The status of DECIGO

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2017 J. Phys.: Conf. Ser. 840 012010

(http://iopscience.iop.org/1742-6596/840/1/012010)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 131.215.225.184
This content was downloaded on 01/06/2017 at 21:41

Please note that terms and conditions apply.
The status of DECIGO

Shuichi Sato1, Seiji Kawamura18, Masaki Ando3, Takashi Nakamura4, Kimio Tsubono5, Akiti Araya9, Ikko Funaki6, Kunihiro Ioka7, Nobuyuki Kanda8, Shigenori Moriwaki9, Mitsuru Musha10, Kazuhiro Nakazawa3, Kenji Numata11, Shin-ichiro Sakai6, Naoki Seto2, Takeshi Takashima6, Takahiro Tanaka12, Kazuhiro Agatsuma3, Koh-suke Aoyanagi27, Koji Airai2, Hideki Asada13, Yoichi Aso14, Takeshi Chiba15, Toshikazu Ebisuzaki14, Yumiko Ejiri16, Motohiro Enoki45, Yoshiharu Eriguchi35, Masa-Katsu Fujimoto26, Ryuichi Fujita46, Mitsuhiro Fukushima2, Toshifumi Futamase43, Katsuhiko Ganzu4, Tomohiro Harada17, Tatsuaki Hashimoto6, Kazuhiro Hayama18, Wataru Hikida48, Yoshiaki Himemoto49, Hisashi Hirabayashi17, Takashi Hiramatsu18, Feng-Lei Hong19, Hideyuki Horisawa20, Mizuhiiko Hosokawa21, Kiyotomo Ichiki3, Takeshi Ikegami19, Kaiki T. Inoue22, Koji Ishidoshio5, Hideki Ishihara2, Takehiko Ishikawa6, Hideharu Ishizaki15, Hiroyuki Ito21, Yousuke Itoh30, Nobuki Kawashima22, Funinko Kawaozoe23, Naoko Kishimoto6, Kenta Kiuchi27, Shiho Kobayashi24, Kazunori Kohri25, Hiroyuki Koizumi6, Yasufumi Kojima51, Keiko Koyekaya16, Wataru Kokuyama3, Kei Kotake2, Yoshihide Kozaiz26, Hideaki Kudoh3, Hiroyuki Kuninobu21, Hitoshi Kuninaka6, Kazuaki Kuroda18, Kei-ichi Maeda37, Hideo Matsuhara6, Yasushi Mino14, Osamu Miyakawa14, Shinji Miyaki18, Mutsuko Y. Morimoto3, Tomoko Morioaka3, Toshiyuki Morisawa1, Shinji Mukohyama39, Shigeo Nagano21, Isao Naito37, Kouti Nakamura2, Hiroyuki Nakano32, Kenichi Nakao8, Shinnichi Nakasuka31, Yoshinori Nakayama29, Erina Nishida16, Kazutaka Nishiyama6, Atsushi Nishizawa30, Yoshiro Niwa30, Taiga Nouni31, Yoshiyuki Obuchi2, Masatake Ohashi18, Naoko Ohishi2, Masashi Ohkawa32, Norio Okada17, Kouji Onozato1, Kenichi Oohara32, Norichika Sago33, Motoyuki Saijo44, Masaaki Sakagami30, Shihori Sakata2, Misao Sasaki12, Takashi Sato32, Masaru Shibata35, Hisaaki Shinkai53, Kentaro Somiya14, Hajime Sotani36, Naoshi Sugiyama37, Yudai Suwa3, Rieko Suzuki16, Hideyuki Tagoshi38, Fumionobu Takahashi39, Kakeru Takahashi3, Keitaro Takahashi12, Ryutarou Takahashi2, Ryuichi Takahashi37, Tadayuki Takahashi6, Hirotaka Takahashi54, Takamori Akiteru5, Tadashi Takano40, Keisuke Taniguchi30, Atsushi Taruya4, Hiroyuki Tashiro4, Yasuo Torii2, Morio Toyoshima21, Shinji Tsujikawa41, Yoshiki Tsumesada55, Akitoshi Ueda2, Ken-ichi Ueda40, Masayoshi Utashima56, Yaka Watabayashi16, Hiroshi Yamakawa42, Kazuhiro Yamamoto23, Toshitaka Yamazaki2, Jun’ichi Yokoyama3, Chul-Moon Yoo8, Shijun Yoshida43, Taizoh Yoshino28,
1Faculty of Science and Engineering, Hosei University, kajinocho, Tokyo 184-8584, Japan,
2National Astronomical Observatory Japan, Osawa 2-21-1, Tokyo 181-8588, Japan,
3Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan,
4Department of Physics, Kyoto University, Kyoto 606-8502, Japan,
5Earthquake Research Institute, The University of Tokyo, Tokyo 113-0032, Japan,
6Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA),
Kanagawa 229-8510, Japan,
7Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan,
8Department of Physics, Osaka City University, Osaka 558-8585, Japan,
9Department of Advanced Materials Science, The University of Tokyo, Chiba 277-8561, Japan,
10Institute for Laser Science, The University of Electro-Communications, Tokyo 182-8585, Japan,
11NASA Goddard Space Flight Center, Code 663, 8800 Greenbelt Rd., Greenbelt, MD20771, USA,
12Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan,
13Department of Earth and Environmental Sciences, Hirosaki University, Aomori 036-8509, Japan,
14California Institute of Technology, 1200 E. California Blvd. MC 18-34, Pasadena, CA 91125, USA,
15Nihon University, Setagaya, Tokyo 156-8550, Japan,
16Ochanomizu University, 2-1-1, Tokyo 112-0012, Japan,
17Space Educations Center, Japan Aerospace Exploration Agency (JAXA), Kanagawa 229-8510, Japan,
18Institute for Cosmic Ray Research, The University of Tokyo, Chiba 277-8582, Japan,
19National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8563, Japan,
20Department of Aeronautics and Astronautics, Tokai University, Kanagawa 259-1292, Japan,
21National Institute of Information and Communications Technology (NICT), Tokyo 184-8795, Japan,
22School of Science and Engineering, Kinki University, Osaka 577-8502, Japan,
23Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Callinstr. 38 D-30167 Hannover, Germany,
24Astrophysic Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead L41 1LD, UK,
25Gunma Astronomical Observatory, Agatsuma-gun, Gunma 377-0702, Japan,
26Department of Physics, Waseda University, Tokyo, 169-8555, Japan,
27Nakamura-minami Nerima, Tokyo 176-0025, Japan,
28Department of Aerospace Engineering, National Defense Academy, Yokosuka 239-8686, Japan,
29Faculty of Integrated Human Studies, Kyoto University, Kyoto 606-8501, Japan,
30Department of Aeronautics and Astronautics, The University of Tokyo, 113-8656, Japan,
31Niigata University, Niigata 950-2181, Japan,
32Highfield, Southampton SO17 1BJ, United Kingdom,
33Department of Physics, Rikkyo University, Tokyo 171-8501, Japan,
34Department of Earth Science and Astronomy, the University of Tokyo, Tokyo 153-8902, Japan,
35Theoretical Astrophysics Institute for Astronomy and Astrophysics, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen, Germany,
36Nagoya University, Graduate School of Science, Aichi 464-8601, Japan,
37Department of Earth and Space Science, Osaka University, Osaka 560-0043, Japan,
38Institute for Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568, Japan,
39Department of Electronics and Computer Science, Nihon University, Funabashi 274-8501 Japan,
40Department of Physics, Tokyo University of Science, Tokyo, 162-8601, Japan,
41Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan,
42Astronomical Institute, Tohoku University, Sendai 980-8578, Japan,
1. Introduction
The first direct detection of gravitational wave (GW) has been done with aLIGO [1]. The first result of LISA pathfinder showed demonstration of surprisingly low-noise-level free fall exceeding expectations before launch [2]. The gravitational wave physics and astronomy took the next step to next stage. As astronomy using electromagnetic wave, gravitational wave is also expected in various frequency band to have wide frequency spectrum. Terrestrial detectors like aLIGO, aVIRGO, GEO, KAGRA and ET are most sensitive at audio frequency band around 10 to 1kHz, on the other hand, space born detector LISA is at low frequency region around mHz. At further low frequency band, PPTA (Pulsar Timing Array) and polarized CMB (Cosmic Microwave Background) are also interesting option to access to the unique information of physics and universe. Japanese DECIGO, planned space gravitational wave antenna, might be able to provide another new way to observe universe, because only DECIGO will be sensitive to deci-Hz gravitational wave signals.

2. DECIGO
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna [3, 4, 5], which was originally proposed by Seto, Kawamura...
and Nakamura [6] to measure the acceleration of the universe through GWs from binary NS–NS at $z \sim 1$. DECIGO is targeting to observe gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 and 10 Hz, thus, to open a new window of observation for gravitational wave astronomy, and also for the universe. The scope of DECIGO is to bridge (Fig.2) the frequency gap between LISA [7] band and terrestrial detectors band such as advanced LIGO, advanced VIRGO, GEO and KAGRA. The major advantage of DECIGO specializing in this frequency band is that the expected confusion limiting noise level caused by irresolvable gravitational wave signals from many compact binaries, such as white dwarf binaries in our Galaxy, is quite low above 0.1 Hz [8], therefore there is a potentially extremely deep window in this band. Thus, as DECIGO will have sensitivity in the frequency range between LISA and terrestrial detectors band, DECIGO can serve as a follow-up for LISA by observing inspiraling sources that have moved above the LISA band, or as a predictor for terrestrial detectors by observing inspiraling sources that have not yet moved into the terrestrial detectors band.

2.1. Pre-conceptual design

The pre-conceptual design of DECIGO consists of three drag-free spacecraft which keep triangular configuration with formation flying technique. The separation of each spacecraft is designed to be 1,000 km, whose relative displacements are measured by a differential Fabry-Perot (FP) interferometer (Fig.1). The laser source is supposed to be frequency-doubled Yb:YAG laser with $\lambda = 515$ nm yielding output power of 10 W. The mass of the mirror is 100 kg with 1 m diameter, with low-loss high-reflectivity coatings, which enables the finesse of FP cavity to reach 10 with green light. Three sets of such interferometers sharing the mirrors as arm cavities comprise one cluster of DECIGO. As shown in Fig.1, four clusters of DECIGO, located separately in the heliocentric orbit with two of them nearly at the same position, form the constellation DECIGO.

Figure 1. Image of DECIGO and constellation around the heliocentric orbit.

2.2. Sensitivity goal and science

The target sensitivity of DECIGO, as shown in Fig.2, is supposed to be limited by quantum noise in all frequency band: by the radiation pressure noise below 0.15 Hz, and by the shot noise above 0.15 Hz. In order to reach this sensitivity, all the practical noise should be suppressed well below this level. This imposes more stringent requirements than LISA for some subsystems of DECIGO, especially in the acceleration noise and frequency noise, therefore
rigorous investigations are supposed to be indispensable for attainment of design sensitivity. Nonetheless, full success of DECIGO is expected to extract fruitful sciences.

As shown in Fig.2, the sensitivity goal of DECIGO is better than 10^{-23} in terms of strain between 0.1 and 10 Hz. To achieve this sensitivities, all the practical noises have to be suppressed below the stringent requirement, especially on the acceleration noise of the mirror and frequency noise of the light.

![Figure 2. Expected sensitivity of DECIGO in terms of strain in comparison with LISA and terrestrial detectors, like KAGRA](image)

2.3. Roadmap

DECIGO is expected to be launched in the era of 2030s, before that, we plan to launch a precursor satellites, B-DECIGO. Major objective of B-DECIGO is to detect astrophysical GW signals to extract scientific results, in addition to demonstration of key technologies required for DECIGO just as LISA pathfinder [2] did for LISA. The technical objectives of B-DECIGO are demonstration of accurate formation flying, precision laser metrology with long baseline FP cavity and drag-free control for multiple spacecraft, based on several fundamental precision measurement technologies like drag-free control of the spacecraft, stabilized laser system in space, precision laser metrology in space and test mass lock mechanism. B-DECIGO is basically a small version of DECIGO, but will have 100km-scale FP cavity, therefore, it is supposed to have reasonable sensitivity to detect gravitational waves with minimum specifications. We hope that it will be launched around 2020s.

3. B-DECIGO

B-DECIGO is re-defined space GW antenna mission as first precursor satellite for DECIGO, succeeding former Pre-DECIGO [11]. The objectives of B-DECIGO are scientifically to detect

1 B-DECIGO was formerly called Pre-DECIGO, which was second precursor satellite for DECIGO after first precursor satellite, DPF (DECIGO pathfinder) [9, 10]. The science objectives and design of Pre-DECIGO had not been defined so clearly, while DECIGO has a definite design and clear targets to access to the information of the inflation. Recently, expected astrophysical science targets and pre-conceptual design were defined for Pre-DECIGO, then which was renamed as B-DECIGO as first precursor satellite for DECIGO on this occasion.
gravitational waves from promising astrophysical sources with modest optical parameters, and also technologically to demonstrate the formation flight using three spacecraft, which is one of key technologies for DECIGO. B-DECIGO is designed to have a sensitivity that is conservative compared with DECIGO by about factor of 10 in all frequency band. Accordingly, the optical parameters and the noise requirements of B-DECIGO are less stringent than DECIGO, whereas the required acceleration noise level is still challenging compared with LISA pathfinder and LISA. B-DECIGO consists of three drag-free spacecraft containing freely-falling mirrors, whose relative displacement is measured by a differential FP Michelson interferometer.

![Image of B-DECIGO](image)

Figure 3. Image of B-DECIGO which is smaller size DECIGO consisting of three spacecraft arranged in an equilateral triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth.

3.1. Pre-conceptual design

Each spacecraft holds a couple of test-mass mirrors of 30 kg in weight and 30 cm in diameter, freely floating on the spacetime. One test-mass mirror in one spacecraft and the another test-mass mirror in the other spacecraft are connected by laser beam, forming 100 km Fabry–Pérot cavity, with finesse of 100 resulting in a cavity cut-off frequency around 20 Hz. Therefore, three spacecraft are connected with three 100 km Fabry–Pérot cavities to maintain 100 km triangular formation flight. Frequency-doubled, Iodine-stabilized Yb:fiber DFB laser, with wavelength of 515 nm will be used as a light source. The laser light from Yb:fiber DFB laser with wavelength of 1030 nm is amplified with YDFA (Yb-Doped Fiber Amplifier), then frequency-doubled with nonlinear crystal to have enough power to illuminate each Fabry–Pérot cavities with 1 W. The frequency-doubled green light, then, frequency-stabilized in reference to the saturated absorption of iodine molecules to have low enough frequency noise contribution in an observational band of B-DECIGO.

In order to make test-masses freely floating in inertial spacetime as a probe of GW, and also to avoid an external force fluctuation on the test-mass caused by the unwanted coupling
from spacecraft motion, the spacecraft is drag-free controlled with a couple of test-mass mirrors inside spacecraft as inertial reference. The position and attitude of the spacecraft with respect to these test-masses are drag-free controlled by feeding error signals back to the spacecraft. The formation flight of the three spacecraft to keep triangular shape is realized by continuous feedback control. The laser interferometers measure the deviation of the cavity-length, which are fed back to the position of test-mass mirrors to maintain the length of the cavities. Since the spacecraft follows the test-mass positions inside it using drag-free control scheme, as a result, exact 100-km length triangular formation is realized. One of candidate orbit for B-DECIGO is LISA-like cart-wheel orbit around the earth. (Fig. 3) If the altitude of the spacecraft formation and inclination angle of orbital plane are selected properly, the reference orbit, the orbit of the center of the mass of the three spacecraft, could be a sun-synchronized dawn-dusk circular orbit. In addition, it is possible to design the dawn-dusk orbit so that there will be no eclipse in these spacecraft, by selecting the altitude between 2,000-3,000km, which is beneficial to avoid thermal shock and drift in the spacecraft, and also to keep continuous power supply from the sun. The orbital period of the formation-flight interferometer unit around the earth is about 124 min. for the altitude of 2,000km. Assuming this orbit, orbital motion of formation and the earth’s annual orbital motion around the sun make the antenna pattern of B-DECIGO to observe GWs change in time scale of 100 min. Owing to this variation of antenna pattern, parameter estimation accuracy for the GW sources, such as sky localization, is expected to be improved.

Figure 4. Strain sensitivity of B-DECIGO. Sensitivity curves for 2nd-generation terrestrial GW antenna (KAGRA [?]), 3rd-generation antenna (ET [?]), and space antenna (eLISA [?]) are shown together for references. The dashed curve shows the signal amplitude from BBH merger with masses of $30M_\odot$ at a distance of $z = 1$.

3.2. Sensitivity goal and science
Using above essential parameters, the target sensitivity of B-DECIGO is set to be $2 \times 10^{-23} \text{Hz}^{-1/2}$ in strain in the current design (Fig. 4). The noise curve is basically limited by fundamental noise, optical quantum noises of the interferometer; laser shot noise and radiation
pressure noise in high and low frequency bands, respectively. The external force noises level on the test-mass mirrors are set not to exceed these optical quantum noises level, which place critical requirements; the requirement is 1×10^{-16} N/Hz$^{1/2}$. With this sensitivity, mergers of BBHs at $z = 10$ will be within the observable range of B-DECIGO, assuming optimal direction and polarization of the source, and detection SNR of 8.

References
[1] B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016)
[2] Armano M. et al, Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results, Phys. Rev. Lett. 116 231101 (2016)
[3] Kawamura S et al 2006 The Japanese Space Gravitational Wave Antenna - DECIGO Class. Quantum Grav. 23 S125
[4] Kawamura S et al 2008 The Japanese Space Gravitational Wave Antenna - DECIGO Journ. of Phys.: Conf. Ser. 120 032004
[5] Kawamura S et al 2008 The Japanese Space Gravitational Wave Antenna; DECIGO Journ. of Phys.: Conf. Ser. 122 012006
[6] Seto N, Kawamura S and Nakamura T 2001 Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space Phys. Rev. Lett. 87 221103
[7] LISA: System and Technology Study Report, ESA document ESA-SCI (2000)
[8] Farmer A J and Phinney E S 2003 The gravitational wave background from cosmological compact binaries Mon. Not. R. Astron. Soc. 346 1197
[9] Ando M et al 2008 DECIGO pathfinder Journ. of Phys.: Conf. Ser. 122 032005
[10] Ando M et al 2008 DECIGO pathfinder in this volume
[11] Nakamura T. et al, Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes, Prog. Theor. Exp. Phys. 2016, 093E01