Self-similar groups and the zig-zag and replacement products of graphs

Ievgen Bondarenko

September 1, 2014

Abstract

Every finitely generated self-similar group naturally produces an infinite sequence of finite d-regular graphs Γ_n. We construct self-similar groups, whose graphs Γ_n can be represented as an iterated zig-zag product and graph powering: $\Gamma_{n+1} = \Gamma_n^k \circ \Gamma$ ($k \geq 1$). Also we construct self-similar groups, whose graphs Γ_n can be represented as an iterated replacement product and graph powering: $\Gamma_{n+1} = \Gamma_n^k \otimes \Gamma$ ($k \geq 1$). This gives simple explicit examples of self-similar groups, whose graphs Γ_n form an expanding family, and examples of automaton groups, whose graphs Γ_n have linear diameters $\text{diam}(\Gamma_n) = O(n)$ and bounded girth.

2010 Mathematics Subject Classification: 05C25, 20F65, 20E08

Keywords: self-similar group, zig-zag product, replacement product, expanding graph, automaton group

1 Introduction

A sequence of finite d-regular graphs $(\Gamma_n)_{n \geq 1}$ is an expanding family if there exists $\varepsilon > 0$ such that $\lambda(\Gamma_n) < 1 - \varepsilon$ for all $n \in \mathbb{N}$, where $\lambda(\Gamma)$ is the second largest (in absolute value) eigenvalue of the normalized adjacency matrix of Γ. Expanding graphs have many interesting applications in different areas of mathematics and computer science (see [11] and the references therein). That is why many constructions of expanding families were proposed for the last decades, most of which have algebraic nature.

In [16], Reingold, Vadhan, and Wigderson discovered a simple combinatorial construction of expanding graphs. Their construction is based on the new operation on regular graphs — the zig-zag product \circ. The estimates on the second eigenvalue of the zig-zag product of graphs proved in [16] lead to the construction of expanders as an iterated zig-zag product and graph squaring: the sequence $\Gamma_{n+1} = \Gamma_n^2 \circ \Gamma$, $\Gamma_1 = \Gamma^2$ is an expanding family if $\lambda(\Gamma)$ is small enough. Later, the zig-zag product showed its effectiveness in constructing graphs with other exceptional properties, various codes, in computational complexity theory, etc.
The zig-zag product is directly related to the simpler replacement product \circlearrowright_r, which replace every vertex of one graph by a copy of another graph. This product was widely used in various contexts. For example, the replacement product of the graph of the d-dimensional cube and the cycle on d vertices is the so-called cube-connected cycle, which is used in the network architecture for parallel computations. Gromov [10] considered the graphs of d-dimensional cubes for different dimensions and estimated the second eigenvalue of their iterated replacement product (iterated cubical graphs). Previte [15] studied the convergence of iterated replacement product $\Gamma_{n+1} = \Gamma_n \circlearrowright_r \Gamma$, normalized to have diameter one, in the Gromov-Hausdorff metric and their limit spaces. The estimate on the second eigenvalue of the replacement product of graphs proved in [16] leads to the expanding family $\Gamma_{n+1} = \Gamma_n \circlearrowright_r \Gamma$ when $\lambda(\Gamma)$ and $\lambda(\Gamma_1)$ are small enough [14].

In this paper we establish a connection between the zig-zag and replacement products of graphs and self-similar groups. The theory of self-similar groups [13] was developed from several examples of groups (mainly the Grigorchuk group) that enjoy many extreme properties (intermediate growth, finite width, non-uniformly exponential growth, periodic groups, amenable but not elementary amenable groups, just-infinite groups, etc.) Self-similar groups are specific groups of transformations on the space of all finite words over an alphabet that preserve the length of words. Every self-similar group can be easily defined by a finite system of wreath recursions, while properties of the group remain mysterious.

By fixing a generating set of a self-similar group, we get a sequence of d-regular graphs Γ_n associated to the action of generators on words of length n. A natural question arises whether we can produce an expanding family in this way. However, the graphs Γ_n were studied mostly for the opposite case of contracting self-similar groups. In this case, the graphs Γ_n converge in certain sense to a compact fractal space, which lead to the notion of a limit space of a contracting self-similar group and further developed into the beautiful theory of iterated monodromy groups [13]. The diameter of graphs Γ_n for contracting groups has exponential growth in terms of n (polynomial in the number of vertices), what makes them opposite to expanding graphs and the zig-zag product.

An important class of self-similar groups is the class of automaton groups. These groups are given by finite-state transducers (Mealy automata) with the same input and output alphabets. Every state of such an automaton A produces a transformation of words over an alphabet. If all these transformations are invertible, they generate a self-similar group under composition of functions called the automaton group G_A generated by A. For example, the Grigorchuk group is generated by a 5-state automaton over a 2-letter alphabet. The graphs Γ_n for an automaton group G_A can be expressed through the standard operation of composition of automata, namely $\Gamma_n = \hat{A} \circ \ldots \circ \hat{A}$ (n times), where \hat{A} is the dual automaton. However, expanding properties of automata composition are unknown. The complete spectrum of graphs Γ_n was computed only for a few automaton groups [3, 8, 9], and the general case remains widely open. Nevertheless, Glasner and Mozes [6] realized certain groups with property (T) as automaton groups, what implies that the associated graphs Γ_n form an expanding family. The corresponding automata are large and were not described explicitly. At the same time, there are two specific 3-state automata over a 2-letter alphabet, the Aleshin and Bellaterra automata, whose graphs Γ_n form asymptotic
expander [17, Section 10], and the question is raised [17, Problem 10.1] whether actually these graphs are expanders. This problem remains open. Even the asymptotic of diameters of Γ_n for these two automata is unknown; the best known upper bound is $O(n^2)$ [12].

In this paper, given $k \geq 1$ and a graph Γ with certain restrictions, we construct self-similar groups, whose graphs Γ_n can be represented as iterated zig-zag or replacement products and graph powering: $\Gamma_{n+1} = \Gamma_k \circ \Gamma$ for all $n \geq 1$ or $\Gamma_{n+1} = \Gamma_k \circ \Gamma$ for all $n \geq 1$. This gives explicit examples of self-similar groups whose graphs Γ_n form a family of expanders. The established connection between self-similar groups and the zig-zag product is not surprising—the zig-zag product of graphs is closely related to the semidirect product of groups [1], while self-similar groups to the wreath product of groups. We also note that our construction modeling iterated zig-zag product is a self-similar analog of the construction from [17]. In the case $k = 1$, the constructed groups are automaton groups. This gives simple explicit examples of automaton groups whose graphs Γ_n have linear diameters $O(n)$ (logarithmic in the number of vertices) and bounded girth. Interestingly, some of the automaton groups modeling iterated replacement product belong to the class of GGS groups [2, 4]. In particular, these groups are not finitely presented and have intermediate growth.

2 The zig-zag and replacement products of graphs

All graphs in this paper are regular, undirected, and may have loops and multiple edges.

Let \mathcal{G} be a D-regular graph on N vertices and let Γ be a d-regular graph on D vertices. We label the edges near every vertex of \mathcal{G} by the vertices of Γ in one-to-one fashion; for $v \in V(\mathcal{G})$ and $x \in V(\Gamma)$, let $v[x]$ be the x-neighbor of v. If an edge is labeled by x near v and by y near u, i.e., $v[x] = u$ and $u[y] = v$, we write $v \xrightarrow{x} y u$. The zig-zag and replacement products depend on the chosen labeling.

The zig-zag product. The zig-zag product $\mathcal{G} \circ \Gamma$ is a d^2-regular graph on ND vertices $V(\Gamma) \times V(\mathcal{G})$. The edges of $\mathcal{G} \circ \Gamma$ are formed by “zig-zag” paths of length three:

1. for every edge $x \rightarrow x'$ in Γ (the zig-step),
2. the edge $v \xrightarrow{x} y \xrightarrow{y'} u$ in \mathcal{G},
3. and every edge $y' \rightarrow y$ in Γ (the zag-step),

there is an edge between (x, v) and (y, u) in $\mathcal{G} \circ \Gamma$. (Classically, the vertices of the zig-zag product are written as pairs (v, x). We switched the order to show a similarity with action graphs of self-similar groups. As usual, by switching from right to left, we get a connection between two object studied in different contexts.)

The next basic properties easily follow from the definition. The zig-zag product of any two graphs has girth ≤ 4 and diameter $\text{diam}(\mathcal{G} \circ \Gamma) \leq \text{diam}(\mathcal{G}) + 2\text{diam}(\Gamma)$. The zig-zag product of connected graphs is not always connected; one easy sufficient condition is the following: If any two vertices of Γ can be connected by a path of even length, then the graph $\mathcal{G} \circ \Gamma$ is connected for any connected graph \mathcal{G}.
Many applications of the zig-zag product are based on the following spectral property proved in [16]:

$$\lambda(G \odot \Gamma) \leq \lambda(G) + \lambda(\Gamma) + \lambda(\Gamma)^2,$$ \hspace{1cm} (1)

where $\lambda(\Gamma)$ is the second largest (in absolute value) eigenvalue of the normalized adjacency matrix of Γ.

The replacement product. The replacement product $G \circ \circ \Gamma$ is a $(d+1)$-regular graph on ND vertices $V(\Gamma) \times V(G)$ with the following edges:

1. for every edge $x - y$ in Γ and $v \in V(G)$ there is an edge $(x, v) - (y, v)$ in $G \circ \circ \Gamma$;

2. for every edge $v - x - y - u$ in G there is an edge $(x, v) - (y, u)$ in $G \circ \circ \Gamma$.

In other words, we replace each vertex v of G with a copy of Γ (keeping all the edges of Γ in all the copies), and adjoin edges adjacent to v in G to the corresponding vertices of Γ using the chosen one-to-one correspondence between these edges and vertices of Γ.

The next properties easily follow from the definition. The replacement product of connected graphs is connected, the diameter satisfies $\text{diam}(G \circ \circ \Gamma) \leq \text{diam}(G) \cdot \text{diam}(\Gamma)$, and the girth of $G \circ \circ \Gamma$ is not greater than the girth of Γ.

In [16], the expansion property of the replacement product is estimated as

$$\lambda(G \circ \circ \Gamma) \leq (p + (1 - p)(\lambda(G) + \lambda(\Gamma) + \lambda(\Gamma)^2))^{1/3},$$ \hspace{1cm} (2)

where $p = d^2/(d + 1)^3$.

Iterative construction of expanders. Let us describe the construction of expanding families using the zig-zag product and graph powering presented in [16]. Take a d-regular graph Γ on d^4 vertices such that $\lambda(\Gamma) \leq 1/5$ (such graphs exist by probabilistic arguments). Define the sequence of graphs $(\Gamma_n)_{n \geq 1}$ as follows:

$$\Gamma_1 = \Gamma^2, \quad \Gamma_{n+1} = \Gamma_n \circ \circ \Gamma, \quad n \geq 1.$$ \hspace{1cm} (3)

(The k-th power Γ^k of a graph Γ is the graph on the vertices of Γ, where each edge corresponds to a path of length k in Γ. Note that $\lambda(\Gamma^k) = \lambda(\Gamma)^k$. Then the estimate (1) implies that the graphs Γ_n are d^2-regular graphs with $\lambda(\Gamma_n) \leq 2/5$.

Analogous construction works with the replacement product as well [14]. Take a $(d+1)$-regular graph Γ_1 and a d-regular graph Γ on $(d + 1)^4$ vertices such that $\lambda(\Gamma_1) \leq 1/5$, $\lambda(\Gamma) \leq 1/5$. Define the sequence of graphs $(\Gamma_n)_{n \geq 1}$ as follows:

$$\Gamma_{n+1} = \Gamma_n \circ \circ \Gamma, \quad n \geq 1.$$ \hspace{1cm} (4)

The estimate (2) implies that the graphs Γ_n are $(d + 1)$-regular graphs with $\lambda(\Gamma_n) \leq 1/10$.

4
3 Self-similar groups and their action graphs

Every finitely generated self-similar group can be given by a finite system (wreath recursion)

\[
\begin{align*}
 s_1 &= \pi_1(w_{11}, w_{12}, \ldots, w_{1d}) \\
 s_2 &= \pi_2(w_{21}, w_{22}, \ldots, w_{2d}) \\
 &\quad \vdots \nonumber \\
 s_k &= \pi_k(w_{k1}, w_{k2}, \ldots, w_{kd}) \nonumber
\end{align*}
\]

(5)

where \(\pi_i\) is a permutation on \(X = \{1, 2, \ldots, d\}\) and \(w_{ij}\) is a word over \(S \cup S^{-1}\), \(S = \{s_1, s_2, \ldots, s_k\}\). The system defines the action of \(S\) on the set \(X^*\) of all finite words over \(X\) (we use left actions). Each \(s_i\) acts on \(X\) by the permutation \(\pi_i\), and the action on words over \(X\) is defined by the recursive rule

\[s_i(xv) = \pi_i(x)w_{ix}(v), \quad x \in X, v \in X^*,\]

where \(w_{ix}\) acts by composition. These transformations are invertible, and the group generated by them under composition is called the self-similar group \(G = \langle S \rangle\) associated to the system \((5)\).

When all words \(w_{ix}\) in \((5)\) are letters, i.e., \(w_{ix} = s_{ix} \in S\), the system \((5)\) can be represented by a finite-state automaton-transducer \(A\) over the alphabet \(X\) with states \(S\). The automaton \(A\) is represented by a finite directed graph with vertices \(S\) and arrows \(s_i \rightarrow s_{ix}\) labeled by \(x|\pi_i(x)\) for all \(x \in X\) and \(s_i \in S\). The action of \(s_i\) on \(X^*\) can be described using the automaton \(A\) as follows. Given a word \(v = x_1x_2\ldots x_n \in X^*\), there exists a unique directed path in the automaton \(A\) starting at the state \(s_i\) and labeled by \(x_1|y_1, x_2|y_2, \ldots, x_n|y_n\) for some \(y_i \in X\). Then the word \(y_1y_2\ldots y_n\) is the image of \(x_1x_2\ldots x_n\) under \(s_i\). In this case, the group \(G = \langle S \rangle\) is called the automaton group given by the automaton \(A\).

Self-similar groups preserve the length of words under the action on \(X^*\), and we can restrict the action to \(X^n\), words of length \(n\), for each \(n \in \mathbb{N}\). By choosing a finite symmetric generating set \(S\) of a self-similar group \(G\), we get a sequence of \(|S|\)-regular graphs \((\Gamma_n)_{n \geq 1}\) of the action on \(X^n, n \geq 1\). The vertex set of \(\Gamma_n\) is \(X^n\), and for every \(s \in S\) and \(v \in X^n\) there is an edge between the vertices \(v\) and \(s(v)\). The graph \(\Gamma_n\) is a Schreier coset graph of \(G\) if the group acts transitively on \(X^n\).

If the generating set \(S\) is given by the system \((5)\), the graphs \(\Gamma_n = \Gamma_n(S)\) can be constructed iteratively, very similar to \((3)\). Every \(s_i \in S\) produces an edge \(xv - \pi_i(x)w_{ix}(v)\) in \(\Gamma_n\), which can be interpreted as a zig-step \(x - \pi_i(x)\) in the graph \(\Gamma_1\), and a walk \(v - w_{ix}(v)\) in the graph \(\Gamma_{n-1}\). In contrast to the zig-zag product, we are missing the zag-step (and the walk \(w_{ix}\) is not agreed with \(\pi_i(x)\)), but we will see in the next section that one can make the edge \(x - \pi_i(x)\) to be already the combination of the zig and zag steps.
4 Modeling iterated zig-zag and replacement products by automaton groups

In this section we construct automaton groups whose action graphs satisfy $\Gamma_{n+1} = \Gamma_n \odot \Gamma$ for all $n \geq 1$ or $\Gamma_{n+1} = \Gamma_n \odot \Gamma$ for all $n \geq 1$, where Γ is a fixed graph.

Modeling iterated zig-zag product. Let $X = \{1, 2, \ldots, d\}$ and P be a symmetric set of permutations on X such that $d = |P|^2$. We introduce formal symbols $s_{(\pi, \tau)}$ for $\pi, \tau \in P$ and define wreath recursion (5) for the set $S_P = \{s_{(\pi, \tau)} : \pi, \tau \in P\}$, $|S_P| = d$ as follows. Choose an order on S_P: let $S_P = \{s_1, \ldots, s_d\}$. Let γ be the permutation on X given by the rule: if $s_x = s_{(\pi, \tau)}$ then $s_\gamma(x) = s_{(\tau^{-1}, \pi^{-1})}$. Notice that $\gamma = \gamma^{-1}$. Define wreath recursion by

$$s_{(\pi, \tau)} = \tau \gamma (s_1, s_2, \ldots, s_d) \pi = \tau \gamma \pi (s_{\pi(1)}, s_{\pi(2)}, \ldots, s_{\pi(d)}), \pi, \tau \in P,$$

(here π and τ will play a role of the zig and zag steps respectively). Let G_P be the self-similar group defined by this recursion. It is important to note that S_P defines a symmetric generating set of G_P, where $s_{(\pi, \tau)}^{-1} = s_{(\tau^{-1}, \pi^{-1})}$ (in other notations, $s_x^{-1} = s_{\gamma(x)}$). This follows inductively from the recursions

$$s_{(\pi, \tau)}^{-1} (xv) = \pi^{-1} \gamma^{-1} \tau^{-1} (x) s_{\gamma^{-1} \tau^{-1} (x)} (v),$$

$$s_{(\tau^{-1}, \pi^{-1})}^{-1} (xv) = \pi^{-1} \gamma^{-1} \tau^{-1} (x) s_{\tau^{-1} \pi^{-1} (x)} (v),$$

$x \in X, v \in X^*$ (use $\gamma = \gamma^{-1}$).

Theorem 1. The action graphs Γ_n of the group $G_P = \langle S_P \rangle$ satisfy $\Gamma_{n+1} = \Gamma_n \odot \Gamma$, $n \geq 1$, where Γ is the graph of the action of P on X.

Proof. The graph Γ is a $|P|$-regular graph on d vertices, while Γ_n are d-regular graphs. In order to define the zig-zag product $\Gamma_n \odot \Gamma$, we should label the edges of Γ_n by the vertices of Γ. For $x \in X$, define the x-neighbor of a vertex $v \in X^n$ as $v[x] := s_x(v)$. In this way we get the labeling of edges $v \xrightarrow{x \cdot \gamma(x)} s_x(v)$. Now we can consider the zig-zag product $\Gamma_n \odot \Gamma$. The vertex set of $\Gamma_n \odot \Gamma$ can be naturally identified with the vertex set X^{n+1} of Γ_{n+1} via $(x, v) \leftrightarrow xv$. For every zig-zag path

$$x \xrightarrow{\pi} x' = \pi(x) \text{ in } \Gamma, \quad v \xrightarrow{\pi' \gamma'} v[x'] \text{ in } \Gamma_n, \quad y' \xrightarrow{\tau} y = \tau(y') \text{ in } \Gamma$$

there is an edge $xv - yv[x']$ in $\Gamma_n \odot \Gamma$. Here $y' = \gamma(x') = \gamma(\pi(x))$ and $v[x'] = s_{\pi(x)}(v)$. Therefore this edge is precisely the edge of Γ_{n+1} given by $s_{(\pi, \tau)}$:

$$xv - \tau(\gamma(\pi(x))) s_{\pi(x)}(v).$$

The next statement immediately follows from the properties of the zig-zag product.
Figure 1: The generating automata for two examples of groups G_P and G_Q

Corollary 1.1. The action graphs Γ_n of the group $G_P = \langle S_P \rangle$ have bounded girth and linear diameters $\text{diam}(\Gamma_n) = O(n)$. If Γ_1 is connected ($P \gamma P$ acts transitively on X) and there is a path of even length between any two vertices of Γ, then all graphs Γ_n are connected (the group G_P acts transitively on X^n).

The wreath recursion for the group G_P defines a finite automaton over X with d states. Therefore every G_P is an automaton group.

Example 1. Let $d = 4$, $X = \{1, 2, 3, 4\}$ and $P = \{(1 2), (1 4)(2 3)\}$. Then $\gamma = (2 3)$ and the group G_P is generated by s_1, s_2, s_3, s_4 given by the wreath recursion:

\[
\begin{align*}
 s_1 &= (1 2)(2 3)(s_1, s_2, s_3, s_4)(1 2) = (1 3)(s_2, s_1, s_3, s_4) \\
 s_2 &= (1 4)(2 3)(2 3)(s_1, s_2, s_3, s_4)(1 2) = (1 2 4)(s_2, s_1, s_3, s_4) \\
 s_3 &= (1 2)(2 3)(s_1, s_2, s_3, s_4)(1 4)(2 3) = (1 4 2)(s_4, s_3, s_2, s_1) \\
 s_4 &= (1 4)(2 3)(2 3)(s_1, s_2, s_3, s_4)(1 4)(2 3) = (2 3)(s_4, s_3, s_2, s_1)
\end{align*}
\]

The generating automaton is shown on the left-hand side of Figure 1.

The construction can be modified for the case $d > |P|^2$. We add $d - |P|^2$ empty words e to the wreath recursion:

\[s_{(\pi, \tau)} = \tau \gamma(s_1, s_2, \ldots, s_{|P|^2}, e, \ldots, e)\pi, \]

where e acts trivially on X^*. Then the action graphs satisfy $\Gamma_{n+1} = \Gamma_n \odot \Gamma$, where Γ_n^e is obtained from Γ_n by adding $d - |P|^2$ loops to every vertex.

Modeling iterated replacement product. Let $Q = \{\pi_1, \ldots, \pi_d\}$ be a symmetric set of permutations on $X = \{1, 2, \ldots, d + 1\}$. Let γ be the involution on X given by the rule:
\[\pi_{\gamma(x)} = \pi_x^{-1} \] and \[\gamma(d+1) = d+1. \] We define wreath recursion for the set \(S_Q = \{s_1, \ldots, s_{d+1}\} \) by
\[
\begin{align*}
s_i &= \pi_i(e, e, \ldots, e), \quad i = 1, 2, \ldots, d; \\
s_{d+1} &= \gamma(s_1, s_2, \ldots, s_{d+1}).
\end{align*}
\]

Let \(G_Q \) be the self-similar group defined by this recursion. Notice that the generating set \(S_Q \) is symmetric, because \(s_i^{-1} = s_{\gamma(i)} \) for \(i = 1, 2, \ldots, d \) and \(s_{d+1}^2 = e \).

Every \(s_i \) for \(i = 1, \ldots, d \) changes only the first letter in any word over \(X \). In this case one usually identifies \(s_i \) and \(\pi_i \); then we can write \(G_Q = \langle \pi_1, \ldots, \pi_d, s \rangle \), where \(s = s_{d+1} \) is given by the recursion \(s = \gamma(\pi_1, \ldots, \pi_d, s) \).

Theorem 2. The action graphs \(\Gamma_n \) of the group \(G_Q = \langle S_Q \rangle \) satisfy \(\Gamma_{n+1} = \Gamma_n \overline{\circ} \Gamma, \ n \geq 1 \), where \(\Gamma \) is the graph of the action of \(Q \) on \(X \). In particular, if \(\Gamma \) is connected, then all \(\Gamma_n \) are connected.

Proof. The graph \(\Gamma \) is a \(d \)-regular graph on \(d+1 \) vertices, while \(\Gamma_n \) are \((d+1) \)-regular graphs. In order to define the replacement product \(\Gamma_n \overline{\circ} \Gamma \), we label the edges of \(\Gamma_n \) by the vertices of \(\Gamma \) as follows. For \(x \in X \), define the \(x \)-neighbor of a vertex \(v \in X^n \) as \(v[x] := s_x(v) \). In this way we get the labeling of edges \(v \xrightarrow{x \gamma(x)} s_x(v) \). Now we can consider the replacement product \(\Gamma_n \overline{\circ} \Gamma \). The vertex set of \(\Gamma_n \overline{\circ} \Gamma \) can be naturally identified with the vertex set \(X^{n+1} \) of \(\Gamma_{n+1} \) via \((x, v) \leftrightarrow xv \). For every edge \(x \xrightarrow{\pi_i} y = \pi_i(x) \) in \(\Gamma \), the edges \(xv - yv \) in \(\Gamma_n \overline{\circ} \Gamma \) coincide with edges in \(\Gamma_{n+1} \) given by \(s_i \). For every edge \(v \xrightarrow{x \gamma(x)} s_x(v) \) in \(\Gamma_n \), the edge \(xv - \gamma(x)s_x(v) \) in \(\Gamma_n \overline{\circ} \Gamma \) coincide with the edge in \(\Gamma_{n+1} \) given by \(s_{d+1} \).

The wreath recursion for the group \(G_Q \) defines a finite automaton over \(X \) with \(d+2 \) states. All these automata belong to the important class of bounded automata. In particular, the groups \(G_Q \) belong to the class of contracting self-similar groups (see [13]). The action graphs \(\Gamma_n \) of groups generated by bounded automata were studied in [3]. In particular, the diameters of graphs \(\Gamma_n \) have exponential growth in terms of \(n \), and there is an algorithmic method to find the exponent of growth as the Perron-Frobenius eigenvalue of certain non-negative integer matrix.

Some of the groups \(G_Q \) were studied before as interesting examples of automaton groups. To see this, assume that all permutations in \(Q \) are involutions (then \(\gamma \) is trivial), \(d \geq 2 \), and the graph \(\Gamma \) is connected. Then the group \(G_Q \) is a GGS group studied in [2, 3]. In particular, in this case \(G_Q \) is not finitely presented and has intermediate growth. Is it true that all groups \(G_Q \) have subexponential growth?

Example 2. Let \(d = 2 \) and \(Q = \{\sigma, \sigma^{-1}\} \), \(\sigma = (1\ 2\ 3) \). The group \(G_Q \) is generated by \(\sigma \) and \(s = (1\ 2)(\sigma, \sigma^{-1}, s) \). The generating automaton is shown on the right-hand side of Figure [4].
In this section we construct wreath recursions that model the iterations (3) and (4).

Let G be the self-similar group generated by this recursion. Notice that S_P defines a symmetric generating set of $G_{P,1}$ from the previous section.

Let us consider the associated action graphs Γ_n. Note that each word w_x represents a path of length k in Γ_n, which is an edge in the graph Γ_n^k. For $x \in X$, define the x-neighbor of a vertex $v \in X^n$ in Γ_n^k as $v[x] := w_x(v)$. Then each edge $s_{(\pi,\tau)}(\pi^x(x))w_{\pi(x)}(v)$ in Γ_{k+1} is precisely the zig-zag path in $\Gamma_n \boxtimes \Gamma$. We get the following statement.

Theorem 3. The action graphs Γ_n of the group $G_{P,k} = \langle S_P \rangle$ satisfy $\Gamma_{n+1} = \Gamma_n^k \boxtimes \Gamma$, $n \geq 1$, where Γ is the graph of the action of P on X.

If $\lambda(\Gamma)$ and $\lambda(\Gamma_1)$ are small enough (for example, less than $1/5$), then we get a sequence of expanders. Therefore this construction gives simple explicit examples of self-similar groups whose graphs Γ_n form an expanding family.

As above the construction can be modified for the case $d > |P|^k$ by adding empty words to the wreath recursion.

Similarly we model the iteration (4). Fix $k \geq 1$. Let $Q = \{\pi_1, \ldots, \pi_d\}$ be a symmetric set of permutations on $X = \{1, 2, \ldots, (d + 1)^k\}$. Let s be a formal symbol and $S_Q = \{\pi_1, \ldots, \pi_d, s\}$, where π_i is considered as transformation of X^* that changes the first letter of words. Take all words of length k over S_Q, there are $(d + 1)^k$ such words, and fix an order on them: $w_1, w_2, \ldots, w_{(d+1)^k}$. Let γ be the involution on X such that if $w_x = s_1s_2\ldots s_k$ then $w_{\gamma(x)} = s_k^{-1}\ldots s_2^{-1}s_1^{-1}$, where for the symbol s_i we put $s_i^{-1} := s$. We define the self-similar group $G_{Q,k} = \langle \pi_1, \ldots, \pi_d, s \rangle$, where s is given by the wreath recursion

$$s = \gamma(w_1, w_2, \ldots, w_{(d+1)^k}).$$

The set S_Q defines a symmetric generating set of $G_{Q,k}$, because Q is symmetric and $s^2 = e$.

As above we get the following statement.

Theorem 4. The action graphs Γ_n of the group $G_{Q,k} = \langle S_Q \rangle$ satisfy $\Gamma_{n+1} = \Gamma_n^k \boxtimes \Gamma$, $n \geq 1$, where Γ is the graph of the action of Q on X.

9
This construction produces other examples of self-similar groups whose graphs Γ_n form an expanding family when $k \geq 4$ and $\lambda(\Gamma)$ and $\lambda(\Gamma_1)$ are small enough.

Questions. It is interesting what are algebraic and geometric properties of the groups $G_{P,k}$ and $G_{Q,k}$. Are these groups finitely presented? have property (T)? What are their profinite completions? What are the properties of their action on the boundary of the space X^*, i.e., infinite sequences $x_1x_2\ldots$ over X?

References

[1] N. Alon, A. Lubotzky, and A. Wigderson, Semi-direct product in groups and zig-zag product in graphs: connections and applications (extended abstract), in: “42-nd IEEE Symposium on Foundations of Computer Science, Las Vegas, NV, 2001”, 630–637. IEEE Computer Society, Los Alamitos, CA, 2001.

[2] L. Bartholdi, Croissance de groupes agissant sur des arbres. Ph.D. thesis, Université de Genève (2000)

[3] L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 5–45.

[4] L. Bartholdi, R. Grigorchuk, Z. Šunič, Branch groups. In Handbook of algebra, vol. 3, pages 989-1112. North-Holland, Amsterdam, 2003.

[5] I. Bondarenko, Groups generated by bounded automata and their Schreier graphs. Ph.D. dissertation, Texas A&M University (2007)

[6] Y. Glasner, S. Mozes, Automata and square complexes, Geometriae Dedicata, Volume 111, 43–64 (2005)

[7] R. I. Grigorchuk, Some topics in the dynamics of group actions on rooted trees, Tr. Mat. Inst. Steklova, Volume 273, 72–191 (2011)

[8] R. Grigorchuk, A. Žuk, Spectral properties of a torsion-free weakly branch group defined by a three state automaton, Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), Contemp. Math., vol. 298, Amer. Math. Soc., Providence, RI, 2002, pp. 57–82.

[9] R. Grigorchuk, Z. Šunič, Schreier spectrum of the Hanoi towers group on three pegs, Proceedings of Symposia in Pure Mathematics, Volume 77, 183–198 (2008)

[10] M. Gromov, Filling Riemannian manifolds, J. Differential Geom., Volume 18, 1–147 (1983)
[11] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc., Volume 43, 439–561 (2006)

[12] A. Malyshev, I. Pak, Lifts, derandomization, and diameters of Schreier graphs of Mealy automata, Preprint (2014)

[13] V. Nekrashevych, Self-similar groups. Mathematical Surveys and Monographs, vol.117, American Mathematical Society, Providence (2005)

[14] C.A. Kelley, D. Sridhara, J. Rosenthal, Zig-zag and replacement product graphs and LDPC codes, Advances in Mathematics of Communications, Volume 2, No. 4, 347–372 (2008)

[15] J.P. Previte, Graph substitutions, Ergodic Theory and Dynamical Systems, Vol.18, 661–685 (1998)

[16] O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag graph product, and new constant-degree expanders, Ann. of Math. (2), Volume 155, 91–120 (2002)

[17] E. Rozenman, A. Shalev, and A. Wigderson, Iterative construction of Cayley expander graphs, Theory of Computing, Volume 2, 91–120 (2006)