Electromyoneurography in Diagnostic Procedures of Movement Disorders

Abstract

Electromyoneurography (EMNG) examination is used to diagnose pathology of lower motor neuron, peripheral nerve, neuromuscular junction and muscle. Movement disorders are group of neurological diseases caused with pathology in basal ganglia, thalamus and cerebellum. This paper is a review of movement disorders accompanied with periferal nerve or muscle involvement where electromyoneurography should be used in diagnostic procedures. Patients with non-Huntington disease chorea need to be evaluated for neuropathy and myopathy. Movement disorders accompanyed with ataxia should also be checked for neuropathy. Diagnostic criteria for stiff person and stiff limb syndrome include electromyoneurography finding of continous MUAP in paravertebral muscles and involved limbs. Finding of interictal myokimia in episodic ataxia/ chorea/dystonia serves as a diagnostic marker. Although electromyoneurography is a diagnostic tool for peripheral nerve and muscle disorders, it has a significant role in diagnostic procedures of movement disorders.

Keywords: Movement disorders; Electromyoneurography; Neuropathy; Myopathy

Manuscript

Electromyoneurography (EMNG) examination is used to diagnose pathology of lower motor neuron, peripheral nerve, neuromuscular junction and muscle. Myography analyze muscle unit action potential (MUAP) discharges during activation and spontaneous activity while resting. Neurography serves to analyze sensory and motor nerve conduction velocity, distal latency, F wave latency, and amplitude of the nerve potential [1]. Movement disorders are group of neurological diseases presented with hypo- or hyperkinetik movements. Parkinsonism present hypokinetik, while dystonia, chorea, athetosis, balism, ticks and myoclonus present hyperkinetik movements. These disorders appear due to pathology in basal ganglia, thalamus and cerebellum [2].

This paper is a review of movement disorders accompanied with periferal nerve or muscle involvement where electromyoneurography should be used in diagnostic procedures.

Chorea-Acanthocytosis is rare autosomal recessive disorder caused by mutations in the VPS13A gene. This gene encodes for a protein called chorein. It could be presented with the different types of movement disorders (dyskinesia, chorea, tics and parkinsonism). Dystonia is common and most promiment on oral region. Tipically, patients have tongue protrusion dystonia, caused dystarthria and serious dysphagia. Habitual tongue and lip biting are one of the characteristic signs. Beside movement disorder these patients have behavorial and cognitive changes and myopathy. In laboratory work up there are anacanthocytes in blood smear and elevated kreatin kinase level. With EMNG myopatic pattern and sensorimotor axonal neuropathy could be detected [2,3]. McLeod syndrome is also autosomal recessive disorder caused by mutation in XK gene. It is presented with movement disorders (chorea, dystonia and tics), cognitive, behavorial changings, myopathy and haemolytic anemia with acanthocytosis. Patients have absent expression of the Kx erythrocyte antigen and weakened expression of Kell blood group antigens. On EMNG there are sensorimotor axonal neuropathy and myopathy [2,4].

Spinocerebellar ataxies (SCAs) are a clinically heterogeneous group of disorders primarily presented with ataxia with or without some movement disorders. Some of them has distinguishing clinical features and neurophysiological findings that are compatible with a dying-back axonopathy and/or a neuropathy. This clinical specificity could help in diagnostic procedures. The hereditary ataxias can be subdivided by mode of inheritance (i.e., autosomal dominant, autosomal recessive, X-linked, and mitochondial). Among autosomal dominant form there are SCA 1, 2, 3, 25 and episodic ataxia type 1 with movement disorders, peripheral nerve and muscle involvement. SCA-1 is neurodegenerative disorders caused by mutation on gene located on the short arm of chromosome 6. Due to mutation there is pathological ataxin 1 protein. Tipically, patients have ataxia with pyramidal signs and axonal sensorimotor neuropathy. Parkinsonism and dystonia could be also presented [5-7]. In SCA-2 gene locus is mapped on chromosome 12. These gene encode for protein ataxin 2. In this SCA parkinsonism could be rarely presented, while tipically patients has slow saccadic eye movements, decreased tendon reflexes and dementia with axonal sensorimotor neuropathy [5,6,8]. Patients with SCA-3 carry an expanded CAG repeat in the MJj1 gene mapped to chromosome 14q32 coding for ataxin 3 protein. It is more common in Portugal, where it was originally described in Portuguese families from the Azores and called Machado-Joseph disease. Dystonia, restless leg syndrome, facial-lingual fasciculation-like movements or myokymia, pyramidal signs, lid retraction nystagmus, decreased saccade velocity, atomyroph and sensory loss are characteristic of this disorder. Neurography reveals axonal sensorimotor neuropathy [5,6,9]. In a large French family with SCA, Stevanin...
et al. found linkage of the disease locus, designated SCA25, to a 12.6-cM region of chromosome. Facial ticks and myokimia are one of the presenting signs together with the typical finding of sensory neuropathy [10]. In episodic ataxia type 1 (EA1) there is mutation in protein for alpha subunit of sodium channel on KCNA1 gene. Patients can have short attacks of ataxia, chorea or dystonia that last from few seconds to few minutes. It could be provoked as startle phenomenon or with movement. One of the diagnostic criteria is finding of interictal myokimia with myography [2,11,12].

Among autosomal recessive ataxias there are ataxia with oculomotor apraxia type 1, ataxia-oculomotor apraxia type 4, ataxia-teleangiectasia, infantile-onset spinocerebellar ataxia (IOSCA) and cerebrotendinous xanthomatosis accompanied with neuropathy and some type of movement disorders. Ataxia with oculomotor apraxia type 1 has mutation in aprataxin protein due to involvement of APTX gene. This ataxia is characterized by childhood onset of slowly progressive cerebellar ataxia, followed by oculomotor apraxia, mild intellectual disability, hyponatremia and a severe primary motor peripheral axonal motor neuropathy. Choreathetosis and upper-limb dystonia are common in clinical presentation [2,11,13]. Ataxia-oculomotor apraxia type 4 is caused by homozygous or compound heterozygous mutation in the PNKP gene on chromosome 1q9.13. It is characterized by onset of dystonia and ataxia in the first decade. Additional features include oculomotor apraxia and peripheral neuropathy [11,14]. Ataxia-teleangiectasia developed due to mutation in ATM gene. It is also known as Louis-Bar syndrome and could be present in classic or non classic form. Classic form, usually beginning between age two to four, typically present with teleangiectasies of the conjunctiva, frequently infections, increased risk for malignancy and choreathetosis. Non classic form beginning as adult-onset with early onset dystonia. On neurography patients have demyelinating sensorimotor neuropathy [2,11,15]. Mutations in the C10or2 gene cause infantile-onset spinocerebellar ataxia (IOSCA). It is a severe, progressive neurodegenerative disorder characterized by optic atrophy, deafness, opthalmoplegia, atethosis and sensory neuropathy [2,11,16]. Cerebrotendinous xanthomatosis is a type of lipid storage disease. It is caused by mutations in the CYP27A1 gene that provides instructions for producing an enzyme called sterol 27-hydroxylase. This enzyme is important in the pathway that breaks down cholesterol to form acids used in the digestion of fats (bile acids). It is typically characterized by infantile-onset diarrhea, childhood-onset cataract, adolescent- to young adult-onset tendon xanthomas, and adult-onset progressive cognitive decline with dystonia, myoclonus and sensorimotor neuropathy [2,11,17].

X-linked spinocerebellar ataxia-1 (SCA1) is caused by mutation in the ATP2B3 gene on chromosome Xq28. Patients may present with tremor, parkinsonism and sensory neuropathy [2,18].

Stiff person syndrome is autoimmune disorder presented with prominent rigidity in trunk musle and painful spasm. Disorder has progressive character with involvement of proximal part of legs and arms and development of gait disturbances. A patient had fixed hyperlordosis due to rigidity of paravertebral muscul

One of the diagnostic criteria for stiff person syndrome is finding of continued muscle unit action potential (MUAP) in paravertebral muscles. If the disease starts and is more prominent in limbs, then it should be diagnosed as stiff limb syndrome and checked if continued MUAP is present in involved limbs [19,20].

Conclusion

Although electromyoneurography is a diagnostic tool for peripheral nerve and muscle disorders, it has a significant role in diagnostic procedures of movement disorders.

References

1. Brown WF, Bolton CF (1993) Clinical Electromyography. (2nd edn). Butterworth-Heinemann, Boston, USA.
2. Jakovljevic T, Tolosa E (2007) Parkinson’s disease & movement disorders. Lippincott Williams & Wilkins, Wolters Kluwer business, Philadelphia, USA.
3. Baeza AV, Dobson-Stone C, Rampoldi L, Bader B, Walker RH, et al. (2014) Choreo-Acanthocytosis. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al. (Eds.), GeneReviews. University of Washington, Seattle, USA.
4. Jung HH, Danek A, Walker RH, Frey BM, Gassner C (2014) McLeod Neuroacanthocytosis Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al. (Eds.), GeneReviews. University of Washington, Seattle, USA.
5. Jayadev S, Bird TD (2013) Hereditary Ataxia: Overview. Genet Med 15(9): 673-683.
6. Manto MU (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebeller 4(1): 2-6.
7. Zoghbi HY, Orr HT (1995) Spinocerebellar ataxia type 1. Semin Cell Biol 6(1): 29-35.
8. Bhidayasiri R, Tar SY (2012) Spinocerebellar Ataxia-Type 2. In: Bhi-dayasiri R, Tar SY (Eds.), Movement Disorders: A video atlas. Humana Press, Springer Science+Business Media, New York, USA, pp. 212-213.
9. Takayama Y, Oyanagi S, Kawashima S, Sakamoto H, Saito K, et al. (1994) A clinical and pathologic study of a large Japanese family with Machado-Joseph disease tightly linked to the DNA markers on chromosome 14q. Neurology 44(7): 1302-1308.
10. Stevanin G, Boulans N, Thobois S, Azzeddine H, Ravaux L, et al. (2004) Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 55(1): 97-104.
11. Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al. (2014) Gene Reviews. University of Washington, Seattle, USA.
12. D’Adamo MC (2014) Episodic Ataxia Type 1. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al. (Eds.), GeneReviews. University of Washington, Seattle, USA.
13. Couinhin P, Barbot C (2014) Ataxia with Oculomotor Apraxia Type 1. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al. (Eds.), GeneReviews. University of Washington, Seattle, USA.
14. Ataxia-oculomotor apraxia 4; AOA4.
15. Gatti R (2014) Ataxia-Telangiectasia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al. (Eds.), GeneReviews. University of Washington, Seattle, USA.

Citation: Tomic S (2015) Electromyoneurography in Diagnostic Procedures of Movement Disorders. J Neurol Stroke 3(1): 00082. DOI: 10.15406/jn.2015.02.00082
16. Nikali K, Lönnqvist T (2014) Infantile-Onset Spinocerebellar Ataxia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al. (Eds.), Gene Reviews. University of Washington, Seattle, USA.

17. Lagarde J, Roze E, Apartis E, Pothalil D, Sedel F, et al. (2012) Myoclonus and dystonia in cerebrotendinous xanthomatosis. Mov Disord. 27(14): 1805-1810.

18. Spinocerebellar ataxia, X-linked 1; SCAX1.

19. Lorish TR, Thorsteinsson G, Howard FM (1989) Stiff-man syndrome updated. Mayo Clin Proc 64(6): 629-636.

20. Meinck HM, Thompson PD (2002) Stiff man syndrome and related conditions. Mov Disord 17(5): 853-866.