Revisiting the endocrine and metabolic manifestations of COVID-19 two years into the pandemic

A. Giustina1 · J. P. Bilezikian2

Accepted: 11 February 2022 / Published online: 19 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
An extraordinary effort of the universal endocrine community has led to important insights into endocrine and metabolic aspects of COVID-19. In this Editorial, we introduce a special issue of Reviews in Endocrine and Metabolic Disorders that calls attention, through the efforts of internationally recognized experts in the field, to features that are now widely recognized as endocrine and metabolic manifestations of COVID-19. These advances in our knowledge have seminal implications for how we can prevent and manage these aspects of COVID-19.

Keywords COVID-19 · Vaccination · Endocrine Phenotype · Vitamin D · Calcium · Pituitary

1 Introduction

Two years into the COVID-19 pandemic, it is now apparent that it is an evolving clinical scenario in which, somewhat surprisingly, endocrinologists have discovered themselves heavily involved not only in waging the front-line battle against the pandemic [1] but also in describing endocrine and metabolic phenotypes of the disease including possible endocrine consequences of vaccination efforts [2, 3].

From the early days in 2020, when Coronavirus 2 (SARS-CoV-2) was primarily a respiratory syndrome, the disease is now known to harbor the potential to become a multi-system disorder. The extra-pulmonary signs, symptoms, and comorbidities contribute importantly to the morbidity and mortality of the disease [4]. Undoubtedly, the ubiquity of the angiotensin-converting enzyme 2 (ACE2), the cognate receptor for SARS-CoV-2, allows facile entry of viral particles to all organs and potentially to all cells [5].

Based upon the pervasive involvement of the endocrine system in many manifestations of COVID-19, as well as the knowledge gained over the past two years, we are dedicating this special issue of Reviews in Endocrine and Metabolic Diseases to summarize these new insights. We are pleased that the contributors to this special issue are among the most authoritative and knowledgeable experts in the world.

2 Main components of the endocrine and metabolic phenotype of COVID-19 and their clinical impact

Several aspects of endocrine and metabolic involvement in COVID-19, to be reviewed in this special issue, have emerged as key features of the disease regarding epidemiological, mechanistic, and clinical features. Altogether, they form prognostic elements of COVID-19 outcomes [2, 3].

For example, poorly controlled diabetes mellitus and obesity were identified early in the pandemic as frequent comorbidities of the disease, affecting about 20% of hospitalized patients. Related to these metabolic disorders but also as an independent factor, low vitamin D levels increase the risk of severe manifestations of COVID-19 [6, 7]. SARS-CoV-2 can also directly damage beta cell pancreatic function leading to new onset diabetes and creating a sort of bidirectional relationship between viral infection and deranged glucose metabolism [8]. The increasingly recognized prognostic role of these common metabolic conditions has raised further attention to the importance of nutritional aspects before, during and after COVID-19 [9, 10]. Male sex and advanced
age were also associated with disease severity although the role of sex hormones is not yet completely clarified [11, 12].

Other aspects of metabolic derangements in COVID-19, besides low vitamin D levels, are hypocalcemia and morphometric vertebral fractures among those hospitalized for the disease [13]. As many as two thirds of hospitalized patients have been reported with low vitamin D levels [14] and hypocalcemia [15–18]. These biochemical abnormalities may be related to an insufficient compensatory PTH response [19] due, at least in part, to the host inflammatory response and several clinical parameters of disease severity such as need for mechanical ventilation, ICU admission and mortality [20]. Interestingly, widespread lack of vitamin D in Southern European Countries [21] was suggested from the beginning of the pandemic as one of the possible risk factors for severe COVID-19 [22]. The relationship between hypovitaminosis D and these outcome data is likely to be related to impaired innate and adaptive immunity [23, 24]. Supporting this concept are studies that have demonstrated the efficacy of vitamin D supplementation in protecting against respiratory infections [25]. The mechanistic links between vitamin D insufficiency and higher risk and greater severity of SARS-CoV-2 infection are under active investigation [26]. To this point, vitamin D status, in several cross-sectional studies, predict the degree of pulmonary involvement [27]. Finally, vitamin D supplementation appears to have a key role in disease prevention although some, but not all, pilot trials, have shown that vitamin D administration to COVID-19 hospitalized patients also attenuate the severity of the disease [28, 29].

The osteo-metabolic phenotype of COVID-19 [13] also includes a high prevalence of radiological thoracic vertebral fracture (affecting one third of hospitalized patients [30]. Vertebral fractures were proposed as a marker of frailty in the disease and their severity significantly predicted mortality. These findings underscored the importance of maintaining any type of anti-osteoporosis therapy for those with osteoporosis and COVID-19 [31].

Pituitary diseases have also been reported to be clinically relevant in COVID-19 [32]. In fact, several studies reported that patients with Cushing’s disease were at higher risk of SARS-Cov-2 infection as compared to the general population. Increased severity of COVID-19 was observed in patients with active disease [33] suggesting that chronic uncontrolled hypercortisolism may be mechanistically relevant in this clinical context [34].

Moreover, a specific involvement of the pituitary in the endocrine phenotype of COVID-19 was recently observed with hypopituitarism, pituitary apoplexy, hyponatremia and hypophysitis as main features [34, 35]. Furthermore, patients with hypopituitarism can be affected by comorbidities such as diabetes mellitus, obesity, and vertebral fractures which per se may predispose them to severe COVID-19 [36, 37].

3 The endocrine system and COVID-19 vaccination

As a result of an unprecedented world-wide effort, vaccination against COVID-19 has become universally available [38]. Related safety issues in patients with endocrine diseases particularly those with autoimmune problems as well as those with hypoadrenalism were of some concern for the endocrine community. According to an ESE statement [1], COVID-19 vaccination was endorsed for patients with stable endocrine conditions similar to the general population. Interestingly, an increased number of cases of post vaccine mild Graves disease has been recently reported in both men and women [39] possibly in the context of associated autoimmune responses to the adjuvants (ASIA). For example, in the case of mRNA vaccines, it could be related to polyethylene glicol–containing lipoids and for modified viral vaccines to oil-in-water excipients such as polysorbate. These very recent data suggest a consideration in vaccinating patients with Graves disease. In this regard, checking thyroid function in patients with prolonged post vaccine symptoms, if similar to thyrotoxicosis (e.g. fever, palpitations, asthenia) may be reasonable particularly if there is a positive history of autoimmune thyroid and non-thyroidal disease [39].

4 Conclusions

We have had the honor and pleasure to serve as Guest Editors of this special issue of Reviews in Endocrine and Metabolic Disease. It represents the efforts of many endocrinologists around the world. As a result, we hope you will gain new insights from these experts who have contributed so importantly to improved understanding of the endocrine and metabolic aspects of COVID-19.

Declarations

Conflicts of interest No sources of funding, financial or non-financial interests are declared. Due to the nature of the article (review) no study-specific approval by the appropriate ethics committee for research involving humans and/or animals, neither informed consent if the research involved human participants, and a statement on welfare of animals if the research involved animals is provided.

References

1. Giustina A, Marazuela M, Reincke M, Yildiz BO, Puig-Domingo M. One year of the pandemic - how European endocrinologists responded to the crisis: a statement from the European Society of
1. Puig-Domingo M, Marazuela M, Giustina A. COVID-19 and endocrine diseases. A statement from the European Society of Endocrinology. Endocrinology. 2020;68(1):2–5. https://doi.org/10.1210/endo-2020-02294-5. PMID: 32279224; PMCID: PMC7150529.

2. Marazuela M, Giustina A, Puig-Domingo M. Endocrine and metabolic aspects of the COVID-19 pandemic. Rev Endocr Metab Disord. 2020;21(4):495–507. https://doi.org/10.1007/s11154-020-09569-2. PMID:32643004; PMCID:PMC7343578.

3. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Shrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, Freedberg DE, Kirtane AJ, Parikh SA, Maurer MS, Nordvig AS, Accili D, Bathon JM, Mohamed SA, Bolarinwa T, Kaufman B, Leong K, Krumholz HM, Uriel N, Mehran MR, Elkind MSV, Stone GW, Schwartz A, Ho DD, Bilezikian JP, Landry DW. Extrapolatory manifestations of COVID-19. Nat Med. 2020;26(7):1017–32. https://doi.org/10.1038/s41591-020-0968-3. Epub 2010 Jul PMID: 32651579.

4. Soldevilla B, Puig-Domingo M, Marazuela M. Basic mechanisms of SARS-CoV-2 infection. What endocrine systems could be implicated? Rev Endocr Metab Disord. 2021;1:1–4. https://doi.org/10.1007/s11154-021-09678-6. Epub ahead of print. PMID: 34333732; PMCID:PMC8325622.

5. Giustina A. Hypovitaminosis D and the endocrine phenotype of COVID-19. Endocrine. 2021;72(1):1–11. https://doi.org/10.1007/s12020-021-02671-8. Epub 18 Mar 2021. PMID:33738708; PMCID:PMC7972333.

6. di Filippo L, Allora A, Doga M, Formenti AM, Locatelli M, Rovere Querini P, Frara S, Giustina A. Vitamin D Levels Are Associated With Blood Glucose and BMI in COVID-19 Patients, Predicting Disease Severity. J Clin Endocrinol Metab. 2022;107(1):e348–60. https://doi.org/10.1210/clinem/dgab599. PMID:34383926; PMCID:PMC8385994.

7. Rubino F, Amiel SA, Zimmert P, Alberti G, Bornstein S, Eckel RH, Mingrone G, Boehm B, Cooper ME, Chai Z, Del Prato S, Ji L, Bilezikian JP, Landry DW, Nair N, Babalyan V, Hutchings N, Napoli N, Accili D, Bikle D, Covacci A, Camargo CA Jr, Sluyter JD, Aglipay M, Aloia JF, Baranzini BE, Bachmann LM, Bergman P, Bischoff-Ferrari HA, Borzutzky A, Damsgaard CT, Dubnov-Raz G, Esposito S, Gilham C, Ginde AA, Ganmaa D, Bergman P, Bischoff-Ferrari HA, Borzutzky A, Damsgaard CT, Dubnov-Raz G, Esposito S, Gilham C, Ginde AA, Golan-Tripto I, Goodall EC, Grant CC, Griffiths CJ, Hibbs AM, Janssens W, Khadilkar AV, Lakis I, Lee MT, Loebl M, Maguire JL, Majak P, Mauger DT, Made_TM, Brown-VIN, Dodge-Hughes B, Lips P, Munns CF, Lazaretti-Castro M, Formenti AM, Gupta A, Madhavan MV, Nair N, Babalyan V, Hutchings N, Napoli N, Accili D, Bikle D, Nundy S, Lombardi G, Napoli N, Giustina A. Vitamin D in the COVID-19 era: a review with recommendations from a GI.O.S.E.G. expert panel. Endocrine. 2021;72(3):597–603. https://doi.org/10.1007/s12020-021-02749-3. Epub 17 May 2021. PMID: 33999367; PMCID:PMC8127472.

8. Brandi ML, Giustina A. Sexual dimorphism of coronavirus 19 morbidity and lethality. Trends Endocrinol Metab. 2020.13:918–927. https://doi.org/10.1007/s13181-020-09003-4. Epub 24 Sep 2020. PMID:33082024; PMCID:PMC7513816.

9. Oguz SH, Koca M, Yildiz BO. Aging versus youth: Endocrine aspects of vulnerability for COVID-19. Rev Endocr Metab Disord. 2021;1:1–20. https://doi.org/10.1007/s11154-021-09656-y. Epub ahead of print. PMID:33660905; PMCID:PMC8050510.

10. di Filippo L, Frara S, Giustina A. The emerging osteo-metabolic phenotype of COVID-19: clinical and pathophysiological aspects. Nat Rev Endocrinol. 2021;17(8):445–6. https://doi.org/10.1038/s41574-021-00516-y. PMID:34079100; PMCID:PMC8170860.

11. Hertoghe C, Xue H, Wang S, Tan M, Zhao B, Bilezikian JP. Challenges with COVID-19. Endocrine. 2021;71(2):267–295. https://doi.org/10.1007/s12020-020-02597-7. Epub 16 Jan 2021. PMID:33452994; PMCID:PMC7811339.
Lancet Diabetes Endocrinol. 2021;9(5):276–92. https://doi.org/10.1016/S2213-8587(21)00051-6 (Epub 30 Mar 2021 PMID: 33798465).

26. Bikle DD. Vitamin D regulation of immune function during COVID-19. Rev Endocr Metab Disord. 2022;1:1–7. https://doi.org/10.1007/s11154-021-09707-4. Epub ahead of print. PMID: 35091881; PMCID: PMC8799423.

27. Bandeira L, Lazaretti-Castro M, Binkley N. Clinical aspects of SARS-CoV-2 infection and vitamin D: COVID-19 and the endocrine system: special issue for reviews in endocrine and metabolic disorders (Felipe Casaneueva, Editor in Chief) A. Giustina and JP Bilezikian, Guest Editors. Rev Endocr Metab Disord. 2021;1–5. https://doi.org/10.1007/s11154-021-09683-9. Epub ahead of print. PMID: 34559361; PMCID: PMC8460842.

28. Bandeira L, Lazaretti-Castro M, Binkley N, Bouillon R, Lazaretti-Castro M, Marcocci C, Napoli N, Rizzoli R, Giustina A. Vitamin D: Dosing, levels, form, and route of administration: Does one approach fit all? Rev Endocr Metab Disord. 2021;22(4):1201–1218. https://doi.org/10.1007/s11154-021-09693-7. Epub 23 Dec 2021. PMID: 34940947; PMCID: PMC8696970.

29. Enrenas Castillo M, Enrenas Costa LM, Vaquerio Barrios JM, Alcalá Díaz JF, López Miranda J, Bouillon R, Quesada Gomez JM. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751. https://doi.org/10.1016/j.jsbmb.2020.105751.

30. di Filippo L, Formenti AM, Doga M, Pedone E, Rovere-Querini P, Giustina A. Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict disease outcomes. J Clin Endocrinol Metab. 2021;106(2):e602–14. https://doi.org/10.1210/clinem/dgaa738. PMID:33159451; PMCID: PMC7797747.020Aug29.PMID: 32871238;PMCID:PMC7456194.

31. Formenti AM, Pedone E, di Filippo L, Ulivieri FM, Giustina A. Are women with osteoporosis treated with denosumab at risk of severe COVID-19? Endocrine. 2020;70(2):203–205. https://doi.org/10.1007/s12020-020-02500-4. Epub 20 Sep 2020. PMID: 32951069; PMCID: PMC7502215.

32. Frara S, Allora A, Castellino L, di Filippo L, Loli P, Giustina A. COVID-19 and the pituitary. Pituitary. 2021;24(3):465–481. https://doi.org/10.1007/s11102-021-0148-1. Epub 3 May 2021. PMID: 33939057; PMCID: PMC8089131.

33. Belaya Z, Goloumina O, Melnichenko G, Tarbaeva N, Pushkova E, Gorokhov M, Kalashnikov V, Dzeranova L, Fadeev V, Volchkov P, Dedov I. Clinical course and outcome of patients with ACTH-dependent Cushing’s syndrome infected with novel coronavirus disease-19 (COVID-19): case presentations. Endocrine. 2021;1:1–8. https://doi.org/10.1007/s12020-021-02674-5. Epub ahead of print. PMID: 33713312; PMCID: PMC7955209.

34. Vogel F, Reincke M. Endocrine risk factors for COVID-19: Endogenous and exogenous glucocorticoid excess. Rev Endocr Metab Disord. 2021;1:18. https://doi.org/10.1007/s11154-021-09670-0. Epub ahead of print. PMID: 34241765; PMCID: PMC8267234.

35. Frara S, Loli P, Allora A, Santini C, di Filippo L, Mortini P, Fleseriu M, Giustina A. COVID-19 and hypopituitarism. Rev Endocr Metab Disord. 2021;1:1–17. https://doi.org/10.1007/s11154-021-09672-y. Epub ahead of print. PMID: 34387832; PMCID: PMC8363093.

36. Mazziozzi G, Doga M, Frara S, Maffeizzi F, Porcelli T, Cerri L, Maroldi R, Giustina A. Incidence of morphometric vertebral fractures in adult patients with growth hormone deficiency. Endocrine. 2016;52(1):103–10. https://doi.org/10.1007/s12020-015-0738-z (Epub 3 Oct 2015 PMID: 26433736).

37. Gazzaruso C, Gola M, Karamouzis I, Giubbini R, Giustina A. Cardiovascular risk in adult patients with growth hormone (GH) deficiency and following substitution with GH—an update. J Clin Endocrinol Metab. 2014;99(1):18–29. https://doi.org/10.1210/jc.2013-2394 (Epub 20 Dec 2013 PMID: 24217903).

38. Polack FP, Thomas SJ, Kitchin N, Absalon J,urtman A, Lockhart S, Perez JL, Perez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychohadhury K, Koury K, Li P, Kalina WV, Cooper D, Frenck RW, Hammitt LL Jr, Tureci O, Nell H, Schaefer A, Unal S, Tresnan KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW, Hammitt LL Jr, Tureci O, Nell H, Schaefer A, Unal S, Tresnan KA, Mather S, Dormitzer PR, Sahin U, Jansen KU, Gruber WC, Group CCT. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15. https://doi.org/10.1056/NEJMoa2034577.

39. di Filippo L, Castellino L, Giustina A. Occurrence and response to treatment of Graves’ disease after COVID vaccination in two male patients. Endocrine. 2022;75(1):19–21. https://doi.org/10.1007/s12020-021-02919-3. Epub 2 Nov 2021. PMID: 34727295; PMCID: PMC8561079.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.