Eddy Current Testing of Metal Cracks Using Spin Hall Magnetoresistance Sensor and Machine Learning

Yanjun Xu, Yumeng Yang, and Yihong Wu, Senior Member, IEEE

Abstract—Recently we have developed a spin Hall magnetoresistance (SMR) sensor which operates under AC bias and sense currents. Here we demonstrate both theoretically and experimentally that the SMR sensor is uniquely suited for eddy current testing applications because both the coil and sensor utilize AC current as the excitation source. The use of SMR sensor effectively eliminates the necessity of any demodulation or lock-in technique for detecting the eddy current, which greatly simplifies the detection system. Furthermore, we show that the combination of principal component analysis and decision tree model is effective in classifying the metal cracks. The relatively clean signals obtained by the SMR sensor greatly facilitates the subsequent signal analysis and ensures high accuracy in the classification of different types of crack features.

Index Terms—Eddy current testing, spin Hall magnetoresistance sensor, principal component analysis, decision tree model.

I. INTRODUCTION

NON-DESTRUCTIVE testing (NDT) is the process of inspecting materials or components for discontinuities or inhomogeneities without impairing function of the material [1], [2]. It has been widely used in manufacturing and inspections to ensure product integrity and reliability. The most commonly used non-destructive techniques include electromagnetic, ultrasonic, X-ray, and liquid penetrant testing, among which the eddy current based NDT, or simply eddy current testing (ECT), has proven to be one of the most effective electromagnetic NDT techniques for the inspection of conductive materials such as copper, aluminum or steel [3]. In ECT, an excitation coil is excited by an alternating current (AC) to generate a time-varying magnetic field in the conductive test piece, which in turn induces an eddy current that resists the flux change in the coil. The presence of any defect or crack in the test piece would affect both the amplitude and distribution of the eddy current. The change in the eddy current can then be detected as a signal to pinpoint or map out the defects [3], [4].

There are several different types of sensors that can be used to detect the change of the eddy current induced by cracks in the test piece, including coil probe [5], superconducting quantum interference device (SQUID) [6]–[8], Hall-effect [9] and magnetoresistive (MR) sensors [10]–[15]. The coil probe generally has two types, namely, the single-coil and dual-coil probes. The former uses the same coil to generate the eddy current and at the same time to detect the impedance changes induced by the eddy current (Fig. 1(a)) [16].

In order to mitigate the effect of lift-off height, temperature change and material variation, typically differential probes are employed in practical designs. The primary drawback of single-coil probe is that the coil design can hardly be optimized for both the excitation and detection functions. The dual-coil probe, on the other hand, employs a primary coil to excite the eddy current and a separate secondary coil (or pick-up coil) to sense the field generated by the eddy current (Fig.1(b)). Compared to the single-coil probe, the dual-coil design allows to optimize the excitation coil for eddy current generation with maximum efficiency and the pick-up coil for
detecting the secondary field with maximum sensitivity [17]. In addition, a differential coil design has been explored to improve the detection sensitivity, eliminate primary field and background noise [18], [19]. Despite the flexibility in coil minimization, the inductive detection technique carries the inherent drawback of decreasing sensitivity at low-frequency and poor spatial resolution as manifested in its signal-to-noise ratio (SNR), i.e., \(SNR \propto \frac{r^{5/2}}{f_c} \), where \(r \) is the coil radius and \(f_c \) the operating frequency [20]. Although SQUID and Hall effect sensors provide partial solutions to the challenges faced by the inductive sensor, both types of sensors have their own disadvantages, e.g., the SQUID can only operate at cryogenic temperature, and the Hall-effect sensor suffers from low sensitivity [13], [20].

The MR sensors, including anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR) and tunnel magnetoresistance (TMR) sensors [21]–[24], are attractive for ECT applications due to their high sensitivity at low magnetic field over a broad frequency range and the ability to directly measure the magnetic field instead of its time derivative (Fig. 1(c)). This makes it possible to realize ECT with high spatial resolution and large detection depth [10]–[15], [20]. Due to the limited dynamic range, the MR sensors must be arranged in such a way that the influence of the primary field be minimized. This can be done by either placing the sensor with its sensing axis perpendicular to the primary field direction or using a compensation coil to cancel out the primary field. Regardless of the design, in most cases, the MR sensor is driven by a direct current (DC) and additional demodulation or lock-in technique is required to decouple the eddy current related signal from the overall signals, which is quite challenging. Accurate reconstruction of the crack features still remains elusive in these ECT systems because of the difficulties in calibration and the lack of system-level signal processing algorithms [25], [26]. Recently, we have developed a spin Hall magnetoresistance (SMR) sensor using the spin orbit torque (SOT) induced effective field \((H_{FL}) \) as the built-in sensor linearization mechanism [27], [28]. The use of SOT biasing greatly simplifies the sensor design as it eliminates the needs of delicate transverse bias used in conventional AMR, GMR and TMR sensors. Another key difference between SMR and other types of MR sensors is that the SMR sensor is driven by an AC current, but the output is a DC voltage. The combination of SOT biasing and AC driving current makes it possible to realize an SMR sensor with extremely simple structure, high sensitivity, nearly zero dc offset, negligible hysteresis, and a detectivity around 1 nT/\(\sqrt{Hz} \) at 1 Hz [29], [30]. The AC driving capability makes the SMR sensor uniquely suited for ECT applications as it does not require the use of lock-in technique to detect the signal (the detection principle will be presented in the next section). Specifically, we fabricate SMR sensors based on NiFe(2.5)/Au19Pt81(3.2) bilayers (the numbers inside the parenthesis are thicknesses in nm) and investigate the performance of the SMR sensor in detecting cracks with different dimensions in an aluminum (Al) plate. We choose NiFe(2.5)/Au19Pt81(3.2) bilayer because it exhibits a much lower power consumption and more than 80% enhancement of spin-orbit torque efficiency as compared to the NiFe/Pt bilayer [31], [32].

II. THEORY OF EDDY CURRENT FIELD DETECTION USING SMR SENSOR

In this section, we explain how the SMR sensor can be used to detect the eddy current field. As shown schematically in Fig. 2(a), the SMR sensor consists of four NiFe(2.5)/Au19Pt81(3.2) bilayer elements with the same dimension which are arranged in the form of a Wheatstone bridge. The elements have an elliptical shape with the easy axis in the long-axis or \(x \)-direction and the hard axis in the short-axis or \(y \)-direction. When an AC current, \(I = I_0 \sin(\omega t + \phi_0) \), is applied to two terminals of the bridge, the output voltage across the other two terminals is given by [28]–[30]: (detailed derivation is give in Appendix A):

\[
V_{out} = \frac{1}{2} I_0 \Delta R_0 \sin(\omega t + \phi_0) + \frac{1}{2} \frac{\alpha I_0^2 \Delta R H_x \cos 2(\omega t + \phi_0)}{(H_d + H_k)^2} - \frac{1}{2} \frac{\alpha I_0^2 \Delta R H_y}{(H_d + H_k)^2} \tag{1}
\]

where \(I_0 \) is the amplitude of the AC current applied to the SMR sensor, \(\Delta R_0 \) is the offset resistance between the neigh-
bouring sensing elements, ω_s and θ_0 are the angular frequency and phase of the sensor driving current, ΔR is the resistance change due to both the SMR and AMR when the magnetization changes from parallel to perpendicular to the current direction, H_d is the in-plane demagnetizing field, H_k is the uniaxial anisotropy field, and H_y is the external magnetic field or field to be detected in y-direction. In the case of NiFe/Au$_{19}$Pt$_{81}$ bilayer, the applied current I mainly flows through the Au$_{19}$Pt$_{81}$ layer due to its much smaller resistivity, which generates both a field-like effective field H_{FL} and an Oersted field H_{OE} in the NiFe layer, with H_{FL} and H_{OE} in the same direction and $H_{FL} \gg H_{OE}$. In (1), $\alpha = (H_{FL} + H_{OE})/I$, indicates the efficiency of SOT generation in the NiFe/Au$_{19}$Pt$_{81}$ bilayers. When the sensor is used to detect a static field, the last term of (1) gives a DC output signal proportional to the external field. The first two terms do not contribute to the DC output signal as the time-average of both terms are zero. The sensor is linear provided the external field does not exceed the dynamic range, which is mostly determined by the shape anisotropy of the sensor. Fig. 2(b) shows the typical static field response of a SMR sensor based on NiFe(2.5)/Au$_{19}$Pt$_{81}$(3.2) bilayers. The sensor was fabricated using techniques of sputtering/evaporation and lift-off. The NiFe layer was deposited by sputtering and the Au$_{19}$Pt$_{81}$ layer was deposited by vaporization. Both layers were deposited in a multi-chamber system at a base pressure below 3×10^{-8} Torr without breaking the vacuum. An in-plane field of ~ 500 Oe was applied along the long axis of sensing elements during the deposition to induce a uniaxial anisotropy for the NiFe layer. The root mean square (rms) amplitude and frequency (f_s) of the applied AC current density are 9.4×10^5 A/cm2 and 5000 Hz, respectively. The response curve is obtained by sweeping the field in y-direction from -2 Oe to +2 Oe and then back to -2 Oe. As can be seen, the forward and backward sweeping response curves nearly overlap with each other, indicating a negligible hysteresis in the full field range. In addition, the DC offset is also nearly zero. Within the linear range of ± 0.84 Oe, the sensor exhibits a sensitivity of around 1.10 mV/Oe. The linear working range is defined as the field range within which the sensor exhibits a linearity error smaller than 6%. Here, the linearity error (%) is defined as percentage of deviation of the sensor output curve from the exact linear relation at a desired dynamic range. As shown in the sensor response curve in Fig. 2(b), the output is zero at zero external field and the linear range is obtained at ± 0.84 Oe, within which the sensor has a linearity error smaller than 6%. Within this linear range, the sum of the external field (H_e) and the peak amplitude of the AC current induced field ($H_{bias} = H_{FL} + H_{OE}$) is smaller than the magnetic anisotropy field, including the uniaxial and shape anisotropy field, therefore, we have the relation $\sin \varphi = \frac{H_{FL} + H_{OE}}{H_d + H_k}$, where φ is azimuthal angle of magnetization in the xy plane. The derivations given in Appendix A are all valid only when the sensor works in the linear range. However, when the external field further increases such that $(H_y + H_{bias})$ becomes comparable to $H_d + H_k$, the nonlinear region starts to appear, resulting in a drop in sensitivity (at around the peak position of the response curve). This is because the SOT effective field is insufficient to oscillate the magnetization around the easy axis of the sensing element, and the magnetization will be “fixed” along the external field direction. When this occurs, the sensor’s sensitivity will gradually decrease to zero, which is the same for all types of magnetoresistance sensors.

The linear range of the SMR sensor has been discussed in [28] and is approximately given by $(H_d + H_k)/\sqrt{2}$. Here, the anisotropy field H_k is dependent on the FM thickness, while the shape anisotropy field H_d is determined by both the dimension and saturation magnetization of the sensing layer. Although both parameters can be readily tuned to obtain a large dynamic range, the sensitivity of the sensor will decrease if the SOT effective field is small compared to $(H_d + H_k)$. As a rule of thumb, in order for the sensor to have a linear response with highest sensitivity, the sum of the external field and peak of the SOT effective should be smaller than $(H_d + H_k)/\sqrt{2}$.

As discussed above, the sensor outputs a DC voltage when the external field H_y is a static field. However, when the external field H_y is an oscillating field instead of a static field, then the last term of (1) does not contribute to the DC output voltage. In fact, the time-average of the last term would be zero when H_y is an oscillating field. In the contrast, the other two terms in (1) will now give a DC output, as elaborated below.

When the SMR sensor is used to detect the eddy current in ECT, the external field is composed of both primary field from the excitation coil and secondary field from the eddy current. Hence the external field to be detected in y-direction can be expressed as: $H_y = H_e \sin \omega_s t + \beta H_e \sin (\omega_s t + \frac{\pi}{2} + \theta_L)$, where H_e (H_e) is the amplitude of the primary (eddy current) field, ω_s is the angular frequency of the AC current applied to the excitation coil, β is a parameter quantifying the influence of cracks on the eddy current ($\beta = 1$ for crack-free case and $0 < \beta < 1$ for the case with crack), and θ_L is the phase lag between surface and subsurface eddy current (it is a function of crack depth from the surface). It is worth noting that the $\frac{\pi}{2}$ term is the phase difference between the primary field and the eddy current field on the test piece surface. Without losing generality, we assume that there is a phase difference of θ_0 between the driving current for the excitation coil and the sensor, i.e., $I = I_0 \sin (\omega_s t + \theta_0)$ for the sensor. By substitute H_y into (1), we obtain

$$V_{out} = \frac{I_0}{2} \sin (\omega_s t + \theta_0) \frac{\Delta R_0 + \frac{1}{2} I_0^2 \Delta R \cos 2(\omega_s + \theta_0)}{1 + \frac{1}{2} I_0^2 \Delta R \sin (\omega_s t + \frac{\pi}{2} + \theta_L)}$$

$$H_e \sin (\omega_s t + \beta H_e \sin (\omega_s t + \frac{\pi}{2} + \theta_L)) \left(\frac{(H_e + H_d)^2}{H_k + H_d} \right)^2.$$

The 1st and 3rd terms are AC components, whereas the 2nd term produces a DC output when $\omega_s = 2\omega_e$, i.e.,

$$V_{DC} = -\frac{I_0}{4} \frac{1}{(H_k + H_d)^2} \left[H_e \sin 2\theta_0 + \beta H_e \left[\sin 2(\theta_0 - \frac{\pi}{4} - \frac{\theta_L}{2}) \right] \right].$$

(3)
This DC output voltage contains two terms. The first term is due to the primary field generated by the excitation coil and the second term is from the eddy current induced secondary field. The second term can be used to detect the cracks as it contains the parameter β. The phase difference between these two signals is $\frac{\pi}{2} + \theta_L$. When the crack is on the surface, $\theta_L \approx 0$, leading to a $\frac{\pi}{2}$ phase difference between the primary field and secondary field for surface cracks (see Appendix B for detail explanation).

III. EXPERIMENTAL DETAILS

The ECT setup consists of a customized ECT probe, AC current sources for the excitation coil and a SMR sensor, an Al plate with pre-formed cracks, a DC nanovoltmeter and a personal computer for data acquisition and processing. As shown schematically in Fig. 3(a), during the crack detection experiment, the ECT probe is placed at a fixed height, whereas the Al test piece is moved along x-direction with a constant speed of 5.4 mm/s driven by a linear motor. The excitation coil generates an eddy current in the Al plate and the SMR sensor detects the field generated by both the excitation coil and the eddy current. As shown in Fig. 3(b), the customized ECT probe consists of an excitation coil with an inner diameter of 12 mm, and height of 15 mm. The number of turns is 100 and the diameter of the wire is 0.2 mm. The SMR sensor is placed on a PCB board, which is inserted inside the coil. The sensing axis is along the axial direction of the coil. The sensors are placed as close as possible to the bottom edge of the coil so as to improve the signal-to-noise ratio. Five different types of cracks characterized by its depth (z), height (h) and width (w) are pre-formed on the Al plate (see Fig. 3(a) for the definition of crack features). Detailed dimensions of the cracks are summarized in Table I. Among them, cracks 2-4 are surface cracks and crack 1 is a subsurface crack. For each crack, 45 measurements are carried out by repeating the same scanning process over the region with crack using the same scanning speed. Each measurement generates a voltage-time series of data with 141 data points (the interval for each step is 0.071 s).

IV. RESULTS AND DISCUSSION

A. Crack Detection Using the SMR Sensor

To test the performance of the SMR-based ECT probe, we conducted the aforementioned measurements on crack 3 (surface crack with a height of 2 mm and width of 2 mm). In the measurement, the excitation coil is driven by an AC current with an amplitude of 40 mA and frequency (f_c) of 1000 Hz, whereas the SMR sensor is driven by an AC current with an amplitude density of 9.4×10^5 A/cm2 and frequency (f_s) of 500 Hz. The amplitude and frequency for the driving current for both the coil and sensor are fixed, unless otherwise specified. The SMR sensor output is measured by a nanovoltmeter. Fig. 4(a) summarized the results obtained in three separate measurements for the same crack with different phase difference between the driving current for the excitation coil and the sensor ($\theta_0 = 0, 45^\circ, 90^\circ$, respectively). The curves are shifted vertically for clarity. V_{Base} and V_{Crack} corresponds to the primary and eddy current field, respectively.

Table I

Crack Type	Crack width w (mm)	Crack Height h (mm)	Crack depth z (mm)	No. of measurements
Crack-free	0	0	0	45
Crack 1	5	2	3	45
Crack 2	1	2	0	45
Crack 3	2	2	0	45
Crack 4	5	2	0	45

Fig. 4. (a) Output of the SMR sensor when the ECT probe is scanned over crack 3. The three curves are obtained by setting $\theta_0 = 0, 45^\circ, 90^\circ$, respectively. The curves are shifted vertically for clarity. V_{Base} and V_{Crack} corresponds to the primary and eddy current field, respectively. (b) θ_0 dependence of V_{Base} and V_{Crack} in the range of 0 to π.
becomes zero, while the second term which is related to the eddy current becomes positive maximum; when $\theta_0 = 45^\circ$, the primary field output is maximum, but the eddy current term becomes nearly zero; when $\theta_0 = 90^\circ$, the primary field contribution becomes minimum again, but the eddy current related term becomes negative maximum. In order to have a more quantitative understanding of the phase dependence of the output DC signal, we measure V_{Base} and V_{Crack} as a function of θ_0 in the range of 0 to π and the results are shown in Fig. 4(b). As expected from (3), both V_{Base} and V_{Crack} follow sinusoidal relation with respect to θ_0, while the phase difference between V_{Base} and V_{Crack} is $\frac{\pi}{2}$. All these results are correlated well with the theoretical model described in Section II, and they demonstrate clearly the advantages of using SMR sensor for ECT applications. The signal detection without any demodulation circuits or lock-in amplifier greatly simplifies the design of the ECT system.

B. ECT Measurements on Different Types of Cracks

Next, we use the same ECT setup and measurement condition to detect different types of cracks listed in Table I by fixing θ_0 at 0. The measurement of each type of crack is repeated for 45 times. Fig. 5(a) shows a typical measurement result for the crack-free case. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slightly fluctuating signal corresponds to V_{Base}. As expected, there is no observable features in the repeated measurements for the crack-free test piece. The slight

C. Crack Classification Using Principal Component Analysis and Decision Tree Model

The PCA is a statistical signal processing technique that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components (PC) [31], [32]. It is widely used to extract dominant features from a set of multivariate date including in NDE [33]–[36]. The typical procedure of PCA involves the following: 1) preparing the data to make it suitable for PCA by removing the mean and normalizing it by the standard deviation, 2) computing the eigenvectors and eigenvalues of the covariance matrix of the pre-processed data, 3) sorting the eigenvectors in descending order of the corresponding eigenvalues, 4) constructing the projection matrix by combining the sorted eigenvectors, and 5) transforming the original dataset using the projection matrix to obtain a new dataset, called scoring matrix; the entries of the scoring matrix can be considered as the projection of the original dataset in the new feature space spanned by the principal components. The eigenvectors determine the directions of the principal component axes, and the corresponding eigenvalues indicate the variance of the original data in that direction. The first PC has the largest eigenvalue, hence largest variance, followed by other PCs in descending order of eigenvalues. As the original dataset can be reproduced using the first few PCs, it effectively reduces the dimensionality of the original data by retaining only those which give the largest variance.

In the present case, the datasets are the time-domain ECT measurement data of different cracks. As can be seen from the measured signals, the dataset obtained from different cracks have a high degree of similarity, which makes it difficult to distinguish the cracks from each other. By performing the PCA, we can effectively reduce the similarity and extract the components with largest variance representing the key features of each test piece. Depending on the number of PCs that are required to construct the original data, one may also leverage on other data analysis techniques such as neural network and
decision tree analysis to classify the test features. Fig. 6(a) is the block diagram of the PCA and decision tree analysis adopted in this work. The first step is to prepare the data and make them suitable for PCA analysis. To this end, we scale the time series dataset to zero mean by subtracting the mean value and then normalized it by the respective standard deviation (z-normalization). Fig. 5(f) shows the measured data for different types of cracks after the mean subtraction and z-normalization. We can see that all the signals are now at comparable scale and suitable for further processing. The preprocessed data then are combined into a matrix

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{tn} & \cdots & x_{tn} \end{bmatrix}$$ \hspace{1cm} (4)$$

where $t1$ to tn refer to the time steps in a particular measurement and m is the number of measurements. In the present case, m is 225, comprising of 45 measurements for each type of cracks and n is 141. The next step is to perform PCA on X, in which eigenvalues and eigenvectors of the covariance matrix of X are calculated using the Matlab. After arranging the eigenvectors based on the descending order of the corresponding eigenvalues, the projection matrix W with dimension of 141×141 is constructed by combining the sorted column eigenvectors (with ith column corresponding to ith PC). Fig. 6(b) shows the eigenvectors of the first 3 PCs. As the difference in eigenvalues corresponding to the first few PCs is not very large, we need more PCs to distinguish different types of cracks. Fig. 6(c) shows the eigenvalues of the first 15 principal components. Due to the nature of the problem at hand, the cumulative variance increases relatively slowly with the number of PCs, and at the 15^{th} PC, the cumulative variance is about 80%. As a trial, we use the first 15 PCs to reconstruct the original dataset. To this end, we calculate the scoring matrix $P = X \cdot W$ and the centered scoring matrix

$$P_c = P - \bar{P} = \begin{bmatrix} PC_1^1 & \cdots & PC_1^n \\ \vdots & \cdots & \vdots \\ PC_m^1 & \cdots & PC_m^n \end{bmatrix}$$ \hspace{1cm} (5)$$

where \bar{P} is the column average of P, and PC_k^l is the inner product of kth principal component and the lth measurement data. After obtaining the scoring matrix, the first 15 entries of each row of P_c, are used to classify different types of cracks based on decision tree analysis.

The centered scoring matrix P_c has a dimension of 225×141. Each row corresponds to the projection of the original dataset in the 141 principal component axes, among which the values of the first 15 entries, i.e., PC_k^l, $k = 1$ to 15, are representative of the original datasets. Therefore, a decision tree model can be built based on the 15 $PC_k^l (k = 1$ to 15 and $l = 1to225)$ values to distinguish the type of crack in the lth measurement. Fig. 7(a) is a plot of the 2nd column against the 1st column of the centred scoring matrix. The dotted lines help distinguish crack-free (diamond), subsurface crack 1 (cross) and surface crack 4 (circle). (b) Plot of the 10th column against the 1st column of the centred scoring matrix. The dotted line separates surface crack 2 (square) from crack 3 (triangle). (c) Illustration of the decision tree model to classify all the different types of cracks ($l = 1$ to 225).
as shown by the dotted line in Fig. 7(b). More specifically, all the different types of cracks can be classified with 100% accuracy using the decision tree model as shown in Fig. 7(c). The classification flowchart is as follows. First, we set the condition of $PC1^l < -1.01$; this effectively separates the crack-free test pieces from the rest with cracks. Second, we can further distinguish subsurface crack from the surface cracks by using the criterion $PC2^l < -2$. Lastly, the three surface cracks can be differentiated by first requiring $-2 < PC2^l < 0.67$ to separate crack 4 with largest width from the two narrower cracks, and then using $PC1^l$ to classify crack 2 and 3. The combination of PCA and decision tree model is able to classify the cracks with 100% accuracy.

V. CONCLUSION

In summary, we have demonstrated, both theoretically and experimentally, that the SMR sensor is promising for ECT without the necessity of any demodulator or lock-in amplifier. This is possible because both the excitation coil and the SMR sensor are driven by AC current; the built-in rectification effect gives rise to a DC component in the output signal which facilitates data acquisition and processing. The nearly zero hysteresis and DC offset help to reduce the fluctuations in the measured data. Furthermore, we have shown that the combination of PCA and decision tree model is effective in distinguishing different types of cracks. The relatively clean data obtained by the SMR sensor greatly facilitates the subsequent PCA analysis and ensures high accuracy in classification of different crack features.

APPENDIX A

DERIVATION OF SMR SENSOR OUTPUT SIGNAL

The SMR sensor consists of four NiFe(2.5) /Au$_{19}$Pt$_{81}$(3.2) bilayer elements with the same dimension which are arranged in the form of a Wheatstone bridge, as shown in Fig. 2(a) of the main text. The sensor is driven by an AC current and the rectification effect gives rise to a DC component in the output voltage. The output signal can be derived as follows.

For a single sensing element, the MR (including both AMR and SMR) can be expressed as: $R = R_0 - \Delta R \sin^2 \theta$, where ΔR is the resistance change due to both the SMR and AMR when the magnetization changes from parallel to perpendicular with respect to the current direction, θ is the angle between the magnetization and the current direction (x-direction in this case), and R_0 is the resistance when $\theta = 0$. When an AC current $I = I_0 \sin(\omega_0 t + \theta_0)$ is applied in x-direction, where ω_0 and θ_0 are the angular frequency and phase of the sensor driving current, the voltage across the single sensor element is given by:

$$V_s = I \cdot R = I_0 \sin(\omega_0 t + \theta_0) \cdot (R_0 - \Delta R \sin^2 \theta) \tag{6}$$

At equilibrium state, θ can be found through minimizing the free energy density ε_E of the FM element, which is given by:

$$\varepsilon_E = \frac{1}{2} (H_d + H_k) \sin^2 \theta - (H_{bias} + H_y) \sin \theta \tag{7}$$

where $H_{bias} = H_{FL} + H_{OE}$, H_d is the demagnetizing field, H_k is the uniaxial anisotropy filed, H_y is the external field, H_{FL} is the field-like SOT effective field, and H_{OE} is the Oersted field. Minimization of ε_E gives $\sin \theta = \frac{H_{bias} + H_y}{H_d + H_k}$. By substituting this into (6), we can obtain:

$$V_s = I_0 \sin(\omega_0 t + \theta_0) \cdot \left[R_0 - \Delta R \left(\frac{H_{bias} + H_y}{H_d + H_k} \right)^2 \right] \tag{8}$$

As mentioned in the main text, the overall bias field can be calculated from $H_{bias} = aI$, where a indicates the efficiency of SOT generation in the NiFe/Au$_{19}$Pt$_{81}$ bilayers. Therefore, (8) can be rewritten as:

$$V_s = I_0 \sin(\omega_0 t + \theta_0) \cdot \left[R_0 - \Delta R \left(a I_0 \sin(\omega_0 t + \theta_0) + H_y \right)^2 \right] \tag{9}$$

After expanding the quadratic term, we obtain:

$$V_s = I_0 R_0 \sin(\omega_0 t + \theta_0) - \frac{I_0 \Delta R}{(H_d + H_k)^2} H_y^2 \sin(\omega_0 t + \theta_0) \tag{10}$$

The time-average or DC component of V_s induced is (neglecting the negative sign):

$$\bar{V}_s = \frac{a I_0^2 \Delta R}{(H_d + H_k)^2} H_y \tag{11}$$

For a Wheatstone bridge sensor consisting of four sensing elements, the bridge output voltage is the voltage difference between sensing element 1 and 2. This is because the current flows in opposite directions of the two neighboring sensing elements as shown schematically in Fig. 8. As the total current $I = I_0 \sin \omega_0 t$ is shared equally in the two branches, the voltage across sensing element 1 is given by

$$V_{sensor1} = \frac{1}{2} I_0 \sin(\omega_0 t + \theta_0) \left[R_{01} - \Delta R \left(\frac{H_{bias} + H_y}{H_d + H_k} \right)^2 \right] \tag{12}$$

The voltage across the sensing element 2 has a similar expression except that H_{bias} has an opposite sign due to the opposite current direction. In addition, the DC resistance may also vary slightly due to fabrication processes, therefore the output signal of sensing element 2 can be written as

$$V_{sensor2} = -\frac{1}{2} I_0 \sin(\omega_0 t + \theta_0) \left[R_{02} - \Delta R \left(-\frac{H_{bias} + H_y}{H_d + H_k} \right)^2 \right] \tag{13}$$
Any variation in ΔR due to fabrication processes can be ignored as it is very small. The voltage across the other two terminals of the bridge, $V_{\text{sensor1}} + V_{\text{sensor2}}$, is thus given by

$$V_{\text{Out}} = \frac{1}{2} I_0 \sin(\omega_0 t + \theta_0) \cdot \left[\Delta R_0 - \Delta R \frac{4H_{\text{bias}}H_y}{(H_d + H_k)^2} \right]$$ \hspace{1cm} (14)

where ΔR_0 is the offset resistance between the neighboring sensing elements ($R_{01} - R_{02}$). By substituting $H_{\text{bias}} = a I/2$ into (14) we can obtain (1) as the overall output voltage across the other two terminals:

$$V_{\text{Out}} = \frac{1}{2} I_0 \Delta R_0 \sin(\omega_0 t + \theta_0) - \frac{a I^2_0 \Delta R H_y}{(H_d + H_k)^2} \left[\sin^2(\omega_0 t + \theta_0) \right]$$

$$= \frac{1}{2} I_0 \Delta R_0 \sin(\omega_0 t + \theta_0) + \frac{a I^2_0 \Delta R H_y}{2(H_d + H_k)^2} \cos 2(\omega_0 t + \theta_0)$$

$$- \frac{1}{2} \frac{a I^2_0 \Delta R H_y}{(H_d + H_k)^2}$$ \hspace{1cm} (15)

The time-average or DC component of V_{out} is given by:

$$V_{\text{DC}} = \frac{1}{2} \frac{a I^2_0 \Delta R}{(H_d + H_k)^2} H_y$$ \hspace{1cm} (16)

Although the second term of (15) is also proportional to the external field (H_y), its time-average is zero. Therefore, it cannot be picked up by the DC voltmeter.

APPENDIX B

FREQUENCY DEPENDENCE OF SMR SENSOR OUTPUT IN ECT SETTING

As discussed in Appendix A, the sensor outputs a DC voltage when the external field H_y is a static field. However, when the external field H_y is an oscillating field instead of a static field, then the last term of (15) does not contribute to the DC output voltage as its time-average is zero. Instead, the 2nd term in (15) will now give the DC output, as elaborated below.

When the SMR sensor is used to detect the eddy current in ECT, the external field is composed of both the primary field from the excitation coil and the secondary field from the eddy current. Hence the external field to be detected in y-direction can be expressed as:

$$H_y = H_c \sin(\omega_c t + \beta H_y) \sin(\omega_0 t + \frac{\pi}{2} + \theta_L)$$

where H_c (H_y) is the amplitude of the primary (eddy current) field, ω_c is the angular frequency of the AC current applied to the excitation coil, β is a parameter quantifying the influence of cracks on the eddy current ($\beta = 1$ for crack-free case and $0 < \beta < 1$ for the case with crack), and θ_L is the phase lag between surface and subsurface eddy current (it is a function of crack depth from the surface). It is also worth noting that the $\frac{\pi}{2}$ term is the phase difference between the primary field and the eddy current field on the test piece surface. Therefore, by substituting H_c into (1), we can obtain (2):

$$V_{\text{out}} = \frac{I_0 \sin(\omega_0 t + \theta_0)}{2} \Delta R_0$$

$$+ \frac{1}{2} a I_0^2 \Delta R \cos 2(\omega_0 t + \theta_0)$$

$$\times H_c \sin \omega_c t + \beta H_y \sin(\omega_0 t + \frac{\pi}{2} + \theta_L)$$

$$\times \left[\frac{H_c \sin \omega_c t + \beta H_y \sin(\omega_0 t + \frac{\pi}{2} + \theta_L)}{(H_k + H_d)^2} \right]$$

$$- \frac{1}{2} a I_0^2 \Delta R \frac{H_y}{H_d + H_k} \sin 2(\omega_0 t + \frac{\pi}{2} + \theta_L)$$

$$- \frac{1}{2} \frac{a I_0^2 \Delta R H_y}{(H_d + H_k)^2}$$ \hspace{1cm} (17)

As can be seen from (17), the 1st and 3rd terms now become the AC components, whereas the 2nd and 4th terms will produce a DC voltage when $\omega_c = 2\omega_0$, i.e.,

$$V_{\text{DC}} = -\frac{1}{4} a I_0^2 \Delta R \frac{H_y}{(H_k + H_d)^2} \left[H_c \sin 2\omega_0 t + \beta H_y \sin 2(\theta_L - \frac{\pi}{4} - \frac{\theta_0}{2}) \right]$$ \hspace{1cm} (18)

This DC component again can be detected as the output voltage by the DC voltmeter, while the other terms in (17) are time averaged to zero. There are two terms in the DC output voltage. The first term is due to the primary field generated by the excitation coil and the second term is from the eddy current induced secondary field. The second term obviously can be used to detect the cracks as it contains the parameter β. As an example, Fig. 9 shows the DC output due to crack 3 when the sensor driving current frequency is 500 Hz and that of the coil is 500 Hz and 1000 Hz, respectively. It shows clearly that only when the frequency of the current in the excitation coil is twice as large as that in the sensor, a DC output voltage can be obtained.

APPENDIX C

PHOTOS AND SCHEMATICS OF ALUMINIUM TEST PIECES WITH DIFFERENT CRACKS

See Fig. 10.
Yanjun Xu received the bachelor’s degree in materials science from Sichuan University in 2011 and the Ph.D. degree in electrical and computer engineering from the National University of Singapore in 2016. In 2011, he had a short internship with the Institute of Microelectronics, Tsinghua University. After that, he worked as a Research Engineer and a Research Fellow with the same group until February 2020. In March 2020, he joined United Microelectronics Corporation, as a Principal Engineer.

Yuemeng Yang received the B.Sc. degree in materials science from Sina University in 2011 and the Ph.D. degree in electrical and computer engineering from the National University of Singapore in 2016. In 2011, he had a short internship with the Institute of Microelectronics, Tsinghua University. After that, he worked as a Research Engineer and a Research Fellow with the same group until December 2019. In January 2020, he joined the School of Information Science and Technology, ShanghaiTech University, as an Assistant Professor. He was a recipient of the President’s Graduate Fellowship from 2014 to 2015.

Yihong Wu (Senior Member, IEEE) received the B.S. degree in physics from Shaaaxi Normal University, China, in 1984, the M.S. degree in electronic engineering from Shizuoka University, Japan, in 1988, and the Ph.D. degree in electrical engineering from Kyoto University, Japan, in 1991. Since 1991, he has worked at various positions with the National University of Singapore (NUS), Asia Mitsubishi Electric (s) Pte., Ltd., and Tohoku University. He has been a Professor with the Department of Electrical and Computer Engineering, NUS, since 2008. His research interests include two-dimensional carbon (particularly carbon nanowalls), optical and magnetic data storage, nanomagnetism, and spintronics (particularly spin-charge interconversion and magnetic sensors).