Fragment-based inhibitor design for SARS-CoV2 main protease

Priyanka Andola1 · Jishu Pagag1 · Durgam Laxman1 · Lalitha Guruprasad1

Received: 25 March 2022 / Accepted: 14 June 2022 / Published online: 4 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
COVID-19 disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) has resulted in tremendous loss of lives across the world and is continuing to do so. Extensive work is under progress to develop inhibitors which can prevent the disease by arresting the virus in its life cycle. One such way is by targeting the main protease of the virus which is crucial for the cleavage and conversion of polyproteins into functional units of polypeptides. In this endeavor, our effort was to identify hit molecule inhibitors for SARS-CoV2 main protease using fragment-based drug discovery (FBDD), based on the available crystal structure of chromene-based inhibitor (PDB_ID: 6M2N). The designed molecules were validated by molecular docking and molecular dynamics simulations. The stability of the complexes was further assessed by calculating their binding free energies, normal mode analysis, mechanical stiffness, and principal component analysis.

Keywords SARS-CoV2 main protease · Virtual screening · Fragment-based drug discovery · Molecular docking · Molecular dynamics simulations · Binding free energy · Normal mode analysis · Mechanical stiffness · Principal component analysis

Introduction
Coronaviruses comprise a large family of zoonotic viruses that have potential to infect humans via animal intermediaries [1]. Coronaviruses pose a continuous threat to the mankind because of their ability to emerge unpredictably and periodically, thereby spreading rapidly and inducing serious infectious pandemic disease. The world previously witnessed outbreaks of coronavirus disease caused by other similar species, namely SARS-CoV in 2002 and 2003 in China [2]; MERS-CoV in 2012 in the Middle East [3]; HCoV-OC43 [4, 5] in 1967 in Salisbury, UK; HCoV-229E [6] in 1966 in African bats; HCoV-HKU1 [7] in 2005 in Hong Kong; and HCoV-NL63 [8, 9] in 2002–2003 across Asia, Europe, and North America. During the last 2 years, the novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) that causes coronavirus disease 2019 (COVID-19) resulting in an acute infection in the respiratory system [1], has become a global pandemic. All these viruses belong to the subfamily Coronavirinae in a family Coronaviridae. These are nonsegmented, enveloped, positive-sense single-stranded RNA virus genomes [10], and the human coronaviruses have the genomic size ranging from 29 to 31 kilobases. The RNA genome of the human SARS-CoV2 is 82% identical to that of human SARS-CoV [11] and shares considerable similarity in the genome; hence, it has been named as SARS-CoV2 [12]. The SARS-CoV2 genome encodes open-reading frames (ORFs) ORF1a and ORF1ab that encode for polyproteins. These polyproteins are further processed into 16 nonstructural proteins (NSPs), NSP1 to NSP16, which constitute the replicase-transcriptase complex. Various enzymes including the main protease also known as 3-chymotrypsin-like protease (NSP5), papain-like protease (NSP3), and RNA-dependent RNA polymerase (NSP12) are present in this complex among other proteins [13]. The virion contains a nucleocapsid made up of genomic RNA and phosphorylated nucleocapsid protein, buried inside the phospholipid bilayers and surrounded by spike protein on the membrane of virus. A type-3 transmembrane glycoprotein also known as membrane protein and the envelope protein are situated among the spike proteins in the virus envelope [10].

Both Priyanka Andola and Jishu Pagag have made equal contribution.

* Lalitha Guruprasad
lalitha.guruprasad@uohyd.ac.in

1 School of Chemistry, University of Hyderabad, Hyderabad 500046, India
The most prominent symptom reported in SARS-CoV2 is respiratory distress with some patients requiring intensive care, high-flow oxygen therapy, and invasive and noninvasive ventilation. The condition could worsen due to respiratory failure leading to the death of the patient [14]. It was also observed that patients with comorbidity pose a greater risk of developing severe infection which may also result in death of an individual [15]. More than 530 million COVID-19 cases and close to 6.29 million deaths have been reported during the last 2 years and 5 months. Despite the availability of vaccines and large populations in various countries being already vaccinated, the re-emergence of SARS-CoV2 in the mutated forms as witnessed in the case of beta [16] and omicron [17] variants poses a continuous threat of COVID-19 disease. There have been continuous research efforts to develop antiviral agents against members of Coronaviridae family which suggested that the human receptor, angiotensin-converting enzyme 2 that facilitates entry of virus into the host, RNA-dependent RNA polymerase and main protease, helicase, and papain-like protease, may be represented as suitable drug targets [11, 18–23].

Considering the functional significance of the main protease, i.e., to carry out processing of polyproteins into NSPs, in the viral life cycle, and combined with the absence of closely related homologues in humans, main protease serves as an attractive target for the design of antiviral drugs. Inhibiting the viral activity of this enzyme would block the replicase-transcriptase complex and therefore disrupt the viral life cycle. These targets are a choice for inhibition purpose also in SARS-CoV and MERS-CoV, and hence, constant work has been carried out either by computational methods or experimental investigations to find novel molecules which can interfere with virus life cycle by inhibiting the main protease. For example, glycosylated flavonoids display a strong inhibitory activity on SARS-CoV2 main protease [24]. Some natural polyphenolic compounds, i.e., glucogallin, mangiferin, and phlorizin, may have the ability to be used as safe protease inhibitors, which may act by inhibiting type-2 transmembrane serine protease and main protease [25]. In silico approaches have identified three FDA-approved drugs, namely remdesivir, saquinavir, darunavir, and two small molecules such as flavone and coumarin derivatives that act as potential inhibitors of human SARS-CoV2 main protease [26]. Few drugs were identified and tested for treatment of COVID-19 disease such as chloroquine, lopinavir, nafamostat, hydroxychloroquine, ritonavir, camostat, corticosteroids, and sarilumab [27]. Also a combination of drugs such as noscapine and hydroxychloroquine demonstrated a strong binding affinity towards main protease [28]. Numerous drug candidates such as ebelsen, disulfiram, carmofur, α-ketoamides, and peptidomimetic aldehydes 11a/11b have been discovered which inhibit the main protease activity by providing interference with the maturation process of NSPs [11, 22, 29, 30]. Computational studies have identified some of the NCI natural products as SARS-CoV2 main protease inhibitors [31].

The present work focuses on finding suitable inhibitors for the main protease in SARS-CoV2 using the computational methodologies in fragment-based drug discovery (FBDD). The FBDD methodology initially employs virtual screening of chemical fragments with low molecular weight and less chemical complexity and targets the sub-pockets within the receptor binding site [32]. The selection of fragments in a library generally follows “rule of three” criterion, i.e., molecular weight ≤ 300, hydrogen bond donor and acceptor ≤ 3, and lipophilicity index (CLogP) ≤ 3 [33, 34]. Furthermore, it is desirable that the number of rotatable bonds is ≤ 3, and the polar surface area (PSA) is ≤ 60 [35]. Such fragment hits are considered to be more suitable before the “hit-to-lead optimization” since they have reduced complexity, thereby allowing more freedom for optimization of various properties of the fragment hits in a multidimensional manner [32]. Some attractive features like favorable physical, pharmacokinetics, and toxicity properties can be integrated in the development of fragments [36].

These fragments function as building blocks, combined into compounds that typically recognize the protein binding site. The process of optimization of fragments can be done by linking the two independent fragments together or by adding functional groups in each step to make improvements to the molecules [32]. These compounds are further elaborated such that they bind the receptor via several nonbonding interactions. Methodologies in FBDD have rapidly led to the identification of several FDA-approved drugs such as INQOVI, erdafitinib [37], ribociclib, vemurafenib [38], pexidartinib [39], and venetoclax [40–42].

The inhibitor 3WL complexed with SARS-CoV2 main protease was used as the reference structure on which FDA-approved drug fragments were employed in order to obtain new lead molecules that could bind the active site of the receptor. Molecular docking, molecular dynamics (MD) simulations, and trajectory analyses were employed in order to propose new hit molecules to bind the SARS-CoV2 main protease.

Materials and methods

Protein preparation

The crystal structure of SARS-CoV2 main protease was solved at 2.2 Å resolution, and its three-dimensional structure complexed with inhibitor is deposited in the protein structure databank (PDB) with the PDB_ID: 6M2N [43]. The crystal structure of the main protease is a homodimer; chain A was selected for the computational studies as it did not have any missing residues. Crystal waters were deleted,
hydrogen atoms were added to complete the valency, and geometry optimization of the structure was done using minimize structure tool in the UCSF Chimera [44] version 1.12 for further studies.

Inhibitor design

We used Auto Core Fragment in silico Screening (ACFIS) 2.0 web server available at http://chemyang.ccbu.edu.cn/ccb/server/ACFIS/ [45] that comprises FDA drug fragment database with 2883 fragment molecules for FBDD [45, 46]. This server works on the principle of pharmacophore-linked fragment virtual screening approach. ACFIS has three computational modules. PARA_GEN is a tool to generate parameters for ACFIS using the AMBER tools; CORE_GEN tool considers the protein–ligand complex and proceeds to deconstruct the ligand structure into fragments by cleavage at single bond based on retrosynthetic analysis by using decomposition and identification of molecules program [47] to derive core fragment structure from a bioactive ligand. CAND_GEN is a tool to link fragments to the core fragment structure and generate candidate molecules. The fragments in the library will be linked to the junction of the core fragment structure at the position of cleavage. ACFIS server creates new molecules based on growing algorithm by determining the core fragment structure followed by automatic linking of each of the fragments for improving the binding affinity. Finally, the molecules are ranked based on their binding affinities. Output structure files and related data were downloaded. These molecules thus identified were used for further molecular docking studies.

Molecular docking

Molecular docking is a tool to predict molecular recognition between a small molecule and a target macromolecule in terms of binding modes and binding affinity. Molecular docking involves generating the most favorable binding mode of a ligand to its target macromolecule. Virtual screening of molecules by molecular docking was performed by using PyRx [48] and AutoDock 4.2 [49] software. Both the docking methods were validated by docking 3WL into the active site of main protease 6M2N as seen in Supplementary Fig. 1A, B. The interacting residues within a radius of 5 Å with respect to reference molecule 3WL were considered for generation of grid box. The protein macromolecule and ligands were imported using input molecule tools in PyRx and were converted from .pdb into .pdbqt format. Grid box was generated and adjusted so that it includes the active site residues at the binding site, with the exhaustiveness value of 10. The results were analyzed for determining the best conformers with lowest binding energy (kcal/mol) and hydrogen bond interactions with the active site residues. The result output was exported to a file for visualization and analysis purpose using discovery studio visualizer.

The best ranked molecules were subjected to another round of docking studies using AutoDock 4.2 tools in order to dock them inside a 5 Å cavity defined around the reference molecule 3WL. The protein was cleaned by deletion of heteroatoms and water molecules, torsions were set, polar hydrogens were added, and structure was saved in .pdbqt format. Similarly, the designed molecules were loaded, and torsions were set and saved in .pdbqt format. The calculations for protein–ligand flexible docking were performed using the Lamarckian genetic algorithm. The maximum number of generations simulated during each GA run was set to 27,000, and the rates of the gene mutation and crossover were set to 0.02 and 0.8, respectively. The threshold RMSD value was set to 2 Å, and the number of docking poses generated for each molecule was set to 10 for AutoDock as well as PyRx. A grid box with the dimensions of X: –32.464 Å, Y: –62.314 Å, and Z: 43.532 Å and a grid spacing of 0.375 Å was used with exhaustiveness value of 10. The conformers obtained were ranked based on the nature of interactions, root-mean-square deviation (RMSD) values, and binding affinity scores.

Drug likeness

The absorption, distribution, metabolism, and excretion (ADME) parameters describe the pharmacokinetic properties associated with the ligand molecules and have a crucial role to play in the process of drug discovery and development. The ADME properties of the docked molecules were measured using the SwissADME server [50]. SwissADME server is a free webtool to predict the drug-likeness properties of small molecules; it displays the pharmacokinetic properties in the form of topological polar surface area (TPSA), consensus LogP_Oct, Log S, and Log Kp and synthetic accessibility values.

Molecular dynamics simulations

Proteins are inherently flexible biomolecules which combine with a ligand to form the protein–ligand complex; this complex attains stability mediated by various nonbonding interactions such as van der Waals (vdW), electrostatic (el), hydrogen bonding, and hydrophobic. These kinds of interactions can be studied using MD simulations. Proteins identified by X-ray diffraction consider static conditions, while the MD simulations can be used to find the consistency in non-covalent interactions and the stability of protein–ligand complexes. The MD simulation studies were run for the apo form of main protease as well as with the reference molecule bound in the complex form using GROMACS 5.1.4 [51] software for 250 ns. The force fields for protein were generated using
AMBER ff99SB [52], and force fields for hit molecules and reference ligand were generated in antechamber [53] using ACPYPE [54] scripts. The complexes were immersed in a cubic box filled with water molecules as simple point charge (SPC) [55] model. The neutralization of the system was done by adding Na\(^+\) and Cl\(^-\) ions. This was followed by energy minimization using steepest descent method for 50,000 steps to relieve the system from short-range bad contacts. The equilibration of the system is performed in two steps by allowing the system to get equilibrated until it reaches 300-K temperature in the constant number, volume and temperature (NVT) step and also until it attains the suitable density in constant number, pressure and temperature (NPT) (1 atm, 300 K) step. The NVT and NPT equilibration were performed for 100 ps timescale to energy minimize the system. For temperature and pressure couplings, V-rescale thermostat [56] and Parrinello and Rahman methods [57] were used respectively. The long-range electrostatics were handled using the particle mesh Ewald method [58]. The Lennard–Jones interactions, real space interactions, were truncated at 9 Å, and hydrogen bonds were constrained using LINCS algorithm [59]. The final production run was performed for 250 ns timescale involving 125 million steps. The final models for all molecular systems were obtained by averaging the snapshots generated from the trajectories of MD simulations. The RMSD and root-mean-square fluctuations (RMSF) were calculated using gmx rms and gmx rmsf commands, respectively, of GROMACS to study the conformational variations in the protein bound to reference and hit molecule complexes.

Current section:

Binding free energies

The interaction energy between the protein and ligand is vital to study about the overall stability of the complex and to assess how well the ligand fits into the protein binding site. Also, the contribution from amino acid residues which form the ligand binding site in complex formation can be estimated from binding free energy. The Poisson-Boltzmann or Generalized Born and Surface Area Continuum Solvation (MM-PBSA and MM-GBSA) [60] are methods that can estimate the free energy of binding of small molecules to the protein. The output trajectories from GROMACS with the g_mmpbsa tool were used to calculate binding free energies for all the complexes. The linear interaction energy (LIE) method [61], which is based upon estimations of force fields in the receptor-ligand interactions and thermal conformational sampling, was used for calculation of ligand binding free energies. The gmx lie tool was utilized to compute free energy estimate based on analysis from nonbonded energies. Generally, the binding free energy of a protein in complex with a ligand is expressed as [62, 63]:

\[
\Delta G_{\text{binding}} = G_{\text{complex}} - (G_{\text{protein}} + G_{\text{ligand}})
\]

Here, \(G_{\text{complex}}\) is the total free energy of protein–ligand complex, and \(G_{\text{protein}}\) and \(G_{\text{ligand}}\) are the total free energies of isolated forms of protein and ligand in the solvent, respectively.

In the LIE approach, the binding free energy is estimated according to the following equation and is divided into polar and nonpolar contributions [64].

\[
\Delta G_{\text{bind}} = a\Delta \langle V_{1-s}^{vdW} \rangle + \beta \Delta \langle V_{1-s}^{el} \rangle + \gamma
\]

where \(\langle \rangle\) depicts the MD averages for the nonbonded vdW and el interactions of the ligand with its surrounding environment (l-s). The \(\Delta\) depicts change in the MD averages when ligand is transferred from solution (free state) to the binding site of the solvated receptor (bound state). The coefficients \(a\) and \(\beta\) corresponding to parameters for nonpolar and polar interactions, respectively, are scaling factors for these energies, and \(\gamma\) is a constant term which could also be implemented as surface-area dependent [65, 66]. The values taken for \(a\), \(\beta\), and \(\gamma\) were 0.181, 0.5, and 0, respectively.

Normal mode analysis and mechanical stiffness

Protein dynamics is very essential to understand molecular events in a cell such as ligand recognition, binding, and transport [67]. The ensembles of structures can provide information about the structural variations important for biological activity [68, 69]. We used software suite of programs in ProDy [67] to develop the elastic network model-based normal mode analysis (NMA), and dihedral angles were taken as independent variables for all molecular systems. The mechanical stiffness plots were developed for all molecular systems using anisotropic network model [70].

Principal component analysis

Principal component analysis (PCA) is a covariance-matrix-based mathematical technique to find global and correlated motions in atomic simulations of protein [71]. The overall motion of main protease was assessed through PCA technique by generating a 3N×3N covariance matrix followed by its diagonalization to construct eigenvectors. The technique was employed for all the simulated molecular systems using MODE-TASK [72], and calculations were carried out from 0 to 250 ns MD simulations trajectories.
Results and discussions

Overall fold and active site of SARS-CoV2 main protease

Several crystal structures of SARS-CoV2 main protease in complex with peptide-based inhibitors are available in the Protein Data Bank (PDB) with IDs as follows: 6XMK, 6XBH, 7BRP, 7CB7, and 7CBT. We have selected the crystal structure of SARS-CoV2 main protease in complex with a small molecule inhibitor (3WL), having PDB_ID: 6M2N [43] as the reference system. The three-dimensional structure of SARS-CoV2 main protease contains three domains. The domain 1 (8–101 amino acid residues) and domain 2 (102–184) fold into β-barrels and bear close resemblance to the chymotrypsin, whereas domain 3 (201–306) is mainly composed of α-helices. The substrate binding region, which is located at the cleft of domains 1 and 2, comprises of catalytic dyad His41 and Cys145, in which Cys serves as a nucleophile, while His acts as a proton acceptor. There are two deeply buried subsites (S1 and S2) and three shallow subsites (S3–S5) in addition to the catalytic site that also contribute to the active site of main protease. The S1 subsite is composed of Phe140, Gly143, Cys145, His163, Glu166, and His172, and S2 subsite is composed of Thr25, His41, and Cys145 amino acid residues. The shallow subsites S3–S5 are formed by His41, Met49, Met165, Glu166, and Gln189 amino acid residues [26]. This molecule makes multiple hydrogen bonds with side chain and main chain atoms in the protein active site. The small molecule 3WL chromene moiety forms hydrogen bonding interactions with residues Leu141, Gly143, Ser144, and Glu166. The phenyl ring moiety is embedded in a hydrophobic pocket formed by His41, Cys44, Met49, and Tyr54 as shown in Fig. 1.

Inhibitor design and molecular docking

Here, we used SARS-CoV2 main protease complexed with 3WL molecule. The molecule 3WL was divided into two fragments (as shown in Fig. 2): fragment 1 (chromene ring) and fragment 2 (phenyl ring) that have binding affinity values -15.73 kcal/mol and -4.95 kcal/mol and ligand efficiency values (LE) 1.12 (fragment 1) and 0.82 (fragment 2) as shown in Supplementary Table 1 using ACFIS server. The molecular size can be eliminated by using LE rather than potency. The LE of fragment 1 (1.12) is relatively higher than the fragment 2 (0.82). However, comprehensively considered with Gbind, LE, and new fragment growing spaces, fragment 2 was selected as a core fragment to perform CAND_GEN calculation. In this molecule, also, since the 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one chromene ring makes several hydrogen bonding interactions with the protein active site, only the phenyl ring was searched for FBDD. The screening and linking was performed at fragment 2 (phenyl) ring position. The screening of FDA-approved fragment library with 2883 fragment molecules with integrated energy calculations identified 29 fragments. These fragments were successfully joined with the chromene ring in fragment 1 to form 29 new molecules. The output coordinates were downloaded and used for docking studies. The 29 hit molecules obtained by FBDD approach using ACFIS server were docked into the active site of main protease.

Fig. 1 The nonbonding interactions of 3WL in the binding site of SARS-CoV2 main protease (PDB_ID: 6M2N)
using PyRx and AutoDock to study their binding interactions that are shown in Table 1 and Supplementary Table 2. Also, the cluster RMSD mostly ranged from 0.00 to 1.76 Å, wherein the lowest energy docking pose from the largest cluster was selected. In other terms, the best conformer from the possible generated conformers was selected based on RMSD value and the binding affinity score. The ten best molecules selected from both the docking methods show binding affinity in the range −9.0 to −6.8 kcal/mol (AutoDock) and −8.5 to −6.7 kcal/mol (PyRx), while the reference molecule 3WL had docking score of −7.7 and −7.2 kcal/mol using AutoDock and PyRx, respectively, as shown in Table 1. The intermolecular interactions such as hydrogen bonding, vdW, el, and hydrophobic observed due to the docked hit molecules within the active site residues such as His41, Leu141, Asn142, Gly143, Ser144, Cys145, and Glu166 also favored the selection of best conformers. The best ten molecules from the docking studies were used for drug-likeness studies.

Drug-likeness properties

The ADME properties of the selected 10 molecules and reference molecule are tabulated in Table 2. The synthetic accessibility values for hit molecules lie within 2.92–4.03 which is indicative of their ease of synthesis. The topological surface area lies between 90.90 and 120 Å², and the lipophilicity parameter consensus LogP is less than 3. Log S values for the hit molecules are comparable with the reference molecule which indicates that their water solubility is similar with the reference molecule. The skin permeation of hit molecules expressed as Log Kp value is also in good agreement with respect to reference molecule. All the qualified molecules were used for further stability studies by MD simulations.

Molecular dynamics simulations

The main protease 6M2N complexed with reference molecule 3WL and hit molecules were subjected to 250 ns of MD simulations using GROMACS 5.1.4. Out of the ten molecules studied, four molecules (Hit I, Hit II, Hit III, Hit IV with 1H-benzo[d]imidazol-5-yl, 3H-indol-3-yl, isoxazol-5-ylmethyl, 6-fluoro-1,2,3,4-tetrahydronaphthalen-2-yl formate groups, respectively) exhibit stability throughout 250 ns MD simulations. The structural changes of these four molecular systems were analyzed by comparison of initial and average structures. In this manuscript, we report the screened molecules designed from FBDD that show good binding affinity and nonbonding interactions with SARS-CoV2 main protease. The results demonstrated that protein attains stability when it binds with screened-in hit molecules and maintains the hydrogen bonding interactions with important amino acids compared with reference molecule (3WL). The RMSD plots in Fig. 3a revealed that the structures attained stability after 10 ns of MD simulations. The main protease when complexed with Hit I, Hit II, Hit III, and Hit IV indicated greater structural stability of these four complexes. The hit molecules (I, III, IV) exhibit lower RMSD (lower than 0.25 nm), whereas Hit II exhibited RMSD value of 0.27 nm, and the reference molecule 3WL showed relatively higher RMSD (~0.28 nm) as shown in Fig. 3a. The RMSD of apo protein is higher (~4 Å) when compared with the complexes of reference and the hit molecules identified in this work, suggesting that binding of both reference and hit molecules enhances the structural stability of SARS-CoV2 main protease. In the ligand RMSD plots (Fig. 3b), we observed an abrupt change in the RMSD of Hit IV. From the examination of Hit IV-active site interacting residues, we observed that around 160–170 ns of MD simulations Glu166, His163, and Ser144 form hydrogen bonding interactions, whereas

Fig. 2 The fragment-based approach on 3WL for selection of hit molecules. A 3WL B Fragment 1 (chromene ring) C Fragment 2 (phenyl ring)
Table 1 Binding affinity (kcal/mol) and interacting residues in the docking of 3WL and ten best hit molecules into SARS-CoV2 main protease. The residues that make hydrogen bonds are highlighted in bold.

Sl. no	Ligand Structure and name of Hit molecules	Docking Score	Active site Residues	
1.	Hit I 6-fluoro-5-(5,6,7-trihydroxy-4-oxo-4H-chromen-2-yl)-1,2,3,4-tetrahydronaphthalen-2-yl formate	-8.2, -8.2	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189	
2.	Hit II (S)-5,6,7-trihydroxy-2-(3H-indol-3-yl)-4H-chromen-4-one	-8, -7.9	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189	
3.	Hit III 5,6,7-trihydroxy-2-(isoxazol-5-ylmethyl)-4H-chromen-4-one	-6.8, -6.7	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189	
4.	Hit IV 2-(1H-benzo[d]imidazol-5-yl)-5,6,7-trihydroxy-4H-chromen-4-one	-8, -8.5	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189	
5.	Hit V 5,6,7-trihydroxy-4-oxo-4H-chromen-2-yl benzoate	-7.3, -7.4	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189	
No.	Hit	Chemical Structure	ΔG (kcal/mol)	Residues
-----	-----	--------------------	---------------	----------
6.	Hit VI	![Structural Chemistry (2022) 33:1467–1487](image)	-7.0	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189
7.	Hit VII	![Structural Chemistry (2022) 33:1467–1487](image)	-7.6	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189
8.	Hit VIII	![Structural Chemistry (2022) 33:1467–1487](image)	-7.7	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189
9.	Hit IX	![Structural Chemistry (2022) 33:1467–1487](image)	-7.6	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189
10.	Hit X	![Structural Chemistry (2022) 33:1467–1487](image)	6.2	Thr26, Leu27, His41, Cys44, Asp48, Met49, Tyr54, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189
during 170–190 ns, Met49, Leu141, Glu166, and His172 form hydrogen bonding interactions. The conformational changes in Hit IV and therefore altered interacting amino acid residues in the binding pocket of SARS-CoV2 main protease may be responsible for abrupt change in its RMSD value.

The RMSF plots analyzed the residual fluctuations of protein during MD simulations. Higher fluctuations are observed in the regions: Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 that are away from the active site and dimer interface of the SARS-CoV2 main protease. The RMSF plot of proteins is given in Fig. 4. It can be seen from the RMSF plot that most regions of main protease have fluctuations below 2 Å. The amino acid region from Cys44 to Asn53 that forms a loop-helix in domain 1 has high fluctuations in the apo protein (up to 4.5 Å), while it is stabilized in the presence of reference and hit molecules (RMSF below 2.5 Å). The lower fluctuations could be attributed to the stability gained by the SARS-CoV2 main protease reference and hit molecule complexes resulting from the close proximity and the presence of nonbonding interactions in this region (Supplementary Fig. 2). It is likely that this loop-helix is functioning as a flap in order to open and close the active site of SARS-CoV2 main protease. It is intriguing to observe that both the apo and SARS-CoV2-ligand complexes have a slightly higher RMSF up to 2.6 Å in domain 3 (Gln273-Thr280) that is away from the ligand binding site. The higher flexibility in domain 3 was also observed in our previous studies [31]. The stability of the identified hit molecules is comparable to the reference inhibitor, 3WL. These analyses showed that the docking poses of the hit molecules are accurate and comparable with the reference inhibitor molecule. The intermolecular hydrogen bonding interactions were stabilized throughout the 250 ns MD simulations as shown in Supplementary Fig. 3. The average structure taken from 0 to 250 ns MD simulations trajectories were analyzed for intermolecular hydrogen bonding interactions for reference and hit molecules and shown in Table 3. The occupancies of the interactions throughout the MD simulations and in the last 20 ns are provided in the Supplementary Table 3. During the last 20 ns of MD simulations, the reference 3WL, Hit I, Hit II, and Hit IV retain stable hydrogen bonding interactions with SARS-CoV2 main protease, while the hydrogen bonding interactions are less stable when complexed with Hit III.

Normal mode and mechanical stiffness analysis

The NMA provides essential information about the ensembles of structures attained by protein during MD simulations run and hence illustrates the overall protein dynamics. The structural changes of protein also determine the pattern of mobility across its various domains and regions. From the RMSF plot, the regions in protein structure showing greater fluctuations such as Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The results from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems. We obtained ten normal modes for each molecular system from MD trajectories, selected first three modes, and made comparisons with the apo structure of main protease. The regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280 were observed. The same observation was also demonstrated through the NMA and mechanical stiffness plots in all molecular systems.

Table 2: Pharmacokinetic properties of reference molecule, 3WL and four hit molecules

Compounds	TPSA (Å²)	Consensus Log P_{ow}	Log S (ESOL)	Log K_p (skin permeation) (cm/s)	Synthetic accessibility
3WL	90.90	2.24	−4.03	−5.70	3.02
Hit I	90.90	2.65	−4.19	−5.76	3.87
Hit II	103.26	1.96	−3.37	−6.87	3.87
Hit III	116.93	0.98	−2.88	−6.96	3.14
Hit IV	119.58	1.78	−3.71	−6.61	2.92
Hit V	117.2	2.02	−3.77	−6.34	3.11
Hit VI	107.51	0.00	−2.39	−7.25	3.21
Hit VII	106.69	2.27	−4.06	−6.21	2.95
Hit VIII	106.69	2.31	−4.06	−6.21	3.09
Hit IX	90.90	2.65	−4.19	−5.76	3.18
Hit X	100.13	1.73	−3.13	−6.36	3.29

Standard values for reference TPSA = 0 to 140 Å², Log P_{ow} = −4.0 to 5.6, Log K_p = −6.1 to −0.19 cm/s, synthetic accessibility scale = 1 to 10 [50, 73–75]
Fig. 3 a The RMSD plot of SARS-CoV2 main protease apo and when complexed with reference and identified hit molecules (I to IV). b The RMSD plots of ligand, reference molecule, 3WL, and four hit molecules (I to IV) when complexed with SARS-CoV2 main protease.
effective stiffness for all molecular systems. This can be more clearly understood from the mean plots of mechanical stiffness which showed effective spring constant value of 8 k (a.u) for fluctuating regions and value greater than 12 k (a.u) for the stable regions in the protein structure. The mean plots also indicate that protein-bound hit complexes had increased stability than the apo form that is reflected by mean values greater than 12 k (a.u) and less than 8 k (a.u). These values suggest that protein shows elastic behavior due to the fluctuating residues in all complexed molecular systems studied. Therefore, from NMA and mechanical stiffness plots, we observed mechanically weak behavior caused by fluctuating regions from Cys44-Asn53, Phe140-Ser144, Ile152-Val157, and Gln273-Thr280.

Principal component analysis

The conformational changes in the apo form, reference 3WL, and hit molecules bound molecular systems were monitored during the entire simulations run of MD trajectories through PCA scatter plots. The PCA scatter plots for all the molecular systems are depicted in Fig. 6. From the plots, it is observed that the molecular system such as 3WL and Hit III bound complex showed large protein conformational changes and therefore vary distribution in scatter plots.

PCA calculations reveal the conformational changes in a protein as a function of time from the MD simulations trajectories. PCA was performed on 250 ns MD simulations trajectories to understand the alterations in the SARS-CoV2 main protease structure. We generated 25,000 frames for each molecular system, and the motion of Ca atoms in each molecular system was monitored. The conformational ensembles of the main protease in all molecular systems under study were analyzed by projecting the trajectories of PC1 and PC2 into a two-dimensional space. When these are mapped onto each other, the structures with a high degree of similarity cluster together. The conformational changes of the SARS-CoV2 main protease in apo form, 3WL, and hit molecules bound molecular systems were monitored. We observed that the first two principal components (PC1 and PC2) capture majority of the variance in the original distribution of conformational ensembles in the molecular systems as shown in Fig. 6. The distribution of Ca atoms was greater for 3WL and Hit III bound molecular system which indicates that greater conformational changes of protein are observed, and also, apo protein shows significant distribution throughout MD simulations. This demonstrated that the conformational distributions of main protease bound with 3WL and Hit III were remarkably different from other molecular systems.
Table 3 The intermolecular interactions between reference and hit molecules (I to IV) with SARS-CoV2 main protease

Sl. No	Ligands	Average structure	Amino acid residues
1.	3WL	![Diagram](image1)	Thr25, **Thr26**, Leu27, His41, Met49, Cys145, His164, Met165, Asp187, Arg188,
2.	Hit I	![Diagram](image2)	His41, **Asn142**, Cys145, His164, Met165, Glu166, Leu167, Pro168, **Gln189**, Thr190, Ala191, **Gln192**
Table 3 (continued)

Hit	Residues	Structural Features
3. Hit II	His41, Met49, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188, Gln189	![Hit II Diagram]
4. Hit III	His41, Leu141, Asn142, His163, His164, Met165, Glu166, His172, Asp187, Arg188, Gln189	![Hit III Diagram]
5. Hit IV	His41, Met49, Tyr54, Phe140, Leu141, Asn142, Cys145, His163, Met165, Glu166, Asp187, Arg188, Gln189	![Hit IV Diagram]

The residues that form hydrogen bonding interactions are shown in bold.
Fig. 5 NMA and mechanical stiffness plots of SARS-Cov2 main protease. A Apo. B 3WL. C Hit I. D Hit II. E Hit III. F Hit IV
Fig. 5 (continued)
Fig. 5 (continued)
Fig. 5 (continued)
Fig. 6 PCA scatter plots for SARS-CoV2 main protease.

A Apo. B 3WL. C Hit I. D Hit II. E Hit III. F Hit IV
The frequencies of PCA scatter plots were quantified, and the highest frequency is observed in 3WL and Hit III bound main protease, indicative of their higher protein conformational changes compared to other molecular systems.

Binding free energies

The binding free energy, vdW, el, polar, and apolar solvation energies were calculated and compared to the reference inhibitor molecule in order to rank the hit molecules as high- or low-potent inhibitors. The binding free energies of all the complexes are depicted in Table 4. On the whole, from the binding free energy studies, we infer that the designed hit molecules using FBDD are comparable to the reference molecule, 3WL, in particular Hit III is closer to the reference molecule.

Conclusions

The crystal structure of SARS-CoV2 main protease (PDB_ID: 6M2N) in complex with inhibitor molecule 3WL was selected as the reference structure to design new hit molecules based on FBDD approach. The FBDD approach identified 29 hit molecules which retained fragment 1 of 3WL and fragment 2 replaced by different chemical entities. These molecules were studied for their binding affinity in the active site by molecular docking as well as for druglikeness properties, and the best four hit molecules were selected containing fragment 2 as 1H-benzo[d]imidazol-5-yl, 3H-indol-3-yl, isoxazol-5-ylmethyl, and 6-fluoro-1,2,3,4-tetrahydropyridin-2-yl formate groups. MD simulations and binding free energy calculations proposed the four hit molecules to be stable in complexed form and fit well inside the active site of SARS-CoV2 main protease.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s11224-022-01995-z.

Acknowledgements

JP and LD thank the UGC Non-NET fellowship, and PA thanks the UGC for Junior Research Fellowship. All authors thank CMSD, University of Hyderabad, for providing computational facilities.

Author contribution

LGP and DL perceived the research problem. PA, JP, and DL carried out the work. PA, JP, and DL wrote the manuscript. LGP corrected the manuscript. All authors approve the manuscript.

Availability of data and material

All data is included in the manuscript and provided as Supplementary information.

Code availability

Not applicable.

Declarations

Ethics approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

References

1. Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamil S (2020) Novel Wuhan (2019-nCoV) coronavirus. Am J Respir Crit Care Med P7–P8
2. Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt HR, Becker S, Doerr HW (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976
3. Zaki AM, Van Boeheimen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820
4. Kaye HS, Marsh HB, Dowdle WR (1971) Seroepidemiologic survey of coronavirus (strain OC 43) related infections in a children’s population. Am J Epidemiol 94(1):43–49
5. Hendley JO, Fishburne HB, Gwalney JM (1972) Coronavirus infections in working adults: eight-year study with 229 E and OC 43. Am Rev Respir Dis 105(5):805–811
6. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM (1967) Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 57(4):933
7. Woon PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Yuen KY (2005) Characterization and complete genome sequence of a
novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79(2):884–895
8. Van Der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhour RJ, Wolthers KC, Berkhour B (2004) Identification of a new human coronavirus. Nat Med 10(4):368–373
9. Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, De Jong JC, Simon JH, Osterhaus AD (2004) A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci 101(16):6212–6216
10. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Zhang Q (2020) Coronavirus infections and immune responses. J Med Virol 92(4):424–432
11. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):409–412
12. Gorbalenya AE, Baker SC, Baric R, Grot JD, Drosten C, Gulyaeva AA, Ziebuhr J (2020) Severe acute respiratory syndrome-related coronavirus: the species and its viruses—a statement of the Coronavirus Study Group
13. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, Tummino TA (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 1–13
14. Li YC, Bai WZ, Hashikawa T (2020) The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 92(6):552–555
15. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Zhou Y (2020) Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 94:91–95
16. Milcovchova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IA, Gupta RK (2021) SARS-CoV-2 B 1.617.2 Delta variant replication and immune evasion. Nature 599(7883):114–119
17. Karim SSA, Karim QA (2021) Omicron SARS-CoV-2 variant: a new dawn of the coronavirus. Nat Med 10(4):368–373
18. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discovery 11(8):644–644
19. Brown N (2015) In silico medicinal chemistry: computational methods to support drug design. Royal Society of Chemistry
20. de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Silva FP Jr (2020) In silico strategies to support fragment-to-lead optimization in drug discovery. Front Chem 8:93
21. Murray CW, Newell DR, Angibaud P (2019) A successful collaboration between academia, biotech and pharma led to discovery of erdifitinib, a selective FGFR inhibitor recently approved by the FDA. MedChemComm 10(9):1509–1511
22. Lumm KM, Tummino TA (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 1–13
23. Erlanson DA, de Esch JH, Jahnke W, Johnson CN, Mortensen PN (2020) Fragment-to-lead medicinal chemistry publications in 2018. J Med Chem 63(9):4430–4444
24. Baker M (2013) Fragment-based lead discovery grows up: with multiple drug candidates in the clinic that originated from fragment-based lead discovery, the approach of starting small has become big. Nat Rev Drug Discovery 12(1):5–8
25. Denis JDS, Hall RJ, Murray CW, Heightman TD, Rees DC (2021) Fragment-based drug discovery: opportunities for organic synthesis. RSC Medicinal Chemistry 12(3):321–329
26. Su HY, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, Xu YC (2020) Anti-SARS-CoV-2 activities in vitro of Shuanghuan-glan preparations and bioactive ingredients. Acta Pharmacol Sin 41(9):1167–1177
27. Shaffer L (2020) 15 drugs being tested to treat COVID-19 and how they would work. Nat Med
28. Kumar N, Awasthi A, Kumar A, Sood D, Jain P, Singh T, Chandra R (2022) Antitussive noscapine and antiviral drug conjugates as arsenal against COVID-19: a comprehensive chemoinformatics analysis. J Biomol Struct Dyn 40(1):101–116
29. Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Liu H (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368(6497):1331–1335
30. Jia N, Zhao Y, Sun Y, Zhang B, Wang H, Wu Y, Rao Z (2020) Structural basis for the inhibition of SARS-CoV-2 main protease by antipneoplastic drug carmofur. Nat Struct Mol Biol 27(6):529–532
31. Durugam L, Guruprasad L (2022) Computational studies on the design of NCI natural products as inhibitors to SARS-CoV-2 main protease. J Biomol Struct Dyn (Accepted)
32. Kumar A, Voet A, Zhang KYJ (2012) Fragment based drug design: from experimental to computational approaches. Curr Med Chem 19(30):5128–5147
33. Congreve M, Carr R, Murray C, Jhoti H (2003) A rule of three for fragment-based lead discovery? Drug Discovery Today 8(19):876–877
34. Jhoti H, Williams G, Rees DC, Murray CW (2013) The rule of three for fragment-based drug discovery: where are we now? Nat Rev Drug Discovery 12(8):644–644
35. Brown N (2015) In silico medicinal chemistry: computational methods to support drug design. Royal Society of Chemistry
36. de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Silva FP Jr (2020) In silico strategies to support fragment-to-lead optimization in drug discovery. Front Chem 8:93
37. Murray CW, Newell DR, Angibaud P (2019) A successful collaboration between academia, biotech and pharma led to discovery of erdifitinib, a selective FGFR inhibitor recently approved by the FDA. MedChemComm 10(9):1509–1511
38. Lumm KM, Tummino TA (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 1–13
39. Erlanson DA, de Esch JH, Jahnke W, Johnson CN, Mortensen PN (2020) Fragment-to-lead medicinal chemistry publications in 2018. J Med Chem 63(9):4430–4444
40. Baker M (2013) Fragment-based lead discovery grows up: with multiple drug candidates in the clinic that originated from fragment-based lead discovery, the approach of starting small has become big. Nat Rev Drug Discovery 12(1):5–8
41. Denis JDS, Hall RJ, Murray CW, Heightman TD, Rees DC (2021) Fragment-based drug discovery: opportunities for organic synthesis. RSC Medicinal Chemistry 12(3):321–329
42. Su HY, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, Xu YC (2020) Anti-SARS-CoV-2 activities in vitro of Shuanghuan-glan preparations and bioactive ingredients. Acta Pharmacol Sin 41(9):1167–1177
43. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612
44. Hao GF, Jiang W, Ye YN, Wu FX, Zhu XL, Guo FB, Yang GF (2016) ACTIFS: a web server for fragment-based drug discovery. Nucleic Acids Res 44(W1):W550–W556
45. Yang JF, Wang F, Jiang W, Zhou YG, Li CZ, Zhu XL, Yang GF (2018) PDBFrag: a database built for the exploration of bioactive fragment space for drug discovery. J Chem Inf Model 58(9):1725–1730
46. Kolb P, Calisch A (2006) Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. J Med Chem 49:7384–7392
1. Cheatham TE (2000) Calculating structures and free energies of ligand binding for predicting ligand binding free energies. Comb Chem High Throughput Screening 4(8):613–626

2. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

3. Hornak V, Abel R, Okura Y, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

4. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

5. Sousa da Silva AW, Frankenk W (2012) ACPYPE-antechamber python parser interface. BMC Res Notes 5(1):1–8

6. Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Intermolecular forces (pp. 331–342). Springer, Dordrecht

7. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

8. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

9. Kumari R, Kumar R, Open Source Drug Discovery Consortium & Lynn A (2014) g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962

10. Aqvist J, Marelius J (2001) The linear interaction energy method for predicting ligand binding free energies. Comb Chem High Throughput Screening 4(8):613–626

11. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

12. Gilson MK, Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 4(1):7–18

13. Almlöf M, Brandsdal BO, Aqvist J (2004) Binding affinity prediction with different force fields: examination of the linear interaction energy method. J Comput Chem 25(10):1242–1254

14. Carlson HA, Jorgensen WL (1995) An extended linear response method for determining free energies of hydration. J Phys Chem 99(26):10667–10673

15. Loida P (1994) Molecular specificity of substrate recognition and activation in cytochrome P-450 (CAM). Doctoral dissertation, University of Illinois at Urbana-Champaign

16. Bakan A, Meireles LM, Bahar I (2011) ProDyn: protein dynamics inferred from theory and experiments. Bioinformatics 27(11):1575–1577

17. Bakan A, Bahar I (2009) The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci 106(34):14349–14354

18. Yang L, Song G, Carriquiry A, Jernigan RL (2008) Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes. Structure 16(2):321–330

19. Eyal E, Yang LW, Bahar I (2006) Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics 22(21):2619–2627

20. Maissuradze GG, Liwo A, Scheraga HA (2009) Principal component analysis for protein folding dynamics. J Mol Biol 385(1):312–329

21. Ross C, Nizami B, Glenister M, Sheik Amamuddy O, Atigian AR, Atigian C, Tastan Bishop Ö (2018) MODE-TASK: large-scale protein motion tools. Bioinformatics 34(21):3759–3763

22. Ėrtl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43(20):3714–3717

23. Daina A, Michielin O, Zoete V (2014) iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54(12):3284–3301

24. Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9(5):663–669

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.