Effect of antiviral treatment on the risk of hepatocellular carcinoma in patients with chronic hepatitis B

Konstantinos Tziomalos

Abstract
Chronic hepatitis B (CHB) is a major risk factor for hepatocellular carcinoma (HCC). The prevention of HCC is of paramount importance in patients with CHB, particularly in those with cirrhosis. Antiviral treatment can potentially reduce the risk for HCC since it suppresses viral replication, induces HBeAg seroconversion and improves liver histology. However, most evidence supporting a protective effect of antiviral treatment originates from non-randomized or retrospective studies and is limited to conventional interferon and lamivudine. There is a paucity of data on the effects of pegylated interferon and “newer” oral agents (telbivudine, tenofovir, entecavir) on HCC risk. However, it should be emphasized that the existing randomized control studies in patients with CHB were relatively short-term and not designed to assess the effects of antiviral treatment on HCC risk. Since viral load directly correlates with HCC risk, it is reasonable to hypothesize that the reduction in viral load with antiviral treatment will also lower the risk of HCC. This benefit might become more readily apparent with the newer agents used in the management of CHB which are more effective and have a more favorable resistance profile.

© 2010 Baishideng. All rights reserved.

Key words: Chronic hepatitis B; Hepatocellular carcinoma; Interferon; Lamivudine; Adefovir; Telbivudine; Tenofovir

Peer reviewers: Emmet B Keeffe, MD, MACP, Professor of Medicine Emeritus, Stanford University Medical Center, 750 Welch Road, Suite 210, Palo Alto, CA 94304-1509, United States; Meehyein Kim, PhD, Department of Virus Research Laboratory, Mogam Biotechnology Research Institute, 341, Bojeong-dong, Giheung-gu, Yongin 446-799, South Korea

Tziomalos K. Effect of antiviral treatment on the risk of hepatocellular carcinoma in patients with chronic hepatitis B. World J Hepatol 2010; 2(3): 91-93 Available from: URL: http://www.wjgnet.com/1948-5182/full/v2/i3/91.htm DOI: http://dx.doi.org/10.4254/wjh.v2.i3.91

INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth commonest cancer and the third commonest cause of death due to cancer worldwide[1]. Chronic hepatitis B (CHB) is a major risk factor for HCC[2]. The annual incidence of HCC ranges between 0.3%-1.0% and 2.3%-2.5% in untreated patients with CHB and CHB-related cirrhosis respectively[2,3]. Several potentially curative treatment options exist for patients with HCC including resection, local ablation therapies and liver transplantation[3,4]. In addition, in patients with cirrhosis, surveillance for HCC increases the possibility of an earlier diagnosis and improved survival[3,9]. However, many patients are not candidates for curative treatments because of advanced liver disease and/or advanced HCC; these patients have poor survival rates[3,4]. The shortage of donor organs available for transplantation further limits the potential for liver transplantation[3,4].

PATHOLOGICAL RELATIONSHIP BETWEEN CHB AND HCC
It is apparent that prevention of HCC is of paramount importance in patients with CHB, particularly in those with cirrhosis. Antiviral treatment can potentially reduce the risk for HCC since it suppresses viral replication, induces HBeAg seroconversion and improves liver histology. However, most evidence supporting a protective effect of antiviral treatment originates from non-randomized or retrospective studies and is limited to conventional interferon and lamivudine. There is a paucity of data on the effects of pegylated interferon and “newer” oral agents (telbivudine, tenofovir, entecavir) on HCC risk. However, it should be emphasized that the existing randomized control studies in patients with CHB were relatively short-term and not designed to assess the effects of antiviral treatment on HCC risk. Since viral load directly correlates with HCC risk, it is reasonable to hypothesize that the reduction in viral load with antiviral treatment will also lower the risk of HCC. This benefit might become more readily apparent with the newer agents used in the management of CHB which are more effective and have a more favorable resistance profile.
Tziomalos K. Antiviral treatment and HCC in CHB

Importance in patients with CHB, particularly in those with cirrhosis. Antiviral treatment has the potential to reduce the risk for HCC since it suppresses viral replication, induces HBeAg seroconversion and improves liver histology[7]. Increased viral load, HBeAg positivity and presence of cirrhosis are all associated with increased risk for HCC[8-10,11]. More specifically, a direct linear relationship was reported between viral load and HCC risk; patients with persistently high viral load appear to be at particularly high risk for HCC[8,10,11]. Antiviral treatment [particularly interferon (IFN)] can also rarely induce seroconversion from HBsAg to antiHBs[7]. The risk of HCC is significantly reduced in patients who clear HBsAg[12,13]. However, HBV persists at low levels even after HBsAg seroclearance[14,15] and HCC can develop in patients (particularly Asians or patients with cirrhosis) who have cleared HBsAg either spontaneously or after IFN treatment[16,17].

IFN TREATMENT FOR PREVENTING HCC IN CHB

Some studies reported a reduction in the risk of HCC with IFN treatment. In a randomized trial in patients with HBeAg positive CHB, IFN treatment (with prednisolone priming in 54% of the patients) reduced the risk of HCC compared with no treatment[16]. In a non-randomized trial in patients with HBeAg negative CHB, patients who achieved a sustained response to IFN had a lower risk of HCC than those who did not respond to IFN or relapsed after treatment discontinuation[17]. In patients with CHB-related cirrhosis (36% HBeAg positive), IFN reduced the risk of HCC[19]. However, IFN did not reduce the risk of HCC in other studies in patients with HBeAg positive CHB[20,21]. HBeAg negative CHB[22] or CHB-related cirrhosis[23-25]. Sung et al[24] performed a meta-analysis of 12 randomized, case-control and cohort studies (n = 2742) and reported that conventional IFN reduces the risk of HCC by 34% compared with control patients [relative risk (RR) 0.66; 95% confidence interval (CI) 0.48-0.89]. The risk reduction was greater in patients with early cirrhosis compared with those without cirrhosis and was independent of HBeAg status[24]. In a more recent meta-analysis (11 studies; n = 2082), conventional IFN reduced the risk of HCC in patients with CHB by 41% compared with no treatment (95% CI: 0.43-0.81)[25]. However, in a recent systematic review that assessed only randomized controlled trials (RCT), IFN did not reduce the risk of HCC[26].

Given the direct relationship between viral load and HCC risk, it would be important to evaluate whether the putative preventive effect of IFN against HCC depends on baseline HBV-DNA levels. Most patients in the above-mentioned studies had detectable HBV-DNA regardless of serological status (i.e. HBeAg positive or negative)[17-28]. However, it was not assessed whether the HCC risk reduction during IFN treatment was associated with baseline HBV-DNA levels[17,18,20-25]. Only one study in CHB-related cirrhosis (36% HBeAg positive) reported that IFN reduced the risk of HCC only in patients with higher baseline HBV-DNA levels (≥ 10 Meq/mL) and not in those with lower HBV-DNA levels (< 10 Meq/mL)[29].

LAMIVUDINE TREATMENT FOR PREVENTING HCC IN CHB

In a pivotal RCT in patients with CHB-related cirrhosis or advanced fibrosis (58% HBeAg positive), lamivudine (LAM) significantly reduced the risk of HCC compared with placebo (hazard ratio 0.49; 95% CI: 0.25-0.99; P = 0.047)[29]. When HCC cases diagnosed during the first year of treatment were excluded, the risk reduction was marginally non-significant (P = 0.052)[29]. This trial was terminated early (after a median duration of treatment of 32 mo) because of a significant benefit of LAM[29]. The benefit of LAM was reduced in patients developing resistance to LAM but was not completely negated[29]. In a more recent study, LAM reduced the risk of cirrhosis and/or HCC compared with no treatment in patients with HBeAg positive CHB who had not developed cirrhosis[30]. Importantly, patients developing LAM resistance had smaller benefit than those who did not but the former still had reduced risk of cirrhosis and/or HCC compared with controls[30]. However, in HBeAg negative patients with cirrhosis, those who develop virological breakthrough during LAM treatment appear to be at greater risk for developing HCC compared with those with sustained virological response[31,32]. In the meta-analysis by Sung et. al[24], treatment with LAM (5 studies, n = 2289) reduced the risk of HCC by 78% compared with control patients (RR 0.22; 95% CI: 0.10-0.50). The benefit of LAM was greater in patients with HBeAg positive CHB[29]. Patients who developed resistance to LAM also showed a reduction in the risk of HCC compared with controls[24]. However, LAM did not reduce the risk of HCC in a recent systematic review of RCT[29]. Adefovir also had no effect[24]. Again, most patients in the above mentioned reports were HBV-DNA-positive but no study assessed whether the potential preventive effect of LAM against HCC development differs between patients with detectable and undetectable HBV-DNA levels[29,30,32].

CONCLUSION

It is still unclear whether antiviral treatment reduces the risk of HCC in patients with CHB. Most evidence supporting a protective effect originates from non-randomized or retrospective studies and is limited to conventional IFN and LAM. There is a paucity of data on the effects of pegylated IFN and “newer” oral agents (telbivudine, tenofovir, entecavir) on HCC risk. However, it should be emphasized that the existing RCT in patients with CHB were relatively short-term and not designed to assess the effects of antiviral treatment on HCC risk[29]. Since viral load directly correlates with
HCC risk, it is reasonable to hypothesize that the reduction in viral load with antiviral treatment will also lower the risk of HCC. This benefit might become more readily apparent with the newer agents used in the management of CHB which are more effective and have a more favorable resistance profile.

REFERENCES

1. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557-2576
2. Tong MJ, Hsien C, Hsu L, Sun HE, Blatt LM. Treatment recommendations for chronic hepatitis B: an evaluation of current guidelines based on a natural history study in the United States. Hepatology 2008;48:1070-1078
3. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005;42:1208-1236
4. BeBeler AS, Hayashi PH, Di Bisceglie AM. Liver transplantation for hepatocellular carcinoma. Gastroenterology 2005;128:1752-1764
5. Stravis RT, Heuman DM, Chand N, Sterling RK, Shiffman ML, Luketic VA, Sanyal AJ, Habib A, Mihas AA, Giles HC, Maluf DG, Cotterell AH, Posner MF, Fisher RA. Surveillance for hepatocellular carcinoma in patients with cirrhosis improves outcome. Am J Med 2008;121:119-126
6. Bolondi L. Screening for hepatocellular carcinoma in cirrhosis. J Hepatol 2003;39:1076-1084
7. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007;45:567-599
8. Chan HL, Tse CH, Mo F, Koh J, Wong VW, Wong GL, Lam Chan S, Yeo W, Sung JJ, Mok TS. High viral load and hepatitis B virus genotype c are associated with increased risk of hepatocellular carcinoma. J Clin Oncol 2008;26:177-182
9. Yang HI, Lu SN, Liaw YF, You SL, Sun CA, Wang LY, Hsiao CK, Chen PJ, Chen DS, Chen CJ. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 2002;347:168-174
10. Chen CJ, Yang HI, Su J, Jen CL, You SL, Su SN, Huang GT, Iloeje UH. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006;295:65-73
11. Yu MW, Yeh SH, Chen PJ, Liaw YF, Lin CL, Liu CJ, Shih WL, Kao JH, Chen DS, Chen CJ. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Hepatol 2005;47:265-272
12. Fattovich G, Strufolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: risk factors and incidence. Gastroenterology 2004;127:S35-S50
13. Fattovich G, Giustina G, Sanchez-Tapias J, Quero C, Mas A, Olivetto FG, Solinas A, Almasio P, Hadziyannis S, Degos F, de Moura MC, Krogsgaard K, Pantanella M, Realdi G, Corrocher R, Schalm SW. Delayed clearance of serum HBsAg in compensated cirrhosis: relation to interferon alpha therapy and disease prognosis. European Concerted Action on Viral Hepatitis (EUROHEP). Am J Gastroenterol 1998;93:896-900
14. Yuen MF, Wong DK, Fung J, Ip P, But D, Hung I, Lau K, Yuen JC, Lai CL. HBsAg seroclearance in chronic hepatitis B in Asian patients: replicative risk and level of risk of hepatocellular carcinoma. Gastroenterology 2008;135:1192-1199
15. Lortet-Tieulent J, Marélin P, Walker M, Forni G, Degott C, Randriatavoa In, Benhamou JP, Erlinger S. Persistence of hepatitis B virus DNA in serum and liver from patients with chronic hepatitis B after loss of HBsAg. J Hepatol 1997;27:251-258
16. McMahon BJ, Holck P, Bulkow L, Snowball M. Serologic and clinical outcomes of 1536 Alaska Natives chronically infected with hepatitis B virus. Ann Intern Med 2001;135:759-768
17. Papatheodoridis GV, Manesis E, Hadziyannis SJ. The long-term outcome of interferon-alpha treated and untreated patients with HBeAg-negative chronic hepatitis B. J Hepatol 2001;34:306-313
18. Lin SM, Sheen IS, Chen RN, Chu CM, Liaw YF. Long-term beneficial effect of interferon therapy in patients with chronic hepatitis B virus infection. Hepatology 1999;29:971-975
19. Ikeda K, Saitoh S, Suzuki Y, Kobayashi M, Tsubota A, Fukuda M, Koida I, Arase Y, Chayama K, Murashima N, Kumada H. Interferon decreases hepatocellular carcinomaogenesis in patients with cirrhosis caused by the hepatitis B virus: a pilot study. Cancer 1998;92:827-835
20. Yuen MF, Hui CK, Cheng CC, Wu CH, Lai YP, Lai CL. Long-term follow-up of interferon alfa treatment in Chinese patients with chronic hepatitis B infection: The effect on hepatitis B e antigen seroconversion and the development of cirrhosis-related complications. Hepatology 2001;34:139-145
21. Fattovich G, Giustina G, Realdi G, Corrocher R, Schalm SW. Lower long-term outcome of hepatitis B e antigen-positive patients with compensated cirrhosis treated with interferon alfa. European Concerted Action on Viral Hepatitis (EUROHEP). Hepatology 1997;26:1338-1342
22. LamptiP P, Del Nino E, Viganó M, Romeo R, Donato MF, Sablon E, Morabito A, Colombo M. Long-term suppression of hepatitis B e antigen-negative chronic hepatitis B by 24-month interferon therapy. Hepatology 2003;37:756-763
23. Effect of interferon-alpha on progression of cirrhosis to hepatocellular carcinoma: a retrospective cohort study. International Interferon-alpha Hepatocellular Carcinoma Study Group. Lancet 1998;351:1535-1539
24. Benvenug L, Chemello L, Noventa F, Fattovich G, PontiP P, Alberto A. Retrospective analysis of the effect of interferon therapy on the clinical outcome of patients with viral cirrhosis. Cancer 1998;83:901-909
25. Mazzella G, Accogli E, Sottigli S, Festi D, Orsini M, Salzetta A, Novelli V, Cipolla A, Fabbri C, Pezoli A, Roda E. Alpha interferon treatment may prevent hepatocellular carcinoma in HCV-related liver cirrhosis. J Hepatol 1996;24:141-147
26. Sung JJ, Tsoi KK, Wong VW, Li KC, Chan HL. Meta-analysis: Treatment of hepatitis B infection reduces risk of hepatocellular carcinoma. Aliment Pharmacol Ther 2008;28:1067-1077
27. Yang YF, Zhao W, Zhong YD, Xia HM, Shen L, Zhang N. Interferon therapy in chronic hepatitis B reduces progression to cirrhosis and hepatocellular carcinoma: a meta-analysis. J Viral Hepat 2009;16:265-271
28. Shamiliyan TA, MacDonald R, Shaukat A, Taylor BC, Yuan JM, Johnson JR, Tacklind J, Rutks I, Kane RL, Wilt TJ. Antiviral therapy for adults with chronic hepatitis B: a systematic review for a National Institutes of Health Consensus Development Conference. Ann Intern Med 2009;150:111-124
29. Liaw YF, Sung JJ, Chow WC, Farrell G, Lee CZ, Yuen H, Tanwanadee T, Tao QM, Shue K, Keene ON, Dixon JS, Gray DF, Sabbat J. Lamivudine for patients with chronic hepatitis B infection even in patients without advanced disease. Lancet 1998;349:1070-1077
30. Yuen MF, Seto WK, Chow DH, Tsui K, Wong DK, Ngai VW, Wong BC, Fung J, Yuen JC, Lai CL. Long-term lamivudine therapy reduces the risk of long-term complications of chronic hepatitis B infection even in patients without advanced disease. Antivir Ther 2007;12:1295-1303
31. Andreone P, Gramenzi A, Cursaro C, Biselli M, Cammà C, Tresvisani F, Bernardi M. High risk of hepatocellular carcinoma in anti-HBe positive liver cirrhosis patients developing lamivudine resistance. J Viral Hepat 2004;11:439-442
32. Di Marco V, Marzano A, LamptiP P, Andreone P, Santantonio T, Almasio PL, Rizzetto M, Craxi A. Clinical outcome of HBeAg-negative chronic hepatitis B in relation to virological response to lamivudine. Hepatology 2004;40:885-891

S-Editor Wang JL L-Editor Roemmele A E-Editor Liu N