GRAPH DEEP LEARNING REVEALS MULTIPLE SIGNAL PATHWAYS ACTIVATED IN ANTI-CITRULLINATED PROTEIN ANTIBODIES STIMULATED SYNOVIOCYTES

A PREPRINT

Meng Sun1,2, Yang Chen2, Petter Brodin2, and Anca Catrina1

1Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Sweden
2Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Sweden

March 15, 2022

ABSTRACT

We present a study of anti-citrullinated protein antibodies stimulated fibroblast-like synoviocytes from patients with rheumatoid arthritis, which is powered by a novel graph deep learning framework applied to single-cell mRNA expression data. This new analytical framework discovered dominant pathways that suggest IL1-IL1R mediated signaling, a novel signal transduction response to ACPA-stimulation, and confirmed our previous finding of PI3K/AKT activation in response of ACPA-stimulation as well. The study demonstrated the capability of graph deep learning framework on signaling pathway analysis. The findings suggest that ACPAs contribute to distinct pathogenic events through activating multiple signaling pathways.

Keywords Signaling pathway analysis · Graph deep learning · ACPAs · Fibroblast-like synoviocyte · IL1R · Rheumatoid arthritis

1 Introduction

Anti-citrullinated protein antibodies (ACPAs) are presence in a majority of patients with rheumatoid arthritis (RA) and are specific for this disease. Klareskog et al. [2009] ACPAs consist of a group of antibodies with different specificities towards citrullinated antigens and have been suggested to contribute to joint pain and bone loss already before onset of joint inflammation in RA. Bos et al. [2010], Kleyer et al. [2014], Krishnamurthy et al. [2019], Rantapää-Dahlqvist et al. [2003] We and others have shown that ACPAs bind to the surface of developing osteoclasts (OC) and suggested that reactivity to citrullinated targets increase OC differentiation and bone loss. Krishnamurthy et al. [2016], Harre et al. [2012] Furthermore, in the synovial tissue, fibroblast-like synoviocytes (FLS) contribute to an inflammatory stroma that promote and amplify tissue-specific immune activation through the release of various cytokines and are able to grow into the cartilage surface, create an erosive interface by producing tissue remodeling proteases. Müller-Ladner et al. [1996], Lefèvre et al. [2009], Müller-Ladner et al. [1996] We have also shown that ACPAs binds to citrullinated targets on FLS and promote migration capacity via activating Akt phosphorylation at the Thr308 residue linked to PI3K activation. Sun et al. [2019] However, the potential mechanisms of ACPAs remains largely unknown, a complex scenario requests deep investigation in signaling transduction.

Challenge of signaling transduction investigation comes from complexity of the networks, which consists of sequences of proteins and molecules that transmit stimulation from outside of cell to inside target molecules. Existing methods rely on literature analysis and experimental confirmation, which is, however, highly time consuming and dependent on prior knowledge. In the present report, we design a framework to efficiently investigate multiple signaling pathways simultaneously based on Graph Neural Network (GNN) Gori et al. [2005], Scarselli et al. [2009], GNN or Graph Deep Learning is a class of neural network that was introduced to deal with data best represented by graph data structures, for
Graph deep learning reveals signal pathway activation

A P

example biological networks. Inspired by this method, we design a graph data structure for single cell RNA sequence (scRNA-seq) profiled RA patients tissue derived FLS, and employ GNN based on the single cell data to discovery pathways activation between ACPAs and non-ACPA control IgGs (IgG) stimulated groups.

2 Material

2.1 FLS isolation

FLS were isolated from synovial tissues through enzymatic digestion using 4mg/ml Collagenase A and 0.1mg/ml DNase I (Roche, Mannheim, Germany). The dissociated cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) complemented with 10% heat-inactivated fetal bovine serum (FBS), 100U/mL penicillin, 0.1mg/mL streptomycin and 2mM L-glutamine (all from Sigma-Aldrich, St. Louis, MO, USA). Non-adherent cells were removed after overnight incubation and new medium was added.

2.2 Sample preparation

For 10x Genomics, FLS from 2 donors were prepared. Cells were cultured in T175 flask up to 80% confluence. Cell were starved by culture medium without FBS for 2 hours, followed by incubated with 2% FBS culture medium contains 1µg/ml of either ACPAs or IgG for 6 hours. Single cell suspensions were collected with Trypsin-EDTA (Sigma-Aldrich) and passed through a 70µm cell strainer.

For immunoblotting, FLS from 3 donors were prepared. Cells were culture in 6 well plates up to 80% confluence. Cells were starved by culture medium without FBS for 2 hours, followed by stimulation using 10µg/ml of either ACPAs or IgG in 2% FBS culture medium up to 6 hours. Cells were collected by scraping at 2, 4 and 6 hours with leammli buffer, respectively.

2.3 RNA sequencing

Single-cell ATAC expression libraries for FLS were prepared by strictly following the protocols of the Chromium Single-Cell ATAC Library kit (10x Genomics). All resulting libraries were sequenced on the Illumina Xten PE-150 platform (ANOROAD and Novogene, Beijing, China). Raw 10x Genomics sequencing data were preprocessed with normalization, log transformation and standardization by using python libraries SCANPY [Wolf et al. 2018] and Scikit-learn [Pedregosa et al. 2011].

2.4 Immunoblotting

Proteins were collected from FLS using laemmli buffer with dithiothreitol. Cell lysates were separated by 4-20% sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE,Mini-PROTEAN TGX Precast Gels, bio-rad, Sweden) at 180V for 45 minutes. Protein were transferred onto nitrocellulose membranes (bio-rad, Sweden) at 25V for 30 minutes. The membranes were blocked with 5% non-fat milk (diluted with TBS containing 0.1% Tween-20) for 30 minutes at room temperature and incubated with primary antibodies overnight at 4°C.

The following antibodies were used: mouse anti-IL1R (1:1000, Abcam), rabbit anti-FAK (1:1000, Cell Signaling Technology), rabbit anti-Fizzled5 (1:1000, Cell Signaling Technology), rabbit anti-Wnt5a/b (1:1000, Cell Signaling Technology) and rabbit anti-GAPDH HRP (1:1000, Cell Signaling Technology). After washing, membranes were incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit or anti-mouse IgG secondary antibody (1:5000, GE Healthy) for one hour at room temperature. Proteins were detected using SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher, USA). Images were captured by ChemiDoc MP Imaging System (bio-rad, Sweden)

3 Method

We propose the method for discovering signaling pathway activation by using the framework illustrated in Figure[1]. It models a deep neural network to classify the sample data profiled by single cell sequencing against their stimulation groups. The model is trained by using a graph representation of the data structured based on known signaling pathways. Moreover, the model contains a layer applied with the attention mechanism [Veličković et al. 2018] that learns the weights of how pathways contribute to classification. Afterwards, a higher weighted pathway indicates the higher chance of been activated, which can be used for further experimental confirmation.
Graph deep learning reveals signal pathway activation

The framework optimizes a GNN model to classify single cell data against ACPAs and IgG stimulated groups. Single cell data is profiled by RNA sequence from RA patients tissue derived FLS, which is represented to a graph data structure based on known pathways. Graph convolution layers are stacked to learn a deep representation of the input graph with respect to the classification. A graph attention layer is applied to learn the edges weights that indicate pathway activation.

In detail, each group has samples that are profiled by single cell sequencing. Each cell data can be presented as a graph that consists of nodes of genes and edges of signaling pathways. Denote a graph $G = \{V, E\}$, where $V = \{v_i\}_{i=1:N^v}$ is the set of nodes, N^v is the total number of nodes and $v_i \in \mathbb{R}$ is the gene expression. $E = \{e_i\}_{i=1:N^e}$ is the set of edges corresponding to the pathways. let $Y = \{y_i\}_{i=1:N^y}$ labels the activation groups. The optimization aim in the framework is to learn a model $\Phi(G)$ that classifies G against Y.

The main component in the model is Graph Convolution Layer (GCN). Stacking that layers can learn a deep representation of the input graph with respect to the classification. Let $G^{(l)}$ be the input graph, and $G^{(l+1)}$ be the representation after layer l. Equation 1 describes the computation applied in the layer l.

$$v^{(l+1)}_i = \sigma(b^{(l)}) + \sum_{j \in \mathcal{N}(i)} \frac{1}{c_{j,i}} v^{(l)}_j W^{(l)}$$

$\mathcal{N}(i)$ is the set of neighbors of node i. $W^{(l)} \in \mathbb{R}^{d^{(l)} \times d^{(l+1)}}$ is the learnable weights of node attributes where $d^{(l)}$ are the user specified numbers. $c_{j,i}$ is the product of the square root of node degrees (i.e., $c_{j,i} = \sqrt{|\mathcal{N}(j)|} \sqrt{|\mathcal{N}(i)|}$), and σ is an activation function.

Graph Attention Layer (GAT) is a variant of GCN combined with the attention mechanism that checks the interactions between each node and its neighbors to evaluate which it should pay more attention to. This makes the model learn an attention score for each edge, which describes how they contribute differently to the results. The computation of GAT is described in Equation 2

$$v^{(l+1)}_i = \sum_{j \in \mathcal{N}(i)} a^{(l)}_{i,j} v^{(l)}_j W^{(l)}$$

$$a^{(l)}_{i,j} = \text{softmax}_i(\text{LeakyReLU}(\vec{a}^T [W^{(l)} v^{(l)}_i || W^{(l)} v^{(l)}_j]))$$

$a_{i,j}$ is the attention score associated with the edge between nodes i and j. It is computed by first concatenating the weighed $v_i, v_j, [W^{(l)} v^{(l)}_i || W^{(l)} v^{(l)}_j]$, then takes a dot product of it and a learnable parameter vector \vec{a} and activated by a LeakyReLU. Softmax is applied in the end to normalize the attention scores.
We apply one GAT directly on the input graph $G^{(0)}$, followed by four GCN. $G^{(k)}$ output from the last GCN are aggregated in a pooling layer that squeeze $V^{(k)}$ to a vector $\in \mathbb{R}^{N_k}$, which is processed by a full-connected layer that feeds the output to a Sigmoid function to produce a distribution over the 2 class labels.

4 Result

18 KEGG networks are selected as shown in Table 1, which includes 70 nodes and 139 edges. Their information is obtained from KEGG database and loaded by using Bio.KEGG.REST module of biopython [Cock et al., 2009], which is then represented to graph data structure by using DGL, the Deep Graph Library [Wang et al., 2019].

The framework (Figure 1) is implemented in PyTorch [Paszke et al., 2019] and DGL, which contains one GAT applied directly on the input graph; four GCN stacked sequentially; followed by an average pooling and a full-connected layer. The dimensional parameters $d^{(l)}$ of $W^{(l)}$ set to 1 and 50 for GAT and GCNs, respectively. ReLU is chosen as activation function σ for all GCN. And we add a Dropout layer with 0.1 drop rate after every GCN to prevent overfitting.

The dataset is divided to have 80% for training the model and rest 20% for the validation. The model is trained by using adaptive moment estimation (Adam) optimizer with a batch size of 200, and binary cross entropy is applied as the loss function. One training runs for 200 cycles through the training set, which takes 15 minutes on an NVIDIA Quadro RTX 4000 6GB GPU.

Training process was ran 10 times and their average performance is summarized. The classifier achieves 85% accuracy on both training and validation datasets. Based on the average attention score we arbitrarily selected edges that are weighted over 0.6 in Table 2 for further confirmation. In detail, FLS were stimulated with either ACPAs or IgG and cell lysate were collected for immunoblotting. Based on the edge importance, we investigate the top IL1-IL1R and bottom WNT-Frizzled signaling pathways, which are weighted higher than 0.6. In parallel, we also checked ITGA/B-PTK2 (FAK) pathway, which is weighted lower than 0.6.

In immunoblotting of kinetic study, protein expression of IL1R was up-regulated with presence of ACPAs in 2 hours and back to normal expression in 4 and 6 hours, whereas, regardless of time, IL1R expression remains no change with presence of IgG. (Figure 1A). The interleukin 1 receptor associated kinase 4 (IRAK4), which is in downstream event of IL1-IL1R signaling pathway, was also high expressed in 2 hours response to ACPAs stimulation (Figure 2A). In contrast, the expression of WNT5a/b, Frizzled5 and FAK were not affected with presence either ACPAs or IgG (Figure 2B).
Graph deep learning reveals signal pathway activation

Table 2: Edges Importance

Source	Destination	Weight	Network
IL1	IL1R	0.746	N00188
CDKN1B	CCNA2	0.707	N00091
EGF	EGFR	0.696	N00333
MAPK8	FOS	0.673	N00188
ITGA1	SRC	0.663	N00393
PIK3CA	AKT	0.656	N00033
RB1	E2F1	0.641	N00066
MYC	ZBTB17	0.633	N00090
PTTG1	ESPL1	0.629	N00493
PXN	DOCK1	0.625	N01068
MAP2K3	MAPK14	0.621	N00186
SMAD2	SMAD4	0.613	N00063
WNT	FZD	0.601	N00056

Figure 2: Activation of IL1-IL1R signaling pathway in ACPAs stimulated FLS.

Starved FLS were exposed to 10 µg/ml polyclonal ACPA IgG (ACPAs) or non-ACPA control IgG (IgG). Immunoblotting analysis of IL1R and IRAK4 are shown, whereas GAPDH protein was detected as control (A). The expression of protein FAK, Frizzled5 and WNT5a/b are analysed by immunoblotting, whereas GAPDH protein was detected as control (B). The presented data are representative for three independent experiments for all tested proteins.

5 Discussion

Investigation of signaling pathway in cells usually begin with dissecting observations, such as understanding morphologic changes, followed by locating potential signal tranduction candidates, which requests large amounts of literature search. Current experimental procedures take snapshots of signal transduction, such as phosphorylation, without the benefit of capture the whole stage and results are largely vary from expertness. In contrast, our study provides a method to investigate multiple signaling pathways simultaneously. The graph deep learning model searched in 18 networks with 139 signal transduction candidates, from which the found pathway weights effectively facilitate experimental confirmation.

The highlights of this study is both new biologic findings, and the successful application of the new graph deep learning approach to assessing single-cell signaling from sc-mRNA sequencing data. This approach holds promise beyond RA and ACPA-stimulated cells and can be generalized to other cell signaling pathways, using a similar data driven approach and experimental confirmation. We demonstrated that the top weighted genes interleukin 1 receptor (IL1R) was up-regulated in protein expression in ACPA-stimulated FLS. IL1R is a cytokine receptor that binds interleukin 1 (IL1), which is one of the most important pro-inflammatory cytokines in the pathophysiology of RA. The activation of IL1-IL1R signaling has immune and pro-inflammatory action and correlates with disease activity, progression of joint destruction of RA [Dinarello, 2018]. Despite it has been reported that ACPA are able to bind PBMC and up-regulate
IL-1beta mRNA expression level compared with control IgG [Gertel et al. 2018], our current report is the first to investigate the potential relationship between IL1R and ACPAs in RA FLS. Meanwhile, IL-1 binds first to IL-1R1, that recruits the IL-1 receptor accessory protein (IL-1RAcP), which serves as a co-receptor. After the formation of receptor heterodimeric complex, two intracellular adaptor proteins are assembled, one of which is interleukin-1 receptor-activated protein kinase 4 (IRAK4). To look insight, we also evaluated protein expression of IRAK4. Immunoblotting of IRAK4 illustrated an elevated protein expression in ACPA-stimulated FLS. Taken together, these results suggest a novel finding that ACPAs up-regulate IL1-IL1R pathway that potential enhance inflammation.

In addition, the activation of PI3K signaling pathway is also ranked with high weight, which is in line with our previous finding [Sun et al. 2019] that shows a role for PI3K/Akt in regulating ACPA-induced migration of challenged FLS. PI3K modulates organization of actin cytoskeleton and lamellipodium formation via Akt phosphorylation, which can result in cytoskeleton remodeling and increased cell motility.

We also selected several low weighed nodes for further confirmation. As we expected, the expression of FAK, Fizzled5 and WNT5a/b remains no change in all time points of both groups. These results suggest that FAK adhesion and Wnt signaling pathway are inactivated regardless of stimulation.

Unlike commonly used stimulus, ACPAs consist of a group of antibodies with different specificities that target various citrullinated proteins/peptides [Demoruelle and Deane 2017]. ACPAs have been suggested to contribute to joint pain and bone loss already before onset of joint inflammation in RA [Bos et al. 2010, Kleyer et al. 2014, Krishnamurthy et al. 2019, Rantapää-Dahlqvist et al. 2003]. Further, ACPAs with different specificities binds to surface of developing osteoclasts (OC) and increase OC differentiation and bone erosion in vitro and induce pain behaviors in mouse model [Harre et al. 2012, Krishnamurthy et al. 2016, Wigerblad et al. 2016]. Together with our report, all evidence suggest that ACPAs contribute to multiple symptoms, through different mechanisms.

As every other method, it should be mentioned that there are certain limitations in this study needed to be investigated in future. The dataset used in this study is small, while the deep learning model usually need large volume of data for training. We didn’t distinguish edge types in the model, however signaling pathway consists of different interaction types, such as expression, inhibition, etc. Validating the proposed framework on larger datasets with improved model and data structure will be planed. While we selected top ranked edges for experimental confirmation based on an arbitrary threshold, a precise method to define the threshold and interpret the ranks remains to future works.

In conclusion, we proposed a graph deep learning framework that efficiently identifies activated signaling pathways from sc-mRNA-seq data. Based on this, we describe a novel potential pathogenic mechanisms of ACPAs in RA. Considering the diverse clinic presentations among ACPA positive RA patients and a body of accumulated evidence in research, the broad specificities in polyclonal ACPA contribute to distinct pathogenic events, potentially through activation of multiple parallel signalling pathways. Therefore, the mechanism of action in ACPA triggered signaling transduction is important for better understanding the pathogenesis of RA, and its diversity among patients.

Acknowledgements

M.S, Y.C and P.B designed and conceptualized the method. M.S performed the experiments and analyse. Y.C wrote all the code and implemented the methods. M.S and Y.C wrote manuscript with input of other authors. M.S and Y.C contributed equally to this work.

References

L. Klareskog, A. I. Catrina, and S. Paget. Rheumatoid arthritis. Lancet, 373(9664):659–672, Feb 2009.

W. H. Bos, G. J. Wolbink, M. Boers, G. J. Tijhuis, N. de Vries, I. E. van der Horst-Bruinsma, P. P. Tak, R. J. van de Stadt, C. J. van der Laken, B. A. Dijkmans, and D. van Schaardenburg. Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann Rheum Dis, 69(3):490–494, Mar 2010.

A. Kleyer, S. Finzel, J. Rech, B. Manger, M. Krieter, F. Faustini, E. Araujo, A. J. Hueber, U. Harre, K. Engelke, and G. Schett. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis, 73(5):854–860, May 2014.

A. Krishnamurthy, A. J. Ytterberg, M. Sun, K. Sakuraba, J. Steen, V. Joshua, N. K. Tarasova, V. Malmström, H. Währma, B. Réthi, and A. I. Catrina. Citrullination Controls Dendritic Cell Transdifferentiation into Osteoclasts. J Immunol, 202(11):3143–3150, 06 2019.
S. Rantapää-Dahlqvist, B. A. de Jong, E. Berglin, G. Hallmans, G. Wadell, H. Stenlund, U. Sundin, and W. J. van Venrooij. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. *Arthritis Rheum*, 48(10):2741–2749, Oct 2003.

A. Krishnamurthy, V. Joshua, A. Haj Hensvold, T. Jin, M. Sun, N. Vivar, A. J. Ytterberg, M. Engström, C. Fernandes-Cerqueira, K. Amara, M. Magnussen, G. Wigerblad, J. Kato, J. M. Jiménez-Andrade, K. Tyson, S. Rapecki, K. Lundberg, S. B. Catrina, P. J. Jakobsson, C. Svensson, V. Malmström, L. Klareskog, H. Wåhämaa, and A. I. Catrina. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. *Ann Rheum Dis*, 75(4):721–729, Apr 2016.

U. Harre, D. Georgess, H. Bang, A. Bozec, R. Axmann, E. Ossipova, P. J. Jakobsson, W. Baum, F. Nimmerjahn, E. Szarka, G. Sarmay, G. Krumbholz, E. Neumann, R. Toes, H. U. Scherer, A. I. Catrina, L. Klareskog, P. Jurdic, and G. Schett. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. *J Clin Invest*, 122(5):1791–1802, May 2012.

U. Müller-Ladner, J. Kriegsmann, B. N. Franklin, S. Matsumoto, T. Geiler, R. E. Gay, and S. Gay. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into scid mice. *The American Journal of Pathology*, 149(5):1607–1615, Nov 1996. ISSN 0002-9440. URL: https://pubmed.ncbi.nlm.nih.gov/8909250.

S. Lefèvre, A. Knedla, C. Tennie, A. Kampmann, C. Wunrau, R. Dinser, A. Korb, E. M. Schnäker, H. Stürz, J. Steen, S. Gay, J. Schölmerich, T. Pap, U. Müller-Ladner, and E. Neumann. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. *Nat Med*, 15(12):1414–1420, Dec 2009.

U. Müller-Ladner, J. Kriegsmann, B. N. Franklin, S. Matsumoto, T. Geiler, R. E. Gay, and S. Gay. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. *Am J Pathol*, 149(6):1607–1615, Nov 1996.

M. Sun, B. Rethi, A. Krishnamurthy, V. Joshua, A. Circiumaru, A. H. Hensvold, E. Ossipova, C. Grönwall, Y. Liu, M. Engstrom, S. B. Catrina, J. Steen, V. Malmstrom, L. Klareskog, C. Svensson, C. Ospelt, H. Wåhämaa, and A. I. Catrina. Anticitrullinated protein antibodies facilitate migration of synovial tissue-derived fibroblasts. *Ann Rheum Dis*, 78(12):1621–1631, 12 2019.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In *Proceedings. 2005 IEEE International Joint Conference on Neural Networks*, 2005., volume 2, pages 729–734 vol. 2, 2005. doi[10.1109/IJCNN.2005.1555942].

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2009. doi[10.1109/TNN.2008.2005605].

F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. Scany: large-scale single-cell gene expression data analysis. *Genome Biology*, 19(1):15, Feb 2018. ISSN 1474-760X. doi[10.1186/s13059-017-1382-0]. URL https://doi.org/10.1186/s13059-017-1382-0.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. 2018.

Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, and Michiel J. L. de Hoon. Biopython: freely available python tools for computational molecular biology and bioinformatics. *Bioinformatics*, 25(11):1422–1423, June 2009. doi[10.1093/bioinformatics/btp163]. URL https://www.ncbi.nlm.nih.gov/pubmed/?term=Biopython%3A+freely+available+python+tools+for+computational+molecular+bioinformatics+and+bioinformatics.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang. Deep graph library: A graph-centric, highly-performant package for graph neural networks. *arXiv preprint arXiv:1909.01315*, 2019.
C. A. Dinarello. Overview of the IL-1 family in innate inflammation and acquired immunity. *Immunol Rev*, 281(1):8–27, 01 2018.

S. Gertel, G. Karmon, E. Szarka, O. Shovman, E. Houri-Levi, E. Mozes, Y. Shoenfeld, and H. Amital. Anticitrullinated Protein Antibodies Induce Inflammatory Gene Expression Profile in Peripheral Blood Cells from CCP-positive Patients with RA. *J Rheumatol*, 45(3):310–319, 03 2018.

M. K. Demoruelle and K. Deane. Antibodies to citrullinated protein antigens (ACPAs): clinical and pathophysiologic significance. *Curr Rheumatol Rep*, 13(5):421–430, Oct 2011.

G. Wigerblad, D. B. Bas, C. Fernades-Cerqueira, A. Krishnamurthy, K. S. Nandakumar, K. Rogoz, J. Kato, K. Sandor, J. Su, J. M. Jimenez-Andrade, A. Finn, A. Bersellini Farinotti, K. Amara, K. Lundberg, R. Holmdahl, P. J. Jakobsson, V. Malmström, A. I. Catrina, L. Klareskog, and C. I. Svensson. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. *Ann Rheum Dis*, 75(4):730–738, Apr 2016.