Novo&Stitch: accurate reconciliation of genome assemblies via optical maps

Weihua Pan¹, Steve I. Wanamaker², Audrey M. V. Ah-Fong³, Howard S. Judelson³ and Stefano Lonardi¹,*

¹Department of Computer Science and Engineering, ²Department of Botany and Plant Sciences and ³Department of Plant Pathology and Microbiology, UC Riverside, CA 92521, USA

*To whom correspondence should be addressed.

Abstract

Motivation: De novo genome assembly is a challenging computational problem due to the high repetitive content of eukaryotic genomes and the imperfections of sequencing technologies (i.e. sequencing errors, uneven sequencing coverage and chimeric reads). Several assembly tools are currently available, each of which has strengths and weaknesses in dealing with the trade-off between maximizing contiguity and minimizing assembly errors (e.g. mis-joins). To obtain the best possible assembly, it is common practice to generate multiple assemblies from several assemblers and/or parameter settings and try to identify the highest quality assembly. Unfortunately, often there is no assembly that both maximizes contiguity and minimizes assembly errors, so one has to compromise one for the other.

Results: The concept of assembly reconciliation has been proposed as a way to obtain a higher quality assembly by merging or reconciling all the available assemblies. While several reconciliation methods have been introduced in the literature, we have shown in one of our recent papers that none of them can consistently produce assemblies that are better than the assemblies provided in input. Here we introduce Novo&Stitch, a novel method that takes advantage of optical maps to accurately carry out assembly reconciliation (assuming that the assembled contigs are sufficiently long to be reliably aligned to the optical maps, e.g. 50 Kbp or longer). Experimental results demonstrate that Novo&Stitch can double the contiguity (N50) of the input assemblies without introducing mis-joins or reducing genome completeness.

Availability and implementation: Novo&Stitch can be obtained from https://github.com/ucrbioinfo/Novo_Stitch.

Contact: stelo@cs.ucr.edu

1 Introduction

De novo genome assembly is a fundamental problem in genomics and computational biology. Despite significant algorithmic progress, this problem remains challenging due to the high repetitive content of eukaryotic genomes, short read length, uneven sequencing coverage, non-uniform sequencing errors and chimeric reads. Compared to the second generation of sequencing technology, the third generation currently on the market, i.e. Pacific Biosciences (Eid et al., 2009) and Oxford Nanopore (Clarke et al., 2009), provides longer reads and more uniform sequencing coverage, but the sequencing error rate is much higher (although errors are more uniformly distributed than the second generation).

Several de novo genome assembly tools are available, for both second and third generation sequencing data. Most assemblers for second generation sequencing data rely on the de Bruijn graph (e.g. Idury and Waterman, 1995; Peng et al., 2010; Pevzner et al., 2001; Simpson et al., 2009; Zerbino and Birney, 2008) which allows one to avoid the pairwise overlap step on the massive number of short reads in input. Assemblers for third generation sequencing data mainly use the overlap graph to store prefix-suffix overlaps between the long (noisy) reads in input (Hernandez et al., 2008; Myers, 2005). Not only are these assembly tools fundamentally different at the algorithmic level, but their designers have made different choices in the tradeoff between maximizing assembly contiguity (e.g. N50) and minimizing the probability of misassemblies (e.g. mis-joins). Often these assembly tools have dozens of parameters that allow one to adjust these trade-offs, but these parameters can be difficult to optimize for a specific input dataset and target genome. As a
result, it is common practice to generate as many assemblies as possible within the time frame of the sequencing project using different assemblers and/or parameter settings, and try to identify the highest quality assembly based on assembly statistics. However, it is difficult to identify the ‘best’ assembly just from the assembly statistics. For instance, the assembly with the highest N50 is likely to be the one with most chimeric contigs (i.e. contigs with mis-joins).

The concept of assembly reconciliation has been proposed recently as a more appealing alternative. Instead of selecting the ‘best’ assembly, assembly reconciliation tools take advantage of all the individual assemblies. They claim to produce a higher quality (consensus) assembly by merging all of the available assemblies, so that the contiguity of the assembly increases without introducing misassemblies. It turns out that the problem of assembly reconciliation is also quite challenging. While several assembly reconciliation tools are available (see, e.g. Reconciliator (Zimin et al., 2008), CISA (Lin and Liao, 2013), GAA (Yao et al., 2012), GAM_NGS (Vicedomini et al., 2013), GARM (Mayela Soto-Jimenez et al., 2014), MIX (Soueidan et al., 2013), ZORRO (Argueso et al., 2009), Metassembler (Wences and Schatz, 2015)), we have recently shown in (Alhakami et al., 2017) that none of these tools can generate a reconciled assembly which has consistently better contiguity and correctness than the assemblies given in input.

Optical mapping technology allows life scientists to produce genome-wide maps by fingerprinting long DNA molecules, typically via nicking restriction enzymes. Linear DNA fragments are stretched on a glass surface or in a nano-channel array, then the locations of restriction sites are identified with the help of dyes or fluorescent labels. While the cost of an optical map depends on the genome size, it is not prohibitive in the overall budget of a sequencing project. For a eukaryotic genome of about 1 Gb, the cost ranges from $5000 to $10 000. Based on our survey of the literature in the last three years, about half of the major eukaryotic sequencing projects used an optical map in the assembly pipeline, e.g. goat (Bickhart et al., 2017), human (Pendleton et al., 2015), sea bass (Vij et al., 2016), Ae.tauschii (Zimin et al., 2017), apple (Daccord et al., 2017), barley (Mascher et al., 2017), maize (Jiao et al., 2017b), quinoa (Jarvis et al., 2017).

In this paper, we introduce an assembly reconciliation algorithm called NovoStitch that takes advantage of optical maps to accurately carry out assembly reconciliation. One or more optical maps are used to obtain coordinates for the assembled contigs, which are then stitched based on their alignments. The availability of the optical map dramatically reduces the complexity of the problem and the possibility of introducing mis-joins. To take advantage of the optical map, however, contigs have to be sufficiently long so that they can be reliably aligned (e.g. 50 Kbp or longer). The source code of NovoStitch can be obtained from https://github.com/ucrbioinfo/NovoStitch.

2 Problem definition

In the following, we will use $S = \{s_1, s_2, \ldots, s_k\}$ to denote the set of contigs in the genome assembly, where each contig s_i is a string over the alphabet $\{A, C, G, T\}$. Given our interest in assembly reconciliation, S is going to be the union of multiple assemblies, obtained from multiple assemblers and/or parameters settings. In other words, S is expected to be highly redundant, i.e. each genomic location is expected to be covered by multiple contigs (unless it is highly repetitive). Henceforth, we assume that the contigs in S are chimera-free (see ‘Materials and methods’ section below for details).

An optical map is composed by a set of optical molecules, each of which is represented by an ordered set of positions for the restriction enzyme sites. As described above, optical molecules are obtained by an assembly process similar to sequence assembly, but we will reserve the term ‘contig’ exclusively for sequenced contigs. We will use $M = \{o_1, o_2, \ldots, o_m\}$ to denote the optical map, where each optical molecule o_i is an ordered set of integers, corresponding to the distances in base pairs between two adjacent restriction enzyme sites on molecule o_i. By digesting in silico the contig s_j using the same restriction enzyme used to produce the optical map and matching the ordered list of adjacent distances between sites, one can align the contigs in S to optical map M. High quality alignments allow some of the contigs to be anchored at specific coordinates on the optical map. In addition, contigs can be oriented with respect to each other. A reliable alignment requires contigs to be sufficiently long (e.g. 50 Kbp or longer). When multiple contigs align to the same optical molecule, an estimate of the distance between them can be obtained. If the distance is positive, a gap is introduced and a scaffold can be formed (Shelton et al., 2015). When the distance is negative (i.e. contigs are overlapping), it may be possible to stitch them.

Given our interest in merging multiple assemblies, here we focus on the case when contigs are overlapping. A series of practical factors make the problem of stitching overlapping contigs non-trivial. These factors include imprecisions in optical maps (e.g. mis-joins introduced during the assembly of the optical map), inaccurate alignment between contigs and optical molecules, and multiple anchoring positions for the same contigs that are not consistent with each other. As a consequence, it is appropriate to frame this problem as an optimization problem.

As said, we are given multiple chimera-free assemblies represented by a set of contigs S, an optical map M and a set of alignments $A = \{a_{1,1}, a_{1,2}, \ldots, a_{n,m}\}$ of S to M, where a_{ij} is the alignment of contig s_i to optical molecule o_j. The problem is to stitch overlapping contigs based on A and obtain a new set of longer contigs $T = \{t_1, t_2, \ldots, t_k\}$ such that (i) T covers the same portion of the genome covered by S, (ii) k is as small as possible and (iii) the conflicts of T with respect to A are minimized. This optimization problem is not rigorously defined unless one defines precisely the concept of conflict, but this description captures the spirit of what we want to accomplish. Even if the notion of conflict could be made precise, this multi-objective optimization problem would be hard to solve. Instead of solving this problem, we propose an iterative method that accomplishes a similar objective.

3 Materials and methods

The proposed stitching method is an iterative algorithm. Each iteration is composed of three phases: data reduction, stitching and post-processing. The real example in Figure 1 will help understanding the phases. In (A) eight assemblies of cowpea were concatenated and aligned the contigs (blue) on the optical map (green) (see ‘Experimental results’ for details on these assemblies). As said, we assume that the input assemblies are free of chimeric contigs. Optical maps are routinely used to split chimeric contigs, which are easy to detect because they induce alignment conflicts. Unfortunately, since optical maps are obtained via an assembly process similar to sequence assembly, optical molecules can also be chimeric. According to Jiao et al. (2017a), ‘in around 7% of the (alignment) conflicts, the consensus map (optical map) was wrong’. Based on our experience, mis-joins in optical molecules typically
occurs in repetitive regions of the genome, which induce long stretches of regularly-spaced bands. For this reason, we have developed a new tool that can accurately split chimeric contigs (unpublished).

Observe that among the eight assemblies, contigs produced by some assemblers can extend much further than others. In the first phase, the smallest subset of contigs that cover the same genomic region of the eight assemblies is selected (highlighted in red in the figure). In the second phase, the two MTP contigs are stitched to produce (B). Observe that in this case the resulting 22 Mb contig is much longer than the expected 12.5 Mb due to additional stitching that occurred in later iterations. In the third phase, stitched contigs are checked for consistency, then the entire process is iterated. The pipeline of the algorithm is illustrated in Figure 2.

3.1 Phase 1: Coordinate unification, conflict resolution and MTP
At high level, phase one has three major steps. In step 1, we align in silico-digested chimera-free contigs to the optical map (e.g. for a Bionano optical map, we use RefAligner), but not all alignments are used. We only consider alignments that (i) meet a minimum confidence level (typically confidence 25 in the case of RefAligner) and (ii) do not create conflict with each other (see below for details). Since some contigs can have high-quality conflict-free alignments to more than one optical molecule (which could indicate alternative overlaps), a 'unification' step is necessary (step 2, see below for details). Finally in step 3, we compute the minimum tiling path (MTP) of the contigs. Formally, let S be the initial set of contigs, and M be the optical map. Let A = \{a_1, a_2, \ldots, a_m\} be the set of high-quality conflict-free alignments of S to M, where \(a_i\) is the alignment of contig \(a_i\) to optical molecule \(o_i\). Let \(R = \{r_1, r_2, \ldots, r_k\}\) be the set of intervals of M covered by the contigs S through the set of alignments A. A minimum tiling path of S is the smallest set \(P \subseteq S\) such that P covers every interval in R.

3.1.1 Selecting conflict-free alignments
Our algorithm for reducing false alignments relies on a conflict graph. The conflict graph is an undirected hypergraph in which each vertex represents an alignment, and each hyperedge connects four vertices when the corresponding four alignments conflict with each other. Nodes of the hypergraph are weighted by the confidence of the alignments. Let us call \(a_{p}, a_{q}, a_{p}, a_{q}\) the alignments of contig \(p\) and \(q\) on optical molecule \(i\) and \(j\), respectively. We say that \(a_{p}, a_{q}, a_{p}, a_{q}\) is a conflict if any of them have an orientation conflict or a coordinate conflict. An orientation conflict occurs when the orientations of \(a_{p}\) and \(a_{p}\), and the orientations of \(a_{q}\) and \(a_{q}\) are neither both 5’–3’ nor both 3’–5’ (depending on whether \(i\) and \(j\) are from the same strand of the genome or not). A coordinate conflict occurs when the distance between \(a_{p}\) and \(a_{p}\) is significantly different from the distance between \(a_{q}\) and \(a_{q}\). When four alignments have a conflict, at least one must be a false alignment. We model the

Fig. 1. (A) Contigs (blue) of eight assemblies mapped to one optical molecule (green); minimum tiling path contigs are highlighted in red; (B) final stitched contig, at the end of the iterative stitching process (observe that the final contig spans a genomic region longer than the two MTP contigs)

Fig. 2. Pipeline of Novo&Stitch; the input to the pipeline is a set of chimera-free contigs and an optical map

Pipeline of Novo&Stitch; the input to the pipeline is a set of chimera-free contigs and an optical map

Phase 1: data reduction
- chimera-free contigs
- align contigs
- coordinate unification and conflict resolution
- stitch overlapping contigs

Phase 2: stitching
- MTP contigs
- stitched contigs

Phase 3: post-stitch processing
- Output assembly
- MTP contigs
- confirmed stitched contigs
- map original contigs to stitched contigs
- remove unreliable stitching

Output assembly
- stitched contigs
- sequence alignments
- MTP contigs
- confirmed stitched contigs
- align to optical map
- repeat if at least one contig was stitched
problem of removing false alignments as a weighted vertex cover problem on the conflict hypergraph.

Since the weighted vertex cover problem on hypergraph is NP-hard, we use an approximation algorithm. We formulate weighted vertex cover as an integer program, as follows:

\[
\text{minimize } \sum_{i \in V} w_i x_i \\
\text{subject to } x_i + x_j + x_k + x_l = 1 \quad \forall \text{ hyperedges } (i, j, k, l) \in E \\
x_i \in \{0, 1\} \quad \forall \text{ vertices } i \in V
\]

where \(V \) and \(E \) are the vertex set and hyperedge set of the conflict hypergraph, respectively.

In order to solve the integer program we relax it to a linear program, and solve the linear program by standard software packages (e.g. GLPK or CPLEX). The solution of the linear program is transformed into an integer solution as follows. We sort each variable \(x_i > 1/4 \) in decreasing order and we add the corresponding vertex to the solution if the new vertex covers at least one hyperedge that was not covered previously. This greedy algorithm is a 4-approximation algorithm (see below), which is the best known approximation achievable in polynomial time for hypergraph with hyperedges of constant size (Cardinal et al., 2012).

Theorem 1. The LP-based greedy algorithm for the weighted vertex cover on hypergraph gives an approximation ratio of 4.

Proof. Let \(C \) be a vertex cover. Consider a hyperedge \((i, j, k, l) \in E\). Since \(x_i + x_j + x_k + x_l \geq 1 \), either \(x_i \geq 1 \) or \(x_j \geq 1 \) or \(x_k \geq 1 \) or \(x_l \geq 1 \). Therefore, \((i, j, k, l) \) is covered. If \(C \) is an optimum vertex cover, then \(w(C) \leq 4w(C') \) because

\[
w(C') \geq \sum_{i \in V} w_i x_i' \geq \sum_{i \in S} w_i x_i' \geq \frac{1}{4} \sum_{i \in V} w_i \geq \frac{1}{4} \sum_{i \in C} w_i = \frac{w(C)}{4}
\]

First inequality: LP is a relaxation of ILP. Second inequality: \(S \subseteq V \). Third inequality: \(x_i' \geq 1/4 \) for all \(i \in S \). Fourth inequality: \(C \subseteq S \).

Details of the approximation algorithm are shown in Algorithm 1. In NovoStitch, the conflict graph is first divided into connected components. The approximation algorithm is run on connected components with more than twenty vertices. For components with at most twenty nodes, we run the exhaustive (optimal) algorithm.

3.1.2 Unifying coordinates and computing the MTP

Our algorithms for computing the MTP and coordinate unification use the association graph between optical molecules and contigs. The association graph is an undirected graph in which each vertex represents an optical molecule and an edge indicates that the two molecules share at least one contig aligned to both of them. The weight of edge \((o_s, o_t)\) between molecule \(o_s\) and \(o_t\) is obtained from the confidences of the alignments of all common contigs, that is \(\frac{1}{\sum_{s \in S} \sum_{o \in \text{contigs}} (\text{conf}(s, o_s) + \text{conf}(s, o_t))} \) where \(S \) and \(\text{contigs} \) are the sets of contigs aligned to \(o_s \) and \(o_t \), respectively, and \(\text{conf}(s, o) \) is the confidence score provided by ReAligner between contig \(s \) and molecule \(o \). The confidence score represents the quality of the alignment (higher is better). For the MTP and unification step, we do not use association graph directly, rather the minimum spanning forest (MSF) of the association graph. By construction, MSF identifies the most reliable alignments (i.e. highest total confidence) between contigs and optical molecules.

We first unify the coordinates of all contigs with respect to the optical molecules they are aligned to using the MSF of \(A \), as follows.

We traverse each MST, starting from the vertex that represents the molecule that has the highest total alignment confidence score (for the contigs aligned to it). That node becomes the root of the MST and it defines the origin of the coordinate system. As we traverse the MST, we assign the coordinates of each contig on a molecule based on average position of all the common contigs. Specifically, the position of molecule \(x \) with respect to molecule \(r \) is \((1/|C|) \sum_{c \in C} (\text{mid}(x, c) - \text{mid}(r, c))\) where \(C \) is the set of contigs aligned to both \(r \) and \(x \), and \(\text{mid}(m, c) \) gives the middle point of contig \(c \)’s alignment on molecule \(m \).

Once the unification process is complete, we rebuild the association graph using the updated coordinates. At this stage we also remove contigs which are completely contained in other contigs, since they will not be used in the stitching. In order to compute the MST we build another graph, called the overlap graph. The overlap graph \(O \) is an unweighted directed acyclic graph (DAG) in which vertices represent contigs and directed edges indicate overlaps between the corresponding contigs (oriented left to right along the coordinates induced by the alignment). Each optical molecule induces an overlap (sub)graph for the contigs aligned to it, but since a contig can align to multiple optical molecules, some of the overlap subgraphs can be connected. In order to efficiently connect the subgraphs in \(O \), we use the MSF of \(A \). Recall that by construction the nodes (which are optical molecules) in the same MST of \(A \) share common contigs. We process each minimum spanning tree in \(A \), as we did above. As we traverse the MST we connect the corresponding subgraphs in \(O \). Edges are added to \(O \) only if no cycles are introduced.

Once the overlap graph is finalized, we compute the MTP on each connected component of the graph. In the ideal case, each connected component \(O_t \) of \(O \) (which is a DAG by construction) is expected to have exactly one source and one sink because the genome is one-dimensional and the chain of overlaps is expected to have exactly one leftmost contig (source of the DAG) and exactly one rightmost contig (sink). When a connected component \(O_t \) has one source \(s \) and one sink \(t \), the MTP problem reduces to finding the path from \(s \) to \(t \) with the smallest number of vertices. In practice however, \(O_t \) may have a set \(O_s \) of sources and a set \(O_t \) of sinks. A simple example explains why this could happen. Assume three stagered contigs \(A, B, C \) of the same length which overlap two disjoint optical molecules: the first molecule overlaps \(A, B, C \) in their prefixes, while the second molecule overlap only \(B, C \) on their suffixes.

Algorithm 1 Greedy algorithm for weighted vertex cover problem on hypergraph

1: procedure LP_Round_Greedy \((V, E)\)
2: Compute the optimum solution \(x^* \) to LP relaxation (2).
3: \(S = \{ i \in V : x_i^* \geq 1/4 \} \)
4: \(C = \emptyset \)
5: \(E' = E \)
6: for \(i \in S \) do
7: \(\text{if new} = \text{False} \)
8: for \(e \in E' \) do
9: \(\text{if } i \in e \) then
10: \(\text{if new} = \text{True} \)
11: \(\text{add } i \to C \) \(\triangleright \) pick \(i \), if it appears in at least one new superedges
12: \(\text{if new} = \text{True} \) then
13: \(\text{return } C \)

We traverse each MST, starting from the vertex that represents the molecule that has the highest total alignment confidence score (for the contigs aligned to it). That node becomes the root of the MST and it defines the origin of the coordinate system. As we traverse the MST, we assign the coordinates of each contig on a molecule based on average position of all the common contigs. Specifically, the position of molecule \(x \) with respect to molecule \(r \) is \((1/|C|) \sum_{c \in C} (\text{mid}(x, c) - \text{mid}(r, c))\) where \(C \) is the set of contigs aligned to both \(r \) and \(x \), and \(\text{mid}(m, c) \) gives the middle point of contig \(c \)’s alignment on molecule \(m \).

Once the unification process is complete, we rebuild the association graph using the updated coordinates. At this stage we also remove contigs which are completely contained in other contigs, since they will not be used in the stitching. In order to compute the MST we build another graph, called the overlap graph. The overlap graph \(O \) is an unweighted directed acyclic graph (DAG) in which vertices represent contigs and directed edges indicate overlaps between the corresponding contigs (oriented left to right along the coordinates induced by the alignment). Each optical molecule induces an overlap (sub)graph for the contigs aligned to it, but since a contig can align to multiple optical molecules, some of the overlap subgraphs can be connected. In order to efficiently connect the subgraphs in \(O \), we use the MSF of \(A \). Recall that by construction the nodes (which are optical molecules) in the same MST of \(A \) share common contigs. We process each minimum spanning tree in \(A \), as we did above. As we traverse the MST we connect the corresponding subgraphs in \(O \). Edges are added to \(O \) only if no cycles are introduced.

Once the overlap graph is finalized, we compute the MTP on each connected component of the graph. In the ideal case, each connected component \(O_t \) of \(O \) (which is a DAG by construction) is expected to have exactly one source and one sink because the genome is one-dimensional and the chain of overlaps is expected to have exactly one leftmost contig (source of the DAG) and exactly one rightmost contig (sink). When a connected component \(O_t \) has one source \(s \) and one sink \(t \), the MTP problem reduces to finding the path from \(s \) to \(t \) with the smallest number of vertices. In practice however, \(O_t \) may have a set \(O_s \) of sources and a set \(O_t \) of sinks. A simple example explains why this could happen. Assume three staggered contigs \(A, B, C \) of the same length which overlap two disjoint optical molecules: the first molecule overlaps \(A, B, C \) in their prefixes, while the second molecule overlap only \(B, C \) on their suffixes.
One should expect the overlap DAG to be $A \rightarrow B \rightarrow C$. But now assume that the quality of the alignment of B with the first molecule is poor, so in the first molecule we get $A \rightarrow C$, in the second molecule we get $B \rightarrow C$. When we merge them, we end up with a DAG with two sources. When either $|O_s| > 1$ or $|O_f| > 1$, the MTP problem requires finding the smallest subgraph P_i of O, such that for any source-sink pair (s, t), $s \in O_s$, $t \in O_f$, in which t is reachable from s in O, t is also reachable from s in P_i. We call this problem the smallest sub-DAG problem, defined as follows.

Definition 2 (Smallest SubDAG). Input: A connected directed acyclic graph $G = (V, E)$, with source set S, and sink set T. Output: A subgraph $G' = (V', E')$ of G such that (i) G' is a connected directed acyclic graph, (ii) $S \subseteq V'$, (iii) $T \subseteq V'$, (iv) $|V'|$ is the smallest among all the subgraphs satisfying (i–iii).

Theorem 3. Smallest SubDAG is NP-hard.

Proof. We show that Set Cover $\leq P$ Smallest SubDAG. Let (U, C) be an instance of Set Cover, where U is the universe of sets and C represents the collection of sets. Given (U, C) we build an instance $(G = (V, E), S, T)$ of Smallest SubDAG as follows. For each element in U, build a vertex in V and in T. For each set in C, build a vertex in V. Let $S = \{s\}$ and add s to V. For each set c in C, and each element e in U, if e belongs to c, build an edge in E from the vertex corresponding to c to the vertex corresponding to e. For each set c in C, build an edge in E from s to the vertex corresponding to c. The equivalence between these two problems is obvious.

Given the hardness of the Smallest SubDAG problem, we propose a greedy heuristic. First, we find the shortest path from each source to each sink. The shortest path among all these paths is chosen as the initial path. Then, the source and sink vertices not covered by the chosen path are added to the solution iteratively by calculating the shortest path between them to the current sub-DAG. Details of this greedy algorithm are shown in Algorithm 2.

Algorithm 2 Greedy algorithm for Smallest SubDAG problem

1. procedure $G\text{al}(G = (V, E), S, T)$
2. current_set $\leftarrow S \cup T$
3. subgraph $\leftarrow G$
4. for s in S and t in T do
5. path \leftarrow BFS(G, s, t) \triangleright compute the shortest path in G from s to t
6. if no_vertices(path) $<$ no_vertices(subgraph) then
7. subgraph \leftarrow subgraph \leftarrow path, s, t
8. current_set \leftarrow current_set $\leftarrow \{s^*, t^*\}$
9. while current_set $\neq \emptyset$ do
10. path* $\leftarrow G$
11. for x in current_set do
12. for y in subgraph do
13. if $x \in S$ then $\triangleright x$ is a source
14. path \leftarrow BFS(G, x, y)
15. else $\triangleright x$ is a sink
16. path \leftarrow BFS(G, y, x)
17. if no_vertices(path) $<$ no_vertices(path*) then
18. path*, $x^* \leftarrow$ path, x
19. current_set, subgraph \leftarrow current_set $\leftarrow x^*$, subgraph \cup path*
20. return subgraph

3.2 Phase 2 and 3: Contig stitching and post-processing

In phase 2 we first compute the sequence alignments for MTP contigs that are overlapping according to coordinates obtained in phase 1. For each pair of overlapping contigs, we determine the best alignment between the corresponding sequences. If the best alignment is (i) above a certain length and (ii) of sufficient quality (e-value), and (iii) consistent with the optical map coordinates, the stitching is carried out. When stitching two aligned contigs c_1 and c_2, both c_1 and c_2 are composed of three parts, left overhang l_1, l_2 right overhang r_1, r_2 and common region (aligned region) m_1, m_2. The new stitched contig d is formed by the concatenation of (i) the longest between l_1 and l_2 (ii) either m_1, m_2 depending which one is closer to the S of its respective contig and (iii) the longest between r_1 and r_2. If c_2 is stitched with c_1, neither c_1 or c_2 will be used for stitching with the other contig in this iteration. Contig d could be stitched to other contigs in later iterations.

In Phase 3, we check the correctness of the stitching by aligning the two original contigs to the new stitched contig. The difficulty of this step stems from the possible fragmentation of alignments. Sequence alignment tools (e.g. Blast) can generate a large set of alignments, many of which are not informative. To determine the best overall alignment, we find the subset of mutually compatible alignments (from the set of all alignments) which has the longest total length. We say that two alignments are compatible if their overlap is smaller than a given fraction of the shorter alignment.

Definition 4 (Optimal set of mutually compatible alignments). Input: A list A of n alignments and their lengths, and a compatibility matrix C in which $C[i,j] = True$ if alignment i is compatible with alignment j. Output: A subset A' of A in which (i) for any pair of alignments $a, b \in A'$, $C[a, b] = True$ and (ii) the total length of the alignments in A' is the largest among all the subsets of A satisfying (i).

To solve this problem, we use a dynamic programming algorithm. All alignments are first sorted by their starting positions. Let $S[i]$ be the total length of the alignments selected from $A[1 \ldots i]$ that includes alignment i. First we initialize $S[1]$ to the length of first alignment. The rest of the dynamic programming vector can be filled using the following recurrence relation:

$$S[i] = L[i] + \max_{j=1, \ldots, i-1} (S[j] : C[i, j] = True)$$

Details of this dynamic programming algorithm are described in Algorithm 3. The time complexity of this dynamic programming algorithm is $O(n^3)$. To speed it up, we remove alignments shorter than a given threshold to reduce the value of n.

After the optimal set of compatible alignments is computed, we determine the fraction of the two original overlapping contigs mapped to the stitched contig. If the fraction is below a predefined threshold, the stitching is cancelled.

Phase 1, 2 and 3 are repeated iteratively until no further stitching takes place. Recall that when we unify the coordinates, we compute the average position of all common contigs. When a contig appears in multiple fragments, it can affect the coordinates of other contigs, which in turn can change the detection of overlapping contigs. When we stitch contigs, the coordinates of several contigs can change, which can reveal overlaps that were not detected before. That is why we use an iterative strategy: later iterations can ‘make up’ for stitches that were missed in earlier iterations.

The final assembly produced in output is the MTP of the latest stitched assembly.
4 Experimental results

We tested Novo&Stitch on multiple PacBio assemblies of (i) cowpea (*Vigna unguiculata*) and (ii) *Phytophthora infestans*. Both sequencing projects are currently underway at UC Riverside. Cowpea is a legume crop that is resilient to hot and drought-prone climates. This legume is the primary source of protein in sub-Saharan Africa and other parts of the developing world. *P. infestans* is responsible for the late blight diseases of tomato and potato. It was the major culprit for the European potato famines of the 19th century. Worldwide the disease causes around $6 billion of damage to crops each year.

We considered running Novo&Stitch on the assemblies provided for the Assemblathon 2 competition (Bradnam et al., 2013) in which optical maps were used to evaluate the quality of the assemblies. Unfortunately, the authors of (Bradnam et al., 2013) could not locate the optical maps. We also considered comparing the results of Novo&Stitch against published assembly reconciliation tools, e.g. CISA (Lin and Liao, 2013), GAA (Yao et al., 2012), GAM_NGS (Vicedomini et al., 2013), GARM (Mayela Soto-Jimenez et al., 2014), MIX (Soueidan et al., 2013), ZORRO (Argueso et al., 2009), Meta assembler (Wences and Schatz, 2015). However, (1) we have shown in Alhakami et al. (2017) that none of these tools can generate assemblies that are consistently better than the assemblies provided in input, and (2) the comparison would not be entirely fair because these tools do not take advantage of the optical map.

4.1 Experimental results on cowpea assemblies

Cowpea (*Vigna unguiculata*) is a diploid with a chromosome number 2n = 22 and an estimated genome size of 620 Mb. The genome has very low heterozygosity; in practice it can be considered haploid. We sequenced an elite African variety (IT97K-499-35) using single-molecule real-time sequencing (Pacific Biosciences RSII). A total of 87 SMRT cells yielded about 6 M reads for a total of 56.84 Gbp (91.7x genome equivalent). To test Novo&Stitch we generated several assemblies with a mix of parameters, polishing qualities and assembly tools. We used Canu (Berlin et al., 2015; Koren et al., 2017), Falcon (Chin et al., 2016) and ABruijn (Lin et al., 2016) to generate eight assemblies. Canu was run with different parameters to generate six of the eight assemblies (parameters shown in Table 1).

```java
Algorithm 3 Dynamic programming algorithm for optimal set of compatible alignments
1: procedure Compatible(A, Δ, C)
2: A’, S[i], Last[i] ← Φ, Δ, [1], NULL
3: for i ← 2 to n do
4: S[j], f’ ← L[i], 0
5: for j ← 1 to i - 1 do
6: if C[i, j] = True then
7: if S[i] < S[j] + L[j] then
8: S[j], f’ ← S[j] + L[j], j
9: Last[i] ← f’
10: S’ ← 0, pos’ ← 0
11: for i ← 1 to n do
12: if S[i] > S’ then
13: S’, pos’ ← S[i], i
14: i ← pos’
15: while i ≠ NULL do
16: A’, i ← A’ ∪ A[i], Last[i]
17: return A'
```

Table 1. Parameter choices for Canu v1.3

CANU assembly	cMS	cMEE	cOC	Quiver
1	Low	Default	Default	✓
2	Low	Default	100	✓
3	High	Default	100	✓
4	High	0.15	100	
5	Normal	0.15	100	
6	High	Default	100	✓

Note: Column cMS reports the value of corMapSensitivity, cMEE reports corMaxEvidenceErate, cOC reports corOutCoverage. Three of these assemblies were polished with Quiver.

Canu1, Canu2, and Canu4 were polished with Quiver. Chimeric contigs were detected and split using a tool currently under development in our lab (unpublished). Our tool can also detect mis-joins in the optical maps. This step could have been carried out manually, by inspecting the alignments of contigs against the optical map via IrysView. The final eight assemblies were inspected visually to ensure that they were indeed chimera-free.

The basic statistics for the eight assemblies are provided in Table 2. In addition to standard contiguity statistics [N50 (length for which the set of contigs of that length or longer accounts for at least half of the assembly size), L50 (minimum number of contigs accounting for at least half of the assembly), NG50 (length for which the set of contigs of that length or longer accounts for at least half of the 620Mb genome) and LG50 (minimum number of contigs accounting for at least half of the 620Mb genome)], total assembled size and contig length distributions, we evaluated the assemblies using several other independent metrics. We mapped (i) about 129K cowpea WGS contigs assembled from short reads (Muñoz-Amatriain et al., 2017; assembly v.0.03), (ii) about 200M 2×100 paired-end Illumina reads generated at UCR in 2014 and (iii) transcripts assembled from RNA-Seq short reads. In Table 2 we report the percentage of DNA sequenced mapped with BWA with a minimum MapQ of 30. Finally, we compared the assemblies against the high-density genetic map available from (Muñoz-Amatriain et al., 2017). To evaluate possible chimeric contigs, we BLASTed 121 bp-long design sequence for the 51 128 genome-wide SNPs described in (Muñoz-Amatriain et al., 2017) against each assembly, then we identified which contigs had SNPs mapped to them, and what linkage group (chromosome) of the genetic map those mapped SNPs belonged to. Chimeric contigs are revealed when their mapped SNPs belong to more than one linkage group. The last line of Table 2 reports the total size of contigs in each assembly for which (i) they have at least one SNPs mapped to it and (ii) all SNPs belong to the same linkage group (i.e. likely to be non-chimeric). Observe in Table 2 that there is no single assembly that is the ‘best’ in each row. Canu4 has the highest N50 and the lowest L50, but Canu2 has the longest contig. Canu1 has the highest NG50. ABruijn has the smallest number of contigs.

Novo&Stitch was run on the eight assemblies in Table 2 using two Bionano Genomics optical maps, the first obtained using the BspQI nicking enzyme (which recognizes ‘GCTTC’), and the second obtained with the BssSI nicking enzyme (‘CAGGAG’). The BspQI optical map had 508 assembled optical molecules with a molecule N50 of 1.62 Mb and a total length of 622.21 Mb. The BssSI optical map had 743 assembled optical molecules with a molecule N50 of 1.02 Mb and a total length of 577.76 Mb. Both optical maps were assembled at UC Davis using the Bionano assembler. For each optical map we used two sets of parameters, called ‘strict’
Table 2. Assembly statistics of eight assemblies for cowpea; all reads/transcripts/BAC assemblies were mapped with BWA, MapQ≥30; number in boldface are the best statistics (min or max) across assemblies; for # contigs ≥100kb and ≥1Mbp it is not obvious whether to report min or max.

Assembly	Canu1	Canu2	ABruijn	Falcon	Canu3	Canu4	Canu5	Canu6
Contig N50 (bp)	4859617	4498063	1896002	2869362	3280469	2797949	2666731	5340274
Contig L50	30	32	74	49	42	51	55	29
Contig NG50 (bp)	3767556	3417577	1330435	1737012	2431239	1949515	2068575	3451071
Contig LG50	43	45	119	73	63	73	77	42
Total assembled (bp)	506154442	516187163	478230679	511933729	503187311	516357734	515949175	507773747
# contigs ≥100kb	894	928	538	1820	1038	1110	1140	897
# contigs ≥1Mbp	104	107	151	118	128	142	145	103
# contigs ≥10Mbp	7	8	0	1	2	2	0	9
Longest contig (bp)	1847372	18498533	8846014	10554495	14090735	14331160	9775097	17211165
WGS contigs ≥500bp, % mapped (129K)	92.59433%	92.64181%	92.30106%	91.95107%	92.52969%	92.63057%	92.62330%	92.59763%
UCR2014 reads, % properly paired (202M)	64.35764%	63.50279%	64.21367%	59.49035%	64.38425%	63.00587%	63.22414%	62.84466%
Assembled transcripts, % mapped (157K)	92.60644%	94.83972%	94.95582%	94.16235%	92.65416%	92.52276%	92.46959%	94.85657%
Total length with 100% consistent LG (bp)	331956528	338556993	379029914	312593019	356505616	349534672	347586448	425812490

Table 3. Assembly statistics of Novo&Stitch on the eight cowpea assemblies using either the BspQI or the BssSI optical map, ‘best of 8’ is a copy the best statistics (boldface) among the eight assemblies in Table 2—no individual assembly, however, has these statistics; see text about strict and loose parameters; all DNA sequences were mapped with BWA, MapQ≥30.

Assembly	Best of 8	BspQI (loose)	BspQI (strict)	BssSI (loose)	BssSI (strict)
Contig N50 (bp)	4859617	9944851	9944851	9584779	9584779
Contig L50	29	19	19	19	19
Contig NG50 (bp)	3767556	9944851	8187172	7936155	7826863
Contig LG50	42	19	24	24	24
Total assembled (bp)	51681763	522393141	523526657	520162831	523249509
# contigs ≥100kb	538	791	791	798	798
# contigs ≥1Mbp	N/A	211	218	211	218
# contigs ≥10Mbp	9	18	17	17	17
Longest contig (bp)	18498533	21980320	21980320	22385362	22385362
WGS contigs ≥500bp, % mapped (129K)	98.77014%	97.77496%	97.79009%	97.40359%	97.02018%
UCR2014 reads, % properly paired (202M)	64.38425%	62.20807%	62.11027%	61.82533%	61.63417%
UCR2014 reads, % properly paired (202M)	94.95582%	93.93669%	93.90570%	94.01125%	93.46803%

4.2 Experimental results on P.infestans assemblies

We sequenced a strain of P.infestans from California called ‘1306’. Strain 1306 is a diploid (other P.infestans strains are triploid or aneuploid), has 11–14 chromosomes and an estimated genome size of 220 Mb. P.infestans has a much higher rates of heterozygosity compared to Vanguculidata, thus the former has a more challenging genome to assemble. P.infestans 1306 was sequenced using single-molecule real-time sequencing (Pacific Biosciences RSII). A total of 17 SMRT cells yielded about 3.1 M reads for a total of 24.87 Gbp (113× genome equivalent). We tested Novo&Stitch on six assemblies of P.infestans. We generated two assemblies with Canu v1.5, one on the entire dataset (Canu1306, 113× coverage) and one on PacBio reads longer than 10Kb (Canu1306K, 80.9× coverage). We generated three assemblies with ABruijn v0.4 on three datasets, namely (i) PacBio reads longer than 10Kb (ABrujin1306K, k = 17,
Table 4. Statistics of six input assemblies for *P. infestans* and two stitched assemblies (N&S = Novo&Stitch) with strict and loose parameters; all reads were mapped with Bwa, except for 1% of miSeq and 0.1% of Dovetail which were mapped using Blast (e-value < 1e-30)

Assembly Method	Falcon	Canu10K	Canufull	ABruijn10K	ABruijnloose	ABruijnsr	N&Sloose	N&Sstrict						
Contig N50 (bp)	481,068	131,313	135,263	336,459	293,280	302,893	769,322	730,890						
Contig L50	107	46.2	47.3	142	171	159	169	74	82					
Total assembled (bp)	215,910	203,305	686,040	292,352	599	195,768	168	177,232	180	175,149	119,240	150,657	250,416	680
# contigs	1364	3496	2863	835	883	867	1304	1329						
# contigs > 100kbp	445	667	725	561	539	522	398	423						
# contigs > 1Mbp	36	12	7	19	9	10	54	55						
longest contig (bp)	4,206,720	1,810,393	1,813,497	2,437,907	2,004,950	1,638,783	4,930,683	4,797,067						
miSeq reads, % properly paired (47M)	96.3825%	97.6855%	95.5383%	93.5911%	94.8410%	94.8218%	95.6384%	95.7194%						
miSeq reads, % mapped (47M)	98.4995%	98.6503%	98.2370%	98.0305%	98.3051%	98.2923%	98.0928%	98.0958%						
longest contig (bp)	4,206,720	1,810,393	1,813,497	2,437,907	2,004,950	1,638,783	4,930,683	4,797,067						
miSeq reads, % properly paired (47M)	96.3825%	97.6855%	95.5383%	93.5911%	94.8410%	94.8218%	95.6384%	95.7194%						
miSeq reads, % mapped (47M)	98.4995%	98.6503%	98.2370%	98.0305%	98.3051%	98.2923%	98.0928%	98.0958%						

80.9× coverage), (ii) all PacBio reads corrected by Canu (ABruijnloose, k = 17, 75.4× coverage) and (iii) all PacBio reads corrected and trimmed by Canu (ABruijntrim, k = 17, 73.6× coverage).

One assembly was produced with Falcon on the whole dataset by the UC Davis core facility. We detected and split chimeric contigs using Chimericognizer, a tool currently under development (unpublished). We ensured that the six assemblies were free of chimeric contigs by visually inspecting the alignments.

Novo&Stitch was run on the six assemblies in Table 4 using a Bionano Genomics optical map. To evaluate the quality of these assemblies, we mapped about 47 M miSeq reads and 202 M Dovetail reads using BWA. We also mapped a fraction of those reads using Blast, which does not penalize the mapping quality in case of alignment of a read to multiple locations. The last two columns report the statistics of Novo&Stitch using strict and loose parameters. Observe again how Novo&Stitch significantly improved the contiguity of the assembly (N50, L50, longest contig, etc.) while maintaining mapping statistics similar to the six input assemblies.

5 Conclusions

We presented a new assembly reconciliation tool called Novo&Stitch for improving the contiguity of *de novo* genome assemblies using optical maps. Novo&Stitch leverages the alignments of contigs from multiple input assemblies to an optical map to detect overlaps between contigs and drive the stitching process. A requirement of Novo&Stitch is that assembled contigs have to be sufficiently long (e.g. 50 Kbp or longer) in order to be reliably aligned using Blast, which does not penalize the mapping quality in case of alignment of a read to multiple locations. The last two columns report the statistics of Novo&Stitch using strict and loose parameters. Observe again how Novo&Stitch significantly improved the contiguity of the assembly (N50, L50, longest contig, etc.) while maintaining mapping statistics similar to the six input assemblies.

Acknowledgements

The authors thank Tao Jiang for helping with the NP-hardness proof for the smallest sub-DAG problem, and Timothy Close and María Muñoz-Amatriain for helpful discussions as this work developed and for critically reading the manuscript.

Funding

This work was supported in part by the US National Science Foundation [IOS-1543963, IIS-1526742].

Conflict of Interest: none declared.

References

Alhakami, H., et al. (2017) A comparative evaluation of genome assembly reconciliation tools. *Gnome Biol.*, 18, 93.

Argueso, J. L., et al. (2009) Genome structure of a *Saccharomyces cerevisiae* strain widely used in bioethanol production. *Gnome Res.*, 19, 2258–2270.

Berlin, K., et al. (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. *Nat. Biotechnol.*, 33, 623–630.

Bickhart, D. M., et al. (2017) Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. *Nat. Genet.*, 49, 643–650.

Bradnam, K. R., et al. (2013) Assemblerthon 2: evaluating de novo methods of genome assembly in three vertebrate species. *Gigascience*, 2, 10.

Cardinal, J. M., et al. (2012) Approximating vertex cover in dense hypergraphs. *J. Discret. Algorithms*, 13, 67–77.

Chin, C.-S., et al. (2016) Phased diploid genome assembly with single-molecule real-time sequencing. *Nat. Methods*, 13, 1050–1054.

Clarke, J., et al. (2009) Continuous base identification for single-molecule nanopore DNA sequencing. *Nat. Nanotechnol.*, 4, 265–270.

Daccord, N., et al. (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. *Nat. Genet.*, 49, 1099–1106.

Edj, K. J., et al. (2009) Real-time DNA sequencing from single polymerase molecules. *Science*, 323, 133–138.

Hernandez, D. et al. (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. *Gnome Res.*, 18, 802–809.

Idury, R. M. and Waterman, M. S. (1995) A new algorithm for DNA sequence assembly. *J. Comput. Biol.*, 2, 291–306.

Jarvis, D. E. et al. (2017) The genome of chenopodium quinoa. *Nature*, 542, 307–312.

Jiao, W. -B. et al. (2017b) Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. *Gnome Res.*, 27, 778–786.

Jiao, Y. et al. (2017b) Improved maize reference genome with single-molecule technologies. *Nature*, 546, 524–527.

Koren, S., et al. (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Gnome Res.*, 27, 722–736.

Lin, S.-H. and Liao, Y.-C. (2013) CISA: contig integrator for sequence assembly of bacterial genomes. *PloS ONE*, 8, e60843.
Lin,Y. et al. (2016) Assembly of long error-prone reads using de Bruijn graphs. Proc. Natl. Acad. Sci. USA, 113, E8396–E8405.
Mascher,M. et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature, 544, 427–433.
Muñoz-Amatriain,M. et al. (2017) Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J., 89, 1042–1054.
Myers,E.W. (2005) The fragment assembly string graph. Bioinformatics, 21, ii79–ii85.
Pendleton,M. et al. (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods, 12, 780–786.
Peng,Y. et al. (2010). IDBA—a practical iterative de bruijn graph de novo assembler. In: Proceedings of Annual International Conference on Research in Computational Molecular Biology (RECOMB). Springer, pp. 426–440.
Pevzner,P.A. et al. (2001) An eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.
Shelton,J.M. et al. (2015) Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genomics, 16, 734.
Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res., 19, 1117–1123.
Soto-Jimenez,L. et al. (2014) GARM: genome assembly, reconciliation and merging pipeline. Curr. Top. Med. Chem., 14, 418–424.
Soueidan,H. et al. (2013) Finishing bacterial genome assemblies with mix. BMC Bioinformatics, 14, S16.
Vicedomini,R. et al. (2013) GAM-NGS: genomic assemblies merger for next generation sequencing. BMC Bioinformatics, 14, S6.
Vij,S. et al. (2016) Chromosomal-Level assembly of the asian seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet., 12, e1005954.
Wences,A.H. and Schatz,M.C. (2015) Metassembler: merging and optimizing de novo genome assemblies. Genome Biol., 16, 207.
Yao,G. et al. (2012) Graph accordance of next-generation sequence assemblies. Bioinformatics, 28, 13–16.
Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome Res., 18, 821–829.
Zimin,A.V. et al. (2008) Assembly reconciliation. Bioinformatics, 24, 42–45.
Zimin,A.V. et al. (2017) Hybrid assembly of the large and highly repetitive genome of aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res., 27, 787–792.