Hemochromatosis gene mutations may affect the survival of patients with myelodysplastic syndrome

Marko Lucijanić, Vlatko Pejša, Zdravko Mitrović, Tajana Štoos-Veić, Ana Livun, Ozren Jakšić, Tamara Vasilj, Mario Piršić, Višnja Hariš, Željko Prka, Rajko Kušec

1Department of Hematology, University Hospital Dubrava, Zagreb, Croatia, 2University of Zagreb, School of Medicine, Zagreb, Croatia, 3Department of Clinical Cytology and Cytometry, University Hospital Dubrava, Zagreb, Croatia, 4University of Osijek, School of Medicine, Croatia, 5Clinical Institute of Laboratory Diagnosis, Division of Molecular Diagnosis and Genetics, University Hospital Dubrava, Zagreb, Croatia

Objectives: The recent availability of potent oral iron chelators is renewing an interest in the assessment of the possible impact of HFE genetics in MDS.

Methods: Thirty six newly diagnosed patients with MDS were studied for parameters of iron metabolism in addition to C282Y and H63D mutations of the HFE gene.

Results: Mutations were present in 11 out of 36 patients (31%), which were not different from our general population and were equally distributed among MDS subtypes. Mutated patients had higher ferritin levels (P = 0.039) and lower TIBC (P = 0.018). Ferritin was found to be higher for the untransfused mutated patients (P = 0.017), but not for transfusion-dependent patients in whom ferritin levels correlated significantly with the number of blood units received (P = 0.04). There was no difference in the number of blood units received between the mutated and wild type patients. A new observation made was that the mutated patients had a lower overall survival in addition to a poorer leukemia free survival (LFS) (P = 0.004 and P = 0.003, respectively).

Discussion: The HFE gene mutations are not more frequent in MDS patients. Iron overload in mutated patients was higher but there was no correlation found using supportive therapy for anemia. The effect of mutations on survival could be mediated by changes in iron metabolism.

Conclusion: The HFE genotype may predict MDS prognosis and there is a need for further studies. It remains a challenging question if HFE mutated MDS patients should be considered for potent iron chelation therapy.

Keywords: Myelodysplastic syndrome, HFE, C282Y, H63D, Iron metabolism, Overall Survival

Introduction

Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by ineffective hematopoiesis, progressive cytopenias and high risk of transformation to acute leukemia. These patients are at risk of developing an iron-replete state and hemochromatosis due to frequent transfusion dependency and characteristics of the disease itself. Transfusion dependency has been recognized as an independent prognostic factor for the survival of patients with MDS and iron chelation therapy leads to the improvement of survival in these patients.

Increased frequency of two hemochromatosis (HFE) gene mutations, C282Y, and H63D, among MDS patients was reported by Varkony et al. This finding was confirmed only for a subset of MDS patients with RARS and could not be confirmed by other author groups for MDS patients in general. Differences were attributed to a different geographic distribution of the HFE gene mutations among populations.

No significant differences in serum ferritin concentration between mutated and wild type MDS patients were reported, in due to a small number of patients. It was shown however, that iron overload could develop with a lower number of transfusion units in mutated MDS patients. These findings are consistent with five large population studies whereby heterozygosity for HFE mutations was associated with subtle
changes in iron metabolism (higher transferrin saturation) but not with higher serum ferritin concentrations. 10–14

In this study, we present the functional impact of HFE gene mutations on iron metabolism and survival of MDS patients.

Patients
We studied a group of 36 newly diagnosed patients with MDS, diagnosed in period from 2008 to 2014. Of this group, 53% of the patients were male, median age at diagnosis was 74 years of age (53–89). Among our patients 13 (36%) were diagnosed with refractory anemia (RA), 12 (33%) with RA with ring sideroblasts (RARS), seven (19%) with RA with excess of blasts (RAEB), two with RAEB1 and five with RAEB2, three (8%) with unclassified MDS and one with 5q-syndrome. Patients with acute leukemia and signs of myelodysplasia at time of diagnosis were not included in this study.

The study protocol was approved by the University Hospital Dubrava’s review board. All subjects involved in this study provided written informed consent.

Methods
Parameters of iron metabolism (Fe, TIBC, UIBC, and ferritin) were measured repeatedly during the follow-up period and the most recent follow-up data was used.

Genomic DNA was extracted (QIAamp® DNA Blood mini kit) from 3 ml of EDTA-anticoagulated blood. G-to-A transition for C282Y and C-to-G substitution for H63D mutation of HFE gene were detected by AS PCR in an ABI Prism 7300 Sequence Detection system (Applied Biosystems).

Frequencies of categorical variables were compared using the Fisher exact test or Chi Squared test where appropriate. Numerical variables were compared using Mann–Whitney U test. The Spearman rank correlation was used to assess the correlation between variables. Survival analysis was performed using methods of Kaplan and Meier and the log-rank test.15 All statistical tests were two-sided and P values <0.05 were considered significant. Due to a small number of patients, we analyzed all patients with mutated HFE gene (C282Y and H63D mutations) as one group in comparison to wild type patients.

Results
HFE mutations frequency
HFE gene mutations were present in 11 out of 36 patients (31%). The C282Y mutation was present in three patients (8%), one patient was homozygous and the other two were heterozygote carriers. The H63D mutation was present in nine patients (25%), all were heterozygous carriers. One patient was a compound heterozygote harboring both mutations. The HFE gene was mutated in four out of 13 patients with RA (31%), four out of 12 patients with RARS (34%), three out of seven patients with RAEB (43%) and no mutations were present in the other four patients (Table 1).

The reported prevalence of HFE gene mutations in the Croatian population is 32, 6.5, and 26.5% for C282Y and H63D, respectively.16 When compared, our patients’ mutated frequency did not differ significantly (P = 0.864, P = 0.716, and P = 0.851 for mutated HFE, C282Y, and H63D, respectively) (Table 2). There were no significant differences in age at diagnosis, sex or need for blood transfusions between the mutated and wild type patients.

Parameters of iron metabolism
Increased values of transferrin bound iron, transferrin saturation, and ferritin and decreased values of TIBC were observed in the mutated group of patients when compared with the wild type patients (Table 3). We observed a significant difference in the frequency of patients who developed iron overload (measured as ferritin over 1000 mcg/l) which was more prevalent in mutated group of patients (67% vs. 25%, P = 0.044). We also observed a statistical significance for ferritin values (median 1113 mcg/l vs. 458 mcg/l, P = 0.039) and TIBC values (median 39.4 mcmol/l vs. 50.7 mcmol/l, P = 0.018). The effect on ferritin concentrations was present and statistically significant in a subgroup of non-transfused patients (P = 0.017), but without any statistical significance between the mutated and the wild type patients in the subgroup of transfusion-dependent patients. Ferritin levels correlated significantly with number of blood units received (Spearman Rho = 0.52, P = 0.04) and there

MDS subtype	C282Y	H63D	Wild type
RA (13)	1	3	10
RARS (12)	0	4	8
RAEB (7)	1 C282Y/H63D, 1 C282Y hom.	1	4
Unclassified MDS and 5q-(4)	0	0	4

Table 2 Frequency of HFE mutations

MDS patients	Controls16	P value	
Both mutations	11/37 (30%)	64/200 (32%)	0.864
C282Y	3/37 (8%)	13/200 (7%)	0.716
H63D	9/37 (24%)	53/200 (27%)	0.851
was no significant difference in number of blood units received between mutated and wild type patients (median 54 vs. 57.5, \(P = 0.562 \)).

Survival analysis by HFE status

We observed a statistically significant effect of *HFE* gene mutations on the overall survival (OS) of MDS patients \((P = 0.004) \) (Fig. 1A). The OS at 36 months was 23% in the mutated group vs. 87% in wild type patients with a hazard ratio of 13.3. The median follow-up was 29 months. A statistical significant effect was also observed on leukemia free survival (LFS, \(P = 0.003 \)) (Fig. 1B). With the exclusion of patients with RAEB, significant changes in OS and LFS were still present (a total of 29 patients, \(P = 0.003 \) and \(P = 0.004 \), respectively). In addition, by excluding C282Y homozygous and C282Y/H63D compound heterozygous patients the study results were still significant (a total of 34 heterozygous patients, \(P = 0.032 \) and \(P = 0.028 \) for OS and LFS, respectively).

Discussion

In our study, *HFE* gene mutations were as frequent among MDS patients as within the healthy

	HFE mutated patients	HFE wild type patients	\(P \) value
Fe	25.95 mcMol/l	18.9 mcMol/l	0.583
TIBC	39.5 mcMol/l	50.7 mcMol/l	0.018
Transferrin saturation	66%	37%	0.29
Ferritin	1113 mcg/l	458 mcg/l	0.039

![Figure 1](image-url) **Figure 1** (A) Overall survival curves for the HFE wild type and mutated patients \((P = 0.004) \); (B) Leukemia free survival curves for the HFE wild type and mutated patients \((P = 0.003) \)
population. In addition, we did not observe a significant increase in the frequency of \textit{HFE} gene mutations in the RARS subgroup of patients, although such subgroup analysis is difficult to interpret based on the small study number. Noted differences among previous reports are at least in part mediated by a different geographical distribution of \textit{HFE} gene mutations, but may also be affected by the mode of patient referral and the type of methodology used (exclusion of MDS in transformation patients, study design).

\textit{HFE} mutational status undoubtedly affects iron metabolism, especially with the high risk genotype that can lead to hereditary hemochromatosis (homozygosity for C282Y).19,20 When excessive body iron saturates reusable ferritin storage, it is deposited in form of water-insoluble hemosiderin which can be an initiator of reactive oxygen species19,20 and lead to adjacent tissue damage and malignant transformation. It is this mechanism that has been implicated in development of hepatocellular carcinoma and other malignancies in patients with hereditary hemochromatosis21,22 and is also suspected to be a possible mechanism of defective hematopoiesis in some MDS patients.7,23

Single heterozygosity for these mutations does not lead to overt iron accumulation as shown by the aforementioned population studies.10–14 As our results show (mainly heterozygote patients, one C282Y homozygote, one C282Y/H63D compound heterozygote), mutations in \textit{HFE} gene have a profound effect on ferritin and TIBC values in MDS. The effect on ferritin is present in a subgroup of non-transfused patients, suggesting that the mutated \textit{HFE} gene contributes to intrinsic characteristic of MDS to accumulate iron.

One of the most intriguing observations made in this study, not previously reported, is the effect of the mutated \textit{HFE} gene on the OS and leukemia free survival in patients with MDS. These effects could be mediated by the aforementioned changes in iron metabolism. Both subclinical and manifest iron accumulation lead to an increase in the generation of free radicals and local tissue damage which in turn increases the chances of disease transformation to acute leukemia or death. The effect of \textit{HFE} mutations on the survival of our patients cannot be attributed to transfusion dependency as there are no significant differences in the number of blood units received or frequency of transfusion-dependent patients between the mutated and the wild type group. In addition, the effect of the mutated \textit{HFE} gene on survival is still present when patients with RAEB (entity with high risk for worst outcome) are excluded. The limitations of this study encompass the small number of subjects and the inability to obtain International Prognostic Scoring System score for all patients involved. The described findings are an interesting contribution into the pathogenesis of MDS and are worth further investigation in future studies, as these studies are necessary in determining whether or not \textit{HFE} mutated MDS patients should be considered for the obligatory institution of potent iron chelation therapy.

Disclosure statements

Contributors All named authors have contributed significantly to this work. Marko Lucijanić and Rajko Kušec were conceiving and designing the study, collecting the data, analyzing the data, interpreting the data and writing the article in whole. Zdravko Mitrović, Vlatko Pejišća and Ozren Jakšić were interpreting the data, writing the article in part and helped revising the article. Tajana Štoos-Veić, Ana Livun, Tamara Vasilj, Mario Pirišić, Višnja Hariš and Željko Prka were collecting the data, analysing the data, interpreting the data and helped in revising the article.

Funding This work was supported by University of Zagreb, School of Medicine [research grant BM2.10].

Conflict of interest The authors declare that there are no conflicts of interest.

Ethics approval The study protocol was approved by the University Hospital Dubrava’s review board.

Acknowledgements

The authors would like to thank Wilma Miletic for help with manuscript preparation.

References

1. Gattermann N, Rachmilewitz EA. Iron overload in MDS-pathophysiology, diagnosis, and complications. Ann Hematol 2011;90(1):1–10. PubMed PMID: 20938663.
2. Malcovati L. Impact of transfusion dependency and secondary iron overload on the survival of patients with myelodysplastic syndromes. Leukemia Res 2007;31(Suppl. 3):S2–S6. PubMed PMID: 18037415.
3. Neukirchen J, Fox F, Kündgen A, Nachtkamp K, Strupp C, Haas R, et al. Improved survival in MDS patients receiving iron chelation therapy – a matched pair analysis of 188 patients from the Düsseldorf MDS registry. Leukemia Res 2012;36(8):1067–70. PubMed PMID: 22564965.
4. Delforge M, Selleslag D, Begaun Y, Triëff M, Mineur P, Thunissen K, et al. Adequate iron chelation therapy for at least six months improves survival in transfusion-dependent patients with lower risk myelodysplastic syndromes. Leukemia Res 2014;38(5):557–63. PubMed PMID: 24661630.
5. Lyons RM, Marek BJ, Paley C, Esposito J, Garbo L, DiBella N, et al. Comparison of 24-month outcomes in chelated and non-chelated lower-risk patients with myelodysplastic syndromes in a prospective registry. Leukemia Res 2014;38(2):149–54. PubMed PMID: 24314590.
6. Varkonyi J, Tarkovacs G, Karadi I, Andrikovics H, Varga F, Varga F, et al. High incidence of hemochromatosis gene mutations in the myelodysplastic syndrome: the Budapest Study on 50 patients. Acta Haematol 2003;109(2):64–7. PubMed PMID: 12624489.
7. Neuman ZP, Szpurka H, Serio B, Warshawsky I, Theil K, Lichtin A, et al. Hemochromatosis-associated gene mutations in patients with myelodysplastic syndromes with refractory anemia with ringed sideroblasts. Am J Hematol 2007;82(12):1076–9. PubMed PMID: 17654665.
8. Speletas M, Kioumi A, Mandala E, Katođrić E, Papaioannou G, Ritis K, et al. Prevalence of hemochromatosis gene (HFE)
mutations in Greek patients with myelodysplastic syndromes. Acta Haematol 2003;110(1):53–4. PubMed PMID: 12975562.
9 Nie L, Ai XF, Zheng YZ, Li QH, Yang L, Xiao ZJ. [Study on HFE gene mutations in patients with myelodysplastic syndromes and aplastic anemia]. Zhonghua xue ye xue za zhi 2009 Apr;30(4):223–8. PubMed PMID: 19731820.
10 Burt MJ, George PM, Upton JD, Collett JA, Frampton CM, Chapman TM, et al. The significance of haemochromatosis gene mutations in the general population: implications for screening. Gut 1998;43(6):830–6. PubMed PMID: 9824612. Pubmed Central PMCID: 1727339.
11 Jackson HA, Carter K, Darke C, Guttridge MG, Ravine D, Hutton RD, et al. HFE mutations, iron deficiency and overload in 10,500 blood donors. Brit J Haematol 2001;114(2):474–84. PubMed PMID: 11529872.
12 Raddatz D, Legler T, Lynen R, Addicks N, Ramadori G. HFE genotype and parameters of iron metabolism in German first-time blood donors – evidence for an increased transferrin saturation in C282Y heterozygotes. Z Gastroenterol 2003;41(11):1069–76. PubMed PMID: 14648375.
13 Rossi E, Bulsara MK, Olynyk JK, Cullen DJ, Summerville L, Powell LW. Effect of hemochromatosis genotype and lifestyle factors on iron and red cell indices in a community population. Clin Chem 2001;47(2):202–8. PubMed PMID: 11159767.
14 Whitfield JB, Cullen LM, Jazwinska EC, Powell LW, Heath AC, Zhu G, et al. Effects of HFE C282Y and H63D polymorphisms and polygenic background on iron stores in a large community sample of twins. Am J Hum Genet 2000;66(4):1246–58. PubMed PMID: 10739755. Pubmed Central PMCID: 1288192.
15 Lucijanic M, Petrovecki M. Analysis of censored data. Biochem Med 2012;22(2):151–5. PubMed PMID: 22838181. Pubmed Central PMCID: 4062335.
16 Ristic S, Makuc J, Starcevic N, Logar N, Brajenovic-Milic B, Stepec S, et al. Hemochromatosis gene mutations in the Croatian and Slovenian populations. Clin Genet 2003;64(5):444–6. PubMed PMID: 14616770.
17 Piperno A. Molecular diagnosis of hemochromatosis. Expert opinion on medical diagnostics 2013;7(2):161–77. PubMed PMID: 23530886.
18 Feder JN, Gniirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996;13(4):399–408. PubMed PMID: 8696333.
19 Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12(10):1161–208. PubMed PMID: 15892631.
20 Morris CJ, Earl JR, Trenam CW, Blake DR. Reactive oxygen species and iron – a dangerous partnership in inflammation. Int J Biochem Cell B 1995;27(2):109–22. PubMed PMID: 7767779.
21 Tien Kuo M, Savaraj N. Roles of reactive oxygen species in hepatocarcinogenesis and drug resistance gene expression in liver cancers. Mol Carcinogen 2006;45(9):701–9. PubMed PMID: 16652372.
22 Grady JK, Chen Y, Chasteen ND, Harris DC. Hydroxyl radical production during oxidative deposition of iron in ferritin. J Biol Chem 1989;264(34):20224–9. PubMed PMID: 2555348.
23 Farquhar MJ, Bowen DT. Oxidative stress and the myelodysplastic syndromes. Int J Hematol 2003;77(4):342–50. PubMed PMID: 12774921.