Abstract

Video frame interpolation (VFI), which aims to synthesize intermediate frames of a video, has made remarkable progress with development of deep convolutional networks over past years. Existing methods built upon convolutional networks generally face challenges of handling large motion due to the locality of convolution operations. To overcome this limitation, we introduce a novel framework, which takes advantage of Transformer to model long-range pixel correlation among video frames. Further, our network is equipped with a novel cross-scale window-based attention mechanism, where cross-scale windows interact with each other. This design effectively enlarges the receptive field and aggregates multi-scale information. Extensive quantitative and qualitative experiments demonstrate that our method achieves new state-of-the-art results on various benchmarks.

1. Introduction

Video frame interpolation (VFI) is a fundamental video processing task in which intermediate frames are synthesized between given consecutive ones to increase the frame rate. It is effective in alleviating motion blur and judder, and has become a compelling strategy for numerous applications, such as novel view synthesis [15, 20], video compression [48], video restoration [16, 21, 49], and slow motion generation [2, 19, 27, 32, 35, 38]. Many popular algorithms adopt optical flow warping [2, 3, 19, 25, 27, 32, 33, 36, 37, 42, 50] to tackle this challenging task. Though achieving remarkable performance, these methods built upon convolutional networks generally face challenges of capturing long-range spatial interactions due to the intrinsic locality of convolution operations, thus limited in handling large motion, which is one of the main challenges of VFI.

Recently, natural language processing (NLP) [4, 12, 46] and computer vision [6, 14, 26] tasks achieve notable progress using Transformers, which is a highly adaptive architecture with strong modeling capability. In this work, we are inspired to explore the application of Transformers in the context of video frame interpolation and introduce a novel network, VFIformer. With the attention mechanism as the core operation, VFIformer is able to model pixel correspondence between different frames. Besides, its strong capability of capturing long-range dependency is helpful for handling large motion (see Fig. 1).

Since the vanilla Transformer needs high memory and computational cost, the proposed VFIformer is designed in a UNet [40] architecture where features are processed in different scales to reduce the computational complexity and enlarge the receptive field. Besides, to overcome the quadratic complexity, inspired by recent work [11, 23,
2. Related Work

2.1. Video Frame Interpolation

Video frame interpolation, aiming to synthesize intermediate frames between existing ones of a video, is a longstanding problem. Existing methods can be classified into three categories. They are phase-based, kernel-based, and motion-based ones.

Phase-based methods represent motion in the phase shift of individual pixels. They interpolate phase and amplitude across the levels of a multi-scale pyramid through optimization [31] or neural networks [30]. A common drawback of these approaches is that they are only applicable to limited-range motion.

Kernel-based methods jointly perform motion estimation and motion compensation in a single step. Niklaus et al. [34] estimate a spatially-adaptive convolution kernel for each pixel using a convolutional network. The intermediate frame is then generated by convolving the input frames with the predicted kernels. Further development in this field includes using adaptive separable convolutions [35] to reduce network parameters, adopting deformable convolution or its alternatives to estimate both kernel weights and offset vectors [8, 22, 41], integrating optical flow and interpolation kernels together [2, 3] to improve the performance, and developing loss functions that combine adaptive convolution and trilinear interpolation [38].

These methods tend to yield blurry results when handling fast-moving objects since they hallucinate pixel values directly. Besides, to handle large motion, the estimated kernels are designed to be large, leading to a large number of parameters to learn.

For motion-based methods, optical flow is estimated to warp the input frames. Liu et al. [27] introduce a deep network that produces 3D optical flow vectors across space and time, and warps input frames by trilinear sampling. Jiang et al. [19] linearly combine optical flow between the input images to approximate the intermediate flow.

Recent work has explored a few strategies for improving the performance of such methods. These efforts include utilizing additional contextual information to interpolate high-quality results [32], developing unsupervised techniques by cycle consistency [39], detecting the occlusion by exploring the depth information [2], forward-warping input frames using softmax splatting [33], using quadratic interpolation to overcome the limitation of linear models [24, 50], leveraging the distillation loss to supervise the intermediate flows [17], and constructing efficient architectures for large resolution images [10, 43]. We note that methods built upon convolutional networks generally face challenges of modeling long-term dependencies thus limiting large motion handling.

2.2. Transformer

Transformer was first proposed by Vaswani et al. [46] for machine translation. It consists of stacked self-attention layers for modeling dense relation among input tokens and has shown great flexibility. After breakthrough with the advent of Transformer in NLP, research of Transformer in computer vision becomes popular. Carion et al. [6] propose an end-to-end detection Transformer (DETR) for direct set prediction. Dosovitskiy et al. [14] propose ViT, which is a pure Transformer for image classification and achieves decent results. Liu et al. [26] present a general-purpose backbone, called Swin Transformer, which achieves linear computational complexity by computing self-attention within non-overlapping windows. A shifted window scheme is also proposed for cross-window connection.

Apart from high-level vision tasks, several attempts have also been made to integrate the Transformer into low-level vision tasks [5, 7, 23, 52]. Chen et al. [7] develop a pre-trained model for image processing using the Transformer architecture. Liang et al. [23] propose SwinIR for image restoration based on the Swin Transformer. Cao et al. [5] adapt Transformer for video super-resolution, and an optical flow-based feed-forward layer is integrated for feature vectors.
alignment. In this work, we introduce the Transformer into the VFI task, aiming to leverage its power of capturing long-range correlation.

3. Our Method

Given two input frames I_0 and I_1, video frame interpolation is to synthesize an intermediate frame I_t. Our framework is illustrated in Fig. 2. At first, we utilize a convolutional network (called flow estimator in the following) and an encoder Enc to obtain the preliminary elements, including optical flows $O_{t\to 0}$ and $O_{t\to 1}$, corresponding warped features F_0^i and F_1^i, and warped images I_0 and I_1.

With these preliminary results as input, VFIformer (Sec. 3.1) is utilized to capture long-range pixel interaction, generating the mask and residual for final synthesis. To enlarge the receptive field of the window-based attention in VFIformer, we design a cross-scale window-based attention (Sec. 3.2) mechanism to make trade-off between efficiency and performance.

3.1. VFIformer

Since the locality of convolution constrains its receptive field, previous VFI methods built upon convolutional networks generally face challenges of capturing long-range spatial interactions. In contrast, our work builds upon the recent advance that integrates Transformers into vision models to learn long-range dependencies. We propose the VFIformer, which is able to aggregate information over large receptive fields and is effective in handling large displacement.

As shown in Fig. 3a, our VFIformer is designed in a UNet architecture, where features are processed in different scales to reduce computational complexity and enlarge the receptive field. The encoder of VFIformer consists of several Transformer blocks (TFB), and the decoder consists of standard convolutions and transposed convolutions. For the i-th TFB, its output feature F_i^t is produced as

$$F_i^t = TFB^i([F_{i-1}^t, \tilde{F}_0^i, \tilde{F}_1^i])$$

where F_{i-1}^t is the feature from the last TFB, \tilde{F}_0^i and \tilde{F}_1^i are the features from Enc warped by the intermediate optical flow $O_{t\to 0}$ and $O_{t\to 1}$. TFB^i denotes the operations of the i-th TFB. The first TFB takes as input the concatenation of frames I_0, I_1, \tilde{I}_0, and \tilde{I}_1 without features.

At last, the decoder of VFIformer produces a soft mask H and an image residual ΔI_t to synthesize the final intermediate frame I_t as

$$I_t = H \odot \tilde{I}_0 + (1 - H) \odot \tilde{I}_1 + \Delta I_t$$

where \odot denotes the Hadamard product. The soft mask is used to blend the two warped frames I_0, I_1. The residual is used to compensate flow errors and occlusion.

We then look into the detailed structures of TFB. As illustrated in Fig. 3(b), each TFB consists of several Transformer layers TFL (see Fig. 3(c)) and convolutional layers. The features in the l-th TFL are processed as

$$\hat{z}^l = CSWA(LN(z^{l-1})) + z^{l-1},$$

$$z^l = MLP(LN(\hat{z}^l)) + \hat{z}^l,$$

where z^{l-1} is the feature generated by the $(l-1)$-th TFL. LN and MLP denote the LayerNorm and Multi-Layer Perceptrons. CSWA denotes our proposed cross-scale window-based attention, which is explained in the following.

3524
3.2. Cross-Scale Window-based Attention (CSWA)

Window-based Attention (WA) We first revisit the window-based attention method. Though the key component self-attention of Transformer, has shown great flexibility and strong modeling capability, a known fact is that its power comes at the price of high computational complexity. Inspired by [23, 26], we employ window-based attention (WA) to reduce the computational cost, where feature maps are divided into sub-windows. Self-attention is only performed within each sub-window. Specifically, for a feature map $F \in \mathbb{R}^{H \times W \times C}$, we divide it into H/W sub-windows of size $M \times M$. Taking one of the windows $X \in \mathbb{R}^{(M^2, C)}$ as an example, its query, key and value matrices Q, K and $V \in \mathbb{R}^{(M^2, d)}$ are computed as

$$ Q = X W_Q, \quad K = X W_K, \quad V = X W_V, $$ (5)

where $W_Q, W_K,$ and W_V are projection matrices shared across different windows. Afterwards, the self-attention is computed as

$$ \text{Attn}(Q, K, V) = \text{Softmax}(\frac{QK^T}{\sqrt{d}} + P)V, $$ (6)

where P is the learnable positional encoding, and d is the query/key dimension.

Cross-Scale Window-based Attention (CSWA) Although window-based attention is computationally efficient, the drawback is that the receptive field is still limited, resulting in limited information interaction between different windows. We address this by introducing the cross-scale window-based attention (CSWA), which enlarges the receptive field in an effective way.

The details are shown in Fig. 4, for the input feature $F \in \mathbb{R}^{H \times W \times C}$, we first down-sample it by scale 2 to get $F_1 \in \mathbb{R}^{H/2 \times W/2 \times C}$. Then F is divided into H/W non-overlapping sub-windows, following the same procedure in WA as mentioned above. As for F_1, we first pad it with padding size $M/4 \times M/4$ in the mode of reflection, and then divide it into overlapping sub-windows of size $M \times M$.

Taking one of the windows $X \in \mathbb{R}^{(M^2, C)}$ in F, we de-
note \(Y \in \mathbb{R}^{(M^2, C)} \) as its corresponding window in \(F_i \). Following Eq. (5), we calculate the query \(Q \) only for the window \(X \) from the original feature \(F \). As for the key and value, we calculate them for both the window \(X \) and window \(Y \) to interact features in different scales. The procedure is written as

\[
Q = XW_Q, \quad K_X = XW_{KX}, \quad K_Y = YW_{KY}, \quad V_X = XW_{VX}, \quad V_Y = YW_{VY},
\]

where \(W_Q, W_{KX}, W_{KY}, W_{VX} \) and \(W_{VY} \) are projection matrices. Afterwards, the attention is computed within the set of \((Q, K_X, V_X) \) and \((Q, K_Y, V_Y) \) in a similar way as Eq. (6), producing \(X_\beta \) and \(Y_\beta \). The final result is generated as

\[
\hat{X} = X_\beta + \text{Convs}(X_X, X_Y),
\]

where \([\] \) denotes concatenation in the channel dimension.

As shown in Fig. 4, windows with the same color of \(F \) and \(F_i \) interact with each other, introducing multi-scale information and therefore generating more representative features. On the other hand, windows of \(F_i \) cover larger context than those of \(F \). For example, window \(Y \) in \(F_i \) actually covers 4 times as much context as the window \(X \) in \(F \).

In this way, the receptive field of self-attention is enlarged effectively. We adopt the widely used effective receptive field (ERF) [28] to visualize the ERFs of WA and CSWA. Fig. 5 shows the ERF of a TFB equipped with left: WA, right: CSWA, it is obvious that the ERF of CSWA is much larger than that of WA.

3.3. Loss Functions

Reconstruction loss. We adopt \(L_1 \) loss as the reconstruction loss as

\[
\mathcal{L}_{rec} = ||I_{GT}^t - I_t||_1, \quad (11)
\]

where \(I_{GT}^t \) and \(I_t \) denote the ground-truth intermediate frame and the generated one.

Census loss. Census loss [29, 54] \(\mathcal{L}_{css} \) is robust to illumination changes, which is defined as the soft Hamming distance between census-transformed [53] image patches of \(I_{GT}^t \) and \(I_t \).

Distillation loss. Following [17], we use distillation loss to explicitly supervise the estimated flows as

\[
\mathcal{L}_{dis} = ||O_{t \rightarrow 0}^t - O_{t \rightarrow 0}||_1 + ||O_{t \rightarrow 1}^t - O_{t \rightarrow 1}||_1, \quad (12)
\]

where \(O_{t \rightarrow 0}^t \) and \(O_{t \rightarrow 1}^t \) are flows generated by a pretrained flow estimation network [18]. \(O_{t \rightarrow 0} \) and \(O_{t \rightarrow 1} \) are flow estimated by our flow estimator.

Full objective. Our full objective is defined as

\[
\mathcal{L} = \lambda_{rec}\mathcal{L}_{rec} + \lambda_{css}\mathcal{L}_{css} + \lambda_{dis}\mathcal{L}_{dis}, \quad (13)
\]

where \(\lambda_{rec}, \lambda_{css} \) and \(\lambda_{dis} \) are loss weights for \(\mathcal{L}_{rec}, \mathcal{L}_{css} \) and \(\mathcal{L}_{dis} \), respectively.

4. Experiments

4.1. Datasets

Our model is trained on the Vimeo90K training set and evaluated on various datasets.

Vimeo90K [51]. The Vimeo90K training set contains 51,312 triplets, where each triplet consists of three consecutive video frames with resolution 448 \(\times \) 256. The Vimeo90K training set contains 3,782 triplets whose resolution is also 448 \(\times \) 256.

UCF101 [44]. It contains videos with a large variety of human actions. There are 379 triplets with a resolution of 256 \(\times \) 256.

Middlebury. The Middlebury dataset has two subsets, in which the OTHER dataset provides the ground-truth intermediate frames. The image resolution in this dataset is around 640 \(\times \) 480. Following previous methods, we report the average interpolation error (IE) on the OTHER dataset. A lower IE indicates better performance.

SNU-FILM [9]. It contains 1,240 triplets of resolutions up to 1280 \(\times \) 720. There are four different settings according to the motion types: Easy, Medium, Hard and Extreme.

4.2. Implementation Details

Network Architecture. In the ViFformer, the window size is set to 8 \(\times \) 8, the channel numbers of linear layers and convolution layers are 180. Each TFB contains 6 TFLs except that the first TFB only contains 2 TFLs. Encoder \(Enc \) contains 4 blocks and each extracts one level of features from \(I_0 \) and \(I_1 \). Each encoder block consists of 2 convolutions with strides 2 and 1, respectively, and the channel numbers of features are 24, 48, 96, and 192 from shallow to deep layers. The architecture of the flow estimator is included in the supplementary file.

Training Details. We train our model with the AdamW optimizer. The learning rate is set to \(1e - 4 \). We first train the flow estimator for 0.32M iterations with batch size 48.
4.3. Comparisons with State-of-the-Art Methods

We compare our model with nine recent, competitive methods, including ToFlow [51], SepConv [35], CyclicGen [25], DAIN [2], CAIN [9], AdaCoF [22], BMBC [36], RIFE-Large [17] and ABME [37]. Table 1 shows the quantitative comparison, where the best and second best results are colored in red and blue. It is observed that our model outperforms recent state-of-the-art methods on all four testing sets. It is noteworthy that our method outperforms the second-best method on Vimeo90K testing set by 0.32 dB.

The visual comparison between our method and other VFI methods is shown in Fig. 6. Our proposed method generates more reasonable results with fewer unpleasing artifacts in general. For example, our method successfully interpolates the intermediate frame of the stick with large motion in the first and fourth example of Fig. 6. Meanwhile, to thoroughly investigate the performance of our proposed method, we also conduct multi-frame generation. We recursively apply our model to generate multiple intermediate frames. Specifically, given two input frames I_0 and I_1, we first generate $I_{0.5}$. Then we interpolate between I_0 and $I_{0.5}$ to generate $I_{0.25}$. We show the 8× interpolation results on Vimeo90K testing set in Fig. 7. Our model yields multiple intermediate frames with smooth motion.

4.4. Ablation Study

In this section, we conduct several ablation studies to investigate our proposed method. We verify the effectiveness of the Transformer layers and the proposed cross-scale window-based attention. We also analyze the influence of different window sizes while computing attention.

Effect of the Transformer layers (TFLs).

TFLs are the key components of our VFIformer, which play the role of capturing long-range dependency. We investigate the effect of TFLs by replacing them with convolutional layers of a similar number of parameters. The ablation results are shown in Table 2, where Model 2 is the model with TFLs (using standard window-based attention) and Model 1 is the model without TFLs. Model 2 outperforms Model 1 by 0.22 dB on the Vimeo90K testing set, and also obtains better performance on the SNU-FILM dataset under 4 settings.

Effect of Cross-scale Window-based Attention.

Cross-
scale window-based attention (CSWA) is proposed to enlarge the receptive field and aggregate multi-scale information. To further verify its effectiveness, we train two models with and without CSWA respectively. As shown in Table 2, Model 2 adopts standard window-based attention (WA) while Model 3 adopts CSWA.

Compared with Model 2, Model 3 improves it by 0.07, 0.06, and 0.06 dB in the Easy, Medium, and Hard settings of SNU-FILM, respectively, in terms of PSNR. We show the visual comparison of these two models on SNU-
5. Limitations

Though our proposed method has achieved decent results, there are several limitations. First, while our model is built upon the window-based attention, the computational cost is still heavier than CNN-based methods due to the complex calculations of self-attention. We will explore more efficient approaches in the future by computing self-attention in the horizontal and vertical stripes in parallel [13].

Second, unlike existing methods [19, 37] that are able to interpolate frames at arbitrary time, our model only synthesizes the intermediate frame. In future work, we will investigate variables that represent the interpolation time and put them into the network to control the generated content.

6. Conclusion

In this work, we have proposed a novel framework integrated with the Transformer for the video frame interpolation task. The proposed VFIformer endows our framework with a strong capability of modeling long-range dependencies and handling large motions. Further, a novel cross-scale window-based attention mechanism is designed to aggregate multi-scale information and enlarge the receptive field. Extensive experiments show that our proposed method achieves superior performance over existing state-of-the-art methods on multiple popular benchmarks.
References

[1] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard Szeliski. A database and evaluation methodology for optical flow. International journal of computer vision, 92(1):1–31, 2011.

[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video frame interpolation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3703–3712, 2019.

[3] Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. Meme-net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. IEEE transactions on pattern analysis and machine intelligence, 2019.

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sutliff, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[5] Jiezhang Cao, Yawei Li, Kai Zhang, and Luc Van Gool. Video super-resolution transformer. arXiv preprint arXiv:2106.06847, 2021.

[6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision, pages 213–229. Springer, 2020.

[7] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12299–12310, 2021.

[8] Xianhang Cheng and Zhenzhong Chen. Multiple video frame interpolation via enhanced deformable separable convolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[9] Myungsuk Choi, Heewon Kim, Bohyung Han, Ning Xu, and Kyoung Mu Lee. Channel attention is all you need for video frame interpolation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 10663–10671, 2020.

[10] Myungsuk Choi, Su-young Lee, Heewon Kim, and Kyoung Mu Lee. Motion-aware dynamic architecture for efficient frame interpolation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 13839–13848, 2021.

[11] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers. arXiv preprint arXiv:2104.13840, 1(2):3, 2021.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[13] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped windows. arXiv preprint arXiv:2107.00652, 2021.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[15] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. Deepstereo: Learning to predict new views from the world’s imagery. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5515–5524, 2016.

[16] Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukit. Space-time-aware multi-resolution video enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2859–2868, 2020.

[17] Zhewei Huang, Tianyuang Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Rife: Real-time intermediate flow estimation for video frame interpolation. arXiv preprint arXiv:2011.06294, 2020.

[18] Tak-Wai Hui, Xiaouo Tang, and Chen Change Loy. Lite-flownet: A lightweight convolutional neural network for optical flow estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8981–8989, 2018.

[19] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and Jan Kautz. Super slomo: High quality estimation of multiple intermediate frames for video interpolation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9000–9008, 2018.

[20] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-based view synthesis for light field cameras. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016.

[21] Woo Ye Kim, Jihyong Oh, and Munchurl Kim. Fisr: deep joint frame interpolation and super-resolution with a multi-scale temporal loss. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 11278–11286, 2020.

[22] Hyeongmin Lee, Taeh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. Adafoc: Adaptive collaboration of flows for video frame interpolation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5316–5325, 2020.

[23] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1833–1844, 2021.

[24] Yihao Liu, Liangbin Xie, Li Siyao, Wexiu Sun, Yu Qiao, and Chao Dong. Enhanced quadratic video interpolation.
Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric frame interpolation via adaptive convolution. In Proceedings of the IEEE Conference on Computer Vision, pages 261–270, 2017. 1, 2, 6

Yu-Lun Liu, Yi-Tung Liao, Yen-Yu Lin, and Yung-Yu Chuang. Deep video frame interpolation using cyclic frame generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 8794–8802, 2019. 1, 6

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030, 2021. 1, 2, 4

Ziwei Liu, Raymond A Yeh, Xiaou Tang, Yiming Liu, and Aseem Agarwala. Video frame synthesis using deep voxel flow. In Proceedings of the IEEE International Conference on Computer Vision, pages 4463–4471, 2017. 1, 2

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective receptive field in deep convolutional neural networks. In NeurIPS, pages 4905–4913, 2016. 5

Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Unsupervised learning of optical flow with a bidirectional census loss. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018. 5

Simone Meyer, Abdelaziz Djelouah, Brian McWilliams, Alexander Sorkine-Hornung, Markus Gross, and Christopher Schroers. Phasenet for video frame interpolation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 498–507, 2018. 2

Simone Meyer, Oliver Wang, Henning Zimmer, Max Grosse, and Alexander Sorkine-Hornung. Phase-based frame interpolation for video. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1410–1418, 2015. 2

Simon Niklaus and Feng Liu. Context-aware synthesis for video frame interpolation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1701–1710, 2018. 1, 2

Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5437–5446, 2020. 1, 2

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive convolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 670–679, 2017. 2

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive separable convolution. In Proceedings of the IEEE International Conference on Computer Vision, pages 261–270, 2017. 1, 2, 6

Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim. Bmhc: Bilateral motion estimation with bilateral cost volume for video interpolation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pages 109–125, Springer, 2020. 1, 6

Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric bilateral motion estimation for video frame interpolation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14539–14548, 2021. 1, 6, 8

Tomer Peleg, Pablo Szekely, Doron Sabo, and Omry Sendik. Im-net for high resolution video frame interpolation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2398–2407, 2019. 1, 2

Fitsum A Reda, Deqing Sun, Aysegul Dundar, Mohammad Shoeybi, Guilin Liu, Kevin J Shih, Andrew Tao, Jan Kautz, and Bryan Catanzaro. Unsupervised video interpolation using cycle consistency. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 892–900, 2019. 2

Ola Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015. 1

Zhihao Shi, Xiaohong Liu, Kangdi Shi, Linhui Dai, and Jun Chen. Video interpolation via generalized deformable convolution. arXiv e-prints, pages arXiv–2008, 2020. 2

Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. Xvfi: Extreme video frame interpolation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14489–14498, 2021. 1

Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. Xvfi: Extreme video frame interpolation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14489–14498, 2021. 2

Khurrum Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1211.0402, 2012. 5

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8934–8943, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017. 1, 2

Zhendong Wang, Xiaodong Cun, Jianmin Bao, and Jianzhuang Liu. Uformer: A general u-shaped transformer for image restoration. arXiv preprint arXiv:2106.03106, 2021. 1

Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl. Video compression through image interpolation. In Proceedings of the European Conference on Computer Vision (ECCV), pages 416–431, 2018. 1

Xiaoyu Xiang, Yapeng Tian, Yulun Zhang, Yun Fu, Jan P Allebach, and Chenliang Xu. Zooming slow-mo: Fast and accurate one-stage space-time video super-resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3370–3379, 2020. 1

Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-Hsuan Yang. Quadratic video interpolation. arXiv preprint arXiv:1911.00627, 2019. 1, 2
[51] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video enhancement with task-oriented flow. *International Journal of Computer Vision*, 127(8):1106–1125, 2019.

[52] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Baining Guo. Learning texture transformer network for image super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5791–5800, 2020.

[53] Ramin Zabih and John Woodfill. Non-parametric local transforms for computing visual correspondence. In *European conference on computer vision*, pages 151–158. Springer, 1994.

[54] Yiran Zhong, Pan Ji, Jianyuan Wang, Yuchao Dai, and Hongdong Li. Unsupervised deep epipolar flow for stationary or dynamic scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12095–12104, 2019.