An efficient solid phase one port synthesis of Novel triazolo[1,5-a]pyrimidine derivatives from 4-(4-aminophenyl)morpholin-3-one and evaluation of their antimicrobial activity

Devang R. Prajapati, Kalpesh V. Vilapara, Yogesh T. Naliapara*
Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India
*E-mail address: naliaparachem@yahoo.com

ABSTRACT

A series of novel triazolo[1,5-a]pyrimidine derivatives was synthesized from 5-amino-1,2,4-triazole and biologically active morpholinone amine in excellent yield as promising class of antimicrobial agents. The antimicrobial activities were investigated against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus pyogen, Candida albicans, Aspergillus niger, Aspergillus clavatus and compared with standard drugs Ampicillin, Chloramphenicol, Norfloxacin and Griseofulvin. All the synthesized compounds were characterized by IR, 1H NMR, 13C and mass spectroscopy. The result of antimicrobial activity data revealed that compound 4f, 4g and 4i were found more active against bacterial species and compound 4c, 4d, 4g, 4i and 4j were found more active against fungal strain, while other compounds shows moderate to low activity against microbes.

Keywords: 1,2,4-triazole; 4-(4-aminophenyl)morpholin-3-one; antibacterial; antifungal; biological assay

1. INTRODUCTION

Various fused pyrimidines were studied in the past decade and were found to possess remarkable pharmacological properties like purines, pteridines, quinazolines, triazolopyrimidines, pyrazolopyrimidines, pyrimidoazepines, furopyrimidines, pyridopyrimidines and pyrrolopyrimidines.

The condensation of a pyrimidine ring with another ring of 1,2,4-triazole gives rise to the formation of bicyclic heterocycles known as 1,2,4-triazolopyrimidines. 1,2,4-triazolo[1,5-a]pyrimidine derivatives are thermodynamically more stable and, thus, the most studied ones [1], a few of them being commercially available.

Revisions surveying the synthesis, reactivity, spectroscopic characterization and crystallographic studies of 1,2,4-triazolo[1,5-c]pyrimidines [2], 1,2,4-triazolo[4,3-a]pyrimidines [3] and 1,2,4-triazolo[4,3-c]pyrimidines [4] have also been published.

Recently, 1,2,4-triazolo[1,5-a]pyrimidines have aroused increasing attention from the chemical and biological points of view due to their diverse pharmacological activities such as
anti-inflammatory [5], antimalarial [6], antifungal effect [7], macrophage activation [8], antitumor potency [9-12], antimicrobial [13-16,20-24] and inhibition of KDR kinase [17]. They have proven to be promising anticancer [18] agents with dual mechanisms of tubulin polymerization promotion [9-10] as well as cyclin dependent kinases 2 inhibition [19].

2. RESULTS AND DISCUSSION

Chemistry:

4-methyl-3-oxo-N-(4-(3-oxomorpholino)phenyl)pentanamide (2a) were prepared by reacting 4-(4-aminophenyl)morpholin-3-one (1a) and methyl-4-methyl-3-oxopentanoate in toluene with a catalytic amount of NaOH/KOH (Scheme 1). The reaction mixture was refluxed for 15-20 h.

Scheme 1. Synthesis of 4-methyl-3-oxo-N-(4-(3-oxomorpholino)phenyl)pentanamide.

Reaction of acetoacetamide (2a) derivative with various aromatic aldehydes (3a-t) and 1,2,4-triazol-amine in presence of trace amount of dimethyl formamide at high temperature(fusion) gives the novel triazolo[1,5-a]pyrimidine-6-carboxamideby using 4H-1,2,4-triazol-3-amine (Scheme 2). All the synthesized compounds were characterized by various spectroscopic techniques like 1H NMR, 13C NMR, IR and Mass.

Scheme 2. Synthesis of 5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-7-phenyl-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide by using 4H-1,2,4-triazol-3-amine.
Biology:

All the synthesized compounds were tested against different bacterial and fungal strains i.e. Pseudomonas aeruginosa, Proteus vulgaris, Escherichia Coli, Staphylococcus aureus, Candida albican for their in vitro antibacterial activity. Well Diffusion/Agar Cup Method was used and results are listed in Table 2. The investigation of antibacterial and antifungal screening data revealed that all the tested compounds 4a-t showed moderate to potent activity. The compounds 4f, 4g and 4i showed comparatively good activity against all the bacterial strains.

2. 1. Experimental

Thin-layer chromatography was accomplished on 0.2-mm precoated plates of silica gel G60 F254 (Merck). Visualization was made with UV light (254 and 365 nm) or with an iodine vapor. IR spectra were recorded on a FTIR-8400 spectrophotometer using DRS prob. 1H (400 MHz) and 13C (400 MHz) NMR spectra were recorded on a Bruker AVANCE II spectrometer in DMSO. Chemical shifts are expressed in δ ppm downfield from TMS as an internal standard. Mass spectra were determined using direct inlet probe on a GCMS QP 2010 mass spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary evaporator. Melting points were measured in open capillaries and are uncorrected.

2. 1.1. General procedure for the synthesis of 4-methyl-3-oxo-N-(4-(3-oxomorpholino)phenyl)pentanamide (2a)

A mixture of 4-(4-aminophenyl)morpholin-3-one (10 mmol), methyl 4-methyl-3-oxopentanoate (10 mmol) and catalytic amount of sodium or potassium hydroxide lie (10 %) in toluene (50 ml) was refluxed at 110 °C for 12-15 h. The reaction was monitored by TLC. After completion of reaction, the solid was precipitated out, filtered and washed with n-hexane giving 2a.

2. 1.2. General procedure for the synthesis of substituted triazolopyrimidines (4a-t)

A mixture of the aminoazole (0.01 mol), 4-methyl-3-oxo-N-(4-(3-oxomorpholino)phenyl)pentanamide (0.01 mol) 2a and an appropriate aromatic aldehyde (0.01 mol) 3a-t was fused in presence of trace amount of DMF for 12-15 min. After cooling, methanol (~10 mL) was added. The reaction mixture was allowed to stand overnight and then filtered to give the solid triazolopyrimidine products 4a-t, which were crystallized from ethanol and subsequently dried in air.

2. 1.3. Spectroscopic data for the compounds (4a-t):

5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-7-phenyl-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4a): White solid; mp 240-242 °C; Rf 0.53 (4:6 hexane-EtOAc); IR (KBr): 3643, 3375, 3061, 2922, 2858, 1919, 1790, 1635, 1552, 1504, 1458, 1294, 1192, 1076, 1026, 997, 856, 785, 696, 580 cm$^{-1}$; 1H NMR: δ 1.185 (6H, (CH$_3$)$_3$), 1.307 (d, 6H, (CH$_3$)$_3$), 3.306-3.396 (m, 1H, -CH), 3.652-3.678 (t, 2H, -CH$_2$- in morpholinone ring), 3.937-3.962 (t, 2H, -CH$_2$- in morpholinone ring), 4.174 (s, 2H, -CH$_2$- in morpholinone ring near ketone), 6.528 (s, 1H, -CH pyrimidine ring), 7.205-7.222 (t, 2H, Ar-H, j = 4.92 Hz), 7.239-7.255 (d, 2H, Ar-H, j = 5.0 Hz), 7.254-7.281 (t, 1H, Ar-H), 7.296-7.316 (d, 2H, Ar-H ring nearby –NHCO–), 7.520-7.542 (d, 2H, Ar-H ring nearby –NHCO–), 7.593 (s, 1H, -CH triazole ring), 9.296 (s, 1H, -NH pyrimidine ring), 10.002 (s, 1H, -NH amide); 13C NMR (400 Hz, CDCl$_3$): δ 14.9 (CH$_3$), 33.1 (CH$_2$), 50.4, 52.7 (CH$_2$- in morpholinone ring), 57.7 (C-3 of pyrimidine ring), 65.9 (C-2 of pyrimidine ring), 121.4 (C-4 of pyrimidine ring), 122.7 (C-1 of pyrimidine ring), 123.9 (C-5 of pyrimidine ring), 127.7, 128.9, 129.1 (Ar C), 143.3 (C-1 of triazole ring), 149.0 (C-2 of triazole ring), 152.3 (C-3 of triazole ring), 161.1 (C=O of pyrimidine ring, C=O of triazole ring), 166.7 (C=O of morpholinone ring), 209.3 (C=O of oxo morpholinone ring).
MHz, DMSO): 19.54, 28.75, 38.88, 39.09, 39.29, 39.50, 39.71, 39.92, 40.13, 49.09, 60.69, 63.47, 77.3, 102.53, 119.83, 125.62, 126.94, 127.97, 128.37, 136.65, 137.32, 140.45, 143.99, 148.32, 149.71, 165.83; MS (m/z): 458 (M⁺); Anal. Calcd for C₂₅H₂₇N₆O₃: C, 65.49; H, 5.72; N, 18.33; Found: C, 65.30; H, 5.70; N, 18.10.

7-(4-chlorophenyl)-5-isopropyl-N-(4-(3-oxomorpholinophenyl))-4,7-dihydro[1,2,4]-triazolo[1,5-a]pyrimidine-6-carboxamide (4b): White solid; mp 245-248 °C; Rf 0.48 (4:6 hexane-EtOAc); IR (KBr): 3742, 3377, 3095, 2974, 2861,2155, 1919, 1735, 1550, 1461, 1236, 1192, 1001, 923, 833, 783, 636, 588 cm⁻¹; MS (m/z): 492 (M⁺); Anal. Calcd for C₂₅H₂₅ClN₆O₃: C, 60.91; H, 5.11; N, 17.05; Found: C, 60.85; H, 5.10; N, 17.10.

7-(4-fluorophenyl)-5-isopropyl-N-(4-(3-oxomorpholinophenyl))-4,7-dihydro[1,2,4]-triazolo[1,5-a]pyrimidine-6-carboxamide (4c): White solid; mp 260-265 °C; Rf 0.52 (4:6 hexane-EtOAc); IR (KBr): 3738, 3614, 3383, 3048, 2933, 2864, 1919, 1730, 1651, 1557, 1520, 1454, 1291, 1177, 1072, 999, 895, 792, 646, 559 cm⁻¹; MS (m/z): 476 (M⁺); Anal. Calcd for C₂₅H₂₅ClN₆O₃: C, 63.01; H, 5.29; N, 17.64; Found: C, 63.05; H, 5.35; N, 17.80.

7-(2-chlorophenyl)-5-isopropyl-N-(4-(3-oxomorpholinophenyl))-4,7-dihydro[1,2,4]-triazolo[1,5-a]pyrimidine-6-carboxamide (4d): White solid; mp 235-237 °C; Rf 0.50 (4:6 hexane-EtOAc); IR (KBr): 3631, 3248, 3107, 3052, 2964, 2868, 1784, 1649, 1579, 1533, 1475, 1247, 1193, 1076, 842, 767, 657, 559 cm⁻¹; ¹H NMR: δ 1.193-1.312 (6, 4H, (CH₃)₂, j = 6.92 Hz), 3.274-3.408 (m, 1H, -CH of isopropyl gp.), 3.666-3.691 (t, 2H, -CH₂- in morpholinone ring), 3.948-3.973 (t, 2H, -CH₂- in morpholinone ring), 4.179 (s, 2H, -CH₂- in morpholinone ring near ketone), 6.528 (s, 1H, -CH pyrimidine ring), 7.187-7.283 (m, 4H, Ar-H, j = 4.96 Hz), 7.295-7.313 (d, 2H, Ar-H ring nearby –NCO-, j = 1.52 Hz), 7.332-7.539 (d, 2H, Ar-H ring nearby –NCO–, j = 7.96 Hz), 8.213 (s, 1H, -CH triazole ring), 10.004 (s, 1H, -NH pyrimidine ring), 10.031 (s, 1H, -NH amide); ¹³C NMR (400 MHz, DMSO): 19.52, 19.76, 28.91, 38.87, 39.08, 39.28, 39.49, 39.70, 39.91, 40.12, 49.08, 60.11, 63.47, 67.73, 78.44, 78.77, 79.10, 101.88, 119.93, 125.63, 126.88, 128.10, 130.21, 133.27, 136.78, 137.14, 142.53, 144.27, 148.28, 149.95, 164.87, 165.83; MS (m/z): 492 (M⁺); Anal. Calced for C₂₅H₂₅ClN₆O₃: C, 60.91; H, 5.11; N, 17.05; Found: C, 59.76; H, 5.20; N, 17.10.

7-(2,5-dimethoxyphenyl)-5-isopropyl-N-(4-(3-oxomorpholinophenyl))-4,7-dihydro[1,2,4]-triazolo[1,5-a]pyrimidine-6-carboxamide(4e):White solid; mp 238-240 °C; Rf 0.43 (4:6 hexane-EtOAc); IR (KBr): 3642, 3239, 3095, 2962, 2831, 1789, 1688, 1581, 1543, 1467, 1276, 1184, 1047, 1027, 837, 709, 679, 547 cm⁻¹; MS (m/z): 518 (M⁺); Anal. Calced for C₂₇H₃₀N₆O₅: C, 62.54; H, 5.83; N, 16.21; Found: C, 62.00; H, 5.75; N, 16.30.

5-isopropyl-N-(4-(3-oxomorpholinophenyl))-7-(p-tolyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4f): White solid; mp 240-245 °C; Rf 0.51 (4:6 hexane-EtOAc); IR (KBr): 3379, 3284, 3099, 2978, 2870, 1658, 1610, 1597, 1408, 1348, 1238, 1192, 1072, 786, 684, 648, 588, 511 cm⁻¹; ¹H NMR: δ 1.177-1.300 (6, 4H, (CH₃)₂, j = 7.04 Hz), 2.252 (s, 3H, -CH₃gp.), 3.301-3.388 (m, 1H, -CH), 3.659-3.685 (t, 2H, -CH₂- in morpholinone ring), 3.946-3.971 (t, 2H, -CH₂- in morpholinone ring), 4.174 (s, 2H, -CH₂- in morpholinone ring near ketone), 6.482 (s, 1H, -CH pyrimidine ring), 7.095-7.117 (d, 2H, Ar-H, j = 8.68 Hz), 7.211-7.218 (d, 2H, Ar-H, j = 2.6 Hz), 7.240-7.527 (d, 2H, Ar-H ring nearby –NCO–), 7.549-7.573 (d, 2H, Ar-H ring nearby –NCO–), 8.213 (s, 1H, -CH triazole ring), 9.875 (s, 1H, -NH pyrimidine ring), 9.983 (s, 1H, -NH amide); ¹³C NMR (400 MHz, DMSO): 19.54, 28.75, 38.88, 39.09, 39.29, 39.50, 39.71, 39.92, 40.13, 49.09, 60.69, 63.47, 77.3, 102.53, 119.83, 125.62, 126.94, 127.97, 128.37, 136.65, 137.32, 140.45, 143.99, 148.32, 149.71, 165.83; MS (m/z): 458 (M⁺); Anal. Calcd for C₂₅H₂₇N₆O₃: C, 65.49; H, 5.72; N, 18.33; Found: C, 65.30; H, 5.70; N, 18.10.
DMSO): 19.55, 19.78, 20.66, 28.70, 38.88, 39.09, 39.30, 39.51, 39.72, 39.92, 40.13, 49.10,
60.40, 63.47, 67.72, 78.45, 78.78, 79.11, 102.61, 119.77, 125.61, 126.87, 128.94, 136.62,
137.30, 137.36, 137.58, 143.89, 148.23, 149.62, 165.82; MS (m/z): 472 (M⁺); Anal. Calcd for
C₂₆H₂₈N₆O₃: C, 66.09; H, 5.97; N, 17.78; Found: C, 66.10; H, 5.91; N, 17.90.

7-(3,4-dimethoxyphenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-
[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4g): White solid; mp 240-243 °C; Rf 0.42
(4:6 hexane-EtOAc); IR (KBr): 3642, 3232, 3071, 2968, 2876, 1784, 1649, 1591, 1521, 1411,
1261, 1128, 1028, 875, 732, 659, 555 cm⁻¹; MS (m/z): 518 (M⁺); Anal. Calcd for C₂₇H₃₀N₆O₅:
C, 62.54; H, 5.83; N, 16.21; Found: C, 62.70; H, 5.90; N, 16.17.

5-isopropyl-7-(4-methoxyphenyl)-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]
triazolo[1,5-a]pyrimidine-6-carboxamide (4h): White solid; mp 225-228 °C; Rf 0.43 (4:6
hexane-EtOAc); IR (KBr): 3610, 3244, 3113, 3055, 2933, 2868, 1791, 1622, 1593, 1321,
1271, 1205, 1166, 1028, 827, 794, 659, 565 cm⁻¹; MS (m/z): 488 (M⁺); Anal. Calcd for
C₂₆H₂₈N₆O₄: C, 63.92; H, 5.78; N, 17.20; Found: C, 64.00; H, 5.60; N, 17.10.

5-isopropyl-7-(2-nitrophenyl)-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]
triazolo[1,5-a]pyrimidine-6-carboxamide (4I): White solid; mp 248-250 °C; Rf 0.48 (4:6
hexane-EtOAc); IR (KBr): 3634, 3527, 3228, 3099, 2958, 2872, 1778, 1664, 1583, 1531,
1473, 1356, 1317, 1253, 1199, 1072, 1020, 995, 844, 731, 684, 547 cm⁻¹; MS (m/z): 503 (M⁺);
Anal. Calcd for C₂₃H₂₅N₇O₅: C, 59.63; H, 5.00; N, 19.47; Found: C, 59.50; H, 5.10; N, 19.55.

7-(2,4-dichlorophenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-
[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4j): White solid; mp 250-255 °C; Rf 0.40
(4:6 hexane-EtOAc); IR (KBr): 3610, 3236, 3080, 2933, 2891, 1763, 1630, 1570, 1538, 1470,
1276, 1170, 1072, 1041, 800, 870, 736, 667, 589 cm⁻¹; MS (m/z): 527 (M⁺); Anal. Calcd for
C₂₅H₂₆Cl₂N₆O₅: C, 56.93; H, 4.59; N, 15.93; Found: C, 57.00; H, 4.50; N, 15.60.

7-(3,4-dimethylphenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-
[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4k): Whitesolid; mp 252-255 °C; Rf 0.44
(4:6 hexane-EtOAc); IR (KBr): 3630, 3240, 3090, 2936, 2890, 1763, 1640, 1580, 1542, 1480,
1276, 1170, 1074, 1043, 800, 880, 735, 662, 590 cm⁻¹; MS (m/z): 527 (M⁺); Anal. Calcd for
C₂₅H₂₄Cl₂N₆O₅: C, 56.93; H, 4.59; N, 15.93; Found: C, 57.01; H, 4.50; N, 15.90.

7-(2-chlorophenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]
triazolo[1,5-a]pyrimidine-6-carboxamide (4l): White solid; mp 236-237 °C; Rf 0.43 (4:6
hexane-EtOAc); IR (KBr): 3233, 3188, 3064, 2918, 2864, 1741, 1680, 1624, 1542, 1449,
1390, 1280, 1213, 1136, 1035, 966, 835, 768, 670, 595 cm⁻¹; MS (m/z): 492 (M⁺); Anal.
Calcd for C₂₅H₂₅ClN₆O₅: C, 60.91; H, 5.11; N, 17.05; Found: C, 60.85; H, 5.20; N, 17.10.

5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-7-(m-tolyl)-4,7-dihydro-[1,2,4]triazolo[1,5-
a]pyrimidine-6-carboxamide (4m): White solid; mp 2 42-245 °C; Rf 0.49 (4:6 hexane-
EtOAc); IR (KBr): 3290, 3045, 2936, 1730, 1633, 1555, 1512, 1465, 1370, 1290, 1195, 990,
815, 769, 669, 515 cm⁻¹; MS (m/z): 472 (M⁺); Anal. Calcd for C₂₆H₂₆N₆O₅: C, 66.09; H, 5.97;
N, 17.78; Found: C, 66.15; H, 5.93; N, 17.80.
7-(2,3-dimethylphenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4n): White solid; mp 255-258 °C; \(R_f \) 0.48 (4:6 hexane-EtOAc); IR (KBr): 3242, 3180, 3054, 2928, 2857, 1740, 1675, 1632, 1437, 1391, 1270, 1225, 1144, 1048, 951, 843, 779, 683, 591 cm\(^{-1}\); MS (\(m/z \)): 487 (M\(^+\)); Anal. Calcd for \(C_{27}H_{30}N_6O_3 \): C, 66.65; H, 6.21; N, 17.27; Found: C, 66.67; H, 6.31; N, 17.33.

7-(2-fluorophenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4o): White solid; mp 262-265 °C; \(R_f \) 0.47 (4:6 hexane-EtOAc); IR (KBr): 3277, 3155, 3058, 2920, 2874, 1670, 1590, 1478, 1327, 1288, 1210, 1192, 1022, 976, 817, 747, 662, 556 cm\(^{-1}\); MS (\(m/z \)): 476 (M\(^+\)); Anal. Calcd for \(C_{25}H_{25}FN_6O_3 \): C, 63.01; H, 5.29; N, 17.64; Found: C, 63.11; H, 5.35; N, 17.70.

5-isopropyl-7-(2-nitrophenyl)-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4p): White solid; mp 250-252 °C; \(R_f \) 0.40 (4:6 hexane-EtOAc); IR (KBr): 3290, 3150, 3063, 2929, 2870, 1671, 1550, 1482, 1370, 1278, 1186, 1076, 965, 831, 750, 675, 525 cm\(^{-1}\); MS (\(m/z \)): 503 (M\(^+\)); Anal. Calcd for \(C_{25}H_{25}N_6O_3 \): C, 59.63; H, 5.00; N, 19.47; Found: C, 59.50; H, 4.92; N, 19.60.

7-(3-chloro-4-fluorophenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4q): White solid; mp 264-266 °C; \(R_f \) 0.45 (4:6 hexane-EtOAc); IR (KBr): 3240, 3190, 3068, 2950, 2860, 1690, 1597, 1590, 1490, 1280, 1185, 1085, 1050, 873, 789, 680, 596 cm\(^{-1}\); MS (\(m/z \)): 510 (M\(^+\)); Anal. Calcd for \(C_{25}H_{25}ClFN_6O_3 \): C, 58.77; H, 4.73; N, 16.45; Found: C, 58.82; H, 4.69; N, 16.50.

7-(4-chloro-2-nitrophenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4r): Off white solid; mp 260-265 °C; \(R_f \) 0.39 (4:6 hexane-EtOAc); IR (KBr): 3250, 3189, 3072, 2939, 2879, 1730, 1667, 1550, 1470, 1350, 1310, 1290, 1160, 1073, 884, 778, 677, 592 cm\(^{-1}\); MS (\(m/z \)): 537 (M\(^+\)); Anal. Calcd for \(C_{25}H_{25}ClN_6O_3 \): C, 55.82; H, 4.50; N, 18.23; Found: C, 55.90; H, 4.61; N, 18.30.

7-(4-chloro-3-nitrophenyl)-5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4s): White solid; mp 266-268 °C; \(R_f \) 0.36 (4:6 hexane-EtOAc); IR (KBr): 3260, 3190, 3072, 2949, 2880, 1750, 1660, 1550, 1470, 1340, 1310, 1280, 1180, 1073, 884, 778, 677, 590 cm\(^{-1}\); MS (\(m/z \)): 537 (M\(^+\)); Anal. Calcd for \(C_{25}H_{25}ClN_6O_3 \): C, 55.82; H, 4.50; N, 18.23; Found: C, 55.90; H, 4.55; N, 18.35.

5-isopropyl-N-(4-(3-oxomorpholino)phenyl)-7-(2-(trifluoromethyl)phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (4t): White solid; mp 234-236 °C; \(R_f \) 0.48 (4:6 hexane-EtOAc); IR (KBr): 3260, 3188, 3067, 2935, 2875, 1710, 1665, 1583, 1487, 1282, 1154, 1093, 1040, 885, 796, 680, 595 cm\(^{-1}\); MS (\(m/z \)): 526 (M\(^+\)); Anal. Calcd for \(C_{28}H_{25}F_3N_6O_3 \): C, 59.31; H, 4.79; N, 15.96; Found: C, 59.39; H, 4.69; N, 16.01.
Table 1. Synthesis of substituted Triazolopyrimidines.

Entry	Code	R	Yield (%)	Time (min.)
1	4a	H	75	12
2	4b	4-Cl	78	13
3	4c	4-F	80	13
4	4d	3-Cl	68	14
5	4e	2,5-di-CH₃	80	15
6	4f	4-CH₃	78	15
7	4g	3,4-di-OCH₃	69	15
8	4h	4-OCH₃	88	12
9	4i	3-NO₂	84	13
10	4j	2,4-di-Cl	83	16
11	4k	3,4-di-CH₃	73	15
12	4l	2-Cl	82	13
13	4m	3-CH₃	76	14
14	4n	2,3-di-CH₃	73	14
15	4o	2-F	71	16
16	4p	2-NO₂	83	18
17	4q	3-Cl, 4-F	85	17
18	4r	4-Cl, 2-NO₂	72	16
19	4s	4-Cl, 3-NO₂	70	15
20	4t	2-CF₃	76	15

Biology:

Antimicrobial Sensitivity Testing
Well Diffusion/Agar Cup Method

In vitro affectivity of antimicrobial agents can be demonstrated by observing their capacity to inhibit bacterial growth on suitable media. The production of a zone depends on two factors namely bacterial growth and concentration of antimicrobial agent. The hole/well punch method was first used by Bennett. This diffusion method has proved more effective
than many other methods. According to Lt. General Raghunath the well technique is 5-6 times more sensitive than using disk method.

Table 2. Antimicrobial Sensitivity Assay.

Sr. No.	Code no.	MIC (μg/mL)	antibacterial activity	antifungal activity				
		E.coli	P.aeruginosa	S.aureus	S.pyogenus	C.albicans	A.niger	A.clavatus
1	4a	250	200	250	100	500	1000	1000
2	4b	200	125	100	125	1000	>1000	>1000
3	4c	100	100	125	250	250	>1000	>1000
4	4d	125	250	250	100	100	500	500
5	4e	200	250	250	100	250	>1000	>1000
6	4f	62.5	200	100	200	>1000	500	500
7	4g	100	62.5	125	100	>1000	250	250
8	4h	250	200	250	250	500	1000	1000
9	4i	125	200	50	100	250	>1000	>1000
10	4j	100	100	100	125	250	1000	1000
11	4k	50	100	250	250	1000	>1000	>1000
12	4l	100	250	100	200	1000	>1000	>1000
13	4m	250	500	500	100	1000	1000	1000
14	4n	250	1000	250	500	1000	500	500
15	4o	100	250	200	250	500	>1000	>1000

Gentamycin 0.05 1 0.25 0.5 - - -
Ampicillin 100 - 250 100 - - -
Chloramphenicol 50 50 50 50 - - -
Ciprofloxacin 25 25 50 50 - - -
Norfloxacin 10 10 10 10 - - -
Nystatin - - - - 100 100 100
Greseofulvin - - - - 500 100 100
3. CONCLUSION

In summary, we have described the synthesis of substituted triazolopyrimidine derivatives in moderate yield. The reaction of various aldehydes with acetoacetamide and 5-amino-1,2,4-triazole was afforded the triazolopyrimidine derivatives in moderate to good yield. All the synthesized compounds were evaluated for their antimicrobial activity. The investigation of antibacterial and antifungal screening data revealed that all the tested compounds 4a-t showed moderate to potent activity. The compounds 4f, 4g and 4i are found comparatively good active against all the bacterial strains.

Acknowledgements

Authors are thankful to UGC, New Delhi for the financial support.

References

[1] Fischer G., *Adv. Heterocyclic Chemistry* 57 (1993) 81.
[2] Shaban M.A.E., Morgan A.E.A., *Adv. Heterocyclic Chemistry* 77 (2000) 345.
[3] Shaban, M.A.E., Morgan A.E.A., *Adv. Heterocyclic Chemistry* 73 (2000) 131.
[4] Shaban, M.A.E.; Morgan A.E.A., *Adv. Heterocyclic Chemistry* 75 (2000) 243.
[5] Ashour H. M., Shaaban O. G., Rizk O. H., El-Ashmawy I. M., *Euro. J. Med. Chem.* 62 (2013) 341.
[6] Marwaha A., White J., El Mazoun F., Creason S. A., Kokkond S., Buckner F. S., Rathod P. K., *J. Med. Chem.* 55 (2012) 7425.
[7] Chen Q., Zhu X. L., Liu, et al., *Euro. J. Med. Chem.* 43 (2008) 595.
[8] Uryu S., Tokuhiro S., Murasugi T., *Brain Research* 946 (2002) 298.
[9] Zhang N., Semiramis A. K., Thai N., *J. Med. Chem.* 50 (2007) 319.
[10] Havlicek L., Fuksova K., Krystof V., *Bioorg. Med. Chem.* 13 (2005) 5399.
[11] Zhao X., Zhao Y., Guo S., Song H., Wang D., Gong P., *Molecules* 12 (2007) 1136.
[12] Iwona L., Marzena F., Tadeusz M., Tadeusz S., Julia J., *Dalton Transactions* 42 (2013) 6219.
[13] Yin L., Shuai Z., Zhi-Jun L., Hai-Liang Z., *Euro. J. Med. Chem.* 64 (2013) 54.
[14] Ashraf H. F., Abd El-Wahab, *Pharmaceuticals* 5 (2012) 745.
[15] Abdel-Aziem A., Sayed El-Gendy M., Abdelhamid A. O., *Euro. J. Chem.* 3 (2012) 455.
[16] Khera M. K., Cliffe I. A., Mathur T., Prakash O., *Bioorg & Med. Chem. Lett.* 21 (2011) 2887.
[17] Fraley M. E., Hoffman W. F., Rubino R. S., Bioorg. Med. Chem. Lett. 12 (2002) 2767.
[18] Antonino L., Ilenia A., Chiara P., Annamaria M., Gaetano D., Maria A. A., *Euro. J. Med. Chem.* 62 (2013) 416.
[19] Fairfield B. J., Andrew C., Allan J., WO2004108136, 2004.
[20] G. Thirunarayanan, *International Letters of Chemistry, Physics and Astronomy* 5 (2014) 89-98.

[21] Nirav M. Shah, Hitendra S. Joshi, *International Letters of Chemistry, Physics and Astronomy* 6 (2014) 56-60.

[22] Piyush B. Vekariya, Jalpa R. Pandya, Vaishali Goswami, Hitendra S. Joshi, *International Letters of Chemistry, Physics and Astronomy* 7 (2014) 45-52.

[23] Sagar P. Gami, Kalpesh V. Vilapara, Hasmukh R. Khunt, Jayesh S. Babariya, Yogesh T. Naliapara, *International Letters of Chemistry, Physics and Astronomy* 11(2) (2014) 127-134.

[24] Hasmukh R. Khunt, Piyush P. Pipaliya, Satish M. Ghelani, Jayesh S. Babariya, Yogesh T. Naliapara, *International Letters of Chemistry, Physics and Astronomy* 12 (2014) 20-25.

(Received 18 April 2014; accepted 25 April 2014)