Three Hybrid Scatter Search Algorithms for Multi-Objective Job Shop Scheduling Problem

Leo Hernández-Ramírez 1, Juan Frausto-Solís 1,*,†, Guadalupe Castilla-Valdez 2,*,†, Javier González-Barbosa 1 and Juan-Paulo Sánchez Hernández 2

Abstract: The Job Shop Scheduling Problem (JSSP) consists of finding the best scheduling for a set of jobs that should be processed in a specific order using a set of machines. This problem belongs to the NP-hard class problems and has enormous industrial applicability. In the manufacturing area, decision-makers consider several criteria to elaborate their production schedules. These cases are studied in multi-objective optimization. However, few works are addressed from this multi-objective perspective. The literature shows that multi-objective evolutionary algorithms can solve these problems efficiently; nevertheless, multi-objective algorithms have slow convergence to the Pareto optimal front. This paper proposes three multi-objective Scatter Search hybrid algorithms that improve the convergence speed evolving on a reduced set of solutions. These algorithms are: Scatter Search/Local Search (SS/LS), Scatter Search/Chaotic Multi-Objective Threshold Accepting (SS/CMOTA), and Scatter Search/Chaotic Multi-Objective Simulated Annealing (SS/CMOSA). The proposed algorithms are compared with the state-of-the-art algorithms IMOEA/D, CMOSA, and CMOTA, using the MID, Spacing, HV, Spread, and IGD metrics; according to the experimental results, the proposed algorithms achieved the best performance. Notably, they obtained a 47% reduction in the convergence time to reach the optimal Pareto front.

Keywords: JSSP; Scatter Search; CMOSA; CMOTA; hybrid algorithms

1. Introduction

The Job Shop Scheduling Problem (JSSP) consists of a set of jobs, formed by operations, which must be processed in a set of machines subject to restrictions of precedence and resource capacity. For a job to be completed, all of its operations must be processed in a given sequence. This problem belongs to the NP-hard class [1], is challenging of solving it, and has significant industrial applicability [2]. In JSSP, we must determine the order or sequence for processing a set of jobs through several machines minimizing one or more objective functions. An essential function of JSSP is the coordination and control of complex activities, both optimum resource allocation and the sequence in performing those activities [3].

In a real operation context, it is common to consider more than one criterion simultaneously, which defines a multi-objective optimization problem whose solution involves generating a set of non-dominated solutions. This set provides the decision-maker with several alternatives to choose the one according to the needs of the manufacturing process [4–6].

A detailed analysis of the state-of-the-art for multi-objective JSSP shows that few works approach the problem from the multi-objective perspective, in which at least three...
objectives are modeled, and that use more than two performance metrics. In addition, there are practically no works that publish the fronts of non-dominated solutions.

The Pareto optimal front can be studied from the Set and Vector Optimization point of view, where useful applications have been found for classical and fractional optimization problems. Moreover, new local search strategies for multiobjective optimization have been developed [7–9]. On the other hand, the high-level soft computing approach allows the developing of popular metaheuristics for JSSP problems. The present work is focused on the latter approach; even though it is too popular, one of their problems for solving multi-objective JSSP is the slow convergence to obtain the Pareto Optimal Front. This situation is more critical in algorithms such as NSGA-II, MOEA/D, MOMARLA, MOPSO, CMOSA, and CMOTA. This work aims to improve convergence by using a hybrid algorithm based on the Scatter Search metaheuristics [10], evolving over reduced populations to improve the convergence speed.

This research proposes three new hybrid algorithms for the multi-objective JSSP problem (MO-JSSP). A dataset of 70 benchmark instances is used to evaluate their performance, applying a set of five metrics. Additionally, the non-dominated solution fronts obtained by each algorithm are presented, and strategies are incorporated to improve the quality and the execution time results regarding the state-of-the-art algorithms with which they are compared [11].

The three proposed algorithms are: 1) Scatter Search/Local Search (SS/LS), (2) Scatter Search/Chaotic Multi-Objective Threshold Accepting (SS/CMOTA), and (3) Scatter Search/Chaotic Multi-Objective Simulated Annealing (SS/CMPSA). They use three objectives known as: makespan, total tardiness, and total flow time. The computational experiments indicated that the proposed algorithms provide high-quality solutions for the MOJSSP, having obtained competitive solutions relative to CMOEA/D, CMOSA, and CMOTA on a set of traditional JSSP benchmarks instances.

2. Related Literature

The Pareto Archived Simulated Annealing (PASA) algorithm was applied to a JSSP with two objectives: the makespan and the mean flow time [12]. This algorithm was evaluated with 82 instances from the literature. The results obtained are evaluated in terms of the number of non-dominated schedules generated by the algorithm and the proximity of the obtained non-dominated front to the Pareto front.

A successful algorithm based on Simulated Annealing (SA) for several objectives named AMOSA was proposed [13]; also, it was reported that this algorithm performed better than some MOEA algorithms, such as the NSGA-II [14].

A two-stage genetic algorithm (2S-GA) was proposed for JSSP. This algorithm is applied to minimize three objectives makespan, total weighted earliness, and total weighted tardiness [15]. This algorithm is composed of two Stages: Stage 1 applies parallel GA to find the best solution for each individual objective function, and in Stage 2 the populations are combined. The performance of the algorithm is tested with benchmark instances and compared with results from other published papers. The experimental results show that 2S-GA is efficient in solving instances of the job shop scheduling problem in terms of the quality solution.

The Contemporary Design and Integrated Manufacturing Technology (CDMIT) laboratory proposed the Improved Multiobjective Evolutionary Algorithm based on Decomposition (IMOEA/D) to minimize the makespan, tardiness, and total flow time [16]. This algorithm was evaluated with 58 instances using the performance metrics Coverage [17] and Mean Ideal Media (MID) [18] to the evaluation. This algorithm stands out from the rest of the literature because it considered three objectives, applied two performance metrics, and reported good results.

In 2017, was proposed a hybrid algorithm with NSGA-II and a linear programming approach [19] to solve the FT10 instance [20]. In this paper, the objectives are to minimize weighted tardiness and energy costs. Furthermore, the authors applied the Hypervolume
metric to evaluate the performance. Furthermore, in 2019, was proposed MOMARLA; this is a new algorithm based on Q-Learning to solve MOJSSP [21]. In this work, each agent represents a specific objective and uses two action selection strategies to find a diverse and accurate Pareto front.

The Contemporary Design and Integrated Manufacturing Technology (CDMIT) laboratory proposed the Improved Multiobjective Evolutionary Algorithm based on Decomposition (IMOEA/D) to minimize the makespan, tardiness, and total flow time [16]. This algorithm was evaluated with 58 instances using the performance metrics Coverage [17] and Mean Ideal Media (MID) [18] to the evaluation. This algorithm stands out from the rest of the literature because it considered three objectives, applied two performance metrics, and reported good results. Furthermore, in 2021, two multi-objective algorithms for minimizing makespan, total tardiness, and total flow time, were published. These algorithms are Chaotic Multi-Objective Simulated Annealing (CMOSA) and Chaotic Multi-Objective Threshold Accepting (CMOTA) [11]. They incorporate dominance criteria and a chaotic perturbation strategy to improve their performance. Experimental evaluation results indicated that they overpassed the state-of-the-art algorithms MOMARLA, MOPSO, CMOEA, and SPEA [21]. The algorithms proposed in the present paper seek to enhance the best algorithms of this group.

Finally, the scheduling will probably be directed to increasingly automated and use intelligent systems in the future. Under the Industry 4.0 environment, the computational workload could be greatly reduced and the systems probably will become more flexible and agile [22].

3. Background

This section describes basic concepts and algorithms in the multi-objective area which are related to this work. Furthermore, we present the multi-objective Job Shop Scheduling formulation and the main performance metrics used in this work.

3.1. Multiobjective Optimization Concepts

The Multi-Objective optimization algorithms use the concept of domination where two solutions are compared to determine if one solution dominates the other or not. Key concepts for Multi-Objective optimization are described below.

Pareto Dominance: For any optimization problem, solution A dominates another solution B if the following conditions are met: A is strictly better than B on at least one objective, and A is not worse than B in all objectives [23].

Non-dominated set: Among a set of P solutions, the subset of non-dominated solutions P1 is integrated by solutions that accomplish the following conditions:
- Any pair of P1 solutions must be non-dominated (one regarding the other)
- Any solution that does not belong to P1 is dominated by at least one member of P1 [23].

Pareto front: It is the graphical representation of the non-dominated solutions in the space of the objectives of the multi-objective optimization problem [24].

3.2. Performance Metrics

In the case of Multi-Objective Optimization, defining quality is complicated because two or more conflicting objective functions could exist. Then in an experimental comparison of different optimization algorithms, it is necessary to have the notion of performance. Some of the performance metrics are shown in Table 1.

A large number of performance metrics or quality indicators can be found. These metrics consider mainly the following three aspects of a non-dominated solution set [25]:
- Convergence: that is a feature related to the closeness to the theoretical Pareto optimal front.
• Diversity: this feature for any distribution of non-dominated solutions is measured by Spread and Spacing.
• The number of solutions.

It is difficult to find a single performance metric that encompasses all of the above criteria. However, according to the characteristics they measure, the metrics can be grouped as [25]:
• Cardinality metrics: refers to the number of solutions found. A larger number of solutions is preferred.
• Accuracy metrics: refers to the convergence of the solutions. In other words, it indicates how distant the solutions are from the theoretical true Pareto front (PFtrue). When the PFtrue is unknown, an approximate Pareto front (PFapprox) is considered instead [25].
• Diversity metrics: They measure how distributed the solutions are in the front, that is, the relative distance between the solutions and the range of values covered by the solutions [25,26].

Table 1. Performance metrics.

Metric	Type	Formula		
Mean Ideal Distance	Accuracy	\(\text{MID} = \frac{\sum_{i=1}^{Q} C_i}{Q} \) (1)		
Spacing	Diversity	\(S = \frac{\sum_{i=1}^{Q} (d_i - \bar{d})^2}{Q} \) (2)		
Hypervolume	Accuracy/Diversity	\(\text{HV} = \text{volume} (\bigcup_{i=1}^{Q} v_i) \) (3)		
Spread	Diversity	\(\Delta = \frac{\sum_{k=1}^{M} d_k^2 + \sum_{i=1}^{Q}	d_i - \bar{d}	}{\sum_{k=1}^{M} d_k^2 + Q x \bar{d}} \) (4)
Inverted Generational Distance	Accuracy/Diversity	\(\text{IGD} = \left(\frac{\sum_{i=1}^{Q} d_i^p}{	T	} \right)^{1/p} \) (5)

The MID metric is calculated with Equation (1). This metric calculates the closeness of the calculated Pareto front (PFcalc) solutions with an ideal point [18]. In this equations, \(Q \) is the number of solutions in the PFcalc, \(C_i = \left(f_1^i \right)^2 + \left(f_2^i \right)^2 + \left(f_3^i \right)^2 \), and \(f_1^i, f_2^i, \text{ and } f_3^i \) are the values of the i-th non-dominated solution for their first, second, and third objective function, respectively.

In Equation (2) is showed the formula to calculate \(S \); this metric evaluates the distribution of the non-dominated solutions in the PFcalc. The algorithm with the smallest \(S \) value is the best [26]; \(d \) measures the distance in the space of the objectives functions between the i-th solution and its nearest neighbor; that is the j-th solution in the PFcalc of the algorithm, \(\bar{d} \) is the average of \(d_i \), that is \(\bar{d} = \frac{\sum_{i=1}^{Q} d_i}{Q} \) and \(d_i = \min (|f_{j_1}^i(x) - f_{j_1}^j(x)| + |f_{j_2}^i(x) - f_{j_2}^j(x)| + \cdots + |f_{j_p}^i(x) - f_{j_p}^j(x)|) \), where \(f_{j_1}^i, f_{j_2}^i, \text{ and } f_{j_p}^i \) are the values of the j-th non-dominated solution for their first and second objective function, respectively. Furthermore, \(M \) is the number of objective functions and \(i,j=1,\ldots,Q \).

Equation (3) shows the formula to calculate HV. In this formula \(v_i \) represents a hypercube which is constructed with a reference point W (this can be found constructing a vector with the worst values of the objective function) and the solution i as the diagonal corners of the hypercube [23]. This metric calculates the volume in the objective space that is covered by all solutions in the non-dominated set [27]. Therefore, an algorithm that obtains the highest HV value is the best. The data should be normalized to calculate the HV by transforming the value in the range \([0, 1]\) for each objective separately.
The Spread metric is calculated using Equation (4), which considers the distance to the extreme points of the True Pareto front (PF\text{true}) and was proposed to have a more precise coverage value [14]. Where \(d_k \) measures the distance between the extreme point of the PF\text{true} for the k-th objective function and the nearest point of the PF\text{calc}.

Finally, Equation (5) shows the formula to calculate IGD; this metric finds the average distance between the points of the PF\text{true} to the PF\text{calc} [28]. Where \(T = \{ t_1, t_2, ... t_{|T|} \} \) that is, the solutions in the PF\text{true} and \(|T| \) is the cardinality of \(T \), \(p \) is an integer parameter, in this case, \(p = 2 \) and \(\hat{d}_j \) is the Euclidian distance from \(t_j \) to its nearest objective vector \(q \) in \(Q \). In this case \(d_j = \min_{q=1}^{Q} \sqrt{\sum_{m=1}^M (f_m(t_j) - f_m(q))^2} \) where \(f_m(t) \) is the m-th objective function value of the t-th member of T.

Another important metric is the number of non-dominated solutions generated by the algorithm. The greater the number of solutions, the greater the number of alternatives the decision maker will have to choose the desired solution [4–6].

3.3. MOJSSP Formulation

In JSSP, there are a set of \(n \) jobs, consisting of operations, which must be processed in \(m \) different machines. There are a set of precedence constraints for these operations, and there is a resource capacity constraint for ensuring that each machine should process only one operation at the same time. The processing time of each operation is known in advance.

The objective of JSSP is to determine the sequence of the operations in each machine (the start and finish time of each operation) to minimize certain objective functions. The most common objective is the makespan, which is the total time in which all the problem operations are processed. Nevertheless, real scheduling problems are multi-objective, and several objectives should be considered simultaneously.

This work tries to optimize three objectives simultaneously, makespan, total tardiness, and total flow time.

- Makespan: It is the maximum time of completion of all jobs.
- Total tardiness: It is the total positive difference between the makespan and the due date of each job.
- Total flow time: It is the summation of the completion times of all jobs.

The formal MO-JSSP model can be formulated as follows [29,30]:

\[
\text{Optimize } F(x) = [f_1(x), f_2(x), ... f_q(x)] \text{ subject to } x \in S
\]

(6)

where \(q \) is the number of objectives, \(x \) is the vector of decision variables, and \(S \) represents the feasible region, defined by the next precedence and capacity constraints, respectively:

\[
t_{ij} \geq t_i + p_i \quad \text{For all } i, j \in O \text{ when } i \text{ precedes } j
\]

\[
t_{ij} \geq t_i + p_i \text{ or } t_{ij} \geq t_j + p_j \quad \text{For all } i, j \in O \text{ when } M_i = M_j
\]

where

- \(t_i, t_{ij} \) are the starting times for the jobs \(i, j \in J \).
- \(p_i \) and \(p_j \) are the processing times for the jobs \(i, j \in J \).
- \(J: [j_1, j_2, ... j_n] \) is the set of jobs.
- \(M: [M_1, M_2, M_3, ... M_m] \) is the set of machines.
- \(O \) is the set of operations \(O_{ij}(i \text{ of the job } j) \).

The objective functions of makespan, total tardiness, and total flow time, are defined by Equations (7)–(9), respectively.

\[
f_1 = \min \left(\max_{j=1}^n C_j \right)
\]

(7)

where \(C_j \) is the makespan of job \(j \).
\[f_2 = \min \left(\sum_{i=1}^{n} T_j \right) = \min \left(\sum_{j=1}^{n} \max (0, C_j - D_j) \right) \] (8)

where \(T_j = \max (0, C_j - D_j) \) is the tardiness of job \(j \), and \(D_j \) is the due date of job \(j \) and is calculated with \[D_j = \tau \sum_{i=1}^{m} p_{j,i} \] [31], where \(p_{j,i} \) is the time required to process the job \(j \) in the machine \(i \). In this case, the due date of the \(j \) job is the sum of the processing time of all its operations on all machines, multiplied by a narrowing factor (\(\tau \)), which is in the range \(1.5 \leq \tau \leq 2.0 \) [31,32].

\[f_3 = \min \left(\sum_{j=1}^{n} C_j \right) \] (9)

4. Proposed Hybrid Algorithms MO

Three hybrid algorithms based on Scatter Search (SS) are proposed for the solution of the MO-JSSP problem. Figure 1 shows the Scatter Search framework showing the three different process which distinguish the three proposed hybrid algorithms.

Algorithm 1 contains the pseudocode of our Scatter Search Algorithm, which is described in detail in the next subsection. Notice that in line five, one of the algorithms CMOSA, CMOTA, or LS can be executed. The goal of Algorithm 1 is to improve the solutions of the reference set.

Algorithm 1. Scatter Search Algorithm

Input: \(iterate=0 \), MAXITERATIONS
Output: Non-dominated solutions front, metrics values

1: Generate initial solutions();
2: \(\textbf{while} \ (iterate<=\text{MAXITERATIONS}) \ \textbf{do} \)
3: \(\text{Create/update reference set();} \)
4: \(\text{Combine reference set();} \)
5: \(\text{Improvemnet method();} /\text{CMOSA, or CMOTA, or LS algorithm} \)
6: \(\text{iterate}++ \)
7: \(\text{End} \)
8: Calculate the non-dominant solutions front();
9: Calculate performance metrics;

4.1. Scatter Search General Framework

Scatter Search (SS) is an algorithm proposed by Glover [10], and it is composed of the following methods:

- Generator of diverse solutions, in which a set \(P \) of diverse solutions of size 30 is generated.
- Updater and creator of \(\text{refSet} \), from the \(P \) solutions, the first three non-dominated and three most diverse are selected, using the Euclidean distance, to form the reference set (RefSet) of size 6.
- Combination of \(\text{refSet} \). The six solutions in the \(\text{refSet} \) are mixed to obtain 30 new solutions. All possible combinations are generated in this process by taking the first half of one solution from the \(\text{refSet} \) and the second half from another.
- Improvement method. This process tries to improve each new solution created by the combination method. In this work, there are three different improvement methods implemented:
 1. A Local Search (LS): consists of performing a set of iterations in which a regular perturbation is applied, which consists in exchanging two operations randomly selected from the current solution to generate a new one. The dominance criterion is applied at each iteration, and the new non-dominated solutions are stored.
 2. A Chaotic Threshold Accepting Algorithm (CMOTA). Threshold Accepting (TA) is an algorithm proposed in [33]. In this enhanced method CMOTA, a version adapted to JSSP is used [11].
 3. Chaotic Simulated Annealing Algorithm (CMOSA), SA was originally proposed in [34], and in 2021 a new version is implemented under the multiobjective approach [11].

In improvement processes 2) and 3), an analytical tuning process is performed for the algorithm parameters [35]. A regular perturbation is also applied to generate a new solution that is compared to the current one. From the previous comparison, the dominant one is selected, and the non-dominated is discarded. If both are not dominated, one is saved in the set of non-dominated solutions, and the other continues the search. When new non-dominated solutions are not found in both algorithms, a chaotic perturbation is applied. This perturbation consists of using the equation of the logistic maps [36] as a mechanism to escape from stagnation and search diversity in the solutions. A reheating process is also applied, which consists of raising the value of the current temperature parameter to be able to carry out a new scan. The improvement algorithms implemented are described in more detail in the following sections.

4.2. Hybrid Scatter Search with Local Search (SS/LS)

In this algorithm, a Local Search (LS) is applied in the solution improvement phase. Algorithm 2 shows the local search algorithm used. In this algorithm, a set of iterations is performed. In each of them, a regular perturbation is applied to the solution (exchange of two operations) to generate a new one. Dominance is verified between the current solution and the new one created with the perturbation in each iteration. In this verification, three possible cases are generated:

- Case A. If the new solution dominates the current one, then the new solution is saved and replaces the current one to continue the search process.
- Case B. If the current solution dominates the new one, then the new solution is discarded.
• Case C. If the current and the new solution are non-dominated, the current solution is saved, and the new one replaces the current one to continue the search.

4.3. Hybrid Scatter Search with Chaotic Simulated Annealing (SS/CMOSA)

The SS/CMOSA algorithm is based on Chaotic Simulated Annealing Algorithm (CMOSA) [11]. This hybrid algorithm, SS/CMOSA, receives the solutions obtained by a combination process as shown in Figure 1, while CMOSA is shown in Algorithm 3.: one that controls the stop condition and the other internal (Metropolis cycle) that controls the number of iterations carried out for each temperature parameter value.

Algorithm 2. Improvement method: Local Search (LS)

Input: \(\text{iterate}=0, \text{MAXITERATIONS} \)
Output: Current solution, Non-dominated solutions

1: Current solution = Select one initial solution();
2: While (\(\text{iterate} \leq \text{MAXITERATIONS} \)) do
3: New solution = Perturbation(Current solution);
4: Calculate makespan, tardiness, flowtime(New solution);
5: if (New solution dominates Current solution) then
6: Save(New solution);
7: Current solution = New solution;
8: NewSolutionDominatesCurrentSolution = Yes;
9: end
10: if (Current solution dominates New solution) then
11: CurrentSolutionDominatesNewSolution = Yes;
12: end
13: if (Current and New solutions are non-dominated) then
14: Current solution = New solution;
15: end
16: iterate++
17: end

In Algorithm 2, a perturbation is made to the current solution in the internal cycle to generate a new solution. Dominance is verified between the current solution and the new one in each iteration. In this verification, the same three possible previous cases are generated:

• Cases A and C are evaluated similarly to the SS/LS version.
• Case B. According to the Boltzmann probability distribution, when the current solution dominates the new one, the latter could be replaced by the former.

Additionally, a chaotic perturbation and a reheating are applied when stagnation occurs, consisting of a predetermined number of iterations without finding non-dominated solutions. The chaotic perturbation uses the equation of the logistic maps [37], whose main characteristic is that it generates different outputs even in small changes in its input data. Then chaos or chaotic perturbation is a process carried out to restart the search from another point in the space of solutions. Reheating is the process by which the current temperature parameter of the SA algorithm is high; this helps to perform reprocessing that allows reinitializing the search process.

4.4. Hybrid Scatter Search with Chaotic Threshold Accepting (SS/CMOTA)

The Chaotic Threshold Accepting (CMOTA) algorithm is used as an improvement method. In CMOTA (Algorithm 4), there are also two cycles such as CMOSA, one that controls the stop condition (temperature) and the other internal (Metropolis cycle) that
controls the number of iterations that are carried out for each value of the temperature parameter.

The same three possible previous cases are generated. Cases A and C are evaluated in the same way as the SS/CMOSA version. In Case B, if the current solution dominates the new solution, the latter can replace the current one in the searching process by using a threshold established in the algorithm.

Similar to CMOSA, this algorithm also applies chaotic perturbation and a reheating process.

Algorithm 3. Improvement method: Chaotic Multi-Objective Simulated Annealing

Input: \texttt{iterate} = 0, \texttt{MAXITERATIONS}, \texttt{MAXIMUM ALLOWED STAGNATION}
Output: Current solution, Non-dominated solutions

1: While (current temperature ≥ final temperature) do
2: foreach Metropolis cycle iteration do
3: if stagnant = True then
4: foreach local search iteration do
5: if iteration = 1 then
6: New solution = chaoticPerturbation(Current solution);
7: Else
8: New solution = regularPerturbation(Current solution);
9: End
10: if (New solution dominates in all objectives to Current solution) then
11: Current solution = New solution;
12: End
13: End
14: Else
15: New solution = regularPerturbation(Current solution);
16: End
17: if (New solution ≠ Current solution and it’s not stored in the front) then
18: if (New solution dominates Current solution) then
19: Save(New solution);
20: Current solution = New solution;
21: NewDominatesCurrent = True;
22: End
23: if (Current solution dominates New solution) then
24: calculates decrement of objective functions;
25: if (random(0 - 1) < e^{-decrementCurrenttemperature}) then
26: Save(Current solution);
27: Current solution = New solution;
28: CurrentDominatesNew = True;
29: End
30: End
31: if (NewDominatesCurrent = False AND CurrentDominatesNew = False) then
32: Save(Current solution);
33: Current solution = New solution;
34: End
35: End
36: if (verifyCaught = True) then
37: if (New solution is dominated by some stored solution) then
38: ...
stagnant = True;
trappedCounter++;
if (trappedCounter = MAXIMUM ALLOWED STAGNATION) then
 verifyCaught = FALSE;
End
End
End
decrease current temperature;

Algorithm 4. Improvement method: Chaotic Multi-Objective Threshold Accepting

Input: iterate = 0, MAXITERATIONS, MAXIMUM ALLOWED STAGNATION
Output: Current solution, Non-dominated solutions

1: While (current temperature ≥ final temperature) do
2: Threshold = current temperature
3: foreach Metropolis cycle iteration do
4: if stagnant = True then
5: foreach local search iteration do
6: if iteration = 1 then
7: New solution = chaoticPerturbation(Current solution);
8: else
9: New solution = regularPerturbation(Current solution);
10: end
11: if (New solution dominates in all objectives to Current solution) then
12: Current solution = New solution;
13: end
14: end
15: else
16: New solution = regularPerturbation(Current solution);
17: end
18: if (New solution ≠ Current solution and it’s not stored in the front) then
19: if (New solution dominates Current solution) then
20: Save(New solution);
21: Current solution = New solution;
22: NewDominatesCurrent = True;
23: end
24: if (Current solution dominates New solution) then
25: if (random(0 - 1) < Threshold) then
26: Save(Current solution);
27: Current solution = New solution;
28: CurrentDominatesNew = True;
29: end
30: end
31: end
32: end
end
37: if (verifyCaught = True) then
38: if (New solution is dominated by some stored solution) then
39: stagnant = True;
40: trappedCounter++;
41: if (trappedCounter = MAXIMUM ALLOWED STAGNATION) then
42: verifyCaught = FALSE;
43: end
44: end
45: end
46: decrease current temperature;
47: end

5. Computational Experimentation

This section describes the dataset used, the conditions of the experimentation as well as the results obtained.

5.1. Datasets

To perform the experimental evaluation of the algorithm, a benchmark of 70 instances of the problem are used. All the solutions of this dataset have different sizes and degrees of complexity. The instances are divided in six sets:

- Three instances denoted as FT06, FT10, FT20 of Fisher and Thompson [20],
- Ten instances denoted as ORB01–ORB10 of Applegate and Cook [38],
- 40 instances LA01-LA40 presented by Lawrence [39],
- Five instances ABZ5–ABZ9 taken from Baker [37],
- Four instances YN1, YN2, YN3 and YN4 taken from Yamada [40] and,
- Eight instances denoted as TA01, TA11, TA21, TA31, TA41, TA51, TA61, and TA71 taken from Taillard [41].

The instance sizes of this dataset range from six jobs on six machines (the FT06 instance) to 100 jobs on 20 machines (the instance TA71).

5.2. Experiment Description

Two experiments were carried out with a different number of instances to evaluate the performance of the proposed algorithms.

The first experimentation was carried out with 58 common instances with only three algorithms (IMOEA/D [16], CMOSA, and CMOTA [11]) of the state-of-the-art that used the MID performance metric and the same three objectives. The second experimentation was carried out with 70 instances to compare the results with the CMOSA and CMOTA algorithms proposed in [11]. Each instance was executed 30 times using 30 initial solutions. The set of non-dominated solutions was obtained from the total solutions generated by the 30 executions.

The performance metrics used are MID, Spacing, Spread, HV, IGD, Runtime, and the number of non-dominated solutions. Finally, we applied these metrics to the set of non-dominated solutions obtained by the algorithms at the end of their processes.

The execution of the proposed algorithms was carried out in a terminal of the Ehécatl cluster of the Technological Institute of Ciudad Madero, with the following characteristics: Intel® Xeon® processor at 2.30 GHz, Memory: 64 Gb (4 × 16 Gb) ddr4-2133, Linux operating system CentOS. C language was used for the implementation, and GCC compiler.
5.3. Comparative Results

Table 2 shows a comparison with the average results obtained by the MID metric for the 58 instances used in the algorithms IMOEA/D [16], CMOSA [11], CMOTA [11], and the proposed SS algorithms. We observed that our hybrid algorithms SS/LS, SS/CMOSA, and SS/CMOTA obtained the best results. Furthermore, the hybrid SS/CMOSA obtained the best result surpassing IMOEA/D by 17%.

Table 2. IMOEA/D, CMOSA, CMOTA, SS/LS, SS/CMOSA, and SS/CMOTA results using MID.

Instance	IMOEA/D [16]	CMOSA [11]	CMOTA [11]	SS/LS	SS/CMOSA	SS/CMOTA
MT06	18,727.04	15,729.65	16,567.07	15,579.30	15,509.06 *	15,600.19

* Best result obtained.

Table 3 shows the results obtained for each of the 70 instances by the three proposed algorithms, comparing them with the best of the state-of-the-art (CMOSA, CMOTA), taking as a reference the value obtained by the MID metric. The last row shows the average value of the MID metric for each of the algorithms. In this table, we observed that the SS/LS algorithm obtained a better performance since the value of the MID metric is smaller than the other algorithms analyzed.

Table 3. CMOSA, CMOTA, SS/LS, SS/CMOSA, and SS/CMOTA results using MID metric.

Instance	CMOSA [11]	CMOTA [11]	SS/LS	SS/CMOSA	SS/CMOTA
1 MT06	302.49	302.76	299.01	302.41	303.06
2 MT10	8968.94	9316.19	9514.63	8733.67	8841.43
3 MT05	18,599.1	18,789.48	18,095.69	17,334.15	18,036.81
4 ORB1	9423.07	9707.17	9263.34	9369.55	9400.38
5 ORB2	8129.62	8526.49	8207.86	8175.03	8050.28
6 ORB3	9443.81	9940.47	9618.31	9264.74	9491.26
7 ORB4	9205.69	9874.42	9552.22	9423.15	9407.45
8 ORB5	7983.66	8088.73	8211.05	7836.78	7898.4
9 ORB6	9489.54	9326.38	9639.36	8963.27	8962.67
10 ORB7	3630.48	3758.8	3526.24	3559.64	3605.42
11 ORB8	8268.95	8562.67	8242.37	8222.32	8150.52
12 ORB9	8778.61	9276.51	8872.7	8732.66	8993.75
13 ORB10	8672.67	9001.91	8796.23	8550.83	8568.04
14 LA01	5412.62	5597.42	5467.6	5479.76	5556.06
15 LA02	5031.77	5184.33	5006.39	4961.72	5013.23
16 LA03	4814.76	5134.95	4832.81	4918.78	5018.75
17 LA04	4861.93	5031.3	4929.76	4975.73	4928.21
18 LA05	4562.81	4714.16	4517.06	4555.52	4646.42
19 LA06	10,838.09	10,892.8	10,491.17	10,561.5	10,674.84
20 LA07	10,116.11	10,667.92	9562.58	10,137.43	10,186.86
21 LA08	10,042.56	10,009.01	9698.32	9896.07	10,389.5
22 LA09	11,036.3	11,411.96	10,893.66	10,861.87	11,408.09
23 LA10	11,202.9	11,365.93	10,898.95	11,333.39	11,302.51
24 LA11	19,027.38	19,802.15	17,161.79	19,450.04	19,350.97
25 LA12	15,911.86	16,330.94	14,623.73	15,892.3	15,600.23
26 LA13	17,928.81	18,139.11	17,160.73	17,743.58	17,990.65
27 LA14	20,538.67	20,433.48	18,234.8	20,062.12	20,181.51
28 LA15	19,316.53	20,217.82	18,501.01	19,201.56	19,108.72
29 LA16	8471.45	8504.98	8637.69	8250.89	8386.26
Table 4 summarizes the experiment results with 70 instances and five metrics; it contains the average values obtained by executing the algorithms 30 times. The first column has the name of the evaluated metric. The next two columns show the results of the two best state-of-the-art algorithms (CMOSA and CMOTA). Finally, the last three columns show the results for the three hybrid proposed algorithms (SS/LS, SS/CMOSA, and SS/CMOTA).
In Table 4, the best values are highlighted and marked with an asterisk (*). An approximate Pareto front is used in the case of metrics in which it is necessary to use a True Pareto front [24]. The approximate Pareto front is generated by previous executions of developed algorithms throughout the study of this problem.

We can observe that SS/LS obtains the best result for MID and IGD metrics. This algorithm uses the shortest processing time, which means that it has the best convergence and generates the highest number of non-dominated solutions of the three proposed hybrid algorithms. The results indicate that the solutions found by SS/LS are closer to the origin point (0,0,0); they are closer on average to the approximate front and were achieved with the lowest amount of execution time. SS/CMOSA algorithm obtains the best Spread, which means that the generated solutions are very well distributed on the non-dominated solutions front. On the other hand, SS/CMOTA achieved the best Spacing and HV values, which indicate that this algorithm has a more uniform Spacing and the best solution space coverage. In other words, the hybrid algorithms proposed in this paper obtained the best results for these datasets.

Finally, the non-dominated solution fronts obtained by the proposed algorithms for the 70 instances are included in Appendix A.

6. Conclusions

This paper presents three Hybrid Multi-Objective algorithms for JSSP, named SS/LS, SS/CMOSA, and SS/CMOTA. Three objectives are considered: makespan, total tardiness, and total flow time. Furthermore, we present an experimental evaluation applying six performance metrics.

Regarding the results from the comparison, we observe that SS/LS generates solutions closer to the origin point and PF_{approx}. It provides more solutions than the others’ algorithms and uses the minimum runtime. SS/CMOSA generates solutions with a better distribution concerning PF_{approx}. Furthermore, SS/CMOTA generates better-distributed solutions in the PF_{dict} and better coverage, as shown by the HV metric. The results obtained by the proposed algorithms SS/LS, SS/CMOSA, and SS/CMOTA compared with some of the best algorithms in the literature show that they are among the best in the area. We highlight that our proposed SS/LS algorithm reduces processing time by 43% compared to the fastest in the state-of-the-art.

Author Contributions: Conceptualization, J.F.-S. and G.C.-V.; methodology, L.H.-R.; software, L.H.-R. and G.C.-V.; validation, G.C.-V. and L.H.-R.; formal analysis, J.F.-S. and J.-P.S.H.; investigation, G.C.-V. and L.H.-R.; resources, L.H.-R.; writing—original draft preparation, L.H.-R.; writing—review and editing, J.G.-B. and J.F.-S.; visualization, J.-P.S.H.; supervision, J.F.-S. and G.C.-V.; project administration, J.F.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: In this section, Data supporting are located in this paper.
Acknowledgments: We thank LanTI Lab for letting us use its computers and Conacyt for the scholarship to some of us while we studied our Ph.D.
Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Non-Dominated Solutions Obtained
The non-dominated solutions obtained by the proposed SS/LS, SS/CMOSA, and SS/CMOTA algorithms for the 70 instances used in this paper are shown in Tables A1–A6, Tables A7–A12 and Tables A13–A18, respectively.
In these tables, MKS is the makespan, TDS is the total tardiness, and FLT is the total flow time. For each instance, the best value for each objective function is highlighted with an asterisk (*) and in bold type.

Table A1. Non-dominated solutions obtained by SS/LS for the JSSP instances proposed by [20].

Instance	FT06	FT10	FT20						
	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT
1	55 *	38.0	301	1026 *	2258.0	9828	1223 *	9170.0	16,791
2	55	33.0	306	1035	2174.0	9744	1224	9011.0	16,632
3	56	32.0	309	1037	2104.0	9674	1225	8651.0	16,296
4	57	27.0	297	1055	1815.0	9374	1228	8308.0	15,905
5	57	26.0	298	1055	1829.5	9288	1256	8110.0	15,769
6	57	24.5	306	1066	1386.0	8813	1261	8097.0	15,756
7	58	15.0	289	1202	1322.5 *	8767	1270	8042.0	15,690
8	58	14.0	290	1202	1351.5	8741 *	1274	7941.0	15,588
9	58	27.0	288	1279	7914.0 *	15,561 *			
10	60	11.0	287						
11	60	10.0	288						
12	60	9.5	291						
13	62	9.5	284						
14	62	8.5	285						
15	69	7.0 *	290						
16	73	14.5	283						
17	73	7.5	285						
18	75	13.5	283						
19	82	13.5	280 *						
Table A2. Non-dominated solutions obtained by SS/LS for the JSSP instances proposed by [37].

ORB1	ORB2	ORB3	ORB4	ORB5										
MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT						
1141 *	1401.5	9095	930 *	768.5	8348	1148 *	1764.0	9395	1105 *	1156.5	9500	1040 *	1517.0	8651
1144	1400.5	9094	942	752.5	8267	1159	1710.5 *	9438	1106	1142.5	9487	1040	1511.0	8686
1146	1376.5 * 9070 *	942	758.5	8263	1159	1748.0	9391	1115	1105.0 *	9412	1041	1406.0	8374	
958	752.0	8373	1160	1776.0	9335 *	1137	1171.0	9322 *	1050	682.0 *	7745			
962	749.5	8306	1167	1727.0	9378	1155	1145.0	9362	1050	699.0	7725			
963	666.0	8171	964	619.0	8143	1052	690.0	7674						
971	735.0	8066	971	729.0	8134	974	619.0	7883						
974	610.0	7952	977	608.0	7893	981	594.5	8192						
984	687.0	7845 *	988	517.0 *	8119	988	575.0	8071						
1001	558.0	8064												

ORB6	ORB7	ORB8	ORB9	ORB10										
MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT						
1144 *	1639.0	9701	411 *	108.5	3510	1002 *	1577.5	8360	997 *	1358.5	8906	1021 * 1155.5	8985	
1151	1510.0	9372	411	120.5	3499	1010	1569.5	8366	998	1336.0	8886	1030	992.0	8730
1154	1491.0	9380	411	118.5	3507	1012	1228.5	7872	1012	1185.0	8950	1047	812.0	8594
1157	1481.0	9644	411	113.5	3509	1014	1268.5	7848 *	1012	1191.0	8915	1047	814.0	8589
1162	1441.0	9353	413	113.5	3493	1024	1224.5 *	7868	1022	1204.5	8901	1057	769.0	8544
1163	1408.0	9320	413	106.5	3503	1022	1210.5	8866	1057	758.5	8826			
1164	1394.0	9306 *	413	110.5	3499	1024	1162.0	8927	1057	760.0	8719			
1300	1367.5 * 9557	413	117.5	3489 *	1028	1175.5	8878	1060	763.0	8704				
9	417	100.0 *	3493	1063	1176.5	8866	1065	754.0 * 8536						
10	1090	1150.5	8554											
11	1095	1197.5	8542											
12	1107	1136.0	8564											
13	1123	1133.0	8561											
14	1123	1168.5	8542											
15	1132	1144.0	8483 *											
16	1138	1140.0	8500											
17	1142	1122.5 *	8526											
Table A3. Non-dominated solutions obtained by SS/LS for the JSSP instances proposed by [38].

	LA01	LA02	LA03	LA04	LA05										
	MKS	TDS	FLT												
1	666 *	1337.0	5414	673 *	1241.0	5195	627 *	1359.5	4837	605 *	1466.5	5215	593 *	1099.5	4507
2	666	1326.5	5505	676	1031.5	4954	628	1351.5	4831	607	1465.0	5183	593	1139.5	4339
3	666	1321.5	5509	678	1031.0	4921	630	1362.0	4796	610	1384.5	5133	600	1109.0	4490
4	666	1291.5	5565	679	1080.0	4902	630	1361.5	4801	611	1201.5	4950	605	1066.5	4334
5	668	1087.5	5275	694	981.0	4880	638	1187.0	4652	622	1142.5	4735	605	1097.5	4317
6	669	1001.5 *	5275	694	1011.5	4867	640	1093.0	4558	622	1111.5	4807	607	1052.5	4294
7	673	1087.5	5246	694	972.5	4909	672	1039.5	4495	622	1121.5	4761	607	1023.0	4327
8	674	1071.5	5250	694	982.0	4872	672	1045.5	4466 *	635	1075.0	4811	608	1025.0	4325
9	693	1074.0	5249	696	955.0	4845	691	1006.5	4475	638	1142.5	4720	626	1067.0	4278 *
10	697	1074.0	5226	697	992.0	4782	730	1005.5 *	4474	642	1046.5	4685	643	997.5	4296
11	716	1021.5	5189	697	959.0	4843	642	1091.5	4684	651	996.5 *	4295			
12	716	1006.5	5201	704	928.0	4812	652	923.0	4431						
13	716	1193.0	5161	705	986.0	4776	652	905.0	4457						
14	755	1105.0	5153 *	709	912.0	4796	655	885.0	4441						
15	717	931.0	4794	660	796.0 *	4352 *									
16	717	970.0	4752 *												
17	717	894.0 *	4815												
18	717	960.5	4786												
19	796	964.0	4778												

	LA06	LA07	LA08	LA09	LA10										
	MKS	TDS	FLT												
1	926 *	3857.5	9787	890 *	3395.0	8955	863 *	3475.5	9141	951 *	3841.5	10,108 *	958 *	4104.0	10,058
2	926	3838.5	9804	890	3431.0	8929	863	3482.5	9134	951	3831.5	10,141	958	4094.5	10,086
3	926	3861.5	9704	890	3367.0	8972	863	3490.5	9126	951	3837.5	10,130	981	4116.0	9995
4	956	3826.0	9814	890	3366.5	8984	922	3257.0	8911	951	3827.5	10,163	1052	4097.0	9976 *
5	965	3745.0	9733	967	3297.0	8833	929	3232.0 *	8906 *	953	3826.5 *	10,221	1068	4094.0 *	10,124
6	984	3595.0 *	9583 *	967	3350.5	8825 *									
7	967	3291.0 *	8845												
	LA11	LA12	LA13	LA14	LA15										
---	------	------	------	------	------										
	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT						
1	1222	7504	15,380	1039	6408	13,419	1150	7832	15,608						
2	1222	7486	15,438	1039	6489	13,398	1150	7843	15,586						
3	1222	7500	15,385	1044	6317	13,328	1160	7795	15,571						
4	1338	7478	15,354	1048	6352	13,261	1182	7456	15,232						
5	1051	6165	13,057	1051	6165	13,057	1191	7415	15,191						
6	1056	6133	13,042	1056	6133	13,042	1199	7369	15,145						
7	1060	6129	13,038	1060	6129	13,038	1208	7345	15,121						
8	1134	6083	13,094	1134	6083	13,094	1208	7345	15,121						
9	1134	6092	13,001	1134	6092	13,001	1208	7345	15,121						

	LA16	LA17	LA18	LA19	LA20				
	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT
1	981	1226	9053	852	986	7650	911	483	7864
2	982	1185	9014	852	971	7652	911	464	7880
3	985	951	8817	853	679	7250	911	490	7792
4	994	844	8713	853	654	7441	916	432	7752
5	1009	873	8554	853	729	7245	921	415	7752
6	1012	753	8435	856	691	7207	940	405	7742
7	1023	749	8490	860	682	7208	991	392	7841
8	1049	747	8681	860	674	7255	991	360	7865
9	1050	658	8384	863	654	7371	1003	397	7834
10	1050	684	8362	870	669	7345	1003	379	7874
11	1050	651	8436	871	708	7200	1094	290	8101
12	1052	653	8366	881	653	7255	1099	233	8036
13	1052	643	8430	882	577	7251	1112	206	8022
14	1054	645	8365	883	511	7186	1113	262	8015
15	1065	630	8391	893	506	7120	1126	248	8014
16	1066	599	8356	1069	542	8327	1069	542	8327

	LA21	LA22	LA23	LA24	LA25										
	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT						
1	1156	2687	14,507	998	2359	13,208	1070	2564	14,459	1040	2422	13,736	1116	3976	15,131
	LA26	LA27	LA28	LA29	LA30										
---	------	------	------	------	------										
	MKS	TDS	FLT												
1	1367 *	8629.5	24,384	1391 *	7060.5 *	23,236	1341 *	6677.5	22,696	1318 *	8396.5	23,242	1369 *	7102.0	23,122
2	1369	8571.5	24,326	1391	7083.5	23,189	1347	6611.5	22,630	1321	8323.5	23,169	1372	6977.0	22,997
3	1377	7612.5	23,174	1391	7100.5	23,174 *	1353	6505.5	22,338	1324	8299.5	23,145	1374	6934.0	22,954
4	1386	7498.5	23,060	1391	7074.5	23,215	1363	6374.0	22,397	1329	8252.5	23,146	1382	6760.0	22,780
5	1392	6400.5	22,003	1364	6321.5	22,340	1334	8113.5	22,959	1384	6805.0	22,769			
6	1395	6407.5	21,990	1368	6423.5	22,256	1341	7533.5	22,334	1386	6699.0	22,671			
7	1403	6406.5	21,989	1368	6405.5	22,333	1341	7487.5	22,371	1394	6676.0	22,640			
8	1470	6398.5 *	21,981 *	1373	6226.0 *	22,249	1341	7500.5	22,357	1446	6608.0	22,572			
	LA31	LA32	LA33	LA34	LA35										
---	------	------	------	------	------										
	MKS	TDS	FLT												
1	1784 *	20,361.5	42,992	1850 *	21,329.0	45,992	1719 *	21,064.0	43,370	1746 *	21,499.5	44,511	1908 *	23,093.5	44,321
2	1787	20,344.5	43,082	1851	21,304.0	45,967	1721	19,672.0	41,983	1747	21,420.5	44,432	1909	22,752.5	45,980
3	1803	20,227.5	42,928	1852	19,752.0	44,496	1727	19,668.0	41,979	1758	21,416.5	44,428	1911	22,690.5	45,918
4	1803	20,215.5	42,953	1852	19,733.0	44,561	1727	19,693.0	41,971 *	1772	20,699.5	43,711	1911	22,640.5	45,868
5	1808	20,290.5	42,921	1855	19,656.0 *	444,00 *	1835	19,661.0 *	41,972	1777	20,194.0	43,093	1938	20,907.5	44,132
6	1812	20,258.5	42,889	1855	19,643.5	44,561	1727	19,693.0	41,971	1777	20,194.0	43,093	1938	20,907.5	44,132
7	1827	19,744.5	42,438	1855	19,656.0 *	444,00 *	1835	19,661.0 *	41,972	1777	20,194.0	43,093	1938	20,907.5	44,132
8	1829	19,643.5	42,430	1855	19,656.0 *	444,00 *	1835	19,661.0 *	41,972	1777	20,194.0	43,093	1938	20,907.5	44,132
9	1832	19,603.5	42,390	1855	19,656.0 *	444,00 *	1835	19,661.0 *	41,972	1777	20,194.0	43,093	1938	20,907.5	44,132
10	1833	19,624.5	42,318	1855	19,656.0 *	444,00 *	1835	19,661.0 *	41,972	1777	20,194.0	43,093	1938	20,907.5	44,132
11	1834	195,92.5 *	42,286 *	1855	19,656.0 *	444,00 *	1835	19,661.0 *	41,972	1777	20,194.0	43,093	1938	20,907.5	44,132

	LA36	LA37	LA38	LA39	LA40																				
	MKS	TDS	FLT																						
1	1520 *	3470.5	21,071	1537 *	1572.0	19,894	1474 *	2716.0	19,396	1358 *	1590.5	18,036	1423 *	2368.0	18,972										
2	1526	3348.0	20,673	1537	1563.0	19,901	1480	2706.0	19,435	1359	1419.5	17,909	1425	2307.0	18,929										
3	1533	3344.5	20,793	1545	1537.0	19,735	1484	2693.5	19,407	1359	1417.5	17,911	1458	2240.0	18,847										
4	1549	3300.0	20,625	1545	1552.0	19,538	1493	2639.5	19,318	1376	1307.0	17,698	1458	2244.0	18,763										
5	1549	3274.5	20,804	1550	1523.5	19,666	1504	3015.0	19,085	1377	1127.0	17,539	1473	2139.0	18,639										
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
6	1559	3244.0	20,569	1550	1539.0	19,637	1504	2976.0	19,225	1377	1130.0	17,523	1473	2105.5 *	18,741										
7	1566	3224.0	20,637	1550	1575.0	19,496	1531	2795.5	18,977 *	1378	1118.0	17,548	1505	2116.0	18,616 *										
8	1566	3191.5	20,650	1551	1515.0	19,853	1542	2616.5 *	19,336	1383	1073.0	17,536													
9	1566	3237.0	20,562	1552	1515.5	19,758																			
10	1593	3186.0	20,653	1559	1496.0 *	19,519																			
11	1596	2940.5	20,405	1559	1511.0	19,432 *																			
12	1596	2984.0	20,294																						
13	1596	2992.0	20,233																						
14	1739	3197.5	20,149																						
15	1758	2862.5	20,111																						
16	1758	2855.5 *	20,241																						
17	1769	3181.5	20,099 *																						
Table A4. Non-dominated solutions obtained by SS/LS for the JSSP instances proposed by [39].

MKS	TDS	FLT													
1	1286 *	365.0	11,502	996 *	333.0	8597	781 *	3157.5	14,129	799 *	2922.0	14,229	824 *	3002.0	13,974 *
2	1312	434.0	11,447	997	336.0	8587	782	3129.5	14,101	801	2885.0	14,225	899	2999.5	14,006
3	1321	360.0	11,564	997	359.5	8535	785	3013.5	13,985	802	2887.0	14,210	899	2987.5	14,012
4	1324	302.0	11,423	1001	330.0	8634	786	2994.5	13,975	803	2836.0	14,169	912	2960.0 *	13,990
5	1324	341.0	11,330	1009	270.0	8505	786	2997.5	13,966	803	2848.0	14,162			
6	1324	260.0 *	11,444	1010	295.0	8362	800	2718.5	13,588	806	2840.0	14,141			
7	1326	465.5	11,273	1014	267.0	8600	803	2703.5	13,573	807	2705.0	14,049			
8	1326	445.5	11,297	1015	290.0	8455	853	2523.5	13,247	808	2699.0	14,043			
9	1332	310.0	11,314	1020	177.5	8395	853	2589.5	13,207	808	2787.0	14,029			
10	1332	349.0	11,221 *	1025	162.5	8476	853	2525.5	13,210	810	2773.0	14,015			
11	1332	268.0	11,382	1026	83.0 *	8536	854	2584.5	13,202	812	2372.5	13,516			
12	1333	315.0	11,277	1030	338.0	8355	855	2279.5	13,092	813	2185.5	13,329			
13	1038	210.5	8381	858	2272.5	13,054	825	2126.5	13,133						
14	1045	257.5	8337 *	858	2278.5	13,041	828	2106.5	13,113						
15	868	2200.5 *	12,942	829	2077.5	13,084									
16	868	2246.5	12,888	830	2031.0	13,037									
17	871	2229.5	12,934	831	2045.0	13,035									
18	874	2240.5	12,882 *	839	1976.0	12,936									
19	869	1971.0	12,931 *												
20	872	1966.0 *	12,966												
21	875	1968.0	12,965												

Table A5. Non-dominated solutions obtained by SS/LS for the JSSP instances proposed by [40].

MKS	TDS	FLT										
1	1165 *	2888.5	20,219	1098 *	2807.0	20,198	1172 *	3586.5	20,744	1176 *	3057.0	21,124
2	1180	2816.5	20,149	1108	2798.0	20,189	1173	3551.5	20,697	1214	2596.5	20,442
3	1195	2308.0	19,714	1109	2679.0	20,136	1174	3388.0	20,564	1215	2596.5	20,433
4	1195	2299.0	19,732	1109	2676.0 *	20,139	1175	3093.0	20,220	1221	2579.5 *	20,425
5	1199	2257.0	19,659 *	1109	2708.0	20,122	1178	3070.0	20,197	1222	2582.5	204,19 *
6	1199	2253.5 *	19,683	1112	2688.0	20,132	1179	3068.0	20,201			
7	1112	2689.5	20,131	1182	3062.0	20,211						
8	1112	2685.0	20,135	1183	3049.0	20,176						
9	1112	2717.0	20,108	1189	2739.5	19,794 *						
10	1131	2686.0	20,130	1189	2716.0 *	19,818						
11	1131	2715.0	20,106 *									
Table A6. Non-dominated solutions obtained by SS/LS for the JSSP instances proposed by [41].

TA01	TA11	TA21	TA31	TA41											
MKS	TDS	FLT													
1	1534 *	2668.5	19,931	1776 *	7002.0	28,574	2216 *	7498.5	37,447	2159 *	18,102.0	52,002 *	2599 *	23,300.5	70,219
2	1534	2746.5	19,906	1802	6410.0	27,917	2228	7409.5	37,358	2609	23,287.5	70,206			
3	1534	2612.0	19,962	1803	6408.0	27,915	2230	7301.5	37,120	2614	23,223.5	70,142			
4	1534	2597.5	19,986	1810	6325.0 *	27,832 *	2243	7261.5	37,102	2625	23,211.5	70,130			
5	1539	2577.5	19,908				2245	7230.5 *	37,035 *						
6	1539	2551.0 *	19,920												
7	1570	2825.0	19,888 *												
8															

TA51	TA61	TA71							
MKS	TDS	FLT							
1	3153 *	72,768.0	129,645	3478 *	72,727.0	148,963	6064 *	363,427.5	514,764
2	3154	72,471.0	129,348	3479	72,655.0	148,891	6066	350,616.5	501,953
3	3162	72,307.0	129,184	3495	72,641.0	148,877	6071	350,572.5	501,909
4	3164	72,239.0	129,116	3545	72,603.0	148,975	6079	350,545.5	501,882
5	3212	71,599.0	128,476	3550	72,475.0	148,847	6096	350,395.5	501,732
6	3225	71,340.0	128,217	3559	72,411.0	148,783	6106	349,762.5	501,099
7	3229	71,313.0	128,190	3560	72,327.0	148,699	6110	349,695.5 *	501,032 *
8	3270	70,959.0	127,836	3604	72,125.0	148,571			
9	3317	70,584.0	127,461	3606	72,113.0	148,559			
10	3318	70,445.0 *	127,322 *	3611	72,085.0	148,531			
11				3614	72,058.0	148,504			
12				3629	72,046.0	148,492			
13				3633	71,979.0	148,425			
14				3780	71,928.0 *	148,374 *			

Table A7. Non-dominated solutions obtained by SS/CMOSA for the JSSP instances proposed by [20].

FT06	FT10	FT20							
MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT	
1	55 *	38.0	301	973 *	1190.0	8623	1191 *	8027.0	15,642
2	55	30.0	305	973	1204.0	8592	1198	7859.0	15,474
3	56	29.0	308	1003	1163.0	8596	1200	7811.0	15,426
4	56	37.0	304	1016	1138.5	8720	1236	7518.5 *	15,181 *
5	57	23.5	305	1036	991.5 *	8474 *			
6	57	27.0	297						
7	57	26.0	298						
8	58	9.5	280						
9	62	8.5	285						
10	65	12.5	278 *						
11	69	7.0 *	290						
Table A8. Non-dominated solutions obtained by SS/CMOSA for the JSSP instances proposed by [37].

ORB1	ORB2	ORB3	ORB4	ORB5														
MKS	TDS	FLT																
1	1145.5	9191	943	693.5	8251	1107	1450.5	9040	1061	1143.5	9174	*	968	545.0	7563			
2	1135	1220.5	8916	*	918	900.5	8242	1092	1530.5	9243	1046	1128.5	9238	938	684.5	7712		
3	1147	1159.5	9188	941	650.5	8323	1102	1419.5	9093	1056	1102.0	9268	960	676.0	7881			
4	1158	1145.5	*	991	944	635.5	8244	1143	1376.5	9066	1069	1123.0	9266	998	541.5	7509	*	
5	946	624.5	8434	1156	1350.5	*	9040	1079	1075.5	9429	115	1014.5	9416					
6	947	584.5	8271	1158	1408.0	9033	1083	1015.5	9409									
7	948	680.0	8167	1160	1414.0	8970	1086	1088.0	9231									
8	952	547.5	8321	1180	1392.0	8968	*	1112	1085.5	9327								
9	955	496.5	8185								1154	1075.5	9297					
10	957	418.5	8192															
11	966	486.0	7975															
12	968	415.0	7930															
13	968	542.5	7911															
14	972	365.5	7975															
15	974	315.5	7833															
16	980	382.5	7728															
17	982	376.5	7724	*														
18	1020	278.5	*	7919														

ORB6	ORB7	ORB8	ORB9	ORB10													
MKS	TDS	FLT															
1	1046 *	831.0	8980	405 *	118.5	3597	945 *	1557.0	8335	971 *	1223.0	8907	970 *	562.0	8460		
2	1075	757.0	9003	416	114.5	3499 *	946	1672.0	8292	972	1212.0	8896	974	566.0	8402		
3	1075	788.0	8978	416	109.5	3512	948	1671.0	8278	976	1176.5	8797	979	790.0	8320		
4	1083	751.0	8997	426	108.5	3510	949	1517.5	8289	978	1134.5	8691	983	646.0	8390		
5	1084	775.0	8716	429	75.5 *	3575	963	1489.5	8257	984	1099.0	8815	985	661.0	8385		
6	1104	756.0	8808	434	76.5	3506	971	1236.0	8005	988	1106.0	8730	1001	555.0	8637		
7	1113	685.0	8783		973	1189.5	7892	997	1037.5	8670	1013	745.5	8353				
8	1117	558.0 *	8810		986	1198.0	7876	1012	1304.5	8635	1045	554.5	8730				
9	1144	675.5	8718		992	999.5 *	7639	1015	1021.5	8668	1055	553.0	8507				
10				997	1036.5	7629 *	1021	967.5	8591	1063	668.0	8297					
11					1022	872.0	8490	1074	528.5	8658							
12					1037	875.0	8434	1080	501.0 *	8634							
13					1038	827.5	8477	1081	704.0	8289 *							
14					1044	871.0	8474										
15					1055	780.0 *	8383										
16					1148	860.0	8373										
17					1189	873.0	8359 *										
Table A9. Non-dominated solutions obtained by SS/CMOSA for the JSSP instances proposed by [38].

	LA01	LA02	LA03	LA04	LA05										
	MKS	TDS	FLT												
1	666 *	1419.0	5461	655 *	1206.5	5156	606 *	1406.0	4952	590 *	1363.0	5069	593 *	1094.5	4418
2	668	1138.0	5385	660	1273.5	5143	623	1446.5	4879	594	1407.0	5056	600	1071.5	4392
3	672	1302.0	5344	663	1050.0	4686	627	1404.5	4884	595	1324.0	4985	604	1063.0	4479
4	679	1275.0	5331	667	1024.0	4955	628	1361.5	4855	598	1214.5	4916	607	1069.0	4463
5	700	1233.0	5238	671	999.5	4904	628	1460.0	4828	598	1227.0	4854	608	1104.5	4372
6	701	1179.0	5274	677	914.5	4799	629	1333.0	4807	599	1182.0	4930	610	1164.0	4370
7	702	1157.0	5345	680	839.5	4724	634	1315.5	4764	608	1138.0	4725	611	1054.0	4378
8	715	1144.0	5346	680	800.5	4730	636	1346.0	4714	611	1122.5	4862	634	1089.0	4374
9	721	1095.0	5302	681	804.5	4717	638	1292.0	4785	614	1122.0	4870	648	1005.0	4299
10	743	1169.0	5287	688	796.5	4659 *	643	1280.5	4792	614	1123.5	4851	672	1008.0	4293 *
11	768	1026.0	5277	712	790.5	4703	646	1295.0	4778	616	1032.5	4630			
12	769	1056.0	5265	729	729.0 *	4683	648	1328.0	4724	625	1025.0	4667			
13	771	1029.0	5255	730	781.0	4680	650	1293.5	4690	629	1012.5	4682			
14	771	1017.0 *	5268												
15	771	1221.5	5239												
16	850	1212.5	5230 *												
17															
18															
19															
20															
21															
22															
23															
24															

	LA06	LA07	LA08	LA09	LA10										
	MKS	TDS	FLT												
1	927 *	3972.5	9939	890 *	4047.0	9541	863 *	3722.5	9460	951 *	3922.5	10,287	958 *	4539.5	10,554
2	935	3814.0	9782	891	3849.5	9467	864	3706.5	9444	960	3852.5	10,140	958	4588.5	10,528
	LA11	LA12	LA13	LA14	LA15										
---	------	------	------	------	------										
	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT			
1	1222 *	9206.0	17,155	1039 *	7244.0	14,217	1150 *	8442.0	16,221	1292 *	9630.5	17,552 *	1207 *	9213.5	17,373
2	1227	9176.5	17,203	1039	7233.0	14,247	1153	8128.0	15,907	1209	8874.5	16,937			
3	1228	9091.5	17,118	1051	7265.0	14,216	1161	7806.0	15,585	1244	8797.0	16,836 *			
4	1232	**9031.5** *	17,052 *	1054	7195.0	14,209	1186	**7665.0** *	15,444 *	1264	8784.0	16,915			
5				1059	7091.0	14,105									
6				1061	7174.5	14,054									
7				1064	7074.0	14,080									
8				1069	**7038.0** *	14,044 *									

	LA16	LA17	LA18	LA19	LA20										
	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT			
1	946 *	787.5	8253	796 *	912.0	7633	855 *	558.5	7932	861 *	140.0	**7444** *	908 *	519.0	8156
2	967	673.5	8212	801	805.0	7617	859	553.5	7894	870	136.0	7471	910	487.0	8153
3	979	485.0	8238	805	797.0	7493	865	471.5	7833	873	135.0	7628	911	442.5	7795
4	1035	510.5	8235	805	762.0	7496	872	571.5	7806	892	**133.0** *	7493	911	409.5	7831
5	1038	430.0	8237	809	683.5	7312	873	567.5	7803		918	389.0	8128		
6	1050	**272.0** *	8067	809	698.5	7305	874	545.5	7829		921	396.0	8043		
7	1054	488.5	8066	841	627.5	**7175** *	876	445.5	7890		922	407.0	8037		
8	1109	569.0	**8043** *	857	603.5	7256	879	497.0	7730		922	407.5	7680		
9				863	548.5	7311	880	390.0	7593		925	376.0	7981		
	LA21	LA22	LA23	LA24	LA25										
---	------	------	------	------	------										
	MKS	TDS	FLT												
1	1102 *	2769.5	14,487	984 *	2337.5	13,192	1039 *	2200.5	14,235	993 *	2225.5	13,648	1029 *	2956.5	14,010
2	1115	2756.5	14,610	988	2309.5	13,166	1041	18191 *	13,730 *	998	1885.5	13,334	1032	2875.5	13,668
3	1120	2713.5	14,469	992	21456.0 *	12,986	999	1876.0	13,196	1033	2845.0	13,995			
4	1122	2654.5	14,414	1046	22225.5	12,979	1008	1874.0	13,344	1040	2844.5	13,637			
5	1124	2386.5	14,317	1104	2281.5	12,955 *	1009	1860.5	13,309	1040	2824.5	13,773			
6	1125	2374.0	14,281	1010	1832.0	13,302	1041	2807.5	13,664						
7	1129	2345.5	14,114	1014	1831.0	13,259	1048	2517.5	13,517						
8	1134	2275.5	14,072	1015	1707.0	13,188	1052	2469.5	13,462						
9	1138	2331.5	13,979	1024	1705.0 *	13,179	1056	2567.0	13,408						
10	1150	2232.0	14,223	1025	1726.0	13,153 *	1057	2266.5	13,223						
11	1191	2183.0	14,057	1075	2256.5	13,308									
12	1200	1952.0 *	13,938 *	1102	2207.0 *	13,192 *									

	LA26	LA27	LA28	LA29	LA30										
	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT			
1	1242 *	6684.5	22,457	1286 *	6708.0	22,911	1264 *	7023.0	23,046	1248 *	7318.5	22,212	1386 *	7671.0	23,691
2	1244	6698.5	22,425	1287	6337.0	22,540	1280	6668.0	22,691	1259	7195.0	22,040	1393	7649.0	23,669
3	1250	6589.5	22,067	1301	6193.0	22,441	1284	6461.5	22,474	1264	6847.5	21,731	1402	7380.0 *	23,400
4	1287	6429.5	21,981	1321	6187.5	22,412	1289	6434.5	22,447	1271	6743.5	21,627	1528	7426.0	23,334
5	1306	6329.5	22,102	1322	5990.5 *	22,212 *	1291	6328.0	22,351	1274	6556.5	21,423	1546	7410.0	23,318 *
	LA31	LA32	LA33	LA34	LA35										
---	------------	------------	------------	------------	------------										
	MKS	TDS	FLT												
1	1784 *	20,682.5	43,469	1850 *	20,891.5	45,745	1719 *	19,234.5 *	41,688 *	1721 *	21,725.5	44,737	1888 *	22,157.5	45,385
2	1786	20,647.5	43,434	1851	20,716.5	45,570	1723	20,594.5	43,606	1900	21,987.5	45,135			
3	1787	20,586.5	43,373	1855	20,520.5	45,374	1729	20,578.5	43,590	1906	21,994.0	45,106			
4	1793	20,451.5	43,238	1859	20,513.5	45,367	1740	20,173.5	43,147	1910	21,783.0	44,894 *			
5	1796	20,415.5	43,202	1882	20,494.5	45,348	1748	20,030.5	43,042	1932	21,772.5 *	44,897			
6	1806	20,417.5	42,953	1888	20,482.5	45,336	1750	19,808.5 *	42,820 *						
7	1818	20,419.5	42,952	1891	20,458.5 *	45,312 *									
8	1859	20,335.5 *	43,122 *												

	LA36	LA37	LA38	LA39	LA40										
	MKS	TDS	FLT												
1	1351 *	1724.0	19,137	1558 *	2472.0	20,884	1330 *	1226.5	17,545	1334 *	1213.5	17,855	1337 *	1710.5	18,569
2	1353	1587.0	18,872	1559	2070.5	20,550	1348	1027.5 *	17,503	1337	1194.5	18,144	1338	1686.0	18,546
3	1378	1479.5	18,817	1565	2023.5	20,628	1351	1172.0	17,445 *	1346	1176.0	18,119	1340	1623.0	18,483
4	1380	1471.5	18,856	1565	2013.5	20,653	1376	1135.5	17,447	1364	1189.5	17,958	1349	1593.5	18,481
5	1387	1438.5	18,809	1566	2063.5	20,495	1365	887.0	17,837 *	1350	1589.5	18,485			
6	1391	1437.5	18,808	1570	1957.0	20,563	1365	839.0 *	17,843	1352	1509.5	18,588			
7	1397	1313.0	18,714	1590	1886.5	20,610							1355	1740.5	18,450
8	1399	1316.0	18,707	1593	2043.0	20,357							1359	1419.5	18,037
9	1405	1265.0 *	18,637 *	1594	1992.5	20,550							1373	1417.5	18,542
10				1600	1807.0	20,573							1388	1195.0	17,804
11				1609	1778.0	20,366							1389	1123.0	17,596
12				1621	1762.0	20,350							1389	1106.0	17,673
n	d	x	y	d	x	y									
----	-----	------	------	-----	------	------									
13	1623	1756.0	20,599	1391	1108.0	17,637									
14	1625	2048.5	20,261	1393	1127.0	17,584									
15	1632	1946.5	**20,159** *	1393	1110.0	17,621									
16	1633	1848.5	20,262	1403	**1033.0** *	17,482 *									
17	1653	**1743.0** *	20,288												
18	1681	1832.5	20,246												
19	1691	1895.5	20,234												
Table A10. Non-dominated solutions obtained by SS/CMOSA for the JSSP instances proposed by [39].

ABZ5	ABZ6	ABZ7	ABZ8	ABZ9											
MKS	TDS	FLT													
1	1254 *	177.5	11,280	947 *	289.0	8473	734 *	2472.0	13,486	746 *	2186.0	13,532	767 *	2367.0	13,380
2	1255	108.0	11,213	961	207.5	8512	739	2421.0	13,440	747	2183.0	13,529	767	2354.0	13,406
3	1280	231.0	11,180	963	282.5	8486	739	2471.0	13,435	763	2220.0	13,437	788	2336.0	13,388
4	1281	174.0	11,191	966	306.5	8405	740	2418.0	13,437	764	2299.0	13,425	788	2365.0	13,378
5	1285	157.5 *	11,160	967	253.5	8461	743	2365.0	13,188	767	2165.5 *	13,516	789	2349.0	13,362
6	1296	255.0	11,148	970	173.0	8389	745	2394.0	13,184	768	2252.5	13,302 *	791	2326.5	13,452
7	1319	243.5	11,147 *	971	321.0	8326	750	2335.5	13,325	806	2270.5 *	13,338 *			
8	976	154.5	8289	752	2309.5	13,299									
9	982	139.0	8419	769	2180.5	13,146									
10	982	166.5	8282	773	2157.5 *	13,123 *									
11	983	114.0	8365												
12	984	138.0	8306												
13	984	65.5	8435												
14	991	117.5	8229												
15	994	67.0	8395												
16	996	50.5	8207												
17	996	21.5	8229												
18	998	161.0	8179 *												
19	1003	52.5	8189												
20	1097	20.5 *	8577												

Table A11. Non-dominated solutions obtained by SS/CMOSA for the JSSP instances proposed by [40].

YN01	YN02	YN03	YN04									
MKS	TDS	FLT										
1	1021 *	1355.0	18,401 *	1037 *	1567.0	18,942	1029 *	1739.0	18,783	1136 *	2134.0	19,837
2	1060	1233.0 *	18,679									
3	1046	1533.0	18,877	1032	1502.0	18,671	1138	2110.0	19,813 *			
4	1054	1604.5	18,735	1038	1464.0	18,449	1181	2011.5 *	20,020			
5	1056	1502.5 *	18,766	1051	1426.5 *	18,380 *						
6	1086	1596.5	18,721 *									

Table A12. Non-dominated solutions obtained by SS/CMOSA for the JSSP instances proposed by [41].

TA01	TA11	TA21	TA31	TA41											
MKS	TDS	FLT													
1	1335 *	1372.5	18,209	1335 *	5652.5	27,205	1915 *	5306.0	35,250	194 *	15,386.5	49,247	2364 *	17,422.5	64,248
2	1346	1302.0	18,110	1537	5589.5	27,142	1916	5229.0	35,256	1951	15,375.5	49,236 *			
3	1351	1229.5	18,073	1538	5661.5	26,977	1929	4896.5	35,136						
4	1354	1143.5	18,037	1551	5407.5	27,055	1940	5077.5	35,122						
5	1359	881.5	17,807	1569	5297.5	26,743	1969	4868.5	35,039						
6	1359	821.5 *	17,918	1594	5194.0	26,582	2000	4432.0	34,499						
7	1368	859.5	17,917	1596	5193.5	26,787	2007	4347.0 *	34,421 *						
8	1380	1031.0	17,792	1604	5105.0	26,765	2511	16,866.5	63,785	2518	16,603.5	63,522			
Table A13. Non-dominated solutions obtained by SS/CMOTA for the JSSP instances proposed by [20].															
---	---	---	---	---	---	---	---								
MKS	**TDS**	**FLT**	**MKS**	**TDS**	**FLT**	**MKS**	**TDS**	**FLT**							
1	3036 *	70,728.0	127,605	3175 *	68,199.0	144,645	5813	360,343.5	511,680						
2	3037	70,693.0	127,570	3194	65,524.0	141,970	5825	350,203.5	501,540						
3	3062	69,876.0	126,753	3196	64,945.0 *	141,391	5842	348,580.5	499,917						
4	3100	69,835.0	126,712	3200	64,939.0	141,385 *	5852	348,429.5 *	499,766 *						
5	3110	69,572.0 *	126,449 *												

| Table A14. Non-dominated solutions obtained by SS/CMOTA for the JSSP instances proposed by [37]. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| **ORB1** | **MKS** | **TDS** | **FLT** |
| 1 | 1111 * | 1331.5 | 9164 | 926 * | 564.5 | 8131 | 1096 * | 1856.5 | 9724 | 1044 * | 1067.0 | 9367 | 914 * | 834.5 | 7721 |
| 2 | 1135 | 1268.0 | 9315 | 929 | 514.5 | 8139 | 1100 | 1811.5 | 9636 | 1054 | 1063.5 | 9366 | 962 | 829.5 | 7909 |
| 3 | 1145 | 1310.5 | 9301 | 936 | 466.0 | 8066 | 1110 | 1757.0 | 9391 | 1056 | 1157.0 | 9349 | 969 | 786.5 | 8027 |
| 4 | 1160 | 1290.5 | 9273 | 944 | 461.0 | 8028 | 1111 | 1666.5 | 9491 | 1063 | 1126.5 | 9224 | 980 | 790.0 | 7894 |
| 5 | 1160 | 1245.5 | 9289 | 957 | 353.5 | 8038 | 1117 | 1600.5 | 9425 | 1072 | 1061.0 | 9342 | 981 | 757.0 | 7927 |
| 6 | 1161 | 1279.5 | 9262 | 957 | 465.0 | 7903 | 1121 | 1504.5 | 9329 | 1085 | 1081.0 | 9333 | 982 | 792.5 | 7754 |
| 7 | 1168 | 1227.0 * | 9310 | 959 | 416.0 | 7830 | 1122 | 1533.5 | 9091 | 1095 | 1125.0 | 9325 | 990 | 798.5 | 7737 |
| 8 | 1196 | 1242.5 | 9132 | 960 | 404.0 | 7805 | 1139 | 1393.0 | 9270 | 1141 | 900.0 | 9131 | 1000 | 781.0 | 7840 |
| 9 | 1197 | 1242.0 | 9128 * | 979 | 389.5 | 8026 | 1146 | 1399.5 | 9186 | 1225 | 886.0 * | 9117 * | 1003 | 657.5 * | 7688 |
| 10 | 1010 | 521.0 | 7800 * | 1154 | 1379.5 | 9166 | 1037 | 740.0 | 7645 |
| 11 | 1017 | 317.5 * | 8014 | 1164 | 1432.5 | 9080 | 1045 | 731.0 | 7636 * |
| 12 | 1170 | 1414.5 | 9088 |
| 13 | 1228 | 1287.5 * | 8955 * |

ORB6	**MKS**	**TDS**	**FLT**												
1	1058 *	724.5	8797 *	413 *	143.0	3646	948 *	1498.5	8317	978 *	1637.0	9373	974 *	875.5	8921
2	1114	703.5 *	8931	417	111.0	3544	966	1373.5	8144	979	1470.0	9232	976	767.0	8318
3	1118	711.0	8872	424	144.5	3538	1003	1311.0	7925	984	1419.0	9126	979	758.0	8420
4	445	164.5	3525 *	1003	1304.0	7957	986	1514.0	9121	979	744.0	8472			
5	445	110.0 *	3633	1004	1257.0	7910	988	1248.0	8956	1021	692.0	8744			
Table A15. Non-dominated solutions obtained by SS/CMOTA for the JSSP instances proposed by [38].

LA01	LA02	LA03	LA04	LA05											
MKS	TDS	FLT													
1	666	1302.5	5562	655	1230.5	5180	614	1741.5	5301	595	1212.0	4915	593	1177.5	4520
2	666	1525.5	5536	665	1284.5	5135	619	1641.5	5137	598	1196.0	4880	593	1218.0	4519
3	668	1178.5	5426	668	1015.0	4883	622	1582.0	5137	610	1150.0	4846	593	1186.5	4510
4	668	1276.5	5409	681	1003.0	4947	623	1489.5	5001	612	1182.0	4775	598	1148.5	4517
5	670	1112.0	5220	686	1168.0	4851	625	1536.0	4968	618	1106.0	4809	598	1199.0	4443
6	740	1093.0	5283	687	924.5	4839	627	1478.0	4984	623	1020.5	4695	600	1125.0	4426
7	764	1068.5	5182	687	981.0	4758	627	1471.0	5034	642	945.5	4620	600	1172.0	4416
8	698	922.0	4806	628	1435.5	4952	663	906.5	4581	607	1114.5	4539			
9	720	948.5	4696	630	1451.5	4897	607	1115.5	4528						
10	729	928.5	4778	630	1451.0	4902	610	1102.5	4433						
11	831	918.0	4799	632	1365.5	4837	613	1095.5	4442						
12	834	925.0	4736	633	1161.5	4657	621	1181.0	4413						
13	855	850.0	4716	645	1151.0	4625	647	1077.5	4458						
14	651	1136.5	4711	648	1071.5	4479									
15	658	1115.5	4611	649	1124.5	4432									
16	669	1183.0	4588	647	1072.5	4440									
17	671	1122.5	4594	654	1124.5	4353									
18	672	995.5	4542												
19	699	927.0	4442												
20	701	1012.5	4421	676	940.0	4441									

LA06	LA07	LA08	LA09	LA10												
MKS	TDS	FLT														
1	926	3995.0	9983	890	3930.5	9547	864	4293.5	10031	951	4358.0	10543	958	4465.0	10495	
2	926	4013.5	9965	898	3949.0	9523	864	4350.0	9986	951	4285.5	10680	959	4464.0	10494	
3	932	4020.5	9886	904	3823.0	9396	865	3852.5	9590	952	4326.0	10594	971	4424.0	10419	
4	933	3971.5	9919	905	3812.0	9385	866	3777.5	9515	954	4029.0	10358	*	981	4404.0	10399
5	938	3857.0	9845	910	3825.0	9365	871	3778.0	9511	986	4392.0	10387				
6	939	3920.5	9763	912	3785.5	9401	873	3759.5	9497	994	4330.0	10360				
7	942	3793.0	9781	927	3720.0	9286	874	3735.5	9379	1042	4266.0	10296				
	8	9														
---	---	---														
	1222 *	1241 *														
	1207 *	1213														
	16,154	16,962														
	16,818 *	16,832														
	16,826	8321														

LA11	LA12	LA13	LA14	LA15				
MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT
1	1292 *	8297.0	14,104	1150 *	16,076	9616.0	17,635	1207 *
2	1294	8291.0	14,080	1158	16,032	9583.0 *	17,602 *	
3	1214	8197.0	15,976	1166	8019.0 *	15,798 *		
4	1260	8684.5	16,832					
5	1261	8659.0 *	16,826					

LA16	LA17	LA18	LA19	LA20											
MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT							
1	979 *	673.5	8402	793 *	781.0	7553	870 *	410.5	7735	875 *	286.0	7914	912 *	578.0	8217
2	1017	632.5	8493	795	768.0	7534	880	476.5	7671	875	337.0	7869	914	457.5	8146
3	1024	622.5	8490	795	798.0	7518	882	333.5	7773	875	263.0	7929	914	490.5	8055
4	1025	566.0	8452	800	763.0	7431	883	298.5	7766	880	192.0	7720	916	472.5	8077
5	1028	629.5	8376	801	738.5	7537	883	396.5	7645	888	176.0	7783	917	512.0	8014
6	1038	269.0	8090	802	733.0	7384	885	310.5	7750	891	188.5	7634	918	320.0	8140
7	1050	284.5	8070 *	802	686.5	7450	886	294.5	7724	894	166.0 *	7738	920	287.0	8015
8	1076	228.0 *	8080	802	671.5	7457	887	393.5	7717	897	182.5	7698	926	293.0	8002
9	804	623.5	7126	877	427.5	7564	935	193.5	7626 *	926	309.5	7943			
10	811	623.0	7244	905	440.5	7547	932	385.0	7935						
11	813	548.0	7173	909	383.0	7675	934	343.0	7891						
12	821	616.5	7115	914	264.5	7733	940	283.0	8053						
13	821	622.5	7024	915	248.5	7707	940	301.0	7966						
14	829	654.5	6999	916	320.0	7487 *	943	347.5	7888						
15	846	647.5	7009	934	277.0	7513	958	282.0	8011						
16	851	587.5	6997 *	936	276.5	7706	962	319.0	7836						
17	851	496.5	7242	945	274.0	7506	973	294.5	7976						
18	881	583.5	7167	972	243.0	7633	979	280.0	8065						
19	941	474.0 *	7233	972	228.0	7745	996	237.5 *	8010						
20	979	196.5 *	7734												
21	993	234.0	7555												

LA21	LA22	LA23	LA24	LA25											
MKS	TDS	FLT	MKS	TDS	FLT	MKS	TDS	FLT							
1	1103 *	2088.5 *	13,708	993 *	2598.0	13,518	1035 *	1738.5	13,672	1000 *	2168.5	13,581	1047 *	3160.5	14,250
2	995	2574.0	13,492	1108	1830.0	13,651 *	1009	2156.5	13,569	1053	3107.5	14,250			
3	999	2567.0	13,550	1122	1612.5 *	13,707	1011	2135.5	13,591	1055	2846.0	13,843			
4	1004	2514.0	13,373	1013	2135.5	13,548	1059	2754.5	13,768						
5	1013	2524.0	13,359	1013	2115.5	13,584	1066	2630.5	13,850						
6	1018	2422.0	13,340	1015	2134.5	13,528	1068	2617.5	13,789						
7	1041	2331.5	13,081	1016	1866.0 *	13,224 *	1072	2616.5	13,753						
8	1041	2325.0	13,132	1074	2713.5	13,732									
9	1045	2179.0 *	13,040 *	1079	2689.5	13,696									
10	1081	2489.5	13,652												
11	1082	2354.0	13,474												
12	1128	2306.5 *	13,564												
13	1216	2520.0	13,471 *												
	LA31	LA32	LA33	LA34	LA35										
---	------	------	------	------	------										
	MKS	TDS	FLT												
1	1850	20,717	45,507	1719	19,800	42,156	1721	20,276	43,288	1888	20,980	44,156			
2	1787	21,998	44,785	1852	20,531	45,385	1721	19,732	42,186	1724	20,265	43,277			
3	1789	21,274	44,061	1723	19,751	42,144	1724	19,672	42,126	1725	19,328	41,782			
4	1790	20,568	43,355	1726	19,068	41,424	1729	19,057	41,413	1731	19,050	41,406			
5	1810	20,337	43,124	1731	19,050	41,406									

	LA36	LA37	LA38	LA39	LA40							
	MKS	TDS	FLT									
1	1367	2046.0	19,295	1533	2291.0	20,930	1323	18,734	1328	17,585	1318	17,718
2	1369	2016.5	19,362	1536	1919.5	20,430	1329	17,538	1366	17,512	1326	17,768
3	1377	2012.0	19,249	1548	1828.0	20,435	1331	17,878	1368	904.5	17,426	
4	1378	1768.0	19,164	1553	1830.0	20,433	1345	17,653	1368	961.5	17,422	
5	1380	1897.0	19,108	1554	1827.0	20,430	1357	1457.5	17,459	1379	888.0	17,527
6	1394	1684.5	19,003	1567	1926.0	20,294	1373	17,836	1392	893.0	17,440	
7	1409	1675.0	19,041	1571	1919.0	20,287	1376	1426.0	17,778			
8	1473	1667.0	19,134	1577	1986.0	20,218	1478	1674.5	19,048	1581	1769.0	20,605
10	1581	1797.0	20,289	1584	1500.5	20,032						
11	1587	1545.5	19,923	19,800								
13	1648	1676.5										
Table A16. Non-dominated solutions obtained by SS/CMOTA for the JSSP instances proposed by [39].

MKS	TDS	FLT													
1	1239 *	241.5	10,829 *	961 *	190.5	8426	742 *	2425.5	13,462	751 *	2604.5	13,961	780 *	2968.0	13,900
2	1250	150.0	11,038	970	177.0	8416	745	2395.5	13,441	751	2607.5	13,954	783	2665.5	13,798
3	1269	110.0 *	10,852	976	137.0	8464	755	2502.0	13,346	755	2566.0	13,904	787	2562.0	13,622
4	981	115.0	8427	757	2126.5	13,113	762	2533.5	13,903	789	2538.0	13,598			
5	981	171.5	8288	768	2125.5	13,112	763	2524.5	13,894	790	2537.0	13,611			
6	987	74.0	8382	768	2114.0	13,126	774	2326.0	13,702	791	2492.0	13,621			
7	994	59.0	8342	774	2100.0	13,112	781	2258.5	13,492	794	2434.0	13,491			
8	998	149.0	8235	777	2097.5 *	13,077 *	782	2256.5	13,518	827	2235.5 *	13,384			
9	1007	144.0	8307	784	2247.5	13,475	839	2443.0	13,358 *						
10	1014	122.5	8333	785	2120.0	13,406									
11	1030	185.5	827 *	786	2105.0 *	13,391 *									
12	1066	39.5 *	8390												

Table A17. Non-dominated solutions obtained by SS/CMOTA for the JSSP instances proposed by [40].

MKS	TDS	FLT										
1	1036 *	1582.0	18,928	1063 *	1757.0	19,058	1037 *	1635.0	18,813	1133	2375.5	19,979
2	1036	1593.0	18,907	1084	1709.5	19,133	1051	1579.5	18,876	1155	2373.0	20,359
3	1041	1252.5	18,619	1087	1685.0	19,084	1056	1691.5	18,591	1157	2247.0	20,236
4	1051	1427.5	18,468	1095	1643.0 *	19,042 *	1057	1455.0	18,786	1163	2258.0	19,898 *
5	1058	1142.5	18,215	1058	1619.5	18,519	1177	2244.5 *	20,223			
6	1059	1144.5	18,188	1064	1512.0	18,656						
7	1068	1090.5	18,208	1072	1494.5	18,419						
8	1072	1091.5	18,164 *	1081	1481.5	18,406						
9	1092	1055.5 *	18,254	1082	1463.5	18,406						
10	1089	1421.5	18,331									
11	1093	1364.5 *	18,289 *									

Table A18. Non-dominated solutions obtained by SS/CMOTA for the JSSP instances proposed by [41].

MKS	TDS	FLT													
1	1330 *	1620.0	18,799	1550 *	4800.5	26,342	1910 *	5510.5	35,751	1978 *	18,629.0	52,529	2375 *	16,031.5 *	62,497 *
2	1335	1557.0	18,483	1552	4752.0	26,321	1911	4527.0	34,593	1980	18,479.0	52,379			
3	1352	1504.0	18,649	1553	4639.0	26,208	2071	4701.0	34,566	1987	18,437.0	52,337			
4	1366	1407.0	18,487	1568	4635.0 *	26,204 *	2075	4633.0	34,575	1999	18,338.0	52,238			
5	1371	1516.0	18,403	2086	4451.0	34,186 *	2007	18,036.0	51,936						
6	1374	1369.5	18,603	2096	4365.5 *	34,188	2028	17,872.0	51,772						
7	1377	1330.5	18,467	2134	17,768.0 *	51,668 *									
8	1378	1220.0	18,078												
9	1381	1385.5	18,066												
10	1382	1369.5	18,050												
11	1389	1219.0	18,084												
References

1. Garey, M.R.; Johnson, D.S.; Sethi, R. PageRank: The complexity of flowshop and jobshop scheduling. *Math. Oper. Res.* 1976, 1, 117–129.

2. Pinedo, M. *Scheduling Theory Algorithm, and Systems*; 5th ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2016; ISBN: 978-3-319-26578-0.

3. Yang, Y.B. Methods and Techniques Used for Job Shop Scheduling, MSc. Research Project, Florida Technological University, 1972. Available online: https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1389&context=rtd (accessed on 29 November 2021).

4. Xing, L.N.; Chen, Y.W.; Yang, K.W. Multi-objective flexible job shop schedule: Design and evaluation by simulation modeling. *Appl. Soft Comput.* 2009, 9, 362–376.

5. Yuan, Y.; Xu, H. Multiobjective flexible job shop scheduling using memetic algorithms. *IEEE Trans. Autom. Sci. Eng.* 2015, 12, 336–353.

6. Kaplanoglu, V. An object-oriented approach for multi-objective flexible job-shop scheduling problem. *Expert Syst. Appl.* 2016, 45, 71–84.

7. Bao, Q.; Soubeyran, A. Variational principles in set optimization with domination structures and application to changing jobs. *J. Appl. Numer. Optim.* 2019, 1, 217–241.

8. Luu, D.V.; Linh, P.T. Optimality and duality for nonsmooth multiobjective fractional problems using convexificators. *J. Nonlinear Funct. Anal.* 2021, 1.

9. Pereira, O.; Júnior, V.L.d.; Soubeyran, A. Inexact Multi-Objective Local Search Proximal Algorithms: Application to Group Dynamic and Distributive Justice. *J. Optim. Theory Appl.* 2018, 177, 181–200.

10. Glover, F. Heuristics for integer programming using surrogate constraints. *Decis. Sci.* 1977, 8, 156–166. https://doi.org/10.1111/j.1540-5915.1977.tb01074.x.

11. Frausto-Solis, J.; Hernández-Ramírez, L.; Castilla-Valdez, G.; Gonzalez-Barbosa, J.; Sánchez, J. Chaotic multi-objective simulated annealing and threshold accepting for job shop scheduling problem. *Math. Comput. Appl.* 2021, 26, 8. https://doi.org/10.3390/mca26010008.

12. Suresh, R.K.; Mohanasundaram, M. Pareto archived simulated annealing for job shop scheduling with multiple objectives. *Int. J. Adv. Manuf. Technol.* 2006, 29, 184–196.

13. Bandyopadhyay, S.; Saha, S.; Maulik, U.; Deb, K. A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. *Evol. Comput.* IEEE Trans. 2008, 12, 269–283. https://doi.org/10.1109/TEVC.2007.900837.

14. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II. In *International Conference on Parallel Problem Solving from Nature*; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1917.

15. Kachitvichyanukul, V.; Sitthitham, S. A two-stage genetic algorithm for multiobjective job shop scheduling problems. *J. Intell. Manuf.* 2009, 22, 355–365.

16. Zhao, F.; Chen, Z.; Wang, J.; Zhang, C. An improved MOEA/D for multiobjective job shop scheduling problem. *Int. J. Comput. Integr. Manuf.* 2016, 30, 616–640.

17. Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. *Evol. Comput.* 2000, 8, 173–195. https://doi.org/10.1162/106365600568202.

18. Karimi, N.; Zandieh, M.; Karamooz, H. Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. *Expert Syst. Appl.* 2010, 37, 4024–4032. https://doi.org/10.1016/j.eswa.2009.09.005.
