Evidence of the presence of Borrelia burgdorferi in dogs and associated ticks in Egypt

R. Elhelw 1*, M. Elhariri 1, D. Hamza 2, M. Abuowarda 3, E. Ismael 4 and H. Farag 5

Abstract

Background: Borrelia burgdorferi is the spirochete that causes Lyme Borreliosis (LB), which is a zoonotic tick-borne disease of humans and domestic animals. Hard ticks are obligate haematophagous ectoparasites that serve as vectors of Borrelia burgdorferi. Studies on the presence of Lyme borreliosis in Egyptian animals and associated ticks are scarce.

Methods: This study was conducted to detect B. burgdorferi in different tick vectors and animal hosts. Three hundred animals (dogs=100, cattle=100, and camels=100) were inspected for tick infestation. Blood samples from 160 tick-infested animals and their associated ticks (n=1025) were collected and examined for the infection with B. burgdorferi by polymerase chain reaction (PCR) and sequencing of the 16S rRNA gene. The identified tick species were characterized molecularly by PCR and sequencing of the ITS2 region.

Results: The overall tick infestation rate among examined animals was 78.33% (235/300). The rate of infestation was significantly higher in camels (90%), followed by cattle (76%) and dogs (69%); (P = 0.001). Rhipicephalus sanguineus, Rhipicephalus (Boophilus) annulatus, and both Hyalomma dromedarii and Amblyomma variegatum, were morphologically identified from infested dogs, cattle, and camels; respectively. Molecular characterization of ticks using the ITS2 region confirmed the morphological identification, as well as displayed high similarities of R. sanguineus, H. dromedarii, and A. Variegatu with ticks identified in Egypt and various continents worldwide. Just one dog (1.67%) and its associated tick pool of R. sanguineus were positive for B. burgdorferi infection. The 16S rRNA gene sequence for B. burgdorferi in dog and R. sanguineus tick pool showed a 100% homology.

Conclusion: Analyzed data revealed a relatively low rate of B. burgdorferi infection, but a significantly high prevalence of tick infestation among domesticated animals in Egypt, which possesses a potential animal and public health risk. Additionally, molecular characterization of ticks using the ITS2 region was a reliable tool to discriminate species of ticks and confirmed the morphological identification.

Keywords: Borrelia burgdorferi, Dogs, Camels, Bb.16S rRNA, Gene ticks, R. sanguineus, ITS2 region

* Correspondence: rehabelhelw@cu.edu.eg
1Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

Lyme disease (LD) or the tick-borne relapsing fever (TBRF) is an emerging tick-borne multi-systemic zoonotic bacterial disease that has a worldwide distribution, caused by spirochetes of the *Borrelia burgdorferi* group and transmitted by ticks of the *Ixodes ricinus* complex [1]. The bacterium is horizontally transmitted between ticks and within reservoir hosts of wild animals, mostly small mammals, and humans which are considered an incidental host [2]. Clinical signs differ according to the species of *B. burgdorferi* complex prevailing in the area, but most human patients show erythema migrans accompanied by flu-like symptoms [2, 3]. Companion animals, particularly dogs, act as sentinels for Lyme disease [4]. Only 5–10% of infected dogs show clinical signs. Therefore, there is a significant underestimation of the Lyme disease prevalence in dogs, which represents a risk for disease spreading [5]. A previous survey on domestic animals detected borrelial DNA only in the adult ticks, mostly infesting sheep and cattle [6].

Ticks (subclass: Acari; order: Parasitiformes; sub-order: Ixodida) are obligate haematophagous ectoparasites of wild and domestic animals and humans. Ticks are considered the most important vectors of disease-causing pathogens within the phylum Arthropoda, being comparable only to mosquitoes (family Culicidae) [7, 8]. As the incidence of tick-borne diseases propagates and expands geographically, it is becoming increasingly significant to distinguish tick species, to enhance tick and tick-borne disease control [9]. The brown tick *Rhipicephalus sanguineus* of dogs [10], the blue tick *Rhipicephalus Boophilus* of cattle [11], *Hyalomma dromedarii* of camels [12], and the tropical bont tick (TBT) *Amblyomma variegatum* of ruminants [13, 14], are of significant veterinary and medical importance due to their vector competence for several pathogens [15].

Despite the existence of various hard tick species in Egypt, limited data on the borrelian infection of these ticks is available. Here, we studied the infection of the hard ticks in Egypt with *B. burgdorferi*. Additionally, we investigated the prevalence and phylogeny of *Borrelia* in the tick-infested dogs, cattle, and camels during the year 2017.

Results

Prevalence of tick infestation in the studied animals

Rhipicephalus sanguineus was detected in 69% of sampled dogs, *Rhipicephalus (Boophilus) annulatus* was detected in 76% of sampled cattle, and both *Hyalomma dromedarii* and *Amblyomma variegatum* were detected in 90% of examined camels. The relation between animal species and the tick infestation rate was significant, $\chi^2 (2, N = 300) = 13.47, P = 0.001$. Camels were more likely than dogs and cattle to be infested with ticks (Table 1). Camels showed a significantly higher infestation rate with *Hyalomma dromedarii* (93.33%) compared to *Amblyomma variegatum* (6.67%), $\chi^2 (1, N = 90) = 135.2, P < 0.0001$.

Species identification and phylogenetic analysis of ticks

Ninety percent of examined camels from Cairo (Bassatin abattoir) and Matrouh governorates were infested with two species; *H. dromedarii* (93.3%) and *A. variegatum* (6.6%). Moreover, 76% of examined cattle found in Giza and Elbeira governorates, were infested with *R. Boophilus* annulatus. Additionally, 69% of dogs (stray dogs and other breeds) found in Cairo and Giza governorates infested with *R. sanguineus* (Table 1, Fig. 1).

Phylogenetic analysis, based on the ITS2 region sequences of ticks, revealed relatedness of Egyptian ticks *R. sanguineus*, *H. dromedarii*, and *A. Variegatu* with other tick isolated from different continent all over the world, as shown in (Fig. 2).

Detection and phylogenetic analysis of *B. burgdorferi*

Borrelia burgdorferi was detected in a *Rhipicephalus sanguineus* tick collected from a dog that was also infected (Tables 1 and 2). Based on the 16S rRNA gene of *B. burgdorferi* collected from dog blood and ticks, a hundred percent of identity were reported between *B. burgdorferi* isolated from the blood of dogs (MH685928) and brown dog ticks (MH685927) in Egypt, as well as *B.

Table 1

Identified tick species and infestation rate among sampled animals

Animals	No. of inspected animals	Tick species	No. (%) of tick infested animals
Dog	100	*Rhipicephalus sanguineus*	69 (69%) \(^ {\text{b}}\)
Cattle	100	*Rhipicephalus (Boophilus) annulatus*	76 (76%) \(^ {\text{b}}\)
Camel	100	*Hyalomma dromedarii*	90 (90%) \(^ {\text{a}}\)
		Amblyomma variegatum	84/90 (93.33%)
			6/90 (6.67%)
Total	300		235 (78.33%)

\(^ {\text{a,b}}\) Different superscripts indicate significant difference at $P < 0.05$
Borrelia burgdorferi isolated from *Ixodes pacificus* in the USA (KY563172) (Fig. 3).

Genospecies identification of ticks

Discussion

Studies on *Borrelia burgdorferi* (Lyme disease) in Egypt are limited, especially in animals and tick vectors. Besides, the recent large-scale movements of humans and animals, as well as the increasing geographical distribution of several tick species, contributed to the growing global threat of tick-borne disease (TBD) [8, 15]. Therefore, in the current study we molecularly identified the hard tick population infesting the examined animals, as well as, investigated the prevalence and phylogeny of *B. burgdorferi* in dogs, cattle, camels, and associated ticks.

In this study, the overall rate of tick infestation in dogs, cattle, and camels, was 78.33% (160/300). The same infestation rate, 78.3% (369/471) in livestock animals, was reported by [4] in Pakistan. Morphological identification of collected ticks indicated that dogs (69%) were infested with *Rhipicephalus sanguineus*, cattle
Fig. 2 Phylogenetic relationships based on the ITS2 region sequences of ticks. The trees were constructed and analyzed by neighbour-joining (a) R. sanguineus, (b) H. dromedarii, (c) A. Variegatum
(76%) were infested with *Rhipicephalus (Boophilus) annulatus*, while camels (90%) were infested with either *Hyalomma dromedarii* (93.33%) or *Amblyomma variegatum* (6.67%). *Rhipicephalus sanguineus* (brown dog tick) is the most widespread tick in the world, infesting dogs living in both urban and rural areas [15]. The prevalence of *R. sanguineus* agreed with [16] who reported a 67.5% *R. sanguineus* infestation rate in dogs in Egypt. In southeast Brazil, [17] recorded that 89.7% of dogs were infested with *R. sanguineus*, while in the Philippines, [18] recorded 2.60% prevalence of *R. sanguineus* infestation in dogs. In camels, *Hyalomma dromedarii* was the most abundant tick species, which agrees with the previous study conducted by [19]. Although the morphological identities of identified ticks were similar to the taxonomic key of Ixodidae ticks set by [20], further molecular identification of ticks was carried out through the examination of the ITS2 region. The choice of the ITS2 region was based on the previous studies [21, 22], which indicated that this DNA marker is reliable in discriminating species of ticks. The sequence of the ITS2 region of our isolates showed varying degrees of similarities with local and international hard tick species. The dog tick, *Rhipicephalus sanguineus* (MH685437) showed the highest similarity (99.7%) with *R. sanguineus* obtained from Alexandria (KY945496) and the neighboring countries; as Israel (KF958410, KF958409, KF958404, KF958398). However, it showed a 19.3% homology with *R. sanguineus* (MH616088) collected from Brazil. This difference in similarity agreed with [23–25] who classified *R. sanguineus* group into tropical and temperate strains. *Rhipicephalus annulatus* (MH685437) of cattle, showed a 100% homology with Egyptian strains (MF946470, KY945495) collected from Al Buhayra Governorate, as well as a Romanian strain (KC503267). However, the *Rhipicephalus annulatus* (MH685437) showed 81.6% homology with *R. annulatus* (JQ412126) collected from Fayoum governorate in Egypt. Those intra-species and inter-species similarities could be due to the agreements in the area of sample collection from northern Egypt as well as the same infested cattle population. Genetic identity of the Egyptian *Hyalomma dromedarii* (MH685931) collected in this study from camels (*Camelus dromedaries*), proved a high sequence homology of 100% similarity with previous *H. dromedarii* isolates from Matrouh in Egypt, with

![Fig. 3 Phylogenetic relationships based on the 16S rRNA gene sequences of *B. burgdorferi*. The trees were constructed and analyzed by neighbour-joining](image-url)
accession no. MF946469, KY945494. On the other hand, the phylogenetic analysis of A. variegatum in this study (MH685932) was a pioneer one, as no earlier reports on similar molecular taxonomy or evolutionary analyses on A. variegatum was recorded in Egypt. Amblyomma variegatum in this study (MH685932) showed a 97.7% homogeneity with A. variegatum collected from cattle in France (MH910967) [26] and 99.9% with one collected from wild herbivores in Kenya (KM819713).

The detection of borrelial DNA in infested animals and associated ticks revealed that one dog (1.67%) and its associated pool of adult Rhipicephalus sanguineus ticks (1.67%) were infected with B. burgdorferi. The low tick infection rate with B. burgdorferi reported in our study disagrees with that recorded in Fayoum and Beni-Suif in Egypt, by [27] who reported 7/12 (58.33%) infected pools of R. sanguineus. This difference could be assigned to different geographical locations; as Cairo and Giza are more urbanized than Fayoum and Beni-Suif which are mostly rural governorates. The prevalence of B. burgdorferi in the examined dogs in Italy was 1.47%. In the USA, infection rates with B. burgdorferi recorded 1.2, 4.0, and 6.7% in dogs from three different regions [28, 29]. The most recent investigations about the prevalence of B. burgdorferi epidemic in the European canine population exposed different rates, as the highest incidence observed in Poland 40.2% [30, 31] and the lowest was in Portugal 0.2–0.5% [32] In a previous study [6] in Iran, researchers could detect borrelial DNA only in the adult ticks. They attributed the lack of Borrelia infection in nymphs to limited nymph samples as they were unable to catch the immature specimen.

In our study, the identity of B. burgdorferi that was isolated from the dog’s blood (MH685928) and the associated brown tick pool of R. sanguineus (MH685927) in Egypt, as well as B. burgdorferi isolated from Ixodes pacificus in the USA (KY563172), were 100% in similarity. From the veterinary and public health points of view, scientists should be aware that ticks are active in broad climatic conditions, even greater than those expected. The current level of knowledge about LB risk and the risk related to tick bites is quite limited and underestimated.

Conclusion
In Egypt, the domestic animal population is markedly infested with the hard ticks, which threatens the animal and public health with potential tick-borne pathogens. Our data revealed that the camel tick H. dromedarii is the most prevalent tick in Egypt. The molecular taxonomy of tick species is going to be a standard approach for confirming the morphological identification of ticks. Molecular detection of borrelial DNA showed a relatively low rate of B. burgdorferi infection in dogs and associated ticks. However, dogs act as a potential sentinel carrier of Lyme disease. Since B. burgdorferi is of zoonotic importance, routine monitoring of domestic animals, adequate control measures, and increased awareness of the possible Lyme Borreliosis infections are required for consideration of this pathogen in the differential diagnosis of infectious diseases.

Methods

Sampling

Ticks collection
A three hundred Dogs (stray and pet dogs), cattle (native breed), and camels (Camelus dromedaries), 100 animals each, from Cairo, Giza, Al-Buhayrah, and Matrouh governorates, were inspected for tick infestation, for 1 year (2017). Adult hard tick samples were collected and isolated from those naturally infested animals, as indicated in the (Table 3) and (Fig. 4). Ticks were pulled off manually from the animals by hands and with blunt point forceps, then placed in a sterile loosely capped plastic vials and transported to the laboratory in a dry icebox. In the laboratory, the ticks were identified and stored at −20 °C.

Blood sampling
Blood samples were collected from hard tick-infested animals, including dogs (n = 60), cattle (n = 50), and camels (n = 50) from some Egyptian governorates, which are shown in (Table 3) and (Fig. 4). The blood samples were collected in tubes coated with EDTA from the cephalic vein in dogs, and the Jugular vein in cattle and camels. All blood samples were transported to the laboratory in an icebox and stored at −20 °C until use.

Tick identification

Morphological identification of ticks
Tick samples were kept at room temperature and then washed twice with sterile normal saline to remove excess particulate contamination from animal skin, rinsed once with 70% ethanol. They were mounted on slides and examined using a stereoscope microscope (BOECO, Germany). Adult ticks were identified into genera, species, and subspecies by using appropriate identification keys of morphological shapes [33]. About 20 ticks were taken from each dog and about 30–35 ticks were taken from each cattle or camel as a target number of ticks from each animal, we did not collect all the ticks infesting on each animal, which is considered a limitation of the study. The identified ticks were transferred to sterile vials and stored at −20 °C until processing.
Molecular identification of ticks

Ticks' DNA extraction

DNA was extracted from each morphologically identified tick sample, after being crushed in a mortar with liquid nitrogen into small pieces, by using a DNA extraction kit (DNeasy Blood & Tissue Kit, QIAGEN; Germany) according to the manufacturer's protocol.

Tick identification by PCR

Genomic DNA extracted from the ticks’ tissues was amplified using primers designed for ITS2 amplification [34]; forward 5′-YTGCGARACTTGGTGTGAAT-3′ and reverse 5′-TATGCTTAARTTYAGSGGGT-3′ (Bio Basic Inc., Canada).

PCR conditions was done according to Muruthi et al., 2016 [35]. Amplification reactions were visualized on a 1% agarose gel containing 0.5 μg/ml ethidium bromide (Sigma), while a 1 kb DNA ladder (Invitrogen™) was used as a marker. The gel was visualized under UV light with a transilluminator.

Sequencing of ticks' PCR products and phylogenetic analysis

PCR products of the identified ticks were purified from the reactions using the Qiaquick purification kit for tissues (Qiagen, Germany) according to the manufacturer’s instructions. Sequencing was conducted using Big Dye Terminator V3.1 sequencing kit (Applied Biosystems) with forward primer ITS2 ribosomal DNA. Phylogenetic analysis was based on the ITS2 region sequences of ticks. The trees were constructed and analyzed by neighbor-joining.

Molecular detection of Borrelia burgdorferi 16S rRNA gene in blood and tick samples

DNA extraction from blood and ticks

DNA was extracted from blood samples using QIAamp DNA Blood Mini Kit (Qiagen, Germany), and from tick samples using QIAamp DNA Mini Kit for tissue (Qiagen, Germany) according to the manufacturer’s instructions. The DNA extract was stored at −20°C until being used in the PCR assay.

Detection of Borrelia burgdorferi by PCR

PCR was performed using BbF and BbR PCR primers of the 16S rRNA gene, according to [36], in a reaction volume of 50 μl, containing 0.625 U of Taq DNA polymerase (Thermo Fischer), 2.5 mM MgCl₂, 100 μM of deoxynucleoside triphosphates (dNTP), 12.5 pmol of species-specific primers for *B. burgdorferi* BbF 5′-GGGA TGTAGCAATACATTC-3′ Position (72–90) and BbR 5′- ATATAGTTTCCAACATAGG-3′ Position (631–649), 5 μl extracted DNA from blood samples and ticks.

PCR with species-specific primers consisted of an initial denaturation (1 min at 94°C), followed by 35 cycles...
using the temperature profile 95 ℃ for 1 min, 50 ℃ for 1 min and 72 ℃ for 1.5 min. Negative control samples (no template DNA) which were subjected to identical procedures, were used to monitor contamination, the expected molecular weight is 577 bp. 10 μl of the amplification products were analyzed on ethidium bromide-stained 1.5% agarose gel in TAE buffer (0.04 M tris-acetate, 0.002 M EDTA, pH 8) after horizontal electrophoresis at 80 V for 45 min [37, 38].

Sequencing of B. burgdorferi PCR product and phylogenetic analysis

PCR products of positive *B. burgdorferi* samples (blood and ticks) were purified from the reactions using the Qiaquick purification kit (Qiagen, Germany) according to the manufacturer’s instructions. Sequencing was conducted using Big Dye Terminator V3.1 sequencing kit (Applied Biosystems) with forward primer 16S rRNA. The obtained nucleotide sequence was compared with those available in public domains using NCBI, BLAST server. Sequences were downloaded and imported into BioEdit version 7.0.1.4 for multiple alignments using the Clustal W program of the BioEdit. Phylogenetic analysis was performed with MEGA version 7 using the neighbor-joining method. The bootstrap consensus tree was inferred from 950 replicates (Fig. 3).

The phylogenetic tree was constructed based on the 16S rRNA gene sequences recovered from *Borrelia burgdorferi* strains isolated from different sources, including Dog (MH685928) and Tick (MH685927) and aligned with the other related 16S rRNA gene sequences obtained from GenBank NCBI-BLAST.

Statistics and spatial data

Analysis of data was performed with PASW Statistics, Version 18.0 software (SPSS Inc., Chicago, IL, USA). Data collected were analyzed using both the descriptive statistic (frequencies) and the Chi-square (χ^2) test for independence to examine the relation between animal species and tick infestation rates. A P-value < 0.05 was considered statistically significant. The map was created with ArcMap version 10.1 software.

The study was performed according to the guidelines of the ethical committee (Institutional Animal Care and Use Committee), Faculty of veterinary medicine, Cairo University, Vet CU. IACUC (VetCU1022019070).

Abbreviations

LB: Lyme Borreliosis; Bb: Borrelia burgdorferi; TBD: Tick-borne disease

Acknowledgements

Not applicable.

Authors’ contributions

ER, EM and H.D performed the parasitological examinations and analysis, participated in writing; IE and H.S. participated in the experiments and manuscript writing. The manuscript had been reviewed and approved by all authors.

Funding

Not applicable.

Availability of data and materials

The datasets generated or analysed during the current study are available in the [GENE BANK] repository, accession numbers: [MH685928, MH685927, MH685437, MH685931, MH685932].

Ethics approval and consent to participate

The study was according to the guidelines of the ethical committee of the faculty of veterinary medicine, Cairo University. (Institutional Animal Care and Use Committee), Vet CU. IACUC (VetCU1022019070).

We had been given oral consent from the owners of the animals as we had just taken ticks and blood samples.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt. 2 Department of Zoonomes, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt. 3 Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt. 4 Department of Veterinary Hygiene and Management, Cairo University, Giza, Egypt. 5 Department of Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.

Received: 16 June 2020 Accepted: 22 December 2020
Published online: 25 January 2021

References

1. Pukhovskaya NM, Morozova OV, Vysochina NP, Belozerova NB, Ivanov LI. Prevalence of *Borrelia burgdorferi sensu lato* and *Borrelia miyamotoi* in ixodid ticks in the Far East of Russia. Int J Parasitol. 2019;8:192–202.
2. Duk-Wasser MA, Hoen AG, Cislo P, Brinkerhoff R, Hamer SA, Rowland M, Cortinas R, Vourch G, Melton F, Hickling GJ, Tsao JJ. Human risk of infection with *Borrelia burgdorferi*, the Lyme disease agent, in eastern United States. Am J Trop Med Hyg. 2012;86(2):320–7.
3. Liu HG, Liu YY, Li Y, Li Y, Schriefer ME, Liu J, Gao L, Lu X, Liu Y, Cao Y. Prevalence of *Borrelia burgdorferi* in ticks collected from different regions in China. Int J Vet Clin Res. 2012;2(1):101.
4. Smith FD, Ballantyne R, Morgan ER, Wall R. Estimating Lyme disease risk using pet dogs as sentinels. Comp Immunol Microbiol Infect Dis. 2012;35(2):163–7.
5. Elhelw H, Arif A, Sultani H. Prevalence of *Borrelia burgdorferi* in ticks collected from different regions in Pakistan. Adv Parasitol. 2012;164(2):1–8.
6. Naddaf SR, Mahmoudi A, Ghasemi A, Rohani M, Mohammadi A, Ziapour SP, et al. Prevalence of *Borrelia burgdorferi* in ticks collected from different regions in Iran. Int J Vet Clin Res. 2012;2(1):101.
7. Hooijstra H, Agarwal and nattelleid ticks as parasites and vectors. Adv Parasitol. 1985;24:135–238 Academic Press.
8. de la Fuente J, Escaler-Estrada PA, Vezza JM, Kocan KM, Sonenshine DE, Cortinas R, Vourch G, Melton F, Hickling GJ, Tsao JJ. Human risk of infection with *Borrelia burgdorferi*, the Lyme disease agent, in eastern United States. Am J Trop Med Hyg. 2012;86(2):320–7.
9. Ganjali M, Dabirzadeh M, Sargolzaie M. Species diversity and distribution of ticks (Acarina: Ixodidae) in Zabol County, eastern Iran. J Arthropod Borne Dis. 2014;8(2):219.
10. Dantas-Torres F, Melo MF, Figueredo LA, Brandão-Filho SP. Ectoparasite infestation on rural dogs in the municipality of São Vicente Férrer, Pernambuco, northeastern Brazil. Rev Bras Parasitol Vet. 2009;18(3):75–7.
11. Onofre SB, Minik CM, de Barros NM, Azevedo JL. Pathogenicity of four strains of entomopathogenic fungi against the bovine tick *Boophilus microplus*. Am J Vet Res. 2001;62(9):1478–80.
12. Sivakumar G, Swami SK, Nagarajan G, Mehta SC, Tuteja FC, Ashraf M, Patil NV. Molecular characterization of Haemoloma dromedari from North Western region of India based on the gene sequences encoding Calreticulin and internally transcribed spacer region 2. Gene Reports. 2018;10:141–4.

13. Barão N, Uilenberg G. Propagation of parasites transported with their hosts: cas exemplaires de deux espèces de taupes du bétail. 2010.

14. Rahajison P, Arimana AH, Rahiniaina M, Stachurski F. Survival and morting of Amblyomma variegatum nymphs under cold conditions of the Malagasy highlands. Infect Genet Evol. 2014;28:666–75.

15. Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol. 2012;28(10):437–46.

16. Abuowarda MM, Haleem MA, Elsayed M, Farag H, Magdy S. Bio-pesticide control of the brown dog tick (Rhipicephalus sanguineus) in Egypt by using two Entomopathogenic Fungi (Beauveria bassiana and Metarhizium anisopliae). Int J Vet Sci. 2020;9(2):175–81. www.jvets.com.

17. Heukelbach J, Frank R, Anza L, de Sousa L, AD e S, Borges AC, Limongi JE, de Alencar CH, Klimpel S. High prevalence of intestinal infections and ectoparasites in dogs, Minas Gerais state (Southeast Brazil). Parasitol Res. 2012;115(3):1913–21.

18. Bartolome-Cruz K. Prevalence and intensity of infestation of the brown dog tick, Rhipicephalus sanguineus (s.lateille) (Acari: Ixodidae) vectors of Q fever in canines. Vet World. 2018;11(8):1109.

19. Walker JB, Keirans JE, Horak IG. The genus Rhipicephalus (Acari: Ixodidae): a guide to the brown ticks of the world. England: Cambridge University Press; 2005.

20. Song S, Shao R, Atwell R, Barker S, Vankan D. Phylogenetic and phylogeographic relationships in ixodes holocyclus and ixodes cornutus (Acari: Ixodidae) inferred from COX1 and ITS2 sequences. Int J Parasitol. 2011;41(8):871–80. https://doi.org/10.1016/j.ijpara.2011.03.008.

21. Lv J, Wu S, Zhang Y, Chen Y, Feng C, Yuan X, Jia G, Deng J, Wang C, Wang Q, Mei L. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the ixodida (Acari: Ixodida). Parasit Vectors. 2014;7(1):93.

22. Marconi RT, Garon CF. Identification of Lyme Disease isolates by 16S rRNA Signature Nucleotide Analysis.

23. Zone A, Petrovec M, Prosenc K, Trilar T, Ruzic-Sabljic E, Avsic-Zupanc T. Infection of small mammals with Borrelia burgdorferi sensu lato in Slovenia as determined by polymerase chain reaction (PCR). Wien Klin Wochenschr. 1999;111(22/23):597–9.

24. Santos L, Despland A, Desa A, Basset F, Goulet J, Puffard T. Molecular and genotypic identification of ticks sampled from wildlife species in selected conservation sites of Kenya. J Vet Sci Technol. 2016;10:157–79.

25. Marconi RT, Garon CF. Identification of Lyme Disease isolates by 16S rRNA Signature Nucleotide Analysis.

26. Moraes-Filho J, Marcili A, Nieri-Bastos FA, Richtzenhain LJ, Labruna MB. Morphological and genetic diversity of Rhipicephalus sanguineus sensu lato from the New and Old Worlds. Parasit Vectors. 2013;6(1):213.

27. Sivakumar G, Swami SK, Nagarajan G, Mehta SC, Tuteja FC, Ashraf M, Patil NV. Molecular characterization of Haemoloma dromedari from North Western region of India based on the gene sequences encoding Calreticulin and internally transcribed spacer region 2. Gene Reports. 2018;10:141–4.

28. Marconi RT, Garon CF. Identification of Lyme Disease isolates by 16S rRNA Signature Nucleotide Analysis.

29. Babu N, Uilenberg G. Propagation of parasites transported with their hosts: cas exemplaires de deux espèces de taupes du bétail. 2010.

30. Rahajison P, Arimana AH, Rahiniaina M, Stachurski F. Survival and morting of Amblyomma variegatum nymphs under cold conditions of the Malagasy highlands. Infect Genet Evol. 2014;28:666–75.