New paradigms in the pathogenesis of otitis media in children

James Mark Coticchia1 *, Michael Chen1, Livjot Sachdeva1 and Sean Mutchnick2

1 Department of Otolaryngology – Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
2 Wayne State University School of Medicine, Detroit, MI, USA

**Correspondence:**
James Mark Coticchia, Department of Otolaryngology – Head and Neck Surgery, Wayne State University School of Medicine, 4201 St. Antoine, SE UHC, Detroit, MI 48201, USA
E-mail: jcoticch@med.wayne.edu

Acute otitis media (AOM) is a multifactorial disease with a significant socioeconomic impact. The pathogenesis of AOM is attributed to a variety of well-established internal and extrinsic factors. Recent evidence strongly points to bacterial biofilm formation as an important contributor to this disease entity. The nasopharynx is a likely reservoir for infection with subsequent seeding of pathogens to the middle ear via planktonic shedding. Various modalities have been used to directly detect biofilm formation in the middle ear mucosa of children with AOM. Further insights into this disease may lead to new strategies for prevention and treatment.

**Keywords:** otitis media, otitis media with effusion, acute otitis media, biofilms, pathogenesis, middle ear infection

**INTRODUCTION AND EPIDEMIOLOGY**

**PREVALENCE AND SOCIOECONOMIC IMPACT**

Otitis media (OM) is one of the most common childhood infections. Clinically it is characterized by middle ear effusion (MEE) and recognized as acute otitis media (AOM) or OM with effusion (OME) (1, 2). OM is the leading reason for visiting the doctor, prescribing antibiotics, and undergoing surgical procedures among children (1, 3–6).

The peak incidence of AOM is between 6 and 12 months of age (7, 8). More than 80% of children are diagnosed with AOM by age 3 (7). National medical expenditures for OM have been estimated at approximately $4.1 billion for children (9, 10). While the incidence of OM in the U.S. rose steadily in the latter part of the twentieth century (8), there has been decline between 2001 and 2005 (11). Rates of recurrent AOM (RAOM, defined in the study as >3 episodes in the previous 12 months) also declined between 2001 and 2005 (11).

The declining incidence of OM may be attributed to a number of factors that have been the focus of public health and education. The 7-valent pneumococcal conjugate vaccine (PCV7) was introduced in 2000 and has excellent efficacy against invasive pneumococcal disease (12–14). The “watchful waiting” guidelines aim to prevent unnecessary physician consultation for mild OM (14). Reductions in known risk factors such as smoke exposure may further contribute to the decline (14, 15).

**WIDESPREAD ANTIBIOTIC USE AND INCREASING BACTERIAL RESISTANCE**

Use of broad-spectrum antimicrobials in the United States has increased over the last several decades (15, 16) and is directly correlated to rising antibiotic resistance (17, 18). Decreasing susceptibility of invasive S. pneumoniae – the most common cause of pediatric AOM – to penicillin, clindamycin, and macrolides began in the mid-1990s (15, 19–21).

The serotypes covered by PCV7 were selected to protect against strains prominent among children worldwide and strains likely to develop antimicrobial resistance (22). The decrease in prevalence of PCV7-related S. pneumoniae has been met with increasing prevalence of PCV7-unrelated S. pneumoniae (23, 24) and H. influenzae (4, 25).

Selective pressure from the inappropriate use of antimicrobial agents is the single greatest factor influencing the spread of resistant S. pneumoniae and other common middle ear pathogens (15, 18, 20, 23, 25). Despite efforts by the Center for Disease Control (CDC) to minimize inappropriate use of antimicrobials, these practices continue to select for resistant pathogens. Strict guidelines for the diagnosis and treatment of OM are imperative.

**DIAGNOSIS, SIGNS, AND SYMPTOMS**

Children may present with non-specific findings such as ear-tugging, irritability, fever, or symptoms of a viral illness (3). Symptom duration and severity are not reliable indicators of AOM (3, 26). Accurate diagnosis of AOM requires a thorough examination of the tympanic membrane (TM) (3).

Recent updates to the AAP/AAP guidelines for the diagnosis and treatment of AOM in children have narrowed down the diagnostic criteria, particularly in its distinction from OME (3). Diagnosis requires the presence of MEE with acute onset of signs and symptoms of middle ear inflammation. MEE is established by an air-fluid level behind the TM, impaired TM mobility on pneumatic otoscopy, or otorrhea signifying TM perforation. AOM is reliably distinguished from OME by the addition of a “cloudy” and moderate-to-severe bulging of the TM; less specific signs include significant TM erythema or hemorrhage (3, 27, 28). Additional
methods for confirming MEE include tympanometry, acoustic reflectometry, or tympanocentesis.

**RISK FACTORS**

**HOST**

AOM is most common in infancy and early childhood, with peak incidence between 6 and 12 months of age (7, 8). The immature state of the immune system in young children predisposes them to infection, particularly with encapsulated bacteria (29). Incidence tends to be higher in males (7, 30, 31).

The etiology and pathogenesis of AOM are multifactorial and represent the interplay between genetic and environmental factors (11). Twin studies have shown that heritability accounts for 74 and 45% of variation in RAOM incidence in females and males, respectively (29). Several indigenous populations are high-risk for OM: Native Americans, the Alaskan, Canadian and Greenland Inuit, and Australian Aborigines (11, 32). Recent availability of genome-wide association studies (GWAS) has greatly expanded the ability to search for related genes (30).

The Eustachian tube (ET) helps maintain healthy middle ear conditions. The ET of infants in relation to their fully matured anatomy is of a smaller caliber, shorter length, and joins the nasopharynx at a more acute angle, all of which predispose to dysfunction of the ET and therefore increased risk of infection (31, 33). Children with craniofacial anomalies, such as cleft palate and Trisomy 21, are at increased risk of middle ear disease due to further ET compromise (34–37). Histopathology studies have reported deformed ET cartilage (38) and high incidence of OM (36) in patients with cleft palate.

Some studies have postulated that atopic diseases such allergic rhinitis and asthma can play a role in OM (39). This may be due to increased susceptibility to invasive pneumococcal disease. However, the exact causal relationship has yet to be elucidated.

**ENVIRONMENT**

Upper respiratory tract infections (URTI), both viral and bacterial, have been implicated in the development of AOM due to mucosal inflammation leading to adenoid hypertrophy, ET dysfunction, and disruption of mucociliary defenses (31, 40, 41). Virus-mediated inflammatory responses in the middle ear impair host immunity, promote bacterial colonization and inhibit antimicrobial penetration into the middle ear (31, 40). A temporal relationship is consistently observed with AOM incidence peaking 3–4 days after the onset of URTI symptoms (40).

Exposure to tobacco smoke is well known to adversely affect the respiratory tract. Higher colonization by pathogenic bacteria has been demonstrated in the nasopharyngeal flora of smokers and smoke-exposed children (42). Despite this, studies have not found a consistent link between smoke exposure and AOM incidence (43, 44). Potential confounding by socioeconomic status, thought to be inversely correlated with household smoking, often complicates the interpretation of such studies (43).

The protective effect of breastfeeding on OM incidence has been reported by the majority of investigators (43, 45). Proposed explanations for these protective effects have included head positioning during feeding, exposure to different microorganisms, improved nutrition and the antibacterial or immunological benefits of breast milk (46).

Exposure to other children, whether at day care or to siblings at home, is a strong risk factor for OM (11, 31, 43, 44, 46–48). Specific predictors include attendance by 2 months of age, attendance ≥30 h/week, and day care groups with ≥5 children and ≥2 children 2 years or younger (46).

**CLASSICAL THEORY OF PATHOGENESIS**

Classical theories of OM pathogenesis describe MEE and subsequent infection as direct consequences of ET dysfunction. The ET preserves normal middle ear conditions through three primary functions: clearance of middle ear fluid (MEF), ventilation, and protection from nasopharyngeal reflux (49, 50).

The drainage system of the middle ear is eloquently portrayed as an inverted flask by Bluestone et al. with the body of the flask representing the middle ear and the narrow neck representing the ET (51). The mucociliary wave transports middle ear secretions toward the nasopharynx. When a precipitating event, such as viral URTI or allergic rhinitis, triggers nasal mucosal inflammation, obstruction of the tubal orifice leads to fluid stasis. Individuals with narrower and horizontally oriented anatomy, cleft palate, or tensor veli palatini deficiency have impaired drainage and are at higher risk for MEE (51).

In the open state, the ET ventilates the middle ear and equalizes pressure with the nasopharynx. This can be done deliberately with the Valsalva maneuver or palatal elevation via the action of tensor veli palatini. Studies have reported middle ear gas absorption at a constant rate of 1 mL/24 h (52, 53). The hydrops ex vacuo theory, original proposed by Politzer, postulates that continuous negative middle ear pressure causes transudation of fluid from mucosa into the middle ear cavity leading to effusion (54). The hydrops ex vacuo theory has been validated in human studies (55, 56) and is widely accepted as a key step in the development of MEE.

The ET allows greater physical separation between the nasopharynx and middle ear, isolating the middle ear from infection and offensive material originating from the upper aerodigestive tract. This is believed to play a role in the higher incidence of OM in children, who have smaller and more horizontal ET compared to adults. Higher rates of gastroesophageal reflux, confirmed by detection of pepsin/pepsinogen in MEF, have been reported in children with OME or RAOM compared to otherwise healthy children (57). Pepsinogen in the middle ear has also been identified in the adenoids of children with OME, suggesting nasopharyngeal reflux as the likely mechanism (58). While some prospective studies have reported a possible benefit in OM resolution with antireflux therapy, evidence from large controlled trials is lacking (57, 59). There are currently no recommendations for the use of antireflux therapy in treating OM.

**THE IMPORTANCE OF BIOFILM PHENOTYPES IN OTITIS MEDIA**

**THE CHINCHILLA MODEL**

The vast majority of animal models of OM have utilized the chinchilla. Giebink cites several factors favoring these animals in the study of middle ear disease: (1) it is the only animal model in which *S. pneumoniae* OM can be induced by inoculation directly
into the middle ear or nasal cavity, (2) infection rarely spreads outside of the middle ear, (3) the middle ear is easily accessible for inoculation and culture, and (4) OM does not naturally occur in chinchillas (60). Research on chinchilla models, beginning in the 1970s, have contributed to the discovery of potent virulence factors (61), identify a role for nasopharyngeal flora which are thought to inhibit colonization and proliferation of pathogenic species (67). Many surgeons now routinely obtain middle meatus or nasopharyngeal cultures in children with RAOM to identify the causative agents and guide antimicrobial therapy.

**NASOPHARYNGEAL BACTERIAL COLONIZATION**

Nasopharyngeal colonization with potential middle ear pathogens is regarded as the initial event leading to OM in humans (63, 64). This theory is strongly supported by work on chinchilla models (65), which have shown a close correlation between nasopharyngeal and middle ear pathogens known to cause AOM (66). At the same time, children without RAOM carry greater species of benign nasopharyngeal flora which are thought to inhibit colonization and proliferation of pathogenic species (67). Many surgeons now routinely obtain middle meatus or nasopharyngeal cultures in children with RAOM to identify the causative agents and guide antimicrobial therapy.

**BIOFILMS AND PLANKTONIC SHEDDING**

Biofilms are increasingly recognized as a key component of many chronic and treatment-resistant diseases. Hall-Stoodley et al. define biofilms as “surface-associated microbial communities surrounded by an extracellular polymeric substance matrix” which are notoriously resistant to host immune responses and antimicrobial therapy (68, 69). Properties of biofilms favoring their survival include (1) poor antimicrobial penetration, (2) decreased oxygen and nutrient requirements, (3) increased expression of resistance genes (e.g., beta-lactamase), and (4) cell-to-cell signaling via quorum sensing (70, 71). The extracellular matrix confers reduced permeability to topical and intravenous antimicrobials and along with other putative resistance mechanisms of biofilms (slower growth rate, oxygen depleted microenvironment, and other environmental stresses due to altered physiologic conditions) accounts for the frequent failure of traditional therapies (70). Quorum sensing involves intercellular transmission of molecules and genetic information which permit coordinated behavior and reaction to the local environment (71). Extensive research efforts to understand the biofilm environment have identified a number of therapeutic targets and will be discussed in the next section.

An overwhelming majority of bacteria in the human body exist in the biofilm state during which they are extremely difficult to study in situ because of scattering artifact. OCT has been used to detect and measure biofilms in vivo (75–78, 80, 82, 83, 87). These methods require an adequate tissue sample, thus restricting the study of middle ear biofilms to animal models and the study of adenoid biofilms to patients undergoing adenoidectomy, while in vivo studies are all but impossible.

Optical coherence tomography (OCT) is an emerging imaging modality which may allow non-invasive, in vivo detection of middle ear biofilms. This technology uses near-infrared laser waves to penetrate tissue to produce live, three-dimensional images (88), in a manner similar to ultrasound. However, the shorter wavelength of near-infrared waves compared to ultrasound waves permits submicrometer resolution. Like ultrasound, OCT is ideal for use in children because it is well-tolerated, causes no tissue injury, and avoids radiation exposure. Notably, the depth of penetration is limited to 1–2 mm due to scattering artifact. OCT has been used to detect retinal disease in multiple sclerosis (89) and age-related macular degeneration (90), yet its clinical applications may extend to a variety of medical fields (91). Nguyen et al recently demonstrated OCT-based in vivo detection of middle ear biofilms in adults with chronic OM (92). In a follow-up study, OCT findings
were directly correlated with acoustic measurements of the TM in a similar adult population (93). These early studies were limited in sample size and further investigation is ongoing. OCT remains a highly promising non-invasive method of detecting biofilms which may play a role in diagnosing biofilm-related diseases in the middle ear.

Tymanostomy tubes likely alter middle ear flora by providing ventilation and increased oxygen tension. The impact on biofilm behavior is unclear, but may affect detachment rates (94). As a foreign body, tymanostomy tubes promote biofilm growth in the setting of initial infection by acting as a scaffold for bacterial colonization and extracellular matrix formation. Tube material may be an important factor in biofilm development. An *in vitro* animal study found that among several materials, only ion-bomarded silicone tubes prevented *S. aureus* biofilm adherence (95), although this effect was not seen with *P. aeruginosa* (96). Recently, the protective effect of coated silicone tubes has been investigated in several *in vitro* studies. MRSA is inhibited by vancomycin-coated tubes (97). *P. aeruginosa* biofilms are inhibited by polyvinylpyrrolidone (PVP)-coated tubes (98) and piperacillin-tazobactam coated tubes (99). Silver oxide-coated tubes, which reduce postoperative otitis media (100), do not seem to resist biofilms (97,99). Further research may lead to culture-directed selection of coated tympanostomy tubes to eradicate OM. The risk of selecting for drug resistant strains through low dose antimicrobial therapy remains a concern.

Middle ear biofilms are not eradicated by commonly prescribed topical antimicrobials (101). Agents that are effective in treating upper respiratory tract biofilms, such as mupirocin and gentian violet (102), are difficult to deliver or potentially ototoxic within the middle ear. Proposed strategies focus on electromechanical and biochemical disruption of biofilm adherence and proliferation.

Pulsed laser therapy has been demonstrated to dislodge middle ear biofilms by generating shockwaves (103). Electromagnetic, ultrasonic, and photo-therapy may enhance antimicrobial delivery or activity in certain applications (104).

Biochemical disruption includes identification of specific molecular targets (87), enhanced drug delivery (104,105), and disruption of quorum sensing (105). Drug carriers such as liposomes (106) and biocompatible polymers (104) may offer a way to bypass the protective extracellular matrix, allowing penetration and controlled delivery of antimicrobials directly into the biofilm.

Quorum sensing is a complex process which allows cell-to-cell communication between biofilm bacteria. Extracellular DNA, released by cell autolysis, is a method of genetic exchange and is required for biofilm formation (107). DNase has been studied as a way to destroy this free-floating DNA and thus inhibit quorum sensing (108). Alginic lyase targets a key element of the *P. aeruginosa* extracellular matrix and disrupts existing biofilms (109). Naturally occurring compounds such as bacterial proteins (110) and tea-tree oil (111) may also possess antibiofilm properties.

Bakaletz described early research on several promising vaccines which have shown good efficacy in preventing OM as well as *in vitro* studies demonstrating eradication of existing biofilms (87). The possibility of preventative and therapeutic vaccines to target middle ear biofilms may dramatically change the landscape of AOM.

### CONCLUSION – IMPLICATION OF BIOFILM INFECTION IN THE PATHOGENESIS OF OM

Many of these recent studies have demonstrated that RAOM and COME like many other chronic infections in humans such as chronic tonsillitis, cheleatoma, chronic rhinosinusitis, cystic fibrosis, catheter infections, and infections in implants such as heart valves may be partially explained by the persistent nature of biofilm phenotypes. By combining the classical theories of the pathogenesis of OM with new insights of the nature of biofilms infections we may be able to develop a more comprehensive understanding of OM. Indeed biofilms help to explain many previously documented observations regarding OM, i.e., MEEs that are culture negative and yet have bacterial RNA identified by PCR, persistence of middle ear infections despite appropriate level of therapeutic antibiotics, and the efficacy of low dose antibiotics in the incidence of RAOM.

Our recent work has evaluated the presence of middle ear pathogens by utilizing Real Time PCR in the MEF and adenoids of children with both RAOM and COME. We found that all MEFs contained middle ear pathogens and that every pathogen identified in the MEF was also identified in the matched adenoid specimens (Sheyn et al., unpublished). Although the N-numbers are small, this work suggests that biofilms may play a role in COME.

The algorithm depicted in Figure 1 combines new concepts of biofilm infections with classical models of pathogenesis of OM. In this paradigm, the initial step in the development of RAOM is the exposure of the nasopharynx to known middle ear pathogens. Tympanostomy tubes likely alter middle ear flora by providing ventilation and increased oxygen tension. The impact on biofilm behavior is unclear, but may affect detachment rates (94). As a foreign body, tymanostomy tubes promote biofilm growth in the setting of initial infection by acting as a scaffold for bacterial colonization and extracellular matrix formation. Tube material may be an important factor in biofilm development. An *in vitro* animal study found that among several materials, only ion-bomarded silicone tubes prevented *S. aureus* biofilm adherence (95), although this effect was not seen with *P. aeruginosa* (96). Recently, the protective effect of coated silicone tubes has been investigated in several *in vitro* studies. MRSA is inhibited by vancomycin-coated tubes (97). *P. aeruginosa* biofilms are inhibited by polyvinylpyrrolidone (PVP)-coated tubes (98) and piperacillin-tazobactam coated tubes (99). Silver oxide-coated tubes, which reduce postoperative otitis media (100), do not seem to resist biofilms (97,99). Further research may lead to culture-directed selection of coated tympanostomy tubes to eradicate OM. The risk of selecting for drug resistant strains through low dose antimicrobial therapy remains a concern.

Middle ear biofilms are not eradicated by commonly prescribed topical antimicrobials (101). Agents that are effective in treating upper respiratory tract biofilms, such as mupirocin and gentian violet (102), are difficult to deliver or potentially ototoxic within the middle ear. Proposed strategies focus on electromechanical and biochemical disruption of biofilm adherence and proliferation.

Pulsed laser therapy has been demonstrated to dislodge middle ear biofilms by generating shockwaves (103). Electromagnetic, ultrasonic, and photo-therapy may enhance antimicrobial delivery or activity in certain applications (104).

Biochemical disruption includes identification of specific molecular targets (87), enhanced drug delivery (104,105), and disruption of quorum sensing (105). Drug carriers such as liposomes (106) and biocompatible polymers (104) may offer a way to bypass the protective extracellular matrix, allowing penetration and controlled delivery of antimicrobials directly into the biofilm.

Quorum sensing is a complex process which allows cell-to-cell communication between biofilm bacteria. Extracellular DNA, released by cell autolysis, is a method of genetic exchange and is required for biofilm formation (107). DNase has been studied as a way to destroy this free-floating DNA and thus inhibit quorum sensing (108). Alginic lyase targets a key element of the *P. aeruginosa* extracellular matrix and disrupts existing biofilms (109). Naturally occurring compounds such as bacterial proteins (110) and tea-tree oil (111) may also possess antibiofilm properties.

Bakaletz described early research on several promising vaccines which have shown good efficacy in preventing OM as well as *in vitro* studies demonstrating eradication of existing biofilms (87). The possibility of preventative and therapeutic vaccines to target middle ear biofilms may dramatically change the landscape of AOM.

### FIGURE 1 | Proposed algorithm for RAOM pathogenesis

- NP exposure to ME pathogens
- Attachment and aggregation of MEPs in NP
- Formation of EPS matrix around MEPs
- Biofilm development on NP mucosa
- Planktonic shedding of MEPs from NP biofilm
- ET dysfunction creating net negative pressure in ME
- Entry of free swimming MEPs into ME cavity
- Onset of AOM
- Development of ME biofilm by MEPs
- Antimicrobials targeting planktonic MEPs
- NP biofilm resistance and AOM recurrence
Although there has also been significant research on the identification of common pathogens including *H. influenzae* and *M. catarrhalis*, the mechanisms these pathogens utilize to colonize and persist in the host have not been well described. Biofilm phenotypes, as previously discussed, have been shown to resist host defenses through several mechanisms and persist despite therapeutic levels of antimicrobials. These characteristics of biofilm infection may help explain recurrent and persistent nature of many infectious entities. Therefore, a more comprehensive understanding of the host-organism via biofilm phenotypes in RAOM and COME expand our knowledge of the underlying pathogenesis of these recurrent and chronic disease states. This information could serve as a springboard in the development of new animal models of OM, new imaging techniques in diagnosis and novel therapeutic interventions for treatment.

**REFERENCES**

1. Rovers MM, Schilder AG, Zielhuis GA, Rosenfeld RM. Otitis media. *Lancet* (2004) **363**(9407):465–73. doi:10.1016/S0140-6736(04)15495-0
2. Bluestone C. Definitions, terminology, and classification. In: Rosenfeld RM, Bluestone C, editors. Evidence-Based Otitis Media. Hamilton, ON: BC Decker (1999), p. 85–103.
3. American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media. Diagnosis and management of acute otitis media. *Pediatrics* (2004) **113**(3):1451–65. doi:10.1542/peds.113.3.1451
4. Coker TR, Chan LS, Newbury SJ, Liese J, Schilder AG, et al. Diagnosis, microbial epidemiology, and antibiotic treatment of acute otitis media in children: a systematic review. *JAMA* (2010) **304**(19):2161–9. doi:10.1001/jama.2010.1651
5. McCaig LF, Besser RE, Hughes JM. Trends in antimicrobial prescribing rates for children and adolescents. *JAMA* (2002) **287**(23):3096–102. doi:10.1001/jama.287.23.3096
6. Arguedas A, Kaerner K, Lies J, Schilder AG, Pelton SI. Otitis media across nine countries: disease burden and management. *Int J Pediatr Otorhinolaryngol* (2010) **74**(12):1419–24. doi:10.1016/j.ijporl.2010.09.022
7. Teele DW, Klein JO, Rosner B. Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. *Pediatr Infect Dis* (1989) **16**(1):83–94. doi:10.1097/00006254-198901000-00013
8. Hoiberman A, Marchant CD, Kaplan SL, Feldman S. Treatment of acute otitis media consensus recommendations. *Clin Pediatr (Phila)* (2002) **41**(6):373–90. doi:10.1177/000992280204100602
9. Bondy J, Berman S, Glazer J, Lezotte D. Direct expenditures related to otitis media diagnoses: extrapolations from a pediatric Medicaid cohort. *Pediatrics* (2000) **105**(6):E72. doi:10.1542/peds.105.6.e72
10. Gates GA. Cost-effectiveness considerations in otitis media treatment. *Otolaryng Head Neck Surg* (1996) **114**(4):525–30. doi:10.1016/S0194-5998(96)70243-7
11. Daly KA, Hoffman IH, Kaerner KJ, Kvestad E, Casselbrant ML, Homoe P, et al. Epidemiology, natural history, and risk factors: panel report from the ninth international research conference on otitis media. *Int J Pediatr Otorhinolaryngol* (2010) **74**(3):231–40. doi:10.1016/j.ijporl.2009.09.006
12. Black S, Shinitzky F, Fritzen B, Lewis E, Ray, P, Hansen JR, et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. *Pediatr Infect Dis J* (2000) **19**(3):187–95. doi:10.1097/00006080-200003000-00003
13. Taylor S, Marchisio P, Vergison A, Haudorf WP, Hagbard M. Pneumococcal conjugate vaccines and otitis media. *Int J Otorhinolaryngol* (2012) **2012**:674573. doi:10.1155/2012/674573
14. Taylor S, Marchisio P, Vergison A, Harriague J, Haudorf WP, Haggard M. Impact of pneumococcal conjugate vaccination on otitis media: a systematic review. *Clin Infect Dis* (2012) **54**(12):1765–73. doi:10.1093/cid/cis292
15. Hoppe HI, Johnson CE. Otitis media: focus on antimicrobial resistance and new treatment options. *Am J Health Syst Pharm* (2005) **62**(18):1881–97.
16. Coco AS, Horst MA, Gambler AS. Trends in broad-spectrum antibiotic prescribing for children with acute otitis media in the United States, 1998-2004. *BMC Pediatr* (2009) **9**:41. doi:10.1186/1471-2431-9-41
17. Goossens H, Ferech M, Vander Stichele R, Elseviers M. ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. *Lancet* (2005) **365**(9459):579–87. doi:10.1016/S0140-6736(05)67099-6
18. McCormack AW, Whitney CG, Farley MM, Lynfield R, Harrison LH, Bennett NM, et al. Geographic diversity and temporal trends of antimicrobial resistance in *Streptococcus pneumoniae* in the United States. *Nat Med* (2003) **9**(4):424–30. doi:10.1038/nmm839
19. Tan TQ. Antimicrobial resistance due to *Streptococcus pneumoniae*: impact on therapeutic options and clinical outcome. *Curr Opin Infect Dis* (2003) **16**(3):273–7. doi:10.1097/01.cid.00001432.20030600-00015
20. Mera RM, Miller LA, Daniels JJ, Weil JG, White AR. Increasing prevalence of multidrug-resistant *Streptococcus pneumoniae* in the United States over a 10-year period: Alexander Project. *Diagn Microbiol Infect Dis* (2005) **51**(3):195–200. doi:10.1016/j.diagmicrobio.2004.10.009
21. Jacobs MR, Good CE, Beall B, Bajaksouzian S, Windau AR, Whitney CG. Changes in serotypes and antimicrobial susceptibility of invasive *Streptococcus pneumoniae* strains in Cleveland: a quarter century of experience. *J Clin Microbiol* (2008) **46**(3):982–90. doi:10.1128/JCM.02321-07
22. Joloba ML, Windau A, Bajaksouzian S, Appelbaum PC, Haudouched W, Jacobs MR. Pneumococcal conjugate vaccine serotypes of *Streptococcus pneumoniae* isolates and the antimicrobial susceptibility of such isolates in children with otitis media. *Clin Infect Dis* (2001) **33**(9):1489–94. doi:10.1086/323027
23. CDC. Office-related antibiotic prescribing for persons aged ≤14 years—United States, 1993–1994 to 2007–2008. *MMWR Morb Mortal Wkly Rep* (2011) **60**(34):1153–6.
24. Farrell DJ, Klugman KP, Pichichero M. Increased antimicrobial resistance among nonvaccine serotypes of *Streptococcus pneumoniae* in the pediatric population after the introduction of the 7-valent pneumococcal vaccine in the United States. *Pediatr Infect Dis J* (2007) **26**(2):123–8. doi:10.1097/INF.0b013e3181543524
25. Lieberthal AS, Carroll AE, Chenmaitte T, Ganiats TG, Hoberman A, Jackson MA, et al. The diagnosis and management of acute otitis media. *Pediatrics* (2013) **131**(5):e694–99. doi:10.1542/peds.2012-3488
26. Shahid N, Hoberman A, Kidael PF, Rockette HE, Kurs-Lasky M, Hoover H, et al. Outoscopic signs of otitis media. *Pediatr Infect Dis J* (2011) **30**(10):822–6. doi:10.1097/INF.0b013e31822e6673
27. Kaerner KJ, Tumbs K, Harris JR, Magnus P. Distribution and heritability of recurrent ear infections. *Ann Otol Rhino Laryngol* (1997) **106**(8):624–32.
Coticchia et al. Otitis media pathogenesis in children

78. Thornton PB, Rigby P, Wiertszka SP, Filion P, Langlands J, Coates HL, et al. Multi-species bacterial biofilm and intracellular infection in otitis media. BMC Pediatr (2011) 11:94. doi:10.1186/1471-2431-11-94

79. Barakate M, Beckenham E, Currota J, da Cruz M. Bacterial biofilm adherence to middle-ear ventilation tubes: scanning electron micrograph images and literature review. J Laryngol Otol (2007) 121(10):993–7.

80. Hoa M, Syamal M, Sachdeva L, Berk R, Coticchia J. Demonstration of nasopharyngeal and middle ear mucosal biofilms in an animal model of acute otitis media. Ann Otol Rhinol Laryngol (2009) 118(4):292–8.

81. Zuliani G, Carlisle M, Dubestern A, Haupert M, Syamal M, Berk R, et al. Biofilm density in the pediatric nasopharynx: recurrent acute otitis media versus obstructive sleep apnea. Ann Otol Rhinol Laryngol (2009) 118(7):519–24.

82. Hoa M, Syamal M, Schaeffer MA, Sachdeva L, Berk R, Coticchia J. Biofilms and chronic otitis media: an initial exploration into the role of biofilms in the pathogenesis of chronic otitis media. Am J Otolaryngol (2010) 31(4):241–5. doi:10.1016/j.amjoto.2009.02.015

83. Nistico L, Kreft R, Giuseke A, Coticchia JM, Burrows A, Khampan P, et al. Adenoid reservoir for pathogenic biofilm bacteria. J Clin Microbiol (2011) 49(4):1411–20. doi:10.1128/JCM.00756-10

84. Costerton JW, Nickel JC, Ladd TI. Suitable methods for the comparative study of free-living and surface-associated bacterial populations. In: Poindexter JS, Leadbetter ER, editors. Methods and Special Applications in Bacterial Ecology. New York: Plenum (1986). 3 p.

85. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Biofilms. Science (1999) 284(5418):1318–21. doi:10.1126/science.284.5418.1318

86. Hoa M, Syamal M, Schaeffer MA, Sachdeva L, Berk R, Coticchia J. Multi-species bacterial biofilm and intracellular infection in otitis media. Pediatr Infect Dis J (2012) 31(10):94. doi:10.1097/INF.0b013e31825d7e9e

87. Thormann KM, Saville RM, Filion P, Langlands J, Coates HL, et al. Multiple species bacterial biofilm and intracellular infection in otitis media. BMC Pediatr (2011) 11:94. doi:10.1186/1471-2431-11-94

88. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optimal use of lipid liposomes with bacteria and their use in the delivery of bactericides. Antimicrob Agents Chemother (2008) 52(1):389–414. doi:10.1128/AAC.01803-07

89. Vlastarakos PV, Nikolopoulos TP, Maragoskoulas P, Tzagaroulakis A, Ferekidis E. Biofilms in ear, nose, and throat infections: how important are they? Laryngoscope (2007) 117(4):668–73. doi:10.1097/MLG.0b013e31803e422

90. Keane PA, Patel PJ, Liakopolous S, Heussen FM, Sadda SR, Tufail A. Evaluation of retinal and macular damage with brain atrophy in multiple sclerosis. Science (1991) 254(5035):1178–81. doi:10.1126/science.1957169

91. Dusane DH, Damare SR, Nancharaiah YV, Ramaiah N, Venugopalan VP, Kumar AR, et al. Disruption of microbial biofilm by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis. PLoS One (2013) 8(5):e65957. doi:10.1371/journal.pone.0065957

92. Chole RA, Hubbell RN. Antimicrobial activity of silastic tympanostomy tubes impregnated with silver oxide. Arch Otolaryngol Head Neck Surg (1995) 121(5):562–5. doi:10.1001/archotol.1995.018905005410

93. Nguyen CT, Robinson SR, Jung W, Novak MA, Boppart SA, Allen JB. Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements. J Biomed Opt (2007) 12(5):051403. doi:10.1117/1.2795736

94. Thormann KM, Saville RM, Shukla S, Spormann AM. Induction of rapid biofilm formation on coated silicone tympanostomy tubes. Int J Pediatr Otorhinolaryngol (2013) 77(2):223–7. doi:10.1016/j.ijpedit.2012.10.027

95. Jang CH, Park H, Cho YB, Choi CH, Park IY. The use of piperacillin-tazobactam coated tympanostomy tubes against ciprofloxacin-resistant Pseudomonas biofilm formation: an in vitro study. Int J Pediatr Otorhinolaryngol (2009) 73(2):295–9. doi:10.1016/j.ijpedit.2008.10.020

96. Smith A, Buchinsky FJ, Post JC. Eradicating chronic ear, nose, and throat infections: a systematically conducted literature review of advances in biofilm treatment. Otolaryngol Head Neck Surg (2011) 144(3):338–47. doi:10.1177/0194991011629610

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 August 2013; accepted: 12 December 2013; published online: 23 December 2013.

Citation: Coticchia JM, Chen M, Sachdeva L and Mutchnick S (2013) New paradigms in the pathogenesis of otitis media in children. Front. Pediatr. 1:52. doi:10.3389/fped.2013.00052

This article was submitted to Pediatric Otolaryngology, a section of the journal Frontiers in Pediatrics.

Copyright © 2013 Coticchia, Chen, Sachdeva and Mutchnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Coticchia et al. Otitis media pathogenesis in children

www.frontiersin.org

December 2013 | Volume 1 | Article 52 | 7