Review article

A review on introduced Cichla spp. and emerging concerns

Shantika Maylana Sastraprawira a,**, Iqbal Harith Abd. Razak b, Salwa Shahimi a,b, Siddhartha Pati a,c, Hisham Atan Edinuri d,e, Akbar Bavajohn John f, Amirrudin Ahmad b, Jayaraj Vijaya Kumaran g, Melissa Beata Martin b, Ju Lian Chong b, Ahmed Jalal Khan Chowdhury b, Bryan Raveen Nelson a,c,*

a Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
b Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
c Faculty of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
d Research Division, Association of Biodiversity Conservation and Research, Devine Colony, 756001 Balasore, Odisha, India
e Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
f Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
g Centre for Excellence for Entrepreneurship Research and Innovation, Universiti Malaysia Kelantan, Locked Bag 36, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
h Institute of Oceanography and Maritime Studies, Kulliyyah of Science, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
i Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia Kuantan, Jalan Sultan Ahmad Shah, 25200, Kuantan, Malaysia

ARTICLE INFO

Keywords:
Cichlid
Peacock bass
Fisheries
Management
Ecology
Invasive
Animal physiology
Biodiversity
Ecosystem services
Environmental risk assessment
Nature conservation

ABSTRACT

Peacock bass (Cichla spp.) originates from the Neotropical environments of Brazil and Venezuela but, through trade and smuggling for aquarium keeping, sport fishing and aquaculture, it is now an emerging concern. Yet, less is known for Cichla spp. distribution and its ability to invade new environments. Aimed to communicate on Cichla spp. ecology, biology and introduction schemes from Scopus, Web of Science, Google Scholar and also National Centre for Biotechnology Information, this review also contains management strategies for invading fish species. While Cichla spp. can displace native fish populations, this concern is explained using ecological functions, physiological demands, direct and secondary invasion, disease tolerance and parasite spillover. Briefly, Cichla spp. has rapid embryogenesis (72 h) and matures in short periods (11–12 months), giving it an advantage to colonize new environments. With a large appetite, this true piscivore gains territorial control over water bodies by making it their feeding and nursery grounds. Perceived as an emerging concern after becoming introduced, seal-off or sport fishing were used to manage Cichla spp. but, this practice is not sustainable for the entire ecosystem. Hence, we recommend bottom-up management that involves community participation because they interact with the fish and have knowledge about their environment.

1. Introduction

South America is a notable Neotropical biodiversity hotspot in which large mouth bass, silver croaker, golden dorado and peacock bass (Cichla spp.) are endemic. These fish were involved in pet trade, game fishing and aquaculture and therefore, have become emerging concerns in areas they were introduced (Willis et al., 2015; Bower et al., 2016; Doherty et al., 2016; McGeoch et al., 2016; Seebens et al., 2017; Bezerra et al., 2019). Considering freshwater ecosystems to have different current strengths, temperature and depths, it is the interconnected confluence, reservoir, watershed and meanders that determines the type of inhabitants for this environment (Liew et al., 2016; Franco et al., 2018). In the new environments, non-native fish like Cichla spp. easily adapt and dominate other species by becoming a predator (Agostinho et al., 2005; Liew et al., 2016). Their ability to easily invade an environment is knowledge that needs exploring.

Cichla spp. is recognized as a fish with large body, occupies freshwater environments, preys on other fish (piscivore), has distinct body markings and is endemic to Brazil and Venezuela. Researchers around the world consider Cichla spp. as a voracious predator that hunts and swallows their prey entirely (Hansson et al., 1998; Pace et al., 1999; Carpenter et al., 2010; Ellis et al., 2011). Researchers also observed that

* Corresponding author.
** Corresponding author.
E-mail addresses: shantikamaylana@gmail.com (S.M. Sastraprawira), bryan.nelson@umt.edu.my (B.R. Nelson).

https://doi.org/10.1016/j.heliyon.2020.e05370
Received 7 July 2020; Received in revised form 14 September 2020; Accepted 26 October 2020
2405-8440/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Cichla spp. predates on Characiformes, Osteoglossiformes, Siluriformes, Gymnotiformes and Cichliformes that measure 30–40 cm which means, this fish selects weaker prey that cannot outrun its chase (Zaret and Paine, 1973; Jepsen et al., 1997; Neal et al., 1999, 2006, 2017; Fugi et al., 2008; Aguiar-Santos, 2018).

The discovery of *C. temensis*, *C. ocellaris*, *C. monoculus*, and *C. kelberi* during 1960s favoured them for aquaculture produce, game fishing, pet and exotic species trade in Europe, North and Central America and Asia (Winemiller et al., 1997, 2001; Fugi et al., 2008; Pelicice and Agostinho, 2009; Espinola et al., 2014; Franco et al., 2018). It is possible that flash floods and damming have allowed fish to migrate between unconnected water bodies and inaccessible areas in Brazil, Peru and Venezuela (Zaret and Paine, 1973; Latini and Petrere Jr, 2004; Espinola et al., 2014; Agostinho et al., 2018; Franco et al., 2018). Therefore, in the course of 25 years, 15 species of *Cichla* were being discovered in South America (Vasquez and Rogers, 1992; Jepsen et al., 1997; Winemiller et al., 1997; Kullander and Ferreira, 2006; Willis et al., 2015; Mourão et al., 2017).

Separately, some *Cichla* populations may possess closely linked ancestral alleles and this associated them to claims of natural hybridization (Feldberg et al., 2003; Neves et al., 2004; Arnold and Martin, 2009; Willis et al., 2010; Ellis et al., 2011; Willis et al., 2012). A hyrid with dissimilar DNA barcode is produced after same-species fish from different locations are confined together (Hubbs, 1995; Teixera and Oliveira, 2005; Jaffar et al., 2019). For instance, when both, *Cichla temensis* and *C. monoculus* or *C. temensis* and *C. piquiti* interact in a closure, their filials become recombinant hybrids (Feldberg et al., 2003; Neves et al., 2004; Teixera and Oliveira, 2005; Oliveira et al., 2006; Willis et al., 2015; Mourao et al., 2017) and like other fish, lose their ancestral information (Telechea, 2009; Kuchta et al., 2014; Jaffar et al., 2019). Therefore, the sole reliance on molecular identification could wrongly identify a fish species.

Identification for *Cichla* spp. should have the combination of morphometric and meristic indicators like shape, form and size and baseline information are available in Portuguese, Spanish and English (Oliveira et al., 2006; Marques et al., 2016). However, in a recent scenario, the *Cichla* sp. from Tasik Telabak (Malaysia) were having bands and blotches of *C. kelberi*, coloration of *C. temensis* (Figure 1) and possession of *C. kelberi* identity (via mitochondrial DNA – CO1; 92 % similarity index). At present, the argument is less conclusive because of sample size. Therefore, with an aim that focuses on history, biology and ecology (in the context of production, distribution, consumption and trade), introduced *Cichla* spp. is communicated as an emerging concern. This review also contains sustainable measures for (but, not limited to) invading fish species. Overall, exploring the social ethology and behaviour change of introduced fish allows researchers to predict the possibility of emerging concerns and plan for timely interventions.

2. Methodology

The inclusion and exclusion procedure followed protocols of John et al. (2018a, b) and Nelson et al. (2019) where keywords from the primary associations are used independently or added together (in combination of two or more) with activities, aspects and region (Table 1). These keywords revealed several documents in Scopus (n = 64), Web of

![Figure 1. Peacock bass from Tasik Telabak (Malaysia) having bands and blotches of *C. kelberi* in both, (A) Right- and (B) Left-angles but, having coloration marks of *C. temensis.*](image-url)
3. Results and discussions

3.1. Biology and ecology of Cichla spp.

A total of 15 Cichla spp. were identified having a bass-like shape and colourful body patterns (Zaret and Paine, 1973; Fugi et al., 2008; Vieira et al., 2009; Ota et al., 2019). Three vertical black bars (except C. pleiozona - four and C. piquiti - five) and black-encircled gold annulus are general morphology markers for Cichla spp. aside from the red colour at centre of the caudal keel that appears distinct to certain species (Figure 2). With four different body colourations, Cichla spp. are divided into yellow-gold (C. jarina, C. pinima, C. kelberi, C. orinocensis, C. occellaris, C. monoculus, C. vazzoleri, C. thyrurus, C. nigromaculata, C. pleiozona), brown-green (C. intermedia, C. temensis (A), C. mirianae), light grey (C. temensis (P), C. piquiti) and blue-green (C. melaniae) variations.

In the native habitat, Cichla spp. has a size range of 30–60 cm, weighs 3–6 kg when matured and can survive up to 69 years (Jepsen et al., 1999; de Souza et al., 2011; Willis et al., 2012). It usually occupies deep water (10–20 m) with rock or submerged tree beds and spreads in 100–1000 m radius depending on the size of the water body (Hoeinghaus et al., 2003; Januario et al., 2019). In the Neotropical habitat, Cichla spp. resides in waters with 23–28 °C temperature, pH of 7.8 and dissolved oxygen concentration of ±5.0 mg l⁻¹ (Fugi et al., 2008; Kovalenko et al., 2010; de Souza et al., 2011; Espinola et al., 2014; Franco et al., 2018).

After hatching, Cichla spp. begins its life cycle as a free-swimming larvae, juvenile and sub-adult before maturing in the adult form within 11–12 months. Across every stage of development, the cichlid preys on slow growing, weak and less competitive organisms (Zaret and Paine, 1975; Chapleau et al., 1997; Carpenter et al., 2010). For instance, two-day-old Cichla larvae predate on developing crustaceans and rotifers (Zaret, 1980; Winemiller, 1997), the juvenile feeds on insects, shrimps, and atherinids (Zaret 1980; Winemiller, 1997; Jepsen et al., 1997) whereas, adult Cichla spp. feeds on fish like poecilids, characids, eleotrids and cichlids with some instances of canibalism (Shafland, 1999a; Hill et al., 2005; Neal et al., 2017; Pereira et al., 2017; Sales et al., 2018; Bajer et al., 2019; Bezzera et al., 2019; Golani et al., 2019; Santos et al., 2019).

The spawning season of Cichla spp. occurs between October and May before the Neotropical raining season (Jepsen et al., 1999; Chellappa et al., 2003a; Holley et al., 2008). Cichla spp. displays an unspectacular or a gradual courtship because the male fish usually matures earlier than the female fish (Zaret, 1980). This cichlid has a homogenous pair of gonads with interconnecting blood vessels that change colour and increase in size (sometimes reaching the swim bladder compartment) to demarcate maturation (Chellappa et al., 2003a; de Souza et al., 2011). The gonad maturation of a female Cichla spp. is described in several stages where during stage-1, a small nucleus develops in the somatic cell cytoplasm. Stage-II is reached when the somatic cell cytoplasm appears basophilic. Meanwhile, during stage-III, the somatic cell nucleus are surrounded by cortical alveoli and by then, the number of oocytes become plenty in both ovaries. Stage-IV is reached when somatic cell nucleus becomes almost transparent and during stage-V, the nucleus of somatic cells are ready to exude from the follicle.

Cichla spp. adopts an oviparous spawning method where fertilization takes place in the external environment. The female fish lays her eggs inside a flat depression dug by both brooders. Simultaneously, the male fish swims behind the female Cichla spp. and releases a cloud of sperm that settles and infuses the eggs. Parental guarding of eggs and hatchlings occur by taking turns, with both adults fasting intermittently but the male Cichla spp. is seen more devoted than the female fish (Zaret, 1980; van Nierop et al., 1998).
3.2.2. Damming activities

Forehead of male includes the appearance of a nuchal hump (fatty tissue deposit) on the forehead of male Cichla spp. (Zaret, 1980; Jepsen et al., 1999).

3.2. Introduction schemes for Cichla spp.

3.2.1. Ornamental attraction

Peacock bass are unified by their colour and body patterns which give rise to names like tucunaré-Açu (Portuguese, Brazil), lukananî (Hawaiian), and pâvon (Spanish speaking countries), while butterfly peacock, eyespot cichlid and peacock bass are general English references for Cichla spp. (Reis et al., 2003; Reiss et al., 2012). Most Cichla spp. are familiarized by their yellow gold body and grey-greysish sorrel abdomen aside from the three, four or five black vertical block-like shaped bars (Reiss et al., 2012). Aside from vibrant appearances, ease to acclimatize, minimal maintenance, aggression during angling and reasonable purchase value are the additional attractions of Cichla spp. to local communities (Liang et al., 2006; Liew et al., 2012). In fact, the vibrant colours and actively-moving nature of Cichla spp. symbolize energy and good fortune which perhaps, became reason for its involvement in the Asian ornamental fish trade (Edwards and Beck, 2002; Magalhaes et al., 2017). Hobbyists were unaware about Cichla spp. growth and demanding maintenance and therefore, illegal aquarium dumping was sought by irresponsible individuals (Duggan et al., 2006; Gertzen et al., 2008; Holmberg et al., 2015; Maceda-Veiga et al., 2016; Magalhaes et al., 2017, Figure 3). It only takes one fertile Cichla spp. brooder to invade a water body. For instance, undocumented release of Cichla kelberi through aquarium dumping led to a population burst (>60% yield during single catch) in Lake Keneret (Israel) over the course of 22 years because it is deep, has oxygenic waters and contains sufficient food sources (Golani et al., 2019).

3.2.2. Damming activities

Freshwater ecosystems are classified into tributaries, conglomeration and alluvial networks that have different flow energy and this feature defines the placement of damming projects that will swell rivers into man-made reservoirs (Song et al., 2019). Dams distribute biodiversity into oligotrophic (before the dam) and eutrophic sections. Therefore, authorities are blamed for decisions to release various types of fish into oligotrophic waters. In fact, authorities perceive such fish to have aesthetic values that can improve the local economy (Pereira et al., 2020). Yet, in most cases, water bodies are introduced with non-native fish species because the authorities envision short-term objectives, have poor scientific support and their assessments were biased towards personal interests (Agostinho et al., 2004, 2007, 2010). For instance, in the 1970s, the Puerto Rican agriculture ministry was keen to rapidly improve the local economy. They encouraged locals to practice non-native fish culture since there was market demand for Cichla spp. (Neal et al., 2017). However, after several episodes of accidentally releasing C. temensis into the wild, the plunging of biodiversity in Puerto Rico brought negative impacts to the local fisheries economy (Bunkley-Williams et al., 1994; Bower et al., 2016; Neal et al., 2017; Figure 2).

While C. temensis and C. ocellaris were introduced into Florida and Texas (North America) whereas only C. ocellaris into Lake Gatun (Panama) after the 1967 damming projects, this action was convincing to be able to attract anglers, improve wild stock diversity and increase the inland capture fisheries earnings (Zaret and Paine, 1973; Rutledge and Lyeng, 1976; Howells and Garrett, 1992; Shafland and Stanford, 1999). With the objective achieved, Cichla thrived in the man-made lakes and became an attraction for tourism. Nevertheless, after 46 years, detrimental depletion of native species has occurred since Cichla extended into adjacent tributaries and expanded their range about 20 km from the initial introduction point (Zaret and Paine, 1973; Shafland, 1999b; Escobar-Camacho et al., 2019). Fortunately, the North American winter season is able to reduce C. temensis and C. ocellaris abundances since both species are unable to withstand extremely cold waters despite having already residing in these waters for several generations (Shafland et al., 2008).

3.2.3. Sport-fishing

Sport-fishing is a community-based recreational activity that provides job opportunities and income in North America, several European countries and also in Brazil (Howells and Garrett, 1992; Shafland, 1999a; Cooke and Suski, 2004; Holley et al., 2008; Barroco et al., 2018; Golani et al., 2019). In Texas and Florida (North America) alone, sport-fishing is...
an activity participated by some 36 million anglers that collectively supports the fishing and tourism industry with an annual revenue in excess of USD 2.4 billion (Courtenay et al., 1973; Shafland and Stanford, 1999). In Brazil, sport-fishing has provided job opportunities to about 250,000 citizens and produced a turnover of USD 500 million (Barroco et al., 2018). Similarly, 16 million anglers contributed to over 150,000 metric tonnes of catch in Europe (Cowx, 2015). Perhaps the fast moving and aggressive nature of Cichla as claimed by the anglers in Tasik Telabak (Malaysia) are reasons for its translocation world wide (Figure 3). In addition, C. ocellaris is preferred by anglers because it is less vulnerable (<5% mortality) to catch-and-release fishing (Figure 3; Shafland, 1999b; Shafland and Stanford, 1999; Cooke and Suski, 2004; Holley et al., 2008; Rahim et al., 2013; Barroco et al., 2018; Khalil et al., 2020). In fact, only 97 fish were killed by inexperience hook release where ±2% of the C. ocellaris deaths occurred after lethal hook puncture to the gills (Thomé-Souza et al., 2014; Bower et al., 2016).

3.2.4. Aquaculture

Aquaculture produce has supported the fisheries sector since 1970s where Oreochromis sp. from Nile and Shire rivers (Africa) were introduced into Asia and Floriano (Brazil) for food security (Dey and Gupta, 2000; Kamal and Mair, 2005; Neves, 2008). Meanwhile, demands for C. ocellaris resulted to its introduction into aquaculture, pet trade and sport angling in Brazil (Perez et al., 2000). Unlike the Oreochromis, Cichla culture is prone to cannibalism because the growing fish cannot adapt to pellet feeding. Therefore, Cichla culturists developed their own interventions where only a handful of operators are successful to spearhead the culture of this fish during 1990–2008 (Moura et al., 2006; Cyriano and Kubitza, 2003; Britton and Orsi, 2012; Salaro et al., 2012, Figure 4).

Aquaculture has improved the genetics of cultivated animals by developing fast growing, environment tolerant and disease resistant variants (Saint-Paul, 2017). Along with poor management, ignorance, inadequate knowledge and floods, the unintentional release of safe and harmful species from aquaculture is liable for their availability in the wild (Courtenay and Robins, 1989; Daniel Carvalho et al., 2010; Azvedo-Santos et al., 2011; Vander et al., 2016). Interestingly, Cichla spp. is naturalized by decree in Brazil and Venezuela which means, this cichlid has heritage value, the wildstocks are protected using local laws and the fish in culture systems are important for local food security (Shafland and Standford, 1999; Economidis et al., 2000; Pelicice et al., 2014; Franco et al., 2018; Ota et al., 2019). Therefore, the release of genetically improved Cichla spp. from culture systems into the wild is not considered a crime by the local commissions in Brazil and Venezuela.

Such an implementation has permitted the interaction between wild and culture Cichla stocks where hybrids were emerging in Brazil, Peru and Guyana (Pelicice et al., 2014; Ota et al., 2019). Cichla spp. hybrids are improved versions of existing wildstocks which means, they are adapted to the environment, less susceptible to diseases and are geared to displace the weaker species. Overall, researchers around the world were observing the plumping of native fish populations within three years of culturing Cichla spp. (Zaret and Paine, 1973; Shafland, 1999b; Sultana and Hashim, 2015; Sharpe et al., 2017).

3.3. Rise of an emerging concern

Non-native species that are introduced in small numbers will assimilate, adapt and reproduce before occupying higher trophic positions in the food web (Chapman et al., 2016). Introduced Cichla spp. can tolerate dissolved oxygen (2.9–8.0 mg/L) and water temperatures (26–29.2 °C) of tropical environments while also experiencing 77 % rapidness for their growth rates and are able to produce offspring that are tolerant to similar conditions (Straskraba et al., 1993; Shafland, 1999a; Chellappa et al., 2003a, b; Espínola et al., 2014; Bower et al., 2016; Sharpe et al., 2017; Franco et al., 2018; Schofield et al., 2019).

While aforementioned studies show that brief durations (1–3 years) are sufficient for Cichla spp. to invade a water body, this lag-phase can also takes from years to decades depending on the threats, prey species and the size of the water body (Neal et al., 2006; Kovalenko et al., 2010; Aguiar-Santos et al., 2018). Yet, only transitional extreme weather (<0–38 °C) of summer and winter months is sufficient to prevent the widespread of culture-escape Cichla spp. in North America (Howells and Garrett, 1992). Since this cichlid is native to South America, mass culture during 1970–1980 is responsible for its availability throughout this region. Only after 45 years, C. monoculus and C. kelberi emerged to become a concern in Lake Gatun (Panama) (Sharpe et al., 2017) and Lajes Reservoir (Brazil) (Santos et al., 2019). Even the presence of predators like Micropterus sp. and equally invasive Oreochromis sp. were unable to threaten the survival of Cichla spp. that thrived in Corumbá, Paraná, Orinoco and Rio Negro – Guainía (Brazil) after they escaped from aquaculture pens (Simberloff and Stiling, 1996; Shafland, 1999b; Mack et al., 2018; Ota et al., 2019).

Figure 3. The distribution of Cichla spp. in North and South America, Middle East, Africa and Asia.
acanthor may use *Cichla* cichlids and this makes gill fluke, acanthocephala and blood microorganisms like parasites to reproduce (sporulation, only takes one compatible intermediate host in oligotrophic waters for the distribution and availability of microorganisms in the water body. It only takes one compatible intermediate host in oligotrophic waters for microorganisms like parasites to reproduce (sporulation, budding and egg production) or continue with their life cycle (Hart and Reynolds, 2002; Levsen et al., 2008). For instance, *Dactylorhiza* sp. (monogenea or gill fluke) completes its life cycle in mouth- and substrate brooding cichlids and this makes *Cichla* spp. vulnerable to parasitism (Fouyaud et al., 2006; Simková et al., 2006; Mendlova and Simková, 2014; Vanhove et al., 2016; Paschoal et al., 2016; Jorissen et al., 2018). Also, an acanthor may use *Cichla* spp. to develop into a cystacanth but, later development into the acanthocephalan worm may not involve this cichlid (Nicholas, 1967; Simková et al., 2004, 2006; Mendlová, and Simková, 2014). In short, *Cichla* spp. may be infected by monogenea, acanthocephala and blood fluke because these parasites settle on bottom substrate when present without a host (Fuller, 2015; Ferreira-Sobrinho and Tavares-Dias, 2016; Luque et al., 2016; Paschoal et al., 2016; Januario et al., 2019, Table 3).

While parasite spillover from *C. kelberi* is witnessed for *Hyphessobrycon eques* in Rosana Lake (Brazil), the spillover of Tilapia Lake Virus onto *C. monoculus* occurs after its interaction with *Oreochromis* sp. (also a cichlid) in Timah Tasoh, Malaysia (Pellice and Agostinho, 2009; Abdullah et al., 2018). From both observations, it is learnt that spillover of microorganisms from *Cichla* spp. becomes an additional invasion mechanism for this cichlid and if not, the spillover of existing microbes may harm the introduced *Cichla* spp. (Carpenter et al., 1985; Estes, 1995; France et al., 1998; Jennings et al., 2002; Woodward et al., 2002; Font, 2003; Jennings and Mackinson, 2003; Torchin et al., 2003; Layman et al., 2005; Kelly et al., 2009; Sarmento, 2012; Blakeslee et al., 2013; Yamada and Takemoto, 2013; Frankel et al., 2015; Winnie and Creel, 2017).

3.4. Spills from *Cichla* spp. introduction

At present, *Cichla* spp. is an emerging concern for its predatory behaviour. Unaware to many, this cichlid may also introduce disease causing microbes and parasites into new environments. While transitional weather influences fisheries distribution in river systems (Nelson et al., 2016a,b; Nelson et al., 2019b; Zauki et al., 2019a, b), it also affects the distribution and availability of microorganisms in the water body. It only takes one compatible intermediate host in oligotrophic waters for microorganisms like parasites to reproduce (sporulation, fission, budding and egg production) or continue with their life cycle (Hart and Reynolds, 2002; Levsen et al., 2008). For instance, *Dactylorhiza* sp. (monogenea or gill fluke) completes its life cycle in mouth- and substrate brooding cichlids and this makes *Cichla* spp. vulnerable to parasitism (Fouyaud et al., 2006; Simková et al., 2006; Mendlova and Simková, 2014; Vanhove et al., 2016; Paschoal et al., 2016; Jorissen et al., 2018). Also, an acanthor may use *Cichla* spp. to develop into a cystacanth but, later development into the acanthocephalan worm may not involve this cichlid (Nicholas, 1967; Simková et al., 2004, 2006; Mendlová, and Simková, 2014). In short, *Cichla* spp. may be infected by monogenea, acanthocephala and blood fluke because these parasites settle on bottom substrate when present without a host (Fuller, 2015; Ferreira-Sobrinho and Tavares-Dias, 2016; Luque et al., 2016; Paschoal et al., 2016; Januario et al., 2019, Table 3).

While parasite spillover from *C. kelberi* is witnessed for *Hyphessobrycon eques* in Rosana Lake (Brazil), the spillover of Tilapia Lake Virus onto *C. monoculus* occurs after its interaction with *Oreochromis* sp. (also a cichlid) in Timah Tasoh, Malaysia (Pellice and Agostinho, 2009; Abdullah et al., 2018). From both observations, it is learnt that spillover of microorganisms from *Cichla* spp. becomes an additional invasion mechanism for this cichlid and if not, the spillover of existing microbes may harm the introduced *Cichla* spp. (Carpenter et al., 1985; Estes, 1995; France et al., 1998; Jennings et al., 2002; Woodward et al., 2002; Font, 2003; Jennings and Mackinson, 2003; Torchin et al., 2003; Layman et al., 2005; Kelly et al., 2009; Sarmento, 2012; Blakeslee et al., 2013; Yamada and Takemoto, 2013; Frankel et al., 2015; Winnie and Creel, 2017).

3.5. Learning from invading *Cichla* spp.

Miscommunication is responsible for the increased entries in Global Invasive Species Database (GISD) of International Union for Conservation of Nature (IUCN) and therefore, the Agenda 2030 is becoming challenging to achieve (DasGupta et al., 2019). In addition, keywords such as alien, exotic, domesticated, naturalized, foreign, emerging, invasive, allochthonous, non-indigenous, a concern and pest are not only relevant to non-native species (Humair et al., 2014; Courchamp et al., 2017, Table 2) but, the number of synonyms are rising after each and every management failure. While management measures like poison baits (Simberloff and Stiling, 1996; Innes and Barker, 1999; Cory and Myers, 2000), electric fishing (Schofield et al., 2019) and intensive angling (Santos et al., 2019) are used to manage *Cichla* spp. overpopulation, it negatively impacted native *Cichla* spp. populations, threatened other non-target species or completely destroyed the habitat (Araújo et al., 2005; Simberloff, 2008; dos Santos et al., 2014; Santos et al., 2019). Rapid actions always produce fast results because it lacks surveillance and is briefly (sometimes one-off) implemented. Therefore, individuals who propose such actions are not interested in detection studies, long-term monitoring, identification of drivers and ecosystem functions simply because they commit to personal interests (Myers et al., 2000; Mack and Lonsdale, 2002; Leuven et al., 2017).

Every country introduced with *Cichla* spp. were developing taskforces to control its widespread in affected water bodies but, their actions were delivered to the entire area rather than isolating the target from the non-target species (Epanchin-Niell and Wilen, 2012; Büyükahtakın and Haight, 2018; Bonneau et al., 2019). In fact, several decisions that favoured revenue over existing biodiversity (Meiners-Mandujano et al., 2019; Ramírez-Albores et al., 2019), were challenged by priorities (Pelice et al., 2014; Ota et al., 2019), work ethics, hiring schemes, conflicting interests (Fischer et al., 2014; Humair et al., 2014; Pietrzyk-Kaszynska and Grodzinski-Jurczak, 2015) divided tradition and intensive angling (Santos et al., 2019). Rapid actions always produce fast results because it lacks surveillance and is briefly (sometimes one-off) implemented. Therefore, individuals who propose such actions are not interested in detection studies, long-term monitoring, identification of drivers and ecosystem functions simply because they commit to personal interests (Myers et al., 2000; Mack and Lonsdale, 2002; Leuven et al., 2017).

Every country introduced with *Cichla* spp. were developing taskforces to control its widespread in affected water bodies but, their actions were delivered to the entire area rather than isolating the target from the non-target species (Epanchin-Niell and Wilen, 2012; Büyükahtakın and Haight, 2018; Bonneau et al., 2019). In fact, several decisions that favoured revenue over existing biodiversity (Meiners-Mandujano et al., 2019; Ramírez-Albores et al., 2019), were challenged by priorities (Pelice et al., 2014; Ota et al., 2019), work ethics, hiring schemes, conflicting interests (Fischer et al., 2014; Humair et al., 2014; Pietrzyk-Kaszynska and Grodzinski-Jurczak, 2015) divided tradition and total neglect on local knowledge (Fischer et al., 2014; Humair et al., 2014). All of these decisions are developed from top-down management that prioritize on theory and book-based scientific evidence (Humair et al., 2014). In short, the success of including local knowledge into fisheries practices also extends benefits to other species and the environment (cf. Zauki et al., 2019a, b) which means, the management of
Cichla spp. should consider community opinions because they constantly interact with the animal.

3.6. An improvised management plan

Communication on invading fish species like Cichla spp. is possible through digital media, signages and brochures (Schofield et al., 2019; Shackleton et al., 2019). Considering awareness as a form of communication with the public, it also promotes species detection while informing about impacts brought by the invader (Neal et al., 2006; Gallardo et al., 2016; Liao et al., 2019). Yet, public opinions should not be a literal account to manage a species with emerging concerns because introduced species have a changed population dynamics, relationship with the environment and could appear as hybrids (Courchamp et al., 2017; Jaffar et al., 2019). Considering multidisciplinary (engineers, mathematicians, accountants, and underwriters) the frontier for decision making, this team uses ecological re-engineering and green accounting to assess damages done by an invading species (Hasting et al., 2006; Olson, 2006; Blackburn et al., 2011; Epanchin-Niell and Hastings, 2012).

In addition, the creation of machine-learning platforms that combine bottom-up and top-down opinions (geographical focus, habitat, and taxonomic data) is able to scale every decision with a rate so that authorities can choose the most effective approach (Olden et al., 2002; Dana et al., 2014; Büyüktahtakına and Haight, 2018; Schofield et al., 2019, Figure 5). For instance, information from the digestive tract (stomach contents, faecal or scat) and predation (carcasses, injury, eggs and prey-predator proportions) can produce a dietary calendar and the addition of climate data can establish

Table 3. A compilation of parasites associated to Cichla spp. in its native habitat.

Parasite category	Parasite species	Citations
Monogenea	Gussevia alioides	Kohn and Cohen, 1998
	G. dispar	Kohn and Cohen, 1998
	G. tucunarensis	De Azevedo et al., 2007
	G. arilla	Yamada et al., 2009
	G. longipapiror	Yamada et al., 2011
	G. undulata	Delgado et al., 2012
	G. disparoides	Bittencourt et al., 2014
	Sciadicleithrum umbilicus	Kohn and Cohen, 1998
	S. ergensi	Yamada et al., 2011
	S. uncinatum	Yamada et al., 2011
Acanthocephala	Quadrirgyrus machadoi	Yamada et al., 2011
	Crassicutis cichlasoma	Vanhove et al., 2016
Blood fluke	Schistosoma mansoni	De Marco Júnior, 1999

Figure 5. Framework containing action and priorities for species with emerging concern.
prey-growth relationships, identify reproduction seasons and predict growth durations (c.f. Calver et al., 1998; Brown and Sherley, 2002; Park, 2004; Fugi et al., 2008; Schofield et al., 2019). On the contrary, researchers often neglect on zone definitions and its scale. For instance, translocation of Cichla spp. is permitted in zones with severe invasion but, the fish must be euthanized (and dismembered) before its movement within zones that are free from this species. By far, successful management can only be accomplished by collaboration (engagements, training and education) where decision-makers and communities work together to form an understanding. The breach of this understanding has a scale of (legislation) that also require compensations (fines and punishments) (Figure 5). This should follow by monitoring and reassessments (remain in IUCN Red List or shifted into the Green List) so that actions to recover a species does not neglect another species (Courchamp and Caut, 2006; Genovesi and Carnevali, 2011, Figure 5). For instance, introduction of native species after Cichla spp. removal should follow with a series (2-5-10 years) of assessments (and review of action plan) so that early signs of local invasion is revealed (van Vuuren et al., 2007; Courchamp et al., 2011; Kok et al., 2017; DasGupta et al., 2019; Schofield et al., 2019). Overall, a management plan that contains different levels of actions for invading species (inform, gather, compile, communicate and re-assess; Figure 5) is already integrated with sustainable indicators of Agenda 2030 and the Aichi targets in Convention of Biological Diversity 2016 and does not require additional review on its definitions.

4. Conclusions and recommendations

This article communicates on Cichla spp. as a non-native species with potential to become an emerging concern in North America, Africa and Asia. We learnt that 15 species of Cichla exists and they are distinguished by 3–5 horizontal band marks along with gold outline black anulus where only C. kelberi, C. monoculus, C. ocellaris and C. temesis were sought for sport fishing, aquarium keeping and aquaculture. Also, Cichla spp. requires 11–12 months to mature in which the larvae and juvenile adopt mixtroph diets whereas the sub- and mature-adults are true piscivore. The ability of Cichla spp. to cause active (predation) and passive (parasite and disease spillover) invasion is limited to environment settings and underlying threats. Implementations such as poison bait, electric fishing and intensive angling have been used over the years to suppress Cichla spp. overpopulation. However, these implementations were unreliable because decision are made by authorities that do not understand the biology of Cichla spp. after becoming introduced into tropical and sub-regional regions. Therefore, we utilize secondary data to map Cichla spp. availability outside their native geographies while highlighting weaknesses such as top-down, short-term, conflicting interest and poor decision making as management failures. We recommend an updated management strategy that uses measures to detect, acquire, execute and track resources after taking into consideration ‘crowd wisdom’, horizontal screening and machine learning for short- and long-term strategies which need to be reviewed in a sequence of 2, 5 and 10 years. Additional suggestions include:

I. Develop knowledge on genetic or protein manipulation that produces defected Cichla. Defected Cichla spp. (second-generation filial, F2) are either, intolerant to the environment or sterile.

II. Introduction schemes for Cichla spp. must be regulated by a local legislation where aquaria dumping or active release of this fish into the wild is regarded an offence and punishable by law.

III. Future studies should be aligned with the SDGs (Agenda 2030) and membered by experts from various fields, education, and occupation.

IV. Current local, regional, and international databases on successful eradication or otherwise should be developed and disseminated among the researchers, authorities and policymakers.

V. The annual monitoring of an introduced species is an effective way of early invader detection. Zoning must be implemented to control their movement.

VI. Engaging the public with invasive species management gathers opinions from crowds whereby this form of transparency convinces the public that actions are measurable and have an outcome.

VII. Conservation and economic gains should be themed with sustainability so that resource governance contains compensation schemes for communities whose livelihood becomes vulnerable after such impacts.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

This work is part of the first author's training to gather resources and publish findings with support from Ministry of Education (Malaysia) under FRGS/1/2018/STG03/UMT/02/2. The facilities to prepare this manuscript are supported by the Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu.

References

Abdullah, A., Ramly, R., Ridevan, M.S.M., Sudirwan, F., Abas, A., Ahmad, K., Murni, M., Kua, B.C., 2018. First detection of tilapia lake virus (TiLV) in wild river carp (Barbonymus chaenomelius) at Timah Tasoh Lake, Malaysia. J. Fish. Dis. 41, 1459-1462.

Agostinho, A.A., Gomes, L.C., Latini, J.D., 2004. Fisheries management in Brazilian reservoirs: lessons from/for South America. Interconsciencia 29, 334-338. http://repositorio.uem.br/8080/jpsu/bitstream/1/5214/1/275.pdf. (Accessed 14 January 2020).

Agostinho, A.A., Thomas, S.M., Gomes, L.C., 2005. Conservation of the biodiversity of Brazil's inland waters. Conserv. Biol. 19, 646-652.

Agostinho, A.A., Pellicce, F.M., Petry, A.C., Gomes, L.C., Júlio Jr., H.F., 2007. Fish diversity in the upper Para River basin: habitats, fisheries, management and conservation. Aquat. Ecosyst. Health. 10, 174-186.

Agostinho, A.A., Pellicce, F.M., Gomes, L.C., Júlio Jr., H.F., 2010. Reservoir fish stocking: when one plus one may be less than two. Nat. Conserv. 8, 103-111.

Agostinho, A.A., Júlio Júnior, H.F., Petere Júnior, M., 2018. Itaipu reservoir (Brazil): impacts of the impoundment on the fish fauna and fisheries. In: Cowx, I.G. (Ed.), Rehabilitation of Freshwater Fisheries. Osnay Mead, Oxford, pp. 171–184. http://repositorio.uem.br/8080/jpsu/bitstream/1/5317/1/331.pdf.

Aguilar Santos, J., de Hart, P.A., Pouilly, M., Freitas, C.E., Siqueira-Souza, F.K., 2018. Trophic ecology of speckled peacock bass Cichla temensis Humboldt 1821 in the middle Negro River, Amazon. Braz. Ecol. Freshw. Fish. 27, 1076–1086.

Araújo, I.G., Andrade, C.C., Santos, R.N., Santos, A.F.G., Santos, L.N., 2005. Spatial and seasonal changes in the diet of Oligosarcus lepatus (Characiformes, Characidae) in a Brazilian reservoir. Braz. J. Biol. 65, 1–8.

Arnold, M.L., Martin, N.H., 2009. Adaptation by introgression. J. Biol. 8, 82.

Azevedo-Santos, V.M.D., Maselko, M., Lechelt, J.D., Hansen, G., Kornis, M.S., 2019. Biological control of invasive fish and aquatic invertebrates: a brief review with case studies. Manag. Biol. Invasions 10, 227–254.
Barroco, L.S.A., Freitas, C.E.C., Lima, A.C., 2018. Estimation of peak biomass (Cichla spp.) mortality rate during catch-release fishing employing different post-capture procedures. Braz. J. Aquac. 20, 195–201.

Bezerra, L.A.V., Freitas, M.O., Daga, V.S., Occhi, T.V.T., Faria, L., Costa, A.P.L., Païal, A.A., Prodolocino, V., Vitule, J.R.S., 2019. A network meta-analysis of threats to South American fish biodiversity. Fish Fish. 20, 620–639.

Bittenbinder, L.S., Pinheiro, L.M.A., Fernandes, B.M., Tavares-Dias, M., 2014. Parasites of native Cichlidae populations and invasive Oreochromis niloticus (Linnaeus, 1758) in tributary of Amazonas River (Brazil). Revista Brasileira de Parasitologia Veterinária 23 (1), 44–54.

Blackburn, T.M., Pyke, P., Bacher, S., Carlton, J.T., Duncan, R.P., Jarostik, V., Wilson, J.R., Richardson, D.M., 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339.

Blakelev, A.M., Fowell, P.L., 2012. Marine invasions and parasite escape: updates and new perspectives. In: Lesser, M.P. (Ed.), Advances in marine biology, 66. Academic Press., U.S.A., pp. 87–169.

Boets, P., Laverty, C., Fukuda, S., Verreycken, H., Green, K., Britton, R.J., Caffrey, J., Goeftah, P.L., Pegg, J., Médoc, V., Dick, J.T., 2019. Intra- and inter-continental variation in the functional responses of a high impact alien invasive fish. Biol. Invasions 21 (5), 1751–1762.

Bonneau, M., Martin, J., Peyrard, N., Rodgers, L., Romagosa, C.M., Johnson, F.A., 2019. Evaluating effects of catch-and-release angling on peacock bass (Cichla ocellaris) in a Puerto Rican reservoir: a rapid assessment approach. Fish Res. 175, 95–102.

Brito, J.R., Orsi, M.L., 2012. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Rev. Fish Biol. Fish. 22, 555–565.

Brown, K.B., Shelley, G.H., 2019. The eradication of pressions from Kapiti Island, New Zealand. Turning the tide: the eradication of invasive species. Proc. Int. Conf. On Eradication Invasions 46–52.

Bunkley-Williams, L.U.C.Y., Williams, J.R., E.H., Lilystrom, C.G., Córroo-Flores, I.R.Z.S., Zeca, A.J.L., Aïaun, F., Mora, N., 1994. The South American ualinamo armoured catfish, Liposarcus multibrainata (Hancock), a new exotic established in Puerto Rican freshwater caribis. J. Fish. Sci. 30, 90–94.

Büyüktahtakıran, B., Kihht, G.R., 2018. A review of research operations models in invasive species management of state the art, challenges, and future directions. Annu. Oper. Res. 271, 357–403.

Caffrey, J.M., Baars, J.R., Barbour, J.H., Boets, P., Boon, P., Davenport, K., Dick, J.T., Early, J., Edman, L., Gallagher, C., Grous, J., 2014. Tackling invasive alien species in Europe: an overview of the top 20. Biol. Invasions 16, 1–25.

Calver, M.C., King, D.R., Short, J., 1998. Ecological blunders and conservation: the impact introduction and spread of non-native species: international trade and climate change. Trends Ecol. Evol. 13, 107–105.

Carvalho, M.C., Fontes, P., Bacher, S., Carlton, J.T., Duncan, R.P., Jaroš, V., 2017. Prevalence and genetic diversity in the upper River Paraná Basin. Rev. Fish Biol. Fish. 27, 609–613.

Chapman, D.S., Makra, L., Albertini, R., Bonini, M., Pelley, D., Banni, D., 1997. Impact of piscivorous fish on the ecology of a large lake ecosystem. Proc. Natl. Acad. Sci. Unit. States Am. 104, 1075–1079.

Chapteau, E., Joandeau, A., Rodinkova, V., 2013. Invasive alien species and the characterization of an introduced species: a case study of the Cichlid Cichla ocellaris in a large lake in Brazil. Proc. Natl. Acad. Sci. Unit. States Am. 110, 270–274.

De Marco Júnior, P., 1999. Invasion by the introduced aquatic snail Melanoides tuberculata (Müller, 1774) (Gastropoda: Prosobranchia: Thiariidae) of the Rio Doce State Park, Minas Gerais, Brazil. Stud. Neotrop. Fauna Environ. 34 (3), 186–189.

Degas, J.B., Johnston, C.A., Gibson, A.B., 2006. Pattern and process: case studies of alien cichlid (Cichla macrocephala) in Lake Gatun, Panama. J. Exp. Bio 222, 1–12.

Dana, E.D., Jeschke, J.M., García-de-Lomas, J., 2014. Decision tools for managing invasives. Trends Ecol. Evol. 29, 515–521.

De Marco Júnior, P., 1999. Invasion by the introduced aquatic snail Melanoides tuberculata (Müller, 1774) (Gastropoda: Prosobranchia: Thiariidae) of the Rio Doce State Park, Minas Gerais, Brazil. Stud. Neotrop. Fauna Environ. 34 (3), 186–189.

Díaz, M.V., Palacios, C., 2017. Ecological impacts of invasive species. In: Lesser, M.P. (Ed.), Advances in marine biology, 66. Academic Press., U.S.A., pp. 157–224.

Díaz, L., Cabido, M., 2001. The biodiversity of ecosystems: from species diversity to ecosystem function. Trends Ecol. Evol. 16 (10), 464–471.
Shackleton, R.T., Adriaens, T., Brundu, G., Dehnen-Schmutz, K., Est, Rahim, K.A.A., Esa, Y., Arshad, A., 2013. The in

Pietrzyk-Kaszy

Perez, J.E., Nirchio, M., Gomez, J.A., 2000. Aquaculture: part of the problem, not a solution. Nature 408, 513–516.

Pereira, H.R., Gomes, L.F., de Oliveira Barbosa, H., Pelicice, F.M., Nabout, J.C., Santos, L.N., Agostinho, A.A., Santos, A.F., García-Berthou, E., 2019. Reconciliation solutions: the differences between regional and local administrations. Nature 408, 514–516.

Simberloff, D., Stiling, P., 1996. How risky is biological control? Ecology 77, 1965–1974.

Simko, A., Morand, S., Jobet, E., Gельнер, M., Verneau, O., 2004. Molecular phylogeny of congenic monogenean parasites (Dactylogyridae): a case of intraspecific speciation? Acta Parasitologica 53, 513–518.

Simková, A., Verneau, O., Gnelner, M., Morand, S., 2006. Specifity and specialization of congenic monogeneans parasitizing cyprinid fish. Evolution 60, 1023–1037.

Song, C., Omalley, A., Roy, S.G., Barber, B.L., Zdolyenski, J., M., W., 2019. Managing fish energy and fish tradewinds: what does a win-win solution take? Sci. Total Environ. 669, 833–843.

Strakská, M., Tundisi, J.G., Duncan, A., 1993. State-of-the-art of reservoir limnology and water quality management. In: Strakská, M., Tundisi, J.G., Duncan, A. (Eds.), Comparative Reservoir Limnology and Water Quality Management. Springer, Dordrecht, pp. 213–228.

Sultana, M., Hashim, Z.H., 2015. Invasive alien fish species in freshwater of the countries. J. Environ. Sci. Nat. Resour. 8, 63–74.

Teixeira, A.S., Oliveira, S.S., 2005. Evidence for a natural hybrid of peacock bass (Cichla monoculus vs Cichla tinca) based on esterase electrophoretic patterns. Genet. Mol. Res. 4, 74–83.

Teleshora, F., 2009. Molecular identification methods of fish species: reassessment and possible applications. Rev. Fish Biol. Fish. 19, 265–293.

Thomé-Souza, M.J., Maceina, M.J., Forsberg, B.R., Marshall, G.B., Carvalho, Á.L., 2014. Peacock bass mortality associated with catch-and-release sport fishing in the Negro River, Amazonas State, Brazil. Acta Amazonica 44, 527–532.

Torchin, M.E., Lafferty, K.D., Dobson, A.P., McKenzie, V.J., Kulis, A.M., 2003. Introduced species and their missing parasites. Nature 421, 628–630.

Valverde, M.P., Sharpe, D.M., Torchin, M.E., Buck, D.G., Chapman, L.J., 2019. Trophic shifts in a native predator following the introduction of a top predator in a tropical lake. Biol. Invasions 22, 643–661.

van Vuuren, D.P., Lucas, P.L., Hildrink, H., 2007. Downscaling drivers of global environmental change: enabling use of global SRES scenarios at the national and grid cell level. Clim. Change 81, 353–380.

Vander Zanden, M.J., Lapointe, N.W., Marchetti, M.P., 2016. Non-indigenous fishes and their role in freshwater fish impairment. In: Coss, G.P., Kruse, M., Olden, J.D. (Eds.), Conservation of Freshwater Fishes. Cambridge University Press, Cambridge, pp. 258–268.

Vanhove, M.P., Hablützel, P.L., Pariés, A., Simková, A., Huyse, T., Raeymeakers, J.A., 2016. Cichlids: a host of opportunities for evolutionary parasitology. Trends Parasit. 32, 820–832.

Vasquez, O.E., Rogers, W.A., 1992. First report of larval Prochilodus nigricans (Perciformes: Cichlidae) in peacock bass in Gatun lake, republic of Panama. J. Aquat. Anim. Health 4, 152–156.

Vieira, A.B., Melo, R., Santos, G.B., Bazzoni, N., 2009. Reproductive biology of the peacock bass Cichla piquiu (Perciformes: Cichlidae), an exotic species in a Neotropical reservoir. Neotrop. Ichthyol. 7, 745–750.

Wills, S.C., Nunes, M., Montana, C.G., Farias, L.P., Ortí, G., Lovejoy, N.R., 2010. The Casiquiare river acts as a corridor between the Amazonas and Orinoco river basins: biogeographic analysis of the genus Cichla. Mol. Ecol. 19, 1014–1030.

Wills, S.C., Winemiller, K.O., Montana, C.G., Macrander, J., Reis, E., Farias, L.P., Ortí, G., 2015. Population genetics of the speckled peacock bass (Cichla temensis), South America’s most important inland sport fishery. Conserv. Genet. 16, 1345–1357.

Wills, S.C., Macrander, J., Farias, L.P., Ortí, G., 2012. Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus cichlasoma) using multi-locus data. BMC Evol. Biol. 12 (06), 1–24.

Wright, R.O., Taphorn, D.C., Winemiller, K.O., 1997. Ecology of Cichla (Cichlidae) in two blackwater rivers of southern Venezuela. Copeia 690–696.

Winne, Jr., J., Creel, S., 2017. The many effects of carnivores on their prey and their implications for trophic cascades, and ecosystem structure and function. Food Webs 12, 88–94.

Winemiller, K.O., 2001. Ecology of peacock cichlids (Cichla spp.) in Venezuela. J. Aquatic. Aquac. Sci. 9, 93–112.

Woodward, G., Hilldrew, A.G., 2002. Body-size determinants of niche overlap and intraguild predation within a complex food web. J. Anim. Ecol. 71, 1063–1074.

Yamada, F.H., Santos, L.N., Takemoto, R.M., 2011. Gill ectoparasite assemblages of non-native Cichlidae species (Perciformes, Cichlidae) in Brazilian reservoirs. J. Helminthol. 85 (2), 185–191.

Yamada, F.H., Takemoto, R.M., Bellay, S., Pavanelli, G.C., 2009. Two new species of Scialectidium (Monogenea, Dactylogyridae) parasites of Neotropical cichlid fishes from the Paraná River, Brazil. Acta Parasitol. 54 (1), 6–11.

Yamada, F.H., Takemoto, R.M., 2013. Metazoan parasite fauna of two peacock-bass (Cichla octofasciata) fishes in Brazil. Rev. Fish. Biol. Fish. 23, 101–127.

Zaret, T.M., 1980. Life history and growth relationships of Cichla ocellaris, a predatory South American cichlid. Biol. J. Linn. Soc. 24, 144–157.

Zaret, T.M., Paine, R.T., 1973. Species introduction in a tropical lake: a newly introduced species can produce population changes in a wide range of trophic levels. Science 182, 449–455.

Zauki, N.A.M., Satyanaarayana, B., Fairair Forzi, N., Nelson, L.R., Martin, M.B., Akbar- John, B., Chowdhury, A.J.K., 2019a. Citizen science frontiers: horsehoe crab population reign at their beaching bent in East Peninsular Malaysia. J. Environ. Manag. 232, 1012–1020.

Zauki, N.A.M., Satyanaarayana, B., Fairair Forzi, N., Nelson, L.R., Martin, M.B., Akbar- John, B., Chowdhury, A.J.K., 2019b. Horsehoe crab bio-ecological data from balok, east coast peninsular Malaysia. Data Brief 22, 408–463.