Inequalities concerning \(s^{th} \) derivative of a polynomial

Barchand Chanam\(^1\), Khangembam Babina Devi\(^1\), Kshetrimayum Krishnadas\(^2\), Maisnam Triveni\(^1\) and Thangjam Birkramjit Singh\(^1\)

\(^1\)Department of Mathematics, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
\(^2\)Department of Mathematics, Shaheed Bhagat Singh College (University of Delhi), Sheikh Sarai, Phase II, New Delhi 110017, India

E-mail: barchand_2004@yahoo.co.in, khangembambabina@gmail.com, kshetrimayum.krishnadas@sbs.du.ac.in, trivenimaisnam@gmail.com and birkramth@gmail.com

Abstract. If \(p(z) \) is a polynomial of degree \(n \) having no zero in \(|z| < k, k \geq 1 \), then for \(0 \leq s < n \) and \(1 \leq R \leq k \), Jain [2007 Turk. J. Math. 31 89-94] proved

\[
\max_{|z|=R} |p^{(s)}(z)| \leq \frac{1}{R^s + k^s} \left[\left\{ \frac{d^s}{dx^s}(1 + x^n) \right\}_{x=1} \right] \left(\frac{R + k}{1 + k} \right)^n \max_{|z|=1} |p(z)|.
\]

In this paper, we improve as well as extend this inequality by involving certain coefficients of the polynomial. Further, our result improves and generalizes some well-known inequalities.

1. Introduction and Statement of Results

Let \(\mathbb{P}_n \) be the class of polynomials \(p(z) = \sum_{j=0}^{n} a_j z^j \) of degree \(n \). For a polynomial \(p \in \mathbb{P}_n \), we denote

\[
M(p, R) = \max_{|z|=R} |p(z)| \quad \text{and} \quad p'(z) \text{ the derivative of } p(z).
\]

Bernstein [2, 12] proved that if \(p \in \mathbb{P}_n \), then

\[
M(p', 1) \leq n M(p, 1).
\]

Although inequality (1.1) first appeared in a paper of Riesz [11], it is known as Bernstein’s inequality.

If we consider \(p \in \mathbb{P}_n \) such that \(p(z) \neq 0 \) inside the disk \(|z| < 1 \), Erdös conjectured that inequality (1.1) can be sharpened and replaced by

\[
M(p', 1) \leq \frac{n}{2} M(p, 1).
\]

Inequality (1.2) was later proved by Lax [9]. Several refinements and extensions of (1.2) have been added to literature over the years (see Malik [10], Bidkham and Dewan [3], Jain [8]).
Malik [10] generalized (1.2) by considering \(p \in \mathbb{P}_n \) which does not vanish in \(|z| < k, k \geq 1 \) and proved

\[
M(p', 1) \leq \frac{n}{1 + k} M(p, 1). \tag{1.3}
\]

Further, Bidkham and Dewan [3] generalized (1.3) and proved that if \(p \in \mathbb{P}_n \) and \(p(z) \neq 0 \) in \(|z| < k, k \geq 1 \), then for \(1 \leq R \leq k \),

\[
M(p', R) \leq \frac{n(R + k)^{n-1}}{(1 + k)^n} M(p, 1). \tag{1.4}
\]

Jain [8] further extended (1.4) by considering the \(s^{th} \) derivative of the polynomial. In fact, he proved

Theorem A. If \(p \in \mathbb{P}_n \) and \(p(z) \neq 0 \) in \(|z| < k, k \geq 1 \), then for \(0 \leq s < n \) and \(1 \leq R \leq k \),

\[
M \left(p^{(s)}, R \right) \leq \frac{1}{R^s + k^s} \left[\left\{ \frac{d^s}{dx^s} (1 + x^n) \right\} \right]_{x=1} \left(\frac{R + k}{1 + k} \right)^n M(p, 1). \tag{1.5}
\]

The result is sharp and equality holds with \(s = 1 \) for \(p(z) = (z + k)^n \).

Theorem A was further generalized and improved by Barchand and Dewan [5] by proving

Theorem B. If \(p \in \mathbb{P}_n \) and \(p(z) \neq 0 \) in \(|z| < k, k > 0 \), then for \(0 < r \leq R \leq k \), and \(1 \leq s < n \),

\[
M \left(p^{(s)}, R \right) \leq \frac{n(n-1) \ldots (n-s+1)}{R^s + k^s} \left(\frac{R + k}{r + k} \right)^n (M(p, r) - m). \tag{1.6}
\]

In this paper, by involving certain coefficients of the polynomial, we obtain an extension and improvement of (1.5) and an improvement of (1.6). More precisely, we prove

Theorem. If \(p \in \mathbb{P}_n \) and \(p(z) \neq 0 \) in \(|z| < k, k > 0 \), then for \(0 \leq s < n \), and for \(0 < r \leq R \leq k \),

\[
M \left(p^{(s)}, R \right) \leq \left[\left\{ \frac{d^s}{dx^s} (1 + x^n) \right\} \right]_{x=1} \left\{ \frac{c(n, s)R + \frac{|a_s|}{|a_0| - m} k^{s+1}}{c(n, s)(k^{s+1} + R^{s+1}) + \frac{|a_s|}{|a_0| - m} (k^{s+1}R^s + Rk^2s)} \right\} \times B \{ M(p, r) - m \} \quad \text{for} \quad 1 \leq s < n \tag{1.7}
\]

and

\[
M(p, R) \leq M(p, r) B - (B - 1)m \quad \text{for} \quad s = 0. \tag{1.8}
\]

where here and throughout the paper

\[
c(n, s) = \frac{n!}{s!(n-s)!}, \quad m = \min_{|z|=k} |p(z)|
\]

and

\[
B = \left(\frac{R^2 + k^2 + \frac{2}{n} \left(\frac{|a_1|}{|a_0| - m} \right) k^2 R}{r^2 + k^2 + \frac{2}{n} \left(\frac{|a_1|}{|a_0| - m} \right) k^2 r} \right)^{\frac{1}{2}}. \tag{1.9}
\]
Remark 1. In the theorem, since \(p(z) \neq 0 \) in \(|z| < k \), \(k > 0 \), then for \(0 < t \leq k \), \(p(tz) \neq 0 \) in \(|z| < \frac{k}{t} \), where \(\frac{k}{t} \geq 1 \). It follows by Rouche’s theorem that, for any real or complex number \(\lambda \) with \(|\lambda| < 1 \), the polynomial \(p(tz) - \lambda m' \), where \(m' = \min |p(tz)| \), does not vanish in \(|z| < \frac{k}{t} \), \(\frac{k}{t} \geq 1 \). Thus, applying (2.4) of Lemma 2.2 to \(p(tz) - \lambda m' \), we have

\[
\frac{1}{c(n, s)|a_0 - \lambda m'|} \left(\frac{k}{t} \right)^s \leq 1,
\]

which simplifies to

\[
\frac{1}{c(n, s)|a_0 - \lambda m'|} k^s \leq 1. \tag{1.10}
\]

Now, \(m' = \min |p(tz)| = \min |p(z)| = m \) and \(|a_0| \geq m \) (by Lemma 2.6). Choosing the argument of \(\lambda \) suitably such that \(|a_0 - \lambda m| = |a_0| - |\lambda|m \), inequality (1.10) becomes

\[
\frac{1}{c(n, s)|a_0| - |\lambda|m} k^s \leq 1. \tag{1.11}
\]

Taking \(|\lambda| \to 1 \), (1.11) reduces to

\[
\frac{1}{c(n, s)|a_0| - m} k^s \leq 1, \tag{1.12}
\]

which leads to

\[
\frac{c(n, s)t + \frac{|a_s|}{|a_0| - m} k^{s+1}}{c(n, s)(k^{s+1} + t^{s+1}) + \frac{|a_s|}{|a_0| - m} (k^{s+1}t^s + tk^{2s})} \leq \frac{1}{t^s + k^s} \text{ for } 0 < t \leq k. \tag{1.13}
\]

Since \(R \leq k \), taking \(t = R \) in (1.13), we get

\[
\frac{c(n, s)R + \frac{|a_s|}{|a_0| - m} k^{s+1}}{c(n, s)(k^{s+1} + R^{s+1}) + \frac{|a_s|}{|a_0| - m} (k^{s+1}R^s + Rk^{2s})} \leq \frac{1}{R^s + k^s}. \tag{1.14}
\]

It is evident from (1.14) of Remark 1 and Lemma 2.8 that our theorem is an improvement of Theorem B due to Barchand and Dewan [4].

Remark 2. Putting \(r = 1 \) in the theorem, we have the following improvement of Theorem A.

Corollary 1. If \(p \in P_n \) and \(p(z) \neq 0 \) in \(|z| < k \), \(k \geq 1 \), then for \(0 \leq s < n \), and for \(1 \leq R \leq k \),

\[
M \left(p^{(s)}, R \right) \leq \left\{ \int d^n x^n (1 + x^n) \right\}_{x=1} \left\{ \frac{c(n, s)R + \frac{|a_s|}{|a_0| - m} k^{s+1}}{c(n, s)(k^{s+1} + R^{s+1}) + \frac{|a_s|}{|a_0| - m} (k^{s+1}R^s + Rk^{2s})} \times C \{ M(p, 1) - m \} \right. \text{ for } 1 \leq s < n \right. \tag{1.15}
\]
and
\[M(p, R) \leq M(p, 1)C - (C - 1)m, \quad \text{for } s = 0, \tag{1.16} \]
where
\[C = \left(\frac{R^2 + k^2 + \frac{2}{n} \left(\frac{|a_1|}{|a_0| - m} \right) k^2 R}{1 + k^2 + \frac{2}{n} \left(\frac{|a_1|}{|a_0| - m} \right) k^2} \right)^{\frac{2}{n}}. \tag{1.17} \]

It is clear from inequality (1.14) of Remark 1 in conjunction with Lemma 2.8 for \(r = 1 \) that Corollary 1 is an improvement of Theorem A due to Jain [8].

Remark 3. Putting \(s = 1 \), it is seen that inequality (1.15) of Corollary 1 is an improvement of inequality (1.4) due to Bidkham and Dewan [3].

Remark 4. For \(R = 1 \) and \(k = 1 \), inequality (1.15) of Corollary 1 gives an extended version of inequality (1.2) due to Lax [9] for the \(s \)th derivative.

Remark 5. For \(s = 0 \), inequality (1.16) of Corollary 1 gives an improvement of inequality (1.5) for \(s = 0 \).

2. Lemmas

We need the following lemmas to prove our result.

The first lemma is due to Aziz and Rather [1].

Lemma 2.1. If \(p \in \mathbb{P}_n \) and \(p(z) \neq 0 \) in \(|z| < k, \ k \geq 1 \), then for \(1 \leq s < n \),
\[M\left(p^{(s)}, 1\right) \leq n(n-1)\ldots(n-s+1) \left\{ \frac{c(n, s)|a_0| + |a_s|k^{s+1}}{c(n, s)|a_0|(1 + k^{s+1}) + |a_s|(k^{s+1} + k^{2s})} \right\} M(p, 1) \tag{2.1} \]
and
\[\frac{1}{c(n, s)} \left| \frac{a_s}{a_0} \right| k^s \leq 1. \tag{2.2} \]

From Lemma 2.1, we can easily obtain the following lemma.

Lemma 2.2. If \(p \in \mathbb{P}_n \) and \(p(z) \neq 0 \) in \(|z| < k, \ k \geq 1 \), then for \(0 \leq s < n \),
\[M\left(p^{(s)}, 1\right) \leq \left\{ \frac{c(n, s)|a_0| + |a_s|k^{s+1}}{c(n, s)|a_0|(1 + k^{s+1}) + |a_s|(k^{s+1} + k^{2s})} \right\} \left\{ \left(\frac{d^s}{dx^s}(1 + x^n) \right)_{x=1} \right\} M(p, 1) \tag{2.3} \]
and
\[\frac{1}{c(n, s)} \left| \frac{a_s}{a_0} \right| k^s \leq 1. \tag{2.4} \]

The following lemma was proved by Barchand and Dewan [5].

Lemma 2.3. If \(p(z) = a_0 + \sum_{\nu=\mu}^{n} a_\nu z^\nu, \ 1 \leq \mu \leq n \), is a polynomial of degree \(n \) such that \(p(z) \neq 0 \) in \(|z| < k, \ k > 0 \), then for \(0 < r \leq R \leq k \),
\[M(p, R) \leq M(p, r)B' - (B' - 1)m, \tag{2.5} \]
where \(m = \min_{|z|=k} |p(z)| \)
and
\[
B' = \exp \left\{ \int_{r}^{R} \frac{\mu}{n} \frac{|a_{\mu}|}{|a_{0}| - m} k^{\mu+1} t^{\mu-1} + \mu \left(k^{\mu+1} t^{\mu} + k^{2\mu} t \right) \right\}. \tag{2.6}
\]

Remark 6. If we take \(\mu = 1 \) in Lemma 2.3, then from (2.6), \(B' \) becomes
\[
\exp \left\{ \int_{r}^{R} \frac{1}{n} \frac{|a_{1}|}{|a_{0}| - m} k^2 + t \right\}, \tag{2.7}
\]

which, from the proof of Lemma 2.8 equals \(B \) given by (1.9) in the theorem.
Thus, for \(\mu = 1 \), we obtain from (2.5)
\[
M(p, R) \leq M(p, r)B - (B - 1)m. \tag{2.8}
\]

Lemma 2.4. The real-valued function \(f \) defined by
\[
f(x) = \frac{c(n, s) + |a_{s}| x}{c(n, s)(1 + k^{s+1}) + \frac{|a_{s}|}{x} (k^{s+1} + k^{2s})},
\]
where \(a_{s} \) is any complex number and \(k \geq 1 \), is non-increasing for all non-zero real \(x \).

Proof of Lemma 2.4. The proof follows from the first derivative test of \(f(x) \) for any non-zero real \(x \) and \(k \geq 1 \), that is,
\[
f'(x) = \frac{c(n, s)k^{2s}(1 - k^{2})|a_{s}| x^2}{c(n, s)(1 + k^{s+1}) + \frac{|a_{s}|}{x} (k^{s+1} + k^{2s})^2} \leq 0.
\]

Lemma 2.5. If \(p \in \mathbb{P}_n \) such that \(p(z) \neq 0 \) in \(|z| < k, k \geq 1, \) then for \(1 \leq s < n \),
\[
M \left(p^{(s)}, 1 \right) \leq \left\{ \left. \frac{d^{s}}{dx^{s}}(1 + x^n) \right|_{x=1} \right\} c(n, s) + \left(\frac{|a_{s}|}{|a_{0}| - m} \right) k^{s+1} \frac{c(n, s)(1 + k^{s+1}) + \frac{|a_{s}|}{x} (k^{s+1} + k^{2s})}{\{ M(p, 1) - m \}}, \tag{2.9}
\]
where \(m = \min_{|z|=k} |p(z)| \).
Lemma 2.2 to

Thus, taking $|z| = k$. Hence, it follows by Rouche’s theorem that for every real or complex number λ such that $|\lambda| < 1$, the polynomial $p(z) - \lambda m$ also has no zero in $|z| < k, k \geq 1$. Thus, applying inequality (2.3) of Lemma 2.2 to $p(z) - \lambda m$, we have for $1 \leq s < n$,

$$M\left(p(z) - \lambda m, 1\right) \leq \left\{ \frac{d^s}{dx^s}(1 + x^n) \right\}_{x=1} \times \left\{ \frac{c(n, s)|a_0 - \lambda m| + |a_s|k^{s+1}}{c(n, s)|a_0 - \lambda m|(1 + k^{s+1}) + |a_s|(k^{s+1} + k^{2s})} \right\} M\left(p - \lambda m, 1\right).$$

(2.10)

Inequality (2.10) implies that

$$M\left(p^{(s)}, 1\right) \leq \left\{ \frac{d^s}{dx^s}(1 + x^n) \right\}_{x=1} \times \left\{ \frac{c(n, s) + |a_s|k^{s+1}}{c(n, s)(1 + k^{s+1}) + |a_s|(k^{s+1} + k^{2s})} \right\} M\left(p - \lambda m, 1\right).$$

(2.11)

Using Lemma 2.6, $|p(z)| \geq m$ for $|z| \leq k$, i.e., in particular $|a_0| \geq m$, therefore $|a_0| - |\lambda|m \leq |a_0 - \lambda m|$, then it follows by Lemma 2.4 that

$$f(|a_0| - |\lambda|m) \geq f(|a_0 - \lambda m|).$$

(2.12)

Further,

$$M(p - \lambda m, 1) = \max_{|z|=1} |p(z) - \lambda m|.$$

Let z_0 on $|z| = 1$ be such that

$$\max_{|z|=1} |p(z) - \lambda m| = |p(z_0) - \lambda m|.$$

We choose the argument of λ such that

$$|p(z_0) - \lambda m| = |p(z_0)| - |\lambda|m \leq M(p, 1) - |\lambda|m.$$

(2.13)

Hence, using the facts of (2.12) and (2.13), inequality (2.11) gives

$$M\left(p^{(s)}, 1\right) \leq \left\{ \frac{d^s}{dx^s}(1 + x^n) \right\}_{x=1} \times \left\{ \frac{c(n, s) + |a_s|k^{s+1}}{c(n, s)(1 + k^{s+1}) + |a_s|(k^{s+1} + k^{2s})} \right\} \times \left(M(p, 1) - |\lambda|m \right).$$

(2.14)

Thus, taking $|\lambda| \to 1$ in (2.14), we obtain the desired conclusion of the lemma.
Lemma 2.6. If $p(z)$ is a polynomial of degree n such that $p(z) \neq 0$ in $|z| < k$, $k > 0$, then

$$|p(z)| \geq m \quad \text{for} \quad |z| \leq k,$$

(2.15)

and in particular

$$|a_0| \geq m,$$

(2.16)

where $m = \min_{|z|=k}|p(z)|$.

This lemma is due to Gardner et al. [6, see Lemma 2.6].

Lemma 2.7. If $p(z) = a_0 + \sum_{\nu=\mu}^{n} a_{\nu}z^\nu$, $1 \leq \mu \leq n$, is a polynomial of degree n, $p(z) \neq 0$ for $|z| < k$, $k \geq 1$, and if $m = \min_{|z|=k}|p(z)|$, then

$$\frac{|a_\mu k^\mu|}{|a_0| - m} \leq \frac{n}{\mu},$$

(2.17)

This lemma is due to Gardner et al. [7, Proof of Lemma 3].

Lemma 2.8. If $p \in \mathbb{P}_n$ has no zero in $|z| < k$, $k > 0$, then for $0 < r \leq R \leq k$,

$$\left(\frac{R^2 + \frac{1}{n} \frac{|a_1|}{|a_0| - m} 2k^2 R + k^2}{r^2 + \frac{1}{n} \frac{|a_1|}{|a_0| - m} 2k^2 r + k^2} \right)^{\frac{n}{2}} \leq \left(\frac{R + k}{r + k} \right)^n,$$

(2.18)

where $m = \min_{|z|=k}|p(z)|$.

Proof of Lemma 2.8. Since $p(z) \neq 0$ in $|z| < k$, $k > 0$, the polynomial $P(z) = p(tz) \neq 0$ in $|z| < \frac{k}{t}$, $\frac{k}{t} \geq 1$, where $0 < t \leq k$. Applying Lemma 2.7 for $\mu = 1$, we have

$$\frac{|a_1| t}{|a_0| - m} \left(\frac{k}{t} \right) \leq n,$$

which is equivalent to

$$n \frac{1}{n} \frac{|a_1|}{|a_0| - m} k^2 + t \leq \frac{1}{t + k}.$$

(2.19)

Integrating both sides of (2.19) with respect to t from r to R where $0 < r \leq R \leq k$, we have

$$\frac{n}{2} \left[\log \left(r^2 + \frac{1}{n} \frac{|a_1|}{|a_0| - m} 2k^2 r + k^2 \right) \right]_r^R \leq n \left[\log(t + k) \right]_r^R.$$

i.e.

$$\left(\frac{R^2 + \frac{1}{n} \frac{|a_1|}{|a_0| - m} 2k^2 R + k^2}{r^2 + \frac{1}{n} \frac{|a_1|}{|a_0| - m} 2k^2 r + k^2} \right)^{\frac{n}{2}} \leq \left(\frac{R + k}{r + k} \right)^n.$$

\square
3. Proof of the Theorem
Proof. We first prove inequality (1.7).

Since $p(z)$ has no zero in $|z| < k$, $k > 0$, then the polynomial $P(Rz)$ has no zero in $|z| < \frac{k}{R}$.

\[
\frac{k}{R} \geq 1.
\]

Hence, applying Lemma 2.5 to $p(Rz)$, we have for $0 < m = \min \{|p(z)| : |z| = \frac{k}{R}\}$, which is equivalent to

\[
R^s M \left(p^{(s)}, R \right) \leq \left\{ \frac{d^s}{dx^s} (1 + x^n) \right\}_{x=1} \left(\frac{c(n, s) + \frac{|a_s|}{|a_0| - m'} \left(\frac{k}{R} \right)^{s+1}}{c(n, s) + \left(\frac{k}{R} \right)^{s+1}} + \frac{|a_s|}{|a_0| - m'} \left(\frac{k^{s+1} + R^{s+1}}{R^{s+1} + k^{2s}} \right) \right) \times (M(p, R) - m'),
\]

where, $m' = \min \{|p(Rz)| : |z| = \frac{k}{R}\} = \min \{|p(z)| : |z| = k\}$,

which is equivalent to

\[
M \left(p^{(s)}, R \right) \leq \left\{ \frac{d^s}{dx^s} (1 + x^n) \right\}_{x=1} \left(\frac{c(n, s)R + \frac{|a_s|}{|a_0| - m} k^{s+1}}{c(n, s)(k^{s+1} + R^{s+1}) + \frac{|a_s|}{|a_0| - m} (k^{s+1}R^{s} + Rk^{2s})} \right) \times (M(p, R) - m),
\]

Using inequality (2.8) to the right hand side of (3.1), we have for $0 < r \leq R \leq k$,

\[
M \left(p^{(s)}, 1 \right) \leq \left\{ \frac{d^s}{dx^s} (1 + x^n) \right\}_{x=1} \left(\frac{c(n, s) + \frac{|a_s|}{|a_0| - m} k^{s+1}}{c(n, s)(k^{s+1} + 1^{s+1}) + \frac{|a_s|}{|a_0| - m} (k^{s+1}1^{s} + Rk^{2s})} \right) \times B \{M(p, r) - m\},
\]

which is inequality (1.7).

Next, for $s = 0$, inequality (1.8) follows simply from inequality (2.8) of Remark 6.

References
[1] Aziz A and Rather N A 2004 Some Zygmund type L^p inequalities for polynomials J. Math. Anal. Appl. 289 14-29.
[2] Bernstein S 1926 Lecons sur les proprietes extremales et la meilleure approximation des fonctions analytiques d’une variable reelle Gauthier Villars (Paris).
[3] Bidkham M and Dewan K K 1992 Inequalities for a polynomial and its derivative J. Math. Anal. Appl. 166 319-24.
[4] Chanam B and Dewan K K 2007 Inequalities for a polynomial and its derivative J. Math. Anal. Appl. 336 171-9.
[5] Chanam B and Dewan K K 2008 Inequalities for a polynomial and its derivative J. Interdis. Math. 11(4) 469-78.
[6] Gardner R B, Govil N K and Musukula S R 2005 Rate of growth of polynomials not vanishing inside a circle J. Inequal. Pure and Appl. Math. 6(2) Article 53.
[7] Gardner R B, Govil N K and Weems A 2004 Some results concerning rate of growth of polynomials East J. Approx. 10 301-12.
[8] Jain V K 2007 A generalization of Ankeny and Rivlin’s result on the maximum modulus of polynomials not vanishing in the interior of the unit circle Turk. J. Math. 31 89-94.
[9] Lax P D 1944 Proof of a conjecture of P. Erdős on the derivative of a polynomial Bull. Amer. Math. Soc. 50 509-13.
[10] Malik M A 1969 On the derivative of a polynomial J. London Math. Soc. 1 57-60.
[11] Riesz M 1914 Eine Trigonometrische interpolationsformel and einige Ungleichungen für Polynome Jahresbericht der Deutschen Mathematiker-Vereinigung 23 354-68.
[12] Schaeffer A C 1941 Inequalities of A. Markoff and S. Bernstein for polynomials and related functions Bull. Amer. Math. Soc. 47 565-79.