Effect of Injecting Tranexamic Acid from a Drain to the Joint and Drain-Clamping to Reduce Blood Loss during Bilateral Cementless Total Knee Arthroplasty

Hirotaka Mutsuzaki1 and Kotaro Ikeda2

1Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
2Department of Orthopaedic Surgery, Ichihara Hospital, 3681 Ozone, Tsukuba, Ibaraki 300-3295, Japan

Abstract

Purpose: Our purpose was to clarify the effect of immediately postoperatively injecting tranexamic acid (TA) to the knee joint and drain clamping on reducing postoperative bleeding. Allogeneic blood transfusion requirement after bilateral cementless total knee arthroplasty (TKA) was also evaluated.

Methods: This nonrandomized, retrospective study included 50 patients who underwent simultaneous bilateral primary cementless TKA. They were equally divided into a study group given an injection of TA (1000 mg) from drain to knee joint and drain clamping postoperatively (study group) and a control group who did not undergo this treatment. Postoperative total blood loss, drainage volume, hemoglobin level and transfusion amounts/rates were recorded.

Results: Total blood loss, total drainage, and mean allogeneic transfusion volume and rate were lower in the study group than in controls (P<0.05). Hemoglobin level on postoperative day (POD) 14 was similar in the two groups but was higher in the study group on PODs 1 and 7 (P<0.05).

Conclusions: Injection of TA from drain to knee joint and drain clamping at the end of the operation effectively reduced blood loss and allogeneic blood transfusion after bilateral cementless TKA.

Keywords: Intra-articular injection; Tranexamic acid; Drain-clamping; Blood loss; Bilateral cementless total knee arthroplasty

Introduction

Total knee arthroplasty (TKA) is usually associated with marked postoperative blood loss [1-3]. Blood loss is expected to be higher after bilateral TKA than after unilateral TKA and for cementless TKA than for cemented TKA [4-10]. The requirements for allogeneic blood transfusion increase for these patients. The administration of tranexamic acid (TA) to reduce blood loss and the need for allogeneic blood transfusion after TKA have been evaluated by two meta-analyses [11,12] of clinical trial results. It was concluded that TA appears to be a safe method for reducing blood loss-and thereby the need for allogeneic blood transfusion-without increasing thromboembolic complications. Tranexamic acid inhibits tissue fibrinolysis for up to 17 hours, consequently diminishing the possibility of clots entering the extravascular space and accumulating in tissues [13]. We therefore performed immediately postoperative intra-articular retrograde injection of TA from the drain and drain clamping in patients after unilateral cementless TKA [14]. The method reduced postoperative blood loss and the need for blood transfusion.

Only a few papers have evaluated the effect of TA for bilateral cemented TKA [9,10]. The effect of injecting TA from the drain to the knee joint on reducing postoperative bleeding after bilateral cementless TKA has not been reported. Our hypothesis was that intra-articular administration of TA via the drain would reduce postoperative bleeding and the need for allogeneic blood transfusion after bilateral cementless TKA. The purpose of this study was to determine if injecting TA from the drain to the knee joint and drain clamping reduces postoperative bleeding and the need for allogeneic blood transfusion in patients undergoing bilateral cementless TKA.

Methods

This study, conducted from July 2007 through October 2012, was nonrandomized and retrospective. It included 50 patients (100 knees) undergoing simultaneous bilateral primary cementless TKA. The patients gave written informed consent for publication of this report and any accompanying images. Exclusion criteria were a known allergy to TA, cemented TKA, unilateral TKA, and posterior stabilized TKA. After these exclusions, 50 patients remained. They were divided into two groups. The study group underwent injection of TA from the drain to knee joint at the end of the operation but before tourniquet release, followed by clamping the drainage for 1 hour. The control group did not undergo this treatment. The preoperative characteristics, including age, sex, knee disease, height, weight, preoperative femorotibial angle, range of motion of the knee, and hemoglobin levels 1 day before surgery were comparable in the two groups (Table 1). The backgrounds of the patients in the groups were not significantly different except for their height and the femorotibial angle of the right knee. All surgery was performed or supervised by two surgeons (H.M. for the right knees, K.I. for the left knees).

*Corresponding author: Hirotaka Mutsuzaki, Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan, Tel: +81-29-889-4000; Fax: +81-29-840-2418; E-mail: mutsuzaki@ipu.ac.jp

Received January 10, 2014; Accepted March 10, 2014; Published March 15, 2014

Citation: Mutsuzaki H, Ikeda K (2014) Effect of Injecting Tranexamic Acid from a Drain to the Joint and Drain-Clamping to Reduce Blood Loss during Bilateral Cementless Total Knee Arthroplasty. J Blood Disorders Transf 5: 203. doi: 10.4172/2155-9864.1000203

Copyright: © 2014 Mutsuzaki H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Table 1: Patient profiles.

Parameter	Study group (n = 25)	Control group (n = 25)	P
Age (years)	70.7 ± 7.2	71.6 ± 6.4	NS
Sex (male/female)	7/18	5/20	NS
Disease (OA/RA)	25/0	25/0	NS
Height (cm)	154.2 ± 7.0	148.9 ± 6.7	0.008
Body weight (kg)	63.4 ± 11.4	63.0 ± 9.6	NS
Preoperative FTA (*) Right	185.2 ± 4.0	188.9 ± 6.0	0.015
Preoperative FTA (*) Left	187.0 ± 3.9	183.4 ± 4.9	NS
Preoperative ROM (*) Right	112.4 ± 20.4	115.4 ± 15.9	NS
Preoperative ROM (*) Left	112.2 ± 21.4	118.4 ± 15.0	NS
Preoperative Hb (g/dl)	12.9 ± 1.0	12.8 ± 1.1	NS

OA: Osteoarthritis; RA: Rheumatoid Arthritis; FTA: Femorotibial Angle; ROM: Range of Motion; Hb: Hemoglobin. Results are the mean ± SD.

Statistical Analyses

Student’s t-test was used to analyze parametric data, and the Mann-Whitney U-test was used for nonparametric data. P<0.05 was considered to indicate a significant difference.

Results

The results are summarized in Table 2. Total blood loss was less in the study group than in the control group (1156.3 ± 396.7 ml vs. 2318.0 ± 733.4 ml, P<0.001), as was total drainage (430.9 ± 284.6 ml vs. 1111.2 ± 319.3 ml, P<0.001).

Table 2: Postoperative data for all patients.
vs. 1111.2 ± 319.3 ml, P<0.001). There was a greater reduction in allometric transfusion rates in the study group than in the control group (24.0% vs. 60.0%, P=0.006). The mean amount of transfusion per patient for allometric transfusions was less in the study group than in the control group (112.0 ± 216.6 ml vs. 776.0 ± 721.8 ml, P<0.001). Autologous transfusion rates and the mean amount per patient were not significantly different in the two groups. The mean amount of transfusion per patient for total transfusions was less in the study group than in the control group (400.0 ± 200.0 ml vs. 1248.0 ± 361.8 ml, P<0.001). The total transfusion rates were not significantly different in the two groups. The hemoglobin level on POD 14 was not different in the two groups. On PODs 1 and 7, however, the hemoglobin level was higher in the study group than in the control group (POD 1: 11.4 ± 1.2 g/dl vs. 10.8 ± 1.1 g/dl, P=0.024; POD 7: 10.4 ± 1.1 g/dl vs. 9.3 ± 1.6 g/dl, P=0.003).

The operating time for the left knee was shorter in the study group than in the control group (81.8 ± 13.7 min vs. 95.8 ± 13.1 min, P<0.001). The operating times for the right knee were not significantly different in the two groups (89.5 ± 18.2 min in the study group vs. 92.8 ± 10.9 min in the control group, P=0.05). Neither symptomatic DVT nor PE was observed in either group. Wound complications, including infection and hematoma, occurred less often in the study group (wound infection in two knees) than in the control group (deep infection in one knee, wound infection in one knee, hematoma in five knees) (4.0% vs. 14.0%, P=0.041).

Discussion

The most important finding in this study was that injecting TA from the drain to the knee joint and drain clamping at the end of the operation effectively reduced postoperative blood loss and the need for allometric blood transfusion after bilateral cementless TKA.

One of the main problems after TKA is the need for allometric blood transfusion. Although the incidence is low, serious complications involving allometric blood transfusions (e.g., viral infections, graft-versus-host disease, and electrolyte imbalance) have been reported [22]. Because the need for allometric blood transfusion was reduced using our method, the incidence of transfusion-associated complications was reduced. Also, hemoglobin levels on PODs 1 and 7 were higher in the study group than in the control group. Because the general condition of the patients in the study group can be superior to that in the control group, aggressive rehabilitation may start earlier for the study group patients. Using our method in patients with bilateral cementless TKA is more cost-effective than the conventional method because it does not use cement, there is a single hospitalization, and the need for allometric blood transfusion was reduced.

The fibrinolytic system is activated transiently after any surgery [23]. TA is a synthetic amino acid that inhibits fibrinolysis by reversibly blocking lysine-binding sites on plasminogen molecules, thereby inhibiting activation. This situation prevents plasmin from binding with fibrinogen and fibrin structures after clot formation [24]. Because of its antifibrinolytic effects, the risk of increasing venous thromboembolism when using TA is a cause for concern [25,26]. TA, however, does not influence fibrinolytic activity in vein walls [26]. Therefore, neither our study nor previous studies observed an increased incidence of venous thrombosis in patients treated with TA [27-29].

Hematomas can lead to infection after TKA [30], but the incidence of postoperative infections and hematomas was lower in the study group than in the control group. Hematomas can be reduced using this method. A retrospective review of bilateral TKA compared incidences of symptomatic PE in simultaneous and staged procedures [31]. PE developed in 0.81% of patients who had undergone a single procedure and in 1.44% of patients who had undergone a simultaneous procedure. We combined subcutaneous administration of fondaparinux sodium with TA, a foot pump, and antiembolic stockings for successful thromboembolic prophylaxis [16,17]. Although randomized controlled trials with large numbers of patients are needed, we believe that our method for bilateral cementless TKA is safe, easy to perform, and suitable for these patients.

In our study, the operating time for the left knee was longer in the control group than in the study group. This finding may have been influenced by the use of different implant types. Although it is unclear whether there was greater blood loss in the control group, a longer operating time does not imply a greater chance of postoperative bleeding [32]. Further investigations using the same implant may be required.

The study has some limitations. It was a retrospective study. There were also differences in patient characteristics regarding height and femorotibial angle and the implant types in the two groups. Therefore, selection bias was not completely excluded. Another limitation was the small number of patients. Randomized controlled trials with more patients are needed. Also, investigations using thromboembolism screening tests, such as ultrasonography, may be required.

Conclusion

Injection of TA from the drain to the knee joint and drain clamping at the end of the operation effectively reduced postoperative blood loss and the need for allometric blood transfusion after bilateral cementless TKA.

Acknowledgement

The authors are grateful to Dr. Tomonori Kinugasa for technical assistance.

References

1. Brecher ME, Monk T, Goodnough LT (1997) A standardized method for calculating blood loss. Transfusion 37: 1070-1074.

2. Callaghan JJ, O’Rourke MR, Liu SS (2005) Blood management: issues and options. J Arthroplasty 20: 51-54.

3. Mylod AG Jr, France MP, Muser DE, Parsons JR (1990) Perioperative blood loss associated with total knee arthroplasty. A comparison of procedures performed with and without cementing. J Bone Joint Surg Am 72: 1010-1012.

4. Ishii Y, Matsuda Y (2005) Perioperative blood loss in cementless or hybrid total knee arthroplasty without patellar resurfacing: a prospective, randomized study. J Arthroplasty 20: 972-976.

5. Ishii Y, Matsuda Y (2005) Effect of the timing of tourniquet release on perioperative blood loss associated with cementless total knee arthroplasty: a prospective randomized study. J Arthroplasty 20: 977-983.

6. Akiuzi S, Takizawa T, Horiiuchi H (2003) Fixation of a hydroxyapatite-tricalcium phosphate-coated cementless knee prosthesis. Clinical and radiographic evaluation seven years after surgery. J Bone Joint Surg Br 85: 1123-1127.

7. Saito S, Tokuhashi Y, Ishii T, Mori S, Hosaika K, et al. (2011) Bilateral fatigue fracture of the femoral components in a cruciate-retaining cementless total knee prosthesis. Orthopedics 34: e688-e691.

8. Akiuzi S, Yasukawa Y, Takizawa T (1997) A new method of hemostasis for cementless total knee arthroplasty. Bull Hosp Jh Dis 56: 222-224.

9. Dhillon MS, Bali K, Prabhakar S (2011) Tranexamic acid for control of blood loss in bilateral total knee replacement in a single stage. Indian J Orthop 45: 148-152.

10. MacGillivray RG, Tarabichi SB, Hawari MF, Racof NT (2011) Tranexamic acid to reduce blood loss after bilateral total knee arthroplasty: a prospective, randomized double blind study. J Arthroplasty 26: 24-28.
11. Ho KM, Ismail H (2003) Use of intravenous tranexamic acid to reduce allogeneic blood transfusion in total hip and knee arthroplasty: a meta-analysis. Anaesth Intensive Care 31: 529-537.

12. Cid J, Lozano M (2005) Tranexamic acid reduces allogeneic red cell transfusions in patients undergoing total knee arthroplasty: results of a meta-analysis of randomized controlled trials. Transfusion 45: 1302-1307.

13. Mannucci PM (1998) Hemostatic drugs. N Engl J Med 339: 245-253.

14. Mutsuzaki H, Ikeda K (2012) Intra-articular injection of tranexamic acid via a drain plus drain-clamping to reduce blood loss in cementless total knee arthroplasty. J Orthop Surg Res 7: 32.

15. Rama KR, Apsingi S, Poovvali S, Jetti A (2007) Timing of tourniquet release in knee arthroplasty. Meta-analysis of randomized, controlled trials. J Bone Joint Surg Am 89: 699-705.

16. Stannard JP, Harris RM, Bucknell AL, Cossi A, Ward J, et al. (1996) Prophylaxis of deep venous thrombosis after total hip arthroplasty by using intermittent compression of the plantar venousplexus. Am J Orthop (Belle Mead NJ) 25: 127-134.

17. Morris RJ, Woodcock JP (2004) Evidence-based compression: prevention of stasis and deep vein thrombosis. Ann Surg 239: 162-171.

18. [No authors listed] (1988) Consensus conference. Perioperative red blood cell transfusion. JAMA 260: 2700-2703.

19. Adelinto J, Brenikel UJ (2004) Pre-operative predictors of the requirement for blood transfusion following total hip replacement. J Bone Joint Surg Br 86: 970-973.

20. Nadler SB, Hidalgo JH, Bloch T (1962) Prediction of blood volume in normal human adults. Surgery 51: 224-232.

21. Sehat KR, Evans RL, Newman JH (2004) Hidden blood loss following hip and knee arthroplasty. Correct management of blood loss should take hidden loss into account. J Bone Joint Surg Br 86: 561-565.

22. Fiebig E (1998) Safety of the blood supply. Clin Orthop Relat Res : 6-18.

23. Risberg B (1985) The response of the fibrinolytic system in trauma. Acta Chir Scand Suppl 522: 245-271.

24. Dunn CJ, Goa KL (1999) Tranexamic acid: a review of its use in surgery and other indications. Drugs 57: 1005-1032.

25. Arnjols B, Wieslander JB, Dougan P, Salemark L (1991) Importance of fibrinolysis in limiting thrombus formation following severe microarterial trauma: an experimental study in the rabbit. Microsurgery 12: 332-339.

26. Astedt B, Liedholm P, Wingerup L (1978) The effect of tranexamic acid on the fibrinolytic activity of vein walls. Ann Chir Gynaecol 67: 203-205.

27. Benoni G, Fredin H (1998) Fibrinolytic inhibition with tranexamic acid reduces blood loss and blood transfusion after knee arthroplasty: a prospective, randomised, double-blind study of 86 patients. J Bone Joint Surg Br 78: 434-440.

28. Husted H, Bland L, Sonne-Holm S, Holm G, Jacobsen TW, et al. (2003) Tranexamic acid reduces blood loss and blood transfusions in primary total hip arthroplasty: a prospective randomized double-blind study in 40 patients. Acta Orthop Scand 74: 665-669.

29. Ido K, Neo M, Asada Y, Kondo K, Morita T, et al. (2000) Reduction of blood loss using tranexamic acid in total knee and hip arthroplasties. Arch Orthop Trauma Surg 120: 518-520.

30. Mortazavi SM, Molligan J, Austin MS, Purtill JJ, Hozack WJ, et al. (2011) Failure following revision total knee arthroplasty: infection is the major cause. Int Orthop 35: 1157-1164.

31. Barrett J, Baron JA, Losina E, Wright J, Mahomed NN, et al. (2006) Bilateral total knee replacement: staging and pulmonary embolism. J Bone Joint Surg Am 88: 2146-2151.

32. Kolisek FR, Bonutti PM, Hozack WJ, Purtill J, Sharkey PF, et al. (2007) Clinical experience using a minimally invasive surgical approach for total knee arthroplasty: early results of a prospective randomized study compared to a standard approach. J Arthroplasty 22: 8-13.