Silicate Network

In the present section, we explore the degree-based topological descriptors for the star of silicate network [27].

We define the creation of a new star of a silicate network from the star of the David network in Figure 3.

Step1: construct a star of David graph H of dimension 1 (Figure 3).
Step2: by inserting $2n - 2$ vertices at every edge of H, divide each edge into $2n - 1$ edges.
Step3: if one is the mirror image of the other and if they are at an odd distance $1, 3, 5, 7, \ldots, (6n - 1)$ from one corner vertex except the pairs at a distance $(2n - 1)$, connect any two vertices u and v by an edge.
Step4: at each new crossing of the edge, insert a new vertex. The resulting network is called the n-dimensional star of David network, which is denoted by $SD(n)$.

In the graph of star silicate network, the 6 corner vertices and the central vertex of each tetrahedron is of degree 3. The vertices inserted in step two of the construction have degree 4. All the remaining vertices have degree 6. Thus, the set of all distinct degrees d_u for $u \in V(SSL(n))$ is $\{3, 4, 6\}$. The following table give the edge partition of G.

The ABC and GA indices of star of silicate network are computed in the next two theorems.

Theorem 9. For $n \geq 3$,

$$\text{ABC}(G) = \left(12\sqrt{\frac{5}{2}} + 12\sqrt{\frac{1}{2}}\right)n^2 + \left(12\sqrt{\frac{5}{3}} + 24\sqrt{\frac{1}{3}} + 12\sqrt{\frac{3}{2}} - 20\sqrt{\frac{2}{3}} - 24\sqrt{\frac{5}{2}}\right)n + \left(4 - 6\sqrt{\frac{5}{3}} - 24\sqrt{\frac{1}{3}} - 15\sqrt{\frac{3}{2}} + 12\sqrt{\frac{2}{3}} + 16\sqrt{\frac{5}{2}}\right) = 41.4236n^2 - 31.3186n + 11.7746.$$

Proof. We use the information given in Table 5 to compute the ABC index of star of silicate network as follows:
zffi_his implies that
\[
ABC(G) = 6 \sqrt{\frac{3 + 3 - 2}{3 \cdot 3}} + 12(2n - 1) \sqrt{\frac{3 + 4 - 2}{3 \cdot 4}} + (36n^2 - 60n + 36) \sqrt{\frac{3 + 6 - 2}{3 \cdot 6}} + (24n - 30) \sqrt{\frac{4 + 4 - 2}{4 \cdot 4}}
\]
\[+ 24(n - 1) \sqrt{\frac{4 + 6 - 2}{4 \cdot 6}} + (36n^2 - 72n + 48) \sqrt{\frac{5 + 6 - 2}{6 \cdot 6}}\]

By further simplification, we get the following form:

\[
ABC(G) = \left(12 \sqrt{\frac{5}{2}} + 12 \sqrt{\frac{7}{2}}\right)n^2 + \left(12 \sqrt{\frac{5}{3}} + 24 \sqrt{\frac{1}{3}} + 12 \sqrt{\frac{3}{2}} - 20 \sqrt{\frac{7}{2}} - 24 \sqrt{\frac{5}{2}}\right)n
\]
\[+ \left(4 - 6 \sqrt{\frac{5}{3}} - 24 \sqrt{\frac{1}{3}} - 15 \sqrt{\frac{3}{2}} + 12 \sqrt{\frac{7}{2}} + 16 \sqrt{\frac{5}{2}}\right) \approx 41.4236n^2 - 31.3186n + 11.7746.
\]
Theorem 10. For \(n \geq 3 \), \(GA(G) = (72\sqrt{3} + 72\sqrt{3})n^2 + ((96\sqrt{3}/7) + (96\sqrt{3}/5) - 2\sqrt{2} - 144\sqrt{3})n + ((12\sqrt{3}/2) - (48\sqrt{3}/7) - (96\sqrt{3}/5) + 12\sqrt{2} + 96\sqrt{3}) \approx 226.5310n^2 - 294.2294n + 148.5074.

Proof. The information in Table 5 and the expression \(\sum_{u \in V(G)} (\sqrt{d_u}d_v/(d_u + d_v)) \) yields the required result.

The central vertices of the tetrahedron lying on the corners has degree sum 11. The central vertices of the tetrahedron that are adjacent to the vertices of degree 4 has degree sum 16. The central vertices of the remaining tetrahedron has degree sum 18. The vertices of degree 4 of the tetrahedron lying at corners has degree sum 14. The 4 degree vertices that are adjacent to 6 degree vertices has degree sum 19. The remaining 4 degree vertices has degree sum 17. The vertices of degree 6 have three kinds of degree sum. The vertices adjacent to one vertex of degree 4 have degree sum 26, the vertices adjacent to two vertices of degree 4 have degree sum 28, and the remaining vertices have degree sum 30. Thus, the set of all distinct degree sums \(S_u \) for \(u \in V(SSL(n)) \) is \{11, 14, 16, 17, 18, 19, 26, 28, 30\}. From the above information and the construction of the graph, the edge partition is calculated as follows.

The \(ABC_4 \) and \(GA_5 \) of star of silicate network \(SSL(n) \) are given in the following two results.

Theorem 11. The index \(ABC_4 \) of \(G \), for \(n \geq 3 \), is computed as

\[
ABC_4(G) = \left(12\sqrt{7}/130 + 36\sqrt{3}/2\sqrt{5}/2 + 1\sqrt{13}/13 + 30\sqrt{13}/2 + 6\sqrt{29}/5\right) n^2 \\
+ \left(24\sqrt{29}/238 + 96\sqrt{2}/17 + 24\sqrt{41}/442 + 12\sqrt{19}/182 - 48\sqrt{7}/78 - 16\sqrt{23}/30 - 144\sqrt{1}/130 - 12\sqrt{13}/2\sqrt{7}/2 + 18\sqrt{3}/153 + 12\sqrt{43}/494 + 6\sqrt{5}/19 + 18\sqrt{5}/133 + 3\sqrt{3}/2 - 36\sqrt{29}/238 - 240\sqrt{2}/17 \right) n \\
+ \left(-48\sqrt{41}/442 - 24\sqrt{19}/182 + 48\sqrt{7}/78 + 8\sqrt{3}/28 + 1\sqrt{23}/130 - 12\sqrt{27\sqrt{3}/7}/2 - 36\sqrt{1}/15 - 12\sqrt{11}/14 + 6\sqrt{29}/5\sqrt{2} \right) n
\]

\(\approx 23.3735n^2 - 58.4777n + 14.6962 \) \hspace{1cm} (33)

Proof. We use the information given in Table 6 to compute the formula for \(ABC_4 \) index for \(G \) as follows:

\[
ABC_4(G) = \sum_{u \in V(G)} \frac{S_u + S_v - 2}{S_uS_v} \] \hspace{1cm} (34)

\[
ABC_4(SSL(n)) = 6\sqrt{11 + 11 - 2/11 \cdot 11 + 2\sqrt{11 + 14 - 2/11 \cdot 14} + 6\sqrt{14 + 14 - 2/14 \cdot 14} + (24n - 36)\sqrt{14 + 17 - 2/14 \cdot 17} \\
+ (12n - 24)\sqrt{14 + 26 - 2/14 \cdot 26 + 12\sqrt{16 + 19 - 2/16 \cdot 19} + 12\sqrt{16 + 26 - 2/16 \cdot 26} + 12\sqrt{16 + 28 - 2/16 \cdot 28} + (24n - 60)\sqrt{17 + 17 - 2/17 \cdot 17} \\
+ 12\sqrt{17 + 19 - 2/17 \cdot 19} + (24n - 48)\sqrt{17 + 26 - 2/17 \cdot 26} + (12n^2 - 48n + 48)\sqrt{18 + 26 - 2/18 \cdot 26} + (24n - 36)\sqrt{18 + 28 - 2/18 \cdot 28} \\
+ (24n^2 - 48n + 24)\sqrt{18 + 30 - 2/18 \cdot 30} + 12\sqrt{19 + 26 - 2/19 \cdot 26} + 12\sqrt{19 + 28 - 2/19 \cdot 28} + (6n^2 - 24n + 24)\sqrt{26 + 26 - 2/26 \cdot 26} \\
+ 12\sqrt{26 + 28 - 2/26 \cdot 28} + (12n^2 - 48n + 48)\sqrt{26 + 30 - 2/26 \cdot 30} + (12n - 18)\sqrt{28 + 28 - 2/28 \cdot 28} + (24n - 36)\sqrt{28 + 30 - 2/28 \cdot 30} \\
+ (18n^2 - 36n + 18)\sqrt{30 + 30 - 2/30 \cdot 30}
\]

This implies that
After a simple calculation, the above equation can be reduced as follows:

\[
\begin{align*}
ABC_4(G) &= \left(12\sqrt{\frac{7}{78}} + 8\sqrt{\frac{23}{30}} + 36\sqrt{\frac{1}{130}} + 30\sqrt{\frac{1}{13\sqrt{2}} + 6\sqrt{\frac{29}{5\sqrt{2}}}} \right)^2 \\
&+ \left(24\sqrt{\frac{29}{238}} + 96\sqrt{\frac{2}{17}} + 24\sqrt{\frac{41}{442}} + 12\sqrt{\frac{19}{182}} - 48\sqrt{\frac{7}{78}} - 16\sqrt{\frac{23}{30}} - 144\sqrt{\frac{1}{130}} - \frac{120}{13\sqrt{2}} + 18\sqrt{\frac{5}{7\sqrt{2}}} + 24\sqrt{\frac{1}{15}} + 8\sqrt{\frac{11}{14}} - 12\sqrt{\frac{29}{5\sqrt{2}}} \right)^n \\
&\quad + \left(\frac{12\sqrt{5}}{11} + 24\sqrt{\frac{23}{154}} + 6\sqrt{\frac{\sqrt{3}}{7\sqrt{2}}} + 12\sqrt{\frac{1}{14} + 3\sqrt{\frac{53}{19}} + 12\sqrt{\frac{19}{1494}} + 6\sqrt{\frac{5}{13}} + 18\sqrt{\frac{5}{133}} + 3\sqrt{\frac{5}{2} - 36\sqrt{\frac{29}{238}}} \right) \\
&\quad + \left(-\frac{240\sqrt{2}}{17} - 48\sqrt{\frac{41}{442}} - 24\sqrt{\frac{19}{182}} - 48\sqrt{\frac{7}{78}} + 8\sqrt{\frac{23}{30}} + 144\sqrt{\frac{1}{130}} + \frac{120}{13\sqrt{2}} - 27\sqrt{\frac{5}{7\sqrt{2}} - 36\sqrt{\frac{1}{15}} - \frac{12\sqrt{11}}{14} + 6\sqrt{\frac{29}{5\sqrt{2}}} \right)
\end{align*}
\]

\[
\approx 23.3735n^2 - 58.4777n + 14.6962.
\]

(36)
Theorem 12. For \(n \geq 3 \), we have

\[
\text{GA}_5(G) = \left(24 + \frac{36\sqrt{13}}{11} + 6\sqrt{15} + \frac{6\sqrt{195}}{7} \right) n^2 \\
+ \left(\frac{48\sqrt{338}}{31} + \frac{48\sqrt{442}}{43} + \frac{6\sqrt{91}}{5} - \frac{144\sqrt{13}}{11} - 12\sqrt{15} - \frac{24\sqrt{195}}{7} + \frac{48\sqrt{210}}{29} + \frac{144\sqrt{14}}{23} - 24 \right) n \\
+ \left(\frac{48\sqrt{154}}{25} + \frac{2\sqrt{323}}{3} + \frac{8\sqrt{182}}{9} + \frac{96\sqrt{19}}{15} + \frac{8\sqrt{494}}{15} + \frac{16\sqrt{26}}{7} \right) \\
+ \left(\frac{48\sqrt{133}}{47} + \frac{48\sqrt{7}}{11} - \frac{72\sqrt{238}}{31} - \frac{96\sqrt{442}}{43} - \frac{12\sqrt{91}}{5} + \frac{144\sqrt{13}}{11} + 6\sqrt{15} + \frac{24\sqrt{195}}{7} - \frac{72\sqrt{210}}{29} - \frac{216\sqrt{14}}{23} - 30 \right) \\
\approx 71.0072n^2 - 106.1903n + 20.7293.
\]

(37)

\[\text{Step 1: we draw a 3d}-\text{grid } M(p, q, r), \text{ which is described} \]
\[\text{by the Cartesian product of paths } P_p \square P_q \square P_r. \text{Such} \]
\[\text{vertices refer to atoms of rhenium.} \]
\[\text{Step 2: subdivide each of the } M(p, q, r) \text{ edges in this} \]
\[\text{step. Oxygen atoms correspond to the new vertices. We} \]
\[\text{are now going to mark the vertices of } RO(p, q, r). \text{The} \]
\[\text{rhenium atoms will obtain the same 3d}-\text{grid mark as} \]
\[\text{the vertices. Between two rhenium atoms } (a', b', c') \]
\[\text{and } (a'', b'', c''), \text{the oxygen atom will receive the label} \]
\[\text{as } (a', b', c'), \text{where } a = (a' + a'')/2, b = (b' + b'')/2, \text{and} \]
\[c = (c' + c'')/2. \text{Two vertices } (x', y', z') \text{ and } (x'', y'', z'') \]
\[\text{are adjacent if } \| (x' - x'') + (y' - y'') + (z' - z'') \| = 1/2. \text{The number} \]
\[\text{of vertices and edges in} \]
\[\text{RO(p, q, r) are } 4pq - 2pq - 2qr - pr \text{ and } 6pq - 2pq - 2qr - 2pr, \text{respectively. Throughout} \]
\[\text{this section,} \]
\[\text{G denotes the graph of rhenium trioxide } RO(p, q, r). \]

It follows from the construction of RO(p, q, r) that the degree of each vertex can belong to the set \{2, 3, 4, 5, 6\}.

We will obtain the ABC and GA indices of rhenium trioxide lattice in the following two results.

Theorem 13. For \(p, q, r \geq 4 \), the ABC index of the graph \(G \) is

\[
\text{ABC}(G) = 6\sqrt{\frac{1}{2}pqr - 2\sqrt{\frac{1}{2}pq - 2\sqrt{\frac{1}{2}qr - 2\sqrt{\frac{1}{2}pr + \left(16\sqrt{\frac{1}{2} - 40\sqrt{\frac{1}{2} + 24\sqrt{\frac{1}{2}} \right)p} + \left(16\sqrt{\frac{1}{2} - 40\sqrt{\frac{1}{2} + 24\sqrt{\frac{1}{2}} \right)q} \\
+ \left(24\sqrt{\frac{1}{2} - 96\sqrt{\frac{1}{2} + 120\sqrt{\frac{1}{2}} - 48\sqrt{\frac{1}{2}} \right) \approx 4.2426pqr \\
- 1.4142(pq + qr + pr).}
\]

(38)
Proof. Using the information given in Table 7, the ABC index of rhenium trioxide lattice is calculated as follows:

\[
\text{ABC}(G) = \sum_{uv \in E(G)} \sqrt{d_u + d_v - 2 \over d_u d_v}
\]

(39)

This implies that

\[
\text{ABC}(G) = 24 \sqrt{2 + 3 - 2 \over 2 \cdot 3} + 16(p + q + r - 6) \sqrt{2 + 4 - 2 \over 2 \cdot 4} + 10(pq + qr + pr - 4p - 4q - 4r + 12) \sqrt{2 + 5 - 2 \over 2 \cdot 5} \\
+ 6(pqr - 2pq - 2qr - 2pr + 4p + 4q + 4r - 8) \sqrt{2 + 6 - 2 \over 2 \cdot 6}.
\]

(40)

After simplification, we obtain

\[
\text{ABC}(G) = 6 \sqrt{1 \over 2} pq - 2 \sqrt{1 \over 2} pq - 2 \sqrt{1 \over 2} q - 2 \sqrt{1 \over 2} pr + (16 \sqrt{1 \over 2} - 40 \sqrt{1 \over 2} + 24 \sqrt{1 \over 2}) q + (16 \sqrt{1 \over 2} - 40 \sqrt{1 \over 2} + 24 \sqrt{1 \over 2}) q
\]

\[+ (16 \sqrt{1 \over 2} - 40 \sqrt{1 \over 2} + 24 \sqrt{1 \over 2}) q + (24 \sqrt{1 \over 2} - 48 \sqrt{1 \over 2}) r + (120 \sqrt{1 \over 2} + 24 \sqrt{1 \over 2}) r
\]

\[
\approx 4.2426pq - 1.4142(pq + qr + pr).
\]

Theorem 14. For \(p, q, r \geq 4 \),

\[
\text{GA}(G) = \left(3 \sqrt{3 \over 2} \right) pq + \left(10 \sqrt{10 \over 7} - 3 \sqrt{3 \over 2} \right) pq + \left(10 \sqrt{10 \over 7} - 3 \sqrt{3 \over 2} \right) qr + \left(10 \sqrt{10 \over 7} - 3 \sqrt{3 \over 2} \right) pr
\]

\[+ \left(16 \sqrt{2 \over 3} - 40 \sqrt{10 \over 7} + 6 \sqrt{3 \over 2} \right) p + \left(16 \sqrt{2 \over 3} - 40 \sqrt{10 \over 7} + 6 \sqrt{3 \over 2} \right) q + \left(16 \sqrt{2 \over 3} - 40 \sqrt{10 \over 7} + 6 \sqrt{3 \over 2} \right) r
\]

\[+ \left(48 \sqrt{6 \over 5} - 32 \sqrt{2 \over 3} + 120 \sqrt{10 \over 7} - 12 \sqrt{3 \over 2} \right) = 2.5980pq - 0.6786(pq + qr + pr) - 0.1353(p + q + r) + 11.6862.
\]

(42)
Proof. The proof follows by the information given in Table 7 and \(\sum_{uv \in E(G)} (\sqrt{d_u d_v} / (d_u + d_v)) \).

From the construction of RO \((p, q, r)\), it follows that the degree sum of each vertex can belong to the set \(\{6, 7, 8, 9, 10, 11, 12\}\). Thus, the edge partition of \(G\) is given below.

The \(ABC_4\) and GA\(_5\) indices of the rhenium trioxide lattice have been computed in the following two theorems.

Theorem 15. For \(p, q, r \geq 4\), the \(ABC_4\) of \(G\) is computed as

\[
ABC_4 (G) = \sum_{uv \in E(G)} \sqrt{S_u + S_v - 2}.
\]

This implies that

\[
ABC_4 (G) = 24 \left(\frac{6 + 7 - 2}{6 \cdot 7} + 24 \left(\frac{7 + 8 - 2}{7 \cdot 8} \right) + 8 (p + q + r - 9) \left(\frac{8 + 9 - 2}{8 \cdot 9} \right) \right) + 2 (pq + qr + pr - 5p - 5q - 5r + 18) \left(\frac{10 + 10 - 2}{10 \cdot 10} \right) + 2 (3pqr - 7pq - 7qr - 7pr + 16p + 16q + 16r - 36) \left(\frac{12 + 12 - 2}{12 \cdot 12} \right). \tag{45}
\]

After a simple calculation, the above equation can be reduced as

\[
ABC_4 (G) = \sum_{uv \in E(G)} \sqrt{S_u + S_v - 2}.
\]

This implies that

\[
ABC_4 (G) = \sum_{uv \in E(G)} \sqrt{S_u + S_v - 2}.
\]

This implies that

\[
ABC_4 (G) = \sum_{uv \in E(G)} \sqrt{S_u + S_v - 2}.
\]
The data used to support the findings of this study are included within the article.

6. Conclusion

A topological index is the numeric quantity of a graph that characterizes the structure of a graph. The topological indices and physico-chemical properties such as atom-bond connectivity (ABC), Randić, and geometric-arithmetic (GA) indices are of great importance in the QSAR/QSPR studies that are used to estimate chemical compound bioactivity. Graph theory has been found to be of great value in this field of study.

The degree-based molecular topological indices are analyzed in this paper for certain chemical networks. These networks include enhanced mesh, triangular mesh, star of silicate network, and rhenium trioxide lattice. For these groups of chemical networks, the analytical closed formulae are derived.

6.1. Open Problems.
(1) In future, it will be interesting to discuss the distance-based topological indices of these networks

(2) Due to wide application of topological indices in chemistry, it will be interesting to explore new chemical structures and study their mathematical properties

Data Availability

The data used to support the findings of this study are included within the article.

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

All authors have contributed equally.

Acknowledgments

This work was supported by Educational Commission of Anhui Province of China in 2019. Research on image restoration of low rank constrained with sparse representation (no. KJ2019A0906). Q. Iqbal was supported by the National Academy of Higher Education Pakistan, under the Start-Up Research Grant Program (Ref. no. 94/IPFP-II(Batch-1)/SRGP/NAHE/HEC/2020/84).

References

[1] K. C. Das, A. Yurttas, M. Togan, A. Cevik, and I. Cangul, "The multiplicative Zagreb indices of graph operations," Journal of Inequalities and Applications, vol. 2013, no. 1, p. 90, 2013.

[2] H. Wiener, "Structural determination of paraffin boiling points," Journal of the American Chemical Society, vol. 69, no. 1, pp. 17–20, 1947.

[3] N. Jafari Rad, A. Jahanbani, and I. Gutman, "Zagreb energy and Zagreb Estrada index of graphs," MATCH Communications in Mathematical and in Computer Chemistry, vol. 79, pp. 371–386, 2018.

[4] K. Das and K. Xu, "On relation between Kirchhoff index, laplacian-energy-like invariant and laplacian energy of graphs," Bulletin of the Malaysian Mathematical Sciences Society, vol. 39, 2015.
[5] I. Milovanović, E. Milovanović, E. Glogić, and M. Matejić, “On Kirchhoff index, Laplacian energy and their relations,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 81, pp. 405–418, 2019.

[6] B. Bozkurt, A. D. Maden, and B. Zhou, “Note on the distance energy of graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 64, pp. 129–134, 2010.

[7] S. Alikhani, R. Hasni, and N. E. Arif, “On the atom-bond connectivity index of some families of dendrimers,” Journal of Computational and Theoretical Nanoscience, vol. 11, pp. 1–4, 2014.

[8] M. Baća, J. Horváthová, M. Mokrišová, and A. Suhányiová, “On topological indices of fullerenes,” Journal of Computational and Theoretical Nanoscience, vol. 11, pp. 1–4, 2014.

[9] A. Q. Baig, M. Imran, and H. Ali, “Computing Omega, Sadhana and PI polynomials of benzoid carbon nanotubes, Opto electron,” Advanced Materials – Rapid Communications, vol. 9, pp. 248–255, 2015.

[10] V. Lokesha, T. Deepika, P. S. Ranjini, and I. N. Cangul, “Operations of nano structures via SDD, ABC4 and GA5 indices,” Applied Mathematics and Nonlinear Sciences, vol. 2, no. 1, 2017.

[11] A. Q. Baig, M. Imran, and H. Ali, “On topological indices of poly oxide, poly silicate, DOX and DSL networks,” Canadian Journal of Chemistry, vol. 93, no. 7, 2015, in press.

[12] M. V. Diudea, I. Gutman, and J. Lorentz, Molecular Topology, Nova, Huntington, WV, USA, 2001.

[13] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, New York, NY, USA, 1986.

[14] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, “An atom-bond connectivity index: modelling the enthalpy of formation of alkanes,” Indian Journal of Chemistry, vol. 37A, pp. 849–855, 1998.

[15] D. V. B. Furtula, “Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges,” Journal of Mathematical Chemistry, vol. 46, pp. 1369–1376, 2009.

[16] M. Ghorbani and M. A. Hosseinzadeh, “Computing ABC4 index of nanostar dendrimers,” Optoelectronics and Advanced Materials – Rapid Communications, vol. 4, pp. 1419–1422, 2010.

[17] A. Graovac, M. Ghorbani, and M. A. Hosseinzadeh, “Computing fifth geometric-arithmetic index for nanostar dendrimers,” Journal of Mathematical Nanoscience, vol. 1, pp. 33–42, 2011.

[18] S. Hayat and M. Imran, “Computation of certain topological indices of nanotubes,” Journal of Computational and Theoretical Nanoscience, vol. 12, no. 1, pp. 70–76, 2015.

[19] S. Hayat and M. Imran, “Computation of certain topological indices of nanotubes covered by C_5 and C_7,” Journal of Computational and Theoretical Nanoscience, vol. 12, pp. 553–541, 2015.

[20] S. Hayat and M. Imran, “On some degree based topological indices of certain nanotubes,” Journal of Computational and Theoretical Nanoscience, vol. 12, no. 8, 2015, in press.

[21] S. Hayat and M. Imran, “Computation of topological indices of certain networks,” Applied Mathematics and Computation, vol. 240, pp. 213–228, 2014.

[22] A. Iranmanesh and M. Zeraatkar, “Computing GA index for some nanotubes, optoelectron,” Advanced Materials–Rapid Communications, vol. 4, pp. 1852–1855, 2010.

[23] W. Lin, J. Chen, Q. Chen, T. Gao, X. Lin, and B. Cai, “Fast computer search for trees with minimal ABC index based on tree degree sequences,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 72, pp. 699–708, 2014.

[24] Y. Shang, “Lower bounds for Gaussian Estrada index of graphs,” Symmetry, vol. 10, no. 8, p. 325, 2018.

[25] Y. Shang, “On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs,” Open Mathematics, vol. 14, no. 1, pp. 641–648, 2016.

[26] K. Sathish and B. Rajan, “On strong metric dimension of certain triangular tessellations,” International Journal of Pure and Applied Mathematics, vol. 101, no. 5, pp. 637–645, 2015.

[27] F. Simon Raj and A. George, “On the metric dimension of silicate stars,” ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 5, pp. 2187–2192, 2015.

[28] S. Stephena, B. Rajana, J. Ryan, C. Grigiorious, and A. Williama, “Power domination in certain chemical structures,” Journal of Discrete Algorithms (Amst), vol. 33, p. 1018, 2015.