Research Paper
The Inhibitory and Antibacterial Effects of Peppermint Essential Oil on Periodontal Photogenes

Elahe Rezaie1, Mojtaba Bayani2, Mohammad Arjomandzadegan3

1. Dentist in Private Practice, Arak, Iran.
2. Department of Periodontics, Faculty of Dentistry, Arak University of Medical Sciences, Arak, Iran.
3. Department of Microbiology and Immunology, School of Medicine, Tuberculosis and Pediatrics Infectious Diseases Research Center, Arak University of Medical Sciences, Arak, Iran.

Citation: Rezaie E, Bayani M, Arjomandzadegan M. [The Inhibitory and Antibacterial Effects of Peppermint Essential Oil on Periodontal Photogenes (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2020; 23(2):172-183. https://doi.org/10.32598/JAMS.23.2.5710.3

Background and Aim: Although there are methods such as the use of mouthwashes to prevent periodontal diseases, these diseases are still the most common oral diseases. Given the side effects of chemical methods, the present study aimed to evaluate the inhibitory and antibacterial effects of peppermint essential oil on periodontal pathogens.

Methods & Materials: Antibacterial effect of the peppermint essential oil by the disk diffusion and Microplate dilution techniques was performed on 4 standard bacteria purchased from the microbial bank of Iran, including Enterococcus Faecalis, Streptococcus Sanguinis, Eikenella corrodens, and Actinomyces Viscosus. The minimum inhibitory concentration and minimum bactericidal concentration of the essential oil were also evaluated. The amount of biofilm formation was obtained by calculating the average biofilm formation in the three wells and comparing it with the optical density of negative control by the Elisa Reader device.

Ethical Considerations: This study was approved by the Research Ethics Committee of Arak University of Medical Sciences with code: IR.ARAKMU.REC.1397.15.

Results: Results of diffusion test showed the inhibitory effect of 0.1 g/mL essential oil on Enterococcus Faecalis and Streptococcus Sanguinis. Pure essential oil of peppermint showed the strongest inhibitory effect on streptococcus sanguinis followed by enterococcus faecalis, actinomyces viscosus and eikenella corrodens.

Conclusion: The peppermint plant has antibacterial and inhibitory effects on the bacteria of enterococcus faecalis, streptococcus sanguinis, eikenella corrodens, and actinomyces viscosus. Therefore, peppermint as a natural and effective antibacterial agent, has a potential application in the prevention of periodontal disease.

Key words: Peppermint essential oil, Periodontal disease, Antibacterial effect

Extended Abstract

Introduction

With the addition of fluoride, the prevalence of dental caries has decreased, but many groups in the community still have dental caries [1]. Periodontal disease is one of the most common infectious diseases [4] and the spread of dental biofilm causes these diseases [8]. The compounds used in the treatment of periodontal disease usually have side effects, in addition to benefits [11]. Recently, plant
compounds have been considered to reduce oral bacterial biofilms [12, 13]. One of these plants is peppermint whose effects on treatment of cold as well as antibacterial and antifungal properties have been reported. It has also been shown to have fewer side effects [14, 15]. Due to the importance and high prevalence of periodontal disease and the observed increase in cases of antibiotic resistance and side effects of overuse of chemical drugs, this study was conducted to investigate the possible antibacterial properties of peppermint on a number of microorganisms involved in periodontal disease.

Materials and Methods

The present study was a laboratory experiment. Fresh peppermint was prepared from the Medicinal Plants and Drugs Research Institute of Shahid Beheshti University, and was then traditionally washed several times with water. It was then dried in a dark place away from sunlight at a temperature of 24+2°C for a week and then milled. Various dilutions were prepared from the extract. Essential oil was extracted using Clevenger apparatus. Experiments were conducted on 4 standard bacteria purchased from the microbial bank of Iran, including Enterococcus Faecalis, Streptococcus Sanguinis, Eikenella corrodens, and Actinomyces Viscosus. The diffusion disc method was used for testing microbial susceptibility to the essential oil after microbial suspension preparation [14, 15].

Microdilution method was used to determine the microbial susceptibility, and culture method and MTT assay were used to determine the minimum bactericidal concentration. The analysis of the adhesion strength of biofilm in the microplate and the inhibitory effect on biofilm formation at different concentrations by optical density measurement were read by Elisa Reader. In order to perform the biofilm test, the biofilm was placed in triplicate and the amount of biofilm was obtained by calculating the average biofilm of these three wells and comparing it with negative control.

Results

The diameters of non-growth inhibition zones related to different concentrations of peppermint essential oil (in millimeters) are shown in Table 1. The 0.1 g/ml peppermint essential oil had an inhibitory effect on the growth of enterococcus faecalis and streptococcus sanguinis. Results showed the strongest effect of pure plant essential oil on streptococcus sanguinis and its weakest effect on eikenella corrodens. The effect of 1 g/ml peppermint essential oil on the growth of enterococcus faecalis is shown in Figure 1, as a sample. Acti-

Microorganism	0.1 g/ml	1 g/ml
Enterococcus faecalis	11	18
Streptococcus sanguinis	20	30
Eikenella corrodens	-	8
Actinomyces viscosus	-	11

Microorganism	50	25	12.5	6.25	3.125	1.562	0.781	0.39	0.195	0.097	Positive Control	Negative Control
Enterococcus faecalis	0.053	0.057	0.058	0.369	0.499	0.539	0.602	0.592	0.615	0.595	0.789	0.058
Streptococcus sanguinis	0.083	0.078	0.521	0.497	0.546	0.523	0.540	0.525	0.530	0.675	0.789	0.092
Eikenella corrodens	0.081	0.054	0.073	0.170	0.445	0.607	0.623	0.754	0.785	0.812	1.005	0.094
Actinomyces viscosus	0.085	0.091	0.084	0.99	0.119	0.457	0.546	0.556	0.674	0.750	0.779	0.093
Actinomyces viscosus was inhibited to grow at concentrations ≥3.125 mg/ml and other bacteria at concentrations ≥1.562 mg/ml of peppermint essential oil. The optical density in the biofilm inhibition test for different concentrations of peppermint essential oil is shown in Table 2. The bacterium Actinomyces viscosus did not form biofilm up to well No. 4 (at concentrations ≥3.125 mg/ml) and other bacteria up to well No. 3 (at concentrations ≥12.5 mg/ml).

Discussion

Pure essential oil of peppermint showed the strongest inhibitory effect on Streptococcus Sanguinis followed by enterococcus faecalis, Actinomyces viscosus and Eikenella corrodens. The strongest bactericidal effect of peppermint essential oil was on Eikenella corrodens followed by Actinomyces viscosus, Streptococcus sanguinis, and Enterococcus faecalis. Moreover, its strongest inhibitory effect on the process of biofilm formation was observed in actinomyces viscosus followed by enterococcus faecalis, eikenella corrodens, and streptococcus sanguinis. In a study on the antibacterial effect of peppermint on the two strains of Streptococcus sanguinis and Streptococcus mutans, the minimum inhibitory concentration and the minimum bactericidal concentration were investigated [16], and the results were consistent with the results of the present study.

In another study, the measurement of the non-growth inhibition zone diameters of Escherichia coli bacteria, Aeromonas hydrophila, Staphylococcus aureus, and Enterococcus faecium was performed after using peppermint essential oil [17] whose results were in agreement with our results. Another study showed that the combined extract of peppermint and mango plants reduced the bacterial adhesion of Streptococcus mitis and Streptococcus sanguinis [19].

Conclusion

The limitations of the study were the low number of study strains, the difficulty of culturing some pathogens, and the lack of similar human studies. However, this study can be a guide for further studies in human simulated models and In Vivo studies. It was concluded that peppermint plant has antibacterial properties on the bacteria of enterococcus faecalis, streptococcus sanguinis, eikenella corrodens, and actinomyces viscosus, and also has inhibitory effect on them. Therefore, peppermint as a natural and effective antibacterial agent, has a potential application in the prevention of periodontal disease.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of Arak University of Medical Sciences with code: IR.ARAKMU.REC.1397.15.
Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions

All authors met the writing standards based on the recommendations of the International Committee of Medical Journal Editors (ICMJE).

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the Deputy for Research of Arak University of Medical Sciences for their financial support.
ارزیابی اثر مهار کندکی و ضدمیکروبی استاتس گیاه نعناع بر پاتوژن های پریودنتال

شهید مهدوی، مهدی بیانی

1. مهارت‌های یادگیری، دانشکده فناوری اطلاعات، دانشگاه علوم پزشکی اراک، اراک، ایران
2. گروه میکروب‌شناسی و استیمی دندانپزشکی، دانشکده دندانپزشکی، دانشگاه علوم پزشکی اراک، اراک، ایران

پژوهش با کد اخلاقی IR.ARAKMU.REC.1399.15 انجام شد.

نتایج تست دیسک دیفیوژن نشان داد که اسانس با غلظت گیاه نعناع فلفلی دارای خاصیت آنتی‌بیوتیک بر باکتری انتروکوکوس فکالیس و استرپتوکوکوس سانگوئیس است. اسانس خالص گیاه نعناع فلفلی نیز نشان داد که گیاه نعناع فلفلی دارای خاصیت ضدباکتریال بر باکتری انتروکوکوس فکالیس و استرپتوکوکوس سانگوئیس است.

کلیدواژه‌ها:
اسانس نعناع، باکتری‌ها، بیماری پریودنتال

مقدمه
اگرچه راه‌هایی از جمله استفاده از محلول‌های فلورید برای پوسیدگی دندان وجود دارد، اما هنوز گروه‌های بسیاری از جامعه مبتلا به بیماری هستند.

یکی از این موارد نوعی گروه از باکتری‌ها و قارچ‌ها است که باعث پوسیدگی دندان می‌شود. این گروه شامل باکتری‌های اسکاتریوس، استرپتوکوکس، بیکتریا، پلیماکس، کلیوکوکوس، و بسیاری از باکتری‌های دیگری است که به‌طور گسترده‌ای در سطح دندان و باکتری‌های پریودنتال مشاهده می‌شود.

بیوفیلم به سلول‌هایی گفته می‌شود که روی سطح سختی ثابت شده و در حین انحلال و ترکیب شدن با محیط جامعه باکتری و سایر میکروب‌ها در دندان، باعث ایجاد بیماری‌های دندانی می‌شود.

بحث
بیوپلویت، پروپنتیدن مزمن، تکرون، و آمیستیناسپس، اثره

گروه با استفاده از گیاه نعناع فلفلی بر باکتری‌های پریودنتال و باکتری‌های دندانی وارد به این مطالعه شد که انسان‌ها به سبب عوامل مختلف در سطح دندان و باکتری‌های پریودنتال می‌پردازند.

یریچی و سایر برای کنترل نرخ بیماری‌های پریودنتال، استفاده از گیاه‌های نعناع فلفلی، انتروکوکوس، استرپتوکوکوس، کاسائوس، آنتروکوکوس، دندانپزشکی و این امر در برخی مطالعات گزارش شده است.

نتیجه‌گیری
نتایج این مطالعه نشان داد که گیاه نعناع فلفلی دارای خاصیت آنتی‌بیوتیک بر باکتری‌های انتروکوکوس، استرپتوکوکوس، اکتیتومایسس ویسکوز و ایکنلا کورودنس است. اثر مهاری اسانس این گیاه نیز نشان داده شد.

کلیدواژه‌ها:
اسانس نعناع، باکتری‌ها، بیماری پریودنتال

اطلاعات مقاله:
تاریخ دریافت 1398 مهر 21، تاریخ پذیرش 1399 بهمن 12
برای انجام تست بینی‌پوشین، با روش میکروپلیت نیز دارند باکتریایی دهان مورد توجه قرار گرفته اند. میکرولیتر سوسپانسیون باکتری در میکروپلیت‌ها به شیوه‌ی مخصوص شده ای در این آزمایش کشت شد. در این تحقیق، هر گونه تغییری در میکرولیتر سوسپانسیون باکتری در میکروپلیت‌ها بر سر به صورت میکروسکوپی ثبت گردید. تا زمانی که تکثیر باکتری در هر چاهک به مقدار نشان دهنده حداقل غلظت کشندگی نشان داد، رنگ چاهک به بنفش تغییر یافت. به همین دلیل، رنگ چاهک به صورت پیوسته تغییر یافت.

برای تعیین حداکثر غلظت باکتری، از روش MTT استفاده گردید. این روش به دست آورد که با استفاده از میکرولیتر اسانس نعناع فلفلی و پآپیلکتومی و بررسی آن در میکروپلیت‌ها می‌تواند در تعیین حداقل غلظت کشندگی باکتری به صورت دقیق و به‌طور سریع استفاده گردد.

در مورد میکروپلیت‌های اصلی، استفاده از کشت باکتری در محیط مولر هینتون آگار که در محیط مولر هینتون شرایط نگهداری شده بود، به صورت روزانه بررسی شد. در پایان کلینیک، رنگ رنگ‌آمیخته و به‌طور کلی به صورت بنفش و رنگ قهوه‌ای مشاهده شد. در این‌جا نیز می‌توان به اندازه‌گیری تعداد باکتری در هر چاهک و تعیین حداقل غلظت کشندگی با استفاده از روش MTT اشاره کرد.

در این تحقیق، استفاده از روش MTT برای تعیین حداقل غلظت کشندگی باکتری در هر چاهک انجام شد. در این روش، سوسپانسیون باکتری در میکروپلیت‌ها به میکرولیتر استفاده گردید و در مدت زمان مشخص شده به صورت PMS نور تأمین گردید. سپس، به‌طور فاصله‌ای و به صورت زمانی ثابت، با استفاده از اسید ماتور، این سوسپانسیون در هر چاهک به روش MTT تهیه شد.

در این تحقیق، استفاده از روش MTT برای تعیین حداقل غلظت کشندگی باکتری در هر چاهک انجام شد. در این روش، سوسپانسیون باکتری در میکروپلیت‌ها به میکرولیتر استفاده گردید و در مدت زمان مشخص شده به صورت PMS نور تأمین گردید. سپس، به‌طور فاصله‌ای و به صورت زمانی ثابت، با استفاده از اسید ماتور، این سوسپانسیون در هر چاهک به روش MTT تهیه شد.
کلنی‌های تک و یکسان سه کلنی برداشته شد و در مقداری کشت داده شد. در مرحله بعد سوسپانسیون BHI محیط درجه انکوبه شد و در دمای 37 ساعت کشت داده شده به مدت میکرولیتر از 180 میکرولیتر و سپس محیط حلول نمک روی میکروپلیت پلی استرآیین انتقال داده شد. میکروپلیت به مدت 48 ساعت انبیوکس و پس از گذشت 48 ساعت انبیوکس سوزانده شد. میکروپلیت به مدت 10 درصد در چاهک‌ها ریخته و به مدت 0/1 دقیقه در دمای اتاق نگهداری شد. رنگ به آرامی با سمپلر خالی شد و سپس چاهک‌ها دو مرتبه با آب مقطر استریل شست وشو گردیدند. در این مرحله 10 دهانه به خون شد. 10 دهانه با 200 میکرویلتر کریستال ویوله رنگ داده شدند. میکروپلیت به مدت 10 دقیقه در دمای اتاق نگهداری شد. رنگ پس از استریل شست وشو گردید. 2.Brain heart infusion

نتایج حداقل غلظت مهارکننده و حداقل غلظت کشندگی اساسی گیاه در اکتینومایسس ویسکوز به صورت 1/10 کرم غلظت ها و اکتینومایسس ویسکوز به صورت 1/10 کرم حداکثر غلظت ها به کنار جلوگیری از انگشتند. اکتینومایسس به چاهک‌ها گذاشته و میزان غلظت کشندگی اکتینومایسس ویسکوز به کنار جلوگیری از انگشتند. اکتینومایسس اکتینومایسس ویسکوز به کنار جلوگیری از انگشتند.

نام میکروارگانیسم	غلظت 1/10 گیاه	غلظت 1/10 گیاه	غلظت 1/10 گیاه
انترکوکوس فکالیس	0/12	0/12	0/12
استرپتوکوک سانگوئیس	0/12	0/12	0/12
اکتینومایسس ویسکوز	0/12	0/12	0/12

تصویر 1. اکتینومایسس ویسکوز با غلظت 0/12 گیاه در اکتینومایسس ویسکوز به کنار جلوگیری از انگشتند.
آزمایش میزان آزمایش مهر تشکیل بیولیم مربوط به اسانس گیاه نعناع فلفلی و باکتری اکتینومایسس ویسکوز نشان داد که باکتری انتروکوکوس فکالیس، استرپتوکوکوس سانگوئیس، ایکنلا کورودنس تا غلظت 1/562 mg/ml، و باکتری دیگر قوی تر به دست آمد. نتایج میزان آزمایش میکروپلیت دایلوشن مربوط به غلظت‌های مختلف اسانس گیاه نعناع فلفلی و باکتری ایکنلا کورودنس نشان داد که باکتری این مقادیر اسانس گیاه نعناع فلفلی به‌طور کامل رشد و حذف خلقت کشندگی رشد بر حسب ویروس باین دکتر است. نتایج میزان آزمایش میکروپلیت دایلوشن مربوط به غلظت‌های مختلف اسانس گیاه نعناع فلفلی و باکتری انتروکوکوس فکالیس نشان داد که باکتری این مقادیر اسانس گیاه نعناع فلفلی به‌طور کامل رشد و حذف خلقت کشندگی رشد بر حسب ویروس باین دکتر است.
بحث در پژوهش حاضر فعالیت ضدباکتریایی اسانس گیاه نعناع فلفلی بررسی شد. روش مورد استفاده دیسک دیفیوژن و میکروپلیت دایلوشن بود. نتایج تست دیسک دیفیوژن بیان داشت که اسانس از گیاه، اثر مهاری بر رشد انتروکوک فکالیس با غلظت 0.1 g/ml و استرپتوکوک سانگوئیس دارد. اسانس خالص گیاه به ترتیب از قوی ترین اثر به ضعیف ترین روی استرپتوکوک سانگوئیس، اکتینومایسس ویسکوز و ایکنلا کورودنس اثر مهاری نشان داد. نتایج تست میکروپلیت دایلوشن بیان داشت که اسانس گیاه، اثر مهاری بر رشد هر چهار باکتری دارد. حداقل غلظت کشندگی برای باکتری‌های اسانس به ترتیب ایکنلا کورودنس، انتروکوک فکالیس، اکتینومایسس ویسکوز و استرپتوکوک سانگوئیس بود. حداقل غلظت مهارکننده برای باکتری انتروکوک فکالیس کمتر از سه باکتری دیگر بود. تست سنجش بیوفیلم در این باکتری ها نشان داد که اسانس غلظت گیاهی تأثیر مهاری بر رشد بیوفیلم در این باکتری دارد. نتایج کمکی به یافته‌های مطالعات قبلی، اینکه اسانس گیاه نعناع فلفلی تأثیر مهاری بر باکتری‌های مبتلا به بیوفیلم دارد، نشان داد. در مطالعه دیگری اثر نعناع در یک عصاره ترکیبی شامل سه گیاه گواوا، انبه و نعناع بر مهار بیوفیلم و اکتینومایسس ویسکوز، انتروکوک فکالیس و استرپتوکوک سانگوئیس بود. نتایج نشان داد که عصاره ترکیبی گیاهان مذکور، چسبندگی باکتری‌های انتروکوک فکالیس را کاهش می‌دهد. به یافته‌های مطالعات قبلی که نشان داد که اناناس غلظت گیاهی تأثیر مهاری بر رشد بیوفیلم دارد، نشان داد. در مطالعه دیگری اثر نعناع در یک عصاره ترکیبی شامل سه گیاه گواوا، انبه و نعناع بر مهار بیوفیلم و اکتینومایسس ویسکوز، انتروکوک فکالیس و استرپتوکوک سانگوئیس بود. نتایج نشان داد که عصاره ترکیبی گیاهان مذکور، چسبندگی باکتری‌های انتروکوک فکالیس را کاهش می‌دهد.
شماره ۲۳ دوره ۱۳۹۹ ماه خرداد و تیر

نتایج بر تکمیل پیویلیفم اثر مهاری مارد [۱۹]

در مطالعه حاضر محدودیتهایی نیز وجود داشت که از اهمیت آنها می‌توان به کمیت ناهنجاری در ناهنجاری‌های پاتوژن‌ها و پاتوژن‌ها، منها برخی از باکتری‌های به صورت تصادفی در حال گروه‌بندی زندگی‌پیوسته و میکروبیوس راه‌حل گوناگون مشابه انسانی در در مورد موجوده‌ها دریافت می‌شود. این محدودیت‌ها می‌تواند در تحقیق‌های در vivo نتیجه‌گیری منجر به دیدن سیستم‌های در این بررسی بکار رومیزی باکتری‌های مورد نظر را به‌صورت مثبت از سوی نیترات و ویورمیکروکوک‌های بررسی می‌باشد. مهم‌ترین بخش از این محدودیت‌ها مصرف گیاهی در مورد محدودیت‌ها و با توجه به نتایج این مطالعه، لازم به ذکر است که به مطالعات بیشتری در ارتقاء با بررسی اثرات اساس گیاه بر پاتوژن‌های دهان انسان نیاز خواهد بود. این مطالعه می‌تواند اهمیتی برای مطالعات بعدی در مطالعات شیمی‌سازی‌های انسانی و معمولاً مطالعات در vivo نتیجه‌گیری می‌شود.

نتایج تحقیق

نتایج این مطالعه نشان داد که گیاه نعناع فلفلی دارای خاصیت آنتی‌بیوتیک ولی باکتری‌های ایکنلا کورودنس، اکتینومایسوس ویسکوز، استرپتوکوک سنتگونیک و انتروکوک فکالیس است. اثر مهاری انسانی این گیاه نیز نشان داده شده که می‌تواند کاهش اثرات ناهنجاری در ناهنجاری‌های پاتوژن‌ها به صورت مثبت از سوی نیترات و ویورمیکروکوک‌های بررسی می‌باشد. مهم‌ترین بخش از این محدودیت‌ها مصرف گیاهی در مورد محدودیت‌ها و با توجه به نتایج این مطالعه، لازم به ذکر است که به مطالعات بیشتری در ارتقاء با بررسی اثرات اساس گیاه بر پاتوژن‌های دهان انسان نیاز خواهد بود. این مطالعه می‌تواند اهمیتی برای مطالعات بعدی در مطالعات شیمی‌سازی‌های انسانی و معمولاً مطالعات در vivo نتیجه‌گیری می‌شود.

ملاحظات اخلاقی

پیروی از اصول اختلاف پژوهشگر

این مطالعه با کد اخلاقی۱۵ به صورت کمیته اخلاق معاونت پژوهشی دانشگاه علوم پزشکی اراک رسید.

حامی مالی

این پژوهش غیر مالی نبوده است.

مشارکت کنندگان

تمامی نویسندگان می‌توانند استاندارد نویسندگی بر اساس پیشنهادات کمیته بین‌المللی نظارت مجله پژوهشی را را بپذیرند.

الهه رضایی و همکاران. ارزیابی اثر مهارکننده‌های اتوکسیک و پیشگیری انسانی گیاه گلابی در ناهنجاری پاتوژن‌ها در اپیدمی‌های پریودنتال درد.
References

[1] Heng C. Tooth decay is the most prevalent disease. Fed Pract. 2016; 33(10):31-3. [PMID] [PMCID]

[2] Ass JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008; 46(4):1407-17. [DOI:10.1128/JCM.01410-07] [PMID] [PMCID]

[3] Kim J, Amar S. Periodontal disease and systemic conditions: A bidirectional relationship. Odontology. 2006; 94(1):10-21. [DOI:10.1007/s10266-006-0060-6] [PMID] [PMCID]

[4] Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci. 2017; 11(2):72-80. [PMID] [PMCID]

[5] Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005; 366(9509):1809-20. [DOI:10.1016/S0140-6736(05)67728-8]

[6] Lovegrove JM. Dental plaque revisited: Bacteria associated with periodontal disease. J NZ Soc Periodontal. 2004; (87):7-21. [PMID]

[7] Berger D, Rahamimova A, Pollack A, Loewy Z. Oral biofilms: Development, control, and analysis. High-Throughput. 2018; 7:24. [DOI:10.20944/preprints201808.0174.v1]

[8] Lasserre JF, Brecx MC, Toma S. Oral microbes, biofilms and their role in periodontal and peri-implant diseases. Materials. 2018; 11(10):1802. [DOI:10.3390/ma11101802] [PMID] [PMCID]

[9] Ouhayoun JP. Penetrating the plaque biofilm: Impact of essential oil mouthwash. J Clin Periodontol. 2003; 30(s5):10-2. [DOI:10.1034/j.1600-051X.30.s5.4.x] [PMID]

[10] Jones SB, West NX, Nesmiyanov PP, Krylov SE, Klechkovskaya VV, Arkharova NA, et al. The antibacterial efficacy of a foam mouthwash and its ability to remove biofilms. BDJ Open. 2018; 4:17038. [DOI:10.1038/s41405-018-0005-5] [PMID] [PMCID]

[11] da Costa LFNP, da Silva Furtado Amaral C, da Silva Barbirato D, Leão ATT, Fogacci MF. Chlorhexidine mouthwash as an adjunct to mechanical therapy in chronic periodontitis: A meta-analysis. J Am Dent Assoc. 2017; 148(5):308-18. [DOI:10.1016/j.adaj.2017.01.021] [PMID]

[12] Karim B, Bhaskar DJ, Agali C, Gupta D, Gupta RK, Jain A, et al. Effect of Aloe vera mouthwash on periodontal health: Triple blind randomized control trial. Oral Health Dent Manag. 2014; 13(1):14-9. [PMID]

[13] Shoae Hassani A, Hamdi K, Ghaemi A. [In vitro Reduction in Colonization of Streptococcus mutans by honey beeswax ethyl acetate extract (Persian)]. J Arak Univ Med Sci. 2008; 11(4):87-95. http://jams.arakmu.ac.ir/article-1-290-en.html

[14] Imai H, Osawa K, Yasuda H, Hamashima H, Arai T, Sasatsu M. Inhibition by the essential oils of peppermint and spearmint of the growth of pathogenic bacteria. Microbiol. 2001; 106 Suppl 1:31-9. [PMID]

[15] Liang R, Xu Sh, Shoemaker CF, Li Y, Zhong F, Huang Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem. 2012; 60(30):7548-55. [DOI:10.1021/jf301219f] [PMID]

[16] Shafiei Z, Haji Abdul Rahim Z, Philip K, Thurairajah N. Antibacterial and anti-adherence effects of a Plant Extract Mixture (PEM) and its individual constituent extracts (Psidium sp., Mangifera sp., and Mentha sp.) on single- and dual-species biofilms. PeerJ. 2016; 4:e2519. [DOI:10.7717/peerj.2519] [PMID] [PMCID]

[17] Abdel-Hameed ESS, Salmon MS, Fadl MA, Elkhateeb A, El-Awdy MA. Chemical composition of hydrodistillation and solvent free microwave extraction of essential oils from Mentha piperita L. Growing in Taif, Kingdom of Saudi Arabia, and their anticancer and antimicrobial activity. Orient J Chem. 2018; 34(1):222-33. [DOI:10.13005/oj/340125]

[18] Shalayel MHF, Asaad AM, Qureshi MA, Elhussein AB. Anti-bacterial activity of peppermint (Mentha piperita) extracts against some emerging multi-drug resistant human bacterial pathogens. J Herb Med. 2017; 7:27-30. [DOI:10.1016/j.jher.2016.08.003]

[19] Wan Nordini Hasnor WI, Fatihalah AR, Rahim ZHA. Plant extracts of Psidium guajava, Mangifera and Mentha sp. inhibit the growth of the population of single-species oral biofilm. Altern Integr Med. 2013; 2(1):1000102. [DOI:10.4172/2327-5162.1000102]