NON-KOSZUL QUADRATIC GORENSTEIN TORIC RINGS

KAZUNORI MATSUDA

Abstract. Koszulness of Gorenstein quadratic algebras of small socle degree is studied. In this note, we construct non-Koszul Gorenstein quadratic toric ring such that its socle degree is more than 3 by using stable set polytopes.

Introduction

Let K be a field and $S = K[x_1, \ldots, x_n]$ a polynomial ring over K. Let $R = S/I$ be a standard graded K-algebra with respect to the grading $\deg x_i = 1$ for all $1 \leq i \leq n$, where I is a homogeneous ideal of S. Let R_+ denote the homogeneous maximal ideal of R. For an R-module M, we denote $\beta_{ij}^R(M)$ by the (i, j)-th graded betti number of M as an R-module.

The Koszul algebra was originally introduced by Priddy [29]. A standard graded K-algebra R is said to be Koszul if the residue field $K = R/R_+$ has a linear R-free resolution as an R-module, that is, $\beta_{ij}^R(K) = 0$ if $i \neq j$. Since $\beta_{2j}^R(K) = 0$ for all $j > 2$, hence Koszul algebras are quadratic, where $R = S/I$ is said to be quadratic if I is generated by homogeneous elements of degree 2. Every quadratic complete intersection is Koszul by Tate’s theorem [35]. Moreover, $R = S/I$ is Koszul if I has a quadratic Gröbner bases by Fröberg’s theorem [10] and the fact that $\beta_{ij}^R(K) \leq \beta_{ij}^{R'}(K)$ for all i, j and for all monomial order $<$ on S, where $R' = S/in_<(I)$.

The notion of Koszul algebra has played an important role in the research on graded K-algebras, and various Koszul-like algebras have been introduced, e.g., universally Koszul [3], strongly Koszul [12], initially Koszul [2], sequentially Koszul [1], etc.

Koszulness of toric rings of integral convex polytopes is studied. Let $\mathcal{P} \subset \mathbb{R}^n$ be an integral convex polytope, i.e., a convex polytope each of whose vertices belongs to \mathbb{Z}^n, and let $\mathcal{P} \cap \mathbb{Z}^n = \{a_1, \ldots, a_m\}$. Assume that $\mathbb{Z}a_1 + \cdots + \mathbb{Z}a_m = \mathbb{Z}^n$. Let $K[X^{\pm 1}, t] := K[x_1, x_1^{-1}, \ldots, x_n, x_n^{-1}, t]$ be the Laurent polynomial ring in $n + 1$ variables over K. Given an integer vector $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$, we put $X^at = x_1^{a_1} \cdots x_n^{a_n}t \in K[X^{\pm 1}, t]$. The toric ring of \mathcal{P}, denoted by $K[\mathcal{P}]$, is the subalgebra of $K[X^{\pm 1}, t]$ generated by $\{X^{a_1}t, \ldots, X^{a_m}t\}$ over K. Note that $K[\mathcal{P}]$ can be regarded as a standard graded K-algebra by setting $\deg X^{a_i}t = 1$. The toric ideal $I_{\mathcal{P}}$ is the kernel of a surjective ring homomorphism $\pi : K[Y] = K[y_1, \ldots, y_m] \to K[\mathcal{P}]$ defined...
by \(\pi(y_i) = X^{a_i}t \) for \(1 \leq i \leq m \). Then \(K[\mathcal{P}] \cong K[Y]/I_\mathcal{P} \). It is known that \(I_\mathcal{P} \) is generated by homogeneous binomials.

Note that the following implications hold:

\[\text{quadratic C.I.} \quad \Rightarrow \quad \text{quadratic Gorenstein} \quad \Rightarrow \quad \text{quadratic Cohen-Macaulay} \]

\[\text{Koszul algebra} \quad \uparrow [10] \quad \Leftrightarrow \quad I_\mathcal{P} \text{ has a quadratic GB} \quad \Leftarrow \quad I_\mathcal{P} \text{ has a quadratic squarefree initial ideal} \]

\[\text{sequentially Koszul} \quad \uparrow \quad \quad \Leftrightarrow \quad \text{initially Koszul} \quad \uparrow \quad \quad \quad \text{C.I.} = \text{Complete Intersection} \]

\[\text{strongly Koszul} \quad \downarrow \quad \quad \quad \quad \quad \quad \quad \quad \text{universally Koszul} \quad \downarrow \]

In addition, it is known the following:

(1) Conca-De Negri-Rossi posed a conjecture that the defining ideal of a strongly Koszul algebra has a quadratic Gröbner bases \([6\text{, Question 13 (1)}]\). This conjecture is true for the toric ring of edge polytope \([16]\), order polytope \([12]\), stable set polytope \([23]\) and cut polytope \([31]\).

(2) A squarefree strongly Koszul toric ring is compressed \([24\text{, Theorem 2.1]}\), where \(K[\mathcal{P}] \) is said to be compressed if \(\sqrt{\text{in}_\prec(I_\mathcal{P})} = \text{in}_\prec(I_\mathcal{P}) \) for any reverse lexicographic order \(\prec \) on \(K[Y] \). In particular, a squarefree strongly Koszul toric ring is quadratic Cohen-Macaulay.

(3) Many of toric rings associated with integral convex polytopes whose toric ideals has a quadratic Gröbner bases are constructed (e.g., \([3]\), \([13]\), \([15]\), \([17]\), \([18]\), \([19]\)). In other words, many of Koszul toric rings associated with
integral convex polytopes are constructed.

(4) Quadratic algebra is not always Koszul (see [27, Example 2.1], [30, Example 3]). Note that both of these examples are Cohen-Macaulay but are not Gorenstein.

On the other hand, Koszulness of Gorenstein quadratic algebras is studied. For a standard graded K-algebra $R = \oplus_{i \geq 0} R_i$ with $\dim R = d$, we denote by

$$H_R(t) = \sum_{i \geq 0} \dim_K R_i t^i = \frac{h_0 + h_1 t + \cdots + h_s t^s}{(1 - t)^d}$$

the Hilbert series of R, where $h_s \neq 0$, and we say that $h(R) := (h_0, h_1, \ldots, h_s)$ is the h-vector of R and the index s is the socle degree of R. It is known that $h_0 = 1$ and if R is Gorenstein then $h_i = h_{s-i}$ for all $0 \leq i \leq \lfloor s/2 \rfloor$ ([32 Theorem 4.4]). Conca-Rossi-Valla proved that if R is a quadratic Gorenstein with $h(R) = (1, n, 1)$ (in this case $n \geq 2$ since R is quadratic) then R is Koszul [7 Proposition 2.12].

The case for $s = 2$ is also studied. Let R be a quadratic Gorenstein with $h(R) = (1, n, 1)$ (in this case $n \geq 3$ since R is quadratic). If $n = 3$, then R is quadratic complete intersection, hence R is Koszul. Conca-Rossi-Valla proved that R is Koszul if $n = 4$ [7 Theorem 6.15] and Caviglia proved that R is Koszul if $n = 5$ in his unpublished master thesis. The case for $n \geq 6$ is still open.

In this note, we focus on (4). In Section 1, we remark about known result of toric rings and toric ideals of stable set polytopes, and construct non-Koszul quadratic Gorenstein toric rings by using stable set polytopes. In Section 2, we present some questions.

Remark 0.1. In this note, we use Macaulay2 [11] to check to be not Koszul. About checking of non-Koszulness by using Macaulay2, see [34, p. 289].

1. Stable set polytope and non-Koszul quadratic Gorenstein toric ring

The stable set polytope is an integral convex polytope associated with stable sets of a simple graph.

Let G be a finite simple graph on the vertex set $[n] = \{1, 2, \ldots, n\}$ and let $E(G)$ denote the set of edges of G. Recall that a finite graph is simple if it possesses no loops or multiple edges. We denote by \overline{G} the complement graph of G.

Given a subset $W \subset [n]$, we define the $(0, 1)$-vector $\rho(W) = \sum_{i \in W} e_i \in \mathbb{R}^n$, where e_i is the i-th unit coordinate vector of \mathbb{R}^n. In particular, $\rho(\emptyset)$ is the origin of \mathbb{R}^n.
A subset $W \subset [n]$ is said to be stable if $\{i, j\} \not\in E(G)$ for all $i, j \in W$ with $i \neq j$. Note that the empty set and each single-element subset of $[n]$ are stable. Let $S(G)$ denote the set of all stable sets of G. The stable set polytope of a simple graph G, denoted by Q_G, is the convex hull of $\{\rho(W) \mid W \in S(G)\}$. By definition, Q_G is a $(0, 1)$-polytope and $K[Q_G] = K[t \cdot \prod_{i \in W} x_i \mid W \in S(G)] \subset K[x_1, \ldots, x_n, t]$. Note that $\dim K[Q_G] = n + 1$. Let $K[Y] = K[y_W \mid W \in S(G)]$ be the polynomial ring over K. Now we define a surjective ring homomorphism $\pi : K[Y] \to K[Q_G]$ by $\pi(y_W) = t \cdot \prod_{i \in W} x_i$ and let $I_{Q_G} = \ker \pi$.

To state known results of the toric ring $K[Q_G]$ and the toric ideal I_{Q_G} of the stable set polytope Q_G of a simple graph G, we introduce some classes of graphs. About terminologies for the graph theory, see [8].

A cycle graph with length n, denoted by C_n, is a connected graph which satisfies $E(C_n) = \{\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}, \{1, n\}\}$. An odd cycle is a cycle such that its length is odd.

A graph G is said to be perfect if the chromatic number of every induced subgraph of G is equal to the size of the largest clique of that subgraph. A graph G is perfect if and only if both G and \overline{G} are $(C_{2n+3}, n \geq 1)$-free [1].

The comparability graph $G(P)$ of a partially ordered set $P = ([n], <_P)$ is the graph such that $V(G(P)) = [n]$ and $\{i, j\} \in E(G(P))$ if and only if $i <_P j$ or $j <_P i$. A graph G is said to be comparability if G is the comparability graph of some partially ordered set. Forbidden induced subgraphs of comparability graphs are known (see [22, p.13]).

A graph G is said to be bipartite if there exist V_1, V_2 with $V_1 \cup V_2 = V(G)$ and $V_1 \cap V_2 = \emptyset$ such that if $\{i, j\} \in E(G)$ then either $i \in V_1$ and $j \in V_2$ or $i \in V_2$ and $j \in V_1$. It is known that such a graph G is bipartite if and only if G is $(C_{2n+1}, n \geq 1)$-free.

A graph G is said to be almost bipartite (see [9, p.87]) if there exists a vertex v such that the induced subgraph $G_{[n] \setminus v}$ is bipartite.

Remark 1.1. It is known that

1. Let G be a perfect graph. Then $K[Q_G]$ is Gorenstein if and only if all maximal cliques of G have the same cardinality [28, Theorem 2.1(b)].

2. Let $G(P)$ be the comparability graph of a partially ordered set P. Then $K[Q_{G(P)}]$ is Koszul since $Q_{G(P)}$ is equal to the chain polytope of P and the toric ideal of a chain polytope has a squarefree quadratic initial ideal (see [14, Corollary 3.1]).

3. If G is almost bipartite, then $K[Q_G]$ is Koszul since its toric ideal I_{Q_G} has a squarefree quadratic initial ideal (see [9, Theorem 8.1]).
(4) Let G be a graph such that \overline{G} is bipartite. Then $K[Q_G]$ is quadratic if and only if it is Koszul [25, Corollary 3.4].

Hence, if $K[Q_G]$ is quadratic but not Koszul, then G is neither comparability nor almost bipartite, and \overline{G} is not bipartite. From this fact and the classifications of these graphs, we have

Proposition 1.2. Let G be a graph on $[n]$. If $K[Q_G]$ is non-Koszul quadratic Gorenstein, then $n \geq 7$.

Proof. First, we assume that $n \leq 5$. Then G is a comparability graph if G is not C_5. Since C_5 is almost bipartite, we have that $K[Q_G]$ is Koszul if $n \leq 5$.

Next, we assume that $n = 6$. If G is not connected, then G is a comparability graph if G is not $C_5 \cup K_1$. Since $C_5 \cup K_1$ is almost bipartite, we have that $K[Q_{G(P)}]$ is Koszul.

Assume that G is connected. From the classifications of comparability and almost bipartite graphs, G is one of the following (see [23, p.10]):

Then we can see that

- $K[Q_{G_1}]$ is not Gorenstein since $h(K[Q_{G_1}]) = (1, 7, 10, 3)$.
- $K[Q_{G_2}]$ is Koszul since $I_{Q_{G_2}}$ has a quadratic Gröbner bases.
- G_3 is C_6, hence bipartite.
- $K[Q_{G_4}]$ is not Gorenstein since $h(K[Q_{G_4}]) = (1, 6, 8, 2)$.
- $K[Q_{G_5}]$ is Koszul since $I_{Q_{G_5}} = I_{Q_{C_5}}$ and $I_{Q_{C_5}}$ has a quadratic Gröbner bases.

Therefore we have the desired conclusion. □

For each integer $k \geq 3$, the complement of a odd cycle C_{2k+1}, denoted by $\overline{C_{2k+1}}$, is neither comparability nor almost bipartite. Note that $\overline{C_{2k+1}}$ is not perfect and $S(\overline{C_{2k+1}}) = \{\emptyset, \{1\}, \{2\}, \ldots, \{2k+1\}, \{1, 2\}, \{2, 3\}, \ldots, \{2k, 2k+1\}, \{1, 2k+1\}\}$.

Let $K[Y] = K[y_0, y_1, \ldots, y_{2k+1}, y_{\{1,2\}}, y_{\{2,3\}}, \ldots, y_{\{2k,2k+1\}}, y_{\{1,2k+1\}}]$. Now we study the toric ring

$$K[Q_{\overline{C_{2k+1}}}] \cong \frac{K[Y]}{I_{Q_{\overline{C_{2k+1}}}}}.$$

Proposition 1.3. We have the following:
(1) \(K[\mathcal{Q}_{2k+1}]\) is quadratic Cohen-Macaulay for all \(k \geq 3\).
(2) \(K[\mathcal{Q}_{2k+1}]\) is not Gorenstein for all \(k \geq 4\).
(3) \(K[\mathcal{Q}_{2k+1}]\) is Gorenstein.
(4) \(I_{\mathcal{Q}_{2k+1}}\) possesses no quadratic Gröbner bases for all \(k \geq 3\).

Proof.
(1) First, by [25, Theorem 2.1], we have that \(K[\mathcal{Q}_{2k+1}]\) is normal. Hence \(K[\mathcal{Q}_{2k+1}]\) is Cohen-Macaulay. Moreover, by [25, Theorem 3.2], we have that the toric ideal \(I_{\mathcal{Q}_{2k+1}}\) is generated by the following 4\(k+2\) binomials:

- \(y(i)y(i+1) - y0y(i,i+1)\) \((1 \leq i \leq 2k)\);
- \(y(1)y(2k+1) - y0y(1,2k+1)\);
- \(y(i)y(i+1,i+2) - y(i+2)y(i,i+1)\) \((1 \leq i \leq 2k - 1)\);
- \(y(2k)y(1,2k+1) - y(1)y(2k,2k+1), y(2k+1)y(1,2) - y(2)y(1,2k+1)\).

Hence \(K[\mathcal{Q}_{2k+1}]\) is quadratic. Therefore \(K[\mathcal{Q}_{2k+1}]\) is quadratic Cohen-Macaulay.

(2) By (1), \(K[\mathcal{Q}_{2k+1}] \cong K[Y]/I_{\mathcal{Q}_{2k+1}}\) is Cohen-Macaulay with \(\dim K[\mathcal{Q}_{2k+1}] = 2k+2\). We note that \(y = y0, y(1), y(2), y(3), \ldots, y(2k-1), y(2k), y(2k+1)\) is a regular sequence of \(K[Y]/I_{\mathcal{Q}_{2k+1}}\). Then we have that

\[
\frac{K[Y]}{I_{\mathcal{Q}_{2k+1}} + (y)} \cong \frac{K[y(1), y(2), \ldots, y(2k+1)]}{I_{2k+1}}
\]

is a artinian quadratic Cohen-Macaulay ring, where \(I_{2k+1}\) is generated by the followings:

- \(y(i)y(i+1)\) \((1 \leq i \leq 2k)\);
- \(y(1)y(2k+1)\);
- \(y^2(i) - y(i-1)y(i+2)\) \((2 \leq i \leq 2k - 1)\);
- \(y^2(1) - y(3)y(2k+1), y^2(2k) - y(1)y(2k-1), y^2(2k+1) - y(2)y(2k)\).

Assume \(k \geq 4\). Then both \(y^2(2k+1) \cdot \prod_{i=1}^{k-1} y(2i)\) and

\[
\begin{align*}
\prod_{i=1}^{2k+1} y(3i) & \quad (k \equiv 1 \mod 3), \\
y(2k+1) \cdot \prod_{i=1}^{2k+1} y(3i) & \quad (k \equiv 2 \mod 3), \\
y^2(2k) \cdot \prod_{i=1}^{2k+1} y(3i) & \quad (k \equiv 0 \mod 3),
\end{align*}
\]
are socle elements of $K[y_{11}, y_{22}, \ldots, y_{(2k+1)2k+1}]/I_{2k+1}$, hence it is not Gorenstein. Therefore $K[Q_{c,2k+1}]$ is not Gorenstein for all $k \geq 4$.

(3) By the proof of (2), we have

$$\frac{K[Y]}{I_{Q_{c,7}} + (y)} \cong \frac{K[y_{11}, y_{22}, \ldots, y_{(7)7}]}{I_7}.$$

Let $<_{rev}$ be the reverse lexicographic order on $K[y_{11}, y_{22}, \ldots, y_{(7)7}]$ induced by the ordering $y_{11} < y_{22} < \cdots < y_{(7)7}$. Then the initial ideal in $<_{rev}(I_7)$ is generated by the following monomials:

$$(y_{11}y_{22}, y_{22}y_{33}, y_{33}y_{44}, y_{44}y_{55}, y_{55}y_{66}, y_{66}y_{77}, y_{11}y_{77}),
\ y_{11}^3, y_{11}^2y_{22}, y_{22}^2, y_{22}y_{33}, y_{33}^2, y_{33}y_{44}, y_{44}^2, y_{44}y_{55}, y_{55}^2, y_{55}y_{66}, y_{66}^2, y_{66}y_{77}, y_{77}^2, y_{77}y_{11}, y_{11}y_{22}, y_{22}y_{33}, y_{33}y_{44}, y_{44}y_{55}, y_{55}y_{66}, y_{66}y_{77}).$$

From this, we can compute that the Hilbert series of $\\in_{<_{rev}}(I_7)$ is $1 + 7t + 14t^2 + 7t^3 + t^4$. Hence $h(K[Q_{c,7}]) = (1, 7, 14, 7, 1)$, therefore it is Gorenstein.

(4) Assume that there exists a monomial order $<$ on $K[Y]$ such that the Gröbner bases of $I_{Q_{c,2k+1}}$ with respect to $<$ is quadratic.

We may assume that $y_{11}y_{22} < y_{33}y_{11}$. Then $y_{33}y_{44} < y_{55}y_{33}$ since $y_{55}y_{11}y_{22}y_{33} = y_{11}y_{22}y_{33}y_{55} \in I_{Q_{c,2k+1}}$ and its initial monomial is $y_{55}y_{11}y_{22}y_{33}$. Since $y_{77}y_{33}y_{44}y_{55} - y_{33}y_{44}y_{55}y_{66} \in I_{Q_{c,2k+1}}$ and its initial monomial is $y_{77}y_{33}y_{44}y_{55}$, we have $y_{55}y_{66} < y_{77}y_{55}$. By repeating this argument, we have

$$y_{11}y_{22} < y_{33}y_{11},
\ y_{33}y_{44} < y_{55}y_{33},
\ \cdots,
\ y_{(2k-2)}y_{(2k-1)}y_{(2k+1)} < y_{(2k+1)}y_{(2k-1,2k)},
\ y_{(2k+1)}y_{(1,2k)} < y_{(2k)}y_{(1,2k+1)},
\ y_{(2k)}y_{(3,4)} < y_{(4)}y_{(2,3)},
\ y_{(4)}y_{(5,6)} < y_{(6)}y_{(4,5)},
\ \cdots,
\ y_{(2k-2)}y_{(2k-1,2k)} < y_{(2k)}y_{(2k-2,2k-1)},
\ y_{(2k)}y_{(1,2k+1)} < y_{(1)}y_{(2k,2k+1)}.$$
We can construct an infinite family of non-Koszul quadratic Gorenstein toric rings by using stable set polytopes.

Proposition 1.5. Let $k \geq 1$ be an integer. Let G be a graph on $[2k + 7]$ such that $\overline{G} = C_7 \cup K_2 \cup \cdots \cup K_2$ and the labeling of vertices is as follows:

Then we have

1. $K[Q_G]$ is quadric Gorenstein such that

 $$H_{K[Q_G]}(t) = (1 + 7t + 14t^2 + 7t^3 + t^4)(1 + t)^k/(1 - t)^{2k+8}.$$

2. $K[Q_G]$ is not Koszul.

Proof. (1) By [25, Theorem 3.2], we have that the toric ideal I_{Q_G} is generated by the following binomials:

- $y(i)y(i+1) - y_0y_1, i+1$ ($1 \leq i \leq 6$);
- $y(1)y(7) - y_0y(1,7)$;
- $y(i)y(i+1,i+2) - y(i+2)y(i,i+1)$ ($1 \leq i \leq 5$);
- $y(6)y(1,7) - y(1)y(6,7), y(7)y(1,2) - y(2)y(1,7)$;
- $y(2i)y(2i+1) - y_0y(2i+1)$ ($4 \leq i \leq k+3$).

Let $K[Y] = K[y_W \mid W \in S(G)]$. Then $K[Q_G] \cong K[Y]/I_{Q_G}$. Note that

$$y = y_0, y(1) - y(2,3), y(2) - y(3,4), \ldots, y(5) - y(6,7), y(6) - y(1,7), y(7) - y(1,2),$$

$$y(8) - y(9), \ldots, y(2k+6) - y(2k+7), y(8,9), \ldots, y(2k+6,2k+7)$$

is a regular sequence of $K[Y]/I_{Q_G}$. Hence we have

$$\frac{K[Y]}{I_{Q_G} + (y)} \cong K[y_{(1)}, y_{(2)}, \ldots, y_{(7)}]/I_7 \otimes_K \frac{K[y_{(2i)} \mid 4 \leq i \leq k+3]}{(y_{(2i)}^2 \mid 4 \leq i \leq k+3)}.$$

Thus the Hilbert series of $K[Y]/I_{Q_G} + (y)$ is $(1 + 7t + 14t^2 + 7t^3 + t^4)(1 + t)^k$. Therefore we have the desired conclusion.

(2) $K[Q_{G'}]$ is a conbinatorial pure subring (see [26]) of $K[Q_G]$. Since $K[Q_{G'}]$ is not Koszul, hence $K[Q_G]$ is not Koszul by [26, Proposition 1.3]. \hfill \square
2. Questions

As the end of this note, we present some questions.

Recall that the h-vector of $K[Q_{7}]$ is $(1,7,14,7,1)$. Hence the following question is interesting.

Question 2.1. Does exist a non-Koszul quadratic Gorenstein algebra R such that $h(R) = (1,n_1,n_2,1,1)$ and $n_1 \leq 6$?

Note that, in this case $n_1 \geq 4$ since R is quadratic. Since $n_1 = \text{embdim } R - \text{dim } R$ and $\text{embdim } K[Q_G] = \# S(G) = 1 + n + \# \{ W \in S(G) \mid \# W \geq 2 \}$ and $\text{dim } K[Q_G] = n + 1$, if $\text{embdim } K[Q_G] - \text{dim } K[Q_G] \leq 6$, then $\# \{ W \in S(G) \mid \# W \geq 2 \} \leq 6$. In particular, we have $\alpha(G) = 2$, where $\alpha(G) := \max \{ \# W \mid W \in S(G) \}$ is the stability number of G. Since if G is perfect graph with $\alpha(G) = 2$ then G is bipartite, In this case G is not perfect.

Let G be a graph on $[n]$ and with $E(G)$ its edge set. The edge ring of G, denoted by $K[G]$, is defined by

$$K[G] := K[x_ix_j \mid \{i,j\} \in E(G)] \subset K[x_1, \ldots, x_n].$$

The second question is

Question 2.2. Does exist a graph G such that the edge ring $K[G]$ is non-Koszul quadratic Gorenstein ?

In [27, Theorem 1.2], a criterion for the edge ring $K[G]$ of G to be quadratic is given. Moreover, in [20], a class of graphs with the property that the toric ideal I_G of the edge ring $K[G]$ of G is quadratic but I_G possesses no quadratic Gröbner bases is studied. A graph G is said to be (\ast)-minimal if G satisfies the above property and every induced subgraph $H \subseteq G$ does not satisfy the property. By the computation by using Macaulay2, we have that if G is (\ast)-minimal and the edge ring $K[G]$ is non-Koszul quadratic Gorenstein, then $n \geq 9$.

Acknowledgment. The author wish to thank Professor Takayuki Hibi for his financial support.

References

[1] A. Aramova, J. Herzog and T. Hibi, Shellability of semigroup rings, *Nagoya Math. J.* 168 (2002), 65–84.

[2] S. Blum, Initially Koszul algebras, *Beiträge Algebra Geom.* 41 (2000), 455–467.

[3] T. Chappell, T. Friedl and R. Sanyal, Two double poset polytopes, [arXiv:1606.04938](https://arxiv.org/abs/1606.04938).

[4] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, *Ann. of Math. (2)* 164 (2006), 51–229.

[5] A. Conca, Universally Koszul algebras, *Math. Ann.* 317 (2000), 329–346.

[6] A. Conca, E. De Negri and M. E. Rossi, Koszul algebras and regularity, *Commutative algebra*, 285–315, Springer, New York, 2013.
[7] A. Conca, M. E. Rossi and G. Valla, Gr"obner flags and Gorenstein algebras, *Compositio Math.* **129** (2001), 95–121.

[8] R. Diestel, *Graph Theory*, Fourth edition, Grad. Texts Math. **173**, Springer, 2010.

[9] A. Engstr"om and P. Norén, Ideals of graph homomorphisms, *Ann. Comb.* **17** (2013), 71–103.

[10] R. Fr"oberg, Determination of a class of Poincaré series, *Math. Scand.* **37** (1975), 29–39.

[11] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.

[12] J. Herzog, T. Hibi and G. Restuccia, Strongly Koszul algebras, *Math. Scand.* **86** (2000), 161–178.

[13] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in “Commutative Algebra and Combinatorics” (M. Nagata and H. Matsumura, Eds.), Advanced Studies in Pure Math., Volume 11, North–Holland, Amsterdam, 1987, pp. 93 – 109.

[14] T. Hibi and N. Li, Chain polytopes and algebras with straightening laws, *Acta Math. Vietnam.* **40** (2015), 447–452.

[15] T. Hibi and K. Matsuda, Quadratic Gröbner bases of twinned order polytopes, *European J. Combin.* **54** (2016), 187–192.

[16] T. Hibi, K. Matsuda and H. Ohsugi, Strongly Koszul edge rings, *Acta Math. Vietnam.* **41** (2016), 69–76.

[17] T. Hibi, K. Matsuda, H. Ohsugi and K. Shibata, Centrally symmetric configurations of order polytopes, *J. Algebra* **443** (2015), 469–478.

[18] T. Hibi, K. Matsuda and A. Tsuchiya, Gorenstein Fano polytopes arising from order polytopes and chain polytopes, [arXiv:1507.03221](https://arxiv.org/abs/1507.03221).

[19] T. Hibi, K. Matsuda and A. Tsuchiya, Quadratic Gröbner bases arising from partially ordered sets, *Math. Scand.*, to appear.

[20] T. Hibi, K. Nishiyama, H. Ohsugi and A. Shikama, Many toric ideals generated by quadratic binomials possess no quadratic Gröbner bases, *J. Algebra* **408** (2014), 138–146.

[21] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, *Ann. of Math. (2)* **96** (1972), 318–337.

[22] F. Mancini, Graph modification problems related to graph classes, Dissertation, University of Bergen, 2008.

[23] K. Matsuda, Strong Koszulness of toric rings associated with stable set polytopes of trivially perfect graphs, *J. Algebra Appl.* **13** (2014), 1350138 [11 pages].

[24] K. Matsuda and H. Ohsugi, Reverse lexicographic Gröbner bases and strongly Koszul toric rings, *Math. Scand.*, to appear.

[25] K. Matsuda, H. Ohsugi and K. Shibata, Toric rings and ideals of stable set polytopes, [arXiv:1603.01850](https://arxiv.org/abs/1603.01850).

[26] H. Ohsugi, J. Herzog and T. Hibi, Combinatorial pure subrings, *Osaka J. Math.* **37** (2000), 745–757.

[27] H. Ohsugi and T. Hibi, Toric ideals generated by quadratic binomials, *J. Algebra* **218** (1999), 509–527.

[28] H. Ohsugi and T. Hibi, Special simplices and Gorenstein toric rings, *J. Combin. Theory Ser. A* **113** (2006), 718–725.

[29] S. B. Priddy, Koszul resolutions, *Trans. Amer. Math. Soc.* **152** (1970), 39–60.

[30] J.-E. Roos and B. Sturmfels, A toric ring with irrational Poincaré-Betti series, *C. R. Acad. Sci. Paris Sér. I Math.* **326** (1998), 141–146.

[31] K. Shibata, Strong Koszulness of the toric ring associated to a cut ideal, *Comment. Math. Univ. St. Pauli* **64** (2015), 71–80.
[32] R. P. Stanley, Hilbert functions of graded algebras, *Adv. Math.* 28 (1978), 57–83.

[33] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, RI, 1996.

[34] B. Sturmfels, Four counterexamples in combinatorial algebraic geometry, *J. Algebra* 230 (2000), 282–294.

[35] J. Tate, Homology of local and Noetherian rings, *Illinois J. Math.* 1 (1957), 14–27.

(Kazunori Matsuda) DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, SUITA, OSAKA 565-0871, JAPAN

E-mail address: kazu-matsuda@ist.osaka-u.ac.jp