Mucilage: A Rich Source of Excipients Present in Plant Parts with Gold Status

Ganesh N. Sharma¹, Mayur R. Bhurat*¹, Upendra B. Gandagule¹, Birendra Shrivastava²

¹Department of Pharmacognosy, School of Pharmaceutical Sciences, SADTM campus, Jaipur National University, Jagatpura, Jaipur, Rajasthan-302017, India
²School of Pharmaceutical Sciences, SADTM campus, Jaipur National University, Jagatpura, Jaipur, Rajasthan-302017, India

Article History:
Received on: 27 Apr 2020
Revised on: 30 May 2020
Accepted on: 04 Jun 2020

Keywords:
Mucilage, Characterization, Isolation, Modification

ABSTRACT
Large numbers of pharmaceutical excipients of natural origin are available nowadays. Plant materials like mucilages with a variety of pharmaceutical applications are most common. They are being used due to their abundance, safety, compatibility, cost-effectiveness and eco-friendly nature as compared to synthetic one and have various advantages over synthetic polymers. To compete with and replace artificial excipients mucilages can be modified in many ways to obtain the required form of a drug delivery system. Currently, there are a vast amount of natural pharmaceutical excipients are there, and due to its increasing demand, it has become essential to identify or explore more plant mucilage sources to fulfil the industrial need. Mucilages are polymeric mono-saccharides or mixed mono-saccharides combined with uronic acids. On hydrolysis, they yield a mixture of sugars and uronic acids, and the mucilages that are obtained from plant sources have translucent and amorphous nature. Due to presence of hydrophilic moieties in mucilages, they can easily combine with water to form a gel or a thick viscous solution, and these extracted mucilages from the plant can be processed to a certain extent and incorporated in dosage forms to achieve the specific performance of the formulation. In this review, we describe isolation, characterization, pharmaceutical application and methods of modification to develop drug delivery systems.

INTRODUCTION
Use of Mucilage in drug delivery systems and dosage forms helps in modifying the release of drug from its dosage forms, enhancement of solubility, bioavailability, patient acceptability and also ensures ease of manufacture (Raymond et al., 2006; Patel et al., 2007). These materials of natural origin like mucilages are cheap, safe, readily available, eco-friendly, degradable, stable & compatible due to its natural source and capable of modification, they are seeking a lot of attention and importance in the field of delivery of drugs (Malviya et al., 2011). These excipients of natural origin have replaced the synthetic excipients, and recently there is increased use of natural and non-toxic products. Currently, huge amounts of pharmaceutical excipients of natural origin are available and like other products of natural origin and due to its increasing demand it has become essential to identify or explore more plant mucilage sources to fulfil the industrial need.
These mucilages obtained from plant sources are the hydrocolloids of Polysaccharides having sugar molecules & uronic acids that are liked with each other.

They are polymeric mono-saccharides or mixed mono-saccharides combined with uronic acids and on their hydrolysis produce a mixture of sugars and uronic acids. The mucilages that are obtained from plant sources are translucent and amorphous.

Due to the presence of hydrophilic moieties in mucilages, they can easily combine with water to form a gel or a thick viscous solution. Mucilages form large molecular aggregates in solution, and these mucilages are made up of complexes of polysaccharides having arabinose, galactose, rhamnose and galactouronic acid (Jani et al., 2009).

Mucilages and gums have many similar properties, but the only thing in which they differ is that mucilages are metabolic products which are formed within the cell and can be produced without making injury/incision to the plant. Mucilages and their polymeric derivatives from distinct sources are extensively used in pharmaceutical dosage forms (Galati et al., 2002). In this context; we have deliberated various aspects of mucilages starting from their Isolation, characterization, application and Modifications of existing mucilages.

ISOLATION OF MUCILAGE

Various methods of isolation of mucilages depending on the presence of mucilage in a particular plant part such as stem, leaves, fruit, seeds, tubers etc. The techniques used for isolation from leaves, i.e. the drying process was not performed whereas, for extraction of mucilage from other plant parts, the stem drying process is essential. In the case of the method used for isolation from the fruit of a plant, they are made to be directly crushed in a mixer without drying.

Although there are differences in the methods followed in which chemicals are utilized for isolation. The standard chemicals used for isolation are Petroleum ether, acetone, ethanol etc. (Sumanta and Rahaman, 2018)

In the flow chart (Figure 1), the general isolation method for mucilage was described. But now a day’s using some advanced techniques yield of mucilage was increased. In 2011 Biren Shah, et al. used a microwave-assisted extraction technique used for isolation of okra mucilage. Microwave-assisted extraction performed at the intensity of 160W for 40 minutes duration of heating increased 11.55% yield of mucilage when compared to the conventional heating method for 1 hour (Shah and Seth, 2011). Hence, mucilage can be extracted from various plants using the method mentioned in Figure 1.

Characterization of Mucilage

Preliminary confirmatory test for Mucilage is given in Table 1. (Khandelwal, 2008)

Chemical Characterization

Various identification tests were performed to confirm the presence of amino acids, tannins, saponins, phenols, flavonoids, terpenes, glycosides, steroids, alkaloids, oils and fats

Structural Characterization

Mucilages contain sugar (Polysaccharides), so by using various chromatographic methods like TLC, HPLC & HPTLC presence of sugars can be confirmed and FTIR, Mass and NMR Spectroscopic can be used for structural elucidation.

Physicochemical Properties

Various physicochemical properties can be determined by using parameters such as hygroscopic nature, shape, texture, touch, colour, odour, taste, pH, solubility, swelling index, LOD, percentage yield, total ash, Acid insoluble ash, melting point, Moisture content, true density, bulk density, angle of repose and surface tension and presence of various microbes and pathogens can be determined by various microbial assays. Mucilages are viscous & produce thick gel-like mass in solution and to decide its commercial use and industrial application rheological properties of excipients are evaluated.

Impurity determination

To determine or detect the impurities present various analytical techniques can be used.

Toxicity

For determination of acute toxicity of mucilage Fix dose method (OECD Guideline No. 425) can be used. (Mazumder et al., 2010; Malsawmtluangi et al., 2014)

Pharmaceutical Applications of mucilages

Application of some plant mucilages are summarized given in Table 2.

Modification of existing mucilage

Mucilages are the biodegradable materials used in drug delivery systems, and they have some disadvantages like thickening, decrease in viscosity on prolonged storage, uncontrolled hydration rate & microbial growth, to overcome these disadvantages and problems it requires some modification. (Singh and Sharma, 2008).
Figure 1: General Isolation Method of Mucilage

1. Raw material collected from source (Leaves, tubers, fruit, seed)
 - Dried under shade/Oven
 - Crushed
 - Fresh material used directly

2. Size of material is reduced in grinder if needed
 - In case of dried powder after grinding it is passed through sieve
 - In case of fresh or crushed material it is used as further

3. Then it is macerated with distilled water up to 24 hrs (10 times more distilled water than raw material)

4. After maceration it is heated for 2 hrs at 50 to 60°C in oven. Then keep aside for 2 hrs for complete removal mucilage

5. Filter it using muslin bag

6. Filtrate is treated with equal volume of ethanol/acetone/petroleum ether

7. Mucilage get precipitated, coagulated mass of mucilage was collected

8. Collected mucilages further dried in oven at 35 – 45°C temperature

9. Hard cake of mucilage is grinded and passed through sieve and stored in desiccators.
Table 1: Preliminary Confirmatory Test for Mucilage

Sr. No	Observation	Inference	
Molisch’s Test:	100 mg of dried mucilage powder was taken and to that powder Molisch’s reagent was added and then Conc. H$_2$SO$_4$ from the side of the test tube	Violet coloured ring observed at the junction of two layers	Carbohydrates present
Ruthenium Test:	A Small quantity of dried mucilage powder was mounted on a slide containing ruthenium red solution and it is observed under microscope	Development of Pink colour observed	Mucilage present
Iodine Test:	100 mg of dried powder was taken and in that 1 ml of 0.2 N Iodine solution is added	Colourless solution obtained	Polysaccharides present (Starch Absent)

These modifications methods involve:

Carboxymethylation/carboxomyethylaion
Modification can be done by replacing some free hydroxyl groups which enhances the water/aqueous solubility of mucilage and clarity of the solution. ([Rana et al., 2011](#))

Cross linking or grafting
Cross linking or grafting of vinyl monomers on polysaccharides using Physical & chemical Methods producing a promising material which can be used in drug delivery systems.

1. **Physical methods:** Modification by physical means can be done by exposing mucilages/polymerstomicrowave, Ultra Violet, gamma radiations, dry heat and saturated steam. ([Khan et al., 2006; Desai and Park, 2006](#))

2. **Chemical Methods:** Modification by chemical means include treating/heating mucilage/polymer with compounds like aldehydes, epichlorhydrin, borax or glutaraldehyde. ([Micard et al., 2000](#))

CONCLUSION

There are large numbers of mucilage’s available, having various applications in pharmaceutical preparations are reviewed and discussed. Natural excipients are preferable as not only they are fulfilling their role but also providing health benefits by overcoming the risks associated with synthetic excipients. More research efforts should be provided on natural excipients to innovate non-toxic, biocompatible, cost-effective, eco-friendly suitable for the development of dosage forms.

ACKNOWLEDGEMENT

We are very thankful to Jaipur national university for providing all the necessary facilities.

Funding Source
Nil

Conflict of interest
Nil

REFERENCES

Ahuja, M., Kumar, S., Yadav, M. 2010. Evaluation of Mimosa Seed Mucilage as Bucoadhesive Polymer. *Yakugaku zasshi*, 130(7):937–944.

Anroop, B., Ghosh, B., Parcha, V., Vasanti, S. 2005. Studies on Ocimum gratissimum seed mucilage: Evaluation of binding properties. *International Journal of Pharmaceutics*, 67(2):206–209.

Cardenas, A., Higuera, C. I., Goycoolea, F. M. 1997. Rheology and aggregation of Cactus (Opuntia ficus-indica) mucilage in solution. *Journal of the Professional Association for Cactus Development*, 2:152–159.

Deore, S. L., Khadabadi, S. S. 2008. Standardization and pharmaceutical evaluation of Chlorophytum borivilianum mucilage. *Rasayan Journal of Chemistry*, 1:887–892.

Desai, K. G., Park, H. J. 2006. Study of Gamma-
Table 2: Pharmaceutical applications of plant

Sr. No	Botanical Name	Family	Pharmaceutical Applications
1	Abelmoschus esculentus	Malvaceae	Binding agent & as a sustained release in tablet formulations (Kumar et al., 2009)
2	Aloe species	Liliaceae	Gel forming & sustained release agent (Jani et al., 2007)
3	Lepidium sativum	Cruciferae	Suspending agent, emulsifier & as a controlled release in tablet formulations (Mehta et al., 2010)
4	Ocimum canum	Labiatae	Binding & Gel forming agent, Binder & disintegrant in tablet formulations and also as an emollient & Demulcent (Kulkarni et al., 2002b)
5	Trigonella foenum graecum	Leguminoseae	Binding & Gel forming agent, Binder & disintegrant in tablet formulations and also as an emollient & Demulcent (Kulkarni et al., 2002b)
6	Hibiscus esculentus	Malvaceae	Emulsifier, Suspending and Sustaining agent (Wahi et al., 1985)
7	Hibiscus rosasinensis	Malvaceae	Suspending agent & as a sustaining Agent (Edwin et al., 2007)
8	Plantago psyllium and Plantago ovata	Plantaginaceae	Binding, emulsifying, sustaining agent and also as a lubricant (Shidhaye et al., 2007)
9	Ocimum gratissimum Linn	Labiatae	Binder & Suspending agent (Anroop et al., 2005)
10	Asparagus racemosus	Aapocynaceae	Binder and sustaining agent in Tablet formulations (Kulkarni et al., 2002a)
11	Opuntia ficus-indica	Cactaceae	Gel forming agent (Cardenas et al., 1997)
12	Anacardium occidentale	Anacardiaceae	Gel forming agent (Kumar et al., 2009)
13	Cassia sophera	Fabaceae	Binding agent (Kulkarni et al., 2002a)
14	Chlorophytum borivilianum	Asparagaceae	Suspending agent & binding agent (Deore and Khadabadi, 2008)
15	Delonix regia	Fabaceae	Binding agent (Kale et al., 2009)
16	Vignamungo	Fabaceae	Binding agent (Yadav et al., 2009)
17	Cissus populnea	Vitaceae	Binding agent (Eichie and Amalime, 2007)
18	Caesalpinia ulcherrima	Fabaceae	Granulating & Binding agent (Selvi et al., 2010b)
19	Cassia angustifolia	Fabaceae	Granulating & Binding agent (Singh and Singh, 2010b)
20	Zizyphus jujubalakm	Rhamnaceae	Binding agent (Singh et al., 2010)
21	Prosopis juliflora	Mimosaceae	Binding agent (Selvi et al., 2010a)
22	Cassia auriculata	Fabaceae	Binding agent (Singh et al., 2009)
23	Cassia fistula	Cassia fistula	Binding agent (Singh and Singh, 2010a)
24	Dillenia indica	Dilleniaceae	Gel forming agent (Kuotsu and Bandyopadhyay, 2007)
25	Alyssum halocarpus	Brassicaceae	Viscosity enhancer (Koocheki et al., 2009)
26	Coriolus hirsutus	Polyporaceae	Base for gel preparation (Rao et al., 2010)
27	Chlorophytum borivilianum	Asparagaceae	Suspending agent (Naglschmid et al., 1982)
28	Hibiscus rosasinensis	Malvaceae	Super-disintegrant (Shah and Patel, 2010)
29	Mimosa pudica	Fabaceae	Bioadhesive polymer (Ahuja et al., 2010)
Irradiation Effects on Chitosan Microparticles. *Drug Delivery*, 13(1):39–50.

Edwin, J., Edwin, S., Dosì, S. 2007. Application of Hibiscus leaves mucilage assussing agent. *Indian Journal of Pharmaceutical Education and Research*, 41(4):373–375.

Echie, F. E., Amalime, A. E. 2007. Evaluation of the binder effects of the gum mucilages of Cissus populnea and Acassia senegal on the mechanical properties of paracetamol tablets. *African Journal of Biotechnology*, 6(19):2208–2211.

Galati, E. M., Pergolizzi, S., Miceli, N., Monforte, M. T., Tripodo, M. M. 2002. Study on the increment of the production of gastric mucus in rats treated with Opuntia ficus indica (L.) Mill. cladodes. *Journal of Ethnopharmacology*, 83(3):229–233.

Jani, G. K., P.Dhiren, Prajapati, V. D., Jain, V. C. 2009. Gums and mucilages: versatile excipients for pharmaceutical formulations. *Asian Journal of Pharmaceutical Sciences*, 4(5):308–322.

Jani, G. K., Shah, D. P., Jain, V. C. 2007. Evaluating mucilage from Aloe barbadensis Miller as a pharmaceutical excipient for sustained-release matrix tablets. *Pharmaceutical Technology*, 31(11):90–98.

Kale, R. H., Joshi, U. M., Ambhore, D. P. 2009. Evaluation of Delonix regia R. Endospermic mucilage as tablet binder. *International Journal of ChemTech Research*, 1:11–15.

Khan, M., Bhattacharia, S., Kader, M., Bahari, K. 2006. Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. *Carbohydrate Polymers*, 63(4):500–506.

Khandelwal, K. R. 2008. Practical Pharmacognosy Techniques and Experiments. 19th edition. India. Nirali Prakashan.

Koocheki, A., Mortazavi, S. A., Shahidi, F., Razavi, S. M. A., Taherian, A. R. 2009. Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. *Journal of Food Engineering*, 91(3):490–496.

Kulkarni, G. T., Gowthamarajan, K., Rao, G. B. 2002a. Evaluation of binding properties of Plantagoovata and Trigonella foenum graecum mucilages. *Indian Drugs*, 39(8):422–425.

Kulkarni, G. T., Gowthamarajan, K., Satish, K. M. 2002b. Gums and mucilages: Therapeutic and pharmaceutical applications. *Natural Product Radiance*, 1:10–17.

Kumar, R., Patil, M. B., Patil, R. S. 2009. Evaluation of Abelmos chusesculentus mucilage as sustaining agent in paracetamol suspension. *International Journal Pharmaceutical Technology and Research*, 1(3):658–665.

Kuotsu, K., Bandyopadhayay, A. K. 2007. Development of oxytocin nasal gel using natural mucoadhesive agent obtained from the fruits of Dillenia indica. *L. Science Asia*, 33(1):57–60.

Malsawmtluangi, C., Thanzami, K., Lahlenmawia, H., Selvan, V., Palanisamy, S., Kandasamy, R., Pachuau, L. 2014. Physicochemical characteristics and antioxidant activity of Prunus cerasoides D. Don gum exudates. *International Journal of Biological Macromolecules*, 69:192–199.

Malviya, R., Srivastava, P., Kulkarni, G. T. 2011. Applications of Mucilages in Drug Delivery - A Review. *Advances in Biological Research*, 5(1):1–7.

Mazumder, R., Nath, L. K., Haque, A. 2010. Formulation and in vitro evaluation of natural polymers based microspheres for colonic drug delivery. *International Journal of Pharmacy and Pharmaceutical Sciences*, 2(1):211–219.

Mehta, K. K., Patel, H. H., Patel, N. D. 2010. Comparative evaluation of natural and synthetic super disintegrant for promoting nimesulide dissolution for fast dissolving technology. *International Journal Pharmacy and Pharmaceutical Science*, 2(3):102–108.

Micard, V., Belamri, R., Morel, M. H., Guilbert, S. 2000. Properties of Chemically and Physically Treated Wheat Gluten Films. *Journal of Agricultural and Food Chemistry*, 48(7):2948–2953.

Naglschmid, F., Kull, U., Jeremias, K. 1982. Physiological studies on leaf mucus. Research on the Muellages of Verbascum densiflorum. *Biochemie und Physiologie der Pflanzen*, 177(8):671–685.

Patel, D. M., Prajapati, D. G., Patel, N. M. 2007. Seed mucilage from Ocimum americanum linn. as disintegrant in tablets: Separation and evaluation. *Indian Journal of Pharmaceutical Sciences*, 69(3):431–431.

Patel, M. M., Chauhan, G. M., Patel, L. D. 1987. Mucilages of Lepidium sativum linn. asarico and ocimum canum simis. bavchi as emulgents. *Indian Journal of Hospital Pharmacy*, 24(5):200–202.

Rana, V., Rai, P., Tiwary, A. K., Singh, R. S., Kennedy, J. F., Knill, C. J. 2011. Modified gums: Approaches and applications in drug delivery. *Carbohydrate Polymers*, 83(3):1031–1047.

Rao, K. M., Gnanaprakash, K., Badarinath, A. V. 2010. Preparation and evaluation of flurbiprofen gel; mucilage of Cocculus hirsutus leaf powder as gel base. *International Journal of Pharmaceutical Technology and Research*, 2(2):1578–1583.
Raymond, C. R., Paul, J. S., Sian, C. O. 2006. Handbook of Pharmaceutical Excipients. 5th edition. London (UK). The Pharmaceutical Press.

Selvi, R. S., Gopalakrishnan, S., Ramajayam 2010a. Evaluation of mucilage of prosopisjuliϑlora as tablet binder. *International Journal of Pharmacy and Pharmaceutical Science*, 2:157–160.

Selvi, R. S., Gopalakrishnan, S., Ramajayam, M. 2010b. Evaluation of mucilage of Caesalpiniaapul-cherrima as binder for tablets. *International Journal of ChemTech Research*, 21:436–442.

Shah, B. N., Seth, A. K. 2011. Microwave assisted isolation of mucilage from the fruits of abelmoschus esculentus. *Hygeia journal for drugs and medicines*, 31:54–57.

Shah, V., Patel, R. 2010. Studies on mucilage from Hibiscusrosasinensis Linn as oral disintegrant. *International Journal of Applied Pharmaceutics*, 2:18–21.

Shidhaye, S., Kadam, V. J., Desai, A. 2007. Possible use of psyllium husk as a release retardant. *Indian Journal of Pharmaceutical Sciences*, 69(2):206–210.

Singh, B., Sharma, N. 2008. Modification of sterculia gum with methacrylic acid to prepare a novel drug delivery system. *International Journal of Biological Macromolecules*, 43(2):142–150.

Singh, S. K., Gendle, R., Sheth, N. R. 2010. Isolation and evaluation of binding property of Zizyphus jujubabalnk seed mucilage in tablet formulations. *Journal of Global Pharma*, 21:98–102.

Singh, S. K., Singh, S. 2010a. Evaluation of Cassia fistula Linn seed mucilage in tablet formulations. *International Journal of Pharmaceutical Technology and Research*, 23:1839–1846.

Singh, S. K., Singh, S. 2010b. Isolation and evaluation of Cassia aungostifolia seed mucilage as granulating agent. *International Journal of Pharmaceutical Sciences and Research*, 1:118–125.

Singh, S. K., Ushir, Y. V., Chidrawar, R. V. 2009. Preliminary evaluation of Cassia auriculata seed mucilage as binding agent. *Pharmacognosy Journal*, 1(4):251–257.

Sumanta, M., Rahaman, S. T. 2018. An Overview on Isolation and Characterization of Mucilage from Various Species Related to Various Plant Families. *Saudi Journal of Medical and Pharmaceutical Sciences*, 42:284–288.

Wahi, S. P., Sharma, V. D., Jain, V. K. 1985. Studies on suspending property of mucilages of Hygrophila spinosa Tanders and Hibiscus esculentus Linn. *Indian Drugs*, 22:500–502.

Yadav, I. K., Jaiswal, D., Singh, H. P. 2009. Evaluation of seed mucilage of Vignamungo (L.) as a binder in tablet formulations. *Journal of Pharmacy Research*, 27:1281–1283.