We developed and tested a single multiplex polymerase chain reaction (PCR) that detects enterotoxigenic, enteropathogenic, enteroinvasive, and Shiga toxin–producing *Escherichia coli*. This PCR is specific, sensitive, and rapid in detecting target isolates in stool and food. Because of its simplicity, economy, and efficiency, this protocol warrants further evaluation in large, prospective studies of polymicrobial substances.

Escherichia coli causes disease in humans through diverse mechanisms (1). Classified on basis of their virulence traits, the most well-studied members of the diarrheagenic *E. coli* group include enterotoxigenic *E. coli* (ETEC), enteropathogenic *E. coli* (EPEC), enteroinvasive *E. coli* (EIEC), enterohaemorrhagic *E. coli* (EHEC), and Shiga-toxin–producing *E. coli* (STEC), also called verocytotoxin-producing or enterohemorrhagic *E. coli*. ETEC produce secretory toxins (enterotoxins); EPEC adhere intimately to epithelial cells and induce host cell transmembrane signaling; EIEC invade eukaryotic cells; and STEC produce Shiga toxins.

Identifying diarrheagenic *E. coli* in the polymicrobial milieu of stool and food poses challenges. Occasionally, economically detectable phenotypes distinguish such organisms when they are abundant in human stools. For example, sorbitol- and lactose-nonfermenting colonies are typical of *E. coli* O157:H7 and EIEC (2,3), respectively. However, these phenotypes are nonspecific, and subsidiary testing is needed to confirm the isolate identity. In vitro assays that detect toxins, adherence, or invasion phenotypes can also identify candidate diarrheagenic *E. coli*. These determinations are often expensive, require special expertise, and employ various detection systems (e.g., cell culture, cytotoxicity assays). Applying such assays to enteric microbiologic diagnosis is cumbersome.

Nucleic acid hybridization techniques, exploited by colony hybridizations or polymerase chain reaction (PCR), apply a single detection method to a diversity of organisms. The application of nucleic acid amplifications requires selecting appropriate oligonucleotide primers and optimizing conditions to maximize sensitivity and specificity. The inclusion of reactions and conditions that apply to a variety of virulence loci so that multiple candidate pathogens can be sought in a single reaction makes this technology more efficient and economical. Such multiplex detection is an appropriate solution to the challenge of finding diarrheagenic *E. coli* in stools and in food. We describe the development of a multiplex PCR that detects four categories of diarrheagenic *E. coli* and the application of the assay to human diarrheal stools and food in Mexico City.

The Study

We developed a single multiplex PCR reaction to detect ETEC, EPEC, EIEC, and STEC, using specific previously described (4–6) or new primers (GIBCO-BRL, Gaithersburg, MD) for diverse virulence traits (Table 1). Because primers for loci that unambiguously distinguish pathogenic from nonpathogenic EAggEC have not yet been determined (1), we did not address this group in this study.

We prepared bacterial lysates by resuspending single colonies in 1 mL of deionized water (Milli-Q System, Millipore, Bedford, MA), boiling them 1 min, and then freezing them until needed. *E. coli* O86:H18 was the negative control in all assays. Each PCR tube contained 23 µL of reaction mix, comprised (in final concentrations) of Tris-Cl (10 mM, pH 8.3), KCl (50 mM), MgCl₂ (2 mM), gelatin (100 µg/mL), glycerol (5 % v/v), dATP, dCTP, dGTP, and dTTP (200 µM each), AmpliTaq polymerase (GIBCO-BRL) (0.5 U/23 µL), a mixture of the 14 primers (Table 1), and 2 µL of bacterial lysates. The final concentration of each primer in the reaction mix was determined by employing a DNA mix (Table 1) of the four prototype *E. coli* (7,10,11,13), until each of the seven PCR products exhibited a band of similar intensity after electrophoresis in a 2.5% agarose gel in Tris-borate-EDTA buffer and ethidium staining (Figure). The solutions were then subjected to the following cycling conditions: 50°C (2 min, 1 cycle); 95°C (5 min, 1 cycle); 95°C, 50°C, and 72°C (45 sec each temperature, 40 cycles); and a final extension step (10 min, 72°C) in a thermal cycler (iCycler System, Bio-Rad Laboratories, Inc., Hercules, CA). PCR products (4 µL) were visualized after electrophoresis and ethidium staining. The PCR sensitivity was determined by suspending one colony of each reference strain in individual 1-mL aliquots of sterile saline (0.85% w/v). Serial twofold dilutions in sterile saline were then made (to 1:256), and bacterial concentrations were determined by plating on MacConkey agar. Each dilution was also subjected to PCR analysis. *E. coli* 3030 (O86:H18) strain was used as a negative control during the characterization. In all further experiments, the DNA mix from the four prototype *E. coli*
served as the positive control. The multiplex PCR was further characterized by using three additional reference strains for each category (Table 1).

Stools from 58 children <5 years of age hospitalized for diarrhea in July, August, and September, 1999, at the three main hospitals of the Instituto Mexicano del Seguro Social, Mexico City, were studied. The Institutional Review Board of the Institute approved this study, and parental informed consent was obtained for each patient. Standard diagnostic evaluations on these stools included culture for *Campylobacter*, *Salmonella*, *Shigella*, *Vibrio cholerae*, *Aeromonas*, and *Plesiomonas*; identification of *Rotavirus*, *Adenoviridae*, *Astrovirus*, and *Caliciviridae* by enzyme immunoassay; and microscopy for *Entamoeba histolytica*, *Cryptosporidium parvum*, *Cyclospora cayetanensis*, *Isospora belli*, and *Giardia lamblia*. Five lactose-fermenting colonies and five sorbitol-nonfermenting colonies with morphology resembling that of *E. coli* (when present) were selected from standard and sorbitol MacConkey agar plates, respectively, speciated biochemically, and then subjected to multiplex PCR.

Because of our concern about food safety, we purchased 52 food items (hot chili sauces and taco dressings) from street vendors in Mexico City in July, August, and September, 1999, and analyzed them for the presence of *E. coli* (which indicate fecal contamination) and diarrheagenic *E. coli*, without enrichment. One gram of food was added to 1 mL of 0.85% sterile saline and vortexed, and serial 10-fold dilutions were prepared. To enumerate candidate *E. coli*, and identify diarrheagenic *E. coli*, 100 µL of each sample and dilutions were plated on MacConkey and sorbitol MacConkey agar plates. Five pink colonies from MacConkey and five colorless colonies from sorbitol MacConkey agar were tested for indole positivity and the lactose-fermenting phenotype (if selected from the sorbitol plate). Only indole-positive, lactose-fermenting

E. coli category tested	Locus	Primers	Amplicon size (bp)	Primer (pMol) in mix
ETEC	lt	F:5’GGT GAC AGA TTA TAC CGT GC3’ (4)	450	5.0
	st	F:5’TAT TTT CTT TCT GTA TGG TCT T3’ (4)	190	6.47
EPEC	bfpA	F:5’ATG GAT TTA ATG TCG CAT AGT G3’ (4)	324	2.5
EPEC	eaeA	F:5’GGC ACT GTC TGA AAC TGC TCC3’ (5)	384	3.88
EIEC	str1	F:5’CTG GAT TTA ATG TCG CAT AGT G3’ (4)	150	3.88
	str2	F:5’GTC ACT TGA AAC TGC TCC3’ (6)	255	2.5
STEC	iad	F:5’GGT ATG ATG ATG AGT CCA 3’ d	650	10.25

a *E. coli*, *Escherichia coli*; ETEC, enterotoxigenic *E. coli*; EPEC, enteropathogenic *E. coli*; EIEC, enteroinvasive *E. coli*; STEC, Shiga-toxin–producing *E. coli*; PCR, polymerase chain reaction.

b *E. coli* prototype strains.

c Donated by the Public Health Laboratory Service, Central Health Laboratory, London, United Kingdom.

d These primers were designed by us from the gene bank sequences.
colonies isolated from both media were then subjected to the multiplex PCR. STEC from patients and food were tested to determine if they expressed the O157 lipopolysaccharide antigen by using latex particle agglutination (Oxoid Limited, Basingstoke, UK).

Multiplex PCR detected the appropriate loci in each positive control strain; extraneous bands were not produced (Figure). When DNA from each of the four reference strains was mixed, the same bands appeared without nonspecific amplification (Figure). The minimum number of CFU detected were 320–1,526 for ETEC; 84–168 for EPEC; 120–1,556 for EIEC; and 20–194 for E. coli O157:H7.

Eleven (19%) of the 58 patients had candidate diarrheagenic E. coli in their stools (Table 2). In 6 (55%) of these 11 patients, no other enteric pathogens was identified, and in 3 patients target sequences were found in each of the selected E. coli colonies (Table 2). Thus, these candidate pathogens constituted the predominant aerobic coliform flora in some samples. None of the other 47 patients with diarrhea had E. coli containing the target loci in their stools. Twenty-two (42%) of the 52 food samples contained E. coli, and 7 (13%) contained candidate diarrheagenic E. coli (Table 2). No STEC isolated from patients or food expressed the O157 LPS antigen, and most were eae negative.

Conclusions

This multiplex PCR specifically and sensitively detected a diversity of loci in E. coli with ease, speed, and economy; its utility was demonstrated by using reference strains as well as clinical and food isolates. Conceivably, additional loci might

Table 2. Diarrheagenic Escherichia coli isolates in patient and food samples

Samples	Diarrheagenic E. coli group	Identified genes	No. positive strains/ no. tested	Other pathogens isolated	CFU/gram food
Stool					
Patient 1	STEC	stx1, eae A	5/5	none	
Patient 2	STEC	stx2	5/5	none	
Patient 3	ETEC	lt	2/5	none	
Patient 4	STEC	stx 2	2/9	none	
Patient 5	STEC	stx 2	1/5	none	
Patient 6	EIEC	iai	1/5	none	
Patient 7	ETEC	lt	5/5	Shigella flexneri	
Patient 8	ETEC	st	2/5	S. sonnei	
Patient 9	EPEC	bfpA, eaeA	1/5	S. sonnei	
Patient 10	ETEC	lt	1/5	Rotavirus, S. sonnei	
Patient 11	STEC	stx1, eae A	1/10	Rotavirus	

Food					
Green sauce	ETEC	lt, st	5/5	none	8.0×10^2
Green sauce	ETEC	lt, st	5/5	none	1.3×10^5
Raw cabbage	STEC	stx1, stx2	2/5	none	2.6×10^4
Green sauce	ETEC	st	1/5	none	6.9×10^2
Green sauce	EIEC	iai	1/5	none	1.8×10^5
Raw coriander	EIEC	iai	1/5	none	8.2×10^4
Raw lettuce	EIEC	iai	1/5	none	8.2×10^4

STEC, Shiga-toxin–producing Escherichia coli; ETEC, enterotoxigenic E. coli; EIEC, enteroinvasive E. coli; EPEC, enteropathogenic E. coli.
be included because no signal attenuation occurred when a mixture of reference strains was assayed. The estimated cost per reaction for one strain is U.S. $2.00, compared to U.S. $15.00 for a colony blot analysis for one strain (data not shown). Furthermore, the signals from colony hybridizations are sometimes equivocal, in contrast to the unambiguous data obtained from our assay.

We believe that multiplex nucleic acid amplification to detect a panel of putatively pathogen traits should be considered as a replacement for tedious, less sensitive, and less specific detection technologies in clinical and food microbiologic analyses. This method should also be considered to be a more parsimonious use of PCR reagents than the individual locus PCR testing protocols described by others (15,16). Moreover, our approach does not rely on DNA extraction (16); boiling of cultures provides adequate nucleic acid to detect sequences of interest. Comparing our protocol’s sensitivity to that reported in other protocols is difficult because of differences in methods. Specifically, other techniques seek amplicons directly from stool cultures (17) or employ fecal DNA extraction (4), whereas we assessed isolated, randomly picked colonies. Nevertheless, our sensitivity ranges were within the range of previous reports (18,19), to the extent that we were able to compare them. Our approach also provides, simultaneously, an indication of the proportion of fecal gram-negative organisms that contain loci of interest.

Without a more extensive epidemiologic analysis, we cannot state with certainty that the positive E. coli isolated were the causes of the diarrhea in the children studied. However, in some samples, the PCR-positive organisms were well represented among the aerobic coliform flora selected for analysis. Such organisms were also well represented among the food isolates. Because these E. coli indicate fecal contamination, our findings present a disconcerting picture of the hygienic status of street-vended food in Mexico City. In fact, our colony selection protocol was biased towards high-frequency organisms because we sampled only five such strains. Surveys that examine several hundred colonies (20) or PCR amplification of supernatant of fecal or food outgrowths (17,21) or of extracted DNA (4) could detect target organisms at lower densities. Though the clinical and food safety implications of low levels of candidate diarrheagenic E. coli remain unclear, multiple studies have demonstrated that consumption of food sold by street vendors is a risk factor for acquiring diarrhea in Mexico (22–24) and elsewhere (25–27), and attempts to improve the safety of these ubiquitous vehicles would most likely improve public health.

We have demonstrated for the first time that multiplex PCR can detect a variety of diarrheagenic E. coli with relative ease. Such organisms are found in food vended in Mexico City and in local children with diarrhea. This feasible technology should be evaluated in larger, controlled, prospective studies of human diarrhea and in microbiologic studies of food to establish the current epidemiology of these pathogens, including the emerging strains of STEC.

Financial support was provided by CONAYT grants 3541-PM-9608 to FRV and I29859-M to TEG.

Ms. López-Saucedo is a candidate for a master of science degree in biology. Her research interests include clinical microbiology and epidemiology of diarrheal diseases.

References

1. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998;11:142–201.
2. Fang GD, Lima AA, Martins CV, Nataro JP, Guerrant RL. Etiology and epidemiology of persistent diarrhea in northeastern Brazil: a hospital-based, prospective, case-control study. J Pediatr Gastroenterol Nutr 1995;21:137–44.
3. Flores Abuxaqqi JJ, Suarez Hoil GJ, Heredia Navarrete MR, Puc Franco MA, Vivas Rosel ML. Four biochemical tests for identification of probable enteroinvasive Escherichia coli strains. Rev Latinoam Microbiol 1999;41:259–61.
4. Stacy-Phipps S, Mecca JJ, Weiss JB. Multiplex PCR assay and simple preparation method for stool specimens detect enterotoxigenic Escherichia coli DNA during the course of infection. J Clin Microbiol 1995;33:1054–9.
5. Gunzburg ST, Tornieporth NG, Riley LW. Identification of enteropathogenic Escherichia coli by PCR-based detection of the bundle-forming pilus gene. J Clin Microbiol 1995;33:1375–7.
6. Paton AW, Paton JC. Detection and characterization of Shiga toxicigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol 1998;36:598–602.
7. Fleckenstein JM, Lindler LE, Elsinghorst EA, Dale JB. Identification of a gene within a pathogenicity island of enterotoxigenic Escherichia coli H10407 required for maximal secretion of the heat-labile enterotoxin. Infect Immun 2000;68:2766–74.
8. Levine MM, Ristaino P, Marley G, Smith C, Knutton S, Boedeker E, et al. Coli surface antigens 1 and 3 of colonization factor antigen II-positive enterotoxigenic Escherichia coli: morphology, purification and immune responses in humans. Infect Immun 1984;44:409–20.
9. Svennerholm AM, Wenneras C, Holmgren J, McConnell MM, Rowe B. Roles of different coli surface antigens of colonization factor antigen II in colonization by and protective immunogenicity of enterotoxigenic Escherichia coli in rabbits. Infect Immun 1990;58:341–6.
10. Okeke IN, Borneman JA, Shin S, Mellies JL, Quinn LE, Kaper JB. Comparative sequence analysis of the plasmid-encoded regulator of enteropathogenic Escherichia coli strains. Infect Immun 2001;69:5553–64.
11. Schmidt H, Beutin L, Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun 1995;63:1055–61.
12. Bokete TN, Whittam TS, Wilson RA, Clausen CR, O’Callahan CM, Moseley SL, et al. Genetic and phenotypic analysis of Escherichia coli with enteropathogenic characteristics isolated from Seattle children. J Infect Dis 1997;175:1382–9.
13. Riley LW, Junio LN, Schoolnik GK. HeLa cell invasion by a strain of enteropathogenic Escherichia coli that lacks the O-antigen polysaccharide. Mol Microbiol 1990;4:1661–6.
14. Martinez MB, Whittan TS, McGraw EA, Rodrigues J, Trabelsi LR. Clonal relationship among invasive and non-invasive strains of enteroinvasive Escherichia coli serogroups. FEBS Microbiol Lett 1999;172:145–51.
15. Rappelli P, Madau G, Manu F, Colombo MM, Fiori PL, Cappuccini P. Development of a set of multiplex PCR assays for the simultaneous identification of enterotoxigenic, enteropathogenic, enterohemorrhagic and enteroinvasive Escherichia coli. New Microbiol 2001;24:77–83.
16. Pass MA, Odedra R, Batt RM. Multiplex PCRs for identification of *Escherichia coli* virulence genes. J Clin Microbiol 2000;38:2001–4.
17. Paton AW, Paton JC, Goldwater PN, Manning PA. Direct detection of *Escherichia coli* Shiga-like toxin genes in primary fecal cultures by polymerase chain reaction. J Clin Microbiol 1993;31:3063–7.
18. Fratamico PM, Sackitey SK, Wiedmann M, Deng MY. Detection of *Escherichia coli* O157:H7 by multiplex PCR. J Clin Microbiol 1995;33:2188–91.
19. Houngh HS, Sethabutr O, Echeverria P. A simple polymerase chain reaction technique to detect and differentiate *Shigella* and enteroinvasive *Escherichia coli* in human feces. Diagn Microbiol Infect Dis 1997;28:19–25.
20. Samadpour M, Liston J, Ongerth JE, Tarr PI. Evaluation of DNA probes for detection of Shiga-like–toxin-producing *Escherichia coli* in food and calf fecal samples. Appl Environ Microbiol 1990;56:1212–5.
21. Stephan R, Ragettli S, Untermann F. Prevalence and characteristics of verotoxin-producing *Escherichia coli* (VTEC) in stool samples from asymptomatic human carriers working in the meat processing industry in Switzerland. J Appl Microbiol 2000;88:335–41.
22. Tjoa WS, DuPont HL, Sullivan P, Pickering LK, Holguin AH, Olarte J, et al. Location of food consumption and travelers’ diarrhea. Am J Epidemiol 1977;106:61–6.
23. Ericsson CD, Pickering LK, Sullivan P, DuPont HL. The role of location of food consumption in the prevention of travelers’ diarrhea in Mexico. Gastroenterology 1980;79:812–6.
24. Ericsson CD, DuPont HL, Mathewson JJ III. Epidemiologic observations on diarrhea developing in U.S. and Mexican students living in Guadalajara, Mexico. J Travel Med 1995;2:6–10.
25. Oyemade A, Omokhodion FO, Olawuyi JF, Sridhar MK, Olaseha IO. Environmental and personal hygiene practices: risk factors for diarrhoea among children of Nigerian market women. J Diarrhoeal Dis Res 1998;16:241–7.
26. Ries AA, Vugia DJ, Beingolea L, Palacios AM, Vasquez E, Wells JG, et al. Cholera in Piura, Peru: a modern urban epidemic. J Infect Dis 1992;166:1429–33.
27. Bryant HE, Csokonay WM, Love M, Love EJ. Self-reported illness and risk behaviours amongst Canadian travellers while abroad. Can J Public Health 1991;82:316–9.

Address for correspondence: Teresa Estrada-García, Department of Molecular Biomedicine, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, México D.F. 07360, México; fax: 52-555 7477134; e-mail: testrada@mail.cinvestav.mx