Position and mode dependent optical detection back-action in cantilever beam resonators

T Larsen1,2, S Schmid1,3, S Dohn1, J E Sader4, A Boisen1 and L G Villanueva1,2,5

1 DTU Nanotech, Technical University of Denmark (DTU), Lyngby, DK-2800, Denmark
2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
3 Institute of Sensor and Actuator Systems, Vienna University of Technology, 1040 Vienna, Austria
4 School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia

E-mail: guillermo.villanueva@epfl.ch

Received 12 August 2016, revised 18 November 2016
Accepted for publication 12 January 2017
Published 31 January 2017

Abstract

Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 μW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 μW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.

Keywords: optical detection back-action, stiffness tuning, stiffness tuning, mechanical resonator

(Some figures may appear in colour only in the online journal)
power of 1.7 mW. More recently, Nieva et al [37] have also shown the importance of curvature on the resonance frequency of bimorph cantilevers. However, the majority of cantilever beams are monomaterial, as it is the case for Si cantilevers for AFM. Historical Stoney’s equation is of great importance and it has been revisited a number of times to describe its limitations when dealing with cantilevers and to modify it for cases with non-uniform stresses [34, 37–39].

In this work we study the effect of the laser position on the resonance frequency of a monomaterial cantilever. A heating laser (100 µW) is used to locally heat the cantilever, while a low power readout laser (1 µW) is positioned at the cantilever tip. We show that positive and negative changes in the resonance frequency can’t be explained solely by temperature induced changes in mechanical properties and dimensions but the effect of a local stress gradient has to be accounted for, too.

2. Experiments

We select one of the most common materials in MEMS for the production of our structures: non-stoichiometric (silicon-rich) silicon nitride (SiN$_r$). Cantilever structures are fabricated using a simple 2 step lithography process, see figure 1(A). Silicon oxide is grown on a silicon wafer via thermal oxidation. Silicon-rich silicon nitride is subsequently deposited.
using low pressure chemical vapor deposition (LPCVD). Using photoresist as etch mask, reactive ion etching is used to pattern the silicon nitride on the front and backside of the wafer. Anisotropic KOH etching from the backside while mechanically protecting the front side followed by HF etching are used to release the cantilevers. An optical micrograph of the released cantilevers can be seen in figure 1(B). The cantilevers have similar dimensions to other examples found in the literature with thickness \(t \) of 500 nm, width \(w \) of 100 \(\mu \)m and length \(L \) between 460 \(\mu \)m and 630 \(\mu \)m. The characterization of the cantilevers is performed in vacuum \(P \leq 10^{-5} \) mbar, at room temperature. An external piezoelectric shaker is used for the actuation and a Polytec laser-Doppler vibrometer to detect the motion. In order to have a more stable experiment, we use the detecting laser with minimum power (1 \(\mu \)W) focused at the free end of the cantilever (figure 1(B)—bright spot). The resonance frequency is monitored simultaneously for the three first out-of-plane flexural modes. Two types of experiment were performed: (i) uniform heating of the cantilever and (ii) local heating with the heating laser. The former case is performed by using a PID controlled Peltier element to heat the cantilever chip. The steady state frequency is determined, which practically corresponded to a 99% convergence to the final value. In the latter case, the heating laser (100 \(\mu \)W) is moved along the cantilever surface (figure 1(B), inset, dark spots). At each of those points the laser is alternatively switched on-off at a rate of 0.2 Hz in order to perform a differential measurement of the heating effect.

3. Results and discussion

We first analyze the frequency shift due to a uniform heating to gain some insight into the material properties of the ensemble we use. The experimental results (not shown) provide a relative frequency change over temperature for the first, second and third flexural mode of \(-350 \text{ ppm K}^{-1}\), \(-90 \text{ ppm K}^{-1}\), and \(-60 \text{ ppm K}^{-1}\), respectively, where ppm stands for parts per million. The observed temperature dependences are linear around room temperature. As mentioned above, the uniform heating changes material properties, dimensions and, as a second order effect, it introduces stress near the clamping region of the cantilever. It is evident that this latter effect (stress tuning) has to be taken into account, as changes in material properties or dimensions would yield mode-independent relative changes. By fitting FEM results to our measurements we obtain the following set of material properties for SiN\(_x\): \(\frac{\Delta E}{E} / \Delta T \approx -50 \text{ ppm K}^{-1} \) (temperature dependence of Young’s modulus), CTE \(\approx 2.5 \text{ ppm K}^{-1} \) (coefficient of thermal expansion), and \(\sigma_0 \approx 200 \text{ MPa} \) (tensile intrinsic stress).

Then we analyze the effect of local heating by a laser. Thermal expansion caused by the heating laser generates localized stress peaking at the laser spot position. The observed relative frequency shifts for the first three flexural modes as a function of heating laser position are plotted in figure 2 for the case of a 460 \(\mu \)m long cantilever. A similar trend is observed for a 630 \(\mu \)m long cantilever. The shifts for each mode are relative to the frequency measured with no heating. The results shown in figure 2 evidence a non-uniform response across the cantilever that is fundamentally different depending on the mode shape. The higher the resonant mode, the more complex the response becomes when moving the heating source along the cantilever. The observed dependence on the resonance mode, e.g. one mode shows a negative change while another a positive, can again not solely be explained by temperature induce changes in material properties.

Using the material properties extracted from the previous experiment, we perform another round of FE simulations to reproduce the laser-heating experiment (see figure 3). The resonance frequencies of the first three modes are simulated while moving a heat source along and across the cantilever surface (figure only shows the results for the central line). The simulations capture the trend for all three modes, showing both position and mode dependences, and yielding a thermal conductivity for the utilized silicon-rich silicon nitride of \(\kappa \approx 150 \text{ W m}^{-1} \text{K}^{-1} \). Our Finite Element Simulations can be performed decoupling completely the effect of changes in material properties (e.g. Young’s modulus), changes in dimensions and changes due to stress. These simulations show that the latter effect dominates by almost 2 orders of magnitude the other two.

Therefore, the presented results provide further evidence that (surface) stress affects the cantilever resonance frequencies. In addition, the results show that such stress effects are dependent on the spatial distribution and on the resonant mode number. Previous reported experimental studies have, to our knowledge, not revealed details at this level [27, 30, 31].
The main reason why we can observe this mode-shape dependence is because our cantilevers are monomaterial, i.e. we do not have any curvature effects [30, 40]. The observed dependence along the longitudinal axis of the cantilever is related to the interaction of thermally generated local strain/stress distribution and the mechanical stress associated to the motion (proportional to the second derivative of the mode shape).

It is important to emphasize the significance of the results in figures 2 and 3, as they provide a roadmap to minimize optical detection back-action on the resonance frequency of a cantilever during sensing experiments. In order to optimize transduction efficiency, the preferred locations for the laser spot on a cantilever are typically those where either the displacement or its first derivative is maximized. This is done so that the signal-to-noise ratio is maximized and thus the noise in the determination of the frequency is minimized [25]. However, fluctuations of the laser power or position can directly feed into the system as frequency noise. Consequently, the position-dependent sensitivity to optical detection back-action has to be taken into account when choosing the readout laser position for an optimum operation.

For the sake of illustrating our point, let us assume an optical detection setup that has two sources of noise affecting the transduction of the motion, i.e. system noise (e.g. shot noise, amplifier noise, laser power fluctuations, etc) and thermomechanical noise. Let us also assume that the system noise level is 10 times smaller than the thermomechanical noise when the latter is maximum. Figure 4 shows the arbitrarily scaled Allan Deviation (a magnitude quantifying the frequency noise) for the fundamental mode as a function of the laser spot location when considering only the system noise, the thermomechanical noise or the combination of both. For system noise only, the Allan Deviation decays when moving towards to tip due to the increasing signal and constant noise. The Allan deviation for the thermomechanical noise is flat as both noise and amplitude are proportional to the mode shape. Let us now assume that the laser power is not completely stable. In that case, as discussed above, we would see frequency jittering that would be directly caused by the fluctuations of the laser power. Figure 4 also shows the Allan deviation that results from taking such power variations into account for two (arbitrary) levels of back-action. As can be seen, the laser location for an optimized frequency stability changes when optical back-action can’t be neglected. A similar reasoning can be used when the experimental setup is prone to vibrations that affect the laser position along the cantilever. In this latter case, however, back-action effects are proportional to the spatial derivative of the curves shown in figure 3, thus yielding a different location of the optimum readout position.

4. Conclusion

In conclusion we have observed that the laser beam on a cantilever can lead to positive or negative changes in resonance frequency depending of the positioning of the laser beam and the specific resonant mode of interest. The observed behavior cannot be explained purely by temperature-induced changes in mechanical properties. Global curvature of the structures does not suffice either, as our structures are monolayer and thus curvature effects are suppressed. The effect of local stress gradients has to be taken into account, and this is evident in the observed mode-shape dependence of our results. Using two rounds of FE simulations and matching them to our experimental results we are able to extract the cantilever’s material properties. These results provide a roadmap to minimize frequency noise. Importantly, the effects of back-action should be quantified in each experimental setup in order to be able to optimize frequency resolution. Our findings put into perspective most of long-standing assumptions about the optimal location of a laser spot when characterizing small mechanical devices.
References

[1] Lavrik N V, Sepaniak M J and Datskos P G 2004 Cantilever transducers as a platform for chemical and biological sensors Rev. Sci. Instrum. 75 2229–53
[2] Boisen A et al 2011 Cantilever-like micromechanical sensors Rep. Prog. Phys. 74 036101
[3] Calleja M et al 2012 Challenges for nanomechanical sensors in biological detection Nanoscale 4 4925–38
[4] Hanay M S et al 2015 Inertial imaging with nanomechanical systems Nat. Nanotechnol. 10 339–44
[5] Godin M et al 2010 Using buoyant mass to measure the growth of single cells Nat. Methods 7 87–90
[6] Rief M et al 1997 Reversible unfolding of individual titin immunoglobulin domains by AFM Science 276 1109–12
[7] Villanueva G et al 2008 Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces Microelectron. Eng. 85 1120–3
[8] Villanueva G et al 2006 Piezoresistive cantilevers in a commercial CMOS technology for intermolecular force detection Microelectron. Eng. 83 1302–5
[9] Villanueva L G and Schmid S 2014 Evidence of surface loss as ubiquitous limiting damping mechanism in SiN micro- and nanomechanical resonators Phys. Rev. Lett. 113 227201
[10] Wain A J, Pollard A J and Richter C 2014 High-resolution electrochemical and topographical imaging using batch-fabricated cantilever probes Anal. Chem. 86 5143–9
[11] Binnig G, Quate C F and Gerber C 1986 Atomic force microscopy Phys. Rev. Lett. 56 930–3
[12] Villanueva G et al 2007 DRIE based novel technique for AFM probes fabrication Microelectron. Eng. 84 1132–5
[13] Harley J A and Kenny T W 1999 High-sensitivity piezoresistive cantilevers under 1000 angstrom thick Appl. Phys. Lett. 75 289–91
[14] Ivaldi P et al 2011 50 nm thick AIN film-based piezoelectric cantilevers for graviometric detection J. Micromech. Microeng. 21 085023
[15] Venstra W J et al 2009 Magnetomotive drive and detection of clamped–clamped mechanical resonators in water Appl. Phys. Lett. 95 263103
[16] Arcamone J et al 2010 Efficient capacitive transduction of high-frequency micromechanical resonators by intrinsic cancellation of parasitic feedthrough capacitances Appl. Phys. Lett. 97 043505
[17] Liu N et al 2008 Time-domain control of ultrahigh-frequency nanomechanical systems Nat. Nanotechnol. 3 715–9
[18] Wilson D J et al 2015 Measurement-based control of a mechanical oscillator at its thermal decoherence rate Nature 524 325–9
[19] Purdy T P, Peterson R W and Regal C A 2013 Observation of radiation pressure shot noise on a macroscopic object Science 339 801–4
[20] Teufel J D et al 2009 Nanomechanical motion measured with an imprecision below that at the standard quantum limit Nat. Nanotechnol. 4 820–3
[21] Chan J et al 2011 Laser cooling of a nanomechanical oscillator into its quantum ground state Nature 478 89–92
[22] Wilson-Rae I et al 2007 Theory of ground state cooling of a mechanical oscillator using dynamical backaction Phys. Rev. Lett. 99 093901
[23] Gray J M et al 2012 Low–frequency noise in gallium nitride nanowire mechanical resonators Appl. Phys. Lett. 101 233115
[24] Zhang E et al 2017 Frequency fluctuations in piezomagnetic detection in preparation
[25] Sansa M et al 2016 Frequency fluctuations in silicon nanoresonators Nat. Nanotechnol. 11 552–8
[26] Gavartin E, Verlot P and Kippenberg T J 2013 Stabilization of a linear nanomechanical oscillator to its thermodynamic limit Nat. Commun. 4 2860
[27] Gil-Santos E et al 2013 Optical back-action in silicon nanowire resonators: bolometric versus radiation pressure effects New J. Phys. 15 035001
[28] Lachut M J and Sader J E 2012 Effect of surface stress on the stiffness of thin elastic plates and beams Phys. Rev. B 85 085440
[29] Lachut M J and Sader J E 2007 Effect of surface stress on the stiffness of cantilever plates Phys. Rev. Lett. 99 206102
[30] Pini V et al 2011 Shedding light on axial stress effect on resonance frequencies of nanocantilevers ACS Nano 5 4269–75
[31] Karabalin R B et al 2012 Stress-induced variations in the stiffness of micro- and nanocantilever beams Phys. Rev. Lett. 108 236101
[32] Lagowski J, Gatos H C and Sproles E S 1975 Surface stress measurement to surface stress measurement J. Appl. Phys. Lett. 99 5592–9
[33] Gurtin M E, Markenscoff X and Thurston R N 1976 Effect of surface stress on natural frequency of thin crystals J. Appl. Phys. Lett. 29 529–30
[34] Tamayo J et al 2012 Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation Nanoletters 23 475702
[35] Lachut M J and Sader J E 2013 Buckling of a cantilever plate uniformly loaded in its plane with applications to surface stress and thermal loads J. Appl. Phys. 113 024501
[36] Fritz J et al 2000 Translating biomolecular recognition into nanomechanics Science 288 316–8
[37] Najah Sohi A and Nieva P M 2016 Frequency response of curved bilayer microcantilevers with applications to surface stress measurement J. Appl. Phys. 119 044503
[38] Zhang Y and Zhao Y P 2006 Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer J. Appl. Phys. 99 053513
[39] Zhang Y 2007 Deflections and curvatures of a film-substrate bilayer structure with the presence of gradient stress in MEMS applications J. Micromech. Microeng. 17 753–62
[40] Vassalli M, Pini V and Tribilbi B 2010 Role of the driving laser position on atomic force microscopy cantilevers excited by photothermal and radiation pressure effects Appl. Phys. Lett. 97 143105