CD9 and CD81 work independently as extracellular components upon fusion of sperm and oocyte

Naoko Ohnami1,*, Akihiro Nakamura1,*, Mami Miyado1,*, Masahiro Sato2, Natsuko Kawano1, Keiichi Yoshida1, Yuichiro Harada1, Youki Takezawa1, Seiya Kanai1, Chihiro Ono1, Yuji Takahashi1, Ken Kimura3, Toshio Shida3, Kenji Miyado1,† and Akihiro Umezawa1

1Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
2Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 1-21-20 Korimoto, Kagoshima 890-0065, Japan
3Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
*These authors contributed equally to this work
†Author for correspondence (kmiyado@nch.go.jp)

Biology Open 1, 640–647
doi: 10.1242/bio.20121420
Received 26th March 2012
Accepted 25th April 2012

Summary
When a sperm and oocyte unite into one cell upon fertilization, membranous fusion between the sperm and oocyte occurs. In mice, Izumo1 and a tetrascanning molecule CD9 are required for sperm-oocyte fusion as one of the oocyte factors, and another tetrascanning molecule CD81 is also thought to involve in this process. Since these two tetrascansins often form a complex upon cell-cell interaction, it is probable that such a complex is also formed in sperm-oocyte interaction; however, this possibility is still under debate among researchers. Here we assessed this problem using mouse oocytes. Immunocytochemical analysis demonstrated that both CD9 and CD81 were widely distributed outside the oocyte cell membrane, but these molecules were separate, forming bilayers, confirmed by immunobiochemical analysis. Electron-microscopic analysis revealed the presence of CD9- or CD81-incorporated extracellular structures in those bilayers. Finally, microinjection of in vitro-synthesized RNA showed that CD9 reversed a fusion defect in CD81-deficient oocytes in addition to CD9-deficient oocytes, but CD81 failed in both oocytes. These results suggest that both CD9 and CD81 independently work upon sperm-oocyte fusion as extracellular components.

© 2012. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Key words: CD81, CD9, Membrane fusion, Exosome

Introduction
In fertilization, a sperm first interacts with cumulus cells, somatic cells surrounding an oocyte (Ikawa et al., 2010). It causes detachment of cumulus cells from an oocyte by its enzymatic activities, and then adheres to the zona pellucida (ZP), the extracellular matrix fully covering the oocyte. After completion of the acrosome reaction, a specific modification of the outer membrane of a sperm, the sperm penetrates the ZP and adheres to the oocyte cell membrane (Jin et al., 2011). At this time, membrane fusion occurs between the sperm and oocyte.

CD9 and Izumo1 belong to the tetrascanning membrane protein family (tetrascanning) and immunoglobulin superfamily, respectively, and play a crucial role in sperm-oocyte fusion in mice (Inoue et al., 2005; Kaji et al., 2000; Le Naour et al., 2000; Miyado et al., 2000). In other words, both CD9-deficient oocytes and Izumo1-deficient sperm are unable to fuse to their wild-type partner’s cells (Inoue et al., 2005; Kaji et al., 2000; Le Naour et al., 2000; Miyado et al., 2000). Moreover, CD9-containing exosome-like vesicles are released from oocytes, transferred to the sperm head, and facilitate sperm-oocyte fusion (Ikawa et al., 2010; Miyado et al., 2008; Toshimori, 2011).

Exosomes, nano-sized microvesicles of 50–250 nm in diameter, are known to be released from various types of cells, and play a role in transferring cellular materials from cell to cell (Bobrie et al., 2011). Notably, they contain heat shock proteins (Hsp70 and Hsp90) (Lancaster and Febbraio, 2005), express tetrascanning (CD9, CD81, and CD63) (Zöller, 2009) and gangliosides (GM1 and GM3) (de Gassart et al., 2003) on their outer membrane, and often carry mRNA and microRNA (Valadi et al., 2007). Interestingly, the possible clinical application of exosomes as siRNA carriers is now being explored (Lakhal and Wood, 2011). In dendritic cells, exosomes are generated from intraluminal endosomal vesicles, and released from their cell surface in a form of multivesicular bodies (Pelchen-Matthews et al., 2004).

CD81 is expressed on the surface of oocytes, and deletion of CD81 gene in mice results in a 40% reduction of female fertility, indicating that this infertility is due to the inability of oocytes to fuse with sperm (Rubinstein et al., 2006). Furthermore, when CD81-deficient oocytes are incubated with sperm, some of the sperm penetrating into the perivitelline space of CD81-deficient oocytes fail to undergo acrosome reaction, indicating that the impaired fusibility of CD81-deficient oocytes may be in part caused by impaired acrosome reaction of sperm (Tanigawa et al., 2008). In addition, CD81 is abundantly expressed in granulosa cells, somatic cells that surround oocytes (Tanigawa et al., 2008).

Since CD9 shares homologous sequences with CD81 throughout the four transmembrane regions, and both often form a complex upon cell-cell interaction (Horváth et al., 1998), these
two proteins are thought to play similar roles in regulating cellular function (Hemler, 2003). It is therefore likely that such a complex is also formed in sperm-oocyte interaction; however, this possibility is still under debate among researchers (Glazar and Evans, 2009). Here we focused on the subcellular localization of CD9 and CD81 on mouse oocytes to infer the possible roles of these two proteins in the fusion between a sperm and an oocyte.

Results

Synergistic effects of anti-CD9 and anti-CD81 on sperm-oocyte fusion

Two mAbs, anti-CD9 and anti-CD81, were raised against extracellular loops of mouse CD9 (Oritani et al., 1996) and mouse CD81 (Maecker et al., 2000), respectively. The former is known to inhibit sperm-oocyte fusion (Chen et al., 1999; Miller et al., 2000; Miyado et al., 2000), to reduce the fertilization rate as well as the two-cell formation rate (Miyado et al., 2000), and to cause excess sperm penetration (>10 sperm/oocyte) (Miyado et al., 2000). The latter is known to induce homotypic adhesion of B cells (Maecker et al., 2000), and also inhibits IL-4 production in the process of antigen-specific T-B cell interaction (Deng et al., 2002). However, anti-CD81 appears to behave like anti-CD9 upon sperm-oocyte fusion (Rubinstein et al., 2006). Thus, we here focused our attention on whether sperm-oocyte fusion or the IVF rate is affected by the addition of anti-CD81 alone or by both anti-CD81 and anti-CD9.

Oocytes surrounded by cumulus cells (herein referred to as ‘cumulus-intact’ oocytes) were isolated from oviducts of superovulated female mice and directly subjected to IVF in TYH medium containing anti-CD81 and/or anti-CD9, as depicted in Fig. 1A. Concomitantly, ‘cumulus-intact’ oocytes were inseminated in the medium containing pre-immune IgG, and are herein referred to as ‘control oocytes’. In addition, we used rabbit pre-immune IgG whose total concentration had been adjusted to 100 μg/ml in each condition. On observation 24 hours after insemination, oocytes fertilized in the presence of anti-CD81 had developed normally to two-cell embryos, similar to the control oocytes (Fig. 1B). Quantitative analysis showed no significant difference in the rate of two-cell embryos between these two groups (86.5±7.1% for oocytes incubated with anti-CD81 vs. 89.9±10.1% for control oocytes) (Fig. 1D). Furthermore, excess sperm penetration did not occur in either group (0.9±0.9% and 0.0±0.0%) (Fig. 1C). In contrast, in the oocytes inseminated in the presence of both mAbs or anti-CD9 alone, excess sperm penetration was observed in the perivitelline space (PVS) (Fig. 1B). This was confirmed by quantitative analysis (70.2±8.0% for oocytes incubated with both mAbs vs. 86.1±13.9% for oocytes incubated with anti-CD9 alone) (Fig. 1C). Interestingly, the rate of two-cell embryos was significantly reduced in oocytes incubated with both mAbs, comparing to that in oocytes incubated with anti-CD9 alone (7.3±0.8 vs. 27.0±7.5; P=0.031) (Fig. 1D). This is probably due to the weak, but apparent inhibitory effect of anti-CD81 on IVF.

Fig. 1. Inhibitory effects of anti-CD9 and anti-CD81 on fertilization. (A) Experimental flow for testing the rate of excessive sperm penetration in perivitelline space (PVS) of an oocyte and the rate of two-cell embryos. Oocytes collected from oviducts of superovulated female mice were subjected to IVF in the presence of anti-CD9 (50 μg/ml) and/or anti-CD81 (50 μg/ml) or a preimmune Ab (50 μg/ml) for 24 hours. They were then stained with DAPI. BF, bright field. (B) Embryos 24 hours after IVF in the presence of Abs. Arrowheads marked sperm accumulated at the PVS. Scale bars: 20 μm. (C) The rate of embryos exhibiting excess sperm penetration. Parentheses = number of oocytes examined. NS, not significant. Values are the mean±s.e.m. (D) The rate of two-cell embryos 24 hours after IVF in the presence of Abs. Parentheses = number of oocytes examined. NS, not significant. Values are the mean±s.e.m.
These results suggested that CD9 and CD81 work cooperatively in sperm-oocyte fusion.

Extracellular localization of CD81 and CD9 in oocytes

To assess the roles of CD81 and CD9 in sperm-oocyte fusion in more detail, their subcellular localization on the oocyte cell membrane was examined using ‘zona-intact’ oocytes (Fig. 2). Since fixatives are known to affect the subcellular protein localization pattern in oocytes (Sato et al., 2011), we performed double immunocytochemical staining for CD81 and CD9 using living oocytes, according to the procedure (Miyado et al., 2000), as depicted in Fig. 2A. The confocal microscopic observation demonstrated that the CD81-rich area was confined to the ZP near PVS, while the CD9-rich area was observed in the PVS (Fig. 2B, lower set of images). This indicates the presence of two different types of layers outside the ‘zona-intact’ oocytes, as suggested previously (Miyado et al., 2008).

To confirm this further, we employed a biochemical approach to know the presence of these two proteins in the extracellular region of ‘zona-intact’ oocytes, as depicted in Fig. 3A. The ‘zona-intact’ oocytes isolated from ovulated oocytes were subjected to treatment with collagenase (Yamatoya et al., 2011) to remove extracellular components such as ZP and PVS (hereafter referred to as ‘ZP + PVS’). The resulting two fractions, namely ‘ZP + PVS’ and ‘denuded oocytes’, were next subjected to immunoblotting (Fig. 3B). As expected, the ‘ZP + PVS’ fraction was successfully immunoreacted with anti-CD9 and anti-CD81. The ‘denuded oocytes’ fraction was only reactive with anti-CD9. In addition, the capacitated sperm lysate immunoreacted with both antibodies. These data indicated that both CD81 and CD9 are present as extracellular components in ‘zona-intact’ oocytes.

Immunoprecipitation of CD81- or CD9-containing complex from oocytes

Since CD9 shares homologous sequences with CD81, especially with respect to each of their four transmembrane domains, both proteins are considered to exhibit similar biological functions, and in some cases would form a complex, as pointed out by Horváth et al. (Horváth et al., 1998); however, it remains unknown whether complex formation occurs in mouse oocytes. To assess such a possibility, we performed an immunoprecipitation assay using lysates of ‘zona-intact’ oocytes. First, the ‘zona-intact’ oocytes were biotinylated to compare the patterns of components immunoprecipitated with anti-CD9 or anti-CD81, and then subjected to immunoprecipitation (Fig. 4A). When the lysates, corresponding to 10 oocytes per lane, were electrophoresed in SDS-PAGE, the patterns of biotinylated components were completely different between the precipitates reacting with anti-CD81 and with anti-CD9. The precipitate reacting with anti-CD9 was classified into three components, including CD9 molecule, whereas the precipitate reacting with anti-CD81 was classified into seven or more components, the molecular sizes of which were inconsistent with those in components precipitated with anti-CD9 (Fig. 4A). Second, when 500 oocytes were reacted with anti-CD81 without biotinylation and subjected to immunoblotting, the precipitate was reacted with anti-CD9 (Fig. 4B).

CD81-rich and CD9-rich layers are present in extracellular structures outside an oocyte: evidence from immunoelectron-microscopic analysis

We previously showed the presence of CD9-containing exosome-like vesicles in PVS of ‘zona-intact’ oocytes using immunoelectron microscopy (Miyado et al., 2008). In this study, we demonstrated that CD81 is localized in the inner area of the ZP of ‘zona-intact’ oocytes (Figs 2, 3). Moreover, CD81 was successfully immunoprecipitated with anti-CD81, but not with anti-CD9 (Fig. 4). Based on these results, we predicted that CD81-containing structures should exist in ZP. To prove this hypothesis, we next performed immunoelectron-microscopic analysis of extracellular components in ‘zona-intact’ oocytes (Fig. 5). As depicted in Fig. 5A, 200 ‘zona-intact’ oocytes were collected, and extracellular components including ZP and PVS were separated from ‘zona-intact’ oocytes by treatment with collagenase, as mentioned previously. After being separated from denuded oocytes, the extracellular components were subjected to
Fig. 4. Immunoprecipitation patterns of oocytes. (A) Immunoprecipitation (IP) of oocyte lysates using anti-CD9 and anti-CD81. A total of 200 oocytes were collected from oviducts of superovulated female mice, and cumulus cells were removed from oocytes. Oocytes were biotinylated for 1 hour at 4°C and then lysed in 1% Brij 97-containing buffer for 3 hours at 4°C. This input lysate was next reacted with each anti-CD9 or anti-CD81 for 2 hours at 4°C, and precipitated with Sepharose beads conjugated with secondary Abs. After immunoprecipitation, the lysates corresponding to 10 oocytes were electrophoresed per lane. The preimmune rat IgG and hamster IgG (ham IgG) were concomitantly reacted with the oocyte lysates as negative controls. (B) Immunoblotting of the precipitate after reaction with anti-CD81. 500 oocytes/lane were collected from oviducts and lysed in Brij 97-containing buffer for 3 hours at 4°C. The lysates were reacted with anti-cD81 for 2 hours at 4°C and precipitated with Sepharose beads conjugated with secondary Ab. As a negative control, the oocyte lysates were precipitated with the preimmune hamster IgG (ham IgG). The precipitates corresponding to 500 oocytes were then electrophoresed per lane and immunoblotted with anti-CD9.

Fig. 5. Electron-microscopic analysis of extracellular components containing CD9 and CD81. (A) Experimental flow for observing CD9-containing or CD81-containing extracellular structures. Oocytes were collected from oviducts of superovulated female mice, and cumulus cells were removed from oocytes by treatment with hyaluronidase. After ZP removal by collagenase, extracellular components containing ZP and PVS were collected, reacted with anti-CD9 or anti-CD81, and then incubated with 10 nm colloidal gold particles coupled to the secondary Abs for 1 hour at room temperature. The materials conjugated with the gold particles were spun down at 3,000 rpm for 10 min at room temperature, and the precipitates were washed with TYH medium three times. The final precipitates were fixed and subjected to electron-microscopic analysis. (B) Electron-microscopic analysis of materials bound to the gold particles. In each panel, boxes in the middle set of panels were enlarged and shown below. In each panel, scale bars: 100 nm.

Fig. 6. In vitro synthesis of RNAs encoding CD81 and CD9 and subsequent forced expression of mRNA in oocytes. (A) Experimental flow for in vitro synthesis of RNAs encoding mouse CD81 and CD9. (1) Subcloning of CD9 and CD81 cDNAs into plasmid vectors. The ORF corresponding to each cDNA was PCR-amplified, and the amplified DNA fragments were subcloned into the HindIII and Not I sites in pBluescript SKII-A85, a vector containing poly(A) repeats (comprising 85 adenines) instead of polyadenylation signal. (2) RNA synthesis. The cDNA-inserted vectors were linearized by digestion with Xho I and used as templates for RNA synthesis using the mCAP RNA Capping Kit. (B) Forced expression of mRNA encoding CD9 or CD81 in oocytes. GV-stage oocytes were collected from ovaries of CD9−/− and CD81−/− female mice and subjected to RNA injection. CD9 RNA was microinjected into CD9−/− oocytes, while CD81 RNA was injected into CD81−/− oocytes. After maturing in vitro for 24 hours, these oocytes were subjected to IVF, after which they were stained with DAPI, immunostained with anti-CD9 or anti-CD81, and observed with a confocal microscope. In each panel, scale bars: 20 μm.

To count the number of sperm fused per oocyte, ‘zona-free’ oocytes prepared by immersion in acidic Tyrode’s solution were preincubated with DAPI and then subjected to IVF, as shown in Fig. 7A. This procedure enabled the staining of only fused sperm nuclei by dye transfer into sperm after membrane fusion. Concomitantly, non-injected oocytes were inseminated along with RNA-injected oocytes. When the transcript encoding CD9 was injected, the fusion rate was completely reversed in both CD9-deficient oocytes (1.0±0.1 vs. 0.0±0.0 for non-injected oocytes; P<0.0001) (Fig. 7B) and CD81-deficient oocytes.
(2.3±0.7 vs. 0.6±0.1 for non-injected oocytes; P=0.0002) (Fig. 7C). On the other hand, when the transcript encoding CD81 was injected, the fusion rate was unaltered in CD9-deficient oocytes (0.0±0.0 vs. 0.0±0.0 for non-injected oocytes) (Fig. 7B) as well as in CD81-deficient oocytes (0.2±0.1 vs. 0.6±0.1 for non-injected oocytes) (Fig. 7C). These results indicate that the function of CD81 is replaceable by that of CD9, whereas CD81 cannot support the task of CD9, which plays a critical role in sperm-oocyte fusion.

Discussion
Membrane fusion occurs between two cell membranes of the sperm and oocyte. Such a process takes place widely not only in sperm-oocyte interaction in animals, but also in plants. Our present results using immunocytochemical and immunobiochemical analyses indicate that two tetraspanins, CD9 and CD81, play a role as ‘extracellular components’ in sperm-oocyte membrane fusion.

CD81 is expressed in various types of cells, whereas expression of CD9 is more restricted (Caplan et al., 2007). In contrast, CD9 and CD81 interact via at least two tetraspanin partners, CD9P-1 and EWI-2 (Stipp et al., 2001). Consistent with this, the pattern of proteins coprecipitated with CD81 or CD9 in the presence of 3-(3-cholamidopropyl)-dimethylammonio]propanesulfonate (CHAPS) or Brij 97 is complex, but is quite similar in the CD9-transfected lymphoblast-like Raji cell line (Horváth et al., 1998). When CD9 and CD81 are co-expressed in one type of somatic cell, the majority of CD9 forms a complex with CD81 (Stipp et al., 2001). However, in mouse oocytes, the spatial distribution of these two proteins was different, and the possibility of complex formation between CD9 and CD81 appeared to be very low, as demonstrated in Fig. 2B and Fig. 4. The unique localization pattern of CD9 and CD81 in oocytes in turn suggested that CD9 is predominantly produced in oocytes, while CD81 is predominantly produced in cumulus cells, from which CD81 may become localized to the ZP. Indeed, it has been reported that the expression of CD81 is higher in cumulus cells than in oocytes (Tanigawa et al., 2008). In addition, we here demonstrated that forced expression of CD81 does not affect the fusion rate of both CD9-deficient and CD81-deficient oocytes (Fig. 7B,C), implying that CD81-containing components would not have been released from an oocyte. Taking these collective data into consideration, we here propose a model regarding the roles of CD81 and CD9 in mammalian fertilization (Fig. 8). Before membrane adhesion and subsequent fusion between sperm and oocyte, the differential distribution pattern of CD81 and CD9 may be prerequisite for subsequent fusion events.

A sperm fails to fuse with the partner oocyte when a genetically defective oocyte (CD9-deficient oocyte) (Miyado et al., 2000; Le Naour et al., 2000; Kaji et al., 2000) or sperm (Izumo1-deficient sperm) (Inoue et al., 2005) is employed for
IVF. Similarly, the fusion rate is reduced when CD81-deficient oocytes are subjected to IVF with normal sperm (Tanigawa et al., 2008; Rubinstein et al., 2006). Moreover, we have demonstrated that 1) CD9 is released from oocytes and becomes localized at the PVS, and 2) CD9 present in the extracellular space plays an important role in sperm-oocyte fusion (Ito et al., 2010). We have also shown that these CD9 molecules in the extracellular space are included in vesicles, termed ‘oocyte exosome-like vesicles’, which are released from an oocyte before fertilization (Miyado et al., 2008). Notably, unlike CD9-deficient oocytes, CD9-deficient sperm are able to fertilize a normal oocyte, although CD9 is strictly required at the site where sperm-oocyte fusion occurs. Furthermore, we here demonstrated that CD81 proteins are expressed in sperm (Fig. 3B), and CD81-deficient sperm are fertile, as described previously (Tanigawa et al., 2008; Rubinstein et al., 2006). Based on these accumulated data, it seems likely that extracellular components (containing these two tetraspanins) outside an oocyte are essential for sperm-oocyte fusion.

CD9 and CD81 are now recognized as components included in the exosomes (Stoorvogel, 2012). These structures often contain small RNAs that are transferred via cell to cell connection (Valadi et al., 2007); therefore, exosomes were recently considered as siRNA carriers for the clinical application of small RNAs that are transferred via cell to cell connection (Stoorvogel, 2012). These structures often contain small RNAs that are transferred via cell to cell connection (Stoorvogel, 2012). These structures often contain small RNAs that are transferred via cell to cell connection (Stoorvogel, 2012). These structures often contain small RNAs that are transferred via cell to cell connection (Stoorvogel, 2012).
Immunoprecipitation was performed according to the procedure described by Sakakibara et al. (Sakakibara et al., 2005). The ‘zona-intact’ oocytes were collected and washed three times in 500 μl HEPES-buffered solution (HBS). For biotinylation, the oocytes were incubated in 500 μl HBS containing 0.4 mg/ml Sulfo-NHS-LC-Biotin (Pierce Biotechnology, Inc., Rockford, IL) for 1 hour on ice, and washed three times in 500 μl HBS. After biotinylation, the oocytes were incubated in 50 μl of HBS or antibody (1 μg/ml) or anti-CD9 (1 μg/ml) or anti-CD81 (50 μg/ml) or a preimmune IgG (50 μg/ml) for 2 hours at 37 °C and lysed with 500 μl HBS containing 1% Brij 97 (Sigma-Aldrich Co.) for 4 hours at 4 °C. After the lysates were centrifuged at 13,500 rpm for 30 min at 4 °C, the supernatants were treated with 5 μl bed volume of Sepharose beads (Merck&Biosciences) coated with anti-CD9 IgG or anti-hamster IgG, and rotated for 2 hours at 4 °C. After washing three times with 1% Brij 97 in HBS, the Sepharose beads were resuspended in 20 μl of HBS and centrifuged at 13,500 rpm for 1 hour at 4 °C. The supernatants were separated by SDS-PAGE and immunoblotted, as described above and mentioned in the figure legends. On the other hand, non-biotinylated oocytes were lysed in 1 ml of 1% Brij 97 in HBS as described above, immunoprecipitated with anti-CD81 (1 μg/ml) or immunoperoxidase IgG (Sigma-Aldrich Co.) for 2 hours at 4 °C, and immunoblotted with anti-CD9 (0.1 μg/ml).

CD9- and CD81-deficient mice

We had produced CD9-deficient mice previously (Miyado et al., 2000), and CD81-deficient mice were kindly provided by Dr. Miyazaki (The University of Tokyo, Tokyo, Japan) (Miyazaki et al., 1997).

In vitro fertilization (IVF)

For IVF, oocytes were collected from the oviductal ampulla region of superovulated C57BL/6N females (8 to 12 weeks old) 14 to 16 hours after hCG injection, and placed in a 30 μl drop of TYH medium covered with paraffin oil (Nacalai Tesque, Inc., Kyoto, Japan) equilibrated with 5% CO2 in air at 37 °C. Sperm collected from the epididymides of 8- to 12-week-old B6C3F1 males were induced to capacitate by incubating in TYH medium for 90 min in an atmosphere of 5% CO2 in air at 37 °C before insemination. The oocytes were then inseminated with sperm in the presence of anti-CD9 (50 μg/ml) and/or anti-CD81 (50 μg/ml) or a preimmune rat IgG (50 μg/ml) as a control. In addition, we used rabbit pre-immune IgG whose total IgG concentration had been adjusted to 100 μg/ml. After 1 hour of fertilization, the final concentration of sperm added to the oocytes was 1.5×106 sperm/ml. To measure the rate of excessive sperm penetration (>10 sperm/oocyte) and two-cell embryos, the oocytes were observed under an LSM 510 confocal microscope 24 hours after incubation with Abs.

To count the number of sperm fused per oocyte, zona-free oocytes were prepared according to the procedure described by Yamatoya et al. (Yamatoya et al., 2011). They were then preincubated with 4.6-diamidino-2-phenylindole (DAPI; Wako Pure Chemical Industries, Ltd., Osaka, Japan) at the final concentration of 10 μg/ml in TYH medium for 20 min at 37 °C, and washed 3 times in separate drops of TYH medium before insemination. DAPI is a fluorescent dye that slowly permeate the living cell membrane (semi-permeable) and will not leak out of cells after washing, relative to Hoechst33342 (permeable), according to the instructions from Invitrogen Co. (Carlsbad, CA). It enables the staining of only fused sperm nuclei as a result of the transfer of DAPI into sperm after membrane fusion. One hour after incubation in a 30 μl drop of TYH medium, the oocytes were fixed with HBS containing 2% paraformaldehyde, 0.1% glutaraldehyde and 0.1% polyvinylpyrrolidone (PVP) for 30 min at room temperature. Then, the number of sperm fused per oocyte was determined by counting DAPI-transferred sperm.

Electron-microscopic analysis

The oocytes were isolated from oviducts of superovulated mice, and cumulus cells were removed from the oocytes by treatment with hyaluronidase (300 μg/ml) in TYH medium, as described previously (Takezawa et al., 2011). After zona-intact oocytes were treated with collagenase (Wako Pure Chemical Industries, Ltd.) at the final concentration of 1 mg/ml in 5% CO2 in air at 37 °C, denuded oocytes were removed from the drop with a micropipette attached to a mouth piece and the remaining solution (<20 μl) was collected as extracellular components of the oocytes. The collected components were incubated with anti-CD9 (0.5 μg/ml) or anti-CD81 (0.5 μg/ml) for 2 hours at room temperature. The collected components were then exposed to 1 ml bed volume of 10 nm colloidal gold coupled to the l bed volume of 10 nm colloidal gold coupled to the anti-CD9 or anti-CD81 (1 μg/ml) in 250 μl HBS. The gold particles were spun down at 12,000 rpm for 30 min at room temperature, and then the precipitates were washed with TYH medium. This step was repeated 3 times, and then the precipitates were fixed with HBS solution containing 2% glutaraldehyde for 24 hours at 4 °C and 0.1% osmic acid for 1 hour at 4 °C. Ultra-thin sections were prepared as described (Toshimori et al., 1998).
Glazar, A. I. and Evans, J. P. (2009). Immunoglobulin superfamily member IgSF8 (EWI-2) and CD9 in fertilisation: evidence of distinct functions for CD9 and a CD9-associated protein in mammalian sperm-egg interaction. Reprod. Fertil. Dev. 21, 293-301.

Hemler, M. E. (2003). Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 19, 397-422.

Horváth, G., Serru, V., Clay, D., Billard, M. Boucheix, C. and Rubinstein, E. (1999). CD19 is linked to the integrin-associated tetraspanns CD9, CD81, and CD32. J. Biol. Chem. 273, 30537-30543.

Ikawa, M., Inoue, N., Benham, A. M. and Okabe, M. (2010). Fertilization: a sperm’s journey to and interaction with the oocyte. J. Clin. Invest. 120, 984-994.

Inoue, N., Ikawa, M., Iostani, O. and Okabe, M. (2005). The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234-238.

Ito, C., Yamatoya, K., Yoshiha, K., Maekawa, M., Miyado, K. and Toshimori, K. (2010). Tetraspanin family protein CD9 in the mouse sperm: unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res. 340, 583-594.

Jin, M., Fujivara, E., Kakini, Y., Okabe, M., Satou, Y., Baba, S. A., Chiba, K. and Hirohashi, N. (2011). Most fertilizing mouse spermatozoa begin their acrosine reaction before contact with the zona pellucida during in vitro fertilization. Proc. Natl. Acad. Sci. USA 108, 4892-4896.

Kaji, K., Oda, S., Shikano, T., Ohnuki, T., Uematsus, Y., Sakagamis, J., Tada, N., Miyazakis, S. and Kudos, A. (2000). The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24, 279-282.

Kawano, N., Yoshida, K., Miyado, K. and Yoshidas, M. (2011). Lipid rafts: keys to sperm maturation, fertilization, and early embryogenesis. J. Lipids 2011, e264706.

Krawetz, S. A., Kruger, A., Lalancette, C., Tagett, R., Anton, E., Draghics, D. and Diamond, M. P. (2011). A survey of small RNAs in human sperm. Hum. Reprod. 26, 3401-3412.

Lakhal, S. and Wood, M. J. (2011). Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays 33, 737-741.

Lancaster, G. I. and Febbraio, M. A. (2005). Exosome-dependent trafficking of IISP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem. 280, 23349-23355.

Le Naour, F., Rubinstein, E., Jasmin, C., Preant, M. and Boucheix, C. (2000). Severely reduced female fertility in Cd9-deficient mice. Science 287, 319-321.

Maecker, H. T., Todd, S. C., Kim, E. C. and Levy, S. (2000). Differential expression of murine CD81 highlighted by new anti-mouse CD81 monoclonal antibodies. Hybridoma 19, 15-22.

Miller, B. J., Georges-Labouesse, E., Primakoff, P. and Myles, D. G. (2000). Normal fertilization occurs with eggs lacking the integrin alphabeta1 and is CD9-dependent. J. Cell Biol. 149, 1289-1296.

Mekada, E., Sakakibara, K., Miyado, M., Umezawa, A. et al. (2000). Requirement of CD9 on the egg plasma membrane for fertilization. Science 287, 321-324.

Miyado, K., Yoshiha, K., Yamagata, K., Sakakibara, K., Okabe, M., Wang, X., Miyamoto, K., Akatsu, H., Kondo, T., Takahashi, Y. et al. (2008). The fusion ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc. Natl. Acad. Sci. USA 105, 12921-12926.

Miyazaki, A. I. and Evans, J. P. (1988). Effects of porcine follicular fluid on male pronuclear formation in porcine oocytes matured in vitro. Gamete Res. 21, 289-295.

Miyano, K., Miyado, K., Yoshida, K., Yamagata, K., Sakakibara, K., Okabe, M., Wang, X., Miyamoto, K., Akatsu, H., Kondo, T., Takahashi, Y. et al. (2008). The fusion ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc. Natl. Acad. Sci. USA 105, 12921-12926.

Naito, K., Fukuda, Y. and Toyoda, Y. (1988). Reduced fertility of female mice lacking CD81. Dev. Biol. 120, 351-358.

Takezawa, Y., Yoshida, K., Miyado, K., Sato, M., Nakamura, A., Kawano, N., Sakakibara, K., Kondo, T., Harada, Y., Ohnami, N. et al. (2011). J-catenin is a molecular switch that regulates transition of cell-cell adhesion to fusion. Sci. Rep. 1, 68.

Naito, K., Fukuda, Y. and Toyoda, Y. (1988). Reduced fertility of female mice lacking CD81. Dev. Biol. 120, 351-358.

Shipp, C. S., Orlicky, D. and Hemler, M. E. (2001). FPRP, a major, highly stoichiometric, highly specific CD81- and CD9-associated protein. J. Biol. Chem. 276, 4853-4862.

Shipp, C. S., Kolesnikovas, T. V. and Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends Biochem. Sci. 28, 106-112.

Stoorvogel, W. (2012). Functional transfer of microRNA by exosomes. Blood 119, 646-648.

Stipp, C. S., Kolesnikovas, T. V. and Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends Biochem. Sci. 28, 106-112.

Stipp, C. S., Kolesnikovas, T. V. and Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends Biochem. Sci. 28, 106-112.

Stipp, C. S., Kolesnikovas, T. V. and Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends Biochem. Sci. 28, 106-112.