Veronese subspace codes

Antonio Cossidente
Dipartimento di Matematica Informatica ed Economia
Università della Basilicata
Contrada Macchia Romana
I-85100 Potenza
Italy
antonio.cossidente@unibas.it

Francesco Pavese
Dipartimento di Matematica Informatica ed Economia
Università della Basilicata
Contrada Macchia Romana
I-85100 Potenza
Italy
francesco.pavese@unibas.it
Proposed Running Head: Veronese subspace codes

Corresponding Author:
Antonio Cossidente
Dipartimento di Matematica Informatica ed Economia
Università della Basilicata
Contrada Macchia Romana
I-85100 Potenza
Italy
antonio.cossidente@unibas.it
Abstract

Using the geometry of quadrics of a projective plane $\text{PG}(2, q)$ a
family of $(6, q^3(q^2 - 1)(q - 1)/3 + (q^2 + 1)(q^2 + q + 1), 4; 3)_q$ constant
dimension subspace codes is constructed.

KEYWORDS: projective bundle; constant dimension subspace code; Singer
cyclic group; Veronese map;
AMS MSC: 51E15, 05B25

1 Introduction

Let V be an n–dimensional vector space over $\text{GF}(q)$, q any prime power.
The set $S(V)$ of all subspaces of V, or subspaces of the projective space
$\text{PG}(V)$, forms a metric space with respect to the subspace distance defined
by $d_s(U, U') = \dim(U + U') - \dim(U \cap U')$. In the context of subspace
codes, the main problem is to determine the largest possible size of codes
in the space $(S(V), d_s)$ with a given minimum distance, and to classify the
Corresponding optimal codes. The interest in these codes is a consequence of
the fact that codes in the projective space and codes in the Grassmannian
over a finite field referred to as subspace codes and constant–dimension
codes, respectively, have been proposed for error control in random linear
network coding. An $(n, M; d; k)_q$ constant–dimension subspace code (CDC)
is a set C of k–subspaces of V with $|C| = M$ and minimum subspace distance
d_s(C) = \min\{d_s(U, U') \mid U, U' \in C, U \neq U'\} = d$. The smallest open constant–
dimension case occurs when $n = 6$ and $k = 3$. From a projective geometry
point of view it translates in the determination of the maximum number of
planes in $\text{PG}(5, q)$ mutually intersecting in at most one point. In [10], the
authors show that the maximum size of a binary subspace code of packet
length $n = 6$, minimum subspace distance $d = 4$ and constant dimension $k = 3$ is $M = 77$. Therefore the maximum number of planes in $\text{PG}(5, 2)$ mutually
intersecting in at most one point is 77. In the same paper, the authors,
with the aid of a computer, classify all $(6, 77, 4; 3)_2$ subspace codes into 5
isomorphism types [10, Table 6] and a computer–free construction of one
isomorphism type [10, Table 6, A] is provided. This last isomorphism type
is then generalized to any q providing a family of $(6, q^6 + 2q^2 + 2q + 1, 4; 3)_q$
subspace codes [10, Lemma 12]. In [6] the authors provided a construction of families of $(6, q^6 + 2q^2 + 2q + 1, 4; 3)_q$ subspace codes potentially including
the infinite family constructed in [10].

In this paper we construct a family of $(6, q^3(q^2 - 1)(q - 1)/3 + (q^2 + 1)(q^2 + q + 1), 4; 3)_q$ CDC. Our approach is purely geometric and the con-
struction relies on the geometry of quadrics of a projective plane $\text{PG}(2, q)$. More precisely, we use the correspondence between quadrics of $\text{PG}(2, q)$ and points of $\text{PG}(5, q)$. In this setting, we show that a special net of conics (circumscribed bundle) yields a $(6, q^3(q^2 - 1)(q - 1)/3, 4; 3)_q$ CDC admitting the linear group $\text{PGL}(3, q)$ as an automorphism group. Although the size of such a code asymptotically reaches the theoretical upper bound of a $(6, M, 4; 3)_q$ CDC [10], it turns out that it can be enlarged. This is done in the second part of the paper where we are able to find a set of further $(q^2 + 1)(q^2 + q + 1)$ planes of $\text{PG}(5, q)$ mutually intersecting in at most one point and extending the previous code. The $(6, q^3(q^2 - 1)(q - 1)/3 + (q^2 + 1)(q^2 + q + 1), 4; 3)_q$ CDC so obtained admits the normalizer of a Singer cyclic group of $\text{PGL}(3, q)$ as an automorphism group.

2 The Veronese embedding

Let $\text{PG}(2, q)$ the Desarguesian projective plane of order q. A quadric of $\text{PG}(2, q)$ is the locus of zeros of a quadratic polynomial, say $a_{11}X_1^2 + a_{22}X_2^2 + a_{33}X_3^2 + a_{12}X_1X_2 + a_{13}X_1X_3 + a_{23}X_2X_3$. There are six parameters associated to such a curve and hence the set of quadrics of $\text{PG}(2, q)$ forms a 5–dimensional projective space. There exist four kinds of quadrics in $\text{PG}(2, q)$, three of which are degenerate (splitting into lines, which could be in the plane $\text{PG}(2, q^2)$) and one of which is non–degenerate [11].

The Veronese map v defined by

$$a_{11}X_1^2 + a_{22}X_2^2 + a_{33}X_3^2 + a_{12}X_1X_2 + a_{13}X_1X_3 + a_{23}X_2X_3 \mapsto (a_{11}, a_{22}, a_{33}, a_{12}, a_{13}, a_{23}),$$

is the correspondence between plane quadrics and the points of $\text{PG}(5, q)$.

The quadrics in $\text{PG}(2, q)$ are:

1. $q^2 + q + 1$ repeated lines;

2. $(q^2 + q + 1)(q + 1)q/2$ quadrics consisting of two distinct lines of $\text{PG}(2, q)$ (bi–lines);

3. $(q^2 + q + 1)(q - 1)q/2$ quadrics consisting of two distinct conjugate lines of $\text{PG}(2, q^2)$ (imaginary bi–lines).

4. $q^5 - q^2$ non–degenerate quadrics (conics).

We will say that a bi–line or an imaginary bi–line is centered at A if its lines meet in the point A.
When \(q \) is even, all tangent lines to a conic \(C \) pass through a point of \(\text{PG}(2,q) \) called the \textit{nucleus} of \(C \).

It is not difficult to see that a quadric of \(\text{PG}(2,q) \) is degenerate if and only if its parameters satisfy the polynomial

\[
P_1 := X_4X_5X_6 + X_1X_6^2 + X_2X_5^2 + X_3X_4^2,
\]

when \(q \) is even and

\[
P_2 := X_1X_2X_3 + 2X_4X_5X_6 + X_1X_6^2 + X_2X_5^2 + X_3X_4^2,
\]

when \(q \) is odd.

Notice that from \([13, \text{Theorem 25.1.3}]\) the image of the Veronese map \(v \) is the dual of the image of the map \(\zeta \) defined in \([13, \text{p. 146}]\).

The group \(G := \text{PGL}(3,q) \) acts on \(\text{PG}(2,q) \) and so it also acts naturally on the plane quadrics, and hence also on \(\text{PG}(5,q) \). The four sets of quadrics described above are \(G \)–orbits. With a slight abuse of notation we will denote by \(G \) the group \(\text{PGL}(3,q) \) acting on \(\text{PG}(5,q) \). We will denote by \(O_i, i = 1,2,3,4 \) the images under \(v \) in \(\text{PG}(5,q) \) of the four types of quadrics, respectively. It turns out that \(O_1 \) is the \textit{Veronese surface} when \(q \) is odd and a plane (called \textit{degenerate Veronese surface}) when \(q \) is even. The orbits \(O_i, i = 1,2,3 \), partition the cubic hypersurface \(S \) of \(\text{PG}(5,q) \) with equation \(P_1 = 0 \) when \(q \) is even and with equation \(P_2 = 0 \) when \(q \) is odd.

It should be noted that under the map \(v \) a \(k \)–dimensional linear system of quadrics of \(\text{PG}(2,q) \) corresponds to a \((k-1) \)–dimensional projective subspace of \(\text{PG}(5,q) \). This means that pencils, nets and webs of quadrics, are represented by lines, planes and solids of \(\text{PG}(5,q) \), respectively.

Let us fix a point \(A \) of \(\text{PG}(2,q) \). The \(q+1 \) lines passing through \(A \) considered as repeated lines, the \(q(q+1)/2 \) bi–lines centered at \(A \) and the \(q(q-1)/2 \) imaginary bi–lines centered at \(A \) form a net that under the Veronese map \(v \) corresponds to a plane \(\pi_A \) contained in \(S \) and meeting \(O_1 \) at \(q + 1 \) points forming either a conic (\(q \) odd) or a line (\(q \) even). Hence, there is a set \(N \) of \(q^2 + q + 1 \) such planes. Also, through a point \(P \in S \setminus O_1 \) there passes exactly one plane of \(N \) whereas through a point of \(O_1 \) there pass \(q + 1 \) planes of \(N \). It follows that two distinct planes in \(N \) meet in a point of \(O_1 \).

Let us fix two distinct points of \(\text{PG}(2,q) \), say \(A \) and \(B \). Let \(\ell \) be the line joining \(A \) and \(B \). There are \(q^2 + q \) bi–lines of \(\text{PG}(2,q) \) containing \(\ell \). These bi–lines together \(\ell \) (considered as a repeated line) form a net that under the Veronese map \(v \) corresponds to a plane \(\pi_{\ell} \) contained in \(S \) and tangent to \(O_1 \). Hence, there is a set \(T \) of \(q^2 + q + 1 \) such planes. Also, through a point \(P \in O_2 \) there pass exactly two planes of \(T \) whereas through a point \(P \in O_1 \)
there passes exactly one plane of \mathcal{T}. It follows that two distinct planes in \mathcal{T} meet in a point of \mathcal{O}_2.

3 Circumscribed bundles

There exists a collection of q^2+q+1 conics in $\text{PG}(2,q)$ that mutually intersect in exactly one point, and hence serve as the lines of another projective plane on the points of $\text{PG}(2,q)$. Such a collection of conics is called a projective bundle of $\text{PG}(2,q)$. For more details on projective bundles, see [1].

Remark 3.1. Let us embed $\text{PG}(2,q)$ into $\text{PG}(2,q^3)$, and let σ be the period 3 collineation of $\text{PG}(2,q^3)$ fixing $\text{PG}(2,q)$. Let us fix a triangle T of vertices P, P', P'^2 in $\text{PG}(2,q^3)$. Up to date, the known types of projective bundles are as follows [5], [3]:

1. circumscribed bundle consisting of all conics of $\text{PG}(2,q)$ containing the vertices of T. This exists for all q;

2. inscribed bundle consisting of all conics of $\text{PG}(2,q)$ that are tangent to the three sides of T. This exists for all odd q;

3. self–polar bundle consisting of all conics of $\text{PG}(2,q)$ with respect to which T is self–polar. This exists for all odd q.

From [1] the conics of a circumscribed bundle form a net.

Remark 3.2. A cyclic group of G permuting points (lines) of $\text{PG}(2,q)$ in a single orbit is called a Singer cyclic group of G. A generator of a Singer cyclic group is called a Singer cycle.

A Singer cyclic group of G has order $q^2 + q + 1$ and its normalizer in G turns out to be a metacyclic group of order $3(q^2 + q + 1)$. For more details, see [14].

Remark 3.3. All these projective bundles are invariant under the normalizer of a Singer cyclic group of G.

Let B be a circumscribed bundle of $\text{PG}(2,q)$. We will need the following result, which extends [6] Lemma 3.2].

Lemma 3.4. Consider two distinct conics C_0, C_∞ of a circumscribed bundle B. If q is even, their nuclei are distinct. If q is odd, for a point $P \in \text{PG}(2,q)$ the polar lines of P with respect to C_0 and C_∞ are distinct.
Proof. If \(q \) is even or if \(q \) is odd and \(P = C_0 \cap C_\infty \) then the result follows from \([6, \text{Lemma 3.2}]\). Assume that \(q \) is odd and \(P \neq C_0 \cap C_\infty \). Let \(r_0 \) and \(r_\infty \) be the polar lines of \(P \) with respect to \(C_0 \) and \(C_\infty \), respectively. By way of contradiction let \(r_0 = r_\infty \). If \(P \in C_0 \) then \(P \in r_0 \) but \(P \notin r_\infty \), a contradiction.

Let \(A_0, A_\infty \), be the symmetric \(3 \times 3 \) matrices associated to \(C_0 \) and \(C_\infty \), respectively. Let \(\mathcal{F} = \{ C_\lambda, \lambda \in \mathbb{GF}(q) \cup \{ \infty \} \} \) be the pencil generated by \(C_0 \) and \(C_\infty \). We have that the quadrics of \(\mathcal{F} \) are the conics (non degenerate quadrics) of \(\mathcal{B} \) through \(C_0 \cap C_\infty \) and they cover all points of \(\text{PG}(2,q) \). Let \(\perp_\lambda \) denote the polarity associated with the conic in \(C_\lambda \in \mathcal{F} \). The product \(\perp_0 \perp_\infty \) is then a projectivity of \(\text{PG}(2,q) \) fixing \(P \) whose associated matrix is \(A_0^{-1}A_\infty \), where \(t \) denotes transposition. In other terms \((A_0^{-1}A_\infty)(P^t) = \rho P^t \), for some \(\rho \in \mathbb{GF}(q) \setminus \{0\} \). Analogously, \(\perp_0 \perp_\lambda \) is a projectivity of \(\text{PG}(2,q) \) whose associated matrix is \(A_0^{-1}(A_0 + \lambda A_\infty) \) and fixing \(P \). Indeed, \((A_0^{-1}(A_0 + \lambda A_\infty))(P^t) = (I + \lambda A_0^{-1}A_\infty)(P^t) = P^t + \lambda \rho P^t = (1 + \lambda \rho)(P^t) \). It turns out that \((P^t)^{\perp_\lambda \perp_0} = P \) if and only if \(P^{\perp_\lambda \perp_0} = r_0 \) if and only if \(r_0^{\perp_\lambda} = P \) for every \(\lambda \in \mathbb{GF}(q) \setminus \{0\} \). Let \(\lambda_0 \in \mathbb{GF}(q) \setminus \{0\} \) such that \(P \in C_{\lambda_0} \). Then \(P \in P^{\perp_\lambda \perp_0} = r_0 \) and hence \(P \in r_0 \), a contradiction. \(\square \)

Remark 3.5. Notice that if \(q \) is odd then the projectivity obtained as the product of two polarities associated to distinct conics of a circumscribed bundle is fixed point free.

Since \(\mathcal{B} \) is stabilized by the normalizer \(N \) of a Singer cyclic group \(S \) of \(G \) that is maximal in \(G \) \([4]\) we get that \(\mathcal{B}^G \) has size \(\frac{q^3(q^2-1)(q-1)}{3} \).

From \([7]\) the group \(G \) has three orbits on points and lines of \(\text{PG}(2,q^3) \). The orbits on points are the \(q^2+q+1 \) points of \(\text{PG}(2,q) \), the \((q^3-q)(q^2+q+1) \) points on lines of \(\text{PG}(2,q^3) \) that are not in \(\text{PG}(2,q) \) and the remaining set \(E \) of \(q^3(q^2 - 1)(q-1) \) points of \(\text{PG}(2,q^3) \). The \(G \)-orbits on lines are the \(q^2 + q + 1 \) lines of \(\text{PG}(2,q) \), the \((q^3-q)(q^2+q+1) \) lines meeting \(\text{PG}(2,q) \) in a point and the set \(L \) of \(q^3(q^2 - 1)(q-1) \) lines external to \(\text{PG}(2,q) \). The group \(N \) fixes a triangle \(T \) whose vertices are points of \(E \) and whose edges are lines of \(L \).

We will need the following lemma.

Lemma 3.6. Let \(T^G \) be the orbit of \(T \) under \(G \). If \(T_1 \) and \(T_2 \) are distinct elements of \(T^G \) then the union of their vertices always contains a 5–arc, i.e., 5 points of \(\pi \) no three of which are collinear.

Proof. The stabilizer of \(T \) in \(G \) contains \(N \) that is maximal in \(G \) and hence \(|T^G| = \frac{q^3(q^2-1)(q-1)}{3} \). Let us consider the incidence structure whose
points are the points of E and whose blocks are the vertex sets of the triangles of T^G. The incidence relation is containment. It turns out that through a point of E there pass exactly one triangle of T^G. Analogously, let us consider the incidence structure whose points are the lines of L and whose blocks are the edge sets of the triangles of T^G. The incidence relation is containment. It turns out that through a line of L there exists exactly one triangle of T^G having that line as an edge. As a consequence, the union of two triangles of T^G always contains a 5–arc of π.

\[\text{Corollary 3.7.} \] Two distinct circumscribed bundles of B^G share at most one conic.

\[\text{Proof.} \] Let B_1 and B_2 be two distinct circumscribed bundles in B^G. Let T_i be the triangle associated to B_i, $i = 1, 2$. By way of contradiction assume that C_1 and C_2 are distinct conics in $B_1 \cap B_2$. Then C_1 and C_2, considered as conics of π, contain the vertices of both triangles T_1 and T_2. From Lemma 3.6 and from \cite[Corollary 7.5]{11} we get a contradiction. \[\square \]

Under the Veronese map v the circumscribed bundles in B^G correspond to a set C of $q^3(q^2 - 1)(q - 1)/3$ planes of $PG(5, q)$ mutually intersecting in at most one point. Since no quadric in a bundle is degenerate, a plane of C is always disjoint from S.

4 Two special webs of quadrics

Firstly, we recall some basic properties of three–dimensional non–degenerate quadrics.

A \textit{hyperbolic quadric} $Q^+(3, q)$ of $PG(3, q)$ consists of $(q + 1)^2$ points of $PG(3, q)$ and $2(q + 1)$ lines that are the union of two reguli. A \textit{regulus} is the set of lines intersecting three skew lines and has size $q + 1$. Through a point of $Q^+(3, q)$ there pass two lines belonging to different reguli. A plane of $PG(3, q)$ is either secant to $Q^+(3, q)$ and meets $Q^+(3, q)$ in a conic or it is tangent to $Q^+(3, q)$ and meets $Q^+(3, q)$ in a bi–line.

An \textit{elliptic quadric} $Q^-(3, q)$ of $PG(3, q)$ consists of $q^2 + 1$ points of $PG(3, q)$ such that no three of them are collinear. A plane of $PG(3, q)$ is either secant to $Q^-(3, q)$ and meets $Q^-(3, q)$ in a conic or it is tangent to $Q^-(3, q)$ and meets $Q^-(3, q)$ in a point. For more details on hyperbolic and elliptic quadrics in a three–dimensional projective space we refer to \cite{12}.

Let P_1, P_2 be two distinct points of $PG(2, q)$. Since G is 2–transitive on points of $PG(2, q)$ we can always assume that $P_1 = (1, 0, 0)$ and $P_2 = (0, 1, 0)$.
The set of quadrics of $\text{PG}(2,q)$ passing through P_1 and P_2 are those having the coefficients $a_{11} = a_{22} = 0$ and forms a web W. Under the Veronese map ν, W corresponds to the solid $\nu(W)$ with equations $X_1 = X_2 = 0$. The solid $\nu(W)$ intersects \mathcal{S} into the set of points satisfying the equations $X_4(2X_5X_6 - X_3X_4) = 0$ and $X_4(X_5X_6 - X_3X_4) = 0$ accordingly as q is odd or even, respectively. In both cases, this set consists of a hyperbolic quadric Q and a plane tangent π to Q at the point $R = (0,0,1,0,0,0)$. In particular, π meets Q at $2q + 1$ points forming a bi–line centered at R. The point R corresponds to the repeated line P_1P_2 and the remaining $2q$ points correspond to the bi–lines of W centered at P_1 and P_2. It is easily seen that the number of such solids (hyperbolic solids) is $q(q + 1)(q^2 + q + 1)/2$.

Assume that P_1, P_2 are points of $\text{PG}(2,q^2) \setminus \text{PG}(2,q)$ conjugate over $\text{GF}(q)$. Since G is transitive on points of $\text{PG}(2,q^2) \setminus \text{PG}(2,q)$ we can assume that $P_1 = (1,\alpha,0)$ and so $P_2 = (1,\alpha^q,0)$, where α is a primitive element of $\text{GF}(q^2)$ over $\text{GF}(q)$. Again, the set of quadrics of $\text{PG}(2,q^2)$ passing through P_1 and P_2 are those whose coefficients satisfy $a_{11} = \alpha^{q+1}a_{22}$ and $a_{12} = -(\alpha + \alpha^q)a_{22}$ and forms a web U. Under the Veronese map ν, U corresponds to the solid $\nu(U)$ with equations $X_1 = \alpha^{q+1}X_2$ and $X_4 = -(\alpha + \alpha^q)X_2$. The solid $\nu(U)$ intersects \mathcal{S} into the set of points satisfying the equations $X_2(X_6^2 + \alpha^{q+1}X_6^2 + (\alpha + \alpha^q)X_5X_6 + ((\alpha + \alpha^q)^2 - \alpha^{q+1})X_2X_3) = 0$ and $X_2((\alpha + \alpha^q)^2X_2X_3 + \alpha^{q+1}X_6^2 + (\alpha + \alpha^q)X_5X_6 + X_6^2) = 0$ accordingly as q is odd or even, respectively. Notice that the polynomial $X^2 + (\alpha + \alpha^q)X + \alpha^{q+1}$ is irreducible over $\text{GF}(q)$ and that, if q is odd, α^{q+1} is a nonsquare element of $\text{GF}(q)$. Therefore, in both cases, this set consists of an elliptic quadric Q' and a plane π tangent to Q' at the point $R = (0,0,1,0,0,0)$. In this case, the number of such solids (elliptic solids) is $q(q - 1)(q^2 + q + 1)/2$.

The plane π is contained in \mathcal{S}, belongs to \mathcal{T} and meets \mathcal{O}_1 at the point R.

In the sequel a hyperbolic or elliptic solid will be denoted by $\Sigma = (\tau,Q)$ where $\tau \in \mathcal{T}$ is contained in Σ and Q is the three–dimensional hyperbolic or elliptic quadric contained in $\Sigma \cap \mathcal{S}$. We will denote by \mathcal{H} and \mathcal{E} the set of hyperbolic solids and elliptic solids, respectively.

Now, we do investigate how two solids (elliptic or hyperbolic) can intersect.

Proposition 4.1. Let $\Sigma_1 = (\pi_1,Q_1)$, $\Sigma_2 = (\pi_2,Q_2)$ be two distinct hyperbolic solids. Then, one of the following cases occur:

1. $\Sigma_1 \cap \Sigma_2$ is a plane, $\pi_1 = \pi_2$ and $|Q_1 \cap Q_2| = q + 1$;

2. $\Sigma_1 \cap \Sigma_2$ is a plane, $\pi_1 = \pi_2$ and $|Q_1 \cap Q_2| = 1$;
3. $\Sigma_1 \cap \Sigma_2$ is a plane, $|\pi_1 \cap \pi_2| = 1$ and $|Q_1 \cap Q_2| = q + 2$;

4. $\Sigma_1 \cap \Sigma_2$ is a line, $|\pi_1 \cap \pi_2| = 1$ and $|Q_1 \cap Q_2| = 2$;

Proof. Let us assume that Σ_i corresponds to the web defined by the points A_i, B_i, $i = 1, 2$. Let ℓ_i be the line A_iB_i, $i = 1, 2$.

1. The pairs A_1, B_1 and A_2, B_2 share a point and $\ell_1 = \ell_2$. Then we can assume that $A_2 = B_1$. In this case it is clear that $\pi_1 = \pi_2$ and the $q + 1$ points of $Q_1 \cap Q_2$ correspond to the bi–lines centered at $A_2 = B_1$ of the relevant webs together with $\ell_1 = \ell_2$ considered as a repeated line.

2. The pairs A_1, B_1 and A_2, B_2 share no point and $\ell_1 = \ell_2$. In this case it is clear that $\pi_1 = \pi_2$ and the point of $Q_1 \cap Q_2$ corresponds to $\ell_1 = \ell_2$ considered as a repeated line.

3. The pairs A_1, B_1 and A_2, B_2 share the point $A_2 = B_1 = \ell_1 \cap \ell_2$. In this case the planes π_1 and π_2 share only the point corresponding to the bi–line $\ell_1 \ell_2$. On the other hand, $Q_1 \cap Q_2$ contains the $q + 1$ points corresponding to the bi–lines centered at a point of the line A_1B_2 and containing the line A_1B_2 and the line through A_2. Also, $Q_1 \cap Q_2$ contains the point corresponding to the bi–line $\ell_1 \ell_2$.

4. The pairs A_1, B_1 and A_2, B_2 share no point and $\ell_1 \neq \ell_2$.

4.1 $\ell_1 \cap \ell_2 = A_2$. In this case π_1 and π_2 share only the point corresponding to the bi–line $\ell_1 \ell_2$. Here, $Q_1 \cap Q_2$ consists of the two points corresponding to the bi–line $\ell_1 A_1 B_2$ centered in A_1 and the bi–line $\ell_1 B_1 B_2$ centered at B_2. The line joining the points of $Q_1 \cap Q_2$ lies on π_1.

4.2 The points A_1, B_1, A_2, B_2 form a 4–arc in PG($2, q$). In this case π_1 and π_2 share only the point corresponding to the bi–line $\ell_1 \ell_2$. Here, $Q_1 \cap Q_2$ consists of the two points corresponding to the bi–line containing the lines $A_1 A_2$ and $B_1 B_2$ and the bi–line containing $A_1 B_2$ and $A_2 B_1$.

4.3 $\ell_1 \cap \ell_2 = B_1$. In this case by switching ℓ_1 and ℓ_2 we are again in the case 4.1.

\[\square\]

Proposition 4.2. Let $\Sigma_1 = (\pi_1, Q_1)$, $\Sigma_2 = (\pi_2, Q_2)$ be two distinct elliptic solids. One of the following cases occur:
1. \(\Sigma_1 \cap \Sigma_2 \) is a plane, \(\pi_1 = \pi_2 \) and \(|Q_1 \cap Q_2| = 1 \);

2. \(\Sigma_1 \cap \Sigma_2 \) is a line, \(|\pi_1 \cap \pi_2| = 1 \) and \(|Q_1 \cap Q_2| = 2 \);

Proof. Let us assume that \(\Sigma_i \) corresponds to the web defined by the points \(A_i, A^i_q, i = 1, 2 \). Let \(\ell_i \) be the line \(A_i A^i_q, i = 1, 2 \).

1. Assume that \(\ell_1 = \ell_2 \). In this case it is clear that \(\pi_1 = \pi_2 \) and that the unique intersection point between \(Q_1 \) and \(Q_2 \) corresponds to the repeated line \(\ell_1 = \ell_2 \).

2. Assume that \(\ell_1 \neq \ell_2 \). In this case \(\pi_1 \) and \(\pi_2 \) share a unique point corresponding to the bi–line \(\ell_1 \ell_2 \). Here \(Q_1 \cap Q_2 \) consists of the two points corresponding to the two imaginary bi–lines containing the lines \(A_1 A_2, A^1_q A^2_q \) and \(A_1 A^2_q, A^1_q A_2 \), respectively.

\[\square \]

5 Two special nets of quadrics

As already observed, the Singer cyclic group \(S \) permutes the points (lines) of \(\text{PG}(2, q) \) in a single orbit. Under the action of \(S \), the set of \(q(q + 1)(q^2 + q + 1)/2 \) bi–lines of \(\text{PG}(2, q) \) is partitioned into \(q(q + 1)/2 \) orbits of size \(q^2 + q + 1 \). Let us fix one of the \(q(q + 1)/2 \) orbits of bi–lines, say \(b \), and let us consider the incidence structure whose points are the lines of \(\text{PG}(2, q) \) and whose blocks are the bi–lines of \(b \). It turns out that a line \(\ell \) is contained in exactly two bi–lines, say \(b_1 \) and \(b_2 \), of \(b \) centered at two distinguished points of \(\ell \), say \(A_1 \) and \(A_2 \), respectively. Let \(s \) be the unique element of \(S \) such that \(A^1_q = A_2 \). Then \(b^1_q = b_2 \).

Let \(\mathcal{P}_{A_1} \) and \(\mathcal{P}_{A_2} \) be the pencils of lines with vertices \(A_1 \) and \(A_2 \). Clearly, \(s \) is a projectivity sending \(\mathcal{P}_{A_1} \) to \(\mathcal{P}_{A_2} \) that does not map the line \(\ell \) onto itself. In [15] it is proved that the set of points of intersection of corresponding lines under \(s \) is a conic \(C \) passing through \(A_1 \) and \(A_2 \) (Steiner’s argument). The projectivity \(s \) maps the tangent line to \(C \) at \(A_1 \) onto the line \(\ell \) and the line \(\ell \) onto the tangent line to \(C \) at \(A_2 \). Moreover, for any two distinct points \(A \) and \(B \) of a conic there exists a projectivity \(\psi \in S \) sending \(A \) to \(B \) and such that \(C \) is the set of points of intersection of corresponding lines under \(\psi \). Assume that \(b_i = \ell \ell_i, i = 1, 2 \). Since \(s \) sends \(\ell_1 \) to \(\ell \) and \(\ell \) to \(\ell_2 \), it follows that \(\ell_i \) is tangent to \(C \) at \(A_i, i = 1, 2 \). Embed \(\text{PG}(2, q) \) into \(\text{PG}(2, q^3) \). We have denoted by \(T \) be the unique triangle of \(\text{PG}(2, q^3) \) fixed by \(S \). Considering \(\mathcal{P}_{A_1} \) and \(\mathcal{P}_{A_2} \) as pencils in \(\text{PG}(2, q^3) \) and repeating the
previous argument, a conic C of $\text{PG}(2, q^3)$ passing through the vertices of T and containing C arises. It follows that C is a member of the circumscribed bundle B of $\text{PG}(2, q)$ left invariant by S. Let $A_3 \in C \setminus \{A_1, A_2\}$ and let b_3 the bi–line of b centered at A_3. Let s' be the unique element of S sending A_1 to A_3. Then $b_1' = b_3$. Steiner’s argument with s replaced by s', applied to the pencils P_{A_1} and P_{A_3}, gives rise to a conic C' that necessarily belongs to B. Furthermore, being unique the conic of B through two distinct points of $\text{PG}(2, q)$ it follows that $C = C'$. Since $A_1' = A_3$ and $A_1 \in \ell_1$ then $A_1' = A_3 \in \ell_1'. \ell_1$ On the other hand, the point $\ell_1' \cap \ell_1$ lies on C and of course it lies on ℓ_1. Since the line ℓ_1 is tangent to C at A_1 we have that $\ell_1' \cap \ell_1$ is the point A_1 or, in other words, ℓ_1' is the line A_1A_3. Analogously, the point $\ell_1 \cap \ell$ lies on C and of course it lies on ℓ. Therefore ℓ_1' is either the line A_1A_2 or the line A_1A_3. Since $\ell_1 \neq \ell$ it follows that $\ell_1' = A_2A_3$. We have showed that b_3 is the bi–line containing the lines A_1A_3 and A_2A_3.

We have proved the following Proposition.

Proposition 5.1. For any conic C of B there exists two distinguished points P_1 and P_2 of C such that the elements of b centered at a point of C are as follows: $t_{P_i}r$, $t_{P_2}r$, r_1r_2, where t_{P_i} is the tangent line to C at P_i, $i = 1, 2$, r is the line P_1P_2, v_i is the line PP_i, $i = 1, 2$, and P ranges over $C \setminus \{P_1, P_2\}$.

Remark 5.2. Notice that there exists a one to one correspondence between the orbits of S on bi–lines and secant lines to C.

Remark 5.3. With the notation introduced in Proposition 5.1 notice that, from [11, Table 3.7] the pencil generated by the bi–lines r_1r_2 and ru, where $t_{P_1} \cap t_{P_2} \in u$ and $P_1, P_2, P_3 \not\in u$, contains exactly a further bi–line. Moreover, this bi–line is centered at a point of C. Indeed, let C be the conic with equation $X_1X_3 - X_2^2 = 0$. The stabilizer of C in G is isomorphic to $\text{PGL}(2, q)$ and acts 3–transitively on points of C. Hence, without loss of generality, we can assume that $P_1 = (1, 0, 0)$, $P_2 = (0, 0, 1)$ and $P_3 = (1, 1, 1)$. Let v_i be the line joining the point P_3 and the point P_i, $i = 1, 2$. Then $b_3 = v_1v_2$. Notice that $U = t_{P_1} \cap t_{P_2} = (0, 1, 0)$. Let u be a line passing through U and containing none of the points P_i, $i = 1, 2, 3$. Let b_4 be the bi–line uP_1P_2. Then $b_3 \cap b_4$ consists of the four points $P_1, P_2, (1, 1, t), (1, t, t)$, with $t \neq 0, 1$. It turns out that the bi–line consisting of the lines $(1, t, t)P_2$ and $(1, 1, t)P_1$ is centered at the point $(1, t, t^2) \in C$.

The following Proposition could be of some interest.

Proposition 5.4. The incidence structure whose points are the elements of b and whose lines are the conics of the circumscribed bundle B, where a
bi–line is incident with a conic if it is centered at one of its points, forms a projective plane.

Proof. We have that \(|b| = |\mathcal{B}| = q^2 + q + 1\). Since through a point of \(PG(2, q)\) there pass \(q + 1\) conics of \(\mathcal{B}\), we have that a bi–line of \(b\) is incident with \(q + 1\) conics of \(\mathcal{B}\). On the other hand a conic is incident with \(q + 1\) bi–lines of \(b\). In particular we have seen that to a conic \(C\) of \(\mathcal{B}\) are associated two distinguished points \(P, P^s \in C\), where \(s \in S\) and all the bi–lines of \(b\) incident with \(C\) contain both \(P, P^s\). Let us consider now a conic of \(\mathcal{B} \setminus \{C\}\). Then it is necessarily of the form \(C^\mu\), for some non–trivial element \(\mu \in S\). Then two possibilities occur according as one of the points \(P^\mu, P^{s\mu}\) does belong to \(C\) or does not. If the first case occurs then, assuming that \(P^\mu\) is the point belonging to \(C\), we have that \(C \cap C^\mu = P^\mu\). If \(t_P\) denotes the tangent line to \(C\) at the point \(P\), it turns out that \(t_P^\mu\) is the tangent line to \(C^\mu\) at the point \(P^\mu\) and \(t_P^\mu = PP^\mu\). Therefore the unique bi–line of \(b\) incident with both \(C\) and \(C^\mu\) is centered at \(P^\mu\). If the latter case occurs, then, by construction (a la Steiner), \(PP^\mu \cap P^s P^{s\mu} = PP^\mu \cap P^s P^{s\mu} = PP^\mu \cap (PP^\mu)^s\) is the unique point in common between \(C\) and \(C^\mu\). Therefore the unique bi–line of \(b\) incident with both \(C\) and \(C^\mu\) is centered at \(C \cap C^\mu\).

With the notation introduced in Proposition 5.1 let us consider the three bi–lines \(t_{P_1} r, t_{P_2} r\) and \(r_1 r_2\), where \(r_1 \cap r_2 = P \in C \setminus \{P_1, P_2\}\). Under the map \(v\) they correspond to three points \(R_1, R_2, R_3\) of \(\mathcal{O}_2\), respectively. From the classification of pencils of quadrics of \(PG(2, q)\) in [11, Table 7.7] the line joining \(R_1\) and \(R_2\) corresponds to the unique pencil \(\mathcal{P}\) whose members are all bi–lines and having a base consisting of \(q + 2\) points. Hence the line \(R_1 R_2\) is completely contained in \(\mathcal{O}_2\). In particular, the bi–lines of \(\mathcal{P}\) are those containing the line \(r\) and the line \(t_{P_1} \cap t_{P_2} A\), where \(A\) ranges over \(r\). It follows that the bi–line corresponding to \(R_3\) cannot belong to \(\mathcal{P}\). Let \(v(b)\) be the image of \(b\) under \(v\). Of course \(v(b)\) contains \(R_i, i = 1, 2, 3\). Let \(\pi_e\) be the plane of \(PG(5, q)\) generated by \(R_1, R_2, R_3\) and let \(\Pi_e\) denote the set of planes obtained in this way.

The plane \(\pi_e\) meets \(\mathcal{O}_2\) at \(2q\) points consisting of the line \(R_1 R_2\) and of further \(q – 1\) points. Also, the plane \(\pi_e\) meets \(v(b)\) in \(q + 1\) points containing \(R_1, R_2, R_3\). Indeed, from Remark 5.3 through the point \(R_3\) there are \(q – 2\) lines intersecting \(\mathcal{O}_2\) in three points and \(v(b)\) in two points.

It follows that the points of \(\pi_e \cap \mathcal{O}_2\) correspond to the bi–lines of \(b\) centered at points of \(C\). We have that \(|\Pi_e| = q(q + 1)(q^2 + q + 1)/2\)

On the other hand, the plane \(\pi_e\) is contained in the hyperbolic solid defined by the points \(P_1, P_2\) and then \(\pi_e \cap \mathcal{O}_2\) consists of a conic and a line secant to it.
Since the number of hyperbolic solids equals $|\Pi_e|$ and each plane of Π_e is contained in at least a hyperbolic solid, it follows that there exists a one-to-one correspondence between planes of Π_e and hyperbolic solids.

Now, let S' be the unique Singer cyclic group of $\text{PGL}(3, q^2)$ containing S. It is clear that the circumscribed bundle \mathcal{B}' of $\text{PG}(2, q^2)$ fixed by S' induces the circumscribed bundle \mathcal{B} of $\text{PG}(2, q)$ fixed by S.

Let b_1' be the imaginary bi-line containing the lines r, r^q and centered at the point $P \in \text{PG}(2, q)$. Let C be a conic of \mathcal{B} through P and let C' be the unique conic of \mathcal{B}' containing C.

Let b' be the orbit of b_1' under S'. As already observed above there exist two points, say P_1, P_2 on C such that all elements of b' centered at a point of C pass through P_1 and P_2. Also, since $P_1 \cup P_2 \in r \cup r^q$ and the tangent line to C at P is a line of $\text{PG}(2, q)$, it follows that $P_1, P_2 \notin \text{PG}(2, q)$. Under the action of S, b' is partitioned into $q^2 - q + 1$ orbits of size $q^2 + q + 1$. Among these, we denote by b' the unique S–orbit consisting of imaginary bi–lines. It turns out that a member of b' consists of the lines $z = RP_1$ and $z^q = RP_2$ for some $R \in C$. Let $R_1, R_2 \in C$, $R_1 \neq R_2$. Let $r_i = R_iP_1$ and $r_i^q = R_iP_2$, $i = 1, 2$. Since $r_1 \cap r_2 = P_1$ it follows that $r_1^q \cap r_2^q = P_1^q$ and then $P_2 = P_1^q$.

Notice that the line P_1P_2 arises from a line a of $\text{PG}(2, q)$ that is external to C. Let $A = t_{P_1} \cap t_{P_2}$, where t_{P_1} and t_{P_2} are the tangent lines to C at P_1 and P_2, respectively. Then $A \in \text{PG}(2, q)$. Indeed, when q is odd, A is the conjugate of a with respect to C. When q is even, A is the nucleus of both C and C'.

Proposition 5.5. For any conic C of \mathcal{B} there exists two distinguished points P and P^q of \bar{C} not on C such that the elements of b' centered at a point of C are of the form XP, XP^q, where X ranges over C.

Remark 5.6. Notice that there exists a one to one correspondence between the orbits of S on imaginary bi–lines and lines external to C.

Similar arguments used in Proposition 5.4 give the following result.

Proposition 5.7. The incidence structure whose points are the elements of b' and whose lines are the conics of the circumscribed bundle \mathcal{B}, where an imaginary bi–line is incident with a conic if it is centered at one of its points, forms a projective plane.

Let d_i be the bi–line consisting of the lines a and D_iA, $i = 1, 2$, where D_1, D_2 are distinct points of a.

With the notation introduced in Proposition 5.5, let us consider two bi–lines of the form a, D_iA, $i = 1, 2$ and the imaginary bi–line XP, XP^q, for
some $X \in C$. Under the map v they correspond to three points R_1, R_2, R_3, respectively. The points R_1 and R_2 are in O_2, whereas $R_3 \in O_3$. From the classification of pencils of quadrics of $PG(2, q)$ in [11, Table 7.7] the line joining R_1 and R_2 corresponds to the unique pencil \mathcal{P} whose members are all bi–lines and having a base consisting of $q + 2$ points. Hence the line R_1R_2 is completely contained in O_2. In particular, the bi–lines of \mathcal{P} are those containing the line a and the line DA, where D ranges over a. Of course the imaginary bi–line corresponding to R_3 cannot belong to \mathcal{P}. Let $v(b')$ be the image of b' under v. Of course $v(b')$ contains R_i, $i = 1, 2, 3$. Let π_i be the plane of $PG(5, q)$ generated by R_1, R_2, R_3 and let Π_i denote the set of planes obtained in this way.

The plane π_i meets O_2 in the line R_1R_2 and O_3 in further $q + 1$ points. Indeed, from the classification of pencils of quadrics of $PG(2, q)$ in [11, Table 7.7], through the point R_3 there are q lines intersecting O_3 in two points and O_2 in one point. Each of these lines corresponds to the unique pencil consisting of $q - 2$ conics, a bi–line and two imaginary bi–lines. Also, there exists a unique line through the point R_3 intersecting both O_2, O_3 in one point. Such a line corresponds to the unique pencil consisting of $q - 1$ conics one bi–line and one imaginary bi–line. It follows that the points of $\pi_i \cap O_3$ correspond to the imaginary bi–lines of b' centered at points of C. We have that $|\Pi_i| = q(q - 1)(q^2 + q + 1)/2$

On the other hand, the plane π_i is contained in the elliptic solid defined by the points P,P^4 and then $\pi_i \cap O_3$ consists of a conic and $\pi_i \cap O_2$ of a line external to it.

Since the number of elliptic solids equals $|\Pi_i|$ and each plane of Π_i is contained in at least an elliptic solid, it follows that there exists a one to one correspondence between planes of Π_i and elliptic solids.

6 Lifting Singer cycles

Here, we assume that q is odd. From [14], we may assume that S is given by

$$
\begin{pmatrix}
\omega & 0 & 0 \\
0 & \omega^q & 0 \\
0 & 0 & \omega^{q^2}
\end{pmatrix},
$$

where ω is a primitive element of $GF(q^3)$ over $GF(q)$. It follows that the lifting of S to a collineation of $PG(5, q)$ fixing the Veronese surface O_1 has the following canonical form $A = diag(S^2, S^{q+1})$ [2].
The group $\langle A \rangle$ has order $q^2 + q + 1$. Geometrically, $\langle A \rangle$ fixes two planes of $\text{PG}(5,q)$, say ρ_1, ρ_2, and partition the remaining points of $\text{PG}(5,q)$ into Veronese surfaces. [2] Corollary 5. In particular, the planes ρ_1 and ρ_2 are both full orbits of $\langle A \rangle$ and disjoint from the cubic hypersurface S.

From [2] the cubic hypersurface S is partitioned under $\langle A \rangle$ into Veronese surfaces. The hypersurface S has $(q^2 + 1)(q^2 + q + 1)$ points and hence it consists of $q^2 + 1$ Veronese surfaces.

7 The construction of subspace codes

In this Section we prove our main result.

Lemma 7.1. Two distinct planes of Π_e can meet in at most one point.

Proof. Let σ_1, σ_2 be two distinct planes of Π_e. From Section 5 there exist uniquely determined hyperbolic solids $\Sigma_1 = (\pi_1, Q_1)$ and $\Sigma_2 = (\pi_2, Q_2)$ of H containing σ_1 and σ_2, respectively. Let $c_i = \sigma_i \cap Q_i$ be the conic in Σ_i, $i = 1, 2$.

Assume first that c_1, c_2 belong to the same S–orbit. Then, from Proposition 5.4, c_1 and c_2 share exactly one point. Since S permutes the planes of T in a single orbit we have that $\pi_1 \neq \pi_2$. Therefore, from Proposition 4.1, $Q_1 \cap Q_2$ consists of either 2 or $q + 2$ points ($q + 1$ points on a line together with a further point Y). Assume that $y = \sigma_1 \cap \sigma_2$ is a line. If $|Q_1 \cap Q_2| = 2$, then the conics c_1 and c_2 should share two points, a contradiction. If $|Q_1 \cap Q_2| = q + 2$, then it turns out that $c_1 \cap c_2 = \{Y\}$. On the other hand, since $y \subseteq \Sigma_1 \cap \Sigma_2$, the line y contains Y and must be secant to both Q_1 and Q_2. Hence, again, the conics c_1 and c_2 should share two points, a contradiction.

Assume that c_1, c_2 do not belong to the same S–orbit. Then c_1 and c_2 have no point in common. Assume that $y = \sigma_1 \cap \sigma_2$ is a line. If $Q_1 \cap Q_2$ consists of either 2 or $q + 1$ or $q + 2$ points, then since $y \subseteq \Sigma_1 \cap \Sigma_2$, from Proposition 4.1, the conics c_1 and c_2 should share at least one point, a contradiction. If $|Q_1 \cap Q_2| = 1$, since $y \subseteq \Sigma_1 \cap \Sigma_2$, then the line y either contains the point $Q_1 \cap Q_2$ and, again, the conics c_1 and c_2 should share one point, a contradiction, or the line y is secant to both c_1, c_2 and $y \cap (c_1 \cup c_2)$ consists of four distinct points. If this last case occurs, then, under the inverse of the map v, these four points correspond to four distinct bi–lines having in common $q + 1$ points of a line z and a further point $Z \notin z$. In particular, let c'_i denote the conic of the circumscribed bundle B locus of centers of the bi–lines corresponding to points of c_i, $i = 1, 2$. It turns out
that $c'_1 \neq c'_2$ (see Remark 5.2) and z is the polar line of the point Z with respect to both c'_1 and c'_2, when q is odd or Z is the nucleus of both c'_1 and c'_2, when q is even. But this contradicts Lemma 3.4.

Lemma 7.2. Two distinct planes of Π_i can meet in at most one point.

Proof. Let σ_1, σ_2 be two planes of Π_i. From Section 5 there exist uniquely determined elliptic solids $\Sigma_1 = (\pi_1, Q_1)$ and $\Sigma_2 = (\pi_2, Q_2)$ of E containing σ_1 and σ_2, respectively. Let $c_i = \sigma_i \cap Q_i$ be the conic in $\Sigma_i, i = 1, 2$.

Assume first that c_1, c_2 belong to the same S–orbit. Then, from Proposition 5.7 c_1 and c_2 share exactly one point. Since S permutes the planes of T in a single orbit we have that $\pi_1 \neq \pi_2$. Therefore, from Proposition 4.2 $Q_1 \cap Q_2$ consists of 2 points. Assume that $y = \sigma_1 \cap \sigma_2$ is a line, then the conics c_1 and c_2 should share two points, a contradiction.

Assume that c_1, c_2 does not belong to the same S–orbit. Then c_1 and c_2 have no point in common. Assume that $y = \sigma_1 \cap \sigma_2$ is a line. If $Q_1 \cap Q_2$ consists of 2 points, then, since $y \subseteq \Sigma_1 \cap \Sigma_2$, from Proposition 4.2 the conics c_1 and c_2 should share at least one point, a contradiction. If $|Q_1 \cap Q_2| = 1$, since $y \subseteq \Sigma_1 \cap \Sigma_2$, then the line y either contains the point $Q_1 \cap Q_2$ and, again, the conics c_1 and c_2 should share one point, a contradiction, or the line $y \subset O_2$ is external to both c_1, c_2. If this last case occurs, then, under the inverse of the map v, the points of y correspond to bi–lines having in common $q + 1$ points of a line z and a further point $Z \notin z$. In particular, let c'_i denote the conic of the circumscribed bundle B for the loci of centers of the imaginary bi–lines corresponding to points of $c_i, i = 1, 2$. It turns out that $c'_1 \neq c'_2$ (see Remark 5.6) and z is the polar line of the point Z with respect to both c'_1 and c'_2, when q is odd or Z is the nucleus of both conics c'_1 and c'_2, when q is even. But this, again, contradicts Lemma 3.4.

Theorem 7.3. The set $\mathcal{C} \cup \Pi_i \cup \Pi_e \cup \mathcal{N}$ consists of $q^3(q^2 - 1)(q - 1)/3 + (q^2 + 1)(q^2 + q + 1)$ planes mutually intersecting in at most one point.

Proof.

1. Assume that $\sigma_1 \in \mathcal{C}$ and $\sigma_2 \in \Pi_i \cup \Pi_e \cup \mathcal{N}$. In this case $\sigma_1 \subset O_4$ and σ_2 always contains a line in $O_2 \cup O_3$ and hence if $\sigma_1 \cap \sigma_2$ was a line then σ_1 should contain a point of $O_2 \cup O_3$.

2. Assume that $\sigma_1 \in \Pi_i \cup \Pi_e$ and $\sigma_2 \in \mathcal{N}$. In this case $\sigma_2 \subset S$ whereas σ_1 meets S in the union of a conic and a line r. Hence if $\sigma_1 \cap \sigma_2$ was a line, such a line should be r. From Table 7.7 the line r corresponds to the unique pencil of quadrics containing only bi–lines. On the other hand, a line of σ_2 corresponds to a pencil of quadrics always containing imaginary bi–lines or at most q bi–lines.
3. Assume that $\sigma_1 \in \Pi_e$ and $\sigma_2 \in \Pi_i$.

Let $\Sigma_1 = (\pi_1, Q_1)$ the unique hyperbolic solid of H containing σ_1 and let $\Sigma_2 = (\pi_2, Q_2)$ the unique elliptic solid of E containing σ_2. Notice that $Q_1 \setminus \pi_1$ is always disjoint from $Q_2 \setminus \pi_2$. Let $c_i = \sigma_i \cap Q_i$ be the conic in Σ_i, $i = 1, 2$. Assume that $\sigma_1 \cap \sigma_2$ is a line r. Since $r \subset \Sigma_1 \cap \Sigma_2$ it follows that $r \subset \pi_1 \cap \pi_2$. Under the inverse of the map v, the points of r correspond to bi–lines having in common $q + 1$ points of a line z and a further point $Z \notin z$. In particular, let c'_i denote the conic of the circumscribed bundle B locus of centers of the (imaginary) bi–lines corresponding to points of c_1 (c_2). It turns out that z is secant to c'_1 and external to c'_2. In particular, z is the polar line of the point Z with respect to both c'_1 and c'_2, when q is odd or Z is the nucleus of both conics c'_1 and c'_2, when q is even. But this, again, contradicts Lemma 3.4.

\[\square \]

Corollary 7.4. There exists a constant dimension subspace code K with parameters $(6, q^2(q^2 - 1)(q - 1)/3 + (q^2 + 1)(q^2 + q + 1), 4; 3)_{q}$.

Corollary 7.5. The code K admits a group of order $3(q^2 + q + 1)$ as an automorphism group. It is the normalizer of a Singer cyclic group of $\text{PGL}(3, q)$.

Remark 7.6. We say that a constant dimension subspace code is complete if it is maximal with respect to set–theoretic inclusion. Some computer tests performed with MAGMA \[5\] yield that our code is not complete when $q = 3$. Indeed there exist other 39 planes that can be added to our set. However, when $q = 4, 5$ our code is complete. We conjecture that our code is complete whenever $q \geq 4$.

References

[1] R.D. Baker, J.M.N. Brown, G.L. Ebert, J.C. Fisher, Projective bundles, *Bull. Belg. Math. Soc. Simon Stevin* 1 (1994), no. 3, 329-336.

[2] R.D. Baker, A. Bonisoli, A. Cossidente, G.L. Ebert, Mixed partitions of $\text{PG}(5, q)$, *Discrete Math.* 208/209 (1999), 23-29.

[3] E. Ballico, A. Cossidente, A. Siciliano, External flats to varieties in symmetric product spaces over finite fields, *Finite Fields Appl.* 9 (2003), no. 3, 300-309.
[4] J.N. Bray, D.F. Holt, Derek, C.M. Roney–Dougal, *The maximal subgroups of the low-dimensional finite classical groups*, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013.

[5] J. Cannon, C. Playoust, *An introduction to MAGMA*, University of Sydney, Sydney, Australia, 1993.

[6] A. Cossidente, F. Pavese, On subspace codes, *Designs Codes Cryptogr.* (to appear) DOI 10.1007/s10623-014-0018-6.

[7] R. Figueroa, A family of not (V,l)–transitive projective planes of order q^3, $q \not\equiv 1 \mod 3$ and $q > 2$, *Math. Z.* 181 (1982), no. 4, 471-479.

[8] D.G. Glynn, *Finite projective planes and related combinatorial systems*, Ph.D. thesis, Adelaide Univ., 1978.

[9] D.G. Glynn, On Finite Division Algebras, *J. Combin. Theory Ser. A* 44 (1987), no. 2, 253-266.

[10] T. Honold, M. Kiermaier, S. Kurz, Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4, *Contemp. Math.*-Am. Math. Soc. 632 (2015), 157-176.

[11] J.W.P. Hirschfeld, *Projective Geometries over Finite Fields*, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.

[12] J.W.P. Hirschfeld, *Finite projective spaces of three dimensions*, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1985.

[13] J.W.P. Hirschfeld, J.A. Thas, *General Galois Geometries*, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.

[14] B. Huppert, *Endliche Gruppen, I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York (1967).

[15] J. Steiner, Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander, Reimer, Berlin (1832).