Correction to “Novel 19F Activatable Probe for the Detection of Matrix Metalloprotease-2 Activity by MRI/MRS”

Xuyi Yue, Zhe Wang, Lei Zhu, Yu Wang, Chunqi Qian, Ying Ma, Dale O. Kiesewetter,* Gang Niu, and Xiaoyuan Chen*

*Mol. Pharmaceutics 2014, 11, 4208–4217. DOI: 10.1021/mp500443x

The authors regret the presentation of an incorrect structure in the abstract figure and in Scheme 1, which omitted the carbonyl of the amide linkage between the N-terminal glycine and the DOTA chelate. In addition, the peptide sequence for compound 10 (PEP-DOTA) was reported incorrectly in the Reagents and Instrumentation section, the Results section, and Scheme 1. The sequence, in standard format beginning with the amine terminus, is DOTA-GPLGVRGC or DOTA-Gly-Pro-Leu-Gly-Val-Arg-Gly-Cys. In addition, minor corrections were made to the footnote for Scheme 1 to match the experimental procedures. The corrected graphics are presented herein.

We apologize for these errors and any confusion they may have caused our readers. The conclusions of our manuscript are not impacted by these changes.
Scheme 1. Synthesis of Activatable Probe F9-PEG-Mal-PEP-DOTA-Gd Containing 9 Symmetric Fluorine Atoms"a

Red color in compound 10 represents the specific cleavage site. Reagents and conditions: (a) TsCl, Et₃N, DMAP, DCM, rt; (b) NaN₃, DMF, 60 °C; (c) TsCl, Et₃N, DCM; (d) tetraethylene glycol, NaH, THF, rt to reflux; (e) TsCl, Et₃N, THF; (f) (CF₃)₃CONa, DMF; (g) Ph₃P, THF, then H₂O, rt; (h) 3-(maleimido)propionic acid N-hydroxysuccinimide ester, DIPEA, DMF; (i) PBS/EtOH (v/v, 5/1), pH 7.4, rt; (j) GdCl₃·6H₂O, PBS, pH 4–5, 80 °C.

"Red color in compound 10 represents the specific cleavage site. Reagents and conditions: (a) TsCl, Et₃N, DMAP, DCM, rt; (b) NaN₃, DMF, 60 °C; (c) TsCl, Et₃N, DCM; (d) tetraethylene glycol, NaH, THF, rt to reflux; (e) TsCl, Et₃N, THF; (f) (CF₃)₃CONa, DMF; (g) Ph₃P, THF, then H₂O, rt; (h) 3-(maleimido)propionic acid N-hydroxysuccinimide ester, DIPEA, DMF; (i) PBS/EtOH (v/v, 5/1), pH 7.4, rt; (j) GdCl₃·6H₂O, PBS, pH 4–5, 80 °C.