Supplemental Material

Prediction of clearing temperatures of bent-core liquid crystals using decision trees and multivariate adaptive regression splines

Jelena Antanasijević¹,*, Viktor Pocajt¹, Davor Antanasijević², Nemanja Trišović¹, Katalin Fodor-Csorba³

¹ University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
² Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
³ Wigner Research Centre for Physics, Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49, Hungary

*Corresponding author e-mail: jantanasijevic@tmf.bg.ac.rs
Table S1. Molecular structure of bent-core liquid crystals and their clearing temperatures

Comp.	Molecular structure	Obs. temp. (K)	Ref.	
1	R = C₆H₁₃	453.35	[1]	
2	R = C₈H₁₇	449.05	[1]	
3*	R = C₁₀H₂₁	444.45	[1]	
4	R = C₁₂H₂₅	440.85	[1]	
5	R = C₄H₉	409.25	[2]	
6*	R = C₅H₁₁	408.05	[2]	
7	R = C₆H₁₃	409.95	[2]	
8	R = C₇H₁₅	407.85	[2]	
9	R = C₈H₁₇	407.55	[2]	
10	R = C₉H₁₉	408.75	[2]	
11	R = C₁₀H₂₁	410.55	[2]	
12	R = C₁₁H₂₃	410.75	[2]	
13	R = C₁₂H₂₅	412.05	[2]	
14	R = C₁₄H₂₉	411.45	[2]	
15	R = C₁₆H₃₃	410.95	[2]	
16	R = C₄H₉	445.35	[2]	
17	R = C₃H₁₁	425.15	[2]	
18	R = C₆H₁₃	428.15	[2]	
19	R = C₇H₁₅	429.95	[2]	
20	R = C₈H₁₇	435.05	[2]	
21	R = C₉H₁₉	436.15	[2]	
22	R = C₁₀H₂₁	439.55	[2]	
23	R = C₁₁H₂₃	441.35	[2]	
24	R = C₁₂H₂₅	444.75	[2]	
	Chemical Structure	R = C_nH_{2n+1}		
---	-------------------	------------------	-----	-----
25	![Chemical Structure](image1.png)	C_{10}H_{19}	415.35	[2]
26	![Chemical Structure](image2.png)	C_{10}H_{21}	415.25	[2]
27	![Chemical Structure](image3.png)	C_{11}H_{23}	413.15	[2]
28	![Chemical Structure](image4.png)	C_{12}H_{25}	412.85	[2]
29	![Chemical Structure](image5.png)	C_{8}H_{13}	436.05	[2]
30	![Chemical Structure](image6.png)	C_{8}H_{15}	434.85	[2]
31*	![Chemical Structure](image7.png)	C_{8}H_{17}	438.55	[2]
32	![Chemical Structure](image8.png)	C_{10}H_{19}	436.25	[2]
33	![Chemical Structure](image9.png)	C_{10}H_{21}	435.75	[2]
34	![Chemical Structure](image10.png)	C_{11}H_{23}	433.55	[2]
35	![Chemical Structure](image11.png)	C_{12}H_{25}	433.35	[2]
36	![Chemical Structure](image12.png)	C_{14}H_{29}	432.15	[2]
37	![Chemical Structure](image13.png)	C_{16}H_{33}	428.35	[2]
38	![Chemical Structure](image14.png)	C_{4}H_{9}	414.95	[2]
39*	![Chemical Structure](image15.png)	C_{6}H_{13}	415.85	[2]
40*	![Chemical Structure](image16.png)	C_{8}H_{17}	408.25	[2]
41	![Chemical Structure](image17.png)	C_{10}H_{21}	410.55	[2]
42*	![Chemical Structure](image18.png)	C_{12}H_{25}	410.75	[2]
43	![Chemical Structure](image19.png)	C_{14}H_{29}	406.55	[2]
44	![Chemical Structure](image20.png)	C_{16}H_{33}	405.45	[2]
45	![Chemical Structure](image21.png)	C_{18}H_{37}	398.55	[2]
	![Structure](image1)			
---	---------------------	---		
46	\(R = \text{C}_6\text{H}_{13} \)	432.75 [3]		
47	\(R = \text{C}_8\text{H}_{17} \)	428.65 [3]		
48	\(R = \text{C}_{10}\text{H}_{21} \)	422.65 [3]		
49	\(R = \text{C}_{12}\text{H}_{25} \)	417.95 [3]		
50*	\(R = \text{C}_6\text{H}_{13} \)	404.15 [4]		
51*	\(R = \text{C}_8\text{H}_{17} \)	384.15 [4]		
52	\(R = \text{C}_9\text{H}_{19} \)	383.15 [4]		
53	\(R = \text{C}_{10}\text{H}_{21} \)	380.15 [4]		
54	\(R = \text{C}_{12}\text{H}_{25} \)	382.15 [4]		
55	\(R = \text{C}_{14}\text{H}_{29} \)	374.15 [4]		
56	\(R = \text{C}_{16}\text{H}_{33} \)	375.15 [4]		
57*	\(R = \text{C}_{18}\text{H}_{37} \)	376.15 [4]		
58	\(R = \text{C}_{20}\text{H}_{41} \)	377.15 [4]		
59	\(R = \text{C}_6\text{H}_{13} \)	385.15 [4]		
60	\(R = \text{C}_{14}\text{H}_{29} \)	368.15 [4]		
61	\(R = \text{C}_{20}\text{H}_{41} \)	368.15 [4]		
62	![Structure](image2)	352.15 [4]		
63	\(X = \text{H}, Y = \text{H} \)	448.35 [5]		
64	\(X = \text{H}, Y = \text{Cl} \)	417.45 [5]		
65	\(X = \text{F}, Y = \text{H} \)	423.65 [5]		
66	\(X = \text{F}, Y = \text{Cl} \)	416.05 [5]		
	Structure Image	R = C_xH_y	Mass [Da]	Reference
---	-----------------	--------------	-----------	-----------
67	![Structure 1](image1)	C_6H_17	388.15	[6]
68*	![Structure 2](image2)	C_10H_21	378.15	[6]
69	![Structure 3](image3)	C_12H_25	375.15	[6]
70	![Structure 4](image4)	C_14H_29	374.15	[6]
71	![Structure 5](image5)	C_16H_33	378.15	[6]
72	![Structure 1](image1)	C_6H_17	386.15	[6]
73	![Structure 2](image2)	C_10H_21	368.15	[6]
74	![Structure 3](image3)	C_12H_25	366.15	[6]
75	![Structure 4](image4)	C_14H_29	368.15	[6]
76*	![Structure 5](image5)	C_16H_33	371.15	[6]
77	![Structure 1](image1)	C_16H_33	395.15	[6]
78	![Structure 2](image2)	C_6H_13	399.15	[7]
79	![Structure 3](image3)	C_8H_17	392.15	[7]
80	![Structure 4](image4)	C_10H_21	379.15	[7]
81*	![Structure 5](image5)	C_12H_25	379.15	[7]
82*	![Structure 1](image1)	C_14H_29	381.15	[7]
83	![Structure 2](image2)	C_16H_33	373.15	[7]
84	![Structure 3](image3)	C_18H_53	384.15	[7]
	Chemical Structure	Molecular Weight	References	
---	-------------------	------------------	------------	
85	![Chemical Structure 85](image)	393.15	[7]	
86	![Chemical Structure 86](image)	387.15	[7]	
87*	![Chemical Structure 87*](image)	363.15	[7]	
88	![Chemical Structure 88](image)	R = C₈H₁₇, 416.15	[8]	
89	![Chemical Structure 89](image)	R = C₁₀H₂₁, 409.15	[8]	
90	![Chemical Structure 90](image)	R = C₁₂H₂₅, 410.15	[8]	
91	![Chemical Structure 91](image)	R = C₁₄H₂₉, 412.15	[8]	
92	![Chemical Structure 92](image)	R = C₁₆H₃₃, 413.15	[8]	
93	![Chemical Structure 93](image)	R = C₁₈H₃₇, 415.15	[8]	
94	![Chemical Structure 94](image)	R = C₈H₁₇, 389.15	[9]	
95	![Chemical Structure 95](image)	R = C₁₀H₂₁, 389.15	[9]	
96	![Chemical Structure 96](image)	R = C₁₂H₂₅, 387.15	[9]	
97*	![Chemical Structure 97*](image)	R = C₁₄H₂₉, 389.15	[9]	
98	![Chemical Structure 98](image)	R = C₁₂H₂₅; R₁ = C₁₆H₃₃, 393.45	[10]	
99	![Chemical Structure 99](image)	R = C₁₆H₃₃; R₁ = C₁₂H₂₅, 393.25	[10]	
100	![Chemical Structure 100](image)	R = C₁₆H₃₃; R₁ = C₁₆H₃₃, 391.75	[10]	
	Structure	R	Molecular Weight	Reference
----	-----------	-----	------------------	-----------
101	![Structure](image1)	R = C₃H₁₁	401.15	[10]
102		R = C₆H₁₃	420.35	[10]
103		R = C₇H₁₅	397.85	[10]
104		R = C₈H₁₇	388.05	[10]
105		R = C₉H₁₉	389.55	[10]
106		R = C₁₁H₂₃	393.25	[10]
107		R = C₁₂H₂₅	389.75	[10]
108		R = C₁₄H₂₉	388.75	[10]
109		R = C₁₆H₃₃	388.55	[10]
110	![Structure](image2)	R = C₄H₉	437.75	[11]
111		R = C₅H₁₁	436.75	[11]
112		R = C₆H₁₃	437.25	[11]
113		R = C₇H₁₅	436.25	[11]
114		R = C₈H₁₇	437.15	[11]
115		R = C₉H₁₉	437.45	[11]
116		R = C₁₀H₂₁	436.85	[11]
117*		R = C₁₁H₂₃	436.25	[11]
118		R = C₁₂H₂₅	436.35	[11]
119		R = C₁₄H₂₉	435.25	[11]
120		R = C₁₆H₃₃	433.95	[11]
121	![Structure](image3)	R = C₄H₉	420.45	[11]
122		R = C₅H₁₁	420.45	[11]
123		R = C₆H₁₃	422.45	[11]
124*		R = C₇H₁₅	421.05	[11]
125*		R = C₈H₁₇	419.85	[11]
126		R = C₉H₁₉	421.65	[11]
127		R = C₁₀H₂₁	422.65	[11]
128		R = C₁₁H₂₃	423.15	[11]
129		R = C₁₂H₂₅	423.65	[11]
130		R = C₁₄H₂₉	424.85	[11]
131		R = C₁₆H₃₃	422.15	[11]
	Chemical Structure	R	Mass	Reference
---	--------------------	-----------------	--------	-----------
132	![Chemical Structure](image1)	R = OC₄H₉	394.65	[12]
133	![Chemical Structure](image2)	R = OC₆H₁₃	395.15	[12]
134	![Chemical Structure](image3)	R = OC₈H₁₇	393.55	[12]
135	![Chemical Structure](image4)	R = OC₁₀H₂₁	393.95	[12]
136	![Chemical Structure](image5)	R = OC₁₂H₂₅	396.05	[12]
137	![Chemical Structure](image6)	R = C₄H₉	399.55	[12]
138	![Chemical Structure](image7)	R = C₆H₁₃	394.65	[12]
139	![Chemical Structure](image8)	R = C₈H₁₇	390.45	[12]
140	![Chemical Structure](image9)	R = C₁₀H₂₁	388.95	[12]
141	![Chemical Structure](image10)	R = C₁₂H₂₅	388.65	[12]
142	![Chemical Structure](image11)	R = C₄H₉	418.95	[13]
143	![Chemical Structure](image12)	R = C₆H₁₃	415.25	[13]
144	![Chemical Structure](image13)	R = C₈H₁₇	413.65	[13]
145	![Chemical Structure](image14)	R = C₁₀H₂₁	409.55	[13]
146	![Chemical Structure](image15)	R = C₁₂H₂₅	409.05	[13]
147	![Chemical Structure](image16)	R = OC₄H₉	431.55	[13]
148	![Chemical Structure](image17)	R = OC₆H₁₃	430.35	[13]
149	![Chemical Structure](image18)	R = OC₈H₁₇	426.55	[13]
150	![Chemical Structure](image19)	R = OC₁₀H₂₁	420.15	[13]
151	![Chemical Structure](image20)	R = OC₁₂H₂₅	415.95	[13]
152	![Chemical Structure](image21)	R = C₈H₁₇	407.75	[14]
153	![Chemical Structure](image22)	R = C₁₀H₂₁	405.45	[14]
154	![Chemical Structure](image23)	R = C₁₂H₂₅	404.25	[14]
155	![Chemical Structure](image24)	R = C₈H₁₇	414.15	[15]
156	![Chemical Structure](image25)	R = C₁₀H₂₁	401.15	[15]
	R = C_{12}H_{25}	398.15 [15]		
---	------------------	-------------		
158	R = C_{14}H_{29}	397.15 [15]		
159	R = C_{16}H_{33}	394.15 [15]		

![Diagram 1]

	R = OC_{5}H_{11}	454.15 [16]
160	R = OC_{6}H_{13}	446.55 [16]
161	R = OC_{7}H_{15}	444.85 [16]
162	R = OC_{8}H_{17}	447.05 [16]
163	R = OC_{10}H_{21}	446.05 [16]
164	R = OC_{12}H_{25}	443.05 [16]
165	R = OC_{16}H_{33}	436.85 [16]
166	R = C_{5}H_{11}	423.05 [16]
167	R = C_{6}H_{13}	428.75 [16]
168	R = C_{8}H_{17}	431.25 [16]
169	R = C_{10}H_{21}	431.65 [16]
170	R = C_{12}H_{25}	429.15 [16]
171	R = C_{14}H_{29}	424.45 [16]

![Diagram 2]

	R = OC_{5}H_{15}	403.15 [16]
173	R = OC_{8}H_{17}	406.15 [16]
174	R = OC_{9}H_{19}	409.15 [16]
175	R = OC_{10}H_{21}	413.15 [16]
176	R = OC_{12}H_{25}	415.15 [16]
177	R = C_{5}H_{11}	392.15 [16]
178	R = C_{6}H_{13}	398.15 [16]
179	R = C_{8}H_{17}	400.15 [16]
180	R = C_{10}H_{21}	400.15 [16]
181	R = C_{12}H_{25}	400.15 [16]

![Diagram 3]

	R = OC_{6}H_{13}	438.15 [16]		
182	R = OC_{7}H_{15}	426.15 [16]		
183	R = OC_{8}H_{17}	421.15 [16]		
184	R = OC_{9}H_{19}	416.15 [16]		
185	R = OC_{10}H_{21}	415.15 [16]		
No.	R	H	Molar Mass	Ref.
-----	-----------	------------	------------	------
186	R = OC\textsubscript{10}H\textsubscript{21}	413.15		[16]
187	R = OC\textsubscript{12}H\textsubscript{25}	410.15		[16]
188	R = C\textsubscript{14}H\textsubscript{29}	390.15		[16]
189	R = OC\textsubscript{7}H\textsubscript{15}	446.15		[16]
190	R = OC\textsubscript{8}H\textsubscript{17}	445.15		[16]
191*	R = OC\textsubscript{9}H\textsubscript{19}	441.15		[16]
192*	R = OC\textsubscript{10}H\textsubscript{21}	440.15		[16]
193	R = OC\textsubscript{12}H\textsubscript{25}	437.15		[16]
194	R = OC\textsubscript{6}H\textsubscript{13}	450.15		[16]
195*	R = OC\textsubscript{7}H\textsubscript{15}	449.15		[16]
196	R = OC\textsubscript{8}H\textsubscript{17}	450.15		[16]
197	R = OC\textsubscript{9}H\textsubscript{19}	447.15		[16]
198	R = OC\textsubscript{12}H\textsubscript{25}	446.15		[16]
199	R = OC\textsubscript{6}H\textsubscript{13}	421.15		[16]
200	R = OC\textsubscript{7}H\textsubscript{15}	409.15		[16]
201	R = OC\textsubscript{8}H\textsubscript{17}	405.15		[16]
202	R = OC\textsubscript{9}H\textsubscript{19}	395.15		[16]
203	R = OC\textsubscript{10}H\textsubscript{21}	390.15		[16]
204	R = OC\textsubscript{6}H\textsubscript{13}	403.15		[16]
205*	R = OC\textsubscript{7}H\textsubscript{15}	399.15		[16]
206*	R = OC\textsubscript{8}H\textsubscript{17}	397.15		[16]
207	R = OC\textsubscript{9}H\textsubscript{19}	390.15		[16]
208	![Structure](image)	394.15	[16]	
209	![Structure](image)	420.15	[16]	
210	![Structure](image)	424.15	[16]	
211	![Structure](image)	458.15	[16]	
212	![Structure](image)			
213	R = OC$_{12}$H$_{25}$; R$_1$ = OC$_8$H$_{17}$	401.55	[16]	
214	R = OC$_{12}$H$_{25}$; R$_1$ = OC$_{10}$H$_{21}$	411.65	[16]	
215	R = OC$_{12}$H$_{25}$; R$_1$ = OC$_{11}$H$_{23}$	412.15	[16]	
216	R = OC$_{12}$H$_{25}$; R$_1$ = OC$_{12}$H$_{25}$	414.15	[16]	
217	R = OC$_{12}$H$_{25}$; R$_1$ = OC$_{13}$H$_{27}$	414.65	[16]	
218	R = OC$_{12}$H$_{25}$; R$_1$ = OC$_{14}$H$_{29}$	415.15	[16]	
219	R = OC$_{10}$H$_{21}$; R$_1$ = OC$_8$H$_{17}$	407.15	[16]	
220	R = OC$_{10}$H$_{21}$; R$_1$ = OC$_9$H$_{19}$	407.15	[16]	
221	R = OC$_{10}$H$_{21}$; R$_1$ = OC$_{10}$H$_{21}$	405.15	[16]	
222	![Structure](image)			
223*	R = C$_{12}$H$_{25}$	387.55	[17]	
223*	R = C$_{13}$H$_{27}$	379.95	[17]	
224*	R = OC₈H₁₇	426.05	[17]	
225	R = C₁₀H₂₁	412.75	[17]	
226	R = C₁₁H₂₃	409.55	[17]	
227	R = C₁₂H₂₅	410.45	[17]	
228	R = C₁₃H₂₇	421.95	[17]	

229	R = OC₈H₁₇	432.85	[17]
230	R = C₁₀H₂₁	425.65	[17]
231	R = C₁₁H₂₃	427.15	[17]
232	R = C₁₂H₂₅	424.85	[17]
233*	R = C₁₃H₂₇	424.15	[17]

234	R = C₇H₁₅	414.65	[18]
235	R = C₈H₁₇	415.65	[18]
236	R = C₉H₁₉	416.15	[18]
237*	R = C₁₀H₂₁	415.65	[18]
238*	R = C₁₁H₂₃	415.65	[18]
239	R = C₁₂H₂₅	413.65	[18]
240	R = C₁₃H₂₇	413.65	[18]
241	R = C₁₄H₂₉	412.15	[18]
242	R = C₁₆H₃₃	411.65	[18]
243*	R = C₁₈H₃₇	409.15	[18]

* Compounds used in test set
References

1. Srinivasan MV, Kannan P, Roy A. Photo and electrically switchable B7 mesophase exhibiting asymmetric bent-core liquid crystals. New J Chem. 2013;37:1584–1590.

2. Nagaveni NG, Roy A, Prasad V. Achiral bent-core azo compounds: effect of different types of linkage groups and their direction of linking on liquid crystalline properties. J Mater Chem. 2012;22:8948–8959.

3. Vijay Srinivasan M, Kannan P, Roy A. Investigations on photo and electrically switchable asymmetric bent-core liquid crystals. J Mater Sci. 2013;48:2433–2446.

4. Alaasar M, Prehm M, Brautzsch M, Tschiertske C. 4-Methylresorcinol based bent-core liquid crystals with azobenzene wings – a new class of compounds with dark conglomerate phases. J Mater Chem C. 2014;2:5487–5501.

5. Lutfor MR, Hegde G, Kumar S, Tschiertske C, Chigrinov VG. Synthesis and characterization of bent-shaped azobenzene monomers: Guest-host effects in liquid crystals with azo dyes for optical image storage devices. Opt Mater. 2009;32:176–183.

6. Alaasar M, Prehm M, Tschiertske C. Influence of halogen substituent on the mesomorphic properties of five-ring banana-shaped molecules with azobenzene wings. Liq Cryst. 2013;40:656–668.

7. Alaasar M, Prehm M, Brautzsch M, Tschiertske C. Dark conglomerate phases of azobenzene derived bent-core mesogens – relationships between the molecular structure and mirror symmetry breaking in soft matter. Soft Matter. 2014;10:7285–7296.

8. Alaasar M, Prehm M, May K, Eremin A, Tschiertske C. 4-Cyanoresorcinol-based bent-core mesogens with azobenzene wings: Emergence of sterically stabilized polar order in liquid crystalline phases. Adv Funct Mater. 2014;24:1703–1717.

9. Alaasar M, Prehm M, Tschiertske C. A new room temperature dark conglomerate mesophase formed by bent-core molecules combining 4-iodoresorcinol with azobenzene units. Chem Commun. 2013;49:11062–11064.

10. Nagaveni NG, Raghuvanshi P, Roy A, Prasad V. Azo-functionalised achiral bent-core liquid crystalline materials: effect of presence of –N=N– linkage at different locations in the molecular architecture. Liq Cryst. 2013;40:1238–1254.

11. Nagaveni NG, Prasad V, Roy A. Azo functionalised achiral bent-core liquid crystals: observation of photo-induced effects in B7 and B2 mesophases. Liq Cryst. 2013;40:1405–1416.

12. Prasad V, Kang S-W, Qi X, Kumar S. Photo-responsive and electrically switchable mesophases in a novel class of achiral bent-core azo compounds. J Mater Chem. 2004;14:1495–1502.

13. Prasad V, Kang S-W, Kumar S. Novel examples of achiral bent-core azo compounds exhibiting B1 and anticlinic-antiferroelectric B2 mesophases. J Mater Chem.
14. Prasad V, Jákli A. Achiral bent-core azo compounds: observation of photoinduced effects in an antiferroelectric tilted smectic mesophase. Liq Cryst. 2004;31:473–479.

15. Alaasar M, Prehm M, Tschierske C. New azobenzene containing bent-core liquid crystals based on disubstituted resorcinol. Liq Cryst. 2014;41:126–136.

16. Pelzl G, Diele S, Weissflog W. Banana-shaped compounds - a new field of liquid crystals. Adv Mater. 1999;11:707–724.

17. Pyc P, Mieczkowski J, Pociecha D, Gorecka E, Donnio B, Guillon D. Bent-core molecules with lateral halogen atoms forming tilted, synclinic and anticlinic, lamellar phases. J Mater Chem. 2004;14:2374–2379.

18. Umadevi S, Jákli A, Sadashiva BK. Odd-even effects in bent-core compounds containing terminal n-alkyl carboxylate groups. Soft Matter. 2006;2:875–885.