SHARP CAPACITY ESTIMATES IN S-JOHN DOMAINS

CHANG-YU GUO

Abstract. It is well-known that several problems related to analysis on s-John domains can be unified by certain capacity lower estimates. In this paper, we obtain general lower bounds of p-capacity of a compact set E and the central Whitney cube Q_0 in terms of the Hausdorff q-content of E in an s-John domain Ω. Moreover, we construct several examples to show the essential sharpness of our estimates.

1. Introduction

Recall that a bounded domain $\Omega \subset \mathbb{R}^n$ is a John domain if there is a constant C and a point $x_0 \in \Omega$ so that, for each $x \in \Omega$, one can find a rectifiable curve $\gamma : [0,1] \to \Omega$ with $\gamma(0) = x$, $\gamma(1) = x_0$ and with

$$Cd(\gamma(t), \partial \Omega) \geq l(\gamma([0,t]))$$

for each $0 < t \leq 1$. F. John used this condition in his work on elasticity [13] and the term was coined by Martio and Sarvas [18]. Smith and Stegenga [21] introduced the more general concept of s-John domains, $s \geq 1$, by replacing (1.1) with

$$(1.2) \quad Cd(\gamma(t), \partial \Omega) \geq l(\gamma([0,t]))^s.$$

The condition (1.1) is called a “twisted cone condition” in literature. Thus condition (1.2) should be called a “twisted cusp condition”.

In the last twenty years, s-John domains has been extensively studied in connection with Sobolev type inequalities; see [3, 11, 9, 14, 17, 21]. In particular, Buckley and Koskela [3] have shown that a simply connected planar domain which supports a Sobolev-Poincaré inequality is an s-John domain for an appropriate s. Smith and Stegenga have shown that an s-John domain Ω is a p-Poincaré domain, provided $s < \frac{n}{n-1} + \frac{p-1}{n}$. In particular, if $s < \frac{n}{n-1}$, then Ω is a p-Poincaré domain for all $1 \leq p < \infty$. These results were further generalized to the case of (q,p)-Poincaré domains in [11, 14, 17]. Recall that a bounded domain $\Omega \subset \mathbb{R}^n$, $n \geq 2$, is said to be a (q,p)-Poincaré domain if there exists a constant $C_{q,p} = \ldots$
for all \(u \in C^\infty(\Omega) \). Here \(u_\Omega = \int_\Omega u(x)\,dx \). When \(q = p \), \(\Omega \) is termed a \(p \)-Poincaré domain and when \(q > p \) we say that \(\Omega \) supports a Sobolev-Poincaré inequality.

The recent studies \([1, 5, 7]\) on mappings of finite distortion have generated new interest in the class of \(s \)-John domains. In particular, uniform continuity of quasiconformal mappings onto \(s \)-John domains was studied in \([4, 6]\).

The proofs for both types of problems rely on certain capacity estimates for subsets of \(s \)-John domains. To be more precise, for the problem related to Sobolev-Poincaré inequalities, one uses the idea of Maz’ya \([19, 20]\) to reduce the problem to capacity estimates of the form

\[
\text{Cap}_p(E, Q_0, \Omega) \geq \psi(|E|),
\]

where \(Q_0 \) is the fixed Whitney cube containing the (John) center \(x_0 \) and \(E \) is an admissible subset of \(\Omega \) disjoint from \(Q_0 \); for \((1.3)\), \(\psi(t) = Ct^{p/q} \), see also \([8, 17]\). Here, by admissible we mean that \(E \) is an open set so that \(\partial E \cap \Omega \) is a smooth submanifold. As for the uniform continuity of quasiconformal mappings onto \(s \)-John domains, one essentially needs a capacity estimate of the form

\[
\text{Cap}_n(E, Q_0, \Omega) \geq \psi(\text{diam } E),
\]

where \(E \) is a continuum in \(\Omega \) disjoint from the central Whitney cube \(Q_0 \); see \([4]\). Thus one could expect that a more general capacity estimate of the form

\[
(1.4) \quad \text{Cap}_p(E, Q_0, \Omega) \geq \psi(\mathcal{H}_\infty^q(E))
\]

holds in certain \(s \)-John domains \(\Omega \), where \(E \) is a compact set in \(\Omega \) disjoint from the central Whitney cube \(Q_0 \) and \(\mathcal{H}_\infty^q(E) \) is the Hausdorff \(q \)-content of \(E \). We confirm this expectation by showing the following result.

Theorem 1.1. Let \(\Omega \subset \mathbb{R}^n, n \geq 2 \), be an \(s \)-John domain. For \(0 < \varepsilon < 1 \), \(1 \leq p \leq n \) and \(q \geq s(n-1) + 1 - p + \varepsilon \), there exists a positive constant \(C(n, p, q, s, \varepsilon) \) such that

\[
\text{Cap}_p(E, Q_0, \Omega) \geq C(n, p, q, s, \varepsilon) \left(\mathcal{H}_\infty^q(E) \right)^{\frac{s(n-1)+1-p+\varepsilon}{q}},
\]

whenever \(E \subset \Omega \) is a compact set disjoint from \(Q_0 \).

Remark 1.2. If \(p = n \), \(q = 1 \) and \(E \subset \Omega \) is a continuum, then \((1.5)\) reduces to the estimate

\[
\text{Cap}_n(E, Q_0, \Omega) \geq C(n, s, \varepsilon)(\text{diam } E)^{(n-1)(s-1)+\varepsilon}.
\]
The restriction becomes $1 \geq (s - 1)(n - 1) + \varepsilon$, which is equivalent to $s \leq 1 + \frac{p-\varepsilon}{n-1}$. The range for s is essentially sharp, see [6].

If $q = n$, then (1.5) reduces to the estimate

$$\text{Cap}_p(E, Q_0, \Omega) \geq C(n, s, \varepsilon)|E|^{\frac{(n-1)s+1-p+\varepsilon}{n}}.$$

The restriction becomes $s \leq 1 + \frac{p-\varepsilon}{n-1}$. Note that $1 + \frac{p}{n-1} > \frac{n}{n-1} + \frac{p-1}{n}$. This implies that if $s < 1 + \frac{p}{n-1}$, then Ω is a p-Poincaré domain. The range for s is sharp, see [11].

The estimate in Theorem 1.1 is essentially sharp in the sense that the exponent of $H_\infty^q(E)$ in (1.5) cannot be made strictly smaller than $\frac{s(n-1)+1-p}{q}$; see Example 1.1 below.

Our second result shows that the requirement $q \geq s(n-1) + 1 - p + \varepsilon$ is essentially sharp in the sense that there exists an s-John domain $\Omega \subset \mathbb{R}^n$ such that no estimate of the form as in (1.4) holds in Ω whenever $q < \min\{s(n-1) + 1 - p, n\}$. This is somewhat surprising since the estimate in (1.5) does not degenerate when $q < s(n-1) + 1 - p$.

Theorem 1.3. Fix $1 \leq p \leq n$. There exists an s-John domain $\Omega \subset \mathbb{R}^n$ such that there is a sequence of compact sets E_j in Ω with the following properties:

- Each E_j is disjoint from the central Whitney cube Q_0;
- $H_\infty^q(E_j)$ is bounded from below uniformly by a positive constant and $\text{Cap}_p(E_j, Q_0, \Omega) \to 0$ as $j \to \infty$, whenever $q < \min\{(n-1)s + 1 - p, n\}$.

It would be interesting to know whether one can obtain an estimate of the form as in (1.4) when $q = (n-1)s + 1 - p$.

When $q < \min\{(n-1)s + 1 - p, \log_2(2^n - 1)\}$, the s-John domain Ω constructed in Theorem 1.3 is in fact Gromov hyperbolic in the quasihyperbolic metric. This is very surprising, since it was proven in [4] that for all Gromov hyperbolic s-John domains Ω, an estimate of the form as in (1.4) holds when $p = n$, $q = 1$ and $E \subset \Omega$ is a continuum. Our example shows that one can not replace the assumption being a continuum by just being compact, and still obtain the estimate for all s-John domains. For definitions and examples of Gromov hyperbolic domains, we refer to the beautiful monograph [2].

2. Preliminary results

For an increasing function $\tau : [0, \infty) \to [0, \infty)$ with $\tau(0) = 0$, we denote by H_∞^τ the Hausdorff τ-content: $H_\infty^\tau(E) = \inf \sum_i \tau(r_i)$, where the infimum is taken over all coverings of $E \subset \mathbb{R}^n$ with balls $B(x_i, r_i)$, $i = 1, 2, \ldots$. When $\tau(t) = ts$ for some $0 < s < \infty$, we write $H_\infty^s = H_\infty^s$.
For disjoint compact sets E and F in the domain Ω, we denote by $\text{Cap}_p(E, F, \Omega)$ the p-capacity of the pair (E, F):

$$\text{Cap}_p(E, F, \Omega) = \inf_u \int_{\Omega} |\nabla u(x)|^p dx,$$

where the infimum is taken over all continuous functions $u \in W^{1,p}_{\text{loc}}(\Omega)$ which satisfy $u(x) \leq 0$ for $x \in E$ and $u(x) \geq 1$ for $x \in F$.

Let Ω be a bounded domain in \mathbb{R}^n, $n \geq 2$. Then $W_\lambda = W(\Omega)$ denotes a Whitney decomposition of Ω, i.e. a collection of closed cubes $Q \subset \Omega$ with pairwise disjoint interiors and having edges parallel to the coordinate axes, such that $\Omega = \bigcup_{Q \in W} Q$, the diameters of $Q \in W$ belong to the set $\{2^{-j} : j \in \mathbb{Z}\}$ and satisfy the condition $\text{diam}(Q) \leq \text{dist}(Q, \partial \Omega) \leq 4 \text{diam}(Q)$.

For $j \in \mathbb{Z}$ we define $W_j = \{Q \in W: \text{diam}(Q) = 2^{-j}\}$.

The following lemma is well-known, see for instance [15, Lemma 2.8].

Lemma 2.1. Fix $1 \leq p < \infty$. Let B_1, B_2, \ldots be balls or cubes in \mathbb{R}^n, $a_j \geq 0$ and $\lambda > 1$. Then

$$\| \sum a_j \chi_{\lambda B_j} \|_p \leq C(n, p, q, s, \varepsilon) \sum a_j \| \chi_{B_j} \|_p.$$

3. Main proofs

Proof of Theorem 1.1. The proof is a combination of several well-known arguments; in particular [8, Proof of Theorem 9] and [11, Proof of Theorem 5.9]. For any compact set $E \subset \Omega$ such that $E \cap Q_0 = \emptyset$, where Q_0 is the central cube that contains the John center x_0, we fix a test function u for $\text{Cap}_p(E, Q_0, \Omega)$, i.e. u is a continuous function in $W^{1,p}_{\text{loc}}(\Omega)$ so that $u \geq 1$ on E and $u \leq 0$ on Q_0. We may assume that $\text{diam} \Omega = 1$.

For each $x \in E$, we may fix an s-John curve γ joining x to x_0 in Ω and define $P(x)$ to be the collection of Whitney cubes that intersect γ. Thus $Q(x) \in P(x)$ will be the Whitney cube containing the point x. We next divide our compact set E into the good part and the bad part according to the range of u_Q. Let $G = \{x \in E : u_{Q(x)} \leq \frac{1}{2}\}$ and $B = E \setminus G$.

Claim 1: for $1 \leq p \leq n$ and $q \geq s(n-1) + 1 - p + \varepsilon$, there exists a positive constant $C(n, p, q, s, \varepsilon)$ such that

$$\int_{\Omega} |\nabla u(x)|^p dx \geq C(n, p, q, s, \varepsilon) \left(\mathcal{H}_s^q(B) \right)^{\frac{q(n-1)+1-p+\varepsilon}{q}}.$$

Proof of Claim 1: Fix $1 \leq p \leq n$, $q \geq s(n-1) + 1 - p + \varepsilon$ and set $\Delta = \frac{2}{s}$. Let $Q_i, i = 1, \ldots, m$ be those Whitney cubes that intersect B. Fix one such Whitney cube Q_{i_0} and let x_{i_0} be its center. Let $Q_{i_0}^j, j = 1, \ldots, k$
be the Whitney cubes in $P(x_{i_0})$ with $Q^k_{i_0} = Q_{i_0}$. The standard chaining argument involving Poincaré inequality \[21\] gives us the estimate

$$1 \lesssim \sum_{j=1}^k \text{diam } Q^j_{i_0} \int_{Q^j_{i_0}} |\nabla u(y)| dy.$$

Hölder’s inequality implies

$$1 \lesssim \left(\sum_{j=0}^k r_j^{(1-\kappa)p/(p-1)} \right)^{(p-1)/p} \left(\sum_{j=0}^k r_j^{\kappa p-n} \int_{Q^j_{i_0}} |\nabla u|^p \right)^{1/p},$$

where $r_j = \text{diam } Q^j_{i_0}$ and $\kappa = \frac{s + p - 1 - \Delta}{sp}$. Using the s-John condition, one can easily conclude

$$\sum_{j=0}^k r_j^{(1-\kappa)p/(p-1)} < C.$$

Therefore,

\begin{equation}
\sum_{j=0}^k r_j^{\kappa p-n} \int_{Q^j_{i_0}} |\nabla u|^p \geq C,
\end{equation}

where the constant C depends only on p, n, Δ and the constant from the s-John condition.

By the s-John condition $Cr_j \geq |x - y|^{s}$, for $y \in Q^j_{i_0}$, and since $\kappa p - n < 0$ according to our choice $p \leq n$, we obtain

$$r_j^{\kappa p-n} \lesssim |x - y|^{s(\kappa p-n)}$$

for $y \in Q^j_{i_0}$. For $y \in Q^j_{i_0} \cap (2^{j+1}Q_{i_0} \setminus 2^jQ_{i_0})$, we have $|x - y| \approx 2^j r_k$ and hence for such y,

\begin{equation}
r_j^{\kappa p-n} \lesssim (2^j r_k)^{s(\kappa p-n)}.
\end{equation}

Combining \(3.2\) with \(3.3\) leads to

$$1 \lesssim \sum_{j=0}^k r_j^{\kappa p-n} \int_{Q^j_{i_0}} |\nabla u|^p \lesssim (r_k)^{s(\kappa p-n)} \int_{Q_{i_0}} |\nabla u|^p$$

$$+ \sum_{j=0}^k (2^j r_k)^{s(\kappa p-n)} \int_{(2^{j+1}Q_{i_0} \setminus 2^jQ_{i_0}) \cap \Omega} |\nabla u|^p$$

$$\lesssim \sum_{l=0}^{\lfloor \log r_k \rfloor + 1} (2^l r_k)^{s(\kappa p-n)} \int_{2^l Q_{i_0} \cap \Omega} |\nabla u|^p.$$

On the other hand,

$$\sum_{l=0}^{\lfloor \log r_k \rfloor + 1} (2^l r_k)^{\Delta} < r_k^{\Delta} \sum_{l=-\infty}^{\lfloor \log r_k \rfloor + 1} 2^{l \Delta} < C.$$
Combining the above two estimates, we conclude that there exists an l (depending on Δ and hence ε) such that
\[
(2^lr_k)\Delta \lesssim (2^lr_k)^{s(np-n)} \int_{2^Q_0 \cap \Omega} |\nabla u|^p.
\]
It follows that,
\[
\int_{\Omega \cap 2^Q_0} |\nabla u|^p \gtrsim (2^lr_k)^{s(np-n)+\Delta} = (2^lr_k)^{s(n-1)+1-p+\varepsilon}.
\]
In other words, there exists an $R_x \geq d(x, \partial \Omega)/2$ with
\[
\left(\int_{\Omega \cap B(x, R_x)} |\nabla u|^p\right) \lesssim \left(\int_{\Omega \cap B(x, R_x)} |\nabla u|^p\right)^{\frac{s(n-1)+1-p+\varepsilon}{q}} \gtrsim R_x^q.
\]
Applying the Vitali covering lemma to the covering $\{B(x, R_x)\}_{x \in E}$ of the set \mathcal{B}, we can select pairwise disjoint balls B_1, \ldots, B_k, \ldots such that $\mathcal{B} \subset \bigcup_{i=1}^\infty 5B_i$. Let r_i denote the radius of the ball B_i. Then
\[
\mathcal{H}^q_\infty(\mathcal{B}) \leq \sum_{i=1}^\infty (\text{diam } 5B_i)^q = 5^q \sum_{i=1}^\infty r_i^q \lesssim \sum_{i=1}^\infty \left(\int_{\Omega \cap B_i} |\nabla u|^p\right)^{\frac{s(n-1)+1-p+\varepsilon}{q}}.
\]
The desired capacity estimate follows by noticing the elementary inequality
\[
\sum_i a_i^b \lesssim \left(\sum_i a_i^b\right)^b, \quad b \geq 1.
\]

Claim 2: for $n - q < p \leq n$ and $0 < \varepsilon < p + q - n$,
\[
(3.4) \quad \int_{\Omega} |\nabla u(x)|^p dx \geq C(p, q, n, \varepsilon) \left(\mathcal{H}^q_\infty(\mathcal{G})\right)^{\frac{n-p+\varepsilon}{q}}.
\]

Proof of Claim 2: Fix $n - q < p \leq n$ and $0 < \varepsilon < p + q - n$. Our aim is to show that
\[
(3.5) \quad \int_{2Q(x)} |\nabla u(x)|^p dx \geq C(p, s, n) \mathcal{H}^s_\infty(\mathcal{G} \cap Q(x))
\]
for any $n - p < s \leq n$. We adapt the argument from [11, Proof of Theorem 5.9].

Fix $n - p < s \leq n$. For $y \in \mathcal{G}$, $u_{Q(y)} \leq \frac{1}{2}$. For $x \in \mathcal{G} \cap Q(y)$, write $Q_i = Q(x, r_i)$, where $r_i = 2^{-i-1} \text{diam } Q(y)$. Then
\[
u(x) = \lim_{i \to \infty} u_{Q_i} = \lim_{i \to \infty} \int_{Q_i} u.
\]
Now
\[
\frac{1}{2} \leq |u(x) - u_{Q_0}| \leq \sum_{i \geq 0} |u_{Q_i} - u_{Q_{i+1}}|.
\]
Since by the Poincaré inequality
\[|u_{Q_i} - u_{Q_{i+1}}| \leq C(n) r_i \left(r_i^{-s} \int_{Q_i} |\nabla u|^p \right)^{\frac{1}{p}}, \]
we obtain that
\[\frac{1}{2} \leq \sum_{i=1}^{\infty} C(n) r_i \left(r_i^{-s} \int_{Q_i} |\nabla u|^p \right)^{\frac{1}{p}} \leq C(p, s, n) (\text{diam } Q(y))^{\frac{p+q-n}{p}} \sup_{0<t\leq \text{diam } Q(y)} \left(t^{-s} \int_{Q(x,t)} |\nabla u|^p \right)^{\frac{1}{p}} \leq C(p, s, n) \sup_{0<t\leq \text{diam } Q(y)} \left(t^{-s} \int_{Q(x,t)} |\nabla u|^p \right)^{\frac{1}{p}}. \]
Thus, for each \(x \in \mathcal{G} \cap Q(y) \), there is a cube \(Q(x, t_x) \) such that \(t_x \leq \text{diam } Q(y) \) and that
\[t_x^s \leq C(p, s, n) \int_{Q(x,t_x)} |\nabla u|^p. \]

By Vitali we can find pairwise disjoint cubes \(Q_1, Q_2, \ldots \) as above such that \(\mathcal{G} \cap Q(y) \subset \bigcup 5Q_i \). Then
\[\mathcal{H}^s_\infty (\mathcal{G} \cap Q(y)) \leq C(p, s, n) \sum_{i=1}^{\infty} \int_{Q_i} |\nabla u|^p \leq C(p, s, n) \int_{2Q(y)} |\nabla u|^p. \]
Thus the proof of (3.5) is complete.

We next show that for \(n - q < p \leq n \) and for fixed \(0 < \varepsilon < p + q - n \), the following estimate holds.
\[(3.6) \quad \int_{2Q(x)} |\nabla u(x)|^p dx \geq C(p, q, n, \varepsilon) \left(\mathcal{H}^q_\infty (\mathcal{G} \cap Q(x)) \right)^{\frac{n-p+\varepsilon}{q}} \]
Let \(\varepsilon > 0 \) be as above. We set \(s = n - p + \varepsilon \). Then \(s < q \). Now (3.6) follows from (3.5) and the trivial estimate
\[\left(\mathcal{H}^q_\infty (E) \right)^{\frac{1}{q}} \lesssim \mathcal{H}^s_\infty (E). \]
Taking into account the sub-additivity of Hausdorff \(q \)-content and concavity of the function \(t \mapsto t^{\frac{n-p+\varepsilon}{q}} \), (3.4) follows immediately from (3.6) and Lemma 2.1.

\[\Box \]
4. Examples

Example 4.1. We will use the standard “rooms and corridors” type domains. This type of domains consists of a central cube shaped room along with an infinite disjoint collection of cube shaped rooms which are connected to the central room by narrow cylindrical corridors; see Figure 1.

For each \(j \in \mathbb{N} \), the attached cube shaped room \(E_j \) is of edge length \(r_j \) and the narrow cylindrical corridor is of radius \(r^s_j \) and height \(r_j \). We can ensure that the rooms and corridors are pairwise disjoint by requiring the sequence \(\{r_j\}_{j \in \mathbb{N}} \) to decrease to zero sufficiently rapidly.

It is clear that \(\Omega \) is an \(s \)-John domain.

![Figure 1. The standard “room and corridors” type domain](image)

For \(s < \frac{p+q-1}{n-1} \), we may choose \(\varepsilon > 0 \) such that \(q \geq s(n-1)+1-p+\varepsilon \). Then it is easy to obtain the following estimate:

\[
\text{Cap}_p(E_j, Q_0, \Omega) \leq C r_j^{(n-1)s-p+1} \leq C \mathcal{H}_\infty^q(E_j)^{\frac{(n-1)s-p+1}{q}}
\]

Noticing that \(r_j \to 0 \) as \(j \to \infty \), this implies that the exponent of \(\mathcal{H}_\infty^q(E) \) in Theorem 1.1 is essentially best possible.

Example 4.2. Fix \(p \in [1, n], n \geq 2 \). There exists an \(s \)-John domain \(\Omega \) in \(\mathbb{R}^n \) such that there is a sequence of compact sets \(E_j \) in \(\Omega \) with the following two properties:
Each E_j is disjoint from the central Whitney cube Q_0;
- $\mathcal{H}_\infty^q(E_j)$ is bounded from below uniformly by a positive constant and $\text{Cap}_p(E_j, Q_0, \Omega) \to 0$ as $j \to \infty$, whenever $n - 1 \leq q < \min\{(n - 1)s + 1 - p, n\}$.

The idea of the construction of such an s-John domain is the following: we first construct a John domain Ω_0 such that the number N_j of Whitney cubes of size (comparable to) $r_j = 2^{-j}$ in Ω_0 is approximately 2^{qj}. We then build a “room and s-passage” Q_s in each Whitney cube $Q \subset \Omega_0$ and $Q \neq Q_0$, where Q_0 is the central Whitney cube containing the John center; see Figure 3. If the Whitney cube Q is of edge length $4r_j$, then the attached room shaped cube is of side length r_j and the corresponding s-passage is of radius r_j^s and height r_j.

![Figure 2. “room and s-passage” type replacement](image)

Let E_j be the union of all the room shaped cube of edge length r_j. Then we have the following trivial upper estimate

$$\text{Cap}_p(E_j, Q_0, \Omega) \leq CN_j \cdot r_j^{(n-1)s-p+1} \leq Cr_j^{(n-1)s-p-q+1}.$$

Thus $\text{Cap}_p(E_j, Q_0, \Omega) \to 0$ whenever $q < (n - 1)s - p + 1$. On the other hand, noting that all the cubes in E_j are well separated, to estimate the Hausdorff q-content, one has to cover each such cube by a ball of the same size (since otherwise the ball will intersects two cubes and substantially increases the radius). Thus we have

$$\mathcal{H}_\infty^q(E_j) \geq CN_j \cdot r_j^q \geq C.$$

To construct a John domain with the desired property, one essentially needs to construct a John domain Ω_0 such that $\text{dim}_M(\partial \Omega_0) = q$ when $q \in [n - 1, n)$, where dim_M denotes the upper Minkowski dimension. With this understood, one can select certain Von Koch type curve as the boundary of a John domain; see [10, Proposition 5.2] for the detailed construction of such a John domain Ω_0. It is clearly that the “room and s-passage” type replacement described above turns Ω_0 into an s-John domain Ω. In fact, $\text{dim}_M(\partial \Omega_0) = \text{dim}_M(\partial \Omega) = q$. For these facts, see [10] Proposition 5.11 and Proposition 5.16.
Example 4.3. Fix $1 \leq p \leq n$. There exists an s-John domain, which is Gromov hyperbolic in the quasihyperbolic metric, such that there is a sequence of compact sets E_j in Ω with the follow properties:

- Each E_j is disjoint from the central Whitney cube Q_0;
- $H^q_\infty(E_j)$ is bounded from below uniformly by a positive constant and $\text{Cap}_p(E_j, Q_0, \Omega) \to 0$ as $j \to \infty$, whenever $q < \min\{(n - 1)s + 1 - p, \log_2(2^n - 1)\}$.

We first give a detailed construction of the s-John domain Ω in the plane with the desired properties. Fix $1 \leq p \leq 2$. We first consider the case $q = \log_2 3$. The s-John domain Ω will be constructed by an inductive process. In the first step, we have a unit cube Q and four “room and s-passage” type “legs” as in Figure 3. The “s-passage” R_1 is a rectangle of length 2^{-1} and width 2^{-s-1} and the “room” Q_1 is a cube of edge-length 2^{-1}. In the second step, we attach at each of the three corners of Q_1 a “room and s-passage” type “legs”. The “s-passage” R_2 is a rectangle of length 2^{-2} and width 2^{-2s-1} and the “room” Q_2 is a cube of edge-length 2^{-2}. In general at step j, we have $4 \cdot 3^{j-1}$ “room and s-passage” type “legs”, where the “s-passage” R_j is a rectangle of length 2^{-j} and width 2^{-js-1} and the “room” Q_j is a cube of edge-length 2^{-j}. It is easy to check that, with our choices of parameters, there is no overlap in our construction. Moreover, Ω is an s-John domain that is Gromov hyperbolic in the quasihyperbolic metric (since Ω is simply connected).

![Figure 3](image.png)

Figure 3. The s-John domain $\Omega \subset \mathbb{R}^2$

We choose E_j to be the union of all the cubes at step j, i.e. the collection of $4 \cdot 3^{j-1}$ (disjoint) cubes of edge-length 2^{-j}. Noting that all the cubes at step j are well separated, to estimate the Hausdorff q-content, one has to cover each such cube by a ball of the same size.
(since otherwise the ball will intersects two cubes and substantially increases the radius). Note also that \(q = \log_2 3 \) and so it follows that
\[
\mathcal{H}^q_\infty (E_j) \geq C 4 \cdot 3^{j-1} \cdot 2^{-qj} = C.
\]
On the other hand,
\[
\text{Cap}_p(E_j, Q_0, \Omega) \leq C 4 \cdot 3^{j-1} \cdot 2^{-j(s-p+1)} \leq C 2^{-j(s-p-q+1)}.
\]
If \(q < s - p + 1 \), then \(\text{Cap}_p(E_j, Q_0, \Omega) \to 0 \) as \(j \to \infty \) as desired.

Next we consider the case \(q < \min\{ s - p + 1, \log_2 3 \} \). This case is easier and we only need to delete some “room and s-passage” type “legs” from the previous construction. To be more precise, we choose \(k_j \in \mathbb{N} \) to be an integer such that \(k_j - 1 \leq 2^{qj} \leq k_j \). The construction of the desired s-John domain can be proceeded in a similar way. In the first step, we have a unit cube \(Q \) and \(k_1 \) “room and s-passage” type “legs” as in the previous construction. The “s-passage” \(R_1 \) is a rectangle of length \(2^{-1} \) and width \(2^{-s-1} \) and the “room” \(Q_1 \) is a cube of edge-length \(2^{-1} \). In the second step, we fix \(k_2 \) corners of all the cubes of edge-length \(2^{-1} \) in step 1, and attach at each corner a “room and s-passage” type “legs”. The “s-passage” \(R_2 \) is a rectangle of length \(2^{-2} \) and width \(2^{-2s-1} \) and the “room” \(Q_2 \) is a cube of edge-length \(2^{-2} \). In general at step \(j \), we have \(k_j \) “room and s-passage” type “legs”, where the “s-passage” \(R_j \) is a rectangle of length \(2^{-j} \) and width \(2^{-js-1} \) and the “room” \(Q_j \) is a cube of edge-length \(2^{-j} \).

Let \(E_j \) be the union of all the cubes at step \(j \), i.e. the collection of \(k_j \) (disjoint) cubes of edge-length \(2^{-j} \). It is clear that
\[
\mathcal{H}^q_\infty (E_j) \geq C k_j \cdot 2^{-qj} \geq C.
\]
On the other hand, we have
\[
\text{Cap}_p(E_j, Q_0, \Omega) \leq C k_j \cdot 2^{-j(s-p+1)} \leq C 2^{-j(s-p-q+1)}.
\]
If \(q < s - p + 1 \), then \(\text{Cap}_p(E_j, Q_0, \Omega) \to 0 \) as \(j \to \infty \) as desired.

We can construct similar examples in \(\mathbb{R}^n, n \geq 3 \). Fix \(1 \leq p \leq n \). Consider the difficult case \(q = \log_2 (2^n - 1) \). The s-John domain \(\Omega \) will be constructed in a similar manner as before. In the first step, we have a unit cube \(Q \) and \(2^n \) “room and s-passage” type “legs”. The “s-passage” \(R_1 \) is a cylinder of height \(2^{-1} \) and radius \(2^{-s-1} \) and the “room” \(Q_1 \) is a cube of edge-length \(2^{-1} \). In the second step, we attach at each of the \(2^n - 1 \) corners of \(Q_1 \) a “room and s-passage” type “legs”. The “s-passage” \(R_2 \) is a cylinder of height \(2^{-2} \) and radius \(2^{-2s-1} \) and the “room” \(Q_2 \) is a cube of edge-length \(2^{-2} \). In general at step \(j \), we have \(2^n \cdot (2^n - 1)^{j-1} \) “room and s-passage” type “legs”, where the “s-passage” \(R_j \) is a cylinder of height \(2^{-j} \) and radius \(2^{-js-1} \) and the “room” \(Q_j \) is a cube of edge-length \(2^{-j} \). It is easy to check that, with our choices of parameters, there is no overlap in our construction. Moreover, \(\Omega \) is an
s-John domain that is Gromov hyperbolic in the quasihyperbolic metric. Indeed, one can easily verify that every quasihyperbolic geodesic triangle in Ω is δ-thin for some $\delta < \infty$.

We choose E_j to be the union of all the cubes at step j, i.e. the collection of $2^n \cdot (2^n - 1)^{j-1}$ (disjoint) cubes of edge-length 2^{-j}. Note that $q = \log_2(2^n - 1)$ and we obtain that

$$\mathcal{H}_\infty^q(E_j) \geq C 2^n \cdot (2^n - 1)^{j-1} \cdot 2^{-qj} = C.$$

On the other hand,

$$\text{Cap}_p(E_j, Q_0, \Omega) \leq C 2^n \cdot (2^n - 1)^{j-1} \cdot 2^{-j[(n-1)s-p+1]} \leq C 2^{-j[(n-1)s-p-q+1]}.$$

If $q < (n-1)s-p+1$, then $\text{Cap}_p(E_j, Q_0, \Omega) \to 0$ as $j \to \infty$ as desired.

The case $q < \log_2(2^n - 1)$ can be proceeded as in the planar case by deleting the extra number of “room and s-passage” type “legs” and we leave the simple verification to the interested readers.

Acknowledgements

The author would like to thank his supervisor Academy Professor Pekka Koskela for posing this question and for helpful discussions.

REFERENCES

[1] K.Astala, T.Iwaniec and G.Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, Princeton, NJ, 2009.

[2] M.Bonk, J.Heinonen and P.Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque No. 270 (2001), viii+99 pp.

[3] S.Buckley and P.Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (1995), no. 5, 577-593.

[4] C.Y.Guo, Uniform continuity of quasiconformal mappings onto generalized John domains, Ann. Acad. Sci. Fenn. Math. (to appear)

[5] C.Y.Guo, Generalized quasidisks and conformality II, Proc.Amer.Math.Soc. (to appear)

[6] C.Y.Guo and P.Koskela, Sharpness of uniform continuity of quasiconformal mappings onto s-John domains, submitted 2013.

[7] C.Y.Guo, P.Koskela and J.Takkinen, Generalized quasidisks and conformality, Publ.Mat., 58 (2014), no. 1, 193-212.

[8] P.Hajlasz and P.Koskela, Isoperimetric inequalities and imbedding theorems in irregular domains, J. London Math. Soc. (2) 58 (1998), no. 2, 425-450.

[9] P.Hajlasz and P.Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688.

[10] P.Harjulehto, R.Hurri-Syrjänen, and A.V.Vähäkangas, On the (1,p)-Poincaré inequality, Illinois J.Math. (to appear).

[11] J.Heinonen and P.Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61.

[12] S.Hencl and P.Koskela, Quasihyperbolic boundary conditions and capacity: uniform continuity of quasiconformal mappings, J. Anal. Math. 96 (2005), 19-35.

[13] F.John, Rotation and strain, Comm. Pure Appl. Math. 14(1961), 391-413.
[14] T.Kilpeläinen and J.Malý, Sobolev inequalities on sets with irregular boundaries, Z. Anal. Anwendungen 19 (2000), no. 2, 369-380.
[15] P.Koskela, Lectures on quasiconformal and quasisymmetric mappings, Jyv.Lect.Math.1, in press.
[16] P.Koskela, J.Omnlinen and J.T.Tyson, Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings, Comment. Math. Helv. 76 (2001), no. 3, 416-435.
[17] P.Koskela, J.Omnlinen and J.T.Tyson, Quasihyperbolic boundary conditions and Poincaré domains, Math. Ann. 323 (2002), no. 4, 811-830.
[18] O.Martio and J.Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383-401.
[19] V.G.Maz’ya, Classes of domains and imbedding theorems for function spaces, Dokl. Akad. Nauk SSSR 133 527–530 (Russian); translated as Soviet Math. Dokl. 1 (1960) 882–885.
[20] V.G.Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 342. Springer, Heidelberg, 2011. xxviii+866 pp.
[21] W.Smith and D.A.Stegenga, Hölder and Poincaré domains, Trans. Amer. Math. Soc. 319 (1990), 67-100.

(Chang-Yu Guo) DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF JYVÄSKYLA, P.O. BOX 35, FI-40014 UNIVERSITY OF JYVÄSKYLA, FINLAND
E-mail address: changyu.c.guo@jyu.fi