Green-Schwarz, Nambu-Goto Actions,
and Cayley’s Hyperdeterminant

Hitoshi NISHINO\(^{1)}\) and Subhash RAJPOOT\(^{2)}\)

Department of Physics & Astronomy
California State University
1250 Bellflower Boulevard
Long Beach, CA 90840

Abstract

It has been recently shown that Nambu-Goto action can be re-expressed in terms of Cayley’s hyperdeterminant with the manifest \(SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \) symmetry. In the present paper, we show that the same feature is shared by Green-Schwarz \(\sigma \)-model for \(N = 2 \) superstring whose target space-time is \(D = 2+2 \). When its zweibein field is eliminated from the action, it contains the Nambu-Goto action which is nothing but the square root of Cayley’s hyperdeterminant of the pull-back in superspace \(\sqrt{\det (\Pi_{\alpha i})} \) manifestly invariant under \(SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \). The target space-time \(D = 2+2 \) can accommodate self-dual supersymmetric Yang-Mills theory. Our action has also fermionic \(\kappa \)-symmetry, satisfying the criterion for its light-cone equivalence to Neveu-Schwarz-Ramond formulation for \(N = 2 \) superstring.

PACS: 11.25.-w, 11.30.Pb, 11.30.Fs, 02.30.Ik

Key Words: Cayley’s Hyperdeterminant, Green-Schwarz and Nambu-Goto Actions, \(2+2 \) Dimensions, Self-Dual Supersymmetric Yang-Mills, \(N = (1, 1) \) Space-Time Supersymmetry, \(N = 2 \) Superstring.

\(^{1)}\) E-Mail: hnishino@csulb.edu
\(^{2)}\) E-Mail: rajpoot@csulb.edu
1. Introduction

Cayley’s hyperdeterminant [1], initially an object of mathematical curiosity, has found its way in many applications to physics [2]. For instance, it has been used in the discussions of quantum information theory [3][4], and the entropy of the STU black hole [5][6] in four-dimensional string theory [7].

More recently, it has been shown [8] that Nambu-Goto (NG) action [9][10] with the \(D = 2 + 2 \) target space-time possesses the manifest global \(SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \equiv [SL(2, \mathbb{R})]^3 \) symmetry. In particular, the square root of the determinant of an inner product of pull-backs can be rewritten exactly as a Cayley’s hyperdeterminant [1] realizing the manifest \([SL(2, \mathbb{R})]^3 \) symmetry.

It is to be noted that the space-time dimensions \(D = 2 + 2 \) pointed out in [8] are nothing but the consistent target space-time of \(N = 2 \) \(^3\) NSR superstring [16][17][18][19][13][14][15]. However, the NSR formulation [16][17] has a drawback for rewriting it purely in terms of a determinant, due to the presence of fermionic superpartners on the 2D world-sheet. On the other hand, it is well known that a GS formulation [12] without explicit world-sheet supersymmetry is classically equivalent to a NSR formulation [11] on the light-cone, when the former has fermionic \(\kappa \)-symmetry [20][15]. From this viewpoint, a GS \(\sigma \)-model formulation in [14] of \(N = 2 \) superstring [16][17][13] seems more advantageous, despite the temporary sacrifice of world-sheet supersymmetry. However, even the GS formulation [14] itself has an obstruction, because obviously the kinetic term in the GS action is not of the NG-type equivalent to a Cayley’s hyperdeterminant.

In this paper, we overcome this obstruction, by eliminating the zweibein (or 2D metric) \(\text{via} \) its field equation which is \textit{not} algebraic. Despite the \textit{non}-algebraic field equation, such an elimination is possible, just as a NG action [9][10] is obtained from a Polyakov action [21]. Similar formulations are known to be possible for Type I, heterotic, or Type II superstring theories, but here we need to deal with \(N = 2 \) superstring [16] with the target space-time

\(^3\) The \(N = 2 \) here implies the number of world-sheet supersymmetries in the Neveu-Schwarz-Ramond (NSR) formulation [11]. Its corresponding Green-Schwarz (GS) formulation [12][13][14] might be also called ‘\(N = 2 \)’ GS superstring in the present paper. Needless to say, the number of world-sheet supersymmetries should not be confused with that of space-time supersymmetries, such as \(N = 1 \) for Type I superstring, or \(N = 2 \) for Type IIA or IIB superstring [15].
$D = 2 + 2$ instead of 10D. We show that the same global $[SL(2, \mathbb{R})]^3$ symmetry [8] is inherent also in $N = 2$ GS action in [14] with $N = (1, 1)$ supersymmetry in $D = 2 + 2$ as the special case of [13], when the zweibein field is eliminated from the original action, re-expressed in terms of NG-type determinant form.

As is widely recognized, the quantum-level equivalence of NG action [9][10] to Polyakov action [21] has not been well established even nowadays [22]. As such, we do not claim the quantum equivalence of our formulation to the conventional $N = 2$ NSR superstring [16][17] or even to $N = 2$ GS string [13] itself. In this paper, we point out only the existence of fermionic κ-symmetry and the manifest global $[SL(2, \mathbb{R})]^3$ symmetry with Cayley’s hyperdeterminant as classical-level symmetries, after the elimination of 2D metric from the classical GS action [14] of $N = 2$ superstring [16][17].

As in $N = 2$ NSR superstring [16][17], the target $D = (2, 2; 2, 2)^4$ superspace [19] of $N = 2$ GS superstring [14] can accommodate self-dual supersymmetric Yang-Mills (SDSYM) multiplet [18][19] with $N = (1, 1)$ space-time supersymmetry [13][19][14], which is supersymmetric generalization of purely bosonic YM theory in $D = 2 + 2$ [23]. The importance of the latter is due to the conjecture [24] that all the bosonic integrable or soluble models in dimensions $D \leq 3$ are generated by self-dual Yang-Mills (SDYM) theory [23]. Then it is natural to ‘supersymmetrize’ this conjecture [24], such that all the supersymmetric integrable models in $D \leq 3$ are generated by SDSYM in $D = 2 + 2$ [18][19], and thereby the importance of $N = 2$ GS σ-model in [14] is also re-emphasized.

In the next two sections, we present our total action of $N = 2$ GS σ-model [14] whose target superspace is $D = (2, 2; 2, 2)$ [19], and show the existence of fermionic κ-symmetry [20] as well as $[SL(2, \mathbb{R})]^3$ symmetry, due to the Cayley’s hyperdeterminant for the kinetic terms in the NG form. We next confirm that our action is derivable from the $N = 2$ GS σ-model [14] which is light-cone equivalent to $N = 2$ NSR superstring [16][17], by elimi-
nating a zweibein or a 2D metric.

2. Total Action with \([SL(2,\mathbb{R})]^3\) Symmetry

We first give our total action with manifest global \([SL(2,\mathbb{R})]^3\) symmetry, then show its fermionic \(\kappa\)-symmetry \([20]\). Our action has classical equivalence to the GS \(\sigma\)-model formulation \([14]\) of \(N = 2\) superstring \([16][17]\) with the right \(D = (2,2;2,2)\) target superspace that accommodates self-dual supersymmetric YM multiplet \([17][19][18][14]\). In this section, we first give our total action of our formulation, leaving its derivation or justifications for later sections.

Our total action \(I \equiv \int d^2\sigma L\) has the fairly simple lagrangian

\[
L = + \sqrt{-\det (\Gamma_{ij})} + \epsilon^{ij} \Pi_i^A \Pi_j^B B_{BA} \quad (2.1a)
\]

\[
= + \sqrt{+\det (\Pi_{i\alpha})} (1 + 2 \Pi_i^A \Pi_j^B B_{BA}) \equiv L_{NG} + L_{WZNW} \quad (2.1b)
\]

where respectively the two terms \(L_{NG}\) and \(L_{WZNW}\) are called ‘NG-term’ and ‘WZNW-term’. The indices \(i, j, \ldots = 0, 1\) are for the curved coordinates on the 2D world-sheet, while \(+, -\) are for the light-cone coordinates for the local Lorentz frames, respectively defined by the projectors

\[
P_{(i)}^{(j)} \equiv \frac{1}{2}(\delta_{(i)}^{(j)} + \epsilon_{(i)}^{(j)}) \quad , \quad Q_{(i)}^{(j)} \equiv \frac{1}{2}(\delta_{(i)}^{(j)} - \epsilon_{(i)}^{(j)}) \quad (2.2)
\]

where \((i), (j), \ldots = (0), (i), \ldots\) are used for local Lorentz coordinates, and \((\eta_{(i)(j)}) = \text{diag.} (+, -)\).

Note that \(\delta_{++}^+ = \delta_{--}^+ = +1, \epsilon_{++}^+ = -\epsilon_{--}^+ = +1, \eta_{++} = \eta_{--} = 0, \eta_{+-} = \eta_{-+} = 1\). Whereas \(\Pi_i^A\) is the superspace pull-back, \(\Gamma_{ij}\) is a product of such pull-backs:

\[
\Pi_i^A \equiv (\partial_i Z^M) E_M^A \quad , \quad (2.3a)
\]

\[
\Gamma_{ij} \equiv \eta_{\underline{a}\underline{b}} \Pi_i^{\underline{a}} \Pi_j^{\underline{b}} = \Pi_i^{m} \Pi_j^{\underline{m}} \quad (2.3b)
\]

for the target superspace coordinates \(Z^M\). The \((\eta_{\underline{a}\underline{b}}) = \text{diag.}(+,-,-,-)\) is the \(D = 2 + 2\) space-time metric. We use the indices \(\underline{a}, \underline{b}, \ldots = 0, 1, 2, 3\) (or \(m, n, \ldots = 0, 1, 2, 3\)) for the bosonic local Lorentz (or curved) coordinates. The \(E_M^A\) is the flat background vielbein \([25]\) for \(D = (2,2;2,2)\) target superspace \([19][14]\). Its explicit form is

\[
(E_M^A) = \left(\begin{array}{cc}
\delta_{m}^{\underline{a}} & 0 \\
-i\frac{1}{2} (\sigma^2 \theta)_{m}^{\underline{a}} & \delta_{\underline{a}}^{\underline{a}}
\end{array}\right) \quad , \quad (E_A^M) = \left(\begin{array}{cc}
\delta_{\underline{a}}^{m} & 0 \\
+i\frac{1}{2} (\sigma^2 \theta)_{\underline{a}}^{m} & \delta_{m}^{m}
\end{array}\right) \quad (2.4)
\]
We use the underlined Greek indices: \(\underline{\alpha} \equiv (\alpha, \dot{\alpha}), \underline{\beta} \equiv (\beta, \dot{\beta}) \), ... for the pair of fermionic indices, where \(\alpha, \beta, ... = 1, 2 \) are for chiral coordinates, and \(\dot{\alpha}, \dot{\beta}, ... = 1, 2 \) are for anti-chiral coordinates [19]. The indices \(\underline{\mu}, \underline{\nu}, ... = 1, 2, 3, 4 \) are for curved fermionic coordinates. Similarly to the superspace for the Minkowski space-time with the signature \((+,-,-,-)\) [25], a bosonic index is equivalent to a pair of fermionic indices, e.g., \(\Pi_{\underline{a}} \equiv \Pi_{i, \alpha} \). In (2.4), we use the expressions like \((\sigma^a \theta)_{\underline{\alpha}} \equiv - (\sigma^a)_{\alpha \beta} \theta^\beta \) for the \(\sigma \)-matrices in \(D = 2 + 2 \) [26][19]. Relevantly, the only non-vanishing supertorsion components are [19][14]

\[
T_{\underline{\alpha} \underline{\beta} \underline{c}} = i(\sigma^c)_{\underline{\alpha} \underline{\beta}} = \begin{cases} +i(\sigma^c)_{\alpha \beta} & , \\ -i(\sigma^c)_{\dot{\alpha} \dot{\beta}} & , \\ +i(\sigma^c)_{\dot{\alpha} \beta} & = +i(\sigma^c)_{\beta \dot{\alpha}} & .
\end{cases} (2.5)
\]

The antisymmetric tensor superfield \(B_{AB} \) has the superfield strength

\[
G_{ABC} \equiv \frac{1}{2} \nabla_{[AB} B_{BC]} - \frac{1}{2} T_{[AB]} \bar{D}_{B,C]} . (2.6)
\]

Our anti-symmetrization rule is such as \(M_{[AB]} \equiv M_{AB} - (-1)^{AB} M_{BA} \) without the factor 1/2. The flat-background values of \(G_{ABC} \) is [19][14]

\[
G_{\underline{\alpha} \underline{\beta} \underline{c}} = +i(\sigma^c)_{\underline{\alpha} \underline{\beta}} = \begin{cases} +i(\sigma^c)_{\alpha \beta} & , \\ +i(\sigma^c)_{\dot{\alpha} \dot{\beta}} & = +i(\sigma^c)_{\beta \dot{\alpha}} & .
\end{cases} (2.7)
\]

In our formulation, the lagrangian (2.1a) needs the ‘square root’ of the matrix \(\Gamma_{ij} \), analogous to the zweibein \(e_{i}^{(j)} \) as the ‘square root’ of the 2D metric \(g_{ij} \), defined by

\[
\gamma_{i}^{(k)} \gamma_{j}^{(k)} = \Gamma_{ij} , \quad \gamma_{(k)}^{i} \gamma_{(k)}^{(j)} = \Gamma^{ij} , \quad (2.8a)
\]

\[
\gamma_{i}^{(k)} \gamma_{(k)}^{j} = \delta_{i}^{j} , \quad \gamma_{(i)}^{k} \gamma_{(j)}^{(k)} = \delta_{(i)}^{(j)} . \quad (2.8b)
\]

Relevantly, we have \(\gamma = \sqrt{-\Gamma} \) for \(\Gamma \equiv \det (\Gamma_{ij}) \) and \(\gamma \equiv \det (\gamma_{i}^{(j)}) \). We define \(\Pi^{A} \equiv \gamma^{1} \Pi_{i}^{A} \) for the \(\pm \) local light-cone coordinates. For our formulation with (2.1), we always use the \(\gamma \)'s to convert the curved indices \(i, j, ... = 0, 1 \) into local Lorentz indices \((i), (j), \) ... = (0), (1).

From (2.8), it is clear that we can always define the ‘square root’ of \(\Gamma_{ij} \) of (2.3b) just as we can always define the zweibein \(e_{i}^{(j)} \) out of a 2D metric \(g_{ij} \). In fact, (2.8) determines \(\gamma_{i}^{(j)} \) up to 2D local Lorentz transformations \(O(1, 1) \), because (2.8) is covariant under arbitrary \(O(1, 1) \). However, (2.8) has much more significance, because if the curved
indices i,j of Γ_{ij} are converted into 'local' ones, then it amounts to

$$\Gamma_{(i)(j)} = \gamma(i)^k\gamma(j)^l \Gamma_{kl} = \gamma(i)^k\gamma(j)^l (\gamma_k^m\gamma_l^m)$$

$$= (\gamma(i)^k\gamma_k^m)(\gamma(j)^l\gamma_l^m) = \delta_{(i)(j)} = \eta_{(i)(j)} \implies \Gamma_{(i)(j)} = \eta_{(i)(j)} \ . \quad (2.9)$$

In terms of light-cone coordinates, this implies formally the Virasoro conditions [27]

$$\Gamma_{++} \equiv \Pi_{++}^2 \Pi_{++} = 0 \ , \quad \Gamma_{--} \equiv \Pi_{--}^2 \Pi_{--} = 0 \ , \quad (2.10)$$

because $\eta_{++} = \eta_{--} = 0$. The only caveat here is that our $\gamma_{(j)}$ is not exactly the zweibein $e_{(j)}$, but it differs only by certain factor, as we will see in (4.6).

The result (2.10) is not against the original results in NG formulation [9][10]. At first glance, since the NG action has no metric, it seems that Virasoro condition [27] will not follow, unless a 2D metric is introduced as in Polyakov formulation [21]. However, it has been explicitly shown that the Virasoro conditions follow as first-order constraints, when canonical quantization is performed [10]. Naturally, this quantum-level result is already reflected at the classical level, i.e., the Virasoro condition (2.10) follows, when the ij indices on $\Gamma_{ij} \equiv \Pi_{i\alpha}^2 \Pi_{j\alpha}$ are converted into 'local Lorentz indices' by using the γ's in (2.8).

Most importantly, $\text{Det} (\Pi_{i\alpha\alpha})$ in (2.1b) is a Cayley’s hyperdeterminant [1][8], related to the ordinary determinant in (2.1a) by

$$\text{Det} (\Pi_{i\alpha\alpha}) = -\frac{1}{2} \epsilon_{ij}^k \epsilon^{\alpha\beta} \epsilon_{\gamma\delta}^\cdot \epsilon_{ij}^\cdot \Pi_{i\alpha\alpha} \Pi_{j\beta\beta} \Pi_{k\gamma\gamma} \Pi_{l\delta\delta} = -\text{det} (\Gamma_{ij}) \ , \quad (2.11a)$$

$$\Gamma_{ij} \equiv \Pi_{i\alpha}^2 \Pi_{j\alpha} = \Pi_{i\alpha\alpha}^\cdot \Pi_{j\alpha\alpha} = \epsilon^{\alpha\beta} \epsilon_{ij}^\cdot \Pi_{i\alpha\gamma} \Pi_{j\beta\delta} \ . \quad (2.11b)$$

The global $[SL(2,\mathbb{R})]^3$ symmetry of our action I is more transparent in terms of Cayley’s hyperdeterminant, because of its manifest invariance under $[SL(2,\mathbb{R})]^3$. For other parts of our lagrangian, consider the infinitesimal transformation for the first factor group5 of $SL(2,\mathbb{R}) \times SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ with the infinitesimal real constant traceless 2 by 2 matrix parameter p as

$$\delta_p \Pi_{i}^{A} = p_i^j \pi_j^{A} \ , \quad \delta_p \gamma_{(i)}^j = -p_i^j \gamma_{(i)}^k \quad (p_i^i = 0) \ . \quad (2.12)$$

5 In a sense, this invariance is trivial, because $SL(2,\mathbb{R}) \subset GL(2,\mathbb{R})$, where the latter is the 2D general covariance group.
The latter is implied by the definition of $\Gamma_{ij} \equiv \Pi_{i}^{\alpha} \Pi_{j}^{\dot{\alpha}}$ and $\gamma^{i\dot{j}}$ in (2.8). Eventually, we have $\delta_{\mu} \Pi_{(i)}^{A} = 0$, while $\mathcal{L}_{\text{WZNW}}$ is also invariant, thanks to $\delta_{\mu} \Pi_{(i)}^{A} = 0$. This concludes $\delta_{\mu} \mathcal{L} = 0$.

The second and third factor groups in $\text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R})$ act on the fermionic coordinates α and $\dot{\alpha}$ in $D = (2, 2; 2, 2)$, which need an additional care. We first need the alternative expression of $\mathcal{L}_{\text{WZNW}}$ by the use of Vainberg construction [28][29]:

$$\mathcal{L} = +\sqrt{-\text{Det} (\Pi_{i\alpha}^{\dagger})} + i \int \bar{\sigma} \epsilon^{i\dot{j}k} \tilde{\Pi}_{i\alpha} \tilde{\Pi}_{j}^{\alpha} \tilde{\Pi}_{k}^{\dot{\alpha}} .$$

We need this alternative expression, because superfield strength G_{AB} is less ambiguous than its potential superfield B_{AB} avoiding the subtlety with the indices α and $\dot{\alpha}$. In the Vainberg construction [28][29], we are considering the extended 3D ‘world-sheet’ with the coordinates $(\tilde{\sigma}^{i}) \equiv (\sigma^{i}, y)$ $(i = 0, 1, 2)$, where $\tilde{\sigma}^{2} \equiv y$ is a new coordinate with the range $0 \leq y \leq 1$. Relevantly, $\tilde{\epsilon}^{i\dot{j}k}$ is totally antisymmetric constant, and $\tilde{\epsilon}^{2i\dot{j}} = \epsilon^{ij}$. All the hatted indices and quantities refer to the new 3D. Any hatted superfield as a function of $\tilde{\sigma}^{i}$ should satisfy the conditions [28], e.g.,

$$\tilde{Z}^{M}(\sigma, y = 1) = Z^{M}(\sigma), \quad \tilde{Z}^{M}(\sigma, y = 0) = 0 .$$

Consider next the isomorphism $\text{SL}(2, \mathbb{R}) \approx \text{Sp}(1)$ [30] for the last two groups in $\text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R}) \approx \text{SL}(2, \mathbb{R}) \times \text{Sp}(1) \times \text{Sp}(1)$. These two $\text{Sp}(1)$ groups are acting respectively on the spinorial indices α and $\dot{\alpha}$. The contraction matrices $\epsilon_{\alpha\beta}$ and $\epsilon_{\dot{\alpha}\dot{\beta}}$ are the metrics of these two $\text{Sp}(1)$ groups, used for raising/lowering these spinorial indices. Now the infinitesimal transformation parameters of $\text{Sp}(1) \times \text{Sp}(1)$ can be 2 by 2 real constant symmetric matrices $q_{\alpha\beta}$ and $r_{\dot{\alpha}\dot{\beta}}$ acting as

$$\delta_{q} \tilde{\Pi}_{i\alpha} = -q^{\alpha\beta} \tilde{\Pi}_{i}^{\beta}, \quad \delta_{q} \tilde{\Pi}_{i\dot{\alpha}} = q_{\dot{\alpha}\gamma} \tilde{\Pi}_{i}^{\gamma} , \quad \delta_{r} \tilde{\Pi}_{i}^{\dot{\alpha}} = -r^{\dot{\alpha}\dot{\beta}} \tilde{\Pi}_{i}^{\beta}, \quad \delta_{r} \tilde{\Pi}_{i\dot{\alpha}} = r_{\dot{\alpha}\gamma} \tilde{\Pi}_{i}^{\gamma} ,$$

where $q^{\alpha\beta} \equiv \epsilon^{\alpha\gamma} q_{\gamma\beta}$, $r^{\dot{\alpha}\dot{\beta}} \equiv \epsilon^{\dot{\alpha}\dot{\gamma}} r_{\dot{\gamma}\dot{\beta}}$, etc. Then it is easy to confirm for $\mathcal{L}_{\text{WZNW}}$ that

$$\delta_{q} \left(\tilde{\Pi}_{i\alpha\dot{\alpha}} \tilde{\Pi}_{j}^{\alpha} \tilde{\Pi}_{k}^{\dot{\alpha}} \right) = 0 , \quad \delta_{r} \left(\tilde{\Pi}_{i\alpha\dot{\alpha}} \tilde{\Pi}_{j}^{\alpha} \tilde{\Pi}_{k}^{\dot{\alpha}} \right) = 0 .$$
because of \(q_\alpha^\gamma = +q^\gamma_\alpha \) and \(r_\alpha^\gamma = +r^\gamma_\alpha \). We thus have the total invariances \(\delta_q \mathcal{L} = 0 \) and \(\delta_r \mathcal{L} = 0 \). Since \(\delta_p \mathcal{L} = 0 \) has been confirmed after (2.12), this concludes the \([SL(2, \mathbb{R})]^3\)-invariance proof of our action (2.1).

It was pointed out in ref. [8] that ‘hidden’ discrete symmetry also exists in NG-action under the interchange of the three indices for \([SL(2, \mathbb{R})]^3\). In our system, however, this hidden triality seems absent. This can be seen in (2.1b), where the Cayley’s hyperdeterminant or \(\mathcal{L}_{\text{NG}} \) indeed possesses the discrete symmetry for the three indices \(i \alpha \hat{\alpha} \), while it is lost in \(\mathcal{L}_{\text{WZNW}} \). This is because the mixture of \(\Pi_{i\alpha} \) and \(\Pi^{i\alpha} \) or \(\Pi^{i\hat{\alpha}} \) via the non-zero components of \(B_{AB} \) breaks the exchange symmetry among \(i \alpha \hat{\alpha} \), unlike Cayley’s hyperdeterminant.

3. Fermionic Invariance of our Action

We now discuss our fermionic \(\kappa \)-invariance. Our action (2.1) is invariant under

\[
(\delta_\kappa Z^M) E_M^{\alpha} = +i(\sigma_\alpha)_{\alpha\beta}^{\beta} \kappa_{-\beta} \Pi_{+ \beta} \equiv +i(\Pi_{+\kappa-})^{\alpha} , \tag{3.1a}
\]

\[
(\delta_\kappa Z^M) E_M^{\hat{\alpha}} = 0 , \tag{3.1b}
\]

\[
\delta_\kappa \Gamma_{ij} = +[\kappa_{-\alpha}(\sigma_\alpha \sigma_\gamma)_{\alpha\beta}^{\beta} \Pi_{+ \beta}] \Pi_{+ \alpha} \equiv + (\Pi_{+ \kappa-} \Pi_{+ \alpha} \Pi_{+ \beta}) . \tag{3.1c}
\]

The \(\kappa_{- \alpha} \) is the parameter for our fermionic symmetry transformation, just as in the conventional Green-Schwarz superstring [12][20]. Since \(Z^M \) is the only fundamental field in our formulation, (3.1c) is the necessary condition of (3.1a) and (3.1b).

We can confirm \(\delta_\kappa I = 0 \) easily, once we know the intermediate results:

\[
\delta_\kappa \mathcal{L}_{\text{NG}} = +\sqrt{-\Gamma} (\Pi_{-} \Pi_{+} \Pi_{(i)} \Pi_{(j)}) , \tag{3.2a}
\]

\[
\delta_\kappa \mathcal{L}_{\text{WZNW}} = -\epsilon^{ij} (\Pi_{-} \Pi_{+} \Pi_{i} \Pi_{j}) . \tag{3.2b}
\]

By using the relationships, such as \(\sqrt{-\Gamma} \epsilon^{(k)(l)} = +\epsilon^{ij} \gamma_{i}^{(k)} \gamma_{j}^{(l)} \), with the most crucial equation (2.10), we can easily confirm that the sum (3.2a) + (3.2b) vanishes:

\[
\delta_\kappa \mathcal{L} = \delta_\kappa (\mathcal{L}_{\text{NG}} + \mathcal{L}_{\text{WZNW}}) = +2\sqrt{-\Gamma} (\Pi_{-} \Pi_{+} \Pi_{+} \Pi_{-}) = 0 . \tag{3.3}
\]

Thus the fermionic \(\kappa \)-invariance \(\delta_\kappa I = 0 \) works also in our formulation, despite the absence of the 2D metric or zweibein. The existence of fermionic \(\kappa \)-symmetry also guarantees the light-cone equivalence of our system to the conventional \(N = 2 \) GS superstring [14].
4. Derivation of Lagrangian and Fermionic Symmetry

In this section, we start with the conventional GS σ-model action [14] for $N = 2$ superstring [16][17], and derive our lagrangian (2.1) with the fermionic transformation rule (3.1). This procedure provides an additional justification for our formulation.

The $N = 2$ GS action $I_{GS} \equiv \int d^2 \sigma \mathcal{L}_{GS}$ [14] which is light-cone equivalent to $N = 2$ NSR superstring [16][17] has the lagrangian

$$
\mathcal{L}_{GS} = +\frac{1}{2}\sqrt{-g}g^{ij}\Pi_i^a\Pi_j^a + \epsilon^{ij}\Pi^A_i\Pi^B_jB_{BA} \\
= +e\Pi_+^a\Pi_-^a + 2e\Pi_-^A\Pi_+^B B_{BA},
$$

(4.1)

where $g \equiv \text{det} (g_{ij})$ is for the 2D metric g_{ij}, while $e \equiv \text{det} (e_i^{(j)}) = \sqrt{-g}$ is for the zweibein $e_i^{(j)}$. The action I_{GS} is invariant under the fermionic transformation rule [20][15]

$$
\delta_\lambda E^a = +i(\sigma^a_i)^j_i\lambda^i\Pi_i^a = +i(\Pi_i^a\lambda^i)^a ,
$$

(4.2a)

$$
\delta_\lambda E^a = 0 ,
$$

(4.2b)

$$
\delta_\lambda e_+^i = -(\lambda_+^a\Pi_+^a) e_+^i \equiv -\tilde{(\lambda_+^a\Pi_+^a)} e_+^i ,
$$

(4.2c)

$$
\delta_\lambda e_-^i = 0 ,
$$

(4.2d)

where λ has only the negative component: $\lambda_{(ij)}^a \equiv Q_{(ij)}^{(j)}\lambda_{(j)}^a$. Only in this section, the local Lorentz indices are related to curved ones through the zweibein as in $\Pi_{(ij)}^A \equiv e_{(i)}^j\Pi_j^A$, instead of $\gamma_{(ij)}$ in the last section. In the routine confirmation of $\delta_\lambda \mathcal{L}_{GS} = 0$, we see its parallel structures to $\delta_\kappa \mathcal{L} = 0$.

We next derive our lagrangians \mathcal{L}_{NG} and \mathcal{L}_{WZNW} from \mathcal{L}_{GS} in (4.1). To this end, we first get the 2D metric field equation from I_{GS}

$$
g_{ij} \doteq +2(g^{kl}\Pi_k^a\Pi_l^a)^{-1}(\Pi_i^a\Pi_j^a) \equiv 2\Omega^{-1}\Gamma_{ij} \equiv h_{ij} ,
$$

(4.3a)

$$
\Omega \equiv g^{ij}\Pi_i^a\Pi_j^a = g^{ij}\Gamma_{ij} .
$$

(4.3b)

As is well-known in string σ-models, this field equation is not algebraic for g_{ij}, because the r.h.s. of (4.3) again contains g^{ij} via the factor Ω. Nevertheless, we can formally delete the

6) We use the parameter λ instead of κ due to a slight difference of λ from our κ (Cf. eq. (4.8)).

7) We use the symbol \doteq for a field equation to be distinguished from an algebraic one.
metric from the original lagrangian, using a procedure similar to getting NG string [9][10] from Polyakov string [21], or NG action out of Type II superstring action [12], as

\[
\frac{1}{2} \sqrt{-g} g^{ij} \Gamma_{ij} = \frac{1}{2} \sqrt{-g} \Omega = \frac{1}{2} \sqrt{-\det (h_{ij})} \Omega = \frac{1}{2} \sqrt{-\det (2 \Omega^{-1} \Gamma_{ij})} \Omega = \Omega^{-1} \sqrt{-\det (\Gamma_{ij})} \Omega = \sqrt{-\Gamma} = \mathcal{L}_{\text{NG}}. \tag{4.4}
\]

Thus the metric disappears completely from the resulting lagrangian, leaving only \(\sqrt{-\Gamma}\) which is nothing but \(\mathcal{L}_{\text{NG}}\) in (2.1). As for \(\mathcal{L}_{\text{WZNW}}\), since this term is metric-independent, this is exactly the same as the second term of (4.1).

We now derive our fermionic transformation rule (3.1) from (4.2). For this purpose, we establish the on-shell relationships between \(e_i^{(j)}\) and our newly-defined \(\gamma_i^{(j)}\). By taking the ‘square root’ of (4.3a), we get the \(e_i^{(j)}\)-field equation expressed in terms of the \(\Pi\)’s, that we call \(f_i^{(j)}\) which coincides with \(e_i^{(j)}\) only on-shell:

\[
e_i^{(j)} = f_i^{(j)} = f_i^{(j)}(\Pi_k^A), \tag{4.5a}
\]

\[
f_{i(k)} f_j^{(k)} = h_{ij}, \quad f^{(k)i} f_{(k)}^j = h^{ij}, \quad f_{i(k)}^j f_{(k)}^j = \delta_i^j, \quad f_{i(k)}^j f_k^{(j)} = \delta_{(i)}^{(j)}. \tag{4.5b}
\]

Note that the \(f\)’s is proportional to the \(\gamma\)’s by a factor of \(\sqrt{\Omega/2}\), as understood by the use of (4.3), (4.5) and (2.8):

\[
e_i^{(j)} = f_i^{(j)} = \sqrt{\frac{2}{\Omega}} \gamma_i^{(j)}, \quad e_{(i)}^j = f_{(i)}^j = \sqrt{\frac{\Omega}{2}} \gamma_{(i)}^j. \tag{4.6}
\]

Recall that the factor \(\Omega\) contains the 2D metric or zweibein which might be problematic in our formulation, while \(\gamma_i^{(j)}, \gamma_{(i)}^j\) are expressed only in terms of the \(\Pi_i^A\)’s. Fortunately, we will see that \(\Omega\) disappears in the end result.

Our fermionic transformation rule (3.1a) is now obtained from (4.2a), as

\[
\delta_{\lambda} E^\alpha = i(\Pi_i^A \lambda^i)^\alpha = if^{(i)(j)}(\Pi_j^A \lambda_{(i)})^\alpha = i\sqrt{\frac{\Omega}{2}} {\gamma_{(i)}}^{(j)}(\Pi_j^A \lambda_{(i)})^\alpha
\]

\[
= i\gamma_{(i)}^{(j)} \left[\Pi_j^A \left(\sqrt{\frac{\Omega}{2}} \lambda_{(i)} \right) \right]^\alpha = i(\Pi_i^A \kappa_{(i)})^\alpha = \delta_{\kappa} E^\alpha, \tag{4.7}
\]

where \(\lambda\) and \(\kappa\) are proportional to each other by

\[
\kappa_{(i)} \equiv \sqrt{\frac{\Omega}{2}} \lambda_{(i)}. \tag{4.8}
\]
Such a re-scaling is always possible, due to the arbitrariness of the parameter \(\lambda \) or \(\kappa \).

As an additional consistency confirmation, we can show the \(\kappa \)-invariance of (2.10), using the convenient lemmas

\[
(\delta_{\kappa} \gamma_+^i) \gamma_i^+ = (\delta_{\kappa} \gamma_-^i) \gamma_i^- = \frac{1}{2} \Omega^{-1} \delta_{\kappa} \Omega \quad , \quad (\delta_{\kappa} \gamma_+^i) \gamma_i^- = (\delta_{\kappa} \gamma_-^i) \gamma_i^+ = - (\pi_- \Pi_-) . \quad (4.9)
\]

Combining these with (3.1c), we can easily confirm that \(\delta_{\kappa} \Gamma_{++} = 0 \) and \(\delta_{\kappa} \Gamma_{--} = 0 \), as desired for consistency of the ‘built-in’ Virasoro condition (2.10).

The complete disappearance of \(\Omega \) in our transformation rule (3.1) is desirable, because \(\Omega \) itself contains the metric that is not given in a closed algebraic form in terms of \(\Pi_i^A \). If there were \(\Omega \) involved in our transformation rule (3.1), it would pose a problem due to the metric \(g_{ij} \) in \(\Omega \). To put it differently, our action (2.1) and its fermionic symmetry (3.1) are expressed only in terms of the fundamental superfield \(Z^M \) via \(\Pi_i^A \) with no involvement of \(g_{ij} \), \(e_1^{(j)} \) or \(\Omega \), thus indicating the total consistency of our system. This concludes the justification of our fermionic \(\kappa \)-transformation rule (3.1), based on the \(N = 2 \) GS \(\sigma \)-model [14] light-cone equivalent to \(N = 2 \) NSR superstring [16][17].

5. Concluding Remarks

In this paper, we have shown that after the elimination of the 2D metric at the classical level, the NG-action part \(I_{NG} \) of GS \(\sigma \)-model action [14] for \(N = 2 \) superstring [16][17] is entirely expressed as the square root of a Cayley’s hyperdeterminant with the manifest \([SL(2, \mathbb{R})]^3\) symmetry. In particular, this is valid in the presence of target superspace background in \(D = (2, 2; 2, 2) \) [19]. From this viewpoint, \(N = 2 \) GS \(\sigma \)-model [14] seems more suitable for discussing the \([SL(2, \mathbb{R})]^3\) symmetry via a Cayley’s hyperdeterminant. We have seen that the \([SL(2, \mathbb{R})]^3\) symmetry acts on the three indices \(i, a, \dot{a} \) carried by the pull-back \(\Pi_{i\alpha\dot{a}} \) in \(\det (\Pi_{i\alpha\dot{a}}) \) in \(D = (2, 2; 2, 2) \) superspace [19][14]. The hidden discrete symmetry pointed out in [8], however, seems absent in \(N = 2 \) string [17][19][14] due to the WZNW-term \(\mathcal{L}_{WZNW} \).

We have also shown that our action (2.1) has the classical invariance under our fermionic \(\kappa \)-symmetry (3.1), despite the elimination of zweibein or 2D metric. Compared with the
original I_{GS} [14], our action has even simpler structure, because of the absence of the 2D metric or zweibein. Due to its fermionic κ-symmetry, we can also regard that our system is classically equivalent to NSR $N = 2$ superstring [16][17], or $N = 2$ GS superstring [13]. As an important by-product, we have confirmed that the Virasoro condition (2.10) are inherent even in the NG reformulation of $N = 2$ GS string [14] at the classical level. This is also consistent with the original result that Virasoro condition is inherent in NG string [9][10].

One of the important aspects is that our action (2.1) and the fermionic transformation rule (3.1) involve neither the 2D metric g_{ij}, the zweibein $e_i^{(j)}$, nor the factor Ω containing these fields. This indicates the total consistency of our formulation, purely in terms of superspace coordinates Z^M as the fundamental independent field variables.

In this paper, we have seen that neither the 2D metric g_{ij} nor the zweibein $e_i^{(j)}$, but the superspace pull-back $\Pi_{i\dot{\alpha}}$ is playing a key role for the manifest symmetry $[SL(2, \mathbb{R})]^3$ acting on the three indices i, α. In particular, the combination $\Gamma_{ij} \equiv \Pi_i^{a\dot{a}} \Pi_j^{b\dot{b}}$ plays a role of ‘effective metric’ on the 2D world-sheet. This suggests that our field variables Z^M alone are more suitable for discussing the global $[SL(2, \mathbb{R})]^3$ symmetry of $N = 2$ superstring [16][17][14].

As a matter of fact, in $D = 2 + 2$ unlike $D = 3 + 1$, the components α and $\dot{\alpha}$ are not related to each other by complex conjugations [26][18][19]. Additional evidence is that the signature $D = 2 + 2$ seems crucial, because $SO(2, 2) \approx SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$ [30], while $SO(3, 1) \approx SL(2, \mathbb{C})$ for $D = 3 + 1$ is not suitable for $SL(2, \mathbb{R})$. Thus it is more natural that the NG reformulation of $N = 2$ GS superstring [14] with the target superspace $D = (2, 2; 2, 2)$ is more suitable for the global $[SL(2, \mathbb{R})]^3$ symmetry acting on the three independent indices i, α and $\dot{\alpha}$.

It seems to be a common feature in supersymmetric theories that certain non-manifest symmetry becomes more manifest only after certain fields are eliminated from an original lagrangian. For example, in $N = 1$ local supersymmetry in 4D, it is well-known that the σ-model Kähler structure shows up, only after all the auxiliary fields in chiral multiplets are eliminated [31]. This viewpoint justifies to use a NG-formulation with the 2D metric
eliminated, instead of the original \(N = 2 \) GS formulation \([13][14]\), in order to elucidate the global \([SL(2, \mathbb{R})]^3 \) symmetry of the latter, via Cayley’s hyperdeterminant.

It has been well known that the superspace \(D = (2, 2; 2, 2) \) is the natural background for SDYM multiplet \([17][18][19][14]\). Moreover, SDSYM theory \([18][19][14]\) is the possible underlying theory for all the (supersymmetric) integrable systems in space-time dimensions lower than four \([24]\). All of these features strongly indicate the significant relationships among Cayley’s hyperdeterminant \([1][8]\), \(N = 2 \) superstring \([16][17]\), or \(N = 2 \) GS superstring \([13][14]\) with \(D = (2, 2; 2, 2) \) target superspace \([19][14]\), its NG reformulation as in this paper, the STU black holes \([5][6]\), SDSYM theory in \(D = 2 + 2 \) \([18][19][14]\), and supersymmetric integrable or soluble models \([24][17][19][14]\) in dimensions \(D \leq 3 \).

We are grateful to W. Siegel and the referee for noticing mistakes in an earlier version of this paper.

References

[1] A. Cayley, ‘On the Theory of Linear Transformations’, Camb. Math. Jour. 4 (1845) 193.

[2] M. Duff, ‘String Triality, Black Hole Entropy and Cayley’s Hyperdeterminant’, hep-th/0601134.

[3] V. Coffman, J. Kundu and W. Wooters, quant-ph/9907047, Phys. Rev. A61 (2000) 52306.

[4] A. Miyake and M. Wadati, ‘Multiparticle Entanglement and Hyperdeterminants’, ERATO Workshop on Quantum Information Science 2002 (September, ‘02, Tokyo, Japan), quant-ph/0212146.

[5] K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, hep-th/9608059, Phys. Rev. D54 (1996) 6293.

[6] R. Kallosh and A. Linde, hep-th/0602061, Phys. Rev. D73 (2006) 104033.

[7] M.J. Duff, J.T. Liu and J. Rahmfeld, hep-th/9508094, Nucl. Phys. B459 (1986) 125.

[8] M. Duff, hep-th/0602160, Phys. Lett. 641B (2006) 335.

[9] Y. Nambu, ‘Duality and Hydrodynamics’, Lectures at the Copenhagen conference, 1970.

[10] T. Goto, Prog. Theor. Phys. 46 (1971) 1560.

[11] P. Ramond, Phys. Rev. D3 (1971) 2415; A. Neveu and J.H. Schwarz, Nucl. Phys. B31 (1971) 86.

[12] M. Green and J.H. Schwarz, Phys. Lett. 136B (1984) 367.

[13] W. Siegel, hep-th/9210008, Phys. Rev. D47 (1993) 2512.
[14] H. Nishino, hep-th/9211042, Int. Jour. Mod. Phys. A9 (1994) 3077.

[15] M. Green, J.H. Schwarz and E. Witten, ‘Superstring Theory’, Vol. 1 & 2, Cambridge University Press 1986.

[16] M. Ademollo, L. Brink, A. D’Adda, R. D’Auria, E. Napolitano, S. Sciuto, E. Del Giudice, P. Di Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Pettorino and J.H. Schwarz, Nucl. Phys. B111 (1976) 77; L. Brink and J.H. Schwarz, Nucl. Phys. B121 (1977) 285; A. Sen, Nucl. Phys. B228 (1986) 287.

[17] H. Ooguri and C. Vafa, Mod. Phys. Lett. A5 (1990) 1389; Nucl. Phys. B361 (1991) 469; ibid. B367 (1991) 83; H. Nishino and S.J. Gates, Jr., Mod. Phys. Lett. A7 (1992) 2543.

[18] W. Siegel, hep-th/9205075, Phys. Rev. D46 (1992) R3235; hep-th/9207043, Phys. Rev. D47 (1993) 2504; hep-th/9204005, Phys. Rev. Lett. 69 (1992) 1493; A. Parkes, hep-th/9203078, Phys. Lett. 286B (1992) 265.

[19] H. Nishino, S.J. Gates, Jr., and S.V. Ketov, hep-th/9203080, Phys. Lett. 307B (1993) 331; hep-th/9203081, Phys. Lett. 307B (1993) 323; hep-th/9203078, Phys. Lett. 297B (1992) 99; hep-th/9207042, Nucl. Phys. B393 (1993) 149.

[20] L. Brink and J.H. Schwarz, Phys. Lett. 100B (1981) 310; W, Siegel, Phys. Lett. 128B (1983) 397; Class. & Quant. Gr. 2 (1985) L95.

[21] A.M. Polyakov, Phys. Lett. 103B (1981) 207 and 211.

[22] For recent quantizations of NG string, see, e.g., K. Pohlmeyer, hep-th/0206061, Jour. Mod. Phys. A19 (2004) 115; D. Bahns, hep-th/0403108, Jour. Math. Phys. 45 (2004) 4640; T. Thiemann, hep-th/0401172, Class. & Quant. Gr. 23 (2006) 1923.

[23] A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Phys. Lett. 59B (1975) 85; R.S. Ward, Phys. Lett. 61B (1977) 81; M.F. Atiyah and R.S. Ward, Comm. Math. Phys. 55 (1977) 117; E.F. Corrigan, D.B. Fairlie, R.C. Yates and P. Goddard, Comm. Math. Phys. 58 (1978) 223; E. Witten, Phys. Rev. Lett. 38 (1977) 121.

[24] M.F. Atiyah, unpublished; R.S. Ward, Phil. Trans. Roy. Lond. A315 (1985) 451; N.J. Hitchin, Proc. Lond. Math. Soc. 55 (1987) 59.

[25] J. Wess and J. Bagger, ‘Superspace and Supergravity’, Princeton University Press, 1992.

[26] T. Kugo and P.K. Townsend, Nucl. Phys. B211 (1983) 157.

[27] M.A. Virasoro, Phys. Rev. D1 (1970) 2933.

[28] M.M. Vainberg, ‘Variational Methods for the Study of Non-Linear Operators’, Holden Day, San Francisco, 1964.

[29] S.J. Gates, Jr. and H. Nishino, Phys. Lett. 173B (1986) 46.

[30] R. Gilmore, ‘Lie Groups, Lie Algebras and Some of Their Applications’, Wiley-Interscience, 1973.

[31] E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Phys. Lett. 79B (1978) 231; Nucl. Phys. B147 (1979) 105; E. Cremmer, S. Ferrara, L. Girardello and A. van Proyen, Nucl. Phys. B212 (1983) 413.