Research Article

The Tropical Matrix Groups with Symmetric Idempotents

Lin Yang 1,2

1School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
2School of Mathematics, Northwest University, Xi’an, Shaanxi 710127, China

Correspondence should be addressed to Lin Yang; yanglinmath@163.com

Received 9 May 2018; Accepted 31 October 2018; Published 2 December 2018

Academic Editor: Victor S. Kozyakin

Copyright © 2018 Lin Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper we study the semigroup $M_n(T)$ of all $n \times n$ tropical matrices under multiplication. We give a description of the tropical matrix groups containing a diagonal block idempotent matrix in which the main diagonal blocks are real matrices and other blocks are zero matrices. We show that each nonsingular symmetric idempotent matrix is equivalent to this type of block diagonal matrix. Based upon this result, we give some decompositions of the maximal subgroups of $M_n(T)$ which contain symmetric idempotents.

1. Introduction

Tropical algebra (also known as max-plus algebra or max-algebra) is the algebra of the real numbers extended by adding an infinite negative element $-\infty$ when equipped with the binary operations of addition and maximum. It has applications in areas such as combinatorial optimization and scheduling, control theory, discrete event dynamic systems, and many other areas of science (see [1–9]). Many problems arising from these application areas are expressed using (tropical) linear equations, so many authors study tropical matrices, i.e., matrices over tropical algebra.

For example, consider the multi-machine interactive production process (MMIPP) [4] where products P_1, \ldots, P_m are prepared using n machines, every machine contributing to the completion of each product by producing a partial product. It is assumed that every machine can work for all products simultaneously and that all these actions on a machine start as soon as the machine starts to work. Let a_{ij} be the duration of the work of the jth machine needed to complete the partial product for P_i $(i = 1, \ldots, m, j = 1, \ldots, n)$. If this interaction is not required for some i and j, then a_{ij} is set to $-\infty$. Denote the starting time of the jth machine by x_j. Then all partial products for P_i $(i = 1, \ldots, m)$ will be ready at time

$$\max \{x_1 + a_{i1}, \ldots, x_n + a_{in}\}. \quad (1)$$

Hence if b_i $(i = 1, \ldots, m)$ are given completion times then the starting times have to satisfy the system of equations:

$$(\forall i \in \{1, \ldots, m\}) \max \{x_1 + a_{i1}, \ldots, x_n + a_{in}\} = b_i. \quad (2)$$

The problem can be converted into a related problem in tropical matrices.

From an algebraic perspective, a key object is the multiplicative semigroup of all square matrices of a given size over the tropical algebra. There are a series of papers in the literature considering this multiplicative semigroup (see [10–17]). Moreover, an important step in understanding tropical algebra is to understand the maximal subgroups of this semigroup. It is a basic fact of semigroup theory that every subgroup of a semigroup lies in a unique maximal subgroup. Moreover, the maximal subgroups of S are precisely the H-classes (see Section 2 below for definitions) of S which contain idempotents element. Johnson and Kambites [16] give a classification of the maximal subgroups of the semigroup of all 2×2 tropical matrices under multiplication in 2011. Izhakian, Johnson, and Kambites [13] consider the case of matrices without $-\infty$. They prove that every subgroup of the multiplicative semigroup of $n \times n$ finite tropical matrices is isomorphic to a direct product of the form $\mathbb{R} \times \Sigma$ for some $\Sigma \leq S_n$. In the same year, Shitov [17] gives a description of the subgroups of the multiplicative semigroup of $n \times n$ tropical matrices up to isomorphism; i.e., every subgroup
of the semigroup admits a faithful representation with $n \times n$ tropical invertible matrices. In 2017, we showed that a maximal subgroup of the multiplicative semigroup of $n \times n$ tropical matrices containing a nonsingular idempotent matrix E is isomorphic to the group of all invertible matrices which commute with E as groups and proved that each maximal subgroup of the multiplicative semigroup of $n \times n$ tropical matrices with the identity of the rank r is isomorphic to some maximal subgroup of the multiplicative semigroup of $r \times r$ tropical matrices with nonsingular identity. Thus we shall turn our attention towards the invertible matrices that commute with the nonsingular idempotent. The main purpose of this paper is to study the invertible matrices that commute with a nonsingular symmetric idempotent and to give a decomposition of the maximal subgroups of $n \times n$ tropical matrices containing a nonsingular symmetric idempotent.

This paper will be divided into five sections. In Section 2 we introduce some preliminary notions and notation. The decompositions of the maximal subgroups of $n \times n$ tropical matrices containing an idempotent diagonal block matrix are established in Section 3. This result (see Theorem II) develops the results obtained by Izhakian et al. in [13]. Finally, in the last section, we prove that each symmetric nonsingular idempotent matrix is equivalent to a block diagonal matrix and a decomposition of the maximal subgroup containing a symmetric idempotent matrix is given (Theorem 17).

2. Preliminaries

The following notation and definitions can be found in [3, 15, 18, 19]. We write T for the set $\mathbb{R} \cup \{-\infty\}$ equipped with the operations of maximum (denoted by \oplus) and addition (denoted by \otimes). Thus, we write

$$a \oplus b = \max\{a, b\}$$

and

$$a \otimes b = a + b.$$ (3)

As usual, the set of all $m \times n$ tropical matrices is denoted by $M_{m \times n}(T)$. In particular, we shall use $M_r(T)$ instead of $M_{r \times r}(T)$. The operations \oplus and \otimes on T induce corresponding operations on tropical matrices in the obvious way. Indeed, if $A, B \in M_{m \times n}(T), C \in M_{n \times p}(T)$, then we have

$$(A \oplus B)_{ij} = a_{ij} \oplus b_{ij},$$

$$(A \otimes C)_{ij} = \bigoplus_{k=1}^{n} a_{ik} \otimes c_{kj},$$ (4)

where x_{ij} denotes the (i, j)th entry of the matrix X. For brevity, we shall write AC in place of $A \otimes C$. It is easy to see that $(M_r(T), \otimes)$ is a semigroup. Other concepts such as transpose and block matrix are defined in the usual way. Unless otherwise stated, we refer to matrix as tropical matrix in the remainder of this paper. Recall that Green’s relations \mathcal{R} and \mathcal{L} [20] on the semigroup $M_r(T)$ are, respectively, given by

$$A \mathcal{R} B \iff (\exists X, Y \in M_n(T)) A = XB, B = YA.$$ (5)

Green’s relation \mathcal{H} (\mathcal{D}, resp.) is given by $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$ ($\mathcal{R} \circ \mathcal{L}$, resp.). The \mathcal{H}-class (\mathcal{D}-class, resp.) containing the matrix A will be written as H_A (D_A, resp.).

We shall be interested in the space T^n of affine tropical vectors. We write x_i for the ith component of a vector $x \in T^n$. We extend \otimes to T^n componentwise so that $(x \otimes y)_i = x_i \otimes y_i$ for all i. And we define a scaling action of T on T^n by

$$\lambda \otimes (x_1, x_2, \ldots, x_n) = (\lambda \otimes x_1, \lambda \otimes x_2, \ldots, \lambda \otimes x_n),$$ (6)

for each $\lambda \in T$ and each $x \in T^n$. These operations give T^n the structure of a T-semimodule.

A tropical convex set in T^n is a subset closed under \oplus and scaling by elements of T, that is, a T-subsemimodule of T^n. If $S \subseteq T^n$, then the tropical convex hull of S is the smallest tropical convex set containing S, that is, the set of all vectors in T^n which can be written as tropical linear combinations of finitely many vectors from S.

Let X be a finitely generated tropical convex set in T^n. A set $\{x_1, x_2, \ldots, x_k\} \subseteq X$ is called a weak basis of X if X is a generating set for X minimal with respect to inclusion. It is known that every finitely generated tropical convex set admits a weak basis, which is unique up to permutation and scaling (see [19], Theorem 5). In particular, any two weak bases have the same cardinality, in view of which we may define the generator dimension of a finitely generated tropical convex set X to be the cardinality of a weak basis for X, or, equivalently, the minimum cardinality of a generating set for X.

Given an $m \times n$ matrix A we define the column space of A, denoted by $\text{Col}(A)$, to be the tropical convex hull of the columns of A. Thus $\text{Col}(A) \subseteq T^n$. Similarly, we define the row space $\text{Row}(A) \subseteq T^n$ to be the tropical convex hull of the rows of A. The column rank of A is the generator dimension for the column space of A. The row rank of A is defined dually; it is well known that the row rank and column rank of a tropical matrix can differ (see [15], Example 7.1)). The column rank (row rank, resp.) of A is denoted by $c(A)$ ($r(A)$, resp.). We denote the i-th row and the j-th column of A by a_{i*} and a_{*j}, respectively. If $c(A) = s$ and $r(A) = r$, then it is easy to see that there exist s columns a_{i_1}, \ldots, a_{i_s} of A such that $[a_{i_1}, \ldots, a_{i_s}]$ is a weak basis of $\text{Col}(A)$ and there exist r rows a_{j_1}, \ldots, a_{j_r} of A such that $[a_{j_1}, \ldots, a_{j_r}]$ is a weak basis of $\text{Row}(A)$. The submatrix

$$A = \begin{pmatrix}
\begin{bmatrix} a_{i_1} & \cdots & a_{i_s} \\ a_{j_1} & \cdots & a_{j_r} \\
\end{bmatrix}, & \ldots, & \\
\end{pmatrix}$$ (7)

of A is said to be a column basis submatrix of A (a row basis submatrix of A, a basis submatrix of A, resp.). If $c(A) = r(A) = r$, then r is called the rank of A. If $c(A) = n(r(A) = m)$, then A is called column compressed (row compressed, resp.)
The matrix A is called nonsingular if it is both column compressed and row compressed, and singular otherwise.

In the sequel, the following notions and notation are needed for us.

(i) An $n \times n$ matrix A is called a symmetric matrix if $A^T = A$.

(ii) $\text{diag}(A_1, A_2, \ldots, A_n)$ denotes the diagonal block matrix

$$
\begin{bmatrix}
A_1 & -\infty & \cdots & -\infty \\
-\infty & A_2 & \cdots & -\infty \\
\vdots & \vdots & \ddots & \vdots \\
-\infty & -\infty & \cdots & A_k
\end{bmatrix},
$$

where each diagonal block A_i is a square matrix, for all $1 \leq i \leq n$. Particularly, the matrix $\text{diag}(a_1, a_2, \ldots, a_n)$ will be called diagonal if all of a_1, a_2, \ldots, a_n are real numbers.

(iii) I_n denotes the identity matrix, i.e., the $n \times n$ matrix $\text{diag}(0, 0, \ldots, 0)$.

(iv) An $n \times n$ matrix A is called invertible if there exists an $n \times n$ matrix B such that $AB = BA = I_n$. In this case, B is called an inverse of A and is denoted by A^{-1}.

(v) An $n \times n$ matrix is called a monomial matrix if it has exactly one entry in each row and column which is not equal to $-\infty$.

(vi) An $n \times n$ matrix is called a permutation matrix if it is formed from the identity matrix by reordering its columns and/or rows.

(vii) $-\infty$ denotes the zero matrix, i.e., the matrix whose entries are all $-\infty$.

It is well known that an $n \times n$ matrix A is invertible if and only if A is monomial [22]. Also, the inverse of a permutation matrix is its transpose. Denote the set of all $n \times n$ monomial matrices (permutation matrices, resp.) by $GL_n(\mathbb{T})$ ($P_n(\mathbb{T})$, resp.). Then $GL_n(\mathbb{T})$ and $P_n(\mathbb{T})$ are group under the matrix multiplication.

There are two types of elementary matrices corresponding to the two types of elementary operations.

Type 1. An elementary matrix of Type 1 is a matrix obtained by interchanging two rows (columns, resp.) of I_n. We write $E_{i,j}$ as the matrix obtained by trading places of rows (or columns) i and j of I_n.

Type 2. An elementary matrix of Type 2 is a matrix obtained by multiplying a row (column, resp.) of I_n by a constant $a \neq -\infty$. We write $E_{i}(a)$ as the matrix obtained by multiplying row (or column) i of the identity matrix by a $a \neq -\infty$.

Recall that if A is an $m \times n$ matrix, and B is a matrix of the same size that is obtained from A by a single elementary row (column, resp.) operation, then there is an elementary matrix of size m (n, resp.) that will convert A to B via matrix multiplication on the left (right, resp.). Thus it is easy to see that a matrix is monomial if and only if it may be decomposed into the product of a finite number of elementary matrices. Also, it is worth mentioning that an elementary column (row, resp.) operation on a matrix does not change the linear relationship among the row (column, resp.) vectors. That is to say, if $A, B \in M_{m \times n}(\mathbb{T})$ and $A = BM$ for some $n \times n$ monomial matrix M, then

$$
a_{k*} = \lambda_1 \otimes a_{i_1} \oplus \cdots \oplus \lambda_s a_{i_s} \iff b_{k*} = \lambda_1 \otimes b_{j_1} \oplus \cdots \oplus \lambda_s b_{j_s},
$$

where $a_{k*}, a_{i_1}, \ldots, a_{i_s}$ are some rows of A, $b_{k*}, b_{j_1}, \ldots, b_{j_s}$ are the corresponding rows of B, and $\lambda_1, \ldots, \lambda_s \in \mathbb{T}$.

We say that matrices A and B are equivalent [23] (notation $A \equiv B$) if $B = PNP^T$ for some permutation matrix P, that is, B can be obtained by a simultaneous permutation of the rows and columns of A.

3. Tropical Matrix Groups Containing a Diagonal Block Idempotent

In this section, we study the tropical matrix groups containing a diagonal block idempotent. First, we will need the following notation and results in [13]. Let E be an $n \times n$ nonsingular idempotent matrix. We denote the set of all monomial matrices commuting with E by G_E. That is to say,

$$
G_E = \{ M \mid M \in GL_n(\mathbb{T}), ME = EM \}.
$$

The \mathbb{T}-classes containing an $n \times n$ idempotent matrix are the maximal subgroups of the semigroup $M_n(\mathbb{T})$. By Theorems 4.3 and 5.3 in [13], we have the following.

Lemma 1. Let E be an idempotent of rank r. Then H_E is isomorphic to $G_{\overline{E}}$ as groups, where \overline{E} is a basis submatrix of E.

Since each basis submatrix of an idempotent is a nonsingular idempotent matrix, we need only to study the group G_E, in which E is a nonsingular idempotent matrix. Indeed it is easy to see the following.

Lemma 2. $E = \text{diag}(E_1, E_2, \ldots, E_k)$ is a nonsingular idempotent matrix if and only if E_1, E_2, \ldots, E_k are nonsingular idempotent matrices.

We can say immediately that $G_{I_n} = GL_n(\mathbb{T})$, which is isomorphic to $\mathbb{R} \wr S_n$ as groups. More generally, we have the following.

Lemma 3. If

$$
E = \begin{bmatrix}
F & -\infty & \cdots & -\infty \\
-\infty & F & \cdots & -\infty \\
\vdots & \vdots & \ddots & \vdots \\
-\infty & -\infty & \cdots & F
\end{bmatrix}
$$

is an $n \times n$ nonsingular idempotent matrix, where the diagonal blocks are k real square matrices, then $G_E =$
\[
\begin{align*}
M &= \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1k} \\
M_{21} & M_{22} & \cdots & M_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
M_{k1} & M_{k2} & \cdots & M_{kk}
\end{bmatrix}
\in GL_n(\mathbb{T}) \mid (\exists \sigma \in S_k) (\forall i, j \in [k]) \quad M_{ij} \in G_F \quad j = \sigma(i) \quad M_{ij} = -\infty \quad j \neq \sigma(i) .
\end{align*}
\]

Proof. Suppose that \(E = \text{diag}(F, F, \ldots, F) \) is an \(n \times n \) nonsingular idempotent matrix and that \(F \) is a real matrix. Then by Lemma 2 we can find that \(F \) is an \((n/k) \times (n/k)\) real nonsingular idempotent matrix. If \(M \in G_E \), then partition \(M \) in the same manner of \(E \), i.e.,

\[
M = \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1k} \\
M_{21} & M_{22} & \cdots & M_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
M_{k1} & M_{k2} & \cdots & M_{kk}
\end{bmatrix},
\]

where \(M_{ij} \) are all \((n/k) \times (n/k)\) matrices, and we have

\[
EM = ME.
\]

Thus we can see that

\[
FM_{ij} = M_{ij}F,
\]

for any \(i, j \in [k] \).

Now we claim that

\[
\text{if } M_{ij} \notin GL_{n/k}(\mathbb{T}), \text{ then } M_{ij} = -\infty.
\]

If \(M_{ij} \notin GL_{n/k}(\mathbb{T}) \), then \(M_{ij} \) has some row where entries are all \(-\infty\) or \(M_{ij} \) has some column where entries are all \(-\infty \), since \(M_{ij} \) is a submatrix of the monomial matrix \(M \). Without loss of generality, we assume that \(M_{ij} \) has one row where entries are all \(-\infty \); thus \(M_{ij}F = FM_{ij} \) has one row where entries are all \(-\infty \). Since \(F \) is real matrix, it follows that \(M_{ij} = -\infty \), for otherwise \(FM_{ij} \) does not have one row where entries are all \(-\infty \).

If, on the other hand, \(M_{ij} \in GL_{n/k}(\mathbb{T}) \) such that (15), then \(M_{ij} \in G_F \). This completes our proof. \(\square \)

For any matrix \(F \), we denote the matrix \(\text{diag}(F, F, \ldots, F) \) by \(\bar{F} \).

As a consequence, we have the following.

Corollary 4. \(G_{\bar{F}} \) is isomorphic to \(G_F \), \(S_{n/k} \) as groups, in which the matrix \(\bar{F} \) has the form given in Lemma 3.

Next, we shall want to consider the type of matrices in Lemma 9. And we need some lemmas at first. By [21, Theorem 102], we immediately have the following.

\[
\text{Lemma 5.}\ \text{Let } E \text{ be an } n \times n \text{ nonsingular idempotent matrix. Then}
\]

\[
D_E = \{ \text{MEN} \mid M, N \in GL_n(\mathbb{T}) \}.
\]

\[
\text{Lemma 6 (see [24] Proposition 4.5). Let } E \text{ be a nonsingular idempotent matrix. If there exists a monomial matrix } M, \text{ such that } EME = E, \text{ then } M = I_n.
\]

\[
\text{Lemma 7. Let } E, F \text{ be nonsingular idempotent matrices. Then } E \circ F \text{ if and only if there exists a monomial matrix } M \text{ such that } E = MF, \text{ i.e., such that } EM = MF.
\]

Proof. Suppose that \(E, F \) are nonsingular idempotent matrices.

If \(E \circ F \), then by Lemma 5 we can see that \(E = MFN \), for some monomial matrices \(M \) and \(N \). It follows that \(MFN = E = E^2 = MFNMF \). This implies that \(F = FMNF \). Now by Lemma 6 we have that \(NM = I_n \). Hence \(E = MF^{M^{-1}} \), and so \(EM = MF \).

To prove the converse half, if there exists a monomial matrix \(M \) such that \(EM = MF \), then we let \(C = EM = MF \), and we can see that \(E \circ C \) and \(C \circ F \). Hence \(E \circ F \) as required.

If \(M = (m_{ij})_{n \times n} \) is a monomial matrix, then there exists a unique \(\sigma \in S_n \) such that \(m_{\sigma(i)} \in \mathbb{R} \) and \(m_{ij} = -\infty \) for all \(j \neq \sigma(i) \). Thus from the definition of matrix multiplication it is easy to show that the map

\[
\varphi : GL_n(\mathbb{T}) \rightarrow S_n, \quad M \mapsto \sigma
\]

is a homomorphism of groups. Now we can show that

Proposition 8. Let \(E = (e_{ij})_{n \times n} \) and \(F = (f_{ij})_{n \times n} \) be real nonsingular idempotent matrices. Then \(E \circ F \) if and only if there exists \(\sigma \in S_n \), such that, for all \(i, j \in [n] \),

\[
e_{i1} - e_{j1} - e_{ij} = f_{\sigma(i)\sigma(j)} - f_{\sigma(j)\sigma(i)} - f_{\sigma(i)\sigma(j)}.
\]

Proof. Suppose that \(E = (e_{ij})_{n \times n} \) and \(F = (f_{ij})_{n \times n} \) are real nonsingular idempotent matrices.

If \(E \circ F \), then by Lemma 7 we have that there exists a matrix \(M = (m_{ij})_{n \times n} \in G_E \) such that \(EM = MF \). It follows that

\[
EM = (e_{ij}) (m_{ij}) = MF = (m_{ij}) (f_{ij}).
\]

This implies that, for any \(i, j \in [n] \),

\[
e_{ij} \otimes m_{\sigma(j)} = m_{\sigma(i)} \otimes f_{\sigma(i)\sigma(j)}.
\]
Since for all \(i, j \in [n] \), \(e_{ij}, m_{\sigma(j)}, m_{\sigma(i)} \) and \(f_{\sigma(i)\sigma(j)} \) are real numbers, then we have
\[
e_{ij} + m_{\sigma(j)} = m_{\sigma(i)} + f_{\sigma(i)\sigma(j)}. \tag{22}\]

Thus we can see that, for any \(i, j \in [n] \),
\[
m_{\sigma(j)} - m_{\sigma(i)} = e_{ij} - f_{\sigma(i)\sigma(j)}
= m_{\sigma(j)} - m_{\sigma(1)} - (m_{\sigma(j)} - m_{\sigma(1)})
= e_{ij} - f_{\sigma(i)\sigma(j)}. \tag{23}\]

Hence for any \(i, j \in [n] \) we have
\[
e_{ij} - e_{ij} = f_{\sigma(j)\sigma(1)} - f_{\sigma(i)\sigma(j)}. \tag{24}\]

Conversely, if there exists \(\sigma \in S_n \) such that, for any \(i, j \in [n] \),
\[
e_{ij} - e_{ij} = f_{\sigma(j)\sigma(1)} - f_{\sigma(i)\sigma(j)} \tag{25}\]
then the system
\[
\begin{align*}
m_{\sigma(2)} - m_{\sigma(1)} &= e_{21} - f_{\sigma(2)\sigma(1)} \\
m_{\sigma(3)} - m_{\sigma(1)} &= e_{31} - f_{\sigma(3)\sigma(1)} \\
&\quad\vdots \\
m_{\sigma(n)} - m_{\sigma(1)} &= e_{n1} - f_{\sigma(n)\sigma(1)} \\
m_{\sigma(1)} - m_{\sigma(2)} &= e_{12} - f_{\sigma(1)\sigma(2)} \\
m_{\sigma(3)} - m_{\sigma(2)} &= e_{32} - f_{\sigma(3)\sigma(2)} \\
&\quad\vdots \\
m_{\sigma(n)} - m_{\sigma(2)} &= e_{n2} - f_{\sigma(n)\sigma(2)} \\
&\quad\vdots \\
m_{\sigma(n)} - m_{\sigma(n-1)} &= e_{n-1,n} - f_{\sigma(n)\sigma(n-1)}
\end{align*}
\]

has the solutions
\[
(m_{\sigma(i)}) = \lambda \otimes (e_{ij} - f_{\sigma(i)\sigma(1)}), \tag{27}\]
where \(\lambda \in \mathbb{R} \). This means that if \(\sigma \) satisfies \(24), then there exists a monomial matrix \(M \), whose \((i, \sigma(i))\)th entry is the real number \(m_{\sigma(i)} \) and the other entries are \(-\infty\), such that \(EM = MF \), and so \(E \not\equiv F \).

Lemma 9. Let
\[
E = \begin{bmatrix}
E_1 & -\infty & \cdots & -\infty \\
-\infty & E_2 & \cdots & -\infty \\
& \vdots & \ddots & \vdots \\
-\infty & -\infty & \cdots & E_k
\end{bmatrix} \tag{28}\]
be an \(n \times n \) nonsingular idempotent matrix, where the matrix \(E_i \) is a real matrix of order \(n_i \), \(i \in [k] \), and for any \(i, j \in [k] \), \((E_i, E_j) \not\equiv \mathbb{D} (i \neq j) \). Then
\[
G_E = \left\{ M = \text{diag} (M_{11}, M_{22}, \ldots, M_{kk}) \mid M_{ij} \in G_{E_i} \right\}. \tag{29}\]

Proof. Let \(E = \text{diag}(E_1, E_2, \ldots, E_k) \) be an \(n \times n \) nonsingular idempotent matrix. Then by Lemma 2 we can see that \(E_i \) is an \((n_i) \times (n_i)\) real nonsingular idempotent matrix. Suppose that \(M \in G_E \). Then partition \(M \) into \(k \) blocks
\[
\begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1k} \\
M_{21} & M_{22} & \cdots & M_{2k} \\
& \vdots & \ddots & \vdots \\
M_{k1} & M_{k2} & \cdots & M_{kk}
\end{bmatrix}, \tag{30}\]
where \(M_{ij} \) is an \(n_i \times n_j \) matrix. It follows \(EM = ME \) that
\[
E_iM_{ij} = M_{ij}E_j \tag{31}\]
for any \(i, j \in [k] \). Since \(M_{ij} \) is a submatrix of the monomial matrix \(M \), it has at most one entry in each row and column which is not equal to \(-\infty\). We now distinguish two cases:

(i) \(i \neq j \),

(ii) \(i = j \).

In case (i), suppose that \(M_{ij} \) is a monomial matrix such that \(31) \). Then by Lemma 7 we have that \(E_i \not\equiv E_j \). This contradiction implies that \(M_{ij} \) is not a monomial matrix. It follows by a closely similar proof of the claim \((16) \) that \(M_{ii} = -\infty \).

In case (ii), \(M_{ii} \) is a monomial matrix such that \(31) \), since \(M_{ij} = -\infty (i \neq j) \) and \(M \) is a monomial matrix. This implies that \(M_{ii} \in GL_n \mathbb{T} \) such that \(E_iM_{ii} = M_{ii}E_i \), and so \(M_{ii} \in G_{E_i} \). This completes our proof.

We now immediately deduce the following.

Corollary 10. If the matrix \(E \) has the form in Lemma 9, then \(G_E \) is isomorphic to \(G_{E_1} \times G_{E_2} \times \cdots \times G_{E_k} \) as groups.

By the connection between the elementary operations and elementary matrices, it follows by Lemma 7 that if \(E = \text{diag}(E_1, E_2, \ldots, E_k) \) is a nonsingular idempotent matrix, then there exists a monomial matrix \(N \), such that
\[
N^{-1}E = \text{diag}(E_i', E_i', \ldots, E_i'), \tag{33}\]
where \(E_i', E_i', \ldots, E_i' \) are diagonal blocks of \(E \) and for any \(h, g \in \{1, \ldots, s\} \), \((E_i', E_j') \not\equiv \mathbb{D} (h \neq g) \). It is easy to see that the mapping \(\varphi : G_E \rightarrow G_{N^{-1}} \) defined by
\[
\varphi(M) = NMN^{-1} \quad (M \in G_E) \tag{34}\]
is a group isomorphism. Thus we obtain that \(G_E \) is isomorphic to \(G_{N^{-1}} \) as groups. Hence we have the following theorem.
Lemma 13. Let
\[E = \begin{bmatrix} E_1 & -\infty & \cdots & -\infty \\ -\infty & E_2 & \cdots & -\infty \\ \vdots & \vdots & \ddots & \vdots \\ -\infty & -\infty & \cdots & E_k \end{bmatrix} \]
be an \(n \times n \) nonsingular idempotent matrix, where \(E_1, E_2, \ldots, E_k \) are real square matrices. Then there exists a monomial matrix \(N \), such that
\[NEN^{-1} = \begin{bmatrix} \tilde{E}_1 & -\infty & \cdots & -\infty \\ -\infty & \tilde{E}_2 & \cdots & -\infty \\ \vdots & \vdots & \ddots & \vdots \\ -\infty & -\infty & \cdots & \tilde{E}_k \end{bmatrix}, \]
where \(\tilde{E}_1, \tilde{E}_2, \ldots, \tilde{E}_k \) are diagonal blocks of \(E \) and for any \(h, g \in \{1, \ldots, s\} \), \((\tilde{E}_h, \tilde{E}_g) \notin \mathcal{D}(h \neq g)\). Furthermore, \(G_{\tilde{E}_h} \) is isomorphic to
\[(G_{E_1} \cdot S_{k_1}) \times (G_{E_2} \cdot S_{k_2}) \times \cdots \times (G_{E_s} \cdot S_{k_s}) \]
as groups, where \(n_h \) is the order of the matrix \(\tilde{E}_h \), and \(k_h \) is the number of the diagonal blocks of \(\tilde{E}_h \), \(h \in \{1, \ldots, s\} \).

It follows by Lemma 1 and Theorem 11 that each tropical matrix group containing an idempotent of the form in Theorem 11 is isomorphic to some direct products of some wreath products. This result develops the decomposition of maximal subgroups of the semigroup of \(n \times n \) real square matrices. Then there exists a permutation matrix \(P \), such that
\[PEPT = \begin{bmatrix} E_1 & -\infty & \cdots & -\infty \\ -\infty & E_2 & \cdots & -\infty \\ \vdots & \vdots & \ddots & \vdots \\ -\infty & -\infty & \cdots & E_k \end{bmatrix}, \]
where \(E_1, E_2, \ldots, E_k \) are real nonsingular idempotent matrices.

Proposition 14. Let \(E \) be a nonsingular symmetric idempotent matrix. Then there exists a permutation matrix \(P \) such that
\[PEPT = \begin{bmatrix} E_1 & -\infty & \cdots & -\infty \\ -\infty & E_2 & \cdots & -\infty \\ \vdots & \vdots & \ddots & \vdots \\ -\infty & -\infty & \cdots & E_k \end{bmatrix}, \]
where \(E_1, E_2, \ldots, E_k \) are real nonsingular symmetric idempotent matrices.

Proof. Suppose that \(E = E^{(1)} = (e_{ij}^{(1)}) \) is an \(n \times n \) nonsingular symmetric idempotent matrix. Then we shall show that \(E \) can be reduced to a diagonal block form using some simultaneous elementary rows and columns operations.

Step 1. Since \(E \) is a nonsingular idempotent matrix, it follows by Lemma 12 that all main diagonal entries of \(E \) are 0. If the \(i \)-th row of \(E \) has the most \(-\infty\) entries, then we can interchange 1-row and \(i \)-row of \(E \) and interchange 1-column and \(i \)-column of \(E \). By Lemma 13 (ii), a new nonsingular symmetric idempotent matrix obtained will be
\[E^{(2)} = P_1 E^{(1)} P_1^T = (e_{ij}^{(2)})_{n \times n}, \]
where \(P_1 = E_{1,i} \) is an elementary matrix.

Step 2. By some synchronous permutations of the rows and columns of \(E^{(2)} \), we can move the all \(-\infty\) entries of the first row to the end of this row. This means that we can take a suitable permutation matrix \(P_2 \) and obtain another new matrix
\[E^{(3)} = P_2 E^{(2)} P_2^T \]
where the first row has the most \(-\infty\) entries and \(e_{ij}^{(3)} = -\infty \) iff \(j > k \). By Lemma 13 (ii) we have that \(E^{(3)} \) is a nonsingular symmetric idempotent matrix. It follows by Lemma 13 (i) that \(e_{it}^{(3)} \otimes e_{ij}^{(3)} \leq e_{11}^{(3)} \), for all \(t, j \in [n] \). When \(t \leq k, j > k \), we can see that \(e_{1t}^{(3)} \in \mathbb{R} \) and \(e_{1j}^{(3)} = -\infty \), and so \(e_{ij}^{(3)} = -\infty \). Thus we have
\[e_{ik} \otimes e_{kj} \leq e_{ij}, \]
for all \(i, j, k \in [n] \);
In [13], Izhakian, Johnson, and Kambites give a result that $G_E \cong \mathbb{R} \times \Sigma$ for some $\Sigma \in S_n$. We use a different method to prove this result in the above lemma and give a necessary and sufficient condition for some permutation σ in Σ. And we can easily verify that

$$\sigma \in \Sigma \iff \forall i, j \in \{1, 2, \ldots, n\} \ e_{ij} - e_{ji} = e_{\sigma(i)\sigma(j)} - e_{\sigma(j)\sigma(i)}$$

(46)

Especially if E is an $n \times n$ symmetric real nonsingular idempotent matrix, then we have the following.

Proposition 16. Let E be an $n \times n$ real symmetric nonsingular idempotent matrix. Then

$$\varphi (G_E) = \{ \sigma \in S_n \mid \forall i, j \in \{1, 2, \ldots, n\} \ e_{ij} = e_{\sigma(i)\sigma(j)} \}$$

and

$$G_E = \{ \lambda P \mid \lambda \in \mathbb{R}, \ P \in G_E \cap P_n(T) \} ,$$

(47)

which is isomorphic to the group $\mathbb{R} \times \varphi(G_E)$.

Proof. Following the proof of Proposition 8, we have that for all $i, j \in \{1, 2, \ldots, n\}$

$$e_{ij} = e_{ji}$$

(49)

and $e_{\sigma(i)\sigma(j)} = e_{\sigma(j)\sigma(i)}$

(50)

Thus (26) reduce to

$$m_{\sigma(i)\sigma(j)} - m_{\sigma(j)\sigma(i)} = e_{ij} - e_{\sigma(i)\sigma(j)} = e_{\sigma(i)\sigma(j)} - e_{\sigma(j)\sigma(i)}$$

(51)

Then we know that the set of solutions to (50) is not empty if and only if

$$e_{ij} = e_{\sigma(i)\sigma(j)} \quad (\forall i, j \in \{1, 2, \ldots, n\})$$

(52)

and the solutions are

$$(m_{\sigma(i)\sigma(j)} = \lambda) \quad (\forall i, j \in \{1, 2, \ldots, n\}) ,$$

in which $\lambda \in \mathbb{R}$. Hence there exist a real number λ and a permutation matrix $P \in G_E$, such that

$$M = \lambda P .$$

(53)

Thus $G_E = \{ \lambda P \mid \lambda \in \mathbb{R}, \ P \in G_E \cap P_n(T) \}$, and so G_E is isomorphic to $\mathbb{R} \times \varphi(G_E)$.

\[\square\]
Proposition 16 enables us to compile the following algorithm. If the idempotent matrix \(E \) is real nonsingular, we have discussed \(G_E \). In the following, we will study the symmetric nonsingular idempotent matrix, which is not only a real matrix. In summation, from Theorem 11 and Proposition 16, we have the following.

Theorem 17. Let \(E \) be an \(n \times n \) symmetric nonsingular idempotent matrix. Then there exists a monomial matrix \(N \), such that

\[
\text{NE} \text{N}^{-1} = \begin{bmatrix}
\vec{E}_1 & -\infty & \cdots & -\infty \\
-\infty & \vec{E}_2 & \cdots & -\infty \\
\vdots & \vdots & \ddots & \vdots \\
-\infty & -\infty & \cdots & \vec{E}_s
\end{bmatrix},
\]

where \(E_1, E_2, \ldots, E_s \) are symmetric real nonsingular idempotent matrices and for any \(i, j \in \{1, \ldots, s\}, (E_i, E_j) \notin \mathcal{D} \) (\(i \neq j \)). Moreover, \(G_E \) is isomorphic to

\[
\left((\mathbb{R} \times \Sigma_i) \cap S_k \right) \times \left((\mathbb{R} \times \Sigma_j) \cap S_k \right) \times \cdots
\]

as groups, where \(\Sigma_i \leq S_{n/3}, n_i \) is the order of the matrix \(\vec{E}_i \), and \(k_j \) is the number of the diagonal blocks of \(\vec{E}_i, i \in \{1, 2, \ldots, s\} \).

Since each basis submatrix of a symmetric idempotent matrix is a symmetric nonsingular idempotent matrix, it follows by Lemma 1 and Theorem 17 that each tropical matrix group containing a symmetric idempotent matrix is isomorphic to some direct products of some wreath products.

Our next aim is to provide an algorithm for \(G_E \) of any nonsingular idempotent \(E \in M_n(T) \).

Data Availability

Previously reported data were used to support this study and are available at [https://doi.org/10.1155/2018/4797638]. These prior studies (and datasets) are cited at relevant places within the text as references [1–24].

Conflicts of Interest

The author declares that they have no conflicts of interest.

Acknowledgments

The author is supported by National Natural Science Foundation of China (11561044, 11861045).

References

[1] P. Butkovic, "Max-algebra: the linear algebra of combinatorics?" *Linear Algebra and its Applications*, vol. 367, pp. 313–335, 2003.

[2] G. Cohen, S. Gaubert, and J.-P. Quadrat, "Max-plus algebra and system theory: where we are and where to go now," *Annual Reviews in Control*, vol. 23, pp. 207–219, 1999.

[3] R. Cuninghame-Green, *Minimax algebra*, vol. 166 of *Lecture Notes in Economics and Mathematical Systems*, Springer-Verlag, Berlin-New York, 1979.

[4] R. A. Cuninghame-Green and P. Butković, "Generalised eigenproblem in max-algebra," in *Proceedings of the 9th International Workshop on Discrete Event Systems, WODES' 08*, pp. 236–241, Sweden, May 2008.

[5] F. d’Alessandro and E. Pasku, "A combinatorial property for semigroups of matrices," *Semigroup Forum*, vol. 67, no. 1, pp. 22–30, 2003.

[6] S. Lahaye, J.-L. Boimond, and J.-L. Ferrier, "Just-in-time control of time-varying discrete event dynamic systems in (max,+)-algebra," *International Journal of Production Research*, vol. 46, no. 19, pp. 5337–5348, 2008.

[7] L. Murfitt, "Discrete event dynamic systems in max-algebra: realisation and related combinatorial problems [PhD. thesis], University of Birmingham, 2000.

[8] J.-E. Pin, "Tropical semirings," in *Idempotency (Bristol, 1994)*, vol. II of *Publications of the Newton Institute*, pp. 50–69, Cambridge University Press, Cambridge, UK, 1998.

[9] I. Simon, "On semigroups of matrices over the tropical semiring. RAIRO Informatique Théorique et Applications. Theoretical Informatics and Applications*, vol. 28, no. 3–4, pp. 277–294, 1994.

[10] B. Bapat, D. P. Stanford, and P. van den Driessche, "Pattern properties and spectral inequalities in max algebra," *SIAM Journal on Matrix Analysis and Applications*, vol. 16, no. 3, pp. 964–976, 1995.

[11] C. Hollings and M. Kambites, "Tropical matrix duality and Green’s D relation," *Journal of the London Mathematical Society-Second Series*, vol. 86, no. 2, pp. 520–538, 2012.

[12] Z. Izhakian, M. Johnson, and M. Kambites, "Pure dimension and projectivity of tropical polytopes," *Advances in Mathematics*, vol. 303, pp. 1236–1263, 2016.

[13] Z. Izhakian, M. Johnson, and M. Kambites, "Tropical matrix groups," *Semigroup Forum*, vol. 96, no. 1, pp. 178–196, 2018.

[14] Z. Izhakian and S. W. Margolis, "Semigroup identities in the monoid of two-by-two tropical matrices," *Semigroup Forum*, vol. 80, no. 2, pp. 191–218, 2010.

[15] M. Johnson and M. Kambites, "Greens’ J-order and the rank of tropical matrices," *Journal of Pure and Applied Algebra*, vol. 217, no. 2, pp. 280–292, 2013.

[16] M. Johnson and M. Kambites, "Multiplicative structure of 2x2 tropical matrices," *Linear Algebra and its Applications*, vol. 435, no. 7, pp. 1612–1625, 2011.

[17] Y. Shibov, "Tropical matrices and group representations," *Journal of Algebra*, vol. 370, pp. 1–4, 2012.

[18] A. Akian, S. Gaubert, and A. Guterman, "Linear independence over tropical semirings and beyond," in *Tropical and Idempotent Mathematics*, G. L. Litvinov and S. N. Sergeev, Eds., vol. 495 of *Contemporary Mathematics*, pp. 1–38, American Mathematical Society, 2009.

[19] E. Wagneur, "Moduloids and pseudomodule 1. Dimension theory," *Discrete Mathematics*, vol. 98, no. 1, pp. 57–73, 1991.

[20] J. M. Howie, *Fundamentals of Semigroup Theory*, Academic Press, London, UK, 1995.

[21] S. Gaubert, "Two lectures on max-plus algebra," in *Proceedings of the 26th Spring School of Theoretical Computer Science*, 1998.
[22] H. S. Coxeter and G. Beck, *The Real Projective Plane*, Springer New York, New York, NY, 1993.

[23] P. Butkovic, *Max-Linear Systems: Theory and Algorithms*, Springer-Verlag, London, UK, 2010.

[24] L. Yang, "Regular D-classes of the semigroup of $n \times n$ tropical matrices," *Turkish Journal of Mathematics*, vol. 42, no. 4, pp. 2061–2070, 2018.
