Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Stratifying risk outcomes among adult COVID-19 inpatients with high flow oxygen: The R4 score

G.M. Aguirre-García, D. Ramonfar, G. Torre-Amione, M.T. Ramírez-Elizondo, R. Lara-Medrano, J.F. Moreno-Hoyos, E.S. Velázquez-Ávila, C.A. Diaz-Garza, V.M. Sanchez-Nava, F. Castilleja-Leal, G.M. Rhoades, M.F. Martinez-Reséndez

Instituto Tecnologico y de Estudios Superiores de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo Leon, Mexico

Harvard Medical School, Division of Postgraduate Medical Education, 25 Shattuck St, Boston, MA 02115, United States

Hospital San Jose-Tec Salud, Epidemiological Surveillance Unit, Monterrey, Nuevo Leon, Mexico

Received 19 August 2021; accepted 3 October 2021
Available online 12 October 2021

Abstract
Background: High flow oxygen therapy (HFO) is a widely used intervention for pulmonary complications. Amid the coronavirus infectious disease 2019 (COVID-19) pandemic, HFO became a popular alternative to conventional oxygen supplementation therapies. Risk stratification tools have been repurposed—and new ones developed—to estimate outcome risks among COVID-19 patients. This study aims to provide a simple risk stratification system to predict invasive mechanical ventilation (IMV) or death among COVID-19 inpatients on HFO.

Methods: Among 529 adult inpatients with COVID-19 pneumonia, we selected unadjusted clinical risk factors for developing the composite endpoint of IMV or death. The risk for the primary outcome by each category was estimated using a Cox proportional hazards model. Bootstrapping was used to validate the results.

Results: Age above 62, eGFR under 60 ml/min, room air SpO2 <89 % upon admission, history of hypertension, history of diabetes, and any comorbidity (cancer, cardiovascular disease, COPD/asthma, hypothyroidism, or autoimmune disease) were considered for the score. Each of the six criteria scored 1 point. The score was further simplified into 4 categories: 1) 0 criteria, 2) 1 criterion, 3) 2-3 criteria, and 4) ≥4 criteria. Taking the first category as the reference, risk estimates were 0.28, 2.57, and 8.71, respectively. Graphic representations were not provided in the abstract.

KEYWORDS
Coronavirus; Risk; Respiratory distress syndrome; Oxygen inhalation therapy

Abbreviations: HFO, High flow oxygen therapy; COVID-19, Coronavirus infectious disease 2019; IMV, invasive mechanical ventilation; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; COT, conventional oxygen therapy; NIV, non-invasive ventilation; RT-PCR, reverse transcriptase polymerase chain reaction; IV, intravenous; IL-6, interleukin-6; SOFA, Sequential Organ Failure Assessment; PSI, Pneumonia Severity Index; NEWS 2, National Early Warning Score 2; FiO2, fraction of inspired oxygen; LDH, lactate dehydrogenase; CRP, C-reactive protein; BNP, brain natriuretic peptide; H5, highly sensitive; IQR, interquartile range; HR, hazard ratio; ROC, receiver operating characteristic; AUC, area under the curve; CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease.

* Corresponding author at: Instituto Tecnologico y de Estudios Superiores de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo Leon, Mexico. Av. Ignacio Morones Prieto 3000, Sertoma, 64710 Monterrey, N.L.
E-mail address: michel.martinez@tecsalud.mx (M.F. Martínez-Reséndez).

1 These authors contributed equally.

https://doi.org/10.1016/j.pulmoe.2021.10.001
2531-0437/© 2021 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
for the primary endpoint were HR: 2.94 [1.67 – 5.26], 4.08 [2.63 – 7.05], and 6.63 [3.74 – 11.77], respectively. In ROC analysis, the AUC for the model was 0.72.

Conclusions: Our score uses simple criteria to estimate the risk for IMV or death among COVID-19 inpatients with HFO. Higher category reflects consistent increases in risk for the endpoint.

© 2021 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the 2019 novel coronavirus disease (COVID-19) has overwhelmed entire health systems across the world.1–3 An estimated 67% of patients with severe COVID-19 develop acute respiratory distress syndrome and almost 20% require ICU admission.4,5 In Mexico, at the beginning of the surge, 46% of patients categorized as critically ill did not receive invasive mechanical ventilation (IMV). Similar estimates were seen in the United States, both because of a lack of ICU beds availability and mechanical ventilators.6 High flow oxygen therapy (HFO) has become a safe and effective respiratory support alternative in patients with acute respiratory failure. However, its benefit in mortality is controversial.4,9 In the setting of the current pandemic, HFO has been recommended over the use of non-invasive ventilation NIV,10,11 despite limited evidence regarding its benefit in improving outcomes. Nonetheless, with a global shortage of mechanical ventilators and access to specialized care, HFO may be a useful alternative. Risk stratification for incident IMV or death among patients on HFO is unclear and may be population dependent. Traditional and novel scoring tools have been utilized to provide risk estimates among COVID-19 patients. While some of them have good prognostic value, others are non-specific or employ many variables. This study aims to provide new scoring criteria to estimate the risk for IMV or death on HFO among COVID-19 inpatients receiving HFO.

Methods

A retrospective analysis was conducted in a tertiary care hospital redesigned to treat COVID-19 patients (Hospital San José– TecSalud) in Monterrey, Mexico from April to October 2020. Demographics, clinical and laboratory information was collected in a deidentified database. Approval from the TecSalud Ethics Committee was obtained (P000353-COVID-19-TecSalud-CS001).

Study population

We included hospitalized patients over 18 years of age, with positive Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for SARS-CoV-2 and oxygen requirements that demanded HFO. Criteria for initiation of HFO were oxygen saturation lower than 92% with conventional oxygen therapy (COT) (reservoir mask at 15 L/min), and tachypnea (> 30 breaths per minute) and/or self-reported rest dyspnea despite COT. All patients received a protocolized treatment which consisted of dexamethasone (6 mg IV, QD) plus baricitinib (4mg PO, QD) for 10 days and those with interleukin-6 (IL-6) higher than 80 pg/mL at third day of hospital stay and C-reactive protein higher than 7.5 mg/dL without respiratory improvement received tocilizumab (8mg/kg/dose IV, BID).

Variables and score implementation

We analyzed demographic characteristics that included: age, sex, body mass index (BMI), estimated glomerular filtration rate (eGFR), smoking status and comorbidities (type 2 diabetes, hypertension, chronic kidney disease and cardiac disease, COPD/Asthma, cancer, cardiovascular disease (CVD), and autoimmune conditions). eGFR was calculated using serum creatinine, with the CKD-EPI formula. All comorbidities were recorded by self-reported or by a proxy if patients were not able to provide their own history. Clinical characteristics included: number of days with symptoms prior to admission, oxygen saturation at room air upon admission, SAFI (saturation/fraction of inspired oxygen index), the CALL score, a COVID-19-specific score to predict disease progression that includes comorbidity, age, lymphocytes and lactate dehydrogenase (LDH),12 severity scores such as Sequential Organ Failure Assessment (SOFA),13 Pneumonia Severity Index (PSI),14 CURB-65,15 National Early Warning Score 2 (NEWS 2)16,17; days with HFO, length of hospital stay in days, ICU admission and length of stay in ICU, number of days since admission until HFO initiation. Respiratory parameters such as oxygen saturation, respiratory rate per minute, fraction of inspired oxygen (FiO2) and the Respiratory rate and Oxygenation (ROX)18 index were recorded upon admission, at the time of HFO, and 24 hours post HFO initiation. Superimposed bacterial infections were also documented at any time during hospitalization.

Admission laboratory tests that were analyzed included: complete blood count, LDH, C-reactive protein (CRP), procalcitonin, IL-6, D-dimer, brain natriuretic peptide (BNP), ferritin, and highly sensitive (HS) troponin.

Statistical analysis

Stata IC-16 was used to conduct statistical analyses. For categorical variables, frequencies and percentages are shown; for continuous variables, according to normal or non-normal distribution, mean and standard deviation or median and interquartile range (IQR), respectively, are shown. Chi-squared and t-test or U Mann-Whitney were used for comparisons between both groups. No imputation methods were utilized for data missingness. An alpha of 5% was set as threshold for statistical significance. The primary endpoint was IMV, or death while on HFO.

Demographic and clinical covariates associated with the endpoint were considered to construct the score. Cox proportional hazard models were employed to estimate the risk for the primary outcome by each category of the score. The
proportional hazards assumption was tested. Kaplan-Meier (KM) estimates were used to display cumulative incidence of the primary endpoint, where time zero is the day the patient was placed on HFO. Results from the models are expressed as hazard ratios (HR) and 95% confidence intervals (CI). Receiver operating characteristic (ROC) curves were utilized to assess the performance of our score compared to other utilized scores. Area under the curve (AUC) for different scores were compared using DeLong’s test. A classic 1,000-replication bootstrapping method was used to validate the score. Normal-based CI are reported in our HR estimate.

Sensitivity analysis using IMV as one endpoint and using all-cause mortality as another endpoint was performed. A Cox proportional hazards model was employed to assess the average increment in risk for each endpoint by each increasing category in the R4 score.

Results

A total of 1465 patients were hospitalized during the study period; 543 patients were started on HFO during their hospital stay. Fourteen had been intubated prior to the initiation of HFO and were excluded from the analysis (Supplement Fig. 1). The analysis includes 529 patients. Median follow-up time was 8 (3-11) days. The mean age was 55.8 ± 15 years, 25% were female. The median number of days of COVID-19 symptoms before admission was 7 (6-10). The median length of stay was 13.0 (9 – 22) days and a total of 286 (54%) patients required intensive care. IMV was required in 200 (38%) of cases, and 13 (2.4%) died while on HFO. Causes for mortality among those on HFO were acute myocardial infarction (8/13), pancreatitis secondary to metastatic melanoma (1/13), respiratory insufficiency secondary to gastric carcinoma (DNR) (1/13), septic shock (1/13) and cerebrovascular complications (2/13). Nonetheless, no patients required cardiopulmonary resuscitation as a result of scar-

Discussion

In our cohort, of 529 patients with COVID-19 pneumonia who required HFO, a high proportion (60%) avoided IMV and death. HFO could be an IMV-sparing therapy, improving survival, reducing hospital length of stay and lowering stress in health-care personnel. We leveraged the high number of participants on HFO to construct a prognostic score. The reason some patients progress to severe complications is poorly understood, although, likely multifactorial. Several authors have successfully designed tools to predict clinical outcomes is challenging. While several authors have successfully designed tools to predict mortality, some may have too many variables to incorporate which may hamper the ability of clinicians to complete these scores in some settings. The R4 score is a simple and easy to use tool that integrates clinical data to predict adverse outcomes among adult inpatients on HFO. In this study, the purpose of creating a scoring method has merely prognostic purposes, and its utility for guiding treatment remains unclear. Further studies evaluating its use as a decision making or triage tool must be conducted before attempting to give it such purpose.

The R4 score is composed of six variables, all of which were predictive of the endpoint in univariate analysis. When putting together the score, very few participants met 5 or 6 criteria (n= 17, and 2, respectively), these low frequencies limited the power to predict the endpoint. For this reason, we opted for consolidating into a single group any patient meeting more than 4 criteria. Moreover, participants meeting 2 or 3 criteria had a very similar risk (HR= 3.84 and 4.39, respectively) for meeting the primary endpoint. Additionally, the CI around those meeting 2 and 3 criteria completely
overlapped, so creating a single category for patients meeting 2 or 3 criteria simplified the score.

Comparison with other standardized scores

Traditional scoring tools have been repurposed for use among COVID-19 inpatients. In a cohort of 830 participants with COVID-19 pneumonia, the performance of qSOFA, NEWS2 and CURB-65 was evaluated. All tools lacked prognostic utility and underestimated the mortality rate in their population. The ROX score is a tool that predicts IMV among patients with HFO and has been validated in the setting of COVID-19. Moreover, a recent study demonstrated the value of the ROX in COVID-19 patients, and reiterates it’s

Variables	Overall (n=529)	No (n=316)	Yes (n=213)	p-value
Age (years)	55.8 ± 15.1	52.7 ± 14.5	60.4 ± 14.8	<0.001
Sex (female)	393 (74.3%)	70 (22.2%)	66 (31.0%)	0.02
LOS (days)	17.2 ± 12.8	12.6 ± 7.3	24.7 ± 16.0	<0.001
Days of symptoms	8.6 ± 4.8	8.9 ± 4.2	8.3 ± 5.4	0.16
Before admission				
BMI (kg/m²)	31.4 ± 5.5	31.5 ± 5.6	31.2 ± 5.3	0.54
Hypertension	211 (39.9%)	101 (32.0%)	110 (51.6%)	<0.001
Diabetes	153 (28.9%)	77 (24.4%)	76 (35.7%)	0.01
Current smoker	46 (8.7%)	28 (8.9%)	18 (8.5%)	0.80
CVD	32 (6.0%)	13 (4.1%)	19 (8.9%)	0.02
Nephropathy	20 (3.8%)	7 (2.2%)	13 (6.1%)	0.02
Hypothyroidism	31 (5.9%)	12 (3.8%)	19 (8.9%)	0.01
COPD or Asthma	9 (1.7%)	4 (1.3%)	5 (2.3%)	0.35
Active cancer	17 (3.2%)	7 (2.2%)	10 (4.7%)	0.11
Autoimmune disease	6 (1.1%)	2 (0.6%)	4 (1.9%)	0.18
Pregnancy	4 (0.8%)	1 (0.3%)	3 (1.4%)	0.16
SOFA score at admission (%)	82.8 ± 11.9	84.7 ± 9.9	79.9 ± 13.9	<0.001
SOFA score at 24 hours	5.9 ± 2.2	6.4 ± 2.3	5.1 ± 1.9	<0.001
PSI	65.4 ± 27.5	58.4 ± 22.4	76.2 ± 31.1	<0.001
CURB-65	0.8 ± 0.9	0.6 ± 0.8	1.2 ± 1.0	<0.001
CALL	9.8 ± 2.2	9.3 ± 2.1	10.5 ± 2.2	<0.001
eGFR (mL/min)	0.9 ± 1.4	0.7 ± 1.1	1.3 ± 1.6	<0.001
SpO2 before HFOT (%)	84.4 ± 26.2	89.9 ± 9.6	86.2 ± 13.2	<0.001
Days on HFOT	5.7 ± 4.7	6.1 ± 4.0	5.1 ± 5.5	0.021
Days on IMV	14.1 ± 13.3	14.1 ± 13.3		
Labs on admission				
Hemoglobin (mg/dL)	14.1 ± 1.9	14.2 ± 1.6	13.8 ± 2.2	0.01
Leucocytes (x 10³ /µL)	10.4 ± 5.3	10.4 ± 4.8	10.4 ± 6.0	1
Lymphocytes (x 10³ /µL)	1.0 ± 1.2	0.9 ± 1.0	1.0 ± 1.5	0.32
Platelets (x 10³ /µL)	241.6 ± 99.1	255.0 ± 97.3	221.8 ± 98.5	0.001
Potassium (mEq/L)	5.5 ± 21.8	4.1 ± 0.5	7.5 ± 34.3	0.08
IL-6 (pg/mL)	132.7 ± 302.5	91.8 ± 113.5	190.7 ± 444.6	0.001
Ferritin (µg/L)	2135.1 ± 2649.0	2130.6 ± 2664.5	2141.8 ± 2632.8	0.96
D-dimer (ng/mL)	1485.3 ± 5456.0	1344.8 ± 5647.5	1693.8 ± 5166.0	0.49
HS troponin (ng/mL)	34.5 ± 125.4	23.7 ± 90.9	50.1 ± 161.9	0.03
BNP (pg/mL)	87.1 ± 297.1	82.6 ± 359.6	93.3 ± 175.5	0.72
CRP (mg/dL)	18.0 ± 16.6	17.9 ± 19.2	18.1 ± 11.5	0.87
Procalcitonin (ng/mL)	0.6 ± 1.5	0.5 ± 1.4	0.7 ± 1.6	0.24
LDH (U/L)	508.0 ± 681.1	449.9 ± 317.0	592.6 ± 991.8	0.02
Admission to ICU	286 (54.1%)	88 (27.8%)	198 (93.0%)	<0.001
Days on ICU	8.3 ± 12.8	1.5 ± 3.0	18.3 ± 14.9	<0.001
Bacterial infection during hospitalization	161 (30.4%)	15 (4.7%)	146 (68.5%)	<0.001

Table 1 Overall baseline characteristics and comparative between both outcome groups. LOS = Length of stay, BMI = Body mass index, CVD = Cardiovascular disease, eGFR = estimated glomerular filtration rate, IMV = invasive mechanical ventilation, IL-6 = Interleukin 6, HS = highly sensitive, BNP = brain natriuretic peptide, CRP = C-reactive protein.
role in decision-making for clinicians to proceed to IMV. This study also suggests that repurposing the ROX score for COVID-19 patients deemed a reevaluation of cutoff values, and found that ROX at 12 hours best predicted IMV when using a ROX cutoff of 5.99. In agreement with this study, our data suggests using a higher cutoff value correctly classifies more patients to undergo IMV. Another cohort showed improved performance of the NEWS2 score, with an AUC of 0.82 for predicting mortality. The SOFA score has also been found to perform similarly to the PSI, ROX and CURB-65 among our study cohort, while performing better than the SOFA, NEWS2, and CALL scores to predict our primary endpoint. Despite the latter being designed for COVID-19 patients and claiming an AUC of over 0.9 the results did not hold in our cohort, probably in part because we used it for a different endpoint, and we did not have data on HIV status to incorporate into the score. These positive results suggest the R4 score may be used in lieu of, or as a complement of other traditional and novel scores. However, it is important to note this score was evaluated only in the setting of a developmental cohort and reevaluated among our population using bootstrapping, which limits our ability to compare it with other scoring methods.

Our study is limited in that it is a retrospective analysis, thus a casual pathway cannot be determined. Initiation of IMV could have been altered by clinician judgement, as well as ventilator shortage, and ICU availability. Our study does not consider therapies that participants might have received before admission, which may introduce selection bias into our study. Our score was only assessed in a single cohort; it is unclear how it will perform in other cohorts. Comorbidities were assessed by self- or proxy report, which may raise concern for recall bias, exaggerating the effect size. Moreover, with the emergence of SARS-CoV-2 variants, and the implementation of vaccine programs, it is unclear whether the score will perform similarly in populations infected with other variants, and whether vaccines might influence the effect estimates. However, this limitation is present in any scoring tool, until further studies are conducted to evaluate the impact of variants and vaccines on risk tools. The R4 score was not significantly different to some scoring methods in predicting the primary endpoint, although, this may also be seen as a strength, as it may be used in lieu of other scores if information to impute in other tools is insufficient in the clinical setting. Other strengths in our cohort include a large sample size with relatively high event rates, power to compare and find differences within each R4 score categories to predict our primary endpoint, giving it additional analytical strength.

Inpatients with COVID-19 pneumonia are complex and their outcomes are hard to predict as much about COVID-19 disease like the CALL score claim high sensitivity and specificity for disease progression. The R4 score proved to perform similarly to PSI, ROX and CURB-65 among our study cohort, while performing better than the SOFA, NEWS2, and CALL scores to predict our primary endpoint. The R4 score proved to perform similarly to PSI, ROX and CURB-65 among our study cohort, while performing better than the SOFA, NEWS2, and CALL scores to predict our primary endpoint.

Table 2 Components for the R4 score. Each criterion met sums 1 point.

R4 Score Components	Components for the R4 score. Each criterion met sums 1 point.
Age ≥ 63 years	CVD: Cancer, COPD: COPD, Hypothyroidism: Hypothyroidism
eGFR ≤ 60 ml/min	Autoimmune disease: Autoimmune disease
ROX ≤ 5.2 at 24h of HFO	History of Hypertension: Hypertension
History of Diabetes	History of Diabetes: Diabetes
History of Hypertension	History of Hypertension: Hypertension
Any of the following	History of Hypertension: Hypertension
comorbidities:	History of Diabetes: Diabetes

Table 3 Overall sample size, number of events, and hazard ratios for the primary endpoint by R4 category.

R4 Category (# of criteria)	n=	Events	HR	p-value	95 % CI	Bootstrap 95% CI
1 (0)	58	8 (14%)	-	-	-	-
2 (1)	173	53 (31%)	2.94	< 0.001	1.67–5.19	1.65–5.26
3 (2–3)	215	96 (45%)	4.08	< 0.001	2.41–6.93	2.36–7.05
4 (≥4)	83	56 (67%)	6.63	< 0.001	3.76–11.70	3.74–11.77
patients. The R4 score has proven to be a potentially useful tool that may be complementary to traditional tools to predict IMV or death among COVID-19 patients. It is imperative that this score be validated among another cohort to further understand the implications and utility of this tool. Therefore, we encourage other working groups to validate this tool among other cohorts to better understand the best ways to predict outcomes among COVID-19 patients with HFO.

Author contributions

(1) Conception and design of the study, or acquisition of data, or analysis and interpretation of data: GMA, DR, MTR, RL, JFM, ESV, CAD, AT, VMS, FC, GR MFM.
(2) Drafting the article or revising it critically for important intellectual content: GMA, DR, GTA, MFM.
(3) Final approval of the version to be submitted: GMA, DR, GTA, MFM.

Conflicts of interest

None.

Funding

None.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.j.pulmoe.2021.10.001.

References

1. Gebru AA, Birhanu T, Wendimu E, et al. Global burden of COVID-19: situational analysis and review. Hum Antibodies. 2021;29(2):139–48.
2. Miller IF, Becker AD, Grenfell BT, Metcalf CJE. Disease and healthcare burden of COVID-19 in the United States. Nat Med. 2020;26(8):1212–7.
3. Olivas-Martínez A, Cárdenas-Fragoso JL, Jiménez JY, et al. In-hospital mortality from severe COVID-19 in a tertiary care center in Mexico City: causes of death, risk factors and the impact of hospital saturation. PLOS ONE. 2021;16(2):e0245772.
4. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323(20):2052.
5. Rosenthal N, Cao Z, Gundrum J, Sianis J, Safo S. Risk factors associated with in-Hospital mortality in a US national sample of patients with COVID-19. JAMA Netw Open. 2020;3(12):e2029058.
6. Westafer LM, Soares WE, Salvador D, Medarametla V, Schoenfeld EM. No evidence of increasing COVID-19 in health care workers after implementation of high flow nasal cannula: a safety evaluation. Am J Emerg Med. 2021;39:158–61.
7. Frat J-P, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxic respiratory failure. N Engl J Med. 2015;372(23):2185–96.
8. Lee CC, Mankodi D, Shahary S, et al. High flow nasal cannula versus conventional oxygen therapy and non-invasive ventilation in adults with acute hypoxic respiratory failure: a systematic review. Respir Med. 2016;121:100–8.
9. Yasuda H, Okano H, Mayumi T, Nakane M, Shime N. Association of noninvasive respiratory support with mortality and intubation rates in acute respiratory failure: a systematic review and network meta-analysis. J Intensive Care. 2021;9(1):32.
10. Alhazzawi W, Maller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). 2020;48(6):e440–69. https://doi.org/10.1097/CCM.0000000000004363.
11. Agarwal A, Basmajji J, Muttalib F, et al. High-flow nasal cannula for acute hypoxic respiratory failure in patients with COVID-19: systematic reviews of effectiveness and its risks of aerosolization, dispersion, and infection transmission. Can J Anesth Can Anesth. 2020;67(9):1217–48.
12. Ji D, Zhang D, Xu J, et al. Prediction for progression risk in patients with COVID-19 pneumonia: the CALL score. Clin Infect Dis. 2020;71(6):1393–9.
13. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22(7):707–10.
14. Fine MJ, Auble TE, Yealy DM, et al. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med. 1999;336(4):243–50.
15. Linn WS. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax. 2003;58(5):377–82.
16. Myrstad M, Ihle-Hansen H, Tveita AA, et al. National Early Warning Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19 – a prospective cohort study. Scand J Trauma Resusc Emerg Med. 2020;28(1):66.
17. Smith GB, Redfern OC, Pimentel MA, et al. The National Early Warning Score 2 (NEWS2). Clin Med. 2019;19(3). 260–269.
18. Roca O, Caralt B, Messika J, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199(11):1368–76.
19. Teng X, Shen Y, Han M, Yang G, Zha L, Shi J. The value of high-flow nasal cannula oxygen therapy in treating novel coronavirus pneumonia. Eur J Clin Invest. 2021;51(3):e13435. https://onlinelibrary.wiley.com/doi/10.1111/eci.13435.
20. de Souza FSH, Hojo-Souza NS, Batista BD de O, da Silva CM, Guimondi DL. On the analysis of mortality risk factors for hospitalized COVID-19 patients: a data-driven study using the major Brazilian database. PLOS ONE. 2021;16(3):e0248580. https://doi.org/10.1371/journal.pone.0248580.
21. Dolan ME, Hill DP, Mukherjee G, McAndrews MS, Chesler EJ, Blake JA. Investigation of COVID-19 comorbidities reveals genes and pathways coincident with the SARS-Cov-2 viral disease. Sci Rep. 2020;10(1):20848. https://doi.org/10.1038/s41598-020-77632-8.
22. Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther. 2021;6(1):255.
23. Altschul DJ, Unda SR, Benton J, et al. A novel severity score to predict inpatient mortality in COVID-19 patients. Sci Rep. 2020;10(1):16726.
24. Gupta RK, Harrison EM, Ho A, et al. Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. Lancet Respir Med. 2021;9(4):349–59.
25. Bradley P, Frost F, Thammaratnam K, Wootton DG. Utility of established prognostic scores in COVID-19 hospital admissions: multicentre prospective evaluation of CURB-65, NEWS2 and qSOFA. BMJ Open Respir Res. 2020;7(1):e000729.
26. Chandel A, Patolia S, Brown AW, et al. High-flow nasal cannula therapy in COVID-19: using the ROX index to predict success. Respir Care. 2021;66(6):909–19.

27. Vega ML, Dongilli R, Olaizola G, et al. COVID-19 Pneumonia and ROX index: time to set a new threshold for patients admitted outside the ICU. Pulmonology. 2021. S2531043721000921. https://doi.org/10.1016/j.pulmoe.2021.04.003 In press.

28. Liu S, Yao N, Qiu Y, He C. Predictive performance of SOFA and qSOFA for in-hospital mortality in severe novel coronavirus disease. Am J Emerg Med. 2020;38(10):2074–80.

29. Raschke RA, Agarwal S, Rangan P, Heise CW, Curry SC. Discriminant accuracy of the SOFA score for determining the probable mortality of patients with COVID-19 pneumonia requiring mechanical ventilation. JAMA. 2021;325(14):1469–70. https://doi.org/10.1001/jama.2021.1545.