A systematic review of the role of the nociceptin receptor system in stress, cognition, and reward: relevance to schizophrenia

Muhammad Saad Khan1,2, Isabelle Boileau1,2,3, Nathan Kolla1,2,3,4 and Romina Mizrahi1,2,3,4

Abstract

Schizophrenia is a debilitating neuropsychiatric illness that is characterized by positive, negative, and cognitive symptoms. Research over the past two decades suggests that the nociceptin receptor system may be involved in domains affected in schizophrenia, based on evidence aligning it with hallmark features of the disorder. First, aberrant glutamatergic and striatal dopaminergic function are associated with psychotic symptoms, and the nociceptin receptor system has been shown to regulate dopamine and glutamate transmission. Second, stress is a critical risk factor for first break and relapse in schizophrenia, and evidence suggests that the nociceptin receptor system is also directly involved in stress modulation. Third, cognitive deficits are prevalent in schizophrenia, and the nociceptin receptor system has significant impact on learning and working memory. Last, reward processing is disrupted in schizophrenia, and nociceptin signaling has been shown to regulate reward cue salience. These findings provide the foundation for the involvement of the nociceptin receptor system in the pathophysiology of schizophrenia and outline the need for future research into this system.

Introduction

Schizophrenia is a debilitating disorder characterized by positive symptoms, such as delusions and hallucinations, and negative symptoms, such as a flat affect, alogia, and anhedonia, as well as deficits in cognition and reward modulation1–3. Some of the psychopathology of schizophrenia is characterized by dopaminergic and glutamatergic dysregulation, increased stress vulnerability via hypothalamic–pituitary–adrenal (HPA) axis dysregulation, cognitive deficits, which include alterations in the cholinergic system, and deficits in reward modulation4–7.

The nociceptin receptor (NOPr) is a G protein-coupled receptor identified in 1994, and was initially classified as a member of the opioid receptor family based on structural homology to the opioid receptors8. However, it was later reclassified as a non-opioid member of the opioid system, because endogenous ligands for other opioid receptors, such as the mu, kappa, and delta receptors, showed little affinity for it. The endogenous peptide, now known as nociceptin/orphanin FQ (N/OFQ), was identified in 1995, and is a heptadecapeptide with pro-nociceptive properties9,10. In vitro receptor autoradiography in rats and post-mortem studies in humans have shown NOPr to be widely distributed, with greater density in cortical regions and the human striatum11,12. Positron emission tomography (PET) studies using the ligand [11C]NOP-1A have corroborated these findings in vivo, with high concentrations of NOPr observed in the cerebral cortex and the striatum13. Given this widespread expression, it is well

© The Author(s) 2018

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
positioned to interact with multiple receptor systems in
the brain and be involved in several functions.

In investigating the NOPr system, the majority of the
literature is a result of preclinical work. This highlights a
need for more research into this system as it could have
potential in elucidating and treating psychiatric disorders.
With regard to schizophrenia, the NOPr system may
indeed have an impact given its involvement in important
neurotransmitter systems and symptom clusters particu-
larly relevant for the disorder.

Methods
The goal of this systematic review is to describe the role
of the NOPr system in specific systems and symptoms
that are relevant to schizophrenia. Thus, in this review we
searched for the involvement of the NOPr system in each
of the aforementioned domains relevant to schizophrenia.
A search was conducted on the MEDLINE database for all
research articles from 1994 onward using the Boolean
string "(nociceptin receptor OR orl1 OR N/OFQ OR
nociceptin/orphanin FQ OR orphanin FQ) AND (stress
OR hypothalamic–pituitary–adrenal OR HPA OR
immune system OR immune cells OR cytokines OR
reward OR place preference OR cognition OR learning
OR memory OR acetylcholine OR potentiation OR
dopamine OR glutamate OR behavior OR locomotor OR
schizophrenia OR psychosis OR post mortem OR
microdialysis)". The most recent search was conducted on
October 3rd 2017. The abstracts for each of the articles in
the search results were then screened using the following
inclusion criteria: (a) studies investigating NOPr system
involvement in cognition, stress, reward, cholinergic
modulation, dopamine modulation, or glutamate mod-
ulation, and (b) that could be related to the symptoms
underlying schizophrenia. Exclusion criteria were as fol-
lows: (a) studies that investigated novel ligands for NOPr
investigation; (b) studies investigating pain or pain
mechanisms; (c) studies that were unrelated to any of the
four domains mentioned above or that could not be
related to schizophrenia symptomatology; and (e) general
review articles. The flowchart for this process is depicted
in Fig. 1. We also want to note that, while there is evi-
dence for NOPr system involvement in serotonin, β-
endorphin, and norepinephrine signaling, these were
excluded from this review in favor of focus on well-
supported systems in psychosis.

Results
A total of 743 articles were obtained through the search,
which were then screened. Following screening of
abstracts, 123 articles were identified as potentially rele-
vant to this review, and of these, 119 were included in this
systematic review. Our discussion will thus focus on
results from four areas of research relevant to psychosis:
(1) NOPr system involvement in dopamine and glutamate
transmission; (2) NOPr system involvement in stress and
HPA modulation; (3) NOPr system involvement in cog-
nition; and (4) NOPr system involvement in reward
modulation.

Involvement of the NOPr system in dopamine transmission
A common pathology in schizophrenia is characterized
by the dopamine hypothesis, which suggests an increased
striatal dopamine transmission in these individuals5. Evi-
dence suggests that the NOPr system could play a role.
An initial study by Norton et al. revealed the presence of
NOPr on cell bodies of dopamine neurons in the midbrain
and a co-localization of NOP mRNA with tyrosine
hydroxylase (TH) neurons, with mRNA also present on
tegmental and nigral dopaminergic neurons14. This loca-
localization of NOP mRNA was later con-
firmed with an experiment using 6-hydroxydopamine lesions in rats, in
which a large loss of TH neurons led to a reduction of N/
OFQ and NOPr mRNA in the caudate putamen15. TH is
an enzyme involved in the synthesis of the dopamine
precursor L-DOPA, which plays a critical role in dopa-
mine synthesis16. Olianas et al. furthered these
findings by demonstrating an inhibitory effect of N/OFQ on TH
phosphorylation, which inhibited dopamine transmission
presynaptically17. They also observed a selective post-
 synaptic downregulation of dopamine D1 receptor sig-
aling in the nucleus accumbens and striatum after N/
OFQ administration. An involvement with dopamine D2
receptor signaling is also noted given that administration
of a D2 antagonist prevented the improvements in motor performance with N/OPr antagonists. In the same study, genetic knockout of the D2 receptor erased the motor facilitating effect of a low dose of N/OFQ, indicating that the N/OPr system could also exert effects on dopamine transmission through this receptor, potentially via a presynaptic mechanism as suggested by the authors.

Early research showed intracerebroventricular (ICV) administration of N/OFQ to induce a reduction in locomotor activity in mice at comparatively high doses (1–10 nmol), which is a finding that was later corroborated in rats and with additional studies in mice at the same doses. These effects were then theorized to occur indirectly via their actions on dopaminergic neurons. Indeed, N/OFQ inhibits dopamine transmission in striatal brain slices. In another study, injection of N/OFQ resulted in regulation of motor performance in rats, with injection of a N/OPr antagonist producing the opposite effect and leading to an increase in excitability of the motor cortex. This motor behavior may be regulated by effects on cortical afferents produced by subcortical N/OPr. Liu et al. demonstrated, in vitro, an inhibitory effect of a low dose of N/OFQ on the dopamine transporter, which inhibits dopaminergic activity. They theorized this to be a potential mechanism for the decrease in locomotor activity seen in earlier studies. However, given the presence of N/OPr on dopamine neurons and N/OFQ mRNA in TH neurons, and the additional evidence of a decrease in motor cortex excitability, the N/OPr system could also inhibit dopamine transmission via a direct impact on dopamine synthesis.

Di Giannuario et al. reported a reduction in morphine-induced dopamine release induced by treatment with N/OFQ in vivo. On a similar stream, antagonism of N/OPr has also been repeatedly shown to enhance dopamine transmission. Marti et al. supported the in vitro evidence by demonstrating an inhibitory effect of N/OFQ administration on dopamine transmission in the striatum in vivo. Marti et al. demonstrated these effects in a Parkinsonian model by showing improvements in Parkinsonian symptomatology following antagonism of N/OPr in the nigrostriatal pathway, furthering the notion of an inhibitory effect of N/OPr on dopamine transmission. This evidence is further supported by additional preclinical investigations using Parkinsonian models. Viaro et al. demonstrated an attenuation of Parkinsonism in MPTP-treated mice with a N/OPr antagonist, and a synergistic effect when this was employed with L-DOPA, indicating that the N/OPr system was exerting its effects via dopamine transmission (also supported by Marti et al.).

More recently, neuroprotective effects of N/OPr down-regulation on dopamine neurons were demonstrated by Arcuri et al. They observed a significantly greater (50%) amount of nigral dopamine neurons spared in mice following acute administration of MPTP. These findings led the authors to conclude that N/OPJ-N/OFQ signaling contributes to dopamine neuron loss in Parkinson’s, speculated to be due to glutamate-mediated excitotoxic mechanisms, and provide support to previous findings. Although the aforementioned evidence conveys a definite impact of the N/OPr system on dopamine transmission, the exact mechanism by which this occurs is still unclear.

Ces et al. investigated N/OPr signaling with pre-pulse inhibition (PPI), a validated model for schizophrenia and demonstrated an impairment of visual PPI with a N/OPr agonist. Authors also found that co-administration of haloperidol and the N/OPr agonist attenuated PPI deficits, leading them to conclude that there is a functional cooperation between N/OFQ and dopamine. This evidence further supports the notion of the possibility of a role for N/OPr signaling in schizophrenia.

Involvement of the N/OPr system in glutamate transmission

The glutamate hypothesis of schizophrenia is also well accepted, demonstrating hypofunction of the N-methyl-D-aspartate receptor (NMDAr), leading to a downregulation of glutamate. In light of the significant impact of N/OPr signaling on neurotransmission, glutamate transmission has also been studied. Nicol et al. showed decreased K⁺-evoked glutamate release in rat cerebrocortical, cerebellar, and brainstem slices in response to N/OFQ administration (see also Meis and Pape). Gompf et al. also showed N/OFQ to inhibit glutamate release in the retinohypothalamic tract and suprachiasmatic nucleus, and accorded this to be the result of presynaptic mechanisms by reducing Ca²⁺ (presynaptic release machinery). This was corroborated more recently by Kallupi et al., who demonstrated N/OFQ decreased glutamate release in the rat central amygdala. Conversely, Marti et al. reported decreased glutamate release after N/OPr antagonism in rats. The difference in evidence may be reconciled by the consideration of the effects of N/OPr on GABAergic signaling.

Marti et al. reported a stimulatory effect of N/OFQ on nigral glutamate in vivo, and proposed this to be mediated via either dopaminergic or GABAergic mechanisms; this is because a GABA receptor antagonist was found to counteract the effects of N/OFQ. The GABAergic system is involved in the pathophysiology of psychosis, as has been demonstrated by post-mortem studies showing abnormal GABAergic interneurons (see review: Taylor and Tso and also Wassef et al.). Gavioli et al. showed N/OPr signaling to be involved in anxiety through the GABA receptor, indicating through in vivo data the existence of effects of the N/OPr system on GABAergic signaling.
Collectively, the data indicate a role of NOPr signaling in glutamate, as well as GABA transmission, with more evidence required to define the effects and exact mechanisms involved. A summary of these and additional findings is provided in Tables 1 and 2.

Together, the evidence of NOPr involvement in dopamine and glutamate signaling, given the localization patterns and modulatory roles, suggests considerable potential for NOPr signaling in the pathophysiology of schizophrenia.
Involvement of the NOPr system in the HPA axis

Patients with schizophrenia present with an increased vulnerability to stress, which is thought to be a result of HPA axis dysregulation\(^6\). The NOPr system may be a critical mediator in the stress response via the HPA axis through its effects on adrenocorticotropic hormone and corticosterone. The collective findings are summarized in Table 3. N/OFQ increased corticosterone and adrenocorticotropic hormone in non-stressed rats and in mildly stressed rats, indicating its ability to activate the HPA axis\(^50\). In a similar manner, stress decreased N/OFQ content in the basal forebrain\(^51\). Leggett et al. also observed increased plasma adrenocorticotropic hormone and corticotropin-releasing factor mRNA in the paraventricular nucleus, known to be instrumental in HPA axis activity, in response to N/OFQ, leading the authors to conclude that N/OFQ mediates HPA axis activation\(^52\). Limbic system involvement is also evident, as acute restraint stress increased N/OFQ expression in hippocampal subfields and was associated with concentration of glucocorticoids\(^53\). However, HPA axis activity effects appear to occur through additive actions in multiple brain regions, since ICV injection of N/OFQ also resulted in elevated corticosterone levels\(^54\).

Genetic knockout of N/OFQ reduced the adaptability of mice to stress, but resulted in an elevated level of plasma corticosterone, demonstrating that the effect of NOPr on the HPA axis may be inhibitory\(^55\). In another study, N/OFQ knockout mice had impaired adaptation to stress, furthering the theory of NOPr involvement in stress adaptability\(^56\). In this study, exposure to repeated stress by way of a forced-swim test failed to produce adaptability in knockout mice, while an increase in anxiety-like behavior was also noted.

Similarly, Le Cudennec et al. showed N/OFQ to decrease corticosterone levels following stress, indicating anti-stress effects of this neurotransmitter and also an inhibitory effect on the HPA axis\(^57\). These differential findings may arise due to species differences, but may also indicate a dynamic role of NOPr modulation of stress reactivity. Social stress (in different forms) increased N/OFQ and NOPr mRNA in the hippocampus, central amygdala, paraventricular nucleus, and in the nucleus accumbens shell\(^58\)–\(^61\).

Differential results do exist, such as those obtained by Prince-Zullig et al.\(^62\) They reported no difference in basal corticosterone levels between N/OFQ knockout mice and wild-type controls, in direct contrast with those of Koster et al.\(^56\). Additionally, they found N/OFQ administration to have no significant impact on corticosterone levels compared to saline-injected controls, contradicting prior evidence and suggesting a role of environmental stressors or the injection procedure itself in producing these elevated responses. Such effects have also been noted previously (see review: Gavioli et al.\(^63\)). These differences may arise from the NOPr system’s significant involvement in pain, as one study showed a lack of HPA activation in a neuropathic pain model, thus implicating pain in HPA axis activation\(^54\).

We also note that the NOPr system plays a role in the production of cytokines, with several studies demonstrating its peripheral impact on the immune system (see

Table 2 NOPr in glutamate transmission

Experiment	Animal	Findings	Reference
N/OFQ	Female Wistar rats	↓ K⁺-evoked glutamate release in cerebrocortical, cerebellar, and brainstem slices	Nicol et al\(^37\),\(^38\)
N/OFQ	Long Evans rats	↓ Non-NMDA EPSC	Meis and Pape\(^39\)
NOPr knockout	Mice	↑ NMDA function	Mamiya et al\(^124\)
J-113397 intraperitoneally	Mice	↓ glutamate release	Mabrouk et al.\(^42\); Marti et al.\(^45\)
N/OFQ microdialysis/ NOPr antagonist	Male Sprague-Dawley rats	↑ Nigral glutamate release (countered by antagonist)	Marti et al.\(^46\)
UFP-101	Male Sprague-Dawley rats	↓ Nigral glutamate release (normalized)	Marti et al.\(^120\)
N/OFQ	Male Sprague-Dawley rats	↓ Glutamate-mediated EPSC	Gompf et al.\(^40\)
J-113397/UFP-101	Male Sprague-Dawley rats	↓ Glutamate release	Marti et al.\(^27\)
N/OFQ	Male Wistar rats	↓ Glutamatergic receptor-mediated EPSPs	Kallupi et al.\(^41\)

EPSC/EPSP excitatory post-synaptic current/potential, NOPr antagonist \([\text{Nphe}^1\text{nociceptin/orphanin FQ}(1\text{–}13)\text{NH}_2]\).
Review: Bodera et al.65–67. This could also account for HPA axis activation. Nonetheless, the accumulation of this evidence thus far aligns itself with the findings of a dysregulated HPA axis in schizophrenia patients6, given the apparently modulatory role of NOPr on the HPA axis.

Involvement of the NOPr system in cognition
Cognitive deficits are a prevalent finding in the schizophrenia population, with deficits in working memory being commonplace6. The NOPr system has been shown to play a role in cognition, based on evidence from preclinical studies. These findings are summarized in Table 4. Initial evidence demonstrated spatial learning deficits after N/OFQ injection into the rat hippocampus, and blocking of these effects by NOPr antagonism68–70. Higgins et al. also observed improved performance in N/OFQ knockout rats, with dose-dependent reductions in swim speed, demonstrating effects on locomotion70. Similarly, Sandin et al. demonstrated a dose-dependent biphasic effect of N/OFQ on spatial learning, with low doses improving learning and higher doses impairing it71. In contrast, Kuzmin et al. replicated these findings in mice with ICV administration of N/OFQ and observed no biphasic effect, suggesting potential species differences72. Questions regarding the mechanism of NOPr signaling effects on cognition do exist, as Koster et al. demonstrated N/OFQ knockout mice to have no difference in spatial learning compared to controls56.

Moreover, working memory impairments have been noted via insufficiencies in passive avoidance in animals following NOPr activation through administration of agonists or N/OFQ73–74. NOPr activation impaired long-term memory formation as measured through recognition memory. The mechanism for this is potentially via the suppression of glutamatergic function at the NMDA receptor75–78. Reiss et al. demonstrated selective

Experiment	Animal	Findings	Reference
N/OFQ knockout	Mice	↑CORT	Jenck et al.55
N/OFQ knockout/N/OFQ ICV	Mice	↓ Adaptability to repeated stress/↑ adaptability to stress (with N/OFQ ICV)	Koster et al.56; Griebel et al.125
N/OFQ	Male Sprague-Dawley rats	↑CORT, ACTH in unstressed rats and mildly stressed rats	Devine et al.66
N/OFQ ICV	Mice	↓CORT	Le Cudennec et al.57
N/OFQ ICV	Male Long Evans rats	↑ CORT	Green et al.54
N/OFQ subcutaneously and injections	Mice	↑CORT (only injections do this—thus reconsider methodology and environmental stressors)	Prince-Züllig et al.62
N/OFQ ICV	Male Sprague-Dawley rats	↑plasma ACTH, CRF mRNA in PVN	Leggett et al.62
Acute restraint stress+NOPr antagonism	Male Sprague-Dawley rats	↑ Activation of HPA axis in nadir phase (not in peak phase)	Leggett et al.126
LPS+NOPr antagonism	Male Sprague-Dawley rats	↓ Activation of HPA axis	Leggett et al.127
Social defeat stress	Male/female Long Evans rats	↑ NOPr mRNA in PVN	Green and Devine58
JTC-801+acute restraint	Male Sprague-Dawley rats	↑ HPA axis response/↓ NOPr gene expression in hypothalamus	Delaney et al.128
Acute restraint stress	Male Sprague-Dawley rats	↓N/OFQ in basal forebrain	Devine et al.51
Social stress	Mice	↑ NOPr mRNA, N/OFQ precursor mRNA	Reiss et al.59
Acute restraint stress	Male Wistar rats	↑ N/OFQ in HPC subfields	Nativio et al.61
Acute restraint stress	Male Wistar rats	↑ N/OFQ	Ciccocioppo et al.60
Social defeat stress	Male Wistar rats	↑ N/OFQ mRNA in NAcc shell	Der-Avakian et al.61

LPS lipopolysaccharide (physiological stress), JTC-801 NOPr antagonist with partial agonist properties, CORT corticosterone, ACTH adrenocorticotropic hormone, CRF corticotropin-releasing factor, PVN paraventricular nucleus, HPA axis hypothalamic–pituitary–adrenal axis, HPC hippocampus, NAcc nucleus accumbens
impairment of recognition memory in mice following co-administration of a NOPr agonist and NMDA receptor antagonist, further demonstrating NOPr system modulation of memory formation via glutamatergic receptors. These findings have since found additional support with deficits in recognition memory and fear learning in mice following increases in NOPr activity mediated via suppression of glutamate transmission. Furthermore, a negative impact of NOPr signaling on long-term potentiation (LTP) in the hippocampus has also been observed, as NOPr-deficient mice had improved LTP, gauged through NOPr and N/OFQ gene expression in the hippocampus.

Acetylcholine (ACh) signaling is posited to play a role in the cognitive deficits observed in schizophrenia, and the NOPr system is also implicated with this.
neurotransmitter. Initial in vivo evidence showed N/OFQ to decrease ACh release in the striatum in rats. This was later corroborated with similar evidence in cortical and hippocampal regions, thus further demonstrating effects of the NOPr system on cognition. Uezu et al. reported specific findings in the hippocampus, with knockout mice having greater amounts of ACh, leading the authors to speculate an impact of NOPr signaling on memory function. Findings by Hiramatsu et al. indicate a dose-dependent effect of N/OFQ on ACh signaling, as they found high doses to decrease it, while lower doses countered antagonist-induced ACh signaling decrease. Additional research is necessary in order to further elucidate the mechanisms by which these effects occur.

Collectively, these results confirm an involvement of NOPr signaling on cognition including working memory deficits, spatial working memory deficits, and impairments in LTP. Dopaminergic dysfunction, glutamatergic hypofunction, and effects on cholinergic transmission have been outlined as mechanisms that may underlie these deficits and hence, aberrant NOPr signaling may play a crucial role in the cognitive deficits of schizophrenia.

Involvement of the NOPr system in reward modulation

Deficits in reward processing and motivation are a common finding in schizophrenia. Through investigations into the rewarding properties of drugs of abuse, the NOPr system could be involved in reward modulation, particularly since a moderate-to-high concentration of NOPr in regions associated with reward is observed, including the ventral tegmental area, medial prefrontal cortex, amygdala, and the bed nucleus of the stria terminalis. The findings are summarized in Table 5. Conditioned place preference (CPP) is a valid method for the study of motivational effects and reward in different paradigms. Thus, studies with NOPr signaling in CPP can aid understanding of the role of the NOPr system in reward. Treatment with N/OFQ resulted in an inhibition of reward salience, as measured via CPP, and these findings were replicated with multiple drugs of abuse, including morphine, cocaine, and amphetamines. Endogenous N/OFQ does not have any reinforcing effects, indicating

Table 5	NOPr in reward modulation		
Experiment	Animal	Findings	Reference
Ro65-6570/N/OFQ	Male Wistar rats	↑ CPP with cocaine/↓ CPP with cocaine	Kotlinska et al.99
NOPr knockout	Mice	↑ CPP with cocaine	Marquez et al.96
N/OFQ ICV	Male Sprague-Dawley rats	↓ Cocaine-induced DA release in NAcc	Vazquez-Derose et al.92
Ro65-6570/J-113397	Male Sprague-Dawley rats	↑ CPP/↓ CPP with antagonist (with opioids)	Rutten et al.98
N/OFQ ICV	Male Wistar rats/male Sprague-Dawley rats	↓ CPP with morphine/↑ sensitization to morphine (using agonists)	Ciccocioppo et al.93; Murphy et al.137; Kotlinska et al.138
J-113397	Male Sprague-Dawley rats	↑ CPP with morphine	Rutten et al.97
N/OFQ ICV	Mice	↓ CPP with morphine and cocaine	Sakoori and Murphy94
Ro64-6198	Male Wistar rats	↓ Ethanol self-administration	Kuzmin et al.100
N/OFQ knockout	Mice	↑ CPP with methamphetamine and ethanol	Sakoori and Murphy97
N/OFQ ICV	Male Sprague-Dawley rats	↓ CPP with methamphetamine	Zhao et al.139
N/OFQ ICV	Male Wistar rats	↓ CPP with amphetamine	Kotlinska et al.95
NOPr knockout	Rats (Wistar controls)	↓ Self-administration of cocaine, heroin, ethanol/no difference on saccharin self-administration compared to controls	Kallupi et al.140
Cebranopadol	Male Wistar rats	↓ Self-administration of cocaine/no effect on sweetened condensed milk self-administration	de Guglielmo et al.141
N/OFQ ICV	Mice	↑ Licking for sweet solutions	Mendez et al.132

Ro65-6570 NOPr agonist (w/out motivational properties—unlike Ro64-6198), CPP conditioned place preference, Cebranopadol NOPr full agonist (also full agonist of mu, partial agonist of kappa and delta opioid receptors)
that it in itself does not have any effects on CPP98. Generally, activation of the NOPr system could be involved in negative reinforcement, as agonism has been shown to decrease self-administration of ethanol100.

This discrepancy is highlighted by more recent findings regarding the NOPr system in reward and motivation. ICV administration of N/OFQ increased bouts of licking for sucrose (a sweet solution) in mice, which led to the suggestion that activation of this system increases the motivation associated with appetite101. Conversely, NOPr knockout rats in another study did not differ from wild-type controls in their preference for saccharin, although these rats did have a significantly reduced proclivity for self-administration of cocaine, heroin, and alcohol102. A similar finding was observed in a comparison between cocaine and sweetened condensed milk103. These results suggest a role for the NOPr system in drug reward specifically, but are also inconsistent with previous findings of a role in motivation in general. These differences could be a result of inherent species differences as well as a difference in methodology (i.e., licking microstructure analysis versus fixed-ratio self-administration).

Another recent study demonstrated negative correlations between reward learning and N/OFQ peptide mRNA levels in the cingulate gyrus and with NOPr mRNA levels in the ventral tegmental area61. Overall, the results align with the reward system disruptions noted in schizophrenia, in which the existence of deficits is well supported by the literature3. The NOPr system may thus play a role in these deficits, further potentiating its involvement in the pathophysiology of schizophrenia.

Conclusion and future directions

In summary, the literature indicates a role of the NOPr system in dopamine and glutamate regulation, with NOPr activation generally decreasing dopamine and glutamate transmission, although this requires further elucidation. Activation of NOPr is also associated with HPA axis regulation, implicating a role for it in the modulation of stress. Cognition is generally negatively impacted with NOPr activation. While reports of the system’s impact on the reward system are mixed, they nonetheless point to the existence of an effect. Indeed, the NOPr system has potential in other psychiatric illnesses, such as depression, in which antagonism is demonstrated to have promising effectiveness104,105.

Due to the multi-faceted effects of the NOPr system in the brain, how exactly it may be altered in psychosis remains to be elucidated. This preclinical and in vitro evidence presented in conjunction with the well-replicated findings in schizophrenia clearly implicate a plausible contribution of the NOPr system in the pathophysiology of schizophrenia89,105. The literature we have presented in this review indicates the paucity in this field and thus highlights the need for further research. The development and validation of the novel PET tracer [11C]NOP-1A now makes this possible to investigate in clinical populations13,106.

In conclusion, we present here a novel approach to a complex neuropsychiatric illness and demonstrate that the literature suggests a potential role of the NOPr system in schizophrenia, with ramifications in the development of better treatment and interventions, and possibly even prevention.

Acknowledgements

This work has been supported by the Centre for Addiction and Mental Health Foundation.

Author details

1. Research Imaging Centre Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada.
2. Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada.
3. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada.
4. Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 July 2017 Revised: 13 October 2017 Accepted: 13 November 2017

Published online: 02 February 2018

References

1. Schultz, S. H., North, S. W. & Shields, C. G. Schizophrenia: a review. Am. Fam. Physician 75, 1821–1829 (2007).
2. Barch, D. M. & Ceaser, A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn. Sci. 16, 27–34 (2012).
3. Straus, G. P., Waltz, J. A. & Gold, J. M. A review of reward processing and motivational impairment in schizophrenia. Schizophr. Bull. 40(Suppl 2), S107–S116 (2014).
4. Grace, A. A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532 (2016).
5. Moghaddam, B. & Javitt, D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacol. 37, 4–15 (2012).
6. Walker, E., Mitral, V. & Tessner, K. Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu. Rev. Clin. Psychol. 4, 189–216 (2008).
7. Freedman, R. Alpha7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia. Annu. Rev. Med. 65, 245–261 (2014).
8. Mollereau, C. et al. ORL1, a novel member of the opioid receptor family. FEBS Lett. 341, 33–38 (1994).
9. Meunier, J. et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377, 532–533 (1995).
10. Reinscheid, R. K. et al. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270, 792–794 (1995).
11. Neal, C. R. et al. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with [125I]-[14Tyr]-orphanin FQ binding. J. Comp. Neurol. 412, 563–605 (1999).
12. Berthele, A. et al. [3H]nociceptin ligand-binding and nociceptin opioid receptor mRNA expression in the human brain. Neuroscience 121, 629–640 (2003).
13. Lohith, T. G. et al. Brain and whole-body imaging of nociceptin/orphanin FQ peptide receptor in humans using the PET ligand 1C-NOP-1A. J. Nucl. Med. 53, 385–392 (2012).
14. Norton, C. S., Neal, C. R., Kumar, S., Akil, H. & Watson, J. S. Nociceptin/orphanin FQ and opioid receptor-like receptor mRNA expression in dopamine systems. J. Comp. Neurol. 444, 358–368 (2002).
15. Di Benedetto, M. et al. Alterations of NQFQ and NOP receptor gene expression in the substantia nigra and caudate putamen of MPP+ and 6-OHDA lesioned rats. Neuropsychopharmacology 34, 761–767 (2009).
16. Nagatsu, T. Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem. 30, 15–35 (1995).
17. Oalias, M. C., Dedoni, S., Box, M. & Onali, P. Activation of nociceptin/orphanin FQ-NOP receptor system inhibits tyrosine hydroxylase phosphorylation, dopamine synthesis, and dopamine D1 receptor signaling in rat nucleus accumbens and dorsal striatum. J. Neurochem. 107, 544–556 (2008).
18. Viaro, R., Calcagnò, M., Marti, M., Borelli, E. & Morari, M. Pharmacological and genetic evidence for pre- and postsynaptic D2 receptor involvement in motor responses to nociceptin/orphanin FQ receptor ligands. Neuropharmacology 72, 126–138 (2013).
19. Devine, D. P. et al. Rats rapidly develop tolerance to the locomotor-inhibiting effects of the novel neuropeptide orphanin FQ. Neurochem. Res. 21, 1387–1396 (1996).
20. Noble, F. & Roques, B. P. Association of aminopeptidase N and endopeptidase 24.15 inhibitors potentiate behavioral effects mediated by nociceptin/orphanin FQ in mice. FEBS Lett. 401, 227–229 (1997).
21. Rizzi, A. et al. Characterization of the locomotor activity-inhibiting effect of nociceptin/orphin FQ in mice. J. Physiol. 532, 378–389 (2012).
22. Koch, M. Clinical relevance of animal models of schizophrenia. Suppl. Clin. Neurophys. 62, 113–120 (2013).
23. Nicol, B., Lambert, D. G., Rowbotham, D. J., Smart, D. & McNamee, A. T. Nociceptin/orphanin FQ receptor antagonists in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) treated mice: behavioral responses to stress and neurodegeneration associated with Parkinson's disease. J. Comp. Neurol. 525, 9591–9601 (2003).
24. Marti, M. et al. Blockade of nociceptin/orphanin FQ transmission attenuates nigrothalamo-striatal dopaminergic transmission and motor behavior. J. Neurosci. 24, 6659–6666 (2004).
25. Marti, M. et al. Blockade of nociceptin/orphanin FQ receptor signaling in substantia nigra pars reticulata stimulates nigrostriatal dopaminergic transmission and motor behavior. J. Neurosci. 29, 705 (2005).
26. Marti, M., Viano, R., Trappella, C., Marti, M. & Morari, M. Nociceptin/orphanin FQ receptors modulate glutamate extracellular levels in the substantia nigra pars reticulata. Microdialysis study in the awake freely moving rat. J. Neurosci. 27, 1297–1307 (2007).
27. Viano, R. et al. Nociceptin/orphanin FQ receptor blockade attenuates MPTP-induced parkinsonism. Neurosci. Lett. 30, 419–425 (1998).
28. Viano, R., Viano, R., Trappella, C., Marti, M. & Morari, M. Dopamine–nociceptin/orphanin FQ interactions in the substantia nigra reticulata of hemiparkinsonian rats: involvement of D2/D3 receptors and impact on nigrothalamic projections and motor behavior. Exp. Neurol. 228, 126–137 (2011).
29. Viano, R., Marti, M. & Morari, M. Dual motor response to l-Dopa and nociceptin/orphanin FQ receptor antagonists in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) treated mice: paradoxical inhibition is relieved by D2/D3 receptor blockade. Exp. Neurol. 223, 473–484 (2010).
30. Arcuri, L. et al. Genetic and pharmacological evidence that endogenous nociceptin/orphanin FQ contributes to dopamine cell loss in Parkinson’s disease. Neurobiol. Dis. 59, 55–64 (2016).
31. Brown, J. M., Couty, S., Iyer, V., Rosenberger, J. & Cox, B. Differential protection against MPTP or methamphetamine toxicity in dopamine neurons by deletion of ppN/OFQ expression. J. Neurochem. 98, 495–505 (2006).
32. Sakoot, K. N. Reduced degeneration of dopaminergic terminals and accentuated astrocyte activation by high dose methamphetamine administration in nociceptin receptor knock out mice. Neurosci. Lett. 469, 309–313 (2009).
33. Ces, A. et al. Activation of nociceptin/orphanin FQ peptide receptors disrupts visual but not auditory sensorimotor gating in BALB/cByJ mice: comparison to dopamine receptor agonists. Neuropsychopharmacology 37, 378–389 (2012).
34. Marti, M., Holthausen, M., Bertini, E. V., Brown, B., Chen, K. & Devine, D. The role of the bed nucleus of stria terminalis and of the amygdala in the NOQFQ-mediated anxiety and HPA axis activation. Neuropeptides 41, 399–410 (2007).
35. Koster, A. et al. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc. Natl. Acad. Sci. USA 96, 10444–10449 (1999).
36. Le Cudennec, C., Naudin, B., Do Rego, J. D. & Costentin, J. Nociceptin/orphanin FQ and related peptides reduce the increase in plasma corticosterone elicited in mice by an intracerebroventricular injection. Life Sci. 72, 163–171 (2002).
101. Mendez, I. A., Maidment, N. T. & Murphy, N. P. Paring the hedonic and motivational influences of nociceptin on feeding using licking microstructure analysis in mice. Behav. Pharmacol. 27, 516–527 (2016).
102. Kallupi, M. et al. Genetic deletion of the nociceptin/orphanin FQ receptor in the rat confers resilience to the development of drug addiction. Neuropsychopharmacol 42, 695–706 (2017).
103. de Guglielmo, G. et al. Cebranopadol blocks the escalation of cocaine intake and conditioned reinstatement of cocaine seeking in rats. J. Pharmacol. Exp. Ther. 362, 378–384 (2017).
104. Post, A. et al. A selective nociceptin receptor antagonist to treat depression: evidence from preclinical and clinical studies. Neuropsychopharmacol 41, 2624 (2016).
105. Siftestein, M. et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia. JAMA Psychiatry 72, 316 (2015).
106. Narendran R. et al. Nociceptin receptors in alcohol use disorders: a positron emission tomography study using [11C]NOP-1A. Biol. Psychiatry, (2017). https://doi.org/10.1016/j.biopsych.2017.05.019.
107. Florin, S., Saudekoe, C., Meurier, J. C. & Costentino, J. Nociceptin stimulates locomotion and exploratory behaviour in mice. Eur. J. Pharmacol. 317, 9–13 (1996).
108. Devine, D. P., Reinscheid, R. K., Monsma, F. J. Jr., Civelli, O. & Akil, H. The novel neuropeptide orphanin FQ fails to produce conditioned place preference or aversion. Brain Res. 727, 225–229 (1996).
109. Narayanan, S., Lam, H., Carroll, F. I. & Lutfy, K. Orphanin FQ/nociceptin suppresses motor activity through an action along the mesoaccumbens axis in rats. J. Psychiatry Neurosci. 29, 116–123 (2004).
110. Chesnokova, E. A. et al. The effects of new nociceptin analogs on the behavior of white rats. Dokl. Biol. Sci. 449, 85–88 (2013).
111. Rizzi, A., Molinari, S., Marti, M., Marzola, G. & Calo, G. Nociceptin/orphanin FQ receptor knockout rats in vitro and in vivo studies. Neuropharmacology 60, 572–579 (2011).
112. Maidment, N. T., Chen, Y., Tan, A. M., Murphy, N. P. & Leslie, F. M. Rat ventral midbrain dopamine neurons express the orphanin FQ/nociceptin receptor. J. Neurosci. 13, 1137–1140 (2002).
113. Murphy, N. P., Ly, H. T. & Maidment, N. T. Intracerebroventricular orphanin FQ/nociceptin suppresses dopamine release in the nucleus accumbens of anesthetized rats. Neuroscience 75, 1–4 (1996).
114. Zheng, F., Grandy, D. K. & Johnson, S. W. Actions of orphanin FQ/nociceptin on rat ventral tegmental area neurons in vitro. Br. J. Pharmacol. 136, 1065–1071 (2002).
115. Murphy, N. P., Tan, A. M., Lam, H. A. & Maidment, N. T. Nociceptin/orphanin FQ modulation of rat midbrain dopamine neurons in primary culture. Neurones 127, 929–940 (2004).
116. Lutfy, K., Do, T. & Maidment, N. T. Orphanin FQ/nociceptin attenuates motor stimulation and changes in nucleus accumbens extracellular dopamine induced by cocaine in rats. Psychopharmacology 154, 1–7 (2001).
117. Kozum, M., Sako, K., Sidoizhaka, N., Takeshima, H. & Murphy, N. P. Exogenous, but not endogenous nociceptin modulates mesolimbic dopamine release in mice. J. Neurochem. 257, 263 (2014).
118. Kozum, M., Sako, K., Sidoizhaka, N. & Murphy, N. P. The NOP (ORL1) receptor antagonist compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor-mediated mechanism. Br. J. Pharmacol. 143, 53–62 (2004).
119. Konya, H., Masuda, H., Itoh, K., Naga, K., Kakihata, E. & Matsukoa, A. Modification of dopamine release by nociceptin in conscious rat striatum. Brain Res. 788, 341–344 (1998).
120. Marti, M. et al. Blockade of nociceptin/orphanin FQ transmission in rat substantia nigra reverses haloperidol-induced akinesia and normalizes nigral glutamate release. J. Neurochem. 91, 1501–1504 (2004).
121. Marti, M. et al. Nociceptin/orphanin FQ receptor agonists attenuate L-DOPA-induced dyskinesia. J. Neurosci. 32, 16106–16119 (2012).
122. Marti, M. et al. Brain intersitial nociceptin/orphanin FQ levels are elevated in Parkinson’s disease. Mov. Disord. 25, 1723–1732 (2010).
123. Gouty, S., Brown, J. M., Rosenberger, J. & Cox, B. M. MPTP treatment increases expression of pre-pro-nociceptin/orphanin FQ mRNA in a subset of substantia nigra reticulata neurons. Neuroscience 169, 269–278 (2010).
124. Mamiya, T. et al. Neuronal mechanism of nociceptin-induced modulation of learning and memory involvement of N-methyl-D-aspartate receptors. Mol. Psychiatry 8, 752–765 (2003).
125. Griebel, G., Pernaut, G. & Sanger, D. J. Orphanin FQ, a novel neuropeptide with anti-stress-like activity. Brain Res. 836, 221–224 (1999).
126. Leggett, J., Jessop, D. & Fulford, A. The nociceptin/orphanin FQ antagonist UFP-101 differentially modulates the excitotoxic response to restraint stress in rats during the peak and nadir phases of the hypothalamic-pituitary-adrenal axis circadian rhythm. Neuroscience 147, 757–764 (2007).
127. Leggett, J. D., Dawe, K. L., Jessop, D. S. & Fulford, A. J. Endogenous nociceptin/orphanin FQ system involvement in hypothalamic-pituitary-adrenal axis responses: relevance to models of inflammation. J. Neuroendocrinol. 21, 888–897 (2009).
128. Delaney, G. et al. Role of nociceptin/orphanin FQ and NOP receptors in the response to acute and repeated restraint stress in rats. J. Neuroendocrinol. 24, 1527–1541 (2012).
129. Jinsmaa, Y., Takahashi, M., Fukunaga, H. & Yoshikawa, M. Retro-nociceptin methyllester, a peptide with anagletic and memory-enhancing activity. Life Sci. 67, 3095–3101 (2000).
130. Noda, Y. [Possible mechanisms in latent learning formation investigated by using mutant mice]. Folia Pharmacol. Jpn. 117, 169–176 (2001).
131. Mamiya, T., Noda, Y., Nishi, M., Takeshima, H. & Nabeshima, T. Enhancement of spatial attention in nociceptin/orphanin FQ receptor-knockout mice. Brain Res. 783, 236–240 (1998).
132. Liu, E. H., Lee, T. L., Nishiiuchi, Y., Kimura, T. & Tachibana, S. Nocistatin and its derivatives antagonize the impairment of short-term acquisition induced by nociceptin. Neurosci. Lett. 416, 155–159 (2007).
133. Nagai, J., Kurokawa, M., Takeshima, H., Kieffer, B. L. & Ueda, H. Circadian-dependent learning and memory enhancement in nociceptin receptor-deficient mice with a novel KUROBOX apparatus using stress-free positive cue task. J. Pharmacol. Exp. Ther. 321, 195–201 (2007).
134. Noda, Y., Mamiya, T. & Nabeshima, T. Behavioral pharmacological characterization of mice lacking the nociceptin receptor. Nihon Shokakai Shosin Yakagaku Zasshi 19, 73–78 (1999).
135. Taverna, F. A. et al. Defective place cell activity in nociceptin receptor knockout mice with elevated NMDA receptor-dependent long-term potentiation. J. Physiol. 565(Pt 2), 579–591 (2005).
136. Mwia, M. et al. Nociceptin and its metabolite attenuate U0126-induced memory impairment through a nociceptin opioid peptide (NOP) receptor-independent mechanism. Neurobiol. Learn. Mem. 93, 396–405 (2010).
137. Murphy, N. P., Lee, Y. & Maidment, N. T. Orphanin FQ/nociceptin blocks acquisition of morphine place preference. Brain Res. 832, 168–170 (1999).
138. Kotinska, J. et al. Is the nociceptin (NOP) receptor involved in attenuation of the expression of sensitization to morphine-induced hyperlocomotion in mice? Behav. Pharmacol. 16, 101–106 (2005).
139. Zhao, R. J. et al. Orphanin FQ/nociceptin blocks methamphetamine place preference in rats. Neuroreport 14, 2383–2385 (2003).