Pneumothorax in neonates: Complication during endotracheal intubation, diagnosis, and management

Sir,

Neonatal pneumothorax is a life-threatening condition associated with a high incidence of morbidity and mortality. Its incidence in the Neonatal Intensive Care Unit (NICU) is reported as 1-2% and over 40% in the presence of respiratory distress syndrome. It is more common in ventilated neonates. Mortality rates have varied from 20% to 38%. Predisposing factors identified in the NICU are male sex, low birth weight neonates, prematurity, neonate born by cesarean section, the presence of respiratory distress syndrome, and meconium aspiration requiring resuscitation after birth. However, perioperative pneumothorax in neonates is an uncommon event, and that occurring during endotracheal intubation has not been reported. If not suspected, it can lead to unwarranted interventions and increasing morbidity including cardiovascular collapse from lack of appropriate treatment.

We present two cases of intraoperative pneumothorax in neonates occurring during endotracheal intubation. Use of transillumination of the neonatal chest facilitated early diagnosis in one neonate, whereas delay in diagnosis in the other neonate necessitated resuscitative measures for cardiovascular collapse.

A 3-day-old neonate, born at 35 weeks gestation, weighing 1.28-kg, with dysmorphic facial features, was scheduled for repair of a lumbosacral meningomyelocele. Due to the potential for a difficult airway, an inhalation induction was performed with 6% sevoflurane in 100% oxygen. Laryngoscopy revealed a grade 3 (Cormack and Lehane classification) glottic view. Rocuronium 1 mg was then administered intravenously. A 2.5 mm reinforced endotracheal tube (ETT) was railroaded over a bougie (single use 5 CH Portex Tracheal Tube Introducer, SIMS Portex, Hythe, Kent, UK) into the trachea to a depth of 8 cm at the gums after an unsuccessful attempt with a styletted ETT. Correct placement was confirmed by auscultation of equal bilateral breath sounds. Shortly after, SpO_2 decreased to 92%. Repeat chest auscultation revealed decreased breath sounds on the left side. Withdrawal of the ETT by 1 cm, decompression of the stomach and suctioning of the ET tube did not improve the oxygen saturation. The SpO_2 continued to decrease to 85% with increasing peak airway pressures. The baby was reintubated with a 2.5 mm ETT to rule out any obstruction in the ETT. As the diagnosis of pneumothorax was being considered, the baby’s heart rate decreased to <80/min. Chest compressions were initiated, and adrenaline, 10 mcg was administered intravenously. A needle thoracocentesis was performed with a 22 g butterfly needle in the second left interspace midclavicular line with immediate improvement in heart rate and SpO_2. A formal chest drain was subsequently inserted. The baby was transferred back to the NICU. The meningomyelocele was closed uneventfully 2 days after resolution of the pneumothorax.

A 34-week-old newborn, weighing 2-kg, was scheduled for repair of gastrochisis a few hours after birth. Anesthesia was induced with sodium thiopentone, fentanyl, and atracurium. The baby’s trachea was intubated with a 3.0 mm uncuffed ETT to a depth of 8.5 cm at the gums. Auscultation revealed equal bilateral breath sounds. The baby was hand ventilated with a Jackson-Rees circuit during surgery to help better manage changes in airway pressures when the bowel loops were returned to the abdomen. Intraoperatively, SpO_2 decreased to 88%, which improved to 97-98% when the ETT was suctioned and withdrawn to 8 cm at the gums. The baby
remained hemodynamically stable during surgery. At the end of surgery, the ETT was exchanged over a bougie, to ensure, it was not blocked by a mucous plug in view of the intraoperative desaturation. Immediately after, ventilation became very difficult, and breath sounds were reduced on the right side. Transillumination of the thorax revealed a large right tension pneumothorax. Needle thoracocentesis was performed with a 24 g butterfly needle inserted anteriorly into the second right intercostal space in the midclavicular line. Oxygen saturation improved to 99%. A formal chest drain was then inserted. The baby was returned to the NICU.

Neonatal pneumothorax is a life-threatening condition associated with a high incidence of mortality and morbidity.[1] Perioperative pneumothorax in neonates is not a common occurrence. It is a recognized complication of certain procedures such as subclavian or jugular line insertion or laparoscopic surgery. There are few case reports describing perioperative pneumothorax in neonates in unusual circumstances. Reports by Glaisyer and Way identified no specific causes, but in 2 of the 3 cases, the trachea was re-intubated using a bougie.[6] In the reports by Sabar et al.[7] and Iannoli et al.,[8] pneumothorax occurred during flexible fiberoptic bronchoscopy performed before repair of a tracheoesophageal fistula and as a result of a kink in the reservoir tube of a Jackson-Rees circuit, respectively. Pneumothorax is associated with a range of clinical findings including unequal chest expansion, decreased breath sounds, chest hyper-resonance on percussion, decrease in blood pressure, heart rate and oxygen saturation, as well as a narrowing of the pulse pressure.[1] Chest X-ray is the gold standard for diagnosing pneumothorax in the nonemergent situation. Transillumination of the neonatal chest is a technique widely used in NICUs to confirm the diagnosis of pneumothorax, but most anesthesiologists may not be familiar with this technique.[9] A high intensity transilluminating portable light source with a flexible fiberoptic light probe is used. With ambient light dimmed, the probe is placed just superior to the nipple on the supine neonate’s chest. It is then lifted and placed inferior to the nipple. The transilluminating light can be applied as long as necessary to each side of the chest since the probe remains cool. A pneumothorax appears as a translucent area in the chest cavity. Lung parenchyma is opaque. With a massive pneumothorax, the entire affected hemithorax lights up. The thinness of the neonate’s chest and the very low density of air provide optimal conditions to detect pulmonary air leaks by transillumination in neonates. Figure 1 demonstrates a pneumothorax as seen as with transillumination. Transillumination is most beneficial in detecting a sudden, life-threatening pneumothorax, which requires immediate therapy. This technique may be more readily available in the operating room than a chest X-ray. Recently, ultrasonography has also been utilized in adults to diagnose pneumothorax.[10] There is no literature of its use in the pediatric population. In case 2, early diagnosis with transillumination guided treatment before hemodynamic instability occurred. Once a diagnosis of tension pneumothorax has been made, prompt treatment should be undertaken to prevent serious morbidity and mortality. In an unstable patient, rapid treatment usually necessitates needle thoracocentesis with a small gauge needle in the second intercostal space midclavicular line or fifth intercostal space midaxillary line. This is then followed by a formal chest drain.

In both our cases, there was a series of events that occurred before a diagnosis of pneumothorax was made. These included endotracheal intubation over a bougie, desaturation, suctioning the ETT, difficult ventilation and increasing airway pressure. Pneumothorax may have occurred due to trauma from the bougie or during suctioning of the ETT or due to fluctuations in positive pressure during transition periods between clinical interventions.

A pattern of multiple clinical interventions including an apparent need to re-intubate, intubation using an adjunct like a bougie, ETT suctioning and increasing airway pressures during the perioperative period must lead to a high index of suspicion for a pneumothorax. Transillumination can aid in early diagnosis and treatment to prevent morbidity associated with this potentially fatal complication.

Acknowledgment
The authors sincerely thank Dr. Patrick McQuillan for his help in writing this manuscript.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.
Uma R. Parekh, Aideen M. Maguire¹, John Emery¹, Paul H. Martin¹
Department of Anesthesiology, Penn State Hershey Medical Center, Penn State Hershey Children’s Hospital, Hershey, PA 17033, USA ‘Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK

Address for correspondence: Dr. Uma R. Parekh, Penn State Hershey Medical Center, Penn State Hershey Children’s Hospital, 500 University Drive, Hershey, PA 17033, USA. E-mail: uparekh@hmc.psu.edu

References

1. Ogata ES, Gregory GA, Kitterman JA, Phibbs RH, Tooley WH. Pneumothorax in the respiratory distress syndrome: Incidence and effect on vital signs, blood gases, and pH. Pediatrics 1976;58: 177-83.
2. Yu VY, Wong PY, Bajuk B, Szymonowicz W. Pulmonary air leak in extremely low birthweight infants. Arch Dis Child 1986;61:239-41.
3. Jones RM, Rutter N, Cooper AC, Pullan CR. Pneumothorax in the neonatal period. Anaesthesia 1983;38:948-52.
4. Esme H, Dogru O, Eren S, Korkmaz M, Solak O. The factors affecting persistent pneumothorax and mortality in neonatal pneumothorax. Turk J Pediatr 2008;50:242-6.
5. Ramesh Bhat Y, Ramdas V. Predisposing factors, incidence and mortality of pneumothorax in neonates. Minerva Pediatr 2013;65:383-8.
6. Glaisyer H, Way C. Neonatal pneumothorax — An unexpected perioperative complication. Paediatr Anaesth 2005;15:997-1000.
7. Sabar MA, Teale KF, Fryer JM. Tension pneumothorax during ventilation via Ayre's T-piece. Eur J Anaesthesiol 1996;13:143-6.
8. Iannoli ED, Litman RS. Tension pneumothorax during flexible fiberoptic bronchoscopy in a newborn. Anesth Analg 2002;94:512-3.
9. Kuhns LR, Bednarek FJ, Wyman ML, Roloff DW, Borer RC. Diagnosis of pneumothorax or pneumomediastinum in the neonate by transillumination. Pediatrics 1975;56: 355-60.
10. Volpicelli G. Sonographic diagnosis of pneumothorax. Intensive Care Med 2011;37:224-32.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Access this article online

Quick Response Code:

Website: www.joacp.org

DOI: 10.4103/0970-9185.188820

How to cite this article: Parekh UR, Maguire AM, Emery J, Martin PH. Pneumothorax in neonates: Complication during endotracheal intubation, diagnosis, and management. J Anaesthesiol Clin Pharmacol 2016;32:397-9.