Bismuth Substituted Strontium Cobalt Perovskites for Catalyzing Oxygen Evolution

Denis Kuznetsov, Jiayu Peng, Livia Giordano, Yuriy Román-Leshkov, Yang Shao-Horn

Submitted date: 10/07/2019 • Posted date: 11/07/2019
Licence: CC BY-NC-ND 4.0

In this study, we employ the strategy of substitution with more electronegative/acidic A-site ions in the cobalt perovskites to alter O 2p-band center, surface hydroxide affinity, and oxygen evolution reaction (OER) activity and stability in the basic electrolyte. Galvanostatically charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ (δ close to zero) was shown to exhibit record OER specific activity exceeding not only La$_x$Sr$_{1-x}$CoO$_{3-δ}$ but also charged SrCoO$_{3-δ}$ (δ close to zero), one of the most active oxide OER catalysts reported so far. The enhanced OER activity of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ can be attributed to greater hydroxide affinity facilitating the deprotonation of surface bound intermediates due to the presence of strong Lewis acidic A-site Bi$^{3+}$ ions, while the high stability can result from lowered O 2p-band center relative to the Fermi level. This work provides a novel example in the rational design of highly active oxide catalysts for OER by leveraging the inductive effect.

File list (2)

BiSrCo_manuscript.pdf (1.42 MiB) view on ChemRxiv download file
BiSrCo_ESI.pdf (1.15 MiB) view on ChemRxiv download file
Bismuth substituted strontium cobalt perovskites for catalyzing oxygen evolution

Denis A. Kuznetsov,1,2,7 Jiayu Peng,2,3,7 Livia Giordano,1,2,4,6 Yuriy Román-Leshkov,5 and Yang Shao-Horn1,2,3,4,8,*

1Research Laboratory of Electronics, 2Electrochemical Energy Laboratory, 3Department of Materials Science and Engineering, 4Department of Mechanical Engineering, 5Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
6Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Milano 20126, Italy
7These authors contributed equally
8Lead Contact
*Correspondence: shaohorn@mit.edu

SUMMARY

In this study, we employ the strategy of substitution with more electronegative/acidic A-site ions in the cobalt perovskites to alter O 2p-band center, surface hydroxide affinity, and oxygen evolution reaction (OER) activity and stability in the basic electrolyte. Galvanostatically charged Bi0.2Sr0.8CoO3-δ (δ close to zero) was shown to exhibit record OER specific activity exceeding not only La1-xSr0.03δ (δ close to zero), one of the most active oxide OER catalysts reported so far. The enhanced OER activity of charged Bi0.2Sr0.8CoO3-δ can be attributed to greater hydroxide affinity facilitating the deprotonation of surface bound intermediates due to the presence of strong Lewis acidic A-site Bi3+ ions, while the high stability can result from lowered O 2p-band center relative to the Fermi level. This work provides a novel example in the rational design of highly active oxide catalysts for OER by leveraging the inductive effect.
INTRODUCTION

The distribution and on-demand use of electrical energy from sustainable resources, such as solar energy, requires storage technologies that are cost effective and involving earth-abundant elements. Solar energy can be stored in the form of chemical bonds by electrochemical water splitting to produce hydrogen,1,2 or CO\textsubscript{2} reduction to CO, methanol and hydrocarbons3,4 as energy carriers, where oxygen evolution reaction (OER) is required to accompany above cathodic transformations. These technologies are advantageous to lithium ion batteries for large-scale storage as they have high gravimetric energy,5,6 and chemical bonds used for energy storage involve elements (such as O, H, C) that are among the most abundant in the planet. In contrast, energy storage with current Li-ion batteries
requires storing each electron using one transition metal ion, and thus powering the planet with this technology is limited by the availability of metals such as cobalt and nickel in the earth crust.7 The efficiency of the storage technologies based on H\textsubscript{2}/CO/CH\textsubscript{3}OH/C\textsubscript{n}H\textsubscript{2n+2} production is, however, severely limited to a significant extent by the sluggish reaction kinetics of OER,8–10 which is catalyzed by precious metal catalysts such as RuO\textsubscript{2}11,12 and IrO\textsubscript{2}.11,13,14 The development of active OER electrocatalysts composed of earth-abundant elements15 is therefore crucial for the large-scale implementation of these technologies.16

Late first-row transition metal oxides17–22 based on cobalt,23,24 nickel25–28 and iron29,30 are reported to be the most active to catalyze OER in basic solution. Experimental and computational studies in the past decade have been focusing on elucidating OER mechanisms8,9 and identifying activity and stability descriptors,31–33 which can be used to design better catalysts. Perovskites (ABO\textsubscript{3−δ}) with immense structural, chemical and electronic flexibility associated with vast selections of A-site and B-site metal ions and oxygen deficiency34 have been used to develop design principles of OER activity33,34 and stability.35,36 Recent work37 has shown that lowering charge-transfer gap or increasing metal-oxygen covalency in perovskites can improve the OER kinetics, which is facilitated by first lowering the energetic barrier of electron transfer for the semiconducting oxides, reducing adsorption strength of oxygenated intermediates of OER38 and then decreasing the energetic barriers34,37 associated with OER steps on the surface of metallic oxides including the most active catalysts. Unfortunately, reducing the charge-transfer gap of these perovskites also lowers the Fermi level on the absolute energy scale, making it below the OER redox potential in the basic solution for the most active catalysts such as La\textsubscript{0.5}Sr\textsubscript{0.5}CoO\textsubscript{3−δ}.37 This can generate more negatively charged surface and therefore result in weaker hydroxide affinity,17,39,40 which can impede surface deprotonation during OER in basic solution (such as M-OH\textsubscript{ad} + OH− → M-O\textsubscript{ad} + H\textsubscript{2}O + e−).37 Therefore, tuning the
affinity towards hydroxide ions on these highly active oxide surfaces (e.g. by phosphate functionalization) represents new opportunities to further enhance the OER performance.

In this work, we explored the substitution of A-site ions with high electronegativity or Lewis acidity in the cobalt perovskites to maintain high Co-O covalency by the inductive effect, and potentially increase hydroxide affinity on the surface by introducing highly Lewis acidic ions to facilitate OER kinetics. This argument is supported by the enhanced OER kinetics previously observed for LnNiO₃ perovskite series upon the substitution of La³⁺ with more electronegative Gd³⁺ and Eu³⁺. Herein we examine the OER activity of bismuth-substituted strontium cobalt perovskites, Bi₀.₂Sr₀.₈CoO₃₋δ, where the Bi³⁺ substituents possess the highest Lewis acidity (i.e. highest electronegativity) among 2+/3+ A-site ions, with a pK₅ value of 1.58 much lower than that of other commonly used A-site metals in cobalt-based perovskite oxides (e.g. pK₅([Sr²⁺(H₂O)ₙ]) = 13.18, pK₅([La³⁺(H₂O)ₙ]) = 9.06, pK₅([Pr³⁺(H₂O)ₙ]) = 8.55). Remarkably, Bi₀.₂Sr₀.₈CoO₃₋δ that was galvanostatically charged to minimize oxygen vacancies was shown to exhibit an exceptionally low Tafel slope (~25 mV decade⁻¹) and higher intrinsic OER activity than La₁₋ₓSrₓCoO₃₋δ and charged SrCoO₃₋δ (one of the most active catalysts reported to date) at high current densities (> ~1 mA cm⁻² oxide). The record intrinsic OER activity can be rationalized by stronger affinity towards hydroxide during surface deprotonation associated with more acidic Bi³⁺ than La³⁺ and Sr²⁺, and comparable Co-O covalency to SrCoO₃₋δ as shown from density functional theory (DFT) calculations. In addition, no amorphization or changes in the composition were observed for the surface of charged Bi₀.₂Sr₀.₈CoO₃₋δ after OER, with such high structural stability being attributed to the lowered O 2p-band center relative to the Fermi level of Bi₀.₂Sr₀.₈CoO₃₋δ than that of SrCoO₃₋δ. Tuning of the electronic structure and surface acid-base chemistry through inductive effect associated with rational metal substitution represents a new strategy for enhancing the activity and stability of OER catalysts.
RESULTS AND DISCUSSION

Pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ was synthesized through a conventional solid-state route starting from Bi$_2$O$_3$, CoO and SrCO$_3$ precursors45 as detailed in Supplemental Experimental Procedure. Higher levels of bismuth substitution were not explored due to previously reported solubility limit of ~20%45 and the need to have high Co oxidation state (close to 4+) to achieve high OER activities.46 Refinement of the powder X-ray diffraction (PXRD) pattern (Figure 1) confirmed a cubic structure with Pm-3m space group and a unit cell parameter of 3.896 Å (Table S1), which is comparable to that reported in the original study (~3.9 Å)45. As previous neutron diffraction refinements and cobalt oxidation state (~3) based on iodometric titrations45 revealed the oxygen vacancy content, $\delta \approx 0.4$, for pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$, we estimated $\delta \approx 0.4$ for the oxygen deficiency for our as-synthesized pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ sample. This argument is further supported by the Co K-edge X-ray absorption spectroscopy (XAS). The cobalt oxidation state of ~2.96 for pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ determined from the position of Co K-edge (Figure S1) is in qualitative agreement with the estimated oxygen vacancy level ($\delta \approx 0.4$).

We further reduced the oxygen deficiency in Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ by galvanostatic charging in O$_2$-saturated 1 M KOH (Figure S2), as having high covalency for Co-O bonds associated with the presence of Co$^{4+}$ is needed to obtain high intrinsic OER activity.37,38 Electrochemical oxygen intercalation into the perovskite structure can take place during galvanostatic charging to fill the oxygen vacancies in oxygen-deficient perovskites,47,48 such as SrCoO$_{3-\delta}$,38,49 upon slow oxidation in basic solutions. During charging, two voltage plateaus were observed for thin-film Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ deposited on glassy carbon (GC) electrodes, similar to those reported for La$_{0.5}$Sr$_{0.5}$CoO$_{3-\delta}$,38 and SrCoO$_{3-\delta}$,38,47 (plateaus more defined in the latter case, Figure S3), which can be attributed to the filling of oxygen vacancies ($\text{Bi}_{0.2}\text{Sr}_{0.8}\text{CoO}_{3-\delta} + 2\delta\text{OH}^- \rightarrow \text{Bi}_{0.2}\text{Sr}_{0.8}\text{CoO}_3 + \delta\text{H}_2\text{O} + 2\delta\text{e}^-$). These redox events
were reflected by the two redox peaks centered at ~1.1 and ~1.3 V vs. reversible hydrogen electrode (RHE) in the cyclic voltammetry (CV) measurements (Figure 2). Similar redox features have been reported for other Co-based catalysts such as CoOOH (in 1 M KOH),23 and LiCoO\textsubscript{2} (in 0.1 M KOH),50,51 which have been attributed to Co2+/Co3+ and Co3+/Co4+ redox couples, respectively. The oxygen intercalation into the bulk structure of Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} upon charging is supported by the reduction in the lattice parameter of the perovskite structure for Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} pellet electrodes (without carbon and binder) after galvanostatic charging as revealed by PXRD analysis (Figure 1), indicative of increased Co oxidation state associated with oxygen deficiency reduction. Charged Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} (with one electron passed per formula unit at a C-rate of C/50 or C/20, Figure S2) was found to have smaller unit cell parameters $a = 3.835$ Å (C/50 charging) and $a = 3.838$ Å (C/20 charging) than that of pristine Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} ($a = 3.896$ Å). Although the exact value of oxygen deficiency δ on the surface of charged Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} during OER is not known, it is proposed that δ value is close to zero, especially for the C/50 sample. This hypothesis is supported by the following observations. First, ~0.8 e- per formula unit passed before the OER plateau at 1.4 V vs. RHE38 (Figure S3), which would result in a fully stoichiometric perovskite structure based on the oxygen deficiency level in pristine Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} ($\delta \approx 0.4$). Second, the slower galvanostatic charging typically imparts smaller oxygen deficiency in Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} and other perovskites.38 As the oxygen intercalation kinetics and oxygen ion transport in perovskites are slow, the surfaces of charged Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} can have even smaller δ than the bulk for given charging rates. Third, C/50 galvanostatically charged Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} was found to have much greater OER activity than pristine Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} (Figure S3). This enhanced OER kinetics can be attributed to greater Co oxidation state on the surface, which is expected from the previously reported correlations32,37,38,44,49 demonstrating that lowering the cobalt 3d band with respect to the oxygen 2p-band center (i.e. lowering the charge-transfer gap) by
increasing the nominal oxidation state of cobalt is correlated with increasing specific OER activity of cobalt-based perovskites. Therefore, we will focus on the OER kinetics of C/50 charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ further in this work.

Figure 1. Powder X-ray Diffraction (PXRD) Spectra

PXRD patterns of pristine oxygen-deficient Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ powder, as well as Bi$_{0.2}$Sr$_{0.4}$CoO$_{3-\delta}$ galvanostatically charged at 6.1 mA g$^{-1}$ for 20 hr (C/20), and at 2.4 mA g$^{-1}$ for 50 hr (C/50). Patterns were indexed in a cubic unit cell with space group Pm-3m. All spectra were collected for powder samples (~0.3 g), in a continuous scan mode with a scan rate of 2 degrees per min, and a scan range from 15° to 65°. Lattice parameters as assessed by PXRD are consistent with those reported previously. The samples were quenched to room temperature after every heat treatment during the solid-state synthesis to minimize the presence of the minor secondary phase of Bi$_2$Sr$_2$Co$_3$O$_y$, which could be detected by peaks between 24° and 30° on the PXRD spectra (with estimated volume fraction of less than 1.7%). Galvanostatic charging experiments were performed for pelletized Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ powder (60 mg, 5 mm diameter pellet) attached to a graphene sheet (0.120 mm thickness) in O$_2$-saturated 1 M KOH electrolyte. Inset shows the schematic representation of the crystal structure of Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$.
Figure 2. Electrochemical Redox Behavior of Co-Based Oxides

CV curve of C/50 charged thin-film Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ supported on glassy carbon electrode (0.25 mg$_{\text{oxide}}$ cm$^{-2}$$_{\text{disk}}$) compared with previously reported CV curves of LiCoO$_2$ (0.1 M) and CoOOH (1 M) in O$_2$-saturated KOH solutions (scan rate: 10 mV s$^{-1}$).

The OER kinetics of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ (thin films on GC, C/50 charging in O$_2$-saturated 1 M KOH, Figure S3) were assessed in O$_2$-saturated KOH solutions at different pHs through steady-state galvanostatic measurements (i.e. chronopotentiometry) instead of CV, as the contributions of current from electrochemical oxygen intercalation in bulk cannot be excluded from OER kinetic currents when using the CV measurements38 The specific activity was obtained by normalizing iR-corrected kinetic currents to the Brunauer-Emmett-Teller (BET) specific oxide surface area. The specific OER activity of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ is much higher than those of LaCoO$_3$, charged La$_{0.5}$Sr$_{0.5}$CoO$_{3-\delta}$ and Pr$_{0.5}$Ba$_{0.5}$CoO$_{3-\delta}$ in both 0.1 M and 1 M KOH (Figures 3A and S4), which can be attributed to greater Co-O covalency associated with higher Co oxidation state32,34,37,38,44 expected for charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ (\(\delta\) close to zero for all these charged perovskites). Remarkably, the specific OER activity of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ was found to be comparable to charged SrCoO$_{3-\delta}$ at low current densities, and much greater at high current densities due to an exceptionally low Tafel slope of \(~25\) mV decade$^{-1}$ as compared to other oxide catalysts20,25,33 (e.g. \(~60\) mV decade$^{-1}$ for charged SrCoO$_{3-\delta}$).38 Moreover, charged
Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ exhibited pH-dependent OER activity on the RHE scale, where the specific activity increased with increasing pH (Figures 3B and S6). Similar pH-dependent OER kinetics have been reported for charged La$_{0.5}$Sr$_{0.5}$CoO$_{3-\delta}$, Pr$_{0.5}$Ba$_{0.5}$CoO$_{3-\delta}$ and SrCoO$_{3-\delta}$, which cannot be explained by the conventional OER mechanism with four concerted proton-coupled electron transfer (PCET) steps. Instead, OER kinetics on these highly active and covalent oxides are limited by proton transfer, which is decoupled from electron transfer. In contrast, less active LaCoO$_3$ exhibits pH-independent OER activity on the RHE scale expected from the conventional concerted PCET pathways. Notably, charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ exhibits OER currents one order of magnitude higher than those of fully charged SrCoO$_{3-\delta}$ at 1.55 V vs. RHE for all pHs examined (Figure 3B). Possible physical origins for the record high OER activity are discussed below together with processes responsible for its pH-dependent OER activity on the RHE scale.

![Figure 3. Record and pH-Dependent Intrinsic OER Activity of Fully Charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$](image)

(A) Tafel plots for selected Co-based perovskite oxides. Measurements were performed in O$_2$-saturated 1 M KOH electrolyte with an oxide loading of 0.25 mg$_{oxide}$ cm$^{-2}_{disk}$. Data points were all extracted from steady-state galvanostatic OER measurements. Data for LaCoO$_3$, galvanostatically charged La$_{0.5}$Sr$_{0.5}$CoO$_{3-\delta}$, Pr$_{0.5}$Ba$_{0.5}$CoO$_{3-\delta}$ and SrCoO$_{3-\delta}$ (having δ close to zero) were taken from our previous work. (B) Specific OER activity at 1.55 V vs. RHE as a function of KOH concentration measured for glassy carbon electrodes with an oxide loading of 0.25 mg$_{oxide}$ cm$^{-2}_{disk}$. Data for fully charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ were extracted from the OER Tafel plot shown in Figure S6. Data points for 0.3 M and 1 M KOH were obtained by the extrapolation of linear Tafel regions to higher potentials.
The high OER activity of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ exceeding that of charged SrCoO$_{3-\delta}$ can be attributed in part to having comparable Co-O covalency to SrCoO$_{3-\delta}$ due to the inductive effect introduced by substituting Sr$^{2+}$ with strongly Lewis acidic Bi$^{3+}$ (pK_a for [Bi(H$_2$O)$_n$]$^{3+}$ ions is 1.58). Despite the fact that having lower nominal Co oxidation state in charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ (3.8+) than charged SrCoO$_{3-\delta}$ (4+) is expected to impart lower OER activity than SrCoO$_{3-\delta}$ based on previous reported correlation, Bi$^{3+}$ ions with much higher electronegativity can pull more electron density from cobalt than other divalent/trivalent A-site ions with lower electronegativity (e.g., Sr$^{2+}$, La$^{3+}$), lowering the energy of cobalt 3d band (i.e. antibonding orbitals of cobalt-ligand bonds) and thus leading to retained high Co-O covalency upon bismuth substitution (Figures 4A and 4B). This argument is supported by our computed density of states for fully stoichiometric Bi$_{0.125}$Sr$_{0.875}$CoO$_3$ and Bi$_{0.25}$Sr$_{0.75}$CoO$_3$ (Figure S9), where the energy difference between the Co 3d-band center and the O 2p-band center, a measure of the covalency for the cobalt-oxygen bonds, remains unchanged relative to stoichiometric SrCoO$_3$ (Figure 4B). Having high metal-ligand covalency for perovskite oxides is key to promote OER kinetics by enabling the surface deprotonation of reaction intermediates by hydroxide ions decoupled from electron transfer which limits the OER kinetics. Moreover, the lattice oxygen sites of oxides on the surface can be possibly activated and participate in OER in addition to surface metal ions.
Figure 4. Bulk Electronic Structures of Fully Charged Bi$_{0.2}$Sr$_{0.8}$CoO$_3$–δ

(A) Schematic illustration of the changes in electronic structures upon bismuth substitution from charged SrCoO$_3$–δ to charged Bi$_{0.2}$Sr$_{0.8}$CoO$_3$–δ (both having δ ≈ 0).

(B) Difference between the Co 3d-band center and the O-2p band center versus the O-2p band center relative to the Fermi level for different stoichiometric cobalt-based perovskites computed at DFT + U level. Both oxygen 2p-band and cobalt 3d-band centers were determined by taking the centroid of the projected density of states of O 2p and cobalt 3d states (both occupied and unoccupied states) relative to the Fermi level. The calculation results of LaCoO$_3$, La$_{0.5}$Sr$_{0.5}$CoO$_3$, Pr$_{0.5}$Ba$_{0.5}$CoO$_3$ have been reported in our previous work. The calculation results of La$_{0.75}$Sr$_{0.25}$CoO$_3$ have been reported in our previous work.

(C) Computed oxygen vacancy formation energy (E$_{\text{vac}}$ vs. vacuum, relative to O$_2$) compared to the computed oxygen 2p-band center relative to the Fermi level for LaCoO$_3$, La$_{0.75}$Sr$_{0.25}$CoO$_3$, La$_{0.5}$Sr$_{0.5}$CoO$_3$, Pr$_{0.5}$Ba$_{0.5}$CoO$_3$, SrCoO$_3$, and Ba$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_3$ with full oxygen stoichiometry, showing the nearly linear correlation between oxygen vacancy formation energetics and the oxygen 2p-band center relative to the Fermi level. This trend can be rationalized by the energetics associated with the creation of oxygen vacancies in the perovskite structure (Figure S15). The calculation results of LaCoO$_3$, La$_{0.5}$Sr$_{0.5}$CoO$_3$, Pr$_{0.5}$Ba$_{0.5}$CoO$_3$, SrCoO$_3$ (E$_{\text{vac}}$ only), and Ba$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_3$ have been reported in our previous work.
results of La$_{0.75}$Sr$_{0.25}$CoO$_3$ have been reported in our previous work. The oxygen vacancy formation energy for fully stoichiometric Bi$_{0.125}$Sr$_{0.875}$CoO$_3$ and Bi$_{0.25}$Sr$_{0.75}$CoO$_3$ was further projected following the linear correlation and with the computed oxygen 2p-band centers of these two compounds.

Employing Bi$^{3+}$ with high electronegativity or Lewis acidity can increase hydroxide affinity on the oxide surface, which can facilitate OER kinetics as the reaction kinetics on highly covalent oxides are limited by processes associated with the deprotonation of surface reaction intermediates. Like other perovskites with high Co-O covalency, charged Bi$_{0.2}$Sr$_{0.8}$CoO$_3$ has the oxide Fermi level much lower than the thermodynamic OER redox potential energy in the basic solution (Figures 5A and 5B), which results in negatively charged oxide surfaces when equilibrated with the electrolyte. This negative charge on the surface of oxides can come from surface adsorption of hydroxide ions from the solution and/or redistribution of the electron density from the bulk to the surface. Specifically, high Co-O covalency and lowered charge-transfer gap increase bulk electron mobility leading to accumulation of the negative charges on the interface with electrolyte solution, making this mechanism favored over hydroxide adsorption, thus imparting weaker hydroxide affinity to the oxide surface under equilibrium conditions. The presence of strongly electronegative Bi$^{3+}$ at the oxide surface of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_3$ can enhance affinity towards hydroxide ions as compared to SrCoO$_3$, increase ionicity of the O-H bonds, and therefore facilitate chemical/electrochemical surface deprotonation during OER in basic solution (such as M-OH$_{ad}$ + OH$^-$ → M-O$_{ad}$ + H$_2$O + e$^-$). This argument is in agreement with the observed pH-dependent OER activity of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_3$ on the RHE scale (Figures 3B and S6), which can be rationalized by pathways involving acid-base equilibrium before the rate-limiting step, and/or rate-limiting proton transfer decoupled from electron transfer. Similar pH-dependent OER activity has been reported for Ni-Fe oxyhydroxides, which has been attributed to the non-concerted metal oxidation coupled with surface hydroxides deprotonation leading to formation of
negatively charged intermediates.57 Here we argue that increasing pH (i.e. increasing hydroxide ion concentration in the solution) would promote the deprotonation of surface species like M-OH\textsubscript{ad} by OH- via mechanisms including either acid-base equilibrium before the rate-limiting step55 or proton transfer decoupled from electron transfer as the rate-limiting step,37 and/or electrochemical surface deprotonation with non-integer electron transfer,58–60 which would lead to increased OER activity on the RHE scale with increasing pH. Further support came from the A-site-independent OER kinetics for those less covalent LnCoO\textsubscript{3} perovskites (Ln = La, Nd, Gd, Sm, Eu), where the OER kinetics are limited by electron transfer,37 and having more Lewis acidic A-site ions did not induce any changes in the OER activity beyond experimental uncertainty (Figure S4).

![Figure 5. pH-Dependent Pre-OER Cobalt Redox of Fully Charged Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ}
(A) Trends in the Fermi level positions of perovskite oxides and corresponding hydroxide affinity at the oxide-electrolyte interface, which were estimated from X-ray spectroscopic data under rigid band assumption and have been reported in our previous work.37 The hydroxide affinity is defined as the position of Fermi level relative to the O\textsubscript{2}, H\textsubscript{2}O/OH- redox potential energy. With high metal-oxygen covalency, the oxide Fermi level lies below the OER potential energy, leading to negatively charged oxide surface when equilibrated with the electrolyte.
(B) Schematic illustration of the oxide-electrolyte interface and the electrochemical process that corresponds to the pre-OER Co3+/Co4+ redox of fully charged Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ}.
(C) Position of the average redox peak center prior to OER (left, red) and the OER overpotential (right, blue) estimated as the potential required to achieve ~0.06 mA cm-2 oxide OER current as assessed from galvanostatic...
OER measurements for fully charged Bi$_{0.2}$Sr$_{0.8}$CoO$_3$-δ, as a function of the KOH electrolyte concentration. CV measurements at different KOH concentrations were performed for Bi$_{0.2}$Sr$_{0.8}$CoO$_3$-δ galvanostatically charged for 50 h in O$_2$-saturated 1 M KOH electrolyte with an oxide loading of 0.25 mg$_{\text{oxide}}$ cm$^{-2}$$_{\text{disk}}$.

The proposed explanation for the unprecedentedly high and pH-dependent OER activity of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_3$-δ is in agreement with its pH-dependent redox peak features at ~1.3 V vs. RHE immediately prior to OER (Figures 5C, S10 and S11), which might suggest pH-dependent binding of OER reaction intermediates on the RHE scale. The redox peaks at ~1.3 V vs. RHE can be assigned to the Co$^{3+}$/Co$^{4+}$ redox reaction associated with electrochemical deprotonation of surface reaction intermediates such as M-OH$_{\text{ad}}$ by OH$^-$ in the solution to form M-O$_{\text{ad}}$ species.61,62 Similar shifts for pre-OER redox peaks have been found for Ni-Fe oxyhydroxides (up to -60 mV pH$^{-1}$),57 RuO$_2$ (101), (001), (001) surfaces (up to -27 mV pH$^{-1}$)63 and IrO$_2$ (110) surface (~-7.5 mV pH$^{-1}$),64 which have been attributed to the oxide-water interface structure changes at different pHs65 or non-integer number of electrons transferred during this step.$^{58-60}$ Here we relate this pH-dependent redox peak shift to the energetics of hydroxide affinity established recently.37 With decreasing pH, the electron energy associated with OER redox decreases on the absolute energy scale and moves closer to the oxide Fermi level (Figure 5A),37 which reduces the accumulation of negative charges on the oxide surface and results in stronger hydroxide affinity and more effective surface deprotonation associated with Co$^{3+}$/Co$^{4+}$ redox (Figure 5B), in agreement with the negative redox peak shift with increasing pH (~-40 mV pH$^{-1}$). Lastly, the Tafel slope (~25 mV decade$^{-1}$) for charged Bi$_{0.2}$Sr$_{0.8}$CoO$_3$-δ is considerably lower than the Tafel slopes of other highly covalent Co-based perovskites such as charged La$_{0.5}$Sr$_{0.5}$CoO$_3$-δ, Pr$_{0.5}$Ba$_{0.5}$CoO$_3$-δ and SrCoO$_3$-δ (~60 mV decade$^{-1}$),38 but comparable to those of perovskites that are known to amorphize upon leaching out A-site ions during OER (~40 mV decade$^{-1}$)66 and Ni-Fe oxyhydroxides (~30 mV decade$^{-1}$).67 Such a low Tafel slope has been attributed previously68 to having a chemical deprotonation as the rate-
limiting step for catalysts with high surface coverage of surface hydroxide (M-OH\textsubscript{ad}). Further in situ electrochemical diffraction69 and spectroscopic70,71 studies are needed to provide detailed insights into the surface species and reaction mechanisms as a function of potential.

Figure 6. High Surface Stability of Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} After Galvanostatic Charging and OER

(A and B) HR TEM images of (A) pristine oxygen-deficient Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} powder, and (B) charged Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} followed by OER measurements. Galvanostatic charging were performed for oxides films containing Nafion and acetylene black carbon supported on a glassy carbon electrode at 2.4 mA g-1 for 50 hr in O\textsubscript{2}-saturated 1 M KOH electrolyte with an oxide loading of 0.25 mg\textsubscript{oxide cm-2 disk}.

(C) Representative high-angular annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and corresponding EDX analysis of fully charged and cycled Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ}. Quantification of the EDX results is shown on the HAADF images. More EDX results for both pristine Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} and also fully charged and cycled Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} can be found in Figure S12.

(D) The bulk and surface Bi, Sr and Co metal composition in both pristine Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} and also charged and cycled Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ} as determined by EDX. The error bars represent the standard deviation of at least eight spots.
Neither structural transformation (e.g. amorphization) nor compositional changes (e.g. metal leaching) were detected for Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ after galvanostatic charging and OER. We performed high-resolution transmission electron microscopy (HRTEM) imaging and energy-dispersive X-ray (EDX) elemental analysis (Figures 6 and S12) of Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ before and after galvanostatic charging (to ~1.4 V vs. RHE at C/50, Figure S3) and OER measurements. No surface amorphization of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ after OER was detected from HRTEM analysis (Figure 6B), Raman spectroscopy (Figure S13) and O K-edge XAS spectra (Figure S14), where the surface remained crystalline like the pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ powder (Figure 6A). Such high surface stability of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ after OER is in contrast to the rapid surface amorphization and the formation of surface hydroxides comprised of edge-sharing octahedra clusters found for Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ and SrCo$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ at OER potentials. In addition, Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ after galvanostic charging and OER appeared to be more stable than SrCoO$_{3-\delta}$ as few nanometers of amorphous layers were detected on SrCoO$_{3-\delta}$ particles after charging and OER measurements as reported recently. Moreover, EDX elemental analysis (Figures 6C, 6D and S12) confirmed no A-site or B-site metal leaching after charging and OER, in contrast to the notable A-site metal leaching found in Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$,SrCo$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$, and Sr$_x$Ca$_{1-x}$FeO$_{3-\delta}$ (x = 0, 0.5 or 1). Both bulk and surface metal ratios between A-site (Bi and Sr) and B-site (Co) metals of Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ before and after charging and OER measurements were found to be close to 1:4:5 as expected from the nominal stoichiometry. The high surface stability of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ at OER potentials can be attributed to its lowered O 2p-band center with respect to the Fermi level (Figure 4C) in comparison to other highly active Co-based and Fe-based perovskites (such as SrCoO$_{3-\delta}$ and Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$). The computed oxygen 2p-band centers of Bi$_{0.125}$Sr$_{0.875}$CoO$_3$ and Bi$_{0.25}$Sr$_{0.75}$CoO$_3$ were moved down by ~0.10 eV and ~0.25 eV relative to the Fermi level when compared with stoichiometric SrCoO$_3$ (Figures 4B and 4C), respectively, which can
be attributed to the reduction of the nominal cobalt oxidation state (e.g. from +4 in SrCoO$_3$ to +3.875 in Bi$_{0.125}$Sr$_{0.875}$CoO$_3$ and +3.75 in Bi$_{0.25}$Sr$_{0.75}$CoO$_3$) and thus the increase of cobalt 3d-band filling and the Fermi level (Figure 4A). Given that the O 2p-band center relative to the Fermi level can correlated to the formation enthalpy of oxygen vacancies in perovskite oxides (Figure 4C), lower O 2p-band centers of Bi$_{0.125}$Sr$_{0.875}$CoO$_3$ and Bi$_{0.25}$Sr$_{0.75}$CoO$_3$ relative to the Fermi level would have higher energy penalty for the creation of oxygen vacancies in the perovskite structure than that of SrCoO$_3$, indicative of greater structural stability (Figure S15).

In this study, we report the record intrinsic OER activity and high surface stability of the fully charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ ($\delta \approx 0$) perovskite oxide in alkaline electrolyte. We show that the inductive effect associated with rational bismuth substitution results in marked increase of the intrinsic OER catalytic activity, exceeding those of other Co-based perovskite oxides reported to date, including charged SrCoO$_{3-\delta}$, at high current densities (> ~1 mA cm$^{-2}$ oxide). Although Bi$^{3+}$ substitution (i.e. replacing Sr$^{2+}$ with Bi$^{3+}$) reduced the cobalt oxidation state and thus lowered the oxygen 2p band relative to the Fermi level, DFT computations show that high Co-O covalency maintained due to the inductive effect from Bi$^{3+}$ and is comparable with charged SrCoO$_{3-\delta}$. As the OER kinetics of highly covalent oxides are limited by the chemical or electrochemical deprotonation at the oxide surface due to weak hydroxide affinity, the high OER activity of charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ can be attributed to the enhanced affinity towards hydroxide ions due to the presence of strongly Lewis acidic A-site Bi$^{3+}$ ions on the perovskite surface. In addition, the observed pH dependence of the pre-OER redox peaks and OER activity on the RHE scale implies non-concerted proton-electron transfer pathways and pH-dependent binding of intermediates, however further in-situ diffraction and spectroscopic studies are needed to provide further detailed insights into the surface species and rate-limiting step. Moreover, neither structural or chemical changes have been found for Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ after galvanostatic charging and
OER, and the high surface stability can be attributed to higher energy penalty for the creation of oxygen vacancies due to the lower oxygen 2p band relative to the Fermi level. Demonstrating how leveraging the inductive effect associated with metal substitution enhances the specific activity of highly OER-active cobalt-based perovskites through maintaining high metal-oxygen covalency and strengthening hydroxide affinity without the expense of surface stability, this work highlights new prospects for the rational design of novel catalysts for electrochemical energy conversion and storage.

EXPERIMENTAL PROCEDURES
For full details please refer to Supplemental Experimental Procedure.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, 16 figures, and 2 tables and can be found with this article online.

ACKNOWLEDGMENTS
This work was supported by the Toyota Research Institute through the Accelerated Materials Design and Discovery program. The authors are grateful to Dr. Juan Corchado Garcia and Jonathan Hwang for performing O K-edge XAS measurements and data analysis. The authors are grateful to Yang Yu and Pinar Karayaylali for performing Co K-edge XAS measurements and data analysis. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work also used resources of the Extreme Science and Engineering Discovery Environment (XSEDE), 73 which is supported by National Science Foundation grant number ACI-1548562. This work made use of the MRSEC Shared
Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-1419807.

AUTHOR CONTRIBUTIONS
Y.S.-H. and D.A.K. conceived the project. D.A.K., Y.S.-H. and J.P. designed the experiments. D.A.K. carried out the synthesis and structural characterization. D.A.K. and J.P. performed the electrochemical measurements. J.P. performed the TEM analysis. J.P. and L.G. carried out the DFT calculations. D.A.K. and J.P. prepared the initial draft. All authors contributed to the discussions and revisions of the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
1. Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K., and Jaramillo, T.F. (2017). Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998.

2. McCrory, C.C.L., Jung, S., Ferrer, I.M., Chatman, S.M., Peters, J.C., and Jaramillo, T.F. (2015). Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electro catalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 137, 4347–4357.

3. Montoya, J.H., Seitz, L.C., Chakthranont, P., Vojvodic, A., Jaramillo, T.F., and Norskov, J.K. (2017). Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81.

4. Morales-Guio, C.G., Cave, E.R., Nitopi, S.A., Feaster, J.T., Wang, L., Kuhl, K.P., Jackson, A., Johnson, N.C., Abram, D.N., Hatsukade, T., et al. (2018). Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771.
5. Dunn, B., Kamath, H., and Tarascon, J.-M. (2011). Electrical Energy Storage for the Grid: A Battery of Choices. Science 334, 928.

6. Goodenough, J.B., and Park, K.-S. (2013). The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 135, 1167–1176.

7. Turcheniuk, K., Bondarev, D., Singhal, V., and Yushin, G. (2018). Ten years left to redesign lithium-ion batteries. Nature 559, 467–470.

8. Rossmeisl, J., Qu, Z.W., Zhu, H., Kroes, G.J., and Nørskov, J.K. (2007). Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89.

9. Man, I.C., Su, H.Y., Calle-Vallejo, F., Hansen, H.A., Martínez, J.I., Inoglu, N.G., Kitchin, J., Jaramillo, T.F., Nørskov, J.K., and Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165.

10. Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S., and Strasser, P. (2010). The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761.

11. Lee, Y., Suntivich, J., May, K.J., Perry, E.E., and Shao-Horn, Y. (2012). Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404.

12. Fang, Y., and Liu, Z. (2010). Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110). J. Am. Chem. Soc. 2, 18214–18222.

13. Sanchez Casalongue, H.G., Ng, M.L., Kaya, S., Friebel, D., Ogasawara, H., and Nilsson, A. (2014). In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem. Int. Ed. 53, 7169–7172.

14. Bernicke, M., Ortel, E., Reier, T., Bergmann, A., Ferreira De Araujo, J., Strasser, P., and Kraehnert, R. (2015). Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: structure-activity relationships. ChemSusChem 8, 1908–1915.

15. Du, P., and Eisenberg, R. (2012). Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021.
16. Suen, N.-T., Hung, S.-F., Quan, Q., Zhang, N., Xu, Y.-J., and Chen, H.M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365.

17. Bockris, J.O., and Otagawa, T. (1984). The Electrocatalysis of Oxygen Evolution on Perovskites. J. Electrochem. Soc. 131, 290–302.

18. Matsumoto, Y., and Sato, E. (1986). Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14, 397–426.

19. Wei, C., Feng, Z., Scherer, G.G., Barber, J., Shao-Horn, Y., and Xu, Z.J. (2017). Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. Adv. Mater. 29, 1606800.

20. Kanan, M.W., Surendranath, Y., and Nocera, D.G. (2009). Cobalt–phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109–114.

21. Burke, M.S., Enman, L.J., Batchelor, A.S., Zou, S., and Boettcher, S.W. (2015). Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chem. Mater. 27, 7549–7558.

22. Trześniewski, B.J., Diaz-Morales, O., Vermaas, D.A., Longo, A., Bras, W., Koper, M.T.M., and Smith, W.A. (2015). In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. J. Am. Chem. Soc. 137, 15112–15121.

23. Burke, M.S., Kast, M.G., Trotochaud, L., Smith, A.M., and Boettcher, S.W. (2015). Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638–3648.

24. Kanan, M.W., and Nocera, D.G. (2008). In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co$^{2+}$. Science 321, 1072–1075.

25. Dincă, M., Surendranath, Y., and Nocera, D.G. (2010). Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. 107, 10337.
26. Trotochaud, L., Ranney, J.K., Williams, K.N., and Boettcher, S.W. (2012). Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. J. Am. Chem. Soc. 134, 17253–17261.

27. Ng, J.W.D., Garcia-Melchor, M., Bajdich, M., Chakthranont, P., Kirk, C., Vojvodic, A., and Jaramillo, T.F. (2016). Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053.

28. Kuznetsov, D.A., Han, B., Yu, Y., Rao, R.R., Hwang, J., Román-Leshkov, Y., and Shao-Horn, Y. (2018). Tuning Redox Transitions via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis. Joule 2, 225–244.

29. Friebel, D., Louie, M.W., Bajdich, M., Sanwald, K.E., Cai, Y., Wise, A.M., Cheng, M.-J., Sokaras, D., Weng, T.-C., Alonso-Mori, R., et al. (2015). Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 137, 1305–1313.

30. Chemelewski, W.D., Lee, H.-C., Lin, J.-F., Bard, A.J., and Mullins, C.B. (2014). Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting. J. Am. Chem. Soc. 136, 2843–2850.

31. Hong, W.T., Risch, M., Stoerzinger, K.A., Grimaud, A., Suntivich, J., and Shao-Horn, Y. (2015). Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427.

32. Grimaud, A., May, K.J., Carlton, C.E., Lee, Y.-L., Risch, M., Hong, W.T., Zhou, J., and Shao-Horn, Y. (2013). Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439.

33. Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., and Shao-Horn, Y. (2011). A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 334, 1383–1385.

34. Hwang, J., Rao, R.R., Giordano, L., Katayama, Y., Yu, Y., and Shao-Horn, Y. (2017). Perovskites in catalysis and electrocatalysis. Science 358, 751.

35. Grimaud, A., Demortière, A., Saubanère, M., Dachraoui, W., Duchamp, M., Doublet, M.-L., and Tarascon, J.-M. (2016). Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189.
36. Kim, Y.-T., Lopes, P.P., Park, S.-A., Lee, A.-Y., Lim, J., Lee, H., Back, S., Jung, Y., Danilovic, N., Stamenkovic, V., et al. (2017). Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 8, 1449.

37. Hong, W., Stoerzinger, K.A., Lee, Y.-L., Giordano, L., Grimaud, A.J.L., Johnson, A.M., Hwang, J., Crumlin, E., Yang, W., and Shao-Horn, Y. (2017). Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10, 2190–2200.

38. Grimaud, A., Diaz-Morales, O., Han, B., Hong, W.T., Lee, Y.L., Giordano, L., Stoerzinger, K.A., Koper, M.T.M., and Shao-Horn, Y. (2017). Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465.

39. Portier, J., Poizot, P., Campet, G., Subramanian, M.A., and Tarascon, J.-M. (2003). Acid–base behavior of oxides and their electronic structure. Solid State Sci. 5, 695–699.

40. Matar, S.F., Campet, G., and Subramanian, M.A. (2011). Electronic properties of oxides: Chemical and theoretical approaches. Prog. Solid State Chem. 39, 70–95.

41. Yang, C., Laberty-Robert, C., Batuk, D., Cibin, G., Chadwick, A.V., Pimenta, V., Yin, W., Zhang, L., Tarascon, J.-M., and Grimaud, A. (2017). Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction. J. Phys. Chem. Lett. 8, 3466–3472.

42. Hong, W.T., Welsch, R.E., and Shao-Horn, Y. (2016). Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. J. Phys. Chem. C 120, 78–86.

43. Dean, J.A. (1999). Lange’s Handbook of Chemistry.

44. Mefford, J.T., Rong, X., Abakumov, A.M., Hardin, W.G., Dai, S., Kolpak, A.M., Johnston, K.P., and Stevenson, K.J. (2016). Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts. Nat. Commun. 7, 11053.

45. Knee, C.S., Lindberg, F., Khan, N., Svensson, G., Svedlindh, P., Rundlöf, H., Eriksson, S.G., and Börjesson, L. (2006). Influence of oxygen defects on the structure and magnetic properties of Sr1-xBixCoO3-y (0.1≤x≤0.2) supercell perovskites. Chem. Mater. 18, 1354–1364.
46. Stoerzinger, K.A., Renshaw Wang, X., Hwang, J., Rao, R.R., Hong, W.T., Rouleau, C.M., Lee, D., Yu, Y., Crumlin, E.J., and Shao-Horn, Y. (2018). Speciation and Electronic Structure of La1–xSrxCoO3–δ During Oxygen Electrolysis. Top. Catal. 61, 2161–2174.

47. Nemudry, A., Rudolf, P., and Schöllhorn, R. (1996). Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x. Chem. Mater. 8, 2232–2238.

48. Grenier, J.-C., Wattiaux, A., Doumerc, J.-P., Dordor, P., Fournes, L., Chaminade, J.-P., and Pouchard, M. (1992). Electrochemical oxygen intercalation into oxide networks. J. Solid State Chem. 96, 20–30.

49. Han, B., Grimaud, A., Giordano, L., Hong, W.T., Diaz-Morales, O., Yueh-Lin, L., Hwang, J., Charles, N., Stoerzinger, K.A., Yang, W., et al. (2018). Iron-based perovskites for catalyzing oxygen evolution reaction. J. Phys. Chem. C 122, 8445–8454.

50. Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B. (1980). LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789.

51. Han, B., Qian, D., Risch, M., Chen, H., Chi, M., Meng, Y.S., and Shao-Horn, Y. (2015). Role of LiCoO2 surface terminations in oxygen reduction and evolution kinetics. J. Phys. Chem. Lett. 6, 1357–1362.

52. Tarascon, J.M., Ramesh, R., Barboux, P., Hedge, M.S., Hull, G.W., Greene, L.H., Giroud, M., LePage, Y., McKinnon, W.R., Waszcak, J. V., et al. (1989). New non-superconducting layered Bi-oxide phases of formula Bi2M3Co2Oy containing Co instead of Cu. Solid State Commun. 71, 663–668.

53. Rossmeisl, J., Logadottir, A., and Nørskov, J.K. (2005). Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184.

54. Goodenough, J.B., Manoharan, R., and Paranthaman, M. (1990). Surface protonation and electrochemical activity of oxides in aqueous solution. J. Am. Chem. Soc. 112, 2076–2082.

55. Koper, M.T.M. (2013). Theory of the transition from sequential to concerted electrochemical proton–electron transfer. Phys. Chem. Chem. Phys. 15, 1399–1407.
56. Giordano, L., Han, B., Risch, M., Hong, W.T., Rao, R.R., Stoerzinger, K.A., and Shao-Horn, Y. (2016). pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10.

57. Gorlin, M., De Araujo, J.F., Schmies, H., Bernsmeier, D., Dresp, S., Gliech, M., Jusys, Z., Chernev, P., Kraehnert, R., Dau, H., et al. (2017). Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139, 2070–2082.

58. Schwarz, K., Xu, B., Yan, Y., and Sundararaman, R. (2016). Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges. Phys. Chem. Chem. Phys. 18, 16216–16223.

59. van der Niet, M.J.T.C., Garcia-Araez, N., Hernández, J., Feliu, J.M., and Koper, M.T.M. (2013). Water dissociation on well-defined platinum surfaces: the electrochemical perspective. Catal. Today 202, 105–113.

60. Gisbert, R., García, G., and Koper, M.T.M. (2010). Adsorption of phosphate species on poly-oriented Pt and Pt(111) electrodes over a wide range of pH. Electrochimica Acta 55, 7961–7968.

61. Zhang, M., De Respinis, M., and Frei, H. (2014). Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367.

62. Gerken, J.B., McAlpin, J.G., Chen, J.Y.C., Rigsby, M.L., Casey, W.H., Britt, R.D., and Stahl, S.S. (2011). Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442.

63. Stoerzinger, K.A., Rao, R.R., Wang, X.R., Hong, W.T., Rouleau, C.M., and Shao-Horn, Y. (2017). The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2, 668–675.

64. Kuo, D.-Y., Kawasaki, J.K., Nelson, J.N., Kloppenburg, J., Hautier, G., Shen, K.M., Schlom, D.G., and Suntivich, J. (2017). Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J. Am. Chem. Soc. 139, 3473–3479.

65. Watanabe, E., Rossmeisl, J., Björketun, M.E., Ushiyama, H., and Yamashita, K. (2016). Atomic-scale analysis of the RuO2/water interface under electrochemical conditions. J. Phys. Chem. C 120, 8096–8103.
66. May, K.J., Carlton, C.E., Stoerzinger, K.A., Risch, M., Suntivich, J., Lee, Y.L., Grimaud, A., and Shao-Horn, Y. (2012). Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3, 3264–3270.

67. Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J.Z., Zhou, J., Wang, J., Regier, T., Wei, F., and Dai, H. (2013). An Advanced Ni–Fe Layered Double Hydroxide Electro catalyst for Water Oxidation. J. Am. Chem. Soc. 135, 8452–8455.

68. Shinagawa, T., Garcia-Esparza, A.T., and Takanabe, K. (2015). Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801.

69. Rao, R.R., Kolb, M.J., Halck, N.B., Pedersen, A.F., Mehta, A., You, H., Stoerzinger, K.A., Feng, Z., Hansen, H.A., Zhou, H., et al. (2017). Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ. Sci. 10, 2626–2637.

70. Katayama, Y., Nattino, F., Giordano, L., Hwang, J., Rao, R.R., Andreussi, O., Marzari, N., and Shao-Horn, Y. (2018). An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates. J. Phys. Chem. C. Available at: https://doi.org/10.1021/acs.jpcc.8b09598.

71. Katayama, Y., Giordano, L., Rao, R.R., Hwang, J., Muroyama, H., Matsui, T., Eguchi, K., and Shao-Horn, Y. (2018). Surface (Electro)chemistry of CO2 on Pt Surface: An in Situ Surface-Enhanced Infrared Absorption Spectroscopy Study. J. Phys. Chem. C 122, 12341–12349.

72. Lee, Y.L., Kleis, J., Rossmeisl, J., Shao-Horn, Y., and Morgan, D. (2011). Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970.

73. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G., et al. (2014). XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74.
Supplemental Information for:

Bismuth substituted strontium cobalt perovskites for catalyzing oxygen evolution

Denis A. Kuznetsov,1,2,7 Jiayu Peng,2,3,7 Livia Giordano,1,2,4,6 Yuriy Román-Leshkov,5 and Yang Shao-Horn1,2,3,4,8,*

1Research Laboratory of Electronics, 2Electrochemical Energy Laboratory, 3Department of Materials Science and Engineering, 4Department of Mechanical Engineering, 5Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
6Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Milano 20126, Italy
7These authors contributed equally
8Lead Contact
*Correspondence: shaohorn@mit.edu
Figure S1. (A) Co K-edge X-ray absorption near-edge structure (XANES) of pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$. The XANES of CoO and Co$_3$O$_4$ are shown as reference standards. (B) Linear interpolation plot for determination of oxidation state of cobalt in the as-synthesized pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ sample.
Figure S2. Galvanostatic charging curves for Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-\textdelta} held at constant current density 6.1 mA g-1 for 20 hr (C/20), or at 2.4 mA g-1 for 50 hr (C/50). Galvanostatic charging experiments were performed for oxides films containing Nafion and acetylene black carbon supported on a glassy carbon electrode in O\textsubscript{2}-saturated 1 M KOH electrolyte with an oxide loading of 0.25 mg\textsubscript{oxide} cm\textsuperscript{-2\textsubscript{disk}} (referred to as “ink”) or for pelletized Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-\textdelta} powder (60 mg, 5 mm diameter pellet) attached to a graphene sheet (0.120 mm thickness) in O\textsubscript{2}-saturated 1 M KOH electrolyte (referred to as “pellet”).
Figure S3. (A) CV curves for as-synthesized pristine oxygen-deficient and C/50 galvanostatically charged Bi_{0.2}Sr_{0.8}CoO_{3-δ}, recorded with scan rate of 10 mV s\(^{-1}\). (B) Galvanostatic charging curves for pristine oxygen-deficient SrCoO_{3-δ} (with oxygen deficiency \(δ \approx 0.5\), as reported in previous work\(^1\)) and Bi_{0.2}Sr_{0.8}CoO_{3-δ} recorded in O\(_2\)-saturated 1 M KOH at C/50. Galvanostatic charging was performed for oxides films (containing Na\(\text{f}i\)n and acetylene black carbon) supported on a glassy carbon electrode in O\(_2\)-saturated 1 M KOH electrolyte with an oxide loading of 0.25 mg\(_{\text{oxide}}\) cm\(^{-2}\)\(_{\text{disk}}\). During galvanostatic charging, Bi_{0.2}Sr_{0.8}CoO_{3-δ}-containing films were held at constant current density 2.4 mA g\(^{-1}\) for 50 hr.
Figure S4. Oxygen evolution reaction (OER) Tafel plots for selected perovskite oxides and RuO$_2$ (110)-oriented thin film. Measurements were performed in O$_2$-saturated 0.1 M KOH electrolyte with an oxide loading of 0.25 mg$_{oxide}$ cm$^{-2}_{disk}$ for perovskites. Data points were extracted from galvanostatic OER measurements. Data for La$_{0.5}$Sr$_{0.5}$CoO$_{3-\delta}$, Pr$_{0.5}$Ba$_{0.5}$CoO$_{3-\delta}$, SrCoO$_{3-\delta}$ are taken from Grimaud et al.1 Data for RuO$_2$ are taken from Stoerzinger et al.2
Figure S5. OER Tafel plots for galvanostatically charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ (C/50) and La$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$. Measurements were performed in O$_2$-saturated 0.1 M KOH electrolyte with an oxide loading of 0.25 mg$_{\text{oxide}}$ cm$^{-2}_{\text{disk}}$ for Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ and an oxide loading of 15.3 μg$_{\text{oxide}}$ cm$^{-2}_{\text{disk}}$ for La$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$. The Tafel curves for Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ and La$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ are both taken from CV measurements, with a scan rate of 10 mV s$^{-1}$ and a rotation speed of 1600 rpm. Data for La$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ was taken from Mefford et al.3 We want to note that oxygen intercalation in these oxygen-deficient oxides also contributes to the OER current measured by CV. This leads to overestimated OER activities in the Tafel plot here for both Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$ and La$_{0.2}$Sr$_{0.8}$CoO$_{3-δ}$. Therefore, steady-state techniques, i.e. galvanostatic and potentiostatic measurements, provide more accurate determination of the OER activities of oxygen-deficient perovskites.
Figure S6. pH dependence of OER activity from galvanostatic measurements for fully charged Bi\textsubscript{0.2}Sr\textsubscript{0.8}CoO\textsubscript{3-δ}. Error bars represent standard deviation from at least three independent measurements as shown in Figures S7 and S8.
Figure S7. Representative independent cyclic voltammetry (CV) and galvanostatic OER experiments for Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ electrodes galvanostatically charged at constant current density 2.4 mA g$^{-1}$ for 50 hr (C/50) in O$_2$-saturated 1 M KOH. OER measurements were performed for oxide films containing Nafion and acetylene black carbon supported on a glassy carbon electrode in O$_2$-saturated 1 M KOH electrolyte with an oxide loading of 0.25 mg$_{oxide}$ cm$^{-2}$ disk.
Figure S8. Representative independent CV and galvanostatic OER experiments for Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ electrodes galvanostatically charged at constant current density 2.4 mA g$^{-1}$ for 50 hr (C/50) in O$_2$-saturated 1 M KOH. OER measurements were performed for oxide films containing Nafion and acetylene black carbon supported on a glassy carbon electrode in O$_2$-saturated 0.1 M KOH electrolyte with an oxide loading of 0.25 mg$_{\text{oxide}}$ cm$^{-2}_{\text{disk}}$.
Figure S9. Projected density of states (DOS) on Co 3d and O 2p states of stoichiometric SrCoO$_3$, Bi$_{0.125}$Sr$_{0.875}$CoO$_3$, Bi$_{0.25}$Sr$_{0.75}$CoO$_3$ and La$_{0.25}$Sr$_{0.75}$CoO$_3$ perovskites. Dashed grey lines correspond to the position of the Fermi level. Dashed blue lines provide guides for the shift of Co 3d-band centers.
Figure S10. Representative CV curves for Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ electrodes galvanostatically charged at constant current density 2.4 mA g$^{-1}$ for 50 hr (C/50) in O$_2$-saturated 1 M KOH. Measurements were performed for oxide films containing Nafion and acetylene black carbon supported on a glassy carbon electrode in O$_2$-saturated 0.1 M KOH electrolyte with an oxide loading of 0.25 mg$_{oxide}$ cm$^{-2}_{disk}$. Dashed lines show the positions of the redox peak centers.
Figure S11. Relationship between onset potential (measured at ~0.06 mA cm$^{-2}_{\text{oxide}}$ OER current) and position of the average redox peak center prior to OER for fully charged Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$. Dashed line provides guide for the trend.
Figure S12. The bulk and surface Bi, Sr and Co metal composition of individual Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ particles before and after C/50 galvanostatic charging and subsequent OER measurements as determined by energy dispersive X-ray (EDX) spectroscopy.
Figure S13. Raman spectra of pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ powder and Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ galvanostatically charged at constant current density 2.4 mA g$^{-1}$ for 50 hr (C/50) in O$_2$-saturated 1 M KOH, both deposited on glassy carbon electrodes. Galvanostatic charging experiments were performed for oxides films containing Nafion and acetylene black carbon supported on a glassy carbon electrode with an oxide loading of 0.25 mg$_{oxide}$ cm$^{-2}_{disk}$.
Figure S14. O K-edge X-ray absorption spectra (XAS) of selected ACoO₃ perovskites. Data for LaCoO₃, La₀.₅Sr₀.₅CoO₃₋δ, Pr₀.₅Ba₀.₅CoO₃₋δ are taken from Hong et al.⁴ Data for SrCoO₃₋δ are taken from Karvonen et al.⁵ Peak at ~532 eV for Bi₀.₂Sr₀.₈CoO₃₋δ (C/50) originates from the surface carbonate species⁶ on Bi₀.₂Sr₀.₈CoO₃₋δ deposited with acetylene black carbon and Nafion on glass carbon electrodes after C/50 charging in 1 M KOH.
Figure S15. Schematic illustration of rigid band diagrams and corresponding energetics associated with the creation of oxygen vacancies in the perovskite structure. When oxygen is removed from the lattice, the oxygen 2p states decrease in density with respect to the transition metal cation 3d states and along with an upshift of Fermi level. Therefore, the energy difference between the Fermi level and oxygen 2p band describes the reaction energetics associated with the formation of oxygen vacancies.
Figure S16. Calibration of Hg/HgO reference electrode versus reversible hydrogen electrode (RHE). CV scans were recorded at scan rate 10 mV s\(^{-1}\) in three-electrode setup with 5 mm diameter polycrystalline platinum working electrode, Pt wire counter electrode and Hg/HgO reference electrode in H\(_2\)-saturated 1 M KOH electrolyte with different rotation rates. The analogous procedure was adopted for the calibration of Hg/HgO reference electrode in 0.1 M, 0.3 M KOH electrolytes. For 0.03 M KOH electrolyte, Ag/AgCl reference electrode was used instead of Hg/HgO.
Table S1. Crystal structure and refined lattice parameters of Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ in different charging states.

Compound	Space Group	a (Å)
pristine	Pm-3m	3.896
C/20	Pm-3m	3.838
C/50	Pm-3m	3.835

Table S2. Specific surface area determined by Brunauer-Emmett-Teller (BET) analysis and corresponding galvanostatic charging currents of Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$.

BET (m2/g)	C/20 (mA/cm2)	C/50 (mA/cm2)	C/20 (mA/g)	C/50 (mA/g)
0.36	17.1	42.8	6.1	2.4
Supplemental Experimental Procedures:
Synthesis and Characterization

Bi$_2$O$_3$ (99.999%, Sigma), CoO (99.99%, Sigma), Co$_3$O$_4$ (99.9985%, Alfa Aesar), SrCO$_3$ (99.9%, Sigma), Sr(NO$_3$)$_2$ (99.965%, Alfa Aesar), Bi(NO$_3$)$_3$·5H$_2$O (99.999%, Sigma), La$_2$O$_3$ (99.99%, Sigma), Sm$_2$O$_3$ (99.9%, Fisher), Gd$_2$O$_3$ (99.9%, Sigma), Nd$_2$O$_3$ (99.99%, Sigma), Eu$_2$O$_3$ (99.99%, Fisher), EDTA (99.995%, Sigma), citric acid hydrate (99.5%, Alfa Aesar) were used without further purification, except that Bi$_2$O$_3$ and Ln$_2$O$_3$ oxides (Ln = lanthanide) were heated in air at 600-800°C for 6 hr for dehydration. Bi$_{0.2}$Sr$_{0.8}$CoO$_3$-δ was synthesized using solid-state route starting from Bi$_2$O$_3$, CoO and SrCO$_3$ precursors. Stoichiometric amount of powders were thoroughly ground in agate mortar, pelletized and fired in air at temperatures 850, 900 and finally 950°C for 15 hr each with intermediate regrinding. The samples were quenched to room temperature after every heat treatment in order to minimize the presence of the secondary phase of Bi$_2$Sr$_2$Co$_3$O$_y$,7,8 which could be detected by peaks between 24° and 30° on the powder X-ray diffraction (PXRD) spectra. The volume fraction of the minor impurity Bi$_2$Sr$_2$Co$_3$O$_y$ is less than 1.7% estimated from the integrated area of the maximum impurity peak (with integration range from 26.0° to 26.7°) relative to the integrated area of the maximum Bi$_{10.2}$Sr$_{0.8}$CoO$_3$-δ peak (with integration range from 32.2° to 33.3°). LnCoO$_3$ oxides (Ln = La, Nd, Sm, Gd, Eu) were synthesized using solid-state route starting from Ln$_2$O$_3$ and Co$_3$O$_4$ precursors. Stoichiometric amount of powders were thoroughly ground in agate mortar, pelletized and heated in oxygen flow for 40 hr at 1200°C with intermediate regrinding.

PXRD patterns were recorded with a Bruker Advance II diffractometer equipped with a 0/20 Bragg-Brentano geometry and Ni-filtered CuKα radiation ($K\alpha_1 = 1.5406$ Å, $K\alpha_2 = 1.5444$ Å, $K\alpha_1/K\alpha_2 = 0.5$). The tube voltage and current were 40 kV and 40 mA, respectively. Spectra were collected for powder samples (~0.3 g), in continuous scan mode with a scan rate of 2 degrees per min, and the scan range was from 15° to 65°. Lattice parameters as assessed by PXRD measurements are consistent with those reported previously.7 The specific surface area of each oxide sample was determined using BET analysis on a Quantachrome ChemBET Pulsar from a single-point BET analysis performed after 12 hr outgassing at 150°C.

TEM imaging was conducted on a JEOL 2010 transmission electron microscope operated at 200 keV, which is equipped with a field-emission electron gun and an ultrahigh resolution pole piece, resulting in a point-to-point resolution of 1.9 Å, with the ability to image lattice fringes at 1.4 Å resolution. JEOL 2010F transmission electron microscope (TEM) equipped with the ultrahigh resolution polepiece was used to collect high-angular annular dark-field scanning transmission electron microscopy (HADDF-STEM) images and EDX spectra in this work, which has a point resolution of 0.19 nm. Parallel-beam EDX results were collected and analyzed using INCA (Oxford Instruments) software. For each sample, at least three different spots with a diameter of ~2 nm were used to collect the bulk
chemical compositions and surface chemical compositions. Error bars of elemental compositions obtained from EDX data represent the standard deviation of the results on at least three spots. Samples of pristine Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ were prepared by sonicating Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ powder in THF for a few minutes. The dispersion was then drop casted on a lacy carbon grid. Samples of charged electrode were prepared by swabbing the glassy carbon surface, which was previously washed with ethanol to remove KOH remaining on the surface after charging and OER experiments.

Electrochemical Measurements

Electrodes used for galvanostatic charging, CV and galvanostatic OER measurements were prepared by drop-casting ink containing oxide catalyst powder on a glassy carbon electrode following the previous protocol. The glassy carbon electrode surface (0.196 cm$^{-2}$) was loaded with 0.25 mg oxide cm$^{-2}$$_{disk}$ using the mass ratio of 5:1:1 (oxide catalyst: acetylene black carbon: Nafion). Alternatively, electrodes for galvanostatic charging were also prepared by attaching pelletized powder (60 mg, 5 mm diameter) to a graphene sheet (0.12 mm thickness) using carbon paste. Galvanostatic charging was performed using a current density set at a C-rate of C/20 or C/50, meaning the exchange of 1 mole of electrons per mole of oxide in 20 or 50 hr. Pellet was carefully ground after galvanostatic charging experiments (Figure S2), and the powder was examined by PXRD.

OER measurements were performed with a rotating disk-electrode setup in oxygen-saturated KOH using a glass electrochemical cell with Ag/AgCl reference electrode (for 0.03 M KOH electrolyte) or Hg/HgO reference electrode (for 0.1 M, 0.3 M and 1 M KOH electrolyte) and Pt counter electrode. 0.03 M, 0.1M, 0.3 M and 1 M KOH (99.99% purity, Sigma-Aldrich) electrolyte solutions were prepared using deionized water (> 18 MΩ cm). The potential was controlled using a Biologic SP-300 potentiostat. Representative independent CV and galvanostatic OER experiments for Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ electrode preliminary held at constant current density 2.4 mA g$^{-1}$ for 50 hr (C/50) in O$_2$-saturated 1M and 0.1 M KOH were shown in Figure S7 and S8, respectively. A scan rate of 10 mV s$^{-1}$ was used for all CV and rotation was set to 1600 rpm. The Ag/AgCl and Hg/HgO reference electrodes were calibrated in the corresponding KOH electrolyte before OER experiments where the point of zero current from hydrogen oxidation/evolution at a platinum electrode at different rotation rates was defined as 0 V versus RHE, as shown in Figure S16.

OER kinetic currents from CV were obtained by taking the average between forward and backward scans to remove capacitive current contribution, which were then corrected for ohmic losses. Ohmic losses were corrected by subtracting the ohmic voltage drop from the measured potential, using an electrolyte resistance determined by high-frequency alternating current impedance, where iR-corrected potentials are denoted as E - iR (i as the current and R as the electrolyte resistance). Galvanostatic measurements of OER activity were performed on the Bi$_{0.2}$Sr$_{0.8}$CoO$_{3-\delta}$ (C/50) sample by applying incrementally increased
currents, and the potentials corresponding to the plateau on E-t curve were used for calculations. Error bars represent standard deviation from at least three independent measurements.

Density Functional Theory (DFT) Calculations

DFT calculations with Hubbard U correction\(^{10,11}\) for the Co 3d electrons were performed with the Vienna Ab-initio Simulation Package (VASP)\(^{12,13}\) using the projector-augmented plane-wave method\(^{14}\) with a cutoff of 450 eV. U\(_{\text{eff}}\) value of 3.3 eV was used for Co 3d states, as optimized by fitting the formation enthalpies of oxides.\(^{11}\) Energy convergence was within 3 meV per perovskite formula unit using a Monkhorst-Pack 4×4×4 k-point mesh. The soft O\(_s\) oxygen pseudopotential was employed for oxygen. Exchange-correlation was treated in the Perdew-Wang-91 generalized gradient approximation (GGA).\(^{15}\) Fully relaxed stoichiometric bulk perovskite calculations were simulated with 2×2×2 perovskite supercells. All calculations were performed in the ferromagnetic state, in order to use a consistent and tractable set of magnetic structures. Both O 2p-band and Co 3d-band centers were determined by taking the centroid of the projected density of states of O 2p and Co 3d states (both occupied and unoccupied states) relative to the Fermi level.\(^{1}\)

X-ray Absorption Spectroscopy

Oxygen K-edge XAS data were collected at Beamline 10ID-2 of the Canadian Light Source. The experiments were performed with the samples at room temperature under ultra-high vacuum (UHV) conditions (10\(^{-9}\) Torr), with the linear polarization of the incident beam 45° to the sample surfaces. The O K-edge spectra were collected in partial fluorescence yield (PEY). The O K\(_{\alpha 2}\) and K\(_{\alpha 3}\) line at ~521 eV were used to obtained the O K-edge XAS with an integration width of 120 eV. The data was normalized to the incident beam intensity using the current of a gold mesh placed before the sample stage. The oxygen K-edge data was background subtracted by fitting a straight line between 520 and 525 eV and subtracting it from the data. Furthermore, the average of the last 20 eV (from 550 to 570 eV) was taken and was used to normalize the spectra for comparison.

Cobalt K-edge XAS data were collected in fluorescence yield mode at Beamline 6-2b of the SLAC National Accelerator Laboratory. The energy scale was calibrated by glitch of Si(111) monochromator. The position of the absorption edge was determined as the inflection point given by the first maximum in the first derivative curve of the calibrated and normalized XANES spectra. The Co oxidation state was calculated by relating the edge position with the known oxidation states of single-phase CoO and Co\(_3\)O\(_4\) reference standards using linear regression.
Supplemental References:
1. Grimaud, A., Diaz-Morales, O., Han, B., Hong, W.T., Lee, Y.L., Giordano, L., Stoerzinger, K.A., Koper, M.T.M., and Shao-Horn, Y. (2017). Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nature Chemistry 9, 457–465.

2. Stoerzinger, K.A., Rao, R.R., Wang, X.R., Hong, W.T., Rouleau, C.M., and Shao-Horn, Y. (2017). The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2, 668–675.

3. Mefford, J.T., Rong, X., Abakumov, A.M., Hardin, W.G., Dai, S., Kolpak, A.M., Johnston, K.P., and Stevenson, K.J. (2016). Water electrolysis on La1-xSrxCoxO3-δ perovskite electrocatalysts. Nature Communications 7, 11053.

4. Hong, W., Stoerzinger, K.A., Lee, Y.-L., Giordano, L., Grimaud, A.J.L., Johnson, A.M., Hwang, J., Crumlin, E., Yang, W., and Shao-Horn, Y. (2017). Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy and Environmental Science 10, 2190–2200.

5. Karvonen, L., Valkeapää, M., Liu, R.S., Chen, J.M., Yamauchi, H., and Karppinen, M. (2010). O-K and Co-L XANES study on oxygen intercalation in parasite SrCoO3-δ. Chemistry of Materials 22, 70–76.

6. Stoerzinger, K.A., Hong, W.T., Wang, X.R., Rao, R.R., Bengaluru Subramanyam, S., Li, C., Ariando, Venkatesan, T., Liu, Q., Crumlin, E.J., et al. (2017). Decreasing the Hydroxylation Affinity of La1–xSrxMnO3 Perovskites To Promote Oxygen Reduction Electrocatalysis. Chem. Mater. 29, 9990–9997.

7. Knee, C.S., Lindberg, F., Khan, N., Svensson, G., Svedlindh, P., Rundlöf, H., Eriksson, S.G., and Börjesson, L. (2006). Influence of oxygen defects on the structure and magnetic properties of Sr1-xBixCoO3-y (0.1≤x≤0.2) supercell perovskites. Chemistry of Materials 18, 1354–1364.

8. Tarascon, J.M., Ramesh, R., Barboux, P., Hedge, M.S., Hull, G.W., Greene, L.H., Giroud, M., LePage, Y., McKinnon, W.R., Waszcak, J. V., et al. (1989). New non-superconducting layered Bi-oxide phases of formula Bi2M3Co2Oy containing Co instead of Cu. Solid State Communications 71, 663–668.

9. Suntivich, J., Gasteiger, H.A., Yabuuchi, N., and Shao-Horn, Y. (2010). Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. Journal of The Electrochemical Society 157, B1263–B1268.
10. Lee, Y.L., Kleis, J., Rossmeisl, J., Yang, S.H., and Morgan, D. (2011). Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy and Environmental Science 4, 3966–3970.

11. Lee, Y.L., Kleis, J., Rossmeisl, J., and Morgan, D. (2009). Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Physical Review B 80, 224101.

12. Kresse, G., and Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B 47, 558–561.

13. Kresse, G., and Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54, 11169–11186.

14. Blöchl, P.E. (1994). Projector augmented-wave method. Physical Review B 50, 17953–17979.

15. Perdew, J.P., and Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 45, 13244–13249.
