The UV / optical spectra of the Type Ia supernova SN 2010jn: a bright supernova with outer layers rich in iron-group elements

S. Hachinger¹,²,³, P. A. Mazzali¹,², M. Sullivan⁴,⁵, R. S. Ellis⁶, K. Maguire⁵, A. Gal-Yam⁷, D. A. Howell⁸,⁹, P. E. Nugent¹⁰, E. Baron¹¹,¹²,¹³,¹⁴, J. Cooke¹⁵, I. Arcavi⁷, D. Bersier¹⁶, B. Dilday⁸,⁹, P. A. James¹⁶, M. M. Kasliwal¹⁷, S. R. Kulkarni⁶, E. O. Ofek⁷, R. R. Laher¹⁸, J. Parrent⁸,¹⁹, J. Surace¹⁸, O. Yaron⁷, E. S. Walker²⁰

¹Istituto Nazionale di Astrofisica-OAPd, vicolo dell’Osservatorio 5, 35122 Padova, Italy
²Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
³Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Fischer-Str. 31, 97074 Würzburg, Germany
⁴School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
⁵Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH, UK
⁶Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
⁷Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel
⁸Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117, USA
⁹Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
¹⁰Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
¹¹Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks, Norman, OK 73019, USA
¹²Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany
¹³Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
¹⁴Physics Department, University of California, Berkeley, CA 94720, USA
¹⁵Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, Hawthorn, Victoria 3122, Australia
¹⁶Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK
¹⁷Observatories of the Carnegie Institution of Science, 813 Santa Barbara St, Pasadena, CA 91101, USA
¹⁸Spitzer Science Center, California Institute of Technology, MS 314-6, Pasadena, CA 91125, USA
¹⁹6127 Wilder Lab, Department of Physics & Astronomy, Dartmouth College, Hanover, NH 03755, USA
²⁰Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy

ABSTRACT
Radiative transfer studies of Type Ia supernovae (SNe Ia) hold the promise of constraining both the density profile of the SN ejecta and its stratification by element abundance which, in turn, may discriminate between different explosion mechanisms and progenitor classes. Here we analyse the Type Ia SN 2010jn (PTF10ygu) in detail, presenting and evaluating near-ultraviolet (near-UV) spectra from the Hubble Space Telescope and ground-based optical spectra and light curves. SN 2010jn was discovered by the Palomar Transient Factory (PTF) 15 days before maximum light, allowing us to secure a time series of four near-UV spectra at epochs from −10.5 to +4.8 days relative to B-band maximum. The photospheric near-UV spectra are excellent diagnostics of the iron-group abundances in the outer layers of the ejecta, particularly those at very early times. Using the method of ‘Abundance Tomography’ we derive iron-group abundances in SN 2010jn with a precision better than in any previously studied SN Ia. Optimum fits to the data can be obtained if burned material is present even at high velocities, including significant mass fractions of iron-group elements. This is consistent with the slow decline rate (or high ‘stretch’) of the light curve of SN 2010jn, and consistent with the results of delayed-detonation models. Early-phase UV spectra and detailed time-dependent series of further SNe Ia offer a promising probe of the nature of the SN Ia mechanism.

Key words: supernovae: general – supernovae: individual: SN 2010jn – techniques: spectroscopic – radiative transfer
1 INTRODUCTION

Supernovae (SNe) play an important role in many areas of modern astrophysics. In particular, Type Ia SNe (SNe Ia) produce most of the iron-group elements in the cosmos (Iwamoto et al. 1999), and can be used as 'standard candles' to probe the expansion history of the Universe (e.g. Riess et al. 1998, Branch et al. 1993). Spectroscopic diagnostics for iron-group abundances and ejecta densities in different zones of the SN are used to deduce the luminosity of SNe Ia from their light-curve shape (e.g. Phillips 1993; Phillips et al. 1999). Another aim is to determine the progenitor systems of SNe Ia.

One way to improve our understanding of SNe Ia physics is to analyse and interpret detailed observations through radiation transport models. A particularly useful technique is the 'Abundance Tomography' (Steble et al. 2003), where a time series of SN Ia spectra is modelled and information obtained about the density profile of the SN ejecta and its stratification in terms of element abundances. This makes it possible to describe the mode of explosion and possibly to discriminate among different progenitor scenarios. Many detailed spectral time series for SNe Ia have become available in the last decade, but most of them are restricted to optical wavelengths. The ultraviolet (UV) spectrum of SNe Ia is shaped by iron-group elements, which dominate line-blocking and fluorescence effects (Kirshner et al. 1993; Pauldrach et al. 1994; Mazzali 2000). Thus, series of UV spectra are invaluable diagnostics for iron-group abundances and ejecta densities in different zones of the SN. These in turn are indicators for basic explosion properties such as burning efficiency or explosion energy (Iwamoto et al. 1999). Extensive work on UV spectra of SNe Ia has been carried out especially in the last few years. On the observational side, compilations of UV spectra have been built up and studied (e.g. Ellis et al. 2008; Foley et al. 2008, Buono et al. 2005; Foley et al. 2012b; Maguire et al. 2012). But also the properties of individual objects have been investigated in more detail (e.g. Foley et al. 2012a). On the theoretical side, spectral modelling has been performed to understand the diagnostic utility of UV spectra (e.g. Sauer et al. 2008; Foley et al. 2012d, Walker et al. 2012). Both observations and models indicate that even SNe Ia with similar optical spectra can be very different in the UV (Lentz et al. 2004; Ellis et al. 2008; Sauer et al. 2008; Walker et al. 2012).

Here we present observations and models of the SN 2010jn (PTF10ygu), a 'normal' SN Ia (cf. Branch et al. 1993), which is however quite luminous and has high line velocities as well as high velocity features (HVFs; e.g. Mazzali et al. 2005) in the spectra. The SN was discovered by the Palomar Transient Factory (PTF) only a few days after explosion, which allowed a detailed spectral time series to be obtained, including near-UV data from the Hubble Space Telescope (HST). The series of combined optical-UV spectra made it possible to analyse the outer and intermediate ejecta in unprecedented detail with the tomography technique. The abundance stratification was inferred based on density profiles of single-degenerate Chandrasekhar-mass explosion models. These models (e.g. Hillebrandt & Niemeyer 2000) assume that SNe Ia are explosions of accreting carbon-oxygen (CO) white dwarfs (WDs). We used both the fast-deflagration model W7 (Nomoto et al. 1984, Iwamoto et al. 1999), which has been shown to match average SNe Ia (Steble et al. 2003, Tanaka et al. 2011), and a more energetic delayed-detonation model (WS15DD3, Iwamoto et al. 1999).

The latter model assumes that the combustion flame, which initially propagates subsonically (deflagration), becomes supersonic (detonation) at some point (Khokhlov 1991). Based on the quality of the fits, we suggest that the latter model is a more realistic description of SN 2010jn.

The paper starts with a report on the observations and a presentation of the observed spectra, which were obtained from −13 d to +5 d (time in the SN rest frame) with respect to maximum light in the rest-frame B band (Section 2). Afterwards, we discuss our models. We lay out the objectives, methods and assumptions (Sections 3.1–3.4). Synthetic spectra are presented and the inferred abundance profiles are discussed (Sections 3.5–3.6). Finally, the results are summarised and conclusions are drawn (Section 4).

2 OBSERVATIONS, DATA REDUCTION AND PHOTOMETRIC PROPERTIES

SN 2010jn (PTF10ygu) was discovered on 2010 October 12 UT by the PTF (Law et al. 2009; Rau et al. 2008) using the Palomar 48-in telescope (P48), through the citizen science project ‘Galaxy Zoo Supernovae’ (Smith et al. 2011). The SN was found at a magnitude of $r \sim 19.2$ in the Sbc galaxy NGC2929, at a heliocentric redshift of $z = 0.02505$ (CMB-frame redshift of 0.02602, yielding a distance modulus $\mu = 35.2\,\text{mag}$), and a spatial position of RA 09:37:30.3, Dec. +23:09:33 (J2000). Only a marginal detection was present in data from the previous two nights, and no detection in data taken on 2010 October 08. Because of the relatively low redshift and apparent early discovery, a classification spectrum was triggered using the Gemini-N telescope and the Gemini Multi-Object Spectrograph (GMOS; Hook et al. 2004) on 2010 October 13 (programme ID GN-2010B-Q-13). This revealed an early SN Ia at about 15 days before maximum light.

Based on this classification, four epochs of near-UV observations of this SN were triggered with the HST using the Space Telescope Imaging Spectrograph (STIS) as part of the cycle 18 programme 12298: ‘Towards a Physical Understanding of the Diversity of Type Ia Supernovae’ (PI: Ellis). A spectral monitoring campaign with ground-based telescopes was also commenced. Multi-colour light curves were obtained with the Liverpool Telescope (LT; Steele et al. 2004) using RATCam and with the Faulkes Telescope North (FTN).

An observing log of our spectra can be found in Table 1. We used two STIS observing modes, both with a 0.2′′ slit: the G430L/CCD on all four epochs (giving coverage from $\sim 2900\,\AA$ out to $\sim 5700\,\AA$), and the G230LB/CCD (with nominal coverage from $\sim 2000\,\AA$ to $\sim 3000\,\AA$) on two epochs. Unfortunately, the more sensitive G230L/MAMA mode was not available as the Multi-Anode Microchannel Array (MAMA) was offline. Since the intrinsic UV flux of SNe Ia below $\sim 2750\,\AA$ is low, the G230LB/CCD observations only provide useful data redwards of this wavelength.

We also make use of five ground-based optical spectra, taken with Gemini-N with GMOS and the William Herschel Telescope

1. Discoverers of PTF10ygu in ‘Galaxy Zoo Supernovae’: Peter Woolliams, tracey, Graham Dungworth, Ippoliti, John P Langridge, Elisabeth Baeten, Tomas Raudys, adam elbourne, Robert Gagliano.

2. A Hubble constant $H_0 = 72\,\text{km s}^{-1}\,\text{Mpc}^{-1}$ is used throughout.
(WHT) with the Intermediate dispersion Spectrograph and Imaging System (ISIS). With GMOS, we used the B600 grating with a central wavelength of 450 nm, and the R400 grating with a central wavelength of 750 nm. With ISIS, we used the R158R (red arm) and R300B (blue arm) gratings, together with the 5300 dichroic. Again, details can be found in Table 1. At the earliest epoch we analyse (−12.9 d), only an optical spectrum is available. At all other epochs, we use both HST and ground-based spectra, taken within < 29 hours of each other.

2.1 Data reduction

2.1.1 Spectra

The treatment of the HST spectra is described in Maguire et al. (2012). Briefly, the spectra were downloaded from the HST archive using the on-the-fly reprocessing (OTFR) pipeline, giving fully calibrated and extracted 1D spectra, where the reduction and extraction are optimised for point sources. The OTFR pipeline uses the latest calibration files and data parameters to perform initial 2D image reduction such as image trimming, bias and dark-current subtraction, cosmic-ray rejection, and flat-fielding. It then performs wavelength and flux calibrations. We applied further cosmic-ray removal and hot-pixel masking by hand. The ground-based spectra and one ground-based

Although the signal-to-noise ratio (S/N) of the ground-based spectra is generally superior in the optical at > 5000 Å, below 4000 Å the use of HST becomes important as the ground-based signal usually degrades. At λ < 3500 Å, the HST data are critical. Discrepancies, sometimes significant, can be seen in the relative flux calibration of the ground and space data below 4000 Å. These are presumably due to the well-known difficulties with ground-based data near the atmospheric cut-off when calibration and correcting for atmospheric extinction.

HST provides two other key advantages. The first is an accurate absolute flux calibration. The HST point-spread function (PSF) is stable, allowing slit-losses to be accurately calculated and corrected for, and the overall flux calibration is believed to be accurate to a few per cent (Bohlin et al. 1997). Secondly, the host galaxy contamination in the narrow 0.2′′ slit used in the HST observations is negligible (see Maguire et al. 2012); the 1 – 1.5′′ slits used from the ground admit more host light – a significant potential contaminant, in particular at epochs when the SN is faint.

2.1.2 Light curves

Light curves were produced from the P48 R and LT / FTN griz photometric data using difference imaging; full details can be found in Maguire et al. (2012). In all cases, a reference image with no SN light is produced, and subtracted from each image in which the SN is present matching the PSFs of the images. In the case of the P48 data, this reference image was constructed using data from before the SN exploded; for the LT / FTN data the reference image was taken 18 months after the SN was first detected, by which time the SN flux was ∼ 1% of its peak value. We measure the SN photometry using a PSF fitting method. In each image frame (prior to subtraction), the PSF is determined from nearby field stars. This average PSF is then fit at the position of the SN in the difference subtraction), the PSF is determined from nearby field stars. This average PSF is then fit at the position of the SN in the difference.

The light curves are flux-calibrated to the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) photometric system, close to the AB system (Oke & Gunn 1983), using stars in the field-of-view of the SN. We generally follow the procedures outlined in Ofek et al. (2012). In the LT / FTN data (g, r and i filters), the colour terms to the SDSS system are very small. The P48 colour term is larger, and we include colour, airmass and colour–airmass terms. The r.m.s. of the colour term fits is ∼ 0.02 mag (with a colour term in r – i of ∼ 0.22 mag); the magnitudes presented below are,
Figure 1. The importance of the HST data (cf. Table 1). The HST spectra (black graphs) are compared to the Gemini-N and WHT ground-based spectra (red/grey graphs). The HST and Gemini/WHT spectra have been scaled to each other using the overlapping regions, and arbitrary offsets have been applied on each epoch; Hα emission lines due to the host galaxy (cf. e.g. Fig. 5) have been removed by inserting a constant flux for better readability. The spectra agree well in the optical, where the ground-based relative flux calibration is straightforward, and the ground-based S/N is superior to HST. But in the blue, in general, the agreement deteriorates and the S/N of HST becomes superior. Below 3500 Å, the use of HST becomes critical.

Figure 2. The optical light curves of SN 2010jn/PTF10ygu in apparent AB magnitudes. The R-band photometry has been taken from the Palomar 48-in telescope (P48; solid red circles), the g- and r-band data have been obtained from the Liverpool Telescope (LT; solid green and orange circles) and the Faulkes Telescope North (FTN; open green and orange circles). No correction for extinction in the Milky Way or the host galaxy has been applied. Over-plotted is a SiFTO light-curve fit (solid lines for P48 and LT data, and dashed lines for FTN data). Only data points up to +15 days past the (rest-frame) B-band maximum are used in the fit. The template lines are dotted after this phase and show the predicted evolution; however the SiFTO template in R/r is not expected to reproduce the observed secondary maximum. The arrows mark the epochs (relative to the rest-frame B-band maximum) of the four HST spectra.
however, in the natural P48 system, i.e. this colour term is not applied. Finally, we calculate aperture corrections to the SN photometry on an image-by-image basis, fitting the same PSF used for the SN flux measurement to the calibrating field stars. These corrections are small (< 3%) and account for the difference between the fixed aperture in which the calibration is performed, and the PSF fit in which the SN photometry is measured. In Fig. 2 and Tables 2 and 3, our observed light-curve data are presented.

2.2 Photometric properties

Estimating the peak luminosity of SNe Ia in a given rest-frame bandpass requires an interpolation between observed data points at the time of maximum light, followed by a k-correction (e.g. Nugent et al. 2002; Hsiao et al. 2007) back to the standard rest-frame filter of interest using a multi-epoch spectral energy distribution (SED). We fit the observed photometry for SN 2010jn using the SiFTO light-curve fitter (Conley et al. 2008) developed for SN Ia cosmology studies.

SiFTO works in flux space, manipulating an SED template and synthesising an observer-frame light curve in a set of filters from a given spectral time series at a given redshift. These template light-curves are then fit to the data, adjusting the time-axis of each of the template light curves by a common ‘stretch’ (s) factor (where the input SED time-series template is defined to have $s = 1$). The normalisations in the observed filters are independent, i.e. the absolute colours of the SED template used in the fit are not important and do not influence the fit. The result is a set of maximum-light observer-frame magnitudes, and a stretch factor.

Once this observer-frame SiFTO fit is complete, it can be used to estimate rest-frame magnitudes in any given set of filters, provided there is equivalent observer-frame filter coverage. This is performed by adjusting (or ‘warping’) the template SED to have the correct observed colours from the SiFTO fit, correcting for extinction along the line of sight in the Milky Way, de-redshifting, and integrating the resultant rest-frame SED through the required filters. This process is essentially a cross-filter k-correction, with the advantage that all the observed data can contribute to the overall SED shape. We only use P48 and LT data (which have a wider phase coverage than the FTN data) for this colour warping; SiFTO does not handle filters that are very close in wavelength in this process (e.g., LT g and FTN g). However, all the FTN data are used to constrain the stretch and time of maximum light.

Our SiFTO light-curve fit is shown in Fig. 2. The fit is reasonable: the χ^2 of the fit is 27 for 43 degrees of freedom. Maximum light in the rest-frame B band was on MJD 55495.8 ± 0.1, or UT 2010-10-26.8, i.e. the SN was discovered some 15 days before maximum light, as expected from the analysis of the first Gemini spectrum. The stretch is 1.06 ± 0.02, corresponding to $\Delta m_{15}(B) = 0.9$ mag – the evolution of the light curve is slower than for a typical SN Ia. We measure peak rest-frame absolute magnitudes at the time of B-band maximum light of $M_B = -17.94 \pm 0.04$ and $M_V = -18.36 \pm 0.02$, and a SiFTO colour C (broadly equivalent to $B - V$ at B-band maximum light) of 0.42 ± 0.03. We take the BV filter responses from Bessel (1990), and these magnitudes are in the Vega system, converted from the (near-)AB system in which the photometry is measured. The uncertainties are based on statistical errors propagated through the light-curve fit. This indicates that PTF10gyu was fainter than its light-curve stretch would indicate, and redder than a normal SN Ia, both presumably the result of extinction by dust (see Sec. 3.2).

We can estimate the (B-band) rise time of the SN (τ_r, defined here as the time from explosion to B maximum) from the very early P48 data, independently of the SiFTO light-curve fit. To end, we measure the explosion epoch by fitting the P48 R data at early epochs ($\lesssim 5$ d after discovery) using the analytical equation $f(\tau) = \alpha \times (\tau + \tau_r)^2$ (‘fireball model’; Goldhaber et al. 1998; Riess et al. 1998). Here, $\tau = \tau_e / (1 + z)$ where τ_e is the (observer-frame) epoch relative to B maximum, and α is a normalising constant. This yields $\tau_{r,free} = 18.6 \pm 0.3$ d. Leaving the exponent as a free fit parameter [$f(\tau) = \alpha \times (\tau + \tau_r)^0$], we obtain a best-fitting rise time of $\tau_{r,free} = 19.1 \pm 1.2$ d with a best-fitting exponent of $\eta = 2.3 \pm 0.6$. This exponent differs from the value of $\eta = 1.8$ recently given for ‘average’ SNe Ia by Piro (2012); such variations are, however, expected and reflect differences in the 56Ni distribution among the objects (Piro & Nakar 2012). Our light-curve template (stretch 1.0) has a rise time of ~ 17 d. Scaling it to the stretch of SN 2010jn (i.e. to the higher opacity in such a slowly declining object), we obtain an estimate of $\tau_{r,LCfit} \sim 18.2$ d, slightly shorter than the values inferred from the early rise (and indicating the very early-time SiFTO templates may not match the data well).

Our spectral models, on the other hand, lead us to prefer a somewhat higher value (~ 20 d; Sec. 3.1.2, Appendix A), indicating some tension between the rise time inferred from fitting the early-time data with $\eta = 2$, and the rise time favoured by spectral modelling.

3 SPECTRA AND MODELS

3.1 Objectives

With the aim of obtaining a comprehensive picture of SN 2010jn, we now derive ejecta models from the observed spectra. We use the techniques of Abundance Tomography (Stehle et al. 2005) to analyse the photospheric data: an ejecta model is set up, where the density distribution is that of an explosion model, but the abundances are left as ‘free’ parameters. Synthetic spectra are then calculated from this abundance/density model and the abundances are optimised so as to match the observations with the synthetic spectra as closely as possible (cf. Sec. 3.2.2). Our code (Sec. 3.2.2) was successfully applied to obtain spectral models for single UV spectra of various SNe Ia (Sauer et al. 2008; Walker et al. 2012). We profit from this experience here, and perform for the first time tomography of a SN Ia including near-UV spectra, deriving a detailed abundance stratification. The near-UV spectra, especially those taken as early as ~ 10.5 or ~ 5.8 d, when the outer layers leave their imprint...
Table 2. Photometry of SN 2010jn.

Date of Phase (MJD)	Phase (days)\(^a\)	R (AB mag)	g (AB mag)	r (AB mag)	i (AB mag)	Telescope
55477.48	-17.9	> 20.99\(^b\)				P48
55477.52	-17.8	> 21.44\(^b\)				P48
55479.51	-15.9	20.15 ± 0.18				P48
55480.50	-14.9	19.49 ± 0.09				P48
55481.51	-13.9	19.10 ± 0.05				P48
55482.52	-13.0	18.62 ± 0.04				P48
55483.24	-12.3	18.74 ± 0.04	18.69 ± 0.05			LT
55483.24	-12.3	18.44 ± 0.02				LT
55484.53	-11.0	17.95 ± 0.02				P48
55486.19	-9.4	17.91 ± 0.11				LT
55486.20	-9.4	17.54 ± 0.05				LT
55486.20	-9.4	17.78 ± 0.07				LT
55486.54	-9.0	17.44 ± 0.02				P48
55488.23	-7.4	17.79 ± 0.08				LT
55488.23	-7.4	17.22 ± 0.06				LT
55492.18	-3.5	17.18 ± 0.12				LT
55492.18	-3.5	16.88 ± 0.06				LT
55492.18	-3.5	17.36 ± 0.09				LT
55493.55	-2.2	16.78 ± 0.01				FTN
55493.55	-2.2	17.26 ± 0.02				FTN
55494.18	-1.6	17.26 ± 0.05				LT
55495.48	-0.3	16.79 ± 0.02				P48
55495.53	-0.3	16.79 ± 0.01				P48
55496.17	0.4	17.19 ± 0.06				LT
55496.17	0.4	16.73 ± 0.04				LT
55496.17	0.4	17.30 ± 0.05				LT
55496.50	0.7	16.75 ± 0.04				P48
55496.55	0.7	16.78 ± 0.03				P48
55497.52	1.7	16.78 ± 0.01				P48
55498.16	2.3	17.29 ± 0.03				LT
55498.55	2.7	17.31 ± 0.02				FTN
55501.63	5.7	16.76 ± 0.01				FTN
55501.63	5.7	17.47 ± 0.02				FTN
55502.19	6.2	17.29 ± 0.09				LT
55502.19	6.2	16.71 ± 0.07				LT
55502.19	6.2	17.39 ± 0.04				LT
55503.50	7.5	16.94 ± 0.01				P48
55503.55	7.6	16.93 ± 0.01				P48
55504.50	8.5	16.98 ± 0.01				P48
55504.55	8.5	16.99 ± 0.01				P48
55505.53	9.5	17.07 ± 0.01				P48
55506.50	10.4	17.13 ± 0.01				P48
55506.54	10.5	17.16 ± 0.02				P48
55507.14	11.1	17.53 ± 0.08				LT
55507.14	11.1	17.01 ± 0.06				LT
55507.14	11.1	17.75 ± 0.04				LT
55507.50	11.4	17.21 ± 0.02				P48
55507.54	11.5	17.19 ± 0.01				P48
55507.59	11.5	17.68 ± 0.01				FTN
55507.59	11.5	17.08 ± 0.01				FTN
55507.59	11.5	17.84 ± 0.02				FTN
55508.64	12.5	17.77 ± 0.01				FTN
55508.64	12.5	17.18 ± 0.01				FTN
55508.64	12.5	17.88 ± 0.02				FTN
55509.64	13.5	17.86 ± 0.01				FTN
55509.64	13.5	17.26 ± 0.01				FTN
55509.64	13.5	17.90 ± 0.02				FTN

\(^a\)Days in the SN rest frame relative to maximum light in the rest-frame B band.

\(^b\)3σ limits.

– continued on the next page (Table 3) –
in the spectrum, allow us to constrain iron-group abundances in the outer and intermediate layers of the SN. We perform the tomography for different explosion models. Thus, the quality of the spectral fits can be compared. Furthermore, for each explosion model we can check the consistency of the explosive nucleosynthesis, as calculated in the hydrodynamic model, with the abundances we derive from the spectral fits. Finally, we can judge which hydrodynamic model offers a more realistic representation of SN 2010jn.

Two different explosion models are tested in this paper: the ‘fast deflagration’ model W7 (Nomoto et al. 1984; Iwamoto et al. 1999) and the ‘delayed-detonation’ model WS15DD3 (Iwamoto et al. 1999). Both represent single-degenerate Chandrasekhar-mass explosions. Their density distributions are shown in Fig. 3. The W7 model has been shown to provide excellent fits to light curves and spectra of average or somewhat subluminous SNe Ia (e.g. Stehle et al. 2005; Mazzali et al. 2008; Tanaka et al. 2011). Although its physical foundations are known not to be fully realistic, as it assumes that a deflagration flame with parametrised propagation speed burns the star, its density distribution is similar to most explosion models, except for the outermost layers, so we use it as a benchmark. WS15DD3, a delayed-detonation model, is more physically consistent, and it has a higher explosion kinetic energy and ^{56}Ni mass, both of which turn out to be more appropriate for the (intrinsically) luminous SN 2010jn.

Table 3. Photometry of SN 2010jn, continued.

Date of obs. (MJD)	Phase (days)a	R (mag)	g (mag)	r (mag)	i (mag)	Telescope
55510.15	14.0	17.81 ± 0.07				LT
55510.16	14.0	17.19 ± 0.04				LT
55510.16	14.0	17.92 ± 0.07				LT
55510.55	14.4	17.92 ± 0.01				FTN
55510.56	14.4	17.26 ± 0.01				FTN
55510.56	14.4	17.93 ± 0.02				FTN
55511.13	15.0	17.27 ± 0.05				LT
55511.13	15.0	17.99 ± 0.06				LT
55511.65	15.5	17.26 ± 0.02				FTN
55513.14	16.9	18.21 ± 0.11				LT
55513.14	16.9	17.27 ± 0.06				FTN
55513.14	16.9	18.27 ± 0.07				LT
55513.38	17.2	17.41 ± 0.02				P48
55513.42	17.2	17.38 ± 0.02				P48
55513.55	17.3	17.35 ± 0.01				FTN
55513.55	17.3	18.20 ± 0.02				FTN
55513.56	17.3	17.85 ± 0.03				FTN
55514.12	17.9	17.27 ± 0.06				LT
55514.12	17.9	17.81 ± 0.02				LT
55514.37	18.1	17.38 ± 0.03				P48
55514.42	18.2	17.36 ± 0.02				P48
55515.37	19.1	17.44 ± 0.02				P48
55515.42	19.1	17.40 ± 0.01				P48
55515.57	19.3	18.50 ± 0.02				FTN
55515.57	19.3	17.32 ± 0.01				FTN
55515.58	19.3	17.80 ± 0.02				FTN
55516.38	20.1	17.40 ± 0.02				P48
55516.42	20.1	17.43 ± 0.01				P48
55517.11	20.8	18.51 ± 0.16				LT
55517.12	20.8	17.37 ± 0.05				LT
55517.12	20.8	17.83 ± 0.07				LT
55517.38	21.1	17.41 ± 0.02				P48
55517.42	21.1	17.40 ± 0.02				P48
55518.40	22.0	17.40 ± 0.02				P48
55518.45	22.1	17.41 ± 0.02				P48
55519.41	23.0	17.43 ± 0.17				P48
55519.45	23.1	17.43 ± 0.04				P48
55520.16	23.8	17.80 ± 0.10				LT
55520.64	24.2	18.82 ± 0.04				FTN
55520.64	24.2	17.38 ± 0.07				FTN
55520.65	24.2	17.68 ± 0.02				FTN
55521.65	25.2	18.88 ± 0.05				FTN
55521.65	25.2	17.39 ± 0.01				FTN
55521.65	25.2	17.65 ± 0.02				FTN

aDays in the SN rest frame relative to maximum light in the rest-frame B band.
3.2 Methods

We briefly describe the code which we use to calculate the synthetic spectra and the method of Abundance Tomography.

3.2.1 Monte Carlo radiative transfer code

We use a Monte Carlo radiative transfer code [Abbott & Lucy 1985, Mazzali & Lucy 1993, Lucy 1995, Mazzali 2000 and Stehle et al. 2005] in spherical symmetry to compute the formation of the spectrum in an expanding SN envelope at a given epoch. The code assumes a sharp photosphere from which radiation is emitted, and computes the interaction of the photons with the expanding SN ejecta (‘atmosphere’). An initial density profile, usually the outcome of a hydrodynamic calculation, is used to calculate the densities within the atmosphere at the epoch required. This takes advantage of the fact that the ejecta are in a state of homologous, force-free expansion at the epochs relevant here (e.g. Röpke & Hillebrandt 2005), i.e., for each particle within the ejecta, $r = v \times t$ is a good approximation, where r is the distance from the centre, t the time from explosion and v the velocity of homologous expansion. Radius and velocity can therefore be used interchangeably as spatial coordinates.

At the photosphere, which is characterised by a velocity v_{ph}, the outward-flowing radiation is assumed to be a Planck continuum at a temperature T_{ph} [$I_{\nu} = B_{\nu}(T_{\text{ph}})$]. Although this is a relatively rough approximation (Bongard et al. 2008), especially at late times and in SNe where line opacity dominates (e.g. Hachinger et al. 2009), and it can result in a mismatch in the overall flux in the red and infrared, it has only minor consequences on the determination of the abundances from prominent spectral lines.

We simulate the propagation of the emitted photons through the envelope, considering ‘photon packets’ which undergo Thomson scattering and bound-bound processes. The latter processes are treated in the Sobolev approximation, and a good approximation to the bound-bound emissivity is ensured by a downward branch for the re-absorption of packets. Finally, the emerging spectrum is used to infer characteristic line blocking. The P-Cygni features due to outer zone, but additional layers, which only now are above the photosphere, also contribute to the absorption. Keeping the previously inferred abundance values in the outer layers, the abundances in the newly exposed layers and a new photospheric velocity can be inferred. We continue this with later spectra. In some cases, abundances in the outer layers need to be revised in order to optimise the fit to later spectra. In this case the entire spectral sequence is consistently re-computed.

3.3 Some general characteristics of SN 2010jn

SN 2010jn had a very broad light curve, corresponding to a high 56Ni mass, but it was a spectroscopically normal SN Ia (cf. Branch et al. 1993). It is, apart from some details, a close analogue of SN 1999ee (Hamuy et al. 2003), see maximum-light optical spectra in Fig. 4 rather than of SN 1991T (e.g. Filippenko et al. 1992) or SN 1999aa (Garavini et al. 2004), all of which, however, have similar light-curve properties.

The UV flux in SN 2010jn is low, as in other SNe Ia, indicating significant line blocking. The P-Cygni features due to the Ca II IR triplet and Si II $\lambda\lambda 6355$ (Fig. 4) show very strong HVFs (e.g. Mazzali et al. 2005), with shapes similar to SN 1984A (Barbon et al. 1989). Although the high-velocity components are blended with the photospheric absorption in SN 2010jn, we have been able to measure extremely high absorption velocities in the lines (Table 4). The corresponding absorption occurs far above the photosphere (cf. the photospheric velocities of our models, Sections 3.5 and 3.6). Only around B maximum do the HVFs vanish.

Both Si II $\lambda 4560$ and Si II $\lambda 5972$ are very weak or absent in SN 2010jn (Fig. 4). The Si II $\lambda 4560$ feature is characteristic for SNe Ia with high temperature, while Si II $\lambda 5972$ is strongest in low-temperature objects (Nugent et al. 1995, Hachinger et al. 2009). The weakness of both indicates a small abundance of intermediate-mass elements (IME, $0 < Z < 0.2$), which is indicative of luminous SNe (Mazzali et al. 2007). Only the intrinsically strong Si II $\lambda 6355$ line remains prominent.

Phase (days)	v(Ca II $\lambda \sim 8600$) (km s^{-1})	v(Si II $\lambda \lambda 6355$) (km s^{-1})	v(Si II $\lambda 5640$) (km s^{-1})
−12.9	35000	23000	19000b
−10.5	28000	20000	18000b
−5.8	22000	18000	13000b
−0.3	19000	17500 / 14000b	12000b
+4.8	17000	17000 / 13500b	11500b

aWith respect to the rest-frame B-band maximum; for combined spectra: epoch of the HST spectrum (cf. Tab. 1).

bValues refer to photospheric absorption.

Table 4. Velocities of HVFs in the combined optical/near-UV spectra of SN 2010jn/PTF10ygyu.

© 2012 The Authors. Journal compilation © 2012 RAS, MNRAS
Analysis of near-UV spectra of SN 2010jn

Since our code requires an epoch (time from explosion t) and a luminosity L_{bol} for each model spectrum as input, we need to make assumptions about the B-band rise time τ_r of the SN (cf. Sec. 2.2) and the reddening.

The spectral models presented here assume a rise time of 20 d. We have created tomography models for different values of the rise time (Appendix A), and find that a shorter rise time would imply higher (and probably unrealistic) iron-group abundances in the outer ejecta. We conclude that after explosion the lightcurve of SN 2010jn has probably risen slower than predicted by a t^2 model. Variations in rise time and in the shape of the early light curve among SNe Ia are not entirely unexpected: all this is somewhat modulated by photon diffusion times, which depend on where 56Ni and other iron-group elements (which contribute to the opacity) are produced. After the submission of this work, Piro & Nakar (2012) published a paper demonstrating such dependencies. They discuss in detail the rise of Type I SNe, supporting the view that variations in the early light-curve shape and delays in the rise are possible. All in all, our value of 20 d for SN 2010jn is quite in line with statistical studies on the rise time of SNe Ia (Groom et al. 1998; Riess et al. 1999; Conley et al. 2006; Strovink, 2007): average values of 17–20 d have been found for different samples, currently also with evidence for low-$\Delta m_{15}(B)$ SNe (as SN 2010jn with $\Delta m_{15}(B) = 0.9$ mag) to rise slower (e.g., Strovink, 2007; Hayden et al. 2010; Ganeshalingam et al. 2011). Some objects at $\Delta m_{15}(B) \gtrsim 1.0$ reach values even longer than 20 d.

The reddening to SN 2010jn can be estimated in various ways. We have been able to measure the equivalent width of the host-galaxy Na i D line in our observed low-resolution spectra (2.1 Å on average). Thus, we can estimate the host-galaxy reddening using the more conservative (lower-reddening) relation of Turatto et al. (2003):

$$E(B-V) \approx EW(\text{Na i D}) \times 0.16 - 0.01.$$
Figure 5. 10jn-W7 model sequence, based on the W7 density profile (red/grey lines). The observed spectra are shown in black for comparison; insets show the near UV in more detail. The positions of prominent telluric features are marked with a ‘⊕’ sign. Observations and models are shown de-redshifted (i.e. in the SN’s rest frame); no correction for host-galaxy reddening has been applied to the observed spectra [the models have been reddened by $E(B-V)_{\text{host}} = 0.36$ mag]. For the most prominent UV features, the respective ions dominating the absorption in our model are given in the insets (in order of importance). Note that Ti, V and Cr cause significant quasi-continuous absorption by a large number of weak lines at $\lesssim 3200 \, \text{Å}$, which are not reported here.
Figure 6. Abundances of W7 nucleosynthesis calculations (Iwamoto et al. 1999, top panel, plotted in mass space) vs. Abundance Tomography of SN 2010jn, based on the W7 density profile (10jn-W7 model – middle panel: in mass space; lower panel: in velocity space). The C abundance in our model is an upper limit, as no C feature is present in the observations. The Ni/Co/Fe abundances are given in terms of the mass fractions of ^{56}Ni and stable Fe at $t = 0$ \([X(^{56}\text{Ni}), X(\text{Fe}_0)]\); in our spectral models, no stable Ni or Co and no radioactive Fe are assumed to be present.
−12.9 d) to \(T_{\text{ph}} = 12830 \) K. The low UV flux is indicative of efficient line blocking, and requires significant iron-group abundances in the photospheric layer [\(X(^{56}\text{Ni}) \sim 8\% \), \(X(\text{Fe}) \sim 5\% \) and \(X(\text{Cr}) \sim 0.1\% \) at the photosphere]. Reverse-fluorescence processes, induced by iron-group elements and IME in the outer layers, actually enhance the UV flux in SNe Ia (Mazzali 2000). In higher-luminosity models such as the ones for SN 2010jn, however, iron-group elements also have a strong absorbing effect in the UV except for some opacity windows (Walker et al. 2012). Additionally, the radiation field in these models is bluer, disfavouring reverse fluorescence. The two prominent near-UV absorption features in the spectra, but were added in order to have a structure analogous with the WDD3-based models (see Sec. 3.6). It is rather an artefact of using a black-body spectrum at the photosphere (Sec. 3.2.1). The resulting mismatch is however not expected to have major effects on our abundance determination.

5.3.3 Abundance structure

The spectra probe the ejecta structure from the outermost layers down to \(7200 \) km s\(^{-1}\) (+4.8 d photosphere). The abundances are shown and compared to the W7 nucleosynthesis in Fig. 6.

The model contains two zones with reduced abundances of burning products at \(v \lesssim 33000 \) km s\(^{-1}\) and \(v > 33000 \) km s\(^{-1}\). These are not strictly needed to improve the fit to the spectra, but were added in order to have a structure analogous with the WDD3-based models (see Sec. 3.6). Moving inwards, there is a zone extending over \(\sim 0.2 \odot \) (14000 km s\(^{-1}\)) which is dominated by O, but already contains a significant fraction of IME (Mg, Si and S) and iron-group elements.

IME clearly dominate in the velocity range \(11500 \) km s\(^{-1}\) to \(14000 \) km s\(^{-1}\) (i.e. over a mass range of \(\lesssim 0.2 \odot \)). Below \(\sim 11500 \) km s\(^{-1}\) (at a mass coordinate of almost 1.0 \(\odot \)), where in most SNe Ia IME are still dominant (Mazzali et al. 2007), the ejecta of SN 2010jn begin to be dominated by iron-group material. This has only been seen in very luminous SNe Ia (Mazzali et al. 2007).

Comparing our tomography result with the W7 nucleosynthesis calculation (Fig. 5) reveals that iron-group elements are present in SN 2010jn at higher velocities. The higher burning efficiency is consistent with the luminosity (cf. Stritzinger et al. 2006) and also with a high kinetic energy, as indicated by the high velocities in all spectral lines. With respect to other ‘normal’ SNe Ia studied with the tomography technique (Steie1 et al. 2005; Mazzali et al. 2008; Tanaka et al. 2011), the SN shows a far more efficient burning. Unlike the SNe analysed by these authors, SN 2010jn exhibits rather sharp transitions between the zones dominated by different elements (iron-group, IME, C/O). This may have to do with the fact that in an efficiently burning SN Ia the zone in which IME are produced and the zone where O is left are constrained to relatively

6 The Ni/Co/Fe abundances are given in terms of the mass fractions of \(^{56}\text{Ni} \)Ni and stable, directly synthesised Fe (mostly \(^{54}\text{Fe} \)) at \(t = 0 \) \([X(^{56}\text{Ni}), X(\text{Fe})]\); no stable Ni or Co and no radioactive Fe are assumed to be present, as these species – assuming realistic abundances – have less of an impact on our models.
The differences with respect to W7 are basically due to the higher density in the outer zones in the delayed-detonation model, which lead to an increased absorption, also because the higher densities favour some strongly absorbing, singly ionised ion species (over doubly ionised ones). However, apart from the outer layers, the changes in the model atmospheres from W7 to WDD3 are limited. This reflects in the fact that the optimum WDD3 model could be constructed using the same values for photospheric velocity and bolometric luminosity as for W7 (cf. Table 5). The photospheric black-body temperatures are similar to the W7-based models except for the first two epochs, where the WDD3-based models have a flatter temperature gradient because WDD3 has a lower density than W7 at 12500 km s$^{-1}$ < v < 16000 km s$^{-1}$ (cf. Fig. 3).

The UV features in the WDD3-based model at the earliest epochs are dominated by the same elements as in the W7-based model (Fe near ~ 3000 Å, Ni and Co near ~ 3200 Å). At later times, all iron-group elements contribute somewhat more to all features because of increased line opacities.

3.6.2 Abundance structure

In Fig. 8 we show the abundances of our 10jn-WDD3 model together with a plot of the original WDD3 nucleosynthesis. This model may be regarded as a reference for SN 2010jn: the good fits to the observed data indicate that the density of WDD3 provides a reasonable description to the actual ejecta. The abundance stratification of the WDD3-based models in velocity space is qualitatively similar to that of the W7-based models [5.33], despite the differences in the explosion models. Therefore, we can say that our results on the chemical structure should be reasonably independent of the density model.

In order to construct our optimum models, we have introduced two independent abundance zones in the outermost part of the ejecta (22000 km s$^{-1}$ < v < 33000 km s$^{-1}$ and v > 33000 km s$^{-1$). These zones contain fewer burning products, ensuring optimum spectral fits (e.g. by avoiding spurious high-velocity absorption in the Fe/Mg feature at ~4300 Å). The Ca, Si and S abundances at 22000 km s$^{-1}$ < v < 33000 km s$^{-1}$ have been optimised to fit the higher-velocity parts of the respective features (except for the HVFs). Despite the decrease of most burning products (with respect to the lower layers), Ca and Ti/Fe remain quite abundant, possibly as a result of incomplete burning.

Our model yields an upper limit of ~60% to the combined abundance of C and O at 14600 km s$^{-1}$ < v < 33000 km s$^{-1}$. With higher mass fractions, we would have lower fractions of burning products, and this would degrade the fit.

The moderate C/O abundance between 14600 and 33000 km s$^{-1}$ is compensated by an IME mass fraction of > 30%, a mass fraction of directly synthesised Fe of ~2%, and a mass fraction of ~5% of 56Ni and decay products. The near-UV spectra make it possible to disentangle the effects of Fe, 56Ni and Ti/Fe/Cr (which we again treat combined – cf. Sections 3.3.5 and 3.3.7). As in the W7-based tomography, we find 56Ni to be present in the outermost layers (see Fig. 8), and even dominating in general over directly synthesised Fe.

Assuming the WDD3 density profile, we have surveyed the 0.8M$_{\odot}$ of the ejecta (down to the ~4.8 d photosphere at 7200 km s$^{-1}$). The C/O content in this region is ~0.13 M$_{\odot}$. The mass in IME is ~0.21 M$_{\odot}$, and ~0.47 M$_{\odot}$ are iron-group elements (~0.45 M$_{\odot}$ in 56Ni).

If the ~0.6 M$_{\odot}$ core, which cannot be analysed with our spectra, has a 56Ni mass fraction as at our innermost photosphere.
Figure 7. 10jn-WDD3 model sequence, based on the WDD3 density profile (blue / grey, solid lines). Observed spectra (black lines) and 10jn-W7 spectra from Fig. 5 (red / grey, dotted lines) are given for comparison; insets show the near UV in more detail. The differences in the density profile influence the line velocities. The positions of prominent telluric features are marked with a ‘⊕’ sign. Observations and models are shown de-redshifted (i.e. in the SN’s rest frame); no correction for host-galaxy reddening has been applied to the observed spectra [the models have been reddened by $E(B - V)_{\text{host}} = 0.36$ mag]. For the most prominent UV features, the respective ions dominating the absorption in our model are given (in order of importance). Note that Ti, V and Cr cause significant absorption by a large number of weak lines at $\lesssim 3200$ Å, which are not reported here.
Figure 8. Abundances of WDD3 nucleosynthesis calculations (Iwamoto et al. 1999, top panel, plotted in mass space), compared to our tomography based on WDD3 (10jn-WDD3 model – middle panel: in mass space; lower panel: in velocity space). The C abundance in our model is an upper limit, as no C feature is present in the observations. The Ni/Co/Fe abundances are given in terms of the mass fractions of ^{56}Ni and stable Fe at $t = 0$ [$X(^{56}\text{Ni})$, $X(\text{Fe}_0)$]; in our spectral models, no stable Ni or Co and no radioactive Fe are assumed to be present.

© 2012 The Authors. Journal compilation © 2012 RAS, MNRAS
For Ti / V / Cr we only infer a common total abundance, roughly assuming a reasonable mix of these elements of $\sim 1:1:10$ (e.g. Iwamoto et al. 1999).

Finally, comparing our abundance diagram with the delayed-detonation nucleosynthesis (Fig. 8), we find good agreement in the general structure with few exceptions. SN 2010jn shows somewhat more mixing than WDD3: in the IME-dominated zone, both oxygen and (to a smaller degree) iron-group elements are abundant.

A main finding of this analysis is the presence of burned material in the outer layers of SN 2010jn. The high iron-group abundances (Fe, Ti/V/Cr, 56Ni) in these zones, which lead to a high total opacity of the ejecta, explain the large light-curve stretch of SN 2010jn. Evidence for the presence of 56Ni in the outer layers of SN Ia explosions has already been given for the less energetic SN 2011fe (Nugent et al. 2011; Piro 2012), using different diagnostics.

3.7 Metal abundances in the outer layers: the potential of UV spectra as diagnostics

In the previous sections we have mentioned that the near-UV spectra of SN 2010jn allowed us to determine in detail the iron-group abundances in the partially burned layers. Iron-group ratios in incompletely burned zones of SNe Ia may be characteristic for the explosion physics (e.g. the outermost layers of sub-Chandrasekhar, edge-lit explosions may be relatively rich in Cr – Sim et al. 2012) or the metallicity of the progenitor white dwarf (Iwamoto et al. 1999).

Lentz et al. (2000) and Foley et al. (2012a) show that the outermost, unburned layers, where all iron-group material is from the progenitor, can have a significant effect on UV spectra. This should provide a handle for determining the pre-explosion metallicity by modelling. In SN 2010jn, however, only the very outer layers above ~ 33000 km s^{-1} lack freshly synthesised iron-group material. Therefore, the near-UV/optical spectra show practically no sensitivity to iron-group elements from the progenitor.

Here, we focus on demonstrating the sensitivity of the early-time spectra on the abundances of Fe, 56Ni and Ti/V/Cr in the incompletely burned layers above the ~ 10.5 d photosphere (13350 km s^{-1}). We do this re-computing the first two synthetic spectra (in the time series) from modified versions of our WDD3-based ejecta model, where the respective abundances are scaled up and down (Sec. 3.7.1). Then, we calculate the entire spectral series for a model where all iron-group species are augmented/reduced simultaneously (Sec. 3.7.2). Thus, we show how the overall iron-group abundance reflects in the near-UV spectra, and demonstrate that the effects due to the outer ejecta layers get weaker with time. This means that early-time UV observations of Type Ia supernovae, which sample the incompletely burned and unburned layers, are of greatest value.

3.7.1 Abundances of Fe, Ti/V/Cr and 56Ni in the outer layers: effect on the early-time spectra

Figure 9 demonstrates how the spectra allow us to determine abundances of directly synthesised Fe, Ti/V/Cr and 56Ni (with decay products, depending on the epoch). It shows synthetic spectra at -12.9 d and -10.5 d that we have yielded by changing each abundance value in turn up and down by a factor of two. The Fe abundance mainly affects the optical feature at ~ 4700 Å and the UV flux around $2900 – 3100$ Å (however only at the second epoch, where the photosphere is well in the zone containing significant amounts of Fe), Ti, V and Cr have a similar, but stronger effect at $\sim 2800 – 3200$ Å, and no significant influence on the optical. 56Ni, finally, affects the flux in the near-UV region at $\sim 3200 – 3400$ Å.

The behaviour of the UV features somewhat resembles that found by Sauer et al. (2008), who scaled the iron-group abundances up and down in one-epoch spectral models for SNe Ia.

From optical spectra alone, the Ti/V/Cr and 56Ni abundances in the outer layers cannot be reliably determined: these elements have no direct influence in the optical except for fluorescence, which is difficult to predict (only at later epochs, 56Fe from 56Ni also contributes to Fe lines). UV spectra thus provide valuable additional information. Clearly, it is important in this context that the observed fluxes are reliable in the wavelength range of the relevant features. The decent flux calibration possible with HST (cf. Sec. 2.1) is thus a key advantage in the context of our study.

3.7.2 Iron-group abundances in the outer layers: sensitivity of the spectra at different epochs

Figure 10 shows the entire series of model spectra resulting when all iron-group abundances in the outer layers of the ejecta are changed by a factor of two with respect to our WDD3-based optimum models for SN 2010jn.

The UV flux in the earliest spectra (-12.9 d, -10.5 d) is clearly sensitive to the iron-group content. While this flux changes by $\gtrsim 50\%$, the variation in the optical, due to Fe lines and fluorescence effects, is smaller ($\lesssim 30\%$).

At the later epochs (from -5.8 d on), the UV still reacts, but somewhat less, since the photosphere is located deeper and deeper inside the region where the abundances are varied. In fact, the UV spectra around maximum light are rather sensitive to the iron-group content in the inner ejecta, which however can be better analysed using nebular-phase spectra.

4 SUMMARY AND CONCLUSIONS

We have for the first time used a time-series of photospheric near-UV/optical spectra of a SN Ia (SN 2010jn/PTF10ygu) to analyse its abundance stratification with the tomography technique of Stehle et al. (2005). Our work can be seen in line with classical work aimed at understanding UV spectra of SNe Ia (e.g. Kirshner et al. 1993, Mazzali 2000), with significantly refined methods for radiative transfer and spectral modelling. The early near-UV observations have proved extremely valuable for analysing the iron-group content in the outer layers. They allowed us to differentiate among different iron-group elements present in the partially burned and unburned zone. The later spectra give constraints on the abundances further inwards.

From our abundance analysis, we find that SN 2010jn synthesised significant amounts of iron-group elements, typical for higher metallicity, which we do not see – however, their modelling approach, involving a calculation of hydrodynamics/nucleosynthesis models for different metallicity, is not easily comparable to ours.

7 For Ti/V/Cr we only infer a common total abundance, roughly assuming a reasonable mix of these elements of $\sim 1:1:10$ (e.g. Iwamoto et al. 1999).

8 Note that Hoeflich et al. (1998) found a flux enhancement in the UV for higher metallicity, which we do not see – however, their modelling approach, involving a calculation of hydrodynamics/nucleosynthesis models for different metallicity, is not easily comparable to ours.
Figure 9. Sensitivity of the 10jn-WDD3 model spectra (cf. Fig. 7) on different iron-group elements at the earliest epochs. The abundances of the elements indicated in the different panels (at $v \gtrsim 13350 \text{ km s}^{-1}$) are reduced and enhanced by a factor of two, respectively. For the most prominent UV features, the respective ions dominating the absorption are indicated in the insets; Ti/V/Cr lines are not mentioned, as the individual lines of these ions are usually weaker – still they cause significant absorption due to their large number.
Figure 10. 10jn-WDD3 model sequence (analogous to Fig. 7), and two versions of this sequence where the iron-group content at $v \gtrsim 13350 \text{ km s}^{-1}$ is reduced and enhanced by a factor of two, respectively.
an energetic, luminous SN Ia. SN 2010jn has only a thin oxygen-dominated zone and a limited IME zone. Even these zones contain directly synthesised Fe (∼ 0.01 M⊙) as well as 56Ni and decay products (∼ 0.05 M⊙ in total). The presence of iron-group elements and intermediate-mass elements up to high velocities (even > 20000 km s⁻¹) enhances the opacity of the SN, which is consistent with the overall slow light-curve evolution.

We favour for SN 2010jn a Chandrasekhar-mass delayed-detonation model with efficient nucleosynthesis and an explosion energy somewhat above average (WDD3, Iwamoto et al. 1999). It allows us to reproduce the high expansion velocities in the observed spectra better than the ‘fast deflagration’ model W7 [Nomoto et al. 1982, Iwamoto et al. 1999], which has little material at high velocities. The presence of Fe and 56Ni in the outermost layers is not predicted by the original (1D) WDD3 model. The abundance of Fe at high velocities (13350 km s⁻¹ ≤ v ≤ 33000 km s⁻¹) is between one and two orders of magnitude above solar. This cannot come from the progenitor; it is rather a clue about the explosion properties of SN 2010jn. A high iron-group abundance is consistent with an energetic SN, but still, explaining iron-group material in the outer layers is a challenge for explosion models. Multi-dimensional models may show some clumpiness or asymmetry which could appear to an observer as ‘outwards-mixing’ of iron-group material.

Our models favour a longer rest-frame rise time for SN 2010jn (∼20 d) than predicted by the empirical t² analysis of the early light curve (18.6 d). This may imply that the SN after explosion has a ‘dark phase’ longer than predicted by the t² (‘fireball’) model. It remains to be seen whether this interesting ‘quirk’ is found in other objects that are not as luminous as SN 2010jn. Very early data are best suited to tackle this issue.

Finally, we remark that a precise analysis of the abundances in the outer layers, as presented here, should be complemented by an analysis of the ejecta core, for which nebular spectra are necessary. Also, observations of more SNe Ia in the UV will be needed to establish the properties of the outermost layers of SNe Ia with different characteristics and light-curve properties.

ACKNOWLEDGMENTS

This work has been made possible by the participation of more than 10,000 volunteers in the ‘Galaxy Zoo Supernovae’ project, http://supernova.galaxyzoo.org/authors. It is based on observations made with the NASA/ESA HST, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The observations are associated with programme 12298. P.A.M. and S.H. acknowledge support by the programme ASI-INAF I/009/10/0. M.S. acknowledges support from the Royal Society, and A.G. acknowledges support by the ISF, a Minerva ARCHES award, and the Lord Sieff of Brimpton Fund. M.M.K. acknowledges generous support from the Hubble Fellowship and the Carnegie-Princeton Fellowship. We have used observations from the LT, operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias with financial support from the UK Science and Technology Facilities Council. Spectroscopic observations in the optical have been taken at the Gemini Observatory under programme ID GN-2010B-Q-13, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Finally, an optical spectrum has been taken at the WHT, operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. We have used data from the NASA/IPAC Extragalactic Database (NED, http://nedwww.ipac.caltech.edu) operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration). For data handling, we have made use of various software (as mentioned in the text) including IRAF, IRAF – Image Reduction and Analysis Facility (http://iraf.noao.edu) – is an astronomical data reduction software distributed by the National Optical Astronomy Observatory (NOAO, operated by AURA, Inc., under contract with the National Science Foundation).

References

Abbott D. C., Lucy L. B., 1985, ApJ, 288, 679
Altavilla G., et al., 2007, A&A, 475, 585
Barbon R., Rosino L., Iijima T., 1989, A&A, 220, 83
Bessell M. S., 1990, PASP, 102, 1181
Blondin S., Prieto J. L., Patat F., Challis P., Hicken M., Kirshner R. P., Matheson T., Modjaz M., 2009, ApJ, 693, 207
Bohlin R., Collins N., Gonnella A., 1997, Absolute Flux Calibration for STIS First-Order, Low-Resolution Modes. STIS Instrument Science Report 94-17, STScI, Baltimore
Bongard S., Baron E., Smadja G., Branch D., Hauschildt P. H., 2008, ApJ, 687, 456
Branch D., Fisher A., Nugent P., 1993, AJ, 106, 2383
Bufano F. et al., 2009, ApJ, 700, 1456
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Conley A., et al., 2006, AJ, 132, 1707
Conley A., et al., 2008, ApJ, 681, 482
Ellis R. S., et al., 2008, ApJ, 674, 51
Filippenko A. V., et al., 1992, AJ, 104, 1543
Foley R. J., et al., 2012a, ApJ, 744, 38
Foley R. J., et al., 2012b, AJ, 143, 113
Foley R. J., et al., 2012c, ApJ, 753, L5
Foley R. J., Filippenko A. V., Jha S. W., 2008, ApJ, 686, 117
Ganeshalingam M., Li W., Filippenko A. V., 2011, MNRAS, 416, 2607
Garavini G. et al., 2004, AJ, 128, 387
Goldhaber G., et al., 1998, BAAS, 193, 47.13
González-Gaitán S. et al., 2012, ApJ, 745, 44
Groom D. E., et al., 1998, 30, 1419
Hachinger S., Mazzali P. A., Tanaka M., Hillebrandt W., Benetti S., 2008, MNRAS, 389, 1087
Hachinger S., Mazzali P. A., Taubenberger S., Pakmor R., Hillebrandt W., 2009, MNRAS, 399, 1238
Hamuy M., et al., 2002, AJ, 124, 417
Hayden B. T., et al., 2010, ApJ, 712, 350
Hillebrandt W., Niemeyer J. C., 2000, ARA&A, 38, 191
Hoeflich P., Wheeler J. C., Thielemann F. K., 1998, ApJ, 495, 617
Hook I. M., Jørgensen I., Allington-Smith J. R., Davies R. L., Metcalfe N., Murowinski R. G., Crampton D., 2004, PASP, 116, 425
Howell D. A., 2011, Nature Communications, 2, 350
Figure A1. Distribution of the most abundant/relevant elements (in velocity space) in our $\tau_r = 18.6$ d models compared to the those in the standard ($\tau_r = 20$ d) models. Top panel: W7-based model; bottom panel: WDD3-based model. The black and violet graphs [mass fractions of 56Ni and stable Fe at $t = 0$: $X(^{56}$Ni), X(Fe)] give the abundances of the dominant iron-group elements, which are unrealistically high in the outer layers of the $\tau_r = 18.6$ d models (see text).

Element	10jn−W7 (t=18.6d)	10jn−W7 (standard, $\tau_r=20.0$d)
O		
Si		
Fe		
Ni		
10jn−WDD3 (standard, $\tau_r=20.0$d)		

APPENDIX A: CHOICE OF THE B-BAND RISE TIME

In order to calculate the models presented in the main text we have adopted a value of 20 d for the B-band rise time (in the rest frame of the SN). Here we discuss why we have chosen this rise time, which is a bit longer than the one which is inferred from the observations assuming a t^2 behaviour for the rising part of the light curve ($\tau_{rise} = 18.6$ d; Sec. 2).

Stritzinger M., Mazzali P. A., Sollerman J., Benetti S., 2006, A&A, 460, 793
Strovink M., 2007, ApJ, 671, 1084
Sullivan M., et al., 2011, ApJ, 737, 102
Suzuki N., et al., 2012, ApJ, 746, 85
Tanaka M., Mazzali P. A., Stanishev V., Maurer I., Kerzendorf W. E., Nomoto K., 2011, MNRAS, 410, 1725
Turatto M., Benetti S., Cappellaro E., 2003, in Hillebrandt W., Leibundgut B., eds, ESO Astrophysics Symposia, From twilight to highlight: The physics of supernovae. Springer, Berlin, p. 200
Walker E., et al., 2012, MNRAS, 427, 103
Yaron O., Gal-Yam A., 2012, PASP, 124, 668
During the process of modelling the SN, we have created various test models in order to determine which rise time allows for optimum models in terms of fit quality and physical consistency. This is motivated by the fact that the rise time of SNe Ia is still somewhat uncertain. Statistical studies in the late 1990s and early 2000s yielded somewhat different and controversial results for ‘average’ SNe Ia [17.6 d, Groom et al. (1998); 19.5 d, Riess et al. (1999); 19.1/19.6 d, Conley et al. (2006); 17.4 d, Strovink (2007)]. With current studies (e.g. Hayden et al. 2010; González-Gaitán et al. 2011), it has become clear that the rise time is correlated with the decline rate of the SN, i.e. slowly declining objects like SN 2010jn [\(\Delta m_{15}(B) = 0.9\)] usually need a significantly longer time to reach their \(B\)-band maximum. Thus, SNe Ia are now known to have rise times between 13 – 23 d (Hayden et al. 2010), with an average of 17 – 18 d according to current estimates (González-Gaitán et al. 2011; Hayden et al. 2010; Strovink 2007). Also, the shape of the early light-curve rise, which is usually assumed to be \(\propto t^2\), probably shows variations from object to object due to differences in the \(^{56}\text{Ni}\) distribution, as recently emphasised by Piro & Nakar (2012).

In this Appendix, we discuss the differences between models assuming \(\tau_r, \text{free} = 18.6\) d and \(\tau_r = 20\) d, which lead us to accept the latter value as the one more probable for SN 2010jn. In the models with \(\tau_r = 20\) d the ejecta have had more time to expand prior to the observations. The radius of a photosphere located at a certain velocity \(v_{\text{ph}}\) is thus larger if we assume \(\tau_r = 20\) d instead of \(\tau_r, \text{free} = 18.6\) d. This affects the spectrum at the photosphere: a smaller temperature \(T_{\text{ph}}\) is sufficient to emit the same amount of radiation from a larger photosphere.

To have photospheres at the same radius in the \(\tau_r = 20\) d and \(\tau_r = 18.6\) d models, keeping a similar colour and temperature, a higher \(v_{\text{ph}}\) must be used for \(\tau_r = 18.6\) d. For the earliest spectra (\(-12.9\) d, \(-10.5\) d), \(v_{\text{ph}}\) in our standard (20 d) model is already very high. An even higher velocity would mean that almost no mass is above the photosphere, but then line absorption would be reduced and it should be difficult to reproduce the low observed UV flux (i.e. the flux in the model would be too high). The alternative would be to preserve the photospheric velocity from the standard calculation. In this case, however, the photospheric spectrum would be bluer (higher \(T_{\text{ph}}\) required to emit the same luminosity from a small-radius photosphere, as mentioned above). Again, one would be left with too much UV flux.

The only way to circumvent this and fit the observed spectra with \(\tau_r = 18.6\) d is to use higher mass fractions of the iron-group elements in the outer ejecta in order to block the UV flux. Our standard (\(\tau_r = 20\) d) models have already shown a relatively strong out-mixing of iron-group material (Sections 3.5.3, 3.6.2) with respect to the original W7/WDD3 models (Iwamoto et al. 1999). Assuming \(\tau_r = 18.6\) d, the iron-group fractions in the outer layers are even higher and less realistic. The most relevant abundances in the \(\tau_r = 18.6\) d and \(\tau_r = 20\) d models are compared in Fig. A1. In the W7-based model with \(\tau_r = 18.6\) d, an iron-group abundance (sum of all iron-group elements) of \(\sim 20\%\) is needed even above 15000 km s\(^{-1}\). In the W7 nucleosynthesis calculations (Iwamoto et al. 1999), mass fractions of the order of 10\% are only reached further inwards (at \(<13010\) km s\(^{-1}\)), which constitutes an inconsistency. In general, it will be difficult for most explosion models to produce high abundances of iron-group material in the outermost layers: the densities there are small, leading to incomplete burning, and only ‘mixing’ or multi-D effects in the abundance distribution can bring burned material outwards. Our WDD3-based model shows a smaller effect, but still the high iron-group abundance in the outer layers of the \(\tau_r = 18.6\) d model (\(\sim 14\%\)

above 15000 km s\(^{-1}\)) leads us to prefer a rise time of \(\geq 20\) d, for which the iron-group abundances in the outer layers of our models seem consistent with the WDD3 results if one assumes moderate additional out-mixing (cf. Sec. 3.6.2).

Models for UV observations at even earlier epochs would react even more sensitively to the assumed rise time. If earlier UV observations were available for SN 2010jn, a stricter lower limit on the rise time may have been determined through modelling. In order to exploit this possibility for future objects, we encourage UV observations of SNe Ia at epochs as early as possible.

© 2012 The Authors. Journal compilation © 2012 RAS, MNRAS