A Scholarly Review of the Safety and Efficacy of Intranasal Corticosteroids Preparations in the Treatment of Chronic Rhinosinusitis

Luis Macias-Valle, MD, FARS1 and Alkis J. Psaltis, MBBS (hons), FRACS, PhD2

Abstract

Objective: The purpose of this scholarly review is to present an update of the efficacy, safety, and distribution of intranasal corticosteroids (INCS) in the context of treatment for chronic rhinosinusitis (CRS). Materials and Methods: A literature review from 1999 to 2020 of MEDLINE, PubMed, and EMBASE databases was performed, using a comprehensive search strategy. Studies reporting on efficacy, safety, and distribution of all INCS formulations, both Food and Drug Administration (FDA) and non-FDA approved, were reviewed. Results and Conclusions: High-level evidence publications and position papers support the role of INCS in medical treatment for CRS. Significant improvement in disease-specific and general quality of life measures is observed with all formulations of INCS. Overall, the use of both FDA and published non-FDA INCS appears to be safe. Several novel distribution devices might improve penetration to specific areas within the sinuses.

Keywords
corticosteroids, chronic rhinosinusitis, steroid irrigations, nebulizers, budesonide

Introduction

Chronic rhinosinusitis (CRS) is a multifactorial condition with unclear etiology. Although the underlying causes and inciting events remain debated, the resultant inflammation has been well characterized. Irrespective of its phenotype, the inflammation in CRS remains extremely responsive to corticosteroid medications in the vast majority of patients. Unlike oral corticosteroids, which have a significant side effect profile, topical intranasal corticosteroids (INCS) remain well tolerated with an excellent long-term safety profile. It is for this reason that they are considered first-line therapy for CRS.1,2

The mode of action of INCS is complex. Although it remains unknown whether INCS penetrate the nasal mucosa, their lack of systemic absorption supports a local action on the nasal mucosa. Intranasal corticosteroids are known to influence epithelial cells through their direct binding to glucocorticoid receptors within the cells3 and are believed to directly affect mast cells, Langerhans Cells, macrophages, and fibroblasts and also reduce the influx of inflammatory cells. In this way, they are thought to have direct effects on both the early-phase response as well as the secretion of inflammatory mediators (interleukin-1, -2, -4, -6, -8, tumor necrosis factor-α, Granulocyte-macrophage colony-stimulating factor), released during the delayed inflammatory response.4,5

Numerous well-performed high-level randomized controlled trials (RCTs) have been published supporting the effectiveness of INCS in the management of CRS with and without nasal polyposis. A recently published Cochrane review, including 18 randomized placebo-controlled trials, demonstrated improvements in symptom scores and endoscopic disease severity scores in both chronic rhinosinusitis without nasal...
polyps (CRSsNP) and chronic rhinosinusitis with nasal polyps (CRSwNP) patients. In the CRSwNP cohort, reductions in polyp size and improvements in quality of life scores and olfaction scores were also observed. This high level of evidence has resulted in position papers recommending the routine use of INCS in the management of CRS with and without nasal polyps with a level A-1 recommendation.1,2

This review aims to present an update of the current INCS available for the treatment of CRS. Formulations and delivery devices will be reviewed with a particular focus on available evidence for their efficacy and safety. Factors affecting distribution, as well as safety in the pediatric population and during pregnancy, will also be discussed.

Material and Methods

We performed a search in PubMed using the Medical Subject Headings (MeSH) terms “administration, intranasal” “steroids” “chronic rhinosinusitis” and “efficacy [subheading]” “distribution [subheading]” “complications [subheading]”. A comprehensive review of the English-language literature was performed using the following databases: Ovid MEDLINE (1999 to July 2020), the National Library of Medicine’s version of PubMed and EMBASE (1999 to July 2020).

The following MeSH terms were used in the literature review: steroids; corticosteroids; intranasal corticosteroids; distribution; efficacy; complications; safety; chronic rhinosinusitis; nasal polyposis; administration, topical; nasal sprays; nasal lavage; toxicity and delivery.

Formulations

Intranasal corticosteroids are classified into first- and second-generation formulations (Table 1). The first-generation INCS include budesonide, triamcinolone acetonide, beclomethasone dипropionate, and flunisolide. Second-generation preparations include mometasone furoate, fluticasone furoate, fluticasone propionate, and ciclesonide. Although initial concerns existed regarding possible systemic absorption from daily use, studies of newer generation INCS have shown these agents to be well tolerated with a low side effect profile and no significant impact on the hypothalamus–pituitary–adrenal axis (HPAA).7

First-generation INCS have higher systemic bioavailability compared to newer generation INCS, ranging from 10% to 49%. Second-generation INCS have a significantly lower rate of systemic absorption, being less than 0.1% for both ciclesonide and mometasone furoate8 (Table 1). Although different compounds have different absorption rates in the nasal mucosa and gut, systemic bioavailability depends primarily on the degree of first-pass hepatic metabolism.9 Newer generation INCS like ciclesonide and fluticasone propionate owe their low bioavailability to extensive hepatic metabolism and low gastrointestinal absorption. Differences in lipid solubility between generations have also been described with higher and faster uptake by the nasal mucosa in newer generation INCS because of their lipophilic substances. It is thought that this may improve their efficacy and onset of action.10

Corticosteroids can be delivered topically via sprays, in high-volume irrigation devices, or via nebulization. All 8 INCS are currently approved by the Food and Drug Administration (FDA) to treat perennial and seasonal allergic rhinitis when delivered as a spray. Mometasone carries an additional indication for seasonal allergic rhinitis prophylaxis and has been clinically approved to be used in the pediatric population from the age of 3 years.11 At present, there is no FDA approval for the use of INCS for CRS in irrigations or nebulized form.

Delivery Devices

Intranasal corticosteroids sprays. Intranasal corticosteroids were initially delivered via Freon propelled aerosols; however, these devices yielded poor intranasal drug distribution.12 Metered-dose pump sprays and aqueous pump sprays have since been shown to deliver a more significant percentage of INCS dose to the patient with less retention in the device. Aqueous pump sprays remain the most commonly used delivery device for INCS, given their more preferably distribution pattern. Unlike metered-dose aerosols and pump sprays, which result in drug...
deposition primarily within the anterior, non-ciliated region of the nose, aqueous pump sprays appear to also deposit drugs to the ciliated mucous membrane regions of the nasal mucosa. With this said, intranasal distribution from an aqueous pump spray can be affected by various factors, including the volume of nasal spray and the spray cone angle.

The clinical efficacy seems to be similar among most forms of INCS sprays. In 2016, a Cochrane Review by Chong et al evaluated the effects of different types of INCS in all published RCTs with a minimum follow-up of 3 months to determine whether a difference existed between the different formulations. Nine RCTs, with a total of 911 participants, were included. The authors found insufficient evidence to suggest that one type of INCS spray was more effective than another in patients with CRS. In general, INCS sprays have proven to be safe. Minor local adverse effects such as bleeding, nasal dryness, throat dryness, and burning have been reported. There is moderate quality evidence to suggest that epistaxis is associated with higher doses of INCS (risk ratio 2.06, 95% confidence interval 1.2 to 3.54) as well as incorrect use. Severe complications such as nasal mucosa atrophy and septal perforation are infrequent and almost always prevented by instructing the patient on appropriate technique with the spray aimed away from the nasal septum. Studies that have examined the effect of INCS on the HPAA have shown an overall minimal impact on cortisol metabolism. Although 2 studies have shown a decreased output of urinary cortisol during treatment with either fluticasone propionate or beclomethasone dipropionate in adults, most studies of these agents have shown no effect on the HPAA. Mometasone furoate has been extensively studied in more than 20 trials of adults and children. No effects on the HPAA were detected in either children or adults. No clinical relevant impact of INCS was found on intraocular pressure (IOP), glaucoma, lens opacity, nor cataract formation in recently published systematic reviews. A meta-analysis and systematic review by Donaldson et al of 60 studies concluded that INCS are safe in the adult population.

High-volume irrigations. Given the well-documented increase in sinus penetration with high-volume irrigations, particularly in postoperative cases, the off-label use of budesonide irrigations has become increasingly popular in CRS treatment. Budesonide repulses (0.5 mg-1 mg) diluted in high-volume, low-pressure devices (200-240 mL) have been shown to confer a greater symptom reduction and a more significant improvement in endoscopic appearance in unoperated patients when compared with saline irrigations. Table 2 summarizes the most recent high-level studies published regarding high-volume budesonide irrigations for CRS treatment. Budesonide irrigations have also demonstrated a reduction in oral steroid rescue treatment in postoperative functional endoscopic sinus surgery patients with asthma.

High-volume irrigations with other INCS have also been studied in patients with CRS. Harvey et al published a placebo-controlled randomized clinical trial comparing mometasone irrigations with mometasone nasal spray. High-volume intranasal irrigation with mometasone (2 mg in 240 mL saline) showed a greater improvement in total visual analog scale scores, endoscopy scores, and CT scores at 12 months compared to mometasone sprays.

With the increased off-label use of steroid irrigations, concerns have been raised about their potential toxicity. Based on the study by Harvey et al, <3% of sinus irrigation fluid remains in the sinuses post high-volume irrigation. As a result, the total dose of steroids retained in the sinonasal cavity is significantly lower than that after INCS spray use. Given the long-term safety profile of INCS, the safety of budesonide irrigations had been assumed. This has now been confirmed with well-performed long-term studies. Smith et al identified no evidence of HPAA suppression or elevation in IOP with daily use of budesonide irrigations for 12 months. Although a study by Soudry et al showed similar results, an asymptomatic HPAA suppression in a small subset of patients concurrently using nasal steroid sprays or pulmonary steroid inhalers was observed. Reassuringly, this HPAA suppression was found to be reversible when the budesonide irrigations were ceased. Caution is, therefore, recommended in patients using multiple forms of topically delivered steroid therapy.

Atomizers and nebulizers. In an attempt to improve the distribution of INCS, alternate methods of application and distribution have been explored in recent years. Thomboo et al published a study in which they used budesonide via a mucosal atomization device (MAD; Wolfé-Tory Medical). This device atomizes medication into particles ranging between 30 and 100 µm in size. Their research suggests that the application of budesonide with the MAD results in a non-diluted low-volume, high-concentration distribution of the drug intranasally, which in theory should translate to increased anti-inflammatory activity. In terms of budesonide’s long-term safety with this device, 3% of patients developed a diminished cortisol response test, and 6% had an elevated IOP after a mean duration of treatment of 23 months.

Another delivery system designed to improve penetration and availability of INCS, particularly to the posterior and superior sinonasal spaces, is the exhalation delivery system with fluticasone (EDS-FLU) Xhance by OptiNose (OptiNose Inc). The EDS-FLU consists of a mouthpiece and a sealing nosepiece with an optimized frustoconical shape that expands the nasal valve area. When exhaling into the mouthpiece against the device’s resistance, the soft palate is elevated by positive oropharyngeal pressure, isolating the nasal cavity from the rest of the respiratory system. Gamma deposition studies have demonstrated that with the EDS-FLU, there is less drug deposition in the non-ciliated nasal vestibule and significantly greater distribution to the upper posterior regions when compared to conventional delivery with a spray pump. The EDS-FLU has been proven to decrease off-target drop deposition and drug loss by swallowing and drip out.
In a 3-month placebo-controlled study in 109 patients with CRSwNP, EDS-FLU was reported to be well tolerated. Combined symptom scores, nasal blockage, and endoscopic polyp scores were improved at 12 weeks. In large, open-label cohorts, the degree of symptom improvement from baseline in both CRSwNP and CRSsNP populations was comparable.

The NAVIGATE I and II trials evaluated the efficacy and safety of the EDS-FLU versus placebo in patients with CRSwNP in double-blind RCTs. All EDS-FLU doses produced statistically significant improvement in the SNOT-22 total score and all 4 cardinal symptoms of nasal polyposis (congestion/obstruction, facial pain/pressure, rhinorrhea/postnasal drip, hyposmia/anosmia).

Factors Affecting Distribution

Various factors have been shown to affect the topical delivery of medications to the sinuses. These include anatomical variations, the delivery device itself, head-positioning, and surgical status. Delivery devices include low volume devices such as metered dose sprays, droppers, atomizers, nebulizers, and high-volume devices such as irrigation bottles and neti pots. Studies involving commercially available INCS sprays have demonstrated that most atomized drugs are deposited in the anterior part of the nasal cavity and do not reach the sinus mucosa on the initial actuation of the device. Similarly, poor sinus distribution has also been demonstrated for the other low-volume devices irrespective of the extent of surgery. While

Table 2. Summary of High-level Studies Evaluating Budesonide Irrigations in Patients With CRS.

Study	Methods	Participants and interventions	Outcomes	Results
Huang et al24	Randomized prospective cohort analysis of prospectively collected data	60 patients who had undergone ESS with CRSwNP and CRSsNP randomized to intervention group (n = 30) with budesonide irrigations and control group (n = 30) with saline irrigations for 3 months postoperatively	LKS, VAS, SNOT-22, SF-36, SAS, SDS, and side effects	Improvement on all outcomes both arms of the study after 3 months treatment. LKS significantly better in the experimental group (P = .009). SNOT-22 no significantly different between the 2 groups. No significant differences were observed in SF-36, SAS, or SDS. Side effects between both groups not significantly different
Tait et al23	DBPCRCT	80 patients with CRS (CRSwNP and CRSsNP) were randomized to intervention group (n = 40) with 1 mg budesonide irrigations OD and 39 patients to the placebo-controlled group. (29 patients completed protocol in the intervention group and 32 in the control group. Duration of treatment 30 days	SNOT-22, Symptoms (Likert scale 1-7) and LKS	SNOT-22 difference of 7-point greater reduction in budesonide group (9 point or more reduction considered clinically meaningful). No difference in LKS and Symptom Likert scale at 4 weeks
Rawal et al25	SBPCRCT	50 patients with CRSwNP all postoperative randomized to budesonide irrigations 0.5 mg 60 mL/nostril twice a day 24 weeks (n = 24) and control group (n = 18) performing saline irrigations alone for 24 weeks	SNOT22, RSOM-31, RSDI at 2 weeks, 3 and 6 months	SNOT-22, RSOM31, and RSDI scores not different between 2 arms at all time points
Rotenberg et al26	DBPCRCT	64 patients with CRSwNP randomized to 3 groups: Budesonide irrigation 60 mL/0.5 mg per nostril budesonide twice daily (n = 20) Saline irrigation 60 mL per nostril and budesonide spray 64 μg/nostril twice a day Saline irrigation alone (n = 21) All arms with treatment for 52 weeks	SNOT-21, LKS, LM CT score, IOP, and HPAA suppression measurement	SNOT-21, LKS, and LM score on both intervention groups were not different from placebo at 6-12 months. IOP and ACTH level not changed at both time points.

Abbreviations: ACTH, adrenocorticotropic hormone; CRSsNP, chronic rhinosinusitis without nasal polyps; CRSwNP, chronic rhinosinusitis with nasal polyps; CT, computed tomography; DBPCRCT, Double-blind, placebo-controlled, randomized clinical trial; ESS, endoscopic sinus surgery; HPAA, hypothalamus–pituitary–adrenal axis; IOP, intraocular pressure; LKS; Lund-Kennedy endoscopic score; LM, Lund-Mackay score; OD, once-daily; SAS, self-rating anxiety scale; SDS, self-rating depression scale; SNOT-22, the 22-item Sino-Nasal Outcome test; RSDI, Rhinosinusitis disability index; RSOM, Rhinosinusitis Outcome Measure-31; SBPCRCT, single-blind, placebo-controlled, randomized controlled trial; VAS, visual analog scale.
Sinus penetration is also minimal for high-volume devices in the unoperated state,45,46 both surgery and the extent of surgery have a significant favorable influence on sinus penetration for these devices.

Cadaveric studies have shown that surgery increases irrigation fluid distribution to all sinuses, particularly the sphenoid and frontal sinuses.29,47-51 Several studies have focused on the different distribution rates of high-volume irrigations to the frontal sinus with graded surgical approaches. Barham et al found greatest distribution scores in cadaver heads after performing a Draf III procedure (90.7\% distribution) when compared with Draf IIb and Draf IIA (81.3\% and 50.1\%, respectively).49,50 Middle turbinate resection appears to positively impact distribution to all sinuses in cadaveric studies.51 However, no in vivo studies have been performed to date, and the risk of developing empty nose syndrome should be considered.52

Computational fluid dynamic (CFD) simulation is a novel technique for evaluating irrigant penetration of the individual sinus cavities. Computational fluid dynamic technique has been widely used in the field of rhinology to simulate multiple variables such as aerosol particle deposition53 and nasal airflow.54 Computational fluid dynamic studies have also demonstrated that extended surgical approaches to the frontal sinus (ie, Draf III procedure) significantly increase penetration of high-volume irrigations.55 Head positioning has been studied using CFD simulations, finding that the nose-to-ceiling head position is superior to the nose-to-floor position in delivering irrigation to the sphenoid sinus.56

Based on the available evidence, a recently published evidence-based review recommended for surgery and the use of high-volume devices after conventional sinus surgery (aggregate quality evidence C) and against low-volume devices (drops, sprays, nebulizers) based on their poor sinus distribution.57 In patients who could not perform or tolerate high-volume irrigations, they recommended the use of low-volume devices in the supine head back or lateral head position to improve nasal distribution to olfactory cleft and middle meatus, respectively. A Cochrane review by Snidvongs et al has also independently concluded that topical steroid delivery for patients with CRSsNP had more responders and increased beneficial effects in symptoms when delivered directly to the sinus cavity with high-volume irrigations when compared with nasal sprays.58

Safety in Pediatric and Pregnant Patients

There are currently only 4 INCS approved by the FDA for use in children less than 6 years of age. These include mometasone furoate, triamcinolone acetonide, fluticasone furoate, and fluticasone propionate. A recent meta-analysis evaluated 33 studies and concluded that INCS in FDA-approved administration routes appear to be safe in the pediatric population.59 No persistent abnormalities in cortisol levels or IOP changes were found. Growth velocity changes were not significant in most evaluated RCTs; a few studies noted a temporary reduction in short-term growth velocity.

All INCS were previously labeled as category C based on the FDA’s pregnancy risk classification system. Budesonide was upgraded to category B based on 3 studies using a Swedish birth registry from 1995 to 2001 for mothers using budesonide during pregnancy (Table 1).60,61 Literature about the safety and efficacy of INCS in pregnancy is still lacking, and concrete recommendations cannot be made. Previously published expert panel recommendations consider all modern INCS safe to use for CRS maintenance during pregnancy, and value should be placed on maternal sinonasal inflammation control during pregnancy.62 Based on a review by Alhussein et al, the use of fluticasone furoate, mometasone, and budesonide is considered safe if used at the recommended therapeutic dosages.63

Summary

- Intranasal corticosteroids play a significant role in the medical treatment of CRS, particularly in improving disease-specific and general quality of life measures.
- Intranasal corticosteroid efficacy in CRS is supported by high-level evidence and endorsed by the European Position Paper on Rhinosinusitis and Nasal Polyps 2020 and International Consensus Statement on Allergy and Rhinology: Rhinosinusitis documents.
- Intranasal corticosteroids appear to be generally safe in all routes of administration; however, long-term use of INCS irrigations with concomitant corticosteroid pulmonary inhalers may warrant active screening for subclinical adrenal suppression.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Alkis J. Psaltis is a consultant for ENT technologies, Medtronic, Tissium and FuseTech and is on the speakers bureau for Baxter.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Luis Macias-Valle \(\text{https://orcid.org/0000-0001-6914-3235}\)

Alkis J. Psaltis \(\text{https://orcid.org/0000-0003-2967-1855}\)

References

1. Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. *Rhinology*. 2020; 58(suppl S29):1-464.

2. Orlandi RR, Kingdom TT, Hwang PH, et al. International consensus statement on allergy and rhinology: *Rhinosinusitis*. *Int Forum Allergy Rhinol*. 2016;6(suppl 1):S22-S209.

3. Mygind N, Nielsen LP, Hoffmann HJ, et al. Mode of action of intranasal corticosteroids. *J Allergy Clin Immunol*. 2001;108(1 suppl):S16-S25.
4. Szeffler SJ. Pharmacokinetics of intranasal corticosteroids. *J Allergy Clin Immunol*. 2001;108(1 Suppl):S26-S31.

5. Derendorf H, Meltzer EO. Molecular and clinical pharmacology of intranasal corticosteroids: clinical and therapeutic implications. *Allergy*. 2008;63(10):1292-1300.

6. Chong LY, Head K, Hopkins C, et al. Intranasal steroids versus placebo or no intervention for chronic rhinosinusitis. *Cochrane Database Syst Rev*. 2016;4:CD011993.

7. Sastre J, Mosges R. Local and systemic safety of intranasal corticosteroids. *J Investig Allergol Clin Immunol*. 2012;22(1):1-12.

8. Rudmik L, Soler ZM. Medical therapies for adult chronic sinusitis: a systematic review. *JAMA*. 2015;314(9):926-939.

9. Wolthers OD. Relevance of pharmacokinetics and bioavailability of intranasal corticosteroids in allergic rhinitis. *Recent Pat Inflamm Allergy Drug Discov*. 2010;4(2):118-123.

10. Foo MY, Cheng YS, Su WC, Donovan MD. The influence of spray properties on intranasal deposition. *J Aerosol Med Pulm Drug Deliv*. 2007;20(4):495-508.

11. Baena-Cagnani CE, Patel P. Efficacy and long-term safety of mometasone furoate nasal spray in children with perennial allergic rhinitis. *Curr Med Res Opin*. 2010;26(9):2047-2055.

12. Meltzer EO. Formulation considerations of intranasal corticosteroids for the treatment of allergic rhinitis. *Ann Allergy Asthma Immunol*. 2007;98(1):12-21.

13. Newman SP, Moren F, Clarke SW. Deposition pattern of nasal steroids for chronic rhinosinusitis. *Cochrane Database Syst Rev*. 2016;4:CD011993.

14. Blaiss MS. Safety considerations of intranasal corticosteroids for the treatment of allergic rhinitis. *Allergy Asthma Proc*. 2007;28(2):145-152.

15. Bensch GW. Safety of intranasal corticosteroids. *Ann Allergy Asthma Immunol*. 2016;117(6):601-605.

16. Knutsson U, Stierna P, Marcus C, Karlstedt-Duke J, Carlstrom K, Bronnegard M. Effects of intranasal glucocorticoids on endogenous glucocorticoid peripheral and central function. *J Endocrinol*. 1995;144(2):301-310.

17. Boner AL. Effects of intranasal corticosteroids on the hypothalamic-pituitary-adrenal axis in children. *J Allergy Clin Immunol*. 2001;108(1 suppl):S32-S39.

18. Ahmadi N, Snivdongs K, Kalish L, et al. Intranasal corticosteroids do not affect intraocular pressure or lens opacity: a systematic review of controlled trials. *Rhinology*. 2015;53(4):290-302.

19. Valenzuela CV, Liu JC, Vila PM, Simon L, Doering M, Lieu JEC. Intranasal corticosteroids do not lead to ocular changes: a systematic review and meta-analysis. *Otolaryngoscopy*. 2019;129(1):6-12.

20. Donaldson AM, Choby G, Kim DH, Marks LA, Lal D. Intranasal corticosteroid therapy: systematic review and meta-analysis of reported safety and adverse effects in adults. *Otolaryngol Head Neck Surg*. 2020;160(3):605-712.

21. Tan NCW, Psaltis AJ. Latest developments on topical therapies in chronic rhinosinusitis. *Curr Opin Otolaryngol Head Neck Surg*. 2020;28(1):25-30.

22. Tait S, Kallogjeri D, Suko J, Kukuljan S, Schneider J, Piccirillo JF. Effect of budesonide added to large-volume, low-pressure saline sinus irrigation for chronic rhinosinusitis: a randomized clinical trial. *JAMA Otolaryngol Head Neck Surg*. 2018;144(7):605-712.

23. Huang ZZ, Chen XZ, Huang JC, et al. Budesonide nasal irrigation improved Lund-Kennedy endoscopic score of chronic rhinosinusitis patients after endoscopic sinus surgery. *Ear Arch Otorhinolaryngol*. 2019;276(5):1397-1403.

24. Rawal RB, Deal AM, Ebert CS, et al. Post-operative budesonide irrigations for patients with polyposis: a blinded, randomized controlled trial. *Rhinology*. 2015;53(3):227-234.

25. Rotenberg BW, Zhang I, Arra I, Payton KB. Postoperative care for Samter’s triad patients undergoing endoscopic sinus surgery: a double-blinded, randomized controlled trial. *Laryngoscope*. 2011;121(12):2702-2705.

26. Kang TW, Chung JH, Cho SH, Lee SH, Kim KR, Jeong JH. The effectiveness of budesonide nasal irrigation after endoscopic sinus surgery in chronic rhinosinusitis with asthma. *Clin Exp Otorhinolaryngol*. 2017;10(1):91-96.

27. Harvey RJ, Snivdongs K, Kalish LH, Oakley GM, Sacks R. Corticosteroid nasal irrigations are more effective than simple sprays in a randomized double-blinded placebo-controlled trial for chronic rhinosinusitis after sinus surgery. *Int Forum Allergy Rhinol*. 2018;8(4):461-470.

28. Harvey RJ, Goddard JC, Wise SK, Schlosser RJ. Effects of endoscopic sinus surgery and delivery device on cadaver sinus irritation. *Otolaryngol Head Neck Surg*. 2008;139(1):137-142.

29. Smith KA, French G, Mechor B, Rudmik L. Safety of long-term high-volume sinonasal budesonide irrigations for chronic rhinosinusitis. *Int Forum Allergy Rhinol*. 2016;6(3):228-232.

30. Soudry E, Wang J, Vaezeafshar R, Katznelson L, Hwang PH. Safety analysis of long-term budesonide nasal irrigations in patients with chronic rhinosinusitis post endoscopic sinus surgery. *Int Forum Allergy Rhinol*. 2016;6(6):568-572.

31. Thamboo A, Manji J, Szeitz A, et al. The safety and efficacy of short-term budesonide delivered via mucosal atomization device for chronic rhinosinusitis without nasal polyposis. *Int Forum Allergy Rhinol*. 2014;4(5):397-402.

32. Manji J, Singh G, Okpaleke C, et al. Safety of long-term intranasal budesonide delivered via the mucosal atomization device for chronic rhinosinusitis. *Int Forum Allergy Rhinol*. 2017;7(5):488-493.

33. Djupeand PS. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. *Drug Deliv Transl Res*. 2013;3(1):42-62.

34. Djupeand PS, Skretting A. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump. *J Aerosol Med Pulm Drug Deliv*. 2012;25(5):280-289.

35. Laube BL. Devices for aerosol delivery to treat sinusitis. *J Aerosol Med*. 2007;20(Suppl 1):S5-S17; discussion S-8.

36. Leach CL, Kuehl PJ, Chad R, McDonald JD. Nasal deposition of HFA-beclomethasone, aqueous fluticasone propionate and aqueous mometasone furoate in allergic rhinitis patients. *J Aerosol Med Pulm Drug Deliv*. 2015;28(5):334-340.

37. Vlckova I, Navratil P, Kana R, Pavlivek P, Chrbolka P, Djupeand PS. Effective treatment of mild-to-moderate nasal polyposis...
with fluticasone delivered by a novel device. *Rhinology*. 2009; 47(4):419-426.

39. Palmer JN, Jacobson KW, Messina JC, Kosik-Gonzalez C, Djupesland PG, Mahmoud RA. EXHANCE: 1-year study of the exhalation delivery system with fluticasone (EDS-FLU) in chronic rhinosinusitis. *Int Forum Allergy Rhinol*. 2018;8(8):869-876.

40. Sher MR, Steven GC, Romett JL, et al. EXHANCE-3: a cohort study of the exhalation delivery system with fluticasone for chronic sinusitis with or without nasal polyps. *Rhinology*. 2020; 58(1):25-35.

41. Sindwani R, Han JK, Soteres DF, et al. NAVIGATE I: randomized, placebo-controlled, double-blind trial of the exhalation delivery system with fluticasone for nasal polyps. *Am J Rhinol Allergy*. 2019;33(1):69-82.

42. Leopold DA, Elkayam D, Messina JC, Kosik-Gonzalez C, Djupesland PG, Mahmoud RA NAVIGATE II: randomized, double-blind trial of the exhalation delivery system with fluticasone for nasal polyposis. *J Allergy Clin Immunol*. 2019;143(1):126-134. e5.

43. Tong X, Dong J, Shang Y, Inthavong K, Tu J. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. *Comput Biol Med*. 2016;77:40-48.

44. Calmet H, Inthavong K, Eguzkitza B, Lehmkuhl O, Houzeaux G, Vazquez M. Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions. *PLoS One*. 2019;14(9):e0221330.

45. Grobler A, Weitzel EK, Buele A, et al. Pre- and postoperative sinus penetration of nasal irrigation. *Laryngoscope*. 2008;118(11):2078-2081.

46. Manes RP, Tong L, Batra PS. Prospective evaluation of aerosol delivery by a powered nasal nebulizer in the cadaver model. *Int Forum Allergy Rhinol*. 2011;1(5):366-371.

47. Govindaraju R, Cheria L, Macias-Valle L, et al. Extent of maxillary sinus surgery and its effect on instrument access, irrigation penetration, and disease clearance. *Int Forum Allergy Rhinol*. 2019;9(10):1097-1104.

48. Wormald PJ, Cain T, Oates L, Hawke L, Wong I. A comparative study of three methods of nasal irrigation. *Laryngoscope*. 2004;114(12):2224-2227.

49. Barham HP, Ramakrishnan VR, Knisely A, et al. Frontal sinus surgery and sinus distribution of nasal irrigation. *Int Forum Allergy Rhinol*. 2016;6(3):238-242.

50. Barham HP, Hall CA, Hernandez SC, et al. Impact of Draf III, Draf IIb, and Draf Ila frontal sinus surgery on nasal irrigation distribution. *Int Forum Allergy Rhinol*. 2020;10(1):49-52.

51. Kidwai SM, Parasher AK, Khan MN, et al. Improved delivery of sinus irrigations after middle turbinate resection during endoscopic sinus surgery. *Int Forum Allergy Rhinol*. 2017;7(4):338-342.

52. Maza G, Li C, Krebs JP, et al. Computational fluid dynamics after endoscopic endonasal skull base surgery-possible empty nose syndrome in the context of middle turbinate resection. *Int Forum Allergy Rhinol*. 2019;9(2):204-211.

53. Schroeter JD, Kimbell JS, Asgharian B. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model. *J Aerosol Med*. 2006;19(3):301-313.

54. Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults. *Int Forum Allergy Rhinol*. 2014;4(6):435-446.

55. Zhao K, Palmer JN. Sinus irrigations before and after surgery-visualization through computational fluid dynamics simulations. *Laryngoscope*. 2016;126(3):E90-E96.

56. Thomas WW, Harvey RJ, Rudmik L, Hwang PH, Schlosser RJ. Distribution of topical agents to the paranasal sinuses: an evidence-based review with recommendations. *Int Forum Allergy Rhinol*. 2013;3(9):691-703.

57. Snidvongs K, Kalish L, Sacks R, Craig JC, Harvey RJ. Topical steroid for chronic rhinosinusitis without polyps. *Cochrane Database Syst Rev*. 2011;(8):CD009274.

58. Snidvongs K, Kalish L, Sacks R, Craig JC, Harvey RJ. Topical steroid for chronic rhinosinusitis without polyps. *Cochrane Database Syst Rev*. 2013;3(9):691-703.

59. Norjavaara E, de Verdier M. Normal pregnancy outcomes in the context of middle turbinate resection. *Arch Otorhinolaryngol*. 2017;9(10):1097-1104.

60. Kallen B, Rydhstroem H, Aberg A. Congenital malformations after the use of inhaled budesonide in early pregnancy. *Obstet Gynecol*. 2019;113(3):973-980.

61. Alhussien AH, Alhedaithy RA, Alsaleh SA. Safety of intranasal corticosteroid sprays during pregnancy: an updated review. *Eur Arch Otorhinolaryngol*. 2018;275(2):325-333.