Abstract
In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

Introduction
Visceral pain is one of the most common forms of pain associated with pathological conditions like renal colic, dyspepsia, inflammatory bowel disease (IBD), angina, dysmenorrhea and interstitial cystitis. While it is generally accepted that IBD is associated with pain (see [1,2]) there are reports that in some patients with IBD, there is hyposensitivity. P2X3 (homomultimer) and P2X2/3 (heteromultimer) receptors were cloned and shown to be largely located on small nociceptive sensory neurons in the dorsal root ganglia (DRG) in 1995 [3,4]. A schematic showing the initiation of nociception by ATP on primary afferent fibres in the periphery and purinergic relay pathways in the spinal cord are shown in Figure 1.

A hypothesis was proposed that purinergic mechanosensory transduction occurred in visceral tubes and sacs, including ureter, bladder and gut, where ATP released from epithelial cells during distension acted on P2X3 homomeric and P2X2/3 heteromeric receptors on subepithelial sensory nerves initiating impulses in sensory pathways to pain centres in the central nervous system (CNS) [5] (Figure 2a). Evidence supporting this hypothesis in various organs is reviewed below.

Urinary bladder
Early evidence for ATP release from rabbit urinary bladder epithelial cells by hydrostatic pressure changes was presented by Ferguson et al. [6], who speculated about this being the basis of a sensory mechanism. Prolonged exposure to a desensitizing concentration of α,β-methylene ATP (α,β-meATP) significantly reduced the activity of mechanosensitive pelvic nerve afferents in an in vitro model of rat urinary bladder [7]. Later, it was shown that mice lacking the P2X3 receptor exhibited reduced inflammatory pain and marked urinary bladder hyporeflexia with reduced voiding frequency and increased voiding volume, suggesting that P2X3 receptors are involved in mechanosensory transduction underlying both inflammatory pain and marked urinary bladder hyporeflexia [8]. Subsequently, using P2X2 knockout mice and P2X2/P2X3 double knockout mice, a role for the P2X2 subtype was shown to be involved in mediating the sensory effect of ATP [9]. In a systematic study of purinergic mechanosensory transduction in the mouse urinary bladder, ATP was shown to be released from urothelial cells during distension, and activity initiated in pelvic sensory nerves was mimicked by ATP and α,β-meATP and attenuated by P2X3 antagonists as well as in P2X3 knockout mice; P2X3 recep-
Sensory information from the urinary bladder is conveyed by both lumbar splanchnic (LSN) and sacral pelvic (PN) nerves to the spinal cord. A study comparing the mechanosensitive properties of single afferent fibres in these two pathways showed that both low and high threshold stretch-sensitive afferents were present in both pathways [12]. Single unit analysis of sensory fibres in the mouse urinary bladder revealed both low- and high-threshold fibres sensitive to ATP contributing to physiological (non-nociceptive) and nociceptive mechanosensory transduction, respectively [13]. It was also shown that purinergic agonists increase the excitability of afferent fibres to distension. The roles of ATP released from urothelial cells and suburothelial myofibroblasts on various bladder functions have been considered at length in several reviews [14,15], and evidence presented that urothelial-released ATP alters afferent nerve excitability [16]. Amiloride, a blocker of epithelial Na⁺ channels, has been shown to suppress ATP release from cultured urothelial cells by a hypotonic (mechanical) stimulus [17] or by stretch of intact bladder [18]. Raising the intracellular Ca²⁺ concentration inhibits stimulation-evoked ATP release from urothelial cells [19].

ATP given intravesically stimulates the micturition reflex in awake freely moving rats, probably by stimulating suburothelial C-fibres, although other mediators are likely to be involved [20]. Studies of resiniferatoxin desensitization of capsaicin-sensitive afferents on detrusor overactivity induced by intravesicle ATP in conscious rats supported the view that increased extracellular ATP has a role in mechanosensory transduction and that ATP-induced facilitation of the micturition reflex is mediated, at least partly, by nerves other than capsaicin-sensitive afferents [8,21]. ATP has also been shown to induce a dose-dependent hyperreflexia in conscious and anesthetized mice, largely via capsaicin-sensitive C-fibres; these effects were dose-dependently inhibited by pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) and 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) [22] (Figure 2a). P2X₁ and P2X₃ receptors play a fundamental role in the micturition reflex in female urethane-anesthetized rats; P2X₃ receptor blockade by phenol red raised the pressure and volume thresholds for the reflex, while P2X₁ receptor blockade diminished motor activity associated with voiding [23]. In TRPV1 receptor knock-out mice, release of ATP is significantly depressed [24] and afferent sensitivity to distension is attenuated, especially those effects mediated by low threshold fibres related to the micturition reflex, rather than the high threshold nociceptive fibres [25].

Four functionally distinct populations of bladder sensory neurons were identified with electrophysiological recordings when guinea-pig bladder was subjected to a range of

Figure 1

Hypothetical schematic of the roles of purine nucleotides and nucleosides in pain pathways. At sensory nerve terminals in the periphery, P₂X₃ and P₂X₂₃ receptors have been identified as the principal P₂X purinoceptors present, although recent studies have also shown expression of P₂Y₁ and possibly P₂Y₂ receptors on a subpopulation of P₂X₃ receptor-immunopositive fibers. Other known P₂X purinoceptor subtypes (1–7) are also expressed at low levels in dorsal root ganglia. Although less potent than ATP, adenosine (AD) also appears to act on sensory terminals, probably directly via P₁(A₂) purinoceptors; however, it also acts synergistically (broken black line) to potentiate P₂X₂₃ receptor activation, which also may be true for 5-hydroxytryptamine, capsaicin, and protons. At synapses in sensory pathways in the CNS, ATP appears to act postsynaptically via P₂X₂, P₂X₄ and/or P₂X₆ purinoceptor subtypes, perhaps as heteromultimers, and after breakdown to adenosine, it acts as a pre-junctional inhibitor of transmission via P₁(A₂) purinoceptors. P₂X₃ receptors on the central projections of primary afferent neurons in lamina II of the dorsal horn mediate facilitation of glutamate and probably also ATP release. Sources of ATP acting on P₂X₂ and P₂X₂₃ receptors on sensory terminals include sympathetic nerves as well as endothelial, Merkel, and tumor cells. Yellow dots, molecules of ATP; red dots, molecules of adenosine. (Reproduced from [114] and modified from [105], used with permission from the American Physiological Society.)
Figure 2 (see legend on next page)
mechanical stimuli (stretch, von Frey hair stroking and focal compression of receptive fields) and chemical stimuli (α,β-methylene ATP and capsaicin) [26]. Four different major classes of extrinsic sensory C fibres have been identified in the guinea-pig bladder: one mediates muscle mechanore sponses and was unaffected by removal of the urothelium; another was activated by stretch and α,β-methylene ATP and was reduced by urothelial removal; the third were stretch insensitive, but could be activated by mucosal stroking with von Frey hairs or α,β-methylene ATP and reduced by urothelial removal; while the fourth class were stretch insensitive, but could be weakly activated by mucosal stroking, but not by α,β-meATP [26].

Despite the compelling evidence in support of purinergic mechanosensory transduction from several independent laboratories (including stimulation by α,β-meATP of 2 of the 4 sensory afferents classes described by Zagorodnyuk et al. [26]), a recent paper from this group claims that urothelial release of ATP and stimulation of sensory fibres is not involved in mechanosensory transduction in the bladder, but that benzamil-sensitive stretch-activated ion channels are more likely to be involved [27]. Further experiments will hopefully resolve this issue.

In rats with detrusor overactivity induced by bladder outlet obstruction, there is an increase in expression of muscarinic receptors and an increase, but to a smaller extent, of P2X 3 receptor immunostaining [28]. Cyclopentyl-1,3-dipropylxanthine. The ecto-ATPase inhibitor (ARL-67156) produced an increase in base-line and distension-induced sensory discharge.

Knight et al. [34] found that distending the perfused guinea-pig ureter at pressures from 20-700 cm H 2O caused a pressure-dependent release of ATP from urothelial cells, approximately 10 times the basal release levels. The ATP release was abolished by removal of the urothelium and scanning electronmicroscopy confirmed an intact urothelium after distension. ATP was not released due to activation of stretch-activated channels since gadolinium failed to affect ATP release, nor did glibenclamide, known to inhibit ATP-binding cassette proteins. However, both monensin and brefeldin A, which interfere with vesicular formation and trafficking, inhibited distension-evoked ATP release, which was Ca 2+-dependent, indicating that ATP release from ureter urothelium might be largely mediated by vesicular exocytosis. In a recent study in our laboratory, experiments have been carried out to show that ATP is released from the human ureter upon distension (Figure 4a) and that human ureteric urothelial sensory nerves express P2X 3 receptors [35].
A. Spontaneous and distension-induced activity in ureter afferent fibres. Multifibre afferent responses to rapid distension. Note that background afferent activity occurs in bursts and that ureter distension results in an initial burst of discharge (circle) followed by a phase of maintained activity (bar). B. ATP can sensitise ureter afferent fibres. An example representative of distension-induced afferent activity before and following intraluminal application of increasing concentrations of ATP. C. TNP-ATP inhibits distension-induced afferent activity. A multifibre recording to show distension-induced afferent activity in control and in the presence of TNP-ATP. (Reproduced from [33], with permission of Elsevier.)
A. ATP concentration ([ATP]) in perfusate immediately before and after distension of the human ureter, grouped in pressure ranges. The mean [ATP] after distension is significantly greater than before distension in each pressure range $P < 0.01$; $n = 7$, error bars represent s.e.m. (Reproduced from [35], with permission from Springer.)

B. ATP concentration in luminal fluid samples from normal and inflamed rat colorectum during distension. Values are means ± SE. (Reproduced from [67] and used with permission from the American Physiological Society.)
The release of ATP only occurred above a threshold of 25-30 cm H\textsubscript{2}O. This is similar to the uroteric pressure threshold for pain measured by Risholm [36]. In a recent review of the physiology and pharmacology of the human ureter, it was suggested that purinergic receptors might be target analgesics for the treatment of ureteral colicky pain and that an additional advantage might be facilitating spontaneous ureteral stone passage [37].

Gut
A hypothesis was proposed suggesting that purinergic mechanosensory transduction in the gut initiated both physiological reflex modulation of peristalsis via intrinsic sensory fibres and nociception via extrinsic sensory fibres [38,39] (Figure 2b). Evidence in support of this hypothesis was obtained from a rat pelvic sensory nerve-colorectal preparation [40]. Distension of the colorectum led to pressure-dependent increase in release of ATP from mucosal epithelial cells (Figure 4b) and also evoked pelvic nerve excitation. This excitation was mimicked by application of ATP and α,β-meATP and attenuated by the selective P2X\textsubscript{3} and P2X\textsubscript{2/3} antagonist TNP-ATP and by PPADS. The sensory discharge was potentiated by ARL-67156, an ATPase inhibitor. Single fibres analysis showed that high-threshold fibres were particularly affected by α,β-meATP. In addition to release of ATP from mucosal epithelial cells in the rat gut in response to distension (see [40]), ATP has also been shown to be released from human intestinal epithelial cells in response to osmotic swelling [41,42]. The interactions of ATP with other mediators that activate pelvic afferent fibres in the rat colorectum, including capsaicin, 5-hydroxytryptamine (5-HT), bradykinin, prostaglandins and substance P (SP), have been described [43,44]. In addition, TRPV1 channels are activated and sensitised by ATP that is released during distension [45,46], especially in pathological states such as colitis [47-49]. Carvacral, an agonist for TRPV3 channels, caused ATP release in mucosal epithelial cells [50] and TRPV4 channels have also been shown to mediate stretch-release of ATP from urothelial cells [51]. LSN and PN nerves convey different mechanosensory information from the colon to the spinal cord. Forty percent of LSN afferents responded to α,β-meATP compared with only 7% of PN afferents [52].

Purinergic mechanosensory transduction has been described in other regions of the gastrointestinal tract. For instance, α,β-meATP was shown to stimulate mechanosensitive mucosal and tension receptors in mouse stomach and oesophagus leading to activity in vagal afferent nerves [53]. The sensitizing effects of P2X\textsubscript{3} receptor agonists on mechanosensory function are induced in oesophagitis [54]. Vagal nodose (placode-derived) nociceptive fibres in guinea-pig oesophagus are exclusively C-fibres sensitive to P2X\textsubscript{3} receptor agonists and rarely express SP, while jugular (neural crest-derived) nociceptive fibres include both A- and C-fibres and are insensitive to P2X\textsubscript{4} agonists and mostly express SP [55]. Adenosine has been claimed to activate a subset of nociceptive vagal sensory nerves in guinea-pig oesophagus [56]. Visceral hypersensitivity may play a role in the pathogenesis of functional chest pain claimed to be of oesophageal origin. Theophylline ameliorated chest pain in 7 out of 8 patients in a clinical trial, perhaps by reducing adenosine-mediated nociception [57]. Purinergic mechanosensory transduction has also been implicated in reflex control of intestinal secretion, whereby ATP released from mucosal epithelial cells acts on P2Y\textsubscript{1} receptors on enterochromaffin cells to release 5-HT (and ATP, which is stored and co-released with 5-HT from enterochromaffin cells [58]), which leads to regulation of secretion either directly or via intrinsic reflex activity [59].

Subepithelial fibroblasts in intestinal villi are highly sensitive to mechanical stimulation and release ATP during touch or stretch and probably act as mechanosensors [60]. The ATP released activates P2Y\textsubscript{1} receptors on surrounding cells, which leads to intercellular propagation of Ca2+ waves and contractions in networks of subepithelial fibroblasts and a signal to sensory nerve terminals in the villi [61]. Intrinsic enteric sensory nerves express P2X\textsubscript{3} and P2X\textsubscript{2/3} receptors [62-66]. In P2X\textsubscript{3} or P2X\textsubscript{3} knock-out mice, intraluminal pressure-induced peristalsis is inhibited [65,66].

ATP release and P2X\textsubscript{3} and P2X\textsubscript{2/3} receptor-mediated nociceptive nerve responses were enhanced in a model of colitis consisting of administration to adult rats of an intrarectal enema of 30% trinitro benzene sulfonic acid in ethanol at a dose of 80 mg/kg body weight [67]. An increase in the number of DRG neurons supplying the colorectum expressing P2X\textsubscript{3} receptors was also claimed and there was also a substantial increase in release of ATP with distension (Figure 4b). The excitability of visceral afferent nerves is enhanced following injury or ischemia and during inflammation, for example, in irritable bowel syndrome (IBS) [68]. Under these conditions, substances are released from various sources that often act synergistically to cause sensitization of afferent nerves to mechanical or chemical stimuli. Receptors to these substances (including ATP) represent potential targets for drug treatment aimed at attenuating the inappropriate visceral sensation and subsequent reflex activities that underlie abnormal bowel function and visceral pain (see [69,70]). Chronic functional visceral hyperalgesia induced in a rat model for IBS, induced by colonic injection of 0.5% acetic acid, is associated with potentiation of ATP-evoked responses and an enhanced expression of P2X\textsubscript{3} receptors in colon-specific sensory neurons [71]. In addition, activation of spinal A\textsubscript{1} receptors with adenosine, following...
breakdown of ATP, has been shown to modulate visceral hyperalgesia [72].

Non-erosive reflux disease shows the classic symptoms of gastro-oesophageal reflux, but in the absence of oesophageal mucosal injury. Visceral hypersensitivity plays an important role in the pathology of this disease [73]. ATP has been found to sensitise vagal afferents to mechanical stimuli in the ferret oesophagus [54] and the protein expression of P2X3 receptors is increased in nodose and DRG with chronic oesophageal acid exposure in a rat model [74].

Lung
In the lung, pulmonary neuroepithelial bodies (NEBs) and more recently subepithelial receptor-like endings associated with smooth muscle (SMARs) [75] have been shown to serve as sensory organs in the lung, and P2X3 and P2X2/3 receptors are expressed on a subpopulation of vagal sensory fibres that supply NEBs and SMARs with their origin in the nodose ganglia. Quinacrine staining of NEBs indicates the presence of high concentrations of ATP in their secretory vesicles, and it has been suggested that ATP is released in response to both mechanical stimulation during high-pressure ventilation and during hypoxia [76]. NEBs are oxygen sensors especially in early development, before the carotid system has matured [77]. In a study of bronchopulmonary afferent nerve activity of a mouse isolated perfused nerve-lung preparation, it was found that C fibres could be subdivided into two groups: fibres that conduct action potentials at < 0.7 ms⁻¹ and are responsive to capsaicin, bradykinin and ATP; and fibres that conduct action potentials on an average of 0.9 ms⁻¹ and respond vigorously to ATP, but not to capsaicin or bradykinin [78]. Both the TRPV1 receptor and P2X receptors mediate the sensory transduction of pulmonary reactive oxygen species, especially H₂O₂ and OH, by capsaicin-sensitive vagal lung afferent fibres [79].

Vagal C-fibres innervating the pulmonary system are derived from cell bodies situated in two distinct vagal sensory ganglia: the jugular (superior) ganglion neurons project fibres to the extrapulmonary airways (larynx, trachea, bronchus) and the lung parenchymal tissue, while the nodose (inferior) neurons innervate primarily structures within the lungs. Nerve terminals in the lungs from both jugular and nodose ganglia responded to capsaicin and bradykinin, but only the nodose C-fibres responded to α,β-meATP. Vagal afferent purinergic signaling may be involved in the hyperactivity associated with asthma and chronic obstructive pulmonary disease [80]. Th1 and Th2 cytokines reciprocally regulate P2X₇ receptor function, suggesting a role for P2X₇ receptors in pulmonary diseases, particularly lung hypersensitivity associated with chronic inflammatory responses [81].

Uterus
It has been hypothesised that tissue stress or damage in the uterine cervix during late pregnancy and parturition leads to ATP release and sensory signalling via P2X receptors [82]. In support of this proposal, these authors have shown P2X₃ receptor immunoreactivity in axons in the cervix, in small and medium sized neurons in L6/S1 DRG and in lamina II of the L6/S1 spinal cord segments and increases in P2X₃ receptor expression between pregnancy day 10 and parturition (day 22/23) in the rat cervix, although not in DRG or spinal cord.

Tooth pulp
P2X₃ and P2X₂/3 receptors on sensory afferents in tooth pulp appear to mediate nociception [83-86], perhaps from ATP released by mechanical distension or inflammation of odontoblasts. Mustard oil application to the tooth pulp in anaesthetised rats produced long-lasting central sensitisation, reflected by increases in neuronal mechanoreceptive field size; TNP-ATP reversibly attenuated the mustard oil sensitisation for more than 15 minutes [87].

Tongue
P2X₃ receptors are abundantly present on sensory nerve terminals in the tongue [88] and ATP and α,β-meATP have been shown to excite trigeminal lingual nerve terminals in an in vitro preparation of intra-arterially perfused rat mimicking nociceptive responses to noxious mechanical stimulation and high temperature [89]. A purinergic mechanosensory transduction mechanism for the initiation of pain was considered. Taste sensations appear to be mediated both by P2Y₁ receptor-activated impulses in sensory fibres in the chorda tympani [90] and by P2X₂ and P2X₃ and, perhaps, P2X₂/3 receptors [91].

Potential Therapeutic Strategies
The search is on for selective P2X₃ and P2X₂/3 receptor antagonists that are orally bioavailable and do not degrade in vivo for the treatment of pain (see [92-96]).

Antagonist	P2X₃	P2X₂/3
Suramin and analogues NF449, NF110	✓	✓
PPADS and derivatives MRS2159 & MRS2257	✓ ✓	✓ ✓
Reactive blue 2 and derivatives TNP-ATP	✓ ✓	✓ ✓
A-317491 (selective)	✓ ✓	✓ ✓
Phenol red	✓ ✓	✓ ✓
Tetramethylpyrazine	✓	✓
RO4 (orally bioavailable, stable in vivo)	✓ ✓	? ✓
	✓ ✓	✓ ✓
	✓ ✓	✓ ✓
	✓ ✓	✓ ✓
	✓ ✓	✓ ✓

From [93,95,112,113]
Table 1 summarises the drugs widely available. Suramin, PPADS and Reactive blue 2 have been used as non-selective antagonists at P2X and P2X2/3 receptors on nociceptive sensory nerve endings. PPADS has the advantage that it associates and dissociates approximately 100 to 10,000 times more slowly than other known antagonists [97]. The trinitrophenyl-substituted nucleotide, TNP-ATP, is a very potent antagonist at both P2X and P2X2/3 receptors. A-317491 (synthesised by Abbott Laboratories) and compound RO3 (synthesised by Roche Palo Alto) are both effective P2X3 and P2X2/3 antagonists, the latter being orally bioavailable and stable in vivo. Antagonism of P2X3 and P2X receptors by phenol red has been reported and tetramethylpyrazine, a traditional Chinese medicine, used as an analgesic for dysmenorrhoea, was claimed to block P2X3 receptor signalling [98].

Antisense oligonucleotides have been used to down-regulate the P2X3 receptor, and in models of neuropathic (partial sciatic nerve ligation) and inflammatory (complete sciatic nerve ligation) pain, inhibition of the development of mechanical hyperalgesia as well as significant reversal of established hyperalgesia, were observed within 2 days of treatment [99-101]. P2X3 antisense oligonucleotides or antagonists appear to be less effective for treating disogenic (lumbar intervertebral disc) than cutaneous tissue pain [102]. Combined antisense and RNA interference-mediated treatment for specific inhibition of the recombinant rat P2X3 receptor appears to be promising for pain therapy [103]. P2X3 double-stranded short interfering RNA relieves chronic neuropathic pain and opens up new avenues for therapeutic pain strategies in man [104].

While P2X3 and P2X2/3 receptors, expressed in sensory neurons, were the predominant P2 receptor subtypes first recognised to be involved in the initiation of nociception (see [105,106]), it has become apparent more recently that P2Y receptors are also present [107] and that these are involved in modulation of pain transmission [108]. P2Y receptors appear to potentiate pain induced by chemical or physical stimuli via capsaicin sensitive TRPV1 channels and it has been proposed that the functional interaction between P2Y3 receptors and TRPV1 channels in nociceptors could underlie ATP-induced inflammatory pain [45]. P2Y1 receptor-mediated responses also enhance the sensitivity of TRPV1-mediated responses to capsaicin, protons and temperature in a protein kinase C-dependent manner [109]. ATP-induced hyperalgesia was abolished in mice lacking TRPV1 receptors.

It has been claimed that opioids inhibit purinergic nociception in rat sensory neurons and fibres via a G protein-dependent mechanism [110]. Cannabinoids act as inhibitory modulators of nociceptive responses produced by P2X2/3 receptors [111]. There are no publications to date describing clinical evaluations of P2 receptor antagonists and related purinergic compounds for the relief of pain, although clinical trials for some compounds are in progress (see [93,94]). Other therapeutic approaches to pain are being considered, including the development of agents that control the expression of receptors and those that enhance ATP breakdown. Further, while it is now clear that many different cell types release ATP physiologically in response to mechanical distortion, hypoxia, and various agents, we still await clear understanding of the mechanisms that underlie ATP transport. Hopefully, when this becomes clearer, agents will be developed that will be able to inhibit ATP release, another useful way forward as a therapeutic strategy.

Conclusion

Compelling evidence has been presented for the role of purinergic mechanosensory transduction where ATP, released from epithelial cells lining the bladder, ureter and gut during distension, acts on P2X3 and/or P2X2/3 receptors on subepithelial sensory nerve terminals to relay nociceptive messages via sensory ganglia and spinal cord to pain centres in the CNS.

Antagonists to P2X3 and P2X2/3 receptors are being explored to treat visceral pain and the possibilities for development of agents that inhibit ATP transport from epithelial cells or enhance ATP breakdown after its release are discussed.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author thanks Dr Gillian E. Knight for her excellent editorial assistance.

References

1. Bueno L: Gastrointestinal pharmacology: irritable bowel syndrome. Curr Opin Pharmacol 2005, 5:583-588.
2. Kraneveld AD, Rijnierse A, Nijkamp FP, Garssen J: Neuro-immune interactions in inflammatory bowel disease and irritable bowel syndrome: future therapeutic targets. Eur J Pharmacol 2008, 585:361-374.
3. Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN: A P2X purinoceptor expressed by a subset of sensory neurons. Nature 1995, 377:428-431.
4. Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A: Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 1995, 377:432-435.
5. Burnstock G: Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 1999, 194:335-342.
6. Ferguson DR, Kennedy I, Burton TJ: ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes - a possible sensory mechanism? J Physiol 1997, 505:503-511.
7. Namasivayam S, Eardley I, Morrison JFB: Purinergic sensory neurotransmission in the urinary bladder: an in vitro study in the rat. BJU Int 1999, 84:854-860.
Molecular Pain 2009, 5:69

8. Cockayne DA, Hamilton SG, Zhu Q-M, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Birdwell C, McMahon SB, Ford APDW. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X2-deficient mice. Nature 2000, 407:1011-1015.

9. Cockayne DA, Dunn PM, Zhong Y, Hamilton SG, Cain GR, Knight G, Ruan H-Z, Ying P, Nunn P, Bei M, McMahon SB, Burnstock G, Ford APDW: P2X2/knockout mice and P2X1/P2X2 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 2005, 567:621-639.

10. Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Fibre-APDW: P2X2-knockout mice reveal a major sensory role for urothelially released ATP. J Neurosci 2001, 21:5670-5677.

11. Zhong Y, Bannings AS, Cockayne DA, Ford APDW, Burnstock G, McMahon SB: Bladder and cutaneous sensory neurons of the rat exhibit noncanonical functional P2X receptors. Neuroscience 2003, 120:667-675.

12. Xu L, Gebhart GF. Characterization of mouse lumbar spinal and pelvic nerve urinary bladder mechanosensory afferents. J Neurophysiol 2006, 99:244-253.

13. Xu L, Gebhart GF. Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J Physiol 2002, 541:591-600.

14. Lazzari M. The physiological function of the urothelium - more than a simple barrier. J Urol 2006, 76:289-295.

15. Sui GP, Wu C, Fry CH: Activation of ureteric sensory receptors by exogenous and endogenous ATP in guinea pig. Neuropharmacology 2004, 47:1093-1101.

16. Sui GP, Wu C, Fry CH: Characterization of the purinergic receptor subtype on guinea-pig suburothelial myofibroblasts. J Urol 2006, 79:1327-1331.

17. de Groat WC: Integrative control of the lower urinary tract: a physiological perspective. Br J Pharmacol 2006, 147(Suppl 2):S524-S540.

18. Birder LA, Barrick SR, Roppolo JR, Kanai AJ, de Groat WC, Kiss S, Buffington CA: Feline interstitial cystitis results in mechanical hypersensitivity and altered ATP release from bladder urothelium. Am J Physiol Renal Physiol 2003, 285:F423-F429.

19. Xu L, Gebhart GF. Characterization of mouse lumbar spinal and pelvic nerve urinary bladder mechanosensory afferents. J Neurophysiol 2006, 99:244-253.

20. Burnstock G: Purinergic signalling in gut. In Handbook of Experimental Pharmacology. Purinergic and Pyrimidnergic Signalling II - Cardiovascular, Respiratory, Immune, Metabolic and Gastrointestinal Tract Function Volume 131/II. Edited by: Abbracchio MP, Williams M. Berlin: Springer-Verlag 2001:1-239.

21. King BF, Knowles I, Burnstock G: Adenosine 5'-triphosphate and it's relationship with other mediators that activate pelvic afferent nerve fibres in rats. J Physiol 2002, 541:239-248.

22. Risholm L: Studies on renal colic and its treatment by postural sphincter block. Acta Chir Scand 1954, 184(Suppl):5-64.

23. Canda AE, Turna B, Cinar GM, Nazli O: Physiology and pharmacology of the human ureter: basis for current and future treatments. Urol Int 2007, 78:289-298.

24. Wynn G, Burnstock G: ATP is released from guinea pig ureter epithelium on distension. Am J Physiol Renal Physiol 2002, 283:F281-F288.

25. Calvert RC, Thompson CS, Burnstock G: ATP release from the human ureter on distension and P2X receptor expression on suburothelial sensory nerves. Purinergic Signalling 2008, 4:377-381.

26. Dang K, Lamb K, Cohen M, Bielefeldt K, Gebhart GF: Activation of ureteric sensory receptors by exogenous and endogenous ATP in guinea pig. Neuropharmacology 2004, 47:1093-1101.

27. Kim JC, Yoo JS, Park EY, Hong SH, Seo SI, Hwang TK: Macurinic and purinergic receptor expression in the urothelium of rats with detrusor overactivity induced by bladder outlet obstruction. BJU Int 2008, 107:371-375.

28. Smith CP, Vemulasadka VM, Kiss S, Boone TB, Somogyi GT: Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: effect of botulinum toxin A. Neurochem Res 2005, 47:291-297.

29. MacKenzie I, Burnstock G, Dolly JO: The effects of purified botulinum neurotoxin type A on cholinergic, adrenergic and non-adrenergic, atropine-resistant autonomic neuromuscular transmission. Neuroscience 1982, 7:997-1006.

30. Lee HY, Bardini M, Burnstock G: Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J Urol 2000, 163:2002-2007.

31. Hu ST, Gever J, Nunn PA, Ford AP, Zhu Q-M: Chronic bladder inflammation: effect of botulinum neurotoxin type A on cholinergic, adrenergic and non-adrenergic, atropine-resistant autonomic neuromuscular transmission. Neuroscience 1982, 7:997-1006.

32. Lee HY, Bardini M, Burnstock G: Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J Urol 2000, 163:2002-2007.

33. Dang K, Lamb K, Cohen M, Bielefeldt K, Gebhart GF: Activation of ureteric sensory receptors by exogenous and endogenous ATP in guinea pig. Neuropharmacology 2004, 47:1093-1101.

34. Wynn G, Burnstock G: ATP is released from guinea pig ureter epithelium on distension. Am J Physiol Renal Physiol 2002, 283:F281-F288.

35. Calvert RC, Thompson CS, Burnstock G: ATP release from the human ureter on distension and P2X receptor expression on suburothelial sensory nerves. Purinergic Signalling 2008, 4:377-381.

36. Risholm L: Studies on renal colic and its treatment by post-urethral sphincter block. Acta Chir Scand 1954, 184(Suppl):5-64.

37. Canda AE, Turna B, Cinar GM, Nazli O: Physiology and pharmacology of the human ureter: basis for current and future treatments. Urol Int 2007, 78:289-298.

38. Burnstock G: Purinergic signalling in gut. In Handbook of Experimental Pharmacology. Purinergic and Pyrimidnergic Signalling II - Cardiovascular, Respiratory, Immune, Metabolic and Gastrointestinal Tract Function Volume 131/II. Edited by: Abbracchio MP, Williams M. Berlin: Springer-Verlag 2001:1-239.

39. Burnstock G: Adenosine 5'-triphosphate and it's relationship with other mediators that activate pelvic afferent nerve fibres in rats. J Physiol 2002, 541:239-248.

40. Wynn G, Rong W, Xiang Z, Burnstock G: Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. J Gastroenterology 2003, 125:1398-1409.

41. Dezaki K, Tsuchiya T, Maeno E, Okada Y: Receptor-mediated facilitation of cell volume regulation by swelling-induced ATP release in human epithelial cells. Jpn J Physiol 2000, 50:235-241.

42. Wijtk van der, Tommassen SF, Houtsmauer AB, De Jonge HR, Tilly BC: Increased vesicle recycling in response to osmotic cell swelling. Cause and consequence of hypotonicity-provoked ATP release. J Biol Chem 2003, 278:40020-40025.

43. Barthó L, Lénárd LJ, Lázár Z, Maggi CA: Connections between P2 purinoceptors and capsaicin-sensitive afferents in the intestine and other tissues. Eur J Pharmaco 1999, 375:201-210.

44. Wynn G, Burnstock G: Adenosine 5'-triphosphate and it’s relationship with other mediators that activate pelvic afferent neurons in the rat colorectum. Purinergic Signalling 2006, 2:517-526.

45. Lakshmi S, Joshi PG: Co-activation of P2Y receptor and TRPV channel by ATP: implications for ATP induced pain. Cell Mol Neurobiol 2005, 25:819-832.

46. Christianson JA, Bielefeldt K, Altorfer C, Cenac N, Davis BM, Gebhart GF: High KW, Kollarik M, Randich A, Undem B, Vergnolle N: Development, plasticity and modulation of visceral afferents. Brain Res Rev 2009, 60:171-186.

47. Sugiuira T, Bielefeldt K, Gebhart GF: Mouse colon sensory neurons detect extracellular acidosis via TRPV1. Am J Physiol Cell Physiol 2007, 292:C1768-C1774.

48. De Scheppe HU, De Winter BY, Van Nassauw L, Timmermans JP, Herman AG, Pelckmans PA, De Man JG: TRPV1 receptors on unmethylated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats. J Physiol 2008, 584:F257-F268.

49. Malin SA, Christianson JA, Bielefeldt K, Davis BM: TRPV1 expression defines functionally distinct pelvic colonic afferents. J Neurosci 2009, 29:743-752.
Purine P2X2 receptors in the guinea-pig enteric nervous system: activation of intrinsically sensory neurons of the myenteric plexus. J Physiol 2001, 537:523-532.

Brierley SM, Carter R, Jones W III, Xu L, Robinson DR, Hicks GA, Gebhart GF, Blackshaw LA: Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J Physiol 2005, 567:267-281.

Page AJ, Martin CM, Blackshaw LA: Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J Neurophysiol 2002, 87:2095-2103.

Furuya S, Furuya K: P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation via P2X3 receptor. J Physiol 2004, 551:403-411.

Furuya S, Furuya K: Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. Int Rev Cytol 2002, 214:165-223.

Bertrand PP, Bornstein JC: ATP as a putative sensory mediator: activation of intrinsic sensory neurons of the myenteric plexus. J Physiol 2003, 552:476-483.

Castelucci P, Robbins HL, Poole DP, Furness J: The distribution of purine P2X receptors in the guinea-pig enteric nervous system. Histochim Cell Biol 2002, 117:415-422.

Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB: The distribution of P2X3 and P2X2 purinoceptors in the guinea-pig enteric nervous system. Auton Neurosci 2002, 101:39-47.

Bian X, Ren J, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ: Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 2003, 551:309-322.

Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ: P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 2003, 552:809-821.

Wynn G, Beil M, Ruan H-Z, Burnstock G: Purinergic component of mechanosensory transmission is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol 2004, 287:G647-G657.

Shinoda M, Feng B, Gebhart GF: Peripheral and central P2X3 receptor contributions to colonic mechanosensitivity and hypersensitivity in the mouse. Gastroenterology in press.

Kirkup AJ, Brunsden AM, Grundy D: Receptors and transmission in the brain-gut axis: Potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 2001, 280:G787-G794.

Holzer P: Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 2004, 8:107-123.

Xu GY, Shenoy M, Winston JH, Mittal S, Pasricha PJ: P2X receptor-mediated visceral hypersensitivity is in a rat model of chronic visceral hypersensitivity. Gut 2008, 57:1230-1237.

Zahn PK, Straub H, Wenk M, Pogatzki-Zahn EM: Adenosine A1 but not A2a receptor agonist reduces hyperalgesia caused by a surgical incision in rats: a pertussis toxin-sensitive G protein-dependent process. Anesthesiology 2007, 107:797-806.

Knowles CH, Aziz Q: Visceral hypersensitivity in non-erosive reflux disease. Gut 2008, 57:674-683.

Banerjee B, Medda BK, Shaker A, Sengupta JN: TRPV1 and P2X3 expression in vagal and spinal pathways following acid-induced esophagitis in rats [abstract]. Gastroenterology 2006, 130:A133.

Brouns I, De Proost I, Pinelton I, Timmermans JP, Adriaens D: Sensory receptors in the airways: neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation. Auton Neurosci 2006, 126-127:307-319.

Rich PB, Douillet CD, Mahler SA, Husain SA, Boucher RC: Adenosine triphosphate is released during injurious mechanical ventilation and contributes to lung edema. J Trauma 2003, 55:290-297.

Brouns I, Van Genechten J, Burnstock G, Timmermans JP, Adriaens D: Ontogenesis of P2X3 receptor-expressing nerve fibres in the rat lung, with special reference to neuroepithelial bodies. Biomedical Research 2003, 14:80-86.

Kollarik M, Dinh QT, Fischer A, Undem Bj: Ca2+-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse. J Physiol 2003, 551:869-879.

Ringer T, Lin YS, Lin KS, Kuo YR: Sensory transmission of pulmonary reactive oxygen species by capsaicin-sensitive vagal afferent fibres in rats. J Physiol 2005, 565:563-578.

Adriaens D, Timmermans JP: Purinergic signalling in the lung: important in asthma and COPD? Curr Opin Pharmacol 2004, 4:207-214.

Lemaire I, Leduc N: Purinergic P2X receptor function in lung alveolar macrophages: pharmacologic characterisation and bidirectional regulation by Th1 and Th2 cytokines. Drug Dev Res 2004, 59:1-127.

Papka RE, Hafemeister J, Storey-Workley M: P2X receptors in the rat uterine cervix, lumbarosacral dorsal root ganglia, and spinal cord during pregnancy. Cell Tissue Res 2005, 321:35-44.

Cook SP, Vulchanova L, Hargreaves KM, Eldre R, McCleskey EW: Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 1997, 387:205-208.

Alavi AM, Dubyak GR, Burnstock G: Immunohistochemical evidence for ATP receptors in human dental pulp. J Dental Res 2001, 80:476-483.

Jiang J, Gu J: Expression of adenosine triphosphate P2X1 receptors in rat molar pulp and trigeminal ganglia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002, 94:622-626.

Renton T, Yangou Y, Baeker PA, Ford AP, Anand P: Capsaicin receptor VR1 and ATP purinoceptor P2X3 in painful and non-painful human tooth pulp. J Orofac Pain 2007, 21:245-250.

Hu B, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ: P2X receptors in trigeminal subnucleus caudalis modulate central sensitization in trigeminal subnucleus oralis. J Neurophysiol 2002, 88:1614-1624.

Bo X, Alavi A, Xiang Z, Oglesby I, Ford A, Burnstock G: Localization of ATP-gated P2X and P2X3 receptor immunoreactive nerves in rat taste buds. Neuroreport 1999, 10:1107-1111.

Rong W, Burnstock G, Spyer KM: P2X purinoceptor-mediated excitation of trigeminal lingual nerve terminals in an intra-arterially perfused rat tongue preparation. J Physiol 2000, 524:891-902.

Kataoka S, Toyono T, Seta Y, Ogura T, Toyoshima K: Expression of P2Y receptors in rat taste buds. Histochem Cell Biol 2004, 121:419-426.

Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC: ATP signalling is crucial for communication from taste buds to gustatory nerves. Science 2005, 310:1499-1500.

Burnstock G: Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 2006, 110:433-454.

Geyer J, Cockayne DA, Dillon MP, Burnstock G, Ford APD: Pharmacology of P2X channels. Pflugers Arch 2006, 452:513-537.

Geyer JR, Rotschild S, Henningren R, Martin R, Hackos D, Panicker S, Mills ME, Oglesby I, Dillon MP, Burnstock G, Ford APD: RO-4, a novel, potent orally bioavailable P2X2/P2X3 antagonist. Br J Pharmacol 2009 in press.

Carter DS, Alam M, Cai H, Dillon MP, Ford AP, Geyer JR, Jahangir A, Lin C, Moore AG, Wagner PJ, Zhai Y: Identification and SAR of novel dianinopyrimidines. Part 1: The discovery of RO-4, a
113. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Brennan TJ, Subieta A, van Biesen T, Cartmell J, Bianchi B, Niforantagonist of P2X3 and P2X2/3 receptors, reduces chronic pain and analgesia. **Adv Drug Deliv Rev** 2003, 55:1081-1112.

105. Honore P, Mikusa J, Bianchi B, McDonald H, Cartmell J, Faltynek C, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C: Identification and SAR of novel diaminopyrimidines. Part 2: The discovery of RO-51, a potent and selective, dual P2X3/P2X2 receptor antagonist for the treatment of pain. *Biorg Med Chem Lett* 2009, 19:1628-1631.

96. Jahangir A, Alam M, Carter DS, Dillon MP, Bois DJ, Ford AP, Geuer JR, Lin C, Wagner PJ, Zhai Y, Zira J: Identification and SAR of novel diaminopyrimidines. Part 2: The discovery of RO-51, a potent and selective, dual P2X3/P2X2 receptor antagonist for the treatment of pain. *Biorg Med Chem Lett* 2009, 19:1632-1635.

97. Aoki Y, Jiang LH, Surprenant A, North RA: Kinetics of antagonist actions at rat P2X3 heteromeric receptors. *Br J Pharmacol* 2002, 135:1524-1530.

98. Liang SD, Gao Y, Xu CS, Xu BH, Mu SN: Effect of tetramethylpyrazine on acute nociception mediated by signaling of P2X receptors in peripheral sensory neurons. *Neuropharmacology* 2009, 56:17179-17184.

99. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Patel S, Dorn G, Wotherspoon G, Moffatt S, Eunson L, Aoki Y, Ohtori S, Takahashi K, Ino H, Ozawa T, Douya H, Chiba T, Moriya H: P2X3-immunoreactive primary sensory neurons innervating lumbar intervertebral disc in rats. *Brain Res* 2003, 989:214-220.

100. Honore P, Mikusa J, Bianchi B, McDonald H, Cartmell J, Faltynek C, Jarvis MF: TNP-ATP, a potent P2X3 receptor antagonist, blocks acetic acid-induced abdominal constriction in mice: comparison with reference analgesics. *Pain* 2002, 96:99-105.

101. Stone LS, Vulchanova L: The pain of antisense: in vivo application of antisense oligonucleotides for functional genomics in pain and analgesia. *Adv Drug Deliv Rev* 2003, 55:1081-1112.

102. Aoki Y, Ohtori S, Takahashi K, Ino H, Ozawa T, Doyu H, Chiba T, Moriya H: P2X3-immunoreactive primary sensory neurons innervating lumbar intervertebral disc in rats. *Brain Res* 2003, 989:214-220.

103. Hemmings-Mieszczak M, Dorn G, Natt F, Hall J, Wishart WL: Independent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor. *Nucleic Acids Res* 2003, 31:2117-2126.

104. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J: siRNA relieves chronic neuropathic pain. *Nucleic Acids Res* 2004, 32:e49.

105. Burnstock G, Wood JN: Purinergic receptors: their role in nociception and primary afferent neurotransmission. *Curr Opin Neurobiol* 1996, 6:526-532.

106. Burnstock G: P2X receptors in sensory neurones. *Br J Anaesth* 2000, 84:476-489.

107. Ruan H-Z, Burnstock G: Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. *Histochemistry and Cell Biology* 2003, 120:415-426.

108. Gerevich Z, Borvendeg SJ, Schroder W, Franke H, Wirkner K, Norenberg W, Furst S, Gillen C, Illes P: Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADP-induced analgesia. *J Neurosci* 2004, 24:797-807.

109. Tominaga M, Wada M, Masu M: Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. *Proc Nat Acad Sci USA* 2001, 98:6951-6956.

110. Chizhmovak I, Yudin Y, Mamenko N, Prudnikov I, Tamaraova Z, Krishcal O: Opioids inhibit purinergic nociceptors in the sensory neurons and fibres of rat via a G protein-dependent mechanism. *Neuropharmacology* 2005, 48:639-647.

111. Krishcal O, Lozovaya N, Fedorenko A, Saveliev I, Chizhmovak I: The agonists for nociceptors are ubiquitous, but the modulators are specific: P2X receptors in the sensory neurones are modulated by cannabinoids. *Phytother Res* 2006, 20:353-360.

112. Hausmann R, Rettinger J, Gerevich Z, Meis S, Kassack MU, Illes P, Lambrecht G, Schmalzing G: The suramin analog 4,4‘,4”,4”-(carboxybenzylidis(mino-5,1,3-benzenetriyl)bis (carboxylimino)-tetra-kis-benzenesulfonic acid (NF110) potently blocks P2X3 receptors: subtype selectivity is determined by location of sulfonic acid groups. *Mol Pharmacol* 2006, 69:2058-2067.

113. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Brennan TJ, Subieta A, van Biesen T, Cartmell J, Bianchi B, Niforantagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. *Proc Nat Acad Sci USA* 2001, 99:1413-1418.

114. Burnstock G: Physiology and pathophysiology of purinergic neurotransmission. *Physiol Rev* 2007, 87:659-797.

115. Burnstock G: Expanding field of purinergic signaling. *Drug Dev Res* 2001, 52:1-10.
Author/s:
Burnstock, G

Title:
Purinergic mechanosensory transduction and visceral pain

Date:
2009-11-30

Citation:
Burnstock, G. (2009). Purinergic mechanosensory transduction and visceral pain. MOLECULAR PAIN, 5, https://doi.org/10.1186/1744-8069-5-69.

Persistent Link:
http://hdl.handle.net/11343/255697

File Description:
Published version

License:
CC BY