Correlation between diminished vagal tone and somatic dysfunction severity in very and extremely low birth weight preterm infants assessed with frequency spectrum heart rate variability and salivary cortisol

Luca Vismara, DO, MsC, PhDs,a,b,c,* Andrea Giannmaria Tarantino, DO, FT,d Andrea Bergna, DO, FT,d, Giuliana Bianchi, MD,e Cristina Bragalini, DO, FTc, Elisa Billò, DO, MsC,c Fulvio Dal Farra, DO, FT, MsC,d, Francesca Buffone, DOc,d,f, Massimo Agosti, MDa

Abstract
Osteopathic manipulative treatment (OMT) is evolving in the neonatal intensive care unit (NICU) setting. Studies showed its efficacy in length of stay and hospitalization costs reduction. Moreover, it was suggested that OMT has a modulatory effect on the preterm infants’ autonomic nervous system (ANS), influencing saturation and heart rate. Even if OMT is based on the palpatory examination of the somatic dysfunctions (SD), there are controversies about its identification and clinical relevance. The objective of this study was to evaluate the inter-rater reliability, clinical characteristics, and functional correlation of the SD Grade score with the heart rate variability (HRV) and the salivary cortisol (sCor) using a multivariate linear model approach. To evaluate those features, we implemented an ad hoc SD examination for preterm infants that was performed by 2 trained osteopaths. It was based on the new variability model of SD that includes an SD Grade assessment procedure. The ANS features were assessed by frequency parameters of HRV studying high frequency (HF), low frequency (LF), and HF/LF, whereas sCor was tested with a radioimmunoassay. The ANS assessment was standardized and performed before SD testing. Sixty-nine premature infants were eligible. SD Grade showed excellent concordance between the blinded raters. Using SD Grade as a grouping variable, the infants presented differences in GA, Apgar, pathological findings, length of stay, and ventilatory assistance. In our multivariate model, HF, LF, and LF/HF resulted linearly correlated with SD Grade. Instead, sCor presented a linear correlation with 5’ Apgar and respiratory distress syndrome but not with SD Grade. SD Grade was in line with the natural history of the underdevelopment due to prematurity. Our models indicate that the cardiac vagal tone is linearly related with SD Grade. This finding may improve the multidisciplinary decision making inside NICU and the management of modifiable factors, like SD, for cardiac vagal tone regulation.

Abbreviations: ANS = autonomic nervous system, GA = gestational age, HF = high frequency, HPA = hypothalamic–pituitary–adrenal, HRV = heart rate variability, ICC = interclass correlation, LF = low frequency, LOS = length of stay, NICU = neonatal intensive care unit, NZ = neutral zone, OMT = osteopathic manipulative treatment, PMA = postmenstrual age, RDS = respiratory distress syndrome, sCor = salivary cortisol, SD = somatic dysfunction, TAR = time to autonomous respiration, TT = tissue texture, VM = variability model.

Keywords: heart rate variability, neonatology, neutral zone, osteopathic manipulation, premature infants, variability model

1. Introduction
The maturation of the autonomic nervous system (ANS) is a critical milestone for preterm infants. Preterm birth can expose infants admitted to the neonatal intensive care unit (NICU) to a moderate or severe underdevelopment of the ANS, linked to a deregulation between sympathetic and parasympathetic nervous system with minor adaptation of system. Heart rate variability (HRV) and salivary cortisol concentration (sCor) are 2 markers commonly used for the assessment of sympathetic–vagal functionality, the pain response, and the hypothalamic–pituitary–adrenal (HPA) activity in premature infants.

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal. How to cite this article: Vismara L, Giannmaria Tarantino A, Bergna A, Bianchi G, Bragalini C, Billò E, Dal Farra F, Buffone F, Agosti M. Correlation between diminished vagal tone and somatic dysfunction severity in very and extremely low birth weight preterm infants assessed with frequency spectrum heart rate variability and salivary cortisol. Medicine 2022;101:38(e30565). Received: 19 June 2021 / Received in final form: 9 August 2022 / Accepted: 11 August 2022. http://dx.doi.org/10.1097/MD.0000000000030565.
HRV in preterm infants was studied to determine its predictive value on some clinical conditions that may occur during their permanence inside the NICU. Altered sympathovagal balance, specifically a diminished parasympathetic activity, assessed with HRV frequency domain, was correlated with low gestational age (GA)[8] and low postmenstrual age (PMA).[6] Moreover, diminished vagal tone was identified as a predictive biomarker for necrotizing enterocolitis onset[7] and was described in newborns diagnosed with respiratory distress syndrome (RDS) or symptomatic patent ductus arteriosus.[8]

Correspondingly, salivary cortisol – as measure of distress – was studied in premature infants because of its relationship with pain response to invasive or noninvasive stimuli. High humidity high flow nasal cannula was associated with lower salivary cortisol levels versus nCPAP[9] whereas eye-screening examination and heel lance increased the salivary cortisol level.[10,11]

Complementary medicines studied the HRV variations, focusing on the interaction of massage and kangaroo care in the regulation of sympathovagal activity in infants, observing in both cases a reduction of low frequency to high frequency (LF/HF) and an increased vagal activity, via HF parameter, after treatment.[12–14] Among complementary therapies, the effects of the osteopathic manipulative treatment (OMT) on HRV were investigated in healthy adults and in patients with chronic pain, outlining significant variations on HF parameters and LF/HF ratio, and a modulatory effect of OMT on heart–brain interactions.[15,16] The osteopathic clinical practice relies on palpatory findings and distinctive physical examination, which main goal is the recognition of the somatic dysfunction (SD) (Code ME93.0) that is an altered function of related components of the body framework system: skeletal, arthrodial, and myofascial structures, and their related vascular, lymphatic, and neural elements.[17] In the recent years, osteopathy has improved its methodological and clinical approach, especially in neonatal setting, showing efficacy in reducing LOS and timing to oral feeding attainment.[14,19]

Notwithstanding this, there is a lack of knowledge in the clinical recognition of SD and whether it is correlated with vagal tone. Recently, a new model for the assessment of SD was theorized, the variability model (VM),[20] which considers the evaluation of the movement in the neutral zone (NZ), meant as an indicator of the altered somatic function in the osteopathic palpation diagnosis. The VM of SD incorporates a grading scale as an indicator of the altered somatic function in the osteopathic palpatory examination finding within the NZ taking into consideration movement variability in that range.[20] In vitro and in vivo studies on spine motion evidenced that the NZ is the area of passive joint shift where the movements are produced with a minimal internal resistance and low tissue deformation.[21] Therefore, the NZ assessment can be more precise and reliable, potentially improving tactile perception, allowing a greater sensory discrimination of NZ. Indeed, a light force for quality of motion and an initial resistance-free movement are more effective than using a larger force for quantity of motion.[22,23] Furthermore, due to the gentle force applied, tissue deformation is minimized enhancing reliability and so the assessment of the manual skills. The SD assessment was performed by 3 trained osteopaths through a 0 to 3 grading scale, using a standardized palpatory procedure in order to maximize inter-rater reliability.

All the palpatory findings exams were performed at the 34th PMA, after HRV recording and sCor assessment, with the infants showing stable conditions and laying supine. The examiner’s approach lasted about 5 minutes and was composed as follows:

1. The examiner assessed the movement variability within the NZ of the spine with a sacro-occipital stance. The examiner checked the motion reaction of the spine fascia with a light reverse rotary, opposite lateral and traction and compression stimulus (micro motion), induced between the head and the sacral regions.
2. The myofascial tissue texture (TT) assessment was performed using a bimanual compression in the scapular, pelvic girdle, lower chest, upper chest, abdominal, and spinal regions as well as a gentle compression of the spine fascia with the same sacro-occipital stance. An altered elastic response to compression defined an atypical tissue resilience and so an abnormal TT.
3. Finally, to evaluate the tenderness status, the reaction during slight compression between head and sacrum was evaluated using the facial expression, the presence of reflexmovements, the crying, or the sudden increase of heart rate.

The integration of the 3 assessment phases completes the SD Grade. The examiners were blinded toward the clinical, demographic characteristics of the infant and all the testing performed in the study.

SD Grade was classified as follows:
- Grade 0 to G0 (Absent SD), movement variability in NZ present;
- Grade 1 to G1 (Mild SD), altered movement variability in NZ;
- Grade 2 to G2 (Moderate SD), altered movement variability in NZ + myofascial TT abnormalities or tenderness;
- Grade 3 to G3 (Severe SD), altered movement variability in NZ + myofascial TT abnormalities + tenderness.

Moreover, during each assessment, the osteopaths counted the specific regions of the palpatory findings where a segmental SD was detectable, according to the ICD 11 classification (Code ME 93.0). The examiner assessed the variability of movement within the NZ is the fundamental analysis guiding all other assessments.

2.3.2. Heart rate variability. A mathematical model was used for the detection of RR peaks and their representation of the frequency domain; after that, 3 main parameters were observed in this study: LF, HF, and LF/HF. For the HRV recording we used a 10-minute standard time monitoring using HRV module of the Kubios software (version 2.2, Kubios). The frequency domain was analyzed via its power spectrum of linear method and its frequency, considering LF ranging 0.02 to 0.2 Hz, HF ranging 0.2 to 2 Hz, and the ratio of both frequencies (LF/HF).[31] Very low frequencies and time domain series were not considered in this study. The whole recording was obtained at least 30 minutes after feeding (between 8 and 12 AM with a distance of at least 4 hours from any painful or stressful procedure) with the awoken infants and in supine decubitus with a recommended ambient temperature (22–26°C) and lighting level (10–600 lux) for NICU. The registration was not considered valid when the neonatal clinical routine changed, in particular when the infant received cardiac medication or general anesthesia in the previous 7 days, considering the influence on HRV.

2.3.3. Salivary cortisol concentration. The measurement of the salivary cortisol is a reliable out-of-laboratory marker, which provides useful indications about the HPA axis characteristics and distress state as a subclinical research tool.[32] The HPA axis starts its feedback regulation during the second trimester of gestation. Cortisol is fundamental for the stress response and the lung maturation, both relevant in premature infants. [33] Very low frequencies and time domain series were not considered in this study. The whole recording was obtained at least 30 minutes after feeding (between 8 and 12 AM with a distance of at least 4 hours from any painful or stressful procedure) with the awoken infants and in supine decubitus with a recommended ambient temperature (22–26°C) and lighting level (10–600 lux) for NICU. The registration was not considered valid when the neonatal clinical routine changed, in particular when the infant received cardiac medication or general anesthesia in the previous 7 days, considering the influence on HRV.

2.4. Statistical analysis

Demographic and clinical data were tabulated as appropriate and are shown as mean, median, standard deviation, and
interquartile range. In Table 1, variables were stratified for SD severity and compared to Mann–Whitney U test for continuous variables and to Chi-squared test for categorical variables. We analyzed the agreement of 2 experienced raters on the SD Grade examination through the average measure and 95% confidence interval of interclass correlation (ICC), adopting a 2-way random effects model. To study the independent course of HRV frequency parameters and sCor with respect to SD grading, a multivariate linear regression model including GA, Apgar 5’, and RDS was implemented. The possible interacting variables were tested within the demographic, perinatal, and clinical features reported in Table 1. Specifically, we previously tested different variables combinations for the models, assessing their goodness-of-fit by the coefficient of determination (R^2). To improve the interpretation of the simple models, we graphically represented them with scatter plots, line fits, and 95% confidence interval, reporting the P value of the regression coefficient and its relative R^2 on the plot. STATA version 15 (Stata Corporation, College Station, TX) and the GraphPad Prism version 8 (GraphPad Software, Inc., La Jolla, CA) were used to compute the statistical analyses as appropriate.

3. Results

3.1. Study population and ICC

Sixty-nine patients were examined, 35 males (51%) and 34 females (49%), with a mean GA of 28.9 ± 2.4 days and a mean birth weight of 1103.4 ± 274.1 g. The SD grading assessment revealed 0 patients with SD Grade 0 or Grade 1; this result makes us understand how a premature baby always shows significant fascial adaptations. Within the sample, 40 (58%) patients showed a SD Grade 2 and 29 (42%) a SD Grade 3. At birth, the mean Apgar 5’ score of the entire sample was 7.96 ± 1.18 and 39 (56%) of them were delivered by Cesarian section.

Among clinical variables stratified by SD Grade, the body weight, GA, Apgar 5’, RDS, Jaundice, length of stay (LOS), and time to autonomous respiration (TAR) demonstrated a statistically significant difference, as reported in Table 1. The reliability of the SD Grade was measured based on the results reported by 2 experienced, board-certified, osteopaths who were blinded to the exam results of the peer-rater. Notably, in this specific setting, the global agreement for SD Grade
interval and line of best fit are showed for each plot. HF = high frequency, LF = low frequency, sCor = salivary cortisol, SD = somatic dysfunction.

Moreover, grade of SD of –6.43 ms², and had a positive correlation with LF action with HF with a slope between the lower and the higher for the different models. Table 2 shows that HF, LF, and LF/HF variables and GA, Apgar 5', RDS, and SD Grade as covariates was implemented using HF, LF, and LF/HF concentrations, while the Apgar 5' was negatively correlated to the increase of SD Grade observing a coefficient of 3.56, while SD Grade showed a marginal, quasi-statistically significant, positive linear interaction with sCor in the upright panel of Figure 2. It shows that SD Grade does not increase the sCor concentration, while the Apgar 5’ was negatively correlated to the sCor with a slope of –3.64 for each increasing point of Apgar 5’. In this case, Apgar 5’ – and not GA – seems to affect the mean sCor at assessment. Considering the above cited relationships of HRV and sCor trajectories, a multivariable linear regression was implemented using HF, LF, LF/HF, and sCor as dependent variables and GA, Apgar 5’, RDS, and SD Grade as covariates for the different models. Table 2 shows that HF, LF, and LF/HF had linear trajectories with SD Grade, independently from the GA and Apgar 5’. Specifically, SD Grade had a negative interaction with HF with a slope between the lower and the higher grade of SD of –6.43 ms², and had a positive correlation with LF with a slope between the 2 grades of SD of 3.68 ms². Moreover, Table 2 describes sCor with respect to GA, Apgar 5’, RDS, and SD Grade in a multiple regression model. In this case, we notice that RDS and Apgar score are linearly related with salivary cortisol level with a slope of 9.70 and –4.44 ng/mL, respectively. SD grade showed a marginal, quasi-statistically significant, positive linear interaction with sCor. Figure 3 shows the absence of a linear interaction between LF/HF and sCor.

4. Discussion

In this study, we report the application of the SD Grade method from the VM for SD examination in very and extremely low weight preterm infants. SD Grade showed excellent concordance between 2 blinded raters, hence we aimed to establish whether the SD Grade could be related to differences of infant’s clinical and perinatal characteristics.

Although OMT was considered effective in reducing LOS, hospitalization costs, and it was suggested to improve the gastrointestinal functionality and to reduce the time to full oral feeding attainment, SD assessment remains controversial. Among the most important limitations of OMT, there is the lack of adequate clinical assessment and classification of the myofascial system adaptation capability to postural stress, which could be relevant for both the clinical decision making and infants’ clinical benchmarks into the NICU setting.

We were able to overcome some of those issues implementing an ad hoc version of the VM for preterm infants for SD examination and SD Grade scoring (min 0, max 3 points). Among the 69 preterm infants we examined, 42% were diagnosed with a grade 2 of SD and 58% of the infants with a grade 3. No infants presented grade 1 and 0 of SD. This is probably because of the immaturity and reduced adaptation capability of the population we studied. In fact, using SD Grade as grouping variable, mean GA emerged to be lower in the group of infants with severe SD Grade, suggesting the possible interaction of immature development and reduced fascial system adaptation capabilities. Other differences emerged about the 5 minutes Apgar score, which was lower in the group with severe SD, while the LOS and the TAR were longer in the SD group. Moreover, RDS and jaundice relative frequencies were higher in the babies with severe SD, 31.8 versus 68.1 and 26.9 versus 73.1, respectively. Based on those results, we can speculate that SD Grade was in line with the natural history of underdevelopment due to premature birth. Other clinical benchmarks into the NICU setting.

In this study, we report the application of the SD Grade method from the VM for SD examination in very and extremely low weight preterm infants. SD Grade showed excellent concordance between 2 blinded raters, hence we aimed to establish whether the SD Grade could be related to differences of infant’s clinical and perinatal characteristics.
stabilization in preterm infants.[37] Notwithstanding this, the SD assessment and its correlations with the cardiac sympathovagal activity were not directly investigated in this trial. Therefore, to model the features of ANS, we used a statistical approach on frequency spectrum HRV parameters (HF, LF, LF/HF) and the concentration of sCor before a palpatory evaluation. Our models showed a negative correlation between SD Grade and HF and a positive trajectory between LF, LF/HF, and SD Grade, in a model adjusted for GA, Apgar 5', and RDS (see Table 2).

Conversely, SD Grade was not correlated with sCor in both simple and multiple linear models. Interestingly, in our model, RDS and Apgar 5' were inversely correlated with sCor, suggesting an influence even at time distance on the activity of the cortisol pathway, whether GA and SG Grade were not. This finding is in line with the data obtained by Neu et al that revealed a negative correlation between Apgar 1' and sCor (see Fig. 2).[38]

These results suggest a specific correlation between the SD Grade severity and cardiac vagal tone, which can potentially explain the sensitization status that the raters revealed when examining stable-infants in the incubator. Other authors theorized a possible relevant role of sensitization and interception as important features in SD, reporting an upregulation of vagal tone after OMT.[39,40]

To the authors best knowledge, this study reports the first available data on SD Grade examination and cardiac vagal activity in preterm infants.

This finding might have a relevant clinical impact as the vagal tone is nowadays considered a relevant biomarker of premature

Table 2

	HF			LF			
	Estimate	95% CI	P value	Estimate	95% CI	P value	
Gestational age	−0.78	−2.07; 0.51	.248	0.56	−0.77; 1.88	.406	
SD Grade	−6.43	−10.6; −2.2	.003	5.68	1.36; 10.1	.011	
RDS	0.82	−3.85; 5.48	.728	−1.44	−6.24; 3.36	.551	
APGAR 5'	1.39	−0.99; 3.77	.248	−1.23	−3.69; 1.21	.317	

	LF/HF			sCor			
	Estimate	95% CI	P value	Estimate	95% CI	P value	
Gestational age	−0.04	−0.80; 0.72	.920	−0.44	−2.91; 2.02	.722	
SD Grade	2.84	0.37; 5.31	.025	7.39	0.61; 15.4	.061	
RDS	−0.30	−3.05; 2.44	.827	9.70	0.81; 18.5	.033	
APGAR 5'	−0.25	−1.66; 1.15	.719	−4.44	−8.91; −0.01	.050	

A multivariate linear regression model was implemented for HF, LF, LF/HF, and sCor separately. The goodness of fit, as expressed by R², was 0.19, 0.16, 0.14, and 0.18.

CI = confidence interval, HF = high frequencies, LF = low frequencies, RDS = respiratory distress syndrome, sCor = salivary cortisol, SD Grade = somatic dysfunction grade.

Figure 3. Regression plots show the interaction between salivary cortisol and HRV. The Y-axis represents the LF/HF values after frequency domain transformation expressed in ms². Statistical significance (P value), coefficient of determination (R-squared), 95% confidence interval, and line of best fit are shown for each plot. HF = high frequency, HRV = heart rate variability, LF = low frequency.
infants’ health and ANS maturation.[12] Moreover, in a rodent model, Doheny et al showed how the low vagal tone especially assessed with HF parameter is linked to a reduced gastric motility and favors pro-inflammatory state in the intestinal tract.[13] Likewise, altered frequency spectrum HRV parameters have been considered as predictive biomarkers for necrotizing enterocolitis[14] and correlated with a critical condition as RDS.[15] It should be emphasized that the SD Grade can be intended as an indicator for an altered status of vagal tone. In a NICU setting, this pragmatic assessment may be valuable to identify the infant’s ability to handle with stressors and the child’s adaptation to life. Also, SD Grade and HRV could be useful tools in OMT research and clinical practice inside NICU, with possible advances toward multidisciplinary decision making, the prognosis, and OMT-targeted therapies.

In addition, it is remarkable how the osteopathic assessment based on the VM proved to be a feasible procedure to adopt in such a critical condition.[16] No adverse events nor any other type of practical problems were detected during the study period. Beside this, the assessment we used and, more in general, the osteopathic palpation revealed to be a safe, easy-to-apply, and rapid procedure, also applicable in specific settings such as NICU. Finally, it is important to stress the peculiarity of this approach specifically based on the qualitative – rather than quantitative – assessment of motion.[17] The myofascial connective system is an important network for interaction between internal and external environment.[18] As for general movements, the motion assumes a central role; the palpation of the quality of the movement, through the VM, may be an important indicator for the premature infant's health and adaptation.

Limitations to this observational study include some non-modifiable possible confounders, such as the different exposure of the infants to acoustic stimuli, breathing patterns, the slightly modificable possible confounders, such as the different exposure.

Acknowledgments

LV would like to thank the PhD Program in Experimental Medicine and Therapy of University of Turin.

Author contributions

Conceptualization: Luca Vismara, Andrea Bergna.

Data curation: Andrea Giammari Tarantino.

Investigation: Luca Vismara, Giuliana Bianchi, Cristina Bragali-ni, Elisa Belló.

Methodology: Andrea Giammari Tarantino.

Project administration: Massimo Agosti.

Supervision: Francesca Buffone.

Validation: Fulvio Dal Farra.

Writing – original draft: Luca Vismara, Andrea Giammari Tarantino.

Writing – review & editing: Luca Vismara, Andrea Bergna, Fulvio Dal Farra, Francesca Buffone, Massimo Agosti.

Correction

Affiliations b-e were corrected from “b Department of Neurosciences, University of Torino, Torino, Italy, c Division of Paediatric, Manima Non-Profit Organization Social Assistance and Healthcare, Milan, Italy, d Department of Research, SOMA –Istituto Osteopatia Milano, Milan, Italy, e Neonatal Intensive Care Unit, Woman and Child Department, Del Ponte Hospital, Varese, Italy, f PPCR, Harvard T.H. Chan School of Public Health – ECPE, Boston, MA, USA.” to “b. Division of Paediatric, Manima Non-Profit Organization Social Assistance and Healthcare, Milan, Italy, c. Department of Research, SOMA - Istituto Osteopatia Milano, Milan, Italy d. Woman and Child Department, Varese Hospital, Insurubia University, via Ravi 2 21100 Varese, Italy, e. PPCR, Harvard T.H. Chan School of Public Health – ECPE, Boston, USA.”

The examiner assessed the variability of movement within the NZ is the fundamental analysis guiding all other assessments.

References

[1] Longin E, Gerstner T, Schaible T, et al. Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med. 2006;34:303–8.

[2] Oliveira NCAC, Gaspardo CM, Linhares MBM. Pain and distress outcomes in infants and children: a systematic review. Braz J Med Biol Res. 2017;50:e5984.

[3] Longin E, Schaible T, Lenz T, et al. Short term heart rate variability in healthy neonates: normative data and physiological observations. Early Hum Dev. 2005;81:663–71.

[4] Oberlander T, Saul JP. Methodological considerations for the use of heart rate variability as a measure of pain reactivity in vulnerable infants. Clin Perinatol. 2002;29:427–43.

[5] Fyle KL, Yiallourous SR, Wong FY, et al. The effect of gestational age at birth on post-term maturation of heart rate variability. Sleep. 2015;38:1635–44.

[6] Joshi R, Komers D, Guo C, et al. Statistical modeling of heart rate variability to unravel the factors affecting autonomic regulation in preterm infants. Sci Rep. 2019;9:7691.

[7] Doheny KY, Palmer C, Browning KN, et al. Diminished vagal tone is a predictive biomarker of necrotizing enterocolitis-risk in preterm infants. Neurogastroenterol Motil. 2014;26:832–40.

[8] van Ravenswaaij-Arts CM, Hopman JC, Kollée LA, et al. The influence of respiratory distress syndrome on heart rate variability in very preterm infants. Early Hum Dev. 1991;27:207–21.

[9] Osman M, Elsharkawy A, Abdel-Hady H. Assessment of pain during application of nasal-continuous positive airflow pressure and heated, humidified high-flow nasal cannulae in preterm infants. J Perinatol. 2015;35:263–7.

[10] Kletberg A, Warren I, Norman E, et al. Lower stress responses after new-born individualized developmental care and assessment program care during eye screening examinations for retinopathy of prematurity: a randomized study. Pediatratics. 2008;121:e1267–78.

[11] Campbell-Yeo ML, Johnston CC, Joseph KS, et al. Co-bedding between preterm twins attenuates stress response after heel lance: results of a randomized trial. Clin J Pain. 2014;30:598–604.

[12] Smith SL, Haley S, Slater H, et al. Heart rate variability during caregiving and sleep after massage therapy in preterm infants. Early Hum Dev. 2013;89:525–9.
