1. Introduction

Let \(f \in L_p[0, 2\pi], 1 < p < \infty \), be a \(2\pi \)-periodic function. We say that the function \(f \) has monotone Fourier coefficients if it has a cosine Fourier series with

\[
 f(x) \sim \sum_{n=0}^{\infty} a_n \cos nx, \quad a_n \downarrow 0. \tag{1}
\]

We say that the function \(f \) has lacunary Fourier coefficients if

\[
 f(x) \sim \sum_{\nu=1}^{\infty} \lambda_\nu \cos \nu x, \tag{2}
\]

where

\[
 \lambda_\nu = \begin{cases}
 a_\nu & \text{for } \nu = 2^\mu, \\
 0 & \text{for } \nu \neq 2^\mu;
\end{cases} \tag{3}
\]

that is,

\[
 f(x) \sim \sum_{\mu=0}^{\infty} a_\mu \cos 2^\mu x, \quad a_\mu \geq 0. \tag{4}
\]

By \(\omega_k(f, t)_p \) we denote the modulus of smoothness of order \(k \) in \(L_p \) metrics of a function \(f \in L_p, 1 < p < \infty \):

\[
 \omega_k(f, t)_p = \sup_{|h| \leq t} \left\| \Delta_h^k f \right\|_p, \tag{5}
\]

where

\[
 \Delta_h^k f(x) = \sum_{\nu=0}^{k} (-1)^{k-\nu} \binom{k}{\nu} f(x + \nu h) \tag{6}
\]

is the \(k \)-th-order shift operator.

By \(E_n(f)_p \) we denote the best approximation in \(L_p \) metrics of a function \(f \in L_p, 1 < p < \infty \), by means of trigonometric polynomials whose degree is not greater than \(n - 1 \); that is,

\[
 E_n(f)_p = \inf_{T_{n-1}} \left\| f - T_{n-1} \right\|_p, \tag{7}
\]

where \(T_{n-1} = \sum_{\nu=0}^{n-1}(\alpha_\nu \cos \nu x + \beta_\nu \sin \nu x) \) and \(\alpha_\nu \) and \(\beta_\nu \) are arbitrary real numbers.

We say that a \(2\pi \)-periodic function \(f \) belongs to the Nikol’skii-Besov class \(N(p, \theta, r, \lambda, \varphi) \), \(1 < p < \infty \), if the following conditions are satisfied:

1. \(f \in L_p[0, 2\pi] \).
(2) Numbers $\theta, r, \text{and } \lambda$ belong to the interval $(0, \infty)$, and k is an integer satisfying $k > r + \lambda$.

(3) The following inequality holds true:

$$
\left(\int_0^\delta t^{-\theta r - 1} \omega_k(f,t)^\theta_p dt \right)^{1/\theta} + \delta^{\lambda \theta} \int_\delta^1 t^{-r+\lambda\theta - 1} \omega_k(f,t)^\theta_p dt \right)^{1/\theta} \leq C \varphi(\delta),
$$

while the function φ satisfies the following conditions:

(4) φ is a nonnegative continuous function on $(0, 1)$ and $\varphi \neq 0$.

(5) For every δ_1 and δ_2, where $0 \leq \delta_1 \leq \delta_2 \leq 1$, $\varphi(\delta_1) \leq C_1 \varphi(\delta_2)$ holds.

(6) For every δ, where $0 \leq \delta \leq 1/2$, $\varphi(2\delta) \leq C_2 \varphi(\delta)$ holds.

Constants (without mentioning it explicitly, we will consider all the constants positive) C, C_1, and C_2 do not depend on δ_1, δ_2, and δ.

A more detailed approach to the classes $N(p, \theta, r, \lambda, \varphi)$ is given in [1, 2] (see also [3]). In the paper, we give a characterization of $N(p, \theta, r, \lambda, \varphi)$ classes of functions in terms of series over their moduli of smoothness. Then we give the necessary and sufficient conditions in terms of monotone or lacunary Fourier coefficients for a function $f \in L_p[0, 2\pi]$ to belong to a class $N(p, \theta, r, \lambda, \varphi)$. In the process of proving the results, we make use of certain recent reverse l_p-type inequalities [4], closely related to Copson’s and Leindler’s inequalities.

Finally, by making use of our results, we construct an example of a function having a lacunary Fourier series, which shows that $N(p, \theta, r, \lambda, \varphi)$ classes are properly embedded between the appropriate Nikol’skii classes and Besov classes.

2. Statement of Results

Now we formulate our results.

Theorem 1. A function f belongs to the class $N(p, \theta, r, \lambda, \varphi)$ if and only if (here and below we assume that the parameters $\theta, r, \lambda,$ and k satisfy condition (2) and the function φ satisfies conditions (4)–(6) of the definition of the class $N(p, \theta, r, \lambda, \varphi)$)

$$
\left(\sum_{n=1}^\infty \omega_k(f, \frac{1}{n})^\theta_p \gamma^{\theta r - 1} \right)^{1/\theta} + n^{-\lambda \theta} \sum_{n=1}^m \omega_k(f, \frac{1}{n})^\theta_p \gamma^{r+\lambda \theta - 1} \right)^{1/\theta} \leq C \varphi\left(\frac{1}{m}\right),
$$

where constant C does not depend on n.

Theorem 2. For a function $f \in L_p[0, 2\pi], 1 < p < \infty$, such that

$$
f(x) \sim \sum_{n=1}^\infty a_n \cos nx, \quad a_n \downarrow 0,
$$

with coefficients generalised in the sense of [5, 6] remains. It is necessary and sufficient that its Fourier coefficients satisfy the condition

$$
\left(\sum_{n=1}^\infty a_n \gamma^{\theta r - 1} \right)^{1/\theta} + n^{-\lambda \theta} \sum_{n=1}^m a_n \gamma^{r+\lambda \theta - 1} \right)^{1/\theta} \leq C \varphi\left(\frac{1}{m}\right),
$$

where constant C does not depend on m.

Corollary 3. Putting $\varphi(\delta) = \delta^\alpha, 0 < \alpha < \lambda$, in the definition of the class $N(p, \theta, r, \lambda, \varphi)$, we obtain [1] the Nikol’skii class $H_p^{\alpha r}$. Thus Theorem 1 and 2 give the single coefficient condition

$$
a_n \leq C 2^{-p(r+\alpha)}
$$

for $f \in H_p^{\alpha r}$, where the function f is given by (14).
Corollary 7. If \(\varphi(\delta) = C\), then we obtain [1] the Besov class \(B^p_p\). Thus Theorem 5 gives the necessary and sufficient condition
\[
\sum_{\mu=1}^{\infty} a^\mu \varphi(\mu) < \infty
\]
for \(f \in B^p_p\), given in [8], where the function \(\varphi\) is given by (14).

Example 8. Let
\[
f(x) \sim \sum_{\mu=0}^{\infty} a^\mu \cos 2^\mu x,
\]
where
\[
a^\mu = 2^{-\mu}(\mu + 1)^{-(\alpha+1)/\theta}, \quad \alpha > 0.
\]
Then, we have
\[
C_1 n^{-\alpha} \leq \left(\sum_{\mu=n+1}^{\infty} a^\mu \right)^{1/\beta} \leq C_2 n^{-\alpha},
\]

\[
C_3 n^{-(\alpha+1)/\theta} \leq \left(\sum_{\mu=1}^{\infty} a^\mu \right)^{1/\beta} \leq C_4 n^{-(\alpha+1)/\theta},
\]

thus implying (see the proof of Theorem 5) that \(f \in N(p, \theta, r, \lambda, \varphi)\) for \(\varphi(\delta) = (1/\delta)^{\alpha}\). This means that classes \(N\) are classes of embedding between classes \(H\) and \(B\).

3. Auxiliary Statements

In order to establish our results, we use the following lemmas.

Lemma 9. Let \(0 < \alpha < \beta < \infty\) and \(a_n \geq 0\). The following inequality holds true:
\[
\left(\sum_{n=1}^{\infty} a_n \right)^{1/\beta} \leq \left(\sum_{n=1}^{\infty} a_n \right)^{1/\alpha}.
\]
Proof of the lemma is due to Jensen [9, p. 43].

Lemma 10. Let \(\{a_n\}_{n=1}^{\infty}\) be a sequence of nonnegative numbers, let \(\alpha > 0\), let \(\lambda\) be a real number, and let \(m\) and \(n\) be positive integers such that \(m < n\). Then

(1) for \(1 \leq p < \infty\), the following equalities hold:
\[
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p \leq C_1 \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p,
\]

\[
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p \leq C_2 \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p;
\]

(2) for \(0 < p \leq 1\), the following equalities hold:
\[
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p \geq C_3 \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p,
\]

\[
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p \geq C_4 \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p,
\]

where constants \(C_1, C_2, C_3, \) and \(C_4\) depend only on numbers \(\alpha, \lambda, \) and \(p\) and do not depend on \(m\) and \(n\) as well as on the sequence \(\{a_n\}_{n=1}^{\infty}\).

Proof of the lemma is given in [9, p. 308].

Lemmas 11 and 12 state certain \(L_p\)-type inequalities which are reversed to the ones given in Lemma 10 and closely related to Copson’s and Leindler’s inequalities (see, e.g., [10–13]).

We write \(a_\nu \downarrow\) if \(\{a_\nu\}_{\nu=1}^{\infty}\) is a monotone-decreasing sequence of nonnegative numbers, that is, if \(a_\nu \geq a_{\nu+1} \geq 0\; (\nu = 1, 2, \ldots)\).

Lemma 11. Let \(a_\nu \downarrow\), let \(\alpha > 0\), let \(\lambda\) be a real number, and let \(m\) and \(n\) be positive integers. Then

(1) for \(1 \leq p < \infty\) and \(n \geq 16m\), the following equalities hold:
\[
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p \leq C_1 \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p,
\]

\[
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p \leq C_2 \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p;
\]

(2) for \(0 < p \leq 1\) and \(n \geq 4m\), the following equalities hold:
\[
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p \leq C_3 \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p,
\]

\[
\sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p \leq C_4 \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p,
\]

where constants \(C_1, C_2, C_3, \) and \(C_4\) depend only on numbers \(\alpha, \lambda, \) and \(p\) and do not depend on \(m\) and \(n\) as well as on the sequence \(\{a_\nu\}_{\nu=1}^{\infty}\).

Proof of the lemma is given in [4].

Lemma 12. Let \(a_\nu \downarrow\), let \(\alpha > 0\), let \(\lambda\) be a real number, and let \(m\) and \(n\) be positive integers. For \(0 < p < \infty\), the following inequalities hold:
\[
C_1 \sum_{\mu=1}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p \leq \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p
\]

\[
\leq C_2 \sum_{\mu=1}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p,
\]

\[
C_3 \sum_{\mu=1}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p \leq \sum_{\mu=m}^{n} \mu^{-\alpha-1} \left(\sum_{y=m}^{\mu} a^y \right)^p
\]

\[
\leq C_4 \sum_{\mu=1}^{n} \mu^{-\alpha-1} \left(a^\mu \lambda + 1 \right)^p,
\]

where constants \(C_1, C_2, C_3, \) and \(C_4\) depend only on numbers \(\alpha, \lambda, \) and \(p\) and do not depend on \(m\) and \(n\) as well as on the sequence \(\{a_\nu\}_{\nu=1}^{\infty}\).
The lemma is also proven in [4].

Lemma 13. Let \(f \in L_p[0, 2\pi] \) for fixed \(p \) from the interval \(1 < p < \infty \) and let

\[
f(x) \sim \sum_{n=1}^{\infty} a_n \cos n x, \quad a_n \downarrow 0. \tag{28}
\]

The following inequalities hold:

\[
C_1 \left(\sum_{n=1}^{\infty} a_n^2 \right)^{1/2} \leq \omega_k \left(f, \frac{1}{n} \right)_p \leq C_2 \left(\sum_{n=1}^{\infty} a_n^2 \right)^{1/2}, \tag{29}
\]

where constants \(C_1 \) and \(C_2 \) do not depend on \(n \) and \(f \).

Lemma 14. A function \(f \) belongs to the class \(N(p, \theta, r, \lambda, \varphi) \) if and only if

\[
\left(\sum_{\mu=n+1}^{\infty} 2^{\mu \theta} E_{2^n} (f)^{\theta} + 2^{-n \lambda \mu} \sum_{\mu=0}^{\infty} 2^{\mu(r+\lambda) \theta} E_{2^n} (f)^{\theta} \right)^{1/\theta} \leq C \varphi \left(\frac{1}{2^n} \right), \tag{30}
\]

where constant \(C \) does not depend on \(n \).

Proof of the lemma is given in [1].

Lemma 15. Let \(f \in L_p, 1 < p < \infty \), and

\[
f(x) \sim \sum_{\mu=0}^{\infty} a_\mu \cos 2^\mu x, \quad a_\mu \geq 0. \tag{31}
\]

The following inequalities hold:

\[
C_1 \left(\sum_{\mu=0}^{\infty} a_\mu^2 \right)^{1/2} \leq \| f \|_p \leq C_2 \left(\sum_{\mu=0}^{\infty} a_\mu^2 \right)^{1/2}, \tag{32}
\]

where constants \(C_2 \) and \(C_1 \) do not depend on \(f \).

Proof of the lemma is due to Zygmund [14, vol. I, p. 326].

Corollary 16. Lemma 15 yields the following estimate:

\[
C_1 \left(\sum_{\mu=n}^{\infty} a_\mu^2 \right)^{1/2} \leq E_{2^n} (f)_p \leq C_2 \left(\sum_{\mu=n}^{\infty} a_\mu^2 \right)^{1/2}, \tag{33}
\]

where constants \(C_2 \) and \(C_1 \) do not depend on \(n \) and \(f \).

4. Proofs

Now we prove our results.

Proof of Theorem 1. Put

\[
I_1 = \int_0^{1/(n+1)} t^{-\theta-1} \omega_k (f, t)_p^\theta \, dt, \tag{34}
\]

\[
I_2 = \int_{1/(n+1)}^1 t^{-(r+\lambda)\theta-1} \omega_k (f, t)_p^\theta \, dt.
\]

We have [9, p. 55]

\[
I_1 = \sum_{\mu=n+1}^{\infty} \int_{1/\mu}^{1/\mu+1} t^{-\theta-1} \omega_k (f, t)_p^\theta \, dt \leq C_1 \sum_{\mu=n+1}^{\infty} \omega_k \left(f, \frac{1}{\mu} \right)_p \varphi^{\theta-1} \tag{35}
\]

and, taking into account properties of modulus of smoothness [15],

\[
I_1 \geq \sum_{\mu=n+1}^{\infty} \omega_k \left(f, \frac{1}{\mu+1} \right)_p \int_{1/(\mu+1)}^{1/\mu} t^{-\theta-1} \, dt \tag{36}
\]

In an analogous way, we estimate

\[
I_2 \leq \sum_{\mu=1}^{n} \omega_k \left(f, \frac{1}{\mu} \right)_p \int_{1/(\mu+1)}^{1/\mu} t^{-(r+\lambda)\theta-1} \, dt \tag{37}
\]

Let \(f \in N(p, \theta, r, \lambda, \varphi) \). For a positive integer \(n \), we put \(\delta = 1/(n+1) \). Then we have

\[
f^\theta = I_1 + \delta^{\lambda \theta} I_2 \geq C_5 \left(\sum_{\mu=n+1}^{\infty} \omega_k \left(f, \frac{1}{\mu} \right)_p \varphi^{\theta-1} \right) + n \delta^{\lambda \theta} \sum_{\mu=1}^{n} \omega_k \left(f, \frac{1}{\mu} \right)_p \varphi^{(r+\lambda)\theta-1}. \tag{38}
\]
Hence, we obtain

\[I = \left(\sum_{y=n+1}^{\infty} \omega_k \left(f, \frac{1}{y} \right)_p^{\theta-1}
+ n^{-\lambda \theta} \sum_{y=1}^{n} \omega_k \left(f, \frac{1}{y} \right)_p^{\theta} \right)^{1/\theta} \leq C_4 I \]

\[\leq C_6 \varphi \left(\frac{1}{n+1} \right) \leq C_8 \varphi \left(\frac{1}{n} \right), \]

which proves inequality (9).

Now we suppose that inequality (9) holds. For \(\delta \in (0, 1) \), we choose the positive integer \(n \) satisfying \(1/(n+1) < \delta \leq 1/n \). Then, taking into consideration the estimates from above for \(I_1 \) and \(I_2 \), we have

\[I_1 = \int_0^{1/(n+1)} \int_0^{1/(n+1)} t^{r-\theta-1} \omega_k (f, t) \left(\frac{1}{p} \right)^{\theta} \, dt \]

\[+ \int_{1/(n+1)}^{\delta} t^{r-\theta-1} \omega_k (f, t) \left(\frac{1}{p} \right)^{\theta} \, dt \]

\[+ \delta^{\lambda \theta} \int_{\delta}^{1} t^{-\lambda \theta-1} \omega_k (f, t) \left(\frac{1}{p} \right)^{\theta} \, dt \leq I_1 + \delta^{\lambda \theta} I_2 \]

\[\leq C_9 \left(\sum_{y=n+1}^{\infty} \omega_k \left(f, \frac{1}{y} \right)_p^{\theta} \right)^{1/\theta} \]

\[+ n^{-\lambda \theta} \sum_{y=1}^{n} \omega_k \left(f, \frac{1}{y} \right)_p^{\theta} \left(r + \lambda \theta - 1 \right). \]

Hence

\[I \leq C_{10} I \leq C_{11} \varphi \left(\frac{1}{n} \right) \leq C_{12} \varphi \left(\frac{1}{2n} \right) \leq C_{13} \varphi \left(\varphi \left(\frac{1}{n} \right) \right), \]

implying that \(f \in N(p, \theta, r, \lambda, \phi) \).

Proof of Theorem 1 is completed. \(\square \)

Proof of Theorem 2. Theorem 1 implies that the condition \(f \in N(p, \theta, r, \lambda, \phi) \) is equivalent to the condition

\[\sum_{y=n+1}^{\infty} \omega_k \left(f, \frac{1}{y} \right)_p^{\theta-1} + n^{-\lambda \theta} \sum_{y=1}^{n} \omega_k \left(f, \frac{1}{y} \right)_p^{\theta} \left(r + \lambda \theta - 1 \right) \]

\[\leq C_1 \varphi \left(\frac{1}{n} \right), \]

where constant \(C_1 \) does not depend on \(n \). Lemma 13 yields that the last estimate is equivalent to the estimate

\[\sum_{y=n+1}^{\infty} \left(\sum_{y=n+1}^{\infty} \omega_k \left(f, \frac{1}{y} \right)_p \left(r + \lambda \theta - 1 \right) \right)^{1/\theta} \]

\[+ n^{-\lambda \theta} \sum_{y=1}^{n} \omega_k \left(f, \frac{1}{y} \right)_p^{\theta} \left(r + \lambda \theta - 1 \right) \]

\[\leq C_2 \varphi \left(\frac{1}{n} \right). \]

For \(k - r > 0 \), making use of Lemmas 10 and 11, we obtain

\[J_1 \geq C_3 \sum_{y=\infty}^{\infty} \left(\sum_{y=\infty}^{\infty} \omega_k \left(f, \frac{1}{y} \right)_p \right)^{1/\theta} \]

\[\leq C_3 \sum_{y=\infty}^{\infty} \omega_k \left(f, \frac{1}{y} \right)_p \frac{1}{\theta}. \]

In an analogous way, for \(r \theta > 0 \), we get

\[J_2 \geq C_4 \sum_{y=\infty}^{\infty} \omega_k \left(f, \frac{1}{y} \right)_p \frac{1}{\theta}. \]

We estimate the term \(J_2 \) from above:

\[J_2 \leq C_5 \sum_{y=\infty}^{\infty} \omega_k \left(f, \frac{1}{y} \right)_p \frac{1}{\theta}. \]

where constant \(C_5 \) does not depend on \(n \). Hence, if we denote the terms on the left-hand side of the inequality by \(J_1, J_2, J_3, \) and \(J_4 \), respectively, then condition \(f \in N(p, \theta, r, \lambda, \phi) \) is equivalent to the condition

\[J_1 + J_2 + J_3 + J_4 \leq C_2 \varphi \left(\frac{1}{n} \right). \]
For I_1, we have

$$I_1 \leq C_6 \left(\sum_{\nu=1}^{\infty} \nu^{-(k-r)\theta-1} \left(\sum_{\mu=1}^{\nu} a^{\mu}_\nu (k+1)^p - 2 \right)^{\theta/p} \right)$$

and applying once more Lemmas 10 and 11, we obtain

$$I_1 \leq C_7 \sum_{\nu=[(n+1)/4]}^{\infty} a^\theta_\nu \nu^{\theta+\theta/p-1} + n^{-(k-r)\theta} \left(\sum_{\mu=1}^{[n/2]} a^{\mu}_\nu (k+1)^p - 2 \right)^{\theta/p}.$$

Put

$$I_1 = n^{-(k-r)\theta} \sum_{\mu=1}^{[n/2]} a^\mu_\nu (k+1)^p - 2.$$

Then, for

$$I_2 = I_1 n^{(k-r)\theta},$$

taking into account the fact that $(k+1) p - 2 \geq 0$ and $a_\nu \downarrow 0$, we get

$$I_2 = \sum_{\mu=1}^{[n/2]+1} a^\mu_\nu (k+1)^p - 2 \leq \sum_{\mu=1}^{[n/2]} a^\mu_\nu (k+1)^p - 2 + a^{[n/2]+1}_\nu \sum_{\mu=1}^{n} (k+1)^p - 2 \leq \sum_{\mu=1}^{[n/2]} a^\mu_\nu (k+1)^p - 2 + C_9 n^{(k+1)p-1} a^{[n/2]+1}_\nu \leq C_9 \sum_{\mu=1}^{[n/2]} a^\mu_\nu (k+1)^p - 2.$$

Since $k - r - \lambda > 0$, we have

$$I_1^{\theta/p} \leq C_{10} n^{-(k-r)\theta} \left(\sum_{\mu=1}^{[n/2]} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p} \leq C_{11} n^{-\lambda \theta} \sum_{\nu=[n/2]}^{\infty} \nu^{-(k-r-\lambda)\theta-1} \left(\sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p} \leq C_{11} n^{-\lambda \theta} \sum_{\nu=[n/2]}^{\infty} \nu^{-(k-r-\lambda)\theta-1} \left(\sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p}.$$

Applying Lemma 12, we obtain

$$I_1^{\theta/p} \leq C_{12} n^{-\lambda \theta} \sum_{\nu=1}^{[n]} \nu^{-(k-r-\lambda)\theta-1} \left(a^{\nu}_\nu (k+1)^p - 2 \right)^{\theta/p} \leq C_{12} n^{-\lambda \theta} \sum_{\nu=1}^{[n]} \nu^{(r+\lambda)\theta+\theta-\theta/p-1}.$$

From (50), it follows that

$$I_1 \leq C_{13} \left(\sum_{\nu=[(n+1)/4]}^{\infty} a^\theta_\nu \nu^{\theta+\theta/p-1} + n^{-(r+\lambda)\theta} \sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p}.$$

This way, inequalities (46), (47), (48), and (56) yield

$$C_{14} \sum_{\nu=[(n+1)/4]}^{\infty} a^\theta_\nu \nu^{\theta+\theta/p-1} \leq I_1 + J_2$$

and

$$C_{15} \left(\sum_{\nu=[(n+1)/4]}^{\infty} a^\theta_\nu \nu^{\theta+\theta/p-1} + n^{-(r+\lambda)\theta} \sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p}.$$

Now we estimate I_3 and J_4. Put

$$A_1 = n^{\lambda \theta} J_3 = \sum_{\nu=1}^{[\nu]} \nu^{(r+\lambda-k)\theta-1} \left(\sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p}$$

and

$$A_2 = n^{\lambda \theta} J_4 = \sum_{\nu=1}^{n} \nu^{(r+\lambda)\theta-1} \left(\sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p}.$$

Applying Lemma 12, for $r + \lambda - k < 0$, we get

$$A_1 \leq C_{16} \sum_{\nu=1}^{n} a^\theta_\nu \nu^{(r+\lambda)\theta+\theta-\theta/p-1}.$$

We estimate A_2 in an analogous way:

$$A_2 \leq C_{17} \left(\sum_{\nu=1}^{n} \nu^{(r+\lambda)\theta-1} \left(\sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p} + \sum_{\nu=1}^{n} \nu^{(r+\lambda)\theta-1} \left(\sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p} \right) + n^{(r+\lambda)\theta} \left(\sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p}.$$

We estimate the series

$$B = \left(\sum_{\mu=1}^{\nu} a^\mu_\nu (k+1)^p - 2 \right)^{\theta/p}.$$

First let $\theta/p > 1$. Applying Hölder’s inequality, we have
\[
\sum_{\mu=n+1}^{\infty} a_\mu^p \mu^{p-2} \leq \left(\sum_{\mu=n+1}^{\infty} \left(a_\mu^p \mu^{p-1+r-p/\theta} \right)^{\theta/p} \right)^{\theta/p} \times \left(\sum_{\mu=n+1}^{\infty} \mu^{-(r-p/\theta+1)\theta/(\theta-p)} \right)^{(\theta-p)/\theta}.
\]
(62)

Since $(r-p/\theta + 1)/(\theta/(\theta - p)) = rp(\theta/(\theta - p)) + 1 > 1$, we get
\[
\sum_{\mu=n+1}^{\infty} a_\mu^p \mu^{p-2} \leq C_{19} n^{-p} \left(\sum_{\mu=n+1}^{\infty} \sum_{\nu=2}^{2^{\nu-1}} a_\nu^\theta \mu^{-\theta/p+\nu-1} \right)^{\theta/p}.
\]
(63)

So, for $\theta/p > 1$, we have proven that
\[
B \leq C_{20} n^{-\theta} \sum_{\mu=n+1}^{\infty} a_\mu^\theta \mu^{\theta-\theta/p-1}.
\]
(64)

Let $\theta/p \leq 1$. For given n, we choose the positive integer N such that $2^N \leq n + 1 < 2^{N+1}$. Then, we have
\[
B \leq \left(\sum_{\mu=2^{N-1}}^{\infty} a_\mu^p \mu^{p-2} \right)^{\theta/p} \leq \left(\sum_{\mu=2^{N-1}}^{\infty} \left(\sum_{\nu=2}^{2^{\nu-1}} a_\nu^p a_\mu^\theta \mu^{-\theta/p+\nu-1} \right) \right)^{\theta/p} \leq C_{21} \left(\sum_{\nu=2}^{2^{N-1}} a_\nu^2 \nu^{2(\nu-1)} \right)^{\theta/p}.
\]
(65)

Making use of Lemma 9, we obtain
\[
B \leq C_{22} \sum_{\nu=2}^{\infty} a_\nu^2 \nu^{2(\nu-1)} \leq C_{22} \sum_{\nu=N}^{\infty} a_\nu^2 \nu^{2(\nu-1)} \leq C_{22} \sum_{\nu=N}^{\infty} a_\nu^2 \nu^{2(\nu-1)} \leq C_{22} \sum_{\nu=N}^{\infty} a_\nu^2 \nu^{2(\nu-1)} \leq C_{22} \left[\frac{n+1}{4} \right]^{-\theta} \sum_{\nu=[n+1]/4}^{\infty} a_\nu^\theta \nu^{\theta-\theta/p-1}.
\]
(66)

Since, for $n \geq 3$, $[n+1]/4 \geq n/12$ holds, we get
\[
B \leq C_{23} n^{-\theta} \sum_{\nu=[n+1]/4}^{\infty} a_\nu^\theta \nu^{\theta-\theta/p-1}.
\]
(67)

This way, for $0 < \theta/p < \infty$, we proved that
\[
B \leq C_{24} n^{-\theta} \sum_{\nu=[n+1]/4}^{\infty} a_\nu^\theta \nu^{\theta-\theta/p-1}.
\]
(68)

Hence, (60) yields
\[
A_2 \leq C_{25} \left(\sum_{\nu=1}^{n} a_\nu^\theta \nu^{(r+\lambda)\theta-\theta/p-1} \right) + n^{\lambda\theta} \sum_{\nu=[n+1]/4}^{\infty} a_\nu^\theta \nu^{\theta-\theta/p-1}.
\]
(69)

Now, from (59), it follows that
\[
I_3 + I_4 = n^{-\lambda\theta} (A_1 + A_2)
\]
\[
\leq C_{26} \left(n^{-\lambda\theta} \sum_{\nu=1}^{n} a_\nu^\theta \nu^{(r+\lambda)\theta-\theta/p-1} \right) + \sum_{\nu=\lceil [n+1]/4 \rceil}^{\infty} a_\nu^\theta \nu^{\theta+\theta-\theta/p-1}.
\]
(70)

Further, we estimate the series
\[
A_3 = \sum_{\nu=\lceil [n+1]/4 \rceil}^{\infty} a_\nu^\theta \nu^{\theta+\theta-\theta/p-1},
\]
(71)

where
\[
A_4 = \sum_{\nu=\lceil [n+1]/4 \rceil}^{\infty} a_\nu^\theta \nu^{\theta+\theta-\theta/p-1} \leq C_{27} \left(\sum_{\nu=\lceil [n+1]/4 \rceil}^{\infty} a_\nu^\theta \nu^{\theta+\theta-\theta/p-1} \right)^{\theta/(\theta-p)}.
\]
(72)

Hence
\[
A_3 \leq C_{29} \left(n^{-\lambda\theta} \sum_{\nu=1}^{n} a_\nu^\theta \nu^{(r+\lambda)\theta-\theta/p-1} \right) + \sum_{\nu=\lceil [n+1]/4 \rceil}^{\infty} a_\nu^\theta \nu^{\theta+\theta-\theta/p-1}.
\]
(73)

Making use of (73) and (70), we have
\[
I_3 + I_4 \leq C_{30} \left(n^{-\lambda\theta} \sum_{\nu=1}^{n} a_\nu^\theta \nu^{(r+\lambda)\theta-\theta/p-1} \right) + \sum_{\nu=\lceil [n+1]/4 \rceil}^{\infty} a_\nu^\theta \nu^{\theta+\theta-\theta/p-1}.
\]
(74)

Hence, applying (73) in (57), we obtain
\[
I_1 + I_2 + I_3 + I_4 \leq C_{31} \left(n^{-\lambda\theta} \sum_{\nu=1}^{n} a_\nu^\theta \nu^{(r+\lambda)\theta-\theta/p-1} \right) + \sum_{\nu=\lceil [n+1]/4 \rceil}^{\infty} a_\nu^\theta \nu^{\theta+\theta-\theta/p-1}.
\]
(75)

Now we estimate A_1 and A_2 from below. Making use of Lemma 12, we get
\[
A_1 \geq C_{32} n^{\lambda\theta} \sum_{\nu=1}^{n} a_\nu^\theta \nu^{(r+\lambda)\theta-\theta/p-1},
\]
(76)
and, in an analogous way,

\[A_2 \geq \sum_{y=1}^{n} v_{(r+\lambda)\theta/2} \left(\sum_{\mu=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2} \right)^{\frac{\theta}{p}} \]

\[\geq C_{33} \sum_{y=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2}. \]

Hence,

\[A_1 + A_2 \geq C_{34} \sum_{y=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2}. \]

(78)

This way the following inequality holds:

\[J_3 + I_4 \geq C_{35} n^{-\lambda \theta} \sum_{y=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2}. \]

(79)

From (77), it follows that

\[J_1 + J_2 + J_3 + I_4 \geq C_{36} \left(\sum_{y=8(n+1)}^{\infty} a_{x,\mu}^{\theta/2} \right) \]

\[+ n^{-\lambda \theta} \sum_{y=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2}. \]

Since

\[\sum_{y=8(n+1)}^{\infty} a_{x,\mu}^{\theta/2} \leq C_{37} \sum_{y=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2}, \]

(80)

holds, we have

\[\sum_{y=8(n+1)}^{\infty} a_{x,\mu}^{\theta/2} \leq C_{38} \left(\sum_{y=8(n+1)}^{\infty} a_{x,\mu}^{\theta/2} \right)^{\frac{\theta}{p}} \]

\[+ n^{-\lambda \theta} \left(\sum_{y=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2} \right). \]

(81)

Now, estimates (80) and (75) imply that

\[C_{40} \left(\sum_{y=8(n+1)}^{\infty} a_{x,\mu}^{\theta/2} \right)^{\frac{\theta}{p}} \]

\[+ n^{-\lambda \theta} \left(\sum_{y=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2} \right). \]

\[\leq J_1 + J_2 + J_3 + I_4 \leq C_{41} \left(\sum_{y=8(n+1)}^{\infty} a_{x,\mu}^{\theta/2} \right)^{\frac{\theta}{p}} \]

\[+ n^{-\lambda \theta} \left(\sum_{y=1}^{n} a_{x,\mu}^{(r+\lambda)\theta/2} \right). \]

(83)

This way we proved that condition (9) is equivalent to the condition of the theorem. Since condition (9) is equivalent to the condition \(f \in N(p, \theta, r, \lambda, \phi) \), proof of Theorem 2 is completed.

\[\Box \]

Proof of Theorem 5. Considering Lemma 14, condition \(f \in N(p, \theta, r, \lambda, \phi) \) is equivalent to the condition

\[\sum_{y=8(n+1)}^{\infty} 2^{\nu(y)} E_2 \left(f^\theta \right)_p + 2^{-\lambda \theta} \sum_{y=0}^{n} 2^{(r+\lambda)\theta} E_2 \left(f^\theta \right)_p \]

\[\leq \sum_{y=8(n+1)}^{\infty} C_{42} \left(\frac{1}{2^n} \right)^{\theta}, \]

where constant \(C \) does not depend on \(n \). Corollary 16 yields the last estimate equivalent to the estimate

\[\sum_{y=8(n+1)}^{\infty} 2^{\nu(y)} \left(\sum_{\mu_2,\mu_2}^{\infty} a_{\mu_2}^{(r+\lambda)\theta} \right)^{\frac{\theta}{2}} \]

\[\leq \sum_{y=8(n+1)}^{\infty} C_{43} \left(\frac{1}{2^n} \right)^{\theta}, \]

where constant \(C_{43} \) does not depend on \(n \).

Put

\[J_1 = \sum_{y=8(n+1)}^{\infty} 2^{\nu(y)} \left(\sum_{\mu_2,\mu_2}^{\infty} a_{\mu_2}^{(r+\lambda)\theta} \right)^{\frac{\theta}{2}}, \]

\[J_2 = \sum_{y=0}^{n} 2^{(r+\lambda)\theta} \left(\sum_{\mu_2,\mu_2}^{\infty} a_{\mu_2}^{(r+\lambda)\theta} \right)^{\frac{\theta}{2}}, \]

we estimate \(J_1 \) and \(J_2 \) from below and above.

Let \(0 < \theta/2 \leq 1 \). Using Lemma 9, changing the order of summation, we get

\[J_1 \leq \sum_{y=8(n+1)}^{\infty} 2^{\nu(y)} \sum_{\mu}^{\infty} a_{\mu}^{(r+\lambda)\theta} \]

\[\leq \sum_{y=8(n+1)}^{\infty} 2^{\nu(y)} \sum_{\mu=\mu_1}^{\infty} a_{\mu}^{(r+\lambda)\theta} \sum_{\mu_1}^{\infty} 2^{\nu(y)\theta}. \]

Therefrom, taking into consideration the fact that \(r\theta > 0 \) while computing the second sum, we obtain

\[J_1 \leq C_{44} \sum_{\mu=\mu_1}^{\infty} a_{\mu}^{(r+\lambda)\theta}. \]

(84)

Let \(1 \leq \theta/2 < \infty \) and \(0 < \epsilon < r \). Applying Hölder’s inequality, we have

\[A = \sum_{\mu_2,\mu_2}^{\infty} a_{\mu_2}^{(r+\lambda)\theta} \left(\sum_{\mu_2,\mu_2}^{\infty} a_{\mu_2}^{(r+\lambda)\theta} \right)^{1/\theta'}, \]

(85)

where \(2/\theta + 1/\theta' = 1 \). Computing the second sum, we obtain

\[A \leq C_{45} \sum_{\mu_2,\mu_2}^{\infty} a_{\mu_2}^{(r+\lambda)\theta}. \]

(86)

Now we have

\[J_1 \leq C_{46} \sum_{\mu=\mu_1}^{\infty} 2^{\nu(y)\theta} \sum_{\mu_2,\mu_2}^{\infty} a_{\mu_2}^{(r+\lambda)\theta} \]

\[\leq C_{46} \sum_{\mu_2,\mu_2}^{\infty} a_{\mu_2}^{(r+\lambda)\theta} \sum_{\mu_2,\mu_2}^{\infty} 2^{\nu(y)\theta} \leq C_{47} \sum_{\mu=\mu_1}^{\infty} a_{\mu}^{(r+\lambda)\theta}. \]

(87)
This way, for $0 < \theta < \infty$, we have

$$J_1 \leq C_{48} \sum_{\mu=n+1}^{\infty} a_\mu \theta^{2\mu}$$

(92)

where constant C_{48} does not depend on n.

Now we estimate J_1 from below.

Let $1 \leq \theta/2 < \infty$. Making use of Lemma 9, we get

$$J_1 \geq \sum_{y=n+1}^{\infty} 2^{\nu y} \sum_{\mu=n+1}^{\infty} a_\mu \theta^{2\mu} = \sum_{\mu=n+1}^{\infty} a_\mu \theta^{2\mu} \sum_{y=n+1}^{\infty} 2^{\nu y}.$$

(93)

Computing the second sum, we get

$$J_1 \geq C_{49} \sum_{\mu=n+1}^{\infty} a_\mu \theta^{2\mu}.$$

(94)

Let $0 < \theta/2 \leq 1$ and $\epsilon > 0$. Applying Hölder’s inequality, we have

$$\sum_{\mu=1}^{\infty} a_\mu^{2\mu} \leq \left(\sum_{\mu=1}^{\infty} a_\mu^{2\mu}^\theta \right)^{1/\theta'} \leq C_{50} \left(\sum_{\mu=1}^{\infty} a_\mu^{2\mu} \right)^{\theta'/2},$$

(95)

where $\theta/2 + 1/\theta' = 1$. The last estimate implies that

$$J_1 \geq C_{51} \sum_{\mu=n+1}^{\infty} 2^\nu y \mu \sum_{\mu=n+1}^{\infty} a_\mu \theta^{2\mu}.$$

(96)

Changing the order of summation and then computing the second sum, we obtain

$$J_1 \geq C_{52} \sum_{\mu=n+1}^{\infty} \sum_{y=n+1}^{\infty} a_\mu \theta^{2\mu}.$$

(97)

where constant C_{52} does not depend on n.

Consequently, for every $0 < \theta < \infty$, the following estimate holds:

$$C_{53} \sum_{\mu=n+1}^{\infty} a_\mu^{2\mu/\theta} \leq J_1 \leq C_{54} \sum_{\mu=n+1}^{\infty} a_\mu^{2\mu/\theta},$$

(98)

where constants C_{53} and C_{54} do not depend on n.

Now we estimate J_2. Obviously,

$$J_2 \geq 2^{-n\lambda \theta/2} \sum_{\mu=0}^{n} \left(\sum_{y=0}^{n} a_\mu^\theta \right)^{\theta/2}.$$

(99)

Let $1 \leq \theta/2 < \infty$. Applying Lemma 9, changing the order of summation and then computing the second sum, we obtain

$$J_2 \geq 2^{-n\lambda \theta/2} \sum_{\mu=0}^{n} \left(\sum_{y=0}^{n} a_\mu^\theta \right)^{\theta/2}.$$

(100)

Since

$$2^{\nu \theta} \left(\sum_{y=0}^{n} a_\mu^\theta \right)^{\theta/2} \leq \sum_{\mu=n+1}^{\infty} 2^{\nu \theta} \left(\sum_{y=n+1}^{\infty} a_\mu^\theta \right)^{\theta/2} = J_1,$$

(106)
holds and an upper bound for J_1 is already found, we estimate from above the expression

$$I_3 = \sum_{\gamma=0}^{n} 2^{n(r+\lambda)\theta} \left(\sum_{\mu=\gamma}^{n} \mu^2 \right)^{\theta/2}. \quad (107)$$

Let $0 < \theta/2 \leq 1$. Applying Lemma 9, we obtain

$$I_3 \leq \sum_{\gamma=0}^{n} 2^{n(r+\lambda)\theta} \sum_{\mu=\gamma}^{n} \mu^2 = \sum_{\mu=0}^{n} \mu^2 \sum_{\gamma=0}^{n} 2^{n(r+\lambda)\theta} \mu^2 \leq C_{65} \sum_{\mu=0}^{n} \mu^2 2^{n(r+\lambda)\theta}. \quad (108)$$

Let $1 \leq \theta/2 < \infty$ and $0 < \varepsilon < r + \lambda$. Then, applying Hölder’s inequality, we have

$$\sum_{\mu=\gamma}^{n} \mu^2 \leq \left(\sum_{\mu=\gamma}^{n} \mu^{2\theta/\varepsilon} \right)^{\varepsilon/(2\theta)} \left(\sum_{\mu=\gamma}^{n} \mu^{2\theta/\varepsilon} \right)^{1/(2\theta)} \leq \left(\sum_{\mu=\gamma}^{n} \mu^{2\theta/\varepsilon} \right)^{1/(2\theta)} \left(\sum_{\mu=\gamma}^{n} \mu^{2\theta/\varepsilon} \right)^{1/(2\theta)}, \quad (109)$$

where $2\theta + 1/\theta' = 1$. Using the last estimate, we get

$$I_3 \leq \sum_{\gamma=0}^{n} 2^{n(r+\lambda)\theta} \left(\sum_{\mu=\gamma}^{n} \mu^{2\theta/\varepsilon} \right)^{\varepsilon/(2\theta)} \sum_{\mu=\gamma}^{n} \mu^2 \mu^{2\theta/\varepsilon} \leq C_{63} \sum_{\mu=\gamma}^{n} \mu^{2(r+\lambda-\varepsilon)\theta} \sum_{\mu=\gamma}^{n} \mu^2 \mu^{2\theta/\varepsilon}. \quad (110)$$

Changing the order of summation and computing the second sum, we obtain

$$I_3 \leq C_{65} \sum_{\mu=0}^{n} \mu^2 \mu^{2(r+\lambda)\theta} \leq C_{64} \sum_{\mu=0}^{n} \mu^2 \mu^{2(r+\lambda)\theta}. \quad (111)$$

Therefore, for every $0 < \theta < \infty$, the following estimate holds:

$$I_3 \leq C_{65} \sum_{\mu=0}^{n} \mu^2 \mu^{2(r+\lambda)\theta}. \quad (112)$$

Now, making use of inequalities (105) and (98), we have

$$I_2 \leq C_{66} \left(2^{-\lambda \theta m} \sum_{\mu=0}^{n} \mu^2 \mu^{2(r+\lambda)\theta} + \sum_{\mu=n+1}^{\infty} \mu^2 \right). \quad (113)$$

This way, inequalities (98) and (104) and the last inequality imply the estimate

$$C_{67} \left(\sum_{\mu=0}^{\infty} \mu^2 \mu^{2(r+\lambda)\theta} + 2^{-\lambda \theta m} \sum_{\mu=0}^{n} \mu^2 \mu^{2(r+\lambda)\theta} \right) \leq I_1 + I_2 \leq C_{68} \left(\sum_{\mu=n+1}^{\infty} \mu^2 \mu^{2(r+\lambda)\theta} + 2^{-\lambda \theta m} \sum_{\mu=0}^{n} \mu^2 \mu^{2(r+\lambda)\theta} \right), \quad (114)$$

where constants C_{67} and C_{68} do not depend on n. Hence, considering condition (85), we conclude that condition $f \in N(p, \theta, r, \lambda, \varphi)$ is equivalent to the condition

$$A_n = \sum_{\mu=n+1}^{\infty} \mu^2 \mu^{2(r+\lambda)\theta} + 2^{-\lambda \theta m} \sum_{\mu=0}^{n} \mu^2 \mu^{2(r+\lambda)\theta} \leq C_{69} \phi \left(\frac{1}{2\theta} \right), \quad (115)$$

where constant C_{69} does not depend on n.

We put

$$D_m = \sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu \leq C_{70} \sum_{\nu=0}^{\infty} \lambda\mu^\nu \leq C_{71} \sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu. \quad (116)$$

For given m, we choose the positive integer m such that $2^n \leq m + 1 < 2^{n+1}$.

First we consider the case $2^n < m + 1 < 2^{n+1}$. We have

$$D_m = \sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu + m^{-\lambda \theta} \sum_{\nu=m+1}^{\infty} \lambda^\nu \mu^\nu + m^{-\lambda \theta} \sum_{\nu=0}^{m} \lambda^\nu \mu^\nu \leq C_{70} \sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu + C_{71} \sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu \quad (117)$$

Since $\lambda\nu = \nu$ for $\nu \neq 2^n$, we get

$$D_m = \sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu + m^{-\lambda \theta} \sum_{\nu=m+1}^{\infty} \lambda^\nu \mu^\nu \leq \sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu + m^{-\lambda \theta} \sum_{\nu=m+1}^{\infty} \lambda^\nu \mu^\nu. \quad (118)$$

Further, since $\lambda\nu = \nu$, we get

$$D_m = \sum_{\nu=m+1}^{\infty} \lambda^\nu \mu^\nu + m^{-\lambda \theta} \sum_{\nu=0}^{m} \lambda^\nu \mu^\nu \leq C_{71} \sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu. \quad (119)$$

Hence, for $2^n < m + 1 < 2^{n+1}$, we obtain

$$C_{70} \left(\sum_{\nu=m+1}^{\infty} \lambda^\nu \mu^\nu + 2^{-\lambda \theta m} \sum_{\nu=0}^{n} \lambda^\nu \mu^\nu \right) \leq C_{71} \left(\sum_{\nu=0}^{\infty} \lambda^\nu \mu^\nu \right). \quad (120)$$

where constants C_{70} and C_{71} do not depend on m and n.
Let us assume now that $m + 1 = 2^n$. In an analogous way, we have
\[
D_m = \sum_{r=2^n}^{\infty} \sum_{\mu=0}^{\infty} \mu \sum_{\nu=0}^{\mu} \nu \theta r \theta + 2^{-n \theta} \sum_{r=2^n}^{\infty} \sum_{\mu=0}^{\infty} \mu \sum_{\nu=0}^{\mu} \nu \theta r \theta + 2^{-n \theta} \sum_{r=2^n}^{\infty} \sum_{\mu=0}^{\infty} \mu \sum_{\nu=0}^{\mu} \nu \theta r \theta = A_n.
\]

Thus, for $2^n \leq m + 1 < 2^{n+1}$, the following estimate holds:
\[
C_{72} A_n \leq D_m \leq C_{73} A_n,
\]
where constants C_{72} and C_{73} do not depend on m and n. Hence, considering condition (115), we conclude that condition $f \in N(p, \theta, r, \lambda, \phi)$ is equivalent to the condition
\[
D_m \leq C_{74} \phi \left(\frac{1}{2^n} \right),
\]
where constant C_{74} does not depend on m and n. Since $1/2^n < 2/(m + 1) < 2/m$, we get
\[
\phi \left(\frac{1}{2^n} \right) \leq C_{75} \phi \left(\frac{2}{m+1} \right) \leq C_{76} \phi \left(\frac{2}{m} \right),
\]
where constant C_{76} does not depend on m and n; and since $1/2^n \geq 1/(m + 1) \geq 1/2m$, we get
\[
\phi \left(\frac{1}{2^n} \right) \geq C_{77} \phi \left(\frac{1}{2m} \right) \geq C_{78} \phi \left(\frac{1}{m} \right),
\]
where constant C_{78} does not depend on m and n. This way, condition (123) is equivalent to the condition
\[
D_m \leq C_{79} \phi \left(\frac{1}{m} \right),
\]
where constant C_{79} does not depend on m.

This completes the proof of Theorem 5.

Remark 17. Notice that another way of proving Theorems 2 and 5 is presented in [2]. Our approach here is similar to that used in [16].

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] B. Laković, “Ob odnom klassie funktsii,” Matematički Vesnik, vol. 39, no. 4, pp. 405–415, 1987.

[2] S. Tikhonov, “Characteristics of Besov-Nikol’skii class of function,” Electronic Transactions on Numerical Analysis, vol. 19, pp. 94–104, 2005.
