Control design of parallel-connected PWM DC-AC converters for sustainable energy applications

E C Chang, G W Lin, Y T Lin, K C Mao and R C Wu*

Department of Electrical Engineering, I-Shou University, Taiwan
E-mail: rcwu@isu.edu.tw

Abstract. Parallel-connected PWM DC-AC converters bring lots of merits, such as, additional capacity of power, modularity ability, better thermal regulation, convenient maintenance, and redundancy that have found wide application in sustainable energies. We propose a control technology in which the strengths of rotating sliding manifold (RSM) as well as exponential grey model (EGM) are incorporated to derive a higher performance parallel-connected PWM DC-AC converter. The RSM makes sure that the sliding mode happens from the any starting status, nevertheless the fixed sliding manifold fails to achieve the robustness in the face of parametric variances and perturbations. Once occurring with high non-linear loads, the fluttering existing in the RSM potentially generates a great deal of output-voltage distortion in the parallel-connected PWM DC-AC converters, which deteriorates sustainable energy stability. With the aim of removing the fluttering, the EGM has optimized the RSM control gains to produce both good steady-state and transience behaviour of the PWM DC-AC converter. The potency of the control technology has been well proven in terms of designing procedure, theory analysis, simulation and experimental results.

1. Introduction

In terms of backup and stability, parallel-connected PWM DC-AC converters have been efficiently applied in sustainable energy systems [1-7]. That is, PWM DC-AC converters run redundantly in parallel as the (N+1) arrangement. In this way it is possible to realize the flexibility of increasing the loading, in case it is required at a later date, as well as a high level of dependability of the output loading, where (N) PWM DC-AC converters feed the loading while the additional inverter acts as the back-up. With the objective of affording the appropriate functioning of parallel single-phase converters, it is imperative to have the control loops. For example, these are voltage control loops devised to acquire the requisite magnitude and frequency of the output voltage while the current loops are constructed to drive the current dispense of the parallel modules [8-11]. There are many kinds of control options throughout the literature that can address the above requirements. But they are compromised in terms of a steady state and a transitory reaction [12-14]. The sliding mode control (SMC) basically drives the system state to a sliding manifold that is the arrival phase. Then when the system state meets the sliding manifold, the system behaviour is controlled by the manifold that is the sliding phase. However, such fixed sliding manifold may be disturbed by parameter variations and loads during the arrival phase. An advanced sliding mode control term of rotating sliding manifold (RSM) has been engineered to traverse via incipient conditions followed by the rotating for movement to a scheduled sliding manifold. With such a presented sliding-manifold, there is diminished susceptibility to loading perturbations by expediting the reaching stage, whereby there is
less fluttering phenomenon, which raises the system robustness [15-20]. Unfortunately, for severe uncertain loading, the flutter appears in the AC power regulation output which experiences acute harmonic distortion, resulting in both power loss and probably even transistors impairment, which lastly weakens the steadiness. The exponential grey model (EGM) for many areas has been used extensively, allowing for more improved prediction accuracy when compared to traditional grey prediction [21-25]. For this paper, a mathematically straightforward as well as an algorithmically effective grey prediction method is adopted as a remedy to eradicate the fluttering whenever the RSM faces an excessive upper limit of system uncertainty, permitting the proposed parallel-connected PWM DC-AC converter to hold high-level performance. The experimental results check the results of the theory analyzing and designing and simulation.

2. Statement of system and control technology design

The parallel-connected PWM DC-AC converter can be structured as depicted in the Figure 1, to extend the power and raise the dependability.

![Figure 1. Parallel-connected PWM DC-AC converter.](image)

With the use of Figure 1 and KVL as well as KCL, the dynamic equations of parallel-connected PWM DC-AC converter can be stated as

\[
\begin{align*}
 u_{in1} &= r_1i_1 + L_1\frac{di_1}{dt} + v_{ac} \\
 \vdots \\
 u_{inm} &= r_mi_m + L_m\frac{di_m}{dt} + v_{ac}
\end{align*}
\]

and

\[
\begin{align*}
 i_L + i_L + \cdots + i_L &= i_{c_a} + i_{ac} \\
 i_{ac} &= \frac{v_{ac}}{R_{LOAD}} \\
 i_{c_a} &= C_{total}\frac{dv_{ac}}{dt}
\end{align*}
\]

where \(C_{total} = \sum_{j=1}^{m} C_j \).
Then an error state variable e_1 is specified with respect to the output voltage v_{ac} as well as the requested voltage v_{cmd} as follows:

$$e_1 = v_{ac} - v_{cmd}$$ \hspace{1cm} (3)

where $v_{cmd} = \sqrt{2}V_{rms}\sin(2\pi f t)$ (V_{rms} stands for root-mean-square voltage value, and f indicates the frequency).

The rotating sliding manifold is available in the following, and its structure can be plotted as Figure 2.

$$s = K_1(t) \cdot e_1 + e_2$$ \hspace{1cm} (4)

where $e_2 = \dot{e}_1$, $K_1(t) = Et + F$, and E, F signify constants.

![Figure 2. Structure of rotating sliding manifold.](image)

A power reaching law is conceived as

$$\dot{s} = -\eta_1 |s| - \eta_2 |s|^\beta \text{sign}(s)$$ \hspace{1cm} (5)

where $\eta_1 > 0$, $\eta_2 > 0$, $0 < \beta < 1$, and $\text{sign}(s) = \frac{2}{1 + e^{-s/\tau}} - 1$, here τ represents constant.

Starting from the (1) to (3), it is easy to derive the state of error equation as

$$\dot{e} = G + Hu + w$$ \hspace{1cm} (6)

where e is error states, u symbols control input, G, H denotes state matrix, and w denotes uncertainties.

The control law of the presented RSM in terms of the (4) to (6) yields

$$u(t) = -(H)^{-1}[G + (Ee_1 + K_1(t) \cdot e_2) + \eta_1 |s| + \eta_2 |s|^\beta \text{sign}(s) + \dot{v}_{cmd}]$$ \hspace{1cm} (7)

The following exponential grey model steps are then adopted to overcome the fluttering problem when the uncertain limit is overvalued:

Step 1: The primitive sequence of data can be recorded as

$$\Phi^{(0)} = \{\phi^{(0)}(j), j = 1, 2, m\}$$ \hspace{1cm} (8)

where m denotes the data quantity recorded.

Step 3: By means of the accumulated generating operation (AGO), the first-order AGO sequence becomes

$$\Phi^{(1)} = \{\phi^{(1)}(j), j = 1, 2, \ldots, m\}$$ \hspace{1cm} (9)

where $\phi^{(1)}(j) = \sum_{i=1}^{n} \phi^{(0)}(i), \ n = 1, 2, \ldots, m$.

Step 4: A GM(1,1) with exponential grey model can be created as

$$\frac{d}{dt} \phi^{(1)} + \alpha \phi^{(1)} = \beta e^{-\alpha t}$$ \hspace{1cm} (10)
where \(\alpha\) and \(\beta\) stand for parameters.

For getting the grey background values, the data sequence is specified as

\[
Z^{(1)}(n) = 1/2(\varphi^{(1)}(n) + \varphi^{(1)}(n-1)), \quad n = 2, 3, \cdots, m
\]

(11)

Then the differential equation is formulated as

\[
\varphi^{(1)}(n) + \alpha Z^{(1)}(n) = -\beta(1-e^{-\alpha})e^{-\alpha n}/\alpha
\]

(12)

The sequence of time responses for the grey differential equation will be

\[
\dot{\varphi}^{(1)}(k) = (fk + \sum_{i=1}^{n} (\varphi^{(1)}(n)e^{-\alpha n} - \beta ne^{-2\alpha n}))e^{-\alpha k}/\sum_{i=1}^{n} e^{-2\alpha n}
\]

(13)

where \(n = 1, 2, \cdots, m\).

Step 5: The predicted values deduced from the (13) can be written as

\[
\dot{\varphi}^{(0)}(k) = \varphi^{(1)}(k) - \dot{\varphi}^{(1)}(k-1)
\]

(14)

3. Results and discussions

Three PWM DC-AC converters are combined in parallel under the parameters listed below:

\[
E_{dc1} = E_{dc2} = E_{dc3} = 200V, \quad L_1 = L_2 = L_3 = 0.18 mH, \quad C_1 = 20 \mu F, \quad r_{L1} = r_{L2} = r_{L3} = 0.020 \Omega, \quad R_{LOAD} = 12 \Omega, \quad \text{switching frequency} = 20 kHz, \quad \text{and output voltage}, \quad v_{dc} = \sqrt{2} \cdot 110 \cdot \sin(2\pi \cdot 60t).
\]

In the Figure 3, the simulated output voltage of the proposed parallel-connected PWM DC-AC converter is displayed with the changes in the inductor-capacitor parameters. The simulated output voltage of the traditional rotating sliding manifold controlled parallel-connected PWM DC-AC converter in response to the changes in inductor-capacitor parameters can be seen in the Figure 4. A traditional rotating sliding manifold has no robustness and is affected easily by the changes of the inductor-capacitor parameters, but with the proposed PWM DC-AC converter the simulated output voltage is impervious against the changes of the inductor-capacitor parameters with the virtually sinusoidal AC shape. The experimental output voltages of the proposed PWM DC-AC converters and the traditional RSM controlled PWM DC-AC converters for phase-controlled loads (changing from unloaded to rated load condition at trigger angles of 90 degrees and 270 degrees) respectively are compared as shown in Figure 5 and Figure 6. It emerges that the proposed control technology has been found to render superior output-voltage compensation, as compared to the traditional RSM especially at the ignition angle. This implies more reduced voltage dipping and accelerated restoration time. Now we know that because the exponential grey model is a more accurate predictor of system state than traditional grey model, the fluttering can be dispelled as well as transitory and steady-state reactions are also improved. Figure 7 plots the rate of state error convergence for the proposed control technology, which is clearly seen to converge quickly to the equilibrium point. On the contrary, as shown in Fig. 8, the state error convergence of the traditional RSM is slow and oscillatory.

Figure 3. Proposed control technology under inductor-capacitor parameters changes (vert.: 50 V/div).

Figure 4. Traditional RSM under inductor-capacitor parameters changes (vert.: 50 V/div).
Figure 5. Proposed control technology under phase-controlled load.

Figure 6. Traditional RSM under phase-controlled load.

Figure 7. Proposed control technology convergence rate.

Figure 8. Traditional RSM convergence rate.

4. Conclusions
In this paper, a rotating sliding manifold based on exponential grey model is described and subsequently applicable to a PWM DC-AC converter. Through the use of exponential grey model, there is the capability to minimize the fluttering in the surrounding of rotating sliding manifold. Both simulated and experimental results exhibit that the proposed converter can not only expand the power and enhance the reliability, but also sustain the satisfactory response in the presence of unexpected changes in loads or parameter variations in the inductor-capacitor filter.

Acknowledgment
This work was supported by the 2021 ISU Research Project, under contract number ISU-110-01-02A. Also this work was partially supported by the Ministry of Science and Technology (MOST) of Taiwan, R.O.C., under contract numbers MOST 107-2221-E-214-006 and MOST 109-3116-F-006-020-CC1.

References
[1] Morteza Z O and Behnam M I 2020 Integration of Renewable Energy Sources into the Power Grid Through PowerFactory (Power Systems) (Springer Nature Switzerland AG)
[2] Aldo V R and Juan C O 2021 Fundamentals of Renewable Energy Processes (Academic Press: Cambridge, MA, USA)
[3] Giovanni O, Giacomo F, and Simone T 2020 Renewables for Energy Access and Sustainable Development in East Africa (Saint Philip Street Press, UK)
[4] Ren J Z 2020 Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies (Academic Press: Cambridge, MA, USA)
[5] Souvik D, Sanjib K S and Sanjib K P 2011 Single-Phase Inverter Control Techniques for
Interfacing Renewable Energy Sources with Microgrid—Part I: Parallel-Connected Inverter Topology With Active and Reactive Power Flow Control Along With Grid Current Shaping IEEE Transactions on Power Electronics, vol. 26, no. 3 pp 717-731

[6] Guilherme B, Alexandre S M, Luiz A S R, Osvaldo R S and José G M 2009 Parallel-Connected Inverters applied in Renewable Energy Systems 2009 Brazilian Power Electronics Conference pp 993-999

[7] Chandorkar M C, Divan D M and Adapa R 1993 Control of Parallel Connected Inverters in Standalone AC Supply Systems IEEE Trans. Ind. Applicat. vol 29 no 1 pp 136-143

[8] Kawabata T, Sashida N, Yamamoto Y, Ogasawara K and Yamasaki Y 1991 Parallel Processing Inverter System IEEE Trans. Power Electron. vol 6, no 3 pp 422-450

[9] Ninomiya T and Wu R H 1993 Novel Control Strategy for Parallel Operation of Power Supply Modules IEEE PCC’93 pp 159-164

[10] Afshar Z, Zadeh M M, Bathae M S M, Mehrizi-Sani A and Guerrero J M 2020 A Novel Frequency and Voltage Controller for Parallel Voltage Source Converters and Synchronous Generators Coexisting in Islanded Microgrids 2020 28th Iranian Conference on Electrical Engineering pp 1-7

[11] Muhammad Z A, Quan M R and Haseeb Y H 2020 Modeling, Analysis, and Design of Resonant Proportional Stationary Frame Current Controller for Grid-Tide Three Phase Controller 2020 Asia Energy and Electrical Engineering Symposium pp 471-475

[12] He J, Liu P and Duan S X 2020 Stability Analysis of Multi-parallel Grid-connected Inverters with Different Controllers in Weak Grid Condition The 46th Annual Conference of the IEEE Industrial Electronics Society pp 2350-2355

[13] James N S, Alfeu J S F, Darlan A F, André P N T, Edison R C S and Fabiano F C 2017 A Discrete Repetitive Current Controller for Single-Phase Grid-Connected Inverters 2017 Brazilian Power Electronics Conference (COBEP) pp 1-6

[14] Xiao H G, Luo A, Bai L S, Tu C M, Zhou J A and Liu Q 2013 A Deadbeat Control Method for Circulating Current between Parallel-Connected Inverters 2013 1st International Future Energy Electronics Conference (IFEEC) pp 806-811

[15] Komurcugil H 2012 Rotating-Sliding-Line-Based Sliding-Mode Control for Single-Phase UPS Inverters IEEE Trans. Ind. Electron. vol 59, no 10 pp 3719-3726

[16] Tokat S, Eksin I and Guzelkaya M 2009 Linear Time-Varying Sliding Surface Design Based on Co-ordinate Transformation for High-Order systems Transactions of the Institute of Measurement and Control vol 31 no 1 pp 51-70

[17] Geng J, Sheng Y Z and Liu X D 2013 Second-Order Time-Varying Sliding Mode Control for Reentry Vehicle International Journal of Intelligent Computing and Cybernetics vol 6, no 3 pp 272-295

[18] Wu L G, Shi P and Su X J 2014 Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems, Wiley, United Kingdom

[19] Liu L C, Li J P, Weng Y P, Wang N and Liu Y 2019 Data-Driven Sliding Mode Control with Moving Surface for Unknown MIMO Discrete-Time Nonlinear Processes 2019 IEEE 8th Data Driven Control and Learning Systems Conference pp 1253-1257

[20] Mizoshiri T and Mori Y 2019 Sliding Mode Control with a Time-Varying Ellipsoidal Sliding Surface 2019 IEEE/SICE International Symposium on System Integration pp 165-170

[21] Ke L H, Ye Y C, Zhao W W and Li Y Y 2010 Grey-Exponential Smoothing Prediction Model of Mining Safety Based on Forecasting Validity 2010 3rd International Congress on Image and Signal Processing vol 8 pp 3780-3783

[22] Chu C T, Chiang H K, Chang C H, Li H W and Chang T J 2017 A Exponential Smoothing Gray Prediction Fall Detection Signal Analysis in Wearable Device 2017 6th International Symposium on Next Generation Electronics (ISNE) pp 1-4

[23] Xie N M and Liu S F 2015 Interval Grey Number Sequence Prediction by Using Non-Homogenous Exponential Discrete Grey Forecasting Model Journal of Systems Engineering and Electronics vol 26, no 1 pp 1-7
[24] Xu Z C, Dun M and Wu L F 2020 Prediction of Air Quality Based on Hybrid Grey Double Exponential Smoothing Model *Complexity* vol 2020 pp 1-13

[25] Cheng M L, Shi G J and Han Y 2019 An Extended Grey Model GM(1, 1, exp(bk)) and Its Application in Chinese Civil Air Passenger Volume Prediction *Journal of Systems Science and Information* vol. 7 no. 5 pp 486-496