Associations between bone fractures and post-traumatic stress disorder after the Great East Japan Earthquake in the older adult: a prospective cohort study from the Fukushima Health Management Survey

Fumikazu Hayashi (fhayashi@fmu.ac.jp)
Fukushima medical university
https://orcid.org/0000-0002-6888-6640

Tetsuya Ohira
department of epidemiology, school of medicine, fukushima medical university

Hironori Nakano
department of epidemiology, school of medicine, fukushima medical university

Masanori Nagao
department of epidemiology, school of medicine, fukushima medical university

Kanako Okazaki
radiation medical science for the fukushima health management survey, fukushima medical university

Mayumi Harigane
radiation medical science for the fukushima health management survey, fukushima medical university

Seiji Yasumura
department of public health, school of medicine, fukushima medical university

Masaharu Maeda
department of disaster psychiatry, school of medicine, fukushima medical university

Atsushi Takahashi
department of gastroenterology, school of medicine, fukushima medical university

Hirooki Yabe
department of neuropsychiatry, school of medicine, fukushima medical university

Yuriko Suzuki
department of mental health policy, national institute of mental health, national center of neurology and psychiatry

Kenji Kamiya
radiation medical science center for the fukushima health management survey, fukushima medical university

Research article

Keywords: fractures, mental health, aged, disaster victims, Fukushima nuclear accident

Posted Date: June 17th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-34747/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on January 7th, 2021. See the published version at https://doi.org/10.1186/s12877-020-01934-9.
Abstract

Background

Bone metabolism is known to be affected by psychological stress, and increased psychological stress could increase fracture risk. The purpose of this study was to clarify the effect of mental health deterioration caused by disaster on fracture risk in the older adult.

Methods

This study analyzed the responses of those who answered the Mental Health and Lifestyle Survey component of the Fukushima Health Management Survey conducted in 2011: a total of 13,768 people aged 65 or more who had no history of fractures at the time of the Great East Japan Earthquake. We were able to track the presence or absence of a fracture until 2016. The analysis included age, sex, physical factors, social factors, psychological factors, and lifestyle factors. A survival analysis was performed on the relationship between each item and the fracture. Then, univariate and multivariate Cox proportional hazard models were constructed to identify fracture risk factors.

Results

A total of 1,687 (12.3%) fractures occurred during the observation period. As a result of univariate and multivariate Cox proportional hazard models, those at high risk of post-traumatic stress disorder (PTSD) (PTSD checklists ≥ 44) (hazard ratio [HR]: 1.18; 95% confidence interval [CI]: 1.01–1.38; P = 0.039), history of cancer (HR: 1.58; 95% CI: 1.28–1.93; P < 0.001), history of stroke (HR: 1.33; 95% CI: 1.08–1.65; P = 0.009), history of heart disease (HR: 1.23; 95% CI: 1.05–1.45; P = 0.012), history of diabetes (HR: 1.21; 95% CI: 1.05–1.39; P = 0.007), and who reported being extremely dissatisfied with sleep or not being able to sleep at all (HR: 1.40; 95% CI: 1.04–1.89; P = 0.025), had a significant increase in fracture risk independent of age and sex.

Conclusions

The results of this study indicate that chronic psychological stress caused by the Great East Japan Earthquake could have contributed to increased fracture risk in the older adult. Therefore, understanding bone mineral density, offering active psychological care to reduce psychosocial stress, and providing sleep guidance are important for preventing fractures in older adult residents, particularly those in evacuation areas.

Background

The Great East Japan Earthquake of magnitude 9.0 occurred on March 11, 2011, with its epicenter at the sea floor 130 km off the southeast Oshika Peninsula, Miyagi Prefecture. The related accident at Fukushima Daiichi Nuclear Power Station (FDNPS) occurred in Fukushima Prefecture. Compared with natural disasters, man-made disasters have been found to be responsible for a higher occurrence of post-traumatic stress disorder (PTSD). In fact, surveys of evacuation zone inhabitants have indicated that the proportion of adults with a PTSD checklist (PCL) score higher than the cutoff value, reflecting the presence of traumatic symptoms (2011: 21.6%; 2012: 18.3%), was comparable with that of workers affected by the 9/11 World Trade Center attack. A survey of 240 evacuees in Hirono Town, Fukushima Prefecture, one of the evacuation areas, found that 66.8% had reported symptoms of depression and 53.5% had reported clinically relevant symptoms of PTSD. Thus, residents in evacuation areas such as those in Fukushima Prefecture could be at high risk of developing PTSD due to events related to the disaster.

A possible association between increased fracture risk and PTSD has recently been reported; therefore, residents in Fukushima evacuation areas who are at high risk of developing PTSD could also be at high risk of fractures. According to the
results of the 2013 Basic Survey on National Life published by the Japanese Ministry of Health, Labor, and Welfare, 11.8% were certified as requiring support or nursing care because of falls or broken bones, a major factor equivalent to stroke. In addition, Tanji et al. reported that those with higher psychological distress after an earthquake have a higher risk of requiring nursing care. If residents in evacuation areas in Fukushima Prefecture are at high risk of developing PTSD, the associated higher risk of increased fractures could affect the healthy life expectancy and quality of life (QOL) of similar residents in evacuation areas. In particular, an increase in fracture risk in the older adult would contribute to an increase in the number of those requiring support or nursing care. However, no study has examined the relationship between the risk of developing PTSD due to earthquake and fractures in older adult residents of evacuation areas such as Fukushima Prefecture. Therefore, to maintain and improve the healthy life expectancy and QOL of older adult residents in the Fukushima Prefecture evacuation area, the association between the risk of PTSD and fractures in these residents should be investigated.

This study used data on the older adult taken from the Fukushima Health Management Survey to investigate the association between the frequency of fractures and factors related to the Great East Japan Earthquake, including the risk of developing PTSD.

Methods

Study group

Following the Great East Japan Earthquake, the Japanese government declared that the area outside the 20 km radius of the Fukushima Daiichi power plant, where the total radiation dose (cumulative radiation dose) was expected to reach >20 mSv/year, was the “planned evacuation area”; the area within a 20- to 30 km radius was the “area prepared for emergency evacuation”; and the area within a 20 km radius was the “caution zone.” Accordingly, the Japanese government evacuated residents from 13 cities, towns, and villages (all areas within Hirono-machi, Naraha-machi, Tomioka-machi, Kawauchi-mura, Okuma-machi, Futaba-machi, Namie-machi, Katsurao-mura, litate-mura, part of Tamura City, part of Minami-soma City, part of Kawamata-machi, and part of Date-city).

Since January 18, 2012, the Fukushima Health Management Survey has been conducted to evaluate the impact of radiation and to determine the health status of Fukushima residents, considering the diffusion of radioactive substances and evacuation due to the accident at FDNPS, which could subsequently help prevent illnesses, detect illnesses early, and provide early treatment for maintaining and improving the future health of the residents. Among the individuals who completed the Fukushima Health Management Survey, including the Mental Health and Lifestyle Survey component, were those who had been residing in the 13 towns that had to be evacuated because of the Great East Japan Earthquake (individuals with registered residency). Some 180,604 were aged ≥15 years (individuals born before April 1, 1995), of whom 27,066 were aged ≥65 years (men: 11,795; women: 15,271) and had completed the 2011 edition of the registered questionnaire (valid responses were obtained from 73,431 individuals, with a response rate of 40.7% and a mean age of 56.4 years), which comprised the sample for the present study. According to the questionnaire on “History of fractures after age 50,” as of 2011, 19,844 individuals (men: 9,297; women: 10,547; mean age: 75.2 ± 7.0 years) were confirmed to have had no recent history of fractures. Based on a questionnaire on fractures from 2012 to 2016, the occurrence of fractures was determined. Excluding 6,076 individuals whose fracture occurrence could not be tracked until 2016, 13,768 patients (men: 6,632; women: 7,136) were ultimately targeted (with a mean age of 74.5 ± 6.6 years and a mean follow-up period of 3.75 ± 1.48 person-years) (Fig. 1).

The analysis includes age, sex, physical factors (history of fractures, cancer, stroke, heart disease, diabetes, dyslipidemia, hepatic disorder, high blood pressure, and thyroid disease), social factors (experience of earthquake, tsunami, nuclear power plant accident [heard the explosion], need for assistance, change in employment status, and change in residence), psychological factors (history of mental illness, PCL), and lifestyle factors (history of smoking, history of drinking, sleep satisfaction levels, and exercise habits) in the items of the self-administered questionnaire used in the 2011 Mental Health and Lifestyle Survey.
Fracture Determination

In the Mental Health and Lifestyle Survey, questions regarding the presence or absence of fractures differ depending on the year, and the incidence of fractures was determined by combining the questions.

The presence or absence of fractures in 2011 and 2012 was confirmed by responding to a question on "A history of fractures after age 50." In 2013, in addition to the above question, a combination of answers regarding whether “a fracture was diagnosed by a physician within the past year” had been used to determine the presence or absence of fracture. In 2014 and 2015, the presence or absence of fractures had been determined based on only the answer to “fractures within 1 year.” In 2016, the incidence of fractures had been determined by a question on “History of fractures after the age of 50.”

Trauma Reaction Evaluation

The presence or absence of a trauma reaction was evaluated using PCL11−12; those with a total PCL score of 44 or more were defined as being at high risk of PTSD.

History Of Disease

Residents were asked whether they had a history of cancer, stroke, heart disease, hypertension, diabetes, dyslipidemia, hepatic disorder, thyroid disease, or mental illness.

Lifestyle

The questionnaire section on smoking habits comprised three choices: never smoked, former smoker, or current smoker. The section on drinking habits also comprised three choices: never drinks or rarely drinks (less than once a month), former drinker, or current drinker (more than once a month). The question regarding the sleep satisfaction component comprised four choices: satisfied with sleep, slightly unsatisfied with sleep, quite unsatisfied with sleep, and very dissatisfied with sleep or does not sleep at all. Furthermore, the question regarding the exercise habits component comprised four choices: almost daily, two to four times a week, approximately once a week, or almost never.

Experience Of The Great East Japan Earthquake

The question regarding the experience of the Great East Japan Earthquake involved individuals responding to whether they had experienced the earthquake, tsunami, and nuclear power plant accident (heard the explosion).

Need For Assistance

The question regarding need for assistance involved individuals responding to whether they could eat, change clothes, use restrooms, and shop alone. Those who answered that assistance was required for any of the four items were defined as a group requiring assistance.

Changes In Employment Status

Regarding change in employment status (job change or unemployment) following the earthquake and accident, residents could respond with either “changed” or “unchanged.”
Changes In Housing And Evacuation

Residents could respond to the question regarding change in residence after the earthquake in one of the following ways: residing in a shelter, in temporary housing, renting a house or apartment, residing in a relative's house, residing in their own house, or other (free comment). The respondents who had lived in temporary or evacuation shelters immediately after the earthquake were defined as having changed their residence.

In addition, the residents of Tamura city, Minamisoma-city, Date-city, and Kawamata-towns whose current housing was not a temporary or evacuation center in 2011 were defined as the nonevacuee group. The others were defined as evacuee groups.

Statistical Analysis Methods

The statistical analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). The Kaplan–Meier method and the log-rank test were used to compare the difference in the incidence of fractures based on the answers for each item. In addition, univariate and multivariate Cox proportional hazard models were used to obtain crude and adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between each factor and fractures. All the data are presented as the number of individuals (n), mean, standard deviation, or percentages. P < 0.05 was considered statistically significant.

Results

Participant characteristics

Table 1 lists the participant characteristics. The mean follow-up period for all participants was 3.75 ± 1.48 person-years. Some 1,687 (12.3%) participants experienced a fracture during the observation period.
Table 1
Participants’ characteristics.

Factor	Classification	All participants (n = 13768)	
		Mean	SD
Age	years	74.5	6.6
Follow-up period	person-years	3.75	1.48
Sex			
Men		6632	48.2
Women		7136	51.8
PCL Scores			
< 44		9252	74.5
≥ 44		3174	25.5
Experience of evacuation			
No		6349	69.6
Yes		2774	30.4
Experience of earthquake			
No		962	7.0
Yes		12806	93.0
Experience of tsunami			
No		10604	77.0
Yes		3164	23.0
Experience of a nuclear accident			
(explosion heard)			
No		5463	39.7
Yes		8305	60.3
History of mental illness			
No		12289	94.4
Yes		727	5.6
Need for assistance			
No		12240	90.3
Yes		1315	9.7
History of cancer			
No		11763	91.5
Yes		1094	8.5
History of stroke			
No		11640	89.6
Yes		1353	10.4
History of heart disease			
No		10531	96.6
Yes		375	3.4
History of diabetes mellitus			
No		8611	66.5
Yes		4335	33.5
History of dyslipidemia			
No		6535	50.1
Yes		6507	49.9
History of hepatic disorder			
No		12468	96.6
Table: Factors and Classifications

Factor	Classification	All participants (n = 13768)	
	Yes	433	3.4
History of hypertension	No	3915	29.2
	Yes	9474	70.8
History of thyroid disease	No	12738	96.9
	Yes	405	3.1
Smoking habit	never smoked	7984	61.3
	former smoker	3790	29.1
	current smoker	1261	9.7
Drinking habit	never drinks or rarely drinks (less than once a month)	7289	55.1
	former drinker	763	5.8
	current drinker (more than once a month)	5185	39.2
Level of sleep satisfaction	satisfied with sleep	4247	42.3
	slightly unsatisfied with sleep	4013	40.0
	quite unsatisfied with sleep	1298	12.9
	very dissatisfied with sleep or does not sleep at all	484	4.8
Exercise habit	almost daily	3370	25.6
	2 to 4 times a week	4080	31.1
	approximately once a week	1988	15.1
	almost never	3701	28.2
Job change	No	6607	55.3
	Yes	5337	44.7
Loss of job	No	11968	86.9
	Yes	1800	13.1
Residential changes	No	8175	62.2
	Yes	4965	37.8

Data are presented as numbers with percentage or mean with standard deviation.

SD: standard deviation, PCL: post-traumatic stress disorder checklist.

Survival Analysis Results

The participants were divided into fracture and nonfracture groups, and the relationship between each factor and the incidence of fractures was examined.
As a result of the survival analysis, significant differences in fracture incidence in the older adult were found in relation to sex (P < 0.001), PTSD risk (P < 0.001), experience of earthquake (P = 0.013), history of mental illness (P < 0.001), need for assistance (P < 0.001), history of cancer (P < 0.001), history of stroke (P < 0.001), history of heart disease (P < 0.001), history of diabetes (P = 0.015), history of hepatic disorder (P = 0.048), smoking habits (P < 0.001), drinking habits (P < 0.001), sleep satisfaction (P < 0.001), and exercise habits (P = 0.005) (Table 2).
Factor	Classification	Non bone fracture (n = 1,2081)	Incidence of bone fracture (n = 1,687)	P value				
		Mean	SD	Mean	SD			
Age	years	74.3	6.6	75.8	6.8			
Follow-up period	person-years	2.50	1.45	3.93	1.40			
Sex								
	Men	6,015	49.8	617	36.6	<.0001		
	Women	6,066	50.2	1,070	63.4			
PCL Score	< 44	8,247	75.3	1,005	68.5	<.0001		
	≥ 44	2,711	24.7	463	31.5			
Experience of evacuation	No	5,596	69.7	753	68.5	0.487		
	Yes	2,427	30.3	347	31.5			
Experience of earthquake	No	829	6.9	133	7.9	0.013		
	Yes	11,252	93.1	1,554	92.1			
Experience of tsunami	No	9,293	76.9	1,311	77.7	0.951		
	Yes	2,788	23.1	376	22.3			
Experience of nuclear accident (explosion heard)	No	4,779	39.6	684	40.5	0.341		
	Yes	7,302	60.4	1,003	59.5			
History of mental illness	No	10,852	94.7	1,437	92.6	<.0001		
	Yes	613	5.3	114	7.4			
Need for assistance	No	10,812	90.8	1,428	86.4	<.0001		
	Yes	1,091	9.2	224	13.6			
History of cancer	No	10,376	91.8	1,387	89.1	<.0001		
	Yes	924	8.2	170	10.9			
History of stroke	No	10,274	90.0	1,366	86.7	<.0001		
	Yes	1,144	10.0	209	13.3			
History of heart disease	No	9,332	81.3	1,199	76.2	<.0001		
	Yes	2,153	18.7	375	23.8			
History of diabetes mellitus	No	7,605	66.8	1,006	64.2	0.015		
	Yes	3,773	33.2	562	35.8			
History of dyslipidemia	No	5,762	50.3	773	48.8	0.659		
	Yes	5,697	49.7	810	51.2			
History of hepatic disorder	No	10,965	96.7	1,503	96.0	0.048		
Factor	Classification	Non bone fracture (n = 1,2081)	Incidence of bone fracture (n = 1,687)	P value				
---------------------------------	----------------	-------------------------------	---------------------------------------	----------				
		Yes	Yes	371	3.3	62	4.0	0.119
History of hypertension	No	3,456	459	29.4	28.0	0.261		
	Yes	8,291	1,183	70.6	72.0	0.119		
History of thyroid disease	No	11,234	1,504	97.0	96.2	0.078		
	Yes	346	59	3.0	3.8	0.63		
Smoking habit	never smoked	6,922	1,062	60.3	68.1	< .0001		
	former smoker	3,427	363	29.9	23.3			
	current smoker	1,127	134	9.8	8.6			
Drinking habit	never drinks or rarely drinks (less than once a month)	6,326	963	60.4	< .0001			
	former drinker	674	89	5.8	5.6			
	current drinker	4,642	543	39.9	34.0			
Level of sleep satisfaction	satisfied with sleep	3,796	451	36.6	< .0001			
	slightly unsatisfied with sleep	3,500	513	41.7				
	quite unsatisfied with sleep	1,116	182	14.8				
	very dissatisfied with sleep or does not sleep at all	399	85	6.9				
Exercise habit	almost daily	2,989	381	25.9	24.0	0.005		
	2 to 4 times a week	3,595	485	30.5				
	approximately once a week	1,748	240	15.1				
	almost never	3,217	484	27.9	30.4			
Job change	No	5,831	776	55.3	55.4	0.500		
	Yes	4,712	625	44.7	44.6			
Loss of job	No	10,491	1,477	86.8	87.6	0.054		
	Yes	1,590	210	13.2	12.4			
Residential changes	No	7,200	975	62.3	61.4	0.820		
	Yes	4,353	612	37.7	38.6			
Factor	Classification	Non bone fracture (n = 1,2081)	Incidence of bone fracture (n = 1,687)	P value				
--------	----------------	--------------------------------	-------------------------------------	---------				

Data are presented as a number with a percentage or a mean with standard deviation.

The interval scale between the bone fracture and no bone fracture group groups was tested using the log-rank test.

SD: standard deviation, PCL: post-traumatic stress disorder checklist.

p < 0.05 was considered statistically significant.

Univariate And Multivariate Cox Proportional Hazard Models

Univariate and multivariate Cox proportional hazard models were performed for each factor, with significant differences in the survival analysis to identify the association between psychological indicators and fracture frequency in the older adult (Table 3).
Table 3
The results of univariate and multivariate Cox proportional hazard models.

Factors	Classification	Crude HR (95% CI)	P value	Adjusted HR (95% CI)	P value
Age	Continuous	1.05 (1.04 - 1.06)	<.0001	1.04 (1.03 - 1.05)	<.0001
Sex	Men Ref.				
	Women	1.69 (1.53 - 1.86)	<.0001	1.77 (1.45 - 2.16)	<.0001
PCL Score	< 44 Ref.				
	≥ 44	1.38 (1.24 - 1.54)	<.0001	1.18 (1.01 - 1.38)	0.039
Experience of earthquake	No Ref.				
	Yes	0.80 (0.67 - 0.95)	0.013	0.83 (0.61 - 1.13)	0.242
History of mental illness	No Ref.				
	Yes	1.56 (1.29 - 1.88)	<.0001	1.00 (0.74 - 1.33)	0.974
Need for assistance	No Ref.				
	Yes	2.09 (1.82 - 2.41)	<.0001	1.19 (0.94 - 1.50)	0.147
History of cancer	No Ref.				
	Yes	1.41 (1.20 - 1.65)	<.0001	1.58 (1.28 - 1.93)	<.0001
History of stroke	No Ref.				
	Yes	1.47 (1.27 - 1.70)	<.0001	1.33 (1.08 - 1.65)	0.009
History of heart disease	No Ref.				
	Yes	1.38 (1.22 - 1.54)	<.0001	1.23 (1.05 - 1.45)	0.012
History of diabetes mellitus	No Ref.				
	Yes	1.14 (1.03 - 1.26)	0.015	1.21 (1.05 - 1.39)	0.007
History of hepatic disorder	No Ref.				
	Yes	1.29 (1.00 - 1.67)	0.048	0.78 (0.50 - 1.20)	0.257
Smoking habit	never smoked	Ref.			
	former smoker	0.70 (0.62 - 0.79)	<.0001	0.95 (0.77 - 1.16)	0.590
	current smoker	0.80 (0.67 - 0.96)	0.017	1.17 (0.89 - 1.52)	0.267
Drinking habit	never drinks or rarely drinks	(less than once a month)	Ref.	Ref.	
Factors	Classification	Crude HR (95% CI)	P value	Adjusted HR (95% CI) \(^a\)	P value
-----------------------------	----------------	-------------------	---------	-----------------------------	---------
	former drinker	0.95 (0.76 - 1.18)	0.613	1.25 (0.91 - 1.72)	0.175
	current drinker (more than once a month)	0.74 (0.67 - 0.82)	<.0001	1.10 (0.93 - 1.31)	0.261

Level of sleep satisfaction	satisfied with sleep	Ref.	Ref.	slightly unsatisfied with sleep	1.20 (1.05 - 1.36)	0.006	1.08 (0.93 - 1.25)	0.335
	quite unsatisfied with sleep	1.36 (1.14 - 1.61)	0.001	1.01 (0.81 - 1.26)	0.930			
	very dissatisfied with sleep or does not sleep at all	1.78 (1.41 - 2.24)	<.0001	1.40 (1.04 - 1.89)	0.025			

Exercise habit	almost daily	Ref.	Ref.	2 to 4 times a week	1.05 (0.92 - 1.20)	0.497	0.99 (0.83 - 1.18)	0.882
	approximately once a week	1.09 (0.93 - 1.29)	0.277	1.07 (0.87 - 1.33)	0.526			
	almost never	1.26 (1.10 - 1.44)	0.001	1.05 (0.88 - 1.27)	0.580			

\(^a\) Adjusted for age, sex, PCL score, experience of earthquake, history of mental illness, need for assistance, history of cancer, history of stroke, history of heart disease, history of diabetes mellitus, history of hepatic disorder, smoking habit, drinking habit, level of sleep satisfaction, and exercise habit.

95% CI: 95% confidence interval, HR: hazard ratio, Ref: reference, PCL: post-traumatic stress disorder checklist.

The univariate Cox proportional hazard model showed age (HR: 1.05; 95% CI: 1.04–1.06; P < 0.001), women (HR: 1.69; 95% CI: 1.53–1.86; P < 0.001), high risk for PTSD (PCL ≥ 44) (HR: 1.38; 95% CI: 1.24–1.54; P < 0.001), experience of earthquake (HR: 0.80; 95% CI: 0.67–0.95; P = 0.013), mental illness (HR: 1.56; 95% CI: 1.29–1.88; P < 0.001), need for assistance (HR: 2.09; 95% CI: 1.82–2.41; P < 0.001), history of cancer (HR: 1.41; 95% CI: 1.20–1.65; P < 0.001), history of stroke (HR: 1.47; 95% CI: 1.27–1.70; P < 0.001), history of heart disease (HR: 1.38; 95% CI: 1.22–1.54; P < 0.001), history of diabetes (HR: 1.14; 95% CI: 1.03–1.26; P = 0.015), history of hepatic disorder (HR: 1.29; 95% CI: 1.00–1.67; P = 0.048), former smokers (HR: 0.70; 95% CI: 0.62–0.79; P < 0.001), current smokers (HR: 0.80; 95% CI: 0.67–0.96; P = 0.017), or current drinkers (HR: 0.74; 95% CI: 0.67–0.82; P < 0.001), a little dissatisfied with sleep (HR: 1.20; 95% CI: 1.05–1.36; P = 0.006), quite dissatisfied with sleep (HR: 1.36; 95% CI: 1.14–1.61; P = 0.001), very dissatisfied with sleep or did not sleep at all (HR: 1.78; 95% CI: 1.41–2.24; P < 0.001), or almost no exercise (HR: 1.26; 95% CI: 1.10–1.44; P = 0.001) showed a significant association with the incidence of fractures in the older adult.

The multivariate Cox proportional hazard model was performed using factors that were significant in the univariate Cox proportional hazard model. As a result, the older adult with high risk of PTSD (HR: 1.18; 95% CI: 1.05–1.38; P = 0.039), history of cancer (HR: 1.58; 95% CI: 1.28–1.93; P < 0.001), stroke history (HR: 1.33; 95% CI: 1.08–1.65; P = 0.009), history of heart disease (HR: 1.38; 95% CI: 1.22–1.55; P < 0.001), and very dissatisfied with sleep or did not sleep at all (HR: 1.78; 95% CI: 1.41–2.24; P < 0.001) showed a significant association with the incidence of fractures in the older adult.
disease (HR: 1.23; 95% CI: 1.05–1.45; P = 0.012), history of diabetes (HR: 1.21; 95% CI: 1.05–1.39; P = 0.007), and those very dissatisfied with sleep or who did not sleep at all (HR: 1.40; 95% CI: 1.04–1.89; P = 0.025) had a significant increase in fracture risk, independent of age and sex.

Table 4 presents the results of the multivariate Cox proportional hazard model by sex to examine the effects of sex differences. For older adult men, those who were at high risk of PTSD (HR: 1.35; 95% CI: 1.05–1.73; P = 0.021), a history of cancer (HR: 1.64; 95% CI: 1.23–2.18; P = 0.001), history of stroke (HR: 1.37; 95% CI: 1.01–1.84; P = 0.042), history of diabetes (HR: 1.32; 95% CI: 1.07–1.62; P = 0.010), and who were very dissatisfied with sleep or did not sleep at all (HR: 1.85; 95% CI: 1.18–2.92; P = 0.008) had a significant increase in fracture risk, independent of age. By contrast, older adult women who had a history of cancer (HR: 1.48; 95% CI: 1.10–1.99; P = 0.010) or heart disease (HR: 1.32; 95% CI: 1.07–1.64; P = 0.010) had a significant increase in fracture risk, independent of age.
Table 4
The results of multivariate Cox proportional hazard models by sex.

Factors	Classification	Men	Women		
		Adjusted HR	**P value**	**Adjusted HR**	**P value**
		(95% CI) a		(95% CI) b	
Age	Continuous	1.03 (1.01 - 1.05)	0.001	1.05 (1.03 - 1.06)	<.0001
PCL Score	< 44 Ref.				
	≥ 44	1.35 (1.05 - 1.73)	0.021	1.10 (0.90 - 1.34)	0.375
Experience of earthquake	No Ref.				
	Yes	0.82 (0.53 - 1.28)	0.383	0.82 (0.53 - 1.26)	0.357
History of mental illness	No Ref.				
	Yes	0.99 (0.61 - 1.61)	0.980	1.01 (0.70 - 1.46)	0.955
Need for assistance	No Ref.				
	Yes	1.15 (0.73 - 1.80)	0.547	1.18 (0.89 - 1.57)	0.242
History of cancer	No Ref.				
	Yes	1.64 (1.23 - 2.18)	0.001	1.48 (1.10 - 1.99)	0.010
History of stroke	No Ref.				
	Yes	1.37 (1.01 - 1.84)	0.042	1.26 (0.92 - 1.72)	0.149
History of heart disease	No Ref.				
	Yes	1.11 (0.87 - 1.43)	0.402	1.32 (1.07 - 1.64)	0.010
History of diabetes mellitus	No Ref.				
	Yes	1.32 (1.07 - 1.62)	0.010	1.13 (0.93 - 1.36)	0.221
History of hepatic disorder	No Ref.				
	Yes	0.67 (0.36 - 1.26)	0.214	0.88 (0.48 - 1.61)	0.681
Smoking habit	never smoked	Ref.		Ref.	
	former smoker	0.97 (0.76 - 1.24)	0.808	0.98 (0.62 - 1.54)	0.921
	current smoker	1.17 (0.85 - 1.61)	0.325	1.16 (0.66 - 2.02)	0.607
Drinking habit	never drinks or rarely drinks	Ref.		Ref.	
	(less than once a month)				
	former drinker	1.25 (0.87 - 1.79)	0.236	0.90 (0.33 - 2.43)	0.832
	current drinker	1.06 (0.83 - 1.36)	0.635	1.16 (0.92 - 1.47)	0.206
Level of sleep satisfaction	satisfied with sleep	Ref.		Ref.	
Factors	Classification	Men	Women		
--------	--	--------------	---------------	----------	----------
		Adjusted HR	Adjusted HR	P value	P value
		(95% CI)	(95% CI)		
	slightly unsatisfied with sleep	1.06 (0.83 - 1.34)	1.06 (0.88 - 1.29)	0.652	0.540
	quite unsatisfied with sleep	1.36 (0.98 - 1.90)	0.83 (0.62 - 1.11)	0.070	0.209
	very dissatisfied with sleep or does not sleep at all	1.85 (1.18 - 2.92)	1.12 (0.76 - 1.67)	0.008	0.570
	Exercise habit				
	almost daily	Ref.	Ref.		
	2 to 4 times a week	0.88 (0.67 - 1.14)	1.09 (0.85 - 1.39)	0.336	0.507
	about once a week	0.97 (0.70 - 1.34)	1.17 (0.88 - 1.57)	0.861	0.283
	almost never	0.98 (0.74 - 1.29)	1.13 (0.88 - 1.45)	0.876	0.346

a, b Adjusted for age, PCL score, experience of earthquake, history of mental illness, need for assistance, history of cancer, history of stroke, history of heart disease, history of diabetes mellitus, history of hepatic disorder, smoking habit, drinking habit, level of sleep satisfaction, and exercise habit.

95% CI: 95% confidence interval, HR: hazard ratio, Ref: reference, PCL: post-traumatic stress disorder checklist.

Cox proportional hazard model; p < 0.05 was considered statistically significant.

Discussion

Previous studies have reported an increase in the prevalence of diseases such as obesity and lifestyle-related diseases in residents of evacuation areas in Fukushima Prefecture13–16. This increase could be due in part to an increase in stress from changes in the environment caused by moving into temporary housing or living in an evacuation site other than the local area or disturbance in eating habits17–20. Thus, psychological stress is considered to be related to adverse effects on the health of residents, such as those in evacuation areas in Fukushima Prefecture. Those who reported feeling high psychological stress were found to be at increased risk of fracture due to osteoporosis21. One possible mechanism for the association between stress and fracture risk is that psychological stress increases cortisol secretion through the hypothalamus–pituitary–adrenal system. Glucocorticoids induce bone loss and increase the risk of osteoporotic fractures22, 23. Those at high risk of developing PTSD were considered to have high psychological stress immediately after a disaster. Furthermore, older adult people and those with severe living conditions are reportedly more likely to experience worsening symptoms24. The psychological effects from the Fukushima nuclear accident have been widespread, causing not only trauma symptoms but also chronic and more complex social problems, such as fragmentation of community and family, and stigma25. Therefore, chronic sustained high stress caused by a disaster could contribute to increased fracture risk in the older adult. Thus, to prevent fractures after a disaster, older adult people at increased risk of developing PTSD might need to be assessed for bone mineral density and receive aggressive interventions to reduce psychosocial stress.

Furthermore, it is presumed that those who are at high risk of developing PTSD are more likely to also have other mental disorders, such as depression26, 27. In fact, residents of Kawauchi Village, one of the 13 municipalities in the evacuation area that exceeded the reference value of Kessler Psychological Distress Scale (K6) scores28–30 were found to have a significantly
higher percentage of those with PCLs of 44 or higher. In addition, prefectural health surveys have reported that coexistence of PTSD and past mental illness or mental disorders was a poor predictor of mid-term mental health. Thus, the deterioration of mental health caused by a disaster can lead older adult people who already had a tendency to have low physical function in a depressed state to have an even more confined and sedentary lifestyle, leading to a decrease in physical function and thus increased risk of fractures. Therefore, it is important for older adult people with high PTSD risk and low physical function to maintain and improve their physical function and mental health by encouraging social participation.

Depression itself has also been reported to be associated with an increased risk of fractures. This increase might be mediated by antidepressants. For example, taking one class of antidepressants, selective serotonin reuptake inhibitors (SSRIs), can increase the risk of fractures regardless of depression or bone density. In addition, SSRIs have been reported to contribute to fracture-induced falls and increases in fracture risk. The use of SSRIs is sometimes considered when treating PTSD. Thus, older adult people who are receiving medication for PTSD need to be aware of the risk of fractures due to antidepressants.

We found that those who were very dissatisfied with their sleep were at increased risk of fractures. The prevalence of insomnia and the use of sleeping pills in the Japanese have been reported to increase with age. One of the commonly prescribed sleeping pills in Japan is benzodiazepine or the similar nonbenzodiazepine benzodiazepine receptor agonist. Long-term and high-dose uses of benzodiazepines have been reported to be associated with an increased risk of falls and fractures. These findings suggest that pharmacotherapy for insomnia could also be a factor in increasing the risk of fractures in older adult residents, such as those in the evacuation areas in Fukushima Prefecture. The first choice of treatment for insomnia is to understand the sleep environment and provide sleep hygiene guidance. Our study suggests that securing sleep time and improving the quality of sleep is important to preventing fractures in older adult residents of the evacuation area in Fukushima Prefecture.

Our study found that those with a history of diabetes, heart disease, or stroke were at an increased risk of fractures. Previous studies have reported that the presence of type 2 diabetes is associated with increased fracture risk and paradoxically increases bone mineral density. The incidence of cardiovascular disease has also been reported to be significantly associated with the risk of subsequent hip fracture. In addition, stroke has been reported to increase the risk of fractures, including hip fractures, by more than seven-fold within 1 year of hospitalization. Therefore, we anticipate that older adult residents in Fukushima evacuation areas who experienced lifestyle-related diseases and cardiovascular events after the earthquake will likely fall and require nursing care due to the increase in the number of fractures. These findings suggest that a comprehensive strategy to prevent lifestyle-related diseases and cardiovascular events is necessary to preventing fractures among older adult residents in evacuation areas.

Our study found that women have a higher risk of fractures than men. Contrarily, we found that the risk of developing PTSD was not significantly associated with the occurrence of fractures in women. Women often have primary osteoporosis caused by heredity, aging, and postmenopausal decline in female hormones. Patients with osteoporosis have also been found to be more likely to experience a fracture after a fall. Osteoporosis-related fractures can also have a significant impact on health-related quality of life (HRQOL). These results suggest that problems characteristic of women, which could not be investigated in this study, could have a greater effect on fracture risk than increased psychological stress. However, exercise can be effective in reducing falls and risk factors associated with fractures from falls in patients with low bone mineral density. Therefore, regular bone density measurements and exercise habit formation for people at high risk of developing PTSD are recommended, especially for women, to prevent fractures from falling and to prevent a decline in HRQOL.

The results of our study revealed that a history of cancer could influence risk of fracture. Hormonal therapies used in breast and prostate cancer can reduce bone mass and bone density, thus increasing fracture risk. Also, individuals with metastatic bone tumors are known to be susceptible to fractures. Thus, older adult patients with cancer are prone to
fractures and are very likely to be bedridden if they fall. Therefore, those who have a history of cancer need assistance with creating an environment to prevent falls and to be given guidance on living.

Our study had some limitations. First, the age-adjusted prevalence of post-traumatic stress is known to decrease year by year, and the mental health of residents in evacuation areas in Fukushima Prefecture has improved compared with that at the time of the earthquake51. However, it is unclear whether this improvement is reflected in the 13 municipalities’ residents, because the ratio of the participants in our study to the total number of participants in the Fukushima residents’ health survey is low. Horikoshi et al. had also reported that those who did not respond to the mental survey had a significantly higher rate of psychological distress than respondents52. Therefore, the results of this study could have underestimated the impact on fractures due to the increased risk of PTSD from the Great East Japan Earthquake and the nuclear accident. Therefore, it might be necessary to survey the mental health of non-respondents by expanding the scope of psychological research and to make efforts to improve it.

Second, in this survey, there were no detailed medication conditions, bone density tests, fracture sites, or questionnaires to survey the situation when a fracture occurs, presence of osteoporosis, or use of antidepressant drugs. As a result, factors that could contribute to fracture risk, such as osteoporosis and the use of antidepressants and steroids53, could not be investigated. In addition, the effects of sex differences on fractures could not be completely clarified because women were not surveyed for menopause or hormone levels. Future studies should include examinations and interviews for these factors.

Finally, studies in postmenopausal women have reported that obesity and underweight are both risk factors for fractures54. In this survey, however, there were no survey items on height and weight in FY2011, and Body Mass Index (BMI) could not be calculated. Therefore, in the next study, we plan to examine the relationship between weight and fractures by evaluating health checkup data.

Conclusions

Taken together, the results of our study suggest that chronic psychological stress and reduced sleep time and quality due to disaster could contribute to increased fracture risk. Therefore, understanding bone mineral density, offering active psychological care to reduce psychosocial stress, and providing guidance on sleep are important for preventing fractures in older adult residents, such as those in evacuation areas.

Abbreviations

PTSD: Post-traumatic stress disorder; PCL: Post-traumatic stress disorder checklist; HR: Hazard ratio; 95% CI: 95% confidence interval; FDNPS: Fukushima Daiichi Nuclear Power Station; QOL: Quality of life; K6: Kessler Psychological Distress Scale; SSRIs: Selective serotonin reuptake inhibitors; HRQOL: Health-related quality of life; FY: Fiscal Year; BMI: Body Mass Index; SD: Standard Deviation; Ref: Reference.

Declarations

Ethics approval and consent to participate

The mental health survey participants were told in writing that the survey results would be totaled and reported after analysis, and only those who returned the self-recorded questionnaire were considered to have provided consent to participate in the study. Furthermore, the study was approved by the ethical review board of Fukushima Medical University (approval numbers 1316 and 2148).

Consent for publication

Not applicable.
Availability of data and materials

The datasets analyzed during the present study are not publicly available because the data of the Fukushima Health Management Survey belongs to the government of Fukushima prefecture and can only be used within that organization.

Competing interests

The authors declare that there are no competing interests.

Funding

This survey was supported by the National Health Fund for Children and Adults Affected by the Nuclear Incident for design and conduct of the study. The funding organization had no role in either the design of the study, data collection, analysis, interpretation of data, or writing the manuscript.

Authors' contributions

Conception and design: FH, TO, SY, MM, HY, YS and KK.

Acquisition of data: MH, MM, HY and SY.

Analysis and interpretation of data: FH.

Drafting the article: FH.

Revising it for intellectual content: TO, HN, MN, KO, MH, SY, MM, AT, HY, YS, and KK.

Final approval of the completed article: All authors.

Acknowledgements

The present study was conducted by the Fukushima Medical University on consignment by the Fukushima Prefecture using the Fukushima prefectural health survey funds. Furthermore, the opinions presented in the report are those of the authors and not of the Fukushima Prefecture residents.

References

1. Mental Health Group of the Fukushima Health Management Survey. Kunii Y, Suzuki Y, Shiga T, Yabe H, Yasumura S, Maeda M, Niwa S, Otsuru A, Mashiko H, Abe M. Mental Health Group of the Fukushima Health Management Survey. Severe Psychological Distress of Evacuees in Evacuation Zone Caused by the Fukushima Daiichi Nuclear Power Plant Accident: The Fukushima Health Management Survey. PLoS One. 2016 Jul 8;11(7):e0158821.

2. Neria Y, Nandi A, Galea S. Post-traumatic stress disorder following disasters: a systematic review. Psychol Med. 2008 Apr;38(4):467–80.

3. Yabe H, Suzuki Y, Mashiko H, Nakayama Y, Hisata M, Niwa S, Yasumura S, Yamashita S, Kamiya K, Abe M. Mental Health Group of the Fukushima Health Management Survey. Psychological distress after the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident: results of a mental health and lifestyle survey through the Fukushima Health Management Survey in FY2011 and FY2012. Fukushima J Med Sci. 2014;60(1):57–67.

4. Maeda M, Oe M. Mental Health Consequences and Social Issues After the Fukushima Disaster. Asia Pac J Public Health. 2017 Mar;29(2_suppl):36S–46S.

5. Kukihara H, Yamawaki N, Uchiyama K, Arai S, Horikawa E. Trauma, depression, and resilience of earthquake/tsunami/nuclear disaster survivors of Hirono, Fukushima, Japan. Psychiatry Clin Neurosci. 2014
6. Jiang T, Veres K, Kőrmendiné Farkas D, Lash TL, Toft Sørensen H, Gradus JL. Post-traumatic stress disorder and incident fractures in the Danish population. Osteoporos Int. 2018 Nov;29(11):2487–93.

7. Ministry of Health. Labour and Welfare of Japan. Summary Report of Comprehensive Survey of Living Conditions 2013. https://www.mhlw.go.jp/english/database/db-hss/dl/report_gaikyo_2013.pdf. Accessed 2020/6/2.

8. Tanji F, Sugawara Y, Tomata Y, Watanabe T, Sugiyama K, Kaho Y, Tomita H, Tsuji I. Psychological distress and the incident risk of functional disability in elderly survivors after the Great East Japan Earthquake. J Affect Disord. 2017 Oct 15;221:145–150.

9. Hayashi F, Sanpei M, Ohira T, Nakano H, Okazaki K, Yasumura S, Nakajima S, Yabe H, Suzuki Y, Kamiya K. Fukushima Health Management Survey Group. Changes in the mental health status of adolescents following the Fukushima Daiichi nuclear accident and related factors: Fukushima Health Management Survey. J Affect Disord. 2020 Jan 1;260:432–439.

10. Yasumura S, Hosoya M, Yamashita S, Kamiya K, Abe M, Akashi M, Kodama K, Ozasa K. Fukushima Health Management Survey Group. Study Protocol for the Fukushima Health Management Survey. J Epidemiol. 2012;22(5):375–83.

11. Blanchard EB, Jones-Alexander J, Buckley TC, Forneris CA. Psychometric Properties of the PTSD Checklist (PCL). Behav Res Ther. 1996 Aug;34(8):669–73.

12. Suzuki Y, Yabe H, Horikoshi N, Yasumura S, Kawakami N, Ohtsuru A, Mashiko H, Maeda M. Mental Health Group of the Fukushima Health Management Survey. Diagnostic accuracy of Japanese posttraumatic stress measures after a complex disaster: The Fukushima Health Management Survey. Asia Pac Psychiatry. 2017 Mar;9(1).

13. Tsubokura M, Takita M, Matsumura T, Hara K, Tanimoto T, Kobayashi K, Hamaki T, Oiso G, Kami M, Okawada T, Tachiya H. Changes in Metabolic Profiles After the Great East Japan Earthquake: A Retrospective Observational Study. BMC Public Health. 2013 Mar;23:1267.

14. Satoh H, Ohira T, Hosoya M, Sakai A, Watanabe T, Ohtsuru A, Kawasaki Y, Suzuki H, Takahashi A, Kobashi G, Ozasa K, Yasumura S, Yamashita S, Kamiya K, Abe M. Evacuation After the Fukushima Daiichi Nuclear Power Plant Accident Is a Cause of Diabetes: Results From the Fukushima Health Management Survey. J Diabetes Res. 2015;2015:627390.

15. Ohira T, Hosoya M, Yamashita S, Satoh H, Suzuki H, Sakai A, Ohtsuru A, Kawasaki Y, Takahashi A, Ozasa K, Kobashi G, Kamiya K, Yamashita S, Abe M, Fukushima Health Management Survey Group. Effect of Evacuation on Body Weight After the Great East Japan Earthquake. Am J Prev Med. 2016 May;50(5):553–60.

16. Hashimoto S, Nagai M, Fukushima S, Ohira T, Hosoya M, Yasumura S, Satoh H, Suzuki H, Sakai A, Ohtsuru A, Kawasaki Y, Takahashi A, Ozasa K, Kobashi G, Kamiya K, Yamashita S, Fukushima Health Management Survey Group. Influence of Post-disaster Evacuation on Incidence of Metabolic Syndrome. J Atheroscler Thromb. 2017 Mar 1;24(3):327–337.

17. Sakai A, Ohira T, Hosoya M, Ohtsuru A, Satoh H, Kawasaki Y, Suzuki H, Takahashi A, Kobashi G, Ozasa K, Yasumura S, Yamashita S, Kamiya K, Abe M. Fukushima Health Management Survey Group. Life as an Evacuee After the Fukushima Daiichi Nuclear Power Plant Accident Is a Cause of Polycythemia: The Fukushima Health Management Survey. BMC Public Health. 2014 Dec 23;14:1318.

18. Suzuki H, Ohira T, Takeishi Y, Hosoya M, Yasumura S, Satoh H, Kawasaki Y, Takahashi A, Sakai A, Ohtsuru A, Kobashi G, Ozasa K, Yamashita S, Kamiya K, Abe M, Fukushima Health Management Survey Group. Increased Prevalence of Atrial Fibrillation After the Great East Japan Earthquake: Results From the Fukushima Health Management Survey. Int J Cardiol. 2015 Nov;1:198:102–5.

19. Uemura M, Ohira T, Yasumura S, Ohtsuru A, Maeda M, Harigane M, Horikoshi N, Suzuki Y, Yabe H, Takahashi H, Nagai M, Nakano H, Zhang W, Hirosaki M, Abe M. Fukushima Health Management Survey Group. Association Between Psychological Distress and Dietary Intake Among Evacuees After the Great East Japan Earthquake in a Cross-Sectional Study: The Fukushima Health Management Survey. BMJ Open. 2016 Jul 5;6(7):e011534.

20. Zhang W, Ohira T, Abe M, Kamiya K, Yamashita S, Yasumura S, Ohtsuru A, Maeda M, Harigane M, Horikoshi N, Suzuki Y, Yabe H, Yuuki M, Nagai M, Takahashi H, Nakano H. Fukushima Health Management Survey Group. Evacuation After the
Great East Japan Earthquake Was Associated With Poor Dietary Intake: The Fukushima Health Management Survey. J Epidemiol. 2017 Jan;27(1):14–23.

21. Pedersen AB, Baggesen LM, Ehrenstein V, Pedersen L, Lasgaard M, Mikkelsen EM. Perceived stress and risk of any osteoporotic fracture. Osteoporos Int. 2016 Jun;27(6):2035–45.

22. Aardal-Eriksson E, Eriksson TE, Thorell L.H. Salivary cortisol, posttraumatic stress symptoms, and general health in the acute phase and during 9-month follow-up. Biol Psychiatry. 2001 Dec 15;50(12):986–93.

23. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002 Oct;13(10):777–87.

24. Oe M, Takahashi H, Maeda M, Harigane M, Fujii S, Miura I, Nagai M, Yabe H, Ohira T, Suzuki Y, Yasumura S, Abe M. Changes of Posttraumatic Stress Responses in Evacuated Residents and Their Related Factors. Asia Pac J Public Health. 2017 Mar;29(2_suppl):182S–192S.

25. Maeda M, Oe M. The Great East Japan Earthquake: Tsunami and Nuclear Disaster Traumatic Stress and Long-Term Recovery. Traumatic Stress and Long-Term Recovery: Coping with Disasters and Other Negative Life Events, 2015. p. 71–90.

26. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995 Dec;52(12):1048–60.

27. Perkonigg A, Kessler RC, Storz S, Wittchen H-U. Traumatic events and post-traumatic stress disorder in the community: prevalence, risk factors and comorbidity. Acta Psychiatr Scand. 2000 Jan;101(1):46–59.

28. Kessler RC, Andrews G, Colpe LJ, Hiripi E, Mroczek DK, Normand SL, Walters EE, Zaslavsky AM. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol Med. 2002 Aug;32(6):959–76.

29. Furukawa TA, Kawakami N, Saitoh M, Ono Y, Nakane Y, Nakamura Y, Tachimori H, Iwata N, Uda H, Nakane H, Watanabe M, Naganuma Y, Hata Y, Kobayashi M, Miyake Y, Takeshima T, Kikkawa T. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr Res. 2008;17(3):152–8.

30. Sakurai K, Nishi A, Kondo K, Yanagida K, Kawakami N. Screening performance of K6/K10 and other screening instruments for mood and anxiety disorders in Japan. Psychiatry Psychiatry Clin Neurosci. 2011 Aug;65(5):434–41.

31. Yoshida K, Shinkawa T, Urata H, Nakashima K, Orita M, Yasui K, Kumagai A, Ohtsuru A, Yabe H, Maeda M, Hayashida N, Kudo T, Yamashita S, Takamura N. Psychological distress of residents in Kawauchi village, Fukushima Prefecture after the accident at Fukushima Daiichi Nuclear Power Station: the Fukushima Health Management Survey. PeerJ. 2016 Aug;31;4:e2353.

32. Miura I, Nagai M, Maeda M, Harigane M, Fujii S, Oe M, Yabe H, Suzuki Y, Takahashi H, Ohira T, Yasumura S, Abe M. Perception of Radiation Risk as a Predictor of Mid-Term Mental Health After a Nuclear Disaster: The Fukushima Health Management Survey. Int J Environ Res Public Health. 2017 Sep;15(9):1067. 14(.

33. Wu Q, Liu B, Tonmoy S. Depression and risk of fracture and bone loss: an updated meta-analysis of prospective studies. Osteoporos Int. 2018 Jun;29(6):1303–12.

34. Wu Q, Liu J, Gallegos-Orozco JF, Hentz JG. Depression, fracture risk, and bone loss: a meta-analysis of cohort studies. Osteoporos Int. 2010 Oct;21(10):1627–35.

35. Wu Q, Bencaz AF, Hentz JG, Crowell MD. Selective serotonin reuptake inhibitor treatment and risk of fractures: a meta-analysis of cohort and case-control studies. Osteoporos Int. 2012 Jan;23(1):365–75.

36. Warden SJ, Fuchs RK. Do Selective Serotonin Reuptake Inhibitors (SSRIs) Cause Fractures? Curr Osteoporos Rep. 2016 Oct;14(5):211–8.

37. Doi Y, Minowa M, Okawa M, Uchiyama M. Prevalence of sleep disturbance and hypnotic medication use in relation to sociodemographic factors in the general Japanese adult population. J Epidemiol. 2000 Mar;10(2):79–86.

38. Wang PS, Bohn RL, Glynn RJ, Mogun H, Avorn J. Hazardous benzodiazepine regimens in the elderly: effects of half-life, dosage, and duration on risk of hip fracture. Am J Psychiatry. 2001 Jun;158(6):892–8.
39. Fonad E, Wahlin TB, Winblad B, Emami A, Sandmark H. Falls and fall risk among nursing home residents. J Clin Nurs. 2008 Jan;17(1):126–34.
40. van der Hooft CS, Schoofs MW, Ziere G, Hofman A, Pols HA, Sturkenboom MC, Stricker BH. Inappropriate benzodiazepine use in older adults and the risk of fracture. Br J Clin Pharmacol. 2008 Aug;66(2):276–82.
41. Study of Osteoporotic Fractures (SOF) Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Stromeyer ES, Ensrud KE, Donaldson MG, Cauley JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM. Study of Osteoporotic Fractures (SOF) Research Group; Osteoporotic Fractures in Men (MrOS) Research Group; Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011 Jun 1;305(21):2184-92.
42. Sennerby U, Melhus H, Gedeborg R, Byberg L, Garmo H, Ahlbom A, Pedersen NL, Michaëlsson K. Cardiovascular diseases and risk of hip fracture. JAMA. 2009 Oct 21;302(15):1666-73.
43. Kanis J, Oden A, Johnell O. Acute and long-term increase in fracture risk after hospitalization for stroke. Stroke. 2001 Mar;32(3):702–6.
44. Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002 Jun;23(3):279–302.
45. Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M. Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res. 2003 Aug;18(8):1547–53.
46. Brenneman SK, Barrett-Connor E, Sajjan S, Markson LE, Siris ES. Impact of recent fracture on health-related quality of life in postmenopausal women. J Bone Miner Res. 2006 Jun;21(6):809–16.
47. de Kam D, Smulders E, Weerdesteyn V, Smits-Engelsman BC. Exercise interventions to reduce fall-related fractures and their risk factors in individuals with low bone density: a systematic review of randomized controlled trials. Osteoporos Int. 2009 Dec;20(12):2111–25.
48. Hadji P, Aapro MS, Body JJ, Bundred NJ, Brufsky A, Coleman RE, Gnant M, Guise T, Lipton A. Management of aromatase inhibitor-associated bone loss in postmenopausal women with breast cancer: practical guidance for prevention and treatment. Ann Oncol. 2011 Dec;22(12):2546–55.
49. Smith MR, Lee WC, Brandman J, Wang Q, Botteman M, Pashos CL. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol. 2005 Nov 1;23(31):7897 – 903.
50. Manabe J, Kawaguchi N, Matsumoto S, Tanizawa T. Surgical treatment of bone metastasis: indications and outcomes. Int J Clin Oncol. 2005 Apr;10(2):103–11.
51. Oe M, Fuji S, Maeda M, Nagai M, Harigane M, Miura I, Yabe H, Ohira T, Takahashi H, Suzuki Y, Yasumura S, Abe M. Three-year trend survey of psychological distress, post-traumatic stress, and problem drinking among residents in the evacuation zone after the Fukushima Daiichi Nuclear Power Plant accident [The Fukushima Health Management Survey]. Psychiatry Clin Neurosci. 2016 Jun;70(6):245–52.
52. Horikoshi N, Iwasa H, Yasumura S, Maeda M. The characteristics of non-respondents and respondents of a mental health survey among evacuees in a disaster: The Fukushima Health Management Survey. Fukushima J Med Sci. 2017 Dec 19;63(3):152–159.
53. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002 Jun 1;359(9321):1929-36.
54. Tanaka S, Kuroda T, Saito M, Shiraki M. Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int. 2013 Jan;24(1):69–76.

Figures
2011 Mental health survey respondents: 73,431

Exclusion of 46,365 individuals aged <65 years at 2011 or 7,222 individuals with history of fracture.

19,844 individuals aged >= 65 at 2011 with no history of fracture. (9,297 men, 10,547 women; mean age 75.2 ± 7.0 years)

Exclusion of 6,076 individuals who could not track fractures from 2012 to 2016.

A total of 13,768 individuals (6,632 men and 7,136 women) were targeted. (mean age 74.5 ± 6.6, mean follow-up period 3.75 ± 1.48 person-years)

Figure 1

Selection of study participants