Electronic Supplementary Information

Adsorbing the Magnetic Superhalogen MnCl$_3$ to Realize the Intriguing Half-metallicity and Spin-Gapless-Semiconductor in Zigzag or Armchair SiC Nanoribbon

Hui Li, Guangtao Yu*, Zengsong Zhang, Yanfeng Ma, Xuri Huang, Wei Chen*

Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun 130023, People’s Republic of China

*To whom correspondence should be addressed. Email: yugt@jlu.edu.cn (G.Y.), w_chen@jlu.edu.cn (W.C.)
(1) The computational test on the modified 8-zSiCNR and 13-aSiCNR systems with superhalogen MnCl$_3$ at the center

When adsorbing the superhalogen MnCl$_3$ at the ribbon center for 8-zSiCNR and 13-aSiCNR, we consider all four possible adsorption sites for the Mn atom in MnCl$_3$ including the top site of C atom (T_C), top site of Si atom (T_{Si}), bridge site over Si-C bond (B) and hollow site of SiC hexagon ring (H). The computed results reveal that the modified zSiCNR or aSiCNR configuration with the MnCl$_3$ at the bridge site of ribbon center cannot be obtained. Consequently, we can respectively obtain three conformations for the MnCl$_3$-modified 8-zSiCNR and 13-aSiCNR systems at the center (Figures S1 and S2). By comparison, we can find that adsorbing the MnCl$_3$ at the top of C atom (T_C) can obtain the most energetically stable configurations for the modified zSiCNR and aSiCNR systems (Figures S1 and S2), and they have been correspondingly named as MnCl$_3$-T_C-8-zSiCNR-center and MnCl$_3$-T_C-13-aSiCNR-center in the main text.

Figure S1 The side view and top view of modified 8-zSiCNR with the superhalogen MnCl$_3$ at the ribbon center, and the relative energy ΔE (eV) between the MnCl$_3$-modified 8-zSiCNR systems at three different adsorption sites including (a) T_C, (b) T_{Si}, and (c) H.

- T_C: $\Delta E = 0.0$ eV
- T_{Si}: $\Delta E = 0.967$ eV
- H: $\Delta E = 0.418$ eV
Figure S2 The side view and top view of modified 13-aSiCNR with the superhalogen MnCl₃ at the ribbon center, and the relative energy ΔE (eV) between the MnCl₃-modified 13-aSiCNR systems at three different adsorption sites including (a) Tₐ, (b) Tₛ, and (c) H.

(II) The computational test on the MnCl₃-modified SiCNR systems by using the double supercell

Table S1. The relative energies ΔE (meV) between the parallel and antiparallel couplings of two neighboring MnCl₃ for the modified SiCNR systems. Note that these modified SiCNR systems with two MnCl₃ in the supercell can be denoted by adding (double) into the names of corresponding ones with one MnCl₃.

Systems	ΔE (meV)	
	Parallel	Antiparallel
MnCl₃-Tₐ-6-zSiCNR-eSi(double)	0.0	1.5
MnCl₃-Tₐ-8-zSiCNR-eSi(double)	0.0	4.3
MnCl₃-Tₐ-8-zSiCNR-center(double)	0.0	1.4
MnCl₃-Tₐ-8-zSiCNR-eC(double)	0.0	65.4
MnCl₃-Tₐ-9-aSiCNR-edge(double)	0.0	3.2
MnCl₃-Tₐ-11-aSiCNR-edge(double)	0.0	1.2
MnCl₃-Tₐ-13-aSiCNR-edge(double)	0.0	3.5
MnCl₃-Tₐ-13-aSiCNR-center(double)	0.0	3.3