Isolating an outflow component in single-epoch spectra of quasars

Paola Marziani¹, Alice Deconto Machado², Ascension Del Olmo²

1 National Institute for Astrophysics (INAF), Astronomical Observatory of Padova, IT-35122 Padova, Italy
2 Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada, Spain, chony@iaa.es (A.d.O.)
* Correspondence: paola.marziani@inaf.it; Tel.: +39-0498293415

Abstract: Gaseous outflows appear to be a universal property of type-1 and type-2 active galactic nuclei (AGN). The main diagnostic is provided by emission features shifted to higher frequency via the Doppler effect, implying that the emitting gas is moving toward the observer. However, beyond the presence of blueshift, the observational signatures of the outflows are often unclear, and no established criteria exist to isolate the outflow contribution in the integrated, single-epoch spectra of type-1 AGN. The emission spectrum collected with the typical apertures of long-slit spectroscopy or of fiber optics sample contributions over a broad range of spatial scales, making it difficult to analyze the line profiles in terms of different kinematic components. Nevertheless, hundred of thousands of quasars spectra collected at moderate resolution demand a proper analysis of the line profiles for proper dynamical modelling of the emitting regions. In this small contribution we shall analyze several profiles of the H\textsc{i} Balmer line H\textbeta from composite and individual optical spectra of sources radiating at moderate Eddington ratio (Population B following Sulentic et al. 2000). Features and profile shapes that might be traced to outflow due to narrow-line region gas are detected over a wide range of luminosity.

Keywords: active galactic nuclei; optical spectroscopy; ionized gas; broad line region

1. Introduction

Type-1 active galactic nuclei (AGN) are characterized by the presence of broad and narrow optical and UV lines (for introductions see e.g., [1–6]). Spectra show a mind-boggling variety of broad emission line profiles not only among different objects, but also among different lines in the spectrum of the same object. Sulentic [7] carried out measurements of spectral shifts and asymmetries exhibited by the broad lines relative to the narrow ones, proposing an empirical classification scheme for the broad H\textsc{i} Balmer line H\textbeta. Among the classes identified by Sulentic [7], two stand out: AR,R and AR,B, where AR means red-ward asymmetric, and the letter after the comma indicates either a shift of the line peak toward the red or the blue.

Fast forward more than 30 years, type-1 quasars are now being contextualized on the basis of the main sequence (MS) trends [e.g., 1,8,9]. Type-1 AGN have been grouped into two main populations, Population A and B, defined on the basis of the Balmer line widths (more specifically of H\textbeta: FWHM H\textbeta \lesssim 4000 \, km \, s^{-1} for Population A; FWHM H\textbeta \gtrsim 4000 \, km \, s^{-1} for Population B [1,10] at low and moderate luminosity log \(L \lesssim 46 \) [erg \, s^{-1}]). The classification of the quasar population along the MS has its main physical foundation on systematic differences in Eddington ratio [11]: Population A sources typically have \(L/L_{\text{Edd}} \gtrsim 0.2 \), with extreme Population A sources reaching \(L/L_{\text{Edd}} \gtrsim 1 \) [12], values close to the expected theoretical limit for super-Eddington accretion rate [13–15]. Usually Pop. B sources present lower values of Eddington ratio when compared with the ones of Pop. A.
The governing parameter of the MS itself appears to be Eddington ratio convolved with the effect of orientation \[e.g., 16,17\].

Sources showing prominent Hβ red asymmetries (i.e., AR,R according to Sulentic [7]) are classified as belonging to Population B [10,11]. The red asymmetry itself can be considered as a defining feature of Population B sources, hinting at the presence of a “very broad component” (VBC) at the line base [18–23]. The physical properties of the region associated with the VBC are largely undetermined [e.g., 24] but the general consensus is that the region is located at the innermost radii of the broad line region (BLR), closest to the central continuum source. This inference follows from the deduction of a velocity field dominated by virial motions, at least for several population B sources [25,26]. The dynamical conditions of the “very broad line region” (VBLR) are subject of current debate [27]. Two main alternatives have been proposed: infall and obscuration [28], or gravitational and transverse redshift [27,29–33]. Both mechanisms are however still consistent with a virial velocity field as the main broadening factor.

Gaseous outflows appear to be ubiquitous in type-1 AGN, although their traceability and their kinetic power varies greatly along the main sequence [34,35]. The signature of outflows in the optical and UV spectra is provided by the blueshift of emission lines with respect to the rest frame, under the assumption that the shift is due to Doppler effect on the wavelength of lines emitted by gas moving toward us, and that the receding side of the flow is mainly hidden from view [e.g., 36]. While there is unambiguous evidence of outflows from the emitting regions of quasars radiating at high Eddington ratio, the situation is by far less clear for Pop. B where the accretion rate is modest, as implied by the Eddington ratio \(\lesssim 0.2 \). High-resolution X-ray and ultraviolet (UV) observations of the prototypical Population B source NGC 5548 reveal a persistent ionized outflow traced by UV and X-ray absorption and emission lines [37]. However, the CIV emission line profile lacks strong evidence of such an outflow, also because of the prominent red line wing merging with HeII\(\lambda\lambda 1640\) [38].

In this short note, we address the very specific issue of the origin of sources showing a blueshift at the peak of the Hβ emission line i.e., of the AR,B classification. The focus is on the Hβ line because the line is a singlet, and its peak is isolated from other contaminants, offering a clear view of its broad and narrow components. The [OIII]\(\lambda\lambda 4959, 5007\) lines recorded along with Hβ help to assess the nature of the Hβ line profile. In addition, the narrow, high-ionization [OIII]\(\lambda 5007\) emission lines are known to be affected by outflows, as indicated by the frequent bluedward asymmetries and even systematic shifts [39–43], Section 2 presents the data used in this work, a set of composite spectra covering a wide range in luminosity and redshift, for which the Hβ and the [OIII]\(\lambda 4959, 5007\) emission has been covered with optical and IR spectroscopic observations. Details on how the spectral analysis was performed are shown in Section 3. The main results come from the profile comparison of the Hβ and [OIII]\(\lambda 5007\) (Section 4), and are briefly analyzed in terms of the physical conditions of the line emitting gas, as well as of the dynamical parameters of the outflow (Section 5).

2. Data

The data analyzed in this paper refer to the most widely populated spectral type of Population B, B1, defined by FWHM Hβ in the range 4000 – 8000 km s\(^{-1}\)[46]. Median composite spectra covering the Hβ range were computed over the spectral type B1 sources belonging to two samples of low-to-moderate redshift and luminosity, [46,47], hereafter S02 and M13, and one sample of intermediate \(z \) and high luminosity [49, hereafter M09]. The S02 composites are based on the individual observations of Marziani et al. [50] that involved 97 B1 spectra. The M13 composites are SDSS spectra in the redshift range 0.4 – 0.7, covering both MgII\(\lambda 2800\) and Hβ. The radio-quiet B1 composite was computed over 179 spectra, while the CD and FR-II composites involved 16 and 23

1 In flux limited samples Pop. A and B may have similar luminosity distributions. If this is the case Pop. B sources are expected to host more massive black holes, considering the systematic differences in Eddington ratio.
Table 1. Physical parameters

Spectrum	z	$\log L$	$\log M_{BH}$	$\log L/L_{Edd}$
Composite spectra				
B1S02 0–0.7	0.7	45.63a	8.52	-1.07
B1M13 0.4–0.7	0.7	46.31b	9.19	-1.06
B1M09 0.9–2.6	2.6	47.29c	9.63	-0.51
Individual, high-L quasars				
HE0001–2340	2.26	47.09c	9.78	-0.86
Q0029+079 3.27	0.79	47.43c	9.95	-0.70
Composite spectra, jetted				
B1M13CD 0.4–0.7	0.7	46.51c	9.39	-1.05
B1M13FRII 0.4–0.7	0.7	46.62b	9.44	-1.00

a: Black hole mass computed from the Hβ scaling law provided by Vestergaard and Peterson [44], using the Hβ full profile FWHM. Applying the average correction suggested for spectral type B1 would lower the mass by a factor 0.64, and increase the L/L_{Edd} ratio by the same factor.

b: Bolometric correction assumed a factor 10;

c: Bolometric correction assumed a factor 4, as appropriate for very high luminosity sources following Netzer [45].

spectra, respectively. The B1 composite of M09 included 22 high-luminosity, Hamburg ESO (HE) quasars. Median composites where constructed from continuum-normalized (at 5100 Å) spectra, after a determination of the heliocentric redshift based on [OII]λ3727 or narrow component of Hβ, two low-ionization narrow line that provide the best estimators of the systemic redshift of the host galaxy [51]. The accurate redshift correction allowed for the preservation of the spectral resolution of the individual spectra. The M13 composites should therefore have a resolving power $\lambda/\delta\lambda \sim 2000$. The resolving power is only slightly lower for S02, $\lambda/\delta\lambda \sim 1000$. The HE ISAAC near-IR observations were all collected with a narrow slit (0.6 arcsec) that yielded $\lambda/\delta\lambda \sim 1000$, comparable to the spectra of the samples observed with optical spectrometers. Their main properties are summarized in Table 1, where the first column lists an identification code, and the following columns list the redshift range, and median values of bolometric luminosity, black hole mass M_{BH}, and Eddington ratio L/L_{Edd}. In addition to the composite spectra, the spectra of two quasars of extreme luminosity at intermediate redshift (Deconto-Machado et al. 2022, in preparation) provide examples of two opposite cases, one where a prominent outflow signature is detected (Q0029+079), and one in which there is no obvious evidence of outflow (HE0001-2340). The last two lines of Table 1 consider composites for core dominated (CD) and Fanaroff-Riley (FR) sources belonging to spectral type B1 from the M13 sample. These two composite were defined to address the somewhat controversial issue of the mild-ionized outflow presence among radio-loud, jetted AGN. 2 The data of Table 1 confirm that the empirical selection of spectral type B1 corresponds to the selection of modest L/L_{Edd} radiators. At the higher redshift and luminosity, the L/L_{Edd} appears somewhat higher ($L/L_{Edd} \approx 0.3$) because of the preferential selection of higher L/L_{Edd} for a fixed black hole mass in flux limited surveys [54].

3. Analysis

The non-linear multicomponent fits were performed using the SPECFIT routine from IRAF [55]. This routine allows for simultaneous minimum-χ^2 fit of the continuum approximated by a power-law and the spectral line components yielding FWHM, peak wavelength, and intensity of all line components. In the optical range we fit the Hβ profile as well as the[OII]λ4959,5007 emission lines and the Feii multiplets accounted for by a scaled and broadened template [56]. The details of the multi-component analysis has been given in several previous papers [e.g., 57] and will not be

2 We consider the attribute “radio-loud” as synonym of relativistically jetted [52,53].
repeated here. Suffice to say that the broad profiles of Pop. B sources can be successfully modelled with two Gaussians: (1) one narrower, unshifted or slightly shifted to the red; and (2) one broader, with FWHM \(\sim 10000 \text{ km s}^{-1} \), and shifted by few thousands km s\(^{-1}\) to the red [58]. This model accounts for the AR,R profile type. In addition to the model decomposition, we measured several parameters on the full broad profile [59]. The definitions of the centroids and of the asymmetry index \(A.I. \) are reported below for convenience:

\[
c_i = \frac{v_{\text{r,B}}(\frac{1}{4}) + v_{\text{r,R}}(\frac{1}{4})}{2}, \quad i = 1, 2, 3; \quad \frac{1}{4} = 0.9, \tag{1}
\]

where \(c \) is the speed of light and the radial velocities are measured with respect to the rest frame at fractional intensities \(\frac{1}{4} \) for each value of the index \(i \) on the blue and red side of the line with respect to the rest frame.

\[
A.I.(\frac{1}{4}) = \frac{v_{\text{r,B}}(\frac{1}{4}) + v_{\text{r,R}}(\frac{1}{4}) - 2v_{\text{r,P}}}{v_{\text{r,R}}(\frac{1}{4}) - v_{\text{r,B}}(\frac{1}{4})}. \tag{2}
\]

Note that the \(A.I. \), unlike the centroids, is defined as a shift with respect to the line peak radial velocity \(v_{\text{r,P}} \) (\(v_{\text{r,P}} \) is measured with respect to rest frame; a suitable proxy is provided by \(c(0.9) \)).

4. Results

Broad H\(\beta \)

Fig. 1 shows the continuum-subtracted spectra and their models for the three composite spectra or S02, M13, and M09 (top, middle and bottom panel, respectively). The measurements of the broad H\(\beta \) line parameters are reported in Table 2. For each spectrum, Table 2 lists the normalized flux \(F \) of the H\(\beta \) full broad profile (H\(\beta \)BC + H\(\beta \)VBC + H\(\beta \)BLUE), its equivalent width \(W \) H\(\beta \) in \(\AA \), and the normalized fluxes of the H\(\beta \)BC and H\(\beta \)VBC separately. The following columns report several parameters for the H\(\beta \) blue shifted excess with respect to the standard Population B decomposition involving only H\(\beta \)BC and H\(\beta \)VBC: normalized flux, equivalent width, peak shift, FWHM and skew. The last columns yield the normalized flux and the equivalent width of the Fe\(\lambda \)4570 emission blend as defined by Boroson and Green [56]. The equivalent width values correspond roughly to the normalized flux, so that they are reported only for the main features. The normalized fluxes can be approximately converted into luminosities by multiplying them by the luminosity values reported in Table 1 divided by the bolometric correction and by 5100 i.e., by the wavelength in \(\AA \) at which the continuum was normalized. Table 3 reports the FWHM, A.I., and centroids as defined in §3 for the broad H\(\beta \) profile (H\(\beta \)BC + H\(\beta \)VBC + H\(\beta \)BLUE i.e., without considering the narrow [H\(\beta \)NC] and semi-broad [H\(\beta \)SBC] components associated with narrow-line region emission). Only at the highest \(L \) blueshifted emission with broad profile (H\(\beta \)BLUE) is detected in the H\(\beta \) profile: in this case, the H\(\beta \)BLUE contribution is \(\lesssim 5\% \) of the total line luminosity for the M09 and reaches about 1/3 of the total line luminosity in the admittedly extreme Q0029 case. In no case, however, the H\(\beta \)BLUE is able to create a significant shift to the blue close to the line base: the red asymmetry dominates, and even the Q0029 H\(\beta \) broad profile is “symmeterized” toward the line base, with centroid at \(\frac{1}{4} \) peak intensity close to 0 km s\(^{-1}\).

[OIII]\(\lambda 5007 \) and H\(\beta \) narrow-line emission

Table 4 summarizes the measurements of the components associated with the narrow-line region (NLR) emission i.e., narrow and semi-broad components of H\(\beta \) and [OIII]\(\lambda 5007 \) (H\(\beta \)NC, [OIII]\(\lambda 5007 \)NC, and H\(\beta \)SBC and [OIII]\(\lambda 5007 \)SBC), for which normalized flux, equivalent width, skew, and FWHM are reported. The skew parameter is reported only for the semi-broad components, as the narrow components are assumed to be symmetric Gaussian, within a few tens km s\(^{-1}\) from the rest frame [51].
Table 2. Broad-line properties measurements

Spectrum	Hβ	HβBC	HβVBC	HβBLUE	FeIIλ4570						
	F	W	F	F	Shift	FWHM	Skew				
Composite spectra											
B1S02	95.3	86.7	49.8	45.4	...	18.1	14.6				
B1M13	122.3	126.5	52.5	69.8	...	47.8	43.0				
B1M09	123.3	129.1	19.6	99.1	4.6	-1535	3611	0.5	39.2	34.1	
Individual, high-L quasars											
HE0001	99.3	95.1	26.7	72.7	...	20.6	16.3				
Q0029	69.8	66.4	13.9	32.2	23.7-2097	4711	1.2	25.8	21.4		
Composite spectra, jetted											
B1M13CD	113.8	118.5	42.9	70.9	...	35.6	32.7				
B1M13FRII	129.8	131.1	57.5	72.3	...	24.6	21.9				

\[a\] in units of Å; \[b\] in units of km s\(^{-1}\). \[c\] skew as reported by the SpecFit routine; it is equal to the conventional definition of the skew [60] + 1.

Table 3. Hβ profile properties measurements

Spectrum	FWHM\(^a\)	AI	c(1/4)\(^a\)	c(1/2)\(^a\)	c(3/4)\(^a\)	c(0.9)\(^a\)
Composite spectra						
B1S02	5560 ± 170	0.12 ± 0.03	680 ± 230	250 ± 80	160 ± 70	130 ± 50
B1M13	6540 ± 210	0.12 ± 0.06	740 ± 340	150 ± 110	50 ± 90	40 ± 60
B1M09	6010 ± 450	0.28 ± 0.06	2120 ± 490	-50 ± 220	-230 ± 70	-270 ± 50
Individual, high-L quasars						
HE0001	6510 ± 690	0.29 ± 0.09	2700 ± 560	1310 ± 340	900 ± 170	830 ± 110
Q0029	6200 ± 380	0.18 ± 0.10	430 ± 500	-380 ± 190	-500 ± 160	-500 ± 110
Composite spectra, jetted						
B1M13CD	6880 ± 240	0.23 ± 0.06	1520 ± 380	270 ± 120	70 ± 90	20 ± 60
B1M13FRII	6790 ± 220	0.10 ± 0.06	820 ± 330	320 ± 110	240 ± 90	230 ± 60

\[a\] In units of km s\(^{-1}\).
Figure 1. Analysis of the H\(\beta\) + [O\textsc{iii}]\(\lambda\lambda 4959,5007\) region for the S02 (top), M13 (middle) and M09 (bottom) B1 composite spectra. Continuum subtracted spectra are shown in the rest frame, over the range 4550 — 5300 Å (left panel), with an expansion around [O\textsc{iii}]\(\lambda 5007\) (right panels). Thin solid lines: continuum-subtracted spectrum; dashed magenta line: model spectrum; thick black line: H\(\beta\) broad component; red thick line, H\(\beta\) very broad component; thin smooth black lines: narrow components of H\(\beta\) and [O\textsc{iii}]\(\lambda 5007\); blue lines: blue shifted components. Green lines trace the scaled and broadened Fe\textsc{i i} emission template. The lower panel show the observed minus model residuals in radial velocity scale.
Figure 2. Analysis of the H\textbeta + [O\textsc{iii}]\lambda\lambda4959,5007 region for two high-luminosity, high-z quasars belonging to the B1 spectral type. The top one, HE0001-234, shows no appreciable evidence of blueshift, while the bottom one [HB89] 0029+073 requires a stronger blue shifted excess for [O\textsc{iii}]\lambda\lambda4959,5007, and an even stronger and broader one to fit H\textbeta. Color coding of the components is the same as in the previous Figure. The shaded area identifies a spectral region affected by atmospheric absorptions.

The S02 composite shows a broad + narrow component profile very well represented by three Gaussians: the symmetric unshifted H\textbeta_{NC}, the unshifted H\textbeta_{BC} and the H\textbeta_{VBC} with a significant shift to the red. A small blue shifted excess appears at the interface between the H\textbeta_{NC} and the H\textbeta_{BC}, and has been modeled by an additional Gaussian. Its intensity is so low that a very good fit with no significant worsening in the χ^2 can be achieved also without it. Most notably, the [O\textsc{iii}]\lambda5007 profile (enlarged in the right panel) is also fairly symmetric: a small centroid blueshift ~ -50 km s$^{-1}$ is detected only at $\frac{1}{4}$ peak intensity (Table 5, where the [O\textsc{iii}]\lambda5007 full profile parameters are reported as in Table 3 for H\textbeta). The relatively large shift reported for [O\textsc{iii}]\lambda5007_{SBC} is compensated by a red-ward skew (Fig. 1, right panel on top row). In this case, the decomposition [O\textsc{iii}]\lambda5007_{NC} – [O\textsc{iii}]\lambda5007_{SBC} is especially uncertain, and a more reliable measurement is provided by the centroid.

The M13 composite spectrum appears as a “goiter” at the top of the H\textbeta_{BC} broad profile. The [O\textsc{iii}]\lambda5007 profile is also fairly asymmetric, and can be modelled by a narrower, almost unshifted component and a skewed Gaussian displaced to the blue by ~ -500 km s$^{-1}$. The top of the H\textbeta profile is well-fit by assuming two components with the same shift, width and asymmetry of the model components [O\textsc{iii}]\lambda5007 line. The consistency between the model of H\textbeta_{SBC} and [O\textsc{iii}]\lambda5007_{SBC} provide evidence that the H\textbeta blueshifted and skewed component is associated with a NLR outflow.
Figure 3. Analysis of the Hβ + [OIII]λλ4959,5007 region for the RQ composite spectrum of M13 (top), and for the CD and FR-II composite spectra (middle and bottom respectively). Color coding of the components is the same as in the previous Figures.

The M09 composite can be equally modelled with the same skewed and blueshifted component for Hβ and [OIII]λ5007. However, this model would require an implausibly strong [OIII]λλ4959,5007 emission. The fit shown in the bottom panel of Fig. 1 assumes a broader component for the Hβ emission.
Table 4. Narrow line measurements

Spectrum	Hβ\textsubscript{NC} F FWHMa (\AA)	Hβ\textsubscript{NC} b Shift (km s-1)	Hβ\textsubscript{NC} b FWHM (km s-1)	[O\textsc{iii}]\textsubscript{λ5007/NC} F FWHMa (\AA)	[O\textsc{iii}]\textsubscript{λ5007/NC} b Shift (km s-1)	[O\textsc{iii}]\textsubscript{λ5007/NC} b FWHM (km s-1)
Composite spectra						
B1S02	3.33 ± 0.00	-9	492	0.39 ± 0.33	-349	881
B1M13	1.45 ± 1.45	-8	450	0.83 ± 0.85	-480	1054
B1M09	0.65 ± 0.70	-25	508	0.06 ± 0.07	-752	932
Individual, high-L quasars						
HE0001	0.11 ± 0.10	-25	2202	1.05 ± 0.99	-133	1301
Q0029	1.00 ± 0.95	-6	1181	0.00 ± 0.00
Composite spectra, jetted						
B1M13CD	1.92 ± 1.96	-25	662	0.00 ± 0.00
B1M13FRII	0.94 ± 0.98	-25	300	0.00 ± 0.00

a: in units of \AA; b: in units of km s-1; c: skew as reported by the \textsc{specfit} routine; it is equal to the conventional definition of the skew \[60\] + 1.

Table 5. [O\textsc{iii}]\textsubscript{λ5007} profile measurements

Spectrum	FWHMa (km s-1)	AI c c(1/4)c	AI c c(1/2)c	AI c c(3/4)c	AI c c(0.9)c
Composite spectra					
B1S02	580 ± 30	-0.10 ± 0.08	-40 ± 40	-10 ± 20	0 ± 20
B1M13	560 ± 40	-0.23 ± 0.11	-80 ± 50	-20 ± 20	10 ± 10
B1M09	1100 ± 120	-0.43 ± 0.05	-380 ± 60	-280 ± 60	-60 ± 60
Individual, high-L quasars					
HE0001	900 ± 70	-0.26 ± 0.07	-100 ± 40	0 ± 30	70 ± 30
Q0029	2120 ± 140	-0.37 ± 0.04	-1360 ± 60	-1240 ± 70	-860 ± 50
Composite spectra, jetted					
B1M13CD	490 ± 40	-0.18 ± 0.12	-90 ± 50	-70 ± 20	-10 ± 20
B1M13FRII	440 ± 50	-0.10 ± 0.09	-20 ± 30	10 ± 10	10 ± 10

a: in units of km s-1.

At very high luminosity (Fig. 2) a prominent outflow is apparently absent in one Pop. B Hβ profile (HE0001) but very prominent in another (Q0029). If the classification of Q0029 as a Population B source is correct, the model of the blue “goiter” at the side of the Hβ profile implies a strong contribution of blueshifted emission with a broad profile. The [O\textsc{iii}]\textsubscript{λ5007} profiles are also different: the equivalent width \(W\) is higher and the shift lower in the case of HE0001, where no significant Hβ outflow is detected. By all means, the properties of Q0029 appear more extreme. We predict that this source will show extreme C\textsc{iv} blueshift, with amplitude of several thousands km s-1.

The [O\textsc{iii}]\textsubscript{λ5007} shift and the A.I. become more negative and the equivalent width decreases with increasing luminosity. This is a pure luminosity effect that goes in the same sense of the effect of increasing Eddington ratio in sample covering the full span of \(L/L_{\text{Edd}}\sim 10^{-2}−1\), and can be interpreted as due to NLR evolution with redshift \[35\].

Jetted sources

The CD and FR-II composites from the sample of M13 (Fig. 3) show the [O\textsc{iii}]\textsubscript{λ5007} blueshifted and skewed component is not detected in Hβ, implying that for this component the intensity ratio [O\textsc{iii}]\textsubscript{λ5007}/Hβ\textsubscript{NC} \(\gg 1\). In addition the [O\textsc{iii}]\textsubscript{λ5007} profile for the FR-II composite spectrum is much more symmetric than that of the CD composite, whose A.I. and centroid shifts are more consistent with the RQ composite of same sample. This systematic difference may arise because of the different viewing angles expected for CD (seen almost pole on) and FR-II sources (seen at a viewing angle \(\approx 40 − 60\) \[61\]).
5. Discussion

The analysis performed above has been focused on sources radiating at relatively modest L/L_{Edd} (Population B) but covering a wide range of redshifts ($0 \lesssim z \lesssim 3$) and luminosities. Significant outflow features have been detected in the NLR, as traced by the Hβ_{NC} and [OIII]$\lambda\lambda 4959,5007$ blue shifted components. At high luminosity, significant blueshifts are found not only in the [OIII]$\lambda\lambda 4959,5007$ lines, but also with a broader profile, hinting at an association with the BLR emission.

5.1. How important is the outflow component?

The present analysis relies on the important assumption that the Population B profile at Hβ low-z and luminosity is not significantly affected by any outflowing gas. Reverberation mapping campaigns in the early 2000s provided evidence that the main broadening mechanism is indeed provided by a virial velocity field of gas orbiting around a point-like mass. More recent works points toward a more complex situation [62–64, Bao et al. 2022, in preparation], although the main inference from velocity-resolved reverberation mapping studies for the sources with the red Hβ asymmetry is that the velocity field is predominantly virial, with the frequent detection of infall motions. The detection of infall is based on the shorter time delay of the red wing, not on the response of the line core.

5.2. Identifying an outflow component

The Hβ profile of Population B presents a clear inflection between Hβ_{BC} and Hβ_{NC} that can be explained on the basis of the expected radial emissivity of Hβ [65]. The identification of an outflow component may be achieved by considering the following options:

- No significant centroid blueshift in the broad profile of Hβ and symmetric appearance at the interface between Hβ_{NC} and Hβ_{BC}, with the peak of the broad profile showing no shift or a slight redshift: no evidence of outflow.
- No significant centroid blueshift in the broad profile of Hβ and “goiter” appearance at the interface between Hβ_{NC} and Hβ_{BC}: If the [OIII]$\lambda 5007$ line shows a significant blueward asymmetry, and a model of the [OIII]$\lambda 5007$ line profile with a core and semi-broad component is applicable to the Hβ profile, then it is likely that the outflow is mainly associated with the NLR emission.
- Even modest centroid blueshift in the broad profile of Hβ at fractional intensity $\frac{3}{4}$ or 0.9, the outflow might involve BLR emission. In this case, the Hβ_{BLUE} corresponds to the prominent blueshifted emission of the CIV line observed at high luminosity [57]. The detection of Hβ_{BLUE} is made more difficult by the CIV/Hβ ratio expected to be $\gg 1$.

5.3. Location and physical nature of the outflow

Even in case of modest accretion rate, the outflow can be radiatively driven [66]. The ratio between the radiation and gravitation force can be written as $a_{\text{rad}}/a_{\text{grav}} \approx 7.2 L/L_{\text{Edd}} N_{c,23}^{-1}$, where $N_{c,23}$ is the Hydrogen column density in units of 10^{23} cm$^{-2}$ [e.g., 67]. For $L/L_{\text{Edd}} \sim 0.1$, gas of moderate common density $N_{c,23} \sim 0.1$ could be accelerated to $a_{\text{rad}}/a_{\text{grav}} \sim 10$ [c.f. Eq. 6 of Netzer and Marziani [66] 68]. The first underlying assumption is that all of the photon momentum of the ionizing continuum is transferred to the line emitting gas. The second assumption is that the gas is optically thick to the ionizing continuum, and this condition is more easily verified if the ionization parameter is low, implying that the low column density gas located farther out from the AGN continuum source might be preferentially accelerated. This might explain why we see a signature due to a semi-broad component in Hβ, Hβ_{SBC}, in turn associated with the [OIII]$\lambda 5007$ semi-broad component, likely at the inner edge of the NLR, may be the main signature of outflow in low L/L_{Edd} sources.

Regarding the BLR, at low luminosity there is no signature of outflow, if our interpretation of the profile is correct. For Population B sources, however, the observed spectrum can be explained by
the locally optimized cloud (LOC) scheme, in which a range of ionization parameters, density and column density is assumed, and the emerging spectrum is set by the parameters at which lines are emitted most efficiently [69,70]. This is to say that there might be always gas as “light” as needed for an outflow; however, that outflow may not produce a significant signature in the emission line spectrum. Powerful outflow at modest Eddington ratio may become possible only at high luminosity [e.g., 71–73], as predicted from wind theory, and confirmed by observations [57,74–76].

5.4. The fate of the outflowing gas: no feedback effects at low L

The mass outflow rate at a distance \(r \) can be written as, if the flow is confined to a solid angle of \(\Omega \) of volume \(\frac{4}{3} \pi r^3 \frac{H}{H_0} \): \(\dot{M}_{\text{ion}} = \rho \Omega r^2 v_0 = \frac{M_{\text{ion}}}{v_0} \sigma \Omega r^2 v_0 \approx L_{\text{bol}} r^{-1} \) [77], and implies \(\dot{M}_{\text{ion}} \sim 30 L_{44} v_{0,1000} r_{1\text{kpc}}^{-1} \left(\frac{Z}{Z_\odot} \right)^{-1} n_3^{-1} \), where the mass of ionized gas can be directly estimated from the line luminosity: \(\dot{M}_{\text{ion}} \sim 1 \cdot 10^7 L_{44} \left(\frac{Z}{Z_\odot} \right)^{-1} n_3^{-1} \). \(^3\) The low-luminosity cases SO2 and M13 imply that the outflow velocity is \(v_{0,1000} \sim 1 \) from the peak shift of [OIII]5007_{SBC}, and the [OIII]5007_{SBC} luminosity is \(\log L_{\text{[OIII]}} \sim 42 \). Assuming \(Z \approx 1 Z_\odot \) as appropriate for Population B sources [27], \(\dot{M}_{\text{ion}} \sim 5 \cdot 10^3 n_3^{-1} \), and \(\dot{M}_{\text{ion}} \sim 0.15 r_{1\text{kpc}}^{-1} n_3^{-1} \). By the same token the thrust and kinetic power can be written as \(\dot{M} v \sim 1.9 \cdot 10^{35} L_{44} v_{0,1000} r_{1\text{kpc}}^{-1} \left(\frac{Z}{Z_\odot} \right)^{-1} n_3^{-1} \) and \(\dot{e} \sim 10^{43} L_{44} v_{0,1000} r_{1\text{kpc}}^{-1} \left(\frac{Z}{Z_\odot} \right)^{-1} n_3^{-1} \), which become \(\dot{M} v \sim 1 \cdot 10^{34} r_{1\text{kpc}}^{-1} n_3^{-1} \) and \(\dot{e} \sim 5 \cdot 10^{41} r_{1\text{kpc}}^{-1} n_3^{-1} \). Even assuming that we are observing a flow at \(r \sim 10 \) pc, the kinetic power is \(\dot{e} \lesssim 10^{44} \text{ erg s}^{-1} \), a factor \(\approx 100 \) below the bolometric luminosity and \(\approx 1000 \) the Eddington luminosity of the M13 case. The emitting gas might be beyond or at the limit of the black hole sphere of influence given by \(r \approx \frac{G M}{\sigma^2} \sim 8 \cdot 10^{19} M_9 / \sigma^2_{2000} \text{ cm} \), where \(\sigma_r \) is the velocity dispersion associated with the bulge of the host galaxy in units of 400 km s\(^{-1}\). At this radius, the escape velocity is expected to be \(v_{\text{esc}} \sim 500 \text{ km s}^{-1} \) for a 10\(^9\) M_\odot black hole. It is therefore doubtful whether the outflowing gas might be even able to escape from the sphere of influence of the black hole. Even less likely is that the outflowing gas might “wreak havoc” galaxy-wide in the bulge and disk of the host, due to the small amount of gas masses involved in the outflow, and due to the escape velocity that can be as high as \(v_{\text{esc}} \gtrsim 1000 \text{ km s}^{-1} \) in the inner regions of a massive spheroid or in a giant spiral such as the Milky Way [78].

The scenario might radically change at high luminosity: considering the M09 composite, the velocity of [OIII]5007_{SBC} is higher by a factor \(\approx 2 \), and the line luminosity by a factor \(\sim 10 \), implying a 20-, 40-, \(\sim 100\)-fold increase over the M13 case in mass flow, thrust and kinetic power, respectively. In the M09 case the kinetic power would be comparable to the Eddington luminosity. An even more powerful outflow is expected for Q0029.

6. Summary and conclusion

The analysis of outflow signatures carried out in the present paper has been focused on three samples of type-1 AGN covering a wide range of luminosity.

The detection of different kinematic components in single epoch profiles is a complicated issue. The apertures and slit widths used in ground-based observation add up the emission from AGN continuum, BLR, NLR, and host galaxy that are associated with widely different spatial scales. The case of Population B sources of spectral type B1 is especially well-suited to analyze the presence of an outflow component in the Balmer H\(\beta\) line for sources that are radiating at modest Eddington ratio.

Generally speaking, the detection of significant systematic blueshifts in the centroid measurements can be taken as a signature of outflow. If the blueshift/blue asymmetry is confined

\(^3\) Note that the filling factor is not appearing explicitly because by using the line luminosity we already are considering the volume of the line emitting gas. The fraction of volume that is actually occupied by the line emitting gas then depends on its density.
at the top of the Hβ line, and the Hβ narrow emission can be modeled as [OIII]λ5007 assuming a semi-broad and a narrow component with a similar parameter, then the evidence of the outflow (the “goiter” in the line profile) remains confined to the NLR. However, if the Hβ centroid at 3 or at lower fractional intensity is also blue shifted, it is likely that a BLR outflow is being detected. Low column density gas can be driven into an outflow by radiation forces. Blueshifts in the line core can be therefore straightforwardly interpreted by an outflow component, without invoking binary BLR, in turn pointing toward sub-parsec binary black holes. Other spectral types along the MS have been identified as frequently involving binary black hole candidates [79,80].

The estimates of mass flow, thrust and kinetic power are highly uncertain because of the lack of spatially-resolved data. This situation might be changing soon with the development of integral-field spectrographs. Nonetheless, even maximizing the coarse estimates reported above, it is unlikely that the thrust and the kinetic power (just ~ 10^{-2} the Eddington luminosity as derived for the S02 and M13 samples) might have a strong impact on the host galaxy evolution, not to mention the possibility of driving the black hole mass — bulge correlation [e.g., 81, and references therein]. Even if the [OIII]λ5007 samples only emission from mildly ionized gas, and the mass flow might be dominated by the higher-ionization gas, for low luminosity AGN such as the prototypical Population B Seyfert-1 NGC 5548 the kinetic luminosity remains a very small fraction of the Eddington luminosity [37,82]. The situation is expected to change at the “cosmic noon” at redshifts in the range 1 — 2, when the most luminous quasars are observed, and of which M09 provides a representative spectrum.

Author Contributions: All authors contributed equally to this paper.

Acknowledgments: A.D.M. and A.d.O. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the project PID2019-106027GB-C41 and the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). A.D.M. acknowledges the support of the INPhINIT fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/ID19/11730018.

Funding for the Sloan Digital Sky Survey has been provided by the Alfred P. Sloan Foundation, and the U.S. Department of Energy Office of Science. The SDSS web site is http://www.sdss.org. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofísica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
AGN Active Galactic Nucleus
BLR Broad Line Region
BC Broad Component
CD Core Dominated
FR-II Fanaroff-Riley II
FWHM Full Width Half-Maximum
HE Hamburg-ESO
ISAAC Infrared Spectrometer And Array Camera
IR Infrared
LOC Locally Optimized Cloud
M03 Marziani et al. 2003
M09 Marziani et al. 2009
M13 Marziani et al. 2013
MDPI Multidisciplinary Digital Publishing Institute
MS Main Sequence
NC Narrow Component
NGC New General Catalogue
NLR Narrow Line Region
RL Radio loud
RQ Radio quiet
SBC Semi-Broad Component
SDSS Sloan Digital Sky Survey
UV Ultra-violet
VBC Very Broad Component
VBLR Very Broad Line Region
1. Sulentic, J.W.; Marziani, P.; Dultzin-Hacyan, D. Phenomenology of Broad Emission Lines in Active Galactic Nuclei. *ARA&A* **2000**, *38*, 521–571. doi:10.1146/annurev.astro.38.1.521.

2. Osterbrock, D.E.; Mathews, W.G. Emission-line regions of active galaxies and QSOs. *ARA&Ap* **1986**, *24*, 171–203. doi:10.1146/annurev.aa.24.090186.001131.

3. Netzer, H. AGN emission lines. Active Galactic Nuclei; R. D. Blandford, H. Netzer, L. Woltjer, T. J.-L. Courvoisier, & M. Mayor., Ed., 1990, pp. 57–160.

4. Peterson, B.M. *An Introduction to Active Galactic Nuclei*; Cambridge University Press, 1997.

5. Osterbrock, D.E.; Ferland, G.J. *Astrophysics of gaseous nebulae and active galactic nuclei*; University Science Books: Mill Valley, CA, 2006.

6. Marziani, P.; Dultzin-Hacyan, D.; Sulentic, J.W. Accretion onto Supermassive Black Holes in Quasars: Learning from Optical/UV Observations. In *New Developments in Black Hole Research*; Kreitler, P.V., Ed.; Nova Press, New York, 2006; p. 123.

7. Sulentic, J.W. Toward a classification scheme for broad-line profiles in active galactic nuclei. *ApJ* **1989**, *343*, 54–65. doi:10.1086/167684.

8. Shen, Y.; Ho, L.C. The diversity of quasars unified by accretion and orientation. *Nat* **2014**, *513*, 210–213, [1409.2887]. doi:10.1038/nature13712.

9. Panda, S.; Czerny, B.; Adhikari, T.P.; Hryniewicz, K.; Wildy, C.; Kuraszkiewicz, J.; Śniegowska, M. Modeling of the Quasar Main Sequence in the Optical Plane. *The Astrophysical Journal* **2018**, *866*, 115. doi:10.3847/1538-4357/aae209.

10. Sulentic, J.; Marziani, P.; Zamfir, S. The Case for Two Quasar Populations. *Baltic Astronomy* **2011**, *20*, 427–434.

11. Marziani, P.; Zamanov, R.K.; Sulentic, J.W.; Calvani, M. Searching for the physical drivers of eigenvector 1: influence of black hole mass and Eddington ratio. *MNRAS* **2003**, *345*, 1133–1144, [arXiv:astro-ph/0307367]. doi:10.1046/j.1365-2966.2003.07033.x.

12. Marziani, P.; Sulentic, J.W. Highly accreting quasars: sample definition and possible cosmological implications. *MNRAS* **2014**, *442*, 1211–1229, [1405.2727]. doi:10.1093/mnras/stu951.

13. Abramowicz, M.A.; Czerny, B.; Lasota, J.P.; Szuszkiewicz, E. Slim accretion disks. *ApJ* **1988**, *332*, 646–658. doi:10.1086/166683.

14. Mineshige, S.; Kawaguchi, T.; Takeuchi, M.; Hayashida, K. Slim-Disk Model for Soft X-Ray Excess and Variability of Narrow-Line Seyfert 1 Galaxies. *PASJ* **2000**, *52*, 499–508, [arXiv:astro-ph/0003017].

15. Sadowski, A. Slim accretion disks around black holes. *arXiv* e-prints **2011**, p. arXiv:1108.0396, [arXiv:astro-ph.HE/1108.0396].

16. Sun, J.; Shen, Y. Strong Response of the Very Broad Hβ Emission Line in the Luminous Radio-quiet Quasar PG 1416-129. *ApJL* **2011**, *742*, L12, [1110.4701]. doi:10.1088/2041-8205/742/1/L12.

17. Punsly, B. Multi-epoch Observations of the Red Wing Excess in the Spectrum of 3C 279. *ApJL* **2013**, *762*, L25, [arXiv:astro-ph.CO/1211.2619]. doi:10.1088/2041-8205/762/2/L25.

18. Wolf, J.; Salvato, M.; Coffey, D.; Merloni, A.; Buchner, J.; Arcodia, R.; Baron, D.; Carrera, F.J.; Comparat, J.; Schneider, D.P.; Nandra, K. Exploring the diversity of Type 1 active galactic nuclei identified in SDSS-IV/SPIDERS. *MNRAS* **2020**, *492*, 3580–3601, [arXiv:astro-ph.HE/1911.01947]. doi:10.1093/mnras/staa018.
24. Sneden, S.A.; Gaskell, C.M. The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei. *ApJ* **2007**, *669*, 126–134. doi:10.1086/521290.

25. Peterson, B.M.; Wandel, A. Keplerian Motion of Broad-Line Region Gas as Evidence for Supermassive Black Holes in Active Galactic Nuclei. *ApJL* **1999**, *521*, L95–L98, [arXiv:astro-ph/9905382]. doi:10.1086/312190.

26. Peterson, B.M.; Ferrarese, L.; Gilbert, K.M.; Kaspi, S.; Malkan, M.A.; Maoz, D.; Merritt, D.; Netzer, H.; Onken, C.A.; Pogge, R.W.; Vestergaard, M.; Wandel, A. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database. *ApJ* **2004**, *613*, 682–699, [arXiv:astro-ph/0407299]. doi:10.1086/423269.

27. Punsly, B.; Marziani, P.; Berton, M.; Kharb, P. The Extreme Red Excess in Blazar Ultraviolet Broad Emission Lines. *ApJ* **2020**, *903*, 44, [arXiv:astro-ph.GA/2009.05082]. doi:10.3847/1538-4357/abb950.

28. Wang, J.M.; Du, P.; Brotherton, M.S.; Hu, C.; Songsheng, Y.Y.; Li, Y.R.; Shi, Y.; Zhang, Z.X. Tidally disrupted dusty clumps as the origin of broad emission lines in active galactic nuclei. *Nature Astronomy* **2017**, *1*, 775–783, [1710.03419]. doi:10.1038/s41550-017-0264-4.

29. Gaskell, C.M. Direct evidence for gravitational domination of the motion of gas within one light-week of the central object in NGC 4151 and the determination of the mass of the probable black hole. *ApJ* **1988**, *325*, 114–118. doi:10.1086/165986.

30. Corbin, M.R. QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift? *ApJ* **1995**, *447*, 496–499, doi:10.1086/175894.

31. Popovic, L.C.; Vince, I.; Atanackovic-Vukmanovic, O.; Kubicela, A. Contribution of gravitational redshift to spectral line profiles of Seyfert galaxies and quasars. *A&A* **1995**, *293*, 309–314.

32. Gavriilović, N.; Popović, L.C.; Kollatschny, W. The gravitational redshift in the broad line region of the active galactic nucleus Mrk 110. *IAU Symposium*; Karas, V.; Matt, G., Eds., 2007, *Vol. 238*, pp. 369–370. doi:10.1017/S1743921307005492.

33. Bon, N.; Bon, E.; Marziani, P.; Jovanović, P. Gravitational redshift of emission lines in the AGN spectra. *ApSS* **2015**, *360*, 7, [1602.03688]. doi:10.1007/s10509-015-2555-5.

34. Marziani, P.; Sulentic, J.W. Quasar Outflows in the 4D Eigenvector 1 Context. *The Astronomical Review* **2012**, *7*, 33–57, [arXiv:astro-ph.CO/1210.2059].

35. Marziani, P.; Sulentic, J.W.; Stirpe, G.M.; Dultzin, D.; Del Olmo, A.; Martínez-Carballo, M.A. Blue outliers among intermediate redshift quasars. *ApSS* **2016**, *361*, 3, [1511.07138]. doi:10.1007/s10509-015-2590-2.

36. Leighly, K.M.; Moore, J.R. Hubble Space Telescope STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-Line Seyfert 1 Galaxies. I. Data and Analysis. *ApJ* **2004**, *611*, 107–124, [arXiv:astro-ph/0402453]. doi:10.1086/422088.

37. Di Gesu, L.; Harrison, F.A.; Kaspi, S.; Malzac, J.; De Marco, B.; Matt, G.; Paltani, S.; Person, E.; Bianchi, S.; Boissay, R.; Branduardi-Raymont, G.; Chamberlain, C.; Costantini, E.; Ely, J.C.; Ebrero, J.; Frank, B.; Froman, C.; Gilfanov, M.; Hardy, J.; Heinz, S.; Hünsch, M.; Inoue, H.; Johnston, H.; Kallman, T.R.; Kaastra, J.S.; Kriss, G.A.; Machida, M.; Mancini, L.P.; Mehdipour, M.; Mennel, D.; Nandra, K.; Netzer, H.; Ogle, K.; Paltani, S.; Person, E.; Prada, F.; Takeda, J.; Tanaka, Y.; Urban, A.; Vincent, J.; Wehrle, A.; Worrall, D.M.; Young, P.A.; Zdziarski, A.A.; Zoghbi, A.; Zuckerman, B. The Extreme Red Excess in Blazar Ultraviolet Broad Emission Lines. *ApJ* **2016**, *828*, 44, [arXiv:astro-ph.HE/1406.5007]. doi:10.1126/science.1253787.

38. Finé, S.; Croom, S.M.; Bland-Hawthorn, J.; Pimbblet, K.A.; Ross, N.P.; Schneider, D.P.; Shanks, T. The CIV linewidth distribution for quasars and its implications for broad-line region dynamics and virial mass estimation. *MNRAS* **2010**, *409*, 591–610, [arXiv:astro-ph.CO/1005.5287]. doi:10.1111/j.1365-2966.2010.17107.x.

39. Whittle, M. The Narrowline Region of Active Galaxies - Part Two - Relations Between OIII Profile Shape and Other Properties. *MNRAS* **1985**, *213*, 33.

40. Bennert, N.; Falcke, H.; Schulz, H.; Wilson, A.S.; Wills, B.J. Size and Structure of the Narrow-Line Region of Quasars. *ApJL* **2002**, *574*, L105–L109, [astro-ph/0206334]. doi:10.1086/342420.

41. Komossa, S.; Xu, D.; Zhou, H.; Storchi-Bergmann, T.; Binette, L. On the Nature of Seyfert Galaxies with High [O III] λ5007 Blueshifts. *ApJ* **2008**, *680*, 926–938, [0803.0240]. doi:10.1086/587932.

42. Zamanov, R.; Marziani, P.; Sulentic, J.W.; Calvani, M.; Dultzin-Hacyan, D.; Bachev, R. Kinematic Linkage between the Broad- and Narrow-Line-emitting Gas in Active Galactic Nuclei. *ApJL* **2002**, *576*, L9–L13, [arXiv:astro-ph/0207387]. doi:10.1086/342783.
43. Marziani, P.; Martínez Carballo, M.A.; Sulentic, J.W.; Del Olmo, A.; Stirpe, G.M.; Dultzin, D. The most powerful quasar outflows as revealed by the Civ λ1549 resonance line. *ApSS* **2016**, *361*, 29, [1512.00381]. doi:10.1007/s10509-015-2611-1.

44. Vestergaard, M.; Peterson, B.M. Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships. *ApJ* **2006**, *641*, 689–709, [arXiv:astro-ph/0601303]. doi:10.1086/500572.

45. Netzer, H. Bolometric correction factors for active galactic nuclei. *MNRAS* **2019**, *488*, 5185–5191, [arXiv:astro-ph.GA/1907.09534]. doi:10.1093/mnras/stz2016.

46. Sulentic, J.W.; Marziani, P.; Zamanov, R.; Bachev, R.; Calvani, M.; Dultzin-Hacyan, D. Average Quasar Spectra in the Context of Eigenvector 1. *ApJL* **2002**, *566*, L71-L75, [arXiv:astro-ph/0201362]. doi:10.1086/339594.

47. Marziani, P.; Sulentic, J.W.; Plauchu-Frayn, I.; del Olmo, A. Is Mg II 2800 a Reliable Virial Broadening Estimator for Quasars? *A&ARv* **2013**, *555*, 89, 16pp, [arXiv:astro-ph.CO/1305.1096].

48. Marziani, P.; Sulentic, J.W.; Plauchu-Frayn, I.; del Olmo, A. Low-Ionization Outflows in High Eddington Ratio Quasars. *ApJ* **2013**, *764*, [arXiv:astro-ph.CO/1301.0520].

49. Marziani, P.; Sulentic, J.W.; Zamanov, R.; Calvani, M.; Dultzin-Hacyan, D.; Bachev, R.; Zwitter, T. An Optical Spectroscopic Atlas of Low-Redshift Active Galactic Nuclei. *ApJS* **2003**, *145*, 199–211. doi:10.1086/346025.

50. Bon, N.; Marziani, P.; Bon, E.; Negrete, C.A.; Dultzin, D.; del Olmo, A.; D’Onofrio, M.; Martínez-Aldama, M.L. Selection of highly-accreting quasars. Spectral properties of Fe II opt emitters not belonging to extreme Population A. *A&A* **2020**, *635*, A151, [arXiv:astro-ph.GA/2001.08765]. doi:10.1051/0004-6361/201936773.

51. Padovani, P. The faint radio sky: radio astronomy becomes mainstream. *AApR* **2016**, *24*, 13, [1609.00499]. doi:10.1017/s00159-016-0098-6.

52. Bon, N.; Marziani, P.; Bon, E.; Negrete, C.A.; Dultzin, D.; del Olmo, A.; D’Onofrio, M.; Martínez-Aldama, M.L. Selection of highly-accreting quasars. Spectral properties of Fe II opt emitters not belonging to extreme Population A. *A&A* **2020**, *635*, A151, [arXiv:astro-ph.GA/2001.08765]. doi:10.1051/0004-6361/201936773.

53. Padovani, P. Active Galactic Nuclei at All Wavelengths and from All Angles. *Frontiers in Astronomy and Space Sciences* **2017**, *4*, 35. doi:10.3389/fspas.2017.00035.

54. Sulentic, J.W.; Marziani, P.; del Olmo, A.; Dultzin, D.; Perea, J.; Alenka Negrete, C. GTC spectra of z ≈ 2.3 quasars: comparison with local luminosity analogs. *A&A* **2013**, *566*, L71–L75, [arXiv:astro-ph.CO/1303.0534]. doi:10.1051/0004-6361/201623975.

55. Kriss, G. Fitting Models to UV and Optical Spectral Data. *Astronomical Data Analysis Software and Systems III*, A.S.P. Conference Series **1994**, *61*, 437.

56. Boroson, T.A.; Green, R.F. The Emission-Line Properties of Low-Redshift Quasi-stellar Objects. *ApJS* **1992**, *80*, 109. doi:10.1086/191661.

57. Sulentic, J.W.; del Olmo, A.; Marziani, P.; Martínez-Carballo, M.A.; D’Onofrio, M.; Dultzin, D.; Negrete, C.A.; D’Onofrio, M.; Perea, J.; Martínez-Aldama, M.L.; Stirpe, G.M.; Zamanov, R.; Calvani, M.; Zwitter, T. What does CIV λ1549 tell us about the physical driver of the Eigenvector quasar sequence? *A&A* **2017**, *608*, A122, [1708.03187]. doi:10.1051/0004-6361/201630309.

58. Marziani, P.; Dultzin-Hacyan, D.; D’Onofrio, M.; Sulentic, J.W. Arp 194: Evidence of Tidal Stripping of Gas and Cross-Fueling. *AJ* **2003**, *125*, 1897–1907, [arXiv:astro-ph/0212547]. doi:10.1086/368142.

59. Zamfir, S.; Sulentic, J.W.; Marziani, P.; Dultzin, D. Detailed characterization of Hβ emission line profile in low-z SDSS quasars. *MNRAS* **2010**, *403*, 1759, [0912.4306]. doi:10.1111/j.1365-2966.2009.16236.x.

60. Azzalini, A.; Regoli, G. Some properties of skew-symmetric distributions. *Ann. Inst. Statist. Math.* **2012**, *64*, 857–879. doi:10.1007/s10463-011-0338-5.
Tobin, J.J.; Unterborn, C.; Vestergaard, M.; Watkins, A.E.; Watson, L.C.; Yoshii, Y. Diverse Kinematic Signatures from Reverberation Mapping of the Broad-Line Region in AGNs. *ApJL* **2009**, *704*, L80–L84. doi:10.1088/0004-637X/704/2/L80.

63. Du, P.; Brotherton, M.S.; Wang, K.; Huang, Z.P.; Hu, C.; Kasper, D.H.; Chick, W.T.; Nguyen, M.L.; Maithil, J.; Hand, D.; Li, Y.R.; Ho, L.C.; Bai, J.M.; Bian, W.H.; Wang, J.M.; MAHA Collaboration. Monitoring AGNs with Hβ Asymmetry. I. First Results: Velocity-resolved Reverberation Mapping. *ApJ* **2018**, *869*, 142, [arXiv:astro-ph.GA/1810.11996]. doi:10.3847/1538-4357/aed2c2.

64. U, V.; Barth, A.J.; Vogler, H.A.; Guo, H.; Treu, T.; Bennert, V.N.; Canalizo, G.; Filippenko, A.V.; Gates, E.; Hamann, F.; Joner, M.D.; Malkan, M.A.; Pancoast, A.; Williams, P.R.; Woo, J.H.; Abolfathi, B.; Abramson, L.E.; Armen, S.F.; Bae, H.J.; Bohn, T.; Boizelle, B.D.; Bostroem, A.; Brandel, A.; Brink, T.G.; Channa, S.; Cooper, M.C.; Cosens, M.; Donohue, E.; Fillingham, S.P.; González-Buitrago, D.; Halevi, G.; Halle, A.; Hood, C.E.; Horne, K.; Horst, J.C.; Kouchkovsky, M.d.; Kuhn, B.; Kumar, S.; Leonard, D.C.; Lovelond, D.; Manzano-King, C.; McHardy, I.; Michel, R.; Olaes, M.K.B.; Park, D.; Park, S.; Pei, L.; Ross, T.W.; Runco, J.N.; Samuel, J.; Sánchez, J.; Scott, B.; Sexton, R.O.; Shin, J.; Shivers, I.; Spencer, C.L.; Stahl, B.E.; Stegman, S.; Stomberg, I.; Valenti, S.; Villafaña, L.; Walsh, J.L.; Yuk, H.; Zheng, W. The Lick AGN Monitoring Project 2016: Velocity-resolved Hβ Lags in Luminous Seyfert Galaxies. *ApJ* **2022**, *925*, 52, [arXiv:astro-ph.CO/2111.14849]. doi:10.3847/1538-4357/ac3d26.

65. Sulentic, J.W.; Marziani, P. The Intermediate-Line Region in Active Galactic Nuclei: A Region “Præter Necessitatem”? *ApJ* **1999**, *518*, L9–L12, [arXiv:astro-ph/9904203]. doi:10.1086/312060.

66. Netzer, H.; Marziani, P. The Effect of Radiation Pressure on Emission-line Profiles and Black Hole Mass Determination in Active Galactic Nuclei. *ApJ* **2010**, *724*, 318–328, [arXiv:astro-ph.CO/1006.3553]. doi:10.1088/0004-637X/724/1/318.

67. Ferland, G.J.; Hu, C.; Wang, J.; Baldwin, J.A.; Porter, R.L.; van Hoof, P.A.M.; Williams, R.J.R. Implications of Infalling Fe II-Emitting Clouds in Active Galactic Nuclei: Anisotropic Properties. *ApJ* **2009**, *707*, L82–L86, [arXiv:1004.1173]. doi:10.1088/0004-637X/707/1/L82.

68. Marziani, P.; Sulentic, J.W.; Negrete, C.A.; Dultzin, D.; Zamfir, S.; Bachev, R. Broad-line region physical conditions along the quasar eigenvector 1 sequence. *MNRAS* **2010**, *409*, 1033–1048, [arXiv:astro-ph.CO/1007.3187]. doi:10.1111/j.1365-2966.2010.17357.x.

69. Baldwin, J.; Feerland, G.; Korista, K.; Verner, D. Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines. *ApJ* **1995**, *455*, L119+, [arXiv:astro-ph/9510080]. doi:10.1086/309827.

70. Korista, K.; Baldwin, J.; Feerland, G.; Verner, D. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines. *ApJS* **1997**, *108*, 401–+, [arXiv:astro-ph/9611220]. doi:10.1086/312966.

71. Murray, N.; Chiang, J. Disk Winds and Disk Emission Lines. *ApJ* **1997**, *474*, 91. doi:10.1086/303443.

72. Proga, D.; Stone, J.M.; Drew, J.E. Radiation-driven winds from luminous accretion discs. *MNRAS* **1998**, *295*, 595–617, [arXiv:astro-ph/9710305]. doi:10.1046/j.1365-8711.1998.01337.x.

73. Laor, A.; Brandt, W.N. The Luminosity Dependence of Ultraviolet Absorption in Active Galactic Nuclei. *ApJ* **2002**, *569*, 641–654. doi:10.1086/339476.

74. Bischetti, M.; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Sani, E.; Marconi, A.; Duras, F.; Zappacosta, L.; Brusa, M.; Comastri, A.; Cresci, G.; Feruglio, C.; Giallongo, E.; La Franca, F.; Mainieri, V.; Mannucci, F.; Martocchia, S.; Ricci, F.; Schneider, R.; Testa, V.; Vignali, C. The WISSH quasars project. I. Powerful ionised outflows in hyper-luminous quasars. *A&A* **2017**, *598*, A122, [1612.03728]. doi:10.1051/0004-6361/201629301.

75. Vietri, G. The LBT/WISSH quasar survey: revealing powerful winds in the most luminous AGN. American Astronomical Society Meeting Abstracts, 2017, Vol. 229, *American Astronomical Society Meeting Abstracts*, p. 302.06.

76. Vietri, G.; Piconcelli, E.; Bischetti, M.; Duras, F.; Martocchia, S.; Bongiorno, A.; Marconi, A.; Zappacosta, L.; Bisogni, S.; Bruni, G.; Brusa, M.; Comastri, A.; Cresci, G.; Feruglio, C.; Giallongo, E.; La Franca, F.; Mainieri, V.; Mannucci, F.; Ricci, F.; Sani, E.; Testa, V.; Tombesi, F.; Vignali, C.; Fiore, F. The WISSH quasars project. IV. Broad line region versus kiloparsec-scale winds. *A&A* **2018**, *617*, A81, [1802.03423]. doi:10.1051/0004-6361/201732335.

77. Cano-Díaz, M.; Maiolino, R.; Marconi, A.; Netzer, H.; Shemmer, O.; Cresci, G. Observational evidence of quasar feedback quenching star formation at high redshift. *A&A* **2012**, *537*, L8, [arXiv:astro-ph.CO/1112.3071]. doi:10.1051/0004-6361/201118358.
Monari, G.; Famaey, B.; Carrillo, I.; Piffl, T.; Steinmetz, M.; Wyse, R.F.G.; Anders, F.; Chiappini, C.; Janßen, K. The escape speed curve of the Galaxy obtained from Gaia DR2 implies a heavy Milky Way. *A&A* 2018, 616, L9, [arXiv:astro-ph.GA/1807.04565]. doi:10.1051/0004-6361/201833748.

Ganci, V.; Marziani, P.; D’Onofrio, M.; del Olmo, A.; Bon, E.; Bon, N.; Negrete, C.A. Radio loudness along the quasar main sequence. *A&A* 2019, 630, A110, [arXiv:astro-ph.GA/1908.07308]. doi:10.1051/0004-6361/201936270.

del Olmo, A.; Marziani, P.; Ganci, V.; D’Onofrio, M.; Bon, E.; Bon, N.; Negrete, A.C. Optical spectral properties of radio loud quasars along the main sequence. Nuclear Activity in Galaxies Across Cosmic Time; Pović, M.; Marziani, P.; Masegosa, J.; Netzer, H.; Negu, S.H.; Tessema, S.B., Eds., 2021, Vol. 356, pp. 310–313, [arXiv:astro-ph.GA/2004.12748]. doi:10.1017/S1743921320003191.

D’Onofrio, M.; Marziani, P.; Chiosi, C. Past, present and Future of the Scaling Relations of Galaxies and Active Galactic Nuclei. *arXiv e-prints* 2021, p. arXiv:2109.06301, [arXiv:astro-ph.GA/2109.06301].

Kriss, G.A. Coordinated UV and X-ray Observations of AGN Outflows. American Astronomical Society Meeting Abstracts #229, 2017, Vol. 229, *American Astronomical Society Meeting Abstracts*, p. 209.01.
This figure "galaxies-logo.png" is available in "png" format from:

http://arxiv.org/ps/2203.09196v1
This figure "universe-logo.png" is available in "png" format from:

http://arxiv.org/ps/2203.09196v1