A characterization of Q-polynomial distance-regular graphs using the intersection numbers

Supalak Sumalroj
Department of Mathematics, Silpakorn University, Nakhon Pathom, Thailand
sumalroj.s@silpakorn.edu

Abstract
We consider a primitive distance-regular graph Γ with diameter at least 3. We use the intersection numbers of Γ to find a positive semidefinite matrix G with integer entries. We show that G has determinant zero if and only if Γ is Q-polynomial.

1 Introduction
Let Γ denote a distance-regular graph with diameter $D \geq 3$. In the literature there are a number of characterizations for the Q-polynomial condition on Γ. There is the balanced set characterization [9, Theorem 1.1], [10, Theorem 3.3]. There is a characterization involving the dual distance matrices [10, Theorem 3.3]. There is a characterization involving the intersection numbers a_i [8, Theorem 3.8]; cf. [3, Theorem 5.1]. There is a characterization involving a tail in a representation diagram [5, Theorem 1.1]. There is a characterization involving a pair of primitive idempotents [6, Theorem 1.1]; cf. [7, Theorem 1.1].

In this paper we obtain the following characterization of the Q-polynomial property. Assume Γ is primitive. We use the intersection numbers of Γ to find a positive semidefinite matrix G with integer entries. We show that G has determinant zero if and only if Γ is Q-polynomial. Our main result is Theorem 18.

2 Preliminaries
Let X denote a nonempty finite set. Let $\text{Mat}_X(\mathbb{C})$ denote the \mathbb{C}-algebra consisting of the matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}. For $B \in \text{Mat}_X(\mathbb{C})$ let \overline{B} and B^t denote the complex conjugate and the transpose of B, respectively. Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of column vectors with coordinates indexed by X and entries in \mathbb{C}. Observe that $\text{Mat}_X(\mathbb{C})$ acts...
on V by left multiplication. We endow V with the Hermitean inner product (\cdot, \cdot) such that $(u, v) = u^*\mathcal{F}v$ for all $u, v \in V$. The inner product (\cdot, \cdot) is positive definite. For $B \in \text{Mat}_X(\mathbb{C})$ we obtain $(u, Bv) = (B^*u, v)$ for all $u, v \in V$. We endow $\text{Mat}_X(\mathbb{C})$ with the Hermitean inner product (\cdot, \cdot) such that $(R, S) = \text{tr}(R^*S)$ for all $R, S \in \text{Mat}_X(\mathbb{C})$. The inner product (\cdot, \cdot) is positive definite.

Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge set R. Let ∂ denote the shortest path-length distance function for Γ. Define the diameter $D := \max\{\partial(x, y) | x, y \in X\}$. For a vertex $x \in X$ and an integer $i \geq 0$ define $\Gamma_i(x) = \{y \in X | \partial(x, y) = i\}$. For notational convenience abbreviate $\Gamma(x) = \Gamma_1(x)$. For an integer $k \geq 0$, we call the graph Γ regular with valency k whenever $|\Gamma(x)| = k$ for all $x \in X$. We say that Γ is distance-regular whenever for all integers h, i, j ($0 \leq h, i, j \leq D$) and for all $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h := |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of x and y. The integers p_{ij}^h are called the intersection numbers of Γ. From now on we assume Γ is distance-regular with diameter $D \geq 3$. We abbreviate $c_i := p_{1,i-1}^i$ ($1 \leq i \leq D$), $a_i := p_{1i}^i$ ($0 \leq i \leq D$), $b_i := p_{i,i+1}^i$ ($0 \leq i \leq D - 1$), $k_i := p_{ii}^0$ ($0 \leq i \leq D$), and $c_0 = 0$, $b_D = 0$. Observe that Γ is regular with valency $k = b_0$ and $c_i + a_i + b_i = k$ ($0 \leq i \leq D$). By [2] p. 127] the following holds for $0 \leq h, i, j \leq D$: (i) $p_{ij}^h = 0$ if one of h, i, j is greater than the sum of the other two; and (ii) $p_{ij}^h \neq 0$ if one of h, i, j equals the sum of the other two. For $0 \leq i \leq D$, let A_i denote the matrix in $\text{Mat}_X(\mathbb{C})$ with (x, y)-entry

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x, y) = i, \\
0 & \text{if } \partial(x, y) \neq i, \end{cases} \quad x, y \in X.$$

We call A_i the i-th distance matrix of Γ. We call $A = A_1$ the adjacency matrix of Γ. Observe that A_i is real and symmetric for $0 \leq i \leq D$. Note that $A_0 = I$, where I is the identity matrix. Observe that $\sum_{i=0}^D A_i = J$, where J is the all-ones matrix in $\text{Mat}_X(\mathbb{C})$. Observe that for $0 \leq i, j \leq D$, $A_iA_j = \sum_{h=0}^D p_{ij}^h A_h$. For integers h, i, j ($0 \leq h, i, j \leq D$) we have

$$p_{0j}^h = \delta_{hj} \quad (1)$$

$$p_{ij}^0 = \delta_{ij}k_i \quad (2)$$

$$p_{ij}^h = p_{ji}^h \quad (3)$$

$$k_hp_{ij}^h = k_ip_{ij}^h = k_jp_{ij}^h. \quad (4)$$

For $0 \leq i, j \leq D$ we have $A(A_iA_j) = (AA_i)A_j$. This gives a recursion

$$c_{i+1}p_{i+1,j}^h + a_i p_{ij}^h + b_{i-1}p_{i-1,j}^h = c_h p_{ij}^{h-1} + a_h p_{ij}^h + b_h p_{ij}^{h+1} \quad (5)$$
that can be used to compute the intersection numbers.

Let M denote the subalgebra of $\text{Mat}_X(\mathbb{C})$ generated by A. By [2, p. 127] the matrices $A_0, A_1, ..., A_D$ form a basis for M. We call M the Bose-Mesner algebra of Γ. By [2, p. 45], M has a basis $E_0, E_1, ..., E_D$ such that (i) $E_0 = |X|^{-1}J$; (ii) $\sum_{i=0}^D E_i = I$; (iii) $E_i^2 = E_i$ ($0 \leq i \leq D$); (iv) $E_i E_j = \delta_{ij} E_i$ ($0 \leq i, j \leq D$). The matrices $E_0, E_1, ..., E_D$ are called the primitive idempotents of Γ, and E_0 is called the trivial idempotent. For $0 \leq i \leq D$ let m_i denote the rank of E_i. Let λ denote an indeterminate. Define polynomials $\{v_i\}_{i=0}^{D+1}$ in $\mathbb{C}[\lambda]$ by $v_0 = 1$, $v_1 = \lambda$, and

$$\lambda v_i = c_{i+1} v_{i+1} + a_i v_i + b_{i-1} v_{i-1} \quad (1 \leq i \leq D),$$

where $c_{D+1} := 1$. By [2, p. 128] and [11, Lemma 3.8], the following hold: (i) deg $v_i = i$ ($0 \leq i \leq D + 1$); (ii) the coefficient of λ^i in v_i is $(c_1 c_2 ... c_i)^{-1}$ ($0 \leq i \leq D + 1$); (iii) $v_i(A) = A_i$ ($0 \leq i \leq D$); (iv) $v_{D+1}(A) = 0$; (v) the distinct eigenvalues of Γ are precisely the zeros of v_{D+1}; call these $\theta_0, \theta_1, ..., \theta_D$. Define a matrix $B \in \text{Mat}_{D+1}(\mathbb{C})$ as follows:

$$B = \begin{bmatrix} a_0 & b_0 & 0 \\ c_1 & a_1 & b_1 \\ & c_2 & a_2 & \cdots \\ & & \cdots & \cdots & b_{D-1} \\ 0 & & & c_D & a_D \end{bmatrix}.$$

We call B the intersection matrix of Γ. Note that A has the same minimal polynomial as B. Moreover the minimal polynomial of B is the characteristic polynomial of B. For an eigenvalue θ of B we have $vB = \theta v$ where v is a row vector $v = (v_0(\theta), v_1(\theta), ..., v_D(\theta))$. Define polynomials $\{u_i\}_{i=0}^D$ in $\mathbb{C}[\lambda]$ by $u_0 = 1$, $u_1 = \lambda/k$, and

$$\lambda u_i = c_i u_{i-1} + a_i u_i + b_i u_{i+1} \quad (1 \leq i \leq D - 1).$$

Observe that $u_i = v_i/k_i$ ($0 \leq i \leq D$). For an eigenvalue θ of B we have $Bu = \theta u$ where u is a column vector $u = (u_0(\theta), u_1(\theta), ..., u_D(\theta))^t$. By [2, p. 131, 132],

$$A_j = \sum_{i=0}^D v_j(\theta_i) E_i \quad (0 \leq j \leq D), \quad (6)$$

$$E_j = |X|^{-1} m_j \sum_{i=0}^D u_i(\theta_j) A_i \quad (0 \leq j \leq D). \quad (7)$$

Since $E_i E_j = \delta_{ij} E_i$ and by (6), (7) we have $A_j E_i = E_i A_j$ ($0 \leq i, j \leq D$).

For $1 \leq i \leq D$ let Γ_i denote the graph with vertex set X where vertices are adjacent in Γ_i whenever they are at distance i in Γ. We observe that $\Gamma_1 = \Gamma$. The graph Γ is said to be primitive whenever Γ_i is connected for $1 \leq i \leq D$.

Lemma 1. (See [2 Proposition 4.4.7].) Assume \(\Gamma \) is primitive. Then \(u_i(\theta_j) \neq 1 \) for \(1 \leq i, j \leq D \).

We now define a matrix \(S \in \text{Mat}_{D+1}(\mathbb{C}) \).

Definition 2. Let \(S \in \text{Mat}_{D+1}(\mathbb{C}) \) denote the transition matrix from the basis \(\{A_i\}_{i=0}^D \) of \(M \) to the basis \(\{E_i\}_{i=0}^D \) of \(M \). Thus

\[
E_j = \sum_{i=0}^D S_{ij} A_i \quad (0 \leq j \leq D),
\]

\[
A_j = \sum_{i=0}^D (S^{-1})_{ij} E_i \quad (0 \leq j \leq D).
\]

Lemma 3. The entries of \(S \) and \(S^{-1} \) are given below. For \(0 \leq i, j \leq D \),

\[
S_{ij} = |X|^{-1} m_j u_i(\theta_j), \quad (S^{-1})_{ij} = v_j(\theta_i).
\]

Proof. Immediate from Definition 2 and (6), (7). \(\square \)

We recall the \(Q \)-polynomial property. Let \(\circ \) denote the entry-wise multiplication in \(\text{Mat}_X(\mathbb{C}) \). Note that \(A_i \circ A_j = \delta_{ij} A_i \) for \(0 \leq i, j \leq D \). So \(M \) is closed under \(\circ \). By [11, p. 377], there exist scalars \(q_{ij}^h \in \mathbb{C} \) such that

\[
E_i \circ E_j = |X|^{-1} \sum_{h=0}^D q_{ij}^h E_h \quad (0 \leq i, j \leq D). \tag{8}
\]

We call the \(q_{ij}^h \) the Krein parameters of \(\Gamma \). By [2 p. 48, 49], these parameters are real and nonnegative for \(0 \leq h, i, j \leq D \). The graph \(\Gamma \) is said to be \(Q \)-polynomial with respect to the ordering \(E_0, E_1, ..., E_D \) whenever the following hold for \(0 \leq h, i, j \leq D \):

(i) \(q_{ij}^h = 0 \) if one of \(h, i, j \) is greater than the sum of the other two; and (ii) \(q_{ij}^h \neq 0 \) if one of \(h, i, j \) equals the sum of the other two. Let \(E \) denote a primitive idempotent of \(\Gamma \). We say that \(\Gamma \) is \(Q \)-polynomial with respect to \(E \) whenever there exists a \(Q \)-polynomial ordering \(E_0, E_1, ..., E_D \) of the primitive idempotents such that \(E = E_1 \).

We recall the dual Bose-Mesner algebra of \(\Gamma \). Fix a vertex \(x \in X \). For \(0 \leq i \leq D \) let \(E_i^* = E_i^*(x) \) denote the diagonal matrix in \(\text{Mat}_X(\mathbb{C}) \) with \((y, y)\)-entry

\[
(E_i^*)_{yy} = \begin{cases}
1 & \text{if } \partial(x, y) = i, \\
0 & \text{if } \partial(x, y) \neq i,
\end{cases} \quad y \in X.
\]

We call \(E_i^* \) the \(i \)-th dual idempotent of \(\Gamma \) with respect to \(x \). Observe that (i) \(\sum_{i=0}^D E_i^* = I \); (ii) \(E_i^* = E_i^* (0 \leq i \leq D) \); (iii) \(E_i^* = E_i^* (0 \leq i \leq D) \); (iv) \(E_i^* E_j^* = \delta_{ij} E_i^* (0 \leq i, j \leq D) \). By construction \(E_0^*, E_1^*, ..., E_D^* \) are linearly independent. Let \(M^* = M^*(x) \)
denote the subalgebra of $\text{Mat}_X(\mathbb{C})$ with basis $E_0^*, E_1^*, ..., E_D^*$. We call M^* the dual Bose-Mesner algebra of Γ with respect to x.

We now recall the dual distance matrices of Γ. For $0 \leq i \leq D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $\text{Mat}_X(\mathbb{C})$ with (y, y)-entry

$$(A_i^*)_{yy} = |X|(E_i)_{xy} \quad y \in X. \quad (9)$$

We call A_i^* the dual distance matrix of Γ with respect to x and E_i. By [11], p. 379, the matrices $A_0^*, A_1^*, ..., A_D^*$ form a basis for M^*. Observe that (i) $A_0^* = I$; (ii) $\sum_{i=0}^D A_i^* = |X|E^*_0$; (iii) $A_i^* = A_i^*_E^* (0 \leq i \leq D)$; (iv) $A_i^* = A_i^* (0 \leq i \leq D)$; (v) $A_i^*A_j^* = \sum_{h=0}^D q_{ij}^h A_h^* (0 \leq i, j \leq D)$. From (3), (7) we have

$$A_j^* = m_j \sum_{i=0}^D u_i(\theta_j)E_i^* \quad (0 \leq j \leq D), \quad (10)$$

$$E_j^* = |X|^{-1} \sum_{i=0}^D v_j(\theta_i)A_i^* \quad (0 \leq j \leq D). \quad (11)$$

Lemma 4. The matrix $|X|S$ is the transition matrix from the basis $\{E_i^*\}_{i=0}^D$ of M^* to the basis $\{A_i^*\}_{i=0}^D$ of M^*. Thus

$$A_j^* = |X| \sum_{i=0}^D S_{ij}E_i^* \quad (0 \leq j \leq D),$$

$$E_j^* = |X|^{-1} \sum_{i=0}^D (S^{-1})_{ij}A_i^* \quad (0 \leq j \leq D).$$

Proof. Immediate from Lemma 3 and (10), (11). \hfill \Box

3 The matrices S^{alt}, $(S^{-1})^{alt}$, S'

Recall the matrix S from Definition 2. We now modify the matrices S, S^{-1} to obtain $D \times D$ matrices $S^{alt}, (S^{-1})^{alt}$ as follows:

$$(S^{alt})_{ij} = S_{ij} - S_{0j} \quad (1 \leq i, j \leq D), \quad (12)$$

$$(S^{-1})^{alt}_{ij} = (S^{-1})_{ij} \quad (1 \leq i, j \leq D). \quad (13)$$

Lemma 5. The following (i)–(iv) hold.

(i) S^{alt} is the transition matrix from $\{A_2E_i^* - AE_i^*A_2\}_{i=1}^D$ to $\{A_2A_i^* - AA_i^*A_2\}_{i=1}^D$.

(ii) S^{alt} is the transition matrix from $\{A_3E_i^* - E_i^*A_3\}_{i=1}^D$ to $\{A_3A_i^* - A_i^*A_3\}_{i=1}^D$.

(iii) S^{alt} is the transition matrix from $\{A_2E_i^* - E_i^*A_2\}_{i=1}^D$ to $\{A_2A_i^* - A_i^*A_2\}_{i=1}^D$.
(iv) S^alt is the transition matrix from $\{AE^*_i - E^*_i A\}_{i=1}^D$ to $\{AA^*_i - A^*_i A\}_{i=1}^D$.

(v) $(S^{-1})^\text{alt}$ and S^alt are inverses.

Proof. (i), (v) For $1 \leq j \leq D$ we write $A_2 A^*_j A - A A^*_j A_2$ in terms of $\{A_2 E^*_i A - AE^*_i A_2\}_{i=1}^D$. By Lemma 4 and (12) and since $\sum_{i=0}^D E^*_i = I$, we have

$$A_2 A^*_j A - A A^*_j A_2 = |X| \sum_{i=0}^D (A_2 E^*_i A - AE^*_i A_2)S_{ij}$$

$$= |X|(A_2 E_0^* A - AE_0^* A_2)S_{0j} + |X| \sum_{i=1}^D (A_2 E^*_i A - AE^*_i A_2)S_{ij}$$

$$= |X|(A_2(I - (E_1^* + \cdots + E_D^*)) A - A(I - (E_1^* + \cdots + E_D^*)) A_2)S_{0j}$$

$$+ |X| \sum_{i=1}^D (A_2 E^*_i A - AE^*_i A_2)S_{ij}$$

$$= |X| \sum_{i=1}^D (A_2 E^*_i A - AE^*_i A_2)(S_{ij} - S_{0j})$$

$$= |X| \sum_{i=1}^D (A_2 E^*_i A - AE^*_i A_2)(S^\text{alt})_{ij}.$$

Next, for $1 \leq j \leq D$ we write $A_2 E^*_j A - AE^*_j A_2$ in terms of $\{A_2 A^*_i A - AA^*_i A_2\}_{i=1}^D$. By Lemma 4 and (13) and since $A_0^* = I$, we find

$$A_2 E^*_j A - AE^*_j A_2 = |X|^{-1} \sum_{i=0}^D (A_2 A^*_i A - AA^*_i A_2)(S^{-1})_{ij}$$

$$= |X|^{-1}(A_2 A_0^* A - AA_0^* A_2)(S^{-1})_{0j}$$

$$+ |X|^{-1} \sum_{i=1}^D (A_2 A^*_i A - AA^*_i A_2)(S^{-1})_{ij}$$

$$= |X|^{-1} \sum_{i=1}^D (A_2 A^*_i A - AA^*_i A_2)(S^{-1})_{ij}$$

$$= |X|^{-1} \sum_{i=1}^D (A_2 A^*_i A - AA^*_i A_2)(S^{-1})_{ij}^\text{alt}.$$

The result follows.

(ii) – (iv) Similar to the proof of (i).
Define a matrix

\[S' = \begin{bmatrix} S^\text{alt} & 0 \\ S^\text{alt} & S^\text{alt} \\ 0 & S^\text{alt} \end{bmatrix}, \]

where \(S^\text{alt} \) is from (12). Observe that \(S' \) is \(4D \times 4D \).

Lemma 6. \(\det(S') = (\det(S^\text{alt}))^4 \). Moreover \(S' \) is invertible.

Proof. Immediate from the construction of \(S' \). \(\square \)

Corollary 7. The matrix \(S' \) is the transition matrix from

\[\{ A_2 E_i^* A - AE_i^* A_2 \}_{i=1}^D, \{ A_3 E_i^* - E_i^* A_3 \}_{i=1}^D, \{ A_2 E_i^* - E_i^* A_2 \}_{i=1}^D, \{ AE_i^* - E_i^* A \}_{i=1}^D \]

to

\[\{ A_2 A_i^* A - AA_i^* A_2 \}_{i=1}^D, \{ A_3 A_i^* - A_i^* A_3 \}_{i=1}^D, \{ A_2 A_i^* - A_i^* A_2 \}_{i=1}^D, \{ AA_i^* - A_i^* A \}_{i=1}^D. \]

Proof. Immediate from Lemma 5. \(\square \)

4 The bilinear form \(\langle \,, \rangle \)

Recall the positive definite Hermitean bilinear form \(\langle \,, \rangle \) on \(\text{Mat}_X(\mathbb{C}) \).

Lemma 8. (See [11 Lemma 3.2].) For \(0 \leq h, i, j, r, s, t \leq D \),

(i) \(\langle E_i^* A_j E_h^*, E_r^* A_s E_t^* \rangle = \delta_{ir} \delta_{js} \delta_{ht} k_{ij} p_{ht}^h \),

(ii) \(\langle E_i^* A_j E_h^*, E_r A_s^* E_t \rangle = \delta_{ir} \delta_{js} \delta_{ht} m_{ij} q_{ht}^h \).

Corollary 9. (See [11 Lemma 3.2].) For \(0 \leq h, i, j \leq D \),

(i) \(E_i^* A_j E_h^* = 0 \) if and only if \(p_{ij}^h = 0 \),

(ii) \(E_i^* A_j E_h^* = 0 \) if and only if \(q_{ij}^h = 0 \).

Lemma 10. For \(0 \leq h, i, j, r, s, t \leq D \) we have

\[\langle A_i E_j^* A_h, A_r E_s^* A_t \rangle = \sum_{\ell=0}^D k_{\ell} p_{ij}^h p_{rs}^\ell p_{ht}^\ell. \]
Proof. Since $A_i A_j = \sum_{h=0}^{D} p_{ij}^h A_h$ and $E_i E_j = \delta_{ij} E_i$ (0 ≤ $h, i, j \leq D$) and by Lemma 8 and (4), we obtain

$$\langle A_i E_j^* A_h, A_r E_s^* A_t \rangle = tr((A_i E_j^* A_h)^t (A_r E_s^* A_t))$$

$$= tr(A_h E_j^* A_i A_r E_s^* A_t)$$

$$= \sum_{\ell=0}^{D} p_{ir}^\ell tr(A_h E_j^* A_i A_r E_s^* A_t)$$

$$= \sum_{\ell=0}^{D} p_{ir}^\ell tr(E_j^* A_i E_s^* A_t A_h)$$

$$= \sum_{\ell=0}^{D} \sum_{w=0}^{D} p_{ir}^\ell P_{ht}^w tr(E_j^* A_i E_s^* A_w A_t A_h)$$

$$= \sum_{\ell=0}^{D} \sum_{w=0}^{D} p_{ir}^\ell P_{ht}^w tr(E_j^* E_s^* A_i E_s^* E_t^* A_w A_t A_h)$$

$$= \sum_{\ell=0}^{D} \sum_{w=0}^{D} p_{ir}^\ell P_{ht}^w tr(E_j^* E_s^* A_i E_s^* E_t^* E_j^* A_w A_t A_h)$$

$$= \sum_{\ell=0}^{D} \sum_{w=0}^{D} p_{ir}^\ell P_{ht}^w tr((E_s^* A_i E_j^*)^t (E_s^* A_w E_j^*))$$

$$= \sum_{\ell=0}^{D} \sum_{w=0}^{D} p_{ir}^\ell P_{ht}^w tr(E_s^* A_i E_j^*, E_s^* A_w E_j^*)$$

$$= \sum_{\ell=0}^{D} \sum_{w=0}^{D} \delta_{tw} p_{ir}^\ell p_{ht}^{w\ell} k_{\ell j}$$

$$= \sum_{\ell=0}^{D} k_{\ell} p_{ir}^\ell p_{ht}^{\ell} p_{ht}^\ell. \quad \square$$

Definition 11. Let G denote the matrix of inner products for

$$A_2 E_i^* A - AE_i^* A_2, A_3 E_i^* - E_i^* A_3, A_2 E_i^* - E_i^* A_2, AE_i^* - E_i^* A,$$

where 1 ≤ $i \leq D$. Thus the matrix G is $4D \times 4D$.

Theorem 12. The entries of G are as follows: For 1 ≤ $i, j \leq D$, where $\phi/2$ is a weighted sum involving the following terms and coefficients:
Proof. By Lemma [10] and using (11)–(15), we obtain

\[
\langle A_2 E_i^* A - AE_i^* A_2, A_2 E_j^* A - AE_j^* A_2 \rangle
\]

\[
= \langle A_2 E_i^* A, A_2 E_j^* A \rangle - \langle A_2 E_i^* A, AE_j^* A_2 \rangle - \langle AE_i^* A_2, A_2 E_j^* A \rangle + \langle AE_i^* A_2, AE_j^* A_2 \rangle
\]

\[
= \sum_{\alpha=0}^{D} k_{\alpha} p_{22}^\alpha p_{ij}^\alpha p_{11}^\alpha - \sum_{\beta=0}^{D} k_{\beta} p_{21}^\beta p_{ij}^\beta p_{12}^\beta - \sum_{\gamma=0}^{D} k_{\gamma} p_{12}^\gamma p_{ij}^\gamma p_{21}^\gamma + \sum_{\eta=0}^{D} k_{\eta} p_{11}^\eta p_{ij}^\eta p_{22}^\eta
\]

\[
= 2 \left(\sum_{\alpha=0}^{2} k_{\alpha} p_{22}^\alpha p_{ij}^\alpha p_{11}^\alpha - \sum_{\beta=1}^{3} k_{\beta} (p_{ij}^{2})^2 p_{ij}^\beta \right)
\]

\[
= 2(k_{0} p_{22}^0 p_{ij}^0 p_{11}^0 + k_{1} p_{22}^1 p_{ij}^1 p_{11}^1 + k_{2} p_{22}^2 p_{ij}^2 p_{11}^1 - k_{1}(p_{ij}^{2})^2 p_{ij}^1 - k_{2}(p_{ij}^{2})^2 p_{ij}^2 - k_{3}(p_{ij}^{2})^2 p_{ij}^3)
\]

\[
= 2(k_{2} p_{ij}^1 + (k_{0} a_{1} a_{2} - k_{b}^2) p_{ij}^1 + k_{2}(c_{2}(b_{1} - 1) - a_{2}(a_{1} + 1) + b_{2}(c_{3} - 1))) p_{ij}^2
\]

\[
= k_{3} c_{3} p_{ij}^3.
\]

Similarly, for 1 \leq h \leq 3,

\[
\langle A_h E_i^* - E_i^* A_h, A_2 E_j^* A - AE_j^* A_2 \rangle
\]

\[
= \langle A_h E_i^* A, A_2 E_j^* A \rangle - \langle A_h E_i^* A, AE_j^* A_2 \rangle - \langle E_i^* A_h, A_2 E_j^* A \rangle + \langle E_i^* A_h, AE_j^* A_2 \rangle
\]

\[
= \sum_{\alpha=0}^{D} k_{\alpha} p_{22}^\alpha p_{ij}^0 p_{01}^\alpha - \sum_{\beta=0}^{D} k_{\beta} p_{12}^\beta p_{ij}^0 p_{02}^\beta - \sum_{\gamma=0}^{D} k_{\gamma} p_{02}^\gamma p_{ij}^0 p_{11}^\gamma + \sum_{\eta=0}^{D} k_{\eta} p_{01}^\eta p_{ij}^0 p_{22}^\eta
\]

\[
= 2(k_{1} p_{h2}^1 p_{ij}^1 - k_{2} p_{h1}^2 p_{ij}^1)
\]

\[
= 2(k_{2} p_{h1}^2 p_{ij}^1 - k_{2} p_{h2}^2 p_{ij}^1)
\]

\[
= 2 k_{2} p_{h1}^2 (p_{ij}^1 - p_{ij}^2).
\]
Similarly, for $1 \leq h, \ell \leq 3$,

\[
\langle A_h E_i^* - E_i^* A_h, A_\ell E_j^* - E_j^* A_\ell \rangle \\
= \langle A_h E_i^*, A_\ell E_j^* \rangle - \langle A_h E_i^*, E_j^* A_\ell \rangle - \langle E_i^* A_h, A_\ell E_j^* \rangle + \langle E_i^* A_h, E_j^* A_\ell \rangle \\
= \langle A_h E_i^* A_0, A_\ell E_j^* A_0 \rangle - \langle A_h E_i^* A_0, A_0 E_j^* A_\ell \rangle - \langle A_0 E_i^* A_h, A_\ell E_j^* A_0 \rangle \\
+ \langle A_0 E_i^* A_h, A_0 E_j^* A_\ell \rangle \\
= \sum_{\alpha=0}^{D} k_\alpha p_{h\alpha}^0 p_{ij}^0 p_{00}^0 - \sum_{\beta=0}^{D} k_\beta p_{h0}^\beta p_{ij}^\beta p_{00}^\beta - \sum_{\gamma=0}^{D} k_\gamma p_{0\alpha}^\gamma p_{ij}^\gamma p_{h0}^\gamma + \sum_{\eta=0}^{D} k_\eta p_{00}^\eta p_{ij}^\eta p_{h\ell}^\eta \\
= 2(k_0 p_{h\alpha}^0 - \delta_{h\alpha} p_{ij}^h) \\
= 2(\delta_{h\ell} k_{ij}^h - \delta_{h\ell} k_{ij}^h) \\
= 2\delta_{h\ell} k_{ij}^h (\delta_{ij}^h k_{ij}^h).
\]

(16)

The result follows.

In Appendix 2, we give the matrix G for $D = 3$.

Definition 13. For $1 \leq i \leq D$ let B_i denote the matrix of inner products for $A_2 A_i^* A - A A_i^* A_2, A_3 A_i^* - A_i^* A_3, A_2 A_i^* - A_i^* A_2, A A_i^* - A_i^* A$.

So the matrix B_i is 4×4.

Definition 14. Let \tilde{G} denote the matrix of inner products for $A_2 A_i^* A - A A_i^* A_2, A_3 A_i^* - A_i^* A_3, A_2 A_i^* - A_i^* A_2, A A_i^* - A_i^* A$,

where $1 \leq i \leq D$. Thus the matrix \tilde{G} is $4D \times 4D$.

Lemma 15. The matrix \tilde{G} has the form

\[
\tilde{G} = \begin{bmatrix} B_1 & 0 \\ B_2 & \ddots \\ 0 & \ddots & B_D \end{bmatrix},
\]

where $B_1, B_2, ..., B_D$ are from Definition 13.

Proof. Recall that $A_0^*, A_1^*, ..., A_D^*$ form a basis for M^*. Therefore the sum $M M^* M = \sum_{i=0}^{D} M A_i^* M$ is direct. The summands are mutually orthogonal by Lemma $D(ii)$. The result follows.

Lemma 16. $\det(\tilde{G}) = \prod_{i=1}^{D} \det(B_i)$.

Proof. Immediate from Lemma 15.
5 The main result

In this section we obtain our main result, which is Theorem 18.

Lemma 17. The following (i)–(iii) hold.

(i) \(\tilde{G} = (S')^t GS' \).

(ii) \(\det(G) = (\det(S'))^{-2} \det(\tilde{G}) \).

(iii) \(\det(G) = (\det(S^{alt}))^{-8} \prod_{i=1}^{D} \det(B_i) \).

Proof. (i) Immediate from Definition 11, Definition 14, and Corollary 7.

(ii) Follows from (i).

(iii) Follows from (ii) and Lemmas 6, 16.

Theorem 18. Let \(\Gamma \) denote a primitive distance-regular graph with diameter \(D \geq 3 \). Then \(\Gamma \) is \(Q \)-polynomial if and only if \(\det(G) = 0 \).

Proof. To prove the theorem in one direction, assume that \(\Gamma \) is \(Q \)-polynomial with respect to the ordering \(E_0, E_1, ..., E_D \). Write \(A^* = A^*_s \). By Theorem 3.3 and Lemma 11, we obtain \(A^* A_3 - A_3 A^* \in \text{Span} \{ A^* A_2 - A_2 A^*, A^* A_2 - A_2 A^*, A^* A - AA^* \} \). Thus \(A^* A_2 - A_2 A^*, A^* A_3 - A_3 A^* \) are linearly dependent. Now the matrix \(B_1 \) from Definition 13 has determinant zero. Now \(\det(G) = 0 \) by Lemma 17(iii).

For the other direction, assume \(\det(G) = 0 \). By Lemma 17(iii) and since \(S^{alt} \) is invertible, there exists an integer \(t \) (1 \(\leq t \leq D \)) such that \(\det(B_t) = 0 \). Now \(A^*_t A_2 - A_2 A^*_t, A^*_t A_3 - A_3 A^*_t \) are linearly dependent. We will show that \(A^*_t A_3 - A_3 A^*_t \in \text{Span} \{ A^*_s A_2 - A_2 A^*_s, A^*_s A_2 - A_2 A^*_s, A^*_s A - AA^*_s \} \). To do this we show that \(A^*_s A_2 - A_2 A^*_s \) is linearly independent. Suppose not. Then there exist scalars \(a, b, c \), not all zero, such that

\[
ax(A^*_t A_2 - A_2 A^*_t) + bx(A^*_t A_2 - A_2 A^*_t) + c(A^*_t A - AA^*_t) = 0. \tag{17}
\]

Abbreviate \(\theta^*_i = m_x u_i(\theta_i) \) \((0 \leq i \leq D)\). So \(A^*_t = \sum_{i=0}^{D} \theta^*_i E^*_i \). By Lemma 11

\[
\theta^*_i \neq \theta^*_0 \quad (1 \leq i \leq D). \tag{18}
\]

For \(1 \leq h \leq 3 \) pick \(z \in X \) such that \(\partial(x, z) = h \). Compute the \((x, z)\)-entry in (17).

For \(h = 3 \) we get \(ac_3(\theta^*_1 - \theta^*_0) = 0 \). For \(h = 2 \) we get \(ab_2(\theta^*_1 - \theta^*_0) + c(\theta^*_0 - \theta^*_1) = 0 \). For \(h = 1 \) we get \(ab_1(\theta^*_1 - \theta^*_0) + c(\theta^*_0 - \theta^*_1) = 0 \). Solving these equations we obtain \(a(\theta^*_1 - \theta^*_0) = 0 \) and \(b = 0, c = 0 \). Recall that \(a, b, c \) are not all zero, so \(a \neq 0 \) and \(\theta^*_1 = \theta^*_0 \). Now (17) becomes \(AA^*_s A_2 - A_2 A^*_s A = 0 \). Recall \(c_2 A_2 = A^2 - A_1 A - kI \). We have \(AA^*_s A^2 + kA^*_s A = A^2 A^*_s A + kAA^*_s \). Thus \([A, AA^*_s A + kA^*_s] = 0 \). For \(0 \leq i, j \leq D \)
such that \(i \neq j \) we have \(E_i A_i^* E_j(\theta_i \theta_j + k) = 0 \). By Corollary\[^9\] \(E_i A_i^* E_j \neq 0 \) if and only if \(q_{ij}^i \neq 0 \), and in this case \(\theta_i \theta_j + k = 0 \). Since \(q_{ii}^i = 1 \) and \(\theta_i = k \), we have \(k \theta_i + k = 0 \) and hence \(\theta_i = -1 \). Define a diagram with nodes \(0, 1, \ldots, D \). There exists an arc between nodes \(i, j \) if and only if \(i \neq j \) and \(q_{ij}^i \neq 0 \). Observe that node 0 is connected to node \(t \) and no other nodes. By \[^2\] Proposition 2.11.1] and Lemma\[^1\] the diagram is connected. Thus there exists a node \(s \) with \(s \neq 0 \) and \(s \neq t \) that is connected to node \(t \) by an arc. In other words \(q_{st}^i \neq 0 \). So \(\theta_s \theta_t + k = 0 \) and hence \(\theta_s = k \), a contradiction. Therefore \(AA_i^* A_2 - A_2 A_i^* A, A_i^* A_2 - A_2 A_i^* A, A_i A - A A_i^* \) are linearly independent. So \(A_i^* A_3 - A_3 A_i^* \in \text{Span} \{ AA_i^* A_2 - A_2 A_i^* A, A_i^* A_2 - A_2 A_i^* A, A_i A - A A_i^* \} \). Now by \[^10\] Theorem 3.3] and \[^18\], \(\Gamma \) is a \(Q \)-polynomial with respect to \(E = E_t \). \[\square \]

6 Appendix 1

Recall the distance-regular graph \(\Gamma \) with diameter \(D \). Recall for \(0 \leq h \leq D \)

\[
\begin{align*}
 p_{1,h-1}^h &= c_h, & p_{1h}^h &= a_h, & p_{1,h+1}^h &= b_h, \\
 p_{h,h-1}^1 &= \frac{k_1 c_h}{k}, & p_{h1}^1 &= \frac{k_h a_h}{k}, & p_{h,h+1}^1 &= \frac{k_h b_h}{k}.
\end{align*}
\]

We now give \(p_{2j}^h \) for \(h - 2 \leq j \leq h + 2 \).

\[
\begin{align*}
 p_{2,h-2}^h &= \frac{c_{h-1} c_h}{c_2}, \\
 p_{2,h-1}^h &= \frac{c_h (a_{h-1} + a_h - a_1)}{c_2}, \\
 p_{2h}^h &= \frac{c_h (b_h - 1) + a_h (a_h - a_1 - 1) + b_h (c_h + 1)}{c_2}, \\
 p_{2,h+1}^h &= \frac{b_h (a_h + 1 + a_h - a_1)}{c_2}, \\
 p_{2,h+2}^h &= \frac{b_h b_{h+1}}{c_2}.
\end{align*}
\]

We now give \(p_{3j}^h \) for \(h - 3 \leq j \leq h + 3 \).

\[
\begin{align*}
 p_{3,h-3}^h &= \frac{c_{h-2} c_{h-1} c_h}{c_2 c_3}, \\
 p_{3,h-2}^h &= \frac{(a_h - a_2) c_{h-1} c_h + c_{h-1} c_h (a_h - a_2 + a_h - a_1)}{c_2 c_3}, \\
 p_{3,h-1}^h &= \frac{c_{h-1} c_h (b_h - 1) + c_h a_{h-1} (a_h - a_1 - 1) + b_h b_{h-1} (c_h - 1)}{c_2 c_3} \\
 &\quad + \frac{c_h (a_h - a_2) (a_h - a_1 - 1) + b_h b_{h-1} (c_h - 1)}{c_2 c_3} - \frac{b_1 c_h}{c_3}, \\
 p_{3,h+1}^h &= \frac{b_h c_h c_{h+1}}{c_2 c_3}, \\
 p_{3,h+2}^h &= \frac{b_h b_{h+2}}{c_2 c_3}, \\
 p_{3,h+3}^h &= \frac{b_h b_{h+3}}{c_2 c_3}.
\end{align*}
\]
Recall the matrix G from Theorem 12. In this appendix we give G for $D = 3$.

Example 19. Assume $D = 3$. The rows and columns of G are indexed by the following matrices, in the specified order:

- block 1: $A_3E_1^* - E_1^*A_3$, $A_3E_2^* - E_2^*A_3$, $A_3E_3^* - E_3^*A_3$
- block 2: $A_2E_1^* - E_1^*A_2$, $A_2E_2^* - E_2^*A_2$, $A_2E_3^* - E_3^*A_2$
- block 3: $AE_1^* - E_1^*A$, $AE_2^* - E_2^*A$, $AE_3^* - E_3^*A$
- block 4: $A_2E_1^* - AE_1^*A_2$, $A_2E_2^* - AE_2^*A_2$, $A_2E_3^* - AE_3^*A_2$

So the matrix G is 12×12. G has the form

$$G = \begin{bmatrix}
X & 0 & 0 & S \\
0 & Y & 0 & T \\
0 & 0 & Z & U \\
S & T & U & W
\end{bmatrix},$$

where each block is a 3×3 symmetric matrix as shown below.

$$X = \begin{bmatrix}
2k_3k & -2k_3c_3 & -2k_3a_3 \\
-2k_3c_3 & 2k_3(k_2 - p_{22}^3) & -2k_3p_{23}^3 \\
-2k_3a_3 & -2k_3p_{23}^3 & 2k_3(k_3 - p_{33}^3)
\end{bmatrix},$$

$$Y = \begin{bmatrix}
2k_2(k - c_2) & -2k_2a_2 & -2k_2b_2 \\
-2k_2a_2 & 2k_2(k_2 - p_{22}^2) & -2k_2p_{23}^2 \\
-2k_2b_2 & -2k_2p_{23}^2 & 2k_2(k_3 - p_{33}^2)
\end{bmatrix}.$$
From Appendix 1, we find
\[
Z = \begin{bmatrix}
2k(k - a_1) & -2kb_1 & 0 \\
-2kb_1 & 2k(k_2 - p_{22}^1) & -2kp_{23}^1 \\
0 & -2kp_{23}^1 & 2k(k_3 - p_{33}^1)
\end{bmatrix},
\]
\[
S = \begin{bmatrix}
2k_2b_2(a_1 - c_2) & 2k_2b_2(b_1 - a_2) & -2k_2b_2^2 \\
2k_2b_2(b_1 - a_2) & 2k_2b_2(p_{22}^1 - p_{22}^2) & 2k_2b_2(p_{23}^1 - p_{23}^2) \\
-2k_2b_2^2 & 2k_2b_2(p_{23}^1 - p_{23}^2) & 2k_2b_2(p_{33}^1 - p_{33}^2)
\end{bmatrix},
\]
\[
T = \begin{bmatrix}
2k_2a_2(a_1 - c_2) & 2k_2a_2(b_1 - a_2) & -2k_2a_2b_2 \\
2k_2a_2(b_1 - a_2) & 2k_2a_2(p_{22}^1 - p_{22}^2) & 2k_2a_2(p_{23}^1 - p_{23}^2) \\
-2k_2a_2b_2 & 2k_2a_2(p_{23}^1 - p_{23}^2) & 2k_2a_2(p_{33}^1 - p_{33}^2)
\end{bmatrix},
\]
\[
U = \begin{bmatrix}
2k_2c_2^1(a_1 - c_2) & 2k_2c_2(b_1 - a_2) & -2k_2c_2b_2 \\
2k_2c_2(b_1 - a_2) & 2k_2c_2(p_{22}^1 - p_{22}^2) & 2k_2c_2(p_{23}^1 - p_{23}^2) \\
-2k_2c_2b_2 & 2k_2c_2(p_{23}^1 - p_{23}^2) & 2k_2c_2(p_{33}^1 - p_{33}^2)
\end{bmatrix}.
\]

The matrix \mathbb{W} is symmetric with entries
\[
\mathbb{W}_{11} = 2(k^2k_2 + (k_2a_1a_2 - kb_1^2)a_1 + (k_2(b_1 - 1) + a_2(a_2 - a_1 - 1) \\
+ b_2(c_3 - 1)) - k_2a_2^2c_2),
\]
\[
\mathbb{W}_{12} = 2((k_2a_1a_2 - kb_1^2)b_1 + (k_2(c_2(b_1 - 1) + a_2(a_2 - a_1 - 1) + b_2(c_3 - 1)) \\
- k_2a_2^2a_2 - k_3c_3^2),
\]
\[
\mathbb{W}_{13} = 2((k_2(c_2(b_1 - 1) + a_2(a_2 - a_1 - 1) + b_2(c_3 - 1)) - k_2a_2^2b_2 - k_3c_3^2a_3),
\]
\[
\mathbb{W}_{22} = 2(kk_2^2 + (k_2a_1a_2 - kb_1^2)p_{22}^1 + (k_2(c_2(b_1 - 1) + a_2(a_2 - a_1 - 1) \\
+ b_2(c_3 - 1)) - k_2a_2^2p_{22}^1 - k_3c_3^2p_{22}^1),
\]
\[
\mathbb{W}_{23} = 2((k_2a_1a_2 - kb_1^2)p_{23}^1 + (k_2(c_2(b_1 - 1) + a_2(a_2 - a_1 - 1) + b_2(c_3 - 1)) \\
- k_2a_2^2p_{23}^1 - k_3c_3^2p_{23}^1),
\]
\[
\mathbb{W}_{33} = 2(kk_2^2k_3 + (k_2a_1a_2 - kb_1^2)p_{33}^1 + (k_2(c_2(b_1 - 1) + a_2(a_2 - a_1 - 1) \\
+ b_2(c_3 - 1)) - k_2a_2^2p_{33}^1 - k_3c_3^2p_{33}^1).
\]

From Appendix 1, we find
\[
p_{22}^1 = \frac{k_2a_2}{k}, \quad p_{22}^2 = \frac{c_2(b_1 - 1) + a_2(a_2 - a_1 - 1) + b_2(c_3 - 1)}{c_2}, \quad p_{22}^3 = \frac{c_3(a_2 + a_3 - a_1)}{c_2},
\]
\[
p_{23}^1 = \frac{k_2b_2}{k}, \quad p_{23}^2 = \frac{b_2(a_3 + a_2 - a_1)}{c_2}, \quad p_{23}^3 = \frac{c_3(b_2 - 1) + a_3(a_3 - a_1 - 1) - b_3}{c_2},
\]
\[
p_{33}^1 = \frac{k_3a_3}{k}, \quad p_{33}^2 = \frac{b_2(c_3(b_2 - 1) + a_3(a_3 - a_1 - 1) - b_3)}{c_2c_3}, \quad p_{33}^3 = \frac{c_3(b_3 - 1) + a_3(a_3 - a_1 - 1) - b_3}{c_2c_3} - \frac{b_1a_3}{c_3}.
8 Acknowledgement

The author would like to thank Professor Paul Terwilliger for many valuable ideas and suggestions. This paper was written while the author was an Honorary Fellow at the University of Wisconsin-Madison (January 2017- January 2018) supported by the Development and Promotion of Science and Technology Talents (DPST) Project, Thailand.

References

[1] E. Bannai, T. Ito, *Algebraic Combinatorics I: Association Schemes*, Benjamin/Cummings, London, 1984.

[2] A.E. Brouwer, A.M. Cohen, and A. Neumaier, *Distance-regular graphs*, Springer-Verlag, Berlin, Heidelberg, 1989.

[3] E. Hanson, *A characterization of Leonard pairs using the parameters* \(\{a_i\}_{i=0}^d\), Linear Algebra Appl. 438 (2013), 2289–2305.

[4] T. Ito, K. Tanabe, and P. Terwilliger, *Some algebra related to P- and Q-polynomial association schemes*, In Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc., Providence RI, 2001, pp.167–192; arXiv:math.CO/0406556.

[5] A. Jurišić, P. Terwilliger, and A. Žitnik, *The Q-polynomial idempotents of a distance-regular graph*, J. Combin. Theory Ser. B 100 (2010), 683–690.

[6] H. Kurihara and H. Nozaki, *A characterization of Q-polynomial association schemes*, J. Combin. Theory Ser. A 119 (2012), 57–62.

[7] K. Nomura and P. Terwilliger, *Tridiagonal matrices with nonnegative entries*, Linear Algebra Appl. 434 (2011), 2527–2538.

[8] A.A. Pascasio, *A characterization of Q-polynomial distance-regular graphs*, Discrete Math. 308 (2008), 3090–3096.

[9] P. Terwilliger, *A characterization of P- and Q-polynomial association schemes*, J. Combin. Theory Ser. A 45 (1987), 8–26.

[10] P. Terwilliger, *A new inequality for distance-regular graphs*, Discrete Math. 137 (1995), 319–332.

[11] P. Terwilliger, *The subconstituent algebra of an association scheme I*, J. Algebraic Combin. 1 (1992), 363–388.