Observation of Resonance Structures in $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$
and Mass Measurement of $\psi_2(3823)$

M. Ablikim,1 M. N. Achasov,10,b P. Adler-son,66 M. Albrecht,4 R. Aliberti,29 A. Amoroso,68a,68c M. R. An,33 Q. An,65,51 X. H. Bai,59 Y. Bai,50 O. Bakina,30 R. Baldini Ferroli,24a I. Balossino,25a Y. Ban,40,v B. Batozskaya,1,38 D. Becker,29 K. Begzsuren,27 N. Berger,29 M. Bertani,24a D. Bettoni,25a F. Bianchi,28a,68c J. Bloms,65 A. Bortone,30 R. A. Briere,5 A. Brueggemann,52 H. Cai,30 X. Cai,1,51 A. Calcetarella,24a G. F. Cao,1,56 N. Cao,1,56 S. A. Cein,55a J. F. Chang,1,51 W. L. Chang,1,56 G. Chelkov,30,a C. Chen,37 G. Chen,1,51 H. S. Chen,1,56 M. L. Chen,1,51 S. J. Chen,36 T. Chen,1,51 X. R. Chen,26,56 X. T. Chen,1,51 Z. J. Chen,21,b W. S. Cheng,68c G. Cibinetto,25f F. Cossio,68c J. J. Cui,43 H. L. Dai,1,51 J. P. Dai,72 A. Dossybi,15 R. E. de Boer,4 D. Dedovich,30 Z. Y. Deng,1 A. Denig,29 I. Denysenko,30 M. Destefanis,68a,68c F. De Mori,68a,68c Y. Ding,1 J. Dong,51 L. Y. Dong,1,56 M. Y. Dong,1,53,51 X. Dong,36 S. X. Du,74 P. Egorov,30,b Y. L. Fan,70 J. Fang,1,51 S. S. Fang,1,56 Y. Fang,1 R. Farinelli,25a L. Fava,68b,68c F. Feldbauer,4 G. Felici,24a C. Q. Feng,65,51 J. H. Feng,52 K. Fischer,63 M. Fritsch,4 C. D. Fu,1 H. Gao,56 Y. N. Gao,40,y Yang Gao,65,51 S. Garbolino,68c I. Garzia,25a,25b P. T. Ge,70 Z. W. Ge,36 C. Geng,52 E. M. Gersabeck,60 A. Gilman,63 K. Goetzen,11 L. Gong,34 W. X. Gong,1,51 W. Gradel,29 M. Greco,68a,68c L. M. Gu,36 M. H. Gu,1,51 Y. T. Gu,13 C. Y. Guan,56 A. Q. Guo,65,51 L. B. Guo,38,69 W. Kühn,31 J. J. Lane,60 J. S. Lange,31 P. Larin,15 A. Limphirat,53 C. X. Lin,52 A. Kupsc,38,69 W. J. Li,156 F. Heinsius,4 C. H. Heinz,29 Y. K. Heng,1,5166 C. Herold,53 M. Himmelreich,1,1d T. Holtmann,4 G. Y. Hou,1,51 Y. R. Hou,56 Z. L. Hou,1 H. M. Hu,1,5166 J. F. Hu,49,y T. Hu,1,5166 Y. Hu,1 G. S. Huang,65,51 K. X. Huang,52 L. Q. Huang,66 L. Q. Huang,26,56 X. T. Huang,43 Y. P. Huang,1 Z. Huang,40,t T. Hussain,67 N. Hüskcin,23,29 W. Imoehl,23 M. Irshad,65,51 J. Jackson,35 S. J. Jaeger,4 S. Janchiv,27 Q. Ji,1 Q. P. Ji,16 X. B. Ji,1,56 X. L. Ji,1,51 Y. Y. Ji,43 Z. K. Jia,65,51 H. B. Jiang,43 S. S. Jiang,1,5166 J. J. Jiang,36,5166 Y. Jiang,1,5166 J. J. Jiang,36,5166 J. W. Jiang,43 K. Jiang,1,5166 H. M. Jiang,1,5166 H. B. Jiang,1,5166 J. J. Jiang,36,5166 S. Y. Jiang,1,5166 M. Jiang,1,5166 M. R. An,33 Q. An,65,51,56 S. Wang,9,f S. Wang,12 T. Wang,9,f T. J. Wang,37 W. Wang,52 L. Q. Huang,26,56 X. T. Huang,43 Y. P. Huang,1 Z. Huang,40,t T. Hussain,67 N. Hüskcin,23,29 W. Imoehl,23 M. Irshad,65,51 J. Jackson,35 S. J. Jaeger,4 S. Janchiv,27 Q. Ji,1 Q. P. Ji,16 X. B. Ji,1,56 X. L. Ji,1,51 Y. Y. Ji,43 Z. K. Jia,65,51 H. B. Jiang,43 S. S. Jiang,1,5166 J. J. Jiang,36,5166 Y. Jiang,1,5166 J. J. Jiang,36,5166 J. W. Jiang,43 K. Jiang,1,5166 H. M. Jiang,1,5166 H. B. Jiang,1,5166 J. J. Jiang,36,5166 S. Y. Jiang,1,5166 M. Jiang,1,5166 M. R. An,33 Q. An,65,51,56 S. Wang,9,f S. Wang,12 T. Wang,9,f T. J. Wang,37 W. Wang,52 L. Q. Huang,26,56 X. T. Huang,43 Y. P. Huang,1 Z. Huang,40,t T. Hussain,67 N. Hüskcin,23,29 W. Imoehl,23 M. Irshad,65,51 J. Jackson,35 S. J. Jaeger,4 S. Janchiv,27 Q. Ji,1 Q. P. Ji,16 X. B. Ji,1,56 X. L. Ji,1,51 Y. Y. Ji,43 Z. K. Jia,65,51 H. B. Jiang,43 S. S. Jiang,1,5166 J. J. Jiang,36,5166 Y. Jiang,1,5166 J. J. Jiang,36,5166 J. W. Jiang,43 K. Jiang,1,5166 H. M. Jiang,1,5166 H. B. Jiang,1,5166 J. J. Jiang,36,5166 S. Y. Jiang,1,5166 M. Jiang,1,5166 M. R. An,33 Q. An,65,51,56 S. Wang,9,f S. Wang,12 T. Wang,9,f T. J. Wang,37 W. Wang,52

PHYSICAL REVIEW LETTERS 129, 102003 (2022)

0031-9007/22/129(10)/102003(9) 102003-1 Published by the American Physical Society
Using a data sample corresponding to an integrated luminosity of 11.3 fb$^{-1}$ collected at center-of-mass energies from 4.23 to 4.70 GeV with the BESIII detector, we measure the product of the $\pi^+\pi^-\varphi(3823)$ cross section and the branching fraction $\mathcal{B}(\varphi(3823) \to \gamma\chi'_{21})$. For the first time, resonance structure is observed in the cross section line shape of $e^+e^- \to \pi^+\pi^-\varphi(3823)$ with significances exceeding 5σ. A fit to data with two coherent Breit-Wigner resonances modeling the \sqrt{s}-dependent cross section yields $M(R_1) = 4406.9 \pm 17.2 \pm 4.5$ MeV/c^2, $\Gamma(R_1) = 128.1 \pm 37.2 \pm 2.3$ MeV, and $M(R_2) = 4647.9 \pm 8.6 \pm 0.8$ MeV/c^2, $\Gamma(R_2) = 33.1 \pm 18.6 \pm 4.1$ MeV. Though weakly disfavored by the data, a single resonance with $M(R) = 4417.5 \pm 26.2 \pm 3.5$ MeV/c^2, $\Gamma(R) = 245 \pm 48 \pm 13$ MeV is also
It serves as a new probe to study the vector ψ states. We search for the dipion transition of $\psi(4660)$ to $\psi_2(3823)$, which on the one hand helps establish the $\psi(4660)$ state, and on the other hand sheds light on its internal structure. At the same time, the $\psi_2(3823)$ mass is also precisely measured, which can be used to calibrate the parameters in the potential model [24], and finally greatly deepens our understanding of the dynamics of the $c\bar{c}$ system.

In this Letter, we measure the \sqrt{s}-dependent production cross section of the process $e^+e^- \to \pi^+\pi^-\psi_2(3823)$, and explore the resonance structures in the cross section line shape. The resonance parameters of the $\psi_2(3823)$ state are measured as well. To increase the yield of signal events, a partial reconstruction approach is employed. We use a data sample corresponding to an integrated luminosity of 11.3 fb$^{-1}$, taken at center-of-mass (c.m.) energies from $\sqrt{s} = 4.23$ to 4.70 GeV [25], with the BESIII detector [26] operating at the BEPCII storage ring [27]. The $\psi_2(3823)$ candidates are reconstructed in their $\gamma\chi_{c1}$ decay mode, with $\chi_{c1} \to \gamma J/\psi$ and $J/\psi \to \ell^+\ell^-$ ($\ell = e$ or μ).

The BESIII detector is described in detail elsewhere [26,28]. A GEANT4-based [29] Monte Carlo (MC) simulation software package is used to optimize event selection criteria, determine the detection efficiency, and estimate the backgrounds. For the signal process, we generate 50,000 $e^+e^- \to \pi^+\pi^-\psi_2(3823)$ events at each c.m. energy using an EVTGEN [30] phase space model. Initial-state-radiation (ISR) is simulated with KKMC [31], where we use the $e^+e^- \to \pi^+\pi^-\psi_2(3823)$ cross section measured from this analysis as input. The maximum ISR photon energy is set to correspond to the production threshold of the $\pi^+\pi^-\psi_2(3823)$ system at 4.1 GeV/c2. Final-state radiation is simulated with PHOTOS [32].

Events with four good charged tracks with net charge zero are selected as described in Ref. [21]. Electromagnetic showers identified as photon candidates must satisfy fiducial shower quality as well as timing requirements as described in Ref. [33]. For events with only one photon candidate ($N_{\gamma} = 1$), assuming that only one of the two radiative photons is detected, we use a partial reconstruction strategy, i.e., allowing one missing photon (p_{miss}). The mass square of the missing photon candidate is required to be $-0.07 < M^2_{\text{miss}}(\gamma) < 0.08$ GeV2/c4 (with a signal efficiency $> 99\%$), where the 4 momentum of p_{miss} is computed from momentum conservation. To improve the momentum and energy resolution and to further reduce background, a one-constraint (1C) kinematic fit is performed under the hypothesis of $\pi^+\pi^-\ell^+\ell^-p_{\text{miss}}$ to the
initial e^+e^- c.m. system. The χ^2/ndf of the kinematic fit is required to be less than 15/1. For multiphoton events ($N_g \geq 2$), we use the full reconstruction strategy as described in Ref. [21].

To reject radiative Bhabha and radiative dimuon ($\gamma e^+e^-/\mu^+\mu^-$) background events with γ conversion ($\gamma \rightarrow e^+e^-$), where the converted electrons are misidentified as pions, the cosine of the opening angle of the pion pairs is required to be less than 0.98. The background from $e^+e^- \rightarrow \eta J/\psi$ with $\eta \rightarrow \pi^+\pi^-\pi^0/\gamma\pi^0$ is effectively rejected by the invariant mass requirement $M(\eta_{\text{miss}}\pi^+\pi^-) > 0.65$ GeV/c^2. In order to remove possible backgrounds from $e^+e^- \rightarrow \gamma(2S)$, $e^+e^- \rightarrow \eta\gamma(2S)$ with $\eta \rightarrow \gamma\gamma$, and $e^+e^- \rightarrow \gamma\gamma\gamma(2S)$ processes, the invariant mass of $\pi^+\pi^-J/\psi$ is required to satisfy $|M(\pi^+\pi^-J/\psi) - m(\psi(2S))| > 7$ MeV/c^2 [34,35].

According to a resolution of (14.2 ± 0.5) MeV from $\psi(2S)$ data events for the $M(\ell^+\ell^-)$ mass, the J/ψ signal region is defined as $3.06 < M(\ell^+\ell^-) < 3.135$ GeV/c^2. To estimate non-J/ψ backgrounds, we also define J/ψ mass sidebands as $2.950 < M(\ell^+\ell^-) < 3.025$ GeV/c^2 or $3.170 < M(\ell^+\ell^-) < 3.245$ GeV/c^2. To reconstruct the χ_{c1} candidate from the $\psi(3823)$ decay, the 4 momenta of the two radiative photons after the 1C kinematic fit are boosted to the c.m. frame of the $\psi(3823)$ system. The photon with the higher energy is used to reconstruct χ_{c1}, while the lower-energy one is considered to originate from the $\psi(3823)$ decay. MC simulation shows that the misassignment of the two photons is negligibly small (<1%). The mass window of the reconstructed χ_{c1} candidates is defined as $3.48 < M(\gamma_{\text{fit}}J/\psi) < 3.53$ GeV/c^2 [34], with a signal efficiency of 96%.

The possible remaining backgrounds mainly come from $e^+e^- \rightarrow \gamma(\pi^0/\gamma)J/\psi$, with $\gamma(\pi^0/\gamma) \rightarrow \gamma\pi^+\pi^-\pi^0/\gamma\pi^0\pi^+\pi^-$, and $\pi^+\pi^-\pi^+\pi^-\gamma(\pi^0/\gamma\gamma)$. The $e^+e^- \rightarrow \gamma(\pi^0/\gamma)J/\psi$ backgrounds are measured by BESIII using the same data set [36,37] and can be reliably simulated. The $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-(\pi^0/\gamma\gamma)$ continuum background can be estimated by data in the J/ψ mass sidebands. All those background sources are found to be small, and only produce flat distributions in the $\psi(3823)$ signal region.

To achieve better sensitivity, the one-photon events (partial reconstruction) and the multiphoton events (full reconstruction) are separated. Figure 1 shows the $M^{\text{recoll}}(\pi^+\pi^-)$ distributions for data, where obvious $\psi(2S)$ and $\psi(3823)$ signal peaks are observed in both the one-photon and multiphoton events. Here, $M^{\text{recoll}}(\pi^+\pi^-) = \sqrt{(P_{e^+} - P_{e^-} - P_{\pi^+} - P_{\pi^-})^2}$ is the recoil mass of $\pi^+\pi^-$, where P_{e^+} and P_{π^+} are the 4 momenta of the initial e^+e^- system and the reconstructed π^\pm candidates, respectively. For this expression, we use the π^\pm momenta without the kinematic fit correction because of the good resolution for low momentum pions according to MC simulation studies. A simultaneous unbinned extended maximum likelihood fit to the $M^{\text{recoll}}(\pi^+\pi^-)$ distributions for one-photon events (left) and multiphoton events (right). Dots with error bars are the selected data, the red solid curves are fit results, the blue dashed curves are backgrounds, and the green shaded histograms are backgrounds estimated from J/ψ mass sideband events.

FIG. 1. Result of the simultaneous fit to the $M^{\text{recoll}}(\pi^+\pi^-)$ distributions for one-photon events (left) and multiphoton events (right). Dots with error bars are the selected data, the red solid curves are fit results, the blue dashed curves are backgrounds, and the green shaded histograms are backgrounds estimated from J/ψ mass sideband events.
TABLE I. Results of the fit to the distribution of $\sigma[e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)]B[\psi_2(3823) \rightarrow \gamma\chi_c1]$ with two coherent resonances. Here, $M[R_i]$ and $\Gamma_{\text{tot}}[R_i]$ represent the mass (in MeV/c^2) and total width (in MeV) of resonance R_i, respectively; $\Gamma_{e^+e^-}B_{1R_i}^B_{2}$ is the product of the e^+e^- partial width (in eV/c^2) and branching fraction of $R_i \rightarrow \pi^+\pi^-\psi_2(3823) \rightarrow \pi^+\pi^-\gamma\chi_c1$ ($i = 1, 2$). The parameter ϕ (in degrees) is the relative phase between the two resonances. The first uncertainties are statistical and the second systematic.

Parameters	Solution I	Solution II
$M[R_1]$	4406.9 ± 17.2 ± 4.5	4406.9 ± 17.2 ± 4.5
$\Gamma_{\text{tot}}[R_1]$	128.1 ± 37.2 ± 2.3	128.1 ± 37.2 ± 2.3
$\Gamma_{e^+e^-}B_{1R_1}^B_{2}$	0.36 ± 0.10 ± 0.03	0.30 ± 0.09 ± 0.03
$M[R_2]$	4647.9 ± 8.6 ± 0.8	4647.9 ± 8.6 ± 0.8
$\Gamma_{\text{tot}}[R_2]$	33.1 ± 18.6 ± 4.1	33.1 ± 18.6 ± 4.1
$\Gamma_{e^+e^-}B_{1R_2}^B_{2}$	0.24 ± 0.07 ± 0.02	0.06 ± 0.03 ± 0.01
ϕ	267.1 ± 16.2 ± 3.2	−324.8 ± 43.0 ± 5.7

$e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$. Since visible enhancements are observed near 4.40 and 4.65 GeV in the cross section line shape, the radiative correction factors are first obtained by modeling the line shape with two coherent BW resonances, and then iterated by updating the cross section measurement until this procedure converges, with a relative difference for $(1+\delta)e < 1\%$ between the last two iterations. The numerical results of the cross section measurement are listed in Supplemental Material [38].

To extract the resonance structures in $\sigma[e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)]$, a maximum likelihood fit using the coherent sum of two BW resonances to model the measured cross section is performed to data events in the $\psi_2(3823)$ signal interval [3.815, 3.835] GeV/c^2. The likelihood is constructed as that in Ref. [39]. There are two solutions with identical fit quality, and all resonance parameters from the fit are summarized in Table I. In addition, a fit with one single BW resonance to model the cross section yields $M[R] = 4417.5 \pm 26.2$ MeV/c^2, $\Gamma_{\text{tot}}[R] = 245 \pm 48$ MeV, $\Gamma_{e^+e^-}B_{1R}^B_{2} = 0.57 \pm 0.08$ eV/c^2. The fit result is shown in Fig. 2. To discriminate the two resonances hypothesis (H_1) from the one resonance hypothesis (H_0) for the cross section interpretation, the likelihood ratio $t = -2\ln(L_{\text{BW}}/L_{\text{2BW}})$ is used as a test variable. We perform 2000 MC pseudoexperiments for both hypotheses and the corresponding t distributions are shown in Fig. 2. The $t = 13.6$ from data is positive and slightly favors H_1. The p value to reject H_0 is 8.2%, corresponding to a significance of 1.7σ. Other possible continuum parametrizations of the cross section in the fit, such as a shape of three-body phase space, $1/s^0$, or a product of phase space with $1/s^n$ are also tested, and they are not able to describe data well. The significance for the resonance hypothesis (with either one or two resonances) over continuum is estimated to be greater than 5σ.

The systematic uncertainties in the $\psi_2(3823)$ mass measurement include those from the absolute mass scale, resolution, parametrization of the $\psi_2(3823)$ signal and background shapes. In the $\psi_2(3823)$ mass measurement, we use the $\psi(2S)$ mass to calibrate the absolute mass scale. The uncertainty from the $\psi(2S)$ mass measurement is therefore taken as the systematic uncertainty due to the absolute mass scale, which is 0.12 MeV/c^2. To increase the $\psi(2S)$ sample size and thus reduce the $\psi(2S)$ mass uncertainty, we also employ $\psi(2S) \rightarrow \gamma\chi_c2$ and $\psi(2S) \rightarrow \eta J/\psi$ data events. The resolution difference between data and MC simulation is also estimated using the $\psi(2S)$ events. Fixing the resolution from a free value to the one measured with $\psi(2S)$ events, the mass difference for $\psi_2(3823)$ in the fit is 0.01 MeV/c^2. In the nominal fit, the signal PDF of $\psi_2(3823)$ is parametrized as a MC simulated shape convolved with Gaussian resolution. A signal PDF parametrized as a BW convolved with Gaussian resolution is also tested, and the mass difference (0.03 MeV/c^2) is taken as the systematic uncertainty from signal parametrization. Changing the background shape from a second-order polynomial to a linear term yields 0.03 MeV/c^2 mass difference associated with the background shape parametrization. Assuming that all the sources are independent, the total systematic uncertainty is calculated by adding them in quadrature, resulting in 0.13 MeV/c^2 for the $\psi_2(3823)$ mass measurement. For the $\psi_2(3823)$ width, we measure the upper limits with all of the above systematic uncertainty sources, and report the most conservative one.

The systematic uncertainties in the cross section measurement mainly come from luminosity measurement, efficiencies, kinematic fit, signal shape, background shape, decay model, radiative correction, branching ratios and MC sample size. The luminosity is measured using Bhabha
events, with an uncertainty of 1.0% [25]. The uncertainty in the tracking efficiency for high momentum leptons is 1.0% per track. Pions have momenta between 0.1 and 0.6 GeV/c, and the momentum-weighted uncertainty is 1.0% per track. By requiring at least one good photon candidate to be detected, the photon detection efficiency is very high and the uncertainty is negligible. The systematic uncertainty for the choice of \(J/\gamma \) mass window is similar to that of Ref. [40], which is 1.6%. A track helix parameters correction method as discussed in Ref. [41] is applied to each MC simulated event during the 1\(C \) kinematic fit. The difference in detection efficiencies with or without corrections, 1.7%, is assigned as the systematic uncertainty from kinematic fit. The same sources of signal and background shape parametrizations as discussed for the \(\psi_2(3823) \) mass measurement would contribute 3.9% and 1.4% differences in the \(\psi_2(3823) \) signal events yields, which are taken as systematic uncertainties in the cross section measurement. We model the \(e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823) \) process with \(L = 2 \) between \(\pi^+\pi^- \) and \(\psi_2(3823) \) in the MC simulation. The efficiency difference between this model and a three-body systematics in the cross section measurement, assuming that all the sources are independent, the total systematic uncertainty is calculated by adding them in quadrature, resulting in 8.8% for the cross section measurement.

The systematic uncertainties for the resonance parameters in the cross section fit come from absolute c.m. energy measurement, the cross section uncertainty, and the fit model. The c.m. energies of data sets taken in different time periods are measured with different methods. Shifting the c.m. energies of data sets taken in the same period globally (i.e., fully correlated) within uncertainties, we repeat the cross section fit. The deviations of the resonance parameters are taken as systematic uncertainties. The systematic uncertainties on the cross section measurements are common to all c.m. energies and are propagated to \(\Gamma_{e^+e^-B_1B_2} \) with the same amount. We quote 8.8% systematic uncertainty for \(\Gamma_{e^+e^-B_1B_2} \). BW functions with constant full widths are used as the PDF in the cross section fit. We also use BW functions with \(\sqrt{s} \)-dependent full widths as the fit PDF, and the deviations of the resonance parameters between this fit and the nominal one are taken as systematic uncertainties from fit model. All these systematic contributions are listed in Supplemental Material [38]. Assuming all the sources are independent, the total systematic uncertainties are calculated by adding them in quadrature.

In summary, the product of the \(e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823) \) cross section and the branching ratio of \(\psi_2(3823) \rightarrow \gamma\chi_{c1} \) is measured with 11.3 fb\(^{-1} \) data collected with the BESIII detector at \(\sqrt{s} = 4.23 \) to 4.70 GeV. For the first time, we observe resonance structure in the cross section line shape with a significance greater than 5\(\sigma \). A fit to data with a sum of two coherent BW resonances to model the cross section yields the masses and widths of both resonances as shown in Table I. Although weakly disfavored by data with 1.7\(\sigma \), a single resonance with a mass 4417.5 \(\pm \) 26.2 \(\pm \) 3.5 MeV/c\(^2 \), and a width 245 \(\pm \) 48 \(\pm \) 13 MeV is also possible to interpret data. Such a resonance has not been observed before. This is the first observation of vector \(\psi \) states decaying to D-wave charmonium state, which provides new insights about the \(\psi \) state wave functions. Considering that the measured \(e^+e^- \rightarrow \pi^+\pi^-\psi(3770) \) cross section is also relatively large near 4.4 GeV [42], this indicates that the coupling between the \(\psi \) states and D-wave charmonium might be popular, which should be taken into account when explaining the nature of these \(\psi \) states.

Within current uncertainties, the parameters of structures in the two resonances interpretation are similar to the \(\psi(4360) \) and \(\psi(4660) \) states reported in \(\pi^+\pi^-\psi(2S) \) [10,11]. Assuming the observed structures correspond to these resonances, this will be the second decay channel of the mysterious \(\psi(4660) \) state after more than 15 years of discovery. By comparing the measured cross section of \(\sigma[e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)] \) and \(\sigma[e^+e^- \rightarrow \pi^+\pi^-\psi(2S)] \) [16], we find \(\{B[\psi(4660) \rightarrow \pi^+\pi^-\psi_2(3823)]/B[\psi(4660) \rightarrow \gamma\chi_{c1}]\} \sim 10\% \). Taking the branching fraction of \(B[\psi_2(3823) \rightarrow \gamma\chi_{c1}] \sim 50\% \) [43] as input, we obtain the relative partial width \(\Gamma[\psi(4660) \rightarrow \pi^+\pi^-\psi_2(3823)]/\Gamma[\psi(4660) \rightarrow \pi^+\pi^-\psi(2S)] \sim 20\% \). This sizable partial width poses a challenge to the f\(_0(980)\psi(2S)\) hadron molecule interpretation [17] for the \(\psi(4660) \) nature, which expects \(\psi(4660) \) predominantly decaying into f\(_0(980)\psi(2S)\). The observed \(\psi(4660) \rightarrow \pi^+\pi^-\psi_2(3823) \) decay also differs from an extended baryonium picture [18] which explains the \(\psi(4660) \) as a \(\Sigma_c^0\Sigma_c^0 \) baryonium and speculates \(\psi(4660) \) is a first radial excitation in accordance with the \(n = 2 \) radial quantum number of \(\psi(2S) \) and absent coupling to charmonium states with \(n = 1 \). A similar argument also appears in a diquark-antidiquark tetraquark explanation [19], which assigns the \(\psi(4660) \) as the radial excitation of the \(\psi(4260) \) (a P-wave tetraquark) based on the only observed decay \(\psi(4660) \rightarrow \pi^+\pi^-\psi(2S) \). Our observation obviously deviates from this assignment.

We also measure the mass of the \(\psi_2(3823) \) state as \(M[\psi_2(3823)] = 3823.12 \pm 0.43 \pm 0.13 \text{ MeV}/c^2 \), where the first uncertainty is statistical and the second systematic. The \(\psi_2(3823) \) width is studied, and an upper limit \(\Gamma[\psi_2(3823)] < 2.9 \text{ MeV} \) at the 90% CL is obtained. This is the most precise measurement of the \(\psi_2(3823) \) mass and the most stringent constraint on its width to

102003-7
date, which will help to refine the parameters of potential models and significantly reduce the uncertainties (ca. ±50 MeV) of the D-wave states predicted by the potential model [24].

The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts No. 2020YFA0406300, No. 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts No. 11975141, No. 11875115, No. 11625523, No. 11635010, No. 11735014, No. 11822506, No. 11835012, No. 11935015, No. 11935016, No. 11935018, No. 12022510, No. 12022502, No. 12035009, No. 12035013, No. 12061131003; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts No. U1732263, No. U1832207; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 894790; German Research Foundation DFG under Contracts No. 443159800, Collaborative Research Center CRC 1044, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. 443159800, Collaborative Research Center No. 894790; German Research Foundation DFG under programme under Marie Sklodowska-Curie grant agreement ERC under Contract No. 758462; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; Ministry of Education; Shanghai Key Laboratory for Particle Physics, Shanghai 200443, People’s Republic of China.

Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China.

Also at School of Physics and Electronics, Hunan University, Changsha 410082, China.

Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China.

Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China.

Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China.

Also at the Department of Mathematical Sciences, IBA, Karachi, Pakistan.

[1] M. Gell-Mann, Phys. Lett. B 8, 214 (1964); G. Zweig, CERN Rep. 8182/TH.401, 1 (1964).
[2] S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142001 (2005).
[4] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 110, 252001 (2013).
[5] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013).
[6] S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod. Phys. 89, 015003 (2018).
[7] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, Phys. Rep. 873, 1 (2020).
[8] C. Z. Yuan et al. (Belle Collaboration), Phys. Rev. Lett. 99, 182004 (2007).
[9] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 118, 092001 (2017).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 212001 (2007).
[11] X. L. Wang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 142002 (2007).
[12] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 118, 092002 (2017).
[13] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. Lett. 101, 172001 (2008).
[14] S. Jia et al. (Belle Collaboration), Phys. Rev. D 100, 0911103 (R) (2019); 101, 091101(R) (2020).
[15] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 89, 111103 (2014).
[16] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 104, 052012 (2021).
[17] Feng-Kun Guo, Christoph Hanhart, and Ulf-G. Meissner, Phys. Lett. B 665, 26 (2008).
[18] C. F. Qiao, J. Phys. G 35, 075008 (2008).
[19] L. Miani, F. Piccinini, A. D. Polosa, and V. Riquer, Phys. Rev. D 89, 114010 (2014).
[20] L. Antoniazzi et al. (E705 Collaboration), Phys. Rev. D 50, 4258 (1994); V. Bhardwaj et al. (Belle Collaboration), Phys. Rev. Lett. 111, 032001 (2013).
[21] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 115, 011803 (2015).
[22] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 07 (2019) 035.
In this Letter, definitions of $M(\pi^+\pi^- J/\psi) \equiv M(\pi^+\pi^- \ell^+\ell^-) - M(\ell^+\ell^-) + m(J/\psi)$ and $M(\gamma H J/\psi) \equiv M(\gamma H \ell^+\ell^-) - M(\ell^+\ell^-) + m(J/\psi)$ are used to partly cancel the mass resolution of the lepton pair. Here $m(J/\psi)$ and $m[\psi(2S)]$ are the nominal masses of J/ψ and $\psi(2S)$, respectively [35].

[35] R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

[36] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 94, 032009 (2016).

[37] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 93, 011102(R) (2016); Phys. Rev. Lett. 122, 232002 (2019).

[38] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.129.102003 for the numerical results for $\sigma[e^+e^- \rightarrow \pi^+\pi^- \psi(3823)] \times \mathcal{B}[\psi(3823) \rightarrow \gamma\chi_c]$. [39] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 104, 092001 (2021).

[40] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 112, 092001 (2014).

[41] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 87, 012002 (2013).

[42] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 100, 032005 (2019).

[43] C. F. Qiao, F. Yuan, and K. T. Chao, Phys. Rev. D 55, 4001 (1997).