On the spectral theory of groups of automorphisms of S-adic nilmanifolds

BACHIR BEKKA and YVES GUIVARC’H

IRMAR, UMR-CNRS 6625 Université de Rennes 1, Campus Beaulieu,
F-35042 Rennes Cedex, France
(e-mail: bachir.bekka@univ-rennes1.fr, yves.guivarch@univ-rennes1.fr)

(Received 15 November 2021 and accepted in revised form 10 March 2023)

Abstract. Let $S = \{p_1, \ldots, p_r, \infty\}$ for prime integers p_1, \ldots, p_r. Let X be an S-adic compact nilmanifold, equipped with the unique translation-invariant probability measure μ. We characterize the countable groups Γ of automorphisms of X for which the Koopman representation κ on $L^2(X, \mu)$ has a spectral gap. More specifically, let Y be the maximal quotient solenoid of X (thus, Y is a finite-dimensional, connected, compact abelian group). We show that κ does not have a spectral gap if and only if there exists a Γ-invariant proper subsolenoid of Y on which Γ acts as a virtually abelian group.

Key words: nilmanifolds, Koopman representation, spectral theory
2020 Mathematics Subject Classification: 37A05 (Primary); 22F30, 60B15, 60G50 (Secondary)

1. Introduction

Let Γ be a countable group acting measurably on a probability space (X, μ) by measure-preserving transformations. Let $\kappa = \kappa_X$ denote the corresponding Koopman representation of Γ, that is, the unitary representation of Γ on $L^2(X, \mu)$ given by

$$\kappa(\gamma)\xi(x) = \xi(\gamma^{-1}x) \quad \text{for all} \quad \xi \in L^2(X, \mu), \quad x \in X, \quad \gamma \in \Gamma.$$

We say that the action $\Gamma \curvearrowright (X, \mu)$ of Γ on (X, μ) has a spectral gap if the restriction κ_0 of κ to the Γ-invariant subspace

$$L^2_0(X, \mu) = \left\{ \xi \in L^2(X, \mu) : \int_X \xi(x) \, d\mu(x) = 0 \right\}$$

does not weakly contain the trivial representation 1_Γ; equivalently, if κ_0 does not have almost invariant vectors, that is, there is no sequence $(\xi_n)_n$ of unit vectors in $L^2_0(X, \mu)$ such that

$$\lim_n \| \kappa_0(\gamma)\xi_n - \xi_n \| = 0 \quad \text{for all} \quad \gamma \in \Gamma.$$
The existence of a spectral gap admits the following useful quantitative version. Let \(\nu \) be a probability measure on \(\Gamma \) and \(\kappa_0(\nu) \) the convolution operator defined on \(L^2_0(X, \mu) \) by

\[
\kappa_0(\nu)\xi = \sum_{\gamma \in \Gamma} \nu(\gamma) \kappa_0(\gamma)\xi \quad \text{for all} \ \xi \in L^2_0(X, \mu).
\]

Observe that we have \(\|\kappa_0(\nu)\| \leq 1 \) and hence \(r(\kappa_0(\nu)) \leq 1 \) for the spectral radius \(r(\kappa_0(\nu)) \) of \(\kappa_0(\mu) \). Assume that \(\nu \) is aperiodic, that is, the support of \(\nu \) is not contained in the coset of a proper subgroup of \(\Gamma \). Then the action of \(\Gamma \) on \(X \) has a spectral gap if and only if \(r(\kappa_0(\nu)) < 1 \) and this is equivalent to \(\|\kappa_0(\nu)\| < 1 \); for more details, see the survey [Bekk16].

In this paper we will be concerned with the case where \(X \) is an \(S \)-adic nilmanifold, to be introduced below, and \(\Gamma \) is a subgroup of automorphisms of \(X \).

Fix a finite set \(\{p_1, \ldots, p_r\} \) of integer primes and set \(S = \{p_1, \ldots, p_r, \infty\} \). The product

\[
Q_s := \prod_{p \in S} Q_p = Q_\infty \times Q_{p_1} \times \cdots \times Q_{p_r}
\]

is a locally compact ring, where \(Q_\infty = \mathbb{R} \) and \(Q_p \) is the field of \(p \)-adic numbers for a prime \(p \). Let \(\mathbb{Z}[1/S] = \mathbb{Z}[1/p_1, \cdots, 1/p_r] \) denote the subring of \(\mathbb{Q} \) generated by \(1 \) and \(\{1/p_1, \ldots, 1/p_r\} \). Through the diagonal embedding

\[
\mathbb{Z}[1/S] \rightarrow Q_s, \quad b \mapsto (b, \cdots, b),
\]

we may identify \(\mathbb{Z}[1/S] \) with a discrete and cocompact subring of \(Q_s \).

If \(G \) is a linear algebraic group defined over \(\mathbb{Q} \), we denote by \(G(R) \) the group of elements of \(G \) with coefficients in \(R \) and determinant invertible in \(R \), for every subring \(R \) of an overfield of \(\mathbb{Q} \).

Let \(U \) be a linear algebraic unipotent group defined over \(\mathbb{Q} \), that is, \(U \) is an algebraic subgroup of the group of \(n \times n \) upper triangular unipotent matrices for some \(n \geq 1 \). The group \(U(\mathbb{Q}_S) \) is a locally compact group and \(\Lambda := U(\mathbb{Z}[1/S]) \) is a cocompact lattice in \(U(\mathbb{Q}_S) \). The corresponding \(S \)-adic compact nilmanifold

\[
\text{Nil}_S = U(\mathbb{Q}_S)/U(\mathbb{Z}[1/S])
\]

will be equipped with the unique translation-invariant probability measure \(\mu \) on its Borel subsets.

For \(p \in S \), let \(\text{Aut}(U(\mathbb{Q}_p)) \) be the group of continuous automorphisms of \(U(\mathbb{Q}_p) \). Set

\[
\text{Aut}(U(\mathbb{Q}_S)) := \prod_{p \in S} \text{Aut}(U(\mathbb{Q}_p))
\]

and denote by \(\text{Aut}(\text{Nil}_S) \) the subgroup

\[
\{g \in \text{Aut}(U(\mathbb{Q}_S)) \mid g(\Lambda) = \Lambda\}.
\]

Every \(g \in \text{Aut}(\text{Nil}_S) \) acts on \(\text{Nil}_S \) preserving the probability measure \(\mu \).
The abelian quotient group

\[\mathbf{U}(\mathbb{Q}_S) := \mathbf{U}(\mathbb{Q}_S)/[\mathbf{U}(\mathbb{Q}_S), \mathbf{U}(\mathbb{Q}_S)] \]

can be identified with \(\mathbb{Q}^d_S \) for some \(d \geq 1 \) and the image \(\Delta \) of \(\mathbf{U}(\mathbb{Z}[1/S]) \) in \(\mathbf{U}(\mathbb{Q}_S) \) is a cocompact and discrete subgroup of \(\mathbf{U}(\mathbb{Q}_S) \); so,

\[\text{Sol}_S := \mathbf{U}(\mathbb{Q}_S)/\Delta \]

is a solenoid (that is, is a finite-dimensional, connected, compact abelian group; see [HeRo63, §25]). We refer to \(\text{Sol}_S \) as the \(S \)-adic solenoid attached to the \(S \)-adic nilmanifold \(\text{Nil}_S \). We equip \(\text{Sol}_S \) with the probability measure \(\nu \) which is the image of \(\mu \) under the canonical projection \(\text{Nil}_S \to \text{Sol}_S \).

Observe that \(\text{Aut}(\mathbb{Q}^d_S) \) is canonically isomorphic to \(\prod_{s \in S} \text{GL}_d(\mathbb{Q}_s) \) and that \(\text{Aut}(\text{Sol}_S) \) can be identified with the subgroup \(\text{GL}_d(\mathbb{Z}[1/S]) \). The group \(\text{Aut}(\text{Nil}_S) \) acts naturally by automorphisms of \(\text{Sol}_S \); we denote by

\[p_S : \text{Aut}(\text{Nil}_S) \to \text{GL}_d(\mathbb{Z}[1/S]) \subset \text{GL}_d(\mathbb{Q}) \]

the corresponding representation.

Theorem 1. Let \(\mathbf{U} \) be an algebraic unipotent group defined over \(\mathbb{Q} \) and \(S = \{p_1, \ldots, p_r, \infty\} \), where \(p_1, \ldots, p_r \) are integer primes. Let \(\text{Nil}_S = \mathbf{U}(\mathbb{Q}_S)/\mathbf{U}(\mathbb{Z}[1/S]) \) be the associated \(S \)-adic nilmanifold and let \(\text{Sol}_S \) be the corresponding \(S \)-adic solenoid, respectively equipped with the probability measures \(\mu \) and \(\nu \) as above. Let \(\Gamma \) be a countable subgroup of \(\text{Aut}(\text{Nil}_S) \). The following properties are equivalent.

(i) The action \(\Gamma \curvearrowright (\text{Nil}_S, \mu) \) has a spectral gap.

(ii) The action \(p_S(\Gamma) \curvearrowright (\text{Sol}_S, \nu) \) has a spectral gap, where \(p_S : \text{Aut}(\text{Nil}_S) \to \text{GL}_d(\mathbb{Z}[1/S]) \) is the canonical homomorphism.

Actions with spectral gap of groups of automorphisms (or more generally groups of affine transformations) of the \(S \)-adic solenoid \(\text{Sol}_S \) have been completely characterized in [BeFr20, Theorem 5]. The following result is an immediate consequence of this characterization and of Theorem 1. For a subset \(T \) of \(\text{GL}_d(\mathbb{K}) \) for a field \(\mathbb{K} \), we denote by \(T^t = \{g^t \mid g \in T\} \) the set of transposed matrices from \(T \).

Corollary 2. With the notation as in Theorem 1, the following properties are equivalent.

(i) The action of \(\Gamma \) on the \(S \)-adic nilmanifold \(\text{Nil}_S \) does not have a spectral gap.

(ii) There exists a non-zero linear subspace \(W \) of \(\mathbb{Q}^d \) which is invariant under \(p_S(\Gamma)^t \) and such that the image of \(p_S(\Gamma)^t \) in \(\text{GL}(W) \) is a virtually abelian group.

Here is an immediate consequence of Corollary 2.

Corollary 3. With the notation as in Theorem 1, assume that the linear representation of \(p_S(\Gamma)^t \) in \(\mathbb{Q}^d \) is irreducible and that \(p_S(\Gamma)^t \) is not virtually abelian. Then the action \(\Gamma \curvearrowright (\text{Nil}_S, \mu) \) has a spectral gap.
Recall that the action of a countable group \(\Gamma \) by measure-preserving transformations on a probability space \((X, \mu)\) is strongly ergodic (see [Schm81]) if every sequence \((B_n)_n\) of measurable subsets of \(X\) which is asymptotically invariant (that is, which is such that \(\lim_n \mu(\gamma B_n \triangle B_n) = 0\) for all \(\gamma \in \Gamma\)) is trivial (that is, \(\lim_n \mu(B_n)(1 - \mu(B_n)) = 0\)). It is straightforward to check that the spectral gap property implies strong ergodicity and it is known that the converse does not hold in general.

The following corollary is a direct consequence of Theorem 1 (compare with [BeGu15, Corollary 2]).

Corollary 4. With the notation as in Theorem 1, the following properties are equivalent.

1. The action \(\Gamma \acts (\text{Nil}_S, \mu) \) has the spectral gap property.
2. The action \(\Gamma \acts (\text{Nil}_S, \mu) \) is strongly ergodic.

Theorem 1 generalizes our previous work [BeGu15], where we treated the real case (that is, the case \(S = \infty\)). This requires an extension of our methods to the \(S\)-adic setting, which is a non-straightforward task; more specifically, we had to establish the following four main tools for our proof:

- A canonical decomposition of the Koopman representation of \(\Gamma \) in \(L^2(\text{Nil}_S) \) as a direct sum of certain representations of \(\Gamma \) induced from stabilizers of representations of \(U(Q_S) \)—this fact is valid more generally for compact homogeneous spaces (see Proposition 9);
- A result of Howe and Moore [HoMo79] about the decay of matrix coefficients of algebraic groups (see Proposition 11);
- The fact that the irreducible representations of \(U(Q_S) \) appearing in the decomposition of \(L^2(\text{Nil}_S) \) are rational, in the sense that the Kirillov data associated to each one of them are defined over \(\mathbb{Q} \) (see Proposition 13);
- A characterization (see Lemma 12) of the projective kernel of the extension of an irreducible representation of \(U(Q_p) \) to its stabilizer in \(\text{Aut}(U(Q_p)) \).

Another tool we constantly use is a generalized version of Herz’s majoration principle (see Lemma 7).

Given a probability measure \(\nu \) on \(\Gamma \), our approach does not seem to provide quantitative estimates for the operator norm of the convolution operator \(\kappa_0(\nu) \) acting on \(L^2_0(\text{Nil}_S, \mu) \) for a general unipotent group \(U \). However, using known bounds for the so-called metaplectic representation of the symplectic group \(Sp_{2n}(Q_p) \), we give such estimates in the case of \(S\)-adic Heisenberg nilmanifolds (see §11).

Corollary 5. For an integer \(n \geq 1 \), let \(U = H_{2n+1} \) be the \((2n+1)\)-dimensional Heisenberg group and \(\text{Nil}_S = H_{2n+1}(Q_S)/H_{2n+1}(\mathbb{Z}[1/S]) \). Let \(\nu \) be a probability measure on the subgroup \(Sp_{2n}(\mathbb{Z}[1/S]) \) of \(\text{Aut}(\text{Nil}_S) \). Then

\[
\|\kappa_0(\nu)\| \leq \max\{\|\lambda_\Gamma(\nu)\|^{1/2n+2}, \|\kappa_1(\nu)\|\},
\]

where \(\kappa_1 \) is the restriction of \(\kappa_0 \) to \(L^2_0(\text{Sol}_S) \) and \(\lambda_\Gamma \) is the regular representation of the group \(\Gamma \) generated by the support of \(\nu \). In particular, in the case where \(n = 1 \) and \(\nu \) is aperiodic, the action of \(\Gamma \) on \(\text{Nil}_S \) has a spectral gap if and only if \(\Gamma \) is non-amenable.
2. Extension of representations

Let G be a locally compact group which we assume to be second countable. We will need the notion of a projective representation. Recall that a mapping $\pi : G \to U(H)$ from G to the unitary group of the Hilbert space H is a projective representation of G if the following assertions hold.

- $\pi(e) = I$.
- For all $g_1, g_2 \in G$, there exists $c(g_1, g_2) \in \mathbb{C}$ such that
 \[\pi(g_1 g_2) = c(g_1, g_2)\pi(g_1)\pi(g_2). \]
- The function $g \mapsto \langle \pi(g)\xi, \eta \rangle$ is measurable for all $\xi, \eta \in H$.

The mapping $c : G \times G \to S^1$ is a 2-cocycle with values in the unit circle S^1. Every projective unitary representation of G can be lifted to an ordinary unitary representation of a central extension of G (for all this, see [Mack76] or [Mack58]).

Let N be a closed normal subgroup of G. Let π be an irreducible unitary representation of N on a Hilbert space H. Consider the stabilizer $G_\pi = \{ g \in G \mid \pi^g \text{ is equivalent to } \pi \}$ of π in G for the natural action of G on the unitary dual \widehat{N} given by $\pi^g(n) = \pi(n^g)$. Then G_π is a closed subgroup of G containing N. The following lemma is a well-known part of Mackey’s theory of unitary representations of group extensions.

Lemma 6. Let π be an irreducible unitary representation of N on the Hilbert space H. There exists a projective unitary representation $\tilde{\pi}$ of G_π on H which extends π. Moreover, $\tilde{\pi}$ is unique, up to scalars: any other projective unitary representation $\tilde{\pi}'$ of G_π extending π is of the form $\tilde{\pi}' = \lambda \tilde{\pi}$ for a measurable function $\lambda : G_\pi \to S^1$.

Proof. For every $g \in G_\pi$, there exists a unitary operator $\tilde{\pi}(g)$ on H such that

\[\pi(g(n)) = \tilde{\pi}(g)\pi(n)\tilde{\pi}(g)^{-1} \quad \text{for all } n \in N. \]

One can choose $\tilde{\pi}(g)$ such that $g \mapsto \tilde{\pi}(g)$ is a projective unitary representation of G_π which extends π (see [Mack58, Theorem 8.2]). The uniqueness of π follows from the irreducibility of π and Schur’s lemma.

\[\square \]

3. A weak containment result for induced representations

Let G be a locally compact group with Haar measure μ_G. Recall that a unitary representation (ρ, K) of G is weakly contained in another unitary representation (π, H) of G, if every matrix coefficient

\[g \mapsto \langle \rho(g)\eta \mid \eta \rangle \quad \text{for } \eta \in K \]

of ρ is the limit, uniformly over compact subsets of G, of a finite sum of matrix coefficients of π; equivalently, if $\|\rho(f)\| \leq \|\pi(f)\|$ for every $f \in C_c(G)$, where $C_c(G)$ is the space of continuous functions with compact support on G and where the operator $\pi(f) \in B(H)$ is defined by the integral
\[\pi(f)\xi = \int_G f(g)\pi(g)\xi \, d\mu_G(g) \quad \text{for all } \xi \in \mathcal{H}. \]

The trivial representation \(1_G\) is weakly contained in \(\pi\) if and only if there exists, for every compact subset \(Q\) of \(G\) and every \(\varepsilon > 0\), a unit vector \(\xi \in \mathcal{H}\) which is \((Q, \varepsilon)\)-invariant, that is, such that

\[\sup_{g \in Q} \|\pi(g)\xi - \xi\| \leq \varepsilon. \]

Let \(H\) be a closed subgroup of \(G\). We will always assume that the coset space \(H \backslash G\) admits a non-zero \(G\)-invariant (possibly infinite) measure on its Borel subsets. Let \((\sigma, \mathcal{K})\) be a unitary representation of \(H\). We will use the following model for the induced representation \(\pi := \text{Ind}^G_H \sigma\). Choose a Borel fundamental domain \(X \subset G\) for the action of \(G\) on \(H \backslash G\). For \(x \in X\) and \(g \in G\), let \(x \cdot g \in X\) and \(c(x, g) \in H\) be defined by

\[xg = c(x, g)(x \cdot g). \]

There exists a non-zero \(G\)-invariant measure on \(X\) for the action \((x, g) \mapsto x \cdot g\) of \(G\) on \(X\). The Hilbert space of \(\pi\) is the space \(L^2(X, \mathcal{K}, \mu)\) of all square-integrable measurable mappings \(\xi : X \to \mathcal{K}\) and the action of \(G\) on \(L^2(X, \mathcal{K}, \mu)\) is given by

\[(\pi(g)\xi)(x) = \sigma(c(x, g))(\xi(x \cdot g)), \quad g \in G, \xi \in L^2(X, \mathcal{K}, \mu), \quad x \in X. \]

Observe that, in the case where \(\sigma\) is the trivial representation \(1_H\), the induced representation \(\text{Ind}^G_H 1_H\) is equivalent to quasi-regular representation \(\lambda_{H \backslash G}\), that is, the natural representation of \(G\) on \(L^2(H \backslash G, \mu)\) given by right translations.

We will use several times the following elementary but crucial lemma, which can be viewed as a generalization of Herz’s majoration principle (see [BeGu15, Proposition 17]).

Lemma 7. Let \((H_i)_{i \in I}\) be a family of closed subgroups of \(G\) such that \(H_i \backslash G\) admits a non-zero \(G\)-invariant measure. Let \((\sigma_i, \mathcal{K}_i)\) be a unitary representation of \(H_i\). Assume that \(1_G\) is weakly contained in the direct sum \(\bigoplus_{i \in I} \text{Ind}^G_{H_i} \sigma_i\). Then \(1_G\) is weakly contained in \(\bigoplus_{i \in I} \lambda_{H_i \backslash G}\).

Proof. Let \(Q\) be a compact subset of \(G\) and \(\varepsilon > 0\). For every \(i \in I\), let \(X_i \subset G\) be a Borel fundamental domain for the action of \(G\) on \(H_i \backslash G\) and \(\mu_i\) a non-zero \(G\)-invariant measure on \(X_i\). There exists a family of vectors \(\xi_i \in L^2(X_i, \mathcal{K}_i, \mu_i)\) such that \(\sum_i \|\xi_i\|^2 = 1\) and

\[\sup_{g \in Q} \sum_i \|\text{Ind}^G_{H_i} \sigma_i(g)\xi_i - \xi_i\|^2 \leq \varepsilon. \]

Define \(\varphi_i \in L^2(X_i, \mu_i)\) by \(\varphi_i(x) = \|\xi_i(x)\|\). Then \(\sum_i \|\varphi_i\|^2 = 1\) and, denoting by \((x, g) \mapsto x \cdot g\) the action of \(G\) on \(X_i\) and by \(c_i : X_i \times G \to H_i\) the associated map as above, we have

\begin{align*}
\|\text{Ind}^G_{H_i} \sigma_i(g)\xi_i - \xi_i\|^2 &= \int_{X_i} \|\sigma_i(c_i(x, g))(\xi_i(x \cdot g)) - \xi_i(x)\|^2 \, d\mu_i(x) \\
&\geq \int_{X_i} \|\sigma_i(c_i(x, g))(\xi_i(x \cdot g))\|^2 - \|\xi_i(x)\|^2 \, d\mu_i(x)
\end{align*}
\[= \int_{X_i} \|\xi_i(x \cdot g)\| - \|\xi_i(x)\|^2 \, d\mu_i(x)\]
\[= \int_{X_i} |\varphi_i(x \cdot g) - \varphi(x)|^2 \, d\mu_i(x)\]
\[= \|\lambda_{H_i \setminus G}(g) \varphi_i - \varphi_i\|^2,\]
for every \(g \in G\), and the claim follows. \(\square\)

4. Decay of matrix coefficients of unitary representations
We recall a few general facts about the decay of matrix coefficients of unitary representations. Recall that the projective kernel of a (genuine or projective) representation \(\pi\) of the locally compact group \(G\) is the closed normal subgroup \(P_\pi\) of \(G\) consisting of the elements \(g \in G\) such that \(\pi(g)\) is a scalar multiple of the identity operator, that is, such that \(\pi(g) = \lambda_\pi(g)I\) for some \(\lambda_\pi(g) \in S^1\).

Observe also that, for \(\xi, \eta \in H\), the absolute value of the matrix coefficient
\[C^\pi_{\xi, \eta} : g \mapsto \langle \pi(g)\xi, \eta \rangle\]
is constant on cosets modulo \(P_\pi\). For a real number \(p\) with \(1 \leq p < +\infty\), the representation \(\pi\) is said to be strongly \(L^p\) modulo \(P_\pi\), if there is a dense subspace \(D \subset H\) such that \(|C^\pi_{\xi, \eta}| \in L^p(G/P_\pi)\) for all \(\xi, \eta \in D\).

Proposition 8. Assume that the unitary representation \(\pi\) of the locally compact group \(G\) is strongly \(L^p\) modulo \(P_\pi\) for \(1 \leq p < +\infty\). Let \(k\) be an integer \(k \geq p/2\). Then the tensor power \(\pi^{\otimes k}\) is contained in an infinite multiple of \(\text{Ind}_{P_\pi}^G \lambda_k\pi\), where \(\lambda_\pi\) is the unitary character of \(P_\pi\) associated to \(\pi\).

Proof. Observe that \(\sigma := \pi^{\otimes k}\) is square-integrable modulo \(P_\pi\) for every integer \(k \geq p/2\). It follows (see [HoMo79, Proposition 4.2] or [HoTa92, Ch. V, Proposition 1.2.3]) that \(\sigma\) is contained in an infinite multiple of \(\text{Ind}_{P_\pi}^G \lambda_k\pi\). \(\square\)

5. The Koopman representation of the automorphism group of a homogeneous space
We establish a decomposition result for the Koopman representation of a group of automorphisms of an S-adic compact nilmanifold. We will state the result in the general context of a compact homogeneous space.

Let \(G\) be a locally compact group and \(\Lambda\) a lattice in \(G\). We assume that \(\Lambda\) is cocompact in \(G\). The homogeneous space \(X := G/\Lambda\) carries a probability measure \(\mu\) on the Borel subsets of \(X\) which is invariant by translations with elements from \(G\). Every element from
\[\text{Aut}(X) := \{\gamma \in \text{Aut}(G) \mid \gamma(\Lambda) \subset \Lambda\}\]
induces a Borel isomorphism of \(X\), which leaves \(\mu\) invariant, as follows from the uniqueness of \(\mu\).

Given a subgroup \(\Gamma\) of \(\text{Aut}(X)\), the following crucial proposition gives a decomposition of the associated Koopman \(\Gamma\) on \(L^2(X, \mu)\) as direct sum of certain induced representations of \(\Gamma\).
PROPOSITION 9. Let G be a locally compact group and Λ a cocompact lattice in G, and let Γ be a countable subgroup of $\text{Aut}(X)$ for $X := G/\Lambda$. Let κ denote the Koopman representation of Γ associated to the action $\Gamma \curvearrowright X$. There exists a family $(\pi_i)_{i \in I}$ of irreducible unitary representations of G such that κ is equivalent to a direct sum

$$\bigoplus_{i \in I} \text{Ind}^\Gamma_{\Gamma_i}(\bar{\pi}_i|_{\Gamma_i} \otimes W_i),$$

where $\bar{\pi}_i$ is an irreducible projective representation of the stabilizer G_i of π_i in $\text{Aut}(G) \ltimes G$ extending π_i, and where W_i is a finite-dimensional projective unitary representation of $\Gamma_i := \Gamma \cap G_i$.

Proof. We extend κ to a unitary representation, again denoted by κ, of $\Gamma \ltimes G$ on $L^2(X, \mu)$ given by

$$\kappa(\gamma, g)\xi(x) = \xi(\gamma^{-1}(gx)) \quad \text{for all } \gamma \in \Gamma, g \in G, \xi \in L^2(X, \mu), x \in X.$$

Identifying Γ and G with subgroups of $\Gamma \ltimes G$, we have

$$\kappa(\gamma^{-1})\kappa(g)\kappa(\gamma) = \kappa(\gamma^{-1}(g)) \quad \text{for all } \gamma \in \Gamma, g \in G. \quad (*)$$

Since Λ is cocompact in G, we can consider the decomposition of $L^2(X, \mu)$ into G-isotypical components: we have (see [GGPS69, Ch. I, §3, Theorem])

$$L^2(X, \mu) = \bigoplus_{\pi \in \Sigma} \mathcal{H}_\pi,$$

where Σ is a certain set of pairwise non-equivalent irreducible unitary representations of G; for every $\pi \in \Sigma$, the space \mathcal{H}_π is the union of the closed $\kappa(G)$-invariant subspaces K of $\mathcal{H} := L^2(X, \mu)$ for which the corresponding representation of G in K is equivalent to π; moreover, the multiplicity of every π is finite, that is, every \mathcal{H}_π is a direct sum of finitely many irreducible unitary representations of G.

Let γ be a fixed automorphism in Γ. Let κ^γ be the conjugate representation of κ by γ, that is, $\kappa^\gamma(g) = \kappa(\gamma^{-1}(g)) \gamma(\gamma^{-1}(g))^{-1}$ for all $g \in \Gamma \ltimes G$. On the one hand, for every $\pi \in \Sigma$, the isotypical component of $\kappa^\gamma|_G$ corresponding to π is $\mathcal{H}_{\pi^\gamma^{-1}}$. On the other hand, relation $(*)$ shows that $\kappa(\gamma)$ is a unitary equivalence between $\kappa|_G$ and $\kappa^\gamma|_G$. It follows that

$$\kappa(\gamma)(\mathcal{H}_\pi) = \mathcal{H}_{\pi^\gamma} \quad \text{for all } \gamma \in \Gamma;$$

so, Γ permutes the \mathcal{H}_πs among themselves according to its action on \hat{G}.

Write $\Sigma = \bigcup_{i \in I} \Sigma_i$, where the Σ_i are the Γ-orbits in Σ, and set

$$\mathcal{H}_{\Sigma_i} = \bigoplus_{\pi \in \Sigma_i} \mathcal{H}_\pi.$$

Every \mathcal{H}_{Σ_i} is invariant under $\Gamma \ltimes G$ and we have an orthogonal decomposition

$$\mathcal{H} = \bigoplus_i \mathcal{H}_{\Sigma_i}.$$

Fix $i \in I$. Choose a representation π_i in Σ_i and set $\mathcal{H}_i = \mathcal{H}_{\pi_i}$. Let Γ_i denote the stabilizer of π_i in Γ. The space \mathcal{H}_i is invariant under Γ_i. Let V_i be the corresponding representation of $\Gamma_i \ltimes G$ on \mathcal{H}_i.
Choose a set S_i of representatives for the cosets in
\[\Gamma_i / \Gamma_i = (\Gamma \ltimes G) / (\Gamma_i \ltimes G) \]
with $e \in S_i$. Then $\Sigma_i = \{ \pi^+_i : s \in S_i \}$ and the Hilbert space \mathcal{H}_{Σ_i} is the sum of mutually orthogonal spaces:
\[\mathcal{H}_{\Sigma_i} = \bigoplus_{s \in S_i} \mathcal{H}^s_i. \]
Moreover, \mathcal{H}^s_i is the image under $\kappa(s)$ of \mathcal{H}_i for every $s \in S_i$. This means that the restriction κ_i of κ to \mathcal{H}_{Σ_i} of the Koopman representation κ of Γ is equivalent to the induced representation $\text{Ind}_{\Gamma_i}^\Gamma V_i$.

Since every \mathcal{H}_i is a direct sum of finitely many irreducible unitary representations of G, we can assume that \mathcal{H}_i is the tensor product
\[\mathcal{H}_i = \mathcal{K}_i \otimes \mathcal{L}_i \]
of the Hilbert space \mathcal{K}_i of π_i with a finite-dimensional Hilbert space \mathcal{L}_i, in such a way that
\[V_i(g) = \pi_i(g) \otimes I_{\mathcal{L}_i} \quad \text{for all } g \in G. \] (**) Let $\gamma \in \Gamma_i$. By (**) above, we have
\[V_i(\gamma)(\pi_i(g) \otimes I_{\mathcal{L}_i})V_i(\gamma)^{-1} = \pi_i(\gamma g \gamma^{-1}) \otimes I_{\mathcal{L}_i} \] (***) for all $g \in G$. On the other hand, let G_i be the stabilizer of π_i in $\text{Aut}(\Gamma) \ltimes G$; then π_i extends to an irreducible projective representation $\tilde{\pi}_i$ of G_i (see §2). Since
\[\tilde{\pi}_i(\gamma)\pi_i(g) \tilde{\pi}_i(\gamma^{-1}) = \pi_i(\gamma g \gamma^{-1}) \quad \text{for all } g \in G, \]
it follows from (***) that $(\tilde{\pi}_i(\gamma^{-1}) \otimes I_{\mathcal{L}_i})V_i(\gamma)$ commutes with $\pi_i(g) \otimes I_{\mathcal{L}_i}$ for all $g \in G$. As π_i is irreducible, there exists a unitary operator $W_i(\gamma)$ on \mathcal{L}_i such that
\[V_i(\gamma) = \tilde{\pi}_i(\gamma) \otimes W_i(\gamma). \]
It is clear that W_i is a projective unitary representation of $\Gamma_i \ltimes G$, since V_i is a unitary representation of $\Gamma_i \ltimes G$. \hfill \Box

6. **Unitary dual of solenoids**

Let p be either a prime integer or $p = \infty$. Define an element e_p in the unitary dual group $\widehat{\mathbb{Q}_p}$ of the additive group of \mathbb{Q}_p (recall that $\mathbb{Q}_\infty = \mathbb{R}$) by $e_p(x) = e^{2\pi i x}$ if $p = \infty$ and $e_p(x) = \exp(2\pi i x)$ otherwise, where $[x] = \sum_{j=m}^{\infty} a_j p^j$ denotes the ‘fractional part’ of a p-adic number $x = \sum_{j=m}^{\infty} a_j p^j$ for integers $m \in \mathbb{Z}$ and $a_j \in \{0, \ldots, p-1\}$. Observe that $\text{Ker}(e_p) = \mathbb{Z}$ if $p = \infty$ and that $\text{Ker}(e_p) = \mathbb{Z}_p$ if p is a prime integer, where \mathbb{Z}_p is the ring of p-adic integers. The map
\[\mathbb{Q}_p \to \widehat{\mathbb{Q}_p}, \quad y \mapsto (x \mapsto e_p(xy)) \]
is an isomorphism of topological groups (see [BeHV08, §D.4]).
7. Unitary representations of unipotent groups

Fix an integer \(d \geq 1 \). Then \(\widehat{Q}_p^d \) will be identified with \(Q_p^d \) by means of the map

\[
Q_p^d \to \widehat{Q}_p^d, \quad y \mapsto x \mapsto e_p(x \cdot y),
\]

where \(x \cdot y = \sum_{i=1}^d x_i y_i \) for \(x = (x_1, \ldots, x_d), y = (y_1, \ldots, y_d) \in Q_p^d \).

Let \(S = \{ p_1, \ldots, p_r, \infty \} \), where \(p_1, \ldots, p_r \) are integer primes. For an integer \(d \geq 1 \), consider the \(S \)-adic solenoid

\[
\text{Sol}_S = Q_p^d / \mathbb{Z}[1/S]^d,
\]

where \(\mathbb{Z}[1/S]^d = \mathbb{Z}[1/p_1, \ldots, 1/p_r]^d \) is embedded diagonally in \(Q_S = \prod_{p \in S} Q_p \). Then \(\text{Sol}_S \) is identified with the annihilator of \(\mathbb{Z}[1/S]^d \) in \(Q_S^d \), that is, with \(\mathbb{Z}[1/S]^d \) embedded in \(Q_S^d \) via the map

\[
\mathbb{Z}[1/S]^d \to Q_S^d, \quad b \mapsto (b, -b, \ldots, -b).
\]

Under this identification, the dual action of the automorphism group

\[
\text{Aut}(Q^d_S) \cong GL_d(\mathbb{R}) \times GL_d(Q_{p_1}) \times \cdots \times GL_d(Q_{p_r}).
\]

on \(\widehat{Q}_S^d \) corresponds to the right action on \(\mathbb{R}^d \times Q_{p_1}^d \times \cdots \times Q_{p_r}^d \) given by

\[
((g_\infty, g_1, \ldots, g_r), (a_\infty, a_1, \ldots, a_r)) \mapsto (g_\infty a_\infty, g_1 a_1, \ldots, g_r a_r),
\]

where \((g, a) \mapsto ga \) is the usual (left) linear action of \(GL_d(\mathbb{k}) \) on \(\mathbb{k}^d \) for a field \(\mathbb{k} \).

7. Unitary representations of unipotent groups

Let \(U \) be a linear algebraic unipotent group defined over \(\mathbb{Q} \). The Lie algebra \(u \) is defined over \(\mathbb{Q} \) and the exponential map \(\exp : u \to U \) is a bijective morphism of algebraic varieties.

Let \(p \) be either a prime integer or \(p = \infty \). The irreducible unitary representations of \(U_p := U(\mathbb{Q}_p) \) are parametrized by Kirillov’s theory as follows.

The Lie algebra of \(U_p \) is \(u_p = u(\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_p \), where \(u(\mathbb{Q}) \) is the Lie algebra over \(\mathbb{Q} \) consisting of the \(\mathbb{Q} \)-points in \(u \).

Fix an element \(f \) in the dual space \(u^*_p = \mathcal{H}om_{\mathbb{Q}_p}(u_p, \mathbb{Q}_p) \) of \(u_p \). There exists a polarization \(m \) for \(f \), that is, a Lie subalgebra \(m \) of \(u_p \) such that \(f([m, m]) = 0 \) and which is of maximal dimension. The induced representation \(\text{Ind}^{U_p}_M \chi_f \) is irreducible, where \(M = \exp(m) \) and \(\chi_f \) is the unitary character of \(M \) defined by

\[
\chi_f(\exp X) = e_p(f(X)) \quad \text{for all } X \in m,
\]

where \(e_p \in \widehat{Q}_p \) is as in §6. The unitary equivalence class of \(\text{Ind}^{U_p}_M \chi_f \) only depends on the co-adjoint orbit \(\text{Ad}^*(U_p) f \) of \(f \). The resulting map

\[
u^*_p / \text{Ad}^*(U_p) \to \widehat{U}_p, \quad \mathcal{O} \mapsto \pi_{\mathcal{O}},
\]

called the Kirillov map, from the orbit space \(u^*_p / \text{Ad}^*(U_p) \) of the co-adjoint representation to the unitary dual \(\widehat{U}_p \) of \(U_p \), is a bijection. In particular, \(U_p \) is a so-called type I locally compact group. For all of this, see [Kiri62] or [CoGr89] in the case of \(p = \infty \) and [Moor65] in the case of a prime integer \(p \).
The group \(\text{Aut}(U_p) \) of continuous automorphisms of \(U_p \) can be identified with the group of \(\mathbb{Q}_p \)-points of the algebraic group \(\text{Aut}(u) \) of automorphisms of the Lie algebra \(u \) of \(U \). Notice also that the natural action of \(\text{Aut}(U_p) \) on \(u_p \) as well as its dual action on \(u_p^* \) are algebraic.

Let \(\pi \in \hat{U}_p \) with corresponding Kirillov orbit \(O_\pi \) and \(g \in \text{Aut}(U_p) \). Then \(g(O_\pi) \) is the Kirillov orbit associated to the conjugate representation \(\pi g \).

Lemma 10. Let \(\pi \) be an irreducible unitary representation of \(U_p \). The stabilizer \(G_\pi \) of \(\pi \) in \(\text{Aut}(U_p) \) is an algebraic subgroup of \(\text{Aut}(U_p) \).

Proof. Let \(O_\pi \subset u_p^* \) be the Kirillov orbit corresponding to \(\pi \). Then \(G_\pi \) is the set of \(g \in \text{Aut}(U_p) \) such that \(g(O_\pi) = O_\pi \). As \(O_\pi \) is an algebraic subvariety of \(u_p^* \), the claim follows.

8. **Decay of matrix coefficients of unitary representations of \(S \)-adic groups**

Let \(p \) be an integer prime or \(p = \infty \) and let \(U \) be a linear algebraic unipotent group defined over \(\mathbb{Q}_p \). Set \(U_p := U(\mathbb{Q}_p) \).

Let \(\pi \) be an irreducible unitary representation of \(U_p \). Recall (see Lemma 10) that the stabilizer \(G_\pi \) of \(\pi \) in \(\text{Aut}(U_p) \) is an algebraic subgroup of \(\text{Aut}(U_p) \). Recall also (see Lemma 6) that \(\pi \) extends to a projective representation of \(G_\pi \). The following result was proved in [BeGu15, Proposition 22] in the case where \(p = \infty \), using arguments from [HoMo79]. The proof in the case where \(p \) is a prime integer is along similar lines and will be omitted.

Proposition 11. Let \(\pi \) be an irreducible unitary representation of \(U_p \) and let \(\tilde{\pi} \) be a projective unitary representation of \(G_\pi \) which extends \(\pi \). There exists a real number \(r \geq 1 \), only depending on the dimension of \(G_\pi \), such that \(\tilde{\pi} \) is strongly \(L^r \) modulo its projective kernel.

We will need later a precise description of the projective kernel of a representation \(\tilde{\pi} \) as above.

Lemma 12. Let \(\pi \) be an irreducible unitary representation of \(U_p \) and \(\tilde{\pi} \) a projective unitary representation of \(G_\pi \) which extends \(\pi \). Let \(O_\pi \subset u_p^* \) be the corresponding Kirillov orbit of \(\pi \). For \(g \in \text{Aut}(U_p) \), the following properties are equivalent.

(i) \(g \) belongs to the projective kernel \(P_{\tilde{\pi}} \) of \(\tilde{\pi} \).

(ii) For every \(u \in U_p \), we have

\[
g(u)u^{-1} \in \bigcap_{f \in O_\pi} \exp(\text{Ker}(f)).
\]

Proof. We can assume that \(\pi = \text{Ind}_M \chi_{f_0} \) for \(f_0 \in O_\pi \), and \(M = \exp \text{m} \) for a polarization \(\text{m} \) of \(f_0 \).

Let \(g \in \text{Aut}(U_p) \). If \(g \) is in the stabilizer \(G_\pi \) of \(\pi \) in \(\text{Aut}(U_p) \), recall (see Proof of Lemma 6) that

\[
\pi(g(u)) = \tilde{\pi}(g)\pi(u)\tilde{\pi}(g^{-1}) \quad \text{for all } u \in U_p.
\]
Since π is irreducible, it follows from Schur’s lemma that $g \in P_{\tilde{\pi}}$ if and only if
\[\pi(g(u)) = \pi(u) \quad \text{for all } u \in U_p \]
that is,
\[g(u)u^{-1} \in \text{Ker}(\pi) \quad \text{for all } u \in U_p. \]

Now we have (see [BeGu15, Lemma 18])
\[\text{Ker}(\pi) = \bigcap_{f \in \mathcal{O}_\pi} \text{Ker}(\chi_f), \]
and so $g \in P_{\tilde{\pi}}$ if and only if
\[g(u)u^{-1} \in \bigcap_{f \in \mathcal{O}_\pi} \text{Ker}(\chi_f) \quad \text{for all } u \in U_p. \]

Let $g \in P_{\tilde{\pi}}$. Denote by $X \mapsto g(X)$ the automorphism of u_p corresponding to g. Let $u = \exp(X)$ for $X \in u_p$ and $f \in \mathcal{O}_{\pi}$. Set $u_t = \exp(tX)$. By the Campbell Hausdorff formula, there exist $Y_1, \ldots, Y_r \in u_p$ such that
\[g(u_t)(u_t)^{-1} = \exp(tY_1 + t^2Y_2 + \cdots + t^rY_r), \]
for every $t \in \mathbb{Q}_p$. Since
\[1 = \chi_f(g(u_t)(u_t)^{-1}) = e_p\left(f(tY_1 + t^2Y_2 + \cdots + t^rY_r)\right), \quad (\ast) \]
it follows that the polynomial
\[t \mapsto Q(t) = tf(Y_1) + t^2f(Y_2) + \cdots + t^rf(Y_r) \]
takes its values in \mathbb{Z} if $p = \infty$, and in \mathbb{Z}_p (and so Q has bounded image) otherwise. This clearly implies that $Q(t) = 0$ for all $t \in \mathbb{Q}_p$; in particular, we have
\[\log(g(u)u^{-1}) = Y_1 + Y_2 + \cdots + Y_r \in \text{Ker}(f). \]

This shows that (i) implies (ii).

Conversely, assume that (ii) holds. Then clearly
\[g(u)u^{-1} \in \bigcap_{f \in \mathcal{O}_\pi} \text{Ker}(\chi_f) \quad \text{for all } u \in U_p \]
and so $g \in P_{\tilde{\pi}}$. \qed

9. Decomposition of the Koopman representation for a nilmanifold

Let U be a linear algebraic unipotent group defined over \mathbb{Q}. Let $S = \{p_1, \ldots, p_r, \infty\}$, where p_1, \ldots, p_r are integer primes. Set
\[U := U(\mathbb{Q}_S) = \prod_{p \in S} U_p. \]

Since U is a type I group, the unitary dual \widehat{U} of U can be identified with the cartesian product $\prod_{p \in S} \widehat{U}_p$ via the map
\[
\prod_{p \in S} \hat{U}_p \to \hat{U}, \quad (\pi_p)_{p \in S} \mapsto \bigotimes_{p \in S} \pi_p,
\]
where \(\bigotimes_{p \in S} \pi_p = \pi_{i,\infty} \otimes \pi_{p_1} \otimes \cdots \otimes \pi_{p_p} \) is the tensor product of the \(\pi_p \).

Let \(\Lambda := U(\mathbb{Z}[1/S]) \) and consider the corresponding \emph{S-adic compact nilmanifold}
\[
\text{Nil}_S := U/\Lambda.
\]
equipped with the unique \(U \)-invariant probability measure \(\mu \) on its Borel subsets.

The associated \emph{S-adic solenoid} is
\[
\text{Sol}_S = \overline{U}/\overline{\Lambda},
\]
where \(\overline{U} := U/[U, U] \) is the quotient of \(U \) by its closed commutator subgroup \([U, U]\) and where \(\overline{\Lambda} \) is the image of \(U(\mathbb{Z}[1/S]) \) in \(\overline{U} \).

Set
\[
\text{Aut}(U) := \prod_{p \in S} \text{Aut}(U(\mathbb{Q}_p))
\]
and denote by \(\text{Aut}(\text{Nil}_S) \) the subgroup of all \(g \in \text{Aut}(U) \) with \(g(\Lambda) = \Lambda \). Observe that \(\text{Aut}(\text{Nil}_S) \) is a discrete subgroup of \(\text{Aut}(U) \), where every \(\text{Aut}(U_p) \) is endowed with its natural (locally compact) topology and \(\text{Aut}(U) \) with the product topology.

Let \(\Gamma \) be a subgroup of \(\text{Aut}(\text{Nil}_S) \). Let \(\kappa \) be the Koopman representation of \(\Gamma \ltimes U \) on \(L^2(\text{Nil}_S) \) associated to the action \(\Gamma \ltimes U \curvearrowright \text{Nil}_S \). By Proposition 9, there exists a family \((\pi_i)_{i \in I}\) of irreducible representations of \(U \), such that \(\kappa \) is equivalent to
\[
\bigoplus_{i \in I} \text{Ind}_{\Gamma_i \ltimes U}^\Gamma (\tilde{\pi}_i \otimes W_i),
\]
where \(\tilde{\pi}_i \) is an irreducible projective representation \(\tilde{\pi}_i \) of the stabilizer \(G_i \) of \(\pi_i \) in \(\text{Aut}(U) \ltimes U \) extending \(\pi_i \), and where \(W_i \) is a projective unitary representation of \(G_i \cap (\Gamma \ltimes U) \).

Fix \(i \in I \). We have \(\pi_i = \bigotimes_{p \in S} \pi_{i,p} \) for irreducible representations \(\pi_{i,p} \) of \(U_p \).

We will need the following more precise description of \(\pi_i \). Recall that \(u \) is the Lie algebra of \(U \) and that \(u(\mathbb{Q}) \) denotes the Lie algebra over \(\mathbb{Q} \) consisting of the \(\mathbb{Q} \)-points in \(u \).

Let \(u^*(\mathbb{Q}) \) be the set of \(\mathbb{Q} \)-rational points in the dual space \(u^* \); so, \(u^*(\mathbb{Q}) \) is the subspace of \(f \in u^* \) with \(f(X) \in \mathbb{Q} \) for all \(X \in u(\mathbb{Q}) \). Observe that, for \(f \in u^*(\mathbb{Q}) \), we have \(f(X) \in \mathbb{Q}_p \) for all \(X \in u_p = u(\mathbb{Q}_p) \).

A polarization for \(f \in u^*(\mathbb{Q}) \) is a Lie subalgebra \(m \) of \(u(\mathbb{Q}) \) such that \(f([m, m]) = 0 \) and which is of maximal dimension with this property.

Proposition 13. Let \(\pi_i = \bigotimes_{p \in S} \pi_{i,p} \) be one of the irreducible representations of \(U = U(\mathbb{Q}_S) \) appearing in the decomposition \(L^2(\text{Nil}_S) \) as above. There exist \(f_i \in u^*(\mathbb{Q}) \) and a polarization \(m_i \subset u(\mathbb{Q}) \) for \(f_i \) with the following property: for every \(p \in S \), the representation \(\pi_{i,p} \) is equivalent to \(\text{Ind}_{M_{i,p}}(\chi_{f_i}) \), where:

- \(M_{i,p} = \exp(m_{i,p}) \) for \(m_{i,p} = m_i \otimes \mathbb{Q} \mathbb{Q}_p \);
- \(\chi_{f_i} \) is the unitary character of \(M_{i,p} \) given by \(\chi_{f_i}(X) = e_p(f_i(X)) \), for all \(X \in m_{i,p} \), with \(e_p \in \mathbb{Q}_p \) as in \S 6.
Proof. The same result is proved in [Moor65, Theorem 11] (see also [Fox89, Theorem 1.2]) for the Koopman representation of $U(A)$ in $L^2(U(A)/U(Q))$, where A is the ring of adeles of Q. We could check that the proof, which proceeds by induction of the dimension of U, carries over to the Koopman representation on $L^2(U(Q_S)/U(Z[1/S]))$, with the appropriate changes. We prefer to deduce our claim from the result for $U(A)$, as follows.

It is well known (see [Weil74]) that

$$A = \left(Q_S \times \prod_{p \notin S} Z_p \right) + Q$$

and that

$$\left(Q_S \times \prod_{p \notin S} Z_p \right) \cap Q = Z[1/S].$$

This gives rise to a well-defined projection $\varphi : A/Q \to Q_S/Z[1/S]$ given by

$$\varphi((a_S, (a_p)_{p \notin S}) + Q) = a_S + Z[1/S] \quad \text{for all } a_S \in Q_S, (a_p)_{p \notin S} \in \prod_{p \notin S} Z_p;$$

so the fiber over a point $a_S + Z[1/S] \in Q_S/Z[1/S]$ is

$$\varphi^{-1}(a_S + Z[1/S]) = \{(a_S, (a_p)_{p \notin S}) + Q \mid a_p \in Z_p \text{ for all } p\}.$$

This induces an identification of $U(Q_S)/U(Z[1/S]) = \text{Nil}_S$ with the double coset space $K_S \backslash U(A)/U(Q)$, where K_S is the compact subgroup

$$K_S = \prod_{p \notin S} U(Z_p)$$

of $U(A)$. Observe that this identification is equivariant under translation by elements from $U(Q_S)$. In this way, we can view $L^2(\text{Nil}_S)$ as the $U(Q_S)$-invariant subspace $L^2(K_S \backslash U(A)/U(Q))$ of $L^2(U(A)/U(Q))$.

Choose a system T of representatives for the $\text{Ad}^*(U(Q))$-orbits in $u^*(Q)$. By [Moor65, Theorem 11], for every $f \in T$, we can find a polarization $m_f \subset u(Q)$ for f with the following property: setting

$$m_f(A) = m_f \otimes_Q A,$$

we have a decomposition

$$L^2(U(A)/U(Q)) = \bigoplus_{f \in T} \mathcal{H}_f$$

into irreducible $U(A)$-invariant subspaces \mathcal{H}_f such that the representation π_f of $U(A)$ in \mathcal{H}_f is equivalent to $\text{Ind}_{M_f(A) \chi_f}^{U(A)} \chi_f$, where

$$M_f(A) = \exp(m_f(A))$$

and χ_f, A is the unitary character of $M_f(A)$ given by

$$\chi_f, A(\exp X) = e(f(X)) \quad \text{for all } X \in m_f(A);$$
here, e is the unitary character of A defined by
\[e((a_p)_p) = \prod_{p \in \mathcal{P} \cup \{\infty\}} e_p(a_p) \quad \text{for all } (a_p)_p \in A, \]
where \mathcal{P} is the set of integer primes.

We have
\[L^2(K_S \backslash U(A)/U(Q)) = \bigoplus_{f \in T} \mathcal{H}_f^{K_S}, \]
where $\mathcal{H}_f^{K_S}$ is the space of K_S-fixed vectors in \mathcal{H}_f. It is clear that the representation of $U(Q_S)$ in $\mathcal{H}_f^{K_S}$ is equivalent to
\[\text{Ind}_{U(Q_p)}^{U(Q_S)} \left(\bigotimes_{p \in S} \chi_{f,p} \right) = \bigotimes_{p \in S} (\text{Ind}_{U(Q_p)}^{U(Q_S)} \chi_{f,p}), \]
where $\chi_{f,p}$ is the unitary character of $M_f(Q_p)$ given by
\[\chi_{f,p}(\exp X) = e_p(f(X)) \quad \text{for all } X \in m_f(Q_p). \]
Since $M_f(Q_p)$ is a polarization for f, each of the $U(Q_p)$-representations $\text{Ind}_{U(Q_p)}^{U(Q_S)} \chi_{f,p}$ and, hence, each of the $U(Q_S)$-representations
\[\text{Ind}_{U(Q_S)}^{U(Q_p)} \left(\bigotimes_{p \in S} \chi_{f,p} \right) \]
is irreducible. This proves the claim. \hfill \square

We establish another crucial fact about the representations π_i in the following proposition.

Proposition 14. With the notation of Proposition 13, let $O_Q(f_i)$ be the co-adjoint orbit of f_i under $U(Q)$ and set
\[\xi_{i,p} = \bigcap_{f \in O_Q(f_i)} \xi_p(f), \]
where $\xi_p(f)$ is the kernel of f in u_p. Let $K_{i,p} = \exp(\xi_{i,p})$ and $K_i = \prod_{p \in S} K_{i,p}$.

(i) K_i is a closed normal subgroup of U and $K_i \cap \Lambda = K_i \cap U(Z[1/S])$ is a lattice in K_i.

(ii) Let P_{π_i} be the projective kernel of the extension $\tilde{\pi}_i$ of π_i to the stabilizer G_i of π_i in $\text{Aut}(U) \ltimes U$. For $g \in G_i$, we have $g \in P_{\pi_i}$ if and only if $g(u) \in uK_i$ for every $u \in U$.

Proof. (i) Let
\[\xi_{i,Q} = \bigcap_{f \in O_Q(f_i)} \xi_Q(f), \]
where \(\xi_Q(f) \) is the kernel of \(f \) in \(u(Q) \). Observe that \(\xi_i, Q \) is an ideal in \(u(Q) \), since it is \(\text{Ad}(U(Q)) \)-invariant. So, we have

\[
\xi_i, Q = \xi_i(Q)
\]

for an ideal \(\xi_i \) in \(u \). Since \(f \in u^*(Q) \) for \(f \in \mathcal{O}_Q(f_i) \), we have

\[
\xi_i, p(f) = \xi_i, Q(f) \otimes Q Q_p
\]

and hence

\[
\xi_i, p = \xi_i(Q_p).
\]

Let \(K_i = \exp(\xi_i) \). Then \(K_i \) is a normal algebraic \(Q \)-subgroup of \(U \) and we have \(K_i, p = K_i(Q_p) \) for every \(p \); so,

\[
K_i = \prod_{s \in S} K_i(Q_p) = K_i(Q_S)
\]

and \(K_i \cap \Lambda = K_i(Z[1/S]) \) is a lattice in \(K_i \). This proves (i).

To prove (ii), observe that

\[
P_{\pi_i} = \prod_{p \in S} P_{i, p},
\]

where \(P_{i, p} \) is the projective kernel of \(\pi_i, p \).

Fix \(p \in S \) and let \(g \in G_i \). By Lemma 12, \(g \in P_{i, p} \) if and only if \(g(u) \in u K_i, p \) for every \(u \in U_p = U(Q_p) \). This finishes the proof. \(\square \)

10. Proof of Theorem 1

Let \(U \) be a linear algebraic unipotent group defined over \(Q \) and \(S = \{ p_1, \ldots, p_r, \infty \} \), where \(p_1, \ldots, p_r \) are integer primes. Set \(U := U(Q_S) \) and \(\Lambda := U(Z[1/S]) \). Let \(\text{Nil}_S = U/\Lambda \) and \(\text{Sol}_S \) be the \(S \)-adic nilmanifold and the associated \(S \)-adic solenoid as in §9. Denote by \(\mu \) the translation-invariant probability measure on \(\text{Nil}_S \) and let \(\nu \) be the image of \(\mu \) under the canonical projection \(\varphi : \text{Nil}_S \to \text{Sol}_S \). We identify \(L^2(\text{Sol}_S) = L^2(\text{Sol}_S, \nu) \) with the closed \(\text{Aut}(\text{Nil}_S) \)-invariant subspace

\[
\{ f \circ \varphi \mid f \in L^2(\text{Sol}_S) \}
\]

of \(L^2(\text{Nil}_S) = L^2(\text{Nil}_S, \mu) \). We have an orthogonal decomposition into \(\text{Aut}(\text{Nil}_S) \)-invariant subspaces

\[
L^2(\text{Nil}_S) = C_1\text{Nil}_S \oplus L^2_0(\text{Sol}_S) \oplus \mathcal{H},
\]

where

\[
L^2_0(\text{Sol}_S) = \left\{ f \in L^2(\text{Sol}_S) \mid \int_{\text{Nil}_S} f \, d\mu = 0 \right\}
\]

and where \(\mathcal{H} \) is the orthogonal complement of \(L^2(\text{Sol}_S) \) in \(L^2(\text{Nil}_S) \).

Let \(\Gamma \) be a subgroup of \(\text{Aut}(\text{Nil}_S) \). Let \(\kappa \) be the Koopman representation of \(\Gamma \) on \(L^2(\text{Nil}_S) \) and denote by \(\kappa_1 \) and \(\kappa_2 \) the restrictions of \(\kappa \) to \(L^2_0(\text{Sol}_S) \) and \(\mathcal{H} \), respectively.
Groups of automorphisms of S-adic nilmanifolds

Let Σ_1 be a set of representatives for the Γ-orbits in $\widehat{\text{Sol}}_S \setminus \{ \mathbf{1}_{\text{Sol}} \}$. We have

$$\kappa_1 \cong \bigoplus_{\chi \in \Sigma_1} \lambda_{\Gamma/\Gamma_\chi},$$

where Γ_χ is the stabilizer of χ in Γ and $\lambda_{\Gamma/\Gamma_\chi}$ is the quasi-regular representation of Γ on $\ell^2(\Gamma/\Gamma_\chi)$.

By Proposition 9, there exists a family $(\pi_i)_{i \in I}$ of irreducible representations of U, such that κ_2 is equivalent to a direct sum

$$\bigoplus_{i \in I} \text{Ind}_{\Gamma_i}^{\Gamma} (\tilde{\pi}_i|_{\Gamma_i} \otimes W_i),$$

where $\tilde{\pi}_i$ is an irreducible projective representation of the stabilizer G_i of π_i in $\text{Aut}(U)$ and where W_i is a projective unitary representation of $\Gamma_i := \Gamma \cap G_i$.

Proposition 15. For $i \in I$, let $\tilde{\pi}_i$ be the (projective) representation of G_i of π_i in $\text{Aut}(U)$ and let Γ_i be as above. There exists a real number $r \geq 1$ such that $\tilde{\pi}_i|_{\Gamma_i}$ is strongly L^r modulo $P_{\tilde{\pi}_i} \cap \Gamma_i$, where $P_{\tilde{\pi}_i}$ is the projective kernel of $\tilde{\pi}_i$.

Proof. By Proposition 11, there exists a real number $r \geq 1$ such that the representation $\tilde{\pi}_i$ of the algebraic group G_i is strongly L^r modulo $P_{\tilde{\pi}_i}$. In order to show that $\tilde{\pi}_i|_{\Gamma_i}$ is strongly L^r modulo $P_{\tilde{\pi}_i} \cap \Gamma_i$, it suffices to show that $\Gamma_i P_{\tilde{\pi}_i}$ is closed in G_i (compare with the proof of [HoMo79, Proposition 6.2]).

Let K_i be the closed G_i-invariant normal subgroup K_i of U as described in Proposition 14. Then $\overline{\Lambda} = K_i / \Lambda / K_i$ is a lattice in the unipotent group $\overline{U} = U / K_i$. By Proposition 14(ii), $P_{\tilde{\pi}_i}$ coincides with the kernel of the natural homomorphism $\varphi : \text{Aut}(U) \to \text{Aut}(\overline{U})$. Hence, we have

$$\Gamma_i P_{\tilde{\pi}_i} = \varphi^{-1}(\varphi(\Gamma_i)).$$

Now, $\varphi(\Gamma_i)$ is a discrete (and hence closed) subgroup of $\text{Aut}(\overline{U})$, since $\varphi(\Gamma_i)$ preserves $\overline{\Lambda}$ (and so $\varphi(\Gamma_i) \subset \text{Aut}(\overline{U} / \overline{\Lambda})$). It follows from the continuity of φ that $\varphi^{-1}(\varphi(\Gamma_i))$ is closed in $\text{Aut}(U)$. \square

Proof of Theorem 1. We have to show that, if 1_{Γ} is weakly contained in κ_2, then 1_{Γ} is weakly contained in κ_1. It suffices to show that, if 1_{Γ} is weakly contained in κ_2, then there exists a finite-index subgroup H of Γ such that 1_H is weakly contained in $\kappa_1|_H$ (see [BeFr20, Theorem 2]).

We proceed by induction on the integer

$$n(\Gamma) := \sum_{p \in S} \dim Zc_p(\Gamma),$$

where $Zc_p(\Gamma)$ is the Zariski closure of the projection of Γ in $GL_n(\mathbb{Q}_p)$.

If $n(\Gamma) = 0$, then Γ is finite and there is nothing to prove.

Assume that $n(\Gamma) \geq 1$ and that the claim above is proved for every countable subgroup H of $\text{Aut}(\text{Nil}_S)$ with $n(H) < n(\Gamma)$.

Let $I_{\text{fin}} \subset I$ be the set of all $i \in I$ such that $\Gamma_i = G_i \cap \Gamma$ has finite index in Γ and set $I_\infty = I \setminus I_{\text{fin}}$. With $V_i = \tilde{\pi}_i|_{\Gamma_i} \otimes W_i$, set

$$
\kappa_{2}^{\text{fin}} = \bigoplus_{i \in I_{\text{fin}}} \text{Ind}_{\Gamma_i}^\Gamma V_i \quad \text{and} \quad \kappa_{2}^\infty = \bigoplus_{i \in I_\infty} \text{Ind}_{\Gamma_i}^\Gamma V_i.
$$

Two cases can occur.

First case: 1_{Γ} is weakly contained in κ_{2}^∞. Observe that $n(\Gamma_i) < n(\Gamma)$ for $i \in I_\infty$. Indeed, otherwise $Zc_p(\Gamma_i)$ and $Zc_p(\Gamma)$ would have the same connected component C^0_p for every $p \in S$, since $\Gamma_i \subset \Gamma$. Then

$$
C^0 := \prod_{p \in S} C^0_p
$$

would stabilize π_i and $\Gamma \cap C^0$ would therefore be contained in Γ_i. Since $\Gamma \cap C^0$ has finite index in Γ, this would contradict the fact that Γ_i has infinite index in Γ.

By restriction, 1_{Γ_i} is weakly contained in $\kappa_{2}^\infty|_{\Gamma_i}$ for every $i \in I$. Hence, by the induction hypothesis, 1_{Γ_i} is weakly contained in $\kappa_{1}^\infty|_{\Gamma_i}$ for every $i \in I_\infty$. Now, on the one hand, we have

$$
\kappa_{1}^\infty|_{\Gamma_i} \cong \bigoplus_{\chi \in T_i} \lambda_{\Gamma_i/\Gamma \cap \Gamma_i},
$$

for a subset T_i of $\widehat{\text{Sol}}_S \setminus \{1_{\text{Sol}}\}$. It follows that $\text{Ind}_{\Gamma_i}^\Gamma 1_{\Gamma_i} = \lambda_{\Gamma/\Gamma_i}$ is weakly contained in

$$
\bigoplus_{\chi \in T_i} \text{Ind}_{\Gamma_i}^\Gamma (\lambda_{\Gamma_i/\Gamma \cap \Gamma_i}) = \bigoplus_{\chi \in T_i} \lambda_{\Gamma/\Gamma \cap \Gamma_i},
$$

for every $i \in I_\infty$. On the other hand, since 1_{Γ} is weakly contained in

$$
\kappa_{2}^\infty \cong \bigoplus_{i \in I_\infty} \text{Ind}_{\Gamma_i}^\Gamma (\tilde{\pi}_i|_{\Gamma_i} \otimes W_i),
$$

Lemma 7 shows that 1_{Γ} is weakly contained in $\bigoplus_{i \in I_\infty} \lambda_{\Gamma/\Gamma_i}$. It follows that 1_{Γ} is weakly contained in

$$
\bigoplus_{i \in I_\infty} \bigoplus_{\chi \in T_i} \lambda_{\Gamma/\Gamma \cap \Gamma_i}.
$$

Hence, by Lemma 7 again, 1_{Γ} is weakly contained in

$$
\bigoplus_{i \in I_\infty} \bigoplus_{\chi \in T_i} \lambda_{\Gamma/\Gamma \cap \Gamma_i}.
$$

This shows that 1_{Γ} is weakly contained in κ_{1}^∞.

Second case: 1_{Γ} is weakly contained in κ_{2}^{fin}. By the Noetherian property of the Zariski topology, we can find finitely many indices i_1, \ldots, i_r in I_{fin} such that, for every $p \in S$, we have

$$
Zc_p(\Gamma_{i_1}) \cap \cdots \cap Zc_p(\Gamma_{i_r}) = \bigcap_{i \in I_{\text{fin}}} Zc_p(\Gamma_i),
$$
Set \(H := \Gamma_{i_1} \cap \cdots \cap \Gamma_{i_r} \). Observe that \(H \) has finite index in \(\Gamma \). Moreover, it follows from Lemma 10 that \(\mathbb{Z}_p(\Gamma_{i_1}) \cap \cdots \cap \mathbb{Z}_p(\Gamma_{i_r}) \) stabilizes \(\pi_{i,p} \) for every \(i \in I_{\text{fin}} \) and \(p \in S \). Hence, \(H \) is contained in \(\Gamma_i \) for every \(i \in I_{\text{fin}} \).

By Proposition 9, we have a decomposition of \(\kappa_{i,\text{fin}}^{|H} \) into the direct sum

\[
\bigoplus_{i \in I_{\text{fin}}} (\tilde{\pi}_i \otimes W_i)|_H.
\]

By Propositions 11 and 15, there exists a real number \(r \geq 1 \), which is independent of \(i \), such that \((\tilde{\pi}_i \otimes W_i)|_H \) is a strongly \(L_r \) representation of \(H \) modulo its projective kernel \(P_i \). Observe that \(P_i \) is contained in the projective kernel \(P_{\tilde{\pi}_i} \) of \(\tilde{\pi}_i \), since \(P_i = P_{\tilde{\pi}_i} \cap H \). Hence (see Proposition 8), there exists an integer \(k \geq 1 \) such that \((\kappa_{i,\text{fin}}^{|H})^\otimes k \) is contained in a multiple of the direct sum

\[
\bigoplus_{i \in I_{\text{fin}}} \text{Ind}_{P_i}^H \rho_i,
\]

for representations \(\rho_i \) of \(P_i \). Since \(1_H \) is weakly contained in \(\kappa_{i,\text{fin}}^{|H} \) and hence in \((\kappa_{i,\text{fin}}^{|H})^\otimes k \), using Lemma 7, it follows that \(1_H \) is weakly contained in

\[
\bigoplus_{i \in I_{\text{fin}}} \lambda_{\cdot H/P_i}.
\]

Let \(i \in I \). We claim that \(P_i \) is contained in \(\Gamma_\chi \) for some character \(\chi \) from \(\hat{\text{Sol}}_{S} \setminus \{1_{\text{Sol}_{S}}\} \). Once proved, this will imply, again by Lemma 7, \(1_H \) is weakly contained in \(\kappa_1^{|H} \). Since \(H \) has finite index in \(\Gamma \), this will show that \(1_\Gamma \) is weakly contained in \(\kappa_1 \) and conclude the proof.

To prove the claim, recall from Proposition 14 that there exists a closed normal subgroup \(K_i \) of \(U \) with the following properties: \(K_i \Lambda/K_i \) is a lattice in the unipotent algebraic group \(U/K_i \), \(K_i \) is invariant under \(P_{\tilde{\pi}_i} \) and \(P_{\tilde{\pi}_i} \) acts as the identity on \(U/K_i \). Observe that \(K_i \neq U \), since \(\pi_i \) is not trivial on \(U \). We can find a non-trivial unitary character \(\chi \) of \(U/K_i \) which is trivial on \(K_i \Lambda/K_i \). Then \(\chi \) lifts to a non-trivial unitary character of \(U \) which is fixed by \(P_{\tilde{\pi}_i} \) and hence by \(P_i \). Observe that \(\chi \in \hat{\text{Sol}}_S \), since \(\chi \) is trivial on \(\Lambda \).

11. An example: the \(S \)-adic Heisenberg nilmanifold

As an example, we study the spectral gap property for groups of automorphisms of the \(S \)-adic Heisenberg nilmanifold, proving Corollary 5. We will give a quantitative estimate for the norm of associated convolution operators, as we did in [BeHe11] in the case of real Heisenberg nilmanifolds (that is, in the case \(S = \{\infty\} \)).

Let \(K \) be an algebraically closed field containing \(\mathbb{Q}_p \) for \(p = \infty \) and for all prime integers \(p \). For an integer \(n \geq 1 \), consider the symplectic form \(\beta \) on \(K^{2n} \) given by

\[
\beta((x, y), (x', y')) = (x, y)^t J (x', y') \quad \text{for all} \ (x, y), (x', y') \in K^{2n},
\]

where \(J \) is the \((2n \times 2n)\)-matrix

\[
J = \begin{pmatrix}
0 & I \\
-I_n & 0
\end{pmatrix}.
\]
The symplectic group
\[Sp_{2n} = \{ g \in GL_{2n}(K) \mid ^t g J g = J \} \]
is an algebraic group defined over \(\mathbb{Q} \).

The \((2n + 1)\)-dimensional Heisenberg group is the unipotent algebraic group \(H \) defined over \(\mathbb{Q} \), with underlying set \(K^{2n} \times K \) and product
\[(x, y, s)((x', y', t) = ((x + x', y + y'), s + t + \beta((x, y), (x', y'))),\]
for \((x, y), (x', y') \in K^{2n}, s, t \in K \).

The group \(Sp_{2n} \) acts by rational automorphisms of \(H \), given by
\[g((x, y), t) = (g(x, y), t) \quad \text{for all } g \in Sp_{2n}, (x, y) \in K^{2n}, t \in K. \]

Let \(p \) be either an integer prime or \(p = \infty \). Set \(H_p = H(\mathbb{Q}_p) \). The center \(Z \) of \(H_p \) is \(\{(0, 0, t) \mid t \in \mathbb{Q}_p \} \). The unitary dual \(\hat{H}_p \) of \(H_p \) consists of the equivalence classes of the following representations:

- the unitary characters of the abelianized group \(H_p/Z \);
- for every \(t \in \mathbb{Q}_p \setminus \{0\} \), the infinite-dimensional representation \(\pi_t \) defined on \(L^2(\mathbb{Q}_p^n) \) by the formula
\[\pi_t((a, b), s)\xi(x) = e_p(ts)e_p((a, x - b))\xi(x - b) \]
for \(((a, b), s) \in H_p, \xi \in L^2(\mathbb{Q}_p^n), \) and \(x \in \mathbb{Q}_p^n \), where \(e_p \in \mathbb{Q}_p^{\ast} \) is as in §6.

For \(t \neq 0 \), the representation \(\pi_t \) is, up to unitary equivalence, the unique irreducible unitary representation of \(H_p \) whose restriction to the center \(Z \) is a multiple of the unitary character \(s \mapsto e_p(ts) \).

For \(g \in Sp_{2n}(\mathbb{Q}_p) \) and \(t \in \mathbb{Q}_p \setminus \{0\} \), the representation \(\pi_t^g \) is unitary equivalent to \(\pi_t \), since both representations have the same restriction to \(Z \). This shows that \(Sp_{2n}(\mathbb{Q}_p) \) stabilizes \(\pi_t \). We denote the corresponding projective representation of \(Sp_{2n}(\mathbb{Q}_p) \) by \(\omega_t^{(p)} \).

The representation \(\omega_t^{(p)} \) has different names: it is called the metaplectic representation, Weil’s representation or the oscillator representation. The projective kernel of \(\omega_t^{(p)} \) coincides with the (finite) center of \(Sp_{2n}(\mathbb{Q}_p) \) and \(\omega_t^{(p)} \) is strongly \(L^{4n+2+\epsilon} \) on \(Sp_{2n}(\mathbb{Q}_p) \) for every \(\epsilon > 0 \) (see [HoMo79, Proposition 6.4] or [Howe82, Proposition 8.1]).

Let \(S = \{ p_1, \ldots, p_r, \infty \} \), where \(p_1, \ldots, p_r \) are integer primes. Set \(H := H(\mathbb{Q}_S) \) and
\[\Lambda := H(\mathbb{Z}[1/S]) = \{ ((x, y), s) : x, y \in \mathbb{Z}[1/S], s \in \mathbb{Z}[1/S] \}. \]

Let \(\text{Nil}_S = H/\Lambda \); the associated \(S \)-adic solenoid is \(\text{Sol}_S = \mathbb{Q}_S^{2n}/\mathbb{Z}[1/S]^{2n} \). The group \(Sp_{2n}(\mathbb{Z}[1/S]) \) is a subgroup of \(\text{Aut}(\text{Nil}_S) \). The action of \(Sp_{2n}(\mathbb{Z}[1/S]) \) on \(\text{Sol}_S \) is induced by its representation linearly by bijections on \(\mathbb{Q}_S^{2n} \).

Let \(\Gamma \) be a subgroup of \(Sp_{2n}(\mathbb{Z}[1/S]) \). The Koopman representation \(\kappa \) of \(\Gamma \) on \(L^2(\text{Nil}_S) \) decomposes as
\[\kappa = 1_{\text{Nil}_S} \oplus \kappa_1 \oplus \kappa_2, \]
where \(\kappa_1 \) is the restriction of \(\kappa \) to \(L^2(\text{Sol}_S) \) and \(\kappa_2 \) the restriction of \(\kappa \) to the orthogonal complement of \(L^2(\text{Sol}_S) \) in \(L^2(\text{Nil}_S) \). Since \(Sp_{2n}(\mathbb{Q}_p) \) stabilizes every
infinite-dimensional representation of H_p, it follows from Proposition 13 that there exists a subset $I \subset \mathbb{Q}$ such that κ_2 is equivalent to a direct sum
\[\bigoplus_{t \in I} \left(\bigotimes_{p \in S} (\omega_t(p) |_{\Gamma} \otimes W_t) \right), \]
where W_t is a projective representation of Γ.

Let ν be a probability measure on Γ. We can give an estimate of the norm of $\kappa_2(\nu)$ as in [BeHe11] in the case of $S = \{\infty\}$. Indeed, by a general inequality (see [BeGu15, Proposition 30]), we have
\[\|\kappa_2(\nu)\| \leq \|(\kappa_2 \otimes \overline{\kappa_2}) \otimes_k(\nu)\|^{1/2k}, \]
for every integer $k \geq 1$, where $\overline{\kappa_2}$ denotes the representation conjugate to κ_2. Since $\omega_t(p)$ is strongly $L^{2n+2+\epsilon}$ on $Sp_{2n}(\mathbb{Q}_p)$ for any $t \in I$ and $p \in S$, Proposition 8 implies that $(\kappa_2 \otimes \overline{\kappa_2}) \otimes^{(n+1)}$ is contained in an infinite multiple of the regular representation λ_{Γ} of Γ. Hence,
\[\|\kappa_2(\nu)\| \leq \|\lambda_{\Gamma}(\nu)\|^{1/2n+2} \]
and so,
\[\|\kappa_0(\nu)\| \leq \max\{\|\lambda_{\Gamma}(\nu)\|^{1/2n+2}, \|\kappa_1(\nu)\|\}, \]
where κ_0 is the restriction of κ to $L^2_{\mathbb{Z}}(\text{Nil}_S)$.

Assume that ν is aperiodic. If Γ is not amenable then $\|\lambda_{\Gamma}(\nu)\| < 1$ by Kesten’s theorem (see [BeHV08, Appendix G]); so, in this case, the action of Γ on Nil_S has a spectral gap if and only if $\|\kappa_1(\nu)\| < 1$, as stated in Theorem 1.

Observe that, if Γ is amenable, then the action of Γ on Nil_S or Sol_S does not have a spectral gap; indeed, by a general result (see [JuRo79, Theorem 2.4]), no action of a countable amenable group by measure-preserving transformations on a non-atomic probability space has a spectral gap.

Let us look more closely to the case $n = 1$. We have $Sp_2(\mathbb{Z}[1/S]) = SL_2(\mathbb{Z}[1/S])$ and the stabilizer of every element in $\text{Sol}_S \setminus \{1_{\text{Sol}_S}\}$ is conjugate to the group of unipotent matrices in $SL_2(\mathbb{Z}[1/S])$ and hence amenable. This implies that κ_1 is weakly contained in λ_{Γ} (see the decomposition of κ_1 appearing before Proposition 15); so, we have
\[\|\kappa_1(\nu)\| < 1 \iff \Gamma \text{ is not amenable.} \]

As a consequence, we see that the action of Γ on Nil_S has a spectral gap if and only if Γ is not amenable.

\textbf{References}

[BeFr20] B. Bekka and C. Francini. Spectral gap property and strong ergodicity for groups of affine transformations of solenoids. \textit{Ergod. Th. & Dynam. Sys.} \textbf{40}(5) (2020), 1180–1193.

[BeGu15] B. Bekka and Y. Guivarc’h. On the spectral theory of groups of affine transformations of compact nilmanifolds. \textit{Ann. Sci. Éc. Norm. Supér. (4)} \textbf{48} (2015), 607–645.

[BeHe11] B. Bekka and J.-R. Heu. Random products of automorphisms of Heisenberg nilmanifolds and Weil’s representation. \textit{Ergod. Th. & Dynam. Sys.} \textbf{31} (2011), 1277–1286.
[BeHV08] B. Bekka, P. de la Harpe and A. Valette. Kazhdan’s Property (T). Cambridge University Press, Cambridge, 2008.

[Bekk16] B. Bekka. Spectral rigidity of group actions on homogeneous spaces. Handbook of Group Actions. Volume IV (Advanced Lectures in Mathematics (ALM), 4). Eds. L. Ji and S.-T. Yau. International Press, Somerville, MA, 2018, pp. 563–622.

[Fox89] J. Fox. Adeles and the spectrum of compact nilmanifolds. Pacific J. Math. 140, 233–250 (1989).

[GGPS69] I. M. Gelfand, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions. W.B. Saunders Company, Philadelphia, PA, 1969

[CoGr89] L. Corwin and F. Greenleaf. Representations of Nilpotent Lie Groups and their Applications, Cambridge University Press, Cambridge, 1989.

[HeRo63] E. Hewitt and K. Ross. Abstract Harmonic Analysis. Volume I (Die Grundlehren der mathematischen Wissenschaften, 115). Springer-Verlag, New York, 1963.

[HoMo79] R. Howe and C. C. Moore. Asymptotic properties of unitary representations. J. Funct. Anal. 32 (1979), 72–96.

[HoTa92] R. Howe and E. C. Tan. Non-abelian Harmonic Analysis. Springer, New York, 1992.

[Howe82] R. Howe. On a notion of rank for unitary representations of the classical groups. Harmonic Analysis and Group Representations. Ed. F. Talamanca. Liguori, Naples, 1982, pp. 223–331.

[JuRo79] A. del Junco and J. Rosenblatt. Counterexamples in ergodic theory. Math. Ann. 245 (1979), 185–197.

[Kiri62] A. A. Kirillov. Unitary representations of nilpotent Lie groups. Russian Math. Surveys 17 (1962), 53–104.

[Mack58] G. W. Mackey. Unitary representations of group extensions I. Acta Math. 99 (1958), 265–311.

[Mack76] G. W. Mackey. The Theory of Unitary Group Representations (Chicago Lectures in Mathematics). University of Chicago Press, Chicago, 1976.

[Moor65] C. C. Moore. Decomposition of unitary representations defined by discrete subgroups of nilpotent Lie groups. Ann. of Math. (2) 82 (1965), 146–182.

[Schm81] K. Schmidt. Amenability, Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions. Ergod. Th. & Dynam. Sys. 1 (1981), 223–236.

[Weil74] A. Weil. Basic Number Theory. Springer-Verlag, Berlin, 1974.