Understanding the neuroprotective effect of tranexamic acid: an exploratory analysis of the CRASH-3 randomised trial

Citation for published version:
The CRASH-3 trial collaborators 2020, 'Understanding the neuroprotective effect of tranexamic acid: an exploratory analysis of the CRASH-3 randomised trial', Critical Care. https://doi.org/10.1186/s13054-020-03243-4

Digital Object Identifier (DOI):
10.1186/s13054-020-03243-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Critical Care

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Understanding the neuroprotective effect of tranexamic acid: an exploratory analysis of the CRASH-3 randomised trial

Amy Brenner1*, Antonio Belli2, Rizwana Chaudhri3, Timothy Coats4, Lauren Frimley1, Sabariah Faizah Jamaluddin5, Rashid Jooma6, Raoul Mansukhani1, Peter Sandercock7, Haleema Shakur-Still1, Temitayo Shokunbi8,9, Ian Roberts1
On behalf of the CRASH-3 trial collaborators

Abstract

Background: The CRASH-3 trial hypothesised that timely tranexamic acid (TXA) treatment might reduce deaths from intracranial bleeding after traumatic brain injury (TBI). To explore the mechanism of action of TXA in TBI, we examined the timing of its effect on death.

Methods: The CRASH-3 trial randomised 9202 patients within 3 h of injury with a GCS score \(\leq 12 \) or intracranial bleeding on CT scan and no significant extracranial bleeding to receive TXA or placebo. We conducted an exploratory analysis of the effects of TXA on all-cause mortality within 24 h of injury and within 28 days, excluding patients with a GCS score of 3 or bilateral unreactive pupils, stratified by severity and country income. We pool data from the CRASH-2 and CRASH-3 trials in a one-step fixed effects individual patient data meta-analysis.

Results: There were 7637 patients for analysis after excluding patients with a GCS score of 3 or bilateral unreactive pupils. Of 1112 deaths, 23.3% were within 24 h of injury (early deaths). The risk of early death was reduced with TXA (112 (2.9%) TXA group vs 147 (3.9%) placebo group; risk ratio [RR] RR 0.74, 95% CI 0.58–0.94). There was no evidence of heterogeneity by severity (\(p = 0.64 \)) or country income (\(p = 0.68 \)). The risk of death beyond 24 h of injury was similar in the TXA and placebo groups (432 (11.5%) TXA group vs 421 (11.7%) placebo group; RR 0.98, 95% CI 0.69–1.12). The risk of death at 28 days was 14.0% in the TXA group versus 15.1% in the placebo group (544 vs 568 events; RR 0.93, 95% CI 0.83–1.03). When the CRASH-2 and CRASH-3 trial data were pooled, TXA reduced early death (RR 0.78, 95% CI 0.70–0.87) and death within 28 days (RR 0.88, 95% CI 0.82–0.94).

Conclusions: Tranexamic acid reduces early deaths in non-moribund TBI patients regardless of TBI severity or country income. The effect of tranexamic acid in patients with isolated TBI is similar to that in polytrauma. Treatment is safe and even severely injured patients appear to benefit when treated soon after injury.

Trial registration: ISRCTN15088122, registered on 19 July 2011; NCT01402882, registered on 26 July 2011.

Keywords: Traumatic brain injury, Tranexamic acid, CRASH-3 trial, Randomised controlled trial, Intracranial haemorrhage, Epidemiology, Emergence care

* Correspondence: Amy.Brenner@lshtm.ac.uk
1 London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
Full list of author information is available at the end of the article
Background

The acute management of traumatic brain injury (TBI) aims to avoid secondary brain damage and optimise conditions for recovery [1]. The day of the injury is the most hazardous, accounting for one third of in-hospital deaths [2]. Some TBI victims have brain damage that is incompatible with life and die shortly after admission. In many patients, intracranial bleeding starts soon after impact and continues for several hours, with the majority of haematoma expansion occurring within 1–1.5 h of injury [3, 4]. The accumulating blood can increase intracranial pressure, causing cerebral herniation and death. Tranexamic acid reduces bleeding in surgery and reduces death from bleeding in traumatic and post-partum haemorrhage [5–7]. The therapeutic premise of the CRASH-3 trial was that timely tranexamic acid treatment might curtail intracranial bleeding and prevent some of the early bleeding-related deaths. A 1-g bolus started within 3 h of injury was followed by an infusion of 1 g over 8 h. Tranexamic acid has a half-life of 2 h and by the second day is almost completely eliminated. By this time, the bleeding will have stopped, but other pathological processes, likely unaffected by tranexamic acid, will continue to cause deaths. Those who survive the first day run the risk of cerebral oedema, diffuse axonal injury, organ failure, sepsis, pneumonia and many other threats, some iatrogenic, that make up the remaining two thirds of in-hospital deaths.

The management of TBI is only partly based on results from randomised trials. In practice, doctors draw on pathophysiological knowledge, the available evidence and their clinical experience to identify mechanisms of brain damage and target physiologically based treatment accordingly [3]. Large randomised trials can reduce our therapeutic uncertainty, but to categorise them as positive or negative based on arbitrary p value thresholds is inappropriate [8–10]. The CRASH-3 trial results have variously been described as ‘negative’, ‘neutral’ or ‘a win for patients with head injury’ that will benefit patients [11–13]. We argue that randomised trials can deepen our understanding of pathophysiology and that mechanistic insights should inform their interpretation. To explore the mechanism of action of tranexamic acid in TBI patients, we examined the timing of its effect on death. We also set the results of our analysis in the context of other trials of tranexamic acid in TBI and polytrauma patients, taking into consideration current treatment guidelines that exclude patients with isolated TBI.

Methods

The background to the CRASH-3 trial, the methods, baseline characteristics and main results were previously reported [2, 6, 14]. Briefly, adults with TBI who were within 3 h of injury and had a Glasgow coma scale score (GCS) ≤ 12 or any intracranial bleeding on CT scan and no significant extra-cranial bleeding were eligible. The time window for eligibility was originally 8 h, but in 2016, the protocol was changed to limit recruitment to within 3 h of injury. Between July 2012 and January 2019, we randomly allocated 12,737 patients with TBI to receive tranexamic acid or placebo, of whom 9202 patients were treated within 3 h. Patients were assigned by selecting a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients, care givers and those assessing outcomes were masked to treatment allocation.

Based on previous research on the mechanism of tranexamic acid in bleeding trauma patients, we hypothesised that tranexamic acid would have a greater effect on deaths soon after injury, since early bleeding-related deaths have the most potential to be reduced by tranexamic acid [15]. We pre-specified this hypothesis in the statistical analysis plan that we published before unblinding [14]. We also anticipated that the treatment effect would be diluted by the inclusion of patients with a GCS score of 3 or unreactive pupils who have a very poor prognosis regardless of treatment [14]. The trial results were consistent with both of these hypotheses [2]. The pre-specified primary outcome in the CRASH-3 trial was death due to head injury within 28 days among patients treated within 3 h of injury. Although our scientific reasons for pre-specifying head injury death as the primary outcome were given in the statistical analysis plan and presented in detail elsewhere [16], there has been strong interest in the effects of tranexamic acid on all-cause mortality. As such, this analysis focuses on early deaths from any cause, excluding patients with a GCS score of 3 or bilateral unreactive pupils. Analyses of head injury deaths and analyses including patients with a GCS score of 3 or bilateral unreactive pupils are presented in the Additional file 1 for comparison with the results presented below and for cross-reference with the main trial results.

We examine the temporal distribution of deaths from any cause in the CRASH-3 trial. We explore the effects of tranexamic acid on deaths due to any cause within 24 h of injury and on deaths due to any cause within 28 days, stratified by severity and country income level. We use the baseline GCS score to define severity—mild to moderate (GCS 9–15) and severe (GCS 3–8)—and World Bank definitions to determine country income level (LMIC vs HIC). Because a subgroup analysis demonstrated effect modification by severity, we explore this further. Because most patients were from LMICs, the generalisability of the results to HICs has been questioned and so we explore how the treatment effects vary by country income level. To check if the effect on early deaths could be explained by undiagnosed extra-cranial...
bleeding, we conducted a sensitivity analysis excluding patients with hypotension (SBP < 90 mmHg). We also examined the effects of tranexamic acid on vascular occlusive events (fatal and non-fatal) in all patients irrespective of time to treatment because theoretically the potential risk of vascular occlusive events would be greater with late treatment as there is a shift from a fibrinolytic to a coagulopathic state. We report risk ratios, 95% confidence intervals and heterogeneity p values. We excluded 98 patients with missing outcome data.

We prespecified an analysis setting the results of the CRASH-3 trial in the context of other evidence, including the CRASH-2 trial, in which 40% of deaths were due to head injury [14]. The CRASH-3 trial essentially represents a subgroup of patients with isolated TBI who were excluded from the CRASH-2 trial. Here, to set our results in the context of tranexamic acid in polytrauma patients, we pooled the data from the CRASH-2 and CRASH H-3 trials in a one-step fixed effects individual patient data meta-analysis using a Poisson regression model with sandwich variance estimation, adjusted for time to treatment. In the main CRASH-3 trial publication, we updated a systematic search for randomised trials of tranexamic acid in TBI. We searched PubMed, Science Citation Index, National Research Register, Zetoc, SIGLE, Global Health, LILACS, Current Controlled Trials, the Cochrane Injuries Group Specialised Register, CENTRAL, MEDLINE and EMBASE. We identified three trials in addition to the CRASH-3 trial including the CRASH-2 intracranial bleeding study, a randomised trial of 283 TBI patients sponsored by Khon Kaen University [17] and a randomised trial of pre-hospital tranexamic acid in 967 TBI patients sponsored by the University of Washington (NCT01990768). The CRASH H-2 intracranial bleeding study was omitted as this is already contained within the CRASH-2 trial dataset, and the small Thai study was omitted due to a lack of data on timing of death, cause of death and GCS score, and limitations in methodological quality including an unclear risk of selection bias from allocation concealment.

The model for the one-step meta-analysis was as follows:

\[
\log \pi = \beta_0 + \beta_1 \text{trial} + \beta_2 \text{group} + \beta_3 \text{ttt}
\]

where trial = 0 for CRASH-2 and 1 for CRASH-3, group = 0 for placebo and 1 for TXA, ttt is time to treatment and \(\beta_3\) is the summary effect estimate across both trials.

We also consider the CRASH-3 trial results in the context of the CRASH-2 trial and the trial of pre-hospital tranexamic acid (NCT01990768) using an aggregate data meta-analysis with fixed effects to assess the effect of tranexamic acid on death at 28 days excluding patients with a GCS score of 3 or bilateral unreactive pupils, and on vascular occlusive events in all patients. An aggregate data meta-analysis was used because we did not have access to the individual patient data for trial NCT01990768.

Results

Among the 12,639 randomised patients with outcome data available, 9127 were treated within 3 h of injury. A total of 1490 patients had GCS score of 3 or bilateral unreactive pupils at baseline (16.3%), leaving 7637 patients for analysis. There were 1112 deaths from all causes within 28 days, of which 259 (23.3%) occurred within 24 h of injury (early deaths) and 853 (76.7%) were beyond 24 h of injury. Figure 1 shows the time interval from injury to death in placebo-treated patients overall and according to severity and country income. Overall, the proportion of early deaths was larger in severe head injury (28.1%) and in LMICs (24.1%).

Effect of tranexamic acid on early deaths

The risk of early death was lower in patients with mild-to-moderate head injury compared to severe head injury (1.1% vs 9.9%) and in HICs compared to LMICs (2.0% vs 3.8%). The risk of early death was reduced with tranexamic acid (112 (2.9%) deaths in the tranexamic acid group vs 147 (3.9%) deaths in the placebo group; risk ratio [RR] RR 0.74, 95% CI 0.58–0.94; see Table 1). There was no evidence that the effect of tranexamic acid on early deaths varied by severity (heterogeneity p = 0.64) or by country income (heterogeneity p = 0.68). When 114 (1.5%) patients with hypotension (SBP < 90 mmHg) at baseline were excluded from the analyses, the results were essentially the same (106 (2.8%) deaths in the tranexamic acid group vs 143 (3.9%) deaths in the placebo group; RR 0.72, 95% CI 0.56–0.92). The effect of tranexamic acid on early death was smaller (261 vs 315 events; RR 0.81, 95% CI 0.69–0.95) when we included patients who had a GCS score of 3 or bilateral unreactive pupils at baseline (see Appendix Table 1). The effect was larger when the analysis was restricted to head injury-related deaths only (Appendix Tables 2 and 3).

Effect of tranexamic acid on deaths after 24 h

The risk of death more than 24 h after injury was lower in patients with mild-to-moderate head injury compared to severe head injury (6.3% vs 25.2%) and in HICs compared to LMICs (8.2% vs 12.1%). The risk of death from all causes beyond 24 h of injury was similar in the tranexamic acid and placebo groups (432 (11.5%) deaths in the tranexamic acid group vs 421 (11.7%) deaths in the placebo group; RR 0.98, 95% CI 0.69–1.12; see Table 1). The effect on deaths beyond 24 h was similar by severity
Effect of tranexamic acid on deaths at 28 days
The risk of death at 28 days was lower in mild-to-moderate head injury compared to severe head injury (7.4% vs 35.1%) and in HICs compared to LMICs (10.1% vs 15.9%). The risk of death from any cause at 28 days was 14.0% in the tranexamic acid group versus 15.1% in the placebo group (544 vs 568 events; RR 0.93, 95% CI 0.83–1.03; see Table 1). The effect of tranexamic acid on all-cause mortality at 28 days was similar by severity (heterogeneity p = 0.11) and country income (heterogeneity p = 0.35).

Effect of tranexamic acid on vascular occlusive events
Among the 12,639 randomised patients with outcome data, there were 203 (1.6%) fatal or non-fatal vascular occlusive events. The absolute risk of vascular occlusive events in all patients was lower in mild-to-moderate head injury than in severe head injury (1.2% vs 2.4%) and in LMICs compared to HICs (1.0% vs 3.0%). The risk of vascular occlusive events was 1.6% in both the
tranexamic acid and placebo groups (101 vs 102 events; RR 0.98, 95% CI 0.74–1.28; see Table 2).

The results of the CRASH-3 trial in context
When the CRASH-2 and CRASH-3 trial data were pooled in a one-stage individual patient data meta-analysis, early tranexamic acid reduced death within 24 h of injury (RR 0.78, 95% CI 0.70–0.87) and death within 28 days (RR 0.88, 95% CI 0.82–0.94), with no evidence of heterogeneity by trial (death within 24 h $p = 0.60$; death within 28 days $p = 0.18$; see Fig. 2). Adjusting for time to treatment made no difference to the results. For deaths with 24 h of injury, the adjusted RR = 0.78 (95% CI 0.70–0.87), and for death within 28 days the adjusted RR = 0.88 (95% CI 0.82–0.94). When a US trial of pre-hospital tranexamic acid for isolated TBI was included in an aggregate data meta-analysis on death from any cause at 28 days, the results were identical (RR 0.88, 95% CI 0.82–0.94), with no evidence of heterogeneity by trial ($p = 0.41$). There was no difference in the risk of vascular occlusive events between treatment groups (RR 0.87, 95% CI 0.74–1.02), again with no heterogeneity by trial ($p = 0.42$).

Table 2 Effect of tranexamic acid on vascular occlusive events (fatal and non-fatal) at 28 days in all patients, stratified by severity and country income level

	TXA n (%)	Placebo n (%)	RR (95% CI)
All patients	6359 (1.6)	6280 (1.6)	0.98 (0.74–1.28)
Severity			
Mild/moderate	4066 (1.0)	3997 (1.3)	0.76 (0.52–1.16)
Severe	2264 (2.7)	2247 (2.2)	1.19 (0.82–1.73)
Country income			
LMIC	4375 (1.1)	4330 (0.8)	1.41 (0.92–2.17)
HIC	1984 (2.6)	1950 (3.4)	0.75 (0.52–1.07)

Discussion
Based upon this post hoc, exploratory analysis of the CRASH-3 trial, tranexamic acid reduces deaths on the day of the injury regardless of TBI severity and country income but has no apparent effect on deaths beyond the day of the injury. The effect of tranexamic acid on all-cause mortality at 28 days is a weighted average of these early and late effects and, although diluted toward the null, is similar to the results of the CRASH-2 trial and indicative of a survival benefit.

Because a larger proportion of deaths in the CRASH-3 trial occurred after 24 h (69% in CRASH-3 versus 43% in CRASH-2), the effect on mortality at 28 days is smaller (more diluted) in the CRASH-3 trial, although there is no evidence of heterogeneity. As anticipated in the statistical analysis plan, the effect is smaller when including patients with un-survivable injuries prior to treatment. Tranexamic acid did not increase the risk of adverse vascular occlusive events in trauma patients.

Because our choice of head injury death as the primary outcome measure was criticised, these analyses report all-cause mortality. The trial inclusion criteria were clinical and reflect the situation that doctors face in practice. We enrolled TBI patients within 3 h of injury if they had no significant extra-cranial bleeding. The effect of tranexamic acid on early deaths is not explained by undiagnosed extra-cranial bleeding. Only 1.5% of patients had hypotension (SBP < 90 mmHg) at baseline and only 11 of the 1112 deaths (six in the tranexamic acid group and five in the placebo group) were classified as extracranial bleeding deaths. When patients with hypotension are excluded, the results are the same. The reduction in all-cause mortality within 24 h strongly suggests that tranexamic acid reduces intracranial bleeding deaths.

We conducted the CRASH-3 trial because there was reason to believe that tranexamic acid could reduce bleeding-related head injury deaths. Increased fibrinolysis is common in TBI patients and worsens intracranial bleeding. The CRASH-2 trial in 20,211 polytrauma

Table 1 Effect of early tranexamic acid on all-cause mortality within 24 h of injury, after 24 h and at 28 days stratified by severity and country income level in patients randomised within 3 h of injury, excluding those with a GCS score of 3 or bilateral unreactive pupils

	TXA n (%)	Placebo n (%)	RR (95% CI)
All patients	112 (2.9)	147 (3.9)	0.74 (0.58–0.94)
Severity			
Mild/moderate	25 (0.9)	37 (1.3)	0.66 (0.40–1.09)
Severe	87 (8.5)	110 (11.3)	0.75 (0.58–0.98)
Country income			
LMIC	98 (3.3)	126 (4.4)	0.75 (0.58–0.98)
HIC	14 (1.5)	21 (2.4)	0.65 (0.33–1.26)
patients (extra-cranial and intra-cranial injury) with significant bleeding found that tranexamic acid reduces mortality, primarily by reducing bleeding deaths on the day of the injury [15]. Because the CRASH-2 trial was large, this early benefit was still apparent at 28 days, although 'diluted' by non-bleeding deaths. The CRASH-3 trial was smaller than the CRASH-2 trial, and so despite the higher mortality rate, there were fewer deaths and less statistical power to detect the diluted effect on all-cause mortality at 28 days. A non-significant difference between two groups in a randomised trial can be real difference that is not significant due to a lack of power, or it can be a difference that has occurred by chance. In this case (Table 1), there is a large reduction in deaths within 24 h with tranexamic acid (RR = 0.74) that is highly statistically significant and consistent with the expected biological effects of tranexamic acid but no apparent reduction in deaths beyond 24 h (RR = 0.98). Because the relative risk at 28 days is a weighted average of these effects, the modest reduction in death at 28 days (RR = 0.93) is not statistically significant. We believe the reduction in deaths at 28 days is a real reduction that is not significant due to a lack of statistical power. This interpretation is consistent with biology (intracranial bleeding occurs early, and there is little or no tranexamic acid in the body beyond 24 h) and as shown in the next paragraph is mathematically consistent with dilution. The reduction in deaths at 28 days in the CRASH-3 trial is similar to that seen in the larger (and more powerful) CRASH-2 trial, and when the results are pooled, the reduction in deaths at 28 days with tranexamic acid is highly significant. However, we accept that can never rule out chance as a potential explanation.

Because ‘dilution’ is key to understanding the CRASH-3 results, it is best considered quantitatively. Figure 3 shows results from a hypothetical trial in

![Figure 2](image1.png)

Fig. 2 Evidence on the effect of early tranexamic acid on all-cause mortality within 24 h and 28 days of injury, excluding patients with a GCS score of 3 or bilateral unreactive pupils at baseline.

Study	Tranexamic acid	Placebo	RR	95% CI
Death within 24 hours				
CRASH-2	410 (6.3%)	513 (8.0%)	0.79	(0.70-0.90)
CRASH-3	112 (2.9%)	147 (3.9%)	0.74	(0.58-0.94)
Pooled	522 (5.0%)	660 (6.5%)	0.78	(0.70-0.87)
Death at 28 days				
CRASH-2	784 (12.1%)	923 (14.3%)	0.84	(0.77-0.92)
CRASH-3	544 (14.0%)	568 (15.1%)	0.93	(0.83-1.03)
Pooled	1328 (12.8%)	1491 (14.6%)	0.88	(0.82-0.94)

Fig. 3 Hypothetical trial in which the effect on all-cause mortality is a weighted average of the effect on cause-specific mortality. The trial treatment reduces the risk of early (bleeding) deaths by one quarter (RR = 0.75) but has no effect on late (non-bleeding) deaths (RR = 1.00). The overall relative risk for all-cause mortality at the end of follow-up is a weighted average of these relative risks (RR = 0.92).
which the treatment reduces the risk of early bleeding deaths (red circles) by one quarter (relative risk = 0.75), but has no effect (relative risk = 1.00) on later non-bleeding deaths (blue circles). The relative risk at the end of the follow-up period is a weighted average of these relative risks: relative risk = 0.75(4/12) + 1.0(8/12) = 11/12 = 0.92, where (4/12) and (8/12) are the proportions of deaths in the untreated group that are early or late. Because the relative risk at the end of follow-up is closer to the null (0.92 versus 0.75), and smaller effects are harder to detect, the treatment effect is less visible and, in this sense, is diluted. But the biological effect did not change. It was not offset by any harm but was simply obscured by deaths unrelated to its mechanism of action. Deaths that are inevitable before randomisation also dilute treatment effects. Many patients with a GCS score of 3 or unreactive pupils have un-survivable injuries and will die soon after admission regardless of treatment. Errors in the estimation of the time of injury could result in the inclusion of patients outside the eligibility time window, and because late treatment is less effective, this will also cause dilution. This is most relevant in LMICs where patients are often taken to hospital by bystanders or family members in private vehicles with no recording of the time of injury.

Because no treatment has effects on all causes of death, all-cause mortality at 28 days is a composite outcome that combines deaths affected by the trial treatment with those that are unaffected by it [16]. Using all-cause mortality to assess the ‘true’ effect of a treatment has counterintuitive consequences since it means that the effect of any given treatment depends on the effects of all the others. An antibiotic that reduces pneumonia deaths in week 2, by reducing the proportion of late deaths, will appear to increase the effectiveness of a treatment for early bleeding. Because the proportion of late deaths varies with injury severity and in different locations, all-cause mortality is not generalisable. The only generalisable measure is the undiluted biological effect of the trial treatment.

Conclusions
Tranexamic acid safely reduces early deaths in non-morbidity TBI patients regardless of TBI severity or country income. The effect of tranexamic acid in patients with isolated TBI is similar to that in polytrauma, reducing deaths on the day of the injury by over 20% in the CRASH-2 and the CRASH-3 trials. Tranexamic acid is included in treatment guidelines for the pre-hospital care of bleeding trauma patients, but patients with isolated TBI were excluded. The CRASH-3 trial data support the reconsideration of tranexamic acid for administration in isolated TBI, and even severely injured patients appear to benefit when treated soon after injury.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13054-020-03243-4.

Additional file 1: Supplementary Table 1. Effect of tranexamic acid on all-cause mortality within 24 hours of injury, after 24 hours and at 28 days stratified by severity and country income in patients randomised within 3 hours of injury. Supplementary Table 2. Effect of tranexamic acid on head injury death within 24 hours, after 24 hours and at 28 days by severity and country income in patients randomised within 3 hours of injury, excluding those with GCS 3 or bilateral unreactive pupils. Supplementary Table 3. Effect of tranexamic acid on head injury death within 24 hours, after 24 hours and at 28 days by severity and country income in patients randomised within 3 hours of injury.

Acknowledgements
The CRASH-3 trial collaborators
Writing Committee—Prof Ian Roberts and Professor Haleema Shakur-Still (co-chairs), Amy Aerón-Thomas, Prof Antonio Belli, Amy Brenner, Prof Muhammad Anwar Chaudary, Prof Rizwana Chaudhri, Sabariah Faizah Bt Jamaludinlin, Lauren Frimley, Kiran Javald, Prof Rashid Jooma, Aasia Kayani, Caroline Leech, Prof Khalid Mahmood, Raoul Mansukhani, Juliana Md Noor, Jorge Mejía-Mantilla, Phil Moss, Jason Pott, Prof Peter Sandecock, Prof Temitayo Shokunbi, and Liliana Vallecilla. Trial Steering Committee—Peter Sandercock (Chair), Henry Benjamin Hartenberg, Manjul Joshi (2011–2016), Amy Aerón-Thomas (patient representative [trial steering committee]); advocacy and justice manager, RoadPeace), Ian Roberts, Pablo Perel, and Haleema Shakur-Still. Data Monitoring and Ethics Committee—Michael J Clarke (chair), Samuel C Ohaegbulam, Anthony Rodgers, and Tony Brady (independent statistician). Protocol Committee—Ian Roberts, Haleema Shakur-Still, Yashbir Dewan, Phil Edwards, Edward O Komolafe, Jorge Mejía-Mantilla, and Pablo Perel. Clinical Trials Unit (CTU)—Monica Ambas (trial manager and research assistant), Emma Austin (assistant trial manager), Eni Balogun (trial manager), Lin Barnewst (data manager 2011–2012), Collette Barrow (trial administrator), Danielle Beaumont (senior trial manager and research fellow), Myriam Benyahia (CTU administrator), Amy Brenner (research fellow), Imogen Brooks (trial assistant 2016–2018), Madeleine Carpil (data assistant), Laura Carrington (assistant trial administrator), Lisa Cook (assistant trial manager 2011), Beatrice Corru-Hewitt (trial assistant), Phil Edwards (statistician 2011–2016), Lauren Frimley (trial manager and research assistant), Amber Geer (data assistant manager), Daniel Gilbert (data assistant 2012–2013), Catherine Gilliam (trial administrator), Julio Gil-Onandía (trial assistant), Daniel Hetherington (trial assistant 2012–2013), Courtenay Howe (CTU administrator 2015–2017), Carolyn Hughes (data assistant 2016–2017), David Etan (assistant trial manager 2016–2017), Rob Jackson (data manager 2012–2014), Miland Joshi (statistician 2016–2017), Sneh Kausar (assistant trial manager 2016–2018), Taemi Kawaihara (senior trial manager 2011–2015), Katharine Ker (lecturer), Sergey Kostrov (systems officer), Abba Mahmoud (PhD candidate), Raoul Mansukhani (medical statistician), Hakem Mah (IT systems manager), Bernard Ndungu (assistant trial manager 2016–2017), Kelly Needham (medical statistician), Cecilia Okusi (data assistant 2014), Aroudra Outtand (trial assistant 2013–2015), Raoul Pardina-Solis (assistant trial manager 2012–2013), Daniel Pearso (data assistant), Tracey Pepple (acting senior data manager), Claude Pisani (assistant trial manager 2013), Jason Pott (lead UK research nurse 2018), David Prio-Merino (statistician 2012–2015), Danielle Prowse (assistant data manager), Nigel Quashi (data manager 2013–2016), Anna Quinn (data assistant 2013–2015), Maria Ramos (senior project administrator 2011–2015), Mia Reid (clinical assistant 2016–2018), Ian Roberts (chief investigator and CTU co-director), Chris Roukas (trial administrator 2013–2015), Giulia Scapa (assistant trial manager 2018), Haleema Shakur-Still (project director and CTU co-director), Chelci Squires (trial assistant 2014–2016), Jemma Tanner (clinical trials associate 2013–2016), Andrew Thayne (data assistant), Lesley Vidaurie (assistant trial manager 2012), and Elizabeth Woods (assistant trial manager 2012–2015). Nigeria Coordinating Team—Bukola Fawole (coordinating centre director), Olusade Adetayo (assistant trial coordinator), Olujide Okunade (assistant trial coordinator), and Temitayo Shokunbi (clinical lead). Pakistan Coordinating
Team—Rizwana Chaudhri (coordinating centre director), Kiran Javaid (assist-
ant research coordinator), Rashid Jooma (clinical lead), and Aasia Kayani (re-
search coordinator). National Coordinators—Rizwana Chaudhri (Pakistan),
Rashid Jooma (Pakistan), Sabirah Faizah Bt Jalaluddin (Malaysia), Julina Md
Noor (national coordinators assistant, Malaysia), Tamar Gogichashvili (Georgia),
Maria de los Angeles Munoz-Sanchez (Spain), Bukola Fawole (Nigeria), Temitayo Shokunbi (Nigeria), Jorge Jeia-Mejntanda (Colombia), Lili-
na Vallecillo (Colombia), Fatos Oldashi (Albania), Satish Krishnan (United
Arab Emirates), Vincent Djentcheu (Cameroon), Jorge Lopez Castellanos (Mexi-
cco), Frank Rasulo (Italy), Qadamiakher Hama (Iraq), Yakub Mulla (Zambia),
Prof Ioan Stefan Florian (Romania), Juan Tobal (El Salvador), Hussain Khamis
(Egypt), Conor Deasy (Ireland), Bobby Welsh (Papua New Guinea), Jean
Williams-Johnson (Jamaica), Susilo Chandra (Indonesia), and Vincent Mutso
(Kenya).
CRASH trial sites and investigators (number of patients randomly
assigned)
Pakistan (5467)—Lahore General Hospital Neurosurgery Unit I (1178): Rizwan
Butt, Muhammad Hammad Nasir, Salman Ahmad, Farvah Aslam, Khurram
Ishaque, Faheem Usmani, Shahnur Rizvi, Farhad Ali, Omar Sajjad, and Ali
Zunair; Jinnah Postgraduate Medical Centre (700): Lal Rehman, Raza Rizvi,
Faruqh Javeed, Shakeel Ahmed, Asad Abbas, Ali Afzal, and Ali Mikdad;
Lahore General Hospital Neurosurgery Unit II (648): Asif Bashir, Anwar
Chaudary, Tariq Salahuddin, Bashir Ahmed, Shahnur Rizvi, Faheem Usmani,
and Amir Aitz; Jinnah Hospital Lahore (619): Naveed Ashraf, Shahzad Hussain,
Usman Ahmad, Muhammad Asif, Muhammad Shah不变; Lahore General
Hospital Neurosurgery Unit II (607): Khalid Mahmood, Rizwan Khan,
Bilal Ahmad, Umar Afzal, Hassan Raza, and Qutub Ali; DHQ Hospital
Narowal (303): Sajjad Yaqoob, Qaiser Waseem, Muffasser Nisar, Suneel
Semwal, and Javed Iqbal; Services Hospital Lahore (226) Samra Majeed, Zainab
Zafljig, Madeeha Iqbal, Nazia Majeed, and Manzoor Ahmed; DHQ
Rawalpindi (137): Nadeer Akhtar, Mohamad Malik, Yasin Shehzad, and
Muhammad Yousaf; DHQ Hospital Khuzdar (65): Abdul Wahid, Abdul Samad,
and Saifullah Shah; Lady Reading Hospital (31): Mumtaz Ali and Jehan Zeb;
Shifa International Hospital (29): Abus Salam Khan and Ateefa Irfan; Liaquat
National Hospital and Medical College (14): Salman Sharif; Liaquat University
Hospital (7): Razia Memom; Aga Khan University Hospital (3): Rashid Jooma.
UK (3143)—Royal London Hospital (501): Ben Bloom, Tim Harris, Jason Pott,
Imogen Skene, Geoffrey Bellhouse, and Olivia Boulton; University Hospital
Coventry (312): Caroline Leech, Geraldine Ward, Catherine Jarvis, Carly
Swann, and Sathananathan Ratnam; Queen Elizabeth Hospital Birmingham
(302): Antonio Belli, Ronald carrera, Kamal Yakoub, David Davies, and Emma
Fellows; St George’s Hospital (280): Phil Moss, Heather Jarman, Sarah
Rounding, Elizabeth Johnson, and Catherine Loughran; Salford Royal Hospital
(176): Fiona Lecky, Kate Clayton, Angly Michael, and Angela Cornelou.
Southmead Hospital (156): Jason Kendall, Beverley Faulkner, Ruth Womer,
and Emma Gendall; King’s College Hospital (155): Philip Hopkins, Paul Rozzi,
Hannah Cotton, and Raine Atchison-Chamberlain; St Mary’s Hospital, London
(117): Mark Wilson, Jon Bodnar, Rachel Williams, and Albertro Rigoni; Aintree
University Hospital (108): Abido Sattout, John Fletcher, Calum Edge, and
Nina Mayanjan; Addenbrooke’s Hospital (103): Adrian Boyle, Susie Hardwick, Ellen
Nichols, and Catherine Hayhurst; Queen’s Medical Centre (100): Frank Coffey,
Chris Gough, Philip Miller, and Lucy Ryan; John Radcliffe Hospital (76): Mel-
nie Darwent, Alexis Espinosa, and Sally Beer; Royal Stoke University Hospital
(71): Julie Norton, Holly Maguire, and Kay Finney; Denford Hospital (67): An-
thony Kehoe, Rosalyn Squire, and Alison Jeffery; Queen Alexandra Hospital
(60): Christine Vonwerk, Denise Foor, and Elliot Wilkinson; Northern General
Hospital (57): Avril Kuhrt, Shaminm Ramlahkam, and Stuart Reid; Royal Preston
Hospital (41): Andy Currant and Sean McMullan; Leeds General Infirmary (39):
Avril Kuhrt, Shammi Ramlakhan, and Stuart Reid; Royal Preston University
Hospital (30): Noor Azleen and Liu Yeo Seng; Universiti Sains Malaysia (26): Kamarul
Ariffin, Baharudin, and Rezuan Khasamsy; Hospital Langkawi (13): Azlan
Kamalludin; Hospital Kulim (8): Shamshul Azmi; Hospital Kementan (7): Mohd
Fadzil; Hospital Segamat (6): Ahmad Bazis; Hospital Pakar Sultanat Fatimah
(5): Norhayah Abdullah. Georgia (771)—High Technology Medical Centre,
University Clinic (751): Tamar Gogichashvili, Giorgi Ingorkova, Shota Ingorkova,
Lariza Aggdomelashvili, Kote Mumludze, Joseb Maisuradze, and Julia Kugush-
eva; Archangel St Michael Multipurpose Clinical Hospital (18): Buba Shalamber-
idez; City Hospital 1 (2): Gia Tomadze. Spain (425)—Hospital Universitari de
Cerdeña (2): Noor Azleen and Liu Yeo Seng; Universiti Sains Malaysia (26): Kamarul
Ariffin, Baharudin, and Rezuan Khasamsy; Hospital Langkawi (13): Azlan
Kamalludin; Hospital Kulim (8): Shamshul Azmi; Hospital Kementan (7): Mohd
Fadzil; Hospital Segamat (6): Ahmad Bazis; Hospital Pakar Sultanat Fatimah
The Netherlands (409)—National Hospital Abuja (64): Okoami Owucowe, Rafael
Mehboob, and Nancy Ukwu; Lagos University Teaching Hospital (53): Femi Bankole, Abi-
demi Oseni, and Bamidele Adebayo; University College Hospital, Ibadan (53):
Adefolarin Malomo, Liadi Tiamuyi, and Adeseye Adefaribi; Obafemi Oba-
banjo University Teaching Hospital (38): Lateef Thanni and Ayodeji Olubodun;
Federal Medical Centre Abeokuta (36): Zainal Effendy and Mahisat Ishmael; Hopi-
sitario de Ciudad Real (67): Carmen Cocobado, Ana Bueno, Alfonso Ambros;
Complejo Hospitalario de Navarra (24): JuanTihsi Jimenez, Jose Roldan,
Ramirez; Hospital Torrecardenas (21): Jose Martin; Hospital de Lucus Augusti
(13): Laura Ines Rodriguez; Hospital Clinico de Barcelona (9): Jaime Fontanals;
Hospital Universitari Puerta del Mar de Cadiz (9): Jose Manuel Jimenez-Mor-
agas; Hospital General Universitario De Albacete (1): Joaquin Paya Berbegal.
Nigeria (409)—National Hospital Abuja (64): Okoami Owucowe, Rafael
Mehboob, and Nancy Ukwu; Lagos University Teaching Hospital (53): Femi Bankole, Abi-
demi Oseni, and Bamidele Adebayo; University College Hospital, Ibadan (53):
Adefolarin Malomo, Liadi Tiamuyi, and Adeseye Adefaribi; Obafemi Oba-
banjo University Teaching Hospital (38): Lateef Thanni and Ayodeji Olubodun;
Federal Medical Centre Abeokuta (36): Zainal Effendy and Mahisat Ishmael; Hopi-
sitario de Ciudad Real (67): Carmen Cocobado, Ana Bueno, Alfonso Ambros;
Complejo Hospitalario de Navarra (24): JuanTihsi Jimenez, Jose Roldan,
Ramirez; Hospital Torrecardenas (21): Jose Martin; Hospital de Lucus Augusti
(13): Laura Ines Rodriguez; Hospital Clinico de Barcelona (9): Jaime Fontanals;
Hospital Universitari Puerta del Mar de Cadiz (9): Jose Manuel Jimenez-Mor-
agas; Hospital General Universitario De Albacete (1): Joaquin Paya Berbegal.
Nigeria (409)—National Hospital Abuja (64): Okoami Owucowe, Rafael
Mehboob, and Nancy Ukwu; Lagos University Teaching Hospital (53): Femi Bankole, Abi-
demi Oseni, and Bamidele Adebayo; University College Hospital, Ibadan (53):
Adefolarin Malomo, Liadi Tiamuyi, and Adeseye Adefaribi; Obafemi Oba-
banjo University Teaching Hospital (38): Lateef Thanni and Ayodeji Olubodun;
Federal Medical Centre Abeokuta (36): Zainal Effendy and Mahisat Ishmael; Hopi-
sitario de Ciudad Real (67): Carmen Cocobado, Ana Bueno, Alfonso Ambros;
Complejo Hospitalario de Navarra (24): JuanTihsi Jimenez, Jose Roldan,
Ramirez; Hospital Torrecardenas (21): Jose Martin; Hospital de Lucus Augusti
(13): Laura Ines Rodriguez; Hospital Clinico de Barcelona (9): Jaime Fontanals;
Hospital Universitari Puerta del Mar de Cadiz (9): Jose Manuel Jimenez-Mor-
agas; Hospital General Universitario De Albacete (1): Joaquin Paya Berbegal.
(112): Carlos Morales; Santiago Upegui; Santiago Naranjo; July Agudelo; Fundacion Valle del Lili (96): Jorge Mejia-Mantilla, Sandra Carvajal, and Yidhira Fajardo-Gaviria. Nepal (255)—Neuro Hospital (103): Yam Roka, Ushma Ghising, Narayani Roka, and Manzil Shrestha; National Institute of Neurological and Allied Sciences (64); Upondera Devkota, Bivek Vaidya, and Panakaj Nepal; Kathmandu Medical College Teaching Hospital (47); Amit Thapa and Bidur KC; Chitwan Medical College Teaching Hospital (24): Ajit Shrestha; Bir Hospital (11): Rajiv Jha; B & B Hospital Ltd. (6): Prabin Shrestha. Albania (214)—University Hospital of Trauma (214): Fatois oldishi, Girjan Hodaj, Erion Spaho, Alisan Selaj, and Nirian Bendo. Japan (165)—Matsudo City Hospital (64): Tomohisa Shoko, Hideki Endo, and Atsushi Sendai; Sendai Trauma and Critical Care Centre (61): Yasushi Hagiwara, Takashi Fuse, and Naohisa Musanaga. Tokyo Medical and Dental University (28): Yasuhiro Otomo and Ryuichi Egashira; Teikyo University Hospital (12): Takahiro Ohnuki. United Arab Emirates (126)—Al Qasim Hospital (126); Satish Krishnan, Aya AlMazmi, Subrata Saha, and Alexander Suvarov. Myanmar (121)—1000 Bedded Nay Pyi Taw Hospital (121): Than Latt Aung, Kaung Myat Tun, Tin Tint Khaing, and Thinzar Maw. Cameroon (116)—Yaounde Central Hospital (38): Vincent Djentchou and Ornane Ndom; General Douala (31): Îmâlê Mûhi and André Mbiida; Hospital Laquantinie de Douala (28): Joseph Fondop and NDaye; Yaounde General Hospital (19): Mba Sebastien. Afghanistan (87)—Nagarharr University Teaching Hospital (87): Abdul Azim, Jan Adil, and Zabiullah Amiry. Mexico (79)—Hospital Regional 25 IMSS (24): Jorge Loria-Castellanos; Hospital General Jose G Parres (21): Nancy Guerra Rubio; Hospital General de Uruapan (20): Pedro Daniel Martinez (11); Patricia Ortega Ibarra; University Teaching Hospital of Trauma (214): Fatos Olldashi, Irgen Hodaj, Erion Spaho, Asllan Alia; Azienda Ospedaliera Universitaria Senese (35): Paola Bonucci and Federico Franchi; Fondazione Poliambulanza (19): Alan Girardini; Spedali Civili Di Brescia (18): Frank Rasulo. Iraq (65)—Rozhawa Emergency Hospital (51): Qadamkhore Hama, Himdad Hamweed, and Humam Badim; Rijhela Emergen- cy Hospital (3): Qadamkhore Hama; Par Hospital (1): Qadamkhore Hama. Cambodia (45)—World Mate Emergency Hospital (45): Simon Stock and Eap Hou Hout. Zambia (44)—University Teaching Hospital Lusaka (40): Yakub Mulla and Ali Ilunga; Kte Hospital Central Hospital (4): Jonathan Mulenga. Romania (55)—Timisoara County Hospital (17): Horia Pies; Spitalul SF Pantelimon Bucurest (11): Adam Danil; Bagdasar-Armeanu Emergency Clinical Hospital (5): Mirea Gorgon; Cluj County Emergency Hospital (2): Ioan Florian. El Salvador (28)—Hospital Nacional Rosales (28): Juan Tobar, Fernandez. Egypt (20)—Mataria Teaching Hospital (20): Hussein Khamis. Slovenia (15)—University Medical Centre Ljubljana (15): Dusan Vlahovic. Ireland (12)—Corck University Hospital (12): Conor Deasy. Peru (10)—Public New Guine (10)—Por Moresby General Hospital (10): Bobby Weitll, Kasado (7)—Saint John Regional Hos- pital (7): James French. Jamaica (7)—Cornwall Regional Hospital (5): Jeffrey East; University Hospital of the West Indies (2): Jean Williams-Johnson. Indonesia (6)—Rumah Sakit Sekar Kurniany (6): Antonius Kurniawan. Kenya (1)—Kenyatta National Hospital, University of Nairobi (1): Julius Kiboi.

Authors’ contributions
Study conception: IR and HSS. Data collection: ABr, RC, TC, LF, SJ, LF, RJ, PS and TS. Trial management: LF. Data analysis: ABr and RM. Data interpretation: ABr, RM and IR. Drafting the manuscript: ABr and IR. All authors were responsible for reviewing and revising the manuscript and have approved the final version. The corresponding author had full access to all the data and had final responsibility for the decision to submit for publication.

Funding
The CRASH-3 trial was funded by the JP Moulton Charitable Foundation, the UK National Institute for Health Research Health Technology Assessment programme (NHR HTA; 14/190/01), the Joint Global Health Trials, Medical Research Council, Department for International Development, Global Challenges Research Fund, and the Wellcome Trust (MRM092111). The CRASH-2 trial was funded by the UK National Institute for Health Research Health Technology Assessment programme (NHR HTA; 14/190/01). The BUPA Foundation and Pfizer (grant-in-aid for tranexamic acid and placebo). The studies were designed, conducted, analysed and interpreted by the investigators, entirely independently of all funding sources. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the funders. The funders had no role in the study design; the collection, analysis or interpretation of the data; the writing of the report; or the decision to submit the paper for publication.

Availability of data and materials
Following publication of the primary and secondary analyses, individual de-identified patient data from the CRASH-3 trial will be made available via our data sharing portal, The Free Bank of Injury and Emergency Research Data (freeBIRD) website (http://freebird.lthsm.ac.uk) indefinitely. The CRASH-2 trial data is already available. The trial protocols, statistical analysis plans and trial publications will be freely available online. The trial protocol, statistical anal- ysis plan and trial publications will be freely available at http://www.txcent- rial.org/.

Ethics approval and consent to participate
Most patients with TBI are unable to provide informed consent to participate in a clinical trial due to the nature of their injury. As per the Declaration of Helsinki, patients who are incapable of giving consent are an exception to the general rule of informed consent in clinical trials. In the CRASH-3 trial, consent was sought from the patient’s relative or a legal representative unless no such representative was available, in which case the study proceeded with the agreement of two clinicians. If the patient regained capacity, they were told about the trial and written consent was sought to continue participation. If either the patient or their representative declined consent, participation was stopped. If patients were included in the trial but did not regain capacity, consent was sought from a relative or legal representative. We adhered to the requirements of the local and national ethics committees.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK. 2College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. 3Global Institute of Human Development, Shifa Tameer-e-Millat University, Rawalpindi, Pakistan. 4Department of Cardiovascular Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK. 5Department of Emergency Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Shah Alam, Malaysia. 6Department of Surgery, Aga Khan University Hospital, Karachi 74800, Pakistan. 7Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK. 8University College Hospital, Ibadan, Nigeria. 9Department of Neurological Surgery, PMB 5116, Ibadan, Oyo State, Nigeria.

Received: 2 June 2020 Accepted: 12 August 2020 Published online: 11 November 2020

References
1. Stocchetti N, Carbonara M, Citerio G, et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16:452–64.
2. CRASH-3 Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394:1713–23.
3. Oettel M, Kelly DF, McArthur D, et al. Progressive hemorrhage after head trauma: predictors and consequences of the evolving injury. J Neurosurg. 2002;96:109–16.
4. Collaborators C-3 BMS. Tranexamic acid in traumatic brain injury: an explanatory study nested within the CRASH-3 trial. Eur J Trauma Emerg Surg. 2020. https://doi.org/10.1007/s00068-020-01316-1.
5. Ker K, Roberts I. Tranexamic acid for surgical bleeding. BMJ. 2014;349:g4934.
6. CRASH-2 trial collaborators, Shakur H, Roberts I, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet (London, England). 2010;376:23–32.
7. WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-
partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389:2105–16.

8. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567:305–7.

9. Gardner MJ, Altman DG. Confidence intervals rather than P values: estimation rather than hypothesis testing. Br Med J (Clin Res Ed). 1986;292:746–50.

10. Heidet M. Tranexamic acid for acute traumatic hemorrhage in emergency medicine. Eur J Emerg Med. 2020;1:85–86.

11. Taccone FS, Citerio G, Stocchetti N. Is tranexamic acid going to CRASH the management of traumatic brain injury? Intensive Care Med. 2019. https://doi.org/10.1007/s00134-019-05879-5.

12. Heymann EP. Tranexamic acid in traumatic intracranial bleeding: recognizing the limit of results (of the CRASH-3 trial). Eur J Emerg Med. 2019; published online Dec 18. https://doi.org/10.1097/MEJ.0000000000000657.

13. Cap AP. CRASH-3: a win for patients with traumatic brain injury. Lancet. 2019;394:1687–8.

14. Roberts I, Belli A, Brenner A, et al. Tranexamic acid for significant traumatic brain injury (The CRASH-3 trial): statistical analysis plan for an international, randomised, double-blind, placebo-controlled trial. Wellcome Open Res. 2018;3:86.

15. Roberts I, Prieto-Merino D, Manno D. Mechanism of action of tranexamic acid in bleeding trauma patients: an exploratory analysis of data from the CRASH-2 trial. Crit Care. 2014;18:685.

16. Brenner A, Anibas M, Cusick J, et al. Outcome measures in clinical trials of treatments for acute severe haemorrhage. Trials. 2018;19:533.

17. Yuthakasemsunt S, Kittiwatanagul W, Piyavechvirat P, Phuenpathom N, Lumbiganon P. Tranexamic acid for patients with traumatic brain injury: a randomized, double-blinded, placebo-controlled trial. 2013 http://www.biomedcentral.com/1471-227X/13/20 (accessed 1 July 2019).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.