THE PRIMITIVE IDEAL SPACE OF THE PARTIAL-ISOMETRIC CROSSED PRODUCT OF A SYSTEM BY A SINGLE AUTOMORPHISM

WICHARN LEWKEERATIYUTKUL AND SAEID ZAHMATKESH

Abstract. Let \((A, \alpha)\) be a system consisting of a \(C^*\)-algebra \(A\) and an automorphism \(\alpha\) of \(A\). We describe the primitive ideal space of the partial-isometric crossed product \(A \times_{\alpha}^{\text{piso}} \mathbb{N}\) of the system by using its realization as a full corner of a classical crossed product and applying some results of Williams and Echterhoff.

1. Introduction

Lindiarni and Raeburn in [8] introduced the partial-isometric crossed product of a dynamical system \((A, \Gamma^+, \alpha)\) in which \(\Gamma^+\) is the positive cone of a totally ordered abelian group \(\Gamma\) and \(\alpha\) is an action of \(\Gamma^+\) by endomorphisms of \(A\). Note that since the \(C^*\)-algebra \(A\) is not necessarily unital, we require that each endomorphism \(\alpha_s\) extends to a strictly continuous endomorphism \(\alpha_s\) of the multiplier algebra \(M(A)\). This for an endomorphism \(\alpha\) of \(A\) happens if and only if there exists an approximate identity \((a_\lambda)\) in \(A\) and a projection \(p \in M(A)\) such that \(\alpha(a_\lambda)\) converges strictly to \(p\) in \(M(A)\). We stress that if \(\alpha\) is extendible, then we may not have \(\alpha(1_{M(A)}) = 1_{M(A)}\). A covariant representation of the system \((A, \Gamma^+, \alpha)\) is defined for which the endomorphisms \(\alpha_s\) are implemented by partial isometries, and the associated partial-isometric crossed product \(A \times_{\alpha}^{\text{piso}} \Gamma^+\) of the system is a \(C^*\)-algebra generated by a universal covariant representation such that there is a bijection between covariant representations of the system and nondegenerate representations of \(A \times_{\alpha}^{\text{piso}} \Gamma^+\). This generalizes the covariant isometric representation theory that uses isometries to represent the semigroup of endomorphisms in a covariant representation of the system (see [3]). The authors of [8], in particular, studied the structure of the partial-isometric crossed product of the distinguished system \((B_{\Gamma^+}, \Gamma^+, \tau)\), where the action \(\tau\) of \(\Gamma^+\) on the subalgebra \(B_{\Gamma^+}\) of \(\ell^\infty(\Gamma^+)^*\) is given by the right translation. Later, in [4], the authors showed that \(A \times_{\alpha}^{\text{piso}} \Gamma^+\) is a full corner in a subalgebra of the \(C^*\)-algebra \(\mathcal{L}(\ell^2(\Gamma^+) \otimes A)\) of adjointable operators on the Hilbert \(A\)-module \(\ell^2(\Gamma^+) \otimes A \cong \ell^2(\Gamma^+, A)\). This realization led them to identify the kernel of the natural homomorphism \(q : A \times_{\alpha}^{\text{piso}} \Gamma^+ \to A \times_{\alpha}^{\text{iso}} \Gamma^+\) as a full corner of the compact operators \(\mathcal{K}(\ell^2(\mathbb{N}) \otimes A)\), when \(\Gamma^+ = \mathbb{N} := \mathbb{Z}^+\). So as an application, they recovered the Pimsner-Voiculescu exact sequence in [10]. Then in their subsequent work [5], they proved that for an extendible \(\alpha\)-invariant ideal \(I\) of \(A\) (see the definition in [1]), the partial-isometric crossed product \(I \times_{\alpha}^{\text{piso}} \Gamma^+\) sits naturally as an ideal in \(A \times_{\alpha}^{\text{piso}} \Gamma^+\) such that \((A \times_{\alpha}^{\text{piso}} \Gamma^+)/(I \times_{\alpha}^{\text{piso}} \Gamma^+) \cong A/I \times_{\alpha}^{\text{piso}} \Gamma^+\). This is actually a generalization of [2, Theorem 2.2]. They then combined these

2010 Mathematics Subject Classification. Primary 46L55.
Key words and phrases. \(C^*\)-algebra, automorphism, partial isometry, crossed product, primitive ideal.
results to show that the large commutative diagram of [8, Theorem 5.6] associated to the system \((B_\Gamma, \Gamma^+, \tau)\) is valid for any totally ordered abelian group, not only for subgroups of \(\mathbb{R}\). In particular, they use this large commutative diagram for \(\Gamma^+ = \mathbb{N}\) to describe the ideal structure of the algebra \(B_\mathbb{N} \times_{\pi}^\text{piso} \mathbb{N}\) explicitly.

Now here we consider a system \((A, \alpha)\) consisting of a C*-algebra \(A\) and an automorphism \(\alpha\) of \(A\). So we actually have an action of the positive cone \(\mathbb{N} = \mathbb{Z}^+\) of integers \(\mathbb{Z}\) by automorphisms of \(A\). In the present work, we want to study \(\text{Prim}(A \times_{\alpha}^\text{piso} \mathbb{N})\), the primitive ideal space of the partial-isometric crossed product \(A \times_{\alpha}^\text{piso} \mathbb{N}\) of the system. Since \(A \times_{\alpha}^\text{piso} \mathbb{N}\) is in fact a full corner of the classical crossed product \((B_\mathbb{Z} \otimes A) \times \mathbb{Z}\) (see [4, §5]), \(\text{Prim}(A \times_{\alpha}^\text{piso} \mathbb{N})\) is homeomorphic to \(\text{Prim}((B_\mathbb{Z} \otimes A) \times \mathbb{Z})\). Therefore it is enough to describe \(\text{Prim}((B_\mathbb{Z} \otimes A) \times \mathbb{Z})\). To do this, we apply the results on describing the primitive ideal space (ideal structure) of the classical crossed products from [12, 6]. So we consider the following two conditions:

1. when \(A\) is separable and abelian;
2. when \(A\) is separable and \(\mathbb{Z}\) acts on \(\text{Prim} A\) freely (see [2]).

For the first condition, by applying a theorem of Williams, \(\text{Prim}((B_\mathbb{Z} \otimes A) \times \mathbb{Z})\) is homeomorphic to a quotient space of \(\Omega(B_\mathbb{Z}) \times \Omega(A) \times \mathbb{T}\), where \(\Omega(B_\mathbb{Z})\) and \(\Omega(A)\) are the spectrums of the C*-algebras \(B_\mathbb{Z}\) and \(A\) respectively (recall that the dual \(\hat{\mathbb{Z}}\) is identified with \(\mathbb{T}\) via the map \(z \mapsto (\gamma_z : n \mapsto z^n)\)). By computing \(\Omega(B_\mathbb{Z})\), we parameterize the quotient space as a disjoint union, and then we precisely identify the open sets. For the second condition, we apply a result of Echterhoff which shows that \(\text{Prim}((B_\mathbb{Z} \otimes A) \times \mathbb{Z})\) is homeomorphic to the quasi-orbit space of \(\text{Prim}(B_\mathbb{Z} \otimes A) = B_\mathbb{Z} \times \text{Prim} A\) (see in [2] that this is a quotient space of \(\text{Prim}(B_\mathbb{Z} \otimes A)\)). Again by a similar argument to the first condition, we describe the quotient space and its topology precisely.

We begin with a preliminary section in which we recall the theory of the partial-isometric crossed products, and some discussions on the primitive ideal space of the classical crossed products briefly. In section 3 for a system \((A, \alpha)\) consisting of a C*-algebra \(A\) and an automorphism \(\alpha\) of \(A\), we apply the works of Williams and Echterhoff to describe \(\text{Prim}(A \times_{\alpha}^\text{piso} \mathbb{N})\) using the realization of \(A \times_{\alpha}^\text{piso} \mathbb{N}\) as a full corner of the classical crossed product \((B_\mathbb{Z} \otimes A) \times \mathbb{Z}\). As some examples, we compute the primitive ideal space of \(C(\mathbb{T}) \times_{\alpha}^\text{piso} \mathbb{N}\) where the action \(\alpha\) is given by rotation through the angle \(2\pi\theta\) with \(\theta\) rational and irrational. Moreover the description of the primitive ideal space of the Pimsner-Voiculescu Toeplitz algebra associated to the system \((A, \alpha)\) is completely obtained, as it is isomorphic to \(A \times_{\alpha}^\text{piso} \mathbb{N}\). We also discuss necessary and sufficient conditions under which \(A \times_{\alpha}^\text{piso} \mathbb{N}\) is GCR (postliminal or type I). Finally in the last section, we discuss the primitivity and simplicity of \(A \times_{\alpha}^\text{piso} \mathbb{N}\).

2. Preliminaries

2.1. The partial-isometric crossed product. A partial-isometric representation of \(\mathbb{N}\) on a Hilbert space \(H\) is a map \(V : \mathbb{N} \to B(H)\) such that each \(V_n := V(n)\) is a partial isometry, and \(V_{n+m} = V_n V_m\) for all \(n, m \in \mathbb{N}\).

A covariant partial-isometric representation of \((A, \alpha)\) on a Hilbert space \(H\) is a pair \((\pi, V)\) consisting of a nondegenerate representation \(\pi : A \to B(H)\) and a partial-isometric representation \(V : \mathbb{N} \to B(H)\) such that

\[
\pi(\alpha_n(a)) = V_n \pi(a) V_n^* \quad \text{and} \quad V_n^* V_n \pi(a) = \pi(a) V_n^* V_n
\]
for all $a \in A$ and $n \in \mathbb{N}$.

Note that every system (A, α) admits a nontrivial covariant partial-isometric representation [8, Example 4.6]: let π be a nondegenerate representation of A on H. Define $\Pi : A \to B(\ell^2(\mathbb{N}, H))$ by $(\Pi(a)\xi)(n) = \pi(\alpha_n(a))\xi(n)$. If

$$H := \text{span}\{\xi \in \ell^2(\mathbb{N}, H) : \xi(n) \in \pi(\alpha_n(1))H \text{ for all } n\},$$

then the representation Π is nondegenerate on H. Now for every $m \in \mathbb{N}$, define V_m on H by $(V_m\xi)(n) = \xi(n + m)$. Then the pair $(\Pi|_H, V)$ is a partial-isometric covariant representation of (A, α) on H. One can see that if we take π faithful, then Π will be faithful as well, and $H = \ell^2(\mathbb{N}, H)$ whenever $\overline{\alpha}(1) = 1$ (e.g. when α is an automorphism).

Definition 2.1. A partial-isometric crossed product of (A, α) is a triple (B, j_A, j_B) consisting of a C^*-algebra B, a nondegenerate homomorphism $i_A : A \to B$, and a partial-isometric representation $i_\mathbb{N} : \mathbb{N} \to M(B)$ such that:

(i) the pair $(j_A, j_\mathbb{N})$ is a covariant representation of (A, α) in B;

(ii) for every covariant partial-isometric representation (π, V) of (A, α) on a Hilbert space H, there exists a nondegenerate representation $\pi \times V : B \to B(H)$ such that $(\pi \times V) \circ i_A = \pi$ and $(\pi \times V) \circ i_\mathbb{N} = V$; and

(iii) the C^*-algebra B is spanned by $\{i_\mathbb{N}(n)^*i_A(a)i_\mathbb{N}(m) : n, m \in \mathbb{N}, a \in A\}$.

By [8, Proposition 4.7], the partial-isometric crossed product of (A, α) always exists, and it is unique up to isomorphism. Thus we write the partial-isometric crossed product B as $A \times^{\text{piso}} \mathbb{N}$.

We recall that by [8, Theorem 4.8], a covariant representation (π, V) of (A, α) on H induces a faithful representation $\pi \times V$ of $A \times^{\text{piso}} \mathbb{N}$ if and only if π is faithful on the range of $(1 - V_n^*V_n)$ for every $n > 0$ (one can actually see that it is enough to verify that π is faithful on the range of $(1 - V^*V)$, where $V := V_1$).

2.2. The primitive ideal space of crossed products associated to second countable locally compact transformation groups.

Let Γ be a discrete group which acts on a topological space X. For every $x \in X$, the set $\Gamma \cdot x := \{s \cdot x : s \in \Gamma\}$ is called the Γ-orbit of x. The set $\Gamma_x := \{s \in \Gamma : s \cdot x = x\}$, which is a subgroup of Γ, is called the stability group of x. We say the Γ-action is free or Γ acts on X freely if $\Gamma_x = \{e\}$ for all $x \in X$. Consider a relation \sim on X such that for $x, y \in X, x \sim y$ if and only if $\Gamma \cdot x = \Gamma \cdot y$. One can see that this is an equivalence relation on X. The set of all equivalence classes equipped with the quotient topology is denoted by $\mathcal{O}(X)$ and called the quasi-orbit space, which is always a T_0-topological space. The equivalence class of each $x \in X$ is denoted by $\mathcal{O}(x)$ and called the quasi-orbit of x.

Now let Γ be an abelian countable discrete group which acts on a second countable locally compact Hausdorff space X. So (Γ, X) is a second countable locally compact transformation group with Γ abelian. Then the associated dynamical system $(C_0(X), \Gamma, \tau)$ is separable with Γ abelian, and so the primitive ideals of $C_0(X) \times_\tau \Gamma$ are known (see [12, Theorem 8.21]). Furthermore, the topology of $\text{Prim}(C_0(X) \times_\tau \Gamma)$ has been beautifully described [12, Theorem 8.39]. So here we want to recall the discussion on $\text{Prim}(C_0(X) \times_\tau \Gamma)$ in brief. See more in [12] that this is indeed a huge and deep discussion.
Let N be a subgroup of Γ. If we restrict the action τ to N, then we obtain a dynamical system $(C_0(X), N, \tau|_N)$ with the associated crossed product $C_0(X) \rtimes_{\tau|_N} N$. Suppose that X^Γ_N is the Green’s $(C_0(X) \otimes C_0(\Gamma/N)) \rtimes_{\tau \otimes \text{id}} \Gamma) - (C_0(X) \rtimes_{\tau|_N} N)$-imprimitivity bimodule whose structure can be found in [12] Theorem 4.22. If (π, V) is a covariant representation of $(C_0(X), N, \tau|_N)$, then $\text{Ind}_N^\Gamma(\pi \times V)$ denotes the representation of $C_0(X) \rtimes_{\tau} \Gamma$ induced from the representation $\pi \times V$ of $C_0(X) \rtimes_{\tau|_N} N$ via X^Γ_N. Now for $x \in X$, let $\varepsilon_x : C_0(X) \to C \simeq \mathbb{B}(C)$ be the evaluation map at x and w a character of Γ_x. Then the pair (ε_x, w) is a covariant representation of $(C_0(X), \Gamma_x, \tau|_{\Gamma_x})$ such that the associated representation $\varepsilon_x \times w$ of $C_0(X) \times \Gamma_x$ is irreducible, and hence by [12] Proposition 8.27, $\text{Ind}_{\Gamma_x}^\Gamma(\varepsilon_x \times w)$ is an irreducible representation of $C_0(X) \rtimes_{\tau} \Gamma$. So ker $(\text{Ind}_{\Gamma_x}^\Gamma(\varepsilon_x \times w))$ is a primitive ideal of $C_0(X) \rtimes_{\tau} \Gamma$. Note if a primitive ideal is obtained in this way, then we say it is induced from a stability group. In fact by [12] Theorem 8.21, all primitive ideals of $C_0(X) \rtimes_{\tau} \Gamma$ are induced from stability groups. Moreover since for every $w \in \hat{\Gamma}$ there is a $\gamma \in \hat{\Gamma}$ such that $w = \gamma|_{\Gamma_x}$, every primitive ideal of $C_0(X) \rtimes_{\tau} \Gamma$ is actually given by the kernel of an induced irreducible representation $\text{Ind}_{\Gamma_x}^\Gamma(\varepsilon_x \times \gamma|_{\Gamma_x})$ correspondent to a pair (x, γ) in $X \times \hat{\Gamma}$. To see the description of the topology of $\text{Prim}(C_0(X) \rtimes_{\tau} \Gamma)$, first note that if (x, γ) and (y, μ) belong to $X \times \hat{\Gamma}$ such that $\Gamma \cdot x = \Gamma \cdot y$ (which implies that $\Gamma_x = \Gamma_y$) and $\gamma|_{\Gamma_x} = \mu|_{\Gamma_x}$, then by [12] Lemma 8.34,

$$\ker (\text{Ind}_{\Gamma_x}^\Gamma(\varepsilon_x \times \gamma|_{\Gamma_x})) = \ker (\text{Ind}_{\Gamma_y}^\Gamma(\varepsilon_y \times \mu|_{\Gamma_y})).$$

So define a relation on $X \times \hat{\Gamma}$ such that $(x, \gamma) \sim (y, \mu)$ if

$$\Gamma \cdot x = \Gamma \cdot y \quad \text{and} \quad \gamma|_{\Gamma_x} = \mu|_{\Gamma_x}. \quad \text{(2.2)}$$

One can see that \sim is an equivalence relation on $X \times \hat{\Gamma}$. Now consider the quotient space $X \times \hat{\Gamma}/\sim$ equipped with the quotient topology. Then we have:

Theorem 2.2. [12] Theorem 8.39] Let (Γ, X) be a second countable locally compact transformation group with Γ abelian. Then the map $\Phi : X \times \hat{\Gamma} \to \text{Prim}(C_0(X) \rtimes_{\tau} \Gamma)$ defined by

$$\Phi(x, \gamma) := \ker (\text{Ind}_{\Gamma_x}^\Gamma(\varepsilon_x \times \gamma|_{\Gamma_x}))$$

is a continuous and open surjection, and factors through a homeomorphism of $X \times \hat{\Gamma}/\sim$ onto $\text{Prim}(C_0(X) \rtimes_{\tau} \Gamma)$.

Remark 2.3. In the theorem above, note that $\text{Prim}(C_0(X) \rtimes_{\tau} \Gamma)$ is then a second countable space. This is because as it is mentioned in [12] Remark 8.40, the quotient map $q : X \times \hat{\Gamma} \to X \times \hat{\Gamma}/\sim$ is open. Moreover, X and $\hat{\Gamma}$ both are second countable.

Theorem 2.2 can be applied to see that the primitive ideal space of the rational rotation algebra is homeomorphic to T^2. We skip it here and refer readers to [12] Example 8.45 for more details.

2.3. The primitive ideal space of crossed products by free actions.

Let (A, Γ, α) be a classical dynamical system with Γ discrete. Then the system gives an action of Γ on the spectrum \hat{A} of A by $s \cdot [\pi] := [\pi \circ \alpha_s^{-1}]$ for every $s \in \Gamma$ and $[\pi] \in \hat{A}$ (see [12] Lemma 2.8 and [11] Lemma 7.1]). This also induces an action of Γ on $\text{Prim} A$ such that $s \cdot P := \alpha_s(P)$ for each $s \in \Gamma$ and $P \in \text{Prim} A$.

[Note: The text above is a natural representation of the given document, formatted for better readability.]
Recall that if \(\pi \) is a (nondegenerate) representation of \(A \) on \(H \) with \(\ker \pi = J \), then \(\text{Ind} \) \(\pi \) denotes the induced representation \(\tilde{\pi} \times U \) of \(A \times_\alpha \Gamma \) on \(\ell^2(\Gamma, H) \) associated to the covariant pair \((\tilde{\pi}, U)\) of \((A, \Gamma, \alpha)\) defined by
\[
(\tilde{\pi}(a)\xi)(s) = \pi(\alpha_s^{-1}(a))\xi(s) \quad \text{and} \quad (U_t\xi)(s) = \xi(t^{-1}s)
\]
for all every \(a \in A, \xi \in \ell^2(\Gamma, H), \) and \(s, t \in \Gamma \). Note that by \(\text{Ind} J \), we mean \(\ker(\text{Ind} \pi) \).

Now let \((A, \Gamma, \alpha)\) be a classical dynamical system in which \(A \) is separable and \(\Gamma \) is an amenable discrete countable group. If \(\Gamma \) acts on \(\text{Prim} A \) freely, then each primitive ideal \(\pi = P \) of \(A \) induces a primitive ideal of \(A \times_\alpha \Gamma \), namely \(\text{Ind} P = \ker(\text{Ind} \pi) \), and the description of \(\text{Prim}(A \times_\alpha \Gamma) \) is completely available:

Theorem 2.4. \([6, \text{Corollary 10.16}]\) Suppose in the system \((A, \Gamma, \alpha)\) that \(A \) is separable and \(\Gamma \) is an amenable discrete countable group. If \(\Gamma \) acts on \(\text{Prim} A \) freely, then the map
\[
\mathcal{O}(\text{Prim} A) \rightarrow \text{Prim}(A \times_\alpha \Gamma)
\]
\[
\mathcal{O}(P) \mapsto \text{Ind} P = \ker(\text{Ind} \pi)
\]
is a homeomorphism, where \(\pi \) is an irreducible representation of \(A \) with \(\ker \pi = P \). In particular, \(A \times_\alpha \Gamma \) is simple if and only if every \(\Gamma \)-orbit is dense in \(\text{Prim} A \).

We can apply the above Theorem to see that the irrational rotation algebras are simple. Readers can refer to \([6, \text{Example 10.18}]\) or \([12, \text{Example 8.46}]\) for more details.

3. The Primitive Ideal Space of \(A \times_\alpha^\text{piso} \mathbb{N} \) by Automorphic Action

First recall that if \(T \) is the isometry in \(B(\ell^2(\mathbb{N})) \) such that \(T(e_n) = e_{n+1} \) on the usual orthonormal basis \(\{e_n\}_{n=0}^\infty \) of \(\ell^2(\mathbb{N}) \), then we have
\[
\mathcal{K}(\ell^2(\mathbb{N})) = \overline{\text{span}}\{T_n(1 - TT^*)T_m^* : n, m \in \mathbb{N}\}.
\]

Now consider a system \((A, \alpha)\) consisting of a \(C^* \)-algebra \(A \) and an automorphism \(\alpha \) of \(A \). Let the triples \((A \times_\alpha^\text{piso} \mathbb{N}, j_A, v)\) and \((A \times_\alpha \mathbb{Z}, i_A, u)\) be the partial-isometric crossed product and the classical crossed product of the system respectively. Here our goal is to describe the primitive ideal space of \(A \times_\alpha^\text{piso} \mathbb{N} \) and its topology completely. See in \([4]\) that the kernel of the natural homomorphism \(q : (A \times_\alpha^\text{piso} \mathbb{N}, j_A, v) \rightarrow (A \times_\alpha \mathbb{Z}, i_A, u) \) given by \(q(\nu_n^*j_A(a)v_m) = u_n^*j_A(a)u_m \), is isomorphic to the algebra of compact operators \(\mathcal{K}(\ell^2(\mathbb{N})) \) \(\times \) \(A \). Therefore we have a short exact sequence
\[
0 \longrightarrow (\mathcal{K}(\ell^2(\mathbb{N})) \otimes A) \xrightarrow{\mu} A \times_\alpha^\text{piso} \mathbb{N} \xrightarrow{q} A \times_\alpha \mathbb{Z} \longrightarrow 0,
\]
where \(\mu(T_n(1 - TT^*)T_m^* \otimes a) = v_n^*j_A(a)(1 - v^*v)v_m \) for all \(a \in A \) and \(n, m \in \mathbb{N} \). So \(\text{Prim}(A \times_\alpha^\text{piso} \mathbb{N}) \) as a set, is given by the sets \(\text{Prim}(\mathcal{K}(\ell^2(\mathbb{N})) \otimes A) \) and \(\text{Prim}(A \times_\alpha \mathbb{Z}) \). With no condition on the system, we do not have much information about \(\text{Prim}(A \times_\alpha \mathbb{Z}) \) in general. However, by \([4, \text{Proposition 2.5}]\), we do know that \(\ker q \cong \mathcal{K}(\ell^2(\mathbb{N})) \otimes A \) is an essential ideal of \(A \times_\alpha^\text{piso} \mathbb{N} \). Therefore \(\text{Prim}(\mathcal{K}(\ell^2(\mathbb{N})) \otimes A) \) which is homeomorphic to \(\text{Prim} A \), sits in \(\text{Prim}(A \times_\alpha^\text{piso} \mathbb{N}) \) as an open dense subset. We will identify this open dense subset, namely the primitive ideals \(\{\mathcal{I}_P : P \in \text{Prim} A\} \) of \(\text{Prim}(A \times_\alpha^\text{piso} \mathbb{N}) \) coming from \(\text{Prim} A \), shortly. Moreover see in \([4, \text{§5}]\) that \(A \times_\alpha^\text{piso} \mathbb{N} \) is a full corner of the classical crossed product \((B^\infty Z \otimes A) \times_{\beta \otimes \alpha^{-1}} Z, \) where \(B^\infty Z := \overline{\text{span}}\{1_n : n \in \mathbb{Z}\} \subset \ell^\infty(Z) \), and the action \(\beta \) of \(Z \) on \(B^\infty Z \) is given by translation such that \(\beta_m(1_n) = 1_{n+m} \) for all \(m, n \in \mathbb{Z} \). Thus \(\text{Prim}(A \times_\alpha^\text{piso} \mathbb{N}) \) is homeomorphic to \(\text{Prim}((B^\infty Z \otimes A) \times_{\beta \otimes \alpha^{-1}} Z) \), and
hence it suffices to describe $\text{Prim}((B_2 \otimes A) \times_{\beta_{\alpha^{-1}}} \mathbb{Z})$ and its topology. To do this, we will consider two conditions on the system that make us able to apply a theorem of Williams and a result by Echterhoff. We will also identify those primitive ideals of $A \times_{\alpha}^{\text{piso}} \mathbb{N}$ coming from $\text{Prim}(A \times_{\alpha} \mathbb{Z})$, which form a closed subset of $\text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N})$.

But first, let us identify the primitive ideals \mathcal{I}_P.

Proposition 3.1. Let $\pi : A \to B(H)$ be a nonzero irreducible representation of A with $P := \ker \pi$. If the pair (Π, V) is defined as in [8] Example 4.6] (see [2], then the associated representation of $(A \times_{\alpha}^{\text{piso}} \mathbb{N}), j_A, v)$, which we denote by $(\Pi \times V, p)$, is irreducible on $\ell^2(\mathbb{N}, H)$, and does not vanish on $\ker q \simeq \mathcal{K}(\ell^2(\mathbb{N})) \otimes A$.

Proof. To see that $(\Pi \times V, p)$ is irreducible, we show that every $\xi \in \ell^2(\mathbb{N}, H) \setminus \{0\}$ is a cyclic vector for $(\Pi \times V, p)$, that is $\ell^2(\mathbb{N}, H) = \text{span} \{(\Pi \times V, p)(x) : x \in (A \times_{\alpha}^{\text{piso}} \mathbb{N})\}$. We show that

\[
\mathcal{H} := \text{span}\{(\Pi \times V, p)(v_n^* j_A(a)(1 - v^* v)v_m)(\xi) : a \in A, n, m \in \mathbb{N}\}
\]

equals $\ell^2(\mathbb{N}, H)$ which is enough. By viewing $\ell^2(\mathbb{N}, H)$ as the Hilbert space $\ell^2(\mathbb{N}) \otimes H$, it suffices to see that each $e_n \otimes h$ belongs to \mathcal{H}, where $\{e_n\}_{n=0}^\infty$ is the usual orthonormal basis of $\ell^2(\mathbb{N})$ and $h \in H$. Since $\xi \neq 0$ in $\ell^2(\mathbb{N}, H)$, there is $m \in \mathbb{N}$ such that $\xi(m) \neq 0$ in H. But $\xi(m)$ is a cyclic vector for the representation $\pi : A \to B(H)$ as π is irreducible. Thus we have $\overline{\text{span}}\{\pi(a)(\xi(m)) : a \in A\} = H$, and hence $\text{span}\{e_n \otimes (\pi(a)\xi(m)) : n \in \mathbb{N}, a \in A\}$ is dense in $\ell^2(\mathbb{N}) \otimes H \simeq \ell^2(\mathbb{N}, H)$. So we have to show that \mathcal{H} contains each element $e_n \otimes (\pi(a)\xi(m))$. Calculation shows that

\[
e_n \otimes (\pi(a)\xi(m)) = (V_n^* \Pi(a)(1 - V^* V)V_m)(\xi) = (\Pi \times V, p)(v_n^* j_A(a)(1 - v^* v)v_m)(\xi),
\]

and therefore $e_n \otimes (\pi(a)\xi(m)) \in \mathcal{H}$ for every $a \in A$ and $n \in \mathbb{N}$. So we have $\mathcal{H} = \ell^2(\mathbb{N}, H)$.

To show that $(\Pi \times V, p)$ does not vanish on $\mathcal{K}(\ell^2(\mathbb{N})) \otimes A$, first note that since π is nonzero, $\pi(a)h \neq 0$ for some $a \in A$ and $h \in H$. Now if we take $(1 - TT^*) \otimes a \in \mathcal{K}(\ell^2(\mathbb{N})) \otimes A$, then $((\Pi \times V, p)(\mu((1 - TT^*) \otimes a)) = (\Pi \times V, p)(j(a)(1 - v^* v)) \neq 0$. This is because for $(e_0 \otimes h) \in \ell^2(\mathbb{N}, H)$, we have

\[(\Pi \times V, p)(j_A(a)(1 - v^* v)(e_0 \otimes h)) = \Pi(a)(1 - V^* V)(e_0 \otimes h) = e_0 \otimes \pi(a)h,
\]

which is not zero in $\ell^2(\mathbb{N}, H)$ as $\pi(a)h \neq 0$. \hfill \square

Remark 3.2. The primitive ideals \mathcal{I}_P are actually the kernels of the irreducible representations $(\Pi \times V, p)$ which form the open dense subset

\[\mathcal{U} := \{\mathcal{I} \in \text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N}) : \mathcal{K}(\ell^2(\mathbb{N})) \otimes A \simeq \ker q \nsubseteq \mathcal{I}\}\]

of $\text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N})$ homeomorphic to $\text{Prim}(\mathcal{K}(\ell^2(\mathbb{N})) \otimes A)$. Now $\text{Prim}(\mathcal{K}(\ell^2(\mathbb{N})) \otimes A)$ itself is homeomorphic to $\text{Prim}A$ via the (Rieffel) homeomorphism $P \mapsto \mathcal{K}(\ell^2(\mathbb{N})) \otimes P$. But $\mathcal{K}(\ell^2(\mathbb{N})) \otimes P$ is the kernel of the irreducible representation $(\text{id} \otimes \pi)$ of $\mathcal{K}(\ell^2(\mathbb{N})) \otimes A$, which indeed equals the restriction $(\Pi \times V, p)|_{\mathcal{K}(\ell^2(\mathbb{N})) \otimes A}$. Therefore we have

\[\mathcal{I}_P \cap (\mathcal{K}(\ell^2(\mathbb{N})) \otimes A) = \ker((\Pi \times V, p)|_{\mathcal{K}(\ell^2(\mathbb{N})) \otimes A}) = \ker(\text{id} \otimes \pi) = \mathcal{K}(\ell^2(\mathbb{N})) \otimes P.
\]

Consequently the map $P \mapsto \mathcal{I}_P$ is a homeomorphism of $\text{Prim}A$ onto the open dense subset \mathcal{U} of $\text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N})$.

Now we want to describe the topology of $\text{Prim}((B_Z \otimes A) \times_{\partial \alpha^{-1}} Z) \simeq \text{Prim}(A \times_{piso} \mathbb{N})$ and identify the primitive ideals of $A \times_{piso} \mathbb{N}$ coming from $A \times_{\alpha} Z$ under the following two conditions:

1. when A is separable and abelian, by applying a theorem of Williams, namely Theorem 2.2
2. when A is separable and Z acts on $\text{Prim} A$ freely, by applying Theorem 2.4

3.1. The topology of $\text{Prim}((B_Z \otimes A) \times_{\partial \alpha^{-1}} Z)$ when A is separable and abelian.

Suppose that A is separable and abelian. Then $(B_Z \otimes A) \times_{\partial \alpha^{-1}} Z$ is isomorphic to the crossed product $C_{\mathbb{N}}(\Omega(B_Z \otimes A)) \times_{\alpha} Z$ associated to the second countable locally compact transformation group $(Z, \Omega(B_Z \otimes A))$. Therefore by Theorem 2.2 $\text{Prim}((B_Z \otimes A) \times_{\partial \alpha^{-1}} Z)$ is homeomorphic to $\Omega(B_Z \otimes A) \times \mathbb{T}/ \sim$. But we want to describe $\Omega(B_Z \otimes A) \times \mathbb{T}/ \sim$ precisely. To do this, we need to analyze $\Omega(B_Z \otimes A)$, and since $\Omega(B_Z \otimes A) \simeq \Omega(B_Z) \times \Omega(A)$ (see [11, Theorem B.37] or [11, Theorem B.45]), we have to compute $\Omega(B_Z)$ first.

Lemma 3.3. Let $\{-\infty\} \cup \mathbb{Z} \cup \{\infty\}$ be the two-point compactification of \mathbb{Z}. Then $\Omega(B_Z)$ is homeomorphic to the open dense subset $\mathbb{Z} \cup \{\infty\}$.

Proof. First note that B_Z exactly consists of those functions $f : \mathbb{Z} \to \mathbb{C}$ such that $\lim_{n \to -\infty} f(n) = 0$ and $\lim_{n \to \infty} f(n)$ exists. Thus the complex homomorphisms (irreducible representations) of B_Z are given by the evaluation maps $\{\varepsilon_n : n \in \mathbb{Z}\}$, and the map $\varepsilon_\infty : B_Z \to \mathbb{C}$ defined by $\varepsilon_\infty(f) := \lim_{n \to \infty} f(n)$ for all $f \in B_Z$. So we have $\Omega(B_Z) = \{\varepsilon_n : n \in \mathbb{Z}\} \cup \{\varepsilon_\infty\}$. Note that the kernel of ε_∞ is the ideal $C_0(\mathbb{Z}) = \text{span}\{1_n - 1_m : n < m \in \mathbb{Z}\}$ of B_Z. Now let $\{-\infty\} \cup \mathbb{Z} \cup \{\infty\}$ be the two-point compactification of \mathbb{Z} which is homeomorphic to the subspace $X := \{-1\} \cup \{-1 + 1/(1 - n) : n \in \mathbb{Z}, n < 0\} \cup \{1 - 1/(1 + n) : n \in \mathbb{Z}, n \geq 0\} \cup \{1\}$ of \mathbb{R}. Then the map

\[f \in B_Z \mapsto \tilde{f} \in C(\{-\infty\} \cup \mathbb{Z} \cup \{\infty\}), \]

where

\[\tilde{f}(r) := \begin{cases}
\lim_{n \to \infty} f(n) & \text{if } r = \infty, \\
n(r) & \text{if } r \in \mathbb{Z}, \text{ and} \\
0 & \text{if } r = -\infty,
\end{cases} \]

embeds B_Z in $C(\{-\infty\} \cup \mathbb{Z} \cup \{\infty\})$ as the maximal ideal

\[I := \{\tilde{f} \in C(\{-\infty\} \cup \mathbb{Z} \cup \{\infty\}) : \tilde{f}(\infty) = 0\}. \]

Thus it follows that $\Omega(B_Z)$ is homeomorphic to \tilde{I}, and \tilde{I} itself is homeomorphic to the open subset

\[\{\pi \in C(\{-\infty\} \cup \mathbb{Z} \cup \{\infty\})^\wedge : \pi|_I \neq 0\} = \{\tilde{\varepsilon}_r : r \in (\mathbb{Z} \cup \{\infty\})\} \]

of $C(\{-\infty\} \cup \mathbb{Z} \cup \{\infty\})^\wedge$ in which each $\tilde{\varepsilon}_r$ is an evaluation map. So by the homeomorphism between $C(\{-\infty\} \cup \mathbb{Z} \cup \{\infty\})^\wedge$ and $\{-\infty\} \cup \mathbb{Z} \cup \{\infty\}$, the open subset $\{\tilde{\varepsilon}_r : r \in (\mathbb{Z} \cup \{\infty\})\}$ is homeomorphic to the open (dense) subset $\mathbb{Z} \cup \{\infty\}$ of $\{-\infty\} \cup \mathbb{Z} \cup \{\infty\}$ equipped with the relative topology. Therefore $\Omega(B_Z)$ is in fact
homeomorphic to $\mathbb{Z} \cup \{\infty\}$. One can see that $\mathbb{Z} \cup \{\infty\}$ is indeed a second countable locally compact Hausdorff space with

$$\mathcal{B} := \{\{n\} : n \in \mathbb{Z}\} \cup \{J_n : n \in \mathbb{Z}\}$$

as a countable basis for its topology, where $J_n := \{n, n+1, n+2, \ldots\} \cup \{\infty\}$ for every $n \in \mathbb{Z}$.

\[\] *Remark 3.4.* Before we continue, we need to mention that, if A is a separable C^*-algebra (not necessarily abelian), then by [11, Theorem B.45] and using Lemma 3.3, $(C_0(\mathbb{Z}) \otimes A)$ and $(B_\mathbb{Z} \otimes A)$ are homeomorphic to $\mathbb{Z} \times \hat{A}$ and $(\mathbb{Z} \cup \{\infty\}) \times \hat{A}$ respectively. Also, $\text{Prim}(C_0(\mathbb{Z}) \otimes A)$ and $\text{Prim}(B_\mathbb{Z} \otimes A)$ are homeomorphic to $\mathbb{Z} \times \text{Prim} A$ and $(\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A$ respectively (note that these homeomorphisms are \mathbb{Z}-equivariant for the action of \mathbb{Z}). Since $C_0(\mathbb{Z}) \otimes A$ is an (essential) ideal of $B_\mathbb{Z} \otimes A$, we have the following commutative diagram:

$$
\begin{array}{ccc}
\mathbb{Z} \times \hat{A} & \begin{array}{c}
\text{id}
\end{array} & \rightarrow \mathbb{Z} \times \hat{A} \\
\downarrow \begin{array}{c}
i
\end{array} & & \downarrow \begin{array}{c}\iota
\end{array} \\
(\mathbb{Z} \cup \{\infty\}) \times \hat{A} & \begin{array}{c}
\Theta
\end{array} & \rightarrow (B_\mathbb{Z} \otimes A) \hat{\otimes} \text{Prim}(B_\mathbb{Z} \otimes A) \\
\end{array}
\begin{array}{c}
\downarrow \begin{array}{c}\iota
\end{array} & & \downarrow \begin{array}{c}\iota
\end{array} \\
(\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A & \begin{array}{c}
\text{id}
\end{array} & \rightarrow (\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A
\end{array}
$$

where Θ and $\hat{\Theta}$ are the canonical continuous, open surjections, and ι an ι are the canonical embedding maps. Now to see how \mathbb{Z} acts on $(\mathbb{Z} \cup \{\infty\}) \times \hat{A}$ (and accordingly on $(\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A$), note that since the crossed products $(C_0(\mathbb{Z}) \otimes A) \times_{\beta \otimes \alpha^{-1}} \mathbb{Z}$ and $(C_0(\mathbb{Z}) \otimes A) \times_{\beta \otimes \text{id}} \mathbb{Z}$ are isomorphic (see [12, Lemma 7.4]), we have

$$n \cdot (m, [\pi]) = (m + n, [\pi]) \quad \text{and} \quad n \cdot (\infty, [\pi]) = (n + \infty, n \cdot [\pi]) = (\infty, [\pi \circ \alpha_n])$$

for all $n, m \in \mathbb{Z}$ and $[\pi] \in \hat{A}$. Accordingly

$$n \cdot (m, P) = (m + n, P) \quad \text{and} \quad n \cdot (\infty, P) = (\infty, \alpha_n^{-1} P)$$

for all $n, m \in \mathbb{Z}$ and $P \in \text{Prim} A$.

So when A is separable and abelian, using Lemma 3.3, $\Omega(B_\mathbb{Z} \otimes A) = (\mathbb{Z} \cup \{\infty\}) \times \Omega(A)$. Now to describe $((\mathbb{Z} \cup \{\infty\}) \times \Omega(A)) / \sim$, note that by Remark 3.4, \mathbb{Z} acts on $(\mathbb{Z} \cup \{\infty\}) \times \Omega(A)$ as follows:

$$n \cdot (m, \phi) = (m + n, \phi) \quad \text{and} \quad n \cdot (\infty, \phi) = (\infty, \phi \circ \alpha_n)$$

for all $n, m \in \mathbb{Z}$ and $\phi \in \Omega(A)$. Therefore, the stability group of each (m, ϕ) is $\{0\}$, and the stability group of each (∞, ϕ) equals the stability group \mathbb{Z}_ϕ of ϕ. Accordingly, the \mathbb{Z}-orbit of each (m, ϕ) is $\mathbb{Z} \times \{\phi\}$, and the \mathbb{Z}-orbit of (∞, ϕ) is $\{\infty\} \times \mathbb{Z} \cdot \phi$, where $\mathbb{Z} \cdot \phi$ is the \mathbb{Z}-orbit of ϕ. So for the pairs (or triples) $((m, \phi), z)$ and $((n, \psi), w)$ of $(\mathbb{Z} \times \Omega(A)) \times \mathbb{T}$, we have

$$((m, \phi), z) \sim ((n, \psi), w) \iff \begin{array}{l}
\mathbb{Z} \cdot (m, \phi) = \mathbb{Z} \cdot (n, \psi) \\
\mathbb{Z} \times \{\phi\} = \mathbb{Z} \times \{\psi\} \\
\mathbb{Z} \times \{\phi\} = \mathbb{Z} \times \{\psi\} \\
(\mathbb{Z} \cup \{\infty\}) \times \{\phi\} = (\mathbb{Z} \cup \{\infty\}) \times \{\psi\} \\
(\mathbb{Z} \cup \{\infty\}) \times \{\phi\} = (\mathbb{Z} \cup \{\infty\}) \times \{\psi\}.
\end{array}$$
The last equivalence follows from the fact that $\Omega(A)$ is Hausdorff. Therefore $((m, \phi), z)$ and $((n, \psi), w)$ are in the same equivalence class in $((\mathbb{Z} \cup \{\infty\}) \times \Omega(A)) \times \mathbb{T} / \sim$ if and only if $\phi = \psi$, while $((m, \phi), z) \sim ((\infty, \psi), w)$ for every $\psi \in \Omega(A)$ and $w \in \mathbb{T}$, because

$$\mathbb{Z} \cdot (\infty, \psi) = \{\infty\} \times \mathbb{Z} \cdot \psi = \{\infty\} \times \overline{\mathbb{Z} \cdot \psi}.$$

Thus if $\phi \in \Omega(A)$, then all pairs $((m, \phi), z)$ for every $m \in \mathbb{Z}$ and $z \in \mathbb{T}$ are in the same equivalence class, which can be parameterized by $\phi \in \Omega(A)$. On the other hand, for the pairs $((\infty, \phi), z)$ and $((\infty, \psi), w)$, we have

$$((\infty, \phi), z) \sim ((\infty, \psi), w) \iff \mathbb{Z} \cdot (\infty, \phi) = \mathbb{Z} \cdot (\infty, \psi) \quad \text{and} \quad \gamma_z|_{\mathbb{Z} \cdot \phi} = \gamma_w|_{\mathbb{Z} \cdot \psi}.$$

Therefore

$$((\infty, \phi), z) \sim ((\infty, \psi), w) \iff \mathbb{Z} \cdot \phi = \mathbb{Z} \cdot \psi \quad \text{and} \quad \gamma_z|_{\mathbb{Z} \cdot \phi} = \gamma_w|_{\mathbb{Z} \cdot \psi},$$

which means if and only if the pairs (ϕ, z) and (ψ, w) are in the same equivalence class in the quotient space $\Omega(A) \times \mathbb{T} / \sim$ homeomorphic to $\text{Prim}(A \times_{\alpha} \mathbb{N})$. Therefore $((\infty, \phi), z) \sim ((\infty, \psi), w)$ in $((\mathbb{Z} \cup \{\infty\}) \times \Omega(A)) \times \mathbb{T} / \sim$ precisely when $(\phi, z) \sim (\psi, w)$ in $\Omega(A) \times \mathbb{T} / \sim$, and hence the class of each $((\infty, \phi), z)$ of the form $((\mathbb{Z} \cup \{\infty\}) \times \Omega(A)) \times \mathbb{T} / \sim$ can be parameterized by the class of (ϕ, z) in $\Omega(A) \times \mathbb{T} / \sim$. So we can identify $((\mathbb{Z} \cup \{\infty\}) \times \Omega(A)) \times \mathbb{T} / \sim$ with the disjoint union

$$\Omega(A) \sqcup (\Omega(A) \times \mathbb{T} / \sim).$$

Now we have:

Theorem 3.5. Let (A, α) be a system consisting of a separable abelian C^*-algebra A and an automorphism α of A. Then $\text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N})$ is homeomorphic to $\Omega(A) \sqcup (\Omega(A) \times \mathbb{T} / \sim)$, equipped with the (quotient) topology in which the open sets are of the form

$$\{ U \subseteq \Omega(A) : U \text{ is open in } \Omega(A) \} \cup \{ U \cup W : U \text{ is a nonempty open subset of } \Omega(A), \text{ and } W \text{ is open in } (\Omega(A) \times \mathbb{T} / \sim) \}.$$

Proof. Since the quotient map $q : ((\mathbb{Z} \cup \{\infty\}) \times \Omega(A)) \times \mathbb{T} \rightarrow \Omega(A) \sqcup (\Omega(A) \times \mathbb{T} / \sim)$ is open, as well as $\bar{q} : \Omega(A) \times \mathbb{T} \rightarrow \Omega(A) \sqcup (\Omega(A) \times \mathbb{T} / \sim)$, for every $n \in \mathbb{Z}$, every open subset O of $\Omega(A)$, and every open subset V of \mathbb{T}, the forward image of open subsets $\{n\} \times O \times V$ and $J_n \times O \times V$ by q, forms a basis for the topology of $\Omega(A) \sqcup (\Omega(A) \times \mathbb{T} / \sim)$, which is

$$\{ O \subseteq \Omega(A) : O \text{ is open in } \Omega(A) \} \cup \{ O \cup \bar{q}(O \times V) : O \text{ is a nonempty open subset of } \Omega(A), \text{ and } V \text{ is open in } \mathbb{T} \}.$$

As the open subsets $\bar{q}(O \times V)$ also form a basis for the quotient topology of $\Omega(A) \times \mathbb{T} / \sim$, we can see that each open subset of $\Omega(A) \sqcup (\Omega(A) \times \mathbb{T} / \sim)$ is either an open subset U of $\Omega(A)$ or of the form $U \cup W$ for some nonempty open subset U in $\Omega(A)$ and some open subset W in $\Omega(A) \times \mathbb{T} / \sim$. \hfill \Box

Remark 3.6. Under the condition of Theorem 3.5, the primitive ideals of $\text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N})$ coming from $\text{Prim}(A \times_{\alpha} \mathbb{Z})$, which form the closed subset

$$\mathcal{F} := \{ J \in \text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N}) : \mathcal{K}(\ell^2(\mathbb{N})) \otimes A \simeq \ker q \subseteq J \},$$
are the kernels of the irreducible representations \((\mathrm{Ind}_Z^\mathbb{Z}(\phi \times G_\mathbb{Z})_0)\circ q\) corresponding to the equivalence classes of the pairs \((\phi, z)\) in \(\Omega(A) \times \mathbb{T}/\sim\) (again by using Theorem 2.2). Therefore if \(J_{[(\phi, z)]}\) denotes \(\ker(\mathrm{Ind}_Z^\mathbb{Z}(\phi \times G_\mathbb{Z})_0)\circ q\), then \(F = \{J_{[(\phi, z)]} : \phi \in \Omega(A), z \in \mathbb{T}\}\), and the map \([[(\phi, z)] \mapsto J_{[(\phi, z)]}\) is homeomorphism of \(\text{Prim}(A \times_\alpha \mathbb{Z}) \simeq \Omega(A) \times \mathbb{T}/\sim\) onto \(F\).

Proposition 3.7. Let \((A, \alpha)\) be a system consisting of a separable abelian \(C^*\)-algebra \(A\) and an automorphism \(\alpha\) of \(A\). Then \(A \times_\alpha^{\text{piso}} \mathbb{N}\) is GCR if and only if \(\mathbb{Z} \setminus \Omega(A)\) is a \(T_0\) space.

Proof. By [9, Theorem 5.6.2], \(A \times_\alpha^{\text{piso}} \mathbb{N}\) is GCR if and only if \(\mathcal{K}(\ell^2(\mathbb{N})) \otimes A \simeq \ker q\) and \(A \times_\alpha \mathbb{Z} \simeq C_0(\Omega(A)) \times_\tau \mathbb{Z}\) are GCR. But since \(A\) is abelian, \(\mathcal{K}(\ell^2(\mathbb{N})) \otimes A\) is automatically CCR, and hence it is GCR. Therefore \(A \times_\alpha^{\text{piso}} \mathbb{N}\) is GCR precisely when \(A \times_\alpha \mathbb{Z}\) is GCR. By [12, Theorem 8.43], \(A \times_\alpha \mathbb{Z}\) is GCR if and only if \(\mathbb{Z} \setminus \Omega(A)\) is a \(T_0\) space. \(\Box\)

Proposition 3.8. Let \((A, \alpha)\) be a system consisting of a separable abelian \(C^*\)-algebra \(A\) and an automorphism \(\alpha\) of \(A\). Then \(A \times_\alpha^{\text{piso}} \mathbb{N}\) is not CCR.

Proof. Note that \(A \times_\alpha^{\text{piso}} \mathbb{N}\) is CCR if and only if \((B_\mathbb{Z} \otimes \mathbb{A}) \times_{\beta \times \alpha^{-1}} \mathbb{Z} \simeq C_0(\Omega(B_\mathbb{Z} \otimes \mathbb{A})) \times_\tau \mathbb{Z}\) is CCR, because they are Morita equivalent (see [12, Proposition I.43]). Since for the \(\mathbb{Z}\)-orbit of a pair \((m, \phi)\), we have

\[
\mathbb{Z} \cdot (m, \phi) = \mathbb{Z} \times \{\phi\} = \mathbb{Z} \times \{\phi\} = (\mathbb{Z} \cup \{\infty\}) \times \{\phi\},
\]

it follows that \(\mathbb{Z}\)-orbit of \((m, \phi)\) is not closed in \(\Omega(B_\mathbb{Z} \otimes \mathbb{A}) = (\mathbb{Z} \cup \{\infty\}) \times \Omega(A)\).

Therefore by [12, Theorem 8.44], \(C_0(\Omega(B_\mathbb{Z} \otimes \mathbb{A})) \times_\tau \mathbb{Z}\) is not CCR, and hence \(A \times_\alpha^{\text{piso}} \mathbb{N}\) is not CCR. \(\Box\)

Example 3.9. (Pimsner-Voiculescu Toeplitz algebra) Suppose \(\mathcal{T}(A, \alpha)\) is the Pimsner-Voiculescu Toeplitz algebra associated to the system \((A, \alpha)\) (see [10]). It was shown in [4, §5] that \(\mathcal{T}(A, \alpha)\) is isomorphic to the partial-isometric crossed product \(A \times_\alpha^{\text{piso}} \mathbb{N}\) associated to the system \((A, \alpha^{-1})\). Therefore when \(A\) is abelian and separable, the description of \(\text{Prim}(\mathcal{T}(A, \alpha))\) follows completely from Theorem 3.5. In particular, for the trivial system \((\mathbb{C}, \text{id})\), \(\mathcal{T}(\mathbb{C}, \text{id})\) is the Toeplitz algebra \(\mathcal{T}(\mathbb{Z})\) of integers isomorphic to \(\mathbb{C} \times_{\text{id}}^{\text{piso}} \mathbb{N}\). So again by Theorem 3.5, \(\text{Prim}(\mathcal{T}(\mathbb{Z}))\) corresponds to the disjoint union \(\{0\} \sqcup \mathbb{T}\) in which every (nonempty) open set is of the form \(\{0\} \sqcup W\) for some open subset \(W\) of \(\mathbb{T}\). This description is known which coincides with the description of \(\text{Prim}(\mathcal{T}(\mathbb{Z}))\) obtained from the well-known short exact sequence \(0 \to \mathcal{K}(\ell^2(\mathbb{N})) \to \mathcal{T}(\mathbb{Z}) \to C(\mathbb{T}) \to 0\).

Example 3.10. Consider the system \((C(\mathbb{T}), \alpha)\) in which the action \(\alpha\) is given by rotation through the angle \(2\pi \theta\) with \(\theta\) rational. By using the discussion in [12, Example 8.46], \(\text{Prim}(C(\mathbb{T}) \times_\alpha^{\text{piso}} \mathbb{N})\) can be identified with the disjoint union

\[
\mathbb{T} \sqcup \mathbb{T}^2,
\]

in which by Theorem 3.5 each open set is given by

\[
\{U \subset \mathbb{T} : U \text{ is open in } \mathbb{T}\} \cup \{U \cup W : U \text{ is a nonempty open subset of } \mathbb{T}, \text{and } W \text{ is open in } \mathbb{T}^2\}.
\]
Moreover the orbit space \(\mathbb{Z} \setminus \mathbb{T} \) is homeomorphic to \(\mathbb{T} \), which is obviously \(T_0 \) (in fact Hausdorff). So it follows by Proposition 3.7 that \(C(\mathbb{T}) \times_\alpha^\text{piso} \mathbb{N} \) is GCR.

3.2. The topology of \(\text{Prim}((B_\mathbb{Z} \otimes A) \times_{B \otimes \alpha^{-1}} \mathbb{Z}) \) when \(A \) is separable and \(\mathbb{Z} \) acts on \(\text{Prim} A \) freely.

Consider a system \((A, \alpha) \) in which \(A \) is separable, and \(\mathbb{Z} \) acts on \(\text{Prim} A \) freely. It follows that \(\mathbb{Z} \) acts on \(\text{Prim}(B_\mathbb{Z} \otimes A) \) freely too. This is because, firstly, by [11, Theorem B.45], \(\text{Prim}(B_\mathbb{Z} \otimes A) \) is homeomorphic to \(\text{Prim} B_\mathbb{Z} \times \text{Prim} A \), and hence it is homeomorphic to \((\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A \). Then \(\mathbb{Z} \) acts on \((\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A \) such that

\[
n \cdot (m, P) = (m + n, P) \quad \text{and} \quad n \cdot (\infty, P) = (\infty, \alpha_n^{-1}(P))
\]

for all \(n, m \in \mathbb{Z} \) and \(P \in \text{Prim} A \). Therefore the stability group of each \((\infty, P)\) equals the stability group \(\mathbb{Z}_P \) of \(P \), which is \(\{0\} \) as \(\mathbb{Z} \) acts on \(\text{Prim} A \) freely, and stability group of each \((m, P)\) is clearly \(\{0\} \). So in the separable system \((B_\mathbb{Z} \otimes A, \mathbb{Z}, \beta \otimes \alpha^{-1}) \) (with \(\mathbb{Z} \) abelian), \(\mathbb{Z} \) acts on \(\text{Prim}(B_\mathbb{Z} \otimes A) \simeq (\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A \) freely. Therefore by Theorem 2.4, \(\text{Prim}(B_\mathbb{Z} \otimes A) \) is homeomorphic to the quasi-orbit space \(\text{O}(\text{Prim}(B_\mathbb{Z} \otimes A)) = \text{O}((\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A) \), which describes \(\text{Prim}(A \times_\alpha^\text{piso} \mathbb{N}) \) as well.

We want to describe the quotient topology of \(\text{O}((\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A) \) precisely, and identify the primitive ideals of \(A \times_\alpha^\text{piso} \mathbb{N} \) coming from \(\text{Prim}(A \times_\alpha \mathbb{Z}) \). We have

\[
\text{O}(m, P) = \text{O}(n, Q) \iff \widehat{Z} \cdot (m, P) = \widehat{Z} \cdot (n, Q)
\iff \widehat{Z} \times \{P\} = \widehat{Z} \times \{Q\}
\iff \widehat{Z} \times \{P\} = \widehat{Z} \times \{Q\}
\iff (\mathbb{Z} \cup \{\infty\}) \times \{P\} = (\mathbb{Z} \cup \{\infty\}) \times \{Q\}.
\]

Therefore \(\text{O}(m, P) = \text{O}(n, Q) \) if and only if \(\{P\} = \{Q\} \), and this happens precisely when \(P = Q \) by the definition of the hull-kernel (Jacobson) topology on \(\text{Prim} A \) (that is why the primitive ideal space of any C*-algebra is always \(T_0 \) [9, Theorem 5.4.7]). So all pairs \((m, P)\) for every \(m \in \mathbb{Z} \) have the same quasi-orbit which can be parameterized by \(P \in \text{Prim} A \), and since

\[
\widehat{Z} \cdot (\infty, Q) = \{\infty\} \times \widehat{Z} \cdot Q = \{\infty\} \times \widehat{Z} \cdot Q = \{\infty\} \times \widehat{Z} \cdot Q,
\]

\(\text{O}(m, P) \neq \text{O}(\infty, Q) \) for all \(m \in \mathbb{Z} \) and \(P, Q \in \text{Prim} A \). Moreover

\[
\text{O}(\infty, P) = \text{O}(\infty, Q) \iff \widehat{Z} \cdot (\infty, P) = \widehat{Z} \cdot (\infty, Q)
\iff \{\infty\} \times \widehat{Z} \cdot P = \{\infty\} \times \widehat{Z} \cdot Q.
\]

Thus \(\text{O}(\infty, P) = \text{O}(\infty, Q) \) if and only if \(\widehat{Z} \cdot P = \widehat{Z} \cdot Q \), which means if and only if \(P \) and \(Q \) have the same quasi-orbit \((\text{O}(P) = \text{O}(Q))\) in \(\text{O}(\text{Prim} A) \simeq \text{Prim}(A \times_\alpha \mathbb{Z}) \). So each quasi-orbit \(\text{O}(\infty, P) \) can be parameterized by the quasi-orbit \(\text{O}(P) \) in \(\text{O}(\text{Prim} A) \), and we can therefore identify \(\text{O}((\mathbb{Z} \cup \{\infty\}) \times \text{Prim} A) \) by the disjoint union

\[
\text{Prim} A \sqcup \text{O}(\text{Prim} A).
\]

Then we have:

Theorem 3.11. Let \((A, \alpha)\) be a system consisting of a separable C*-algebra \(A \) and an automorphism \(\alpha \) of \(A \). Suppose that \(\mathbb{Z} \) acts on \(\text{Prim} A \) freely. Then \(\text{Prim}(A \times_\alpha^\text{piso} \mathbb{N}) \) is
homeomorphic to \(\text{Prim} A \sqcup \mathcal{O}(\text{Prim} A) \), equipped with the (quotient) topology in which the open sets are of the form
\[
\{ U \subset \text{Prim} A : U \text{ is open in } \text{Prim} A \} \cup \\
\{ U \cup W : U \text{ is a nonempty open subset of } \text{Prim} A, \text{ and } W \text{ is open in } \mathcal{O}(\text{Prim} A) \}.
\]

Proof. Note that since by [12, Lemma 6.12], the quasi-orbit map \(q : \text{Prim}(B_Z \otimes A) \rightarrow \mathcal{O}(\text{Prim}(B_Z \otimes A)) \) is continuous and open, the proof follows from a similar argument to the proof of Theorem 3.11. So we skip it here. \(\square \)

Remark 3.12. Under the condition of Theorem 3.11, we want to identify the primitive ideals of \(\text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N}) \) coming from \(\text{Prim}(A \times_{\alpha} \mathbb{Z}) \), which form the closed subset
\[
\mathcal{F} := \{ J \in \text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N}) : \mathcal{K}(\ell^2(\mathbb{N})) \otimes A \simeq \ker q \subset J \}
\]
homeomorphic to \(\text{Prim}(A \times_{\alpha} \mathbb{Z}) \simeq \mathcal{O}(\text{Prim} A) \) (see Theorem 2.4). These ideals are actually the kernels of the irreducible representations \((\text{Ind} \pi) \circ q = (\tilde{\pi} \times U) \circ q \) of \(A \times_{\alpha}^{\text{piso}} \mathbb{N} \), where \(\pi \) is an irreducible representation of \(A \) with \(\ker \pi = P \). But since the pair \((\tilde{\pi}, U) \) is clearly a covariant partial-isometric representation of \((A, \alpha) \), one can see that in fact, \((\text{Ind} \pi) \circ q = \tilde{\pi} \times \text{piso} U \), where \(\tilde{\pi} \times \text{piso} U \) is the associated representation of \(A \times_{\alpha}^{\text{piso}} \mathbb{N} \) corresponding to the pair \((\tilde{\pi}, U) \). Thus each element of \(\mathcal{F} \) is of the form \(\ker(\tilde{\pi} \times \text{piso} U) \) corresponding to the quasi-orbit \(\mathcal{O}(P) \), and therefore we denote \(\ker(\tilde{\pi} \times \text{piso} U) \) by \(\mathcal{O}(P) \). So the map \(\mathcal{O}(P) \rightarrow \mathcal{O}(P) \) is a homeomorphism of \(\mathcal{O}(\text{Prim} A) \) onto the closed subspace \(\mathcal{F} \) of \(\text{Prim}(A \times_{\alpha}^{\text{piso}} \mathbb{N}) \).

For the following remark, we need to recall that the primitive ideal space of any \(C^* \)-algebra \(A \) is locally compact [7, Corollary 3.3.8]. A locally compact space \(X \) (not necessarily Hausdorff) is called almost Hausdorff if each locally compact subspace \(U \) contains a relatively open nonempty Hausdorff subset (see [12, Definition 6.1.]). If a \(C^* \)-algebra is GCR, then it is almost Hausdorff (see the discussion on pages 171 and 172 of [12]). Finally if \(A \) is separable, then by applying [11, Theorem A.38] and [11, Proposition A.46], it follows that \(\text{Prim} A \) is second countable.

Remark 3.13. It follows from [13] that if \((A, Z, \alpha) \) is a separable system in which \(Z \) acts on \(\hat{A} \) freely, then \(A \times_{\alpha} Z \) is GCR if and only if \(A \) is GCR and every \(Z \)-orbit in \(\hat{A} \) is discrete. But every \(Z \)-orbit in \(\hat{A} \) is discrete if and only if for each \([\pi] \in \hat{A} \), the map \(Z \rightarrow Z \cdot [\pi] \) defined by \(n \mapsto n \cdot [\pi] = [\pi \circ \alpha_n^{-1}] \) is a homeomorphism, and this statement itself, by [12, Theorem 6.2 (Mackey-Glimm Dichotomy)], is equivalent to saying that the orbit space \(Z \backslash \hat{A} \) is \(T_0 \). Therefore we can rephrase the statement of [13] to say that if \((A, Z, \alpha) \) is a separable system in which \(Z \) acts on \(\hat{A} \) freely, then \(A \times_{\alpha} Z \) is GCR if and only if \(A \) is GCR and the orbit space \(Z \backslash \hat{A} \) is \(T_0 \).

Proposition 3.14. Let \((A, \alpha) \) be a system consisting of a separable \(C^* \)-algebra \(A \) and an automorphism \(\alpha \) of \(A \). Suppose that \(Z \) acts on \(\hat{A} \) freely. Then \(A \times_{\alpha}^{\text{piso}} \mathbb{N} \) is GCR if and only if \(A \) is GCR and the orbit space \(Z \backslash \hat{A} \) is \(T_0 \).

Proof. The proof follows from a similar argument to the proof of Proposition 3.7 and Remark 3.13. \(\square \)

Example 3.15. Consider the system \((C(\mathbb{T}), \alpha) \) in which the action \(\alpha \) is given by rotation through the angle \(2\pi \theta \) with \(\theta \) irrational. Then \(Z \) acts on \(\text{Prim}(C(\mathbb{T})) = C(\mathbb{T})^\sim = \mathbb{T} \)
freely (see [12, Example 8.45] or [6, Example 10.18]). Therefore by Theorem 3.11 Prim($C(T) \times_{\alpha}^{piso} N$) can be identified with the disjoint union $T \sqcup O(T)$. But the quasi-orbit space $O(T)$ contains only one point as each Z-orbit is dense in T (see [12, Lemma 3.29]). Let us parameterize this only point by 0 (note that $O(T)$ is homeomorphic to the primitive ideal space of the irrational rotation algebra $A_\theta := C(T) \times_{\alpha} Z$ which is simple). So Prim($C(T) \times_{\alpha}^{piso} N$) is actually identified with
\[T \sqcup \{0\}, \]
where each open set is given by
\[\{U \subset T : U \text{ is open in } T\} \cup \{U \cup \{0\} : U \text{ is a nonempty open subset of } T\}. \]
Here we would like to mention that 0 in T is the zero ideal if and only if Prim($T(A, \alpha)$) contains only one point as each Z-orbit is dense in T. Therefore by Theorem 3.11, $C(T) \times_{\alpha}^{piso} N$ is not GCR.

Remark 3.16. Recall that since the Pimsner-Voiculescu Toeplitz algebra $T(A, \alpha)$ is isomorphic to $A \times_{\alpha^{-1}}^{piso} N$ (see Example 3.9), if A is separable and Z acts on Prim A freely, then the description of Prim($T(A, \alpha)$) is obtained completely from Theorem 3.11.

4. PRIMITIVITY AND SIMPLICITY OF $A \times_{\alpha}^{piso} N$

In this section, we want to discuss the primitivity and simplicity of $A \times_{\alpha}^{piso} N$. Recall that a C^*-algebra is called *primitive* if it has a faithful nonzero irreducible representation, and it is called *simple* if it has no nontrivial ideal.

Theorem 4.1. Let (A, α) be a system consisting of a C^*-algebra A and an automorphism α of A. Then $A \times_{\alpha}^{piso} N$ is primitive if and only A is primitive.

Proof. If $A \times_{\alpha}^{piso} N$ is primitive, it has a faithful nonzero irreducible representation $\rho : A \times_{\alpha}^{piso} N \to B(H)$. Then since the restriction of ρ to the ideal $K(\ell^2(N)) \otimes A \simeq \ker q$ is nonzero, it gives an irreducible representation of $K(\ell^2(N)) \otimes A$ which is clearly faithful. So it follows that $K(\ell^2(N)) \otimes A$ is primitive, and therefore A must be primitive as well.

Conversely, if A is primitive, then it has a faithful nonzero irreducible representation π on some Hilbert space H ($P = \ker \pi = \{0\}$). We show that the associated irreducible representation $(\Pi \times V)\rho$ of $A \times_{\alpha}^{piso} N$ on $\ell^2(N, H)$ is faithful. By [8, Theorem 4.8], it is enough to see that if $\Pi(a)(1 - V^*V) = 0$, then $a = 0$. If $\Pi(a)(1 - V^*V) = 0$, then
\[\Pi(a)(1 - V^*V)(e_0 \otimes h) = (e_0 \otimes \pi(a)h) = 0 \quad \text{for all } h \in H. \]
It follows that $\pi(a)h = 0$ for all $h \in H$, and therefore $\pi(a) = 0$. Since π is faithful, we must have $a = 0$. This completes the proof. \square

Remark 4.2. Note that Theorem 4.1 simply means that in the homeomorphism $P \mapsto P$ mentioned in Remark 3.22, P is the zero ideal if and only if I_P is the zero ideal. This is because if $A \times_{\alpha}^{piso} N$ is primitive, then its zero ideal as one of its primitive ideals is of the form I_P (coming from Prim A), as $K(\ell^2(N)) \otimes A \neq 0$.

\[\]
Finally it is not difficult to see that $A \times_{\alpha} \mathbb{N}$ is not simple. This is because as we see, it contains $K(\ell^2(\mathbb{N})) \otimes A$ as a nonzero ideal. Moreover if $K(\ell^2(\mathbb{N})) \otimes A = A \times_{\alpha} \mathbb{N}$, then $A \times_{\alpha} \mathbb{Z} \simeq (A \times_{\alpha} \mathbb{N})/(K(\ell^2(\mathbb{N})) \otimes A)$ must be the zero algebra. So it follows that $A = 0$, which is a contradiction as we have $A \neq 0$. Therefore $A \times_{\alpha} \mathbb{N}$ contains $K(\ell^2(\mathbb{N})) \otimes A$ as a proper nonzero ideal, and hence we have proved the following:

Theorem 4.3. Let (A, α) be a system consisting of a C*-algebra A and an automorphism α of A. Then $A \times_{\alpha} \mathbb{N}$ is not simple.

Acknowledgements. This research is supported by Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University.

References

[1] S. Adji, *Invariant ideals of crossed products by semigroups of endomorphisms*, Proc. Conference in Functional Analysis and Global Analysis in Manila, October 1996 (Springer, Singapore 1996), 1–8.

[2] S. Adji and A. Hosseini, *The Partial-Isometric Crossed Products of c_0 by the Forward and the Backward Shifts*, Bull. Malays. Math. Sci. Soc. (2) 33(3) (2010), 487–498.

[3] S. Adji, M. Laca, M. Nilsen and I. Raeburn, *Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups*, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1133–1141.

[4] S. Adji, S. Zahmatkesh, *Partial-isometric crossed products by semigroups of endomorphisms as full corners*, J. Aust. Math. Soc. 96 (2014), 145–166.

[5] S. Adji, S. Zahmatkesh, *The composition series of ideals of the partial-isometric crossed product by semigroup of endomorphisms*, J. Korean. Math. Soc. 52 (2015), No. 4, 869–889.

[6] S. Echterhoff, *Crossed products, the Mackey-Rieffel-Green machine and applications*, Preprint (2010), [arXiv:1006.4973](http://arxiv.org/abs/1006.4973).

[7] J. Dixmier, C*-algebras, North-Holland Mathematical Library, vol. 15, North-Holland, New York, 1977.

[8] J. Lindiarni and I. Raeburn, *Partial-isometric crossed products by semigroups of endomorphisms*, J. Operator Theory 52 (2004), 61–87.

[9] G.J. Murphy, C*-algebras and operator theory, Academic Press, New York, 1990.

[10] M. Pimsner and D. Voiculescu, *Exact sequences for K-groups and Ext-groups of certain crossed product C*-algebras*, J. Operator Theory 4 (1980), 93–118.

[11] I. Raeburn and D. P. Williams, *Morita Equivalence and Continuous-Trace C*-Algebras*, Mathematical Surveys and Monographs, 60 (American Mathematical Society, Providence, RI, 1998).

[12] D. P. Williams, *Crossed Products of C*-Algebras*, Mathematical Surveys and Monographs, 134 (American Mathematical Society, Providence, RI, 2007).

[13] G. Zeller-Meier, *Produits croiss d’une C*-algebre par un groupe d’automorphismes*, J. Math. Pures et Appl. 47 (1968), 101-239.