Preliminary work: WILDFIRE MODELING: DESIGNING A MARKET TO RESTORE ASSETS (with naive assumptions and understanding)

A thesis proposal submitted in partial satisfaction of the requirement for the degree of MASTER OF SCIENCE in ELECTRICAL AND COMPUTER ENGINEERING by Ramandeep Kaur Bagri

March 2022

A Master’s thesis proposal of Ramandeep Kaur Bagri is ...

______________________________
Professor Yihsu Chen, Chair

______________________________
Professor –

______________________________
Professor –

______________________________
Peter Biehl
Vice Provost and Dean of Graduate Studies
This page is intentionally left blank.
# Contents

Table of Contents 2  
List of Figures 5  
List of Tables 6  
Acknowledgements 8  
Abstract 10  

1 Introduction 12  
1.1 Wildfire and Climate Change .......................... 12  
1.2 Wildfire and Electrical Corporations .................. 13  
1.3 Significance of the Proposal ........................... 16  
1.4 Expected Outcomes from the Proposal .................. 17  
1.5 Organization of the thesis ............................. 18  

2 Literature Review 19  
2.1 Electrical Corporations Causing Wildfires ............... 19  
2.1.1 Wildfires Causing due to Vegetation ................. 20  
2.1.2 Wildfires Causing due Weak Infrastructure or Failed Appratus 21
2.1.3 Wildfires Causing due to Conductor Clashing/Slap  
2.1.4 Wildfires Causing due to Overloading line  
2.1.5 Wildfires Causing due to Harmonics in the system  
2.2 Determining Potential Cause for Wildfires  
2.3 Prioritizing line flows for Wildfire Modeling  

3 Use Data-Driven Technique to Determine that Wildfire Risk is based on  
the Location  
3.1 Motivation of Using Data  
3.2 About Data  
3.3 Determining the Risk Dependent on the Location  
3.4 Proposed Risk Model Discussion  
3.4.1 Wildfire Risk Modeling: Proposed Approach to Determine Risk  
3.5 Conclusion  

4 Uncovering Hidden Patterns of PSPS Data and Income of the Counties  
based on the Location  
4.1 Motivation of Using PSPS Data  
4.2 Overview of the PSPS Data - in process  
4.3 Results and, Conclusion  

5 Wildfire Risk Based Locational Marginal Pricing  
5.1 Motivation behind using Risk-based SCED Model  
5.2 Traditional Economic Dispatch Problem  
5.3 Wildfire Risk-Based EDC Decomposition  
5.3.1 Wildfire Risk-Based LMP Component  
5.4 Results  

3
List of Figures

1.1 Overall, idea of the project, Wildfire and Restoring Assets . . . . . . . 17

3.1 Each data-point is the wildfire incident data, Counties, CA, USA . . . 31

3.2 Wildfire data for the CA, counties . . . . . . . . . . . . . . . . . . . 32

4.1 Outage PSPS Data (Date: 10/11/21) . . . . . . . . . . . . . . . . . . . 37

5.1 The PJM 5-bus system [1] . . . . . . . . . . . . . . . . . . . . . . . . . 50
List of Tables

3.1 Average Data of Acres Burn/Year, California Results [2] . . . . . . . . 28
3.2 A Statistical Data, Counties, California, Results . . . . . . . . . . . . . 30
3.3 Define: Vegetation Risk and Color Associated to it, California Results . 33
4.1 Total number of customers impacted of all utilities in CA, USA Results 37
5.1 Non-Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 At normal conditions, generation price and line flows for each unit for
\[ FOC_l = 1 \] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 At \[ FOC_l = 0.75 \] . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Line flows at at half of the capacity, generation price and line flows for
each unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Shut down situation, when line flows are 25%, no optimal solution . . 52
5.7 Line “de” 50 percent of it’s thermal limit . . . . . . . . . . . . . . . . . 53
5.8 Line “de” 25 percent of it’s thermal limit . . . . . . . . . . . . . . . . 53
5.9 Loss of line \[ ab \] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Loss of line \[ ae \] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.11 Loss of line \[ bc \] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.12 Loss of line \[ cd \] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.13 Loss of line \( de \) ................................................................. 55

5.14 Summarizing the results for observing the unit prices, under the condition of line flows at 50% of their capacity ................................................. 55

5.15 Summarizing the results for observing the line flows, under the condition of line flows at 50% of their capacity ................................................. 55

5.16 Summarizing the results for observing the line flows, under the condition of line flows at 50% of their capacity ................................................. 56

5.17 1MW load increase at load bus \( C \) (301MW) ........................................... 56

5.18 1MW load increase at load bus \( d \) (401MW) ........................................... 56

5.19 1MW load increase at load bus \( B \) (301MW), when line flows at 75% of it’s capacity ................................................................. 57

5.20 1MW load increase at load bus \( B \) (301MW), when line flows at 75% of it’s capacity ................................................................. 57

5.21 Increasing the 1MW load bus (D 401) when lines are flowing at 75% of it’s capacity ................................................................. 57

5.22 Loss of line ”ae” and lines are flowing at 50% of it’s capacity ........... 58

5.23 Increase in 1MW demand at bus \( B \) while all line flows at their 50%,

\[ FOC_t = 0.50 \] ................................................................. 58
Acknowledgement

I would like to take a moment to express my deep appreciation to everyone who contributed to this research project. Although it is not yet complete, this work marks a significant milestone in our journey toward a greater understanding of the subject matter.

I am especially grateful to my supervisor, Prof Yihsu Chen, for his invaluable guidance and support throughout this endeavor. I fully acknowledge that the partial ideas presented in the proposal are his, and his insights and expertise have been instrumental in shaping the direction of this research.

I would also like to acknowledge the contributions of my peers particularly Shourya Bose, who provided assistance and encouragement along the way. I would also like to acknowledge the support of my labmates Siyu, and Fargol for their feedback which enriched the quality of this work and have been crucial in overcoming challenges.

Furthermore, I would like to express my gratitude to the California Department of Forestry and Fire protection for making the Cal-Fire data publicaly available. I would also like to extend my appreciation to Shelby from the California Public Utilities Commission for enabling the data availability to the public for Public Safety Power Shutoff events.

Lastly, I want to express my heartfelt thanks to Baskin Engineering at UCSC for providing financial support as Teaching Assistant during my studies. I also want to
thank the administrative and technical staff at baskin for their exceptional assistance.

Although this work remains incomplete, I am confident that it will pave the way for future exploration and development in this field. To my family and everyone involved, I extend my sincerest appreciation for their unwavering support and dedication.
Abstract of the Thesis

Wildfire Modeling: Designing a Market to Restore Assets

by

Ramandeep Bagri, ECE, UCSC, 2022

In the past decade, summer wildfires have become the norm in California (CA), United States of America (USA). These wildfires are caused due to variety of reasons. The state collects wildfire funds to help the impacted customers. However, the funds are eligible only under certain conditions and are collected uniformly throughout California. Therefore, the overall idea of this project is to look for quantitative results on how electrical corporations cause wildfires and how they can help to collect the wildfire funds or charge fairly to the customers to maximize the social impact.

The research project aims to propose the implication of wildfire risk associated with vegetation, and due to power lines and incorporate that in dollars. Therefore, the project helps to solves the problem of collecting wildfire funds associated to each location and incorporate with energy prices to charge their customers according to their wildfire risk related to the location to maximize the social surplus for the society.

The first section of the thesis shows the wildfire analysis and determines the risk based on each location (project focus is at California and its counties). The proposal will use the previous year’s data to forecast the wildfire risk as the next step to solve
the wildfire modeling. Electrical corporations are also taking actions to prevent the wildfires from their system using Public Safety and Power Shutoffs (PSPS) events. The primary purpose of the PSPS event is to de-energize the selected circuits depending on weather data. We are focusing on the PSPS events data to see if the frequency of PSPS events targets the low-income areas in order to avoid customer exploitation due to unrevealed characterization of the location. Therefore, we are using a data-driven approach to maximize the social surplus for the customers and reveal the impact of PSPS strategy on the customers.

The second part of the thesis determines the variable wildfire risk associated with each location using an energy pricing strategy that is the location marginal price method. These findings suggest that designing wildfire risk premium using a Risk-based Economic Dispatch and Location based marginal pricing method gives electrical corporations information to operate the developed methodology. The goal is to collect the fair wildfire funds based on the customers living at high-risk areas or living at low-risk areas instead of charging flat charges to all customers almost around $0.00580/kWh throughout CA every month.

The thesis findings will help to calculate the risk premium involving wildfire risk associated with the location and incorporate the risk into pricing. The research of this submitted proposal provides the potential contribution towards detecting the utilities associated wildfire risk in the power lines, which can prevent wildfires by controlling the line flows of the system. Ultimately, this proposal’s goal is a social benefit to save money for the electrical corporations and their customers in California, who pay flat charges for ’Wildfire Fund/charges” each month $0.00580/kWh. Therefore, this proposal will propose methods to collect wildfire funds with maximum customer surplus for future generations.
Chapter 1

Introduction

1.1 Wildfire and Climate Change

Wildfires have become the priority of electrical corporations (Follow: Appendix: Part A) in recent years because of their destruction and damage to their own system, society, and life losses. Therefore, working to improve the wildfire modeling and charges for customers is the goal for the study.

As some part of the literature shows, wildfires are much more likely because of climate change, due to warming temperatures [3], [4], [5] [6] [7], [8] [9].

Moreover, addressing the above change in climate is not easy to resolve. The only reason is that climate change is a process of layers in each sector: production, electricity, polymers, chemicals, and many other industries collectively responsible for climate change. In the electricity market, addressing climate change means addressing the cause for electrical corporations impacting due to climate change. One significant impact is extreme events such as high winds or scorching weather. Such extreme events can ignite the wildfire due to the cause of electrical corporations. Therefore, this research addresses wildfire and its issues related to electrical corporations to address climate
change problems.

1.2 Wildfire and Electrical Corporations

Numerous factors ignite the wildfires, and this project only involves the cause of wildfire due to electrical corporations. As discussed earlier, one of the significant factors that lead to wildfire is extreme weather conditions from climate change, for instance, high winds [10]. High winds speeds, [11] with “gusts of up to 140km/h measured at the Potrero weather station” [12] have the potential to cause conductor slap or breakdown or failing power line equipments [13], [14], [15]. Due to dry vegetation, and low moisture content on the ground can cause fire immediately and leads to wildfires. Besides climate change, many other factors ignite a wildfire. In the past, the wildfires are due to “lighting, human activity, debris burning, campfires, vehicle sparks, dry vegetation, electrical corporations” [10], [14] exotic grasses [16]. 5% of the wildfires are ignited by utilities, that is power lines [10] and were devastating due to which wildfire became a priority for the electrical corporations. Therefore this research will evaluate the destruction caused by CA wildfires using Cal Fire (Cal Fire means "California Wildfires") data [2], regardless of a cause, because the data does not provide the information of cause, which makes the work challenging. Here, the assumption is that wildfire destruction is the same no matter its cause. Therefore, here the project’s focus is to look at wildfire data and address how to prevent such destruction at a high level.

One of the significant examples of impacting electrical corporations is the destruction caused by 2017 to 2018 North California wildfires that covered 150,000 acres of land and further destroyed 13,972 residences, 528 commercial structures, and 4293 other buildings, and 86 lives lost [17]. Another instance is the destruction and damage caused by PG&E and all costs together was $30 billion, and they declared bankruptcy
The main factors behind PG&E bankruptcy were wildfires, which are ignited by their system. There is no doubt that the destruction caused by PG&E was massive. Along with that, negatively impacting society, this destruction also burned their own assets (distribution poles/lines or equipment’s damage) and increase the damage cost.

Furthermore, to resolve the impacting electrical corporations situation during wildfires situation, California legislation passed three bills as a part of California Wildfire Funds at the legislation level: AB1513, AB1054 (amends from AB1513), and AB111. Under Bill AB1054, California state issues, allows the Public Utility Commission in California (CPUC) to authorize the rate-making and rule-making for electrical corporation and allows them (electrical corporation) to request financing for the impacting customers for their assets at commission (CPUC). Also, it allows the authorities to differentiate the electrical corporations requests for finance needs at their customer level or their own cost. As well, this bill allows the authorities to do their rule-making to collect the bonds of the issue to finance the electrical corporations under CPUC.

In addition, the AB1054 Bill creates the California Wildfire Safety Advisory Board to help the electrical corporations and provide recommendations on their mitigation plans for issue wildfire under the authorization of Public Utilities Commission. Meanwhile, AB1054 allows the Department of Water Resources (DWR) to authorize the financial state-issued bonds and also will enable them to recover the bonds as well. Further, Bill establishes the Department of Water Resources Charge Fund and makes DWR responsible for issuing the wildfire bonds for electrical corporations and recovering those costs.

Hence, DWR initially capitalized the California Wildfire Fund from short term $2Billion loan from the state of California’s Surplus Money Investment Fund called “SMIF”, which is the fund within the state’s pooled money investment account. Along with IOU’s
(only PG&E, SDG&E, SCE) contributions [19], [20] along with SMIF loan [20], the total was $10.1 Billion and further according to the order’s of CPUC, the fund was collectible from the Jan 2021 [21].

Wildfire Fund at state-level supports only eligible claims reimbursement [22], [23]. Additionally, the California Wildfire Fund is available for electrical corporations for Wildfire eligible claims [24]. Those eligible claims are 1) When IOU’s (Independent owned utilities) equipment or infrastructure ignites the fire [22] 2) Capitalized fund during wildfires to the electrical corporations, the responsibility of the recovery is on electrical corporations, and ratepayers [24]. In this process, DWR is responsible for [22]:

1. Recover the wildfire given fund from ratepayers

2. Handle the responsibility of Issuing and recovering the paid $10,500,000,000 in bond so far.

3. Keep updating the financial records with CPUC and any excess or deficiency in the collection and maintain revenue requirement approximately $902,000,000 per year.

4. Also, if there is any deficiency in the amount, then DWR has to offer should write to CPUC and CPUC likely return in 30 days about increasing the charges [22].

Therefore, DWR issued the allowances needed to the utilities to provide financial support. So far, regardless of how much is allocated to each electrical corporation. DWR is collecting $21 Billion as in-claim paying capacity, which is split between IOU’s contribution and their ratepayers [25]. As DWR is responsible for charging ratepayers, they begin charging ratepayers in their territory IOU service areas the Wildfire “non-bypassable Charge of $5.80/MWh ($0.00580/kWh) in 2020, beginning October 1, 2020.
In addition, $5.79/MWh ($0.00579/kWh) in 2021, these rates are calculated under the reasoning to collect revenue for the 2021 Revenue Requirement Period, $902.4 million as required by the Act and Decision 19 − 10 − 056” [25].

1.3 Significance of the Proposal

As policies and regulations show a need for wildfire funds and collecting non-bypassable charges from all customers, the DWR strategy is to collect partial funds from ratepayers. However, this thesis proposes an alternative to their strategy to collect revenue for wildfires by charging all customers equally non-bypassable charges. The charging rates here are ineffective and insufficient for practice. This thesis proposal agrees as legislature comments on bill [18]

“With an increased risk of catastrophic wildfires, the electrical corporations’ exposure to financial liability resulting from wildfires that were caused by equipment has created increased costs to ratepayers”.

Therefore this project will fill the gap to get the insights from Cal Fire data about the structure of wildfires and how likely wildfire is related to each location. This thesis will provide a solution by charging customers according to their location and incorporating those wildfire charges in energy prices as energy prices are based on location marginal price.

This problem is solved by CA ISO, in general. Below, figure 1.1 explains the project’s overall idea from basics to modeling and its impact. The project focus is only on those wildfires which electrical corporations ignite. In generalizing the damage from wildfires, the project uses Cal Fire data to measure the damage to the public, as the damage to the public is massive. The DWR issues the bonds to electrical corporations to support
them financially to help their impacting customers. Further, DWR is also responsible for recovering the funds and charging all electrical corporation ratepayers uniformly, regardless of their wildfire risk location. This project contributes to defining the risk based on the site and assessing the method that allows DWR to charge the ratepayers according to the wildfire risk accordingly, under the California Public Utilities Commission (CPUC) supervision.

**Figure 1.1: Overall, idea of the project, Wildfire and Restoring Assets**

### 1.4 Expected Outcomes from the Proposal

Overall, this thesis will meet the social goals by saving money for the ’s customers in California, who pay flat charges for ‘Wildfire Fund’ each month $0.00580/kWh, regardless of their location. This work will also potentially contribute to determining wildfire risk associated with the power lines to avoid future wildfires from utilities.
1.5 Organization of the thesis

The remainder organization of the proposal is as follows. Chapter 2 presents the literature review of the wildfires due to utilities and their impact. Next, Chapter 3 focuses on the Cal fire data and insights into wildfires structure based on locations. The Chapter 4 describes the PSPS events relation to the location based on their income. Then, Chapter 5 describes the proposed method for calculation location-based charges using location marginal pricing. Future work for the wildfire modeling related to IOU’s interest is discusses briefly in Chapter 6.
Chapter 2

Literature Review

2.1 Electrical Corporations Causing Wildfires

Electric utilities can cause a wildfire [10], [16], [26] and one of the significant factors that lead to wildfire is extreme weather conditions, for instance, high winds [10]. High winds are most likely to cause power lines faults or conductor clashing/slap [26] or vegetation interference leading to distribution system faults [26]. There are three cases when the line fault occurs: most safe is no arc, just a sustained or momentary fault [27] in the power lines, second is the arc, and third is conductor clashing/slap or breakdown. Energized power line breakdown can cause direct arc ignition [26]. During line faults, there is the release of high current and leads to molten metal particles, burning embers, burning fluids [26] which can most likely ignite the fire [26], [15]. Due to dry grassland, low moisture content on the ground, ignition is immediate, leading to wildfires. The studies in literature explain the following wildfire risks: vegetation issues [16], vegetation uncertainty (related to a tree falling on power lines) [12], conductor clashing during extreme weather conditions [12], the impact of the weak infrastructure of Distribution and Transmission Network [12], congestion of transmission power lines [26]
and excessive heating in the system’s equipment due to the harmonics and this problem is more frequently seen in the distribution network [28], [15]. In next few sections, we will overview the cause of wildfires from electrical corporations point of view.

### 2.1.1 Wildfires Causing due to Vegetation

In past studies have shown [12] how the electric power systems equipment, parts impact during these high winds or weather uncertainty [29], [30], [31]. Further, the impact of these events glimpse during catastrophic losses that lead to arcing or ejection of high-pressure heat loss that triggers the fire or ignites the fuel, which is often exotic grasses [16], [32], [30] and sparks the fire [12], [32], [33], [34], [13], [26], [15]. Such catastrophic fires occur when the power line conductor and other objects are in contact, here objects could be anything fallen on power lines, for instance, vegetation. Moreover, the vegetation, also known as “Tree-related” causes have been igniting the fires in two ways. First is when vegetation contacts the conductor directly and causes high impedance fault to ground [12]. Secondly, vegetation falling on power lines or supporting infrastructure causes the conductors to come in contact with each other causing phase-to-phase fault or causing the breakdown of the phase and resulting in ground faults. Sparks or flames produced from the conductor or failed equipment leads to the fire [15]. There are some instances of wildfires due to vegetation and those instances are Rice fire, California, in 2007 caused by 12kV conductor operated by San Diego Gas and Electric Company (SDG&E), which destroyed 38,400ha and destroyed 206 homes. Another instance is Beechworth-Mudgegonga fire, Victoria Australia from 2009 that caused 34,000ha area burned and two fatalities followed by loss of 38 homes [12]. Thus, vegetation accidents during extreme weather conditions impact electric power systems which further amplify the situation from sparks to wildfires [34], [35], [15].
2.1.2 Wildfires Causing due Weak Infrastructure or Failed Apparatus

The literature also describes other reasons which causes wildfires involving electrical corporations lines and those reasons are: weak infrastructure, and conductor clashing to leading several wildfires [15], [15]. Those wildfires are either due to failure of electrical infrastructure, conductor, or other failed equipment [13], [26] whose life is ending, coming in contact with the live conductor that causing sparks or flames during extreme weather conditions. Among all, the most common cause seen in the literature is drowned conductors [13], [15]. Such causes are from weak infrastructure that occurred in the past are Kilometre East Fire, Victoria Australia 2009, Guejito fire, California 2007, Malibu California 2007, and Coleraine Victoria Australia 2009, which collectively burned 207, 265 ha, lost 1242 homes and lost, 119 lives [12], [15], [14]. Therefore, the weak infrastructure of electrical corporations has caused an enormous loss to society.

2.1.3 Wildfires Causing due to Conductor Clashing/Slap

Conductor clash/slап is the defined in literature as [26]

“two conductors make contact or flashover causing a phase-to-phase fault”

Furthermore, the extreme uncertainties such as bad weather conditions can cause conductor clashing which has been seen in past literature [15], [14] causing the fire. The Witch fire, California in 2007 occurred due to two conductor clash on 69kV transmission line and then fires combined due to conductor clashing. The conductor melting or high flames led to Guejito fire and “cause massive loss of burn 80,000 ha and 1141 homes, and two fatalities” [12]. Another such conductor clashes example is the Pomborneit-Weerite fire Victoria Australia 2009, where the arcing was between 66kV
and 22kV [12]. Therefore extreme weather uncertainties and power line flow at their capacity have proven more dangerous and pose the risk of wildfire much more significance with conductor clashing/their sparks and melting fuels. This literature assumes that power line flows can likely exploit the situation under mild or extreme weather conditions and lead to spark/conductor melting into a wildfire.

### 2.1.4 Wildfires Causing due to Overloading line

As past studies [26] have shown that overload and line congestion have direct relationship. Recent studies proved that the overloading line have high probability of causing arc and line flow under line limit has less probability of occurring an arc [26]. Author also concludes that congestion causes thermal stress on power lines which increases the probability of occurrence fault in the distribution lines [26]. Our work is based on their suggested research goals to mitigate the arc from the line congestion [26].

### 2.1.5 Wildfires Causing due to Harmonics in the system

Electric power lines usually have high currents flowing through them. It is well known from previous studies that arcing may be caused due to damaged power lines carrying high currents, as well as transformers and power machinery [36] [37]. Arcs may have different lengths (long and short arcs), and they may also have nonlinear behaviour in terms of their intensity, with respect of the underlying line flow. Due to undesirable harmonics created in the power systems from arcing, it is of paramount importance to model its negative effects, as discussed in [36]. Such arcs can reach an arc up to 2240°C [38]. As discussed earlier arc leads to wildfires in high gust winds at low moisture content [26].
2.2 Determining Potential Cause for Wildfires

As literature shows all different factors that can cause sparking via molten metals, arcs in the power lines or equipment failure or catastrophic weather conditions. Those different factors are dry vegetation, sparking electrical components, sparking components, electrical line components failures/overheating due to harmonics in the system [28], weak infrastructure, overloading lines causing sparks, fuel moisture content [26], air temperature [26], high winds [26] can cause fire and leads to more dangerous wildfire. Given the vast multitude of reasons why wildfires may be caused [14], we need to focus on a the purpose of modeling. Since power lines are highly energized when operational, any fault or catastrophic damage to the lines can cause significant sparking, leading to ignition of dried vegetation and shrubbery. As discussed earlier, the high current realise from energized line causeing phase to ground fault and causing the arcs or sparks leads to wildfire with favoured weather conditions and this same reasoning is also noticed in [38], [15], [15].

From the above, we can conclude that a highly energized line, upon breaking or suffering a catastrophic failure can ignite nearby vegetation with low moisture content and under high winds leads to wildfires. However, there is a lack of sufficient literature which specifically provides a quantitative relation between line flows and wildfire intensity. Though recent study [26] proved that the congestion and probability of arc occurrence corelation exists. Therefore, our proposed work uses the another approach model that use thermal limits to relaease the congestion and shows guidance to our proposed work. Our work is the mitigated solution controlling line flows which assume are directly related to the wildfire arc ignition and protect the system at high level.

Hence, as stated above, we assume throughout the rest of the project that higher line flows can lead to more intense wildfires (i.e. wildfire intensity and damage caused due
to it are increasing functions of line flows). This assumption is borne well by observing available data.

### 2.3 Prioritizing line flows for Wildfire Modeling

The past studies provide the directions for our work for wildfire modeling. In this thesis prioritizing the two significant causes, and those are 1) vegetation power 2) lines working over their thermal limits under congestion.

As the literature shows that during extreme weather conditions such arcs can ignite the wildfire [13] and high gust winds can ignite the dry vegetation and fuel the fire to wildfires [38]. As a result, we find support for the hypothesis that equation 2.1 can help us in wildfire modeling. We cannot control the environment, but by controlling the line flows according to forced conditions, we can help to reduce the uncertainty involved in the situation to catch wildfires and this is also supported in literature [26].

We are considering Forced Outage Constraint (FOC) in relation to line flows, to control the line flow. FOC is a parameter which can be controlled by operator to set the maximum line flow to be FOC% of the default maximum line flow. The operator will make such a choice depending on the risk from setting a certain value of FOC. Thus, we assume that risk of a line is a function of FOC of that line.

Our work is focused on defining the wildfire risk used in this chapter and its correlation to FOC of power lines. The defined wildfire risk WR_{t,x}, for a time period t and location x is dependent on the vegetation of the location. We define wildfire risk as follows.

**Wildfire risk:** Wildfire risk is a numerical quantity, denoted by WR_{t,x}, which varies temporally (time denoted by t) as well as spatially (geographical location denoted by x), such that probability of wildfire at a given location and time is an increasing function of
risk. Most likely, as a wildfire is uncertain, the pattern from previous wildfire events in each year might not be helpful. As our work is more focused on the real-time incoming data, time series forecasting might not accurately predict. In contrast, literature shows that deep learning is the faster approach in real-time for predicting the vegetation color.

Last but not least, as our work is more focused on power lines and wildfire risk \((WR_{t,x})\) is associated to location \((x)\). The past studies [26] shows that our assumption is most likely true that the wildfire risk is directly proportional to the line flows and can be written as:

\[
WR_{t,x} = FOC_{x,t}
\]  \hspace{1cm} (2.1)

Hence, the line flows are controllable using risk at each node or associated to the house risk or location based risk. The calculation of \(FOC\) for each location is the scope of the work.
Chapter 3

Use Data-Driven Technique to Determine that Wildfire Risk is based on the Location

3.1 Motivation of Using Data

Wildfire data is available in each country where wildfire events occurred recently and interested, follow the references for wildfire data at international level [39] [40], national level [41], [42], [43] and state level, USA [2] for future references. As literature shows, wildfires cost in dollars was approximately $10.1 Billion, which the Department of Water Resources invested/paid to IOU [20]. Other wildfires funds are collected to help the future wildfires. As the climate changes, wildfires are inevitable, especially in scorching weather, and the risk associated with those fires increases. It also adds layers of definite risk with human errors (Using loosen/fatigued conductors or exhausting the power lines, i.e., working over their thermal limits). Therefore, understanding the wildfire data from the decade will help minimize human errors and reduce their risk.
In past studies, the data has given scientific ways to carry out numerical weather analysis, and fire prediction for wildfire modeling [44]. Their data collection is captured from “Internet sources, input from aerial photographs and sensors” [44] and the “system is controlled by non-Gaussian ensemble filter capable of assimilating out-of-order data” [44]. As past studies using data were successful example is the motivation for using the Cal fire data [2].

3.2 About Data

The Cal Fire means ”California Wildfires. The Cal Fire data is available at the Cal fire website [2]. This work uses data available from the period 2013 to 2022. As past studies have shown, there are 5% of the wildfires are ignited by utilities, that is, power lines [10] in California, USA. This data provides an overall idea of the destruction of wildfires in California from the past decade. Data does not have causes defined, due to which it is challenging to find what is the exact cause of each wildfire event. Overall, this data will help to generalize the idea of the structure of the wildfire’s destruction, loss, and damage in California. Also, understanding the complete Cal Fire structure will evaluate the situation better for wildfire modeling for risk associated to each location. Therefore, the purpose of the data exploration is to understand the structure of California “Cal Fire” data and to find the risk associated to each location [2]. For data processing follow (Appendix, Part B) details.

3.3 Determining the Risk Dependent on the Location

Determining the data-driven risk is done by using the preliminary data exploration techniques. As shown in past studies, [11], that house location and vegetation around de-
termines the probability of risk of getting that house on fire [11]. In addition, we want to generalize the risk based on the location, power lines, and real-time vegetation data. The risk during wildfires events increases due to weather uncertainty and leads to fire or sparks or arcs. These elements (fire or sparks or arcs), as literature supports, lead to fire and further escalate to wildfire. Wildfire spreads more quickly than any burning fire at equipment failure or sparks at power lines or drowned conductors conditions. This fire spreading across the land is measured by each wildfire event (in acres). The data shown in table 3.1 shows the average number of acres burned during wildfire events each year in the past decade. This data reflects that 2019 was the safest year compared to others in the past decade, with average acres burned being little more than 1k, and the following year 2020 had the highest acres of land burned, around 10k acres per event, and 2020 became a most devastating year in wildfires history.

Table 3.1: Average Data of Acres Burn/Year, California Results [2]

| Year | Acres Burned (average data of events/year) |
|------|------------------------------------------|
| 2013 | 3524.38                                  |
| 2014 | 3910.34                                  |
| 2015 | 4176.38                                  |
| 2016 | 2918.75                                  |
| 2017 | 3392.26                                  |
| 2018 | 5184.84                                  |
| 2019 | 1093.64                                  |
| 2020 | 10418.52                                 |
| 2021 | 2107.41                                  |

The rough approximation from the table 3.1 data shows that a minimum of 1k of acres burning during wildfire events can be commonly expected and prepared accordingly if fire/ wildfire ignites. The vegetation dryness or moisture content is different in the soil as literature describes that wildfire is fueled by dry vegetation. Moisture in the vegetation depends on the location. If the location is Riverside, as table 3.2 shows the
data, the vegetation will likely be almost dry due to hot weather and low moisture and have a maximum number of wildfire events in the county. Imperial is next to Riverside; however, the number of wildfire events in the Imperial is minimum among other 57 counties and sub areas of the counties shown in data in table 3.2.

Interestingly, in general, “California has a land area of 155,812.8 square miles or 99720192 acres. It is the third-largest state by area.” [45], and over almost a decade, total acres burned 233098563 acres which is 42.87% of entire California. The wildfire incidents in California, which are the base for each county’s modeling, are visualized in figure 3.1. It represents all 57 counties (figure 3.1, data), except San Francisco county, which means that missing data doesn’t exactly mean it’s a safe county. Still, it’s a safe county because there is no vegetation to ignite the fire and most of its electrical work is underground. Review of Wildfire Management Techniques—Part I: Causes, Prevention, Detection, Suppression, and Data Analytics

The wildfire incidents which are the base for the modeling in each county is visualized in figure 3.1 and map visualization in figure 3.2.

During a wildfire, the destruction and damage to land are shown in figure 3.3, representing the color code as the range for the burned area (in acres). Some counties are easy to visualize, such as light green, where the damage from average wildfire is 10k acres, followed by Fresno and San Diego. Approximate the estimate using past data shown in table 3.2. Average of the acre burned, each wildfire incident burn at-least 1k acres of the land at minimum in all 57 counties. Therefore, the exploration technique used for Cal Fire data demonstrates that Wildfire risk is associated with the specific location. Due to this, our work argues that DWR wildfire charges are insufficient and ineffective for practical use. This shows the need to calculate the wildfire risk associated with the location in dollars.
Table 3.2: A Statistical Data, Counties, California, Results

| County Name       | Frequency | Percentage | Cum. Percentage | Total acres burned | mean (Total acres burned at each incident) |
|-------------------|-----------|------------|-----------------|--------------------|--------------------------------------------|
| Riverside         | 9576      | 9.1        | 9.1             | 4929256            | 520.86                                     |
| Fresno            | 6464      | 6.1        | 15.2            | 25126578           | 387.16                                     |
| San diego         | 5544      | 5.3        | 20.5            | 4164720            | 766.70                                     |
| Butte             | 5112      | 4.9        | 25.4            | 13724424          | 2684.75                                    |
| San luis obispo   | 4836      | 4.6        | 30.0            | 6523314           | 1366.84                                    |
| Shasta            | 4745      | 4.5        | 34.5            | 11591060          | 2442.79                                    |
| Monterey          | 4590      | 4.4        | 38.8            | 1878660           | 4092.96                                    |
| Siskiyou          | 4464      | 4.2        | 43.1            | 23497560          | 5439.25                                    |
| Tehama            | 3876      | 3.7        | 46.8            | 3605156           | 930.12                                     |
| San bernardino    | 3654      | 3.5        | 50.2            | 5378050           | 1471.82                                    |
| Los angeles       | 3162      | 3.0        | 53.3            | 6903207           | 2218.97                                    |
| Lake              | 3015      | 2.9        | 56.1            | 6304633           | 2091.09                                    |
| Santa clara       | 2982      | 2.8        | 59.0            | 939259            | 314.98                                     |
| Madera            | 2924      | 2.8        | 61.7            | 2188512           | 748.46                                     |
| Kern              | 2590      | 2.5        | 64.2            | 4854215           | 1901.38                                    |
| Mendocino         | 2409      | 2.3        | 66.5            | 3161265           | 1312.27                                    |
| El dorado         | 2132      | 2.0        | 68.5            | 5434052           | 2612.53                                    |
| Tulare            | 2112      | 2.0        | 70.5            | 4364400           | 2164.88                                    |
| Trinity           | 2068      | 2.0        | 72.5            | 4264498           | 2268.35                                    |
| Humboldt          | 1914      | 1.8        | 74.3            | 1365606           | 713.48                                     |
| Tuolumne          | 1890      | 1.8        | 76.1            | 21148540          | 11620.08                                   |
| Contra costa      | 1700      | 1.6        | 77.7            | 381100            | 224.18                                     |
| Santa barbara     | 1550      | 1.5        | 79.2            | 2514300           | 1676.20                                    |
| Mariposa          | 1350      | 1.3        | 80.5            | 9712890           | 7914.73                                    |
| Lassen            | 1250      | 1.2        | 81.7            | 4814075           | 4097.09                                    |
| Yuba              | 1200      | 1.1        | 82.8            | 786500            | 683.91                                     |
| San benito        | 1188      | 1.1        | 83.9            | 3599103           | 302.95                                     |
| Alameda           | 1044      | 1.0        | 84.9            | 214488            | 205.49                                     |
| Sonoma            | 1020      | 1.0        | 85.9            | 6161880           | 6041.06                                    |
| Calaveras         | 1015      | 1.0        | 86.9            | 243425            | 239.83                                     |
| Napa              | 980       | 0.9        | 88.7            | 216874            | 221.30                                     |
| Placer            | 966       | 0.9        | 88.7            | 1487870           | 1617.25                                    |
| Ptumas            | 924       | 0.9        | 89.6            | 13143372          | 14224.43                                   |
| Stanislaus        | 903       | 0.9        | 90.4            | 509163            | 563.86                                     |
| Sacramento        | 900       | 0.9        | 91.3            | 486660            | 540.73                                     |
| Solano            | 860       | 0.8        | 92.1            | 309858            | 360.30                                     |
| Ventura           | 782       | 0.7        | 92.9            | 836604            | 1069.83                                    |
| Merced            | 774       | 0.7        | 93.6            | 598044            | 772.67                                     |
| Inyo              | 756       | 0.7        | 94.3            | 1636173           | 2164.25                                    |
| Yolo              | 744       | 0.7        | 95.0            | 1142474           | 1675.18                                    |
| Nevada            | 570       | 0.5        | 95.6            | 149850            | 261.32                                     |
| Mono              | 540       | 0.5        | 96.1            | 1356696           | 3140.50                                    |
| Marin             | 496       | 0.5        | 96.5            | 329344            | 664                                         |
| Orange            | 481       | 0.5        | 97.0            | 2535560           | 5375.38                                    |
| Amador            | 462       | 0.4        | 97.4            | 61149             | 132.36                                     |
| San joaquin       | 432       | 0.4        | 97.9            | 646464            | 1496.44                                    |
| Santa cruz        | 378       | 0.4        | 98.2            | 28350             | 75.00                                       |
| Glenn             | 315       | 0.3        | 98.5            | 137480            | 436.44                                     |
| Modoc             | 252       | 0.2        | 98.7            | 686525            | 2802.14                                    |
| Colusa            | 246       | 0.2        | 99.0            | 36408             | 148                                         |
| San mateo         | 204       | 0.2        | 99.2            | 8568              | 42                                          |
| Del norte         | 180       | 0.2        | 99.3            | 24165             | 134.25                                     |
| Kings             | 175       | 0.2        | 99.5            | 1422100           | 8126.29                                    |
| Sutter            | 172       | 0.2        | 99.7            | 125990            | 732.50                                     |
| Sierra            | 170       | 0.2        | 99.8            | 1633564           | 12011.50                                   |
| Alpine            | 144       | 0.1        | 100.0           | 47520             | 440                                         |
| Imperial          | 25        | 0.0        | 100.0           | 6875              | 275                                         |
| Total             | 105207    | 100.0      | 100.0           | 233098563         | 2245.33                                    |
3.4 Proposed Risk Model Discussion

The data shows the need to calculate the wildfire risk associated with the location in dollars. The project’s first step is to define the wildfire risk and basic terminologies. We define wildfire risk as follows.

**Wildfire risk:** Wildfire risk is a numerical quantity, denoted by $WR_{t,x}$, which varies temporally (time denoted by $t$) as well as spatially (geographical location denoted by $x$), such that probability of wildfire at a given location and time is an increasing function of risk.

Note that the above definition of risk leaves open a large number of ways to actually define the numerical quantity that we will call risk. For example, economists have defined risks as shown in [46–48]. In the case we do risk analysis for a specific geo-
Studying the risk numbers for the case of wildfires is important. In order to simplify wildfire risk analysis, we propose splitting different wildfires into six categories depending on said fire’s associated risk number.

1. **Very Low Wildfire Risk (VLWR)**

2. **Low Wildfire Risk (LWR)**

3. **Medium Wildfire Risk (MWR)**

4. **High Wildfire Risk (HWR)**
5. Very High Wildfire Risk (VHWR)

6. Drastic Wildfire Risk (DWR)

We came up with an approach to categorise any given fire into one of the above categories. The proposed approach assumes that we have access to the vegetation color (or any other visual information) around the potential wildfire area.

### 3.4.1 Wildfire Risk Modeling: Proposed Approach to Determine Risk

Here the assumption is that the vegetation color is associated with the vegetation risk. Past studies [49] show that the dry vegetation will most likely become fuel much quicker than the wet vegetation. Therefore, the risk associated with the dry vegetation is much higher and marked as Drastic Wildfire Risk, VHWR. The risk associated with the damp and growing vegetation depends on the vegetation’s color. The wildfire risk depends on the associated color risk related to the vegetation’s color as shown in Table 3.3 below.

**Table 3.3: Define: Vegetation Risk and Color Associated to it, California Results**

| Risk                          | Recognizing Vegetation Color, Names |
|-------------------------------|-------------------------------------|
| Very Low Wildfire Risk (VLWR) | Dark Green                          |
| Low Wildfire Risk (LWR)       | Light Green                         |
| Medium Wildfire Risk (MWR)    | Faded Green                         |
| High Wildfire Risk (HWR)      | Yellow                              |
| Very High Wildfire Risk (VHWR)| Orange                              |
| Drastic Wildfire Risk (DWR)   | Red                                 |

The risk associated with the vegetation color needs real-time data of vegetation for each location, and such data could be satellite pictures of CA or a data set with colors in them [49], [50], [51], [52]. Artificial intelligence techniques such as deep learning
[53], [54], [55], [56], [57] may be used to directly classify imagery of a given fire into its risk category. The scope of this work remains in the future.

### 3.5 Conclusion

The highlights of the Cal Fire data, there are chances of fire occurrence in all 56 counties except in San Francisco, but their chance of occurrence depends on the location risk. Next, the minimum average acres burn in all these years regardless of counties is 1k and maximum was 10k. Some counties such as Riverside, San Diego are at high risk and some such as Alpine, Imperial are at low risk. The data provides the decision-making strategy for our work to solve the problem for Wildfire Risk associated with the location.
Chapter 4

Uncovering Hidden Patterns of PSPS Data and Income of the Counties based on the Location

4.1 Motivation of Using PSPS Data

Motivation behind the uncovering the patterns of PSPS events is that in California there is a wide range of population. According to living cost, some areas are high income areas and some are low income areas. Our project is based on designing the location based price approach according to the Wildfire risk associated to the location. Moreover, the PSPS events is an approximated solution to reduce the risk of the wildfires. There are two approaches that wildfire risk can be reduced by reducing the line flows are given below.

- Reduce the demand at two ends of the line (or just one node) (PSPS way + included in proposed work)
• Reroute the power flows (Proposed Work)

Therefore, the PSPS way is another approximate solution to reduce the wildfire risk and is giving us the motivation to review the impact of de-energizing the circuit to reduce the wildfire risk. This will provide us the chance to reduce any negative impact related to the wildfire risk on society.

4.2 Overview of the PSPS Data - in process

Under the recommendations of the DWR, the utilities introduced the PSPS (Public Safety Power Shutoffs) program to control the distribution network by de-energizing only impacted circuits from extreme weather conditions to avoid the wildfires from their system equipment. However, there are some health concerns around when the power is de-energized from the impacted circuits [58] in the network. The past study represented the mental health concerns with PSPS event and it is associated with trauma with previous wildfire experience. PSPS is most likely the closest possible engineering solution to address the emergency for the utilities in extreme weather conditions which is approved by California Public Utilities Commission [59]. The de-energizing the circuit decision is taken using seven-day weather forecasting data and Fire Potential Index (FPI) [59]. Using the FPI index, significant power cut-offs were made, due to which this program is still not much appreciated socially and faces criticism [59]. Below is the data [60] collected from the CPUC website for the PSPS events for showing the total number of customers impacted is shown below:

Since the PSPS program started in 2013, table 3.6 also shows the Probability of PSPS events in table 3.7. This data does show that PG&E has the highest number of customers impacted. If we rely on past data, to predict number of events in the future, there is higher probability that PSPS events will happen in PG&E territory. The SCE (Southern
California Edison) has the second-highest number of customers impacted, followed by SDGE (San Diego Gas & Electric). Interesting insights are that frequency of the PSPS event occurring in the northern part of California in PG&E territory is highest among all utilities even little more than 50% of total PSPS events in California. This means that frequency of de-energizing a few lines due to high-speed winds/uncertainty is high. It is likely this does bring attention and anxiety because customers are impacted. According to the frequency, Pacific Corp’s impacted 4k customers, which is the lowest, but their probability is yet to review with their total customers.

Therefore, the PSPS data provides some numbers. Still, it is unclear that utilities have a higher risk or more safety measures due to the high frequency of the wildfire events and similar doubt for the other utilities further analysis is still ongoing. The PSPS data [61] shows the impacted customers from all different categories and interesting thing is the data have locations and further work on graph remains in future.

Figure 4.1: Outage PSPS Data (Date: 10/11/21)
The PSPS data in figure 4.1 shows how customers’ PSPS experience varies in a day, and surprisingly, it changes each hour, and the most impacting customers are residential customers. Indeed, location data will be more interesting, and further work remains in future work. There are more questions related to the PSPS events. We collected the economic (GDP, personal income based on the location) data for the counties. This data processing is at its initial stage to reveal the location-based economic impact of PSPS events on society.

4.3 Results and, Conclusion

The PSPS outages events impact negatively to the customers, this data shows that how each customers category is impacted and most of them are residential customers who are impacting most. Based on location data analysis remains in the future work.
Chapter 5

Wildfire Risk Based

Locational Marginal Pricing

5.1 Motivation behind using Risk-based SCED Model

The motivation behind using Risk-based Security Constrained Economic Dispatch (Risk-based SCED) [62] instead of traditional EDC is the relation between the probability of occurring arc and congestion [26]. As the past studies show, as the congestion increases the chances of the occurrence of arc increases [26]. In other words, during congestion, the overloading line can increase the chances of occurring arc more than at regular line operation. Therefore we are using the RB-SCED model as the base case to eliminate the congestion.

5.2 Traditional Economic Dispatch Problem

Traditional economic dispatch problem has only one primary constraint, which is to meet the demand according to the given generation over a given time horizon, while
considering peak and off-peak hour loads [63]. The traditional EDC problem is solved in literature using many different approaches [64], [65], [66], [67]. The objective function of the traditional problem is to choose the level of operation of each generator to minimize total system cost subject to demand level [63]. It was being solved, for example, by the PJM. Here, PJM stands for Pennsylvania–New-Jersey–Maryland Interconnection, ISO [68]. For the current project, uses data represented in recent studies [1], though initially it was published in PJM ISO training documents.

On a fundamental level, the traditional economic dispatch problem can be formulated as follows. The objective function of the constrained optimization problem can be written as follows:

\[
\text{Minimize}_{\{P_i\}} \sum_{i=1}^{N_G} c_i P_i \tag{5.1}
\]

The optimization is subject to the following constraints and given constrain (8) is primary constraint to meet the demand and given as follows 5.2:

\[
\sum_{i=1}^{N} P_i - \sum_{i=1}^{N} D_i - \text{Loss} = 0, \forall i = 1, 2, \ldots, m; \tag{5.2}
\]

The following equation (9) limits each generating unit capacity or in other words upper and lower bound on each generating unit and is written as follows 5.3:

\[
\sum_{i=1}^{N} P_{i}^{\text{min}} \leq \sum_{i=1}^{N} P_i \leq \sum_{i=1}^{N} P_{i}^{\text{max}} \tag{5.3}
\]

Then, follows with positive inequality constraints (5.2,5.3) as shown below:

\[
\sum_{i=1}^{N} P_{i}^{\text{min}} \geq 0 \tag{5.4}
\]

\[
\sum_{i=1}^{N} P_{i}^{\text{max}} \geq 0 \tag{5.5}
\]
5.3 Wildfire Risk-Based EDC Decomposition

Risk-based economic dispatch problem (RB-EDP) has been developed from Security constrained economic dispatch problem (SCED) in recent work in controls and used as the base case for wildfire modeling in reference [62]. This project contributes to the base modeling of RB-SCED by considering the re-dispatch problem for wildfire risk. Few assumptions of the linear DC model optimal power flow it assumes that the reactance \( X_{ab} \) of the power lines is much greater than the resistance \( R_{ab} \) [69]. Voltage amplitude is the same at all buses at 1 p.u and changes in voltage angle \( \theta_A - \theta_B \) from one end of a line to another are small [69]. These assumptions result in power flow, \( f_{AB} \), where \( f \) represents power flow from bus A to bus B is proportional to current \( I_{AB} \), which \( I_{AB} \) represents current flow from bus A to bus B. Also, power flow, \( f_{AB} \) is proportional to the difference in the voltage angle \( \theta_A - \theta_B \). Kirchhoff’s current law states that sum of current incoming and leaving the node is zero is obeyed in the DC model, but the DC model (current model used in the project) does not consider losses.

The organization of the work is as follows firstly, the Table 4.1 displays the sets and indices involved, Table 4.2 represents Parameters, Table 4.3 represents Variables, then represents linear programming transmission loss in DCOPF. Then traditional Economic dispatch modeling and finally we have re-dispatched the Risk-based economic dispatch problem including wildfire risk for prospective transmission system operator (TSO) decision-making process, different location marginal price (LMP) is described for charging each node for prospective distribution system operator (DSO) decision-making process. The optimal generation unit dispatch and location energy prices use the Location marginal pricing (LMP) method. Location marginal pricing is derived from a security-constrained economic dispatch model and comprises three LMP components. Those three LMP components are Energy, Marginal Loss, and congestion. Risk-based Secu-
Constrained Economic Dispatch (Risk-based SCED) introduced in [62] to design the Risk-based location marginal pricing by reducing or eliminating the congestion on transmission lines to secure the system at post contingency level. The risk derived in the reference paper drives the risk component in a price signal to reflect the system’s overall security level [62], used to reflect the investments needed in the transmission lines using the risk component. This proposal re-designs the location marginal price using a security-constrained economic dispatch problem to charge customers according to the wildfire event or post-hazardous conditions associated with the location. As literature has shown that high severity index of flames/sparks increases the wildfire risk, therefore this proposal uses the test model approach of RB-EDC, RB-LMP [62]. This test model is considered for testing several circumstances of the wildfire event or at post-contingency state so that we can prove that by controlling the line flows at post contingency state using wildfire severity index, $FOC$ (work influence from [62]). This will likely reduce the risk of sparks from extreme events/conductor clashing/conductors melting at the breakdown phase during the energized network. Before doing the modeling, let’s define the decision variables and non-decision variables.

Table 5.1: Non-Decision Variables

| Variable                  | Description                                                                 |
|---------------------------|-----------------------------------------------------------------------------|
| $N$                       | Number of buses                                                             |
| $L$                       | Number of branches, $L, L'$, where, $L$-Lines not at risk, $L'$-Lines at risk |
| $c_i$, $\forall i \in [N]$| Cost of generation of marginal unit power at bus $i$                       |
| $VOLL_i$, $\forall \{i \mid i \in [N]\}$ | Value of lost load at bus $i$ and bus $i$ is adjacent to a line $l' \in L'$ |
| $D$, $\forall i \in [N]$  | Demand at bus $i$, where $d_i$, $\forall i \in [N]$                       |
| $PTDF$, $\in \mathbb{R}^{L \times N}$ | PTDF Matrix                                                                 |
| $a'_l$, $b'_j$, $\forall j \in \{1, ..., H_l\}$, $\forall l \in L \cup L'$ | Default line flow limits, $\forall l \in L \cup L'$                       |
| $FOC_l$, $\forall l \in \mathbb{R}$   | Coefficients of piecewise linear risk function for line $l$ |
| $FOC_{\min}^l$, $FOC_{\max}^l$, $\forall l \in L'$ | $FOC_l$ constraint for not at risk line $l$ |
| $X_{\min}^i$, $X_{\max}^i$, $\forall i \in [N]$ | Upper and lower bounds for FOC of at-risk lines |
| $r_{\min}^i$, $r_{\max}^i$, $\forall i \in [N]$ | Bus $i$ is adjacent to a line $l' \in L'$ Upper and lower bounds on ratio of demand power actually provided buses $i$ adjacent to at-risk lines $l'$ |

As the formulation is influenced from literature [62], the modeling is based on min-
Table 5.2: Decision Variables

| \( X_i, \ i \in [N] \) | Total generation at bus \( i \) |
| \( Y_i, \ i \in [N] \) | Total injections at bus \( i \) |
| \( FOC_l, \ \forall \ l \in L' \) | Forced outage constraint of lines at risk |
| \( r_i, \ \forall \ \{i | i \in [N]\} \) | Bus \( i \) is adjacent to a line \( l' \in L' \) |
| \( \) | ratio of demand power actually provided to buses adjacent to at-risk \( l'' \) |

imizing the production cost of generating units \( X_i \) to meet the demand. This objective function have some constraints. Therefore, this problem is called constraint optimization problem.

In the objective function, we want to minimize the total cost for the running generation units \( X_i \) efficiently with given marginal cost for each generating unit \( c_i \) and value of loss load \( r_i \) along with given cost for lossing each load. The objective is given for Wildfire Risk-Based - Economic Dispatch Constraint (WRB-EDC) problem as follows:

\[
\text{Minimize}_{X_i, Y_i, FOC_l, r_i} \left( \sum_{i=1}^{\ |N|} c_i X_i \right) + \left( \sum_{i \in I_{L'}} r_i VOLl_i \right) \quad (5.6)
\]

\( Y_i \) is the net injection equals generation represented as \( X_i \) minus demand \( D_i \) for buses which are not at risk given in equation 5.7. We have several contraints associated to the decision variables, and are represented as follows:

\[
X_i - D_i = Y_i \quad \forall i \in \ [N]/I_{L'} \quad (5.7)
\]

For buses, adjacent to the risk lines, injection \( Y_i \) equals generation \( X_i \) minus reduced load \( r_i D_i \) in equation 5.8.

\[
X_i - r_i D_i = Y_i \quad \forall i \in \ [N]/I_{L'} \quad (5.8)
\]

Load satisfaction for buses adjacent to the risk lines should follow upper and lower
bounds represented as follows in equation 5.9:

\[ r_i^{\text{min}} \leq r_i \leq r_i^{\text{max}} \quad \forall \, i \in [I_L'] \quad (5.9) \]

and further upper and lower bounds are limited as follows 5.10:

\[ 0 \leq r_i \leq r_i^{\text{max}} \leq 1 \quad \forall \, i \in [I_L'] \quad (5.10) \]

Generation in these equations 5.7 and 5.8, follows the upper and lower limits in equation 5.11:

\[ X_i^{\text{min}} \leq X_i \leq X_i^{\text{max}} \quad \forall \, i \in [N] \quad (5.11) \]

Sum of the injections \(Y_i\) is zero i.e power is conserved in the network is written as follows in equation 5.12:

\[ \sum_{i=1}^{N} Y_i = 0 \quad (5.12) \]

Under normal operating conditions all branches lines flows are normal and their upper an dlower bound limits are represented as follows 5.13:

\[ T_i^{\text{min}} \leq [(PTDF) (Y)]_l \leq T_i^{\text{max}} \quad \forall \, l \in \mathcal{L} \quad (5.13) \]

Under wildfire scenario, when there is wildfire risk under some branches then power flow of those lines are scaled down by FOC value in order to limit the maximum and minimum flows is represented as follows 5.14:

\[ T_{l'}^{\text{min}} \, \text{FOC}_{l'} \leq [(PTDF) (Y)]_{l'} \leq T_{l'}^{\text{max}} \, \text{FOC}_{l'} \quad \forall \, l' \in \mathcal{L}' \quad (5.14) \]

Generation in these equations 5.7 and 5.8, follows the upper and lower limits in
equation 5.15:
\[
FOC_{l'}^{\min} \leq FOC_{l'} \leq FOC_{l'}^{\max} \quad \forall l' \in [L']
\] (5.15)

and further FOC values, which are constant parameters and are limited as follows 5.16:
\[
0 \leq FOC_{l'}^{\min} \leq FOC_{l'}^{\max} \leq 1 \quad \forall l' \in [L']
\] (5.16)

Further, assume that line at risk \(l'\) is assumed \(L\) in our model to be piecewise linear function of \(FOC_{l'}\). Correspondingly the below constraint 5.17 says that piecewise linear risk should be less than an upper bound \(\overline{Risk}_{l'}\)

\[
Risk_{l'} (FOC_{l'}) \leq \overline{Risk}_{l'} \quad \forall l' \in L'
\] (5.17)

There is equivalent way to represent piecewise linear function given as follows in equations 5.18, where \(j\) index is each piece of the piecewise linear function:

\[
\text{Maximize}_{j \in [H_{l'}]} \quad a_j FOC_{l'} + b_j \leq \overline{Risk}_{l'} \quad \forall l' \in L', \forall j \in [H_{l'}]
\] (5.18)

5.3.1 Wildfire Risk-Based LMP Component

The simple way to approach the constrained optimization to solve for optimal solution. One of the famous approach is by following the first-order necessary condition or Karush-Kuhn-Tucker (KKT) Conditions [70]. According to the necessary conditions for the constrained problem the theorem as follows.

**First-Order Necessary Conditions/ KKT Conditions** Suppose \(x_\ast\) is a local solution of

\[
\text{Minimize} \quad f(x)
\] (5.19)
Subject to:

\[ h_j(x) = 0, \quad j = 1 \cdots n_e \]  
\[ g_j(x) \geq 0, \quad j = 1 \cdots m \]  

Where \( f, h \) and \( g \) are continuously differential, and LICQ holds at \( x^* \). Then there are Lagrange multipliers \( \lambda^* \in \mathbb{R}^{n_e} \) and \( \mu^* \in \mathbb{R}^{n_i} \), such that

\[
\frac{\partial L}{\partial x}(x^*, \lambda^*, \mu^*) = 0 \\
h_j(x^*) = 0, \quad j = 1 \cdots n_e \\
g_j(x^*) \geq 0, \quad j = 1 \cdots n_i \\
\mu_j g_j(x^*) = 0, \quad j = 1 \cdots n_i \\
\mu_j \geq 0, \quad j = 1 \cdots n_i
\]  

where,

\[
L(x, \lambda, \mu) = f(x) - \lambda_1 h_1(x) \cdots - \lambda_{n_e} h_{n_e}(x) \\
- \mu_1 g_1(x) \cdots - \mu_{n_i} g_{n_i}
\]

By following the first order conditions or KKT Conditions, first step is to write Partial derivative of the above equations following the KKT conditions of RB-EDC problem:
\[ \psi(X_i, r_i, FOC_l', Risk_l', \lambda, \mu) = \sum_{i=1}^{N_9} c_i \cdot P_i + \sum_{i=1}^{N_2} \text{VOLL}_i \cdot r_i \] 

\[ - \lambda_1 [(X_i - D_i - Y_i)] \] 

\[ - \lambda_2 Y_i \] 

\[ - \lambda_3 [X_i - r_i D_i - Y_i] \] 

\[ - \mu_1 [r_i - r_i^{\text{min}}] \] 

\[ - \mu_2 [r_i^{\text{max}} - r_i] \] 

\[ - \mu_3 [1 - r_i^{\text{max}}] \] 

\[ - \mu_4 [X_i - X_i^{\text{min}}] \] 

\[ - \mu_5 [X_i^{\text{max}} - X_i] \] 

\[ - \mu_6 [PTDF(X_i - D_i) - T_i^{\text{min}}] \] 

\[ - \mu_7 [T_i^{\text{max}} - PTDF(X_i - D_i)] \] 

\[ - \mu_8 [PTDF(X_i - D_i) - T_i^{\text{min}}(FOC_l')] \] 

\[ - \mu_9 [T_i^{\text{max}}(FOC_l') - PTDF(X_i - D_i)] \] 

\[ - \mu_{10} [FOC_l' - FOC_l'^{\text{min}}] \] 

\[ - \mu_{11} [FOC_l'^{\text{max}} - FOC_l'] \] 

\[ - \mu_{12} [1 - FOC_l'^{\text{max}}] \] 

\[ - \mu_{13} [Risk_l'(FOC_l') - Risk_l'] \] 

\[ - \mu_{14} [Risk_l' - Risk_l'^{\text{min}}] \] 

\[ - \mu_{15} [Risk_l'^{\text{max}} - Risk_l'] \] 

(5.43)
Partial derivative with respect to unit change in generating unit will provide us with $-\frac{\partial c}{\partial X_i}$ which is also equivalent to $\frac{\partial c}{\partial D_i}$ and known as location marginal price, finally terminology of our interest.

Given equations at optimal solution,

$$\frac{\partial \psi}{\partial X_i} = c_i - \lambda_1 - \mu_3[PTDF_i] + \mu_4[PTDF_i]$$

$$+ \lambda'_1 - \mu'_4[PTDF_{i'}] + \mu'_5[PTDF_{i''}]$$

$$- \mu'_1 + \mu'_4$$

$$- \mu'_2 + \mu'_2$$

(5.44)

Taking the partial derivative with respect to unit change in value of loss load as considered decision variable and is written as follow $-\frac{\partial \psi}{\partial r_i}$:

$$\frac{\partial \psi}{\partial r_i} = -\lambda'_1 - D_i$$

$$- \mu'_2 + \mu'_2 + \mu'_3$$

(5.45)

Taking the partial derivative with respect to unit change in $FOC_{i'}$ as considered decision variable and is written as follow $-\frac{\partial \psi}{\partial FOC_{i'}}$:

$$\frac{\partial \psi}{\partial FOC_{i'}} = -\mu''_5 T_{i'}^{max} + \mu''_4 T_{i'}^{min}$$

$$- \mu''_6 + \mu''_6$$

$$- \mu''_7 + \mu''_7 + \mu''_8$$

$$- \mu''_9 Risk_{i'}$$

(5.46)

Above equation can also be written in LMP explicit form using above interpretation, of LMP $-\frac{\partial c}{\partial X_i}$ is equivalent to $\frac{\partial L}{\partial D_i}$. Therefore, below is interpretation with unit change in demand and written as follows:
\[
\frac{\partial \psi}{\partial X_i} = c_i + \lambda_1 + \mu_3[\text{PTDF}_{l}] - \mu_4[\text{PTDF}_{l}]
- \lambda_1' + \mu_4'[\text{PTDF}_{l}'] - \mu_5'[\text{PTDF}_{l}']
+ \mu_1' - \mu_1'
+ \mu_2' - \mu_2'
\]  

(5.47)

Therefore, for LMP components are interpreted as follows:

\[
\text{LMP}_i^{\text{Energy}} = \lambda_1
\]

\[
\text{LMP}_i^{\text{Congestion}} = \mu_1[\text{PTDF}_{l}] + \mu_2[\text{PTDF}_{l}]
\]

\[
\text{LMP}_i^{\text{Energy'}} = -\lambda_1'
\]

\[
\text{LMP}_i^{\text{Congestion}} = \mu_1'[\text{PTDF}_{l}'] + \mu_2'[\text{PTDF}_{l}']
\]

\[
\text{LMP}_i^{\text{Wildfire'}} = -\mu_5' T^{\text{max}} + \mu_4' T^{\text{min}} + \mu_8' - \mu_9' \text{Risk}_l'
\]

\[
\text{LMP}_i^{\text{VOLL}} = -\lambda_1' - D_i + \mu_3'
\]

(5.48)

Designed components yet need to be tested for results, yet only change in \( FOC_{l'} \) is tested for results so far.

### 5.4 Results

Wildfire risk based LMP model uses IEEE PJM 5 Bus data as shown in figure 4.1.

Following are the results using above model. Software used for calculating PTDF is Mat Power [71] and RB-SCED modeling in AMPL. Results are organized as follows:

1. Given varying values of safety parameter \( FOC_{l'} \) for all power transmission lines

   (Using same line flow limit: ab = 400MW, de = 240MW for all cases)
• $FOC'_v = 1$, when there is no restrictions for all line flows

• $FOC'_v = 0.75$, when a little restriction for all line flows

• $FOC'_v = 0.50$, moderate restrictions for all line flows

• $FOC'_v = 0.25$, huge restrictions for all line flows

2. Given varying values of line limits of line with $de FOC'_v = 0.5$ for all cases.

• Limit = 240MW, Everything is normal

• Limit = 120MW, Fire is getting severe, to change the line flows due to increasing wildfire risk injected

• Limit = 60MW, Fire is severe enough to reduce limit for 3 to 50% rated capacity

• $FOC'_v = 0.25$, huge restrictions for all line flows

3. Deleting each line to simulate loss (disabling) of that line due to concerns of a wildfire in it’s vicinity ($FOC'_v = 0.5$ and line limits same as above, unless the line is getting disabled).

• Line “ab” = 0
• Line “ad” = 0
• Line “ae” = 0
• Line “bc” = 0
• Line “cd” = 0
• Line “de” = 0

4. Then summarize the results for $FOC_{r} = 0.5$, analyze the change in unit price line flows and collected data at each line loss scenario due to wildfire event.

Below are all summarized results:

**Part 1** Below the data shown in table $FOC_{r} = 1$ as shown in 4.5, when there is no restrictions and all lines are flowing at normal rate of 95% (depending on operator, a limit of 95% may be set for the safety reasons of their capacity).

Table 5.3: At normal conditions, generation price and line flows for each unit for $FOC_{r} = 1$

| Generating Units | Initial Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net Injection, MW |
|------------------|-------------------------|----------|--------------------|-----------|----------------|---------------------|----------|------------------|
| Unit A, Park City| 170                     | Bus a    | 249                | ab        | 240.508        | 0                   | Bus a    | 170              |
| Unit A, Alta     | 40                      | Bus b    | -300               | ad        | 186.7985       | 0                   | Bus b    | 40               |
| Unit C, Snowma   | 323                     | Bus c    | -23.52             | ae        | -228.4789      | 0                   | Bus c    | 30               |
| Unit D, Sundance | 0                       | Bus d    | -400               | bc        | -50.316        | 0                   | Bus d    | 34               |
| Unit E, Brighton | 466                     | Bus e    | 466.479            | cd        | -26.7958       | 0                   | Bus e    | 20               |

$FOC_{r} = 0.75$ as shown in table 5.6, when weather uncertainty (due to bad weather alarms, instead of PSPS events), lead the engineers to reduce the line flows to their 75% of line capacities shows in literature [62] that can highly likely reduce the wildfire risk by avoiding sparks/conductor clashing/conductor breakdown, melting/ equipment failure sparks. By reducing limits, it is also highly likely we are reducing the impact of high winds and their causes on lines flowing. This makes the line flows safe to deliver power economically even under alarming weather situation. The down side is that by reducing limit to 75% of the capacity, the generating units will become expensive as compared to all line flows at normal rate. As a result, we pay the more generating unit price for
meeting the load. Reducing line limits can potentially contribute to load shedding and we might not be able to meet all the loads.

Table 5.4: At $FOC_l' = 0.75$, generation price and line flows for each unit, becomes expensive

| Generating Units | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection Dual |
|------------------|-----------------------|----------|--------------------|-----------|---------------|---------------------|---------|-------------------|
| Unit A, Park City | 125.7                  | Bus a    | 210                | ab        | 154.9286      | 0                   | Bus a   | 21.4991           |
| Unit A, Alta     | 40                    | Bus b    | -300               | ad        | 154.9286      | 0                   | Bus b   | 29.19             |
| Unit C, Solitude | 510                   | Bus c    | 210                | az        | 99.5839       | 0                   | Bus c   | 30                |
| Unit D, Sundance | 0                     | Bus d    | -400               | bc        | -145.3628     | 0                   | Bus d   | 34.9648           |
| Unit E, Brighton | 279                   | Bus e    | 279.5639           | cd        | 63.0734       | 0                   | Bus e   | 20                |

$FOC_l' = 0.50$, as shown in Table 5.7, when line flows are 50% percent, unit prices are expensive and total generation cost increases. This helps to prevent the extreme sparks under extreme weather and reduce the capability to ignite the any fire from lines during line clashing. Such scenarios will be preventive measures for reducing the occurrence of a wildfire event. As a result, we pay higher generating unit price for meeting the load. This might cause some load shedding due to reduced limit, and we might not be able to meet all the loads.

Table 5.5: Line flows at at half of the capacity, generation price and line flows for each unit

| Generating Units | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection Dual |
|------------------|-----------------------|----------|--------------------|-----------|---------------|---------------------|---------|-------------------|
| Unit A, Park City | 125.7                  | Bus a    | 130                | ab        | 110.6429      | 0                   | Bus a   | 24.6618           |
| Unit A, Alta     | 40                    | Bus b    | -300               | az        | 110.6429      | 0                   | Bus b   | 30.9428           |
| Unit C, Solitude | 520                   | Bus c    | 220                | bc        | -169.1237     | 0                   | Bus c   | 33.3641           |
| Unit D, Sundance | 118.4807              | Bus d    | -281.5193          | bc        | -180.1237     | 0                   | Bus d   | 40                |
| Unit E, Brighton | 151.5193              | Bus e    | 151.5193           | cd        | 50.8763       | 0                   | Bus e   | 20                |

$FOC_l' = 0.25$, as shown in Table 5.8, when line flows are only 25%, there is no optimal solution because technically, there is no way to run the power lines at 25% of their capacity, so units prices become inefficient. Therefore, no optimal solution and operator is forced to shut down.

Table 5.6: Shut down situation, when line flows are 25%, no optimal solution

| Generating Units | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection Dual |
|------------------|-----------------------|----------|--------------------|-----------|---------------|---------------------|---------|-------------------|
| Unit A, Park City | 0                     | Bus a    | 0                  | ab        | 0             | 0                   | Bus a   | 0                 |
| Unit A, Alta     | 0                     | Bus b    | 0                  | ad        | 0             | 0                   | Bus b   | 0                 |
| Unit C, Solitude | 0                     | Bus c    | 0                  | az        | 0             | 0                   | Bus c   | 0                 |
| Unit D, Sundance | 0                     | Bus d    | 0                  | bc        | 0             | 0                   | Bus d   | 0                 |
| Unit E, Brighton | 0                     | Bus e    | 0                  | cd        | 0             | 0                   | Bus e   | 0                 |
Part 2

Given varying values of line limits of line \( de \) \( FOC_{\nu} = 0.5 \), as shown in table 5.9, for all cases. Limit = 240MW, Everything is normal Follow Table 5.1 for results, when line “de” is flowing at normal rate and full capacity (it depends on operator, full capacity can be 100% of any from 95 to 99%, which helps to eliminate the line congestion at prior stage proven by [ [62]])

Another scenario is when the Limit = 120MW, which means the line limit is reduced to 50% of it’s thermal limit, because the fire risk around the line is severe, so changing the line flows will help to reduce the risk of wildfire due to power lines. As a result, we pay higher generating unit price for meeting the load. This might cause some load shedding due to reducing limit as, we might not able to meet all the loads, and that’s a trade off we will be paying.

Table 5.7: Line “de” 50 percent of it’s thermal limit

| Generating Unit | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection Dual |
|-----------------|-----------------------|----------|--------------------|-----------|----------------|----------------------|----------|-------------------|
| Unit A, Park City | 40 | Bus a | -210 | ab | 110.9999 | 0 | Bus a | 24.6618 |
| Unit C, Solitude | 520 | Bus c | 220 | ac | 33.3807 | 0 | Bus c | 33.3807 |
| Unit D, Sundance | 243.3807 | Bus d | -156.6493 | bc | -189.0404 | 0 | Bus d | 40 |
| Unit E, Brighton | 26.6493 | Bus e | 26.6493 | cd | 30.9596 | 0 | Bus e | 20 |

This shows when thermal Limit = 60MW, which means wildfire risk injected is getting severe enough to reduce limit for 25% rated thermal capacity, as shown in Table 5.10, which forces operator to shut down the system.

Table 5.8: Line “de” 25 percent of it’s thermal limit

| Generating Unit | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection Dual |
|-----------------|-----------------------|----------|--------------------|-----------|----------------|----------------------|----------|-------------------|
| Unit A, Park City | 0 | Bus a | 0 | ab | 0 | 0 | Bus a | 0 |
| Unit C, Solitude | 0 | Bus c | 0 | ac | 0 | 0 | Bus c | 0 |
| Unit D, Sundance | 0 | Bus d | 0 | bc | 0 | 0 | Bus d | 0 |
| Unit E, Brighton | 0 | Bus e | 0 | cd | 0 | 0 | Bus e | 0 |

Part 3 Losing any one line (n-1 scenario) to simulate loss disabling due to wildfire, when given \( FOC_{\nu} = 0.5 \), as shown in Table 5.11, which means all lines are flowing at 50% of it’s capacity. The first case is loss of line between node a and b:
Losing any one line (n-1 scenario) to simulate loss disabling due to wildfire, when given \( FOC_v = 0.5 \), as shown in Table 5.12, which means all lines are flowing at 50% of it’s capacity. The second case is loss of line between node “a” and “d”. As it is clear from the table below, that operating cost for loss of any one line is (N-1) scenario and it remains same for any “(N-1) scenario” and line flows shifts accordingly to meet the load. Due to loss of line, it might not be possible to meet complete demand.

Similar observations for loss of line between node “a” and “e” to observe the line flows, “(N-1 scenario)” to simulate loss disabling due to wildfire.

### Similar observations for loss of line between node “b” and “c”, “N-1 scenario” to simulate loss disabling due to wildfire, as shown in Table 5.13:

### Similar observations for loss of line between node “c” and “d”, “N-1 scenario” to simulate loss disabling due to wildfire, as shown in Table 4.15:
Table 5.12: Loss of line cd

| Generating Unit | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection, MW |
|----------------|-----------------------|----------|--------------------|----------|----------------|---------------------|----------|-------------------|
| Unit A, Park City | 170 | Bus a | 210 | ab | 130.8763 | 0 | Bus a | 24.6618 |
| Unit A, Alta | 40 | Bus b | -300 | ad | 110.6429 | 0 | Bus b | 30.9428 |
| Unit C, Solitude | 520 | Bus c | 220 | ae | -51.5193 | 0 | Bus c | 13.5191 |
| Unit D, Sundance | 118.4807 | Bus d | -169.1237 | bc | 0 | 0 | Bus d | 40 |
| Unit E, Brighton | 151.5193 | Bus e | 0 | cd | 50.8763 | 0 | Bus e | 20 |

Table 5.13: Loss of line de

| Generating Unit | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection, MW |
|----------------|-----------------------|----------|--------------------|----------|----------------|---------------------|----------|-------------------|
| Unit A, Park City | 170 | Bus a | 210 | ab | 200 | 0 | Bus a | 19.3235 |
| Unit A, Alta | 40 | Bus b | -300 | ad | 170.1368 | 0 | Bus b | 32.4956 |
| Unit C, Solitude | 520 | Bus c | 121.2271 | ae | -1601.1368 | 0 | Bus c | 30 |
| Unit D, Sundance | 118.4807 | Bus d | -400 | bc | -100 | 0 | Bus d | 23.1367 |
| Unit E, Brighton | 151.5193 | Bus e | 368.7729 | cd | 21.2271 | 0 | Bus e | 20 |

Therefore, it is concluded that “(N-1) scenario” during wildfire event is more expensive than from N scenario under normal operating lines, which is already observed in literature. Below is the summary of the results for analyzing the change in unit price line flows and collected data at each line loss scenario due to wildfire event. Analyze the generation cost at each generating unit, when $FOC_{l'} = 0.5$, as shown in 4.16.

Table 5.14: Summarizing the results for observing the unit prices, under the condition of line flows at 50% of their capacity

| Generating Unit | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection, MW |
|----------------|-----------------------|----------|--------------------|----------|----------------|---------------------|----------|-------------------|
| Unit A, Park City | 170 | Bus a | 210 | ab | 130.8763 | 0 | Bus a | 24.6618 |
| Unit A, Alta | 40 | Bus b | -300 | ad | 110.6429 | 0 | Bus b | 30.9428 |
| Unit C, Solitude | 520 | Bus c | 220 | ae | -51.5193 | 0 | Bus c | 13.5191 |
| Unit D, Sundance | 118.4807 | Bus d | -169.1237 | bc | 0 | 0 | Bus d | 40 |
| Unit E, Brighton | 151.5193 | Bus e | 0 | cd | 50.8763 | 0 | Bus e | 20 |

Table 5.15: Summarizing the results for observing the line flows, under the condition of line flows at 50% of their capacity

Analysis of the line flows at each line, when $FOC_{l'} = 0.5$, as shown in table 4.17:

Table 5.16: Summarizing the results for observing the line flows, under the condition of line flows at 50% of their capacity

Results are summarized below in Table 5.18, when there is increasing of the 1MW load at load bus B (301MW), under the same condition as $FOC_{l'} = 1$ during the extreme weather cases along the limited line flows. The below table summarizes the results for the generating unit price and line flows and net injections. Table 5.18 shows that with the increase in load at 1MW,
Table 5.16: Summarizing the results for observing the line flows, under the condition of line flows at 50% of their capacity

| Generating Units | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection | Dual Injection, MW |
|------------------|-----------------------|----------|---------------------|-----------|----------------|---------------------|----------|---------------|-------------------|
| Unit A, Park City | 40                    | Bus b    | -301                | ab        | 110.5729       | 0                   | Bus b    | 30.9428       |                   |
| Unit C, Solitude | 520                   | Bus c    | 219                 | ac        | -31.8512       | 0                   | Bus c    | 33.3611       |                   |
| Unit D, Sundance | 119.487               | Bus d    | -280.8512           | bc        | -166.7217      | 0                   | Bus d    | 40            |                   |
| Unit E, Brighton | 151.9721              | Bus e    | 151.8512            | ed        | 50.2783        | 0                   | Bus e    | 20            |                   |
| Total            | 1001                  | de       | -120                |           | 41.6233        |                     |          |               |                   |

Increasing the 1MW load at load bus C (301MW), under same condition as \( FOC_{l'} = 1 \) it is observed that there will be only change in $1 difference to the operator, which is economical, as shown in Table 4.19:

Table 5.17: 1MW load increase at load bus C (301MW)

| Generating Units | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection | Dual Injection, MW |
|------------------|-----------------------|----------|---------------------|-----------|----------------|---------------------|----------|---------------|-------------------|
| Unit A, Park City | 170                   | Bus a    | 210                 | ab        | 131.2783       | 0                   | Bus a    | 24.6618       |                   |
| Unit A, Alta     | 40                    | Bus b    | -301                | ad        | 110.5729       | 0                   | Bus b    | 30.9428       |                   |
| Unit C, Solitude | 520                   | Bus c    | 219                 | ac        | -31.8512       | 0                   | Bus c    | 33.3611       |                   |
| Unit D, Sundance | 119.487               | Bus d    | -280.8512           | bc        | -166.7217      | 0                   | Bus d    | 40            |                   |
| Unit E, Brighton | 151.9721              | Bus e    | 151.8512            | ed        | 50.2783        | 0                   | Bus e    | 20            |                   |
| Total            | 1001                  | de       | -120                |           | 41.6233        |                     |          |               |                   |

Increasing the 1MW load at load bus d (401MW), under same condition as \( FOC_{l'} = 1 \), it is observed that there will be only change in 1$ difference to the operator, which is economical, as shown in Table 5.19:

Table 5.18: 1MW load increase at load bus d (401MW)

| Generating Units | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net injection | Dual Injection, MW |
|------------------|-----------------------|----------|---------------------|-----------|----------------|---------------------|----------|---------------|-------------------|
| Unit A, Park City | 170                   | Bus a    | 210                 | ab        | 131.2783       | 0                   | Bus a    | 24.6618       |                   |
| Unit A, Alta     | 40                    | Bus b    | -300                | ad        | 110.7382       | 0                   | Bus b    | 30.9428       |                   |
| Unit C, Solitude | 520                   | Bus c    | 219                 | ac        | -31.8512       | 0                   | Bus c    | 33.3611       |                   |
| Unit D, Sundance | 119.487               | Bus d    | -282.0664           | bc        | -166.7217      | 0                   | Bus d    | 40            |                   |
| Unit E, Brighton | 151.9721              | Bus e    | 151.3664            | ed        | 51.3282        | 0                   | Bus e    | 20            |                   |
| Total            | 1001                  | de       | -120                |           | 42.6233        |                     |          |               |                   |

Below results are summarized, when there is increasing the 1MW load at bus B (301MW), under the condition as \( FOC_{l'} = 0.75 \), as shown in Table 5.21, during the extreme weather cases along the limited line flows. Below table summarizes the results for the generating unit price and line flows and net injections. This shows that model is efficient to work when there is extreme weather and injecting risk at each location, can also provide the efficient economical results and meeting load enough for demand.

Increasing of the 1MW load bus (D 401), Given \( FOC_{l'} = 0.75 \), as shown in table 5.22. This meets mostly all requirements. Increasing the 1MW load at load bus B
Table 5.19: 1MW load increase at load bus B (301MW), when line flows at 75% of it’s capacity

Table 5.20: 1MW load increase at load bus B (301MW), when line flows at 75% of it’s capacity

Increasing the 1MW load bus (D 401), Given $FOC_l' = 0.75$, as shown in Table 5.23. This meets mostly all requirements. When there is increasing of the 1MW load at load bus D, under the condition as $FOC_l' = 0.75$ during the extreme weather cases along the limited line flows. The below table summarize the results for the generating unit price and line flows and net injections. This shows that model is efficient to work when there is extreme weather and injecting risk at each location, can also provide the efficient economical results and meeting enough load for demand.

Table 5.21: Increasing the 1MW load bus (D 401) when lines are flowing at 75% of it’s capacity

Last but not least observation is that line flows are $FOC_l' = 0.50$, as shown in Table 57.
5.24. During a wildfire event, we lost line ae and observed how much system is costly. The system costs $1000, which means, lowering the power line flows at 50% of their capacity, we can meet the demand and during PSPS warning scenario’s and reduce the risk of wildfire from power lines while also eliminating the anxiety of the people from PSPS event and it is cost efficient as shown in below table.

Table 5.22: Loss of line "ae" and lines are flowing at 50% of its capacity

| Generating Units | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net Injection, MW |
|------------------|-----------------------|----------|--------------------|-----------|----------------|---------------------|----------|-------------------|
| Unit A, Park City  | 130                   | Bus a    | 210                | ab        | 130.8363       | 0                   | Bus a    | 24.6618            |
| Unit A, Alta      | 40                    | Bus b    | -300               | ad        | 110.6429       | 0                   | Bus b    | 30.9628            |
| Unit C, Solmate   | 820.00                | Bus c    | 210.4561           | ae        | 0              | 0                   | Bus c    | 33.3611            |
| Unit D, Sundance  | 118.4087              | Bus d    | -281.5193          | bc        | -160.1237      | 0                   | Bus d    | 40.000             |
| Unit E, Brighton  | 151.5193              | Bus e    | 151.5193           | ed        | 50.0876        | 0                   | Bus e    | 20                |
| **Total**         | **1000**              |          |                    |           |                | 0                   |          | 41.6233            |

Another observation is that when there is increase in 1MW demand at bus B while all line flows at their 50%, \( FOC_{l'} = 0.50 \), as shown in Table 5.23. The system costs $1000, which means that by lowering the power line flows to 50% of their capacity, we can meet the demand and during PSPS warning scenario’s and reduce the risk of wildfire from power lines. Also eliminate the long hours of de-energizing the power and associated anxiety people may have from this PSPS event. Plus it is cost efficient as shown in the below table, where there is only a $1 with change in 1MW demand.

Table 5.23: Increase in 1MW demand at bus B while all line flows at their 50%, \( FOC_{l'} = 0.50 \)

| Generating Units | Total Generation Cost | Bus name | Node Injection, MW | Line name | Line flows, MW | Dual Variable, flows | Bus Name | Net Injection, MW |
|------------------|-----------------------|----------|--------------------|-----------|----------------|---------------------|----------|-------------------|
| Unit A, Park City | 130                   | Bus a    | 210                | ab        | 131.4245       | 0                   | Bus a    | 24.6618            |
| Unit A, Alta      | 40                    | Bus b    | -300               | ad        | 110.5477       | 0                   | Bus b    | 30.9628            |
| Unit C, Solmate   | 820.00                | Bus c    | 220.4561           | ae        | 0              | 0                   | Bus c    | 33.3611            |
| Unit D, Sundance  | 119.0279              | Bus d    | -280.9721          | bc        | -160.1237      | 0                   | Bus d    | 40.000             |
| Unit E, Brighton  | 151.9721              | Bus e    | 151.9721           | cd        | 50.0876        | 0                   | Bus e    | 20                |
| **Total**         | **1001**              |          |                    |           |                | 0                   |          | 41.6233            |

5.5 Discussion

By defining risk at each location, we control the line flows as predicted, and we calculate the Wildfire risk based each unit price to charge customers according to risk injected in line flows. Optimal solutions vary from controlling line flows to emergency state to
shutting down the line to prevent further damage during or before wildfire event, using $FOC_v$ parameter and reducing the amount of power delivered to customer.

5.6 Conclusion

This results in the re-dispatched risk based problem for wildfire risk at the given risk model providing an efficient strategy to charge customers accordingly to the risk injected. This project will overall save the money of the customers by charging in the way which makes recovering wildfire costs fair and cost effective for the utility. Also it will reduce the PSPS events. This project also meets the society goals of saving money for the customers in California, who pay flat charges for Wildfire Fund each month at the rate of $\$0.00580/kWh$, regardless of their location. This work shows potential contribution towards reducing utilities associated risk to the power lines causing wildfires by controlling the line flows of the system.
Chapter 6

Future work of the Project

This project provides the test model that produces efficient results while there is wildfire risk associated to power line flows and given risk associated to the location under extreme conditions. However, so far this study does not include the DC line losses in modelling, assume the no DC loss model. Therefore, the first part of the future study is to incorporate the DC line losses in the wildfire modeling. Next, as the IOU’s continue the PSPS events, this project most likely will explore the PSPS data events and income level of the PSPS events linked to location to determine, if there is enough social surplus and consumer surplus associated. Then, part of the future study is to design the piece wise linear risk function, most likely relating to the color of vegetation data and to wind speed plus, designing the injected risk at each location. Literature prouded significant guidance that wind speed is highly co-related to risk of vegetation catching fire due to the potential for the sparks or conductor clashing melting/ fire due to equipment failure. Last but not least, the study has the scope for determining the risk using artificial intelligence, at each location to incorporate the variable risk in dollars.
Appendices
Part A

1. Electrical Corporations in California

- Pacific Gas and Electric Company (PG&E),
- San Diego Gas & Electric Company (SDG&E),
- Southern California Edison (SCE),
- PacifiCorp d.b.a. Pacific Power (PacifiCorp),
- Liberty Utilities (CalPeco Electric)
- LLC (Liberty CalPeco), and
- Bear Valley Electric Service, a Division of Golden State Water Company (Bear Valley)

Part B

The data processing is done using RStudio, using macOS Monterey, version 12.2, Mac Book Pro (13-inch, 2020), Processor 1.4 GHz Quad-Core Intel Core i5, Memory 8 GB 2133 MHz LPDDR3, Graphics Intel Iris Plus Graphics 645 1536 MB.
Bibliography

[1] F. Li and R. Bo, “Small test systems for power system economic studies,” in *IEEE PES General Meeting*, 2010, pp. 1–4.

[2] California State Database. Cal Fire Data. Accessed 23 January 2022. [Online]. Available: https://www.fire.ca.gov/incidents/2021/.

[3] T. D. Liberto, “November 2020: The year is ending as it began, on a hot streak.” [Online]. Available: https://www.climate.gov/news-features/understanding-climate/november-2020-year-ending-it-began-hot-streak

[4] ———, “January 2021 outlook: Wetter and warmer than average for much of the united states.” [Online]. Available: https://www.climate.gov/news-features/features/january-2021-outlook-wetter-and-warmer-average-much-united-states

[5] L. Zaval, E. A. Keenan, E. J. Johnson, and E. U. Weber, “How warm days increase belief in global warming,” *Nature Climate Change*, vol. 4, no. 2, pp. 143–147, 2014.

[6] J. Cohen, K. Pfeiffer, and J. A. Francis, “Warm arctic episodes linked with increased frequency of extreme winter weather in the united states,” *Nature communications*, vol. 9, no. 1, pp. 1–12, 2018.
“Torrential spring rains lead to flash flooding around nashville at end of March 2021.” [Online]. Available: https://www.climate.gov/news-features/event-tracker/torrential-spring-rains-lead-flash-flooding-around-nashville-end-march

K. Thomas R., C. Maya V., V. Gabe, S. Jingru, H. Tsung-Lin, and S. Adam J. P., “Climate change is probably increasing the intensity of tropical cyclones.” [Online]. Available: https://www.climate.gov/news-features/understanding-climate/climate-change-probably-increasing-intensity-tropical-cyclones

Website, “Impacts in canada,” Climate Action Network, No Date [Online]. [Online]. Available: https://climateactionnetwork.ca/issues/impacts-and-adaptation/learning-centre/impacts-in-canada/

C. Kousky, K. Greig, B. Lingle, and K. Kunreuther, “Wildfire cost in california: The role of electric utilities,” Changes, vol. 114, pp. 4582–4590, 2018.

A. D. Syphard, J. E. Keeley, A. B. Massada, T. J. Brennan, and V. C. Radeloff, “Housing arrangement and location determine the likelihood of housing loss due to wildfire,” PLoS one, vol. 7, no. 3, p. e33954, 2012.

J. W. Mitchell, “Power line failures and catastrophic wildfires under extreme weather conditions,” Engineering Failure Analysis, vol. 35, pp. 726–735, 2013.

B. D. Russell, C. L. Benner, and J. A. Wischkaemper, “Distribution feeder caused wildfires: Mechanisms and prevention,” in 2012 65th Annual Conference for Protective Relay Engineers, 2012, pp. 43–51.

J. W. Muhs, M. Parvania, and M. Shahidehpour, “Wildfire risk mitigation: A paradigm shift in power systems planning and operation,” IEEE Open Access Journal of Power and Energy, vol. 7, pp. 366–375, 2020.
[15] S. Jazebi, F. de León, and A. Nelson, “Review of wildfire management techniques—part i: Causes, prevention, detection, suppression, and data analytics,” *IEEE Transactions on Power Delivery*, vol. 35, no. 1, pp. 430–439, 2020.

[16] A. D. Syphard and J. E. Keeley, “Location, timing and extent of wildfire vary by cause of ignition,” *International Journal of Wildland Fire*, vol. 24, no. 1, pp. 37–47, 2015.

[17] J. J. Macwilliams, S. La Monaca, and J. Kobus, “Pg&e: Market and policy perspectives on the first climate change bankruptcy,” *Columbia University Center on Global Energy Policy*, 2019.

[18] Bill AB1054, California Legislative Information. California Legislative Information. Approximated Accessed 1 November 2021. [Online]. Available: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB1054

[19] California Earthquake Authority, CEA. California Wildfire Fund, Approximated Accessed 1 November 2021. [Online]. Available: https://www.cawildfirefund.com/_files/ugd/03c726_f75c7b68d3844c488ffaaabad73a752.pdf

[20] ———. California Wildfire Fund, Approximated Accessed 1 November 2021. [Online]. Available: https://www.cawildfirefund.com/_files/ugd/754529_ddbb26842ddc44ca9250bfe6caac5c73.pdf

[21] ———. California Wildfire Fund. Approximated Accessed 1 November 2021. [Online]. Available: https://www.cawildfirefund.com/

[22] State of California, Budget Change Proposal - Cover Sheet DF-46 (REV 02/20), Budget Request Name No.3860-052-BCP-2020-MR, State of California, DWR. State of California, DWR. Approximated Accessed 1 Novem-
ber 2021. [Online]. Available: https://esd.dof.ca.gov/Documents/bcp/2021/FY2021_ORG3860_BCP3963.pdf

[23] Memorandum, State of California. Department of Water Resources, CA. Approximated Accessed 1 November 2021. [Online]. Available: https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/All-Programs/California-Energy-Resource-Scheduling/Files/Notices-and-Regulations/2021-0805-CPUC-Memo-2022-RR-EPF_ay11-Notice_Final.pdf

[24] California Earthquake Authority, CEA. California Wildfire Fund. Approximated Accessed 1 November 2021. [Online]. Available: https://www.cawildfirefund.com/

[25] Department of Water Resources, CA. Department of Water Resources, DWR. Approximated Accessed 1 November 2021. [Online]. Available: https://www.cawildfirefund.com/

[26] J. W. Muhs, M. Parvania, H. T. Nguyen, and J. A. Palmer, “Characterizing probability of wildfire ignition caused by power distribution lines,” IEEE Transactions on Power Delivery, vol. 36, no. 6, pp. 3681–3688, 2021.

[27] R. Bagri, G. Aiemjoy, and B. Wong, “PG&E Internship - part of weekly learnings.”

[28] W. Grady, M. Samotyj, and A. Noyola, “Minimizing network harmonic voltage distortion with an active power line conditioner,” IEEE Transactions on Power Delivery, vol. 6, no. 4, pp. 1690–1697, 1991.

[29] W. J. Van Leeuwen, G. M. Casady, D. G. Neary, S. Bautista, J. A. Alloza, Y. Carmel, L. Wittenberg, D. Malkinson, and B. J. Orr, “Monitoring post-wildfire
vegetation response with remotely sensed time-series data in Spain, USA and Israel,” *International Journal of Wildland Fire*, vol. 19, no. 1, pp. 75–93, 2010.

[30] L. Vlassova, F. Pérez-Cabello, M. R. Mimbrero, R. M. Llovera, and A. García-Martín, “Analysis of the relationship between land surface temperature and wildfire severity in a series of Landsat images,” *Remote Sensing*, vol. 6, no. 7, pp. 6136–6162, 2014.

[31] F. C. O’Donnell, W. T. Flatley, A. E. Springer, and P. Z. Fulé, “Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests,” *Ecological Applications*, vol. 28, no. 6, pp. 1459–1472, 2018.

[32] V. C. Radeloff, D. P. Helmers, H. A. Kramer, M. H. Mockrin, P. M. Alexandre, A. Bar-Massada, V. Butsic, T. J. Hawbaker, S. Martinuzzi, A. D. Syphard et al., “Rapid growth of the US wildland-urban interface raises wildfire risk,” *Proceedings of the National Academy of Sciences*, vol. 115, no. 13, pp. 3314–3319, 2018.

[33] S. Samiappan, L. Hathcock, G. Turnage, C. McCraine, J. Pitchford, and R. Moorhead, “Remote sensing of wildfire using a small unmanned aerial system: Post-fire mapping, vegetation recovery and damage analysis in Grand Bay, Mississippi/Alabama, USA,” *Drones*, vol. 3, no. 2, p. 43, 2019.

[34] J. Ma, J. C. Cheng, F. Jiang, V. J. Gan, M. Wang, and C. Zhai, “Real-time detection of wildfire risk caused by powerline vegetation faults using advanced machine learning techniques,” *Advanced Engineering Informatics*, vol. 44, p. 101070, 2020.

[35] D. A. Z. Vazquez, F. Qiu, N. Fan, and K. Sharp, “Wildfire mitigation plans in power systems: A literature review,” *IEEE Transactions on Power Systems*, 2022.
[36] V. Terzija and H.-J. Koglin, “On the modeling of long arc in still air and arc resistance calculation,” *IEEE Transactions on Power Delivery*, vol. 19, no. 3, pp. 1012–1017, 2004.

[37] Y.-W. Liu, C.-J. Wu, and Y.-C. Wang, “Detection of serial arc fault on low-voltage indoor power lines by using radial basis function neural network,” *International Journal of Electrical Power & Energy Systems*, vol. 83, pp. 149–157, 2016.

[38] J. W. Muhs, M. Parvania, and M. Shahidehpour, “Wildfire risk mitigation: A paradigm shift in power systems planning and operation,” *IEEE Open Access Journal of Power and Energy*, vol. 7, pp. 366–375, 2020.

[39] GFED Database. Global Wildfire Emissions Database. Approximate Accessed 23 January 2022. [Online]. Available: https://www.globalfiredata.org/data.html

[40] Civio, Database. Civio — Spain in Flames (Forests fires map). Approximate Accessed 23 January 2022. [Online]. Available: https://civio.es/en/spain-in-flames/forest-fires-map/#explora.

[41] Monitoring Trends in Burn Severity. Monitoring Trends in Burn Severity (MTBS). Approximate Accessed 23 January 2022. [Online]. Available: https://www.mtbs.gov/project-overview

[42] Database, NIFC. National Fire News — National Interagency Fire Center. Approximate Accessed 23 January 2022. [Online]. Available: https://www.nifc.gov/fire-information/nfn.

[43] Database, NIFC, Wildfires and acres. National Interagency Fire Center. Approximate Accessed 23 January 2022. [Online]. Available: https://www.nifc.gov/fire-information/statistics/wildfires.
[44] J. Mandel, M. Chen, L. P. Franca, C. Johns, A. Puhalskii, J. L. Coen, C. C. Douglas, R. Kremens, A. Vodacek, and W. Zhao, “A note on dynamic data driven wildfire modeling,” in International Conference on Computational Science. Springer, 2004, pp. 725–731.

[45] US Census Data, US Census Bureau. US Census Bureau. Approximate Accessed 23 January 2022. [Online]. Available: https://data.census.gov/cedsci/profile?g=0400000US06

[46] K. J. Arrow, “Risk perception in psychology and economics.” STANFORD UNIV CA INST FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES, Tech. Rep., 1981.

[47] C. Gollier, The economics of risk and time. MIT press, 2001.

[48] S. Mishra, “Decision-making under risk: Integrating perspectives from biology, economics, and psychology,” Personality and Social Psychology Review, vol. 18, no. 3, pp. 280–307, 2014.

[49] G. Xu and X. Zhong, “Real-time wildfire detection and tracking in australia using geostationary satellite: Himawari-8,” Remote Sensing Letters, vol. 8, no. 11, pp. 1052–1061, 2017.

[50] K. S. Yankovich, E. P. Yankovich, and N. V. Baranovskiy, “Classification of vegetation to estimate forest fire danger using landsat 8 images: Case study,” Mathematical Problems in Engineering, vol. 2019, 2019.

[51] J. D. Miller, H. Safford, M. Crimmins, and A. E. Thode, “Quantitative evidence for increasing forest fire severity in the sierra nevada and southern cascade mountains, california and nevada, usa,” Ecosystems, vol. 12, no. 1, pp. 16–32, 2009.
[52] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He, “Short-term load forecasting with deep residual networks,” *IEEE Transactions on Smart Grid*, vol. 10, no. 4, pp. 3943–3952, 2018.

[53] V. Khryashchev, V. Pavlov, A. Ostrovskaya, and R. Larionov, “Forest areas segmentation on aerial images by deep learning,” in *2019 IEEE East-West Design Test Symposium (EWDTS)*, 2019, pp. 1–5.

[54] V. Khryashchev and R. Larionov, “Wildfire segmentation on satellite images using deep learning,” in *2020 Moscow Workshop on Electronic and Networking Technologies (MWENT)*, 2020, pp. 1–5.

[55] R. S. priya and K. Vani, “Deep learning based forest fire classification and detection in satellite images,” in *2019 11th International Conference on Advanced Computing (ICoAC)*, 2019, pp. 61–65.

[56] N. S. Wyniawskyj, M. Napiorkowska, D. Petit, P. Podder, and P. Marti, “Forest monitoring in guatemala using satellite imagery and deep learning,” in *IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium*, 2019, pp. 6598–6601.

[57] D. Sathyanarayanan, D. Anudeep, C. A. Keshav Das, S. Bhanadarkar, U. D, R. Hebbar, and K. G. Raj, “A multiclass deep learning approach for lulc classification of multispectral satellite images,” in *2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)*, 2020, pp. 102–105.

[58] G. Wong-Parodi, “When climate change adaptation becomes a “looming threat” to society: Exploring views and responses to california wildfires and public safety power shutoffs,” *Energy Research & Social Science*, vol. 70, p. 101757, 2020.
[59] S. Tandon, S. Grijalva, and D. K. Molzahn, “Motivating the use of dynamic line ratings to mitigate the risk of wildfire ignition,” in 2021 IEEE Power and Energy Conference at Illinois (PECI). IEEE, 2021, pp. 1–7.

[60] Shelby Chase. California Public Utilies Commission, CPUC Data. Approximate Accessed 23 January 2022. [Online]. Available: https://www.cpuc.ca.gov/consumer-support/psp

[61] Shelby Chase, CPUC Employee. California Public Utility Commision. Personal Communication, received data 8 March 2022.

[62] Q. Wang, G. Zhang, J. D. McCalley, T. Zheng, and E. Litvinov, “Risk-based locational marginal pricing and congestion management,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2518–2528, 2014.

[63] Y. Chen, “Lecture notes in dispatch, ece275 - energy market, policy and modelling,” 2020.

[64] A. Bakirtzis, V. Petridis, and S. Kazarlis, “Genetic algorithm solution to the economic dispatch problem,” IEE proceedings-generation, transmission and distribution, vol. 141, no. 4, pp. 377–382, 1994.

[65] S. Yang, S. Tan, and J.-X. Xu, “Consensus based approach for economic dispatch problem in a smart grid,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4416–4426, 2013.

[66] X. Xia and A. Elaiw, “Optimal dynamic economic dispatch of generation: A review,” Electric power systems research, vol. 80, no. 8, pp. 975–986, 2010.
[67] M. Abido, “Multiobjective particle swarm optimization for environmental/economic dispatch problem,” Electric Power Systems Research, vol. 79, no. 7, pp. 1105–1113, 2009.

[68] Y. Chen, B. F. Hobbs, S. Leyffer, and T. S. Munson, “Leader-follower equilibria for electric power and no x allowances markets,” Computational Management Science, vol. 3, no. 4, pp. 307–330, 2006.

[69] Y. Chen, “Lecture notes in network, ece275 - energy market, policy and modelling,” 2020.

[70] Q. Gong, “Lecture 16 - 18, am230 - constrained optimization theory,” 2021.

[71] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, 2011.