Analysis of tsunami disaster map by Geographic Information System (GIS): Aceh Singkil-Indonesia

A Farhan1,3 and H Akhyar2,3,*

1Department of Physic Education, FKIP Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia
2Department of Mechanical Engineering, Faculty of Engineering, Syiah Kuala University, Jl. Syech Abdurrauf No. 7, Darussalam, Banda Aceh 23111, Indonesia
3 Tsunami and Disaster Mitigation Research Center (TDMRC), Syiah Kuala University, Jl. Prof. Dr. Ibrahim Hasan, Gampong Pie, Banda Aceh, 23233, Indonesia

*E-mail: akhyar@unsyiah.ac.id

Abstract. Tsunami risk map is used by stakeholder as a base to decide evacuation plan and evaluates from disaster. Aceh Singkil district of Aceh-Indonesia's disaster maps have been developed and analyzed by using GIS tool. Overlay methods through algorithms are used to produce hazard map, vulnerability, capacity and finally created disaster risk map. Spatial maps are used topographic maps, administrative map, SRTM. The parameters are social, economic, physical environmental vulnerability, a level of exposed people, parameters of houses, public building, critical facilities, productive land, population density, sex ratio, poor ratio, disability ratio, age group ratio, the protected forest, natural forest, and mangrove forest. The results show high-risk tsunami disaster at nine villages; moderate levels are seventeen villages, and other villages are shown in the low level of tsunami risk disaster.

1. Introduction

Aceh Province-Indonesia is one of an area that has a high level of tsunami hazard, according to history great tsunami affected on December 26, 2004. A tsunami map should be done with multi-criteria approach corresponds with the assessment site. Geographic information systems (GIS) are a tool that would be used for analyzing and visualize the level of the tsunami risk. The Indonesian government through BNPB (Indonesian National Disaster Bureau) has regulations to standardize the maps through Perka No.2 in 2012. The regulations discussed the concept of how to develop hazard, vulnerability, capacity, risk or disaster maps in Indonesia [1].

Identify impact tsunami disaster in Tohoku 2011 and reconstruction to build tsunami-resilient community. Tsunami inundation zone recognized and measurement by satellite remote-sensing processing and field measurement [2]. Tsunami inundation numerical models have been an interpretation by using open source GIS and databases to assessment for two coastal areas of Oman. Simple software is used to estimate tsunami run-up to carry out tsunami inundation numerical models by a deterministic and probabilistic approach. Worst-case scenarios are applied a tsunami risk assessment by a deterministic and probabilistic approach [3]. A method for tsunami inundation and
impact assessment is used by integrating GIS applications, and multi-criteria investigation through Analytical Hierarchy Process (AHP) has been studied in Ofunato City, Iwate Prefecture, Japan. The parameters were used Digital Elevation Model (DEM), satellite imagery for remote-sensing analysis and field data collected. The GIS analysis consisted coastline distance created from a coastline vector map. The remote-sensing analysis has consisted of slope and elevation created from Aster GDEM version 2, vegetation density generated from ALOS ANVIR-2 image. AHP processed by weighting the parameter using a pair-wise and comparing with five iterations of a normalized matrix. Five classes of tsunami inundation map and the weighted overlay have been used to produce the tsunami vulnerability map. The final tsunami map has good agreement with the observation and historical data. It is useful for disaster mitigation, evacuation, strategy and management of preliminary disaster information [4].

Smart phone application is introduced as D-Aid app has been developed to visualize the information of victim amount, necessities, and dangerous after the disaster. This application allowed communities to order the complexity of differentiation, integration, and collaboration data [5]. Developing a system of spatial information to support tsunami evacuation action planning by using geo-information technology is discussed. GIS applications are presented through a GIS model builder as a tool in this system, and it used to minimize damages by Tsunami and developed run-up plans [6]. Tsunami thematic maps with GIS layer for the area Indonesia derived from analyzing several key parameters of the tsunami risk for the southern region of Sumatra, Java and Bali have been made by Strunz, et al, 2011 [7]. Detection of ground motion that resulting to earthquake locally by using remote sensing and GIS tools has been investigated [8]. It conducted by evaluating satellite imagery, topography, Digital Elevation Model (DEM) for extracting parameters geomorphometric, SRTM (Shuttle Radar Topography Mission) and ASTER-data.

The purpose of this work is to analyze the tsunami disaster at Seaboard area in Aceh Singkil district Aceh province Indonesia using the GIS tools. The tsunami risk-disaster map is needed by the government and the public people to understand about their region on the status of the tsunami-vulnerable or risk disaster. The government of Aceh Singkil through BPBD (regional disaster management bureau) would decide evacuation plan and evaluated the physical and infrastructure development in a safe area, especially for the risk zone according to the results in tsunami risk map. Government and stakeholders of Aceh Singkil required this tsunami disaster map that will be used as a reference to mitigating greater damage and more victims. Furthermore, tsunami map is used as a reference for region development planning area that can minimize the victim, physical and economic destruction. Many investigations and analysis about disaster maps have been done, but in this paper discussed about creating the tsunami maps refer to the Perka BNPB No.2 at 2012 (Indonesia laws from National Disaster Bureau) as the basis for the analysis of these maps.

2. Methods
Aceh Singkil is one of a district in Aceh Province of Indonesia and located on the Western Coast (Fig.1). Disaster risk map is a function of three interrelated aspects, such as hazard, vulnerability, and capacity. Data required to produce the tsunami risk map consists of administrative maps of the study area, digital Rupa Bumi Indonesia Map (Topographic map) with scale 1:50.000 from BIG (geospatial information bureau), SRTM (The Shuttle Radar Topography Mission) Aceh Singkil, shapefile of tsunami area that affected on December 24, 2005. The GPS, digital camera, computer with GIS software is used for visualization and reports. Data collection during implementation is obtained from the field survey with supported by FGD (Focus disaster group, involving local government and stakeholder). Secondary data related tsunami histories, seismic, climate, demographic are collected by the FGD.
Figure 1. Potential Indian Ocean tsunamigenic sources, red indicates subduction zones, green partly strike-slip faults, and orange volcanic centers [3].

The tsunami hazard map is obtained by analyzing the SRTM elevation data and overlay with tsunami shapefile. Vulnerability map developed from some parameters, which are social, economic, physical environmental vulnerability, and level of exposed people. Capacity maps obtained from the field assessment result. Disaster-risk map was derived by analyzing the hazard maps, vulnerability, and capacity with the disaster algorithms. All levels of hazard, vulnerability, capacity and disaster risk-map can be seen in three classes, the scoring starting from zero to one index (0-0.3333 indicate for low, 0.3334-0.6666 for medium, and 0.6667-0.9999 for high levels of hazard).

2.1. Social vulnerability
Social vulnerability is obtained from analysis Eq.1 with parameters is population density, sex ratio, poor-ratio, disability ratio and age group ratio [1]. The data obtained from the center of Indonesia’s statistics (BPS) and cross-checked with existing data at the sub-district institutions [9].

Social Vulnerability

\[
\text{Social Vulnerability} = \left(0.6 \times \log \left(\frac{\text{Population Density}}{0.01} \right) \right) + (0.1 \times \text{Sex Ratio}) + (0.1 \times \text{Disability Ratio}) + (0.1 \times \text{Poor Ratio}) + (0.1 \times \text{Poor Ratio})
\]

(1)

Table 1. Parameter for analysis social vulnerability [1].
Parameter

Population density
Sex ratio (10%)
Poor ratio (10%)
Disability ratio (10%)
Group ages ratio (10%)
2.2. Economic vulnerability
The economic vulnerability data is analyzed Eq.2 by scoring productive land with PDRB (gross regional domestic product) [1,9].

\[
\text{Economic Vulnerability} = (0.6 \times \text{Productive Land Score}) + (0.4 \times \text{PDRB Score}) \tag{2}
\]

Parameter	Percentage (%)	Low (IRD)	Medium (IRD)	High (IRD)	Score
Productive land	60	< 50 M	50-200 M	> 200 M	Class/ Max. index of classes
PDRB (gross domestic income)	60	< 50 M	50-200 M	> 200 M	

2.3. Physical vulnerability
The physical vulnerability is analyzed by using Eq.3, which is parameters of houses, public building and critical facilities in that area [1,9].

\[
\text{Physical vulnerability} = (0.4 \times \text{house score}) + (0.3 \times \text{public facility score}) + (0.3 \times \text{critical facility score}) \tag{3}
\]

Parameter	Percentage (%)	Low (IRD)	Medium (IRD)	High (IRD)	Score
House	40	< 400 M	400-800 M	> 800 M	Class/ Max. index of classes
Public facilities	30	< 500 M	500 M-1 B	> 1 B	
Critical facilities	30	< 500 M	500 M-1 B	> 1 B	

2.4. Environment vulnerability
Environmental vulnerability map could be analyzed by using Eq.4. The parameters used are the protected forest, natural forest, and mangrove forest [1,9].

\[
\text{Environment vulnerability} = (0.3 \times \text{main forest score}) + (0.3 \times \text{buffering forest score}) + (0.4 \times \text{mangrove score}) \tag{4}
\]

Parameter	Percentage (%)	Low (IRD)	Medium (IRD)	High (IRD)	Score
Main forest	30	< 20 ha	20-50 ha	> 50 ha	Class/ Max. index of classes
Buffering forest	30	< 25 ha	25-75 ha	> 75 ha	
Mangrove	40	< 10 ha	10-30 ha	> 30 ha	
Finally, every vulnerability maps overlay using tsunami vulnerability algorithms, as shown in Eq.5 [1].

\[Tsunami\ Vulnerability \]
\[= (0.4 \times Social\ Score) + (0.25 \times Economic\ Score) + (0.25 \times Physical\ Score) \]
\[+ (0.1 \times Environment\ Score) \] \hspace{1cm} (5)

Data from field assessment used to produce the capacity map. Parameters are reviewed from the availability of local rules and society for disaster management, availability of early warning systems, the study of disaster risk, availability of disaster education, and a factor of essential risk reduction, development of preparedness funding, logistical and social networks.

The disaster risk map obtained from the overlay of those maps such as hazard, vulnerability and capacity using Eq.6 [1].

\[Risk = \sqrt[2]{Hazard \times Vulnerability \times (1 - Capacity)} \] \hspace{1cm} (6)

3. Results

Aceh Singkil district consists of 11 sub-district and 120 villages. As mention before that disaster risk can be seen as the interaction of hazard (H), vulnerability (V) and capacity (C). Disaster risk map is a function of hazard map and vulnerability map then divided by capacity map.

3.1. Hazard Map

Analysis hazard map derived from the weighted overlay spatial method that obtained the hazard map for Aceh Singkil district as presented in Figure 2-5 and Table 5 shows data attribute of the hazard map.

No.	Villages	Sub-district	Level Hazard
1	Kampung Baru	Singkil Utara	Medium
2	Teluk Rumbia	Singkil	Medium
3	Suka Makmur	Singkil	High
4	Selok Aceh	Singkil	Medium
5	Rantau Gedang	Singkil	Medium
6	Pulau Sarok	Singkil	High
7	Pasar Singkil	Singkil	High
8	Kuta Simboling	Singkil	High
9	Kilangan	Singkil	High
10	Kampung Ujung	Singkil	High
11	Ujung Sialit	Pulau Banyak Barat	High
12	Suka Makmur	Pulau Banyak Barat	High
13	Haloban	Pulau Banyak Barat	High
14	Asan Tola	Pulau Banyak Barat	High
15	Teluk Nibung	Pulau Banyak Barat	High
16	Pulau Balai	Pulau Banyak Barat	High
17	Pulau Baguk	Pulau Banyak Barat	High
18	Kuala Baru Sungai	Kuala Baru	High
19	Kuala Baru Laut	Kuala Baru	High
Figure 2.
(a) The number exposures people, and (b) the number loss of property in Indonesia rupiah (IRD) by the tsunami in Aceh Singkil District.

Location	Exposures People	Loss of Property (IRD)
Kampung Baru	1434	79,073,719,062
Teluk Rumbia	819	81,501,880,042
Suka Makmur	754	108,031,249,784
Selok Aceh	576	100,335,862,680
Rantau Gedang	662	82,457,882,863
Pulau Sarok	1968	124,317,603,821
Pasar Singkil	312	16,095,875,588
Kuta Simboling	1677	191,595,256,707
Kilangan	2366	151,906,791,251
Kampung Ujung	1336	8,879,517,757
Ujung Sialit	191	46,594,797,866
Suka Makmur	905	14,226,067,426
Haloban	573	53,909,068,044
Asan Tola	1135	78,539,395,350
Teluk Nibung	1733	41,431,515,331
Pulau Balai	1452	34,355,586,646
Pulau Baguk	825	39,800,344,870
Kuala Baru Sungai	931	24,914,604,374

Figure 4.
The number environmental damages (in hectares) by tsunami in Aceh Singkil District.

Location	Environmental Damages (in hectares)
Kampung Baru	4546
Teluk Rumbia	3617
Suka Makmur	1312
Selok Aceh	2087
Rantau Gedang	3000
Pulau Sarok	3112
Pasar Singkil	1347
Kuta Simboling	2705
Kilangan	3100
Kampung Ujung	1200
Ujung Sialit	13
Suka Makmur	10
Haloban	10
Asan Tola	5
Teluk Nibung	2944
Pulau Balai	2710
Pulau Baguk	2678
Kuala Baru Sungai	10
Kuala Baru Laut	10
Kayu menang	25
Figure 5. Tsunami hazard map of Aceh Singkil district.

3.2. Vulnerability Map
Vulnerability map obtained from the analysis of Eq.5, which is the function of social, economic, physical environmental vulnerability maps.

Figure 5. Tsunami vulnerability map of Aceh Singkil district.
Table 6. Tsunami vulnerability analysis of Aceh Singki district.

No.	Village	District	Score of Vulnerability
1	Biskang	Danau Paris	0.535495701
2	Danau Pinang	Danau Paris	0.461265483
3	Lae Balno	Danau Paris	0.586344095
4	Napa Galuh	Danau Paris	0.546612169
5	Sikoran	Danau Paris	0.541781929
6	Sikoran	Danau Paris	0.541360338
7	Sintuban Makmur	Danau Paris	0.477901334
8	Situbuh-tubuh	Danau Paris	0.48832011
9	Blok 15	Gunung Meriah	0.570432587
10	Blok 31	Gunung Meriah	0.565524608
11	Blok VI Baru	Gunung Meriah	0.56602279
12	Blok-18	Gunung Meriah	0.4776248
13	Bukit Harapan	Gunung Meriah	0.600208703
14	Cingkam	Gunung Meriah	0.582186825
15	Gunung Lagan	Gunung Meriah	0.616451945
16	Labuhan Kera	Gunung Meriah	0.866676384
17	Lae Butar	Gunung Meriah	0.568397106
18	Pandan Sari	Gunung Meriah	0.52978637
19	Panjahitan	Gunung Meriah	0.844867753
20	Parangusan	Gunung Meriah	0.580782128
21	Pertampakan	Gunung Meriah	0.553414103
22	Rimo	Gunung Meriah	0.581953473
23	Sangga Beru Selulusan	Gunung Meriah	0.54326786
24	Sebatang	Gunung Meriah	0.578144281
25	Seping Baru	Gunung Meriah	0.594345651
26	Sianjo Anjo Mariah	Gunung Meriah	0.545775538
27	Sidorejo	Gunung Meriah	0.565676981
28	Suka Makmur	Gunung Meriah	0.565840334
29	Tanah Bara	Gunung Meriah	0.569982995
30	Tanah Merah	Gunung Meriah	0.610487654
31	Tanjung Betik	Gunung Meriah	0.735914427
32	Tulaan	Gunung Meriah	0.570796653
33	Tunas Harapan	Gunung Meriah	0.559873303
34	Butar	Kota Baharu	0.582758115
35	Danau Bungara	Kota Baharu	0.577525485
36	Ladang Bisik	Kota Baharu	0.575509359
37	Lapahan Buaya	Kota Baharu	0.53258096
38	Lentong	Kota Baharu	0.58642335
39	Muara Pea	Kota Baharu	0.578505403
40	Mukti Lincir	Kota Baharu	0.593910628
41	Samardua	Kota Baharu	0.591318392
42	Selakar Udang	Kota Baharu	0.498659883
43	Sumber Muki	Kota Baharu	0.680789344
44	Kayu menang	Kuala Baru	0.545247721
45	Kuala Baru Laut	Kuala Baru	0.485089986
46	Kuala Baru Sungai	Kuala Baru	0.500595827
47	Suka Jaya	Kuala Baru	0.492308018
48	Pulau Baguk	Pulau Banyak	0.592257278
49	Pulau Balai	Pulau Banyak	0.59116185
50	Teluk Nibung	Pulau Banyak	0.590309904
No.	Village	District	Score of Vulnerability
-----	----------------------	---------------------------	------------------------
51	Asan Tola	Pulau Banyak Barat	0.456958104
52	Haloban	Pulau Banyak Barat	0.508909934
53	Suka Makmur	Pulau Banyak Barat	0.454336341
54	Ujung Sialit	Pulau Banyak Barat	0.431392243
55	Cibubukan	Simpang Kanan	0.504398997
56	Guha	Simpang Kanan	0.50111879
57	Kain Golong	Simpang Kanan	0.526618017
58	Kuta Batu	Simpang Kanan	0.516278185
59	Kuta Kerangan	Simpang Kanan	0.558259101
60	Kuta Tinggi	Simpang Kanan	0.507004074
61	Lae Gambir	Simpang Kanan	0.498543318
62	Lae Gecih	Simpang Kanan	0.486677509
63	Lae Nipe	Simpang Kanan	0.449025086
64	Lae Riman	Simpang Kanan	0.501566912
65	Lipat Kajang Atas	Simpang Kanan	0.505769515
66	Lipat Kajang Bawah	Simpang Kanan	0.503993469
67	Pakiraman	Simpang Kanan	0.479452431
68	Pandan Sari	Simpang Kanan	0.490480513
69	Pangi	Simpang Kanan	0.481259507
70	Pertabas	Simpang Kanan	0.478078867
71	Serasah	Simpang Kanan	0.500619462
72	Siantas	Simpang Kanan	0.621277369
73	Sidodadi	Simpang Kanan	0.49079077
74	Sidorejo	Simpang Kanan	0.534967596
75	Silatong	Simpang Kanan	0.517212023
76	Tanjung Mas	Simpang Kanan	0.490916299
77	Tugan	Simpang Kanan	0.510911153
78	Tuh-Tuhan	Simpang Kanan	0.470977567
79	Ujung Limus	Simpang Kanan	0.509004261
80	Kampung Ujung	Singkil	0.606505959
81	Kilangan	Singkil	0.546755182
82	Kuta Simboling	Singkil	0.553028432
83	Pasar Singkil	Singkil	0.56073654
84	Paya Bumbung	Singkil	0.575881339
85	Pemuka	Singkil	0.624308996
86	Pulau Sarok	Singkil	0.585589132
87	Rantau Gedang	Singkil	0.551363639
88	Selok Aceh	Singkil	0.566720326
89	Siti Ambia	Singkil	0.631526966
90	Suka Damai	Singkil	0.588602634
91	Suka Makmur	Singkil	0.543270359
92	Takal Pasir	Singkil	0.4232003
93	Teluk Ambon	Singkil	0.581406981
94	Teluk Rumbia	Singkil	0.553646977
95	Ujung Bawang	Singkil	0.59655226
96	Gosong Telaga Barat	Singkil Utara	0.565797866
97	Gosong Telaga Selatan	Singkil Utara	0.653946101
98	Gosong Telaga Timur	Singkil Utara	0.621074894
99	Gosong Telaga Utara	Singkil Utara	0.634045763
100	Kampung Baru	Singkil Utara	0.663399385
101	Ketapang Indah	Singkil Utara	0.64978343
3.3. Capacity Map

The capacity index is calculated based on the indicator from the Hyogo Framework for Actions (HFA). It is obtained by carrying out FGD for some actors in disaster management in an area. Based on the evaluation of achievement indicators of resilience area that would divide it into five levels (Table 7), there are:

Level 1 is the area had small achievements in disaster risk reduction by implementing some advanced actions in plans or policies.

Level 2 is the area has implemented several actions in disaster risk-reduction achievements with still sporadic from lack of institutional commitment and systematic policy.

Level 3 is the government's commitment and related to some community disaster risk-reduction in an area has been reached and supported by a systematic policy, but the achievements obtained by the commitment, and the policy have not been comprehensive still not sufficiently to reduce the risk of disaster.

Level 4 is supported by full commitment and overall policy on disaster risk reduction in the area has success to gain the achievements. However, it recognized there are still limitations in commitment, financial resources or operational capacity in the implementation of disaster risk-reduction efforts within the region.

Level 5 is the overall achievement has been the success with the full commitment and capacity to all community and government levels.

No.	Village	District	Score of Vulnerability
102	Telaga Bakti	Singkil Utara	0.646259117
103	Lae Pinang	Singkohor	0.560919767
104	Lae Sipola	Singkohor	0.624787686
105	Mukti Jaya	Singkohor	0.595385918
106	Pea Jambu	Singkohor	0.425526898
107	Singkohor	Singkohor	0.661189349
108	Sri Kayu	Singkohor	0.598723174
109	Alur Linci	Suro Makmur	0.464752781
110	Bulu Ara	Suro Makmur	0.499503722
111	Bulu Sema	Suro Makmur	0.614149945
112	Keras	Suro Makmur	0.514232565
113	Ketangkuhan	Suro Makmur	0.517698735
114	Lae Bangun	Suro Makmur	0.544607071
115	Mandumpang	Suro Makmur	0.519536902
116	Pangkalan Sulampi	Suro Makmur	0.49291591
117	Siompin	Suro Makmur	0.541958043
118	Sirimo Mungkur	Suro Makmur	0.475702412
119	Suro Baru	Suro Makmur	0.508986688

Table 7. Capacity index components [1].

No.	Indicator	Index	Data source
1	Local institutional rules and disaster management		Forum Discussion Group (National government, National-International non-government, Stakeholder, University)
2	Early Warning and Study of Disaster Risk Reduction		
3	Education of disaster		
4	Basic factor of risk reduction		
5	Preparedness development on the all sector		
3.4. Tsunami risk disaster map

Disaster risk map based on hazard, vulnerability and capacity map could be seen as a function of interaction from those maps. They are used to obtain the level of an area disaster risk by calculating the potential of people exposures, loss-property, and environment damage area. Hazard map analyzed by SRTM and tsunami affected maps, vulnerability map analyzed by the overlay of social, economic, physic and environmental damage and capacity map analyzed by evaluation of achievement indicators. The result from the analysis by the weighted overlay obtained tsunami level risk map for Aceh Singkil district as shown in Fig.7 and Table 8.

Figure 6. Tsunami capacity map of Aceh Singkil district.
Figure 7. Tsunami risk disaster map of Aceh Singkil district.

Table 8. Tsunami risk disaster analysis of Aceh Singki district.

No.	Villages	Sub-district	Level of Risk
1	Kayu menang	Kuala Baru	Medium
2	Suka Jaya	Kuala Baru	Medium
3	Kuala Baru Sungai	Kuala Baru	Medium
4	Pulau Baguk	Pulau Banyak	Medium
5	Teluk Nibung	Pulau Banyak	High
6	Ujung Sialit	Pulau Banyak Barat	Medium
7	Suka Makmur	Pulau Banyak Barat	High
8	Haloban	Pulau Banyak Barat	Medium
9	Asan Tola	Pulau Banyak Barat	Medium
10	Teluk Rumbia	Singkil	Medium
11	Pulau Sarok	Singkil	Medium
12	Pasar Singkil	Singkil	Medium
13	Kilangan	Singkil	Medium
14	Paya Bumbung	Singkil	Medium
15	Siti Ambia	Singkil	Medium
16	Pemuka	Singkil	Medium
17	Rantau Gedang	Singkil	High
18	Kampung Ujung	Singkil	High
19	Ujung Bawang	Singkil	High
20	Kampung Baru	Singkil Utara	High
21	Ketapang Indah	Singkil Utara	Medium
22	Telaga Bakti	Singkil Utara	Medium
23	Gosong Telaga Barat	Singkil Utara	Medium
24	Gosong Telaga Timur	Singkil Utara	High
25	Gosong Telaga Utara	Singkil Utara	High
26	Gosong Telaga Selatan	Singkil Utara	High
4. Conclusion

Study of tsunami hazard, vulnerability, capacity, and disaster maps for Aceh Singkil district with three levels risk (high, medium and low) is analyzed in this paper based on Perka No.2. The results show sixteen villages have high and four villages have the medium level of hazard. The tsunami vulnerability analysis of Aceh Singkil district can be concluded that the largest number exposure people (4,428 people) and loss property (IDR 631,361,435,495) at Pulau Sarok, and the highest number of environmental damages showed at Kampung Baru village (4,546 ha).

High tsunami risk-disaster shows at Teluk Nibung, Suka Makmur, Rantau Gedang, Kampung Ujung, Ujung Bawang, Kampung Baru, Gosong Telaga Timur, Gosong Telaga Utara, and Gosong Telaga Selatan villages. Some villages in moderate level are Kayu menang, Suka Jaya, Kuala Baru Sungai, Pulau Baguk, Ujung Sialit, Haloban, Asan Tola, Teluk Rumbia, Pulau Sarok, Pasar Singkil, Kilangan, Paya Bumbung, Siti Ambia, Pemuka, Ketapang Indah, Telaga Bakti, and Gosong Telaga Barat. The low level of tsunami risk shows for other remaining villages in Aceh Singkil District.

Acknowledgments

This research was made possible by a Grant from the International Organization for Migration (IOM)-Aceh, and the financial support is greatly appreciated. We would like to thank Mr. Abdillah Imron Nasution and FGD members of Aceh Singkil for support during this research.

References

[1] Peraturan kepala badan nasional penanggulangan bencana nomor 02 tahun 2012 tentang pedoman pengkajian risiko bencana, 2012: I-62 (in Indonesia).
[2] S. Koshimura, S. Hayashi, H. Gokon, The impact of the 2011 Tohoku earthquake tsunami disaster and implications to the reconstruction, Soils and Foundations, 2014; 54(4):560–572.
[3] J. Browning, N. Thomas, An assessment of the tsunami risk in Muscat and Salalah, Oman, based on estimations of probable maximum loss, International Journal of Disaster Risk Reduction, 2016, 16: 75–87.
[4] A.B. Sambah, F. Miura, Integration of Spatial Analysis for Tsunami Inundation and Impact Assessment, Journal of Geographic Information System; 2014, 6, 11-22.
[5] L.C. Schunke, L.P.L. de Oliveira, M. Cardoso and M.B. Villamil, D-Aid – An App to Map Disasters and Manage Relief Teams and Resources, Procedia Computer Science, 2015, 51: 2898–2902.
[6] A.N. Liyanage and H. Lee, A Schematic Approach for GIS Application for Tsunami Disaster Management, ASEA/DRBC, Springer-Verlag Berlin Heidelberg, 2012, CCIS 340: 395–400.
[7] Strunz, G., Post, J., Zosseder, K., Wegscheider, S., Muck, M., Riedlinger, T., Mehl, H., Dech, S., Birkmann, J., Gebert, N., Harjono, H., Anwar, H.Z., Sumaryono, Khomarudin, R. M., and Muhari, A. Tsunami risk assessment in Indonesia, 2011, Nat. Hazards Earth Syst. Sci., 11, 67–82.
[8] Theilen-Willige, B., and Burnett, F.B., Detection of local site conditions influencing earthquake shock and secondary effects in the valparaiso area in central-chile using remote sensing and gis methods, Journal of Tsunami Society International, 2011, Vol.30 (3), pp.1-32.
[9] Singkil Dalam Angka 2015, Katalog BPS: 1102001.11020, Badan Pusat Statistik (BPS) Kabupaten Aceh Singkil (in Indonesia).