SPECTRAL ANALYSIS OF LONG RANGE DEPENDENCE IN FUNCTIONAL TIME SERIES

M. Dolores Ruiz–Medina

Abstract

Long Range Dependence (LRD) in functional sequences is characterized in the spectral domain under suitable conditions. Particularly, fractionally integrated functional autoregressive moving averages processes of variable order can be introduced in this framework. The convergence to zero in the Hilbert-Schmidt operator norm of the integrated bias of the periodogram operator is proved. Under a Gaussian scenario, a weak–consistent parametric estimator of the long–memory operator is then obtained by minimizing, in the norm of bounded linear operators, a divergence information functional loss.

Keywords: Divergence information operator; Functional discrete Fourier transform of curve data; Long–range dependence; Parameter estimation; Periodogram operator; Spectral density operator; Weak–consistency

1 Introduction

One can find evidence of LRD in time series data arising in several areas like agriculture, environment, economics, finance, geophysics, just to mention a few. Indeed, a huge literature on this topic has been developed over the last few decades (c.f., [4], [32], [27], [17], [6]). This framework allows the description of processes with long persistence in time. In the stationary case, LRD is characterized by a slow decay of the covariance function, and an unbounded spectral density, typically at zero frequency. In the real–valued process framework, we refer to the reader to the papers [1], [2], [15], [16], [18], [20], [23], [35], among others.

The analysis of LRD phenomena in an infinite–dimensional process framework is a challenging topic where several problems remain open. Only a few contributions can be found on this topic in functional time series analysis. LRD in functional sequences is characterized by the non–summability in time of the nuclear norms of the associated family of covariance operators. In the linear case,
a variable–order fractional power law usually characterizes the asymptotic behavior in time of the norms of the involved bounded linear operator sequence. That is the case of the approaches in the current literature based on operator–valued processes. A fractional Brownian motion with values in a Hilbert space, involving an operator-valued Hurst coefficient, is considered in [30] (see also [29] on the functional analytical tools applied). In [13], a central and functional central limit theorems are obtained under non–summability of the operator norm sequence. The limit process in this functional central limit result is a self–similar process, characterized by an operator defining the self–similarity exponent. Note that the LRD models introduced in these papers in the linear setting are characterized and analyzed in the time domain. Recently, in [14], for LRD linear processes in a separable Hilbert space, a stochastic–integral based approach is adopted to representing the limiting process of the sample autocovariance operator in the space of Hilbert–Schmidt operators.

A semiparametric linear framework has been adopted to analyze LRD in functional sequences in [24]. The functional dependence structure is specified via the projections of the curve process onto different sub-spaces, spanned by the eigenvectors of the long-run covariance function. A Central Limit Theorem is derived under suitable regularity conditions. Functional Principal Component Analysis is applied in the consistent estimation of the orthonormal functions spanning the dominant subspace, where the projected curve process displays the largest dependence range. The memory parameter and the dimension of the dominant subspace are estimated as well. The conditions assumed are satisfied, in particular, by a functional version of fractionally integrated autoregressive moving averages processes. Some interesting applications to US stock prices and age specific fertility rates are also provided.

As follows from the above cited references, the spectral domain has not been exploited yet in the formulation and estimation of LRD in stationay functional time series. Furthermore, LRD functional time series models have mainly been introduced in the linear setting. Our paper attempts to cover these gaps. To this aim, the spectral representation of a self–adjoint operator on a separable Hilbert space, in terms of a spectral family of projection operators, is considered. Suitable conditions are then assumed on the symbol defining such a representation, for the spectral density operator family at a neighborhood of zero frequency. Specifically, the behavior of the spectral density operator at zero frequency is characterized by a bounded symmetric positive operator family, whose operator norm slowly varies at zero frequency, composed with an unbounded operator at zero frequency involving the long–memory operator. The corresponding covariance operator family displays a heavy tail behavior in time as proved in Proposition 1. As an interesting special case, we refer to a family of fractionally integrated functional autoregressive moving averages processes of variable order (see also Remark 9
Several additional examples can be found by tapering, in the frequency domain, the symbols of the spectral density operator family, associated with infinite-dimensional stationary LRD processes in continuous time. Particularly, we consider the case of fractional integration of variable order of functional processes with rational spectral density operator. The convergence to zero, in the Hilbert–Schmidt operator norm, of the integrated periodogram bias operator is derived, under the square integrability in the frequency domain of the Hilbert–Schmidt operator norm of the spectral density operator family. This condition holds under mild conditions, in our case, under the second–order property of the functional process, assuming the integrability in the frequency domain of the operator norm of the spectral density operator family. The weak consistency of the proposed parametric estimator of the long–memory operator then follows in the Gaussian case, extending Theorem 3 in [2].

Note that the parametric estimation approach in the spectral domain has not been exploited yet in the functional time series context. Under short–range dependence (SRD), [28] adopts a nonparametric framework. Specifically, a weighted average of the functional values of the periodogram operator is considered as an estimator of the spectral density operator. This methodology is not applicable when one wants to approximate the behavior of the spectral density operator at zero frequency in the presence of LRD. In this paper, we consider a parametric estimator of the long–memory operator, computed by minimizing the operator norm of a weighted Kullback–Leibler divergence operator. This operator compares the behavior at a neighborhood of zero frequency of the true spectral density operator, underlying to the curve data, with the possible semiparametric candidates. On the other hand, this functional is linear with respect to the periodogram operator. This is an important advantage of the proposed estimation methodology in relation to nonparametric kernel estimation.

The outline of the paper is the following. Preliminary definitions, results and first conditions are provided in Section 2. The main assumptions are formulated in Section 3. Under these setting of conditions, LRD is characterized in the functional spectral domain. The heavy tail behavior in time of the associated covariance operator family is obtained in Proposition 1. Some examples are provided as well. In Section 4, the convergence to zero of the Hilbert–Schmidt operator norm of the integrated bias of the periodogram operator is proved in Theorem 1. Under a Gaussian scenario, Theorem 2 in Section 5 derives the consistent parametric estimation of the long–memory operator in the functional spectral domain. Some final comments can be found in Section 6.
2 Preliminaries

In what follows, \((\Omega, \mathcal{A}, P)\) denotes the basic probability space. Let \(H\) be a real separable Hilbert space with the inner product \(\langle \cdot, \cdot \rangle_H\). Denote by \(\widetilde{H} = H + iH\), its complex version whose elements are functions of the form

\[\psi = \varphi_1 + i\varphi_2, \quad \varphi_i \in H, \quad i = 1, 2,\]

with the inner product

\[
\langle \varphi_1 + i\varphi_2, \phi_1 + i\phi_2 \rangle_{\widetilde{H}} = \langle \varphi_1, \phi_1 \rangle_H + \langle \varphi_2, \phi_2 \rangle_H + i(\langle \varphi_2, \phi_1 \rangle_H - \langle \varphi_1, \phi_2 \rangle_H). \tag{1}
\]

Recall that \(L^2_{\widetilde{H}}(\Omega, \mathcal{A}, P)\) denotes the space of second–order zero–mean \(\widetilde{H}\)-valued random variables on \((\Omega, \mathcal{A}, P)\), with the norm \(\|X\|_{L^2_{\widetilde{H}}(\Omega, \mathcal{A}, P)} = E[\|X\|_{\widetilde{H}}^2]\), for every \(X \in L^2_{\widetilde{H}}(\Omega, \mathcal{A}, P)\).

In the following, fix an orthonormal basis \(\{\varphi_k, k \geq 1\}\) of \(H\), and consider

\[\{\psi_k = (1/2) [\varphi_k + i\varphi_k], k \geq 1\}, \tag{2}\]

as an orthonormal basis of \(\widetilde{H}\). All the subsequent identities involving operator norms can be expressed in terms of such an orthonormal basis, allowing the interpretation of \(H\) as a Hilbert subspace of \(\widetilde{H}\). Particularly, the nuclear \(\|\cdot\|_{L^1(\widetilde{H})}\), and the Hilbert–Schmidt \(\|\cdot\|_{S(\widetilde{H})}\) operator norms on \(\widetilde{H}\) are defined as follows:

\[
\|A\|_{L^1(\widetilde{H})} = \sum_{k \geq 1} \langle [A^*A]^{1/2}(\psi_k), \psi_k \rangle_{\widetilde{H}},
\]

\[
\|A\|_{S(\widetilde{H})} = \left[\sum_{k \geq 1} \langle A^*A(\psi_k), \psi_k \rangle_{\widetilde{H}} \right]^{1/2} = \sqrt{\|A^*A\|_{L^1(\widetilde{H})}}, \tag{3}
\]

with \(\{\psi_k, k \geq 1\}\) being an orthonormal basis of \(\widetilde{H}\) as given in (2).

We denote by \(\|\cdot\|_{L(\widetilde{H})}\) the norm in the space of bounded linear operators on \(\widetilde{H}\), i.e., \(\|A\|_{L(\widetilde{H})} = \sup_{\psi \in \widetilde{H}, \|\psi\|=1} \|A(\psi)\|_{\widetilde{H}}\). This norm is also usually referred as the operator norm (or uniform operator norm). Through the paper we consider the equality between operators on \(\widetilde{H}\) (respectively, on \(H\)) in the norm of the space \(L(\widetilde{H})\) (respectively, of the space \(L(H)\)) implying the pointwise identity of such operators over the functions on \(\widetilde{H}\) (respectively on \(H\)). Otherwise, the norm with respect to which the identity considered holds is established.

For simplicity of notation, in the subsequent development, the letter \(K\) will refer to a positive constant whose specific value may vary from one to another inequality or identity.
Let \(\{X_t, t \in \mathbb{Z}\} \) be a strictly stationary functional time series with zero mean \(E[X_t] = 0 \), and functional variance \(\sigma_X^2 = E[\|X_t\|_{\tilde{H}}^2] = E[\|X_0\|_{\tilde{H}}^2] = \|R_0\|_{L^1(\tilde{H})} \), for every \(t \in \mathbb{Z} \). Also,

\[
\mathcal{R}_t = E[X_{s+t} \otimes X_s] = \forall t, s \in \mathbb{Z} \\
\mathcal{R}_t(g)(h) = E[X_{s+t}(h)X_s(g)] = E[(X_{s+t}, h)_H (X_s, g)_H], \quad \forall h, g \in H.
\] (4)

Note that, \(E[\|X_0\|_{\tilde{H}}^2] < \infty \) implies \(P[X_t \in H] = 1 \), for all \(t \in \mathbb{Z} \).

Let \(F_\omega \) be the spectral density operator on \(\tilde{H} \), defined by the following identity in the \(L(\tilde{H}) \) norm:

\[
F_\omega = \frac{1}{2\pi} \sum_{t \in \mathbb{Z}} \exp(-i\omega t) \mathcal{R}_t, \quad \omega \in [-\pi, \pi] \setminus \Lambda_0,
\] (6)

where \(\int_{\Lambda_0} d\omega = 0 \).

Remark 1 In [28], convergence of series (6) holds in the nuclear norm for SRD functional sequences. Here, a weaker convergence is assumed to characterize the behavior of the spectral density operator at a neighborhood of zero frequency under LRD (see Assumption II below).

The functional Discrete Fourier Transform (fDFT) \(\tilde{X}^{(T)}(\cdot) \) of the functional data \(\{X_t, t = 1, \ldots, T\} \) is defined as

\[
\tilde{X}^{(T)}_\omega(\cdot) = \frac{1}{\sqrt{2\pi T}} \sum_{t=1}^T X_t(\cdot) \exp(-i\omega t), \quad \omega \in [-\pi, \pi],
\] (7)

where \(= \) denotes the equality in \(\tilde{H} \) norm. Hence, \(\tilde{X}^{(T)}_\omega \) is \(2\pi \)-periodic and Hermitian with respect to \(\omega \in [-\pi, \pi] \).

Remark 2 Under the condition \(E[\|X_0\|_{\tilde{H}}^2] < \infty \), \(E\left[\|\tilde{X}^{(T)}_\omega\|_{\tilde{H}}^2\right] < \infty \), for every \(\omega \in [-\pi, \pi] \). The fDFT \(\tilde{X}^{(T)}_\omega \) defines a random element in \(\tilde{H} \), and \(P\left[\tilde{X}^{(T)}_\omega(\cdot) \in \tilde{H}\right] = 1 \). Hence, \(F^{(T)}_\omega = E\left[\tilde{X}^{(T)}_\omega \otimes \tilde{X}^{(T)}_{-\omega}\right] \in L^1(\tilde{H}), \) for \(\omega \in [-\pi, \pi] \).

The periodogram operator \(p^{(T)}_\omega = \tilde{X}^{(T)}_\omega \otimes \tilde{X}^{(T)}_{-\omega} \) is an empirical operator, with mean \(E[p^{(T)}_\omega] = E[\tilde{X}^{(T)}_\omega \otimes \tilde{X}^{(T)}_{-\omega}] = F^{(T)}_\omega \). Particularly, under (5), for any \(T \geq 2 \),
the following identity holds for every \(k \geq 1 \):
\[
\mathcal{F}_\omega^{(T)} = E \left[p^{(T)}_\omega \right] = \frac{1}{2\pi T} \left[\sum_{t=1}^{T} \sum_{s=1}^{T} \exp \left(-i\omega(t-s) \right) E[X_t \otimes X_s] \right]
\]
\[
= \frac{1}{2\pi} \sum_{u=-\frac{T}{2}}^{\frac{T}{2}-1} \exp \left(-i\omega u \right) \frac{T-|u|}{T} \mathcal{R}_u.
\]
(8)

Let \(F_T \) be the Fejér kernel, given by
\[
F_T(\omega) = \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{T} \exp \left(-i(t-s)\omega \right), \quad \omega \in [-\pi, \pi], \quad T \geq 2.
\]
(9)

Applying Fourier Transform Inversion Formula in the space \(L(\tilde{H}) \), from equations (8) and (9), for each \(\omega \in [-\pi, \pi] \),
\[
\mathcal{F}_\omega^{(T)} = [F_T * \mathcal{F}_\cdot](\omega)
\]
\[
= \int_{-\pi}^{\pi} F_T(\omega - \xi) \mathcal{F}_\xi d\xi, \quad T \geq 2.
\]
(10)

2.1 Preliminaries on spectral analysis of self–adjoint operators

This section presents some preliminary elements on spectral theory of self–adjoint operators on a Hilbert space (see, e.g., [11], pp. 112–140).

It is well–known that, for a self–adjoint operator \(D \) on a separable Hilbert space \(\tilde{H} \), there exists a family of projection operators \(\{E_\lambda, \lambda \in \Lambda \subseteq \mathbb{R}\} \), also called the spectral family of \(D \), such that the following identity holds:
\[
D = \int_{\Lambda} \lambda dE_\lambda.
\]
(11)

This family of projection operators satisfies the following properties:

(i) \(E_\lambda E_\mu = E_{\inf\{\lambda,\mu\}} \);

(ii) \(\lim_{\lambda \to -\lambda; \; \lambda \geq \lambda} E_\lambda = E_\lambda \);

(iii) \(\lim_{\lambda \to -\infty} E_\lambda = 0 \); \(\lim_{\lambda \to \infty} E_\lambda = I_{\tilde{H}} \), where \(I_{\tilde{H}} \) denotes the identity operator on \(\tilde{H} \).

(iv) The domain of \(D \) is defined as
\[
\text{Dom}(D) = \left\{ h \in \tilde{H} : \int_{\Lambda} \lambda^2 d \langle E_\lambda(h), h \rangle_{\tilde{H}} < \infty \right\}.
\]
A function $G(D)$ admits the representation

$$G(D) = \int_{\Lambda} G(\lambda) dE_{\lambda},$$

and

$$\text{Dom}(G(D)) = \left\{ h \in \tilde{H} : \int_{\Lambda} |G(\lambda)|^2 \langle E_{\lambda}(h), h \rangle_{\tilde{H}} < \infty \right\}.$$

The operator integrals (11) and (12) are understood as improper operator Stieltjes integrals which converge strongly (see, e.g., Section 8.2.1 in [31]).

Let $\Delta = (a, b], -\infty < a < b < \infty$, $E_{\Delta} := E_b - E_a$.

The family E_{Δ} of self–adjoint bounded non–negative operators from the set of Borel sets $\Delta \subseteq \mathbb{R}$ into the space $\mathcal{L}(\tilde{H})$ of bounded linear operators on a Hilbert space \tilde{H} is called an operator measure if

$$E_{[\cup_{j=1}^{\infty} \Delta_j]} = \sum_{j=1}^{\infty} E_{\Delta_j},$$

where the limit at the right–hand side is taken in the sense of weak–convergence of operators, with $\Delta_i \cap \Delta_j = \emptyset$, $i \neq j$, $E_{\emptyset} = 0$.

From (iii), for every $g, h \in \tilde{H}$,

$$\int_{\Lambda} d \langle E_{\lambda}(g), h \rangle_{\tilde{H}} = \langle g, h \rangle_{\tilde{H}}$$

and

$$\int_{\Lambda} d \langle E_{\lambda}(h), h \rangle_{\tilde{H}} = \|h\|^2_{\tilde{H}}. \tag{13}$$

Thus, $\{E_{\lambda}, \lambda \in \Lambda \subseteq \mathbb{R}\}$ provides a resolution of the identity.

From (11) (see (i)–(v)), for every $\psi \in \tilde{H}$,

$$\|D(\psi)\|_{\tilde{H}}^2 = \langle D(\psi), D(\psi) \rangle_{\tilde{H}} = \langle D D(\psi), \psi \rangle_{\tilde{H}} = \int_{\Lambda} |\lambda|^2 d \langle E_{\lambda}(\psi), \psi \rangle_{\tilde{H}}$$

$$= \left< \left[D \left(\int_{\Lambda} \lambda dE_{\lambda} \right) \right] (\psi), \psi \right>_H = \left< \left[\int_{\Lambda} \lambda dE_{\lambda} \right] D \right] (\psi), \psi \right>_H. \tag{14}$$

If $D \in \mathcal{L}(\tilde{H})$, hence, $D D \in \mathcal{L}(\tilde{H})$, and, from (14), for every $\psi \in \tilde{H},$

$$\left\| \left[D - \int_{\Lambda} \lambda dE_{\lambda} \right] (\psi) \right\|_{\tilde{H}}^2 = \left< D(\psi) - \int_{\Lambda} \lambda dE_{\lambda}(\psi), D(\psi) - \int_{\Lambda} \lambda dE_{\lambda}(\psi) \right>_H$$

$$= \int_{\Lambda} |\lambda|^2 d \langle E_{\lambda}(\psi), \psi \rangle_{\tilde{H}} + \int_{\Lambda} |\lambda|^2 d \langle E_{\lambda}(\psi), \psi \rangle_{\tilde{H}} - 2 \int_{\Lambda} |\lambda|^2 d \langle E_{\lambda}(\psi), \psi \rangle_{\tilde{H}} = 0. \tag{15}$$
Thus, \(\| D - \int \lambda dE_{\lambda} \|_{\mathcal{L}(\bar{H})} = 0 \), and the weak–sense representation also holds in \(\mathcal{L}(\bar{H}) \)-norm. In particular, for \(D \in L_0(\bar{H}) \), with \(L_0(\bar{H}) \) denoting the class of compact operators on \(\bar{H} \), the mapping \(\lambda \rightarrow E_{\lambda} \) has discontinuities at the points given by the eigenvalues \(\{ \lambda_k(D), \ k \geq 1 \} \), with

\[
E_{\lambda_k} - \lim_{\lambda \to \lambda_k(D), \ \lambda < \lambda_k(D)} E_{\lambda} = P_k,
\]

where \(P_k \) is the projection operator onto the eigenspace generated by the eigenvectors associated with the eigenvalue \(\lambda_k(D) \), for every \(k \geq 1 \).

Let now consider the following assumption:

Assumption I. Assume that

\[
\int_{-\pi}^{\pi} \| F_\omega \|_{\mathcal{L}(\bar{H})} \ d\omega < \infty. \tag{16}
\]

Remark 3 Note that in the case where the family \(\{ F_\omega, \ \omega \in [-\pi, \pi] \} \) is a.s. continuous in \(\omega \in [-\pi, \pi] \), with respect to \(\mathcal{L}(\bar{H}) \)-norm, applying reverse triangle inequality, \(\| F_\omega \|_{\mathcal{L}(\bar{H})} \) is a.s. continuous in \(\omega \in [-\pi, \pi] \). Therefore, Assumption I holds.

Remark 4 Note that, under Assumption I, for every \(t \in \mathbb{Z} \),

\[
\| R_t \|_{\mathcal{L}(\bar{H})} = \left\| \int_{-\pi}^{\pi} \exp(i\omega t) F_\omega d\omega \right\|_{\mathcal{L}(\bar{H})} \leq \int_{-\pi}^{\pi} \| F_\omega \|_{\mathcal{L}(\bar{H})} \ d\omega < \infty. \tag{17}
\]

The next preliminary result will be applied in the subsequent development.

Lemma 1 Under Assumption I,

\[
\sum_{t \in \mathbb{Z}} \| R_t \|_{\mathcal{S}(\bar{H})}^2 = \int_{-\pi}^{\pi} \| F_\omega \|_{\mathcal{S}(\bar{H})}^2 \ d\omega < \infty. \tag{18}
\]
Proof.

Given an orthonormal basis \(\{ \psi_k, k \geq 1 \} \) of \(\tilde{H} \), under Assumption I, \(F_\omega \) is bounded a.s. in \(\omega \in [-\pi, \pi] \). In particular, \(\int_{-\pi}^{\pi} \langle F_\omega(\psi_k), \psi_l \rangle_{\tilde{H}} d\omega < \infty \), for every \(k, l \geq 1 \). Hence, from (6), for every \(t \in \mathbb{Z} \),

\[
\int_{-\pi}^{\pi} \exp(it\omega) \langle F_\omega(\psi_k), \psi_l \rangle_{\tilde{H}} d\omega = \langle R_t(\psi_k), \psi_l \rangle_{\tilde{H}}, \quad k, l \geq 1.
\] (19)

From (19), applying Fourier transform inversion formula,

\[
\sum_{t \in \mathbb{Z}} \| R_t \|^2_{S(H)} = \sum_{t \in \mathbb{Z}} \sum_{k, l \geq 1} | R_t(\psi_k)(\psi_l) |^2
\]

\[
= \sum_{t \in \mathbb{Z}} \sum_{k, l \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \exp(it(\omega - \xi)) F_\omega(\psi_k)(\psi_l) \overline{F_\xi(\psi_k)(\psi_l)} d\xi d\omega
\]

\[
= \sum_{k, l \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left[\sum_{t \in \mathbb{Z}} \exp(it(\omega - \xi)) \right] F_\omega(\psi_k)(\psi_l) \overline{F_\xi(\psi_k)(\psi_l)} d\xi d\omega
\]

\[
= \sum_{k, l \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \delta(\omega - \xi) F_\omega(\psi_k)(\psi_l) \overline{F_\xi(\psi_k)(\psi_l)} d\xi d\omega
\]

\[
= \int_{-\pi}^{\pi} \sum_{k, l \geq 1} | F_\omega(\psi_k)(\psi_l) |^2 d\omega = \int_{-\pi}^{\pi} \| F_\omega \|^2_{S(\tilde{H})} d\omega.
\] (20)

From equations (19) and (20), keeping in mind that \(F_\omega \) is nonnegative symmetric operator,

\[
\sum_{t \in \mathbb{Z}} \| R_t \|^2_{S(\tilde{H})} = \int_{-\pi}^{\pi} \| F_\omega \|^2_{S(\tilde{H})} d\omega = \int_{-\pi}^{\pi} \| F_\omega F_\omega \|_{L^1(\tilde{H})} d\omega
\]

\[
\leq \int_{-\pi}^{\pi} \| F_\omega \|_{L^1(\tilde{H})} d\omega = \int_{-\pi}^{\pi} \sum_{k \geq 1} \left\langle [F_\omega F_\omega]^{1/2}(\psi_k), \psi_k \right\rangle_{\tilde{H}} d\omega
\]

\[
= \sum_{k \geq 1} \int_{-\pi}^{\pi} \langle F_\omega(\psi_k), \psi_k \rangle_{\tilde{H}} d\omega = \sum_{k \geq 1} \langle R_0(\psi_k), \psi_k \rangle_{\tilde{H}}
\]

\[
= \| R_0 \|_{L^1(\tilde{H})} = \sigma^2 \chi < \infty.
\] (21)

Remark 5 Under Assumption I, from Lemma 7, \(F_\omega \in S(\tilde{H}) \), for \(\omega \in [-\pi, \pi] \backslash \Lambda_0 \), with, as before, \(\int_{\Lambda_0} d\omega = 0 \). Also, \(\| F_\omega \|_{S(\tilde{H})} \in L^2([-\pi, \pi], \mathbb{C}) \).
3 Spectral analysis of LRD functional time series

As commented in the Introduction, the literature on LRD modeling in functional sequences has been mainly developed in the time domain, under the context of linear processes in Hilbert spaces (see, e.g., [13]; [24]; [29], [30]), paying special attention to the theory of operator self–similar processes (see [9]; [21]; [22]; [26], among others).

The next condition characterizes the unbounded behavior at zero frequency of the spectral density operator family.

Assumption II. Let \{A_\theta, \theta \in \Theta\} be a parametric family of positive bounded self–adjoint long–memory operators, with \Theta denoting the parameter space. For each \theta \in \Theta, assume that as \omega \to 0:

$$\|F_{\omega, \theta}|\omega|^{-A_\theta}M_{\omega, F}^{-1} - I_{\tilde{H}}\|_{L(\tilde{H})} \to 0,$$

(22)

where \(I_{\tilde{H}}\) denotes the identity operator on \(\tilde{H}\), and \{\(M_{\omega, F}, \omega \in [−\pi, \pi]\)\} is a family of bounded positive self–adjoint operators.

For \omega \in [−\pi, \pi] and \theta \in \Theta, the spectral representation of \(M_{\omega, F}\) and \(A_\theta\) in terms of a common spectral family \{\(E_\lambda, \lambda \in \Lambda\)\} of projection operators (see Section 2.1) is considered in the next assumption.

Assumption III. Assume that \(A_\theta\) and \(M_{\omega, F}\) admit the following spectral representations:

$$A_\theta = \int_\Lambda \alpha(\lambda, \theta)dE_\lambda, \quad \theta \in \Theta$$

$$M_{\omega, F} = \int_\Lambda M_{\omega, F}(\lambda)dE_\lambda, \quad \omega \in [−\pi, \pi].$$

(23)

We refer to \{\(\alpha(\lambda, \theta), \lambda \in \Lambda\)\} and \{\(M_{\omega, F}(\lambda), \lambda \in \Lambda\)\} as the respective symbols of the self–adjoint operators \(A_\theta\) and \(M_{\omega, F}\).

Remark 6 From (23), operators \(|\omega|^{-A_\theta}\) and \(M_{\omega, F}\) commute, for any \theta \in \Theta, and \omega \in [−\pi, \pi] (see, e.g., [11]).

Under Assumptions II–III, as \omega \to 0,

$$\left\|F_{\omega, \theta} \int_\Lambda \omega^\alpha(\lambda, \theta)M_{\omega, F}(\lambda)dE_\lambda - I_{\tilde{H}}\right\|_{L(\tilde{H})} \to 0, \quad \forall \theta \in \Theta.$$

(24)
For simplicity, in the following, we will omit the reference to the set $[-\pi, \pi] \setminus \Lambda_0$, when the identities hold almost surely in the frequency domain, in view of the singularity at zero-frequency of $F_{\omega, \theta}$, $\theta \in \Theta$, in (22).

Assumption IV. \{\alpha(\lambda, \theta), \lambda \in \Lambda\} and \{M_{\omega, F}(\lambda), \lambda \in \Lambda\} satisfy:

(i) For $(\lambda, \theta) \in \Lambda \times \Theta$, there exist $l_{\alpha}(\theta)$ and $L_{\alpha}(\theta)$ such that

$$0 < l_{\alpha}(\theta) \leq \alpha(\lambda, \theta) \leq L_{\alpha}(\theta) < 1,$$

\[l_{\alpha}(\theta) = \inf_{\psi \in \tilde{H}; \|\psi\|_{\tilde{H}} = 1} \langle A\theta(\psi), \psi \rangle_{\tilde{H}}, \quad L_{\alpha}(\theta) = \sup_{\psi \in \tilde{H}; \|\psi\|_{\tilde{H}} = 1} \langle A\theta(\psi), \psi \rangle_{\tilde{H}}. \]

(ii) For each $\lambda_0 \in \Lambda$, $M_{\omega, F}(\lambda_0)$ is slowly varying function at $\omega = 0$ in the Zygmund’s sense (see, e.g., Definition 6.6 in [5]). Furthermore, we also assume that there exist positive constants m and M such that, for every $\omega \in [-\pi, \pi]$,

$$m \leq M_{\omega, F}(\lambda) \leq M, \quad \forall \lambda \in \Lambda \tag{26}$$

$$m < \inf_{\psi \in \tilde{H}; \|\psi\|_{\tilde{H}} = 1} \langle M_{\omega, F}(\psi), \psi \rangle_{\tilde{H}} < \sup_{\psi \in \tilde{H}; \|\psi\|_{\tilde{H}} = 1} \langle M_{\omega, F}(\psi), \psi \rangle_{\tilde{H}} < M. \tag{27}$$

3.1 LRD characterization in the time domain

The next proposition shows the heavy–tail behavior in time of the inverse functional Fourier transform of the spectral density operator family satisfying the above formulated conditions.

Proposition 1 Let \{\$F_{\omega, \theta}$, $(\omega, \theta) \in [-\pi, \pi] \times \Theta$\} be the semiparametric family of spectral density operators satisfying Assumptions I–IV. Consider

$$R_{t, \theta} = \int_{-\pi}^{\pi} \exp(i\omega t) F_{\omega, \theta} d\omega, \quad t \in \mathbb{Z}, \theta \in \Theta. \tag{27}$$

Then,

$$\left\| R_{t, \theta} \left[M_{t, F, A_0} t^{A_0 - \frac{1}{2}} - I_{\tilde{H}} \right]^{-1} - I_{\tilde{H}} \right\|_{\mathcal{L}(\tilde{H})} \to 0, \quad t \to \infty, \tag{28}$$

with, as before, $I_{\tilde{H}}$ denoting the identity operator on \tilde{H}. Here, for each $\theta \in \Theta$, $\widetilde{M}_{t, F, A_0}$ admits the representation

$$\widetilde{M}_{t, F, A_0} = \int_{\Lambda} 2\Gamma(1 - \alpha(\lambda, \theta)) \sin((\pi/2)\alpha(\lambda, \theta)) M_{1/t, F}(\lambda) dE_{\lambda} \tag{29}$$

$$= \int_{\Lambda} \widetilde{M}_{t, F, A_0}(\lambda) dE_{\lambda},$$

11
where symbols $\alpha(\lambda, \theta)$ and $M_{\omega, \mathcal{F}}(\lambda)$ satisfy Assumptions III-IV. Thus, \(\{X_t, \ t \in \mathbb{Z}\} \) displays LRD.

Proof. For each $\lambda \in \Lambda$, under Assumption IV, from Theorem 6.5 in [5], as $t \to \infty$,

$$
\left| \left[\int_{-\pi}^{\pi} \exp(it\omega) \frac{M_{\omega, \mathcal{F}}(\lambda)}{|\omega|^\alpha(\lambda, \theta)} d\omega \right] \left[\widetilde{M}_{t, \mathcal{F}, A_\theta}(\lambda) t^{\alpha(\lambda, \theta)-1} \right]^{-1} - 1 \right| \to 0. \tag{30}
$$

Under Assumption IV, from equation (29), the sequence

$$
\left\{ \left[\int_{-\pi}^{\pi} \exp(it\omega) \frac{M_{\omega, \mathcal{F}}(\lambda)}{|\omega|^\alpha(\lambda, \theta)} d\omega \right] \left[\widetilde{M}_{t, \mathcal{F}, A_\theta}(\lambda) t^{\alpha(\lambda, \theta)-1} \right]^{-1} - 1, \ n \in \mathbb{N} \right\}
$$

is uniformly bounded in $\lambda \in \Lambda$. Thus, we can apply Bounded Convergence Theorem to obtain, from the pointwise convergence (30),

$$
\lim_{t \to \infty} \int_\Lambda \left[\left[\int_{-\pi}^{\pi} \exp(it\omega) \frac{M_{\omega, \mathcal{F}}(\lambda)}{|\omega|^\alpha(\lambda, \theta)} d\omega \right] \left[\widetilde{M}_{t, \mathcal{F}, A_\theta}(\lambda) t^{\alpha(\lambda, \theta)-1} \right]^{-1} - 1 \right] dE_\lambda = \int_\Lambda \lim_{t \to \infty} \left[\left[\int_{-\pi}^{\pi} \exp(it\omega) \frac{M_{\omega, \mathcal{F}}(\lambda)}{|\omega|^\alpha(\lambda, \theta)} d\omega \right] \left[\widetilde{M}_{t, \mathcal{F}, A_\theta}(\lambda) t^{\alpha(\lambda, \theta)-1} \right]^{-1} - 1 \right] dE_\lambda = 0. \tag{31}
$$

From Remark 4 under Assumption I, R_t is bounded, for every $t \in \mathbb{Z}$. From (31), under Assumptions II-III, keeping in mind (6), we obtain

$$
\lim_{t \to \infty} \int_\Lambda \widetilde{M}_{t, \mathcal{F}, A_\theta}(\lambda) t^{\alpha(\lambda, \theta)-1} dE_\lambda = \int_\Lambda \lim_{t \to \infty} \widetilde{M}_{t, \mathcal{F}, A_\theta}(\lambda) t^{\alpha(\lambda, \theta)-1} dE_\lambda = \int_\Lambda \lim_{t \to \infty} \left[\left[\int_{-\pi}^{\pi} \exp(it\omega) \frac{M_{\omega, \mathcal{F}}(\lambda)}{|\omega|^\alpha(\lambda, \theta)} d\omega \right] \right] dE_\lambda
$$

$$
= \lim_{t \to \infty} \int_\Lambda \left[\left[\int_{-\pi}^{\pi} \exp(it\omega) \frac{M_{\omega, \mathcal{F}}(\lambda)}{|\omega|^\alpha(\lambda, \theta)} d\omega \right] \right] dE_\lambda = \lim_{t \to \infty} R_{t, \theta}, \tag{32}
$$

in $L(H)$ norm.

Thus, equation (28) holds. Therefore, for $M > 0$, sufficiently large,

$$
\sum_{t \in \mathbb{Z}} \| R_{t, \theta} \|_{L_1(H)} \geq \sum_{|t| > M} \| R_{t, \theta} \|_{L(H)} \geq \sum_{|t| > M} \left\| \int_\Lambda \widetilde{M}_{t, \mathcal{F}, A_\theta}(\lambda) dE_\lambda \right\|_{L(H)} |t|^{\alpha(\theta)-1} < \infty, \tag{33}
$$

12
3.2 Examples
Some special cases of the LRD family of functional sequences introduced in the spectral domain under Assumptions I–IV are now analyzed.

3.3 Example 1. Fractionally integrated functional autoregressive moving averages processes of variable order
We analyze here, in the stationary case, an extended family (see Remark 9 in [24]) of fractionally integrated functional autoregressive moving averages models of variable order. Specifically, as before, H and \tilde{H} denote a separable Hilbert space and its complex version, respectively. Let B be the difference operator such that
\[E\|B^jX_t - X_{t-j}\|^2_{H} = 0, \quad \forall t, j \in \mathbb{Z}. \] (34)
Consider the state equation
\[(1 - B)^{\alpha/2} \Phi_p(B)X_t = \Psi_q(B)\eta_t, \quad \forall t \in \mathbb{Z}, \] (35)
where equality holds in the norm of the space $\mathcal{L}^2_{\mathbb{H}}(\Omega, \mathcal{A}, P)$. Here, $\{\eta_t, \ t \in \mathbb{Z}\}$ is a sequence of independent and identically distributed random curves such that $E[\eta_t] = 0$, and $E[\eta_t \otimes \eta_s] = \delta_{t,s} R^0_\eta$, with $R^0_\eta \in L^1(H)$, and $\delta_{t,s} = 0$, for $t \neq s$, and $\delta_{t,s} = 1$, for $t = s$. In particular,
\[\left\| R^0_\eta(h) - \sum_{l=1}^{\infty} \lambda_l(R^0_\eta) \langle \phi_l, h \rangle_H \phi_l \right\|_H = 0, \quad \forall h \in H, \] (36)
where $\{\phi_n, \ n \geq 1\}$ is an orthonormal basis of eigenvectors in H, associated with the eigenvalues $\{\lambda_n(R^0_\eta), \ n \geq 1\}$. Here,
\[\Phi_p(B) = 1 - \sum_{j=1}^{p} \varphi_j B^j, \quad \Psi_q(B) = \sum_{j=1}^{q} \psi_j B^j, \] (37)
where operators $\varphi_j, \ j = 1, \ldots, p$, and $\psi_j, \ j = 1, \ldots, q$, are assumed to be positive self-adjoint bounded operators on H, admitting the diagonal spectral
decomposition

\[\varphi_j = \sum_{l \geq 1} \lambda_l(\varphi_j) \phi_l \otimes \phi_l, \quad j = 1, \ldots, p \]

\[\psi_j = \sum_{l \geq 1} \lambda_l(\psi_j) \phi_l \otimes \phi_l, \quad j = 1, \ldots, q. \]

(38)

Also, for each \(l \geq 1 \), \(\Phi_{p,l}(z) = 1 - \sum_{j=1}^{p} \lambda_l(\varphi_j) z^j \) and \(\Psi_{q,l} = \sum_{j=1}^{q} \lambda_l(\psi_j) z^j \) have not common roots, and their roots are outside of the unit circle (see also Corollary 6.17 in [5]).

We also assume that, for each \(\theta \in \Theta \), operator \(A_\theta \) admits the diagonal spectral representation in \(\mathcal{L}(H) \),

\[A_\theta = \sum_{l \geq 1} \alpha(l, \theta) \phi_l \otimes \phi_l, \]

(39)

and

\[\int_{-\pi}^{\pi} \sup_{l \geq 1} \frac{\lambda_l(R_\eta^l)}{2\pi} \left| \frac{\Psi_{q,l}(\exp(-i\omega))}{\Phi_{p,l}(\exp(-i\omega))} \right|^2 \left| 1 - \exp(-i\omega) \right|^{-\alpha(l, \theta)} d\omega < \infty. \]

(40)

Thus, Assumption 1 holds. Note that, for each \(l \geq 1 \) and \(\theta \in \Theta \),

\[(1 - \exp(-i\omega))^{-\alpha(l, \theta)/2} = \sum_{j=0}^{\infty} a_j(l) \exp(-ij\omega) \]

\[a_j(l) = \frac{\Gamma(j + \alpha(l, \theta)/2)}{\Gamma(j + 1)\Gamma(\alpha(l, \theta)/2)}, \quad j \geq 0. \]

Assume that, for each \(l \geq 1 \) and \(\theta \in \Theta \),

\[\sum_{j=0}^{\infty} b_{j,\theta}(l) z^j = (1 - \exp(-i\theta z)^{-\alpha(l, \theta)/2} \frac{\Psi_{q,l}(z)}{\Phi_{p,l}(z)), \quad z \in \mathbb{C}.} \]

(41)

From equations (35)–(41), applying Corollary 6.17 in [5],

\[X_t(\phi_l) = \mathcal{L}_2(\Omega, A, \lambda) \left(\sum_{j=0}^{\infty} b_j(l) B^j \right) \eta_l(\phi_l), \quad l \geq 1, \]

(42)

and from Corollary 6.18 in [5], for each \(l \geq 1 \) and \(\theta \in \Theta \), there exists \(\tilde{f}(\omega, l, \theta) \) such that

\[\tilde{f}(\omega, l, \theta) = \frac{\lambda_l(R_\eta^l)}{2\pi} \left| \sum_{j=0}^{\infty} b_j(l) \exp(-ij\omega) \right|^2 \]

\[= \frac{\lambda_l(R_\eta^l)}{2\pi} \left| \frac{\Psi_{q,l}(\exp(-i\omega))}{\Phi_{p,l}(\exp(-i\omega))} \right|^2 \left| 1 - \exp(-i\omega) \right|^{-\alpha(l, \theta)}. \]

(43)
Thus, for each $l \geq 1$ and $\theta \in \Theta$,
\[
\langle R_{t,\theta}(\phi_l), \phi_l \rangle_{\tilde{H}} = \int_{-\pi}^{\pi} \exp(i\omega t) \hat{f}(\omega, l, \theta) d\omega,
\]
and under Assumption I (see equation (40)), we obtain, for each $\theta \in \Theta$,
\[
R_{t,\theta} = L(H) \int_{-\pi}^{\pi} \exp(i\omega t) \sum_{l \geq 1} \frac{\lambda_l(R_0^\theta)}{2\pi} \left| \frac{\Psi_{q,l}(\exp(-i\omega))}{\Phi_{p,l}(\exp(-i\omega))} \right|^2
\times |1 - \exp(-i\omega)|^{-\alpha(l,\theta)} \phi_l \otimes \phi_l,
\]
under the condition (see equation (21) in Lemma 1),
\[
\sigma^2_{X,\theta} = \sum_{l \geq 1} \left| \int_{-\pi}^{\pi} \frac{\lambda_l(R_0^\theta)}{2\pi} \left| \frac{\Psi_{q,l}(\exp(-i\omega))}{\Phi_{p,l}(\exp(-i\omega))} \right|^2 |1 - \exp(-i\omega)|^{-\alpha(l,\theta)} d\omega \right| < \infty.
\]
Note that, in this example, our operator measure satisfies
\[
dE(l)(\varphi_k)(\varphi_m) = d \langle E_\lambda(\varphi_k), \varphi_m \rangle_{\tilde{H}} = \phi_l(\varphi_k) \phi_l(\varphi_m), \quad k, m \geq 1, \forall l \geq 1,
\]
for a given orthonormal basis $\{\varphi_k, k \geq 1\}$ of \tilde{H}. Thus, we are considering a discrete (or point) operator measure, defined from the common system of eigenvectors $\{\phi_l, l \geq 1\}$. Equivalently, the spectral family $\{E_\lambda, l \geq 1\}$ admits a representation in terms of a spectral kernel $\tilde{\Phi}$, defined from the eigenvectors $\{\phi_l, l \geq 1\}$, and a point spectral measure (see, e.g., Section 8.2.1 in [31]):
\[
\tilde{\Phi}_l = \phi_l \otimes \phi_l, \quad E_\lambda = \sum_{k=1}^l \phi_k \otimes \phi_k, \quad l \geq 1.
\]
Note that, since $\sin(\omega) \sim \omega$, $\omega \to 0$,
\[
|1 - \exp(-i\omega)|^{-\lambda_l} = [4 \sin^2(\omega/2)]^{-\lambda_l/2} \sim |\omega|^{-\lambda_l}, \quad \omega \to 0,
\]
where the frequency varying operator $|1 - \exp(-i\omega)|^{-\lambda_l/2}$ is interpreted as in [9]; [13]; [29]; [30].

Keeping in mind (46), the following identifications are obtained in relation to (22)–(24),
\[
M_{\omega,\varphi}(\lambda) = M_{\omega,\varphi}(l) = \frac{\lambda_l(R_0^\theta)}{2\pi} \left| \frac{\Psi_{q,l}(\exp(-i\omega))}{\Phi_{p,l}(\exp(-i\omega))} \right|^2, \quad l \geq 1, \quad \omega \in [-\pi, \pi],
\]
\[
|1 - \exp(-i\omega)|^{-\alpha(l,\theta)} \sim |\omega|^{-\alpha(l,\theta)}, \quad \omega \to 0, \quad l \geq 1.
\]
Hence, as $\omega \to 0$, for each $l \geq 1$,

$$
\hat{f}(\omega, l, \theta) \sim K_l |\omega|^{-\alpha(l, \theta)}, \quad K_l = \frac{\lambda_l(R_0^l)}{2\pi} \left| \frac{\Psi_{q,l}(1)}{\Phi_{p,l}(1)} \right|^2, \quad K = \sup_{l \geq 1} K_l < \infty. \quad (48)
$$

Assume that $\Psi_{q,l}$ and $\Phi_{p,l}$, $l \geq 1$, are such that $M_{\omega, F}(l) = \frac{\lambda_l(R_0^l)}{2\pi} \left| \frac{\Psi_{q,l}(\exp(-i\omega))}{\Phi_{p,l}(\exp(-i\omega))} \right|^2$ satisfies the conditions given in Assumption IV(ii). Hence, from Proposition 1, the extended class of fractionally integrated functional autoregressive moving averages models analyzed here displays LRD (see also Remark 9 in [24]). Indeed, the long–memory operator $A_{\theta/2}$ defines the fractional order of integration.

3.4 Example 2. Sampling of continuous–time H–valued processes

Let $H = L^2(\mathbb{R}, \mathbb{R})$, and $\tilde{H} = L^2(\mathbb{R}, \mathbb{C})$. Consider

$$
d \langle E_{\lambda}(\varphi), \psi \rangle_{\tilde{H}} = \int_{\mathbb{R}} \widehat{\varphi}(\lambda) \widehat{\psi}(\lambda) d\lambda
$$

(49)

$$
\widehat{\psi}(\lambda) = \int_{\mathbb{R}} \exp(-i \langle \lambda, z \rangle) \psi(z) dz, \quad \psi \in L^1(\mathbb{R})
$$

$$
\widehat{\varphi}(\lambda) = \int_{\mathbb{R}} \exp(-i \langle \lambda, z \rangle) \varphi(z) dz, \quad \varphi \in L^1(\mathbb{R}). \quad (50)
$$

For this particular choice, for $(\lambda, \omega) \in \mathbb{R}^2$, the symbol $f(\omega, \lambda, \theta)$ of the spectral density operator \mathcal{F}_{ω}, with respect to the spectral family $\{E_{\lambda}, \lambda \in \mathbb{R}\}$ introduced in (49) is defined as follows:

$$
f(\omega, \lambda, \theta) = |\omega|^{-\alpha(\lambda, \theta)} N_\omega(\lambda) h(\omega), \quad (51)
$$

where $\alpha(\lambda, \theta)$ satisfies Assumption IV(i), and h is a positive even taper function of bounded variation, with bounded support is the interval $[-\pi, \pi]$, with $h(-\pi) = h(\pi) = 0$ (see, e.g., [19]). We also assume that h is Lipschitz–continuous function, and is such that $M_{\omega, F}(\lambda) = N_\omega(\lambda) h(\omega)$ satisfies Assumption IV(ii). Furthermore, for $\omega \in [-\pi, \pi] \backslash \{0\}$,

$$
\sup_{\lambda \in \mathbb{R}} |f(\omega, \lambda, \theta)| < \infty. \quad (52)
$$

As particular case of (51), we can consider the tapered continuous version of Example 1 in Section 3.3

$$
f(\omega, \lambda, \theta) = |\omega|^{-\alpha(\lambda, \theta)} \frac{P(\lambda, \omega)}{Q(\lambda, \omega)} h(\omega) 1_{[-\pi, \pi]}(\omega), \quad (\lambda, \omega) \in \mathbb{R}^2,
$$

where the taper function satisfies the above required conditions, and P and Q are positive polynomials such that Assumption IV(ii) holds.
4 The convergence to zero in $S(\tilde{H})$ norm of the bias of the integrated periodogram operator

Theorem 1 provides the convergence to zero, in the Hilbert–Schmidt operator norm, of the integrated bias of the periodogram operator. Note that, in [8], weak–convergence of the covariance operator of the fDFT to the spectral density operator, and the convergence of their respective traces is proved. The next result provides convergence in $S(\tilde{H})$ norm of the integrated covariance operator of the fDFT to the integrated spectral density operator, in the frequency domain, beyond the SRD condition assumed in [8].

Theorem 1 Under **Assumption I**, the following limit holds:

$$\left\| \int_{-\pi}^{\pi} [F_\omega - F_\omega^{(T)}] \, d\omega \right\|_{S(\tilde{H})} \to 0, \quad T \to \infty.$$

Proof. Let $\{\psi_k, \, k \geq 1\}$ be an orthonormal basis of \tilde{H}. Under **Assumption I**,

$$\left\| \int_{-\pi}^{\pi} [F_\omega - F_\omega^{(T)}] \, d\omega \right\|_{S(\tilde{H})}^2 = \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left[F_{\xi \omega} - F_{\xi \omega}^{(T)} - F^{(T)}_\omega F^{(T)}_{\omega} + F^{(T)}_\xi F^{(T)}_{\xi} \right] (\psi_k)(\psi_k)(\psi_k)(\psi_k) d\omega d\xi. \quad (53)$$

From Lemma 1 (see equation (21)), for every $k \geq 1$, $F_\omega(\psi_k)(\psi_k) \in L^1([-\pi, \pi])$. Hence, for each $k \geq 1$,

$$F^{(T)}_\omega(\psi_k)(\psi_k) \to F_\omega(\psi_k)(\psi_k), \text{ a.s.} \quad T \to \infty. \quad (54)$$

Applying triangle inequality, for every $T \geq 2$,

$$\left| \left[F_\omega - F^{(T)}_\omega \right] (\psi_k)(\psi_k) \right| \leq 2 \| F_\omega \|_{L^1(\tilde{H})} < \infty, \text{ a.s.,} \quad (55)$$

with from (21),

$$\int_{-\pi}^{\pi} \| F_\omega \|_{L^1(\tilde{H})} \, d\omega < \infty.$$

Hence, from equations (54)–(55), keeping in mind (21), Dominated Convergence Theorem leads to
\[
\lim_{{T \to \infty}} \int_{-\pi}^{\pi} \left| \mathcal{F}_\omega - \mathcal{F}_\omega^{(T)} \right| (\psi_k)(\psi_k) \, d\omega = \int_{-\pi}^{\pi} \lim_{{T \to \infty}} \left| \mathcal{F}_\omega - \mathcal{F}_\omega^{(T)} \right| (\psi_k)(\psi_k) \, d\omega = 0, \quad k \geq 1.
\]

Note also that, from Lemma [11], \(\|\mathcal{F}_\omega\|_{\mathcal{L}(\mathcal{H})} \in L^2([\pi, \pi], \mathbb{C}) \). Hence, for every \(k \geq 1 \), \(\mathcal{F}_\omega(\psi_k)(\psi_k) \in L^2([-\pi, \pi], \mathbb{C}) \). From Lemma [3] (see equation (21)), we then can apply Young’s convolution inequality with \(p = 2 \). Thus, after applying Cauchy–Schwarz and Jensen’s inequalities in the last sum in (53), we obtain

\[
\sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \mathcal{F}_\xi^{(T)} \mathcal{F}_\xi^{(T)}(\psi_k)(\psi_k) \, d\omega \, d\xi \\
= \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left\langle \mathcal{F}_\omega^{(T)}(\psi_k), \mathcal{F}_\xi^{(T)}(\psi_k) \right\rangle_{\mathcal{H}} \, d\omega \, d\xi \\
\leq \sum_{k \geq 1} \left[\int_{-\pi}^{\pi} \left\| \mathcal{F}_\omega^{(T)}(\psi_k) \right\|_{\mathcal{H}} \, d\omega \right] \left[\int_{-\pi}^{\pi} \left\| \mathcal{F}_\xi^{(T)}(\psi_k) \right\|_{\mathcal{H}} \, d\xi \right] \\
\leq 4\pi^2 \sum_{k \geq 1} \sqrt{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \mathcal{F}_\xi^{(T)} \mathcal{F}_\xi^{(T)}(\psi_k)(\psi_k) \, d\omega \, d\xi} \\
\leq 4\pi^2 \sum_{k \geq 1} \sqrt{\sum_{k \geq 1} \int_{-\pi}^{\pi} \mathcal{F}_\xi \mathcal{F}_\xi(\psi_k)(\psi_k) \, d\xi} \sqrt{\sum_{k \geq 1} \int_{-\pi}^{\pi} \mathcal{F}_\omega \mathcal{F}_\omega(\psi_k)(\psi_k) \, d\omega} \\
= 4\pi^2 \int_{-\pi}^{\pi} \left\| \mathcal{F}_\omega \mathcal{F}_\omega \right\|_{L^1(\mathcal{H})} \, d\omega \\
= 4\pi^2 \int_{-\pi}^{\pi} \left\| \mathcal{F}_\omega \right\|_{\mathcal{L}(\mathcal{H})}^2 \, d\omega < \infty, \tag{57}
\]

where the last inequality in (57) is obtained from Cauchy–Schwarz inequality in \(\ell^2 \). Note also that we have considered, for each \(\omega \in [\pi, \pi] \), the spectral representations

\[
\mathcal{F}_\omega^{(T)}(\psi_k)(\psi_k) = \int_{\Lambda} \left[\int_{-\pi}^{\pi} F_T(\omega - \xi) \lambda(\xi) \, d\xi \right]^2 \langle E_\lambda(\omega)(\psi_k), \psi_k \rangle_{\mathcal{H}} \\
\mathcal{F}_\omega \mathcal{F}_\omega(\psi_k)(\psi_k) = \int_{\Lambda} [\lambda(\omega)]^2 \langle E_\lambda(\omega)(\psi_k), \psi_k \rangle_{\mathcal{H}}, \quad k \geq 1, \tag{58}
\]
in terms of a spectral family \(\{ E_\lambda(\omega), \lambda(\omega) \in \Lambda \} \) of \(\mathcal{F}_\omega \) (see Section 2.1). Indeed, in (57), we have applied Young’s convolution inequality with \(p = 2 \), from (58), leading to

\[
\int_{-\pi}^{\pi} \mathcal{F}_\omega^{(T)} \mathcal{F}_\omega^{(T)}(\psi_k)(\psi_k)d\omega = \int_{-\pi}^{\pi} \left[\int_{-\pi}^{\pi} F_T(\omega - \xi)\lambda(\xi)d\xi \right]^2 d\omega \langle E_\lambda(\omega)(\psi_k), \psi_k \rangle \tilde{H}
\]

\[
\leq \int_{-\pi}^{\pi} \frac{[\lambda(\omega)]^2 d\omega}{\mathcal{F}_\omega \mathcal{F}_\omega(\psi_k)(\psi_k)d\omega}.
\]

(59)

Following similar steps to (57),

\[
\sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \mathcal{F}_\xi^{(T)} \mathcal{F}_\omega(\psi_k)(\psi_k)d\omega d\xi
\]

\[
\leq 4\pi^2 \sum_{k \geq 1} \sqrt{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \mathcal{F}_\xi \mathcal{F}_\omega(\psi_k)(\psi_k) \mathcal{F}_\omega \mathcal{F}_\omega(\psi_k)(\psi_k) d\omega d\xi}
\]

\[
\leq 4\pi^2 \int_{-\pi}^{\pi} \| \mathcal{F}_\omega \|^2_{S(\tilde{H})} d\omega < \infty.
\]

(60)

Again, under Assumption I, from Lemma [1]

\[
\sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \mathcal{F}_\xi \mathcal{F}_\omega^{(T)}(\psi_k)(\psi_k)d\omega d\xi
\]

\[
\leq 4\pi^2 \int_{-\pi}^{\pi} \| \mathcal{F}_\omega \|^2_{S(\tilde{H})} d\omega < \infty.
\]

(61)

From equations (57)–(61), we can apply Dominated Convergence Theorem, and keeping in mind equation (56), we obtain

\[
\lim_{T \to \infty} \left\| \int_{-\pi}^{\pi} \left[\mathcal{F}_\omega - \mathcal{F}_\omega^{(T)} \right] d\omega \right\|^2_{S(\tilde{H})}
\]

\[
= \sum_{k \geq 1} \lim_{T \to \infty} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left[\mathcal{F}_\xi \mathcal{F}_\omega - \mathcal{F}_\xi \mathcal{F}_\omega^{(T)} - \mathcal{F}_\xi^{(T)} \mathcal{F}_\omega + \mathcal{F}_\xi^{(T)} \mathcal{F}_\omega^{(T)} \right](\psi_k)(\psi_k)d\omega d\xi.
\]

\[
\leq \sum_{k \geq 1} 2 \left[\int_{-\pi}^{\pi} \| \mathcal{F}_\xi \|^2_{S(\tilde{H})} d\xi \right] \lim_{T \to \infty} \int_{-\pi}^{\pi} \left\| \mathcal{F}_\omega - \mathcal{F}_\omega^{(T)} \right\| (\psi_k)(\psi_k) d\omega = 0,
\]

(62)
where we have applied Young’s convolution inequality with $p = 1$, leading to

$$
\int_{-\pi}^{\pi} F^{(T)}_\xi(\psi_k)(\psi_k) d\xi \leq \int_{-\pi}^{\pi} F_\xi(\psi_k)(\psi_k) d\xi,
$$

for every $k \geq 1$. In particular,

$$
\int_{-\pi}^{\pi} \|F^{(T)}_\xi\|_{\mathcal{L}(\tilde{H})} d\xi \leq \int_{-\pi}^{\pi} \|F_\xi\|_{\mathcal{L}(\tilde{H})} d\xi.
$$

5 Semiparametric estimation in the spectral domain

This section introduces the estimation methodology adopted in the functional spectral domain. Theorem 2 derives the weak consistency of the formulated parametric estimator of the long–memory operator.

Under Assumptions I-IV, let $\Theta \subset \mathbb{R}^p$, $p \geq 1$, be a compact subset of \mathbb{R}^p. Assume that the true parameter value θ_0 lies in the interior of Θ, denoted as $\text{int} \Theta$. The symbol $\alpha : \mathbb{R} \times \Theta \rightarrow (0, 1)$ is such that $\alpha(\cdot, \theta_1) \neq \alpha(\cdot, \theta_2)$, for $\theta_1 \neq \theta_2$, for every $\theta_1, \theta_2 \in \Theta$. Thus, under (22), we get identifiability in the semiparametric model. Denote by $\hat{\theta}_T$ the estimator of the true parameter value θ_0, based on a functional sample of size T. Hence, $\hat{\alpha}_T(\lambda, \theta) = \alpha(\lambda, \hat{\theta}_T)$ provides the parametric estimator of the symbol $\alpha(\lambda, \theta)$ of A_θ.

Let now introduce the elements involved, and the conditions assumed, in the definition of our operator loss function, to compute the minimum contrast estimator $\hat{\theta}_T$. Specifically, for each $\omega \in [-\pi, \pi]$, the weighting operator \mathcal{W}_ω satisfies

$$
\mathcal{W}_\omega = \int_{\Lambda} W(\omega, \lambda, \beta) dE_\lambda,
$$

$$
= \int_{\Lambda} \tilde{W}(\lambda) |\omega|^\beta dE_\lambda, \quad \beta > 0, \quad (63)
$$

in the space $\mathcal{L}(\tilde{H})$. In particular, the symbol \tilde{W} of $\tilde{W} \in \mathcal{L}(\tilde{H})$ is a positive real–valued bounded continuous function such that

$$
\begin{align*}
\inf_{\psi \in \tilde{H}; \|\psi\|_{\tilde{H}}=1} \left\langle \tilde{W}(\psi), \psi \right\rangle_{\tilde{H}}, \quad M_{\tilde{W}} &= \sup_{\psi \in \tilde{H}; \|\psi\|_{\tilde{H}}=1} \left\langle \tilde{W}(\psi), \psi \right\rangle_{\tilde{H}}. \quad (64)
\end{align*}
$$

For each $\theta \in \Theta$, the normalizing operator σ^2_θ is computed as follows:
\[\sigma^2_\theta = \int_{-\pi}^{\pi} F_{\omega, \theta} \mathcal{W}_\omega d\omega \]

\[= \int_{-\pi}^{\pi} \int_{\lambda} M_{\omega, \lambda} \tilde{W}(\lambda) \frac{dE_{\lambda} d\omega}{|\omega|^a(\theta) - \beta}. \tag{65} \]

Thus, the symbol \(\Sigma^2_\theta \) of \(\sigma^2_\theta \) is given by

\[\Sigma^2_\theta(\lambda) = \int_{-\pi}^{\pi} M_{\omega, \lambda} \tilde{W}(\lambda) \frac{|\omega|^a(\theta) - \beta}{|\omega|^a(\theta) - \beta} d\omega, \quad \forall \lambda \in \Lambda. \tag{66} \]

Under Assumption IV(ii) (see equation (26)), and (64), for every \(\lambda \in \Lambda \),

\[
mm_{\tilde{W}} \left(\left[\int_{-\pi}^{1} - \int_{1}^{\pi} \right] |\omega|^{-L(\theta) + \beta} d\omega + \int_{-1}^{1} |\omega|^{-l(\theta) + \beta} d\omega \right) \\
= mm_{\tilde{W}} \left[\frac{(-\pi)^{1+\beta-L(\theta)} - (-1)^{1+\beta-L(\theta)}}{1+\beta-L(\theta)} + \frac{(-1)^{1+\beta-l(\theta)+\beta}}{1-l(\theta)+\beta} + \frac{1}{1-l(\theta)+\beta} \right] \\
\leq \Sigma^2_\theta(\lambda) \leq MM_{\tilde{W}} \left(\left[\int_{-\pi}^{1} - \int_{1}^{\pi} \right] |\omega|^{-l(\theta)+\beta} d\omega + \int_{-1}^{1} |\omega|^{-L(\theta)+\beta} d\omega \right) \\
= MM_{\tilde{W}} \left[\frac{(-\pi)^{1+\beta-l(\theta)} - (-1)^{1+\beta-l(\theta)}}{1+\beta-l(\theta)} + \frac{(-1)^{1+\beta-l(\theta)+\beta}}{1-l(\theta)+\beta} + \frac{1}{1-l(\theta)+\beta} \right]. \tag{67} \]

Thus, \(\sigma^2_\theta \) is a bounded operator. The symbol of \([\sigma^2_\theta]^{-1} \) is given by

\[[\Sigma^2_\theta(\lambda)]^{-1} = \left[\int_{-\pi}^{\pi} M_{\omega, \lambda} \tilde{W}(\lambda) \frac{dE_{\lambda} d\omega}{|\omega|^a(\theta) - \beta} \right]^{-1}, \quad \lambda \in \Lambda. \tag{68} \]

From (67),

\[[\Sigma^2_\theta(\lambda)]^{-1} \geq \left\{ MM_{\tilde{W}} \left[\frac{(-\pi)^{1+\beta-l(\theta)} - (-1)^{1+\beta-l(\theta)}}{1+\beta-l(\theta)} + \frac{(-1)^{1+\beta-l(\theta)+\beta}}{1-l(\theta)+\beta} + \frac{1}{1-l(\theta)+\beta} \right] \right\}^{-1}. \tag{69} \]
Hence, $[\sigma^2_\theta]^{-1}$ is strictly positive. Again, under Assumption IV(i), from (67)–(69), applying Jensen’s inequality, for $\beta \geq 0$,

\[
\left[\Sigma^2_\theta(\lambda)\right]^{-1} \leq \int_{-\pi}^{\pi} \left[\frac{M_\omega,\bar{F}(\lambda)\bar{W}(\lambda)}{|\omega|^\alpha(\lambda,\theta) - \beta} \right]^{-1} d\omega
\]

\[
\leq \left[mm\bar{W}\right]^{-1} \left[\left(-\pi \right)^{1-\beta+L(\theta)} - \left(-1 \right)^{1-\beta+L(\theta)} \right] \left[\frac{1}{1 - \beta + L(\theta)} \right]
\]

\[
+ \left(\pi \right)^{1-\beta+L(\theta)} - 1 \left[\frac{(1)^{1+L(\theta)} - \beta}{1 + l(\theta) - \beta} + \frac{1}{1 + l(\theta) - \beta} \right] \]

(70)

$[\sigma^2_\theta]^{-1}$ is also bounded for $1 + l(\theta) - \beta > 0$, i.e., $0 \leq \beta < 1 + l(\theta)$.

From (65), we can consider the following factorization of the spectral density operator, for $(\omega, \theta) \in [-\pi, \pi] \times \Theta$,

\[
F_{\omega,\theta} = \sigma^2_\theta \Upsilon_{\omega,\theta} = \Upsilon_{\omega,\theta} \sigma^2_\theta,
\]

where, for each $\theta \in \Theta$, and $\omega \in [-\pi, \pi]$, $\omega \neq 0$,

\[
\Upsilon_{\omega,\theta} = \int_\Lambda \Upsilon(\omega, \lambda, \theta) dE_\lambda
\]

\[
= \int_\Lambda \frac{M_\omega,\bar{F}(\lambda)}{|\omega|^\alpha(\lambda,\theta) \Sigma^2_\theta(\lambda)} dE_\lambda.
\]

(72)

From equations (63)–(72), for each $\theta \in \Theta$, and any $\varrho, \psi \in \tilde{H}$,

\[
\int_{-\pi}^{\pi} \Upsilon_{\omega,\theta} W_\omega(\varrho)(\psi) d\omega = \int_\Lambda d(\langle E_\lambda(\varrho), \psi \rangle_{\tilde{H}}),
\]

(73)

Equivalently, $\int_{-\pi}^{\pi} \Upsilon_{\omega,\theta} W_\omega d\omega$ coincides with the identity operator $I_{\tilde{H}}$ on \tilde{H}, for each $\theta \in \Theta$.

Let us now consider the empirical operator $U_{T,\theta}$ given by, for each $\theta \in \Theta$,

\[
[U_{T,\theta}] = \int_{-\pi}^{\pi} p_\omega^{(T)} \ln(\Upsilon_{\omega,\theta}) W_\omega d\omega,
\]

(74)

where T denotes as before the sample size. Its theoretical counterpart U_θ is defined, for each $\theta \in \Theta$, as

\[
U_\theta = \int_{-\pi}^{\pi} F_{\omega,\theta_0} \ln(\Upsilon_{\omega,\theta}) W_\omega d\omega
\]

\[
= \int_{-\pi}^{\pi} \int_\Lambda \frac{M_\omega,\bar{F}(\lambda)\bar{W}(\lambda)}{|\omega|^\alpha(\lambda,\theta_0) - \beta} \ln(\Upsilon(\omega, \lambda, \theta)) dE_\lambda d\omega.
\]

(75)
Remark 7 Note that, under Assumption IV(i), $U_\theta \in \mathcal{L} (\widetilde{H})$ for any $\beta > 0$. Specifically, for every $\lambda \in \Lambda$, $M_{\omega, \psi}(\lambda) \in L^1([-\pi, \pi])$, and $\ln (\Upsilon (\omega, \lambda, \theta)) W (\omega, \lambda, \beta) \in L^1([-\pi, \pi])$, with

$$
\sup_{\lambda \in \Lambda} \left| -\int_{-\pi}^{\pi} \frac{M_{\omega, \psi}(\lambda)}{|\omega|^{\alpha(\lambda, \theta_0)}} \ln (\Upsilon (\omega, \lambda, \theta)) W (\omega, \lambda, \beta) d\omega \right| < \infty. \tag{76}
$$

In addition, for T large, $U_{T, \theta} \in \mathcal{L} (\widetilde{H})$ a.s. (see Theorem 2 below).

We now consider the loss operator $K(\theta_0, \theta)$ to be minimized, with respect to θ, in the operator norm. Specifically, consider, for each $\theta \in \Theta$,

$$
[K(\theta_0, \theta)] = \int_{\mathcal{L} (\widetilde{H})}^{\pi} \mathcal{F}_{\omega, \theta_0} \ln (\Upsilon (\omega, \lambda, \theta_0)) W (\omega, \lambda, \beta) d\omega = [U_\theta - U_{\theta_0}]. \tag{77}
$$

From Remark 7, $K(\theta_0, \theta) \in \mathcal{L} (\widetilde{H})$. Furthermore, the symbol of $K(\theta_0, \theta)$ is given by

$$
\int_{-\pi}^{\pi} \frac{M_{\omega, \psi}(\lambda)}{|\omega|^{\alpha(\lambda, \theta_0)}} \ln \left(\frac{\Upsilon (\omega, \lambda, \theta)}{\Upsilon (\omega, \lambda, \theta_0)} \right) W (\omega, \lambda, \beta) d\omega, \quad \lambda \in \Lambda. \tag{78}
$$

Operator $[\sigma^2_{\theta_0}]^{-1}K(\theta_0, \theta)$ could be interpreted as a weighted Kullback–Leibler divergence operator, measuring the discrepancy between the two semiparametric functional spectral models $\Upsilon_{\omega, \theta_0}$ and $\Upsilon_{\omega, \theta}$, for each $\theta \in \Theta$ (see, e.g., [10]). Note that, from equations (65)–(77), applying Jensen’s inequality, for every $k \geq 1$, and $\theta \in \Theta$,

$$
-[K(\theta_0, \theta)] (\psi_k, \psi_k) \\
\leq \| \sigma^2_{\theta} \|_{\mathcal{L} (\widetilde{H})} \ln \left(\int_{-\pi}^{\pi} \Upsilon (\omega, \lambda, \theta) W (\omega, \lambda, \beta) d(E_\lambda (\psi_k), \psi_k)_{\widetilde{H}} d\omega \right) \\
= \| \sigma^2_{\theta} \|_{\mathcal{L} (\widetilde{H})} \ln \left(\int_{-\pi}^{\pi} \Upsilon (\omega, \theta) W (\omega, \theta) (\psi_k, \psi_k)_{\widetilde{H}} d\omega \right) \\
= \| \sigma^2_{\theta} \|_{\mathcal{L} (\widetilde{H})} \ln (\| \psi_k \|_{\widetilde{H}}^2) = 0. \tag{79}
$$

From equation (79), for every $k \geq 1$, and $\theta \in \Theta$, $[K(\theta_0, \theta)] (\psi_k, \psi_k) \geq 0$. Thus, $K(\theta_0, \theta)$ is a non–negative symmetric bounded operator. In particular, for each $k \geq 1$, $[K(\theta_0, \theta)] (\psi_k, \psi_k) = 0$, if and only if $\theta = \theta_0$, provided that $d(E_\lambda (\psi_k), \psi_k)_{\widetilde{H}} \neq 0$. Hence, from equations (77)–(79),

$$
\theta_0 = \arg \min_{\theta \in \Theta} \|[K(\theta_0, \theta)]\|_{\mathcal{L} (\widetilde{H})} \\
= \arg \min_{\theta \in \Theta} \sup_{k \geq 1} K(\theta_0, \theta) (\psi_k, \psi_k) \\
= \arg \min_{\theta \in \Theta} U_\theta (\psi_k, \psi_k). \tag{80}
$$

23
From (80), for a given orthonormal basis \(\{ \psi_k, k \geq 1 \} \) of \(\tilde{H} \), we then consider the following empirical loss operator, allowing the computation of the estimator \(\hat{\theta}_T \) of the true parameter value \(\theta_0 \in \text{Int} \, \Theta \) as

\[
\hat{\theta}_T = \arg \min_{\theta \in \Theta} \sup_{k \geq 1} U_{T,\theta}(\psi_k), \tag{81}
\]

where operator \(U_{T,\theta} \) has been introduced in equation (74).

Theorem 2 Consider \(\{ X_t, t \in \mathbb{Z} \} \) to be a stationary zero-mean Gaussian functional sequence, satisfying Assumptions I–IV. Consider in Assumption IV(ii) \(M_{\omega, \theta} \) is such that, for any \(\xi > 0 \),

\[
\lim_{\omega \to 0} \| M_{\omega/\xi, \theta} M_{\omega, \theta}^{-1} I_{\tilde{H}} \|_{\mathcal{L}(\tilde{H})} = 0. \tag{82}
\]

Under the conditions reflected in equations (63)–(79), for \(\beta \in (1, 1 + l(\theta)) \), we then have

\[
E \left\| \int_{-\pi}^{\pi} \left[\rho_\omega^{(T)} - F_{\omega, \theta_0} \right] W_{\omega, \theta} d\omega \right\|_{S(\tilde{H})} \to 0, \quad T \to \infty, \tag{83}
\]

where, for \((\omega, \theta) \in [-\pi, \pi] \times \Theta \),

\[
W_{\omega, \theta} = \ln (\Upsilon_{\omega, \theta}) W_{\omega}. \tag{84}
\]

In particular, the estimator \(\hat{\theta}_T \) introduced in (81), satisfies

\[
\hat{\theta}_T \to_P \theta_0, \quad T \to \infty,
\]

where \(\to_P \) denotes convergence in probability.

Proof.

The operator \(W_{\omega, \theta} \) introduced in (84) admits the spectral representation

\[
W_{\omega, \theta} = \int_{\Lambda} \left[\ln (M_{\omega}(\lambda)) - \ln \left(\Sigma_{\theta}(\lambda) \right) \right. \\
- \alpha(\lambda, \theta) \ln (|\omega|) |\tilde{W}(\lambda)| \omega^\beta dE_{\lambda}, \tag{85}
\]

for \(\omega \in [-\pi, \pi] \), and \(\theta \in \Theta \). From (85), for every \(\theta \in \Theta, \omega \in [-\pi, \pi] \), and \(\beta > 0 \),

\[
\| W_{\omega, \theta} \|_{\mathcal{L}(\tilde{H})} \leq \left\| \ln (M_{\omega, \theta}) |\omega|^\beta \tilde{W}_{\omega} \right\|_{\mathcal{L}(\tilde{H})} \\
+ \| A_{\theta} \ln (|\omega|) |\omega|^\beta \tilde{W}_{\omega} \|_{\mathcal{L}(\tilde{H})} + \| \ln (\sigma_{\theta}^2) |\omega|^\beta \tilde{W}_{\omega} \|_{\mathcal{L}(\tilde{H})} \\
\leq \ln(M) \pi^\beta M\tilde{W} + L(\theta) \ln(\pi) \pi^\beta M\tilde{W} + \| \ln (\sigma_{\theta}^2) \|_{\mathcal{L}(\tilde{H})} \pi^\beta M\tilde{W}. \tag{86}
\]
From (86),

\[
\sup_{\omega \in [-\pi, \pi]} \| W_{\omega, \theta} \|_{\mathcal{L}(\tilde{H})} \leq \ln(M) \pi^2 M_{\tilde{W}} + L(\theta) \ln(\pi) \pi^2 M_{\tilde{W}}
\]

\[
+ \| \ln (\sigma^2) \|_{\mathcal{L}(\tilde{H})} \pi \beta M_{\tilde{W}} = \mathcal{H}(\theta).
\]

(87)

Thus, the family \(\{ W_{\omega, \theta}, \omega \in [-\pi, \pi] \} \) is equicontinuous, for any \(\theta \in \Theta \). We first prove that the following limits hold, for each \(\theta \in \Theta \),

\[
\left\| \int_{-\pi}^{\pi} \left[F_{\omega, \theta_0}^{(T)} - F_{\omega, \theta_0} \right] W_{\omega, \theta} d\omega \right\|_{S(\tilde{H})} \to 0, \quad T \to \infty
\]

(88)

\[
E \left\| \int_{-\pi}^{\pi} \left[p_{\omega}^{(T)} - F_{\omega, \theta_0}^{(T)} \right] W_{\omega, \theta} d\omega \right\|^2_{S(\tilde{H})} \to 0, \quad T \to \infty,
\]

(89)

where \(E \left(p_{\omega}^{(T)} \right) = F_{\omega, \theta_0}^{(T)} \).

From Theorem 1 and equation (87),

\[
\left\| \int_{-\pi}^{\pi} \left[E \left(p_{\omega}^{(T)} \right) - F_{\omega, \theta_0} \right] W_{\omega, \theta} d\omega \right\|_{S(\tilde{H})} \leq \mathcal{H}(\theta) \left\| \int_{-\pi}^{\pi} \left[F_{\omega, \theta_0}^{(T)} - F_{\omega, \theta_0} \right] d\omega \right\|_{S(\tilde{H})} \to 0, \quad T \to \infty.
\]

(90)

Assuming that \(\{ X_t, \ t \in \mathbb{Z} \} \) is Gaussian, applying Fourier Transform Inversion...
Formula, we obtain

\[
E \left\| \int_{-\pi}^{\pi} \left[p_\omega^{(T)} - F_{\omega,\theta_0}^{(T)} \right] \mathcal{W}_{\omega,\theta} d\omega \right\|^2_{S(\tilde{H})} = \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} E \left[p_\omega^{(T)} p_\omega^{(T)} \right] + F_{\xi,\theta_0}^{(T)} F_{\omega,\theta_0}^{(T)} - F_{\xi,\theta_0}^{(T)} E \left[p_\omega^{(T)} \right] \\
- E \left[p_\omega^{(T)} F_{\omega,\theta_0}^{(T)} \right] \mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi \\
= \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} E \left[p_\omega^{(T)} F_{\omega,\theta_0}^{(T)} \right] - F_{\xi,\theta_0}^{(T)} F_{\omega,\theta_0}^{(T)} \right] \mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi \\
= \frac{1}{(2\pi T)^2} \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left[\sum_{T_{l_1,s_1,t_2,s_2}=1} \exp(-i\omega(t_1-s_1)-i\xi(t_2-s_2)) \right] \\
\times \left[E \left[X_{t_1} \otimes X_{s_1} \otimes X_{t_2} \otimes X_{s_2} \right] - E \left[X_{t_1} \otimes X_{s_1} \right] E \left[X_{t_2} \otimes X_{s_2} \right] \right] \\
\mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi \\
= \frac{1}{(2\pi T)^2} \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left[\sum_{T_{l_1,s_1,t_2,s_2}=1} \exp(-i\omega(t_1-s_1)-i\xi(t_2-s_2)) \right] \\
\times \left[E \left[X_{t_1} \otimes X_{t_2} \right] E \left[X_{s_1} \otimes X_{s_2} \right] + E \left[X_{t_1} \otimes X_{s_2} \right] E \left[X_{t_2} \otimes X_{s_1} \right] \right] \\
\mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi \\
= \frac{2\pi}{T} \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_{\omega,\theta_0}^{(T)} F_{\xi,\theta_0}^{(T)} \left[\frac{1}{(2\pi T)^3 T} \sum_{T_{l_1,s_1,t_2,s_2}=1} \exp(it_1(\tilde{\omega} - \omega)) \right] \\
\times \exp \left(is_1(\omega + \tilde{\xi}) + it_2(-\xi - \tilde{\omega}) + is_2(\xi - \tilde{\xi}) \right) \\
+ \exp \left(it_1(\tilde{\omega} - \omega) + is_1(\omega + \tilde{\xi}) + it_2(-\xi - \tilde{\omega}) + is_2(\xi - \tilde{\omega}) \right) \right] \\
\mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi d\tilde{\omega} d\tilde{\xi} \\
= \frac{2\pi}{T} \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f_{2\omega}(\omega) g_{2\omega}(\omega) h_{2\omega}(\omega, u_1) \Phi_T^4(u_1, u_2, u_3) F_{u_1+\omega,\theta_0} F_{u_2-\omega,\theta_0} \mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi d\tilde{\omega} d\tilde{\xi} \\
+ \mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi d\tilde{\omega} d\tilde{\xi} \\
= \frac{2\pi}{T} \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f_{2\omega}(\omega) g_{2\omega}(\omega) h_{2\omega}(\omega, u_1) \Phi_T^4(u_1, u_2, u_3) F_{u_1+\omega,\theta_0} F_{u_2-\omega,\theta_0} \mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi d\tilde{\omega} d\tilde{\xi} \\
= \frac{2\pi}{T} \sum_{k \geq 1} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f_{2\omega}(\omega) g_{2\omega}(\omega) h_{2\omega}(\omega, u_1) \Phi_T^4(u_1, u_2, u_3) F_{u_1+\omega,\theta_0} F_{u_2-\omega,\theta_0} \mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi d\tilde{\omega} d\tilde{\xi} \\
+ \mathcal{W}_{\xi,\theta}^* \mathcal{W}_{\omega,\theta}(\psi_k)(\psi_k) d\omega d\xi d\tilde{\omega} d\tilde{\xi} \]
\[
\frac{2\pi}{T} \sum_{k \geq 1} \int_{-\pi}^{\pi} f_1(\omega) \int_{-\pi}^{\pi} g_1(\omega) \int_{-\pi}^{\pi} h_1(\omega, \omega_1) \Phi_T^4(\omega_1, \omega_2, \omega_3) F_{u_1 + \omega, \theta_0} F_{u_2 - \omega, \theta_0} \\
= \frac{2\pi}{T} \int_{-\pi}^{\pi} f_2(\omega) \int_{-\pi}^{\pi} g_2(\omega) \int_{-\pi}^{\pi} h_2(\omega, \omega_1) \Phi_T^4(u_1, u_2, u_3) \\
\times \langle F_{u_1 + \omega, \theta_0} W_{\omega, \theta}, F_{u_2 - \omega, \theta_0} W_{-(u_1 + u_3 + \omega), \theta} \rangle_{S(\pi)} \, du_1 du_2 du_3 \\
+ \frac{2\pi}{T} \int_{-\pi}^{\pi} f_2(\omega) \int_{-\pi}^{\pi} g_2(\omega) \int_{-\pi}^{\pi} h_2(\omega, \omega_1) \Phi_T^4(\omega_1, \omega_2, \omega_3) \\
\times \langle F_{u_1 - \omega, \theta_0} W_{\omega, \theta}, F_{u_2 - \omega, \theta_0} W_{u_3 + \omega - \omega_1} \rangle_{S(\pi)} \, du_1 du_2 du_3 \\
\leq \frac{K\pi}{T} \int_{[-\pi, \pi]^4} \Phi_T^4(u_1, u_2, u_3) \\
\times \langle F_{u_1 + \omega, \theta_0} W_{\omega, \theta}, F_{u_2 - \omega, \theta_0} W_{-(2u_1 + u_3 - \omega), \theta} \rangle_{S(\pi)} \, du_1 du_2 du_3 \\
+ \frac{K\pi}{T} \int_{[-\pi, \pi]^4} \Phi_T^4(\omega_1, \omega_2, \omega_3) \\
\times \langle F_{2u_1 + \omega, \theta_0} W_{\omega, \theta}, F_{2u_2 - \omega, \theta_0} W_{4u_3 - 2u_1 - \omega} \rangle_{S(\pi)} \, du_1 du_2 du_3,
\]

where, for \(\omega \in [-\pi, \pi] \), \(f_1(\omega) = -\pi - \omega \), \(f_2(\omega) = \pi - \omega \), \(g_1(\omega) = -\pi + \omega \), \(g_2(\omega) = \pi + \omega \), \(h_1(\omega, u_1) = -\pi - u_1 - \omega \), \(h_2(\omega, u_1) = \pi - u_1 - \omega \), \(\tilde{h}_1(\omega, \omega_1) = -\pi + u_1 + \omega \), \(\tilde{h}_2(\omega, \omega_1) = \pi + u_1 + \omega \). For \(v_4 = -(v_1 + v_2 + v_3), v_j \in [-\pi, \pi], j = 1, 2, 3, 4 \), in (91), the multidimensional kernel \(\Phi_T^4 \) of Féjer type is defined as follows:

\[
\Phi_T^4(v_1, v_2, v_3, v_4) = \Phi_T^4(v_1, v_2, v_3) \\
= \frac{1}{(2\pi)^3 T} \sum_{t_1, s_1, t_2, s_2 = 1}^{T} \exp \left(i(t_1 v_1 + s_1 v_2 + t_2 v_3 + s_2 v_4) \right) \\
= \frac{1}{(2\pi)^3 T} \prod_{j=1}^{4} \frac{\sin(T v_j/2)}{\sin(v_j/2)}
\]

(see, e.g., equation (6.6) in [3]).
Denote in equation \((91)\), for each \(k \geq 1\), and \(u_i \in [-\pi, \pi], i = 1, 2, 3, \theta \in \Theta\),
\[
G_{k1, \theta}(u_1, u_2, u_3) = \int_{-\pi}^{\pi} \langle F_{2u_1+\omega, \theta_0} W_{\omega, \theta}(\psi_k), F_{2u_2-\omega, \theta_0} W_{-(2u_1+4u_3+\omega), \theta}(\psi_k) \rangle_H d\omega \\
G_{k2, \theta}(u_1, u_2, u_3) = \int_{-\pi}^{\pi} \langle F_{2\overline{u_1}+\omega, \theta_0} W_{\omega, \theta}(\psi_k), F_{2\overline{u_2}-\omega, \theta_0} W_{4\overline{u_3}-2\overline{u}_1-\omega, \theta}(\psi_k) \rangle_H d\omega \\
\sum_{k \geq 1} G_{k1, \theta}(u_1, u_2, u_3) = \int_{-\pi}^{\pi} \langle F_{2u_1+\omega, \theta_0} W_{\omega, \theta}(\psi_k), F_{2u_2-\omega, \theta_0} W_{-(2u_1+4u_3+\omega), \theta} \rangle_{S(H)} d\omega \\
\sum_{k \geq 1} G_{k2, \theta}(\overline{u_1}, \overline{u_2}, \overline{u_3}) = \int_{-\pi}^{\pi} \langle F_{2\overline{u}_1+\omega, \theta_0} W_{\omega, \theta}, F_{2\overline{u}_2-\omega, \theta_0} W_{4\overline{u}_3-2\overline{u}_1-\omega, \theta} \rangle_{S(H)} d\omega.
\]
(93)

From equations \((86)\) and \((87)\), for each \(\theta \in \Theta\), considering \(\gamma = \beta - 1 > 0\),
\[
\left\| \mathcal{F}_\xi \mathcal{F}_\omega W_{\xi, \theta} W_{\omega, \theta} \right\|_{L(H)} \\
\leq M^2 \left[\frac{1}{\pi} \ln(M) \right]^2 \pi^2 M_W^2 + \left[L(\theta) \ln(\pi) \pi^\gamma M_W \right]^2 \\
+ \left\| \ln(\sigma_0^2) \right\|_{L(H)} \left(\pi^\gamma M_W \right)^2, \quad \forall \xi, \omega, \overline{\xi}, \overline{\omega} \in [-\pi, \pi].
\]
(94)

Thus, we can apply Bounded Convergence Theorem to obtain, for each \(k \geq 1\),
\[
\lim_{u_i \to 0, i = 1, 2, 3} G_{k1, \theta}(u_1, u_2, u_3) = \int_{-\pi}^{\pi} \lim_{u_i \to 0, i = 1, 2, 3} F_{2u_1+\omega, \theta_0} F_{2u_2-\omega, \theta_0} \\
\times W^*_r(2u_1+4u_3+\omega, \theta) W_{\omega, \theta}(\psi_k)(\psi_k) d\omega \\
= G_{k1, \theta}(0, 0, 0) \\
= \lim_{\overline{u}_i \to 0, i = 1, 2, 3} G_{k2, \theta}(\overline{u}_1, \overline{u}_2, \overline{u}_3) = \int_{-\pi}^{\pi} \lim_{\overline{u}_i \to 0, i = 1, 2, 3} F_{2\overline{u}_1+\omega, \theta_0} F_{2\overline{u}_2-\omega, \theta_0} \\
\times W^*_r(4\overline{u}_3-2\overline{u}_1-\omega, \theta) W_{\omega, \theta}(\psi_k)(\psi_k) d\omega \\
= G_{k2, \theta}(0, 0, 0),
\]
(95)

which means that \(G_{k_i}, i = 1, 2\), are continuous at zero, and uniform convergence holds in the limits of their convolutions with multidimensional Féjer kernel. Particularly,
\[
\lim_{T \to \infty} \int_{[-\pi, \pi]^3} \Phi_{4T}(v_1, v_2, v_3) G_{k_i, \theta}(v_1, v_2, v_3) dv_1 dv_2 dv_3 = G_{k_i, \theta}(0, 0, 0),
\]
(96)
for each \(k \geq 1, i = 1, 2\), and \(\theta \in \Theta\).
Furthermore, the absolute integrability of the functions

\[G_1(u_1, u_2, u_3) = \sum_{k \geq 1} G_{k, \theta}(u_1, u_2, u_3), \quad G_2(u_1, u_2, u_3) = \sum_{k \geq 1} G_{k, \theta}(u_1, u_2, u_3) \]

over \([-\pi, \pi]^3\) holds. Specifically, under Assumptions I–IV, and equation (82), keeping in mind equations (86) and (87), we obtain

\[
\int_{[-\pi,\pi]^3} \sum_{k \geq 1} G_{k, \theta}(u_1, u_2, u_3)^3 du_i \leq \left| \mathcal{H}(\theta)^2 \pi^3 \int_{-\pi}^{\pi} \| \mathcal{F}_0 \|^2_{S(\mathcal{H})} d\omega \right| < \infty. \tag{97}
\]

Similarly, we can prove that \(G_2(u_1, u_2, u_3) \in L^1([\pi, \pi]^3) \). Thus, the following limits are obtained from the convolution of functions \(G_1(u_1, u_2, u_3) \), and \(G_2(u_1, u_2, u_3) \) with Féjer kernel

\[
\lim_{T \to \infty} \frac{K\pi}{T} \int_{[-\pi,\pi]^4} \Phi^{(2)}_T (u_1, u_2, u_3) \times \left(\mathcal{F}_{\omega, \theta} \mathcal{W}_{\omega, \theta, \lambda} \right)_{S(\mathcal{H})} d\omega d\omega d\omega d\omega
\]

\[
+ \lim_{T \to \infty} \frac{K\pi}{T} \int_{[-\pi,\pi]^4} \Phi^{(2)}_T (\bar{u}_1, \bar{u}_2, \bar{u}_3) \times \left(\mathcal{F}_{\omega, \theta} \mathcal{W}_{\omega, \theta, \lambda} \right)_{S(\mathcal{H})} d\omega d\omega d\omega d\omega
\]

\[
= \lim_{T \to \infty} \frac{K\pi}{T} \left[G_1(0, 0, 0) + G_2(0, 0, 0) \right]. \tag{98}
\]

From equations (91)–(98), as \(T \to \infty \),

\[
E \left\| \int_{-\pi}^{\pi} \left[\mathcal{F}_\omega^{(T)} - \mathcal{F}_\omega^{(T)} \right] \mathcal{W}_{\omega, \theta} d\omega \right\|^2_{S(\mathcal{H})} = O \left(\frac{1}{T} \right).
\]
Applying Jensen’s inequality,

\[
E \left\| \int_{-\pi}^{\pi} \left[p_{\omega}^{(T)}(T,\theta) - \mathcal{F}_{\omega,\theta_0}^{(T)}(T,\theta) \right] \mathcal{W}_{\omega,\theta} d\omega \right\|_{S(\tilde{H})} \leq \sqrt{E \left\| \int_{-\pi}^{\pi} \left[p_{\omega}^{(T)}(T,\theta) - \mathcal{F}_{\omega,\theta_0}^{(T)}(T,\theta) \right] \mathcal{W}_{\omega,\theta} d\omega \right\|_{S(\tilde{H})}^2} \to 0, \quad T \to \infty.
\]

(99)

From (90) and (99), applying triangle inequality, equation (83) holds. In particular,

\[
\| U_{T,\theta} - U_{\theta} \|_{S(\tilde{H})} \to P 0, \quad T \to \infty, \quad \forall \theta \in \Theta.
\]

(100)

Therefore, for each \(\theta \in \Theta \), as \(T \to \infty \),

\[
\| U_{T,\theta} - U_{T,\theta_0} - K(\theta_0, \theta) \|_{S(\tilde{H})} = \left[\sum_{k,l \geq 1} \left| [U_{T,\theta} - U_{T,\theta_0}](\psi_k)(\psi_l) - [K(\theta_0, \theta)](\psi_k)(\psi_l) \right|^2 \right]^{1/2} \to P 0, \quad (101)
\]

implying that, as \(T \to \infty \),

\[
\sup_{k \geq 1} \left| [U_{T,\theta} - U_{T,\theta_0}](\psi_k)(\psi_k) - [K(\theta_0, \theta)](\psi_k)(\psi_k) \right| \to P 0. \quad (102)
\]

In particular, denoting \(L_T(\theta) = \sup_{k \geq 1} \left| [U_{T,\theta} - U_{T,\theta_0}](\psi_k)(\psi_k) \right| \) and \(L(\theta) = \sup_{k \geq 1} \left| [K(\theta_0, \theta)](\psi_k)(\psi_k) \right| \),

\[
L_T(\theta) \to P L(\theta), \quad T \to \infty, \quad \forall \theta \in \Theta. \quad (103)
\]

From equations (79)–(80),

\[
L(\theta) = \sup_{k \geq 1} \left| [K(\theta_0, \theta)](\psi_k)(\psi_k) \right| > 0, \quad \theta \neq \theta_0
\]

\[
\theta_0 = \arg \min_{\theta \in \Theta} L(\theta) = \arg \min_{\theta \in \Theta} \sup_{k \geq 1} \left| [K(\theta_0, \theta)](\psi_k)(\psi_k) \right|, \quad (104)
\]

for any orthonormal basis \(\{ \psi_k, k \geq 1 \} \) of \(\tilde{H} \).

To prove the consistency of the estimator \(\hat{\theta}_T \) in (81), we first show that the convergence (103) holds uniformly in \(\theta \in \Theta \). Specifically, for any \(\theta_1, \theta_2 \in \Theta \), from equation (72), considering triangle inequality, and the fact that \(p_{\omega}^{(T)} \) and
\(\mathcal{W}_\omega \) are non-negative operators for every \(\omega \in [-\pi, \pi] \), we obtain, for each \(k \geq 1 \),

\[
\begin{align*}
|U_{T, \theta_1} - U_{T, \theta_2}(\psi_k)(\psi_k)| \\
\leq \int_{-\pi}^{\pi} \left| p^{(T)}_\omega \ln (T_{\omega, \theta_2} T_{\omega, \theta_2}^{-1}) \mathcal{W}_\omega(\psi_k)(\psi_k) \right| d\omega \\
= \int_{-\pi}^{\pi} \left| \ln (\sigma_{\theta_1}^2 [\sigma_{\theta_2}^2]^{-1}) + (A_{\theta_1} - A_{\theta_2}) \ln (|\omega|) \right| \\
\times \left| p^{(T)}_\omega \mathcal{W}_\omega(\psi_k)(\psi_k) \right| d\omega \\
\leq \| \ln (\sigma_{\theta_1}^2 [\sigma_{\theta_2}^2]^{-1}) \|_{L(\mathcal{H})} \int_{-\pi}^{\pi} \left| p^{(T)}_\omega \mathcal{W}_\omega(\psi_k)(\psi_k) \right| d\omega \\
+ \| A_{\theta_1} - A_{\theta_2} \|_{L(\mathcal{H})} \int_{-\pi}^{\pi} \left| \ln (|\omega|) \right| \left| p^{(T)}_\omega \mathcal{W}_\omega(\psi_k)(\psi_k) \right| d\omega.
\end{align*}
\]

(105)

From (105), to prove the convergence (103) holds uniformly in \(\theta \in \Theta \), we only need to show that, for any \(k \geq 1 \),

\[
\int_{-\pi}^{\pi} \left| p^{(T)}_\omega \mathcal{W}_\omega(\psi_k)(\psi_k) \right| d\omega = \mathcal{O}_p(1), \quad T \to \infty
\]

(106)

\[
\int_{-\pi}^{\pi} \left| \ln (|\omega|) \right| \left| p^{(T)}_\omega \mathcal{W}_\omega(\psi_k)(\psi_k) \right| d\omega = \mathcal{O}_p(1), \quad T \to \infty
\]

(107)

(see Theorems 21.9 and 21.10 in [12]). Note that, for \(k \geq 1 \),

\[
\sigma_{\theta_0}^2(\psi_k)(\psi_k) = \int_{-\pi}^{\pi} F_{\omega, \theta_0} \mathcal{W}_\omega(\psi_k)(\psi_k) d\omega \leq \| \sigma_{\theta_0}^2 \|_{L(\mathcal{H})} < \infty
\]

(108)

\[
\int_{-\pi}^{\pi} \left| \ln (|\omega|) \right| F_{\omega, \theta_0} \mathcal{W}_\omega(\psi_k)(\psi_k) d\omega \leq 2\pi \sup_{(\omega, \lambda) \in [-\pi, \pi] \times \Lambda} \left| \ln (|\omega|) \right| \left| \omega \right|^{\alpha(\lambda, \theta_0) - \beta} \\
\times \sup_{\omega \in [-\pi, \pi]} \| \tilde{W} M_{\omega, F} \|_{L(\mathcal{H})} < \infty,
\]

(109)

where, for \(\beta > 1 \),

\[
C = 2\pi \sup_{(\omega, \lambda) \in [-\pi, \pi] \times \Lambda} \left| \ln (|\omega|) \right| \left| \omega \right|^{\alpha(\lambda, \theta_0) - \beta} < \infty.
\]

From Theorem [1] as \(T \to \infty \),

\[
\left\| \int_{-\pi}^{\pi} \left[E \left[p^{(T)}_\omega \right] - F_{\omega, \theta_0} \right] \mathcal{W}_\omega d\omega \right\|_{S(\mathcal{H})} \to 0
\]

(110)

\[
\left\| \int_{-\pi}^{\pi} \left| \ln (|\omega|) \right| \left[E \left[p^{(T)}_\omega \right] - F_{\omega, \theta_0} \right] \mathcal{W}_\omega d\omega \right\|_{S(\mathcal{H})} \to 0.
\]

(111)
In a similar way to equations (91)–(100), it can also be proved that
\[
E \left\| \int_{-\pi}^{\pi} \left[p_{\omega}^{(T)}(T) - \mathcal{F}_{\omega,0}^{(T)} \right] \mathcal{W}_{\omega}d\omega \right\|_{S(H)}^2 \to 0, \ T \to \infty
\] (112)
\[
E \left\| \int_{-\pi}^{\pi} |\ln|\omega|| \left[p_{\omega}^{(T)}(T) - \mathcal{F}_{\omega,0}^{(T)} \right] \mathcal{W}_{\omega}d\omega \right\|_{S(H)}^2 \to 0, \ T \to \infty. \tag{113}
\]

From equations (108)–(113), as \(T \to \infty \),
\[
\left\| \int_{-\pi}^{\pi} \left[p_{\omega}^{(T)}(T) - \mathcal{F}_{\omega,0}^{(T)} \right] \mathcal{W}_{\omega}d\omega \right\|_{S(H)} \to_p 0 \tag{114}
\]
\[
\left\| \int_{-\pi}^{\pi} |\ln|\omega|| \left[p_{\omega}^{(T)}(T) - \mathcal{F}_{\omega,0}^{(T)} \right] \mathcal{W}_{\omega}d\omega \right\|_{S(H)} \to_p 0. \tag{115}
\]

From (114)–(115), equations (106) and (107) are satisfied uniformly in \(k \geq 1 \). Thus, (103) holds uniformly in \(\theta \in \Theta \).

To prove \(\hat{\theta}_T \) is weakly consistent, consider that \(\hat{\theta}_T \) does not converge in probability to \(\theta_0 \). Hence, there exists a subsequence \(\{\hat{\theta}_{T_m}, \ m \in \mathbb{N}\} \) such that \(\hat{\theta}_{T_m} \to_p \theta' \neq \theta_0 \), as \(T_m \to \infty \), when \(m \to \infty \). From (104), for \(\tau > 0 \) satisfying \(0 < \nu < \mathcal{L}(\theta') - \tau \), for certain \(\nu > 0 \), applying uniform convergence in \(\theta \in \Theta \), in equation (103), there exists \(m_0 \) such that for \(m \geq m_0 \),
\[
P \left[\inf_{l \geq m} L_{T_l}(\hat{\theta}_T) \geq \mathcal{L}(\theta') - \tau > \nu > 0 \right] \geq p_0 \geq 1/2. \tag{116}
\]

From equations (101), (102) and (104), for \(T \) sufficiently large,
\[
U_{T,\theta} - U_{T,\theta_0}(\psi_k)(\psi_k) \geq 0, \ \forall k \geq 1.
\]

Then, from definition of the estimator \(\hat{\theta}_T \) in (31), and uniform convergence in probability in \(\theta \) in (103), with respect to \(S(H) \) norm (see equations (114)–(115)), there exists \(m_0^* \) such that for \(m \geq m_0^* \),
\[
P \left[\sup_{l \geq m} L_{T_l}(\hat{\theta}_T) \leq \inf_{\theta \in \Theta} \mathcal{L}(\theta) = \mathcal{L}(\theta_0) = 0 \right] \geq p_0 \geq 1/2, \tag{117}
\]
which, in particular, implies
\[
P \left[\inf_{l \geq m} L_{T_l}(\hat{\theta}_T) \leq \inf_{\theta \in \Theta} \mathcal{L}(\theta) = \mathcal{L}(\theta_0) = 0 \right] \geq p_0 \geq 1/2. \tag{118}
\]

For \(m \geq \max\{m_0, m_0^*\} \), equations (116)–(118) lead to a contradiction. Thus, \(\hat{\theta}_T \to_p \theta_0 \), as \(T \to \infty \).
Remark 8 The variable order fractionally integrated functional autoregressive moving averages process family introduced in Section 3.3 satisfies the conditions assumed in Theorem 2 for a suitable choice of the polynomial sequence \(\{ \Phi_{p,l}, \Phi_{q,l}, l \geq 1 \} \).

6 Conclusion

The spectral analysis of SRD functional time series has been currently achieved in several papers. Particularly, in the Introduction, we have referred to the pioneer contribution in [28]. This paper constitutes a first attempt in the spectral analysis of stationary functional time series beyond the SRD condition. Specifically, this paper applies spectral theory of self–adjoint operators on a separable Hilbert space to characterize LRD in functional time series in the spectral domain, under Assumptions I–IV (see Proposition 1). As special cases, fractionally integrated functional ARMA processes of variable order are considered (see Section 3.3). Their tapered continuous version in the spectral domain is also analyzed in Section 3.4. Our main results, Theorems 1 and 2 respectively provide the convergence to zero in \(S(\hat{H}) \) norm of the bias of the integrated periodogram operator, and the weak consistent estimation of the LRD operator, in a parametric framework in the spectral domain. Note that Theorem 1 holds beyond the linear and Gaussian case, under the LRD setting, while Theorem 2 is proved under a LRD Gaussian scenario.

Acknowledgements

This work has been supported in part by project PGC2018-099549-B-I00 of the Ministerio de Ciencia, Innovación y Universidades, Spain (co-funded with FEDER funds).

We would like to thank Professors Antonio Cuevas and Daniel Peña for their helpful comments and suggestions that have contributed to the improvement of the present paper in an important way.

References

[1] Andrews, D.W.K., Sun, Y. (2004). Adaptive local polynomial Whittle estimation of long-range dependence. *Econometrica* 72 569–614.
[2] Anh, V., Leonenko, N.N., Sakhno, L.M. (2004). On a class of minimum contrast estimators for fractional stochastic processes and fields. *Journal of Statistical Planning and Inference* **123** 161–185.

[3] Anh, V., Leonenko, N.N., Sakhno, L.M. (2007). Minimum contrast estimation of random processes based on information of second and third orders. *Journal of Statistical Planning and Inference* **137** 1302–1331.

[4] Beran, J. (1994). *Statistics for Long-Memory Processes*. Chapman & Hall, New York.

[5] Beran, J. (2017). *Mathematical Foundations of Time Series Analysis*. Springer, Switzerland.

[6] Beran, J., Feng, Y., Ghosh, S., Kulik, R. (2013). *Long-Memory Processes: Probabilistic Properties and Statistical Methods*. Springer, Berlin Heidelberg.

[7] Brockwell, R.A., Davis, R.A. (1991). *Time Series: Theory and Methods*. Springer-Verlag, New York.

[8] Cerovecki, C., Hörmann, S. (2017). On the CLT for discrete Fourier transforms of functional time series. *Journal of Multivariate Analysis* **154** 282–295.

[9] Characiejus, V., Räckauskas, A. (2014). Operator self-similar processes and functional central limit theorems. *Stochastic Process. Appl.* **124** 2605–2627.

[10] Cover T., Thomas J. (1991). *Elements of Information Theory*. John Wiley & Sons, Inc.

[11] Dautray, R., Lions, J.L. (1985). *Mathematical Analysis and Numerical Methods for Science and Technology. Volume 3 Spectral Theory and Applications*. Springer, New York.

[12] Davidson, J. (1994). *Stochastic Limit Theory: An Introduction for Econometricians*. Oxford University Press, Oxford.

[13] Düker, M. (2018). Limit theorems for Hilbert space–valued linear processes under long range dependence. *Stochastic Processes and Their Applications* **128** 1439–1465.
[14] Düker, M. (2020). Sample autocovariance operators of long-range dependent Hilbert space-valued linear processes. https://www.researchgate.net/publication/344364182.

[15] Gao, J., Anh, V., Heyde, C. (2002). Statistical estimation of non-stationary Gaussian processes with long-range dependence and intermittency. *Stochastic Processes & Their Applications* **99**, 295–321.

[16] Gao, J., Anh, V., Heyde, C., Tieng, Q. (2001). Parameter estimation of stochastic processes with long-range dependence and intermittency. *Journal of Time Series Analysis* **22**, 517–535.

[17] Giraitis, L., Koul, H., Surgailis, D. (2012). *Large Sample Inference for Long memory Processes*. Imperial College Press, London.

[18] Giraitis, I., Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimates. *Probability Theory and Related Fields* **86**, 87–104.

[19] Guyon, X. (1995). *Random Fields on a Network*. Springer-Verlag, New York.

[20] Hosoya, Y. (1997). A limit theory for long-range dependence and statistical inference on related models. *Annals of Statistics* **25**, 105–137.

[21] Laha, R.G., Rohatgi, V.K. (1982). Operator self–similar stochastic processes in \mathbb{R}^d. *Stochastic Process. Appl.* **12**, 73–84.

[22] Lamperti, J.W. (1962). Semi-stable stochastic processes. *Trans. Amer. Math. Soc.* **104**, 62–78.

[23] Leonenko, N.N., Sakhno, L.M. (2006). On the Whittle estimators for some classes of continuous parameter random processes and fields. *Statistics and Probability Letters* **76**, 781–795.

[24] Li, D., Robinson, P.M., Shang, H.L. (2019). Long-range dependent curve time series. *Journal of the American Statistical Association*. doi: 10.1080/01621459.2019.1604362.

[25] Marinucci, D., Peccati, G. (2011). *Random fields on the Sphere. Representation, Limit Theorems and Cosmological Applications*. London Mathematical Society Lecture Note Series 389. Cambridge University Press, Cambridge.
[26] Matache, M., Matache, V. (2006). Operator-self-similar processes on Banach spaces. *J. Appl. Math. Stoch. Anal.* Article ID 82838.

[27] Palma, W. (2007). *Long-Memory Time Series*. Wiley, Hoboken.

[28] Panaretos, V.M., Tavakoli, S. (2013). Fourier analysis of stationary time series in function space. *Ann Statist* 41 568–603.

[29] Rackauskas, A., Suquet, Ch. (2010). On limit theorems for Banach-space-valued linear processes. *Lithuanian Mathematical Journal* 50 71–87.

[30] Rackauskas, A., Suquet, Ch. (2011). Operator fractional brownian motion as limit of polygonal lines processes in Hilbert space. *Stochastics and Dynamics* 11 49–70.

[31] Ramm, A.G. (2005). *Random Fields Estimation*. Longman Scientific & Technical, England.

[32] Robinson, P.M. (Ed.) (2003). *Time Series with Long Memory*. Oxford University Press, Oxford.

[33] Stein, E.M. (1970). *Singular Integrals and Differential Properties of Functions*. Princeton University Press, Princeton.

[34] Stein, E.M. (1999). *Interpolation of Spatial Data*. Springer, Berlín.

[35] Sun, Y., Phillips, P.C.B. (2003). Nonlinear log–periodogram regression for perturbed fractional processes. *Journal of Econometrics* 115 355–389.

[36] Triebel, H. (1997). *Fractals and Spectra*. Birkäuser. Basel.