Prevalence Rate of Isolated Cryptosporidium Spp. of Broiler Chicken in Al-Qadisiyah Province

Tahseen. A. AL- Saeedi , Najlaa O. H. AL- Jubury
College of Agriculture, University of AL-Qadisiyah

Submission Track
Received : 21/8/2017
Final Revision : 1/3/2018

Abstract
This study has been carried out to determined the prevalence rate of cryptosporidiosis in broiler flocks. 150 fecal samples from 30 broiler flocks (5 samples for each flock) in different areas of AL-Qadisiyah province were used. They were collected starting of January till November 2016 with two age groups of chickens, (10-15 and 30-35) days old. Samples were examined with Modified Ziel-Neelsen stain to detect the positive samples by microscopic examination. After that, a nested-PCR technique was performed on 60 samples. Results of microscopic examination showed that total infection rate of Cryptosporidium was 29.33%. The highest rates of infection were recorded in 10-15 days group and during spring season, infection rates reached were 35.71% and 34.28% respectively. The lowest rates were observed in 30-35 days group and during summer season were 23.75% and 20% respectively. No significant differences within percentage in both two age group or among percentage in seasons at level (P < 0.05) were recorded. According to Nested Polymerase Chain Reaction test, the results showed that overall percentage of infection is 20%. The highest rate of observed infection is 23.33% in 10-15 days aged group, while the lowest rate of infection is (16.67 %) in the other age. No significant differences was observed between percentage in ages. On the other hand, result of comparing nested-PCR test with microscopic examination shows that there are no significant differences between the percentage of both tests.
In conclusion, cryptosporidiosis is widespread in broiler flocks in AL-Qadisiyah province, but there is no significant impact found concerning the relationship between infection rates and age of chickens or seasons of the year.

Introduction
Cryptosporidiosis is one of the essential protozoan infections in birds. It affects a major number of avian species across various continents (1). It is causing either clinical or subclinical infections (2). There are three forms of Avian Cryptosporidiosis: respiratory form, intestinal form and renal form (3). Clinical signs of a respiratory form include cough, nasal discharge, sneezing, dyspnea pneumonia and thickening of air sacs (3). Clinical signs of enteritis form include yellow greenish diarrhea, offensive odor, depression, low feed consumption and high water consumption (4). Transmission of Cryptosporidium parasite is through ingestion of oocysts of the infected individuals by contaminated water and/or food (5, 6). The parasite is in Phylum Apicomplexa and part of the group of parasites commonly referred to as Coccidia, which includes cryptosporidium, Eimeria, Cyclospora and Isospora (7). Cryptosporidium infection represents the main public health concern of water utilities in developed nations (8). Identified species of Cryptosporidium in birds are Cryptosporidium parvum, Cryptosporidium...
baileyi, Cryptosporidium Meleagridis and Cryptosporidium galli (9).
The prevalence rate in broiler chickens varies in different countries. In Iraq, 20.71% existed in Karbala (10). In Iran, infection rate is 23.8% (11). In Henan, China prevalence rate was 3.4% (12). In Tunisia, the prevalent rate is 4.5% (13). In Greece, Cryptosporidium oocysts were found in 24.2% of the examined broiler chickens (14).
Due to the importance of the cryptosporidiosis on the health of poultry, this study is designed to detect the parasite in the broiler flocks of AL-Qadisiyah province and study the effect of ages and seasons on the prevalence of cryptosporidiosis.

Materials and Methods
Feces samples collection: 150 Fecal samples from 30 broiler chickens flocks (5 samples for each flock) in some regions of AL-Qadisiyah province were used. They have been collected from the beginning of January until November 2016 with two age groups (10-15 and 30-35) days old broiler chickens, the study includes four seasons (60 days for each season) in which they are divided as shown in table (2). The fecal sample has been transferred to a clean, dry plastic container and transported to the laboratory for the analysis.
Microscopic examination the oocyst is detected by examining each sample by pigmented the swab by Modified Ziel -Neelsen (MZN) (15) . Subsequently a Nested polymerase chain reaction test has been performed on 60 samples. The data have been analyzed by SPSS program, using Chi-square test (X²).

DNA Extraction
DNA has been extracted from feces samples by using (Stool DNA extraction Kit, Bioneer. Korea). The extraction has been done according to company directives by using stool lysis protocol method with Proteimase K. Subsequently, the extracted DNA has been checked by NanoDrop spectrophotometer. Thence stored (-20°C) at refrigerator until used in PCR amplification. Nested Polymerase chain reaction

PCR technique has been performed for diagnostic of Cryptosporidium parasite, based on 18S rRNA gene by using specific primers are designed by (16). the first round primers forward primer (GACATATCATTCAAGTTTCTGACC) and reverse primer (CTGAAGGAGTAAGGAACAACC) has been amplified (763bp) product size and the nested primers forward primer (CCTATCAGCTTTTA GACGGTAGG) and reverse primer (TCTAAAGATTTCACTCTGACTG) has been amplified (587bp) product size . These primers are provided by (Korea: Bioneer company). The PCR positive samples of first round have been used in nested amplification at the same amplification condition to amplified (587bp) product size.

Result and Discussion
Diagnostic characterization of cryptosporidium spp of microscopically examination by using Modified Ziel -Neelsen stain when examined under high oil emersion (100) lens of microscopic as in figure (1) shows oval-shaped or spherical objects with a color red or dark pink on a blue ground.
Table (1) shows no significant differences in infection rates between age of chickens (10-15 and 30-35) days old. The results show that the highest rate of infection (35.71%) that is observed in the ages 10-15 days, While the lowest rate (23.75%) is in 30-35 days . This is consistent with the results of (12) which are observed in broiler chickens aged from 1 to 20 days have the highest rate of infection more than from 21 to 60 days. But these results do not agree with what (10), who found that the highest rate of infection at the age of five weeks (28.72%) and the lowest at the age of two weeks (13.18%). However, the minimum prevalence rate was in the younger age group (11).
Table (2) shows that there are no significant differences among the seasons, the highest rate (34.28%) is seen in spring ,While the lowest rate (20%) is in summer and (32.5) (31.42) are seen in winter, autumn respectively. This is partly in line with what (12) have found spring season is the highest rate of infection in chickens and decreases significantly in autumn.
and summer seasons. While winter season is the lowest rate of infection.

Table (3) reveal the results of nested-PCR as showed in figure (2) . The results show that the highest rate of infection (23.33%) is observed in the age group of 10-15 days, while the lowest rate (16.67%) is in 30-35 days of age with no significant differences between the percentages in both two age group at level (P < 0.05).

The results of examination show that among (150) samples examined microscopically, 44(29.33%) have given positive. While the total infection rate was 20% (12/60) in the nested-PCR test and no significant differences between the percentages in both tests at level (P < 0.05) Table (4).

The different prevalence rates in broiler chickens between different studies such as 3.4% in broilers (12). The overall infection rate of Cryptosporidium was 10% (17). The percentage of infection is 20.71% (10). Total infection rate is 23.75% (11). The difference in prevalence rates observed may due to the animal management differences (18). On the other hand, the use of different diagnostic methods may also be responsible.

The result of the comparison between Nested PCR and Microscopic Examination in this study is partly in line with what (19) which have shown that the infection rate of microscopic examination is 51% in sheep. Then all positive checked by Nested-PCR examination. The results show that 19 (37.3%) sheep samples out of 51 cases are positive.

Table (1) Microscopic Examination of Broiler Chickens According to the Age

Age groups	Examination No	Positive No	Percentage %
10-15 days	70	25	35.71 A
30-35 days	80	19	23.75 A
Total	150	44	29.33

Non – significant differences at P < 0.05 due to X^2 tab. = 3.84146 > X^2 cul. = 1.40297.

Table (2) Microscopic Examination of Broiler Chickens According to the Four Seasons (Two months for each season)

Season	Examination No	Positive No	Percentage %
Winter (Jan. and Feb.)	40	13	32.50 A
Spring (21 Mar. to 20 May)	35	12	34.28 A
Summer (July and Aug.)	40	8	20 A
Autumn (20 Sept. to 20 Nov.)	35	11	31.42 A

Non – significant differences at P < 0.05 due to X^2 tab. = 7.81473 > X^2 cul. = 3.22527.

Table (3) Cryptosporidium According to Nested Polymerase Chain Reaction

Age groups	Examination No	Positive No	Percentage %
10-15 days	30	7	23.33 A
30-35 days	30	5	16.67 A
Total	60	12	20

Non – significant differences at P < 0.05 due to X^2 tab. = 3.84146 > X^2 cul. = 0.27799.
Table (4) A Comparison between Nested Polymerase Chain Reaction and Microscopic Examination to Diagnose *Cryptosporidium*

	Examination No	Positive No	Percentage %
Total ME	150	44	29.33 A
Total NPCR	60	12	20 A

Non – significant differences at P < 0.05 due to $X^2_{	ext{tab.}} = 3.84146 > X^2_{	ext{cul.}} = 1.14261$.

Figure (1) shows *Cryptosporidium* stained with Modified Ziel-Neelsen stain magnification (100x)

Figure (2) Agarose gel electrophoresis picture that shows the Nested PCR product of 18S rRNA gene used in the detection of *Cryptosporidium* spp of broiler chicken fecal samples. Where M: Marker (2000-100bp), lane (1-4) positive of *Cryptosporidium* spp at 587bp PCR product size.
References
1- Nakamura A A, and Meireles, M V (2015). Cryptosporidium infections in birds a review. Braz. J. Vet. Parasitol., 24 (3): 253-267.
2- Santín M (2013). Clinical and subclinical infections with Cryptosporidium in animals. N. Z. Vet. J., 61 (1): 1-10.
3- Lindsay D S, and Blagburn, B L (1990). Cryptosporidiosis in Birds in Cryptosporidiosis in Man and Animals, Dubey, J.P., Speer, C.A., and Fayer, R., Eds. CRC press, Boca Raton, FL p. 133-148.
4- Hassl A (1991). An asymptomatic and clinical signs of Cryptosporidium baileyi in avian sp. Herpetozoa., 4: 127-131.
5- Fayer R (2010). Taxonomy and species delimitation in Cryptosporidium. Exp. Parasitol., 124 (1): 90-97.
6- Rose J B, Huffman D E, and Gennaccaro, A (2002). Risk and control of waterborne cryptosporidiosis. FEMS Microbiology Review, 26 (2): 113-123.
7- Fayer R, Speerc A, and Dubey, J P (1990). General biology of cryptosporidium. In: J.P.C.A. Speer and R. Fayer Cryptosporidiosis in Man and animals CRC. Press Boca Raton Florida, pp: 1-29.
8- Fayer R, Morgan U M, and Upton, S J (2000). Epidemiology of Cryptosporidium: transmission, detection, and identification. Int. J. Parasitol., 30 (12-13): 1305-1322.
9- Jasim G A, and Marhoon, I A (2015). Prevalence and Molecular Analysis of Cryptosporidium Spp. Isolated From Wild and Domestic Birds. Acta Parasitologica Globalis. 6 (2): 65-70.
10- Kadhim Kh K Al-Khayat and Mohammed Th S Al- Zubaidi (2015). Some Epidemiological Study of Cryptosporidium Spp. in Broiler chickens in some areas of Karbala Province. Iraqi J. Vet. Medicine. 39 (1): 5-8.
11- Shemshadi B, Bahadori S R, and Mozafari, A (2010). Study on cryptosporidiosis incidence in broilers in Garmsar region, Iran. Comparative Clin. Pathol., 20 (2): 143-149.
12- Wang R, Jian F, Sun Y, Hu Q, Zhu J, Wang F, Ning C, Zhang L, and Xiao, L (2010). Large-scale survey of Cryptosporidium spp. In chickens and Pekin ducks (Anasplatyrhynchos) in Henan, China: prevalence and molecular characterization. J. Avian Pathol., 39 (6): 447-451.
13- Soltane R, Guyot K, Dei-Cas E, and Ayadi, A (2007). Prevalence of Cryptosporidium spp. in seven species of farm animals in Tunisia. Parasitology, 14 (4): 335-338.
14- Papadopoulou C, Xylouri E, and Zisides, N (1988). Cryptosporidial infection in broiler chickens in Greece. Avian Dis., 32 (4): 842-843.
15- Bearever P C and Jung R C (1985). Animal Agents and Vectors of Human Disease, 5th ed –Lea . and fegier .Philadelphia –pp: 37-41.
16- Ryan UM, Xiao L, Read C, Zhou L, Lal A A, and Pavlasek, I (2003). Identification of Novel Cryptosporidium Genotypes from the Czech Republic. J. Appl. Environ. Microbiol., 69 (7): 4302-4307.
17- Wang L, Xue X, Li J, Zhou Q, Yu Y, and Du, A (2014). Cryptosporidiosis in broiler chickens in Zhejiang Province, China: molecular characterization of oocysts detected in fecal samples. Parasitology., 21 (36).
18- De Graaf D C, Vanopdenbosch E, Ortega-Mora L M, Abbassi H, and Peeters, J E (1999). A review of the importance of cryptosporidiosis in farm animals. Int. J. Parasitol., 29 (8): 1269-1287.
19- Hamed, W. Abbas (2016). Detection of Cryptosporidium spp in Sheep and Goats by Conventional and Molecular methods in AL-Qadisiyah Province. M.Sc. thesis, Coll. Vet. Med., Al-Qadisiyah University. Al-Qadisiyah-IRAQ.
معالج ملائم للإبلية الخبيثة المعدة من مراة دجاج اللحم في محافظة القادسية

تهمس عبد السعيد
ناجع عيسى هول الجهاز
كلية الزراعة، جامعة القادسية

الخلاصة

هدف الدراسة الحالي هو دراسة نسبة الإصابة لداء الخبيثة في حقول دجاج اللحم. جمعت 150 عينة لبراز دجاج من 30 حقل (5 عينة لكل حقل) من مناطق مختلفة في محافظة القادسية خلال الفترة الممتدة من شهر كانون الثاني إلى نهاية شباط الثاني 2016. وكان عمر الدجاج في تلك الحقول بعمر (01-05) يوم. كل العينات فحصت باستخدام المجهور الضوئي بعد التصوير. (PCR - nested).

مصدر زياب نلسون للمحور للتحقيق العينات المائية. بعد ذلك اختبرت 60 عينة بتفاعل السلسلة المتسلسلة المتداخلة (nested) للإصابات. أظهرت النتائج أن معدل الإصابة الكلية لداء الخبيثة كان 17 (32.63%) وتبع ذلك أعلى نسبة للإصابة (35.71%) (P<0.05) في بعض المواقع بين عمر الزراعة (10-15 يوم) بينما كانت أقل نسبة الإصابة (23.75%) (P<0.05) في بعض المواقع بين عمر الزراعة (31-35 يوم).

من جهة أخرى، أظهرت نتائج التجربة بين العينات (الفحص المجهري، تفاعلسلسلة المتسلسلة المتداخلة) عدم وجود فروق معنوية بين نسبة الإصابة لكل النمط. تستنتج من خلال هذه الدراسة أن الإصابة بداء الخبيثة واسعة الانتشار في حقول محافظة القادسية غير أن ليس لعمر الدجاج أو مواسم السنة تأثير معنوي على نسبة الإصابة.

الكلمات المفتاحية: داء الإبلية الخبيثة، دجاج اللحم، معدل الإصابة، الفحص المجهري، تفاعل السلسلة المتسلسلة المتداخلة.