Lazifying Conditional Gradient Algorithms

Gábor Braun, Sebastian Pokutta, and Daniel Zink
ISyE, Georgia Institute of Technology
Atlanta, GA
{gabor.braun,sebastian.pokutta,daniel.zink}@gatech.edu

January 2, 2017

Abstract

Conditional gradient algorithms (also often called Frank-Wolfe algorithms) are popular due to their simplicity of only requiring a linear optimization oracle and more recently they also gained significant traction for online learning. While simple in principle, in many cases the actual implementation of the linear optimization oracle is costly. We show a general method to lazify various conditional gradient algorithms, which in actual computations leads to several orders of magnitude of speedup in wall-clock time. This is achieved by using a faster separation oracle instead of a linear optimization oracle, relying only on few linear optimization oracle calls.

1 Introduction

Convex optimization is an important technique both from a theoretical and an applications perspective. Gradient descent based methods are widely used due to their simplicity and easy applicability to many real-world problems. We are interested in solving constraint convex optimization problems of the form

$$\min_{x \in P} f(x),$$

where f is a smooth convex function and P is a polytope, with access to f being limited to first-order information, i.e., we can obtain $\nabla f(v)$ and $f(v)$ for a given $v \in P$ and access to P via a linear minimization oracle which returns $x = \arg\min_{v \in P} cv$ for a given linear objective c.

Algorithm 1 Frank-Wolfe Algorithm [Frank and Wolfe 1956]

Input: smooth convex f function with curvature C, $x_1 \in P$ start vertex, LP$_P$ linear minimization oracle
Output: x_t points in P
1: for $t = 1$ to $T - 1$
2: $v_t \leftarrow$ LP$_P(\nabla f(x_t))$
3: $x_{t+1} \leftarrow (1 - \gamma_t)x_t + \gamma_tv_t$ with $\gamma_t := \frac{2}{t+2}$
4: end for

When solving Problem (1) using gradient descent approaches in order to maintain feasibility, typically a projection step is required. This projection back into the feasible region P is potentially computationally
expensive, especially for complex feasible regions in very large dimensions. As such projection-free methods gained a lot of attention recently, in particular the Frank-Wolfe algorithm [Frank and Wolfe, 1956] (also known as conditional gradient descent [Levitin and Polyak, 1966]; see also [Jaggi, 2013] for an overview) and its online version [Hazan and Kale, 2012] due to their simplicity. We recall the basic Frank-Wolfe algorithm in Algorithm 1. These methods eschew the projection step and rather use a linear optimization oracle to stay within the feasible region. While convergence rates and regret bounds are often suboptimal, in many cases the gain due to only having to solve a single linear optimization problem over the feasible region in every iteration still leads to significant computational advantages (see e.g., [Hazan and Kale, 2012, Section 5]). This led to conditional gradients algorithms being used for e.g., online optimization and more generally machine learning and the property that these algorithms naturally generate sparse distributions over the extreme points of the feasible region (sometimes also referred to as atoms) is often helpful. Further increasing the relevance of these methods, it was shown recently that conditional gradient methods can also achieve linear convergence (see e.g., Garber and Hazan [2013], Lacoste-Julien and Jaggi [2015], Garber and Meshi [2016]) as well as that the number of total gradient evaluations can be reduced while maintaining the optimal number of oracle calls as shown in [Lan and Zhou, 2014].

Oracle 1 Weak Separation Oracle \(\text{LPsep}_P(c, x, \Phi, K) \)

Input: \(c \in \mathbb{R}^n \) linear objective, \(x \in P \) point, \(K \geq 1 \) accuracy, \(\Phi > 0 \) objective value;

Output: Either (1) \(y \in P \) vertex with \(c(x - y) > \Phi / K \), or (2) false: \(c(x - z) \leq \Phi \) for all \(z \in P \).

Unfortunately, for complex feasible regions even solving the linear optimization problem might be time-consuming and as such the cost of solving the LP might be non-negligible. This could be the case, e.g., when linear optimization over the feasible region is a hard problem or when solving large-scale optimization problems or learning problems. To significantly reduce the cost of oracle calls while maintaining identical convergence rates up to small constant factors, we replace the linear optimization oracle by a (weak) separation oracle (see Oracle 1) which approximately solves a certain separation problem within a multiplicative factor and returns improving vertices (or atoms). We stress that the weak separation oracle is significantly weaker than approximate minimization, which has been already considered in [Jaggi, 2013]. In fact, if the oracle returns an improving vertex then this vertex does not imply any guarantee in terms of solution quality with respect to the linear minimization problem. It is this relaxation of the dual guarantees that will provide a significant speedup as we will see later. At the same time, in case that the oracle returns false, we directly obtain a dual bound via convexity.

A (weak) separation oracle can be realized by a single call to a linear optimization oracle, however with two important differences. It allows for caching and early termination: Previous solutions are cached, and first it is verified whether any of the cached solutions satisfy the oracle’s separation condition. The underlying linear optimization oracle has to be called, only when none of the cached solutions satisfy the condition, and the linear optimization can be stopped as soon as a satisfactory solution with respect to the separation condition is found. We call this technique lazy optimization and we will demonstrate significant speedups in wall-clock performance (see e.g., Figure 19), while maintaining identical theoretical convergence rates.

To exemplify our approach we provide conditional gradient algorithms employing the weak separation oracle for the standard Frank-Wolfe algorithm as well as the variants in [Hazan and Kale, 2012, Garber and Meshi, 2016, Garber and Hazan, 2013], which have been chosen due to requiring modified convergence arguments that go beyond those required for the vanilla Frank-Wolfe algorithm. Complementing the theoretical analysis we report computational results demonstrating effectiveness of our approach via a significant reduction in wall-clock running time compared to their linear optimization counterparts.
Related Work

There has been extensive work on Frank-Wolfe algorithms and conditional gradient descent algorithms and we will be only able to review work most closely related to ours. The Frank-Wolfe algorithm was originally introduced in [Frank and Wolfe, 1956] (also known as conditional gradient descent [Levitin and Polyak, 1966] and has been intensely studied in particular in terms of achieving stronger convergence guarantees as well as affine-invariant versions. We demonstrate our approach for the vanilla Frank-Wolfe algorithm [Frank and Wolfe, 1956] (see also [Jaggi, 2013]) as an introductory example. We then consider more complicated variants that require non-trivial changes to the respective convergence proofs to demonstrate the versatility of our approach. This includes the linearly convergent variant via local linear optimization [Garber and Hazan, 2013] as well as the pairwise conditional gradient variant of Garber and Meshi [2016], which is especially efficient in terms of implementation. However, our technique also applies to the Away-Step Frank-Wolfe algorithm, the Fully-Corrective Frank-Wolfe algorithm, as well as the Block-Coordinate Frank-Wolfe algorithm. Recently, in [Freund and Grigas, 2016] guarantees for arbitrary step-size rules were provided and an analogous analysis can be also performed for our approach. On the other hand, the analysis of the inexact variants, e.g., with approximate linear minimization does not apply to our case as our oracle is significantly weaker than approximate minimization as pointed out earlier. For more information, we refer the interested reader to the excellent overview in [Jaggi, 2013] for Frank-Wolfe methods in general as well as [Lacoste-Julien and Jaggi, 2015] for an overview with respect to global linear convergence.

Recently, it was also shown in [Hazan and Kale, 2012] that the Frank-Wolfe algorithm can be adjusted to the online learning setting and here we provide a lazy version of this algorithm. Combinatorial convex online optimization has been investigated in a long line of work (see e.g., [Kalai and Vempala, 2005, Audibert et al., 2013, Neu and Bartók, 2013]). It is important to note that our regret bounds hold in the structured online learning setting, i.e., our bounds depend on the ℓ_1-diameter or sparsity of the polytope, rather than its ambient dimension for arbitrary convex functions (see e.g., [Cohen and Hazan, 2015, Gupta et al., 2016]). We refer the interested reader to [Hazan, 2016] for an extensive overview.

A key component of the new oracle is the ability to cache and reuse old solutions, which accounts for the majority of the observed speed up. The idea of caching of oracle calls was already explored in various other contexts such as cutting plane methods (see e.g., [Joachims et al., 2009]) as well as the Block-Coordinate Frank-Wolfe algorithm in [Shah et al., 2015, Osokin et al., 2016]. Our lazification approach (which uses caching) is different however in the sense that our weak separation oracle does not resemble an approximate linear optimization oracle with a multiplicative approximation guarantee; see [Osokin et al., 2016] Proof of Theorem 3. Appendix F and [Lacoste-Julien et al., 2013] for comparison to our setup. In fact, our weaker oracle does not imply any approximation guarantee and differs from approximate minimization as done e.g., in [Jaggi, 2013] substantially.

Contribution

The main technical contribution of this paper is a new approach, whereby instead of finding the optimal solution, the oracle is used only to find a good enough solution or a certificate that such a solution does not exist, both ensuring the desired convergence rate of the conditional gradient algorithms.

Our contribution can be summarized as follows:

(i) **Lazifying approach.** We provide a general method to lazify conditional gradient algorithms. For this we replace the linear optimization oracle with a weak separation oracle, which allows us to reuse feasible solutions from previous oracle calls, so that in many cases the oracle call can be skipped. In fact, once
a simple representation of the underlying feasible region is learned no further oracle calls are needed. We also demonstrate how parameter-free variants can be obtained.

(ii) **Lazified conditional gradient algorithms.** We exemplify our approach by providing lazy versions of the vanilla Frank-Wolfe algorithm as well as of the conditional gradient methods in [Hazan and Kale, 2012, Garber and Hazan, 2013, Garber and Meshi, 2016].

(iii) **Weak separation through augmentation.** We show in the case of 0/1 polytopes how to implement a weak separation oracle with at most \(k \) calls to an augmentation oracle that on input \(c \in \mathbb{R}^n \) and \(x \in P \) provides either an improving solution \(\overline{x} \in P \) with \(c \overline{x} < c x \) or ensures optimality, where \(k \) denotes the \(\ell_1 \)-diameter of \(P \). This is useful when the solution space is sparse.

(iv) **Computational experiments.** We demonstrate computational superiority by extensive comparisons of the weak separation based versions with their original versions. In all cases we report significant speedups in wall-clock time often of several orders of magnitude.

It is important to note that in all cases, we inherit the same requirements, assumptions, and properties of the baseline algorithm that we lazify. This includes applicable function classes, norm requirements, as well as smoothness and (strong) convexity requirements. We also maintain identical convergence rates up to (small!) constant factors.

Outline

We briefly recall notation and notions in Section 2 and consider conditional gradients algorithms in Section 3. In Section 4 we consider the online case and in Section 5 we explain how parameter-free variants of the proposed algorithms can be obtained. Finally, in Section 6 we show that we can realize a weak separation oracle with an even weaker oracle in the case of combinatorial problem and we provide extensive computational results in Section 7.

2 Preliminaries

Let \(\| \cdot \| \) be an arbitrary norm on \(\mathbb{R}^n \), and let \(\| \cdot \|^* \) denote the dual norm of \(\| \cdot \| \). We will specify the applicable norm in the later sections. A function \(f \) is \(L \)-Lipschitz if \(|f(y) - f(x)| \leq L \| y - x \| \) for all \(x, y \in \text{dom } f \). A convex function \(f \) is smooth with curvature at most \(C \) if

\[
f(\gamma y + (1 - \gamma)x) \leq f(x) + \gamma \nabla f(x)(y - x) + C \gamma^2 / 2
\]

for all \(x, y \in \text{dom } f \) and \(0 \leq \gamma \leq 1 \). A function \(f \) is \(S \)-strongly convex if

\[
f(y) - f(x) \geq \nabla f(x)(y - x) + \frac{S}{2} \| y - x \|^2
\]

for all \(x, y \in \text{dom } f \). Unless stated otherwise Lipschitz continuity and strong convexity will be measured in the norm \(\| \cdot \| \). Moreover, let \(B_r(x) := \{ y \mid \| x - y \| \leq r \} \) be the ball around \(x \) with radius \(r \) with respect to \(\| \cdot \| \). In the following, \(P \) will denote the feasible region, a polytope and the vertices of \(P \) will be denoted by \(v_1, \ldots, v_N \).
3 Lazy Conditional Gradients

We start with the most basic Frank-Wolfe algorithm as a simple example how a conditional gradient algorithm can be lazified by means of a weak separation oracle. We will also use the basic variant to discuss various properties and implications. We then show how the more complex Frank-Wolfe algorithms in Garber and Hazan [2013] and Garber and Meshi [2016] can be lazified. Throughout this section \(\| \cdot \| \) denotes the \(\ell_2 \)-norm.

3.1 Lazy Conditional Gradients: a basic example

We start with lazifying the original Frank-Wolfe algorithm (arguably the simplest Conditional Gradients algorithm), adapting the baseline argument from [Jaggi, 2013, Theorem 1]. While the vanilla version has suboptimal convergence rate \(O(1/T) \), its simplicity makes it an illustrative example of the main idea of lazification. The lazy algorithm (Algorithm 2) maintains an upper bound \(\Phi_t \) on the convergence rate, guiding its eagerness for progress when searching for an improving vertex \(v_t \). If the oracle provides an improving vertex \(v_t \) we refer to this as a positive call and we call it a negative call otherwise.

Algorithm 2 Lazy Conditional Gradients (LCG)

Input: smooth convex \(f \) function with curvature \(C \), \(x_1 \in P \) start vertex, \(\text{LPsep}_P \) weak linear separation oracle, accuracy \(K > 1 \), initial upper bound \(\Phi_0 \)

Output: \(x_t \) points in \(P \)

1: for \(t = 1 \) to \(T - 1 \) do
2: \(\Phi_t \leftarrow \frac{\Phi_{t-1} + \frac{C\gamma_t^2}{1 + \frac{1}{K}}}{} \)
3: \(v_t \leftarrow \text{LPsep}_P(\nabla f(x_t), x_t, \Phi_t, K) \)
4: if \(v_t = \text{false} \) then
5: \(x_{t+1} \leftarrow x_t \)
6: else
7: \(x_{t+1} \leftarrow (1 - \gamma_t)x_t + \gamma_tv_t \)
8: end if
9: end for

The step size \(\gamma_t \) is chosen to (approximately) minimize \(\Phi_t \) in Line 2 roughly \(\Phi_{t-1}/KC \).

Theorem 3.1. Assume \(f \) is convex and smooth with curvature \(C \). Then Algorithm 2 with \(\gamma_t = \frac{2(k^2 + 1)}{K(t + K^2 + 2)} \) has convergence rate

\[
\frac{f(x_t) - f(x^*)}{2 \max\{C, \Phi_0\}} \leq \frac{2(k^2 + 1)}{t + K^2 + 2},
\]

where \(x^* \) is a minimum point of \(f \) over \(P \).

Proof. We prove by induction that \(f(x_t) ≤ \Phi_{t-1} \).

The claim is clear for \(t = 1 \) by the choice of \(\Phi_0 \). Assuming the claim is true for \(t \), we prove it for \(t + 1 \). We distinguish two cases depending on the return value of the weak separation oracle in Line 3.

When the oracle returns an improving solution \(v_t \), which we call the positive case, then \(\nabla f(x_t)(x_t - v_t) ≥ \Phi_t/K \), which is used in the second inequality below. The first inequality follows by smoothness of \(f \), and the
third inequality by the induction hypothesis:

\[
f(x_{t+1}) - f(x^*) \leq f(x_t) - f(x^*) + \gamma_t \nabla f(x_t)(v_t - x_t) + \frac{C \gamma_t^2}{2}
\]

\[
\leq f(x_t) - f(x^*) - \gamma_t \Phi_t + \frac{C \gamma_t^2}{2}
\]

\[
\leq \Phi_{t-1} - \gamma_t \Phi_t + \frac{C \gamma_t^2}{2}
\]

\[
= \Phi_t,
\]

When the oracle returns no improving solution, then in particular \(\nabla f(x_t)(x_t - x^*) \leq \Phi_t \), hence by Line 5

\[
f(x_{t+1}) - f(x^*) = f(x_t) - f(x^*) \leq \nabla f(x_t)(x_t - x^*) = \Phi_t. \tag{3}
\]

Finally, using the specific values of \(\gamma_t \) we prove the upper bound

\[
\Phi_{t-1} \leq \frac{2 \max\{C, \Phi_0\} (K^2 + 1)}{t + K^2 + 2} \tag{4}
\]

by induction on \(t \). The claim is obvious for \(t = 1 \). The induction step is an easy computation relying on the definition of \(\Phi_t \) on Line 2

\[
\Phi_t = \frac{\Phi_{t-1} + \frac{C \gamma_t^2}{2}}{1 + \frac{\gamma_t}{K}} \leq \frac{2 \max\{C, \Phi_0\} (K^2 + 1)}{t + K^2 + 2} + \frac{\max\{C, \Phi_0\} \gamma_t^2}{2}
\]

\[
= 2 \max\{C, \Phi_0\} (K^2 + 1) \frac{1 + \frac{\gamma_t}{K}}{(1 + \frac{\gamma_t}{K}) (t + K^2 + 2)} \leq \frac{2 \max\{C, \Phi_0\} (K^2 + 1)}{t + K^2 + 3}. \tag{5}
\]

Here the second equation follows via plugging-in the choice for \(\gamma_t \) for one of the \(\gamma_t \) in the quadratic term and last inequality follows from \(t \geq 1 \) and the concrete choice of \(\gamma_t \).

\[\square\]

Remark 3.2 (Discussion of the weak separation oracle). A few remarks are in order:

(i) **Interpretation of weak separation oracle.** The weak separation oracle provides new extreme points (or vertices) \(v_t \) that ensure necessary progress to converge at the proposed rate \(\Phi_t \) or it certifies that we are already \(\Phi_t \)-close to the optimal solution. It is important to note that the two cases in Oracle 1 are not mutually exclusive: the oracle might return \(y \in P \) with \(c(x - y) > \Phi/K \) (positive call: returning a vertex \(y \) with improvement \(\Phi/K \)), while still \(c(x - z) \leq \Phi \) for all \(z \in P \) (negative call: certifying that there is no vertex \(z \) that can improve by \(\Phi \)). This a desirable property as it makes the separation problem much easier and the algorithm works with either answer in the ambiguous case.

(ii) **Choice of \(K \).** The \(K \) parameter can be used to bias the oracle towards positive calls, i.e., returning improving directions. We would also like to point out that the algorithm above as well as those below will also work for \(K = 1 \), however we later show that we can use an even weaker oracle to realize a weak separation oracle if \(K > 1 \) in Section 6 and for consistency, we require \(K > 1 \) throughout. In the case \(K = 1 \) the two cases in the oracle are mutually exclusive.

(iii) **Effect of caching and early termination.** When realizing the weak separation oracle, the actual linear optimization oracle has to be only called if none of the previously seen vertices (or atoms) satisfies the
separation condition. Moreover, the weak separation oracle has to only produce a satisfactory solution and not an approximately optimal one. These two properties are responsible for the observed speedup (see Figure [19]). Moreover, the convex combinations of vertices of P that represent the solutions x_t are extremely sparse as we reuse (cached) vertices whenever possible.

(iv) **Dual certificates.** By not computing an approximately optimal solution, we give up dual optimality certificates. For a given point $x \in P$, let $g(x) := \max_{v \in P} \nabla f(x)(x - v)$ denote the Wolfe gap. We have $f(x) - f(x^*) \leq g(x)$ where $x^* = \arg\min_{x \in P} f(x)$ by convexity. In those rounds t where we obtain an improving vertex we have no information about $g(x_t)$. However, if the oracle returns false in round t, then we obtain the dual certificate $f(x_t) - f(x^*) \leq g(x_t) \leq \Phi_t$.

(v) **Rate of convergence.** A close inspection of the algorithm utilizing the weak separation oracle suggests that the algorithm converges only at the worst-case convergence rate that we propose with the Φ_t sequence. This however is only an artefact of the simplified presentation for the proof of the worst-case rate. We can easily adjust the algorithm to implicitly perform a search over the rate Φ_t combined with line search for γ. This leads to a parameter-free variant of Algorithm 2 and comes at the expense of a (small!) constant factor deterioration of the worst-case rate guarantee; see Remark 3.3(iii) as well as Section 5.

Remark 3.3 (Implementation improvements). Note that there are various obvious improvements to Algorithm 2 for actual implementations. These improvements do not affect the theoretical (worst-case) performance and for the sake of clarity of the exposition we did not include them in Algorithm 2, see Section 5 for the parameter-free version including (most of) these improvements.

(i) First of all, we can improve the update of Φ_t, updating it with the actual gap closed, rather than the pessimistic update via the lower bound on gap closed, i.e., we can update $\Phi_t \leftarrow \Phi_t - (f(x_t) - f(x_{t+1}))$, whenever we calculated a new point x_{t+1}.

(ii) Moreover, we can better utilize information from negative oracle calls (i.e., when the oracle returns false): if the oracle utilizes linear optimization at its core, then a negative oracle call will certify $\nabla f(x_t)(x_t - v) \leq \Phi_t$ via maximizing $\nabla f(x_t)v$ with $v \in P$, i.e., the linear optimization oracle computes $g(x_t)$ and we can reset $\Phi_t \leftarrow g(x_t)$. If v^* realizes the Wolfe gap, which is obtained as a byproduct of the above linear maximization, we can further use v^* to make a step: rather than executing line 5, we can execute line 7 with $v_t = v^*$. By doing so we maximize the use of information obtained from a negative oracle call.

(iii) Finally, we can optimize the management of Φ_t. To obtain a better upper bound Φ_0, we can solve $v^* := \arg\max_{v \in P} \nabla f(x_1)v$ at the expense of one extra LP call and set $\Phi_0 := \nabla f(x_1)(x_1 - v^*) = g(x_1)$. Alternatively, we can perform binary search over Φ_t until the weak separation oracle produces an actual step. If Φ is the value of the search for which we observe the first step, we can reset $\Phi_0 := 2\Phi$ and we have $f(x_1) - f(x^*) \leq g(x_1) \leq 2\Phi$.

Furthermore, we can change the strategy for managing Φ_t as follows: we keep the value of Φ_t fixed in line 2 and perform line search for γ. Whenever, we observe a negative oracle call, we set the current Φ_t to $\frac{\gamma}{2}g(x_1)$ obtained from the negative call. As such, we ensure $\Phi_t < g(x_t) \leq 2\Phi_t$, which biases the algorithm towards (much cheaper) positive calls. Convergence is ensured by observing that an $\text{LPsep}_p(\cdot, \cdot, \Phi/2, K)$ oracle is an $\text{LPsep}_p(\cdot, \cdot, \Phi, K/2)$ oracle for which the theorem directly applies. With this strategy we maintain the same theoretical (worst-case) convergence up to a constant factor, however in case a faster convergence is possible, we adapt to that rate.
3.2 Lazy Pairwise Conditional Gradients

In this section we provide a lazy variant (Algorithm 3) of the Pairwise Conditional Gradient algorithm from GarberandMeshi[2016], using separation instead of linear optimization. We make identical assumptions: the feasible region is a $0/1$ polytope given in the form $P = \{ x \in \mathbb{R}^n \mid 0 \leq x \leq 1, Ax = b \}$, where 1 denotes the all-one vector of compatible dimension; in particular all vertices of P have only $0/1$ entries.

Algorithm 3 Lazy Pairwise Conditional Gradients (LPCG)

Input: polytope P, smooth and S-strongly convex function f with curvature C, accuracy $K > 1$, η_t non-increasing step-sizes

Output: x_t points

1. $x_1 \in P$ arbitrary and $\Phi_0 \geq f(x_1) - f(x^*)$
2. for $t = 1, \ldots, T$
3. define $\tilde{\nabla} f(x_t) \in \mathbb{R}^m$ as follows:
 $$\tilde{\nabla} f(x_t)_i := \begin{cases}
 \nabla f(x_t)_i & \text{if } (x_t)_i > 0 \\
 -\infty & \text{if } (x_t)_i = 0
 \end{cases}$$
4. $\Phi_t \leftarrow \frac{2\Phi_{t-1} + \eta_t^2 C}{2 + \frac{\eta_t}{\sqrt{m}}}$
5. $c_t \leftarrow (\tilde{\nabla} f(x_t), -\tilde{\nabla} f(x_t))$
6. $(v_t^+, v_t^-) \leftarrow \text{LPsep}_{P \times P} (c_t, (x_t, x_t), \frac{\Phi_t}{\kappa}, K)$
7. if $(v_t^+, v_t^-) = \text{false}$ then
8. $x_{t+1} \leftarrow x_t$
9. else
10. $\bar{\eta}_t \leftarrow \max \{ 2^{-\delta} \mid \delta \in \mathbb{Z}_{\geq 0}, 2^{-\delta} \leq \eta_t \}$
11. $x_{t+1} \leftarrow x_t + \bar{\eta}_t (v_t^+ - v_t^-)$
12. end if
13. end for

Observe that Algorithm 3 calls the linear separation oracle LPsep on the cartesian product of P with itself. Choosing the objective function as in Line 5 allows us to simultaneously find an improving direction and an away-step direction.

Theorem 3.4. Let x^* be a minimum point of f in P, and Φ_0 an upper bound of $f(x_1) - f(x^*)$. Furthermore, let $M_1 := \sqrt{\frac{S}{s \text{card}(x^*)}}, M_2 := KC/2, \kappa := \min \{ M_1, 1/\sqrt{\Phi_0} \}, \eta_t := \kappa\sqrt{\Phi_t - 1}$ and $\Delta_t := \sqrt{\frac{2 \text{card}(x^*) \Phi_{t-1}}{S}}$, then Algorithm 3 has convergence rate

$$f(x_{t+1}) - f(x^*) \leq \Phi_t \leq \Phi_0 \left(\frac{1 + B}{1 + 2B} \right)^t,$$

where $B := \kappa \cdot \frac{M_1}{2K}$.

We recall a technical lemma for the proof.
Lemma 3.5 ([Garber and Meshi 2016, Lemma 2]). Let \(x, y \in P \). There exists vertices \(v_i \) of \(P \) such that \(x = \sum_{i=1}^{k} \lambda_i v_i \) and \(y = \sum_{i=1}^{k} (\lambda_i - \gamma_i) v_i + \left(\sum_{i=1}^{k} \gamma_i \right) z \) with \(\gamma_i \in [0, \lambda_i] \), \(z \in P \) and \(\sum_{i=1}^{k} \gamma_i \leq \sqrt{\text{card}(y)} \|x - y\| \).

Proof of Theorem 3.4. The feasibility of the iterates \(x_t \) is ensured by Line 10 and the monotonicity of the sequence \(\{\eta_t\}_{t \geq 1} \) with the same argument as in [Garber and Meshi 2016, Lemma 1 and Observation 2].

We first show by induction that
\[
\Phi_t \leq f(x_{t+1}) - f(x^*) \leq \Phi_t.
\]
For \(t = 0 \) we have \(\Phi_0 \geq f(x_1) - f(x^*) \). Now assume the statement for some \(t \geq 0 \). In the negative case (Line 8), we use the guarantee of Oracle 1 to get
\[
c_i((x_t, x_t) - (z_1, z_2)) \leq \frac{\Phi_t}{\Delta_t}
\]
for all \(z_1, z_2 \in P \), which is equivalent to (as \(c_i(x_t, x_t) = 0 \))
\[
\nabla f(x_t)z_2 - \nabla f(x_t)z_1 \leq \frac{\Phi_t}{\Delta_t}
\]
and therefore
\[
\nabla f(x_t)(z_2 - z_1) \leq \frac{\Phi_t}{\Delta_t},
\]
for all \(z_2, z_1 \in P \) with \(\text{supp}(z_2) \subseteq \text{supp}(x_t) \). We further use Lemma 3.5 to write \(x_t = \sum_{i=1}^{k} \lambda_i v_i \) and \(x^* = \sum_{i=1}^{k} (\lambda_i - \gamma_i) v_i + \sum_{i=1}^{k} \gamma_i z \) with \(\gamma_i \in [0, \lambda_i] \), \(z \in P \) and \(\sum_{i=1}^{k} \gamma_i \leq \sqrt{\text{card}(x^*) \|x_t - x^*\|} \leq \sqrt{\frac{2 \text{card}(x^*) \Phi_{t-1}}{s}} = \Delta_t \), using the induction hypothesis and the strong convexity in the second inequality. Then
\[
f(x_{t+1}) - f(x^*) = f(x_t) - f(x^*) \leq \nabla f(x_t)(x_t - x^*) = \sum_{i=1}^{k} \gamma_i (v_i - z) \cdot \nabla f(x_t) \leq \Phi_t,
\]
where we used Equation 6 for the last inequality.

For the positive case (Lines 10 and 11) we get, using first smoothness of \(f \), then \(\eta_t/2 < \tilde{\eta}_t \leq \eta_t \) and \(\nabla f(x_t)(v_i^+ - v_i^-) \leq -\Phi_t / (\Delta_t K) \), and finally the definition of \(\Phi_t \):
\[
f(x_{t+1}) - f(x^*) = f(x_t) - f(x^*) + f(x_t + \eta_t (v_i^+ - v_i^-)) - f(x_t)
\]
\[
\leq \Phi_{t-1} + \tilde{\eta}_t \nabla f(x_t)(v_i^+ - v_i^-) + \frac{\eta_t^2 C}{2}
\]
\[
\leq \Phi_{t-1} - \frac{\eta_t}{2} \cdot \Phi_t K + \frac{\eta_t^2}{2} = \Phi_t.
\]

Plugging in the values of \(\eta_t \) and \(\Delta_t \) to the definition of \(\Phi_t \) gives the desired bound.

\[
\Phi_t = \frac{2\Phi_{t-1} + \eta_t^2 C}{2 + \eta_t K \Delta_t} = \Phi_{t-1} - \frac{\eta_t}{2} \cdot \Phi_t K + \frac{\eta_t^2}{2} \leq \Phi_{t-1} \frac{1 + B}{1 + 2B} \leq \Phi_0 \left(\frac{1 + B}{1 + 2B} \right)^t.
\]
3.3 Lazy Local Conditional Gradients

In this section we provide a lazy version (Algorithm 4) of the conditional gradient algorithm from Garber and Hazan [2013]. Let \(P \subseteq \mathbb{R}^n \) be any polytope, \(D \) denote an upper bound on the \(\ell_2 \)-diameter of \(P \), and \(\mu \geq 1 \) be the affine invariant of \(P \) from Garber and Hazan [2013]. As the algorithm is not affine invariant by nature, we need a non-invariant version of smoothness: Recall that a convex function \(f \) is \(\beta \)-smooth if

\[
f(y) - f(x) \leq \nabla f(x)(y - x) + \beta \| y - x \|^2 / 2.
\]

Algorithm 4 Lazy Local Conditional Gradients (LLCG)

Input: feasible polytope \(P \), \(\beta \)-smooth and \(S \)-strongly convex function \(f \), parameters \(K, S, \beta, \mu \); diameter \(D \)

Output: \(x_t \) points

1: \(x_1 \in P \) arbitrary and \(\Phi_0 \geq f(x_1) - f(x^*) \)
2: \(\alpha \leftarrow \frac{S^2}{2K^2 \mu} \)
3: for \(t = 1, \ldots, T \) do
 4: \(\Phi_t \leftarrow \Phi_{t-1} + \frac{nS^2 \min\{\mu^2 r_t^2, D^2\}}{1 + \sqrt{\lambda^2 / K}} \)
 5: \(r_t \leftarrow \sqrt{\frac{2\Phi_{t-1}}{S^2}} \)
 6: \(p_t \leftarrow \text{LLPsep}_P(\nabla f(x_t), x_t, r_t, \Phi_t, K) \)
 7: if \(p_t = \text{false} \) then
 8: \(x_{t+1} \leftarrow x_t \)
 9: else
 10: \(x_{t+1} \leftarrow x_t + \alpha(p_t - x_t) \)
11: end if
12: end for

As an intermediary step, we first implement a local weak separation oracle in Algorithm 5, a local version of Oracle 1, analogously to the local linear optimization oracle in Garber and Hazan [2013]. To this end, we recall a technical lemma from Garber and Hazan [2013].

Lemma 3.6. [Garber and Hazan, 2013, Lemma 7] Let \(P \subseteq \mathbb{R}^n \) be a polytope and \(v_1, \ldots, v_N \) be its vertices. Let \(x, y \in P \) and \(x = \sum_{i=1}^{N} \lambda_i v_i \) a convex combination of the vertices of \(P \). Then there are numbers \(0 \leq \gamma_i \leq \lambda_i \) and \(z \in P \) satisfying

\[
y - x = - \sum_{i \in [N]} \gamma_i v_i + \left(\sum_{i \in [N]} \gamma_i \right) z \quad (7)
\]

\[
\sum_{i \in [N]} \gamma_i \leq \sqrt{\frac{n\mu D}{r} \| x - y \|} \quad (8)
\]

Now we prove the correctness of the weak local separation algorithm.

Lemma 3.7. Algorithm 5 is correct. In particular LLPsep\(_P(\xi, x, r, \Phi, K) \)

(i) returns either an \(y \in P \) with \(\| x - y \| \leq \sqrt{\mu r} \) and \(\xi(x - y) > \Phi / K \),

(ii) or establishes \(\xi(x - z) \leq \Phi \) for all \(z \in P \cap B_r(x) \).
Algorithm 5 Weak Local Separation $\text{LPsep}_P(c, x, r, \Phi, K)$

Input: $c \in \mathbb{R}^n$ linear objective, $x \in P$ point, $r > 0$ radius, $\Phi > 0$ objective value

Output: Either (1) $y \in P$ with $\|x - y\| \leq \sqrt{n} \mu r$ and $c(x - y) > \Phi / K$, or (2) false: $c(x - z) \leq \Phi$ for all $z \in P \cap B_r(x)$.

1. $\Delta \leftarrow \min \left\{ \frac{\sqrt{n} \mu}{D} r, 1 \right\}$
2. Decompose x: $x = \sum_{j=1}^{M} \lambda_j v_j$, $\lambda_j > 0$, $\sum_j \lambda_j = 1$.
3. Sort vertices: i_1, \ldots, i_M s.t. $cv_{i_1} \geq \cdots \geq cv_{i_M}$.
4. $k \leftarrow \min \{ k : \sum_{j=1}^{k} \lambda_{i_j} \geq \Delta \}$
5. $p_- \leftarrow \sum_{j=1}^{k-1} \lambda_{i_j} v_{i_j} + \left(\Delta - \sum_{j=1}^{k-1} \lambda_{i_j} \right) v_{i_k}$
6. $v^* \leftarrow \text{LPsep}_P \left(c, \frac{p_-}{\Delta}, \Phi \right)$
7. if $v^* = \text{false}$ then
 8. return false
9. else
10. return $y \leftarrow x - p_- + \Delta v^*$
11. end if

Proof. We first consider the case when the algorithm exits in Line 10. Observe that $y \in P$ since y is a convex combination of vertices of P. Moreover by construction of y we can write $y = \sum_{j=1}^{M} (\lambda_{i_j} - \gamma_{j}) v_{i_j} + \Delta v^*$ with $\Delta = \sum_{j=1}^{M} \gamma_j \leq \frac{\sqrt{n} \mu}{D} r$. Therefore

$$
\|x - y\| = \left\| \sum_{j=1}^{M} \gamma_j v_{i_j} - \Delta v^* \right\| \leq \sum_{j=1}^{M} \gamma_j \| v_{i_j} - v^* \| \\
\leq \sqrt{n} \mu r.
$$

Finally using the guarantee of LPsep_P we get

$$
c(x - y) = \Delta c \left(\frac{p_-}{\Delta} - v^* \right) \geq \frac{\Phi}{K}.
$$

If the algorithm exits in Line 8 we use Lemma 3.6 to decompose any $y \in P \cap B_r(x)$ in the following way:

$$
y = \sum_{i=1}^{N} (\lambda_i - \gamma_i) v_i + \left(\sum_{i=1}^{N} \gamma_i \right) z,
$$

with $z \in P$ and $\sum_{i=1}^{N} \gamma_i \leq \frac{\sqrt{n} \mu}{D} \|x - y\| \leq \Delta$. Since $\sum_{i=1}^{N} \lambda_i = 1 \geq \Delta$, there are numbers $\gamma_i \leq \eta_i^- \leq \lambda_i$ with $\sum_{i=1}^{N} \eta_i^- = \Delta$. Let

$$
p_- := \sum_{i=1}^{N} \eta_i^- v_i, \\
\tilde{y} := y - x + \hat{p}_- = \sum_{i=1}^{N} (\eta_i^+ - \gamma_i) v_i + \sum_{i=1}^{N} \gamma_i z,
$$

11
so that $\tilde{p}_+ / \Delta \in P$. To bound the function value we first observe that the choice of p_- in the algorithm assures that $cu \leq cp_-$ for all $u = \sum_{i=1}^N \eta_i v_i$ with $\sum_{i=1}^N \eta_i = \Delta$ and all $\eta_i \geq 0$. In particular, $c\tilde{p}_- \leq cp_-$. The function value of the positive part \tilde{p}_+ can be bounded with the guarantee of LPsep_P:

$$c \left(\frac{p_-}{\Delta} - \frac{\tilde{p}_+}{\Delta} \right) \leq \Phi,$$

i.e., $c(p_- - \tilde{p}_+) \leq \Phi$. Finally combining these bounds gives

$$c(x - y) = c(p_- - \tilde{p}_+) \leq c(p_- - \tilde{p}_+) \leq \Phi$$

as desired. \qed

We are ready to examine the Conditional Gradient Algorithm based on LLP_{sep}:

Theorem 3.8. Algorithm 4 converges with the following rate:

$$f(x_{t+1}) - f(x^*) \leq \Phi_t \leq \Phi_0 \left(\frac{1 + \alpha / (2K)}{1 + \alpha / K} \right)^t.$$

Proof. The proof is similar to the proof of Theorem 3.4. We prove this rate by induction. For $t = 0$ the choice of Φ_0 guarantees that $f(x_1) - f(x^*) \leq \Phi_0$. Now assume the theorem holds for $t \geq 0$. With strong convexity and the induction hypothesis we get

$$||x_t - x^*||^2 \leq \frac{2}{\beta}(f(x_t) - f(x^*)) \leq \frac{2}{\beta} \Phi_{t-1} = r_t^2,$$

i.e., $x^* \in P \cap B_{r_t}(x_t)$. In the negative case, i.e., when $p_t = \text{false}$, then case (ii) of Lemma 3.7 applies:

$$f(x_{t+1}) - f(x^*) = f(x_t) - f(x^*) \leq \nabla f(x_t)(x_t - x^*) \leq \Phi_t.$$

In the positive case, i.e., when Line 10 is executed, we get the same inequality via:

$$f(x_{t+1}) - f(x^*) \leq \Phi_{t-1} + \alpha \nabla f(x_t)(p_t - x_t) + \frac{\beta}{2} \alpha^2 ||x - p_t||^2$$

$$\leq \Phi_{t-1} - \alpha \frac{\Phi_t}{K} + \frac{\beta}{2} \alpha^2 \min\{n\mu^2 r_t^2, D^2\}$$

$$= \Phi_t.$$

Therefore using the definition of α and r_t we get the desired bound:

$$\Phi_t \leq \Phi_{t-1} + \frac{\beta}{2} \alpha^2 r_t^2 n\mu^2 \leq \Phi_{t-1} \left(\frac{1 + \alpha / (2K)}{1 + \alpha / K} \right)^t \leq \Phi_0 \left(\frac{1 + \alpha / (2K)}{1 + \alpha / K} \right)^t.$$

\qed

4 Lazy Online Conditional Gradients

In this section we lazify the online conditional gradient algorithm of Hazan and Kale [2012] over arbitrary polytopes $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, resulting in Algorithm 6. We slightly improve constant factors by replacing Hazan and Kale [2012, Lemma 3.1] with a better estimation via solving a quadratic inequality arising from strong convexity. In this section the norm $\| \cdot \|$ can be arbitrary.
Algorithm 6 Lazy Online Conditional Gradients (LOCG)

Input: f_t functions, $x_1 \in P$ start vertex, LPsep_P weak linear separation oracle, parameters K, C, b, S, s; diameter D

Output: x_T points

1. **for** $t = 1$ to $T - 1$ **do**
 2. $\nabla_t \leftarrow \nabla f_t(x_t)$
 3. **if** $t = 1$ **then**
 4. $h_1 \leftarrow \min\{\|\nabla_1\|^{\ast} D, 2 \|\nabla_1\|^{s^2} / S\}$
 5. **else**
 6. $h_t \leftarrow \Phi_{t-1} + \min \left\{ \|\nabla_t\|^{s} D, \|\nabla_t\|^{2} / 2S^{s} + 2 \sqrt{\|\nabla_t\|^{2} / 2S^{s} + \Phi_{t-1}} \right\}$
 7. **end if**
 8. $\Phi_t \leftarrow h_t + \frac{C^{1-b} \gamma_t^{2}}{2(1-b)}$
 9. $\psi_t \leftarrow \text{LPsep}_P(\sum_{i=1}^{t} \nabla f_i(x_i), x_t, \Phi_t, K)$
 10. **if** $\psi_t = \text{false}$ **then**
 11. $x_{t+1} \leftarrow x_t$
 12. **else**
 13. $x_{t+1} \leftarrow (1 - \gamma_t)x_t + \gamma_t\psi_t$
 14. $\Phi_t \leftarrow h_t - \sum_{i=1}^{t} f_i(x_i) + \sum_{i=1}^{t} f_i(x_{t+1})$
 15. **end if**
16. **end for**

Theorem 4.1. Let $0 \leq b, s < 1$. Let $K > 1$ be an accuracy parameter. Assume f_t is L-Lipschitz and smooth with curvature at most Ct^{-b}. Let $D := \max_{y_1, y_2 \in P} \|y_1 - y_2\|$ denote the diameter of P in norm $\|\cdot\|$. Then the following hold for the points x_t computed by Algorithm 6 where x^*_T is the minimizer of $\sum_{t=1}^{T} f_t$:

(i) With the choice

$$\gamma_t = \frac{t^{-(1-b)}/2}{},$$

the x_t satisfy

$$\frac{1}{T} \sum_{t=1}^{T} (f_t(x_T) - f_t(x^*_T)) \leq A T^{-(1-b)/2},$$

where

$$A := \frac{C K}{2(1-b)} + L(K + 1)D.$$

(ii) Moreover, if all the f_t are S^{t-s}-strongly convex, then with the choice

$$\gamma_t = \frac{t^{(b+s-2)/3}}{},$$

the x_t satisfy

$$\frac{1}{T} \sum_{t=1}^{T} (f_t(x_T) - f_t(x^*_T)) \leq A T^{-(2(1+b)-s)/3},$$

(12)
where
\[A := 2 \left((K+1)(K+2) \frac{L^2}{S} + \frac{CK}{2(1-b)} \right). \]

Proof. We prove only Claim (ii) as the proof of Claim (i) is similar and simpler. Let \(F_t := \sum_{t-1}^T f_t \). Furthermore, let \(\overline{h}_T \) be \(T \) times the right-hand side of Equation (12). In particular, \(F_T \) is \(S_T \)-strongly convex, and smooth with curvature at most \(C_{F_T} \) where

\[C_{F_T} := \frac{CT^{1-b}}{1-b} \geq C \sum_{t=1}^T t^{-b}, \quad S_T := ST^{1-s} \leq S \sum_{t=1}^T t^{-s}. \tag{13} \]

We prove \(F_t(x_t) - F_t(x^*_t) \leq h_t \leq \overline{h}_T \) by induction on \(t \). The case \(t = 1 \) is clear. Let \(\overline{\Phi}_t \) denote the value of \(\Phi_t \) in Line 8 while we reserve \(\Phi_t \) to denote its value as used in Line 6. We start by showing \(F_t(x_{t+1}) - F_t(x^*_t) \leq \Phi_t \). We distinguish two cases depending on \(v_t \) from Line 9. If \(v_t \) is false, then \(\Phi_t = \overline{\Phi}_t \) and the weak separation oracle asserts \(\max_{y \in B} \nabla F_t(x_t)(x_t - y) \leq \Phi_t \), which combined with the convexity of \(F_t \) provides

\[F_t(x_{t+1}) - F_t(x^*_t) = F_t(x_t) - F_t(x^*_t) \leq \nabla F_t(x_t)(x_t - x^*_t) \leq \Phi_t = \overline{\Phi}_t. \]

Otherwise \(v_t \) is a vertex of \(P \), then Line 14 and the induction hypothesis provides \(F_t(x_{t+1}) - F_t(x^*_t) \leq h_t + F_t(x_{t+1}) - F_t(x^*_t) = \Phi_t \). To prove \(\Phi_t \leq \overline{\Phi}_t \), we apply the smoothness of \(F_t \) followed by the inequality provided by the choice of \(v_t \):

\[F_t(x_{t+1}) - F_t(x_t) - \frac{C_t \gamma_t^2}{2} \leq \nabla F_t(x_t)(x_t - x^*_t) = \gamma_t \nabla F_t(x_t)(v_t - x_t) \leq -\frac{\gamma_t \Phi_t}{K}. \]

Rearranging provides the inequality below.

\[\Phi_t = h_t + F_t(x_{t+1}) - F_t(x_t) \leq h_t - \frac{\gamma_t \Phi_t}{K} + \frac{C_t \gamma_t^2}{2} = \overline{\Phi}_t. \]

For later use, we bound the difference between \(\overline{h}_t \) and \(\Phi_t \) using the value of parameters, \(h_t \leq \overline{h}_t \), and \(\gamma_t \leq 1 \):

\[\overline{h}_t - \Phi_t \geq \overline{h}_t - \frac{h_t + \frac{C_t \gamma_t^2}{2}}{1 + \frac{\gamma_t}{K}} = \frac{h_t - \frac{C_t \gamma_t}{2}}{1 + \frac{\gamma_t}{K}} \geq \frac{h_t - \frac{C_t \gamma_t}{2}}{1 + \frac{1}{K}} = \frac{A - \frac{CK}{2(1-b)} t^{2s-(1+b)/3}}{K + 1}. \]

We now apply \(F_t(x_{t+1}) - F_t(x^*_t) \leq \Phi_t \), together with convexity of \(f_{t+1} \), and the minimality \(F_t(x^*_t) \leq F_t(x^*_{t+1}) \) of \(x^*_t \), followed by strong convexity of \(F_{t+1} \):

\[
\begin{align*}
F_{t+1}(x_{t+1}) - F_{t+1}(x^*_{t+1}) & \leq (F_t(x_{t+1}) - F_t(x^*_t)) + (f_{t+1}(x_{t+1}) - f_{t+1}(x^*_{t+1})) \\
& \leq \Phi_t + \| \nabla_{t+1} \|^s \cdot \| x_{t+1} - x^*_{t+1} \| \\
& \leq \Phi_t + \| \nabla_{t+1} \|^s \sqrt{\frac{2}{S_{t+1}}(F_{t+1}(x_{t+1}) - F_{t+1}(x^*_{t+1}))}. \\
\end{align*}
\]

Solving the quadratic inequality provides

\[F_{t+1}(x_{t+1}) - F_{t+1}(x^*_{t+1}) \leq \Phi_t + \frac{\| \nabla_{t+1} \|^2}{S_{t+1}} + 2\sqrt{\frac{\| \nabla_{t+1} \|^2}{2S_{t+1}}\left(\frac{\| \nabla_{t+1} \|^2}{2S_{t+1}} + \Phi_t \right)}. \tag{15} \]
From Equation (14), ignoring the last line, we also obtain $F_{t+1}(x_{t+1}) - F_{t+1}(x_{t+1}^*) \leq \Phi_t + \|\nabla_{t+1}\|^2 D$ via
the estimate $\|x_t - x_{t+1}^*\| \leq D$. Thus $F_{t+1}(x_{t+1}) - F_{t+1}(x_{t+1}^*) \leq h_{t+1}$, by Line 6, as claimed.

Now we estimate the right-hand side of Equation (15) by using the actual value of parameters, the estimate $\|\nabla_{t+1}\|_2 \leq L$ and the inequality $s + b \leq 2$. Actually, we estimate a proxy for the right-hand side. Note that A was chosen to satisfy the second inequality.

$$\frac{L^2}{S_{t+1}} + 2 \sqrt{\frac{L^2}{2S_{t+1}}} \tilde{r}_t \leq \frac{L^2}{S_{t+1}^{1-s}} + 2 \sqrt{\frac{L^2}{2S_{t+1}^{1-s}}} \tilde{r}_t \leq \frac{L^2}{S} t^{2s-(1+b)/3} + 2 \sqrt{\frac{L^2}{2S} S t^{1-s}} \tilde{r}_t \leq \tilde{r}_t - \Phi_t \leq \tilde{r}_t - \Phi_t.$$

In particular, $\frac{L^2}{S_{t+1}^{1-s}} + \Phi_t \leq \tilde{r}_t$ hence combining with Equation (15) we obtain

$$h_{t+1} \leq \Phi_t + \frac{L^2}{S_{t+1}} + 2 \sqrt{\frac{L^2}{2S_{t+1}}} \left(\frac{L^2}{2S_{t+1}^{1-s}} + \Phi_t \right)$$

$$\leq \Phi_t + \frac{L^2}{S_{t+1}} + 2 \sqrt{\frac{L^2}{2S_{t+1}}} \tilde{r}_t$$

$$\leq \tilde{r}_t \leq \tilde{r}_{t+1}. \quad \square$$

4.1 Stochastic and Adversarial Versions

Complementing the offline algorithms from Section 3, we will now derive various versions from the online case. The presented cases here are similar to those in Hazan and Kale [2012] and thus we state them without proof.

For stochastic cost functions f_t, we obtain bounds from Theorem 4.1 [0] similar to Hazan and Kale [2012] (Theorems 4.1 and 4.3) (with δ replaced by δ/T in the bound to correct an inaccuracy in the original argument). The proof is analogous and hence omitted, but note that $\|y_1 - y_2\|_2 \leq \sqrt{\|y_1 - y_2\|_1} \leq \sqrt{k}$ for all $y_1, y_2 \in P$.

Corollary 4.2. Let f_t be convex functions sampled i.i.d. with expectation $\mathbb{E} [f_t] = f^*$, and $\delta > 0$. Assume that the f_t are L-Lipschitz in the 2-norm.

(i) If all the f_t are smooth with curvature at most C, then Algorithm 6 (applied to the f_t (with $b = 0$) yields with probability $1 - \delta$

$$\sum_{t=1}^T f^*(x_t) - \min_{x \in P} \sum_{t=1}^T f^*(x) \leq O \left(C \sqrt{T} + Lk \sqrt{nT \log(nT^2/\delta) \log T} \right).$$

(ii) Without any smoothness assumption, Algorithm 6 (applied to smoothenings of the f_t) provides with probability $1 - \delta$

$$\sum_{t=1}^T f^*(x_t) - \min_{x \in P} \sum_{t=1}^T f^*(x) \leq O \left(\sqrt{nLkT^{2/3}} + Lk \sqrt{nT \log(nT^2/\delta) \log T} \right).$$
Similar to [Hazan and Kale, 2012, Theorem 4.4], from Theorem 4.1 (ii) we obtain the following regret bound for adversarial cost functions with an analogous proof.

Corollary 4.3. For any L-Lipschitz convex cost functions \(f_t \), Algorithm 6 applied to the functions \(\tilde{f}_t(x) := \nabla f_t(x_t)x + \frac{2L}{\sqrt{K}}t^{-1/4}\|x - x_t\|_2^2 \) (with \(b = s = 1/4, C = L\sqrt{K}, S = L/\sqrt{K}, \) and Lipschitz constant \(3L \)) achieving regret

\[
\sum_{t=1}^{T} f_t(x_t) - \min_{x \in P} \sum_{t=1}^{T} f_t(x) \leq O(L\sqrt{K}T^{3/4})
\]

with at most \(T \) calls to the weak separation oracle.

Note that the gradient of the \(\tilde{f}_t \) are easily computed via the formula \(\nabla \tilde{f}_t(x) = \nabla f_t(x_t) + 4Lt^{-1/4}(x - x_t)/\sqrt{K} \), particularly because the gradient of the \(f_t \) need not be recomputed, so that we obtain a weak separation-based stochastic gradient descent algorithm, where we only have access to the \(f_t \) through a stochastic gradient oracle, while retaining all the favorable properties of the Frank-Wolfe algorithm with a convergence rate \(O(T^{-1/4}) \) (c.f., Garber and Hazan [2013]).

5 Parameter-free Conditional Gradients via Weak Separation

In this section we provide the Conditional Gradients algorithm with the implementation improvements that we sketched in Section 3.1 for completeness. In particular the obtained algorithm is parameter-free; note that \(K \) is a parameter of the oracle and not the algorithms. Similar improvements apply to the other algorithms and the adaptation of those is straightforward and left to the interested reader.

If the weak separation oracle is realized via a linear minimization oracle at its core, then we can slightly change the specification of the oracle. It still maintains the advantage of caching and early termination, however we utilize the information obtained from the linear optimization calls better. We present the adjusted oracle in Oracle 2. The major difference is that in the negative case, where a \(\Phi/K \)-improving vertex does not exist, the oracle does not just return \(false \) as before but returns also a maximizing vertex. Note that this information is obtained from the linear optimization oracle as a byproduct in the negative case. The negative case (2) in Oracle 2 can be replaced by an approximate upper bound if desired; see Remark 5.4.

Oracle 2 Weak Separation Oracle LPsep\(_P\)(\(c, x, \Phi, K \))

Input: \(c \in \mathbb{R}^n \) linear objective, \(x \in P \) point, \(K \geq 1 \) accuracy, \(\Phi > 0 \) objective value;

Output: \(y \in P \) vertex with either (1) \(c(x - y) > \Phi/K \), or (2) \(y = \arg\max_{y \in P} c(x - z) \leq \Phi \).

We now present the Lazy Conditional Gradients algorithm (see Algorithm 2) with improvements in Algorithm 7 below. We stress that the worst-case convergence rate is identical up to a small constant factor and at the same time the algorithm becomes parameter-free.

Here we perform the initial bound tightening of \(\Phi_0 \) with a single extra LP call, which can be also done approximately as long as \(\Phi_0 \) is a valid upper bound. Alternative one can perform binary search via the weak separation oracle as described earlier. Note that Algorithm 7 does not include the primal tightening \(\Phi_1 \leftarrow \Phi_1 - (f(x_t) - f(x_{t+1})) \) as outlined in Remark 5.3(i), as we want to keep the \(\Phi_1 \) unchanged in the case of a positive oracle call to promote more aggressive improvements: the guaranteed improvement is quadratic or linear in \(\Phi_1 \) for positive calls depending on the magnitude of \(\Phi_1 \).

Theorem 5.1 shows that Algorithm 7 converges in the worst-case at a rate identical to Algorithm 2 (up to a small constant factor).
Algorithm 7 Parameter-free Lazy Conditional Gradients (LCG)

Input: smooth convex f function, $x_1 \in P$ start vertex, LPsep$_P$ weak linear separation oracle, accuracy $K > 1$

Output: x_t points in P

1: $\Phi \leftarrow \max_{x \in P} \nabla f(x_1)(x_1 - x)$ \{Initial bound tightening\}
2: for $t = 1$ to $T - 1$ do
3: $v_t \leftarrow$ LPsep$_P(\nabla f(x_t), x_t, \Phi, K)$
4: Line search over γ_t to minimize $f((1 - \gamma_t)x_t + \gamma_tv_t)$
5: $x_{t+1} \leftarrow (1 - \gamma_t)x_t + \gamma_tv_t$
6: if not $\nabla f(x_t)(x_t - v_t) > \Phi/K$ then
7: $\Phi \leftarrow \frac{\nabla f(x_t)(x_t - v_t)}{2}$ \{Update Φ via dual gap and halve\}
8: end if
9: end for

Theorem 5.1. Algorithm 7 converges at a rate proportional to $1/t$. In particular to achieve a bound $f(x_t) - f(x^*) \leq \epsilon$, the number of required steps is upper bounded by

$$t \leq 4K[\log \Phi_0/KC] + \frac{4K^2C}{\epsilon}.$$

Proof. Let C be the curvature of the smooth convex function f and Φ_t be Φ at the end of iteration t. Let us first establish that $f(x_{t+1}) - f(x^*) \leq 2\Phi_t$ at the end of each iteration: Initially, for $t = 0$, we have by Line 1 and convexity $\Phi_0 = \arg\max_{x \in P} \nabla f(x_1)(x_1 - x) \geq \nabla f(x_1)(x_1 - x^*) \geq f(x_1) - f(x^*)$. This establishes the case $t = 0$, so that for induction we assume that $f(x_t) - f(x^*) \leq 2\Phi_{t-1}$ holds at the beginning of iteration t.

In the positive case (case (1) in Oracle 2). Via line search it follows that in any iteration the primal gap is non-increasing, i.e.,

$$f(x_{t+1}) - f(x^*) \leq f(x_t) - f(x^*) \leq 2\Phi_{t-1} = 2\Phi_t$$

using the induction hypothesis and the fact that Φ does not change in the case of positive oracle calls. For the negative case (case (2) in Oracle 2) by an argument similar to the positive case we get

$$f(x_{t+1}) - f(x^*) \leq f(x_t) - f(x^*) \leq \nabla f(x_t)(x_t - x^*) \leq \nabla f(x_t)(x_t - v_t) = 2\Phi_t,$$

using convexity for the second inequality and $2\Phi_t = \nabla f(x_t)(x_t - v_t)$ by Line 7 for the equality, which completes the induction.

It is left to show that Φ_t decreases fast enough, which is done by bounding the number of steps in which Φ is not halved. First observe that in an iteration with a positive oracle call we have

$$f(x_t) - f(x_{t+1}) \geq \frac{\Phi_{t-1}}{K} - \frac{C}{2} \gamma_t^2 \geq \begin{cases} \frac{\Phi_{t-1}^2}{2CK^2} & \text{if } \Phi_{t-1}/KC < 1 \\ \Phi_{t-1}/K - \frac{C}{2} & \text{if } \Phi_{t-1}/KC \geq 1 \end{cases}$$

via smoothness and optimality of γ_t from the line search; in both cases a non-negative change. Let t' be the number of consecutive steps in which Φ is not halved, then lower bounding the progress in each step via (20), we have

$$2\Phi_{t-1} \geq f(x_t) - f(x^*) \geq \sum_{\tau = t}^{t+t'-1} f(x_\tau) - f(x_{\tau+1}) \geq \begin{cases} t' \frac{\Phi_{t-1}^2}{2CK^2} & \text{if } \Phi_{t-1}/KC < 1 \\ t' \left(\frac{\Phi_{t-1}}{K} - \frac{C}{2} \right) & \text{if } \Phi_{t-1}/KC \geq 1 \end{cases}$$

17
which gives in the case $\Phi_{t-1} < KC$ that $t' \leq \frac{4CK^2}{\Phi_{t-1}}$ and in the case $\Phi_{t-1} \geq KC$ that
\[t' \leq \frac{2\Phi_{t-1}}{K} - \frac{C}{2} \leq \frac{4K\Phi_{t-1}}{2\Phi_{t-1} - KC} \leq \frac{4K\Phi_{t-1}}{2\Phi_{t-1} - \Phi_{t-1}} = 4K. \]

Adding up the number of steps gives the desired rate: we have at most $\log(\Phi_0/\epsilon)$ scaling phases, where $\log(\cdot)$ is the binary logarithm and ϵ is the (additive) accuracy. Further in each scaling phase with scaling parameter Φ we make at most $\frac{4CK^2}{\Phi}$ positive steps if $\Phi \leq KC$ and at most $4K$ positive steps if $\Phi \geq KC$. Thus after a total of
\[\bar{t} := \sum_{\ell \in \lceil \log \Phi_0/KC \rceil} 4K + \sum_{\ell \in \lceil \log KC/\epsilon \rceil} \frac{2^{\ell-1} \cdot 4CK^2}{\ell} \leq 4K \lfloor \log \Phi_0/KC \rfloor + \frac{4K^2C}{\epsilon} \]
steps we have $f(x_{\bar{t}}) - f(x^*) \leq \epsilon$.

Remark 5.2. Observe that Algorithm 7 might converge much faster due to the aggressive halving of the rate. In fact, Algorithm 7 converges at a rate that is at most a factor $4K^2$ slower than the rate that the vanilla (non-lazy) Frank-Wolfe algorithm would realize for the same problem. In actual wall-clock time Algorithm 7 is much faster though due to the use of the weaker oracle; see Figure 1 for a comparison of the bounds on the Wolfe gap and Section 7.1.2 for more experimental results.

Negative oracle calls tend to be significantly more expensive time-wise than positive oracle calls due to proving dual bounds. The following corollary is an immediate consequence of the argumentation from above:

Corollary 5.3. Algorithm 7 makes at most $\log(\Phi_0/\epsilon)$ negative oracle calls.

Remark 5.4 (Approximate negative calls). In Oracle 2 in the negative call case the oracle returns $y = \arg\max_{y \in P} c(x - z) \leq \Phi$. We can relax the exact linear optimization and replace it by a (weaker) upper bound τ satisfying
\[\arg\max_{y \in P} c(x - z) \leq \tau \leq \Phi, \]
and adjust Algorithm 7 appropriately; in particular in the negative case the algorithm simply does not update the iterate.

6 Weak Separation through Augmentation

So far we realized the weak separation oracle via lazy optimization. We will now create a (weak) separation oracle for integral polytopes, employing an even weaker, so-called augmentation oracle, which only provides an improving solution but provides no guarantee with respect to optimality. We call this approach lazy augmentation. This is especially useful when a fast augmentation oracle is available or the vertices of the underlying polytope P are particularly sparse. As before theoretical convergence rates are maintained.

For simplicity of exposition we restrict to $0/1$ polytopes P here. For general integral polytopes, one considers a so-called directed augmentation oracle, which can be similarly linearized after splitting variables in positive and negative parts; we refer the interested reader to see [Schulz and Weismantel, 2002, Bodic et al., 2015] for an in-depth discussion.
Figure 1: Example behavior of parameter-free variant of the Lazy CG algorithm (Algorithm 7) compared to the vanilla Frank-Wolfe algorithm (denoted by CG). We depict the behavior of the dual bound, i.e., the bound on Wolfe gap. In the top row we report dual bound vs. iterations and in the lower row dual bound vs. wall-clock time. We can see in the top row how the halving of Φ in Algorithm 7 approximates the ‘true’ Φ from the vanilla Frank-Wolfe. However in wall-clock time the lazy variant achieves significantly better dual bounds in the same time. The example instances here are two maxcut instances and we observe the same behavior across most instances. The time limit was 450s on the left and 1000s on the right.
Let k denote the ℓ_1-diameter of P. Upon presentation with a 0/1 solution x and a linear objective $c \in \mathbb{R}^n$, an augmentation oracle either provides an improving 0/1 solution \bar{x} with $c\bar{x} < cx$ or asserts optimality for c:

Oracle 3 Linear Augmentation Oracle $\text{AUG}_P(c, x)$

Input: $c \in \mathbb{R}^n$ linear objective, $x \in P$ vertex,

Output: $\bar{x} \in P$ vertex with $c\bar{x} < cx$ when exists, otherwise $\bar{x} = x$

Such an oracle is significantly weaker than a linear optimization oracle but also significantly easier to implement and much faster; we refer the interested reader to [Grötschel and Lovász 1993, Schulz et al. 1995, Schulz and Weismantel 2002] for an extensive list of examples. While augmentation and optimization are polynomially equivalent (even for convex integer programming [Oertel et al., 2014]) the current best linear optimization algorithms based on an augmentation oracle are slow for general objectives. While optimizing a general objective function, such as the gradient in Frank–Wolfe algorithms has only an $O(k^n)$ guarantee in terms of required oracle calls (e.g., via simultaneous diophantine approximations [Frank and Tardos, 1987]), which is not desirable for large n. In contrast, here we use an augmentation oracle to perform separation, without finding the optimal solution. Allowing a multiplicative error $K > 1$, we realize an augmentation-based weak separation oracle (see [Schulz et al. 1995, Schulz and Weismantel 2002, Bodic et al. 2015]), a general objective function, such as the gradient in Frank–Wolfe algorithms has only an $O(kn^2)$ guarantee in terms of required oracle calls (e.g., via simultaneous diophantine approximations [Frank and Tardos, 1987]), which is not desirable for large n. In contrast, here we use an augmentation oracle to perform separation, without finding the optimal solution. Allowing a multiplicative error $K > 1$, we realize an augmentation-based weak separation oracle (see [Algorithm 8]), which decides given a linear objective function $c \in \mathbb{R}^n$, an objective value $\Phi > 0$, and a starting point $x \in P$, whether there is a $y \in P$ with $c(x - y) > \Phi / K$ or $c(x - y) \leq \Phi$ for all $y \in P$. In the former case, it actually provides a certifying $y \in P$, i.e., with $c(x - y) > \Phi / K$. Note that a constant accuracy K requires a linear number of oracle calls in the diameter k, e.g., $K = (1 - 1/e)^{-1} \approx 1.582$ needs at most $N \leq k$ oracle calls.

At the beginning, in Line 2, the algorithm has to replace the input point x with an integral point x_0. If the point x is given as a convex combination of integral points, then a possible solution is to evaluate the objective c on these integral points, and choose x_0 the first one with $c x_0 \leq c x$. This can be easily arranged for Frank–Wolfe algorithms as they maintain convex combinations.

Algorithm 8 Augmenting Weak Separation $\text{LPsep}_P(c, x, \Phi, K)$

Input: $c \in \mathbb{R}^n$ linear objective, $x \in P$ point, $\Phi > 0$ objective value; $K > 1$ accuracy

Output: Either (1) $y \in P$ vertex with $c(x - y) > \Phi / K$, or (2) false: $c(x - z) \leq \Phi$ for all $z \in P$.

1. $N \leftarrow \lceil \log(1 - 1/K) / \log(1 - 1/k) \rceil$
2. Choose $x_0 \in P$ vertex with $c x_0 \leq c x$.
3. for $i = 1$ to N do
4. if $c(x - x_{i-1}) \geq \Phi$ then
5. return x_{i-1}
6. end if
7. $x_i \leftarrow \text{AUG}_P(c + \Phi \cdot \frac{c(x - x_{i-1})}{k}(1 - 2x_{i-1}), x_{i-1})$
8. if $x_i = x_{i-1}$ then
9. return false
10. end if
11. end for
12. return x_N

Proposition 6.1. Assume $\|y_1 - y_2\|_1 \leq k$ for all $y_1, y_2 \in P$. Then Algorithm 8 is correct, i.e., it outputs
either (1) $y \in P$ with $c(x - y) > \Phi/K$, or (2) false. In the latter case $c(x - y) \leq \Phi$ for all $y \in P$ holds. The algorithm calls AUG_P at most $N \leq \lceil \log(1 - 1/K) / \log(1 - 1/k) \rceil$ many times.

Proof. First note that $(1 - 2x)v + \|x\|_1 = \|v - x\|_1$ for $x, v \in \{0,1\}^n$, hence Line 7 is equivalent to $x_i \leftarrow \text{AUG}_P(c + \frac{\Phi - c(x - x_{i-1})}{k} \|x_i - x_{i-1}\|_1, x_{i-1})$.

The algorithm obviously calls the oracle at most N times by design, and always returns a value, so we need to verify only the correctness of the returned value. We distinguish cases according to the output.

Clearly, Line 5 always returns an x_{i-1} with $c(x - x_{i-1}) \geq \Phi > [1 - (1 - 1/k)^N] \Phi$. When Line 9 is executed, the augmentation oracle just returned $x_i = x_{i-1}$, i.e., for all $y \in P$

$$cx_{i-1} \leq cy + \frac{\Phi - c(x - x_{i-1})}{k} \|y - x_{i-1}\|_1 \leq cy + \frac{\Phi - c(x - x_{i-1})}{k}k = c(y - x) + cx_{i-1} + \Phi, \quad (21)$$

so that $c(x - y) \leq \Phi$, as claimed.

Finally, when Line 12 is executed, the augmentation oracle has found an improving vertex x_i at every iteration, i.e.,

$$cx_{i-1} > cx_i + \frac{\Phi - c(x - x_{i-1})}{k} \|x_i - x_{i-1}\|_1 \geq cx_i + \frac{\Phi - c(x - x_{i-1})}{k}, \quad (22)$$

using $\|x_i - x_{i-1}\|_1 \geq 1$ by integrality. Rearranging provides the convenient form

$$\Phi - c(x - x_i) < \left(1 - \frac{1}{k}\right) \left[\Phi - c(x - x_{i-1})\right], \quad (23)$$

which by an easy induction provides

$$\Phi - c(x - x_N) < \left(1 - \frac{1}{k}\right)^N \left[\Phi - c(x - x_0)\right] \leq \left(1 - \frac{1}{K}\right) \Phi, \quad (24)$$

i.e., $c(x - x_N) \geq \frac{\Phi}{k}$, finishing the proof.

\square

7 Experiments

We implemented and compared Algorithm 2 as well as its parameter-free variant (Algorithm 7) (LCG) to the standard Frank-Wolf algorithm (CG). Moreover, we implemented and compared Algorithm 3 (LPCG) to the Pairwise Conditional Gradient Algorithm (PCG) in Garber and Meshi [2016] as well as implemented and compared Algorithm 6 (LOCG) to the Online Frank-Wolfe Algorithm (OCG) of Hazan and Kale [2012]. While we did implement the variant in Garber and Hazan [2013] as well, the very large constants in the original algorithms made it impractical to run.

We have used $K = 1.1$ as multiplicative factor for the weak separation oracle; for the impact of the choice of K see Section 7.2.2. For the baseline algorithms we use inexact variants, i.e., we solve linear optimization problems only approximately. This is a significant speedup in favor of non-lazy algorithms at the (potential) cost of accuracy, while neutral to lazy optimization as it solves an even more relaxed problem anyways. To put things in perspective, the non-lazy baselines could not complete even a single iteration for a significant fraction of the considered problems if we were to exactly solve the linear optimization problems.

The linear optimization oracle over $P \times P$ for LPCG was implemented by calling the respective oracle over P twice: once for either component. Contrary to the non-lazy version, the lazy algorithms depend on
the initial upper bound Φ_0. Hence, in the initial phase, the lazy algorithms perform a binary search for Φ_0: starting from a conservative initial value, using the update rule $\Phi_0 \leftarrow \Phi_0 / 2$ until the separation oracle returns an improvement for the first time and then we start the algorithm with $2\Phi_0$, which is an upper bound on the Wolfe gap and hence also on the primal gap. Obviously, this initial phase is also included in wall-clock time.

Alternatively, one could perform a single (approximate) linear optimization at the start to obtain an initial bound on Φ_0 (see e.g., Section 5). In our computations however it was more advantageous to perform the tightening via the weak separation oracle.

We implemented all algorithms in Python 2.7 with critical functions cythonized for performance employing Numpy. We used these packages from the Anaconda 4.2.0 distribution as well as Gurobi 7.0 [Gurobi Optimization 2016] as a black box solver for the linear optimization oracle and the weak separation oracle. The latter was implemented via a callback function to stop the optimization as soon as a good enough feasible solution has been found. The parameters for Gurobi were kept at their default settings except for enforcing the time limit of the tests and setting the acceptable duality gap to 10%, allowing Gurobi to terminate the linear optimization early avoiding the expensive proof of optimality. This is used to realize the inexact versions of the baseline algorithms. All experiments were performed on a 16-core machine with Intel Xeon E5-2630 v3 @ 2.40GHz CPUs and 128GB of main memory. While our code does not explicitly use multiple threads, both Gurobi and the numerical libraries use multiple threads internally.

7.1 Computational results

We performed computational tests on a large variety of different polytopes and loss functions. We considered polytopes where the underlying optimization problem is easy (spanning trees), and where it is NP-hard (Maximum Cut, Traveling Salesman Problem, Quadratic Unconstrained Boolean Optimization [Dash 2013], as well as various instances from MIPLIB [Achterberg et al. 2006, Koch et al. 2011]). Note that state-of-the-art solvers like Gurobi or CPLEX can solve very large real-world instances of these NP-hard problems in reasonable time.

We tested all algorithms on quadratic functions of the form $\|b - x\|^2_2$ with $b \in [0, 1]^n$ similar to those in [Hazan and Kale 2012]. The online version we additionally tested on random linear functions $cx + b$ with $c \in [-1, +1]^n$ and $b \in [0, 1]$ For online algorithms, each experiment used a random sequence of 100 different random loss functions.

We used various time limits for the experiments. The time limit was enforced separately for the main code, and the oracle code, so in some cases the actual time used can be larger.

We will now present the complete set of results for various polytopes. Every figure contains two columns, each reporting one experiment. The first row reports loss or function value in wall-clock time (including time spent by the oracle), the second row contains loss or function value in the number of iterations, and the third one the cumulative number of calls to the optimization oracle for the lazy algorithm. Red line denotes the non-lazy algorithm, and other colors denote lazy optimization.

While we found convergence rates in the number of iterations quite similar (as expected!), we consistently observe a significant speedup in wall-clock time. In particular for many large-scale or hard combinatorial problems, lazy algorithms performed several thousand iterations whereas the non-lazy versions completed only a handful of iterations due to the large time spent approximately solving the linear optimization problem.

The observed cache hit rate was at least 90% in most cases, and often even above 99%.
7.1.1 Online Results

For online conditional gradient algorithms, in every figure the left column uses linear loss functions, the right one uses quadratic loss functions of the form as described above over the same polytope.

We used the flow-based formulation for Hamiltonian cycles in graphs, i.e., the traveling salesman problem (TSP) for graphs with 11 and 16 nodes (Figures 2 and 3).

While relatively small, the oracle problem can be solved in reasonable time for these instances. For the maximum cut problem we used the standard formulation of the cut polytope for graphs with 23 and 28 nodes (Figures 4 and 5).

Another set of NP-hard instances we tested our algorithm on are the quadratic unconstrained boolean optimization (QUBO) instances defined on Chimera graphs [Dash 2013], which are available at http://researcher.watson.ibm.com/researcher/files/us-sanjeebd/chimera-data.zip. The instances are relatively hard albeit their rather small size (Figure 6 and 7).

We also performed tests on a path instance from http://lime.cs.elte.hu/~kpeter/data/mcf/netgen/ that were generated with the netgen graph generator (Figure 8). Most of these instances are very large-scale minimum cost flow instances with several hundreds of thousands nodes in the underlying graphs, therefore solving still takes considerable time despite the problem being in P.

We tested the MIPLIB [Achterberg et al. 2006, Koch et al. 2011]) instances eil33-2 (Figure 9) and air04 (Figure 10).

For the spanning tree problem, we used the well-known extended formulation with $O(n^3)$ inequalities for an n-node graph. We considered graphs with 10 and 25 nodes (Figures 11 and 12).

We observed that while OCG and LOCG converge comparably in the number of iterations, the lazy LOCG performed significantly more iterations; for hard problems, where linear optimization is costly and convergence requires a large number of iterations, this led LOCG converging much faster in wall-clock time. In extreme cases OCG could not complete even a single iteration. This is due to LOCG only requiring some good enough solution, whereas OCG requires a stronger guarantee. This is reflected in faster oracle calls for LOCG.

7.1.2 Offline Results

In the offline case we only performed experiments on quadratic objective functions, as linear optimization finds the optimum of a linear loss function immediately. In every figure each column corresponds to a different underlying polytope.

Vanilla Frank-Wolfe Method We tested the vanilla Frank-Wolfe algorithm on the same flow-based formulations of Hamiltonian cycles in graphs as the online algorithm (Figures 13). We further tested this version on two different cut polytope instances (Figure 14) as well as on two spanning tree instances of different size (Figure 15).

Similarly to the online case, we observe a significant speedup of LCG compared to CG, due to the faster iteration of the lazy algorithm.

Pairwise Conditional Gradient Algorithm We tested the Pairwise Conditional Gradient Algorithm on MIPLIB instances eil33-2, air04, eilB101, nw04, disctom, m100n500k4r1 (Figures 16, 17 and 18) with quadratic objective functions only. As we inherit structural restrictions of PCG on the feasible region, the problem repertoire is limited in this case.

Again similarly to the online case and the vanilla Frank-Wolfe algorithm, we observe a significant improvement in wall-clock time of LPCG compared to CG, due to the faster iteration of the lazy algorithm.
7.2 Performance improvements, parameter sensitivity, and tuning

7.2.1 Effect of caching

As mentioned before, lazy algorithms have two improvements: caching and early termination. Here we depict the effect of caching in Figure 19 comparing OCG (no caching, no early termination), LOCG (caching and early termination) and LOCG (only early termination). We did not include a caching-only OCG variant, because caching without early termination does not make much sense: in each iteration a new linear optimization problem has to be solved; previous solutions can hardly be reused as they are unlikely to be optimal for the new linear optimization problem.

7.2.2 Effect of K

If the parameter K of the oracle can be chosen, which depends on the actual oracle implementation, then we can increase K to bias the algorithm towards performing more positive calls. At the same time the steps get shorter. As such there is a natural trade-off between the cost of many positive calls vs. a negative call. We depict the impact of the parameter choice for K in Figure 20.

7.2.3 Parameter-free vs. textbook variant

We compare the textbook variant of Algorithm 2 with its parameter-free counterpart in Algorithm 7 in Figure 21. The parameter-free variant outperforms the textbook variant due to the active management of Φ combined with line search.

8 Final Remarks

We would like to close with a few final remarks. If a given baseline algorithm works over general compact convex sets P, then so does the lazified version. In fact, as the lazified algorithm runs, it produces a polyhedral approximation of the set P with very few vertices (subject to optimality vs. sparsity tradeoffs; see Jaggi 2013 Appendix C).

Moreover, the weak separation oracle does not need to return extreme points. All algorithms also work with solutions that are not necessarily extremal. However, in that case we lose the desirable property that the final solution is a sparse convex combination of extreme points or atoms.

Acknowledgements

We are indebted to Alexandre D’Aspremont, Simon Lacoste-Julien, and George Lan for the helpful discussions and for providing us with relevant references. Research reported in this paper was partially supported by NSF CAREER award CMMI-1452463.
Figure 2: TSP polytope for a graph with 11 nodes with a 500 seconds time limit. OCG completed only a few iterations, resulting in a several times larger final loss for quadratic loss functions. Notice that with time, LOCG needed fewer and fewer oracle calls.

cache hit rate: 99.7%
cache hit rate: 99.0%
Figure 3: TSP polytope for a graph with 16 nodes with a time limit of 7200 seconds. OCG was not able to complete a single iteration, and in the quadratic case even LOCG could not complete any more iteration after 50s. The quadratic losses on the right nicely demonstrate speed improvements (mostly) through early termination of the linear optimization as the cache rate is only 20.6%.

cache hit rate: 89.1%
cache hit rate: 20.6%
Figure 4: Maximum cut problem: cut polytope for a graph with 23 nodes. Both LOCG and OCG converge to the optimum in a few iterations for linear losses, while LOCG is remarkably faster for quadratic losses. It demonstrates that the advantage of lazy algorithms is proportional to the difficulty of linear optimization. For linear losses, remarkably LOCG needed no oracle calls after one third of the time.

cache hit rate: 99.6%

cache hit rate: 97.5%
Figure 5: Maximum cut problem: cut polytope for a 28-node graph. As for the smaller problem, this also illustrates the advantage of lazy algorithms when linear optimization is expensive. Again, LOCG needed no oracle calls after a small initial amount of time.

cache hit rate: 99.7%
cache hit rate: 98.6%
Figure 6: Small QUBO instance. For quadratic losses, both algorithms converged very fast while LOCG still has a significant edge. For linear losses, LOCG is noticeably faster than OCG.

cache hit rate: 99.6%
cache hit rate: 98.5%
Figure 7: Large QUBO instance. Both algorithms converge fast to the optimum. Interestingly, LOCG only performs 4 LP calls.
Figure 8: Path polytope. Similar convergence rate in the number of iterations, but significant difference in terms of wall-clock time.
Figure 9: An e1133–2 instance. All algorithms performed comparably, due to fast convergence in this case.
Figure 10: An air04 instance. LOCG clearly outperforms OCG, as the provided time was not enough for OCG to complete the necessary number of iterations for entering reasonable convergence.
Figure 11: Spanning tree on a 10-node graph. LOCG makes significantly more iterations, few oracle calls, and converges faster in wall-clock time.
Figure 12: Spanning tree on a 25-node graph. On the left, early fluctuation can be observed, bearing no consequence for later convergence rate. OCG did not get past this early stage. In both cases LOCG converges significantly faster.
Figure 13: TSP polytope over 11 nodes (left) and 16 nodes (right). In both cases LCG is significantly faster in wall-clock time. Note that after using cache-only iterates, the number of oracle calls is increasing again at around iteration 8000 in both cases. This is due to LCG having effectively converged and (unnecessarily) reproving optimality in each iteration from there on via negative oracle calls, that use the underlying LP oracle. One could simply stop the algorithm at that point once a given target accuracy is reached (see also Corollary 5.3).
Figure 14: Maxcut problem: cut polytope over a graph on 23 nodes (left) and over 28 nodes (right). In both instances LCG performs significantly better than CG. After an initial phase of positive calls to fill up the cache, on both instances LCG only uses cached points until the function value is almost optimal (around 16000 iterations on the left and 200 iterations on the right). After that mostly negative oracle calls certify optimality, which could be avoided with a suitable stopping criteria.
Figure 15: Spanning tree on a 10 node graph on the left and a 15 node graph on the right. In both cases CG could only complete a few iterations, on the larger instance the last iteration took much longer than the time limit and was therefore removed.
Figure 16: An eil33-2 and an air04 instance. LPCG converges very fast, making millions of iterations with a relatively few oracle calls, while PCG completed only comparably few iterations due to the time-consuming oracle calls. This clearly illustrates the advantage of lazy methods when the cost of linear optimization is non-negligible. On the left, when reaching ε-optimality, LPCG performs many (negative) oracle calls to (re-)prove optimality; at that point one might opt for stopping the algorithm. On the right LPCG needed a rather long time for the initial bound tightening of Φ_0, before converging significantly faster than PCG.
Figure 17: MIPLIB instances with quadratic loss functions. For the eilB101 instance, LPCG spent most of the tightening Φ_0, after which it converged very fast, while PCG was unable to complete a single iteration even solving the problem only approximately. For the nw04 instance LPCG needed no more oracle calls after an initial phase, while significantly outperforming PCG.
Figure 18: MIPLIB instances disctom and m100n500k4r1. After very fast convergence, there is a huge increase in the number of oracle calls for the lazy algorithm LPCG due to reaching ε-optimality as explained before. On the right the initial bound tightening for Φ_0 took a considerable amount of time but then convergence is almost instantaneous.
Figure 19: Performance gain due to caching and early termination for stochastic optimization over a maximum cut problem with linear losses. The red line is the OCG baseline, the green one is the lazy variant using only early termination, and the blue one uses caching and early termination. Left: loss vs. wall-clock time. Right: loss vs. total time spent in oracle calls. Time limit was 7200 seconds. Caching allows for a significant improvement in loss reduction in wall-clock time. The effect is even more obvious in oracle time as caching cuts out a large number of oracle calls.
Figure 20: Impact of the oracle approximation parameter K depicted for the Lazy CG algorithm. We can see that increasing K leads to a deterioration of progress in iterations but improves performance in wall-clock time. The behavior is similar for other algorithms.
Figure 21: Comparison of the ‘textbook’ variant of the Lazy CG algorithm (Algorithm 2) vs. the Parameter-free Lazy CG (Algorithm 7) depicted for two sample instances to demonstrate behavior. The parameter-free variant usually has a slightly improved behavior in terms of iterations and a significantly improved behavior in terms of wall-clock performance. In particular, the parameter-free variant can execute significantly more oracle calls, due to the Φ-halving strategy and the associated bounded number of negative calls (see Theorem 5.3).
References

T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. *Operations Research Letters*, 34(4):361–372, 2006. doi: 10.1016/j.orl.2005.07.009. URL http://www.zib.de/Publications/abstracts/ZR-05-28/.

J.-Y. Audibert, S. Bubeck, and G. Lugosi. Regret in online combinatorial optimization. *Mathematics of Operations Research*, 39(1):31–45, 2013.

P. L. Bodic, J. W. Pavelka, M. E. Pfetsch, and S. Pokutta. Solving MIPs via scaling-based augmentation. *arXiv preprint arXiv:1509.03206*, 2015.

A. Cohen and T. Hazan. Following the perturbed leader for online structured learning. In *Proceedings of the 32nd International Conference on Machine Learning (ICML-15)*, pages 1034–1042, 2015.

S. Dash. A note on QUBO instances defined on Chimera graphs. *preprint arXiv:1306.1202*, 2013.

A. Frank and É. Tardos. An application of simultaneous Diophantine approximation in combinatorial optimization. *Combinatorica*, 7(1):49–65, 1987.

M. Frank and P. Wolfe. An algorithm for quadratic programming. *Naval research logistics quarterly*, 3(1-2):95–110, 1956.

R. M. Freund and P. Grigas. New analysis and results for the frank–wolfe method. *Mathematical Programming*, 155(1):199–230, 2016. ISSN 1436-4646. doi: 10.1007/s10107-014-0841-6. URL http://dx.doi.org/10.1007/s10107-014-0841-6.

D. Garber and E. Hazan. A linearly convergent conditional gradient algorithm with applications to online and stochastic optimization. *arXiv preprint arXiv:1301.4666*, 2013.

D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes. *arXiv preprint, arXiv:1605.06492v1*, May 2016.

M. Grötschel and L. Lovász. Combinatorial optimization: A survey, 1993.

S. Gupta, M. Goemans, and P. Jaillet. Solving combinatorial games using products, projections and lexicographically optimal bases. *arXiv preprint arXiv:1603.00522*, 2016.

Gurobi Optimization. Gurobi optimizer reference manual version 6.5, 2016. URL https://www.gurobi.com/documentation/6.5/refman/.

E. Hazan. Introduction to online convex optimization. *Foundations and Trends in Optimization*, 2(3–4):157–325, 2016. doi: 10.1561/2400000013. URL http://ocobook.cs.princeton.edu/.

E. Hazan and S. Kale. Projection-free online learning. *arXiv preprint arXiv:1206.4657*, 2012.

M. Jaggi. Revisiting Frank–Wolfe: Projection-free sparse convex optimization. In *Proceedings of the 30th International Conference on Machine Learning (ICML-13)*, pages 427–435, 2013.

T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural svms. *Machine Learning*, 77(1):27–59, 2009.
A. Kalai and S. Vempala. Efficient algorithms for online decision problems. *Journal of Computer and System Sciences*, 71(3):291–307, 2005.

T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. *Mathematical Programming Computation*, 3(2):103–163, 2011. doi: 10.1007/s12532-011-0025-9. URL http://mpc.zib.de/index.php/MPC/article/view/56/28.

S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank–Wolfe optimization variants. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 28, pages 496–504. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate frank-wolfe optimization for structural svms. In *ICML 2013 International Conference on Machine Learning*, pages 53–61, 2013.

G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. *Optimization-Online preprint (4605)*, 2014.

E. S. Levitin and B. T. Polyak. Constrained minimization methods. *USSR Computational mathematics and mathematical physics*, 6(5):1–50, 1966.

G. Neu and G. Bartók. An efficient algorithm for learning with semi-bandit feedback. In *Algorithmic Learning Theory*, pages 234–248. Springer, 2013.

T. Oertel, C. Wagner, and R. Weismantel. Integer convex minimization by mixed integer linear optimization. *Oper. Res. Lett.*, 42(6-7):424–428, 2014.

A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. K. Dokania, and S. Lacoste-Julien. Minding the gaps for block frank-wolfe optimization of structured svms. *ICML 2016 International Conference on Machine Learning / arXiv preprint arXiv:1605.09346*, 2016.

A. S. Schulz and R. Weismantel. The complexity of generic primal algorithms for solving general integer programs. *Mathematics of Operations Research*, 27(4):681–692, 2002.

A. S. Schulz, R. Weismantel, and G. M. Ziegler. 0/1-integer programming: Optimization and augmentation are equivalent. In *Algorithms – ESA ’95, Proceedings*, pages 473–483, 1995.

N. Shah, V. Kolmogorov, and C. H. Lampert. A multi-plane block-coordinate frank-wolfe algorithm for training structural svms with a costly max-oracle. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2737–2745, 2015.