Nanogranular TiN-ZrO$_2$ intermediate layer induced improvement of isolation and grain size of FePt thin films

K. F. Dong1, H. H. Li1, Y. G. Peng2, G. Ju2, G. M. Chow1 & J. S. Chen1

1Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore, 2Seagate Technology, Fremont, CA 94538, USA.

The effects of TiN-ZrO$_2$ intermediate layer on the microstructures and magnetic properties of FePt films were investigated. The TiN-ZrO$_2$ intermediate layer was granular consisting of grains of solid solution of Ti(Zr)ON segregated by amorphous ZrO$_2$. By doping ZrO$_2$ into TiN intermediate layer, the FePt grains became better isolated from each other and the FePt grain size was reduced. For 20 vol. % ZrO$_2$ doping into TiN, the grain size decreased dramatically from 11.2 nm to 6.4 nm, and good perpendicular anisotropy was achieved simultaneously. For the FePt 4nm-SiO$_2$ 35 vol. % - C 20 vol. % films grown on top of the TiN-ZrO$_2$ 20 vol. % intermediate layer, well isolated FePt (001) granular films with coercivity higher than 18.1 kOe and an average size as small as 6.4 nm were achieved.

L$_{10}$ ordered FePt alloy with high magnetocrystalline anisotropy ($K_u \sim 7 \times 10^7$ erg/cc) has been intensively investigated due to its potential application for ultra-high-density magnetic recording$^{1-2}$. Great progress has been made in the fabrication of granular FePt thin films using MgO underlayer/intermediate layers$^{3-6}$. However, small FePt grains grown on MgO showed large opening-up in the in-plane hysteresis loop due to the small surface energy of the MgO oxide intermediate layer, which caused non-wetting contact between FePt and MgO and led to the wide c-axis dispersion$^{7-9}$. Recently, L$_{10}$-FePt (001) films with high magnetic anisotropy and small opening-up of in-plane hysteresis loop were synthesized using conductive TiN intermediate layer that has a larger surface energy$^{10-12}$. The conductive TiN intermediate can be fabricated by industry preferred direct-current sputtering. However, the FePt grains were not well isolated, which may cause undesirable large lateral exchange coupling and thus large transition noise.

In order to solve these problems, nanogranular TiN-ZrO$_2$ intermediate layer that is formed by doping ZrO$_2$ into TiN intermediate layer is proposed. It is known that the standard Gibb's energy of formation ($-\Delta G^0$) at 300 K of ZrN (152 Kcal/gfw) is larger than that of TiN (145 Kcal/gfw), and ($-\Delta G^0$) of ZrO$_2$ (248 Kcal/gfw) is larger than that of TiO (235 Kcal/gfw)13. Therefore, when ZrO$_2$ is doped into TiN intermediate layer, it is expected that ZrO$_2$ will remain stable and segregate from the TiN grains, thus forming the nanogranular TiN-ZrO$_2$ intermediate layer. Similar to the grain size and isolation control used in current perpendicular recording media14, this nanogranular TiN-ZrO$_2$ intermediate layer is expected to be able to control the grain size and improve the grain isolation of FePt films. In this paper, the effects of TiN-ZrO$_2$ intermediate layer on the microstructure and magnetic properties of FePt films were investigated.

Results

Figure 1 shows XRD 2θ-scans of FePt (4 nm)-SiO$_2$ 35 vol. %-C 20 vol. %/TiN-ZrO$_2$/TiN/CrRu/glass with various ZrO$_2$ doping concentrations. All FePt films exhibited good L$_{10}$ (001) texture. Only TiN (200) peak was observed and no peaks from any other TiN-ZrO$_2$ phases were found for all the samples, indicating a single fcc lattice structure. Meanwhile, with increasing ZrO$_2$ doping concentration, TiN (200) peak shifted towards a lower angle, suggesting the increase of the lattice constant a of TiN. Moreover, FePt (001) peak shifted to a higher angle with increasing ZrO$_2$ doping concentration from 0 vol. % to 20 vol. %. Further increasing ZrO$_2$ doping concentration to 30 vol. % caused the position of FePt (001) and (002) peak to a lower angle. As shown in Fig. 1(b), the lattice constant a_{TiN} increased from 4.246Å to 4.266Å, and c_{FePt} first decreased and then increased with increasing ZrO$_2$. The full width at half maximum (FWHM) of the rocking curve of the FePt (001) peak slightly increased from 5.9 to 6.9° as the ZrO$_2$ doping concentration increasing from 0 to 30 vol. %. The typical rocking curve of the FePt (001) peak with 30 vol. % ZrO$_2$ is shown in the inset of Fig. 1(b). The chemical ordering
estimated by integrated peak intensity ratio I_{001}/I_{002} as shown in Fig. 1 (b), increased with increasing ZrO$_2$ concentration from 5 to 20 vol. % and then slightly decreased at 30 vol. % ZrO$_2$. The enhancement of the chemical ordering may be a result of the increased mismatch strain, which could assist the chemical ordering process. With high concentration ZrO$_2$, the lattice relaxation induced by the large misfit strain and the oxide interdiffusion may reduce the ordering parameter.

Figure 2 shows the planar view TEM images and cross-sectional TEM images of FePt (4 nm)-SiO$_2$ 35 vol. %-C 20 vol. %/TiN-ZrO$_2$/TiN/CrRu/glass films with various ZrO$_2$ doping concentrations. As seen from the planar view TEM images (Fig. 2a, b and c), by doping ZrO$_2$ into the TiN intermediate layer, the grain boundaries were more distinct. Moreover, grain size decreased from 11.2 nm to 6.4 nm for 20 vol. % ZrO$_2$ doping into TiN. Further increasing ZrO$_2$ concentration to 30 vol. % caused the increase of grain size to 7.1 nm. The cross-sectional TEM images (Fig. 2 d, e and f) indicated that FePt-SiO$_2$-C films with a single-layer structure were grown on the top of TiN-ZrO$_2$ polycrystalline intermediate layer and FePt grains were well isolated. Moreover, FePt grains on TiN-ZrO$_2$ intermediate layer exhibited uniform square grain shape, indicating that the TiN-ZrO$_2$ possessed a moderate surface energy, which can achieve a good balance between epitaxial growth and island growth.

Figure 3 shows the M-H loops measured by SQUID of FePt (4 nm)-SiO$_2$ 35 vol. %-C 20 vol. %/TiN-ZrO$_2$/TiN/CrRu/glass films with various ZrO$_2$ doping concentrations. It can be seen that all the FePt samples shows good perpendicular anisotropy. With using TiN-ZrO$_2$ intermediate layer, the out-of-plane coercivity showed a slight increase (Fig. 3d), which was due to the increase of chemical ordering and the improvement of grain isolation. As for in-plane coercivity, it was increased as compared with pure TiN intermediate layer (Fig. 3d), which may be caused by the disturbance of the epitaxial growth of FePt by amorphous ZrO$_2$ in Ti(Zr)ON intermediate layer. Especially for the sample with 30 vol. % ZrO$_2$ doping, more amorphous ZrO$_2$ were formed, which resulted in deterioration of perpendicular anisotropy. Although, the perpendicular anisotropy showed slight deterioration, the 4nm-SiO$_2$ 35 vol. % -C 20 vol. % film grown on TiN/TiN-ZrO$_2$ 20 vol. % with a larger out-of-plane coercivity of 18.1 kOe and a small in-plane coercivity of 2.7 kOe was still realized.

Discussion

In order to understand the mechanism of the formation of smaller isolating grains grown on TiN-ZrO$_2$ intermediate layer TiN (5 nm)-(20 and 30 vol. %) ZrO$_2$/CrRu (30 nm)/glass films were also fabricated to investigate its chemical structure and microstructure e. g.
Figure 3 | M-H loops measured by SQUID of FePt(4 nm)-SiO2 35 vol.%-C 20 vol.%/TiN-ZrO2/TiN/CrRu/glass films with various ZrO2 doping concentrations. (a) 0 vol.%, (b) 20 vol.% and (c) 30 vol.%. (d) Summaries of out-of-plane and in-plane coercivities.

Figure 4 | XPS analysis of the Zr3d spectra of the TiN-ZrO2 intermediate layer with (a) 20 vol.% and (b) 30 vol.% ZrO2 doping, as well as planar view TEM images of CrRu(30 nm)/TiN(5 nm)-ZrO2 30 vol.% and (d) is the corresponding grain size distribution.
whether it formed a nanocomposite (mixture of TiN phase and ZrO₂ phase) or a solid solution of Ti(Zr)ON. The chemical compositions of the Zr element in the TiN-ZrO₂ intermediate layer for these films were examined by high resolution XPS. Fig. 4 (a) and (b) show the Zr3d spectra of the samples with 20 vol. % and 30 vol. % ZrO₂, respectively. Peak positions and their assignments are based on a method reported previously 15–19. As expected, the Zr element in TiN-ZrO₂ layer existed in three chemical forms: ZrN, ZrOₓNy and ZrO₂. The molar ratio of ZrN, ZrOₓNy and ZrO₂ were 9.3%, 49.0% and 41.7% for 20 vol. % ZrO₂ doping, and 14.4%, 20.8% and 64.8% for 30 vol. % ZrO₂ doping. This indicated that the both Ti(Zr)ON solid solution grains and amorphous ZrO₂ were formed simultaneously and thus the granular TiN-ZrO₂ was formed. Furthermore, the full width at half maximum (FWHM) of the rocking curve of the TiN (200) peak slightly increased from 5.2 to 6.1° as the ZrO₂ doping concentration increasing from 0 to 30 vol. % (the results are not shown here). Combined with the XRD results in Fig. 1, the solid solution Ti(Zr)ON is fcc (200) texture and therefore by using ZrO₂ doping the texture of TiN would not be deteriorated obviously. Moreover, fcc ZrN content increased greatly with increasing ZrO₂, leading to an increase of the misfit strain and the decrease of FePt lattice constant c, because the lattice constant of ZrN (4.574 Å) is larger than that of TiN (4.238 Å). Planar view TEM of the TiN-ZrO₂ film grown on TiN-30 vol. % ZrO₂ intermediate layer (Fig. 5c), the granular structure of TiN-ZrO₂ intermediate layer was observed. The grain boundaries with discontinuous lattice plane can be found in the region encircled by white dash line in Fig. 5(c). Additionally, the FePt grain size matched very well with TiN-ZrO₂ grain size. It indicated that FePt followed the epitaxial growth of the Ti(Zr)ON grain during deposition, which can be illustrated by the schematic drawing in the Fig. 5(d).

Methods

FePt films fabrication. FePt (4 nm)-35 vol. % SiO₂-20 vol. % C/TiN(2 nm)-(0, 10, 20 and 30 vol. %) ZrO₂/TiN(3 nm)/CrRu (30 nm)/glass films were deposited by magnetron sputtering at a base pressure of 3.9 × 10⁻⁷ Torr. The TiN-ZrO₂ intermediate layers with various ZrO₂ concentrations were co-sputtered from a TiN
target and a ZrO2 target by changing ZrO2 sputtering power. The FePt-SiO2-C films were co-sputtered from a FePt target, a SiO2 target and a C target. The FePt and C targets were used DC powers, and the SiO2 target was used RF power. The sputtering rate for FePt, SiO2, and C were 1.6 nm/min, 0.86 nm/min and 0.61 nm/min, respectively. The volume concentration for SiO2 and C were fixed at 35 vol. % and 20 vol. %, respectively. The deposition temperatures of CrRu, TiN-ZrO2 and FePt were 280, 480 and 480 °C, respectively. During the sputtering process, FePt films were epitaxial grown on TiN-ZrO2 intermediate layer and L12 ordered FePt nanoparticles with (001) texture were formed. Moreover, the SiO2 and C were diffused into the grain boundary of FePt grains, and isolated the FePt grains, thus the L12-FePt nanoparticles were formed.

Characterization of FePt films. The elemental compositions and chemical states of TiN-ZrO2 intermediate layers were determined by x-ray photoelectron spectroscopy (XPS). Crystallographic structure and microstructures of the samples were measured by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties were characterized at room temperature by a superconducting quantum interference device (SQUID) with a maximum applied field of 6 Tesla.

Acknowledgments

This work is partially supported by Seagate Technology and Ministry of Education, Singapore, Tier 2 funding MOE2012-T2-2-031 and Research Foundation under CRP Award No. NRF-CRP10-2012-02.

Author contributions

K.F.D., H.H.L. and J.S.C. were involved in the design of experiments. K.F.D., H.H.L. and J.S.C. wrote the manuscript. J.S.C. performed the experiments and analyzed results. K.F.D., H.H.L. and J.S.C. commented on the manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Dong, K.F. et al. Nanogranular TiN-ZrO2 intermediate layer induced improvement of isolation and grain size of FePt thin films. Sci. Rep. 4, 5607; DOI:10.1038/srep05607 (2014).

This work is licensed under a Creative Commons Attribution-NoCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/