POLYHEDRAL DIVISORS AND SL$_2$-ACTIONS ON AFFINE T-VARIETIES

IVAN ARZHANTSEV AND ALVARO LIENDO

Abstract. In this paper we classify SL$_2$-actions on normal affine T-varieties that are normalized by the torus T. This is done in terms of a combinatorial description of T-varieties given by Altmann and Hausen. The main ingredient is a generalization of Demazure’s roots of the fan of a toric variety. As an application we give a description of special SL$_2$-actions on normal affine varieties. We also obtain, in our terms, the classification of quasihomogeneous SL$_2$-threefolds due to Popov.

Introduction

Let k be an algebraically closed field of characteristic zero, M be a lattice of rank n, $N = \text{Hom}(M, \mathbb{Z})$ be the dual lattice of M, and T be the algebraic torus $\text{Spec} k[M]$, so that M is the character lattice of T and N is the one-parameter subgroup lattice of T.

A T-variety X is a normal algebraic variety endowed with an effective regular action of T. The complexity of a T-action is the codimension of a general orbit, and since the T-action on X is effective, the complexity of X equals $\text{dim} X - \text{rank} M$. For an affine variety X, to introduce a T-action on X is the same as to endow $k[X]$ with an M-grading. There are well known combinatorial descriptions of T-varieties. We send the reader to [Dem70] and [Ful93] for the case of toric varieties, to [KKMS73, Ch. 2 and 4] and [Tim08] for the complexity one case, and to [AH06, AHS08] for the general case. In this paper we use the approach in [AH06].

Any affine toric variety is completely determined by a polyhedral cone $\sigma \subseteq N_{\mathbb{Q}}$. Similarly, the description of a normal affine T-varieties X due to Altmann and Hausen [AH06] involves the data (Y, σ, \mathcal{D}) where Y is a normal semiprojective variety, $\sigma \subseteq N_{\mathbb{Q}} := N \otimes \mathbb{Q}$ is a polyhedral cone, and \mathcal{D} is a divisor on Y whose coefficients are polyhedra in $N_{\mathbb{Q}}$ with tail cone σ. The divisor \mathcal{D} is called a σ-polyhedral divisor on Y (see Section 1.1 for details).

Let X be a T-variety endowed with a regular G-action, where G is any linear algebraic group. We say that the G-action on X is compatible if the image of G in $\text{Aut}(X)$ is normalized but not centralized by T. Furthermore, we say that the G-action is of fiber type if the general orbits are contained in the T-orbit closures, and of horizontal type otherwise [FZ05, Lie10a].

Let now $G_a = G_a(k)$ be the additive group of k. It is well known that a G_a-action on an affine variety X is equivalent to a locally nilpotent derivation (LND) of $k[X]$. A description of compatible G_a-actions on an affine T-variety, or equivalently of homogeneous LNDs on $k[X]$, is available in the case where X is of complexity at most one [Lie10a] or the G_a-action is of fiber type [Lie10b] in terms of a generalization of Demazure’s roots of a fan [Dem70] (see Sections 1.3 and 1.4).

A regular SL$_2$-action on an affine variety X is uniquely defined by an sl_2-triple $\{\delta, \partial_+, \partial_-\}$ of derivations of the algebra $k[X]$, where ∂_{\pm} are locally nilpotent, $\delta = [\partial_+ , \partial_-]$ is semisimple and $[\delta, \partial_{\pm}] = \pm 2\partial_{\pm}$ (see Proposition 2.1). Assume now that X is an affine T-variety. If the

Date: January 23, 2013.

2010 Mathematics Subject Classification: 13N15, 14L30, 14M25, 14R20, 14M17.

Key words: SL$_2$-actions, torus actions, affine varieties, locally nilpotent derivations, special actions, quasihomogeneous SL$_2$-threefolds.

The first author was partially supported by RFBR grant 09-01-00648-a and the Simons Foundation.
SL$_2$-action is compatible, then ∂_δ are homogeneous with respect to the M-grading on $k[X]$ and the grading given by δ is a downgrading of the M-grading.

The main result of this paper, contained in Section 2 is a classification of compatible SL$_2$-actions on an affine \mathbb{T}-variety X in the case where this action is of fiber type or X is of complexity one (See Theorems 2.12 and 2.18 respectively). Our idea is to classify compatible SL$_2$-actions by calculating the commutator of two homogeneous LNDs. The existence of a compatible SL$_2$-action on X puts strong restrictions on the combinatorial data (Y, σ, \mathcal{D}) and endows \mathcal{D} with an additional structure. It should be noted that if the \mathbb{T}-variety X is of complexity one and the SL$_2$-action is of horizontal type, then X is spherical with respect to a bigger reductive group, namely, an extension of SL$_2$ by a torus. We do not use the theory of spherical varieties in this paper.

The rest of the paper is devoted to two applications of our main result: special SL$_2$-actions and SL$_2$-actions with an open orbit. A G-action on X is called special (or horospherical) if there exists a dense open $W \subseteq X$ such that the isotropy group of any point $x \in W$ contains a maximal unipotent subgroup of G. Special actions play an important role in Invariant Theory.

Any special action of a connected reductive group G on an affine variety X may be reconstructed from the action of a maximal torus $T \subseteq G$ on the algebra $k[X]^U \subset k[X]$ of the invariants of a maximal unipotent subgroup $U \subset G$. This reduces the study of special actions to torus actions. In Section 3 we illustrate this phenomenon for SL$_2$-actions in our terms (see Theorem 3.11 and 3.12). In particular, we show that for every special SL$_2$-action on an affine variety X there is a canonical 2-torus action and the SL$_2$-action is compatible and of fiber type with respect to this torus. Since the reconstruction of the G-variety X from the T-variety Spec $k[X]^U$ is an algebraic procedure, it is useful to have a geometric description of X. In Proposition 3.10 we describe a normal affine variety X with a special SL$_2$-action as a \mathbb{T}^2-variety with respect to the canonical torus \mathbb{T}^2. It is worthwhile to remark that any G-action on an affine variety may be contracted to a special one [Pop86, Proposition 8]. It will be interesting to interpret contraction of SL$_2$-actions in terms of polyhedral divisors.

As a corollary of our classification of special actions, we prove that if an affine \mathbb{T}-variety X of complexity one admits a compatible special SL$_2$-action of horizontal type, then X is toric with respect to a bigger torus and the SL$_2$-action is compatible with respect to the big torus as well. Furthermore, using a linearization result due to Berchtold and Hausen [BH03], we show that, up to conjugation in Aut(X), any special SL$_2$-action on an affine toric 3-fold X is compatible with the big torus, and thus it is given by an SL$_2$-root (see Definition 2.6).

It is natural to generalize Altmann and Hausen’s approach [AH06] to arbitrary reductive groups. Special actions form the most accessible class for such a generalization. Our work in this line may be regarded as a first step towards this aim. It must be noted that Timashev [Tim97] already gave a combinatorial description for G-actions of complexity one in the framework of Luna-Vust theory.

Finally, our method allows to reprove, in Section 4, Popov’s classification of generically transitive SL$_2$-actions on normal affine threefolds. The only fact that we use is the existence of a one dimensional torus R commuting with SL$_2$. Together with the maximal torus in SL$_2$, this allows us to consider a quasi-homogeneous threefold as a \mathbb{T}^2-variety of complexity one, where \mathbb{T}^2 is a two dimensional torus. We also obtain, as a direct consequence of our results, the characterization of toric quasi-homogeneous SL$_2$-threefolds given in [Gal08] and [BH08] (see Corollaries 4.9 and 4.13). Recall that a G-variety is quasi-homogeneous if it has an open G-orbit.

In the entire paper the term variety means a normal integral scheme of finite type over an algebraically closed field k of characteristic zero. The term point always refer to a closed point.

The authors are grateful to Mikhail Zaidenberg for useful discussions and the referee for valuable suggestions. This work was done during stays of both authors at the Institut Fourier, Grenoble. We thank the Institut Fourier for its support and hospitality.
1. Preliminaries

In this section we recall the results about \mathbb{G}_a-actions on affine \mathbb{T}-varieties needed in this paper.

1.1. Combinatorial description of \mathbb{T}-varieties. Let M be a lattice of rank n and $N = \text{Hom}(M, \mathbb{Z})$ be its dual lattice. We let $M_\mathbb{Q} = M \otimes \mathbb{Q}$, $N_\mathbb{Q} = N \otimes \mathbb{Q}$, and we consider the natural duality pairing $M_\mathbb{Q} \times N_\mathbb{Q} \rightarrow \mathbb{Q}$, $(m, p) \mapsto \langle m, p \rangle = p(m)$.

Let $\mathbb{T} = \text{Spec} \mathbb{k}[M]$ be the n-dimensional algebraic torus associated to M and let $X = \text{Spec} A$ be an affine \mathbb{T}-variety. The comorphism $A \rightarrow A \otimes \mathbb{k}[M]$ induces an M-grading on A and, conversely, every M-grading on A arises in this way. The \mathbb{T}-action on X is effective if and only if the corresponding M-grading is effective.

In [AH06], a combinatorial description of normal affine \mathbb{T}-varieties is given. In what follows we recall the main features of this description. Let σ be a pointed polyhedral cone in $N_\mathbb{Q}$. We define $\text{Pol}_\sigma(N_\mathbb{Q})$ to be the set of all σ-polyhedra, i.e., the set of all polyhedra in $N_\mathbb{Q}$ that can be decomposed as the Minkowski sum of a bounded polyhedron and the cone σ.

Recall that σ^\vee stands for the cone in $M_\mathbb{Q}$ dual to σ. To a σ-polyhedron $\Delta \in \text{Pol}_\sigma(N_\mathbb{Q})$ we associate its support function $h_\Delta : \sigma^\vee \rightarrow \mathbb{Q}$ defined by

$$h_\Delta(m) = \min_{\nu \in \Delta} \langle m, \nu \rangle = \min_{\nu \in \Delta} \langle m, \nu \rangle.$$

Furthermore, if we let $\{v_i\}$ be the set of all vertices of Δ, then the support function is given by

$$h_\Delta(m) = \min_{i} \{ v_i(m) \} \quad \text{for all } m \in \sigma^\vee. \quad (1)$$

Hence, h_Δ is piecewise linear, concave, and positively homogeneous.

Definition 1.1. A normal variety Y is called semiprojective if it is projective over an affine variety. A σ-polyhedral divisor on Y is a formal sum $D = \sum Z \Delta_Z \cdot Z$, where Z runs over all prime divisors on Y, $\Delta_Z \in \text{Pol}_\sigma(N_\mathbb{Q})$, and $\Delta_Z = \sigma$ for all but finitely many Z. For $m \in \sigma^\vee$ we
can evaluate \mathcal{D} in m by letting $\mathcal{D}(m)$ be the \mathbb{Q}-divisor

$$\mathcal{D}(m) = \sum_{Z \in \mathcal{V}} h_Z(m) \cdot Z,$$

where h_Z is the support function of Δ_Z. A σ-polyhedral divisor \mathcal{D} is called proper if the following hold:

(i) $\mathcal{D}(m)$ is semiample and \mathbb{Q}-Cartier for all $m \in \sigma^\vee$, and

(ii) $\mathcal{D}(m)$ is big for all $m \in \text{rel} \text{int}(\sigma^\vee)$.

Here rel. int(σ^\vee) denotes the relative interior of the cone σ^\vee. Furthermore, a \mathbb{Q}-Cartier divisor D on Y is called semiample if there exists $r > 0$ such that the linear system $|rD|$ is base point free, and big if there exists a divisor $D_0 \in |rD|$, for some $r > 0$, such that the complement $Y \setminus \text{Supp} D_0$ is affine.

The following theorem gives a combinatorial description of \mathbb{T}-varieties analogous to the classical combinatorial description of toric varieties. In the sequel, χ^m denotes the character of \mathbb{T} corresponding to the lattice vector m, and σ^\vee_M denotes the semigroup $\sigma^\vee \cap M$. Furthermore, for a \mathbb{Q}-divisor D on Y, $\mathcal{O}_Y(D)$ stands for the sheaf $\mathcal{O}_Y([D])$.

Theorem 1.2 ([AH06]). To any proper σ-polyhedral divisor \mathcal{D} on a semiprojective variety Y one can associate a normal affine \mathbb{T}-variety of dimension $\text{rank } M + \dim Y$ given by $X[Y, \mathcal{D}] = \text{Spec } A[Y, \mathcal{D}]$, where

$$A[Y, \mathcal{D}] = \bigoplus_{m \in \sigma^\vee_M} A_m \chi^m, \quad \text{and} \quad A_m = H^0(Y, \mathcal{O}_Y(\mathcal{D}(m))) \subseteq k(Y).$$

Conversely, any normal affine \mathbb{T}-variety is isomorphic to $X[Y, \mathcal{D}]$ for some semiprojective variety Y and some proper σ-polyhedral divisor \mathcal{D} on Y.

We call Y the base variety and the pair (Y, \mathcal{D}) the combinatorial description of X. We also define the support of a proper σ-polyhedral divisor as $\text{Supp} \mathcal{D} = \{ Z \subseteq Y | \Delta_Z \neq \sigma \}$.

This combinatorial description is not unique, but can be made unique by adding some minimality conditions on the pair (Y, \mathcal{D}), see [AH06] Section 8. Here we only need a particular case of [AH06] Corollary 8.12.

Corollary 1.3. Let \mathcal{D} and \mathcal{D}' be two proper σ-polyhedral divisors on a normal semiprojective variety Y. If for every prime divisor Z in Y there exists a vector $v_Z \in N$ such that

$$\mathcal{D} = \mathcal{D}' + \sum_{Z} (v_Z + \sigma) \cdot Z, \quad \text{and} \quad \sum_{Z} \langle m, v_Z \rangle \cdot Z \text{ is principal, } \forall m \in \sigma^\vee_M,$$

then $X[Y, \mathcal{D}]$ is equivariantly isomorphic to $X[Y, \mathcal{D}']$.

Most of this paper deals with the case where the base is a curve C isomorphic to \mathbb{A}^1 or \mathbb{P}^1. Any σ-polyhedral divisor on \mathbb{A}^1 is proper. If $\mathcal{D} = \sum_{Z \in C} \Delta_z \cdot z$ is a σ-polyhedral divisor on $C = \mathbb{P}^1$, then \mathcal{D} is proper if and only if $\deg \mathcal{D} := \sum_{Z \in C} \Delta_z \subseteq \sigma$. We also need the following result from [AH06] Section 11.

Corollary 1.4. Let \mathcal{D} be a proper σ-polyhedral divisor on a smooth curve C. Then $X[C, \mathcal{D}]$ is toric if and only if \mathcal{D} can be chosen (via Corollary 1.3) supported in at most one point, or $C = \mathbb{P}^1$ and \mathcal{D} can be chosen (via Corollary 1.3) supported in at most two points.

1.2 Locally nilpotent derivations and \mathbb{G}_a-actions. Let $X = \text{Spec } A$ be an affine variety. A derivation ∂ on A is called locally nilpotent (LND for short) if for every $a \in A$ there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\partial^n(a) = 0$. We denote by \mathbb{G}_a the additive group of the base field k. Given an LND ∂ on A, the map $\phi_\partial : \mathbb{G}_a \times A \to A, \phi_\partial(t, f) = \exp(t\partial)(f)$ defines a \mathbb{G}_a-action on X, and any \mathbb{G}_a-action on X arises in this way [Fre06].

Let now \mathcal{D} be a proper σ-polyhedral divisor on a semiprojective variety Y, and let $A = A[Y, \mathcal{D}]$ be the corresponding M-graded domain. A \mathbb{G}_a-action on $X = \text{Spec } A$ is said compatible with
the \mathbb{T}-action on X if the image of \mathbb{G}_a in $\text{Aut}(X)$ is normalized by the torus \mathbb{T}. A \mathbb{G}_a-action is compatible if and only if the corresponding LND ∂ on A is homogeneous i.e., if ∂ sends homogeneous elements to homogeneous elements. Any homogeneous LND ∂ has a well defined degree given as $\deg \partial = \deg \partial(f) - \deg f$ for any homogeneous $f \in A \setminus \ker \partial$.

A homogeneous LND ∂ on A extends to a derivation on $\text{Frac} A = k(Y)(M)$ by the Leibniz rule, where $k(Y)(M)$ is the field of fractions of $k(Y)[M]$. The LND ∂ is said to be of fiber type if $\partial(k(Y)) = 0$ and of horizontal type otherwise. Geometrically speaking, ∂ is of fiber type if and only if the general orbits of the corresponding \mathbb{G}_a-action on $X = \text{Spec} A$ are contained in the orbit closures of the \mathbb{T}-action given by the M-grading.

1.3. Locally nilpotent derivations on affine toric varieties. In this section we recall the classification of homogeneous LNDs on toric varieties given in [Lie10a]. A similar description is implicit in [Dem70, Section 4.5]. As usual, for a cone σ, we denote by $\sigma(1)$ the set of all rays of σ and we identify a ray with its primitive vector.

Definition 1.5. Let σ be a pointed cone in $N_\mathbb{Q}$. We say that $e \in M$ is a root of the cone σ if the following hold:

(i) there exists $\rho_e \in \sigma(1)$ such that $\langle e, \rho_e \rangle = -1$;

(ii) $\langle e, \rho \rangle \geq 0$, for all $\rho \in \sigma(1) \setminus \{\rho_e\}$.

The ray ρ_e is called the distinguished ray of the root e. We denote by $R(\sigma)$ the set of all roots of σ.

One easily checks that any ray $\rho \in \sigma(1)$ is the distinguished ray for infinitely many roots $e \in R(\sigma)$. For every root $e \in R(\sigma)$ we define a homogeneous derivation ∂_e of degree e of the algebra $k[\sigma_M^\vee]$ by the formula

$$
\partial_e(\chi^m) = \langle m, \rho_e \rangle \cdot \chi^{m+e}, \quad \text{for all } m \in \sigma^\vee_M.
$$

The following theorem gives a classification of the homogeneous LNDs on $k[\sigma^\vee_M]$.

Theorem 1.6. For every root $e \in R(\sigma)$, the homogeneous derivation ∂_e on $k[\sigma^\vee_M]$ is an LND of degree e with kernel $\ker \partial_e = k[\tau_e \cap M]$, where τ_e is the facet of σ^\vee dual to the distinguished ray ρ_e. Conversely, if $\partial \neq 0$ is a homogeneous LND on $k[\sigma^\vee_M]$, then $\partial = \lambda \partial_e$ for some root $e \in R(\sigma)$, and some $\lambda \in k^\star$.

1.4. Locally nilpotent derivations on affine \mathbb{T}-varieties. We give first a classification of homogeneous LNDs of fiber type on \mathbb{T}-varieties of arbitrary complexity given in [Lie10b].

Letting $D = \sum Z \Delta_Z \cdot Z$ be a proper σ-polyhedral divisor on a semiprojective variety Y, we let $A = A[Y, D]$. For every prime divisor $Z \subseteq Y$, we let $\{v_{i,Z} \mid i = 1, \cdots, r_Z\}$ be the set of all vertices of Δ_Z. Letting e be a root of the cone σ, we define the divisor

$$
\mathfrak{D}(e) = \sum_i \min_{Z} \{v_{i,Z}(e)\} \cdot Z, \quad \text{and} \quad \Phi_e^* = H^0(Y, \mathcal{O}_Y(\mathfrak{D}(e))) \setminus \{0\}.
$$

Remark that the evaluation divisor $\mathfrak{D}(m)$ is only defined for $m \in \sigma^\vee$ and $e \notin \sigma^\vee$. The reason for the above notation is that taking \mathfrak{D} as the definition of support function, we obtain the above formula for the evaluation divisor, which can be evaluated at any $m \in M_\mathbb{Q}$.

For every $\varphi \in \Phi_e^*$ we let

$$
\partial_{e,\varphi}(f \chi^m) = \langle m, \rho_e \rangle \cdot \varphi \cdot f \chi^{m+e}, \quad \text{for all } m \in \sigma^\vee_M, \quad \text{and} \quad f \in k(Y).
$$

The following theorem gives a classification of the homogeneous LNDs of fiber type on $A[Y, D]$.

Theorem 1.7. For every root $e \in R(\sigma)$ and $\varphi \in \Phi_e^*$, the derivation $\partial_{e,\varphi}$ is a homogeneous LND of fiber type on $A = A[Y, D]$ of degree e with kernel

$$
\ker \partial_{e,\varphi} = \bigoplus_{m \in \tau_e \cap M} A_m \chi^m,
$$
where \(\tau_\epsilon \subseteq \sigma^\vee \) is the facet dual to the distinguished ray \(\rho_\epsilon \). Conversely, if \(\partial \neq 0 \) is a homogeneous LND of fiber type on \(A \), then \(\partial = \partial_{e, \varphi} \) for some root \(e \in R(\sigma) \) and some \(\varphi \in \Phi^+_e \).

The classification of LNDs of horizontal type is more involved and is only available in the case of complexity one. Here, we give an improved presentation of the classification given in [Lie01a, Theorem 3.28].

Since the complexity is one the base variety \(Y \) is a smooth curve \(C \). Let \(\mathcal{D} = \sum_{z \in C} \Delta_z \cdot z \) be a proper \(\sigma \)-polyhedral divisor on \(C \), and let \(X = X[C, \mathcal{D}] \). If \(A = A[C, \mathcal{D}] \) admits a homogeneous LND of horizontal type, then \(C \) is isomorphic either to \(\mathbb{A}^1 \) or to \(\mathbb{P}^1 \). In the following we assume that \(C = \mathbb{A}^1 \) or \(C = \mathbb{P}^1 \).

Definition 1.8. A colored \(\sigma \)-polyhedral divisor on \(C \) is a collection \(\mathcal{D} = \{ \mathcal{D}; v_z, \forall z \in C \} \) if \(C = \mathbb{A}^1 \) and \(\mathcal{D} = \{ \mathcal{D}, z_\infty; v_z, \forall z \in C \setminus z_\infty \} \) if \(C = \mathbb{P}^1 \), satisfying the following conditions:

1. \(\mathcal{D} = \sum_{z \in C} \Delta_z \cdot z \) is a proper \(\sigma \)-polyhedral divisor on \(C \), \(z_\infty \in C \), and \(v_z \) is a vertex of \(\Delta_z \).
2. \(v_{\text{deg}} := \sum_{z \in C'} v_z \) is a vertex of \(\text{deg} \mathcal{D}|_{C'} \), and
3. \(v_z \in N \) with at most one exception.

We also let \(z_0 \in C' \) be such that \(v_z \in N \) for all \(z \in C' \setminus \{ z_0 \} \). We say that \(\mathcal{D} \) is a coloring of \(\mathcal{D} \) and we call \(z_0 \) the marked point, \(z_\infty \) the point at infinity if \(C = \mathbb{P}^1 \), and \(v_z \) the colored vertex of the polyhedron \(\Delta_z \).

Remark that the above notion of coloring is independent from the notion of coloring in the theory of spherical varieties.

Let \(\mathcal{D} \) be a colored \(\sigma \)-polyhedral divisor on \(C \). Letting \(\omega \subseteq N_\mathbb{Q} \) be the cone generated by \(\text{deg} \mathcal{D}|_{C'} - v_{\text{deg}} \), let \(\hat{\omega} \subseteq (N \oplus \mathbb{Z})_\mathbb{Q} \) be the cone generated by \((\omega, 0) \) and \((v_{z_0}, 1) \) if \(C = \mathbb{A}^1 \), and by \((\omega, 0), (v_{z_0}, 1) \) and \((\Delta_{z_\infty} + v_{\text{deg}} - v_{z_0} + \omega, -1) \) if \(C = \mathbb{P}^1 \). Denote by \(d \) the minimal positive integer such that \(d \cdot v_{z_0} \in N \). We call \(\hat{\omega} \) the associated cone of the colored \(\sigma \)-polyhedral divisor \(\mathcal{D} \).

Definition 1.9. A pair \((\mathcal{D}, e) \), where \(\mathcal{D} \) is a colored \(\sigma \)-polyhedral divisor on \(C \) and \(e \in M \), is said to be coherent if:

1. There exists \(s \in Z \) such that \(\tilde{e} = (e, s) \in M \oplus \mathbb{Z} \) is a root of the associated cone \(\hat{\omega} \) with distinguished ray \(\tilde{\rho} = (d \cdot v_{z_0}, d) \). In this case \(s = -1/d - v_{z_0}(e) \).
2. \(v(e) \geq 1 + v_z(e) \), for every \(z \in C' \setminus \{ z_0 \} \) and every vertex \(v \neq v_z \) of the polyhedron \(\Delta_z \).
3. \(d \cdot v(e) \geq 1 + d \cdot v_{z_0}(e) \), for every vertex \(v \neq v_{z_0} \) of the polyhedron \(\Delta_{z_\infty} \).
4. If \(Y = \mathbb{P}^1 \), then \(d \cdot v(e) \geq -1 - d \cdot v_{\text{deg}}(e) \), for every vertex \(v \) of the polyhedron \(\Delta_{z_\infty} \).

Let now \(L = \{ m \in M \mid v_{z_0}(m) \in Z \} \) and \(\varphi^m \in k(C) \) be a rational function with \(\text{div}(\varphi^m)|_{C'} + \mathcal{D}(m)|_{C'} = 0 \), and \(\varphi^m \cdot \varphi^{m'} = \varphi^{m+m'} \) for all \(m, m' \in \omega_L^\vee \).

The choice of \(\varphi^m \) as above is possible since \(\mathcal{D}(m) \) is linear for \(m \in \omega_L^\vee \).

The following theorem gives a classification of homogeneous LNDs of horizontal type on \(A[C, \mathcal{D}] \). It corresponds to [Lie01a, Theorem 3.28].

Theorem 1.10. Let \(X = X[C, \mathcal{D}] \) be a normal affine \(\mathbb{T} \)-variety of complexity one. Then the homogeneous LNDs of horizontal type on \(k[X] = A[C, \mathcal{D}] \) are in bijection with the coherent pairs \((\mathcal{D}, e) \), where \(\mathcal{D} \) is a coloring of \(\mathcal{D} \) and \(e \in M \). Furthermore, the homogeneous LND \(\partial \) corresponding to \((\mathcal{D}, e) \) has degree \(e \) and kernel \(\ker \partial = \bigoplus_{m \in \omega_L^\vee} k \varphi^m \).

Let us give an explicit formula for the homogeneous LND \(\partial \) associated to the coherent pair \((\mathcal{D}, e) \). Without loss of generality we may assume \(z_0 = 0 \) and \(z_\infty = \infty \) if \(C = \mathbb{P}^1 \). By Corollary 1.8
we may assume \(v_\tau = 0 \in N \) for all \(\tau \in C' \setminus \{z_0\} \). Letting \(k[C'] = k[t] \), the homogeneous LND of horizontal type \(\partial \) corresponding to the coherent pair \((\mathcal{D}, e)\) is given by
\[
\partial(\chi^m \cdot t^r) = d(v_0(m) + r) \cdot \chi^{m+\epsilon} \cdot t^{r+s}, \quad \text{for all} \quad (m, r) \in M \oplus \mathbb{Z}.
\] (2)
Furthermore, if we let \(\tilde{m} = (m, r) \in M \oplus \mathbb{Z} \) and \(\chi^{\tilde{m}} = \chi^m \cdot t^r \), then (2) can be written as in the toric case
\[
\partial(\chi^{\tilde{m}}) = (\tilde{m}, \rho) \cdot \chi^{\tilde{m}+\tilde{\epsilon}}, \quad \text{for all} \quad \tilde{m} \in M \oplus \mathbb{Z}.
\] (3)

We also need the following two technical lemmas. They follow from Theorem [1.10]

Lemma 1.11 (cf. [Lie10a Lemma 4.5]). Let \(X = X[C, \mathcal{D}] \) and let \(\partial_1 \) and \(\partial_2 \) be two homogeneous LNDs of horizontal type on \(k[X] \). Assume that \(z_{\infty}(\partial_1) = z_{\infty}(\partial_2) \). Then ker \(\partial_1 \cap \ker \partial_2 \supseteq k \) if and only if \(\omega(\partial_1) \cap \omega(\partial_2) \supseteq \{0\} \). Furthermore, if rank \(M = 2 \) this is the case if and only if the vertices \(v_{\deg}(\partial_1) \) and \(v_{\deg}(\partial_1) \) are adjacent vertices in the polyhedron \(\deg \mathcal{D} \).

Lemma 1.12 (cf. [Lie10a Remark 3.27]). Let \(X = X[C, \mathcal{D}] \) and let \(\partial \) be a homogeneous LND of horizontal type on \(k[X] \) of degree \(e \). Then
1. If \(C = \mathbb{A}^1 \) then \(e \in \omega^v \subseteq \sigma^v \).
2. If \(C = \mathbb{P}^1 \) and for every ray \(\rho \in \sigma(1) \cap \omega(1) \) we have \(\rho \cap \deg \mathcal{D} = \emptyset \), then \(e \in \omega^v \subseteq \sigma^v \).

2. Compatible SL\(_2\)-actions on normal affine \(T \)-varieties

In this section we give a classification of compatible SL\(_2\)-actions on \(T \)-varieties in two cases: in the case where the \(T \)-action is of complexity one; and in arbitrary complexity provided that the general SL\(_2\)-orbits are contained in the \(T \)-orbit closures.

2.1. SL\(_2\)-actions on affine varieties. Let SL\(_2\) be the algebraic group of \(2 \times 2 \) matrices of determinant 1. Every algebraic subgroup of SL\(_2\) of positive dimension is conjugate to one of the following subgroups:
\[
T = \left\{ \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mid t \in k^\times \right\}, \quad U_{(s)} = \left\{ \begin{pmatrix} \epsilon & \lambda \\ 0 & \epsilon^{-1} \end{pmatrix} \mid \epsilon, \lambda \in k, \epsilon^s = 1 \right\},
\]
\[
N = T \cup \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot T \right\}, \quad \text{and} \quad B = T \cdot U_{(1)}.
\]
Here \(T \) is a maximal torus, \(N \) is the normalizer of a maximal torus, \(B \) is a Borel subgroup, and \(U_{(s)} \) is a cyclic extension of a maximal unipotent subgroup. We also define the following maximal unipotent subgroups:
\[
U_+ = U_{(1)}, \quad \text{and} \quad U_- = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right) \cdot U_{(1)} \cdot \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right).
\]
As a group SL\(_2\) is generated by the unipotent subgroups \(U_+ \) and \(U_- \) isomorphic to \(G_a \).

Let now \(X = \text{Spec} A \) be an affine variety endowed with an SL\(_2\)-action. The two \(U_\pm \)-actions on \(X \) are equivalent to two LNDs \(\partial_\pm \) on the algebra \(A \), and the \(T \)-action on \(X \) is equivalent to a \(Z \)-grading on \(A \). Furthermore, this \(Z \)-grading on \(A \) is also uniquely determined by its infinitesimal generator i.e., by the semisimple derivation \(\delta \) given by \(\delta(a) = \deg(a) \cdot a \) for every homogeneous \(a \in A \).

The following well known proposition gives a criterion for the existence of an SL\(_2\)-action on an affine variety. In the lack of a reference we provide a short proof, cf. [FZ03, 4.15].

Proposition 2.1. A non-trivial SL\(_2\)-action on an affine variety \(X = \text{Spec} A \) is equivalent to a (not necessarily effective) \(Z \)-grading on \(A \) with infinitesimal generator \(\delta \) and a couple of homogeneous LNDs \((\partial_+, \partial_-)\) of degrees \(\deg_Z \partial_\pm = \pm 2 \), satisfying \([\partial_+, \partial_-] = \delta \).

Furthermore, the \(Z \)-grading is effective if and only if SL\(_2\) acts effectively on \(X \). If the \(Z \)-grading is not effective, then the kernel of SL\(_2\) \(\to \text{Aut}(X) \) is \(\{\pm \text{Id}\} \) and so PSL\(_2\) acts effectively on \(X \).

Proof. Assume first that SL\(_2\) acts non-trivially on \(X \). Let \(\{h, e_+, e_-\} \) be the \(\mathfrak{sl}_2 \)-triple in the Lie algebra \(\mathfrak{sl}_2 \). Since \(e_\pm \) is tangent to the 1-parameter unipotent subgroup \(U_\pm \) in SL\(_2\), it acts on
A as an LND ∂_\pm. The vector h is tangent to the torus T, thus h acts on A as the infinitesimal generator δ of a \mathbb{Z}-grading. Since $[h, e_\pm] = \pm 2e_\pm$, the LND ∂_\pm is homogeneous of degree ± 2, and the relation $[e_+, e_-] = h$ implies $[\partial_+, \partial_-] = \delta$.

Conversely, assume that we have $\delta, \partial_+, \partial_-$ as in the proposition. Then $s = (\delta, \partial_+, \partial_-)$ is a Lie subalgebra in $\text{Der}(A)$ isomorphic to \mathfrak{sl}_2. Furthermore, every element of A is contained in a finite-dimensional s-submodule. Recall that any finite-dimensional \mathfrak{sl}_2-module has a canonical structure of SL_2-module whose tangent representation coincides with the given one. This gives A the structure of a rational SL_2-module. Since SL_2 is generated as a group by the subgroups U_\pm and the LNDs ∂_\pm define the action of U_\pm via automorphisms, the group SL_2 acts on A via automorphisms. This proves that A is a rational SL_2-algebra, or, equivalently, SL_2 acts regularly on X.

We restrict now to the case of affine T-varieties. The following definition determines the class of SL_2-actions that we study in the sequel.

Definition 2.2. An SL_2-action on a T-variety X is *compatible* if the image of SL_2 in $\text{Aut}(X)$ is normalized but not centralized by the torus T.

Assume now that X is a T-variety endowed with a compatible SL_2-action. Denote by $\widetilde{\text{SL}}_2$ the image of SL_2 in $\text{Aut}(X)$. There is a homomorphism $\psi : T \to \text{Aut}(\text{SL}_2)$. Since any automorphism from $\text{Aut}(\text{SL}_2)$ is inner, we have $\text{Aut}(\text{SL}_2) \simeq \text{PSL}_2$. Thus the image of T is either trivial or is a maximal torus $T \subseteq \text{PSL}_2$. In the first case T centralizes SL_2, so this case is excluded by the definition of a compatible SL_2-action. Hence T contains T and so $T = T \cdot S$, where $S = \ker \psi$ is a complementary subtorus that centralizes the SL_2-action. Let U_\pm be unipotent root subgroups in SL_2 with respect to the torus T. Then the SL_2-action on X is defined by the infinitesimal generator corresponding to a Z-grading on $k[X]$ defined by T (this is a downgrading of the M-grading) and two M-homogeneous LNDs ∂_\pm corresponding to the U_\pm-actions. This gives the following corollary.

Corollary 2.3. (i) Let X be a normal affine T-variety endowed with a compatible SL_2-action. In this case, in Proposition 2.1, we may assume that δ is the infinitesimal generator corresponding to a downgrading of M and that ∂_\pm are M-homogeneous LNDs. Furthermore, $T = T \cdot S$, where T is the maximal torus in SL_2 and S is a complementary subtorus that centralizes the SL_2-action.

(ii) Let X be a normal affine T-variety endowed with an SL_2-action that is centralized by T. Then we may extend T by T so that the SL_2-action is compatible with this bigger torus action.

The following is a generalization of a definition in [Lie10b].

Definition 2.4. We say that a compatible SL_2-action on a T-variety is of *fiber type* if the general orbits are contained in the T-orbit closures and of *horizontal type* otherwise.

Clearly, a compatible SL_2-action is of fiber type if and only if both derivations ∂_\pm are of fiber type. The following lemma shows that a compatible SL_2-action is of horizontal type if and only if both derivations ∂_\pm are of horizontal type.

Lemma 2.5. Consider a compatible SL_2-action on a T-variety X and assume that the LND ∂_+ is of fiber type. Then the SL_2-action is of fiber type.

Proof. Set $B = T \cdot U_+ \subseteq \text{SL}_2$. Then the B-action on X is of fiber type i.e., the general B-orbits are contained in the orbit closures of the T-action. We consider two cases.

Case 1: The general SL_2-orbits on X are 2-dimensional. Then for general $x \in X$ one has $B \cdot x = \text{SL}_2 \cdot x$, and the SL_2-action is of fiber type.

Case 2: The general SL_2-orbits on X are 3-dimensional. Consider a general point $x \in X$ and the stabilizer $T_2^x \subseteq T$ of the subvariety $B \cdot x$. Since any automorphism of the group B is inner
and the torus T normalizes B, we may find a 1-dimensional subtorus $S_x \subseteq T_x^2$ which commutes with the B-action on $B \cdot x$. But the image of the homomorphism $\psi : T \to \text{Aut}(SL_2) \cong PSL_2$ is a maximal torus, and so the subtorus S_x is in the kernel of ψ. Hence, S_x commutes with the SL_2-action. In particular, S_x preserves $B \cdot x$ and $SL_2 \cdot x$, and its action on $SL_2 \cdot x$ may be lifted to the action of a maximal torus $\tilde{S} \subseteq SL_2$ by right multiplication on SL_2 via a finite covering $\tilde{S} \to S_x$. But it is easy to check that the $(B \times \tilde{S})$-action on SL_2 has an open orbit, so S_x permutes the general B-orbits on $SL_2 \cdot x$. This provides a contradiction. \hfill \Box

2.2. SL_2-actions on toric varieties. In this section we give a complete classification of compatible SL_2-actions on affine toric varieties. Since a toric variety has an open T-orbit, every SL_2-action on a toric variety is of fiber type.

Definition 2.6. Let $\sigma \subseteq N^*_Q$ be a polyhedral cone. A root $e \in R(\sigma)$ is called an SL_2-root if also $-e \in R(\sigma)$.

If e is an SL_2-root, then $\langle e, \rho_e \rangle = -1$, $\langle e, \rho_{-e} \rangle = 1$, and $\langle e, \rho \rangle = 0 \forall \rho \in \sigma(1) \setminus \{\rho_{\pm e}\}$. Thus the number of SL_2-roots of a cone σ with r rays does not exceed $r(r-1)$, and this bound is attained for a regular cone of dimension r.

Theorem 2.7. The compatible SL_2-actions on an affine toric variety X_σ are in bijection with the SL_2-roots of σ. Furthermore, for every SL_2-root $e \in R(\sigma)$, the corresponding SL_2-action is effective if and only if the lattice vector $\rho_{-e} - \rho_e$ is primitive. If $\rho_{-e} - \rho_e$ is not primitive, then $\frac{1}{2}(\rho_{-e} - \rho_e)$ is primitive and PSL_2 acts effectively on X_σ.

Proof. Let $A = k[\sigma_M^\vee]$ and $e \in R(\sigma)$ be an SL_2-root. Letting $p = \rho_{-e} - \rho_e$, we define a Z-grading on A via

$$\deg_z \chi^m = \langle m, p \rangle \in Z, \quad \text{for all } m \in \sigma_M^\vee.$$

Hence, the infinitesimal generator of the corresponding G_m-action is given by

$$\delta(\chi^m) = \langle m, p \rangle \chi^m, \quad \text{for all } m \in \sigma_M^\vee.$$

A routine computation shows that δ, ∂_+ and ∂_- satisfy the conditions of Proposition 2.1. Furthermore, since $\langle e, p \rangle = 2$ then p is primitive or $\nu/2$ is primitive. This proves the “only if” part of the theorem.

To prove the converse, let $\delta, \partial_+, \partial_-$ be three homogeneous derivations satisfying the conditions of Proposition 2.1. Since ∂_\pm are LNDs, then $\partial_\pm = \lambda_\pm \partial_{\pm e}$ for some $\lambda_\pm \in k^*$ and some roots $e_\pm \in R(\sigma)$. Furthermore, since the derivation δ comes from a downgrading of the M-grading on A, there is a lattice element p such that

$$\delta(\chi^m) = \langle m, p \rangle \chi^m, \quad \text{for all } m \in \sigma_M^\vee.$$

Since the commutator $[\partial_+, \partial_-]$ is a homogeneous operator of degree $e_+ + e_-$, we have $e := e_+ = -e_-$. One checks that the commutator is given by

$$[\partial_+, \partial_-](\chi^m) = \lambda_+ \lambda_- \langle m, \rho_{-e} - \rho_e \rangle \chi^m, \quad \text{for all } m \in \sigma_M^\vee.$$

Hence $p = \rho_{-e} - \rho_e$, $\lambda_+ = \lambda_-^{-1}$, and the result follows. \hfill \Box

Remark 2.8. If e is an SL_2-root of σ, then $-e$ is also an SL_2-root. The corresponding SL_2-actions are conjugate.

Example 2.9. Let X_σ be an affine toric variety of dimension 2. Up to automorphism of the lattice N we may assume that $\sigma \subseteq N^*_Q$ is the cone spanned by the vectors $\rho_1 = (1,0)$ and $\rho_2 = (a,b)$, where $a \geq 0$, $a < b$, and $\gcd(a,b) = 1$. By Theorem 2.7, X_σ admits a compatible SL_2-action if and only if there exists $e \in M$ such that $\langle e, \rho_1 \rangle = 1$ and $\langle e, \rho_2 \rangle = -1$. The only solution is $e = (1,-1)$ and $b = a + 1$. Furthermore, the action is effective if and only if b is odd.

It is well known that the toric variety X_σ corresponds to the affine cone over the rational normal curve C of degree $a + 1$ (also known as Veronese cone). The curve C is the image of \mathbb{P}^1.
under the morphism
\[\psi: \mathbb{P}^1 \hookrightarrow \mathbb{P}^{a+1}, \quad [x:y] \mapsto [x^{a+1}: x^a y: x^{a-1} y^2: \ldots: y^{a+1}] . \]

The \(SL_2 \)-action on \(X_\rho \) is induced by the canonical \(SL_2 \)-action on the simple \(SL_2 \)-module \(V(a+1) \) of binary forms of degree \(a + 1 \).

Example 2.10. Let now \(X_\rho \) be an affine toric variety of dimension 3. Letting \(e \) be an \(SL_2 \)-root of \(\sigma \), we let \(\rho_e \) and \(\rho_{-e} \) be the corresponding distinguished rays and we consider a ray \(\rho \neq \rho_{\pm e} \).

Since \(\langle e, \rho \rangle = 0 \) it follows that there are at most 2 non-distinguished rays. Thus the cone \(\sigma \) has at most 4 rays.

Assume first that \(\sigma \) is simplicial and set \(e = (1, 0, 0) \). Then, up to automorphism of the lattice \(N \), the cone \(\sigma \) is spanned by the vectors \(\rho_1 = (1, 0, 0), \rho_2 = (0, 1, 0) \), and \(\rho_3 = (-b, a) \), where \(a > 0 \) and \(0 \leq b < a \).

Let now \(\sigma \) be a non simplicial cone and set again \(e = (1, 0, 0) \). Then, up to automorphism of the lattice \(N \), the cone \(\sigma \) is spanned by the vectors \(\rho_1 = (1, 0, 0), \rho_2 = (0, 1, 0), \rho_3 = (0, b, a) \), and \(\rho_4 = (-1, c, d) \), where \(a > 0, 0 \leq b < a, \gcd(a,b) = 1, d > 0 \), and \(ac > bd \).

Remark 2.11. In dimension 4 or greater, a cone admitting an \(SL_2 \)-root can have an arbitrary number of rays.

2.3. \(SL_2 \)-actions of fiber type on \(T \)-varieties.

In the following theorem we give a classification of \(SL_2 \)-actions of fiber type on normal affine \(T \)-varieties of arbitrary complexity.

Theorem 2.12. Let \(D \) be a proper \(\sigma \)-polyhedral divisor on a semiprojective variety \(Y \). Then the compatible \(SL_2 \)-actions of fiber type on the affine \(T \)-variety \(X = X[Y, D] \) are in bijection with the \(SL_2 \)-roots \(e \) of \(\sigma \) such that the divisor \(D(e) \) is principal and \(D(\rho_{-e}) + D(e) = 0 \).

Furthermore, the corresponding \(SL_2 \)-action is effective if and only if the lattice vector \(\rho_{-e} - \rho_e \) is primitive. If \(\rho_{-e} - \rho_e \) is not primitive, then \(\frac{1}{2} (\rho_{-e} - \rho_e) \) is primitive and \(PSL_2 \) acts effectively on \(X \).

Proof. Letting \(A = A[Y, D] = k[X] \), we let \(e \) be an \(SL_2 \)-root of \(\sigma \) satisfying the conditions of the theorem. As in the toric case, we let \(\rho_{\pm e} \in \sigma(1) \) be the distinguished roots of the rays \(\pm e \), respectively. Letting \(p = \rho_{-e} - \rho_e \), we define a \(\mathbb{Z} \)-grading on \(A \) via

\[\deg(A_m \cdot \chi^m) = \langle m, p \rangle \in \mathbb{Z}, \quad \text{for all } m \in \sigma_M^\vee. \]

So the infinitesimal generator of the corresponding \(G_m \)-action is given by

\[\delta(f \chi^m) = (m, p) \cdot f \chi^m, \quad \text{for all } m \in \sigma_M^\vee \text{ and } f \in A_m. \]

Letting \(\varphi \) be any rational function on \(Y \) such that \(\div(\varphi) + D(\rho_{-e}) = 0 \), we let \(\partial_+ = \varphi \partial_e \) and \(\partial_- = \varphi^{-1} \partial_{-e} \). The derivations \(\partial_\pm \) are LNDs on \(A \) by Theorem [1.7].

Now a routine computation shows that \(\delta, \partial_+ \) and \(\partial_- \) satisfy the conditions of Proposition [2.4].

Furthermore, since \(\langle e, p \rangle = 2 \) then \(p \) is primitive or \(\nu/2 \) is primitive. This proves the “only if” part of the theorem.

To prove the converse, let \(\delta, \partial_+, \partial_- \) be three homogeneous derivations satisfying the conditions of Proposition [2.4]. Since \(\partial_\pm \) are LNDs of fiber type, then \(\partial_\pm = \partial_{\pm e} \varphi \) for some roots \(e_\pm \in \mathcal{R}(\sigma) \) and some \(\varphi \in \Phi_{e_\pm} \). Similar to the toric case, we can prove that \(e := e_+ = -e_- \).

The commutator \([\partial_+, \partial_-] \) is given by

\[[\partial_+, \partial_-](f \chi^m) = \varphi_+ \varphi_- \langle m, p \rangle \cdot f \chi^m, \quad \text{for all } m \in \sigma_M^\vee \text{ and } f \in A_m, \]

where \(p = \rho_{-e} - \rho_e \). Hence \(\varphi_+ = \varphi_-^{-1} \). Furthermore, since \(\varphi \in \Phi_{e_\pm} \), we have

\[\div(\varphi_+) + D(\rho_{-e}) \geq 0, \quad \text{and } \div(\varphi_-) + D(\rho_e) \geq 0, \quad \text{so that } D(e) + D(\rho_{-e}) \geq 0. \]

Moreover,

\[D(e) + D(\rho_{-e}) = \sum_Z \left(\min_i \{v_{i,Z}(e)\} - \max_i \{v_{i,Z}(e)\} \right) \cdot Z \leq 0. \]
Hence $\mathcal{D}(e) + \mathcal{D}(-e) = 0$. Finally, (4) yields $\text{div}(\varphi_+) + \mathcal{D}(e) = 0$ and so $\mathcal{D}(e)$ is principal. \qed

Remark 2.13.

(1) By the proof of Theorem 2.12, the condition $\mathcal{D}(e) + \mathcal{D}(-e) = 0$ is fulfilled if and only if $v_{i,Z}(e) = v_{j,Z}(e)$ for all prime divisors $Z \subseteq Y$ and all i,j.
(2) If rank $M = 2$ then the condition $\mathcal{D}(e) + \mathcal{D}(-e) = 0$ in Theorem 2.12 can only be fulfilled if Δ_Z has only one vertex for all prime divisors $Z \subseteq Y$ i.e., $\Delta_Z = v_Z + \sigma$. Indeed, the condition $v_{i,Z}(e) = v_{j,Z}(e)$ for all i,j implies that all the vertices are contained in the line $L = \{v \in N\mathbb{Q} \mid \langle e,v - v_{1,Z} \rangle = 0\}$. But $\pm e \notin \sigma'$ and so $L \cap \sigma$ is a half line inside the cone σ.

This implies that there can be only one vertex $v_Z := v_{1,Z}$.

Example 2.14. Let $N = \mathbb{Z}^3$, $C = \mathbb{A}^1$, and let σ be the positive octant in $N\mathbb{Q}$. We also let $\Delta = \text{Conv}(v_1, v_2) + \sigma$, where $v_1 = (1,1,-1)$ and $v_2 = (-1,-1,1)$ and $\mathcal{D} = \Delta \cdot [0]$. We consider the SL$_2$-root $\tilde{e} = (-1,1,0)$ of σ. Since $v_1(e) = v_2(e) = 0$ we have $\mathcal{D}(e) + \mathcal{D}(-e) = 0$ and so by Theorem 2.12 the SL$_2$-root e produces an SL$_2$-action on $X = X[C, \mathcal{D}]$.

The variety X is toric by Corollary 1.4. As a toric variety, X is given by the non-simplicial cone $\tilde{\sigma} \subseteq (N \oplus \mathbb{Z})\mathbb{Q}$ spanned by $(v_1,1), (v_2,1), (v_1,0), (v_2,0)$, and $(v_3,0)$, where $\{v_i\}$ is the standard base of N. The SL$_2$-action is compatible with the big torus and is given by the SL$_2$-root $\tilde{e} = (e,0)$ of $\tilde{\sigma}$.

2.4. SL$_2$-actions of horizontal type on \mathbb{T}-varieties. In this section we give the more involved classification of SL$_2$-actions of horizontal type in the case of \mathbb{T}-varieties of complexity one. Here, we use the notation of Section 1.4.

Letting \mathcal{D} be a proper σ-polyhedral divisor on the curve $C = \mathbb{A}^1$ or $C = \mathbb{P}^1$, we let $X = X[C, \mathcal{D}]$ and we assume that X admits a compatible SL$_2$-action of horizontal type. By Proposition 2.1, an SL$_2$-action on X is completely determined by two homogeneous LNDs ∂_{\pm} with $\deg \partial_{+} = -\deg \partial_{-} = e$. By Theorem 1.10 the LNDs of horizontal type are in bijection with coherent pairs. Let ∂_{\pm} be the LND given by the coherent pair $(\vec{D}_{\pm}, \pm e)$, respectively, where

$$\vec{D}_{\pm} = \begin{cases} \{D; v_z^\pm, \forall z \in C\} & \text{with marked point } z_0^\pm \\
\{\mathcal{D}, z_\pm; v_z^\pm, \forall z \in C \setminus z_\pm^\pm\} & \text{with marked point } z_0^\pm\end{cases} \quad \text{if } C = \mathbb{A}^1,\quad \text{if } C = \mathbb{P}^1. \quad (5)$$

Let $\mathbb{A}^1 = \text{Spec} \mathbb{k}[t]$. In the sequel, we will assume $z_0^+ = 0$, and $z_0^- = \infty$ if $C = \mathbb{P}^1$. We also let $q(t)$ be a coordinate around z_0^+ having point at infinity z_∞ if $C = \mathbb{P}^1$ i.e., q is a Möbius transformation

$$q(t) = \frac{at + b}{ct + d}, \quad \text{with } ad - bc = 1, \quad q(z_0^+) = 0 \quad \text{and } q(z_\infty^-) = \infty \quad \text{if } C = \mathbb{P}^1.$$

In the case where $C = \mathbb{A}^1$, we have $c = 0$ and so we may choose $a = d = 1$ and $b = -z_0^-$. By Corollary 1.3 we may and will assume $v_z^- = 0$, for all $z \in C \setminus \{z_0^-, z_\infty^-\}$. We also let d^\pm be the smallest positive integer such that $d^\pm \cdot v_z^\pm$ is contained in the lattice N, and $s^\pm = -\frac{1}{d^\pm} \mp v_z^\pm(e)$. In this setting (2) yields

$$\partial_-(\chi^m \cdot q^r) = d^-(v_z^- \cdot (m) + r) \cdot \chi^{m-r} \cdot q^{r+s^-}, \quad \text{for all } (m, r) \in M \oplus \mathbb{Z}. \quad (6)$$

To obtain a similar expression for ∂_+, we let

$$\mathcal{D}' = \begin{cases} \mathcal{D} - \sum_{z \neq z_0^+} (v_z^+ + \sigma) \cdot z & \text{if } C = \mathbb{A}^1, \\
\mathcal{D} - \sum_{z \neq z_0^+, z_\infty^+} (v_z^+ + \sigma) \cdot (z - z_\infty) & \text{if } C = \mathbb{P}^1.\end{cases}$$

$$\partial_+(\chi^m \cdot q^r) = d^+(v_z^+ \cdot (m) + r) \cdot \chi^{m-r} \cdot q^{r+s^+}, \quad \text{for all } (m, r) \in M \oplus \mathbb{Z}. \quad (6)$$

To obtain a similar expression for ∂_+, we let

$$\mathcal{D}' = \begin{cases} \mathcal{D} - \sum_{z \neq z_0^+} (v_z^+ + \sigma) \cdot z & \text{if } C = \mathbb{A}^1, \\
\mathcal{D} - \sum_{z \neq z_0^+, z_\infty^+} (v_z^+ + \sigma) \cdot (z - z_\infty) & \text{if } C = \mathbb{P}^1.\end{cases}$$
By Corollary \[13\] \(X[C, \mathcal{D}] \simeq X[C, \mathcal{D}']\) equivariantly and in the new \(\sigma\)-polyhedral divisor \(\mathcal{D}'\) the colored vertices \(v^+_z\) are zero for all \(z \neq 0\). Furthermore, letting

\[
A[C, \mathcal{D}] = \bigoplus_{m \in \sigma^\vee_M} A_m \chi^m, \quad \text{where} \quad A_m = H^0(C, \mathcal{O}(\mathcal{D}(m))), \quad \text{and}
\]

\[
A[C, \mathcal{D}'] = \bigoplus_{m \in \sigma^\vee_M} A'_m \xi^m, \quad \text{where} \quad A'_m = H^0(C, \mathcal{O}(\mathcal{D}'(m))),
\]

by Theorem \([L.2]\) the isomorphism \(A[C, \mathcal{D}] \rightarrow A[C, \mathcal{D}']\) is given by \(\xi^m = \phi^m \chi^m\), where \(\nu^m \in \mathfrak{k}(t)\) is a rational function whose divisor is \(\mathcal{D}'(m) - \mathcal{D}(m)\) for all \(m \in \sigma^\vee_M\), and \(\nu^m \cdot \nu'^m = \nu^{m+m'}\). In this setting \([2]\) yields

\[
\partial_+ (\nu^m \chi^m \cdot t^r) = d^t (v_0^+(m) + r) \cdot \nu^{m+e} \chi^{m+e} \cdot t^{r+s^+}, \quad \text{for all} \quad (m, r) \in M \oplus \mathbb{Z}. \quad (7)
\]

Recall that the LNDs \(\partial_{\pm}\) on \(\mathbb{k}[X]\) correspond to the \(U_{\pm}\)-actions on \(X\) of a compatible \(\text{SL}_2\)-action on \(X\) and so by Corollary \([2.3\) (i), the commutator \(\delta = [\partial_+, \partial_-]\) is a downgrading of the \(M\)-grading on \(\mathbb{k}[X]\) i.e., there exist \(p \in N\) such that

\[
\delta(f \chi^m) = \langle m, p \rangle \cdot f \chi^m, \quad \text{for all} \quad m \in \sigma^\vee_M \quad \text{and} \quad f \in \mathbb{k}(t). \quad (8)
\]

To lighten the notation, we use the “prime notation” to denote the partial derivative with respect to \(t\) i.e., \(\frac{d}{dt}(f) = f'\).

Proposition 2.15. If \(X[C, \mathcal{D}]\) admits an \(\text{SL}_2\)-action of horizontal type, then the marked points and the infinity points (if \(C = \mathbb{P}^1\)) of \(\mathcal{D}_+\) and \(\mathcal{D}_-\) can be chosen to be equal i.e., in the notation above, without loss of generality, we may assume \(z_0^+ = z_0^- = 0\) and \(z_\infty^- = z_\infty^- = \infty\). Moreover, we have \(d^+ = d^- := d\).

Proof. By \([8]\) we have \(\delta(t) = 0\) and a routine computation (see the appendix) shows that

\[
\delta(t) = d^+ d^- \cdot \nu^e \cdot t^{s^+} \cdot q^{s^-} \cdot \left((1 - \frac{1}{d^+}) t - (1 - \frac{1}{d^-}) \frac{q}{q'} - \frac{q'' q t}{(q')^2} \right),
\]

and so

\[
\Gamma := \left((1 - \frac{1}{d^+}) t - (1 - \frac{1}{d^-}) \frac{q}{q'} - \frac{q'' q t}{(q')^2} \right) = 0.
\]

Recall that \(q(t) = \frac{a t^+ + b}{c t^- + d}\) with \(ad - bc = 1\). Letting \(\ell^\pm = 1 - 1/d^\pm\), a simple computation shows that

\[
\Gamma = ac(2 - \ell^+) t^2 + (\ell^- - \ell^+ (2bc + 1) + 2bc)t + \ell^+ bd = 0.
\]

Since \(\ell^\pm < 1\), we have \(ac = 0\). If \(a = 0\), then \(bc = -1\) and so \(\ell^+ + \ell^- = 2\). This provides a contradiction. Hence, \(c = 0\) so \(ad = 1\) and \(\ell^+ = \ell^-\). This last equality gives \(d^+ = d^-\). Furthermore, the equality \(c = 0\) yields \(z_\infty^- = z_\infty^+ = \infty\). Hence, we may assume \(q(t) = t - z_0^-\) and the commutator becomes

\[
\delta(t) = d^+ d^- \cdot \nu^e \cdot t^{s^+} \cdot (t - z_0^-)^{s^-} \cdot \left((1 - \frac{1}{d^+}) t - (1 - \frac{1}{d^-}) (t - z_0^-) \right).
\]

Assume for a moment that \(z_0^- \neq z_0^+ = 0\). Then \(\delta(t) = 0\) implies \(d^+ = d^- = 1\) i.e., the colored vertices \(v^+_0\) and \(v^-_0\) of the respective marked point belong to the lattice \(N\). In this case Definition \([1.8]\) shows that there are no marked points and we can choose \(z_0^+ = z_0^-\) to be any point different from the common point at infinity. \(\Box\)
By the previous proposition, in the sequel we assume \(z_0^+ = z_0^- = 0 \), \(z_∞^+ = z_∞^- = \infty \), and \(d^+ = d^- := d \) so that the LNDs \(\partial_+ \) and \(\partial_- \) are given by
\[
\partial_+ \left(\varphi^m \chi^m \cdot t^r \right) = d \cdot (v_0^+ (m) + r) \cdot \varphi^{m+e} \chi^{m+e} \cdot t^{r+s^+}, \quad \text{for all} \quad (m, r) \in M \oplus \mathbb{Z}.
\]
\[
\partial_- \left(\chi^m \cdot t^r \right) = d \cdot (v_0^- (m) + r) \cdot \chi^{m-e} \cdot t^{r+s^-}, \quad \text{for all} \quad (m, r) \in M \oplus \mathbb{Z}.
\]
\[
s^+ = -1/d - v_0^+(e), \quad s^- = -1/d + v_0^-(e) \quad \text{and} \quad \varphi^m = \prod_{z \neq 0, \infty} (t - z)^{-v_0^+(m)}, \forall m \in \sigma^v_M.
\]

Corollary 2.16. Let \(X = X[C, \mathcal{O}] \) be a \(\mathbb{T} \)-variety of complexity one endowed with a compatible \(\text{SL}_2 \)-action of horizontal type. If \(\Delta_z = \sigma \) for all \(z \neq z_0^+, z_∞^+ \), then \(X \) is toric and the \(\text{SL}_2 \)-action is compatible with the big torus.

Proof. The variety \(X \) is toric by Corollary [14]. Furthermore, the big torus action is induced by the \((M \oplus \mathbb{Z}) \)-grading of \(k[X] \) given by \(\text{deg}(\chi^m) = (m, 0) \) and \(\text{deg}(t) = (0, 1) \). Since \(\Delta_z = 0 \) for all \(z \in A^1 \setminus \{0\} \), we have \(\varphi^m = 1 \) for all \(m \in \sigma^v_M \). Hence, by [14] \(\partial_\pm \) are homogeneous with respect to the \((M \oplus \mathbb{Z}) \)-grading of \(k[X] \). This gives that the \(U_\pm \)-actions on \(X \) are compatible with the big torus action, and so does the \(\text{SL}_2 \)-action.

Since compatible \(\text{SL}_2 \)-actions on toric varieties are described in Theorem [2], in the sequel we restrict to the case where the \(\text{SL}_2 \)-action on \(X \) is not compatible with a bigger torus. In the next lemma we show that if \(X[C, \mathcal{O}] \) admits an \(\text{SL}_2 \)-action of horizontal type, then \(\mathcal{O} \) has a very special form.

For a subset \(S \subseteq N_\mathbb{Q} \) we denote the convex hull of \(S \) by \(\text{Conv}(S) \). For a vector \(e \in M_\mathbb{Q} \) we let \(e^+ = \{ p \in N_\mathbb{Q} \mid \langle e, p \rangle = 0 \} \) be the subspace of \(N_\mathbb{Q} \) orthogonal to \(e \).

Lemma 2.17. Let \(X = X[C, \mathcal{O}] \) be a normal affine \(\mathbb{T} \)-variety of complexity one endowed with a compatible \(\text{SL}_2 \)-action of horizontal type. Assume that the \(\text{SL}_2 \)-action is not compatible with a bigger torus and let \(e \in M \) be the degree of the homogeneous LND \(\partial_+ \) on \(k[X] \) corresponding to the \(U_+ \)-action on \(X \). Then \(C = A^1 \) or \(C = \mathbb{P}^1 \), \(\mathcal{O} = \sum_{z \in C} \Delta_z \cdot z \), and the \(\sigma \)-polyhedra \(\Delta_z \) can be chosen (via Corollary [14]) as one of the following cases:
\[
\Delta_0 = \text{Conv}(0, v^-_0) + \sigma, \quad \Delta_1 = \text{Conv}(0, v^+_1) + \sigma, \quad \Delta_z = \sigma \forall z \in A^1 \setminus \{0, 1\}, \quad \text{and} \quad \Delta_\infty = \Pi + \sigma,
\]
where \(v^-_0, v^+_0 \in N \), \(v^-_1, v^+_1 \notin \sigma \), \(v^-_0(e) = 1 \), \(v^+_1(e) = -1 \), and \(\Pi \subseteq e^+ \) is a bounded polyhedron; or
\[
\Delta_0 = v^-_0 + \sigma, \quad \Delta_1 = \text{Conv}(0, v^+_1) + \sigma, \quad \Delta_z = \sigma \forall z \in A^1 \setminus \{0, 1\}, \quad \text{and} \quad \Delta_\infty = \Pi + \sigma,
\]
where \(2v^-_0, v^+_1 \in N \), \(v^-_1 \notin \sigma \), \(2v^-_0(e) = 1 \), \(v^+_1(e) = -1 \), and \(\Pi \subseteq e^+ \) is a bounded polyhedron.

For the proof of this lemma we need the following notation:
\[
\alpha_m = \frac{d}{dt} (\ln(\varphi^m)), \quad v_0 = v^-_0 - v^+_1 \quad \text{and} \quad \nu = v_0(e) - 1/d.
\]
With this definition \(\alpha_{m^+ + m^-} = \alpha_m + \alpha_{m^+} \). More explicitly,
\[
\alpha_m = -t \sum_{z \neq 0, \infty} v^+_z (m) \frac{1}{t - z} = -v^+_m (m) - \sum_{z \neq 0, \infty} v^+_z (m) \frac{z}{t - z}, \quad \text{where}
\]
\[
v^+_z = \sum_{z \neq 0, \infty} v^+_z = v^+_1 - v^-_0, \quad \text{and} \quad \alpha'_m = \frac{d}{dt} (\alpha_m) = \sum_{z \neq 0, \infty} v^+_z (m) \frac{z}{(t - z)^2}.
\]

For a rational function \(R(t) = P(t)/Q(t) \), we define the degree \(\text{deg} R = \text{deg} P - \text{deg} Q \) so that \(\text{deg}(R_1 \cdot R_2) = \text{deg}(R_1) + \text{deg}(R_2) \). We also let the principal part of \(R \) be the result of the polynomial division between \(P \) and \(Q \). Then \(\text{deg}(R) = 0 \) if and only if the principal part of \(R \) is a non-zero constant.

Proof of Lemma 2.17 The appendix shows that the commutator \(\delta = [\partial_+, \partial_-] \) is given by
\[
\delta(\chi^m t^r) = d^2 \varphi^m t^{-1/d} \cdot (\nu v_0(m) + \alpha v^+_0(m) + \nu \alpha_m + t \alpha'_m + \alpha e \alpha_m) \cdot \chi^m t^r := \Gamma \cdot \chi^m t^r. \quad (10)
\]
Thus, by (3) the expression Γ has to be independent of t, linear in m, and $\Gamma \neq 0$.

Assume that $v^+_z \neq 0$ and $v^+_z(e) = 0$ for some $z \neq 0, \infty$. Then φ^e does not contain the factor $(t - z)$ and for any m such that $v^+_z(m) \neq 0$ the summand $v^+_z(m) \frac{\nu}{(t - z)^d}$ in Γ'_m cannot be eliminated since α_m and $t\alpha'_m$ are linearly independent. Hence $v^+_z(e) = 0$ implies $v^+_z = 0$. Moreover, we have $v^+_z(e) \in \{0, -1, -2\}$ since otherwise, the factor $(t - z)^{-v^+_z(e)}$ in φ^e cannot be canceled in Γ. Hence, φ^e is a polynomial.

A direct computation shows that the principal part of $\nu \varphi v_0(m) + \nu \alpha_m + t \alpha'_m + \alpha \alpha_m$ is given by

$$L := (v_0(e) - v^+(e) - 1/d) \cdot (v_0(m) - v^+(m)).$$

Assume that $L(e) = 0$. Since $\deg(\varphi^e t^{d - 1/d}) = \nu - 1/d - v^+(e) = v_0(e) - v^+(e) - 2/d$, we have $\deg(\varphi^e t^{d - 1/d}) < 0$ and so $\deg(\Gamma) < 0$. This is a contradiction since $\Gamma(e)$ has to be independent of t. In the following, we assume $L(e) \neq 0$. This yields $\deg(\varphi^e t^{d - 1/d}) = 0$.

We divide the proof in the following three cases:

Case I: $\nu v_0 \neq 0$, **Case II**: $\nu = 0$, and **Case III**: $v_0 = 0$.

Case I: Evaluating Γ in $t = 0$ we obtain $\Gamma = d^2 \varphi^e(0) \cdot 0^{d - 1/d} \cdot \nu v_0(m)$. Hence, we have $\nu - 1/d = 0$ and since $\deg(\varphi^e t^{d - 1/d}) = 0$, we have $\varphi^e = 1$. This yields $v^+_z(e) = 0$ for all $z \neq 0, \infty$ and so $v^+_z = 0$ for all $z \neq 0, \infty$.

Let $z \neq 0, \infty$ and assume that Δ_z has a vertex $v \neq 0$. Since $v^+_z = 0$ by Definition 1.3 (2) applied to Δ_z we obtain $v(e) \geq 1$ and $-v(e) \geq 1$ which provides a contradiction. This yields $\Delta_z = \sigma$. Thus, $X[C, D]$ is a toric variety and by Corollary 1.4 the SL_2-action is compatible with the big torus.

Case II: The condition $\nu = 0$ implies $d = 1$ since $\nu - 1/d$ appears as the exponent of t in Γ. This yields $v_0^+ \in N$ and so we can assume $v_0^+ = 0$ by Corollary 1.3. Now $\nu = v_0^+(e) - 1$ and so $v_0^+(e) = 1$. Furthermore, $\deg(\varphi^e t^{d - 1/d}) = 0$ implies $\deg(\varphi^e) = 1$ and so we can assume $v^+_z(e) = 0$ for all $z \neq 1$ and $v^+_1(e) = -1$. This yields $v^+_z = 0$ for all $z \neq 1$. Now, the commutator is given by

$$\delta(\chi^m e^r) = \frac{t - 1}{t} \cdot \left(v_0^+ - \frac{t}{t - 1} v^+_1 + \frac{t}{(t - 1)^2} - v^+_z(m) \frac{t^2}{(t - 1)^2} \right) \cdot \chi^m e^r.$$

Since

$$\frac{t}{t - 1} + \frac{t}{(t - 1)^2} - \frac{t^2}{(t - 1)^2} = 0,$$

we have

$$\delta(\chi^m e^r) = (m, v_0^+ - v^+_1) \cdot \chi^m e^r, \quad \text{for all} \quad (m, r) \in M \oplus \mathbb{Z}.$$

Let now $z \neq 0, 1, \infty$ and assume that Δ_z has a vertex $v \neq 0$. Since $v^+_z = 0$ by Definition 1.3 (2) applied to Δ_z we obtain $v(e) \geq 1$ and $-v(e) \geq 1$ which provides a contradiction. Thus $\Delta_z = \sigma$. A similar argument shows that the only vertices in Δ_0 and Δ_1 are $\{0, v_0^+\}$ and $\{0, v^+_1\}$, respectively. Now, if $C = \mathbb{P}^1$, let v be a vertex of Δ_∞. Definition 1.4 (4) shows that $v(e) \geq 0$ and $v(e) \geq 0$, so that $-v(e) = 0$. This corresponds to the first case in the lemma.

Case III: The condition $v_0 = 0$ implies $v_0^+ = v^+_1$ and $\nu = -1/d$. Hence $d = 1$ or $d = 2$ since $\nu - 1/d = -2/d$ appears as the exponent of t in Γ. If $d = 1$, then by Definition 1.3 we can change the marked points of Δ_{\pm} so that $v_0^+ \neq v_0^+$. Hence, this case reduces to Case I or Case II.

Assume now that $d = 2$ so that $v_0 = v_0^+ \in \frac{1}{2} N \setminus N$. The condition $\deg(\varphi^e t^{d - 1/d}) = 0$ implies $\deg(\varphi^e) = 1$ and so we can assume $v^+_z(e) = 0$ for all $z \neq 1$ and $v^+_1(e) = -1$. This yields $v^+_z = 0$ for all $z \neq 1$. The commutator is now given by

$$\delta(\chi^m e^r) = 2v^+_1(m) \frac{t - 1}{t} \cdot \left(\frac{t}{t - 1} + \frac{t}{(t - 1)^2} - \frac{t^2}{(t - 1)^2} \right) \cdot \chi^m e^r.$$
By (11) we have
\[\delta(x^mt^r) = \langle m, -2v_1^+ \rangle \cdot x^mt^r, \quad \text{for all} \quad (m, r) \in M \oplus \mathbb{Z}. \]

By the same argument as in Case II we obtain \(\Delta_\pm = \sigma \) for all \(z \neq 0, 1, \infty \) and the only vertices in \(\Delta_0 \) and \(\Delta_1 \) are \(\{v_0^-\} \) and \(\{0, v_1^+\} \), respectively. Finally, if \(C = \mathbb{P}^1 \), let \(v \) be a vertex of \(\Delta_\infty \).

By Corollary 1.14 we can assume that \(2v_0^- (e) = 1 \), and Definition 1.9 (4) shows that for every vertex \(v \) of \(\Delta_\infty \), we have \(v(e) = 0 \). This corresponds to the second case in the lemma. The proof is now completed. \(\square \)

To obtain a full classification of compatible \(\text{SL}_2 \)-actions of horizontal type on \(X \) we only need conditions for existence of the homogeneous LNDs \(\partial_{\pm} \) of horizontal type on \(k \)-varieties of complexity one. For the theorem, we need the following notation. Let \(D \) be as in Lemma 2.17. Then \(D \) admits two different colorings as in (4). We let \(\tilde{\omega}_{\pm} \) be the associated cone of \(D_{\pm} \) (see before Definition 1.9). Furthermore, for every \(e \in M \), we let \(\tilde{e}_{\pm} = (\pm e, -1/\mu \mp v_0^\pm (e)) \in M \oplus \mathbb{Z} \).

Theorem 2.18. Let \(X = X[C, D] \) be a normal affine \(T \)-variety of complexity one. Then \(X \) admits a compatible \(\text{SL}_2 \)-action of horizontal type that is not compatible with a bigger torus if and only if the following conditions hold.

(i) The base curve \(C \) is either \(\mathbb{A}^1 \) or \(\mathbb{P}^1 \).

(ii) There exists a lattice vector \(e \in M \) such that the \(\sigma \)-polyhedral divisor \(D \) may be shifted via Corollary 1.10 to one of the following two forms

\[\Delta_0 = \text{Conv}(0, v_0^-) + \sigma, \quad \Delta_1 = \text{Conv}(0, v_1^+) + \sigma, \quad \Delta_2 = \sigma \forall z \in \mathbb{A}^1 \setminus \{0, 1\}, \quad \text{and} \quad \Delta_\infty = \Pi + \sigma, \]

where \(v_0^-, v_1^+ \in N \), \(v_0^- \neq \sigma, v_0^- (e) = 1, v_1^+ (e) = -1 \), and \(\Pi \subseteq e^\perp \) is a bounded polyhedron; or

\[\Delta_0 = v_0^- + \sigma, \quad \Delta_1 = \text{Conv}(0, v_1^+) + \sigma, \quad \Delta_2 = \sigma \forall z \in \mathbb{A}^1 \setminus \{0, 1\}, \quad \text{and} \quad \Delta_\infty = \Pi + \sigma, \]

where \(2v_0^-, v_1^+ \notin \sigma, 2v_0^- (e) = 1, v_1^+ (e) = -1 \), and \(\Pi \subseteq e^\perp \) is a bounded polyhedron.

(iii) The lattice vectors \(\tilde{e}_{\pm} \in M \oplus \mathbb{Z} \) are roots of the cones \(\tilde{\omega}_{\pm} \), respectively.

Moreover, if \((C, \sigma, D) \) is in one of the two forms above, then the compatible \(\text{SL}_2 \)-action of horizontal type on \(X \) is given by the \(\text{SL}_2 \)-triple \(\{\delta, \partial_+, \partial_-\} \) of derivations, where \(\delta = [\partial_+, \partial_-] \), the homogeneous LNDs \(\partial_{\pm} \) are given by the coherent pairs \((\tilde{D}_{\pm}, \pm e) \), and \(\tilde{D}_{\pm} \) are the following colorings of \(D \)

\[
\begin{align*}
\tilde{D}_+ = & \{ D, \infty; v_1 = v_1^+, v_z = 0, \forall z \neq 1, \infty \}, \\
\tilde{D}_- = & \{ D, \infty; v_0 = v_0^-, v_z = 0, \forall z \neq 0, \infty \}, \\
\tilde{D}_+ = & \{ D, \infty; v_0 = v_0^-, v_1 = v_1^+, v_z = 0, \forall z \neq 0, 1, \infty \}, \\
\tilde{D}_- = & \{ D, \infty; v_0 = v_0^-, v_z = 0, \forall z \neq 0, \infty \}, \\
\end{align*}
\]

in the first case; or

in the second case.

Proof. By Lemma 2.17 if \(X \) admits a compatible \(\text{SL}_2 \)-action of horizontal type that is not compatible with a bigger torus, then (i) and (ii) hold. Moreover, by the proof of Lemma 2.17 such an \(X \) admits a compatible \(\text{SL}_2 \)-action of horizontal type if and only if the derivations \(\partial_{\pm} \) given by (3) and (4) define LNDs on \(k[X] \).

By Theorem 1.19 the derivations \(\partial_{\pm} \) define LNDs on \(k[X] \) if and only if there exists \(e \in M \) such that \((\tilde{D}_{\pm}, \pm e) \) are coherent pairs. Furthermore, \((\tilde{D}_{\pm}, \pm e) \) are coherent pairs if and only if \(\tilde{e}_{\pm} \) is a root of the cone \(\tilde{\omega}_{\pm} \) and Definition 1.9 (2)–(4) hold. It is a routine verification that Definition 1.9 (2)–(4) hold for \((\tilde{D}_{\pm}, \pm e) \), and so the theorem is proved. \(\square \)
3. Special SL_2-actions

In this section we give a classification of special SL_2-actions on normal affine varieties. This generalizes Theorem 1 in [Arz97]. Let us first state the necessary definitions and results for an arbitrary reductive group.

Let G be a connected reductive algebraic group, $T \subseteq B$ be a maximal torus and a Borel subgroup of G, and $\lambda_+(G)$ be the semigroup of dominant weights of G with respect to the pair (T, B). Any regular action of the group G on an affine variety X defines a structure of rational G-algebra on the algebra of regular functions $k[X]$. In particular, we have the isotypic decomposition

$$k[X] = \bigoplus_{\lambda \in \lambda_+(G)} k[X]_{\lambda},$$

where $k[X]_{\lambda}$ is the sum of all the simple G-submodules in $k[X]$ with the highest weight λ.

Definition 3.1. A G-action on X is called special (or horospherical), if there exists a dense open $W \subseteq X$ such that the isotropy group of any point $x \in W$ contains a maximal unipotent subgroup of the group G.

Remark 3.2. If a G-action is special, then the isotropy group G_x contains a maximal unipotent subgroup for all $x \in X$.

Theorem 3.3 (See [Pop86] Theorem 5)). A G-action on an affine variety X is special if and only if

$$k[X]_{\lambda} \cdot k[X]_{\mu} \subseteq k[X]_{\lambda + \mu}, \quad \text{for all} \quad \lambda, \mu \in \lambda_+(G).$$

Corollary 3.4. For a special action, the isotypic decomposition is a $\lambda_+(G)$-grading on the algebra $k[X]$. This defines an action of an algebraic torus S on X, and this action commutes with the G-action.

Furthermore, since S acts on every isotypic component by scalar multiplication, every G-invariant subspace in $k[X]$ is S-invariant. In particular, S preserves every G-invariant ideal in $k[X]$, and thus every G-invariant closed subvariety in X. This shows that the torus S preserves all G-orbit closures on X.

We return now to the case of SL_2-actions on T-varieties.

Proposition 3.5. Every compatible SL_2-action of fiber type on an affine T-variety X is special.

Proof. For a general $x \in X$, let $Y = \text{SL}_2 \cdot x$. Then $Y \subseteq T \cdot x$. Denote by T_Y the stabilizer of the subvariety Y in T. Since the torus T normalizes the SL_2-action, it permutes SL_2-orbit closures, and thus T_Y acts on Y with an open orbit.

Since T_Y also normalizes the SL_2-action, there exists a subtorus $S_Y \subseteq T_Y$ of codimension 1 that centralizes the SL_2-action on Y. In particular, it preserves the open orbit $\text{SL}_2 \cdot x \hookrightarrow Y$. But $\text{SL}_2 \cdot x \simeq \text{SL}_2 / H$, where H is the isotropy group of x in SL_2. We have $S_Y \subseteq \text{Aut}_{\text{SL}_2} (\text{SL}_2 / H)$ and thus

$$\text{rank} \, \text{Aut}_{\text{SL}_2} (\text{SL}_2 / H) \geq \dim (\text{SL}_2 / H) - 1.$$

But $\text{Aut}_{\text{SL}_2} (\text{SL}_2 / H) \simeq N_{\text{SL}_2} (H) / H$ and rank $N_{\text{SL}_2} (H) / H \leq 1$, so $\dim (\text{SL}_2 / H) \leq 2$. If H coincides either with a maximal torus or with its normalizer in SL_2, then the group $N_{\text{SL}_2} (H) / H$ is finite, a contradiction. So, H is a finite extension of a maximal unipotent subgroup of SL_2, and the SL_2-action is special.

Corollary 3.6. Every compatible SL_2-action on a toric variety is special.

In the following proposition we come to a partial converse of Proposition 3.5. Namely, we realize any special action of SL_2 as a compatible action of fiber type with respect to a canonical 2-dimensional torus action.

Proposition 3.7. Every special SL_2-variety admits the action of a 2-dimensional torus such that the SL_2-action is compatible with the torus action and of fiber type.
Proof. Let T^2 be the 2-dimensional torus $T \cdot S$, where T is a maximal torus in SL_2 and S is one constructed in Corollary 3.4. By construction, the actions of T and S on X commute, preserve every SL_2-orbit closure and T^2 has an open orbit on every such orbit closure.

In the following proposition we determine the special SL_2-actions among the compatible SL_2-actions on a complexity one affine T-variety.

Proposition 3.8. Let X be a normal affine T-variety of complexity one endowed with a compatible SL_2-action. Then the SL_2-action is special if and only if it is either of fiber type; or it is of horizontal type, X is toric, and the SL_2-action is compatible with the big torus. In particular, the T-varieties of complexity one that admit a non-special compatible SL_2-action are given in Theorem 2.18.

Proof. If the SL_2-action is of fiber type, then the proposition follows from Proposition 3.5.

Assume that the SL_2-action is of horizontal type and special. Since the SL_2-action is compatible, T is a product of a maximal torus T of SL_2 and a subtorus T' which commutes with the SL_2-action. In particular, T preserves all the SL_2-isotypic components in $k[X]$. On the other hand, the one-dimensional torus S constructed in Corollary 3.4 acts on any isotypic component by a scalar multiplication. Thus S commutes with T. We know that general closures of the canonical 2-torus $(T \cdot S)$-orbits coincide with closures of SL_2-orbits (see Proposition 3.7). Since the SL_2-action is compatible, T is contained in T and since the SL_2-action is of horizontal, the closures of SL_2-orbits are not contained in the closures of the T-orbits. Hence S is not contained in T, so we may extent T by S and get a big torus which acts on X with an open orbit. □

For the rest of this section we let T^2 be a 2-dimensional algebraic torus. In the following, we give a description of compatible SL_2-actions of fiber type on T^2-varieties. By Propositions 3.6 and 3.7 this gives a description of all special SL_2-actions on normal affine varieties.

The following example gives a construction of certain T^2-varieties admitting a compatible SL_2-action of fiber type.

Example 3.9. Let M be a lattice of rank 2, and σ be the cone spanned in N^reg by the vectors $(1, 0)$ and $(r - 1, r)$, for some $r \in \mathbb{Z}_{>0}$. By Example 2.3 the cone σ admits the SL_2-root $e = (1, -1)$.

We also fix a semiprojective variety Y and an ample \mathbb{Q}-Cartier divisor H on Y. Consider the σ-polyhedral divisor given by $\mathcal{D} = \Delta \cdot H$, where $\Delta = (1, 1) + \sigma$. The σ-polyhedral divisor \mathcal{D} is proper since for every $(m_1, m_2) \in \sigma \setminus \{0\}$ the evaluation divisor is given by $\mathcal{D}(m_1, m_2) = \langle m_1 + m_2 \rangle \cdot H$ and $m_1 + m_2 > 0$.

We have $\mathcal{D}(e) = \mathcal{D}(-e) = 0$ and so Theorem 2.12 yields that the T^2-variety $X = X[Y, \mathcal{D}]$ admits an SL_2-action of fiber type and the generic isotropy subgroup in SL_2 is $U(r)$.

Furthermore, if we let X' be the T^2-variety obtained with the above construction with the data Y and H replaced by Y' and H', then X is isomorphic to X' if and only if $Y \simeq Y'$ and under this isomorphism H is linearly equivalent to H'. Indeed, since H is ample [Dem88] Proposition 3.3 implies that Y is unique up to isomorphism. Finally, Corollary 1.3 shows that H and H' are linearly equivalent.

Proposition 3.10. Every T^2-variety X endowed with an SL_2-action of fiber type is isomorphic to one in Example 3.9 above.

Proof. Let $X = X[Y, \mathcal{D}]$ where $\mathcal{D} = \sum Z \Delta_Z \cdot Z$ is a proper σ-polyhedral divisor on a semiprojective variety Y. Since X is endowed with an SL_2-action of fiber type the cone σ admits an SL_2-root. By Example 2.9 we can assume that σ is the cone spanned in $N_\mathbb{Q}$ by the vectors $(1, 0)$ and $(r - 1, r)$. In this case $e = (1, -1)$.
By Remark 2.13 (2) the σ-polyhedra Δ_Z is $v_Z + \sigma$, where $v_Z \in \mathbb{Q}$. The divisor $\mathcal{D}(e)$ is principal by Theorem 2.12 and is given by
\[
\mathcal{D}(e) = \sum_Z \langle e, v_Z \rangle \cdot Z.
\]
Furthermore, by Corollary 1.3 we can assume that $\mathcal{D}(e) = 0$, so that for every Z
\[
v_Z = \alpha_Z(1,1) \enspace \text{for some} \enspace \alpha_Z \in \mathbb{Q}.
\]
Letting $H = \mathcal{D}((1,0)) = \sum_Z \alpha_Z \cdot Z$ we obtain that $\mathcal{D} = \Delta \cdot H$, where $\Delta = (1,1) + \sigma$. Recall that the divisor H is semiample and big but not necessarily ample. Nevertheless, by Proposition 3.3 the combinatorial data (Y, \mathcal{D}) may be chosen so that H is ample.

The following theorem is a direct consequence of Proposition 3.7 and Proposition 3.10.

Theorem 3.11. Every normal affine variety X of dimension $k + 2$ endowed with a special SL_2-action is uniquely determined by a positive integer r, a semiprojective variety Y of dimension k, and a linear equivalence class $[H]$ of ample \mathbb{Q}-Cartier divisors on Y.

Remark 3.12. The variety X can be recovered from the data in Theorem 3.11 as follows. Let σ be the cone spanned in $\mathbb{N}_Q \simeq \mathbb{Q}^2$ by the rays $(1,0)$ and $(r-1,r)$, $r > 0$, and let $B_\sigma = H_0(Y, \mathcal{O}_Y(sH))$. Then X is equivariantly isomorphic to $\text{Spec} \ A$, where A is the M-graded algebra
\[
A = \bigoplus_{m \in \sigma^+_Y} A_m \chi^m, \enspace \text{such that} \enspace A_m = B_{m_1+m_2}.
\]

The pair $(Y, [H])$ defines, via Demazure’s construction [Dem88], a \mathbb{T}^1-variety W of dimension $k + 1$. Then the variety W with the new non-effective \mathbb{T}^1-action given by $\mathbb{T}^1 \to \mathbb{T}^1, \ t \mapsto t^r$, is nothing but $\text{Spec} \ k[X]^+_+ \text{ endowed with the action of the maximal torus } T \subseteq \text{SL}_2$. The corresponding non-effective \mathbb{Z}-grading on $k[X]^+_+$ is given by
\[
k[X]^+_+ = \bigoplus_{i \in \mathbb{Z}_> 0} B_i t^i.
\]

From this classification we obtain the following corollary.

Corollary 3.13. Let X be an affine toric variety endowed with a special SL_2-action. If the canonical torus \mathbb{T}^2 of the special action is contained in the big torus, then the SL_2-action is normalized by the big torus.

Proof. By Proposition 3.7 and Proposition 3.10 we can assume that X regarded as \mathbb{T}^2-variety is given by the combinatorial data $X = X[Y, \mathcal{D}]$, where Y is a normal semiprojective variety Y and \mathcal{D} is the proper σ-polyhedral divisor given by
\[
\mathcal{D} = \sum_Z \Delta_Z \cdot Z,
\]
where σ is the cone spanned in $\mathbb{N}_Q \simeq \mathbb{Q}^2$ by the vectors $(1,0)$ and $(r-1,r)$, $\Delta_Z = \alpha_Z(1,1) + \sigma$, and $\sum_Z \alpha_Z \cdot Z$ is an ample \mathbb{Q}-Cartier divisor on Y. In this case, the SL_2-root of the cone σ is $e = (1,-1)$. Furthermore, the SL_2-action of fiber type corresponding to e is unique.

Since X is toric and \mathbb{T}^2 is a subtorus of the big torus, by [AH06, Section 11] we can assume that Y is the toric variety given by a fan $\Sigma \subseteq \hat{\mathbb{N}}_Q$ and that \mathcal{D} is supported in the toric divisors of Y. Denote by Z_ρ the toric divisor corresponding to a ray $\rho \in \Sigma(1)$. In this case, the X is the toric variety given by the cone $\tilde{\sigma}$ in $\mathbb{N}_Q \oplus \hat{\mathbb{N}}_Q$ spanned by
\[
(\sigma, 0) \enspace \text{and} \enspace (\Delta_Z, \rho) \quad \forall \rho \in \Sigma(1).
\]

Hence, the rays of the cone $\tilde{\sigma}$ are spanned by
\[
\nu_+ = ((1,0), \bar{0}), \quad \nu_- = ((r-1,r), \bar{0}), \quad \text{and} \quad \nu_\rho = (\alpha_{Z_\rho}(1,1), \rho) \quad \forall \rho \in \Sigma(1).
\]
We claim that there exists an SL_2-root $e \in M \oplus \tilde{M}$ of the cone $\tilde{\sigma}$ which restricted to σ gives the SL_2-root e of σ. Indeed, $\tilde{e} = (e, 0) = ((1, -1), 0)$ is an SL_2-root of the cone $\tilde{\sigma}$ since the duality pairing between \tilde{e} and the rays of $\tilde{\sigma}$ are $\langle \tilde{e}, \nu_+ \rangle = 1$, $\langle \tilde{e}, \nu_- \rangle = -1$, and $\langle \tilde{e}, \nu_\rho \rangle = 0$ for all $\rho \in \Sigma(1)$. □

Remark 3.14. In the case of a special SL_2-action on a 3-dimensional toric variety X, by [BH03] the canonical torus \mathbb{T}^3 is conjugated to a subtorus of the big torus. So up to conjugation in $\text{Aut}(X)$, every special SL_2-action on X is normalized by the big torus. In higher dimension, it is an open problem whether \mathbb{T}^2 is conjugated to a subtorus of the big torus.

Corollary 3.15. Consider a special SL_2-action on the affine space \mathbb{A}^3. Assume that the action of the canonical torus \mathbb{T}^2 on \mathbb{A}^3 is linearizable. Then there exists an SL_2-equivariant isomorphism $\mathbb{A}^3 \cong \mathbb{C}^2 \oplus \mathbb{C}^{n-2}$, where \mathbb{C}^2 is the tautological SL_2-module and the SL_2-action on \mathbb{C}^{n-2} is identical.

Proof. By Corollary [3.13] we may assume that the SL_2-action on \mathbb{A}^3 is normalized by the torus of all diagonal matrices \mathbb{T}^n and, moreover, this action is given by the SL_2-root $(1, -1, 0, \ldots, 0)$. □

4. Quasi-homogeneous SL_2-threefolds

In this section we study SL_2-actions with an open orbit on a normal affine threefold X.

4.1. SL_2-threefolds via polyhedral divisors. It is a byproduct of a classification due to Popov [Pop73] that most quasi-homogeneous SL_2-threefolds admit the action of a two dimensional torus making the SL_2-action compatible (see below). Hence, they can be classified with the methods of Section [2.3]. In this section \mathbb{T}^2 denotes an algebraic torus of dimension 2, and so rank $M = 2$.

Proposition 4.1. Let X be an affine normal quasi-homogeneous SL_2-threefold. Then X admit the action of a two dimensional torus \mathbb{T}^2 making the SL_2-action compatible except in the case where X is equivariantly isomorphic to SL_2/H, with $H < \text{SL}_2$ non-commutative and finite. Furthermore, $\mathbb{T}^2 = T \times R$, where T is the maximal torus in SL_2 and R is a one-dimensional torus commuting with the SL_2-action.

Proof. See [Pop73] or [Kra84] Ch. 3, p. 4.8]. □

In the following we restrict to the case where $X \not\cong \text{SL}_2/H$ with $H < \text{SL}_2$ non-commutative and finite so that X can be regarded as a \mathbb{T}^2-variety of complexity one. Up to conjugation, the only finite commutative subgroups of SL_2 are the cyclic groups

$$
\mu_r = \left\{ \left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array} \right) \mid \xi^r = 1 \right\}, \quad r \in \mathbb{Z}_{>0}.
$$

Popov’s classification is given in terms of the order of the generic stabilizer r_X and the so-called height h_X. We propose to replace the height by the slope h_X. See Definitions [4.6 and 4.11] for a precise definition. The main result of this section is the following theorem. The invariants r_X, h_X and h_X are given in the table below but the computation of their values will be performed after the proof of the theorem. In the table we also give the number N_X of SL_2-orbits of X. This number is only given for reference as it is not proved in the text.

Theorem 4.2. Let X be an affine normal quasi-homogeneous SL_2-threefold. Then $X \not\cong \text{SL}_2/H$, with $H < \text{SL}_2$ non-commutative and finite if and only if $X \simeq X[C, \mathfrak{D}]$ and the combinatorial data (C, \mathfrak{D}) is as in the following table:

C	σ	\mathfrak{D}	r_X	h_X	h_X	N_X
\mathbb{A}^1	$\{0\}$	$\Delta_0[0] + \Delta_1[1]$	r	$-$	$-$	1
\mathbb{A}^1	cone((1, 1))	$\Delta_0[0] + \Delta_1[1]$	r	1	1	2
\mathbb{P}^1	cone((a + 1, a), (r + a - 1, r + a))	$\Delta_0[0] + \Delta_1[1] + \Delta_{\infty}[\infty]$	r	$\frac{a}{a+r}$	$\frac{a}{a+1}$	3
Here \(a \in \mathbb{Q}_{>0}, r \in \mathbb{Z}_{>0} \),
\[
\Delta_0 = \text{Conv}(0,(1,0)) + \sigma, \quad \Delta_1 = \text{Conv}(0,(r-1,r)) + \sigma, \quad \text{and} \quad \Delta_{\infty} = (a,a) + \sigma \quad a \in \mathbb{Q}_{>0}.
\]
Furthermore, \(X[C,\mathcal{D}] \) is an \((\text{SL}_2/\mu_r)\)-embedding, and \(X \) is an homogeneous space of \(\text{SL}_2 \) if and only if \(\sigma = \{0\} \).

Before proving this theorem, we need a preliminary result. Let \(X = X[C,\mathcal{D}] \) for some \(\sigma \)-polyhedral divisor on a smooth curve. Since the \(\text{SL}_2 \)-action has an open orbit, the general isotropy group is finite, and so the \(\text{SL}_2 \)-action is non-special. Hence, by Proposition \(3.8 \) the \(\text{SL}_2 \)-action is of horizontal type, \(C = \mathbb{A}^1 \) or \(C = \mathbb{P}^1 \), and we may and will assume in the sequel that \(\mathcal{D} \) is as in Theorem \(2.18 \).

We will use the following general lemma to identify the \(\sigma \)-polyhedral divisors in Theorem \(2.18 \) that give rise to quasihomogeneous \(\text{SL}_2 \)-actions. Here the dimension of a domain \(A \) is the dimension of the algebraic variety \(\text{Spec} \ A \).

Lemma 4.3. Let \(X \) be a normal affine variety endowed with a non-special \(\text{SL}_2 \)-action. Then \(X \) has finite generic stabilizer if and only if \(\dim k[X]^{\text{SL}_2} \leq \dim X - 3 \).

Proof. Assume first that \(X \) has finite generic stabilizer. By Rosenlicht’s Theorem, the transcendence degree of \(k(X)^{\text{SL}_2} \) equals the codimension of the general orbit \(\text{[Dol03, Corollary 6.2]} \), so
\[
\text{tr. deg} k(X)^{\text{SL}_2} = \dim X - 3.
\]
Since \(\text{Frac} k[X]^{\text{SL}_2} \subseteq k(X)^{\text{SL}_2} \), we have \(\dim k[X]^{\text{SL}_2} \leq \dim X - 3 \).

Assume now that the generic stabilizer has positive dimension. Since the \(\text{SL}_2 \)-action is non-special, the generic stabilizer is one-dimensional and coincides either with \(T \) or \(N \). In both cases the subgroup has a finite index in its normalizer in \(\text{SL}_2 \). By \(\text{[Lun75, Corollaire 3]} \), we obtain that the general \(\text{SL}_2 \)-orbits are closed in \(X \). Thus, they are separated by regular invariants and so \(\dim k[X]^{\text{SL}_2} = \dim X - 2 \).

We now proceed to the proof of the main theorem in this section.

Proof of Theorem \(4.2 \). We prove first the “only if” part. Let \(X = X[C,\mathcal{D}] \) be an affine \(\mathbb{T}^2 \)-variety admitting a compatible \(\text{SL}_2 \)-action with an open orbit. We have \(C = \mathbb{A}^1 \) or \(C = \mathbb{P}^1 \) and we can assume that \(\mathcal{D} \) is as in Theorem \(2.18 \). Let \(\partial_{\pm} \) be the homogeneous LNDs of horizontal type corresponding to the \(U_{\pm} \)-action on \(X \) and let \(e \pm \) be the degree of \(\partial_{\pm} \).

Since \(v_{\pm}^1(e) = -1 \), \(e \) is a primitive lattice vector, so up to automorphism of the lattice \(M \), we may and will assume \(e = (1,-1) \). Assume for a moment that \(C = \mathbb{P}^1 \). In this case the cone \(\sigma \) is full dimensional and so \(\sigma^\vee \) is pointed. Hence \(e^\vee \notin \sigma^\vee \). This yields \(e^\vee = \mathbb{Q}(1,1) \) intersects with \(\sigma \) only once and so \(\Delta_{\infty} = (a,a) + \sigma \).

We have \(k[X]^U_{\pm} = \ker \partial_{\pm} \). Since \(SL_2 \) is generated by \(U_{\pm} \) as a group, we have \(k[X]^{SL_2} = \ker \partial_{\pm} \cap \ker \partial_\pm \). Hence, the compatible \(\text{SL}_2 \)-action on \(X[C,\mathcal{D}] \) has an open orbit if and only if \(\ker \partial_{\pm} \cap \ker \partial_\pm = k \).

By Lemma \(1.11 \) if \(\deg \mathcal{D}|_{\mathbb{A}^1} \) has only two vertices then \(\ker \partial_{\pm} \cap \ker \partial_\pm \supseteq k \). Hence the second family of \(\sigma \)-polyhedral divisors in Theorem \(2.18 \) does not give quasihomogeneous \(\text{SL}_2 \)-threefolds. In the following, we assume that \(\mathcal{D} \) is as in the first family in Theorem \(2.18 \).

Up to an automorphism of the lattice \(N \), we can assume \(v_0 = (1,0) \) and \(v_1 = r(r-1,r) \) with \(r \in \mathbb{Z}_{\geq 0} \). If \(r = 0 \) then again \(\deg \mathcal{D}|_{\mathbb{A}^1} \) has only two vertices and so \(\ker \partial_{\pm} \cap \ker \partial_\pm \supseteq k \). Hence, \(r \geq 1 \). This shows that \(\Delta_0 \) and \(\Delta_1 \) have the form given in the theorem.

It only remains to find the tail cone \(\sigma \). Let \(C = \mathbb{A}^1 \). In this case, \(e \in \sigma^\vee \) and so \(\sigma = \{0\} \) or \(\sigma = \text{cone}((1,1)) \). If \(C = \mathbb{P}^1 \), we let \(\sigma = \text{cone}(p_1,p_2) \). Since \(e \notin \sigma^\vee \), by Lemma \(1.12 \) we have
\[
\deg \mathcal{D} \cap \mathcal{D} = \emptyset, \quad \text{and} \quad \deg \mathcal{D} \cap \mathcal{D} = \emptyset.
\]
This yields \(p_1 = \text{cone}(a+1,a) \) and \(p_2 = \text{cone}(r+a-1,r+a) \) with \(a > 0 \). This proves the “only if” part.
Now, let $X = X[C, \mathfrak{D}]$ be as in the theorem. By Theorem 2.18 a simple verification shows that X admits an SL_2-action and by Lemma 4.11 we have $\ker \partial_r \cap \ker \partial_- = k$. Hence the SL_2-action has finite generic stabilizer and so X is a quasi-homogeneous SL_2-threefold.

The last assertion of the theorem is shown in Lemmas 4.3 and 4.5 below.

4.2. Parameters. In the remaining of this section we define and compute the parameters r_X, h_X, and h_X given in the table in Theorem 4.2. First, we give a geometric interpretation of the parameter r_X.

Lemma 4.4. Let $X = X[C, \mathfrak{D}]$ be as in Theorem 4.2. Then X is equivariantly isomorphic to the homogeneous space $\text{SL}_2/[\mu_r]$ if and only if $C = \mathbb{A}^1$ and $\sigma = \{0\}$.

Proof. Assume that X is a homogeneous space. The statement is equivalent to the fact that the general orbit of the acting torus is closed. Let us consider $G = \text{SL}_2 \times R$, where R is the one-dimensional torus commuting with SL_2, see Proposition 4.1 so that X is a homogeneous space of G. Then the acting torus $T^2 = T \times R$ is a reductive subgroup of G. By Lemma 2.17 the general T^2-orbit on X is closed.

To complete the proof, we only need to show that r in the definition of Δ_1 is the order of the generic stabilizer of the SL_2-action on X. By [Kra84 II.3.1, Satz 3], the algebra $k[\text{SL}_2]$ seen as $\text{SL}_2 \times \text{SL}_2$-module has the isotypic decomposition

$$
\mathbf{k}[\text{SL}_2] \simeq \bigoplus_{d \geq 0} V(d) \otimes V(d),
$$

where $V(d)$ is the simple SL_2-module of binary forms of degree d. The one-dimensional subtorus R commuting with the (left) SL_2-action may be identified with the maximal torus in the second (right) SL_2. Then, the homogeneous space $\text{SL}_2/[\mu_r]$ is obtained as the quotient of SL_2 by the cyclic subgroup of order r in R. So simple SL_2-submodules in $k[\text{SL}_2/[\mu_r]]$ have the form $V(d) \otimes w$, where w runs through R-weight vectors of $V(d)$ whose weight is divisible by r.

Now, the subalgebra of U_+-invariants of $k[\text{SL}_2/[\mu_r]]$ is spanned by the elements $v \otimes w \in V(d) \otimes w$, where v is highest weight vector in $V(d)$. Let T be the maximal torus in the (left) SL_2-action. We have shown that the order r of the generic stabilizer is the minimal integer such that $\ker \partial_+$ contains a T-weight vector of weight r which is not R-invariant.

We return now to the combinatorial data $X = X[C, \mathfrak{D}]$. Since $e = (1, -1)$, the grading given by R corresponds to the ray $p_T = (1, 1)$, and by the proof of Lemma 2.17 the grading given by T corresponds to the ray $p_T = v_0^r - v_1^r = (1, 0) - (r - 1, r) = (-r + 2, r)$. By Theorem 1.10 the cone of the semigroup algebra $\ker \partial_+$ is dual to $\omega = \text{cone}((-1, 0), (r - 1, r))$. The semigroup ω^\vee_M is spanned by $m_1 = (0, 1)$, $m_2 = (-r, r - 1)$, and $m_3 = (-1, 1)$ and we have

$$
\langle m_1, p_T \rangle = \langle m_2, p_T \rangle = r, \quad \langle m_3, p_T \rangle = 2, \quad \text{and} \quad \langle m_3, p_R \rangle = 0.
$$

Hence, the minimal weight such that the ker ∂_+ contains a T-weight vector which is not R-invariant is r, and the lemma follows.

Lemma 4.5. Let $X = X[C, \mathfrak{D}]$ be as in Theorem 4.2. Then $r = r_X$ is the order of the generic stabilizer and X is an $(\text{SL}_2/[\mu_r])$-embedding.

Proof. If $C = \mathbb{A}^1$, $\sigma = \{0\}$, and $r \geq 1$, then the result follows from Lemma 4.3. Let now $X = X[C, \mathfrak{D}]$ be as in Theorem 4.2 with $\sigma \neq \{0\}$. By [AIP11] Theorem 17 there is a T^2, equivariant open embedding $\text{SL}_2/[\mu_r] \hookrightarrow X$. Hence, the lemma follows from the homogeneous case.

In the following we assume that X is not equivariantly isomorphic to a homogeneous space. Let r be the order of the generic stabilizer of X. The open embedding $\text{SL}_2/[\mu_r] \hookrightarrow X$ induces an inclusion of the algebras of U_+-invariants $k[X[\mathfrak{U}_+]] \hookrightarrow k[\text{SL}_2/[\mu_r][\mathfrak{U}_+]]$. Both these algebras are semigroup algebras. Moreover, the cones of these semigroup algebras share a common ray in MQ. This ray will be denoted by p_{U_+}.

Let $\omega \subseteq M_2 \simeq \mathbb{Q}^2$ be a full dimensional cone and let ρ be one of its rays. It is well known that, up to automorphism of the lattice M, we can assume $\rho = \text{cone}((1, 0))$ and $\omega = \text{cone}((1, 0), (b, c))$ with $1 \leq b \leq c$ and $\gcd(b, c) = 1$. We define the slope of ω with respect to ρ as $b/c \in \mathbb{Q} \cap (0, 1]$.

Definition 4.6. Let X be a non-homogeneous quasi-homogeneous SL_2-threefold. We define the slope h_X of X as the slope of the cone of the ring of U_+^*-invariants with respect to the ray ρ_{U_+}.

Remark 4.7. This definition does not coincide with the height defined by Popov and used in the literature [Pop73, Kra84, Gal08, BH08]. The height will be introduced below and denoted by the plain letter h_X. We will also show the relation between slope and height. The main motivation to use a different definition is that the results have simpler statements.

Let $X = X[C, \mathcal{D}]$ be as in Theorem 1.2 and assume that X is not a homogeneous space. If $C = \mathbb{A}^1$ and $\sigma = \text{cone}((1, 1))$, then by Theorem 1.10 the cone of the ring of U_+^*-invariants $k[X]^{U_+}$ is given by cone($((0, 1)(-1, 1))$ and so the slope of X is $h_X = 1$. Assume now that $C = \mathbb{P}^1$. In this case, by Theorem 1.10 the cone of the ring $k[X]^{U_+}$ is given by cone($((0, 1), (-a, a + 1))$ and the common ray of the cones of $k[X]^{U_+}$ and $k[SL_2/\mu_r]^{U_+}$ is spanned by the lattice vector $(0, 1)$. Hence, the slope of X is

$$h_X = \frac{a}{a + 1} \in \mathbb{Q} \cap (0, 1).$$

Since the function defining h_X in terms of a is one to one, we have the following corollary.

Corollary 4.8. Two non-homogeneous quasi-homogeneous SL_2-threefolds X and X' are equivariantly isomorphic if and only if $r_X = r_{X'}$ and $h_X = h_{X'}$.

In the following corollary we give a criterion for a quasihomogeneous SL_2-threefold to be toric. This result is also given in [Gal08] and [BH08] in terms of the height of X.

Corollary 4.9. Let X be a quasi-homogeneous SL_2-threefold. Then X is a toric variety if and only if X is non-homogeneous and $h_X = n/p + 1$ for some $p \in \mathbb{Z}_{>0}$.

Proof. Let $X \simeq X[C, \mathcal{D}]$ with $C = \mathbb{A}^1$ or $C = \mathbb{P}^1$ and \mathcal{D} as in Theorem 1.2. By Corollaries 1.3 and 1.4, we obtain that X is toric if and only if $C = \mathbb{P}^1$ and a is an integer. Let now $h = n/q$ with $\gcd(p, q) = 1$ and $p, q \geq 0$. By (12) we have $a = n/q - p$ and so the result follows. \qed

Remark 4.10. In Corollary 4.9 the SL_2-action is not compatible with the big torus, since otherwise the SL_2-action would be special.

4.3. Relation between slope and height

Let X be a non-homogeneous quasi-homogeneous SL_2-threefold.

Definition 4.11. The height h_X of X is defined as follows. If $r_X = 1$ then the height of X is the same as the slope of X i.e., $h_X = h_X$. If $r_X > 1$ then there is a unique non-homogeneous quasi-homogeneous SL_2-threefold X' with $r_{X'} = 1$ such that $X = X'/\mu_r$ (see [Pop73] or [Kra84] III.4.9, Satz 1). The height of X is defined as the slope of X' i.e., $h_X = h_{X'}$.

In this section we compute the height of X in terms of the slope and the order of the generic stabilizer. We also state Corollary 4.9 in terms of the height.

Assume that $r_X > 1$ and let X' be as in Definition 4.11. We let $M, N, \sigma, C, \mathcal{D} = \sum \Delta_z \cdot z$ and $M', N', \sigma', C', \mathcal{D}' = \sum \Delta'_z \cdot z$ be the combinatorial data of X and X', respectively. By Definition 4.11 we have

$$\Delta_0 = \text{Conv}(0, (1, 0)) + \sigma, \quad \Delta_1 = \text{Conv}(0, (r - 1, r)) + \sigma,$$

$$\Delta'_0 = \text{Conv}(0, (1, 0)) + \sigma', \quad \Delta'_1 = \text{Conv}(0, (0, 1)) + \sigma'.$$

The morphism $\varphi : X' \to X$ is given by the quotient by μ_r contained in the T^2 acting on X'. Hence, the morphism φ is given by a morphisms $\varphi_* : N' \to N$ of lattices. Hence, $C \simeq C'$.

Furthermore, since the morphism \(\varphi_s \) sends \(\Delta'_0 \) into \(\Delta_0 \) and \(\Delta'_1 \) into \(\Delta_1 \) we have that \(\varphi_s \) is given by

\[
(1, 0) \mapsto (1, 0), \quad \text{and} \quad (0, 1) \mapsto (r - 1, r).
\]

If \(C = \mathbb{A}^1 \), then \(C' \simeq \mathbb{A}^1 \) and so \(h_X = h_{X'} = 1 \). Assume that \(C = \mathbb{P}^1 \) and let \(\Delta_\infty = (a, a) + \sigma \).

In this case \(C' \simeq \mathbb{P}^1 \) and \(\Delta'_\infty = \frac{1}{r}(a, a) + \sigma' \). Now (12) yields

\[
h_X = h_{X'} = \frac{a}{a + r} \in \mathbb{Q} \cap (0, 1).
\]

Relations (12) and (13) imply the following corollary.

Corollary 4.12. Let \(X \) be a non-homogeneous quasi-homogeneous \(SL_2 \)-threepold. Then

\[
h_X = \frac{h_X}{r_X - (r_X - 1)h_X}.
\]

Finally, a direct computation shows that in terms of the height Corollary 4.10 takes the form as in [Ga˘ı08, BH08].

Corollary 4.13. Let \(X \) be a non-homogeneous quasi-homogeneous \(SL_2 \)-threepold and let \(h_X = p/q \), where \(\gcd(p, q) = 1 \) and \(p, q > 0 \). Then \(X \) is a toric variety if and only if \(q - p \) divides \(r \).

4.4. **Generically transitive** \(SL_2 \times \mathbb{T}^s \)-action. Consider now the reductive group \(G = SL_2 \times \mathbb{T}^s \) for some \(s \in \mathbb{Z}_{>0} \). Any action of this group on a normal affine variety is compatible with the action of the torus \(\mathbb{T} = T \times \mathbb{T}^s \), where \(T \subset SL_2 \) is a maximal torus. The results of Section 2.4 may be regarded as a classification of generically transitive \(G \)-actions under the assumption that the complexity of the corresponding \(\mathbb{T} \)-action does not exceed one. In Section 4 we deal with the case \(s = 1 \) and because of Proposition 4.11 this yields a classification of generically transitive \(G \)-actions with \(s = 0 \). The following example shows that our techniques does not allow to describe all generically transitive \(G \)-actions with \(s = 1 \).

Example 4.14. Let \(G = SL_2 \times k^* \) and \(X = V_3 = \langle x^3, x^2y, xy^2, y^3 \rangle \) be a simple \(SL_2 \)-module of binary forms of degree 3, where \(k^* \) acts by scalar multiplication. The module \(V_3 \) contains a 1-parameter family of general \(SL_2 \)-orbits, namely \(SL_2 \langle \alpha(x^3 + y^3) \rangle, \alpha \in k \setminus \{0\} \). Thus, \(G \) acts on \(V_3 \) with an open orbit isomorphic to \(G/\mu_2 \). The torus \(\mathbb{T} = T \times k^* \) acts on \(X \) with complexity two. Assume that \(\mathbb{T} \) may be extended by a torus \(R \) commuting with \(G \). Then \(R \) commutes with \(k^* \) and its action descends to the projectivization \(\mathbb{P}(V_3) \). Then \(R \) maps to a subtorus of \(PGL_4 \). Since \(V_3 \) is simple, by Schur’s Lemma there are no non-identity elements in \(PGL_4 \) commuting with the image of \(SL_2 \).

APPENDIX: THE COMMUTATOR FORMULAS

In this appendix we prove the commutator formulas (9) and (10) used in Section 2.4. The computations are routine, but cumbersome, so we put them in an appendix instead of the main body of the paper for easy reading.

We keep the notation as in Section 2.4. The main idea is that from (8) and (7) we can obtain formulas for \(\partial_+ (\chi^m) \) and for \(\partial_\pm (t) \) by applying the Leibniz rule. Then we use these formulas to compute the commutator \(\partial = [\partial_+, \partial_-] \).

A simple evaluation of (8) and (7) yields

\[
\partial_-(t) = d^e \cdot \chi^{-e} \cdot (q^s)^{-1} \cdot q^{1+s},
\]

\[
\partial_-(\chi^m) = d^{-e} \cdot \nu_0^{-e} (m) \cdot \chi^{m-e} \cdot q^s
\]

and,

\[
\partial_+(t) = d^+ \cdot \varphi^e \cdot \chi^e \cdot t^{1+s}.
\]

Evaluating now (7) for \(r = 0 \) we obtain

\[
(\varphi^m)^' \cdot \chi^m \cdot \partial_+(t) + \varphi^m \cdot \partial_+(\chi^m) = d^+ \cdot \nu_0^+ (m) \cdot \varphi^{m+e} \cdot \chi^{m+e} \cdot t^{s}.
\]

And using the definition of \(\alpha_m \) we obtain

\[
\partial_+(\chi^m) = d^+ \cdot (\nu_0^+ (m) - \alpha_m) \cdot \varphi^e \cdot \chi^{m+e} \cdot t^{s}.
\]
Formula (10). We compute first $\partial_+ \partial_-(t)$ and $\partial_- \partial_+(t)$.

$$
\partial_+ \partial_-(t) = \partial_+ \left(d^{-} \cdot \chi^{-e} \cdot (q')^{-1} \cdot q^{1+s} \right)
$$

$$
= d^{+} d^{-} \varphi \cdot t^{s^+} q^{s^{-}} \left((\alpha_{e} - v^+_0(e)) \cdot \frac{q}{q'} - \frac{q'q}{(q')^2} + (1 + s^{-}) \cdot t \right), \quad \text{and}
$$

$$
\partial_- \partial_+(t) = \partial_- \left(d^{+} \cdot \chi^{e} \cdot t^{1+s^+} \right)
$$

$$
= d^{+} d^{-} \varphi \cdot t^{s^+} q^{s^{-}} \left(v^-_0(e) \cdot t + (1 + s^+ + \alpha_{e}) \cdot \frac{q}{q'} \right).
$$

Hence, the commutator is given by

$$
\delta(t) = d^{+} d^{-} \varphi \cdot t^{s^+} q^{s^{-}} \left((1 + s^{-} - v^-_0(e)) \cdot t - (1 + s^+ + v^+_0(e)) \cdot \frac{q}{q'} - \frac{q'q}{(q')^2} \right)
$$

and (10) follows since $s^+ = -1/d + v^+_0(e)$ and $s^- = -1/d + v^-_0(e)$.

Formula (11). In this case we have $\nu \pm = 0$, $\nu \pm = \infty$ and $d^\pm = d$. Hence

$$
\partial_- (t) = d \cdot \chi^{-e} \cdot t^{1+s^{-}}, \quad \partial_- (\chi^{m}) = d \cdot v^-_0(m) \cdot \chi^{m-e} \cdot t^{s^{-}} \quad \partial_+ (t) = d \cdot \varphi \cdot \chi^{e} \cdot t^{1+s^+} \quad \text{and}
$$

$$
\partial_+ (\chi^{m}) = d \cdot (v^+_0(m) - \alpha_{m}) \cdot \varphi \cdot \chi^{m+e} \cdot t^{s^+}.
$$

This yields

$$
\partial_+ (\chi^{m} t^r) = d \varphi \cdot (v^+_0(m) + r - \alpha_{m}) \cdot \chi^{m+e} t^{s^+}, \quad \text{and}
$$

$$
\partial_- (\chi^{m} t^r) = d \cdot (v^-_0(m) + r) \cdot \chi^{m-e} t^{s^-}.
$$

Recall that $s^+ = -1/d - v^+_0(e)$, $s^- = -1/d + v^-_0(e)$, $v_0 = v^-_0 - v^+_0$ and $\nu = v_0(e) - 1/d = s^+ + s^- + 1/d$. Now a direct computation yields

$$
\partial_+ \partial_- (\chi^{m} t^r) = d^2 \chi^{-e} \cdot (v^-_0(m) + r) \cdot (v^+_0(m) + \nu + r - \alpha_{m} + \alpha_{e}) \cdot \chi^{m} t^{\nu-1/d}, \quad \text{and}
$$

$$
\partial_- \partial_+ (\chi^{m} t^r) = d^2 \chi^{e} \cdot (-t\alpha_{m} + \alpha_{e}(v^+_0(m) + r - \alpha_{m}) +
$$

$$
+ (v^+_0(m) + r - \alpha_{m})(v^-_0(m) + \nu + r)) \cdot \chi^{m} t^{\nu-1/d}.
$$

Formula (10) follows by computing $\delta(\chi^{m} t^r) = \partial_+ \partial_- (\chi^{m} t^r) - \partial_- \partial_+ (\chi^{m} t^r)$.

References

[AH06] Klaus Altmann and Jürgen Hausen. Polyhedral divisors and algebraic torus actions. Math. Ann., 334(3):557–607, 2006.

[AHS08] Klaus Altmann, Jürgen Hausen, and Hendrik Süss. Gluing affine torus actions via divisorial fans. Transform. Groups, 13(2):215–242, 2008.

[AIP+11] Klaus Altmann, Nathan Owen Iten, Lars Petersen, Hendrik Süss, and Robert Vollmer. The geometry of T-varieties, 2011. arXiv:1102.5760v1 [math.AC], 42p. (To appear in Contributions to Algebraic Geometry, IMPANGA Lecture Notes).

[Arz97] Ivan V. Arzhantsev. On SL_2-actions of complexity one. Izv. Ross. Akad. Nauk Ser. Mat., 61(4):3–18, 1997.

[BH03] Florian Berchtold and Jürgen Hausen. Demushkin’s theorem in codimension one. Math. Z., 244(4):697–703, 2003.

[BH08] Victor Batyrev and Fatima Haddad. On the geometry of SL(2)-equivariant flips. Mosc. Math. J., 8(4):621–646, 846, 2008.

[Dem70] Michel Demazure. Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. (4), 3:507–588, 1970.

[Dem88] Michel Demazure. Anneaux gradués normaux. In Introduction à la théorie des singularités, II, volume 37 of Travaux en Cours, pages 35–68. Hermann, Paris, 1988.

[Dol03] Igor Dolgachev. Lectures on invariant theory, volume 296 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
P-DIVISORS AND SL₂-ACTIONS ON T-VARIETIES

[Fre06] Gene Freudenburg. *Algebraic theory of locally nilpotent derivations*. Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Berlin: Springer, 2006.

[Ful93] William Fulton. *Introduction to toric varieties*, volume 131 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.

[FZ05] Hubert Flenner and Mikhail Zaidenberg. Locally nilpotent derivations on affine surfaces with a C*-action. *Osaka J. Math.*, 42(4):931–974, 2005.

[Gal08] Sergey A. Gaifullin. Affine toric SL(2)-embeddings. *Mat. Sb.*, 199(3):3–24, 2008.

[KKMS73] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat. *Toroidal embeddings. I*. Lecture Notes in Mathematics, Vol. 339. Springer-Verlag, Berlin, 1973.

[Kra84] Hanspeter Kraft. *Geometrische Methoden in der Invariantentheorie*. Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig, 1984.

[Lie10a] Alvaro Liendo. Affine T-varieties of complexity one and locally nilpotent derivations. *Transform. Groups*, 15(2):389–425, 2010.

[Lie10b] Alvaro Liendo. G₅-actions of fiber type on affine T-varieties. *J. Algebra*, 324:3653–3665, 2010.

[Lun72] Domingo Luna. Sur les orbites fermées des groupes algébriques réductifs. *Invent. Math.*, 16:1–5, 1972.

[Lun75] Domingo Luna. Adhérences d’orbite et invariants. *Invent. Math.*, 29(3):231–238, 1975.

[Pop73] Vladimir L. Popov. Quasihomogeneous affine algebraic varieties of the group SL(2). *Izv. Akad. Nauk SSSR Ser. Mat.*, 37:792–832, 1973.

[Pop86] Vladimir L. Popov. Contractions of actions of reductive algebraic groups. *Mat. Sb. (N.S.)*, 130(172)(3):310–334, 1986.

[Tim97] Dmitri A. Timashev. Classification of G-manifolds of complexity 1. *Izv. Ross. Akad. Nauk Ser. Mat.*, 61(2):127–162, 1997.

[Tim08] Dmitri A. Timashev. Torus actions of complexity one. In *Toric topology*, volume 460 of *Contemp. Math.*, pages 349–364. Amer. Math. Soc., Providence, RI, 2008.

Department of Higher Algebra, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia

E-mail address: arjantse@mccme.ru

Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland

E-mail address: alvaro.liendo@gmail.com