Association Between Chronic Osteomyelitis and Risk of End-Stage Renal Disease

A Nationwide Population-Based Cohort Study

Shih-Yi Lin, MD, Cheng-Li Lin, MSc, Chun-Hung Tseng, MD, Yen-Jung Chang, PhD, I-Kuan Wang, MD, Hung-Chieh Yeh, MD, and Chia-Hung Kao, MD

Abstract: Inflammation, which initiates endothelial dysfunction, vascular atherosclerosis, and oxidative stress, may negatively influence renal function and accelerate the development of end-stage renal disease (ESRD). The role of chronic osteomyelitis (COM), a chronic inflammatory disease, in the development of ESRD has not been investigated. This study explored whether patients with COM have a higher risk of ESRD than that of patients without COM.

This study is supported in part by Taiwan Ministry of Health and Welfare National Health Insurance. The funders had no role in study design, data analysis and interpretation, and manuscript writing: all authors; Final approval of manuscript: all authors.

Editor: Tibor Nadasdy.
Received: May 4, 2015; revised: June 10, 2015; accepted: June 15, 2015.

INTRODUCTION

End-stage renal disease (ESRD) is becoming a major public health concern worldwide. It can cause functional impairment and interfere with work productivity. In addition, the high cost of treatment for patients with ESRD causes a financial burden for health care systems. Hence, early recognition and prevention of risk factors for ESRD could diminish its social and economic cost.

Over the past decade, attention has been focused on identifying the risk factors for ESRD. Age, male sex, diabetes, hypertension, coronary artery disease (CAD), and congestive heart failure (CHF) are currently considered risk factors for ESRD. Inflammation has also been reported to be associated with ESRD risk. The pathophysiological explanation for the ESRD risk associated with inflammation is still unresolved but likely involves a systemic response and vascular atherosclerosis. Exploring and evaluating the ESRD risks associated with chronic inflammation-related diseases is necessary to elucidate the association between ESRD and inflammation.

Chronic osteomyelitis (COM), a lasting infection of the bones, typically evokes intense inflammation within bony structures and nearby soft tissues. COM is difficult to eradicate, and its therapy typically requires weeks, months, or years to complete. COM has been reported to increase the risk of CAD, dementia, stroke, depression, and epilepsy. Because CAD and stroke have many risk factors in common with ESRD, investigating the possible relationship between COM and ESRD is warranted. No study has connected COM with the risk of ESRD. We used a nationwide population database to assess the association of COM and risks of developing ESRD in a cohort study over a follow-up period of 14 years.
MATERIALS AND METHODS

Data Source

Data were extracted from the National Health Insurance Research Database (NHIRD) of the Taiwan National Health Insurance (NHI) program. This insurance program has provided health care for >99% of the >23 million residents of Taiwan and contracted with 97% of Taiwan’s hospitals and clinics. Taiwan launched a NHI in 1995, operated by a single buyer, the government. Medical reimbursement specialists and peer review should scrutinize all insurance claims. The diagnoses were based on the International Classification of Diseases, Ninth Revision (ICD-9) codes that were judged and determined by related specialists and physicians according to the standard clinical criteria. If these hospitals or doctors made the wrong codes or diagnoses, they would be punished to pay a lot of penalty. Therefore, the diagnoses and codes used in this study should be correct and reliable.19 For this study, we used NHI administrative data19 that contains health care data including records of inpatient claims, a registry of catastrophic illness patients, and a registry of beneficiaries. Records were linked using a scrambled, anonymous registry of catastrophic illness patients, and a registry of bene-

Data Source

Age-specific analysis showed that the IRR was the highest in non-COM cohort is 5.29 ± 3.96 years and in non-COM cohort is 6.21 ± 3.88 years. In both the cohorts, more than half of the patients were ≥55 years, and 66.5% were male. Compared with the comparison cohort, patients with COM were more likely to have diabetes (28.0% vs 6.05%; P < 0.001), hypertension (30.1% vs 11.2%; P < 0.001), hyperlipidemia (6.97% vs 2.66%; P < 0.001), CHF (14.1% vs 5.09%; P < 0.001), hyper-

Statistical Analysis

The proportionate distributions of sociodemographic characteristics and comorbidities between the cohorts with and without COM were compared using the χ² test. The sex-

RESULTS

We identified 24,267 patients newly diagnosed with COM between 1997 and 2010 and 97,068 patients in the non-COM comparison cohort (Table 1). The mean follow-up years in COM cohort is 5.29 ± 3.96 years and in non-COM cohort is 6.21 ± 3.88 years. In both the cohorts, more than half of the patients were ≥55 years, and 66.5% were male. Compared with the comparison cohort, patients with COM were more likely to have diabetes (28.0% vs 6.05%; P < 0.001), hypertension (30.1% vs 11.2%; P < 0.001), hyperlipidemia (6.97% vs 2.66%; P < 0.001), CHF (14.1% vs 5.09%; P < 0.001), hyper-

Outcome Measures

Both cohorts were followed until a diagnosis of ESRD or until loss to follow-up, death, termination of insurance, or the end of 2010. ESRD was identified from the Registry for Catastrophic Illness Patient Database. Registration for cata-

Table 3 shows the incidence rate and adjusted HR of ESRD according to the presence of individual comorbidity. A higher incidence rate of ESRD was observed in patients having any comorbidity in both the cohorts. COM patients with no comorbidity had a higher risk of developing ESRD comparing with the non-COM patients with no comorbidity (adjusted HR of diabetes = 1.53, 95% CI: 1.23–1.85; adjusted HR of hyper-

Table 2 shows the incidence rate and adjusted HR of ESRD according to the presence of individual comorbidity. A higher incidence rate of ESRD was observed in patients having any comorbidity in both the cohorts. COM patients with no comorbidity had a higher risk of developing ESRD comparing with the non-COM patients with no comorbidity (adjusted HR of diabetes = 1.53, 95% CI: 1.23–1.85; adjusted HR of hyper-

Table 4 shows the incidence rate and adjusted HR of ESRD stratified by age categorization and the presence of comorbidity. Younger COM adults aged 20 to 34 years without comorbidities have a higher ESRD risk than non-COM adults aged 20 to 34 years without comorbidities (adjusted HR = 8.14, 95% CI: 2.04–32.6).
TABLE 1. Demographic Characteristics and Comorbidities in Cohorts With and Without Chronic Osteomyelitis

Variable	Chronic Osteomyelitis	Comorbidity	P Value
	No (N = 97,068)	Yes (N = 24,267)	
Sex			
Female	32,520 (33.5)	8130 (33.5)	0.99
Male	64,548 (66.5)	16,137 (66.5)	
Age, mean (SD)*	56.9 (17.7)	57.0 (17.7)	0.51
Stratify age			
20–34	13,236 (13.6)	3309 (13.6)	0.99
35–44	13,304 (13.7)	3326 (13.7)	
45–54	16,848 (17.4)	4212 (17.4)	
55–64	16,804 (17.3)	4201 (17.3)	
65+	36,876 (38.0)	9219 (38.0)	
Comorbidity			
Diabetes	5875 (6.05)	6786 (28.0)	<0.001
Hypertension	10,825 (11.2)	7315 (30.1)	<0.001
Hyperlipidemia	2582 (2.66)	1691 (6.97)	<0.001
CHD	4983 (5.13)	2731 (11.3)	<0.001
CHF	4941 (5.09)	3431 (14.1)	<0.001
Gout	482 (0.50)	613 (2.53)	<0.001
Proteinuria	102 (0.11)	90 (0.37)	<0.001

* χ² test. CHD = coronary heart disease, CHF = congestive heart failure, SD = standard deviation.

** Two sample t test.

The Kaplan–Meier survival analysis showed that patients with COM had a significantly higher rate (5.8%) of ESRD development than that of the non-COM cohort (Figure 1).

TABLE 2. Incidence Rate and HR of ESRD by Sex, Age, and the Presence of Comorbidity

Variables	No	Yes	IRR† (95% CI)	Adjusted HR† (95% CI)		
	Event	Rate		Event	Rate	
All	790	13.1	5.5 (4.3, 7.1)**	2.01 (1.81, 2.25)**		
Sex						
Female	313	16.1	4.27 (4.02, 4.54)**	1.81 (1.52, 2.17)**		
Male	477	11.7	4.73 (4.53, 4.94)**	2.03 (1.76, 2.34)**		
Stratify age						
20–34	3	0.31	34.0 (28.5, 40.5)**	17.8 (5.18, 61.4)**		
35–44	34	3.55	12.7 (11.4, 16.2)**	2.91 (1.78, 4.73)**		
45–54	84	7.58	11.9 (10.9, 13.0)**	2.79 (2.05, 3.78)**		
55–64	190	17.1	5.27 (4.86, 5.71)**	1.69 (1.35, 2.12)**		
65+	479	25.3	2.45 (2.30, 2.60)**	1.30 (1.10, 1.54)**		
Comorbidity						
No	407	0.76	1.24 (1.17, 1.32)**	1.57 (1.23, 2.00)**		
Yes	383	5.83	2.59 (2.42, 2.77)**	2.25 (1.97, 2.57)**		

CHD = coronary heart disease, CHF = congestive heart failure, CI = confidence interval, ESRD = end-stage renal disease, HR = hazard ratio, IRR = incidence rate ratio, PY = person-years.

* P < 0.05.
** P < 0.01.
*** P < 0.001.
† Adjusted for age, sex, and the presence of comorbidities.
‡ Subjects with 1 of the comorbidities (diabetes, hypertension, hyperlipidemia, CHD, CHF, gout, and proteinuria) were classified as the comorbidity group.
§ Incidence rate, per 10,000 PY.

DISCUSSION

Previous studies have shown a link between chronic inflammatory diseases, such as hepatitis C infection,24,25 hepatitis B infection,26 stroke,27 gout,28 periodontal disease,29 and herpes zoster, and ESRD.30 Systemic inflammation is a suspected mechanism in the relationship between these diseases and an increased risk of ESRD. Using the nationally representative NHIRD to compare patients with COM and controls between 1997 and 2010, this study showed that COM, a chronic inflammatory disease, is associated with an increased risk of ESRD.

Numerous studies have shown a causal link between ESRD risk and old age, sex,31,32 diabetes,33 hypertension,33,35 hyperlipidemia,34,36 CAD,37 and CHF.38 Our data revealed that COM patients with at least 1 of these comorbidities had an increase in ESRD risk compared with non-COM patients without comorbidities. Further analysis of the interaction between COM and individual comorbidity as well as the risk of ESRD in COM patients and matched controls with or without these comorbidities differed. Our results demonstrate that COM is potentially an independent risk factor for ESRD.

There are several possible physiopathological mechanisms accounting for COM cohort that has higher ESRD risk than non-COM cohort. Chronic infection may cause infection-associated glomerulonephritis that would predispose to nephrons damage, glomerulosclerosis, and thus decline of renal function reserve. Antibiotics for treating COM may also have direct nephrotoxicity or interacting drug–drug toxic effects on renal function of COM patients. A prospective long-term follow-up of COM patients with kidney biopsy data would be necessary to help clarify the causality of COM and ESRD.

Old age has been recognized as a crucial risk factor for ESRD.39 However, in the current study, the COM subgroup of patients aged 20 to 34 years had an up to 17.8-fold increased
TABLE 3. Incidence Rate and HR of ESRD by the Presence of Each Type of Comorbidity

Variables	Chronic Osteomyelitis	Compared to Nonosteomyelitis	
	Event PY Ratea	IRRb (95% CI)	Adjusted HRc (95% CI)
Diabetes			
No	525 579,260 0.91	1.64 (1.56, 1.72)***	1.53 (1.27, 1.85)***
Yes	265 23,225 11.4	2.08 (1.90, 2.29)***	1.78 (1.53, 2.07)***
Hypertension	515 559,347 9.21	4.09 (3.93, 4.25)***	2.06 (1.77, 2.40)***
No	275 43,168 63.7	2.29 (2.10, 2.48)***	1.50 (1.27, 1.77)***
Yes	75 10,824 69.3	2.81 (2.44, 3.42)***	1.76 (1.29, 2.39)***
Hyperlipidemia	715 591,691 12.1	3.45 (4.19, 4.51)***	2.02 (1.80, 2.28)***
No	275 43,168 63.7	2.81 (2.44, 3.42)***	1.76 (1.29, 2.39)***
Yes	75 10,824 69.3	2.81 (2.44, 3.42)***	1.76 (1.29, 2.39)***
CHD			
No	690 581,907 1.19	4.53 (4.37, 4.70)***	1.99 (1.76, 2.24)***
Yes	100 20,608 48.5	2.81 (2.46, 3.21)***	1.75 (1.33, 2.30)***
CHF			
No	646 583,366 1.11	4.43 (4.27, 4.59)***	2.06 (1.82, 2.34)***
Yes	144 19,149 7.52	2.28 (2.02, 2.57)***	1.43 (1.14, 1.80)***
Gout			
No	769 600,707 1.28	4.58 (4.42, 4.74)***	2.04 (1.82, 2.28)***
Yes	21 1808 13.6	1.03 (0.74, 1.43)	1.02 (0.54, 1.93)
Proteinuria	785 602,147 1.30	4.52 (4.36, 4.68)***	2.02 (1.81, 2.25)***
No	5 368 13.6	2.71 (1.30, 5.68)***	1.66 (0.45, 6.16)
Yes			

ESRD = end-stage renal disease, IRR = incidence rate ratio, HR = hazard ratio, PY = person-years.

a $P < 0.05$.

$^{**} P < 0.01$.

$^{***} P < 0.0001$.

b Adjusted for age, sex, and comorbidities.

c Incidence rate, per 10,000 PY.

TABLE 4. Incidence Rate and HR of ESRD by Age and the Presence of Comorbidity

Variables	Chronic Osteomyelitis	Compared to Nonosteomyelitis	
	Event PY Ratea	IRRb (95% CI)	Adjusted HRc (95% CI)
Stratify age Comorbidityd			
20–34			
No	3 94,859 0.03	8.34 (7.38, 9.44)***	8.14 (2.04, 32.6)**
Yes	0 448 0.00	—	—
35–44			
No	26 94,172 0.28	2.07 (1.82, 2.35)***	2.07 (1.00, 4.29)
Yes	8 1732 4.62	4.49 (2.70, 7.46)***	4.66 (2.26, 9.62)***
45–54			
No	52 105,684 0.49	2.58 (2.31, 2.89)***	2.59 (1.55, 4.34)***
Yes	32 5084 6.29	3.86 (2.97, 5.01)***	3.90 (2.68, 5.67)***
55–64			
No	112 99,775 1.12	1.08 (0.92, 1.25)	1.08 (0.63, 1.85)
Yes	78 11,220 6.95	2.64 (2.23, 3.12)***	2.62 (2.01, 3.41)***
65+			
No	214 142,357 1.50	1.24 (1.10, 1.40)***	1.26 (0.84, 1.88)
Yes	265 47,183 5.62	1.62 (1.49, 1.77)***	1.62 (1.35, 1.95)***

CI = confidence interval, ESRD = end-stage renal disease, IRR = incidence rate ratio, HR = hazard ratio, PY = person-years.

a $P < 0.05$.

$^{**} P < 0.01$.

$^{***} P < 0.0001$.

b Adjusted for sex.

c Subjects with 1 of comorbidities (diabetes, hypertension, hyperlipidemia, CHD, CHF, and proteinuria) were classified as the comorbidity group.

d Incidence rate, per 10,000 PY.
ESRD risk compared with the non-COM subgroup of patients aged 20 to 34 years. This result is attributable to at least 2 factors. First, the competing risk between ESRD and death is higher in elderly people compared with younger patients. Therefore, elderly patients might have an increased risk of death from other causes before they are required to initiate dialysis. Second, elderly people have higher possibility to refuse long-term dialysis in consideration of lifespan and underlying complex comorbidities. Finally, we collected data in a retrospective manner and applied strict criteria to enroll patients with and those without COM. The relatively low number of ESRD events in patients without COM aged 20 to 34 years might have caused bias.

Our study has several strengths. First, this retrospective study had a follow-up length of 14 years, and a strict criteria was used to the catastrophic illness registration criteria used to identify ESRD. The long-term follow-up and strict definition of ESRD diagnosis criteria strengthened the time- and severity-dependent effects of COM on ESRD development. Second, COM and age- and sex-matched controls were selected from a dataset exceeding 22 million enrollees and encompassing >99% of the population of Taiwan. This near-total-population sample coupled with a strict case-to-control ratio of 1:4 increased the generalizability, precision, and reliability of its results. Third, an NHI monitoring and auditing system is implemented to supervise insurance claims to prevent overdiagnosis and medical resource waste. This NHI surveillance program ensures the validity of diagnosis. Finally, all recognized comorbidities and risk factors of ESRD (ie, hypertension, diabetes, hyperlipidemia, CHF, CAD, hyperuricemia and gout, and proteinuria) were considered and adjusted in this study, and the results suggest that COM is an independent risk factor for ESRD.

Several limitations of this study should be noted. First, we had no definite information on the levels of blood pressure, serum glucose, and serum lipids of the patients. Our study may thus have a confounding variability bias. The second limitation is that the database used for our research did not provide information on lifestyle and personal health behaviors, including smoking, drinking, and obesity; these variables are known to be related to ESRD. Finally, the results of this study were obtained from insurance claims to calculate the risk of ESRD among the COM patients. Hence, patients who refused long-term dialysis or COM management may have caused us to underestimate or overestimate the effects of COM on ESRD development. This possible bias was minimized because the NHI covers >99% of Taiwan’s population.

Our investigation showed that COM is an independent risk factor for ESRD. Patients with COM have a higher prevalence of conventional risk factors for ESRD. The ESRD risk of patients with COM increases if they have comorbidities (ie, hypertension, diabetes, CAD, CHF, hyperlipidemia, hyperuricemia and gout, and proteinuria). Younger patients with COM have a higher risk of ESRD. Our findings could be used to prompt clinical alerts and develop renal function screening programs for patients with COM, particularly younger patients.

REFERENCES

1. Grams ME, Chow EK, Segev DL, et al. Lifetime incidence of CKD stages 3-5 in the United States. Am J Kidney Dis. 2013;62:245–252.
2. Zelmer J. The economic burden of end-stage renal disease in Canada. Kidney Int. 2007;72:1122–1129.
3. Chang TI, Li S, Chen S-C, et al. Risk factors for ESRD in individuals with preserved estimated GFR with and without albuminuria: results from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis. 2013;61:S4–S11.
4. Eriksen BO, Ingebrtsen OC. The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int. 2006;69:375–382.
5. Haroun MK, Jaar BG, Hoffman SC, et al. Risk factors for chronic kidney disease: a prospective study of 23,334 men and women in Washington County, Maryland. J Am Soc Nephrol. 2003;14:2934–2941.
6. Huang S-T, Lin C-L, Chang Y-J, et al. Pneumococcal pneumonia infection is associated with end-stage renal disease in adult hospitalized patients. Kidney Int. 2014;86:1023–1030.
7. Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol. 2009;24:1445–1452.
8. Vlassara H, Torreggiani M, Post JB, et al. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int. 2009;76:S3–S11.
9. Lin SY, Lin CL, Liu JH, et al. Association between Helicobacter pylori infection and the subsequent risk of end-stage renal disease: a nationwide population-based cohort study. Int J Clin Pract. 2015;69:604–610.
10. Üçkay I, Jugun K, Gamulin A, et al. Chronic osteomyelitis. Curr Infect Dis Rep. 2012;14:566–575.
11. Spellberg B, Lipsky BA. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin Infect Dis. 2012;54:393–407.
12. Hsiao LC, Muo CH, Chen YC, et al. Increased risk of coronary heart disease in patients with chronic osteomyelitis: a population-based study in a cohort of 23 million. Heart. 2014;100:1450–1454.
13. Tseng CH, Huang WS, Muo CH, et al. Increased risk of dementia among chronic osteomyelitis patients. Eur J Clin Microbiol Infect Dis. 2015;34:153–159.
14. Tseng CH, Chen JH, Muo CH, et al. Increased risk of ischaemic stroke amongst patients with chronic osteomyelitis: a population-based cohort study in Taiwan. Eur J Neurol. 2015;22:633–639.
15. Tseng CH, Huang WS, Muo CH, et al. Increased depression risk among patients with chronic osteomyelitis. J Psychosom Res. 2014;77:535–540.
16. Tseng CH, Huang WS, Muo CH, et al. Increased risk of epilepsy among patients diagnosed with chronic osteomyelitis. *Epilepsy Res.* 2014;108:1427–1434.

17. Stack AG. Coronary artery disease and peripheral vascular disease in chronic kidney disease: an epidemiological perspective. *Cardiol Clin.* 2005;23:285–298.

18. Cheng T-M. Taiwan’s National Health Insurance system: high value for the dollar. *Six Countries, Six Reform Models: their Healthcare Reform: Experience of Israel, the Netherlands, New Zealand, Singapore, Switzerland and Taiwan.* New Jersey: World Scientific; 2009:171–204.

19. Chen Y-C, Yeh H-Y, Wu J-C, et al. Taiwan’s National Health Insurance Research Database: administrative health care database as study object in bibliometrics. *Scientometrics.* 2010;86:365–380.

20. Lin S-Y, Lin C-L, Tseng C-H, et al. The association between chronic osteomyelitis and increased risk of diabetes mellitus: a population-based cohort study. *Eur J Clin Microbiol Infect Dis.* 2014;33:1647–1652.

21. Hsiao L-C, Muo C-H, Chen Y-C, et al. Increased risk of coronary heart disease in patients with chronic osteomyelitis: a population-based study in a cohort of 23 million. *Heart.* 2014;100:1450–1454.

22. Lin S-Y, Lin W-M, Lin C-L, et al. The relationship between secondary hyperparathyroidism and thyroid cancer in end stage renal disease: a population based cohort study. *Eur J Int Med.* 2014;25:276–280.

23. Wang I-K, Lin C-L, Lin P-C, et al. Effectiveness of influenza vaccination in patients with end-stage renal disease receiving hemodialysis: a population-based study. *PLOS One.* 2013;8:e58317.

24. Su F-H, Su C-T, Chang S-N, et al. Association of hepatitis C virus infection with risk of ESRD: a population-based study. *Am J Kidney Dis.* 2012;60:553–560.

25. Chen Y-C, Chiou W-Y, Hung S-K, et al. Hepatitis C virus itself is a causal risk factor for chronic kidney disease beyond traditional risk factors: a 6-year nationwide cohort study across Taiwan. *BMC Nephrol.* 2013;14:187.

26. Chen Y-C, Su Y-C, Li C-Y, et al. A nationwide cohort study suggests chronic hepatitis B virus infection increases the risk of end-stage renal disease among patients in Taiwan. *Kidney Int.* 2015;87:1030–1038.

27. Hung P-H, Huang Y-T, Hsiao C-Y, et al. Young stroke patients are at high risk for subsequent end-stage renal disease: a population-based observational study. *Nephrol Dialysis Transplant.* 2014;29:873–878.