A Major Costimulatory Molecule on Antigen-presenting Cells, CTLA4 Ligand A, Is Distinct from B7
By Yan Wu, Yong Guo, and Yang Liu

Summary
CTLA4 ligands are important costimulatory molecules because soluble CTLA4Ig blocks the induction of T cell responses and induces T cell tolerance. As CTLA4 immunoglobulin (CTLA4Ig) binds B7 when the latter is expressed on fibroblasts, it was widely assumed that CTLA4Ig blocks T cell costimulation by blocking the function of B7. Here we show that the major costimulatory ligand bound by CTLA4Ig (which we term CTLA4 ligand A) on antigen-presenting cells are not encoded by the B7 gene. CTLA4 ligand A also differs from B7 in cellular distribution and in the respective levels of expression. Both B7 and CTLA4 ligand A are critically involved in T cell costimulation.

Materials and Methods
Production of Anti-B7 mAbs. Antimurine B7 mAbs were generated by fusion of murine myeloma Ag8,653 with rat spleen cells from hamsters that were immunized with Chinese hamster ovary (CHO)-mB7 three times at 2-wk intervals. The hybridoma supernatants were screened for their ability to bind CHO-mB7 but not CHO cells by flow cytometry.

Proliferation of Purified T Cells. CD4 T cells were purified from nonadherent spleen cells from naive CBA/CaJ mice by two rounds of treatment of complement and a cocktail of Abs, including anti-Thyl.2 mAb HO13.4.9 (11), anti-CD8 mAb M31 (12), anti-Mac-1 mAb M1/70.15.15H (13), and anti-heat stable antigen (IISA) mAb J11d (14). The CD4 T cells were stimulated with anti-CD3 mAb supernatants (1:40) and one of the three types of accessory cells: COS cells transfected with FcRII (16) and B7, and T-depleted spleen cells, all pretreated with mitomycin C, as described (17). After 42 h of culture, the cells were pulsed with 1 μCi/well of [3H]TdR for an additional 6 h. The data shown were means of duplicates, with variations <15%.

Analysis of B7 mRNA by PCR. mRNA were prepared from M12.4.1, CH27, or total spleen cells by the fast-tract poly A RNA preparation kit (Clontech, Palo Alto, CA). First strand cDNA were prepared using 50 ng of hexamer random primers, 1 μg mRNA, 200 U Moloney MuLV reverse transcriptase (GIBCO BRL, GA: MD). Similar results were obtained when poly dT or B7 reverse primer were used to prepare the first strand cDNA. The B7 or glyceraldehyde-3-phosphate dehydrogenase DNA were amplified from the cDNA by PCR reaction as has been described. The primers used were: B7 forward primer GAAGCTATGGCTTGACATATTGTCAG, B7 reverse primer AGAAGAACTAAAGGAGACGGTCT, GAPDH forward primer ATGGAGAAAGGAGAGACGGTCT, GAPDH forward primer AAGGCTTGGTGGTCGCTTCGAAATATGGTCAG, B7 reverse primer AGAAGAAGCTAAAAGGAGAGACGGTCT, GAPDH forward primer AAGGCTTGGTGGTCGCTTCGAAATATGGTCAG.
GTGAACGGATTTG, and GAPDH reverse primer CATCGAAGGTGAAGAGTGGGATGTGCT.

Blocking of CTLA4Ig Binding by Anti-B7 mAb 3A12. CHO-mB7, LPS-activated B cells and spleen adherent cells prepared as described were incubated with a given concentration of anti-B7 mAb 3A12 (this study) for 30 min at 4°C. The cells were then incubated with CTLA4Ig (2 μg/ml) for 30 min. The binding of CTLA4Ig was detected by FITC-labeled goat anti-hamster IgG (Tago, Inc., Burlingame, CA) diluted in 1 mg/ml of normal hamster Ig. The data shown, percent maximal binding, was the percentage of CTLA4Ig binding in the absence of blocking Ab, as calculated by the mean fluorescence channel numbers. Goat anti-human IgG diluted with 1 mg/ml of hamster Ig did not bind 3A12 significantly, and this binding has been subtracted.

Results and Discussion

To address whether B7 is the major ligand for CTLA4 on APC, we have generated three antimurine B7 mAbs, 1D5, 3A12, and 7A5. All three mAbs bind B7 and block its costimulatory activity (Fig. 1). We have compared the binding of CTLA4 to normal spleen cells and LPS-activated B cells with that of anti-B7 mAbs. CTLA4Ig gives low but detectable binding to normal spleen cells, whereas three anti-B7 mAbs fail to bind spleen cells (Fig. 2 a). For activated B cells, CTLA4Ig gives much better binding than the anti-B7 mAbs. As measured by the peak fluorescence channel numbers, a saturating amount of CTLA4Ig binds LPS-activated B cells about 20 times as well as anti-B7 mAb (Fig. 2 b), although

Figure 2. Comparative study of B7 and CTLA4 ligand by flow cytometry. (a) Binding of CTLA4Ig and anti-B7 mAbs to CBA/CaJ spleen cells. The cells were incubated with either CTLA4Ig (0.5 μg/ml, 500,000 cells/well in 50 μl), CD48Ig, or a cocktail of three anti-B7 mAbs (3A12, 1D5, and 7A5). The binding of CTLA4Ig was detected with FITC-labeled goat anti-human IgG (Accurate Chemical and Scientific Corp., Westbury, NY), whereas the binding of anti-B7 mAbs was detected with goat anti-hamster Ig (Caltag Laboratories, South San Francisco, CA). (b) Binding of anti-B7 mAb 3A12 (10 μg/ml) and CTLA4Ig (2 μg/ml) to LPS-activated B cells. Similar results were obtained with mAb 1D5. (c) Blocking of CTLA4Ig binding to CHO-mB7 and LPS-activated B cells by 3A12. (d) Blocking of the binding of CTLA4Ig to low density, spleen-adherent cells. This population contains 35% B220+ cells, 36% Mac-1+ cells, 32% CD11c+ cells, and 7% Thyl+ cells.

Figure 1. Characterization of hamster antimurine B7 mAbs. (a) mAbs 1D5, 3A12, and 7A5 bind to murine B7-transfected (CHO-mB7) but not untransfected CHO cells, as analyzed by flow cytometry. (b) Immunoprecipitation analysis of [3H]labeled CHO-mB7 cell lysates with antimurine B7 mAbs. (lane a) Hamster mAb 21F10; (lane b) 1D5; (lane c) 3A12; and (lane d) 7A5. 7A5 was used as hybridoma supernatant, whereas other Ig were used at 3 μg/sample. (c) Antimurine B7 mAbs block the costimulatory activity of murine B7-transfected COS cells. COS cells (10,000/well) transfected with murine B7, FcRII, and B7 + FcRII are used as accessory cells for CBA/CaJ CD4 T cells (100,000) stimulated with 1:40 dilution of anti-CD3 mAb 2C11.145 supernatant.

1790 CTLA4 Ligand A, Costimulatory Molecule on APCs, Is Distinct from B7
both reagents used at saturating concentrations bind CHO cells transfected with B7 comparably (data not shown). Anti-B7 mAb 3A12 blocks CTLA4 binding to CHO-mB7, but not to LPS-activated B cells (Fig. 2 c), or to low-density spleen adherent cells (Fig. 2 d). This differential blocking of CTLA4Ig binding by anti-B7 mAb on different cell types indicates that the majority of the CTLA4 ligand on APC is distinct from B7 expressed on CHO cells. Furthermore, anti-B7 mAbs bind only a fraction of LPS-activated B cells that bind CTLA4Ig (Fig. 3). Thus, among activated B cells, some cells only express a non-B7 CTLA4Ig ligand, which we call CTLA4 ligand A.

Cell surface iodination labels CTLA4Ig ligand on CHO-mB7 but not on LPS-activated B cells as assayed by immunoprecipitation (data not shown). As iodination requires tyrosine or histidine in the extracellular domain, this result raises the possibility that the amino acid composition of CTLA4Ig ligand on LPS-activated B cells may be different from B7. In other words, CTLA4 ligand A may be encoded by a non-B7 gene. Our analysis of B7 mRNA and cell surface expression of B7 and CTLA4 ligands on a panel of B lymphoma cell lines demonstrates that this is the case. The results of two representative cell lines are shown in Fig. 4. CH27 binds both anti-B7 and CTLA4Ig. M12.4.1, on the other hand, binds CTLA4Ig but not anti-B7 (Fig. 4 a). This lack of binding to anti-B7 mAbs was due to a lack of the expression of B7 molecules, as no mRNA for B7 could be detected from M12.4.1 by PCR (Fig. 4 b) using three different methods to prepare the first-strand cDNA. However, B7 mRNA was easily detected from CH27 and spleen cells. Careful titration over 1,000-fold range of RNA concentration gives the same results (data not shown). Thus CTLA4Ig binds to a cell line that does not express B7 gene. These results clearly demonstrate that CTLA4 can bind to a ligand other than B7. These results also rule out the possibility that the distinction of B7 and CTLA4 ligand A revealed by binding studies was due to posttranslational modification of B7.

To test the function of CTLA4Ig ligand A, we compared the costimulatory activity of M12.4.1, which expresses CTLA4Ig ligand A but not B7, with CH27 which expresses both B7 and CTLA4Ig ligand A. The accessory cells were fixed before addition to T cells in order to prevent induction of B7 or CTLA4Ig ligand A on the accessory cells by T cells (18-20). As shown in Fig. 5 a, both M12.4.1 and CH27 have costimulatory activity for CD4 T cells. The costimulatory activity of M12.4.1 was blocked completely by CTLA4Ig but not by anti-B7 mAb 3A23 (Fig. 5 b). These results demonstrate that CTLA4Ig ligand A is critical for costimulatory activity and that CTLA4 ligand A can costimulate T cell proliferation in the absence of B7. To estimate the contribution of B7 and CTLA4Ig to the costimulatory activity of spleen cells, we compared anti-B7 mAb 3A12 with CTLA4Ig in inhibiting CD4 T cell proliferation. 3A12 is comparable with CTLA4Ig in inhibiting the costimulatory activity of B7 expressed on COS cells (Fig. 5 c). However, when spleen APC are used,
CTLA4Ig, which binds both B7 and CTLA4 ligand A, is about 50-100-fold more efficient in blocking T cell costimulation (Fig. 5 d).

These data, taken together, revealed that CTLA4 ligand A is the major ligand on APC and is expressed independently of the B7 gene. Both CTLA4 ligand A and B7 are critically involved in costimulating T cell proliferation. Our results reconcile the widely experienced differences in activity between anti-B7 mAbs and CTLA4Ig (19-22) without invoking a higher affinity of CTLA4Ig (1).

Our conclusion has several important implications for understanding the molecular basis of T cell costimulation. First, much of the function of B7 as deduced from blocking studies by CTLA4Ig (1-8) is likely contributed by both B7 and CTLA4 ligand A. The function of B7 as the major costimulator molecule needs to be reevaluated. Second, although both B7 and CTLA4Ig ligand are involved in T cell costimulation, it is not clear at this point whether they serve different functions in T cell costimulation. Whereas B7 binds both CTLA4 and CD28, it is not known whether CTLA4 ligand A binds CD28, although circumstantial evidence suggests that CD28 may also bind to CTLA4 ligand A. Thus, anti-B7 mAbs only partially block the binding of lymphocytes to CHO cells transfected with CD28 (23). However, the same Abs can completely inhibit the binding of B7 to CD28 (8). Furthermore, M12 which express CTLA4 ligand A but not B7, also enhances the IL-2 production by CD4 T cells (data not shown), suggesting that CTLA4 ligand A may have a function similar to that documented for B7 (8). Freshly isolated spleen cells do not express any detectable amount of B7, although a low level CTLA4 ligand A is detected. The expression of CTLA4 ligand A on unstimulated APC means that CTLA4 ligand A may play a critical role in the initiation of T cell responses, such as preventing clonal anergy of T cells. B7 may play a more critical role in amplification of T cell responses. Finally, when professional APC are used, multiple costimulatory molecules, such as B7 (1-8), CTLA4 ligand A (this study), and HSA (2, 17) are needed for T cell responses, because Abs or soluble receptors to any of these molecules have been shown to inhibit T cell proliferation. On the other hand, cells that express only one of these molecules have been shown to costimulate T cell proliferation. This discrepancy can be explained by the amount of the costimulators expressed, the structure of the costimulator, and the kinetics of expression of the costimulatory molecules in different cell types. The existence of multiple costimulators on APC offers flexibility in regulating costimulatory activity of APC.

We thank Dr. Peter Linsley for providing us with CTLA4Ig; Drs. Charles A. Janeway, Jr., Victor Nussenzweig, and Allen Frey for reviewing this paper; Dr. John Hess for help with flow cytometry; and Roger Rose and Janet Olin for help in manuscript preparation.

This study was supported by the Searle Scholar Program, the Lucille Markey Junior Investigator Award, and the National Institutes of Health (NIH grant CA-58033) (Y. Liu), and by NIH grant CA-16087 to the Kaplan Comprehensive Cancer Center. Y. Guo is supported by NIH training grant CA-09161-18.

Address correspondence to Y. Liu, Department of Pathology and Kaplan Comprehensive Cancer Center, New York University Medical Center, New York, NY 10016.

Received for publication 2 June 1993 and in revised form 29 July 1993.
References

1. Linsley, P.S., W. Brady, L.S. Grosmaire, N.K. Damle, and J.A. Ledbetter. 1991. CTLA4 is a second receptor for B cell activation antigen B7. J. Exp. Med. 174:561.

2. Liu, Y., B. Jones, W. Brady, C.A. Janeway, Jr., and P.S. Linsley. 1992. Costimulation for CD4 T cell growth: co-operation of B7 and the heat-stable antigen. Eur. J. Immunol. 22:2855.

3. Koulouva, L., E.A. Clark, G. Shu, and B. Dupont. 1991. The CD28 ligand B7/BB1 provides costimulatory signal for alloactivation of CD4 T cells. J. Exp. Med. 173:759.

4. Linsley, P.S., P.M. Wallace, J. Johnson, M.G. Gibson, J. Green, J.A. Ledbetter, C. Singh, and M.A. Tepper. 1992. Immunosuppression in vivo by a soluble form of CTLA4 T cell activation molecule. Science (Wash. DC). 257:789.

5. Lenschow, D.J., Y. Zeng, J.R. Thistlethwaite, A. Montag, W. Brady, P.S. Linsley, and J.A. Bluestone. 1992. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science (Wash. DC). 257:789.

6. Turka, A., P.S. Linsley, H. Lin, W. Brady, J.M. Leiden, R.-Q. Wei, M.L. Gibson, X.-G. Zheng, S. Myrdal, D. Gordon, et al. 1992. T-cell activation by CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc. Natl. Acad. Sci. USA. 89:11102.

7. Tan, P., C. Anasetti, J.A. Hansen, J. Melrose, M. Brunvand, J. Bradshaw, J.A. Ledbetter, and P.S. Linsley. 1993. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J. Exp. Med. 177:175.

8. Linsley, P.S., W. Brady, L. Grosmaire, A. Aruffo, N.K. Damle, and J.A. Ledbetter. 1991. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin-2 mRNA accumulation. J. Exp. Med. 173:721.

9. Rothlein, R., L.M. Dustin, S.D. Martin, and T.A. Springer. 1986. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 127:1270.

10. Springer, T.A. 1990. Adhesion receptors of the immune system. Nature (Lond.). 345:426.

11. Marshak-Rothstein, A., P. Fink, T. Gridley, D.A. Raulet, M.J. Bevan, and M.L. Gefter. Properties and applications directed against determinants of the Thy-1 locus. J. Immunol. 122:2491.

12. Sarmiento, M., A.L. Glasebrook, and F.W. Fitch. 1985. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt-2 antigen block T cell mediated cytolysis in the absence of complement. J. Immunol. 125:2665.

13. Springer, T., G. Galfré, D.S. Secher, and C. Milstein. 1979. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur. J. Immunol. 9:301.

14. Grune, J., F.W. Symington, T.J. McKearn, and J. Sprent. 1981. A monoclonal antibody discriminating between subsets of T and B cells. J. Immunol. 127:2496.

15. Leo, O., M. Foo, D.H. Sachs, L.E. Samelson, and J.A. Bluestone. 1987. Identification of a monoclonal antibody against a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA. 84:1374.

16. Miettinen, H., J.K. Rose, and I. Mellman. 1989. Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell. 58:317.

17. Liu, Y., B. Jones, K. Sullivan, A. Aruffo, P.S. Linsley, and C.A. Janeway. 1992. The heat-stable antigen is a costimulatory molecule for CD4 T cells. J. Exp. Med. 175:437.

18. Liu, Y., and C.A. Janeway, Jr. 1991. Microbial induction of co-stimulatory activity for CD4 T cell growth. Int. Immunol. 3:323.

19. Nabavi, N., G.L. Freeman, A. Gault, D. Godfrey, L.M. Nadler, and L.M. Glimcher. 1992. The cytoplasmic domain of MHC class II is necessary for induction of B7 expression on B cells. Nature (Lond.). 360:266.

20. Ranheim, E.A., and T.J. Kipps. 1993. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J. Exp. Med. 177:925.

21. Razi-Wolf, Z., G.J. Freeman, F. Galvin, B. Benacerraf, L. Nadler, and H. Reiser. 1992. Expression and function of the murine B7 antigen, the major costimulatory molecule expressed by peritoneal exudate cells. Proc. Natl. Acad. Sci. USA. 89:4210.

22. Damle, N.K., K. Klussman, G. Leytze, and P.S. Linsley. 1993. Proliferation of human T lymphocytes induced with superantigens is not dependent on costimulation by CD28 counter-receptor B7. J. Immunol. 150:726.

23. Linsley, P.S., E.A. Clark, and J.A. Ledbetter. 1990. The T cell antigen, CD28, mediates adhesion with B cells by interacting with the activation antigen B7/BB1. Proc. Natl. Acad. Sci. USA. 87:5031.