C STAR SURVEY OF LOCAL GROUP DWARF GALAXIES. III. THE SAGITTARIUS DWARF IRREGULAR AND THE LEO I DWARF SPHEROIDAL GALAXIES

SERGE DEMERS
Département de Physique, Université de Montréal, Montreal, QC H3C 3J7, Canada; demers@astro.umontreal.ca

AND

PAOLO BATTINELLI
Osservatorio Astronomico di Roma, viale del Parco Mellini 84, I-00136 Roma, Italy; battinel@oarhp1.rm.astro.it

Received 2001 July 24; accepted 2001 October 4

ABSTRACT

We present the latest results of our ongoing homogeneous cool C star survey of Local Group dwarf galaxies. We apply our two-color photometric technique to the study of two small galaxies: the Sagittarius dwarf (SagDIG) and Leo I. We identify 16 C stars in SagDIG and 13 C stars in Leo I. Even though both galaxies have a known C star population, we identify seven previously unknown C stars in each galaxy. The photometric properties of all the known C stars in each galaxy are presented. It is shown that our definition of a C star, based on our photometric criteria, produces a subset of carbon stars with homogeneous properties useful for population comparison.

Key words: galaxies: individual (Sagittarius dwarf irregular, Leo I) — galaxies: stellar content — stars: carbon

1. INTRODUCTION

To pursue our ongoing program (Albert, Demers, & Kunkel 2000, hereafter Paper I; Battinelli & Demers 2000, hereafter Paper II) to determine and compare the photometric properties of cool C stars in dwarf galaxies, we present the results of a survey of the Sagittarius dwarf galaxy (SagDIG) and of Leo I, a satellite of the Milky Way. This is done to establish whether their mean M_I can be used as a standard candle and whether their mean colors and/or magnitudes are functions of the metallicity or other properties of the parent galaxy.

SagDIG was discovered independently on ESO and SERC survey plates by Cesarsky et al. (1977) and Longmore et al. (1978), respectively. SagDIG is located in the direction toward the Galactic center ($l = 21^\circ$) at $\alpha = 19^h29^m59^s$, $\delta = -17^\circ40'41"$ (J2000.0); thus it is at a relatively low Galactic latitude, $b = -16^\circ3$. This dwarf galaxy, located on the outskirts of the Local Group (van den Bergh 2000), has recently been the subject of two independent photometric studies. Both investigations determined its distance from the apparent magnitude of the tip of its giant branch; their results are consistent with each other. Karachentsev, Aparicio, & Makarov (1999) found a distance of 1.06 ± 0.10 Mpc, while Lee & Kim (2000) found 1.18 ± 0.10 Mpc. Because their adopted color excesses are different, we detail in §3.1.2 the reasons for our choice of $E(R-I)$.

Leo I is one of the nine dwarf spheroidal (dSph) galaxies associated with the Milky Way. It was discovered by Har rington & Wilson (1950) while inspecting Palomar Sky Survey plates. It has since been the subject of several investigations. Leo I is among the most massive dSph satellites of the Galaxy. It contains a substantial intermediate-age population, which until fairly recently was believed to represent also the oldest population of Leo I (Held et al. 2000). For the distance and extinction of Leo I we adopt the values obtained by Lee et al. (1993) from the apparent magnitude of the tip of the giant branch. Table 1 summarizes the currently known and adopted properties of SagDIG and Leo I. M_I is the integrated absolute magnitude.

C stars are known to exist in both galaxies. Cook (1987) surveyed SagDIG, employing a four-filter technique similar to ours. Leo I was observed spectroscopically by using a grism technique by Azzopardi, Lequeux, & Westerlund (1985, 1986) and by Aaronson, Olszewski, & Hodge (1983) by using near-infrared photometry. Our observations of Leo I will be particularly interesting to link our photometry to a population of spectroscopically confirmed C stars. As we shall see, our technique permits only the identification of the coolest C stars, thus defining a subset with a narrower range of properties.

2. OBSERVATIONS AND DATA REDUCTION

The observations presented in this paper were obtained at the Cerro Tololo Inter-American Observatory (CTIO) 1.5 m telescope with a 2048 × 2048 Tektronix CCD during two runs: a five-night run in 1999 August and a three-night run in 2001 April. For the first run, the telescope was employed at the f/13.5 focus, yielding a pixel size of 0\''24 and a field of view of 8\''2 × 8\''2. This field is deemed suitable for the small galaxies under investigation. It further allows us to evaluate the foreground contamination. For the second run, the f/7.5 focus, yielding a pixel size of 0\''432 and a field of view of 15\'' × 15\'' was adopted. To photometrically identify C stars, we employed the technique used in Paper I and described by Brewer, Richer, & Crabtree (1995; see also Cook, Aaronson, & Norris 1986). Standard Kron-Cousins R and I filters are used along with CN and TiO interference filters centered at 810 nm and 770 nm, respectively. Both filters have a width of 30 nm. The calibration and data reduction of both runs were done in the same way. The reader is
referred to Paper II of this series, which detailed the calibration and data reduction procedure. The journal of observations is presented in Table 2.

Sky flats were obtained each night through each filter. Calibration to the standard R and I system was done using Landolt’s (1992) equatorial standards observed during the course of the night. Extinction coefficients and transformation equations were obtained by multilinear regressions. Details are presented in Paper II.

After the standard prereduction of trimming, bias subtraction, and sky flat-fielding, the photometric reductions were done by fitting model point-spread functions (PSFs) by using the DAOPHOT, ALLSTAR, and ALLFRAME series of programs (Stetson 1987, 1994) in the following way: We combine, using MONTAGE2, all the images of the series of programs (Stetson 1987, 1994) in the following way: We combine, using MONTAGE2, all the images of the target irrespective of the filter to produce a deep image devoid of cosmic rays. ALLSTAR is then used on this deep image to derive a list of stellar images and produce a second list of stars is added to the first one. The final list is then used for the analysis of the individual frames using ALLFRAME. This program fits model PSFs to stellar objects in all the frames simultaneously.

TABLE 1	**Adopted Properties of SagDIG and Leo I**	
Property	SagDIG	Leo I
$B(V-B)$	0.05	0.02
$B(R-I)$	0.04	0.016
A_I	0.12	0.04
$(M-m)_0$	25.30 ± 0.14	22.18 ± 0.11
$[\text{Fe/H}]$	-2.4	-2.0
M_I^*	-11.85 ± 0.20	-11.9 ± 0.3

3. RESULTS

3.1. SagDIG

3.1.1. Color-Magnitude Diagram

Figure 1 displays the color-magnitude diagram for stars with DAOPHOT computed errors for $R-I$ less than 0.1 mag. It is based on exposures totaling 100 minutes in R and 80 minutes in I. A comparison of this figure with the color-magnitude diagram (CMD) produced by Lee & Kim (2000) shows that the magnitude limit of our diagram is half a magnitude fainter than the red giant tip of SagDIG, which is difficult to see because of the numerous foreground stars, many of them redder than C stars.

3.1.2. Reddening and Adopted Distance

One can estimate, approximately, the reddening toward SagDIG from the CMD displayed in Figure 1. The $R-I$ distribution of foreground stars in the CMD is quite sharply limited on the blue side. This limit, corresponding to the main-sequence turnoff of field G dwarfs, is seen at $R-I = 0.39$. If we adopt $R-I = 0.35$ for G5 dwarfs (Cox 2000), then $E(R-I) \approx 0.04$, corresponding to color excess $E(B-V) \approx 0.05$. This evaluation confirms the low reddening estimate by Lee & Kim (2000), made from a two-color diagram. We adopt a low reddening value. G dwarfs along the line of sight are distributed along the first kiloparsecs because at a distance of 5 kpc the line of sight is already 1500 pc below the Galactic disk. The position of the blue

TABLE 2	**Journal of Observations**			
Dates	Filter	Time (s)	FWHM (arcsec)	Air Mass
SagDIG:				
1999 Aug 9	R	1200	1.2	1.097
1999 Aug 10	I	1200	1.2	1.354
1999 Aug 10	R	1200	1.2	1.130
1999 Aug 10	TiO	2 x 1200	1.2	1.160
1999 Aug 10	CN	1200	1.1	1.186
1999 Aug 11	I	2 x 1200	1.5	1.227
1999 Aug 11	R	2 x 1200	1.6	1.163
1999 Aug 11	TiO	5 x 1200	1.4	1.103
1999 Aug 11	CN	6 x 1200	1.3	1.085
1999 Aug 12	R	1200	1.2	1.397
1999 Aug 12	TiO	2 x 1200	1.1	1.226
1999 Aug 12	CN	2 x 1200	1.2	1.166
1999 Aug 13	I	1200	0.9	1.474
1999 Aug 13	TiO	1200	1.2	1.353
1999 Aug 13	CN	1200	1.1	1.259
Leo I comp:				
2001 Apr 15	I	60	1.5	1.549
2001 Apr 15	R	72	1.7	1.534
2001 Apr 15	CN	240	1.5	1.519
2001 Apr 15	TiO	240	1.5	1.496
Leo I:				
2001 Apr 15	I	60	1.421	1.6
2001 Apr 15	R	72	1.428	1.4
2001 Apr 15	CN	240	1.405	1.4
2001 Apr 15	TiO	240	1.395	1.3

![Fig. 1.—Color-magnitude diagram of SagDIG. Note the well defined vertical ridge, whose $R-I$ location is a function of the reddening along the line of sight. C stars are shown as circles. The bluer C stars, identified by Cook (1987), are represented by triangles.](image-url)
ridge in the CMD of NGC 6822 (Letarte et al. 2002) is located at \(R - I \approx 0.56 \), a position expected from the published reddening of that galaxy. Cook (1987) used a similar technique to evaluate the reddening toward SagDIG. He also concluded that the reddening is low. The adopted absolute magnitude of SagDIG is based on their respective evaluation of the integrated apparent magnitude of this galaxy, again taking into account our adopted reddening.

3.1.3. Color-Color Diagram

Figure 2 displays the color-color diagram. The same criteria as adopted in Paper I to define C stars are traced. C stars are stars in the upper box with \(R - I > 0.94 \). The 16 C stars identified in SagDIG are listed in Table 3; J2000.0 equatorial coordinates are given.

3.2. Leo I

3.2.1. Color-Magnitude Diagram

Leo I being much closer to us than SagDIG, rather short exposures were secured to reach more than 1 mag below the giant branch tip, sufficient to identify C stars. Its color-magnitude diagram is presented in Figure 3. The number of foreground stars toward Leo I is much less than those in the direction of SagDIG. Nevertheless, a number of very red foreground stars are seen among the noncarbon stars.

![Figure 2: Color-color diagram of SagDIG. The bluer C stars identified by Cook, not identified here, would be nearly all buried in the clump.](image)

![Figure 3: Color-magnitude diagram of Leo I. C stars are shown as circles, while the bluer spectroscopically confirmed C stars are shown as triangles.](image)

ID	R.A.	Decl.	I	\(\sigma_I \)	\(R - I \)	\(\sigma_{R - I} \)	CN–TiO	\(\sigma_{CN–TiO} \)
C01....	19 30 01.02	-17 40 52.6	19.859	0.014	1.017	0.022	0.254	0.023
C02....	19 30 08.16	-17 40 00.8	19.830	0.015	1.169	0.023	0.278	0.025
C03....	19 30 02.02	-17 42 05.7	20.076	0.018	1.181	0.030	0.194	0.029
C04....	19 30 00.07	-17 41 35.2	20.074	0.017	1.011	0.027	0.236	0.030
C05....	19 30 06.27	-17 40 54.6	20.150	0.019	1.042	0.028	0.557	0.033
C06....	19 29 52.89	-17 40 32.7	20.227	0.020	1.089	0.031	0.238	0.032
C07....	19 29 55.23	-17 40 22.6	20.262	0.020	1.021	0.030	0.226	0.033
C08....	19 30 04.19	-17 40 30.2	20.375	0.022	1.165	0.036	0.285	0.039
C09....	19 30 05.19	-17 41 42.8	20.349	0.027	1.126	0.042	0.162	0.038
C10....	19 30 01.68	-17 41 06.6	20.493	0.026	1.341	0.049	0.195	0.042
C11....	19 29 56.33	-17 40 47.3	20.674	0.031	1.002	0.048	0.857	0.064
C12....	19 29 50.49	-17 39 10.2	20.521	0.035	1.158	0.065	0.557	0.119
C13....	19 29 57.55	-17 40 41.8	20.735	0.031	0.959	0.046	0.227	0.047
C14....	19 29 52.89	-17 41 39.5	20.745	0.031	1.146	0.052	0.729	0.061
C15....	19 30 00.29	-17 41 02.8	20.701	0.032	1.469	0.061	0.224	0.053
C16....	19 30 00.24	-17 40 54.4	20.835	0.035	1.337	0.072	0.705	0.073

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
3.2.2. Color-Color Diagram

The four-filter technique allows us to easily identify C stars in Leo I. There are 13 C stars in Leo I that satisfy our color index criteria. They are listed in Table 4, along with their J2000.0 coordinates. (See Fig. 4.) As mentioned above, spectroscopic observations have confirmed at least 19 C stars in that galaxy. The comparison of the photometric properties of our list of C stars with those of the C stars already known, presented in the next section, shows that results are quite consistent. Seven of the C stars listed in Table 4 are newly identified C stars, including two located 5' from its center, a distance well within its tidal radius (Irwin & Hatzidimitriou 1995) of 12'/6.

4. DISCUSSION

4.1. Previously Known C Stars in SagDIG and Leo I

Cook (1987) identified 26 C stars in SagDIG by using a photometric technique similar to ours. Twenty-five of his 26 stars were found in our database. The missing one is near a bright foreground star, and it may have been rejected because its profile fit did not converge. Only eight C stars are, however, common to both lists. We present in Table 5 our magnitudes and colors of Cook's C stars. One can see that many of them have $R - I_0 < 0.90$ and are thus too blue to be called C stars, according to our $R - I$ criterion. The majority of them have too small an index CN−TiO to be called C stars. Stars 2 and 4 are redder than the limit but they are just outside our C star region because their CN−TiO values are close to zero. On the other hand, four of our C stars are outside Cook's CCD field. Three others not seen by Cook, C11, C12, and C13, are among the faintest C stars in our list.

There are already 19 known spectroscopically confirmed C stars in Leo I (Azzopardi et al. 1985, 1986) plus one (No. 20 in Table 6) that is called by Aaronson & Mould (1985) a probable C star on the basis of its JHK colors and K luminosity. Because our definition of a C star is restrictive, being limited to stars with $R - I_0 > 0.90$, it is not at all surprising that spectroscopy would have revealed the presence of warmer and bluer C stars not "seen" by our survey. This is indeed the case, as one can verify from Table 6, listing our photometric measures of the 20 C stars compiled by Azzopardi et al. (1986). Only six of them are red enough to satisfy our color criterion. The reader may ask, Why limit the number of C stars by selecting such a red color? The main reason for this approach is that we adopt a criterion similar to the one used by Brewer et al. (1995) and by Nowotny et al. (2001) for their M31 surveys. By excluding bluer and fainter C stars, we facilitate their discovery in external galaxies and we collect a more homogeneous (in I magnitudes) sample that could eventually be used as standard candles. In fact, one can easily see by inspecting Figures 1 and 3 that the bluer C stars extend to much fainter magnitudes. These bluer stars can be detected in external galaxies but would require more telescope time.

The numerous foreground Galactic stars toward SagDIG make the determination of its C/M ratio highly unreliable. Indeed, we count only 13 C stars redder than $R - I_0 = 0.90$, while we count 699 M stars redder than this limit in the whole $8'/4 \times 8'/4$ field.

ID	R.A.	Decl.	I	σ_I	$R - I$	$\sigma_{R - I}$	CN−TiO	$\sigma_{CN−TiO}$
C01	10 08 19.97	12 17 42.1	16.923	0.084	1.012	0.086	0.238	0.027
C02	10 08 20.09	12 20 03.1	17.097	0.016	1.196	0.025	0.307	0.025
C03	10 08 20.66	12 18 37.2	17.142	0.017	1.317	0.029	0.238	0.025
C04	10 08 11.71	12 18 34.3	17.183	0.016	1.212	0.028	0.290	0.025
C05	10 08 22.56	12 18 26.5	17.207	0.018	0.929	0.025	0.436	0.026
C06	10 08 25.30	12 18 30.8	17.304	0.020	0.951	0.030	0.259	0.033
C07	10 08 32.36	12 18 46.7	17.279	0.020	1.198	0.031	0.322	0.030
C08	10 08 39.92	12 22 15.1	17.485	0.024	1.023	0.033	0.283	0.032
C09	10 08 21.76	12 17 25.6	17.607	0.024	1.012	0.034	0.334	0.034
C10	10 08 25.63	12 18 57.7	17.624	0.026	1.098	0.036	0.302	0.033
C11	10 08 12.89	12 19 38.7	17.668	0.025	0.990	0.035	0.262	0.036
C12	10 08 28.51	12 19 49.2	17.790	0.029	0.933	0.039	0.629	0.039
C13	10 08 22.69	12 23 16.6	18.237	0.035	1.307	0.057	0.346	0.054

a Newly identified C stars.
Since SagDIG occupies only the central part of the field, counts in the northern and southern peripheries can be used in principle to evaluate the foreground contribution. These two zones, representing slightly more than half the field, contain 340 M stars. Thus we estimate that there are 665/5% foreground M stars in the field. The uncertainty attached to the number belonging to SagDIG is such that we cannot quote a meaningful C/M ratio.

For Leo I it is, however, easy to evaluate the C/M ratio. To do so, we observed a second field, located 14° southeast of the center of Leo I. This field, identified as “Leo I comp” in Table 2, contains 41 M stars and no C stars, as expected. The field centered on Leo I contains 56 M stars. Thus the C/M ratio of Leo I is 25. This value is consistent with the C/M ratios of IC 1613 (0.64) and Pegasus (0.78) and reflects the lower metallicity of Leo I relative to the two more massive dwarfs.

5. CONCLUSION

Leo I and SagDIG are two low-mass galaxies of rather different Hubble type but of identical absolute magnitude. Few C stars are expected in galaxies of such low luminosity. More massive dwarfs, such as NGC 6822, contain several hundred C stars. The small number of C stars, seen in these two systems, provides little else than the mean photometric properties of the C star population. In more massive dwarfs the spatial distribution of C stars can be used to map the outer parts of the disk or halo. Table 7 summarizes the photometric properties of the C star population in the two systems under investigation.

Results currently on hand and presented in Figure 5 bring further evidence that the mean absolute I magnitude of C stars in different dwarf galaxies varies little with the metallicity of the parent galaxy and may be a suitable distance indicator. Error bars reflect mostly the quoted uncertainties of the distance estimates.

TABLE 5
SagDIG C Stars Identified by Cook

Cook	This Paper						
No.	I	$V-I$	I	$R-I$	$CN-TiO$	CN	$No.$
------	------	-------	------	-------	-----------	-------	-------
1	19.50	1.73	19.500	0.659	0.120		
2	19.87	2.19	19.836	1.058	0.157		
3	19.95	1.52	19.887	0.987	0.127		
4	19.94	2.30	19.859	1.017	0.257		
5	20.02	2.38	20.262	1.021	0.266		
6	20.23	3.10	20.150	1.042	0.557		
7	20.36	2.10	19.786	0.873	0.129		
8	20.71	1.35	20.539	0.776	0.124		
9	21.11	2.04	21.140	0.884	0.066		
10	21.50	1.34	21.437	0.696	0.021		
11	21.50	1.51	21.704	0.599	0.011		
12	21.67	1.41	21.882	0.558	0.022		
13	20.46	2.70	20.227	1.089	0.238		
14	20.39	2.14	20.375	1.165	0.285		
15	20.68	2.91	20.701	1.469	0.224		
16	21.42	1.55	21.663	0.882	0.022		
17	22.00	1.49	21.685	0.793	0.094		
18	20.98	1.42	21.051	0.589	0.070		
19	21.77	1.55	21.785	0.912	0.022		
20	21.94	1.68	22.05	1.5	0.5		
21	21.42	1.44	21.403	0.681	0.308		
22	21.37	1.51	21.471	0.852	0.12		
23	21.58	1.51	21.493	0.620	0.156		
24	20.89	2.12	20.835	1.337	0.705		

TABLE 6
Photometry of Previously Known C Stars in Leo I

No.	Sp.T.	I	$R-I$	$CN-TiO$	CN	$No.$
1	C	17.69	0.85	0.21		
2	C	16.92	1.01	0.24	C01	
3	C	17.60	1.01	0.33	C09	
4	C	17.38	0.91	0.27		
5	C	17.21	0.93	0.22	C05	
6	C	17.45	0.86	0.28		
7	C	17.62	1.10	0.30	C10	
8	C	17.30	0.95	0.26	C06	
9	C	18.77	0.99	0.11		
10	C	17.57	0.88	0.19		
11	C	17.79	0.93	0.63	C12	
12	C	18.45	0.50	0.24		
13	C	17.56	0.82	0.19		
14	C	17.01	0.79	0.17		
15	C	17.12	0.85	0.27		
16	C	17.47	0.86	0.32		
17	C	18.59	0.54	0.27		
18	C	17.50	0.75	0.21		
19	C	17.76	0.76	0.10		
20	?	17.52	0.86	0.26		

1 Azzopardi et al. 1986 comment that this is not a C star.

TABLE 7
C/M Ratio and Photometric Characteristics

Galaxy	N_C	C/M	I	$(R-I)$	$(B-I)$	$(R-I)_0$	$(B-I)_0$	(M_I)
Leo I	13	1.0	17.427	1.091	17.39	1.075	–4.79	
SagDIG	16	…	20.359	1.138	20.24	1.10	–5.06	

Fig. 5.—Mean absolute magnitude in the I band of C stars seen in different dwarf galaxies varies little with the metallicity of the parent galaxy and may be a suitable distance indicator. Error bars reflect mostly the quoted uncertainties of the distance estimates.
stars, \(\langle M \rangle \), is nearly constant in galaxies of different metallicities and averages about \(-4.7\). The LMC point is based on the 590 LMC C stars with \(R - I > 0.90 \) observed by Costa & Frogel (1996). The SMC is not represented here because its numerous C stars do not have \((R - I)_K \) photometry. The NGC 6882 data point is from our upcoming publication (Letarte et al. 2002). Error bars take into account the uncertainty of the mean magnitude and the quoted uncertainty of the distance determination. Most authors quote uncertainty of the true modulus to be about \(\pm 0.1 \) mag. Freedman (1988) quotes, however, \(\pm 0.2 \) for her IC 1613 distance estimate.

This project is supported financially in part by the Natural Sciences and Engineering Research Council of Canada (S. D.).

REFERENCES
Aaronson, M., & Mould, J. R. 1985, ApJ, 290, 191
Aaronson, M., Olszewski, E. W., & Hodge, P. W. 1983, ApJ, 267, 271
Albert, L., Demers, S., & Kunkel, W. E. 2000, AJ, 119, 2780 (Paper I)
Azzopardi, M., Lequeux, J., & Westerlund, B. E. 1985, A&A, 144, 388
Battinelli, P., & Demers, S. 2000, AJ, 120, 1801 (Paper II)
Brewer, J. P., Richer, H. B., & Crabtree, D. R. 1995, AJ, 109, 2480
Cesarsky, D. A., Lequeux, J., Laustens, S., Schuster, H.-E., & West, R. M. 1977, A&A, 61, L31
Cook, K. H. 1987, Ph.D. thesis, Univ. Arizona
Cook, K. H., Aaronson, M., & Norris, J. 1986, ApJ, 305, 634
Costa, E., & Frogel, J. A. 1996, AJ, 112, 2607
Cox, A. N., ed. 2000, Allen’s Astrophysical Quantities (4th ed.; New York: Springer), 392
Freedman, W. L. 1988, ApJ, 326, 691
Harrington, R. G., & Wilson, A. G. 1950, PASP, 62, 118
Held, E. V., Saviane, I., Momany, Y., & Carraro, G. 2000, ApJ, 530, L85
Irwin, M. J., & Hatzidimitriou, D. 1995, MNRAS, 277, 1354
Karachentsev, I., Aparicio, A., & Makarova, L. 1999, A&A, 352, 363
Landolt, A. U. 1992, AJ, 104, 340
Lee, M. G., Freedman, W. L., Mateo, M., Thompson, I., Roth, M., & Ruiz, M.-T. 1993, AJ, 106, 1420
Lee, M. G., & Kim, S. C. 2000, AJ, 119, 777
Letarte, B., Demers, S., Battinelli, P., & Kunkel, W. E. 2002, AJ, in press
Longmore, A. J., Hawarden, T. G., Webster, B. L., Goss, W. M., & Mebold, U. 1978, MNRAS, 183, P97
Nowotny, W., Kerchbaum, F., Schwarz, H. E., & Olofsson, H. 2001, A&A, 367, 557
Stetson, P. B. 1987, PASP, 99, 191
———. 1994, PASP, 106, 250
van den Bergh, S. 2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press)