Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors

Sepehr Eslami1,2✉, Piet Hoekstra1, Philip S. J. Minderhoud2,3, Nam Nguyen Trung4, Jannis M. Hoch1,5, Edwin H. Sutanudjaja1, Do Duc Dung4, Tran Quang Tho4, Hal E. Voepel6, Marie-Noëlle Woillez7 & Maarten van der Vegt1

Rising temperatures, rapid urbanization and soaring demand for natural resources threaten deltas worldwide and make them vulnerable to rising seas, subsidence, droughts, floods, and salt intrusion. However, climate change projections in deltas often address climate-driven stressors in isolation and disregard parallel anthropogenic processes, leading to insufficient socio-political drive. Here, using a combination of process-based numerical models that integrate both climatic and anthropogenic environmental stressors, we project salt intrusion within the Mekong mega-Delta, in the next three decades. We assess the relative effects of various drivers and show that anthropogenic forces such as groundwater extraction-induced subsidence and riverbed level incisions due to sediment starvation can increase the salinity-affected areas by 10–27% compared to the present-day situation, while future sea level rise adds another 6–19% increase. These projections provide crucial input for adaptation policy development in the Mekong Delta and the methodology inspires future systemic studies of environmental changes in other deltas.
The world’s largest deltas accommodate ~500 M people while under increasing stress by a combination of climatic and anthropogenic drivers. River discharge anomalies due to changes in precipitation and evaporation, and Sea-Level Rise (SLR) are amongst the most important consequences of global rising temperatures. Simultaneously, dependence on natural resources such as freshwater and sand to maintain agri-/aqua-cultural production, industrial and urban development, especially in emerging economies, is reflected in upstream impoundments, sand mining, and groundwater extraction. These anthropogenic activities trigger/enhance environmental changes. Consequently, major delta’s worldwide suffer from sediment starvation driving riverbed/bank erosion, saline water intrusion, and accelerated subsidence. Fundamental to food and water security, SLR threatens livelihood of the world’s largest deltas such as Ganges Brahmaputra, Indus, Mekong, Mississippi, Chao Phraya, Orinoco, Ayeyarwady, Nile, Red, and Pearl River Deltas. While conventional wisdom regards SLR as the main driving force of increased discharge, there is, in fact, a highly complex phenomenon, influenced by large-scale environmental forces such as precipitation/evaporation, wind and sea-level as well as spatio-temporal variations of “local drivers of exposure and vulnerability” (e.g., freshwater, bathymetry, geometry, and tidal variations). Within the impacted deltas, the experienced SWI trends are mainly associated with anthropogenic activities such as modified hydrological cycles and erosion due to upstream impoundments, sand mining, and groundwater extraction. Therefore, in developing down-scaled representative environmental pathways and future projections in deltas, it is paramount to incorporate all drivers and not reduce environmental changes to single climate change-related drivers such as SLR.

The Mekong River (MR) defining the lives of more than 100 Million people has transformed from a pristine ecological unit to fragmented pieces of rivers, exploited with limited coordination between the basin countries. The low-lying Vietnamese Mekong Delta (VMD), is en route becoming the ultimate victim of global rising temperatures, upstream impoundments, domestic urbanization, and agri-/aqua-culture stress, reflected in land subsidence, riverbed level incisions, and coastal erosion. Tidal amplification and increased SWI are amongst other challenges, SWI is the key indicator to land use and strategic development. Nevertheless, it is often considered a byproduct of SLR. Furthermore, previous studies (a) over-simplified the 3D nature of salt intrusion to 1D, (b) limited the model extents to the estuary mouth with forced salinity at boundary conditions, (c) overlooked land subsidence (−10−40 mm yr⁻¹), (d) neglected riverbed level incision (200−300 mm yr⁻¹), and (e) disregarded expected upstream discharge increase driven by CC and hydropower operations, potentially counteracting SWI. These shortcomings lead to incomplete understanding of the socio-environmental system, under-informed public opinion, and significant lag in effective policy advocacy. The complex dynamics of SWI requires a holistic approach to distinguish the impacts of different physical processes. Here, for the first time, we present such holistic assessment of SWI for a mega-delta. By combining various process-based models, we project future SWI within the VMD (see Fig. 1) by integrating CC-induced SLR and upstream discharge developments, extraction-induced land subsidence, and riverbed level incisions. The findings are crucial input to develop much-needed effective strategies for the VMD, and the approach provides a blueprint to study environmental change at delta scale.

Environmental drivers of SWI

The monsoon-driven seasonal variability of the Mekong River Basin (MRB) is the mainstay of livelihood along the river. In principle, during the wet season (July–October), the SW monsoon floods the basin and fills the Tonle Sap Lake (TSL) in Cambodia (See Fig. 1). During the dry season (Dec–May), the strong NE monsoon wind increases water levels along the VMD coast (see Fig. 1b), which together with low discharge and higher tidal amplitudes, drives salinity intrusion up the delta. Total dry season freshwater discharge is nearly 5–10% of the yearly discharge in Kratie, Cambodia (see Fig. 1a). Historically, during the dry season, the pristine MRB provided two sources of freshwater to the VMD: (1) the Mekong River and (2) the TSL that was filled in the wet season and acted as a flood retention area. While the MR dry season discharge has increased over the past three decades (driven by CC and hydropower operations), due to trimming of the dry season flood pulse by the dams, nowadays, water levels hardly reach the threshold of filling the TSL during the wet season and the wet season floods (Supplementary Fig. 2) follow a declining trend in the past two decades (See methods and supplementary note 1). Therefore, the delta is short of TSL as its second freshwater source in the dry season and experiences a longer period of exposure to SWI. On top of that, as discharge to the delta is not increasing despite the dry season increase of the Mekong River, driven by deeper riverbeds and relative SLR, the delta is much more vulnerable to SWI. Because of this combination, actual SWI in 2016 and 2020 already surpassed the 2050 projections, developed in 2015.

The CC-related drivers are mainly reflected in SLR and upstream discharge anomalies. Fig. 2a shows the projected SLR along the VMD coast. Fig. 2b shows trends of cumulative seasonal upstream discharge variation, based on the Integrated Catchment Model (INCA) forced with downscaling precipitation and temperature for two representative concentration pathways (RCP) of moderate 1.5–2°C (RCP 4.5) and extreme 3–4°C (RCP 8.5) global temperature rise. These trends were validated by a thorough comparison with trends simulated by PCR-GLOBWB under different climate forcing scenarios used in the Aquaduct Flood Project (see “Methods” for further detail). To provide a realistic projection of discharge, we chose the time series of an average (non-drought) year in this case 2015) as baseline, and uniformly increased the time series. This increase was calculated for the cumulative discharge of the dry period to match the projected temporal trends. In this manner, we account for long-term upstream discharge variation, but also maintain a typical intra-seasonal discharge variability.

The anthropogenic drivers are categorized under extraction-induced land subsidence and riverbed level changes due to sediment starvation. Fig. 2c shows two opposing scenarios of groundwater extraction, leading to projected land subsidence due to aquifer-system compaction. With rising awareness on the consequences of groundwater extraction, a scenario that reflects 5% annual reduction to a stable 50% of the assumed total extraction volume in 2018 (M2) is considered against a business-as-usual scenario (B2) with 4% (of 2018) annual increase in extraction, similar to the highest rates witnessed in the last 25 years. These subsidence rates are translated to local bed level changes of canals and rivers. Furthermore, over the last two decades, the estuarine system has deepened on average 2–3 m, equivalent to losing ~2–3 G m³ (150–200 M m³ yr⁻¹) due to sediment starvation in response to upstream sediment trapping and downstream transboundary sand mining. With foreseen 1 G m³ sand demand until 2040 and continuous erosion due to upstream sediment trapping, we consider two trends until 2040 (Fig. 2d). Identical erosion rates as the past 20 years under RB3 (business-as-usual) and significantly lower (one third) erosion rate until 2040 (RB1). RB1 is motivated by rising awareness, shortage of erodible material and potential policy changes among the LMB countries. Given the wide range of possible combinations, we grouped the moderate and
Extreme (business as usual) scenarios separately to provide a range of potential future projections (also see "Methods").

Results: future of saline water intrusion

A recently developed, state-of-the-art, 3D numerical model48,58 of the VMD (Delft3D-FM) (Fig. 1), stretching from Kratie to 70 km offshore, simulates salinity in the main estuarine channels and the network of primary and secondary irrigation canals over the entire delta. The impacts of individual and combined drivers are summarized in Fig. 3 that shows spatial variation of 50th percentile (P50) net salinity increase, relative to a present normal year (2015) and the offshore, simulates salinity in the main estuarine channels and the network of primary and secondary irrigation canals over the entire delta. Fig. 1 shows the wide range of possibilities for the spatial distribution of maximum (P100) future SWI in the VMD.
past two decades, the all drivers scenarios show stronger land subsidence. However, similar to the observed trends in the delta (for the case of Mekong Delta) and identify that while relative sea level rise (for the case of Mekong Delta) and identify that while relative sea level rise between 2040 and 2050. However, this cannot be extrapolated to the second of the century, as the projections diverge post-2060. The effects of land subsidence are more local, and especially impact already saline areas with a smaller impact on the aggregate of SWI-affected areas. Riverbed level changes show a substantial impact on spatial distribution of SWI. Note that flattening all drivers curves between 2040–2050 is mainly due to the assumed limitation of riverbed level changes past 2040. All these estimates assume that SLR follows the 5th IPCC assessment report (AR5). Considering uncertainties in SLR projections, the sensitivity analysis (Supplementary note 5) shows that an extreme SLR of 60 cm by 2050 in response to Antarctic ice-sheet melting can add an additional 9–13% to the aggregate SWI-impacted areas, with dramatic implications for land use and adaptation strategies (See Fig. 4 and the Supplementary Fig. 9–10).

Discussion

Climate adaptation studies of a mega-delta require in-depth integration of knowledge from natural systemic response to upstream and downstream climatic and anthropogenic developments. Salt intrusion, a key determinant of land use, has long been considered as a byproduct of climate change and specifically global SLR, neglecting the effects of local land subsidence and riverbed erosion. Here, for the first time, we distinguish the effects of main “drivers of exposure and vulnerability” in a mega-delta (for the case of Mekong Delta) and identify that while relative SLR impacts salinity in parts of the delta, riverbed level changes are the greatest threat to other parts of the delta. It is the combined effect of stressors that draws a dramatic image of the future. Unanimous assumption and hence, the conclusion of the previous studies was that CC and SLR are the main drivers of exposure and vulnerability across a deltaic system, but also that these drivers can change over time and space. The exact effect of CC on SWI is in the interaction of upstream discharge anomalies and downstream SLR. Fig. 4 summarizes the expected variations in SWI-affected areas in time. Under scenarios that only account for CC, the increasing upstream discharge trends until 2060 (see “Methods”) results in a slight decline of SWI between 2040 and 2050. However, this cannot be extrapolated to the second of the century, as the projections diverge post-2060. The effects of land subsidence are more local, and especially impact already saline areas with a smaller impact on the aggregate of SWI-affected areas. Riverbed level changes show a substantial impact on spatial distribution of SWI. Note that flattening all drivers curves between 2040–2050 is mainly due to the assumed limitation of riverbed level changes past 2040. All these estimates assume that SLR follows the 5th IPCC assessment report (AR5). Considering uncertainties in SLR projections, the sensitivity analysis (Supplementary note 5) shows that an extreme SLR of 60 cm by 2050 in response to Antarctic ice-sheet melting can add an additional 9–13% to the aggregate SWI-impacted areas, with dramatic implications for land use and adaptation strategies (See Fig. 4 and the Supplementary Fig. 9–10).

Climate adaptation studies of a mega-delta require in-depth integration of knowledge from natural systemic response to upstream and downstream climatic and anthropogenic developments. Salt intrusion, a key determinant of land use, has long been considered as a byproduct of climate change and specifically global SLR, neglecting the effects of local land subsidence and riverbed erosion. Here, for the first time, we distinguish the effects of main “drivers of exposure and vulnerability” in a mega-delta (for the case of Mekong Delta) and identify that while relative SLR impacts salinity in parts of the delta, riverbed level changes are the greatest threat to other parts of the delta. It is the combined effect of stressors that draws a dramatic image of the future. Unanimous assumption and hence, the conclusion of the previous studies was that CC and SLR are the main drivers of exposure and vulnerability across a deltaic system, but also that these drivers can change over time and space. The exact effect of CC on SWI is in the interaction of upstream discharge anomalies and downstream SLR. Fig. 4 summarizes the expected variations in SWI-affected areas in time. Under scenarios that only account for CC, the increasing upstream discharge trends until 2060 (see “Methods”) results in a slight decline of SWI between 2040 and 2050. However, this cannot be extrapolated to the second of the century, as the projections diverge post-2060. The effects of land subsidence are more local, and especially impact already saline areas with a smaller impact on the aggregate of SWI-affected areas. Riverbed level changes show a substantial impact on spatial distribution of SWI. Note that flattening all drivers curves between 2040–2050 is mainly due to the assumed limitation of riverbed level changes past 2040. All these estimates assume that SLR follows the 5th IPCC assessment report (AR5). Considering uncertainties in SLR projections, the sensitivity analysis (Supplementary note 5) shows that an extreme SLR of 60 cm by 2050 in response to Antarctic ice-sheet melting can add an additional 9–13% to the aggregate SWI-impacted areas, with dramatic implications for land use and adaptation strategies (See Fig. 4 and the Supplementary Fig. 9–10).
the largest increase in SWI is driven by riverbed level changes with even moderate scenarios resulting in tens of kilometers more SWI and potentially 10–30% increase in SWI-affected areas by 2050.

These findings in projected SWI have substantial implications for the Mekong and other deltas around the world (e.g., Ganges Brahmaputra, Ayeyarwady, Pearl, etc.). While CC threatens the world’s deltas, anthropogenic drivers, largely reflected in sediment starvation and hydrological regime shifts, seem to outpace CC in the first half of the 21st century; therefore, some of the existing trends can be partially mitigated by domestic measures such as strict groundwater and sediment budget management.

Our integrated systems approach, incorporating regional, local, natural, and human-induced drivers highlights the sensitivity to often uncertain socio-economical or geopolitical drivers, and underscores the invaluable role of preserving delta elevation and riverbed levels in deltaic systems.

In the case of the Mekong Delta, the trends are clear. Upstream entrapment leads to bed, bank, and coastal erosion, and alters the hydrology cycle, disrupting the crucial retention functionality of the TSL. Due to deeper channels, the delta itself is far more vulnerable to change (e.g., drought); sand mining further deepens the rivers and groundwater extraction lowers the rest, all inviting salt further inland. Reducing groundwater extraction and sand

Fig. 3 Projections of salinity increase in the Mekong Delta under different scenarios. Spatial distribution of P50 (average) “salinity increase” and the extent of salt intrusion (2 PSU absolute salinity contour line) under RCP 4.5 (uneven rows) and RCP 8.5 (even rows) CC scenarios for CC scenario only (a-f); combined effect of CC and land subsidence (g-l); combined effect of CC, land subsidence and bed level incision (m-r); the green areas define the existing freshwater zones (mainly by sluicgates); the red percentage per panel is the increase in salinity-affected surface area relative to the present-day conditions and the red number in thousand hectares [K ha] per panel shows increase in area affected by salt intrusion under that scenario.
mining can save up to 600 10^3 Ha of land from saline water. However, as encroaching SWI strains freshwater supply, shifting from non-renewable groundwater to surface water demands a delicate strategy. Massive socio-economic implications of land use transformation at such scales, may disproportionately affect the vulnerable communities in and beyond the delta. This calls for enforcing policies that at least maintain the status-quo, as given the sediment deprivation of the Mekong and other big river deltas11, returning to the better past seems inconceivable. While swift enforcement of effective policies may portray a possibly sustainable future for the deltas, inertia in translating new policy to effective mitigation measures can lead to further irreversible degradation of the vulnerable freshwater systems and their associated socio-economic structure.

Future work

The present work is a multi-disciplinary study, combining efforts of hydrologists, coastal oceanographers, and geologists, and results of the seven-year international “Rise and Fall” research project. It forms the foundation for potential follow-up work and future improvements, in particular on the following aspects: (1) its time span, (2) processes, (3) data, and (4) adaptation and mitigation strategies. Our current study is limited to the first half of the 21st century (until 2050). Beyond 2050, the global and regional climate models, and thus climate scenarios diverge, potentially leading to a wider range of pathways for SWI. In terms of processes, the present work does not include (a) evaporation/ transpiration variations driven by climate change in the 3D delta-wide model, (b) variations in monsoon winds in the next decades, (c) tidal dynamic variations in response to SLR (more important beyond 2050), and (d) exact morphological response of the system to sediment starvation. The latter is an extremely complicated affair as it must combine a sophisticated monitoring campaign (to collect bed composition in depth), derive an accurate account of sediment budget in the delta, including sand mining within and beyond the delta, to be able to carry out a reliable modeling exercise. Regarding data, the first step would be to update climate forcing with CIMP6 data for upstream discharge simulations and incorporate accelerated SLR based on the sixth IPCC Assessment Report (AR6). The present manuscript is a first attempt to assess potential consequences of reducing water demand, and different scenarios of groundwater extraction-induced subsidence. Future work on exploring these morphological interactions and feedbacks of human water use and management of subsidence, sediment dynamics and SWI holds promise to deepen our system understanding and potentially work towards integrated solutions. The present framework can be employed to test solutions and assess/evaluate the consequences of various adaptation measures in time, aiding the development of adaptation pathways for the VMD.

Methods

Modeling and data. We applied a state-of-the-art high-resolution 3D surface water numerical model, extended from 300 km upstream to 70 km offshore, coupled with a 2D geological model of the VMD to project salt intrusion. We developed boundary conditions from various global climate models and is discussed in next paragraph. The estuarine channels were modeled in 3D, with horizontal grid resolution of 200–250 m and vertical z-layer resolution of 0.5 m. The upstream channels and the irrigation system of primary and secondary channels were modeled in 2DV in similar horizontal and vertical grid resolution. The 3D model domain ensures correct advection of solid matters as opposed to the commonly-used 1D modeling approach of estuarine channels that translates non-linear salt transportation mechanisms74,75 such as stokes transport, tidal pumping, tidal straining, and gravitational estuarine circulation to a single dispersion coefficient76. The model bathymetry of the primary and secondary channels was provided by SIWRP from 2008, but the river and estuarine bathymetries were updated with the 2018 collected survey77, which guarantees an accurate starting point for future projections. The gauge data within the VMD (water level, discharge, and salinity) was collected by Southeastern Regional Hydro-Meteorological Centre (SRHMC) and received from Southern Institute for Water Resources Planning (SIWRP). The existing and planned sluice gates were incorporated in the model (see Fig. 5).

The 3D surface water model of the VMD78,79 was forced by daily averaged discharge from upstream (Kratie, Cambodia) and water level from downstream offshore boundary with assumed constant salinity of 35 PSU. The water level boundary condition consisted of 13 leading tidal constituents (M_2, S_n, N_2, K_1, O_n, P_1, Q_1, M_F, M_M, M_s, M_n), the subtidal ocean surge and the average sea level (0 m at present and increasing in time to replicate SLR). The tidal components assumed to be constant throughout future scenarios, but we tested the model sensitivity to typical range of variations in our sensitivity analysis (supplementary Fig. 7, 8). The subtidal ocean surge, similar to previous work by the authors, was superimposed to the offshore boundary with a phase lag from the measurements at the estuary mouth79. We modeled existing water demand58 as a sink and considered the existing water demand figures to not change in the future. However, given the envisioned reduction of water demand in the future, we tested model sensitivity to 25% and 50% reduction. We assumed that evaporation starts from January to April58 (as present day) with no precipitation during the dry season.

The numerical domain consists of 3D (the sea and the estuarine channels) and 2DV (width-integrated but depth-varying in the system of primary and secondary channels) sub-domains. Horizontal resolution is ~200 m along-channels and 50–200 m across-channels (depending on channel width). In vertical, the numerical domain follows a so-called z-layer scheme with 0.5 m resolution (30 layers in 15 m depth). Vertical resolution gradually increases below 15 m depth in the deeper continental shelf. Following78, the re-calibrated spatially varying Manning bed friction coefficient is lower along the downstream estuarine distributary channels (Fig. 4, 5) and increases to 0.13 along the primary channel of the Mekong to reflect the rougher bed conditions of the Mekong. This not only results in a good comparison of water level and discharge against the observations, but also follows the observed riverbed composition, with muddy seabed near the sea and increasing sand content when traveling upstream81 that is associated with higher bed roughness. The numerical model was extensively calibrated for the storm event of the dry season of 2015. In this and in study, we validated the model for the dry season of the year 2015.

Seasonal model simulations were carried out between January and April 30. The first 30 days of the simulations were considered as spin-up time and the post-processing was done over the model data of February, March, and April. Fig. 6 presents an overview of the model performance for the year 2015. The model shows excellent quantitative performance for water levels and discharges across multiple stations. Given the complexity of comparing measured and modeled salinity48, the model performs reasonably well in capturing salinity magnitude, trends, variation, and especially the spatial extent (e.g., see Fig. 6d, k & l). Previous publications by the authors expanded on the details of the model development, and performance of the applied model48. The delta-wide spatial variation of modeled salinity for the existing condition is presented in Fig. 5. Note that also in the existing conditions, for sake of consistency with the future conditions, the planned (under construction) salinity sluice gates are already included. Any variations in the projections is compared to this simulation, representing an average year salinity distribution in the dry season (2015).
those trends with results from the global hydrological model PCR-GLOBWB66 under the same RCP's. PCR-GLOBWB was run at 5 arc-min spatial resolution and forced with the data based on output from five CMIP5 global climate models62 (HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M), covering a wide range of possible realizations and uncertainty of climate change projections. All simulations included non-natural factors such as the construction of dams based on the GranD database or human water demand83 and withdrawal for irrigation, livestock, industry, and households. If no projected data were available, the model fell back to the latest available data point in time. After accounting for water use and withdrawal, excess precipitation is routed using the kinematic wave simplification of the Saint-Venant equations. For further information, consult the model description paper66. Using a different model and data combinations, any interference between the INCA data55 and the validation data set can be avoided, bolstering the applied trend. Note that the INCA model is a Regional Climate Model (RCM); therefore, there can be differences (offset) in their computation of Mekong River discharge. Nevertheless, the trends should not demonstrate bigger differences, as they do agree in this study. Since running high-resolution 3D models continuously for multiple decades is neither smart nor feasible, instead of the absolute projected discharge values, we initially derived increasing trends of projected dry season cumulative discharge. Then, by gradually increasing the 2015 dry season discharge time series, so that cumulative discharge matches the projected trends we translated a present-day normal year (2015) to the next decades (see Fig. 7 for cumulative discharge trends). Following this method, while committing to natural existing conditions, we refrain from exaggerating future SWI. This may disregard intra-seasonal variability of discharge in the coming decades due to climate change. However, given the fact that flow condition will be highly regulated by hydropower operations, we expect little to no impact on the projections. Furthermore, in projecting upstream freshwater discharge, we have excluded the freshwater supply of Tonle Sap Lake during the dry season. Historically, Tonle Sap Lake (TSL) provided 25–30% of dry season freshwater supply of the VMD, and generally fed the delta between the coast over the past two decades other than those associated with SLR13. Table 1 provides as a guide to the repository where the projections can be downloaded87.

![Fig. 5 Mekong Delta Salinity map, a moderate year in the existing conditions. Present-day spatial variation of salinity intrusion in the Mekong Delta estuarine and irrigation channels.](image)

The two major anthropogenic changes incorporated in this study are (1) land subsidence due to groundwater extraction55,43,57 and (2) riverbed level incision15,44,46 due to sediment starvation, driven by upstream impoundments and sand mining. Two opposing scenarios of extraction-induced land subsidence were selected57, one business-as-usual scenario in which groundwater extraction continues to increase (B2) and on mitigation scenario in which groundwater extraction is decreased (Table 1). The bed levels of the estuarine and irrigation system of primary and secondary channels are adjusted based on linear interpolation among recently developed cumulative subsidence projection maps57. The two opposing scenarios of riverbed level incisions (Table 1) are chosen based on the recent estimates13 of average riverbed level changes over the past 20 years. Riverbed topography of the VMD is not only a function of tidal and flow variations in different time scales, but also a function of upstream hydropower development and sand mining. Based on the past trends, we developed two scenarios: RB1) Until 2040, riverbeds incise one third of the last twenty years and RB3) until 2040, riverbeds incise similar to the last two decades. If policy development leads to more favorable sediment budget in the next three decades, it can be deduced in other projection maps. Note that we assume for both scenarios that riverbed level incisions do not progress beyond 2040. This is motivated by raising awareness in time, and limitations in erodible/available material at the riverbeds.

Several other assumptions were made regarding the environmental drivers. In projecting future elevation change of the delta system due to extraction-induced subsidence, we assumed the digital elevation model of the delta28,45 to be the true estimation of the Saint-Venant equations. For further information, consult the model description paper66. Using a different model and data combinations, any interference between the INCA data55 and the validation data set can be avoided, bolstering the applied trend. Note that the INCA model is a Regional Climate Model (RCM); therefore, there can be differences (offset) in their computation of Mekong River discharge. Nevertheless, the trends should not demonstrate bigger differences, as they do agree in this study. Since running high-resolution 3D models continuously for multiple decades is neither smart nor feasible, instead of the absolute projected discharge values, we initially derived increasing trends of projected dry season cumulative discharge. Then, by gradually increasing the 2015 dry season discharge time series, so that cumulative discharge matches the projected trends we translated a present-day normal year (2015) to the next decades (see Fig. 7 for cumulative discharge trends). Following this method, while committing to natural existing conditions, we refrain from exaggerating future SWI. This may disregard intra-seasonal variability of discharge in the coming decades due to climate change. However, given the fact that flow condition will be highly regulated by hydropower operations, we expect little to no impact on the projections. Furthermore, in projecting upstream freshwater discharge, we have excluded the freshwater supply of Tonle Sap Lake during the dry season. Historically, Tonle Sap Lake (TSL) provided 25–30% of dry season freshwater supply of the VMD, and generally fed the delta between the coast over the past two decades other than those associated with SLR13. Table 1 provides as a guide to the repository where the projections can be downloaded87.

Time series analysis

Salinity percentile maps. PXX percentile defines salinity concentration that was not exceeded during XX% of the simulation time. To derive spatial variation of salinity over the VMD, the 3D map-files, containing hourly time series of salinity at every vertical and horizontal grid cell over the entire numerical domain was analyzed. Every simulation contained ~500 GB of data. The dry-season time series of computed depth-averaged salinity at every horizontal grid cell was used to calculate various percentiles (e.g., P90 and P100/maximum salinity).

Cumulative discharge. The Tonle Sap Lake is filled during the wet season, when the Mekong River’s flow partially diverts through the Tonle Sap River to the lake.
Fig. 6 Model validation against various gauge data. Model versus observed time series at measurement stations (locations in panel h) in Tien (a-g) and Hau Rivers (i-l) for water level (WL: a, b & i), discharge (Q: c & j) and salinity (d-g, k, and l) during the year 2015.

Fig. 7 Projections of the Mekong River discharge in the next three decades. Observed and projected cumulative dry season discharge in Kratie from various sources for two RCP 4.5 and RCP 8.5 scenarios.
Table 1 The list of projection scenarios and various sensitivity analyses.

Forcing	Scenario’s	Simulation ID
Climate change	Discharge + SLR	cc45tay40 & cc85tay40
	RCP 4.5	cc45vy40YY (YY = 30,40,50)
	RCP 8.5	cc85vy40YY (YY = 30,40,50)
Anthropogenic changes	Subsidence	cc45sb2sbYY (YY = 30,40,50)
	M2	cc85sm2yyYY (YY = 30,40,50)
Riverbed level incision	1 G m3 until 2040	cc45sb2b1YY (YY = 30,40,50)
	3 G m3 until 2040	cc85sm2b3yYY (YY = 30,40,50)
Sensitivity analysis	Drought event	cc45qdlsm2b1y40 & cc85qdlsm2b3y40
	A year with 10% lower discharge in 2040	cc45qdlsm2b1y40 & cc85qdlsm2b3y40
	Sluice gates	cc45ndsm2b1y40 & cc85ndsm2b3y40
Song Hau Depth	Song Hau channel, downstream of Can Tho 1	cc45bsm2b1y40 & cc85bsm2b3y40
Water demand	25% lower water demand in 2040	cc45wdsb2b1y40 & cc85wdsb2b3y40
Offshore tidal amplification	Tidal amplification of 2 mm yr⁻¹ (M2 tidal component)	cc45tay40 & cc85tay40
Extreme SLR	60 cm SLR by 2050⁷¹	cc85sry50 & cc88slr2s2y50 & cc85srl2s3y50

Fig. 8 The Tonle Sap Lake hydrological cycle. Discharge division diagram showing contributions from the Tonle Sap Lake and Mekong River entering the Mekong Delta in the two channels of Tan Chau and Chau Doc.

During the dry season, the Tonle Sap River flow reverses and drains the lake to the Mekong River and contributes to the total freshwater supply of the VMD (see Fig. 8). To analyze cumulative flow distribution, within the VMD, we first de-tided the discharge signal, by applying the low-pass Godin-filter⁸⁸. Similar to previous work by the lead authors¹⁴⁻¹⁸, subtidal discharge was then integrated over the dry season. At Kratie, daily non-tidal discharge was simply integrated over a day. Due to lack of data from Cambodia, in order to derive TSL contribution to the VMD, the dry seasons cumulative discharge of Kratie was subtracted from the sum of cumulative discharge in Chau Doc and Tan Chau.

Trend analysis. Nonparametric Mann–Kendall test and a Theil-Sen estimator⁸⁹,⁹⁰ were used to fit linear trends to the presented time series. The estimator takes the median of all pairwise slopes of values in time. The method is robust, i.e., it is not sensitive to leveraging or influence due to potential outliers and does not require the assumed normality of the residuals that are associated with ordinary least squares regression modeling. It is suitable for discharge time series that are influenced by various processes⁹⁰ (e.g., dam regulations).

Data availability

Delft3D-FM is an open source numerical model https://oss.deltares.nl/web/delft3dfm. The underlying gauge data (observed water level, discharge, and salinity) provided by the SIWRP, following the organizational policy, can be provided upon request for non-commercial use from a limited access repository⁹¹ (https://doi.org/10.5281/zenodo.4771261). The 2015 wind data originally developed by NCEP/NOAA, can be downloaded from the DHI repository under https://www.metocean-on-demand.com/#/main. Projections of upstream discharge from the five GCM’s and downstream sea level rise can be openly accessed in an online repository⁹² (doi: 10.5281/zenodo.4771240). For the spatio-temporal variations of land subsidence⁹³ we refer to the original publications and its lead author philip.minderhoud@wur.nl. The geometry data of the network of primary and secondary channels, following the internal policy of the institute, can only be provided in direct communication with the SIWRP (siwrp@siwrp.org.vn).

The 2018 contemporary bathymetry data can be downloaded from https://hydra.blaize.ac.uk/resources/hull17952. The salinity projection maps in the next three decades and the associated sensitivity analyses are available to be downloaded from an open-access repository⁹⁴ (https://doi.org/10.5281/zenodo.4772967).

Code availability

The pre/post-processing codes used in this study are all written in open-source Python 2.7. Access to specific parts of the codes will be granted on request to the corresponding author.

Received: 1 March 2021; Accepted: 10 June 2021; Published online: 15 July 2021

References

1. IPCC. Synthesis Report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).
2. Vörösmarty, C. J. et al. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).
3. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).
4. Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).
5. Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Chang. 6, 381–385 (2016).
6. Church, J. A. et al. Sea level Change, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change http://drids.nio.org/drs/handle/2264/4605 (2013).
7. Syvitski, J. P. M. & Milliman, J. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).
8. Syvitski, J. P. M. & Albert, K. Sediment flux and the Anthropocene. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 957–975 (2011).
9. Koehnken, L. & Rintoul, M. Impacts of Sand Mining on Ecosystem Structure, Process & Biodiversity 7 (WWF, 2013).
10. Bierkens, M. F. P. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 63002 (2019).
11. Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. *Environ. Res. Lett.* 14, 045034 (2019).

12. Li, L. et al. Global trends in water and sediment fluxes of the world’s large rivers. *Sci. Bull.* 65, 62–69 (2020).

13. Eslami, S. et al. Tidal amplification and salt intruion in the Mekong Delta driven by anthropogenic sediment starvation. *Sci. Rep.* 9, 18746 (2019).

14. Hoang, L. P. et al. River bank instability from unsustainable sand mining in the lower Mekong River. *Nat. Sustain.* https://doi.org/10.1038/s41893-019-0455-3 (2020).

15. Rahman, M. M. et al. Salinization in large river deltas: Drivers, impacts and socio-hydrological feedbacks. *Water Secur.* 6, 100024 (2019).

16. Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong Delta. *Sci. Total Environ.* 715–726 (2018).

17. Rabbani, G., Rahman, A. & Mainuddin, K. Saltinity-induced loss and damage to farming households in coastal Bangladesh. *Int. J. Glob. Warm.* 5, 400–415 (2013).

18. Zia, I., Zafar, H., Shahzad, M. I., Meraj, M. & Kazmi, J. H. Assessment of sea water inundation along Daboo creek area in Indus Delta Region. *Pakistan J. Ocean Univ. China* 16, 1055–1060 (2017).

19. Hoepnper, S. S., Shaffer, G. P. & Perkins, T. E. Through droughts and hurricanes: Tree mortality, forest structure, and biomass production in a coastal swamp targeted for restoration in the Mississippi River Deltaic Plain. *For. Ecol. Manage.* 256, 937–948 (2008).

20. Takasato, M., Lapham, A. K. & Puthivuthiva, A. Dry season water allocation in the Chao Phraya river basin, Thailand. *Int. J. Water Resour. Dev.* 32, 321–338 (2016).

21. Echezuría, H. et al. Assessment of environmental changes in the Orinoco River Delta. *Reg. Environ. Chang.* 3, 20–35 (2002).

22. Buck, T. et al. Comparative Assessment of The Vulnerability And Resilience of Deltas—Extended Version With 14 Deltas—synthesis Report (Delta Alliance International, 2014).

23. Kashel, A.-A. I. Salt-Water Intrusion in the Nile Delta. *Groundwater* 21, 160–167 (1983).

24. Nguyen, Y. T. B., Kamoishi, A., Diniz, V. T. H., Matsuda, H. & Kurokura, H. Saltinity intruion and rice production in Red River Delta under changing climate conditions. *Paddy Water Environ.* 15, 37–48 (2017).

25. Gong, W. & Shen, J. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China. *Cont. Shelf Res.* 31, 769–788 (2011).

26. Smaigal, A. et al. Responding to rising sea levels in the Mekong Delta. *Nat. Clim. Chang.* 16, 175–177 (2015).

27. Vu, D. T., Yamada, T. & Ishidaira, H. Assessing the impact of sea level rise due to farming households in coastal Bangladesh. *Paddy Water Environ.* 10, 769–800 (2011).

28. Mekong Delta Plan. Mekong Delta Plan: Long-Term Vision and Mekong Delta Plan. Mekong Delta Plan: Long-Term Vision and Operations in the Upper Mekong Basin. *J. Japan Soc. Civ. Eng. Ser. B1 (Hydraulic Eng.)* 73, 109–114 (2017).

29. Eslem, S. et al. Dynamics of salt intrusion in the Mekong Delta; results of field observations and integrated coastal-inland modelling. *Earth Surf. Dyn. Discuss.* 2021, 1–36 (2021).

30. Dat, T. Q., Trung, N. H., Likitdecharote, K. & Srisatit, T. Modeling the influence of river discharge changes on sea level rise on salinity intrusion in Mekong Delta. In *The 1st Environment Asia International Conference on Environmental Supporting in Food and Energy Security: Crisis and Opportunity* 2. (Thai Society of Higher Education Institutes, 2011).

31. Jordan, C. et al. Sand mining in the Mekong Delta revisited—current scales of local sediment deficits. *Sci. Rep.* 9, 17823 (2019).

32. Lauri, H. et al. Future changes in Mekong River hydrology: Impact of climate change and reservoir operation on discharge. *Hydrol. Earth Syst. Sci.* 16, 4603–4619 (2012).

33. Thompson, J. R., Green, A. J., Kingston, D. G. & Gosling, S. N. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. *J. Hydrol.* 486, 1–30 (2013).

34. Phi Hoang, L. et al. Mekong River flow and hydrological extremes under climate change. *Hydrol. Earth Syst. Sci.* 20, 3027–3041 (2016).

35. Hoang, L. P. et al. The Mekong’s future flows under multiple drivers: How climate change, hydropower developments and irrigation expansions drive hydrodynamical changes. *Sci. Total Environ.* 649, 601–609 (2019).

36. Whitehead, P. G. et al. Water quality modelling of the Mekong River basin: Climate change and socioeconomic drivers and nutrient flux changes to the Mekong Delta. *Sci. Total Environ.* 673, 218–229 (2019).

37. Loc, H. H. et al. Intensiﬁxing saline water intrusion and drought in the Tonle Sap floodplain in Cambodia. *Hydrol. Earth Syst. Sci.* 18, 611–715 (2014).

38. Eslami, S. et al. Flow division dynamics in the mekong delta: application of a 1D–2D coupled model. *Water* 11, 837 (2019).

39. Cochrane, T. A., Arias, M. E. & Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. *Hydrol. Earth Syst. Sci.* 18, 4529–4541 (2014).

40. Sepehr, E. et al. Dynamics of salt intrusion in the Mekong Delta; results of field observations and scenario-based coastal-inland modelling. *Hydrol. Earth Syst. Sci.* 18, 241–251 (2014).

41. Minderhoud, P. S. J., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction may drown mega-deltas: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. *Environ. Res. Commun.* 2, 11005 (2020).

42. Eslami, S. et al. Groundwater extraction in the mekong delta: application of a 1D–2D coupled model. *Water* 11, 837 (2019).

43. Cochrane, T. A., Arias, M. E. & Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. *Hydrol. Earth Syst. Sci.* 18, 4529–4541 (2014).

44. Sepehr, E. et al. Dynamics of salt intrusion in the Mekong Delta; results of field observations and scenario-based coastal-inland modelling. *Hydrol. Earth Syst. Sci.* 18, 241–251 (2014).

45. Ministry of Natural Resources and Environment (MONRE), V. Climate Change and Sea Level Rise Scenarios for Vietnam, Ministry of Natural Resources and Environment. (MONRE, 2016).

46. Whitehead, P. G., Wilson, E. J. & Butterfield, D. A semi-distributed integrated Nitrogen model for multiple source assessment in Catchments (INCA): Part I—model structure and process equations. *Sci. Total Environ.* 210–211, 547–558 (1998).
Acknowledgements

Special thanks to the personnel of the Southern Institute for Water Resources Planning (Ho Chi Minh City, Vietnam) to openly support the project during its development. We sincerely appreciate how DDD supported our research by providing us with wind, water level and velocity data over the continental shelf. We are grateful to Ms. Anke Verheij of VEI B.V. (Dutch Water Operators) for providing insights and supporting the project through a successful collaboration in its later stage. We extend our gratitude to Mr. Etienne Espagne and Dr. Alexis Droognal of AFD for the fruitful cooperation. The PCR-GLOBWB calculations were computed on the Dutch national supercomputer, Cartesius, with the support of SURFsara. This research is part of the “Rise and Fall” project, funded by NWO-WOTRO (W 07.69.105), Urbanizing Deltas of the World-1 (UDW1) and Sepehr Eslami’s contribution to the work was partly funded by Agence Française de Développement (AFD), through Facility 2050, within the framework of the research project GEMMES-Vietnam. Hal Voepel’s contribution to this project was supported by the United Kingdom’s Natural Environment Research Council (NERC) (NE/S002847/1).

Author contributions

S.E. coordinated efforts of various parties, carried out formal analysis, set up the salinity models, pre- and post-processed and visualized the data and led the manuscript draft. P.H. and M.V.V. were responsible for funding acquisition, supervision, and review of the research and manuscript. S.E., together with M.V.V. and P.H. conceptualized the study. P.M. provided the relevant data from the 3D hydrogeological model of the delta for future scenarios of land subsidence, contributed to drafting the manuscript and reviewed the final version. J.M.H. and E.H.S. coordinated the modeling exercise of developing future scenarios of upstream discharge for PCR-GLOBWB, using five different global climate models. J.M.H. contributed to drafting the manuscript and together with E.S. reviewed the final draft. D.D. provided resources and reviewed the findings and the writing, while N.N.T. and T.T.Q. supported the investigation, analysis, model set-up, and reviewed the findings and the writing. H.V. collected various projection data, supported scenario development, and reviewed the results and the final manuscript. M.N.W. facilitated cooperation with the A.F.D. and contributed to the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41558-021-01208-5.

Correspondence and requests for materials should be addressed to S.E.

Peer review information Communications Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Edmond Sanganyado and Joe Aslin. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021