Bordetella petrii recovered from chronic pansinusitis in an adult with cystic fibrosis

Laura Biederman
Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University

Marc Rosen MD
Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College at Thomas Jefferson University

Brent S. Bobik
Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University

Amity L. Roberts, PhD, D(ABMM)
Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/pacbfp

Let us know how access to this document benefits you

Recommended Citation
Biederman, Laura; Rosen, Marc MD; Bobik, Brent S.; and Roberts, PhD, D(ABMM), Amity L., "Bordetella petrii recovered from chronic pansinusitis in an adult with cystic fibrosis" (2015). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 178.
https://jdc.jefferson.edu/pacbfp/178

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Pathology, Anatomy, and Cell Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Case Report

Bordetella petrii recovered from chronic pansinusitis in an adult with cystic fibrosis

Laura Biederman a, Marc R. Rosen b, Brent S. Bobik a, Amity L. Roberts a, *a*

a Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Pavilion Building, Suite 207, Philadelphia, PA 19107, USA

b Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, 925 Chestnut Street, 6th Floor, Philadelphia, PA 19107, USA

A R T I C L E I N F O

Article history:
Received 1 August 2015
Received in revised form 16 September 2015
Accepted 16 September 2015

Keywords:
Bordetella petrii
Pansinusitis
Adult cystic fibrosis
MALDI-TOF

A B S T R A C T

To date *Bordetella petrii* has infrequently been identified within the clinical setting likely due to the asaccharolytic nature of this organism. We present a case of *B. petrii* recovered on two separate events in a patient with adult cystic fibrosis experiencing chronic pansinusitis.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Case report

We present a 41-year old female with a 20 plus year history of nasal obstruction and chronic sinusitus. Her clinical history indicated velopharyngeal insufficiency (incomplete closure of the velopharyngeal sphincter between the oropharynx and the nasopharynx), severe gastroparesis, significant gastric reflux and asthma contributed to a confirmed cystic fibrosis mutation, ΔF508 gene. Individuals diagnosed with adult cystic fibrosis frequently experience gastroparesis, asthma and chronic sinusitis [1,2].

Historically, the patient underwent several surgical interventions, multiple rounds of antimicrobials, decongestants, antihistamines, topical and oral steroids without improvement of her diffuse pansinusitis. In an attempt to alleviate her chronic sinusitis, revision endoscopic sinus surgery with septoplasty and a turbinectomy was performed during early 2014 (day 0). A right maxillary sinus tissue specimen was sent for aerobic bacterial culture, which was incubated aerobically only with 5% CO₂ at 35 °C. The specimen Gram-stain showed few white-blood cells and no organisms. Twenty-four hours post-incubation, moderate growth of a tiny Gram-negative colony was noted on trypticase soy agar with 5% sheep blood (Becton, Dickinson and Company, Franklin Lakes, NJ). No other organisms were recovered. By 48 h, growth was noted on the MacConkey agar (Becton, Dickinson and Company, Franklin Lakes, NJ). The isolate was identified by the Bruker Biotyper MALDI-TOF MS system (Bruker Daltonics Inc., Billerica, MA) as *Bordetella petrii* (score 2.13; highly probable species identification). Since the organism had not been validated by this method, the isolate was tested by the Microscan NBPC30 panel for oxidase positive organisms (Siemens Medical Solutions USA, Inc., Malvern, PA) and the Remel RapID NF PLUS System (Thermo Fisher Scientific Remel Products, Lenexa, KS). The NBPC30 panel identified the organism as *Alcaligenes species* (00064326) 79.12%. The RapID system identified the organism as *Alcaligenes xylosidans* (210606) Implicit. Both *B. petrii* and *Alcaligenes species* are asaccharolytic organisms and part of the *Alcaligenaceae* family [3]. The isolate exhibited the following phenotypic characteristics: non-motile; oxidase, catalase, and nitrate positive; urea negative; malate, tartrate and citrate positive, this phenotype is consistent throughout literature [3–6]. For more stringent confirmation, 16S rRNA sequencing was performed at ARUP laboratories and provided an identification of *B. petrii* (Salt Lake City, UT). No standard antibiotic susceptibility guidelines are defined for this organism; however, antimicrobial susceptibility test (AST) results for the two isolates are shown in Table 1 for epidemiologic strain differentiation.

http://dx.doi.org/10.1016/j.idcr.2015.09.004
2214-2509/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1

Antimicrobial agent	Isolate one (MIC μg/mL)	Isolate two (MIC μg/mL)
Ampicillin	>16	>16
Ampicillin/sulbactam	16/8	16/8
Amikacin	≤16	≤16
Amoxicillin/K Clavulanate	≤8/4	≤8/4
Gentamicin	≥8	≤4
Imipenem	≤4	≥4
Levofloxacin	≤2	≥2
Ciprofloxacin	>2	>2
Moxifloxacin	4	4
Gatifloxacin	≤2	≤2
Norfloxacin	>8	>8
Piperacillin/tazobactam	≤16/4	≤16/4
Tetacycline	≤4	≤4
Ticarcillin/K clavulanate	≤16	≤16
Tobramycin	>4	>4
Trimethoprim/sulfamethoxazole	2/38	2/38
Aztreonam	>16	>16
Cefepime	>16	>16
Cefuroxime	>16	>16
Cefazolin	>16	>16
Cephalothin	>16	>16
Cefoxitin	>16	>16
Cefotetan	>32	>32
Cefotaxime	>32	>32
Ceftazidime	>8	>16
Ceftriaxone	>32	>32
Meropenem	>8	>8
Chloramphenicol	>16	>16
Meropenem	>4	>4
Piperacillin	≤16	>16
Nitrofurantoin	>64	>64

Microscan NBPC30 for oxidase positive Gram-negative bacteria.

The patient was not treated specifically for *B. petrii* as improvement was noted with the standard post-operative antimicrobial regimen of various corticosteroids, oral erythromycin (250 mg/ml, four times a day) and oral cefdinir (300 mg, every 12 h for 10 days). Based on the AST profile of the isolate (Table 1), particularly ceftiraxone and cefotaxime with minimal inhibitory concentrations (MICs) >32 μg/ml, one would expect the organism to be resistant to cefdinir, another 3rd generation cephalosporin. Erythromycin was not tested for this isolate but other studies have shown resistance toward 3rd generation cephalosporins and also toward erythromycin [4,7,8]. One study indicated that piperacillin-tazobactam is the only effective treatment for *B. petrii* [7].

At outpatient follow-up (29 days post-procedure), she underwent endoscopy with collection of a second sinus culture via flocked swab. The direct Gram-stain of the sinus specimen showed few white-blood cells and no organisms. Again, moderate growth of *B. petrii* (MALDI-TOF score 2.00; secure genus identification, probable species identification) occurred, indicating that the initial post-operative antimicrobial therapy did not eradicate *B. petrii*. There was very light growth of normal respiratory flora.

Discussion

There are nine different *Bordetella* species of these *B. petrii* is the only species that does not exhibit a human host tissue tropism [4,6]. This species was first identified in 2001 after isolation from an anaerobic bioreactor enriched with river sediment [6]. Clinically, *B. petrii* has rarely been isolated from clinical specimens and has not been well described as a pathogen. This is likely due to the asachrolytic nature of the organism in addition to the *B. petrii* not being contained in most automated identification system libraries.

There has been a limited number of case reports with *B. petrii* defined as the etiologic agent [4,5–7,10]. *B. petrii* has been implicated as the causative agent in cases of mandibular osteomyelitis, chronic suppurative mastoiditis, chronic pulmonary obstructive disease and persistent bronchiectasis [4,8–10]. Importantly, it has been previously isolated from in cystic fibrosis patients [5,7].

Because it is uncommon, or likely misidentified, accurate identification of *B. petrii* represents a challenge for traditional automated identification systems. These biochemical or enzymatic systems are only marginally effective, due to the lack of a distinct biochemical carbohydrate profile as well as limited or uncurated databases. Not only was *B. petrii* mis-identified by MicroScan (NBPC30) and rapidID panels in the two described occasions for this patient, but it was also misidentified in other reported cases [10]. Studies show that *Bordetella* species are closely related to *Achromobacter* (*Algaenes*) species [6,11]. The case patient had two sinus isolates identified three years prior as *Achromobacter* species (90%) by the BD Phoenix NMIC/ID-124 panel (Becton-Dickinson, Sparks, MD). Unfortunately, these isolates are no longer available to determine if they were misidentified. The gold standard method for identification of *B. petrii* is 16S rRNA sequencing [4,8,10]. At that time the patient was treated post-operatively with 1000 mg of cefazolin (MIC > 16 μg/mL), indicating inadequate coverage.

The importance of *B. petrii* as a clinical pathogen has not been well established; however, it has been described in cystic fibrosis patients [1,2,5,7]. *B. petrii* has been demonstrated to persist despite treatment in patients, as was potentially noted with her previous isolates of *Achromobacter* species [7,10]. By using the MALDI-TOF methodology the clinical laboratory can achieve not only quicker but more accurate organism identifications. More accurate identification can lead to more appropriate treatment and provide insight into the true clinical prevalence of organisms like *B. petrii*, which have been shown to be resilient colonizers especially within cystic fibrosis patients [7,10].

Acknowledgements

No conflicts of interest. No grant funding was utilized for this publication.

References

[1] Hunt B, Geddes DM. Newly diagnosed cystic fibrosis in middle and later life. Thorax 1985;40:23–5.

[2] Nick JA, Rodman DM. Manifestations of cystic fibrosis diagnosed in adulthood. Curr Opin Pulm Med 2005;11:513–8.

[3] Versalovic J, editor. Manual of clinical microbiology. Washington, DC: American Society for Microbiology; 2011.

[4] Fry NK, Duncan J, Malnick H, Warner M, Smith AJ, Jackson MS, et al. *Bordetella petrii* clinical isolate. Emerg Infect Dis 2005;11:1313–3.

[5] Sklper TLA, Lipuma J. Identification of *Bordetella* species in respiratory specimens from individuals with cystic fibrosis. Clin Microbiol Infect 2008;14:504–6.

[6] von Wintzingerode F, Schartke A, Siddiqui RA, Rosick U, Gobel UB, Gross R, *Bordetella petrii* sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus *Bordetella*. Int J Syst Evol Microbiol 2001;51:1257–65.

[7] Carleton A. Clustered multidrug-resistant *Bordetella petrii* in adult cystic fibrosis patients in Ireland: case report and review of antimicrobial therapies. JMM Case Rep. 2014, http://dx.doi.org/10.1099/micro.0.000075.

[8] Stark D, Riley LA, Harkness J, Marriott D. *Bordetella petrii* from a clinical sample in Australia: isolation and molecular identification. J Med Microbiol 2007;56: 435–7.

[9] Falzanny AM, Ding L, Goldberg JB, Mijares LA, Conlan S, Convile P, et al. Adaptability and persistence of the emerging pathogen *Bordetella petrii*. PLOS ONE 2013;8:e65102.

[10] Le Coustumer A, Njameko E, Cattore V, Guillot S, Guizo N. *Bordetella petrii* infection with long-lasting persistence in human. Emerg Infect Dis 2011;17: 612–8.

[11] Gerlach G, von Wintzingerode F, Middendorf B, Gross R. Evolutionary trends in the genus *Bordetella*. Microbes Infect 2005;7:61–72.