Weak type interpolation for noncommutative maximal operators

Sjoerd Dirksen

Universität Bonn

Madrid, June 2013
1. Classical weak type interpolation

2. Noncommutative Doob maximal inequality

3. Weak type interpolation for noncommutative maximal operators

4. Doob maximal inequality in noncommutative symmetric spaces
Let \((\mathcal{A}, \Sigma, \nu)\) be a \(\sigma\)-finite measure space. Let \(S(\mathcal{A})\) be the space of measurable functions on \(\mathcal{A}\).
Let $(\mathcal{A}, \Sigma, \nu)$ be a σ-finite measure space. Let $S(\mathcal{A})$ be the space of measurable functions on \mathcal{A}. Given a sequence $(T_n)_{n \geq 1}$ of sublinear operators on $S(\mathcal{A})$,
Let $(\mathcal{A}, \Sigma, \nu)$ be a σ-finite measure space. Let $S(\mathcal{A})$ be the space of measurable functions on \mathcal{A}. Given a sequence $(T_n)_{n \geq 1}$ of sublinear operators on $S(\mathcal{A})$, we define the \textit{maximal operator}

$$Tf(x) = \left(\sup_{n \geq 1} T_n \right)(f)(x) := \sup_{n \geq 1} |T_n f(x)|.$$
Let $\mathcal{(A, \Sigma, \nu)}$ be a σ-finite measure space. Let $S(A)$ be the space of measurable functions on \mathcal{A}. Given a sequence $(T_n)_{n \geq 1}$ of sublinear operators on $S(A)$, we define the *maximal operator*

$$Tf(x) = \left(\sup_{n \geq 1} T_n \right)(f)(x) := \sup_{n \geq 1} |T_n f(x)|.$$

One is often interested in showing that T is bounded on a certain function space on \mathcal{A}.
Let \((\mathcal{A}, \Sigma, \nu)\) be a \(\sigma\)-finite measure space. Let \(S(\mathcal{A})\) be the space of measurable functions on \(\mathcal{A}\). Given a sequence \((T_n)_{n \geq 1}\) of sublinear operators on \(S(\mathcal{A})\), we define the \textit{maximal operator}

\[
Tf(x) = \left(\sup_{n \geq 1} T_n \right) f(x) := \sup_{n \geq 1} |T_n f(x)|.
\]

One is often interested in showing that \(T\) is bounded on a certain function space on \(\mathcal{A}\).
Doob’s maximal inequality states that for any increasing sequence of conditional expectations and any \(1 < p \leq \infty\),

\[
\left\| \sup_{n \geq 1} \mathbb{E}_n(f) \right\|_{L^p} \leq c_p \left\| f \right\|_{L^p}.
\]
A sublinear operator T is of weak type (p, p) if for any $f \in L^p$,

$$d(v; Tf)^{\frac{1}{p}} \leq Cv^{-1}\|f\|_{L^p} \quad (v > 0).$$ (1)
A sublinear operator T is of weak type (p, p) if for any $f \in L^p$,

$$d(v; Tf)^{1/p} \leq Cv^{-1}\|f\|_{L^p} \quad (v > 0).$$ \hspace{1cm} (1)

Here $d(v; g) = \nu(x \in \mathcal{A} : |g(x)| > v)$ denotes the distribution function of a measurable function g.

Noncommutative weak type interpolation
A sublinear operator T is of **weak type** (p, p) if for any $f \in L^p$,

$$d(v; Tf)^{\frac{1}{p}} \leq Cv^{-1}\|f\|_{L^p} \quad (v > 0).$$ \hfill (1)

Here $d(v; g) = \nu(x \in A : |g(x)| > v)$ denotes the distribution function of a measurable function g. T is of **restricted weak type** (p, p) if (1) only holds for indicators $f = 1_A$.
A sublinear operator T is of \textit{weak type} (p, p) if for any $f \in L^p$,

$$d(v; Tf)^{1/p} \leq Cv^{-1}\|f\|_{L^p} \quad (v > 0).$$ (1)

Here $d(v; g) = \nu(x \in A : |g(x)| > v)$ denotes the distribution function of a measurable function g.

T is of \textit{restricted weak type} (p, p) if (1) only holds for indicators $f = 1_A$.

The maximal operator $Tf = \sup_{n \geq 1} |E_n(f)|$ is of weak types $(1, 1)$ and (∞, ∞).
A sublinear operator T is of weak type (p, p) if for any $f \in L^p$,

$$d(v; T f)^{\frac{1}{p}} \leq C v^{-1} \| f \|_{L^p} \quad (v > 0).$$

(1)

Here $d(v; g) = \nu(x \in \mathcal{A} : |g(x)| > v)$ denotes the distribution function of a measurable function g.

T is of restricted weak type (p, p) if (1) only holds for indicators $f = 1_A$.

The maximal operator $T f = \sup_{n \geq 1} |E_n(f)|$ is of weak types $(1, 1)$ and (∞, ∞). There are examples of restricted weak type $(1, 1)$ operators which are not weak type $(1, 1)$.
Theorem (Marcinkiewicz ’39, Zygmund ’56)

Let $1 \leq p < q \leq \infty$. If T is of weak types (p, p) and (q, q), then T is bounded on L^r, for any $p < r < q$.
Theorem (Marcinkiewicz ’39, Zygmund ’56)

Let $1 \leq p < q \leq \infty$. If T is of weak types (p, p) and (q, q), then T is bounded on L^r, for any $p < r < q$.

Applying Marcinkiewicz’ theorem to $Tf = \sup_{n \geq 1} |E_n(f)|$ yields Doob’s maximal inequality with constant of optimal order $(p - 1)^{-1}$.
Theorem (Marcinkiewicz ’39, Zygmund ’56)

Let $1 \leq p < q \leq \infty$. If T is of weak types (p, p) and (q, q), then T is bounded on L^r, for any $p < r < q$.

Applying Marcinkiewicz’ theorem to $Tf = \sup_{n \geq 1} |\mathbb{E}_n(f)|$ yields Doob’s maximal inequality with constant of optimal order $(p - 1)^{-1}$.

Theorem (Stein & Weiss ’59, Calderón ’66)

Let $1 \leq p < q \leq \infty$. If T is of restricted weak types (p, p) and (q, q), then T is bounded on L^r, for any $p < r < q$.

Stein & Weiss used this to reprove that the Hilbert transform is bounded on L^p, $1 < p < \infty$.

Sjoerd Dirksen
Noncommutative weak type interpolation
Theorem (Marcinkiewicz ’39, Zygmund ’56)

Let $1 \leq p < q \leq \infty$. If T is of weak types (p, p) and (q, q), then T is bounded on L^r, for any $p < r < q$.

Applying Marcinkiewicz’ theorem to $Tf = \sup_{n \geq 1} |E_n(f)|$ yields Doob’s maximal inequality with constant of optimal order $(p - 1)^{-1}$.

Theorem (Stein & Weiss ’59, Calderón ’66)

Let $1 \leq p < q \leq \infty$. If T is of restricted weak types (p, p) and (q, q), then T is bounded on L^r, for any $p < r < q$.

Stein & Weiss used this to reprove that the Hilbert transform is bounded on L^p, $1 < p < \infty$.
Let \mathcal{M} be a semi-finite von Neumann algebra acting on H, equipped with a normal, semi-finite, faithful trace τ.
Let \mathcal{M} be a semi-finite von Neumann algebra acting on H, equipped with a normal, semi-finite, faithful trace τ. The *distribution function* of a closed, densely defined operator x on H, which is affiliated with \mathcal{M}, is given by
Let \mathcal{M} be a semi-finite von Neumann algebra acting on H, equipped with a normal, semi-finite, faithful trace τ. The \textit{distribution function} of a closed, densely defined operator x on H, which is affiliated with \mathcal{M}, is given by

$$d(v; x) = \tau(\lambda_{(v,\infty)}(|x|)) \quad (v \geq 0),$$

where $\lambda(|x|)$ is the spectral measure of $|x|$.

Let \mathcal{M} be a semi-finite von Neumann algebra acting on H, equipped with a normal, semi-finite, faithful trace τ. The *distribution function* of a closed, densely defined operator x on H, which is affiliated with \mathcal{M}, is given by

$$d(v; x) = \tau(\lambda_{(v, \infty)}(|x|)) \quad (v \geq 0),$$

where $\lambda(|x|)$ is the spectral measure of $|x|$. We say that x is τ-measurable if $d(v; x) < \infty$ for some $v > 0$.

Sjoerd Dirksen
Noncommutative weak type interpolation
We let $S(\tau)$ be the linear space of all τ-measurable operators, $S(\tau)_+$ its positive cone.
We let $S(\tau)$ be the linear space of all τ-measurable operators, $S(\tau)_+$ its positive cone. Given a sequence $(T_n)_{n \geq 1}$ of sublinear operators on $S(\tau)_+$, we define the associated noncommutative maximal operator by

$$Tf(x) = \sup_{n \geq 1} T_nf(x).$$

This supremum is in general not well-defined.
We let $S(\tau)$ be the linear space of all τ-measurable operators, $S(\tau)_+$ its positive cone. Given a sequence $(T_n)_{n \geq 1}$ of sublinear operators on $S(\tau)_+$, we define the associated noncommutative maximal operator by

$$Tf(x) = \sup_{n \geq 1} T_n f(x).$$

This supremum is in general not well-defined. In fact, there are 2×2 matrices x_1, x_2, x_3 such that there is no 2×2 matrix x satisfying

$$\langle x \xi, \xi \rangle = \max_{i=1,2,3} \langle x_i \xi, \xi \rangle \quad (\xi \in \mathbb{C}^2).$$
We let $S(\tau)$ be the linear space of all τ-measurable operators, $S(\tau)_+$ its positive cone.

Given a sequence $(T_n)_{n \geq 1}$ of sublinear operators on $S(\tau)_+$, we define the associated \textit{noncommutative maximal operator} by

$$Tf(x) = \sup_{n \geq 1} T_n f(x).$$

This supremum is in general not well-defined. In fact, there are 2×2 matrices x_1, x_2, x_3 such that there is no 2×2 matrix x satisfying

$$\langle x \xi, \xi \rangle = \max_{i=1,2,3} \langle x_i \xi, \xi \rangle \quad (\xi \in \mathbb{C}^2).$$

However, we can still define the L^p-norm of T.
Let $L^p(M; l^\infty)$ be the space of all sequences $(x_n)_{n \geq 1}$ in $L^p(M)$ for which there exist $u, v \in L^{2p}(M)$ and a bounded sequence $(y_n)_{n \geq 1}$ in \mathcal{M} such that

$$x_n = uy_n v \quad (n \geq 1).$$
Let $L^p(\mathcal{M}; l^\infty)$ be the space of all sequences $(x_n)_{n\geq 1}$ in $L^p(\mathcal{M})$ for which there exist $u, v \in L^{2p}(\mathcal{M})$ and a bounded sequence $(y_n)_{n\geq 1}$ in \mathcal{M} such that

$$x_n = uy_n v \quad (n \geq 1).$$

Define

$$\|(x_n)_{n\geq 1}\|_{L^p(\mathcal{M}; l^\infty)} = \inf\left\{ \|u\|_{L^{2p}(\mathcal{M})} \sup_{n\geq 1} \|y_n\|_\infty \|v\|_{L^{2p}(\mathcal{M})} \right\}.$$
Let \(L^p(\mathcal{M}; l^\infty) \) be the space of all sequences \((x_n)_{n \geq 1}\) in \(L^p(\mathcal{M}) \) for which there exist \(u, v \in L^{2p}(\mathcal{M}) \) and a bounded sequence \((y_n)_{n \geq 1}\) in \(\mathcal{M} \) such that
\[
x_n = uy_nv \quad (n \geq 1).
\]
Define
\[
\|(x_n)_{n \geq 1}\|_{L^p(\mathcal{M}; l^\infty)} = \inf \{ \|u\|_{L^{2p}(\mathcal{M})} \sup_{n \geq 1} \|y_n\|_\infty \|v\|_{L^{2p}(\mathcal{M})} \}.
\]
If \(x_n \geq 0 \) for all \(n \geq 1 \), then
\[
\|(x_n)_{n \geq 1}\|_{L^p(\mathcal{M}; l^\infty)} = \inf \{ \|a\|_{L^p(\mathcal{M})} : x_n \leq a \text{ for all } n \geq 1 \}.
\]
Theorem (Junge, ’02)

Let \((\mathcal{E}_n)_{n \geq 1}\) be an increasing sequence of conditional expectations in \(\mathcal{M}\). For any \(1 < p \leq \infty\),

\[
\left\| \left(\mathcal{E}_n(x)\right)_{n \geq 1} \right\|_{L^p(\mathcal{M};l^{\infty})} \leq C_p \left\| x \right\|_{L^p(\mathcal{M})}.
\]
Theorem (Junge, ’02)

Let \((E_n)_{n \geq 1}\) be an increasing sequence of conditional expectations in \(\mathcal{M}\). For any \(1 < p \leq \infty\),

\[
\|(E_n(x))_{n \geq 1}\|_{L^p(\mathcal{M};l^\infty)} \leq C_p \|x\|_{L^p(\mathcal{M})}.
\]

It was later noted by Junge and Xu that \(C_p\) is of order \((p - 1)^{-2}\), in contrast with the classical case.
Let $T = (T_n)_{n \geq 1}$ be a sequence of maps $T_n : L^r(\mathcal{M})_+ \to S(\sigma)_+$.
Let $T = (T_n)_{n \geq 1}$ be a sequence of maps $T_n : L^r(\mathcal{M})_+ \to S(\sigma)_+$.

Definition

T is of *weak type* (r, r) if there is a constant $C_r > 0$ such that for any $x \in L^r(\mathcal{M})_+$ and any $\theta > 0$, there exists a projection $e^{(\theta)} = e_x^{(\theta)}$ satisfying, for all $n \geq 1$,
Let $T = (T_n)_{n \geq 1}$ be a sequence of maps $T_n : L^r(\mathcal{M})_+ \to S(\sigma)_+$.

Definition

T is of weak type (r, r) if there is a constant $C_r > 0$ such that for any $x \in L^r(\mathcal{M})_+$ and any $\theta > 0$, there exists a projection $e^{(\theta)} = e^{(\theta)}_x$ satisfying, for all $n \geq 1$,

$$
\sigma(1 - e^{(\theta)}) \leq (C_r \theta^{-1})^r \|x\|_{L^r(\mathcal{M})}^r \quad \text{and} \quad e^{(\theta)} T_n(x) e^{(\theta)} \leq \theta.
$$
Let $T = (T_n)_{n \geq 1}$ be a sequence of maps $T_n : L^r(\mathcal{M})_+ \rightarrow S(\sigma)_+$.

Definition

T is of *weak type* (r, r) if there is a constant $C_r > 0$ such that for any $x \in L^r(\mathcal{M})_+$ and any $\theta > 0$, there exists a projection $e^{(\theta)} = e^{(\theta)}_x$ satisfying, for all $n \geq 1$,

$$
\sigma(1 - e^{(\theta)}) \leq (C_r \theta^{-1})^r \|x\|_{L^r(\mathcal{M})}^r \quad \text{and} \quad e^{(\theta)} T_n(x)e^{(\theta)} \leq \theta.
$$

T is of *restricted weak type* (r, r) if this only holds if x is a projection.
Let $T = (T_n)_{n \geq 1}$ be a sequence of maps $T_n : L^r(\mathcal{M})_+ \to S(\sigma)_+$.

Definition

T is of weak type (r, r) if there is a constant $C_r > 0$ such that for any $x \in L^r(\mathcal{M})_+$ and any $\theta > 0$, there exists a projection $e^{(\theta)} = e_x^{(\theta)}$ satisfying, for all $n \geq 1$,

$$
\sigma (1 - e^{(\theta)}) \leq (C_r \theta^{-1})^r \|x\|_{L^r(\mathcal{M})}^r \quad \text{and} \quad e^{(\theta)}T_n(x)e^{(\theta)} \leq \theta.
$$

T is of restricted weak type (r, r) if this only holds if x is a projection.

In the commutative case, if $T = \sup_{n \geq 1} T_n$ is of (restricted) weak type, then we can take $e_x^{(\theta)} = 1\{T(x) \leq \theta\}$.
Definition (Continued)

T is of strong type (r, r) if

$$\| (T_n(x))_{n \geq 1} \|_{L^r(\mathcal{N}; l^\infty)} \leq C_r \| x \|_{L^r(\mathcal{M})}.$$
Definition (Continued)

T is of strong type (r, r) if

$$
\|(T_n(x))_{n \geq 1}\|_{L^r(N; l^\infty)} \leq C_r \|x\|_{L^r(M)}.
$$

Cuculescu showed in '71 that any increasing sequence of conditional expectations is of weak type $(1, 1)$.
Theorem (Junge & Xu, ’07)

Let $1 \leq p < q \leq \infty$. If $T = (T_n)_{n \geq 1}$ is a sequence of positive, subadditive maps and T is of weak type (p, p) and strong type (q, q).
Theorem (Junge & Xu, '07)

Let $1 \leq p < q \leq \infty$. If $T = (T_n)_{n \geq 1}$ is a sequence of positive, subadditive maps and T is of weak type (p, p) and strong type (q, q), then for any $p < r < q$,

$$\|(T_n(x))_{n \geq 1}\|_{L^r(\mathcal{N}; l^\infty)} \lesssim C_p^{1-\theta} C_q^{\theta} \left(\frac{rp}{r-p} \right)^2 \|x\|_{L^r(\mathcal{M})},$$

where θ is chosen such that $\frac{1}{r} = \frac{1}{p} - \theta + \frac{\theta}{q}$. This result should be regarded as a generalization of Marcinkiewicz' theorem. Together with Cuculescu's result, it yields Doob's maximal inequality with constant of optimal order.
Theorem (Junge & Xu, ’07)

Let $1 \leq p < q \leq \infty$. If $T = (T_n)_{n \geq 1}$ is a sequence of positive, subadditive maps and T is of weak type (p, p) and strong type (q, q), then for any $p < r < q$,

$$
\| (T_n(x))_{n \geq 1} \|_{L^r(N; l^\infty)} \lesssim C_p^{1-\theta} C_q^\theta \left(\frac{rp}{r-p} \right)^2 \| x \|_{L^r(M)},
$$

where θ is chosen such that $1/r = (1 - \theta)/p + \theta/q$.
Theorem (Junge & Xu, ’07)

Let $1 \leq p < q \leq \infty$. If $T = (T_n)_{n \geq 1}$ is a sequence of positive, subadditive maps and T is of weak type (p, p) and strong type (q, q), then for any $p < r < q$,

$$\| (T_n(x))_{n \geq 1} \|_{L^r(\mathcal{N}; l^\infty)} \lesssim C_p^{1-\theta} C_q^\theta \left(\frac{rp}{r-p} \right)^2 \| x \|_{L^r(\mathcal{M})},$$

where θ is chosen such that $1/r = (1 - \theta)/p + \theta/q$.

- This result should be regarded as a generalization of Marcinkiewicz’ theorem.
Theorem (Junge & Xu, ’07)

Let $1 \leq p < q \leq \infty$. If $T = (T_n)_{n \geq 1}$ is a sequence of positive, subadditive maps and T is of weak type (p, p) and strong type (q, q), then for any $p < r < q$,

$$\|(T_n(x))_{n \geq 1}\|_{L^r(N;L^\infty)} \lesssim C_p^{1-\theta} C_q^\theta \left(\frac{rp}{r-p}\right)^2 \|x\|_{L^r(M)},$$

where θ is chosen such that $1/r = (1-\theta)/p + \theta/q$.

- This result should be regarded as a generalization of Marcinkiewicz’ theorem.
- Together with Cuculescu’s result, it yields Doob’s maximal inequality with constant of optimal order.
For a measurable operator x we denote by $\mu(x)$ the *decreasing rearrangement* of x,

$$\mu_t(x) = \inf\{v > 0 : d(v; x) \leq t\} \quad (t \geq 0).$$
For a measurable operator x we denote by $\mu(x)$ the *decreasing rearrangement* of x,

$$\mu_t(x) = \inf\{v > 0 : d(v; x) \leq t\} \quad (t \geq 0).$$

We say that x is *submajorized* by y, notation $x \prec \prec y$, if

$$\int_0^t \mu_s(x) \, ds \leq \int_0^t \mu_s(y) \, ds \quad (t \geq 0).$$
For $0 < p < q < \infty$ define Calderón’s operator by

$$S_{p,q}f(t) = t^{-\frac{1}{p}} \int_{0}^{t} s^\frac{1}{p} f(s) \frac{ds}{s} + t^{-\frac{1}{q}} \int_{t}^{\infty} s^\frac{1}{q} f(s) \frac{ds}{s}.$$
For $0 < p < q < \infty$ define Calderón’s operator by

$$S_{p,q}f(t) = t^{-\frac{1}{p}} \int_0^t s^{\frac{1}{p}} f(s) \frac{ds}{s} + t^{-\frac{1}{q}} \int_t^\infty s^{\frac{1}{q}} f(s) \frac{ds}{s}$$

and set

$$S_{p,\infty}f(t) = t^{-\frac{1}{p}} \int_0^t s^{\frac{1}{p}} f(s) \frac{ds}{s} \quad (t > 0, \ f \in S(\mathbb{R}_+)).$$
For $0 < p < q < \infty$ define Calderón’s operator by

$$S_{p,q}f(t) = t^{-\frac{1}{p}} \int_0^t s^{\frac{1}{p}} f(s) \frac{ds}{s} + t^{-\frac{1}{q}} \int_t^\infty s^{\frac{1}{q}} f(s) \frac{ds}{s}$$

and set

$$S_{p,\infty}f(t) = t^{-\frac{1}{p}} \int_0^t s^{\frac{1}{p}} f(s) \frac{ds}{s} \quad (t > 0, \ f \in S(\mathbb{R}_+)).$$

Theorem (Calderón, ’66)

T is of restricted weak types (p, p) and (q, q) if and only if

$$\mu_t(T1_A) \lesssim_{p,q} \left(S_{p,q} \mu(1_A) \right)(t) \quad (t > 0)$$

*for all measurable sets A.**
Theorem (D., ’12)

Fix $1 \leq p < q \leq \infty$. Let $(T_n)_{n \geq 1}$ be a sequence of order preserving, sublinear operators which is of restricted weak types (p, p) and (q, q).
Theorem (D., ’12)

Fix $1 \leq p < q \leq \infty$. Let $(T_n)_{n \geq 1}$ be a sequence of order preserving, sublinear operators which is of restricted weak types (p, p) and (q, q). Let $p < p'$ and, if $q < \infty$, we fix $q' < q$. Then for any $x \in L^{p',1}(\mathcal{M})_+ + L^{q',1}(\mathcal{M})_+$ there exists an $a \in S(\sigma)_+$ such that

$$T_n(x) \leq a \quad n \geq 1$$
Theorem (D., ’12)

Fix $1 \leq p < q \leq \infty$. Let $(T_n)_{n \geq 1}$ be a sequence of order preserving, sublinear operators which is of restricted weak types (p, p) and (q, q). Let $p < p'$ and, if $q < \infty$, we fix $q' < q$. Then for any $x \in L_{p',1}^1({\mathcal{M}})_+ + L_{q',1}^1({\mathcal{M}})_+$ there exists an $a \in S(\sigma)_+$ such that

$$T_n(x) \leq a \quad n \geq 1$$

and

$$\mu(a) \ll K_{p,p',q,q'} \max\{C_p, C_q\} S_{p',q'} \mu(x),$$
Theorem (D., ’12)

Fix $1 \leq p < q \leq \infty$. Let $(T_n)_{n \geq 1}$ be a sequence of order preserving, sublinear operators which is of restricted weak types (p, p) and (q, q). Let $p < p'$ and, if $q < \infty$, we fix $q' < q$. Then for any $x \in L^{p',1}(M)_+ + L^{q',1}(M)_+$ there exists an $a \in S(\sigma)_+$ such that

$$T_n(x) \leq a \quad n \geq 1$$

and

$$\mu(a) \ll K_{p, p', q, q'} \max\{C_p, C_q\} S_{p', q'} \mu(x),$$

where

$$K_{p, p', q, q'} = O((p' - p)^{-1}) \text{ as } p' \downarrow p, \quad O((q - q')^{-1}) \text{ as } q' \uparrow q.$$
Corollary

Let $1 \leq p < r < q \leq \infty$. If T is of restricted weak types (p, p) and (q, q) with constants C_p and C_q,
Corollary

Let $1 \leq p < r < q \leq \infty$. If T is of restricted weak types (p, p) and (q, q) with constants C_p and C_q, then for any $x \in L^r(M)_+$,

$$\|T^n(x)\|_{L^q(N; l^\infty)} \lesssim \max\{C_p, C_q\} (rp^{-1} + rq^{-1}) \|x\|_{L^r(M)}.$$
Corollary

Let $1 \leq p < r < q \leq \infty$. If T is of restricted weak types (p, p) and (q, q) with constants C_p and C_q, then for any $x \in L^r(M)_+$,

$$
\|(T_n(x))_{n \geq 1}\|_{L^r(N;\ell^\infty)} \lesssim \max\{C_p, C_q\} \left(\frac{rp}{r - p} + \frac{rq}{q - r} \right)^2 \|x\|_{L^r(M)}.
$$

This result should be regarded as a generalization of the Stein-Weiss interpolation theorem. It implies Doob's maximal inequality with constant of optimal order.
Corollary

Let $1 \leq p < r < q \leq \infty$. If T is of restricted weak types (p, p) and (q, q) with constants C_p and C_q, then for any $x \in L^r(M)_+$,

$$\|(T_n(x))_{n \geq 1}\|_{L^r(N; l^\infty)} \lesssim \max\{C_p, C_q\} \left(\frac{rp}{r - p} + \frac{rq}{q - r}\right)^2 \|x\|_{L^r(M)}.$$

This result should be regarded as a generalization of the Stein-Weiss interpolation theorem.
Corollary

Let $1 \leq p < r < q \leq \infty$. If T is of restricted weak types (p, p) and (q, q) with constants C_p and C_q, then for any $x \in L^r(\mathcal{M})_+$,

$$\| (T_n(x))_{n \geq 1} \|_{L^r(\mathcal{N}; l^\infty)} \lesssim \max\{ C_p, C_q \} \left(\frac{rp}{r-p} + \frac{rq}{q-r} \right)^2 \| x \|_{L^r(\mathcal{M})}.$$

- This result should be regarded as a generalization of the Stein-Weiss interpolation theorem.
- It implies Doob’s maximal inequality with constant of optimal order.
A normed linear subspace E of $S(\mathbb{R}_+)$ is called a *symmetric space* on \mathbb{R}_+ if it is complete and if
A normed linear subspace E of $S(\mathbb{R}_+)$ is called a *symmetric space* on \mathbb{R}_+ if it is complete and if

$$ f \in S(\mathbb{R}_+), \ g \in E, \ \mu(f) \leq \mu(g) \Rightarrow f \in E \text{ and } \|f\|_E \leq \|g\|_E. $$
A normed linear subspace E of $S(\mathbb{R}_+)$ is called a symmetric space on \mathbb{R}_+ if it is complete and if
\[
f \in S(\mathbb{R}_+), \quad g \in E, \quad \mu(f) \leq \mu(g) \Rightarrow f \in E \quad \text{and} \quad \|f\|_E \leq \|g\|_E.
\]
It is called fully symmetric if moreover,
\[
f \in S(\mathbb{R}_+), \quad g \in E, \quad f \lll g \Rightarrow f \in E \quad \text{and} \quad \|f\|_E \leq \|g\|_E.
\]
A normed linear subspace E of $S(\mathbb{R}_+)$ is called a symmetric space on \mathbb{R}_+ if it is complete and if

$$f \in S(\mathbb{R}_+), \ g \in E, \ \mu(f) \leq \mu(g) \Rightarrow f \in E \text{ and } \|f\|_E \leq \|g\|_E.$$

It is called fully symmetric if moreover,

$$f \in S(\mathbb{R}_+), \ g \in E, \ f \ll g \Rightarrow f \in E \text{ and } \|f\|_E \leq \|g\|_E.$$

Examples: L^p-spaces, Lorentz spaces, Orlicz spaces,...
A normed linear subspace E of $S(\mathbb{R}_+)$ is called a symmetric space on \mathbb{R}_+ if it is complete and if

$$f \in S(\mathbb{R}_+), \ g \in E, \ \mu(f) \leq \mu(g) \Rightarrow f \in E \text{ and } \|f\|_E \leq \|g\|_E.$$

It is called fully symmetric if moreover,

$$f \in S(\mathbb{R}_+), \ g \in E, \ f \ll g \Rightarrow f \in E \text{ and } \|f\|_E \leq \|g\|_E.$$

Examples: L^p-spaces, Lorentz spaces, Orlicz spaces,...

We can define an associated noncommutative version by

$$E(\mathcal{M}, \tau) := \{x \in S(\tau) : \|\mu(x)\|_E < \infty\}.$$

This is a Banach space under the norm $\|x\|_{E(\mathcal{M})} := \|\mu(x)\|_E$.
A normed linear subspace E of $S(\mathbb{R}_+)$ is called a *symmetric space* on \mathbb{R}_+ if it is complete and if

$$f \in S(\mathbb{R}_+), \ g \in E, \ \mu(f) \leq \mu(g) \Rightarrow f \in E \text{ and } \|f\|_E \leq \|g\|_E.$$

It is called *fully symmetric* if moreover,

$$f \in S(\mathbb{R}_+), \ g \in E, \ f \ll g \Rightarrow f \in E \text{ and } \|f\|_E \leq \|g\|_E.$$

Examples: L^p-spaces, Lorentz spaces, Orlicz spaces,...

We can define an associated noncommutative version by

$$E(\mathcal{M}, \tau) := \{x \in S(\tau) : \ |\mu(x)|_E < \infty\}.$$

This is a Banach space under the norm $\|x\|_{E(\mathcal{M})} := \|\mu(x)\|_E$.

We let $E(\mathcal{M}; l^\infty)_+$ denote the set of all sequences $x = (x_n)_{n \geq 1}$ in $E(\mathcal{M})_+$ for which there exists an $a \in E(\mathcal{M})_+$ such that $x_n \leq a$ for all $n \geq 1$. For these elements we set

$$\|x\|_{E(\mathcal{M}; l^\infty)} := \inf \{\|a\|_{E(\mathcal{M})} : \ x_n \leq a \text{ for all } n \geq 1\}.$$
For any $0 < a < \infty$ we define the dilation operator D_a on $S(\mathbb{R}_+)$

$$(D_a f)(s) = f(as) \quad (s \in \mathbb{R}_+).$$
For any $0 < a < \infty$ we define the dilation operator D_a on $S(\mathbb{R}_+)$

$$(D_a f)(s) = f(as) \quad (s \in \mathbb{R}_+).$$

If E is a symmetric space, then its Boyd indices are given by
For any $0 < a < \infty$ we define the dilation operator D_a on $S(\mathbb{R}_+)$

$$(D_a f)(s) = f(as) \quad (s \in \mathbb{R}_+).$$

If E is a symmetric space, then its *Boyd indices* are given by

$$
p_E := \lim_{s \to \infty} \frac{\log s}{\log \| D_{1/s} \|}, \quad q_E := \lim_{s \downarrow 0} \frac{\log s}{\log \| D_{1/s} \|}
$$

Theorem (Boyd, ’69)

*Let E be a symmetric space on \mathbb{R}_+.***
For any $0 < a < \infty$ we define the dilation operator D_a on $S(\mathbb{R}_+)$

$$(D_a f)(s) = f(as) \quad (s \in \mathbb{R}_+).$$

If E is a symmetric space, then its Boyd indices are given by

$$p_E := \lim_{s \to \infty} \frac{\log s}{\log \| D_{1/s} \|}, \quad q_E := \lim_{s \downarrow 0} \frac{\log s}{\log \| D_{1/s} \|}.$$

Theorem (Boyd, ’69)

Let E be a symmetric space on \mathbb{R}_+.

1. If $0 < p < q < \infty$, then $S_{p,q}$ is bounded on E if and only if $p < p_E \leq q_E < q$.
For any $0 < a < \infty$ we define the dilation operator D_a on $S(\mathbb{R}_+)$

$$(D_a f)(s) = f(as) \quad (s \in \mathbb{R}_+).$$

If E is a symmetric space, then its Boyd indices are given by

$$p_E := \lim_{s \to \infty} \frac{\log s}{\log \| D_{1/s} \|}, \quad q_E := \lim_{s \downarrow 0} \frac{\log s}{\log \| D_{1/s} \|}.$$

Theorem (Boyd, ’69)

Let E be a symmetric space on \mathbb{R}_+. Then:

1. **If** $0 < p < q < \infty$, then $S_{p,q}$ is bounded on E if and only if $p < p_E \leq q_E < q$.

2. **If** $0 < p < \infty$, then $S_{p,\infty}$ is bounded on E if and only if $p < p_E$.

For any $0 < a < \infty$ we define the dilation operator D_a on $S(\mathbb{R}_+)$

$$(D_a f)(s) = f(as) \quad (s \in \mathbb{R}_+).$$

If E is a symmetric space, then its Boyd indices are given by

$$p_E := \lim_{s \to \infty} \frac{\log s}{\log \|D_{1/s}\|}, \quad q_E := \lim_{s \downarrow 0} \frac{\log s}{\log \|D_{1/s}\|}.$$

Theorem (Boyd, ’69)

Let E be a symmetric space on \mathbb{R}_+.

1. If $0 < p < q < \infty$, then $S_{p,q}$ is bounded on E if and only if $p < p_E \leq q_E < q$.
2. If $0 < p < \infty$, then $S_{p,\infty}$ is bounded on E if and only if $p < p_E$.

As a consequence, all sublinear operators of restricted weak types (p, p) and (q, q) are bounded on E if $p < p_E \leq q_E < q$.

Sjoerd Dirksen
Noncommutative weak type interpolation
Theorem (D., ’12)

Let $1 \leq p < q \leq \infty$ and let E be a fully symmetric space on \mathbb{R}_+.

Improves earlier result of Bekjan, Chen and Osekowski (’12), who prove this for T of weak type (p, p) and (∞, ∞) with suboptimal interpolation constant.
Theorem (D., ’12)

Let $1 \leq p < q \leq \infty$ and let E be a fully symmetric space on \mathbb{R}_+. Let $(T_n)_{n \geq 1}$ be a sequence of order preserving, sublinear maps which is of restricted weak types (p, p) and (q, q).

Improves earlier result of Bekjan, Chen and Osekowski (’12), who prove this for T of weak type (p, p) and (∞, ∞) with suboptimal interpolation constant.
Theorem (D., '12)

Let $1 \leq p < q \leq \infty$ and let E be a fully symmetric space on \mathbb{R}_+. Let $(T_n)_{n \geq 1}$ be a sequence of order preserving, sublinear maps which is of restricted weak types (p, p) and (q, q). If $p < p' < p_E$ and either $q_E < q' < q < \infty$ or $q = \infty$, then for any $x \in E(\mathcal{M})_+$,

$$\left\| (T_n(x))_{n \geq 1} \right\|_{E(\mathcal{N}; l_{\infty})} \leq \max\{C_p, C_q\} K_{p, p', q, q'} \left\| S_{p', q'} \right\|_{E \rightarrow E} \left\| x \right\|_{E(\mathcal{M})}.$$
Theorem (D., ’12)

Let $1 \leq p < q \leq \infty$ and let E be a fully symmetric space on \mathbb{R}_+. Let $(T_n)_{n \geq 1}$ be a sequence of order preserving, sublinear maps which is of restricted weak types (p, p) and (q, q). If $p < p' < p_E$ and either $q_E < q' < q < \infty$ or $q = \infty$, then for any $x \in E(\mathcal{M})_+$,

$$\left\| \left(T_n(x) \right)_{n \geq 1} \right\|_{E(N; l^{\infty})} \leq \max \{ C_p, C_q \} K_{p,p',q,q'} \left\| S_{p',q'} \right\|_{E \rightarrow E} \| x \|_{E(\mathcal{M})}.$$

Improves earlier result of Bekjan, Chen and Oşekowski (’12), who prove this for T of weak type (p, p) and (∞, ∞) with suboptimal interpolation constant.
Corollary

Let \(\mathcal{M} \) be a semi-finite von Neumann algebra and let \((\mathcal{E}_n)_{n \geq 1}\) be an increasing sequence of conditional expectations in \(\mathcal{M} \). If \(E \) is a symmetric space on \(\mathbb{R}_+ \) with \(p_E > 1 \), then there is a constant \(C_E \) depending only on \(E \) such that
Corollary

Let \mathcal{M} be a semi-finite von Neumann algebra and let $(\mathcal{E}_n)_{n \geq 1}$ be an increasing sequence of conditional expectations in \mathcal{M}. If E is a symmetric space on \mathbb{R}_+ with $p_E > 1$, then there is a constant C_E depending only on E such that

$$\left\| \left(\mathcal{E}_n(x) \right)_{n \geq 1} \right\|_{E(\mathcal{M}; l^\infty)} \leq C_E \| x \|_{E(\mathcal{M})} \quad (x \in E(\mathcal{M})).$$
Corollary

Let \mathcal{M} be a semi-finite von Neumann algebra and let $(\mathcal{E}_n)_{n \geq 1}$ be an increasing sequence of conditional expectations in \mathcal{M}. If E is a symmetric space on \mathbb{R}_+ with $p_E > 1$, then there is a constant C_E depending only on E such that

$$
\| (\mathcal{E}_n(x))_{n \geq 1} \|_{E(\mathcal{M}; l\infty)} \leq C_E \| x \|_{E(\mathcal{M})} \quad (x \in E(\mathcal{M})).
$$

If $p > 1$ then C_{L^p} is of optimal order $O((p - 1)^{-2})$ as $p \downarrow 1$.

Sjoerd Dirksen
Noncommutative weak type interpolation
Lemma (Special case: projections)

Fix $0 < p < q \leq \infty$. Let $(T_n)_{n \geq 1}$ be a sequence of positive maps of restricted weak types (p, p) and (q, q).
Lemma (Special case: projections)

Fix $0 < p < q \leq \infty$. Let $(T_n)_{n \geq 1}$ be a sequence of positive maps of restricted weak types (p, p) and (q, q). Let $p < p' < q' < q$. If $q < \infty$ and f is a projection, then there exists an $a \in S(\sigma)_+$ such that
Lemma (Special case: projections)

Fix $0 < p < q \leq \infty$. Let $(T_n)_{n \geq 1}$ be a sequence of positive maps of restricted weak types (p, p) and (q, q). Let $p < p' < q' < q$. If $q < \infty$ and f is a projection, then there exists an $a \in S(\sigma)_+$ such that

$$T_n(f) \leq a \quad (n \geq 1)$$

and
Lemma (Special case: projections)

Fix $0 < p < q \leq \infty$. Let $(T_n)_{n \geq 1}$ be a sequence of positive maps of restricted weak types (p, p) and (q, q). Let $p < p' < q' < q$. If $q < \infty$ and f is a projection, then there exists an $a \in S(\sigma)_+$ such that

$$T_n(f) \leq a \quad (n \geq 1)$$

and

$$\mu_t(a) \leq \max \{C_p, C_q\} \ K_{p',p',q,q'} \ S_{p',q'} \mu(f)(t) \quad (t > 0).$$
Proof of main result.

Consider dyadic discretization \(\hat{x} = \sum_{j \in \mathbb{Z}} 2^{j+1} \lambda(2^j, 2^{j+1}) (x) \).
Proof of main result.

Consider dyadic discretization \(\hat{x} = \sum_{j \in \mathbb{Z}} 2^{j+1} \lambda_{(2^j, 2^{j+1}]}(x) \). Then, \(x \leq \hat{x} \leq 2x \).
Proof of main result.

Consider dyadic discretization \(\hat{x} = \sum_{j \in \mathbb{Z}} 2^{j+1} \lambda_{(2^j, 2^{j+1})}(x) \). Then, \(x \leq \hat{x} \leq 2x \). By summation by parts

\[
\hat{x} = \sum_{k \in \mathbb{Z}} 2^k \lambda_{(2^k, \infty)}(x)
\]

\[
\mu(\hat{x}) = \sum_{k \in \mathbb{Z}} 2^k \mu(\lambda_{(2^k, \infty)}(x)).
\]
Proof of main result.

Consider dyadic discretization $\hat{x} = \sum_{j \in \mathbb{Z}} 2^{j+1} \lambda_{(2^j,2^{j+1}]}(x)$. Then, $x \leq \hat{x} \leq 2x$. By summation by parts

\[
\hat{x} = \sum_{k \in \mathbb{Z}} 2^k \lambda_{(2^k,\infty)}(x)
\]

\[
\mu(\hat{x}) = \sum_{k \in \mathbb{Z}} 2^k \mu(\lambda_{(2^k,\infty)}(x)).
\]

Apply lemma to $\lambda_{(2^k,\infty)}(x)$ to find a majorant a_k. Define

\[
a = \sum_{k \in \mathbb{Z}} 2^k a_k.
\]
Proof, continued.

\[\mu(a) \ll \sum_{k \in \mathbb{Z}} 2^k \mu(a_k) \]
\[\leq \max\{C_p, C_q\} K_{p',q',q'} \sum_{k \in \mathbb{Z}} 2^k S_{p',q'} \mu(f_k) \]
\[\leq \max\{C_p, C_q\} K_{p',q',q'} S_{p',q'} \mu(\hat{x}) \]
\[\leq 2 \max\{C_p, C_q\} K_{p',q',q'} S_{p',q'} \mu(x). \]
Proof of the lemma.

For $\theta > 1$ fix a projection $e_{q}^{(\theta)}$ and for $0 < \theta \leq 1$ we pick $e_{p}^{(\theta)}$ such that

$$\sigma(1 - e^{(\theta)}) \leq (C_{r}\theta^{-1})^{r}\tau(f) \quad \text{and} \quad e^{(\theta)}T_{n}(f)e^{(\theta)} \leq \theta.$$

for $r = q$ and $r = p$.
Proof of the lemma.

For $\theta > 1$ fix a projection $e_{q}^{(\theta)}$ and for $0 < \theta \leq 1$ we pick $e_{p}^{(\theta)}$ such that

$$
\sigma(1 - e^{(\theta)}) \leq (C r \theta^{-1})^r \tau(f) \quad \text{and} \quad e^{(\theta)} T_n(f) e^{(\theta)} \leq \theta.$$

for $r = q$ and $r = p$. For every $k \in \mathbb{Z}$ define

$$
e_k = \left(\bigwedge_{l \geq k} e_{q}^{(2^l)} \right) (k > 0), \quad e_k = \left(\bigwedge_{0 \leq l \leq k} e_{p}^{(2^l)} \right) \wedge \left(\bigwedge_{l \geq 0} e_{q}^{(2^l)} \right) (k \leq 0)$$
Proof of the lemma.

For $\theta > 1$ fix a projection $e_q^{(\theta)}$ and for $0 < \theta \leq 1$ we pick $e_p^{(\theta)}$ such that

$$
\sigma(1 - e^{(\theta)}) \leq (C_r \theta^{-1})^r \tau(f) \quad \text{and} \quad e^{(\theta)} T_n(f) e^{(\theta)} \leq \theta.
$$

for $r = q$ and $r = p$. For every $k \in \mathbb{Z}$ define

$$
e_k = \left(\bigwedge_{l \geq k} e_q^{(2^l)} \right) \quad (k > 0), \quad e_k = \left(\bigwedge_{0 \leq l \leq k} e_p^{(2^l)} \right) \wedge \left(\bigwedge_{l \geq 0} e_q^{(2^l)} \right) \quad (k \leq 0)
$$

Set $d_k = e_k - e_{k-1}$. Define
Proof of the lemma.

For $\theta > 1$ fix a projection $e^{(\theta)}_q$ and for $0 < \theta \leq 1$ we pick $e^{(\theta)}_p$ such that

$$
\sigma(1 - e^{(\theta)}) \leq (C r \theta^{-1})^r \tau(f) \quad \text{and} \quad e^{(\theta)} T_n(f) e^{(\theta)} \leq \theta.
$$

for $r = q$ and $r = p$. For every $k \in \mathbb{Z}$ define

$$
e_k = \left(\bigwedge_{l \geq k} e^{(2^l)}_q \right) (k > 0), \quad e_k = \left(\bigwedge_{0 \leq l \leq k} e^{(2^l)}_p \right) \wedge \left(\bigwedge_{l \geq 0} e^{(2^l)}_q \right) (k \leq 0)
$$

Set $d_k = e_k - e_{k-1}$. Define

$$
a = K_{p,p',q,q'} \left(\sum_{-\infty < k \leq 0} 2^{(k-1)p/p'} d_k + \sum_{k > 0} 2^{(k-1)q/q'} d_k \right).
$$