The automorphism group of the non-split Cartan modular curve of level 11

Valerio Dose, Julio Fernández, Josep González and René Schoof

March 26, 2014

Abstract

We derive equations for the modular curve $X_{ns}(11)$ associated to a non-split Cartan subgroup of $GL_2(F_{11})$. This allows us to compute the automorphism group of the curve and show that it is isomorphic to Klein’s four group.

Introduction

Let p be a prime. The modular curve $X_{ns}(p)$ associated to a non-split Cartan subgroup of $GL_2(F_p)$ is an algebraic curve that is defined over \mathbb{Q}. It admits a so-called modular involution w, also defined over \mathbb{Q}. One may conjecture that, for large p, the modular involution is the only non-identity automorphism of $X_{ns}(p)$, even over \mathbb{C}. However, for very small primes p this is not the case. Indeed, for $p = 2, 3$ and 5 the genus of $X_{ns}(p)$ is 0, while for $p = 7$ the genus is 1. See [1], Table A.1. For these primes the curve $X_{ns}(p)$ admits therefore infinitely many automorphisms. The present paper is devoted to $p = 11$ and the genus 4 curve $X_{ns}(11)$. We prove the following.

Theorem. The automorphism group over \mathbb{C} of the modular curve $X_{ns}(11)$ is isomorphic to Klein’s four group. It is generated by the modular involution w and the involution ϱ described in Corollary [1].

Our proof for this result is presented in section [3]. It relies on an explicit description of the regular differentials and the Jacobian of $X_{ns}(11)$. These are discussed in section [2]. We make use of equations for the curve $X_{ns}(11)$, which are obtained in section [4].

1 Equations

In this section we derive equations for the modular curve $X_{ns}(11)$. We do this by exploiting the modular curve $X^+_{ns}(11)$ associated to the normalizer of a non-split Cartan subgroup of level 11.

We recall some definitions [1]. For any prime p, the ring of 2×2 matrices over F_p contains subfields that are isomorphic to F_{p^2}. A non-split Cartan subgroup U of $GL_2(F_p)$ is by definition the unit group of such a subfield. The modular curve $X_{ns}(p)$ classifies U–isomorphism classes of pairs (E, ϕ), where E is an elliptic curve and ϕ is an isomorphism from the group of p-torsion...
points \(E[p] \) to \(\mathbf{F}_p \times \mathbf{F}_p \). Two such pairs \((E, \phi)\) and \((E', \phi')\) are \(U\)-isomorphic if there is an isomorphism \(f : E \rightarrow E' \) for which the matrix \(\phi'f\phi^{-1} \) is in \(U \).

The group \(U \) has index 2 in its normalizer \(U^+ \subset \text{GL}_2(\mathbf{F}_p) \). The modular involution \(w \) of \(X_{ns}(p) \) maps \((E, \phi)\) to \((E, \alpha \phi)\), where \(\alpha \) is any matrix in \(U^+ \setminus U \). In a way that is analogous to the moduli description for \(X_{ns}(p) \), the modular curve \(X^+_{ns}(p) \) classifies \(U^+\)-isomorphism classes of pairs \((E, \phi)\). There are natural morphisms

\[
X_{ns}(p) \xrightarrow{\pi} X^+_{ns}(p) \xrightarrow{\mathbf{j}} X(1).
\]

Here \(X(1) \) indicates the \(j \)-line. It parametrizes elliptic curves up to isomorphism. The morphism \(\mathbf{j} \) maps \((E, \phi)\) to the \(j \)-invariant of \(E \). It has degree \(\frac{1}{2}p(p-1) \), while the morphism \(\pi \) has degree 2.

Both curves \(X_{ns}(p) \) and \(X^+_{ns}(p) \) are defined over \(\mathbf{Q} \). A point \((E, \phi)\) of \(X_{ns}(p) \) or \(X^+_{ns}(p) \) is defined over an extension \(\mathbf{Q} \subset K \) if and only if \(E \) is defined over \(K \) and, for all \(\sigma \in \text{Gal}(K/\mathbf{Q}) \), the matrix \(\phi \sigma \phi^{-1} \) is in \(U \) or \(U^+ \) respectively. This implies that, for \(p > 2 \), the curve \(X_{ns}(p) \) does not contain any points defined over \(\mathbf{R} \). On the other hand, the curve \(X^+_{ns}(p) \) has real and usually also rational points. Indeed, for every imaginary quadratic order \(R \) with class number 1 there is a unique elliptic curve \(E \) over \(\mathbf{C} \) with complex multiplication by \(R \). The \(j \)-invariant of \(E \) is in \(\mathbf{Q} \). Moreover, when \(p \) is prime in the ring \(R \), there is a unique rational point \((E, \phi)\) on \(X^+_{ns}(p) \). These points are called \textit{CM points} or \textit{Heegner points}. See \cite{10}, Section A.5.

Remark 1. Suppose that \((E, \phi)\) is a rational point of \(X^+_{ns}(p) \). Then \(E \) is defined over \(\mathbf{Q} \) and the image of \(\text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \) in \(\text{Aut}(E[p]) \) is isomorphic through \(\phi \) to a subgroup \(G \) of \(\text{GL}_2(\mathbf{F}_p) \) which is contained in the normalizer of a non-split Cartan subgroup \(U \). The points of \(X_{ns}(p) \) lying above \((E, \phi)\) are defined over the fixed field of \(U \cap G \), which is an imaginary quadratic extension of \(\mathbf{Q} \). In the case of Heegner points, CM theory implies that this extension is isomorphic to the quotient field of the endomorphism ring of \(E \).

Now we turn to the case \(p = 11 \). In \cite{3}, Proposition 4.3.8.1, Ligozat derived a Weierstrass equation for the genus 1 curve \(X^+_{ns}(11) \). It is given by

\[
Y^2 + Y = X^3 - X^2 - 7X + 10.
\]

By choosing the point at infinity as origin, we can view \(X^+_{ns}(11) \) as an elliptic curve and equip it with the usual group law. The rational points of \(X^+_{ns}(11) \) are then an infinite cyclic group generated by the point \(P = (4, -6) \). See \cite{3}. The translations by the rational points form an infinite group of automorphisms of \(X^+_{ns}(11) \). They are all defined over \(\mathbf{Q} \). It follows that there are infinitely many isomorphisms over \(\mathbf{Q} \) between \(X^+_{ns}(11) \) and the curve given by Ligozat. For a particular choice of such an isomorphism, Halberstadt derived in \cite{6}, Section 2.2, an explicit formula for the degree 55 morphism \(j : X^+_{ns}(11) \rightarrow X(1) \). In view of the symmetry phenomenon described at the end of this section, it is convenient to compose his isomorphism with the translation-by-\(P \) morphism. Explicitly, our function \(j(X, Y) \) is the value of Halberstadt’s \(j \)-function in the point

\[
\left(\frac{4X^2 + X - 2 + 11Y}{(X - 4)^2}, \frac{2X^2 + 17X - 34 + 11Y)(1 - 3X)}{(X - 4)^3} \right),
\]

that is,

\[
j(X, Y) = (X + 2)(4 - X)^5 (11(X^2 + 3X - 6)(Y - 5)(X^3 + 4X^2 + X + 22 + (1 - 3X)Y))^3 \\
\times \left(\frac{(3X^2 - 3X - 14 - (3 + 2X)Y)(12X^3 + 28X^2 - 41X - 62 + (3X^2 + 20X + 37)Y)^3}{(- 7X^2 - 15X + 62 + (X + 18)Y)^2(4X^3 + 2X^2 - 21X - 6 + (X^2 + 3X + 5)Y)} \right)^{11}.
\]
Proposition 1. The modular curve $X_{ns}(11)$ is given by the equations
\[
Y^2 + Y = X^3 - X^2 - 7X + 10, \\
T^2 = -(4X^3 + 7X^2 - 6X + 19).
\]

Proof. We first compute the ramification locus of the morphism $\pi : X_{ns}(11) \to X_{ns}^+(11)$. Since π is defined over \mathbb{Q}, this locus is stable by the action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. By Proposition 7.10 in [1], the function $j(X,Y)-1728$ has exactly seven simple zeroes on $X_{ns}^+(11)$, and six of them are the ramification points of π. All the other zeroes are double. Let us consider the quotient map $X_{ns}^+(11) \to \mathbb{P}^1$ induced by the elliptic involution. It corresponds to the quadratic function field extension $\mathbb{Q}(X) \subset \mathbb{Q}(X,Y)$ with non-trivial automorphism given by $Y \mapsto -1 - Y$. One easily checks that the trace and norm of the function $j(X,Y)-1728$ admit the polynomial $4X^3+7X^2-6X+19$ as an irreducible factor of multiplicity 1 and 2 respectively. The function F on $X_{ns}^+(11)$ defined by this cubic polynomial has exactly six simple zeroes. It follows that the zeroes of F are simple zeroes of $j(X,Y)-1728$. Therefore they are the ramification points of π.

The function field $\mathbb{Q}(X_{ns}(11))$ is obtained by adjoining a function G to $\mathbb{Q}(X_{ns}^+(11))$ whose square is in $\mathbb{Q}(X_{ns}^+(11))$. The coefficients of the divisor on $X_{ns}^+(11)$ of G^2 are odd at the ramified points and even at the others. Since the same holds for the above function F, the divisor of FG^2 is of the form $2D$ for some divisor D of $X_{ns}^+(11)$ defined over \mathbb{Q}. The group $\text{Pic}^0(X_{ns}^+(11))$ is naturally isomorphic to the group of rational points of $X_{ns}^+(11)$. Since the latter is isomorphic to \mathbb{Z}, there are no elements of order 2 in $\text{Pic}^0(X_{ns}^+(11))$. It follows that D is principal. This means that there is a function T in $\mathbb{Q}(X_{ns}(11))$ and a non-zero $\lambda \in \mathbb{Q}$ for which $\lambda T^2 = F$. The function field of $X_{ns}(11)$ is then equal to $\mathbb{Q}(X,Y,T)$.

It remains to determine λ, which is unique up to squares. Consider the point $Q = (5/4,7/8)$ of $X_{ns}^+(11)$. Since $j(Q) = 1728$, the elliptic curve parametrized by the point Q admits complex multiplication by the ring $\mathbb{Z}[i]$ of Gaussian integers. By Remark [1] the two points of $X_{ns}(11)$ lying above Q are defined over $\mathbb{Q}(i)$. Since $F(Q) = 121/4$ is a square, we may take $\lambda = -1$. This proves the proposition.

Corollary 1. In addition to the modular involution w, the curve $X_{ns}(11)$ admits an “exotic” involution q. The modular involution switches (X,Y,T) and $(X,Y,-T)$, while q switches (X,Y,T) and $(X,-1-Y,T)$. Together, w and q generate a subgroup of $\text{Aut}(X_{ns}(11))$ isomorphic to Klein’s four group.

Although it is not relevant for the proofs in this paper, let us explain how the “exotic” automorphisms of $X_{ns}(11)$ were first detected. The rational points of $X_{ns}^+(11)$ form an infinite cyclic group generated by the point $P = (4,-6)$. For each $n \in \mathbb{Z}$, the elliptic curve over \mathbb{Q} parametrized by the point $[n]P$ in $X_{ns}^+(11)(\mathbb{Q})$ has the following property: the image G of the Galois representation attached to its p-torsion points is contained in the normalizer of a non-split Cartan subgroup U. By Remark [1] the fixed field of $U \cap G$ is an imaginary quadratic field. In his tesi di laurea, one of the authors —Valerio Dose— used the methods of [1] to compute this quadratic field K for several values of n. The first few values are given in the table below. There is a striking symmetry: the quadratic fields attached to the points $[n]P$ and $[-n]P$ are always the same. There does not seem to be a “modular reason” for this, as it may happen that the elliptic curve associated to $[n]P$ has complex multiplication by some quadratic order of discriminant $\Delta < 0$ but the elliptic curve associated to $[-n]P$ has not. In the first case K is the CM field, but in the second case it is not. The phenomenon, which surprised us at first, is explained by the existence of the “exotic” involution q.

3
2 Differentials

In this section we analyze the space of regular differentials $\Omega^1_{X_{ns}(11)}$ of the curve $X_{ns}(11)$.

By [2], Section 8, the Jacobian $J_{ns}(11)$ of $X_{ns}(11)$ is isogenous over \mathbb{Q} to the new part of the Jacobian of $X_0(121)$. See [4] for an easy proof of this result. By Cremona’s Tables [3], there are exactly four \mathbb{Q}–isogeny classes of elliptic curves of conductor 121, which are represented by

points	j	CM	K
[6]P	$2^{3}3^{3}5^{3}11^{3}17^{6}29^{3}53^{3}191^{3}/769^{11}$	–	$\mathbb{Q}(-3\cdot14327)$
[5]P	$-2^{1}3^{3}5^{3}23^{2}29^{3}$	$\Delta = -163$	$\mathbb{Q}(-163)$
[4]P	0	$\Delta = -3$	$\mathbb{Q}(-3)$
[3]P	$2^{6}3^{3}$	$\Delta = -4$	$\mathbb{Q}(-1)$
[2]P	$-2^{1}5^{3}3^{5}11^{3}$	$\Delta = -67$	$\mathbb{Q}(-67)$
P	$2^{4}3^{3}5^{3}$	$\Delta = -12$	$\mathbb{Q}(-3)$
∞	$2^{3}3^{3}11^{3}$	$\Delta = -16$	$\mathbb{Q}(-3)$
[−1]P	$-2^{1}5^{3}3^{5}1^{3}$	$\Delta = -27$	$\mathbb{Q}(-3)$
[−2]P	$2^{8}3^{5}5^{6}11^{3}53^{3}/23^{11}$	–	$\mathbb{Q}(-67)$
[−3]P	$-2^{9}3^{3}5^{3}13^{1}7^{1}3^{1}181^{3}/43^{11}$	–	$\mathbb{Q}(-3)$
[−4]P	$2^{18}3^{3}5^{7}11^{3}23^{3}29^{3}103^{3}/67^{11}$	–	$\mathbb{Q}(-3)$
[−5]P	$-2^{4}3^{3}5^{1}17^{6}29^{3}367^{3}2381^{3}/397^{11}$	–	$\mathbb{Q}(-163)$
[−6]P	$-2^{3}3^{1}11^{3}17^{6}19^{3}23^{3}41^{3}53^{3}167^{3}277^{3}23431^{3}/80233^{11}$	–	$\mathbb{Q}(-3\cdot14327)$

It follows that $J_{ns}(11)$ is isogenous over \mathbb{Q} to the product of these four elliptic curves. The following proposition describes a low degree morphism from the curve $X_{ns}(11)$ to each of its elliptic quotients, and provides a basis for $\Omega^1_{X_{ns}(11)}$ from the respective pull-backs. We make use of the equations for $X_{ns}(11)$ given in Proposition 1. It is also convenient to introduce the function $Z = (2Y + 1)/T$ in $\mathbb{Q}(X_{ns}(11))$.

Proposition 2. The curve $X_{ns}(11)$ admits morphisms defined over \mathbb{Q} of degree 6, 2, 2 and 6 to the elliptic curves A, B, C and D respectively. Moreover, the corresponding pull-backs of the 1-dimensional \mathbb{Q}-vector spaces of regular differentials are the 1-dimensional subspaces of $\Omega^1_{X_{ns}(11)}$ generated by

$$
\omega_A = \frac{dX}{Z}, \quad \omega_B = \frac{dX}{2Y+1}, \quad \omega_C = \frac{dX}{T} \quad \text{and} \quad \omega_D = \frac{(3X-1)dX}{Z}
$$

respectively.
Proof. By Corollary 1, the function field extension $Q(X) \subset Q(X, Y, T)$ is Galois, with Galois group isomorphic to Klein’s four group. Since the elliptic curve given by the Weierstrass equation $T^2 = -(4X^3 + 7X^2 - 6X + 19)$ is isomorphic to C, we have the following commutative diagram of degree 2 morphisms

$$
\begin{array}{c}
X_{ns}(11) \\
\downarrow \phi_H \\
B \\
\uparrow \phi_B \\
C \\
\downarrow \phi_C \\
H \\
\downarrow P^1
\end{array}
$$

Here H is the genus 2 curve given by

$$Z^2 = -(4X^3 - 4X^2 - 28X + 41)(4X^3 + 7X^2 - 6X + 19),$$

and the morphisms ϕ_B, ϕ_H and ϕ_C are defined as follows:

$$\phi_B(X, Y, T) = (X, Y), \quad \phi_H(X, Y, T) = (X, (2Y + 1)T), \quad \phi_C(X, Y, T) = (X, T).$$

In particular, we can take ω_B and ω_C as in the statement.

We now describe degree 6 morphisms from $X_{ns}(11)$ to the curves A and D factoring through ϕ_H. To see that H admits degree 3 morphisms to A and D, we use Goursat’s formulas as described in the appendix of [7]. Substituting $X = x + \frac{1}{3}$ and $Z = \frac{44}{3}z$ in the hyperelliptic equation of H, we obtain

$$tz^2 = (x^3 + 3ax + 2b)(2dx^3 + 3cx^2 + 1)$$

with

$$a = -\frac{22}{9}, \quad b = \frac{847}{216}, \quad c = \frac{27}{242}, \quad d = \frac{9}{44} \quad \text{and} \quad t = -3.$$

Note that the discriminants $\Delta_1 = a^3 + b^2$ and $\Delta_2 = c^3 + d^2$ are both non-zero. Then, the maps $(x, z) \mapsto (u, v)$, with

$$(u, v) = \left(12 \Delta_1 \frac{-2dx + c}{x^3 + 3ax + 2b}, \frac{16dx^3 - 12cx^2 - 1}{(x^3 + 3ax + 2b)^2} \right),$$

$$(u, v) = \left(12 \Delta_2 \frac{x^2(ax - 2b)}{2dx^3 + 3cx^2 + 1}, \frac{x^3 + 12ax - 16b}{(2dx^3 + 3cx^2 + 1)^2}) \right),$$

are degree 3 morphisms from H to the genus 1 curves given by the equations

$$tv^2 = u^3 + 12(2a^2d - bc)u^2 + 12 \Delta_1 (16ad^2 + 3c^2)u + 512 \Delta_1^2 d^3,$$

$$tv^2 = u^3 + 12(2bc^2 - ad)u^2 + 12 \Delta_2 (16b^2c + 3a^2)u + 512 \Delta_2^2 b^3$$

respectively. Moreover, the pull-back of the differential du/v of the first curve to Ω^1_H is a rational multiple of dx/z and hence of dX/Z, while the pull-back of the differential du/v of the second curve is a rational multiple of $x dx/z$ and hence of $(3X - 1)dX/Z$.

Finally, for the above values of a, b, c, d and t, the two genus 1 curves can be checked to be isomorphic over Q to the elliptic curves A and D respectively. This proves the proposition.
Remark 2. Since the Jacobian of H is isogenous to $A \times D$, we know that there do exist non-constant morphisms from H to the curves A and D, but we know of no a priori reason why there should exist morphisms of degree 3. In fact, this was only established by a numerical computation involving the period lattices of the curves H, A and D. Another reason for suspecting that there exist such morphisms is the fact that the Fourier coefficients of the weight 2 eigenforms associated to the elliptic curves A and D are congruent modulo 3.

3 Automorphisms

In this section we prove the theorem. We use the notations of Proposition 1 and Proposition 2.

Let σ be an automorphism of the curve $X_{ns}(11)$. Then σ induces an automorphism of the Jacobian $J_{ns}(11)$. We recall that this Jacobian is isogenous over \mathbb{Q} to the product of the elliptic curves A, B, C and D introduced in section 2.

Let us analyze the isogeny relations over \mathbb{Q} among these four elliptic curves. The curve D cannot be isogenous over \mathbb{Q} to A, B or C because it is the only one whose j-invariant is not integral. The curve B has complex multiplication by the quadratic order of discriminant -11, so it cannot be isogenous over \mathbb{Q} to A, C or D because none of these three curves admits complex multiplication. Lastly, there is a degree 2 isogeny between A and C defined over $\mathbb{Q}(\sqrt{-11})$.

Therefore, all endomorphisms of $J_{ns}(11)$ are defined over $\mathbb{Q}(\sqrt{-11})$. Furthermore, the action of σ on $\Omega^1_{X_{ns}(11)}$ with respect to the basis ω_B, ω_D, ω_A, ω_C is given by multiplication by a matrix of the form

$$
\begin{pmatrix}
\pm 1 & 0 & 0 & 0 \\
0 & \pm 1 & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{pmatrix}
$$

(3.1)

for certain $a, b, c, d \in \mathbb{Q}(\sqrt{-11})$. Note that the eigenvalues corresponding to ω_B and ω_D must be roots of unity in this quadratic field, namely ± 1, because σ has finite order.

Let us now consider the functions $x = \omega_D/\omega_A = 3X - 1$ and $y = \omega_C/\omega_A = 2Y + 1$ on the elliptic curve B. They satisfy the equation

$$
\frac{1}{4} y^2 = \frac{1}{27} x^3 - \frac{22}{9} x + \frac{847}{108}.
$$

Then the action of σ on $\Omega^1_{X_{ns}(11)}$ yields

$$
\sigma(x) = \frac{\pm x}{a + cy} \quad \text{and} \quad \sigma(y) = \frac{b + dy}{a + cy}.
$$

In other words, σ induces an automorphism of the curve B which, in projective coordinates, is given by

$$
(x : y : z) \mapsto (\pm x : bz + dy : az + cy).
$$

In particular, σ maps the origin $(0 : 1 : 0)$ of the elliptic curve B to the point $(0 : d : c)$. This implies $c = 0$. Otherwise, the above equation would entail the relation $(d/c)^2 = 847/27$ with $d/c \in \mathbb{Q}(\sqrt{-11})$, which is impossible. Since the only automorphisms of B fixing the origin are the identity and the elliptic involution, it follows $\sigma(x) = x$ and $\sigma(y) = \pm y$. Thus, $\sigma(X) = X$ whereas $\sigma(Y)$ must be either Y or $1 - Y$. The equations given for $X_{ns}(11)$ in Proposition 1 imply then $\sigma(T) = \pm T$. This proves the theorem.
References

[1] Baran, B.: Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem, J. of Number Theory 130 (2010), 2753–2772.

[2] Chen, I.: The jacobians of non-split Cartan modular curves, Proc. London Math. Soc. 77 (1998), 1–38.

[3] Cremona, J.: Algorithms for modular elliptic curves, Cambridge University Press, Cambridge 1997.

[4] De Smit, B. and Edixhoven, B.: Sur un résultat d’Imin Chen, Mathematical Research Letters 7 (2000), 147–154.

[5] Dose, V.: Serre’s theorem on Galois representations attached to elliptic curves, Tesi di Laurea Specialistica in Matematica, Università degli Studi di Roma Tor Vergata, Roma 2010.

[6] Halberstadt, E.: Sur la courbe modulaire $X_{\text{ndep}}(11)$, Experiment. Math. 7 (1998), 163–174.

[7] Bröker, R., Howe, E., Lauter, K. and Stevenhagen, P.: Genus-2 curves and Jacobians with a given number of points, in preparation.

[8] Ligozat, G.: Courbes modulaires de niveau 11, 149–237 in: Modular functions of one variable, V (Proc. Second Internat. Conf. Univ. Bonn, Bonn, 1976), Lecture Notes in Math. 601, Springer-Verlag, Berlin 1977.

[9] Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.

[10] Serre, J.-P.: Lectures on the Mordell-Weil Theorem, Aspects Math. E15, Springer Vieweg, Braunschweig/Wiesbaden 1989.

Valerio Dose
dose@mat.uniroma2.it
René Schoof
schoof@mat.uniroma2.it
Dipartimento di Matematica
Università degli Studi di Roma Tor Vergata
Via della Ricerca Scientifica 1
00133 Roma, Italy

Josep González
josepg@ma4.upc.edu
Julio Fernández
julio@ma4.upc.edu
Departament de Matemàtica Aplicada 4
Universitat Politècnica de Catalunya
EPSEVG, Avinguda Víctor Balaguer 1
08800 Vilanova i la Geltrú, Spain