Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the Editor

A re-analysis to identify the structural breaks in COVID-19 transmissibility during the early phase of the outbreak in South Korea

Exploring the temporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is of importance in understanding the features of coronavirus disease 2019 (COVID-19) and developing control strategies (Chong et al., 2020). By using the ‘SIR’-based compartmental model, one breakpoint with a drop in the transmission rate, i.e., 7 March 2020, was estimated in the COVID-19 outbreak in South Korea (Kim et al., 2020). In this study, a re-analysis of the outbreak in South Korea was performed, and we argue that there was likely more than one structural break in the local SARS-CoV-2 transmission.

The daily numbers of new COVID-19 cases in time-series were collected from the public surveillance platform released by the World Health Organization (WHO); see https://covid19.who.int/region/wpro/country/kr and Figure 1A. We adopted the time-varying reproduction number (R_t) to quantify the instantaneous COVID-19 transmissibility. Following the estimation framework of Cori et al. (2013), R_t is the ratio of $C(t)$ over $\int_0^t w(k)C(t-k)dk$, where $C(t)$ denotes the number of new COVID-19 cases on the t-th date. The $w(\cdot)$ is the distribution (function) of the generation time (GT) of COVID-19 that is set as a gamma distribution having mean (\pm standard deviation) of 5.3 (\pm2.1) days (Ferretti et al., 2020; Ganyani et al., 2020). The estimated R_t series are shown in Figure 1B.

To explore and examine the structural breaks in the changing patterns of R_t, generalized regression models with segmentation are employed to fit the time index t (independent variable) to R_t (dependent variable) with a Poisson likelihood framework. The structural break is (mainly) determined by the knot parameters in the segmented regression. The number of knot parameters indicates the counts of the occurrence of the structural breaks in COVID-19 transmissibility, and the value of the knot determines when the structural break occurs (on the timeline). The numbers and values of the knot parameters are selected according to fitting performance in terms of the AIC.

It was found that the model with two knots (AIC = −151) outperformed the model with only one knot (AIC = −34). Additionally, the models with three and four knots had AIC of −162 and −166, respectively, both of which improved the fitting performance. Considering the large difference in AICs between the models with one and two knots, their fitting results are shown in Figure 1B for comparison.

The modelling framework of Kim et al. (2020) is equivalent to assuming that R_t changes as a discontinuous function, i.e., in a ‘step’

![Figure 1](https://example.com/figure1.png)

Figure 1. The number of daily new COVID-19 cases (panel A) and time-varying reproduction number (R_t, panel B) from 16 February to 15 April 2020 in South Korea. In panel B, the light blue dots are the estimated R_t series, the black dashed curve is the fitted R_t series with one breakpoint, and the red bold curve is the fitted R_t series with two breakpoints. The vertical pink lines highlight the two breakpoints (for the red curve).

https://doi.org/10.1016/j.ijid.2020.08.061

1201-9712 © 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
function scheme. In this study, with a continuous modelling scheme in R_t, there may be more than one structural break in the changing patterns of COVID-19 transmissibility, which appears to be more statistically reasonable.

Author contribution

SZ conceived study, collected the data, conducted the analysis, discussed the results, drafted, and critically revised manuscript. All authors read the manuscript and approved for publication.

Ethics approval and consent to participate

Not applicable.

Data availability

The COVID-19 surveillance data used in this work are collected in the public domain from https://covid19.who.int/region/wpro/country/kr.

Funding

This work is not funded.

Conflict of interests

The authors declare no competing interests.

References

Chong KC, Cheng W, Zhao S, Ling F, Mohammad KN, Wang MH, et al. Monitoring disease transmissibility of 2019 novel coronavirus disease in Zhejiang, China. Int J Infect Dis 2020;96:128–36.

Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol 2013;178(9):1505–12.

Ferretti L, Wymant C, Kendall M, Zhao L, Nurta A, Abeler-Dörner L, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020;368(6491):eabb6936.

Ganyani T, Kremers C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Eurosurveillance 2020;25(17)2000257.

Kim Y-J, Seo MH, Yeom H-E. Estimating a breakpoint in the spread pattern of COVID-19 in South Korea. Int J Infect Dis 2020;97:360–4.

Shi Zhao

JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China

CUHK Shenzhen Research Institute, Shenzhen, China

Xue Liang

Department of Hematology, The 989th Hospital of the Joint Logistics Support Force of Chinese PLA, Luoyang, 471031, China

* Corresponding author at: JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China.

E-mail address: zhaoshi.cmsa@gmail.com (S. Zhao).

Received 25 June 2020