Abels’s groups revisited

Stefan Witzel

May 1, 2014

We generalize a class of groups introduced by Herbert Abels to produce examples of virtually torsion free groups that have Bredon-finiteness length $m - 1$ and classical finiteness length $n - 1$ for all $0 < m \leq n$.

The proof illustrates how Bredon-finiteness properties can be verified using geometric methods and a version of Brown’s criterion due to Martin Fluch and the author.

Let G_n be the algebraic group of invertible upper triangular $(n + 1)$-by-$(n + 1)$ matrices whose extremal diagonal entries are 1. The groups $G_n(\mathbb{Z}[1/p])$ where p is a prime were introduced by Abels because they have interesting finiteness properties. Namely, it was shown in [Abe79, Str84, AB87, Bro87] that $G_n(\mathbb{Z}[1/p])$ is of type F_{n-1} but not of type F_n.

Recall that a group Γ is of type F_n if it admits a classifying space X whose n-skeleton modulo the action of Γ. A classifying space is a contractible CW complex on which Γ acts freely. Closely related to these topological finiteness properties are the homological finiteness properties of being of type FP_n: by definition Γ is of type FP_n if the trivial $\mathbb{Z}\Gamma$-module \mathbb{Z} admits a projective resolution $(P_i)_{i \in \mathbb{N}}$ with P_i finitely generated for $i \leq n$. It is not hard to see that $F_n \Rightarrow FP_n$.

For a group Γ that has torsion it is sometimes more natural to consider a classifying space for proper actions for Γ. This is a CW complex on which Γ acts rigidly in such a way that the fixed point set of every finite subgroup is (nonempty and) contractible and the fixed point set of every infinite subgroup is empty. We say that Γ is of type \overline{F}_n if it admits a classifying space for proper actions whose n-skeleton is compact modulo the action of Γ. There is a homology theory developed by Glen Bredon [Bre67] and generalized by Wolfgang Lück [Lue89] that describes the homological aspects of proper actions just as usual homology does for free actions. In particular, we get a notion of Bredon-finiteness properties FP_n and again $F_n \Rightarrow FP_n$. For the definition we refer the reader to [FW12].

The lower finiteness properties have more concrete interpretations: a group is of type F_1 if and only if it is finitely generated, it is of type F_2 if and only if it is finitely presented, and it is of type FP_0 if and only if it has finitely many conjugacy classes of finite subgroups, [KMPN09, Lemma 3.1].
We define the *classical finiteness length* of Γ to be the supremum over all those n for which Γ is of type FP_n. The *Bredon-finiteness length* is defined analogously. We can now state a version of our Main Theorem.

Main Theorem. For $0 < m \leq n$ there is a solvable algebraic group G such that for every odd prime p the group $G(\mathbb{Z}[1/p])$ has classical finiteness length $n - 1$ and has Bredon-finiteness length $m - 1$.

Related examples were obtained via more algebraic means in [KMPN11]. Other examples of groups with torsion that separate between Bredon-finiteness properties can be found in [LN03, Examples 3,4].

The precise version of the Main Theorem depends on some combinatorial conditions which are formulated in Section 1. After some basic facts about Bruhat–Tits buildings and CAT(0)-spaces in Section 2, we establish the classical finiteness length of the groups in Section 3. The Bredon-finiteness length is verified in Section 4. Appendix A describes the natural simplicial model for the extended Bruhat–Tits building of $\text{GL}_n(K)$. This should be well known but the author could not find a good reference.

Acknowledgments. I would like to thank Herbert Abels, Kai-Uwe Bux, Martin Fluch, Giovanni Gandini, Linus Kramer, Ian Leary, Marco Schwandt, Daniel Skodlerack and Matthew Zaremsky for helpful comments. I also gratefully acknowledge support through the SFBs 878 in Münster and 701 in Bielefeld.

1. Precise statement of Main Theorem

Fix $n \in \mathbb{N}$ and consider two nonzero integer vectors

$$v^1 = (v^1_1, \ldots, v^1_{n+1}) \quad \text{and} \quad v^2 = (v^2_1, \ldots, v^2_{n+1})$$

which satisfy the following conditions:

(i) The sequences $(v^1_i)_i$ and $(v^2_i)_i$ are monotonically decreasing.

(ii) $\sum_i v^1_i > 0$ and $\sum_i v^2_i \leq 0$.

Denote by G_{v^1, v^2} the algebraic group defined by

$$G_{v^1, v^2}(A) = \left\{ \begin{pmatrix} d_1 & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & d_{n+1} \end{pmatrix} \in \text{GL}_{n+1}(A) \middle| \prod_i d_i^{v^1_i} = 1 = \prod_i d_i^{v^2_i} \right\}$$

We define a new vector by

$$v := v^2 - \frac{\sum_i v^2_i v^1_i}{\sum_i v^1_i}.$$
Note that v satisfies $\sum_i v_i = 0$.

By a partition of $I := \{1, \ldots, n + 1\}$ we mean a set $\mathcal{I} \subseteq \mathcal{P}_{\neq \emptyset}(I)$ of nonempty subsets, its blocks, that disjointly cover I. A partition $\{J^+, J^-\}$ is called elementary admissible (relative to v^1 and v^2) if $\sum_{i \in J^-} v_i^1$ and $\sum_{i \in J^-} v_i^2$ are even. The trivial partition $\{I\}$ is also considered elementary admissible. A partition is called admissible if it is the (coarsest) common refinement of elementary admissible partitions. We say that \mathcal{I} is a partition of v if $\sum_{i \in J} v_i = 0$ for every block J of \mathcal{I}. The essential blocks of a partition of v are the blocks J on which v is not constant zero, that is, for which there is an $i \in J$ such that $v_i \neq 0$.

The essential dimension of a partition of v is

$$\text{ed}(\mathcal{I}) = \sum_J (|J| - 1)$$

where the sum runs over the essential blocks of \mathcal{I}. We can now define

$$m = m(v^1, v^2) := \min \{\text{ed}(\mathcal{I}) \mid \mathcal{I} \text{ is an admissible partition of } v\}$$

and state:

Main Theorem (precise version). Let n, v^1, v^2, and m be as above. For every odd prime p the group $G_{v^1,v^2}(\mathbb{Z}[1/p])$ is of type F_{n-1} but not of type FP_n and is of type FP_{m-1} but not of type FP_m.

Remarks. (i) Since the trivial partition is admissible, we have $m \leq n$. Since every essential block of a partition of v must have size at least 2, we have $m \geq 1$.

(ii) Admissibility of a partition is not a strong restriction. In fact, if all entries of v^1 and v^2 are even, then every partition is admissible.

(iii) That the Main Theorem only shows the group to be of type FP_{m-1} instead of F_{m-1} is due to the fact that there is no version of Brown’s criterion for F_2. The reason is that [Bro84] does not directly translate to the context of proper actions. Once a criterion for F_2 is available, our method of proof should give type F_{m-1}.

(iv) The restriction to odd primes is due to the fact that involutions in the building associated to $\text{GL}_{n+1}(\mathbb{Q}_2)$ have larger fixed point set than they should, cf. Proposition 4.4. In the case $p = 2$ Lemmas 4.1 and 4.2 imply that the group is of type FP_0. It is not clear to the author what the higher Bredon-finiteness properties are in that case.

We give some examples which in particular allow us to recover the previous formulation of the Main Theorem. Denote the standard basis of \mathbb{Z}^{n+1} by a_1, \ldots, a_{n+1}.

Example 1.1. If $v^1 = a_1$ and $v^2 = -a_{n+1}$, then $\Gamma = G_{v^1,v^2}(\mathbb{Z}[1/p])$ is just Abels’s group $G_n(\mathbb{Z}[1/p])$. In this case $v = a_1 - a_{n+1}$ and the elementary admissible partition into $J^+ = \{1, n + 1\}$ and $J^- = \{2, \ldots, n\}$ shows that $m = 1$. Therefore, the Main Theorem states that Γ is of type F_{n-1} but not of type FP_n and is of type FP_0 but not of type FP_1. The classical finiteness length was known by [AB87, Theorem A] and [Bro87, Theorem 6.1]. To prove the first part of the theorem we use metric versions of the methods used there. Part of the translation is done in Appendix A.
Example 1.2. For $0 < m \leq n$, we may take $v^1 = 2 \sum_i a_i$ and $v^2 = -ma_{n+1} + \sum_{i=1}^m a_i$. Then $v = v^2$ and every partition of v must contain $\{1, \ldots, m, n + 1\}$ in one block and therefore have essential dimension at least m. The partition into $J^+ = \{1, \ldots, m, n + 1\}$ and $J^- = \{m + 1, \ldots, n\}$ is elementary admissible and has essential dimension m. Thus we get groups of Bredon-finiteness length $m - 1$ and classical finiteness length $n - 1$ and recover the original formulation of the Main Theorem.

Example 1.3. As an example of how admissibility comes into play let $n = 2k$ be even and consider the vectors $v^1 = a_1 + \ldots + a_{k+1}$ and $v^2 = -a_{k+1} - \ldots - a_{n+1}$. Then $v = a_1 + \ldots + a_k - a_{k+2} - \ldots - a_{n+1}$. A partition of v with the minimal essential dimension of k is into $\{1, n + 1\}, \ldots, \{k, k + 2\}$. However, this partition is not admissible. If k is even, a partition of v of the minimal admissible essential dimension of $3/2 \cdot k$ is into $\{1, 2, n, n + 1\}, \ldots, \{k - 1, k, k + 2, k + 3\}$. If k is odd, the minimal admissible essential dimension is $3/2 \cdot (k - 1) + 2$ and realized by the partition $\{1, 2, n, n + 1\}, \ldots, \{k - 2, k - 1, k + 3, k + 4\}, \{k, k + 1, k + 2\}$. So if we set $\Gamma = \Gamma^v_1, v^2(\mathbb{Z}[1/p])$ and $\Gamma' = \Gamma^v_1, v^2(\mathbb{Z}[1/p])$, we get: Γ is a subgroup of finite index in Γ'. The Bredon-finiteness length of Γ' is k while the Bredon-finiteness length of Γ is $3/2 \cdot k$ respectively $3/2 \cdot (k - 1) + 2$. Of course, all groups considered here are virtually torsion free and hence virtually of type FP_{n-1}.

The plan to prove the Main Theorem is as follows. The group $\Gamma := \mathbb{G}(\mathbb{Z}[1/p])$ acts on the extended Bruhat–Tits building X^1 associated to $\text{GL}_{n+1}(\mathbb{Q}_p)$. Cell stabilizers are arithmetic and thus of type F_∞. The vectors v^1 and v^2 define horospheres H^1 and H^2 that are invariant under the action of Γ. Moreover, the action of Γ on $H^1 \cap H^2$ is cocompact. The horosphere H^1 can be identified with the (non-extended) Bruhat–Tits building X in such a way that $H^1 \cap H^2$ is identified with a horosphere in X. It is known that horospheres in X are $(n - 2)$-connected. More precisely, let β be the Busemann function whose 0-level is the horosphere. Then the maps $\beta^{-1}([0, s]) \to \beta^{-1}([0, s + 1])$ induce isomorphisms in π_k for $k < n - 1$ and epimorphisms that are infinitely often non-injective in π_{n-1}. With these ingredients, the classical finiteness length follows from Brown’s criterion, which we state below. But first we have to recall some definitions. Recall that a space X is n-connected if $\pi_k(X) = 1$ for $k \leq n$ and is n-acyclic if $H_k(X) = 0$ for $k \leq n$. The action of a group Γ on a CW-complex Z is called rigid if the stabilizer of every cell fixes that cell pointwise. A system of groups $(A_s \to A_{s+1})_{s \in \mathbb{N}}$ is called essentially trivial if for every s there is a $t \geq s$ such that the map $A_s \to A_t$ is trivial.

Theorem 1.4 (Brown’s criterion [Bro87 Theorems 2.2.3.2]). Let Γ act rigidly on an CW-complex Z. Assume that Z is $(n - 1)$-connected. Assume also that the stabilizer of each k-cell is of type F_{n-k}. Let $(Z_s)_{s \in \mathbb{N}}$ be a filtration of Z by Γ-invariant and Γ-cocompact subspaces. Then Γ is of type F_n if and only if the system

$$\pi_k(Z_s) \to \pi_k(Z_{s+1})$$

is essentially trivial for $k < n$. The same statement holds with “$(n-1)$-connected” replaced by “$(n-1)$-acyclic”, “π_k” replaced by “H_k”, and “F_n” replaced by “FP_n.”
To determine the Bredon-finiteness length, we have to take torsion into account. The only torsion elements that Γ contains are of order 2. Moreover, every finite subgroup is conjugate to a group of diagonal matrices. The fixed point set of such a group is a product of extended Bruhat–Tits buildings. More precisely, it is the extended Bruhat–Tits building of the centralizer of the finite group. The products that can arise are described by admissible partitions. The horosphere in the fixed point set is a product of a horosphere in the essential factors, those corresponding to essential blocks, and of the remaining factors. Its connectivity is two less than the essential dimension. From this, the Bredon-finiteness length can be deduced using the following version of Brown’s criterion from [FW12]:

Theorem 1.5. Let Γ act rigidly on a CW-complex Z. Assume that for every finite subgroup $F < \Gamma$ the fixed point set Z^F is $(n - 1)$-acyclic. Assume also that the stabilizer of each k-cell is of type FP_n. Let $(Z_s)_{s\in\mathbb{N}}$ be a filtration of Z by Γ-invariant and Γ-cocompact subspaces. Then Γ is of type FP_n if and only if for every s there is an $t \geq s$ such that the maps

$$\tilde{H}_k(Z_s^F) \to \tilde{H}_k(Z_t^F)$$

are trivial for all finite subgroups F.

2. Buildings

From now on we fix n, v^1, v^2, and p and write G for G_{v^1,v^2} and put $\Gamma := G(\mathbb{Z}[1/p])$. To prove the theorem we have to exhibit a space Z_0 on which Γ acts cocompactly with good stabilizers. The finiteness properties of Γ will then correspond to the connectivity of Z_0.

The starting point for the construction of Z_0 is the Bruhat–Tits building X associated to $\text{GL}_{n+1}(\mathbb{Q}_p)$. Recall that X is a thick, irreducible, euclidean building of type \tilde{A}_n and in particular is a CAT(0)-space [AB08, Theorem 11.16]. We denote by X_1 the extended building $X \times L$, where L is a euclidean line. The action of $\text{GL}_{n+1}(\mathbb{Q}_p)$ on X_1 is given by

$$g.(x,r) = (g.x, r - \frac{1}{n+1}\nu(\det g)) , \quad (2.1)$$

see [BT84, Paragraph 2]. We write $\text{pr}_1 : X^1 \to X$ for the projection onto the first factor. We will consider the following subgroups of GL_{n+1}: the group B of upper triangular matrices, the group T of diagonal matrices, and the group U of strict upper triangular matrices. Non-bold letters will denote the corresponding groups of \mathbb{Q}_p points, that is $G = G(\mathbb{Q}_p)$, $B = B(\mathbb{Q}_p)$ and so on.

There is a unique apartment Σ^1 of X^1 that is invariant under the action of T. We can identify Σ^1 with \mathbb{R}^{n+1} in such a way that the action of T is given by

$$\text{diag}(d_1, \ldots, d_{n+1}).(x_1, \ldots, x_{n+1}) = (x_1 + \nu(d_1), \ldots, x_{n+1} + \nu(d_{n+1})).$$

(2.2)

With this identification the apartment $\Sigma := \Sigma^1 \cap X$ of X is the hyperplane ℓ^1 where $\ell = (1, \ldots, 1)$. The boundary $\partial \Sigma^1$ is an apartment of the spherical building ∂X^1 that is
fixed by T. The group B fixes a chamber C^1 of $\partial \Sigma^1$. Making use of the above identification, we can describe the chamber C^1 as follows. The standard root system $\alpha_i = a_i - a_{i+1}$, $1 \leq i \leq n$ of type A_n defines a cone

$$C^1 = \{ x \in \Sigma^1 \mid (\alpha_i \mid x) \geq 0 \}$$

in Σ^1 and C^1 is the boundary of \bar{C}^1.

As a last ingredient from the theory of buildings consider the morphism $\eta: B \to T$ that takes each matrix to its diagonal. Its kernel is U.

For b fixed by T we can describe the chamber C as follows. The standard root system $\alpha_i = a_i - a_{i+1}$, $1 \leq i \leq n$ of type A_n defines a cone

$$C^1 = \{ x \in \Sigma^1 \mid (\alpha_i \mid x) \geq 0 \}$$

in Σ^1 and C^1 is the boundary of \bar{C}^1.

As a consequence of (2.3) we observe that U not only fixes C^1 but for every point $\xi \in C^1$ leaves invariant every Busemann function centered at ξ.

3. Classical finiteness properties

It is time to shed some light on the seemingly mysterious notions of Section 1. Our group Γ is a subgroup of $\text{GL}_{n+1}(\mathbb{Q}_p)$ and therefore acts on the extended building X^1. From (2.2) we see:

Observation 3.1. Let w be a vector in Σ^1. An element $g = \text{diag}(d_i) \in T$ leaves w^\perp invariant if and only if $\sum_i w_i \nu(d_i) = 0$.

Assume in addition that $w \in \mathbb{Z}^{n+1}$ and write $d_i = a_i \cdot \pi^{\nu(d_i)}$ with $a_i \in O^\times$. Then $\prod_i d_i^{w_i} = \pi^{\sum_i w_i \nu(d_i)} \prod_i a_i^{w_i}$, where the second factor lies in O^\times. Therefore $\prod_i d_i^{w_i} = 1$ is sufficient for g to leave w^\perp invariant. Regarding v^1 and v^2 as vectors in Σ^1 we obtain with (2.3):

Observation 3.2. The group $G \cap T$ leaves $(v^1)^\perp$ and $(v^2)^\perp$ invariant. Consequently G leaves $H^1 := \rho^{-1}((v^1)^\perp)$ and $H^2 := \rho^{-1}((v^2)^\perp)$ invariant.

This discussion suggests that $H^1 \cap H^2$ is the right space for Γ to act on. Condition (i) means that v^1 and v^2 point into C^1. This in turn implies that H^1 and H^2 are in fact horospheres. Indeed, let ξ^j be the endpoint of the geodesic ray spanned by v^j and let β^j be the Busemann function corresponding to $[0, \xi^j]$. Then $\beta^j((v^j)^\perp) = 0$ and the fact that $\xi^j \in C^1$ implies that $\beta^j = \beta^j \circ \rho$.

Condition (ii) implies that v^1 does not lie in Σ but the geodesic segment $[v^1, v^2]$ meets Σ. In fact, the intersection point is just v. As before, let ξ be the endpoint of the geodesic ray spanned by v and let β be the corresponding Busemann function.

Lemma 3.3. The restriction $\text{pr}_1 |_{H^1}$ is a homeomorphism that takes horoballs centered at ξ^j to horoballs centered at ξ.
We prove a more general statement:

Proposition 3.4. Let X^1 be a CAT(0)-space that decomposes as $X^1 = X \times L$ where L is an euclidean line. Let $\text{pr}_1 : X^1 \to X$ be the projection onto the first factor. Let $\xi^1 \in \partial X^1 \setminus \partial X$ and let H^1 be a horosphere centered at ξ^1. The restriction $\text{pr}_1 |_{H^1}$ is a homeomorphism. Moreover, if $\xi^2 \in \partial X^1$ is such that $\angle(\xi^1, \xi^2) \neq \pi$ and that the unique geodesic $[\xi^1, \xi^2]$ meets ∂X in a point ξ, then $\text{pr}_1 |_{H^1}$ takes horoballs around ξ^2 to horoballs around ξ.

Proof. We identify L with \mathbb{R} and write elements of X^1 as pairs (x, r) with $x \in X$ and $r \in \mathbb{R}$. We also let ∞ and $-\infty$ denote the endpoints of L. Let β^1 be the Busemann function centered at ξ^1 so that $H^1 = (\beta^1)^{-1}(0)$. For $x \in X$ we may consider the euclidean half-plane spanned by the geodesic ray $\text{pr}_1([x, \xi^1])$ and the line L. In that half-plane it is easy to verify that

$$\beta^1(x, r) - \beta^1(x, s) = \cos \theta_1(r - s)$$

(3.1)

where $\theta_1 = \angle(\xi^1, \infty)$ (see Figure 1). From this it follows that $\text{pr}_1 |_{H^1}$ is a homeomorphism with inverse

$$x \mapsto \left(x, -\frac{1}{\cos \theta_1} \beta^1(x, 0)\right).$$

For the second statement set $\theta_2 = \angle(\xi^2, \infty)$ and observe that (3.1) holds analogously. We define $\beta := \beta^2 - (\cos \theta_2)/(\cos \theta_1) \beta^1$. Note that this is a positive combination of β^1 and β^2 by the assumption that $[\xi_1, \xi_2] \cap \partial X \neq \emptyset$. Therefore it is up to scaling a Busemann function centered at a point in $[\xi^1, \xi^2]$. Moreover,

$$\beta(x, r) - \beta(x, s) = \beta^2(x, r) - \beta^2(x, s) - \frac{\cos \theta_2}{\cos \theta_1} (\beta^1(x, r) - \beta^1(x, s))$$

$$= \cos \theta_2(r - s) - \frac{\cos \theta_2}{\cos \theta_1} \cos \theta_1(r - s)$$

$$= 0$$

hence β is centered at ξ and we may in particular regard it as a reparametrized Busemann function on X. For $(x, r) \in X^1$ with $\beta^1(x, r) = 0$ we clearly have $\beta^2(x, r) = \beta(x, r)$ which shows the second claim. \qed
Our next goal is to show that the action of Γ on $H^1 \cap H^2$ is cocompact. The first step is the following consequence of the cocompactness result of \[ABST\].

Proposition 3.5. The building X^1 is covered by translates of Σ^1 under $B(\mathbb{Z}[1/p])$. In short, $B(\mathbb{Z}[1/p]).\Sigma^1 = X^1$.

Proof. By \[ABST\] Proposition 2.1 (b) $B(\mathbb{Z}[1/p])$ acts transitively on the lattices in \mathbb{Q}^{n+1}_p which by Appendix A correspond to the vertices of X^1. Let c be a chamber of X^1 and let γ be a geodesic ray that starts in a vertex, ends in C^1 and meets the interior of c at a time t. Let $\gamma' = \rho \circ \gamma$, which is also a geodesic ray because γ ends in C^1 and ρ is centered at C^1. Let $d \subseteq \Sigma^1$ be the chamber that contains $\gamma'(t)$. Let $g \in B(\mathbb{Z}[1/p])$ be such that $g.\gamma'(0) = \gamma(0)$. Since B fixes C^1 it follows that $g \circ \gamma' = \gamma$ and in particular $g.d = c$. \qed

Now cocompactness of Γ follows using that v^1 and v^2 lie in \mathbb{Z}^n.

Lemma 3.6. (i) $\Gamma \cap T$ acts cocompactly on $(v^1)^\perp \cap (v^2)^\perp$.

(ii) Γ acts cocompactly on $H^1 \cap H^2$.

Proof. For the first part note that $T(\mathbb{Z}[1/p])$ acts on Σ^1 through \mathbb{Z}^n and the intersection $\Gamma \cap T$ acts as the stabilizer in \mathbb{Z}^n of $(v^1)^\perp \cap (v^2)^\perp$. Since v^1 and v^2 lie in \mathbb{Z}^n, the \mathbb{Z}-module $(v^1)^\perp \cap (v^2)^\perp \cap \mathbb{Z}^n$ has rank $n - 2$, so the stabilizer acts cocompactly. Now let $K \subseteq \Sigma^1$ be compact such that its translates under Γ cover $(v^1)^\perp \cap (v^2)^\perp$ and let $x \in H^1 \cap H^2$ be arbitrary. By Proposition 3.5 there is a $b \in B(\mathbb{Z}[1/p])$ such that $b.x \in \Sigma^1$. Clearly there is an $s \in T(\mathbb{Z}[1/p])$ such that $sb \in U(\mathbb{Z}[1/p])$. But then we necessarily have $sb.x \in H^1 \cap H^2 \cap \Sigma^1 = (v^1)^\perp \cap (v^2)^\perp$. Therefore, by the first part, there is a $t \in \Gamma \cap T$ such that $tsb.x \in K$. Since $tsb \in \Gamma$ this closes the proof. \qed

Since X^1 is locally compact we get immediately:

Corollary 3.7. For every $s > 0$ the action of Γ on $(\beta^2)^{-1}([0, s]) \cap H^1$ is cocompact.

The connectivity of horospheres in euclidean buildings has been established by Kai-Uwe Bux and Kevin Wortman \[BW11\]:

Theorem 3.8. Let X be a thick euclidean building and $\zeta \in \partial X$. Let β be a Busemann function centered at ζ. Let X_0 be the least factor of X such that $\zeta \in \partial X_0$ and let m be its dimension. Then for $r \leq s$ the set $\beta^{-1}([r, s])$ is $(m - 2)$-connected. Moreover there is a $t \geq s$ such that the map

$$\pi_{k-1} (\beta^{-1}([r, s])) \to \pi_{k-1} (\beta^{-1}([r, t]))$$

is not injective. In particular $\beta^{-1}([r, s])$ is not $(m - 1)$-connected.

Since this is slightly stronger than \[BW11\] Theorem 7.7, we briefly sketch how their machinery gives our statement.
Proof sketch. Let β be a Busemann function centered at ζ. In general, if $X = X_0 \times X_1$ with $\zeta \in X_0$, then β is constant on $\{x\} \times X_1$ for every $x \in X_0$. That is, $\beta^{-1}([r, s]) = \beta^{-1}([r, s]) \times X_1$. Since X_1 is contractible this shows in particular that $\beta^{-1}([r, s])$ and $\beta^{-1}([r, s])$ are homotopy equivalent. So we may assume that $X_0 = X$.

Now the statement that $\beta^{-1}([r, s])$ is $(m - 2)$-connected is almost [BW11, Theorem 7.7], except that there it is stated for $\beta^{-1}((\infty, s])$. But β is a concave function, so horoballs are convex and $\beta^{-1}([r, s])$ is a deformation retract of $\beta^{-1}((\infty, s])$.

It remains to verify that $\pi_{k-1}(\beta^{-1}([r, s])) \to \pi_k(\beta^{-1}([r, s]))$ is injective for sufficiently large t. In the language of [BW11] this requires showing that there is a barycenter (τ_1, \ldots, τ_n) of β-height greater than r so that $Lk(\tau_1, \ldots, \tau_n)$ is not $(m - 1)$-connected. But we can take each τ_i to be a special vertex of the corresponding factor. Then $Lk(\tau_i)$ is an open hemisphere complex in an irreducible, thick spherical building. These are not contractible by [Sch10, Theorem B], cf. the proof of Lemma 6.6 in [BW11]. Therefore $Lk(\tau_1, \ldots, \tau_n)$ is not $(m - 2)$-connected which gives the desired statement.

With these preparations in place it is a routine matter to prove the first part of the Main Theorem:

Theorem 3.9. The group $\Gamma = \mathbb{G}(\mathbb{Z}[1/p])$ is of type F_{n-1} but not of type FP_n.

Proof. By Lemma 3.3 the set $Z = (\beta^2)^{-1}([0, \infty)) \cap H^1$ is homeomorphic to a horoball in X which is contractible being a convex subset of a CAT(0) space. We want to apply Brown’s criterion, Theorem 1.4. The filtration we consider is

$$Z_i := (\beta^2)^{-1}([0, i]), i \in \mathbb{N}.$$

The action on each of these spaces is cocompact by Corollary 3.7. The stabilizers are of type F_∞ by [AB87, Theorem B(b)]. By Lemma 3.3 the terms of the filtration are homeomorphic to the intersection of a horoball and a horoball complement in X. Since X is irreducible, Theorem 3.8 implies that they are $(n - 2)$-connected, so in particular the system $(\pi_k(Z_i))_i$ is essentially trivial for $k < n - 1$. The theorem also implies that the system $(H_{n-1}(Z_i))_i$ not essentially trivial. □

4. Bredon-finiteness properties

To determine the Bredon-finiteness properties of Γ we have to understand the torsion and its fixed point sets.

Lemma 4.1. Every torsion element of Γ has order (at most) 2. In fact the same is true of every torsion element of $B(\mathbb{Z}[1/p])$.

Proof. Consider the homomorphism $\eta|_{B(\mathbb{Z}[1/p])}: B(\mathbb{Z}[1/p]) \to T(\mathbb{Z}[1/p])$. Its kernel is $U(\mathbb{Z}[1/p])$ which is torsion-free. The image $T(\mathbb{Z}[1/p]) \cong (\mathbb{Z}[1/p]^\times)^{n+1}$ is isomorphic to $([\pm 1] \times \mathbb{Z})^{n+1}$ and therefore contains only torsion of order 2. Thus if $g \in \Gamma$ has finite order, then $\eta(g^2) = 1$ and hence $g^2 = 1$. □
Lemma 4.2. Let R be an integral domain in which 2 is a unit. Every element of order 2 in $B(R)$ is conjugate via an element of $U(R)$ to a diagonal matrix.

Proof. If $g^2 = \text{id}$, then the diagonal entries d_i of g satisfy $d_i^2 = 1$. Since R is an integral domain the only solutions of this equation are ± 1. Hence every column of g gives rise to a column of precisely one of

$$\frac{1}{2}(\text{id}+g) \quad \text{and} \quad \frac{1}{2}(\text{id}-g)$$

whose diagonal entry is 1. Collecting these columns gives a matrix in $U(R)$ whose columns are eigenvectors of g.

Putting both Lemmas together, we obtain:

Proposition 4.3. Every finite subgroup of Γ is conjugate to a subgroup of $\Gamma \cap T$.

Proof. Lemma 4.1 implies that every finite subgroup of Γ is abelian. So if g and h span a finite group, then h leaves the eigenspaces of g invariant. Applying Lemma 4.2 inductively gives a a basis of $(\mathbb{Z}[1/p])^{n+1}$ of simultaneous eigenvectors of any finite subgroup.

We can now explain the significance of the remaining notions from Section 1. To understand torsion in Γ it suffices by Proposition 4.3 to understand torsion in $T \cap \Gamma$. Every diagonal involution can be described by a partition into the indices with entry $+1$ and -1 respectively. This partition is admissible if and only if the involution is an element of Γ. The fixed point set of such an element will turn out to be the extended Bruhat–Tits building of its centralizer and in particular decomposes into a direct product of the extended buildings corresponding to the $+1$ and -1 eigenspace respectively. Clearly, the fixed point set Y of a finite group is the intersection of the fixed point sets of its generators and therefore decomposes as a product of buildings that correspond to blocks of an admissible partition.

Each of these extended buildings is a direct product of a line and a building. If the least factor of Y that contains ξ in its boundary has a line as a direct factor, then $Y \cap H$ is contractible. If on the other hand ξ is contained in the boundary of the building factors, which happens if and only if the partition is a partition of v, then Theorem 3.8 implies that the connectivity of $Y \cap H$ is determined by the least factor that contains it. A building factor contributes if and only if its block is essential and therefore the Bredon-finiteness length of Γ is controlled by the essential dimension.

Fixed point sets of finite order automorphisms of X^1 are generally well-studied, see for example [PY02]. Inner involutions, that is automorphisms that come from involutions in $\text{GL}_{n+1}(K)$ are particularly easy to understand. Their fixed point sets can be described as follows.

Proposition 4.4. Let K be a local field of residue characteristic $\neq 2$. Let $\sigma \in \text{GL}_{n+1}(K)$ be an involution. Let V^+ and V^- be the eigenspaces of σ to the eigenvalue $+1$ and -1 respectively. The fixed point set of σ on X^1 is equivariantly isometric to the extended building associated to the group $\text{GL}(V^+) \times \text{GL}(V^-)$ (which is the centralizer of σ in $\text{GL}_{n+1}(K)$).
We give two proofs that are essentially the same but refer to different models of X^1. For the first recall that X^1 is a simplicial complex whose vertices are \mathcal{O}-lattices in K^{n+1}, see Appendix A. Here \mathcal{O} is the valuation ring of K.

Proof 1. Let Λ be a lattice in $V = K^{n+1}$. Let $\Lambda^+ = \Lambda \cap V^+$ and $\Lambda^- = \Lambda \cap V^-$. We have to show that Λ is σ-fix if and only if $\Lambda = \Lambda^+ + \Lambda^-$ because the lattices meeting the second condition are the ones lying in the building associated to $\text{GL}(V^+) \times \text{GL}(V^-)$.

Clearly if $\Lambda = \Lambda^+ + \Lambda^-$, then $\sigma \Lambda = \Lambda^+ - \Lambda^-$, so Λ is σ-invariant.

For the converse note that $2 \in \mathcal{O}^\times$ by assumption. Assume that Λ is σ-invariant and let $f \in \Lambda$. Then

$$f = \frac{1}{2}(f + \sigma f) + \frac{1}{2}(f - \sigma f)$$

where $1/2(f \pm \sigma f) \in \Lambda^\pm$. This closes the proof. □

For the second proof recall that the points of X^1 correspond to splitable norms on K^{n+1}, see [BT84, Théorème 2.11]. Here norms are understood additively as in [BT84, 1.1]: A norm on a K-vector space V is a map $K \to \mathbb{R} \cup \{\infty\}$ such that for $f, f' \in V$ and $k \in K$ the following hold:

(i) $\alpha(kf) = \nu(k) + \alpha(f)$,

(ii) $\alpha(f + f') \geq \inf\{\alpha(f), \alpha(f')\}$, and

(iii) $\alpha(f) = \infty$ if and only if $f = 0$.

A norm α is said to *split* over a decomposition $V = V_1 \oplus V_2$ if $\alpha(f_1 + f_2) = \inf\{\alpha(f_1), \alpha(f_2)\}$ for $f_i \in V_i$, [BT84, 1.4]. This clearly gives a notion of when a norm splits over a decomposition into more than two summands and a norm on V is said to be *splitable* if there is a decomposition of V into one-dimensional subspaces over which it splits.

Proof 2. It suffices to show that a norm α is σ-invariant if and only if splits over $V^+ \oplus V^-$. Again it is clear that α if σ-invariant if it splits over $V^+ \oplus V^-$. So suppose that α is σ-invariant and let $f \in K^{n+1}$. Write

$$f = \frac{1}{2}(f + \sigma f) + \frac{1}{2}(f - \sigma f)$$

where $1/2(f \pm \sigma f) \in V^\pm$. Then $\alpha(f) \geq \inf\{1/2(f + \sigma f), 1/2(f - \sigma f)\}$ but also

$$\alpha\left(\frac{1}{2}(f \pm \sigma f)\right) \geq \inf\left\{\alpha\left(\frac{1}{2}f\right), \alpha\left(\frac{1}{2}\sigma f\right)\right\} = \alpha(f)$$

because α is σ invariant and $2 \in \mathcal{O}^\times$. This shows that $\alpha(f) = \inf\{1/2(f + \sigma f), 1/2(f - \sigma f)\}$ as desired. □

For diagonal matrices we get the following more explicit statement. For brevity we write ± to mean either + or − consistently in each expression.
Corollary 4.5. Assume that the residue characteristic of \(K \) is not 2. Let \(\sigma = \text{diag}(d_i) \) be of order 2 in \(T \). Let \(J^\pm = \{i \in \{1, \ldots, n+1\} \mid d_i = \pm 1\} \).

The fixed point set \(Y \) of \(\sigma \) decomposes as a direct product \(Y = X^+ \times L^+ \times X^- \times L^- \) where \(X^\pm \) are buildings of type \(\tilde{A}_{|J^\pm|-1} \) and \(L^\pm \) are euclidean lines. More precisely, \(\rho(X^\pm) = \langle a_i - a_j \mid i, j \in I^\pm \rangle \) and \(L^\pm = \langle \sum_{i \in I^\pm} a_i \rangle \).

Proof. Let \(e_1, \ldots, e_{n+1} \) be the standard basis for \(K^{n+1} \). The eigenspaces of \(\sigma \) are \(V^\pm = \langle e_i \mid i \in J^\pm \rangle \). Let \(X^\pm_1 \) be the extended building of \(GL(V^\pm) \). Since the inclusion \(X^{+1} \times X^{-1} \to X^1 \) is \(GL(V^+) \times GL(V^-) \)-equivariant we can determine the factors by looking at the invariant subspaces. Moreover, since everything commutes with \(\rho \), it suffices to look at the action of \(T \) on \(\Sigma^1 \). We see that \(X^{\pm1} \cap \Sigma^1 \) is just the span of the \(a_i, i \in J^\pm \) and that \(X^{\pm1} \) decomposes further as \(X^\pm \times L^\pm \).

As a consequence we get:

Proposition 4.6. Let \(F \) be a finite subgroup of \(\Gamma \cap T \). Then there is an admissible partition of \(I \) into blocks \(J_1, \ldots, J_k \) such that the fixed point set \(Y \) of \(F \) decomposes as a direct product

\[Y = X_1 \times L_1 \times \cdots \times X_k \times L_k \]

with \(L_\ell \) a euclidean line and \(X_\ell \) a \((|J_\ell| - 1)\)-dimensional building. The factors satisfy \(\rho(X_\ell) = \langle a_i - a_j \mid i \in J_\ell \rangle \) and \(L_\ell = \langle \sum_{i \in I_\ell} a_i \rangle \).

Conversely, if \(\mathcal{I} \) is the common refinement of elementary admissible partitions \(\mathcal{I}_1, \ldots, \mathcal{I}_r \) and \(\sigma_1, \ldots, \sigma_r \in \Gamma \) are the corresponding involutions, then the partition arising above for \(F = \langle \sigma_1, \ldots, \sigma_r \rangle \) is \(\mathcal{I} \).

We are now ready to prove the second part of the Main Theorem.

Theorem 4.7. \(\Gamma \) is of type \(\text{FP}_{m - 1} \) but not of type \(\text{FP}_m \).

Proof. We consider the same setup as in the proof of Theorem 3.9 but this time apply Theorem 1.5 instead of Brown’s classical criterion.

The stabilizers are of type \(\text{FP}_\infty \) by \cite[Proof of Theorem B(b)]{AB} and \cite[Theorem 1.1]{KMPN}.

We will verify the following statements, which are stronger than the needed connectivity hypotheses:

(i) That \(Z^F_i \) is \((m - 2)\)-connected for all \(i \in \mathbb{N} \) and every finite \(F \leq \Gamma \).

(ii) And that there is a finite \(F \leq \Gamma \) such that the maps of the system \((\tilde{H}_{m-1}(Z^F_i))_{i \in \mathbb{N}} \) are infinitely often not injective.

From these assertions the result follows.

The case \(F = 1 \) of (i) has already been verified in the proof of Theorem 3.9. So now we look at a nontrivial finite subgroup \(F \). By Proposition 1.3 \(F \) is conjugate to a group of diagonal matrices and since conjugation does not change the homotopy type of the fixed point set, we may as well assume that \(F \) is diagonal.
The fixed point set $Y = (X^1)^F$ is described by Proposition 4.6 and decomposes according to an admissible partition $\mathcal{I} = \{J_1, \ldots, J_k\}$ as a product of euclidean buildings $X_\ell, 1 \leq \ell \leq k$ and a euclidean space $L_1 \times \ldots \times L_k$. Proposition 3.4 implies that the map pr_1 identifies the intersection $Y \cap H^1$ with $Y \cap X$ in such a way that horoballs around ξ^2 are mapped to horoballs around ξ.

If ξ is not contained in the boundary of the product of the X_ℓ, then it includes an acute angle with the endpoint of a direct factor of Y that is a euclidean line. In that case Proposition 3.4 implies that Y_i is contractible. That ξ is contained in the boundary of the product of the X_ℓ is equivalent to the condition that v is perpendicular to L_ℓ for all ℓ, which is to say that \mathcal{I} is a partition of v. If this is the case, then the minimal factor of Y that contains ξ in its boundary is the product of those X_ℓ for which J_ℓ is essential.

Therefore Theorem 3.9 implies that $Y \cap H$ is $(\text{ed}(\mathcal{I}) - 2)$-connected and in particular $(m - 2)$-connected.

Finally we verify (ii). If $m = n$, the statement has been verified in the proof of Theorem 3.9 for F the trivial group. So assume $m < n$. Let \mathcal{I} be an admissible partition of v with $\text{ed}(\mathcal{I}) = m$. Then \mathcal{I} is the coarsest common refinement of essentially admissible partitions $\mathcal{I}_1, \ldots, \mathcal{I}_r$ that correspond to diagonal involutions $\sigma_1, \ldots, \sigma_r \in \Gamma$. Let $F = \langle \sigma_1, \ldots, \sigma_r \rangle$ and let $Y := (X^1)^F$ be its fixed point set. Proposition 4.6 describes the structure of Y.

In particular it implies that ξ lies in the boundary of a factor of Y that is a building of dimension m. Therefore Theorem 3.8 shows that the directed system $\tilde{H}_{m-1}(Y_i)$ is infinitely often not injective.

A. The extended building of $\text{GL}_n(K)$ as a simplicial complex

Let K be a field equipped with a discrete valuation, let \mathcal{O} be its valuation ring, and let π be a uniformizing element. Let $V = K^n$. By an \mathcal{O}-lattice in V (or just a lattice) we mean an \mathcal{O}-submodule Λ of V such that the map $K \otimes_{\mathcal{O}} \Lambda \to V$ is an isomorphism. We denote by Δ^1 the simplicial complex whose vertices are the \mathcal{O}-lattices in V and whose simplices are flags

$$\Lambda_0 \leq \ldots \leq \Lambda_k$$

of lattices such that $\pi \Lambda_k \leq \Lambda_0$.

Clearly $\text{GL}(V)$ acts on Δ^1. Taking the quotient modulo the action of K^\times gives a projection

$$\delta : \Delta^1 \to \Delta$$

where Δ has as vertices homothety classes $[\Lambda]$ of lattices Λ. It is clear from the definition that Δ is just the affine building associated to $\text{SL}_n(V)$, see for example [Ron89, Chapter 9.2]. In particular, X can be regarded as the geometric realization of Δ.

We want to see that similarly X^1 can be regarded as the geometric realization of Δ^1. We have to be a little careful because even though the projection $X^1 \to X$ of metric spaces as well as the projection $\Delta^1 \to \Delta$ of simplicial complexes admit splittings (by isometric
respectively simplicial embeddings) these splittings do not coincide under the identification we want to make (see Figure 2).

One way to deal with this would be to construct appropriate subdivisions of Δ and Δ^1 under which the metric splitting becomes simplicial. Instead, we exhibit an equivariant homeomorphism $|\Delta^1| \to |\Delta| \times \mathbb{R}$ that is not induced by a simplicial map.

To do so we use the following definitions from [Gra82]. The length $\text{length}(M)$ of an \mathcal{O}-module M is the length of a maximal chain of proper submodules of M. For two arbitrary lattices Λ and Λ_0 the index $\text{ind}(\Lambda, \Lambda_0)$ is $\text{length}(\Lambda/\Lambda_1) - \text{length}(\Lambda_0/\Lambda_1)$ for any lattice Λ_1 contained in Λ and Λ_0. Finally we fix a lattice Λ_0 and define the map $\varepsilon : |\Delta^1| \to \mathbb{R}$ by

$$\varepsilon(\Lambda) = \frac{1}{n} \text{ind}(\Lambda, \Lambda_0)$$

on vertices and extending affinely. This last definition is different from Grayson’s who wants the map to be simplicial.

Proposition A.1. The map $|\delta| \times \varepsilon : |\Delta^1| \to |\Delta| \times \mathbb{R}$ is a $\text{GL}(V)$-equivariant homeomorphism.

Proof. That the map is continuous and $\text{GL}(V)$-equivariant is clear.
Bijectivity follows from Lemma A.2 below: let \(x \in |\Delta| \) be the convex combination

\[
x = \sum_{j=0}^{n-1} \alpha_j [\Lambda_j]
\]

where we choose the representatives \(\Lambda_j \) so that \(\varepsilon(\Lambda_j) = j/n \). Let further \(r \in \mathbb{R} \). The lemma exhibits an \(i \in \mathbb{Z} \) and a \(\beta \in [0,1) \) such that

\[
\tilde{x} = \sum_{j=1}^{n-1} \alpha(i+j) \mod n \left(\pi(i+j) \div n \Lambda_{i \mod n} \right) + \beta \alpha_{i \mod n} (\pi(i+n) \div n \Lambda_{i \mod n}) + (1 - \beta) \alpha_{i \mod n} (\pi(i) \div n \Lambda_{i \mod n})
\]

satisfies \(\varepsilon(\tilde{x}) = r, \delta(\tilde{x}) = x \), and \(\tilde{x} \) is unique with these properties.

To see that the map is closed, it suffices to consider sets of the form \(C = |\sigma| \times [a,b] \) for \(\sigma \) a cell of \(|\Delta| \) and show that the restriction

\[
(|\delta| \times \varepsilon)^{-1}(C) \to C
\]

is closed. But sets of the form \((|\delta| \times \varepsilon)^{-1}(C) \) are clearly compact.

Lemma A.2. Let \(\alpha_j, 0 \leq j \leq n-1 \) be such that \(\alpha_j \geq 0 \) and \(\sum \alpha_j = 1 \). For \(i \in \mathbb{Z} \) set

\[
c_i = \sum_{j=0}^{n-1} \alpha(i+j) \mod n \frac{i + j}{n}.
\]

The intervals \([c_i, c_i + \alpha_{i \mod n}] \) with \(i \in \mathbb{Z} \) and \(\alpha_{i \mod n} > 0 \) disjointly cover \(\mathbb{R} \).

In other words, for every \(r \in \mathbb{R} \) there are \(i \in \mathbb{Z} \) and \(\beta \in [0,1) \) so that

\[
r = \beta \alpha_{i \mod n} \frac{i}{n} + \sum_{j=1}^{n-1} \alpha(i+j) \mod n \frac{i + j}{n} + (1 - \beta) \alpha_{(i+n) \mod n} \frac{i + n}{n}
\]

and these are unique if we require \(\alpha_{i \mod n} \neq 0 \).

Proof. This amounts to saying \(c_{i+1} - c_i = \alpha_{i \mod n} \), which is elementary. \(\square \)

References

[AB87] Herbert Abels and Kenneth S. Brown, *Finiteness properties of solvable S-arithmetic groups: an example*, J. Pure Appl. Algebra 44 (1987), 77–83.

[AB08] Peter Abramenko and Kenneth S. Brown, *Buildings: Theory and applications*, Graduate Texts in Mathematics, vol. 248, Springer, 2008.
Herbert Abels, An example of a finitely presented solvable group, Homological group theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, 1979, pp. 205–211.

Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, 1967.

Kenneth S. Brown, Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra 32 (1984), no. 1, 1–10.

Kenneth S. Brown, Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987), 45–75.

François Bruhat and Jacques Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France 112 (1984), no. 2, 259–301.

Kai-Uwe Bux and Kevin Wortman, Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups, Invent. Math. 185 (2011), 395–419.

Martin Fluch and Stefan Witzel, Brown’s criterion in Bredon homology, arXiv:1206.0962 Preprint, 2012.

Daniel R. Grayson, Finite generation of K-groups of a curve over a finite field (after Daniel Quillen), Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., vol. 966, Springer, 1982, pp. 69–90.

Peter H. Kropholler, Conchita Martínez-Pérez, and Brita E. A. Nucinkis, Cohomological finiteness conditions for elementary amenable groups, J. Reine Angew. Math. 637 (2009), 49–62.

Dessislava H. Kochloukova, Conchita Martínez-Pérez, and Brita E. A. Nucinkis, Centralisers of finite subgroups in soluble groups of type FPn, Forum Math. 23 (2011), no. 1, 99–115.

Ian J. Leary and Brita E. A. Nucinkis, Some groups of type VF, Invent. Math. 151 (2003), no. 1, 135–165.

Wolfgang Lück, Transformation groups and algebraic K-theory, Lecture Notes in Mathematics, vol. 1408, Springer, Berlin, 1989.

Gopal Prasad and Jiu-Kang Yu, On finite group actions on reductive groups and buildings, Invent. Math. 147 (2002), 545–560.

Mark Ronan, Lectures on buildings, Perspectives in Mathematics, vol. 7, Academic Press, 1989.
[Sch10] Bernd Schulz, *Spherical subcomplexes of spherical buildings*, arXiv:1007.2407v4, Preprint, 2010.

[Str84] Ralph Strebel, *Finitely presented soluble groups*, Group theory, Academic Press, London, 1984, pp. 257–314.

Stefan Witzel
Mathematisches Institut
Universität Münster
Einsteinstraße 62
48149 Münster
Germany
e-mail: s.witzel@uni-muenster.de