Original Research Article

Effect of Different Precooling and Storage Temperatures on Shelf Life of Mango cv. Alphonso

N.M. Kanade*, C.D. Pawar, V.S. Ghule, R.C. Gajbhiye and B.R. Salvi

Department of Horticulture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli. MS-415712, India
*Corresponding author

ABSTRACT

An experiment was conducted to study the effect of different precooling and storage temperatures on shelf life of mango cv. Alphonso. The experiment was carried out during the season May 2016 at R.F.R.S., Vengurle, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth. Dapoli with five precooling temperatures (P1 – Control, P2 – 21 ± 2°C, P3 – 18 ± 2°C, P4 – 15 ± 2°C and P5 – 12 ± 2°C) and four storage temperatures (S1 – Ambient temperature (27-30°C), S2 – 18 ± 2°C, S3 – 15 ± 2°C and S4 – 12 ± 2°C). After precooling fruits were store for 21 days at different storage temperatures and after 21 days again brought to above precooling temperature by air cooling. Then the cooled fruits are kept for ripening for seven days at room temperature. The experiment was laid out in FCRD with two replications. The interaction P5S4 (Precooling at 12 ± 2°C and storage at 15 ± 2°C), showed the minimum physiological loss in weight (PLW) (9.11 %) followed by P5S3 (11.48 %), the interaction P5S3 recorded minimum shrivelling (0.00 %) and the interaction P5S4 recorded minimum spoilage (4.00 %) at 28 days of storage. The interaction P3S1 and P3S4 observed the maximum shelf life (28 days). The interaction P3S1 and P3S4 was significantly superior over others.

Keywords

Precooling, Storage, Temperature and Shelf life.

Accepted: 10 September 2017
Available Online: 10 November 2017

Introduction

Mango (Mangifera indica L.) is the oldest and ‘National Fruit of India’ and rightly known as ‘King of Fruits’ owing to its nutritional richness, unique taste, pleasant aroma and religious and medicinal importance. Mango is believed to be originated to South East Asia, Indo-Burma region, in foot hills of the Himalayas (Mukherjee, 1951). India is the largest producer of mango in the world and ranks first in area and production. The total production of mango in India is 18.832 million MT from about 2.218 million ha area with the productivity of 8.49 MT/ha (Anon., 2015 a). In Maharashtra, mango is occupying an area of 0.156 million ha with annual production of 0.876 million MT and productivity of 5.60 MT/ha (Anon., 2015b). Post-harvest handling is the problem of mango as due to climacteric nature of the fruit. So, post-harvest handling can play a major role to reduce the losses. The post-harvest losses in mango are about 25 to 30 per cent post-harvest losses. This is mainly due to the non-availability of commercial low temperature store houses, lack of cool chain during transport and storage (Krishnamurthy and Rao, 2001). Temperature is the most important environmental factor that will
Influence the deterioration of harvested fruits, hence its management during various postharvest operations like pre-cooling, handling and storage plays a major role for extending the shelf-life. Padhye (1997) observed that the mango fruit cv. Alphonso stored at cold storage (12.7-15.0°C and 85-89% RH) condition had maximum shelf life (24-26 days). Alphonso is premium export cultivar and the export by air is very costly. Hence, if shelf life of fruits increased up to about 30 days, it can be exported through sea route. This will reduce the freight cost and will boost the export of fresh fruits. The research work on prolonging the shelf-life is of utmost importance for reducing the freight charges of air and fetch higher revenue for mango growers. Cold storage facility help in regulating market supply and stabilize the rates. Similarly, to extend shelf life, precooling after harvest is necessary. However, harvested mango fruits, are kept in cold storage with or without precooling. After storage they are directly brought to ambient temperature for ripening. This affects the quality of fruits and cause losses. In order to reduce these losses, it is necessary to standardize precooling and storage methods at different temperatures. Most of the work was done on storage and precooling separately but combine effect of both precooling and storage was not studied. In view of this, the present study was envisaged to study the effect of different precooling and storage temperatures on shelf life of mango cv. Alphonso.

Materials and Methods

Physiologically mature, hard green fruits at optimum maturity of mango Cv. Alphonso were harvested with the help of Nutan Zela with keeping 2.5 to 3.5 cm stalk during morning hours from the Regional Fruit Research Station, Vengurle Dist. Sindhudurg (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli) during May 2016. After harvesting, the fruits were treated with 0.1% carbendazime and kept under shade for 1-2 hours in order to dry them. The experiment was laid out in Factorial Completely Randomized Design (FCRD) with two replications. Initial observation was recorded and fruits were kept in forced air cooling chamber for the pre-cooling at P1 – Control, P2 – 21 ± 2°C, P3 - 18 ± 2°C, P4 – 15 ± 2°C and P5 – 12 ± 2°C. The precool temperature was checked by using thermometer which was inserted in the pulp of the fruit and the constant temperature maintained. Precooled fruits were stored for 21 days at different storage temperature like S1-Ambient temperature (27-30°C), S2 – 18 ± 2°C, S3 – 15 ± 2°C and S4 – 12 ±2°C. After 21 days storage, fruits were again brought to above precooling temperature by forced air cooling and kept for ripening for 7 days at room temperature.

Results and Discussion

Physiological loss in weight (PLW) (%)

It is observed from Table 1 and Figure 1 the PLW of mango fruits increased continuously throughout the storage period, irrespective of precooling and storage temperatures. At 7th day the lowest (0.84 %) PLW was observed in storage temperature 15±2°C (S3) and was superior over rest of the storage temperatures. The storage temperature 15±2°C (S3) recorded significantly the lowest PLW (5.19 %) and minimum PLW were recorded in interaction P5S3 (3.22 %) which was at par with P1S3 (4.15 %), and P2S3 (4.02 %) on 21st day of storage. At 28th day of storage in interactions the minimum increase in PLW was observed in P5S4 (9.11 %) followed by P5S3 (11.48 %). In case of storage conditions, fruits stored in cold storage showed minimum increase in PLW as compared to ambient temperature. The continuous increase in PLW in both the storage conditions and precooling could be due to loss of moisture from the skin of fruits through respiration and transpiration.
Table 1 Effect of precooling and storage temperatures on PLW (%) (physiological loss in weight) of mango fruits during storage

Treatment	0 Days	7 Days	14 Days															
	P1	P2	P3	P4	P5	Mean	P1	P2	P3	P4	P5	Mean	P1	P2	P3	P4	P5	Mean
S1	0	0	0	0	0	0	7.62	8.53	6.44	8.29	8.78	7.93	15.82	17.26	16.08	17.24	20.23	17.33
S2	0	0	0	0	0	0	4.03	1.62	0.90	1.53	1.28	1.87	3.11	3.63	1.70	4.72	4.27	3.49
S3	0	0	0	0	0	0	0.37	0.68	1.35	0.75	0.84	0.84	2.40	2.25	3.35	3.94	0.98	2.58
S4	0	0	0	0	0	0	1.30	1.40	1.40	0.80	0.80	1.26	3.73	4.70	3.25	3.80	4.25	3.94
Mean	0	0	0	0	0	0	3.33	3.06	2.52	3.07	2.90	2.98	6.26	6.96	6.10	7.42	7.43	6.83

S.Em+ S.D. @1% P
S 0.05 0.19 0.23 0.91
P 0.05 0.21 0.25 1.02
SxP 0.11 0.43 0.51 2.04

Treatment	21 Days	28 Days										
	P1	P2	P3	P4	P5	Mean	P1	P2	P3	P4	P5	Mean
S1	23.77	24.22	22.69	27.12	25.72	24.70	-	-	-	-	-	-
S2	6.77	5.60	6.08	5.73	6.09	6.05	16.46	13.43	18.97	15.64	14.27	15.75
S3	4.15	4.02	8.56	5.98	3.22	5.19	13.88	13.73	16.16	18.95	11.48	14.84
S4	7.77	6.67	6.52	6.59	6.40	6.79	15.08	15.44	15.57	17.51	9.11	14.54
Mean	10.62	10.13	10.96	11.36	10.36	10.68	-	-	-	-	-	-

S.Em+ S.D. @1% P
S 0.14 | 0.57 | - | - | - | - |
| P 0.16 | 0.64 | - | - | - | - |
| SxP 0.32 | 1.28 | - | - | - | - |

Precooling temperature: - 1) P1 - Control, 2) P2 – 21 ± 2˚C, 3) P1 - 18 ± 2˚C, 4) P3 – 15 ± 2˚C, 5) P5 - 12 ± 2˚C
Storage temperature: - 1) S1 – Ambient temperature, 2) S2 - 18 ± 2˚C, 3) S3 – 15 ± 2˚C, 4) S4 - 12 ± 2˚C
SxP: Interaction (Storage x Precooling), NS: Non Significant
(At 28 days storage, fruits at ambient temperature (S1) with different precooling temperatures were found to be spoiled, hence reading were not taken.)
Table 2: Effect of precooling and storage temperature on shrivelling (%) of mango fruits during storage

Treatment	0 Days					7 Days						14 Days						
	P1	P2	P3	P4	P5	Mean	P1	P2	P3	P4	P5	Mean	P1	P2	P3	P4	P5	Mean
S1	0	0	0	0	0	0	0	0	0	0	0	0	14	10	10	8	8	10.4
S2	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0.4
S3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean	0	0	0	0	0	0	0	0	0	0	0	0	4	2.5	2.5	2.5	2	2.7
S.Em+	-	-	-	-	-	-	-	-	-	-	-	-	0.47	-	-	-	-	-
C.D. @ 1%	-	-	-	-	-	-	-	-	-	-	-	-	1.8	-	-	-	-	-

| Treatment | 21 Days | | | | | 28 Days | | | | | | | | | | | | |
|-----------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|
| | P1 | P2 | P3 | P4 | P5 | Mean | P1 | P2 | P3 | P4 | P5 | Mean |
| S1 | 46 | 64 | 62 | 70 | 48 | 58 | - | - | - | - | - | - |
| S2 | 6 | 4 | 2 | 4 | 2 | 3.6 | 4 | 6 | 8 | 2 | 0 | 4 |
| S3 | 2 | 0 | 0 | 0 | 0 | 0.4 | 6 | 2 | 4 | 0 | 0 | 2.4 |
| S4 | 2 | 0 | 0 | 0 | 0 | 0.4 | 4 | 2 | 2 | 2 | 2 | 2.4 |
| Mean | 14 | 17 | 16 | 18.5 | 12.5 | 15.6 | - | - | - | - | - | - |
| S.Em+ | 0.80 | 3.22 | - | - | - | - | - | - | - | - | - | - |
| C.D. @ 1% | 0.89 | 3.60 | - | - | - | - | - | - | - | - | - | - |

Precooling temperature: 1) P1 - Control, 2) P2 - 21 ± 2°C, 3) P3 - 18 ± 2°C, 4) P4 - 15 ± 2°C, 5) P5 - 12 ± 2°C
Storage temperature: 1) S1 - Ambient temperature, 2) S2 - 18 ± 2°C, 3) S3 - 15 ± 2°C, 4) S4 - 12 ± 2°C
SxP: Interaction (Storage x Precooling), NS: Non Significant
Table 3: Effect of precooling and storage temperatures on spoilage (%) of mango fruits during storage

Treatment	0 Days	7 Days	14 Days
	P1 P2 P3 P4 P5 Mean	P1 P2 P3 P4 P5 Mean	P1 P2 P3 P4 P5 Mean
S1	0 0 0 0 0 0	0 0 0 0 0 0	10 6 10 4 2 6.4
S2	0 0 0 0 0 0	0 0 0 0 0 0	2 0 0 0 0 0.4
S3	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
S4	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
Mean	0 0 0 0 0 0	0 0 0 0 0 0	3 1.5 2.5 1 0.5 1.7

S.Em+	C.D. @1%	S.Em+	C. D. @1%	S.Em+	C.D. @1%
S	-	-	-		
P	-	-	-	0.5	NS
SxP	-	-	-	1	NS

Treatment	21 Days	28 Days
	P1 P2 P3 P4 P5 Mean	P1 P2 P3 P4 P5 Mean
S1	14 18 10 8 6 11.2	- - - - - -
S2	10 10 6 4 2 6.4	16 14 12 10 8 12
S3	2 0 0 0 0 0.4	10 8 10 6 6 8
S4	0 0 0 0 0 0	8 12 10 6 4 8
Mean	6.5 7 4 3 2 4.5	- - - - - -

S.Em+	C. D. @1%	S.Em+	C.D. @1%
S	0.60	2.41	-
P	0.67	2.70	-
SxP	1.34	5.40	-

Precooling temperature: - 1) P1 – Control, 2) P2 – 21 ± 2°C, 3) P3 – 18 ± 2°C, 4) P4 – 15 ± 2°C, 5) P5 – 12 ± 2°C
Storage temperature: - 1) S1 – Ambient temperature, 2) S2 – 18 ± 2°C, 3) S3 – 15 ± 2°C, 4) S4 – 12 ± 2°C
SxP: - Interaction (Storage x Precooling), NS: - Non Significant
Table 4 Effect of precooling and storage temperatures on shelf life (Days) of mango fruits during storage

Treatments	Shelf Life (Days)
P₁S₁	Between 7 to 14
P₂S₁	Between 7 to 14
P₃S₁	Between 7 to 14
P₄S₁	Between 7 to 14
P₅S₁	Between 7 to 14
P₁S₂	Between 21 to 28
P₂S₂	Between 21 to 28
P₃S₂	Between 21 to 28
P₄S₂	Between 21 to 28
P₅S₂	Between 21 to 28
P₁S₃	Between 21 to 28
P₂S₃	Between 21 to 28
P₃S₃	Between 21 to 28
P₄S₃	Between 21 to 28
P₅S₃	Above 28
P₁S₄	Between 21 to 28
P₂S₄	Between 21 to 28
P₃S₄	Between 21 to 28
P₄S₄	Between 21 to 28
P₅S₄	Above 28
Fig.1 Effect of precooling and storage temperatures on PLW (%) of mango fruits during storage

Precooling temperature: - 1) P₁ – Control, 2) P₂ - 21 ± 2°C, 3) P₃ - 18 ± 2°C, 4) P₄ - 15 ± 2°C, 5) P₅ - 12 ± 2°C
Storage temperature: - 1) S₁ – Ambient temperature, 2) S₂ - 18 ± 2°C, 3) S₃ – 15 ± 2°C, 4) S₄ - 12 ± 2°C
Fig.2 Effect of precooling and storage temperatures on shriveling (%) of mango fruits during storage.
Fig. 3 Effect of precooling and storage temperatures on spoilage (%) of mango fruits

Precooling temperature: 1) P₁ – Control, 2) P₂ – 21 ± 2˚C, 3) P₃ – 18 ± 2˚C, 4) P₄ – 15 ± 2˚C, 5) P₅ – 12 ± 2˚C
Storage temperature: 1) S₁ – Ambient temperature, 2) S₂ – 18 ± 2˚C, 3) S₃ – 15 ± 2˚C, 4) S₄ – 12 ± 2˚C
Findings of this study are supported by Padhye (1997) and Devani et al., (2011) in mango.

Shriveling (%)

It is seen from Table 2 and Figure 2 that fruits started shriveling on 14th and 21st days under ambient and cold storage, respectively. Fruits stored at ambient temperature (S_1) recorded 10.4 per cent shriveling and cold storage S_2 (0.4 %), S_3 and S_4 fruits recorded 0.00 per cent shriveling on 14th days of storage. At 21st days of storage the fruits stored at 12±2°C (S_4) and 15±2°C (S_3) temperatures showed significantly lowest (0.40 %) shriveling however, it was found on par with S_2 (3.60 %). The minimum shrivelling of mango fruits (12.5 %) was observed at precooling temperature 12±2°C (P_3) which was at par with P_1 (14 %) and P_3 (16 %).

Minimum increase in shriveling was noticed in S_3 and S_4 (2.40 %). In interactions the minimum increase in shriveling was observed in P_5S_2, P_5S_3 and P_5S_3 (0.00 %) on the 28th days of storage. The fruits stored at cold storage remained firm which resulted in minimum shrivelling as compared with ambient temperature storage. Such reduction in shrivelling was due to low temperature and high humidity conditions under cold storage. Similar results were reported by Badar (1990), Padhye (1997) and Kshirsagar (2004) in mango, which supported the present findings.

Spoilage (%)

It is presented in Table 3 and Figure 3 that fruits spoilage started on 14th and 21st day under ambient and cold storage, respectively. Percentage of spoilage was in increasing order throughout the storage period in both the storage conditions. The fruits stored at ambient temperature (S_1) recorded 6.4 per cent spoilage, cold storage S_2 recorded 0.4 per cent while, S_3 and S_4 fruits recorded 0.00 per cent spoilage, irrespective of precooling. Maximum spoilage was found in P_1 (3 %) while minimum was found in P_5 (0.5 %), irrespective of storage temperatures during the 14th days of storage. At 21st days of storage, 0.00 per cent spoilage was recorded in S_4 treatment (12±2°C), which was at par with S_3 (0.40 %). The minimum increase in spoilage was observed in P_5 (2 %), which was at par with P_3 (4 %), and P_4 (3 %). Minimum increase in spoilage was noticed in S_3 and S_4 (8 %) and in interactions, the minimum increase in spoilage was observed in P_5S_4 (4.00 %) on the 28th days of storage. It was noticed from the data that the maximum spoilage was recorded in ambient storage as compared to cold storage. It may be due to high temperature congenial for growth of microorganism was available at ambient storage. Present findings are in agreement with the results reported by Khanbarad et al., (2013) and Makwana et al., (2014) in mango.

Shelf Life (Days)

With respect to shelf life, cold storage fruits recorded maximum shelf life as compared to ambient temperature stored fruits that is recorded in Table 4. Among the different interactions tried, maximum shelf life (28 days) was observed in P_5S_3 (12±2 °C precooling and 15±2 °C storage temperature) and P_5S_4 (12±2 °C precooling and storage temperature) as these fruits recorded less PLW and spoilage.

This might be due to the reduction in field heat in shortest possible time, lower moisture loss, restricted metabolic and respiratory activities and inhibition in water loss and reduction in ethylene production in fruits (Hardenberg et al., 1990). The similar finding reported by Padhye (1997), Devani et al., (2011) and Khanbarad et al., (2013).
References

Anonymous (2015 a). Area, production and productivity of mango in India. Indian Horticulture Database.
Anonymous (2015 b). Mango output up 2.2% in 2014-15. The Hindu business line.
Badar R. S. (1990). Studies on maturity indices, grading and storage of mango (Mangifera indica L.) fruits Cv. Ratna and Kesar. M.Sc. (Agri.) Thesis submitted to Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri (M.S.).
Devani R. B.; K. M. Karetha and Virendra Singh (2011). Effect of pre-cooling and storage methods for extending the shelf life and quality of mango cv. Kesar fruits. International J. Processing and Post-Harvest Technology. 2(2): 117-120.
Hardenburg R. E.; A. F. Watada and C. Y. Wang (1990). The commercial storage of fruits vegetable and florist and nursery stocks, U. S. Dept. Agr. Handbook No. 66, pp. 3.
Khanbarad S. C., N. Patil, R. F. Sutar and D. C. Joshi (2013) Studies on pre-cooling of mango for extension of shelf-life. J. of Agricultural Engineering., 50(4).
Krishnamurthy S. and D. V. S. Rao, (2001). Status of post-harvest management of fruits. Indian J. Hort., 58(1-2): 152.
Kshirsagar P. B. (2004). Studies on fruiting and some aspects of post-harvest handling of some promising varieties of mango (Mangifera indica L.). A M. Sc. (Agri.) thesis submitted to Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Ratnagiri, Maharashtra.
Makwana S.A.; N.D. Polara and R.R. Viradia (2014). Effect of pre-cooling on post-harvest life of mango (Mangifera indica L.) cv. Kesar. Food Science Technology. 2(1): 6-13.
Mukherjee S. K. (1951). The origin of mango. Indian J. Genet. 2: 49.
Padhye B. P. (1997). Studies on some aspect of post-harvest handling of mango (Mangifera indica L.) Cv. Alphonso. M.Sc. (Agri.) thesis (unpublished) submitted to Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri (Maharashtra).

How to cite this article:
Kanade, N.M., C.D. Pawar, V.S. Ghule, R.C. Gajbhiye and Salvi, B.R. 2017. Effect of Different Precooling and Storage Temperatures on Shelf Life of Mango cv. Alphonso. Int.J.Curr.Microbiol.App.Sci. 6(11): 845-855. doi: https://doi.org/10.20546/ijcemas.2017.611.099