Evidence-based guidelines: Improving AGREEment on consistence evaluation

Bruno Vincenzi, Andrea Napolitano, Daniele Santini, Evaristo Maiello, Valter Torri, Giuseppe Tonini

University Campus Bio-Medico, Department of Medical Oncology, Rome, Italy
Istituto di ricovero e cura a carattere scientifico (IRCCS) Casa Sollievo della Sofferenza, San Giovanni Rotondo, Medical Oncology Unit, Foggia, Italy
Mario Negri Institute for Pharmacological Research, Milan, Italy

Abstract

Modern clinical practice relies on evidence-based medicine (EBM) and evidence-based guidelines (EBGs). The critical evaluation of EBGs value is therefore an essential step to further improve clinical practice. In our opinion, correlating levels of evidence and grades of recommendation can be an easy tool to quickly display internal consistence of EBGs.

1. Introduction

Evidence-based medicine (EBM) has been defined as the "integration of best research evidence with clinical expertise and patient values". The first historical descriptions of EBM date back to the beginning of 1990s, when the work of Gordon Guyatt, David Sackett and others established the emerging methodologies of EBM [8,20]. The main products of EBM are evidence-based guidelines (EBGs), "systematically developed statements to assist practitioner and patient decision about appropriate health care for specific clinical circumstances" [21]. EBGs indeed substantially improve clinical care [29].

Costs, ethical concerns in placebo-controlled trials, publication bias and a real risk of reductionism are the most emphasized limitations of EBM. In order to overcome these limitations and improve EBGs quality standards, different societies (among which the World Health Organization, WHO) produced guidelines for guideline developers.

Preliminary steps for guideline development are evaluation of priority settings [14], composition of an expert panel [9], management of conflicts of interests [3], determination of appropriate group processes [10], of important outcomes [22] and of which evidences have to be included [15].

Then developers have to produce synthesis and presentation of evidences [16], exposing criteria for grading evidence and recommendations [23], integrating when possible values (e.g. ethical considerations) and consumer involvement [24]. Next, considerations of cost-effectiveness, affordability and resource implications [7], of equity [17], applicability, transferability and adaptation [25] should be included.

The final steps are the report of guidelines recommendations [18], the dissemination and implementation of guidelines [11] and their evaluation [19].

Since EBGs frequently vary widely in quality [26,27], their evaluation is very important. Updating a first systematic review [12,28] found 24 different EBGs appraisal tools. The Appraisal of Guidelines for Research and Evaluation (AGREE) instrument was a validated, easy-to-use, and transparent tool, which was internationally developed and widely accepted. It was developed through a process of item generation, selection and scaling, field-testing and refinement. The final version of the instrument contained 23 items grouped into six domains: scope and purpose, stakeholder involvement, rigor of development, clarity and presentation, applicability, and editorial independence [2].

Despite the good review of the AGREE instruments, two important limitations are present: although it can be used to compare clinical practice guidelines, AGREE instrument does not set a threshold to classify them as good or bad, and it does not assess the quality of the evidence supporting the recommendations [29].
Table 1
Levels of evidence and respective grades of recommendation in the guidelines for the treatment of bone metastases by the Italian Society for Medical Oncology.

Topic	Level of evidence	Grade of recommendation
1. Bisphosphonates in metastatic cancers		
a. **Indication: breast cancer**		
Efficacy of bisphosphonates in reducing skeletal-related events	I	A
Efficacy of bisphosphonates in reducing pain levels and improving quality of life	I	A
Route of administration of bisphosphonates: endovenous vs oral	I	A
Efficacy of zoledronic acid vs other bisphosphonates	II	A
b. **Indication: prostate cancer**		
Efficacy of bisphosphonates in reducing skeletal-related events	N/A	N/A
c. **Indication: lung cancer**		
Efficacy of bisphosphonates in reducing skeletal-related events	III	B
d. **Indication: renal cancer**		
Efficacy of bisphosphonates in reducing skeletal-related events	III	B
e. **Indication: other cancers**		
Efficacy of bisphosphonates in reducing skeletal-related events	III	C
f. **Length of the therapy**		
Extension of treatment after the first two years	V	B
Switch from oral bisphosphonate to zoledronic acid	V	B
g. **Timing of therapy start**		
Therapy after radiological evidence of bone metastases in absence of symptoms	V	B
h. **Dosage and schedule**		
Standard dosage and schedules suggested in clinical trials and by FDA and EMEA	I	A
i. **Route of administration**		
Endovenous or oral administration, according to criteria exposed in the guideline	I	A
j. **Multidisciplinary approach**		
Team-based therapeutic approach to patients affected by bone metastases	V	B
k. **Vitamin D supplementation**		
Role of bisphosphonates in preventing bone loss	N/A	N/A
l. **Markers of bisphosphonate efficacy**		
Role of N-terminal telopeptide	III	C
m. **Quality of life**		
Control of bone pain	I	A
Co-analgesic effect in combination with major analgesic drugs	I	A
Selection of adequate bisphosphonate for quality of life and pain management	I	A
High-dose bisphosphonates in opioid-resistant bone pain	V	D
High-dose ibandronate in severe bone pain	V	D
Zoledronic acid role in incident pain	V	D
Overall effects of bisphosphonates in improving quality of life	V	D
2. Bisphosphonate in cancer induced bone loss		
a. **Diagnosis of osteoporosis in cancer patients**		
DEXA in the diagnosis of osteoporosis in cancer patients	I	A
b. **Fracture risk in breast cancer patients**		
Evaluation of fracture risk in breast cancer patients with preserved ovarian function or in postmenopause under tamoxifen or no hormonal treatment	I	A
Evaluation of fracture risk in breast cancer patients with premature menopause due to medical/surgical therapies or in postmenopause under aromatase inhibitor treatment	I	A
Global decision algorithm, in consideration of bone mass density, age and other factors	VI	B
c. **Prevention and therapy of osteoporosis in breast cancer patients**		
Selection of adequate bisphosphonate for cancer induced bone loss	I	A
Role of bisphosphonates in cancer patients bone health	V	B
Bisphosphonates role in the therapy of osteoporosis	I	A
Efficacy of bisphosphonates in cancer induced bone loss	I	A
d. **Fracture risk and osteoporosis in prostate cancer patients under androgen blockade**		
Fracture risk in prostate cancer patients under androgen blockade	I	A
Selection of adequate bisphosphonate	VI	B
Decision algorithm for prostate cancer patients under androgen blockade	VI	B
Bisphosphonates role in the prevention of osteoporosis in prostate cancer patients under androgen blockade	VI	B
Optimal length of therapy	VI	B
3. Bisphosphonate safety		
a. **Renal safety**		
Role of bisphosphonates dosage and infusion speed on renal function	II	A
Bisphosphonate dosage reduction in patients with impaired renal function	II	A
Risk of hypocalcemia and hypomagnesemia after bisphosphonate endovenous administration	II	A
Endovenous ibandronate and renal safety	II	A
Oral ibandronate and renal safety	II	A
b. **Osteonecrosis of the jaw**		
Diagnosis and treatment	V	C
c. **Rare adverse events**		
Ocular adverse events	II	B
Level of evidences and grade of recommendations in fact do not necessarily correlate, since the first is a measure of scientific strength and the latter of clinical utility.

Recently, an improved version of the AGREE, i.e. the AGREE II instrument, has been released [4,5], partly overcoming the previous limitations. Indeed, the introduction of the new item assessing the description of strengths and limitation of the body of evidences can be considered as a precursor for clinical validity or appropriateness of the recommendations. The authors recognize the value of this point, in fact they state that the AGREE consortium is targeting this area as its next priority for further study in the AGREE A3 initiative [6].

In our opinion, correlating level with grade could be a valid way to integrate the AGREE II instrument and quickly display the internal consistence of EBGs.

2. Material and methods

The guidelines for the treatment of bone metastases by the Italian Society for Medical Oncology (AIOM) are based on: European Society for Medical Oncology (ESMO) guidance on the use of bisphosphonates in solid tumors [1] and on the management of aromatase inhibitor-associated bone loss [13]; Cochrane network reviews; critical review of the literature updated to June 2009.

The topics covered by the AIOM guidelines are use of bisphosphonates in metastatic cancers; use of bisphosphonates in the prevention and treatment of cancer treatment induced bone loss; safety of bisphosphonates use; treatment of bone metastases pain; role of bisphosphonates in specific settings; role of orthopedic surgery in bone metastases; role of radiotherapy in bone metastases.

Topic	Level of evidence	Grade of recommendation
4. Treatment of bone metastases pain		
a. Pharmacological treatments		
Usage of non-opiate, opiate and adjuvant drugs for pain control	I	A
Tramadol vs other opiate drugs in mild-moderate pain	VI	B
Adverse events related to analgesic treatments	III	C
Selection of drugs for moderate–severe pain	I	A
Efficacy of analgesic therapy	I	A
5. Role of bisphosphonates in specific settings		
a. Old patients and/or patients with comorbidity		
Efficacy of bisphosphonates in reducing skeletal-related events in old patients	VI	B
Role of renal function and hydration status monitoring in old patients	VI	B
Criteria for oral bisphosphonate selection in old patients	VI	B
Criteria for endovenous bisphosphonate selection in old patients	VI	B
Adverse gastrointestinal effects and compliance in old patients	VI	B
Risk of osteonecrosis of jaw in old patients	VI	B
b. Bisphosphonate with specific oncological treatments		
Synergistic effects between chemotherapy drugs and bisphosphonates	V	D
6. Role of orthopedic surgery in bone metastases		
a. Lesions to appendicular skeleton or pelvic and shoulder girdles		
Class 1 patients: asportation of bone metastases	IV	B
Class 2 and 3 patients: external fixation	IV	B
Class 4 patients: surgery only after mechanical failure or progressive pain	IV	B
Fracture risk of pelvic lesions	IV	B
Surgical treatment of pelvic lesions	IV	B
Bone curettage	IV	B
Prosthetic surgery	IV	B
b. Spinal metastases		
Role of surgery in spinal metastases	IV	B
c. Spinal compression		
Role of surgery in spinal compression	IV	B
d. Type of surgery		
Complete removal of metastatic lesions	IV	B
Vertebroplasty/kypheoplasty in painful metastatic lesions	IV	B
7. Role of radiotherapy in bone metastases		
a. External beams in bone metastases		
Pain control in hypofractionated short vs long radiation therapy	I	A
Timing of radiation therapy	II	B
Pain control in monofractionated vs multifractionated radiation therapy	I	A
Monofractionated treatment of painful metastatic lesion	I	A
Hypofractionated treatment of painful metastatic lesion	I	A
Antalgic effects and complete response	II	B
Reirradiation feasibility	III	B
Reirradiation dosage	III	B
b. Radiotherapy in medullary compression		
Therapy for good prognosis patients	III	C
Therapy for bad prognosis patients	I	A
Reirradiation in medullary compression	VI	C
c. Radiomethabolic therapy		
Efficacy of radiomethabolic therapy	I	A
Synergisms vs side effects of combining chemotherapy and radiomethabolic therapy	I	B
Inefficacy of combining of external beam radiotherapy and radiomethabolic therapy	I	B

N/A: not applicable.
Level of evidences (I–VI) and grade of recommendations (A–E) were provided according to the recommendations of the Italian Centre for the Evaluation of the Efficacy of Health Assistance coordinated by the Italian National Health Institute (Istituto Superiore di Sanità) and are presented in Table 1.

We performed an analysis of levels of evidence and respective grades of recommendations of the guidelines for treatment of bone metastases by AIOM.

Spearman’s rank correlation coefficient was calculated per each topic of the guidelines, a p value < 0.05 was considered statistically significant. The final correlation was performed using a linear regression model (GraphPad Prims version 5.04, La Jolla California USA); linear r² value was reported to weight the results and a p value < 0.05 was considered statistically significant.

3. Results

The results of our analysis showed a statistically significant correlation between the levels of evidence and the grades of recommendation in the following topics: use of bisphosphonates in metastatic cancers (p < 0.01); use of bisphosphonates in the prevention and treatment of cancer treatment induced bone loss (p < 0.01); safety of bisphosphonates use (p < 0.05); role of bisphosphonates in specific settings (p < 0.01); role of orthopedic surgery in bone metastases (p < 0.0001); role of radiotherapy in bone metastases (p < 0.01).

Finally, a statistically significant correlation was also found considering all the levels of evidence and grades of recommendations together regardless of the division in topics (r² = 0.4454, p < 0.0001; Fig. 1).

4. Discussion

EBGs represent a milestone for modern evidence-based clinical practice; they indeed substantially improve clinical care [29]. Nevertheless, EBGs frequently vary widely in quality [26,27], thus their evaluation is of critical importance. Among several evaluation tools, the AGREE instrument is the most widely used, even though it has known limitations, i.e. the impossibility to classify EBGs as good or bad and to assess the quality of the evidences supporting the recommendations.

In order to overcome these limitations, we performed an analysis of levels of evidence and respective grades of recommendations of the guidelines for treatment of bone metastases by AIOM. In six out of seven topics, levels of evidence and respective grades of recommendations significantly correlated. Moreover, a statistically significant correlation was also found considering all the levels of evidence and grades of recommendation together regardless of the division in topics. These results indicate that the authors of the guidelines worked scientifically with a correct approach and that these guidelines are likely to be adherent with modern medical literature.

However, we cannot exclude that a significant correlation for some topics could be due to low levels of evidences from medical literature and consequent low grades of recommendations.

Moreover, the lack of concordance in specific items could also derive from the impossibility for the physicians to prescribe a specific drug in a specific setting (i.e. low grade of recommendation) due to the delayed approval by regulatory agencies (e.g. FDA, EMA) even in presence of adequate scientific literature (i.e. high level of evidence).

The critical evaluation of EBGs is an underestimated issue in current clinical practice. Moreover, specific methodological aspects for the evaluation of EBGs are of increasing interest in the medical oncology community. Here we provide clinicians with a quick tool to evaluate the internal consistence of EBGs. Further analysis should confirm the reliability of this method, which could be easily implemented in future EBGs.

References

[1] Aapro M, Abrahamsson PA, Body JJ, Coleman RE, Colomer R, Costa L, et al. Guidance on the use of bisphosphonates in solid tumours: recommendations of an international expert panel. Annals of Oncology 2007;19:420–32.
[2] AGREE Collaboration. Development and validation of an international appraisal instrument for assessing the quality of clinical practice guidelines: the AGREE project. Quality and Safety in Health Care 2003;12:18–23.
[3] Boyd EA, Bero LA. Improving the use of research evidence in guideline development: 4. managing conflicts of interests. Health Research Policy and Systems 2006;4:16.
[4] Brouwers MC, Kho ME, Brownow GP, Burgers JS, Cluzeau F, Feder G, et al. Development of the AGREE II, part 1: performance, usefulness and areas for improvement. CMAJ: Canadian Medical Association Journal 2010;182:1045–52.
[5] Brouwers MC, Kho ME, Brownow GP, Burgers JS, Cluzeau F, Feder G, et al. Development of the AGREE II, part 2: assessment of validity of items and tools to support application. CMAJ: Canadian Medical Association Journal 2010;182:E472–8.
[6] Brouwers MC, Kho ME, Brownow GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ: Canadian Medical Association Journal 2010;182:839–42.
[7] Edjeer TT. Improving the use of research evidence in guideline development: 11. Incorporating considerations of cost-effectiveness, affordability and resource implications. Health Research Policy and Systems 2006;4:23.
[8] Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA: Journal of the American Medical Association 1992;268:2420–5.
[9] Fretheim A, Schünemann HJ, Oxman AD. Improving the use of research evidence in guideline development: 3. group composition and consultation process. Health Research Policy and Systems 2006;4:15.
[10] Fretheim A, Schünemann HJ, Oxman AD. Improving the use of research evidence in guideline development: 5. group processes. Health Research Policy and Systems 2006;4:17.
[11] Fretheim A, Schünemann HJ, Oxman AD. Improving the use of research evidence in guideline development: 15. disseminating and implementing guidelines. Health Research Policy and Systems 2006;4:27.
[12] Graham ID, Calder LA, Hébert PC, Carter AO, Tettoe JM. A comparison of clinical practice guideline appraisal instruments. International Journal of Technology Assessment in Health Care 2000;16:1024–38.
[13] Haddj P, Body JJ, Aapro MS, Brufsky A, Coleman RE, Guise T, et al. Practical guidance for the management of aromatase inhibitor-associated bone loss. Annals of Oncology 2007;9:1407–16.
[14] Oxman AD, Schünemann HJ, Fretheim A. Improving the use of research evidence in guideline development: 2. priority setting. Health Research Policy and Systems 2006;4:14.
[15] Oxman AD, Schünemann HJ, Fretheim A. Improving the use of research evidence in guideline development: 7. deciding what evidence to include. Health Research Policy and Systems 2006;4:19.
[16] Oxman AD, Schünemann HJ, Fretheim A. Improving the use of research evidence in guideline development: 8. synthesis and presentation of evidence. Health Research Policy and Systems 2006;4:20.
[17] Oxman AD, Schünemann HJ, Fretheim A. Improving the use of research evidence in guideline development: 12. incorporating considerations of equity. Health Research Policy and Systems 2006;4:24.
[18] Oxman AD, Schünemann HJ, Fretheim A. Improving the use of research evidence in guideline development: 14. reporting guidelines. Health Research Policy and Systems 2006;4:26.
[19] Oxman AD, Schünemann HJ, Fretheim A. Improving the use of research evidence in guideline development: 16. evaluation. Health Research Policy and Systems 2006;4:28.
[20] Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence-based medicine: what it is and what it isn’t. BMJ 1996;312:71–2.
[21] Schünemann HJ, Fretheim A, Oxman AD. Improving the use of research evidence in guideline development: 1. guidelines for guidelines. Health Research Policy and Systems 2006;4:13.
[22] Schünemann HJ, Oxman AD, Fretheim A. Improving the use of research evidence in guideline development: 6. determining which outcomes are important. Health Research Policy and Systems 2006;4:18.
[23] Schünemann HJ, Fretheim A, Oxman AD. Improving the use of research evidence in guideline development: 9. grading evidence and recommendations. Health Research Policy and Systems 2006;4:21.
[24] Schünemann HJ, Fretheim A, Oxman AD. Improving the use of research evidence in guideline development: 10. integrating values and consumer involvement. Health Research Policy and Systems 2006;4:22.
[25] Schünemann HJ, Fretheim A, Oxman AD. Improving the use of research evidence in guideline development: 13. applicability, transferability and adaptation. Health Research Policy and Systems 2006;4:25.
[26] Shaneyfelt TM, Mayo-Smith MF, Rothwangl J. Are guidelines following guidelines? The methodological quality of clinical practice guidelines in the peer-reviewed medical literature. JAMA: Journal of the American Medical Association 1999;281:1900–5.
[27] Vigna-Taglianti F, Vineis P, Liberati A, Faggiano F. Quality of systematic reviews used in guidelines for oncology practice. Annals of Oncology 2006;17:691–701.
[28] Vlayen J, Aertgeerts B, Hannes K, Sermeus W, Ramaekers D. A systematic review of appraisal tools for clinical practice guidelines: multiple similarities and one common deficit. International Journal for Quality in Health Care 2005;17:235–42.
[29] Woolf SH, Grol R, Hutchinson A, Eccles M, Grimshaw J. Clinical guidelines: potential benefits, limitations, and harms of clinical guidelines. BMJ 1999;318:527–30.