Low-speed generator with permanent magnets and additional windings in the rotor for small power wind plants and micro hydro power plants

R Baratov¹ and N Pirmatov²

¹Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
²Tashkent State Technical University named after I. Karimov, Tashkent, Uzbekistan
rbaratov@mail.ru

Abstract. Recently due to the worldwide population grows much attention has been paid to increasing total electricity generation. However, traditional power plants, which are used hydrocarbon fuels, cause one of the challenging problems like environmental contamination and global warming in the world. In this case, renewable or alternative energy sources can be a promising replacement for traditional hydrocarbon fuels. Uzbekistan has lots of small rivers and water reservoirs and the use of these potentials in the perspective to generate power it is a unique decision of the problem. Usually in small power plants use low-speed generators and efficiency of these type generators are very low. Hence, the main objective of this study is to increase the efficiency of the low power generator by improving and optimizing the specifications and parameters of the low power generators. The use of low-speed generators with permanent magnet excitation for micro-hydroelectric power plants and wind turbines is relevant in terms of providing good weight and size indicators, simplicity of construction, lack of sliding contacts, with the ability to perform a generator of low rotation speeds, which causes low cost and high reliability. In this study, the natures of the influence of the main geometric dimensions of the mass-dimensional parameters and the air gap on the energy indicators of the generator are estimated. Theoretical and experimental research results are submitted.

1. Introduction
Nowadays power resources are becoming scarcer as people exploit these vital resources aggressively. Global power demand grows by 62% between now and 2050, or by 1.5% per year. Renewable and alternative energy sources can be a promising replacement for traditional hydrocarbon fuels. More than two-thirds of the global population today live in countries where solar or wind, if not both, are the cheapest source of new electricity generation. Just five years ago, coal and gas dominated that picture. By 2030, new wind and solar ultimately get cheaper than running existing coal or gas plants almost everywhere. In China, this second “tipping point” occurs for coal in around 2027. The energy obtained from alternative energy sources can be used for both permanent power supply and backup power supply [1].

Renewable energy is the energy received as a result of natural processes, which are replenished faster than they are consumed. Common sources of renewable energy include solar, wind, geothermal, and some types of biomass.
More than 80% of global energy consumption is fossil resources, which are depleted faster than they can be recovered. Due to growing concerns about carbon emissions and uncertainty in fossil fuel supplies, interest in clean and renewable energy is constantly growing [2].

The research object in this study is the use of low-speed generators with permanent magnet excitation for micro-hydroelectric power plants and wind turbines.

The objective of the research is the development of low-speed generator with permanent magnet excitation for micro-hydroelectric power plants and wind turbines with improved specifications as providing good weight and size indicators, design simplicity, lack of sliding contacts, with the ability to perform a generator of low rotation speed, which causes low cost and high reliability.

2. Materials and methods

In recently in the power engineering sector of the industry in Uzbekistan has growing interest in developing synchronous generators with permanent magnets. Some parameters of the synchronous generators such as mass and size of the generator with permanent magnets are determined by its main dimensions. In this study, the nature of the influence of the main geometric dimensions of the mass-dimensional parameters and the air gap on the energy indicators of the generator is estimated. The installation of additional cross windings ensures the efficiency of the proposed low-speed electric generator with permanent magnets.

Because in the research the magnetic field of a low-speed generator with permanent magnets and additional windings in the rotor for low-power wind turbines and micro hydroelectric power plants using the method of finite element analysis are studied.

3. Results

It should be noted that each machine topology has its strengths and weaknesses. Topologies without stator cores are used for small and medium power generators and they have advantages such as no gear torque, linear torque characteristics, high power density and compact design [3, 4, 5, 6].

Due to the lack of losses in the stator core, generators of this type can operate with higher efficiency than conventional generators.

A low-speed electric generator with a permanent magnet requires an axial magnetic flux. If the thickness of the dummy air gap is too large (this usually means a large stator thickness), the path of the magnetic flux will pass through the neighboring magnet, rather than the opposite one [7, 8, 9, 10, 11]. Consequently, a very small portion of the magnetic flux will pass in the axial direction (a large leakage flow), and the machine will generate less torque and electromotive force (EMF) [12].

![Figure 1. Rotor: 1 is rotor disk, 2 is permanent magnet, 3 is additional transverse windings, 4 is battery](image-url)
A low-speed permanent magnet electric generator contains a rotor (Figure 1.) in the form of two flat disks, a stator (Figure 2.) is placed between the rotor disks and is made in the form of a disk connected to a fixed case, the anchor winding is located on the disk along the radii - reel magnets with alternating poles and additional transverse windings mounted on the side parts of the rotor in an amount of 36 to 360 on each disk [13].

The goal is to improve the efficiency of the generator. The technical result is an increase in power, an increase in EMF, a decrease in rpm and rated speed, and a decrease in electromagnetic torque [14].

The graphs in figures 4-7 represent the calculated characteristics of the output parameters.
Figure 4. Graphs of the load current change from the rotation speed of the generator armature, where 1 is the load current generated by the generator with permanent magnets and additional transverse windings in the rotor, 2 is the load current generated by the generator without structure.

Figure 5. Graphs of changes in the EMF of idling and voltage at the generator output depending on the armature rotation speed: 1,2-EMF of idling and voltage at the output of a synchronous generator with permanent magnets and additional transverse windings in the rotor; 3,4-EMF of idling and voltage of the synchronous generator without structural changes.
4. Discussion

The generator is the most important element of the wind turbine and micro-hydroelectric power plant. The advantages of generators with permanent magnets include high reliability, design simplicity, and maintenance associated with the absence of sliding contacts and rotating winding, autonomy since no constant current is required for excitation, less heating due to the absence of excitation losses [15].

In a low-speed synchronous generator, electromagnetic processes occur that affect the performance of the structure.

The setting parameter of the electromagnetic processes of the generator is magnetic induction, knowing which, you can find the force with which the rotor is attracted to the stator, and an important argument will be the size of the working air gap. The larger the air gap, the smaller the magnetic induction in it and vice-versa. The force of gravity, in turn, will also depend on the air gap. Structurally, the unevenness of the air gap leads to an increase in the attractive force at the place of the
smallest value of the gap, which leads to the appearance of a bending moment. As a result, there is a skew of disks, and the load on bearings increases [16, 17, 18, 19].

A generator with a permanent magnet rotor can be built according to various schemes, differing from each other by the joint arrangement of windings and magnets. Alternating polarity magnets are located on the rotor of the generator. Windings with alternating winding direction are located on the stator. If the rotor and stator are coaxial disks, then this type of generator is called axial or disk [20].

The overall dimensions of the SGPM are determined by its main dimensions - the length l_r [mm] and the active part of the rotor with a diameter D_r [mm] [21, 22]:

$$D_r^2 \cdot l_r = \frac{C_A \cdot P_{est}}{n} \quad (1)$$

$$C_A = \frac{6.1 \times 10^7}{\alpha_i \cdot k_f \cdot k_0 \cdot A \cdot B_\delta} \quad (2)$$

where P_{est} is the estimated power of SGPM, [W]; C_A is the Arnold’s machine constant; α_i is the estimated coefficient of pole overlap; k_f is the coefficient of the shape of the curve of the field; k_0 is the winding coefficient; A is the linear load, [A / cm]; B_δ is the maximum value of induction in the air gap at rated load [T]; n is the rotor speed [r / min].

The most important geometric parameter of the generator is also the width of the air gap δ (Figure 8). For the generator, the value of δ is determined approximately from the ratio [23]:

$$\delta = (5 - 8) \times 10^{-3} \cdot D \quad (3)$$

Path 1 represents the mean magnetic flux. The magnetic flux that does not follow the mean flux path (path 1) is considered to be leakage flux and represented by path 2 (magnet to air) and path 3 (magnet to magnet).

![Figure 8. Sectional view of the generator. d is the fictitious air gap, d_s is the stator thickness, t is the rotor thickness d_d is the air gap thickness and l_{AM} is the distance between adjacent magnets.](image)

In an ideal situation, the magnetic flux would follow the mean flux path, but in reality, there is also the leakage flux, which can be reduced by using measures listed in [24, 25]:
- the axial length of the air gap has to be smaller than double thicknesses of the PMs in the
magnetization direction (d < 2hpm),
- the distance between neighboring PMs on the same disk has to be larger than the fictitious air gap ($l_{AM} > d$).

5. Conclusion

- The proposals presented here open in further research on the extremely important problem of estimating the power of low-speed generators with permanent magnets and additional cross windings.
- The installation of additional cross windings ensures the efficiency of the proposed low-speed electric generator with permanent magnets.
- An assessment of the nature of the influence of the main geometric dimensions of the mass and size parameters and the air gap on the energy indicators of the generator is given.
- A comparison of the characteristics in the design and experimental studies of a generator with permanent magnets showed that the use of additional cross windings in the rotor allowed significantly improve the basic specifications of the low-speed generators.

References

[1] Chung D W, You Y M 2014 Design and performance analysis of coreless axial-flux permanent-magnet generator for small wind turbines Journal of Magnetics 3(19)
[2] Hwang C C 2009 Optimization for reduction of torque ripple in an axial flux permanent magnet machine IEEE Transactions on Magnetics 3(45)
[3] Klach M 2016 Hybridization effect on generation capability of an embedded CPA // Journal of Electrical Systems 1(12)
[4] Booth D A 1990 Contactless electric machines textbook YES Booth M Higher school 416
[5] Aloui H 2008 Reluctant network-based investigation of a claw pole alternator with DC excitation in the stator COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 5(27)
[6] Faiz J 2016 Design of a radial flux permanent magnet wind generator with low coercive force magnets
[7] Hua H 2017 Partitioned Stator Machines with NdFeB and Ferrite Magnets // IEEE Transactions on Industry Applications 3(53)
[8] Klach M 2017 Embedded simple excited automotive alternator modeling using magnetic equivalent circuits International Journal of Electrical and Computer Engineering 3(7)
[9] Zhu Z Q 2016 Comparative study of partitioned stator machines with different PM excitation stators IEEE Transactions on Industry Applications 1(5)
[10] Balagurov VA, Galiev FF 1988 Permanent magnet electric generators - M Energoatomizdat 280
[11] Pirmatov N B, Toshev Sh E, Tosheva Sh N and Egamov A 2018 Low-speed generator of a new type used to generate electric energy based on renewable energy sources International scientific conference pp 123-124
[12] Daghigh A, Javadi H and Torkaman H 2017 Optimal Design of Coreless Axial Flux Permanent Magnet Synchronous Generator with Reduced Cost Considering Improved PM Leakage Flux Model Electric Power Components and Systems 3(45) pp 264–278
[13] Krivtsov V S, Oleinikov A M and Yakovlev A I 2003 Inexhaustible Energy Pr Textbook p 400
[14] Daghigh A, Javadi H and Torkaman H 2015 Improved design of coreless axial flux permanent magnet synchronous generator with low active material cost
[15] Kobayashi H 2009 Design of the axial-flux permanent magnet coreless generator for the multi-megawatts wind turbine
[16] Wang X, Yan J and Wang G 2012 Study of disk type coreless permanent magnet synchronous generator applied in ocean current energy system

[17] Fediy K S, A L 2006 Vstovsky Optimization of the operating modes of electrical systems. *Interuniversity collection of scientific papers-Krasnoyarsk* CPC KSTU pp 56-61

[18] Minaz M R, Çelebi M 2017 Design and analysis of a new axial flux coreless PMSG with three rotors and double stators *Results in Physics* 7

[19] Mbidi D N 2001 Design and Evaluation of a 500 kW Double Stage Axial-Flux Permanent Magnet Generator *Thesis (MScEng)-Stellenbosch University* Retrieved http://hdl.handle.net/10019.1/52177

[20] Balagurov VA 1982 Design of special AC electric machines - M Higher School p 272

[21] Pop A A 2014 Electromagnetic design and finite-element analysis of an axial-flux permanent-magnet machine 2014.

[22] Pop A A, Gillon F and Radulescu M M 2011 Modelling and design optimization of a small axial - flux brushless permanent-magnet motor for electric traction purposes *Pojazdy Szybowe* 3

[23] Vritič P 2012 Analysis of rotor disc thickness in coreless stator axial flux permanent magnet synchronous machine *Przeglad Elektrotechniczny* 12 p 88