New Constraints on Primordial Minihalo Abundance Using Cosmic Microwave Background Observations

Yupeng Yang
Department of Physics, Nanjing University, Nanjing, 210093, China
Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing, 210093, China and
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China

Xiaoyuan Huang and Xuelei Chen
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China

Hongshi Zong
Department of Physics, Nanjing University, Nanjing, 210093, China and
Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing, 210093, China

It was proposed that the massive compact halo objects (MCHOs) would be produced during an earlier epoch of cosmology if the density perturbations are between \(3 \times 10^{-4}\) and 0.3. Then these objects can accrete dark matter particles onto them due to their high density. If the dark matter is in the form of the weakly interacting massive particles, the MCHOs can have a significant effect on the evolution of cosmology due to the dark matter annihilation within them. Using the WMAP-7 years data, we investigated the constraints on the current abundance of MCHOs \(f_{\text{MCHO}}\) formed during the \(e^+e^-\) annihilation phase transition. We have found that the 2\(\sigma\) constraint is \(f_{\text{MCHO}} \lesssim 10^{-4}\) for dark matter masses in the range between 1 GeV and 1 TeV.

PACS numbers: 98.80.-k, 98.80.Es, 95.35.+d

I. INTRODUCTION

In order to form the present structure of cosmology, the initial density perturbations must satisfy the condition: \(\delta \sim 10^{-5}\). On the other hand, according to theory \cite{1}, if the density perturbations are larger than 0.3, primordial black holes (PBHs) can be formed during the radiation dominated era and existed if the mass is large enough \cite{2}. However, what about the result when it lies between these two cases? In paper \cite{3}, the authors argued that if the density perturbations are between \(3 \times 10^{-4}\) and 0.3, the nonbaryonic ultracompact minihalos named massive compact halo objects (MCHOs) can be formed during earlier times. Although within the conventional cases the density perturbations are not larger enough to form these objects, they could be enhanced through the inflation potential or during the phase transitions in the early Universe \cite{4}. Because of their high density, these objects can accrete dark matter particles onto them.

Although the presence of dark matter in the Universe has been shown by many astrophysical observations, its nature still remains unknown. Among many models, the weakly interacting massive particles (WIMPs) model has been researched frequently \cite{5, 6, 7}. According to the theory, WIMPs can annihilate into the standard particles such as electrons, positrons, protons, antiprotons, or photons. The authors of \cite{8} calculated the gamma-rays from these MCHOs which have been formed during three phase transitions: electroweak symmetry breaking, QCD confinement and \(e^+e^-\) annihilation. And in the last case, they found that the integrated intensity of gamma-ray flux within the 100pc has exceeded the threshold of EGRET and Fermi-LAT. In \cite{9}, using the Fermi gamma-ray observations, the authors investigated the constraints on the current abundance of MCHOs. They found that for the mass of MCHOs \(\sim 10^3 M_\odot\), the fraction is \(\sim 10^{-7}\).

As discussed in papers \cite{10}, the dark matter annihilation has a significant effect on the evolution of cosmology especially when the structure formation process is included. The structure formation starts in the lower redshift \(\sim 100\) while the MCHOs can be formed and accrete the dark matter particles in the higher redshift \(\sim 3000\). So the dark matter annihilation within them has an effect on the ionization and recombination before the structure formation begins. In this paper, we consider this effect and try to give the constraints on the current abundance of MCHOs using the CMB observations.

One point to be noticed is that the PBHs can also accrete the dark matter particles to form similar objects and moreover the PBHs themselves can emit photons, electrons and so on. So all of these objects can have effects on the evolution of cosmology \cite{11}. However, in this paper, these effects will not be considered.

This paper is organized as follows: We give equations and discuss how MCHOs affect the cosmological evolution in Sec. II. In Sec. III, we give our results of constraints on the current abundance of MCHOs using the WMAP data. We conclude in Sec. IV.
II. THE EFFECTS OF MCHOs ON COSMOLOGICAL EVOLUTION

Massive compact halos would be produced during the radiation domination epoch if the δ satisfies the condition: $3 \times 10^{-4} < \delta < 0.3$. These objects can accrete dark matter particles by radial infall and then the mass of MCHOs evolves as [8]:

$$M_{\text{MCHOs}}(z) = \delta m \left(\frac{1 + \delta_{eq}}{1 + z} \right), \quad (1)$$

where the δm is the mass contained within a perturbation at the redshift of matter-radiation equality δ_{eq}. Following [8], we adopt $\delta m = 5.6 \times 10^{-19} M_{\odot}, 1.1 \times 10^{-9} M_{\odot}$, and $0.33 M_{\odot}$ for three phase transitions: electroweak symmetry breaking (EW), QCD confinement, and e^+e^- annihilation.

The density profile of MCHOs is [8]

$$\rho_{\text{MCHOs}}(r, z) = \frac{3 f_\chi M_{\text{MCHOs}}(z)}{16 \pi R_{\text{MCHOs}}(z)^2 r}, \quad (2)$$

where $R_{\text{MCHOs}}(z) = 0.019 \left(\frac{10^{11} M_{\odot}}{M_{\text{MCHOs}}(z)} \right) / z$ pc and f_χ is the dark matter fraction. We also accept the assumption that MCHOs stop growing at $z \approx 10$ because the structure formation process prevents further accretion after the redshift.

In this paper, we assumed that the MCHOs have a monochromatic mass function, which means all of the MCHOs have the same mass, similar to the PBHs case [12]. We suppose that the abundance of MCHOs is the same everywhere and they do not merger with others. We neglect the energy loss of the dark matter annihilation production within MCHOs [13]. Based on these assumptions, we can get the annihilation rate of MCHOs:

$$\Gamma = N_{\text{MCHOs}} \Gamma' = N_{\text{MCHOs}} \frac{\langle \sigma v \rangle}{m_\chi} \int 4\pi r^2 \rho^2(r, z) dr$$

$$= \frac{\rho_{\text{MCHOs}}}{M_{\text{MCHOs}}(z = 0)}(1 + z)^3 \left(\frac{\langle \sigma v \rangle}{m_\chi^2} \right) \int 4\pi r^2 \rho^2(r, z) dr$$

$$= \int_{\text{MCHOs}} f_{\text{MCHOs}} \rho_{\text{MCHOs}} \frac{\Gamma_\text{critical}}{\rho_{\text{MCHOs}}(z = 0)}(1 + z)^3 \left(\frac{\langle \sigma v \rangle}{m_\chi^2} \right) \int 4\pi r^2 \rho^2(r, z) dr. \quad (3)$$

where Γ' is the annihilation rate within one of the MCHOs and Γ is the annihilation rate per unit volume of the MCHOs. N_{MCHOs} is the number density of MCHOs, $f_{\text{MCHOs}} = \rho_{\text{MCHOs}} / \rho_{\text{critical}}$ and this definition is different from [9]. The limitation of the integral is from r_{cut} to R_{MCHOs}. The r_{cut} is [8, 9, 14]

$$\rho(r_{\text{cut}}) = \frac{m_\chi}{\langle \sigma v \rangle (t_0 - t_i)} \quad (4)$$

where $t_0 \approx 13.7 \text{Gyr}$ [8, 9] is the age of the Universe, t_i is the time of the MCHOs formation and we choose $t_i(z_{eq}) \approx 77 \text{kyr}$ also used by [9].

Besides the MCHOs, we consider the dark matter halos in this paper. Their contribution can be treated as the ‘clumping factor’ $C(z)$ relative to the smooth case [15]:

$$C(z) = 1 + \frac{\Gamma_{\text{halos}}(z)}{\Gamma_{\text{smooth}}(z)}$$

$$= 1 + \frac{(1 + z)^3}{\rho_{\text{DM}}(z)} \int dM \frac{dn}{dM}(M, z) \times \rho^2(r) 4\pi r^2 dr \quad (5)$$

where Γ stands for the dark matter annihilation rate. dn/dM is the halos mass function and we use the Press-Schechter’s formalism [16] to do our calculations. On the other hand, through the simulation, it was found that there are many substructures in dark matter halos [17].

These subhalos can also enhance the dark matter annihilation rate. In our paper, we include these subhalos, neglect the contributions from the sub-sub-, and use the smallest mass of them $\sim 10^{-6} M_{\odot}$ [17, 18]. We consider $\sim 10\%$ halos mass within the subhalos, use the power law form of mass function $\sim M^{-\beta}$ and adopt $\beta = 1.95$ [17]. So the total clumping factor of dark matter halos and subhalos can be written as [13]:

$$C_{\text{total}} = 1 + (C_{\text{halos}} - 1) + (C_{\text{subhalos}} - 1) \quad (6)$$

Considering the dark matter annihilation, the evolution of ionization fraction x_e can be written as [10, 19]:

$$(1 + z) \frac{dx_e}{dz} = \frac{1}{H(z)} [R_s(z) - I_s(z) - I_\chi(z)] \quad (7)$$

where R_s is the standard recombination rate, and I_s is the ionization rate by standard sources, I_χ is the ionization rate sourced by dark matter which is given as [10]

$$I_\chi = \chi f \frac{2m_n e^2}{n_b E_b} \Gamma_{\text{total}} \quad (8)$$

where n_b is the baryon number density and the $E_b = 13.6 eV$ is the ionization energy. Γ_{total} is the total dark matter annihilation rate including the MCHOs and halos. f that depends on the redshift and the production of dark matter annihilation [20] is the released energy fraction depositing in the baryonic gas during the annihilation. In this paper, we assume that the total energy released by the annihilation is deposited, which means $f = 1$. χ_i is the energy fraction which ionizes the baryonic gas and we accept the form given by [19]

$$\chi_i = (1 - x_e) / 3 \quad (9)$$

where x_e is the fraction of free electrons.

Following the method in papers [19, 10], we modified the public code CAMB [21] in order to include the contributions from MCHOs and dark matter halos.
also notice that the influence of dark matter annihilation phase transition for the cosmological parameters. We use the WMAP7 results \[22\]. We can see the contribution on the cosmological evolution is much weaker due to their much smaller mass. For this property, it can be seen from the paper \[8\] where the integrated gamma-ray flux above 100MeV for EW and QCD cases are \(\sim 12\) and \(6\) orders lower than the \(e^+e^\) case respectively. So in this paper, we do not consider these two cases.

III. CONSTRAINTS FROM WMAP DATA

In this paper, we have modified the public COSMOMC code \[22\] and used the 7-year WMAP results, both the temperature and polarization data, to get the constraints of related parameters. We consider 6 cosmological parameters: \(\Omega_bh^2, \Omega_dh^2, \theta, \tau, n_s,\) and \(A_s\), where \(\Omega_bh^2\) and \(\Omega_dh^2\) are the density of baryon and dark matter, \(\theta\) is the ratio of the sound horizon at recombination to its angular diameter distance multiplied by 100, \(\tau\) is the optical depth, and \(n_s\) and \(A_s\) are the the spectral index and amplitude of the primordial density perturbation power spectrum. We fix the value \((\sigma v) = 3 \times 10^{-26}\text{cm}^3\text{s}^{-1}\) and treat \(m_\chi\) and \(f_{\text{MCHOs}}\) as free parameters. For recent observations \[24, 26\], the preferred dark matter mass spreads from several GeV to TeV. So in our paper, we set the change range of dark matter mass from 1GeV to 1TeV and the prior of the \(f_{\text{MCHOs}}: [0, 10^{-2}]\). For the convergence diagnostic of MCMC, we use the default value of the Gelman and Rubin statistics in COSMOMC (\([\text{variance of chain means}] / [\text{mean of chain variances}]\): \(R-1 = 0.03\). The results are shown in Table I where some important parameters such as the optical depth (\(\tau\)), the redshift of reionization (\(z_{\text{re}}\)), the current abundance of MCHOs (\(f_{\text{MCHOs}}\)) and the dark matter mass (\(m_\chi\)) are given.

It can be seen that the 2\(\sigma\) limitation of the MCHOs fraction is \(f_{\text{MCHOs}} \sim 10^{-4}\). As shown above, the larger the mass of dark matter, the smaller the contributions are. So the 2\(\sigma\) constraints on the dark matter mass approach our prior limitation. We also plot the 1D and 2D probability distribution in Fig. 2 and 3.

From Fig. 2 we see that \(f_{\text{MCHOs}}\) has the biggest probability at zero and decreases approximately to zero at \(\sim 3 \times 10^{-4}\). For the dark matter mass, the constraints are weaker, which is much more obviously in the 2D probability distribution of parameters \(f_{\text{MCHOs}}\) and \(m_\chi\) where the dark matter mass spreads a larger range.

IV. CONCLUSION

We have investigated the current abundance of MCHOs formed in an earlier epoch due to the large density perturbations \((3 \times 10^{-4} < \delta < 0.3)\) using the WMAP-
TABLE I: Posterior constraints on the fractions of MCHOs, the mass of dark matter and the related cosmological parameters.

Parameter	τ	z_{re}	$f_{MCHOs}(10^{-4})$	m_χ(GeV)
Mean	0.0753	9.59	0.48	682.0
2σ lower	0.0538	7.09	0.0	188.4
2σ upper	0.0983	11.95	1.52	999.3

7 years data. We found that for the mass range 1GeV \sim 1TeV, the current abundance of MCHOs which are produced during the e^+e^- annihilation phase transition is $f_{MCHOs} \sim 10^{-4}$ corresponding to the 2σ limitation. This is the first constraint using the WMAP data and it is comparable with the results in paper [9], where they used the Fermi gamma-ray observations.

The influences of MCHOs formed during the electroweak breaking and QCD confinement phase transitions on the cosmological evolution are much weaker than the e^+e^- annihilation case because of their much smaller mass, so the WMAP cannot give the significative constraints on their current abundance.

We also find that the effect on the cosmological ionization fraction of dark matter annihilation within MCHOs is similar to the cases of dark matter decay [19] or the PBHs for $M_{PBH} > 10^{14}$kg [2].

V. NOTES

THE FIRST NOTE: We also have used the γ-ray data obtained by the Fermi observations to get the constraints on them [27].

THE SECOND NOTE: Following the suggestions from Pat Scott, we found an error for the choice of values of δm_χ in Sec. II. So we corrected the values according to [28] and recalculated. We found that the results are not changed for our model. Because the integration of Eq.(3) is decreased by a factor of $\sim 10^{-4}$ (see also [28]). But the $M_{MCHO}(z=0)$ is also changed by a same factor ($0.33/390 \sim 10^{-4}$).

We notice that the similar work was also done by D. Zhang [29], and they discussed the much more general case. They also investigated the accretion of gas by MCHOs and other things. We are glad to suggest that some ones who are interested in MCHOs can refer to the Zhang’s paper for the detailed discussion.

VI. ACKNOWLEDGMENTS

1: We thank Lei Feng for helpful discussions. Yupeng yang thanks Yan Qian for improving the manuscript. Our MCMC chains computation was performed on the Shenteng 7000 system of the Supercomputing Center of the Chinese Academy of Sciences.

2: We thank Pat Scott very much for comment and suggestion.

[1] A. M. Green, A. R. Liddle, Phys. Rev. D 56, 6166 (1997)
[2] K. J. Mack, D. H. Wesley, arXiv:0805.1531
[3] M. Ricotti, A. Gould, arXiv:0908.0735
[4] C. Schmid, D. J. Schwarz, P. Widerin, Phys. Rev. Lett. 78, 791 (1997)
[5] G. Jungman, M. Kamionkowski, K. Griest, Phys. Rept. 267, 195 (1996)
[6] G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005)
[7] L. Bergstrom, New J. Phys. 11, 105006 (2009)
[8] P. Scott, S. Sivertsson, Phys. Rev. Lett. 103, 211301 (2009)
[9] A. S. Josan, A. M. Green, Phys. Rev. D 82, 083527 (2010)
[10] L. Zhang, X. Chen, Y. A. Lei, Z. Si, Phys. Rev. D 74, 103519 (2006)
[11] M. Ricotti, J. P. Ostriker, K. J. Mack, arXiv:0703.0624
[12] B. J. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, Phys. Rev. D 81, 104019 (2010)
[13] B. C. Lacki, J. F. Beacom, Astrophys. J. Lett. 720, 67 (2010) arxiv: 1003.3466
[14] P. Ullio, L. Bergstrom, J. Edsjo, C. Lacey, Phys. Rev. D 66, 123502 (2002)
[15] D. T. Cumberbatch, M. Lattanzi, J. Silk, Phys. Rev. D 82, 103508 (2010)
[16] W. H. Press, P. J. Schechter, Astrophys. J. 187, 425 (1974)
[17] J. Diemand, B. Moore, J. Stadel, Nature 433, 389 (2005)
[18] A. M. Green, S. Hofmann, D. J. Schwarz, JCAP 08, 003 (2005)
[19] X. Chen, M. Kamionkowski, Phys. Rev. D 70, 043502 (2004)
[20] T. R. Slatyer, N. Padmanabhan, D. P. Finkbeiner, Phys. Rev. D 80, 043526 (2009)
[21] http://camb.info/
[22] E. Komatsu et al., Astron. J. Suppl. 192, 18 (2011)
[23] http://cosmologist.info/cosmomc
[24] R. Bernabei et al. Eur. Phys. J. C 67, 39 (2010)
[25] O. Adriani et al, Nature 458, 607 (2009)
[26] J. Chang et al. Nature 456, 362 (2008)
[27] Yupeng Yang et al, submitted to JCAP.
[28] P. Scott, S. Sivertsson, Phys. Rev. Lett. 105,
[29] D. Zhang. arXiv:1011.1935, MNRAS accepted.