The genome of the jellyfish *Clytia hemisphaerica* and the evolution of the cnidarian life-cycle

Lucas Leclère1, Coralie Horin1, Sandra Chevalier1, Pascal Lapébie1, Philippe Dru1, Sophie Peron1, Muriel Jager2, Thomas Condamine2, Karen Pottin2, Séverine Romano1, Julia Steger1,4, Chiara Sinigaglia1, Carine Barreau1, Gonzalo Quiroga Artigas1,10, Antonella Ruggiero1,17, Cécile Fourrage1,12, Johanna E. M. Kraus4,13, Julie Poulain5, Jean-Marc Aury1,6, Patrick Wincker5, Eric Quinene2, Ulrich Technau6,4, Michaël Manuel2,3, Tsuyoshi Momose1,1, Evelyn Houliston6,1 and Richard R. Copley1,18

Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish *Clytia hemisphaerica* and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to *Clytia*, the polyp-only hydrozoan *Hydra* has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among *Clytia* orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in *Clytia* the medusa maximally deploys the ancestral cnidarian–bilaterian transcription factor gene complement.

In most cnidarians a ciliated, worm-like planula larva settles to produce a polyp. In Anthozoa (corals and anemones), the polyp is the sexually reproductive form but, in the medusozoan branch of Cnidaria, polyps generally produce sexually reproductive jellyfish by a process of strobilation or budding. Jellyfish (medusae) are gelatinous, pelagic, radially symmetric forms found only in Medusozoa. They show complex physiology and behaviour as shown by neural integration of well-defined reproductive organs, digestive systems, locomotory striated muscles and sensory structures. Medusae in many species show some nervous system condensation, notably the nerve rings running around the bell margin. Some have considered the medusa the ancestral state of cnidarians, with anthozoans having lost this stage (for example, see ref. 1). Under this scenario, the polyp stage was acquired later during medusozoan evolution. Anthozoa would then have evolved from within Medusozoa and so would have lost the medusa stage. However, recent molecular phylogenies support Anthozoa and Medusozoa as sister groups, favouring a benthic, polyp-like adult cnidian ancestor and an acquisition of the medusa stage in the common branch of Medusozoa1,4. Candidate gene expression studies have shown parallels between medusa and polyp development1 and transcriptome comparisons between species with and without medusae have extended candidate gene lists6,12; but, in general, the genetic foundations of complex medusa evolution within the cnidian lineage are not well understood.

There are four classes of Medusozoa: Cubozoa (box jellyfish), Scyphozoa (so-called ‘true’ jellyfish), Staurozoa (‘stalked jellyfish’) and Hydrozoa12,13. Life cycles in different medusozoan lineages have undergone frequent modifications, including loss of polyp, planula and medusa stages. *Hydra*, the classical model of animal regeneration, is a hydrozoan characterized by the loss of the planula and medusa stages from the life-cycle. Compared to anthozoan genomes12–14, the *Hydra* genome is highly diverged and dynamic; it may therefore be atypical of Medusozoa and even Hydrozoa15. Here we report on the genome of *Clytia hemisphaerica*, a hydrozoan with a typical medusozoan life-cycle, including planula, polyp and medusa stages (Fig. 1). *Clytia* is easy to maintain and manipulate and amenable to gene function analysis14, allowing mechanistic insight into cellular and developmental processes12,14,15. We analyse transcriptomes from all life-cycle forms, illuminating the evolution of the planula, polyp and medusa and demonstrate how the
Results
Characteristics of the Clytia genome. We sequenced the Clytia hemisphaerica genome using a whole genome shotgun approach (see Methods; Supplementary Table 1 and Supplementary Fig. 1), giving an assembly with overall length of 445 megabases (Mb). Staining of DNA in prophase oocytes shows the genome is packaged into 15 chromosome pairs (Supplementary Fig. 2). We predicted gene models by aligning expressed sequence reads (RNA-Seq) to the genome. We used sequences derived from a comprehensive set of stages and tissues as well as deeply sequenced mixed-stage libraries (see Methods and Supplementary Table 1). This gave 26,727 genes and 69,083 transcripts. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis of the presence of universal single copy orthologs indicates a genome coverage of 86% (total ‘complete’ sequences, with 90% for protein set coverage; Supplementary Table 1)16. Using RNA-Seq data we could confirm the trans-spliced-leader sequences previously identified using expressed sequence tags (ref. 17). We did not identify additional ones. The genome GC content is 35%, which is higher than Hydra (29%, ref. 15) but lower than the anthozoan Nematostella (39%, ref. 16).

Reads mapped to the genome suggested a polymorphism frequency of ~0.9%. This is probably an underestimate of heterozygosity in wild populations, as genomic DNA and mRNA for transcriptomes was derived from self-crossed laboratory-reared zygosity in wild populations, as genomic DNA and mRNA for transcriptomes was derived from self-crossed laboratory-reared zygosity in wild populations, as genomic DNA and mRNA for transcriptomes was derived from self-crossed laboratory-reared zygosity in wild populations, as genomic DNA and mRNA for transcriptomes was derived from self-crossed laboratory-reared.
phylogeny positioned sponges (represented by Amphimedon), not ctenophores (represented by Mniemopsis), as the sister group of all other animals\(^{20-22}\), although this relationship has weak support, the lowest of any node in our tree.

Among many examples of gene gain in Clytia, we could identify new multigene families and also instances of horizontal gene transfers (HGT), as illustrated by a UDP-glucose 6-dehydrogenase-like (UGDH) gene (Supplementary Fig. 3). UGDH is required to biosynthesize of various proteoglycans and so to regulate signalling pathways during metazoan embryonic development\(^{23}\). Unexpectedly, the Clytia genome contains two UGDH-like genes, including one acquired in Hydrozoa by HGT from a giant virus of Mimiviridae family and expressed specifically during medusa formation. Interestingly, this UGDH-like xenolog, found in most available hydrozoan transcriptomes (including a close relative of Clytia hemisphaeric in Clytia and Hydra vulgaris, two medusae in the Hydrozoa clade), is also present in Clytia genome. The four GFPs and three clytin sequences previously reported in Clytia photoprotein genes (Supplementary Fig. 5) found in the Clytia genome. The four GFPs and three clytin sequences previously reported in Clytia photoprotein genes (Supplementary Fig. 5) found in the Clytia genome. We tested conservation of gene order between Clytia, Hydra, Nematostella and Branchiostoma floridæ, a bilaterian showing a particularly slow rate of loss of syntenic blocks\(^{24}\), by identifying conserved adjacent pairs of orthologues (see Methods) shared between two genomes. Clytia shares most genes in adjacent pairs with Hydra (340), including myc2 and its target CAD\(^{25}\). Fewer pairs were conserved between Clytia and either Nematostella (36) or Branchiostoma (16). Although Nematostella, Hydra and Clytia, as cnidarians, are equally distant phylogenetically from Branchiostoma, the number of genes in adjacent pairs in Clytia/Branchiostoma (16) or Hydra/Branchiostoma (13) is considerably smaller than in Nematostella/Branchiostoma (110). Similar trends emerged from analyses limited to orthologues identified in all four species (Ch/Hv 51; Ch/Nv 8; Ch/Bf 4; Nv/Bf 20), so our conclusions are not biased by an inability to detect more divergent orthologues. Such conservation of adjacent gene pairs possibly relates to coordinated transcription or enhancers being embedded in adjacent genes\(^{26}\). In contrast, even though Clytia and Hydra genomes contain orthologues of most of the Wnt, Fox, NK, Parahorax or Hox anthozoan family members, none of them is found in clusters as described in both Nematostella and bilaterians\(^{27-30}\) (Supplementary Table 2), reinforcing the idea of rapid evolution of genome organization in the common branch of Clytia and Hydra. Although a few homeobox, Wnt and Fox are found on the same scaffold in Clytia or Hydra, further analysis suggests these pairs are not conserved, as the clustered genes were found to be either recent duplicates or the orthologues in the second species were lost or do not cluster (Hox9-14 and parahox-like CnoxA cluster in Clytia only, Lhx2/9 and Lmx LIM genes cluster in Hydra only; Supplementary Table 2).

Elevated stage-specific gene expression in medusae and polyps.

Hydrozoan life cycles are characterized by abrupt morphological transitions: metamorphosis from the planula to polyp; and budding of the complex medusa from gonozooid polyps. To address global trends in differential gene use across the life-cycle we produced a comprehensive replicated transcriptome dataset from 11 samples (Fig. 1a). Principal component analysis (PCA) of the most variably expressed genes across these transcriptomes confirmed sample reproducibility and revealed clear clustering of the three distinct hydrozoan life-cycle stages: (1) the gastrula and planula samples; (2) the polyp and stolon samples; and (3) the medusa samples (Fig. 3a). Genes with highest loadings in the first princi-
Fig. 3 | Gene expression data identifies major life-cycle stages. a, PCA of all libraries from staged mRNA samples. b, Distance-based clustering of all libraries. AU (approximately unbiased, gray) and BP (bootstrap probability, black) values are indicated. Library names are as described in Fig. 1 and Methods. c, Gene expression levels can be partitioned into ‘on’ and ‘off’ categories. Red and blue lines show fitted log-normal distributions and the black line their sum. The blue lines represents genes that we describe as ‘on’, and the red ‘off’. Grey bars correspond to the empirically observed distribution of expression levels. Two example libraries are shown here, P1 and PH. All sample distributions are shown in Supplementary Fig. 7. d and e, Numbers of Clytia genes specific to a single stage (vertices) and genes expressed in two out of three stages (edges). Circle area is proportional to the number of genes. In panel d, top numbers correspond to the total of genes ‘on and up’ in a given stage and ‘off’ in the other stages. Lower bracketed numbers were obtained without the ‘up’ filter. In panel e, numbers of stage-specific transcription factors (TFs) (‘on and up’ filtering) are indicated. Bracketed numbers correspond to homeodomain-containing transcription factors.
pical component included proteases, as might be expected between feeding adult stages and non-feeding larvae (Supplementary data). Transcriptomes from gonozooids, which are specialized polyp structures containing developing medusae, were intermediate between the polyp and medusa ones. Inter-sample distances on the basis of all genes presented a similar picture to the PCA (Fig. 3b).

The main Clytia life-cycle phases thus have qualitatively distinct overall profiles of gene expression, with a distance-based dendrogram showing the polyp and medusa transcriptomes closer to each other than either is to the planula stage.

By fitting the log-transformed expression data for each library to the sum of two Gaussian distributions (Fig. 3c and Supplementary Fig. 7; see Methods), we estimated the number of genes that were ‘on’ in a given library (for example, P1, PH or BMF) and hence stage (planula, polyp or medusa). By these criteria, polyp and medusa stages expressed more genes than embry and planula stages, with most distinct genes being ‘on’ in the primary polyp library (19,801 genes) and fewest in the early gastrula (13,489 genes).

The majority of predicted genes, 84% (22,472/26,727) were classified as ‘on’ in at least one of our sampled libraries (see Methods; note that our gene prediction protocol includes data from deep sequencing of other mixed libraries) and 41% (10,874/26,727) are expressed in all libraries. We combined results from libraries of the same life-cycle stages (see Methods) and found 335 genes specifically ‘on’ in the planula, 1,534 in the polyp and 808 in the medusa, with 1,932, 284 and 981 genes specifically ‘off’ at these stages respectively (Fig. 3d). We further filtered these data by requiring that genes also show statistically significant expression differences between stages defined as ‘specifically on’ and other stages, allowing a rigorous treatment of the variance between biological replicates (see Methods). This test reduced these lists, but the results showed the same overall trends in numbers of genes unique to stages (Fig. 3d).

We conclude that the two adult stages in the Clytia life-cycle show greater complexity of gene expression than the planula larva.

To determine whether the medusa stage was enriched in genes found only in the medusozoan clade, as might plausibly be expected of an evolutionary novelty, we combined these lists of stage-specific genes with a phylogenetic classification of gene age (see Methods; Supplementary Fig. 8). All three main life-cycle stages (planula, polyp and medusa) were enriched in Clytia-specific sequences, indicating that phylogenetically ‘new’ genes are more likely than ‘old’ genes to show stage-specific expression but are not associated with any one life-cycle phase. In general, genes that evolved after the cnidarian/bilaterian split were more likely to be expressed specifically in adult (polyp/medusa) stages.

Stage-specific transcription factors. To address the nature of the molecular differences between stages, we assessed enrichment of gene ontology terms in stage-specific genes relative to the genome as a whole. Planula larvae were found to be significantly enriched in G-protein coupled receptor signalling components, while polyp and medusa were enriched in cell–cell and cell–matrix adhesion class molecules (see Supplementary Table 3). Medusa-specific genes were unique in being significantly enriched in the ‘nucleic acid binding transcription factor activity’ term.

Confirming the strong qualitative distinction in gene expression profiles between planula, polyp and medusa (see Fig. 3a,b) clustering of transcription factor expression profiles recovers the three major life-cycle stages (Fig. 4a). The majority of transcription factors (Supplementary Table 4) specific to a particular stage were specific to the medusa (34, of which 11 are plausibly sex-specific; Fig. 3c and Supplementary Table 5). Twelve were polyp-specific (for example, Vsx, two Hmx orthologues) and a total of 62 transcription factors were expressed at polyp and/or medusa stages but not at the planula stage (12.3% of the total transcription factors). Only three transcription factors showed expression specific to the planula.

This pattern is even more striking in the case of the 72 total homeodomain-containing transcription factors: 27.7% are expressed at polyp and/or medusa stages but not at the planula stage, while no homeodomain-containing transcription factors were identified as planula specific.

Among transcription factors expressed strongly in the medusa but poorly at planula stages, we noted a large number with known involvement in neural patterning during bilaterian development (Medusa only: TCF15/Paraxis, Pdx/Xlox, Cdx, TLX, Six1/2, DRGX, FoxQ2 paralogs; Polyp and Medusa: Six3/6, FoxD, FoxQ2 paralogs, FezF, Otx paralogs, Hmx, Tbx4/5, Dmbx, Nkx2a, Nkx6, Neurogenin1/2/3; Fig. 4b). We detected expression of these transcription factors in distinct cell populations of the manubrium, gonads, nerve rings and tentacle bulbs (Fig. 4c,d), structures known to mediate and coordinate feeding, spawning and swimming in response to environmental stimuli. The variety of patterns shows an unanticipated degree of molecular and cellular complexity. We propose that, in Clytia, expression of conserved transcription factors in the medusa is associated with diverse cell types, notably with the neural and neurosensory functions of a complex nervous system, with continuous expression of certain transcription factors in post-mitotic neurons being necessary to maintain neuronal identity. Members of the Sox, PRDL and Achaete scute (bHLH subfamily) orthology groups, commonly associated with neurogenesis, are detectable across all life-cycle stages in Clytia, so our results are unlikely to be simply due to a higher production of nerve cells in the medusa.

Anthozoan larvae and bilaterian embryos express a common set of transcription factors at their respective aboral/anterior ends, including Six3/6, FezF, FoxD, Otx, Rax, Fox Q2 and Irx (refs. 46–48). In the Clytia planula, whose anterior/aboral structures are relatively simple, most orthologues of this transcription factor set are not expressed (Six3/6, FezF, FoxD, Otx orthologues; Figs. 4b and 5b), while another, Rax, was not found in the genome. A FoxQ2 gene (CheFoxQ2a) is expressed aborally in Clytia planulae but is not the orthologue of Nematostella aboral and Platynereis apical FoxQ2 (refs. 46–48), which are instead orthologous to CheFoxQ2b, a Clytia polyp–medusa specific gene (Figs. 4b, 5b and Supplementary Fig. 6.2; ref. 46). Irx is the only member of this conserved set of anterior/aboral transcription factors likely to be aborally expressed in Clytia planulae.

The metamorphosis in Clytia from planula to polyp is drastic and the endoderm and oral ectoderm of the morphologically simple Clytia planulae do not show continuity with the polyp mouth and digestive structures. In contrast, Nematostella planulae contain developing mesenteries, mouth and pharyngeal structures, anticipating gradual development into a feeding polyp. Correspondingly, endoderm and mesoderm patterning genes expressed in many bilaterian larvae and Nematostella planulae (Cdx, Pdx/Xlox, Nkx2, Nkx6, Twist, TCF15/Paraxis, Six1/2, Hand) are not expressed in Clytia planulae. In contrast, despite different gastrulation mechanisms in anthozoans and hydrozoans, orthologues of transcription factors associated with gastrulation and endoderm formation in Nematostella, including FoxA, FoxB, Brachyury, Snail and Gsc, are also expressed in oral-derived cells at gastrula and planula stages in Clytia, as well as at polyp and medusa stage.

Discussion

Three lines of evidence suggest that the Clytia genome has undergone a period of rapid evolution since the divergence of Hydrozoa from their common ancestor with Anthozoa (Fig. 5a). First, rates of amino acid substitution appear to be elevated in hydrozoan relative to anthozoan cnidarians. Second, orthologous gene content analysis shows that the hydrozoans Clytia and Hydra have the longest branches within Cnidaria, with elevated rates of gene gain and loss (Fig. 2). Third, analysis of adjacent gene pairs shows...
more conservation between Anthozoa and Bilateria than between Hydrozoa and Bilateria.

Gene expression analysis and lost developmental genes point to secondarily simplified planula and polyp structures in Clytia. The planula larva, in particular, shows an absence of key apical (aboral/anterior; Fig. 5b) and endomesoderm patterning genes considered ancestral on the basis of shared expression patterns in Anthozoa and bilaterian larvae. Similarly, several genes with roles in patterning the directive axis of the anthozoan planula are lost from the Clytia and Hydra genomes (Chordin, Hox2, Gbx, Netrin), providing support for loss of bilaterality in medusozoans. Much of the directive axis-patterning gene expression lost in Clytia planulae (Fig. 5b) is, in Nematostella, probably involved in differentiating structures (mesenteries) that are maintained in the adult polyp,
supporting the idea that the simple state of the Clytia polyp is secondary. Although bilateral symmetry is observed in a few disparate hydrozoan clades, its sporadic presence suggests convergence\(^9\). It will be instructive to test whether, in these cases, bilaterality is under control of different developmental mechanisms than those reported for Nematostella\(^7,31,36–38\).

The medusa stage, as well as being morphologically complex, expresses a notable number of transcription factors that are conserved between cnidarians and bilaterians. These genes are expressed either specifically in the medusa (for example, FoxD, FoxB, FoxQ2a), or in both polyp and medusa but not planula stages (for example, Six3/6, Otx and FoxD), with medusa expression patterns suggesting roles in establishment or maintenance of neural cell-type identity. Hydra has lost the medusa from its life-cycle and has lost orthologues of most transcription factors that in Clytia are expressed specifically in the medusa, further supporting the notion that these genes are regulating the identity of cells now restricted to the medusa.

We propose then that, in part, the rapid molecular evolution we observe at the genome scale in Hydrozoa is connected as much to the simplified planula and polyp as to the more obvious novelty of the medusa. Genomic and transcriptomic studies of the other medusozoan lineages, such as the scyphozoan Aurelia\(^\#\), whose polyps are less simple than those of Clytia, will show if the expansion of cell type and morphological complexity in the medusa phase has similarly been offset by reduction of key developmental gene use in planula and polyp stages.

Methods

Animals and extraction of genomic DNA. A three-times self-crossed strain (ZAC\(^1\)) (male) was used for genomic DNA extraction, aiming to reduce polymorphisms. The first wild-type Z-strain colony was established using jellyfish sampled in the bay of Villefranche-sur-Mer (France). Sex in Clytia is influenced by temperature\(^6\) and some young polyp colonies can produce both male and female medusae. Male and female medusae from colony Z were crossed to make colony Z\(^2\). Two further rounds of self-crossing produced (ZAC\(^4\)) (see Supplementary Fig. 1 for relationships between colonies). For in situ hybridization (and other histological staining) we used a female colony Z4B, a male colony Z10 (offspring of (Z4C)\(^2\) and z4B) as well as embryos produced by crossing Z10 and Z4B strains. (ZAC\(^1\), ZAC\(^2\), ZAC\(^3\) and Z10 are maintained as vegetatively growing polyp colonies. For chromosome number determination we performed confocal (Leica SP5) microscopy of isolated fully grown oocytes, in which the duplicated and paired chromosomes are strongly condensed even before meiotic maturation. We stained oocytes with Hoechst dye in artificial sea water containing penicillin and streptomycin for 3 to 4 d. They were starved for at least 24 h. Medusae were snap-frozen in liquid nitrogen, ground with mortar and pestle into powder then transferred into a 50 ml Falcon tubes (roughly 50–100 jellyfish/tube). About 20 ml of DNA extraction buffer (200 mM Tris-HCl pH 8.0 and 20 mM EDTA, 0.5 mg ml\(^{-1}\) protease K and 0.1% SDS) were added and incubated at 50°C for 3 h until the solution became uniform and less viscous. An equal volume of phenol was added, vortexed for 1 min, centrifuged for 30 min at 8,000 g of DNA was obtained from 270 male medusae.

**For genomic DNA extraction mature (Z4C)\(^2\) medusae were cultured in artificial sea water (RedSea Salt, 37% salinity) then in Millipore-filtered artificial sea water containing penicillin and streptomycin for 3 to 4 d. They were starved for at least 24 h. Medusae were snap-frozen in liquid nitrogen, ground with mortar and pestle into powder then transferred into a 50 ml Falcon tube (approximately 50–100 jellyfish/tube). About 20 ml of DNA extraction buffer (200 mM Tris-HCl pH 8.0 and 20 mM EDTA, 0.5 mg ml\(^{-1}\) protease K and 0.1% SDS) were added and incubated at 50°C for 3 h until the solution became uniform and less viscous. An equal volume of phenol was added, vortexed for 1 min, centrifuged for 30 min at 8,000 g. The supernatant was transferred to a new tube. This extraction process was repeated using chloroform. X5/10 volume of 5 M NaCl then 2.5 volumes of ethanol were added to the supernatant before centrifugation for 30 min at 8,000 g. The DNA precipitate was rinsed with 70% ethanol, dried and dissolved into distilled water. A total 210 µg of DNA was obtained from 270 male medusae.

Fig. 5 | Simplification of polyp and planula stages in the hydrozoan lineage. a, Clytia hemisphaerica shows the typical hydrozoan tri-phasic life-cycle, comprising a planula larval stage (bottom), a colonial polyp stage (middle) and a sexually reproducing medusa form (top). Both planula and medusa stages have been lost in the Hydra lineage. Planulae and polyps are morphologically simpler than those of Anthozoa (for example, Nematostella). The comparison of Clytia and Hydra genomes with that of Nematostella shows that the hydrozoan lineage undergone important genome reorganization (see Discussion). b, The planula larva of Nematostella (top) presents a well-defined endoderm and ectoderm and bears an aboral apical organ. The eight internal mesenteries and the pharynx manifest the directive polarity axis, orthogonal to the oral–aboral one. A number of studies have identified a set of conserved transcription factors responsible for setting up the polarity axes and patterning the body. The Clytia planula (bottom) is radially symmetric and has a simpler morphology, with an ectodermal layer surrounding a mass of endodermal cells. Although the oral pole shares a set of developmental regulators with the planula of Nematostella (Bra, Gsc, FoxA, FoxB), the aboral pole appears to be highly divergent: expression of these known aboral transcription factors could not be detected, with the exception of ChFoxQ2a which does not belong to the NvFoxQ2a orthology group. Most Nematostella direct axis regulators have been lost in Hydrozoa. Coloured bars represent expression domains.
RNA extraction and transcriptome sequencing. RNA samples were prepared from ZAB female and Z10 male medusae and polyps, as well as embryos generated by crossing these medusae. Animals werestarved for at least 24 h before extraction and kept in Millipore-filtered artificial sea water containing penicillin and streptomycin. Then they were put in the lysis buffer (Ambion, RNeasy MicroElute Kit), vortexed, immediately frozen in liquid nitrogen and stored at –80 °C until RNA preparation.

Total RNA was prepared from each sample using the RNeasy MicroElute Kit (Qiagen). See Supplementary Table 6 for total RNA (evaluated using Nanodrop). RNA quality of all samples was checked using the Agilent 2100 Bioanalyzer. The samples used to generate the expression data presented in Fig. 3a are described in Supplementary Tables 6–9. For the ‘mix’ sample, purification of mRNA and construction of a non-directional complementary DNA library were performed by GATC Biotech, and sequencing was performed using the Illumina HiSeq2500 sequencing machine (pair-end). For the other samples, purification of mRNA and construction of a non-directional cDNA library were performed by UGC Genomics Center using the Kapa RNA library prep kit and sequencing was performed using either HiSeq 2500 (single-read 50 cycles) or NextSeq (single-read 75 cycles).

Gene prediction and transcript prediction. Genes were predicted from transcriptome data. Using tophat2, we mapped single-end RNA-Seq reads from libraries of early gastrula; 1-, 2- and 3-day-old planula; polyp head, gonozooid, baby medusa, mature medusa, male medusa (this study; growing zooids); general gonozooid, young gonozooid, early gastrula, planula, polyp head; medusa of any stage other than 1-2 day-old planula; polyp any of stolon, primary polyp, polyp head; medusa of any baby medusa, adult medusa, male medusa and female medusa. The gonozooid and medusa were identified using RepeatMasker. Where specific genes are named in the text, orthology assignments were further analysed using the DESeq2 R package. An estimate of the mode of raw geometric means (rather than the default median) was used to calculate size factors. PCA and heatmaps were generated using regularized logarithms of counts (DESeq2 ‘rlog’ with blind = F). Bootstrapped hierarchical clustering was performed with pvclust using the default parameters.

RNA-Seq analyses and stage-specific expression. RNA-Seq reads were aligned to the genome using STAR (v.2.5.3a) with default mapping parameters. Counts of reads per gene were obtained using HTSeq-counter. Gene-level counts were further analysed using the DESeq2 R package. An estimate of the mode of raw geometric means (rather than the default median) was used to calculate size factors. PCA and heatmaps were generated using regularized logarithms of counts (DESeq2 ‘rlog’ with blind = F). Bootstrapped hierarchical clustering was performed with pvclust using the default parameters. To identify genes whose expression was restricted to particular stages we used a two-step procedure. We first analysed absolute expression levels, using an approach outlined below and identified genes that were ‘on’ (as opposed to ‘off’) in a particular library. We then filtered this list to ensure that genes that were ‘on’ showed a statistically significant ‘up’ log-fold change of expression level relative to their ‘off’ stages, using standard RNA-Seq approaches.

To identify genes that were ‘on’ we first calculated a list of all genes expressed in each library. We then filtered this list to ensure that genes that were ‘on’ were confirmed by a statistically significant ‘up’ fold change of expression level relative to their ‘off’ stages, using standard RNA-Seq approaches. The list of genes that were ‘on’ was then filtered using a low-fold change analysis performed using all genes. Significant differences in gene expression were calculated via pairwise contrasts of all different ‘conditions’ (replicated libraries). To be considered ‘on’ in a stage (planula, polyp, medusa) if any of the component libraries of that stage (for example, EG, P1, P2 or P3 for planula) showed expression of that gene. Genes that were not exclusively ‘off’ or exclusively ‘on’ were then also filtered by a low-fold change analysis performed using all genes. Significant differences in gene expression were calculated via pairwise contrasts of all different ‘conditions’ (replicated libraries). To be considered ‘up’ in planula, polyp or medusa, a gene needed to be significantly up (lfc threshold = 0.0, all hypothesis = greater) in at least one ‘condition’ of that stage relative to all ‘conditions’ of one or both of the other stages, requiring the DESeq2 adjusted P < 0.001 across multiple pairwise comparisons. For example, if a gene was significantly more highly expressed in 1-day-old planula (P1) than all constituent medusae or polyp stages, it was considered ‘up’ in planula.

This combined approach addresses two issues. First, we avoid the choice of an arbitrary FPKM (fragments per kilobase per million mapped reads) type to produce hierarchical orthologous groups (HOGs). These HOGs were used as the basis for the phylogenetic classification of Clytia genes into one category out of eukaryotic, holozoan, metazoan, planulatozoan, cnidarian or hydrozoan, on the basis of the constituent proteins presumed to have evolved in the most recent common ancestor of extant leaves and leaves under this node where the gene was not present were presumed to be losses, with the minimum number of losses inferred to explain the observed presence and absence. Clytia-specific genes were identified as those whose encoded proteins had no homology targets to the set of parameters in the OMA.

Where specific genes are named in the text, orthology assignments were taken from classical phylogenetic analysis (or in a few cases pre-existing sequence database names). Signature domains (for example, Homeobox, Forkhead, T-box, HLH) were searched against the protein set using Pfam HMM models and hmmsearch of the Hmmer3 package, with the database supplied ‘gathering’ through the HMMer tools. Sequence hits were extracted and aligned with MAFFT (ref. 4) and a phylogeny reconstructed using RAxML with the LG model of protein evolution and gamma correction.

Transcription factors were assigned via matches beneath the ‘gathering’ threshold to Pfam domains contained in the transcriptionfactor.org database, with the addition of MH1, COE1_DB, BTD, LG1-DNAbind and HMG_Box Pfam models.

Ectopleura larynx proteins were predicted with Transdecoder, including Pfam hit retention, from Trinity assembled reads (v.2.4.0); SRA accessions SRR923510_1 and SRR923510_2.

Synteny analyses. Genes were ordered on their scaffolds (using the GFF files described in Supplementary Table 10) on the basis of the average of the start and end position. For each gene, the adjacent genes recorded, ignoring order and orientation but respecting boundaries between scaffolds (terminal genes had only one neighbour). Between-species comparisons were performed using the OMA orthologous groups from 76-embryoniky2015 (pair-end and single-end, with the addition of MH1, COE1 and COE1_DB). Between-species comparisons were performed using the OMA orthologous groups from 76-embryoniky2015 (pair-end and single-end, with the addition of MH1, COE1 and COE1_DB). A two-step procedure. We first analysed absolute expression levels, using an approach outlined below and identified genes that were ‘on’ (as opposed to ‘off’) in a particular library. We then filtered this list to ensure that genes that were ‘on’ showed a statistically significant ‘up’ log-fold change of expression level relative to their ‘off’ stages, using standard RNA-Seq approaches.

To identify genes whose expression was restricted to particular stages we used a two-step procedure. We first analysed absolute expression levels, using an approach outlined below and identified genes that were ‘on’ (as opposed to ‘off’) in a particular library. We then filtered this list to ensure that genes that were ‘on’ showed a statistically significant ‘up’ log-fold change of expression level relative to their ‘off’ stages, using standard RNA-Seq approaches. The list of genes that were ‘on’ was then filtered using a low-fold change analysis performed using all genes. Significant differences in gene expression were calculated via pairwise contrasts of all different ‘conditions’ (replicated libraries). To be considered ‘on’ in a stage (planula, polyp, medusa) if any of the component libraries of that stage (for example, EG, P1, P2 or P3 for planula) showed expression of that gene. Genes that were not exclusively ‘off’ or exclusively ‘on’ were then also filtered by a low-fold change analysis performed using all genes. Significant differences in gene expression were calculated via pairwise contrasts of all different ‘conditions’ (replicated libraries). To be considered ‘up’ in planula, polyp or medusa, a gene needed to be significantly up (lfc threshold = 0.0, all hypothesis = greater) in at least one ‘condition’ of that stage relative to all ‘conditions’ of one or both of the other stages, requiring the DESeq2 adjusted P < 0.001 across multiple pairwise comparisons. For example, if a gene was significantly more highly expressed in 1-day-old planula (P1) than all constituent medusae or polyp stages, it was considered ‘up’ in planula.

This combined approach addresses two issues. First, we avoid the choice of an arbitrary FPKM (fragments per kilobase per million mapped reads) type
value as an indicator of expression. Our frequency-distribution based approach defines gene ‘on’ or ‘off’ states independently of the total numbers of distinct transcripts expressed in a given sample, unlike FPKM values which are a measure of concentration and so for similarly expressed genes will be relatively higher for ‘off’ genes in samples with low overall complexity. Second, log-fold change analyses in themselves are not reliable indicators of specificity in the sense that we are interested in, as they deal with relative expression levels: a gene could show a statistically significant difference and still be clearly expressed in both stages, if for example it has an expression level of 5 log units in stage a and 10 log units in stage b. Such differences are expected, owing to very different cellular composition between life-cycle stages. By combining these two approaches we identify genes with rigorous evidence for significant differential expression with a more easily interpretable biological meaning.

Gene Ontology term enrichment. Gene Ontology terms were assigned via sequence hits to the PANTHER database using the ‘pantherScore2.0.pl’ program. Term enrichment was tested using the ‘Ontologizer’ software with a ‘Parent–Child–Union’ calculation (the default) and Bonferroni multiple testing correction10.

In situ hybridization. In situ hybridization probes were synthesized from multiple types of templates, either pGEM-T Easy plasmids (following one or two rounds of insert amplification), PCR products (reverse primer comprised a T7 promoter) or expressed sequence tag clones11; see Supplementary Table 11 for further details. In situ hybridization was performed, as previously described11, on 2-week-old female medusae. Images were taken on either Zeiss Axio Imager 2 or Olympus BX61 microscopes and processed with ImageJ 1.47v and Adobe Photoshop CS6.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Sequence data have been deposited at EBI under BioProject accessions PRJEB28006 and PRJEB30540. Data downloads and a genome browser are available at http://marimba.obs-vlfr.fr/organisms/Clytia/hemisphaerica (see Supplementary Section 2). There are no restrictions on data. A data archive for repeats, phylogeny and expression analysis is available at: https://doi.org/10.5281/zenodo.1470435.

Received: 17 July 2018; Accepted: 30 January 2019; Published online: 11 March 2019

References
1. Koizumi, O. et al. The nerve ring in cnidarians: its presence and structure in hydrozoan medusae. Zoology 118, 79–88 (2015).
2. Hyman, L. H. The invertebrates: Protozoa Through Ctenophora, Vol 1 (McGraw-Hill, New York, 1940).
3. Zapata, F. et al. Phylogenomic analyses support traditional relationships within cnidaria. PLoS ONE 10, e0139068 (2015).
4. Kay, E. et al. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Biol. 18, 68 (2018).
5. Kraus, J. E. M., Fredman, D., Wang, W., Kallturin, K. & Technau, U. Adoption of conserved developmental genes in development and origin of the medusa body plan. EvoDevo 6, 23 (2015).
6. Sanders, S. M. & Cartwright, P. Interspecific differential expression analysis of RNA-Seq data yields insight into life cycle variation in hydractinid hydrozoans. Genome Biol. Evol. 7, 2417–2431 (2015).
7. Sanders, S. M. & Cartwright, P. Patterns of Wnt signaling in the life cycle of Podocoryna carnea and its implications for medusae evolution in Hydrozoa (Cnidaria). Evol. Dev. 17, 325–336 (2015).
8. Leclère, L., Copley, R. R., Momose, T. & Houliston, E. Hydrozoan insights in Wnt signaling during mouse gastrulation. Cell 114, 727–737 (2003).
9. García-García, M. J. & Anderson, K. V. Essential role of glycosaminoglycans in Fgf signaling during mouse gastrulation. Cell 114, 727–737 (2003).
10. Waterhouse, R. M. et al. BUSCO applications from quality assessments to genome to understand coral evolution. Mol. Biol. Evol. 3, 543–548 (2017).
11. Derelle, R. et al. Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa. RNA 16, 696–707 (2010).
12. Kayal, E. et al. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol. Evol. 4, 1–12 (2012).
13. Nishihara, H., Piazza, F., Passamonti, M. & Okada, N. MetaSINEs: broad distribution of a novel sINE superfamily in animals. Genome Biol. Evol. 8, 528–539 (2016).
14. Pisani, D. et al. Genomic data do not support comb jellys as the sister group to all other animals. Proc. Natl Acad. Sci. USA 112, 15402–15407 (2015).
15. Whelan, N. V. et al. Ctenophore relationships and their placement as the sister group to all other animals. Nat. Ecol. Evol. 1, 1737–1746 (2017).
16. Pfeffer, R. et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. 27, 3864–3870.e4 (2017).
17. Garcia-Garcia, M. J. & Anderson, K. V. Essential role of glycosaminoglycans in Fgf signaling during mouse gastrulation. Cell 114, 727–737 (2003).
18. Fourcade, C., Swann, K., Gonzalez Garcia, J. R., Campbell, A. K. & Houliston, E. An endogenous green fluorescent protein–photoprotein pair in Clytia hemisphaerica eggs shows co-targeting to mitochondria and efficient bioluminescence energy transfer. Open Biol. 4, 130206 (2014).
19. Lowe, C. J. et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113, 853–865 (2003).
20. Sherkow, J. Z. et al. Evolution of bilaterian central nervous systems: a single origin?. EvoDevo 4, 27 (2013).
21. Matus, D. Q. et al. Molecular evidence for deep evolution roots of bilaterality in animal development. Proc. Natl Acad. Sci. USA 103, 11195–11200 (2006).
22. Ryan, J. F. et al. Pre-bilaterian origins of the hox cluster and the hox code: evidence from the sea anemone, Nemastoma vectensis. PLoS ONE 2, e153 (2007).
23. Rentzsch, F., Guder, C., Vocke, D., Hombayer, R. & Holstein, T. W. An ancient chord-like gene in organizer gene in organism formation of Hydra. Proc. Natl Acad. Sci. USA 104, 3249–3254 (2007).
24. Gemikhovich, G. & Technau, U. On the evolution of bilaterality. Development 144, 3392–3404 (2017).
25. Simakov, O. et al. Hemichordate genomes and deuterostome origins. Nature 527, 459–465 (2015).
26. Harl, M. et al. Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc. Natl Acad. Sci. USA 107, 4051–4056 (2010).
27. Irwin, M. et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. genome Res. 22, 2356–2367 (2012).
28. Chiori, R. et al. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS ONE 4, e2431 (2009).
29. Shindler, S. M., Degnan, B. & Luke, G. N. Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters. Genomics 95, 256–260 (2010).
30. Waterhouse, R. M. et al. BUSCO applications from quality assessments to genome to understand coral evolution. Mol. Biol. Evol. 32, 226–234 (2015).
31. Carr, S. W. et al. Genome evolution in metazoa due to cis-regulatory constraints. Genome Res. 22, 2356–2367 (2012).
32. Chiori, R. et al. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS ONE 4, e2431 (2009).
33. Shindler, S. M., Degnan, B. & Luke, G. N. Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters. Genomics 95, 256–260 (2010).
34. Kesh, S. Y., Kratzie, P., Hart, M., Mourouz, R. & Hohert, O. Diversification of C. elegans motor neuron identity via selective effector gene repression. Neuron 93, 80–98 (2017).
35. Jager, M., Quinnec, E., Le Guyader, H. & Manuel, M. Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. Open Biol. 2, 12 (2015).
36. Rentzsch, F., Payden, M. & Manuel, M. The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdiscip. Rev. Dev. Biol. 6, e257 (2017).
37. Snigalga, C., Busengdal, H., Leclère, L., Technau, U. & Rentzsch, F. The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidian. PLoS Biol. 11, e1001488 (2013).
47. Marlow, H. et al. Larval body patterning and apical organs are conserved in animal evolution. *BMC Biol.* 12, 7 (2014).

48. Chevalier, S., Martin, A., Leclère, L., Amiel, A. & Houlstein, E. Polarised expression of FoxQ2 genes during development of the hydrozoan *Clytia hemisphaerica*. *Dev. Genes Evol.* 216, 709–720 (2006).

49. Lapèbie, P. et al. Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidian. *PLoS Genet.* 10, e1004590 (2014).

50. Bodo, F. & Boullon, J. Etude histologique du développement embryonnaire de quelques hydroméduses de Roscoff: *Phialidium hemisphaericum* (L.), *Obelia sp.* Péron et Lesueur, *Sarsia eximia* (Allman), *Polycoryne carnea* (Sars), *Gonionemus vertens* Agassiz. *Cah. Biol. Mar.* 9, 69–104 (1968).

51. Leclère, L. & Rentsch, P. RGM regulates BMP-mediated secondary axis formation in the sea anemone *Nematostella vectensis*. *Cell Rep.* 9, 1921–1930 (2014).

52. Martindale, M. Q., Pang, K. & Finnerty, J. R. Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone *Nematostella vectensis* (phylum, Cnidaria; class, Anthozoa). *Development* 130, 2463–2474 (2004).

53. Steinmetz, P. R. H., Aman, A., Kraus, J. E. M. & Technau, U. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. *Nat. Ecol. Evol.* 1, 1535–1542 (2017).

54. Röttinger, E., Dahlin, P. & Martindale, M. Q. A framework for the establishment of a cnidian gene regulatory network for ‘endomesoderm’ specification: the inputs of B-catenin/TCF signaling. *PLoS Genet.* 8, e1003164 (2012).

55. Simion, P. et al. A large and consistent phylogenomic dataset supports the triploblast hypothesis of animal evolution. *Nat. Commun.* 8, 1466 (2017).

56. Saina, M., Genikhovich, G., Renfer, E. & Technau, U. BMPs and chordin regulate patterning of the directive axis in a sea anemone, *Clytia edwardsi* (phylum, Cnidaria; class, Anthozoa). *Nat. Ecol. Evol.* 3, 317–326 (2019).

57. Kubota, S. The life-history of *Clytia hemisphaerica* would be a convenient cnidian species for experimentation and isolated our founder adult medusae from the Villefranche plankton. We thank I. Mathieson (UPenn) and R. Mott (UCL) for statistical advice and S. Collet, L. Gissat and L. Gilletta for animal maintenance. Initial sequencing was funded directly by the Genoscope–CEA. Other funding was provided by the CORBEL European Research Infrastructure cluster project, grants from the Agence Nationale de la Recherche (nos. ANR-13-BSV2-0008 “OOCAMP” and ANR-13-PDOC-0016 “MEDUSEVO”), a Marie Curie training network (no. FP7-People-2012-ITN 317172 “NEPTUNE”), a grant of the Austrian Science Fund (FWF; no. P27353) to U.T. EMBRC-France (no. ANR-10-INBS-0002), the ANDIC Picard Network, as well as core CNRS and Sorbonne University funding to the LBDV. Part of the imaging was performed at the Villefranche-sur-mer imaging platform (PIF).

Acknowledgements

We thank D. Carre, who first suggested that *Clytia hemisphaerica* would be a convenient cnidian species for experimentation and isolated our founder adult medusae from the Villefranche plankton. We thank I. Mathieson (UPenn) and R. Mott (UCL) for statistical advice and S. Collet, L. Gissat and L. Gilletta for animal maintenance. Initial sequencing was funded directly by the Genoscope–CEA. Other funding was provided by the CORBEL European Research Infrastructure cluster project, grants from the Agence Nationale de la Recherche (nos. ANR-13-BSV2-0008 “OOCAMP” and ANR-13-PDOC-0016 “MEDUSEVO”), a Marie Curie training network (no. FP7-People-2012-ITN 317172 “NEPTUNE”), a grant of the Austrian Science Fund (FWF; no. P27353) to U.T. EMBRC-France (no. ANR-10-INBS-0002), the ANDIC Picard Network, as well as core CNRS and Sorbonne University funding to the LBDV. Part of the imaging was performed at the Villefranche-sur-mer imaging platform (PIF).

Author contributions

R.R.C., L.L. and E.H. conceived the study, contributed to the analyses and wrote the paper. R.R.C. assembled the genome and performed the initial RNA-Seq analysis. L.L., R.R.C. and C.S. prepared the figures. C.H. generated the Marimba database. All the authors contributed to data generation and/or analyses.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41559-019-0833-2.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to R.R.C.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

 Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection	no software was used for data collection
Data analysis	All software used in data analysis is referenced in the methods and text. Custom scripts (R/Python) are available in the referenced Zenodo archive and/or from the authors.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Data downloads and a genome browser are available at http://marimba.obs-vlfr.fr/; raw sequence data are available from the ENA projects: PRJEB28006 and PRJEB30490

Data
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☒ Life sciences
☐ Behavioural & social sciences
☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Samples were derived from an inbred line, and enough clonal individuals were used to ensure required DNA/RNA.
Data exclusions	No data were excluded.
Replication	RNA-Seq quantification was performed on two biological replicates.
Randomization	No randomizations were performed
Blinding	No blinding was implemented

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	n/a
☒ Antibodies	☒ ChiP-seq
☒ Eukaryotic cell lines	☒ Flow cytometry
☒ Palaeontology	☒ MRI-based neuroimaging
☒ Animals and other organisms	
☒ Human research participants	
☒ Clinical data	

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals	Clytia hemisphaerica M/F Z-strain
Wild animals	no wild animals were used
Field-collected samples	no field collected samples were used
Ethics oversight	no ethical approval was required

Note that full information on the approval of the study protocol must also be provided in the manuscript.