Research Article

\((k, l)\)-Anonymity in Wheel-Related Social Graphs Measured on the Base of \(k\)-Metric Antidimension

Jiang-Hua Tang,1 Tahira Noreen,2 Muhammad Salman2,2 Masood Ur Rehman3,3 and Jia-Bao Liu4

1Department of General Education, Anhui Xinhua University, Hefei 230088, China
2Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
3Department of Basic Sciences, Balochistan University of Engineering and Technology Khuzdar, Khuzdar 89100, Pakistan
4School of Mathematics and Physics, Anhui Jianzhu University, Hefei, Anhui 230601, China

Correspondence should be addressed to Masood Ur Rehman; masoodqau27@gmail.com

Received 22 July 2021; Accepted 28 August 2021; Published 16 September 2021

Academic Editor: Ali Ahmad

Copyright © 2021 Jiang-Hua Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the study and valuation of social graphs, which affect an extensive range of applications such as community decision-making support and recommender systems, it is highly recommended to sustain the resistance of a social graph \(G\) to active attacks. In this regard, a novel privacy measure, called the \((k, l)\)-anonymity, is used since the last few years on the base of \(k\)-metric antidimension of \(G\) in which \(l\) is the maximum number of attacker nodes defining the \(k\)-metric antidimension of \(G\) for the smallest positive integer \(k\). The \(k\)-metric antidimension of \(G\) is the smallest number of attacker nodes less than or equal to \(l\) such that other \(k\) nodes in \(G\) cannot be uniquely identified by the attacker nodes. In this paper, we consider four families of wheel-related social graphs, namely, Jahangir graphs, helm graphs, flower graphs, and sunflower graphs. By determining their \(k\)-metric antidimension, we prove that each social graph of these families is the maximum degree metric antidimensional, where the degree of a vertex is the number of vertices linked with that vertex.

1. Introduction

Since 2016, a novel privacy measure, “the \((k, l)\) anonymity,” is defined and used, for the sake of a social graph confrontation from various active attacks, in connection with the concept of \(k\)-metric antidimension. Trujillo-Rasua and Yero defined, studied in detail, and promoted the idea of \(k\)-metric antidimension, which provides a basis for the privacy measure \((k, l)\)-anonymity [7]. They defined this privacy measure as follows:

“The \((k, l)\)-anonymity for a social graph \(G\) will be preserved according to active attacks if the \(k\)-metric antidimension of \(G\) is bounded above by \(l\) for the least positive integer \(k\), where \(l\) is an upper bound on the expected number of attacker nodes.”

Accordingly, it can be seen that having a \(k\)-antimetric generator (a set defining the \(k\)-metric antidimension) as the set of attacker nodes, the probability of unique identification of other nodes by an adversary in a social graph is less than or equal to \((1/k)\).

Besides, providing many significant theoretical properties of the \(k\)-metric antidimension of graphs, Trujillo-Rasua and Yero also supplied the \(k\)-metric antidimension of complete graphs, paths, cycles, complete bipartite graphs, and trees [7]. This significant work of Trujillo-Rasua and Yero attracted many researchers to work on this idea, and therefore, the literature has been updated with the following remarkable contributions up till now:

(i) Trujillo-Rasua and Yero further contributed by characterizing 1-metric antidimensional trees and unicyclic graphs [8]

(ii) Mauw et al. contributed by providing a privacy-preserving graph transformation, which improves
privacy in social network graphs by contracting active attacks [6]

(iii) Čangalović et al. contributed by considering wheels and grid graphs in the context of the k–metric antidimension [1]

(iv) DasGupta et al. contributed by analyzing and evaluating privacy-violation properties of eight social network graphs [4]

(v) Kratica et al. contributed by investigating the k–metric antidimension of two families of generalized Petersen graphs GP$(n, 1)$ (also called prism graphs) and GP$(n, 2)$ [5]

(vi) Zhang and Gao and, later on, Chatterjee et al. contributed by proving that the problem of finding the k–metric antidimension of a graph is, generally, an NP-complete problem [3, 9]

Inspired by all these contributions and, particularly, motivated by the work done by Čangalović et al. on wheel graphs, we place our contribution by extending the study of (k, l)-anonymity privacy measure based on k-metric dimension towards four families of wheel-related social graphs.

2. Basic Works
Let $G = (V(G), E(G))$ be a simple and connected graph. We denote two adjacent vertices x and y by $x \sim y$ and non-adjacent by $x \not\sim y$ in G. Two vertices of G are said to be neighbors of each other if there is an edge between them. The (open) neighborhood of a vertex x in G is $N(x) = \{ y \in V(G) : x \not\sim y \in E(G) \}$. The neighborhood $N(x)$ is closed if it includes x and is denoted by $N[x]$. The number of vertices adjacent with a vertex x is called its degree and is denoted by $d(x)$. The maximum degree in G is $\Delta = \max_{x \in V(G)} d(x)$. The metric on G is a mapping $d : V(G) \times V(G) \to \mathbb{Z}^+ \cup \{0\}$ defined by $d(x, y) = l$, where l is the length of the number of edges in the shortest path between vertices x and y in G. A vertex u of G identifies a pair (x, y) of vertices in G if $d(x, u) \neq d(y, u)$. The sum $G + H$ of two graphs G and H is obtained by joining each vertex of G with every vertex of H. We refer the book in [2] for nonmentioned graphical notations and terminologies used in this paper.

Let $S = \{s_1, s_2, \ldots, s_t\} \subseteq V(G)$ be an ordered set. Then, the metric code, or simply code, of a vertex $u \in V(G)$ with respect to S is the t-vector $c_S(u) = (d(u, s_1), d(u, s_2), \ldots, d(u, s_t))$. A chosen set S of vertices of G unique identifies each pair (x, y) of vertices in G if $c_S(x) \neq c_S(y)$. The following concepts are defined by Trujillo-Rasua and Yero in [7]:

(i) A set S of vertices of G is called a k–antimetric generator (k-antiresolving set) for G if k is the largest positive integer such that k vertices of G, other than the vertices in S, are not uniquely identified by S; i.e., for every vertex $w \in V(G) - S$, there exist at least $k - 1$ different vertices $u_1, \ldots, u_{k-1} \in V(G) - S$ such that $c_S(w) = c_S(u_1) = \ldots = c_S(u_{k-1})$

(ii) The cardinality of the smallest k-antimetric generator for G is called the k-metric antidimension of G, denoted by $ad_G^m(G)$, and such a smallest generator is known as k-antimetric basis of G

(iii) If k is the largest positive integer such that G has a k-antimetric generator, then G is said to be k-metric antidisgonal graph

If S is a set of vertices of a graph G, then it has been defined as a relation on $V(G)$ – S according to the vertices having equal metric codes with respect to S as follows.

2.1. Equivalence Relation and Classes [5, 7]. Let $S \subseteq V(G)$ be a set of vertices of a connected graph G and let ρ_S be a relation on $V(G) - S$ defined by

\[x \rho_S y \iff c_S(x) = c_S(y). \] (1)

This relation is an equivalence relation and partitioned $V(G) - S$ into classes, say S_1, \ldots, S_m, called the equivalence classes corresponds to the relation ρ_S.

Accordingly, we get the following useful property from [5].

Remark 1 (see [5]). For a fixed integer $k \geq 1$, a set S is a k-antimetric generator for G if and only if $\min_{m \geq 1} |S_i| = k$, where each $S_i, 1 \leq i \leq m$, is an equivalence class defined by the relation ρ_S.

3. Wheel-Related Social Graphs
In this section, we consider five wheel-related social graphs. The (k, l)-anonymity of one of them, called a wheel graph, has been measured previously in [1], by investigating its k-metric antidimension. Here, we focus to investigate the k-metric antidimension of other four graphs. For $n \geq 3$, a wheel graph is $W_{1,n} = K_1 + C_n$, where K_1 is the trivial graph having only one vertex v, and C_n is a cycle graph with vertices in $V = V(C_n) = \{v_1, v_2, \ldots, v_n\}$. Accordingly, the vertex set of this graph is $V(W_{1,n}) = \{v\} \cup V$ and edge set is $E(W_{1,n}) = \{v \sim v_i, v_i \sim v_{i+1} : 1 \leq i \leq n\}$, where the indices greater than n or less than 1 will be taken modulo n. Each edge $v \sim v_i$ is called a spoke in a wheel graph. One such graph is depicted in Figure 1.

In 2018, Čangalović et al. supplied the following investigations.

Observation 1 (see [1])
For all values of \(n \geq 5 \), the following result provides the \(k \)-metric antidimension of Jahangir graphs.

Theorem 2. For \(n \geq 5 \), let \(J_{2n} \) be a Jahangir graph. Then,

\[
\text{adim}_k(J_{2n}) = \begin{cases}
1, & \text{for } k = 2, 3, n, \\
2, & \text{for } k = 1, 2.
\end{cases}
\]

Proof. First of all, it is worthy to note that \(N(\{v\}) = V(C_{2n}) \) and \(N(\{u_i\}) = \{v, u_i, u_{i-1}\} \), for any \(v \in V \), and \(N(\{u_i, v_{i+1}\}) = \{v, u_i, u_{i+1}\} \), for any \(u_i \in U \). Now, we need to discuss the following seven claims.

Claim 1: the set \(S = \{v\} \) is an \(n \)-antimetric generator for \(J_{2n} \).

Note that \(c_k(x) = (1) \), for all \(x \in V \), and \(c_k(y) = (2) \), for all \(y \in U \). According to the relation \(\rho_S \), there are only two equivalence classes each has cardinality \(n \). So, the result followed by Remark 1.

Claim 2: every singleton subset of \(V \) is a 3-antimetric generator for \(J_{2n} \).

Let \(S = \{v_i\} \subset V \) for any fixed \(1 \leq i \leq n \). Then, \(c_k(x) = (1) \), for all \(x \in N(v_i) \), \(c_k(y) = (2) \), for all \(y \in V - \{v_i\} \), and \(c_k(z) = (3) \), for all \(z \in U - \{u_i, u_{i-1}\} \).

Hence, the relation \(\rho_S \) supplies three equivalence classes \(S_1 = N(v_i) \), \(S_2 = V - \{v_i\} \), and \(S_3 = U - \{u_i, u_{i-1}\} \). Thus,
min^{3}_{u_{1}}|S_{1}| = 3, and hence, \(S \) is 3-antimetric generator, by Remark 1.

Claim 3: every singleton subset of \(U \) is a 2-antimetric generator for \(J_{2n} \).

Let \(S = \{u_{i}\} \subset U \); then, metric codes of the vertices are

\[
c_{S}(x) = \begin{cases} (1) & \forall \, x \in N(u_{i}) ; \quad c_{S}(x) = \begin{cases} (2) & \forall \, u_{i+1} \in N(u_{i}) ; \quad c_{S}(y) = \begin{cases} (3) & \forall \, y \in V - N(u_{i}) ; \quad c_{S}(z) = \begin{cases} (4) & \forall \, z \in U - \{u_{i-1}, u_{i}, u_{i+1}\}.
\end{cases} \end{cases} \end{cases}
\]

Clearly, we receive four equivalence classes according to the relation \(\rho_{S} \), \(S_{1} = N(u_{i}) \), \(S_{2} = N(v_{i}) \), \(S_{3} = V - N(u_{i}) \), and \(S_{4} = U - \{u_{i-1}, u_{i}, u_{i+1}\} \). Hence, \(\min^{3}_{u_{i}}|S_{1}| = 2 \), and \(S \) is a 2-antimetric generator, by Remark 1.

Claim 4: every 2 element subset of \(V(J_{2n}) \) is either 1-antimetric generator or 2-antimetric generator for \(J_{2n} \).

Let \(S \) be a 2-element subset of \(V(J_{2n}) \). Then, we have the following two cases to discuss.

Case 1 (\(S \) contains \(v \)): here, we have two subcases.

Subcase 1.1: let \(S = \{v, x\} \) with \(x \in V \); then,
\[
c_{S}(p) = \begin{cases} (2) & \forall \, p, q \in N(x) - \{v\} ; \quad c_{S}(y) = \begin{cases} (1, 2) & \forall \, y \in V - \{x\} ; \quad c_{S}(z) = \begin{cases} (2, 3) & \forall \, z \in U - N(x).
\end{cases} \end{cases} \end{cases}
\]

So, the equivalence classes corresponds to the relation \(\rho_{S} \) are \(S_{1} = N(x) - \{v\} \), \(S_{2} = V - \{x\} \), and \(S_{3} = U - N(x) \). Here, \(\min^{1}_{u_{i}}|S_{1}| = 2 \), which implies that \(S \) is a 2-antimetric generator, by Remark 1.

Subcase 1.2: let \(S = \{v, x\} \) with \(x \in U \); then,
\[
c_{S}(p) = \begin{cases} (2, 2) & \forall \, p, p' \in U \text{ such that } d(p, x) = d(p', x) = 2,
\end{cases}
\]

Due to the above metric coding, it is clear that we find four equivalence classes according to the relation \(\rho_{S} \), which are \(S_{1} = N(x) \), \(S_{2} = \{p, p'\} \), \(S_{3} = V - N(x) \), and \(S_{4} = U - \{p, x, p'\} \). Thus, \(\min^{1}_{u_{i}}|S_{1}| = 2 \), which implies that \(S \) is a 2-antimetric generator, by Remark 1.

Case 2 (\(S \) does not contain \(v \)): again, we have three subcases to discuss.

Subcase 2.1: let \(S \subset V \) and \(S = \{v, v'\} \). Then,
\[
d(v, v') = 2. \quad \text{If } N(v) \cap N(v') = \{x\} \subset U, \text{ then a vertex }
\]

In each possibility of these subcases, the relation \(\rho_{S} \) proposes at least one singleton equivalence class, which follows that \(\min_{v_{i}}|S_{1}| = 1 \). Hence, \(S \) is an 1-antimetric generator, by Remark 1.

Claim 5: for \(n \geq 7 \), the set \(A' = \{v_{i}, v, x\} \subset V(J_{2n}) \) is a 2-antimetric generator whenever \(x \in (V \cup U) - \{u_{i-2}, v_{i-1}, u_{i-1}, v_{i}, u_{i}, v_{i+1}, u_{i+1}\} \). Otherwise, \(A' \) is a 1-antimetric generator for \(J_{2n} \).

If \(x \in (V \cup U) - \{u_{i-2}, v_{i-1}, u_{i-1}, v_{i}, u_{i}, v_{i+1}, u_{i+1}\} \), the following two cases are need to be discussed for \(x \).

Case 1: whenever \(x \in U - \{u_{i-2}, u_{i-1}, u_{i}, u_{i+1}\} \), metric codes with respect to \(A' \) are
\[
c_{A'}(t) = \begin{cases} (1, 2, 4) & \forall \, t \in N(v_{i}) - \{v\} ;
\end{cases}
\]

So, the equivalence classes corresponds to the relation \(\rho_{A} \) are \(S_{1} = N(v_{i}) - \{v\} \), \(S_{2} = V - N(v_{i}) \), and \(S_{3} = U - \{p, x, p'\} \). Thus, \(\min^{1}_{u_{i}}|S_{1}| = 2 \), which implies that \(S \) is a 2-antimetric generator, by Remark 1.

Case 2 (\(S \) does not contain \(v \)): again, we have three subcases to discuss.

Subcase 2.1: let \(S \subset V \) and \(S = \{v, v'\} \). Then,
Case 2: whenever \(x \in V - \{v_{i-1}, v_i, v_{i+1}\} \), metric codes with respect to \(A' \) are

\[
c_{A'}(f) = (1, 2, 3) \forall f \in N(v_i) - \{v\};
\]

\[
c_{A'}(g) = (3, 2, 1) \forall g \in N(x) - \{v\},
\]

\[
c_{A'}(h) = (2, 1, 2) \forall h \in V - \{v_i, x\};
\]

\[
c_{A'}(m) = (3, 2, 3) \forall m \in U - (N(v_i) \cup N(x)).
\]

Hence, the equivalence classes corresponds to relation \(\rho_{A'} \) are \(S_1 = N(v_i) - \{v\} \), \(S_2 = N(x) - \{v\} \), \(S_3 = U - (N(v_i) \cup N(x)) \). It follows that \(\min_{i \neq 1} |S_i| = 2 \) because \(n \geq 7 \). Thus, Remark 1 proves that \(A' \) is a 2-antimetric generator.

Now, if \(x \in \{u_{i-2}, v_{i-1}, u_{i-1}, v_{i+1}, u_{i+1}\} \), then again we have two cases.

Case 1: whenever \(x \in \{v_{i-1}, v_i, v_{i+1}\} \), we have a vertex \(t \in N(x) - \{v\} \) such that \(c_{A'}(t) \neq c_{A'}(t') \), for all \(t' \in V(C|n|) - [t] \).

Case 2: whenever \(x \in \{u_{i-2}, u_{i-1}, u_i, v_{i+1}\} \), we have a vertex \(t \in U \) with \(d(t, x) = 2 \) and \(c_{A'}(t) \neq c_{A'}(t') \), for all \(t' \in V(C|n|) - [t] \).

In both the cases, we get at least one singleton equivalence class \([t]\) with respect to the relation \(\rho_{A'} \), which implies that \(\min_{i \neq 1} |S_i| = 1 \). Hence, \(A' \) is a 1-antimetric generator, by Remark 1.

Claim 6: except \(n = 5, 7 \), the set \(B = \{u_i, v, u\} \subseteq V(J_{2n}) \) is a 2-antimetric generator whenever \(u \in U - \{u_{i-2}, u_{i-1}, u_i, u_{i+1}, u_{i+2}\} \). Otherwise, \(B \) is a 1-antimetric generator for \(J_{2n} \).

Whenever \(u \in U - \{u_{i-2}, u_{i-1}, u_i, u_{i+1}, u_{i+2}\} \), then the metric coding with respect to \(B \) is

\[
c_B(p) = (1, 1, 3) \forall p \in N(u_i),
\]

\[
c_B(u_{i-1}) = (2, 2, 4)
\]

\[
c_S(q) = (3, 1, 1) \forall q \in N(u),
\]

\[
c_B(x') = (4, 2, 2) = c_S(y'), \text{ where } x', y' \in U \text{ such that } d(x', u) = d(y', u) = 2,
\]

\[
c_B(x) = (3, 1, 3) \forall x \in V - (N(u_i) \cup N(u)),
\]

\[
c_B(z) = (4, 2, 4) \forall z \in U - \{u_{i-1}, u_i, u_{i+1}, x', u, y'\}.
\]

Hence, we have the equivalence classes \(S_1 = N(u_i), S_2 = \{u_{i-1}, u_{i+1}\}, S_3 = N(u), S_4 = \{x', y'\}, S_5 = V - (N(u_i) \cup N(u)), \) and \(S_6 = U - \{u_{i-1}, u_i, u_{i+1}, x', u, y'\} \) in accordance with the relation \(\rho_B \). Thus, \(\min_{i \neq 1} |S_i| = 2 \), \(\sigma B \) is a 2-antimetric generator, by Remark 1.

Next, whenever \(u \in \{u_{i-2}, u_{i-1}, u_i, u_{i+1}, u_{i+2}\} \), then

\[
c_B(v_i) = (1, 1, 1) \text{ when } u = u_{i-1},
\]

\[
c_B(v_{i+1}) = (1, 1, 1) \text{ when } u = u_{i+1},
\]

\[
c_B(v_{i-1}) = (2, 2, 2) \text{ when } u = u_{i-2},
\]

\[
c_B(v_{i+1}) = (2, 2, 2) \text{ when } u = u_{i+2}.
\]

In each possibility, the given metric code is unique, which provides a singleton equivalence class according to the relation \(\rho_B \). Hence, \(\min_{i \neq 1} |S_i| = 1 \), and \(B \) is a 1-antimetric generator, by Remark 1.

Claim 7: every set \(S \subseteq V(J_{2n}) \) of cardinality \(t \geq 3 \) is a 1-antimetric generator for \(J_{2n} \), except the sets \(A' \) and \(B \) discussed in Claims 5 and 6, respectively.

If \(S \) contains the vertex \(v \), then there exists a vertex \(g \in U \) (or \(g \in V \)) such that \(g \) is a neighbor of some element in \(S \), and \(c_S(g) \neq c_S(g') \), for any \(g' \in V(J_{2n}) - \{g\} \) if \(S \) does not contain the vertex \(v \), then \(v \) has the unique metric code with respect to \(S \). In both the cases, we get a singleton equivalence class according to the relation \(\rho_S \). Hence, \(\min_{i \neq 1} |S_i| = 1 \), and Remark 1 implies that \(S \) is a 1-antimetric generator.

All these claims conclude the proof with the following points:

(i) For \(k \in \{4, 5, \ldots, n - 1\} \), there does not exist a \(k \)-antimetric generator for \(J_{2n} \).

(ii) Claims 1, 2, and 3 provide that \(\text{adim}_1(J_{2n}) \geq 2 \). Furthermore, there exist \(1 \)-antimetric generators for \(J_{2n} \) of cardinality at least 2, by Claims 4 to 7. It follows that \(\text{adim}_1(J_{2n}) = 2 \).

(iii) Claim 3 provides the existence of a 2-antimetric generator for \(J_{2n} \) of cardinality 1, which yields that \(\text{adim}_2(J_{2n}) = 1 \).

(iv) Claim 2 provides the existence of a 3-antimetric generator for \(J_{2n} \) of cardinality 1, which implies that \(\text{adim}_3(J_{2n}) = 1 \).

(v) An \(n \)-antimetric generator for \(J_{2n} \) of cardinality 1 exists due to Claim 1, and hence, \(\text{adim}_n(J_{2n}) = 1 \).

3.2. Helm Graphs. For \(n \geq 3 \), a helm graph, \(H_n \), is obtained from a wheel graph \(W_{1,n} = K_1 + C_n \) by attaching one leaf (a vertex of degree one) with each vertex of the cycle \(C_n \). Let \(U = \{u_1, u_2, \ldots, u_n\} \) be the set of leaves; then, the vertex set of a helm graph is \(V(H_n) = V(W_{1,n}) \cup U \), and its edge set is \(E(H_n) = E(W_{1,n}) \cup \{v_i \sim u_i : 1 \leq i \leq n\} \), where the indices greater than \(n \) or less than 1 will be taken modulo \(n \). One helm graph is shown in Figure 3.
It is an easy task to verify the following observation.

Observation 3. When \(n \in \{3, 5\} \), \(\text{adim}_k(H_n) = 1 \), for \(k = 1, 2, \ldots, n \). While

\[
\text{adim}_k(H_4) = \begin{cases}
1, & \text{for } k = 1, 4, \\
5, & \text{for } k = 2,
\end{cases}
\]

\[
\text{adim}_k(H_6) = \begin{cases}
1, & \text{for } k = 1, 3, 6, \\
3, & \text{for } k = 2.
\end{cases}
\]

Theorem 3. For \(n \geq 7 \), let \(H_n \) be a helm graph. Then,

\[
\text{adim}_k(H_n) = \begin{cases}
1, & \text{for } k = 1, 4, n, \\
2, & \text{for } k = 3, \\
3, & \text{for } k = 2.
\end{cases}
\]

Proof. It is significant to keep in hand the neighborhoods \(N(v) = V \) and \(N(v_i) = \{v, v_{i+1}, v_{i-1}, u_i\} \), for any \(v_i \in V \), and \(N(u_i) = \{v_i\} \), for any leaf \(u_i \in U \). Now, we have to discuss the following eight claims.

Claim 1: the set \(S = \{v\} \) is an \(n \)-antimetric generator for \(H_n \).

Note that \(c_S(x) = (1) \), for all \(x \in V \), and \(c_S(y) = (2) \), for all \(y \in U \). There are only two equivalence classes \(S_1 = V \) and \(S_2 = U \), both of cardinality \(n \), according to the relation \(\rho_S \). Hence, \(\min_{i=1}^n |S_i| = n \), which implies that \(S \) is an \(n \)-antimetric generator, by Remark 1.

Claim 2: every single leaf form a 1-antimetric generator for \(H_n \).

Let \(S = \{u_i\} \) be a set of one leaf \(u_i \in U \). Then, \(c_S(v_i) = (1) \), where \(v_i \in N(u_i) \), and no other vertex of \(H_n \) has the code similar to \(v_i \). It follows that there exists a singleton equivalence class due to the relation \(\rho_S \). Accordingly, Remark 1 refers that \(S \) is a 1-antimetric generator.

Claim 3: every singleton subset of \(V \) is a 4-antimetric generator for \(H_n \).

Let \(S = \{v_i\} \subset V \), for any fixed \(1 \leq i \leq n \); then, \(c_S(x) = (1) \), for all \(x \in N(v_i) \), \(c_S(y) = (2) \), for all \(y \in \{u_{i-1}, u_{i+1}\} \cup (V - \{v_{i-1}, v_{i+1}\}) \), and \(c_S(z) = (3) \), for all \(z \in U - \{u_{i-1}, u_i, u_{i+1}\} \). Thus, the relation \(\rho_S \) produces three equivalence classes \(S_1 = N(v_i) \), \(S_2 = \{u_{i-1}, u_{i+1}\} \cup (V - \{v_{i-1}, v_{i+1}\}) \), and \(S_3 = U - \{u_{i-1}, u_i, u_{i+1}\} \). Hence, \(\min_{i=1}^n |S_i| = 4 \), and \(S \) is a 4-antimetric generator for \(H_n \) by Remark 1.

Claim 4: the set \(S' = \{u_i, w\} \) is a 3-antimetric generator for \(H_n \) whenever \(w \in N(u_i) \). Otherwise, \(S' \) is a 1-antimetric generator.

Whenever \(w \in N(u_i) \), we have \(w = v_i \), and the metric codes with respect to \(S' \) are

\[
c_S'(x) = (2, 1) \forall x \in N(v_i) - \{u_i\}.
\]

\[
c_S'(y) = (4, 3) \forall y \in U - \{u_{i-1}, u_i, u_{i+1}\},
\]

\[
c_S'(z) = (3, 2) \forall z \in \{u_{i-1}, u_{i+1}\} \cup (V - \{v_{i-1}, v_i, v_{i+1}\}).
\]

The equivalence classes corresponds to the relation \(\rho_{S'} \) are \(S_1 = N(v_i) \), \(S_2 = U - \{u_{i-1}, u_i, u_{i+1}\} \), and \(S_3 = \{u_{i-1}, u_{i+1}\} \cup (V - \{v_{i-1}, v_i, v_{i+1}\}) \). It follows, by Remark 1, that \(S' \) is a 3-antimetric generator since \(\min_{i=1}^n |S_i| = 3 \).

When \(w \in N(u_i) \), then the vertex \(v_i \in N(u_i) \) has the metric code which is not similar to the metric code of any other vertex of \(H_n \). This creates at least one singleton equivalence class \(\{v_i\} \) in accordance with the relation \(\rho_{S'} \), which implies that \(S' \) is a 1-antimetric generator for \(H_n \) by Remark 1.

Claim 5: every 2-element subset of \(V(H_n) \), except the set \(S' \) of Claim 4, is a 1-antimetric generator for \(H_n \).

Let \(S \) be a 2-element subset of \(V(H_n) \) and \(S \neq S' \). Then, we discuss the following two cases:

Case 1 (\(S \) does not contain \(v \)): let \(S \subset U \). When \(S = \{u_i, u_{i+1}\} \), the vertex \(u_{i+1} \) has the unique metric code \((3, 3) \) with respect to \(S \). When \(S = \{u_i, u_{i-1}\} \), the vertex \(u_{i-1} \) has the unique metric code \((3, 3) \) with respect to \(S \). Otherwise, the vertex \(v \) has the unique metric code \((2, 2) \) with respect to \(S \). Next, we let \(S \subset V \). When \(S = \{v_i, v_{i+2}\} \), the vertex \(v_{i+2} \) has the unique metric code \((1, 2) \) with respect to \(S \). Otherwise, the vertex \(v \) has the unique metric code \((1, 1) \) with respect to \(S \).

Case 2 (\(S \) contains \(v \)): let \(S = \{v_i, v\} \); then, the leaf \(u_i \in N(v_i) \) has the unique metric code \((1, 2) \) with respect to \(S \).

Each possibility in both the cases yields at least one singleton equivalence class according to the relation \(\rho_S \), which implies that \(S \) is a 1-antimetric generator, by Remark 1.

Claim 6: the set \(E = \{u_i, v_i, v\} \subset V(H_n) \) is a 2-antimetric generator for \(H_n \).
Note that \(c_E(u_{i-1}) = (3, 2, 2) = c_S(u_{i+1}) \), \(c_E(v_{i-1}) = (2, 1, 1) = c_S(v_{i+1}) \),
\[
 c_E(x) = (3, 2, 1), \forall x \in V \setminus \{v_{i-1}, v_{i+1}\},
\]
\[
 c_E(y) = (4, 3, 2) \forall y \in U \setminus \{u_{i-1}, u_i, u_{i+1}\}.
\] (29)

So, there are four equivalence classes \(S_1 = \{u_{i-1}, u_{i+1}\} \),
\(S_2 = \{v_{i-1}, v_{i+1}\} \), \(S_3 = V \setminus \{v_{i-1}, v_{i+1}\} \), and \(S_4 = U \setminus \{u_{i-1}, u_i, u_{i+1}\} \) with respect to the relation \(p_E \). That is, \(\min_{|S|} |S| = 2 \), and Remark 1 asserts that \(E \) is a 2-antimetric generator.

Claim 7: For even values of \(n \geq 8 \), the set \(S = \{v, v_1, u_1, u_{i+(n/2)}, u_{i+(n/2)}\} \subset V(H_n) \) is a 2-antimetric generator for \(H_n \).

Note the metric coding of the vertices with respect to \(S \) as follows:
\[
 c_S(v_{i-1}) = (2, 1, 1, 2, 3) = c_S(v_{i+1}),
\]
\[
 c_S(u_{i-1}) = (3, 2, 2, 3, 4) = c_S(u_{i+1}),
\]
\[
 c_S(x) = (3, 2, 1, 2, 3) \forall x \in V \setminus \{v_{i-1}, v_{i+1}, v_{i+1+(n/2)-1}, v_{i+1+(n/2)+1}\},
\]
\[
 c_S(y) = (4, 3, 2, 3, 4) \forall y \in U \setminus \{u_{i-1}, u_i, u_{i+1}, u_{i+(n/2)-1}, u_{i+(n/2)+1}\},
\] (30)

\[
 c_S(v_{i+1+(n/2)-1}) = (3, 2, 1, 1, 2) = c_S(v_{i+1+(n/2)+1}),
\]
\[
 c_S(u_{i+(n/2)-1}) = (4, 3, 2, 2, 3) = c_S(u_{i+(n/2)+1}).
\] (31)

Hence, the classes according to the relation \(p_S \) are \(S_1 = \{v_{i-1}, v_{i+1}\} \), \(S_2 = \{u_{i-1}, u_{i+1}\} \), \(S_3 = V \setminus \{v_{i-1}, v_{i+1}, v_{i+1+(n/2)-1}, v_{i+1+(n/2)+1}\} \), and \(S_4 = U \setminus \{u_{i-1}, u_i, u_{i+1}, u_{i+(n/2)-1}, u_{i+(n/2)+1}\} \). Here, \(\min_{|S|} |S| = 2 \), which implies that \(S \) is a 2-antimetric generator, by Remark 1.

Claim 8: any subset of \(V(H_n) \) of cardinality \(t \geq 3 \) is a 1-antimetric generator for \(H_n \), except the sets \(E \) and \(S \) considered in Claims 6 and 7, respectively.

Let \(W \) be a subset of \(V(H_n) \) with \(|W| = t \geq 3 \) and \(W \neq E, S \). Then, note the following two possibilities:

1. \(W \) contains \(v \); if \(|W| = 3 \) and \(W = \{u, v, w\} \) with \(u \in U \), \(v \in V \) but \(v \notin N(u) \) (because this case is already discussed in Claim 6). Then, the vertex \(x \in N(u) \) has the unique metric code from the set \(\{(1, 1, 1), (1, 1, 2)\} \) with respect to \(W \). If \(|W| > 4 \), then a neighbor of some \(w \in W \setminus \{v\} \) receives the unique metric code with respect to \(W \).

2. \(W \) does not contain \(v \); the vertex \(v \) has the unique metric code with respect to \(W \).

In both the possibilities, we get at least one singleton equivalence class according to the relation \(p_S \). Thus, \(\min_{|S|} |S| = 1 \), and Remark 1 provides that \(S \) is a 1-antimetric generator.

The proof will reach to its end by discussing the following points on the base of formerly discussed claims:

(i) For \(k \in \{5, 6, \ldots, n-1\} \), there does not exist a \(k \)-antimetric generator for \(H_n \).

(ii) We find a 1-antimetric generator for \(H_n \) of cardinality \(1 \) due to Claim 2, (2) cardinality \(2 \) due to Claims 4 and 5, and (3) cardinality \(t \geq 3 \) due to Claim 8. Since a 1-antimetric generator for \(H_n \) of cardinality \(1 \) is the smallest one, so \(\text{adim}_1(H_n) = 1 \).

(iii) Claim 6 assures the existence of a 2-antimetric generator for \(H_n \) of cardinality \(3 \) for all values of \(n \), while Claim 7 assures the existence of a 2-antimetric generator for \(H_n \) of cardinality \(5 \) just for even values of \(n \). Moreover, no singleton set or 2-element set of vertices in \(H_n \) is a 2-antimetric generator for \(H_n \) due to Claims 1 to 5. It follows that \(\text{adim}_2(H_n) = 3 \).

(iv) We receive a 3-antimetric generator of cardinality \(2 \) from Claim 4, and no singleton set or 2-element set of vertices in \(H_n \) is a 2-antimetric generator for \(H_n \) due to Claims 1 to 3, which implies that \(\text{adim}_3(H_n) = 2 \).

(v) Claim 3 assists that \(\text{adim}_4(H_n) = 1 \) because of the existence of the 4-antimetric generator for \(H_n \) of cardinality 1.

(vi) Finally, \(\text{adim}_n(H_n) = 1 \) due to an \(n \)-antimetric generator for \(H_n \) of cardinality 1 exists by Claim 1.

\[\square \]

3.3. Flower Graphs

For \(n \geq 3 \), a flower graph, \(F_n \), is obtained from a helm graph \(H_n \) by joining its each leaf \(u_i \) to the vertex \(v \) of \(K_1 \). Accordingly, the vertex set of a flower graph is \(V(F_n) = V(H_n) \cup \{v \sim u_i: 1 \leq i \leq n\} \), where the indices greater than \(n \) or less than 1 will be taken modulo \(n \). Figure 4 provides graphical appearance of one flower graph.

The following observation is easy to understand for the flower graph \(F_3 \).

Observation 4

\[\text{adim}_k(F_3) = \begin{cases} 1, & \text{for } k = 2, 6, \\ 2, & \text{for } k = 1. \end{cases} \] (34)

Theorem 4 For all \(n \geq 4 \), let \(F_n \) be a flower graph. Then,

\[\text{adim}_k(F_n) = \begin{cases} 1, & \text{for } k = 2, 4, 2n, \\ 2, & \text{for } k = 1, 3. \end{cases} \] (35)

Proof. The following listed neighborhoods of the vertices of \(F_n \) will be used in the proof: \(N(v) = V \cup U \) and \(N(v_i) = \{v, v_{i+1}, v_{i-1}, u_i\} \), for any \(v_i \in V \), and \(N(u_i) = \{v, v_i\} \), for any \(u_i \in U \). We have to discuss the following nine claims to prove the required result.

Claim 1: the set \(S = \{v\} \) is a 2-antimetric generator for \(F_n \).
Note that $c_S(x) = (1)$, for all $x \in V(F_n)$. So, the only one equivalence class of cardinality $2n$ is produced by the relation ρ_S. Hence, S is a $2n$-antimetric generator.

Claim 2: every singleton subset of U is a 2-antimetric generator for F_n.

Let $S = \{u_i\} \subset U$ for any fixed $1 \leq i \leq n$; then, $c_S(x) = (1)$, for all $x \in N(u_i)$, and $c_S(y) = (2)$, for all $y \in V(F_n) - N[u_i]$. The relation ρ_S creates two equivalence classes $S_1 = N(u_i)$ and $S_2 = V(F_n) - N[u_i]$. It follows that $\min_{i=1}^2|S_i| = 2$. Hence, S is a 2-antimetric generator.

Claim 3: every singleton subset of V is a 4-antimetric generator for F_n.

Let $S = \{v_i\} \subset V$ for any fixed $1 \leq i \leq n$; then, $c_S(x) = (1)$, for all $x \in N(v_i)$, and $c_S(y) = (2)$, for all $y \in V(F_n) - N[v_i]$. Thus, we get two equivalence classes $S_1 = N(v_i)$ and $S_2 = V(F_n) - N[v_i]$ by the relation ρ_S with $\min_{i=1}^2|S_i| = 4$. Hence, S is a 4-antimetric generator, by Remark 1.

Claim 4: the set $W = \{v_i, v\} \subset V(F_n)$ is a 3-antimetric generator for F_n.

Note the metric codes with respect to W is as follows: $c_W(x) = (1, 1)$, for all $x \in N(v_i) - \{v\}$, and $c_W(y) = (2, 1)$, for all $y \in V(F_n) - N[v]$. Here, the equivalence classes obtained through the relation ρ_W are $S_1 = N(v_i) - \{v\}$ and $S_2 = V(F_n) - N[v]$. Hence, $\min_{i=1}^2|S_i| = 3$, and Remark 1 implies that W is a 3-antimetric generator.

Claim 5: the set $W' = \{v_i, u\} \subset V(F_n)$, where $u \in \{u_{i-1}, u_{i+1}\}$.

The metric codes with respect W' are $c_{W'}(x) = (1, 1)$, for all $x \in N(u)$, $c_{W'}(y) = (1, 2)$, for all $y \in N(v_i) - N(u)$, and $c_{W'}(z) = (2, 2)$, for all $z \in V(F_n) - (N[v_i] \cup N[u])$. Accordingly, three equivalence classes $S_1 = N(u), S_2 = N(v_i) - N(u)$, and $S_3 = V(F_n) - (N[v_i] \cup N[u])$ are generated by the relation $\rho_{W'}$ with $\min_{i=1}^3|S_i| = 2$. Therefore, Remark 1 provides that W' is a 2-antimetric generator.

Claim 6: any 2-element set, $S \subseteq V(F_n)$, is a 1-antimetric generator for F_n, except the sets W and W' discussed in Claims 4 and 5, respectively. We discuss the following two possibilities:

1. Either $S \subset V$ or $S \subset U$ or $S = \{v_i, u_i\}$ with $S \neq W'$.

Then, $c_S(v) = (1, 1)$ is the unique metric code in F_n. (2) If $S = \{u_i, v\}$, then $c_S(v) = (1, 1)$ is the unique metric code in F_n.

In both the possibilities, we receive at least one singleton equivalence class, in accordance with the relation ρ_S, which implies that $\min|S_i| = 1$. Hence, Remark 1 yields that S is a 1-antimetric generator.

Claim 7: the set $M = \{u_i, v_i, v\} \subset V(F_n)$ is a 2-antimetric generator for F_n.

The metric coding with respect to M is

\[
c_M(x) = (2, 1, 1), \forall x \in N(v_i) - \{u_i, v\};
\]

\[
c_M(y) = (2, 1, 2), \forall y \in V(F_n) - \{v_{i-1}, v_{i+1}\}.
\]

It follows that $S_1 = N(v_i) - \{u_i, v\}$ and $S_2 = V(F_n) - N[v_i]$ are the equivalence classes produced by the relation ρ_M. Here, $\min_{i=1}^2|S_i| = 2$, which implies that M is a 2-antimetric generator, by Remark 1.

Claim 8: the set $M' = \{v_i, v, f\} \subset V(F_n)$ is a 3-antimetric generator for F_n whenever $f \in V - \{v_{i-2}, v_{i-1}, v_i, v_{i+1}, v_{i+2}\}$. Otherwise, M' is a 1-antimetric generator for F_n.

The metric codes with respect to M' as follows:

\[
c_{M'}(x) = (1, 1, 1), \forall x \in N(v_i) - \{v\};
\]

\[
c_{M'}(y) = (2, 1, 1), \forall y \in N(f) - \{v\},
\]

\[
c_{M'}(z) = (2, 1, 2), \forall z \in V(F_n) - (N[v_i] \cup N[f]).
\]

Thus, the relation $\rho_{M'}$ partitioned $V(F_n) - M'$ into three equivalence classes $S_1 = N(v_i) - \{v\}, S_2 = V(F_n) - \{v\}$, and $S_3 = N[v_i] - (N[v_i] \cup N[f])$, with $\min_{i=1}^3|S_i| = 3$. It follows, by Remark 1, that M' is a 3-antimetric generator.

Whenever $f \in \{v_{i-2}, v_{i-1}, v_i, v_{i+1}, v_{i+2}\}$, if $f = v_{i+1}$ or v_{i-1}, then a neighbor of f lying in U has the unique metric code $(2, 1, 1)$ with respect to M. If $f = v_{i-2}$ or v_{i+2}, then v_{i+1} or v_{i-1}, respectively, has the unique metric code $(1, 1, 1)$ with respect to M'. In either cases, we obtain at least one singleton equivalence class according to the relation $\rho_{M'}$, which implies that M' is a 1-antimetric generator, by Remark 1.

Claim 9: any set $S \subseteq V(F_n)$ of cardinality $t \geq 3$ is a 1-antimetric generator for F_n, except the sets M and M' discussed in Claims 7 and 8, respectively.

We discuss the following two cases:

Case 1 (S does not contain v): in this case, the vertex v has the unique metric code with respect to S.
3.4. Sunflower Graphs. For $n \geq 3$, a sunflower graph, SF_n, is obtained from a wheel graph $W_{1,n} = K_1 + C_n$ by attaching one vertex u_i to every two consecutive vertices of the cycle C_n. Let $U = \{u_1, u_2, \ldots , u_n\}$; then, the vertex set of a sunflower graph is $V(SF_n) = V(W_{1,n}) \cup U$ and its edge set is $E(SF_n) = E(W_{1,n}) \cup \{ u_i \sim v_{i+1} \sim v_i : 1 \leq i \leq n \}$, where the indices greater than n or less than 1 will be taken modulo n. A graphical preview of this graph is displayed in Figure 5.

The following observation is an easy exercise to understand.

Observation 5. When $n \in \{3, 5, 6\}$, $\dim_k(SF_n) = 1$, for $k = 1, 2, \ldots , n$. While

$$\dim_k(SF_4) = \begin{cases} 1, & \text{for } k = 1, 3, 4, \\ 3, & \text{for } k = 2, \end{cases}$$

$$\dim_k(SF_7) = \begin{cases} 1, & \text{for } k = 2, 3, 7, \\ 2, & \text{for } k = 1, \end{cases}$$

$$\dim_k(SF_8) = \begin{cases} 1, & \text{for } k = 2, 4, 8, \\ 2, & \text{for } k = 1. \end{cases}$$

Theorem 5. For $n \geq 9$, let SF_n be a sunflower graph. Then,

$$\dim_k(SF_n) = \begin{cases} 1, & \text{for } k = 2, 5, n, \\ 2, & \text{for } k = 1. \end{cases}$$

Proof. The neighborhoods, $N(v) = V$ and $N(u_i) = \{v, v_{i+1}, v_{i-1}, u_i, u_{i-1}\}$ for any $v_i \in V$, and $N(u_i) = \{v, v_{i+1}\}$, for any $u_i \in U$, of the vertices in SF_n are useful to discuss the following nine claims.

Claim 1: the set $S = \{v\}$ is an n-antimetric generator for SF_n.

Note that $c_S(x) = (1)$, for all $x \in V$, and $c_S(y) = (2)$, for all $y \in U$. Thus, there are two equivalence classes V and U according to the relation ρ_S, and each class has n elements. Hence, Remark 1 yields that S is an n-antimetric generator.

Claim 2: every singleton subset S of V is a 5-antimetric generator for SF_n.

Let $S = \{v_i\} \subset V$ for any fixed $1 \leq i \leq n$. Then, $c_S(x) = (1)$, for all $x \in N(v_i)$:

$$c_S(y) = (3)\forall \ y \in U - \{u_{i-2}, u_{i-1}, u_i, u_{i+1}\};$$

$$c_S(z) = (2)\forall \ z \in \{u_{i-2}, u_{i+1}\} \cup (V - \{v_{i-1}, v_i, v_{i+1}\}).$$

Therefore, the equivalence classes, corresponding to the relation ρ_S, are $S_1 = N(v)$, $S_2 = \{u_{i-2}, u_{i+1}\}$ and $S_3 = U - \{u_{i-2}, u_{i-1}, u_i, u_{i+1}\}$. It follows that $\dim_{S_3}(S) = 5$, and S is a 5-antimetric generator, by Remark 1.

Claim 3: every singleton subset S of U is a 2-antimetric generator for SF_n.

Let $S = \{u_i\} \subset U$, for any fixed $1 \leq i \leq n$. Then,
\[c_5(q) = \begin{cases} 1 & \forall q \in N(u); \\ 2 & \forall x \in \{v, u\}, \\ 3 & \forall y \in \{u, v\}, \\ 4 & \forall z \in U - \{u, v\}. \end{cases} \]

(44)

\[c_5(x) = (2) \forall x \in \{v, u\}, \quad c_5(v) = (2, 1), \quad c_5(u) = (1, 1), \quad c_5(y) = (3), \quad c_5(z) = (4), \forall z \in U - \{u, v\}. \]

(45)

We have four equivalence classes \(S_1 = N(u), \quad S_2 = \{v\}, \quad S_3 = \{u, v\}, \quad S_4 = \emptyset \), and \(S_5 = U - \{u, v\} \). Thus, \(\min_{|S|} \leq 2 \), which implies that \(S \) is a 2-antimetric generator, by Remark 1.

Claim 4: the set \(S = \{v, u\} \subset V(SF_n) \) is a 2-antimetric generator for \(SF_n \).

The metric coding with respect to \(S \) is listed as follows:

\[c_5(u_{-1}) = (1, 2), \quad c_5(v_{-1}) = (1, 1), \quad c_5(u_{-2}) = (2, 2), \quad c_5(u_{-2}) = (1, 2), \quad c_5(u_{-2}) = (2, 1). \]

(46)

\[c_5(x) = (2, 1) \forall x \in V - \{v, u, v, u\}; \quad c_5(y) = (3), \quad c_5(z) = (4), \forall z \in U - \{u, v, u, v\}. \]

(47)

\[c_5(v_{-1}) = (1, 1), \quad c_5(u_{-2}) = (2, 2), \quad c_5(u_{-1}) = (1, 2), \quad c_5(u_{-2}) = (2, 1). \]

(48)

So, the relation \(\rho \) supplies five equivalence classes \(S_1 = \{v, u\}, \quad S_2 = \{v\}, \quad S_3 = \{u, v\}, \quad S_4 = \{v\}, \quad S_5 = U - \{u, v\} \). Hence, \(\min_{|S|} \leq 2 \), and \(S \) is a 2-antimetric generator, by Remark 1.

Claim 5: the set \(S = \{v, u\} \subset V(SF_n) \) is a 2-antimetric generator for \(SF_n \).

We have the following metric coding with respect to \(S \):

\[c_5(t) = (1, 1), \forall t \in N(u). \]

(49)

\[c_5(u_{-1}) = (1, 2), \quad c_5(v_{-1}) = (2, 1), \quad c_5(u_{-2}) = (2, 1), \quad c_5(u_{-2}) = (2, 1). \]

(50)

\[c_5(x) = (1, 1), \forall x \in V - \{v, u, v, u\}; \quad c_5(y) = (4, 2), \forall y \in V - \{v, u, v, u\}. \]

(51)

\[c_5(z) = (3, 2), \forall z \in U - \{u, v\}. \]

(52)

\[c_5(h) = (3, 2), \quad c_5(h') = (3, 2), \quad c_5(g) = (2, 1), \quad c_5(g') = (2, 1). \]

(53)

\[c_5(l) = (3, 2), \quad c_5(l') = (3, 2), \quad c_5(i) = (1), \quad c_5(i') = (1). \]

(54)

\[c_5(y) = (2, 1, 2), \forall y \in V - \{v, u, v, u\}, \quad c_5(x) = (3, 2, 3), \forall x \in U - \{u, v\}. \]

(55)

\[c_5(z) = (3, 2, 3), \forall z \in U - \{u, v\}. \]

(56)

Hence, we have eight equivalence classes \(S_1 = \{v, u\}, \quad S_2 = \{v\}, \quad S_3 = \{u, v\}, \quad S_4 = \{v\}, \quad S_5 = U - \{u, v\} \). In all these possibilities, we get at least one singleton equivalence class according to the relation \(\rho \), which implies that \(\min_{|S|} \leq 2 \). Hence, \(S \) is a 1-antimetric generator, by Remark 1.

(2) Let \(S \subset V \) and \(S = \{v, u\} \). Then, either \(d(v, u) = 1 \) or \(d(v, u) = 2 \). In the former case, a vertex \(u \in U \), for which \(d(u, v) = 2 \) and \(d(u, v') = 3 \), has the unique metric code \((2, 3) \) with respect to \(S \). In the later case, we have two discussions: If \(N(v) \cap N(v') \neq \emptyset \), then a vertex \(u \in U \), such that \(d(u, v') = 2 \), has the unique metric code from the set \(\{(1, 3), (3, 1)\} \) with respect to \(S \). If no vertex in \(V \) is a common neighbor of \(v \) and \(v' \), then the vertex \(v \) has the unique metric code \((1, 1) \) with respect to \(S \).

(3) Let \(S = U \); then, \(c_5(v) = (2, 2) \) is the unique metric code in \(SF_n \). In all these possibilities, we get at least one singleton equivalence class according to the relation \(\rho \), which implies that \(\min_{|S|} \leq 2 \). Hence, \(S \) is a 1-antimetric generator, by Remark 1.
Whenever $x \in \{v_{i-3}, v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}, v_{i+3}\}$, we have a vertex $u \in U$ such that $c_E(u) \neq c_E(u')$ for any $u' \in V(S_{E_n}) - \{u\}$. Hence, we receive at least one singleton equivalence class due to the relation ρ_E, which implies that E is a 1-antimetric generator, by Remark 1.

Claim 8: the set $E' = \{u, v, a\} \subset V(S_{E_n})$ is a 2-antimetric generator for S_{E_n}, whenever $a \in U - \{u_{i-4}, u_{i-3}, u_{i-2}, u_{i-1}, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}\}$. Otherwise, E' is a 1-antimetric generator.

Whenever $a \in U - \{u_{i-4}, u_{i-3}, u_{i-2}, u_{i-1}, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}\}$, we have the metric codes with respect to E' as follows:

$$c_{E'}(t) = (1, 1, 3) \forall t \in N(u_i);$$

$$c_{E'}(u_{i-2}) = (3, 2, 4) = c_{E'}(u_{i-1});$$

$$c_{E'}(u_{i-1}) = (2, 2, 4) = c_{E'}(u_{i+1});$$

$$c_{E'}(v_{i+1}) = (2, 1, 3) = c_{E'}(v_{i+2});$$

$$c_{E'}(p) = (3, 1, 1) = c_{E'}(p'),$$

where $p, p' \in N(a)$.

We have to discuss the following two cases:

Case 1 (contains v): let $|S| \geq 4$ (because the case, when $|S| = 3$, has been discussed in Claims 7 and 8). Then, there is a vertex $x \in V$ such that x is a neighbor of some $s \in S$ whenever $S \cap U = \emptyset$, or there is a vertex $x \in U$ such that x is a neighbor of some $s \in S$ whenever either $S \cap U = \emptyset$ or $S \cap V \neq \emptyset$ and we get the unique metric code of x with respect to S.

Case 2 (does not contain v): whenever $S \subset V$ or $S \subset U$, the vertex v has the unique metric code of x with respect to S. Whenever $S \cap U \neq \emptyset \neq S \cap V$, there is a vertex $x \in U$ (or $x \in V$) such that $d(x, s) = 1$ for some element $s \in S$, and $c_E(x) \neq c_E(x')$, for any $x' \in V(S_{E_n}) - \{x\}$.

In both the cases, the relation ρ_S supplies at least one singleton equivalence class, which yields that $\min |S| = 1$. Hence, S is a 1-antimetric generator, by Remark 1.

These claims complete the proof with the following deductions:

(i) There does not exist a k-antimetric generator for S_{E_n} when $k \in \{3, 4, 6, \ldots, n - 1\}$.

(ii) Claim 6 supplies a 1-antimetric generator for S_{E_n} of cardinality 2, and Claims 7 to 9 supply a 1-antimetric generator for S_{E_n} of cardinality $t \geq 3$. Claims 1 to 3 provide the guaranty of nonexistence of singleton 1-antimetric generator for S_{E_n}. It follows that $\text{adim}_1(S_{E_n}) = 2$.

(iii) The existence of a 2-antimetric generator for S_{E_n} of cardinalities 1, 2, and 3 is assured by Claim 3, by Claims 4 and 5, and by Claims 7 and 8, respectively. Accordingly, $\text{adim}_2(S_{E_n}) = 1$.

(iv) $\text{adim}_3(S_{E_n}) = 1$ because of the existence of a 5-antimetric generator for S_{E_n} of cardinality 1 in Claim 2.

(v) Claim 1 provides an n-antimetric generator for S_{E_n} of cardinality 1, which yields that $\text{adim}_n(S_{E_n}) = 1$.

\[\square\]

4. Concluding Remarks

For a connected graph G, the number $\text{rad}(G) = \min\{\text{ecc}(x) = \max_{y \in V(G)} d(x, y) : x \in V(G)\}$ is called the radius of G, where $\text{ecc}(x)$ is the eccentricity of x. The center of G is a subgraph $G[X]$ induced by the set $X = \{x \in V(G) : \text{ecc}(x) = \text{rad}(G)\}$. It has been observed the following useful properties about a k-antimetric dimensional graph in [7].

\begin{itemize}
 \item[(a)] If a connected graph is k-metric antidimensional, then $1 \leq k \leq \Delta$.
 \item[(b)] If the center of a connected graph is trivial, then it is k-metric antidimensional for some $k \geq 2$.
\end{itemize}
It can be easily seen that each wheel-related social graph, considered in this paper, has the trivial center. Remark 2 (a) insures that each of these graphs has k--metric antidimension, for some $k \geq 1$, and it must be k--metric antidimensional for some $k \geq 2$. So, naturally, it raises the following two questions:

Q1. For how many and for which values of $k \geq 1$ a wheel-related social graph admits k--metric antidimension?

Q2. For which maximum value of k, $2 \leq k \leq \Delta$, a wheel-related social graph is k--metric antidimensional?

The results of Čangalović et al., proved in [1] and listed in Observation 1 and Theorem 1, were the pioneers to address the answers of questions Q1 and Q2. These results revealed that (1) when $n = 3, 5$, a wheel graph $W_{1,n}$ admits k--metric antidimension for three values of $k \in \{1, 2, n\}$ and (2) when $n = 4$ and for all $n \geq 6$, $W_{1,n}$ admits k--metric antidimension for four values of $k \in \{1, 2, 3, n\}$. It follows that $W_{1,n}$ is Δ--metric antidimensional.

To extend the study of (k,l)--anonymity based on the k--metric antidimension, we considered four graphs related to wheel graphs in this article. By investigating their k--metric antidimension, we addressed the answers of questions Q1 and Q2 as follows:

(i) For a Jahangir graph J_{2n}, Observation 2 and Theorem 2 revealed that (1) J_4 admits k--metric antidimension for three values of $k \in \{1, 2, 3\}$, (2) when $n = 3, 4$, J_{2n} admits k--metric antidimension for three values of $k \in \{1, 2, n\}$, and (3) for all $n \geq 5$, J_{2n} admits k--metric antidimension for four values of $k \in \{1, 2, 3, n\}$

(ii) For a helm graph H_n, Observation 3 and Theorem 3 revealed that (1) when $n = 3, 4, 5$, H_n admits k--metric antidimension for three values of $k \in \{1, 2, n\}$, (2) H_6 admits k--metric antidimension for four values of $k \in \{1, 2, 3, 6\}$, and (3) for all $n \geq 7$, H_n admits k--metric antidimension for five values of $k \in \{1, 2, 3, 4, n\}$

(iii) For a flower graph F_n, Observation 4 and Theorem 4 revealed that (1) F_3 admits k--metric antidimension for three values of $k \in \{1, 2, 6\}$ and (2) for all $n \geq 4$, F_n admits k--metric antidimension for five values of $k \in \{1, 2, 3, 4, 2n\}$.

(iv) For a sunflower graph SF_n, Observation 5 and Theorem 5 revealed that (1) when $n = 3, 5, 6$, SF_n admits k--metric antidimension for three values of $k \in \{1, 2, n\}$, (2) when $n = 4, 7$, SF_n admits k--metric antidimension for four values of $k \in \{1, 2, 3, n\}$, (3) SF_n admits k--metric antidimension for four values of $k \in \{1, 2, 4, 8\}$, and (4) for all $n \geq 9$, SF_n admits k--metric antidimension for four values of $k \in \{1, 2, 5, n\}$.

From all these results, it can be concluded that each considered wheel-related social graph is Δ--metric antidimensional.

Furthermore, according to the computed k--metric antidimension of wheel-related social graphs, we investigated that each of them meets the (k,l)--anonymity in the following ways (skipping particular cases which can be observed straightforwardly).

Wheel graph: for $n \geq 6$ and $\Delta = n$ and by Theorem 1, we have

\[
\begin{align*}
\text{k} & : 1 \quad 2 \quad 3 \quad \Delta \\
\text{k -- metric antidimension} & : 1 \quad 3 \quad 2 \quad 1 \quad 1 \\
\text{(k,l) -- anonymity} & : (1,1) \quad (2,3) \quad (3,2) \quad (4,1) \quad (\Delta,1)
\end{align*}
\]

Jahangir graph: for $n \geq 5$ and $\Delta = n$ and by Theorem 2, we have

\[
\begin{align*}
\text{k} & : 1 \quad 2 \quad 3 \quad \Delta \\
\text{k -- metric antidimension} & : 2 \quad 1 \quad 1 \quad 1 \\
\text{(k,l) -- anonymity} & : (1,2) \quad (2,1) \quad (3,1) \quad (\Delta,1)
\end{align*}
\]

Helm graph: for $n \geq 7$ and $\Delta = n$ and by Theorem 3, we have

\[
\begin{align*}
\text{k} & : 1 \quad 2 \quad 3 \quad 4 \quad \Delta \\
\text{k -- metric antidimension} & : 2 \quad 1 \quad 2 \quad 1 \quad 1 \\
\text{(k,l) -- anonymity} & : (1,2) \quad (2,1) \quad (3,2) \quad (4,1) \quad (\Delta,1)
\end{align*}
\]
Sunflower graph: for \(n \geq 9 \) and \(\Delta = n \) and by Theorem 5, we have

\[
\begin{array}{cccc}
 k & 1 & 2 & 5 \\
 k-\text{metric antidimension} & 2 & 1 & 1 & 1 \\
 (k,l)-\text{anonymity} & (1,2) & (2,1) & (3,1) & (\Delta,1)
\end{array}
\]

(69)

The \((k,l)\)-anonymity, measured on the base of \(k \)-metric antidimension for the maximum value of \(k = \Delta \), assures that a user can be reidentified with the probability less than or equal \((1/\Delta)\) by a rival controlling only single attacker node \(v \) in every considered wheel-related social graph. It is remarkably interesting to leave the following conjecture for the readers.

Conjecture 1. Each wheel-related social graph and generalizations of wheels are \(\Delta \)-metric antidimensional and meet \((\Delta,1)\)-anonymity.

Data Availability

The figures, tables, and other data used to support this study are included within the article.

Conflicts of Interest

The authors declares that there are no conflicts of interests regarding the publication of this paper.

Acknowledgments

This work was supported in part by general project of Anhui University excellent talent support plan 2021 under Grant Number gxyq2021235.

References

[1] M. Čangalović, V. Kovačević-Vujčić, and J. Kratica, “\(k \)-metric antidimension of wheels and grid graphs,” in *XIII Balkan Conference on Operational Research Proceedings*, pp. 17–24, Belgrade, Serbia, May 2018.

[2] G. Chartrand and P. Zhang, *A First Course in Graph Theory*, Dover Publications Inc., New York, NY, USA, 2012.

[3] T. Chatterjee, B. DasGupta, N. Mobasheri, V. Srinivasan, and I. G. Yero, “On the computational complexities of three problems related to a privacy measure for large networks under active attack,” *Theoretical Computer Science*, vol. 775, pp. 53–67, 2019.

[4] B. DasGupta, N. Mobasheri, and I. G. Yero, “On analyzing and evaluating privacy measures for social networks under active attack,” *Information Sciences*, vol. 473, pp. 87–100, 2019.

[5] J. Kratica, V. Kovacevic-Vujic, and M. Cangalovic, “\(k \)-metric antidimension of some generalized petersen graphs,” *Filomat*, vol. 33, no. 13, pp. 4085–4093, 2019.

[6] S. Mauw, R. Trujillo-Rasua, and B. Xuan, “Counteracting active attacks in social network graphs,” in *IFII Annual Conference on Data and Applications Security and Privacy*, pp. 233–248, Springer, Trento, Italy, July 2016.

[7] R. Trujillo-Rasua and I. Yero, “\(k \)-metric antidimension: a privacy measure for social graphs,” *Information Sciences*, vol. 328, pp. 403–417, 2016.

[8] R. Trujillo-Rasua and I. G. Yero, “Characterizing 1-metric antidimensional trees and unicyclic graphs –metric antidimension trees and unicyclic graphs,” *The Computer Journal*, vol. 59, no. 8, pp. 1264–1273, 2016.

[9] C. Zhang and Y. Gao, “On the complexity of \(k \)-metric anti-dimension problem and the size of \(k \)-antiresolving sets in random graphs,” in *International Computing and Combinatorics Conference- COCOON 2017*, pp. 555–567, Springer, Hong Kong, China, August 2017.