Assessment of Environmental Performances of Small and Medium Scale Indian Industries in the context of Green Supply Chain Management (GSCM)

Sanjeev Kumar¹, Somnath Chattopadhyaya² and Sandeep Tiwari¹
¹Krishna Engineering College, Ghaziabad, India. Email: sanjeevkg9@gmail.com, sandeptiwari1970@gmail.com
²IIT (ISM), Dhanbad, India. Email: somuismu@gmail.com

Abstract:
GSCM is extremely important for recent manufacturing systems. In an environmentally awaken atmosphere GSCM has an indispensable role to play to reduce the carbon footprint of different manufacturing operations. In the Indian context, the small and medium scale enterprises are unaware of environment friendly supply chain operations. Therefore there is an urgent need to develop a scale for implementing GSCM practices in those manufacturing domain. The objective of this paper is to investigate in formulating a widely acceptable scale for evaluation of green supply chain (GSC) system practices among those manufacturers. On the basis of the data collected from 119 Indian enterprises, measurement models of GSCM practices were evaluated. The assessments are done through the questionnaire from Small and Medium size enterprises (SMEs). Role of environmental performance in the green supply chain system for those enterprises is critically analyzed in this work. Conclusive strategies of this attempt will enable those manufacturers to perform effectively in dealing with GSCM issues.

Key words: Green Supply Chain Management, Survey, Environmental performance.

1. Objective:
Principal objective of the study is to do a comparative analysis of environmental performance between small and medium scale Indian industries in the viewpoint of GSC system. This critical comparison will empower the India SMEs to do the needful.

2. Literature review:
There are only a few attempts to critically analyze the environmental performance in GSCM. Various approaches to GSCM practice have been identified by various researches; yet they are very brief and have limited scope. One of them is by Quinghu Zhu et al (2008) [16] where the researchers conceptualize GSCM practices implementation.
A supply chain environmental performance assessment for telecommunication sectors was developed by Horvath, 1999 [8]. The assessment was based on a life-cycle assessment. Relationships between Green Supply Chain Management practices implementation and performance with a focus on the moderating effects of quality and lean practices were investigated by Zhu and Sarkis (2004) [23]. A number of GSCM practices implemented by Chinese enterprises to improve their performance were described by Zhu et al. (2005) [24].
3. The green supply chain:
Small and medium scale enterprises generate substantial value addition in the manufacturing sector, but their performance for implementing environmental regulations is not at all acceptable. In most of the cases they are the main culprit for polluting the environment. Due to this fact the implementation of GSCM practices is absolutely crucial for environmental perspective. Therefore, there is a burning need to formulate a scale to evaluate the environmental performance of the SMEs. GSC involves three approaches namely: environment, strategy and logistics. Figure 1 suggested by. (Breno Torres Santiago Nunes, Sergio Marques Junior, Rubens Eugenio Barreto Ramos, 2004)[1]. In context to Gilbert, 2001[5], green supply chain initiative provide competitive advantages such as low costs. In addition to low cost, Gilbert (2001) [5] stated that GSC also opens up new markets for organization.

![Fig. 1 Approach of green supply chain](image)

With the inception of the concept of GSC, manufacturers have started stressing upon the greener products design. For changing product design and for improving the recycling of the products, the manufacturer has to work in close proximity with recycled parts suppliers.

4. Research methodology:
Best Practices questionnaire have been developed. These questionnaire consist 10 underlying statements. Countries like China and Spanish industries are also critically investigated to set a benchmark of performance of Indian SMEs in the domain of implementing GSCM practices. To analyze the scores of Indian SMEs in different modules are being develop to comprehensively express its real performance.

The target respondents for this survey were requested to indicate through a five-point Linkert scale (Excellent/Completely agree-5 , Very good/ Rather agree-4, Good/ Partly agree-3, Average/ Rarely agree-2, Below average/Completely disagree-1.), the extent to which it perceived its enterprises implementing each of the dimensions of environmental performance and green supply chain management practices. The number of Indian SMEs is very large and analyzing the performance of each of them is quite cumbersome task. So some representative industries are selected for a gross performance trend in terms of environment friendly manufacturing. The 119 SMEs are sufficient to comprehend the overall performance towards GSCM.

For each of the 10 statements item analysis was conducted between the highest and lowest group through a “mean score”, “t-test” and “p” test.
5. Result and comparative analysis:

5.1 Comparative analysis of “Environmental Performance”:

Air emission control is important for reducing environmental pollution and subsequently implementing green supply chain management. Similarly, minimization of solid waste is crucial for green operations. Furthermore, recycling and recovery reduces environmental hazards and ensures cost reduction. Additionally, waste water treatment is also essential as per the rules and regulations of the ministry of environment. Table 1 and Graph 1 explains about the effectiveness and draws comparative analysis between Environmental Performance factors and 10 dimensions underlying for Indian small and medium sized enterprises. On the whole 119 industries have been considered (59 from medium scale industry and 60 from small scale industry).

Table: 1 Comparative analysis of mean score of Environmental Performance

Sl. No.	Dimension	SMALL SCALE Mean (S.D)	MEDIUM SCALE Mean (S.D)	MEAN DIFF.	RNK	t	p
I	Minimization of air emission	2.266 (0.756)	2.745 (0.842)	0.479	8	3.262	0.001
II	Minimization of solid waste	2.400 (0.741)	2.762 (0.727)	0.362	3	2.695	0.008
III	Improve production procedure/method for reducing waste/scrap	2.183 (0.624)	2.517 (0.731)	0.334	2	2.664	0.009
IV	Recovery through sale of scrap and used/rejected material	1.600 (0.785)	1.881 (1.068)	0.281	1	1.635	0.105
V	Recovery through sale of excess capital equipment	1.483 (0.650)	1.915 (1.193)	0.432	6	2.457	0.015
VI	Recovery through sale of old/obsolete equipment	1.474 (0.727)	1.898 (1.213)	0.424	5	2.300	0.023
VII	Recycling of waste water	1.466 (0.675)	1.949 (1.195)	0.483	9	2.717	0.008
VIII	Optimization of manpower resources in production process	2.483 (0.911)	2.898 (0.687)	0.415	4	2.801	0.006
IX	Reduction of consumption for hazardous materials	2.050 (0.768)	2.711 (0.910)	0.661	10	4.281	0.000
X	Reduction in frequency of environmental accidents	1.800 (0.859)	2.271 (0.961)	0.471	7	2.816	0.006
Graph: 1- Comparative analysis of mean score of Environmental Performance

6. Comparative result analysis of different country:

It is very much necessary for analyzing the comparative assessment of these Indian SMEs with respect to some foreign counter parts. Air emission control, waste water management, recycling and recovering are the important modules of activities in all form of manufacturing plants. The comparative assessment of these modules is to be carried out to comprehend the gravity of the situation. The scores related to the performance of Chinese and Spanish industries are collected from the existing literature. United nations have set some pollution and emission norms for all the countries in the world. So a comparative assessment scale is very much important for analyzing the pollution related performance of these SMEs of the different parts of the world and bare minimum standard has to be implemented of every country without paying heed to their geographical locations, financial status and the overall discipline of the countries. The researchers have worked on various modules of GSCM practices implementation in different countries, for different time periods, for different classes of industries. The mean scores (percentage arrived with linkert scale adopted by researchers) of the some modules studied are tabulated below:
Table 2: Analysis of comparative result of different country for GSC.

Modules/Equivalent modules	Maximum recommended score by ISO 14001/Certification body for implementing an environmental management system	Javier et al, 2008[9] (Operations management practices linked to adoption of ISO 14001: An empirical analysis of Spanish manufacturers [Spain])	Qinghua et al, 2008,[15] Firm-level correlates of emergent green supply chain management practices in the Chinese context [China]	A Comparative Analysis of Environmental Performance between Small and Medium Scale Indian Industries for Implementation of Green Supply Chain System [India]
Linkert Scale	**in %**	**6 (in %)**	**5 (in %)**	**5 (in %)**
Minimization of air emission	100	4.98 (83.0)	---	2.505 (50.1)
Minimization of solid waste	100	5.34 (89.0)	---	2.581 (51.6)
Improve production procedure/method for reducing waste/scrap	100	4.37 (72.8)	3.670 (73.4)	2.350 (47.0)
Recovery through sale of scrap and used/rejected material	100	3.98 (66.3)	3.480 (69.6)	1.740 (34.8)
Recovery through sale of excess capital equipment	100	---	3.340 (66.8)	1.699 (33.9)
Recovery through sale of old/obsolete equipment	100	4.01 (66.8)	3.430 (68.6)	1.686 (33.7)
Recycling of waste water	100	3.81 (63.5)	3.350 (67.0)	1.707 (34.1)
Optimization of man power resources in production process	100	3.99 (66.5)	---	2.690 (53.8)
Reduction of consumption for hazardous materials	100	4.26 (71.0)	3.570 (71.4)	2.380 (47.6)
Reduction in frequency of environmental accidents	100	4.58 (76.3)	3.650 (73.0)	2.035 (40.7)
It is observed that in above foreign industries, the impact of GSCM practices and implementation is higher. It is also observed that for all the modules, Indian industries score significantly less compared to the industries of the other countries. In India, the awareness regarding the implementation of GSCM practices is far from satisfactory. It is suggested that more emphasis should be given for GSCM practices for effective recognition and satisfactory implementations. The management of Indian industries, especially small and medium sized industries, should be more focused to the above modules for better implementation of GSCM practices.

7. CONCLUSION

A detailed study about the performance of the Indian SMEs is carried out and the scores of the Indian industries are compared with Spanish and Chinese counterparts. It is revealed from the comparison that most of the Indian enterprises are operating at a very low level in terms of implementing GSCM. In most of the modules, the scores of Indian enterprises are the least. It is evident from this analysis that the awareness regarding GSCM is exceptionally poor for the manufacturing operations in India. Therefore, a uphill task is ahead of the Indian SMEs to come to the international level. Pollutions due to the manufacturing processes mainly in the urban and suburban areas are mostly done by Indian SMEs. In different sectors, the SMEs has to incorporate the awareness programs related to the green procurement, green processing, green waste management at various levels. These lower level performances of the Indian SMEs have to be audited on regular basis under a common platform for alleviating them from the bottom most level. This paper identifies the pragmatic situations of Indian SMEs and their extreme level of non-performance towards GSCM implementation.

REFERENCES:

1. Breno Torres Santiago Nunes, Sergio Marques Junior, Rubens Eugenio Barreto Ramos, (2004). A theoretical approach for green supply chain, Federal University Do Rio Grande Do Norte Industrial Engineering Program.
2. Dianjun Qin, Xiaojing Guo (2011). ‘Research on implementation strategies of green supply chain management’. Applied Mechanics and Materials, 84-85, pp.757.
3. G. Kannan, P. Sasikumar and K. Devika (2010). ‘A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling’. Applied Mathematical Modelling, 34 (3), pp.655.

4. Gilbert, S. (2000) Greening supply chain: Enhancing competitiveness through green productivity: Tokyo: Asian Productivity Organization.

5. Gilbert, S. (2001) Greening Supply Chain: Enhancing Competitiveness through Green Productivity, Taipei, Taiwan, p 1.

6. Guillen-Gosalbez, G., Grossmann, I.E. (2009). Optimal design and planning of sustainable chemical supply chains under uncertainty. AIChE Journal 55(1), p 99.

7. Henriques, I. and P. Sadorsky (1999). The Relationship Between Environmental Commitment and Managerial Perceptions of Stakeholder Importance. Academy of Management Journal, 42 (1), p 87.

8. Horvath, A. (1999). Supply chain environmental assessment of the telecommunications sectors. International Symposium on Electronics & the Environment, San Francisco, California, p 146.

9. Javier Gonzalez – Benito, Oscar Gonzalez – Benito,(2008). Operations management practices linked to the adoption of ISO 14001: An empirical analysis of Spanish manufacturers. Int. J. Production Economics, 113, p 60.

10. K.C.Shang, C.S.Lu, S.Li (2010). ‘A taxonomy of green supply chain management capability among electronic related manufacturing firms in Taiwan’. Journal of environmental management, 91(5), pp.1218.

11. Kaushik Sridhar (2011). ‘The nature of environmental problems and environmental degradation’. International Journal of Business Excellence, 4(2), pp.202.

12. Ninlawan C., Seksan P., Tossapol K., and Pilada W. (2010). The Implementation of Green Supply Chain Management Practices in Electronics Industry. Proceedings of the International Conference of Engineers and Computer Scientists,Hong Kong, vol.III, March 17-19.

13. Prahinski, C., Kocabasoglu, C. (2006). Empirical research opportunities in reverse supply chain. Omega 34 (6), p 519.

14. Q. Lu, W. Li, B. Sundarakani, S. Cai, R. De Souza1, M. Go (2008). Green Supply Chain: How Does It Affect Current Supply Chain Practice? Proceedings of the 2008 IEEE IEEM, p 1128.

15. Qinghua Zhu, Joseph Sarkis, James J. Cordeiro, Kee-Hung Lai (2008). Firm-level correlates of green supply chain management practices in the Chinese context, Special Issue on Logistics: New perspectives and challenges, 36 (4), p 577.

16. Qinghua Zhu, Joseph Sarkis, Kee-hung Lai (2008) . Confirmation of a measurement model for green supply chain management practices implementation. Int. J. Production Economics 111, p 261.

17. Ramudhin A., Chaabane, A. (2010). Carbon market sensitive sustainable supply chain network design. International Journal of Management Science and Engineering Management, 5 (1), p 30.

18. Sarkis, J. (2003). A strategic decision making framework for green supply chain management. Journal of Cleaner Production 11 (4), p 397.

19. Sheu, J. B.; Chou, Y. H.; Hu, C. C. (2005). An integrated logistics operational model for green-supply chain management. Trans. Res., 41 (4), p 287.

20. Snir, E.M.(2001). Liability as a catalyst for product stewardship. Production and Operations Management 10 (2) p 190.
21. V.R. Pramod and D.K. Rawat (2010). ‘System modeling of telecom service sector supply chain: a SAP-LAP analysis’. International Journal of Business Excellence, 3 (1), pp.38.

22. Yasutaka Kainuma, Nobuhiko Tawara (2006). A multiple attribute utility theory approach to lean and green supply chain management. Int. J. Production Economics 101, p 99.

23. Zhu, Q., Sarkis, J. (2004). Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. Journal of Operations Management 22 (3), p 265.

24. Zhu, O.; Sarkis, J.; Geng, Y. (2005). ‘Green supply chain management in china: pressures, practices and performance. International Journal of Operations and Production Management, 25 (5), pp.449.

25. Zsidisin, G.A., Siferd, S.P. (2001). Environmental purchasing: A framework for theory development. European Journal of Purchasing and Supply Management 7 (1), p 61.