Perioperative red blood cell transfusion in orofacial surgery

So-Young Park¹, Kwang-Suk Seo², Myong-Hwan Karm²

¹Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea, ²Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Republic of Korea

In the field of orofacial surgery, a red blood cell transfusion (RBCT) is occasionally required during double jaw and oral cancer surgery. However, the question remains whether the effect of RBCT during the perioperative period is beneficial or harmful. The answer to this question remains challenging. In the field of orofacial surgery, transfusion is performed for the purpose of oxygen transfer to hypoxic tissues and plasma volume expansion when there is bleeding. However, there are various risks, such as infectious complications (viral and bacterial), transfusion-related acute lung injury, ABO and non-ABO associated hemolytic transfusion reactions, febrile non-hemolytic transfusion reactions, transfusion associated graft-versus-host disease, transfusion associated circulatory overload, and hypersensitivity transfusion reaction including anaphylaxis and transfusion-related immune-modulation. Many studies and guidelines have suggested RBCT is considered when hemoglobin levels recorded are 7 g/dL for general patients and 8-9 g/dL for patients with cardiovascular disease or hemodynamically unstable patients. However, RBCT is occasionally an essential treatment during surgeries and it is often required in emergency cases. We need to comprehensively consider postoperative bleeding, different clinical situations, the level of intra- and postoperative patient monitoring, and various problems that may arise from a transfusion, in the perspective of patient safety. Since orofacial surgery has an especially high risk of bleeding due to the complex structures involved and the extensive vascular distribution, measures to prevent bleeding should be taken and the conditions for a transfusion should be optimized and appropriate in order to promote patient safety.

Keywords: Orofacial Surgery; Red Blood Cell; Transfusion.

INTRODUCTION

In the field of orofacial surgery, a red blood cell transfusion (RBCT) is often needed during either double jaw or oral cancer surgery. RBCT can be a life-saving procedure for most patients with acute anemia caused by perioperative bleeding; on the contrary, it also presents various risks, such as infectious complications (viral and bacterial), transfusion-related acute lung injury, ABO and non-ABO associated hemolytic transfusion reactions, febrile non-hemolytic transfusion reactions, transfusion associated graft-versus-host disease, transfusion-associated circulatory overload, and hypersensitivity transfusion reactions, including anaphylaxis, and transfusion-related immune-modulation (TRIM) [1,2]. In the field of transfusion medicine, three studies have used propensity score matching with regard to transfusion and mortality namely, the ABC [3], CRIT [4], and SOAP [5] studies. The ABC and CRIT studies considered RBCT as an independent
risk factor for mortality, whereas the SOAP study proved that RBCT increased the survival rate [3-5]. Although these results seem to contradict one another, the differences were attributed to the influence of introducing leukocyte-depleted RBCs in the SOAP study. Moreover, there are other studies involving prospective, adequately powered, randomized controlled trials that have applied restrictive and liberal transfusion strategies with respect to mortality, and more recently, a greater emphasis on restrictive strategy [6-8].

As shown, the research in this area remains ongoing and can be quite controversial. Accordingly, the present review aimed to summarize transfusion based on the studies that have been previously completed on this topic to date and to discuss the role of perioperative RBCT in the field of orofacial surgery.

HISTORY OF TRANSFUSION

In 1628, William Harvey, a British physician and physiologist, first presented the theory of blood circulation. While in 1665, Richard Lower, another British physician, first reported on transfusion between animals at the Royal Society. In 1667, Jean-Baptiste Denys, a French physician, transfused the blood of sheep to a 15-year-old boy for the first time and the boy survived. In 1818, James Blundell, a British obstetrician, became the first to transfuse human blood to a patient with postpartum hemorrhage. In 1840, Samuel Armstrong Lane at St George’s Hospital Medical School in London used whole blood transfusion for the first time to treat hemophilia. Then in 1900, an Austrian physician and immunologist Karl Landsteiner differentiated blood agglutinins and divided them into ABO groups, and subsequently, RBC transfusions have been performed for over 100 years as a treatment modality for moderate-to-severe anemia [9].

PHYSIOLOGICAL PRINCIPLES

Oxygen transfer to the tissues in the human body involves RBCs that carry hemoglobin-bound oxygen from the lungs to the cells. Under resting conditions, the amount of oxygen supplied exceeds the oxygen demand of the tissues. This margin of safety for oxygen transport is needed for emergency situations, such as bleeding, when oxygen demand spikes rapidly; however, if excessive bleeding exceeds this safety margin, transfusion becomes necessary in order to supply enough oxygen to the peripheral vascular system and the tissues.

RBCT increases the ability to deliver oxygen to hypoxic tissues under acute anemia conditions (perioperative bleeding), as well as with diseases such as sickle cell disease or malaria. It is also responsible for carrying out a hemostatic role by increasing coagulation [10], and recent findings have indicated its involvement in clot contractions [11]. Moreover, it is also performed for the purpose of plasma volume expansion in cases of possible clinically significant perioperative bleeding.

TRANSFUSION STRATEGY & TRIGGER

The indications and triggers for RBCT are on-going issues. There have been many studies and there are still on-going studies in search of an answer. Based on studies to date, there are two strategies. Historically, the threshold that triggered a RBCT has been based on a liberal strategy (hemoglobin [Hb] level below 10 g/dL or hematocrit [Hct] below 30%). In 1988, the “10/30 Rule” was presented at the National Institutes of Health Consensus Development Conference, which presented the level of RBCT during perioperative period to be less than Hb 10 g/dL and Hct 30% and transfusions were performed based on those values for a while [12]. In 1999, a randomized, multicenter, controlled clinical trial that compared a restrictive transfusion trigger (Hb 7 g/dL) and liberal
transfusion trigger (Hg 10 g/dL) in critically ill patients found that the mortality rate was lower in the group with the restrictive transfusion strategy than that of the group with the liberal transfusion strategy (22.3 % vs 28.1 %, P = 0.05) [6,13]. Recently, the restrictive strategy (Hb level below 7 g/dL) has become more accepted due to the accumulation of evidence regarding the negative impact on prognoses following RBCT per the liberal strategy as well as the complications and costs associated with RBCT [14-21].

Recent reports on the guidelines for the RBCT threshold are summarized in Table 1. The American Society of Anesthesiologists sets the RBCT threshold as Hb < 6 g/dL, and for Hb between 6-10 g/dL, the decision is left up to the discretion of the anesthesiologist [22-24], while the Society of Cardiovascular Anesthesiologists and several other associations has set the transfusion threshold at Hb < 7 g/dL [13,25-31]. The European Society of Anesthesiology recommends maintaining Hb between 7-9 g/dL, regardless of perioperative bleeding [32]. The American Academy of Family Physicians has set the transfusion trigger at Hb between 7-9 g/dL for immature infants or cases involving cyanotic heart disease, severe hypoxemia, active blood loss, or hemodynamic instability [13]. The Italian Society of Transfusion Medicine and Immunohematology has set the transfusion trigger at Hb between 6-10 g/dL for cases involving coronary artery disease or cardiovascular disease [24]. The European Society of Cardiology has set the transfusion trigger at Hb of 7 g/dL when the acute coronary syndrome is present [33] and the American College of Physicians has set it at Hb between 7-8 g/dL when coronary heart disease is present [34]. Meanwhile, the UK National Clinical Guideline Centre and American Association of Blood Banks have set the transfusion trigger at Hb of 8 g/dL for cases involving cardiovascular diseases [29,35].

Table 1. Recent recommendations and clinical guidelines on the threshold for a red blood cell transfusion

Reports (year of publication)	Clinical setting	RBCT threshold	Grading of evidence
Society of Thoracic Surgeons, Society of Cardiovascular Anesthesiologists (2011) [27]	Cardiac surgery	Hb < 7 g/dL	C, Class IIa
Italian Society of Transfusion Medicine and Immunohematology (2011) [24]	Intra- or post-operative period Presence of risk factors (i.e., CAD, heart failure, CVD) or symptoms indicative of hypoxia	Hb < 6 g/dL Hb 6-10 g/dL	1C+, 1C-+
American College of Gastroenterology (2012) [28]	Upper gastrointestinal bleeding	Hb < 7 g/dL	Conditional recommendation, low-to-moderate-quality evidence
The National Institute for Health and Care Excellence Acute upper gastrointestinal bleeding (2014) [30]	Patients with upper gastrointestinal bleeding.	Hb < 7 g/dL	Low
The National Institute for Health and Care Excellence blood transfusion guideline NG24 (2015) [31]	Hb ≤ 8 g/dL (target: Hb 8-10 g/dL after transfusion) for patients with ACS	Hb ≤ 7 g/dL	NA
UK National Clinical Guideline Centre (2015) [29]	Hb > 7 g/dL (target: Hb 7-9 g/dL) ACS need regular blood transfusions for chronic anemia (target: Hb 8-10 g/dL)	Hb < 7 g/dL Hb < 8 g/dL	NA NA
American Association of Blood Banks (2016) [35]	Hospitalized adult patients who are hemodynamically stable, including critically ill patients Patients undergoing orthopedic surgery or cardiac surgery and patients with preexisting cardiovascular disease	Hb < 7 g/dL Hb < 8 g/dL	Strong recommendation, moderate quality evidence Strong recommendation, moderate quality evidence
European Society of Anesthesiology (2017) [32]	Active bleeding No active bleeding	Hb 7-9 g/dL Hb 7-9 g/dL	1C 1A

*For the interpretation of the various grades of recommendations and levels of evidence, see material and methods of the related references. RBCT: red blood cell transfusion; Hb: hemoglobin; CAD: coronary artery disease; CVD: cardiovascular disease; ACS: acute coronary syndrome; NA: not available
Therefore, based on studies and guidelines up to now, it would be appropriate to set the RBC transfusion trigger at Hb of 7 g/dL, while applying the higher threshold of 8-9 g/dL for patients with cardiovascular disease or hemodynamically unstable patients. Due to recent studies, an additional issue to consider when performing RBCT has been added. Continuous noninvasive Hb (SpHb) monitoring can be helpful for determining the RBCT trigger [36,37]. Another study reported that by checking the trend of the change in Hb by continuously monitoring SpHb, the amount of bleeding can be predicted and allow for a rapid response to bleeding. It is also helpful in double-jaw surgery [38].

RISK OF RBC TRANSFUSION

Although there is a clear-cut therapeutic benefit of relieving hypoxia in tissues with a RBCT, it should be performed after careful evaluation of its risks and benefits. A meta-analysis that analyzed 45 studies on the effects of RBCT on prognoses found that RBCT had a negative impact on prognoses, while two studies showed a neutral risk and one study placed more emphasis on its benefits [39]. The following are the details of each risk.

1. **Infection**

Interest in transfusion-transmitted infections peaked in the 1980s due to transmission of human immunodeficiency virus (HIV) and hepatitis C virus [40]. Subsequent medical advances, along with the use of serological and nucleic acid testing assays, have led to a drastic decline in the number of transfusion-transmitted infections, including HIV and the hepatitis viruses (hepatitis A, B, C) [41,42]. With respect to infections, today is historically the safest time for a transfusion, but with the emergence of novel viruses, such as the recent Zika virus, transfusion-transmitted cytomegalovirus (CMV) still occurs and it remains a key issue for immunosuppressed patients [43]. Moreover, the post-transfusion infection rate may also increase due to TRIM [44].

2. **Hemolytic transfusion reaction**

A major potential consequence of RBCT is alloimmunization to blood group antigens. Alloimmunization can result in acute hemolytic transfusion reactions [45], potentially producing significant morbidity and mortality. One of the most important transfusion-related issues is still administrative error, which is associated with hemolytic transfusion reaction and ABO incompatibilities that lead to mortality in many cases.

3. **Febrile non-hemolytic transfusion reaction**

This is a more common reaction than hemolytic transfusion reaction. It is caused by cytokines within the units of red cells. Such cytokines occur when the donor red cells break up during storage or they originate from the donor leukocytes. Such reactions can be reduced by using a leukocyte filter [46].

4. **Transfusion-related acute lung injury (TRALI)**

Currently, TRALI is one of the most dangerous transfusion-associated complication [1]. TRALI is defined as a new acute lung injury occurring within 6 h post transfusion in patients without risk factors for acute lung injury. TRALI typically manifests as shortness of breath, fever, and hypotension [47]. Antibody-mediated TRALI (immune TRALI) is now recognized as one of the most common causes of transfusion-associated major morbidity and death in the Western world [48]. Although TRALI can occur as a result of all types of blood products, it is known to occur more commonly with plasma and pooled buffy coat-derived platelet products, rather than with RBCs (fatal TRALI incidence: plasma, 1:200,000-300,000; platelets, 1:300,000-400,000; RBCs, 1:2,500,000-2,900,000) [49]. The mechanism of TRALI has not been clearly identified, but it can be explained by the 2-hit hypothesis. Antibodies, as well as alternate substances in blood products result in neutrophil activation, which, in a susceptible patient, results in
TRALI [49].

5. Hypersensitivity transfusion reaction

Hypersensitivity transfusion reaction is a very rare reaction. The biologic mechanism associated with this remains largely unknown, but patients who have had a transfusion-associated adverse reaction may have had an underlying immunodeficiency [50]. Particularly in cases transfused with blood products containing plasma, the development of anaphylaxis, a severe form of hypersensitivity, is highly associated with IgA deficiency, which appears from the production of Ig E Ab against Ig A [51].

6. Transfusion-associated circulatory overload (TACO)

Although it is called transfusion-associated circulatory overload (TACO), it is not easy to differentiate between TACO and TRALI. It is a rare complication with less than 100 articles published since its introduction during the 1990s [52]. Therefore, it is difficult to determine whether the exacerbation of pulmonary function occurred as an immunomodulation effect or due to circulatory overload [53]. Other assessments of volume overload, such as jugular venous pressure and B-natriuretic peptide (BNP) levels, can help distinguish the two [46].

7. Transfusion-related immunomodulation (TRIM)

Transfusion may trigger an immunologic reaction from the recipient antibody coming together with the donor antigen. This immunologic reaction that has a negative effect on the human immune system is referred to as “transfusion related immunomodulation (TRIM)” [54]. TRIM is a complex physiological reaction, which is mediated by residual leukocytes, apoptotic cells, and numerous biological response modifiers such as cytokines, soluble mediators, and soluble HLA peptides [55]. TRIM can be explained by two mechanisms, the first of which is HLA-dependent and directed against adaptive immunity, while the second is mild, non-specific, and directed against innate immunity [56]. Such mechanisms are related to the release of immuno-suppressive prostaglandins, suppression of cytotoxic cell and monocyte activity, inhibition of interleukin-2 (IL-2) production, and an increase in regulatory T cells (Tregs) and suppressor T-cell activity [57-60].

7.1. Pathophysiology of TRIM

7.1.1. Inflammatory mediators

TRIM is associated with the following: transforming growth factor beta (TGF-β), a transfusion-related inflammatory/immunosuppressive cytokine [61]; secondary cytokines secreted by phagocytosis of apoptotic cells; and non-polar lipids and a mixture of pro-inflammatory lyso-phosphatidylcholines (lyso-PCs) contained in RBCs [62]. Lyso-PC regulates the activation of natural killer (NK) T cells and T lymphocytes [63]; induces dendritic cell maturation [64]; acts as an NK cell chemoattractant [65]; and stimulates the production of pro-inflammatory cytokines [66]. Eicosanoids such as prostaglandins, leukotrienes, and thromboxanes can accumulate in RBCs [67], and all of these inflammatory mediators may suppress immunity or aggravate tumors [68-71].

7.1.2. Residual leukocytes

There is evidence that leukocyte-containing red blood cell concentrates have negative effects, such as increased postoperative complications, associated with mortality rate [72]. Consequently, the recent trend is to use leukoreduced RBC concentrates; as a result, the risk of febrile transfusion reactions and CMV transfusion transmissions is reduced [73]. However, even after leukoreduction, a few leukocytes and cytokines may remain [74,75] and can cause the secretion of IL-6, IL-10, and tumor necrosis factor alpha (TNF-α) or activation of Tregs [76,77]. The activation of Tregs is antigen non-specific; it can occur due to lipopolysaccharide (LPS) and, through the Toll-like receptor-4 pathway, lead to immune suppression [78].

7.1.3. Apoptotic cells

Apoptotic cells, which are created while blood is being stored, activate and secrete TGF-β to trigger immuno-
suppression [61,79]. Apoptotic cells express phosphatidylserine on the surface [80]. Phosphatidylserine not only induces secretion of anti-inflammatory cytokines, such as IL-10 and TGF-β, but it also suppresses secretion of inflammatory cytokines, such as IL-12, IL-1β, IL-6, and TNF [81-83].

7.2. Positive effect of immunomodulation

Immunomodulation may be helpful at times, as indicated by a study result that showed a transfusion improved the survival of the kidney graft in patients who received one [84]. Moreover, among Crohn’s disease patients with small bowel resection, the recurrence rate of Crohn’s disease was lower in the group that received a transfusion when compared to the group that did not [85]. Therefore, when immunosuppression is required for therapeutic purposes, immunomodulation from a transfusion may be helpful.

8. Cancer risk

8.1. Cancer & immunomodulation

The American Society of Clinical Oncology/American Society of Hematology introduced transfusion as an effective treatment strategy for improving the health of cancer patients with chemotherapy-associated anemia [86]. However, numerous studies have reported that recurrence and metastasis of cancer increased following transfusion [87-90] and this is suspected to be the result of immunosuppression following allogenic RBCT [91]. Immunomodulation due to inflammatory mediators, residual leukocytes, and apoptotic cells is associated with recurrence and progression of cancer, while platelets, microparticles, and FFP are known to stimulate growth and spreading of the tumor [92-94].

8.2. Cancer growth and dissemination

TGF-β suppresses NK cell activity and induces Tregs activation, in conjunction with TNF-α [88]. Moreover, in a tumor microenvironment, TGF-β contributes to the osteoclastic degeneration of the bone matrix necessary for the establishment of bone metastasis [95,96]. Inflammatory mediators, such as TNF-β and lyso-PCs regulate the activation of NK cells and T cells, while also promoting the production of pro-inflammatory cytokines [63,66]. The aforementioned inflammatory mediators, residual leukocytes, and apoptotic cells induce immunomodulation by various mechanisms, which can directly or indirectly contribute to tumor growth.

8.3. Influence on cancer type

While only a few studies have reported that RBCT in colorectal cancer (CRC) cases did not have a negative effect on overall mortality, 5-year survival, recurrence, metastasis, complications, and prognosis [97-100], many studies have reported the opposite [90,101-108]. In fact, there are even reports of perioperative RBCT in CRC cases causing increased rate of infection [109,110]. Even in cases that required liver resection due to metastasis of CRC to the liver, RBCT had a negative effect on free survival, recurrence, and prognosis [111,112]. RBCT had a negative effect on clinical outcomes, mortality, recurrence, and complications in cases that required liver resection due to primary cancer in the liver [113-115]. It also had a negative effect on mortality, recurrence, and prognosis in cases that required surgery for gastric cancer [116-118]. Moreover, it was also reported that RBCT had a negative effect on long-term survival, recurrence, and long-term outcome in cases involving surgery for esophageal cancer [119-122], while allogenic RBCT in cervical or ovarian cancer cases resulted in decreased survival and poor prognosis from increased metastasis [89,123,124]. When RBCT was performed during radical cystectomy for bladder cancer, it caused the postoperative tumor recurrence and cancer-specific mortality to increase [125]. When RBCT was performed on patients undergoing surgery for lung cancer, RBCT had a negative effect on 5-year disease-free survival [126].

8.4. Influence on oral cancer

Many cases of cancer are encountered in the field of orofacial surgery, which occasionally require periopera-
tive RBCT. There have been many reports indicating that using RBCT during oral cancer surgery resulted in adverse outcomes. In a study comprised of 520 patients who underwent surgery for oral and oropharyngeal cancer, those who received an allogeneic RBCT showed increased postoperative complications, which was reported to be associated with the amount of transfusion received [127]. In another study comprised of 276 patients who underwent oral cancer surgery, RBCT was reported to increase the rate of surgical-site infection [128]. A retrospective study on 1,693 patients who underwent oral cavity cancer surgery reported that RBCT was a risk factor for wound infection [129]. In various studies on patients who underwent surgery for oral cavity squamous cell carcinoma, performing RBCT with 3 units (U) or more shortened the survival and had a negative effect on prognosis [130,131]. Moreover, RBCT during surgery for head and neck cancer resulted in an increased recurrence and decreased survival [132].

9. Influence on double-jaw surgery

Double-jaw surgery can potentially cause vascular injury or lead to a prolonged surgery, which may result in severe blood loss. Some studies have reported up to 1191 mL [133] of blood loss requiring fluid replacement with crystalloids, colloids, or blood products. Studies on the effects of RBCT during double-jaw surgery and prognosis are lacking. However, adverse effects from other surgeries may be anticipated. Therefore, induced/controlled hypotension may be considered as a method for reducing perioperative bleeding and RBCT [134,135]. Study results on patients who underwent a Le Fort I osteotomy showed that the average blood loss in a group that used hypotensive anesthesia was 740 ml, whereas the average blood loss in the control group was 400 ml [136]. Furthermore, preoperative and intraoperative administration of the antifibrinolytic agent, tranexamic acid, is effective for controlling blood loss and improving the quality of the surgical field [137].

10. Influence on extra-operation

There are numerous study results indicating that RBCT in non-cancer surgeries result in poor prognosis. RBCT of 3 or more U during liver transplantation surgery increased the length of the hospital stay [138]. The patient group that received RBCT during a coronary artery bypass had a 5-year mortality that was twice as high as that of the group without RBCT [139]. In transcatheter aortic valve implantation surgery cases, using RBCT resulted in an increased 12-month mortality and prolonged hospital stay [140]. Even in major vascular surgery cases, RBCT increased the risk of myocardial infarction and 30-day mortality [141]. RBCT also induced a minor wound-healing disturbance in hip replacement surgery cases, while also increasing the length of the hospital stay [142]. For general surgery, 1 U RBCT increased the risk of 30-day mortality, composite morbidity, pneumonia, and sepsis/shock, while 2 U RBCT increased these outcome risks, as well as surgical-site infections [143].

AMOUNT OF TRANSFUSION

Are there differences in adverse effects according to the amount of transfused RBCs? A study comprised of 89,000 patients reported that the mortality and morbidity were higher in the patient group that received 1U RBCT than the non-transfused patient group, showing a dose-dependent tendency [144]. Besides mortality, wound problems, pulmonary complications, postop renal dysfunction, sepsis, morbidity, and length of the hospital stay were reported to be high in the group that received RBCT than that in the group that did not and caution was recommended when performing transfusions on patients with a mild anemia [144]. Other studies have reported poor outcomes when 2 U of RBC was used compared to that when 1 U was used [143]. Even in the field of orofacial surgery, there is evidence that a greater amount of RBCT has a greater negative effect on the outcome.
[127,130]. In contrast, a study that compared restrictive
(Hb < 7 g/dL) vs liberal (Hb < 9 g/dL) strategy on ICU
patients who underwent major cancer surgery reported a
higher rate of major complications in the restrictive
group despite using a lesser amount of RBCT [145].

1. Amount of transfusion and bleeding in double-jaw
surgery

Orofacial surgery may be associated with significant
bleeding. The amount of blood loss and transfusion is
always a concern during double jaw surgery. In single
jaw surgery, RBCT is considered unnecessary [146-148].
However, studies published prior to 2005 show that the
average amount of bleeding in double jaw surgery ranged
from 344 ml to 889 ml, while the percentage of RBCT
varied widely between 0.8 % and 30 % [146,148-152].
Meanwhile, recent studies (Table 2), including that by
Tang et al., report that the mean blood loss was 420.3
± 175.9 ml (range 183.0-965.6 ml) and there were no
cases that required RBCT [153]. Ervens et al. report that
the mean blood loss under normotensive anesthesia was
1,021.6 ml (range 300-2600 ml), while the preoperative
Hb was 13.5 g/dL (range 11.6-16.0 g/dL) and the
postoperative Hb was 9.3 g/dL (range 6.4-12.8 g/dL)
[133]. Varol et al. reported a mean blood loss of 377.0
± 111.2 mL (range 180-625 mL), preoperative Hb of 14.0
± 1.9 g/dL (range 10.3-17.2 g/dL), and postoperative Hb
of 11.8 ± 2.0 g/dL (range 8.2-16.2 g/dL) [135]. Sankar
et al. reported a mean blood loss of 278.3 ± 78.2 mL
[137]. Faverani et al. reported a mean blood loss of 453.3
± 168.5 mL, preoperative Hb of 14.5 ± 1.2 g/dL, and
postoperative Hb of 12.4 ± 1.2 g/dL and that RBCT was
performed on 2 out of 15 patients [154]. As shown, there
are differences in the measured amount of blood loss
between studies. While recently published studies have
shown that a few cases required RBCT, the amount of
blood loss in double-jaw surgery was higher than that
during other surgeries and some cases required
transfusion. Therefore, it is necessary to prepare for
situations that require a transfusion while continuously
monitoring perioperative bleeding.
YOUNG (FRESH) VS OLD RBC

RBC concentrates are produced by removing the plasma fraction from centrifuged whole blood. Using 1 U of RBCs can typically increase the hemoglobin level by about 1 g/dL [155]. The number of storage days of RBC concentrates produced in this manner increased from 21 days to 42 days (at 1-6 ºC) when they were treated with hypotonic solutions such as anticoagulant-preserved solution, acid citrate dextrose, citrate phosphate dextrose, and citrate phosphate dextrose-adenine [156,157]. Based on this development, the study was conducted by dividing the RBC concentrates into groups of “young (fresh)” (< 14-21 days) and “old” (> 21 days) RBC concentrates. The increased storage duration of RBCs in hypotonic solution can lead to hemolysis, morphological changes, lactic acid accumulation, increased potassium/calcium, decreased 2,3-DPG and ATP, decreased pH and glycolysis rate, and the accumulation of various residues [158-160]. Because of this reason, transfusion using “old” RBC may cause adverse effects, including a higher infection risk and higher transfusion-dependent mortality rate [161-163]. Actually, a large-scale study conducted in Australia, Canada, Israel, and the US showed that the group that received a transfusion of “young” RBCs had a better prognosis than the group that was transfused with “old” RBCs [164]. However, there are other studies that report no difference in prognoses between the two groups [165] and a study that reports that an “old” RBC transfusion had the benefit of reducing cancer recurrence [163]. Therefore, this is an issue still under debate and there is the need for a sufficient discussion on issues that can arise a preference for “young” RBCs.

AUTOLOGOUS BLOOD TRANSFUSION

Various aforementioned RBCT risks are mostly associated with allogenic transfusion. An allogenic RBCT is not only the cause of various adverse events, but it also increases the economic and psychological burden of the patient. On the other hand, an autologous transfusion can avoid various adverse events associated with an allogenic transfusion, while addressing the issue of lack of blood and reducing the economic burden of the patient [166,167]. A randomized study on CRC surgery reported that the recurrence rate was lower with autologous RBCT compared to that of an allogenic RBCT [168]. An autologous RBCT is frequently used during double-jaw surgery in the field of orofacial surgery and an autologous RBCT can serve as a method for reducing allogenic RBCT [169]. The following are the three options for an autologous RBCT: preoperative autologous blood donation (PABD), acute normovolemic hemodilution (ANH), and intraoperative and postoperative autotransfusion.

1. **Preoperative autologous blood donation (PABD)**

 PABD refers to the method of drawing blood from the patient preoperatively and keeping it until reinjecting it into the patient intra- or postoperatively. Repeated blood donations before surgery can stimulate bone marrow cell proliferation, stimulate erythrocyte regeneration, increase hematopoietic function in patients after surgery, accelerate the patient’s hematopoietic recovery after surgery, is conducive for wound healing, and reduces the chances of infection caused by immunoreaction from allogenic RBCT [170]. In addition, the improved autologous RBCT has a number of advantages such as the mild dilution of blood, improved microcirculation, reduction in blood viscosity, and prevention of hypoxia caused by anemia after blood donation [171].

 For Hb ≥ 11 g/dL, donation 4 days prior to surgery is recommended, but donations for a ≥ 8-9 ml/kg is not recommended. Oral iron may be helpful for restoring the Hb to the level prior to donation. Contraindications include bacteremia and acute localized infection, myocardial infarction in the past 6 months, unstable angina, aortic stenosis, congestive heart failure, significant ventricular arrhythmias, marked uncontrolled hypertension, and cerebrovascular accident within 6 months.
2. Acute normovolemic hemodilution (ANH)

ANH is a method of autologous transfusion, which was first introduced in 1946, and is still widely used today [171]. ANH is generally performed under general anesthesia and prior to the start of surgery. Blood is drawn from the patient and stored and an equivalent amount of crystalloid (1:3) or colloid (1:1) fluid is added to maintain the plasma volume. If required intra- or postoperatively, the collected blood can be reinjected to the patient [172]. ANH can effectively reduce erythrocyte loss caused by perioperative bleeding and reduce allogenic RBCT [173,174]. This method is widely used for postpartum hemorrhage and cancer and orthopedic surgeries, such as joint replacement and spine surgery. Moreover, this method is used in the field of dentistry when cancer or double jaw patient with expected bleeding is a Jehovah’s Witness [175]. This method offers several advantages. The first is the reduction of perioperative erythrocyte loss since crystalloid or colloid, in equivalent amount as blood collected, is used to restore volume. This enhances the body’s tolerance and reduces actual blood loss [172,176]. The second advantage is that it is simpler and less costly than the PABD method. The third advantage is that it is the only method that can provide fresh autologous blood that has almost no effect on the functions of platelets and clotting factors. ANH may be used in cases where Hb is > 11 g/dL and platelets are > 100 x 10^9/L and the prothrombin time and cardio-pulmonary function are normal [177].

3. Intraoperative or postoperative autotransfusion

Intraoperative or postoperative autotransfusion refers to a method of transfusion in which the blood in the body cavity of a patient, blood lost during surgery, and postoperatively drained blood, can be recovered through a blood recovery device [171]. The blood subsequently undergoes anticoagulation, filtration, and washing and is finally transfused back to the patient [178]. The American Association of Blood Banks guidelines recommended intra- or postoperative autotransfusion when perioperative bleeding (more than 20% total volume) is expected. However, it is not recommended for intraoral surgeries, such as oral cancer or double jaw surgeries, due to the risk of systemic infection caused by the resident bacteria inside the oral cavity.

CONCLUSION

The answer to the question whether RBCT during perioperative period is beneficial or harmful to patient is not an easy one. In the field of orofacial surgery, transfusion is performed for the purpose of oxygen transfer to hypoxic tissues and plasma volume expansion when there is bleeding. Many studies and guidelines have suggested a hemoglobin level of 7 g/dL for general patients and 8-9 g/dL for patients with cardiovascular disease or hemodynamically unstable patients as the trigger for RBCT. However, RBCT is an essential treatment for surgeries and it is often required in emergency cases. We need to consider perioperative bleeding, various clinical situations, level of intra- and postoperative patient monitoring, and various problems that may arise from a RBCT in a comprehensive manner from the perspective of patient safety. Since orofacial surgery carries an especially high risk of bleeding due to the complex structures involved and extensive vascular distribution, measures to prevent bleeding should be taken and the conditions for a transfusion should be optimized and appropriate in order to promote patient safety.

Disclosure Statement: The authors have nothing to disclose.

Conflicts of interest: The authors report no conflicts of interest.
REFERENCES

1. Vamvakas EC, Blajchman MA. Transfusion-related mortality: The ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood 2009; 113: 3406-17.
2. Goodnough LT, Levy JH, Murphy MF. Concepts of blood transfusion in adults. Lancet 2013; 381: 1845-54.
3. Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs I, Webb A, et al. Anemia and blood transfusion in critically ill patients. JAMA 2002; 288: 1499-507.
4. Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Abraham E, et al. The crit study: Anemia and blood transfusion in the critically ill--current clinical practice in the united states. Crit Care Med 2004; 32: 39-52.
5. Vincent JL, Saks Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in european intensive care units: Results of the soap study. Crit Care Med 2006; 34: 344-53.
6. Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, canadian critical care trials group. N Engl J Med 1999; 340: 409-17.
7. Kirpalani H, Whyte RK, Andersen C, Asztalos E, Heddle N, Blajchman MA, et al. The premature infants in need of transfusion (pint) study: A randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr 2006; 149: 301-7.
8. Hajjar LA, Vincent JL, Galas FR, Nakamura RE, Silva CM, Santos MH, et al. Transfusion requirements after cardiac surgery: The tracs randomized controlled trial. JAMA 2010; 304: 1559-67.
9. Schmidt PJ, Ness PM. Hemotherapy: From bloodletting magic to transfusion medicine. Transfusion 2006; 46: 166-8.
10. Valeri CR, Khuri S, Ragno G. Role of the hct in the treatment of thrombocytopenic patients. Transfusion 2003; 43: 1761-3; author reply 3.
11. Cines DB, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov RI, et al. Clot contraction: Compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 2014; 123: 1596-603.
12. Perioperative red cell transfusion. Natl Inst Health Consens Dev Conf Consens Statement 1988; 7: 1-6.
13. Sharma S, Sharma P, Tyler LN. Transfusion of blood and blood products: Indications and complications. Am Fam Physician 2011; 83: 719-24.
14. Hogshire L, Carson JL. Red blood cell transfusion: What is the evidence when to transfuse? Curr Opin Hematol 2013; 20: 546-51.
15. Liumbruno GM, Vaglio S, Biancofiore G, Marano G, Mengoli C, Franchini M. Transfusion thresholds and beyond. Blood Transfus 2016; 14: 123-5.
16. Freedman J. Transfusion–whence and why. Transfus Apher Sci 2014; 50: 5-9.
17. Holst LB, Haase N, Weterslev J, Wernerman J, Guttmersen AB, Karlsson S, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med 2014; 371: 1381-91.
18. Villanueva C, Colomo A, Bosch A, Concepcion M, Hernandez-Gea V, Aracil C, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med 2013; 368: 11-21.
19. Jairath V, Kahan BC, Gray A, Dore CJ, Mora A, James MW, et al. Restrictive versus liberal blood transfusion for acute upper gastrointestinal bleeding (trigger): A pragmatic, open-label, cluster randomised feasibility trial. Lancet 2015; 386: 137-44.
20. Carson JL, Terrin ML, Noveck H, Sanders DW, Chairman BR, Rhoads GG, et al. Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med 2011; 365: 2453-62.
21. Rohde JM, Dimicheff DE, Blumberg N, Saint S, Langa KM, Kuhn L, et al. Health care-associated infection after red blood cell transfusion: A systematic review and meta-analysis. JAMA 2014; 311: 1317-26.
22. Simon TL, Alverson DC, AuBuchon J, Cooper ES, DeChristopher PJ, Glenn GC, et al. Practice parameter for the use of red blood cell transfusions: Developed by
the red blood cell administration practice guideline development task force of the college of american pathologists. Arch Pathol Lab Med 1998; 122: 130-8.

23. Management ASoATFoPB. Practice guidelines for peri-operative blood management: An updated report by the american society of anesthesiologists task force on perioperative blood management*. Anesthesiology 2015; 122: 241-75.

24. Liumbruno GM, Bennardello F, Lattanzio A, Piccoli P, Rossetti G. Recommendations for the transfusion management of patients in the peri-operative period. Iii. The post-operative period. Blood Transfus 2011; 9: 320-35.

25. Napolitano LM, Kurek S, Luchette FA, Anderson GL, Bard MR, Bromberg W, et al. Clinical practice guideline: Red blood cell transfusion in adult trauma and critical care. J Trauma 2009; 67: 1439-42.

26. Napolitano LM, Kurek S, Luchette FA, Corwin HI, Baric PS, Tisherman SA, et al. Clinical practice guideline: Red blood cell transfusion in adult trauma and critical care. Crit Care Med 2009; 37: 3124-57.

27. Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, Saha SP, et al. 2011 update to the society of thoracic surgeons and the society of cardiovascular anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg 2011; 91: 944-82.

28. Laine L, Jensen DM. Management of patients with ulcer bleeding. Am J Gastroenterol 2012; 107: 345-60; quiz 61.

29. Alexander J, Cifu AS. Transfusion of red blood cells. JAMA 2016; 316: 2038-9.

30. Centre NCG. Acute upper gastrointestinal bleeding. (Evidence update august 2014. A summary of selected new evidence relevant to nice clinical guideline 141. Evidence update 63). London: Royal College of Physicians 2012.

31. Excellence TNiHHaC. Blood transfusion nice guideline. Available at: https://www.nice.org.uk/guidance/rg24 Accessed on 31/03/2017.

32. Kozek-Langenecker SA, Ahmed AB, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, et al. Management of severe perioperative bleeding: Guidelines from the european society of anaesthesiology: First update 2016. Eur J Anaesthesiol 2017; 34: 332-95.

33. Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al. Ese guidelines for the management of acute coronary syndromes in patients presenting without persistent st-segment elevation: The task force for the management of acute coronary syndromes (acs) in patients presenting without persistent st-segment elevation of the european society of cardiology (esco). Eur Heart J 2011; 32: 2999-3054.

34. Qaseem A, Humphrey LL, Fitterman N, Starkey M, Shekelle P. Treatment of anemia in patients with heart disease: A clinical practice guideline from the american college of physicians. Ann Intern Med 2013; 159: 770-9.

35. Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, et al. Clinical practice guidelines from the aabb: Red blood cell transfusion thresholds and storage. JAMA 2016; 316: 2025-35.

36. Berkow L, Rotolo S, Mirski E. Continuous noninvasive hemoglobin monitoring during complex spine surgery. Anesth Analg 2011; 113: 1396-402.

37. Miller RD, Ward TA, Shiboski SC, Cohen NH. A comparison of three methods of hemoglobin monitoring in patients undergoing spine surgery. Anesth Analg 2011; 112: 88-63.

38. Kim SH, Choi JM, Kim HJ, Choi SS, Choi IC. Continuous noninvasive hemoglobin measurement is useful in patients undergoing double-jaw surgery. J Oral Maxillofac Surg 2014; 72: 1813-9.

39. Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: A systematic review of the literature. Crit Care Med 2008; 36: 2667-74.

40. Perkins HA, Busch MP. Transfusion-associated infections: 50 years of relentless challenges and remarkable progress. Transfusion 2010; 50: 2080-99.

41. Hourfar MK, Jork C, Schottstedt V, Weber-Schneh M, Brixner V, Busch MP, et al. Experience of german red cross blood donor services with nucleic acid testing Results of screening more than 30 million blood donations for human immunodeficiency virus-1, hepatitis c virus, and hepatitis b virus. Transfusion 2008; 48: 1558-66.

42. Lindholm PF, Annen K, Ramsey G. Approaches to minimize infection risk in blood banking and transfusion...
practice. Infect Disord Drug Targets 2011; 11: 45-56.

43. Ziemann M, Thiele T. Transfusion-transmitted cmv infection - current knowledge and future perspectives. 2017.

44. Sharma AD, Slaughter TF, Clements FM, Seeram G, Newman MF, Phillips-Bute B, et al. Association of leukocyte-depleted blood transfusions with infectious complications after cardiac surgery. Surg Infect (Larchmt) 2002; 3: 127-33.

45. Zimring JC, Smith N, Stowell SR, Johnsen JM, Bell LN, Francis RO, et al. Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model. Transfusion 2014; 54: 137-48.

46. Connell NT. Transfusion medicine. Prim Care 2016; 43: 651-9.

47. Webert KE, Blajchman MA. Transfusion-related acute lung injury. Transfus Med Rev 2003; 17: 252-62.

48. Bux J. Antibody-mediated (immune) transfusion-related acute lung injury. Vox Sang 2011; 100: 122-8.

49. Shaz BH, Stowell SR, Hillyer CD. Transfusion-related acute lung injury: From bedside to bench and back. Blood 2011; 117: 1463-71.

50. N Franklin Adkinson Jr BSB, Wesley Burks, William W Busse, Stephen T Holgate, Robert F Lemanske Jr, Robyn E O’Hehir. Middleton’s allergy principles & practice. 8th edition. Elsevier. 2014; 1152.

51. Anani W, Triulzi D, Yazer MH, Qu L. Relative iga-deficient recipients have an increased risk of severe allergic transfusion reactions. Vox Sang 2014; 107: 389-92.

52. Popovsky MA, Audet AM, Andrzejewski C, Jr. Transfusion-associated circulatory overload in orthopedic surgery patients: A multi-institutional study. Immunohematology 1996; 12: 87-9.

53. Sihler KC, Napolitano LM. Complications of massive transfusion. Chest 2010; 137: 209-20.

54. Muszynski JA, Spinella PC, Cholette JM, Acker JP, Hall MW, Juffermans NP, et al. Transfusion-related immunomodulation: Review of the literature and implications for pediatric critical illness. Transfusion 2017; 57: 195-206.

55. Vamvakas EC, Blajchman MA. Transfusion-related immunomodulation (trim): An update. Blood Rev 2007; 21: 327-48.

56. Blajchman MA. The clinical benefits of the leukoreduction of blood products. J Trauma 2006; 60: S83-90.

57. van Twuyver E, Mooijaart RJ, ten Berge IJ, van der Horst AR, Wilmink JM, Kast WM, et al. Pretransplantation blood transfusion revisited. N Engl J Med 1991; 325: 1210-3.

58. Jensen LS, Andersen AJ, Christiansen PM, Holkland P, Juhl CO, Madsen G, et al. Postoperative infection and natural killer cell function following blood transfusion in patients undergoing elective colorectal surgery. Br J Surg 1992; 79: 513-6.

59. Berezina TL, Zaets SB, Morgan C, Spellert CR, Kamiyama M, Spolarics Z, et al. Influence of storage on red blood cell rheological properties. J Surg Res 2002; 102: 6-12.

60. Vamvakas EC. Possible mechanisms of allogeneic blood transfusion-associated postoperative infection. Transfus Med Rev 2002; 16: 144-60.

61. Dzik WH. Apoptosis, tgf beta and transfusion-related immunosuppression: Biologic versus clinical effects. Transfus Apher Sci 2003; 29: 127-9.

62. Silliman CC, Clay KL, Thurman GW, Johnson CA, Ambruso DR. Partial characterization of lipids that develop during the routine storage of blood and prime the neutrophil nadph oxidase. J Lab Clin Med 1994; 124: 684-94.

63. Fox LM, Cox DG, Lockridge JL, Wang X, Chen X, Scharf L, et al. Recognition of lyso-phospholipids by human natural killer t lymphocytes. PLoS Biol 2009; 7: e1000228.

64. Coutant F, Perrin-Cocon L, Agaugue S, Delair T, Andre P, Lotteau V. Mature dendritic cell generation promoted by lysophosphatidylcholine. J Immunol 2002; 169: 1688-95.

65. Jin Y, Damaj BB, Maghazachi AA. Human resting cd16+, cd16+ and il-2-, il-12-, il-15- or ifn-alpha-activated natural killer cells differentially respond to sphingosyrophosphorylcholine, lysophosphatidylcholine and platelet-activating factor. Eur J Immunol 2005; 35: 2699-708.

66. Olofsson KE, Andersson L, Nilsson J, Bjorkbacka H. Nanomolar concentrations of lysophosphatidylcholine recruit monocytes and induce pro-inflammatory cytokine production in macrophages. Biochem Biophys Res Commun 2008; 370: 348-52.
67. Jacobi KE, Wanke C, Jacobi A, Weisbach V, Hemmerling TM. Determination of eicosanoid and cytokine production in salvaged blood, stored red blood cell concentrates, and whole blood. J Clin Anesth 2000; 12: 94-9.

68. Gately S, Li WW. Multiple roles of Cox-2 in tumor angiogenesis: A target for antiangiogenic therapy. Semin Oncol 2004; 31: 2-11.

69. Mulligan JK, Rosenzweig SA, Young MR. Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2. J Immunother 2010; 33: 126-35.

70. Baratelli F, Lee JM, Hazra S, Lin Y, Walser TC, Schaue D, et al. PGE (2) contributes to TGF-beta induced T regulatory cell function in human non-small cell lung cancer. Am J Transl Res 2010; 2: 356-67.

71. Soontrapa K, Honda T, Sakata D, Yao C, Hirata T, Hori S, et al. Prostaglandin E2-Prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc Natl Acad Sci U S A 2011; 108: 6668-73.

72. Bägim YM, Brand A. Transfusion-related immunomodulation: A second hit in an inflammatory cascade? Vox Sang 2008; 95: 261-71.

73. Seghatchian J. Universal leucodepletion: An overview of some unresolved issues and the highlights of lessons learned. Transfus Apher Sci 2003; 29: 105-17.

74. Baumgarntner JM, Nydam TI, Clarke JH, Banerjee A, Silliman CC, McCarter MD. Red blood cell supernatant potentiates LPS-induced proinflammatory cytokine response from peripheral blood mononuclear cells. J Interferon Cytokine Res 2009; 29: 333-8.

75. Karam O, Tucci M, Toledano BJ, Robitaille N, Cousineau J, Thibault L, et al. Length of storage and in vitro immunomodulation induced by prestorage leukoreduced red blood cells. Transfusion 2009; 49: 2326-34.

76. Patel MB, Proctor KG, Majetschak M. Extracellular ubiquitin increases in packed red blood cell units during storage. J Surg Res 2006; 135: 226-32.

77. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25+ high regulatory cells in human peripheral blood. J Immunol 2001; 167: 1245-53.

78. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003; 197: 403-11.

79. Chen W, Frank ME, Jin W, Wahl SM. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 2001; 14: 715-25.

80. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekielz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000; 405: 85-90.

81. Saas P, Bonnefoy F, Kury-Paulin S, Kleinaufaa F, Perruche S. Mediators involved in the immunomodulatory effects of apoptotic cells. Transplantation 2007; 84: 531-4.

82. Saas P, Angelot F, Bardiaux I, Seilles E, Garnache-Ottou F, Perruche S. Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect? Transfus Clin Biol 2012; 19: 90-7.

83. McDonald PP, Fadok VA, Bratton D, Henson PM. Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-beta in macrophages that have ingested apoptotic cells. J Immunol 1999; 163: 6164-72.

84. Opelz G, Terasaki PI. Improvement of kidney-graft survival with increased numbers of blood transfusions. N Engl J Med 1978; 299: 799-803.

85. Williams JG, Hughes LE. Effect of perioperative blood transfusion on recurrence of crohn's disease. Lancet 1989; 2: 131-3.

86. Rizzo JD, Somerfield MR, Hagerty KL, Seidenfeld J, Bohlius J, Bennett CL, et al. Use of epoetin and darbepoetin in patients with cancer: 2007 american society of clinical oncology/american society of hematology clinical practice guideline update. J Clin Oncol 2008; 26: 132-49.

87. Cata JP, Chukka V, Wang H, Feng L, Gottumukkala V, Martinez F, et al. Perioperative blood transfusions and survival in patients with non-small cell lung cancer: A retrospective study. BMC Anesthesiol 2013; 13: 42.

88. Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T. Regulation of tumor growth and metastasis: The role of tumor microenvironment. Cancer Growth Metastasis
2014; 7: 9-18.
89. De Oliveira GS, Jr., Schink JC, Buoy C, Ahmad S, Fitzgerald PG, McCarthy RJ. The association between allogeneic perioperative blood transfusion on tumour recurrence and survival in patients with advanced ovarian cancer. Transfus Med 2012; 22: 97-103.
90. Acheson AG, Brookes MJ, Spahn DR. Effects of allogeneic red blood cell transfusions on clinical outcomes in patients undergoing colorectal cancer surgery: A systematic review and meta-analysis. Ann Surg 2012; 256: 235-44.
91. Vamvakas EC. Allogeneic blood transfusion and cancer recurrence: 20 years later. Transfusion 2014; 54: 2149-53.
92. Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet-cancer loop. Eur J Intern Med 2013; 24: 393-400.
93. Goubran HA, Burnouf T, Stakiw J, Seghatchian J. Platelet microparticle: A sensitive physiological "fine tuning" balancing factor in health and disease. Transfus Apher Sci 2015; 52: 12-8.
94. Goubran H, Sabry W, Koth R, Seghatchian J, Burnouf T. Platelet microparticles and cancer: An intimate cross-talk. Transfus Apher Sci 2015; 53: 168-72.
95. Drabsch Y, ten Dijke P. Tgf-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 2012; 31: 553-68.
96. Connolly EC, Freimuth J, Akhurst RJ. Complexities of tgf-beta targeted cancer therapy. Int J Biol Sci 2012; 8: 964-78.
97. Morner ME, Edgren G, Martling A, Gunnarsson U, Egenvall M. Preoperative anaemia and perioperative red blood cell transfusion as prognostic factors for recurrence and mortality in colorectal cancer-a swedish cohort study. Int J Colorectal Dis 2017; 32: 223-32.
98. Nathanson SD, Tilley BC, Schultz L, Smith RF. Perioperative allogeneic blood transfusions. Survival in patients with resected carcinomas of the colon and rectum. Arch Surg 1985; 120: 734-8.
99. Weiden PL, Bean MA, Schultz P. Perioperative blood transfusion does not increase the risk of colorectal cancer recurrence. Cancer 1987; 60: 870-4.
100. Donohue JH, Williams S, Cha S, Windschitl HE, Witzig TE, Nelson H, et al. Perioperative blood transfusions do not affect disease recurrence of patients undergoing curative resection of colorectal carcinoma: A mayo/north central cancer treatment group study. J Clin Oncol 1995; 13: 1671-8.
101. Wiig JN. [blood transfusion in cancer of the colon and rectum. Friend or foe of the surgeon? A review]. Tidsskr Nor Laegeforen 1990; 110: 503-7.
102. Deleplanque G, Deleplanque P, Kraimps JL, Carretier M, Barbier J. [prognostic incidence of blood transfusion in 753 patients operated for colorectal adenocarcinoma]. Ann Chir 1992; 46: 584-91.
103. Faenza A, Cunsolo A, Selleri S, Lucarelli S, Farneti PA, Gozzetti G. Correlation between plasma or blood transfusion and survival after curative surgery for colorectal cancer. Int Surg 1992; 77: 264-9.
104. Chung M, Steinmetz OK, Gordon PH. Perioperative blood transfusion and outcome after resection for colorectal carcinoma. Br J Surg 1993; 80: 427-32.
105. Steup WH, Hojo K, Moriya Y, Sugihara K, Mizuno S, Herrmans J, et al. An analysis on the effect of blood transfusion on recurrence and survival in patients undergoing extended lymphadenectomy for colorectal cancer. Hepatogastroenterology 1994; 41: 253-9.
106. Qiu L, Wang DR, Zhang XY, Gao S, Li XX, Sun GP, et al. Impact of perioperative blood transfusion on immune function and prognosis in colorectal cancer patients. Transfus Apher Sci 2016; 54: 235-41.
107. Li XX, Meng J, Sun GP, Tang YY, Liang GF, Wang MF, et al. Effects of perioperative blood transfusion on the prognosis in hereditary and sporadic colon cancer. Biomarkers 2015; 20: 481-6.
108. Kaneko M, Sasaki S, Ishimaru K, Terai E, Nakayama H, Watanabe T. The impact of perioperative allogeneic blood transfusion on survival in elderly patients with colorectal cancer. Anticancer Res 2015; 35: 3553-8.
109. Tartert PL. Blood transfusion and infectious complications following colorectal cancer surgery. Br J Surg 1988; 75: 789-92.
110. Vamvakas EC, Carven JH, Hibberd PL. Blood transfusion and infection after colorectal cancer surgery. Transfusion 1996; 36: 1000-8.
111. Schiergens TS, Rentsch M, Kasparek MS, Frenes K, Jauch KW, Thasler WE. Impact of perioperative allogeneic red blood cell transfusion on recurrence and overall survival after resection of colorectal liver metastases. Dis Colon Rectum 2015; 58: 74-82.

112. Hallet J, Tsang M, Cheng ES, Hahashi R, Kulyk I, Hanna SS, et al. The impact of perioperative red blood cell transfusions on long-term outcomes after hepatectomy for colorectal liver metastases. Ann Surg Oncol 2015; 22: 4038-45.

113. Liu L, Wang Z, Jiang S, Shao B, Liu J, Zhang S, et al. Perioperative allogeneic blood transfusion is associated with worse clinical outcomes for hepatocellular carcinoma: A meta-analysis. PLoS One 2013; 8: e64261.

114. Asahara T, Katayama K, Itamoto T, Yano M, Hino H, Okamoto Y, et al. Perioperative blood transfusion as a prognostic indicator in patients with hepatocellular carcinoma. World J Surg 1999; 23: 676-80.

115. Makino Y, Yamanoi A, Kimoto T, El-Assal ON, Kohno H, Nagsue N. The influence of perioperative blood transfusion on intrahepatic recurrence after curative resection of hepatocellular carcinoma. Am J Gastroenterol 2000; 95: 1294-300.

116. Sun C, Wang Y, Yao HS, Hu ZQ. Allogeneic blood transfusion and the prognosis of gastric cancer patients: Systematic review and meta-analysis. Int J Surg 2015; 13: 102-10.

117. Fong Y, Karpeh M, Mayer K, Brennan MF. Association of perioperative transfusions with poor outcome in resection of gastric adenocarcinoma. Am J Surg 1994; 167: 256-60.

118. Hyung WJ, Noh SH, Shin DW, Huh J, Huh BJ, Choi SH, et al. Adverse effects of perioperative transfusion on patients with stage iii and iv gastric cancer. Ann Surg Oncol 2002; 9: 5-12.

119. Kosumi K, Baba Y, Harada K, Yoshida N, Watanabe M, Baba H. Perioperative blood transfusion, age at surgery, and prognosis in a database of 526 upper gastrointestinal cancers. Dig Surg 2015; 32: 445-53.

120. Dresner SM, Lamb PJ, Shenfine J, Hayes N, Griffin SM. Prognostic significance of peri-operative blood transfusion following radical resection for oesophageal carcinoma. Eur J Surg Oncol 2000; 26: 492-7.

121. Langley SM, Alexiou C, Bailey DH, Weeden DF. The influence of perioperative blood transfusion on survival after esophageal resection for carcinoma. Ann Thorac Surg 2002; 73: 1704-9.

122. Reeh M, Ghabad T, Dedow J, Vettorazzi E, Uzunoglu FG, Nentwich M, et al. Allogeneic blood transfusion is associated with poor perioperative and long-term outcome in esophageal cancer. World J Surg 2017; 41: 208-15.

123. Lim MC, Kim JY, Kim TH, Park S, Kong SY, Yoon JH, et al. Allogeneic blood transfusion given before radiotherapy is associated with the poor clinical outcome in patients with cervical cancer. Yonsei Med J 2008; 49: 993-1003.

124. Santin AD, Bellone S, Parrish RS, Coke C, Dunn D, Roman J, et al. Influence of allogeneic blood transfusion on clinical outcome during radiotherapy for cancer of the uterine cervix. Gynecol Obstet Invest 2003; 56: 28-34.

125. Linder BJ, Frank I, Cheville JC, Tollefson MK, Thompson RH, Tarrell RF, et al. The impact of perioperative blood transfusion on cancer recurrence and survival following radical cystectomy. Eur Urol 2013; 63: 839-45.

126. Little AG, Wu HS, Ferguson MK, Ho CH, Bowers VD, Segalin A, et al. Perioperative blood transfusion adversely affects prognosis of patients with stage i non-small-cell lung cancer. Am J Surg 1990; 160: 630-2; discussion 3.

127. Perisanidis C, Dettke M, Papadogeorgakis N, Schoppmann A, Mittlbock M, Kyzas PA, et al. Transfusion of allogeneic leukocyte-depleted packed red blood cells is associated with postoperative morbidity in patients undergoing oral and oropharyngeal cancer surgery. Oral Oncol 2012; 48: 372-8.

128. Katakai K, Aoki T, Ota Y, Yamazaki H, Otsuru M, Takahashi M, et al. Analysis of risk factors for surgical-site infections in 276 oral cancer surgeries with microvascular free-flap reconstructions at a single university hospital. J Infect Chemother 2010; 16: 334-9.

129. Liu SA, Wong YK, Poon CK, Wang CC, Wang CP, Tung KC. Risk factors for wound infection after surgery in primary oral cavity cancer patients. Laryngoscope 2007;
117: 166-71.
130. Taniguchi Y, Okura M. Prognostic significance of perioperative blood transfusion in oral cavity squamous cell carcinoma. Head Neck 2003; 25: 931-6.
131. Szakmany T, Dodd M, Dempsey GA, Lowe D, Brown JS, Vaughan ED, et al. The influence of allogenic blood transfusion in patients having free-flap primary surgery for oral and oropharyngeal squamous cell carcinoma. Br J Cancer 2006; 94: 647-53.
132. Chau JK, Harris J, Seikaly HR. Transfusion as a predictor of recurrence and survival in head and neck cancer surgery patients. J Otolaryngol Head Neck Surg 2010; 39: 516-22.
133. Ervens J, Marks C, Hechler M, Plath T, Hansen D, Hoffmeister B. Effect of induced hypotensive anaesthesia vs isovolaemic haemodilution on blood loss and transfusion requirements in orthognathic surgery: A prospective, single-blinded, randomized, controlled clinical study. Int J Oral Maxillofac Surg 2010; 39: 1168-74.
134. Choi WS, Samman N. Risks and benefits of deliberate hypotension in anaesthesia: A systematic review. Int J Oral Maxillofac Surg 2008; 37: 687-703.
135. Varol A, Basa S, Ozturk S. The role of controlled hypotension upon transfusion requirement during maxillary downfracture in double-jaw surgery. J Craniomaxillofac Surg 2010; 38: 345-9.
136. Zellin G, Rasmusson I, Palsson J, Kahnberg KE. Evaluation of hemorrhage depressors on blood loss during orthognathic surgery: A retrospective study. J Oral Maxillofac Surg 2004; 62: 662-6.
137. Sankar D, Krishnan R, Veerabahu M, Vikraman B. Evaluation of the efficacy of tranexamic acid on blood loss in orthognathic surgery. A prospective, randomized clinical study. Int J Oral Maxillofac Surg 2012; 41: 713-7.
138. Ramos E, Dalmau A, Sabate A, Lama C, Llado I, Fiqueras J, et al. Intraoperative red blood cell transfusion in liver transplantation: Influence on patient outcome, prediction of requirements, and measures to reduce them. Liver Transpl 2003; 9: 1320-7.
139. Engoren MC, Habib RH, Zacharias A, Schwann TA, Riordan GJ, Durham SJ. Effect of blood transfusion on long-term survival after cardiac operation. Ann Thorac Surg 2002; 74: 1180-6.
140. Kleczyński P, Dwiewierz A, Bagiński M, Rzeszutko I., Sorysz D, Trebacz J, et al. Association between blood transfusions and 12-month mortality after transcatheter aortic valve implantation. Int Heart J 2017; 58: 50-5.
141. Bursi F, Barbieri A, Politi I, Di Girolamo A, Malagoli A, Grimaldi T, et al. Perioperative red blood cell transfusion and outcome in stable patients after elective major vascular surgery. Eur J Vasc Endovasc Surg 2009; 37: 311-8.
142. Weber EW, Slappendel R, Prins MH, van der Schaaf DB, Durieux ME, Strumper D. Perioperative blood transfusions and delayed wound healing after hip replacement surgery: Effects on duration of hospitalization. Anesth Analg 2005; 100: 1416-21, table of contents.
143. Bernard AC, Davenport DL, Chang PK, Vaughan TB, Zwischenberger JB. Intraoperative transfusion of 1 u to 2 u packed red blood cells is associated with increased 30-day mortality, surgical-site infection, pneumonia, and sepsis in general surgery patients. J Am Coll Surg 2009; 208: 931-7, 7.e1-2; discussion 8-9.
144. Ferraris VA, Davenport DL, Saha SP, Austin PC, Zwischenberger JB. Surgical outcomes and transfusion of minimal amounts of blood in the operating room. Arch Surg 2012; 147: 49-55.
145. de Almeida JP, Vincent JL, Galas FR, de Almeida EP, Fukushima JT, Osawa EA, et al. Transfusion requirements in surgical oncology patients: A prospective, randomized controlled trial. Anesthesiology 2015; 122: 29-38.
146. Samman N, Cheung LK, Tong AC, Tideman H. Blood transfusions in bimaxillary orthognathic surgery: Are they necessary? J Oral Maxillofac Surg 1996; 54: 21-4; discussion 5-6.
147. Gong SG, Krishnan V, Waack D. Blood transfusions in bimaxillary orthognathic surgery: Are they necessary? Int J Adult Orthodont Orthognath Surg 2002; 17: 317-37.
148. Ueki K, Marukawa K, Shimada M, Nakagawa K, Yamamoto E. The assessment of blood loss in orthognathic surgery for prognathia. J Oral Maxillofac Surg 2005; 63: 350-4.
149. Stewart A, Newman I, Sneddon K, Harris M. Aprotinin reduces blood loss and the need for transfusion in
orthognathic surgery. Br J Oral Maxillofac Surg 2001; 39: 365-70.

150. Moenning JE, Bussard DA, Lapp TH, Garrison BT. Average blood loss and the risk of requiring perioperative blood transfusion in 506 orthognathic surgical procedures. J Oral Maxillofac Surg 1995; 53: 880-3.

151. Kramer FJ, Baethge C, Swennen G, Telzrow T, Schulze A, Berten J, et al. Intra- and perioperative complications of the lefort i osteotomy: A prospective evaluation of 1000 patients. J Craniofac Surg 2004; 15: 971-7; discussion 8-9.

152. Flood TR, Ilankovan V, Moos KF, el-Attar A. Cross-match requirements in orthognathic surgery: An audit. Br J Oral Maxillofac Surg 1990; 28: 292-4.

153. Tang ZL, Wang X, Yi B, Li ZL, Liang C, Wang XX. Effects of the preoperative administration of yunnan baiyao capsules on intraoperative blood loss in bimaxillary orthognathic surgery: A prospective, randomized, double-blind, placebo-controlled study. Int J Oral Maxillofac Surg 2009; 38: 261-6.

154. Faverani LP, Ramalho-Ferreira G, Fabris AL, Polo TO, Poli GH, Pastori CM, et al. Intraoperative blood loss and blood transfusion requirements in patients undergoing orthognathic surgery. Oral Maxillofac Surg 2014; 18: 305-10.

155. Garcia-Roa M, Del Carmen Vicente-Ayuso M, Bobes AM, Pedraza AC, Gonzalez-Fernandez A, Martin MP, et al. Red blood cell storage and cell morphology. Transfus Med 2012; 22: 90-6.

156. D’Alessandro A, D’Amici GM, Vaglio S, Zolla L. Time-course investigation of sagn-stored leukocyte-filtered red blood cell concentrates: From metabolism to proteomics. Haematologica 2012; 97: 107-15.

157. Bosman GJ, Werre JM, Willekens FL, Novotny VM. Erythrocyte ageing in vivo and in vitro: Structural aspects and implications for transfusion. Transfus Med 2008; 18: 335-47.

158. Flood TR, Ilankovan V, Moos KF, el-Attar A. Cross-match requirements in orthognathic surgery: An audit. Br J Oral Maxillofac Surg 1990; 28: 292-4.

159. Blasi B, D’Alessandro A, Ramundo N, Zolla L. Red blood cell storage and cell morphology. Transfus Med 2012; 22: 90-6.

160. D’Alessandro A, D’Amici GM, Vaglio S, Zolla L. Time-course investigation of sagn-stored leukocyte-filtered red blood cell concentrates: From metabolism to proteomics. Haematologica 2012; 97: 107-15.

161. Bosman GJ, Werre JM, Willekens FL, Novotny VM. Erythrocyte ageing in vivo and in vitro: Structural aspects and implications for transfusion. Transfus Med 2008; 18: 335-47.

162. Hod EA, Godbey EA. The outsider adverse event in transfusion: Inflammation. Presse Med 2016; 45: e325-9.

163. van de Watering L. Red cell storage and prognosis. Vox Sang 2011; 100: 36-45.

164. Eikelboom JW, Cook RJ, Barty R, Liu Y, Arnold DM, Crownther MA, et al. Rationale and design of the informing fresh versus old red cell management (inform) trial: An international pragmatic randomized trial. Transfus Med Rev 2016; 30: 25-9.

165. Shah A, McKechnie S, Brunskill SJ, Stanworth SJ. Fresh versus old red cell transfusions: What have the recent clinical trials found? Curr Opin Hematol 2016; 23: 550-6.

166. Chalfin HJ, Frank SM, Feng Z, Trock BJ, Drake CG, Partin AW, et al. Allogeneic versus autologous blood transfusion and survival after radical prostatectomy. Transfusion 2014; 54: 2168-74.

167. Dietrich W, Thuermel K, Heyde S, Busley R, Berger K. Autologous blood donation in cardiac surgery: Reduction of allogeneic blood transfusion and cost-effectiveness. J Cardiothorac Vasc Anesth 2005; 19: 589-96.

168. Heiss MM, Mempel W, Delanoff C, Jauch KW, Gabka C, Mempel M, et al. Blood transfusion-modulated tumor recurrence: First results of a randomized study of autologous versus allogeneic blood transfusion in colorectal cancer surgery. J Clin Oncol 1994; 12: 1859-67.

169. Oh AY, Seo KS, Lee GE, Kim HJ. Effect of preoperative autologous blood donation on patients undergoing bimaxillary orthognathic surgery: A retrospective analysis. Int J Oral Maxillofac Surg 2016; 45: 486-9.

170. Jakovina Blazekovic S, Bicanic G, Hrabac P, Tripkovic B, Delimar D. Pre-operative autologous blood donation...
versus no blood donation in total knee arthroplasty: A prospective randomised trial. Int Orthop 2014; 38: 341-6.

171. Zhou J. A review of the application of autologous blood transfusion. Braz J Med Biol Res 2016; 49: e5493.

172. Practice guidelines for blood component therapy: A report by the american society of anesthesiologists task force on blood component therapy. Anesthesiology 1996; 84: 732-47.

173. Bryson GL, Laupacis A, Wells GA. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. The international study of perioperative transfusion. Anesth Analg 1998; 86: 9-15.

174. Barile L, Fominskii E, Di Tomasso N, Alpizar Castro LE, Landoni G, De Luca M, et al. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: A systematic review and meta-analysis of randomized trials. Anesth Analg 2017; 124: 743-52.

175. Lee JM, Seo KS, Kim HJ, Shin SY. Experience of a bloodless two-jaw surgery and care in jehovah's witnesses with anemia. J Korean Dent Soc Anesthesiol 2012; 12: 25-31.

176. Ickx BE, Rigolet M, Van Der Linden PJ. Cardiovascular and metabolic response to acute normovolemic anemia. Effects of anesthesia. Anesthesiology 2000; 93: 1011-6.

177. Hill J, James V. Survey of autologous blood transfusion activity in england (2001). Transfus Med 2003; 13: 9-15.

178. Ashworth A, Klein AA. Cell salvage as part of a blood conservation strategy in anaesthesia. Br J Anaesth 2010; 105: 401-16.