Research Article

New Bounds for the Randić Index of Graphs

Maryam Atapour,1 Akbar Jahanbani,2 and Rana Khoeilar2

1Department of Mathematics and Computer Science, Basic Science Faculty University of Bonab, P.O. Box 55513-95133, Bonab, Iran
2Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

Correspondence should be addressed to Maryam Atapour; maryam.atapour@gmail.com

Received 29 March 2021; Accepted 6 August 2021; Published 13 August 2021

Academic Editor: Barbara Martinucci

The Randić index of a graph G is defined as the sum of weights $1/\sqrt{d_u d_v}$ over all edges uv of G, where d_u and d_v are the degrees of the vertices u and v in G, respectively. In this paper, we will obtain lower and upper bounds for the Randić index in terms of size, maximum degree, and minimum degree. Moreover, we obtain a generally lower and a general upper bound for the Randić index.

1. Introduction

Let G be a simple graph with a vertex set $V = V(G)$ and edge set $E(G)$. The integers $n = n(G) = |V(G)|$ and $m = m(G) = |E(G)|$ are the order and the size of the graph G, respectively. The open neighborhood of vertex v is $N_G(v) = N(v) = \{u \in V(G) | uv \in E(G)\}$, and the degree of v is $d_G(v) = d_v = |N(v)|$. One of the most active fields of research in contemporary chemical graph theory is the study of topological indices of graph invariants that can be used for describing and predicting physicochemical and pharmacologic properties of organic compounds. Topological indices have been used and have been shown to give a high degree of predictability of pharmaceutical properties. In 1947, Wiener [1] conceived the first molecular graph-based structure descriptor, eventually named the “Wiener index.” The information on the chemical constitution of the molecule is conventionally represented by a molecular graph. Graph theory was successfully provided by the chemist with a variety of very useful tools, namely, topological indices. Among the several hundred presently existing graph-based molecular structure descriptors [2], the Randić index $R(G)$ of a graph was introduced by the chemist Randić under the name of “branching index” in 1975 [3] as the sum of

$$R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u d_v}} \quad (1)$$

Also, it was designed in 1975 to measure the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. It was demonstrated that the Randić index is well correlated with a variety of physicochemical properties of alkanes, such as boiling point, enthalpy of formation, surface area, and solubility in water.

The Randić index is certainly the most widely applied in chemistry and pharmacology, in particular for designing quantitative structure-property and structure-activity relations. Randić proposed this index to “quantitatively characterize the degree of molecular branching.” According to him, “the degree of branching of the molecular skeleton is a critical factor” for some molecular properties such as “boiling points of hydrocarbons and the retention volumes and the retention times obtained from chromatographic studies” (all citations are taken from [3]).

Zhou et al. [4] obtained lower and upper bounds for the general Randić index, and Du et al. [5] obtained new lower and
upper bounds for the Randić index in terms of other topology indices; for other bounds, see [6, 7]. Then, in this paper, we will obtain new lower and upper bounds for the Randić index.

2. Main Results

In this section, we present lower and upper bounds for the Randić index.

We make use of the following lemmas in this paper to obtain the results.

Lemma 1 (see [8]). Let x_i and y_i, $i = 1, \ldots, n$, be real numbers such that $Xx_i \leq y_i \leq Yx_i$ for each $i = 1, \ldots, n$. Then,

$$\sum_{i=1}^{n} x_i y_i \geq \frac{1}{n} \sum_{i=1}^{n} x_i^2 + \frac{1}{n} \sum_{i=1}^{n} y_i^2,$$

with equality holding if and only if either $y_i = Xx_i$ or $y_i = Yx_i$ for each $i = 1, \ldots, n$.

Lemma 2 (see [9]). Let s_1, s_2, \ldots, s_n be nonnegative real numbers with the property

$$s_1 + s_2 + \cdots + s_n = 1.$$

Further, let

$$b_1 \geq b_2 \geq \cdots \geq b_n,$$

be real numbers, and assume that there are $t, T \in R$ such that $0 < t \leq b_i \leq T < + \infty$ for each $i = 1, 2, \ldots, n$. Then,

$$\sum_{i=1}^{n} s_i b_i + t T \sum_{i=1}^{n} s_i \leq t + T.$$

Equality in equation (5) is obtained if and only if $T = b_1 = \cdots = b_k \geq b_{k+1} = \cdots = b_n = t$ for some k, $1 \leq k \leq n$.

Theorem 1. Let G be a connected graph of size m, maximum degree Δ, and minimum degree δ. Then,

$$R(G) \geq \frac{\Delta^3 - \delta^3}{\Delta^3 + \delta^3} R_2(G) + M_2(G),$$

and the equality holds in (6) if and only if G is a regular graph.

Proof. By the definition of the Randić index, we can write

$$R(G) = \frac{1}{\sum_{v \sim v, \delta(v) \leq \Delta} \sqrt{d_v d_w} \times \frac{1}{d_v d_w}}.$$

For each edge $v \sim v, \delta(v) \leq \Delta$, it holds that

$$\frac{\Delta^3}{d_v d_w} \leq \sqrt{d_v d_w} \leq \frac{\Delta^3}{d_v d_w},$$

where the left-hand side equality is attained if and only if $d_v = d_w = \Delta$ for $v \sim v, \delta(v) \leq \Delta$ and the right-hand side equality is attained if and only if $d_v = d_w = \Delta$ for $v \sim v, \delta(v) \leq \Delta$.

Setting $x_i = 1/d_v d_w, y_i = \sqrt{d_v d_w}, X = \Delta^3,$ and $Y = \Delta^3$ in Lemma 1 and Inequality (8), we have

$$R(G) = \sum_{v \sim v, \delta(v) \leq \Delta} \sqrt{d_v d_w} \times \frac{1}{d_v d_w}.$$

and the proof is completed.

Suppose that equality holds in (6). Then, the equality holds in (8). From the equality in (8), by Lemma 1, we obtain

$$\sqrt{d_v d_w} = \frac{\delta^3}{d_v d_w},$$

or

$$\sqrt{d_v d_w} = \frac{\Delta^3}{d_v d_w},$$

for each edge $v \sim v, \delta(v) \leq \Delta$. By the equality condition in (9), we must have $d_v = d_w = \Delta$ or $d_v = d_w = \Delta, \delta$ for each edge $v \sim v, \delta(v) \leq \Delta$. G, G is regular as G is connected.

Conversely, one can easily check that equality holds in (6) for regular graph.

For any nontrivial connected graph G, $R_2(G) \geq m/\Delta^4$ and $M_2(G) \geq m\delta^2$ with either equality if and only if G is regular. From Theorem 1, it then follows immediately the following consequence.

Corollary 1. Let G be a connected graph of size m, maximum degree Δ, and minimum degree δ. Then,

$$R(G) \geq \frac{m\delta^2}{\Delta^3 - \Delta \delta + \delta^3}.$$
Theorem 3. Let \(G \) be a graph of size \(m \), with maximum degree \(\Delta \) and minimum degree \(\delta \). Then, the following inequality holds:

\[
R(G) \geq \frac{m\delta}{\delta \Delta + \Delta^2} + \frac{m}{\Delta + \delta}
\]

if and only if \(G \) is a regular graph.

Proof. Note that for each edge \(v_i v_j \in E(G) \), we have

\[
1/\Delta \leq 1/\sqrt{d_i d_j} \leq 1/\delta; \text{ hence, we can write that}
\]

\[
\left(\frac{1}{\sqrt{d_i d_j}} - \frac{1}{\Delta} \right) \left(\frac{1}{\sqrt{d_i d_j}} - \frac{1}{\delta} \right) \leq 0.
\]

By Inequality (13), we have

\[
\frac{1}{d_i d_j} + \frac{\Delta}{\delta} \geq \frac{\Delta + \delta}{1/\Delta + 1/\delta},
\]

and this leads to the desired bound.

Suppose that equality holds in (13). Then, the equality holds in (14). From the equality in (14), we have

\[
\frac{1}{\sqrt{d_i d_j}} = \Delta,
\]

or

\[
\frac{1}{\sqrt{d_i d_j}} = \delta.
\]

Note that \(\Delta \) and \(\delta \) are natural numbers; hence, we have \(d_i = d_j = 1 \), for each edge \(v_i v_j \in E(G) \), i.e., \(G = K_2 \).

Conversely, one can easily see that equality holds in (13) for \(G = K_2 \).

Now, we present a lower bound for the Randić index in terms of size \(m \), maximum degree \(\Delta \), and minimum degree \(\delta \).

Theorem 4. Let \(G \) be a graph of size \(m \), with maximum degree \(\Delta \) and minimum degree \(\delta \). Then, the following equality holds:

\[
R(G) = \frac{m}{\sqrt{2\Delta^2 - \delta^2}}
\]

if and only if \(G \) is a regular graph.

Proof. Since for any \(x, y \in \mathbb{R}^* \), we have

\[
x^2 - xy + y^2 \geq xy.
\]

By the definition of the Randić index and setting \(x = d_i \) and \(y = d_j \) in Inequality (26), we can write that
\[R(G) = \frac{1}{\sqrt{d_i d_j}} \geq \frac{1}{\Delta^2 - d_i d_j + \Delta^2} \]

\[\geq \frac{1}{\Delta^2 - d_i d_j + \Delta^2} \]

\[= \frac{m}{\sqrt{2\Delta^2 - \delta^2}} \]

as desired.

Suppose that equality holds in (25). Then, the equality holds in (26). From the equality in (26), we have

\[x^2 - xy + y^2 = xy, \]

or

\[x^2 + y^2 = 2xy \implies (x - y)^2 = 0. \]

Note that \(x, y > 0 \); hence, we get \(x = y \); therefore, \(d_i = d_j \) for each edge \(v_i v_j \in E(G) \).

Also, suppose that equality holds in (25). Then, the equality holds in (27). From the equality in (27), we have

\[\frac{1}{\sqrt{d_i d_j}} = \frac{1}{\sqrt{d_i^2 - d_i d_j + d_j^2}}. \]

or

\[\sqrt{d_i d_j} = \sqrt{d_i^2 - d_i d_j + d_j^2}. \]

By equality (31),

\[2d_i d_j = d_i^2 + d_j^2. \]

Therefore, \(d_i = d_j \) for each edge \(v_i v_j \in E(G) \).

Conversely, one can easily see that equality holds in (25) for regular graphs.

For any real number \(\alpha \), the general Randić index, \(R_\alpha \), is defined in [10] as

\[M_\alpha^2 = R_\alpha = R_\alpha(G) = \sum_{uv \in E(G)} (d_u d_v)^\alpha. \]

The concept of the first general Zagreb index introduced by Li et al. [11] is defined as

\[M_\alpha(G) = \sum_{u \in V(G)} d_\alpha^G(u) = \sum_{uv \in E(G)} \left((d_{G}^{-1}(u) + d_{G}^{-1}(v)) \right), \]

where \(\alpha \in \mathbb{R} \).

In [12], the following upper bounds for \(ID \) were also established:

\[\text{ID}(G) \leq \frac{(\Delta^\alpha + \delta^\alpha)^2 n^2}{4M_1^\alpha(G)\Delta^\alpha}, \quad \text{if } \alpha \geq 1, \quad (35) \]

\[\text{ID}(G) \leq \frac{(\Delta^\alpha + \delta^\alpha)^2 n^2}{4M_1^\alpha(G)\Delta^\alpha\delta}, \quad \text{if } \alpha \leq 1, \quad (36) \]

\[\text{ID}(G) \leq \frac{M_1^\alpha(G)}{\Delta^{\alpha+1}}, \quad \text{if } \alpha \leq -1, \quad (37) \]

\[\text{ID}(G) \leq \frac{M_1^\alpha(G)}{\delta^{\alpha+1}}, \quad \text{if } \alpha \geq -1, \quad (38) \]

\[\text{ID}(G) \leq \frac{M_1^\alpha(G) + m\Delta^{2\alpha}}{\Delta^{2\alpha+2}}, \quad \text{if } \alpha \leq -2, \quad (39) \]

\[\text{ID}(G) \leq \frac{M_1^\alpha(G) + m\delta^{2\alpha}}{\delta^{2\alpha+2}}, \quad \text{if } \alpha \geq -2. \quad (40) \]

We need the following lemma to prove the next theorem.

Lemma 3 (see [13]). Let \(G \) be an undirected, simple graph of order \(n \geq 2 \) with no isolated vertices. Then,

\[R_{-1}(G) \leq \frac{1}{2} \sum_{i=1}^{n} \frac{1}{d_i}. \]

Equality holds if and only if \(G \) is a \(k \)-regular graph, \(1 \leq k \leq n - 1 \).

Applying Inequalities (35)–(40), we establish upper bounds for the Randić index in terms of the general first and second Zagreb indices maximum degree \(\Delta \) and minimum degree \(\delta \).

Theorem 5. Let \(G \) be a graph of order \(n \), size \(m \), maximum degree \(\Delta \), minimal degree \(\delta \), and with no isolated vertices. Then,

\[R(G) \leq \frac{(\Delta^\alpha + \delta^\alpha)^2 n^2}{8M_1^\alpha(G)\Delta^{\alpha-1}}, \quad \text{if } \alpha \geq 1, \quad (42) \]

\[R(G) \leq \frac{(\Delta^\alpha + \delta^\alpha)^2 n^2}{8M_1^\alpha(G)\Delta^{\alpha-1}\delta}, \quad \text{if } \alpha \leq 1, \quad (43) \]

\[R(G) \leq \frac{M_1^\alpha(G)}{2\Delta}, \quad \text{if } \alpha \leq -1, \quad (44) \]

\[R(G) \leq \frac{\Delta M_1^\alpha(G)}{2\delta^{\alpha+1}}, \quad \text{if } \alpha \geq -1, \quad (45) \]

\[R(G) \leq \frac{M_1^\alpha(G) + m\Delta^{2\alpha}}{2\Delta^{2\alpha+2}}, \quad \text{if } \alpha \leq -2, \quad (46) \]

\[R(G) \leq \frac{M_1^\alpha(G) + m\delta^{2\alpha}}{2\delta^{2\alpha+2}}, \quad \text{if } \alpha \geq -2. \quad (47) \]
Proof. By the definition of the Randić index, we can write
\[
R(G) = \sum_{v, v' \in E(G)} \frac{1}{\sqrt{d_v d_{v'}}} = \sum_{v, v' \in E(G)} \sqrt{d_v d_{v'}} \times \frac{1}{d_v d_{v'}}
\]
\[
\leq \Delta \sum_{v, v' \in E(G)} \frac{1}{d_v d_{v'}}
= \Delta R(G).
\]
By Lemma 3, we have
\[
R(G) \leq \frac{\Delta}{2} n \sum_{i=1}^{n} \frac{1}{d_i},
\]
and from (35)–(40) and (49), we arrive at (42)–(47) directly.
Here, we obtain the upper bound for the inverse degree index that helps us to obtain the next result. □

Lemma 4. Let \(G \) be a simple graph of order \(n \geq 2 \), with \(m \) edges and with no isolated vertices. Then, the following equality holds:
\[
\sum_{i=1}^{n} \frac{1}{d_i} \leq \frac{n(\Delta + \delta) - 2m}{\Delta \delta},
\]
if and only if \(G \) is a \(k \)-regular graph, \(1 \leq k \leq n - 1 \).

Proof. Setting \(s_i = 1/n \) and \(b_i = d_i \) for \(i = 1, 2, \ldots, n \), \(t = \delta \) and \(T = \Delta \), Inequality (5) becomes
\[
\frac{1}{n} \sum_{i=1}^{n} d_i + \frac{\Delta \delta}{n} \sum_{i=1}^{n} \frac{1}{d_i} \leq \Delta + \delta.
\]
Note that
\[
\sum_{i=1}^{n} d_i = 2m.
\]
Therefore, we have
\[
\sum_{i=1}^{n} \frac{1}{d_i} \leq \frac{n(\Delta + \delta) - 2m}{\Delta \delta}.
\]
Suppose that equality holds in (50). Then, the equality holds in (51). Equality in (51) holds if and only if \(d_1 = \cdots = d_k \) and \(d_{k+1} = \cdots = d_n \).
By Inequality (49) and Lemma 3, we get the next result. □

Corollary 2. Let \(G \) be a graph of order \(n \), size \(m \), maximum degree \(\Delta \), and minimal degree \(\delta \). Then,
\[
R(G) \leq \frac{n^2(\Delta^2 + \delta^2)}{16m\Delta^2 \delta^2},
\]
where
\[
d = 2m^2 - (n - 1)m\Delta
+ \frac{\Delta - 1}{2} \left[2m\left(\frac{2m}{n}\right) + 1 - 2m\left(1 + \frac{2m}{n}\right)n \right].
\]
By using Inequality (48) and Inequalities (55)–(57), we get the next results.

Corollary 3. Let \(G \) be an undirected, simple graph of order \(n \), size \(m \), maximum degree \(\Delta \), and minimal degree \(\delta \). Then,
\[
R(G) \leq \frac{n^2(\Delta^2 + \delta^2)}{16m\Delta^2 \delta^2},
\]
where
\[
c = 2m^2 - (n - 1)m\Delta
+ \frac{\Delta - 1}{2} \left[\Delta^2 + \delta^2 + \frac{(2m - \Delta - \delta)^2}{n - 2} \right].
\]
Denote by \(A \) the adjacency matrix of the graph \(G \) and by \(D \) the diagonal matrix of its vertex degrees. The eigenvalues of \(A \) is
\[
\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_w.
\]
The energy of graph \(G \) is defined as
\[
E_A(G) = \sum_{i=1}^{w} |\lambda_i|.
\]
This concept was introduced by Gutman and is intensively studied in chemistry since it can be used to approximate the total \(\pi \)-electron energy of a molecule (see, e.g., [14, 15]).

The normalized Laplacian matrix of a graph \(G \) is denoted by \(L \) and \(L = I - D^{-1/2}AD^{-1/2} \). Its eigenvalues
\[
\rho_1 \geq \rho_2 \geq \cdots \geq \rho_n = 0,
\]
are normalized Laplacian eigenvalues of graph \(G \). The normalized Laplacian energy (or L-energy) of a graph \(G \) is
In [16], the following upper bounds for \(R_{-1} \) were also established:

\[
R_{-1}(G) \leq \frac{E_L(G)}{2}, \quad (64)
\]

\[
E_L(G) \leq \frac{E_A(G)}{\delta}. \quad (65)
\]

Applying Inequalities (48), (64), and (65), we establish upper bounds for the Randić index in terms of the energy and the normalized Laplacian energy.

Corollary 4. Let \(G \) be a graph with maximum degree \(\Delta \) and minimum degree \(\delta \). Then,

\[
R(G) \leq \frac{\Delta E_L(G)}{2}, \quad (66)
\]

\[
R(G) \leq \frac{\Delta E_A(G)}{2\delta}. \quad (67)
\]

In [17], the following lower bounds for \(R_{-1} \) were also established:

\[
R_{-1}(G) \geq \frac{n}{2(n - 1)} + \frac{1}{4}(\rho_1 - \rho_{n-1})^2. \quad (68)
\]

Equality holds if and only if \(G \cong K_n \).

Proof. By the definition of the Randić index and by Inequality (67), we can write

\[
R(G) = \sum_{v, v \in E(G)} \frac{1}{\sqrt{d_i d_j}}
\]

\[
= \sum_{v, v \in E(G)} \sqrt{d_i d_j} \times \frac{1}{d_i d_j}
\]

\[
\geq \delta \sum_{v, v \in E(G)} \frac{1}{d_i d_j}
\]

\[
= \delta R_{-1}(G) \geq \frac{\delta n}{2(n - 1)} + \frac{\delta}{4}(\rho_1 - \rho_{n-1})^2, \quad (69)
\]

and the proof is completed.

Suppose that equality holds in (68). Then, the equality holds in (69) and (70). From the equality in (69), we have \(d_i = d_j = \delta \) for each edge \(v, v \in E(G) \). From the equality in (70), we have \(G \cong K_n \).

Conversely, one can easily see that equality holds in (68) for graph \(K_n \).

Denote

\[
\Lambda(G) = \{T(G) \mid \text{is a topology index of graph } G\},
\]

\[
\Omega(G) = \{T(G) \mid T \text{ is a topology index of graph } G \text{ and } T(G) \geq R(G)\},
\]

where \(R(G) \) is the Randić index.

Next, we present a general upper bound for the Randić index in terms of other topological indices. \(\Box \)

Theorem 6. Let \(G \) be graph of order \(n \) and minimal degree \(\delta \). Then,

\[
R(G) \geq \frac{\delta n}{2(n - 1)} + \frac{\delta}{4}(\rho_1 - \rho_{n-1})^2. \quad (71)
\]

Equality holds if and only if \(G \cong K_n \).

Proof. For \(x, y, z \geq 0 \) and \(x \leq z \), we have

\[
(x + y)(z - x) \geq 0,
\]

and by solving this inequality, we get

\[
x \leq \frac{\sqrt{4yz + (z - y)^2} + z - y}{2} \quad \text{or}
\]

\[
x \geq \frac{-\sqrt{4yz + (z - y)^2} + z - y}{2}
\]

By setting \(x = R(G), y = \Lambda(G) \), and \(z = \Omega(G) \) in Inequality (75), we obtain

\[
R(G) \leq \frac{4\Lambda(G)\Omega(G) + (\Omega(G) - \Lambda(G))^2 + \Omega(G) - \Lambda(G)}{2}. \quad (72)
\]

Suppose that equality holds in (73). Then, the equality holds in (74); hence, we have

\[
(x + y)(z - x) = 0.
\]

By the equality condition in (77), we obtain

\[
(x + y) = 0 \text{ or } (z - x) = 0.
\]

Therefore, we have two following cases:

Case 1. If \((x + y) = 0 \), note that \(x, y \geq 0 \); hence, we obtain \(x = y = 0 \).

Case 2. If \((z - x) = 0 \), then we obtain \(x = z \); by this fact and by Inequality (75), we get \(x = z = 0 \). Since \(x = R(G), y = \Lambda(G) \), and \(z = \Omega(G) \), therefore, we have \(G \cong K_n \).

Conversely, one can easily see that equality holds in (73) for \(G \cong K_n \).
Denote $\Psi (G) = \{ T (G) \mid T \text{ is a topology index of graph } G \}$ and $T (G) \leq R (G)$, where $R (G)$ is the Randić index.

For $x, y, z \geq 0$ and $x \geq z$, we have

$$(x + y) (z - x) \leq 0.$$ \hfill (79)

Next, we present a general lower bound for the Randić index in terms of other topological indices.

By Inequality (79) and similarly with proof of Theorem 7, we get the next result.

Theorem 8. Let G be a graph with the Randić index $R (G)$. Then,

$$R (G) \geq \frac{\sqrt{4\Lambda (G)\Psi (G) + (\Psi (G) - \Lambda (G))^2 + \Psi (G) - \Lambda (G)}}{2}.$$ \hfill (80)

Here, we recall some of the topological indices that will need to explain one of the applications of Theorems 7 and 8.

The first and second Zagrebi indices are vertex-degree-based graph invariants defined as

$$M_1 = M_1 (G) = \sum_{uv \in E (G)} (d_u + d_v),$$

$$M_2 = M_2 (G) = \sum_{uv \in E (G)} d_u d_v.$$ \hfill (81)

The quantity M_1 was first considered in 1972 [18], whereas M_2 in 1975 [19].

The forgotten topological index has been introduced by Furtula and Gutman [20] as

$$F (G) = \sum_{uv \in E (G)} (d_u^2 + d_v^2).$$ \hfill (82)

The harmonic index, denoted by $H (G)$, was defined in [21] as

$$H (G) = \sum_{uv \in E (G)} \frac{2}{d_u + d_v}.$$ \hfill (83)

The (first) geometric-arithmetic index of a graph was defined in [22] as

$$GA (G) = \sum_{uv \in E (G)} \frac{2 \sqrt{d_u d_v}}{d_u + d_v}.$$ \hfill (84)

3. Applications of Theorems 7 and 8

Using Theorems 7 and 8, we can obtain many upper and lower bounds for the Randić index in terms of other topological indices. For example, by Theorem 7, we can obtain following upper bounds.

Note that for $x, y \geq 0$, we have

$$\frac{1}{\sqrt{xy}} \leq \sqrt{xy},$$ \hfill (85)

$$\frac{1}{\sqrt{xy}} \leq xy,$$ \hfill (86)

$$\frac{1}{\sqrt{xy}} \leq \frac{x + y}{2}.$$ \hfill (87)

By Inequalities (85)–(87) and definitions of topological indices, we have

$$R (G) \leq \frac{M_1 (G)}{2},$$

and hence \{ $R_1 (G), M_1 (G), M_2 (G)$ \} $\in \Omega (G)$. Here, we let \{ $F (G), GA (G), H (G)$ \} $\in \Lambda (G)$; therefore, by Theorem 7, we get the following results:

$$R (G) \leq \frac{\sqrt{4R_1 (G)F (G) + (R_1 (G) - F (G))^2 + R_1 (G) - F (G)}}{2},$$

$$R (G) \leq \frac{\sqrt{4M_2 (G)GA (G) + (M_2 (G) - GA (G))^2 + M_2 (G) - GA (G)}}{2},$$

$$R (G) \leq \frac{\sqrt{4H (G)M_1 (G) + (M_1 (G) - H (G))^2 + M_1 (G) - H (G)}}{2},$$

$$R (G) \leq \frac{\sqrt{4M_2 (G)F (G) + (M_2 (G) - F (G))^2 + M_2 (G) - F (G)}}{2},$$

$$R (G) \leq \frac{\sqrt{4M_1 (G)GA (G) + (M_1 (G) - GA (G))^2 + M_1 (G) - GA (G)}}{2}.$$
Analogously above, we can obtain lower bounds for the Randić index by using Theorem 8.

Data Availability

The data involved in the examples of our manuscript are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] H. Wiener, “Structural determination of paraffin boiling points,” *Journal of the American Chemical Society*, vol. 69, no. 1, pp. 17–20, 1947.

[2] R. Todeschini and V. Consonni, *Molecular Descriptors for Chemoinformatics*, Wiley VCH, Weinheim, Germany, 2009.

[3] M. Randić, “Characterization of molecular branching,” *Journal of the American Chemical Society*, vol. 97, no. 23, pp. 6609–6615, 1975.

[4] B. Zhou and W. Luo, “A note on general Randić index,” *MATCH Communications in Mathematical and in Computer Chemistry*, vol. 62, pp. 155–162, 2009.

[5] Z. Du, A. Jahanbani, and S. M. Sheikholeslami, “Relationships between Randić index and other topological indices,” *Communications in Combinatorics and Optimization*, vol. 5, 2020.

[6] A. Ali, M. Javaid, M. Matejč, I. Milovanović, and E. Milovanović, “Some new bounds on the general sum-connectivity index,” *Communications in Combinatorics and Optimization*, vol. 5, pp. 97–109, 2020.

[7] H. Aram and N. Dehgardi, “Reformulated F-index of graph operations,” *Communications in Combinatorics and Optimization*, vol. 2, pp. 87–98, 2017.

[8] D. S. Mitrinović and P. M. Vasić, *Analytic Inequalities*, Springer-Verlag, Berlin, Germany, 1970.

[9] B. C. Rennie, “On a class of inequalities,” *Journal of the Australian Mathematical Society*, vol. 3, no. 4, pp. 442–448, 1963.

[10] B. Bollobás and P. Erdős, “Graphs of extremal weights,” *Ars Combinatoria*, vol. 50, pp. 225–233, 1998.

[11] X. Li and J. Zheng, “A unified approach to the extremal trees for different indices,” *MATCH Communications in Mathematical and in Computer Chemistry*, vol. 54, pp. 195–208, 2005.

[12] J. M. Rodríguez, J. L. Sánchez, and J. M. Sigarreta, “Inequalities on the inverse degree index,” *Journal of Mathematical Chemistry*, vol. 57, no. 5, pp. 1524–1542, 2019.

[13] M. Lu, H. Liu, and F. Tian, “The connectivity index,” *MATCH Communications in Mathematical and in Computer Chemistry*, vol. 51, pp. 149–154, 2004.

[14] I. Gutman, “The energy of a graph: old and new results,” in *Algebraic Combinatorics and Applications*, A. Betten, A. Kohnert, R. Laue, and A. Wassermann, Eds., Springer-Verlag, Berlin, Germany, pp. 196–211, 2001.

[15] I. Gutman and O. E. Polansky, *Mathematical Concepts in Organic Chemistry*, Springer, Berlin, Germany, 1986.

[16] M. Cavers, S. Fallat, and S. Kirkland, “On the normalized Laplacian energy and general Randić index R_1 of graphs,” *Linear Algebra and its Applications*, vol. 433, no. 1, pp. 172–190, 2010.

[17] E. I. Milovanović and M. P. Bekakos, “Sharp bounds for the general Randić index R_1 of a graph,” *Rocky Mountain Journal of Mathematics*, vol. 47, pp. 259–266, 2017.

[18] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals. total q-electron energy of alternant hydrocarbons,” *Chemical Physics Letters*, vol. 17, no. 4, pp. 535–538, 1972.

[19] I. Gutman, B. Rušič, N. Trinajstić, and C. F. Wilcox, “Graph theory and molecular orbitals. XII. acyclic polynyes,” *The Journal of Chemical Physics*, vol. 62, no. 9, pp. 3399–3405, 1975.

[20] B. Furtula and I. Gutman, “A forgotten topological index,” *Journal of Mathematical Chemistry*, vol. 53, no. 4, pp. 1184–1190, 2015.

[21] S. Fašić, “On conjectures on Graffiti-II,” *Congressus Numerantium*, vol. 60, pp. 187–197, 1987.

[22] D. Vukičević and B. Furtula, “Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges,” *Journal of Mathematical Chemistry*, vol. 46, pp. 1369–1376, 2009.