Cancellation of projective modules over non-Noetherian rings

Manoj K. Keshari

Abstract

(i) Let R be a ring of dimension 0 and $A = R[Y, Y^{-1}, f_1 \ldots f_m]$, where $m \leq n$, Y_1, \ldots, Y_n are variables over R and $f_i \in R[Y]$. Then all projective A-modules are free and $E_r(A)$ acts transitively on $Um_r(A)$ for $r \geq 3$.

(ii) Let R be a ring of dimension d and A be one of $R[Y]$ or $R[Y, Y^{-1}]$, where Y is a variable over R. Let P be a projective A-module of rank $\geq d + 1$ satisfying property $\Omega(R)$ (see [4] for definition of property $\Omega(R)$). Then $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$. When P is free, this result is due to Yengui: $A = R[Y]$ and Abedelfatah: $A = R[Y, Y^{-1}]$.

1 Introduction

Rings are assumed to be commutative with unity and modules are finitely generated. The dimension of a ring means its Krull dimension and projective modules are of constant rank.

Let R be a Noetherian ring of dimension d and $A = R[Y_1, \ldots, Y_n, (f_1 \ldots f_m)^{-1}]$, where $m \leq n$, Y_1, \ldots, Y_n are variables over R and $f_i \in R[Y_i]$. If P is a projective A-module of rank $\geq \max\{2, d + 1\}$, then author-Dhorajia ([6], Theorem 3.12) proved that $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$. In particular P is cancellative, i.e. $P \oplus A' \simeq Q \oplus A'$ for some projective A-module $Q \Rightarrow P \simeq Q$. The case $n = m = 0$ of this result is due to Bass [1], $n = 1, m = 0$ is due to Plumstead [15], $n = m = 1$ and $f_1 = Y_1$ is due to Mandal [14] (he proved that P is cancellative), $m = 0$ is due to Rao [17] (he proved that P is cancellative) and Laurent polynomial case $f_i = Y_i$ is due to Lindel [13].

Heitmann ([9], Corollary 2.7) generalized Bass’ result to all commutative non-Noetherian rings. It is natural to ask if analog of above results hold for non-Noetherian rings.

Let R be a ring of dimension 0 and $A = R[Y_1, \ldots, Y_n]$ be a polynomial ring in n variables Y_1, \ldots, Y_n over R. Then Brewer-Costa [5] proved that all projective A-modules are free, generalizing the well known Quillen-Suslin theorem [16, 20] (see Ellouz-Lombardi-Yengui [8] for a constructive proof). Abedelfatah [2] generalized Brewer-Costa’s result by proving that $E_r(A)$ acts transitively on $Um_r(A)$ for $r \geq 3$. We generalize these results as follows (see [3, 6, 30]). This is non-Noetherian analog of author-Dhorajia’s result in case $d = 0$.

Theorem 1.1 Let R be a ring of dimension 0 and $A = R[Y_1, \ldots, Y_n, (f_1 \ldots f_m)^{-1}]$, where $m \leq n$, Y_1, \ldots, Y_n are variables over R and $f_i \in R[Y_i]$. Then all projective A-modules are free and $E_r(A)$ acts transitively on $Um_r(A)$ for $r \geq 3$.

1Department of Mathematics, IIT Bombay, Mumbai 400076, India; keshari@math.iitb.ac.in

Key Words: projective modules, cancellation problem

Mathematics Subject Classification 2000: Primary 13C10
Let R be a ring of dimension d and $n \geq d + 2$. Then Yengui [24] proved that $E_n(R[Y])$ acts transitively on $Um_n(R[Y])$ which is non-Noetherian analog of Plumstead’s result in free case. Abedelfatah [H] proved that $E_n(R[Y, Y^{-1}])$ acts transitively on $Um_n(R[Y, Y^{-1}])$ which is non-Noetherian analog of Mandal’s result in free case. We generalize both results as follows [11]. See (1.8) for definition of property $\Omega(R)$.

Theorem 1.2 Let R be a ring of dimension d and A be one of $R[Y]$ or $R[Y, Y^{-1}]$, where Y is a variable over R. If P is a projective A-module of rank $\geq d + 1$ satisfying property $\Omega(R)$, then $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$. In particular P is cancellative.

We generalize (1.2) for Prüfer domain as follows (see 5.3): Let R be a Prüfer domain of dimension d and $A = R[Y, f^{-1}]$, where Y is a variable over R and $f \in R[Y]$. If P is a projective A-module of rank $\geq d + 1$, then $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$.

2 Preliminaries

Let A be a ring, J an ideal of A and M an A-module. We say that $m \in M$ is unimodular if there exist $\phi \in M^* = Hom_A(M, A)$ such that $\phi(m) = 1$. The set of unimodular elements of M is denoted by $Um(M)$. We write $Um^1(A \oplus M, J)$ for the set of $(a, m) \in Um(A \oplus M)$ such that $a \in J + 1$. We write $Um(A \oplus M, J)$ for the set of $(a, m) \in Um^1(A \oplus M, J)$ such that $m \in JM$. We write $Um_r(A, J)$ for $Um(A \oplus A^{r-1}, J)$.

The group of A-automorphism of M is denoted by $Aut_A(M)$. We write $E^1(A \oplus M, J)$ for the subgroup of $Aut_A(A \oplus M)$ generated by automorphisms $\Delta_a \varphi$ and Γ_m, where

$$
\Delta_a \varphi = \begin{pmatrix} 1 & a \varphi \\ 0 & id_M \end{pmatrix} \quad \text{and} \quad \Gamma_m = \begin{pmatrix} 1 & 0 \\ m & id_M \end{pmatrix} \quad \text{with} \quad a \in J, \varphi \in M^*, m \in M.
$$

We write $E^1(A \oplus M)$ for $E^1(A \oplus M, A)$. Let $E_{r+1}(A)$ denote the subgroup of $SL_{r+1}(A)$ generated by elementary matrices $I + ae_{ij}$, where $a \in A$, $i \neq j$ and e_{ij} is the matrix with only non-zero entry 1 at (i, j)-th place. We write $E^1_{r+1}(A, J)$ for the subgroup of $E_{r+1}(A)$ generated by Δ_a and Γ_b, where

$$
\Delta_a = \begin{pmatrix} 1 & a \\ 0 & id_F \end{pmatrix} \quad \text{and} \quad \Gamma_b = \begin{pmatrix} 1 & 0 \\ b^t & id_F \end{pmatrix}, \quad \text{where} \quad F = A^r, a \in JF, b \in F.
$$

Let $p \in M$ and $\varphi \in M^*$ be such that $\varphi(p) = 0$. Let $\varphi_p \in End(M)$ be defined as $\varphi_p(q) = \varphi(q)p$. Then $1 + \varphi_p$ is an automorphism of M. The automorphism $1 + \varphi_p$ of M is called a transvection of M if either $p \in Um(M)$ or $\varphi \in Um(M^*)$. We write $E(M)$ for the subgroup of $Aut(M)$ generated by transvections of M.

Due to following result of Bak-Basu-Rao (3, theorem 3.10), we can interchange $E(A \oplus P)$ and $E^1(A \oplus P)$.

Theorem 2.1 Let A be a ring and P a projective A-module of rank ≥ 2. Then $E^1(A \oplus P) = E(A \oplus P)$.

2
The following result of Heitmann ([9], Corollary 2.7) generalizes Bass’s cancellation [4] to non-Noetherian rings.

Theorem 2.2 Let A be a ring of dimension d and P a projective A-module of rank $\geq d + 1$. Then $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$. In particular P is cancellative.

The following result of Brewer-Costa [5] generalizes Quillen-Suslin theorem [10, 20] to all zero-dimensional rings.

Theorem 2.3 Let R be a ring of dimension 0 and $A = R[Y_1, \ldots, Y_n]$ a polynomial ring in n variables Y_1, \ldots, Y_n over R. Then all projective A-modules are free.

We will state five results which are proved with assumption that rings are Noetherian. But the same proof works for non-Noetherian rings.

Lemma 2.4 ([7], Remark 2.2) Let A be a ring, I an ideal of A and P a projective A-module. Then the natural map $E(A \oplus P) \to E(T_N(I(A \oplus P)))$ is surjective.

Lemma 2.5 ([6], Lemma 3.1) Let A be a ring, J an ideal of A and P a projective A-module. Let “bar” denote reduction modulo the nil-radical of A. Assume $E^1(A \oplus P,J)$ acts transitively on $Um^1(A \oplus P,J)$. Then $E^1(A \oplus P)$ acts transitively on $Um^1(A \oplus P,J)$.

Lemma 2.6 ([13], Lemma 1.1) Let A be a reduced ring and P an A-module. Assume $s \in A$ is a non-zerodivisor such that P_s is free of rank $r \geq 1$. Then there exist $p_1, \ldots, p_r \in P$, $\phi_1, \ldots, \phi_r \in P^*$ and $t \in \mathbb{N}$ such that

(i) $s^t P \subset F$ and $s^t P^* \subset G$ with $F = \sum_{1 \leq i \leq r} A p_i$ and $G = \sum_{1 \leq i \leq r} A \phi_i$.

(ii) $(\phi_i(p_j))_{1 \leq i, j \leq r} = \text{diagonal } (s^t, \ldots, s^t)$.

Lemma 2.7 ([10], Lemma 3.10) Let A be a reduced ring and P a projective A-module of rank r. Assume there exist a non-zerodivisor $s \in A$ such that P_s is free. Choose $p_1, \ldots, p_r \in P, \phi_1, \ldots, \phi_r \in P^*$ satisfying ([2.2]). Let $(a, p) \in Um(A \oplus P, sA)$ with $p = c_1 p_1 + \ldots + c_r p_r$, where $c_i \in sA$ for all i. Assume there exist $\phi \in E_{r+1}^1(A, sA)$ such that $\phi(a, c_1, \ldots, c_r) = (1, 0, \ldots, 0)$. Then there exist $\Phi \in E(A \oplus P)$ such that $\Phi(a, p) = (1, 0)$.

Lemma 2.8 ([22], Lemma 4.2) Let A be a reduced ring and P an A-module. Assume there exist non-zerodivisors $s_1, \ldots, s_r \in A$, $p_1, \ldots, p_r \in P$ and $\phi_1, \ldots, \phi_r \in P^*$ such that $(\phi_i(p_j))_{r \times r} = \text{diagonal } (s_1, \ldots, s_r) := N$. Let M be the subgroup of $GL_r(A)$ consisting of all matrices of the form $I + TN^2$ for $T \in M_r(A)$. Then the map

$$\Phi : M \to \text{Aut}(P); \quad \Phi(I + TN^2) = id_P + (p_1, \ldots, p_r)TN(\phi_1, \ldots, \phi_r)^t$$

is a group homomorphism.

The following result is from Lam’s book ([11], Proposition VI.1.14).
Proposition 2.9 Let B be a ring and $a, b \in B$ two comaximal elements. Then for any $\sigma \in E_n(B_{ab})$ with $n \geq 3$, there exist $\alpha \in E_n(B_b)$ and $\beta \in E_n(B_a)$ such that $\sigma = (\alpha)_a(\beta)_b$.

We state Quillen-Suslin theorem \[16, 20\]. Note that any commutative ring is a filtered union of Noetherian commutative rings. Hence following result will follow from Noetherian case.

Theorem 2.10 Let R be a ring and P a projective $R[Y]$-module. Let $f \in R[Y]$ be a monic polynomial such that P_f is free. Then P is free.

We state a result of Yengui \[23\] and Abedelfatah \[1\] respectively.

Theorem 2.11 Let A be a ring of dimension d, Y a variable over A and $n \geq d + 2$. Then
1. $E_n(A[Y])$ acts transitively on $\text{Um}_n(A[Y])$.
2. $E_n(A[Y,Y^{-1}])$ acts transitively on $\text{Um}_n(A[Y,Y^{-1}])$.

3 Zero dimension case

In this section we prove our first result.

Proposition 3.1 Let $\Sigma(n)$ be set of rings which is closed w.r.t. following properties:
1. If $R \in \Sigma(n)$ and $0 \neq f \in R[Y]$ is non-unit, then $R[Y]_{f(1+fR[Y])} \in \Sigma(n)$.
2. If $R \in \Sigma(n)$, then all projective modules over $R[Y_1,\ldots,Y_n]$ are free, where Y_1,\ldots,Y_n are variables over R.

Then, for $R \in \Sigma(n)$, all projective modules over $R[Y_1,\ldots,Y_n, (f_1\ldots f_m)^{-1}]$ are free, where $m \leq n$ and $f_i \in R[Y_i]$.

Proof Let P be a projective $A = R[Y_1,\ldots,Y_n, (f_1\ldots f_m)^{-1}]$-module of rank r. If $m = 0$, then P is free by assumption (ii). Assume $m > 0$ and use induction on m. Write $C = R[Y_1,\ldots,Y_n, (f_1\ldots f_{m-1})^{-1}]$, $S = 1 + f_m R[Y_m]$ and $B = R[Y_m]_{f_m S}$. Then $A = C_{f_m}$, $B \in \Sigma(n)$ by assumption (i) and $S^{-1} A = B[Y_1,\ldots,Y_{m-1}, Y_{m+1},\ldots,Y_n, (f_1\ldots f_{m-1})^{-1}]$. By induction on m, $S^{-1} P$ is free. Since P is finitely generated, we can find $g \in S$ such that P_g is free. Note that f_m and g are comaximal elements of $R[Y_m]$. Consider the fiber product diagram

\[
\begin{array}{ccc}
C & \rightarrow & C_{f_m} = A \\
\downarrow & & \downarrow \\
C_g & \rightarrow & C_{f_m g} = A_g
\end{array}
\]

Patching projective modules P over C_{f_m} and $(C_g)^r$ over C_g, we get $P \rightarrow Q_{f_m}$, where Q is a projective C-module of rank r. By induction on m, projective modules over C are free. Hence Q is free and therefore P is free. \[\square\]
Proposition 3.2 Let \(R \) be a ring of dimension 0 and \(A = \mathbb{R}[Y_1, \ldots, Y_n, (f_1 \ldots f_m)^{-1}] \), where \(m \leq n \), \(Y_1, \ldots, Y_n \) are variables over \(R \) and \(f_i \in \mathbb{R}[Y_i] \). Then all projective \(A \)-modules are free.

Theorem 3.3 Let \(R \) be a ring of dimension 0 and \(A = \mathbb{R}[Y_1, \ldots, Y_n, (f_1 \ldots f_m)^{-1}] \), where \(m \leq n \), \(Y_1, \ldots, Y_n \) are variables over \(R \) and \(f_i \in \mathbb{R}[Y_i] \). Then \(E_r(A) \) acts transitively on \(\text{Um}_r(A) \) for \(r \geq 3 \).

Proof The case \(m = 0 \) is due to Abedelfatah [2]. Assume \(m > 0 \) and use induction on \(m \). Let \(v \in E_r(A) \). Write \(C = \mathbb{R}[Y_1, \ldots, Y_n, (f_1 \ldots f_{m-1})^{-1}] \), \(S = 1 + f_m \mathbb{R}[Y_m] \) and \(B = \mathbb{R}[Y_m]/S \). Then \(B \) is 0 dimensional, \(A = C_f \) and \(S^{-1}A = B[Y_1, \ldots, Y_{m-1}, Y_{m+1}, \ldots, Y_n, (f_1 \ldots f_{m-1})^{-1}] \). By induction on \(m \), \(E_r(S^{-1}A) \) acts transitively on \(\text{Um}_r(S^{-1}A) \). Hence there exist \(\sigma \in E_r(S^{-1}A) \) such that \(\sigma(v) = e_1 = (1, 0, \ldots, 0) \). We can find \(g \in S \) and \(\tilde{\sigma} \in E_r(C_{f_m}) \) such that \(\tilde{\sigma}(v) = e_1 \). Note that \(f_m \) and \(g \) are comaximal elements of \(R[Y_m] \). Consider the fiber product diagram

\[
\begin{array}{ccc}
C & \rightarrow & C_{f_m} = A \\
\downarrow & & \downarrow \\
C_g & \rightarrow & C_{f_m} g = A_g
\end{array}
\]

By [24], \(\tilde{\sigma} \) has a splitting \(\tilde{\sigma} = (\alpha)_{f_m}(\beta)_g \), where \(\alpha \in E_r(C_g) \) and \(\beta \in E_r(C_{f_m}) \). We have unimodular elements \(\beta(v) \in \text{Um}_r(C_{f_m}) \) and \(\alpha^{-1}(e_1) \in \text{Um}_r(C_g) \) whose images in \(C_{f_m} g \) are same. Hence patching \(\beta(v) \) and \(\alpha^{-1}(e_1) \), we get \(w \in \text{Um}_r(C) \) such that its image in \(C_{f_m} \) is \(\beta(v) \). By induction on \(m \), \(E_r(C) \) acts transitively on \(\text{Um}_r(C) \). Hence there exist \(\phi \in E_r(C) \) such that \(\phi(w) = e_1 \). If \(\Phi_1 \in E_r(C_{f_m}) \) is the image of \(\phi \), then \(\Phi_1(\alpha(v)) = e_1 \). Write \(\Phi = \Phi_1 \alpha \in E_r(A) \), we are done.

4 Main Theorem

The following result is proved in ([10], Lemma 3.3) with the assumption that ring is Noetherian. Using [28], same proof works for non-Noetherian ring. Hence we omit the proof.

Lemma 4.1 Let \(A \) be a reduced ring and \(P \) a projective \(A \)-module of rank \(r \). Assume there exist a non-zerodivisor \(s \in A \) such that [2.6] holds. Assume \(R^s \) is cancellative, where \(R = A[X]/(X^2 - s^2X) \). Then any element of \(\text{Um}^1(A \oplus P, s^2A) \) can be taken to \((1, 0) \) by some element of \(\text{Aut}(A \oplus P, sA) \).

An immediate consequence of [4.1] is the following result. Its proof is same as of ([10], Corollary 3.5) using [2.2].
Corollary 4.2 Let A be a reduced ring of dimension d and P a projective A-module of rank d. Assume there exist a non-zerodivisor $s \in A$ such that (2.6) holds. Assume R^d is cancellative, where $R = A[X]/(X^2 - s^2X)$. Then P is cancellative.

Let R be a ring and I an ideal of R. For $n \geq 3$, let $E_n(I)$ be the subgroup of $E_n(R)$ generated by $E_{ij}(a) = I + ae_{ij}$ with $a \in I$ and $1 \leq i \neq j \leq n$. Let $E_n(R, I)$ denote the normal closure of $E_n(I)$ in $E_n(R)$. We have two characterisation of $E_n(R, I)$ due to Suslin-Vaserstein [21] and Stein [19] respectively.

Proposition 4.3 The kernel of the natural map $E_n(R) \to E_n(R/I)$ is isomorphic to $E_n(R, I)$.

Proposition 4.4 Consider the following fiber product diagram

\[
\begin{array}{ccc}
R(I) & \xrightarrow{p_1} & R \\
\downarrow{p_2} & & \downarrow{j_1} \\
R & \xrightarrow{j_2} & R/I
\end{array}
\]

Then $E_n(R, I)$ is kernel of the natural surjection $E_n(p_1) : E_n(R(I)) \to E_n(R)$.

Using [4.3, 4.4, 2.7] and following the proof of [7, Lemma 3.3], we get the following result. In [7], it is proved for Noetherian ring.

Lemma 4.5 Let A be a reduced ring and P a projective A-module of rank r. Assume there exist a non-zerodivisor $s \in A$ such that (2.6) holds. Assume $E_{r+1}(B)$ acts transitively on $\text{Um}_{r+1}(B)$, where $B = A[X]/(X^2 - s^2X)$. Then any element of $\text{Um}(A \oplus P, s^2A)$ can be taken to $(1, 0)$ by some element of $E(A \oplus P)$.

The proof of the following result is same as of [7, Theorem 3.4] using [4.3, 2.7].

Proposition 4.6 Let A be a reduced ring of dimension d and P a projective A-module of rank $r \geq d$. Assume there exist a non-zerodivisor $s \in A$ such that (2.6) holds. Assume $E_{r+1}(B)$ acts transitively on $\text{Um}_{r+1}(B)$, where $B = A[X]/(X^2 - s^2X)$. Then $E(A \oplus P)$ acts transitively on $\text{Um}(A \oplus P)$.

Remark 4.7 By [11, Exercise 2.34], any reduced ring R can be embedded in a reduced non-Noetherian ring S such that S equals the total quotient ring $Q(S)$ of S and R is a retract of S. In particular, if P is a non-free projective R-module, then $P \otimes_R S$ is a non-free projective S-module. Hence, if R is a reduced non-Noetherian ring and P a projective R-module, then we can not say that P_τ is free, for some non-zerodivisor $s \in R$.

Definition 4.8 Let $R \subset S$ be rings and P a projective S-module. We say that P satisfies property $\Omega(R)$ if for any ideal I of R and $\overline{P} = P/IP$, there exist a non-zerodivisor $\overline{t} \in R/I$ such that $\overline{P}_{\overline{t}}$ is free. The property $\Omega(R)$ avoids situation [4.7].
The following result generalises (2.11).

Theorem 4.9 Let R be a ring of dimension d and A is one of $R[Y]$ or $R[Y,Y^{-1}]$, where Y is a variable over R. Let P be a projective A-module of rank $r \geq d+1$ which satisfies property $\Omega(R)$. Then $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$.

Proof By (2.5), we may assume R is reduced. If $d = 0$, then P is free by (3.2) and we can use (2.11). Hence assume $d \geq 1$ and use induction on d. Since P satisfies property $\Omega(R)$, we can find a non-zerodivisor $s \in R$ such that P_s is free and (2.6) holds. If $R' = R[X]/(X^2 - s^2X)$, then dim $R' = d$. Write $B = A[X]/(X^2 - s^2X)$. Then B is one of $R'[Y]$ or $R'[Y,Y^{-1}]$. By (2.11), $E_{r+1}(B)$ acts transitively on $Um_{r+1}(B)$. Applying (2.5), we get every element of $Um(A \oplus P, s^2A)$ can be taken to $(1,0)$ by some element of $E(A \oplus P)$. Therefore it is enough to show that every element of $Um(A \oplus P)$ can be taken to an element of $Um(A \oplus P, s^2A)$ by some element of $E(A \oplus P)$.

Let “bar” denote reduction modulo s^2A. Then dim $R/s^2 \cdot d < d$. By assumption, $P/s^2 \cdot d$ satisfies property $\Omega(R/s^2 \cdot d)$. Hence by induction on d, $E(A \oplus P)$ acts transitively on $Um(A \oplus P)$. Using (2.4), any element of $Um(A \oplus P)$ can be taken to an element of $Um(A \oplus P, s^2A)$ by $E(A \oplus P)$. This completes the proof.

5 Some Auxiliary results

Lemma 5.1 Let R be a ring of dimension d such that dimension of the polynomial ring $A = R[Y_1, \ldots, Y_n]$ is $d + n$. Then every stably free A-module P of rank $\geq d + 1$ is free.

Proof The case $n = 0$ is due to Heitmann (2.2). Assume $n > 0$ and use induction on n. Let S be the set of all monic polynomials in $R[Y_n]$. Then dim $R[Y_n]_S = d$ and dim $R[Y_n]_S[Y_1, \ldots, Y_{n-1}] = d + n - 1$. Hence by induction on n, $S^{-1}P$ is free. By (2.10), P is free.

Proposition 5.2 Let R be a ring of dimension d such that dimension of the polynomial ring $R[Y_1, \ldots, Y_n]$ is $d + n$. Let $A = R[Y_1, \ldots, Y_n, (f_1 \ldots f_{m-1})^{-1}]$ with $m \leq n$ and $f_i \in R[Y_i]$ a monic polynomial for all i. Then every stably free A-module P of rank $r \geq d + 1$ is free.

Proof The case $m = 0$ follows from (5.1). Assume $m > 0$ and use induction on m. Let $C = R[Y_1, \ldots, Y_n, (f_1 \ldots f_{m-1})^{-1}]$. If $S = 1 + f_m R[Y_m]$, then dim $R[Y_m]_{f_mS} = d$ (since dim $R[Y_m] = d + 1$) and $S^{-1}A = R[Y_m]_{f_mS}[Y_1, \ldots, Y_{m-1}, Y_{m+1}, \ldots, Y_n, (f_1 \ldots f_{m-1})^{-1}]$. By induction on m, $S^{-1}P$ is free. Choose $g \in S$ such that P_g is free. Patching projective modules P and C_g over C_{f_mg}, we get a projective C-module Q such that $Q_{f_m} = P$. Since P is stably free, $(Q \oplus C')_{f_m}$ is free for some t. By (2.10), $Q \oplus C'$ is free, i.e., Q is stably free. By induction on m, Q and hence P is free.

It is natural to ask if all projective A-modules of rank $\geq d + 1$ in (5.2) are cancellative. We give a partial answer.
Theorem 5.3 Let R be an integral domain of dimension d such that $\dim R[Y] = d + 1$. Let $A = R[Y, f^{-1}]$ with $f \in R[Y]$ and P a projective A-module of rank $r \geq \max\{2, d + 1\}$. Then $E(A \oplus P)$ acts transitively on $\text{Um}(A \oplus P)$.

Proof If $d = 0$, then P is free and we are done by (3.3). Assume $d \geq 1$. Choose $0 \neq s \in R$ such that (2.6) holds. Write $R' = R[X]/(X^2 - s^2X)$ and $B = R'[Y, f^{-1}]$. Assume $E_{r+1}(B)$ acts transitively on $\text{Um}_{r+1}(B)$. By (1.3), any $(a, p) \in \text{Um}(A \oplus P, s^2A)$ can be taken to $(1, 0)$ by some element in $E(A \oplus P)$. Let “bar” denote reduction modulo s^2A. Then $\dim \overline{A} = d$ and rank $\overline{P} \geq d + 1$. Applying (2.2), we get $E(\overline{A} \oplus \overline{P})$ acts transitively on $\text{Um}(\overline{A} \oplus \overline{P})$. Using (2.3), every $V \in \text{Um}(A \oplus P)$ can be taken to $W \in \text{Um}(A \oplus P, s^2A)$ by some element of $E(A \oplus P)$. Therefore, it is enough to show that $E_{r+1}(B)$ acts transitively on $\text{Um}_{r+1}(B)$.

Let $v \in \text{Um}_{r+1}(B)$. If $C = R'[Y]$, then $B = C_f$. Since R' is an integral extension of R, $\dim R'[Y] = d + 1 = \dim R[Y]$. Hence $\dim C_{f(1+f^2Y')} = d$. Applying (2.2), we get $\sigma \in E_{r+1}(C_{f(1+f^2Y')})$ such that $\sigma(v) = (1, \ldots, 0)$. We can find $g \in 1 + fR'[Y]$ and $\overline{\sigma} \in E_{r+1}(C_{f\overline{g}})$ such that $\overline{\sigma}(v) = (1, 0, \ldots, 0)$.

By (2.3), $\overline{\sigma}$ has a splitting $\overline{\sigma} = (\alpha f)(\beta)g$, where $\alpha \in E_{r+1}(C_g)$ and $\beta \in E_{r+1}(C_f)$. We have two unimodular elements $\beta(v) \in \text{Um}_{r+1}(C_f)$ and $\alpha^{-1}(1, 0, \ldots, 0) \in \text{Um}_{r+1}(C_g)$ whose images in $C_{f\overline{g}}$ are same. Hence, patching $\beta(v)$ and $\alpha^{-1}(1, 0, \ldots, 0)$, we get $w \in \text{Um}_{r+1}(C)$ whose image in C_f is $\beta(v)$. By Yengui (2.11), $E_{r+1}(C_f)$ acts transitively on $\text{Um}_{r+1}(C)$. Hence, we can find $\phi \in E_{r+1}(C)$ such that $\phi(w) = (1, 0, \ldots, 0)$. If Φ_1 is the image of ϕ in C_f, then $\Phi_1(\alpha(v)) = (1, 0, \ldots, 0)$ and $\Phi_1 \alpha \in E_{r+1}(B)$. This completes the proof. ■

Remark 5.4 (1) By a result of Seidenberg (15, Theorem 4), if R is a Prüfer domain, then $\dim R[Y_1, \ldots, Y_n] = \dim R + n$. Hence (5.2) holds for a Prüfer domain R and generalizes (4.9).

(2) Lequain-Simis have shown [12] that if R is a Prüfer domain, then projective modules over $R[Y_1, \ldots, Y_n]$ are extended from R. In particular, if R is a valuation domain (local Prüfer domain), then projective $R[Y_1, \ldots, Y_n]$-modules are free. It is natural to ask if projective modules over $R[Y_1, \ldots, Y_n, (f_1 \ldots f_m)^{-1}]$ are free, where R is a valuation domain, $m \leq n$ and $f_i \in R[Y_i]$. If each f_i is a monic polynomial, then (5.2) gives a partial answer.

Proposition 5.5 Let R be a valuation domain of dimension d and $A = R[X, Y_1, \ldots, Y_n, f^{-1}]$ with $f \in R[X]$. Then every stably free A-module P of rank $\geq d + 1$ is free.

Proof If $d = 0$, then P is free, by (5.2). Assume $d \geq 1$. Let $C = R[X, Y_1, \ldots, Y_n]$ and $S = 1 + fR[X]$. Since $\dim R[X] = d + 1$ by Seidenberg [13], $\dim R[X]_{fS} = d$ and $\dim R[X]_{fS}[Y_1, \ldots, Y_n] = d + n$. By (6.1), $S^{-1}P$ being stably free, is free. Choose $g \in S$ such that P_g is free. Patching projective modules P and $(C_g)^\ast$ over C_{fS}, we get a projective C-module Q such that $P \sim Q_f$. By Lequain-Simis [12], every projective C-module is free. Therefore Q and hence P is free. ■
References

[1] A. Abedelfatah, *On stably free modules over Laurent polynomial rings*, Proc. A.M.S. 139 (2011) 4199-4206.
[2] A. Abedelfatah, *On the action of elementary group on the unimodular rows*, J. Algebra 368 (2012) 300-304.
[3] A. Bak, R. Basu and Ravi A. Rao, *Local global principle for transvection groups*, Proc. Amer. Math. Soc. 138 (2010) 1191-1204.
[4] H. Bass, *K-theory and stable algebra*, Publ. Math. Inst. Hautes Etudes Sci. 22 (1964) 5-60.
[5] J.W. Brewer and D.L. Costa, *Projective modules over some non-Noetherian polynomial rings*, J. Pure Appl. Algebra 13 (1978) 157163.
[6] A.M. Dhorajia and M.K. Keshari, *Projective modules over overrings of polynomial rings*, J. Algebra 323 (2010) 551-559.
[7] A.M. Dhorajia and M.K. Keshari, *A note on cancellation of projective modules*, J. Pure Appl. Algebra 216 (2012) 126-129.
[8] A. Ellouz, H. Lombardi and I. Yengui, *A constructive comparison of rings R(X) and R(X) and application to Lequain-Simis induction theorem*, J. Algebra 320 (2008) 521-533.
[9] R. Heitmann, *Generating non-noetherian modules efficiently*, Michigan Math J. 31 (1984) 167-180.
[10] M.K. Keshari, *Cancellation problem for projective modules over affine algebras*, J. K-Theory 3 (2009) 561-581.
[11] T.Y. Lam, *Serre’s problem on projective modules*, Springer Monograph in Mathematics, Springer-Verlag, Berlin, 2006.
[12] Y. Lequain and A. Simis, *Projective modules over R[\mathbf{X}_1,\ldots,\mathbf{X}_n], R a Prufer domain*, J. Pure Appl. Algebra 18 (1980) 165-171.
[13] H. Lindel, *Unimodular elements in projective modules*, J. Algebra 172 (1995) 301-319.
[14] S. Mandal, *Basic elements and cancellation over laurent polynomial rings*, J. Algebra 79 (1982) 251-257.
[15] B. Plumstead, *The conjectures of Eisenbud and Evans*, Amer. J. Math. 105 (1983) 1417-1433.
[16] D. Quillen, *Projective modules over polynomial rings*, Invent. Math. 36 (1976) 167-171.
[17] Ravi A. Rao, *A question of H. Bass on the cancellative nature of large projective modules over polynomial rings*, Amer. J. Math. 110 (1988) 641-657.
[18] A. Seidenberg, *On the dimension theory of rings II*, Pacific J. Math. 4 (1954) 603-614.
[19] M.R. Stein, *Relativizing functors on rings and algebraic K-theory*, J. Algebra 19 (1971) 140-152.
[20] A.A. Suslin, *Projective modules over a polynomial rings are free*, Sov. Math. Dokl. 17 (1976) 1160-1164.
[21] A.A. Suslin and L.N. Vaserstein, *Serre’s problem on projective modules over polynomial rings and algebraic K-theory*, Math. USSR Izvestija 10 (1976) 937-1001.
[22] A. Weimers, *Cancellation properties of projective modules over Laurent polynomial rings* J. Algebra 156 (1993), 108-124.
[23] I. Yengui, *Stably free modules over R[x] of rank > dim R are free*, Mathematics of Computation 80 no. 274 (2011) 1093-1098.