I. Introduction

According to Statistics Korea, people over 65 years of age constitute 11.0% of the total population of Korea [1]. It is predicted that the proportion of the aged will reach 24.3% by 2030 and 38.2% by 2050, which will mean a transfer to an extremely aged society. One of the methods to increase the quality of life of the aged, their ultimate health goal, is to promote a healthy lifestyle for them as well as the effective management and prevention of disease.

There exists digital divide with socio-demographic factors when it comes to the application of information and communication technologies (ICT), including the Internet [2,3].
The concept of the digital divide can be explained in terms of social differences between individuals, groups, and countries at different socio-economic status levels. The digital divide appears in an unequal form in terms of the opportunity to access, physically possess, and practically apply ICT [4].

Korea has carried out two-phase comprehensive program to reduce the digital divide. Phase I (2001–2005) emphasized the preparation of a basis for the access and use of information. Phase II (2006–2010) focused on the practical use of ICT. The Ministry of Health and Welfare of Korea recently launched a community-based pilot project for a ubiquitous healthcare service which manages metabolic syndromes at community health centers. The Korean government has also initiated increased awareness of using ICT in healthcare areas [5-7].

Previous studies investigated the factors that influence individuals’ acceptance of ICT, which were the basis for the development and validation of the Information and Communication Technology Acceptance Model [4,8-10]. However, few studies on testing this model employing an aged population exist. The Internet, which allows quick searches and easy handling of all types of information, even including information related to emergency situations, can be of use to the aged, who typically have psychological, physiological, and physical limitations [11].

According to a 2007 Korean fact-finding survey on the digital divide, there was a gap between ages: 37.4 among middle-aged people and 13.7 among aged people per every 100 used the Internet [5]. In a 2009 survey, compared with Internet use by 77.0% of the general population, Internet use among middle-aged people in their 50s stood at 55.9%. Among the aged more than 60 years old the percentage was 21.8% [6,7]. According to a recent survey by the Korea Internet Security Agency [12], Internet use by the aged in their 60s increased from 33.8% in 2010 to 35.9% in 2011 (Figure 1). However, there is insufficient semantic research on whether or not this Internet use is productive.

The aged who use the Internet mostly want to search for and locate information regarding activities related to their leisure and hobbies. They also search for and use online content related to aging [13]. Accordingly, the number of Internet portal sites exclusively for the aged has been increasing. Some websites for the aged allow the sharing of information with people having similar interests. Despite the fact that the aged have gradually started to use the Internet, they still account for only a part of the aged population [12]. Moreover, a study examining the health information literacy of Finns aged 65–79 years also reported that the aged lack health information literacy and that there are significant relationships between education level, interest in health information, seeking activity, self-rated current health, and the dimensions of health information literacy [14]. Previous studies have consistently reported the necessity to develop a curriculum on how to use the Internet and how to locate information targeting aged populations [2,14,15]. In addition, the literature states that there is a need for a systematic research on aspects of their Internet use.

Considering the rapid social changes in the 21st century, it is predicted that the aged will not always remain passive consumers seeking health information and services on the Internet. To expect positive outcomes regarding the active use of health information by the aged, scientific studies of their health literacy and the use of online health information are needed. Therefore, this study aims to review and analyze previous studies on health literacy and the use of online health information by those aged 65 years and over. The studies were obtained from the PubMed database of the National Library of Medicine (NLM). Medical Subject Heading (MeSH) keywords of the studies were analyzed using a social network analysis (SNA) method.

II. Methods

1. Subject

1) Paper extraction

To extract published articles on health literacy and the use of health information by the aged over 65, predefined and selected MeSH terms from the PubMed database of the NLM were used. Search was initially conducted, with repeated articles excluded afterwards. The keywords in all of the extracted articles were reviewed to make a final selection of the articles for the analysis.

The search requested articles related to health literacy of the aged over 65. A total of 361 articles were extracted. Among them, 127 articles concerning the aged over 65 were selected. After the repeated articles were removed, 110 articles were finally included in the analysis, which include the following
MeSH terms with the corresponding number of selected articles: health communication AND aged (9 out of 23); health literacy AND aged (61 out of 191); computer literacy AND aged (39 out of 104); computer literacy AND health education AND aged (18 out of 48).

Subsequently, articles related to the use of online health information by the aged over 65 were selected. Using the same extraction process used for ‘health literacy,’ 26 articles were selected. After the repeated articles were removed, the final 19 articles were included in the analysis. These include the following MeSH terms with the corresponding number of selected articles: Internet/utilization AND consumer health information AND aged (7 out of 34); Internet AND consumer health information AND aged (6 out of 87); Internet/utilization AND health education AND aged (13 out of 161).

2) Keyword extraction
From the 110 articles related to health literacy, a total of 1,021 MeSH keywords were extracted. After removing repeated keywords, a final 401 keywords were selected. It was difficult to construct a network of and distinguish the relations between the 401 keywords; therefore, a pruning method was used. Pruning is applied to reconstruct a network based on keywords with a degree higher than a certain cut-off level that establishes the boundaries of a network [16-18]. After applying the pruning method (pruning = 5), the network was reconstructed based on a final number of 71 keywords. Regarding the use of online health information, a total of 144 MeSH keywords were obtained from the 19 articles. After removing repeated keywords, 74 keywords were finally selected.

2. Statistical Analysis
SNA is a statistical method that can be widely used in interdisciplinary fields [18,19]. SNA converts the relationships between studies and their results into easily understood visual models [18,20,21]. In Korea, research using SNA has recently been published in healthcare [22-26]. Of these studies, only a few extracted MeSH terms from the NLM database [22,27,28].

The core of SNA is the degree and the density of nodes. The degree plays an important role in the SNA process [29]. If a group size increases, the density decreases accordingly, and if networks are of different sizes, standardization is required [29,30]. If a node moves to the center and has many connections to other nodes, its degree centrality increases in the network [29,31]. A higher degree centrality indicates a more central keyword; therefore, it can be interpreted as a keyword that has been actively studied in the literature [18,32].

NetMiner v.3 (Cyram Inc., Seoul, Korea) was used to construct keyword networks. For the construction of a network, the keywords of each article were used as the nodes in the network. A method used in SNA, an analysis of co-appearing keywords, was also applied in this study. Co-appearing keywords reflect a semantic connection between articles [17,21,33] and visually present the content of the articles, including the intention and the philosophy of the authors, in the form of pictures [34].

This study applied the notion of weighted degree centrality to investigate the changes in the main keywords in each section of the networks [35]. Normally, degree centrality standardization is performed for networks of different sizes. However, it was not necessary to consider the differences in the densities of the keyword networks in this study because the networks were constructed from separate searches in two different areas. Thus, it was established that there was no need for standardization.

III. Results
1. Keyword Network of Health Literacy
Keywords which appeared in selected articles related to ‘health literacy’ emerged in 1997, and the number of related keywords has increased rapidly since 2010 (Figure 2).

After applying pruning to the 401 keywords, the network was constructed based on the remaining 72 keywords. Among them, keywords with the highest degree centrality in the network were ‘health literacy’ and ‘computer literacy.’ With the exception of these two keywords, the keywords with the highest degree centrality were ‘Patient education as topic,’ ‘Internet,’ ‘Health knowledge, attitudes, practice,’ and ‘Attitude towards computers.’ Table 1 shows the keywords with the highest degree centrality.

Figure 2. Change in the number of keywords for health literacy by year.
Of the top 30 which were most frequently appearing keywords, five were related to computers (Computer literacy; Attitude towards computers; Computer user training; Computer-assisted instruction; User-computer interface), four were related to the role of the patient (Patient satisfaction; Patient participation; Physician-patient relations; Patient compliance), three were related to attitudes (Health knowledge, attitudes, practice; Attitude towards computers; Attitude towards health), two were related to education (Patient education as topic; Health education), and the remaining two were 'Internet' and 'Information services.'

When the relationships between the keywords were interpreted in the keyword network, 'Health literacy' had a strong degree of connection with 'Health knowledge, attitudes, practice' and 'Patient education as topic.' 'Computer literacy' had a strong degree of connection with 'Internet' and 'Attitude towards Computer.' 'Computer literacy' was connected to 'Health literacy' and researched as a parameter of 'Attitude towards health' and 'Patient education as topic.' The majority concerned the acquisition of information related to chronic diseases such as diabetes and high blood pressure (Figure 3).

Table 2 presents the changes in the top 20 keywords by year. This table shows that the degree centrality of 'Computer literacy' was highest before 2010. The degree centrality of

Rank	Keyword	Frequency	Degree centrality value
1	Health literacy	61	2.167464
2	Computer literacy	44	1.966507
3	Patient education as topic	30	1.425837
4	Internet	28	1.306220
5	Health knowledge, attitudes, practice	23	1.081340
6	Attitude to computers	21	1.043062
7	Age factors	15	0.727273
8	Attitude to health	12	0.679426
9	Educational status	12	0.564593
10	Self-care	12	0.502392
11	Health education	11	0.564593
12	Health promotion	10	0.416268
13	Computer user training	9	0.483254
14	Health communication	9	0.401914
15	Patient satisfaction	9	0.449761
16	Computer-assisted instruction	8	0.444976
17	Patient participation	8	0.449761
18	Physician-patient relations	8	0.440191
19	Pilot projects	8	0.382775
20	User-computer interface	8	0.354067
21	Activities of daily living	7	0.344498
22	Chronic disease	7	0.339713
23	Focus groups	7	0.344498
24	Information services	7	0.315789
25	Patient compliance	7	0.287081
26	Comprehension	6	0.287081
27	Geriatric assessment	6	0.301435
28	Heart failure	6	0.287081
29	Neoplasms	6	0.267943
30	Quality of life	6	0.291866
'Health literacy' was ranked first in 2010. Moreover, there was a notable increase in both 'Age factor' and 'Socioeconomic factor' related to 'Health literacy.' In 2008, 'Self-care' entered to the top 20 keywords. Both 'Self-care' and 'Self-efficacy' appeared on the list in 2010. More behaviors related to independence and active dealings with health were also observed. 'Health communication' entered the list in 2010, and the scope was extended to 'Physician-patient relations,' 'Communication barriers,' and 'Communication' in 2011. 'Emigrants and immigrants' first appeared on the list in 2011.

Rank	2006	2007	2008	2009	2010	2011
1	Computer literacy	Computer literacy	Computer literacy	Computer literacy	Health literacy	Health literacy
2	Patient education as topic	Attitude to computers	Internet	Internet	Patient education as topic	Health knowledge, attitudes, practice
3	Attitude to computers	Internet	Health education	Attitude to computers	Internet	Patient education as topic
4	Computer-assisted instruction	Aging	Health knowledge, attitudes, practice	Forecasting	Age factors	Physician-patient relations
5	Attitude to health	Great Britain	Age factors	Software	Socioeconomic factors	Health communication
6	Program evaluation	Self-concept	Patient satisfaction	Patient satisfaction	Health knowledge, attitudes, practice	Comprehension
7	Nursing evaluation research	Antipsychotic agents	Aging	Health services for the aged	Computer literacy	Self-care
8	Online systems	Awareness	Quality of life	Delivery of health care	Patient participation	Communication barriers
9	Scotland	Culture	Diabetes mellitus	Therapy, computer-assisted	Attitude to health	Age factors
10	Computer user training	Delusions	Self-care	Patient acceptance of health care	Attitude to computers	Rural population
11	Pilot projects	Electronic mail	Access to information	Telemetry	Self-care	Emigrants and immigrants
12	Nursing assessment	Parapsychology	Educational status	Computer-assisted instruction	Self-efficacy	Language
13	Risk assessment	Psychotic disorders	Chronic disease	Patient education as topic	Health status	Early detection of cancer
14	Attitude of health personnel	Risperidone	Self-help devices	Neoplasms	Educational status	Health promotion
15	Choice behavior	Cognition disorders	Attitude to computers	Learning	Medication adherence	Educational status
16	Decision trees	Day care	Attitude to health	Health promotion	Health communication	Patient participation
17	Diagnosis, computer-assisted	Mental recall	Information services	Focus groups	Computer user training	Communication
18	Health behavior	Mental status schedule	Medical informatics	Health knowledge, attitudes, practice	Qualitative research	Patient compliance
19	Hypertension	Pensions	Consumer satisfaction	Analysis of variance	Health education	Patient satisfaction
20	Life style	Prejudice	Intention	Mental recall	Dental care	Focus groups
2011; therefore, it can be estimated that, in the future, there will be more research on this newly emerged minority group in relation to the issue of the digital divide.

2. Keyword Network of the Use of Online Health Information

Keywords related to the use of online health information emerged in 2005. A total of 144 keywords were extracted in 2005, 39 in 2007, 67 in 2008, 12 in 2010, and 4 in 2011. After removing repeated keywords, 74 keywords were selected for the analysis. Excluding the initial search terms 'Internet,' 'Consumer health information,' and 'Health education,' the keywords appearing at a high frequency were 'Age factors,' 'Health knowledge, attitudes, practice,' and 'Patient education as topic.' It was found that 'Computer literacy' and 'Self-efficacy' were studied together when a study regarding the use of online health information by the aged over 65 was conducted. 'Information dissemination' and 'Access to information' that can influence the degree of the digital divide were on the list of the top 30 keywords with weighted degree centrality.

A keyword network was constructed after degree centrality was analyzed for all of the 74 keywords (Table 3). Among them, 'Health knowledge, attitudes, practice' had higher degree centrality than 'Health education' and other keywords with the same frequency of appearance (frequency = 6). In addition, of 15 keywords with the same frequency (frequency = 2), 'Self-efficacy' had the highest degree centrality. This indicates that 'Self-efficacy' had extensive direct connections with other keywords and that research on 'Self-efficacy' was actively conducted.

According to the results confirming the relationships between the keywords in the network, studies on the use of online health information were strongly connected to the keywords of 'Health knowledge, attitudes, practice,' 'Consumer health information,' and 'Patient education as topic.' On the other hand, 'Computer literacy' was connected to the keywords of 'Health education,' 'Patient satisfaction,' 'Self-efficacy,' and 'Attitude to computer.' In addition, the keywords of 'Attitude to computer' and 'Computer literacy' showed high degree centrality. Such a result is obvious considering that studies on the use of online health information were conducted with the help of computers (Figure 4).

IV. Discussion

This study utilized SNA to analyze MeSH keywords regarding health literacy and the use of online health information by the aged. According to the results of this study, the year 2009 was revealed in the literature to be a turning point
in the study of the use of online health information on the Internet. In particular, ‘Self-efficacy’ emerged as the top keyword starting in 2010. In terms of access to online health information, the aged are still in the minority when it comes to communication, and they lack the ability to search for, locate, and use online health information [12,14]. Accordingly, ‘Self-efficacy’ is considered to be the keyword which best reflects this phenomenon. In other words, this keyword emerged from the necessity for study on the characteristics of the use of online health information by the aged over 65, who generally accept online information in a slightly passive way [6,15].

Considering the tendency toward the gradual increase in the percentage of ICT use and its practical use by the aged each year [12], social awareness about its usefulness should also be increased. With the increase in the number of the aged who are vulnerable when attempting to obtain and use health information, it is estimated that according to their online health information seeking behavior, personalized health management services should be developed [14]. In addition, by the time middle-aged people, who are currently accustomed to the Internet and who already have self-efficacy, advance in age, they will look for inexpensive and cost-effective, personalized online health information [9,14,15].

In a more comprehensive interpretation of the results, studies of health literacy and the use of online health information by the aged over 65 were conducted together with the keywords of ‘Computer literacy,’ which allows access to the medium to simplify the locating of health information [13,15], as well as ‘Information dissemination’ and ‘Access to information,’ which are related to the digital divide [14,15]. Therefore, there is a need to educate the aged regarding how to use ICT and how to enhance the practical use of online health information. With the help of such education, the aged can efficiently search, locate, and use online health information. Accordingly, based on the results of this study,

Rank	Keyword	Frequency	Weighted degree centrality value
1	Internet	19	0.598086
2	Consumer health information	11	0.306220
3	Health knowledge, attitudes, practice	5	0.234450
4	Patient education as topic	5	0.215311
4	Age factors	5	0.215311
6	Health education	6	0.177033
7	Computer literacy	4	0.167464
8	Attitude to computers	3	0.133971
9	Medical informatics	3	0.119617
10	Educational status	2	0.114833
11	Physician-patient relations	2	0.105263
11	Survivors	2	0.105263
13	Patient satisfaction	2	0.100478
13	Risk factors	2	0.100478
13	Self-efficacy	2	0.100478
16	Attitude to health	2	0.095694
16	Computer-assisted instruction	2	0.095694
16	Risk assessment	2	0.095694
19	Health services for the aged	2	0.086124
20	Breast neoplasms	2	0.081340
20	Information dissemination	2	0.081340
20	Mass screening	2	0.081340
23	Access to information	2	0.076555
24	Mass media	2	0.062201
24	Exercise	2	0.062201
26	Income	1	0.057416
26	Sex factors	1	0.057416
26	Information services	1	0.057416
26	Models, psychological	1	0.057416
26	Neoplasms	1	0.057416
'Self-efficacy' can be viewed as an important keyword that should be studied with other keywords to develop educational programs and/or academic curricula. From this study, it also was confirmed that health literacy and the use of online health information by the aged were studied together with a wide variety of subjects, starting with the daily life of the aged to the management of chronic diseases and self-nursing, and ultimately ending with improvements in health and increases in the quality of life [13-15].

Furthermore, this study used the PubMed database from the NLM. The majority of the studies use the Science Citation Index or the Scopus database for network analysis. Therefore, these databases include journals with impact indexes higher than a certain level, which secure the credibility of the study results. They also offer such benefits as the division of the journals by topic and quotation information, which can be categorized by subject field through a co-citation analysis. Therefore, research tendencies can be visualized accordingly [36,37]. However, when analyses of co-appearing keywords in healthcare are conducted, it is common to use the PubMed database. MeSH terms provide unity and consistency in the index as a knowledge structure [38-41], which distinguishes PubMed from other databases in a creative way. Accordingly, there is consistency in the index of the keywords; thus, the advantage of eliminating author subjectivity was secured when selecting keywords. However, despite the fact that researchers use MeSH terms, an external review process is essential. The headings of MeSH terms are stratified by stage, and index terms are included, which are conventionally granted to an article [39]. In addition, different levels of keywords are granted through the MeSH index. Therefore, there is a need to consider these aspects when extracting and refining MeSH keywords from PubMed.

In this study, keywords in areas of interest were extracted and analyzed to identify the flow of the research in these areas. The centrality index, used to analyze social networks, has a disadvantage in that it does not reflect the weights on

Figure 4. Keyword network of the use of online health information.
This work was supported by a National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-413-G00006).

References

1. Statistics Korea. 2010 National social statistics survey. Deajeon, Korea: Statistics Korea; 2010.
2. Kiel JM. The digital divide: Internet and e-mail use by the elderly. Med Inform Internet Med 2005;30(1):19-23.
3. Kuttan A, Peters L. From digital divide to digital opportunity. Lanham (MD): Scarecrow Press; 2003.
4. An JY. Correlates and predictors of consumers’ health information and services usage behavior on the Internet: a structural equation modeling approach [dissertation]. New York (NY): New York University; 2005.
5. National Information Society Agency. 2007 Digital divide index and status report. Seoul, Korea: National Information Society Agency; 2008.
6. National Information Society Agency. 2009 A study on the digital divide of the Korean older adults. Seoul, Korea: National Information Society Agency; 2010.
7. National Information Society Agency. 2010 Digital divide index and status report. Seoul, Korea: National Information Society Agency; 2010.
8. An JY. Theory development in health care informatics: information and communication technology acceptance model (ICTAM) improves the explanatory and predictive power of technology acceptance models. Stud Health Technol Inform 2006;122:63-7.
9. An JY, Hayman LL, Panniers T, Carty B. Theory development in nursing and healthcare informatics: a model explaining and predicting information and communication technology acceptance by healthcare consumers. ANS Adv Nurs Sci 2007;30(3):E37-49.
10. Song T, Um K, An JY. The development of an evaluation model for the acceptability of health information websites. J Korean Soc Med Inform 2005;11(3):221-33.
11. Furlong MS. An electronic community for older adults: the SeniorNet Network. J Commun 1989;39(3):145-53.
12. Korea Internet Security Agency. 2011 Internet usage survey. Seoul, Korea: Korea Internet Security Agency; 2011.
13. Lee GY. An exploratory study on the effects of Internet use on the adaptation process in later life. J Welf Aged 2007;37:7-30.
14. Eriksson-Backa K, Ek S, Niemela R, Huotari ML. Health information literacy in everyday life: a study of Finns aged 65-79 years. Health Informatics J 2012;18(2):83-94.
15. Campbell RJ, Nolfi DA. Teaching elderly adults to use

Conflict of Interest

No potential conflicts of interest relevant to this article are reported.

Acknowledgments

This work was supported by a National Research Foundation.
the Internet to access health care information: before-after study. J Med Internet Res 2005;7(2):e19.

16. Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A 2004;101 Suppl 1:5303-10.

17. Mane KK, Borner K. Mapping topics and topic bursts in PNAS. Proc Natl Acad Sci U S A 2004;101 Suppl 1:5287-90.

18. Sohn DW. Social network analysis. 4th ed. Seoul, Korea: Kyungmun Publisher; 2010.

19. He Q. Knowledge discovery through co-word analysis. Libr Trends 1999;48(1):133-59.

20. Polanco X. Co-word analysis revisited: Modeling co-word cluster in terms of graph theory. In: Proceeding of the 10th International Conference of the International Society for Scientometrics and Informetrics; 2005 Jul 24-28; Stockholm, Sweden. p. 662-3.

21. Zhang J, Xie J, Hou W, Tu X, Xu J, Song F, et al. Mapping the knowledge structure of research on patient adherence: knowledge domain visualization based co-word analysis and social network analysis. PLoS One 2012;7(4):e34497.

22. Jang HL, Lee YS, An JY. Application of social network analysis to health care sectors. Healthc Inform Res 2012;18(1):44-56.

23. Jung M, Chung D. Co-author and keyword networks and their clustering appearance in preventive medicine fields in Korea: analysis of papers in the Journal of Preventive Medicine and Public Health, 1991-2006. J Prev Med Public Health 2008;41(1):1-9.

24. Jung MS. Academic research activities and their co-author and keyword network in epidemiology fields: analysis of papers in the Journal of Preventive Medicine and Public Health, 1991-2006. Korean J Epidemiol 2008;30(1):60-72.

25. Jeong S, Lee SK, Kim HG. Knowledge structure of Korean medical informatics: a social network analysis of articles in journal and proceedings. Healthc Inform Res 2010;16(1):52-9.

26. Lee SK, Jeong S, Kim HG, Yom YH. A social network analysis of research topics in Korean nursing science. J Korean Acad Nurs 2011;41(5):623-32.

27. Lee YS. Research network analysis for the national science knowledge map. Seoul, Korea: Korea Research Council of Fundamental Science and Technology; 2010.

28. Sohn DK. Generation and analysis of the research network for colorectal neoplasms [dissertation]. Cheongju, Korea: Chungbuk National University; 2011.

29. Kim YH. Social network analysis. 2nd ed. Seoul, Korea: Pakyounsa; 2007.

30. Faust K. Comparing social networks: size, density, and local structure. Metodoloski zvezki 2006;3(2):185-216.

31. Bogatti SP. Centrality and network flow. Soc Networks 2005;27(1):55-71.

32. Adamic LA, Lukose RM, Puniyani AR, Huberman BA. Search in power-law networks. Phys Rev E Stat Nonlin Soft Matter Phys 2001;64(4 Pt 2):046135.

33. Callon M, Coutial JP, Laville F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: the case of polymer chemistry. Scientometrics 1991;22(1):153-205.

34. Wang X, Wang J, Ma F, Hu C. The “small-world” characteristic of author co-words network. In: Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing; 2007 Sep 21-25; Shanghai, China. p. 3717-20.

35. Lee JY. Centrality measure for bibliometric network analysis. J Korean Libr Inf Soc 2006;40(3):191-214.

36. Boyack KW, Klavans R. Co-citation analysis, bibliographic coupling, and direct citation: which citation approach represents the research front most accurately? JASIST 2010;61(12):2389-404.

37. Yeo WD, Sohn ES, Jung ES, Lee CH. Identification of emerging research at the national level: scientific approach using Scopus. J Inf Manag 2008;39(3):95-113.

38. Huh S. Medical databases from Korea and abroad. J Korean Med Assoc 2010;53(8):659-67.

39. Kim SY. From MeSH indexed to retrieval. 1st ed. Seoul, Korea: Korean Medical Library Association; 2008.

40. Kwon AK, Chae YM. The study on subject words of Korean medical informatics by expanded MeSH: based on journal of the Korean society of medical informatics. Health Inform Res 2002;8(4):91-8.

41. Stagmann J, Grohmann G. Hypothesis generation guided by co-word clustering. Scientometrics 2003;56(1):111-35.

42. An XY, Wu QQ. Co-word analysis of the trends in stem cells field based on subject heading weighting. Scientometrics 2011;88(1):133-44.

43. Ospfal T, Agneessens F, Skvoretz J. Node centrality in weighted networks: generalizing degree and shortest paths. Soc Networks 2010;32(3):245-51.

44. Zheng HC, Yan L, Cui L, Guan YF, Takano Y. Mapping the history and current situation of research on John Cunningham virus: a bibliometric analysis. BMC Infect Dis 2009;9:28.