Visualization of microstructure and measurement of mass transport parameters for granulated bentonite mixtures

Mazhar Nazir i, Akihiro Matsuno ii, Takeshi Saito iii, Ken Kawamoto iv and Toshihiro Sakaki v

i) Ph.D Student, Department of Civil and Environmental Engineering, Saitama University, Saitama, Japan.
ii) Research Assistant, Department of Civil and Environmental Engineering, Saitama University, Saitama, Japan.
iii) Assistant Professor, Department of Civil and Environmental Engineering, Saitama University, Saitama, Japan.
iv) Professor, Department of Civil and Environmental Engineering, Saitama University, Saitama, Japan.
v) Former Professor, Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, Japan.

ABSTRACT

Bentonite is often considered as one of the key components of the Engineered Barrier System (EBS) for the radioactive waste disposal; mechanical, thermal, and hydraulic behaviors of bentonite should be thoroughly studied to ensure the emplaced quality and to control the performance of EBS. This study examined the effects of dry density and relative humidity (RH) on microstructure and mass transport characteristics of Granulated Bentonite Mixtures (GBM). The tested GBM samples were prepared by sieving and grading Japanese bentonite (trade name: OK Bentonite, Kunimine Industries, Japan). For dry density-controlled conditions, air-dried GBM samples (RH 60%, water content of 6.38% by weight) were packed at six different dry densities ranging from 1.25 to 1.75 g/cm³. The samples for humidity-controlled conditions were prepared at the dry density of 1.45 g/cm³ and stored at RH 90% (0 to 12 weeks). A microfocus X-ray computerized tomography (MFXCT) scanning apparatus was used to visualize the microstructures of packed tested samples. For each tested sample, the mass transport parameters of gas diffusivity (D_g/D_A), air permeability (k_a), thermal conductivity (λ), and volumetric heat capacity (C) were measured. The results indicated that dry density greatly affected the CT brightness values of GBM; the histogram of CT brightness well captured the internal distribution of density and the CT brightness homogenized more with increasing in dry density. The measured D_g/D_A and k_a were mainly controlled by the dry density. On the other hand, the thermal properties such as λ and C were governed both dry density and RH.

Keywords: Engineered Barrier System (EBS), granulated bentonite mixtures (GBM), microstructure, mass transport parameters, dry density, relative humidity

1 INTRODUCTION

The design concept for the disposal of high-level radioactive waste in deep geological environment includes the construction of an engineered barrier system (EBS) around the waste canisters composed of a backfilling/buffer material (Villator and Lloret, 2008). Bentonite has been selected as a backfilling/buffer material in EBS of high-level waste repositories due to its favorable physical and chemical properties (Arthur et al., 2004) including high swelling capacity, slow permeability, high radionuclide retardation capacities (Yong et al., 1986; Arthur et al., 2004; Wersin et al., 2007; Villar and Lloret, 2008), micro-porous structure (Wersin et al., 2007), plasticity (Arthur et al., 2004; Wersin et al., 2007) and thermal conductivity (Arthur et al., 2004). Additionally, granulated bentonite mixtures (GBM) comprising granules (highly compressed pellets) and powders of bentonite have been proposed and opted as candidate buffer/backfill material in many recent concepts of EBS (Salo and Kukkola, 1989) including NAGRA’s concept demonstrated in Engineered Barrier (EB) experiment (Mayor et al., 2005; Karland et al., 2008) and Full-scale Emplacement (FE) experiment (Müller et al., 2017) at the Mont Terri underground laboratory in Switzerland. The GBM exhibit good compaction properties and are preferred owing to the operational advantages including easy transportation and in-situ placement/backfilling as well as an appropriate material to minimize the gaps between the rock and seal (Alonso et al., 2011; Guerra et al., 2017; Guerra et al., 2018).

After the emplacement in the repository, the GBM will be subjected to complex thermo-hydro-mechanical (THM) settings including heat dissipation from the waste canister and hydration processes resulting from the infiltration of water from the host rock as well as generation of gases as a result of metal corrosion or by the degradation of organic wastes. Therefore, the emplaced GBM in the EBS should be capable; to develop a sufficiently high swelling pressure to maintain a good contact between the host rock and EBS, and to ensure rapid dissipation of radiogenic heat.
as well as hold enough permeability to allow the transport of gases without cracking and rupturing of the EBS (Arthur et al., 2004). It is well documented that the THM behavior of bentonite is related to its microstructure changes (Delage, 2007; Romero and Simms, 2008). Alonso et al., 2011 also reported that the macroscopic behavior of the compacted granular bentonite mixtures is related to its microstructure. Therefore, a good understanding of the behavior of GBM is essential to design an efficient EBS and to achieve optimum performance during the operation of repository. The objective of this study is to investigate the microstructural features using a microfocus X-ray computerized tomography (MFXCT) apparatus and mass transport characteristics (with a focus on gas and heat transport) of the GBM under the varied dry density and relative humidity-controlled conditions.

2 MATERIAL AND METHODS

2.1 Material and sample preparation

The material used in this study was prepared from granulated bentonite (trade name: OK bentonite, Kunimine Industries, Japan). The GBM samples were prepared by crushing and sieving the original bentonite sample having the grain size ranges between 0.075 mm and 10 mm. The particle size distribution curve was adjusted to follow the fuller grading curve (Mayor et al., 2005). Fig.1 shows the adopted particle size distribution curve for tested GBM in this study.

The tested GBM samples were prepared to study the effect of packing density and relative humidity on the macrostructural features and mass transport characteristics. For measurements under density effects, air-dried (A.D.) GBM samples having water content (w.c.) of 6.38% by weight (at RH 60%) were packed in a cylindrical core of 100 cm3 at six different dry densities (DD) ranging from 1.25 to 1.75 g/cm3. On the other hand, the samples for humidity-controlled conditions were prepared at 1.45 g/cm3 dry density (RH = 60% and 6.38% w.c.) and stored under controlled humidity at RH = 90 % to carry out measurements over a time period of twelve (12) weeks. Triplicate samples were prepared for both DD-controlled and RH-controlled measurements.

2.2 Microstructural visualization

For visualizing the microstructure, a microfocus X-ray computerized tomography (MFXCT) apparatus (inspeXio SMX-90CT, Shimadzu Co Ltd. Japan) was used to scan the packed GBM samples. The samples were scanned at a resolution of 20 μm/voxel. The scanned slices were reconstructed to create a Multiplanar Reconstruction (MPR) image. The MPR images were visualized in three dimensions using an analysis software ExFact VR 2.1 (Nihon Visual Science Inc., Japan).

2.3 Measurement of mass transport parameters

After the MFXCT scanning, the GBM samples were used to measure the gas and heat transport parameters; gas diffusion coefficient (D_g), air permeability (k_a), thermal conductivity (λ) and volumetric heat capacity (C). The D_g was measured by a diffusion chamber method (Currie, 1960; Rolston and Moldrup, 2002). The oxygen was used as a tracer gas and measured as a function of time in the diffusion chamber. In order to calculate the gas diffusivity (D_g/D_0), the gas diffusion coefficient for oxygen in free air (D_0) at 20ºC was taken as 0.20 cm2/s (Currie, 1960; G1nski and Stepniewski, 1985). The k_a was measured using an air permeameter by flowing air through the packed GBM core at three flow rates (each flow rate falling within 0.2–2.3, 1.7–10.3, and 5.7–60 dm3/min, respectively). Darcy’s equation was applied to calculate k_a based on the pressure difference across the core and the viscosity of the air (1.86 x 10$^{-5}$ Pa s) (Iversen et al., 2001). The λ and C were measured using a portable dual-needle probe analyzer (KD2-Pro, Decagon Devices Inc., Pullman, WA, USA).

3 RESULTS AND DISCUSSION

3.1 Microstructural analyses

The typical scanned MRP images for both varying dry density-controlled (DD-controlled) samples and relative humidity-controlled (RH=90%) samples are shown in Fig. 2 and Fig. 3, respectively. The measured CT brightness was plotted as a function of dry density for DD-controlled samples (Fig. 4) and time for RH-controlled samples (RH= 90%) (Fig. 5). Figure 4 shows that as density increases, CT brightness increases. However, no significant change has been noted in the CT brightness values for RH-controlled samples over a period of 12 weeks (Fig.5). In the histograms of CT brightness (Fig. 6), two peaks were observed for the lower dry density samples; the peak at low brightness indicates that fine particles are loosely distributed whereas the other peak at high brightness corresponds to the larger pellets with a higher dry density. Additionally, the peaks merged into a single peak with increasing dry density. On the other hand, single peak was observed in the histograms of the CT brightness in all the RH-controlled samples (Fig. 7).
3.2 Mass transport parameters

Gas diffusivity and air permeability

The measured gas transport parameters, D_p/D_0 and k_a, were plotted as a function of air content (ε) and shown in Figs. 8 and 9. Higher D_p/D_0 values were observed at higher ε, and it was found that there was not significant difference between DD- and RH-controlled samples. Similar to D_p/D_0, the measured k_a increased with increasing in ε, and a small difference between DD- and RH-controlled samples.
Thermal properties

The measured thermal properties such as thermal conductivity (λ) and volumetric heat capacity (C) were plotted as a function of volumetric water content (θ) and air content (ε). Figs. 10 and 11 showed that both λ and C increased with increasing θ. Conversely, with increasing ε, λ and C decreased (Figs. 12 and 13). The results indicated that the both compaction density (i.e., DD) and RH conditions affected the λ and C values, resulting in higher λ and C values were observed for RH-controlled samples.

CONCLUSIONS

This study examined the effect of DD and RH on the microstructure and mass transport characteristics of Granulated Bentonite Mixtures (GBM). The MFXCT observations indicated that DD was an important factor that governed the microstructure of GBM. The histograms of CT brightness yielded a productive insight to understand the internal distribution of density of GBM. Both D_p/D_0 and k_a increase with the increase in air content, and there was not significant difference between DD- and RH-controlled samples. On the other hand, the measured λ and C varied depending on both DD and RH, and the measured λ and C increased with the increase in volumetric water content (the decrease in air content). Further investigations and analyses are needed to understand the pore network characteristics of the GBM that would lead to refine the mass transport parameters.
of GBM and to establish an effective link between mass transport parameters and micro-structural parameters.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Number 17H03301.

REFERENCES

1) Alonso, E. E., Romero, E. and Hoffmann, C. (2011): Hydromechanical behavior of compacted granular expansive mixtures: experimental and constitutive study, Géotechnique, 61 (4), 329–344. doi: 10.1680/geot.2011.61.4.329
2) Arbuthnott, R., Sasamoto, H. and Yui, M. (2004): Potential complications in the development of a thermodynamic database for hyperalkaline, argillaceous systems, Proceedings of the International Workshop on Bentonite-Cement Interaction in Repository Environments, Nuclear Waste Management Organization of Japan (NUMO), October 2004, NUMO-TR-04-05.
3) Baniya, A., Kawamoto, K., Hamamoto, S., Sakaki, T., Saito, T., Müller, K., Moldrup, P., and Komatsu, T. (2019): Linking pore network structure derived by microfocus X-ray CT to mass transport parameters in differently compacted loamy soils, Soil Research, 57(6), 642–656. doi: 10.1097/SR18186
4) Currie, J. A. (1960): Gaseous diffusion in porous media Part 1 - A non-steady state method, British Journal of Applied Physics, 11(8), 314–317. doi:10.1088/0508-3443/11/8/302
5) Delage, P. (2007): Microstructure features in the behaviour of engineered barriers for nuclear waste disposal, In: Schanz T. (eds) Experimental Unsaturated Soil Mechanics, Springer Proceedings in Physics, Springer, Berlin, Heidelberg, 112, 11–32.
6) Glinski, J. and Stepniewski, W. (1985): Soil aeration and its role for plants, CRC Press Inc.: Boca Raton, FL.
7) Iversen, B. V., Schjonning, P., Poulsen, T. G. and Moldrup, P. (2001): In situ, on-site and laboratory measurements of soil air permeability: boundary conditions and measurement scale, Soil Science, 166(2), 97–106. doi:10.1097/00010694-200102000-00003
8) Karmel, Q., Nilsson, U., Weber, H. and Wersin, P. (2008): Sealing ability of Wyoming bentonite pellets foreseen as buffer material - Laboratory results, Physics and Chemistry of the Earth, 33(SUPPL.1), 472–475. doi:10.1016/j.pce.2008.10.024
9) Mayor, J.C., García-Siñeriz, J.L., Alonso, E., Alheid, H-J. and Blümpling, P. (2005): Engineered barrier emplacement experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories, ENRESA, technical report issued in February.
10) Guerra, A. M., Mokni, N., Delage, P., Cui, Y. J., Tang, A. M., Aimédieu, P., Bernier, F. and Bornert, M. (2017): In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite, Applied Clay Science, 135, 538–546. doi: 10.1016/j.clay.2016.10.030
11) Guerra, A. M., Aimédieu, P., Bornert, M., Cui, Y. J., Tang, A. M., Sun, Z., Mokni, N. Delage, P. and Bernier, F. (2018): Analysis of the structural changes of a pellet/powder bentonite mixture upon wetting by X-ray computed microtomography, Applied Clay Science, 165(August), 164–169. doi: 10.1016/j.clay.2018.07.043
12) Müller, H. R., Garitte, B., Vogt, T., Köhler, S., Sakaki, T., Weber, H., Spillmann, T., Hertrich, M., Becker, J., Giroud, N., Cloet, V., Diomidis, N., and Vietor, T. (2017): Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory, Swiss Journal of Geosciences, 110(1), 287-306. doi: 10.1007/s00015-016-0251-2.
13) Rolston, D.E. and Moldrup, P. (2002): Gas diffusivity: In J.H. Dane and G.C. Topp (ed.) Methods of soil analysis, Part 4. SSSA Book Ser. 5, ASA and SSSA, Madison, WI, 1113–1139.
14) Romero, E., Simms, Paul H. 2008: Microstructure investigation in unsaturated Soils: a Review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech. Geol. Eng., 26, 705–727. doi: 10.1007/s10706-008-9204-5
15) Salo, J.P. and Kukkolä, T. (1989): Bentonite pellets, an alternative buffer material for spent fuel canister deposition holes, Workshop, Sealing of Radioactive Waste Repositories’. Braunschweig.
16) Villar, M. V. and Lloret, A. (2008): Influence of dry density and water content on the swelling of a compacted bentonite, Applied Clay Science, 39, 38–49. doi: 10.1016/j.clay.2007.04.007
17) Wersin, P., Johnson, L. H. and McKinley, I. G. (2007): Performance of the bentonite barrier at temperatures beyond 100 °C: A critical review, Physics and Chemistry of the Earth, 32, 780–788. doi: 10.1016/j.pce.2006.02.051
18) Yong, R.N., Boonsinsuk, P., Wong, G. (1986): Formulation of backfill material for a nuclear fuel waste disposal vault, Canadian Geotechnical Journal, 23 (2), 216–228. doi: 10.1139/t86-031