Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia@supagro.inra.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.
SHORT NOTE

EUSEIUS GALLICUS KREITER AND TIXIER (ACARI: PHYTOSEIIDAE) IS PRESENT IN FOUR MORE COUNTRIES IN EUROPE: BELGIUM, GERMANY, THE NETHERLANDS AND TURKEY

İsmail Döker1*, Johan Witters2, Juliette Pijnakker3, Cengiz Kazak1, Marie-Stéphane Tixier4 and Serge Kreiter4

(Received 16 January 2014; accepted 04 July 2014; published online 30 September 2014)

1Çukurova University Agricultural Faculty, Plant Protection Department, Acarology Lab., 01330 Adana/Turkey. idoker@cu.edu.tr (* Corresponding author), ckazak@cu.edu.tr

2Institute for Agricultural and Fisheries Research (ILVO), Plant-Crop Protection, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium. johan.witters@ilvo.vlaanderen.be

3Biobest Belgium Bv., Ilse Velden 18, 2260 Westerlo, Belgium. juliette.pijnakker@biobest.be

4Montpellier SupAgro, Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations INRA/IRD/CIRAD/Montpellier SupAgro, Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France. tixier@supagro.inra.fr, kreiter@supagro.inra.fr

ABSTRACT — Euseius gallicus is reported from four additional European countries: Belgium, Germany, the Netherlands and Turkey. It is recorded from 4 plant species belonging to 4 families (Convolvulaceae, Malvaceae, Rosaceae and Solanaceae). Measurements based on collected adult females are provided. Finally, comparisons and further observations of type specimens have shown some mistakes on leg chaetotaxy to the original description. The corrected chaetotactic formula is therefore provided.

KEYWORDS — new record; distribution; plants; morphometry; predatory mites

INTRODUCTION

The genus Euseius was defined by Wainstein in 1962 with the type species Seiulus finlandicus Oudemans, 1915 (Wainstein 1962). This genus is one of the largest genera in the sub-family Amblyseiinae (Acari: Mesostigmata) with more than 188 valid species (Moraes et al. 2004; Chant and McMurtry 2007; Tixier et al. 2009).

Euseius species are considered as specialized pollen feeders and generalist predators (Croft et al. 1997, McMurtry et al. 2013). Some of them, such as E. scutalis (Athias-Henriot, 1958) and E. stipulatus (Athias-Henriot, 1960) are of great importance for Integrated Pest Management (IPM) programs in Mediterranean citrus orchards (i.e. Kasap and Sekeroglu 2004; Papadoulis et al. 2009). Euseius gal-
licus Kreiter and Tixier 2009 was recently collected and described from France (Tixier et al. 2009). Some field experiments conducted in The Netherlands and France showed that it is one of the most important promising candidates for augmentative biological control of Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thripidae) and Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). In addition, E. gallicus have been available commercially in international markets since January 2014 (Pijnakker and Gui 2013).

This study presents (i) new records of E. gallicus from Belgium, Germany, the Netherlands, and Turkey and (ii) some corrections of some morphological features reported in the original description. Measurements (with the exception of German specimens) of adult females are also provided in order to assess intraspecific variations and to secure further diagnosis.

MATERIALS AND METHODS

The specimens were collected on 4 plant species belonging to 4 families. Phytoseiid mites were stored in 95% ethanol and were then cleared in lactophenol solution for 5 hours. The permanent slides were made using Hoyer’s medium and kept in a hot plate (50 °C) during two weeks.

The taxonomic system for the identification is based on Chant and McMurtry (2005; 2007). Setae nomenclature follows that proposed by Lindquist and Evans (1965) as adapted by Rowell et al. (1978) for the family Phytoseiidae. Measurements were performed using a Leica DM 2500 microscope with 400X magnification. All measurements are given in micrometers (µm). Because authors do not have permanent slides of German specimens, no measurements were done.

Table 1: Mean, minimum and maximum measurements of females of *Euseius gallicus* Kreiter and Tixier collected from Belgium, the Netherlands, Turkey and those reported in the original description.

Specimens from Belgium (n=2)	Specimens from the Netherlands (n=3)	Specimens from Turkey (n=3)	Original Description (France, Tixier et al. 2009)											
Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
DSL*	344	334	354	303	300	313	311	308	315	334	259	369		
DSW**	192	179	204	179	175	183	178	175	180	226	179	252		
j1	34	31	35	37	35	38	34	33	35	33	22	40		
j2	35	33	37	35	33	38	33	32	35	34	23	42		
j3	15	13	16	14	13	15	14	13	15	13	8	20		
j4	15	13	16	15	15	15	13	13	15	15	9	20		
j5	19	17	21	14	13	15	17	15	18	17	11	22		
j6	19	17	21	14	13	15	18	15	20	18	11	24		
j7	7	6	8	6	5	8	5	5	5	3	8			
j8	32	31	35	30	28	33	29	28	33	29	20	37		
j9	34	32	35	28	25	30	30	30	30	31	21	40		
j10	15	15	15	14	13	15	14	13	15	14	8	19		
j11	20	18	21	15	15	15	16	15	18	17	11	21		
j12	21	20	23	18	18	20	19	18	20	19	13	25		
j13	56	56	57	60	58	63	56	55	58	54	35	62		
j14	43	42	45	33	33	35	38	35	40	41	30	52		
j15	23	22	24	18	18	18	19	15	23	22	16	28		
j16	24	22	28	18	18	20	23	20	25	22	18	29		
j17	29	27	31	29	28	30	29	28	30	28	19	36		
j18	17	17	17	15	15	15	15	15	15	15	12	21		
j19	16	16	16	15	15	15	15	15	15	15	11	20		
j20	64	56	70	57	53	60	59	55	63	58	39	71		

* Dorsal shield length (DSL)
** Dorsal shield width (DSW)
RESULTS

New records for Belgium, Germany, the Netherlands and Turkey *Euseius gallicus* Kreiter and Tixier 2009, in Tixier et al.: 242. Type specimens Montpellier, France, on sour cherry *Prunus cerasus* L. (Rosaceae).

New records from Belgium 4 ♀♀, 2 ♂♂, 27.09.2011, Destelbergen (51°4’17” N, 3°49’1” E), on *Tilia cordata* (Malvaceae), Coll. J. Witters.

New records from Germany 10 ♀♀, 5 ♂♂, 27.10.2011, Hohenheim (48°42’43” N, 9°12’20” E), on *Lycium barbarum* L. (Solanaceae), Coll. H. Schneller. (K. M. Schrameyer, pers. com., 09.01.2014).

New records from The Netherlands 5 ♀♀, 3 ♂♂, 05.10.2011, Zevenhuizen (52°0’39” N, 4°34’48” E) on *Rosa* sp. cv. Red Naomi (Rosaceae), Coll. J. Pijnnakker and A. Leman.

New records from Turkey 5 ♀♀, 1 ♂, 02.07.2012, Boztepe, Trabzon province (40°59’50” N, 39°43’57” E), *Ipomea* sp. (Convolvulaceae), Coll. I. Döker.

World distribution France (Okassa et al. 2009; Tixier et al. 2009), Tunisia (Kreiter et al. 2010), Belgium, Germany, The Netherlands and Turkey (this study).

Remarks

Prior to this study, three species of *Euseius* namely *E. finlandicus*, *E. scutalis* and *E. stipulatus* were known from Turkey (Şekeroğlu 1984; Faraji et al. 2011). Only *E. finlandicus* was known in Belgium, Germany and The Netherlands (Miedema, 1987; Moraes et al. 2004).

Morphological characters and measurements of Belgian, Dutch and Turkish specimens of *E. gallicus* fit those of the original description (Table 1). Low variations in setal length were observed between the specimens herein reported. This comparison allows to ensure a right diagnosis especially for specimens collected far away from the location of type material. Comparing the present specimens with the type specimens we observed, there are some differences in the original description regarding leg chaetotaxy. We thus checked the type specimens (in the Montpellier SupAgro collection) and we observed two mistakes in the original description: the chaetotactic formula of Genu II and III should be changed as 1-2/0, 2/0-2 and 1-2/1, 2/0-1, respectively (7 setae on each genua and not 6 as indicated in the original description). In addition, the number of setae of genu and tibia IV should be 7 and 6, respectively (and not 6 and 5 as illustrated in the drawings of original description). However these corrections do not invalidate the species status of *E. gallicus*.

In addition to the species morphologically close to *E. gallicus* reported in the original description (*Euseius longirocotalis* (Liang and Ke, 1983), *Euseius amissibilis* (Meshkov, 1991) and *Euseius kirghisicus* (Kolodochka, 1979), it should be noted that it is also close to *Eusit us ucrainicus* (Kolodochka, 1979) especially in idiosomal setae but differs from this latter in the peritreme length and spermatheca shape. Furthermore, when *E. gallicus* was described the descriptors sent specimens to Dr. Kolodochka for him checking the new status of this new species in relation to those he already described, i.e. *E. kirghisicus* and *E. ucrainicus* (M.-S. Tixier, pers. Comm. 2014).

This study clearly shows that *E. gallicus* is widespread in Europe (including some northwestern and southern countries) on a wide range of plants. In general, these plants were colonized by *Tetranychus urticae*, *Frankliniella occidentalis* and *Trialeurodes vaporariorum*. Future studies should be conducted on biology and effectiveness of this predatory mite to control spider mites, thrips and whiteflies.

ACKNOWLEDGEMENTS

We thank Mr. Martial Douin (Montpellier SupAgro, UMR CBGP) for valuable comments on the manuscript. Mr. Bert Vierbergen (Netherlands Food and Consumer Product Authority) and Mr. K. M. Schrameyer (Landwirtschaftsamt, Heilbronn, Germany) for contact and collection of German specimens, respectively. We also thank the two reviewers for their advices to improve this contribution.
REFERENCES

Chant D.A., McMurtry J.A. 2005 — A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): part VI. The tribe Euseini n. tribe: subtribes Typhlodromalina n. subtribe, Euseina n. subtribe and Ricoseina n. Subtribe — Internat. J. Acarol., 31: 187-223. doi:10.1080/01647950508684424

Chant D.A., McMurtry J.A. 2007 — Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata) — West Bloomfield, MI: Indira Publishing House. pp. 220.

Croft B.A., Blackwood J.S., McMurtry J.A. 1997 — Classifying life-style types of phytoseiid mites: diagnostic traits — Exp. Appl. Acarol., 33: 247-260. doi:10.1023/B:APPA.0000038622.26584.82

Faraji F., Çobanoğlu S., Cakmak I. 2011 — A checklist and a key for the Phytoseiidae species of Turkey with two new species records (Acari: Mesostigmata) — Internat. J. Acarol., 37: 221-243. doi:10.1080/01647954.2011.558851

Kasap İ., Şekeroğlu E. 2004 — Life history of Euseius scutatus feeding on citrus red mite Panonychus citri at various temperatures — BioControl, 49: 645-654.

Kreiter S., Tixier M.-S., Sahraoui H., Grissa K.L., Chabaan B.S., Chatti A., Chermiti B., Khoualdia O., Ksantini M. 2010 — Phytoseiid mites (Acari: Mesostigmata) from Tunisia: Catalogue, biogeography and key for identification — Tunis. J. Plant Protec., 5: 151-178.

Lindquist E.E., Evans G.O. 1965 — Taxonomic concepts in Ascidiae with modified setal nomenclature for idiosoma of Gamassina (Acarina: Mesostigmata) — Mem. Entomol. Soc. Can., 47:1-59.

McMurtry J.A., De Moraes G.J., Sourasso N.F. 2013 — Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies — Syst. Appl. Acarol., 18(4): 297-320.

Miedema, E. 1987 — Survey of phytoseiid mites (Acari: Phytoseiidae) in orchards and surrounding vegetation of northwestern Europe — Neth. J. Plant Pathol., 93 Suppl. 2: 1-64. doi:10.1007/BF01984462

Moraes G.J., McMurtry J.A., Denmark H.A., Campos C.B. 2004 — A revised catalog of the mite family Phytoseiidae — Zootaxa, 434: 1-949.

Okassa M., Tixier M.-S., Cheval B., Kreiter S. 2009 — Molecular and morphological evidence for a new species status within the genus Euseius (Acari: Phytoseiidae) — Can. J. Zool., 87: 689-698. doi:10.1139/Z09-057

Oudemans A.C. 1915 — Acarologische Aanteekeningen LVI — Entomol. Bericht., 4: 180-188.

Papadoulis G.Th., Emmanouel N.G., Kapaxidi E.V. 2009 — Phytoseiidae of Greece and Cyprus (Acari: Mesostigmata) — West Bloomfield, MI: Indira Publishing House. pp 200.

Pijnacker J., Gui S. 2013 — Dyna-Mite® A revolutionary predatory mite strategy for roses — Web Access: [21 October 2013], Available from: http://www.biobest.be/nieuws/289/3/0/

Rowell H.J., Chant D.A., Hansell R.I.C. 1978 — The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae (Acarina: Mesostigmata) — Can. Entomol., 110: 859-876. doi:10.4039/Ent110859-8

Şekeroğlu E. 1984 — Phytoseiid mites (Acarina: Mesostigmata) of Southern Anatolia, their biology, and effectiveness as a biological control agent on strawberry plant — Doğa, 8: 320-336 (in Turkish with English summary).

Tixier M.-S., Kreiter S., Okassa M., Cheval B. 2009 — A new species of the genus Euseius Wainstein (Acari: Phytoseiidae) from France — J. Nat. Hist., 44: 241-254. doi:10.1080/00222930903383529

Wainstein B.A. 1962 — Some new predatory mites of the family Phytoseiidae (Parasitiformes) of the USSR fauna — Entomol. Oboz., 41: 230-240 (in Russian); Entomol. Rev., 41: 139-146 (English translation).

COPYRIGHT

Döker İ. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.