CEPP: Canadian Extracorporeal Life Support (ECLS) Protocol Project
Andrew Fagan, MD, MEd, FRCSC, Brian Grunau, MD, MHSc, Andrew Caddell, MD, FRCPC, James Gould, MD, FRCPC, Erin Rayner-Hartley, MD, FRCPC, Yoan Lamarche, FRCSC, Gurmeet Singh, MD, MSc, FRCSC, Dave Nagpal, MD, FRCSC, and Marat Slessarev, MD, PhD, FRCPC

ABSTRACT
Background: Extracorporeal life support (ECLS) is associated with high morbidity and mortality. Complications and mortality are higher at lower-volume centres. Most Canadian ECLS institutions are low-volume centres. Protocols offer one way to share best practices among institutions to improve outcomes. Whether Canadian centres have ECLS protocols, and whether these protocols are comprehensive and homogeneous across centres, is unknown.

Methods: Purposeful sampling with mixed methods was used. A Delphi panel defined key elements relevant to the ECLS process. Documentation used in the delivery of ECLS services was requested from programs. Institutional protocols were assessed using deductive coding to determine the presence of key elements.

The use of extracorporeal life support (ECLS) has increased in the past 2 decades. Extracorporeal membrane oxygenation (ECMO), a common form of ECLS, is associated with high morbidity and mortality, with variable survival to discharge of 60%, 43%, and 29% for veno-venous (VV)-ECMO, veno-arterial (VA)-ECMO, and extracorporeal cardiopulmonary resuscitation (eCPR) cases, respectively. In keeping with evidence from other areas of medicine, a low frequency of cases may contribute to poor outcomes. In Canada, more than half of ECLS centres perform fewer than 10 VV-ECMO and 10 VA-ECMO cases annually. Similarly, in Germany, the majority of ECLS cases are done in lower-volume centres (< 50 VA ECMO cases/year) despite higher complication rates and mortality in these centres. Although limiting ECLS to centres of excellence will increase case numbers and concentrate expertise, the emergent nature of ECLS and the expansiveness of Canadian geography mean that ECLS will continue to be...
Results: A total of 37 key elements spanning 5 domains (referral, initiation, maintenance, termination, and administration) were identified. Documentation from 13 institutions across 10 provinces was obtained. Institutions with heart or lung transplantation programs had more complete documentation than did non-transplantation programs. Only 5 key elements were present in at least 50% of protocols (anti-coagulation strategy, ventilation strategy, defined referral process, selection criteria, weaning process), and variation was seen in how institutions approached each of these elements.

Conclusions: The completeness of ECLS protocols varies across Canada. Programs describe variable approaches to key elements. This variability might represent a lack of evidence or consensus in these areas and creates the opportunity for collaboration among institutions to share protocols and best practice. The key-element framework provides a common language that programs can use to develop ECLS programs, initiate quality-improvement projects, and identify research agendas.

ECLS programs across Canadian centres, highlighting areas for future research and quality improvement.

Materials and Methods

Study design

The study was reviewed by the Western University Health Sciences Research Ethics Board, and the board determined that board oversight is not required. We employed mixed methods to characterize the current state of Canadian ECLS programs. Utilizing a list of Canadian institutions deemed capable of delivering ECLS services from previous unpublished work, program leads were contacted via e-mail to request documentation related to ECLS delivery (eg, policy and procedures, order sets, protocols, etc.). Document analysis required determination of important criteria to include within protocols (eg, anticoagulation protocol, ventilation protocol, etc.). A Delphi panel was used to define these key elements. Documentation was analyzed for the presence of key elements, and areas of consensus and uncertainty were described.

Delphi panel methods

Given the lack of consensus outlining ideal Canadian ECLS protocol content, a Delphi panel was created to identify key elements that should be included. The RAND/University of California, Los Angeles Delphi Method used in similar studies was adapted for this project. A 9-member panel with expertise in critical care, cardiac surgery, cardiology, emergency medicine, and internal medicine was assembled for this process. Panel members represented relevant disciplines, geographic distribution, and institution types, including lung transplantation, cardiac transplantation, and cardiac surgery programs. The process was anonymous and was delivered...
electronicstechnically over 3 rounds. Table 1 provides characteristics of the Delphi panel.

Round 1 asked panel members to identify key elements of the ECLS protocol/program manual. Panel members were provided with documentation explaining the purpose of the research project, examples of possible key elements and how they will be used in the study, and relevant literature. Panelists were asked to identify any and all relevant key elements.

Round 2 of the Delphi process consisted of a survey that asked panelists to rate the importance of key elements generated in round 1. Similar key elements were combined along with descriptions. A 9-point Likert scale was used, and a key element was considered important if it obtained a median score of 7 or more. Panels were required to provide rationale for scores of 5 or lower.

Round 3 required panelists to approve the final list of key elements. Panelists were provided with a list of approved and rejected key elements with low score rationale. All members approved of the final list without the necessity of further rounds.

Protocol sampling

Contact information for program leads was available for 24 institutions from previous work. Program leads were contacted via e-mail and provided with the rationale for the project. Any documentation related to the delivery or administration of ECLS services was requested. Program leads were recontacted at regular intervals until a representative sample was obtained. A geographically diverse sample, representing ECLS-capable institutions was targeted, incorporating programs with differences in volume and program-development robustness. Centres were categorized as heart-lung transplantation capable, heart transplantation capable, and cardiac surgery only capable. Programs were recontacted until representation from all provinces was obtained.

Analysis

Deductive coding was used to analyze documents for the presence or absence of key elements. The key elements and their descriptions were used as a coding framework. A key element was coded as present if the element was directly mentioned (eg, anticoagulation protocol), or if indirect evidence that it existed was present (eg, some documents had approval stamps, suggesting a regular internal review process). Any text that did not meet the predefined coding framework was highlighted through inductive coding, and a memo journal was maintained throughout the process.

These data were used to determine the completeness of protocols by institution type. Additionally, key elements were grouped by their prevalence across protocols. Key elements that were present in more than 50% of institutional protocols underwent further analysis. The coded data from each key element were extracted from the original protocols and organized by key element code. These data then underwent narrative description.

To ensure reliability of coding, 2 authors independently reviewed the coded protocols for accuracy. Member checking was also employed to ensure validity. The results and analysis were shared with the Delphi panel prior to publication. Delphi panel members represented stakeholders familiar with ECLS programs, with intimate knowledge of their institutional protocols. This group also contained representation from the Canadian Cardiovascular Critical Care Society and the Canadian Critical Care Society.

Results

The Delphi process occurred over 4 months and yielded 37 key elements identified as important components of an ECLS protocol (Table 2). These were broadly classified into 5 domains of the ECLS process (referral, initiation, maintenance, discontinuation, and administrative). The final list was approved by all 9 members of the panel.

There are 39 institutions in Canada capable of delivering ECLS. Program documentation was obtained from 13 institutions (33%), representing all provinces, 2 of 4 lung/heart transplantation centres (50%), 5 of 11 heart transplantation centres (without lung transplantation; 45%), and 6 of 24 cardiac surgery-only centres (25%). The documents that were provided varied among centres and included practice guidelines, protocols, policies and procedures, and order sets. Two programs lacked any documentation but were in the process of developing protocols. Four programs provided documentation organized into “program manuals.”

Only 3 programs had documentation that included greater than 50% of the 37 key elements. Of these, one had a complete program manual in a single document that described roles and responsibilities, clinical management, relevant policies, and order sets. Two programs had a collection of clinical guidelines outlining the care process for specific ECLS phases (eg, initiation, weaning, etc). These documents provided clear roles and responsibilities of all team members, as well as the clinical rationale for appropriate management and troubleshooting during those phases. All centres that had more comprehensive documentation were either heart and/or lung transplantation capable centres (Fig. 1).

In regard to the programs with less-comprehensive documentation, variability was seen in the key elements that were addressed and in how they were addressed. Some programs had robust emergency ECLS procedures, whereas others had very detailed order sets with step-by-step nursing instructions. In contrast to comprehensive program manuals, these documents seemed more sporadic in the issues that were addressed. Documents more commonly focused on the roles of
Table 2. List of domain and key elements identified by Delphi panel
Key element followed by description
Referral phase
Patient selection criteria
Inclusion/Exclusion for respiratory failure, cardiac arrest, and cardiogenic shock
Shock team
Who evaluates referral? Single person on call, medical director, panel of experts, ECMO team/specialist, or dedicated shock team?
Defined referral process
Presence of algorithms to assist with rapid decision making, specific referral process for each indication, process for EMS referral or interhospital referral
Prehospital protocol
EMS referral and resuscitation process, process for transition from ACLS to ECLS
Initiation phase
Initiation process
Defined location and process, specifically addressing cannula choice, heparin timing and route, cannulation site, etc.
Peripheral hospital initiation
Process for mobile ECLS team, interhospital transport, etc.
Identified roles and responsibilities
Who should be present, roles, training, ACLS vs ECLS team, specific cannulators?
Cannulation protocol
Who should do it? Preference for specific sites, choice of cannula sizes, sedation and paralysis during cannulation
Anticoagulation
Type and timing during cannulation
Checklists
Equipment and actions to be performed including role assignments, and potential plan for after-action reviews
Consent process
Is consent required? Should it be? How is it obtained?
Post-initiation procedures
Defined process for post-initiation procedures such as cath lab activation, lower-extremity reperfusion, intensive care unit parameters, etc.
Maintenance phase
ECMO circuit monitoring
How does general system monitoring and maintenance occur (eg, clots, pressures, etc). Who is responsible for this?
Anticoagulation
Choice of maintenance anticoagulation and monitoring parameters. Management of potential challenges (heparin resistance), monitoring for complications (clots, heparin-induced thrombocytopenia, bleeding) and perioperational anticoagulation management.
Hemodynamic management
Targets for hemodynamic support, choice of inotropes/vasopressor, and fluid management
Ventilator management
Ventilator management specific for each indication (eg, respiratory vs cardiac failure). Initial management and overall guiding principles.
Temperature management
Does cooling occur post-arrest; how does it occur?
Bleeding management
Is there a protocolized approach to address bleeding?
Emergency protocols
Do protocols exist for predictable emergencies (eg, accidental decannulation, thrombosis, etc.)?
Intrahospital transport protocol
How are patients transported safely, who is responsible?
Defined process for LV unloading
Is there a defined process for when and how this occurs?
MCS/shock team
Daily rounds, MRP, etc.
Mobilization strategy
Is there a defined strategy for safe PT and mobilization of ECLS patients?
Discontinuation phase
Weaning protocol
How, where, and parameters that prompt weaning including associated changes in ventilator settings and/or hemodynamic support
Process for device transition
Is there a defined process for device transition (eg, durable ventricular assist device, central ECMO, etc.)
Discontinuation of anticoagulation
Heparin reversal, transition to DVT prophylaxis
Prognostication
Expected duration, neuroprognostication, definition of futility
End-of-life planning
Defined process for recognizing this, approaching it with family, etc.
Organ donation/procurement
Process for declaration, approach to family, procurement, etc.

Continued
non-physician team members (eg, nursing, perfusion, and respiratory therapy).

Descriptive review of common key elements

Figure 2 shows the prevalence of the 10 most common key elements. Five key elements were present in more than 50% of protocols (referral process, patient selection criteria, anticoagulation, ventilator management, and weaning protocol). Tables 3 through 9 provide detailed description of how each key element was addressed by the institutions. Programs varied in how they address anticoagulation and ventilator management. Less variability was seen in how institutions addressed the key elements of patient selection, weaning protocol, and referral process.

Referral process and patient selection

Program documents contained similar inclusion/exclusion criteria across programs (Tables 3-5). Specific inclusion/exclusion criteria of each institution are listed in Tables 4 and 5. The referral process for ECMO is initiated through cardiac surgery at most institutions. A limited number of institutions have protocols in place for automatically notifying all team members once a potential candidate for ECMO has been identified.

Anticoagulation and ventilator management

Most programs used unfractionated heparin for routine anticoagulation (Tables 6 and 7). One program used low-molecular-weight heparin as a subcutaneous injection for daily maintenance in select patients. Variation was seen in bolus dosing for cannulation (5000-30000 units), monitoring (activated clotting time vs partial thromboplastin time [PTT]) and targets for maintenance (activated clotting time: 160-250 s; partial thromboplastin time: 50-70.9 s). Only one program specifically addressed monitoring and management of coagulopathy.

Ventilator strategies generally focused on initial parameters rather than guidance related to a more longitudinal strategy (ie, maintenance and weaning). Most programs suggested an initial “lung protective strategy”; however, variation occurred in how this was defined (peak inspiratory pressure: 20-30 cm H2O; positive end expiratory pressure: 5-15 cm H2O; tidal volume: 3-4 vs 4-6 mL/kg; inspired fraction of oxygen 0.3-0.5). Some programs specified only that management should be left to the discretion of the treating team. No programs specifically addressed ventilation strategy for VA-ECMO.

Weaning protocol

Most programs described a strategy to safely facilitate a weaning trial and recommended daily assessment for consideration of weaning (Tables 8 and 9). Programs provided more-specific criteria for determination of successful weaning from VV-ECMO compared to VA-ECMO. For VA-ECMO, programs suggested echocardiographic assessment on very low flow (1.5 LPM). One program (institution 4) provided specific hemodynamic and echocardiographic criteria for consideration of a successful VA-ECMO wean.

Discussion

Using a Delphi process involving key stakeholders from across Canada, 37 key elements spanning 5 domains that should be included in ECLS protocols were identified. These key elements represent important areas to be addressed by an institution delivering ECLS services. The prevalences of key elements in existing ECLS protocols from 13 Canadian institutions were then assessed. Only 5 key elements were present in more than 50% of protocols. The prevalence of key elements in documentation varied across centres, with a higher prevalence found in centres with heart and/or lung transplantation programs. Given that the vast majority of ECLS cases are done at lower-volume centres in Canada, and lower-volume centres have been shown to have worse outcomes, this study identified potential areas for quality-improvement initiatives aimed at increasing protocol completeness and harmonization across institutions.
The identification of domains and key elements of ECLS provides a workable framework for program development and quality-improvement initiatives. Although programs may use the key-element framework to develop local protocols, this study could be taken as an opportunity to begin collaborating on a national ECLS program manual and outcome sharing. This collaboration should promote information sharing across programs and reduce the burden on individual institutions as program development evolves.

Many important areas of the ECLS process remained unaddressed by the majority of institutions. Key elements in the initiation and program administrative domains were underrepresented. Program administration, including a defined process for program review, quality improvement, and team education are essential tenets of the ELSO Centre of Excellence Criteria. Key elements dealing with urgent and emergent aspects of ECLS delivery (ie, initiation, emergency troubleshooting, etc.) should be protocolized. Predictable emergencies should not be dealt with on an ad hoc basis. A common practice in other industries is to develop protocols for predictable high-stakes events. Although key elements in these areas were underrepresented, some programs did have robust protocols that could be adapted to other institutions. National collaboration on program development using the key-element framework would allow centres to share best practices and learn from other institutions.

Figure 1. Number of key elements present in institutional protocols. Number of key elements by type of centre: HL; HT; and CS. Red bars represent transplantation-capable centres; blue bars represent CS centres.

Figure 2. Prevalence of key elements found in protocols. ECMO, extracorporeal membrane oxygenation; MCS, mechanical circulatory support.
Clearly defined referral process initiated through the on-call cardiac surgeon eCPR activation form that who provides initial screening before ECLS is activated. Specific pathways for code-specific process for code for eCPR activation (e.g., urgent vs emergent and failure, initial activation team). This 6–7 member team must approve all ECMO activations and is responsible for overseeing active cases. Provides inclusion/exclusion criteria and contact information, specifically to COVID-19 team members and pandemic. Process for transfer vs mobile ECLS. Requests cardiac physician is to notify ICU consultant who will coordinate with required services (e.g., perfusion, cardiac surgery, interventional radiology). Mentions VAD team should also be consulted for VA-ECMO. CVICU, cardiac surgery-only capable; VAD, ventricular assist device; VV, veno-venous. ECMO triage team consists of relevant on-call personnel (e.g., surgeon on call, ICU consultant, perfusion, etc.). This study faced several limitations. The Delphi panel represented many of the institutions that shared documentation for the study, and the representative sample chosen may have led to sampling bias. This bias was minimized by ensuring representation from all provinces and also that at least 2 samples from each type of institution (lung and heart transplantation capable, heart transplantation capable, and cardiac surgery-only capable) were represented. Additionally, better characterization of the participating centres (e.g., ECLS volume, academic vs community, geographic location) could have enriched the analysis and represents a limitation of this study. Also, it was impossible to verify that all program documentation was shared. Using ECLS leads or physicians with significant involvement in ECLS programs who would have the most familiarity with documentation should have mitigated this shortcoming. Finally, clinical practice may vary from what is described in program documentation.

Conclusion

Using an interdisciplinary panel, 37 key elements across 5 domains were identified that should be incorporated into ECLS protocols. Assessment of program documentation from Canadian institutions showed variability in the number of key elements included in protocols and how protocols addressed specific key elements. Further exploration of this variability could improve clinical care. The key-element framework

We found that heart and/or lung transplantation centres had more complete protocols. Given that transplantation centres also have a higher volume of ECLS cases, compared with nontransplantation centres, protocol completeness likely reflects the need for a clearly defined structure and organization with respect to roles and responsibilities of ECLS stakeholders at each centre. Lower-volume centres may rely on a more ad hoc approach to delivery of ECLS services when cases arise. Although direct evidence linking protocol completeness and better ECLS outcomes at higher volume centres is lacking, national collaboration and sharing of best practices among institutions may be one avenue to ensure that similar high-quality care is delivered at all Canadian institutions.

The narrative review of the 5 common key elements provides readers with a summary of how institutions approached these components of ECLS delivery. Key elements with significant consensus may indicate higher-quality evidence or agreement on an accepted standard of care. For example, agreement was reached on the criteria for patient selection, which may reflect accepted transplantation criteria. However, key elements with variability may represent areas of uncertainty. This uncertainty is evident in the key elements addressing anticoagulation and ventilation. Anticoagulation strategies show variation in drugs, dosing, and monitoring. Few programs addressed the management of coagulopathy associated with ECLS. This variability is seen internationally and may reflect uncertainty in the evidence related to anticoagulation on ECMO. Similar uncertainty remains around ideal ventilatory practices for VV- and VA-ECMO. This variation in practice may represent an opportunity for future research and quality-improvement initiatives. It also highlights the need for outcome tracking in order to effectively implement such a program.

Conclusion

Using an interdisciplinary panel, 37 key elements across 5 domains were identified that should be incorporated into ECLS protocols. Assessment of program documentation from Canadian institutions showed variability in the number of key elements included in protocols and how protocols addressed specific key elements. Further exploration of this variability could improve clinical care. The key-element framework
Institution 1	Institution 2	Institution 5	Institution 6	Institution 7	Institution 12	Institution 13
Indications:						
Cardiogenic shock with evidence of ongoing malperfusion	Suggests referral for INTERMACS 1 and 2 or refractory cardiogenic shock	Witnessed cardiac arrest, refractory to conventional ACLS	None listed	None listed		
eCPR and post-cardiomyotomy ECMO in highly selected patients.	Suggested indications include post-cardiomyotomy shock, acute MI, acute myocarditis, acute PE, circulatory support for PCI, preoperative support as a bridge to surgery, acute decompensation of chronic cardiomyopathy, severe accidental hypothermia	Reversible etiology (eg, ACS, refractory dysrhythmia, PE, toxic ingestion, structural heart disease)		Underlying condition with < 6 mo to live		
	Age < 65 y	Refractory cardiogenic shock or recurrent arrests				
Contraindications:						
Not a transplant or VAD candidate (eg, cirrhosis, psychosocial issues)						
Sepsis is a relative contraindication						
SAVE score less than 10						
Relative contraindications:						
Nonrecoverable advanced comorbidity such as major CNS damage or terminal malignancy						
Contraindication to anticoagulation (eg, recent CNS hemorrhage or large ischemic stroke)						
Age > 75 y						
Indications:						
Post-cardiomyotomy: Failure to wean from bypass, low cardiac output, intractable dysrhythmia, pulmonary hypertension	Arrest < 50 min					
Nonsurgical cardiac failure: myocarditis, cardiomyopathy, low output syndrome						
	Age < 65 y	No major comorbidities (ESRD, liver failure, COPD, CHF) or pre-existing major neurologic deficits				
		BMI appropriate for Lucas device				
Contraindications:						
Advanced age > 65 y						
	Weight < 60 kg					
	BMI > 40					
	Femoral artery size < 5.5 mm					
Chronic organ dysfunction						
Prolonged CPR > 30 min						
Malignancy						
Clinically active bleeding						
Recent or expanding intracranial bleed						
Significant coagulopathy						
Immunosuppression (ANC < 400 mm3)						
Sepsis						
Severe irreversible brain damage						
Severe burn						
Clinical futility						
• Cardiac index < 1 L/min/m2 got VV-ECMO						

ACS, acute coronary syndrome; ACLS, advanced cardiovascular life support; ANC, absolute neutrophil count; BMI, body mass index; CHF, congestive heart failure; CNS, central nervous system; COPD, chronic obstructive pulmonary disease; CPR, cardiopulmonary resuscitation; DNR, do not resuscitate; ECMO, extracorporeal membrane oxygenation; eCPR, extracorporeal CPR; ESRD, end-stage renal disease; ETCO$_2$, end-tidal carbon dioxide; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; MI, myocardial infarction; PE, pulmonary embolism; PCI, percutaneous coronary intervention; SAVE, survival after VA-ECMO; VA, veno-arterial; VAD, ventricular assist device; VV, veno-venous.
Table 5. Key-element narrative review — patient selection for VV-ECMO

Institution 1	Institution 2	Institution 5	Institution 6	Institution 7	Institution 12	Institution 13
Indications:						
Refractory hypoxic or hypercarbic respiratory failure	None listed					
PaO2/FiO2 < 60 on FiO2 100% and PEEP > 16; pH < 7.2, respiratory acidosis, regardless of PCO2	None listed					
Acute or impending respiratory collapse (blocked airway, status asthmaticus that is unresponsive to optimal care)	None listed					
Contraindications:						
Mechanical ventilation on high settings for > 7 d; RESP score < −6	None listed					
Relative contraindications:						
Nonrecoverable advanced comorbidity such as major CNS damage or terminal malignancy	None listed					
Contraindication to anticoagulation (eg, recent CNS hemorrhage or large ischemic stroke)	None listed					
Age > 75 y	None listed					

Indications:
- None listed

Contraindications:
- None listed

Relative contraindications:
- None listed

ANC, absolute neutrophil count; ARDS, acute respiratory distress syndrome; BMI, body mass index; CNS, central nervous system; CPR, cardiopulmonary resuscitation; ECMO, extracorporeal membrane oxygenation; FiO2, fraction of inspired oxygen; HIT, heparin-induced thrombocytopenia; NIV, noninvasive ventilation; PaO2, partial pressure of oxygen; pCO2, partial pressure of carbon dioxide; PEEP, positive end-expiratory pressure; P/F, PaO2/FiO2; RESP score, respiratory ECMO survival prediction; SAPS, Simplified Acute Physiology Score; VV, veno-venous.
Table 6. Key-element narrative review—anticoagulation protocol

Institution 1	Institution 3	Institution 4	Institution 5	Institution 6	Institution 8	Institution 9	Institution 12	Institution 13
Heparin bolus 10,000 −30,000 units given with cannulation	**Reference to heparin protocol/order set is made, but no specific details for “non surgical” patients** **Dedicated heparin protocol with target PTT 50−64 s** **5000−10,000 unit bolus is recommended for weaning flows below 1.5 LPM** Bivalirudin or argatroban specified as alternate anticoagulation for HIT	**Bivalirudin or argatroban specified as alternate anticoagulation for HIT** LMWH is suggested for stable patients	**Reference to heparin protocol/order set is made, but no specific details for “non surgical” patients** **Dedicated heparin protocol with target PTT 50−64 s** **5000−10,000 unit bolus is recommended for weaning flows below 1.5 LPM** Bivalirudin or argatroban specified as alternate anticoagulation for HIT	**Bivalirudin or argatroban specified as alternate anticoagulation for HIT** LMWH is suggested for stable patients	**Reference to heparin protocol/order set is made, but no specific details for “non surgical” patients** **Dedicated heparin protocol with target PTT 50−64 s** **5000−10,000 unit bolus is recommended for weaning flows below 1.5 LPM** Bivalirudin or argatroban specified as alternate anticoagulation for HIT	**Bivalirudin or argatroban specified as alternate anticoagulation for HIT** LMWH is suggested for stable patients	**Reference to heparin protocol/order set is made, but no specific details for “non surgical” patients** **Dedicated heparin protocol with target PTT 50−64 s** **5000−10,000 unit bolus is recommended for weaning flows below 1.5 LPM** Bivalirudin or argatroban specified as alternate anticoagulation for HIT	**Bivalirudin or argatroban specified as alternate anticoagulation for HIT** LMWH is suggested for stable patients

ACT, activated clotting time; ECMO, extracorporeal membrane oxygenation; ELSO, Extracorporeal Life Support Organization; HIT, heparin-induced thrombocytopenia; INR, international normalized ratio; LMWH, low-molecular-weight heparin; LPM, liters per minute; PPO, preferred provider organization; PTT, partial thromboplastin time.

Table 7. Key-element narrative review—ventilator management

Institution 1	Institution 3	Institution 4	Institution 5	Institution 6	Institution 7	Institution 8	Institution 9	Institution 10	Institution 11	Institution 12	Institution 13
Discusses philosophy of lung-protective ventilation, but acknowledges lack of evidence Provides initial strategy using PC ventilation targeting PC + PEEP < 30 cm H₂O, PEEP 10−14, rate 4−8, Vt 3−4 mL/kg, FiO₂ < 50%, O₂sat > 85%, pH > 7.25 Can consider extubation in select cases with goal of liberating sedation, etc.	**Suggests protective lung strategies should be employed with patients on VV-ECMO** Specifically suggest PC mode with Pinsp < 20 cmH₂O, RR 8−10, PEEP 6−12, FiO₂ < 0.3 Consider extubation maneuvers if indicated only after acute lung inflammation has subsided.	**Order set is provided for physician to prescribe ventilator settings** Provides suggested parameters aimed at preventing ventilator-induced lung injury Specifically suggests Pinsp < 20−25 cm H₂O, PEEP < 10−15 cm H₂O, FiO₂ 0.3−0.4, O₂sat > 85%, avoid recruitment maneuvers Goal PaO₂ > 60 mm Hg, PaCO₂ adjust sweep to achieve pH 7.35−7.45 Consider recruitment maneuvers if indicated only after acute lung inflammation has subsided. Physician order is required.	**Ventilator parameters chosen at the discretion of the ECLS team with no prespecified parameters** Specifically suggests tidal volume 4−6 mL/kg with plateau pressures < 25 cm H₂O, PEEP 5−10 cm H₂O, FiO₂ < 0.5 Consider recruitment maneuvers if indicated only after acute lung inflammation has subsided. Physician order is required.								

ECLS, extracorporeal life support; ECMO, extracorporeal membrane oxygenation; FiO₂, fraction of inspired oxygen; O₂ sat, oxygen saturation; PaCO₂, partial pressure of carbon dioxide; PaO₂, partial pressure of oxygen; PC, pressure-controlled; PEEP, positive end-expiratory pressure; Pinsp, inspiratory pressure; RR, respiratory rate; VC, vital capacity; VV, veno-venous.
Table 8. Key element narrative review—weaning protocol for VA-ECMO

Institution 1	Institution 2	Institution 3	Institution 4	Institution 6	Institution 12
Daily assessment by team for weaning appropriateness	Gradually wean flows in 0.5 L increments to an idle flow of 2 LPM or 2.5 LPM if not adequately anticoagulated	Process described only for VV-ECMO	Provides hemodynamic and echocardiographic criteria to consider weaning. Hemodynamic: - Pulse pressure > 20 mm Hg for 24 h - MAP > 60 with no vasopressors or low dose of a single vasopressor. No inotropes. - CVP < 18–20 mm Hg	Process described only for VV-ECMO	Suggest consider weaning when patient shows signs of recovery such as pulsatility or recovery on ECHO. No specific details about assessment for weaning
Gradual ECMO flow decrease to 2 LPM. Further weaning should be done in conjunction with echocardiographic assessment and with heparin bolus for flows < 1.5 LPM.	Can briefly decrease flow to 1.5 LPM to facilitate echocardiographic assessment if adequately anticoagulated.				
Once flows reduced, wean circuit FiO2 and sweep gas q2h to patient SvO2 60–70, lactate < 2, and normal PA PO2 (100–190).	Once cardiac function is improved and decannulation is planned, maintain circuit flow at minimum 2 LPM until decannulation				
Process described only for VV-ECMO					

Table 9. Key-element narrative review—weaning protocol for VV-ECMO

Institution 1	Institution 2	Institution 3	Institution 4	Institution 6	Institution 12
Daily assessment by team for weaning appropriateness	Daily assessment of need for ECMO	Decrease pump flows incrementally by 0.5 LPM with goal to achieve 2 LPM	Process described only for VA-ECMO	Turn down sweep and FiO2 increments of 0.5 LPM and FiO2 0.1 while following ABG to maintain PaO2 > 60 and PaCO2 to target pH 7.35–7.45	Process described only for VV-ECMO
Perfusionist weans oxygen flow and sweep, while respiratory therapist optimizes ventilator parameters	Wean flows to 2 LPM or 2.5 LPM if not anticoagulated	Consider increasing anticoagulation therapy to facilitate low flows. Do not flow below 0.5 LPM		Successful trial of off ECMO when FiO2 and sweep can be maintained at 0 for > 30 min	
	Wean FiO q2h for SaO2 > 92%	Once flows of 2 LPM, wean FiO2 to 0.5. Consider off ECMO trial at this point			
	ABG q4h to wean sweep for CO2 35–45	Goal is to achieve PaO2 > 60 mm Hg with vent FiO2 < 0.5 and Insp Plat pressure < 30 cm H2O for 12–24 h			
	Once FiO2 at 0.21 and sweep flow at 0.05–1.1L, cap oxygenator	If successful, then consider decannulation			
	Observe patient for at least 12 h (preferably 24) before consideration of decannulation				
	Ventilator settings must be maintained below (FiO2 < 0.5, Pplat < 25, PEEP < 12)				

Table 8. Key element narrative review—weaning protocol for VA-ECMO

Institution 1	Institution 2	Institution 3	Institution 4	Institution 6	Institution 12
Daily assessment by team for weaning appropriateness	Gradually wean flows in 0.5 L increments to an idle flow of 2 LPM or 2.5 LPM if not adequately anticoagulated	Process described only for VV-ECMO	Provides hemodynamic and echocardiographic criteria to consider weaning. Hemodynamic: - Pulse pressure > 20 mm Hg for 24 h - MAP > 60 with no vasopressors or low dose of a single vasopressor. No inotropes. - CVP < 18–20 mm Hg	Process described only for VV-ECMO	Suggest consider weaning when patient shows signs of recovery such as pulsatility or recovery on ECHO. No specific details about assessment for weaning
Gradual ECMO flow decrease to 2 LPM. Further weaning should be done in conjunction with echocardiographic assessment and with heparin bolus for flows < 1.5 LPM.	Can briefly decrease flow to 1.5 LPM to facilitate echocardiographic assessment if adequately anticoagulated.				
Once flows reduced, wean circuit FiO2 and sweep gas q2h to patient SvO2 60–70, lactate < 2, and normal PA PO2 (100–190).	Once cardiac function is improved and decannulation is planned, maintain circuit flow at minimum 2 LPM until decannulation				
Process described only for VV-ECMO					

Table 9. Key-element narrative review—weaning protocol for VV-ECMO

Institution 1	Institution 2	Institution 3	Institution 4	Institution 6	Institution 12
Daily assessment by team for weaning appropriateness	Daily assessment of need for ECMO	Decrease pump flows incrementally by 0.5 LPM with goal to achieve 2 LPM	Process described only for VA-ECMO	Turn down sweep and FiO2 increments of 0.5 LPM and FiO2 0.1 while following ABG to maintain PaO2 > 60 and PaCO2 to target pH 7.35–7.45	Process described only for VV-ECMO
Perfusionist weans oxygen flow and sweep, while respiratory therapist optimizes ventilator parameters	Wean flows to 2 LPM or 2.5 LPM if not anticoagulated	Consider increasing anticoagulation therapy to facilitate low flows. Do not flow below 0.5 LPM		Successful trial of off ECMO when FiO2 and sweep can be maintained at 0 for > 30 min	
	Wean FiO q2h for SaO2 > 92%	Once flows of 2 LPM, wean FiO2 to 0.5. Consider off ECMO trial at this point			
	ABG q4h to wean sweep for CO2 35–45	Goal is to achieve PaO2 > 60 mm Hg with vent FiO2 < 0.5 and Insp Plat pressure < 30 cm H2O for 12–24 h			
	Once FiO2 at 0.21 and sweep flow at 0.05–1.1L, cap oxygenator	If successful, then consider decannulation			
	Observe patient for at least 12 h (preferably 24) before consideration of decannulation				
	Ventilator settings must be maintained below (FiO2 < 0.5, Pplat < 25, PEEP < 12)				
provides an opportunity for national collaboration on ECLS program development.

Funding Sources
The authors have no funding sources to declare.

Disclosures
The authors have no conflicts of interest to disclose.

References

1. Nasr VG, Raman L, Barbaro RP, et al. Highlights from the Extracorporeal Life Support Organization Registry: 2006-2017. ASAIO J 2019;65:537-44.

2. ECLS Registry Report International Summary 2020. Available at: https://www.elso.org/Portals/0/Files/Reports/2020_January%2520Summary%2520January%25202020_page1.pdf. Accessed May 8, 2021.

3. Nathens AB, Jurkovich GJ, Maier RV, et al. Relationship between trauma center volume and outcomes. JAMA 2001;285:1164-71.

4. Grunau B, Shemie SD, Wilson LC, et al. Perceived barriers to the use of extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest in Canada. CJ C Open 2021;3:327-36.

5. Becher PM, Goßling A, Schrage B, et al. Procedural volume and outcomes in patients undergoing VA-ECMO support. Crit Care 2020;24:291.

6. Grunau B, Carrier S, Bashir J, et al. A comprehensive regional clinical and educational ECPR protocol decreases time to ECMO in patients with refractory out-of-hospital cardiac arrest. Can J Emerg Med 2017;19:424-35.

7. D’Arrigo S, Cacciola S, Dennis M, et al. Predictors of favourable outcome after in-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation: a systematic review and meta-analysis. Resuscitation 2017;121:62-70,

8. Federal Aviation Administration. Airplane Flying Handbook (FAA-H-8083-3A). Washington, DC: Skyhorse Publishing, 2011.

9. Neureiter N, Garrick BJ, Crowley KD. Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants. Washington, DC: National Academies Press, 2016.

10. Abrams D, Garan AR, Abdelbary A, et al. Position paper for the organization of ECMO programs for cardiac failure in adults. Intensive Care Med 2018;44:717-29.

11. Combes A, Brodie D, Bartlett R, et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med 2014;190:488-96.

12. Extracorporeal Life Support Organization (ELSO). Adult respiratory failure guidelines. Available at: https://www.elso.org/ecmo-resources/els-ecmo-guidelines.aspx. Accessed May 8, 2021.

13. Hoste P, Hoste E, Ferdinande P, et al. Development of key interventions and quality indicators for the management of an adult potential donor after brain death: a RAND modified Delphi approach. BMC Health Serv Res 2018;18:580.

14. Fitch K, Bernstein SJ, Aguilar MD, et al. The RAND/UCLA appropriateness method user’s manual. Available at: https://www.rand.org/pubs/monograph_reports/MR1269.html. Accessed April 27, 2021.

15. Linneberg MS, Kongsgard S. Coding qualitative data: a synthesis guiding the novice. Qual Res J 2019;19:259-70.

16. Creswell JW, Creswell JD. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. New York, NY: Sage Publications, 2017.

17. Extracorporeal life support organization (ELSO). ELSO award for excellence in extracorporeal life support. https://www.elso.org/AwardOfExcellence.aspx. Accessed May 8, 2021.

18. Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant 2016;35:1-23.

19. Chlebowski MM, Baltagi S, Carbon M, Levy JH, Spinella PC. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit Care 2020;24:19.

20. Esper SA, Welsby IJ, Subramaniam K, et al. Adult extracorporeal membrane oxygenation: an international survey of transfusion and anticoagulation techniques. Vox Sang 2017;112:443-52.

21. Raffini L. Anticoagulation with VADs and ECMO: walking the tightrope. Hematology 2017;2017:674-80.

22. Schmidt M, Pham T, Arcadipane A, et al. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome: an international multicenter prospective cohort. Am J Respir Crit Care Med 2019;200:1002-12.

23. Combes A, Schmidt M, Hodgson CL, et al. Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med 2020;46:2464-76.