Influence of Smoking on Interleukin-34 Levels in Gingival Crevicular Fluid and Plasma in Periodontal Health and Disease: A Clinico-biochemical Study

C N Guruprasad and A R Pradeep
Department of Periodontology, Government Dental College and Research Institute, Bengaluru, Karnataka, India

Received 8 December, 2017/Accepted for Publication 19 January, 2018
Published Online in J-STAGE 18 October, 2018

Abstract

Interleukin-34 (IL-34), an alternative ligand for macrophage colony-stimulating factor receptor, plays an important role in osteoclastogenesis. The aim of this study was to analyze the effect of smoking on IL-34 levels in gingival crevicular fluid (GCF) and plasma in individuals with healthy periodontium and chronic generalized periodontitis (CP). A total of 60 individuals ranging in age from 25 to 55 years were enrolled in the study. The participants were divided into 4 groups: Group A, 30 samples (15 GCF and 15 plasma) obtained from 15 non-smokers with healthy periodontium; Group B, 30 samples (15 GCF and 15 plasma) from 15 smokers with healthy periodontium; Group C, 30 samples (15 GCF and 15 plasma) from 15 non-smokers with CP; and Group D, 30 samples (15 GCF and 15 plasma) from 15 smokers with CP. The Gingival Index and probing depth scores, together with the Clinical Attachment Level, were assessed in each group as clinical periodontal parameters. Levels of IL-34 in GCF and plasma were quantified using enzyme linked immunosorbent assay. The results showed that the mean IL-34 concentrations in GCF and plasma were highest in Group D, followed by Group C, Group B, and Group A, and the difference among them was statistically significant (p<0.05). The relatively elevated IL-34 levels observed here in smokers with CP suggest that this cytokine offers a potential inflammatory marker of periodontal disease in smokers.

Key words: Smoking — Inflammation — Periodontitis — Gingival crevicular fluid — Plasma

Introduction

Periodontitis is a dysbiotic inflammatory disease with an adverse influence on systemic health. It occurs as a result of the interaction of environmental, genetic, host, and microbial factors, and leads to the destruction of tooth-supporting tissues in susceptible subjects due to a shift in the balance of preventive and destructive immune mechanisms against microbial pathogens. Human periodontal ligament cells are exposed to various
periopathogenic factors, including inflammatory cytokines4,30,31, which play a role in osteoclastogenesis through the expression of receptor activator of nuclear factor kappa B ligand (RANKL) on their cell surface15,20.

In a model of bone cell formation, differentiation of osteoclasts was demonstrated to require interaction between receptor activator of nuclear factor kappa B (NF-κB) which is expressed on the surface of osteoclasts, and RANKL in the presence of macrophage colony-stimulating factor (M-CSF/CSF-1)35. The role of M-CSF has been demonstrated in osteopetrotic mutant mice, which suffer from congenital osteopetrosis due to deficiency of osteoclasts associated with an absence of M-CSF37. This indicates that M-CSF is required for osteoclastogenesis, stimulating both adhesion and proliferation of osteoclast precursors3.

A novel cytokine, designated interleukin-34 (IL-34), was identified by functional screening of a library of secreted proteins. It stimulates the viability of monocytes and macrophage colony formation from bone marrow cells. The receptor of IL-34 was discovered by screening extracellular domains of transmembrane proteins, and was found to be the already established M-CSF receptor (also called CSF-1 receptor, or c-fms). Interleukin-34 mRNA is expressed in various tissues, including heart, brain, lung, liver, kidney, spleen, thymus, testes, ovary, small intestine, prostate, and colon25. Interleukin-34 plays a vital role in RANKL-induced osteoclastogenesis, as it can substitute for M-CSF, supporting osteoclast differentiation in the same way12.

The effect of cigarette smoking on the pathogenesis of periodontal disease is well understood4,22,35. Smoking can exert a negative impact on periodontal health by interfering with the immune system and altering host response in the presence of bacterial plaque2. Earlier studies reported significantly increased levels of tumor necrosis factor α (TNF-α), but not of IL-6 or IL-1β, in the gingival crevicular fluid (GCF) of current and former smokers with periodontal disease in comparison to in non-smokers7,9,10. This indicates that smoking interferes with the inflammatory process by affecting the release of proinflammatory cytokines22.

Interleukin-34 is also likely to play a role in inflammation, as it increases IL-6 and chemokine levels in human whole blood19. It is also expressed in rheumatoid arthritis (RA) synovium, where it has shown a correlation with severity of synovitis, and is more highly expressed in the serum and synovial fluid of RA patients11. It is secreted by synovial and gingival fibroblasts in response to TNF-α and IL-1β through the NF-κB and c-Jun N-terminal kinase pathways6,11. Expression of IL-34 is also up-regulated in intestine in patients with inflammatory bowel disease (IBD)40 and in inflamed salivary glands in patients with Sjögren’s syndrome13.

Understanding the association between IL-34 levels and susceptibility to and severity of periodontitis in smokers might reveal a hitherto unknown pathway of bone destruction in diseases such as periodontitis. To our knowledge, no studies to date have compared IL-34 levels in GCF and plasma between healthy and diseased periodontium to investigate their association with smoking. The purpose of the present study, therefore, was to clarify the role of IL-34 in the pathogenesis of periodontal disease and to study the effect of smoking on the IL-34 levels in periodontally diseased individuals.

Materials and Methods

1. Study population

The study population comprised 60 individuals aged between 25 and 55 years recruited from the outpatient section of the Department of Periodontology and Implantology at the Government Dental College and Research Institute, Bengaluru, India. The research protocol was submitted to Institutional Ethical Committee and Review Board of that institution and approval obtained (approval no: GDCRI/ACM(2)/PG/PhD/5/2016-2017). The study was conducted between April 2017 and September 2017 in accordance with the
Declaration of Helsinki 1975, as revised in 2013. The protocol of the study was explained and written informed consent obtained from all participants.

2. Selection criteria

Only individuals with a minimum of 20 natural teeth and the clinical signs required for each projected study group were enrolled in the study. The exclusion criteria were as follows: chronic inflammatory disease, such as RA and IBD; respiratory disease, such as chronic obstructive pulmonary disease, asthma, and bronchitis; immunodeficiency due to causes such as HIV; diabetes mellitus; pregnancy; giant cell tumors of the bone; coronary heart disease; hypertension; aggressive periodontitis; betel/areca nut chewing; alcoholism; steroid use; contraceptive use; anti-inflammatory drug or antibiotic use; and periodontal treatment within the preceding 6 months. Eligible participants were selected randomly and first categorized as having chronic generalized periodontitis (CP) or healthy periodontium based on their bleeding on probing, gingival index (GI), probing depth (PD), and Clinical Attachment Level (CAL) scores together with radiographic evidence of bone loss. They were then categorized into the following 4 groups: Group A, 30 samples (15 GCF and 15 plasma) from 15 non-smokers with healthy periodontium; Group B, 30 samples (15 GCF and 15 plasma) from 15 smokers with healthy periodontium; Group C, 30 samples (15 GCF and 15 plasma) from 15 non-smokers with CP; and Group D, 30 samples (15 GCF and 15 plasma) from 15 smokers with CP. Individuals with healthy periodontium had a GI score of 0, PD ≤3 mm, a CAL score of 0, and no radiographic evidence of bone loss. Chronic generalized periodontitis was defined as having a GI score of ≥1, a PD score of ≥5 mm, and CAL score of ≥3 mm together with radiographic evidence of bone loss at more than 30% of sites. The CAL was the distance in millimetres from the cemento-enamel junction to the bottom of the periodontal pocket. A participant was classified as a smoker if he or she smoked ≥100 cigarettes over their lifetime, or a non-smoker if the number was ≤100 cigarettes over their lifetime in accordance with the Centre of Disease Control and Prevention criteria.

3. Selection of site and collection of GCF fluid

One examiner was responsible for allocating participants to each group and selecting sites for sample collection (ARP). The clinical parameters (GI, PD, and CAL) were evaluated by a calibrated examiner (CNG) using a periodontal probe (UNC PCP-15, Hu-Friedy, Chicago, IL, USA). The same examiner also performed radiographic assessment and collected the GCF samples. Intra-examiner calibration was determined before the start of the study by examination of 30 sites twice at an interval of 24 hr. Calibration was accepted at the 95% level, if measurements at baseline and at 24 hr later were within 1 mm of each other. Gingival crevicular fluid was collected from the site with the maximum CAL in Group C and D, but from multiple sites in the periodontally healthy groups to ensure an adequate amount. The GCF was collected at the same time of the day (in the forenoon) to circumvent potential problems with the circadian variation usually seen in GCF volume. On the following day, the site for sample collection was well isolated and supragingival plaque removed while taking care not to make contact with the marginal gingiva. A standardized volume of 3 μl GCF was collected by placing a microcapillary pipette (Sigma-Aldrich, St. Louis, MO, USA) at the entrance of the gingival sulcus (extrasulcular method). Micro-pipettes contaminated with blood or saliva were excluded from the study. The collected GCF samples were transferred to airtight plastic vials and stored at −70°C until assayed.

4. Blood collection and plasma extraction

Two millilitres of blood was collected from the antecubital fossa by venepuncture using a 2-ml syringe and 20-gauge needle, and transferred immediately to EDTA-containing vials.
Table 1 Descriptive statistics of study population (mean ± SD)

Study Group	Group-A (n = 15)	Group-B (n = 15)	Group-C (n = 15)	Group-D (n = 15)	t value	p-value
Age (in years)	35.3 ± 7.825	35.3 ± 7.287	39.7 ± 7.995	39.4 ± 6.468	1.634	0.192
PD (in mm)	2.33 ± 0.724	2.33 ± 0.724	6.00 ± 1.134	6.20 ± 1.014	84.522	<0.001*
GCF IL-34 (pg/ml)	366.71 ± 36.13	392.25 ± 48.26	710.80 ± 162.08	826.44 ± 161.28	56.670	<0.001*
Plasma IL-34 (pg/ml)	76.79 ± 5.45	120.69 ± 29.75	397.52 ± 95.59	573.28 ± 107.57	153.463	<0.001*

*p<0.001 is significant

Table 2 Independent student t-test to compare mean values between Group C and Group D

Study Group	Group C (n = 15)	Group D (n = 15)	t value	p-value
GI score	2.167 ± 0.339	1.980 ± 0.332	2.318	0.139
CAL in mm	4.53 ± 0.915	5.13 ± 1.060	2.752	0.108

p<0.001 is significant

Plasma was separated from blood by centrifuging at 3,000 rpm for 5 min. The plasma was immediately transferred to a plastic vial and stored at −70°C until the time of assay.

5. IL-34 analysis

The GCF and plasma samples were assayed for IL-34 levels using a highly sensitive enzyme linked immunosorbent assay (ELISA) kit (human IL-34 Catalog Number: DY5265, R & D systems, Minneapolis, MN, USA) according to the manufacturer’s instructions. All samples were run in duplicate and the mean value used for the analysis.

6. Statistical analysis

The SPSS statistical software package (SPSS version 18.0, Chicago, IL, USA) was used for the statistical analysis. Based on the results of a pilot study including 5 participants in each group, it was estimated that a 15 participants would be needed in each group to achieve 90% power and detect a difference of 0.5 ± 0.687 between the hypotheses with a significance level (alpha) of 0.05 using a two-sided, two-sample t-test. The mean values of the demographic and clinical parameters were compared by using a one-way ANOVA. The GI and CAL values were compared between Group C and Group D by using an independent student t-test. A pair-wise comparison of IL-34 concentration in GCF and plasma between groups was performed using the Tukey test. The mean intra-examiner standard deviation of differences in repeated PD and CAL measurements was obtained using single passes of measurements (correlation coefficients between duplicate measurements; r = 0.95).

Results

Table 1 shows the descriptive statistics (mean ± SD) of the study population. A total of 60 participants were included in the study. The mean age in Group C (39.7 ± 7.995 years)
was higher than in the other groups. A comparison of the mean GI scores and CAL between Group C and Group D revealed no statistically significant difference (Table 2). The mean IL-34 concentrations in GCF (826.44 ± 161.28 pg/ml) and plasma (573.28 ± 107.57 pg/ml) were highest in Group D, and the difference was statistically significant, with a p-value of <0.001 (Table 1). Further multiple comparisons using the Tukey test were performed to determine which pair or pairs differed significantly. A statistically significant difference was observed in IL-34 concentrations in GCF and plasma in Group C and D (p<0.05), but not in Group A and B (Tables 3, 4). Spearman’s rho demonstrated a positive correlation between IL-34 concentration in GCF and plasma, but there was no statistically significant correlation between the clinical parameters and IL-34 concentrations in GCF and plasma (Table 5).

Discussion

Periodontitis is a chronic inflammatory oral disease of the adult population characterized by a gingival inflammatory reaction against pathogenic bacterial microflora, resulting in alveolar bone loss and eventually tooth loss. By interfering with the immune system and altering the host response in the presence of bacterial plaque, smoking might have a harmful impact on periodontal health. Increasing evidence points to smoking as a major risk factor for periodontitis, affecting the prevalence, extent, and severity of disease. The link between periodontitis and smoking may have relevant public health implications because both diseases are important risk factors for cardiovascular disease. To the best of our knowledge, this is the first study in any type of population to use ELISA to investigate the effect of smoking on IL-34 levels in GCF and plasma in individuals with healthy periodontium and CP.

Interleukin-34, an alternative ligand for the M-CSF receptor, is considered a novel non-canonical pathway of osteoclast formation, as it can substitute for M-CSF in osteoclast differentiation, and plays an important role in RANKL-induced osteoclastogenesis. Patients with inflammatory periodontal disease often have elevated serum levels of pro-inflammatory cytokines. Inflammation and osteoclastogenesis were triggered by pro-inflammatory cytokines and brought about alveolar bone resorption in periodontitis.

By a mechanism involving NF-κB and mitogen-activated protein kinase, the proinflammatory cytokines TNF-α and IL-1β regulate IL-34 expression in synovial and gingival fibroblasts. One study found that CSF-1 and IL-34 had complementary roles in periodontal disease, with IL-34 active in the steady state and CSF-1 in inflammation. Meanwhile, another study found that IL-34 mRNA expression in periapical lesions was significant.
significantly higher than that in normal periodontal ligament tissue, indicating that IL-34 is closely involved in inflammation in chronic apical periodontitis²⁸. Thus, the increase in concentrations of IL-34 in GCF and plasma in both non-smokers and smokers with CP in the present study may be attributable to the proinflammatory properties of this protein. The precise effects of nicotine on cell cytokines and cytokine quantities in smokers have

Group	Correlation	p-value	Group	Correlation	p-value	Group	Correlation	p-value
A	IL-34 GCF	0.263	—	0.216	—	IL-34 Plasma	-0.109	—
	p-value	0.344	—	0.440	—	p-value	0.700	—
B	IL-34 GCF	0.757	—	-0.174	—	IL-34 Plasma	-0.491	—
	p-value	0.001*	—	0.535	—	p-value	0.063	—
C	IL-34 GCF	0.581	-0.430	-0.105	0.032	IL-34 Plasma	-0.343	-0.243
	p-value	0.023	0.110	0.709	0.911	p-value	0.211	0.423
	GI	Correlation	-0.008	0.086				
	p-value	0.896	0.978					
PD	Correlation	0.688	—	—				
	p-value	0.005						
D	IL-34 GCF	0.664	0.080	0.248	0.035	IL-34 Plasma	0.193	0.074
	p-value	0.007	0.778	0.374	0.901	p-value	0.491	0.793
	GI	Correlation	0.204	0.272				
	p-value	0.467	0.327					
PD	Correlation	0.771	—	—				
	p-value	0.001*						

*p<0.001 is significant
yet to be fully clarified. Studies analyzing concentrations of nicotine and other chemicals or noxious stimuli related to smoking can enhance our understanding of the direct effects of nicotine on cytokine levels\(^22\). Gingival crevicular fluid provides one source of evidence in evaluating the multiple effects of smoking on host response in the periodontium. Earlier studies found elevated GCF levels of TNF-α\(^7\) and IL-8 in smokers\(^17\). The results of the present study revealed a significant increase in mean IL-34 levels in GCF (826.44 ± 161.28 pg/ml) and plasma (573.28 ± 107.57 pg/ml) in smokers with CP (Group D) (p<0.001) in comparison with in the other groups. This is in accordance with the results of earlier studies showing higher GCF levels of proinflammatory cytokines IL-1β and IL-6 or TNF-α in smokers\(^9,17,39\). One study, however, found a decrease in several proinflammatory cytokines and chemokines together with certain regulators of T-cells and natural killer cells in GCF in smokers\(^36\).

In the present study, microcapillary pipettes were used to collect GCF to avoid nonspecific attachment of the analyte, something which can occur with filter paper fibers, resulting in a false decrease in detectable IL-34 levels that, in turn, can lead to miscalculation of the correlation of IL-34 levels with severity of disease. The disadvantage of the method used in the present study is the possibility of trauma to the marginal gingiva, but utmost care was taken to avoid this during GCF collection here\(^32\).

The present findings indicate that smoking and periodontitis can, independently or jointly, alter GCF and plasma IL-34 levels. The concentration of IL-34 observed here was higher in GCF than in plasma, which could be explained by local production of IL-34 in diseased periodontal tissues, suggesting that IL-34 levels might serve as a marker of local disease activity. Interleukin-34 levels in GCF and plasma showed an increase in smokers with healthy periodontium and in those with CP compared with in non-smokers with healthy periodontium and those with CP, indicating that smoking upregulates secretion of IL-34 and may play an important role in the progression of periodontal disease.

To our knowledge, this cross-sectional study is the first to evaluate GCF and plasma levels of IL-34 in smokers and non-smokers with or without periodontal disease and to investigate potential correlations between severity of disease and GCF and plasma levels of IL-34 in an Indian population. Further longitudinal, prospective, interventional, multicentre studies are required to clarify the role of IL-34 and other potential markers of inflammation in CP and assess smoking as an important risk factor in the progression of periodontal disease.

Conclusion

Within the limitations of this study, the present results suggest that IL-34 offers a potential inflammatory marker of periodontal disease. The levels of IL-34 were highest in smokers with CP, which may indicate that this cytokine is active in the inflammatory process, both systemically and locally, in periodontal tissues. Determining IL-34 levels may therefore be valuable in detecting individuals at high risk of periodontitis, particularly in smokers. This has relevant public health implications, as both smoking and periodontitis are important risk factors for cardiovascular disease. Further multicentre, longitudinal, interventional, prospective studies of IL-34 and other markers are needed to clarify their role in the pathogenesis of periodontal disease in smokers.

Conflict of Interest

The authors declare no conflict of interest. They declare no financial support or relationships that may pose a conflict of interest.
References

1) Armitage GC (1999) Development of a classification system for periodontal disease and conditions. Ann Periodontol 4:1.
2) Barbour SE, Nakashima K, Zhang JB, Tangada S, Hahn CI, Schenkein HA, Tew JG (1997) Tobacco and smoking environmental factors that modify the host response (immune system) and have an impact on periodontal health. Crit Rev Oral Biol Med 8:437–460.
3) Baud’huin M, Renault R, Charrier C, Riet A, Moreau A, Brion R, Gouin E, Duplomb L, Heymann D (2010) Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. J Pathol 221:77–86.
4) Birkedal-Hansen H (1993) Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res 28:500–510.
5) Bloemen V, Schoenmaker T, de Vries TJ, Everts V (2011) IL-1β favors osteoclastogenesis via supporting human periodontal ligament fibroblasts. J Cell Biochem 112:1890–1897.
6) Boström EA, Lundberg P (2013) The newly discovered cytokine IL-34 is expressed in gingival fibroblasts, shows enhanced expression by pro-inflammatory cytokines, and stimulates osteoclast differentiation. PLoS One 8:e81665.
7) Boström L, Linder LE, Bergström J (1998) Clinical expression of TNF-α in smoking-associated periodontal disease. J Clin Periodontol 25:767–773.
8) Boström L, Linder LE, Bergström J (1998) Influence of smoking on the outcome of periodontal surgery. A 5-year follow-up. J Clin Periodontol 25:194–201.
9) Boström L, Linder LE, Bergström J (1999) Smoking and crevicular fluid levels of IL-6 and TNF-α in periodontal disease. J Clin Periodontol 26:352–357.
10) Boström L, Linder LE, Bergström J (2000) Smoking and GCF levels of IL-1β and IL-1ra in periodontal disease. J Clin Periodontol 27:250–255.
11) Chemel M, Le Goff B, Brion R, Cozic C, Berreur M, Amaud J, Bougras G, Touchais S, Blanchard F, Heymann MF, Berthelot JM, Verrecchia F, Heymann D (2012) Interleukin 34 expression is associated with synovitis severity in rheumatoid arthritis patients. Ann Rheum Dis 71:150–154.
12) Chen Z, Buki K, Vaaraniemi J, Gu G, Vaananen HK (2010) The critical role of IL-34 in osteoclastogenesis. PLoS One 6:e18689.
13) Ciccia F, Alessandro R, Rodolico V, Guggino G, Raimondo S, Guarnotta C, Giardina A, Sireci G, Campisi G, De Leo G, Triolo G (2013) IL-34 is overexpressed in the inflamed salivary glands of patients with Sjögren’s syndrome and is associated with the local expansion of pro-inflammatory CD14⁺CD16⁺ monocytes. Rheumatology (Oxford) 52:1009–1017.
14) Cigarette smoking among adults United States 2006. CDC-nov 2007/56 (44); 1157–1161.
15) Crotti T, Smith MD, Hirsch R, Soukoulis S, Weedon H, Capone M, Ahern MJ, Haynes D (2003) Receptor activator kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J Periodontal Res 38:380–387.
16) Eda H, Zhang J, Keith RH, Michener M, Beidler DR, Monahan JB (2010) Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine 52:215–220.
17) Giannopoulou C, Cappuyns I, Momblell A (2003) Effect of smoking on gingival crevicular fluid cytokine profile during experimental gingivitis. J Clin Periodontol 30:996–1002.
18) Glavind L, Løe H (1967) Errors in the clinical assessment of periodontal destruction. J Periodontal Res 2:180–184.
19) Hajishengallis G (2015) Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 15:30–44.
20) Hasegawa T, Yoshimura Y, Kikui T, Yawaka Y, Takeyama S, Matsumoto A (2002) Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res 37:405–411.
21) Johnson GK, Hill M (2004) Cigarette smoking and the periodontal patient. J Periodontol 75:196.
22) Kamma JJ, Giannopoulou C, Vasdekis VGS, Momblell A (2004) Cytokine profile in gingival crevicular fluid of aggressive periodontitis: influence of smoking and stress. J Clin Periodontol 31:894–902.
23) Kannel WB, D’Agostino RB, Belanger AJ (1987) Fibrinogen, cigarette smoking, and risk of cardiovascular disease: insights from the Framingham Study. Am Heart J 113:1006–1010.
24) Kinane DF, Lappin DF (2001) Clinical, pathological and immunological aspects of periodontal disease. Acta Odontol Scand 59:154–160.
25) Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807–811.
26) Löe H (1967) The gingival index, the plaque index and the retention index systems. J Periodontol 38:610–616.

27) Loos BG, Craandij J, Hoek FJ, Wertheim-van Dillen PME, van der Velden U (2000) Elevation of systemic markers related to cardiovascular diseases in the peripheral blood of periodontal patients. J Periodontol 71:1528–1534.

28) Ma N, Qu L, Xu LY, Yu YQ, Qiu LH (2016) Expression of IL-34 in chronic periapical lesions and its clinical significance. Shanghai Kou Qiang Yi Xue 25:53–55.

29) Martinez GL, Majster M, Bjurshammar N, Johannsen A, Figueredo CM, Boström EA (2017) Salivary Colony Stimulating Factor-1, Interleukin-34, and Matrix Metalloproteinase-8 as Markers of Periodontal Disease. J Periodontol 88:e140–e149.

30) Nakaya H, Oates TW, Hoang AM, Kamoi K, Cochran DL (1997) Effects of interleukin-1β on matrix metalloproteinase-3 levels in human periodontal ligament cells. J Periodontol 68: 517–523.

31) Nishikawa M, Yamaguchi Y, Yoshitake K, Saeki Y (2002) Effects of TNFα and prostaglandin E2 on the expression of MMPs in human periodontal ligament fibroblasts. J Periodontal Res 37:167–176.

32) Pradeep AR, Guruprasad CN, Swati P, Shikha C (2008) Crevicular fluid endothelin-1 levels in periodontal health and disease. J Periodontal Res 43:275–278.

33) Renvert S, Dahlen G, Wikstrom M (1998) The clinical and microbiological effects of nonsurgical periodontal therapy in smokers and non-smokers. J Clin Periodontol 25:153–157.

34) Saini R, Saini S, Saini SR (2010) Periodontal diseases: a risk factor to cardiovascular disease. Ann Card Anaesth 13:159–161.

35) Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necroses factor receptor and ligand families. Endocr Rev 20: 345–357.

36) Tymkiw KD, Thunell DH, Johnson GK, Joly S, Burnell KK, Cavanaugh JE, Brogden KA, Guthmiller JM (2011) Influence of smoking on gingival crevicular fluid cytokines in severe chronic periodontitis. J Clin Periodontol 38: 219–228.

37) Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A 87:4828–4832.

38) Williams RC (1990) Periodontal disease. N Engl J Med 322:373–382.

39) Zhong Y, Slade GD, Beck JD, Offenbacher S (2007) Gingival crevicular fluid interleukin-1β, prostaglandin E2 and periodontal status in a community population. J Clin Periodontol 34: 285–293.

40) Zwicker S, Martinez GL, Bosma M, Gerling M, Clark R, Majster M, Söderman J, Almer S, Boström EA (2015) Interleukin 34: a new modulator of human and experimental inflammatory bowel disease. Clinical Science 129:281–290.

Correspondence:
Dr. C N Guruprasad
Department of Periodontology,
Government Dental College and
Research Institute,
Fort, Bengaluru, Karnataka, India
E-mail: drguru_75@yahoo.co.in