SOME INTEGRAL INEQUALITIES FOR α-, m-, (α, m)-LOGARITHMICALLY CONVEX FUNCTIONS

MEVLÜT TUNC† AND EBRU YÜKSEL$^\nabla$

Abstract. In this paper, we establish some new Hadamard type inequalities using elementary well known inequalities for functions whose inequalities absolute values are α-, m-, (α, m)-logarithmically convex.

1. INTRODUCTION

Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex mapping defined on the interval I of real numbers and $a, b \in I$, with $a < b$. The following double inequalities:

$$f \left(\frac{a + b}{2} \right) \leq \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}$$

hold. This double inequality is known in the literature as the Hermite-Hadamard inequality for convex functions (see [1]-[8]).

In this section, we will present definitions and some results used in this paper.

Definition 1. Let I be an interval in \mathbb{R}. Then $f : I \rightarrow \mathbb{R}$ is said to be convex if

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y),$$

for all $x, y \in I$ and $t \in [0,1]$.

In [1], the concepts of α-, m- and (α, m)-logarithmically convex functions were introduced as follows.

Definition 2. [1] A function $f : [0, b] \rightarrow (0, \infty)$ is said to be m-logarithmically convex if the inequality

$$f(tx + m(1-t)y) \leq [f(x)]^t [f(y)]^{m(1-t)}$$

holds for all $x, y \in [0, b]$, $m \in (0, 1]$, and $t \in [0,1]$.

Obviously, if putting $m = 1$ in Definition 2, then f is just the ordinary logarithmically convex on $[0, b]$.

Definition 3. [8] A function $f : [0, b] \rightarrow (0, \infty)$ is said to be α-logarithmically convex if

$$f(tx + (1-t)y) \leq [f(x)]^t \alpha \ [f(y)]^{(1-t)\alpha}$$

Date: January 10, 2013.

2000 Mathematics Subject Classification. 26A15, 26A51, 26D10.

Key words and phrases. α-, m-, (α, m)-logarithmically convex, Hadamard’s inequality, Hölder’s inequality, power mean inequality, Cauchy’s inequality.

†Corresponding Author.

This paper is in final form and no version of it will be submitted for publication elsewhere.
holds for all \(x, y \in [0, b]\), \(\alpha \in (0, 1]\) and \(t \in [0, 1]\).

Clearly, when taking \(\alpha = 1\) in Definition 3, then \(f\) becomes the ordinary logarithmically convex on \([0, b]\).

Definition 4. A function \(f : [0, b] \to (0, \infty)\) is said to be \((\alpha, m)\)-logarithmically convex if

\[
f (t x + m (1 - t) y) \leq [f (x)]^{\alpha} [f (y)]^{m(1 - \alpha)}
\]

holds for all \(x, y \in [0, b]\), \((\alpha, m) \in (0, 1] \times (0, 1]\), and \(t \in [0, 1]\).

Clearly, when taking \(\alpha = 1\) in Definition 4, then \(f\) becomes the standard \(m\)-logarithmically convex function on \([0, b]\), and, when taking \(m = 1\) in Definition 4, then \(f\) becomes the \(\alpha\)-logarithmically convex function on \([0, b]\).

2. NEW HADAMARD-TYPE INEQUALITIES

In order to prove our main theorems, we need the following lemma [2].

Lemma 1. Let \(f : I \subset \mathbb{R} \to \mathbb{R}\) be a differentiable mapping on \(I^\circ\), \(a, b \in I^\circ\) with \(a < b\). If \(f' \in L [a, b]\) for \(0 \leq a < b < \infty\), then the following equality holds:

\[
\frac{f (a) + f (b)}{2} - \frac{1}{b - a} \int_a^b f (x) dx = \frac{b - a}{2} \int_0^1 \int_0^1 \left[f' (ta + (1 - t) b) - f' (sa + (1 - s) b) \right] (s - t) dtds.
\]

A simple proof of this equality can be also done integrating by parts in the right hand side (see [2]).

The next theorems gives a new result of the upper Hermite-Hadamard inequality for \((\alpha, m)\)-logarithmically convex functions.

Theorem 1. Let \(I \supset [0, \infty)\) be an open interval and let \(f : I \to (0, \infty)\) be a differentiable function on \(I\) such that \(f' \in L (a, b)\) for \(0 \leq a < b < \infty\). If \(|f' (x)|\) is \((\alpha, m)\)-logarithmically convex on \([0, b]\) for \((\alpha, m) \in (0, 1]^2\), then

\[
\left| \frac{f (a) + f (b)}{2} - \frac{1}{b - a} \int_a^b f (x) dx \right| \leq \left\{ \begin{array}{ll}
\frac{f' \left(\frac{b}{m} \right)}{\alpha} + \frac{\alpha^2 \ln^2 \eta - 2 \alpha \ln \eta + 2 \eta^2 - 2}{\alpha \ln \eta}, & \eta = 1 \\
\frac{f' \left(\frac{b}{m} \right)}{\alpha} + \frac{\alpha^2 \ln^2 \eta - 2 \alpha \ln \eta + 2 \eta^2 - 2}{\alpha \ln \eta}, & \eta < 1
\end{array} \right.
\]

where \(\eta = |f' (a)| / |f' \left(\frac{b}{m} \right)|\).
Proof. By Lemma 1 and since $|f'|$ is an (α, m)-logarithmically convex on $[0, \frac{b}{m}]$, then we have

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right|$$

$$\leq \frac{b-a}{2} \int_0^1 \int_0^1 |f'(ta + (1-t)b) - f'(sa + (1-s)b)||s-t| \, dt \, ds$$

$$\leq \frac{b-a}{2} \left[\int_0^1 \int_0^1 |s-t||f'(a)|^\alpha \left| f' \left(\frac{b}{m} \right) \right|^{m(1-\alpha)} \, dt \, ds \right]$$

$$+ \frac{b-a}{2} \left[\int_0^1 \int_0^1 |s-t||f'(a)|^\alpha \left| f' \left(\frac{b}{m} \right) \right|^{m(1-\alpha)} \, dt \, ds \right]$$

If $0 < k \leq 1$, $0 < m, n \leq 1$

(2.3) $k^{mn} \leq k^{mn}$.

When $\eta = 1$, by (2.3), we get

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right|$$

$$\leq \frac{b-a}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left[\int_0^1 \int_0^1 |s-t| \, dt \, ds + \int_0^1 \int_0^1 |s-t| \, dt \, ds \right]$$

$$= \frac{b-a}{3} \left| f' \left(\frac{b}{m} \right) \right|^m$$

When $\eta < 1$, by (2.3), we get

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right|$$

$$\leq \frac{b-a}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left[\int_0^1 \int_0^1 |s-t| \eta^{\alpha t} \, dt \, ds + \int_0^1 \int_0^1 |s-t| \eta^{\alpha s} \, dt \, ds \right]$$

$$= \frac{b-a}{3} \left| f' \left(\frac{b}{m} \right) \right|^m \left[\frac{-\alpha^2 \ln^2 \eta - 2\alpha \ln \eta + 4\eta^\alpha + \alpha^2 \eta^\alpha \ln^2 \eta - 2\alpha \eta^\alpha \ln \eta - 4}{2\alpha^3 \ln^3 \eta} \right.$$

$$+ \frac{-\alpha \ln \eta + 2\eta^\alpha - \alpha \eta^\alpha \ln \eta - 2}{2\alpha^2 \ln^2 \eta}$$

which completes the proof. \qed

Corollary 1. Let $I \subseteq [0, \infty)$ be an open interval and let $f : I \to (0, \infty)$ be a differentiable function on I such that $f' \in L(a, b)$ for $0 \leq a < b < \infty$. If $|f'(x)|$ is m-logarithmically convex on $[0, \frac{b}{m}]$ for $m \in (0, 1)$, then

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \left\{ \begin{array}{ll} \frac{(b-a)}{2} \left| f' \left(\frac{b}{m} \right) \right|^m, & \eta = 1 \\ \frac{\ln^2 \eta - 2\ln \eta + 2\eta - 2}{m^2 \eta}, & \eta < 1 \end{array} \right.$$

where η is same as Theorem 1.
Corollary 2. Let $I \supset [0, \infty)$ be an open interval and let $f : I \to (0, \infty)$ be a differentiable function on I such that $f' \in L(a, b)$ for $0 \leq a < b < \infty$. If $|f'(x)|$ is α-logarithmically convex on $[0, b]$ for $\alpha \in (0, 1]$, then

$$
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \begin{cases} \frac{b-a}{2} |f'(b)|, & \eta = 1 \\ \frac{b-a}{2} |f'(b)| \frac{\eta^\alpha - 4\alpha \ln \eta - 2\alpha^2 \ln^2 \eta - 1}{2\alpha^3 \ln^3 \eta}, & \eta < 1 \end{cases}
$$

where $\eta = |f'(a)| / |f'(b)|$.

Theorem 2. Let $I \supset [0, \infty)$ be an open interval and let $f : I \to (0, \infty)$ be a differentiable function on I such that $f' \in L(a, b)$ for $0 \leq a < b < \infty$. If $|f'(x)|^q$ is an (α, m)-logarithmically convex on $[0, b]$ for $(\alpha, m) \in (0, 1]^2$ and $p, q > 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then

$$
(2.4) \quad \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \begin{cases} (b-a) |f'(b)|^m \left(\frac{2}{(p+1)(p+2)} \right)^{\frac{1}{p}}, & \eta = 1 \\ (b-a) |f'(b)|^m \left(\frac{2}{(p+1)(p+2)} \right)^{\frac{1}{p}} \times \left(\frac{\eta^{(q, \alpha)} - 4\alpha \ln \eta - 2\alpha^2 \ln^2 \eta - 1}{2\alpha^3 \ln^3 \eta} \right)^{\frac{1}{q}}, & \eta < 1 \end{cases}
$$

where $\eta(\alpha, \alpha)$ is same as Theorem 1.

Proof. Since $|f'|^q$ is an (α, m)-logarithmically convex on $[0, \frac{b}{m}]$, from Lemma 4 and the well known Hölder inequality, we have

$$
(2.5) \quad \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{2} \int_0^1 \int_0^1 |(f'(ta + (1-t)b)) - (f'(sa + (1-s)b))| |s-t| \, dt \, ds
$$

$$
\leq \frac{b-a}{2} \int_0^1 \int_0^1 \left| f'(a) \right|^{\alpha} \left| f' \left(\frac{b}{m} \right) \right|^{m(1-\alpha)} \, dt \, ds
$$

$$
+ \frac{b-a}{2} \int_0^1 \int_0^1 |s-t| \left| f'(a) \right|^{\alpha} \left| f' \left(\frac{b}{m} \right) \right|^{m(1-\alpha)} \, dt \, ds
$$

$$
\leq \frac{b-a}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left(\int_0^1 \int_0^1 |s-t|^p \, dt \, ds \right)^{\frac{1}{p}}
$$

$$
\times \left[\left(\int_0^1 \int_0^1 \eta^{\alpha} \, dt \, ds \right)^{\frac{1}{q}} + \left(\int_0^1 \int_0^1 \eta^{\alpha} \, dt \, ds \right)^{\frac{1}{q}} \right]
$$
If \(\eta = 1 \), by (2.3), we obtain
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq (b - a) \left| f' \left(\frac{b}{m} \right) \right|^m \left(\int_0^1 \int_0^1 |s - t|^p \, dt \, ds \right)^{\frac{1}{p}}
\]
\[
= (b - a) \left| f' \left(\frac{b}{m} \right) \right|^m \left(\frac{2}{(p + 1)(p + 2)} \right)^{\frac{1}{p}}
\]
If \(\eta < 1 \), by (2.3), we obtain
\[
(2.6) \quad \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left(\int_0^1 \int_0^1 |s - t|^p \, dt \, ds \right)^{\frac{1}{p}} \times \left[\left(\int_0^1 \eta^{\alpha q} \, dt \, ds \right)^{\frac{1}{p}} + \left(\int_0^1 \eta^{\alpha q} \, dt \, ds \right)^{\frac{1}{q}} \right] \leq (b - a) \left| f' \left(\frac{b}{m} \right) \right|^m \left(\frac{2}{(p + 1)(p + 2)} \right)^{\frac{1}{p}} \times \left(\eta(\alpha q, \alpha q) - 1 \right)^{\frac{1}{q}}
\]
which completes the proof.

\[\Box\]

Corollary 3. Let \(I \supseteq [0, \infty) \) be an open interval and let \(f : I \to (0, \infty) \) be a differentiable function on \(I \) such that \(f' \in L(a, b) \) for \(0 \leq a < b < \infty \). If \(|f'(x)|^q \) is an \(m \)-logarithmically convex on \([0, \frac{1}{m}] \) for \(m \in (0, 1) \) and \(p = q = 2 \), then
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \begin{cases}
(b - a) \left| f' \left(\frac{b}{m} \right) \right|^m \frac{1}{\sqrt{m}}, & \eta = 1 \\
(b - a) \left| f' \left(\frac{b}{m} \right) \right|^m \frac{1}{\sqrt{m}} \left(\frac{\eta(2, 2) - 1}{\ln \eta(2, 2)} \right)^{\frac{1}{2}}, & \eta < 1
\end{cases}
\]

Corollary 4. Let \(I \supseteq [0, \infty) \) be an open interval and let \(f : I \to (0, \infty) \) be a differentiable function on \(I \) such that \(f' \in L(a, b) \) for \(0 \leq a < b < \infty \). If \(|f'(x)|^q \) is \(\alpha \)-logarithmically convex on \([0, b] \) for \(\alpha \in (0, 1) \), then
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \begin{cases}
(b - a) \left| f' \left(\frac{b}{m} \right) \right|^m \left(\frac{2}{(p + 1)(p + 2)} \right)^{\frac{1}{p}}, & \eta = 1 \\
(b - a) \left| f' \left(\frac{b}{m} \right) \right|^m \left(\frac{2}{(p + 1)(p + 2)} \right)^{\frac{1}{p}} \left(\eta(\alpha q, \alpha q) - 1 \right)^{\frac{1}{q}}, & \eta < 1
\end{cases}
\]
where \(\eta = |f'(a)| / |f'(b)|. \)

Theorem 3. Let \(I \supseteq [0, \infty) \) be an open interval and let \(f : I \to (0, \infty) \) be a differentiable function on \(I \) such that \(f' \in L(a, b) \) for \(0 \leq a < b < \infty \). If \(|f'(x)|^q \) is
where \(\eta (\alpha, \alpha) \) is same as Theorem 1, and we take \(\eta (aq, aq) = \varphi \).

Proof. Since \(|f'|^q \) is an \((\alpha, m)\)-logarithmically convex on \([0, \frac{b}{m}]\), for \(q \geq 1 \), from Lemma 1 and the well known power mean integral inequality, we get

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \\
\leq \left\{ \left[\frac{b-a}{m} \left| f' \left(\frac{b}{m} \right) \right|^m \right]^{\eta} \right. \frac{1}{b-a} \int_a^b \left| f' \right|^m \left[\left[\frac{2\varphi-2}{\ln \varphi} \right] - \left[\frac{\varphi+1}{2\ln \varphi} \right] \right] \left[\left[\frac{\varphi-1}{2\ln \varphi} \right] - \left[\frac{\varphi+1}{2\ln \varphi} \right] \right] \left\} \right. \eta = 1 \\
\left\{ \left[\frac{b-a}{m} \left| f' \left(\frac{b}{m} \right) \right|^m \right]^{\eta} \right. \frac{1}{b-a} \int_a^b \left| f' \right|^m \left[\left[\frac{2\varphi-2}{\ln \varphi} \right] - \left[\frac{\varphi+1}{2\ln \varphi} \right] \right] \left[\left[\frac{\varphi-1}{2\ln \varphi} \right] - \left[\frac{\varphi+1}{2\ln \varphi} \right] \right] \left\} \right. \eta < 1
\]

When \(\eta = 1 \), by (2.3), we obtain

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \\
\leq \left. \frac{b-a}{2} \left(\int_0^1 \int_0^1 |s-t| \, dt \, ds \right) \right|^{\frac{1}{2}} \left(\int_0^1 \int_0^1 |s-t| \, f'(ta + (1-t)b) \right) \right|^{\frac{1}{2}} \\
+ \left. \frac{b-a}{2} \left(\int_0^1 \int_0^1 |s-t| \, dt \, ds \right) \right|^{\frac{1}{2}} \left(\int_0^1 \int_0^1 |s-t| \, f'(sa + (1-s)b) \right) \right|^{\frac{1}{2}}
\]

\[
\leq \left. \frac{b-a}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left(\int_0^1 \int_0^1 |s-t| \, dt \, ds \right) \right|^{\frac{1}{2}} \left(\int_0^1 \int_0^1 |s-t| \, \eta^{aq} \right) \right|^{\frac{1}{2}} \\
+ \left. \frac{b-a}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left(\int_0^1 \int_0^1 |s-t| \, dt \, ds \right) \right|^{\frac{1}{2}} \left(\int_0^1 \int_0^1 |s-t| \, \eta^{aq} \right) \right|^{\frac{1}{2}}
\]
When $\eta < 1$, by (23), we obtain

$$\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{b-a}{2} \left(\frac{1}{3} \right)^{1-\frac{1}{\eta}} \left| f'(\frac{b}{m}) \right|^m \left(\int_0^1 \int_0^1 |s-t| \eta^{\alpha q} \, dt \, ds \right)^{\frac{1}{2}}$$

$$+ \frac{b-a}{2} \left(\frac{1}{3} \right)^{1-\frac{1}{\eta}} \left| f'(\frac{b}{m}) \right|^m \left(\int_0^1 \int_0^1 |s-t| \eta^{\alpha q} \, dt \, ds \right)^{\frac{1}{2}}$$

$$= \frac{b-a}{2} \left(\frac{1}{3} \right)^{1-\frac{1}{\eta}} \left| f'(\frac{b}{m}) \right|^m \times \left\{ \frac{2\eta(\alpha, \alpha_q) - 2}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{\eta(\alpha, \alpha_q) + 1}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{1-\eta(\alpha, \alpha_q)}{2\ln(\eta(\alpha, \alpha_q))} \right\}^{\frac{1}{2}}$$

$$+ \left\{ \frac{\eta(\alpha, \alpha_q) - 1}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{\eta(\alpha, \alpha_q) + 1}{2\ln(\eta(\alpha, \alpha_q))} \right\}^{\frac{1}{2}}$$

which completes the proof. \qed

Corollary 5. Let $I \supset [0, \infty)$ be an open interval and let $f : I \to (0, \infty)$ be a differentiable function on I such that $f' \in L(a, b)$ for $0 \leq a < b < \infty$. If $|f'(x)|^q$ is m-logarithmically convex on $[0, \frac{b}{m}]$ for $m \in (0, 1]$, then

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)}{2} \left(\frac{1}{3} \right)^{1-\frac{1}{\eta}} \left| f'(\frac{b}{m}) \right|^m \times \left\{ \frac{2\eta(\alpha, \alpha_q) - 2}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{\eta(\alpha, \alpha_q) + 1}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{1-\eta(\alpha, \alpha_q)}{2\ln(\eta(\alpha, \alpha_q))} \right\}^{\frac{1}{2}}$$

$$+ \left\{ \frac{\eta(\alpha, \alpha_q) - 1}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{\eta(\alpha, \alpha_q) + 1}{2\ln(\eta(\alpha, \alpha_q))} \right\}^{\frac{1}{2}}$$

Corollary 6. Let $I \supset [0, \infty)$ be an open interval and let $f : I \to (0, \infty)$ be a differentiable function on I such that $f' \in L(a, b)$ for $0 \leq a < b < \infty$. If $|f'(x)|$ is α-logarithmically convex on $[0, b]$ for $\alpha \in (0, 1]$, then

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)}{2} \left(\frac{1}{3} \right)^{1-\frac{1}{\eta}} \left| f'(\frac{b}{m}) \right|^m \times \left\{ \frac{2\eta(\alpha, \alpha_q) - 2}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{\eta(\alpha, \alpha_q) + 1}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{1-\eta(\alpha, \alpha_q)}{2\ln(\eta(\alpha, \alpha_q))} \right\}^{\frac{1}{2}}$$

$$+ \left\{ \frac{\eta(\alpha, \alpha_q) - 1}{[\ln(\eta(\alpha, \alpha_q))]^2} - \frac{\eta(\alpha, \alpha_q) + 1}{2\ln(\eta(\alpha, \alpha_q))} \right\}^{\frac{1}{2}}$$

where $\eta = |f'(a)| / |f'(b)|$.

Theorem 4. Let $f : I \subset \mathbb{R} \to \mathbb{R}^+$ be differentiable on I^c, $a, b \in I$, with $a < b$ and $f' \in L([a, b])$. If $|f'|$ is an (α, m)-logarithmically convex $[0, \frac{b}{m}]$ for $(\alpha, m) \in (0, 1]^2$.
and $\mu_1, \mu_2, \tau_1, \tau_2 > 0$ with $\mu_1 + \tau_1 = 1$ and $\mu_2 + \tau_2 = 1$, then

\begin{equation}
(2.8)
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \right|
\leq \begin{cases}
\frac{(b-a)}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left\{ \frac{2\mu_1^2}{(2\mu_1 + 1)(\mu_1 + 1)} + \frac{2\mu_2^2}{(2\mu_2 + 1)(\mu_2 + 1)} + \tau_1 + \tau_2 \right\}, & \eta = 1 \\
\frac{(b-a)}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left\{ \frac{2\mu_1^2}{(2\mu_1 + 1)(\mu_1 + 1)} + \frac{2\mu_2^2}{(2\mu_2 + 1)(\mu_2 + 1)} + \tau_1 \frac{\eta(\frac{\tau_1}{\tau_2})^{-1}}{\ln \eta(\frac{\tau_1}{\tau_2})} + \tau_2 \frac{\eta(\frac{\tau_1}{\tau_2})^{-1}}{\ln \eta(\frac{\tau_1}{\tau_2})} \right\}, & \eta < 1
\end{cases}
\end{equation}

where $\eta(\alpha, \alpha)$ is same as Theorem [7].

Proof. Since $|f'|^q$ is an (α, m)-logarithmically convex on $[0, \frac{b}{m}]$, from Lemma [1] we have

\begin{equation}
(2.9)
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \right|
\leq \frac{(b-a)}{2} \int_0^1 \int_0^1 |(f' (ta + (1 - t) b)) - (f' (sa + (1 - s) b))| |s - t| \, dt \, ds
\leq \frac{(b-a)}{2} \left[\int_0^1 \int_0^1 |s - t| |f'(a)|^\alpha \left| f' \left(\frac{b}{m} \right) \right|^m (1 - s^\alpha) \, dt \, ds \right]
+ \frac{(b-a)}{2} \left[\int_0^1 \int_0^1 |s - t| |f'(a)|^\alpha \left| f' \left(\frac{b}{m} \right) \right|^m (1 - s^\alpha) \, dt \, ds \right]
= \frac{(b-a)}{2} \left| f' \left(\frac{b}{m} \right) \right|^m \left[\int_0^1 \int_0^1 |s - t| \eta^\alpha \, dt \, ds + \int_0^1 \int_0^1 |s - t| \eta^\alpha \, dt \, ds \right]
\end{equation}

for all $t \in [0, 1]$. Using the well known inequality $rt \leq \mu r^\beta + \tau t^\tau$, on the right side of (2.9), we get

\begin{equation}
(2.10)
\int_0^1 \int_0^1 |s - t| \eta^\alpha \, dt \, ds + \int_0^1 \int_0^1 |s - t| \eta^\alpha \, dt \, ds
\leq \mu_1 \int_0^1 \int_0^1 |s - t| \eta_1^\alpha \, dt \, ds + \tau_1 \int_0^1 \int_0^1 \eta_1^\alpha \, dt \, ds
+ \mu_2 \int_0^1 \int_0^1 |s - t| \eta_2^\alpha \, dt \, ds + \tau_2 \int_0^1 \int_0^1 \eta_2^\alpha \, dt \, ds
\end{equation}

When $\eta = 1$, by (2.3), we get

\begin{equation}
(2.11)
\int_0^1 \int_0^1 |s - t| \eta^\alpha \, dt \, ds + \int_0^1 \int_0^1 |s - t| \eta^\alpha \, dt \, ds
\leq \frac{2\mu_1^3}{(2\mu_1 + 1)(\mu_1 + 1)} + \frac{2\mu_2^3}{(2\mu_2 + 1)(\mu_2 + 1)} + \tau_1 + \tau_2
\end{equation}
When $\eta < 1$, by (2.3), we get
\begin{equation}
(2.12)
\int_{0}^{1} \int_{0}^{1} |s-t|^{\tau} f(t) dt ds = \int_{0}^{1} \int_{0}^{1} |s-t|^{\eta} f(t) dt ds + \int_{0}^{1} \int_{0}^{1} |s-t|^{\mu} f(t) dt ds
\end{equation}
\begin{align*}
\leq \mu_1 & \int_{0}^{1} \int_{0}^{1} |s-t|^{\tau} f(t) dt ds + \mu_2 \int_{0}^{1} \int_{0}^{1} |s-t|^{\mu} f(t) dt ds + \tau_1 \int_{0}^{1} \int_{0}^{1} |s-t|^{\frac{\eta}{\tau}} f(t) dt ds \\
\leq \mu_1 & \int_{0}^{1} \int_{0}^{1} |s-t|^{\tau} f(t) dt ds + \mu_2 \int_{0}^{1} \int_{0}^{1} |s-t|^{\mu} f(t) dt ds + \tau_1 \int_{0}^{1} \int_{0}^{1} |s-t|^{\frac{\eta}{\tau}} f(t) dt ds \\
= & \frac{2\mu_3}{(2\mu_1 + 1)(\mu_1 + 1)} + \frac{2\mu_3}{(2\mu_2 + 1)(\mu_2 + 1)} + \eta \frac{\eta}{\eta - 1} \ln \frac{\eta}{\eta - 1} + \tau_2 \ln \frac{\eta}{\eta - 1} + \eta \ln \frac{\eta}{\eta - 1}
\end{align*}
from (2.14)- (2.15), which completes the proof. \qed

Corollary 7. Under the assumptions of Theorem 4 and \(\mu = \mu_1 = \mu_2 > 0, \tau = \tau_1 = \tau_2 > 0 \) with \(\mu + \tau = 1 \), then we have
\begin{equation}
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \leq \left\{ \begin{array}{ll}
\frac{(b-a)}{2} \left| \frac{f'(h)}{m} \right| \left[\frac{4\mu_3}{(2\mu_1 + 1)(\mu_1 + 1)} + 2\tau \right], & \eta = 1 \\
\frac{(b-a)}{2} \left| \frac{f'(h)}{m} \right| \left[\frac{4\mu_3}{(2\mu_2 + 1)(\mu_2 + 1)} + 2\tau \frac{(\eta + 1)^{\gamma} - 1}{\gamma} \right], & \eta < 1
\end{array} \right.
\end{equation}

REFERENCES

[1] R.-F. Bai, F. Qi and B.-Y. Xi, Hermite-Hadamard type inequalities for the m- and (m, a) logarithmically convex functions. Filomat, 27 (2013), 1-7.

[2] M.Z. Sarıkaya, E. Set, M.E. Özemir: New inequalities of Hermite-Hadamard Type, Volume 12, Issue 4, 2009, Art.11, RGMIA Online: http://rgmia.org/papers/v12n4/set2.pdf

[3] J. Hadamard: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math Pures Appl., 58, (1893) 171–215.

[4] D. S. Mitrinović, J. Pečarić and A. M. Fink: Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993.

[5] S. S. Dragomir and C. E. M. Pearce: Selected topics on Hermite-Hadamard inequalities and applications, RGMIA monographs, Victoria University, 2000. [Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite-hadamard.html]

[6] S.S Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95.

[7] J. Pečarić, F. Proschan and Y. L. Tong: Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., 1992.

[8] M. Tunç, E. Yüksel and I. Karabayır, On some inequalities for functions whose second derivatives absolute values are α, m_α, (α, m)-logarithmically convex, submitted.

[¶]Department of Mathematics, Faculty of Science and Arts, Kilis 7 Aralik University, Kilis, 79000, Turkey.

E-mail address: mevluttunc@kilis.edu.tr

^{юр}The Institute for Graduate Studies in Sciences and Engineering, Kilis 7 Aralik University, Kilis, 79000, Turkey.

E-mail address: yuksel.ebru90@hotmail.com