Some Results on Strongly Fully Stable Banach Γ –Algebra Modules Related To ΓA -deal

Uhood S. Al-Hassani1, Samira Naji Kadhim2, Muna Jusim Mohammed Ali2

1Department of Computer, College of Science, University of Baghdad, Baghdad, Iraq
2Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq

Received: 30/12/2020 Acceptance: 2/5/2021

Abstract
The main objective of this research is to study and to introduce a concept of strong fully stable Banach Γ-algebra modules related to an ideal. Some properties and characterizations of full stability are studied.

Keywords: strongly fully stable Banach Γ-algebra modules related to an ΓA-ideal, fully stable Banach Γ-algebra modules related to an ΓA-ideal, Baer criterion related to an ΓA-ideal, strongly quasi α-injective related to an ΓA-ideal, fully stable Banach Γ-algebra modules

1. Introduction
The theory of Banach algebras is an abstract mathematical theory. Banach algebras started in the early twentieth century, when abstract concepts and structures were introduced, transforming both of the mathematical language and practice. A non-empty set \mathcal{A} is an algebra with $(\mathcal{A},+)$ over a field \mathcal{F} is a vector space and \mathcal{A} is a ring with $+,\cdot$ and $\alpha\circ b = \alpha(a\circ b) = (\alpha a)\circ b$ for all α in \mathcal{F}, for each a, b in \mathcal{A} [1]. In [2], a ring \mathcal{R} is an algebra $<\mathcal{R},+,-,0>$ where \mathcal{R} is a ring and binary operations $+$ and \cdot, unary is $-$ and nullary element is 0, when a commutative group is $<\mathcal{R},+,0>$ and a semi-group is $<\mathcal{R},>$, $(x+y).z = (x.z) + (y+z)$also $x.(y+z) = (x.y) + (x.z)$. Assume that \mathcal{A} is an algebra, recall that a Banach space \mathcal{E} is a left \mathcal{B}-algebra-module if $\|a\|\|x\| \leq \|a.x\|$ (a in \mathcal{A}, x in \mathcal{E}) and \mathcal{E} is a left \mathcal{A}-module [1]. All modules over commutative Banach algebras are both left and right modules. A Banach algebra \mathcal{A} is always a left and right \mathcal{A} -
module with the module multiplication which is taken to be the multiplication in A. A Banach space is a \mathcal{A}-module with the module multiplication which is taken to be the scalar multiplication. So every closed left ideal of a Banach algebra A is in a natural way a left A-module. If U is a submodule of an A-module V, then the quotient space V/U with the quotient norm is in a natural way an A-module. If A is a Banach algebra, and V is a Banach space, then V becomes an A-module if we define $av = 0$ for all $a \in A, v \in V$. We call V a trivial A-module [3]. A function $T : X \rightarrow Y$ (not necessarily A is commutative) is said to be (homomorphism) multiplier if $a.Tx = T(a.x)$ for all $a \in A, x \in X$ [4]. Following [5], let \mathcal{N} be a sub-module of a module M, if and only if for each \mathcal{R} -homomorphism $f : \mathcal{N} \rightarrow \mathcal{M}$ and for every multiplier θ from \mathcal{N} to \mathcal{M} such that $\mathcal{N} \cong \theta(\mathcal{N})$. From [7], a left B-algebra-module X is n-generated if there exists $x_1, ..., x_n$ in X such that for all x in X, can be written $x = a_1x_1, ..., a_kx_k$ for some $a_1, ..., a_k$ in A. A 1-generated is called cyclic module. Following [8,9,10] let X be a Banach algebra module , X is fully stable Banach A-module if for every submodule \mathcal{N} of X and for each multiplier $\theta : \mathcal{N} \rightarrow X$ such that $\theta(\mathcal{N}) \subseteq \mathcal{N}$, that is, suppose that X is B-algebra module, if for each sub-module \mathcal{N} of X and for every multiplier θ from \mathcal{N} to X, such that $\mathcal{N} + \mathcal{K}X \cong \theta(\mathcal{N})$, X is said to be fully stable Banach algebra-module relative to an ideal \mathcal{K} of A. It is easy to see every fully stable Banach A-module is fully stable Banach Amodule relative to an ideal. Assume that X is B-algebra module, if for every sub-module \mathcal{N} of X and for every multiplier $\theta : \mathcal{N} \rightarrow X$ such that $\mathcal{N} \cap \mathcal{K}X \cong \theta(\mathcal{N})$, X is said to be strongly fully stable B-algebra module relative to an ideal \mathcal{K} of A. It is an easy matter to see that every strongly fully stable B-algebra module relative to an ideal is fully stable Banach algebra module. Following [11], suppose that Γ is a groupoid and \mathcal{V} is a space of vectors over \mathcal{F}. Hence, \mathcal{V} over \mathcal{F} is said to be a Γ-algebra, if there is a mapping from $\mathcal{V} \times \Gamma \times \mathcal{V}$ to \mathcal{V} (we denoted the image by $x \cdot \alpha \cdot y$ for $x, y \in \mathcal{V}$ and $\alpha \in \Gamma$) such that

1. $x \cdot (\alpha + \beta) \cdot y = x \cdot \alpha \cdot y + x \cdot \beta \cdot y,$
2. $(c \cdot x) \cdot \alpha \cdot y = c(x \cdot \alpha \cdot y) = x \cdot (c \cdot \alpha \cdot y),$
3. $(\alpha \cdot c) \cdot y = (\alpha \cdot y) + \alpha \cdot (\alpha \cdot z),$
4. $0 \cdot \alpha \cdot y = y \cdot 0 = 0, \alpha, \beta \in \Gamma$ and for all $x, y, z \in \mathcal{V}, c \in \mathcal{V}.$

A Γ - algebra is associative if $(5) (x \cdot \alpha \cdot y) \beta \cdot z = x \cdot (\alpha \cdot y) \beta \cdot z,$ and unital if for every $\alpha, \beta \in \Gamma$, there is an element 1_α in \mathcal{V} such that $1_\alpha \cdot \alpha = \alpha = \alpha \cdot 1_\alpha$, for every nonzero elements of \mathcal{V}. The concept of strongly fully stable B- Γ-algebra modules related to an ideal have been introduced and is proving another characterization of strong fully stable B- Γ-modules related to Γ-ideal A Banach Γ-module X is strongly fully stable B- Γ-modules related to Γ-ideal if and only if for each N_{ax}, \mathcal{K}_{bg} subsets of X, $y \notin N_{ax}$ then \mathcal{K}_{bg} implies $ann_{\Gamma}(N_{ax}) \subseteq ann_{\Gamma}(\mathcal{K}_{bg})$.

2. Strongly Fully Stability Banach Γ- Algebra Modules Related to an Γ-ideal.

In this section the concept of strongly fully stable Banach Γ- Algebra Modules Related to an ideal is introduced and other characterizations of this concept have been studied.

2.1 Definition: Suppose that X is Γ-algebra-module, X is said to be strongly fully stable Γ- \mathcal{A}-module related to Γ-ideal J of \mathcal{A}, if for each sub-module N of \mathcal{A}-module X and for all Γ - multiplier θ from \mathcal{N} to X such that $\mathcal{N} \cap \mathcal{J}X \cong \theta(\mathcal{N})$. It is easy to see that every strongly fully stable Banach Γ-modules related to an ideal is fully stable Banach Γ-modules. Therefore X is strongly fully stable Banach Γ-modules related to Γ-ideal, if and if for each 1-generated sub-module L in X and for every Γ - multiplier $\theta : L \rightarrow X$ such that $\theta(L) \subseteq L \cap \mathcal{K}X$.

Let X be a Banach \mathcal{A}-modules and J be a nonzero Γ -ideal of algebra \mathcal{A}. If X is fully stable B- Γ-modules and $X = \mathcal{J}X$ then X is strongly fully stable B- Γ-modules related to an
ideal K, since for each 1-generated sub-module N of X and ΓA-homomorphism f from N to X, \(N \cap \Gamma f \Gamma X = N \cap X \supseteq f(N) \).

Suppose that X is a B-ΓA-module, let N and K be two subsets of X, then
1) \(N_{ax} = \{ n_{ax} \mid n \in N, a \in \Gamma, x \in X \} \), and
2) \(\text{ann}_{\Gamma A}(N_{ax}) = \{ a \, \alpha \in \Gamma A \mid a \, \alpha \, n_{ax} = 0 \, \forall n_{ax} \in N_{ax} \} \).

2.2 Proposition: A Banach ΓA-module X is strongly fully stable B-ΓA-modules related to Γ-ideal if and only if for each \(N_{ax}, K_{\beta y} \) subsets of X, \(y \notin N_{ax} \cap \Gamma f \Gamma X \) implies \(\text{ann}_{\Gamma A}(N_{ax}) \nsubseteq \text{ann}_{\Gamma A}(K_{\beta y}) \).

Proof: Assume that X is strongly fully stable B-ΓA-modules related to Γ-ideal K, there is \(N_{ax}, K_{\beta y} \) subsets of X, such that \(y \notin N_{ax} \cap \Gamma f \Gamma X \) and \(\text{ann}_{\Gamma A}(N_{ax}) \subseteq \text{ann}_{\Gamma A}(K_{\beta y}) \). Define \(\theta : < N_{ax} > \rightarrow X \) by \(\theta(\delta a, n_{ax}) = \delta a \, \kappa_{\beta y} \), for all \(\delta a \in \Gamma A \), if \(\delta a \cdot n_{ax} = 0 \) then \(\delta a \in \text{ann}_{\Gamma A}(N_{ax}) \subseteq \text{ann}_{\Gamma A}(K_{\beta y}) \). This implies that \(\delta a \cdot \kappa_{\beta y} = 0 \), hence \(\theta \) is well defined. \(\theta \) is a \(\Gamma \)-multiplier, since X is strongly fully stable B-ΓA-modules related to Γ-ideal K, there is an element \(\gamma t \in \Gamma \) s.t \(\theta(m_{ax}) = \gamma t n_{ax} \) for each \(m_{ax} \in N_{ax} \). In particular, \(\kappa_{\beta y} = \theta(n_{ax}) = \gamma t n_{ax} \in N_{ax} \cap \Gamma f \Gamma X \). This gives a contradiction. Hence X is strongly fully stable B-ΓA-modules related to Γ-ideal K. Conversely, suppose that there exists a \(\Gamma \)-multiplier \(\theta : < N_{ax} > \rightarrow X \) and a subset \(N_{ax} \) in X such that \(\theta(N_{ax}) \nsubseteq N_{ax} \cap \Gamma f \Gamma X \) then there exists an element \(m_{ax} \in N_{ax} \) such that \((m_{ax}) \notin N_{ax} \cap \Gamma f \Gamma X \). Let \(\eta_{s} \in \text{ann}_{\Gamma A}(N_{ax}) \). Therefore \(\eta_{s} n_{ax} = 0, \eta_{s} \theta(m_{ax}) = \theta(\eta_{s} n_{ax}) = \theta(\gamma t n_{ax}) = \theta(0) = 0 \). Hence \(\text{ann}_{\Gamma A}(N_{ax}) \subseteq \text{ann}_{\Gamma A}(\theta(m_{ax})) \) which is contradiction.

2.3 Corollary: Suppose that X is a related to strongly fully stable B-ΓA-modules related to Γ-ideal K. Then \(N_{ax}, K_{\beta y} \) subsets of X, \(\text{ann}_{\Gamma A}(N_{ax}) = \text{ann}_{\Gamma A}(K_{\beta y}) \) implies \(K_{\beta y} \cap \Gamma f \Gamma X = N_{ax} \cap \Gamma f \Gamma X \).

Proof: Suppose that there are two elements \(x, y \in X \) \(\exists \text{ann}_{\Gamma A}(K_{\beta y}) = \text{ann}_{\Gamma A}(N_{ax}) \) and \(K_{\beta y} \cap \Gamma f \Gamma X \neq N_{ax} \cap \Gamma f \Gamma X \). Therefore without loss of generality there exists \(z_{ax} \in N_{ax} \cap \Gamma f \Gamma X \). By using proposition (4.2) we get \(\text{ann}_{\Gamma A}(K_{\beta y}) \nsubseteq \text{ann}_{\Gamma A}(z_{ax}) \) but \(\text{ann}_{\Gamma A}(N_{ax}) \subseteq \text{ann}_{\Gamma A}(z_{ax}) \), hence \(\text{ann}_{\Gamma A}(K_{\beta y}) \nsubseteq \text{ann}_{\Gamma A}(N_{ax}) \) which is contradiction.

2.4 Definition: A sub-module N of B-ΓA-module is called pure \(\Gamma \)-submodule if \(\Gamma K \Gamma N = \Gamma N \cap \Gamma f \Gamma X \) for each \(\Gamma \)-ideal J of A.

When the sub-module of strongly fully stable B-ΓA-modules related to Γ-ideal have been partial answer in the next result.

2.5 Proposition: Suppose that X is a strongly fully stable B-ΓA-modules related to a nonzero \(\Gamma \)-ideal J of A. Then every pure \(\Gamma \)-submodule is strongly fully stable B-ΓA-modules related to Γ-ideal J.

Proof: Assume that N is pure \(\Gamma \)-submodule in X. For all \(\Gamma \)-submodule L in N and \(f : L \rightarrow N \) a \(\Gamma \)-multiplier, set \(i \circ f = g : L \rightarrow X \), is the inclusion mapping from N to X, then from assumption \(f(L) = g(L) \subseteq \Gamma f \Gamma X \), and \(f(L) \subseteq N \). Hence \(f(L) \subseteq L \cap \Gamma f \Gamma X \cap N \). Because of N is pure \(\Gamma \)-submodule in X, we have \(\Gamma N \cap \Gamma f \Gamma X = \Gamma f \Gamma N \), for each \(\Gamma \)-ideal J of A, therefore \(f(L) \subseteq L \cap \Gamma f \Gamma N \). Thus \(N \) is strongly fully stable B-ΓA-modules related to Γ-ideal J.

2.6 Definition: A Banach ΓA-module X is called Baer criterion relative to an ideal J in A satisfied, if every sub-module of X Baer criterion relative to an ideal J in A satisfied, this mean that for each 1-generated sub-module N in X and \(\theta \) from N to X \(\Gamma \)-multiplier, there is \(\tau a \in \Gamma \) s.t \(\theta(n) = \tau an \in \Gamma f \Gamma X \) for all \(n \in N \).
The next proposition and corollary give new characterization of strong fully stable B- ΓA-modules related to ΓA-ideal.

2.7 Proposition: If X is a B- algebra ΓA-module, then the Baer criterion relative to an ideal J in A is satisfied for 1-generated sub-module in X if and only if $\text{ann}_{\Gamma A}(\text{ann}_{\Gamma A}(\mathcal{N}_{\alpha})) = \mathcal{N}_{\alpha} \cap \Gamma J \mathcal{X}$ for each $\alpha \in \Gamma X$.

Proof: Suppose that the Baer criterion relative to an ideal J in A holds for 1-generated submodule of X. Let $y \in \text{ann}_{\Gamma A}(\text{ann}_{\Gamma A}(\mathcal{N}_{\alpha}))$ and define $\theta: \langle \mathcal{N}_{\alpha} \rangle \rightarrow X$ by $\theta(ya \mathcal{N}_{\alpha}) = ya \kappa_{\beta y}$ for all $y a \in \Gamma A$. Let $\gamma a_1 \mathcal{N}_{\alpha} = \gamma a_2 \mathcal{N}_{\alpha}$, thus $\gamma(a_1 - a_2) \mathcal{N}_{\alpha} = 0$ where $\gamma(a_1 - a_2) \in \text{ann}_{\Gamma A}(\mathcal{N}_{\alpha})$, so that $\gamma(a_1 - a_2) \in \text{ann}_{\Gamma A}(\mathcal{K}_{\beta y})$. Therefore $\gamma(a_1 - a_2) \kappa_{\beta y} = 0$, and $a_1 \kappa_{\beta y} = a_2 \kappa_{\beta y}$, then θ is well defined. It is easy to see that θ is an ΓA-multiplier. There exists an element $\delta \in \Gamma A$ from the assumption that $\theta(m_{\alpha}) = \delta tm_{\alpha} \in KX$ for each $m_{\alpha} \in \mathcal{N}_{\alpha}$, we have in particular, $\kappa_{\beta y} = \theta(n_{\alpha}) = \delta tn_{\alpha} \in \Gamma J \mathcal{X}$, therefore $\text{ann}_{\Gamma A}(\text{ann}_{\Gamma A}(\mathcal{N}_{\alpha})) \subseteq \mathcal{N}_{\alpha} \cap \Gamma J \mathcal{X}$, and $\text{ann}_{\Gamma A}(\text{ann}_{\Gamma A}(\mathcal{N}_{\alpha})) = \mathcal{N}_{\alpha} \cap \Gamma J \mathcal{X}$. Conversely, assume that $\text{ann}_{\Gamma A}(\text{ann}_{\Gamma A}(\mathcal{N}_{\alpha})) = \mathcal{N}_{\alpha} \cap \Gamma J \mathcal{X}$, for each $\mathcal{N}_{\alpha} \subseteq X$, then for each A-multiplier $\theta: \mathcal{N}_{\alpha} \rightarrow X$, and $\mu \in \text{ann}_{\Gamma A}(\mathcal{N}_{\alpha})$ we have $\mu \theta(n_{\alpha}) = 0$. Thus $\theta(n_{\alpha}) \in \text{ann}_{\Gamma A}(\text{ann}_{\Gamma A}(\mathcal{N}_{\alpha})) = \mathcal{N}_{\alpha} \cap \Gamma J \mathcal{X}$, and $\theta(n_{\alpha}) = \delta t n_{\alpha} \in \Gamma J \mathcal{X}$ for some $\delta t \in \Gamma A$, hence Baer criterion relative to an ideal J in A holds.

2.8 Corollary: X is strongly fully stable B- ΓA-modules related to ΓA-ideal K if and only if $\text{ann}_{\Gamma A}(\text{ann}_{\Gamma A}(\mathcal{N}_{\alpha})) \subseteq KX$ for each $x \in \mathcal{X}$.

In [8], the authors assume that \mathcal{A} be a unital $B\Gamma$-algebra. Algebra-module X is said to be quasi α-injective if, ϕ from \mathcal{N} to X is algebra-module homomorphism (multiplier) such that $\|\phi\| \leq 1$, there is algebra-module homomorphism (multiplier) θ from X to X, $\mathcal{O} \theta \circ i = \phi$ and $\|\theta\| \leq \alpha$, i is an iso-metrix, algebra-module isomorphism is an iso-metrix algebra-multiplier, from sub-module \mathcal{N} in X to X, and X is said to be quasi-injective if X is quasi-α-injective for some α.

The concept of strongly quasi α-injective related to an $\Gamma \mathcal{A} = \text{ideal } J$ of \mathcal{A} is introduced.

2.9 Definition: Assume that \mathcal{A} be a unital $B\Gamma$-algebra. $\Gamma \mathcal{A}$-module X is said to be strongly quasi α-injective related to an $\Gamma \mathcal{A} = \text{ideal } J$ of \mathcal{A} if, ϕ from \mathcal{N} to X is $\Gamma \mathcal{A}$-multiplier such that $\|\phi\| \leq 1$, there exists $\Gamma \mathcal{A}$-multiplier θ from X to X, such that $(\theta \circ i)(\mathcal{N}) = \phi(\mathcal{N}) \in \Gamma J \mathcal{X}$ and $\|\theta\| \leq \alpha$, i is an iso-metrix, from sub-module \mathcal{N} to X, X is said to be strongly quasi injective related to $\Gamma \mathcal{A} = \text{ideal } J$ if it is strongly quasi α-injective related to $\Gamma \mathcal{A}$ = ideal for some α.

In the following proposition we give the relationship between strongly quasi α-injective B-$\Gamma \mathcal{A}$-module related to $\Gamma \mathcal{A} =$ ideal and strongly fully stable B-$\Gamma \mathcal{A}$-module related to an $\Gamma \mathcal{A} =$ ideal K of \mathcal{A}.

2.10 Proposition: Assume that X be B- $\Gamma \mathcal{A}$-module and J be a non-zero ideal of $\Gamma \mathcal{A}$. If X is strongly fully stable B- $\Gamma \mathcal{A}$-modules related to $\Gamma \mathcal{A}$-ideal then X is strongly quasi injective B-$\Gamma \mathcal{A}$-module related to $\Gamma \mathcal{A} =$ ideal.

Proof: Suppose that \mathcal{N} is sub-module in X and $f : \mathcal{N} \rightarrow X$ be any algebra-module homomorphism. Because \mathcal{N} is a fully stable $\Gamma \mathcal{A}$-module related to $\Gamma \mathcal{A} =$ ideal J, therefore $f(\mathcal{N}) \subseteq \mathcal{N} \cap \Gamma J \mathcal{X}$, hence there exists $\lambda \in \Gamma \mathcal{A}$ such that $f(n) = \lambda n$. Define $g : X \rightarrow X$ by $\lambda x = g(x) \text{ and } f(y) = g(y)$, it is easy to see that g is a well defined $\Gamma \mathcal{A}$-multiplier, $f(x) = g(x) = \lambda x \in \Gamma J \mathcal{X}$, and for all y in \mathcal{N}, $(f \circ i)(y) = g(y) = f(y)$, $g(y) \in \Gamma J \mathcal{X}$, i is iso-metrix, and for some α, $\|\mathcal{g}\| \leq \alpha$, therefore X is strongly quasi injective B-$\Gamma \mathcal{A}$-module related to $\Gamma \mathcal{A} =$ ideal.
References
[1] Ramesh .G, "Banach Algebras", department of Mathematics, I. I. T. Hyderabad, ODF Estate, Yeddumailaram, A. P, India 502 – 205, 2013.
[2] Burris S. and Sankappanavar H. P. "A Course in Universal Algebra", the Millennium Edition, 1981.
[3] GRAVEN A.W.M. "Banach modules over Banach algebras", Krips Repro-Meppel, 1974.
[4] Daws M. D. P., 2004, "Banach algebras of operators", The University of Leeds, School of Mathematics, Department of Pure Mathematics, 2004.
[5] Abbas. M. S., "On Fully Stable Modules", Ph. D, Thesis, University of Baghdad, Iraq, 1990.
[6] BRAˇC I´ C J., 2003, "Simple Multipliers on Banach Modules", University of Ljubljana, Slovenia, Glasgow Mathematical Journal Trust, 2003.
[7] Mohammed Ali . M. J. and Ali M., "Fully Stable Banach Algebra module", Mathematical Theory and Modeling, vol. 6, no. 1, pp. 136-139, 2016.
[8] Cegarra A. M., "Projective Covers of Finitely Generated Banach Modules and the Structure of Some Banach Algebras", O.Yu.Aristov, Russia, 2006.
[9] BRAˇC I´ C J., 2004, "Local Operators on Banach Modules", University of Ljubljana, Slovenia, Mathematical Proceedings of the Royal Irish Academy, 2004.
[10] Elbast Z. A. and Smith P, F., " Multiplication modules", Comm. Algebra. vol.10, pp.755-779, 1988.
[11] Sten K., "On Banach modules I", Math. Proc. Camb. Phil. Soc., vol. 90, pp. 423, 1981.