Indices of inseparability in towers of field extensions

Kevin Keating
Department of Mathematics
University of Florida
Gainesville, FL 32611
USA
keating@ufl.edu

February 24, 2014

Abstract

Let K be a local field whose residue field has characteristic p and let L/K be a finite separable totally ramified extension of degree $n = ap^\nu$. The indices of inseparability i_0, i_1, \ldots, i_ν of L/K were defined by Fried in the case $\text{char}(K) = p$ and by Heiermann in the case $\text{char}(K) = 0$; they give a refinement of the usual ramification data for L/K. The indices of inseparability can be used to construct “generalized Hasse-Herbrand functions” $\phi^j_{L/K}$ for $0 \leq j \leq \nu$. In this paper we give an interpretation of the values $\phi^j_{L/K}(c)$ for natural numbers c. We use this interpretation to study the behavior of generalized Hasse-Herbrand functions in towers of field extensions.

1 Introduction

Let K be a local field whose residue field \overline{K} is a perfect field of characteristic p, and let K^{sep} be a separable closure of K. Let L/K be a finite totally ramified subextension of K^{sep}/K. The indices of inseparability of L/K were defined by Fried $[2]$ in the case $\text{char}(K) = p$, and by Heiermann $[5]$ in the case $\text{char}(K) = 0$. The indices of inseparability of L/K determine the ramification data of L/K (as defined for instance in Chapter IV of $[7]$), but the ramification data does not always determine the indices of inseparability. Therefore the indices of inseparability of L/K may be viewed as a refinement of the usual ramification data of L/K.

Let π_K, π_L be uniformizers for K, L. The most natural definition of the ramification data of L/K is based on the valuations of $\sigma(\pi_L) - \pi_L$ for K-embeddings $\sigma : L \to K^{\text{sep}}$; this is the approach used in Serre’s book $[7]$. The ramification data can also be defined in terms of the relation between the norm map $N_{L/K}$ and the filtrations of the unit groups of L and K, as in Fesenko-Vostokov $[1]$. This approach can be used to derive the
well-known relation between higher ramification theory and class field theory. Finally, the ramification data can be computed by expressing π_K as a power series in π_L with coefficients in the set R of Teichmüller representatives for \overline{K}. This third approach, which is used by Fried and Heiermann, makes clear the connection between ramification data and the indices of inseparability.

Heiermann [5] defined “generalized Hasse-Herbrand functions” $\phi^j_{L/K}$ for $0 \leq j \leq \nu$. In Section 2 we give an interpretation of the values $\phi^j_{L/K}(c)$ of these functions at non-negative integers c. This leads to an alternative definition of the indices of inseparability which is closely related to the third method for defining the ramification data. In Section 3 we consider a tower of finite totally ramified separable extensions $M/L/K$. We use our interpretation of the values $\phi^j_{L/K}(c)$ to study the relations between the generalized Hasse-Herbrand functions of L/K, M/L, and M/K.

Notation

$\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, \ldots \}$

$v_p = p$-adic valuation on \mathbb{Z}

K = local field with perfect residue field \overline{K} of characteristic $p > 0$

$K^{sep} =$ separable closure of K

$v_K =$ valuation on K^{sep} normalized so that $v_K(K^\times) = \mathbb{Z}$

$\mathcal{O}_K = \{\alpha \in K : v_K(\alpha) \geq 0\} =$ ring of integers of K

$\pi_K =$ uniformizer for K

$R =$ set of Teichmüller representatives for \overline{K}

$L/K =$ finite totally ramified subextension of K^{sep}/K of degree $n > 1$, with $v_p(n) = \nu$

$M/L =$ finite totally ramified subextension of K^{sep}/L of degree $m > 1$, with $v_p(m) = \mu$

v_K, \mathcal{O}_K, and π_K have natural analogs for L and M

2 Generalized Hasse-Herbrand functions

We begin by recalling the definition of the indices of inseparability i_j ($0 \leq j \leq \nu$) for a nontrivial totally ramified separable extension L/K of degree $n = ap^\ell$, as formulated by Heiermann [5]. Let $R \subset \mathcal{O}_K$ be the set of Teichmüller representatives for \overline{K}. Then there is a unique series $\hat{F}(X) = \sum_{h=0}^{\infty} a_h X^{h+n}$ with coefficients in R such that $\pi_K = \hat{F}(\pi_L)$. For $0 \leq j \leq \nu$ set

$$i_j = \min\{h \geq 0 : v_p(h + n) \leq j, a_h \neq 0\}. \quad (2.1)$$

If $\text{char}(K) = 0$ it may happen that $a_h = 0$ for all $h \geq 0$ such that $v_p(h + n) \leq j$, in which case we set $i_j = \infty$. The indices of inseparability are defined recursively in terms of i_j by $i_\nu = i_\nu = 0$ and $i_j = \min\{i_{j_1} + v_L(p) : j_1 \leq j \leq 1\}$ for $j = \nu - 1, \ldots, 1, 0$. Thus

$$i_j = \min\{i_{j_1} + (j_1 - j)v_L(p) : j_1 \leq j \leq 1\}.$$

It follows from the definitions that $0 = i_\nu < i_{\nu-1} \leq i_{\nu-1} \leq \cdots \leq i_0$. If $\text{char}(K) = p$ then $(j_1 - j)v_L(p) = 0$ for $j_1 = j$ and $(j_1 - j)v_L(p) = \infty$ for $j_1 > j$, so $i_j = \tilde{i_j}$ in this
case. If char$(K) = 0$ then i_j can depend on the choice of π_L, and it is not obvious that i_j is a well-defined invariant of the extension L/K. We will have more to say about this issue in Remark 2.5.

Following [3, (4.4)], for $0 \leq j \leq \nu$ we define functions $\tilde{\phi}^j_{L/K} : [0, \infty) \to [0, \infty)$ by $\tilde{\phi}^j_{L/K}(x) = i_j + p^j x$. The generalized Hasse-Herbrand functions $\phi^j_{L/K} : [0, \infty) \to [0, \infty)$ are then defined by

$$\phi^j_{L/K}(x) = \min \{ \tilde{\phi}^j_{L/K}(x) : 0 \leq j_0 \leq j \}. \quad (2.2)$$

Hence we have $\phi^j_{L/K}(x) \leq \phi^{j'}_{L/K}(x)$ for $0 \leq j' \leq j$. Let $\phi_{L/K} : [0, \infty) \to [0, \infty)$ be the usual Hasse-Herbrand function, as defined for instance in Chapter IV of [7]. Then by [5, Cor. 6.11] we have $\phi^j_{L/K}(x) = n\phi_{L/K}(x)$.

We wish to reformulate the definition of $\phi^j_{L/K}(x)$. We will use the following elementary fact about binomial coefficients, which is proved in [3, Lemma 5.6].

Lemma 2.1 Let $b \geq c \geq 1$. Then $v_p \left(\binom{b}{c} \right) \geq v_p(b) - v_p(c)$, with equality if $v_p(b) \geq v_p(c)$ and c is a power of p.

Proposition 2.2 For $0 \leq j \leq \nu$ and $x \geq 0$ we have

$$\phi^j_{L/K}(x) = \min \left\{ h + v_L \left(\binom{h + n}{p^{j_0}} \right) + p^{j_0} x : 0 \leq j_0 \leq j, a_h \neq 0 \right\}. \quad \text{(2.1)}$$

Proof: Using (2.1)–(2.2) we get

$$\phi^j_{L/K}(x) = \min \{ h + (j_1 - j_0) v_L(p) + p^{j_0} x : 0 \leq j_0 \leq j, j_0 \leq j_1 \leq \nu, v_p(h + n) \leq j_1, a_h \neq 0 \}. \quad \text{(2.2)}$$

If $j_0 > v_p(h + n)$ then we can replace j_0 with $j_0 - 1$ and j_1 with $j_1 - 1$ without increasing the value of $h + (j_1 - j_0) v_L(p) + p^{j_0} x$. Hence we may assume $j_0 \leq v_p(h + n)$ and $j_1 = v_p(h + n)$. It follows that

$$\phi^j_{L/K}(x) = \min \left\{ h + (v_p(h + n) - j_0) v_L(p) + p^{j_0} x : 0 \leq j_0 \leq j, j_0 \leq v_p(h + n), a_h \neq 0 \right\}$$

$$= \min \left\{ h + v_L \left(\binom{h + n}{p^{j_0}} \right) + p^{j_0} x : 0 \leq j_0 \leq j, j_0 \leq v_p(h + n), a_h \neq 0 \right\}$$

$$= \min \left\{ h + v_L \left(\binom{h + n}{p^{j_0}} \right) + p^{j_0} x : 0 \leq j_0 \leq j, a_h \neq 0 \right\},$$

where the second and third equalities follow from Lemma 2.1. \hfill \Box

For $d \geq 0$ set $B_d = \mathcal{O}_L / \mathcal{M}_L^{n+d}$ and let $A_d = (\mathcal{O}_K + \mathcal{M}_L^{n+d}) / \mathcal{M}_L^{n+d}$ be the image of \mathcal{O}_K in B_d. For $0 \leq j \leq \nu$ set $B_d[\epsilon_j] = B_d[\epsilon] / (\epsilon^{p^j+1})$, so that $\epsilon_j = \epsilon + (\epsilon^{p^j+1})$ satisfies $\epsilon_j^{p^j+1} = 0$.

3
Proposition 2.3 Let \(0 \leq j \leq \nu \), let \(d \geq c \geq 0 \), and let \(u \in \mathcal{O}_L[\epsilon_j]^{\times} \). Also let \(F(X) \in \mathcal{O}_K[[X]] \) be a power series with Weierstrass degree \(n \) such that \(F(\pi_L) = \pi_K \). Then the following are equivalent:

1. \(F(\pi_L + u\pi_L^{c+1}\epsilon_j) \equiv \pi_K \) (mod \(\pi_L^{n+d} \)).
2. There exists an \(A_d \)-algebra homomorphism \(s_d : B_d \to B_d[\epsilon_j] \) such that \(s_d(\pi_L) = \pi_L + u\pi_L^{c+1}\epsilon_j \).
3. There exists an \(A_d \)-algebra homomorphism \(s_d : B_d \to B_d[\epsilon_j] \) such that
 \[
 s_d \equiv \text{id}_{B_d} \pmod{\pi_L^{c+1}\epsilon_j} \\
 s_d \not\equiv \text{id}_{B_d} \pmod{\pi_L^{c+1}\epsilon_j \cdot (\pi_L, \epsilon_j)}.
 \]

Proof: Suppose Condition 1 holds. Let \(\tilde{u}(X, \epsilon_j) \) be an element of \(\mathcal{O}_K[[X]][\epsilon_j] \) such that \(\tilde{u}(\pi_L, \epsilon_j) \equiv u \) (mod \(\pi_L^{n+d} \)). Since the Weierstrass polynomial of \(F(X) - \pi_K \) is the minimum polynomial of \(\pi_L \) over \(K \) we have \(\mathcal{O}_L \cong \mathcal{O}_K[[X]]/(F(X) - \pi_K) \). Therefore the \(\mathcal{O}_K \)-algebra homomorphism \(\tilde{s} : \mathcal{O}_K[[X]] \to \mathcal{O}_K[[X]][\epsilon_j] \) defined by \(\tilde{s}(X) = X + \tilde{u}X^{c+1}\epsilon_j \) induces an \(A_d \)-algebra homomorphism \(s_d : B_d \to B_d[\epsilon_j] \) such that \(s_d(\pi_L) = \pi_L + u\pi_L^{c+1}\epsilon_j \).

Therefore Condition 2 holds. On the other hand, if Condition 2 holds then applying the homomorphism \(s_d \) to the congruence \(F(\pi_L) \equiv \pi_K \) (mod \(\pi_L^{n+d} \)) gives Condition 1. Hence the first two conditions are equivalent. Suppose Condition 2 holds. Since \(d \geq c \) and \(n \geq 2 \) we see that \(s_d \) satisfies the requirements of Condition 3. Suppose Condition 3 holds. Then \(s_d(\pi_L) = \pi_L + v\pi_L^{c+1}\epsilon_j \) for some \(v \in B_d[\epsilon_j]^{\times} \). Let \(\gamma : B_d[\epsilon_j] \to B_d[\epsilon_j] \) be the \(B_d \)-algebra homomorphism such that \(\gamma(\epsilon_j) = uv^{-1}\epsilon_j \), and define \(s'_d : B_d \to B_d[\epsilon_j] \) by \(s'_d = \gamma \circ s_d \). Then \(s'_d \) satisfies the requirements of Condition 2. \(\square \)

The assumptions on \(F(X) \) imply that \(F(\pi_L + \pi_L^{c+1}\epsilon_j) \equiv \pi_K \) (mod \(\pi_L^{n+c} \)). Therefore the conditions of the proposition are satisfied when \(d = c \). On the other hand, since \(L/K \) is separable we have \(F(\pi_L + u\pi_L^{c+1}\epsilon_j) \neq \pi_K \). Hence for \(d \) sufficiently large the conditions in the proposition are not satisfied. We define a function \(\Phi_{L/K}^j : \mathbb{N}_0 \to \mathbb{N}_0 \) by setting \(\Phi_{L/K}^j(c) \) equal to the largest integer \(d \) satisfying the equivalent conditions of Proposition 2.3. By Condition 3 we see that this definition does not depend on the choice of \(\pi_L, u, \) or \(F \).

We now show that \(\Phi_{L/K}^j \) and \(\phi_{L/K}^j \) agree on nonnegative integers. This gives an alternative description of the restriction of \(\phi_{L/K}^j \) to \(\mathbb{N}_0 \) which does not depend on the indices of inseparability.

Proposition 2.4 For \(c \in \mathbb{N}_0 \) we have \(\Phi_{L/K}^j(c) = \phi_{L/K}^j(c) \).

Proof: Let \(c \in \mathbb{N}_0 \). Since \(\tilde{F}(X) \) satisfies the hypotheses for \(F(X) \) in Proposition 2.3 \(\Phi_{L/K}^j(c) \) is equal to the largest \(d \in \mathbb{N}_0 \) such that

\[
\tilde{F}(\pi_L + \pi_L^{c+1}\epsilon_j) \equiv \tilde{F}(\pi_L) \pmod{\pi_L^{n+d}}.
\]
For \(m \geq 0 \) define
\[
(D^m \hat{F})(X) = \sum_{h=0}^{\infty} \left(\begin{array}{c} h + n \\ m \end{array} \right) a_h X^{h+n-m}.
\]

Then
\[
\hat{F}(X + \epsilon_j X^{c+1}) = \sum_{m=0}^{p^{j+1}-1} (D^m \hat{F})(X) \cdot (\epsilon_j X^{c+1})^m.
\]

Since \(\epsilon_j, \epsilon_j^2, \ldots, \epsilon_j^{p^{j+1}-1} \) are linearly independent over \(\mathcal{O}_L \), (2.3) holds if and only if
\[
(D^m \hat{F})(\pi_L) \cdot \pi_L^{(c+1)m} \in \mathcal{M}_L^{n+d} \text{ for } 1 \leq m < p^{j+1}.
\] (2.4)

Hence by Proposition 2.2 it is sufficient to prove that (2.4) is equivalent to the following:
\[
h + v_L \left(\left(\begin{array}{c} h + n \\ p^{j_0} \end{array} \right) \right) + cp^{j_0} \geq d \text{ for all } j_0, h \text{ such that } 0 \leq j_0 \leq j \text{ and } a_h \neq 0. \] (2.5)

Assume first that (2.5) holds. Choose \(m \) such that \(1 \leq m < p^{j+1} \) and write \(m = rp^{j_0} \) with \(p \nmid r \) and \(j_0 \leq j \). Choose \(h \geq 0 \) such that \(a_h \neq 0 \) and set \(l = v_p(h+n) \). If \(m > h+n \) then \(\left(\begin{array}{c} h + n \\ m \end{array} \right) = 0 \), so we have
\[
\left(\begin{array}{c} h + n \\ m \end{array} \right) a_h \pi_L^{h+n-m} \cdot \pi_L^{(c+1)m} \in \mathcal{M}_L^{n+d}.
\] (2.6)

Suppose \(m \leq h+n \) and \(l \geq j_0 \). Using Lemma 2.1 we get
\[
v_p \left(\left(\begin{array}{c} h + n \\ m \end{array} \right) \right) \geq l - j_0 = v_p \left(\left(\begin{array}{c} h + n \\ p^{j_0} \end{array} \right) \right).
\]

Combining this with (2.5) we get
\[
h + v_L \left(\left(\begin{array}{c} h + n \\ m \end{array} \right) \right) + cm + n \geq h + v_L \left(\left(\begin{array}{c} h + n \\ p^{j_0} \end{array} \right) \right) + cp^{j_0} + n \geq n + d.
\]

Hence (2.6) holds in this case. Finally, suppose \(m \leq h+n \) and \(l < j_0 \leq j \). It follows from Lemma 2.1 that \(v_L \left(\left(\begin{array}{c} h + n \\ p^l \end{array} \right) \right) = 0 \), so by (2.5) we have \(h + c p^l \geq d \). Since \(m \geq p^{j_0} > p^l \) we get
\[
h + v_L \left(\left(\begin{array}{c} h + n \\ m \end{array} \right) \right) + cm + n \geq h + c p^l + n \geq n + d.
\]

Therefore (2.6) holds in this case as well. It follows that every term in \((D^m \hat{F})(\pi_L) \) lies in \(\mathcal{M}_L^{n+d} \), so (2.4) holds.
Assume conversely that (2.4) holds. Among all the nonzero terms that occur in any of the series
\[(D^m \hat{F})(\pi_L) \cdot \pi_L^{(c+1)p^i} = \sum_{h=0}^{\infty} a_h \left(\frac{h+n}{p^i}\right) \pi_L^{h+n+cp^i}\]
for \(0 \leq i \leq j\) let \(a_h \left(\frac{h+n}{p^i}\right) \pi_L^{n+h+cp^i}\) be a term whose \(L\)-valuation \(w\) is minimum. If \(\text{char}(K) = p\) then for each \(m \geq 1\) the nonzero terms of \((D^m \hat{F})(\pi_L)\) have distinct \(L\)-valuations, so it follows from (2.4) that \(w \geq n + d\). Suppose \(\text{char}(K) = 0\) and set \(l = v_p(h + n)\). If \(i > l\) then since \(v_L \left(\left(\frac{h+n}{p^i}\right)\right) = 0\) we have
\[v_L \left(\left(\frac{h+n}{p^i}\right) \pi_L^{n+h+cp^i}\right) \leq v_L \left(\left(\frac{h+n}{p^i}\right) \pi_L^{n+h+cp^i}\right) = w.\]
Therefore we may assume \(i \leq l\). Since \(v_p \left(\left(\frac{n}{p^i}\right)\right) = \nu - i\) and \(a_0 \neq 0\) we have \(l \leq \nu\).
Suppose \(w < n + d\). Then it follows from (2.4) that there is \(h' \neq h\) such that \(a_{h'} \neq 0\) and
\[v_L \left(\left(\frac{h'+n}{p^i}\right) \pi_L^{n+h'+cp^i}\right) = v_L \left(\left(\frac{h+n}{p^i}\right) \pi_L^{n+h+cp^i}\right). \tag{2.7}\]
Since \(n \mid v_L(p)\) this implies \(h' \equiv h \pmod{n}\). Since \(v_p(h + n) \leq \nu\) and \(v_p(h' + n) \leq \nu\) we get \(v_p(h' + n) = v_p(h + n) = l\). Therefore by Lemma 2.1 we have
\[v_p \left(\left(\frac{h'+n}{p^i}\right)\right) = v_p \left(\left(\frac{h+n}{p^i}\right)\right) = l - i.\]
Combining this with (2.7) gives \(h' = h\), a contradiction. Therefore \(w \geq n + d\) holds in general. Hence by the minimality of \(w\) we get (2.5). \(\Box\)

Remark 2.5 If \(\text{char}(K) = 0\) then the value of \(i_j\) may depend on the choice of uniformizer \(\pi_L\) for \(L\). It was proved in [3, Th. 7.1] that \(i_j\) is a well-defined invariant of the extension \(L/K\). This can also be deduced from Proposition 2.4 by setting \(c = 0\).

Remark 2.6 Let \(0 \leq j \leq \nu\). Even though the function \(\phi_{L/K}^j : [0, \infty) \to [0, \infty)\) may not be determined by its restriction to \(N_0\), it is determined by the sequence \((i_0, i_1, \ldots, i_j)\). Since \(i_j = \phi_{L/K}^j(0)\) this implies that the collection consisting of the restrictions of \(\phi_{L/K}^j\) to \(N_0\) for \(0 \leq j_0 \leq j\) determines \(\phi_{L/K}^j\).

For \(0 \leq j \leq \nu\) let \(B_d[\epsilon] = B_d[\epsilon]/(e^{p^i+1})\), so that \(\epsilon_j = \epsilon + (e^{p^i+1})\) satisfies \(\epsilon_j^{p^i+1} = 0\). Define \(\Phi_{L/K}\) : \(N_0 \to N_0\) analogously to \(\Phi_{L/K}^j\), using \(\epsilon_j\) in place of \(\epsilon_j\). Then the arguments in this section remain valid with \(\epsilon_j, \Phi_{L/K}^j\) replaced by \(\epsilon_j, \Phi_{L/K}\). (In particular, note that the proof that (2.4) implies (2.5) only uses the fact that (2.4) holds with \(m = p^i\) for \(0 \leq i \leq j\).) Hence by Propositions 2.3 and 2.4 and their analogs for \(\Phi_{L/K}\) we get the following:
Corollary 2.7 Let \(c, d \in \mathbb{N}_0 \), let \(u \in \mathcal{O}_L[\epsilon_j]^{\times} \), and let \(\pi \in \mathcal{O}_L[\epsilon_j]^{\times} \). In addition, let \(F(X) \in \mathcal{O}_K[[X]] \) be a power series with Weierstrass degree \(n \) such that \(F(\pi_L) = \pi_K \). Then the following are equivalent:

1. \(\phi^j_{L/K}(c) \geq d \).
2. \(F(\pi_L + u\pi_L^{c+1}\epsilon_j) \equiv F(\pi_L) \pmod{\pi_L^{n+d}} \).
3. \(F(\pi_L + \pi_L^{c+1}\epsilon_j) \equiv F(\pi_L) \pmod{\pi_L^{n+d}} \).

Some of the proofs in Section 3 depend on “tame shifts”: Let \(e \geq 1 \) be relatively prime to \(p[L : K] = pn \), let \(K_e/K \) be a totally ramified subextension of \(K^{sep}/K \) of degree \(e \), and set \(L_e = LK_e \). Then \(L_e/K_e \) is a totally ramified extension of degree \(n \) which is closely related to \(L/K \):

Lemma 2.8 Let \(x \geq 0 \). Then for \(0 \leq j \leq \nu \) we have

\[
\tilde{\phi}^j_{L_e/K_e}(x) = e \tilde{\phi}^j_{L/K}(x/e) \\
\phi^j_{L_e/K_e}(x) = e \phi^j_{L/K}(x/e).
\]

Proof: It suffices to show that \(e^{i_0}, e^{i_1}, \ldots, e^{i_\nu} \) are the indices of inseparability of \(L_e/K_e \).

By Proposition 2.4 this is equivalent to showing that \(\Phi^j_{L_e/K_e}(0) = e \Phi^j_{L/K}(0) \). There are uniformizers \(\pi_K, \pi_{K_e}, \pi_L, \pi_{L_e} \) for \(K, K_e, L, L_e \) such that \(\pi_{L_e} = \pi_K \) and \(\pi_{L_e} = \pi_L \). As above we let \(\tilde{\mathcal{F}}(X) \) be a series with coefficients in \(R \) such that \(\pi_K = \tilde{\mathcal{F}}(\pi_L) \). Then \(\pi_{K_e} = \tilde{\mathcal{F}}(\pi_{L_e})^{1/e} \). Hence the series \(\tilde{\mathcal{F}}_e(X) = \tilde{\mathcal{F}}(X^{1/e}) \in \mathcal{O}_K[[X]] \) satisfies \(\tilde{\mathcal{F}}_e(\pi_{L_e}) = \pi_{K_e} \).

If \(\Phi^j_{L/K}(0) \geq d \) then

\[
\tilde{\mathcal{F}}_e(\pi_{L_e} + \pi_{L_e}\epsilon_j) = \tilde{\mathcal{F}}(\pi_L(1 + \epsilon_j)^e)^{1/e} \\
\equiv \tilde{\mathcal{F}}(\pi_L)^{1/e} \pmod{\pi_K \cdot \pi_L^d} \\
\equiv \tilde{\mathcal{F}}_e(\pi_{L_e}) \pmod{\pi_{L_e}^{n+de}},
\]

and hence \(\Phi^j_{L_e/K_e}(0) \geq de \). Conversely, if \(\Phi^j_{L_e/K_e}(0) \geq d \) then

\[
\tilde{\mathcal{F}}(\pi_L + \pi_L\epsilon_j) = \tilde{\mathcal{F}}_e(\pi_{L_e}(1 + \epsilon_j)^e)^e \\
\equiv \tilde{\mathcal{F}}_e(\pi_{L_e})^e \pmod{\pi_K \cdot \pi_L^{de}} \\
\equiv \tilde{\mathcal{F}}(\pi_L) \pmod{\pi_L^{n+[d/e]}},
\]

and hence \(\Phi^j_{L/K}(0) \geq [d/e] \). By combining these results we get \(\Phi^j_{L_e/K_e}(0) = e \Phi^j_{L/K}(0) \). □
3 Towers of extensions

In this section we consider a tower $M/L/K$ of finite totally ramified subextensions of K^{sep}/K. Our goal is to determine relations between the generalized Hasse-Herbrand functions $\phi^j_{M/K}$ of the extension M/K and the corresponding functions for L/K and M/L. It is well-known that the indices of inseparability of L/K and M/L do not always determine the indices of inseparability of M/K (see for instance Example 5.8 in [3] or Remark 7.8 in [5]). Therefore we cannot expect to obtain a general formula which expresses $\phi^j_{M/K}$ in terms of $\phi^j_{L/K}$ and $\phi^k_{M/L}$. However, we do get a lower bound for $\phi^j_{M/K}(x)$, and we are able to show that this lower bound is equal to $\phi^j_{M/K}(x)$ in certain cases.

Set $[L : K] = n$, $[M : L] = m$, $\nu = v_p(n)$, and $\mu = v_p(m)$. Let π_K, π_L, π_M be uniformizers for K, L, M. Let $F(X) \in \mathcal{O}_K[[X]]$ be a power series with Weierstrass degree n such that $F(\pi_L) = \pi_K$ and define

$$F^*(\epsilon) = \pi_K^{-1}(F(\pi_L + \pi_L\epsilon) - \pi_K).$$

Then $F^*(\epsilon) \in \mathcal{O}_L[[\epsilon]]$ is uniquely determined by π_L up to multiplication by an element of $\mathcal{O}_L[[\epsilon]]^\times$.

Write $F^*(\epsilon) = c_1\epsilon + c_2\epsilon^2 + \cdots$ and define the “valuation function” of F^* with respect to ν_K by

$$\Psi_{F^*(\epsilon)}^K(x) = \min \{v_K(c_i) + ix : i \geq 1\} \quad (3.1)$$

for $x \in [0, \infty)$. The graph of $\Psi_{F^*(\epsilon)}^K$ is the Newton copolygon of $F^*(\epsilon)$ with respect to ν_K. Gross [4, Lemma 1.5] attributes the following observation to Tate:

Proposition 3.1 For $x \geq 0$ we have $\phi_{L/K}(x) = \Psi_{F^*(\epsilon)}^K(x)$.

Suppose we also have $G(X) \in \mathcal{O}_K[[X]]$ with Weierstrass degree $m = [M : L]$ such that $G(\pi_M) = \pi_L$. Set $H(X) = F(G(X))$. Then $H(X) \in \mathcal{O}_K[[X]]$ has Weierstrass degree $nm = [M : K]$ and $H(\pi_M) = \pi_K$. It follows that we can use the series

$$G^*(\epsilon) = \pi_L^{-1}(G(\pi_M + \pi_M\epsilon) - \pi_L)$$

$$H^*(\epsilon) = \pi_K^{-1}(H(\pi_M + \pi_M\epsilon) - \pi_K)$$

to compute the Hasse-Herbrand functions for the extensions M/L and M/K. As Lubin points out in [6, Th. 1.6], by applying Proposition 3.1 to the relation $H^*(\epsilon) = F^*(G^*(\epsilon))$, we obtain the well-known composition formula $\phi_{M/K} = \phi_{L/K} \circ \phi_{M/L}$.

We wish to extend the results above to apply to the generalized Hasse-Herbrand functions $\phi^j_{L/K}$. For $0 \leq j \leq \nu$ let $F^*(\epsilon_j)$ denote the image of $F^*(\epsilon)$ in $\mathcal{O}_L[[\epsilon]]/(\epsilon^{p^{j+1}}) \cong \mathcal{O}_L[\epsilon_j]$. Alternatively, we may view $F^*(\epsilon_j)$ as the polynomial obtained by discarding all the terms of $F^*(\epsilon)$ of degree $\geq p^{j+1}$. Therefore it makes sense to consider the valuation function $\Psi_{F^*(\epsilon_j)}^L(x)$ of $F^*(\epsilon_j)$.

Proposition 3.2 $\phi^j_{L/K}(x) = \Psi_{F^*(\epsilon_j)}^L(x)$ for all $x \in [0, \infty)$.
Proof: We first prove that $\phi_{L/K}^j$ and $\Psi_{F^*(\epsilon)}^L$ agree on \mathbb{N}_0. Let $d \geq b \geq 0$. Then $\Phi_{L/K}^j(b) \geq d$ if and only if $F^*(\pi_{L}^j \epsilon) \equiv 0 \pmod{\pi_{L}^d}$. By (3.1) this is equivalent to $\Psi_{F^*(\epsilon)}^L(b) \geq d$. Since $\Phi_{L/K}^j$ and $\Psi_{F^*(\epsilon)}^L$ map \mathbb{N}_0 to \mathbb{N}_0, this implies $\Phi_{L/K}^j(c) = \Psi_{F^*(\epsilon)}^L(c)$ for all $c \in \mathbb{N}_0$. Using Proposition 2.7 we deduce that $\Phi_{L/K}^j(c) = \Psi_{F^*(\epsilon)}^L(c)$ for $c \in \mathbb{N}_0$.

Now choose $e \geq 1$ relatively prime to $p | [L : K] = pn$ and let K_e/K be a totally ramified subextension of K^sep/K of degree e. Then $L_e = L K_e$ is a totally ramified extension of L degree e. Let $\pi_K, \pi_K, \pi_L, \pi_{L_e}$ be uniformizers for K, K_e, L, L_e such that $\pi_{K_e}^x = \pi_K$ and $\pi_{L_e}^x = \pi_L$. Then $\pi_K = F(\pi_{L_e}^e)^{1/e}$, so the series $F_e(X) = F(X^e)^{1/e}$ satisfies $F_e(\pi_{L_e}) = \pi_{K_e}$. Let

$$F_e^*(\epsilon) = \pi_{K_e}^{-1}(F_e(\pi_{L_e} + \pi_{L_e} \epsilon) - \pi_{K_e}) = (1 + F^*(1 + \epsilon)^e - 1)^{1/e} - 1.$$

Then $F_e^*(\epsilon) = \eta^{-1}(F_e^* (\eta(\epsilon)))$, where $\eta(\epsilon) = (1 + \epsilon)^e - 1$ and $\eta^{-1}(\epsilon) = (1 + \epsilon)^{1/e} - 1$ have coefficients in \mathcal{O}_K. It follows that for $0 \leq j \leq \nu$ we have $F_e^*(\epsilon_j) = \eta^{-1}(F_e^*(\eta(\epsilon_j)))$, so for $c \in \mathbb{N}_0$ we get

$$\Psi_{F^*(\epsilon)}^L(c) = \Psi_{F^*(\epsilon)}^L(c) = e \Psi_{F^*(\epsilon)}^L(c/e).$$

By Lemma 2.7 we have $\phi_{L/K}^j(c/e) = e^{-1}\phi_{L/K}^j(c_e)$. Since the proposition holds for the extension L_e/K_e with $x = c$ this implies

$$\phi_{L/K}^j(c/e) = e^{-1}\phi_{L/K}^j(c/e) = \Psi_{F^*(\epsilon)}^L(c/e).$$

Since the set $\{c/e : c, e \in \mathbb{N}, \gcd(e, pn) = 1\}$ is dense in $[0, \infty)$, and $\phi_{L/K}^j, \Psi_{F^*(\epsilon)}^L$ are continuous on $[0, \infty)$, we conclude that $\phi_{L/K}^j(x) = \Psi_{F^*(\epsilon)}^L(x)$ for all $x \in [0, \infty)$. \square

Following [5] (4.4), for $0 \leq j \leq \nu$ and $m \in \mathbb{N}$ we define functions on $[0, \infty)$ by

$$\tilde{\phi}_{L/K}^j(m) = m \phi_{L/K}^j(x/m) = mi_j + p^j x$$

$$\phi_{L/K}^j(m) = m \phi_{L/K}^j(x/m) = \min \{ \phi_{L/K}^j(x/m) : 0 \leq j_0 \leq j \}.$$

For $0 \leq l \leq \nu + \mu$ let

$$\Omega_l = \{(j, k) : 0 \leq j \leq \nu, 0 \leq k \leq \mu, j + k = l \},$$

and for $x \geq 0$ define

$$\lambda_{M/K}^l(x) = \min \{ \phi_{L/K}^j(m) : (j, k) \in \Omega_l \} = \min \{ \phi_{L/K}^j(m) : (j, k) \in \Omega_{l_0} \text{ for some } 0 \leq l_0 \leq l \}.$$

For $0 \leq a \leq l$ set

$$S^m_l(x) = \{(j, k) \in \Omega_a : \phi_{L/K}^j(m) = \lambda_{M/K}^l(x) \}.$$
Theorem 3.3 Let \(0 \leq l \leq \nu + \mu \) and \(x \in [0, \infty) \). Then

(a) \(\phi_{M/K}^l(x) \geq \lambda_{M/K}^l(x) \).

(b) Suppose there exists \(l_0 \leq l \) such that \(|S_l(x)| = 1 \). Then \(\phi_{M/K}^l(x) = \lambda_{M/K}^l(x) \).

The rest of the paper is devoted to proving this theorem. We first consider the cases where \(x = c \in \mathbb{N}_0 \). The proof in these cases is based on Proposition 2.4. To get information about \(\Phi_{M/K}^l(c) \) we compute the most significant terms of \(\hat{F}(\hat{G}(\pi_M + \pi_M^c + 1)) \).

It follows from Proposition 2.4 that for \(0 \leq j \leq \nu \) we have

\[\hat{F}(\pi_L(1 + \epsilon)) \equiv \pi_K \pmod{\pi^n_L \cdot (\pi_{\nu}^{i_j}, \epsilon^{p^j} + 1)}. \]

(3.2)

In addition, since \(X^n \) divides \(\hat{F}(X) \) we have

\[\hat{F}(\pi_L(1 + \epsilon)) \equiv \pi_K \pmod{\pi^n_L \cdot (\pi_{\nu}^{i_j}, \epsilon^{p^j + 1})}. \]

(3.3)

Define an ideal in \(\mathcal{O}_L[[\epsilon]] \) by

\[I_F = (\pi_{0}^{i_0}, \epsilon^{p_0}) \cap (\pi_{1}^{i_1}, \epsilon^{p_1}) \cap \cdots \cap (\pi_{\nu}^{i_\nu}, \epsilon^{p_{\nu} + 1}) \cap (\epsilon) \]

\[= (\pi_{0}^{i_0} \cdot \epsilon^{p_0}, \pi_{1}^{i_1} \cdot \epsilon^{p_1}, \ldots, \pi_{\nu}^{i_\nu} \cdot \epsilon^{p_{\nu}}). \]

It follows from (3.2) and (3.3) that

\[\hat{F}(\pi_L(1 + \epsilon)) \equiv \pi_K \pmod{\pi^n_L \cdot I_F}. \]

(3.4)

Let \(i'_0, i'_1, \ldots, i'_\mu \) be the indices of inseparability of \(M/L \). As above we find that

\[\hat{G}(\pi_M(1 + \epsilon)) \equiv \pi_L \pmod{\pi^m_M \cdot I_G}, \]

where \(I_G \) is the ideal in \(\mathcal{O}_M[[\epsilon]] \) defined by

\[I_G = (\pi_M^{i'_0} \cdot \epsilon^{p_0}, \pi_M^{i'_1} \cdot \epsilon^{p_1}, \ldots, \pi_M^{i'_\mu} \cdot \epsilon^{p_{\mu}}). \]

By replacing \(\epsilon \) with \(\pi_M^{i'_c} \epsilon \) we get

\[\hat{G}(\pi_M(1 + \pi_M^c \epsilon)) \equiv \pi_L \pmod{\pi^m_M \cdot I'_G}, \]

(3.5)

where \(I'_G \) is the ideal in \(\mathcal{O}_M[[\epsilon]] \) defined by

\[I'_G = (\pi_M^{i'_0} \cdot \epsilon^{p_0}, \pi_M^{i'_1} \cdot \epsilon^{p_1}, \ldots, \pi_M^{i'_\mu} \cdot \epsilon^{p_{\mu}}). \]
It follows from (3.4) and (3.5) that there are \(r_j, s_k \in R, \delta \in (\pi, \epsilon) \cdot I \), and \(\delta \in (\pi, \epsilon) \cdot I_g \) such that
\[
\hat{F}(\pi_L(1 + \epsilon)) = \pi_K \cdot \left(1 + \sum_{j=0}^{\nu} r_j \pi_L^i p^j + \delta \right) \tag{3.6}
\]
\[
\hat{G}(\pi_M(1 + \pi^c \epsilon)) = \pi_L \cdot \left(1 + \sum_{k=0}^{\mu} s_k \pi_M^k \pi_M(\epsilon) \pi^k + \delta \right). \tag{3.7}
\]

Define an ideal in \(\mathcal{O}_M[[\epsilon]] \) by
\[
I_{FG} = \left(\frac{\hat{G}}{\pi^c \cdot \pi_M^{\nu} \cdot \pi_M(\epsilon) \cdot \pi^k + \delta} : 0 \leq j \leq \nu, 0 \leq k \leq \mu \right) = \left(\frac{\lambda^g_{\pi, M \cdot K}(\epsilon)}{\pi^c \cdot \pi_M^{\nu} \cdot \pi_M(\epsilon) \cdot \pi^k + \delta} : 0 \leq g \leq \nu + \mu \right).
\]

Hence for \(d \geq 0 \) and \(0 \leq g \leq \nu + \mu \) we have \(\pi_M^d \pi^g \in I_{FG} \) if and only if \(d \geq \lambda^g_{\pi, M \cdot K}(\epsilon) \). We also define \(u = \pi_L / \pi_M^{\nu} \in \mathcal{O}_M^\times \).

Lemma 3.4 Let \(0 \leq j \leq \nu \). Then
\[
\pi_L^{i_j} \left(\sum_{k=0}^{\mu} s_k \pi_M^k \pi_M(\epsilon) \pi^k + \delta \right) \equiv u^{i_j} \sum_{k=0}^{\mu} s_k \pi_M^k \pi_M(\epsilon) \pi^k \pmod{(\pi, \epsilon) \cdot I_{FG}}.
\]

Proof: For \(0 \leq j \leq \nu \) define ideals in \(\mathbb{Z}[X_0, X_1, \ldots, X_\mu] \) by
\[
H_j = (p^h X_k^{j-h} : 1 \leq h \leq j, 0 \leq k \leq \mu).
\]

By induction on \(j \) we get
\[
(X_0 + X_1 + \cdots + X_\mu)^{p^j} \equiv X_0^{p^j} + X_1^{p^j} + \cdots + X_\mu^{p^j} \pmod{H_j}.
\]

Since both sides of this congruence are homogeneous polynomials of degree \(p^j \), it follows that
\[
(X_0 + X_1 + \cdots + X_\mu)^{p^j} \equiv X_0^{p^j} + X_1^{p^j} + \cdots + X_\mu^{p^j} \pmod{H_j}, \tag{3.8}
\]

where
\[
H_j = (p^h X_k^{j-h} X_w : 1 \leq h \leq j, 0 \leq k \leq \mu, 0 \leq w \leq \mu).
\]

Since \(\delta \in (\pi, \epsilon) \cdot I_g \) there are \(\tilde{s}_k \in \mathcal{O}_M[[\epsilon]] \) such that \(\tilde{s}_k \equiv s_k \pmod{(\pi, \epsilon)} \) and
\[
\sum_{k=0}^{\mu} \tilde{s}_k \pi_M^k \pi_M(\epsilon) \pi^k + \delta \equiv \sum_{k=0}^{\mu} s_k \pi_M^k \pi_M(\epsilon) \pi^k.
\]
Hence by replacing X_k with $\tilde{s}_k\tilde{\phi}_M^{\Delta} e^{p^k}$ for $0 \leq k \leq \mu$ in (3.8) we get
\[
\left(\sum_{k=0}^{\mu} s_k\tilde{\phi}_M^{\Delta} e^{p^k} + \delta_G \right)^{p^j} \equiv \sum_{k=0}^{\mu} s_k^{p^j} \tilde{\phi}_M^{\Delta} e^{p^{j+k}} \pmod{\epsilon \cdot A},
\]
where A is the ideal in $\mathcal{O}_M[[\epsilon]]$ defined by
\[
A = (p^h(\tilde{\phi}_M^{\Delta} e^{p^k})^{p^j-j} : 1 \leq h \leq j, 0 \leq k \leq \mu).
\]

Let $1 \leq h \leq j$ and $0 \leq k \leq \mu$. Since $i_j + hv_L(p) \geq i_{j-h}$ we have
\[
v_M(\pi_L^{i_j} p^h \pi_M^{i_{j-h}} \tilde{\phi}_M^{\Delta}) \geq mi_{j-h} + p^{j-h} \tilde{\phi}_M^{\Delta}(c)
\]
\[= \tilde{\phi}_L^{j-h,m}(\tilde{\phi}_M^{\Delta}(c))
\]
\[\geq \lambda_{j-M/K}(c).
\]

It follows that $\pi_L^{i_j} \epsilon \cdot p^h(\tilde{\phi}_M^{\Delta} e^{p^k})^{p^j-j} \in \epsilon \cdot I_{FG}$, and hence that $\pi_L^{i_j} \epsilon \cdot A \subset \epsilon \cdot I_{FG}$. Therefore
\[
\pi_L^{i_j} \left(\sum_{k=0}^{\mu} s_k\tilde{\phi}_M^{\Delta} e^{p^k} + \delta_G \right)^{p^j} \equiv \pi_L^{i_j} \sum_{k=0}^{\mu} s_k^{p^j} \tilde{\phi}_M^{\Delta} e^{p^{j+k}} \pmod{\epsilon \cdot I_{FG}}
\]
\[\equiv u^{i_j} \sum_{k=0}^{\mu} s_k^{p^j} \tilde{\phi}_L^{i_j,m}(\tilde{\phi}_M^{\Delta}) e^{p^{j+k}} \pmod{\epsilon \cdot I_{FG}}.
\]

Since $\tilde{s}_k \equiv s_k \pmod{\pi_M, \epsilon}$ the lemma follows. \Box

We now replace ϵ with $\sum_{k=0}^{\mu} s_k\tilde{\phi}_M^{\Delta} e^{p^k} + \delta_G$ in (3.6). With the help of Lemma 3.4 we get
\[
\hat{F}(\tilde{G}(\pi_M(1 + \pi_M^c))) = \pi_K \cdot \left(1 + \sum_{j=0}^{\nu} r_j u^{i_j} \sum_{k=0}^{\mu} s_k^{p^j} \tilde{\phi}_L^{i_j,m}(\tilde{\phi}_M^{\Delta}) e^{p^{j+k}} + \delta_{FG} \right)
\]
\[= \pi_K \cdot \left(1 + \sum_{g=0}^{\nu+\mu} \left(\sum_{(j,k) \in \Omega} u^{i_j} r_j s_k^{p^j} \tilde{\phi}_L^{i_j,m}(\tilde{\phi}_M^{\Delta}) e^{p^g} + \delta_{FG} \right) \right) \quad (3.9)
\]
for some $\delta_{FG} \in (\pi_M, \epsilon) \cdot I_{FG}$.

To prove (a) in the case $x = c \in \mathbb{N}_0$ we define an ideal $J_l = (\pi_M^{nm+\lambda_M^{l-M/K}(c)}, e^{p^{l+1}}$ in $\mathcal{O}_M[[\epsilon]]$. Since $\pi_K \cdot I_{FG} \subset J_l$, by (3.9) we get
\[
\hat{F}(\tilde{G}(\pi_M(1 + \pi_M^c))) \equiv \pi_K \pmod{J_l}.
\]
It follows from Corollary 2.7 that $\phi_{M/K}^l(c) \geq \lambda_{M/K}^l(c)$.

Now let $e \geq 1$ be relatively prime to $p[M : K] = pnm$. Let K_e/K be a totally ramified extension of degree e and set $L_e = L K_e$, $M_e = M K_e$. Let $0 \leq h \leq \nu$, $0 \leq i \leq \mu$, and $0 \leq l \leq \nu + \mu$. Using Lemma 2.8 we get

$$\tilde{\phi}_{M/L}^l(x) = e^{-1} \phi_{M_e/L_e}^i(ex) \quad (3.10)$$

$$\tilde{\phi}_{L/K}^{h,m}(x) = e^{-1} \phi_{L_e/K_e}^{h,m}(ex) \quad (3.11)$$

$$\phi_{M/K}^l(x) = e^{-1} \phi_{M_e/K_e}^l(ex) \quad (3.12)$$

$$\lambda_{M/K}^l(x) = e^{-1} \lambda_{M_e/K_e}^l(ex). \quad (3.13)$$

We know from the preceding paragraph that $\phi_{M_e/K_e}^l(c) \geq \lambda_{M_e/K_e}^l(c)$ for every $c \in \mathbb{N}_0$. By applying (3.12) and (3.13) with $x = c/e$ we get $\phi_{M/K}^l(c/e) \geq \lambda_{M/K}^l(c/e)$. It follows that (a) holds whenever $x = c/e$ with $c \geq 0$, $e \geq 1$, and $\gcd(e, pnm) = 1$. Since numbers of this form are dense in $[0, \infty)$, by continuity we get $\phi_{M/K}^l(x) \geq \lambda_{M/K}^l(x)$ for all $x \geq 0$. This proves (a).

To facilitate the proof of (b) we define a subset of the nonnegative reals by

$$T_l(M/K) = \{ t \geq 0 : \exists l_0 \leq l \text{ with } |S_{l_0}^l(t)| = 1 \text{ and } |S_a^l(t)| = 0 \text{ for } 0 \leq a < l_0 \}. \quad (3.14)$$

Suppose $t > 0$ and $(t, \lambda_{M/K}^l(t))$ is not a vertex of the graph of $\lambda_{M/K}^l$. Then there is a unique $0 \leq l_0 \leq l$ such that $|S_{l_0}^l(t)| \geq 1$; in fact, l_0 is determined by the condition $\lambda_{M/K}^l(t) = p^{l_0}$. Hence if the hypotheses of (b) are satisfied with $x = t$ then $t \in T_l(M/K)$.

Lemma 3.5 Suppose the hypotheses of (b) are satisfied with $x = 0$. Then $0 \in T_l(M/K)$.

Proof: Suppose $0 \notin T_l(M/K)$, and let l_0 be the minimum integer satisfying the hypotheses of (b) with $x = 0$. Also let $l_1 < l_0$ be maximum such that $|S_{l_1}^l(0)| \neq 0$. Then $|S_{l_0}^l(0)| = 2$. Hence there is $(j, k) \in S_{l_1}^l(0)$ such that $k < \mu$. Since

$$\tilde{\phi}_{M/L}^{k+1}(0) = i_{k+1}' \leq i_k' = \tilde{\phi}_{M/L}^k(0)$$

we get

$$\lambda_{M/K}^l(0) \leq \tilde{\phi}_{L/K}^{j,m}(\tilde{\phi}_{M/L}^{k+1}(0)) \leq \tilde{\phi}_{L/K}^{j,m}(\tilde{\phi}_{M/L}^k(0)) = \lambda_{M/K}^l(0).$$

It follows that $\tilde{\phi}_{L/K}^{j,m}(\tilde{\phi}_{M/L}^{k+1}(0)) = \tilde{\phi}_{L/K}^{j,m}(\tilde{\phi}_{M/L}(0))$, so we have $i_k' = i_{k+1}'$ and $(j, k + 1) \in S_{l_1}^{l+1}(0)$. Hence by the maximality of l_1 we get $l_1 = l_0 - 1$. Since $|S_{l_1}^{l_0}(0)| = 1$ we must have $|S_{l_0}^{l_1}(0)| = 2$ and $(l_0 - \mu - 1, \mu) \in S_0^{l_0-1}(0)$. Since

$$mi_{l_0 - \mu} \leq mi_{l_0 - \mu - 1} = \tilde{\phi}_{L/K}^{l_0 - \mu, m}(\tilde{\phi}_{M/L}^{\mu}(0)) = \lambda_{M/K}^l(0) \leq \tilde{\phi}_{L/K}^{l_0 - \mu, m}(\tilde{\phi}_{M/L}^{\mu}(0)) = mi_{l_0 - \mu}$$

we have $\lambda_{M/K}^l(0) = \tilde{\phi}_{L/K}^{l_0 - \mu, m}(\tilde{\phi}_{M/L}^{\mu}(0))$. Hence $(l_0 - \mu, \mu) \in S_{l_0}^{l_0}(0)$. Since $(j, k+1) \in S_{l_0}^{l_0}(0)$, and $|S_{l_0}^{l_0}(0)| = 1$, we get $k + 1 = \mu$, and hence $i_{k-1}' = i_k' = i_{k+1}' = i_{\mu}' = 0$. Since $i_{\mu-1}' > 0$, this is a contradiction. Therefore $0 \in T_l(M/K)$. \qed
Lemma 3.6 Let $c \in \mathbb{N}_0 \cap T_l(M/K)$, let l_0 be the integer specified by \((3.4)\) for \(t = c\), and let \((j, k)\) be the unique element of Ω_{t_0} such that $\lambda_{M/K}^j(c) = \hat{\phi}_{L/K}^j(\hat{\phi}_{M/L}^k(c))$. Then r_j and s_k are nonzero.

Proof: Since $c \in T_l(M/K)$, for $0 \leq j' < j$ we have $\hat{\phi}_{M/L}^{j'}(\hat{\phi}_{M/L}^k(c)) > \hat{\phi}_{L/K}^{j'}(\hat{\phi}_{M/L}^k(c))$. It follows that $i_{j'} > i_j$, and hence that $\pi_K \cdot (\pi_L, \epsilon) \cdot I_F \subset (\pi_L^{n+i_j+1}, e^{i_j+1})$. Therefore by \((3.6)\) we get

$$\hat{\mathcal{F}}(\pi_L(1 + \epsilon)) \equiv \pi_K \cdot (1 + r_j \pi_L e^{i_j}) \pmod{\pi_L^{n+i_j+1}, e^{i_j+1}}.$$

If $r_j = 0$ then by Corollary 2.7 we have $i_j = \hat{\phi}_L^j(0) \geq i_j + 1$, a contradiction. It follows that $r_j \neq 0$.

Suppose there is $0 \leq k' < k$ such that $\hat{\phi}_{M/L}^{k'}(c) < \hat{\phi}_{M/L}^k(c)$. Since $c \in T_l(M/K)$ we have $(j, k') \not\in S_i^{c+k'}(c)$, and hence

$$\lambda_{M/K}^j(c) < \hat{\phi}_L^j(\hat{\phi}_{M/L}^{k'}(c)) \leq \hat{\phi}_L^j(\hat{\phi}_{M/L}^k(c)) = \lambda_{M/K}^j(c).$$

This is a contradiction, so we must have $\hat{\phi}_{M/L}^{j'}(c) > \hat{\phi}_{M/L}^k(c)$ for $0 \leq k' < k$. Hence $\hat{\phi}_{M/L}^{k'}(c) = \hat{\phi}_{M/L}^k(c)$. Set $d = \phi_{M/L}^k(c)$. Then $\pi_L \cdot (\pi_M, \epsilon) \cdot I_\mathfrak{g} \subset (\pi_M^{m+d+1}, e^{p^{k+1}})$. Using \((3.7)\) we get

$$\hat{\mathcal{G}}(\pi_M(1 + \pi_M^c)) \equiv \hat{\mathcal{G}}(\pi_M)(1 + s_k \pi_M^d e^{p^k}) \pmod{\pi_M^{m+d+1}, e^{p^{k+1}}}.$$

If $s_k = 0$ then by Corollary 2.7 we have $\hat{\phi}_{M/L}^k(c) \geq d + 1$, a contradiction. It follows that $s_k \neq 0$. \(\square\)

We now prove \((b)\) for $x = c \in \mathbb{N}_0 \cap T_l(M/K)$. Let l_0 be the minimum integer satisfying the hypotheses of \((b)\) for $x = c$. Then there is a unique pair $(j, k) \in \Omega_{t_0}$ such that $\lambda_{M/K}^j(c) = \hat{\phi}_{L/K}^{j_0}(\hat{\phi}_{M/L}^j(c))$. Furthermore, we have $\lambda_{M/K}^{j_0}(c) = \lambda_{M/K}^j(c)$ and $\lambda_{M/K}^j(c) > \lambda_{M/K}^{j_0}(c)$ for $l_1 < l_0$. Define $J'_0 = (\pi_M^{n+m+\lambda_{M/K}^{j_0}(c)}, e^{p^{j_0}+1})$. Then $\pi_L \cdot (\pi_M, \epsilon) \cdot I_{\mathfrak{g}} \subset J'_0$, so by \((3.9)\) we get

$$\hat{\mathcal{F}}(\hat{\mathcal{G}}(\pi_M(1 + \pi_M^c))) \equiv \pi_K \cdot (1 + u^{j_0} \pi_L s_k \pi_M^{j_0} \lambda_{M/K}^{j_0}(c) e^{p_0}) \pmod{J'_0}.$$

It follows from Lemma 3.6 that $r_j, s_k \in R \setminus \{0\}$ are units. Therefore we have

$$\hat{\mathcal{F}}(\hat{\mathcal{G}}(\pi_M(1 + \pi_M^c))) \equiv \pi_K \pmod{J'_0}.$$

Hence by \((a)\) and Corollary 2.7 we get

$$\lambda_{M/K}^{j_0}(c) \leq \phi_{M/K}^{j_0}(c) < \lambda_{M/K}^j(c) + 1.$$

Since $\lambda_{M/K}^{j_0}(c)$ and $\phi_{M/K}^{j_0}(c)$ are integers this implies that $\lambda_{M/K}^{j_0}(c) = \phi_{M/K}^{j_0}(c)$. Using \((a)\) we get

$$\lambda_{M/K}^j(c) \leq \phi_{M/K}^j(c) \leq \phi_{M/K}^{j_0}(c) = \lambda_{M/K}^{j_0}(c) = \lambda_{M/K}^j(c),$$
and hence $\lambda^l_{M/K}(c) = \phi^l_{M/K}(c)$. Thus (b) holds for $x \in \mathbb{N}_0 \cap T_l(M/K)$. In particular, it follows from Lemma 3.5 that (b) holds for $x = 0$.

As in the proof of (a) let $e \geq 1$ be relatively prime to pnm and let K_e/K be a totally ramified extension of degree e. Also set $L_e = LK_e$ and $M_e = MK_e$. Let $c \in \mathbb{N}_0$ be such that $c/e \in T_l(M/K)$ and the hypotheses of (b) are satisfied for the extensions $M/L/K$ with $x = c/e$. Then it follows from (3.10)–(3.13) that $c \in T_l(M_e/K_e)$ and the hypotheses of (b) are satisfied for the extensions $M_e/L_e/K_e$ with $x = c$. Hence by the preceding paragraph we get $\phi^l_{M_e/K_e}(c) = \lambda^l_{M_e/K_e}(c)$. Using (3.12) and (3.13) we deduce that $\phi^l_{M/K}(c/e) = \lambda^l_{M/K}(c/e)$.

Now let r be any positive real number such that the hypotheses of (b) are satisfied with $x = r$, and let l_0 be the minimum integer which satisfies the hypotheses. Then there is a unique element $(j, k) \in \Omega_{l_0}$ such that $\tilde{\phi}^l_{L/K} \circ \tilde{\phi}^k_{M/L}(r) = \lambda^l_{M/K}(r)$. Let $0 \leq a \leq l_0$ and let $(u, v) \in \Omega_a$. Then the graph of $\tilde{\phi}^u_{L/K} \circ \tilde{\phi}^v_{M/L}$ is a line of slope $p^{u+v} = p^a \leq p^0$. Hence if $(u, v) \neq (j, k)$ and $0 \leq t < r$ then $\tilde{\phi}^u_{L/K} \circ \tilde{\phi}^v_{M/L}(t) > \tilde{\phi}^l_{L/K} \circ \tilde{\phi}^l_{M/L}(t)$. It follows that $S^l_{l_0}(t) = \{ (j, k) \}$ and $S^l_{l_0}(t) = \emptyset$ for $0 \leq a < l_0$. Hence $t \in T_{l_0}(M/K)$ and the hypotheses of (b) are satisfied with $x = t$ and l replaced by l_0.

Suppose $\phi^l_{M/K}(r) > \lambda^l_{M/K}(r)$. Then there are $c, e \geq 1$ such that $\gcd(e, pnm) = 1$ and

$$0 < r - \frac{c}{e} < \frac{\phi^l_{M/K}(r) - \lambda^l_{M/K}(r)}{p^{u+v}}. \tag{3.15}$$

Since $\lambda^l_{M/K}(r) = \lambda^l_{M/K}(r)$ we get

$$\phi^l_{M/K}(r) - \lambda^l_{M/K}(r) \geq 0. \tag{3.16}$$

Since $\phi^l_{M/K}$ and $\lambda^l_{M/K}$ are continuous increasing piecewise linear functions with derivatives at most p^{u+v} it follows from (3.15) that $\phi^l_{M/K}(c/e) - \lambda^l_{M/K}(c/e) > 0$. On the other hand, by the preceding paragraph we know that $c/e \in T_{l_0}(M/K)$ and the hypotheses of (b) are satisfied with $x = c/e$ and l replaced by l_0. Hence $\phi^l_{M/K}(c/e) = \lambda^l_{M/K}(c/e)$. This contradicts (3.16), so we must have $\phi^l_{M/K}(r) \leq \lambda^l_{M/K}(r)$. By combining this inequality with (a) we get $\phi^l_{M/K}(r) = \lambda^l_{M/K}(r)$. This completes the proof of (b).

By setting $x = 0$ in Theorem 3.3 we get the following. A special case of this result is given in [3] Prop. 5.10.

Corollary 3.7 For $0 \leq l \leq \nu + \mu$ let i''_l denote the lth index of inseparability of M/K. Then

$$i''_l \leq \min\{mi_j + p^l i''_k : (j, k) \in \Omega_{l_0} \text{ for some } 0 \leq l_0 \leq l\},$$

with equality if there exists $0 \leq l_0 \leq l$ such that there is a unique pair $(j, k) \in \Omega_{l_0}$ which realizes the minimum.
References

[1] I. B. Fesenko and S. V. Vostokov, *Local fields and their extensions. A constructive approach*, Amer. Math. Soc., Providence, RI, 1993.

[2] M. Fried, Arithmetical properties of function fields II, The generalized Schur problem, Acta Arith. 25 (1973/74), 225–258.

[3] M. Fried and A. Mézard, Configuration spaces for wildly ramified covers, appearing in *Arithmetic Fundamental Groups and Noncommutative Algebra*, Proc. Sympos. Pure Math. 70 (2002), 353–376.

[4] B. Gross, Ramification in p-adic Lie extensions, Astérisque 65 (1979), 81–102.

[5] V. Heiermann, De nouveaux invariants numériques pour les extensions totalement ramifiées de corps locaux, J. Number Theory 59 (1996), 159–202.

[6] J. Lubin, Elementary analytic methods in higher ramification theory, J. Number Theory 133 (2013), 983–999.

[7] J.-P. Serre, *Corps Locaux*, Hermann, Paris (1962).