The relationship between impulsivity and attention-deficit/hyperactivity symptoms in female patients with borderline personality disorder

Filiz Kulacaoglua, Mustafa Solmazb, Hasan Bellia, Ferhat Can Ardica, Ercan Akinb and Samet Kosec,d

Introduction

Borderline personality disorder (BPD) is characterized by a pervasive pattern of instability in impulse control, affect regulation, self-image, and intense interpersonal relationships [1]. The clinical studies revealed that the life-long prevalence of BPD was 5.9% and point prevalence was 1.4% [2,3]. Based on these studies, specific features of BPD, which starts in the adolescence period like impulsivity, emotional lability, recurrent suicidal behaviour, gestures, and threats are the predictive features [2,3]. Impulsivity is one of the core factors contributing to the severity of the disorder and the clinical course is strongly related to the impulsivity in the areas such as substance use disorder, impulsive spending/gambling, reckless driving, physical assaults, promiscuity, and binge eating/purging [4,5]. BPD occurs in 10% of the all psychiatric patients and it was reported that 90% of the BPD patients have one and 40% of them have two psychiatric comorbidities [6].

Attention-deficit/hyperactivity disorder (ADHD) is one of the common neurobehavioural disorders, which starts in early childhood and adolescence period. However, two-thirds of these patients have persisting symptoms continuing to adulthood [7]. Adult ADHD is related to many problems in interpersonal, academic, and social life [8]. The prevalence of the adult ADHD was reported as 4.4% in epidemiologic studies [7–9]. Adult ADHD is characterized by attention deficit, impulsivity, and irritability, which cause many dysfunctions. Affective lability is a very common symptom for these patients [7]. Impulsivity is also a central feature of ADHD. Clinical symptom of impulsivity in ADHD patients has many forms such as motor impulsivity (hyperactivity), cognitive impulsivity (poor cognitive control), emotional impulsivity (affective dysregulation), and impulsivity in the interpersonal relationships/social disinhibition [10].

According to Fossati et al., 60% of adults with BPD retrospectively meet criteria for childhood ADHD [11]. The two disorders share similar features including poor self-regulation, reduced inhibitory control, and impaired executive functions [12]. Impulsivity is...

ARTICLE HISTORY
Received 17 May 2017
Accepted 11 June 2017

KEYWORDS
Borderline personality disorder; attention-deficit/hyperactivity disorder; impulsivity

CONTACT Samet Kose sametkose@gmail.com

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
considered as a central feature of both BPD and ADHD [12]. According to Davids and Gastpar, the symptoms of BPD are very heterogeneous; some of them have impulsivity features, others have affective and dissociative features prominently [13]. There is evidence to suggest that childhood ADHD might be a risk factor for BPD with respect to impulsivity features due to a documented relationship between childhood history of ADHD and BPD in adulthood [14]. Nonetheless, impulsivity is a multidimensional construct composed of motor, attentional, and cognitive factors [15].

Although many studies reported that there was an association between ADHD and BPD, the nature of this relation has not been completely understood. No studies have examined the association of impulsivity as a part of the adult ADHD symptomatology in patients with BPD or which type of impulsivity was related to BPD and adult ADHD. In this study, we aimed to examine the prevalence of ADHD symptoms in patients with BPD and to determine the type of impulsivity that is observed in patients with BPD with or without ADHD symptoms.

Methods

Study participants

This study was conducted in outpatients with BPD who presented to the Psychiatric Unit of Bagcilar Training and Research Hospital. The sample was composed of 90 outpatients (90 women) with a mean age of 23.29 years (SD ± 5.77) (range: 18-46) who met Diagnostic and Statistical Manual of Mental Disorders–Fifth Edition (DSM-5) [16] criteria for BPD. The control group composed of 90 healthy controls (90 women), with a mean age of 25.33 years (SD ± 6.35) (range: 18-40). Both study groups were free of any medical treatment and also healthy group was free of any psychiatric/neurological disorders. Inclusion criteria for BPD group were being at least 18 years of age and meeting DSM-5 criteria for BPD. Exclusion criteria were: an IQ less than 75, diagnosis of schizophrenia, schizoaffective disorder, schizophreniform disorder, delusional disorder, dementia or organic mental disorder, bipolar disorder, an educational level lower than elementary school, and incomplete participation to the study. According to these criteria, 23 BPD patients were excluded from the study. The current study was approved by the Ethics Committee of Bagcilar Training and Research Hospital, and all of the patients gave written informed consents before participation. Following the study has been thoroughly explained them, Adult Self-Report Scale (ASRS-v1.1) and Barratt Impulsiveness Scale (BIS-11) were administered to the participants.

Psychometric measurements

Sociodemographic data form

This form includes demographic variables, including age, marital status, occupational status, and education.

Adult ADHD Self-Report Scale (ASRS-v1.1)

ADHD symptoms were measured with the ASRS that is an 18-item scale that is developed by the World Health Organization [17]. It is a self-report scale, consists of two subscales that have nine items for attention deficit and hyperactivity/impulsivity symptoms, respectively. The reliability and validity study of Turkish form has been conducted by Dogan et al. [18] and has been shown to be reliable and valid with high levels of internal consistency. The respondent is asked to rate how frequently each symptom has occurred during the past six months. Each item is rated from 0 (never) to 4 (very often).

The Barratt Impulsiveness Scale (BIS)

It is a self-report questionnaire that measures different dimensions of impulsivity. Since its first presentation in 1959 [19], this scale has undergone several modifications. The current version (BIS-11) is one of the most often used tools to assess impulsivity, presenting impressive evidence concerning its validity, reliability, and predictive value [20]. Briefly, BIS-11 is composed of 30 items scored on a Likert scale (ranging from never = 1 point to very frequently = 4 points). It assesses the three main dimensions of impulsive behaviour: attentional (a lack of focus on the ongoing task), motor (acting without thinking), and non-planning impulsivity (orientation to the present rather than to the future). According to Patton et al. [21], the scale also assesses six first-order factors (attention, cognitive instability, motor, perseverance, self-control, and cognitive complexity); however, most studies reporting BIS-11 scores have focused on the three second-order factors [20]. BIS-11 is reliable (high internal consistency and test/retest stability) and valid, and it has been able to draw associations between inattention and hyperactivity symptoms and smoking habits as well as between psychiatric disorders. The Brazilian version of BIS-11 presented a two-factor structure (inhibition control and non-planning), rather than the original three-factor structure [22]. BIS-11 has been adapted into Turkish, and the reliability and validity have been examined by Gülçe et al. [23].

Statistical analysis

Prior to data analysis, the data were checked for normality using analytical (Kolmogorov–Smirnov/Shapiro–Wilk’s tests) and visual methods (histograms and probability plots). All of the variables were found to be normally distributed. Therefore, in our statistical
analyses, parametric tests were used. An independent-sample t-test was used to compare the ordinal data between the independent groups, and the categorical variables were compared with a Chi-square and Fisher’s exact test. Hierarchical regression analyses were used to examine the significant predictors of Adult ADHD Self-Report Scale scores. To reduce the risks of false positives in the correlation analyses, a significance level of $p < .01$ was implemented. For the remaining analyses, statistical significance was established at $p < .05$. The statistical analyses were performed using the Statistical Package for Social Sciences (SPSS) version 23 for Windows (SPSS, Inc., Chicago, IL, U.S.A.).

Results

Sociodemographic characteristics of sample

Sociodemographic characteristics of the patient group and the healthy controls were presented in Table 1. The average age was 23.29 ± 5.77 in the patient group and 25.33 ± 6.35 in the healthy control group. Approximately half of the participants in the healthy control group and the patient group were single (46.67% and 62.22%, respectively) and the other half were married (45.56% and 30.00%, respectively) participants. The remaining participants (7.78%) in the healthy group and five (5.56%) participants in the patient group were divorced. There were no statistically significant differences between the patient group and the healthy controls in terms of age, educational status, employment, and marital status.

Correlations of age, impulsivity, and ADHD scores in the patient group

Inter-correlations between the ASRS scores, the BIS scores, and age were presented in Table 2. Age was not found to be statistically significant with any of the scale scores ($p > .05$).

Total BIS scores were statistically significantly correlated with total ASRS ($r = .557, p < .001$) and its two subscales, namely Inattention ($r = .593, p < .001$) and Hyperactivity/Impulsivity ($r = .399, p < .001$).

Correlation coefficients between the scores of the subscales of the BIS and the scores of the subscales of the ASRS were also statistically significant. Scores of Attentional Impulsiveness subscale of BIS were found to be statistically significantly correlated with total ASRS scores ($r = .458, p < .001$), Inattention ($r = .419, p < .001$), and Hyperactivity/Impulsivity ($r = .395, p < .001$). There were also statistically significant correlations between motor impulsiveness scores and total ASRS scores ($r = .515, p < .001$), Inattention scores ($r = .543, p < .001$), and Hyperactivity/Impulsivity scores ($r = .373, p < .001$). Inter-correlations between Non-planning Impulsiveness scores and total ASRS scores ($r = .413, p < .001$), Inattention scores ($r = .497, p < .001$), and Hyperactivity/Impulsivity scores ($r = .240, p < .05$) were also found to be positive and statistically significant.

Comparison of ADHD diagnosis between the patient and healthy controls

Table 3 displays the frequencies and percentage scores on ADHD diagnosis among healthy and patient groups. In the study sample, there were totally 54 (30%) participants who had been diagnosed with ADHD. ADHD diagnosis was found in only 6 (6.7%) of the 90 participants in the healthy group, while ADHD was found in 53.3% of the participants in the patient group. The results of Chi square test revealed a statistically significant difference in terms of being diagnosed with ADHD or not between patient and healthy group ($\chi^2 = 46.667, df = 1, p = .000$).

Table 2. Correlations of age, impulsivity, and ADHD in patient group.

Age	Total ASRS	Hyperactivity/Impulsivity	Inattention	
Age	-0.049	-0.017	0.071	
Total BIS	0.003	0.557^*	0.399^*	0.593^*
Attentional impulsiveness	0.007	0.458^*	0.395^*	0.419^*
Attention	0.028	0.394^*	0.317^*	0.384^*
Cognitive instability	-0.024	0.340^*	0.322^*	0.280^*
Motor impulsiveness	-0.005	0.515^*	0.373^*	0.543^*
Motor	0.011	0.473^*	0.370^*	0.472^*
Perseverance	-0.024	0.273^*	0.160	0.328^*
Non-planning impulsiveness	0.006	0.413^*	0.240^*	0.497^*
Self-control	0.040	0.416^*	0.276^*	0.464^*
Cognitive complexity	-0.034	0.265^*	0.115	0.360^*

Notes: ADHD, attention-deficit hyperactivity disorder; BIS, The Barratt Impulsiveness Scale.

**Correlation is significant at the .01 level (2-tailed).
*Correlation is significant at the .05 level (2-tailed).
Comparison of impulsivity and attention-deficit/hyperactivity in patients and healthy controls

An independent-sample t-test was performed to compare all subscales of the BIS-11 and the ASRS-v1.1 and subscales for BPD patients and healthy controls. The results revealed that there were statistically significant differences between the patients and healthy controls in terms of BIS-11 total \(t(178) = 10.444, p = .000 \) and ASRS total \(t(178) = 9.697, p = .000 \). The total BIS scores (\(\bar{X}_{\text{patient}} = 75.18, \text{SD}_{\text{patient}} = 12.542; \bar{X}_{\text{Healthy}} = 57.37, \text{SD}_{\text{Healthy}} = 10.222 \)) were significantly higher in BPD patients compared to the healthy controls. Similarly, the total ASRS scores (\(\bar{X}_{\text{patient}} = 38.76, \text{SD}_{\text{Patient}} = 11.468; \bar{X}_{\text{Healthy}} = 23.39, \text{SD}_{\text{Healthy}} = 9.720 \)) were significantly higher in BPD patients compared to the healthy controls.

There were also statistically significant differences between the patients and healthy controls in terms of the three second-order factors of BIS. More specifically, Attentional Impulsiveness \(t(178) = 7.303, p = .000 \), Motor Impulsiveness \(t(178) = 8.472, p = .000 \), and Non-planning Impulsiveness \(t(178) = 9.326, p = .000 \) scores were significantly higher in BPD patients compared to the healthy controls.

Furthermore, there were statistically significant differences between the patients and healthy controls in terms of Inattention \(t(178) = 8.814, p = .000 \) and Hyperactivity/Impulsivity \(t(178) = 8.625, p = .000 \) and subscales of the ASRS. The Inattention (\(\bar{X}_{\text{patient}} = 20.08, \text{SD}_{\text{Patient}} = 6.348; \bar{X}_{\text{Healthy}} = 12.18, \text{SD}_{\text{Healthy}} = 5.658 \)) and Hyperactivity/Impulsivity (\(\bar{X}_{\text{patient}} = 18.68, \text{SD}_{\text{Patient}} = 6.579; \bar{X}_{\text{Healthy}} = 11.21, \text{SD}_{\text{Healthy}} = 4.916 \)) subscale scores were significantly higher in BPD patients compared to the healthy controls. The results of the independent-sample t-test were presented in Table 4.

The predictors of ASRS scores

The hypothesized relationship between ASRS scores and other variables was tested in two separate hierarchical multiple regression. The demographic variables (age) were entered in the first step of the hierarchical multiple regression. The subscales of BIS were entered in the second step of the hierarchical regression analyses. The results indicated that motor subscale was significantly predictive of ASRS scores (\(R^2 = .337, F(6,82) = 5.960, p = .00 \)). The results of the hierarchical multiple regression were presented in Table 5.

Discussion

The aim of the present study was to examine the relationship of ADHD and impulsivity symptoms in a sample of female psychiatric patients with BPD and compare these symptoms with the healthy group.

One of the main findings of our study is high ADHD comorbidity in the BPD patient group. In our study, 53.3% of the BPD patient group had been diagnosed with adult ADHD. Our findings of a high prevalence of adult ADHD diagnosis among women with BPD supported the earlier findings and suggested that the childhood ADHD might be a risk factor for the development of BPD. According to Andruleis et al. [24–26], 25% of the BPD patients (n = 106) had

![Table 3. Summary of the crosstab analysis for healthy controls and patients.](image)

ADHD diagnosis	Healthy controls	Patients	Total	Chi-square	Fisher’s exact test
Absent	93.3% (84)	46.7% (42)	70% (126)	46.67	0.00
Present	6.7% (6)	53.3% (48)	30% (54)		

Notes: Frequencies are shown in parentheses. ADHD, attention-deficit hyperactivity disorder.

![Table 4. Impulsivity and attention-deficit/hyperactivity in patients and healthy controls.](image)

Scale	Patients (n = 90)	Healthy Controls (n = 90)	t (df = 178)	p
Total ASRS	38.76	23.39	9.720	.000
Hyperactivity/Impulsivity			9.697	.000
Inattention	20.08	12.18	5.658	.000
Total BIS	75.18	57.37	10.222	.000
Attentional impulsiveness			10.444	.000
Attention	12.38	9.59	5.929	.000
Cognitive instability	7.28	5.59	5.706	.000
Motor impulsiveness	24.70	18.60	5.600	.000
Motor	16.47	12.14	4.713	.000
Perseverance	8.23	6.46	4.977	.000
Non-planning impulsiveness			4.577	.000
Self-control	16.57	12.27	3.556	.000
Cognitive complexity	14.26	11.32	2.689	.000

Notes: ASRS, Adult ADHD Self-Report Scale; BIS, The Barratt Impulsiveness Scale.

![Table 5. The results of the hierarchical multiple regression.](image)

	B	SE	p
Model 1			
(Constant)	36.481	5.076	.000
Age	0.098	0.212	.049
Model 2			
(Constant)	36.481	5.076	.000
Age	0.085	0.179	.043
Attention	0.337	0.460	.083
Motor	0.692	0.302	.271*
Cognitive complexity	-0.093	0.415	.024
Perseverance	0.544	0.350	.149
Cognitive instability	0.876	0.542	.162
Self-control	0.693	0.375	.203
R^2	0.337	5.960**	

Notes: Dependent variable: total score of adult ADHD self-report scale.

**p < .01.

*p < .05.
In recent years, the comorbidity between ADHD and BPD and the association with impulsivity have been hypothesized among the young females. The subgroup of ADHD which consists of hyperactivity, impulsivity, and conduct disorder behavioural features is not common among females. Meanwhile, the inattention subgroup of ADHD is more common in females, and it causes social disinhibition, inappropriate behaviours, daydreaming, and distractibility. After the adolescence period, comorbid eating disorders and substance use disorders, conflicts with family members and decreased school performance can be seen [34–36]. Since our participants consisted of females only and ASRS scores correlated with inattention impulsivity scores, these findings supported this hypothesis.

In our study, when we compared the patient group with the healthy group in terms of BIS-11 and ASRS scores, we found that the average score of the patient group was significantly higher than the healthy controls. That means female patients with BPD have more attention deficit, hyperactivity/impulsivity characteristics than healthy controls. This finding is consistent with the diagnostic criteria proposed by DSM-5 for BPD. DSM-5 suggests that patients with BPD experience at least two areas of impulsivity (impulsive spending, sexual impulsivity, substance abuse/dependence, reckless driving) that are potentially harmful. Such patients show characteristic behaviours on a momentary basis without any plans or consideration of outcomes, and they have difficulties in planning or following up [16]. Most studies in the literature showed evidence of the differences between BPD patients and healthy controls in terms of high impulsivity scores. Prada et al. [37] compared the BIS and the ASRS scores between BPD patients and healthy controls and reported that the control subjects showed lower attention deficit–hyperactivity/impulsivity symptoms than all the clinical groups. Another study conducted by Ende et al. [38], who used the BIS to measure impulsivity and aggression between healthy controls and female BPD patients revealed results that are consistent with ours, i.e. patients have shown higher self-reported trait impulsivity (BIS total) compared to the healthy controls. Contrary to studies supporting our findings, Barker et al. [39] found no differences between BPD patients and healthy controls in terms of the BIS total scores. Furthermore, in a study conducted by Zamalloa et al. [40], BIS total scores of the healthy controls were found to be higher than BPD patients. In sum, although most studies in the literature supported that attention deficit–hyperactivity/impulsivity symptoms are more common in the BPD patients than in the healthy controls, there were also negative studies showing no differences between the two groups in terms of attention deficit–hyperactivity/impulsivity symptoms or that such symptoms were more common among healthy individuals. Therefore, more longitudinal prospective studies are needed to examine the frequency and severity of attention deficit–hyperactivity/impulsivity symptoms among female BPD patients.

Our results revealed that Motor subscale scores of the BIS were significantly predictive of ASRS scores. This finding might support the notion that the three major factors of impulsivity; namely attention impulsivity, motor impulsivity, and non-planning impulsivity might also be common in BPD patients. In the literature, Williams et al. [41] suggested that BPD patients with serious self-injurious behaviours had higher scores, especially on motor impulsiveness. We also found out that in BPD patients motor factor of the motor impulsiveness domain of impulsivity highly
predicted attention deficit-hyperactivity/impulsivity symptoms. Furthermore, our results also supported the study by Speranza et al. [29] that a significant positive relationship between Barratt’s Attentional/Cognitive impulsivity and ADHD diagnosis in borderline adolescents was found.

The results reported in this study should be considered in the light of certain limitations. First, ADHD symptoms and severity of impulsivity symptoms were assessed using self-report questionnaires. We diagnosed ADHD by using a self-report scale. But, it is known that the ADHD diagnosis needs to be supported the clinical interviews. This could explain the finding of the high comorbidity of ADHD. The second limitation is our participants primarily consisted of females with a number of small sample size. Finally, since this study has a cross-sectional nature, the results cannot show a direct association between ADHD and impulsivity symptoms in BPD patients.

In conclusion, our findings indicate that there is a significant association between ADHD and impulsivity symptoms in adult females with BPD. Hence, ADHD may be considered as a risk factor for predisposing BPD in adulthood. For this reason, more treatment strategies should be developed and focused on subgroups of BPD with or without ADHD.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Samet Kose http://orcid.org/0000-0003-0841-004X

References

[1] Lieb K, Zanarini MC, Schmahl C, et al. Borderline personality disorder. Lancet. 2004;364(9432):453–461.
[2] Siever LJ, Torgersen S, Gunderson JG, et al. The borderline diagnosis III: identifying endophenotypes for genetic studies. Biol Psychiatry. 2002;51(12):964–968.
[3] Zanarini MC, Frankenburg FR, Ridolfi ME, et al. Reported childhood onset of self-mutilation among borderline patients. J Pers Disord. 2006;20(1):9–15.
[4] Links PS, Healegrave R, van Reekum R. Impulsivity: core aspect of borderline personality disorder. J Pers Disord. 1999;13(1):1–9.
[5] Wilson ST, Fertuck EA, Kwitel A, et al. Impulsivity, suicidality and alcohol use disorders in adolescents and young adults with borderline personality disorder. Int J Adolesc Med Health. 2006;18(1):189–196.
[6] Moeller FG, Barratt ES, Dougherty DM, et al. Psychiatric aspects of impulsivity. Am J Psychiatry. 2001;158(11):1783–1793.
[7] Fayyad J, De Graaf R, Kessler R, et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry. 2007;190:402–409.
[8] Barkley RA, Fischer M, Smallish L, et al. The persistence of attention-deficit/hyperactivity disorder into young adulthood as a function of reporting source and definition of disorder. J Abnorm Psychol. 2002;111(2):279–289.
[9] Kessler RC, Adler L, Barkley R, et al. The prevalence and correlates of adult ADHD in the United States: results from the national comorbidity survey replication. Am J Psychiatry. 2006;163(4):716–723.
[10] Rubia K. The dynamic approach to development of psychiatric disorders: use of fMRI combined with neuropsychology to elucidate the dynamics of psychiatric disorders, exemplified in ADHD and schizophrenia. Behav Brain Res. 2002;130(1–2):47–56.
[11] Fossati A, Novella L, Donati D, et al. History of childhood attention deficit/hyperactivity disorder symptoms and borderline personality disorder: a controlled study. Compr Psychiatry. 2002;43(5):369–377.
[12] Filipksen A. Differential diagnosis and comorbidity of attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) in adults. Eur Arch Psychiatry Clin Neurosci. 2005;256(Suppl 1):i42–i46.
[13] Davids E, Gastpar M. Attention deficit hyperactivity disorder and borderline personality disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(6):865–877.
[14] Filipksen A, Limberger MF, Lieb K, et al. Attention-deficit hyperactivity disorder as a potentially aggravating factor in borderline personality disorder. Br J Psychiatry. 2008;192(2):118–123.
[15] Malloy-Diniz L, Fuentes D, Leite WB, et al. Impulsive behavior in adults with attention deficit/hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness. J Int Neuropsychol Soc. 2007;13(4):22.
[16] American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington (VA): American Psychiatric Publishing; 2013.
[17] Kessler RC, Adler L, Ames M, et al. The world health organization adult ADHD self-report scale (ASRS): a short screening scale for use in the general population. Psychol Med. 1999;35(2):245–256.
[18] Dogan S, Oncu B, Saracoglu G, et al. Validity and reliability of the Turkish version of the adult ADHD self-report scale (ASRS-v1.1). Anatolian J Psychiatry. 2009;10:77–87.
[19] Barratt ES. Anxiety and impulsiveness related to psychomotor efficiency. Percept Motor Skill. 1959;9(3):191–198.
[20] Stanford MS, Mathias CW, Dougherty DM, et al. Fifty years of the Barratt Impulsiveness Scale: an update and review. Pers Individ Dif. 2009;47(5):385–395.
[21] Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51(6):768–774.
[22] Malloy-Diniz LF, Paula J, Vasconcelos AG, et al. Normative data of the Turkish version of the adult ADHD self-report scale (ASRS-v1.1). Klin Psikofarmakol Bul. 2008;18:251–258.
[23] Güleç H, Tamam L, Yazıcı Güleç M, et al. Psychometric properties of the Turkish version of the Barratt Impulsiveness Scale I. Klin Psikofarmakol Bul. 2015;37:245–248.
[24] Andurulonis PA, Glueck BC, Stroebe CF, et al. Borderline personality subcategories. J Nerv Ment Dis. 1982;169(11):670–679.
[25] Andrulonis PA, Glueck BC, Stroebel CF, et al. Organic brain dysfunction and the borderline syndrome. Psychiat Clin N Am. 1981;4(1):47–66.
[26] Andrulonis PA, Vogel NG. Comparison of borderline personality subcategories to schizophrenic and affective disorders. Br J Psychiatry: J Ment Sci. 1984;144:358–363.
[27] Bellak L. Comorbidity of attention deficit hyperactivity disorder and other disorders. Am J Psychiatry. 1992;149(1):147–148.
[28] Ferrer M, Andion O, Matali J, et al. Comorbid attention-deficit/hyperactivity disorder in borderline patients defines an impulsive subtype of borderline personality disorder. J Pers Disord. 2010;24(6):812–822.
[29] Speranza M, Revah-Levy A, Cortese S, et al. ADHD in adolescents with borderline personality disorder. BMC Psychiatry. 2011;11:453.
[30] Fossati A, Gratz KL, Somma A, et al. The mediating role of emotion dysregulation in the relations between childhood trauma history and adult attachment and borderline personality disorder features: a study of Italian nonclinical participants. J Pers Disord. 2016;30(5):653–676.
[31] Zanarini MC, Frankenburg FR, Hennen J, et al. Prediction of the 10-year course of borderline personality disorder. Am J Psychiatry. 2006;163(5):827–832.
[32] Ramos-Quiroga JA, Vidal R, Casas M. Toward a better understanding of attention-deficit/hyperactivity disorder across the lifespan. J Am Acad Child Adolesc Psychiatry. 2013;52(2):119–120.
[33] Carlotta D, Borroni S, Maffei C, et al. On the relationship between retrospective childhood ADHD symptoms and adult BPD features: the mediating role of action-oriented personality traits. Compr Psychiatry. 2013;54(7):943–952.
[34] Faraone SV, Biederman J. Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiatry. 1998;44(10):951–958.
[35] Arnold LE. Sex differences in ADHD: conference summary. J Abnorm Child Psychol. 1996;24(5):555–569.
[36] Krause KH, Krause J, Trott GE. [Hyperkinetic syndrome (attention deficit-/hyperactivity disorder) in adulthood]. Nervenarzt. 1998;69(7):543–556.
[37] Prada P, Hasler R, Baud P, et al. Distinguishing borderline personality disorder from adult attention deficit/hyperactivity disorder: a clinical and dimensional perspective. Psychiatry Res. 2014;217(1-2):107–114.
[38] Ende G, Cackowski S, Van Eijk J, et al. Impulsivity and aggression in female BPD and ADHD patients: association with ACC glutamate and GABA concentrations. Neuropsychopharmacology. 2016;41(2):410–418.
[39] Barker V, Romanick L, Cardinal RN, et al. Impulsivity in borderline personality disorder. Psychol Med. 2015;45(9):1955–1964.
[40] Zamalloa I, Iraurgi I, Maruottolo C, et al. Impulsivity and executive function in borderline personality disorder. Acta Esp Psiquiatr. 2016;44(3):113–118.
[41] Williams GE, Daros AR, Graves B, et al. Executive functions and social cognition in highly lethal self-injuring patients with borderline personality disorder. Personal Disord. 2015;6(2):107–116.