Analysis of the chemical composition (GC–MS) of *Lantana camara* (Verbenaceae) essential oil and its insecticidal effect on the post-embryonic development of *Chrysomya megacephala* (Fabricius, 1794) (Diptera: Calliphoridae)

Rahul Maddheshiya*, Deep Mala Sahu, Krishna Pal Singh

Neurobiology Lab, Department of Zoology, University of Allahabad, Prayagraj, India

ARTICLE INFO

Article history:
Received on: April 06, 2021
Accepted on: May 03, 2021
Available online: July 10, 2021

Key words:
Chrysomya megacephala, veterinary, medicinal plant, *Lantana camara*, GC–MS, eucalyptol

ABSTRACT

The chemical composition of *Lantana camara* essential oil (EO), its insecticidal activities, and its impact on some biological parameters of the oriental latrine blowfly *Chrysomya megacephala* was assessed. The chemical composition of the tested EO was analyzed by gas chromatography and mass spectroscopy. Totally, 58 compounds corresponding to 99.8% of the total oil were identified, and major constituents of EO were α-pinene (15.3%), caryophyllene (15.28%), eucalyptol (7.8%), camphene (6.05%), caryophyllene oxide (5.33%), β-pinene (4.8%), and geranyl acetate (4.3%), citral (1.36%), α-terpineol (1.23%), tricyclene (0.613%), and linalool (0.62%). The dip toxicity test against the larvae of *C. megacephala* resulted in the disruption of metamorphosis, leading to developmental deformities, reduced pupariation rate, and inhibition of adult emergence. *Lantana camara* EO also resulted in larval and pupal toxicity, abnormal pupariation, non-viable pupal-adult intermediates production, and adultoid formation. Our result manifests that this EO is acting as a juvenoid. This work supports the use of biological control methods for the control of medico-veterinary important insects.

1. INTRODUCTION

Chrysomya megacephala (Fabricius, 1794) is recognized as an important medico-veterinary pest distributed in Oriental and Australian regions [1]. It is a synanthropic insect and transmits various deadly pathogens and helminth eggs from the filth substrates to the human body, causing a lot of nuisance [2–4]. The oriental latrine blowfly is of great importance because it causes myiasis in agronomic livestock and humans [5,6]. It also causes a significant loss to the fish and meat industries every year [7]. Thus, *C. megacephala* has a negative adverse impact on human and veterinary livestock; so, it is necessary to control its population growth.

Several methods were implemented to curb the menace caused by the insects. One such control measure included implementing chemical pesticides like dichlorodiphenyltrichloroethane, Permethrin, etc. The imprudent use of these pesticides proved hazardous because of their non-biodegradable nature and retention in plants and animals, mammalian toxicity, and the development of resistant strains of insects [8–13]. Therefore, a novel concept of insect growth regulator (IGR) came into existence [14], which included green insecticides as hormonal analog (fenoxycarb) [15,16] and plant essential oils (EOs) [17]. These IGRs are benign for the environment and non-targeted organisms [18,19].

Plants are biological factories that produce various chemicals collectively known as secondary metabolites [20–23]. Plant oils are rich in terpenes, enabling them to create a web of target sites to exhibit the unique insecticidal activity against different pathogens [24,25]. These EOs are used as a protective measure to counter pathogens as a deterrent, growth inhibitor [26], as a juvenile hormone (JH) analog (JHA) [27], or as anti-JH [28,29].
The EOs biological properties can be because of the synergistic effect of the major active components present in it [30]. These oils are generally safe for mammals at low concentrations [31–33]. The beneficial effects of EOs over other chemical insecticides make them potentially a preferable candidate for integrating pest management programs [34–35].

Previous studies revealed that a range of plant EOs, such as Piper betel, Melaleuca alternifolia, Carapa guianensis, Boesenbergia rotunda, Curcuma longa, Citrus hystrix, Ocimum gratissimum, and Zanthoxylum limonella, was successfully employed for the control of blowflies, C. megacephala [36,37]. Studies on insects’ post-embryonic development using various EOs are available [38,39]. Still, an extensive review of the literature showed a dearth of studies on the application of Lantana camara EO on larvae of the latrine blowfly C. megacephala. Therefore, the current study determines the toxic effects of L. Camara Eo on the third instar (0 and 1-day-old) larvae of the blowfly, C. megacephala.

2. MATERIAL AND METHODS

2.1. Insect Rearing

The colony of the blowfly, C. megacephala, was obtained from the laboratory maintained in the Department of Zoology, University of Allahabad, India. The adults were reared in the cage (30 × 30 × 30 cm). Molasses was given for feeding, and cotton soaked in distilled water was provided for drinking. A piece of goat liver (fresh) was also provided because it acts as an excellent protein-rich diet source and an oviposition site. After oviposition, a batch of the eggs was separated, and the first instar larvae that emerged were kept in a separate beaker with a fresh liver piece.

2.2. Gas chromatography and mass spectroscopy (GC–MS)

GC–MS analysis of L. camara EO was carried out using an Agilent 7890B GC connected to 5977A mass selective detector equipped with an HP-5 MS capillary column (30 m × 250 × 0.25 μm). The carrier gas used in the process was helium with a flow rate of 1 ml/minute. Exactly 1 μl of the sample was injected into the column (Split-less). The GC oven temperature was adjusted from 60°C to 325°C at the rate of 10°C/minute and held at 280°C for 10 minutes. The injector temperature was 250°C, and the detector temperature was 280°C. The percentage composition of each component was calculated by integrating the GC peak area normalization. This analysis of MS parameters was an ionization voltage (EI) of 70 eV and a mass range of 15–500 m/z. Analytic profiles were characterized from their mass spectral data using the NIST MS2011 library.

Lantana camara Eo was purchased from Surajbala Exports Pvt. Ltd. For the dip-assay method, 1 ml of the EO was dissolved in 1 ml of pure acetone to get the concentration.

2.3. Procedure

Last instar larvae (0 and 1-day-old) of C. megacephala were separated from the stock and divided into three batches (20 larvae in each). Larvae were dipped in the prepared solution for 15, 30, 45, 60, and 120 seconds [39]. Small pouches of 90 mm diameter were made with the filter paper, and in each pocket, 20 larvae were placed. Each pouch containing larvae was dipped in the prepared tested EO solution for a specific duration of time (Fig. 1a–e). Larvae in control groups were also treated similarly with pure acetone only. After administering EO, larvae were transferred to a filter paper to eliminate the EO’s excess quantity. Later, larvae were transferred in a glass beaker of 250 ml capacity containing a piece of goat liver. After the fourth day, as larvae started to wander, they were transferred in beakers (250 ml) containing sterilized sawdust for pupation [16].

Observations were recorded carefully regarding larval and pupal mortality, abnormal pupariation, total pupation, intermediates formation, total adult emergence, and adultoid formation. Larvae were considered dead if they were fully immobile or flaccid [40]. Dead specimens were preserved in Bouins’ solution for a day and later fixed in 70% ethanol for the morphological study. A day after emergence in control groups, the pupae from which adults could not emerge were dissected and fixed in Bouins’ solution and further preserved in 70% ethanol for morphological study.

Inhibition of adult emergence was calculated using the method of Kumar et al. [41]. Percentage inhibition rate (PIR) was calculated as follows:

\[
\text{PIR} = \frac{\left(C_{\%} - T_{\%} \right) \times 100}{C_{\%}}
\]

where \(C_{\%} \) is the percentage of newly emerged adults in control groups and \(T_{\%} \) is the percentage of newly emerged adults in treated groups.

![Figure 1](image-url)

Figure 1: Procedure and preparation of the pouch used in the dip method. (a) Filter paper, (b,c) filter paper molded in a conical form and larvae were placed inside the cavity, (d) centrifugation tube 50 ml containing solution of EO + acetone, (e) pouch containing larvae dipped in the EO + acetone solution.
Maddheshiya et al.: Analysis of the chemical composition (GC–MS) of Lantana camara (Verbenaceae) essential oil and its insecticidal effect on the post-embryonic development of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) 2021;9(04):47-55

Photography was carried out using Nikon SMZ 1000 Binocular fitted with Nikon Digital Sight DS-U2 microscope and NIS software (Nikon Corp., Japan).

2.4. Statistical Analysis
All measures were expressed as mean ± standard error of mean and analyzed by one-way analysis of variance, followed by post-hoc Dunnett’s multifactorial test. The coefficient of correlation was calculated using GraphPad Prism 5.0. The alpha significance was set at \(p < 0.05 \).

3. RESULTS
Major compositions of the commercial L. camara EO analyzed by GC–MS are shown in Table 1. Totally, 58 volatile compounds were identified that constituted 99.8% of the total oil. The major volatile constituents analyzed were \(\alpha \)-pinene (15.3%), caryophyllene (15.28%), eucalyptol (7.8%), camphene (6.05%), caryophyllene oxide (5.33%), \(\beta \)-pinene (4.8%), and \(\alpha \)-terpineol (1.23%).

Topical application of EO on the larvae (0 and 1–day-old) of C. megacephala disrupted growth, molting, and metamorphosis. The developmental abnormalities resulting from the tested EO comprised mortality, formation of abnormal puparium, and pupal–adult intermediates, reduced pupariation, adult emergence, the appearance of adultoids, and adult emergence inhibition (Table 2).

3.1. Mortality
Treatment of larvae (0 and 1-day-old) of blowfly with the tested EO resulted in the larval mortality on both the days of treatment \((F = 61, R^2 = 0.96, p \leq 0.0001, 0\text{-days-old larvae}) \) and \((F = 3, R^2 = 0.94, p \leq 0.0001, 1\text{-day-old larvae}) \), respectively. The larval mortality increased in a time-dependent manner (except at 30 second treatment, 1-day-old larvae) (Figs. 2 and 3). Tested EO also caused pupal mortality on both the days of larval treatment \((F = 1.8, R^2 = 0.43, p = 0.2, 0\text{-days-old larvae} \) and \(F = 14, R^2 = 0.86, p = 0.0001, 1\text{-day-old larvae}) \) (Figs. 2, 3 and 4o).

3.2. Abnormal Pupariation
Administration of L. camara EO on the larvae (0 and 1-day-old) of C. megacephala caused formation of abnormal puparia at both larval durations \((F = 2.2, R^2 = 0.5, p = 0.12, 0\text{-days-old larvae} \) and \(F = 3.4, R^2 = 0.6, p = 0.04, 1\text{-day-old larvae}) \) (Figs. 2 and 3). The following types of abnormal pupariation were seen:

- Some portions of the larval body were sclerotized (Fig. 4a).
- The whole body is barrel-shaped, but the mouth is everted out (Fig. 4b).
- Puparium abnormally formed without proper barrel-shaped formation and retraction of the mouth region (Fig. 4c–e).

3.3. Reduced Pupariation
 Larvae (0 and 1-day-old) of C. megacephala treated with EO resulted in reduced pupariation \((F = 29, R^2 = 0.9, p \leq 0.0001, 0\text{-day-old larvae} \) and \(F = 31, R^2 = 0.93, p \leq 0.0001, 1\text{-day-old larvae}) \) (Figs. 2 and 3).

3.4. Pupal–Adult Intermediates
Application of the treated EO on the last larval instar (0 and 1-day-old) of the oriental latrine blowfly has resulted in the formation of pupal–adult intermediates in both the treated groups \((F = 36, R^2 = 0.94, p \leq 0.0001, 0\text{-day-old larvae} \) and \(F = 13, R^2 = 0.84, p = 0.0002, 1\text{-day-old larvae}) \) (Figs. 2 and 3). The pupal–adult intermediates formed by the application of L. camara EO can be classified into the following types:

- Pupal–adult intermediates consisted of white, untanned bodies, pupal proboscis; wings are pupal white in appearance; eyes are white or unpigmented; pupal white abdomen; and undeveloped genitalia (Fig. 4f–g).
- Pupal–adult intermediates consisted of the tanned head and thorax but the abdomen is less developed and pupal in appearance; ptitium is everted; and genitalia are not formed (Fig. 4h–j).
- Pupa–adult intermediates consisted of adequately developed head and thorax. The abdomen is elongated and the genitalia are not adequately formed (Fig. 4k).
- Pupal–adult intermediates consisted of deformed head, thorax, and abdomen. Eyes were showing improper pigmentation (Fig. 4l).
- Pupal–adult intermediates are showing a well-differentiated body into the head, thorax, and abdomen. The only deformity noticed was abnormal eye pigmentation (Fig. 4m) and improperly pigmented eyes (Fig. 4n).

Sl. No.	Compound name	Retention time (Minutes)	Molecular weight	Percentage (%)
1	\(\alpha \)-Pinene	6.764	136	15.3
2	Caryophyllene (15.28%)	14.477	204	15.3
3	Eucalyptol	8.477	154	7.8
4	Camphene	7.010	136.12	6.05
5	Caryophyllene oxide	16.549	220	5.3
6	\(\beta \)-Pinene	7.523	136	4.8
7	\(\alpha \)-Terpineol	11.205	154	1.23

Period of exposure (Seconds)	PIR (0-days-old larvae)	PIR (1-day-old larvae)
15	55.7	17.2
30	82.5	24.7
45	93	64.5
60	100	78.5
120	100	100
\(r \)	0.73	0.94*

\(R \) = coefficient of correlation; PIR = percentage inhibition rate.
*Correlation significant at \(p \leq 0.01 \).
3.5. Adult Emergence and Adultoid Formation

Administration of *L. camara* EO on the third instar larvae (0 and 1-day-old) of *C. megacephala* also resulted in the reduced adult emergence ($F = 190, R^2 = 0.98, p \leq 0.0001$, 0-days-old larvae) ($F = 40, R^2 = 0.94, p \leq 0.0001$, 1-day-old larvae) (Figs. 2 and 3). Treatment of last larval instar (0 and 1-day old) of *C. megacephala* resulted in adultoid formation. Only a single adultoid was formed in the larvae treated with EO (1-day-old) treated for 15 seconds ($F = 1, R^2 = 0.29, p = 0.045$, 1-day-old larvae) (Fig. 3). The adultoid form showed wrinkled wings.

4. DISCUSSION

The use of medicinal plants with insecticidal properties has various advantages in comparison to conventional pesticides. These botanicals are obtained from renewable resources and easily degrade. These botanical insecticides are less prone to the development of insecticidal resistance [24]. Botanicals as insecticides are effective because they consist of many volatile constituents produced from secondary metabolism [20,30]. Major volatile components found in the *L. camara* EO were α-pinene, caryophyllene, eucalyptol, camphene, caryophyllene oxide, β-pinene, and α-terpineol. Alpha-pinene, caryophyllene, β-pinene, and camphene were also reported in *L. camara* [42]. Volatile constituents such as caryophyllene oxide, eucalyptol, caryophyllene, and α-terpineol are present in the EO of this medicinally important plant species [43–49].

The chemical composition of the EOs is quite complex mixtures of many components, and their insecticidal activity may be attributed to several active compounds or their synergistic activity [49]. Several volatile components present in the plant can cause a disturbance in the hormonal titer of the body, resulting in developmental deformities. Some of the major
Figure 4: The effect of the application of essential oil of *L. camara* by applying the dip method on the third instar larvae (0 and 1-day-old) of *C. megacephala*. (a) Abnormal puparium showing abnormal pigmentation (15 seconds); (b) bottle-shaped pupa showing everted mouthpart (30 seconds); (c–e) abnormal puparium (45, 60, and 120 seconds, respectively); (f) P-a-i showing white pupal body (120 seconds); (g) P-a-i showing pupal proboscis and leg along with a deformed abdomen (60 seconds); (h–j) P-a-i showing pupal abdomen, undeveloped genitalia, and everted ptilinum; (k) P-a-i abdomen elongated (60 seconds); (l) P-a-i showing improperly developed abdomen and improperly pigmented eyes (120 seconds); (m) P-a-i showing pupal abdomen with undeveloped genitalia (60 seconds); (n) P-a-i showing abnormal eye pigmentation (45 seconds); and (o) pupal death (120 seconds).
components identified in the present study have been reported to exhibit insecticidal effect, such as α-pinene, caryophyllene, β-caryophyllene, and eucalyptol [50–54].

The tested EO caused larval and pupal toxicity. This toxicity may be due to the specific biological compounds present in this EO [55,56]. Such a toxic effect has also been observed in treating the larvae of Lasiocera serricone (F), Tropinota hirta, Anopheles Stephensi, Aedes aegypti, Culex Quinquefasciatus, Musca domestica, and A. aegypti with the plant [39,57–62]. Toxicity due to JHA has also been reported on the larval stage of Sarcophaga ruficornis and C. megacephala [15–16].

Another apparent effect of the tested EO on larvae of blowfly is the formation of abnormal puparium. A similar result was also reported where the administration of EOs to the larvae of M. domestica, Synthesio Myia nudiseta, and L. sericata caused abnormal pupariation [63–67]. The abnormal pigmentation in the body may be due to the disorganization of the light and dark bands of the muscles or the inhibitory effect of the treated EO on melanin synthesis [64,68]. The third instar of M. domestica treated with the P. nigra volatile oil also caused abnormal puparium formation [65]. Similarly, topical treatment of third instar larvae of C. megacephala with JHA also caused abnormal pupariation [15].

The application of L. camara EO also resulted in pupal–adult intermediates’ formation. The phytochemicals are responsible for disturbing the normal hormonal regulatory pathway [69]. Secondary metabolites from plants act as a juveno-mimic compound [27] and cause disturbance in the hormonal titer [70]. Surprisingly, the administration of juvenile hormone mimic (JHM/JHAs) to the larvae has also been observed to produce pupal–adult intermediates in S. litura, C. megacephala, and S. ruficornis [15,16,71,72]. The balanced titer of JH and ecdysone in the insect during a transformation stage determines the fate of metamorphosis. The excess of JH at a sensitive period prevents cellular differentiation, leading to the metamorphic catastrophe. Formation of intermediates is an actual juvenilizing effect caused due to the juvenoids/JHAs [73,74,75,86].

Administration of the tested EO has resulted in a reduced pupariation and adult emergence. These effects are similar to those observed by the application of EO on the larvae of C. megacephala, L. sericata, S. nudiseta, and L. sericata [57,66,67,71,76]. The JHA treatment has also observed similar effects in Culex tarsalis, S. ruficornis, S. nudiseta, and C. megacephala [15,16,66,77]. Several juvenoids are known to mimic the effects caused by the JH as suppression of pupation [78,79] and adult emergence due to the inhibition of the secretion of eclosion hormone [10]. These results infer that the EO of L. camara acts as a juvenoid.

The adultoid formation was not a very prominent effect induced by the L. camara EO. Adultoid formation has also been reported in Schistocera gregaria and M. domestica [65,80]. Adultoid formation may be due to the plant oil’s intervening effect in the ecdysteroid titer [70,81]. Application of JH/JHM or juvenoids during the acute phase of the development may result in adultoids’ formation. During these sensitive periods in which most of the imaginal disk cell proliferation occurs, any disturbance in the hormonal interplay may lead to abnormalities [72,82,83].

The insect’s life cycle development comprises several metamorphic events, including de-differentiation and re-differentiation of the body tissues at each stage. During metamorphosis, neurosecretory cells secrete the prothoracico-tropic hormone. This hormone acts on the prothoracic gland, stimulating the molting hormone’s release from corpora cardiaca [82]. The ecdysone hormone is responsible for the progression of a stage. In the final larval instar of holometabolous insects, the JH level is high during the initial stadium, which gradually declines as the pupal stage is about to commence to an undetectable titer in the hemolymph. A balanced titer of both JH and ecdysone (E) as a duo during larval–larval, larval–pupal, or pupal–adult ecysis is stage-specific and varies from insect to insect. Any imbalance in the titer downregulates the principle metamorphosis pathway, leading to several developmental anomalies and aberrations [82,84]. Secondary metabolites from plants act as juveno-mimic compounds causing imbalance in principle hormonal titer [27,70].

Volatile terpenes act as pro-oxidants in mitochondria resulting in the interruption in the electron transport chain (ETC). This interruption in the ETC further results in the formation of reactive oxygen species [30]. High mortality, reduced pupariation, and adult emergence may be due to the oxidative stress caused by the Lantana EO. This oxidative stress results in the increase in the polyphenols and catalase activities in the body tissues [85]. The tested EO somehow disturbs the regulatory hormonal pathway, thus leading to various developmental abnormalities.

5. CONCLUSION
In this study, the tested EO of L. camara showed to be influential on the post-embryonic development in C. megacephala in the laboratory. This effect may be due to several volatile compounds that may have caused interference in the normal hormonal titer in the body of the blowfly. Therefore, L. camara EO can be used as an effective IGR against the larvae of C. megacephala. Our result manifests that this EO acts as a juvenoid.

6. ACKNOWLEDGMENTS
The authors would like to thank UGC, India, for providing the financial support (CRET fellowship).

7. CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

8. AUTHOR CONTRIBUTIONS
All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the international committee of medical journal editors (ICMJE) requirements/guidelines.
REFERENCES

1. Qiu D, Cook CE, Yue Q, Hu J, Wei X, Chen J, et al. Species-level identification of the blowfly Chrysomya megacephala and other diptera in China by DNA barcoding. Genome 2017;60(2):158–68.

2. Greenberg B. Flies and disease. Biology and disease transmission. Oxford University Press, Chicago, IL, p. 2, 1973.

3. Baumgartner D. Review of Chrysomya rufifacies (Diptera: Calliphoridae). J Med Entomol 1993;30:338–52; doi:10.1093/jmedent/30.2.338.

4. Malik A, Singh N, Satya S. Musca domestica (housefly): a challenging pest and the control strategies. J Environ Sci Health 2007;42:453–69.

5. Zumpt F. Myiasis in man and animals in the old world. Butterworth, London, UK, 1965.

6. Palacios S, Bertoni A, Rossi Y, Santander R, Urza A. An insecticidal activity of essential oils from native medicinal plants of central Argentina against the housefly, Musca domestica (L.). Parasitol Res 2009;106:207–12.

7. Esser JR. Biology of Chrysomya megacephala (Diptera: Calliphoridae) and reduction of losses caused to the salted-dried fish industry in South-East Asia. Bull Entomol Res 1991;81:33–42; doi:10.1017/S0007485300053219.

8. Viegas-Ju nior, C. Terpenos com atividade inseticida: uma alternativa para o controle qu’imico de insetos. Quim Nova 1986;30:353–60. Available via https://www.scielo.br/psp2/.

9. Jian W, Ya L, Chaoliang L. The repellency and fumigant activity of Artemisia vulgaris essential oil to Musca domestica vicina. Chinese. Bull Entomol 2005;42(1):51–3.

10. Ghomeim KS, Bream AS, Tanass MR, Nassar MI. Efficacy of fenoxycarb on pupal-adult transformation of Chrysomya rufifacies (Diptera: Calliphoridae). J Econ Entomol 2003;96(4):1307–9.

11. Qiu D, Cook CE, Yue Q, Hu J, Wei X, Chen J, et al. Species-level identification of the blowfly Chrysomya megacephala and other diptera in China by DNA barcoding. Genome 2017;60(2):158–68.

12. Pavela R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res 2008;22(2):274–8.

13. Tawatsin A, Thavara U, Chansang U, Chavalittumrong P, Boonruad T, Wongsinkongman P, et al. Field evaluation of deet, repel care, and andiroba (Chrysophyllum) essential oil as a potential “green” alternative for gypsy moth control. J Econ Entomol 2003;96(4):1307–9.

14. Koul O. Insect antifeedants. CRC Press, Boca Raton, FL, 2005.

15. Klauck V, Pazinato R, Radavelli WM, Volpato A, Stefani LM, Santos EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR (eds.). Larvicidal resistance in housefly (Musca domestica L.). Parasitol Res 2005;93:405–24; doi:10.1007/s00436-005-1433-9.

16. Musca domestica. J Exp Zool India 2005;24(1):353–60. Available via https://connectjournals.com/03895.2021.24.405.

17. Muskia. J Vector Ecol 2019;44:253–63.

18. Madheshiya R, Singh KP. Efficacy of fenoxycarb on pupal-adult transformation of Chrysomya rufifacies (Diptera: Calliphoridae). J Econ Entomol 2003;96(4):1307–9.

19. Murukan G, Jeyabalad N, Senthilkumar N, Babu R, Sivarajamurksan S. Anti-pupal effect of neem seed kernel extract against mosquito larvage of Anopheles stephensi (Liston). J Environ Res 1996;96:1307–9.

20. Bowers W. Bio-rational approaches for insect control. Korean J Appl Crop Protection, Ghent, Belgium, 2007, pp 246–79.

21. Esser JR. Biology of Chrysomya megacephala (Diptera: Calliphoridae) and reduction of losses caused to the salted-dried fish industry in South-East Asia. Bull Entomol Res 1991;81:33–42; doi:10.1017/S0007485300053219.

22. Tawatsin A, Thavara U, Chansang U, Chavalittumrong P, Boonruad T, Wongsinkongman P, et al. Field evaluation of deet, repel care, and andiroba (Chrysophyllum) essential oil as a potential “green” alternative for gypsy moth control. J Econ Entomol 2003;96(4):1307–9.

23. Koul O. Insect antifeedants. CRC Press, Boca Raton, FL, 2005.

24. Bowers W. Bio-rational approaches for insect control. Korean J Appl Crop Protection, Ghent, Belgium, 2007, pp 246–79.

25. Klauck V, Pazinato R, Radavelli WM, Volpato A, Stefani LM, Santos EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR (eds.). Larvicidal resistance in housefly (Musca domestica L.). Parasitol Res 2005;93:405–24; doi:10.1007/s00436-005-1433-9.

26. Musca domestica. J Exp Zool India 2005;24(1):353–60. Available via https://connectjournals.com/03895.2021.24.405.

27. Muskia. J Vector Ecol 2019;44:253–63.
40. Macedo M, Consoli RAGB, Grandi TSM, Dos Anjos AMG, de Oliveira AB, Mendes NM, et al. Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes flavitoldis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 1997;92:565–70.

41. Kumar P, Mishra SA, Malik A, Satya S. Repellent, larvicidal and pupicultural properties of essential oils and their formulations against the housefly, Musca domestica. Med Vet Entomol 2011;25:302–10.

42. Sonibare OO, Effiong I. Antibacterial activity and cytotoxicity of essential oil of Lantana camara. J Egypt Acad Soc Environ Dev 2003;3(2):21–40.

43. Sundufu AJ, Shoushan H. Chemical composition of the essential oils of Lantana camara occurring in South China. Flavour Fragr J 2004;19:229–32.

44. Ouambo JM, Ouabonzi A, Ekouya A, Bessiere JM, Menut C, Abena AA, et al. Volatile constituents of the essential oil leaf of Lantana salviolia Jacq. (Verbenaceae). Flavour Fragr J 2006;21:158–61.

45. Benites J, Moiteiro C, Miguel G, Rojo L, López J, Venâncio F, et al. Composition and biological activity of the essential oil of peruvian Lantana camara. J Child Chem Soc 2009;54(4):379–84.

46. Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L. Essential oil composition and larvicidal activity of six mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 2010;107:1455–61.

47. Zoubiri S, Baalouamer A. Larvicidal activity of two Algerian Verbenaceae essential oils against Culex pipiens. Vet Parasitol 2011;181:370–3.

48. Khan M, Mahmood A, Alkhathlan HZ. Characterization of leaves and flowers volatile constituents of Lantana camara growing in central region of Saudi Arabia. Arab J Chem 2016;9:764–74; doi:10.1016/j.arabjc.2015.11.005

49. Shah M, Alharby HF, Hakeem KR. Lantana camara: a comprehensive review on phytochemistry, ethnomedicine and technological potential. Lett Appl Nano Biomed Sci 2020;9(3):1199–207; doi:10.1016/j.lapnbs.2020.05.005

50. Gelibi I, Némec V. Developmental changes caused by metyrapone and azadirachtin in Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) and Galleria mellonella (L.) (Lepidoptera: Pyralidae). J Chem, Genet Eng Biotechnol 2011;3(1):1–14.

51. Josephrajumar, N Subrahmanyam B, Srinivasan. Plumbagin and derivatives from Lantana camara leaf. J Chem, Genet Eng Biotechnol 2011;3(1):1–14.

52. Mansour SA, Messeha SS, el Gengaihi SE. Botanical biocides. 4. Larvicidal and repellent activity of essential oils from Barazilian plants against the mosquito Musca domestica. Pesqui Agropec Bras 2006;41:9–14.

53. Kocak E, Kilincer N. Investigations on the effects of juvenile hormone analogues on the mosquito Aedes aegypti. J Insec Physiol (A):35–52.

54. Honeydew HO, Yousuf NS. Developmental changes induced by methanolic extracts of leaves and fruits of Melia azedarach L. on the house fly, Musca domestica vicina Macq. J Egypt Ger Soc Zool 1991;3(1):174–81.

55. Kocak E, Kilincer N. Investigations on the effects of juvenile hormone analogues on the mosquito Aedes aegypti. J Insec Physiol (A):35–52.
Maddheshiya et al.: Analysis of the chemical composition (GC–MS) of Lantana camara (Verbenaceae) essential oil and its insecticidal effect on the post-embryonic development of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) 2021;9(04):47-55

78. Nakakita H. Effect of larval density on pupation of Tribolium freeman hinton (Coleoptera: Tenebrionidae). Appl Entomol Zool 1982; 17:269–76
79. Eto M. Biochemical mechanism of insecticidal activities. In: Haug G, Hoffman H (eds.). Chemistry of plant protection. Springer –Verlag, Berlin, Germany, vol 6, pp 65–107, 1990. Available via https://link.springer.com/chapter/10.1007%2F978-3-642-46674-8_2
80. Bakr ME, Nassef NE, Assar AA, El-Sobky MM, Shams El, Din SA. Biological and morphological effects of water extracts of some plants on the house fly, Musca domestica vicina Macq. (Diptera: Muscidae). J Egypt Ger Soc Zool 2003;41:29–47.
81. Aly SA, El-Ebiarie AS, Hamadah KS. Effects of the wild plant, Fagonia bruguieri on the adult performance and phase transition of Schistocerca gregaria (orthoptera: acrididae). Egypt Acad J Biol Sci 2010;3(2):133–47.
82. Nijhout HF. Insect hormone. Princeton University Press, Princeton, NJ, vol 4, pp 1–267, 1998.
83. Singh S, Kumar K. Effect of juvenoids pyriproxyfen on reproduction and F1 progeny in myiasis causing flesh fly Sarcophaga ruficornis L. (Sarcophagidae: Diptera). Parasitol Res 2015b; 114(6):2325–31.
84. Doane WW. Role of hormones in insect development. In: Counce SJ, Waddington CH (ed.). Developmental system: insects, Academic Press, New York, NY, vol 2, pp 291–497, 1973.
85. Magierowicz K, Gór ska-Drabik E, Sempruch C. The effect of Tanacetum vulgare essential oil and its main components on some ecological and physiological parameters of Acrobasis advenella (Zinck.) (Lepidoptera: Pyralidae). Pestic Biochem Physiol 2020;162:105–12.
86. Wright JE. Hormones for control of livestock arthropods. Development of an assay to select candidate compounds with juvenile hormone activity in the stable fly. J Econ Entomol 1970;63(3):878–83.

How to cite this article:
Maddheshiya R, Sahu DM, Singh KP. Analysis of the chemical composition (GC–MS) of Lantana camara (Verbenaceae) essential oil and its insecticidal effect on the post-embryonic development of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae). J Appl Biol Biotech 2021; 9(04): 47–55.