Partial trisomy 16q and partial monosomy 7p of a fetus derivated from paternal balanced translocation
A case report
Hui-Hui Xie, MD, Tong Liu, MD, Jing-Bo Zhang, MD, Jing-Fang Zhai, MD, Ying Liu, BA

Abstract
Introduction: Subchromosomal deletions and duplications could currently be detected by noninvasive preliminary screening (NIPS). However, NIPS is a screening test that requires further diagnosis. Here we report a fetus with an autosomal abnormality revealed by NIPS and conventional karyotype combined with copy number variations sequencing (CNV-seq) confirmed the fetus with an unbalanced translocation.

Patient concern: This was the fourth pregnancy of a 30-year-old woman who underwent 2 spontaneous abortions and gave birth to a child with a normal phenotype. The woman and her husband were healthy and nonconsanguineous. NIPS indicated a repeat of about 19-Mb fragment at the region of 16q22.1-q22.4 at 17-week gestation.

Diagnoses: The combination of traditional karyotype and CNV-seq could better locate the abnormal chromosomal region and further identify the source of fetal chromosomal abnormalities. Simultaneously, we evaluated the fetal morphology by ultrasound examination. The karyotype of the fetus was 46,XX,der(7)[t(7;16)(p22;q23)] and CNV-seq results showed an approximately 20.96-Mb duplication in 16q22.1-q24.3 (69200001-90160000) and an approximately 3.86-Mb deletion in 7p22.3-p22.2 (40001-3900000). Prenatal ultrasound revealed the fetal micrognathia. The paternal karyotype was 46,XY, t (7;16) (p22;q23), while the maternal was normal. The fetus inherited an abnormal chromosome 7 from its father.

Interventions: No treatment for the fetus.

Outcomes: Pregnancy was terminated.

Conclusions: To our knowledge, the occurrence of de novo partial trisomy 16q (16q22.1-qter) and partial monosomy 7p (7p22.2-pter) has not previously been reported up to now. Here, we present the perinatal findings of such a case and a review of the literatures. CNV-seq combined with karyotyping is a useful tool for chromosomal abnormalities indicated by NIPS.

Abbreviations: ATM = ataxia telangiectasia mutated, CDT1 = chromatin licensing and DNA replication factor 1, CNVs = copy number variations, CNV-seq = copy number variation sequencing, NIPS = noninvasive preliminary screening.

Keywords: copy number variation sequencing, karyotyping, noninvasive preliminary screening, partial monosomy 7p, partial trisomy 16q
1. Introduction
Noninvasive preliminary screening (NIPS), also known as noninvasive prenatal screening, is based on the analysis of cell-free fetal DNA in maternal blood. Since its introduction in 2011, NIPS for fetal aneuploidy has rapidly become a first-level screening test in clinical practice. The main advantages of NIPS are its good sensitivity and specificity to trisomy 21, 13, and 18.[1] In addition, the results of NIPS based on low-depth whole-genome sequencing can also be used to indicate other chromosomal abnormalities including aneuploidy of other chromosomes and copy number variations (CNVs). However, due to low production of cell-free fetal DNA from placental origin or low sequencing depth, NIPS yields false negative and false positive results in the detection of CNVs.[2] Therefore, further diagnostic means is needed. CNV-seq is a high-resolution whole-genome screening technology that can be used to analyze the presence of CNVs. In this study, we report a fetus with a 19-Mb duplication on chromosome 16 indicated by NIPS, who was confirmed to be a paternal balanced translocator through amniocentesis karyotype, CNV-seq, and the genetic analysis of proband family members. Meanwhile, we analyze the ultrasonic abnormal phenotype possibly related to the result of CNV-seq in molecular biology genetics.

2. Case presentation
This was the fourth pregnancy of a 30-year-old gravida 4, para 1, healthy woman who had experienced 2 spontaneous abortions and delivered a phenotypically normal child. The woman and her husband were healthy and nonconsanguineous. When the second missed abortion occurred, the doctor recommended that the couple have the peripheral blood karyotype test. However, the couple refused because they had decided not to have children any more. However, an unplanned pregnancy happened. NIPS indicated a repeat of about 19-Mb fragment at the region of 16q22.1-q22.4 at 17-week gestation. After consultation, she opted for prenatal karyotyping by amniocentesis. Amniotic cells cultured by G-banding showed an additional unidentified substance on chromosome 7 (Fig. 1). The International System for Human Cytogenetic Nomenclature 2016 nomenclature was used to describe karyotypes. Simultaneously, the CNV-seq results of uncultured amniotic cells showed that a 3.86-Mb deletion (40001-3900000) in 7p22.3-p22.2 and a 20.96-Mb duplication (69200001-90160000) in 16q22.1-q24.3 (Fig. 2). Prenatal ultrasound at 21-week gestation revealed the fetal structural abnormalities presented with micrognathia (Fig. 3). The mother and sister had normal karyotype analysis, while the father’s karyotype was 46,XY,t(7;16)(p22;q23) (Fig. 4). Taken together, these molecular cytogenetic experiments enabled us to determine the presence of an unbalanced translocation in the fetus, 46,XX, der(7)t(7;16)(p22;q23). A balanced translocation of the father’s chromosomes leads to chromosomal abnormalities in the fetus. We informed the parents about the possible consequences of chromosomal abnormalities. After consultation, the parents chose to terminate the pregnancy. The autopsy was rejected by
Figure 2. The fetal results of CNV-seq showed a 3.86-Mb deletion (40001-3900000) in 7p22.3-p22.2 and a 20.96-Mb duplication (69200001-90160000) on the chromosome in 16q22.1-q24.3. The arrows indicate the breakpoints. CNV-seq = copy number variations sequencing.

Figure 3. The fetal ultrasound imaging showed micrognathia.
the parents. Patient has provided informed consent for publication of the case. This study was approved by the ethics committee of Xuzhou central hospital.

3. Discussion

More recently, some laboratories have expanded NIPS to detect CNVs. However, false positives caused by the influence of mother, fetus or placenta simultaneously exist due to limitations of the technology. In a retrospective study of 8152 pregnant women, they analyzed the subchromosomal microdeletions and microduplications, and only 13 (36.11%) of the 51 positive cases (0.63%) were true positive. Therefore, all abnormal NIPS results are required further prenatal diagnosis. Karyotype analysis is a classical, commonly used approach in prenatal diagnosis, and specific chromosomal structures such as balanced reciprocal translocations can be identified at relatively low cost. However, due to the low resolution, this method has obvious limitations in detecting CNVs. In contrast, CNV-seq has a higher resolution and can effectively detect chromosomal microdeletions and microduplications. However, CNV-seq fails to discover low levels of chromosomal mosaicism and balanced reciprocal translocations. Here, the fetus with 16q duplication and 7p deletion due to paternal balanced translocation was detected by traditional karyotyping combined with CNV-seq. The occurrence of concurrent partial trisomy 16q (16q22.1-qter) and partial monosomy 7p (7p22.2-pter) has not previously been reported up to now.

In most cases, trisomy 16q is due to a malsegregation of maternal balanced translocation and rarely to paternal balanced translocation. Prenatal diagnosis of trisomy 16 or trisomy 16q is uncommon. Since the first case was reported, 47 patients with partial trisomy 16q or trisomy 16q have been reported. We reviewed 47 cases and summarized that the most common malformations of partial trisomy 16q were low birth weight, hypotonia, failure to thrive, high/prominent forehead, broad/depressed nasal bridge, low set/dysplastic ears, micrognathia, foot deformity, congenital heart disease and mental/psychomotor retardation (Table 1). To our knowledge, only 8 cases of partial trisomy 16q (16q22-qter) have been reported in the literature. The clinical picture of the distal duplication of 16q tends to be closer to that of complete duplication(16q) and to be severer than the proximal duplication, since the heterochromatic region 16q11-q12 has no effect on the phenotype.

Houlston RS described an infant with a de novo karyotype of 46, XX,der(15)t(15;16)(q26.1;q22) had multiple malformations such as intrauterine growth retardation, dislocation of the left knee and hip, stiffness of the elbow joints, choanal atresia, high forehead, narrow palpebral fissures, antimongoloid slant, midface hypoplasia, micrognathia, high-arched palate, anal stenosis, blind ending sinus in the coccygeal area, small 5th fingers, delayed motor development. In our case, the fetal ultrasound also showed microjaw deformity. Therefore, we speculated that micrognathia might be caused by partial trisomy 16q. In the present case, the region of 16q22.1–16q24.3 contains >150 Online Mendelian Inheritance in Man (OMIM) genes including...
Chromatin licensing and DNA replication factor 1 (CDT1) (OMIM: 605525), located at 16q24.3, is required for DNA replication at multiple stages of development and mitosis.\(^{41}\) CDT1 has been indicated to be associated with Meier-Gorlin syndrome\(^{42}\). Patients with this syndrome usually have distinctive facial features, full lips, low-set/rotated ears, micrognathia, short stature, patellar aplasia/hypoplasia, narrow nose with a high nasal bridge and abnormalities in sexual development. So we hypothesized that this phenotype might be related to CDT1. In addition, ankyrin repeat domain 11 (OMIM: 611192) at 16q24.3 has been shown to be associated with KBG syndrome.\(^{43}\) Patients typically have facial deformities, upper and middle incisors, skeletal (mainly costal) deformities, and developmental delays. The gene may also be involved in the phenotype of partial trisomy 16q.

In addition to partial chromosome 16 duplication, the fetus also had a 3.86-Mb deletion in 7p22.3p22.2. Andrea C. Yu reported 5 patients with microdeletions at 7p22.3p22.2.\(^{44}\) The most facial features in these patients include a broad nasal root, prominent forehead, prominent glabella and arched eyebrows, micrognathia, metopic ridging or craniosynostosis, cleft palate, cardiac defects, and mild hypotonia. Micrognathia is also present, but no gene is found to be associated with this phenotype in this region. The region of 7p22.2-pter contains about 30 OMIM genes including 11 morbidity-associated genes (Table 3).

16q trisomy	q11→qter	q12→qter	q13→qter	q21→qter	q22→qter	q23→qter	q24→qter
N = 12	8–16	17–20	21–24	25–30	31–38	28, 39–43	28, 44, 45
Low birth weight	7 2	5	5	6	6	1	
Survival	12 1.5 yr\(^{9}\)	10 1.5 mo	8 2 yr\(^{9}\)	10 mo–3.5 yr\(^{9}\)	7 mo–10 yr\(^{9}\)	3 mo–15 yr\(^{9}\)	3 yr–19 yr\(^{9}\)
Hypotonia	3	2	5	3	5	1	
Failure to thrive	6	2	2	5	4	2	
Perinatal edema	3	1	1	1			
Abnormal skin	4	1	1	2			
Bitemporal narrowing	2	1	1	1			
High/abnormal forehead	7	4	2	5	7	4	2
Hypertelorism	3	1	2	1			
Downslanting palpebral fissures	8	1	2	2	1	1	
Small palpebral fissures	4	1	2	3	2	1	1
Broad/depressed nasal bridge	2	2	1	3	3	6	1
Beaked nose	1	1	1	2			
Low set/dysplastic ears	9	4	5	4	5	7	3
Long philtrum	2	2	2	1			
High arched palate	3	1	2	1	3	1	1
Cleft palate	1	2	1	2			
Thin upper lip	4	3	1	5	7		
Epicanthal folds	7	1	2	4	2	2	
Micrognathia	4	4	3	5	2	1	
Clinodactyly of 5th fingers	5	2	1	1	3		
Short middle phalanges of 5th fingers	3	1	1	1			
Flexion of fingers	5	2	1	3	1		
Flexion/contractures of joints	6	1	1	2	1		
Foot deformity	7	1	3	2	3	7	
Short neck	3	2	1	2	5	1	1
Genital hypoplasia	7	1	1	4	3	3	1
Anus anteposition/imperforate	3	1	1	2	2		
Congenital heart disease	8	1	5	3	3	4	1
Gut anomalies	3	1	1	1			
Vertebral/anomalies	3	1	1	3	1	1	
Renal anomalies	4	1	2	4	1	1	
Brain anomalies	4	1	1	1			
Lung anomalies	2	1					
Liver anomalies	2	1					
Gall bladder agenesis	2	1	1				
Abnormal feeding	4	1	5	1			
Mental/psychomotor retardation	4	2	4	7	5	3	
Agensis of corpus callosum	1						
Telecanthus	1						

8. Schmickel.\(^{[1975]}\); 9. Rider.\(^{[1979]}\); 10. Nevis.\(^{[1983]}\); 11. Hahn.\(^{[1987]}\); 12. Zegers.\(^{[1989]}\); 13. Bacino.\(^{[1989]}\); 14. Masauro.\(^{[2000]}\); 15. Chen.\(^{[2004]}\); 16. Chen.\(^{[2017]}\); 17. Perez.\(^{[1999]}\); 18. Paladini.\(^{[1999]}\); 19. Chen.\(^{[2005]}\); 20. Chen.\(^{[2005]}\); 21. Bluchard.\(^{[1981]}\); 22. Davison.\(^{[1984]}\); 23. Hatanaka.\(^{[1984]}\); 24. Dowman.\(^{[1989]}\); 25. Balestrazzi.\(^{[1979]}\); 26. Rasu.\(^{[1990]}\); 27. Lessick.\(^{[1989]}\); 28. Maher.\(^{[1991]}\); 29. Mishra.\(^{[2018]}\); 30. Fagui.\(^{[2018]}\); 31. Tokunari.\(^{[2008]}\); 32. Petrie.\(^{[1982]}\); 33. Cui.\(^{[1984]}\); 34. Nyhan.\(^{[1969]}\); 35. Houlston.\(^{[1994]}\); 36. Chen.\(^{[2005]}\); 37. Basinko.\(^{[2011]}\); 38. Sousa.\(^{[2004]}\); 39. Savy.\(^{[1991]}\); 40. Hattori.\(^{[2010]}\); 41. Bacino.\(^{[2011]}\); 42. Chen.\(^{[2011]}\); 43. Zoë.\(^{[2017]}\); 44. Giovanni.\(^{[2006]}\); 45. Brisset.\(^{[2002]}\).

\(d=\)day; \(m=\)month; \(N=\)number of cases; \(yr=\)years.

\(\ast=\)Alive.

57 morbidity-associated genes (Table 2) (https://decipher.sanger.ac.uk/browser). Chromatin licensing and DNA replication factor 1 (CDT1) (OMIM: 605525), located at 16q24.3, is required for DNA replication at multiple stages of development and mitosis.\(^{[41]}\) CDT1 has been indicated to be associated with Meier-Gorlin syndrome.\(^{[42]}\) Patients with this syndrome usually have distinctive facial features, full lips, low-set/rotated ears, micrognathia, short stature, patellar aplasia/hypoplasia, narrow nose with a high nasal bridge and abnormalities in sexual development. So we hypothesized that this phenotype might be related to CDT1. In addition, ankyrin repeat domain 11 (OMIM: 611192) at 16q24.3 has been shown to be associated with KBG syndrome.\(^{[43]}\) Patients typically have facial deformities, upper and middle incisors, skeletal (mainly costal) deformities, and developmental delays. The gene may also be involved in the phenotype of partial trisomy 16q.

In addition to partial chromosome 16 duplication, the fetus also had a 3.86-Mb deletion in 7p22.3p22.2. Andrea C. Yu reported 5 patients with microdeletions at 7p22.3p22.2.\(^{[44]}\) The most facial features in these patients include a broad nasal root, a prominent forehead a prominent glabella and arched eyebrows, micrognathia, metopic ridging or craniosynostosis, cleft palate, cardiac defects, and mild hypotonia. Micrognathia is also present, but no gene is found to be associated with this phenotype in this region. The region of 7p22.2-pter contains about 30 OMIM genes including 11 morbidity-associated genes (Table 3).
Only eukaryotic translation initiation factors 3B (OMIM: 603917) has been shown to be related with head abnormalities and heart defects after mutations in zebrafish. It is a complex that plays an important role in initiation of translation.\[45\] However, the role of eukaryotic translation initiation factors 3B in human development is not yet known. Other genes that may be associated with the 7p22.3p22.2 microdeletion syndrome phenotype are the following. Mutations in breast cancer 1-associated ataxia

Table 2 Genes in the region of 16q22.1-16q24.3 and the associated diseases.

Gene	Location	OMIM	Phenotype
COG8	16q22.1	606979	Congenital disorder of glycosylation; type IIh
NQ1	16q22.1	125880	Leukemia; susceptibility to Breast cancer; poor survival after chemotherapy; Benzene toxicity
MB140	16q22.1	611894	Spondyloepiphyseal dysplasia, Nikeimura type
AARS1	16q22.1	601065	Charcot-Marie-Tooth disease; Epileptic encephalopathy
FCSK	16q22.1	608675	Congenital disorder of glycosylation with defective fucosylation 2
COG4	16q22.1	606976	Saul-Wilson syndrom; Congenital disorder of glycosylation, type IIj
VAC14	16q22.1-q22.2	604632	Striatriogral degeneration
HYDIN	16q22.2	610812	Ciliary dyskinesia
TAT	16q22.2	613018	Tyrosinaemia, type II
DHODH	16q22.2	126064	Miller syndrome
HP	16q22.2	140100	Hypohaptoglobinemia; Anhaptoglobinemia
DNX3	16q22.2	605584	Retinitis pigmentosa 84
PMFBP1	16q22.2	618085	Spermatogenic failure 31
ZFHX3	16q22.2-q22.3	104155	Prostate cancer, somatic
KTCN2	16q22.1-q22.3	608932	Keratocoros 2
RFWD3	16q23.1	614151	Fanconi anemia
FASH	16q23.1	611026	Spastic paraplegia
LDH2	16q23.1	607490	B-lactic aciduria
TMEM231	16q23.1	614931	Joubert syndrome; Meckel syndrome
KARS1	16q23.1	601421	Deafness; Charcot-Marie-Tooth disease
ADAMTS18	16q23.1	607512	Microcornea, myopic choriotinal atrophy, and telecanthus
WWDOX	16q23.1-q23.2	605131	Epileptic encephalopathy; Spinoocerebellar ataxia; Esophageal squamous cell carcinoma
MAF	16q23.2	177075	Cataract; Ayme-Gripp syndrome
GCSH	16q23.2	238330	Glycin encephalopathy
BC01	16q23.2	605748	Hyperammonemia and vitamin A deficiency
GAN	16q23.2	605379	Giant axonal neuropathy
PLCG2	16q23.3	600220	Familial cold autoinflammatory syndrome; Autoinflammation, antibody deficiency; immune dysregulation syndrome
MLYCD	16q23.3	606761	Malign-ly-CoA deacarboxylase deficiency
SLC38A8	16q23.3	615585	Pevale hypoplasia 2, with or without optic nerve misrouting and/or anterior segment dysgenesis
MBSPT51	16q23.3-q24.1	603355	Spondyloepiphyseal dysplasia
DNAF1	16q24.1	613190	Ciliary dyskinesia
IRX9	16q24.1	601565	Immunodeficiency 32A/Immunodeficiency 32B
FOXF1	16q24.1	601089	Alveolar capillary dysplasia with misalignment of pulmonary veins
FBX031	16q24.2	609102	Mental retardation
JPH3	16q24.2	605268	Huntington disease
CASA	16q24.2	114761	Hyperammonemia due to carbonic anhydrase VA deficiency
ZNF469	16q24.2	612078	Brittle cornea syndrome
CYBA	16q24.2	608508	Chronic granulomatous disease, autosomal
MVD	16q24.2	603236	Porekanerosis
IAPSS	16q24.3	612525	Pyloric stenosis, infantile hypertrophic
CTU2	16q24.3	617057	Microophathy, facial dysmorphism, renal agenesis, and ambiguous genitalia syndrome
PIEZ01	16q24.3	611184	Lymphatic malformation
CDT1	16q24.3	605525	Meier-Gorlin syndrome 4
APRT	16q24.3	102600	Adenine phosphoribosyltransferase deficiency
GALNS	16q24.3	612222	Mucopolysaccharidosis
TRAPPCL2	16q24.3	610970	Encephalopathy, epidermal rhabdomyolysis
ACSF2	16q24.3	614245	Combined malenic and methylmalonic acidia
CDH15	16q24.3	114019	Mental retardation
ANKR011	16q24.3	611192	KGB syndrome
PGN	16q24.3	602783	Spastic paraplegia
RPL13	16q24.3	113703	Spondyloepimphalasys dysplasia
CHMP1A	16q24.3	164010	Pontocerebellar hypoplasia
CDK10	16q24.3	603464	Al Kaissi syndrome
FANCA	16q24.3	607139	Fanconi anemia
MEG1	16q24.3	155555	Skin/hair/eye pigmentation
TUBB3	16q24.3	602661	Fibrosis of extracocular muscles; Cortical dysplasia
GAS8	16q24.3	605178	Ciliary dyskinesia

ANKRD11 = ankyrin repeat domain 11, CDT1 = chromatin licensing and DNA replication factor 1.

\[45\]
telangiectasia mutated (ATM) activator 1 (OMIM: 614506), located in 7p22.3, may have a key role in the protein stability of ATM, which affects neural stem cell differentiation. Breast cancer 1-associated ATM activator 1 has been indicated to be associated with a severe phenotype known as rigidity and multifocal neurodevelopmental disorder, characterized by intractable seizures, hypotonia, autistic instability, and early death. Mutations in integrator complex subunit 1 (OMIM: 611345), located at 7p22.3, have been indicated to be associated with the distinctive phenotype of microcephaly as manifested absent or severely limited speech, an abnormal gait, hypotonia, and cataracts. Whether haploinsufficiency of any OMIM gene necessarily leads to clinical phenotype in humans requires us to further summarize and track more cases. In this case, the fetus had trisomy 16q and monosomy 7p. The genetic abnormalities of these 2 chromosome alterations may interact to making the individual phenotypic consequences. Through data collection, we can indirectly infer possible phenotypes of the fetus. With the exception of the micromaxillary deformity suggested by ultrasound, the detailed features and mental state were not appreciated because the woman’s parents eventually terminated the pregnancy and refused autopsy.

4. Conclusion

In conclusion, precise definitions of subtle chromosome variations should be detected by genome-wide diagnosis such including CNV-seq or chromosome microarray analysis. Meanwhile, ultrasonography can evaluate the malformations of fetus in time. In this report, CNV-seq combined with amniocentesis karyotype is a useful tool to discover the genomic imbalance indicated by NIPS. Through literature analysis, we also analyzed the phenotypes that may be caused by partial trisomy 16q and partial monosomy 7p. The reasonable prenatal screening and prenatal diagnosis can discover some serious birth defects in time, provide accurate prenatal consultation for pregnant women, guide the next pregnancy, and so as to effectively improve the quality of the birth population.

Author contributions

Conceptualization: Huihui Xie, Tong Liu.

Formal analysis: Huihui Xie.

Funding acquisition: Jing-Fang Zhai.

Project administration: Jing-Bo Zhang, Jing-Fang Zhai.

Supervision: Jing-Fang Zhai.

Validation: Jing-Fang Zhai.

References

[1] Sotiriadis A, Papoulidis I, Siomou E, et al. Non-invasive prenatal screening versus prenatal diagnosis by array comparative genomic hybridization: a comparative retrospective study. Prenat Diagn 2017;37:853–92.

[2] Pei YY, Hu L, Liu JX, et al. Efficiency of noninvasive prenatal testing for the detection of fetal microdeletions and microduplications in autosomal chromosomes. Mol Genet Genomic Med 2020;8:e1339.

[3] Hu H, Li W, Wu JY, et al. Noninvasive prenatal testing for chromosome aneuploides and subchromosomal microduplications/microduplications in a cohort of 8141 single pregnancies. Hum Genom 2019;13:14.

[4] Bacino CA, Lee B, Spikes AS, et al. Trisomy 16q in a female newborn with a de novo x16 translocation and hypoplastic left heart. Am J Med Genet 1999;82:128–31.

[5] Masuno M, Ishi T, Tanaka Y, et al. De novo trisomy 16p11.2→1qter of any origin. Am J Med Genet 2001;92:308–10.

[6] Chen CP, Lee CC, Wang W. Prenatal diagnosis of complete trisomy 16q in two consecutive pregnancies. Prenat Diagn 2004;24:1019–20.

[7] Palladini D, D’Agostino A, Lugano M, et al. Prenatal findings in trisomy 16q of paternal origin. Prenat Diagn 1999;19:472–5.

[8] Schmickel R, Poznanski A, Himebaugh J. 16q trisomy in a family with a balanced 15/16 translocation. Birth Defects Orig Artic Ser 1975;11:229–36.

[9] Riddle MA, Mckewon JA. Trisomy 16q arising from a maternal 15p16q translocation. J Med Genet 1979;16:317–20.

[10] Nevin NC, Coffey WW, Nevin J, et al. Partial trisomy 16q in two boys resulting from a maternal translocation, t(15;16)(p12;q11). Clin Genet 1983;24:375–9.

[11] Hahn SY, Chitavat D, Iqbal MA, et al. Partial duplication 16q: report of two affected siblings resulting from a maternal translocation and literature review. Clin Genet 1987;31:343–8.

[12] Eggermann T, Kolm-Gerresheim I, Gerresheim F, et al. A case of de novo translocation 16;21: trisomy 16q phenotype and origin of the aberration. Ann Genet 1999;41:205–8.

[13] Chen CP, Ko TM, Chern SR, et al. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 16. Taiwanese J Obstetr Gynecol 2017;56:345–9.

[14] Perez-Castillo A, Martin-Lucas MA, Abrisqueta JA. Duplication 16q12-qter arising from 3:1 segregation in a 46,xxx(13;16) (p12q12) mother. Ann Genet 1990;33:121–3.

[15] Chen CP, Hsu CY, Huang JK. Prenatal diagnosis of partial trisomy 16q and distal 22q13 deletion associated with dolichocephaly and frontonasal bossing on second-trimester ultrasound. Prenat Diagn 2005;25:964–6.

[16] Chen CP, Lin SP, Chern SR, et al. Perinatal findings and molecular cytogenetic analysis of trisomy 16q and 22q13.3 deletion. Prenat Diagn 2003;23:504–8.

[17] Buckton KE, Barr DG. Partial trisomy for long arm of chromosome 16. J Med Genet 1981;18:483–483.

[18] Davison EV, Beclely JR. Partial trisomy 16 as a result of familial 16;20 translocation. J Med Genet 1984;21:384–6.

[19] Hatanaka K, Ozaki M, Suzuki M, et al. Trisomy 16q13→qter in an infant from a t (11;16)(q25q13) translocation-carrier father. Hum Genet 1984;65:311–5.

[20] Dowman C, Lockwood D, Allansson J. Familial trisomy 16q. J Med Genet 1989;26:525–8.

[21] Balestrazzi PL, Giovannelli G, Rubini LL, et al. Partial trisomy 16q→qter due to an unbalanced segregation of a maternally inherited balanced translocation 46,x(Xi;15;16)(p13q21): a case report and review of literature. BMC Pediatr 2018;18:4.
[26] Fagui Y, Yuting J, Yuan PC. Molecular cytogenetic characterization of partial monosomy 2p and trisomy 16q in a newborn: a case report. Exp Ther Med 2019;18:3267–75.

[27] Tokutomi T, Wada T, Nakagawa E, et al. De novo direct duplication of 16q22.1→q23.1 in a boy with midface hypoplasia and mental retardation. Am J Med Genet Part A 2009;149A:2560–3.

[28] Rethoré MO, Lafourcade J, Couturier J, et al. Increased activity of adenine phosphoribosyl transferase in a child trisomic for 16q22.2→16qter due to malsegregation of a t(16;21)(q22.2;q22 2) pat. Ann Genet 1982;25:36–42.

[29] Calva P, Frias S, Carnevale A, et al. Partial trisomy 16q resulting from maternal translocation 11p/16q. Ann Genet 1984;27:122–5.

[30] Nyhan WL, Mascarello J, Barshop B, et al. Duplication of 16q and deletion of 15q. Am J Med Genet 1989;34:183–6.

[31] Houlston RS, Renshaw RM, James RS, et al. Duplication of 16q22→qter confirmed by fluorescence in situ hybridisation and molecular analysis. J Med Genet 1994;31:894–7.

[32] Chen CP, Lin SP, Lin CC, et al. Perinatal findings and molecular cytogenetic analysis of de novo partial trisomy 16q (16q22.1→qter) and partial monosomy 20q (20q13.3→qter). Prenat Diagn 2005;25:112–8.

[33] Basinko A, Séverine AB, Douet-Guilbert N, et al. Subtelomeric monosomy 11q and trisomy 16q in siblings and an unrelated child: molecular characterization of two der(11)t(11;16). Am J Med Genet A 2011;155A:2281–7.

[34] Sousa B, Rocha G, Doria S, et al. New findings in partial trisomy 16q: clinical report. Acta Paediatr 2004;93:852–4.

[35] Savary JB, Vasseur F, Manouvrier S, et al. Trisomy 16q23——qter arising from a maternal t(13;16)(p12;q23): case report and evidence of the reciprocal balanced maternal rearrangement by the ag-nor technique. Hum Genet 1991;88:115–8.

[36] Hellani A, Mohamed S, Al-Akoum S, et al. A t(5;16)(p15.32;q23.3) generating 16q23.3→qter duplication and 3p15.32→qter deletion in two siblings with mental retardation, dysmorphic features, and speech delay. Am J Med Genet Part A 2010;152A:1555–60.

[37] Chen CP, Hung FY, Chern SR, et al. Prenatal diagnosis and molecular cytogenetic characterization of de novo partial monosomy 3p (3p26.3→qter) and partial trisomy 16q (16q23.1→qter). Taiwanese J Obstet Gynecol 2016;55:288–92.

[38] Zoe P, Ioannis P, Stavros S, et al. Partial monosomy 8p and trisomy 16q in two children with developmental delay detected by array comparative genomic hybridization. Mol Med Rep 2017;16:8808–18.

[39] Giovanni BF, Elga B, Liguori M, et al. Phenotype resembling Donnai-Barrow syndrome in a patient with 9qter;16qter unbalanced translocation. Am J Med Genet A 2006;140A:892–4.

[40] Brisset J, Joly G, Ozilou C, et al. Molecular characterization of partial trisomy 16q24.1→qter: clinical report and review of the literature. Am J Med Genet 2002;113:339–45.

[41] Wohlschlegel JA. Inhibition of eukaryotic dna replication by geminin binding to cdt1. Science 2000;290:2309–12.

[42] Bicknell LS, Bongers EMHF, Leitch A, et al. Mutations in the pre-replication complex cause meier-gorlin syndrome. Nat Genet 2011;43:356–9.

[43] Sirmaci A, Spiliopoulos M, Brancati F, et al. Mutations in ankrd11 cause kbg syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am J Hum Genet 2011;89:289–94.

[44] Yu AC, Zambrano RM, Cristiano L, et al. Variable developmental delays and characteristic facial features-a novel 7p22.3p22.2 microdeletion syndrome? Am J Med Genet A 2017;173A:1593–600.

[45] Elantak L, Tsakos AG, Locker N, et al. Structure of esf3b rna recognition motif and its interaction with esf3i: structural insights into the recruitment of esf3b to the 40s ribosomal subunit. J Biol Chem 2007;282:8165–74.

[46] Renske O, David B, Rachel S, et al. Human mutations in integrator complex subunits link transcriptome integrity to brain development. PLoS Genet 2012;7:e28936.