Sentinel lymph node biopsy in vulval cancer: systematic review and meta-analysis

C Meads1, A J Sutton2, A N Rosenthal3, S Malysiak4, M Kowalska4, A Zapalska4, E Rogozińska1, P Baldwin5, R Ganesan6, E Borowiack3, P Barton2, T Roberts2, K Khan1 and S Sundar*,6

1Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; 2Unit of Health Economics, University of Birmingham, Birmingham, UK; 3Barts Cancer Institute, London, UK; 4Arcana Institute, Kracow, Poland; 5Addenbrooke’s Hospital NHS Trust, Cambridge, UK and 6Pan Birmingham Gynaecological Cancer Centre, City Hospital and School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK

Background: The purpose of this study was to determine the accuracy of sentinel lymph node (SLN) biopsy with technetium 99 (99mTc) and/or blue dye-enhanced lymphoscintigraphy in vulval cancer.

Methods: Sensitive searches of databases were performed up to October 2013. Studies with at least 75% of women with FIGO stage IB or II vulval cancer evaluating SLN biopsy with 99mTc, blue dye or both with reference standard of inguinofemoral lymphadenectomy (IFL) or clinical follow-up were included. Meta-analyses were performed using Meta-Disc version 1.4.

Results: Of the 2950 references, 29 studies (1779 women) were included; most of them evaluated 99mTc combined with blue dye. Of these, 24 studies reported results for SLN followed by IFL, and 5 reported clinical follow-up only for SLN negatives. Pooling of all studies was inappropriate because of heterogeneity. Mean SLN detection rates were 94.0% for 99mTc, 68.7% for blue dye and 97.7% for both. SLN biopsy had pooled sensitivity of 95% (95% CI 92–98%) with negative predictive value (NPV) of 97.9% in studies using 99mTc/blue dye, ultrastaging and immunohistochemistry with IFL as reference. Pooled sensitivity for SLN with clinical follow-up for SLN-negatives was 91% (85–95%) with NPV 95.6%. Patients undergoing SLN biopsy experienced less morbidity than those undergoing IFL.

Conclusions: Sentinel lymph node biopsy using 99mTc, blue dye and ultrastaging with immunohistochemistry is highly accurate when restricted to carefully selected patients, within a rigorous protocol, with close follow-up and where sufficient numbers for learning curve optimisation exist. Patients must make an informed choice between the slightly higher groin recurrence rates of SLN biopsy vs the greater morbidity of IFL.

Vulval cancer accounts for ~3–5% of all gynaecological malignancies and 1% of all cancers in women, with an estimated 27 000 women diagnosed each year (Berek and Hacker, 2005). Standard treatment for squamous cell carcinoma of the vulva involves excision of the primary tumour and inguinofemoral lymphadenectomy (IFL) in all but FIGO stage 1a or superficially invasive disease. Groin lymph node status has been identified as the most important factor in predicting mortality attributable to vulval cancer (Royal College of Obstetricians and Gynaecologists, 1999). The efficacy of this treatment is good, with reported groin recurrence rates varying between 1% and 10% (Burger et al, 1995; Bell et al, 2000). However, only a third of patients with early-stage disease will have lymph node metastases, and the remainder will not benefit from elective IFL while risking significant morbidity (de Hullu et al, 2006; van der Zee et al, 2008). Complications affect over 50% of patients having IFL, including infection of groin wounds, wound breakdown, lymphocyst formation, lymphoedema and cellulitis (Gould et al, 2001; Pereira de Godoy et al, 2002; Gaarenstroom et al, 2003; Beesley et al, 2007).

*Correspondence: Dr S Sundar; E-mail: s.s.sundar@bham.ac.uk

Received 23 May 2013; revised 19 March 2014; accepted 24 March 2014; published online 27 May 2014

© 2014 Cancer Research UK. All rights reserved 0007 – 0920/14

Keywords: vulval cancer; sentinel node; ultrastaging; technetium; morbidity; groin node; inguinofemoral lymphadenectomy; blue dye
Inguinofemoral lymphadenectomy is the standard of care because unrecognised disease in the inguinal lymph nodes is usually fatal. A sentinel lymph node (SLN) refers to the first lymph node that receives drainage directly from the primary tumour and therefore has the highest probability of containing metastatic disease. The SLNs can be identified by lymphoscintigraphy using the radioactive tracer Technetium 99mTc and/or with blue dye. The lymph node obtained can be examined using standard histopathology with haematoxylin and eosin (H&E), frozen section or enhanced testing (ultrastaging) with serial sectioning of the lymph node and immunohistochemistry for cytokeratins. Accurate identification of the sentinel node in early-stage vulval cancer may potentially spare the patient from undergoing IFL with its associated morbidity. The diagnostic performance of SLN biopsy in the ‘real-world’ setting to guide omission of IFL where the SLN is negative is also not fully established, but is the subject of on-going multicentre studies (GOG-0270 and GROINSS V11). We conducted a systematic review to evaluate the accuracy of SLN biopsy in vulval cancer.

MATERIALS AND METHODS

Protocol development and overview. A protocol was developed for undertaking systematic reviews of test accuracy, diagnostic and therapeutic impact. Scoping searches for relevant systematic reviews were conducted in MEDLINE, EMBASE and the Cochrane Library. Systematic reviews were carried out using established methods (Higgins and Green, 2011; Diagnostic Test Accuracy Working Group, 2012). Presentation of results is according to the PRISMA guidelines (Moher et al, 2009). Inclusion of studies, data extraction and quality assessment were carried out in duplicate using predefined and piloted data extraction sheets with differences resolved by consensus and/or arbitration involving a third reviewer. A two-stage process was used, firstly by screening titles and abstracts. For all references categorised as ‘include’ or ‘uncertain’ by both reviewers, full text was retrieved wherever possible and final inclusion decisions were made on the full paper.

Search strategy, inclusion and exclusion criteria and quality assessment. Comprehensive searches from the inception of database to 25 October 2013 were conducted in MEDLINE, EMBASE and the Cochrane Library. Systematic reviews were carried out using established methods (Higgins and Green, 2011; Diagnostic Test Accuracy Working Group, 2012). Presentation of results is according to the PRISMA guidelines (Moher et al, 2009). Inclusion of studies, data extraction and quality assessment were carried out in duplicate using predefined and piloted data extraction sheets with differences resolved by consensus and/or arbitration involving a third reviewer. A two-stage process was used, firstly by screening titles and abstracts. For all references categorised as ‘include’ or ‘uncertain’ by both reviewers, full text was retrieved wherever possible and final inclusion decisions were made on the full paper.

Characteristics of included studies. There were 2950 citations identified from searches, of which 82 full papers were obtained and 29 relevant studies (38 publications) were included. Figure 1 displays the PRISMA diagram. Most studies were small with <50 patients, but there were 3 larger studies with 127 patients (Hampel et al, 2008), 452 patients (269 with tumours under 4 cm; Levenback et al, 2012) and 403 patients (van der Zee et al, 2008). The characteristics of the studies are presented in Supplementary Tables 1 and 2. Patients with early-stage vulval cancer varied between 86% and 100% of subjects, with 18 out of 29 (62%) studies having all patients at early stage. Where reported, tumour locations were evenly spread between midline or lateral positions. The most commonly reported tumour types were squamous cell carcinoma. Either TNM and FIGO staging alone or a combination of both were given in all studies.

Index tests and histopathological techniques used for SLN biopsy, and reference standards used in each of the studies are summarised in Table 1. Out of 29 studies, 24 presented results for both blue dye and 99mTc tests for SLN identification, although not all patients underwent both tests in every study. Presentation of results varied considerably. In 21 studies, detection rates per groin were presented for each test separately, and both tests combined. It is worth noting that SLN’s were always subject to rigorous examination, whereas histopathological techniques for corresponding IFL nodes were less detailed and were assumed to be H&E unless otherwise stated.

Quality of included studies. Quality assessment is reported in Supplementary Table 3. Of the 29 included studies, 4 had no
information about histopathological methods (Pitynski et al., 2003; Nyberg et al., 2007; Vakselj and Bebar, 2007; Camara et al., 2009). One study used frozen section as reference standard (Camara et al., 2009). In 19 studies, upon negative H&E, immunohistochemistry using antibodies such as AE1, AE3, S-100, HMB-45, Mab, CKMNF, CK-88 and EMA was performed. In others, additional sections/ultrastaging was used if samples were negative by H&E staining and standard sectioning. Thickness of slices varied between studies. Only de Hullu et al. (2000) achieved blinding of pathologists.

Test accuracy results. Reporting of results was frequently ambiguous, making it difficult to distinguish between patients who had no SLN detected from those with negative SLN biopsy on histology. Results of test accuracy are presented on the basis of detected SLN. In all, 24 studies evaluated the test accuracy of SLN with IFL for all, and 5 studies evaluated SLN with clinical follow-up for test-negative patients and IFL for patients with malignancy detected in SLN biopsy (Van den Eynden et al., 2003; Terada et al., 2006; Moore et al., 2008; van der Zee et al., 2008; Achimas-Cadariu et al., 2009). For calculation of sensitivity and specificity, studies have been categorised into groups by the reference standards used, the index test used and the histopathological techniques used as follows:

1. Inguinofemoral lymphadenectomy for all
 - Technetium 99 with blue dye (Supplementary Table 4)
 - Haematoxylin and eosin only or insufficient details to determine whether immunohistochemistry or ultrastaging were used
 - Immunohistochemistry
 - Frozen section only
 - Immunohistochemistry with ultrastaging
 - Technetium 99 only (Supplementary Table 5)
 - Haematoxylin and eosin only or insufficient details to determine whether immunohistochemistry or ultrastaging were used
 - Immunohistochemistry
 - Blue dye only (Supplementary Table 6)
 - Immunohistochemistry with ultrastaging

2. Inguinofemoral lymphadenectomy for SN positive and clinical follow-up for SLN negative (Supplementary Table 7)
 - Technetium 99 and blue dye
 - Immunohistochemistry
 - Ultrastaging

Point estimates of specificity are 100%. The ROC plane was unhelpful and not presented. Although the point estimates of sensitivity are close to 100%, confidence intervals were wide, reflecting the small sample sizes available.

The SLN detection rates for each of the analysed techniques (blue dye, 99mTc and blue dye/99mTc) are presented in Table 2. The detection rate calculated per patient was available in all included studies. Combined blue dye and 99mTc testing had the highest rate of SLN detection. Pooled rates are 94.0% for 99mTc (95% CI 90.5–96.4), 68.7% for blue dye alone (95% CI 63.1–74.0) and 97.7 (95% CI 96.6–98.5) for 99mTc and blue dye combined.

Training and experience. Studies commonly specified the first 10 cases as learning curve (Hampl et al., 2008; van der Zee et al., 2008; Achimas-Cadariu et al., 2009), after which SLN biopsy without IFL could be performed. Only Levenback et al. (2001) calculated that...
Number	Author and year of publication	99mTc	Blue dye	Both together	Histopathological techniques – SLN	Histopathological techniques – remaining nodes	Type of surgery (or radiotherapy)
1	Achimas-Cadariu et al (2009)	X	X	H&E, ultrastaging	NR	Radical vulvectomy (58%), ‘modified’ (41%)	
2	Basta et al (2005)	X*	X*	SLN immunochemical stain for micrometastases	NR	NR	
3	Brunner et al (2008)	X (91%)	X (9%)	Frozen sections, H&E and, if – ve, immunohistochemistry for cytokeratins	Routine techniques	NR	
4	Camara et al (2009)	X	X	Frozen section	NR	NR	
5	Crosbie et al (2010)	X	X	H&E and, if – ve, with additional sections and immunohistochemistry for cytokeratins AE1-3	NR	Radical excision (47%), unclear (53%)	
6	de Cicco et al (2000)	X	H&E	H&E	H&E	Wide radical excision, hemivulvectomy or radical vulvectomy	
7	de Hullu et al (2000)	X	X	H&E and, if – ve, with additional sections and immunohistochemistry for cytokeratins AE1-3	H&E	Radical excision (100%)	
8	Hampl et al (2008)	X	X	H&E and, if – ve, with additional sections and immunohistochemistry for pancytokeratin antibody	NR	Hemivulvectomy (35%), vulvectomy (35%), local tumour resection (30%)	
9	Hauspy et al (2007)	X	X	Frozen section then serial sections H&E and immunohistochemistry for cytokeratins AE1-3 for some sections	H&E	Wide local excision (76%), radical vulvectomy (20%), radiotherapy (5%)	
10	Johann et al (2008)	X		Step sectioning	Step sectioning	Radical vulvectomy (30%), hemivulvectomy (57%), wide excision (13%)	
11	Klat et al (2009)	X	H&E, ultrastaging and immunohistochemistry for cytokeratins AE1-3	NR	Radical surgery (100%)		
12	Levenback et al (2001)	X		Frozen section if suspicious, step sectioning and some immunohistochemistry using several protocols	NR	NR	
13	Lindell et al (2010)	X (22%)	X (78%)	Step sections, H&E and, if – ve, immunohistochemistry for cytokeratin MNF116	H&E	Vulvectomy (47%), hemivulvectomy (31%), wide local excision (22%)	
14	Louis-Sylvestre et al (2006)	X (21%)	X (79%)	Serial sections, H&E and immunohistochemistry for cytokeratins AE1 and AE3	NR	NR	
15	Martinez-Palones et al (2006)	X		0.2 mm sections, H&E and, if – ve, immunohistochemistry for cytokeratin and membrane epithelial antigen	NR	NR	
16	Meriso et al (2005)	X	H&E, ultrastaging, immunohistochemistry for cytokeratins in 50%	Standard techniques	Radical vulvectomy or radical vulval excision (percentages NR)		
the rate of SLN detection was worse in the first 2 years of the study (failure rate 16% vs 7%).

Recurrence rates following SLN biopsy. Two groups presented recurrences at follow-up. The first group used full IFL at initial operation to establish diagnostic accuracy, but also presented follow-up data (Martinez-Palonez et al, 2006; Vakselj and Bebar, 2007; Vidal-Sicart et al, 2007; Klat et al, 2009; Crosbie et al, 2010). The second group used clinical follow-up for SLN-negative patients to establish diagnostic accuracy (Van den Eynden et al, 2003; Terada et al, 2006; Moore et al, 2008; van der Zee et al, 2008; Achimas-Cadariu et al, 2009). In the first group, number of recurrences seen (18) was less than the number of SLN-positive patients (36) in the 4 studies that present follow-up data by SLN status (Martinez-Palonez et al, 2006; Vakselj and Bebar, 2007; Klat et al, 2009; Crosbie et al, 2010). The SLN-negative patients developed recurrence in 3 of these 4 studies (Martinez-Palonez et al, 2006; Vakselj and Bebar, 2007; Klat et al, 2009). Of these, two studies showed a higher recurrence rate in SLN-negative patients than in patients who underwent IFL after false-negative SLN biopsies (Martinez-Palonez et al, 2006; Vakselj and Bebar, 2007). This may imply a therapeutic benefit to IFL or the confounding effect of adjuvant radiotherapy.

In the second group with clinical follow-up for SLN-negative patients, recurrence rates for groin and distant recurrence were calculated (Supplementary Table 7). Pooled sensitivity from SLN with clinical follow-up (91% CI 85%–95%) is comparable to estimates where patients received IFL as the gold standard (pooled sensitivity of 95% (92–98%), but with a lower NPV (95.3% vs NPV of 97.9%; see Figures 2 and 3).

Number	Author and year of publication	99mTc	Blue dye	Both together	Histopathological techniques – SLN	Histopathological techniques – remaining nodes	Type of surgery (or radiotherapy)
17	Moore et al (2008)	X			H&E and ultrastaging	NR	Radical vulvectomy or radiovulval excision (percentages NR)
18	Nyberg et al (2007)	X (20%)	X (80%)		Histopathology	NR	NR
19	Pitynski et al (2003)	X (14%)	X (86%)		H&E in 50% slices, H&E and immunohistochemistry in other 50% slices	H&E in 50% slices, H&E and immunohistochemistry in other 50% slices	NR
20	Radziszewski et al (2010)	X			Frozen section then serial sections, H&E and immunohistochemistry on every third slice	H&E	NR
21	Rob et al (2007)	X (27%)	X (73%)		Multiple slices, H&E and, if ve, immunohistochemistry with cytokeratin antigen	NR	NR
22	Terada et al (2006)	X			Multiple slices, H&E and, if ve, immunohistochemistry with cytokeratin antigen	NR	NR
23	Vakselj and Bebar (2007)	X			H&E and, if ve, ultrastaging, and immunohistochemistry for cytokeratins AE1 and AE3	NR	Tumour excised (100%)
24	Van den Eynden et al (2003)	X			H&E and, if ve, ultrastaging, and immunohistochemistry for cytokeratins AE1 and AE3	NR	NR
25	van der Zee et al (2008)	X			Frozen section or routine histopathology, ultrastaging	H&E	Radical excision (100%)
26	Vidal-Sicart et al (2007)	X			Multiple slices, H&E and, if ve, H&E with immunohistochemistry	H&E	Radical vulvectomy or radical vulval excision (percentages NR)
27	Klar et al (2011)	X			Frozen section or routine histopathology and, if ve, then ultrastaging and immunohistochemistry with cytokeratin	H&E	Radical excision (100%)
28	Levenback et al (2012)	X	X	X	H&E and, if ve, ultrastaging and immunohistochemistry with cytokeratin	NR	NR
29	Zekan et al (2012)	X			Multiple slices, H&E and, if ve, immunohistochemistry with cytokeratin	H&E	Radical excision (100%)

Abbreviations: 99mTc = technetium 99; H&E = haematoxylin and eosin staining; NR = not recorded; SLN = sentinel lymph node.

The 99mTc and blue dye discrepant results are shown in text and table.
Survival rates. Nine studies gave information about survival (Martinez-Palonez et al., 2006; Terada et al., 2006; Vakselj and Bebar, 2007; Moore et al., 2008; van der Zee et al., 2008; Achimas-Cadariu et al., 2009; Klat et al., 2009; Crosbie et al., 2010; Oonk et al., 2010). All studies were consistent with a relatively low survival rate for patients with groin relapse. Deaths were reported by Achimas-Cadariu et al. (2009) (12 out of 46 patients, survival 61.2 months for whole cohort and 16.2 months for 8 patients with relapse), Crosbie et al. (2010) (2 out of 32 patients, follow-up 62 months), Klat et al. (2009) (1 out of 23 patients,
follow-up 8–46 months), Moore et al (2008) (1 out of 35 patients died of intercurrent disease, follow-up 29 months), Terada et al (2006) (follow-up 55 months, 2/3 node-positive patients died of cancer), Vakselj and Bebar (2007) (6 out of 10 node-positive patients, 2 out of 25 node-negative patients, 1 died of disease at 49 months) and Vidal-Sicart et al (2007) (1 out of 50 patients died of disease, follow-up 20 months).

The largest study presented disease-specific survival for node-negative patients with a median follow-up of 35 months, with 202 out of 276 (73.2%) patients having at least 24 months of follow-up (van der Zee et al, 2008). The 3-year disease-specific survival for patients with unifocal vulval disease and negative SLN was 97.0%. In a subsequent paper, 5-year disease-specific survival was 77.3% when malignant SLN were identified by routine pathology and 92.1% when identified by ultrastaging, and was higher with size of SLN metastases >2 mm (Oonk et al, 2010).

Quality of life. One study (62 patients) investigating quality of life found few differences between SLN and IFL with EORTC QLQ-C30; only the financial difficulties scale was statistically significantly worse in the IFL group. For the FACT-V questionnaire, there were significantly worse results for the contentment functional scale, and oedema, complaints and stockings symptom scales (Oonk et al, 2009).

Adverse events. Information about adverse events was generally poorly reported. Eight studies (Table 3) provided data (Van den Eynden et al, 2003; Terada et al, 2006; Brunner et al, 2008; Johann et al, 2008; Moore et al, 2008; van der Zee et al, 2008; Achimas-Cadariu et al, 2009; Crosbie et al, 2010). Patients undergoing IFL had worse morbidity than those undergoing SLN alone. Definitions of morbidity are not standardised, and therefore statistical comparisons were not possible.

DISCUSSION

This systematic review comprises 29 studies with information on test accuracy of 99mTc and/or blue dye identification of SLN biopsy with reference standard of either IFL for all (24 studies) or IFL for SLN-positive nodes (containing metastases) and clinical follow-up for SLN-negative nodes (5 studies). There were, in effect, three index tests (99mTc, blue dye and...

Table 3. Summary of adverse events from SLN or SLN biopsy with IFL

Author and year of publication	Complications	SLN alone	SLN biopsy + IFL
van der Zee et al (2008); Brunner et al (2008); Achimas-Cadariu et al (2009); Moore et al (2008); Terada et al, 2006; Van den Eynden et al (2003); Johann et al (2008); Crosbie et al (2010)	Short-term adverse events*	Transient lymph oedema (13%), wound breakdown (11.7%) and wound cellulitis (4.5%)	Transient lymph oedema (39%), postoperative groin lymphocele (5.5%), cellulitis arising in the labia majora (2.8%), wound cellulitis (9.5%) and seroma (4.3%), wound breakdown (34%) and wound cellulitis (21.3%), cellulitis (5.9%) and lymphocele (11.8%)
	Longer-term adverse events*	Lymphoedema (1.9%) and recurrent erysipelas (0.4%)	Wound infection (31%), wound dehiscence (25%), lymphocyst (22%) and chronic lymphoedema (16%), lymphoedema (25.2%) and recurrent erysipelas (16.2%)

*As defined by the papers.

Abbreviations: IFL = inguinofemoral lymphadenectomy; SLN = sentinel lymph node.
show a higher FN rate of 9% with clinical follow-up for SLN biopsy negatives, reflecting pooled estimates from smaller studies and highlighting the importance of the learning curve effect. Gynaecological oncologists will value the clinical utility of knowing the FN rate of SLN in counselling patients.

It is also uncertain whether patients would rather risk groin metastases by forgoing IFL if they are SLN negative. One small study surveyed 106 patients who had undergone IFL as part of treatment; 66% would recommend IFL if the risk of missing metastasis from SLN biopsy was 1 in 80 and 84% would recommend IFL if the risk of missing metastasis from SLN biopsy was 1 in 8. Age and the presence or degree of side effects experienced by the patients surveyed, including 39% with severe lymphoedema and 28% with severe pain, did not affect preferences for each procedure (de Hullu et al, 2001). Further research on factors that influence lymphatic spread, for example, age, stage of disease and grade of tumour and exploration of patient’s preferences, may aid decision making in the individual patient. Sophisticated quality-of-life studies need to investigate the impact of SLN vs IFL in patients.

At this stage, given the relatively small numbers of studies evaluating SLN with clinical follow-up, SLN should only be implemented within a research protocol, for unifocal tumours < 4 cm, at selected centres with sufficient numbers and expertise to establish quality control. Careful patient counselling is essential, referring to the trade-off between morbidity from lymphadenectomy and the slightly higher rate of recurrence with SLN biopsy. Consensus standards for histopathological examination and reporting for SLN and IFL nodes are urgently needed, particularly with regard to ultrastaging and immunohistochemistry protocols. Given the higher recurrence rate in patients receiving SLN biopsy, we recommend that where patients have opted for SLN only and have not undergone full IFL, and the SLN is negative, they should be followed-up at close intervals (e.g., 2-monthly for 2 years) to detect any missed groin node metastases early, and facilitate an attempt at salvage therapy. In the absence of data to guide optimal method of follow-up (clinical vs imaging), careful clinical monitoring would seem pragmatic.

ACKNOWLEDGEMENTS

We thank Anne Fry-Smith for devising original searches and Nicola Ager at Sandwell and West Birmingham Hospital NHS trust for bringing searches up to date; Shakila Thangaratnam for writing original bid and protocol; Marian Ellis for providing patient input to the protocol; Tara Selman for the original PhD work leading up to the development of this research; and Kottekattalu Balan for providing clinical input to the protocol. This study was funded by Health Technology Assessment, National Institute of Health Research, United Kingdom (project number 09/112/03).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Achimas-Cadariu P, Harter P, Fisseler-Eckhoff A, Beutel B, Traut A, Du BA (2009) Assessment of the sentinel lymph node in patients with invasive squamous carcinoma of the vulva. Acta Obstet Gynecol Scand 88: 1209–1214.
Bass SS, Cox CE, Ku NN, Berman C, Reintgen DS (1999) The role of sentinel lymph node biopsy in breast cancer. J Am Coll Surg 189: 183–194.

Basta A, Pitynski K, Basta P, Hubalewska-Hola A, Oplawska M, Przeszlakowski D (2005) Sentinel node in gynaecological oncology. Rep Pract Oncol Radiother 10: 1–4.

Beesley V, Janda M, Eakin E, Obermair A, Battistutta D (2007) Lymphedema after gynecological cancer treatment: prevalence, correlates, and supportive care needs. Cancer 109(12): 2607–2614.

Bell JG, Lea JS, Reid GC (2000) Complete groin lymphadenectomy with preservation of the fascia lata in the treatment of vulvar carcinoma. Gynecol Oncol 77: 314–318.

Berek JS, Hacker NF (eds) (2005) (eds) Practical Gynecologic Oncology. 4th edn. Williams & Wilkins: Philadelphia.

Brest SJ, Hacker NF (2005) Radioguided sentinel lymph node biopsy in vulvar cancer: a pilot study. Eur J Gynaecol Oncol 30: 622–624.

Brock EJ, Winter-Roach B, Sengupta P, Sikand KA, Carrington B, Murby R, Slade RJ (2010) The accuracy of the sentinel node procedure after excision biopsy in squamous cell carcinoma of the vulva. Surg Oncol 19: e130–e154.

de Cicco C, Sideri M, Bartolomei M, Grana C, Cremonesi M, Fiorenza M, Maggioni A, Bocciolone L, Mangioni C, Colombo N, Paganelli G (2000) Sentinel node biopsy in early vulvar cancer. Br J Cancer 82: 295–299.

de du Hullu JA, Ansink AC, Tynstra T, van der Zee AG (2001) What doctors and patients think about false-negative sentinel lymph nodes in vulvar cancer. J Psychosom Obstet Gynecol 22: 199–203.

de du Hullu JA, Hollema H, Piers DA, Verheijen RH, van Diest PJ, Mourits MJ, Alders JG, van der Zee AG (2000) Sentinel lymph node procedure is highly accurate in squamous cell carcinoma of the vulva. J Clin Oncol 18: 2811–2816.

de du Hullu JA, Van Der Avoort IA, Oonk MH, van Hemel BM, Van DV, Hermans RH, van der Putten HW, Drouin P, Runnebaum IB (2009) Sentinel lymph node biopsy in vulvar cancer: a prospective trial. J Clin Oncol 103: 865–870.

Meads CA, Davenport CF (2009) Quality assessment of diagnostic before-after studies: development of methodology in the context of a systematic review. BMC Med Res Methodol 9: 3.

Merisio C, Berretta R, Gualdi M, Pultorac D, Anfuso S, Agenese G, Aprile C, Mereu L, Salamano S, Tatoe S, Melpignano M (2005) Radioguided sentinel lymph node detection in vulvar cancer. Int J Gynecol Cancer 15: 493–497.

Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62: 1006–1012.

Moore RG, Robison K, Brown AK, Disilvestro P, Steinhoff M, Noto R, Brard L, Granai CO (2008) Isolated sentinel lymph node dissection with conservative management in patients with squamous cell carcinoma of the vulva: a prospective trial. Gynecol Oncol 109: 65–70.

Nyberg RH, Ivonen M, Parkkinen J, Kuoppala T, Maenpa N (2007) Sentinel node and vulvar cancer: a series of 47 patients. Acta Obstet Scand 86: 615–619.

Oonk MH, Van Hemel BM, Hollema H, de Hullu JA, Ansink AC, Verseval HRE, Maggioni A, Gaarenstroom KN, Baldwin PJ, van Dorst EB, Van DV, Hermans RH, van der Putten HW, Drouin P, Runnebaum IB, Sluter WJ, van der Zee AG (2010) Size of sentinel-node metastasis and chances of non-sentinel-node involvement and survival in early stage vulvar cancer: results from GROINSS-V, a multicentre observational study. Lancet Oncol 11: 646–652.

Oonk MH, Van OMA, de Bock GH, de Hullu JA, Ansink AC, van der Zee AG (2009) A comparison of quality of life between vulvar cancer patients after sentinel lymph node procedure only andinguino-femoral lymphadenectomy. Gynecol Oncol 113: 301–305.

Przeszlakowski D (2005) Sentinel node biopsy in vulval cancer. Gynecol Oncol 103: 865–870.

Pereira de Godoy BN, Braile DM, de Fatima Godoy M, Longo J (2002) Quality of life and peripheral lymphoedema. Lymphology 35: 72–75.

Pitynski K, Basta A, Oplawska M, Przeszlakowski D, Hubalewska-Hola A, Krzyztopowicz W (2003) [Lymph node mapping and sentinel node detection in carcinoma of the cervix, endometrium and vulva]. Ginekol Pol 74: 830–835.

Radziszewski J, Kowalewska M, Jedrzejczak T, Kozlowicz-Gudzinska I, Nasierowska-Guttmejer A, Bidzinski M, Siedlecki JA (2010) The accuracy of the sentinel lymph node concept in early stage squamous cell vulvar carcinoma. Gynecol Oncol 116: 473–477.

Rob L, Robova H, Pluta M, Strnad P, Kacirek J, Skapa P, Taborska K (2007) Further data on sentinel lymph node mapping in vulvar cancer by blue dye and radiocolloid Tc99. Int J Gynecol Cancer 17: 147–153.

Royal College of Obstetricians and Gynaecologists (1999) Management of vulval cancer.

Terada KY, Shimizu DM, Jiang CS, Wong JH (2006) Outcomes for patients with T1 squamous cell carcinoma of the vulva undergoing sentinel node biopsy. Gynecol Oncol 102: 200–203.

Vakselj A, Bebar S (2007) The role of sentinel lymph node detection in vulvar carcinoma and the experiences at the Institute of Oncology Ljubljana. Radiol Oncol 41: 167–173.

Van den Eynden J, Lanno I, Amant F, Stroobants S, Vergote I (2003) [Sentinel node biopsy in the treatment of vulvar cancer]. Tijdtschr voor Geneeskunde 59: 1169–1178.
van der Zee AG, Oonk MH, de Hullu JA, Ansink AC, Vergote I, Verheijen RH, Maggioni A, Gaarenstroom KN, Baldwin PJ, Van Dorst EB, Van DV, Hermans RH, Van Der Putten H, Drouin P, Schneider A, Sluiter WI (2008) Sentinel node dissection is safe in the treatment of early-stage vulvar cancer. *J Clin Oncol* **26**: 884–889.

Vidal-Sicart S, Puig-Tintore LM, Lejarcegui JA, Paredes P, Ortega ML, Munoz A, Ordi J, Fuste P, Ortin J, Duch J, Martin F, Pons F (2007) Validation and application of the sentinel lymph node concept in malignant vulvar tumours. *Eur J Nucl Med Mol Imaging* **34**: 384–391.

Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J (2010) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. *BMC Med Res Methodol* **3**: 25.

Zekan J, Mutvar A, Huic D, Petrovic D, Karelovic D, Mitrovic I (2012) Reliability of sentinel node assay in vulvar cancer: the first Croatian validation trial. *Gynecol Oncol* **126**: 99–102.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)