A Letter

Lecanicephalidea Cestode Larvae Parasite in Scomberoides cammmersoniaus Fish, Arabian Gulf

Majid A.A.Bannai, Salim A.A.Al-Daraji, Essa T. Muhammad
Aquaculture and marine fisheries, marine science center, Basrah University, Iraq

Corresponding author email: Majid65@yahoo.com

Abstract
Present investigation on infection of family Lecanicephalidea cestode infestation of marine fishes of Khor –Abdulla North west Arabian Gulf through February-July 2013, revealed the presence of two species of Lecanicephalidea larvae from Scomberoides cammmersoniaus. The two species are represented as a new locality recorded parasite in Arabian Gulf fishes. Fish were identified according to (Kurinumona and Abe, 1986). The parasites were identified according to Joanna J. Cielohai & Kirsten, 2013; Yamaguti (1959); Palm (2000); William and Williams, (1996) and Germany museum by Dr Harry Palm. And drawing was prepared by Camera Lucida.

Keywords Cestode parasite; Khor–Abdulla North West Arabian Gulf; Scomberoides cammmersoniaus

Introduction
Order Lecanicephalidea Wardle & McLeod, 1952 until recently was a poorly known taxon, consisting at different times of a diversity of genera exhibiting a wide array of morphological features. Butler’s (1987) comprehensive review of the history of this group did much to enhance understanding of this difficult taxon. Euzet (1994) provided a detailed of the group with a critical assessment of the taxonomic status of its genera and he recognized four families within this order: Polypocephalidae Meggitt, 1924, Tetragonocephalidae Yamaguti, 1959, Lecanicephalidae Braun, 1900 and the new family Anteroporidae.

According to Jensen (2005) Morphology of the family In general, lecanicephalideans are characterized by a scolex possessing 4 acetabula that are either sucker-like or bothridiate in form, an apical structure, and a vagina opening into the genital atrium posterior to the cirrus sac. Apical structure morphology is particularly diverse.

Diversity: Currently, 65 species are considered valid and another 52 species are considered to be species inquire. These species are attributed to 22 genera, 8 of which are considered to be genera inquirendae.

At this time, familial boundaries are poorly understood and unstable.

Phylogenetic relationships: Lecanicephalideans are likely to be paraphyletic; close relationships to Echeneibothrium and Pseudanthobothrium (Tetraphyllidea) and the Proteocephalidea have been suggested. Phylogenetic relationships within the Lecanicephalidea are poorly understood.

Definitive hosts: The lecanicephalideans parasitize elasmobranchs (sharks and rays) as adults. They are primarily parasites of rays; however a few records from sharks do exist. Forty-seven species of rays in 12 families have been reported as hosts for lecanicephalideans, including stingrays, eagle rays, numbfishes, sawfishes, guitarfishes, and wedgefishes. In addition, lecanicephalideans have been reported from 6 species of sharks in 5 families, namely Carcharhinidae, Hemiscylliidae, Megachasmidae, Squatinidae, and Stegostomatidae.

Site in definitive host: Spiral intestine.

Geographic distribution: Lecanicephalideans are distributed in tropical and subtropical waters. The greatest diversity of lecanicephalideans appears to occur in the Indo-Pacific region, specifically the waters around India, Sri Lanka, Borneo, and Northern Australia.
Life-cycles: While no complete life-cycle is currently known for any lecanicephalidean species, larva attributed to the Lecanicephalidea have been reported from a diversity of intermediate host groups, mainly molluscs and crustaceans, and a few teleosts; members of this order likely possess 2 and/or 3 hosts in their life-cycles.

1 Materials and Methods

Monthly fish samples were collected from south of Iraq during the years 2013. A total of 30 fish specimens Scomberoides cammmersoniaus where collecting from Khor –Abdulla North-west Arabian Gulf south of Iraq. These collected fish were kept on ice and brought to the laboratory. Fishes were examined only for internal parasites, each fish was opened and the intestines were fully examined for parasites. The abdominal cavity of each fish was cut open and the intestine was separated from the other visceral organs and placed in a Petri-dish containing physiological saline and the helminthes were found with loop. For each host specimen, the spiral intestine was removed, opened with a longitudinal incision, fixed in 10% formalin buffered with seawater, and transferred to 70% ethanol for storage. Cestodes encountered in the spiral intestines were abundant. Line drawings were made using a drawing tube attached to a Zeiss Plus compound microscope. Measurements are given in micrometers μm. The specimens where sent to Dr Palm for identification.

2 Result and Discussion

As the result of investigation of 30 fish specimens of Scomberoides cammmersoniaus where collecting from Khor –Abdulla North West Arabian Gulf south of Iraq, during the years 2013. 10 larvae plerociecoide of family species cestode parasite are isolated.

Family Lecanicephalidea Guns Stoibocephalum Joanna J.Cielochai & Kirsten Jenseen, 2013 Stoibocephalum sp (Figure 1).

Figure 1 Stoibocephalum sp1 scale bar of head 0.05 mm and total length 0.5 mm

Description: Based on 2 whole larvae; longitudinal larvae 1.7–2 (1.8) mm long. Scolex (0.225 -0.230) 0.227 long by 0.257–0.262 (0.259) wide, consisting of scolex with 4 acetabula, apical of scolex, and apical organ cephalic peduncle absent. Acetabula in form of suckers, 0.0857 in diameter. Apical modification of scolex proper bearing apical organ. Apical organ and Acetabula in form of thick muscular pad.

Stoibocephalum sp2 (Figure 2).

Figure 2 Stoibocephalum sp2 scale bar of head 0.05 and total length 0.5 mm
Description: Based on 2 whole larvae; longitudinal larvae 1.08–1.2 (1.5) mm long. Scolex (0.357–0.396) 0.376 long by 0.277–0.217 (0.962) wide, consisting of scolex with 4 acetabula 0.119 in range, apical of scolex 0.047–0.068 (0.0575) long and 0.095–0.125 (0.11) wide, and apical organ cephalic peduncle absent. Acetabula in form of suckers, 0.119mm in diameter. Apical modification of scolex proper bearing apical organ, apical organ and Acetabula in form of thick muscular pad.

The taxonomic status of the lecanicephalidea has varied from that of an independent order of Eucestodes (Wardle & McLeod, 1952; Schmidt, 1986) to membership in one or more of the other Eucestode orders (Braun, 1900; Meggitt, 1924; Poche, 1926; Woodland, 1927; Fuhrmann, 1931; Euzet, 1956; Spassky, 1958; Euzet, 1959; Joyeux & Baer, 1961; Butler, 1987). Poche (1926) recognised two families of lecanicephalideans, the Lecanicephalidae and the Polypocephalidae. He considered both families to belong in the order Taeniidea. Woodland (1927) considered most of the well-studied lecanicephalidean taxa to belong to the tetraphyllidean family Phyllobothriidae, but he suggested that Adelobothrium aetiobatidis Shipley, 1900 and Tylocephalum marsupium Linton, 1911 might be more appropriately placed within the Trypanorhynchia.

Spassky (1958) recognised the superfamilly Lecanicephaloidea in the suborder Phyllobothriata in the order Tetraphyllidea. Freeman (1973) suggested the lecanicephalideans had affinities with the tetraphyllideans and the diphylleidans. Butler (1987) considered the lecanicephalideans to be a family within the Tetraphyllidea. New genus and species of lecanicephalidean cestode, Stoibocephalus arafurense is described from the shark ray, Rhina ancylostoma Bloch & Schneider, off northern Australia. Stoibocephalus sp1 are described in this study most closely resembles Cielohai & Kirsten, 2013 specimens and Stoibocephalus sp2 but differs from that genus in scolex shape. This is the first recording parasite in Arabian Gulf and the presence of two species of Lecanicephalidea larvae from Scomberoides cammersoniaus. The two species are represented as a new locality recorded parasite in Arabian Gulf fishes

References
Baer, J.G. (1948) Contributions a l’étude des cestodes des sélaciens. I–IV. Bulletin de la Société Neuchâteloise des Sciences Naturelles, 71, 63-122
Braun, M. (1900) Verbes. In: Bronn, H.G. (Ed.) Klassen und Ordnungen des Thierreichs, 4, Abt. 1b, Cestodes, Leipzig: C.F. Winter’sche Verlagshandlung. pp. 927-1,731
Butler, S.A. (1987) The taxonomic history of the family Lecanicephalidae Braun, 1900, a little known group of marine cestodes. Systematic Parasitology, 10, 105-115 http://dx.doi.org/10.1007/BF00009616
Joanna J. Cielochai and Kirsten Jensen (2013) Stoibocephalus n. gen. (Cestoda: Lecanicephalidea) from the sharkray, Zootaxa 3626 (4): 558-568 http://dx.doi.org/10.1164/zootaxa.3626.4.9
Rhina ancylostoma Bloch & Schneider (Elasmobranchii: Rhinopristiformes), from northern Australia
Euzet, L. (1956) Suggestions pour une nouvelle classification des cestodes tê traphyllides. Proceedings of the XIV International Congress of Zoology, Copenhagen 1953, pp. 347-349
Euzet, L. (1958) Evolution du scolex chez les Onchobothriidae M. Braun (Cestoda – Tetraphyllidea). XVith International Congress of Zoology, Sect. VIII, Paper 6
Euzet, L. (1959) Recherches sur les cestodes tê traphyllides des sélaciens des côtes de France. D.Sc. Thesis, University of Montpellier, 263 pp
Euzet, L. 1994. Order Lecanicephalidea. pp. 195-204. In Khalil, L. F., Jones, A., Bray, R. A. (Eds.) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, U.K. PDF
Fuhrmann, O. (1931) Dritte Klasse des Clados Platyzelminthes. Cestoidea. In: Handbuch der Zoologie. Berlin and Leipzig, 1930–1931, 2, 141-416
Freeman, R.S. (1973) Ontogeny of cestodes and its bearing on their phylogeny and systematics. Advances in Parasitology, 11, 481-557 http://dx.doi.org/10.1016/0065-2458(73)90019-8
Jensen, K. 2005. A monograph on the Lecanicephalidea (Platyhelminthes, Cestoda). Bulletin of the University of Nebraska State Museum 18: 241 pp
Joyeux, C. & Baer, J. G. (1961) Classe des cestodes. In: Grassé , P. P. (Ed.) Traité de Zoologie. Anatomie – Systématique Biologie. Paris: Masson et Cie, 4, 347-560
Khalil, L.F., Jones, A. & Bray, R.A. (Eds) (1994) Keys to the cestode parasites of vertebrates. Wallingford: CAB International, 751 pp
Meggitt, F.J. (1924) The cestodes of mammals. London: [no publisher], 282 pp
Schmidt, G. D. (1986). CRC Hand book of tapeworm identification Boca Raton: CRC Press, Inc., 675pp
Spassky, A. A. (1958). Karatki analiza sistemi testode. Ceskoslovenska Parasitologie, 5, 163-171
Woodland, W. N. F. (1927). Reviwed classification of tetrathyridian Cestode, with description of some phyllobothriidae from Plymouth. Proceeding of the zoological Society of London,519-548(5 plates)
Waedle, RA. & McLeod J. A. (1952). The zoology of tapeworms Minneapolis: University of Minnesota Press, 780 pp