Robust and Latch-Up-Immune LVTSCR Device with an Embedded PMOSFET for ESD Protection in a 28-nm CMOS Process

Ruibo Chen1*, Hongxia Liu1*, Wenqiang Song2, Feibo Du2, Hao Zhang1, Jikai Zhang1 and Zhiwei Liu2*

Abstract

Low-voltage-triggered silicon-controlled rectifier (LVTSCR) is expected to provide an electrostatic discharge (ESD) protection for a low-voltage integrated circuit. However, it is normally vulnerable to the latch-up effect due to its extremely low holding voltage. In this paper, a novel LVTSCR embedded with an extra p-type MOSFET called EP-LVTSCR has been proposed and verified in a 28-nm CMOS technology. The proposed device possesses a lower trigger voltage of ~6.2 V and a significantly higher holding voltage of ~5.5 V with only 23% degradation of the failure current under the transmission line pulse test. It is also shown that the EP-LVTSCR operates with a lower turn-on resistance of ~1.8 Ω as well as a reliable leakage current of ~1.8 nA measured at 3.63 V, making it suitable for ESD protections in 2.5 V/3.3 V CMOS processes. Moreover, the triggering mechanism and conduction characteristics of the proposed device were explored and demonstrated with TCAD simulation.

Keywords: ESD protection, Low-voltage-triggered SCR (LVTSCR), High holding voltage, Failure current, Turn-on resistance

Background

With the continuous miniaturization of semiconductor devices' feature size, the damage induced by electrostatic discharge (ESD) in the integrated circuits (IC) has become a more serious problem. Moreover, the fabrication cost of the ESD protection device has been sharply increased due to the advanced process technology [1]. Therefore, the designs of high area efficiency and robustness ESD protection devices are of great values.

A silicon-controlled rectifier (SCR) device was verified to sustain a high ESD current with a small device dimension owing to the strongly positive feedback effect in its parasitic bipolar junction transistors [2]. But the SCR typically has a high trigger voltage (V_{t1}) which exceeds the gate oxide breakdown voltage of the input stage in nanoscale CMOS technology. To reduce the V_{t1} of SCR, the modified lateral SCR (MLSCR) was reported for input ESD protection by inserting heavily doped n+ or p+ regions across the boundary of n-well and p-well [3, 4]. But the trigger voltage of the MLSCR is still greater than the breakdown voltages of output transistors in the CMOS output buffer. Therefore, it cannot provide an efficient output ESD protection alone.

To efficiently protect the CMOS output buffer, a low-voltage-triggered SCR (LVTSCR) has been proposed by inserting a short-channel NMOS (PMOS) device into the traditional SCR to realize a much lower trigger voltage [5–7], which is equivalent to the snapback trigger voltage of the inserted NMOS(PMOS) device. However, like the traditional SCR and MLSCR devices, the LVTSCR also suffers the hazards of latch-up due to its extremely low holding voltage (V_h) of about 2 V [8]. Such a latch-up effect will result in a malfunction during normal operation and an incessant high current to destroy the IC [9].

*Correspondence: hxliu@mail.xidian.edu.cn; ziv_liu@hotmail.com
1 Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, School of Microelectronics, Xidian University, Xi'an 710071, China
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

© The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
There are several possible methods to improve the \(V_h \) of the LVTSCR \cite{10–15}. The most common solution is to expand the base region of the SCR’s parasitic bipolar junction transistors (BJT) for decreasing the injection efficiency of their emitter–base junctions \cite{10}. Adopting this solution, not only will the layout area of device increase, but the turn-on resistance \((R_{on}) \) should, too, which will further lead to drastic degradation of its failure current \((I_{f}) \). Then, an optimized method was proposed by inserting a floating-n-well region in LVTSCR with less sacrifice on \(I_{t2} \) \cite{11}, but it also operates with a large \(R_{on} \) leading an exorbitant conduction voltage which exceeds the gate oxide breakdown voltage against a small current, thus reducing its effective ESD protection current. The method by adding the extra N-LDD/P-HALO layers in LVTSCR can also elevate the \(V_h \) \cite{12}, while such devices are only compatible for the specific process and cannot be widely used in ordinary CMOS processes. Moreover, a gate-to-ground NMOS-triggered LVTSCR (GGSCR) was reported in \cite{13}, which increases the \(V_h \) by leading the drain of the embedded NMOS to the anode, but it might cause the embedded NMOS to be damaged before the SCR conduction in a low current. Recently, the compound LVTSCR structures performing low \(V_h \) as well as high \(V_h \) were demonstrated in \cite{14, 15}. These compound structures are designed with high complexity and area requirements, thus limiting their application in advanced CMOS technology considering the design costs. Therefore, a robust, area-efficient, and latch-up-immune ESD protection device is highly desirable in advanced process ESD protection.

In this paper, a novel LVTSCR structure with an embedded PMOS transistor (EP-LVTSCR) is proposed for 2.5 V/3.3 V supply voltage applications. The proposed device was fabricated in a 28-nm CMOS process, and its electrical characteristic is verified through the measurement of transmission line pulse (TLP). The physics mechanisms of the proposed device are explored by technology computer-aided design (TCAD) simulations. As a result, the proposed structure possesses a higher holding voltage, a lower trigger voltage with a lower \(R_{on} \) and just a slight decrease in \(I_{t2} \) without any extra process step.

Methods

The conventional LVTSCR and the proposed EP-LVTSCR have been studied in this paper. The schematic cross-sectional views of the conventional LVTSCR and EP-LVTSCR are shown in Fig. 1a, b, respectively, whereas their equivalent circuits are depicted within the structures with the parasitic transistors and well resistors. In both devices, silicide block (SAB) layers are placed on the top of partial ND region which will induce ballast resistances by preventing silicide layers’ forming \cite{16, 17}. In conventional LVTSCR, an NMOS transistor is inserted in PWELL with its drain (ND) setting across NWELL and PWELL, while its source and gate are connected to ground (GND) together, which can be seen in Fig. 1a. During ESD stress, the parasitic lateral p-n-p BJT (Q1) and the parasitic lateral n-p-n BJTs (Q2 and Q3) will be gradually turned on. In such a condition, the Q1 and Q2 transistors are coupled to constitute the SCR conduction path which will predominate the current discharge, where the SCR conduction path is indicated by the dashed line.

Compared to the conventional LVTSCR, EP-LVTSCR has an extra PMOS transistor (T1) embedded in the NWELL as its gate and drain are connected to ND with a metal, which is shown in Fig. 1b. When an ESD pulse is applied to the anode of the EP-LVTSCR, the reverse-biased N+/NWELL/N+/PWELL/P+ diode will conduct first if the zapping voltage is higher than the N+/PWELL breakdown voltage. Then, the holes/electrons generated by the avalanche multiplier effect will flow toward the cathode/anode, hence increasing the current density in NWELL/PWELL, and further elevate the drop potential across the NWELL/PWELL. Once the total voltage drop on \(R_{NW1} \) and \(R_{NW2} \), which is equivalent to the voltage drop between the source and gate \((−V_h^\text{th})\) of T1, overwhelms its threshold voltage \((V_h^\text{th})\) of about 0.9 V, the T1 will be turned on. Subsequently, the parasitic lateral n–p–n transistors Q2 and Q3 will be triggered with reliance on the conduction of their emitter–base junctions. It is noticed that the conducting of T1 will lower the \(R_{on} \) across NWELL, and thus the Q2 and Q3 can be triggered in lower voltages. As the current continues to increase, the voltage drop on \(R_{NW1} \) rises to about 0.7 V and turns on the Q1 and the parasitic lateral p–n–p transistor of the PMOS (Q4). Finally, the SCR path turns on against the branch path conducting.

Several reports demonstrated that the holding voltage of SCR is mainly determined by the potential difference across the NWELL/PWELL depletion region \(V_{dep} \) \cite{18–20}, which is inversely proportional to the minority carriers (electrons/holes) injected into the depletion region. While the branch path of EP-LVTSCR can extract holes/electrons injected into the depletion region from the SCR path, thus elevating the \(V_h \) of EP-LVTSCR.

In order to further demonstrate the physics mechanism of EP-LVTSCR, TCAD simulation has been carried out, where the physics models such as mobility, recombination, thermodynamic, and effective intrinsic density were integrated and the mathematical methods like extrapolate, RelErrcontrol, and direct current computation were used. The ESD current modeling by 1.2 A pulses with 10 ns rise time was applied to the anodes of EP-LVTSCR and the conventional LVTSCR, respectively, where the
substrate of the devices was regarded as the only heat sink and the ambient temperature was set as 300 K.

The simulated results of the total current density distributions of EP-LVTSCR at 500 ps and 5 ns are shown in Fig. 2a, b, respectively. At 500 ps, the current density distribution concentrates on the T1 and the Q2 transistors, which indicates that the series T1/Q2 have turned on as a trigger path shown in Fig. 2a. When time rises to 5 ns, both the SCR path and the branch path have conducted as can be observed in Fig. 2b. At this time, part of the holes/electrons generated by P+ /N+ are extracted from NWELL/PWELL to flow through the branch path, which are illustrated by the horizontal holes and electrons current density of the proposed structure shown in Fig. 2c, d. Further, the electrostatic potential distributions of the conventional LVTSCR and EP-LVTSCR at 5 ns are compared in Fig. 3a, b. Obviously, the potential peak inside the EP-LVTSCR is higher. These simulation results provide direct evidence for the above assumption of EP-LVTSCR's higher holding voltage resulted from the branch path indicated in Fig. 1b.

Results and discussion

The conventional LVTSCR and EP-LVTSCR are implemented in a 28-nm 2.5 V/3.3 V logic CMOS process with the same width of 40 um, and their layout topologies are shown in Fig. 4a, b, respectively. To avoid the parasitic effects associated with the substrate, P-type guard rings (PGR) are employed in both structures, and each PGR is connected to GND [21]. The central axle of ND is aligned with the NWELL/PWELL junction, and the parameter D1 is used to describe half of the ND length, while D2 is the length of SAB region.

The ESD characteristics of the conventional LVTSCR and EP-LVTSCR were measured using Hanwa TED-T5000 TLP tester with 10 ns rise time and 100 ns pulse width, and the leakage currents were measured under 3.63 V (1.1 VDD) DC voltage bias after each TLP stress.
Fig. 2 TCAD-simulated a total current density distribution at $t = 500$ ps, b total current density distribution at 5 ns, c horizontal electrons current density distribution at 5 ns and d horizontal holes current density distribution at 5 ns of the proposed EP-LVTSCR under a 1.2A-TLP stress.

Fig. 3 TCAD-simulated electrostatic potential distributions of a the proposed EP-LVTSCR and b the conventional LVTSCR at $t = 5$ ns under a 1.2A-TLP stress.

Fig. 4 Layout topologies of a the conventional LVTSCR and b the proposed EP-LVTSCR.
Measured TLP I–V and leakage characteristics of the EP-LVTSCR and LVTSCR are shown in Fig. 5. Apparently, the EP-LVTSCR possesses a higher V_h of 5.49 V compared with the conventional LVTSCR of 2.18 V. Although the EP-LVTSCR has a significant improvement on the holding voltage, its I_{t2} just decreased by about 0.29 A, which benefits from the assistant of branch current path. Besides, EP-LVTSCR also performs a V_{th} decreasing from 6.49 to 6.18 V. For 2.5 V or 3.3 V IO pin in 28-nm CMOS processes, the ESD design window ranged from 3.63 to 9.4 V with 10% safety margin consideration. Therefore, the proposed EP-LVTSCR can be used as a valid ESD protection solution for 2.5 V/3.3 V IO ports by overcoming the latch-up issue in a traditional LVTSCR-type structure.

In this article, the electrical characteristics of the proposed ESD protection were optimized by modifying the design variables $D1$ and $D2$. Figure 6 illustrates the TLP measurement results of EP-LVTSCRs with two different $D1$. It is noticed that the I–V curves of EP-LVTSCRs show two snapback regions due to the multi-triggering effects during turn-on of the devices. The first snapback region I suggests the conduction of the trigger path which is indicated in Fig. 2a, while the second snapback of region II is induced by the turn-on of the SCR path. When $D1$ decreases from 1.25 to 0.5 µm, the I_{t2} decreases by about 0.1 A and the holding current in the second snapback is increased by about 0.17 A. This is because the well resistances R_{NW2} and R_{PW2} (Fig. 1) are decreased with the $D1$ diminution, hence requiring more current to trigger and sustain the conduction of SCR.

Figure 7 shows the TLP I–V results of EP-LVTSCR with three different $D2$. When $D2$ increases from 0.75 to 2.25 µm, the ballast resistance of ND increased gradually, resulting in an increase in the resistance of the branch path, and further enlargement in R_{on}, which can be observed by the slope variations of the IV characteristic curves in Fig. 7. As a result, the V_h elevates from 5.5 to 5.8 V with the $D2$ increase and without significant changes in I_{t2}.

Conclusions

An enhanced ESD device called the EP-LVTSCR has been designed and fabricated in a 28-nm CMOS technology. The mechanisms of the proposed devices were also demonstrated with TCAD simulations. Compared with
the conventional LVTSICR, the proposed EP-LVTSICR possesses a lower trigger voltage of 6.2 V and a significantly higher holding voltage of 5.5 V due to its improved trigger mechanism and branch conduction effect. With such a higher increase in V_h, the failure current of the EP-LVTSICR only decreased by about 20%. Besides, the proposed structure operates with a lower turn-on resistance as well as a reliable leakage current of about 2 nA at 3.63 V voltage, so it is highly applicable for protecting 2.5 V/3.3 V I/O pins. Furthermore, the EP-LVTSICRs are also expected to provide an ESD protection on 5 V power circuits with benefit from their adjustable holding voltage characteristics.

Abbreviations
ESD: Electrostatic discharge; SCR: Silicon-controlled rectifier; MLSCR: Modified lateral SCR; LVTSICR: Low-voltage-triggered SCR; CMOS: Complementary metal oxide semiconductor; IC: Integrated circuits; V_T: Trigger voltage; V_h: Holding voltage; BJT: Bipolar junction transistors; R_{on}: Turn-on resistance; I_C: Failure current; TLP: Transmission line pulse; TCAD: Technology computer-aided design; SAB: Silicide block; V_{th}: Threshold voltage; DC: Direct current.

Acknowledgements
The authors gratefully acknowledge the support provided by the Foundation for Fundamental Research of China (Grant No. J5ZL20161108003).

Authors’ contributions
RBC generated the research idea, analyzed the data, and wrote the paper. WqS, FdH, HZ, and JkZ carried out the experiments and measurements. HxL and ZwL have given final approval of the version to be published. All authors read and approved the final manuscript.

Funding
The authors gratefully acknowledge the financial supports for this work from the National Natural Science Foundation of China (Grant No. U1866212), the major Fundamental Research Program of Shaanxi (Grant No.2017ZJJC-26), and the Innovation Foundation of Radiation Application (Grant No. KFZC2018040206).

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Competing interests
The authors declare that they have no competing interests.

Received: 16 May 2020 Accepted: 20 October 2020
Published online: 11 November 2020

References
1. Du Y, Lv H, Cheng T, Yang S (2008) ESF qualification changes for 45 nm and beyond. In: IEEE international electron devices meeting, pp 1–4. https://doi.org/10.1109/IEDM.2008.4796688
2. Ker M-D, Hsu KC (2005) Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits. IEEE Trans Device Mater Reliab 5(2):235–249. https://doi.org/10.1109/TDMR.2005.8466824
3. Lu TC, Guo JC, Wang MT, Shone F (1997) Design strategy of MLSICR devices for sub-micron CMOS technology. In: Proceedings of international symposium on VLSI technology, pp 241–244. https://doi.org/10.1109/VTSA.1997.614767
4. Du F, Hou F, Song W-Q, Chen R, Liu J, Liu Z, Liu JJ (2019) An enhanced MLSICR structure suitable for ESD protection in advanced epitaxial CMOS technology. IEEE Trans Electron Devices 66(5):2062–2067. https://doi.org/10.1109/TED.2019.2904525
5. Chatterjee A, Polgreen T (1991) A low-voltage triggering SCR for on-chip ESD protection at output and input pads. IEEE Electron Device Lett 12:21–22. https://doi.org/10.1109/55.756885
6. Ker MD, Wang KF, Joe MC, Chu YH, Wu TS (1995) Area-efficient CMOS output buffer with enhanced high ESD reliability for deep submicron CMOS ASIC. In: Proceedings of 8th IEEE international ASIC conference and exhibition, pp 123–126
7. Ker M-D, Wu C-Y, Chang H-H (1996) Complementary-LVTSICR ESD protection circuit for submicron CMOS VLSI/ULSI. IEEE Trans Electron Devices 43:588–598
8. Notermans G, Kuper F, Luchis JM (1997) Using an SCR as ESD protection without latch-up danger. Microelectron Reliab 37:1457–1460
9. Ker M-D, Lin K-H (2005) The impact of high-holding-voltage in high-voltage CMOS technology and the design of latchup-free power-rail ESD clamp circuit for LCD driver ICs. IEEE J Solid-State Circuits 40(6):1451–1459. https://doi.org/10.1109/JSSC.2005.852046
10. Notermans G, Kuper F, Luchis JM (1997) Using an SCR as ESD protection without latch-up danger. Microelectron Reliab 37:1457–1460. https://doi.org/10.1016/S0026-2714(97)00086-3
11. Wu D-J, Miao M, Zeng J, Han Y, Liu JJ (2012) High-holding-voltage silicon-controlled rectifier for ESD applications. IEEE Electron Device Lett 33(10):1345–1347. https://doi.org/10.1109/LED.2012.2208894
12. Shan Y, He J, Hu B (2009) PLDD/NHALO-assisted low-trigger SCR for high-voltage tolerant ESD protection in foundry CMOS process without extra mask. Electron Lett 45(1):78–79. https://doi.org/10.1049/el.20092722
13. Zhang S, Dong S-R, Wu Y, J, Zeng J, Zhong L, Wu J (2015) An improved GGNMOS triggered SCR for high holding voltage ESD protection applications. Chin Phys B 24(10):591–593. https://10.1088/1674-1056/24/10/108502
14. Lee B-S, Koo Y-S (2019) SCR-based ESD protection circuit with low trigger voltage and high robustness by inserting the NMOS structure. J Semicond Technol Sci 19(3):300–304. https://doi.org/10.5573/jsts.2019.19.3.300
15. Lai D-W, Que S, Peters W, Smades T (2019) Gate-lifted nMOS ESD protection device triggered by a p-n-p in series with a diode. IEEE Trans Electron Devices 66(4):1642–1647. https://doi.org/10.1109/TED.2019.2899457
16. Kim CS, Park HB, Kim BG, Kang DG, Lee MG, Lee SW, Jeon CH, Kim WG, Yoo YJ, Yoon HS (2000) A novel NMOS transistor for high performance ESD protection devices in 0.18-μm CMOS technology utilizing silicide process. In: Overstress/electrostatic discharge symposium (EOS/ESD), pp 26–28. https://doi.org/10.1049/EOS2000.890109
17. Li J, Alvarez D, Chatty K, Abou-khalil MJ, Gauthier R, Russ C, Seguin C, Halbach R (2006) Analysis of failure mechanism on gate-silicided and gate-non-silicided, drain/source silicidized blocked ESD NMOSFETs in a 65 nm Bulk CMOS technology. In: International symposium on physical and failure analysis of integrated circuits (IPFA), pp 3–7. https://doi.org/10.1109/IPFA.2006.251045
18. Huang C-Y, Kao T-C, Lee JH et al (2014) Simple scheme to increase hold voltage for silicon-controlled rectifier. IEEE Electron Lett 50(3):200–202. https://doi.org/10.1049/el.2013.1853
19. Sleeter DJ, Enlow EW (1992) The relationship of holding points and a general solution for CMOS latchup. IEEE Trans Electron Devices 39(11):2592–2599. https://doi.org/10.1109/16.163468
20. Lee JH, Weng WT, Shih JR, Yu KF, Ong TC (2004) The positive trigger voltage lowering effect for latch-up. In: International symposium on the physical and failure analysis of integrated circuits (IPFA). https://doi.org/10.1109/IPFA.2004.1345550
21. Du F-B, Song S-Y, Hou F, Song W-Q, Chen L, Liu J-Z, Liu Z, Liu JJ (2019) An enhanced gate-grounded NMOSFET for robust ESD applications. IEEE Electron Device Lett 40(9):1491–1494. https://doi.org/10.1109/LED.2019.2926103

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.