From 1900 to 2000: History of Earthworm taxonomy in the North and Northeast of Brazil and its current distribution in Brazilian Biomes

Sandriel Costa Sousa¹; Luis Manuel Hernández-García¹⁴ & Martin Lindsey Christoffersen²⁵

¹ Universidade Estadual do Maranhão (UEMA), Programa de Pós-Graduação em Agroecologia. São Luís, MA, Brasil.
² Universidade Federal da Paraíba (UFPB), Centro de Ciências Exatas e da Natureza (CCEN), Departamento de Sistemática e Ecologia (DSE). João Pessoa, PB, Brasil.
³ ORCID: http://orcid.org/0000-0001-6346-6682. E-mail: sandriel04@gmail.com
⁴ ORCID: http://orcid.org/0000-0003-1478-4953. E-mail: hglm72@gmail.com
⁵ ORCID: http://orcid.org/0000-0001-8108-1938. E-mail: mlchrist@dse.ufpb.br

Abstract. One of the initial milestones for earthworm taxonomy was the work of Michaelsen (1900), “Das Tierreich Oligochaeta”. During this period only two exotic species of the genus Amynthas were recorded for the North and Northeast of Brazil. A century has passed and little is known about the taxonomy of earthworms in these two regions and the distribution of these organisms in Brazilian Biomes. The Brazilian territory is divided into six large biomes, Amazonian, Caatinga, Cerrado, Atlantic Forest, Pampa, and Wetlands. Little is known about the distribution of earthworms in these environments. This article provides a review of the literature on the progress of taxonomy in northern and northeastern Brazil over a century and provides the current distribution of earthworms in Brazilian biomes. In the first four decades the taxonomy has advanced at a slow pace, with only 19 new species recorded. With the beginning of Gilberto Righi’s work, earthworm taxonomy has advanced significantly. After Righi’s death in 1999, taxonomy in the North and Northeast has only begun breathing again within the past two years, in which the description of nine new species and two new genera have appeared. There are currently 174 species distributed in thirteen of the sixteen states that make up the North and Northeast regions of Brazil. Regarding distribution, the Amazon, Mata Atlantica and Cerrado biomes stand out for being the most diverse in genera and species, while the Caatinga, Pampa and Pantanal biomes are less diversified. In addition, the Caatinga and Pampa are the only biomes having more exotic species than native species.

Key-Words. Biodiversity; Gilberto Righi; Hotspots; Invertebrates.

Resumo. Um dos marcos iniciais para a taxonomia de minhocas foi o trabalho de Michaelsen (1900) „Das Tierreich Oligochaeta“. Nesse período, apenas duas espécies exóticas do gênero Amynthas foram registradas no Norte e Nordeste do Brasil. Um século se passou e pouco se sabe sobre a taxonomia das minhocas nessas duas regiões e a distribuição desses organismos nos Biomas brasileiros. O território brasileiro é dividido em seis grandes Biomas, Amazonia, Caatinga, Cerrado, Mata Atlântica, Pampa e Pantanal. Pouco se sabe sobre a distribuição de minhocas nessas ambientes. Este artigo fornece uma revisão da literatura sobre o progresso da taxonomia no Norte e Nordeste do Brasil ao longo de um século e qual é a atual distribuição de minhocas nos Biomas brasileiros. Nas primeiras quatro décadas, a taxonomia avançou em ritmo lento, com apenas 19 novas espécies registradas. Com o início dos trabalhos de Gilberto Righi, a taxonomia das minhocas avançou significativamente. Após a morte de Righi, em 1999, a taxonomia no Norte e Nordeste só começou a respirar novamente nos últimos dois anos, nos quais houve a descrição de nove novas espécies e dois novos géneros. Atualmente, existem 174 espécies distribuídas em treze dos dezenove estados que compõem as regiões Norte e Nordeste do Brasil. Em relação à distribuição, os Biomas Amazônia, Mata Atlântica e Cerrado se destacam por serem os mais biodiversos em géneros e espécies, enquanto os Biomas Caatinga, Pampa e Pantanal são menos diversificados. Além disso, Caatinga e Pampa são os únicos biomas que possuem mais espécies exóticas que espécies nativas.

Palavras-Chave. Biodiversidade; Gilberto Righi; Hotspots; Invertebrados.
INTRODUCTION

The first major work on worm systematic was published in 1900 by Michaelsen, where he recognized 11 families and 11 subfamilies, which contained 152 genera and about 1,200 species.

Before Michaelsen, one of the main references to earthworms was Charles Darwin’s book (1881) “The formation of vegetable mould through the action of worms with observations on their habits”, which was largely responsible for changing the way these organisms were viewed by the population, that considered worms to be pests harmful to the soil (Walton, 1928).

In Brazil, the most comprehensive and representative work involving earthworms was published in 2007 by Brown & James, which addressed the biology, ecology and distribution of earthworms, being the first national work to relate the distribution of these organisms with Brazilian Biomes.

In general, Biome can be defined as “a homogeneous area that is arranged on a regional scale, being influenced by the same processes of formation” (Coutinho, 2006). In Brazil there are six biomes: Amazonian, Caatinga, Cerrado, Atlantic Forest, Wetlands, and Pampa. Importantly, all of these biomes suffer from some kind of anthropogenic pressure (Nascimento & Ribeiro, 2017), which can cause or accelerate biodiversity loss (Silva et al., 2018). Among the groups most susceptible to this loss of biodiversity are earthworms, organisms essential for soil biology (Ojha & Devkota, 2014) and considered to be ecosystem engineers (Jones et al., 1994).

However, even with the comprehensive work of Brown & James (2007), data on earthworm taxonomy and distribution are still scarce and sometimes outdated. Much of this scarcity of data is the result of the low number of active specialists capable of developing work in this area of research (Fragoso et al., 2003). Given this context, the present work provides a bibliographical review on the history of earthworm taxonomy in North and Northeast Brazil and updates the distribution of this group in the Brazilian Biomes.

METHODOLOGY

The present work is the result of a literature review. The story was divided into four periods. The first corresponds to the year 1900, the second to the period 1901-1940, the third to 1941-1980, and the fourth to the period spans the years 1981-2018. Two letters were used to abbreviate the northern and northeastern states (AC = Acre; AM = Amazonas; AP = Amapá; BA = Bahia; CE = Ceará; MA = Maranhão; PA = Pará; PB = Paraíba; PE = Pernambuco; RO = Rondônia; RR = Roraima; SE = Sergipe; TO = Tocantins). The distribution map was created with the assistance of the Quantum Gis Program (2018). The other analyzes were performed with the SigmaPlot 14.0 program (2017).

RESULTS AND DISCUSSION

In 1900, no species of earthworms were described from the North and Northeast. Only two exotic species, Amynthas gracilis (Kimberg, 1867) and Amynthas palidus (Michaelsen, 1892) were recorded for the State of Amazonas. Both species were reported by Rosa (1894). It is important to note that in this period Brazil did not have an active earthworm taxonomist, which may explain the low number of species records.

Over the next four decades the taxonomy of earthworms in the North and Northeast signalled a slight advance. During this period 19 new species were recorded, of which 18 were native (Table 1). However, until that time, Brazil as a whole had no active taxonomists, and all records of these four decades were only possible thanks to Michaelsen (1918, 1926, 1928, 1934) and Cernosvitov (1934, 1935, 1939). Importantly, despite progress, taxonomy was advancing at a rate of approximately 0.4 species per year. By the end of these four decades only six of the sixteen states that make up the North and Northeast had recorded earthworm species.

in the following period, which spans from 1941 to 1980, the advance was much higher compared to the previous period. In all, 73 new species were recorded for the North and Northeast of Brazil, 58 of which were native (Table 2). This period is also marked by the emergence of Gilberto Righi, today considered the greatest earthworm taxonomist in Brazil (Fragoso et al., 2003). Righi was responsible for the description of 50 of the 58 native species recorded in this period. This corresponds to almost 90% of the species. In addition, all exotic species were reported by him. This only further emphasizes his importance for Brazilian earthworm taxonomy.

In the last period, from 1981 to 2018, the number of species recorded was slightly higher than in the previous

Species	State	Native/Exotic	Author	Reference
Aporodrilus salater	AM, RR	Native	Michaelsen, 1934	Michaelsen, 1934
Andromicrus pictus	AM	Native	Michaelsen, 1926	Michaelsen, 1926
Andromicrus planaria	AM	Native	Michaelsen, 1934	Michaelsen, 1934
Andromicrus proboscidea	PA	Native	Cernosvitov, 1939	Cernosvitov, 1939
Andromicrus rubescens	AM	Native	Michaelsen, 1926	Michaelsen, 1926
Diachaea casevicensis	AM	Native	Cernosvitov, 1934	Cernosvitov, 1934
Dichogaster bolaudi	AM, AP	Exotic	Michaelsen, 1891	Michaelsen, 1891; Cernosvitov, 1891
Enantiophilus bobbili	AM, PA	Native	Cognetti, 1902	Michaelsen, 1927
Glyphidrilus echhardtii	AM	Native	Michaelsen, 1926	Michaelsen, 1926
Martodrilus ohausii	AM	Native	Michaelsen, 1917	Michaelsen, 1917
Neogaster americanus	AP	Native	Cernosvitov, 1934	Cernosvitov, 1934
Paulistus taunayi	BA	Native	Michaelsen, 1926	Michaelsen, 1926
Rhinodrilus annulatus	AP	Native	Cernosvitov, 1934	Cernosvitov, 1934
Rhinodrilus garbei	PE	Native	Michaelsen, 1926	Michaelsen, 1926
Rhinodrilus lakei	AM, RR	Native	Michaelsen, 1934	Michaelsen, 1934
Rhinodrilus longus	AP	Native	Cernosvitov, 1934	Cernosvitov, 1934
Rhinodrilus nemani	AM	Native	Michaelsen, 1928	Michaelsen, 1928
Wegeneriona brasiliensis	PA	Native	Cernosvitov, 1939	Cernosvitov, 1939
Wegeneriona michaelseni	AP	Native	Cernosvitov, 1934	Cernosvitov, 1934
Table 2. Earthworm species recorded in the period 1941-1980 in the North and Northeast of Brazil.

Species	State	Native/Exotic	Author	Reference
Amyntias morrisi	BA	Exotic	Beddard, 1892	Righi, 1971
Andionthimus amazonius	AM	Native	Michaelsen, 1918	Righi et al., 1976
Andionthimus tarumanus	AM, RR	Native	Righi et al., 1976	Righi et al., 1976
Andiodrilus xcoeni	AM, AP	Native	Righi, 1971	Righi, 1971; Righi et al., 1976
Aerea roco	AM	Native	Righi et al., 1978	Righi et al., 1978
Atasina gatesi	AM	Native	Righi et al., 1978	Righi et al., 1978
Atasina puba	PA	Native	Righi, 1971	Righi, 1971
Baubas santosi	SE	Native	Righi, 1980a	Righi, 1980a
Brinkhurstia americana	AM	Exotic	Brinkhurst, 1964	Righi et al., 1978
Cironodrilus angeli	AP	Native	Righi, 1975	Righi, 1975
Daniodrilus femorius	AM	Native	Righi et al., 1978	Righi et al., 1978
Diachaeta atrousis	AM	Native	Righi et al., 1978	Righi et al., 1978
Diachaeta secata	AM	Native	Righi et al., 1978	Righi et al., 1978
Diachaeta julii	AM	Native	Righi et al., 1978	Righi et al., 1978
Diachaeta nia	AM	Native	Righi et al., 1976	Righi et al., 1976
Dichoagaster affinis	AM, BA	Exotic	Michaelsen, 1900	Righi, 1971; Righi et al., 1978
Dichoagaster annae	BA	Exotic	Horst, 1883	Righi, 1968a
Dichoagaster andina	AM, PA	Exotic	Cognetti, 1904	Righi et al., 1978
Dichoagaster badajos	AM	Native	Righi et al., 1978	Righi et al., 1978
Dichoagaster inaka	AM	Native	Righi et al., 1978	Righi et al., 1978
Dichoagaster modiglianii	AM	Exotic	Rosa, 1896	Righi, 1978
Dichoagaster saliens	AM, BA, MA	Exotic	Beddard, 1893	Righi, 1971; Righi et al., 1978
Eudrilus eugenei	BA, MA, PA, PE, SE	Exotic	Kimberg, 1867	Righi, 1967b, 1972
Eukena asilis	PA, PE	Native	Righi, 1966b	Righi, 1968b, 1971
Eukena guamae	AM, PA	Native	Righi, 1971	Righi, 1971; Righi et al., 1978
Eukena uma	BA	Native	Righi, 1966b	Righi, 1971
Eukena taisa	PA	Native	Righi, 1980	Righi, 1971
Evandrologus rarus	AM	Native	Righi et al., 1978	Righi et al., 1978
Glossodrilus georgyi	AP	Native	Cernosvitov, 1934	Righi, 1971
Glossodrilus antunesis	AP, MA	Native	Righi, 1971	Righi, 1971, 1972
Hyperodrilus africanus	PE	Exotic	Beddard, 1891	Righi, 1972
Holoscoles caracuru	AM, AP	Native	Righi, 1975	Righi, 1995, 1978
Holoscoles nemosus taxco	AM	Native	Righi et al., 1978	Righi et al., 1978
Holodrilus tagua	AM	Native	Righi et al., 1978	Righi et al., 1978
Lindiella ipu	PA	Native	Righi, 1975	Righi, 1975
Martiodrilus duodenanus	AP	Native	Michaelsen, 1918	Righi, 1971
Martiodrilus matapai	AP	Native	Righi, 1969	Righi, 1971
Metaphire californica	BA	Exotic	Kimberg, 1867	Righi, 1971
Meniscoles marcusi	AM	Native	Righi & Ayres, 1976	Righi & Ayres, 1976
Meniscoles nudiaeae	AM	Native	Righi et al., 1978	Righi et al., 1978
Nematomorpha panamaensis	BA	Exotic	Eisen, 1900	Brown & James, 2007
Neogaster gavlovii	AP	Native	Righi & Caballero, 1970	Righi & Caballero, 1970
Neogaster asiae	AP	Native	Righi, 1975	Righi, 1975
Neureagueus amaparans	AP	Native	Righi, 1971	Righi, 1971
Omodesodes diversgens	AM	Native	Cognetti, 1905	Righi, 1978
Onychochaeta seriessa	TO	Native	Righi, 1971	Righi, 1971
Pickfordia taxcoa	AM	Exotic	Righi et al., 1978	Righi et al., 1978
Polyphemerina elongata	BA, PE	Exotic	Perrier, 1872	Righi, 1971, 1980b
Pontoscolex corethrurus	AM, AP, PA, PE	Exotic	Müller, 1857	Righi, 1967a
Pontoscolex litoralis	PE	Exotic	Grube, 1855	Brown & James, 2007
Rhinodrilus adelaeae	CE	Native	Gordero, 1943	Cordero, 1943
Rhinodrilus mamita	CE	Native	Gordero, 1943	Cordero, 1943
Rhinodrilus lucilleae	AM	Native	Righi et al., 1976	Righi et al., 1976
Rhinodrilus prolixii	AM	Native	Righi, 1967a	Righi, 1967a
Rhinodrilus bursiferus	AP	Native	Righi, 1971	Righi, 1971
Rhinodrilus curiosus	AM	Native	Righi et al., 1976	Righi et al., 1976
Rhinodrilus motucu	BA	Native	Righi, 1971	Righi, 1971
Rhinodrilus francisci	PE	Native	Gordero, 1944	Cordero, 1944
Rhinodrilus panon	PA	Native	Righi, 1971	Righi, 1971
period. In all, 80 new species were recorded, 70 of them native (Table 3). From the beginning to the middle of this period, Righi still remains predominant in Brazilian taxonomy, being responsible for the description of 49 of the 70 native species recorded. With Righi’s death in 1999, Brazilian taxonomy suffered a great loss, which was reflected in the following decade, where only one species was described in Brazil. In the North and Northeast region, earthworm taxonomy only resumed walking, even if at a slow stride, in the last two years, with the description of nine new species and two new genera. The data only highlights the importance and impact that the presence of only one taxonomist can have for a given region.

![Figure 1. Native (N) and exotic (E) species numbers recorded in each state.](image)

![Figure 2. Distribution of earthworm families in Brazilian biomes.](image)
Table 3. Earthworm species recorded in the period 1981-2018 in the North and Northeast of Brazil.

Species	State	Native/Exotic	Author	Reference
Amythas robustus	PB	Exotic	Perrier, 1872	De Assis et al., 2017
Andironthus caudatus	AM, PA, RO	Native	Righi et al., 1976	Adis & Righi, 1989; Righi, 1982a, 1986a
Andironthus eveletineae	RO	Native	Righi, 1986a	Righi, 1986a
Andironthus holmgrenii	RO	Native	Michaelsen, 1918	Righi, 1986a
Andironthus paupae	RO	Native	Righi, 1986a	Righi, 1985
Andironthus rondoniensis	RO	Native	Righi, 1986a	Righi, 1986a
Andironthus samuelensis	RO	Native	Righi, 1986a	Righi, 1985
Andironthus (Tunecridus) mirisci	MA	Native	Hernández-García et al., 2018c	Hernández-García et al., 2018c
Andironthus (Tunecridus) barrosoi	MA	Native	Hernández-García et al., 2018c	Hernández-García et al., 2018c
Andironthus rodriquezi	AM	Native	Feijoo et al., 2017	Feijoo et al., 2017
Anteonides pigy	PA	Native	Righi, 1982a	Righi, 1982a
Arisa nelmae	MA	Native	Hernández-García et al., 2018b	Hernández-García et al., 2018b
Brasilisia punki	MA	Native	Hernández-García et al., 2018b	Hernández-García et al., 2018b
Cinodrilus aidae	PB	Native	Righi, 1994	Righi, 1994
Cinodrilus righi	AM	Native	Zici et al., 2001	Zici et al., 2001
Chubu bari	AC	Native	Righi & Guerra, 1985	Righi & Guerra, 1985
Diagusta vivianae	AM	Exotic	Righi, 1984	Righi, 1988b
Diachanta adropi	AM	Native	Righi, 1989a	Righi, 1989a
Diachanta aronwiek	AM	Native	Righi, 1989a	Righi, 1989a
Diachanta arocoa	PA	Native	Righi, 1982a	Righi, 1982a
Diachanta adnora	RO	Native	Righi, 1989a	Righi, 1989a
Diachanta marula	AM	Native	Righi, 1989b	Righi, 1989b
Dic hospater modiglani	RR	Exotic	Rosa, 1896	Righi & Guerra, 1985
Dic hospater saliens	PA, RO	Exotic	Beddard, 1893	Righi, 1988b, 1990
Eukemia eversiana	AM, PA, RO	Exotic	Michaelson, 1892	Righi, 1990
Eukemia subandina	RO	Native	Rosa, 1895	Righi, 1984, 1986b
Eukemia tenuipendula	RO	Native	Rosa, 1895	Righi, 1986b
Eukemia musu	RO	Native	Righi, 1986a	Righi, 1988b
Gaoso dox croydri	RO	Native	Righi, 1971	Righi, 1986b
Gaoso dox edgardini	RO	Native	Righi, 1986b	Righi, 1986b
Gaoso dox peepus	TO, RO	Native	Righi, 1972	Righi, 1986b, 1990
Gaoso dox walesi	RO	Native	Michaelson, 1913	Righi, 1988a; Righi & Guerra, 1985
Glossodrilus bathus	RR	Native	Hamou & Donatelli, 1983	Hamou & Donatelli, 1983
Glossodrilus battus	RR	Native	Righi, 1990	Righi, 1990
Holoscolex excellens	MA	Native	Hernández-García et al., 2018a	Hernández-García et al., 2018a
Holoscolex alatus	MA	Native	Hernández-García et al., 2018a	Hernández-García et al., 2018a
Holoscolex fernandii	MA	Native	Hernández-García et al., 2018a	Hernández-García et al., 2018a
Hoploderis amazonicus	AM	Native	Righi, 1983	Righi, 1983
Lindodrilus mendesi	MA, PB	Native	Righi, 1994	Righi, 1994; Sousa et al., 2020
Loudera paraolensis	PB	Native	Righi, 1994	Righi, 1994
Menoscolex ronimomsis	RR	Native	Righi, 1984	Righi, 1990
Metatobas bare	RR	Native	Righi, 1988b	Righi, 1988b
Nematoscolex laeum	RO	Exotic	Beddard, 1893	Righi, 1984, 1988a
Neogaster angeli	AP	Native	Righi, 1988b	Righi, 1988b
Ocnerodrilus occidentalis	AM, PA	Exotic	Eisen, 1878	Righi, 1988b
Ocnerodrilus otomana	PB	Exotic	Righi, 1994	Righi, 1994
Omodeoscolex divergens	PA	Native	Cognetti, 1905	Righi, 1984, 1989b
Pithemena bicincta	PB	Exotic	Perrier, 1875	De Assis et al., 2017
Pontoscolex cuosi	AP, PA, RR	Native	Righi, 1984	Righi, 1984, 1988b, 1990, 1998
Pontoscolex maracayensis	RR	Native	Righi, 1984	Righi, 1984
Pontoscolex nigeri	PA, RR	Native	Zici & Csuzdi, 1999	Zici & Csuzdi, 1999
Pontoscolex franzii	PA	Native	Zici & Csuzdi, 1999	Zici & Csuzdi, 1999
Pontoscolex vandersilini	AM	Native	Michaelson, 1933	Zici et al., 2001
Pontoscolex pydanei	RO	Native	Righi, 1986a	Righi, 1988a, 1990
Pygmoaonodrilus amapanaensis	AP	Native	Righi, 1988b	Righi, 1988b
Rhinodrilus jucundus	PA	Native	Righi, 1985	Righi, 1985, 1989b
Rhinodrilus pittae	PE	Native	Righi & Moraes, 1990	Righi & Moraes, 1990
Rhinodrilus contortus	AM	Native	Cernossikov, 1938	Zici et al., 2001
After a century, three of the sixteen states that make up the North and Northeast of Brazil (Alagoas, Piauí and Rio Grande do Norte) do not yet have any earthworm recorded. The states with the largest number of species are Amazonas (AM), Pará (PA) and Amapá (AP), while Ceará (CE), Tocantins (TO) and Sergipe (SE) have the lowest numbers (Fig. 1).

The states of Bahia (BA), Paraíba (PB) and Pernambuco (PE) stand out for being the only ones with more exotic than native species (Fig. 1), while Amazonas is the one with the largest number of native species.

Regarding distribution, there are twelve families of earthworms distributed in six Brazilian biomes, with Acanthodrilidae, Ocnerodrilidae and Rhinodrilidae being the only ones present in all biomes (Fig. 2). Glossoscolecidae, Megascolecidae and Rhinodrilidae also stand out for their abundance in the Brazilian territory. Attention is drawn to the distribution of the family Megascolecidae, which is more abundant in southern Brazil (Fig. 2).

In relation to earthworm genera, 82 are found within the six biomes. The Amazonian and Atlantic Forest biomes stand out because they represent more than half of the genera found in Brazilian soil (Fig. 3), while in the Caatinga biome only five earthworm genera are found, being the poorest in genera of the six biomes.

Among all biomes, Caatinga and Pampa are the only ones that have more exotic than native species (Fig. 4), which may be an indication that these biomes are undergoing environmental degradation processes. On the other hand, this result may be correlated with the small number of studies with earthworms, a factor that is related to the low level of active taxonomy in Brazil. As for the Brazilian Wetland, more than 40% of the species found are exotic. As expected, the Amazonian and Atlantic Forest biomes are the ones that hold the largest number of earthworm species, most of which are native species. This result highlights the richness of these two biomes in particular, and the attention that these two biomes should receive regarding to the conservation of native species.

It is important to emphasize that native species of earthworms are sensitive to anthropic disturbances (Winsome et al., 2006), and in some cases can be elimi-

Species	State	Native/Exotic	Author	Reference
Rhinodrilus elisianae	AM, PA, RO	Native	Righi et al., 1976	Zicsi & Csuzdi, 1999; Righi, 1986b, 1988a, 1990
Rhinodrilus lourense	RO	Native	Righi, 1986b	Righi, 1986b
Rhinodrilus maracuru	BA	Native	Righi, 1985	Righi, 1985
Rhinodrilus amazonius	PA	Native	Zicsi & Csuzdi, 1999	Zicsi & Csuzdi, 1999
Rhinodrilus aparaca	RR	Native	Righi, 1982b	Righi, 1982b
Rhinodrilus alveolus	RR	Native	Righi, 1982b	Righi, 1982b, 1998
Rhinodrilus dithaeae	AP	Native	Righi, 1988b	Righi, 1988b
Rhinodrilus maju	PA	Native	Santos et al., 2017	Santos et al., 2017
Rhinodrilus gurupi	MA	Native	Santos et al., 2017	Santos et al., 2017
Rhinodrilus tico	AM, RR	Native	Righi, 1982b	Righi, 1982b, 1988b, 1998
Rhinodrilus venanciocii	AM, PA	Native	Righi, 1982a	Righi, 1982a
Rhinodrilus vivesensis	PA	Native	Santos et al., 2017	Santos et al., 2017
Rhinodrilus manaro	RR	Native	Righi, 1982b	Righi, 1982b
Rhinodrilus uete	RO	Native	Righi, 1988a	Righi, 1988a
Rhinodrilus fontebonensis	AM	Native	Righi, 1988b	Righi, 1988b
Rhinodrilus ortoneae	PA	Native	Righi, 1988b	Righi, 1988b
Rhinodrilus dithaeae	AP	Native	Righi, 1988b	Righi, 1988b
Urobenus peterei	MA, PA	Native	Righi, 1985	Righi, 1985
Urobenus isiguassu	PA	Native	Righi, 1982a	Righi, 1982a
Urobenus brasiliensis	AM, MA, PA	Native	Benham, 1887	Römbke et al., 1999; Righi, 1985
Wegeneriona belanensis	PA	Native	Righi, 1988b	Righi, 1988b

Sousa et al., 2020 is still in the process of being published.

Figure 3. Number of genera in each Brazilian biome.

Figure 4. Number of native (N) and exotic (E) species in Brazilian biomes.
nated by exotic species (Pop & Pop, 2006). Thus measures aimed at the conservation of these biomes are of utmost importance for the conservation of these native species and of the possible new species that have not yet been described.

CONCLUSION

In the first decades after 1900, the taxonomy of earthworms in the North and Northeast advanced slowly, mainly due to the absence of active specialists in this period. The greatest advance was made between the 60's and 90's, which corresponds to the period of Gilberto Righi's works. There are currently 174 species distributed in 13 states of the North and Northeast of Brazil. Earthworms can be found in all Brazilian biomes, with the families Rhinodrilidae, Megascolecidae and Glossoscolecidae being the most representative. The Amazonian and Atlantic Forest biomes stand out for their great biodiversity of earthworms, while the Cerrado presents intermediate values both at the level of families and in genera and species. It is important to emphasize that this work is only a small step towards the better knowledge of this group of organisms. Of utmost importance, and yet often “despised”, this group may be taken as a basis for future work on this topic.

ACKNOWLEDGMENTS

We appreciate all the support provided by the State University of Maranhão and by the Federal University of Paraíba. We appreciate the support of all students involved in the development of this work.

REFERENCES

Adis, J. & Righi, G. 1989. Mass migration and life cycle adaptation – a survival strategy of terrestrial earthworms in Central Amazonian inundation forest. Amazoniana, 11: 23-30.
Beddard, F.E. 1891. On the Structure of Two New Genera of Earthworms belonging to the Eudrilidae and some Remarks on Nemertodrilus. Quarterly Journal of Microscopical Science, 32: 235-278.
Beddard, F.E. 1892. The earthworms of the Vienna Museum. The Annals and Magazine of Natural History, Serie 6, 9: 113-134.
Beddard, F.E. 1893. Two new genera and some new species of earthworms. Quarterly Journal of Microscopical Science, 34: 243-278.
Benham, W.B. 1887. Studies on earthworms. № II. Quarterly Journal of Microscopical Science, 27: 77-108.
Brinkhurst, R.O. 1964. A taxonomic revision of the Allurroididae (Oligochaeta). Proceedings of the Zoological Society of London, 142: 527-536.
Brown, G.G. & James, S.W. 2007. Biodiversidade, biogeografia e ecologia das minhocas no Brasil. In: Brown, G.G. & Fragoso, C. (Eds.). Minhocas na América Latina: biodiversidade e ecologia. Londrina, Embrapa Soja, p. 297-381.
Cernosvitov, L. 1934. Les Oligochètes de la Guyane Française et d’autres pays de l’Amérique du Sud. Bulletin du Musée Nationale d’Histoire Naturelle de Paris, 2: 47-59.
Cernosvitov, L. 1935. Oligochaeten aus dem tropischen Sud Amerika. Capita Zoologica, 6: 1-36.
Cernosvitov, L. 1938. Deux nouveaux Oligochètes Glossoscolecidae du Brésil. Bulletin de l’Association Philomatique d’Alsace et de Lorraine, 8: 401-407.
Cernosvitov, L. 1939. Résultats scientifiques des croisières du navire-école Belge “Mercator”, Vol. 2. VII. Oligochaeta. Musée Royal d’Histoire Naturelle de Belgique, 2ème Série, 15: 115-122.
Cognetti de Martiis, L. 1902. Un nuovo genere della fam. “Glossoscolecidae”. Ricerche anatomiche e zoologiche. Atti della Reale Accademie delle Scienze di Torino, 37: 432-446.
Cognetti de Martiis, L. 1904. Oligochètes de l’Ecuador. Bolletino dei Musei di Zoologia ed Anatomia Comparata della Reale Università di Torino, 19: 1-18.
Cognetti de Martiis, L. 1905. Gil Oligochèti della regione neotropica, Parte Prima. Memorie della Accademia Reale delle Scienze di Torino, Serie 2, 55: 1-72.
Cordero, E.H. 1943. Oligoquetos sudamericanos de la familia Glossoscolecidae. II – Dos nuevas especies de Rhinodrilus del nordeste del Brasil. Comunicaciones Zoológicas del Museo de Historia Natural de Montevideo, 1(6): 1-6.
Cordero, E.H. 1944. Oligoquetos sudamericanos de la familia Glossoscolecidae, III. Rhinodrilus francisci n. sp. de Pernambuco, Brasil. Comunicaciones Zoológicas del Museo de Historia Natural de Montevideo, 10: 1-4.
Coutinho, L.M. 2006. O conceito de bioma. Acta Botanica Brasiliaca, Belo Horizonte, 20: 13-23.
Darwin, C. 1881. The formation of vegetable Mould through the action of Worms with observations on their habits. London, John Murray. 326p.
De Assis, J.E.; Souza, J.R.B.; Vieira, M.L.M.; Nunes De Souza, J.V.; Rodrigues, G.G. & Christoffersen, M.L. 2017. A catalogue of the Eudrilidae and Megascolecidae (Clitellata: Luminbricida) from South America, with two new records of exotic species from Brazil. Turkish Journal of Zoology, 41: 599-614.
Eisen, G. 1878. On the anatomy of Ocnerodrilus. Nova Acta Regiae Societatis Scientiarum Upsaliensis, 10(3): 1-12.
Eisen, G. 1900. Researches in the American Oligochaeta with special reference to those of the Pacific Coast and Adjacent Island. Proceedings of the California Academy of Sciences, 2(3): 85-276.
Feijoo, A.M.; Brown, G.G. & James, S.W. 2017. New species of Andiorrhinus Cognetti, 1908 (Oligochaeta: Rhinodrilidae) from Venezuela and Brazil. Zootaxa, 4363(1): 055-078.
Fragoso, C.; Brown, G.G. & Feijoo, A.M. 2003. The influence of Gilberto Righi on tropical earthworm taxonomy: The value of a full-time taxonomist. Pedobiologia, 47: 400-404.
Grube, A.E. 1855. Beschreibungen neuer oder wenig bekannter Anneliden. Archiv für Naturgeschichte, 21(1): 81-136.
Hamoui, V. & Donatelli, R.I. 1983. Uma espécie nova de Oligochaeta, Iossoscolecidae, Glossodrilus (G.) baiuca, n. sp., from the territory of Roraima, Brasil. Revista Brasileira de Biologia, 43: 143-146.
Hernández-García, L.M.; Burgos-Guerrero, J.E.; Santos, B.T.S.; Rousseau, G.X. & James, S.W. 2018a. Three new species of Holoscolea (Clitellata, Glossoscolecidae) from the Gurupi Biological Reserve, last forest remnant of the Belém Endemism Area, Eastern Amazon. Zootaxa, 4496(1): 459-471.
Hernández-García, L.M.; Burgos-Guerrero, J.E.; Rousseau, G.X. & James, S.W. 2018b. Brasilisius n. gen. and Arraia n. gen., two new genera of Ocnerodrilidae (Annelida, Clitellata, Oligochaeta) from Eastern Amazonia, Brazil. Zootaxa, 4496(1): 472-480.
Hernández-García, L.M.; Bartz, M.L.; Burgos-Guerrero, J.E.; Souza, S.C.; Rousseau, G.X. & James, S.W. 2018c. Additions to Andiorrhinus (Turedrilus) (Rhinodrilidae, Clitellata) from Eastern Amazonia. Zootaxa, 4496(1): 481-491.
Righi, G. & Moraes, P.H.F. 1990. *Rhinodrilus piton*, sp. n. Oligochaeta, Glossoscolecidae de Pernambuco. *Revista Brasileira de Zoologia*, 50: 519-522.

Righi, G.; Ayres, I. & Bittencourt, E.C.R. 1976. *Rhinodrilus* (Oligochaeta) do Instituto Nacional de Pesquisas da Amazônia. *Acta Amazonica*, 6: 335-367.

Righi, G.; Ayres, I. & Bittencourt, E.C.R. 1978. Oligochaeta (Annelida) do Instituto Nacional de Pesquisas da Amazônia. *Acta Amazonica*, 8: 1-49.

Römbke, J.; Meller, M. & García, M. 1999. Earthworm densities in central Amazonian primary and secondary forests and a polyculture forestry plantation. *Pedobiologia*, 43: 518-522.

Rosa, D. 1894. Perichetini nuovi o meno noti. *Atti della Reale Accademia delle Scienze di Torino*, 29: 773.

Rosa, D. 1895. Viaggio del dottor Alfredo Borelli nella Repubblica Argentina e nel Paraguay XV. Oligocheti terricoli (inclusi quelli raccolti nel Paraguay dal Dr. Paul Jordan). *Bollettino di Zoologia ed Anatomia Comparata della Reale Università di Torino*, 10: 1-3.

Rosa, D. 1896. I lombrichi raccolti a Sumatra dal Dott. Elio Modigliani. *Annali del Museo Civico Di Storia Naturale Di Genova*, 16: 502-532.

Santos, B.T.S.; Bartz, L.M.; Hernández-García, L.M.; Rousseau, G.X.; Martins, M.B. & James, S.W. 2017. New earthworm species of *Righiodrilus* (Clitellata, Glossoscolecidae) from eastern Amazonia. *Zootaxa*, 4242(2): 392-400.

Santos, T.O.; Filho, V.S.A.; Rocha, V.M. & Menezes, J.S. 2017. Os impactos do desmatamento e queimadas de origem antrópica sobre o clima da Amazônia brasileira: Um estudo de revisão. *Revista Geográfica Acadêmica*, 11: 157-181.

Zicsi, A.; Rombke, J. & García, M. 2001. Regenwürmer (Oligochaeta) aus der Umgebung von Manaus (Amazonien). *Revue Suisse de Zoologie*, 108: 153-164.