Efflux Pump Mediated Antibiotic Resistance in Clinical Isolates of Helicobacter Pylori From South West Nigeria

Tolulope Funbi Jolaiya\(^1\), Muinah Adenike Fowora\(^2\), Charles Onyekwere\(^3\), Rose Ugiagbe\(^4\), Ifeanyi Ifeoma Agbo\(^5\), Olufunmilayo Lesi\(^6\), Dennis Amojuyi Ndububa\(^7\), Olusegun Adekanle\(^8\), Henry Akum Njom\(^7\), Ayodeji Idowu\(^7\), Isaac Adeyemi Adeleye\(^1\), Moses Bamidele\(^2\), Favour Ndidiamaka Ngoka\(^6\), *Stella Ifeanyi Smith\(^2\)

1 Department of Microbiology, University of Lagos, Akoka, Lagos state, Nigeria; 2 Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos state, Nigeria; 3 Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos state, Nigeria; 4 Department of Medicine, University of Benin Teaching Hospital, Benin, Edo state, Nigeria; 5 Department of Medicine, Lagos University Teaching Hospital, Ibadan, Oyo state, Nigeria; 6 Department of Medicine, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun state, Nigeria; 7 Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern cape, South Africa.

Conflict-of-interest statement: The authors declare that there is no conflict of interest regarding the publication of this paper.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Prof. Stella Ifeanyi Smith, Director of Research, Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, 6 Edmond Crescent, Yaba, Lagos, Nigeria.
Email: stellaismith@yahoo.com
Telephone: +08037058989

Received: May 10, 2020
Revised: July 12, 2020
Accepted: July 17, 2020
Published online: August 21, 2020

ABSTRACT

INTRODUCTION: Helicobacter pylori is a spiral shaped gram negative bacterium majorly causing peptic ulcers and gastric cancer in humans. The combinations of two or more antibiotics such as amoxicillin, clarithromycin, metronidazole or tetracycline with anti-secretory agents or bismuth have been used successfully for the treatment of *H. pylori*.

AIM: Increasing antibiotic resistance has been a contributory factor to treatment failures; as such evaluation of resistance mechanism will improve the management of *H. pylori* infection.

Methodology: The antibiotic resistance in *H. pylori* isolates from Nigeria was determined using E-test strips from Biomerieux SA, France and PCR for the efflux pump gene detection.

RESULTS: Resistance to metronidazole was found to be 93% (97/104), amoxicillin 42% (44/104), clarithromycin 39% (41/104) and tetracycline 27% (28/104). However 51% (53/104) of the isolates harboured multidrug efflux pump gene *hefD* (Hp605) and 34% (35/104) *hefD* (Hp 971). However, *hefG* (Hp 1327) was absent in all the isolates. There was significant association between clarithromycin resistance and *hefA* with p-value 0.014, there was also association between amoxicillin resistance and *hefD* with p-value 0.004.

CONCLUSION: The present study revealed that *H. pylori* antibiotic resistance is on the increase in Nigerian strains and the mechanism of resistance may possibly include the possession of multidrug efflux pump.

Key words: Helicobacter pylori, E-test, Resistance, Efflux pump

© 2020 The Authors. Published by ACT Publishing Group Ltd. All rights reserved.

Jolaiya TF, Fowora MA, Onyekwere C, Ugiagbe R, Agbo II, Lesi O, Ndububa DA, Adekanle O, Njom HA, Idowu A, Adeleye IA, Bamidele M, Ngoka FN, Smith SI. Efflux Pump Mediated Antibiotic Resistance in Clinical Isolates of Helicobacter Pylori From South West Nigeria. *Journal of Gastroenterology and Hepatology Research* 2020; 9(4): 3283-3289 Available from: URL: http://www.ghrnet.org/index.php/joghr/article/view/2898

INTRODUCTION

Helicobacter pylori is a spiral shaped gram negative bacterium\(^{[1]}\). It is a major cause of peptic ulcer and gastric cancer in humans\(^{[2]}\). The combinations of two or more antibiotics such as amoxicillin,
clarithromycin, metronidazole or tetracycline with anti-secretory agents or bismuth have been used successfully for treatment[14,15].

Antibiotic resistance is increasing worldwide with different geographical patterns and different prevalence of H. pylori. The meta-analysis program conducted by the Surveillance of H. pylori Antimicrobial Resistance Partnership (SHARP) between 1993 and 1999 demonstrated that metronidazole resistance was 36.9%, clarithromycin 10.1% while amoxicillin 1.4%/9. In an investigation involving African countries from 1986 to 2017 antibiotic resistance was reported to be 75.8% for metronidazole, 72.6% amoxicillin, 48.7% tetracycline while it was 29.2% for clarithromycin[10]. However in Nigeria Harrison et al[10] reported an elevated metronidazole resistance rate of 99.1%, amoxicillin 33.3%, clarithromycin 14.4% and tetracycline 4.5%. Increased antibiotic resistance rates have been a contributory factor to treatment failures and multiple gene mutations are reported to play a role in high level of antibiotic resistance[10]. Different resistant strategies in bacteria to antibiotics have been reported which includes possession of active efflux pumps which excrete toxic chemical compounds and drugs out of the cell[10].

Opinions are divided over the actual mechanism by which this organism became resistant to antibiotics. These range from production of β-lactamase[11], mutation or alterations in penicillin binding proteins[12,13], possession of active efflux pumps which excrete drugs[14] and decreased membrane permeability of antibiotics into the bacterial cells or combinations of these resistance strategies[15]. This current study attempts to evaluate the presence of multidrug efflux pump as a resistance mechanism in these isolates which could serve as target for reversing drug resistance in H. pylori.

METHODOLOGY

Study subjects

Four hundred and ninety-two outpatient subjects attending the endoscopic unit of Lagos State University Teaching Hospital (LASUTH), Lagos University Teaching Hospital (LUTH), University of Benin Teaching Hospital (UBTH) and Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC) in Nigeria were recruited for the study after informed consent was obtained.

Collection and processing of samples

Biopsies were obtained from the stomach corpus and antrum of the patients and transported to the laboratory in Portagerm pylori (Biomerieux, Marcy l'Etoile, France), incubated for three to four days at 37°C for visible colonies to form at microaerophilic atmosphere. Resistant values were taken with the break points as > 0.125µg/mL, 0.5 µg/mL, 8.0 µg/mL and 1 µg/mL respectively determined by Eucast version 7.1 (2017).[17]

DNA extraction and PCR analysis

DNA was isolated from one hundred and four H. pylori isolates using QIAGEN DNA kit (Germany) following the manufacturer’s instructions. The extracted DNA was subjected to polymerase chain reaction (PCR) using FIREPol® DNA polymerase (Solis BioDyne, Tartu, Estonia) for the efflux pump genes with different primer pairs (Table 1). The PCR cycling conditions were as follows: 95°C for 5 min, then 30 cycles at 95°C for 30 s, 60°C for 45 s and extension at 72 °C for 1min[13].

Ethical approval

Ethical approval was obtained from NIMR- IRB (registration number IRB/14/285)

Statistical analysis

SPSS version 21 was used to analyze the association between efflux pump and antibiotic resistance using Pearson chi-square and influence of efflux pump on antibiotic resistance using linear regression with the significant level set at p < 0.05.

RESULTS

The result of the antibiotic susceptibility testing showed that 93% (97/104) of the isolates were resistant to metronidazole, 42% (44/104) to amoxicillin, 39% (41/104) to clarithromycin and 27% (28/104) to tetracycline with resistant values equal or above the break points > 0.125 µg/mL, 0.5 µg/mL, 8.0 µg/mL and 1 µg/mL for amoxicillin, clarithromycin, metronidazole and tetracycline respectively (Table 2). Analysis of the presence of efflux pump genes revealed that fifty three of the one hundred and four isolates (51%) possessed multidrug efflux pump gene hefA (Hp605) while thirty five (34%) possessed hefD (Hp971). However, none of the isolates possessed efflux pump gene hefG (Hp 1327) (Figures 1 and 2).

The multidrug resistance analysis showed that nine (8.7%) of the one hundred and four isolates were resistant to the four antibiotic used in the MIC test analysis. Three of these nine isolates harboured hefA which is 5.7% of the entire isolates that harboured hefA (3/53), similarly three out of this nine isolates harboured hefD which is 8.6% of the entire isolates that harboured hefD efflux pump gene (3/35) (Table 3). Twenty three of the one hundred and four (22.1%) isolates were resistant to three of the antibiotics, sixteen out of these twenty

Efflux pump genes	SEQUENCES	AMPLICON SIZE
HP0605F (hefA)	AGCCGTCGACTGAGAGGCAAAGCCAGGTGG	410bp
HP0605FR (hefA)	ACGGCTTTCAGTTGCAATTGCTAGCAT	402bp
HP0971F (hefD)	AGCCGTCGAGGAAACCGGTAATTGGG	327bp
HP0971R (hefD)	AGCCGCTATAGGCCTTTGCTTATCAGAT	327bp
HP1327F (hefG)	AGCCGCTCGAGGAAACTTGGTGTGGAT	327bp
HP1327R (hefG)	AGCCGCTATAGGTTCCTGACCAATTTAGG	327bp

Source: Amsterdam et al[24]
Table 2 Susceptibility testing of H. pylori isolates by E-test

Sample Identification Number	Amoxicillin Res ≥ 0.12 µg/Ml	Clarithromycin Res ≥ 0.5 µg/Ml	Metronidazole Res ≥ 8 µg/Ml	Tetracycline Res ≥ 1 µg/Ml
N1-4A	0.19	0.016	256	1.00
N1-4C	0.19	0.016	256	0.016
N1-8A	9	0.19	256	32
N1-8C	4	1.125	24	0.22
N1-18A	10	0.19	256	1.5
N1-18C	10	0.19	256	1.5
N1-24A	0.25	44	20	0.25
N1-24C	16	4	32	0.22
N1-25A	12	16	256	0.125
N1-25C	96	0.032	20	0.25
N1-26A	0.023	0.38	256	0.19
N1-26C	0.19	0.25	256	0.32
N1-29C	160	38	16	256
N1-31C	0.07	256	16	4
N1-45A	0.15	0.03	24	2
N1-45C	16	0.016	24	12
N1-96A	0.047	0.016	256	0.047
N1-96C	0.047	0.016	256	0.064
N1-99A	0.016	0.016	256	0.016
N1-99C	0.016	0.19	256	0.016
N1-102A	0.19	1.5	256	0.5
N1-102C	0.19	1.5	256	0.125
N1-103A	0.19	0.016	256	0.38
N1-103C	0.016	0.016	256	0.016
N1-107A	0.032	0.016	256	0.016
N1-107C	0.19	0.016	256	0.094
N1-123A	0.125	256	256	0.125
N1-123C	0.19	256	256	0.094
N1-125A	0.023	256	256	0.032
N1-125C	0.023	256	256	0.094
N2-1A	0.086	0.283	256	2.095
N2-1C	0.086	0.283	256	2.095
N2-15A	0.016	0.016	256	0.016
N2-15C	0.016	0.016	256	0.064
N2-16A	1.125	0.625	64	0.214
N2-16C	32.095	0.074	12.032	0.44
N2-18A	0.016	0.016	256	0.016
N2-18C	256	0.38	256	0.38
N2-26A	256	0.19	256	1.5
N2-85A	0.25	0.38	256	0.125
N2-85C	0.25	0.38	256	0.125
N2-87C	0.016	0.016	256	4
N2-88A	0.016	0.016	256	0.19
N2-96A	0.016	0.016	256	0.125
N2-96C	0.016	0.19	256	0.125
N2-97A	0.047	8	256	0.125
N2-97C	0.38	6	256	0.19
N2-98A	0.064	0.016	256	0.032
N2-98C	0.064	1.5	256	0.38
N2-106A	0.016	256	256	256
N2-106C	0.016	256	256	256
N2-107A	256	256	256	256

Jolaiya TF et al. Efflux pump genes in Helicobacter pylori
Gene	MIC 1	MIC 2	MIC 3	MIC 4
N2-107C	0.016	256	256	0.016
N2-108A	0.019	0.016	256	0.064
N2-108C	0.094	0.016	256	0.125
N2-119A	256	256	256	256
N2-119C	12	256	256	16
N2-122A	0.125	16	256	0.023
N2-122C	0.125	256	256	0.023
N2-123A	0.016	0.016	256	0.023
N2-123C	0.016	0.016	256	0.016
N2-130A	0.019	256	256	0.25
N2-130C	0.019	256	256	0.25
N2-136A	0.25	0.016	0.016	0.016
N2-136C	0.016	0.016	0.016	0.016
N2-138A	256	256	256	256
N2-138C	256	256	256	256
N2-139A	256	256	256	256
N2-139C	0.016	256	256	256
N2-140A	0.032	256	256	0.032
N2-140C	0.016	256	256	0.016
N2-141C	0.016	0.016	256	0.064
N2-144A	0.016	0.016	256	0.125
N4-15A	0.016	0.016	256	0.064
N4-15C	0.125	0.016	256	0.094
N4-16C	0.019	0.25	16	0.25
N4-19A	0.016	1.5	256	0.07
N4-19C	0.016	0.09	256	0.21
N4-29C	0.38	0.14	0.19	0.32
N4-77A	0.064	0.016	256	0.094
N4-77C	0.064	0.016	256	0.094
N4-89A	0.016	0.016	0.23	256
N4-89C	0.016	0.016	0.25	256
N4-92A	0.016	0.023	256	0.016
N4-92C	0.016	0.023	256	0.016
N4-94A	0.016	0.016	256	256
N5-4A	256	0.016	256	256
N5-4C	256	0.016	32	0.158
N5-6A	0.016	0.016	256	0.5
N5-6C	0.016	0.016	256	0.5
N5-44A	256	0.125	256	0.125
N5-44C	0.023	256	256	0.125
N5-46A	0.064	0.016	256	0.38
N5-46C	0.064	0.016	256	0.38
N5-52A	0.064	0.023	256	0.75
N5-52C	0.016	0.023	256	0.5
N5-53A	0.023	8	256	0.38
N5-53C	0.125	0.016	256	256
N5-54A	0.016	0.5	4	0.25
N5-61A	256	256	256	1
N5-61C	0.064	6	256	0.016
N5-90A	256	256	256	0.38
N5-90C	0.016	0.016	256	256
N5-91C	0.38	0.016	0.016	0.016

† RES - RESISTANT break point, Epsilometer test - E-test.
three isolates harboured hefA which is 30.1% of the entire isolates that harboured hefA (16/53), similarly three of these twenty three isolates harboured hefD which is 8.6% of the entire isolates that harboured hefD efflux pump gene (3/35) (Table 3). Thirty four of the one hundred and four (32.7%) isolates were resistant to two of the antibiotics at the same time, eighteen out of these thirty four isolates harboured hefA which is 34% of the entire isolates that harboured hefA (18/53). Similarly twelve of these thirty four isolates harboured hefD which is 34.2% of the entire isolates that harboured hefD efflux pump gene (12/35). Thirty seven of the one hundred and four (35.6%) isolates were resistant to one antibiotic, fifteen out of these thirty seven isolates harboured hefA which is 28.3% of the entire isolates that harboured hefA (15/53). Similarly seventeen of these thirty seven isolates harboured hefD which is 48.6% of the entire isolates that harboured hefD efflux pump gene (17/35) (Table 3). Only one isolate (0.96%) was sensitive to all the antibiotics, it harboured hefA but hefD was absent (Table 3).

Pearson chi-square (x²) analysis gave the association between antibiotic resistance and efflux pump genes hefA with p-values as follows 0.572, 0.572, 0.220 and 0.014 for tetracycline, amoxicillin, metronidazole and clarithromycin respectively. Similarly analysis of association between antibiotic resistance and efflux pump genes hefD gave p-values as follows 0.735, 0.506, 0.261 and 0.004 for association with clarithromycin, tetracycline, metronidazole and amoxicillin respectively (Table 4). The level of influence of the efflux pump genes on all the antibiotics determined by linear regression was r = 0.079 for hefA and r = 0.091 for hefD.

DISCUSSION

The information on the antibiotic susceptibility patterns of *H. pylori* in Nigeria is relevant as a guide for the treatment options and efflux pump resistance mechanism in *H. pylori* may give a clue to acquired multidrug resistance mechanism[19]. It was observed in this study that there is an increase in resistance of the *H. pylori* isolates to amoxicillin, clarithromycin and tetracycline while metronidazole has decreased in resistance. This is in contrast to the observations in a previous study that reported metronidazole resistant rate of 99.1%, amoxicillin 33.3%, clarithromycin 14.4% and tetracycline 4.5% in *H. pylori* isolates from Nigeria[18]. Elsewhere in Brazil, there have been reports of 42% metronidazole resistance, 29% amoxicillin, 7% clarithromycin and tetracycline in dyspeptic patients[8]. Findings around the world for a period of 5 years (2009-2014) revealed antibiotic resistance range from 30.5%-75.02% for metronidazole, 2%-40.87% amoxicillin, 5.46%-30.8% clarithromycin, 0%-50% for tetracycline and all these findings suggested a progressive increase in resistance rate which may inhibit eradication therapy of *H. pylori* infections[20].

This current study establish the presence of efflux pump genes in *H. pylori* strains from Nigeria, the hefA and hefD efflux pump genes have been identified in *H. pylori* isolates from Nigeria but hefG was absent, this finding is in agreement with the study carried out by Liu *et al*[18] who reported that hefA and hefD genes were detected in multidrug resistant *H. pylori* isolates and they also fail to detect hefG[15]. The absence of hefG genes had been attributed to the presence of a regulatory mechanism controlling the expression of the gene[21,22].

Table 3 Multidrug Resistance Analysis and Frequency of Efflux Pump Genes hefA and hefD

Multidrug (Amoxicillin, Clarithromycin, Metronidazole and Tetracycline)	Frequency of resistant Isolate	Efflux pump hefA frequency	Efflux pump hefD frequency
Resistance to 4 drugs	8.7% (9/104)	5.7% (3/53)	8.6% (3/35)
Resistance to 3 drugs	22.1% (23/104)	30.1% (16/53)	8.6% (3/35)
Resistance to 2 drugs	32.7% (34/104)	34% (18/53)	34.2% (12/35)
Resistance to 1 drugs	35.6% (37/104)	28.3% (15/53)	48.6% (17/35)
Sensitivity to all drugs	0.96% (1/104)	1.9% (1/53)	0% (0/35)

Table 4 Pearson chi-square - χ² analysis testing association of Drugs’ resistance with efflux pump hefA and hefD

Association	P-values
Amoxicillin and hefA	0.572
Clarithromycin and hefA	0.014
Metronidazole and hefA	0.22
Tetracycline and hefA	0.575
Amoxicillin and hefD	0.004
Clarithromycin and hefD	0.735
Metronidazole and hefD	0.261
Tetracycline and hefD	0.506

Figure 1 Agarose gel image of PCR products showing positive bands for hefA multidrug efflux pump gene, lane M: 100bp DNA marker, lane P12: positive control, lane J99 positive control, lane G27 positive, lane N: Negative control, lanes 1, 2, 4, 5 positive isolates for hefA gene, lane 3 negative for hefA gene.

Figure 2 Agarose gel image of PCR products showing positive bands for hefD multidrug efflux pump gene, lane M: 100bp DNA marker, lane G27 positive, lane N: Negative control, lanes 1 and 5 positive isolates for hefD gene, lane 2, 3, 4 and 6 negative for hefD gene.
The increased presence of efflux pump genes hefA (69.8%) and hefD (51.4%) in multidrug resistance H. pylori isolates is consistent with the findings of Liu et al.7-9, who reported increased detection of efflux pump genes, according to the author these genes play important role in multidrug resistance of H. pylori with statistical analysis showing efflux pump gene hefA was associated with clarithromycin (p-value = 0.014) and hefD with amoxicillin (p-value=0.004)10. Huang et al.11 also confirmed that the presence of hefA genes can confer multidrug resistance on H. pylori. These authors treated selected multidrug resistant H. pylori with hefA genes with emodin, baicalin, schizandrin, berberine which inhibited the expression of hefA; they observed a significant decrease in the minimum inhibitory concentration value of H. pylori to amoxicillin and tetracycline12.

Similarly the discovery from the other studies by Bina et al.13 and Kutschke and Jonge14 also confirmed the presence of hefD and hefD in H. pylori isolates from Australia, Sweden, Argentina, the United States and Canada which was 34% in Nigerian isolates21-22. Harrison et al reported the absent of point mutation of 23S rRNA in clarithromycin resistance however this study suggest the possible cause could be the presence of efflux pump genes15.

This current study, which is the first on efflux pump antibiotic resistance mechanisms in Nigerian H. pylori isolates, indicated that efflux pump may be an important mechanism of resistance and should be considered in H. pylori resistant mechanism. The present study revealed that resistance of H. pylori to antibiotics used in the management of dyspeptic ulcer is on the rise in Nigeria and also establish for the first time that the mechanism of resistance may be due to the presence of a multidrug efflux pump system.

ACKNOWLEDGEMENTS

The authors wish to acknowledge funding from the German Research Foundation (DFG) (HA 2697/18-1) awarded to Prof. R. Haas and Prof. S.I. Smith. We acknowledge Wolfgang Fischer and Pia Palamides for the support in the clinical studies. The photo documentation system used was a kind donation from Alexander von Humboldt to Prof. Stella Smith.

Authors’ contributions

Manuscript preparation and Clinical studies-JTF, Manuscript Editing and Clinical studies- AIA, SSI, NHA, Clinical studies - FMA, OC, UR, AII, LO, NDA, AO, IA, BM, NFN.

REFERENCES

1. Marshal BJ. Helicobacter pylori: A Primer for 1994. Gastroenterol. 1993; 1(4): 241-247. [PMID: 8055220]
2. Blaser MJ. Hypotheses on the Pathogenesis and Natural History of Helicobacter pylori - induced Inflammation. Gastroenterol. 1992; 102(2): 720-727. [PMID: 1732141]; [DOI: 10.1016/0016-5085(92)90126-j]
3. Graham DY. Antibiotic Resistance in Helicobacter pylori: Implications for Therapy. Gastroenterol. 1998; 115(5): 1272-1277. [PMID: 9797384]; [DOI: 10.1016/s0016-5085(98)70100-3]
4. Graham DY. Therapy of Helicobacter pylori: Current Status and Issues. Gastroenterol. 2000; 118: 52-58. [PMID: 10868895]; [DOI: 10.1016/s0016-5085(00)70003-5]
5. Graham DY. Therapy of Helicobacter pylori: Current Status and Issues. Gastroenterol. 2000; 118: 52-58. [PMID: 10868895]; [DOI: 10.1016/s0016-5085(00)70003-5]
6. Meyers JM, Silliman NP, Wang W, Siepman NY, Sugg JE, Morris D, Zhang J, Bhattacharyya H, King EC, Hopkins RJ. Risk Factors for Helicobacter pylori Resistance in the United States: The Surveillance of Helicobacter pylori Antimicrobial Resistance Partnership (SHARP) Study, 1993-1999. Ann. Intern. Med. 2002; 136(1): 13-24. [PMID: 11777360]; [DOI: 10.7326/0003-4819-136-1-200201010-00008]
7. Jaka H, Rhee JA, Oslundh L, Smart L, Peck R, Mueller A, Kass C, Mishaan S. The Magnitude of Antibiotic Resistance to Helicobacter pylori in Africa and Identified Mutations which Confer Resistance to Antibiotics: Systematic Review and Meta-analysis. BMC Infect. Dis. 2018; 18(1): 193. [PMID: PMC5921563]; [DOI: 10.1186/s12879-018-3099-4]
8. Harrison U, Fowora MA, Seriki AT, Loell E, Mueller S, Ugo-Ijeh M, Onyewku CA, Lesi OA, Otegbayo JA, Akere A, Ndububa DA, Adeganko O, Amoomeze E, AbdulKareem FB, Adeleye IA, Crispin S, Rieder G, Fischer W, Smith SI and Haas R. Helicobacter pylori Strains from A Nigerian Cohort Show Divergent Antibiotic Resistance Rates and A Uniform Pathogenic Profile. PLoS One 2017; 12(5): e0176454. [PMID: PMC5413034]; [DOI: 10.1371/journal.pone.0176454]
9. Qureshi NN, Gallaher B, Schiller NL. Evolution of Amoxicillin Resistance of Helicobacter pylori in vitro: Characterization of Resistance Mechanisms. Micro. Drug. Resist. 2014; 20(6): 509-516. [PMID: 24901497]; [DOI: 10.1089/mdr.2014.0019]
10. Jacoby GA, Archer GL. New Mechanisms of Bacteria Resistance to Antibiotic Microbes. N. Engl. J. Med 1991; 324(9): 601-612. [PMID: 1992231]; [DOI: 10.1056/NEJM199102283240906]
11. Livermore DM. ß-lactamases in Laboratory and Clinical Resistance. Clin. Microbiol. Rev. 1995; 8(4): 557-584. [PMID: PMC1728767]
12. Goffin C, Ghysen JM. Multidrug Penicillin-binding Proteins: An Enzymatic Family of Orthologs and Paralogs. Microbiol. Mol. Biol. Rev. 1998; 62(4): 1079-1093. [PMID: PMC99840]
13. Gerrits MM, Godoy APO, Kuipers EJ, Ribeiro ML. Multiple Mutations in or Adjacent to the Conserved Penicillin-binding Protein Motif of the Penicillin-binding Protein 1A Confer Amoxicillin Resistance to Helicobacter pylori. Helicobacter 2006; 11(3): 181-187. [PMID: 16684266]; [DOI: 10.1111/j.1573-5378.2006.00398.x]
14. Dore MP, Kwon DH, Sepulveda AR, El-Zimaity H, Yamaoka Y, Osato MS, Mototsugu K, Nieddu AM, Realdi G. Graham DY. Isolation of Helicobacter pylori from Sheep: Implications for Transmission to Humans. Am. J. Gastroenterol. 2001; 96(5): 1396-1401. [PMID: 11374673]; [DOI: 10.1111/j.1572-0241.2001.03778.x]
15. Nikaido H. Structure and Mechanism of RND-type Multidrug Efflux Pumps. Adv. Enzymol. Relat. Areas Mol. Biol. 2011; 77: 1-60. [PMID: PMC3122131]; [DOI: 10.1002/9780470920541.ch1]
16. Ji, X. Doyle MP. Growth Supplements for Helicobacter pylori. Journal of Clinical Microbiology 2000; 38(5): 1984-1987. [PMID: PMC 86644]
17. Ahmad N, Zakaria WR, Mohamed R. Analysis of Antibiotic Susceptibility Patterns of Helicobacter pylori Isolates from Malaysia. Helicobacter 2011; 16: 47-51. [PMID: 21241412]; [DOI: 10.1111/j.1523-5378.2010.00816.x]
18. Liu Z, Zheng P, Yang P. Efflux Pump Gene hefA of Helicobacter pylori Plays an Important Role in Multidrug Resistance. World J. Gastroenterol. 2008; 14(33): 5217-5222. [PMID: PMC2744013]; [DOI: 10.3748/wjg.14.5217]
19. Mendonca S, Ecclessato C, Sartori SM, Godoy AP, Guez ronza RA, Degger M, Podrazzi J. Prevalence of Helicobacter pylori Resistance to Metronidazole, Clarithromycin, Amoxicillin, Tetracycline and Clarinolide in Brazil. Helicobacter 2000; 5(2): 79-83. [PMID: 10849055]; [DOI: 10.1046/j.1523-5378.2000.00011.x]
20. Ghotaslou R, Leylablado HE, Asl YM. Prevalence of Antibiotic Resistance in Helicobacter pylori: A Recent Literature Review. World J. Methodol. 2015; 5(3): 164-174. [PMID: PMC4572030]; [DOI: 10.5662/wjm.v5.i3.164]
21. Bina JE, Alm RA, Uria-Nickelsen M, Thomas SR, Trust TJ, Han-
cock RE. *Helicobacter pylori* Uptake and Efflux: Basis for Intrinsinc Susceptibility to Antibiotics in vitro. *Antimicrob. Agents. Chemother.* 2000. **44**: 248-254. [PMCID: PMC896666]; [DOI: 10.1128/AAC.44.2]

22. Kutschke A, de Jonge BL. Compound Efflux in *Helicobacter pylori*. *Antimicrob.Agents. Chemother.* 2005. **49**: 3009-3010. [PMCID: PMC1168643]; [DOI:10.1128/AAC.49.7]

23. Huang YQ, Huang GR, Wu MH, Tang HY, Hung ZS, Zhou XH, Yu WQ, Su JW, Mo XQ, Chen BP, Zhao LJ, Huang XF, Wei HY, Wei LD. Inhibitory Effects of Emodin, baicalin, Schizandrin and Berberine on *hcfA* genes: Treatment of *Helicobacter pylori*-induced Multidrug Resistance. *World J. Gastroenterol.* 2015; **21**: 4225-4231. [PMCID: PMC4394083]; [DOI:10.3748/wig.v21.i14.4225]

24. Amsterdam KV, Bart A, Ende AVD. A *Helicobacter pylori* TolC Efflux Pump Confers Resistance to Metronidazole. *Antimicrob. Agents Chemother.* 2005; **49**(4): 1477-1482. [PMCID: PMC1068630]; [DOI:10.1128/AAC.49.4]