Research on static recrystallization behaviour of pure molybdenum rods during forging

Qifei Zhang1, Aiqin Wang1,2,*, Yao Chen1, Jingpei Xie1,2, Douqin Ma1 and Sihu Ha1

1 Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang 471023, People’s Republic of China
2 Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, People’s Republic of China

E-mail: aiqin_wang888@163.com

Keywords: pure molybdenum, double-pass compression, static recrystallization, activation energy, critical temperature, kinetic model

Abstract

In this work, thermal compression experiment of pure molybdenum rods with sintered density of 9.7–9.8 g cm−3 were performed on the Gleeble-1500D thermal simulator. The double-pass vacuum high-temperature compression test was carried out in a deformation temperature of 1200 °C–1350 °C, a strain rate of 3 s−1 and an interval time of 10–500 s. The stress-strain curve was obtained and analysed. The static softening rate was calculated by the 2% compensation method of yield stress, and the curve of that was fitted. The results show that the softening rate is proportional to the interval time and the deformation temperature. The static recrystallization activation energy and critical temperature of pure molybdenum rod is 583.79 kJ mol−1 and 1365 °C, respectively. Besides, the static recrystallization kinetics model and grain growth model of pure molybdenum rod was established and microstructure evolution of molybdenum was analysed during the deformation process.

1. Introduction

Metal Molybdenum (Mo) has high melting point and strength, low thermal expansion coefficient and excellent electrical conductivity, thermal conductivity and corrosion resistance. It is widely used in the steel and non-ferrous metal, aerospace, electronics, chemical, and nuclear industry [1–5]. With the development of industrial technology, the size of electronic displays and industrial equipment has gradually increased, so the sizes of molybdenum targets used to prepare display coatings and molybdenum electrodes in industrial furnaces have also become larger. At present, pure molybdenum targets and electrodes are usually prepared by powder metallurgy. After powder metallurgy sintering of large-size molybdenum rod billets, it needs to undergo multiple passes of heating and forging to make the structure and performance of molybdenum rod meet the requirements of use. However, during the staying and heating process between the multi-pass forging, the deformed microstructure of molybdenum will recover and statically recrystallize, and its grain size and stress state will change greatly, which will have a greater impact on the subsequent deformation behaviour of molybdenum rod Research shows that [6–9] if the forging process of molybdenum rod is improperly controlled, incomplete static recrystallization during the multi-pass forging process will cause abnormal growth of local grains, and then the mixed grains will appear, leading to cracks in the local large grains under the subsequent forging stress.

At present, some studies have been conducted on the deformation behaviour of molybdenum. Hanfang X [10] researched the dynamic recrystallization behaviour of molybdenum. Primig S [11] investigated the textural evolution of molybdenum during the dynamic recovery and static recrystallization. Worthington D L [12] investigated the abnormal grain growth during dynamic recrystallization of pure molybdenum. Chaudhuri A [13] researched the stress-strain response, microstructure and texture evolution of hot deformed pure molybdenum. However, none of their research involves the static recrystallization mechanism and process of pure molybdenum during the forging process. In this paper, the forging process of pure molybdenum was simulated using the Gleeble-1500D thermal simulator, to study the static recrystallization behaviour of...
molybdenum rods, which can provide theoretical guidance for the determining forging process of large-size pure molybdenum rod.

2. Experimental

The material used in this work was a small sintered molybdenum rod blank with the purity of over 99.95% and a density of 9.7–9.8 g cm\(^{-3}\). The composition of molybdenum rod is shown in table 1.

The molybdenum rod was cut into cylindrical compressive samples with 8 mm in diameter and 12 mm in height by Wire Electrical Discharge Machining. The double-pass vacuum high-temperature compression tests were conducted on Gleeble-1500D thermal simulator at temperatures of 1200 °C, 1250 °C, 1300 °C, and 1350 °C and strain rate of 3 s\(^{-1}\). Because this thermal simulation test aims to investigate the static recrystallization behaviour of pure molybdenum, it is necessary to ensure that the strain is less than the critical strain of dynamic recrystallization. According our previous work [14], the strain of each pass was 20% (engineering strain) in present study. The interval time of each pass (also called holding time) was 10 s, 50 s, 100 s, and 500 s, respectively. Prior to the compression, the specimens were heated to the test temperature at a heating rate of 20 °C s\(^{-1}\). The thermal simulation process scheme is shown in figure 1.

During the interval time between hot working or the cooling process after hot working, the microstructure of metal will continuously change, eliminating part of work hardening microstructure, so that the interior of the material reaches a certain stable state. The process of this microstructure evolution is called static recovery and static recrystallization [15–17]. The degree of static recrystallization can be evaluated by the static softening rate.
Figure 3. True stress-true strain curves of different interval time at (a) 1200 °C, (b) 1250 °C, (c) 1300 °C and (d) 1350 °C.

Figure 4. True stress-true strain curves of different temperature at (a) 10 s, (b) 50 s, (c) 100 s and (d) 500 s.
The double-pass compression test is a common method to study static softening behaviour. In addition, the calculation methods of static recrystallization softening rate mainly include 0.2% compensation method of yield stress, 2% compensation method, 5% compensation method of total stress, interpolation method, average stress method, and area method [18–20]. In this study, the 2% compensation method was used to calculate the static recrystallization softening rate R.

The formula of softening rate R is as follows:

$$
R = \frac{(\sigma_m - \sigma_f)}{(\sigma_0 - \sigma_f)}
$$

Where σ_m denotes the unloading stress of the first pass, and σ_0 and σ_f are the yield stress (the flow stress at 2% strain) of the first pass and the second pass, respectively. The diagram of softening rate calculation is shown in figure 2. The softening rate R is the result of the combined effect of static recovery and static recrystallization.

3. Results and discussion

3.1. Analysis of true stress-strain curve

The true stress-strain curves of pure molybdenum at same temperature and at different interval time are shown in figure 3, and that at different temperatures and same interval time are shown in figure 4.

As can be seen from figure 3, at 1200 °C, there is no close relationship between the flow stress and the interval time of double-pass thermal compression. The results show that prolonging the holding time does not promote recovery and recrystallization. In addition, static recovery and recrystallization do not occur at this strain, indicating that the initial temperature of static recrystallization is higher than 1200 °C. At 1250 °C, the stress of the second pass begins to decrease, which means that the recovery and recrystallization have occurred. Also, with the prolongation of the holding time, the softening degree becomes more obvious. At 1300 °C and 1350 °C, static recrystallization occurred obviously. As the holding time is prolonged, the flow stress of the second pass gradually becomes lower, indicating that the degree of static recovery and recrystallization is increasing. The reason is that the static recovery of metal occurs first in the interval time after thermal deformation, and then the deformation storage energy is slowly released until recrystallization begins to occur [21]. Besides, recrystallization is a process of nucleation and growth, which takes a certain time to complete, so prolonging the interval time is conducive to the occurrence of recrystallization.

For figure 4, at the same interval time, the flow stress gradual decrease as the temperature increases, meaning that the percentages of static recrystallization gradually increase. The reason is that with the increase of temperature, vibration and diffusion of metal atoms accelerate, meaning that the kinetic energy increases and the deformation resistance decreases. At the same strain and interval time, as the temperature increases, the more energy will be provided for static recrystallization, and static recrystallization will become easier [22].

3.2. Static softening rates curve

The static softening rate reflects the degree of static recovery and recrystallization. The main factors affecting the static recrystallization are deformation temperature, strain, strain rate, and interval time. Under the same strain...
and strain rate, the relationship curves between the static softening rate of pure molybdenum deformation temperature and interval time are shown in Figure 5.

Figure 5 is the static softening rates curve of pure molybdenum, the softening degree of pure molybdenum is positively correlated with the deformation temperature and interval time between the two passes, and the static softening rate increases significantly with the increase of temperature. During the interval of thermal deformation, the metal first experiences static recovery, releases 30% of the deformation storage energy, and then undergoes static recrystallization. When the deformation temperature is 1200 °C, the static softening rate is small, and static recrystallization does not occur. When the holding time reaches 500 s, only static recovery occurs. The reason is that the temperature is low at this time, and the strain has not yet reached the critical strain of static recrystallization. When the deformation temperature is between 1250 °C and 1350 °C, incomplete recrystallization occurs, and the recovery and recrystallization rate is the fastest when the holding time is within 50 s–100 s. The softening rate of holding 100 s at 1250 °C is similar to that of holding 50 s at 1350 °C, which indicates that the methods to improve the static softening degree of materials include increasing the deformation temperature and prolonging the holding time. When the deformation temperature reaches 1350 °C and the holding time is over 500 s, the softening rate of pure molybdenum is 0.93 (close to 1), indicating that the complete recrystallization almost occurs. In industrial production, when the strain of each pass is 0.2, it is necessary to ensure that the deformation temperature exceeds 1350 °C and the holding time between forging passes exceeds 500 s to avoid the occurrence of incomplete static recrystallization which produces a mixed grain structure.

3.3. Activation energy of static recrystallization

The activation energy of static recrystallization of metal is an inherent property of the material itself. It is the same as the activation energy of dynamic recrystallization. It has nothing to do with deformation temperature, strain rate, strain and other deformation conditions, but only with the density and chemical composition of the material itself. Generally, the activation energy of static recrystallization is calculated according to the time corresponding to 50% recrystallization degree in the curve of static recrystallization softening rate. The time \(t_{0.5} \) corresponding to 50% recrystallization degree is determined by the equation \((2) \) [23–27].

\[
t_{0.5} = A d_0^p e^{\frac{Q_{\text{ex}}}{R T}} \exp(Q_{\text{ex}}/RT)
\]

Where \(A, s, p, q \), and \(Q \) are material constants, \(d_0 \) is the original grain size, \(Q_{\text{ex}} \) is the activation energy of static recrystallization, \(R \) is the gas constant (8.314 J mol\(^{-1}\)·K), and \(T \) is the Kelvin temperature. Taking the logarithm of both sides of equation \((2) \), then gives,

\[
\ln t_{0.5} = \ln A + s \ln d_0 + p \ln \varepsilon + q \ln \dot{\varepsilon} + \frac{Q_{\text{ex}}}{RT}
\]

In which \(\ln t_{0.5} \) and \(\frac{Q_{\text{ex}}}{RT} \) are linearly related, that is, \(\frac{Q_{\text{ex}}}{R} \) is the slope of the relationship curve between \(\ln t_{0.5} \) and \(\frac{1000}{T} \). Based on the static softening rate curve of pure molybdenum, the relationship between \(\ln t_{0.5} \) and \(\frac{1000}{T} \) is obtained as shown in Figure 6.
According to figure 6, the slope $n = 70.21793$, that is, $\frac{Q_{\text{rec}}}{R} = 70.21793 \text{ K}$, so the activation energy Q_{rec} of static recrystallization of pure molybdenum is 583.79 kJ mol$^{-1}$.

3.4. Static recrystallization critical temperature

The static recrystallization critical temperature (SRCT) of metallic materials is the lowest temperature at which the grains will be completely recrystallized [28–30]. However, SRCT is related to deformation conditions such as strain rate and strain. In this paper, the SRCT of pure molybdenum is researched in a 40% (20% per pass) strain, a strain rate of 3 s$^{-1}$ and an interval time of 500 s. The softening rate R under this condition is linearly fitted [31, 32], and the result is shown in figure 7.

So, the linear fitting equation of the SRCT of pure molybdenum obtained from the slope and intercept can be expressed as:

$$X_S = 0.00394T - 4.38$$ \hspace{1cm} (4)

Setting $X_S = 1$, it can be concluded that the SRCT of pure molybdenum is 1365 °C.

3.5. Kinetic equation of static recrystallization

Extensive research has been conducted on the static recrystallization behaviour of metals. Therein, the Avrami equation [33–36] is widely applied to describe the static recrystallization volume fraction, as shown in equation (5):

![Figure 7. SRCT fitting figure.](image1)

![Figure 8. The linear relationship between K and ln t.](image2)
Figure 9. The metallographic images at same interval time and different temperature.

Figure 10. The metallographic images at same temperature and different interval time.
Among them, \(C = -0.693 \), \(X_S \) is the volume fraction of static recrystallization, and \(t_{0.5} \) is the time when the static recrystallization rate reaches 50%. Taking the logarithm of both sides of equation (5), then gives:

\[
\ln \ln \left(\frac{1}{1 - X_s} \right) = \ln C + n \ln t - n \ln t_{0.5}
\]

(6)

Setting \(\ln \ln \left(\frac{1}{1 - X_s} \right) = K \), from equation (6), we can see that, \(K \) and \(\ln t \) are linearly related, and the slope of that is the value of \(n \). Therefore, the material constant \(n \) can be obtained by calculating the value of \(K \) at different time and making the linear fitting diagram of \(K \) and \(\ln t \). The linear relationship between \(K \) and \(\ln t \) is shown in figure 8.

According to figure 8, the \(n \) value of pure molybdenum at different temperatures ranges from 0.286 to 0.660, and the average value is 0.473. Therefore, and then the kinetic model of static recrystallization of pure molybdenum is as follows:

\[
X_S = 1 - \exp \left\{ -C \left(\frac{t}{t_{0.5}} \right)^n \right\}
\]

(7)

3.6. Hot deformed microstructure

During the double-pass thermal compression process, the deformation temperature and interval time on the microstructure evolution of molybdenum are analysed and observed. Figure 9 is the metallographic images of molybdenum at same interval time and different temperature, while that at same temperature and different interval time are shown in figure 10.

According to figure 9, at the same interval time and different temperature, the grains change significantly. At 1200 \(^\circ \)C, there are many original coarse grains, and the microstructure is still uneven after double-pass thermal compression. At 1250 \(^\circ \)C and 1300 \(^\circ \)C, the numbers of recrystallized grains increase obviously. After double-pass thermal compression, the grain distribution is relatively uniform. At 1350 \(^\circ \)C, the grains are basically small and uniformly distributed equiaxed grains. Therefore, it can be inferred that the static recrystallization of molybdenum has obviously occurred at 1250 \(^\circ \)C. In addition, with the increase of temperature, the softening degree increases, and the recrystallization trend becomes more obvious. The changing law of the metallographic images conforms to the changing law of the stress-strain curve and static softening.

Compared with temperature, the effect of interval time on recrystallization is relatively low, but the change of metallographic images can still be recognized. For figure 10, when the interval time is 10 s, the grains after double-pass thermal compression are still coarse and uneven, because the recrystallized grains have no enough time to grow. It can be seen that at interval time of 50 s and 100 s, since the time is still short, equiaxed grains cannot be formed. At interval time of 500 s, the grains after the double-pass thermal compression are basically uniform, which is obvious different from the grain morphology at interval time of 10 s. These indicate that static recrystallization is completed basically, which is consistent with the changing law of the stress-strain curve and static softening.
3.7. Grain growth model

At present, there are many models to calculate the grain growth of metal materials, such as Beck model, Hillert model and Sellers model. In our work, the Beck model is selected to calculate the grain growth of pure molybdenum.

The Beck model \[37\] constructs the grain size equation by heating temperature and holding time, which can be expressed as:

\[D = K t^n \]

(8)

Among them, \(K \) is a constant and represents the growth rate of the grains; \(n \) is the growth index of the grains. Different materials have different values of \(K \) and \(n \). Taking the logarithm of both sides of formula (8), then gives:

\[\ln D = \ln K + n \ln t \]

(9)

In which \(\ln D \) and \(\ln t \) are linearly related, \(n \) is the slope of it. Bring the grain size of the same temperature and different holding time into the equation. Fitting the data, the result is shown in figure 11.

According to figure 11, the slope \(n = 2.83929 \), and the intercept \(K = 0.0967 \). In addition, the \(K \):

\[K = K_0 \exp \left(\frac{Q}{RT} \right) \]

(10)

Substitute the \(Q \) value, the \(K_0 = 4.8537 \times 10^{10} \), and the Beck model is as follow:

\[D = 4.8537 \times 10^{10} \exp \left(\frac{583790}{RT} \right)^{2.83929} \]

(11)

4. Conclusion

In this paper, the static recrystallization of pure Molybdenum rod is researched. The following inferences are obtained.

(1) At 1200 °C, there is no close relationship between the flow stress and the interval time of double-pass thermal compression, indicating that the degree of static recovery and recrystallization is very low. With the increase of deformation temperature, the flow stress of the second pass compression decreases significantly. The obvious static recovery and recrystallization occur at 1350 °C.

(2) According to the static softening rate curve of pure molybdenum, the static recovery and recrystallization degree of pure molybdenum is positively correlated with deformation temperature and interval time. Molybdenum begin to undergo static recovery and recrystallization at 1250 °C and the interval time is over 50 s. The incomplete static recrystallization of pure molybdenum will occur between 1250 °C and 1350 °C. The static recrystallization take place obviously at 1350 °C, and complete static recrystallization almost occurs when the interval time exceeds 500 s.

(3) The activation energy \(Q_{\text{rec}} \) of static recrystallization of pure molybdenum is 583.79 kJ mol\(^{-1}\). The Static recrystallization critical temperature of pure molybdenum is 1365 °C. The kinetic model of static recrystallization of pure molybdenum is \(X_S = 1 - \exp \left\{ 0.693 \left(\frac{1}{T_S^{0.47}} \right) \right\} \).\(\text{ and the holding time exceeds 500 s. After that, the follow-up process can be carried out, in order to avoid incomplete static recrystallization and mixed grains.} \)

(4) In industrial production, when the strain is 40% and the strain rate is 3 s\(^{-1}\), it is necessary to ensure that the deformation temperature of pure molybdenum exceeds 1350 °C and the holding time exceeds 500 s. After that, the follow-up process can be carried out, in order to avoid incomplete static recrystallization and mixed grains.

(5) The changing law of the metallographic images conforms to the changing law of the stress-strain curve and static softening. Besides, the model of grain growth is as follows:

\[D = 4.8537 \times 10^{10} \exp \left(\frac{583790}{RT} \right)^{2.83929} \]

Acknowledgments

This work was supported by the key Program of He’nan Province (192102210008).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
ORCID iDs

Aiqin Wang https://orcid.org/0000-0002-6337-8428

References

[1] Chakraborthy S P et al 2010 Development of silicide coating over molybdenum based refractory alloy and its characterization J. Nucl. Mater. 403 152–9
[2] Xing H R et al 2020 The microstructure and texture evolution of pure molybdenum sheets under various rolling reductions Mater. Charact. 165 110357
[3] Cockeram B V 2010 The role of stress state on the fracture toughness and toughening mechanisms of wrought molybdenum and molybdenum alloys Mater. Sci. Eng. A 528 288–308
[4] Primig S et al 2015 Orientation dependent recovery and recrystallization behavior of hot-rolled molybdenum Int. J. Refract. Met. Hard Mater. 48 179–86
[5] Chen C et al 2014 The effect of texture and microstructure on the properties of Mo bars Mater. Sci. Eng. A 601 131–8
[6] Mroztek T, Hoffmann A and Martin U 2006 Hardening mechanisms and recrystallization behaviour of several molybdenum alloys Int. J. Refract. Met. Hard Mater. 24 298–305
[7] Zhou L et al 2012 Investigation on forging process of S20S connecting rod and its defects analysis Advanced Materials Research Trans. Tech. Publications Ltd 538 1646–9
[8] Yufeng W et al 2009 Numerical simulation of radial precision forging technology for metal molybdenum Rare Met. Mater. Eng. 38 2136–40
[9] Amini K et al 2018 The effect of tempering temperature on microstructure and the mechanical properties of forged steel containing chrome, manganese and molybdenum Mechanics 24 856–852
[10] Hanfang X et al 2011 Study on dynamic recrystallization behavior of powder metallurgy molybdenum Rare Met. Mater. Eng. 40 669–72
[11] Primig S, Leitner H and Knabl W 2012 Textural evolution during dynamic recovery and static recrystallization of molybdenum Metall. Mater. Trans. A 43 4794–805
[12] Worthington D L and Nicholas A P 2013 Dynamic abnormal grain growth in molybdenum Metall. Mater. Trans. A 44 5025–38
[13] Chaudhuri A, Sarkar A and Suwas S 2018 Investigation of stress-strain response, microstructure and texture of hot deformed pure molybdenum Int. J. Refract. Met. Hard Mater. 73 168–82
[14] Wang A-Q et al 2017 Hot deformation behavior of pure molybdenum (Mo) Science of Advanced Materials 9 1493–500
[15] Gorelik S S, Dobatkin S V and Kaputkina I M 2005 Recrystallization of Metals and Alloys 3rd edn (Moscow, Russia: Moscow MISIS) pp 325–94 (In Russian)
[16] Shkotov V and Mazur I 2019 Modeling the dynamic recrystallization and flow curves using the kinetics of static recrystallization Materials 12 3024
[17] Yun P et al 2020 A novel method to study recrystallization behavior: continuous heating stress relaxation Mater. Charact. 167 110500
[18] Fernández A J, Lopez B and Rodriguez-Ibabe J M 1999 Relationship between the austenite recrystallized fraction and the softening measured from the interrupted torsion test technique Scr. Mater. 40 543–9
[19] Liu L et al 2020 Static softening behavior and modified kinetics of Al 2219 alloy based on a double–pass hot compression test Materials 13 3862
[20] Bao S et al 2011 Recrystallization behavior of a Nb-microalloyed steel during hot compression Appl. Math. Model. 35 3268–75
[21] Dai L et al 2019 Study on static recrystallization behavior of 38MnVTi non-quenched and tempered steel, J IOP Conference Series: Materials Science and Engineering 372
[22] He W et al 2014 Static recrystallization microstructure and model of Mn18Cr18N retaining rings steel Mater. Sci. Technol. 6 17–22
[23] Lin Y C, Chen M S and Zhong J 2009 Study of metadynamic recrystallization behaviors in a low alloy steel J. Mater. Process. Technol. 209 2477–82
[24] Wang Q et al 2020 Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy J. Mater. Sci. Technol. 43 104–18
[25] Bayat N et al 2018 Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process Int. J. Miner. Metall. Mater. 25 151–9
[26] Najafizadeh A et al 2006 The strain dependence of postdynamic recrystallization in 304 H stainless steel Metall. Mater. Trans. A 37 1899–906
[27] Jahani N, Reihanian M and Gheisari K 2019 Kinetics of recrystallization and microstructure distribution during isothermal annealing of cold rolled nickel Mater. Res. Express 6 096504
[28] Medina S F, Quispe A and Gómez M 2001 Model for static recrystallization critical temperature in microalloyed steels Mater. Sci. Technol. 17 536–44
[29] Medina S F 1998 Determination of no-recrystallisation temperature in Nb-V-Ti microalloyed steel and discussion of its definition Mater. Sci. Technol. 14 217–21
[30] Gómez M et al 2002 Static Recrystallization and Induced Precipitation in a Low Nb Microalloyed Steel ISIJ Int. 42 423–31
[31] Kwon O and Deardo A J 1990 On the recovery and recrystallization which attend static softening in hot-deformed copper and aluminum Acta Metall. Mater. 38 41–54
[32] Quispe A et al 2013 Effect of strain on recrystallisation–precipitation interaction in low vanadium microalloyed steel Mater. Sci. Technol. 15 635–42
[33] Li L et al 2018 Metadynamic and static recrystallization softening behavior of a bainite steel Met. Mater. Int. 24 60–6
[34] Luo M et al 2017 Static recrystallization behavior of Z12CN13 martensite stainless steel J. Mater. Eng. Perform. 26 4137–65
[35] Ma R et al 2014 Grain refinement of HAZ in multi-pass welding J. Mater. Process. Technol. 214 1131–5
[36] Kumar S and Nath S K 2020 Critical condition parameters and kinetics of dynamic recrystallization for hot deformed 1 wt%Cr–1 wt% Mo rotor steel Mater. Res. Express 7 026548
[37] Beck P A, Kremer J C and Demer L 1947 Grain growth in high purity aluminum Phys. Rev. 71 555