Data Article

Environmental magnetism data of Brantas River bulk surface sediments, Jawa Timur, Indonesia

Mariyanto Mariyanto, Moh Faisal Amir, Widya Utama, Abd Mujahid Hamdan, Satria Bijaksana, Aditya Pratama, Raghel Yunginger, Sudarningsih

A R T I C L E I N F O

Article history:
Received 18 April 2019
Received in revised form 22 May 2019
Accepted 24 May 2019
Available online 3 June 2019

Keywords:
Environmental magnetism data
Magnetic measurement
Brantas river
Bulk surface sediment
Indonesia

A B S T R A C T

This article presents measurement data using environmental magnetism method on the bulk surface sediments related to the research article entitled “Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia” Mariyanto et al., 2019. Surface sediments were taken from 20 different locations along Brantas River. In the laboratory, a series of magnetic measurements was conducted on sediment samples i.e. magnetic susceptibility, ARM (Anhysteretic Remanent Magnetization) and IRM (Isothermal Remanent Magnetization). These environmental magnetism data were used to characterize bulk surface sediments in the study area.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
In this paper we present detailed data on the environmental magnetism measurement of Brantas River bulk surface sediments [1]. A review has shown recent developments between environmental magnetism with other sciences such as physics, chemistry and biology [2]. Table 1 shows magnetic susceptibility measurement data on Brantas river bulk surface sediment samples. Several other studies have shown that magnetic susceptibility measurement was not only conducted on sediments from rivers [3,4] but also on sediments from coasts [5,6] and lakes [7,8] and other materials such as mineral deposit [9] and guano [10,11]. Previous studies have shown that frequency-dependent magnetic susceptibility was used to determine superparamagnetic grain content in sediments [12,13].

The ARM measurement data for representative bulk surface sediment samples are shown in Table 2. Raw data sets for ARM measurements are presented in ".xlsx" format (excel file) in Appendix A. Fig. 1 shows ARM decay curve for typical bulk surface sediment samples. Previous studies showed that ARM measurements were acquired on various samples such as dusts [14], soils [15] and sediments [16,17] for environmental magnetism studies.

Meanwhile IRM measurement data for representative bulk surface sediment samples are shown in Table 3. The raw data sets for IRM measurements are presented in ".xlsx" format (excel file) in Appendix A.
Appendix B. Fig. 2 shows IRM saturation curve for typical bulk surface sediment samples. Previous studies showed that IRM measurements were performed on red clay sediments [18] and loess/paleosol sequence [19,20] for paleomagnetism studies.

Table 1
Magnetic susceptibility measurement data of bulk surface sediment samples. χ_{lf} is mass-specific magnetic susceptibility at low frequency, χ_{hf} is mass-specific magnetic susceptibility at high frequency and χ_{fd} is frequency-dependent magnetic susceptibility.

Sample ID	χ_{lf} ($\times 10^{-8}$m3kg$^{-1}$)	χ_{hf} ($\times 10^{-8}$m3kg$^{-1}$)	χ_{fd} (%)
B1	3163.7	3161.5	0.07
B2	2832.5	2824.3	0.29
B3	4472.8	4344.4	2.87
B4	3164.2	3071.1	2.94
B5	3471.7	3428.3	1.25
B6	3302.8	3213.3	2.71
B7	3782.9	3761.7	0.56
B8	3737.7	3729.2	0.23
B9	4716.3	4667.3	1.04
B10	7231.4	7200.1	0.43
B11	1927.3	1896.9	1.58
B12	1994.1	1975.9	0.91
B13	2385.1	2364.7	0.86
B14	2442.9	2438.2	0.19
B15	3942.3	3925.3	0.43
B16	1753.6	1737.4	0.92
B17	1422.8	1410.2	0.89
B18	1810.4	1806.2	0.23
B19	2059.8	2059.8	0.00
B20	844.0	825.3	2.22
Mean	3022.9	2992.1	1.03
Min	844.0	825.3	0.00
Max	7231.4	7200.1	2.94

Table 2
ARM measurement data of bulk surface sediment sample. N-ARM is Normalized ARM.

H (mT)	ARM Intensity ($\times 10^{-8}$ A.m2kg$^{-1}$)	N-ARM
0	264.31	1.00
5	207.73	0.79
10	147.10	0.56
15	93.14	0.35
20	61.33	0.23
25	35.15	0.13
30	20.15	0.08
35	10.51	0.04
40	5.89	0.02
45	1.82	0.01
50	1.81	0.01

2. Experimental design, materials, and methods

Sampling of surface sediment samples was conducted in 20 different locations along the main-stream of the Brantas river. This river is in Jawa Timur province, Indonesia and passes through several cities or regencies from Batu to Mojokerto. Table 4 shows the locations and coordinates of the sampling
sites. Surface sediments were sieved (2 mm) then dried at room temperature to produce the bulk surface sediment samples. They were mashed using a set of mortar and pestle. A cylindrical plastic holder was used to place the samples.

A series of magnetic measurements i.e. magnetic susceptibility, ARM and IRM was conducted to measure magnetic properties of samples. Measurement of magnetic susceptibility was conducted using Bartington MS2B Susceptibility meter at dual frequencies (470 Hz and 4700 Hz). Measurement of ARM was conducted by applying a steady field of 0.05 mT together with an alternating magnetic field of up to 50 mT using Molspin AF Demagnetizer. Measurement of IRM was carried out by applying DC magnetic field of up to 1 T using an electromagnetic generator. Minispin Fluxgate Magnetometer was used to measure ARM and IRM intensity as the magnetic field changes.

Table 3
IRM measurement data of bulk surface sediment sample. N-IRM is Normalized IRM.

H (mT)	IRM Intensity (× 10⁻⁸ A.m²kg⁻¹)	N-IRM
12.02	117.38	0.07
57.77	1080.72	0.64
118.76	1508.53	0.89
181.37	1591.57	0.94
243.17	1630.37	0.96
303.36	1603.46	0.95
341.08	1625.98	0.96
402.88	1606.45	0.95
461.47	1612.76	0.95
524.08	1639.96	0.97
586.68	1655.88	0.98
627.61	1634.08	0.96
687.00	1609.69	0.95
746.40	1667.05	0.98
805.79	1693.62	1.00
864.38	1591.51	0.94
902.10	1619.04	0.96
962.30	1671.35	0.99
1017.67	1675.43	0.99
Acknowledgments

Data collection in this article was sponsored by Institut Teknologi Sepuluh Nopember (ITS), Indonesia through a research grant for Mariyanto. This program (Hibah Penelitian Pemula ITS 2018) was organized and monitored by LPPM ITS with grant number 1396/PKS/ITS/2018. Thanks to Mr. Juan Pandu for checking the plagiarism for this article.

Table 4
Detailed locations of the sampling sites along Brantas River.

Sample ID	Geographic Coordinate	Location
B1	7°54′28.627″	112°34′45.423″, Kel. Pendem, Kec. Junrejo, Kota Batu city
B2	7°57′23.127″	112°37′28.957″, Kel. Samaan, Kec. Klojen, Malang city
B3	8°3′37.406″	112°37′52.521″, Ds. Tambaksari, Kec. Tajinan, Malang regency
B4	8°8′24.986″	112°35′10.442″, Ds. Sukorejo, Kec. Gondanglegi, Malang regency
B5	8°8′21.557″	112°27′52.688″, Ds. Sumber Pucung, Kec. Sumber Pucung, Malang regency
B6	8°9′41.870″	112°24′26.225″, Ds. Sukoanyar, Kec. Kesamben, Blitar regency
B7	8°9′55.677″	112°18′28.019″, Ds. Pakel, Kec. Selopuro, Blitar regency
B8	8°9′10.916″	112°13′3.335″, Ds. Satreyan, Kec. Kanigoro, Blitar regency
B9	8°6′57.174″	112°6′11.735″, Ds. Rejotangan, Kec. Rejotangan, Tulungagung regency
B10	8°5′46.375″	112°0′13.735″, Ds. Pulosari, Kec. Nganjuk, Tulungagung regency
B11	8°1′6.535″	111°55′32.419″, Ds. Tapan, Kec. Kedungwaru, Tulungagung regency
B12	7°56′13.181″	112°52′27.676″, Ds. Kras, Kec. Kras, Kediri regency
B13	7°51′2.207″	111°59′56.087″, Kel. Manisrenggo, Kec. Kediri, Kediri city
B14	7°44′46.756″	112°1′14.538″, Ds. Gondanglegi, Kec. Prambon, Nganjuk regency
B15	7°40′37.783″	112°4′37.740″, Ds. Papar, Kec. Papar, Kediri regency
B16	7°34′48.551″	112°6′51.674″, Ds. Lestari, Kec. Patiamrowo, Nganjuk regency
B17	7°29′30.970″	112°10′3.461″, Ds. Munung, Kec. Jatikalen, Nganjuk regency
B18	7°26′44.020″	112°15′23.150″, Ds. Ngares Kidul, Kec. Gedeg, Mojokerto regency
B19	7°27′23.296″	112°21′22.897″, Ds. Ngares Kidul, Kec. Gedeg, Mojokerto regency
B20	7°26′46.620″	112°27′22.420″, Ds. Milirip, Kec. Jetis, Mojokerto regency

Fig. 2. IRM saturation curve for typical bulk surface sediment sample (modified after [1]).
Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104092.

References

[1] M. Mariyanto, M.F. Amir, W. Utama, A.M. Hamdan, S. Bijaksana, A. Pratama, R. Yunginger, S. Sudarningsih, Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia, Sci. Total Environ. 675 (2019) 632–641, https://doi.org/10.1016/j.scitotenv.2019.04.244.

[2] Q. Liu, A.P. Roberts, J.C. Larrasoana, S.K. Banerjee, Y. Guyodo, L. Tauxe, F. Oldfield, Environmental magnetism: principles and applications, Rev. Geophys. 50 (2012), https://doi.org/10.1029/2012RG000439.

[3] M. Mariyanto, S. Bijaksana, Magnetic properties of surabaya river sediments, east java, Indonesia, AIP Conf. Proc. 1861 (2017) 030045, https://doi.org/10.1063/1.4990932.

[4] S. Zulaikah, D. Sisinggih, Y. Bungkang, Z. Dani, M.D. Ong, Magnetic Susceptibility, Chemical Element Content and Morphology of Magnetic Mineral in Surface Sediment of Kamp Walker and Hubay Rivers as an Inlet of Sentani Lake, Papua-Indonesia, in: West Java, Indonesia, 2017, https://doi.org/10.1016/j.4990897, 0300010.

[5] R. Ravisankar, N. Harikrishnan, A. Chandrasekaran, M.S. Gandhi, R. Alagarsamy, Data on heavy metal and magnetic relationships in coastal sediments from South East Coast of Tamilnadu, India, Data Brief 16 (2018) 392–400, https://doi.org/10.1016/j.dib.2017.11.056.

[6] O. Togibasa, M. Akbar, A. Pratama, S. Bijaksana, Distribution of magnetic susceptibility of natural iron sand in the sarmi coast area, J. Phys. Conf. Ser. 1204 (2019), https://doi.org/10.1088/1742-6596/1204/1/012074, 012074.

[7] R. Yunginger, S. Bijaksana, D. Dahrin, S. Zulaikah, A. Hafidz, K.H. Kirana, S. Sudarningsih, M. Mariyanto, S.J. Fajar, Lithogenic and anthropogenic components in surface sediments from lake limboto as shown by magnetic mineral characteristisations, trace metals, and REE geochemistry, Geosciences 8 (2018) 116, https://doi.org/10.3390/geosciences8040116.

[8] W. Guo, S. Huo, W. Ding, Historical record of human impact in a lake of northern China: magnetic susceptibility, nutrients, heavy metals and OCPs, Ecol. Indicat. 57 (2015) 74–81, https://doi.org/10.1016/j.ecolind.2015.04.019.

[9] S. Zulaikah, R. Azzahro, S.B. Pranita, E.S. Mu’alimah, N. Munfarikha, Dewiningsih, W.L. Fitria, H.A. Niarta, Magnetic susceptibility and morphology of natural magnetic mineral deposit in vicinity of human’s living, IOP Conf. Ser. Mater. Sci. Eng. 202 (2017), https://doi.org/10.1088/1757-899X/202/1/012023, 012023.

[10] H. Rifai, R. Putra, M.R. Fadila, E. Erni, C.M. Wurster, Magnetic susceptibility and heavy metals in guano from south sulawesi caves, IOP Conf. Ser. Mater. Sci. Eng. 335 (2018), https://doi.org/10.1088/1757-899X/335/1/012001, 012001.

[11] R. Putra, H. Rifai, C.M. Wurster, Relationship between magnetic susceptibility and elemental composition of guano from solek cave, west sumatera, J. Phys. Conf. Ser. 1185 (2019), https://doi.org/10.1088/1742-6596/1185/1/012011, 012011.

[12] Liu, M. A., Wang, Y., Yang, Y., Wu, C., Deng, R., Zhu, X., Zhao, X., Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis: pedogenic particles in loess, J. Geophys. Res. Solid Earth, 110 (2005), https://doi.org/10.1029/2005JB003726.

[13] M. Mariyanto, A.S. Bahri, W. Utama, W. Lestari, I. Silvia, T. Lestyowati, M.K. Anwar, W. Arif, Relation between transport distance with frequency-dependent volume magnetic susceptibility in surabaya river sediments, J. Penelit. Fis. Dan Apl. JPFA. 8 (2018) 33, https://doi.org/10.26740/jpfa.v8n1.p33-41.

[14] G. Wang, F. Oldfield, D. Xia, F. Chen, X. Liu, W. Zhang, Magnetic properties and correlation with heavy metals in urban street dust: a case study from the city of Lanzhou, China, Atmos. Environ. Times (2011), https://doi.org/10.1016/j.atmosenv.2011.09.059.

[15] Y. Li, H. Zhang, C. Tu, Y. Luo, Magnetic characterization of distinct soil layers and its implications for environmental changes in the coastal soils from the Yellow River Delta, Catena 162 (2018) 245–254, https://doi.org/10.1016/j.catena.2017.11.006.

[16] G.C. Novala, Sudarningsih, K.H. Kirana, S.J. Fajar, Mariyanto, S. Bijaksana, Testing the effectiveness of mechanical magnetic extraction in riverine and lacustrine sediments, J. Phys. Conf. Ser. 1204 (2019), https://doi.org/10.1088/1742-6596/1204/1/012085, 012085.

[17] Y. Wang, Q. Huang, C. Lemkert, Y. Ma, Laboratory and field magnetic evaluation of the heavy metal contamination on the beaches of Shilaoren Beach, China, Mar. Pollut. Bull. 117 (2017) 291–301, https://doi.org/10.1016/j.marpolbul.2017.01.080.

[18] Y. Song, X. Fang, X. Chen, M. Torii, N. Ishikawa, M. Zhang, S. Yang, H. Chang, Rock magnetic record of late neogene red clay sediments from the Chinese Loess Plateau and its implications for East Asian monsoon evolution, Palaeogeogr. Palaeoclimatol. Palaeoecol. 510 (2018) 109–123, https://doi.org/10.1016/j.palaeo.2017.09.025.

[19] Y. Song, Magnetic record of Mio-Pliocene red clay and Quaternary loess-paleosol sequence in the Chinese Loess Plateau, Data Brief 16 (2018) 411–417, https://doi.org/10.1016/j.dib.2017.11.059.

[20] Y. Song, X. Fang, J.W. King, J. Li, I. Naoto, Z. An, Magnetic parameter variations in the Chaona loess/paleosol sequences in the central Chinese Loess Plateau, and their significance for the middle Pleistocene climate transition, Quat. Res. 81 (2014) 433–444, https://doi.org/10.1016/j.yqres.2013.10.002.