Photoinduced Absorption Spectra of Halogen-Bridged Binuclear Metal Complexes:
Possible Contrast between $R_4[Pt_2(P_2O_5H_2)_4X]\cdot nH_2O$ and $Pt_2(CH_3CS_2)_4I$

Jun Ohara and Shoji Yamamoto
Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
(Received 30 August 2004)

The optical conductivity of photogenerated solitons in quasi-one-dimensional halogen-bridged binuclear metal (MMX) complexes is investigated with particular emphasis on a comparison between the two family compounds $R_4[Pt_2(pop)_4X]\cdot nH_2O$ ($X = Cl, Br, I$; $R = NH_4, Na, K, \ldots$; pop = diphosphonate = $P_2O_5H_2^{2-}$) and $Pt_2(dta)_4I$ ($dta = \text{dithioacetate} = CH_3CS_2^{-}$). Soliton-induced absorption spectra for the pop complexes should split into two bands, while those for the dta complex should consist of a single band.

PACS numbers: 71.45.Lr, 42.65.Tg, 78.20.Ci, 78.20.Bh

Quasi-one-dimensional halogen (X)-bridged metal (M) complexes [1,2], which are referred to as MX chains, provide an interesting stage [3–5] performed by electron-electron correlation, electron-lattice interaction and low dimensionality. The Mott and Peierls insulators compete with each other in their ground states [6,7], while their photoexcited states exhibit novel decay kinetics [8,9]. A large choice of metals, bridging halogens, ligand molecules and counter ions enables us to investigate electron-phonon cooperative phenomena in the one-dimensional Peierls-Hubbard system systematically [10].

In recent years, binuclear metal analogs which are referred to as MMX chains have stimulated renewed interest in this system, exhibiting a wider variety of ground states [11–17]. The existent dimensionality. The Mott and Peierls insulators are, respectively, the metal-halogen spring constant.

Topological excitations of such competing ground states must provide rich physics. Soliton [35] and polaron [36] solutions have indeed been found for an MMX Hamiltonian of the Su-Schrieffer-Heeger type [37], and an analogy between MMX chains and trans-polyacetylene has been pointed out. The solitons turned out to have lower formation energies and smaller effective masses than the polarons. The direct $M(d_{xz})-M(d_{yz})$ overlap effectively reduces the on-site Coulomb repulsion, and therefore, electrons can be more itinerant in MMX chains. In fact MMX chains exhibit a much higher room-temperature conductivity than MX chains [38]. Then we take more and more interest in solitons as charge or spin carriers. Thus motivated, we study the optical conductivity of MMX solitons with particular emphasis on a comparison between the pop and dta complexes. MMX uniform absorption spectra have recently been investigated [39], but photoinduced ones, which are supposed to serve as prominent probes for nonlinear excitations, have neither measured nor calculated yet. Let us start exploring photoexcited mixed-valent binuclear metal complexes.

We describe MMX chains in terms of the one-dimensional $\frac{1}{2}$-filled single-band Peierls-Hubbard Hamiltonian

$$\mathcal{H} = -t_{MMX} \sum_{n,s} (b_{n,s}^\dagger a_{n,s} + a_{n,s}^\dagger b_{n,s}) - \sum_{n,s} \left[t_{MMX} - \alpha (v_{n+1} - v_n) \right] (a_{n+1,s}^\dagger b_{n,s} + b_{n,s}^\dagger a_{n+1,s}) - \beta \sum_{n,s} [(v_n - u_{n-1}) n_s + (u_n - v_n) m_n] + U_M \sum_n (n_{n,n-1} + m_{n-1,n}) + V_{MMX} \sum_{n,s,s'} n_{n,s} m_{n,s'} + V_{MX} \sum_{n,s,s'} n_{n+1,s} m_{n,s'} + \frac{K_{MX}}{2} \sum_n \left[(u_n - v_n)^2 + (v_n - u_{n-1})^2 \right],$$

where $n_{n,s} = a_{n,s}^\dagger a_{n,s}$ and $m_{n,s} = b_{n,s}^\dagger b_{n,s}$ with $a_{n,s}$ and $b_{n,s}$ being the creation operators of an electron with spin $s = \pm$ (up and down) for the $M d_{xz}$ orbitals in the nth MMX unit. t_{MM} and t_{MMX} describe the intradimer and interdimer electron hoppings, respectively. α and β are the intersite and intrasite electron-lattice coupling constants, respectively, with K_{MX} being the metal-halogen spring constant. u_n and v_n are, respectively, the chain-direction displacements of the halogen and metal dimer in the nth MMX unit from their equilibrium positions. We assume, based on the thus-far reported experimental selection rules, different lattice distortion for the $M d_{xy}$ orbitals in the nth MMX unit. t_{MM} and t_{MMX} describe the intradimer and interdimer electron hoppings, respectively. α and β are the intersite and intrasite electron-lattice coupling constants, respectively, with K_{MX} being the metal-halogen spring constant. u_n and v_n are, respectively, the chain-direction displacements of the halogen and metal dimer in the nth MMX unit from their equilibrium positions. We assume, based on the thus-far reported experimental
integral and Coulomb interactions are, unless otherwise noted, set for $t_{M\lambda} = 2.0, U_{M} = 1.0, V_{M\lambda} = 0.5, V_{MXM} = 0.3$. The Coulomb repulsion is much weaker on platinum ions than on nickel ions. The electron-lattice coupling constants are taken in two ways as $\alpha = 0.0, \beta = 1.4$ and $\alpha = 0.3, \beta = 1.0$, which are relevant to the pop and dta complexes and indeed give the CDW and ACP ground states, respectively, under the above parametrization. The lattice distortion is adiabatically determined at each temperature so as to minimize the free energy, where the chain length is kept unchanged.

The optical spectra are obtained by calculating the matrix elements between the ground state $|g\rangle$ of energy E_0 and the excited states $|l\rangle$ of energy E_l ($l = 1, 2, \cdots$) for the current operator $J = \sum_{n=1}^{N} \sum_{n=\pm} j_{n,s}$ with

$$j_{n,s} = \frac{ie}{\hbar} c_{MM} t_{MM} (b^\dagger_{n,s} a_{n,s} - a^\dagger_{n,s} b_{n,s}) + \frac{ie}{\hbar} c_{MXM} \times [t_{M\lambda} - \alpha(v_{n+1} - v_n)] (a^\dagger_{n+1,s} b_{n,s} - b^\dagger_{n,s} a_{n+1,s}), \quad (2)$$

where c_{MM} and c_{MXM} are the average $M-M$ and $M-X-M$ distances, respectively, and are set for $c_{MXM} = 2c_{MM}$. The real part of the optical conductivity is given by

$$\sigma(\omega) = \frac{\pi}{N \omega} \sum_{l} |\langle l|J|g\rangle|^2 \delta(E_l - E_0 - \hbar \omega). \quad (3)$$

$|g\rangle$ is set for the Hartree-Fock (HF) ground state, while $|l\rangle$ is calculated within and beyond the HF approximation, being generally defined as

$$|l\rangle = \sum_{s} \sum_{\epsilon_{\mu,\nu,\lambda} \leq \epsilon_{\mu,\lambda}} \sum_{\epsilon_{\mu,\nu,\lambda} > \epsilon_{\mu,\lambda}} f(\mu, \nu, s; l) c^\dagger_{\mu,\nu,\lambda} c_{\mu,\nu,\lambda} |g\rangle, \quad (4)$$

where ϵ_F is the Fermi energy and $c^\dagger_{\mu,\nu,\lambda}$ creates an electron with spin s for the λth HF eigenstate with an eigenvalue ϵ_{λ}. At the HF level, any excited state is simply approximated by a single Slater determinant as $f(\mu, \nu, s; l) = \delta_{\mu\nu,\lambda l}$. In order to take account of the excitonic effect, we further consider excited states of the configuration-interaction (CI) type, where $f(\mu, \nu, s; l)$ is determined so as to diagonalize the original Hamiltonian (1). We set N, the number of unit cells, equal to 84, which results in spending 2 GB memory on the CI calculation.

Photogenerated defects are necessarily in pairs. We visualize the convergent soliton (S)-antisoliton (\bar{S}) pairs in Fig. 1, which have been calculated at a sufficiently low temperature $k_B T/t_{MXM} = 10^{-3}$ without any assumption on their shapes in an attempt to elucidate the intrinsic excitation mechanism. S_1 and S_2 designate the lowest- and highest-energy soliton solutions, both of which lay their centers on halogen sites (metal dimers) with the CDW (ACP) background. There are further soliton solutions with intermediate energies, but they are unstable in pairs.

Such a pair of solitons generally gives two additional levels within the gap, which are indicated by arrows in Fig. 2. The lower one is doubly occupied, while the upper one is vacant. There appear further soliton-related mid-gap
levels in the strong-coupling and/or -correlation region [40–42]. These levels are all localized around the soliton centers [35]. In Fig. 2, the lower and upper ones are assigned to $S^-\cdots$ and $S^+\cdots$, respectively, in the case of charged soliton pairs, whereas both the levels originate from a single S^\pm itself in the case of neutral soliton pairs because of the breakdown of the spin up-down symmetry. The intragap soliton levels are plotted as functions of the Coulomb interaction in Fig. 3. The Coulomb effect distinguishes charged soliton pairs S^--S^+ from singly excited charged solitons S^\pm. Without any Coulomb interaction, the two localized levels of S^--S^+ are essentially the same as those of single S^\pm. In the case of the CDW background, with increasing Coulomb interaction, the levels of S^- and S^+ move upward and downward, respectively, and then cross. For further increasing Coulomb interaction, the doubly occupied S^- level goes higher in energy than the vacant S^+ level, which are proven to be simultaneously excited. Therefore, in such a strong correlation regime, S^- and S^+ are restructured in a pair so as to have lower- and higher-lying levels, respectively, where the pair-creation energy $\Delta E(S^--S^+)$ is smaller than twice the single-excitation energy $\Delta E(S^\pm)$. Hence, $\Delta E(S^--S^+)$ jumps at certain Coulomb-interaction values, as shown in Fig. 4. Since the same scenario applies in the case of increasing Peierls coupling α, S^--S^+ and single S^\pm behave differently on the ACP background lying in the large-α region, regardless of Coulomb interaction. Thus, photoinduced and doping-induced charged solitons should exhibit distinct absorption spectra in general. This is not the case with neutral solitons. The level structure, formation energy and absorption spectrum of any photoinduced $S^{0\uparrow}-S^{0\downarrow}$ can be obtained by superposing those of singly excited $S^{0\uparrow}$ and $S^{0\downarrow}$. Photoinduced and chemical-defect-induced neutral-soliton absorption spectra may essentially be the same.

Another Coulomb effect causes a striking contrast between the CDW and ACP solitons. With increasing Coulomb interaction, the intragap soliton levels generally move away from the gap center. Since the electron-hole symmetry is broken in the Hamiltonian (1), soliton-related electron and hole levels may be asymmetric with respect to the center of the gap. It is indeed the case with the CDW background, while on the ACP background, a soliton of charge σ, S^σ, and that of spin s, S^s, described in terms of electrons are still almost equivalent to their counterparts $S^{-\sigma}$ and S^{0-s} described in terms of holes, respectively. In consequence, photoinduced soliton absorption spectra for the pop complexes should split into two bands, while those for Pt$_2$(dta)$_4$I should consist of a single band, as demonstrated in Fig. 5. In mixed-valent MX chains, neutral solitons seem to be the lowest-energy pair excitations [43]. Photoexcited [Pt(en)$_2$X]ClO$_4$)$_2$ ($X = \text{Cl, Br}; \text{en} = \text{ethylenediamine} = \text{C}_2\text{H}_8\text{N}_2$) [44,45] indeed exhibit mid-gap absorption attributable to neutral solitons. In mixed-valent MMX chains, on the other hand, charged solitons may be the lowest-energy excitations because the on-site Coulomb repulsion U_M and the Holstein coupling β are effectively smaller and larger, respectively [17,24]. Polaron have much higher formation energies for both MX [1,43] and MMX [36] chains and can therefore be generated from relatively high-energy excited states corresponding to the electron-hole continuum [9,10]. An excitation energy close to the Peierls gap directly induces charge-transfer excitons [8] and they may relax into soliton pairs in nonradiative channels for MMX chains as well. Then there arises an interesting issue: charged solitons or neutral solitons? The optical conductivity spectra possibly answer this question. For the pop complexes, charged (neutral)-soliton mid-gap absorption spectra are double-peaked and the higher (lower)-energy band has a larger oscillator strength, where the excitonic effect is essential. As for Pt$_2$(dta)$_4$I, further experiments such as electron-spin-resonance measurements [46] are supplementary to distinguish between charged and neutral solitons.

The doublet structure of soliton-induced spectra is characteristic of MMX chains and is a consequence of the broken electron-hole symmetry and effective Coulomb correlation [47]. Indeed MX chains also lose the electron-hole

![FIG. 3. Energy shifts of the localized levels accompanying the stable soliton-antisoliton pairs on the CDW and ACP backgrounds, which are measured from the gap center and scaled by the Peierls gap, as functions of the Coulomb interaction, where U_M varies keeping the relation $U_M = V_{\text{AM}}/0.5 = V_{\text{MMX}}/0.3$.](image)

![FIG. 4. Formation energies of the stable soliton-antisoliton pairs on the CDW and ACP backgrounds as functions of the Coulomb interaction, where U_M varies keeping the relation $U_M = V_{\text{AM}}/0.5 = V_{\text{MMX}}/0.3$.](image)
symmetry with their $X\, p_z$ electrons activated [17,48], but it is not the case with the PtX compounds, where the energy level of the $X\, p_z$ orbitals is much lower than that of the $M\, d_{z^2}$ orbitals, and thus, the p-orbital contribution may effectively be incorporated into the intermetal supertransfer energy of a single-band Hamiltonian of the eq. (1) type. In fact, the photoexcited $[\text{Pt(en)}_2\text{I}](\text{ClO}_4)_2$ [49] and $[\text{Pt(en)}_2\text{Br}](\text{ClO}_4)_2$ [45] yield single-peaked mid-gap absorption spectra attributable to charged and neutral solitons, respectively, though the latter S^0 spectrum is accompanied by a weak shoulder [50]. Figure 5 demonstrates that a breakdown of the electron-hole symmetry does not necessarily lead to the doublet structure. The double-peaked soliton absorption is peculiar to the pop complexes but missing in Pt$_2$(dta)$_4$I. Observations of such a contrast will strongly support effective Peierls coupling in Pt$_2$(dta)$_4$I. Distinguishable observations of charged and neutral solitons in the pop complexes will contribute toward realizing photoswitched charge or spin conduction. Photoinduced infrared absorption measurements on MMX compounds are strongly encouraged.

The authors are grateful to K. Iwano and Y. Shimoi for fruitful discussions and helpful comments. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Iketani Science and Technology Foundation.

[1] J. T. Gammel, A. Saxena, I. Batistić, A. R. Bishop and S. R. Phillpot: Phys. Rev. B 45 (1992) 6408.
[2] S. W. Weber-Milbrodt, J. T. Gammel, A. R. Bishop and E. Y. Loh, Jr.: Phys. Rev. B 45 (1992) 6435.
[3] K. Nasu: J. Phys. Soc. Jpn. 52 (1983) 3865.
[4] K. Nasu: J. Phys. Soc. Jpn. 53 (1984) 302.
[5] K. Nasu: J. Phys. Soc. Jpn. 52 (1984) 427.
[6] S. Yamamoto: Phys. Lett. A 247 (1998) 422.
[7] S. Yamamoto: Synth. Met. 103 (1999) 2683.
[8] A. Mishima and K. Nasu: Phys. Rev. B 39 (1989) 5758.
[9] A. Mishima and K. Nasu: J. Phys. Soc. Jpn. 69 (2000) 13.
[10] H. Okamoto and M. Yamashita: Bull. Chem. Soc. Jpn. 71 (1998) 2023.
[11] M. Kuwabara and K. Yonemitsu: Mol. Cryst. Liq. Cryst. 341 (2000) 533.
[12] M. Kuwabara and K. Yonemitsu: Mol. Cryst. Liq. Cryst. 343 (2000) 47.
[13] M. Kuwabara and K. Yonemitsu: Physica B 284-288 (2000) 1545.
[14] M. Kuwabara and K. Yonemitsu: J. Phys. Chem. Solids 62 (2001) 435.
[15] S. Yamamoto: Phys. Lett. A 258 (1999) 183.
[16] S. Yamamoto: J. Phys. Soc. Jpn. 69 (2000) 13.
[17] S. Yamamoto: Phys. Rev. B 63 (2001) 125124.
[18] C.-M. Che, F. H. Herbstein, W. P. Schaefer, R. E. Marsh and H. B. Gray: J. Am. Chem. Soc. 105 (1983) 4604.
[19] R. J. H. Clark, M. Kurmoo, H. M. Dawes and M. B. Hursthouse: Inorg. Chem. 25 (1986) 409.
[20] C. Bellitto, A. Flamini, L. Gastaldi and L. Scaramuzza: Inorg. Chem. 22 (1983) 444.
[21] C. Bellitto, G. Dessy and V. Fares: Inorg. Chem. 24 (1985) 2815.
[22] N. Kimura, H. Ohki, R. Ikeda and M. Yamashita: Chem. Phys. Lett. 220 (1994) 40.
[23] L. G. Butler, M. H. Zietlow, C.-M. Che, W. P. Schaefer, S. Sridhar, P. J. Grunthaner, B. I. Swanson, R. J. H. Clark and H. B. Gray: J. Am. Chem. Soc. 110 (1988) 1155.
[24] H. Kitagawa, N. Onodera, T. Sonoyama, M. Yamamoto,
