Mitotic Activation of Protein-tyrosine Phosphatase α and Regulation of Its Src-mediated Transforming Activity by Its Sites of Protein Kinase C Phosphorylation*

Received for publication, February 11, 2002, and in revised form, March 25, 2002
Published, JBC Papers in Press, March 28, 2002, DOI 10.1074/jbc.M201394200

Xin-Min Zheng, Ross J. Resnick, and David Shalloway‡

From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853

During mitosis, the catalytic activity of protein-tyrosine phosphatase (PTP) α is enhanced, and its inhibitory binding to Grb2, which specifically blocks Src dephosphorylation, is decreased. These effects act synergistically to activate Src in mitosis. We show here that these effects are abrogated by mutation of Ser160 and/or Ser204, the sites of protein kinase C-mediated phosphorylation within PTPα. Moreover, either a Ser-to-Ala substitution or serine dephosphorylation specifically eliminated the ability of PTPα to dephosphorylate and activate Src even during interphase. This explains why the substitutions eliminated PTPα transforming activity, even though PTPα interphase dephosphorylation of nonspecific substrates was only slightly decreased. This occurred without change in the phosphorylation of PTPα at Tyr789, which is required for “phosphotyrosine displacement” during Src dephosphorylation. Thus, in addition to increasing PTPα nonspecific catalytic activity, Ser160 and Ser204 phosphorylation (along with Tyr789 phosphorylation) regulates PTPα substrate specificity. This involves serine phosphorylation-dependent differential modulation of the affinity of Tyr(P)789 for the Src and Grb2 SH2 domains. The results suggest that protein kinase C may participate in the mitotic activation of PTPα and Src and that there are intramolecular interactions between the PTPα C-terminal and membrane-proximal regions that are regulated, at least in part, by serine phosphorylation.

Protein-tyrosine phosphatase (PTP)α is an ~130-kDa transmembrane PTP (1, 2) that activates the cytoplasmic membrane-bound Src protein-tyrosine kinase by dephosphorylating Src Tyr(P)527 (Refs. 3 and 4; see Ref. 5 for review). This releases Src from its negatively regulated conformation in which Tyr(P)527 is bound intramolecularly to the Src SH2 domain (see Refs. 6 and 7 for review). Overexpression of PTPα results in dephosphorylation of Tyr(P)527 and activation of Src in vivo (3, 4). Conversely, Src Tyr(P)527 phosphorylation is higher and Src catalytic activity is about three times lower in cells from PTPα−/− knockout mice (8, 9) or following antisense-induced PTPα down-regulation (10), indicating that PTPα is a major physiological positive regulator of Src.

Constitutive activation of the Src proto-oncoprotein by mutation increases the tyrosine phosphorylation of multiple signal transduction proteins and thereby neoplastically transforms a variety of cell types (see Ref. 7 for review). The fact that activation by overexpressed PTPα also causes transformation (3) is perhaps more surprising and suggests that PTPα activity is directed in vivo preferentially to Src (and Src family members), rather than to Src substrates.

This substrate specificity is due, at least in part, to a phosphotyrosine displacement mechanism that selectively promotes dephosphorylation of Src by PTPα ~20% of PTPα in NIH3T3 cells is phosphorylated at Tyr789, a residue near its carboxyl terminus (11, 12). Tyr789 phosphorylation does not affect PTPα dephosphorylation of nonspecific substrates such as myelin basic protein (MBP), whose phosphotyrosines are not bound, but is required for dephosphorylation of Src Tyr789 (21), which is protected against many phosphatases by its SH2 domain binding (13). Phosphorylated Tyr789 can bind to the Src SH2 domain, thereby displacing and thus unprotecting Src Tyr(P)527. This also forms a transient bound state that additionally facilitates Tyr(P)527 dephosphorylation (13).

Tyr789 also binds the SH2 domain of the adapter protein Grb2 (11, 12), which participates in Ras activation following peptide growth factor stimulation (see Ref. 14 for review). Because of steric hindrance resulting from the interaction of one of the Grb2 SH3 domains with PTPα, PTPα-bound Grb2 is not able to bind Sos, the downstream protein in the Grb2-Ras signal transduction pathway. Thus, it does not appear that localization of Grb2 to the plasma membrane by binding to PTPα can activate the Ras signaling pathway (15, 16). Instead, control may flow in the other direction: Grb2 binding to Tyr789 blocks phosphotyrosine displacement and the ability of PTPα to dephosphorylate Src, so only Grb2-unbound, Tyr789-phosphorylated PTPα is able to activate Src (13). Most Tyr789-phosphorylated PTPα is bound by Grb2 (11), so small changes in Grb2 binding can sensitively control Src-directed PTPα activity.

Src is activated during mitosis by a cooperative mechanism: mitotic Cdc2-mediated Ser/Thr phosphorylations within the Src amino-terminal region (17, 18) weaken intramolecular Src SH2 domain-Tyr(P)527 association (19, 20), thereby rendering Tyr(P)527 more susceptible to dephosphorylation (21–23) by PTPα, which itself is activated by other means (24). There is almost no mitotic activation of Src in PTPα knockout cells, implying that PTPα is the main PTP involved (24).

The mitotic activation of PTPα has two components: 1) its catalytic activity, as measured on nonphysiological substrates such as MBP, increases ~2-fold; and 2) the inhibitory binding of Grb2 to PTPα is reduced 3–4-fold (24). The latter reduction...
occurs because of a mitotic decrease in the affinity of PTPα for the Grb2 SH2 domain without a decrease in its affinity for the Src SH2 domain. This results in 2–3-fold increased Src-PTPα co-association and a commensurate increase in Src-directed PTPα activity (24). This relief from Grb2 competition combines multiplicatively with the increase in catalytic activity to give a 4–5-fold increase in total Src-directed PTPα activity (24).

The mechanism(s) responsible for increasing PTPα specific activity and selectively decreasing its binding to the Grb2 SH2 domain are not known. The changes occur without altered Tyr789 phosphorylation and can be observed with purified PTPα in vitro. Moreover, there is no evidence of PTPα dimerization under the experimental conditions. The changes coincide with mitotic reduction of PTPα electrophoretic mobility, suggesting that hyperphosphorylation is involved. Indeed, treating PTPα with the Ser/Thr-specific phosphatase PP2A coordinately eliminates PTPα mitotic mobility retardation, increased catalytic activity, and decreased Grb2 binding. The effect on Src-directed PTPα activity is even stronger: PP2A treatment not only blocks the mitotic increase, but also reduces, if not eliminates, the ability of interphase PTPα to activate Src (24). Because PTPα is predominantly phosphorylated at serine and has very little or no threonine phosphorylation (24–26), this suggests that the mitotic activation of PTPα requires, and may be caused by, serine hyperphosphorylation (24).

Two serine phosphorylation sites in PTPα have already been identified: Ser180 and Ser204 can both be phosphorylated in vitro in NIH3T3 cells by protein kinase C and are phosphorylated in vivo following treatment of cells with 12-O-tetradecanoylphorbol-13-acetate (25, 26). 12-O-Tetradecanoylphorbol-13-acetate-induced serine hyperphosphorylation of PTPα increases its catalytic activity 2–3-fold (25), probably because of phosphorylation at these sites (26). Recently, it was shown that phosphorylation at Ser180 and Ser204 is required for the activation of PTPα that follows treatment of A431 cells with a somatostatin analog (27).

To investigate the possibility that phosphorylation at Ser180 and/or Ser204 is involved in the mitotic activation of PTPα, we have compared the effects of separate and coordinate site-specific substitutions at these sites with those of PP2A treatment. We found that these phosphorylations are required for mitotic activation of PTPα, for the change in its SH2 domain-binding properties, and for its ability to activate Src and to transform cells.

MATERIALS AND METHODS

Antibodies—All PTPα immunoprecipitations and immunoblotting were performed with polyclonal antibody 7-091, which was made in rabbits against a GST fusion protein containing PTPα residues 165–793 (13). Anti-HA immunoprecipitations were carried out with monoclonal antibody 12CA5 (28).

Cell Lines, Nocodazole Arrest of Mitotic Cells, and Induction of PTPα Expression—Except for cell lines overexpressing the S180A and S204A mutants (described below), all lines were previously described (13). Cells were grown; PTPα expression was induced; and cells were arrested in mitosis with nocodazole and collected by mechanical shake-off as described (24).

Mutant PTPα-inducible Expression Plasmids and Cell Lines—Plasmids for inducible expression of the Ser-to-Ala human PTPα mutants were constructed by replacing coding sequences lying between the two HindIII sites in WT PTPα expression plasmids pNTPTPα (no HA tag) and pTPTPα (with the HA epitope tag YPYDVPDYA) with mutated sequences constructed by PCR PCR products and restriction fragments that together comprised complete (mutated) coding sequences lying between the HindIII sites were then religated into vector plasmid pTet-Splice (Invitrogen) to construct plasmids that were identical to pNTPTPα or pTPTPα except for the specified mutations. For the S180A substitution, a mutated HindIII-EcXI fragment was prepared by PCR using pNTPTPα as a template with the 5′-primer 5′-CCCGACGGATCCTGGTCATCTTCTGTT-3′ and the 3′-primer 3′-CATGCGCGGGTTGTAAGGAGAAACGTAGGAACAT-3′. The 5′-primer contained the HindIII site (underlined) and the start codon (boldface); the 3′-primer contained the EcoRI site (underlined). The HindIII site (AGA → AGC) (italics) in the 3′-primer resulted in the S180A substitution. This PCR product was cleaved with HindIII and EcoRI, mixed with the complementary gel-purified EcoRI-HindIII restriction fragment from pNTPTPα and ligated into the HindIII site of pTet-Splice to make plasmid pNTPTPα(S180A). Plasmid pTPTPα(S180A), which expresses PTPα(S180A)-HA, was constructed similarly, except that the EcoRI-HindIII fragment was from pTPTPα.

For the S204A mutation, a 6×-primer pair HindIII-BgIII fragment containing the 5′-portion of the WT coding sequence was copied from pNTPTPα by PCR using the 5′-primer 5′-GGGCGGAACCTTGGGCCCCACCATGATTCCGTTGTCATCTTCTGTT-3′ and the 3′-primer 5′-TTGTTGCGGAGGAGAGACGACACTCATCT-3′. The 5′-primer contained the HindIII site (underlined) and the start codon (boldface); the 3′-primer contained the BgIII site (underlined). This PCR product was cleaved with HindIII and BgIII (although the 5′-primer contained the substitution AGC → GCC at nucleotides 6–8, the BgIII digestion removed this region). The BgIII-HindIII fragment containing the downstream coding sequence with the S204A mutation was generated using pNTPTPα as a PCR template with the 5′-primer 5′-GGGCGGAACCTTGGGCCCCACCATGATTCCGTTGTCATCTTCTGTT-3′ and the 3′-primer 5′-TTGTTGCGGAGGAGAGACGACACTCATCT-3′. This PCR product was cleaved with HindIII and BgIII, ligated into EcoRI-HindIII fragment from pNTPTPα(S180A) and mixed with the gel-purified EcoRI-X HindIII fragment obtained by PCR using pNTPTPα(S180A) and EcoRI-HindIII restriction fragment from pTPTPα(S204A) as a template with the 5′-primer 5′-CCACGGGCCGACCTGAGGATGTGGAGCCCCAGAGTGCGCGCGCAGAGGCGAGCAGCCGACCGCGCCGAGGAGAGAGACGACACTCATCT-3′ and the 3′-primer 3′-TGTGTTGCGGAGGAGAGACGACACTCATCT-3′. The 5′-primer contained the EcoRI site (underlined); the 3′-primer contained the stop codon (boldface) and the HindIII site (underlined). The mutation AGC → GCC (boldface italics) in the 5′-primer caused the S204A substitution. This PCR product was cleaved with BgIII and HindIII, and both fragments were ligated into the HindIII site of pTet-Splice to make plasmid pNTPTPα(S204A). Plasmid pTPTPα(S204A), which expresses PTPα(S204A)-HA, was constructed by ligating the gel-purified HindIII-ClaI restriction fragment from pNTPTPα(S204A), containing the S204A mutation, along with the complementary gel-purified ClaI-HindIII restriction fragment from pTPTPα, containing the downstream WT PTPα-HA sequence, into the HindIII site of pTet-Splice. To construct the PTPα(S180A/S204A) expression plasmid, the 0.57-kb HindIII-EcXI (X site fragment from pNTPTPα(S180A)) was mixed with the gel-purified EcoRI-HindIII (X site) fragment obtained by PCR using pNTPTPα as a template with the 5′-primer 5′-GGGCGGAACCTTGGGCCCCACCATGATTCCGTTGTCATCTTCTGTT-3′ and the 3′-primer 3′-CATGCGCGGGTTGTAAGGAGAAACGTAGGAACAT-3′. The 5′-primer contained the HindIII site (underlined); the 3′-primer contained the stop codon (boldface) and the HindIII site (underlined). The mutation AGC → GCC (boldface italics) in the 5′-primer resulted in the S204A substitution. This PCR product was digested with EcoRI and HindIII, mixed with the 0.57-kb lane gel-purified HindIII-EcXI restriction fragment from pNTPTPα and ligated into the HindIII site of pTet-Splice to make plasmid pNTPTPα(S204A/S204A). Plasmid pTPTPα(S204A/S204A), which expresses the HA-tagged double mutant, was constructed similarly, except that the EcoRI-HindIII restriction fragment was isolated from pTPTPα(S204A/S204A). For the S202A mutation, an EcXI-HindIII fragment containing the mutation and the downstream coding sequence was prepared by PCR using pNTPTPα as a template with the 5′-primer 5′-CCACGGGCCGACCTGAGGATGTGGAGCCCCAGAGTGCGCGCGCAGAGGCGAGCAGCCGACCGCGCCGAGGAGAGAGACGACACTCATCT-3′ and the 3′-primer 3′-TGTGTTGCGGAGGAGAGACGACACTCATCT-3′. The 5′-primer contained the EcoRI site (underlined); the 3′-primer contained the stop codon (boldface) and the HindIII site (underlined). The mutation AGC → GCC (boldface italics) in the 5′-primer resulted in the S202A substitution. This PCR product was digested with EcoRI and HindIII, mixed with the 0.57-kb lane gel-purified HindIII-EcXI restriction fragment from pNTPTPα and ligated into the HindIII site of pTet-Splice to make plasmid pNTPTPα(S202A).

The mutations were verified by sequencing of the PTPα coding region. These plasmids were stably cotransfected with the G418 resistance plasmid pSV2neo (29) and the tetracycline transactivator plasmid pTet-tTak (Invitrogen) into NIH3T3 cells, selected for G418 resistance and for inducible expression of the PTPα mutants as described (13). Immunoprecipitation and Immunopurification of PTPα, Dephosphorylation and Kinase Assays, Co-immunoprecipitation and Affinity Preparative Assays, and PP2A Serine Dephosphorylation—These were performed as described previously (24).

Anchorage-independent Growth Assay—Cells were assayed for colony formation on 0.3% agarose without doxycycline as described previously (30).

RESULTS

We have previously described genetically modified NIH3T3 cell lines that inducibly overexpress (under repressive control of doxycycline) human WT PTPα and PTPα(Y789F) and the same proteins with a nine-residue HA tag at their C termini, designated PTPα-HA and PTPα(Y789F)-HA (13). A “Neo” cell line that had been transfected with an empty vector system and
co-selected in the same manner provided a control for analyzing endogenous PTPα. It was previously shown that the localization and specific catalytic activity of overexpressed WT PTPα are similar to those of endogenous PTPα in both unsynchronized and mitotic cells (13, 24).

New plasmids and corresponding NIH3T3-derived cell lines for inducible expression of PTPα (with or without the HA tag) with Ser-to-Ala substitutions at residues 180 and/or 204 were created using similar methods (see “Materials and Methods”). A cell line expressing PTPα with a Ser-to-Ala substitution at residue 202 (the only potential site of cyclin-dependent kinase or mitogen-activated protein kinase serine phosphorylation within PTPα) was also generated as a control for some experiments. The overexpresser cells maximally expressed ~10–20 times the amount of endogenous PTPα when grown in the absence of doxycycline for ≥16 h. So that equal levels of overexpression could be obtained in both unsynchronized and mitotic cells, the time of induction was controlled so that transgene PTPα expression was induced only to ~5–10 times endogenous levels for the biochemical experiments (see Ref. 24 and “Materials and Methods”). Expression levels were similar within each group of cell lines expressing untagged or HA-tagged proteins (data not shown).

To see if we could detect serine phosphates added during mitosis, unsynchronized and nocodazole-arrested mitotic WT PTPα and PTPα(S180A/S204A) overexpresser cells were labeled in vivo with [32P]orthophosphate, and the radiolabeled proteins were analyzed by anti-PTPα immunoprecipitation, immunoblotting, and autoradiography. To avoid radioactivity-induced G2 arrest (17), it was necessary to label all the cells for relatively short (2–3 h) periods and the mitotic cells after nocodazole arrest. Thus, equilibrium labeling was probably not achieved, and only phosphorylations that were catalyzed during metaphase (the point of nocodazole arrest) were detected in the mitotic cells. Under these conditions, no significant changes in the stoichiometry of labeling were observed between WT and mutant PTPα from unsynchronized or mitotic cells (data not shown). WT PTPα and PTPα(S180A/S204A) from unsynchronized and mitotic cells displayed similar radioactive phosphoamino acid compositions: a significant excess of phosphoserine over phosphotyrosine and very little or no phosphothreonine (data not shown). We conclude that the serine phosphorylation(s) that cause the electrophoretic mobility retardation of mitotic PTPα do not turn over during mitosis and that PTPα contains at least one site of serine phosphorylation in addition to Ser180 and Ser204.

Mitotic Increase in PTPα Phosphatase Activity Is Blocked by Mutation of Ser180 or Ser204

MBP that had been tyrosine-phosphorylated with y-Src was incubated with WT or mutant PTPα-HA that had been immunoprecipitated with anti-HA antibody from unsynchronized or nocodazole-arrested mitotic overexpresser cells. The immunoprecipitates were washed with 0.5 M NaCl to remove any co-associated proteins. Specific PTP activity was determined by measuring the relative amounts of 32P released per molecule of PTPα.

As previously reported (24), the activity of WT PTPα from mitotic cells was about twice that of PTPα from unsynchronized cells (Fig. 1A), and there was very little change during mitosis in the amount of PTPα (Fig. 1C) or the extent of its tyrosine phosphorylation (Fig. 1B). (Tyr789 is the only phosphorylated tyrosine in PTPα during both interphase and mitosis (13, 24), so anti-phosphotyrosine immunoblotting specifically detects its phosphorylation.) The increased specific activity correlated with reduced electrophoretic mobility of PTPα (Fig. 1C, compare lanes 1 and 2).

Both coordinate and separate S180A and/or S204A muta-
tions blocked the mitotic increase in PTP activity (Fig. 1). These mutations also caused a small but reproducible 10–20% decrease in the specific activity of PTPs in unsynchronized cells. The mitotic mobility retardation was completely blocked in PTPα(S180A/S204A), consistent with the hypothesis that the retardation resulted from mitotic phosphorylation at these sites. The mutations did not significantly affect Tyr789 phosphorylation.

Similar experiments were conducted with immunoprecipitated WT PTPα and PTPα(S180A/S204A) that had been incubated with the Ser/Thr phosphatase PP2A before incubation with MBP. PP2A treatment slightly reduced the specific activity of interphase PTPs and eliminated the mitotic increase in activity (Fig. 1D) without affecting Tyr789 phosphorylation (Fig. 1E). It also restored the electrophoretic mobility of mitotic PTPα almost to its interphase level (Fig. 1F). In contrast, it had no observable effect on the activity or mobility of the serine double mutant. This is consistent with the hypothesis that the PP2A effect results from its dephosphorylation of Ser180 or Ser204.

These results suggest that the mitotic activation of PTPα nonspecific catalytic activity requires mitotic hyperphosphorylation of both Ser180 and Ser204. The small decrease in the activity of PTPα from unsynchronized cells upon mutation or PP2A treatment may reflect the fact that PTPα is phosphorylated to some extent at these sites even during interphase (26).

*Ty*P227 Dephosphorylation and Activation of Src in Vitro and in Vivo by PTPα Are Blocked by Mutation of Ser180 or Ser204—

The ability of WT and mutant PTPα to activate Src in *vivo* was measured after immunopurifying the HA-tagged phosphatase from unsynchronized or mitotic overexpresser cells. Equal amounts of solubilized phosphatase were incubated in phosphatase buffer with chicken WT Src that had been immunoprecipitated from unsynchronized NIH3T3-derived Src overexpresser cells. After washing away PTPα, the specific activity of the treated Src was measured by incubating it with [γ-32P]ATP and acid-denatured enolase (substrate) and measuring the amount of transferred [32P]enolase by autoradiography (Fig. 2A, panel a). Because Tyr(P)227 is the only detectable phosphotyrosine in Src from these overexpresser cells (31), anti-Tyr(P) immunoblotting was used to assay the amount of Tyr227 phosphorylation (Fig. 2A, panel b). As previously shown (24), PTPα from mitotic cells dephosphorylated Src and increased its kinase activity more than PTPα from unsynchronized cells (Fig. 2A, lanes 3 and 4). We now found that Ser-to-Ala mutation of either Ser180 or Ser204 or both not only abrogated the mitotic increase in activity, but largely eliminated the ability of PTPα from both unsynchronized and mitotic cells to dephosphorylate and activate Src at all (Fig. 2A, lanes 7–12). The very low residual activity of the Ser-to-Ala mutants was similar to that of the Y789F mutant (Fig. 2A, lanes 5 and 6).

Additional experiments were conducted in which PTPα was dephosphorylated by PP2A prior to incubation with the Src substrate. Phosphatase-treated WT PTPα from both unsynchronized and mitotic cells had the same very low Src-activating ability as untreated PTPα(S180A/S204A) (Fig. 2B, panel a, lanes 3–6). Moreover, PP2A treatment did not affect PTPα(S180A/S204A) (Fig. 2B, lanes 5–8), suggesting that its effect on WT PTPα was mediated via dephosphorylation of Ser180 and Ser204.

To assess the Src-directed activity of WT and mutant PTPα in *vivo*, Src was immunoprecipitated from unsynchronized and mitotic non-overexpresser cells (control) and PTPα overexpresser cells, and Src phosphorylation and its ability to phosphorylate enolase were measured (Fig. 3, a and b). All of the overexpresser cell lines expressed approximately equal amounts of Src and transgene PTPα (Fig. 3, c and d). As previously shown (24), overexpression of WT PTPα decreased Src tyrosine phosphorylation, increased interphase Src activity, and enhanced the mitotic increase in its activity (Fig. 3,
Mitotic Activation of PTPα by Specific Phosphorylation

FIG. 4. Colony formation on soft agarose by WT and mutant PTPα overexpresser cells. Control cells (Neo) and cells overexpressing WT or mutant PTPα as indicated were cultured in suspension in medium containing 0.3% agarose and no doxycycline. Colonies were photographed after 21 days.

FIG. 5. Co-association in vivo of WT and mutant PTPα with Src in unsynchronized and mitotic cells. Immunoprecipitates made with anti-Src antibody from lysates (containing 1.5 mg of total cell protein) from unsynchronized (U) or mitotic (M) non-overexpresser control cells (lanes 1 and 2) or from cells overexpressing WT (lanes 3 and 4) or mutant (lanes 5–10) PTPα as indicated were analyzed by 9% SDS-PAGE and immunoblotted with anti-PTPα (a) or anti-Src (b) antibody. c shows an anti-PTPα immunoblot of cell lysates containing 10 μg of total cell protein. The positions of molecular mass standards are indicated in kilodaltons.

PTPα and anti-Grb2 antibodies, respectively (Fig. 6, A and B). Both types of experiments gave consistent results. As previously reported (13, 24), the WT PTPα-Grb2 association observed in unsynchronized non-overexpresser and overexpresser cells decreased ~4-fold in mitotic cells. (As previously noted, Grb2 bound a larger fraction of endogenous WT PTPα (i.e. in the Neo control cells) than overexpressed WT PTPα. This is because the level of Tyr789 phosphorylation in overexpressed PTPα is ~2.5 times lower relative to endogenous PTPα, possibly because the Tyr789 kinase is saturated (13).) In contrast, we now found that the Ser-to-Ala PTPα mutants bound Grb2 to the same high extent in both unsynchronized and mitotic cells. The control immunoblots (Fig. 6, A, lanes 1, 2, and 5–8, and B, panels a, c, and d) showed that there were similar amounts of Grb2 and PTPα in the cell lysates and immunoprecipitates from the unsynchronized and mitotic cells. We conclude that both Ser180 and Ser204 are required for PTPα binding to Src in vivo and for the mitotic reduction in PTPα-Grb2 association.

Effect of Ser180 and Ser204 Mutations and PP2A Treatment on PTPα Binding to the Isolated Src and Grb2 SH2 Domains—To determine whether the changes in PTPα-Grb2 association could be explained by changes in the affinity of the Grb2 or Src SH2 domain alone, we measured the abilities of fusion proteins containing GST and either Grb2 or Src SH2 domains to affinity-precipitate WT PTPα-HA and PTPα(S180A/S204A)-HA from overexpresser cell lysates (Fig. 7A). As previously shown (13), the Grb2 SH2 domain immunoprecipitated about three times more interphase PTPα than the Src SH2 domain (Fig. 7A, compare lanes 5 and 7). Also as previously reported (24), the Grb2 SH2 domain bound ~2-fold less mitotic PTPα than interphase PTPα (Fig. 7A, compare lanes 5 and 6), but the affinity of the Src SH2 domain for mitotic PTPα was the same as or possibly slightly higher than its affinity for interphase PTPα (compare lanes 7 and 8). We now found that the Ser-to-Ala mutations slightly increased (~25%) the ratio between Grb2 and Src SH2 domain binding to interphase PTPα and completely eliminated the mitotic changes in binding affinities; 3.7 ± 0.5 times more PTPα(S180A/S204A) bound to the Grb2 SH2 domain than to the Src SH2 domain (Fig. 7A, lanes 13–18).

To exclude the possibility that other proteins in the cell lysates affected PTPα binding to the GST-SH2 domain fusion proteins, similar experiments were performed with immunopurified PTPα-HA (Fig. 7B). (The immunopurification procedure involved a pH 2.5 elution and subsequent neutralization that removed all co-associated Grb2 (data not shown) and presum-
ably any other noncovalently associated proteins.) Similar results were obtained (Fig. 7B, lanes 5, 6, 9, and 10). We also examined the effect of serine dephosphorylation on the binding of immunopurified PTPα-HA by incubating it with PP2A before the affinity precipitations. Dephosphorylation affected WT PTPα-HA binding in the same manner as the S180A and S204A mutations; it eliminated the mitotic specificity in the binding of PTPα to the Grb2 SH2 domain and decreased the binding of interphase and mitotic PTPα to the Src SH2 domain by 35–45%. We conclude that mitotic phosphatases at Ser180 and Ser204 are required for the 2–3-fold mitotic down-regulation of the affinity of the Grb2 SH2 domain for PTPα. In contrast, the phosphatases slightly increase binding to the Src SH2 domain.

DISCUSSION

We have previously shown that, during mitosis, the catalytic activity of PTPα is enhanced and that its inhibitory binding to Grb2, which specifically blocks Src dephosphorylation, is decreased (24). We have now shown that S180A and/or S204A mutation blocks these effects and the resultant mitotic activation of Src by PTPα. This occurs without change in the phosphorylation of PTPα at Tyr789, which is required for phosphotyrosine displacement and Src dephosphorylation.

Surprisingly, these mutations also prevent Src-PTPα co-association during interphase and block most or all dephosphorylation and activation of Src both in vitro and in vivo. This almost certainly explains the inability of any of the mutants to induce anchorage-independent growth, even when expressed at high (~20 times endogenous) levels. The mutations do not prevent dephosphorylation of MBP, implying that Ser180 and Ser204, like Tyr789, can regulate PTPα substrate specificity.

The fact that either Ser180/Ser204 mutation or PP2A treatment removes the mitotic electrophoretic mobility retardation of PTPα indicates that these residues have been hyperphosphorylated. Moreover, the similarities between the mutation- and PP2A-induced effects on catalytic activity and binding indicate that the mutations act functionally by preventing this hyperphosphorylation. Protein kinase C phosphorylates Ser180 and Ser204 following 12-0-tetradecanoylphorbol-13-acetate stimulation (25, 26), and it may phosphorylate them at or shortly before mitosis. This could account for the observed changes in catalytic activity: 12-0-tetradecanoylphorbol-13-acetate-stimulated protein kinase C-mediated phosphorylation at these sites decreases the PTPα K_m for MBP from 12 to 5 μM without significant change in V_{max} (25). At the concentration of tyrrosine-phosphorylated MBP in our assays (~4 μM), such a 2.4-fold reduction in K_m would cause an ~1.8-fold increase in PTP activity, consistent with our measurements.

The protein kinase C isoform that is most likely to be involved is protein kinase Cδ, which co-associates with PTPα (and phosphatidylinositol 3-kinase) following treatment of A431 cells with a somatostatin analog (27). This results in activation of PTPα and Src, probably initiated by protein kinase Cδ-mediated phosphorylation of Ser180 and Ser204 (27, 32). Protein kinase C has been implicated in both positive and negative control of the G2/M transition, with the relevant
events occurring just before entry into mitosis (see Refs. 33 and 34 for review). Phosphorylation at this time would be consistent with the radiolabeling experiments (data not shown), which indicated that the Ser180 and Ser204 hyperphosphorylations do not turn over during metaphase.

However, the participation of other kinases is not excluded. For example, the sequence surrounding Ser204 also matches the protein kinase A phosphorylation consensus sequence (35). Whatever the kinase, because dephosphorylation of Src by the protein kinase A phosphorylation consensus sequence (35) is the only phosphotyrosine in PTP\textsubscript{1152} some extent in unsynchronized cells (26).

The mitosis and mutation-induced changes in PTP\textsubscript{1152} binding to Grb2 in vivo (Fig. 6) suggests that coordinate phosphorylation at these sites during mitosis reduces their binding affinity. As described in the Introduction, very little Grb2-unbound, Tyr(P)789-phosphorylated PTP\textsubscript{1152} is available to bind and act on Src during interphase. Thus, it is likely that the inability of PTP\textsubscript{1152}(S180A/S204A) to bind Src in vivo results, at least in part, from increased competition from Grb2. The fact that the mutations affect PTP\textsubscript{1152} during interphase (as well as during mitosis) is consistent with the observation that Ser180 and Ser204 are phosphorylated to some extent in unsynchronized cells (26).

The mitosis- and mutation-induced changes in PTP\textsubscript{1152}-Grb2 binding in vivo correlate perfectly with and may result from the corresponding changes observed in the affinity between PTP\textsubscript{1152} and the Grb2 SH2 domain in vitro (Fig. 7). The in vitro binding experiments were performed using recombinant GST-SH2 domain fusion proteins, excluding the possibility that a cell cycle-dependent modification of Grb2 or altered binding to a Grb2 SH3 domain is required. The most economical hypothesis, supported by both the mutagenesis and PP2A dephosphorylation experiments, is that phosphorylation of Ser180 and Ser204 decreases PTP\textsubscript{1152}-Grb2 SH2 domain affinity by 3–4-fold and increases PTP\textsubscript{1152}-Src SH2 domain affinity by 35–45%.

Both the Grb2 and Src SH2 domains bind to Tyr(P)789 which is the only phosphotyrosine in PTP\textsubscript{1152} (11, 13); so it is surprising that their binding affinities can be differentially regulated. As far as we are aware, this has no precedent. The binding affinity changes were observed with immunopurified PTP\textsubscript{1152} that had passed through a pH 2.5 denaturation step that removed all Grb2 (and probably any other co-associated proteins), and PTP\textsubscript{1152} dimerization was not detected in the cell lysates used (data not shown). Therefore, we believe that the changes reflect effects of the Ser180 and Ser204 phosphorylations on isolated monomeric PTP\textsubscript{1152}.

The mechanism of differential regulation may be related to the unique mode by which the Grb2 domain binds with high affinity to Tyr\textsuperscript{(P)-containing peptides: peptides that match the Grb2 SH2 domain binding consensus sequence form a β-turn when bound to the SH2 domain (36, 37). This is probably the conformation of the Tyr(P)789 region when bound to the Grb2 SH2 domain with high affinity. In contrast, Tyr\textsuperscript{(P)-containing peptides bind to other SH2 domains in an extended conformation (38, 39), so the Tyr(P)789 region is probably extended when it binds the Src SH2 domain. Therefore, it is possible that phosphorylation of Ser180 and Ser204 could reduce the high affinity binding to the Grb2 SH2 domain without decreasing the lower affinity binding to the Src SH2 domain if it interfered with the formation of the β-turn. If the phosphorylations also stabilized an extended conformation of the C-terminal region, they could simultaneously increase the affinity of Tyr(P)789 binding to the Src SH2 domain.

A model of this sort is shown in Fig. 8. In this hypothesis, phosphorylations at Ser180 and Ser204 promote an intramolecular association between the PTP\textsubscript{1152} C-terminal and membrane-proximal regions that prevents the β-turn and stabilizes an extended conformation of the C-terminal region without occluding Tyr(P)789. For example, basic residues surrounding Tyr(P)789 (e.g. Lys777 and Lys785) might interact with phosphorylated Ser180 and Ser204 so as to “stretch” the peptide out along the surface of PTP\textsubscript{1152}. To speculate further, the intramolecular association might also increase the accessibility (or modify the conformation) of the D1 catalytic domain, which lies between these two regions, so as to decrease its K_m. Modulation of intramolecular association by changes in Ser180 and Ser204 phosphorylation could thereby also account for the observed changes in nonspecific catalytic activity.

Our results do not exclude the possibility that phosphorylation of Ser180 and Ser204 is required but not sufficient for activation. Of particular interest is Ser785, the only serine in the C-terminal region downstream from the D2 catalytic domain. It lies in a (weak) phosphorylation consensus site for casein kinase II (40) and, because of its proximity to Tyr789,
might directly affect its interaction with SH2 domains if it were also hyperphosphorylated during mitosis.

In any case, at least one puzzle remains: although we expect altered binding and increased competition from Grb2 to reduce the ability of the Ser-to-Ala PTPα mutants to dephosphorylate Src in vivo, it does not explain their inability to dephosphorylate Src in vitro under conditions in which Grb2 (and probably any other co-associating proteins) was removed. Even though its binding affinity is slightly reduced, PTPα(S180A/S204A) still binds the Src SH2 domain (Fig. 7), so it is not evident why phosphotyrosine displacement and dephosphorylation of Src should be blocked. Because Tyr(P)789 must compete with Tyr(P)527 for binding to the Src SH2 domain, it is possible that even a fairly small change in Src SH2 domain Tyr(P)789 affinity can perturb a delicate balance. However, other mechanisms may also be involved.

REFERENCES

1. Kaplan, R., Morse, B., Huebner, K., Croce, C., Howk, R., Ravera, M., Ricca, G., Jaye, M., and Schlessinger, J. (1999) Proc. Natl. Acad. Sci. U. S. A. 87, 7000–7004
2. Krueger, N. X., Streuli, M., and Saito, H. (1999) EMBO J. 18, 3241–3252
3. Zheng, X.-M., Wang, Y., and Pallen, C. J. (1992) Nature 355, 336–339
4. den Hertog, J., Pals, C. E. G. M., Peppelenbosch, M. P., Tertoolen, L. G. J., de Laat, S. W., and Kruijer, W. (1999) EMBO J. 18, 3789–3798
5. Petrone, A., and Sap, J. (2000) J. Cell Sci. 113, 2345–2354
6. Shalloway, D., and Taylor, S. J. (1997) Trends Cell Biol. 7, 215–217
7. Brown, M. T., and Cooper, J. A. (1996) Biochim. Biophys. Acta 1287, 121–149
8. Ponzia, S., Wang, D. Z., Lim, K. L., and Pallen, C. J. (1999) Curr. Biol. 9, 535–538
9. Shalloway, D., Coussens, P. M., and Yaciuk, P. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 5701–5705
10. Kmiecik, T. E., and Shalloway, D. (1987) Cell 49, 65–73
11. Stetak, A., Lankenau, A., Vanets, T., Csermely, P., Ullrich, A., and Keri, G. (2001) Biochem. Biophys. Res. Commun. 288, 564–572
12. Fields, J., Nikawa, J., Brock, D., MacDonald, B., Rodgers, L., Wilson, L. A., Lerner, R. A., and Wiegler, M. (1988) Mol. Cell. Biol. 8, 2169–2185
13. Southern, P. J., and Berg, P. (1982) J. Mol. Appl. Genet. 1287, 3–28
14. Black, J. D. (2001) Eur. J. Biochem. 248, 1–9
15. Pearson, R. B., and Kemp, B. E. (1991) Nature 353, 445–453
16. Csermely, P., Ullrich, A., and Keri, G. (2001) Mol. Cell. Biol. 21, 458–467
17. Brown, M. T., and Cooper, J. A. (1996) Biochim. Biophys. Acta 1287, 121–149
18. Ponzia, S., Wang, D. Z., Lim, K. L., and Pallen, C. J. (1999) Curr. Biol. 9, 535–538
19. Su, J., Muranjan, M., and Sap, J. (1999) Curr. Biol. 9, 505–511
20. Arnett, C. H., Sale, E. M., Miller, J., and Sale, G. J. (1999) J. Biol. Chem. 274, 26105–26112
21. den Hertog, J., Tracy, S., and Hunter, T. (1994) EMBO J. 13, 3020–3032
22. Su, J., Yang, L.-T., and Sap, J. (1994) J. Biol. Chem. 269, 18731–18734
23. Zheng, X.-M., Lobach, B., and Shalloway, D. (2000) EMBO J. 19, 964–978
24. Stetak, A., Lankenau, A., Vanets, T., Csermely, P., Ullrich, A., and Keri, G. (2001) Biochem. Biophys. Res. Commun. 285, 483–488
25. Livneh, E., and Fishman, D. D. (1997) Curr. Biol. 289, 1–28
26. Black, J. D. (2001) Front. Biosci. 6, 406–423
27. Pearson, R. B., and Kemp, B. E. (1991) Methods Enzymol. 206, 62–81
28. Waksman, G., Shoelson, S. E., Pant, N., Cowburn, D., and Kuriyan, J. (1993) Cell 72, 767–778
Mitotic Activation of Protein-tyrosine Phosphatase α and Regulation of Its Src-mediated Transforming Activity by Its Sites of Protein Kinase C Phosphorylation

Xin-Min Zheng, Ross J. Resnick and David Shalloway

J. Biol. Chem. 2002, 277:21922-21929.
doi: 10.1074/jbc.M201394200 originally published online March 28, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M201394200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 39 references, 15 of which can be accessed free at http://www.jbc.org/content/277/24/21922.full.html#ref-list-1