ALL GENERATING SETS OF ALL PROPERTY T VON NEUMANN ALGEBRAS HAVE FREE ENTROPY DIMENSION ≤ 1

KENLEY JUNG AND DIMITRI SHLYAKHTENKO

ABSTRACT. Suppose that N is a diffuse, property T von Neumann algebra and X is an arbitrary finite generating set of selfadjoint elements for N. By using rigidity/deformation arguments applied to representations of N in ultraproducts of full matrix algebras, we deduce that the microstate spaces of X are asymptotically discrete up to unitary conjugacy. We use this description to show that the free entropy dimension of X, $\delta_0(X)$, is less than or equal to 1. It follows that when N embeds into the ultraproduct of the hyperfinite II_1-factor, then $\delta_0(X) = 1$ and otherwise, $\delta_0(X) = -\infty$. This generalizes the earlier results of Voiculescu, and Ge, Shen pertaining to $SL_n(\mathbb{Z})$ as well as the results of Connes, Shlyakhtenko pertaining to group generators of arbitrary property T algebras.

INTRODUCTION

In [22] and [23], Voiculescu introduced the notion of free entropy dimension. For X a finite set of self-adjoint elements of a tracial von Neumann algebra, $\delta_0(X)$ is a kind of asymptotic Minkowski dimension of the set of matricial microstates for X. These notions led to the solution of several old operator algebra problems (see [24] for an overview). Closely tied to this is the invariance question for δ_0 which asks the following. If X and Y are two finite sets of selfadjoint elements generating the same tracial von Neumann algebra, then is it true that $\delta_0(X) = \delta_0(Y)$?

For certain X one can compute $\delta_0(X)$ and answer the invariance question in the affirmative. Suppose that $N = W^*(X)$ is diffuse and embeds into the ultraproduct of the hyperfinite II_1-factor. Then $\delta_0(X) = 1$ when N has property Γ, or has a Cartan subalgebra, or is nonprime, or can be decomposed as an amalgamated free product of these algebras over a common diffuse subalgebra (see [10, 12, 14, 23]).

Another class of algebras to investigate in regard to possible values of $\delta_0(X)$ and the invariance question are those with Kazhdan’s property T ([6, 15, 18]). These first appeared in the von Neumann algebra context in Connes’ seminal work [5]. In recent years, Popa introduced the technique of playing the rigidity properties of such algebras against deformation results; this has led to a number of significant advances in the theory of von Neumann algebras. ([18], [19], [11]).

Voiculescu made the first computations of δ_0 for property T factors by showing that if x_1, \ldots, x_n are diffuse, selfadjoint elements in a tracial von Neumann algebra such that for each $1 \leq i \leq n - 1$, $x_ix_{i+1} = x_{i+1}x_i$, then $\delta_0(x_1, \ldots, x_n) \leq 1$. For $n \geq 3$, there exists a finite set of generators X_n for the group algebra $\mathbb{C}SL_n(\mathbb{Z})$ with this property (this was first used in the context of measurable equivalence relations by Gaboriau [8] to prove that their cost is at most 1). Hence $L(SL_n(\mathbb{Z}))$ has a set of generators X for which $\delta_0(X) \leq 1$. This was generalized in [10] (see also [9] and references therein) where Ge and Shen weakened the conditions on the generators x_i and in particular obtained the stronger statement that $\delta_0(Y) \leq 1$ for any other set Y of self-adjoint generators of the von Neumann algebra. However, all of these results rely on the special algebraic properties of certain generators (e.g. in $SL_n(\mathbb{Z})$) and thus do not apply to the more general property T groups or von Neumann algebras.

2000 Mathematics Subject Classification. Primary 46L54; Secondary 52C17.
Research supported in part by the NSF.
In [7] a notion of L^2 cohomology for von Neumann algebras was introduced, and the values of the resulting L^2 Betti numbers were connected with free probability and the value of δ_0. Indeed, using cohomological ideas, it was proved in [7] that if $X \subset \mathbb{C}\Gamma$ is an arbitrary set of generators, then

$$\delta_0(X) \leq \beta_1^{(2)}(\Gamma) - \beta_0^{(2)}(\Gamma) + 1.$$

Here $\beta_j^{(2)}(\Gamma)$ are the Atiyah-Cheeger-Gromov ℓ^2-Betti numbers of Γ (see e.g. [16]). This inequality is quite complicated to prove; indeed, one first proves the same inequality with δ_0 replaced by its “non-microstates” analog δ^*, and then uses a highly nontrivial result of Biane, Capitaine, Guionnet [11] that implies $\delta_0 \leq \delta^*$.

In the case that Γ has property T, the first ℓ^2 Betti number vanishes ([3]). So for Γ an infinite group, one has $\delta_0(X) \leq 1$ for any finite generating set $X \subset \mathbb{C}\Gamma$. However, even in this case, an “elementary” proof of this bound was not available and, moreover, it was not known whether $\delta_0(X) \leq 1$ for any finite generating set $X \subset L(\Gamma)$.

Our result settles the question of the value of $\delta_0(X)$ for an arbitrary set of self-adjoint generators of a property T factor in full generality:

Theorem. Suppose that N is a property T diffuse von Neumann algebra with a finite set of self-adjoint generators X, and let R^ω be an ultrapower of the hyperfinite II_1 factor. Then $\delta_0(X) \leq 1$. Moreover, if N has an embedding into R^ω, then $\delta_0(X) = 1$, and if N has no embedding into R^ω, then $\delta_0(X) = -\infty$.

Note that this result shows that the value of the free entropy dimension δ_0 is independent of the choice of generators of N. In particular, one gets as a corollary that if Γ is any infinite discrete group with property T, and X is any set of self-adjoint generators of the group von Neumann algebra $L(\Gamma)$ (we do not make the assumption that $X \subset \mathbb{C}\Gamma$ here), then $\delta_0(X) = 1$ or $-\infty$, depending on whether Γ embeds into the unitary group of R^ω.

The proof of the main theorem relies on a deformation/rigidity argument in the style of Popa, which is used to prove that the set of unitary conjugacy classes of embeddings of a property T von Neumann algebra N into the ultrapower of the hyperfinite II_1 factor is discrete. This fact can then be employed to show that if $X \subset N$ is a set of self-adjoint generators, then any $k \times k$ matrical microstate for X essentially lies in the unitary orbit of a certain discrete set S, all of whose elements are at least a certain fixed distance apart. One then turns this into an estimate for the packing dimension of the microstate space for X. We prove, effectively, that the packing dimension of the microstate set is essentially the same as that of a small number of disjoint copies of the k-dimensional unitary group.

1. Property T, Embeddings, and Unitary Orbits

Throughout this section and the next we fix a property T finite von Neumann algebra N and a finite p-tuple of self-adjoint generators $X \subset N$. $\| \cdot \|_2$ denotes the L^2-norm induced by a specified trace on a von Neumann algebra. $M_k^{sa}(\mathbb{C})$ denotes the set of self-adjoint $k \times k$ matrices and $M_k(\mathbb{C})$ denotes the set of $k \times k$ matrices. tr_k is the trace on $M_k(\mathbb{C})$. If $\xi = \{y_1, \ldots, y_p\}$ and $\eta = \{z_1, \ldots, z_p\}$ are p-tuples in a von Neumann algebra and u, w are element in a tracial von Neumann algebra, then $\xi - \eta = \{y_1 - z_1, \ldots, y_p - z_p\}$, $u_\eta w = \{uy_1w, \ldots, uy_pw\}$, and $\|\xi\|_2 = (\sum_{i=1}^p \|y_i\|^2)^{1/2}$. $R > 0$ will be a fixed constant greater than any of the operator norms of the elements in X. $\Gamma_R(X; m, k, \gamma)$ will denote the standard microstate spaces introduced in [22].

The following theorem, stated for the reader’s convenience, is by now among the standard results in the theory of rigid factors. Such deformation-conjugacy arguments have played a fundamental role in the recent startling results of Popa and others ([11], [17], [19], [20]).
Theorem 1.1. Let X and N be as above. Then for any $t > 0$ there exists a corresponding $r_t > 0$ so that if $(M, π)$ is a tracial von Neumann algebra and $π, σ : N → M$ are normal faithful trace-preserving *-homomorphisms such that for all $x ∈ X$, $\|π(x) − σ(x)\| < r_t$, then there exist projections $e ∈ π(N)' ∩ M$, $f ∈ σ(N)' ∩ M$, a partial isometry $v ∈ M$ such that $v^*v = e$, $vv^* = f$, $π(e) > 1 − t$, and for all $x ∈ N$, $vπ(x)ev^* = fσ(x)f$.

Proof. Recall (see [15]) that there exist $K, ε_0 > 0$, and a finite set $F ⊂ N$ such that if $0 < δ ≤ ε_0$ and H is a correspondence of N with a vector $ξ ∈ H$ satisfying $\|zξ − ξz\| < δ$, $z ∈ F$, then there exists a vector $η ∈ H$ which is central for M and $\|η − ξ\| < Kδ$. Choose r_t so small so that if $ρ_1, ρ_2 : N → M$ are any two faithful, normal trace preserving *-homomorphisms such that for all $x ∈ X$, $\|ρ_1(x) − ρ_2(x)\| < r_t$, then for all $z ∈ F$, $\|ρ_1(z) − ρ_2(z)\| < \min\{t, ε_0\} · (4K)^{-1}$. This can be done because X generates N.

Suppose $π, σ : N → M$ are two normal, faithful trace-preserving *-homomorphisms such that for all $x ∈ X$, $\|π(x) − σ(x)\| < r_t$. Consider $L^2(M)$ as an $N − N$ bimodule where for any $ξ ∈ L^2(M)$, $x, y ∈ N$, $xξy = π(x)Jσ(y)^*Jξ$. Denote by 1_M the vector associated to the unit of M. The hypothesis on $π$ and $σ$ guarantee that for all $x ∈ F$, $\|x 1_M − 1_Mx\| = \|π(x) − σ(x)\| < \min\{t, ε_0\} · (4K)^{-1}$ which in turn implies the existence of a central vector $η_0 ∈ L^2(M)$ for N such that $\|η_0 − 1_M\| < t/4$. Regard $η_0$ as an unbounded operator on $L^2(M)$ by its left action. If $η_0 = u|η_0|$ is the polar decomposition of $η_0$, then $u ∈ M$ and $\|η_0 − 1_M\| < t/4$ implies $\|u − 1_M\| < t/2 \Rightarrow \|u^*u − 1_M\| < t$. On the other hand, since for any $x ∈ N$, $xη_0 = η_0x$, one concludes in the usual way that $xu = ux$. Consequently, $uu^* ∈ π(N)'$, $u^*u ∈ σ(N)'$. Set $e = uu^* ∈ π(N)' ∩ M$ and $f = u^*u ∈ σ(N)' ∩ M$. It follows that for all $x ∈ N$, $u^*eπ(x)ev^* = fσ(x)f$. Finally, $τ(e) = τ(f) > 1 − t$.

For each $t > 0$, we now choose a critical $r = r_t > 0$ dependent on t as in Theorem 1.1.

We now need some notation.

Notation 1.2. (a) If $η ∈ (M_k^{sa}(C))^p$ and $r > 0$, then

$$Ω_r(η) = \{ξ ∈ (M_k^{sa}(C))^p : \text{for some } u ∈ U_k, \|ξ − u^*ηu\| < r\}.$$

(b) If $η ∈ (M_k^{sa}(C))^p$ and $k, s > 0$, then $G_{k,s}(η)$ consist of all p-tuples $ξ$ such that there exists projections $e, f ∈ M_k^{sa}(C)$ and a $w ∈ M_k(C)$ such that $w^*w = e$, $ww^* = f$, $tr_k(e) = tr_k(f) > s$ and $\|weξw^* − fηf\| < k$.

Lemma 1.3. For any $k, t > 0$ there exist an $m ∈ N$ such that if $ξ, η ∈ Γ_R(X; m, k, m^{-1})$ and $ξ ∈ Ω_{r_t}(η)$, then $ξ ∈ G_{k,1−t}(η)$.

Proof. We proceed by contradiction. Assume that there exists some $κ_0, t_0 > 0$ such that for each $m ∈ N$ there are $m_k, m_w ∈ N$ and $ξ_m, η_m ∈ Γ_R(X; m, k, m^{-1})$ such that $ξ ∈ Ω_{r_t}(η)$ and $ξ ∉ G_{κ_0,1−t}(η)$.

Fix a free ultrafilter $ω$, and consider the ultraproduct

$$R^ω = \prod_{m ∈ N} M_{m_k}(C) = \{\langle x_m⟩_{m=1}^∞ : \lim_{m} tr_{m_k}(x_mx_m^*) = 0\}.$$

Denote by $Q : \prod_{m} M_{m_k} → R^ω$ the quotient map. Set $ξ = ⟨ξ_m⟩_{m=1}^∞$ and $η = ⟨η_m⟩_{m=1}^∞$.

For each m we can find a $k_m × k_m$ unitary u_m such that $\|u_m^*ξ_mu_m − η\| < r$. Set $u = ⟨u_m⟩_{m=1}^∞$. It follows that there exist two normal faithful trace-preserving *-homomorphisms $π, σ : N → R^ω$ such that $π(X) = Q(U)^*Q(ξ)Q(U)$ and $σ(X) = Q(η)$. Clearly $\|π(X) − σ(X)\| < r$. By Theorem 1.1 there exist projections $e ∈ π(N)' ∩ R^ω$, $f ∈ σ(N)' ∩ R^ω$ and a partial isometry $v ∈ R^ω$ with initial domain e and final range f such that for all $x ∈ N$, $vπ(x)ev^* = fσ(x)f$ and $τ(e) = τ(f) > 1 − t_0$. There exist sequences of projections $⟨e_m⟩_{m=1}^∞$ and $⟨f_m⟩_{m=1}^∞$ such that for each m, $e_m, f_m ∈ M_{m_k}(C)$ and $Q(⟨e_m⟩_{m=1}^∞) = e$, $Q(⟨f_m⟩_{m=1}^∞) = f$.

FREE DIMENSION AND PROPERTY T
Similarly there exists a sequence of partial isometries \(\langle v_m \rangle_{m=1}^{\infty} \) such that for each \(m, v_m \in M_{k_m}(\mathbb{C}) \) and \(Q(\langle v_m \rangle_{m=1}^{\infty}) = v \). We can also arrange it so that for each \(m, \) \(v_m v_m^* = f_m \) and \(v_m^* v_m = e_m \). Now, the equation \(v e x v^* = f \), \(x \in M \) implies in particular, that for some \(\lambda_0 \in \omega \)
\[\|v_{m\lambda_0} e_{m\lambda_0} \xi_{m\lambda_0} e_{m\lambda_0} v_{m\lambda_0}^* - f_{m\lambda_0} \eta_{m\lambda_0} f_{m\lambda_0}\|_2 < \kappa_0 \]
and that the normalized trace of both \(f_{m\lambda_0} \) and \(e_{m\lambda_0}\) is strictly greater than \(1 - t_0 \). But this means that \(\xi_{m\lambda_0} \in G_{\kappa_0,1-t_0}(\eta) \) which contradicts our initial assumption.

\[\Box\]

Remark 1.4. Observe that in Lemma 2.1 the quantity \(r_i \) is independent of \(\kappa \).

2. The Main Estimate

In this section we maintain the notation for \(K_\epsilon \) introduced in [13] taken now with respect to the microstate spaces with the operator norm cutoffs. Set \(K = \|X\|_2 \). We first state a technical lemma on the covering numbers for the spaces \(G_{\kappa,s}(\eta) \).

Lemma 2.1. If \(\eta \in (M^a_k(\mathbb{C}))^p \) and \(\epsilon, \kappa, s > 0 \) with \(\epsilon > \kappa \), then there exists an \(5K\epsilon \)-net for \(G_{\kappa,s}(\eta) \) with cardinality no greater than

\[
\left(\frac{2\pi}{\epsilon} \right)^{2k^2+2s^2k^2} \cdot \left(\frac{K + 1}{\epsilon} \right)^{4(1-s)^2k^2}.
\]

Proof. Find the smallest \(m \in \mathbb{N} \) such that \(sk \leq m \leq k \). Denote by \(V \) the set of partial isometries in \(M_k(\mathbb{C}) \) whose range has dimension \(m \). Denote by \(P_{m} \) the set of projections of trace \(mk^{-1} \). It follows from [21] that there exists an \(\epsilon \)-net for \(P_{m} \) (with respect to the operator norm) with cardinality no greater that \((\frac{2\pi}{\epsilon})k^2 - m^2 - (k-m)^2 \). There exists again by [21] an \(\epsilon \)-net for the unitary group of \(M_{m}(\mathbb{C}) \) (with respect to the operator norm) with cardinality no greater than \((\frac{2\pi}{\epsilon})m^2 \). These two facts imply that there exists an \(\epsilon \)-net \(\langle v_{jk} \rangle_{j \in J_k} \) for \(V \) with respect to the operator norm such that

\[
\# J_k < \left(\frac{2\pi}{\epsilon} \right)^{2km-m^2}.
\]

Now fix \(j \in J_k \). Denote by \(G(\eta, j) \), the set of all \(\xi \in (M^a_k(\mathbb{C}))^p \) such that \(\|\xi\|_2 \leq K \) and \(\|v_{jk}(e_{jk} \xi e_{jk}) v_{jk}^* - f_{jk} \eta f_{jk}\|_2 < 5K\epsilon \) where \(e_{jk} = v_{jk} v_{jk}^* \) and \(f_{jk} = v_{jk}^* v_{jk} \). There exists a 2\(\epsilon \)-cover \(\langle \xi_{ijk} \rangle_{i \in \theta(j)} \) such that \(\# \theta(j) < \left(\frac{K + 1}{\epsilon} \right)^{4(1-s)^2k^2} \).

Consider the set \(\langle \xi_{ijk} \rangle_{i \in \theta(j), j \in J_k} \). It is clear that this set has cardinality no greater than

\[
\left(\frac{2\pi}{\epsilon} \right)^{2km-m^2} \cdot \left(\frac{K + 1}{\epsilon} \right)^{4(1-s)^2k^2}.
\]

It remains to show that this set is a \(5K\epsilon \)-cover for \(G_{\kappa,s}(\eta) \). Towards this end suppose \(\xi \in G_{\kappa,s}(\eta) \). Then there exists a partial isometry \(v \in M_k(\mathbb{C}) \) such that \(v^* v = e, vv^* = f, \|ve\xi ev^* - f\eta f\|_2 < \kappa \), and \(tr_k(e) = tr_k(f) > s \). By cutting the domain and range of the projection, we can assume that \(e \) and \(f \) are projections onto subspaces of dimension exactly \(m \) and we can assume that the inequality with tolerance \(\kappa \) is preserved. Obviously then \(v \in V \), whence there exists a \(j_0 \in J_k \) such that \(\|v_{j_0} - v\| < \epsilon \). This condition immediately implies that \(\|v_{j_0} e_{j_0} \xi_{j_0} - ve\|, \|f_{j_0} - f\| < 2\epsilon \) and thus

\[
\|v_{j_0} e_{j_0} \xi_{j_0} - f_{j_0} \eta f_{j_0}\|_2 < 4\epsilon K + \|ve\xi ev^* - f\eta f\|_2 < 5K\epsilon.
\]

By definition, \(\xi \in G(\eta, j_0) \). Thus, there exists some \(i_0 \) such that \(i_0 \in \theta(j_0) \) and \(\|\xi_{i_0j_0} - \xi\|_2 < 5K\epsilon \).

We can now prove the main result of the paper:
Theorem 2.2. Let N be a property T diffuse von Neumann algebra with a finite set of selfadjoint generators X, and let R^ω be an ultrapower of the hyperfinite II$_1$ factor.

(a) If N has an embedding into R^ω, then $\delta_0(X) = 1$. (b) If N has no embedding into R^ω, then $\delta_0(X) = -\infty$.

Proof. Fix $1 > a > 0$. For any $\epsilon > 0$, setting $\kappa = \epsilon$ and $t = 1 - a$ in Lemma [13] shows that there exists an $m \in \mathbb{N}$, $m > p^2$, such that if $\xi, \eta \in \Gamma_R(X; m, k, m^{-1})$ and $\xi \in \Theta_{r_a}(\eta)$, then $\xi \in G_{\epsilon,1-a}(\eta)$. Consider the ball B_k of $(M_k^e(\mathbb{C}))^p$ of $\|\cdot\|_2$-radius $K + 1$. For each k find an r_a-net $(\eta_{jk})_{j,k}^p$ of $\Gamma_R(X; m, k, m^{-1})$ with minimal cardinality such that each element of the net lies in $\Gamma(X; m, k, m^{-1})$. The standard volume comparison test of this set with B_k (remember that $\Gamma(X; m, k, m^{-1}) \subset (M_k^e(\mathbb{C}))^p$) implies that

$$\#J_k \leq \left(\frac{K + 2}{r_a}\right)^{pk^2}.$$ \hfill (\Box

For each such $j \in J_k$ find a $5K\epsilon$-net $\langle \xi_{ij} \rangle_{i \in \theta(j)}$ for $G_{\epsilon,1-a}(\eta_{jk})$ where $\theta(j)$ is an indexing set satisfying

$$\#\theta(j) \leq \left(\frac{2\pi}{\epsilon}\right)^{2k^2-(1-a)^2k^2} \cdot \left(\frac{K + 2}{\epsilon}\right)^{4a^2k^2}.$$ \hfill (\Box

Consider now the set $\langle \xi_{ij} \rangle_{i \in \theta(j), j \in J_k}$. It is clear that this set has cardinality no greater than

$$\left(\frac{K + 2}{r_a}\right)^{pk^2} \cdot \left(\frac{2\pi}{\epsilon}\right)^{(1+2a-a^2)k^2} \cdot \left(\frac{K + 2}{\epsilon}\right)^{4a^2k^2}.$$ \hfill (\Box

Moreover, if $\xi \in \Gamma_R(X; m, k, m^{-1})$, then there exists some $j_0 \in J_k$ such that $\|\xi - \eta_{j_0}\|_2 < r_a$. Clearly then, $\xi \in \Theta_{r_a}(\eta)$ which implies that $\xi \in G_{\epsilon,1-a}(\eta_{j_0})$. Consequently there exists some $i_0 \in \theta(j_0)$ such that $\|\xi - \xi_{i_0}\|_2 < 5K\epsilon$. Therefore, $\langle \xi_{ij} \rangle_{i \in \theta(j), j \in J_k}$ is a $5K\epsilon$-net for $\Gamma_R(X; m, k, m^{-1})$.

The preceding paragraph implies that for $\epsilon > 0$,

$$\mathbb{K}_{5K\epsilon}(X) \leq \limsup_{k \to \infty} k^{-2} \log \left[\left(\frac{K + 2}{r_a}\right)^{pk^2} \cdot \left(\frac{2\pi}{\epsilon}\right)^{(1+2a-a^2)k^2} \cdot \left(\frac{K + 2}{\epsilon}\right)^{4a^2k^2}\right]$$

$$= p \log r_a + (1 + 2a - a^2) \log \epsilon + \log \left[(2\pi)^2(K + 2)^{p+4}\right].$$

Keeping in mind that a and ϵ are independent it now follows from [13]

$$\delta_0(X) = \limsup_{\epsilon \to 0} \frac{\mathbb{K}_\epsilon(X)}{\log \epsilon}$$

$$= \limsup_{\epsilon \to 0} \frac{\mathbb{K}_{5K\epsilon}(X)}{\log \epsilon}$$

$$\leq \limsup_{\epsilon \to 0} p \cdot \frac{\log r_a}{\log \epsilon} + 1 + 2a - a^2 + \frac{\log ((2\pi)^2(K + 2)^{p+4})}{\log \epsilon}$$

$$= 1 + 2a - a^2.$$ \hfill (\Box

As $1 > a > 0$ was arbitrary, $\delta_0(X) \leq 1$. The rest of the assertions follow from [12].

Remark 2.3. For $\epsilon > 0$ consider the set $X + \epsilon S = \{x_1 + \epsilon s_1, \ldots, x_n + \epsilon s_n\}$ where $\{s_1, \ldots, s_n\}$ is a semicircular family free with respect to X. [2] shows that for sufficiently small $\epsilon > 0$ the von Neumann algebras M^e generated by $X + \epsilon S$ are not isomorphic to the free group factors and yet, if X'' embeds into the ultraproduct of the hyperfinite II$_1$-factor, then $\chi(X + \epsilon S) > -\infty$. Theorem 2.2 implies that if X'' embeds into the ultraproduct of the hyperfinite II$_1$-factor, then M^e cannot have property T. Also observe that the usual rigidity/deformation argument shows that for sufficiently small $\epsilon > 0$, there exists a II$_1$ property T subfactor N^e of M^e.\hfill (\Box
Remark 2.4. Unfortunately, we were not able to settle the question of whether N must be strongly \(1\)-bounded in the sense of [13].

Acknowledgments. The authors would like to thank Adrian Ioana, Jesse Peterson, and Sorin Popa for useful conversations.

REFERENCES

1. P. Biane, M. Capitaine, and A. Guionnet, Large deviation bounds for matrix Brownian motion, Invent. Math. 152 (2003), no. 2, 433–459.
2. N. Brown, Finite free entropy and free group factors, IMRN 28 (2005), 1709–1715.
3. J. Cheeger and M. Gromov, \(L_2\)-cohomology and group cohomology, Topology 25 (1986), no. 2, 189–215.
4. E. Christensen, Subalgebras of a finite algebra, Math. Ann. 243 (1979), 17–29.
5. A. Connes, A factor of type II\(_1\) with countable fundamental group, Journal of Operator Theory 4 (1980), 151–153.
6. A. Connes and V.F.R. Jones, Property T for von Neumann algebras, Bull. London Math. Soc. 17 (1985), 57–62.
7. A. Connes and D. Shlyakhtenko, \(L^2\)-homology for von Neumann algebras, Preprint math.OA/0309343, to appear in J. Reine Angew. Math.
8. D. Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000), no. 1, 41–98.
9. L. Ge, Free probability, free entropy and applications to von Neumann algebras, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) 787–794, Higher Ed. Press, Beijing, 2002.
10. L. Ge and J. Shen, On free entropy dimension of finite von Neumann algebras, GAFA 12 (2002), 546–566.
11. A. Ioana, J. Peterson, and S. Popa, Amalgamated free products of \(w\)-rigid factors and calculation of their symmetry groups, preprint, 2005.
12. K. Jung, The free entropy dimension of hyperfinite von Neumann algebras, Trans. Amer. Math. Soc. 355 (2003), no. 12, 5053–5089 (electronic).
13. K. Jung, A free entropy dimension lemma, Pacific Journal of Mathematics, 211 (2003), no.2, 265–271.
14. K. Jung, Strongly \(1\)-bounded von Neumann algebras, to appear in GAFA, 2006.
15. D.A. Kaˇzdan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74.
16. W. Lück, \(L^2\)-invariants: theory and applications to geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002.
17. N. Ozawa, There is no separable universal II\(_1\)-factor, Proc. Amer. Math. Soc., 132 (2004), 487-490.
18. S. Popa, Correspondences, INCREST preprint, 1986.
19. ______, On a class of type II\(_1\) factors with Betti numbers invariants, Preprint math.OA/0209130, 2002.
20. S. Popa, A. Sinclair, and R. Smith, Perturbations of subalgebras of type II\(_1\)-factors, Journal Funct. Anal. 213 (2004), 346–379.
21. S. Szarek, Metric entropy of homogeneous spaces, Quantum Probability (Gdansk 1997), Banach Center Publications, vol. 43, Polish Academy of Science, Warsaw, 1998, pp. 395–410.
22. D.-V. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory II, Invent. Math. 118 (1994), 411–440.
23. ______, The analogues of entropy and of Fisher’s information measure in free probability theory, III, GAFA 6 (1996), 172–199.
24. ______, Free entropy, Bull. London Math. Soc. 34 (2002), no. 3, 257–278.

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA
E-mail address: kjung@math.ucla.edu, shlyakht@math.ucla.edu