Abstract

Judicious partitioning problems on graphs ask for partitions that bound several quantities simultaneously, which have received a lot of attentions lately. Scott asked the following natural question: What is the maximum constant c_d such that every directed graph D with m arcs and minimum outdegree d admits a bipartition $V(D) = V_1 \cup V_2$ satisfying $\min\{e(V_1, V_2), e(V_2, V_1)\} \geq c_d m$? Here, for $i = 1, 2$, $e(V_i, V_{3-i})$ denotes the number of arcs in D from V_i to V_{3-i}. Lee, Loh, and Sudakov conjectured that every directed graph D with m arcs and minimum outdegree at least $d \geq 2$ admits a bipartition $V(D) = V_1 \cup V_2$ such that

$$\min\{e(V_1, V_2), e(V_2, V_1)\} \geq \left(\frac{d-1}{2(2d-1)} + o(1)\right)m.$$

We show that this conjecture holds under the additional natural condition that the minimum indegree is also at least d.

Keywords: directed graph, partition, outdegree, indegree, tight component

1 Introduction

The Max-Cut problem asks for a cut with maximum weight in a weighted graph, which has been studied extensively from both combinatorial and computational perspectives. It is NP-hard even when restricted to the class of triangle-free cubic graphs [19]. A simple calculation shows that every graph with m edges has a cut with at least $m/2$ edges. Answering a question of Erdős, Edwards [7,8] improved this lower bound to $m/2 + (\sqrt{2m + 1}/4 - 1/2)/4$, which is tight for complete graphs with

*Partially supported by NSFC grant 11671087
†Partially supported by NSF grant DMS-1600738 and the Hundred Talents Program of Fujian Province
‡Partially supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014JL001) and the Excellent Young Scholars Research Fund of Shandong Normal University of China.
Conjecture 1.1. Loh, and Sudakov [14] studied Scott’s question and made the following:

For a directed graph (digraph for short) D and $S, T \subseteq V(D)$, we use $e(S, T)$ to denote the number of arcs of D directed from S to T. A directed (unweighted) version of the Max-Cut problem is to find a partition $V(D) = V_1 \cup V_2$ of a given digraph D that maximizes $e(V_1, V_2)$. It is easy to see from the above bound of Edwards that every digraph D with m arcs has a partition $V(D) = V_1 \cup V_2$ with $e(V_1, V_2) \geq m/4 + (\sqrt{2m + 1/4} - 1/2)/8$, and that any regular orientation of a complete graph of odd order shows that this bound is tight. Alon, Bollobás, Gyárfás, Lehel, and Scott [2] considered partitions of acyclic digraphs and proved that every acyclic digraph D with m arcs has a partition $V(D) = V_1 \cup V_2$ such that $e(V_1, V_2) \geq m/4 + \Omega(m^{2/3})$. For positive integers k and l, let $\mathcal{D}(k, l)$ denote the family of digraphs such that every vertex has indegree at most k or outdegree at most l. It is proved in [2] that every digraph $D \in \mathcal{D}(k, l)$ with m arcs has a partition $V(D) = V_1 \cup V_2$ such that $e(V_1, V_2) \geq (k + l + 2)m/(4k + 4l + 6)$. For digraphs $D \in \mathcal{D}(1, 1)$ with m arcs, Chen, Gu, and Li [6] showed that D has a partition $V(D) = V_1 \cup V_2$ such that $e(V_1, V_2) \geq 3(m - 1)/8$.

In practice, one often needs to find a partition of a given graph or digraph that simultaneously bounds several quantities. Such problems are called Judicious Partitioning Problems by Bollobás and Scott [5]. In [17], Scott ask the following natural question: What is the maximum constant c_d such that every digraph D with m arcs and minimum outdegree d admits a bipartition $V(D) = V_1 \cup V_2$ satisfying

$$\min\{e(V_1, V_2), e(V_2, V_1)\} \geq c_d m?$$

For $d = 1$, the graph, obtained from $K_{1,n-1}$ by adding a single edge inside the part of size $n - 1$, admits an orientation in which the minimum outdegree is 1 and $\min\{e(V_1, V_2), e(V_2, V_1)\} \leq 1$ for every partition $V(D) = V_1 \cup V_2$. Hence, $c_1 = 0$. Lee, Loh, and Sudakov [14] studied Scott’s question and made the following

Conjecture 1.1 (Lee, Loh, and Sudakov [14]). Let d be an integer satisfying $d \geq 2$. Every digraph D with m arcs and minimum outdegree at least d admits a bipartition $V(D) = V_1 \cup V_2$ with

$$\min\{e(V_1, V_2), e(V_2, V_1)\} \geq \left(\frac{d - 1}{2(2d - 1)} + o(1)\right)m.$$

In the same paper, Lee, Loh, and Sudakov verify Conjecture [14] for $d = 2, 3$, and noted that their method is not adequate for $d \geq 4$.

It is not clear to us whether or not the minimum outdegree condition alone is sufficient for Conjecture [14] with large d. However, we show in this paper that Conjecture [14] holds under the natural (additional) assumption that the minimum indegree of D is at least d.

odd order. Moreover, for certain range of m, Alon [1] gave an additive improvement of order $m^{1/4}$. For special classes of graphs, such as subcubic graphs [18,20], the main term in the Edwards’ bound may be improved.
Theorem 1.2. Let D be a digraph with m arcs and assume that both the minimum outdegree and the minimum indegree of D are at least $d \geq 2$. Then D admits a bipartition $V(D) = V_1 \cup V_2$ with

$$\min\{e(V_1, V_2), e(V_2, V_1)\} \geq \left(\frac{d - 1}{2(d-1)} + o(1)\right)m.$$

In the remainder of this section, we describe notation and terminology used in the proof of Theorem 1.2. In Section 2, we collect previous results (as well as a concentration inequality) that we will need. The proof of Theorem 1.2 will be given in Section 3. In Section 4, we offer some concluding remarks.

All digraphs considered in this paper are finite with no loops and no parallel arcs. For a digraph D, we denote by $V(D)$ and $A(D)$ the vertex set and the arc set of D, respectively. Let $|D| := |V(D)|$ be the order of D, and $e(D) := |A(D)|$ be the size of D. The underlying graph of D is obtained from D by ignoring arc orientations and removing redundant parallel edges.

Given two vertices x, y in a digraph D, we write xy for the arc directed from x to y. Let $N_D^+(x) := \{ z : xz \in A(D) \}$ and $N_D^-(x) := \{ z : zx \in A(D) \}$. Then $d_D^+(x) := |N_D^+(x)|$ and $d_D^-(x) := |N_D^-(x)|$ are the outdegree and indegree of x, respectively. The minimum outdegree of D is $\delta^+(D) := \min\{d_D^+(x) : x \in V(D)\}$ and the minimum indegree of D is $\delta^-(D) := \min\{d_D^-(x) : x \in V(D)\}$. Let $\delta^0(D) := \min\{\delta^+(D), \delta^-(D)\}$. The degree of $x \in V(D)$ is defined as $d_D(x) := d_D^+(x) + d_D^-(x)$. We use $\delta(D) := \min\{d_D(x) : x \in V(D)\}$ and $\Delta(D) := \max\{d_D(x) : x \in V(D)\}$ to denote the minimum degree and maximum degree of D, respectively.

Let D be a digraph. For $X \subseteq V(D)$, the subgraph of D induced by X is denoted by $D[X]$. Let $e_D(X)$ denote the number of arcs in $D[X]$, and let $D - X$ denote the digraph obtained from D by deleting X and all arcs incident with X.

Throughout this paper, we drop the reference to D in the above notations if there is no danger of confusion.

2 Lemmas

In this section, we list previous results needed in our proof of Theorem 1.2. Lee, Loh, and Sudakov [13] introduced the notion of a tight component in a graph when analyzing bisections of graphs. A connected graph T is tight if

- for every vertex $v \in V(T)$, $T - v$ contains a perfect matching, and

- for every vertex $v \in V(T)$ and every perfect matching M of $T - v$, no edge in M has exactly one end adjacent to v.

Note that if T is tight, then the order of T is odd and each vertex in T has even degree. Lu, Wang, and Yu [15] gave the following characterization of tight graphs.

Lemma 2.1 (Lu, Wang, and Yu [15]). A connected graph G is tight iff every block of G is an odd clique.
The following result bounds the number of tight components in a graph, which is an easy consequence of Lemma 2.1.

Lemma 2.2 (Lee, Loh, and Sudakov [13]). For each integer \(i \geq 0 \), let \(d_i \) denote the number of vertices with degree \(i \) in a graph \(G \). Then the number of tight components \(\tau \) of \(G \) satisfies

\[
\tau \leq \frac{d_0}{1} + \frac{d_2}{3} + \frac{d_4}{5} + \cdots .
\]

We also need a result from [11], which provides a bound on \(d_0/1+d_2/3+\cdots \) (and, hence, on \(\tau \)) under additional constraints.

Lemma 2.3 (Hou and Wu [11]). Let \(n, \rho, \alpha, \delta \) be fixed nonnegative integers with \(\delta - \alpha \geq 1 \), and let \(d_i \) be a real number with \(0 \leq d_i \leq n \) for \(i \in \{0, 1, \cdots, n-1\} \) such that

\[
\sum_{i=0}^{n-1} d_i \leq n \quad \text{and} \quad (\delta - \alpha)d_0 + (\delta - \alpha - 1)d_1 + \cdots + d_{\delta - \alpha - 1} \leq \rho .
\]

Then

\[
\frac{d_0}{1} + \frac{d_2}{3} + \cdots \leq \frac{n + \rho}{\delta - \alpha + 1} .
\]

We now turn to lemmas on partitions for digraphs, first of which concerns dense digraphs.

Lemma 2.4 (Lee, Loh, and Sudakov [13]). Let \(D \) be a digraph with \(n \) vertices and \(m \) arcs. For any \(\varepsilon > 0 \), if \(m \geq 8n/\varepsilon^2 \) or \(\Delta(D) \leq \varepsilon^2 m/4 \), then \(D \) admits a bipartition \(V(D) = V_1 \cup V_2 \) with \(\min\{e(V_1, V_2), e(V_2, V_1)\} \geq m/4 - \varepsilon m \).

One approach for finding a “good” bipartition of a digraph \(D \) is to first partition \(V(D) \) into two sets \(X \) and \(Y \) (with \(X \) consisting of certain high degree vertices), then partition \(X \) into two sets \(X_1 \) and \(X_2 \) with certain property, and finally apply a randomized algorithm to partition \(Y \). The following lemma will be used to identify a useful partition of \(X \).

Lemma 2.5 (Hou, Wu, and Yan [10]). Let \(D \) be a digraph and \(V(D) = X \cup Y \) be a partition of \(D \) with \(e(X) = 0 \). For any given partition \(X = X_1 \cup X_2 \), define its gap to be

\[
\theta(X_1, X_2) = (e(X_1, Y) + e(Y, X_2)) - (e(X_2, Y) + e(Y, X_1)) .
\]

If \(X_1 \cup X_2 \) is a partition of \(X \) which minimizes \(|\theta(X_1, X_2)| \), then \(|\theta(X_1, X_2)| \leq |Y| \).

Note that \(|\theta(X_1, X_2)| \) is the absolute value of \(\theta(X_1, X_2) \), while \(|Y| \) is the cardinality of \(Y \). We remark that \(\theta(X_1, X_2) \) was introduced by Lee, Loh and Sudakov [14].

The next lemma allows us to extend a partial bipartition \(X_1, X_2 \) of a digraph to a “good” bipartition of the entire digraph. This will be used several times in the proof of Theorem 1.2.
Lemma 2.6 (Lee, Loh, and Sudakov [14]). For any real constants $C, \varepsilon > 0$, there exist $\gamma, n_0 > 0$ for which the following holds. Let D be a digraph with $n \geq n_0$ vertices and at most Cn arcs. Suppose $X \subseteq V(D)$ is a set of at most γn vertices which have been partitioned into $X_1 \cup X_2$. Let $Y = V(D) \setminus X$ and τ be the number of tight components in $G[Y]$, where G is the underlying graph of D. If every vertex in Y has degree at most γn in G, then there is a bipartition $V(D) = V_1 \cup V_2$ with $X_i \subseteq V_i$ for $i = 1, 2$ such that

$$e(V_1, V_2) \geq e(X_1, X_2) + \frac{e(X_1, Y) + e(Y, X_2)}{2} + \frac{e(Y)}{4} + \frac{n - \tau}{8} - \varepsilon n,$$

$$e(V_2, V_1) \geq e(X_2, X_1) + \frac{e(X_2, Y) + e(Y, X_1)}{2} + \frac{e(Y)}{4} + \frac{n - \tau}{8} - \varepsilon n.$$

For the step to partition Y, we will need the following version of the Azuma-Hoeffding inequality [3, 9], see Corollary 2.27 in Janson, Łuczak, and Ruciński [12].

Lemma 2.7 (Azuma [3], Hoeffding [9]). Let Z_1, \ldots, Z_n be independent random variables taking values in $\{1, \ldots, k\}$, let $Z := (Z_1, \ldots, Z_n)$, and let $f : \{1, \ldots, k\}^n \to \mathbb{N}$ such that $|f(Y) - f(Y')| \leq c_i$ for any $Y, Y' \in \{1, \ldots, k\}^n$ which differ only in the ith coordinate. Then for any $z > 0$,

$$\mathbb{P}(f(Z) \geq \mathbb{E}(f(Z)) + z) \leq \exp \left(-\frac{z^2}{2 \sum_{i=1}^n c_i^2} \right),$$

$$\mathbb{P}(f(Z) \leq \mathbb{E}(f(Z)) - z) \leq \exp \left(-\frac{z^2}{2 \sum_{i=1}^n c_i^2} \right).$$

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Our approach is similar to that used in Lee, Loh, and Sudakov [14], which was used first by Bollobás and Scott [4] and again by Ma, Yen, and Yu [16]. However, additional ideas are needed to make this approach work.

Let $d \geq 2$ be an integer, let D be an n-vertex digraph with m arcs, and assume $\delta^0(D) := d \geq 2$ (i.e., both minimum outdegree $\delta^+(D)$ and minimum indegree $\delta^-(D)$ are at least d). Then, since $\delta^+(D) \geq d$,

$$m = \sum_{v \in V(D)} d^+(v) \geq dn.$$

We need to show that D admits a bipartition $V(D) = V_1 \cup V_2$ with

$$\min\{e(V_1, V_2), e(V_2, V_1)\} \geq \left(\frac{d - 1}{2(2d - 1)} + o(1) \right)m,$$

and we will reduce this to proving (3).
We may assume that
\[d \geq 4, \]
as Lee, Loh, and Sudakov [14] showed that, for \(d \leq 3 \), such a bipartition exists. We may also assume that
\[m \leq 128(2d - 1)^2 n \]
and \(\Delta(D) \geq \frac{m}{64(2d - 1)^2} \), (1)
for, otherwise, applying Lemma 2.4 with \(\varepsilon = \frac{1}{8d - 4} \) gives a partition \(V(D) = V_1 \cup V_2 \) such that
\[\min\{e(V_1, V_2), e(V_2, V_1)\} \geq \left(\frac{1}{4} - \frac{1}{8d - 4} \right) m = \frac{d - 1}{2(2d - 1)} m. \]
Thus, we may assume that
\[n \text{ is sufficiently large.} \]

For clarity of presentation, we divide the remainder of the proof into nine steps.

Step 1. Identifying the set \(X \), and partitioning \(X \) to \(X_1 \cup X_2 \).

Let \(X \) be the set of vertices of \(D \) with degree at least \(\frac{n^3}{4} \), and let \(Y = V(D) - X \) and \(n' := |Y| \). Then
\[2m \geq \sum_{v \in X} d(v) \geq |X|n^{3/4}. \]
It follows from (1) that
\[|X| \leq 256(2d - 1)^2 n^{1/4} = O(n^{1/4}). \]
Thus, \(e(X) \leq |X|^2 = O(n^{1/2}) \). Therefore, for the sake of simplicity, we remove all the arcs of \(D \) within \(X \) and update \(m \) to be the new total number of arcs in the digraph \(D \). In terms of this new \(m \), it suffices to show that for any sufficiently small real \(\varepsilon > 0 \), \(D \) admits a bipartition \(V(D) = V_1 \cup V_2 \) with
\[\min\{e(V_1, V_2), e(V_2, V_1)\} \geq \left(\frac{d - 1}{2(2d - 1)} - \varepsilon \right) m. \]

Let \(m_1 = e(X, Y) + e(Y, X) \) and \(m_2 = e(Y) \). Then \(m = m_1 + m_2 \). Given a partition \(X = X_1 \cup X_2 \), let
\[\theta(X_1, X_2) = (e(X_1, Y) + e(Y, X_2)) - (e(X_2, Y) + e(Y, X_1)) \]
to be its gap.

We choose the partition \(X_1, X_2 \) such that
\[|\theta(X_1, X_2)| \text{ is minimum.} \]
By the symmetry between \(X_1 \) and \(X_2 \), we may assume
\[\theta(X_1, X_2) \geq 0. \]
Throughout the proof, we write \(\theta \colonequals \theta(X_1, X_2) \), unless it concerns a different partition of \(X \).

Step 2. Extending \(X_1, X_2 \) to a partition \(W_1, W_2 \) of \(V(D) \).

Let \(G \) be the underlying graph of \(D \), and let \(\tau \) be the number of tight components in \(G[Y] \). As \(n \) is sufficiently large, we may apply Lemma 2.6 and conclude that \(D \) admits a bipartition \(V(D) = W_1 \cup W_2 \) such that \(X_i \subseteq W_i \) for \(i = 1, 2 \), and

\[
\min\{e(W_1, W_2), e(W_2, W_1)\} \\
\geq \frac{1}{2} \min\{e(X_1, Y) + e(Y, X_2), e(X_2, Y) + e(Y, X_1)\} + \frac{e(Y)}{4} + \frac{n - \tau}{8} - \varepsilon n \\
= \frac{m_1 - \theta}{4} + \frac{m_2}{4} + \frac{n - \tau}{8} - \varepsilon n \\
= \frac{m - \theta}{4} + \frac{n - \tau}{8} - \varepsilon n \\
\geq \left(\frac{d - 1}{2(2d - 1)} - \varepsilon \right) m + \frac{1}{4} \left(\frac{n}{2} + \frac{m}{2d - 1} - \theta - \frac{\tau}{2} \right) \quad \text{(since } m \geq dn\text{).}
\]

Thus, to prove Theorem 1.2 it suffices to show

\[
\frac{n}{2} + \frac{m}{2d - 1} \geq \theta + \frac{\tau}{2} \quad \text{(3)}
\]

Step 3. Bounding \(\theta, m \text{ and } m_2 \).

Since \(\tau \leq n \), (3) holds if \(\theta \leq \frac{m}{2d - 1} \). Thus, we may assume

\[
\theta > \frac{m}{2d - 1} \quad \text{(4)}
\]

Therefore, since \(\theta \leq n' = |Y| \) (by Lemma 2.5),

\[
dn \leq m < (2d - 1)n'. \quad \text{(5)}
\]

Note that we may assume

\[
m_2 > \frac{d + 1}{2(2d - 1)} m. \quad \text{(6)}
\]

For, otherwise, taking the sum of outdegrees (respectively, indegrees) of all vertices in \(Y \), we have

\[
\min\{e(X, Y), e(Y, X)\} = \min\left\{ \sum_{v \in Y} d^+(v), \sum_{v \in Y} d^-(v) \right\} - m_2 \geq dn' - m_2 > \frac{d - 1}{2(2d - 1)} m,
\]

where the last inequality holds since \(m < (2d - 1)n' \) (by (5)). Thus, \(V(D) = X \cup Y \) gives the desired partition of \(D \).

Step 4. Analyzing small tight components.

We need to analyze tight components with small order to obtain better bounds on \(m \) and \(\tau \). For \(i \geq 1 \), let \(T_i \) be the collections of tight components of order \(i \) in
and each $T \subseteq \mathcal{T}$. Note that by Lemma 2.1 each $T \in \mathcal{T}_1$ is an isolated vertex in $G[Y]$ and each $T \in \mathcal{T}_3$ is a triangle in $G[Y]$.

We bound the number of arcs between A_i and X in both directions for $i = 1, 3$. For each $x \in A_1$, $\min\{e(x, X), e(X, x)\} \geq d$ since $\delta^0(D) \geq d$. Thus,

$$\min\{e(A_1, X), e(X, A_1)\} \geq d|A_1|.$$ \hspace{1cm} (7)

For each triangle $T \in \mathcal{T}_3$, $D[V(T)]$ has at most 6 arcs as D has no parallel arcs. Hence,

$$\min\{e(V(T), X), e(X, V(T))\} \geq (d - 2)|T|.$$ \hspace{1cm} (8)

Step 5. Better bounds on τ and m.

First, we find a good partition of $D' := D[Y] - (A_1 \cup A_3)$. Let $V(D') = U_1 \cup U_2$ be a (random) partition of $V(D')$ obtained by placing each $v \in V(D')$ into U_1 or U_2, independently, with probability $1/2$. For each arc $e = uv \in A(D')$, let I_e be the indicator random variable of the event that $u \in U_1$ and $v \in U_2$. Then, by the linearity of expectation,

$$\mathbb{E}[e_{D'}(U_1, U_2)] = \sum_{e \in A(D')} \mathbb{E}[I_e] = \sum_{e \in A(D')} \left(\mathbb{P}[u \in U_1] \mathbb{P}[v \in U_2]\right) = \frac{1}{4} e(D').$$

Similarly,

$$\mathbb{E}[e_{D'}(U_2, U_1)] = \frac{1}{4} e(D').$$

Note that changing the placement of each $v \in V(D')$ cannot affect $e_{D'}(U_1, U_2)$ or $e_{D'}(U_2, U_1)$ by more than $d_{D'}(v) \leq n^{3/4}$; so we may apply Lemma 2.7. Note

$$L := \sum_{v \in V(D')} d_{D'}^2(v) \leq n^{3/4} \sum_{v \in V(D')} d_{D'}(v) = 2n^{3/4} e(D').$$

Let $z = 2n^{3/8} (e(D'))^{1/2}$. Then by Lemma 2.7

$$\mathbb{P}\left(e_{D'}(U_1, U_2) \leq \mathbb{E}[e_{D'}(U_1, U_2)] - z\right) \leq \exp\left(-\frac{z^2}{2L}\right) = e^{-1},$$

8
and (by symmetry)
\[\mathbb{P}(e_{D'}(U_2, U_1) \leq \mathbb{E}[e_{D'}(U_2, U_1)] - z) \leq e^{-1}. \]

Thus, with positive probability, there exists a partition \(V(D') = U_1 \cup U_2 \) such that
\[\min\{e_{D'}(U_1, U_2), e_{D'}(U_2, U_1)\} \geq \frac{1}{4}e(D') - 2n^{3/8}(e(D'))^{1/2} = \frac{1}{4}e(D') - O(m^{7/8}), \quad (9) \]
where the equality holds because of (11).

We now derive better bounds on \(m \) and \(\tau \), by working with the following partition of \(D \): \(V_1 = U_1 \cup A_1 \cup A_3 \) and \(V_2 = X \cup U_2 \). Note that \(e(A_i, V(D')) = e(V(D'), A_i) = 0 \) for \(i = 1, 3 \). Also note that, for each \(T \in \mathcal{T}_3 \), \(e(D|V(T)) \leq 6 \); so \(e(D') \geq m_2 - 2|A_3| \).
Hence,
\[
e(V_1, V_2) \geq e(A_1, X) + e(A_3, X) + e_{D'}(U_1, U_2)
\geq d|A_1| + (d-2)|A_3| + \frac{1}{4}e(D') - O(m^{7/8}) \quad \text{(by (7), (8) and (9))}
\geq \frac{1}{4}m_2 + d|A_1| + \left(d - \frac{5}{2}\right)|A_3| - O(m^{7/8}) \quad \text{(since } e(D') \geq m_2 - 2|A_3|). \]
Similarly,
\[
e(V_2, V_1) \geq e(X, A_1) + e(X, A_3) + e_{D'}(U_2, U_1)
\geq \frac{1}{4}m_2 + d|A_1| + \left(d - \frac{5}{2}\right)|A_3| - O(m^{7/8}). \]

We may assume that
\[
\frac{1}{4}m_2 + d|A_1| + \left(d - \frac{5}{2}\right)|A_3| \leq \frac{d - 1}{2(2d-1)} m, \quad (10)
\]
since, otherwise, \(V(D) = V_1 \cup V_2 \) gives the desired bipartition for \(D \) (as \(n \) and, hence, \(m \) are sufficiently large). Thus,
\[
|A_1| \leq \frac{1}{d}\left(\frac{d - 1}{2(2d-1)} m - \frac{1}{4}m_2 - \left(d - \frac{5}{2}\right)|A_3|\right) < \frac{3d - 5}{8d(2d - 1)} m - \left(1 - \frac{5}{2d}\right)|A_3|,
\]
since \(m_2 > \frac{d+1}{2(2d-1)} m \) (by (8)). Therefore,
\[
\tau \leq |A_1| + \frac{|A_2|}{3} + \frac{n' - |A_1| - |A_2|}{5}
= \frac{n'}{5} + \frac{4}{5}|A_1| + \frac{2}{15}|A_3|
\leq \frac{n'}{5} + \frac{4}{5}\left(\frac{3d - 5}{8d(2d - 1)} m - \left(1 - \frac{5}{2d}\right)|A_3|\right) + \frac{2}{15}|A_3|
\]
9
\[
\begin{align*}
&= \frac{1}{5}n' + \frac{3d - 5}{10d(2d - 1)}m - \left(\frac{2}{3} - \frac{2}{d}\right)|A_3| \\
&< \frac{1}{5}n' + \frac{3d - 5}{10d(2d - 1)}m \quad \text{(as } d \geq 4). \tag{11}
\end{align*}
\]

Then
\[
\begin{align*}
\frac{n}{2} + \frac{m}{2d - 1} - \theta - \frac{\tau}{2} \\
\geq \frac{n'}{2} + \frac{m}{2d - 1} - \theta - \frac{1}{2} \left(\frac{1}{5}n' + \frac{3d - 5}{10d(2d - 1)}m\right) & \quad \text{(by (11))} \\
= \frac{2}{5}n' + \frac{17d + 5}{20d(2d - 1)}m - \theta \\
\geq \frac{17d + 5}{20d(2d - 1)}m - \frac{3}{5}n' & \quad \text{(since } \theta \leq n').
\end{align*}
\]

Thus, if \(m \geq \frac{12d(2d - 1)}{17d + 5}n' \) then (3) holds and, hence, \(W_1, W_2 \) give the desired partition for \(D \). So we may assume that

\[
m < \frac{12(2d - 1)}{17d + 5}dn'. \tag{12}
\]

Step 6. Bounding \(m_1 \).

To establish an upper bound on \(m_1 \), we sum up the outdegrees (respectively, indegrees) of all vertices in \(Y \). Thus, by \(\delta^0(D) \geq d, \min\{e(X, Y), e(Y, X)\} \geq dn' - m_2 \); so by (12),

\[
\min\{e(X, Y), e(Y, X)\} \geq \frac{17d + 5}{12(2d - 1)}m - m_2.
\]

If \(m_2 \leq \frac{14d + 11}{12(2d - 1)}m \) then

\[
\min\{e(X, Y), e(Y, X)\} \geq \frac{d - 1}{2(2d - 1)}m,
\]

and \(X, Y \) form the desired partition for \(D \).

So we may assume \(m_2 > \frac{14d + 11}{12(2d - 1)}m \). Then by (12), we have

\[
m_1 = m - m_2 < \frac{13d - 23}{12(2d - 1)}m < \frac{13d - 23}{17d + 5}dn'. \tag{13}
\]

Step 7. Bounding \(\alpha \), the number of huge vertices.

For a vertex \(v \in X \), let \(s^-(v) = d^-(v) - d^+(v), s^+(v) = d^+(v) - d^-(v) \), and \(s(v) = \max\{s^+(v), s^-(v)\} \). As in \([4]\), we call a vertex \(v \in X \) huge if \(s(v) \geq \theta \). For the partition \(X = X_1 \cup X_2 \) (previously chosen to minimize \(\theta \)) and a vertex \(v \in X \), \(v \) is forward if either \(v \in X_1 \) and \(s^+(v) > 0 \), or \(v \in X_2 \) and \(s^-(v) > 0 \). Since \(\theta > 0 \) (by \([1]\)), \(X \) has at least one forward vertex.
We claim that all forward vertices in X are huge. For, let v be a forward vertex in X, and let the partition $X_1' \cup X_2'$ of X be obtained from $X_1 \cup X_2$ by switching the side of v. Then

$$\theta(X_1', X_2') = (e(X_1', Y) + e(Y, X_2')) - (e(X_2', Y) + e(Y, X_1'))$$
$$= (e(X_1, Y) + e(Y, X_2) - s(v)) - (e(X_2, Y) + e(Y, X_1) + s(v))$$
$$= \theta - 2s(v).$$

Since $X = X_1 \cup X_2$ is a partition of X minimizing $\theta = |\theta(X_1, X_2)|$, $|\theta(X_1', X_2')| \geq \theta$. Therefore, $\theta - 2s(v) \leq -\theta$; so $s(v) \geq \theta$ and, hence, v is huge.

Let X' be the set of huge vertices in X and $X'' = X - X'$. Let $\alpha := |X'|$ and $\rho := \sum_{v \in X''} d(v)$. Then $\alpha \geq 1$, and

$$m = m_1 = \sum_{v \in X} d(v) = \sum_{v \in X'} d(v) + \sum_{v \in X''} d(v) \geq \alpha \theta + \rho. \quad (14)$$

Since $\theta > m/(2d - 1)$ (by (11)), it follows from (13) and (14) that

$$\frac{\alpha}{2d - 1} m \leq \frac{13d - 23}{12(2d - 1)} m,$$

which implies

$$1 - \frac{\alpha}{2(2d - 1)} > 0. \quad (15)$$

To derive a better upper bound on α, we sum up the degrees of all vertices in Y. So

$$2dn' \leq \sum_{v \in Y} d(v) = e(X, Y) + e(Y, X) + 2e(Y) = m_1 + 2m_2,$$

which, together with (14), gives

$$m = m_1 + m_2 \geq \frac{2dn' + m_1}{2} \geq \frac{2dn' + \alpha \theta + \rho}{2}. \quad (16)$$

By (11) and (12), we have

$$\tau \leq \frac{1}{5} n' + \frac{3d - 5}{10d(2d - 1)} \frac{12d(2d - 1)}{17d + 5} n' = \frac{7d - 5}{17d + 5} n';$$

so

$$\frac{n}{2} \geq \frac{m}{2d - 1} - \theta - \frac{\tau}{2} \geq \frac{n}{2} + \frac{m}{2d - 1} - \theta - 7d - 5 \cdot \frac{n'}{2(17d + 5)} \geq \frac{n'}{2} + \frac{1}{2d - 1} (2dn' + \alpha \theta + \rho) - \theta - \frac{7d - 5}{2(17d + 5)} n' \text{(by (16))}$$

$$\geq \left(\frac{1}{2} + \frac{2d}{2d - 1} - \frac{7d - 5}{2(17d + 5)} \right) n' - \left(1 - \frac{\alpha}{2(2d - 1)} \right) \theta.$$
≥ \left(\frac{1}{2} + \frac{2d}{2(2d-1)} - \frac{7d-5}{2(17d+5)} \right) n' - \left(1 - \frac{\alpha}{2(2d-1)} \right) n' \quad \text{(by (15) and } \theta \leq n')
\]
\[
= \left(\frac{\alpha + 1}{2(2d-1)} - \frac{7d-5}{2(17d+5)} \right) n'.
\]

Hence, if \(\alpha \geq \frac{2d(7d-17)}{17d+5} \) then
\[
\frac{n}{2} + \frac{m}{2d-1} - \theta - \frac{\tau}{2} \geq \left(\frac{\alpha + 1}{2(2d-1)} - \frac{7d-5}{2(17d+5)} \right) n' > 0;
\]
so (3) holds, and \(W_1, W_2 \) gives the desired partition. We may thus assume that
\[
\alpha < \frac{2d(7d-17)}{17d+5} < d - 1. \quad (17)
\]

Step 8. Better bounds on \(\tau \).

We bound \(\tau \) in terms of \(n' \) and \(\rho \). Let \(d_i \) denote the number of vertices with degree \(i \) in \(G[Y] \). Then
\[
\sum_{i \geq 0} d_i = n'.
\]

For \(0 \leq i \leq d-\alpha-1 \), each vertex \(v \in Y \) with degree \(i \) in \(G[Y] \) has degree at most \(2i \) in \(D[Y] \), which, together with the fact that \(\delta^0(D) \geq d \), shows \(e(v, X) + e(X, v) \geq 2d - 2i \). Thus, the number of arcs of \(D \) incident with \(v \) and counted in \(\rho \) is at least \(2d - 2i - 2\alpha \). Consequently,
\[
(2d - 2\alpha)d_0 + (2d - 2\alpha - 2)d_1 + \cdots + 2d_{d-\alpha-1} \leq \rho,
\]
i.e.,
\[
(d - \alpha)d_0 + (d - \alpha - 1)d_1 + \cdots + d_{d-\alpha-1} \leq \rho/2.
\]

Therefore, by Lemmas 2.2 and 2.3 we have
\[
\tau \leq \frac{n' + \rho/2}{d - \alpha + 1}. \quad (18)
\]

Step 9. Completing the proof by considering \(\alpha = 1 \) and \(\alpha \geq 2 \).

For convenience, let \(m_1 = \beta dn' \). Then, by (13), we have
\[
\beta \leq \frac{13d - 23}{17d + 5}. \quad (19)
\]

A simple calculation shows that
\[
(1 - \beta)d - \frac{3}{2} > 0. \quad (20)
\]

If \(\alpha = 1 \) then
\[
\frac{n}{2} + \frac{m}{2d-1} - \theta - \frac{\tau}{2}
\]
\[\frac{n'}{2} + \frac{1}{2(2d-1)} \left(2dn' + \theta + \rho\right) - \frac{n' + \rho/2}{2d} \quad \text{(by (16) and (18))}\]
\[= \left(\frac{1}{2} + \frac{2d}{2(2d-1)} - \frac{1}{2d}\right) n' - \left(1 - \frac{1}{2(2d-1)}\right) \theta + \left(\frac{1}{2(2d-1)} - \frac{1}{4d}\right) \rho\]
\[\geq \left(\frac{1}{2} + \frac{2d}{2(2d-1)} - \frac{1}{2d}\right) n' - \left(1 - \frac{1}{2(2d-1)}\right) n' \quad \text{(since } \theta \leq n' \text{ by Lemma 2.5)}\]
\[= \left(\frac{1}{2d-1} - \frac{1}{2d}\right) n' > 0.\]

Hence, (3) holds, and \(W_1, W_2\) gives the desired partition.

So we may assume \(\alpha \geq 2\) and, hence,
\[\frac{1}{4(d - \alpha + 1)} > \frac{1}{2(2d - 1)}. \quad (21)\]

Note that
\[\frac{n}{2} + \frac{m}{2d-1} - \theta - \frac{\tau}{2}\]
\[\geq \frac{n'}{2} + \frac{1}{2(2d-1)} \left(2dn' + \alpha\theta + \rho\right) - \frac{n' + \rho/2}{2d} \quad \text{(by (16) and (18))}\]
\[= \left(\frac{1}{2} + \frac{2d}{2(2d-1)} - \frac{1}{2d}\right) n' - \left(1 - \frac{\alpha}{2(2d-1)}\right) \theta\]
\[\quad - \left(\frac{1}{4(d - \alpha + 1)} - \frac{1}{2d-1}\right) \rho\]
\[> \left(\frac{4d - 1}{2(2d-1)} - \frac{1}{2d - \alpha + 1}\right) n' - \left(1 - \frac{\alpha}{2(2d-1)}\right) \theta \quad \text{(by (14), (21) and since } m_1 = \beta dn')\]
\[= \left(\frac{4 + \beta d - 1}{2(2d-1)} - \frac{\beta d + 2}{4(d - \alpha + 1)}\right) n' - \left(1 - \frac{\alpha}{4(d - \alpha + 1)}\right) \theta.\]

First, suppose \(1 - \frac{\alpha}{4(d - \alpha + 1)} \geq 0.\) Then
\[\frac{n}{2} + \frac{m}{2d-1} - \theta - \frac{\tau}{2}\]
\[\geq \left(\frac{4 + \beta d - 1}{2(2d-1)} - \frac{\beta d + 2}{4(d - \alpha + 1)}\right) n' - \left(1 - \frac{\alpha}{4(d - \alpha + 1)}\right) n' \quad \text{(since } \theta \leq n')\]
\[= \frac{(2d - 1)(\alpha - 1) - (\beta d + 1)(2\alpha - 3)}{4(2d-1)(d - \alpha + 1)} n'\]
\[> \frac{(2\alpha - 3)((1 - \beta)d - 3/2)}{4(2d-1)(d - \alpha + 1)} n'\]
\[> 0 \quad \text{(since } \alpha \geq 2 \text{ and by (20))}.\]
So (3) holds, and W_1, W_2 gives the desired partition.

Thus, we may assume $1 - \frac{\alpha}{4(d - \alpha + 1)} < 0$; so $\alpha > 4d/5$. Note that

$$\frac{n}{2} + \frac{m}{2d - 1} - \theta - \frac{\tau}{2}$$

$$> \left(\frac{(4 + \beta)d - 1}{2(2d - 1)} - \frac{\beta d + 2}{4(d - \alpha + 1)}\right)n' - \left(1 - \frac{\alpha}{4(d - \alpha + 1)}\right)\frac{m}{2d - 1} \quad \text{(by (11))}$$

$$\geq \left(\frac{(4 + \beta)d - 1}{2(2d - 1)} - \frac{\beta d + 2}{4(d - \alpha + 1)}\right)n' - \left(1 - \frac{\alpha}{4(d - \alpha + 1)}\right)\frac{d}{2d - 1}n \quad \text{(by the fact $m \geq dn$)}$$

$$= \left(\frac{2 + \beta}{2d - 1} - \frac{\beta d + 2}{4(d - \alpha + 1)} + \frac{\alpha d}{4(d - \alpha + 1)(2d - 1)}\right)n' - O(n^{1/4}) \quad \text{(as $n' = n - O(n^{1/4})$)}$$

$$= \left(\frac{4d^2 - 3\alpha d - 2\alpha \beta d - 2d + 2\alpha + 3\beta d}{4(d - \alpha + 1)(2d - 1)}\right)n' - O(n^{1/4})$$

$$> \left(\frac{4d - 3\alpha - 2\alpha \beta - 2/5}{4(d - \alpha + 1)(2d - 1)}\right)dn' - O(n^{1/4}) \quad \text{(since $\alpha > 4d/5$)}$$

$$> \left(\frac{4 - 3 \cdot \frac{14}{17} - 2 \cdot \frac{14}{17} \cdot \frac{13}{17}}{4(d - \alpha + 1)(2d - 1)}\right)dn' - O(n^{1/4}) \quad (\alpha < \frac{14d}{17} \text{ by (17), } \beta < \frac{13}{17} \text{ by (19)})$$

$$> \left(\frac{d/4 - 2/5}{4(d - \alpha + 1)(2d - 1)}\right)dn' - O(n^{1/4})$$

$$> 0 \quad \text{(since $d \geq 4$ and $n' = n - O(n^{1/4})$ is large).}$$

Again, (3) holds, and W_1, W_2 gives the desired partition.

4 Concluding remarks

Using copies of K_{2d-1} and one copy of K_{2d+1}, Lee, Loh, and Sudakov [14] constructed digraphs with minimum outdegree d and minimum indegree $d - 1$ to show that the main term $\frac{d - 1}{2(2d - 1)}$ in Conjecture [1.1] is best possible. One could even ask whether or not Conjecture [1.1] holds without the $o(1)$ term, and, in particular, for $d = 2, 3$ (as for these cases Conjecture [1.1] is known to be true). More precisely, is it true that if D is a digraph with m arcs and the minimum outdegree at least 2 (respectively, 3) then D admits a bipartition $V(D) = V_1 \cup V_2$ such that $\min\{e(V_1, V_2), e(V_2, V_1)\} \geq m/6$ (respectively, $\min\{e(V_1, V_2), e(V_2, V_1)\} \geq m/5$)?

It is not clear to us whether or not the minimum outdegree condition alone is sufficient for Conjecture [1.1] with large d. We have demonstrated that the assertion of Conjecture [1.1] holds if we impose the additional (natural) condition that the minimum indegree of D be also at least d. (Though we do not know whether the main term in Theorem [1.2] is tight.) Below, we comment on the five places in our proof where we use this indegree assumption.

The first place is where we prove (6) for a lower bound on m_2 (the number of arcs in $D[Y]$). The minimum outdegree condition alone is not sufficient for this purpose. However, we checked several extreme situations (e.g., when $e(Y) = 0$), we can always
find a partition satisfying the conjectured bound. But we do not know how to deal with the general case.

The second place is in the proof of (7) and (8). We need to bound the number of arcs of D between X and A_i in both directions for $i = 1, 3$, in order to bound τ (the number of tight components in $G[Y]$) in (11) and m (the number of arcs in D) in (12).

The third place is where we obtain $\min\{e(X,Y), e(Y,X)\} \geq dn' - m_2$ to bound m_1 in (13), and the fourth place is where we prove the lower bound on m in (16). The final place we use this minimum indegree condition is where we give an upper bound on τ in (18).

References

[1] N. Alon, Bipartite subgraphs, Combinatorica 16 (1996) 301–311.

[2] N. Alon, B. Bollobás, A. Gyárfás, J. Lehel, A. Scott, Maximum directed cuts in acyclic digraphs, J. Graph Theory 55 (2007) 1–13.

[3] K. Azuma, Weighted sums of certain dependent random variables, Tokuku Math. J. 19 (1967) 357–367.

[4] B. Bollobás, A.D. Scott, Judicious partitions of hypergraphs, J. Combin. Theory Ser. A 78 (1997) 15–31.

[5] B. Bollobás, A.D. Scott, Problems and results on judicious partitions, Random Struct. Alg. 21 (2002) 414–430.

[6] G. Chen, M. Gu, N. Li, On maximum edge cuts of connected digraphs, J. Graph Theory 76 (2014) 1–19.

[7] C.S. Edwards, Some extremal properties of bipartite graphs, Canad. J. Math. 3 (1973) 475–485.

[8] C.S. Edwards, An improved lower bound for the number of edges in a largest bipartite subgraph, Proc. 2nd Czechoslovak Symposium on Graph Theory (1975) 167–181.

[9] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13–30.

[10] J. Hou, S. Wu, G. Yan, On bisections of directed graphs, European J. Combin. 63 (2017) 44–58.

[11] J. Hou, S. Wu, Bipartitions of oriented graphs, submitted.

[12] S. Janson, T. Łuczak, A. Ruciński, Random Graphs, Wiley, New York, 2000.
[13] C. Lee, P. Loh, B. Sudakov, Bisections of graphs, J. Comb. Theory, Ser. B 103 (2013) 599–629.

[14] C. Lee, P. Loh, B. Sudakov, Judicious partitions of directed graphs, Random Struct. Alg. 48 (2016) 147–170.

[15] C. Lu, K. Wang, X. Yu, On tight components and anti-tight components, Graphs and Combinatorics 31 (2015) 2293–2297.

[16] J. Ma, P. Yen, X. Yu, On several partitioning problems of Bollobás and Scott, J. Combin. Theory Ser. B 100 (2010) 631–649.

[17] A.D. Scott, Judicious partitions and related problems, Surveys in combinatorics 327 (2005) 95–117.

[18] B. Xu, X. Yu, Triangle-free subcubic graphs with minimum bipartite density, J. Combin. Theory Ser. B 98 (2008) 516–537.

[19] M. Yannakakis, Node- and edge-deletion NP-complete problems, STOC (1978) 253–264.

[20] X. Zhu, Bipartite density of triangle-free subcubic graphs, Discrete Applied Mathematics 157 (2009) 710–714.