Strong disorder RG principles within a fixed-cell-size real space renormalization: application to the random transverse field Ising model on various fractal lattices

Cécile Monthus and Thomas Garel

Institut de Physique Théorique, CNRS and CEA Saclay, 91191 Gif-sur-Yvette cedex, France
E-mail: Cecile.Monthus@cea.fr and thomas.garel@cea.fr

Received 31 January 2012
Accepted 4 April 2012
Published 3 May 2012

Online at stacks.iop.org/JSTAT/2012/P05002
doi:10.1088/1742-5468/2012/05/P05002

Abstract. Strong disorder renormalization is an energy-based renormalization that leads to a complicated renormalized topology for the surviving clusters as soon as \(d > 1\). In this paper, we propose to include strong disorder renormalization ideas within the more traditional fixed-cell-size real space RG framework. We first consider the one-dimensional chain as a test for this fixed-cell-size procedure: we find that all exactly known critical exponents are reproduced correctly, except for the magnetic exponent \(\beta\) (because it is related to more subtle persistence properties of the full RG flow). We then apply numerically this fixed-cell-size procedure to two types of renormalizable fractal lattice: (i) the Sierpinski gasket of fractal dimension \(D = \ln 3/\ln 2\), where there is no underlying classical ferromagnetic transition, so that the RG flow in the ordered phase is similar to what happens in \(d = 1\); (ii) a hierarchical diamond lattice of fractal dimension \(D = 4/3\), where there is an underlying classical ferromagnetic transition, so that the RG flow in the ordered phase is similar to what happens on hypercubic lattices of dimension \(d > 1\). In both cases, we find that the transition is governed by an infinite disorder fixed point: besides the measure of the activated exponent \(\psi\), we analyze the RG flow of various observables in the disordered and ordered phases, in order to extract the ‘typical’ correlation length exponents of these two phases which are different from the finite-size correlation length exponent.
Strong disorder RG principles within a fixed-cell-size real space renormalization

**Keywords:** disordered systems (theory), quantum phase transitions (theory), renormalization group

**ArXiv ePrint:** 1201.6136

---

**Contents**

1. Introduction 3

2. Strong disorder RG within a fixed-cell-size real space RG framework 4
   2.1. Expected scaling of renormalized observables as a function of the size $L$ 4
   2.1.1. Critical point: RG flow as a function of the size $L$ 4
   2.1.2. Critical region: finite-size scaling with the exponent $\nu_{FS}$ 5
   2.1.3. Disordered phase: RG flow as a function of the size $L$ 5
   2.1.4. Ordered phase: RG flow as a function of the size $L$ 6
   2.1.5. Discussion 7
   2.2. Principles of the fixed-cell-size RG procedure for the one-dimensional chain 7
   2.2.1. Notations 7
   2.2.2. Step 1 8
   2.2.3. Step 2 9
   2.2.4. Explicit RG for the rescaling factor $b = 2$ 9
   2.3. Discussion 11

3. Numerical results in $d = 1$ for the rescaling factor $b = 2$ 12
   3.1. Numerical details 12
   3.2. RG flow of the typical renormalized coupling $J_{typ}^L$ 12
   3.3. RG flow of the width $\Delta L$ of the logarithms of the renormalized couplings 13
   3.4. RG flow of the typical renormalized transverse field $h_{typ}^L$ 13
   3.5. RG flow of the renormalized magnetization $\mu_L$ 14
   3.6. Critical exponents in the disordered phase $h > h_c$ 14
   3.7. Critical exponents in the ordered phase $h < h_c$ 15
   3.8. Discussion 16

4. Numerical results for the Sierpinski gasket 17
   4.1. Principle of the fixed-cell-size RG procedure 17
   4.2. RG flow of the typical renormalized coupling $J_{typ}^L$ 18
   4.3. RG flow of the width $\Delta L$ of the logarithms of the renormalized couplings 18
   4.4. RG flow of the typical renormalized transverse field $h_{typ}^L$ 19
   4.5. RG flow of the renormalized magnetization $\mu_L$ 19
   4.6. Critical exponents in the disordered phase $h > h_c$ 20
   4.7. Critical exponents in the ordered phase $h < h_c$ 20

5. Numerical study for a hierarchical lattice having an underlying classical transition 22
   5.1. RG flow of the typical renormalized coupling $J_{typ}^L$ 23
   5.2. RG flow of the width $\Delta L$ of the logarithms of the renormalized couplings 23
   5.3. RG flow of the typical renormalized transverse field $h_{typ}^L$ 24
   5.4. RG flow of the renormalized magnetization $\mu_L$ of surviving clusters 25

doi:10.1088/1742-5468/2012/05/P05002
1. Introduction

The choice to work in real space to define renormalization procedures, which already presents a great interest for pure systems [1], becomes the unique choice for disordered systems if one wishes to describe spatial heterogeneities. Whenever these disorder heterogeneities play a dominant role over thermal or quantum fluctuations, the most appropriate renormalization procedures are the strong disorder renormalizations [2] that have been introduced by Ma and Dasgupta [3]: as shown by Fisher [4,5], these strong disorder RG rules lead to asymptotic exact results if the broadness of the disorder distribution grows indefinitely at large scales. In dimension $d = 1$, exact results for a large number of observables have been explicitly computed [4,5] because the renormalized lattice of surviving degrees of freedom remains one dimensional. In dimension $d > 1$, the strong disorder RG procedure can still be defined, but it cannot be solved analytically, because the topology of the lattice changes upon renormalization. Nevertheless, strong disorder RG rules can be implemented numerically. For instance, for the disordered quantum Ising model, these numerical RG studies have concluded that the transition is also governed by an infinite disorder fixed point in dimensions $d = 2-4$ [6]–[16], in agreement with the results of independent quantum Monte Carlo in $d = 2$ [17,18].

Nevertheless, the complicated topology that emerges between renormalized degrees of freedom in dimension $d > 1$ tends to obscure the physics, because a large number of very weak bonds are generated during the RG, that will eventually not be important for the forthcoming RG steps. In this article, we propose to include strong disorder RG ideas within the more traditional fixed-length-scale real space RG framework that preserves the topology upon renormalization. In particular for renormalizable fractal lattices such as the Sierpinski gasket or diamond hierarchical lattices, this fixed-length-scale RG procedure allows us to use the so-called ‘pool method’ and to study numerically very large system sizes. (Note that when the full strong disorder renormalization is applied to fractal lattices...
such as the Sierpinski gasket as in [19], the system sizes are limited because one cannot take advantage of the self-similarity of the original lattice, which is immediately broken by the full RG.)

The paper is organized as follows. In section 2, we introduce the principles of strong disorder RG within a fixed-cell-size RG framework. In section 3, we present our numerical result for $d = 1$, and conclude that this procedure correctly captures all critical exponents except for the magnetic exponent $\beta$ which is related to persistence properties of the full RG flow. In section 4, we apply numerically our procedure to the Sierpinski gasket of fractal dimension $D = \ln 3 / \ln 2 = 1.58 \cdots$ with no underlying classical ferromagnetic transition. In section 5, we study numerically the case of a diamond hierarchical lattice presenting an underlying classical ferromagnetic transition. Section 6 summarizes our conclusions. The appendix contains a reminder on the usual strong disorder RG on arbitrary lattices and on the properties of renormalized observables as a function of the energy-based RG scale $\Gamma$.

2. Strong disorder RG within a fixed-cell-size real space RG framework

In this paper, we consider the quantum Ising model defined in terms of Pauli matrices

$$\mathcal{H} = - \sum_{\langle i,j \rangle} J_{i,j} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^x$$  \hfill (1)

where the nearest-neighbor couplings $J_{i,j} > 0$ and the transverse fields $h_i > 0$ are independent random variables drawn with two distributions $\pi_{\text{coupling}}(J)$ and $\pi_{\text{field}}(h)$.

As recalled in the appendix, the strong disorder renormalization for the quantum Ising model of equation (1) is an energy-based RG, where the strongest ferromagnetic bond or the strongest transverse field is iteratively eliminated. In dimension $d > 1$ this leads to a complicated topology for the network of surviving clusters at large RG scale $\Gamma$. In this section, we propose to apply the strong disorder RG principles within a fixed-cell-size framework; i.e., the RG scale will not be an energy-based scale such as $\Gamma$, but a length-scale $L$ as in usual real space RG procedures. Let us first describe the expected scalings as a function of $L$ in various phases, to justify the possibility of such a fixed-length procedure.

2.1. Expected scaling of renormalized observables as a function of the size $L$

Since the energy RG scale $\Gamma$ is associated with some length-scale $l_\Gamma$ via equation (A.9), it seems clear that all RG flows as a function of $\Gamma$ described in the appendix can be reformulated as RG flows as a function of the length-scale $L$. Physically, these scalings in $L$ simply describe the scaling of observables of finite-size samples. We should stress however that the change from the energy-scale $\Gamma$ to the length-scale $L$ is not just a ‘mathematical change of variables’, because probability distributions are involved. Indeed, the ensemble of disordered samples of volume $L^d$ is characterized by a probability distribution $P_L(\Gamma_{\text{last}})$ of the last RG scale $\Gamma_{\text{last}}$. Similarly, for a sample in the thermodynamic limit $L \to +\infty$ in $d = 1$, the state at RG scale $\Gamma$ is characterized by a probability distribution of lengths $(l_B, l_C)$ for renormalized bonds and renormalized clusters [4] (in dimension $d > 1$, the state at RG scale $\Gamma$ involves in addition a complicated topology of the renormalized surviving clusters).

doi:10.1088/1742-5468/2012/05/P05002
2.1.1. Critical point: RG flow as a function of the size $L$. At the infinite disorder critical point described in section A.4, the renormalized transverse fields and the renormalized couplings remain in competition at all scales; i.e., they display the same activated scaling in $L$ with some exponent $\psi$

\[ \ln J_L = -L^\psi u_c \quad \ln h_L = -L^\psi v_c \]  

where $(u_c, v_c)$ are O(1) random variables. The exponent $\psi$ corresponds to the activated exponent of the gap $G(L) \propto e^{-L^\psi}$ (equation (A.19)).

2.1.2. Critical region: finite-size scaling with the exponent $\nu_{FS}$. At this infinite disorder fixed point, one expects the finite-size scaling form for the typical values [7],

\[ \ln J_{L}^{\text{typ}} \equiv \ln J_L = -L^\psi F_j(L^{1/\nu_{FS}}|h-h_c|) \]
\[ \ln h_{L}^{\text{typ}} \equiv \ln h_L = -L^\psi F_h(L^{1/\nu_{FS}}|h-h_c|) \]  

as well as for the width of the distribution of $(\ln J_L)$,

\[ \Delta_L \equiv ( \langle (\ln J_L)^2 \rangle - \langle \ln J_L \rangle^2 )^{1/2} = L^\psi F_\Delta(L^{1/\nu_{FS}}|h-h_c|) \]  

and similarly for the width of the distribution of $(\ln h_L)$. Here $\nu_{FS}$ is introduced as the correlation length exponent that governs all finite-size effects in the critical region.

The magnetization $\mu_L$ of critical clusters grows with the fractal dimension $d_f$ introduced in equation (A.21). The intensive magnetization is expected to follow the usual power-law finite-size scaling form

\[ m \equiv \frac{\mu_L}{L^d} \propto L^{-x} F_M(L^{1/\nu_{FS}}|h-h_c|) \]  

with $x = d - d_f$.  

\[ \ln J_{L}^{\text{typ}} \equiv \ln J_L = -L^\psi \xi_\text{typ} + L^\omega A(h)u. \]  

The first term is non-random and describes the exponential decay with the size $L$, where $\xi_\text{typ}$ represents the typical correlation length

\[ \ln J_{L}^{\text{typ}} \equiv \ln J_L \propto -L \xi_\text{typ}. \]  

2.1.3. Disordered phase: RG flow as a function of the size $L$. In the disordered phase described in section A.3, the transverse fields $h_i$ are not renormalized anymore asymptotically, i.e. they converge towards finite values as $L \to +\infty$

\[ \ln h_{\infty}^{\text{typ}} \equiv \ln h_\infty \propto -(h-h_c)^{\kappa}. \]  

where the exponent $\kappa$ of the essential singularity satisfies

\[ \kappa = \psi \nu_{FS} \]  

as a consequence of the matching with the finite-size scaling form of equation (3).

The renormalized couplings $J_L$ are expected to have the same scaling as the two-point correlation function [4, 7]

\[ \ln J_L = \frac{L}{\xi_\text{typ}} + L^\omega A(h)u. \]
The compatibility with the finite-size scaling form of equation (3) implies that the typical correlation exponent $\nu_{\text{typ}}$ is different from the finite-size correlation length exponent $\nu_{\text{FS}}$ and reads

$$\nu_{\text{typ}} = (1 - \psi)\nu_{\text{FS}}.$$ (10)

The exponent $\nu_{\text{FS}}$ is expected [4,7] to correspond to the exponent $\nu_{\text{av}}$ of the averaged two-point correlation function ($\nu_{\text{FS}} = \nu_{\text{av}}$).

The second term in equation (8) contains an $O(1)$ random variable $u$. It is usually subleading with respect to the first term, i.e. of order $L^{\omega}$ with some exponent $\omega < 1$. We have argued in [20] that this exponent $\omega$ should coincide with the droplet exponent $\omega_{\text{DP}}(D = d - 1)$ of the directed polymer with $D = (d - 1)$ transverse directions. The compatibility with the finite-size scaling form of equation (4) for the width $\Delta L$ of the distribution of $\ln J_L$

$$\Delta L \equiv \left( (\ln J_L)^2 - (\ln J_L)^2 \right)^{1/2} \propto L^{\omega}$$ (11)

implies that the amplitude $A(h)$ is non-singular as $h \to h_c$ only if $\psi = \omega$, which is known to be the case in $d = 1$ [4]. On the other hand, if the two exponents turn out to be different, $\psi \neq \omega$, then the amplitude $A(h)$ has to present the following power-law singularity:

$$A(h) \propto (h - h_c)^{-(\psi - \omega)\nu_{\text{FS}}}.$$ (12)

2.1.4. Ordered phase: RG flow as a function of the size $L$. In the ordered phase described in section A.5, the magnetization $\mu$ of surviving clusters grows extensively,

$$\mu_L \propto L^d$$ (13)

i.e. the intensive magnetization is finite and vanishes with some power-law singularity compatible with the finite-size scaling form of equation (5),

$$m \equiv \frac{\mu_L}{L^d} \propto (h_c - h)^\beta \quad \text{with} \quad \beta = x\nu_{\text{FS}}.$$ (14)

Since surviving clusters have an extensive magnetization, the logarithm of their renormalized transverse fields grows also extensively:

$$\ln h_L \propto \left( \frac{L}{\xi_h} \right)^d \sim v$$ (15)

where $v$ is an $O(1)$ random variable. The length-scale $\xi_h$ represents the characteristic size of finite disordered clusters within this ordered phase. The compatibility with the finite-size scaling form of equation (3) implies that the typical correlation exponent $\nu_h$ reads

$$\nu_h = (1 - \frac{\psi}{d})\nu_{\text{FS}}.$$ (16)

Note that $\nu_h$ plays in the ordered phase a role similar to $\nu_{\text{typ}}$ in the disordered phase, but that they coincide only if $d = 1$ (equation (10)).

For the asymptotic behavior of the renormalized couplings $J_L$ between surviving clusters, one needs first to determine whether there exists an underlying classical ferromagnetic transition, as recalled in section A.5.
(a) When there is no underlying classical ferromagnetic transition, the typical renormalized coupling remains finite, and presents the same essential singularity as in equation (6)

\[
\ln J_{\text{typ}}^\infty \equiv \ln J_\infty \propto -(h_c - h)^{-\kappa}.
\] (17)

(b) When there exists an underlying classical ferromagnetic transition, the renormalized couplings \(J_L\) do not remain finite as in equation (17) but grow asymptotically at large \(L\) with the scaling of the classical random ferromagnet model

\[
J_L \propto L^{d_s} + L^{\theta_s} u.
\] (18)

The first non-random term grows as the surface \(L^{d_s}\) of dimension \(d_s\) (\(\sigma\) being the surface tension). The second term contains a random variable \(u\) and grows with some exponent \(\theta_s\). For instance, in \(d = 2\) where the surface of dimension \(d_s = d - 1 = 1\) is actually a line, the exponent \(\theta_s\) coincides with the droplet exponent \(\omega_{\text{DP}} = 1/3\) of the directed polymer in dimension \(1 + 1\). In dimension \(d = 3\) where the surface has dimension \(d_s = d - 1 = 2\), the exponent \(\theta_s\) has been numerically measured to be \(\theta_s \simeq 0.84\) [21]. It is clear that in the regime of large \(L\), where equation (18) holds, the strong disorder RG procedure is not appropriate anymore, because the couplings \(J\) grow with the scale \(L\) (so the decimation of the largest coupling tends to create a bigger renormalized coupling), and because the width of the probability distribution of \((\ln J_L)\) actually decreases with \(L\) (instead of becoming broader and broader)

\[
\Delta_L \equiv (\langle \ln J_L^2 \rangle - \langle \ln J_L \rangle^2)^{1/2} \propto L^{-d_s + \theta_s}.
\] (19)

This is why, in terms of the energy-scale \(\Gamma\), the strong disorder RG stops at some finite value \(\Gamma_{\text{perco}}\), where percolation occurs. In terms of the length-scale \(L\), the RG flow exists for all \(L\) but is non-monotonic in the critical region of the ordered phase: at the beginning, the typical coupling decays as in equation (2) and \(\Delta_L\) grows as \(L^\kappa\), whereas asymptotically the typical coupling grows as in equation (18) and \(\Delta_L\) decays as in equation (19).

2.1.5. Discussion. The fact that RG flows can be reformulated in terms of the length-scale \(L\) suggests that some fixed-cell-size real space RG procedure should be possible even for infinite disorder fixed points. In the following, we propose such an explicit RG procedure, where strong disorder decimation rules are used within a fixed-cell-size framework.

2.2. Principles of the fixed-cell-size RG procedure for the one-dimensional chain

For clarity, we first explain the ideas on the case of the one-dimensional chain, and compare with the exact results of the energy-scale strong disorder RG [4].

2.2.1. Notations. Let us first introduce notations. At generation \(n\), corresponding to a length \(L_n = b^n\), a renormalized open bond \([A, B]\) is characterized by the correlated renormalized variables \((J_{AB}, r_A, \Delta\mu_A; r_B, \Delta\mu_B)\) distributed with some joint probability distribution \(P_n(J_{AB}, r_A, \Delta\mu_A; r_B, \Delta\mu_B)\).

(a) \(J_{AB}\) represents the renormalized ferromagnetic coupling between the two end-points A and B.
(b) \( r_A \) represents the multiplicative factor that comes from the interior of the bond and that should be applied to the transverse field of A; see the RG rule of equation (A.3). (Similarly, \( r_B \) concerns the other end B of the bond.)

(c) \( \Delta \mu_A \) represents the excess of magnetization that comes from the interior of the bond and that should be added to the magnetization of A; see the RG rule of equation (A.4). (Similarly, \( \Delta \mu_B \) concerns the other end B of the bond.)

At generation \( n = 0 \), the coupling \( J_{AB} \) is just an initial coupling of the model drawn with some disorder distribution \( \pi_{\text{coupling}}(J_{AB}) \); the sites A and B have magnetic moments \( \mu_A = 1 = \mu_B \), corresponding to \( \Delta \mu_A = 0 = \Delta \mu_B \); and the transverse fields \( h_A^{(0)} \) and \( h_B^{(0)} \) are the initial transverse fields of the model, corresponding to \( r_A = 1 = r_B \). So the initial joint distribution is simply

\[
P_{n=0}(J_{AB}, r_A, \Delta \mu_A; r_B, \Delta \mu_B) = \pi_{\text{coupling}}(J_{AB}) \delta(r_A - 1)\delta(\Delta \mu_A)\delta(r_B - 1)\delta(\Delta \mu_B). \tag{20}
\]

2.2.2. Step 1. The first step consists in building the elementary structure of generation \((n+1)\) from the renormalized open bonds of generation \(n\).

For the one-dimensional chain with a scaling factor \( b \), the explicit construction is as follows.

(1a) Draw \( b \) independent renormalized open bonds at generation \( n \), where each open bond \( j = 1, 2, \ldots, b \) is characterized by the variables \((J_{A_jB_j}, r_{A_j}, \Delta \mu_{A_j}; r_{B_j}, \Delta \mu_{B_j})\).

(1b) For each \( j = 1, 2, \ldots, (b-1) \), connect the two open bonds \((j)\) and \((j+1)\) in series via the introduction of an intermediate site \( C_j \) corresponding to the merging of \( B_j \) with \( A_{j+1} \). The intermediate site \( C_j \) has thus for magnetization the sum of its own initial magnetization \( \mu_{C_j}^{(0)} = 1 \) and of the excesses \( \Delta \mu_{A_{j+1}} \) and \( \Delta \mu_{B_j} \) coming from the renormalization of the interiors of the two neighboring bonds

\[
\mu_{C_j} = \mu_{C_j}^{(0)} + \Delta \mu_{A_{j+1}} + \Delta \mu_{B_j}. \tag{21}
\]

Similarly, its transverse field is the product of its own initial transverse field \( h_{C_j}^{(0)} \) and of the two possible reducing factors \( r_{A_{j+1}} \) and \( r_{B_j} \) coming from the renormalization of the interiors of the two neighboring bonds

\[
h_{C_j} = h_{C_j}^{(0)} r_{A_{j+1}} r_{B_j}. \tag{22}
\]

The end-point A of the new bond of the \((n+1)\) generation will correspond to the end-point \( A_1 \) of the bond \( j = 1 \), and inherits the associated variables

\[
\Delta \mu_A^{(\text{step 1})} = \Delta \mu_{A_1} \tag{23}
\]

and

\[
r_A^{(\text{step 1})} = r_{A_1}. \tag{24}
\]

Similarly, the end-point B of the new bond of the \((n+1)\) generation will correspond to the end-point \( B_b \) of the bond \( j = b \) and inherits the associated variables

\[
\Delta \mu_B^{(\text{step 1})} = \Delta \mu_{B_b}. \tag{25}
\]
Strong disorder RG principles within a fixed-cell-size real space renormalization

Figure 1. To construct an open bond of generation \((n+1)\) with its renormalized variables \((J_{AB}, r_A, \Delta \mu_A; r_B, \Delta \mu_B)\) defined in section 2.2.1, there are two steps. Step 1: one draws \(b\) (here \(b = 2\)) independent open bonds of generation \(n\) with their renormalized variables, and one connects them via intermediate points \(C_j\) with renormalized variables (see section 2.2.2 for more details). Step 2: one applies the usual strong disorder RG rules to the internal structure (see section 2.2.3 for more details). The corresponding RG equation for \(b = 2\) is written explicitly in equation (39).

\[
\Omega = \max(J_{AB}, J_{A'B_1}, h_C)
\]

and

\[
r_B^{(\text{step } 1)} = r_{B_1}.
\]  

2.2.3. Step 2. The second step consists in applying the usual strong disorder RG rules (recalled in section A.1) to the internal structure with renormalized bonds of generation \(n\) that has been constructed in step 1, up to the final state containing a single renormalized open bond of generation \((n + 1)\).

For the one-dimensional chain with a scaling factor \(b\), the explicit strong disorder renormalization of the internal structure is as follows.

These two end-points A and B of the new open bond of the \((n + 1)\) generation are non-decimable by definition, whereas all \((b - 1)\) intermediate points \((C_1, C_2, \ldots, C_{b-1})\), and all internal bonds \((J_{AC_1} = J_{A_1B_1}, J_{C_1C_2} = J_{A_2B_2}, \ldots, J_{C_{b-1}B} = J_{A_{b-1}B})\) are decimable.

We apply to this internal structure the usual strong disorder RG rules recalled in appendix A.1. So we look for the maximum between the \(b\) couplings and the \((b - 1)\) transverse fields

\[
\Omega = \max[J_{AC_1}, h_{C_1}, J_{C_1C_2}, h_{C_2}, \ldots, h_{C_{b-1}}, J_{C_{b-1}B}]
\]

and we apply iteratively the strong disorder RG rules up to the full decimation of this internal structure: the final output is the joint variables \((J_{AB}, r_A, \Delta \mu_A; r_B, \Delta \mu_B)\) of an open bond of generation \((n + 1)\).

2.2.4. Explicit RG for the rescaling factor \(b = 2\). As an example, we now describe more explicitly the case of rescaling factor \(b = 2\) (see figure 1). Step 1 consists in drawing \(b = 2\) independent renormalized open bonds at generation \(n\), with their renormalized variables
Strong disorder RG principles within a fixed-cell-size real space renormalization

\((J_{A_1B_1}, r_{A_1}, \Delta \mu_{A_1}; r_{B_1}, \Delta \mu_{B_1})\) and \((J_{A_2B_2}, r_{A_2}, \Delta \mu_{A_2}; r_{B_2}, \Delta \mu_{B_2})\), and in the merging of \(A_2\) and \(B_1\) into a single internal site \(C\) that has thus for renormalized transverse field

\[ h_C = h_C^{(0)} r_{A_2} r_{B_1} \quad (28) \]

and for renormalized magnetic moment

\[ \mu_C = \mu_C^{(0)} + \Delta \mu_{A_2} + \Delta \mu_{B_1}. \quad (29) \]

Step 2 consists of the strong disorder renormalization of the internal structure made up of site \(C\) and of the two ferromagnetic bonds surrounding \(C\), i.e. equation (27) reduces to

\[ \Omega = \max [J_{AC} = J_{A_1B_1}, h_C = h_C^{(0)} r_{A_2} r_{B_1}, J_{CB} = J_{A_2B_2}]. \quad (30) \]

(i) If \(\Omega = h_C\), then site \(C\) is decimated according to the usual strong disorder RG rules of equation (A.2): the renormalized coupling reads

\[ J_{AB} = \frac{J_{AC} J_{CB}}{h_C} \quad (31) \]

whereas the properties of the two ends are unchanged, i.e. the supplementary factors coming from this second step are

\[ r_A^{(\text{step } 2)} = 1 \quad \Delta \mu_A^{(\text{step } 2)} = 0. \quad (32) \]

(ii) If \(\Omega = J_{AC}\), then site \(C\) is merged with end \(A\) according to the usual strong disorder RG rules of equations (A.3) and (A.4): the properties of end \(A\) are renormalized according to

\[ r_A^{(\text{step } 2)} = \frac{h_C}{J_{AC}} \quad \Delta \mu_A^{(\text{step } 2)} = \mu_C \quad (33) \]

whereas the renormalized coupling is (equation (A.5))

\[ J_{AB} = J_{CB}. \quad (34) \]

(iii) If \(\Omega = J_{CB}\), then site \(C\) is merged with end \(B\) according to the usual strong disorder RG rules of equations (A.3) and (A.4): the properties of end \(B\) are renormalized according to

\[ r_B^{(\text{step } 2)} = \frac{h_C}{J_{CB}} \quad \Delta \mu_B^{(\text{step } 2)} = \mu_C \quad (35) \]

whereas the renormalized coupling is (equation (A.5))

\[ J_{AB} = J_{AC}. \quad (36) \]

The renormalized open bond of generation \((n+1)\) is thus characterized by these correlated final variables \((J_{AB}^{\text{final}}, r_{A}^{\text{final}}, \Delta \mu_{A}^{\text{final}}; r_{B}^{\text{final}}, \Delta \mu_{B}^{\text{final}})\), where the coupling \(J_{AB}^{\text{final}}\) has been computed with one of (i)–(iii), and where the variables associated with the end-points \(A\) and \(B\) contain the contributions of the two steps described above, i.e. the excesses of

doi:10.1088/1742-5468/2012/05/P05002
magnetization of the two boundaries read
\[ \Delta \mu_A^{\text{final}} = \Delta \mu_A^{(\text{step } 1)} + \Delta \mu_A^{(\text{step } 2)} \quad \Delta \mu_B^{\text{final}} = \Delta \mu_B^{(\text{step } 1)} + \Delta \mu_B^{(\text{step } 2)} \] (37)
while their multiplicative factors read
\[ r_A^{\text{final}} = r_A^{(\text{step } 1)} r_A^{(\text{step } 2)} \quad r_B^{\text{final}} = r_B^{(\text{step } 1)} r_B^{(\text{step } 2)}. \] (38)

Equivalently, the joint distribution \( P_n(J, r_A, \Delta \mu_A, r_B, \Delta \mu_B) \) evolves according to the RG equation
\[
P_{n+1}(J_{AB}, r_A, \Delta \mu_A, r_B, \Delta \mu_B)
= \int dJ_{A_1B_1} \, dr_{A_1} \, d\Delta \mu_{A_1} \, dr_{B_1} \, d\Delta \mu_{B_1} \, P_n(J_{A_1B_1}, r_{A_1}, \Delta \mu_{A_1}, r_{B_1}, \Delta \mu_{B_1})
\times \int dJ_{A_2B_2} \, dr_{A_2} \, d\Delta \mu_{A_2} \, dr_{B_2} \, d\Delta \mu_{B_2} \, P_n(J_{A_2B_2}, r_{A_2}, \Delta \mu_{A_2}, r_{B_2}, \Delta \mu_{B_2})
\times \int dh_C \, d\mu_C \delta(h_C - hr_{B_1} r_{A_2}) \delta(\mu_C - (1 + \Delta \mu_{B_1} + \Delta \mu_{A_2}))
\times \left[ \theta(h_C > J_{A_1B_1}) \theta(h_C > J_{A_2B_2}) \delta(J_{AB} - \frac{J_{A_1B_1} J_{A_2B_2}}{h_C}) \right]
\times \delta(r_A - r_{A_1}) \delta(\Delta \mu_A - \Delta \mu_{A_1}) \delta(r_B - r_{B_2}) \delta(\Delta \mu_B - \Delta \mu_{B_2})
+ \theta(J_{A_1B_1} > h_C) \theta(J_{A_1B_1} > J_{A_2B_2})
\times \delta(J_{AB} - J_{A_2B_2}) \delta\left( r_A - r_{A_1} \frac{h_C}{J_{A_1B_1}} \right) \delta(\Delta \mu_A - (\Delta \mu_{A_1} + \mu_C))
\times \delta(r_B - r_{B_2}) \delta(\Delta \mu_B - \Delta \mu_{B_2}) + \theta(J_{A_2B_2} > h_C) \theta(J_{A_2B_2} > J_{A_1B_1})
\times \delta(J_{AB} - J_{A_1B_1}) \delta(r_A - r_{A_1}) \delta(\Delta \mu_A - \Delta \mu_{A_1})
\times \delta\left( r_B - r_{B_2} \frac{h_C}{J_{A_2B_2}} \right) \delta(\Delta \mu_B - (\Delta \mu_{B_2} + \mu_C)) \] (39)
where the two first lines correspond to the draw of two independent open bonds of generation \( n \),
the third line corresponds to the merging of \( A_2 \) and \( B_1 \) into the intermediate site \( C \),
and the last lines correspond to the three possible decimations (respectively of \( h_C \),
of \( J_{A_1B_1} = J_{AC} \) and of \( J_{A_2B_2} = J_{CB} \).

2.3. Discussion

We have described in detail the case \( d = 1 \). It is clear that in the limit of infinite block size, \( b \to +\infty \),
one recovers the full usual strong disorder RG. In section 3, we have thus chosen to study numerically
the ‘worst’ case of rescaling factor \( b = 2 \) to compare with the exact results of the full strong disorder RG corresponding to \( b \to +\infty \).
The results with other block sizes \( b = 3, 4, \ldots \), are expected to interpolate between \( b = 2 \) and \( b \to +\infty \).

More generally, besides this one-dimensional case, we can apply the same strategy to other exactly
renormalizable lattices. As discussed in section A.5, the properties of the ordered phase depend
on the existence of an underlying classical ferromagnetic phase. We have thus chosen to consider
below the two following cases.

(i) In section 4, we consider the Sierpinski gasket where there is no underlying classical
ferromagnetic phase.

\[ \text{doi:10.1088/1742-5468/2012/05/P05002} \]
(ii) In section 5, we consider the hierarchical diamond lattice where there is an underlying classical ferromagnetic phase.

3. Numerical results in \( d = 1 \) for the rescaling factor \( b = 2 \)

We have applied the procedure explained in detail in the previous section for the rescaling factor \( b = 2 \). In this section, we describe our numerical results and compare with the exact solution of the full strong disorder RG [4].

3.1. Numerical details

We have used the flat initial distribution of couplings on the interval \( 0 \leq J \leq 1 \)

\[
\pi_{\text{coupling}}(J) = \theta(0 \leq J \leq 1)
\]

and a uniform transverse field \( h \). This choice of box-distribution is very common in numerical studies of random transverse field Ising models [6]–[18]. In addition, in dimension \( d = 1 \), it is exactly known that any infinitesimal disorder flows towards the same infinite disorder fixed point [4].

The corresponding exact transition point given by the criterion \( \ln h = \ln J \) [4] is

\[
h_c^{\text{exact}} = e^{\ln J} = e^{-1} = 0.36787944\ldots
\]

We have performed numerical simulations with the so-called ‘pool method’, which is very much used for disordered systems on hierarchical lattices, in particular for spin-glasses [22], but also for disordered polymers [23,24]. The idea is to represent the joint probability distribution \( P_n(J, r_A, \Delta \mu_A, r_B, \Delta \mu_A) \) at generation \( n \) by a pool of \( M \) realizations \( (J^{(i)}, r_A^{(i)}, \Delta \mu_A^{(i)}, r_B^{(i)}, \Delta \mu_A^{(i)}) \), where \( i = 1, 2, \ldots, M \). The pool at generation \( (n + 1) \) is then obtained as follows: each new set \( (J^{(i)}, r_A^{(i)}, \Delta \mu_A^{(i)}, r_B^{(i)}, \Delta \mu_A^{(i)}) \) of generation \( (n + 1) \) is obtained by choosing \( b = 2 \) values \( i \) at random with their corresponding variables in the pool of generation \( n \).

The results presented in this section have been obtained with a pool of size \( M = 10^7 \). We find that the corresponding transition point satisfies

\[
0.367910 < h_c^{\text{pool}}(M = 10^7) < 0.367912
\]

i.e. it is slightly larger than the exact value of equation (41) as a consequence of the finite size \( M \) of the pool. We now describe our numerical results concerning the RG flow of the renormalized variables in various phases using \( 0 \leq n \leq 50 \) generations corresponding to lengths

\[
1 \leq L = 2^n \leq 2^{50}.
\]

3.2. RG flow of the typical renormalized coupling \( J_L^{\text{typ}} \)

In figure 2(a), we show our data concerning the RG flow of the typical coupling

\[
J_L^{\text{typ}} = e^{\ln J_L}.
\]
Figure 2. \((d = 1)\) (a) RG flow of the logarithm of the typical renormalized coupling \((\ln J^\text{typ}_L)\) in a log–log plot: the slope is zero in the ordered phase (e.g. \(h = 0.32\)), the slope is unity in the disordered phase (e.g. \(h = 0.39\)), and the slope is \(\psi \simeq 0.5\) at criticality (before the bifurcation of the curves, corresponding to \(h = 0.367910\) and \(h = 0.367912\)). (b) RG flow of the width \(\Delta_L\) of the distribution of the logarithm of the renormalized couplings in a log–log plot: the slope is zero in the ordered phase (e.g. \(h = 0.32\)), the slope is \(\omega \simeq 0.5\) in the disordered phase (e.g. \(h = 0.39\)), and the slope is \(\psi \simeq 0.5\) at criticality (before the bifurcation of the curves, corresponding to \(h = 0.367910\) and \(h = 0.367912\)).

Our results for the \(L\) dependence in the two phases and at criticality
\[
\begin{align*}
\ln J^\text{typ}_L|_{h<h_c} &\propto L \rightarrow +\infty \text{ Cst} \\
\ln J^\text{typ}_L|_{h=h_c} &\propto -L^\psi \quad \text{with } \psi \simeq 0.5 \\
\ln J^\text{typ}_L|_{h>h_c} &\propto -L
\end{align*}
\]
are in agreement with the exact solution [4].

3.3. RG flow of the width \(\Delta_L\) of the logarithms of the renormalized couplings

In figure 2(b), we show our data concerning the RG flow of the width \(\Delta_L\) of the distribution of the logarithms of the couplings. Again, our results for the \(L\)-dependence in the two phases and at criticality
\[
\begin{align*}
\Delta_L|_{h<h_c} &\propto L \rightarrow +\infty \text{ Cst} \\
\Delta_L|_{h=h_c} &\propto L^\psi \quad \text{with } \psi \simeq 0.5 \\
\Delta_L|_{h>h_c} &\propto L^\omega \quad \text{with } \omega \simeq 0.5
\end{align*}
\]
are in agreement with the exact solution [4].

3.4. RG flow of the typical renormalized transverse field \(h^\text{typ}_L\)

In figure 3(a), we show the RG flow of the typical renormalized transverse field
\[
h^\text{typ}_L = e^{\ln h_L}.
\]
Figure 3. \((d = 1)\) (a) RG flow of the logarithm of the typical renormalized transverse field \((\ln h_L^{\text{typ}})\) in a log–log plot: the slope is \(d = 1\) in the ordered phase (e.g. \(h = 0.32\)), the slope is zero in the disordered phase (e.g. \(h = 0.39\)), and the slope is \(\psi \approx 0.5\) at criticality (before the bifurcation of the curves, corresponding to \(h = 0.367910\) and \(h = 0.367912\)). (b) RG flow of the renormalized magnetization \(\mu_L\) in a log–log plot: the slope is \(d = 1\) in the ordered phase (e.g. \(h = 0.32\)), the slope is zero in the disordered phase (e.g. \(h = 0.39\)), and the slope is \(d_f \approx 0.85\) at criticality (before the bifurcation of the curves, corresponding to \(h = 0.367910\) and \(h = 0.367912\)).

Again, our results for the \(L\) dependence in the two phases and at criticality

\[
\ln h_L^{\text{typ}}|_{h < h_c} \propto -L \quad \ln h_L^{\text{typ}}|_{h = h_c} \propto -L^\psi \quad \text{with } \psi \approx 0.5
\]

\[
\ln h_L^{\text{typ}}|_{h > h_c} \propto C_{\text{st}}
\]

are in agreement with the exact solution \([4]\).

3.5. RG flow of the renormalized magnetization \(\mu_L\)

In figure 3(b), we show the RG flow of the magnetization \(\mu_L\) of renormalized clusters as a function of \(L\). In the ordered phase the magnetization is extensive, \(\mu_L \propto L\), whereas in the disordered phase the magnetization of clusters remains finite, \(\mu_L \propto C_{\text{st}}\), as it should. At criticality, we measure \(\mu_L \propto L^{d_f}\), where the fractal dimension of critical ordered clusters is of order \(d_f \approx 0.85\), whereas the exact result is

\[
d_f^{\text{exact}} = \frac{1 + \sqrt{5}}{4} = 0.809 \ldots
\]

This discrepancy will be discussed after equation (57).

3.6. Critical exponents in the disordered phase \(h > h_c\)

In the disordered phase, the exponential decay of the typical renormalized coupling \(J_L^{\text{typ}} = e^{\ln J_L}\) defines the typical correlation length \(\xi_{\text{typ}}\) (equation (9))

\[
\ln J_L^{\text{typ}} \equiv \ln J_L \underset{L \to +\infty}{\approx} -\frac{L}{\xi_{\text{typ}}}.
\]
As shown in figure 4(a), the divergence at criticality

\[ \xi_{\text{typ}} \propto (h - h_c)^{-\nu_{\text{typ}}} \]  

is governed by the exponent

\[ \nu_{\text{typ}} \simeq 1 \]  

in agreement with the exact solution [4].

As shown in figure 4(b), the finite typical renormalized transverse field \( h_{\text{typ}}^{\infty} \) displays the essential singularity (equation (6)) with

\[ \kappa \simeq 1 \]  

in agreement with the exact solution [4]. Both values of equations (52) and (53) correspond to the finite-size correlation exponent (see equations (7) and (10))

\[ \nu_{FS} \simeq 2 \]  

in agreement with the exact solution [4].

3.7. Critical exponents in the ordered phase \( h < h_c \)

In the ordered phase, the exponential decay of the typical renormalized transverse field defines the length \( \xi_h \) (equation (15))

\[ \ln h_L^{\text{typ}} \equiv \ln h_L \underset{L \to +\infty}{\sim} -\frac{L}{\xi_h} \]  

where \( \xi_h \) diverges with the exponent \( \nu_h \simeq 1 \), in agreement with the exact solution [4]. Similarly, the finite typical renormalized coupling \( J_{\text{typ}}^{\infty} \) displays an essential singularity
Figure 5. \((d = 1)\) Singularity of the intensive magnetization \(m\) in the ordered phase (equation (14)): we measure an exponent of order \(\beta \simeq 0.33\) instead of the exact value of equation (57) (see explanations in the text).

\[
\tilde{m} = \frac{\mu L}{L} \propto (h_c - h)^\beta.
\] (56)

We measure an exponent of order \(\beta \simeq 0.33\) instead of the exact result
\[
\beta_{\text{exact}} = \frac{3 - \sqrt{5}}{2} = 0.38195 \ldots
\] (57)

We believe that this discrepancy, related to the previous discrepancy found at criticality (see equation (49)), comes from the rare-event nature of the magnetization in the critical region: indeed, the critical magnetization represents some ‘persistence exponent’ for the strong disorder renormalization flow [25], because it is related to the probability for a given spin to remain undecimated during the RG flow [4]. Within our framework, where some spins are declared ‘undecimable’ up to some given stage of the real space RG, this persistence probability is changed so that the corresponding exponents for the magnetization are not captured exactly by our fixed-cell-size procedure. Nevertheless, the approximated exponents obtained are expected to become better and better as the rescaling factor \(b\) grows, and to converge to the exact values as \(b \to +\infty\).

### 3.8. Discussion

In summary, except for the magnetic exponent \(\beta\) and related exponents such as \(d_f\) that are not reproduced exactly for finite \(b\) (for reasons explained just above), the fixed-cell-size procedure with the rescaling factor \(b = 2\) is able to capture correctly the other critical exponents, in particular the activated exponent \(\psi\), the typical correlation exponent \(\nu_{\text{typ}}\).

doi:10.1088/1742-5468/2012/05/P05002
and the essential singularity exponent $\kappa = 1$. For other rescaling factors $b = 3, 4, \ldots$, we expect that these critical exponents $(\psi, \nu_{\text{typ}}, \kappa)$ will be again exactly reproduced (since $b = 2$ is the ‘worst’ approximation with respect to the full rules corresponding to $b \to +\infty$), whereas the magnetic exponents $\beta(b)$ will be better approximations of the true exponent $\beta_{\text{exact}} = \beta(b \to +\infty)$ than $\beta(b = 2)$, but will never be exact for any finite $b$. We also believe that these conclusions can be extended to more complicated observables such as spin–spin correlations as follows: typical observables (such as typical correlations that involve the exponent $\psi$ at criticality) should be reproduced with the correct critical exponents, whereas averaged observables governed by rare persistent events (such as averaged correlations that involve the magnetic exponent $\beta$) cannot be correctly reproduced for any finite $b$.

After having checked that typical exponents can be correctly reproduced in $d = 1$ with $b = 2$, we may now apply this fixed-cell-size procedure to fractal lattices of dimension $d > 1$.

4. Numerical results for the Sierpinski gasket

The Sierpinski gasket is one of the simplest hierarchical lattices made of nested triangles. It has for fractal dimension

$$D = \frac{\ln 3}{\ln 2} = 1.5849525 \cdots.$$ (58)

There is no underlying ferromagnetic phase (i.e. $T_c = 0$), because the so-called ‘ramification’ remains finite [26].

4.1. Principle of the fixed-cell-size RG procedure

Since the Sierpinski gasket can be constructed recursively from triangles, it is clear that the fixed-cell-size RG procedure based on strong disorder RG rules will be based on the joint probability $P_n(J_{AB}, J_{AC}, J_{BC}, r_A, \Delta \mu_A, r_B, \Delta \mu_B, r_C, \Delta \mu_C)$ of ‘open triangles’, that will replace the joint probability $P_n(J_{AB}, r_A, \Delta \mu_A; r_B, \Delta \mu_B)$ of ‘open bonds’ described in section 2.2.1: the variables for one open triangle ABC are the three ferromagnetic couplings $(J_{AB}, J_{AC}, J_{BC})$ associated with the three bonds of the triangle, the three magnetization excesses $(\Delta \mu_A, \Delta \mu_B, \Delta \mu_C)$ associated with the three vertices, and the three multiplicative factors $(r_A, r_B, r_C)$ for the transverse fields of the three vertices.

As shown on figure 6, it is clear that, with three open triangles of generation $n$, we can build the structure of generation $(n + 1)$ by following the same principles as in section 2.2.2. We may then apply strong disorder RG rules to this structure to obtain an open triangle of generation $(n + 1)$ with its renormalized variables, by following the same principles as in section 2.2.3 (the only novelty is that in the ordered phase one of the three renormalized ferromagnetic coupling of the triangle may vanish).

As in section 4, we have used the flat initial distribution of equation (40) for the random couplings and a uniform transverse field $h$. The results presented in this section have been obtained with a pool of size $M = 7 \times 10^6$, leading to a transition point
Figure 6. To construct an open triangle of generation \((n+1)\) with its renormalized variables \((J_{AB}, J_{AC}, J_{BC}, r_A, \Delta \mu_A, r_B, \Delta \mu_B, r_C, \Delta \mu_C)\), there are two steps. Step 1: one draws three independent open triangles of generation \(n\), and one connects them via intermediate points. Step 2: one applies the usual strong disorder RG rules to the internal structure.

4.2. RG flow of the typical renormalized coupling \(J_L^{typ}\)

In figure 7(a), we show the RG flow of the typical coupling \(J_L^{typ} = e^{\ln J_L}\) as a function of \(L\):

\[
\begin{align*}
\ln J_L^{typ}|_{h<h_c} &\sim L^{-\psi} \\
\ln J_L^{typ}|_{h=h_c} &\sim -L
\end{align*}
\]

with \(\psi \simeq 0.58\) and \(\omega \simeq 0\).

4.3. RG flow of the width \(\Delta_L\) of the logarithms of the renormalized couplings

In figure 7(b), we show the RG flow of the width \(\Delta_L\) of the distribution of the logarithms of the couplings:

\[
\begin{align*}
\Delta_L|_{h<h_c} &\sim L^\omega \\
\Delta_L|_{h=h_c} &\sim L^{-\psi} \\
\Delta_L|_{h<h_c} &\sim L^\omega
\end{align*}
\]

with \(\psi \simeq 0.58\) and \(\omega \simeq 1\). Note that the value \(\omega = 1\) is an ‘anomalously’ large exponent for the droplet exponent of the directed polymer if one compares it with hypercubic lattices where \(\omega < 1\) (equation (8)). We believe that this anomaly comes from the hierarchical structure of the Sierpinski gasket, where the polymer is forced to visit certain points at each scale.

doi:10.1088/1742-5468/2012/05/P05002
Figure 7. (Sierpinski) (a) RG flow of the logarithm of the typical renormalized coupling (\(\ln J_L^{\text{typ}}\)) in a log–log plot: the slope is zero in the ordered phase (e.g. \(h = 1\)), the slope is 1 in the disordered phase (e.g. \(h = 1.7\)), and the slope is \(\psi \simeq 0.58\) at criticality (before the bifurcation of the curves, corresponding to \(h = 1.3527037\) and \(h = 1.3527038\)). (b) RG flow of the width \(\Delta_L\) of the distribution of the logarithm of the renormalized couplings in a log–log plot: the slope is zero in the ordered phase (e.g. \(h = 1\)), the slope is \(\omega \simeq 1\) in the disordered phase (e.g. \(h = 1.7\)), and the slope is \(\psi \simeq 0.58\) at criticality (before the bifurcation of the curves, corresponding to \(h = 1.3527037\) and \(h = 1.3527038\)).

4.4. RG flow of the typical renormalized transverse field \(h_L^{\text{typ}}\)

In figure 8(a), we show the RG flow of the typical renormalized transverse field \(h_L^{\text{typ}}\) as a function of \(L\)

\[
\begin{align*}
\ln h_L^{\text{typ}}|_{h<h_c} & \propto L^D \\
\ln h_L^{\text{typ}}|_{h=h_c} & \propto L^\psi \quad \text{with } \psi \simeq 0.58 \\
\ln h_L^{\text{typ}}|_{h>h_c} & \propto L^{-\psi} \\
\end{align*}
\]

(63)

4.5. RG flow of the renormalized magnetization \(\mu_L\)

In figure 8(b), we show the RG flow of the renormalized magnetization \(\mu_L\) of surviving clusters as a function of \(L\)

\[
\begin{align*}
\mu_L|_{h<h_c} & \propto L^D \\
\mu_L|_{h=h_c} & \propto L^{d_f} \quad \text{with } d_f \simeq 1.08 \\
\mu_L|_{h>h_c} & \propto L^{-d_f} \\
\end{align*}
\]

(64)

At criticality, the exponent \(x\) of the intensive magnetization of equation (5) is thus of order

\[x = D - d_f \simeq 0.5.\]

(65)
4.6. Critical exponents in the disordered phase $h > h_c$

In the disordered phase, the exponential decay of the typical renormalized coupling $J_{typ}^L = e^{\ln J_L}$ defines the typical correlation length $\xi_{typ}$ (equation (9)). As shown in figure 9(a), the divergence near criticality (equation (51)) is governed by the exponent

$$\nu_{typ} \simeq 0.63.$$  \hfill (66)

As shown in figure 9(b), the finite typical renormalized transverse field $h_{typ}^\infty$ displays the essential singularity of equation (6) with the value

$$\kappa \simeq 0.82.$$  \hfill (67)

4.7. Critical exponents in the ordered phase $h < h_c$

In the ordered phase, the exponential decay of the typical renormalized transverse field $h_{typ}^L = e^{\ln h_L}$ defines some characteristic length $\xi_h$ (equation (15)). As shown in figure 9(a), we find that $\xi_h$ diverges with the exponent

$$\nu_h \simeq 0.91.$$  \hfill (68)

As shown in figure 9(a), the finite typical renormalized coupling $J_{typ}^\infty$ displays an essential singularity with the same exponent $\kappa \simeq 0.82$ as in equation (67).
Figure 9. (Sierpinski) (a) Divergences of the typical correlation length $\xi_{typ}$ of the disordered phase and of the correlation length $\xi_h$ of the ordered phase: we measure $\nu_{typ} \simeq 0.63$ and $\nu_h \simeq 0.91$. (b) Essential singularities of the typical finite renormalized transverse field $h_{typ}^\infty$ in the disordered phase and of the typical finite renormalized coupling $J_{typ}^\infty$ in the ordered phase: we measure $\kappa \simeq 0.82$ for both.

Figure 10. (Sierpinski) Singularity of the intensive magnetization $m$ in the ordered phase (equation (14)): we measure $\beta \simeq 0.73$.

Our data concerning the intensive magnetization of equation (14) are shown in figure 10: we measure an exponent of order $\beta \simeq 0.73$.

Our various measures are thus compatible with a finite-size correlation exponent of order

$$\nu_{FS} \simeq 1.45.$$ (69)
5. Numerical study for a hierarchical lattice having an underlying classical transition

Fractal lattices present a classical ferromagnetic transition only if their ramification is infinite [26]. Exactly renormalizable lattices with a finite connectivity have a finite ramification and do not present a classical ferromagnetic transition, as for the Sierpinski gasket discussed in section 4.7. Exactly renormalizable lattices with a classical ferromagnetic transition are thus hierarchical lattices presenting a growing connectivity, such as the lattice shown in figure 11 that we study in this section: this lattice is constructed recursively from a single link called here generation $n = 0$. At generation $n = 1$, this single link has been replaced by $k = 2$ branches, each branch containing $b = 8$ bonds in series. The generation $n = 2$ is obtained by applying the same transformation to each bond of the generation $n = 1$. At generation $n$, the length $L_n$ between the two extreme sites A and B is $L_n = b^n$, whereas the total number of bonds grows as $N_n = (kb)^n = L_n^D$ so that the fractal dimension reads

$$D = \frac{\ln(kb)}{\ln b} = \frac{4}{3}. \quad (70)$$

This type of hierarchical lattice has been much studied in relation to Migdal–Kadanoff block renormalizations [27] that can be considered in two ways, either as approximate real space renormalization procedures on hypercubic lattices, or as exact renormalization procedures on certain hierarchical lattices [28,29]. Various classical disordered models have been studied on these hierarchical lattices, in particular the diluted Ising model [30], the ferromagnetic random Potts model [24], [31]–[35], spin-glasses [24,34], [36]–[40] and the directed polymer model [23,24,34], [41]–[48].

As in the previous sections, we have used the flat initial distribution of equation (40) for the random couplings and a uniform transverse field $h$. The results presented in this section have been obtained with a pool of size $M = 10^7$. We find that the corresponding
Figure 12. (Diamond $k = 2$, $b = 8$) (a) RG flow of the logarithm of the typical renormalized coupling ($\ln J^\text{typ}_L$) in a log–log plot: the slope is 1 in the disordered phase (e.g. $h = 0.9$), and the slope is $\psi \simeq 0.49$ at criticality (before the bifurcation of the curves, corresponding to $h = 0.556 626 170$ and $h = 0.556 626 171$). (b) RG flow in the ordered phase: the asymptotic growth corresponds to the slope $D_s = D - 1 = 1/3$ (see equation (73)).

transition point satisfies

$$0.556 626 170 < h^\text{pool}_c (M = 10^7) < h = 0.556 626 171$$

using $0 \leq n \leq 42$ generations corresponding to lengths

$$1 \leq L = 8^n \leq 8^{42}.$$  

5.1. RG flow of the typical renormalized coupling $J^\text{typ}_L$

In figure 12, we show our data concerning the RG flow of the typical coupling $J^\text{typ}_L = e^{\ln J_L}$ as a function of $L$

$$\ln J^\text{typ}_L \big|_{h<h_c} \propto L^{D_s \ln L} \quad \text{with} \quad D_s = D - 1 = 1/3$$
$$\ln J^\text{typ}_L \big|_{h=h_c} \propto -L^\psi \quad \text{with} \quad \psi \simeq 0.49$$
$$\ln J^\text{typ}_L \big|_{h>h_c} \propto -L.$$  

The novelty with respect to the previous cases is thus the asymptotic growth $J^\text{typ}_L \propto L^{D_s}$ in the ordered phase, as expected when an underlying classical transition exists (see the discussion around equation (18)).

5.2. RG flow of the width $\Delta_L$ of the logarithms of the renormalized couplings

In figure 13, we show our data concerning the RG flow of the width $\Delta_L$ of the distribution of the logarithms of the couplings.
Figure 13. (Diamond $k = 2$, $b = 8$) (a) RG flow of the width $\Delta L$ of the distribution of the logarithm of the renormalized couplings in a log–log plot: the slope is $\omega \simeq 0.41$ in the disordered phase (e.g. $h = 0.9$), and the slope is $\psi \simeq 0.49$ at criticality (before the bifurcation of the curves, corresponding to $h = 0.556626170$ and $h = 0.556626171$. (b) In the ordered phase, the width $\Delta L$ decays asymptotically as $L^{\omega_s - D_s}$ with $\omega_s - D_s \simeq -0.29$ (see equation (74)).

\begin{align*}
\Delta L |_{h < h_c} &\propto L^{\omega_s - D_s} \quad \text{with } \omega_s - D_s \simeq -0.29 \\
\Delta L |_{h = h_c} &\propto L^{\psi} \quad \text{with } \psi \simeq 0.48 \\
\Delta L |_{h > h_c} &\propto L^\omega \quad \text{with } \omega \simeq 0.41.
\end{align*}

Here the novelty with respect to the previous cases is again the ordered phase with the decay of the width $\Delta L \propto L^{\omega_s - D_s}$, as expected when an underlying classical transition exists (see the discussion around equation (18)).

Another important result is the inequality $\psi > \omega$ implying a singular diverging amplitude $A$ for the width in the disordered phase (see the discussion around equation (12)).

5.3. RG flow of the typical renormalized transverse field $h_L^{\text{typ}}$

In figure 14(a), we show the RG flow of $h_L^{\text{typ}}$ as a function of the RG scale $L$

\begin{align*}
\ln h_L^{\text{typ}} |_{h < h_c} &\propto L^{D} \\
\ln h_L^{\text{typ}} |_{h = h_c} &\propto L^\psi \quad \text{with } \psi \simeq 0.49 \\
\ln h_L^{\text{typ}} |_{h > h_c} &\propto L^{D_s} \quad \text{with } D_s = D - 1 = 1/3.
\end{align*}

The novelty with respect to the previous cases is the disordered phase that involves the dimension $D_s$ as a consequence of the growing connectivity of the diamond hierarchical lattice (see the discussion in section 5.7).
5.4. RG flow of the renormalized magnetization $\mu_L$ of surviving clusters

In figure 14(b), we show the RG flow of the renormalized magnetization $\mu_L$ of surviving clusters as a function of the RG scale $L$

\[
\begin{align*}
\mu_L|_{h<h_c} & \propto L^D \quad & \mu_L|_{h=h_c} & \propto L^{d_f} \quad & \text{with } d_f \simeq 0.85 \\
\mu_L|_{h>h_c} & \propto L^{D_s} \quad & \text{with } D_s = D - 1 = 1/3.
\end{align*}
\]  

(76)

At criticality, the exponent $x$ of the intensive magnetization of equation (5) is thus of order

\[ x = D - d_f \simeq 0.48. \]  

(77)

5.5. Critical exponents in the disordered phase $h > h_c$.

In the disordered phase, the exponential decay of the typical renormalized coupling $J_L^{\text{typ}} = e^{\ln J_L}$ defines the typical correlation length $\xi_{\text{typ}}$. As shown in figure 15(a), the divergence near criticality is governed by an exponent of order

\[ \nu_{\text{typ}} = 0.86. \]  

(78)
Figure 15. (Diamond $k = 2$, $b = 8$) Critical exponents. (a) Divergences of the typical correlation length $\xi_{\text{typ}}$ of the disordered phase and of the correlation length $\xi_h$ of the ordered phase: we measure $\nu_{\text{typ}} \simeq 0.86$ and $\nu_h \simeq 1.08$. (b) Singularity of the intensive magnetization $m$ in the ordered phase (equation (14)): we measure $\beta \simeq 0.81$.

5.6. Critical exponents in the ordered phase $h < h_c$

In the ordered phase, the exponential decay of the typical renormalized transverse field $h_L^{\text{typ}} = e^{h_L L}$ defines the typical cluster linear length $\xi_h$

$$\ln h_L^{\text{typ}} = \ln h_L \simeq - \left( \frac{L}{\xi_h} \right)^D$$

(79)

where $\xi_h$ diverges with the exponent $\nu_h \simeq 1.08$ (see figure 15(a)).

In figure 15(b), we show our data concerning the intensive magnetization: we measure an exponent of order $\beta \simeq 0.81$.

Our various measures are thus compatible with a finite-size correlation exponent of order

$$\nu_{FS} \simeq 1.71.$$ (80)

5.7. Discussion: effect of the growing connectivity

In this section, we have considered a hierarchical fractal lattice, where the end points have a growing connectivity as $k^n$, when the length grows as $L_n = b^n$. This property has the consequence that, in the disordered phase, the magnetization $\mu_L$ and the logarithms of the transverse fields do not remain finite as they do when they represent sites of finite connectivity, but scale as the growing connectivity as $k^n = L_n^{D_s}$, where

$$D_s = \frac{\ln k}{\ln b} = D - 1.$$ (81)
By consistency in the disordered phase, only sites should be decimated asymptotically, i.e. the logarithms of the renormalized transverse fields scaling as

$$\ln h_L \sim -L^{D_s}$$

should remain bigger than the logarithm of the renormalized couplings scaling as in equation (8): the RG procedure is thus consistent only if $D_s < 1$. In addition, if one wishes that the spurious behavior of equation (82) does not affect the critical point either, one should have the stronger inequality

$$D_s < \psi.$$ (83)

This condition is satisfied in the case we have studied numerically with $D_s \simeq 0.33 < 0.49 \simeq \psi$ (and this is why we have chosen the value $b = 8$ instead of smaller values). But it is clear that this condition will not be satisfied by all diamond hierarchical lattices with arbitrary values of the parameters $(k, b)$ of equation (70).

6. Conclusion

In this paper, we have proposed to include strong disorder RG ideas within the more traditional fixed-cell-size real space RG framework. We have first considered the one-dimensional chain as a test for this fixed-cell-size procedure. Our conclusion is that all exactly known critical exponents are reproduced correctly, except for the magnetic exponent $\beta$, because it is related to more subtle persistence properties of the full RG flow. We have then applied this fixed-cell-size RG procedure numerically to two types of renormalizable fractal lattice:

(i) the Sierpinski gasket of fractal dimension $D = \ln 3/\ln 2$, where there is no underlying classical ferromagnetic transition, so that the RG flow in the ordered phase is similar to what happens in $d = 1$;

(ii) a hierarchical diamond lattice of fractal dimension $D = 4/3$, where there is an underlying classical ferromagnetic transition, so that the RG flow in the ordered phase is similar to what happens on hypercubic lattices of dimension $d > 1$.

In both cases, we have found that the transition is governed by an infinite disorder fixed point. Besides the measure of the activated exponent $\psi$ at criticality, we have analyzed the RG flow of various observables in the disordered phase and in the ordered phase, in order to extract the ‘typical’ correlation length exponents of these two phases (respectively $\nu_{\text{typ}}$ of equation (9) and $\nu_h$ of equation (15)), which are different from the finite-size correlation exponent $\nu_{\text{FS}}$ that governs all finite-size properties in the critical region (equation (3)). In the disordered phase, we have also measured the fluctuation exponent $\omega$ (equation (8)), which is expected to coincide with the droplet exponent of directed polymer living on the same lattice [20]. Whereas the two exponents $\psi$ and $\omega$ are known to coincide in dimension $d = 1$, we have found here in section 5 that it is possible to have $\omega < \psi$ (and accordingly a diverging amplitude $A(h)$ in equation (8)). Moreover, the measured value $\psi \simeq 0.49$ is close to the values measured for hypercubic lattices in dimensions $d = 2–4$ [6]–[16].

doi:10.1088/1742-5468/2012/05/P05002
Besides the random transverse field Ising model that we have discussed, we hope that the idea to include strong disorder RG principles within a fixed-cell-size real space renormalization will be useful to study other types of disordered model on fractal lattices, for instance random walks with disorder on various fractal lattices that have been studied recently in [49].

Appendix: Reminder on the full strong disorder RG procedure in energy

In this section, we recall the standard strong disorder renormalization for the random transverse field Ising model of equation (1), to compare with the fixed-cell-size framework introduced in the text.

A.1. Reminder on strong disorder RG rules on arbitrary lattices

For the model of equation (1), the strong disorder RG rules are formulated on arbitrary lattices as follows [6, 7]:

(0) Find the maximal value among the transverse fields $h_i$ and the ferromagnetic couplings $J_{jk}$

$$\Omega = \max[h_i, J_{jk}].$$  \hspace{1cm} \text{(A.1)}

(i) If $\Omega = h_i$, then the site $i$ is decimated and disappears, while all couples $(j, k)$ of neighbors of $i$ are now linked via the renormalized ferromagnetic coupling

$$J_{jk}^{\text{new}} = J_{jk} + \frac{J_{ji} J_{ik}}{h_i}. \hspace{1cm} \text{(A.2)}$$

(ii) If $\Omega = J_{ij}$, then the site $j$ is merged with the site $i$. The new renormalized site $i$ has a reduced renormalized transverse field

$$h_i^{\text{new}} = h_i r_i \hspace{1cm} \text{with} \hspace{1cm} r_i = \frac{h_i}{J_{ij}} \hspace{1cm} \text{(A.3)}$$

and a bigger magnetic moment

$$\mu_i^{\text{new}} = \mu_i + \mu_j. \hspace{1cm} \text{(A.4)}$$

This renormalized cluster is connected to other sites via the renormalized couplings

$$J_{ik}^{\text{new}} = J_{ik} + J_{jk} \hspace{1cm} \text{(A.5)}$$

(i) Return to (0).

A.2. RG flow of probability distributions

The above RG rules determine the RG flow for the joint probability distribution at the scale

$$\Omega = e^{-\Gamma} \hspace{1cm} \text{(A.6)}$$

of the renormalized clusters characterized by their magnetic moments $\mu_i$, their renormalized fields

$$h_i = \Omega e^{-\beta_i} = e^{-(\Gamma+\beta_i)} \hspace{1cm} \text{(A.7)}$$

doi:10.1088/1742-5468/2012/05/P05002
and the renormalized couplings between them

\[ J_{ij} = \Omega e^{-\zeta_{ij}} = e^{-(\Gamma + \zeta_{ij})} \]  

(\text{A.8})

where \( \beta_i \) and \( \zeta_{ij} \) are positive random variables. In the following, we recall \([6,7]\) the properties of the probability distributions \( R_\Gamma(\beta_i) \) and \( P_\Gamma(\zeta_{ij}) \) (normalized per surviving cluster) and of the density \( n_\Gamma \) of surviving clusters per unit volume that defined the characteristic length-scale \( l_\Gamma \) via

\[ n_\Gamma \sim \frac{1}{l_\Gamma^d}. \]  

(\text{A.9})

\textbf{A.3. Disordered phase}

In the disordered phase, renormalized clusters remain ‘finite’, i.e. asymptotically at large RG scale \( \Gamma \), only transverse fields are decimated via rule (i) of section A.1, while rule (ii) does not occur anymore. This means that the variable \( \beta_i \) of equation (A.7) remains finite, i.e. the probability distribution \( R_\Gamma(\beta_i) \) converges towards a finite probability distribution \( R_\infty(\beta_i) \) without any rescaling for the variable \( \beta_i \). The value \( R_\infty(0) \) at the origin \( \beta = 0 \) will then govern the decay of the cluster density \( n_\Gamma \)

\[ \partial_\Gamma n_\Gamma = -R_\infty(0)n_\Gamma \]  

(\text{A.10})

leading to the exponential decay

\[ n_\Gamma \propto e^{-\Gamma R_\infty(0)} \]  

(\text{A.11})

or equivalently to the exponential growth of the length-scale \( l_\Gamma \) of equation (A.9) representing the typical distance between surviving clusters

\[ l_\Gamma \propto e^{\Gamma (R_\infty(0)/d)}. \]  

(\text{A.12})

The relation between the energy-scale \( \Omega = e^{-\Gamma} \) and the length-scale \( l_\Gamma \) thus corresponds to the power-law

\[ \Omega = e^{-\Gamma} \propto l_\Gamma^{-z} \]  

(\text{A.13})

with the continuously variable dynamical exponent

\[ z = \frac{d}{R_\infty(0)}. \]  

(\text{A.14})

\textbf{A.4. Critical point}

At the critical point, both transverse fields and couplings continue to be decimated at large scale \( \Gamma \), and there is no finite characteristic scale: as a consequence, the only scale available for the variables \( \beta_i \) of equation (A.7) and \( \zeta_{ij} \) of equation (A.8) is the RG scale \( \Gamma \) itself. More precisely, the probability distributions \( R_\Gamma(\beta_i) \) and \( P_\Gamma(\zeta_{ij}) \) (normalized per surviving cluster) follow the scaling form

\[ R_\Gamma(\beta_i) \sim \frac{1}{\Gamma} \mathcal{R} \left( \frac{\beta_i}{\Gamma} \right) \quad P_\Gamma(\zeta_{ij}) \sim \frac{1}{\Gamma} \mathcal{P} \left( \frac{\zeta_{ij}}{\Gamma} \right) \]  

(\text{A.15})

where the rescaled probability distributions \( \mathcal{R} \) and \( \mathcal{P} \) do not depend on \( \Gamma \).
The values $\mathcal{R}(0)$ and $\mathcal{P}(0)$ at the origin will then govern the decay of the cluster density $n_\Gamma$

$$\partial_\Gamma n_\Gamma = -\left(\frac{\mathcal{R}(0)}{\Gamma} + \frac{\mathcal{P}(0)}{\Gamma}\right)n_\Gamma$$  \hspace{1cm} (A.16)$$

leading to the power-law

$$n_\Gamma \propto \frac{1}{\Gamma^{\mathcal{R}(0)} + \mathcal{P}(0)}$$  \hspace{1cm} (A.17)$$

or equivalently to the power-law growth of the length-scale $l_\Gamma$ of equation (A.9)

$$l_\Gamma \propto \Gamma^{(\mathcal{R}(0) + \mathcal{P}(0)/d)}$$  \hspace{1cm} (A.18)$$

The relation between the energy-scale $\Omega = e^{-\Gamma}$ and the length-scale $l_\Gamma$ thus corresponds to the activated form

$$\Omega = e^{-\Gamma} \propto e^{-l_\Gamma^\psi}$$  \hspace{1cm} (A.19)$$

where the activated exponent $\psi$ reads

$$\psi = \frac{d}{\mathcal{R}(0) + \mathcal{P}(0)}.$$  \hspace{1cm} (A.20)$$

Finally, the magnetic moment of surviving clusters is expected to grow as a power-law of $\Gamma$, and equivalently as some power-law of $l_\Gamma$ (equations (A.18) and (A.20))

$$\mu \propto \Gamma^{\Phi} \propto l_\Gamma^{d_f} \quad \text{with } d_f = \Phi \psi$$  \hspace{1cm} (A.21)$$

where $d_f$ represents the fractal dimension of surviving critical clusters.

### A.5. Ordered phase

In the ordered phase, renormalized clusters are expected to become ‘extensive’, i.e. asymptotically at large RG scale $\Gamma$, only couplings are decimated via rule (ii) of section A.1, while rule (i) does not occur anymore. For the asymptotic behavior of the renormalized couplings $J_{ij}$ between surviving clusters, one has to distinguish two possible cases, depending on the existence or non-existence of an underlying classical ferromagnetic phase.

#### A.5.1. Ordered phase when there is no underlying classical ferromagnetic phase (as in $d = 1$).

When there is no underlying classical ferromagnetic phase (as in the one-dimensional chain), the variables $\zeta_{ij}$ of equation (A.8) remain finite, i.e. the probability distribution $P_\Gamma(\zeta_{ij})$ (normalized per surviving clusters) converges towards a finite probability distribution $P_\infty(\zeta_{ij})$ without any rescaling for the variable $\zeta_{ij}$. The value $P_\infty(0)$ at the origin $\zeta = 0$ will then govern the decay of the cluster density $n_\Gamma$

$$\partial_\Gamma n_\Gamma = -P_\infty(0)n_\Gamma$$  \hspace{1cm} (A.22)$$

leading to the exponential decay

$$n_\Gamma \propto e^{-\Gamma P_\infty(0)}$$  \hspace{1cm} (A.23)$$

doi:10.1088/1742-5468/2012/05/P05002
or equivalently to the exponential growth of the length-scale $l_\Gamma$ of equation (A.9) representing the typical linear size of surviving clusters

$$l_\Gamma \propto e^{\Gamma(P_\infty(0)/d)}.$$  (A.24)

The relation between the energy-scale $\Omega = e^{-\Gamma}$ and the length-scale $l_\Gamma$ thus corresponds to the power-law of equation (A.13) with the continuously variable dynamical exponent

$$z = \frac{d}{P_\infty(0)}$$  (A.25)

i.e. the ordered phase is thus fairly ‘symmetric’ to the disordered phase (see equation (A.14)). Note that, in dimension $d = 1$, this symmetry is a consequence of the duality between couplings and transverse fields [4].

A.5.2. Ordered phase when there is an underlying classical ferromagnetic phase (as in $d > 1$). When there exists an underlying classical ferromagnetic phase (as on the hypercubic lattices in dimension $d > 1$), the ordered phase is completely different from the properties just described, because an infinite percolation cluster appears at some finite RG scale $\Gamma_{\text{perco}}$: we refer to [7] for more details.

References

[1] Niemeijer Th and van Leeuwen J M J, Renormalization theories for Ising spin systems, 1976 Phase Transitions and Critical Phenomena ed C Domb and M S Green (London: Academic)

Burkhardt T W and van Leeuwen J M J, Real-space renormalizations, 1982 Topics in Current Physics vol 30 (Berlin: Springer)

Hu B, 1982 Phys. Rep. 91 233

[2] Igloi F and Monthus C, 2005 Phys. Rep. 412 277

[3] Ma S-K, Dasgupta C and Hu C-K, 1979 Phys. Rev. Lett. 43 1434

Dasgupta C and Ma S-K, 1980 Phys. Rev. B 22 1305

[4] Fisher D S, 1992 Phys. Rev. Lett. 69 534

Fisher D S, 1995 Phys. Rev. B 51 6411

[5] Fisher D S, 1994 Phys. Rev. B 50 3799

[6] Fisher D S, 1999 Physica A 263 222

[7] Motrunich O, Man S-C, Huse D A and Fisher D S, 2000 Phys. Rev. B 61 1160

[8] Lin Y-C, Kawasaki N, Igloi F and Rieger H, 2000 Prog. Theor. Phys. 138 479

Karevski D, Lin Y C, Rieger H, Kawasaki N and Igloi F, 2001 Eur. Phys. J. B 20 267

[9] Lin Y-C, Igloi F and Rieger H, 2007 Phys. Rev. Lett. 99 147202

[10] Yu R, Saleur H and Haas S, 2008 Phys. Rev. B 77 140402

[11] Kovacs I A and Igloi F, 2009 Phys. Rev. B 80 214416

[12] Kovacs I A and Igloi F, 2010 Phys. Rev. B 82 054437

[13] Kovacs I A and Igloi F, 2011 Phys. Rev. B 83 174207

[14] Kovacs I A and Igloi F, 2011 arXiv:1108.3942

[15] Kovacs I A and Igloi F, 2011 J. Phys.: Condens. Matter 23 404204

[16] Pich C, Young A P, Rieger H and Kawasaki N, 1998 Phys. Rev. Lett. 81 5916

[17] Rieger H and Kawasaki N, 1999 Eur. Phys. J. B 9 233

[18] Mezio R, Doucot B and Igloi F, 2005 Phys. Rev. B 72 024205

[19] Monthus C and Garel T, 2011 arXiv:1110.3145

[20] Middleton A A, 1995 Phys. Rev. E 52 R3337

[21] See for instance: Young A P and Stinchcombe R B, 1976 J. Phys. C: Solid State Phys. 9 4419

Southern B W and Young A P, 1977 J. Phys. C: Solid State Phys. 10 2179

McKay S R, Berker A N and Kirkpatrick S, 1982 Phys. Rev. Lett. 48 767

Bray A J and Moore M A, 1984 J. Phys. C: Solid State Phys. 17 L463

Gardner E, 1984 J. Physique 45 1755

doi:10.1088/1742-5468/2012/05/P05002 31
Strong disorder RG principles within a fixed-cell-size real space renormalization

Nifle M and Hilhorst H J, 1992 Phys. Rev. Lett. 68 2992
Ney-Nifle M and Hilhorst H J, 1993 Physica A 194 402
Moore M A, Bokil H and Drossel B, 1998 Phys. Rev. Lett. 81 4252
[23] Cook J and Derrida B, 1989 J. Stat. Phys. 57 89
[24] Monthus C and Carel T, 2008 Phys. Rev. E 77 021132
[25] Hastings M B and Sondhi S L, 2001 Phys. Rev. B 64 94204
[26] Gefen Y, Mandelbrot B and Aharony A, 1980 Phys. Rev. Lett. 45 855
Gefen Y, Mandelbrot B and Aharony A, 1983 J. Phys. A: Math. Gen. 16 1267
Gefen Y, Mandelbrot B and Aharony A, 1984 J. Phys. A: Math. Gen. 17 435
Gefen Y, Mandelbrot B and Aharony A, 1984 J. Phys. A: Math. Gen. 17 1277
[27] Migdal A A, 1976 Sov. Phys. JETP 42 743
Kadanoff L P, 1976 Ann. Phys. 100 359
Berker A N and Ostlund S, 1979 J. Phys. C: Solid State Phys. 12 4961
[29] Kaufman M and Griffiths R B, 1981 Phys. Rev. B 24 496
Griffiths R B and Kaufman M, 1982 Phys. Rev. B 26 5022
[30] Jayaprakash C, Riedel E K and Wortis M, 1978 Phys. Rev. B 18 2244
[31] Kinzel W and Domany E, 1981 Phys. Rev. B 23 3421
[32] Derrida B and Gardner E, 1984 J. Phys. A: Math. Gen. 17 3223
Derrida B, 1986 Critical Phenomena, Random Systems, Gauge Theories, Les Houches 1984
ed K Osterwalder and R Stora (Amsterdam: North-Holland)
[33] Andelman D and Berker A N, 1984 Phys. Rev. B 29 2630
[34] Monthus C and Carel T, 2008 J. Stat. Mech. P01008
[35] Igloi F and Turban L, 2009 Phys. Rev. B 80 134201
[36] Young A P and Stinchcombe R B, 1979 J. Phys. C: Solid State Phys. 9 4419
Southern B W and Young A P, 1977 J. Phys. C: Solid State Phys. 10 2179
[37] McKay S R, Berker A N and Kirkpatrick S, 1982 Phys. Rev. Lett. 48 767
Hartford E J, 1991 J. Appl. Phys. 70 6068
[38] Gardner E, 1984 J. Physique 45 1755
[39] Bray A J and Moore M A, 1984 J. Phys. C: Solid State Phys. 17 L463
Banavar J R and Bray A J, 1987 Phys. Rev. B 35 8888
Moore M A, Bokil H and Drossel B, 1998 Phys. Rev. Lett. 81 4252
NieLe M and Hilhorst H J, 1992 Phys. Rev. Lett. 68 2992
Ney-Nifle M and Hilhorst H J, 1993 Physica A 193 48
Thill M J and Hilhorst H J, 1996 J. Physique I 6 67
[41] Derrida B and Griffiths R B, 1989 Eur. Phys. Lett. 8 111
[42] Halpin-Healy T, 1989 Phys. Rev. Lett. 63 917
Halpin-Healy T, 1990 Phys. Rev. A 42 711
[43] Roux S, Hansen A, da Silva L R, Lucena L S and Pandey R B, 1991 J. Stat. Phys. 65 183
[44] Balents L and Kardar M, 1992 J. Stat. Phys. 67 1
Medina E and Kardar M, 1993 J. Stat. Phys. 71 967
[45] Cao M S, 1993 J. Stat. Phys. 71 51
[46] Tang L H, 1994 J. Stat. Phys. 77 581
[47] Mukherji S and Bhattacharjee S M, 1995 Phys. Rev. E 52 1930
[48] da Silveira R A and Bouchaud J P, 2004 Phys. Rev. Lett. 93 015901
[49] Juhasz R, 2012 arXiv:1203.1735

doi:10.1088/1742-5468/2012/05/P05002