Formation and soft magnetic properties of Co (-Fe)-Si-B-Nb bulk metallic glasses in relation to clusters

Q Wang 1,2, C L Zhu 1, C Dong 1,2, J B Qiang 3, W Zhang 3 and A Inoue 3
1 State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024, China
2 DUT-IMR Joint Research Center, Dalian University of Technology, Dalian 116024, China
3 Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577, Japan

E-mail: dong@dlut.edu.cn

Abstract. Bulk metallic glass formations in Co-based alloy systems are investigated with the guidance of our cluster line approach and minor-alloying principle. Basic ternary alloy compositions in Co-B-Si system are first determined by cluster lines defined by linking special binary clusters to third elements. Then these basic ternary alloys are further minor-alloyed with 4-5 at. % Nb and bulk metallic glasses of 3 mm in diameter are formed in (Co8B3-Si)-Nb, Co8B3 being dense-packed cluster. The bulk metallic glasses are expressed approximately with a unified simple composition formula: (Co8B3)(Si,Nb). Finally a quantity of Fe substitution for Co further improves the glass-forming abilities and these Co-Fe-based quinary bulk metallic glasses have good soft magnetic properties with high saturation magnetization I_s, up to 0.98T, and low coercive force H_c, below 6 A/m.

1. Introduction
Co-based bulk metallic glasses (BMGs) are drawing increasing attention due to their superior mechanical and soft magnetic properties [1, 2]. However, as compared with Pd-, Zr- and Cu-based BMGs, the Co-based ones have relatively weak glass forming abilities (GFAs) and are formed only in multi-component systems [3]. Furthermore, these BMGs are composition-sensitive and the BMG-forming ranges are quite small. Therefore, the composition design is of great importance for developing new Co-based BMGs with large GFAs. The existing empirical rules [3-5], however, fail in providing quantitative composition guidelines in such complex systems.

In this paper, we will introduce the cluster line approach into the Co-B-Si based BMG-forming systems. Such an approach has successfully guided the composition design of Zr-, Cu-, Sm- and Y-based BMGs [6-9]. In addition, minor-alloying by elements with atomic sizes different from the main constituent elements can dramatically improve the GFAs of metallic glasses [6, 10]. Therefore, the basic ternary Co-B-Si compositions are first designed by using cluster lines. Then, the basic Co-B-Si compositions are minor-alloyed with a fourth element Nb and finally, the base element Co is partially substituted by Fe. Furthermore, the soft magnetic properties of Co-based BMGs are also studied.

2. Composition design using cluster line and minor-alloying
A cluster line in a ternary phase diagram is a straight composition line linking a binary cluster composition to the third element. The specific binary cluster is a nearest-neighbor coordination polyhedron that usually exists as a local structure of crystalline phases.

The origin of such cluster lines is traced to the negative enthalpies of mixing of the constituent elements in ternary BMG-forming systems. In Co-B-Si ternary system, the enthalpies of mixing of Co-B, Co-Si and B-Si are respectively $\Delta H_{\text{Co-B}} = -24 \text{ kJ/mol}$, $\Delta H_{\text{Co-Si}} = -38 \text{ kJ/mol}$ and $\Delta H_{\text{B-Si}} = -14 \text{ kJ/mol}$ [11]. The enthalpies of mixing of the Co-B and Co-Si pairs are significantly larger than that of B-Si pair, which favors to form the separated Co-B and Co-Si binary clusters in ternary structures. Due to the similarity of local structures in metallic glasses and competing crystalline phases [12], the local structures of Co-B, Co-Si and Co-B-Si crystalline phases are analyzed and from which a series of binary clusters are derived. The Co-rich Co-B clusters centered by B are respectively CN10 capped Archimedean antiprism Co_8B_3, CN9 side-capped trigonal prisms Co_7B_3 and Co_9B_3, CN11 capped trigonal prism Co_9B_3. And the Co-rich Co-Si cluster is a CN12 cube-octahedron Co_{12}Si centered by Si.

Cluster lines Co_7B_3-Si, Co_8B_3-Si, Co_9B_3-Si, Co_{9}B-Si and Co_{12}Si-B are then constructed in the basic ternary Co-B-Si system, as shown in figure 1. The Co-B cluster lines and the Co_{12}Si-B cluster line intersect at four basic ternary compositions $\text{Co}_{66.2}\text{B}_{28.3}\text{Si}_{5.5}$, $\text{Co}_{68.6}\text{B}_{25.7}\text{Si}_{5.7}$, $\text{Co}_{70.6}\text{B}_{23.5}\text{Si}_{5.9}$ and $\text{Co}_{83.7}\text{B}_{9.3}\text{Si}_{7}$. These compositions can be expressed in a more explicit manner using a cluster-glue atom formula, $\text{Co}_{66.2}\text{B}_{28.3}\text{Si}_{5.5}$, $\text{Co}_{68.6}\text{B}_{25.7}\text{Si}_{5.7}$, $\text{Co}_{70.6}\text{B}_{23.5}\text{Si}_{5.9}$ and $\text{Co}_{83.7}\text{B}_{9.3}\text{Si}_{7}$.

![Figure 1. Schematic composition chart of Co-B-Si ternary system. Cluster lines and intersection points are shown.](image)

3. Experimental

Ingots of Co-Si-B, Co-Si-B-Nb and Co-Fe-Si-B-Nb alloys were prepared by using arc melting the mixtures of constituent elements under argon atmosphere. The purities of elements are 99.99 wt% for Co and Fe, 99.5 wt% for B, 99.9 wt% for Si and 99.96 wt% for Nb respectively. Alloy rods with a diameters of 2 mm and 3mm with a total length of 40 mm were prepared by means of copper mould suction casting. Structural identification of these alloys was carried out by means of X-ray diffractometry (XRD) on the bottom of the rods using the Cu K_α radiation ($\lambda = 0.15406$ nm). Differential scanning calorimetry (DSC) and differential thermal analysis (DTA) are employed to study the thermodynamic behaviors of the BMGs at a heating rate of 0.33 K/s. Magnetic properties of saturation magnetization (I_s) and coercive force (H_c) were measured with a vibrating scanning magnetometer (VSM) under an applied field of 800 kA/m, a B-H loop tracer under a field of 800 A/m.

4. Results and discussions

A good metallic glass usually possesses dense-packed local atomic cluster structures. Miracle et al [13] proposed a topologically efficient cluster-packing structural model and calculated the critical
radius ratios R^* values for ideal dense-packed clusters, where $R^* = r_0/r_1$, r_0 being the radius of the central atom and r_1 the radius of the 1^{st}-shell atoms. We calculated the radius ratio R of Co-B and Co-Si clusters taking the Goldschmidt radii of Co, B, and Si as 0.125 nm, 0.098 nm and 0.132 nm respectively. There exists difference between actual and ideal clusters with the same coordination number (CN), represented by $\Delta = (R-R^*)/R^*$. Take the cluster Co$_{8}$B$_3$ for instance: $R = r_0/r_1 = 0.819$ (r_1 is the average atomic radius of the 1^{st}-shell atoms Co$_8$B$_3$), $R^*_{CN10} = 0.799$, thus $\Delta = 2.5 \%$. The Δ of Co$_{3}$B$_1$, Co$_{9}$B$_{3}$, Co$_{4}$B$_5$ and Co$_{12}$Si are respectively 16 $\%$, -7.7 $\%$, 10.4 $\%$ and 17.1 $\%$ ($R^*_{CN10} = 0.710$, $R^*_{CN11} = 0.884$, $R^*_{CN12} = 0.902$). Small Δ indicates that Co$_B$ is packed efficiently, close to the ideal dense packing, and Co$_B$ is another relatively dense-packed cluster. From this consideration, the ternary alloy compositions obtained on the basis of the Co$_B$-related cluster lines should have high glass forming abilities as already proved in the Cu-Zr-M (M=Ag,Al,Ti), Zr-Al-Ni and Sm-Al-Co ternary systems [7].

However, the XRD results indicate that no $\phi 2$ mm BMG rods are obtained in the designed Co-B-Si basic ternary alloys. Then 4 at. $\%$ Nb is added into the ternary basic compositions and a $\phi 3$ mm BMG rod is obtained only at (Co$_{9}$B$_{3}$-Si)$_{100}$Nb$_{8}$. Co$_B$ is the most densely packed Co-B cluster. Other quaternary alloys cannot even form $\phi 2$ mm BMGs. Furthermore, the BMG-forming range of (Co$_{8}$B$_{3}$-Si)$_{100}$Nb$_{8}$ is quite narrow with $x = 4-5$ at. $\%$ only. In order to further improve the GFAs, Co is partially substituted by Fe. BMGs are formed in [Co$_{1}$Fe$_{1}$]$_{96}$B$_{3}$Si$_{8}$Nb$_{4}$ and [Co$_{1}$Fe$_{1}$]$_{96}$B$_{3}$Si$_{8}$Nb$_{4}$ ($x=0.4$, 0.5) which are based both on quaternary (Co$_{8}$B$_{3}$-Si)$_{96}$Nb$_{8}$ and (Co$_{8}$B$_{3}$-Si)$_{96}$Nb$_{8}$. Note that the latter quaternary alloy, being based on less dense-packed cluster Co$_B$ is not BMG forming. Due to the small negative enthalpy of mixing ($\Delta H_{Co-Fe} = -1$ kJ/mol [11]) and similar atomic sizes between Co and Fe, Fe can substitute Co in the 1^{st}-shell of a cluster to form (Co$_{Fe}$)$_{8}$B$_{3}$ or (Co$_{Fe}$)$_{8}$B$_{3}$. The significant increase in GFAs by the substitution coincides with the confusion principle [4]. Therefore, in multi-component alloy systems, the combination of the cluster line approach, minor alloying principle, and eventually confusion principle can be used to determine the good BMG compositions.

Table 1. Experimental data of the Co-based BMGs.

No.	Experimental BMGs (at.$\%$)	T_g (K)	T_x (K)	T_m (K)	T_l/T_l	t (mm)	I_c (T)	H_c (A/m)		
1	(Co$_{8}$B$_{3}$-Si)$_{96}$Nb$_{8}$, Co$_{9}$B$_{3}$Si$_{10}$Nb$_{8}$	861	895	1304	1437	0.599	0.389	-		
2	(Co$_{8}$B$_{3}$-Si)$_{96}$Nb$_{8}$, Co$_{9}$B$_{3}$Si$_{10}$Nb$_{8}$	867	899	1298	1421	0.610	0.393	-		
3	[(Co$_{8}$,Fe$_{1}$)$_{96}$B$_{3}$Si$_{8}$Nb$_{4}$, Co$_{9}$,Fe$_{1}$]$_{100}$Nb$_{8}$	869	915	1303	1453	0.598	0.394	17	0.90	5.7
4	[(Co$_{8}$,Fe$_{1}$)$_{96}$B$_{3}$Si$_{8}$Nb$_{4}$, Co$_{9}$,Fe$_{1}$]$_{100}$Nb$_{8}$	871	926	1310	1473	0.591	0.395	8	0.88	3.8
5	[(Co$_{8}$,Fe$_{1}$)$_{96}$B$_{3}$Si$_{8}$Nb$_{4}$, Co$_{9}$,Fe$_{1}$]$_{100}$Nb$_{8}$	859	901	1305	1420	0.601	0.394	15	0.94	3.0
6	[(Co$_{8}$,Fe$_{1}$)$_{96}$B$_{3}$Si$_{8}$Nb$_{4}$, Co$_{9}$,Fe$_{1}$]$_{100}$Nb$_{8}$	856	902	1310	1398	0.612	0.400	18	0.98	4.9

The glass transition temperature (T_g), the onset temperature of crystallization (T_x), the onset temperature of melting (T_m) and the liquidus temperature (T_l) of the Co-based BMGs measured from DSC and DTA traces are listed in table 1. These BMGs have not only large T_g or T_x values, and hence high thermal stabilities, but also large thermal GFA indicators T_g/T_l and $\gamma (\gamma = T_g/(T_g+T_l))$ [14]. The thicknesses (t) of $\phi 3$ mm amorphous alloy rods are also measured (see in table 1). A high T_g/T_l or γ value generally corresponds to a large thickness t of the BMG rod, which indicates that the GFA indicators are consistent with the real BMG sizes t. Among them, the quinary BMGs [(Co$_{8}$,Fe$_{1}$)$_{96}$B$_{3}$-Si$_{8}$]$_{96}$Nb$_{8}$ and [(Co$_{8}$,Fe$_{1}$)$_{96}$B$_{3}$-Si$_{8}$]$_{96}$Nb$_{8}$ have the largest GFAs. In addition, the magnetic properties of these Co-based BMGs are measured and the experimental results indicate that the Co-B-Si-Nb
quaternary BMGs have no soft magnetic properties, while the quinary Co-Fe-B-Si-Nb BMGs by Fe substitution for Co exhibit good soft magnetic properties with high I_s up to 0.98 T, and low H_s, below 6 A/m (table 1).

In our previous study on a series of Cu-Zr based ternary BMGs, we proposed an amorphous structural model in terms of dense-packed icosahedral cluster Cu_3Zr_5 and glue atoms for BMGs [5]. Ternary optimum BMG compositions based on this icosahedron can be roughly expressed as one Cu_3Zr_5 cluster plus one glue atom M, i.e. $\text{Cu}_3\text{Zr}_5\text{M}_1$, M representing a third element Al, Ag, Ti. Similarly, in the present Co-based BMGs, the basic cluster favoring glass formation is dense-packed Co_6B_3. The quaternary BMG composition ($\text{Co}_8\text{B}_3\text{Si}_3\text{Nb}_3$) ($\text{Co}_{0.8}\text{B}_{25.7}\text{Si}_{5.5}\text{Nb}_4$) can be understood like this: Si and Nb act as one glue atom M linking one Co_6B_3 cluster so that the BMG composition is expressed as $\text{Co}_8\text{B}_3\text{M} = \text{Co}_{0.8}\text{B}_{25.7}\text{M}_{6.3}$, which quite nicely agrees with experimental $\text{Co}_{0.8}\text{B}_{25.7}\text{M}_{6.5}$. And another quaternary BMG composition ($\text{Co}_8\text{B}_3\text{Si}_3\text{Nb}_3$) is also near the $\text{Co}_6\text{B}_3\text{M}$.

Our cluster line approach supports the cluster compact arrangement proposed by Miracle: dense-packed clusters centered by primary solute atoms are packed in close packed fcc-like structures and the secondary solute atoms (or glue atoms as we call them) are located in the octahedral interstitial sites [13]. For an fcc structure, the ratio of the number of lattice points to that of octahedral interstices is 1:1, which coincides exactly with the above BMG composition formula (cluster)(glue atom)_1.

5. Conclusions
A series of Co (-Fe)-Si-B-Nb bulk metallic glasses are obtained by using cluster line approach and minor-alloying principle. The ternary basic Co-Si-B compositions are determined by the intersection points of cluster lines. Then 4-5 at. % Nb additions into the basic composition $\text{Co}_{0.8}\text{B}_{25.7}\text{Si}_{5.5}$ derived from the most dense-packed cluster Co_6B_3 form quaternary bulk metallic glasses, which are all approximately expressed into a unified composition formula ($\text{Co}_{0.8}\text{B}_3$)$\text{(Si,Nb)}$. A quantity of Fe substitution for Co further improves the glass forming abilities of alloys. The typical good bulk metallic glass formers are quaternary ($\text{Co}_{0.8}\text{B}_3\text{Si}_3\text{Nb}_3$), quinary $[(\text{Co}_{0.6}\text{Fe}_{0.4})\text{B}_3\text{Si}_3\text{Nb}_3]$ and $[(\text{Co}_{0.5}\text{Fe}_{0.5})\text{B}_3\text{Si}_3\text{Nb}_3]$. The Co-Fe-based bulk metallic glasses have also good soft magnetic properties with high I_s up to 0.98T, and low H_s, below 6 A/m.

Acknowledgements
This project is supported by the National Science Foundation of China (No. 50631010, 50671018 and 50401020).

References
[1] Inoue A, Shen B L and Takeuchi A 2006 Mater. Trans. JIM 47 1275
[2] Chang C T, Shen B L and Inoue A 2006 Appl. Phys. Lett. 88 011901
[3] Inoue A and Takeuchi A 2002 Mater. Trans. JIM 43 1892
[4] Greer A L 1995 Science 267 1947
[5] Ma D, Tan H, Zhang Y and Li Y 2003 Mater. Trans. JIM 51 4551
[6] Xia J H, Qiang J B, Wang Y M, Wang Q and Dong C 2006 Appl. Phys. Lett. 88 101907
[7] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H and Wu J 2007 J. Phys. D: Appl. Phys. 40 R1
[8] Wang Q, Dong C, Qiang J B and Wang Y M 2007 Mater. Sci. Eng. A 449-451 18
[9] Wu J, Wang Q, Qiang J B, Chen F, Dong C, Wang Y M and Shek C H 2007 J. Mater. Res. 22 573
[10] Lu Z P and Liu C T 2004 J. Mater. Sci. 39 3965
[11] Boer de F R and Pettifor D G 1989 Cohesion in metals and transition metal alloys (Amsterdam: North Holland) p 167
[12] Gaskell P H 1983 Models for the structure of amorphous metals (Berlin: Springer) p 5
[13] Miracle D B 2006 Acta Mater. 54 4317
[14] Lu Z P and Liu C T 2002 Acta Mater. 50 3501