The correlation between Ampel bamboo (Bambusa vulgaris) dimension and geometry with its modulus of elasticity

Kartini1*, N Nugroho1 and E T Bahtiar1

1Faculty of Forestry, IPB University, Kampus IPB Dramaga-Bogor, West Java, Indonesia 16680

*E-mail: kartini_nyo@apps.ipb.ac.id

Abstract. Traditionally, Indonesian people are used to using bamboo as construction material. Whole bamboo stems (bamboo culm) which is round and hollow, has several segments and tapered. Regarding the development of bamboo utilization for construction material, testing standards and code of practices are needed to ensure the users safety. The quality of bamboo construction can be improved by using a stress grading system. Therefore, this research is needed to obtain the grading variable that influences the modulus of elasticity of Ampel bamboo (Bambusa vulgaris). Based on analysis of their variable, bamboo's dimension and geometry are not affecting modulus elasticity value. This result shows that the further research for grading system is required to obtain identify characteristics parameter of Bambusa vulgaris that correlate with the modulus of elasticity.

1. Introduction

Bamboo has been used as a green construction material for a long time. Traditionally, bamboo is used for construction materials in culm form. As natural material such as wood, the process of determining the mechanical properties of bamboo is significantly different from factory-made materials, which the variation of quality can be controlled during the manufacturing process. The mechanical properties of each bamboo species are different. Along with the development of using bamboo for construction materials, standard test scripts and usage practices are needed to ensure user safety. Therefore, it is necessary to grading bamboo for the standard texts preparation of using bamboo for construction materials. Aside from structural grading, visual grading can also be performed on the entire surface of the bamboo, consisting of the dimensions and geometry. Visual grading is observing the condition of the geometry, size, and shape of bamboo in order to estimate the strength and capacity. Preliminary research on bamboo as a construction material was carried out by Janssen in 1981. [1] and [2] reported that stiffness and maximum moment could be used as indicators in bamboo grading. [3] reported the same thing by grading Guadua angustifolia.

Stiffness and flexural capacity determination are more reliable than the matter nature because of the dimension variety and affected by natural factors. The stiffness of a component is a function of its material and geometrical properties. The greater the stiffness value, the smaller the deflection that occurs. The moment of inertia is an important parameter to determine the stress on the structure. These parameters indicate the cross-sectional capacity to resist bending. [1] proposes bamboo as a structural product not as a material, so that sorting is better done using a basis of stiffness (EI) and bending moment when damage occurs, rather than measuring modulus of elasticity and strength. According to
[2], structural grading is better done by grading based on capacity. In line with this, [4] reported that the structural grading of *Gigantochloa apus* is better done by capacity-based grading rather than strength by relying on diameter and linear mass as predictors of stiffness and flexural capacity. By using a different species of Indonesian bamboo, this study analyzes *Bambusa vulgaris* dimensions and geometry, as a predictor in visual grading, and it correlation with the modulus of elasticity. Data can be used for recommendations on the preparation of standards for grading bamboo.

2. Material and Method

This study uses 60 pieces of *Bambusa vulgaris* (Ampel bamboo) from IPB Dramaga area (approximately length 3.5 m). Firstly, bamboo culms were dried naturally in the room temperature until the moisture content reaches equilibrium for about three months, then weighed and measured using a moisture meter. Measurement of bamboo culm dimensions refers to [5], including measurements of node distances, diameter (D), and thickness (t). The measurements of bamboo geometry include a taper, out of straightness, eccentricity and ovality referring to the method that [4] combined with [6]. Panter modulus elasticity (Ep) measurements were performed by one point loading flexure test using a Panter MPK-5 wood sorting machine with a span length of 2.5 m. This machine was operated manually by giving a fixed load in the middle of the span. Bamboo deflection was measured by using a deflectometer placed in the middle of the span and on both bamboo supports. Modulus of elasticity (Ep) and stiffness (Elp) values are obtained from Equations 1 and 2.

\[
E_p = \frac{4PL_p^3}{3\pi\Delta p(D^4 - (D - 2t)^4)} \quad (1)
\]

\[
El_p = \frac{PL_p^3}{48\Delta p} \quad (2)
\]

Where,
- P is weight of the mass (fixed load) (N)
- \(L_p\) is span length (mm)
- \(\Delta p\) is deflection of beam measured at midspan over distance between two support in Panter machine when applied by certain weight of mass (mm)

![Figure 1. Configuration of one point loading](image)

3. Results and Discussion

3.1 Conditional properties

Since bamboo is a hygroscopic material, its moisture content (MC) varies influence from the temperature of the surroundings. The process of drying bamboo in this study is done naturally for three to five months. The average moisture content of *Bambusa vulgaris* in this study was 15.29%. The different moisture content is influenced by bamboo species, culm age, and harvest season. The variation in water content of *Bambusa vulgaris* is not too high. It happens because bamboo culm have reached equilibrium water content simultaneously [7]. The measurement of water content is done after mechanical testing. Water content measurement samples are obtained from parts that are close to damage or parts that are near the middle of bamboo. According to [8], the harvest season has a large influence on the water content of bamboo. Bamboo that is cut down in the rainy season has a higher water content than bamboo that is cut down in the dry season.

3.2 Density and linear mass

Ampel bamboo density was calculated by assuming bamboo as a hollow cylinder. And the linear mass is calculated when the bamboo on air dried condition. Density and linear mass value are shows in
Table 1. Based on [9], the range of density values of *Bambusa vulgaris* can be categorized as medium to heavy construction materials. Ampel density on hollow cylinder assumption in this study is consistent with the research of [10], which is 400 to 900 kg/m3.

3.3 Dimensional properties

Ampel bamboo thickness ranges from 4.64 mm to 12.66 mm. Thickness shows the same trend for each culm, that is, lower part of bamboo is thicker than upper part of bamboo. The difference of thickness occurs according to the bamboo growth pattern which shows the lower part of the bamboo grows earlier than the other parts of bamboo culm. Ampel bamboo diameter ranges from 51.42 mm to 77.03 mm which according to [7] can be used as a medium construction material. The diameter and thickness of bamboo in this study are higher than the diameter of bamboo kao jue and mao jue. According to [11], bamboo kao jue and mao jue are suitable for scaffolding. Based on [12], the size of ampel diameter is suitable for medium construction materials. Bamboo 5-20 cm in diameter can be used for structural purposes [13].

Table 1. Moisture content, density, linear mass and dimensional properties of *Bambusa vulgaris*

	Mc (%)	ρ (kg/m3)	q (kg/m)	D (mm)	t (mm)	internode length (cm)
Min	10.19	443.31	0.56	51.42	4.64	25.34
Max	20.56	999.75	1.54	77.03	12.66	40.68
Mean	15.29	718.20	1.00	62.98	8.15	33.82
SD	1.95	118.32	0.24	6.95	1.45	3.44

3.4 Geometrical properties

Table 2 contains the geometrical properties of Ampel bamboo, that, taper, out of straighness, ovality and eccentricity. The ratio of differences between diameter of upper and lower part bamboo to bamboo length is called taper (t). Each species of bamboo has a different taper. Generally, the lower part of bamboo diameter is greater than the upper part diameter so the taper value will always be positive. However, there is a difference for ampel. This study found that the diameter of the upper part of Ampel bamboo is higher than the diameter of the lower part of Ampel bamboo so that Ampel bamboo has negative taper value. Taper of *Guadua angustifolia* [3], *Gigantochloa apus* [4], *Gigantochloa verticillata*, *Gigantochloa robusta* [14], and *Gigantochloa atroviolacea* [15] are positive.

Out of straightness (s) is an abnormality of geometry, deviations from the straight shape. The s-value of ampel is ranged from 0.0026 to 0.015. This value shows that Ampel bamboo does not have a perfectly straight shape.

Eccentricity (ec) is a parameter to measure the roundness of an ellipse shape. In this study, eccentricity was measured in two points, node and intenode. The ec value of Ampel bamboo shows that Ampel bamboo is not perfectly round.

Ovality (O) is the ratio between the smallest and largest diameters in one measuring point. Ampel bamboo has an oval shape, with an average ovality value of less than 1.

Table 2. Geometrical properties of *Bambusa vulgaris*

t	s	E_c (node)	E_c (internode)	O_v (node)	O_v (intenode)

3
3.5 Modulus of elasticity and flexural stiffness

One point loading static bending test produces modulus of elasticity (Ep) apparent. The combination of Ep and moment of inertia (I) is called stiffness (EIp). Modulus of elasticity is measured using the assumption that bamboo is a hollow cylinder (Ep_w) and solid cylinder (Ep_c). The average of Ep in this study was smaller compared to Ep Gigantochloa apus (17954 N / mm²) [4] and larger than some tropical wood (13300 N / mm²) [8] on the hollow cylinder assumption. The stiffness (EI) of Ampel bamboo is also smaller than some other bamboo species due to its smaller diameter.

Table 3. Modulus of elasticity and flexural stiffness of Bambusa vulgaris

	Ep_w (N/mm²)	Ep_c (N/mm²)	EIp (Nm²)
Min	3878	2657	1648
Max	134664	81839	96407
Mean	15300	10317	8893
SD	21147	12904	16552

3.6 Determination of the best predictor for estimating the strength and capacity of B. Vulgaris

The modulus of elasticity that occurs at one point loading measurement is the visible modulus of elasticity. Measurement of elastic modulus (MOE) of bamboo carried out with static bending is in accordance with the principle of deflection of bending beams. In the loading configuration in the middle span, there is a sliding mechanism between the fibers. The strength and capacity of bamboo culm can be measured by nondestructive variables. However, Ep and EIp which are nondestructive variables in bamboo grading, are not influenced by the dimension and geometry of bamboo. The coefficient correlation between dimension and geometry on Ep and EI as a whole shows a low and insignificant correlation.

Table 4. Correlation of dimension and geometry on the modulus of elasticity and flexural stiffness of Bambusa vulgaris

Pearson Correlation	Ep_w (N/mm²)	Ep_c (N/mm²)	EIp (Nm²)
Diameter (mm)	.102	.070	.286*
Thickness (mm)	-.137	-.090	-.049
Internode length (cm)	.012	-.014	.102
Table

Property	A1	A2	A3
Out of straighness	0.039	0.036	0.032
Taper	0.109	0.100	0.055
Eccentricity (node)	0.001	0.009	0.003
Eccentricity (internode)	0.097	-1.06	-1.118
Ovality (node)	0.046	0.047	0.035
Ovality (internode)	0.095	0.106	0.105
Moisture content (%)	0.058	0.064	0.092
Wall density	0.104	0.104	0.028
Linear mass	0.023	0.032	0.124

**. Correlation is significant at the 0.01 level (1-tailed).

*. Correlation is significant at the 0.05 level (1-tailed).

4. Conclusion
Dimensional and geometrical properties of Ampel bamboo are not correlate with its modulus of elasticity. This result shows that further research for the grading system is needed to identify characteristics paraemeter of *Bambusa vulgaris* that correlate with the modulus of elasticity.

Acknowledgments
The authors would like to thanks to Ministry of Research, Technology and Higher Education, The Republik of Indonesia for the permit and opportunity to conduct this research.

5. References

[1] Chaturvedi R 2015 *Nondestructive test for grading of bamboo poles for structural use* 16th Nocmat (Winnipeg)

[2] Jangra S 2016 *Flexural properties as a basis for strength grading of dry round bamboo* Thesis (Conventry: Conventry University)

[3] Trujilo D, Jangra and S Gibson JM 2016 *Flexural properties as a basis for bamboo strength grading* Proc. ICE: Structures and buildings

[4] Nurmadina Nugroho N and Bahtiar ET 2017 *Structural grading of Gigantochloa apus bamboo based on its flexural properties* Construction and building material (Amsterdam: Elsevier) p 1173-1189

[5] [ISO] International Standards 2004 *Bamboo-Determination of physical and mechanical properties-Part I: Requirement ISO 22157:2004* (Geneva: International Organization for Standardization)

[6] [ISO] International Standards 2018 *Bamboo Structures: Grading of Bamboo Culms ISO 19624:2018* (Geneva: International Organization for Standardization)
[7] Gnanaharan R. Janssen J. J. A and Arce, O. A 1995 Bending strength of Guadua bamboo: comparison of different testing procedures (New Delhi: International Network for Bamboo and Rattan) Paper no 3

[8] Liese W and Weiner G 1996 Ageing of bamboo culm: A review Journal Wood Science and Technology (Swiss: Springer-Verlag) p 77-89

[9] [BSN] Badan Standardisasi Nasional 2014 Kegunaan bambu SNI 8020:2014 (Jakarta: Badan Standardisasi Nasional)

[10] Liese W and Tang TKH 2015 Properties of the bamboo culm. Bamboo: The plant and its uses. (Swiss: Springer) p 227-256

[11] Chung KF and Yu WK 2002 Mechanical properties of structural bamboo for bamboo scaffoldings Journal Engineering Structures (Amsterdam: Elsevier) p 429–442

[12] Kaminski S Lawrence A Trujillo D 2016 Structural use of bamboo part 1: Introduction to bamboo The structural engineer p 40-43

[13] Nugroho N Bahtiar ET 2012 Bamboo taper effect on center point bending test Journal of Physical Science and Application vol 9 p 386-391

[14] Nugroho N Bahtiar ET 2013 Bamboo taper effect on third point loading bending test International Journal of Engineering and Technology vol 5 p 2379-2384

[15] Firmani A Bahtiar ET Surjokusumo S Komatsu K and Kawai S 2005 Mechanical stress grading of tropical timbers without regard to species Journal of wood science (Tokyo: Springer-Verla) p 339-347