Universality of q_T resummation for electroweak boson production

Anton V. Konychev* and Pavel M. Nadolsky†

*Department of Physics, Indiana University, Bloomington, IN 47405-7105, U.S.A.
†High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815, U.S.A.

Abstract. We perform a global analysis of transverse momentum distributions in Drell-Yan pair and Z boson production in order to investigate universality of nonperturbative contributions to the Collins-Soper-Sterman resummed form factor. Our fit made in an improved nonperturbative model suggests that the nonperturbative contributions follow universal nearly-linear dependence on the logarithm of the heavy boson invariant mass Q, which closely agrees with an estimate from the infrared renormalon analysis.

Transverse momentum distributions of heavy Drell-Yan lepton pairs, W, or Z bosons produced in hadron-hadron collisions present an interesting example of factorization for multi-scale observables. If the transverse momentum q_T of the electroweak boson is much smaller than its invariant mass Q, $d\sigma/dq_T$ at an n-th order of perturbation theory includes large contributions of the type $\alpha_s^n \ln^m(q_T^2/Q^2)/q_T^2$ ($m = 0, 1 \ldots 2n - 1$), which must be summed through all orders of α_s to reliably predict the cross section [1]. Such resummation is realized in the Collins-Soper-Sterman (CSS) formalism [2], which describes soft and collinear QCD radiation in a wide range of energies by introducing a resummed form factor $\tilde{W}(b)$ in impact parameter (b) space.

While the short-distance contributions ($b \lesssim 1 \text{ GeV}^{-1}$) to the CSS form factor $\tilde{W}(b)$ can be calculated in perturbative QCD, long-distance nonperturbative contributions from $b > 1 \text{ GeV}^{-1}$ are not yet fully computable, even though their basic form can be deduced from the infrared renormalon analysis [3]. The factorization theorem behind the CSS formalism predicts that the nonperturbative contributions are universal in unpolarized Drell-Yan-like and semi-inclusive DIS processes. Consequently the function $\mathcal{F}_{NP}(b, Q)$ that describes the nonperturbative terms can be constrained in a global fit to the hadronic q_T data, just as the k_T-integrated parton densities are constrained with the help of inclusive scattering data. $\mathcal{F}_{NP}(b, Q)$ must be known precisely in order to successfully measure the W boson mass, because uncertainties in $\mathcal{F}_{NP}(b, Q)$ may affect the measured value of M_W at the level comparable to the targeted accuracy of the measurement, $\delta M_W \approx 30 \text{ MeV}$ at the Tevatron and 15 MeV at the LHC. It is therefore interesting to investigate if $\mathcal{F}_{NP}(b, Q)$ found in the q_T fit is consistent with the universality hypothesis.

1 Talk given by P. Nadolsky at the XIII International Workshop on Deep Inelastic Scattering (DIS 2005, April 27-May 1, 2005, Madison, WI, U.S.A.).
and whether its preferred form is compatible with the renormalon analysis.

These issues were explored recently in Ref. [4], where a global analysis of q_T data from fixed-target Drell-Yan pair production and Tevatron and whether its preferred form is compatible with the renormalon analysis. Although $\mathcal{F}_{NP}(b, Q)$ primarily parametrizes the “power-suppressed” terms, i.e., terms proportional to positive powers of b, its form found in the fit is correlated with the assumed behavior of the leading-power terms (logarithmic in b terms) at $b < 2 \text{ GeV}^{-1}$. The exact behavior of $\tilde{W}(b)$ at $b > 2 \text{ GeV}^{-1}$ is of reduced importance, as $\tilde{W}(b)$ is strongly suppressed at such b. For these reasons, we closely followed the procedure of the previous global q_T analysis [5], while paying close attention to the model of the leading-power terms at perturbative and moderately nonperturbative transverse distances, $b < 2 \text{ GeV}^{-1}$.

The large-b contributions were introduced by using the b_* model [2], as

$$\tilde{W}(b) = \tilde{W}_{\text{pert}}(b_*) e^{-\mathcal{F}_{NP}(b, Q)}.$$

Here $\tilde{W}_{\text{pert}}(b_*)$ is the perturbative part of $\tilde{W}(b)$, i.e., its leading-power part evaluated at a finite order of α_s. $\tilde{W}_{\text{pert}}(b_*)$ depends on the variable $b_* \equiv b/(1 + b^2/b_{\text{max}}^2)^{1/2}$ and serves as an approximation for all leading-power terms. Its shape is varied at all b by adjusting a single parameter b_{max}. The b_* model with a relatively low $b_{\text{max}} = 0.5 \text{ GeV}^{-1}$ was a choice of the previous q_T fits [5, 6]. However, it is natural to consider b_{max} above 1 GeV^{-1} in order to avoid ad hoc modifications of $\tilde{W}_{\text{pert}}(b)$ in the b region where perturbation theory is still applicable. In Ref. [4], we proposed a modification in the b_* model that allowed us to increase b_{max} at least up to $\approx 3 \text{ GeV}^{-1}$, while preserving correct resummation of the large logarithms at small b and numerical stability of the Fourier-Bessel transform. If a very large b_{max} comparable to $1/\Lambda_{\text{QCD}}$ is taken, $\tilde{W}_{\text{LP}}(b)$ essentially coincides with $\tilde{W}_{\text{pert}}(b)$, extrapolated to large b by using the known, although not always reliable, dependence of $\tilde{W}_{\text{pert}}(b)$ on $\ln b$. Hence, the new prescription can be also used to test viability of extrapolation of $\tilde{W}_{\text{pert}}(b)$ to large b, reminiscent of similar extrapolations introduced in the alternative models [7, 8].

Following the renormalon analysis and Ref. [5], we assumed a Gaussian form of the nonperturbative function, $\mathcal{F}_{NP}(b, Q) \equiv \tilde{a}(Q) b^2$, with

$$a(Q) \equiv a_1 + a_2 \ln [Q/(3.2 \text{ GeV})] + a_3 \ln [100 x_1 x_2].$$

(2)

The dependence of \mathcal{F}_{NP} on $\ln Q$ is a consequence of renormalization-group invariance of the soft-gluon radiation. The coefficient a_2 of the $\ln Q$ term has been related to the vacuum average of the Wilson loop operator and evaluated within lattice QCD as $0.19^{+0.12}_{-0.09}$ GeV2 [9]. To see if the universal Gaussian behavior is consistent with the data, we first examined the values of $a(Q)$ that are independently preferred by each bin of Q in 5 examined experimental data sets. Fig. 1(a) shows the best-fit values of $a(Q)$ obtained in independent fits to the data in each bin of Q for $b_{\text{max}} = 1.5 \text{ GeV}^{-1}$. The best-fit $a(Q)$ follow a nearly linear dependence on $\ln Q$, and the slope $a_2 \equiv da(Q)/d(\ln Q)$ is close to the renormalon analysis expectation of 0.19 GeV^2 [9]. Such nearly linear behavior of $a(Q)$ is observed in the entire range $b_{\text{max}} = 1 - 2 \text{ GeV}^{-1}$, and it less pronounced at b_{max} outside of the interval 1-2 GeV$^{-1}$. Since the best-fit $a(Q)$ in each Q bin are essentially
Figure 1. (a) The best-fit values of $a(Q)$ obtained in independent scans of χ^2 for the contributing experiments. The vertical error bars correspond to the increase of χ^2 by unity above its minimum in each Q bin. The slope of the line is equal to the central-value prediction from the renormalon analysis [9].

(b) The best-fit χ^2 and coefficients a_1, a_2, and a_3 in $F_{NP}(b, Q)$ for different values of b_{max}. The size of the symbols approximately corresponds to 1\(\sigma\) errors for the shown parameters.

independent, we conclude that the data support the universality of F_{NP}, when b_{max} lies in the range $1 - 2$ GeV\(^{-1}\). In addition, each experimental data set individually prefers a nearly quadratic dependence on b, $F_{NP} = a(Q)b^2 - \beta$, with $|\beta| < 0.5$ in all experiments.

Next, we performed a simultaneous fit of our model to all the data. Fig. 1(b) shows the dependence of the best-fit χ^2, a_1, a_2, and a_3 on b_{max}. As b_{max} is increased above 0.5 GeV\(^{-1}\) assumed in the studies [5, 6], χ^2 rapidly decreases, becomes relatively flat at $b_{\text{max}} = 1 - 2$ GeV\(^{-1}\), and grows again at $b_{\text{max}} > 2$ GeV\(^{-1}\). The global minimum of χ^2 is reached at $b_{\text{max}} \approx 1.5$ GeV\(^{-1}\), where all data sets are described equally well, without major tensions among the five experiments. The magnitudes of a_1, a_2, and a_3 are reduced when b_{max} increases from 0.5 to 1.5 GeV\(^{-1}\). In the whole range $1 \leq b_{\text{max}} \leq 2$ GeV\(^{-1}\), a_2 agrees with the renormalon analysis estimate. The coefficient a_3, which parametrizes deviations from the linear $\ln Q$ dependence, is considerably smaller (< 0.05) than both a_1 and a_2 (~ 0.2). This behavior supports the conjecture in [7] that a_3 is small if the exact form of $\tilde{W}_{\text{perl}}(b)$ is maximally preserved.

The preference for the values of b_{max} between 1 and 2 GeV\(^{-1}\) indicates, first, that the data do favor the extension of the b range where all leading-power terms are ap-
proximated by their finite-order expression $\tilde{W}_{\text{pert}}(b)$. In Z boson production, this region extends up to $3 - 4 \text{ GeV}^{-1}$ as a consequence of the strong suppression of the large-b tail by the Sudakov exponent. The fit to the Z data is actually independent of b_{max} within the experimental uncertainties for $b_{\text{max}} > 1 \text{ GeV}^{-1}$. In the low-$Q$ Drell-Yan process, the continuation of $b\tilde{W}_{\text{pert}}(b)$ far beyond $b \approx 1 \text{ GeV}^{-1}$ is disfavored because of large higher-order corrections to $b\tilde{W}_{\text{pert}}(b)$ at b around 1.5 GeV^{-1}. To summarize, the extrapolation of $\tilde{W}_{\text{pert}}(b)$ to $b > 1.5 \text{ GeV}^{-1}$ is disfavored by the low-Q data sets, if a purely Gaussian form of F_{NP} is assumed. The Gaussian approximation is adequate, on the other hand, in the b_* model with b_{max} in the range $1 - 2 \text{ GeV}^{-1}$.

In Z boson production, our best-fit $a(M_Z) = 0.85 \pm 0.10 \text{ GeV}^2$ agrees with 0.8 GeV^2 found in the extrapolation-based models [7, 8], and it is about a third of 2.7 GeV^2 predicted by the BLNY parametrization. In the low-Q Drell-Yan case, our $a(Q) = 0.2 - 0.4 \text{ GeV}^2$ is close to the average $\langle a \rangle = 0.19 - 0.28 \text{ GeV}^2$ in four Q bins of the E288 and E605 data found in the model [7]. To describe the low-Q data, Ref. [7] allowed a large discontinuity in the first derivative of $\tilde{W}(b)$ at b equal to the separation parameter $b_{\text{max}}^{QZ} = 0.3 - 0.5 \text{ GeV}^{-1}$, where switching from the exact $\tilde{W}_{\text{pert}}(b)$ to its extrapolated form occurs. In the revised b_* model, such discontinuity does not happen, and $\tilde{W}_{\text{LP}}(b)$ is closer to the exact $\tilde{W}_{\text{pert}}(b)$ in a wider b range than in Ref. [7].

The best-fit parameters in F_{NP} found in the new model are quoted in Ref. [4]. The global fit places stricter constraints on F_{NP} at $Q = M_Z$ than the Tevatron Run-1 Z data alone. Theoretical uncertainties from a variety of sources may be substantial in the low-Q Drell-Yan process, which is indicated, in particular, by the dependence of the agreement with the low-Q data on an arbitrary factorization scale C_3 in $\tilde{W}_{\text{pert}}(b)$. The low-$Q$ uncertainties do not substantially affect predictions at the electroweak scale. The $\mathcal{O}(\alpha_s^2)$ corrections and scale dependence are smaller in W and Z production, and, in addition, the term $\alpha_s^2 \ln Q$, which arises from the soft factor $\mathcal{I}(b,Q)$ and dominates F_{NP} at $Q = M_Z$, shows little variation with C_3. Consequently, the revised b_* model with $b_{\text{max}} \approx 1.5 \text{ GeV}^{-1}$ increases our confidence in the transverse momentum resummation at electroweak scales by exposing the soft-gluon origin and universality of the dominant nonperturbative contributions at collider energies.

ACKNOWLEDGMENTS

We express our gratitude to C.-P. Yuan for his crucial help with the setup of the fitting program. This work was supported in part by the US Department of Energy, High Energy Physics Division, under Contract W-31-109-ENG-38, and by the U.S. National Science Foundation under grants PHY-0100348 and PHY-0457219.
REFERENCES

1. Yu. L. Dokshitser, D. I. D’yakonov, S. I. Troyan, Phys. Lett. B79, 269 (1978); G. Parisi, R. Petronzio, Nucl. Phys. B154, 427 (1979).
2. J. C. Collins, D. E. Soper, Nucl. Phys. B193, 381 (1981); B213, 545(E) (1983); B197, 446 (1982);
 J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys. B250, 199 (1985); J. C. Collins, A. Metz,
 Phys. Rev. Lett. 93, 252001 (2004).
3. G. P. Korchemsky, G. Sterman, Nucl. Phys. B437, 415 (1995).
4. A. V. Konychev, P. M. Nadolsky, arXiv:hep-ph/0506225.
5. F. Landry, R. Brock, P. M. Nadolsky, and C.-P. Yuan, Phys. Rev. D67, 073016 (2003).
6. C. Davies, B. Webber, W. Stirling, Nucl. Phys. B256, 413 (1985); G. Ladinsky, C.-P. Yuan, Phys. Rev.
 D50, 4239 (1994); F. Landry, R. Brock, G. Ladinsky, C.-P. Yuan, ibid. 63, 013004 (2001); R. K. Ellis,
 D. A. Ross, S. Veseli, Nucl. Phys. B503, 309 (1997).
7. J.-W. Qiu, X.-F. Zhang, Phys. Rev. Lett. 86, 2724 (2001); Phys. Rev. D63, 114011 (2001).
8. A. Kulesza, G. Sterman, and W. Vogelsang, Phys. Rev. D66, 114011 (2002).
9. S. Tafat, JHEP 05, 004 (2001).