Long-term survival of cultivated oral mucosal epithelial cells in human cornea: generating cell sheets using an animal product-free culture protocol

David Hui-Kang Ma1,2,3,4*, Yi-Jen Hsueh1, Kevin Sheng-Kai Ma1,5,6,7, Yueh-Ju Tsai1,8, Shiang-Fu Huang9,10, Hung-Chi Chen1,3,8, Chi-Chin Sun8,11, Ming-Tse Kuo12, An-Shine Chao13,14 and Jui-Yang Lai15,16,17*

Abstract
Previously, we reported a collagenase-based, animal product-free protocol for cultivated oral mucosal epithelial cell sheets for transplantation (COMET). Here, we reported the long-term outcomes of first 2 clinical cases. A 27-year-old man suffered from thermal burn, which resulted in symblepharon of lower fornix OD. COMET was performed, and the cornea remained clear with few peripheral NV and no more symblepharon 34 months postoperatively. Another 42-year-old man suffered from severe alkaline burn OD. He underwent COMET, followed by corneal transplantation half a year later. A biopsy taken two years after COMET showed stratified epithelium positive for keratin 4, 13, and 3 in the suprabasal layer. Staining for p63 and p75NTR was both positive in the basal layer. The graft remained clear up to post-OP 4 years. Our study confirmed the long-term survival of the transplanted OMECs, suggesting that collagenase-based spheroidal suspension culture is a promising technique for COMET.

Keywords: COMET, Collagenase, Oral mucosa, Amniotic membrane, Microsphere

Introduction
Rejection is still a major drawback to allograft transplantation. To circumvent allogeneic rejection, previously Nakamura et al. [1] and Nishida et al. [2] reported cultivated oral mucosal epithelial transplantation (COMET) using autologous oral mucosal epithelium as a surrogate for the genuine corneal epithelium to reconstruct the corneal surface after chemical burns and Stevens-Johnson syndrome [3–6]. Stabilization of the corneal surface [7], long-term survival of transplanted oral mucosal epithelial cells (OMECs) [8–11], and improvements in vision have been documented [12].

Despite the success of the technique, earlier protocols invariably used ingredients containing animal products, notably bovine serum and 3T3 feeder cells. Although the risk is small, there is still concern about transmitting zoonoses. Efforts have been made to remove the components derived from animals from the culture medium [13–16].

On the other hand, earlier methods invariably all used dispase II, followed by trypsin/EDTA treatment to isolate OMECs. With this method, many epithelial cells in the tissue were dissociated and became devitalized.
Previously, we reported the use of type 1 collagenase to isolate OMECs from tissue to fabricate an epithelial cell sheet [17]. With this method, the 3T3 feeder cell coculture was no longer needed, and in vitro studies suggested that OMEC sheets generated by collagenase digestion might contain more progenitor cells [17]. A COMET clinical trial using this protocol is currently underway, and initial results suggested that long-term survival of transplanted OMECs is possible.

Cell culture and transplantation

Human oral mucosal tissue and amniotic membrane (AM) were obtained in accordance with the tenets of the Declaration of Helsinki for research. The clinical trial was approved by the Institutional Review Board of Chang Gung Memorial Hospital, Taiwan’s Food and Drug Administration, and was also registered in ClinicalTrials.gov (ID NCT03943797). Institutional consent form including consent for future publication has been signed by the patients.

The processing of the AM was described in detail previously [17]. Briefly, two layers of 1.5 × 1.5 cm de-epithelialized AM were laid onto a 25-mm culture insert (Corning) and air-dried overnight. An 8 × 8 mm biopsy was taken from the patient’s buccal mucosa under local anesthesia. The tissue was cut into tiny pieces and then added to a 1.5-mL Eppendorf tube containing 1 mL 0.5 mg/mL collagenase A (Roche) in serum-free SHEM.

The tube was kept in an Eppendorf ThermoMixer overnight with rapid shaking at 1,200 rpm and 37 °C. After incubation, the cell suspension was spun down at 4 °C, 3,500 rpm for 5 min, followed by removal of the supernatant. The cell pellet was resuspended in 1.5 mL SHEM containing 5% PLTMax (Merck-Millipore; a human platelet lysate approved for human use) and seeded onto the insert.

Duplicate cultures were made, because one culture will be used for the qualification assay later. Two days later, the medium was replaced with serum-free EpLife medium (containing 1% Supplement S7; Gibco/Thermo Fisher Scientific). The medium was changed every 3 days. The average cell culture time was 14 days.

Before termination of cell culture, one culture will be chosen for the qualification assays. The procedure of staining the flat mounts was according to previous publications [11, 17]. For characterization, the following antibodies were used: anti-keratin 3 (1: 100; Millipore), anti-keratin 4 (1: 100; Abcam), anti-keratin 13, (1: 100; Abcam), anti-Connexin 43 (1: 50; Millipore), anti-p63 (1: 150; Millipore), and anti-p75NTR (1: 100; Santa Cruz). Staining procedures and photography for the cryosections were described previously [11, 17].

All transplantations were performed under general anesthesia, and the surgical procedure was similar to earlier reports [3, 11, 18]. If the patient has a cataract or residual corneal opacity, cataract extraction or corneal transplantation can be done at least 6 months after COMET.

Characterization of the cell culture product

Following collagenase treatment, the OMECs became microspheres of variable sizes (Additional file 1: Fig. S1A). Most of the microspheres can attach to the AM, and the epithelial cells then spread out from the microspheres (Additional file 1: Fig. S1B). Individual small cell sheets gradually coalesced to become a confluent sheet by around two weeks (Additional file 1: Fig. S1D–F). The cell sheet exhibited homogenous cytoplasmic staining for keratin 3 (Additional file 1: Fig. S1G) and keratin 13 (Additional file 1: Fig. S1H), but negative staining for keratin 8 (Additional file 1: Fig. S1I; a negative marker for OMECs) [11]. Gap junction protein Connexin 43 was expressed in the intercellular space, but was absent within the microspheres (Additional file 1: Fig. S1J). The cell sheet expressed both p63 (Additional file 1: Fig. S1K) and p75NTR (Additional file 1: Fig. S1L), which were concentrated in the microspheres. Conversely, in these microspheres, the staining for keratin 3 and keratin 13 was negative (not shown).

Patient 1

A 27-year-old man suffered from thermal burn OD caused by molten aluminum. Despite multiple surgeries, inflammation persisted and fibrovascular tissue reinvaded and resulted in opacification of the lower cornea with symblepharon of the lower fornix, and his best corrected vision OD was 20/300 (Fig. 1A, B).

In early 2017, he received superficial keratectomy and COMET. Postoperatively, the cell sheet remained intact without erosion or defect (Fig. 1C). Aggregates of the epithelial microspheres on AM could be seen by slit lamp (Fig. 1D). The aggregates gradually smoothed out and could no longer be seen 2 weeks postoperatively. At post-op 1.5 months, his conjunctival inflammation was markedly reduced (Fig. 1E, F). One and half a year after COMET, his vision improved to 20/25 by rigid contact lens correction, and no more symblepharon was seen (Fig. 1G). 34 months after transplantation, the cornea remained clear with few peripheral NV, and the unique fluorescein staining of the epithelium over the lower limbus and bulbar conjunctiva indicated the presence of OMECs (Fig. 1H, I).

In the duplicate culture, cellular aggregates were readily identifiable under a surgical microscope (Fig. 2A). Under a phase-contrast microscope, some areas of the cell
sheet were mainly composed of squamous epithelial cells (Fig. 2B), while in other areas, microspheres predominated (Fig. 2C). In the squamous epithelium predominating area, keratin 3 staining was homogenous (Fig. 2D), p75NTR staining was sporadic (Fig. 2E), and p63 staining was discrete and diffuse (Fig. 2F). In the microsphere dominated area, keratin 3 staining was absent within the microspheres (Fig. 2G). In contrast, p75NTR and p63 stainings were concentrated in the cell aggregates. Collectively, these findings suggest the enrichment of progenitor cells within the microspheres/cell aggregates in the OMEC cultures.

Patient 2
A 42-year-old man suffered from severe alkaline burn (sodium hydroxide) OD. When he was referred to our hospital, entropion and symblepharon were noted (Fig. 3A), the cornea was covered by dense blood vessels and granulation tissue, and his vision was only light perception (3C).

After recruitment for this study, COMET was performed following pannus removal, peritomy, and topical mitomycin C soaking. Postoperatively, the cornea was well-epithelialized, and there was no single episode of epithelial defect (Fig. 3D). To treat remaining corneal opacity, 6 months after COMET, penetrating keratoplasty was performed (Fig. 3F). After keratoplasty, the
graft remained clear, and his best corrected visual acuity (BCVA) reached 20/80.

To understand the fate of the transplanted OMECs, 1.5 years after keratoplasty, a biopsy was taken from the lower limbus (Fig. 3G). The graft remained clear up to post-COMET 4 years, and his BCVA remained above 20/120 (Fig. 3H). In the lower cornea and limbus, fluorescein staining confirmed the presence of OMECs,
which exhibited a characteristic coarse staining pattern (Fig. 3I) similar to previous findings [3, 11, 18].

Immuconfoocal microscopy for keratin 12 (Fig. 4A) and keratin 8 (4B) both showed positive staining in the upper part of the corneal button obtained half a year after COMET, suggesting the presence of corneal epithelium in this area. While the majority of the specimen was keratin 12 and keratin 8-negative oral mucosal epithelium, p63 signal was universally expressed in the basal epithelium (Fig. 4C).

The biopsy taken 2 years after COMET showed stratified epithelium with over 10 layers of cells in some areas (Fig. 4F). The basal epithelial cells were small, compact, and with a high N/C ratio. The epithelium showed positive staining for keratin 4 (Fig. 4D), 13 (Fig. 4E), and 3 (Fig. 4H) in the suprabasal layer but was uniformly negative in the basal layer. Negative keratin 8 staining confirmed the origin from the oral mucosa (Fig. 4G). Staining for p63 (Fig. 4I) and p75NTR (Fig. 4J) was both uniformly positive in the basal layer. This implied that the oral mucosal epithelium rich in progenitor cells persisted in the recipient cornea.

Discussion

Previously, long-term clinical success after cultivated autologous limbal or oral mucosal epithelial cell transplantation has been reported [7, 8, 19–22]. However, there are only a few studies reporting the histological evidence of the persistence of transplanted cells in the recipient's cornea [9, 11, 22]. OMECs express keratin 4, 13 but not keratin 8, which distinguishes them from corneal or conjunctival epithelial cells, and therefore, our study provides solid evidence that cultivated epithelial cells can survive for a long time after transplantation.
Previously, Chen et al. reported a new isolation method using collagenase A to isolate human limbal progenitor cells, which maintained a close association with their niche cells [23]. Earlier, we demonstrated that cultivated OMECs isolated by collagenase in the absence of feeder cells exhibited a significantly higher ratio of BrdU.

Fig. 4 Immunoconfocal microscopy for keratin 12 (A, green; nuclei counterstained with PI), 8 (B, green), and p63 (C, red; nuclei counterstained with DAPI) in a corneal button removed half a year after COMET, and keratin 4 (D, green), 13 (E, green), 8 (G, green; no signal seen), 3 (H, green), p63 (I, red) and p75NTR (J, green) in a limbal biopsy taken 2 years after COMET. Keratin 12 (A) and keratin 8 (B) were both positive in the upper part (left side) of the corneal button, suggesting the presence of corneal epithelium in this area. While the majority of the specimen was keratin 12 and keratin 8-negative oral mucosal epithelium, p63 signal was universally expressed in the basal epithelium (C). Biopsy from the lower limbus 2 years after COMET showed stratified epithelium with over 10 layers of cells in some areas (F). The basal epithelial cells were small, compact, and with a high N/C ratio. The epithelium was positive for keratin 4 (D), 13 (E), and 3 (H) in the suprabasal layer but uniformly negative in the basal layer. Negative keratin 8 staining confirmed the origin from the oral mucosa (G). Staining for p63 (I) and p75NTR (J) was both uniformly positive in the basal layer.
label retention, epithelial colony formation, p75NTR and p63-positive cells compared with OMECs isolated by trypsin/EDTA with 3T3 coculture. Pathway analysis pointed to the preferential activation of the integrin beta1/integrin-linked kinase/Wnt signaling pathway [17]. In this article, we further reported the long-term survival of OMECs in recipient corneas after COMET. A very unique feature of the cell sheet generated by collagenase treatment is the presence of microspheres or cell aggregates in the culture, which in some instances were visible even after transplantation (Fig. 1D).

Earlier methods to isolate OMECs from tissue invariably used dispase II, followed by trypsin/EDTA treatment [3–6, 24]. Using this method, we found many epithelial cells after dissociation became devitalized. With collagenase treatment, we found most of the isolated cells transformed into microspheres/cell aggregates. Most of the microspheres could attach to the AM, proliferate and coalesce to become an intact cell sheet. This protocol greatly reduces cell death during isolation, thereby increasing the yield of the cell culture.

Because basement membrane (BM) proteins and stromal (niches) cells are important components of the limbal stem cell niche [25], we hypothesized that following collagenase treatment, the preserved BM proteins and stromal cells reorganize in the OMEC microspheres and function as a surrogate stem cell niche. This is supported by the observation that p75NTR and p63 positive cells are concentrated in the microspheres, with reciprocally negative expression of the keratinocyte differentiation markers keratin 3 and Connexin 43.

Previously, to avoid using 3T3 as feeder cells, human oral [16], dermal [13, 14, 26, 27], and limbal fibroblasts [28] have been used as substitute feeder cells for cultivating OMECs. By using collagenase to isolate OMECs and AM as a scaffold, we found that adequate progenitor cells can be expanded in vitro, and therefore, coculture with feeder cells is no longer necessary. Nevertheless, we found that fibroblast overgrowth can be a problem. Initially, human platelet lysate (PLTMax) was added as an alternative source of serum to facilitate cell attachment, but the medium needs to be changed fairly soon to a serum-free culture medium (EpiLife), which is necessary to control fibroblast overgrowth [17].

In Patient 2, the cornea was initially covered by total keratinization with dense vascularization and conjunctivalization, a small number of limbal epithelial stem cells (LESCs) might still hide in deep structures such as limbal crypts [29–31]. Therefore, COMET may not only provide an alternative source of epithelial SCs, it might also ameliorate the limbal microenvironment or provide growth factors to revive the remaining LESC. Trophic effect following cultivated epithelial transplantation merits further investigation. In addition, although the biopsy taken 2 years after COMET showed considerable p63-positive basal epithelial cells, the immunostaining pattern was not much different from our previous study [11]. Without a reliable control, evidence for the assumption that grafts generated by collagenase isolation might contain more progenitor cells is still lacking; therefore, further investigation is needed.

In summary, we reported successful COMET using a collagenase-based spheroidal suspension culture method. Long-term graft survival is possible with this new protocol. Being free of animal products, with no need of feeder cells, and a higher yield of progenitor cells, this technique shows promise for cultivating various epithelial cells for ocular surface reconstruction.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13287-021-02564-7.

Acknowledgements

We appreciate the Biostatics Unit, Clinical Trial Center of Chang Gung Memorial Hospital (funded by the Ministry of Health and Welfare of Taiwan; Grant MOHW 109-TDU-B-212-114005) for the statistical support. We also thank Miss Shih-Chieh Ma, Kuan-In Cheng, and Cheng-Hua Huang for technical assistance.

Authors’ contributions

DH-KM contributed to study design, funding acquisition, perform surgeries, and writing of the manuscript. Y-JH contributed to developing experimental protocols for confirmation assay. KS-KM contributed to technical assistance and documentation, and manuscript preparation. Y-JT contributed to patient care involving ocularplastic surgeries and oral mucosal biopsy. S-FH contributed to assisting the development of cell culture protocol. H-CC contributed to patient care and examination during follow-ups. C-CS contributed to...
application for IRB and TFDA approval for clinical study. M-TK contributed to recruitment of patients and registration of clinical trial. A-SC contributed to procurement and preparation of human amniotic membrane. J-YL contributed to design of the study and discussion of the manuscript. All authors read and approved the final manuscript.

Funding
The study was supported by the Ministry of Science and Technology (MOST) Grants 107-2314-B-182-A-122 and 108-2314-B-182-A-114, Chang Gung Memorial Hospital Grants CPRPG1J0011.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The clinical trial was approved by the Institutional Review Board of Chang Gung Memorial Hospital (Registry Number 98-2148B). The study was further approved by Taiwan’s Food and Drug Administration (TFDA) and was executed under its supervision as a Phase Ib clinical trial (Registry Number 0950206914). This ongoing study is also registered in ClinicalTrials.gov (ID NCT03943797). Written informed consent was obtained from all AM donors, oral mucosa donors, and clinical trial patients.

Consent for publication
Institutional consent form has been signed by the patients.

Competing interests
DH-KM is the inventor of US patent “Method for the ex vivo cultivation of oral mucosal epithelial progenitor cells and oral mucosal epithelial cells” (Patent No.: 10.415,014 B2). Chang Gung Memorial Hospital, Linkou, Taoyuan (TW) is the patent applicant. Other co-authors declared no competing interests.

Author details
1 Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan. 2 Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan. 3 Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan. 4 Department of Ophthalmology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China. 5 Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 6 Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan. 7 Department of Dentistry, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan. 8 Department of Medicine, School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan. 9 Department of Otolaryngology, Chang Gung Memorial Hospital, Linkou, Taiwan. 10 Graduate Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan. 11 Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan. 12 Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan. 13 Department of Obstetrics and Gynecology, New Taipei Municipal Tucheng Hospital, Tucheng, New Taipei City, Taiwan. 14 Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan, Taiwan. 15 Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan. 16 Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan. 17 Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.

Received: 4 August 2021 Accepted: 20 August 2021
Published online: 07 October 2021

References
1. Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol. 2004;88(10):1280–4.
2. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187–96.
3. Ma DH, Kuo MT, Tsai YJ, Chen HC, Chen XL, Wang SF, et al. Transplantation of cultivated oral mucosal epithelial cells for severe corneal burn. Eye (London). 2009;23(6):1442–50.
4. Sotozono C, Inatomi T, Nakamura T, Koizumi N, Yokoi N, Ueta M, et al. Cultivated oral mucosal epithelial transplantation for persistent epithelial defect in severe ocular surface diseases with acute inflammatory activity. Acta Ophthalmol. 2014;92(6):e447–53.
5. Sotozono C, Inatomi T, Nakamura T, Koizumi N, Hamuro J, Kinoshita S. Clinical study of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disorders. Nihon Rinsho. 2015;73(Suppl 5):447–51.
6. Hiyamasa M, Satake Y, Higa K, Yamaguchi T, Shimazaki J. Transplantation of cultivated oral mucosal epithelial prepared in fibrin-coated culture dishes. Invest Ophthalmol Vis Sci. 2012;53(3):1602–9.
7. Satake Y, Higa K, Tsutbata K, Shimuizaki J. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology. 2011;118(8):1524–30.
8. Nakamura T, Takeda K, Inatomi T, Sotozono C, Kinoshita S. Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol. 2011;95(7):942–6.
9. Nakamura T, Inatomi T, Cooper LJ, Rigby H, Fullwood NJ, Kinoshita S. Phenotypic investigation of human eyes with transplanted autologous cultivated oral mucosal epithelial sheets for severe ocular surface diseases. Ophthalmology. 2007;114(6):1080–8.
10. Inatomi T, Nakamura T, Koizumi N, Sotozono C, Yokoi N, Kinoshita S. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol. 2006;141(2):267–75.
11. Chen HC, Chen HL, Lai JY, Chen CC, Tsai YJ, Kuo MT, et al. Persistence of transplanted oral mucosal epithelial cells in human cornea. Invest Ophthalmol Vis Sci. 2009;50(10):4660–8.
12. Sotozono C, Inatomi T, Nakamura T, Koizumi N, Yokoi N, Ueta M, et al. Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology. 2013;120(1):193–200.
13. Oie Y, Hayashi R, Takagi R, Yamato M, Takayanagi H, Tano Y, et al. A novel method of culturing human oral mucosal epithelial cell sheet using postmitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction. Br J Ophthalmol. 2010;94(9):1244–50.
14. O’Callaghan AR, Morgan L, Daniels JT, Lewis MP. Human-derived feeder fibroblasts for the culture of epithelial cells for clinical use. Regen Med. 2016;11(6):529–43.
15. Nakamura T, Yokoo S, Bentley AJ, Nagata M, Fullwood NJ, Inatomi T, et al. Development of functional human oral mucosal epithelial stem/progenitor cell sheets using a feeder-free and serum-free culture system for ocular surface reconstruction. Sci Rep. 2016;6:37173.
16. Higa K, Satake Y, Shimazaki J. The characterization of human oral mucosal fibroblasts and their use as feeder cells in cultivated epithelial sheets. Future Sci OA. 2017;3(4):FSO243.
17. Hsueh YJ, Huang SF, Lai JY, Ma SC, Chen HC, Wu SE, et al. Preservation of epithelial progenitor cells from collagenase-digested oral mucosa during ex vivo cultivation. Sci Rep. 2016;6:36266.
18. Chen HC, Yeh LK, Tsai YJ, Lai CH, Chen CC, Lai JY, et al. Expression of angiogenesis-related factors in human corneas after cultivated oral mucosal epithelial transplantation. Invest Ophthalmol Vis Sci. 2012;53(9):5615–23.
19. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55.
20. Basu S, Fernandez MM, Das S, Gaddipati S, Vemuganti GK, Sangwan VS. Clinical outcomes of xeno-free allogeneic cultivated limbal epithelial transplantation for bilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96(12):1504–9.
21. Borderie VM, Ghoubay D, Georgeon C, Borderie M, de Sousa C, Legendre A, et al. Long-term results of cultured limbal stem cell versus limbal
tissue transplantation in stage III limbal deficiency. Stem Cells Transl Med. 2019;8(12):1230–41.

22. Nakamura T, Sotozono C, Bentley AJ, Mano S, Inatomi T, Koizumi N, et al. Long-term phenotypic study after allogeneic cultivated corneal limbal epithelial transplantation for severe ocular surface diseases. Ophthalmol. 2010;117(12):2247–54.

23. Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SC. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods. 2011;17(5):537–48.

24. Prabhasawat P, Ekpo P, Uprasertkul M, Chotikavanich S, Tesavibul N, Pompangich K, et al. Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell Tissue Bank. 2016;17(3):491–503.

25. Li W, Hayashida Y, Chen YT, Tseng SC. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res. 2007;17(1):26–36.

26. Rovere MR, Rousselle P, Haftek M, Charleux B, Kocabas V, Auxenfans C, et al. Preserving basement membranes during detachment of cultivated oral mucosal epithelial cell sheets for the treatment of total bilateral limbal stem cell deficiency. Cell Transplant. 2018;27(2):264–74.

27. Sharma SM, Fuchsluger T, Ahmad S, Katikireddy KR, Armant M, Dana R, et al. Comparative analysis of human-derived feeder layers with 3T3 fibroblasts for the ex vivo expansion of human limbal and oral epithelium. Stem Cell Rev Rep. 2012;8(3):696–705.

28. Duan CY, Xie HT, Zhao XY, Zhang MC. Limbal niche cells: a novel feeder cell for autologous cultivated oral mucosal epithelial transplantation. Regen Med. 2019;14(3):49–62.

29. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol. 2005;89(5):529–32.

30. Shanmuganathan VA, Foster T, Kulkarni BB, Hopkinson A, Gray T, Powe DG, et al. Morphological characteristics of the limbal epithelial crypt. Br J Ophthalmol. 2007;91(4):S14–9.

31. Yeung AM, Schlotzer-Schrehardt U, Kulkarni B, Tint NL, Hopkinson A, Dua HS. Limbal epithelial crypt: a model for corneal epithelial maintenance and novel limbal regional variations. Arch Ophthalmol. 2008;126(5):665–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.