K-TWISTED EQUIVARIANT K-THEORY
FOR SU(N)

Bin Zhang
Department of Mathematics
The State University of New York
Stony Brook, NY 11794-3651
bzhang@math.sunysb.edu *

Abstract

We present a version of twisted equivariant K-theory-K-twisted equivariant K-theory, and use Grothendieck differentials to compute the K-twisted equivariant K-theory of simple simply connected Lie groups. We did the calculation explicitly for SU(N) explicitly. The basic idea is to interpret an equivariant gerbe as an element of equivariant K-theory of degree 1.

1 Introduction

Let G be a finite dimensional simple Lie group, a classical question related to it is to understand the space Hom(π, G)/G, where π is a finitely presented group. This space Hom(π, G)/G is the moduli space of flat connections on a principal G-bundle on a manifold with fundamental group π. Because of Atiyah and Segal’s result [2], and the fact that K-theory is defined for a large class of geometric objects including usual topological spaces and non-commutative ones, our first approach is to study the equivariant K-theory of Hom(π, G). We get the answer for the case π = Z, i.e. the equivariant K-theory KG∗(G) ≅ Ω∗R(G)/Z[8] the algebra

*The author would like to thank the Max-Planck-Institut für Mathematik at Bonn for providing me the wonderful working environment and financial support during my visit at MPIM 06/06/2003-09/01/2003, where this work is finally done.
of Grothendieck differentials of the representation ring $R(G)$ of G over \mathbb{Z} when G is compact and the fundamental group is torsion free (the general situation is still open). This is the origin of our project about Grothendieck differentials in K-theory.

We get interested in twisted K-theory because of Freed-Hopkins-Teleman’s result on twisted equivariant K-theory and Verlinde algebras [9], [10], [11], that is for a Lie group G, the Verlinde algebra $V_k(G)$ at level k is twisted equivariant K-theory of G (with adjoint action) at particular degree. Unfortunately, they didn’t publish their proof yet. The main idea for this paper is to use Grothendieck differentials to give a partial proof of their result, and supply a candidate for the geometric definition of twisted K-theory.

The first question we need solve is to find a good geometric model for twisted equivariant K-theory. Let \mathbb{H} be a infinite dimensional separable Hilbert space, and $U = U(\mathbb{H})$ be the set of unitary operators on \mathbb{H}, we know that U is contractible. The group U has a natural subgroup $\{e^{i\theta}I\}$ which is isomorphic to S^1, let us denote the quotient group by PU. For a topological space X, in principle, a twistor is a principal PU-bundle over X, thus an element in $H^3(X, \mathbb{Z})$. Naturally a geometric realization of $H^3(X, \mathbb{Z})$ elements is needed. We already have a geometric realization of H^3 classes, i.e., gerbes [6]. Based on the idea of gerbes, there are some other geometric realizations, like bundle gerbes [17] or central extensions of groupoids [5] [19]. All these involves infinite dimensional objects. We are more interested in finite dimensional realization of gerbes, like [15] [12]. But how can we do twisting with gerbes? As far as I know, there is no clean geometric definition for twisted K-theory. The equivariant situation is more subtle, in this case, whether to use equivariant gerbes [7] to do twisting is questionable.

We present a solution to these questions in nice situation. We study the twisted equivariant K-theory of G (with adjoint action). In this case, we interpret an equivariant gerbe as an element of K^1, then based on this K^1 element, we give an intuitive definition of K-twisted equivariant K-theory. The paper is basically two parts. In the first part, we prove that an element in the equivariant cohomology $H^3_G(G)$ can be interpreted as an element of $K^1_G(G)$, and in the second part, we use the definition we give to do calculation for $SU(N)$ explicitly (in fact we did the calculation for classical groups, but for simplicity and to demonstrate the idea, we just present the case for $SU(N)$).
2 \text{ K-Twisted K-theory}

In the section, we first discuss the general picture of twisted \textit{K} theory and then present our definition for \textit{K}-twisted (equivariant) \textit{K}-theory.

\textit{K}-theory is a generalized cohomology theory \cite{1}. For a paracompact topological space \textit{X}, \textit{K}*(\textit{X}) has several equivalent definitions:

1. Geometric definition: equivalence classes of complex of vector bundles over \textit{X}.

2. Homotopic definition: Homotopy classes of maps: \([X,Fred],[X,Fred_{as}]\), where \(Fred\) and \(Fred_{as}\) are the set of Fredholm operators and self-adjoint operators in \(\mathbb{H}\).

3. Algebraic definition: \textit{K}-theory of \(C^\ast\)-algebra \(C_0(\textit{X})\).

Based on the homotopic definition of \textit{K}-theory, the general picture of the twisted \(\textit{K}\)-theory can be as follows. If we have a principal \(PU\)-bundle \textit{P} over \textit{X}, notice there are natural actions of \(PU\) on \(Fred\) and \(Fred_{as}\), we can form the spaces \(P \times_{PU} Fred = (P \times Fred)/PU\) and \(P \times_{PU} Fred_{as}\), which are fiber bundles over \textit{X}, then we can define the twisted \textit{K}-theory as the homotopy classes of sections of these two bundles. There are general definitions of twisted \textit{K}-theory from point of view of \(C^\ast\)-algebra, see \cite{16}, or \cite{19} for the equivariant cases for detail.

We are more interested in a geometric picture of twisted \textit{K}-theory, and if possible, a definition with finite dimensional objects.

The twistor, i.e., the principal \(PU\)-bundle over \textit{X} is classified by \(H^1(\textit{X},PU)\). The exact sequence of groups 1 \(\rightarrow S^1 \rightarrow U \rightarrow PU \rightarrow 1\) implies that \(PU\) is a model for \(BS^1\), the classifying space of \(S^1\). Thus \(H^1(\textit{X},PU) \cong H^2(\textit{X},S^1) \cong H^3(\textit{X},\mathbb{Z})\), So the twistor is classified by \(H^3(\textit{X},\mathbb{Z})\). The geometric construction of a class in \(H^3(\textit{X},\mathbb{Z})\) is a gerbe \cite{6}. In brief, we use a gerbe to do twisted \textit{K}-theory.

One might hope to use vector bundles to construct the twisted \textit{K}-theory geometrically. This is succeeded only in case that the twistor is a torsion element in \(H^3(\textit{X},\mathbb{Z})\) \cite{4}. In this case the twisted \textit{K}-theory is the Grothendieck group of the category of twisted bundles. The essential problem is the non-existence of finite dimensional twisted bundles in general.

The geometric picture for the twisted equivariant \textit{K}-theory is more subtle. Let \textit{G} be a topological group, \textit{X} be a \textit{G}-space, the equivariant \textit{K}-theory \(K^*_G(\textit{X})\) can be defined in the similar ways \cite{18}. The question in this case is what kind of twistor we can use. The natural generalization of non-equivariant case is the elements in \(H^3_G(X)\), the 3rd degree equivariant cohomology, in other words equivariant gerbes. But there is some problem if we use it to a geometric approach. The reason is that an element of \(H^3_G(X)\) is an object on \(EG \times_G X\), not exactly an equivariant object on
There is a question just like non-equivariant case, what kind geometric objects we can use, again the non-existence of twisted equivariant bundle is a problem.

There is another point of view for the whole picture. Let X be a finite dimensional object, for example, a finite dimensional manifold, then the Chern character $\text{ch}: K^1(X) \otimes \mathbb{Q} \cong H^{\text{odd}}(X, \mathbb{Q})$. So up to \mathbb{Z}-torsion, an element in $H^3(X, \mathbb{Z})$ can be viewed as an element in $K^1(X)$. This simple observation suggests the following intuitive definition of K-twisted K-theory.

DEFINITION 2.1 Let X be a topological space, and $\alpha \in K^1(X)$, the K-twisted K-theory $\alpha K^\ast(X)$ is the homology of the following complex,

$$\cdots \xrightarrow{\wedge \alpha} K^0(X) \xrightarrow{\wedge \alpha} K^1(X) \xrightarrow{\wedge \alpha} K^0(X) \xrightarrow{\wedge \alpha} \cdots$$

The desired properties of twisted K-theory are obvious from this Definition. This definition should agree with the homotopic definition in case α is a non-torsion element in $H^3(X, \mathbb{Z})$, and there should be a more general geometric definition of twisted K-theory which generalizes this definition and twisted bundle in the torsion case. We are working on this topic.

This definition can be easily generalized to the equivariant case,

DEFINITION 2.2 Let X be a topological space, G be a compact topological group acting on X, and $\alpha \in K^1_G(X)$, the K-twisted K-theory $\alpha K^\ast_G(X)$ is the homology of the following complex,

$$\cdots \xrightarrow{\wedge \alpha} K^0_G(X) \xrightarrow{\wedge \alpha} K^1_G(X) \xrightarrow{\wedge \alpha} K^0_G(X) \xrightarrow{\wedge \alpha} \cdots$$

3 The basic gerbe as an element of $K^1_G(G)$

Let G be a n-dimensional compact simple simply-connected Lie group of rank d, T be a maximal torus of G, and W be the Weyl group of G with respect to T. We use $R(G)$, $R(T)$ to denote the representation rings of G and T respectively. If $\chi_1, \chi_2, \ldots, \chi_d$ are the simple characters of T, then the character group $X^\ast(T) = \text{Hom}(T, S^1)$ is the free abelian group generated by $\chi_1, \chi_2, \ldots, \chi_d$, and the representation ring $R(T)$ is the group ring $\mathbb{Z}[X^\ast(T)] = \mathbb{Z}[\chi_1, \chi_2, \ldots, \chi_d, \chi_1^{-1}, \chi_2^{-1}, \ldots, \chi_d^{-1}]$. The Weyl group W acts on $R(T)$, the invariant subalgebra $R(T)_W$ is the representation ring $R(G)$, which is a polynomial ring generated by “basic” representations $\rho_1, \rho_2, \ldots, \rho_d$ corresponding to a choice of a set of simple roots.
The cohomology of T can be easily described in terms of these characters. The character $\chi_i : T \to S^1$ can be viewed as an element of $[X, S^1] \cong H^0(X, S^1) \cong H^1(X, \mathbb{Z})$, let us denote this element by η_i. By this way, we get a homomorphism of abelian groups $X^*(T) \to H^1(T, \mathbb{Z})$, and $H^*(T, \mathbb{Z}) \cong \wedge(\eta_1, \eta_2, \cdots, \eta_d)$.

The K-theory can be described in similar way. A character $\chi_i : T \to S^1 = U(1)$ defines a line bundle over the suspension of T, thus defines an element of $K^1(T)$, again we denote this element by η_i. Therefore we have a homomorphism between abelian groups $X^*(T) \to K^1(T)$, and $K^*(T) \cong \wedge(\eta_1, \eta_2, \cdots, \eta_d)$. In particular we see that there is an isomorphism $c : K^*(T) \cong H^*(T, \mathbb{Z})$, where the map is in fact the first chern class of bundles, and this map is equivariant under the action of Weyl group W.

Let X be a paracompact space, H be a compact topological group acting on X, then the equivariant cohomology is defined as $H^*_H(X) = H^*(EH \times_H X)$, where $EH \to BH$ is a universal principal H-bundle, BH is a classifying space for H. In particular, $H^*_H(pt) = H^*(BH)$, and the bundle map $EH \times_H X \to BH$ give $H^*_H(X)$ a $H^*_H(pt)$-module structure.

In the case of the torus T, the coefficient ring $H^*(BT)$ can also be described in terms of the character group $X^*(T)$. For any character $\chi : T \to S^1$, it defines a line bundle $ET \times_T C\chi$ over BT, the first chern class of this bundle gives an abelian group homomorphism: $X^*(T) \to H^2(BT)$, this induces an isomorphism between $H^*(BT)$ and the symmetric algebra S_T of $X^*(T)$. Notice that $H^*(BT)$ carries a natural action of the Weyl group W.

Let us consider G as a G-space with adjoint action, it is well-known that $H^*_G(G, \mathbb{Z}) \cong \mathbb{Z}$, and the generator (up to sign) is called the basic (equivariant) gerbe. There are several ways to describe this gerbe [5] [15] [12], the main result of this section is to present another way to view this basic gerbe.

Let us recall two lemmas about equivariant K-theory and equivariant cohomology of G [7] [8].

Lemma 3.1 For a compact simple simply-connected Lie group G,

$$H^*_G(G) \cong (H^*(BT) \otimes H^*(T))^W$$

Lemma 3.2 For a compact simple simply-connected Lie group G,

$$K^*_G(G) \cong (R(T) \otimes K^*(T))^W$$

Proposition 3.3 For a compact simple simply-connected Lie group G, the basic equivariant gerbe can be viewed as an element of $K^1_H(G)$.

5
Proof. By above lemmas,
\[H^3_G(G) \cong (H^0(BT) \otimes H^3(T) \oplus H^2(BT) \otimes H^1(T))^W \]
\[\subset (R(T) \otimes K^1(T))^W \cong K^1_G(G), \]
here, \(H^0(BT) \cong \mathbb{Z}, H^2(BT) \cong X^*(T) \) can be viewed as subset of \(R(T) \). \(\square \)

4 \(K \)-Twisted \(K \)-theory for \(SU(N) \)

In this section, we will use our definition of \(K \)-twisted equivariant \(K \)-theory and Grothendieck differentials to do the calculation for \(SU(N) \).

Let us first recall some background of Grothendieck differentials. Let \(A \subset B \) be commutative rings. The algebra of Grothendieck differentials \(\Omega^*_B/A \) \[\text{[13]}\] is the differential graded \(A \)-algebra constructed as follows:

Let \(F \) be the free \(B \)-module generated by all elements in \(B \), to be clear, we use \(db \) to denote the generator corresponding to \(b \in B \), so
\[F = \bigoplus_{b \in B} Bdb. \]
and let \(I \subset F \) be the \(B \)-submodule generated by
\[\left\{ \begin{array}{l}
 da, \forall a \in A \\
 d(b_1 + b_2) - db_1 - db_2, \forall b_1, b_2 \in B \\
 d(b_1b_2) - b_1db_2 - b_2db_1, \forall b_1, b_2 \in B
\end{array} \right\}, \]
we then get the quotient \(B \)-module
\[\Omega^*_B/A = F/I. \]

Let \(\Omega^0_B/A = B, \Omega^1_B/A = \Omega_B/A, \) and \(\Omega^p_B/A = \Lambda^p_B \Omega_B/A, p \). There is a differential:
\[d : \Omega^p_B/A \rightarrow \Omega^{p+1}_B/A, \] which maps \(b \in B \) to \(db \), then
\[\Omega^*_B/A = \bigoplus_{p=0}^{\infty} \Omega^p_B/A. \]
is the differential graded algebra of Grothendieck differentials of \(B \) over \(A \). It is the generalization of the algebra of differentials on affine spaces, for example, if \(B = A[x_1, \cdots, x_n] \), then \(\Omega^p_{A[x_1, \cdots, x_n]/A} = \bigoplus_{1 \leq i_1 < \cdots < i_p} A[x_1, \cdots, x_n]dx_{i_1} \wedge \cdots \wedge dx_{i_p}. \)
For any representation $\rho : G \to GL(V)$, it defines a vector bundle over the suspension of G, which is G-equivariant, so it defines an element $d\rho$ of $K^1_G(G)$. The main result in [8] is this defines an isomorphism $\Omega^*_R(G)/\mathbb{Z} \cong K^*_G(G)$, when $\pi_1(G)$ is torsion free.

This result applies to the case of a torus T. In terms of Grothendeick differentials, for any character χ_i of T, $d\chi_i = \chi_i \eta_i$, where η_i is the K-theory element or cohomology element of T constructed in the previous section, or in other words, $\eta_i = \frac{d\chi_i}{\chi_i}$.

In the case $G = SU(N)$, if we let ρ_i be the i-th elementary symmetric polynomial in $\chi_1, \chi_2, \cdots, \chi_N$, then $R(G) = \mathbb{Z}[\rho_1, \rho_2, \cdots, \rho_{N-1}]$, and the equivariant K-theory is $K^*_G(G) = \wedge_{R(G)}(d\rho_1, d\rho_2, \cdots, d\rho_{N-1})$.

PROPOSITION 4.1 For $SU(N)$, let δ be the basic gerbe, than as an element of $K^1_{SU(N)}(SU(N))$, is

$$\delta = \sum \chi_i \eta_i$$

$$n \delta = \sum \chi^{(n)}_i \eta_i$$

Let $\alpha = n \delta$, now we are going to calculate the K-twisted K-theory $^\alpha K^*_G(G)$ for $G = SU(N)$, we need a lemma.

LEMMA 4.2 Let $\alpha = \sum \chi^{(n)}_i dx_i$ $n \ge 0$, then the following complex is exact except at the last spot:

$$0 \to \mathbb{Z}[x_1, x_2, \cdots, x_N] \xrightarrow{\wedge \alpha} \mathbb{Z}[x_1, x_2, \cdots, x_N]dx_i \wedge \alpha \xrightarrow{\wedge \alpha} \cdots \xrightarrow{\wedge \alpha} \mathbb{Z}[x_1, x_2, \cdots, x_N]dx_1 \cdots dx_N \xrightarrow{\wedge \alpha} 0$$

Now it is a standard calculation to get K-twisted equivariant K-theory, in particular,

THEOREM 4.3 Let $\alpha = (N + k)\delta$, then $^\alpha K^N_{SU(N)}(SU(N))$ is the Verlinde algebra V_k of $SU(N)$ at level k.

Proof By the above lemma and taking W-invariants, the non-trivial term of $^\alpha K^N_{SU(N)}(SU(N))$ only appears in degree N. If $\alpha = a_i d\rho_i$ (These $a_i \in R(SU(N))$ are classical functions, for example see [14]), then the K-twisted equivariant K-theory is $^\alpha K^N_{SU(N)}(SU(N)) = R(SU(N))d\rho_1d\rho_2 \cdots d\rho_{N-1}/(a_1, a_2, \cdots a_{N-1})d\rho_1d\rho_2 \cdots d\rho_{N-1} \cong R(SU(N))/(a_1, a_2, \cdots a_{N-1})$, which is the Verlinde algebra at level k.

7
References

[1] M. F. Atiyah, K-theory. Lecture notes by D. W. Anderson W. A. Benjamin, Inc., New York-Amsterdam 1967

[2] M. F. Atiyah & G. Segal, On equivariant Euler characteristics. J. Geom. Phys. 6 (1989), no. 4, 671–677

[3] A. Borel, Seminar on transformation groups, Princeton, Princeton University Press, 1960

[4] P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray, & D. Stevenson, Twisted K-theory and K-theory of bundle gerbes, hep-th/0106194

[5] K. Behrend, P. Xu & B. Zhang, Equivariant gerbes over compact simple Lie groups. C. R. Math. Acad. Sci. Paris 336 (2003), no. 3, 251–256

[6] J-L. Brylinski, Loop spaces, characteristic classes and geometric quantization. Progress in Mathematics, 107. Birkhäuser Boston, Inc., Boston, MA, 1993.

[7] J-L. Brylinski, Gerbes on complex reductive Lie groups, math.DG/0002158

[8] J-L. Brylinski & B. Zhang, Equivariant K-theory of compact connected Lie groups. Special issues dedicated to Daniel Quillen on the occasion of his sixtieth birthday, Part I. K-Theory 20 (2000), no. 1, 23–36.

[9] D. Freed, The Verlinde algebra is twisted equivariant K-theory, math.RT/0101038

[10] D. Freed, Twisted K-theory and loop groups, math.AT/0206237

[11] D. Freed, M. Hopkins, & C. Teleman, Twisted equivariant K-theory with complex coefficients, math.AT/0206257

[12] K. Gawedzki & N. Reis, Basic gerbe over non simply connected compact groups, math.DG/0307010

[13] A. Grothendieck & J. Dieudonné, Eléments de Géométrie algébrique, Publ. Math. IHES 20 (1964), 116-153
[14] S. M. Gusein-Zade & A. Varchenko, Verlinde algebras and the intersection form on vanishing cycles. Selecta Math. (N.S.) 3 (1997), no. 1, 79–97

[15] E. Meinrenken, The basic gerbe over a compact simple Lie group, math.DG/0209194

[16] J. Rosenberg, Continuous-trace algebras from the bundle theoretic point of view. J. Austral. Math. Soc. Ser. A 47 (1989), no. 3, 368–381.

[17] M. Murray, Bundle gerbes, dg-ga/9407015

[18] G. B. Segal, Equivariant K-Theory, Publ. Math. IHES (Paris) 34 (1968), 129-151.

[19] J-L. Tu, P. Xu, & C. Laurent, Twisted K-theory of differentiable stacks, math.KT/0306138