RESEARCH ARTICLE

GRANULOMETRIC ANALYSIS AND PALAEOENVIRONMENTAL RECONSTRUCTION OF THE PALAEOGENE DISANG – BARAIL TRANSITIONAL SEQUENCE IN PARTS OF KOHIMA SYNCLINORIUM, NAGA HILLS, NE INDIA.

Lily Sema¹ and *Nagendra Pandey².
1. Department of Geology, Kohima Science College (Aut), Jotsoma, Nagaland.
2. Department of Earth Science, Assam University, Silchar.

Abstract

The Palaeogene Disang – Barail Transitional Sequence (DBTS) cropping at the tip of the Kohima Synclinorium, Naga Hills has been analyzed for its grain – size characteristics and their interpretations in terms of environmental processes. Besides graphical and statistical parameters; attempts have also been made to analyze the size – data using multigroup discriminant function after Sahu (1983). The grain-size frequency distribution, descriptive statistical parameters, nature of Cumulative curves and the multigroup discriminant function analyses including V1 – V2 plot, all indicate that the DBTS correspond approximately to turbidity deposits.

Introduction:

The Kohima Synclinorium, a part of which constitutes the present area of investigation, is one of the most prominent structural units in the inner fold belt of Naga Hills (Evans, 1964; Chakrabarti and Banerjee, 1988). Its western and eastern limits are defined by Halflong-Disang thrust and Changrung-Zungki-Lainye thrust respectively (Naik, 1998). The northern limb of Kohima synclinorium forming the Barail ranges of North Cachar extends south-westward below Halflong and then westward, fringing the eastern extension of Meghalaya plateau. The southern limb extends into west Manipur, East Cachar and East Mizoram, both the limbs being lithologically dissimilar. The Surma basin forms the core of Kohima synclinorium. While the Barail Group of rocks of the Barail range is dominantly sandstone, shale becomes predominant in the southern limbs. The underlying Disang rocks constitute the outer most ring of Kohima Synclinorium south of Haflong and display a sequence of splintery shale with minor sandstone (Rao, 1983). It needs to be pointed out here that problems concerning lithostratigraphic intricacy and regional correlation of Disang – Barail sequences are yet to be resolved. Since fossil records of the region are equivocal, a careful and detailed lithostratigraphic mapping may be the only way out to understand and solve the stratigraphic problems (Chakrabarti and Banerjee, 1988).

In order to understand lithologic intricacies of Kohima Synclinorium, an area bounded between Latitudes 25°32’ N – 25°36’ N, and Longitudes 94°05’E – 94°10’E of the topographic sheet no. 83 K/2 of Survey of India has been targeted. It covers nearly 100 sq. km. and includes areas lying near Phesema, Kigwema, Jakham, Viswema and Khuzama villages. The study area (Fig.1) is unique in the sense that the lithology here neither matches with the argillaceous Disangs nor the arenaceous Barails; rather it exhibits a gradational blending of the two lithologies. Shales with subordinate sandstone units dominate the eastern half of the area; which in turn passes into a succession
having higher increments of sandstone interbeds towards the western half of the area. At places multistoried sandstone units having similar lithological attributes as those of the Barails are found to be overlain by thick succession of shales resembling Disangs. Following Pandey and Srivastava (1998), the lithologic unit exposed in the study area has been designated as Disang - Barail Transitional Sequence (DBTS).

Lithofacies:-
Based on the five diagnostic parameters of sedimentary facies, viz. bed geometry, lithology (including grain-size), primary sedimentary structures, palaeocurrent patterns and biogenic remains; if any (Selley, 1970, & 1976); the entire assemblage of Disang – Barail Transitional lithology was studied along six vertical profile sections measured at different locations across the study area. A total number of six litho-facies – A: Sand – Conglomerate facies, B: Sand facies, C: Sand – Mud facies, D: Mud – Sand facies-i, E: Mud – Sand facies-ii & F: Debrite facies have been identified following Mutti and Ricci Lucchi (1972) & McCaffrey and Kneller (2001).

Methodology:-
Since all the rock samples are hard and compact, thin-section method of grain-size analysis has been employed following the method suggested by Krumbein (1935). Further improvements to this method has been proposed by several workers including Friedman (1962), Stauffer (1966), Connor and Ferm (1966), Smith (1966) and Textoris (1971). Grain-size measurements of thirty-four fresh and representative rock samples were carried out in thin-section using the Leitz Laborlux 12 polarizing microscope. About 500 grains were measured in each thin section. During the course of size measurement, care has been taken to measure the apparent maximum dimension of the grains. The measured grain-size values were grouped into half phi intervals in order to represent the size-distribution graphically. Graphic measures of size-distributions were obtained by reading the values of different percentiles (P_5, P_{16}, P_{25}, P_{50}, P_{75}, P_{84}, P_{95}) from cumulative curves and placing them into the formulae suggested by Folk (1974) and later modified by Friedman and Sanders (1978). The grain-size frequency distribution data and their interpretation in terms of processes for different lithofacies are shown in Table 1 and 2 respectively.

Cumulative Curve Analysis:-
It has long been recognized that the shape of a cumulative curve is a function of relative proportions of two or more log normally distributed grain-size sub-populations (Tanner, 1964; Visher, 1969, 1970; Lambiase, 1982). Many workers suggested that each sub-population signifies a specific sediment transport mechanism operative during deposition, e.g. bed-load or ‘surface creep’ (coarsest sub-population), saltation (intermediate sub-population) and the suspension (finest sub-population) (Visher, 1970; Moss, 1972; Sagoe and Visher, 1977; Middleton, 1976). However, Shea (1974) attributed the shape of a cumulative curve to grain-size distribution of the source material.

There is varied opinion about the exact nature of boundary between different sub-populations. According to Visher (1969) and Sagoe and Visher (1977), grain populations are truncated at their boundaries as a result of differing transport mechanisms. However, Tanner (1964), Middleton (1976), Walton et al., (1980), Lambiase (1982) are of the opinion that grain populations are overlapping or mixed. What so ever may be the case; results obtained from cumulative curve analysis must be interpreted with caution due to the following possibilities of error as suggested by James and Oaks (1977).
1. Preferential losses from finer grain-sizes during diagenesis.
2. Statistical errors due to population size (200 grains or more should be counted).
3. Sampling error of the different laminae in the rock.

The representative cumulative curves for different lithofacies, as shown in Fig. 2 may be grouped into two types. Type I curves, characterized by initial steep; straight lines with little convexity in the middle and again a steep straight end part, are common in lithofacies A, B and F. The lithofacies C, D and E are characterized by type II curves which are moderately steep, straight initial curves with prominent convexity in the middle and steep, straight end part. All the cumulative curves consist of two populations only, i.e. saltation and suspension (Table.4). The saltation population shows good to moderate sorting and constitutes 88 % to 99.9 % of the total population in type I and II respectively. In type I curves this population is truncated on the finer side between the limits of 1.0 and 7.5, whereas the same varies between 2.0 to 6.5 in case of type II. The suspension population is fairly to moderately sorted in type I curves, whereas the same is generally moderately sorted in type II. Almost all curves show a major slope break separating transportation by suspension from saltation. This break (FT) lays around 5.20 defining approximately the silt-clay boundary. The break at fine truncation may be co-related in terms of current velocities,
flow separation, flow regimes, velocity gradients, grain shape and densities and fluid density (Sagoe and Visher, 1977). The saltation population (A) is actually transported by intermittent suspension or turbulence caused by velocity fluctuations in water (Lambiase, 1982). The observed shift at A-B (saltation to suspension population) boundaries from A, B and F facies to C, D and E facies, and the gentle nature of curve segments reflects that the transport mechanism was gradually changing from primarily intermittent suspension to suspension in response to greater flow strength. A comparison with the pattern of cumulative curves for various types of environments, as suggested by Visher (1969), indicates that the rocks of the present area correspond approximately to turbidity current deposited sandstones.

C-M Pattern:-
Passega (1957, 1964) suggested the use of C-M pattern for environmental analysis. C is the one percentile diameter in microns, an approximation of maximum grain-size and M, the fifty percentile diameter in microns, is the median. The position of points in a C-M diagram depends upon the mode of deposition of sediments. Deposits of various environments give characteristic patterns. Passega (1957) states the significance of C and M in the interpretation of the depositional agencies. M, the median grain-size is the size such that 50% of the sample is coarser than this size, which is the approximation of the maximum grain-size present in the population. He states that the loads of coarse and fine sediments in hydrodynamic equilibrium are largely dependent of each other. The coarser fraction is almost invariably more representative of the depositional agent than the finer fraction. Advantage is taken of this observation in representing texture in the C-M diagram. The only parameter of the overall texture used in the C-M diagram is the median which expresses the average coarseness of the sediments. C, the one percentile, is the parameter which measures the competency of the depositing agent to transport. The one percentile value is selected for a parameter as an approximation of the maximum grain-size because some coarser grains may have been introduced by extraneous agents. On the C-M diagram, the limit of the area in which points can fall is restricted by line C=M. It is designated as the limit of the diagram. Points situated on this line represent samples in which the median approximately equals the coarsest grain-size. C, the one percentile, and the median, in case of the sediments under question, range from 71.8 to 353.6 and > 0.3 to 220.7 respectively (Fig.3). On plotting C against M following Passega (1957, 1964), Passega and Byramjee (1969) and Reineck and Singh (1980) the sediments are found to be admixture of sand, silt and clay which are transported mostly in saltation and also to some extent in suspension and then deposited by turbidity currents. Long and rectilinear turbidity pattern is indicative of fine to coarse grain particles which are carried in saltation and suspension with very little or no rolling (Passega, 1957). On losing velocity, turbidity current first deposits sand and then coarse and medium silt (Passega, 1977).

Multigroup Discrimination Function Analysis:-
Although, the linear discriminant function (Sahu, 1964; Sevon, 1966) is an effective method for discrimination among two groups, somehow it could not yield optimal result for the sediments of the study area. It may be due to the approach to the alternative hypothesis which is restricted to two groups only; whereas the sample may not belong to any of the two environments. The effectiveness of discriminant functions in environmental interpretation has also been questioned by Tucker and Vacher 1980). To overcome this problem, a multigroup discrimination method after Sahu (1983) was employed, as it considers for,
1. The alternative hypothesis which may belong to anyone of the several groups
2. The ratio of among - group to within group quadratic forms to be maximized
3. Only significant number of co-ordinates are to be retained for the discriminating space and,
4. A simple Euclidean distance for purposes of classification in the discriminating space.

Sahu’s empirically retained discriminating Eigen’s vectors V_1 and V_2 were used to distinguish the depositional environments for the sediments under question. The discriminant functions V_1 and V_2 are expressed as

$$V_1 = 0.48048 M_Z + 0.62301 \sigma_1^2 + 0.40602 Sk_1^2 + 0.44413 K_G$$
$$V_2 = 0.24523 M_Z + (-0.45905) \sigma_1^2 + 0.15715 Sk_1^2 + 0.83931 K_G$$

Where, M_Z, σ_1^2, Sk_1 and K_G represent the mean size, the size variance, graphic skewness and graphic kurtosis, respectively.
The average values for \(V_1 \) and \(V_2 \) thus obtained (\(V_1 = 2.40, V_2 = 1.40 \)) were plotted in the diagram of \(V_1 \) and \(V_2 \) with \(V_1 \angle V_2 = 74.4^\circ \), after Sahu (1983). The position of the point in the diagram (Fig. 4) falls well within the range of turbidite deposits.

Fig. 1:-Location and Geological map of the study area
Fig. 2: Cumulative Curve Types for the Palaeogene DBTS, Naga Hills
Fig. 3: C - M Pattern of the DBTS, Naga Hills
(after Passega, 1957; Passega and Byramjee, 1969)

Disang - Barai Transitional Sequence
- A - Aeolian
- B - Beach
- OM - Position of Oriented Mean
- R - River
- Sh.M - Shallow Marine
- Tu - Turbidity

Fig. 4: Discrimination of Depositional Environment for Palaeogene DBTS,
Naga Hills using V1 - V2 Plot after Sahu (1983)
Table 1: Grain-size frequency (in percent) distribution of six Lithofacies of the Palaeogene Disang-Barail transitional sequence

Class interval (Phi units)	L10	L29	L31	L33	L34	Average
0.50-1.00	-	-	-	-	-	1.64
1.00-1.50	-	-	-	-	1.00	14.84
1.50-2.00	1.27	-	-	-	3.50	35.25
2.00-2.50	16.81	1.28	0.54	24.66	21.85	13.02
2.50-3.00	32.35	19.42	5.12	43.66	12.16	21.34
3.00-3.50	24.68	24.00	24.90	21.00	21.16	21.34
3.50-4.00	12.79	29.71	33.51	4.50	4.53	17.00
4.00-4.50	6.94	18.28	17.76	1.13	3.09	9.42
4.50-5.00	3.65	7.14	9.89	0.50	2.06	4.64
5.00-5.50	0.36	3.28	5.86	-	-	4.90
5.50-6.00	1.09	1.85	1.64	-	-	0.91
6.00-6.50	-	1.00	0.74	-	-	0.34

Class interval (Phi units)	L24	L26	L27	L28	Average
2.00-2.50	-	-	-	-	1.12
2.50-3.00	1.63	2.89	-	7.10	2.90
3.00-3.50	8.18	8.69	3.55	23.92	11.08
3.50-4.00	19.63	33.62	11.40	31.40	24.01
4.00-4.50	27.81	28.84	31.77	15.14	25.89
4.50-5.00	20.36	14.49	27.10	12.14	18.52
5.00-5.50	12.36	7.82	15.32	6.16	10.41
5.50-6.00	5.81	1.44	4.85	1.49	3.39
6.00-6.50	3.09	1.44	4.29	1.30	2.53
6.50-7.00	1.09	0.72	1.65	-	0.86

Table 1 contd.
Table 1 contd.

Sample numbers of Lithofacies ‘C’

Class interval (Phi units)	L9	L12	L13	L17	L19	L36	Average
2.00-2.50	0.84	-	2.00	-	-	1.15	0.66
2.50-3.00	11.01	-	11.00	0.58	2.08	14.61	6.54
3.00-3.50	36.77	14.28	21.20	5.08	29.16	28.46	22.49
3.50-4.00	33.88	35.04	31.40	30.52	41.86	32.69	34.23
4.00-4.50	10.84	30.85	20.80	40.50	19.39	13.46	22.64
4.50-5.00	4.91	12.38	8.20	17.61	6.08	6.53	9.28
5.00-5.50	1.35	5.52	3.00	3.71	2.08	1.92	2.93
5.50-6.00	0.84	1.90	2.40	2.95	0.32	1.15	1.59

Sample numbers of Lithofacies ‘D’

Class interval (Phi units)	L2	L6	L7	L8	L18	L25	L32	Average
1.50-2.00	-	1.09	0.54	-	-	-	10.09	1.67
2.00-2.50	-	16.00	9.09	6.03	20.00	1.58	32.33	12.14
2.50-3.00	-	27.63	33.81	26.66	46.07	10.19	40.56	26.41
3.00-3.50	2.31	21.45	32.18	35.07	21.07	31.56	10.46	22.01
3.50-4.00	18.00	18.18	15.45	20.95	8.03	40.39	3.17	17.73
4.00-4.50	35.65	10.54	6.36	7.61	3.03	12.15	1.49	10.97
4.50-5.00	25.13	4.18	2.18	3.49	0.89	4.11	1.12	3.87
5.00-5.50	11.76	0.90	0.36	0.15	0.89	1.98	0.74	2.39
5.50-6.00	4.63	-	-	-	-	-	-	0.66
6.00-6.50	1.60	-	-	-	-	-	-	0.22
Sample numbers of Lithofacies ‘E’

Class interval (Phi units)	L1	L3	L11	L15	L16	L20	L21	Average
2.50-3.00	-	2.68	-	0.18	1.23	-	12.23	2.33
3.00-3.50	-	17.11	6.35	14.00	11.13	3.40	24.27	10.89
3.50-4.00	2.73	36.24	32.66	42.18	35.05	27.20	30.67	29.53
4.00-4.50	14.15	25.67	40.10	32.18	31.95	40.60	18.83	29.96
4.50-5.00	28.76	11.91	14.33	8.72	12.37	19.20	9.70	14.99
5.00-5.50	27.98	3.69	4.71	1.45	5.15	7.29	2.91	7.58
5.50-6.00	18.00	1.84	1.81	0.54	32.68	1.80	1.35	8.28
6.00-6.50	5.28	0.83	-	-	1.41	0.68	-	1.17
6.50-7.00	2.93	-	-	-	-	-	-	0.41

Sample numbers of Lithofacies ‘F’

Class interval (Phi units)	L4	L14	L22	L23	L35	Average	
1.00-1.50	-	-	1.20	-	-	0.55	0.35
1.50-2.00	-	0.50	16.66	-	-	11.00	5.63
2.00-2.50	-	5.50	47.80	5.50	-	31.00	17.96
2.50-3.00	-	22.00	24.60	-	19.41	31.19	19.44
3.00-3.50	0.55	30.00	6.80	26.97	-	13.21	15.50
3.50-4.00	6.42	19.33	1.80	22.38	-	7.70	11.52
4.00-4.50	26.67	12.00	0.20	13.76	-	3.30	11.18
4.50-5.00	27.23	6.50	-	6.42	-	1.46	8.32
5.00-5.50	27.93	1.66	-	3.66	0.55	6.76	
5.50-6.00	7.82	1.50	-	1.83	-	2.23	
6.00-6.50	1.95	1.00	-	-	-	0.59	
6.50-7.00	0.55	-	-	-	-	0.11	
7.00-7.50	0.41	-	-	-	-	0.08	
7.50-8.00	0.41	-	-	-	-	0.08	
Table 2: Probable Depositional Environments for different Lithofacies of the DBTS

(under Visher, 1969)

Lithofacies & S.No	Saltation Population (A)	Suspension Population (B)	Probable Depositional Environment					
	Percent	Sorting	C.T (phi)	F.T (phi)	Percent	Sorting	Mixing (A+B)	F.T (phi)
Lithofacies ‘A’	L10 99% moderate	2.0 5.5	1%	good	average		6.0	
	L20 99% moderate	2.5 6.0	1%	good	much		6.5	
	L31 99% moderate	2.5 5.5	1%	good	much		6.0	
	L33 99% moderate	1.5 4.5	1%	good	much		4.7	
	L34 98% moderate	1.0 4.5	2%	good	much		5.5	
	Average	98.8% moderate	1.9 5.2	1.2%	good		much	5.7
Lithofacies ‘B’	L24 99% good	2.5 5.9	1%	good	much		6.5	
	L26 98% moderate	2.5 5.9	2%	good	average		6.5	
	L27 98% good	3.0 6.0	2%	good	average		6.5	
	L28 99% moderate	2.0 5.5	1%	good	average		6.5	
	Average	98.3% moderate	2.5 5.8	1.3%	good		average	6.5
Lithofacies ‘C’	L9 99.2% moderate	2.5 5.5	6%	good	average		6.0	
	L12 97% moderate	3.0 5.5	3%	moderate	much		6.5	
	L13 98% moderate	2.5 5.5	2%	good	much		6.0	
	L17 98% good	3.0 6.5	2%	good	much		6.0	
	L19 98.5% moderate	3.0 4.5	1.5%	good	much		5.5	
	L36 99% moderate	2.5 5.5	1%	good	much		6.0	
	Average	98.2% moderate	2.7 5.5	2.5%	good		much	6.0
Lithofacies ‘D’	L2 98% moderate	3.5 4.4	2%	moderate	much		7.0	
	L6 97% moderate	2.0 4.5	3%	good	much		5.0	
	L7 99% moderate	2.0 4.5	1%	good	much		5.0	
	L8 97% moderate	2.5 4.5	3%	good	much		6.0	
	L18 80% moderate	2.5 5.0	20%	moderate	much		5.5	
	L25 99% moderate	2.5 4.5	1%	good	much		5.0	
	L32 91% moderate	2.0 3.1	8%	fair	much		5.5	
	Average	94.4% moderate	2.4 4.3	5.4%	good		much	5.7
Lithofacies ‘E’	L1 97% moderate	4.0 5.4	3%	moderate	much		6.0	
	L3 99% moderate	3.0 4.5	1%	moderate	much		6.5	
	L11 91% moderate	3.5 5.0	9%	moderate	much		7.0	
	L15 99% moderate	3.0 5.0	1%	good	much		6.0	
	L16 96% moderate	3.0 4.7	4%	moderate	much		6.5	
	L20 88% moderate	3.0 5.5	12%	moderate	much		6.5	
	L21 99% moderate	3.0 5.5	1%	moderate	much		6.0	
	Average	95.2% moderate	3.2 5.0	4.4%	moderate		much	6.1
Lithofacies ‘F’	L4 96.4% good	3.5 7.5	4%	good	much		8.0	
	L14 98% good	2.5 6.0	1%	good	much		6.5	
	L22 99% moderate	1.5 4.0	1%	good	much		4.5	
	L23 99% moderate	2.5 5.5	1%	good	much		6.0	
	L35 99% moderate	1.5 5.6	1%	good	much		5.5	
	Average	98.2% moderate	2.3 5.6	1.6%	good		much	6.1

C.T = coarse truncation point F.T = fine truncation point

Discussion and Conclusion:
The study of grain-size characteristics of the different lithofacies of the Palaeogene Disang – Barail Transitional Sequence in parts of Kohima synclinorium suited best in understanding the lithologic intricacies and reconstructing...
the broader aspects of the depositional environment. A comparison with the pattern of cumulative curves for various types of environments, as suggested by Visher (1969), indicates that the rocks of the present area correspond approximately to turbidity current deposited sandstones. A long and rectilinear C-M pattern which is indicative of transportation of fine to coarse grain particles under saltation and suspension modes with very little or no rolling (Passega, 1957) characterizes sediments of the study area. In addition, the position of point in V1 – V2 diagram after Sahu (1983) clearly depict a turbidite environment for the deposition of DBTS. The sedimentary basin receiving detritus for the deposition of the Palaeogene sequence appears to have passed through different stages of tectonic regime leading to the development of deep sea channelized fan systems. The deposition seems to have progressed largely under the influence of turbidity currents causing superimposition of submarine fans that ultimately resulted into the heterogeneous Palaeogene Disang – Barail Transitional Sequence of the Naga Hills.

Acknowledgement:-
Authors are thankful to the authorities of the Nagaland University as well as Government of Nagaland for extending necessary facilities for carrying out the research work. In addition, thanks are also due to the Department of Geological Sciences, Gauhati University, Guwahati for granting necessary permission to use the Leitz Laborlux 12 polarizing microscope.

References:-
1. Chakrabarti, D.K. and Banerjee, R.M., 1988: Evolution of Kohima Synclinorium - A reappraisal. G.S.I. Rec.115pts. 3 & 4.
2. Connor, C.W. and Fern, J.C., 1966: Precision of linear and aerial measurements in estimating grain size. Jour. Sed. Petrol. V36, pp. 397-402.
3. Evans, P., 1964: The tectonic framework of Assam. Jour. Geol. Soc. Ind., V5, pp. 80-96.
4. Friedman, G.M., 1962: On sorting, sorting coefficient and the log normality of the grain-size distribution of sandstones. Jour. Geol. V70, pp. 737-753.
5. Friedman, G.M. and Sanders, J.E., 1978: Principles of sedimentology, New York, Wiley and sons Inc, Canada, p.792.
6. James, W.C. and Oaks, R.Q. Jr., 1977: Petrology of the Kinnikinic quartzite (Middle- Ordovician) East-Central Idaho. Jour. Sediment. Petrol. V4, pp. 1491-1511.
7. Krumbein, W.C., 1935: Thin section mechanical analysis of indurated sediments. Jour. Geol., V43, p. 482-496.
8. Lambiase, J.J., 1982: Turbulance and the generation of grain-size distribution. (Abst), 11th Int. Congr. Sed. Hamilton, pp.80-81.
9. McCaffrey, W. and Kneller, B., 2001: Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation, Am. Assoc. Petrol. Geol. Bull., V85, No.6, pp.1-18.
10. Middleton, G.V., 1976: Hydraulic interpretation of sand size distributions. Jour. Geol, V84. pp. 405-426.
11. Moss, A.J., 1972: Bed load sediments. Sedimentology, V18, pp. 159-219.
12. Mutti, E., and Ricci Lucchi, F., 1972: Le torbiditi dell’Appennino Settentrionale: Introdizuzione all’Analisi di Facies. Mem Soc.Geol.It. V11, pp.161-199.
13. Naik, G.C.1998: Tectonostratigraphic evolution and palaeogeographic reconstruction of Northeast India.Proc.Indo-German Workshop on Border Strandology magnostratigraphy pilot project,Calcutta .
14. Pandey, N and Srivastava, S.K., 1998: A preliminary report on Disang-Barail Transition, NW of Kohima, Nagaland. (Abst.) Workshop on Geodynamics and natural resources of NE India, Dibrugarh, p24.
15. Passega, R., 1957: Texture as a characteristic of clastic deposits. Am. Assso. Petrol. Geol. Bull., V41, pp. 1952-1984.
16. Passega, R, 1964: Grain size representation by CM patterns as geological tool. Jour. Sed. Pet.,V. 34,pp. 830-847.
17. Passega, R., 1977: Significance of CM diagrams of sediments deposited by suspension. Sedimentology. V24, pp. 723-733.
18. Passega, R., and Byramjee, R., 1969: Grain size image of clastic deposits. Sedimentology, V13, pp. 223-252.
19. Rao, R., 1983: Geology and hydrocarbon potential of a part of Assam-Arakan Basin and adjacent regions. Petroleum Asia Journal, pp. 127-158.
20. Reineck, H.E., and Singh, I.B., 1980: Depositional sedimentary environments, 549p. Springer -Verlag: New York.
21. Sagoe, K.O., and Visher, G.S., 1977: Population breaks in grain size distribution of sand- A theoretical model. Jour. Sed. Petrol., V47, p. 285-310.
22. Sahu, B.K., 1964: Depositional mechanisms from the size analysis of clastic sediments. Jour. Sed. Pet., V.34, pp. 73-83.
23. Sahu, B.K., 1983: Multigroup discrimination of depositional environments using size discrimination statistics. Ind.Jour. Earth Sci., V10, p. 20-29.
24. Selley, R.C., 1970: Ancient sedimentary environments. 237p. Chapman and Hall: London.
25. Selley, R.C., 1976: Subsurface environmental analysis of North Sea sediments. Bull. Am. Assoc. Petrol. Geol., V.60, pp.184-195.
26. Sevon, W.D., 1966: Distinction of New Zealand beach,dune and river sands by their grain size distribution characteristics, New Zealand, Jour.Geol. and Geophys.V.19, pp212-223.
27. Shea, J.H., 1974: Deficiencies of clastic particles of certain sizes. Jour. Sed. Petrol, V44, pp. 985-1003.
28. Smith, R., 1966: Grain size measurement in thin section and in grain mount. Jour. Sed. Petrol., V36, p. 841-843.
29. Stauffer, P.H.1966: Thin section analysis: A further note. Sedimentology, V7, p. 261-263.
30. Tanner, W. F.1964: Modification of sediments size distributions. Jour. Sed. Petrol., V. 34, pp. 156-164.
31. Textoris, D.A.1971: Grain-size measurement in thin section. In.: carver, R.E., (ed), Procedures in sedimentary petrology, p.95-108.Wiley; New York.
32. Tucker, R.W., and Vacher, H.L., 1980: Effectiveness of discriminating beach, dune and river sands by movements and cumulative percentages. Jour. Sed. Petrol., V.50, p. 165-172.
33. Visher, G.S., 1969: Grain size distributions and depositional processes. Jour.Sed.Pet.39, 1074-1106.
34. Visher, G.S., 1970: Fluvial processes as interpreted from ancient and recent fluvial deposits. Soc. Econ. Palaeont. Mineral., Spec. Pub. V12, p.116-132.
35. Walton, E.K., Stephens, W.E., and Shawa, M.S., 1980: Reading segmented grain-size curves. Geol. Mag., V117, p. 517-524.