DNA barcoding of Geometridae moths (Insecta: Lepidoptera): a preliminary effort from Namdapha National Park, Eastern Himalaya

Vikas Kumar, Shantanu Kundu, Rajasree Chakraborty, Abesh Sanyal, Angshuman Raha, Oyndrila Sanyal, Rahul Ranjan, Avas Pakrashi, Kaomud Tyagi and Kailash Chandra

Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M Block, New Alipore, Kolkata, 53, India.

ABSTRACT

The order Lepidoptera is a highly diverse and well-established indicator taxon that helps to monitor anthropogenic threats in the environment and climate change. In India, the taxonomic studies on Lepidoptera have been started long ago, but the molecular studies have been performed rarely, especially in the Himalayan region. The present study generated DNA barcode sequence of 44 Geometridae moths from Namdapha National Park in Eastern Himalaya and identified them through wing pattern and genitalia structure. Among them, the DNA barcode data of 13 Geometridae species are the novel contribution in the global database. All the studied species were revealed sufficient Kimura 2 Parameter (K2P) genetic divergence and distinguished by Bayesian (BA) tree. The genus Proplepsis (subfamily Sterrhinae), Pelagodes and Lophophelma (subfamily Geometrinae) showed distinct clades with their respective species in the BA tree. The BA cladogram successfully separated the studied specimens under three different tribes; Macariini, Eutoeini, and Boarmiini (subfamily Ennominae). The study further revealed the new records of two Geometridae moths, Pelagodes bellula and Hypomecis costaria from India. Nevertheless, more than one clade of Cleora, Hypomecis, and Chiasmia in BA tree; further impelled more rigorous sampling of the studied taxon from different geographical regions for better systematic interpretation.

INTRODUCTION

The order Lepidoptera is one of the megadiverse insect group with approximately 157,424 species under 15,578 genera throughout the globe (van Nieukerken et al. 2011). They are found in all continents, except Antarctica, inhabiting all terrestrial habitats, and associated with higher plants, especially angiosperms (Gullan and Cranston 2005). Due to enormous diversity and functional importance in the eco-system, this insect group is regarded as an indicator taxon and potential focal system for ecological monitoring (Kitcing et al. 2000; New 2004; Summerville et al. 2004; Lomov et al. 2006). Among all lepidopterans, the family Geometridae is the largest group, with 23,000 described and 40,000 estimated species so far (Miller et al. 2016). Geometridae caterpillars, commonly known as loopers or inchworms, feed on single host-plant and govern host-plant abundance and diversity (Ward and Spalding 1993). They can be robustly sampled using standard light trapping and identified by comparing the available literature across the world. Till date, total 1558 Geometridae species have been reported from India (Kirti et al. 2014); among them, 879 species were recorded from pan Indian Himalaya with 70 species from Arunachal Pradesh state in the northeastern region (Sanyal et al. 2018).

Due to the complex morphological characters, hybridization, and mimicry; the accurate species identification of Geometridae moths is difficult (Janzen et al. 2005; Hausmann et al. 2009; Huemer and Mutanen 2012). Although many new species and new records of Geometridae moths has been published every year from India; but an accurate DNA barcode reference library is missing to successfully answer several taxonomic ambiguities and biogeographic questions.

Since the inception of DNA barcoding as a molecular technique for species identification (Hebert et al. 2003), many studies have been targeted to know the region-specific lepidopteran biodiversity (Lukhtanov et al. 2009; Dinca et al. 2011; deWard et al. 2011; Hausmann et al. 2011, 2013; Wilson et al. 2013; Huemer et al. 2014; Liu et al. 2014; Zahiri et al. 2014). Several studies have been shown to resolving the taxonomic quest and the dilemma in lepidopteran systematics (Hajibabaei et al. 2006; Burns et al. 2008; Hausmann et al. 2009; Mutanen et al. 2012; Jiang et al. 2017). The publicly available DNA barcode sequences in the global database proved to be useful for identification of regional faunas (Hajibabaei et al. 2006; Burns et al. 2008; Hausmann et al. 2009; Mutanen et al. 2012; Jiang et al. 2017) and detect the expansion of the range distribution (Mutanen et al. 2012; Hausmann et al. 2013; Huemer et al. 2014; Dinca et al. 2015).
Despite the rich lepidopteran diversity in India, very few attempts were made to generate DNA barcode data of Indian moths. Therefore, the present study preliminarily aimed to generate DNA data of Geometridae moths from the Namdapha National Park in eastern Himalaya to determine the effectiveness of DNA barcoding for species identification. The study contributed DNA barcode data of taxonomically identified Geometridae species in the global database for succeeding research.

Materials and methods

Sample collection and morphospecies identification

Total 44 Geometridae moths were collected from the Namdapha NP (27.48 N 96.45 E) in Changlang district of Arunachal Pradesh (Table 1). The specimens were collected at night time in a single day by installing traditional light trap methods (Fry and Waring 1996). The collected specimens were killed with ethyl acetate vapor and stored in paper envelopes with collection details. The specimens were stretched, pinned, labeled, and dried properly in the laboratory for further morphological studies. The genitalia of studied specimens was also examined for in-depth morphometric analysis. The specimens were identified with the help of available literature (Hampson 1895; Warren 1899; Scoble 1999), published genitalia illustrations (Fletcher and Nye 1979; Holloway 1993, 1996, 1997; Sato 1995), and reference voucher specimens available at the National Zoological Collection (NZC) in the Zoological Survey of India (ZSI), Kolkata. The studied specimens were submitted to the NZC, ZSI, Kolkata, with proper voucher numbers and collateral information.

Genomic DNA isolation, PCR, and sequencing

The hind legs of each specimen were collected for DNA analysis and stored in 70% ethanol at −80 °C. The total
Figure 1. Map with red dot showing the collection locality of Geometridae moths in Namdapha National Park, Arunachal Pradesh states in northeast India. Bayesian tree based on partial mtCOI gene shows the species topology of the studied Geometridae moths. Clades with different colours shows the congeners of different genus. Colour clades with dotted lines shows the ambiguous clades of different Geometridae congeners. The generated sequences of this study were indicated by “ZSI LP”. The sequence of *Arctopsyche amurensis* (Trichoptera) was incorporated as the out-group in the BA tree. The habitus, ventral view of genitalia, and aedeagus of the studied species were superimposed beside the tree: (A) *Pelagodes bellula*; (B) *Cleora propulsaria*; (C) *Dalina calamina*; (D) *Darisa lampasaria*; (E) *Hypomecis looptilaria*; (F) *Luxiaria acutaria*; (G) *Racotis inconclusa*; (H) *Lophophelma erionoma*; (I) *Hypomecis costaria*; (J) *Lassaba albibaria*; (K) *Xerodes ypsaria*; (L) *Chorodna testaceata*; (M) *Chiasmia pseudonora*; (N) *Lophophelma vigens*; (O) *Chorodna moorei*. The habitus of the studied species: (P) *Antipercnia belluaria*; (Q) *Fascellina plagiata*; (R) *Petelia medardaria*; (S) *Krananda semihyalina*; (T) *Problepsis albior*. Red arrows are showing the relevant diagnostic characters of the studied species for accurate species level identification.
Genomic DNA was extracted following the Phenol-Chloroform-Isomyl alcohol standard protocol (Sambrook and Russell 2001). The published primer pairs; LCO1490: 5'-GGTCAAAACAATCTAAAAGATTTG-3', HCO2198: 5'-TAAACTTCAGGGTGACAAAAATCA-3' (Folmer et al. 1994), and LepFi: 5'-ATTCAACCAAATCTAAAAGATTTG-3', LepRi: 5'-TAAACTTCAGGGTGACAAAAATCA-3' (Hebert et al. 2004) were used for amplification of a partial fragment of mitochondrial Cytochrome C Oxidase Subunit I (mtCOI) gene in a Verity® Thermal Cycler (Applied Biosystems, Foster City, CA). The PCR reaction was set in a 30-µl total volume containing 20 picomoles of each primer, 20 mM Tris-HCl (pH 8.0), 100 mM KCl, 0.1 mM EDTA, 1 mM DTT, 1.8 mM MgCl₂, 0.25 mM of each dNTP, and 1U of Taq polymerase (Takara Bio Inc., Shiga, Japan) with the following cycling parameters: 5 min at 94°C; followed by 40 cycles of 30 s at 94°C, 40 sec at 49°C, 1 min at 72°C, and final extension for 5 min at 72°C. The amplified PCR products were checked in 1.2% agarose gel. The PCR products were purified using a QiAquick R Gel extraction kit (QiAGEN Inc., Germantown, MD), and cycle sequencing products were cleaned by using the standard BigDyeXTerminator Purification Kit (Applied Biosystems, Foster City, CA). Sequencing was done bi-directionally in the 48 capillary array 3730 DNA Analyzer (Applied Biosystems, Foster City, CA) following Sanger sequencing methods in ZSI in-house sequencing facility.

Sequence quality control measure, dataset preparation, and analysis

The generated forward and reverse chromatograms of each specimen were analyzed with SeqScape software version 2.7 (Applied Biosystems) and consensus sequences were obtained after checking deletion, insertion, and stop codons. The similarity search of the generated sequences were performed through BLASTn in GenBank and identification engine in the BOLD database. The generated sequences were submitted to the GenBank and BOLD database through Bankit and BOLD project. Further, to form a combined dataset and construct the phylogeny, 121 published sequences of same or closely related taxa were obtained from the GenBank. One sequence of Arctopsyche amurensis (order Trichoptera) was incorporated in the dataset as out-group. Total 166 sequences were aligned with Clustal X program to form a combined dataset and further analysis (Thompson et al. 1997). The mean genetic divergences were calculated using the Kimura 2 parameter (K2P) in MEGA6.0 (Tamura et al. 2013). The reciprocal monophyly among the studied specimens was tested through Bayesian analysis (BA) with a best-fit model in Mr. Bayes 3 (Ronquist and Huelsenbeck 2003). The bayesian analysis involved Markov Chain Monte Carlo (MCMC) with four chains for 1,000,000 generations, with trees sampled every 100 generations (the first 1000 trees were discarded as burn-in). MCMC analysis was stationary when the maximum standard deviation of split frequencies reached below 0.01 and potential scale reduction factor (PSRF) approached 1.0.

Results and discussion

The unique accession numbers and BOLD Process IDs of each generated DNA barcode sequence were acquired from both GenBank and BOLD database. The similarity search tool preliminarily identified 28% of the studied specimens up to the species level (Table 1). As of now, lots of DNA barcode data are available for lower invertebrate groups, especially for the order Lepidoptera in both GenBank and BOLD system (Scoble and Hausmann 2009). However, due to the lack of exhaustive sampling, wrong morphological identification, and mislabeled DNA barcode data in the global database, the reference DNA sequence library often misled to identify the species through online similarity search tool (Hausmann et al. 2013). Thus, the estimation of species diversity of any specific geographical areas is becoming elusive. In this study, we generated the DNA barcode data of morphologically identified Geometridae moths and screened through similarity search tool, genetic distance, and Bayesian clustering.

Further, due to the phenotypic variations in wing pattern and cryptic diversity (deWaard et al. 2011), the genitalia characters of the studied Geometridae moths were revisited to validate the generated DNA barcode sequences. Based on the 24 singletons and seven analogous barcode index numbers (BINs), the BOLD data system revealed a total of 31 operational taxonomic units (OTUs) in the dataset (Table 1). Out of 44 specimens, 13 were unable to identify up to the species level due to lack of morphological data. Among them, three specimens were identified under subfamily Ennominae, and ten specimens were identified under the genus Cleora, Racotis, Chiasmia, and Petelia. The remaining 31 specimens were identified up to 20 species level by both morpho-taxonomy and molecular approaches. The generated barcode sequences of C. propulsaria, D. lampasarai, H. lioptilaria, H. costaria, R. inconclusa, L. erionoma, L. vigens, P. albiodior, C. pseudonora, C. moorei, D. calamina, L. acutaria, A. belluaria are the new contribution in the global database from this current study. The intra-generic genetic divergence of Pelagodes was 5.4%. The two generated sequences Pelagodes bellula showed 8.1% genetic divergence and close clustering with the Pelagodes aucta in BA tree (Figure 1). Due to the external morphological variation, the genus Pelagodes and the allied group Thalassodes frequently showed cryptic diversity. The genus Pelagodes, Thalassodes, Orotchassodes, and Remiformvalva were previously considered under the genus Thalassodes. Further, based on the structure of the male genitalia and eighth abdominal sternite, many species were shifted from Thalassodes and erected two new genera, Orotchassodes, and Pelagodes (Holloway 1996). In this present study, both morphology and DNA barcode data revealed the new record of P. bellula from northeast India. The presence of P. bellula in the studied region evidenced the occurrence of the species more westward and expand the range distribution in China, Myanmar, and northeast India. The P. bellula is morphologically similar to the Indian species P. aucta, and can be diagnosed with basally broad and pointed costal extension and absence of the sclerotized area in the sacculus of male genitalia (Han and Xue 2011).
The genus Cleora shows 11.1% genetic divergence within the genus in the present dataset which depicts a wide range of intra-generic variation. Most of the Cleora species included in the present dataset, were clustered together in BA tree; however, three sequences of Cleora nesiotes showed separate cluster (Figure 1). The two generated sequences of Cleora propulsaria and three generated sequences of Cleora sp. shows maximum 1% genetic divergence. Thus, based on the genetic distance and BA tree, the generated sequences (ZSI_LP7, ZSI_LP11, and ZSI_LP13) were confirmed as C. propulsaria. The ZSI_LP10 identified as Cleora sp., shows 6.3% to 7.1% genetic divergence with C. propulsaria, and might be a distinct species. Further, the two generated sequences of Cleora sp. (ZSI_LP8 and ZSI_LP9) resulted high genetic divergence (4.4–7.6%) and maintain sister clades with Cleora sabulata and Cleora tenebrata in the BA tree which assumed to be distinct species. The generated sequence of Darisa lampasaria shows 8.7–12.4% genetic divergence with the other Geometridae species in the dataset and depicts a distinct clade in the BA tree (Figure 1). Further, the specimen (ZSI_LP16) was morphologically identified as Petelia medarda. The generated and database sequence of P. medardaria shows maximum genetic divergence (1.2%) and single clades in BA tree. The specimen (ZSI_LP28), which was preliminarily identified as Petelia species shows 2.4–3.4% genetic distance with P. medardaria and clade separately, which might be a distinct species.

The present dataset resulted intra-generic genetic divergence of Hypomecis is 10.3% and the intra-species genetic divergence of Hypomecis lioptilia is ranging from 0 to 0.5%. Further, most of the Hypomecis species shows clear-cut clustering in the BA tree except Hypomecis taeniota, Hypomecis suasaria, Hypomecis proscora, Hypomecis atactopena, and Hypomecis zalochema. The generated sequences of H. lioptilia and Hypomecis costaria resulted a maximum of 13.6% genetic divergence and clade separately in BA tree (Figure 1). Furthermore, the BA tree shows sister relationship of H. lioptilia and H. costaria with Hypomecis infaustaria, but distant by more than 10% genetic divergence with each other. The study confirmed the range expansion of H. costaria from South East Asia, Sarawak, Borneo up to mainland India. The intra-generic genetic distance of Racotis is 6.8% as compared with the other genus. The generated sequences of Racotis inconclusa (ZSI_LP20) and Racotis sp. (ZSI_LP20A) shows 0.2% genetic divergence and assumed to be the same species. However, the other two specimens of R. inconclusa shows distinct clade in BA phylogeny (Figure 1) with high intra-species genetic divergence (7.3–9.1%), which depicted the presence of the cryptic diversity of R. inconclusa in northeast India. The specimen (ZSI_LP43) is identified as Lophophelma vigens and its distribution pattern is similar to Lophophelma erionoma. The present dataset resulted 9.2% intra-generic genetic distance of Lophophelma and high intra-species genetic divergence (9.1%) in L. erionoma. Further, the generated sequence of L. vigens shows a maximum of 9.7% genetic divergence with L. erionoma in the present dataset. The specimen (ZSI_LP25) was morphologically identified as Lassaba albidaria, which is widely distributed in India (Himachal Pradesh, Sikkim, Uttarakhand, Meghalaya, West Bengal), and other parts of World (China, Pakistan, Nepal). The estimated genetic divergence with L. albidaria and other dataset species were ranging from 8.8 to 13%.

However, due to the lack of published sequences in the database, L. albidaria shows distinct clade in BA tree (Figure 1). The intra-generic genetic distance of Prolepsis was 8.5% with seven species in the present dataset. The Prolepsis albidor shows distinct clade in BA tree and seems to be a sister species of Prolepsis ocellata with 6.2% genetic divergence. The intra-generic genetic distance of Krananda was 8.3% with the database sequence of Krananda extranotata. Further, the two generated sequences of Krananda semihyalina shows high genetic divergence (4.9%) within the species. The K. semihyalina and K. extranotata shows 9.1 to 10.8% genetic divergence and clustered separately in BA tree (Figure 1). The genetic distance of Xerodes with other studied genera in the dataset was ranging from 9.4 to 12.5%. The two specimens (ZSI_LP29 and ZSI_LP33) morphologically identified as Ennominae species clustered closely in the BA tree and maintain 9.7% genetic divergence with each other. The three specimens (ZSI_LP34, ZSI_LP36, and ZSI_LP37) were identified as Chiasmia species, among them one specimen (ZSI_LP36) was identified up to the species level as Chiasmia pseudonora by male genitalia and the remaining two specimens were identified up to genus level (Gayal 2010). The intra-generic genetic distance of Chiasmia was 9.9% as compared with other studied genera. The morphologically identified C. pseudonora (ZSI_LP36) and Chiasmia sp. (ZSI_LP34) are resulted low genetic divergence (0.5%) and clustered closely in the BA tree, thus the ZSI_LP34 was considered as C. pseudonora. Further, two closely related species, C. pseudonora and Chiasmia hypomochla resulted 8.9 to 9.1% genetic distance in the dataset. Further, the generated sequences of Chiasmia sp. (ZSI_LP37) clustered with two published database sequences of Chiasmia goldiei and maintain 6.8% genetic divergence with each other. The BA tree shows two distant clades of Chiasmia species with 9.7 to 12.2% genetic divergence.

The genetic distance of Fascellina was ranging from 9.1 to 11% as compared with other studied genera in the dataset and showed distinct clade in BA tree. The genus Chorodna shows 5.1% genetic divergence as compared with other genera in the dataset. The two identified species Chorodna moorei and Chorodna testaceata shows 4.9% genetic divergence and clustered separately in BA tree (Figure 1). Further, the two database sequences of Chorodna strixaria shows a maximum of 6.7 and 6.2% genetic divergence with C. moorei and C. testaceata, respectively. The genus Dalima shows 8.1 to 11.8% inter-generic genetic distance in the dataset. The BA tree shows the close relationship of Dalima species with Chorodna species with a maximum of 9.7% genetic divergence. The genus Luxiaria resulted 9.1% intra-generic and maximum of 13.6% inter-generic genetic divergence in the dataset. The generated sequence of Luxiaria acutarai shows 10.2% and 7.5% genetic divergence with the two published database sequence of Luxiaria ochrophora and Luxiaria phyllosaria, respectively. The BA tree shows a distinct clade of Luxiaria species with the generated sequences of L. acutarai. The four generated sequence (ZSI_LP79, ZSI_LP80, ZSI_81, ZSI_82) were morphologically identified as Antipercnia belluaria. The inter-generic divergence of the genus Antipercnia was depicted 11.1 to 14.7% with other studied genera. The four generated sequences of A. belluaria were clustered.
distinctly in BA tree with a maximum of 0.2% genetic divergence within the species.

This study is the first and preliminary DNA barcode-based assessment of Geometridae moths from the eastern region of the Indian Himalaya. Due to limited species coverage, the study did not discuss the in-depth phylogenetic relationship of any hierarchical level of Geometridae moths. In the present dataset, the genus *Prolepsis* of subfamily Sterrhinae and two genera, *Pelagodes* and *Lophophela* of the subfamily Geometrinae formed a distinct clade from rest of the Ennominae species in the BA tree. Further, the studied specimens under three different tribes of subfamily Ennominae clustered closely in the resulted cladogram. The generated and database sequences of *Chiasmia* taxa under Macarini tribe, *Lassa* taxa under Eutoeini tribe, and the remaining studied genera under Boarmini tribe shows close clustering with each other. The members of Macarini and Eutoeini tribes were frequently considered as a monophyletic within Boarmini lineage. Further, the members of Boarmini were often resulted ambiguous clades as compared with the known taxonomical classification and considered as paraphyletic (Jiang et al. 2017). In the present study, the members of *Cleora*, *Hypomecis*, and *Chiasmia* shows similar uncertain clades (Figure 1) with high morphological variations. Hence, more exhaustive sampling from broad geographical areas is required to get a clear insight into the evolutionary relationship of the Indian Boarmini members and other related taxa in Ennominae clade.

Disclosure statement

The authors declare that they have no competing interests.

Acknowledgements

We are thankful to the Director, Zoological Survey of India, Kolkata for accommodating the research programme and providing the necessary facilities. The study is funded by the Core funding of Zoological Survey of India, Kolkata, Ministry of Environment, Forest and Climate Change (MoEF&CC, New Delhi and National Mission on Himalayan Studies (Grant No. NMHS/2015-16/HF03/03). The funders had no role in study design, data collection and analysis or preparation of the manuscript.

Author contributions

Conceived and designed the experiments: VK, SK, KT, KC; Performed the experiments: RC, OS, RR, AP; Morphological examination: AS, AR; Analysed the data: SK, VK, KT, AP; Contributed chemicals and analysis tools: VK, KC; Wrote the paper: SK, VK, AS, KC; All authors reviewed the manuscript.

References

Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN. 2008. DNA barcodes and cryptic species of skipper butterflies in the genus *Perichares* in Area deConservacion Guanacaste, Costa Rica. Proc Natl Acad Sci. 105:6350–6355.

deWarda JR, Hebert PDN, Humble LM. 2011. A comprehensive DNA barcode library for the looper moths (Lepidoptera: Geometridae) of British Columbia, Canada. PLoS ONE. 6:e18290.

Dinca V, Montagud S, Talavera G, Hernandez-Roldan J, Munguira M, Garcia-Barros E, Hebert PDN, Vila R. 2015. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Scientific Rep. 5:1–12.

Dinca V, Zakharov EV, Hebert PDN, Vila R. 2011. Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proc Royal Soc B Biologic Sci. 278: 347–355.

Fletcher DS, Nye IWB. 1979. The Generic names of moths of the world. Vol. 3: Geometroidea: Apopogonidae, Axiidae, Callidulidae, Cylciididae, Drepanidae, Epicopeiidae, Epiplemidae, Geometridae, Pterothyridiidae, Sumaturidae, Thyatiridae, Uranidae. London (UK): BM (NH).

Folmer O, Black M, Hoeh W, Lutz R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molec Marine Biotechnol. 3:294–299.

Fry R, Waring P. 1996. A guide to moth traps and their use. Amateur Entomol. 24:iv +60.

Gaylor, T. 2010. Taxonomic studies of Family Geometridae (Lepidoptera) from Western Ghats of India [Thesis]. Patiala: Punjabi University.

Gullan PJ, Cranston PS. 2005. The insects: an outline of entomology. 3rd ed. Oxford, England: Blackwell Publishing.

Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci. 103:968–971.

Hampson G. 1895. Moths, Volume III. In: Blanford WT, editor. The fauna of British India including Ceylon and Burma. London: Taylor and Francis Ltd; p. 546.

Han H, Xue D. 2011. Thalassodunes and related taxa of emerald moths in China (Geometridae, Geometrinae). Zootaxa. 3019:26–50.

Hausmann A, Godfray HJC, Huemer P, Mutanen M, Rougerie R, van Nieukerken EJ, Ratnasingham S, Hebert PDN. 2013. Genetic patterns in European geometrid moths revealed by the Barcode Index Number (BIN) system. PLoS ONE. 8:e84518.

Hausmann A, Haszprungr G, Hebert PDN. 2011. DNA barcoding the geometrid fauna of Bavaria (Lepidoptera): successes, surprises, and questions. PLoS One. 6:17134.

Hausmann A, Hebert PDN, Mitchell A, Rougerie R, Sommerer M, Edwards T, Young CJ. 2009. Revision of the Australian *Oenochroma vinaria* Guenée, 1858 species-complex (Lepidoptera: Geometridae, Oenochromeinae): DNA barcoding reveals cryptic diversity and assesses status of type specimen without dissection. Zootaxa. 2239:1–21.

Hebert PDN, Cywinska A, Ball SL, deWarda JR. 2003. Biological identifications through DNA barcodes. Philos Trans Royal Soc B Biol Sci. 270: 313–322.

Hebert PDN, Benton EH, Burns JM, Janzen DH, Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator*. Proc Natl Acad Sci USA. 101: 14812–14817.

Holloway JD. 1993. The Moths of Borneo: Part 11; Family Geometridae: Subfamily Ennominae. Kuala Lumpur, Malaysia. Malayan Nature J.19: 429.

Holloway JD. 1996. The Moths of Borneo Part 9: Family Geometridae, Subfamilies Oenochrominae, Desmobathrinae, Geometrinae. Malayan Nature J. 49:147–326.

Holloway JD. 1997. The Moths of Borneo: Part 10; Family Geometridae: Sterrhinae and Larentiinae. Addenda to other Subfamilies. Kuala Lumpur, Malaysia. Malayan Nature J. 12: 242.

Huemer P, Mutanen M. 2012. Taxonomy of spatially disjunct alpine Teleiopsis albifemorata s. lat. (Lepidoptera: Gelechiidae) revealed by molecular data and morphology - how many species are there? Zootaxa. 3580:1–23.

Huemer P, Mutanen M, Sefc K, Hebert PDN. 2014. Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts. PLoS ONE. 9:e115774.

Jiang N, Li X, Hausmann A, Cheng R, Xue D, Han H. 2017. A molecular phylogeny of the Palaearctic and Oriental members of the tribe...
Boarmiini (Lepidoptera: Geometridae: Ennominae). Invertebrate Syst. 31:427–441.

Kirti JS, Singh N, Saxena A. 2014. Seven new records of Geometrid moths (Lepidoptera: Geometridae) from India. J Appl Biosci. 40:113–116.

Kitching RL, Orr AG, Thalib L, Mitchell H, Hopkins MS, Graham AW. 2000. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J Appl Ecol. 37:284–297.

Liu X, Yang C, Han H, Ward R, Zhang A. 2014. Identifying species of moths (Lepidoptera) from Baihua Mountain, Beijing, China, using DNA barcodes. Ecol Evol. 4:2472–2487.

Lomov B, Keith DA, Britton DR, Hochuli DF. 2006. Are butterflies and moths useful indicators for restoration monitoring? A pilot study in Sydney’s Cumberland Plain Woodland. Ecol Manage Restor. 7:204–210.

Lukhtanov VA, Sourakov A, Zakharov EV, Hebert PDN. 2009. DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification. Mol Ecol Resour. 9:1302–1310.

Miller SE, Hausmann A, Hallwachs W, Janzen DH. 2016. Advancing taxonomy and bioinventories with DNA barcodes. Philos Trans Royal Soc B Biol Sci. 371:20150339.

Mutanen M, Hausmann A, Hebert PDN, Landry J, de Waard J, Huemer P. 2012. Allopatry as a Gordian knot for taxonomists: patterns of DNA barcode divergence in Arctic-Alpine Lepidoptera. PLoS ONE. 7:e47214.

New TR. 2004. Moths (Insecta: Lepidoptera) and conservation: background and perspective. J Insect Conserv. 8:79–94.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572–1574.

Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

Sanyal AK, Mallick K, Khan S, Bandypadhyay U, Mazumder A, Bhattacharyya K, Pathania PC, Raha A, Chandra K. 2018. Insecta: Lepidoptera (Moths). In Faunal Diversity of Indian Himalaya. Kolkata: Director, Zool. Surv. India; p. 651–726.

Sato R. 1995. Records of Boarmiini (Geometridae: Ennominae) from Thailand. 2. Trans Lepidopterist’s Soc Japan. 46:209–227.

Scoble MJ. 1999. Geometrid moths of the world - a catalogue (Lepidoptera: Geometridae). Collingwood: CSIRO Publishing., 1: 5–482; 2: 485-1016.

Scoble MJ, Hausmann AMJ. 2009. Lepidoptera barcode of life: Geometridae [accessed 2018 Jan 30]. http://www.lepbarcoding.org/geometridae/species_checklists.php.

Summerville KS, Ritter LM, Crist TO. 2004. Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: a preliminary assessment. Biol Conserv. 116:9–18.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molec Biol Evol. 30:2725–2729.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_ X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.

Tyagi K, Kumar V, Singhia D, Chandra K, Laskar BA, Kundu S, Chakraborty R, Chatterjee S. 2017. DNA Barcoding studies on Thrips in India: cryptic species and species complexes. Scientific Rep. 7.

van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, et al. 2011. Order Lepidoptera Linnaeus, 1758. In: Zhang ZQ, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:212–221.

Ward LD, Spalding DF. 1993. Phytophagous British insects and mites and their food-plant families: total numbers and polyphagy. Biol J Linnean Soc. 49:257–276.

Warren W. 1899. New Species and Genera of the Families Drepanulidae, Thyridiidae, Uraniiidae, Epiplemidae, and Geometridae, from the Old-World Regions. In: Walter Rothschild, Ernst Hartert, K. Jordan, editors. Novitates Zoologicae, Vol. VI. London & Aylesbury: Hazell, Watson & Viney, LD; p. 1–66.

Wilson J, Singh K, Sofian-Azirun M. 2013. Building a DNA barcode reference library for the true butterflies (Lepidoptera) of Peninsula Malaysia: what about the subspecies. PloS One. 8:e79969.

Zahiri R, Lafontaine JD, Schmidt BC, Dewaard JR, Zakharov EV, Hebert PDN. 2014. A transcontinental challenge-a test of DNA barcode performance for 1,541 species of canadian Noctuoidea (Lepidoptera). PloS ONE. 9:e92797.