PARP Inhibitors and DNA Repair: A Novel Beneficial Approach for Targeting Synthetic Lethal Tumor Cells
Ramin Saravani,1,* Saman Sargazi,2 Hamid-Reza Galavi,1 and Sadegh Zarei2
1Cellular and Molecular Research Center and Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
2Department of Clinical Biochemistry, School of Medicine, Yazd University of Medical Sciences, Yazd, Iran
*Corresponding author: Dr. Ramin Saravani, Cellular and Molecular Research Center and Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran. E-mail: saravaniramin@yahoo.com

Received 2017 May 01; Accepted 2017 June 13.

Keywords: Cancer, Synthetic Lethality, DNA Repair, PARP Inhibitor

Dear Editor,
Inhibitors of the DNA damage response (DDR) offer an exciting opportunity to identify targeted cancer therapies (1). In addition to enhancing the effectiveness of DNA-damaging chemotherapies and ionizing radiation (IR) treatment, DDR inhibitors have potentials for single-agent activity in specific tumor genetic backgrounds based on the principle of synthetic lethality (2). This was first represented by inhibitors of poly (ADP-ribose) polymerase (PARP) in BRCA mutated gynecological related cancers (3, 4).

Synthetic lethality is a relatively pervasive characteristic of cancers that harbors genomic instability. In some cases, tumor cell defects in the repair of damaged DNA contribute to this phenotype. Defects that drive genomic instability also impart vulnerabilities that may make tumor cells sensitive to particular DNA synthesis targeting drugs (5). The idea of exploiting synthetic lethality to target cancer was first highlighted by Hartwell and colleagues (6) and Kaelin (2). The synthetic lethal principle provided a conceptual basis for targeting tumors with a known tumor suppressor defect: If genes and proteins could be identified that were synthetically lethal with specific tumor suppressor gene defects, then in principle, targets could be identified that would likely elicit tumor-cell-specific death without deleterious effects on normal cells, which do not harbor tumor suppressor gene loss.

Hypothesis-driven studies revealed that loss of function of BRCA1 or BRCA2 results in an exquisite sensitivity to chemical inhibition of the poly(ADP-ribose) polymerase, particularly (PARP)-1 (2, 7). The logic for this synthetic lethal interactions stems from the fact that BRCA1 and BRCA2 are tumor suppressor genes that are involved in homologous recombination (HR) DNA repair of DNA double-strand breaks (DSBs) (8). These proteins alongside Phosphatase and tensin homolog (PTEN) encoded by PTEN gene are among the main accessory proteins that control DNA repair and sensitivity to genotoxic stress. PTEN is frequently found to be mutated, deleted, or epigenetically silenced. Recent findings have demonstrated that PTEN also plays a critical role in DNA damage repair and DNA damage response (9). These DSBs, which are repaired by HR in BRCA positive cells, are presumed to accumulate in PTEN, BRCA1- or BRCA2- deficient cells, leading to subsequent cell death. Increased sensitivity to PARP inhibition has also been observed in cells with other genetic lesions that affect HR, including phosphatase and tensin homolog (PTEN) loss (10), ataxia telangiectasia mutated (ATM) deficiency (11, 12), and Aurora A overexpression (13).

Among the DNA repair mechanisms, HR is the mainly error free, whereas the other mechanisms of DSB repairs (i.e., nonhomologous end joining (NHEJ) and single-strand annealing (SSA)) are almost error-prone and may endanger genomic stability. PARP1, a DNA repair enzyme, is responsible for the base excision repair of DNA single-strand breaks (14). PARP1 is an abundant nuclear enzyme that synthesizes poly (ADP-ribose) polymer when activated by DNA nicks or breaks. Activation of PARP1 has important effects on a variety of cellular processes, including base excision repair (BER), double-strand breaks (DSB) and other repair mechanisms (15). The role of PARP1 in the DNA damage response gained many interests in the development of PARP inhibitors as potential chemosensitizers for the treatment of cancers (16).

The mechanism for the single-agent activity of PARP inhibitors has been linked to the role of this crucial enzyme in the repair of DNA single-strand (SSBs) and DSBs (17-19). The majority of DSBs in cancer cells DNA would be
repaired by the homologous recombination repair (HRR) pathway (20), in which *BRCA1* and *BRCA2* genes play crucial roles (21). Tumors with HRR-defective backgrounds (e.g. because of *BRCA* or PTEN deficiency) will benefit error-prone DNA repair pathways (22), leading to extensive genomic instability and succeeding cell death in tumor cells. Studies also showed PARPi is implicated in the modulation of some nuclear processes, including NHEJ (23). In addition, there is a hypothesis that the simultaneous loss of HR and PARPi could result in NHEJ pathway blockade. Consequently, PARP inhibition in HR-deficient cells might increase the genomic instability resulting from this error-prone pathway.

A number of PARPi inhibitors have been reported to have synthetic lethal activity in *BRCA*-deficient patients. These include BMN 673 (Biomarin) (24), niraparib (25), rucaparib (26), veliparib (27), and AZD2461 (28). In addition, the efficacy of some PARPi inhibitors has been identified in non-*BRCA*-mutation-linked cancers, including sporadic castration-resistant prostate cancer and non-small-cell lung cancer. Given that up to 80% of endometrial cancers and 50% of prostate cancers lack PTEN expression, we suggest that PARPi inhibitors may be therapeutically useful for a subset of other cancers.

References

1. Oconnor MJ, Martin NM, Smith GC. Targeted cancer therapies based on the inhibition of DNA strand break repair. *Oncogene*. 2007;26(56):7868-24. doi: 10.1038/sj.onc.1210879. [PubMed: 18066095].

2. Kaelin WJ. The concept of synthetic lethality in the context of anticancer therapy. *Nat Rev Cancer*. 2005;5(9):689-98. doi: 10.1038/nrc1694. [PubMed: 16013199].

3. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of *BRCA2*-deficient tumors with inhibitors of poly(ADP-ribose) polymerase. *Nature*. 2005;434 (7035):931-7. doi: 10.1038/nature03443. [PubMed: 15829966].

4. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in *BRCA* mutant cells as a therapeutic strategy. *Nature*. 2005;434 (7035):917-21. doi: 10.1038/nature03445. [PubMed: 15829967].

5. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. *Nature*. 2012;481(7381):287-94. doi: 10.1038/nature10760. [PubMed: 22256607].

6. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH. Integrating genetic approaches into the discovery of anticancer drugs. *Science*. 1997;278(5340):2064-8. doi: 10.1126/science.9531881.

7. Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta A, Valenzuela MT, Martinez-Romero R, et al. Interaction between ATM and PARPi in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. *BMC Mol Biol*. 2007;8:29. doi: 10.1186/1471-2199-8-29. [PubMed: 1745951].

8. Nagaratu G, Scully R. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. *DNA Repair (Amst)*. 2007;6(7):7018-31. doi: 10.1016/j.dnarep.2007.02.020. [PubMed: 17379580].

9. Ming M, He YP. PTEN in DNA damage repair. *Cancer Lett*. 2012;319(2):125-9. doi: 10.1016/j.canlet.2012.01.003. [PubMed: 22266095].

10. Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. *EMBO Mol Med*. 2009;4(7):315-22. doi: 10.1002/emmm.200900044. [PubMed: 20409795].

11. Williamson CT, Muzik H, Turhan AG, Zamo A, O’Connor MJ, Bebb DG, et al. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. *Mol Cancer Ther*. 2010;9(2):347-57. doi: 10.1158/1535-7163.MCT-09-0872. [PubMed: 2024458].

12. Weston VJ, Oldreive CE, Skowronska A, Ocsig D, Pratt G, Dyer MJ, et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. *Blood*. 2010;116(22):4578-87. doi: 10.1182/blood-2010-06-265769. [PubMed: 20739657].

13. Soussi T, Maniotis D, McCarthy A, Tang C, Lord CJ, Ashworth A, et al. Aurora-A expressing tumour cells are deficient for homology-directed DNA double-strand-break repair and sensitive to PARPi inhibition. *EMBO Mol Med*. 2010;2(4):330-42. doi: 10.1002/emmm.201000068. [PubMed: 20373286].

14. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. *J Clin Oncol*. 2008;26(22):3785-90. doi: 10.1200/JCO.2008.16.0812. [PubMed: 18593545].

15. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poilier GG. PARP inhibition: PARPs and beyond. *Nat Rev Cancer*. 2010;10(4):293-301. doi: 10.1038/nrc2812. [PubMed: 20200537].

16. Ferraris DV. Evolution of poly(ADP-ribose) polymerase (PARP)-1 inhibitors. From concept to clinic. *J Med Chem*. 2005;48(12):4561-84. doi: 10.1021/jm050001m. [PubMed: 20364863].

17. Damours D, Desnoyers S, Dsvila I, Poilier GG. Poly-(ADP-ribose) ation reactions in the regulation of nuclear functions. *Biochem J*. 1999;342 (Pt 2):249-68. [PubMed: 10455909].

18. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petakorin MI, et al. Homologous recombination-deficient tumors are hyper-dependent on POLQ-mediated repair. *Nature*. 2015;518(7538):258-62. doi: 10.1038/nature14184. [PubMed: 25642963].

19. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. *Nature*. 2015;518(7538):254-7. doi: 10.1038/nature14157. [PubMed: 25642960].

20. Mojahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. *Nat Rev Mol Cell Biol*. 2010;11(3):196-207. doi: 10.1038/nrm2813. [PubMed: 2077359].

21. Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. *Science*. 2014;343(6178):1470-5. doi: 10.1126/science.1252230. [PubMed: 24675954].

22. Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARPi) inhibitor lethality in homologous recombination-deficient cells. *Proc Natl Acad Sci U S A*. 2011;108(8):3406-11. doi: 10.1073/pnas.1017510108. [PubMed: 21080885].

23. Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. *Nucleic Acids Res*. 2006;34(21):6670-82. doi: 10.1093/nar/gkl840. [PubMed: 17088286].

24. De Bonc JS, Mina LA, Gonzalez M, Curtin NJ, Wang E, Henshaw JW, et al. First in human trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. *J Clin Oncol*. (American Society of Clinical Oncology). 2013.

25. Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. *Lancet Oncol*. 2015;16(9):882-92. doi: 10.1016/S1470-2045(15)02407-7. [PubMed: 23807788].

26. Drew Y, Ledermann JA, Jones A, Hall G, Jayson GC, Highley M, et al. Phase II trial of the poly(ADP-ribose) polymerase (PARPi) inhibitor AG-014699 in BRCA 1 and 2-mutated, advanced ovarian
and/or locally advanced or metastatic breast cancer. J Clin Oncol. 2011;29(15_suppl):3104. doi: 10.1200/jco.2011.29.15_suppl.3104.

27. Huggins Puhalla SL, Beumer JH, Appleman LJ, Tawbi HH, Stoller RG, Lin Y, et al. A phase I study of chronically dosed, single-agent veliparib (ABT-888) in patients (pts) with either BRCA1/2-mutated cancer (BRCA+), platinum-refractory ovarian cancer, or basal-like breast cancer (BRCA-wt). J Clin Oncol, (American Society of Clinical Oncology). 2012.

28. Oplustil O'Connor L, Rulten SL, Cranston AN, Odedra R, Brown H, Jaspers JE, et al. The PARP Inhibitor AZD2461 Provides Insights into the Role of PARP3 Inhibition for Both Synthetic Lethality and Tolerability with Chemotherapy in Preclinical Models. Cancer Res. 2016;76(20):6084–94. doi: 10.1158/0008-5472.CAN-15-3240. [PubMed: 27550455].

Gene Cell Tissue. 2017; 4(3):e62160.