Generic entanglement and symmetry: permutation and translation symmetry

Yoshifumi Nakata,1,2 and Mio Murao2,3

1Institute for Theoretical Physics, Leibniz University Hannover, Germany
2Department of Physics, Graduate School of Science, University of Tokyo, Japan
3Institute for Nano Quantum Information Electronics, University of Tokyo, Japan

(Dated: September 19, 2014)

We study entanglement of generic states in the Hilbert spaces that respect symmetry. By applying concentration of measure, we show that a pure state respecting permutation symmetry is typically weakly entangled and that a pure state respecting translation symmetry is as highly entangled as a generic state without symmetry. We then investigate higher moments of the distribution of the amount of entanglement over generic states for each symmetry and provide numerical evidence that generic states with symmetry are divided into two subensembles characterized by different entanglement spectrum, which is in contrast to those without symmetry that are divided into three subensembles. This indicates that imposing symmetry on generic states radically changes the entanglement spectrum.

PACS numbers: 03.67.Mn, 03.67.-a, 03.67.Bg

Introduction.—Symmetry is one of the guiding principles of studying many-body systems, where phases of matter are often characterized by symmetry of the system and a phase transition is understood as a consequence of the transition from one symmetry to another [1, 2]. A classification of matters by symmetry, however, does not explain all phenomena in many-body systems. For instance, it does not describe topological phases [3–5]. Entanglement is a complementary concept for classifying quantum many-body systems (see, e.g., Ref. [6] for a review), which characterizes topological phases [7, 8] and is also a key to understand critical systems [9–12]. Despite these importance of symmetry and entanglement in quantum many-body physics, little is known about their direct connections [13, 14], namely, how symmetry of a many-body system generally affects entanglement of states stably realizable in that system.

For studying properties of generic quantum states, an ensemble of pure states uniformly distributed in a given Hilbert space with respect to the unitarily invariant measure, called random states, are often exploited. Random states play an important role in physics from the black hole information paradox [15–18] to the foundations of quantum statistical mechanics [19–22]. They are also eigenstates of random Hamiltonians, which have been studied in the equilibrium problems of subsystems [23, 24] and in random matrix theory [25]. Entanglement of random states called generic entanglement (see, e.g., Ref. [26]) is a key in these studies. It has been shown that random states in the whole Hilbert space are almost maximally entangled [27–31] and the distribution of the amount of generic entanglement has remarkable features in terms of entanglement spectrum [32–36], which has been studied for analysing universal properties of many-body systems including topological order [37–43].

In this letter, we introduce random states that respect a symmetry, equivalently eigenstates of random Hamiltonians with a symmetry, and investigate the properties of their generic entanglement. We especially focus on permutation symmetry—a fundamental symmetry of indistinguishable fermions and bosons—and translation symmetry—the symmetry that defines the structure of a lattice. This will deepen the understanding of the properties typically observed in fermionic/bosonic and lattice systems from the viewpoint of entanglement.

Entanglement of permutationally invariant states also has an importance in quantum information. It was recently revealed that entanglement of indistinguishable bosons, induced purely by their permutation invariant nature, can be used in quantum information tasks [44]. Hence, it is important to find the amount of entanglement we can typically obtain from indistinguishable bosons, which is quantified by generic entanglement of states with permutation symmetry.

We first study the average of entanglement entropy over random states in the symmetric and antisymmetric subspaces for permutation symmetry, and in the (discrete) momentum subspaces for translation symmetry. We show that the average in the symmetric and antisymmetric subspaces is typically much smaller than that of fully random states. In the momentum subspaces, we show that the average of generic entanglement does not significantly differ from that of fully random states, implying that it is typically hard to distinguish translationally invariant states from fully random states by analysing only small subsystems. We then numerically investigate higher moments of the distribution of the amount of generic entanglement for each space. We provide evidence that imposing symmetry on random states leads to a significantly different structure of the distribution at higher moments, indicating that the entanglement spectrum of eigenstates of random Hamiltonians with and without symmetry has distinct features.

Generic entanglement.—We consider an n-qudit system \(\Lambda \) and denote by \(\mathcal{H}^{(\Lambda)} = (C^d)^{\otimes n} \) the corresponding Hilbert space. We divide the system into two subsystems \(A \) and \(\bar{A} \), which contain \(n_A \) and \(n_{\bar{A}} \) qudits, re-
respectively, and denote their Hilbert spaces by $\mathcal{H}^{(A)}$ and $\mathcal{H}^{(A)}$. We analyse the amount of entanglement of a pure state $|\phi\rangle$ with respect to the bipartition A and \bar{A} by the Rényi entropy of a reduced density matrix in A, $E_{q}^{(A)}(|\phi\rangle) = \log \text{tr}(\rho_{A})^{q}/(1 - q)$ for $q \in [0, \infty]$, where $\rho_{A} = \text{tr}_{\bar{A}} |\phi\rangle \langle \phi|$. The special case of $q = 1$, namely, $E_{1}^{(A)}(|\phi\rangle)$ is given by the entanglement entropy $E_{1}^{(A)}(|\phi\rangle)$, which is defined by the von Neumann entropy of ρ_{A}, $S(\rho_{A})$. An entanglement spectrum of $|\phi\rangle$ in A is a distribution of the eigenvalues of ρ_{A} in decreasing order.

When a state is randomly chosen from \mathcal{H} with respect to the unitarily invariant measure, we explicitly denote it by $|\phi\rangle \in \mathcal{H}$. In this letter, we sometimes refer to random states in the whole space $\mathcal{H}^{(A)}$ as fully random states for clarity. To introduce generic entanglement for a subspace, let $\mathcal{H}_{G}^{(X)} (X = \Lambda, A, \bar{A})$ be a subspace in $\mathcal{H}^{(X)}$ labelled by G ($\dim \mathcal{H}_{G}^{(X)} = D_{G}^{(X)}$). We mean by generic entanglement for $\mathcal{H}_{G}^{(A)}$ entanglement of random states in a subspace described by $\mathcal{H}_{G}^{(A)}$.

The average entanglement entropy over fully random states satisfies $E_{q}^{(A)}(\rho_{(A)}) \geq n_{A} \log d - d^{n_{A} + 2n_{\Lambda} - 1}$ [28]. This indicates that generic entanglement for $\mathcal{H}_{G}^{(A)}$ is almost maximal for large n. Higher moments of the distribution of the amount of entanglement, often called the entanglement distribution, has been also studied for fully random states [32–35]. By introducing a rescaled entanglement s for a given state $|\phi\rangle$ by $E_{q}^{(A)}(|\phi\rangle) = n_{A} \log d + \log s/(1 - q)$, it was shown that the probability density function $P(s)$ for a state $|\phi\rangle \in \mathcal{H}^{(A)}$ to have the amount of entanglement s has two singularities in terms of s [32–33]. This implies that random states are divided into three subensembles. Each subensemble is called a phase and has a distinctive entanglement spectrum [32–33]. These three phases contain maximally entangled, typical, and separable states. We call them as maximally entangled, typical, and separable phases, respectively.

Subspaces associated with symmetries. The symmetric and antisymmetric subspaces in $\mathcal{H}^{(X)} (X = \Lambda, A, \bar{A})$ for permutation symmetry \mathcal{P} are defined by $\mathcal{H}_{\mathcal{P},+}^{(X)} := \text{span}\{|\phi\rangle \in \mathcal{H}^{(X)} | u(\sigma) |\phi\rangle = |\phi\rangle, \forall \sigma \in \mathcal{P}\}$ and $\mathcal{H}_{\mathcal{P},-}^{(X)} := \text{span}\{|\phi\rangle \in \mathcal{H}^{(X)} | u(\sigma) |\phi\rangle = \text{sign}(\sigma) |\phi\rangle, \forall \sigma \in \mathcal{P}\}$, respectively, where $u(\sigma)$ is a unitary representation of σ. Note that $\mathcal{H}_{\mathcal{P},-}^{(A)}$ exists if and only if $n \leq d$. From a physical point of view, the symmetric (antisymmetric) subspace is a Hilbert space of indistinguishable bosons (fermions).

For translation symmetry, we consider a lattice of qubits. We only deal with the one dimensional line with the periodic boundary condition in this letter, but it is straightforward to generalize the results to higher dimensional lattices. For a line, the translation group T is generated by only one generator T, which shifts every qubit by one site. Since T^{n} shall be the identity operator due to the periodic boundary condition, the Hilbert space $\mathcal{H}^{(X)} (X = \Lambda, A, \bar{A})$ is decomposed into the discrete momentum subspaces $\mathcal{H}^{(X)} = \bigoplus_{\theta} \mathcal{H}_{\theta}^{(X)}$, where $\theta \in \{ \frac{2\pi k}{n_{A}} \}_{k=0, \ldots, n_{A} - 1}$, $\mathcal{H}_{\theta}^{(X)} := \text{span}\{|\phi\rangle \in \mathcal{H}^{(X)} | u(T) |\phi\rangle = e^{i\theta} |\phi\rangle \}$ and $u(T)$ is a unitary representation of T. This decomposition corresponds to a discrete version of Bloch’s theorem [43].

Average of generic entanglement. Our main tool to investigate the average of generic entanglement for a Hilbert space $\mathcal{H}_{G}^{(A)}$ is a certain type of the concentration of measure about a reduced density matrix. Since the parameter space of pure states is a hypersphere, random states are identified with random variables on a hypersphere with the uniform measure, which strongly concentrates around their average values due to the Levy’s lemma [40]. By applying this argument to reduced density matrices, it was shown in Ref. [19] that for most random states reduced density matrices in the subsystem Λ are concentrated around a state $\Omega_{G}^{(A)} = \text{tr}_{\bar{A}} \Pi_{G}^{(A)}/D_{G}^{(A)}$, where $\Pi_{G}^{(A)}$ is a projection operator onto $\mathcal{H}_{G}^{(A)}$.

By combining this concentration of measure with the Fannes-Audenaert inequality [47, 48], which relates the trace distance between two states with the difference of their von Neumann entropy, we obtain the following. For $|\phi\rangle \in \mathcal{H}_{G}^{(A)}$,

$$|E_{1}^{(A)}(|\phi\rangle) - S(\Omega_{G}^{(A)})| \leq \epsilon \log R_{\phi} + \eta_{0}(\epsilon),$$

(1)

with probability at least $1 - \exp(-D_{G}^{(A)} \epsilon^{2}/18 \pi^{2})$, where $\epsilon = \epsilon + (\text{rank}(\Omega_{G}^{(A)})/D_{G}^{(A)})^{1/2}$, $R_{\phi} = \text{dim}(\text{supp}(\Omega_{G}^{(A)}) \cup \text{supp}(\Phi_{G}^{(A)}))$, and $\eta_{0}(\epsilon) = -\epsilon \log \epsilon$ for $0 \leq \epsilon \leq 1/e$ and $1/e$ otherwise (see Appendix for further details). This inequality enables us to estimate the average entanglement entropy of generic entanglement for any subspace $\mathcal{H}_{G}^{(A)}$ by calculating the von Neumann entropy of $\Omega_{G}^{(A)}$.

We first investigate the average of generic entanglement for $\mathcal{H}_{\mathcal{P},\pm}^{(A)}$. Since it holds that $\Omega_{\mathcal{P},\pm}^{(A)} = \Pi_{\mathcal{P},\pm}^{(A)}/D_{\mathcal{P},\pm}^{(A)}$ and the dimension R_{ϕ} in inequality (1) is equal to $D_{\mathcal{P},\pm}^{(A)}$ for any $|\phi\rangle \in \mathcal{H}_{\mathcal{P},\pm}^{(A)}$ (see Appendix for the detailed derivation), the first moment of the distribution of entanglement entropy for the symmetric and the antisymmetric subspaces satisfies the following. For $|\phi\rangle \in \mathcal{H}_{\mathcal{P},\pm}^{(A)}$,

$$|E_{1}^{(A)}(|\phi\rangle) - \log D_{\mathcal{P},\pm}^{(A)}| \leq \epsilon_{\pm}^{\prime} \left(\log D_{\mathcal{P},\pm}^{(A)} - \log \epsilon_{\pm} \right),$$

(2)

with probability at least $1 - \exp(-D_{\mathcal{P},\pm}^{(A)} \epsilon_{\pm}^{2}/18 \pi^{2})$, where $\epsilon_{\pm}^{\prime} = \epsilon + (D_{\mathcal{P},\pm}^{(A)}/D_{\mathcal{P},\pm}^{(A)})^{1/2}$ and $D_{\mathcal{P},\pm}^{(X)} = (n_{A}^{X} + d - 1)/d_{A}$ for $X = \Lambda, A, \bar{A}$ ($n_{A} = n$). The average of generic entanglement for $\mathcal{H}_{\mathcal{P},\pm}^{(A)}$ is dominantly determined by the dimension of $\mathcal{H}_{\mathcal{P},\pm}^{(A)}$. For the symmetric subspace, the average is concentrated around $E_{1}^{(A)}(|\phi\rangle) = (d - 1) \log n_{A}$ when $n \gg n_{A}$ and d is constant. This is exponentially small in n_{A} compared to the entanglement entropy for generic entanglement of fully random states, which concentrates around $n_{A} \log d$. For
the antisymmetric subspace, the generic entanglement is concentrated around $\log\left(\frac{d}{n_A}\right)$, which is also much smaller than $n_A \log d$ if $d \geq n \gg n_A$.

These results imply that the expected amount of entanglement induced by imposing permutation symmetry on a state, such as entanglement of indistinguishable bosons and fermions, is exponentially smaller than entanglement of states in the system without symmetry. Consequently, typical properties of many-body systems investigated by using fully random states, such as the black hole paradox [13–18] and typical equilibration in subsystems [19–24], are unlikely to hold in the systems composed of indistinguishable bosons or fermions. The small amount of entanglement of states with permutation symmetry is however not surprising and is consistent with previously known results about entanglement of particular types of symmetric and antisymmetric pure states [44–50]. In this context, our result quantitatively justifies a common belief that symmetric and antisymmetric pure states are generally weakly entangled.

For translation symmetry, we show that the average entanglement entropy of random states in the momentum subspaces does not significantly differ from that of fully random states. We first obtain that $S(\Omega_{\bar{T},\theta}^{(A)})$ is bounded from below by \bar{S}, which is given by

$$\bar{S} = n_A \log d - \frac{n^2}{d^{2n-3n_A}} + O\left(\frac{1}{d^{2n-3n_A}}\right),$$

for any $\theta \in \left\{\frac{2\pi k}{n}\right\}_{k=0,\ldots,n-1}$. Since $\text{supp}(\Omega_{\bar{T},\theta}^{(A)}) \subset \mathcal{H}^{(A)}$ and \(\text{supp}(\Phi^{(A)}) \subset \mathcal{H}^{(A)}\) hold for any $|\phi\rangle \in \mathcal{H}^{(A)}$, R_ϕ is bounded from above by d^{n_A}. It is also shown that $\text{rank}(\Omega_{\bar{T},\theta}^{(A)})/D_{\text{eff}}^{(A)} \leq n^2/d^{n_A} + O(n^2/d^{n_A})$ (see Appendix for the derivations). Combining these bounds, we obtain for $|\phi\rangle \in \mathbb{R} \mathcal{H}^{(A)}_{\bar{T},\theta}$ that

$$E^{(A)}(|\phi\rangle) \geq \bar{S} - \epsilon'(n_A \log d - \log \epsilon'),$$

with probability at least $1 - \exp(-O(\frac{n_A}{d^2})^2/18\pi^3)$, where $\epsilon' = \epsilon + nd^{-n_A/2} + O(d^{-n/2+n_A})$. Since $\bar{S} \approx n_A \log d$ for large n and $n_A \ll n$, entanglement entropy for random states in the momentum subspaces is concentrated around $n_A \log d$ for any θ when n is sufficiently large and $\log d n \ll n_A \ll n$. This is as high as that for fully random states (see also Fig. 1).

Unlike the average of generic entanglement for the symmetric and antisymmetric subspaces, that for the momentum subspaces is not determined by the dimension of the subspace. This is because taking a partial trace of a state in the momentum subspace does not conserve translation invariance in general, which is observed by $\text{supp}(\text{tr}_A \Pi^{(A)}_{\bar{T},\theta}) = \mathcal{H}^{(A)} \subset \mathcal{H}^{(A)}_{\bar{T},\theta}$. Indeed, our result implies that the reduced density matrices of almost all states in the momentum subspaces are close to the completely mixed state in $\mathcal{H}^{(A)}$, not in $\mathcal{H}^{(A)}_{\bar{T},\theta}$. Thus, it is hard to distinguish random states in the momentum subspaces from fully random states by analysing the first order properties on small subsystems.

Entanglement phases.—We numerically provide the probability density functions $P_{\text{uni}}(s)$, $P_{P,+}(s)$, and $P_{\bar{T},\theta}(s)$ of the entanglement distribution for random states in the whole Hilbert space, the symmetric and the momentum subspaces, respectively. We focus on the case for $q = 2$ since the probability density function for fully random states is well analysed in this case [32–35]. The results are given in Fig. 2.

For fully random states, two characteristic singular points of the probability density $P_{\text{uni}}(s)$ in the case of $n_A = n/2$ and $n \rightarrow \infty$ were analytically obtained in Ref. [34, 35], which we denote by $s = s_1, s_2$ and depict in Fig. 2 by dotted lines. In this case, $P_{\text{uni}}(s)$ converges to a Gaussian distribution flanked by exponentially decreasing functions on both sides, which are connected at the transition points $s = s_1, s_2$. The three subensembles, the maximally entangled (I), typical (II), and separable (III) phases correspond to the ranges $s < s_1$, $s_1 < s < s_2$, and $s_2 < s$, respectively. In Fig. 2 the ‘phase transition’ between the maximally entangled and typical phases is clearly observed. A small difference on the transition point s_1 in the numerical result is considered to be a finite size effect. The phase transition between the typical and separable phase is not clearly visible in Fig. 2. Since the finite size effect for this transition is known to be particularly large, this is also understood as a finite size effect.

For random states in the symmetric subspace, $P_{P,+}(s)$ is weakly concentrated around a much larger value of s than fully random states, which means that they are much less entangled. For random states in the momentum subspaces, the distribution concentrates around almost the same value of fully random states with a small degree of concentration, which is due to the small dimen-
The probability density functions $P(s)$ for $d = 2$, $q = 2$, $n = 10$ and $n_A = 5$ for random states in $\mathcal{H}^{(A)}$ (left top), in $\mathcal{H}^{(A)}_{\ell^q,+}$ (right top), in $\mathcal{H}^{(A)}_{r,0}$ (left bottom), and in $\mathcal{H}^{(A)}_{r,5}$ (right bottom). The size of the samples is 10^5, binned in intervals of 0.001 for random states in $\mathcal{H}^{(A)}$, $\mathcal{H}^{(A)}_{\ell^q,+}$ and $\mathcal{H}^{(A)}_{r,5}$, and of 0.002 for random states in $\mathcal{H}^{(A)}_{r,0}$. Note that, for the rescaled entanglement s for $q > 1$, smaller s implies larger entanglement. For fully random states, the probability density is known to have two singular points at $s = s_1 = 1.25$ and $s = s_2 = 2$ when $n \rightarrow \infty$, which are indicated by vertical orange and yellow dotted lines in the figure. These points separate the ensemble into three phases I, II, and III as depicted in the panel. For random states in $\mathcal{H}^{(A)}_{r,0}$ and $\mathcal{H}^{(A)}_{r,5}$, the red lines are Gaussian distributions with $(\mu, \sigma) = (1.9988, 0.0724), (1.9933, 0.0631)$, respectively, obtained by fitting the left half of the distributions. The magenta lines are exponential functions obtained by fitting the right half of the distributions. The Gaussian and exponential functions intersect at a point depicted by a vertical yellow dotted line, indicating a phase transition point.

Appendix A: Concentration of measure

We briefly explain a certain type of concentration of measure shown in Ref. [19]. We combine it with the Fannes-Audenaert inequality [47, 48] and provide a proposition that enables us to estimate the average entanglement entropy over random states in a subspace.

Let $\Pi_G^{(A)}$ be a projection operator onto $\mathcal{H}^{(A)}_G$ and define a state $\Omega_G^{(A)} = \text{tr}_A \Pi_G^{(A)}/D_G^{(A)}$.

Theorem 1 (Ref. [19]) For $|\phi\rangle \in \mathcal{H}^{(A)}_G$ and $\forall \epsilon > 0$, the distance between the reduced density matrix in the subsystem A, $\Phi^{(A)} = \text{tr}_A |\phi\rangle\langle\phi|$, and $\Omega_G^{(A)}$ is given prob-
abisitically by
\[\text{Prob}[|\Phi(A) - \Omega_G(A)|_1 \geq \epsilon'] \leq \exp(-\frac{D_G^2 \epsilon'^2}{18\pi^3}), \]
where \(|A|_1 = \text{tr}|A| \) is the trace norm,
\[\epsilon' = \epsilon + \sqrt{\frac{\text{rank}(\Omega_G(A))}{D_G}}. \]
\[D_G = |\text{tr}(\Pi_G(\Omega_A^{\Lambda}))^2|^{-1}. \]

The \(D_G^2 \) is understood as an effective size of the subsystem \(\hat{A} \) for the state \(\Pi_G/\Pi_G^2 \).

The Fannes-Audenaert inequality is the following:

Theorem 2 (Fannes-Audenaert inequality) \([47, 48]\)

For any two states \(\rho \) and \(\sigma \) on a Hilbert space \(H \) with dimension \(D \), it holds that
\[|S(\rho) - S(\sigma)| \leq |\rho - \sigma|_1 \log D + \eta_0(\|\rho - \sigma\|_1), \]
where
\[\eta_0(x) = \begin{cases} -x \log x & 0 \leq x \leq 1/e, \\ 0 & 1/e < x. \end{cases} \]

Theorem 2 implies that \(|\Phi(A) - \Omega_G(A)|_1 \leq \epsilon' \) with probability at least 1 \(- \exp(-D_G^2 \epsilon'^2/18\pi^3)\). By substituting this into the Fannes-Audenaert inequality and recalling that \(\eta_0(x) \) is a monotonically increasing function and the dimension \(D \) in Theorem 2 is given by \(\dim(\text{supp}(\Omega_G^2(A)) \cup \text{supp}(\Phi(A))) \), we obtain the following proposition.

Proposition 1 For \(|\phi\rangle \in \mathcal{H}_G^{(A)} \) and \(\forall \epsilon > 0 \), it holds that
\[|E^{(A)}(|\phi\rangle) - S(\Omega_G^{(A)})| \leq \epsilon' \log R_\phi + \eta_0(\epsilon'), \]
with probability at least 1 \(- \exp(-D_G^2 \epsilon'^2/18\pi^3)\), where \(\epsilon' \) is defined in Theorem 1 and \(R_\phi = \dim(\text{supp}(\Omega_G^2(A)) \cup \text{supp}(\Phi(A))) \).

Appendix B: Average entanglement entropy for \(\mathcal{H}_G^{(A)} \)

We investigate the average entanglement entropy for random states in \(\mathcal{H}_G^{(A)} \) by using Proposition 1. To this end, we show \(\Omega_P^{(A)} = \Pi_P^{(A)}/D_P^{(A)} \) in the following. We start with a fact that for any \(\sigma \in \mathcal{P} \),
\[u(\sigma)\Omega_P^{(A)} = \Omega_P^{(A)} u(\sigma) = \text{sign}(\sigma) \frac{1}{\Omega_P^{(A)}} \Omega_P^{(A)} \]
holds and it implies \(\text{supp}(\Omega_P^{(A)}) = \mathcal{H}_P^{(A)} \). Since we can transform \(V \otimes n \mathcal{A}^{(A)}(V^\dagger) \otimes n \mathcal{A}^{(A)} \) for any unitary \(V \) acting on a single qudit such as
\[V \otimes n \mathcal{A}^{(A)}(V^\dagger) \otimes n \mathcal{A}^{(A)} = \text{tr}_A(V \otimes n \mathcal{A}^{(A)}(V^\dagger) \otimes n \mathcal{A}^{(A)}) \Pi_P^{(A)} = \text{tr}_A(V \otimes n \mathcal{A}^{(A)}(V^\dagger) \otimes n \mathcal{A}^{(A)}) \Omega_P^{(A)} \]
\(\Omega_P^{(A)} \) commutes with \(V \otimes n \mathcal{A}^{(A)} \). These implies, due to Schur’s lemma \([51]\), \(\Omega_P^{(A)} \) is proportional to \(\Pi_P^{(A)} \). Recalling that \(\Omega_P^{(A)} \) is a state, we obtain \(\Omega_P^{(A)} = \Pi_P^{(A)}/D_P^{(A)} \).

Since this immediately implies that the dimension \(R_\phi \) in Proposition 1 is given by \(D_P^{(A)} \) for any \(|\phi\rangle \in \mathcal{H}_P^{(A)} \), it follows from Proposition 1 that

Proposition 2 For \(|\phi\rangle \in \mathcal{H}_P^{(A)} \),
\[|E^{(A)}(|\phi\rangle) - \log D_P^{(A)}| \leq \epsilon' \left(\log D_P^{(A)} - \log \epsilon' \right), \]
with probability at least 1 \(- \exp(-D_P^2 \epsilon'^2/18\pi^3)\), where
\[\epsilon' = \epsilon + \sqrt{\frac{D_P^{(A)}}{D_P^{(A)} - 1}}, \]
\[D_P^{(X)} = \left(\frac{n_X + d - 1}{d - 1} \right), \]
\[D_P^{(X)} = \left(\frac{d}{n_X} \right), \]
for \(X = \Lambda, A, \hat{A} \) (n.A = n).

Appendix C: Average entanglement entropy for \(\mathcal{H}_T^{(A)} \)

We show the following proposition about the average entanglement entropy for random states in the momentum subspaces \(\mathcal{H}_T^{(A)} \).

Proposition 3 For \(|\phi\rangle \in \mathcal{H}_T^{(A)} \),
\[E^{(A)}(|\phi\rangle) \geq \bar{S} - \epsilon' (n_A \log d - \log \epsilon'), \]
with probability at least 1 \(- \exp(-O(d n_A^{1/2})^2/18\pi^3)\), where
\[\bar{S} = n_A \log d - \frac{n_A^2}{d^{2n_A - 3n_A}} + O\left(\frac{1}{d^{2n_A - 3n_A}} \right), \]
\[\epsilon' = \epsilon + \frac{n_A}{d^{n_A/2}} + O\left(\frac{1}{d^{n_A/2 + n_A}} \right), \]
for any \(\theta \).
To this end, we show in the following that $S(\Omega_{T,0}^{(A)}) \leq \tilde{S}$ and rank$(\Omega_{T,0}^{(A)})/D_{\text{eff}}^{(A)} \leq n^2/d^{n,A} + O(d^{-n+2n,A})$. By substituting these bounds into Proposition 1 and using a trivial upper bound of R_θ for any $|\phi\rangle \in R_{\text{eff}}^{(A)}$ given by $d^{n,A}$, Proposition 2 is obtained.

We first provide bases and dimensions of $H_{T,0}^{(A)}$ in Subsection C.1. We provide a lower bound of $S(\Omega_{T,0}^{(A)})$ in Subsection C.2. In Subsection C.3, we show that $\text{rank}(\Omega_{T,0}^{(A)})/D_{\text{eff}}^{(A)} \leq n^2/d^{n,A} + O(d^{-n+2n,A})$.

1. Bases and dimensions of $H_{T,0}^{(A)}$

We first present a basis in $H_{T,0}^{(A)}$ and calculate its dimension $D_{T,0}^{(A)}$. Let C be a set of all configurations of an n-bit sequence, $C = \{0\cdots0, 0\cdots1, \cdots d-1\cdots d-1\}$, and C_T be an equivalent class of C by a translation group \mathcal{T}, $C_T := C/\mathcal{T}$. We consider a set of states $\{|c\rangle\}_{c \in C_T}$ ($\theta \in \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$) given by

$$|c\rangle = \sqrt{n_c} \sum_{k=0}^{n-1} e^{ik\theta} u(T)^k |\phi\rangle,$$

where T is a one-site shift operator, $u(T)$ is its unitary representation and α_c is a normalization factor depending only on the configuration c.

This set of states includes zero vectors. For $c \in \{0, \tilde{1}, \cdots (d-1)\}$ where $\ell = \ell' \cdots \ell$ for $\ell = 1, \cdots, d-1$, $|c\rangle_{\theta} = |c\rangle$ for $\theta = 0$ and $|c\rangle_{\theta} = 0$ otherwise. Moreover, when the configuration c has a periodicity for $m < n$ in the sense that $u(T)^m |c\rangle = |c\rangle$, e.g., $|100100\rangle$ for $n = 6$ and $m = 3$, there exist θ such that $|c\rangle_{\theta}$ is a zero vector. By removing such zero vectors, we obtain a basis $B_{T,0}^{(A)}$ in $H_{T,0}^{(A)}$. The projection operator $\Pi_{T,0}^{(A)}$ is hence given by

$$\Pi_{T,0}^{(A)} = \sum_{|c\rangle_{\theta \in B_{T,0}^{(A)}}} |c\rangle_{\theta} \langle c|.$$

For instance, bases in $H_{T,0}^{(A)}$ for $n = 4$ are given in Table I.

It is not simple in general to calculate $D_{T,0}^{(A)}$ and α_c since they depend on the number of periodic configurations. To avoid this complication, we only consider the case where n is a prime number in the following. In this case, there is no configuration that satisfies $u(T)^m |c\rangle = |c\rangle$ for $m < n$, except $c \in \{0, \tilde{1}, \cdots (d-1)\}$. The basis is given by

$$B_{T,0}^{(A)} = \{|\ell\rangle\}_{\ell = 0, 1, \cdots, d-1} \cup \{|c\rangle_{\theta}\}_{c \in C_T \setminus \{0, \tilde{1}, \cdots (d-1)\}},$$

and, for $\theta \neq 0$,

$$B_{T,0}^{(A)} = \{|c\rangle_{\theta}\}_{c \in C_T \setminus \{0, \tilde{1}, \cdots (d-1)\}}.$$

For any $|c\rangle_{\theta} \in B_{T,0}^{(A)}$, $\alpha_c = 1/n$. The dimension of each subspace is given by

$$D_{T,0}^{(A)} = \left\lfloor \frac{d^{n-d}}{n} \right\rfloor + d \quad \text{for } \theta = 0,$$

$$\frac{d^{n-d}}{n} \quad \text{otherwise.}$$

2. A lower bound of $S(\Omega_{T,0}^{(A)})$

Let us denote $\Omega_{T,0}^{(A)}$ by

$$\Omega_{T,0}^{(A)} = \sum_{A,b} \omega_{a,b}^{(A)} |a_A\rangle \langle b_A|,$$

where $a_A = a_1 \cdots a_{n_A}$ and $b_A = b_1 \cdots b_{n_A}$ ($a_i, b_i \in \{0, 1, \cdots, d-1\}$ for all $i = 1, \cdots, n_A$). We derive a lower bound of $S(\Omega_{T,0}^{(A)})$ by calculating $\omega_{a,b}^{(A)}$ and using a relation that

$$S(\Omega_{T,0}^{(A)}) \geq - \log \text{tr}(\Omega_{T,0}^{(A)})^2. \quad (C1)$$

The diagonal terms in $\Omega_{T,0}^{(A)}$ are obtained by a simple counting argument as follows;

$$\omega_{a,a}^{(A)} = \begin{cases} \frac{d^{n-A}+m_{a}}{nD_{T,0}^{(A)}} & \text{for } a \neq \tilde{0}, \tilde{1}, \cdots, (d-1), \\ \frac{d^{n-A}}{nD_{T,0}^{(A)}} & \text{otherwise.} \end{cases} \quad (C2)$$

where $m_{\theta} = n-1$ for $\theta = 0$ and $m_{\theta} = -n$ for $\theta \neq 0$. This difference of m_{θ} is due to a fact that the basis in $H_{T,0}^{(A)}$ contains $\{|0\rangle, \cdots, (d-1)\}$ only when $\theta = 0$.

The off-diagonal terms $\omega_{a,b}^{(A)}$ are non-zero if and only if there exists $v_A = v_1 \cdots v_{n_A}$ ($v_i \in \{0, 1, \cdots, d-1\}$ for $i = 1, \cdots, n_A$) that satisfies

$$|a_A v_A \rangle = u(T)^k |b_A v_A \rangle \quad (C3)$$

for some $k \in \{1, \cdots, n-1\}$. This is because $\Omega_{T,0}^{(A)}$ is given by

$$\Omega_{T,0}^{(A)} = \frac{1}{D_{T,0}^{(A)}} \sum \text{tr}_A |c\rangle_{\theta} \langle c|,$$

and $|c\rangle_{\theta}$ is a superposition of $|c\rangle$ and its shifted states. Hence $\omega_{a,a}^{(A)} = 0$ if the number of i’s in a_A ($i =
0, · · · , d − 1) differs from that in bA. This means that
Ω(A, θ) is decomposed into positive operators on the Hilbert
spaces spanned by states with configurations c containing
mi of i (i = 0, · · · , d − 1);
\[\Omega^{(A)}_{T, \theta} = \bigoplus_{(m_0, \ldots, m_{d-1})} \omega^{(A)}_{T, \theta}(m_0, \ldots, m_{d-1}), \]
where mi runs from 0 to nA under the condition that
\[\sum_{i=0}^{d-1} m_i = n_A. \]
Thus \(\text{tr}(\Omega^{(A)}_{T, \theta})^2 \) is given by
\[\text{tr}(\Omega^{(A)}_{T, \theta})^2 = \sum_{(m_0, \ldots, m_{d-1})} \text{tr} \left(\omega^{(A)}_{T, \theta}(m_0, \ldots, m_{d-1}) \right)^2. \]
(C4)
The dimension of supp(\(\omega^{(A)}_{T, \theta}(m_0, \ldots, m_{d-1}) \)) is
M(m0, · · · , md−1) where
\[M(m_0, \ldots, m_{d-1}) = \frac{n_A!}{m_0! \cdots m_{d-1}!}. \]
We then show that the absolute value of any off-
diagonal terms in \(\omega^{(A)}_{T, \theta}(m_0, \ldots, m_{d-1}) \) is not greater than
1/D(A, T) for any (m0, · · · , md−1). It is clear that for a fixed
k, there exists at most one \(v_A \) that satisfies Eq. (C3) since
if \(v_A \) and \(v'_A \) satisfy Eq. (C3) for the same k, we obtain
\(\langle v_A | v'_A \rangle = 1 \) by taking the inner product of them, which
implies \(v_A = v'_A \). Since k \(\in \{1, \ldots, n-1\} \), an off-
diagonal term of \(\omega^{(A)}_{T, \theta}(m_0, \ldots, m_{d-1}) \) is a summation of at most
n − 1 terms, where each term has coefficient e\(i \theta p / (n D^{(A)}_{T, \theta}) \)
for some \(p \in \{1, \ldots, n-1\} \). Thus, all off-diagonal terms
of \(\omega^{(A)}_{T, \theta}(m_0, \ldots, m_{d-1}) \) are bounded from above by
\[\frac{1}{n D^{(A)}_{T, \theta}} \sum_{x=1}^{n-1} \alpha_x e^{i \theta p}, \]
where \(\alpha_x \in \{0, 1\} \) is an indicator function that \(\alpha_x = 1 \) if
there exists \(v_A \) satisfying Eq. (C3) for \(k = x \) and \(\alpha_x = 0 \)
otherwise.
By substituting the diagonal terms Eq. (C2) and
and the upper bounds of off-diagonal terms Eq. (C5), into
Eq. (C4), an upper bound of \(\text{tr}(\Omega^{(A)}_{T, \theta})^2 \) is by
\[\text{tr}(\Omega^{(A)}_{T, \theta})^2 \leq \frac{1}{d^{n_A}(1 + m_\theta d^{1-n})^2} \times \left(1 + \frac{2 m_\theta}{d^{n-1}} + \frac{m_\theta^2 d + n^2 \Gamma_A}{d^{n} + n A} \right), \]
(C6)
where
\[\Gamma_A = \sum_{(m_0, \ldots, m_{d-1})} \left(\frac{n_A!}{m_0! \cdots m_{d-1}!} \right)^2 - \frac{n_A!}{m_0! \cdots m_{d-1}!}, \]
and the summation in \(\Gamma_A \) runs over \(m_i = 0, \ldots, n_A \) (i = 1, · · · , d − 1) under the condition that \(\sum_{i=0}^{d-1} m_i = n_A. \)
The \(\Gamma_A \) satisfies \(d^{n_A} < \Gamma_A < d^{2n_A}. \)
From Eqs. (C1) and (C6), we finally obtain a lower bound of \(S(\Omega^{(A)}_{T, \theta}) \):
\[S(\Omega^{(A)}_{T, \theta}) \geq n_A \log d - \frac{n^2}{d^{2n-3n_A}} + O\left(\frac{1}{d^{2n-3n_A}} \right), \]
for any \(\theta. \)

3. An upper bound of rank(\(\Omega^{(A)}_{T, \theta} \)/D(A, T))

Due to Eq. (C6), \(\text{tr}(\Omega^{(A)}_{T, \theta})^2 \) is bounded from above such as
\[\frac{1}{D^{(A)}_{\text{eff}}} \leq \frac{1}{d^{n_A}(1 + m_\theta d^{1-n})^2} \left(1 + \frac{2 m_\theta}{d^{n-1}} + \frac{m_\theta^2 d + n^2 \Gamma_A}{d^{n} + n A} \right) \]
\[= \frac{1}{d^{n_A}} \left(1 + \frac{n^2 \Gamma_A}{d^{n} + n A} + O(d^{-n-n_A}) \right). \]
where we used \(1 \ll n \) and \(d^{n_A} < \Gamma_A < d^{2n_A}. \) Since
rank(\(\Omega^{(A)}_{T, \theta} \)) is trivially bounded from above by \(d^{n_A} \), it follows that
\[\text{rank}(\Omega^{(A)}_{T, \theta})/D^{(A)}_{\text{eff}} \leq \frac{d^{n_A}}{d^{n_A}} \left(1 + \frac{n^2 \Gamma_A}{d^{n} + n A} + O(d^{-n-n_A}) \right) \]
\[\leq \frac{d^{n_A}}{d^{n_A}} \left(1 + \frac{n^2 d^{2n_A}}{d^{n} + n A} + O(d^{-n-n_A}) \right) \]
\[= \frac{n^2}{d^{n_A}} + O(d^{-n-2n_A}). \]
The last equality holds for \(1 \ll n^2 d^{3-n_A}. \)

[1] L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).
[2] V. L. Ginzburg and L. D. Landau, Zh. Ekaper. Teoret. Fiz. 20, 1064 (1950).
[3] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[4] X.-G. Wen, Phys. Rev. B 44, 2664 (1991).
[5] A. Kitaev, Ann. Phys. 303, 2 (2003).
[6] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517-576 (2008).
[7] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
