Research Article

Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: a functional comparison of different extraction solvents

Yun Huang 1,2, Kenneth Kin Leung Kwan 2, Ka Wing Leung 1,2, Ping Yao 2, Huaiyou Wang 1,2, Tina Tingxia Dong 1,2, Karl Wah Keung Tsim 1,2,*

1 HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China
2 Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

Article info
Article history:
Received 6 June 2017
Received in Revised form
31 July 2017
Accepted 6 February 2018
Available online 12 February 2018

Keywords:
Cell protection
Extracellular flux analyzer
Ginseng Radix
Live cell
Reactive oxygen species

Abstract
Background: The root of Panax ginseng, a member of Araliaceae family, has been used as herbal medicine and functional food in Asia for thousands of years. According to Traditional Chinese medicine, ginseng is the most widely used “Qi-invigorating” herbs, which provides tonic and preventive effects by resisting oxidative stress, influencing energy metabolism, and improving mitochondrial function. Very few reports have systematically measured cell mitochondrial bioenergetics after ginseng treatment.

Methods: Here, H9C2 cell line, a rat cardiomyoblast, was treated with ginseng extracts having extracted using solvents of different polarity, i.e., water, 50% ethanol, and 90% ethanol, and subsequently, the oxygen consumption rate in healthy and tert-butyl hydroperoxide-treated live cultures was determined by Seahorse extracellular flux analyzer.

Results: The 90% ethanol extracts of ginseng possessed the strongest antioxidative and tonic activities to mitochondrial respiration and therefore provided the best protective effects to H9C2 cardiomyocytes. By increasing the spare respiratory capacity of stressed H9C2 cells up to three-folds of that of healthy cells, the 90% ethanol extracts of ginseng greatly improved the tolerance of myocardial cells to oxidative damage.

Conclusion: These results demonstrated that the low polarity extracts of ginseng could be the best extract, as compared with others, in regulating the oxygen consumption rate of cultured cardiomyocytes during mitochondrial respiration.

© 2018 The Korean Society of Ginseng. Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The root of Panax ginseng refers to Korean or Chinese ginseng, which is a highly valued herb that has been extensively used for millennia in Asian countries for diverse beneficial effects, including antiaging [1], antiinflammatory [2], antitumor, and antioxidant actions [3], cardioprotective effects [4], antihypertensive effects [5], and attenuation of peripheral vascular disease and congestive heart failure [6]. According to the theory of Traditional Chinese medicine, ginseng is one of the most widely used “Qi-invigorating” herbs [7]. Therefore, the intake of ginseng is beneficial for the patients by supplementing “Qi” to promote blood circulation and to enhance the medicinal efficacy of benefiting vital energy [8].

In clinical applications, ginseng extracts reduced oxidative stress in patients suffering from cardiovascular diseases: these beneficial effects were proposed to be mediated by antioxidant and chelating abilities of ginsenosides [9]. The activity of ginsenosides is strongly dependent on the types of aglycone [10]. For example, ginsenoside Rg2, Rg3, and Rh2 and ginsenoside aglycones were proposed as pro-oxidative chemicals, whereas ginsenoside Rb1, Rb3, Rc, Rd, Re, Rg1, Rh1, and R1 were proposed as antioxidants [11,12]. In addition, ginsenoside Rb2 and Rc were shown to have better inhibition effects on oxidative stress than ginsenoside Rb1, Rd, Re, Rf, Rg1, Rg2, Rg3, Rh1, and Rh2 [13]. In contrast to ginsenosides, the phenolic compounds of ginseng displayed significant antioxidant capacities by directly neutralizing free radicals or decomposing peroxides [14–17].

* Corresponding author. Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, China.
E-mail address: botsim@ust.hk (K.W.K. Tsim).

https://doi.org/10.1016/j.jgr.2018.02.002
p1226-8453 e2093-4947/$ – see front matter © 2018 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Mitochondria are responsible to generate adenosine triphosphate (ATP), meeting the energy demands of the cell, particularly in cardiac myocytes [18]. The demand of ATP could be increased during exercise or other physical activities. The ability of mitochondria to increase ATP generation refers to spare respiratory capacity [19]: this capacity is strongly related to cell survival. The measurement of spare respiratory capacity could be determined by treating cells with carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP), an uncoupling agent that is able to disrupt proton gradient and mitochondrial membrane potential [20]. Apart from spare respiratory capacity, the maximal respiration of cells is affected by basal respiration, which consists of proton leak and conventional ATP production. Proton leak from mitochondrial inner membrane could result in uncoupling of oxidative phosphorylation, which was shown to be cytoprotective in ischemic injury models [21]. In addition, this leakage could result to downregulate reactive oxygen species (ROS) generation [22]. However, the proton leak also represents the basal respiration not coupling to ATP production, and this could be considered as a sign of mitochondrial damage [23]. Today, the aforementioned mitochondrial bioenergetics parameters could be determined in live cells by using an extracellular flux analyzer [24].

Although the capabilities of ginseng to attenuate ROS production in cardiomyocytes have been demonstrated previously [25], the effects of ginseng in mitochondrial bioenergetics of a live cell remain ambiguous. To have a comprehensive understanding of the influences of ginseng extracts on mitochondrial bioenergetics of cardiomyocytes, those indicators of mitochondrial respiration were simultaneously measured with an extracellular flux analyzer; this analyzer provided a novel high-throughput instrument that could monitor the real-time metabolism of living cells. Therefore, the tonic and preventive effects of ginseng extracts to both healthy cells and cells under oxidative stress state could be determined and compared.

2. Materials and methods

2.1. Chemicals and preparation of ginseng extracts

HPLC-grade methanol and acetonitrile were purchased from Merck (Darmstadt, Germany). Ultra-pure water was prepared from a Milli-Q purification system (Merck Millipore, Molsheim, France). Formic acid was bought from Riedel-de Haen International (Hanover, Germany). The chemical standards of ginsenoside Rb1, ginsenoside Rd, ginsenoside Re, and ginsenoside Rg1 were obtained from the Shanghai R&D Center for Standardization of Traditional Chinese medicine (Shanghai, China). All these chemical markers were more than 98% purity. Three batches of dried raw materials of Ginseng Radix et Rhizome (ginseng; root and rhizome of *P. ginseng*) were purchased from Jilin Province of China and then authenticated by Dr. Tina Dong at The Hong Kong University of Science and Technology (HKUST), according to the morphological characteristics. The voucher specimens were deposited in the Centre for Chinese Medicine Research and Development at HKUST. The water extracts, 50% ethanol extracts, and 90% ethanol extracts of ginseng were prepared using a standardized extraction method. To be specific, four grams of the powdered sample were refluxed in 100 mL solvent two times (each time for 2 hours), and the supernatant was combined and then dried under vacuum.

2.2. Standardization of ginseng extracts

Ginseng extracts were analyzed on an Agilent HPLC 1,200 series system (Agilent Technologies, Waldbronn, Germany), which was equipped with a degasser, a binary pump, an auto sampler, a thermostatated column compartment, and a diode array detector (DAD). The mixtures were filtered with a guard column before separated on an Agilent ZORBAX Eclipse XDB-C18 column (1.8 mm id, 50 mm × 4.6 mm). The mobile phase was composed of 0.1% formic acid in acetonitrile (A) and 0.1% formic acid in water (B) according to the preset gradient program: 0–14 min, linear gradient 20.0–42.0% (A); 14–17 min, linear gradient 42.0–75.0% (A); 17–18 min, isocratic gradient 75.0–75.0% (A); 18–25 min, linear gradient 75.0–85.0% (A). A prebalance period of 8 min was used between each run. The flow rate was set at 0.4 mL/min, and the injection volume was 5 μL. To get the fingerprints of the ginseng extracts, the wavelength of the UV detector was set to 330 nm with full spectral scanning from 190 nm to 400 nm. Then, the effluent was directed into the MS for further analysis. Mass spectrometry was performed on an Agilent triple quadrupole tandem mass spectrometry (Agilent QQQ-MS/MS) (6410A), which was equipped with an electrospray ionization (ESI) ion source. The drying gas was set to 10 L/min at a temperature of 325°C under negative ion mode. The capillary voltage was set to 4,000 V, and the delta electro multiplier voltage was set to 400 V. For the MS/MS analysis, two transition pairs were chosen for acquisition in multiple reaction monitoring (MRM) mode for ginsenoside Rb1, Rd, Re, and Rg1. The collision energy values and fragmentor voltage were optimized in advance to obtain the highest abundance.

2.3. Cell cultures

H9C2 cells, routinely used as a cardiomyocyte cell line (rat embryonic cardiomyoblasts), were purchased from the American Type Culture Collection (Manassas, VA). H9C2 cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium, supplemented with 10% fetal bovine serum, 100 units/mL penicillin/streptomycin at 37°C in a 5% CO2 humidified incubator. The culture reagents were purchased from Invitrogen Technologies (Carlsbad, CA). The medium was replaced every 2–3 days, and the cells were grown up to 80–90% confluence for experimental use.

2.4. Cell viability

Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay. Cells were seeded in 96-well plates at a density of 1 × 10⁴ cells per well. After 24 hours of drug treatment, cells in each well were incubated with 10 μL MTT (5 mg/mL; Invitrogen) at a final concentration of 0.5 mg/mL for 3 hours at 37°C. After the solution was removed, dimethyl sulfoxide (DMSO) was used to resuspend the purple precipitate inside the cells, and the absorbance was detected at 570 nm. The cell viability was calculated as percentage of the absorbance value of control (without drug treatment), while the value of control was 100%.

2.5. Folin–Ciocâlteu assay

The total phenolic content of ginseng extracts was measured by Folin–Ciocâlteu assay. In brief, 20 μL of each sample together with 40 μL 10% (v/v) Folin–Ciocalteu reagent (Sigma-Aldrich, St Louis, MO) was added into each well of the 96-well microplate. Then, 160 μL Na₂CO₃ (700 mM) was added into each well. The assay plates were incubated at room temperature in dark for 2 hours before the absorbance at 765 nm was recorded. Here, gallic acid (Sigma-Aldrich; > 98%) was used as the reference compound, and the total phenolic contents of each extract were expressed as the value compared with gallic acid.

2.6. 2, 2-diphenyl-1-picryl-hydrazyl-hydrate radical-scavenging assay

To measure the free radical-scavenging activity of the extracts, 50 μL of each extract with different concentrations (0.125–8 mg/mL) together with 150 μL 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) solution was added into each well of the 96-well
After washing three times with HBSS, the cells were then treated by an MS detector. Representative chromatograms of standard markers (Standards), water extract (W), 50% ethanol extract (E50), and 90% ethanol extract (E90) under MRM mode were shown.

2.7. Oxidative stress assay

After optimization of herbal extracts with MTT assay, the dose of tert-butyl hydroperoxide (tBHP) (150 μM; Sigma-Aldrich) and positive control (vitamin C, 1 mM) was also optimized. Similar to the cell viability assay, the cells were cultured in a 96-well plate first. After drug treatments for 24 hours, tBHP (150 μM) was added into the wells for 3 hours before MTT in 1× PBS at a final concentration of 0.5 mg/mL was applied. After the solution was removed, the purple precipitate inside the cells was resuspended in DMSO and then measured at 570 nm absorbance.

2.8. ROS formation assay

The determination of ROS level in cell cultures was performed using oxidation-sensitive dye 2′, 7′-dichlorofluorescin diacetate (DCFH-DA). Cultured H9C2 cells (1×10^4 cells/well) in a 96-well plate were pretreated with tert-butyl-hydroquinone (tBHQ) or herbal extract for 24 hours and labeled by 100 μM DCFH-DA (Sigma-Aldrich) in Hanks’ balanced salt solution (HBSS) for 1 hour at 37°C. After washing three times with HBSS, the cells were then treated with tBHP for 1 hour at 37°C. The amount of intracellular tBHP-induced ROS formation was detected by fluorometric measurement with excitation at 485 nm and emission at 530 nm.

2.9. Luciferase assay

To reveal the transcriptional activation of antioxidant response element (ARE), the pARE-Luc (Promega, Fitchburg, WI) DNA construct, containing four copies of ARE (5′-TGAACnGGG-3′) that drives transcription of the luciferase reporter gene luc2P (Photinus pyralis), was transfected into cultured H9C2 cells by Lipofectamine 3,000 (Invitrogen) according to the manufacturer’s instructions. Transfected H9C2 cells were treated with various concentrations of ginseng extracts for 1 day. Then, the medium was aspirated, and the cultures were lysed by a buffer containing 100 mM potassium phosphate buffer (pH 7.8), 0.2% Triton X-100, and 1 mM dithiothreitol at 4°C. After centrifugation at 16,100 rpm for 5 min, the supernatant was collected and used to perform luciferase assay. The activity was normalized as absorbance (up to 560 nm) per mg of protein. The transfection efficiency in H9C2 cells was 40%, as determined by another control plasmid having a β-galactosidase, under a cytomegalovirus enhancer promoter.

2.10. Mitochondrial bioenergetics analysis

To measure mitochondrial bioenergetics of H9C2 cells, a Seahorse Bioscience XFp extracellular flux analyzer (Agilent) was used. This device uses specialized microplates to create a closed chamber able to measure real-time oxygen consumption by mitochondria in

Fig. 1. PCA of ginsenosides in different ginseng extracts. (A) Identification of ginsenoside Rg1 (1), Re (2), Rb1 (3), Rd (5), and astragaloside IV (4; internal control marker) was made by an MS detector. Representative chromatograms of standard markers (Standards), water extract (W), 50% ethanol extract (E50), and 90% ethanol extract (E90) under MRM mode were shown. (B) The scoring plot of different ginseng extracts by comparing the contents of chosen ginsenosides. PC1 and PC2 described ~75% and ~22% of total variability, respectively. (C) The loading plot of PC1 versus PC2 for four ginsenosides, from LC-MS profiles, of three ginseng extracts was shown. All values were from n = 3. PCA, principal component analysis; PC1, principal component 1; PC2, principal component 2.
live cells exposed to various stimuli through multiple designed injection ports. Optimal seeding density of H9C2 cells was established at 5,000 cells per well, and therefore, this density was used for all experiments. In addition, mitochondrial agents (Seahorse Bioscience Cell Mito Stress Test Kit #103010-100) were pre-optimized at 1 μM oligomycin (complex V inhibitor), 3 μM FCCP (a respiratory uncoupler), and 1 μM rotenone/antimycin A (inhibitors of complex I and complex III) to elicit maximal effects on mitochondrial respiration. Background correction wells were used to normalize the data to background plate noise.

Cells were seeded on the Xfp cell culture miniplates and treated with ginseng extracts overnight. The sensor cartridge for the Xfp analyzer was hydrated in a 37°C non-CO2 incubator a day before the experiment. During the sensor calibration, cells were incubated in the 37°C non-CO2 incubator in 180 μL assay medium (XF base medium, 10 mM glucose, 1 mM pyruvate, and 2 mM L-glutamine, pH 7.40) for 1 hour before the assay. The plate was placed onto calibrated Xfp extracellular flux analyzer for Mito Stress Test. The oxygen consumption rate (OCR) was read over the course of three measurement cycles. Each measurement cycle consists of 2 min of mixing, 2 min of incubation, and 2 min of measurements. The OCR was normalized to cellular protein/well and corrected for extracellular mitochondrial O2 consumption. All experiments were conducted four times. On completion of extracellular flux (XF) assay, the cells were lysed with high salt lysis buffer (50 mM Tris, pH 8.0, 0.5% NP-40, 0.1% SDS). The protein concentration of a sample was derived by a phenol:chloroform extraction method.

Table 1

Ginsenoside	RS-1	RS-2	RS-3						
W	E50	E90	W	E50	E90	W	E50	E90	
Rb1	2.347 ± 0.016	2.888 ± 0.025	3.518 ± 0.069	4.048 ± 0.025	3.447 ± 0.027	2.735 ± 0.023	2.410 ± 0.036	3.283 ± 0.021	2.215 ± 0.021
Rd	1.335 ± 0.014	0.626 ± 0.011	0.857 ± 0.009	1.923 ± 0.027	0.726 ± 0.011	0.222 ± 0.019	1.366 ± 0.014	0.714 ± 0.002	0.513 ± 0.011
Re	0.808 ± 0.023	0.704 ± 0.011	0.703 ± 0.012	1.025 ± 0.016	0.713 ± 0.021	0.577 ± 0.016	0.767 ± 0.011	0.746 ± 0.012	0.462 ± 0.002
Rg1	0.587 ± 0.017	0.330 ± 0.009	0.088 ± 0.002	0.730 ± 0.013	0.344 ± 0.009	0.084 ± 0.001	0.570 ± 0.019	0.353 ± 0.03	0.073 ± 0.002

1) Three batches of ginseng purchased from Jilin province of China were used in the present study.
2) W, water extracts of ginseng; E50, 50% ethanol extracts of ginseng; E90, 90% ethanol extracts of ginseng.
3) Values are expressed in mg/g of dried powder of ginseng, mean ± SD, n = 3.

Fig. 2. Comparison of total phenolic contents and DPPH radical-scavenging activity of different ginseng extracts. (A) Total phenolic contents of ginseng extracts were determined using Folin–Ciocalteu assay. Gallic acid was used as a reference compound, and total phenolic content of each extract was expressed as the value of gallic acid equivalent (i.e., GAE in mg/g). (B) Antioxidant effects of samples were determined using DPPH radical-scavenging assays. Gallic acid was used as a positive control. All data are expressed as mean ± SD, n = 5. Statistical comparison was made with the sample with the lowest value of corresponding concentration, *p < 0.05, **p < 0.01, ***p < 0.001. SD, standard deviation.
each extract were expressed as the value in reference of gallic acid. As shown in Fig. 2A, the 50% ethanol extract of ginseng showed significant higher content of phenolic compounds, i.e., equivalent to ~25 mg gallic acid/g of sample. The water extract and the 90% ethanol extract showed ~17 mg gallic acid/g and ~16 mg gallic acid/g, respectively. However, the 90% ethanol extract showed significantly higher activity, at least double, in the maximum free radical-scavenging activity, than other ginseng extracts (Fig. 2B). Therefore, the relationship between total phenolic compounds and free radical-scavenging activity of ginseng extracts was relatively low, indicating that the phenolic compounds are not the only antioxidant substance within the extracts.

3.2. Against oxidative stress in H9C2 cells

A stress inducer, tBHP, was chosen to damage cardiomyocytes, which induced cell death in a dose-dependent manner (Fig. 3A). In parallel, the applied tBHP induced ROS formation, showing a maximal induction starting at ~100 μM (Fig. 3A). Here, 150 μM tBHP was used for subsequent tests. The cell viability, determined by MTT assay, showed an insignificant cell death up to the treatment of 50 μg/mL ginseng extracts (Fig. S1). The extracts from RS-1 batch were used for subsequent analyses. The treatment of ginseng extracts, dose dependently, protected cells against oxidative insult, and the 90% ethanol extracts showed the best protection effects to...
cultured H9C2 cells, with maximal protection of more than 60% as compared with control (Fig. 3B). Vitamin C served as a control showing protective effect against tBHP-induced cell death.

The inhibitory effect of ginseng extract to formation of ROS in tBHP-treated cultured H9C2 cells was analyzed by fluorometric measurement using DCFH-DA. By applying the ginseng extracts before tBHP application, the intracellular ROS was, dose dependently, decreased (Fig. 3C). The 90% ethanol extracts showed the greatest inhibitory effect of ~60%, as compared with the control and other extracts, which was consistent with the enhancement effect to cell viability, as mentioned previously (Fig. 3C). Therefore, the protective effects of ginseng extracts to H9C2 cells could be mainly mediated by inhibiting the formation of ROS.

The transcriptional activity of ARE, a crucial regulator activating Nrf2 pathway to resist oxidative stress, was investigated. The luciferase reporter construct (i.e., pARE-Luc) containing four ARE DNA regulatory elements derived from the promoters of antioxidative genes, tagged upstream of a luciferase gene, was transfected into cultured H9C2 cells. The activation of pARE-Luc, triggered by ginseng extracts, was in a dose-dependent manner (Fig. 3D). The maximal induction of 90% ethanol extracts was ~150% increase, which was relatively stronger than that of other extracts.

3.3. Mitochondrial bioenergetics analysis

A detailed profiling of mitochondrial bioenergetics is essential to have a comprehensive view of antioxidant activity and/or tonic effects of ginseng extracts in cardiomyocytes. Here, a Seahorse Bioscience Xfp extracellular flux analyzer, having a real-time measurement of OCR, was used to monitor various parameters of mitochondrial bioenergetics during metabolism (Fig. S2). In cultured H9C2 cells, seeding cell density and FCCP concentration were optimized to measure the cellular metabolic functions. As shown in Fig. S3, the optimal cell density of H9C2 cells was set at 5,000 cells/well to adjust initial OCR to an appropriate range (100–160 pmol/min). Meanwhile, the concentration of FCCP was optimized to 3 mM to yield maximal OCR as shown in Fig. S3. The concentration of oligomycin (1 mM) and rotenone/antimycin A (1 mM) was optimized according to the manufacturer's guidelines and previous reports [27].

The effects of increasing concentration of ginseng extracts on the OCR of cultured H9C2 cells were plotted against time. All ginseng extracts at different solvents could dose-dependently increase basal respiration, ATP production, spare respiration capacity, and maximal respiration to different degree (Fig. 4). In contrast, the parameters of proton leak and nonmitochondrial respiration changed irregularly probably because the detection limit of the present method was not sensitive enough to measure these parameters precisely. Among other parameters, spare respiratory capacity has been considered the most important component of bioenergetics profile, which is corresponding to cell ability in supplying substrate and transport electron during an increased demand of energy consumption. Here, the 90% ethanol extracts increased spare respiratory capacity up to ~seven-folds, as compared with background, which was significantly higher than that of the water and 50% ethanol extracts (Fig. 4).

By quantifying the dose responses in mitochondrial bioenergetics from the extracellular flux analyzer, different parameters could be compared among the three ginseng extracts. The states of H9C2 cells were shown. The OCR value was normalized with cellular protein/well by protein. Data are expressed as Mean ± SD, n = 3, each with triplicate samples. FCCP, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone; SD, standard deviation.
Ginseng extracts induced those aforementioned parameters, except proton leak, in dose-dependent manners, and maximal induction was achieved at 20 μg/mL to 40 μg/mL of the extract (Fig. 5). The 90% ethanol ginseng extracts showed the best induction in basal respiration, ATP production, spare respiration capacity, and maximal respiration, as compared with other extracts. In contrast, the water extract of ginseng showed the best induction in non-mitochondrial oxygen consumption (Fig. 5). The maximal induction, triggered by 90% ethanol ginseng extract, could increase to ~two-folds in basal respiration, ~three-folds in ATP production, ~12-folds in spare respiratory capacity, and ~four-folds in maximal respiration (Fig. 5). The 90% ethanol extracts of ginseng possessed maximum induction effects in mitochondrial bioenergetics as compared with the high polarity extracts: these results were consistent with its high content of ginsenosides. Apart from constituting maximal respiration with spare capacity respiration and proton leak, ATP production also represents a portion of ATP, produced by mitochondria, that meets the energetic needs of cells. From the dose curve shown in Fig. 5, it could be speculated that aerobic respiration was vigorously promoted by ginseng extracts. Therefore, the ginseng extracts could dose-dependently enhance both the extent and the ability of mitochondrial respiration of healthy cardiomyocytes.

To determine the tonic effects of ginseng extracts to cells under oxidative stress, tBHP was used to simulate the damage. Application of tBHP in cultured H9C2 cells decreased the initial OCR in a dose-dependent manner, and the dosage of tBHP was optimized to 30 μM to obtain measurable OCR (Fig. 6). Compared with healthy cells, tBHP-treated H9C2 cells showed severe mitochondrial dysfunction, resulting in more than ~10-fold reduction in spare respiratory capacity and ~3-fold reduction in maximal respiration (Fig. 6). In parallel, the respiration of H9C2 cells significantly declined to adapt strong oxidizing environment. However, the pretreatment with ginseng extracts in tBHP-treated H9C2 cells preserved mitochondrial OCR by preventing the decline. Water extracts and 50% ethanol extracts could bring the stressed cells back to healthy status by increasing spare respiratory capacity and maximal respiration to healthy level, whereas the 90% ethanol extracts could increase the values to two to three folds of normal state (Fig. 6). Meanwhile, the cells being pretreated with ginseng extracts performed stronger production of ATP, suggesting the potential of ginseng extracts to protect mitochondria against oxidant, which could prevent the cells from oxidative damage.

The 90% ethanol extracts obviously possessed the most significant beneficial effects to improve mitochondrial ATP level and spare respiratory capacity in oxidative stressed cells, as compared with the water extracts and the 50% ethanol extracts, similar to that in healthy cells (Fig. 7). Apart from mitochondrial ATP level, the dose-dependent trend of nonmitochondrial oxygen consumption was obvious in the stressed cell (Fig. 7), which might be due to the influence of ginseng extracts to oxidized cells that was stronger than that in healthy cells. The change in proton leak was still
unintelligible, and it was not judicious to ascribe the situation to large deviation of the present method or recklessly judged as the effects of ginseng extracts. Therefore, ginseng extracts could not only provide tonic effects to healthy cells but also possess excellent defensive effects on cellular respiration and energy metabolism of cardiomyocytes on exposure to oxidative damage.

4. Discussion

Ginseng is among the most widely used “Qi-invigorating” herbs for its tonic and prevention effects [28]. Apart from acting like agonists of glucocorticoid and estrogen receptors [29,30], ginsenosides showed cardio-protective effects by eliminating ROS generated from metabolic processes [31]. Another major antioxidant in ginseng is polyphenol. However, the polarities of ginsenosides and polyphenols do not allow us to obtain the herbal extracts with abundance of both compounds. To provide a comprehensive comparison of antioxidant profile of different ginseng extracts, quantitative analysis of four typical ginsenosides, Rb1, Rd, Re, and Rg1, in the three extracts, i.e., water, 50% ethanol, and 90% ethanol, of ginseng indicated that the content of ginsenosides was dependent on the extraction solvents. Moreover, the PCA scoring plot of peak areas of ginsenosides showed that ginseng extracts could be obviously classified according to their extraction solvent used; in particular, the contents of ginsenosides could be a critical parameter. Therefore, the extraction solvent could be a major factor in determining chemical composition of the ginseng extract.

The measurement of total phenolic compounds and evaluation of free radical-scavenging activity are a direct and quick way to assess total antioxidant activity of unknown samples. However, the ginseng extracts containing abundant phenolic compounds did not possess better radical-scavenging activity [32], which suggested the important role of other types of compounds in resisting oxidative damage, especially ginseng saponins [33,34]. To confirm the relationship between antioxidant activity and polarity of ginseng extracts, the protective effects of ginseng extracts to cultured H9C2 cells against tBHP-induced oxidative stress were determined. Identical with the results of DPPH radical-scavenging assay, the 90% ethanol extracts displayed the best protection effects to cardiomyocytes under oxidative stress, which were mainly realized by inhibiting the formation of ROS. By pretreating cells with ginseng extracts, especially the low polar extracts, the tBHP-induced damage could be avoided, and ginsenosides might be the reason of this prevention. This protective effect could be mediated, at least partly, by the Keap1–Nrf2–ARE signaling mechanism. This notion is supported by the current result and by the previous reports [35,36].

Until now, there are numerous articles about the protective effects of ginsenosides to cells by inhibiting mitochondria-mediated apoptosis [37,38]. However, most researches are focusing the effects on ATP production and intracellular ROS formation [39,40], while the influence to other parameters of mitochondrial bioenergetics are often negated [41]. Here, all ginseng extracts showed a dose-dependent manner in enhancing spare respiratory capacity and ATP production of healthy cells, which was consistent with an increase of energy metabolism after the treatment with ginseng. In line with the healthy cells, the mitochondrial bioenergetics of tBHP-induced H9C2 cells was improved after treatment with ginseng extracts, especially the extracts with low polarity. Consistent with the present results, Wang et al (2016) showed that some ginsenosides could moderate protective effects on mitochondrial function in tBHP-treated cardiomyocytes by recovering oxygen consumption and increasing mitochondrial DNA content through activation of sirtuin 1 (SIRT1) [42]. In addition, ginseng saponin was shown to

![Fig. 6. Protection effects of ginseng extracts to tBHP-treated H9C2 cells against oxidative stress. Cultured H9C2 cells were pretreated with ginseng extracts (from 6.25 μg/mL to 50 μg/mL, as indicated) for 24 hours before exposed to tBHP (30 μM) for 1 hour. Effects of various extracts of ginseng at various concentrations on the oxygen consumption rate (OCR) for four respiration states of tBHP-treated H9C2 cells were determined as in Fig. 4. The OCR value was normalized with cellular protein. Data are expressed as mean ± SD, n = 3, each with triplicate samples. FCCP, carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone; R&A, rotenone/antimycin A; SD, standard deviation; tBHP, tert-butyl hydroperoxide.](image-url)
alleviate apoptosis of cardiomyocytes by reducing intracellular ROS and inhibiting mitochondria-mediated apoptosis [33]. Ginsenoside Rb1 was shown to exert a protective effect in hypoxia/ischemia-induced cell death by inhibiting GSK-3β-mediated mitochondrial permeability transition pore opening and affecting caspase-3 and caspase-9 activities [35]. Ginsenoside Rd was able to activate protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) signaling [36], and Rg1 was able to modulate mitofusin-2 (MFN2) and glutamate dehydrogenase (GDH) [37]. Finally, ginsenoside Re could function as an antioxidant to protect cardiomyocytes from oxidant injury [38].

Mitochondrial respiration plays critical roles in a variety of cellular processes. The experimental approach for most research in the past few years was to assess the bioenergetic parameters in detached mitochondria isolated from either heart or liver, which might result in anoikis associated with increased ROS and leading to untrustworthy results [43]. As a powerful tool to monitor real-time mitochondrial respiration in live cells, the extracellular flux analyzer has been widely used in various live cell analyses [27]. However, the application of this technology in herbal extract is still very limited [44–46]. Mu et al. (2015) found that ginsenoside Rb1 could significantly improve mitochondrial respiration of mature adipocytes by increasing basal mitochondrial respiration, ATP production, and uncoupling capacity [44]. Lin et al. (2015) demonstrated that Qiliqiangxin, a common prescription in Chinese herbal medicine containing ginseng, could enhance oxidative metabolism and mitochondrial uncoupling in H9C2 cells [45]. These results, together with the present research, verified the beneficial effects of ginseng, especially ginsenoside, on mitochondrial bioenergetics of different cells. In the case of unhealthy cells, Takanashi et al. (2017) found that hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, a prescription containing ginseng) could activate both mitochondrial and glycolytic energy metabolism in influenza A/PR/8/34 (H1N1) virus (IAV)-infected cells and in noninfected cells [46], which was in line with the observed protective effect of ginseng extracts on cells under oxidative stress. In accord with previous results, our study provided a strong proof to verify the tonic and protective effects of ginseng extracts to cardiomyoblasts.

Conflicts of interest

All contributing authors declare no conflicts of interest.

Acknowledgments

This study was supported by Hong Kong Research Grants Council Theme-based Research Scheme (T13-607/12R), ITF (UIM/254), GRF (663012, 662713, M-HKUST604/13), TUYF15SC01, The Hong Kong Jockey Club Charities Trust (HKJCCT12SC01), Foundation of The Awareness of Nature (TAON12SC01), and Shenzhen Science and Technology Innovation (JCYJ20160229205726699, JCYJ20160229205812004 and JCYJ20160229210027564).
Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.116/j.jgr.2018.02.002.

References

[1] Cheng Y, Shen LH, Zhang JT. Anti-ami-nective and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005;26:143–8.
[2] Park JS, Park EM, Kim DH, Jung K, Jung JS, Lee EJ, Hyun JW, Kang J, Kim HS. Anti-inflammatory mechanism of mitochondrial saponins in activated microglia. J Neuroimmunol 2009;209:40–9.
[3] Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kwon H, Surh YJ. Antioxidant and anti-prompting activity of the methanol extract of heat-processed ginseng. Cancer Lett 2000;150:41–8.
[4] Kim JH. Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J Ginseng Res 2012;36:16–26.
[5] Baek EB, Yoo HY, Park SJ, Chung YS, Hong EK, Kim SJ. Inhibition of arterial cardiomyocytes exposed to acute oxidant stress. Biochimica et Biophysica Acta 2006;172:165–7.
[6] Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287–98.
[7] Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1–99.
[8] Nag SA, Qin J, Wang W, Wang MH, Wang H, Zhang R. Ginsenosides as anti-cancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front Pharmacol 2012;3:1–18.
[9] Q1 LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011;72:689–95.
[10] Djeradian A, Youssi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some Algerian plant extracts containing phenolic compounds. Food Chem 2006;97:654–60.
[11] Kang KS, Kim HY, Pyo JS, Yokozawa T. Increase in the free radical scavenging activity of ginseng by heat-processing. Biol Pharm Bull 2006;29:750–4.
[12] Kang KS, Kim HY, Yamabe N, Yokozawa T. Stereosepecificity in hydroxyl radical scavenging activities of four ginsenosides produced by heat processing. Biogro Med Chem Lett 2006;16:5028–31.
[13] Choi WCS, Yip TT, Chung WS, Lee SKW, Leung AWN, Cheng CHK, Yue KKM. Altered expression of serum protein in ginsenoside Re-treated diabetic rats detected by SELDI-TOF MS. J Ethnopharmacol 2006;108:272–9.
[14] Dhirgra R, Kirchenbaun LA. Succinate dehydrogenase/complex II activity obligatorily links mitochondrial reserve respiratory capacity to cell survival in cardiac myocytes. Cell Death Dis 2015;6:1596.
[15] Nichols DG. Spare respiratory capacity, oxidative stress and exotoxictox. Biochem Soc Trans 2009;37:1385–8.
[16] Brookes PS. Mitochondrial H+ leak and ROS generation: an odd couple. Free Radic Biol Med 2005;38:12–23.
[17] Dott W, Mistry P, Wright J, Cain K, Herbert KE. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Redox Biol 2014;2:224–33.
[18] Wu M, Neilson A, Swift AL, Moran R, Tamagine J, Parslow D, Armstead S, Lemire K, Orrell J, Teich J, et al. Multiparameter metabolic analysis reveals a close link between regulated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 2007;292:125–36.
[19] David AF, Andy N, Craig B. Advances in measuring cellular bioenergetics using extracellular flux. Drug Discovery Today 2008;13:268–74.
[20] Li HH, Han SY, Ma X, Zhang K, Wang L, Ma ZZ, Tu PF. The saponin of red ginseng protects the cardiomyocytes against ischemic injury in vitro and in vivo. Phytomedicine 2010;17:777–83.
[21] Zhu KY, Fu Q, Xie HQ, Xu SL. Cheung AWH, Zheng KYZ, Luk WKW, Choi RCY. Lau DTW, Dong TTX, et al. Quality assessment of a formulated Chinese herbal decoction, Kaixiansan, by using rapid resolution liquid chromatography coupled with mass spectrometry: a chemical evaluation of different historical formulae. J Sep Sci 2010;33:3666–74.
[22] Truong J, Mailloux RJ, Chan HM. Impact of methymercury exposure on mitochondrial energetics in AC16 and H9C2 cardiomyocytes. Toxicol In Vitro 2015;29:953–61.
[23] Ko KM, Leon TYY, Mak DHF, Chiu PY, Du Y, Poon MKT. A characteristic pharmacological action of ‘Ying-invigorating’ Chinese tonifying herbs: enhancement of myocardial ATP-generation capacity. Phytomedicine 2006;13:636–42.
[24] Papapetropoulos AA. Ginseng-derived oestrogen receptor (ER) agonist, Rb1 ginsenoside, attenuates capillary morphogenesis. Br J Pharmacol 2007;152:172–8.
[25] Cheung LW, Leung KW, Wong CK, Wong RN, Wong AS. Ginsenoside-Rg1 induces angiogenesis via non-genomic crosstalk of glucocorticoid receptor and fibroblast growth factor receptor-1. Cardiovasc Res 2011;89:419–25.
[26] Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009;108:117–24.
[27] Dong GT, Chen TN, Yang CL. Increased correlation of 2,3-diphosphoglycerate (DPG)/Hb affinity reducing activity with reduced total porphyrins in red blood cells. Antioxidants 2017;6:1–10.
[28] Aravinthan A, Kim JH, Antonisamy P, Kang CW, Choi JH, Kim NS, Kim JH. Ginseng total saponin attenuates myocardial injury via anti-oxidative and anti-inflammatory properties. J Gins Res 2015;39:206–12.
[29] Kim TH, Lee SM. The effects of ginseng total saponin, panaxadiol and panaxaxiol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol 2010;48:1516–20.
[30] Kong HL, Li QJ, Zhao YJ, Zhao SM, Zhu L, Li Tong, Fu Yao, Li HJ. Ginsenoside Rb1 protects cardiomyocytes against CoCl2 inhibiting mitochondria permeabilization transition pore opening. Acta Pharmacol Sinica 2010;31:687–95.
[31] Wang Y, Li X, Wang XL, Liao W, Wang YJ, Xing Y, Zhang X, Ma XL, Gao F, Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway. Plos One 2013;8:e70956.
[32] Dong GT, Chen TN, Yang CL, Zhang ZF, Huang WX, Liu P, Luo Z, Zhou H. Rg1 prevents myocardial hypoxia/reoxygenation injury by regulating mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2. Mitochondrion 2016;26:7–18.
[33] Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Jeon SMH, Wang CZ, Hsu CW, Becker LB, Yin J, et al. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol 2006;532:201–7.
[34] Luo JQZ, Luo LG. American Ginseng stimulates insulin production and prevents apoptosis through regulation of uncoupling protein-2 in cultured β-cells. Biochem Biophys Res Commun 2006;336:765–72.
[35] Wang JR, Zhou H, Yi XQ, Jiang ZH, Liu L. Total saponins of Radix Ginseng can increase triacylglycerol cycle protein expression to enhance cardiac energy metabolism in ischemic rat heart tissues. Molecular Dent 2012;17:12746–57.
[36] Yan WH, Liu JZ. Effects of Chinese herbal monomers on oxidative phosphorylation and membrane potential in cerebral mitochondria isolated from hypoxia-exposed rats in vitro. Neuronal Regen Res 2012;7:2099–106.
[37] Wang Y, Liang XY, Chen YQ, Zhao XF. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid Med Cell Longev 2016;2016:4206392.
[38] Li AE, Ito H, Rovira I, Kim KS, Takeda K, Yu YZ, Ferrans VJ, Finkel T. A role for Akt signaling and inhibition of the mitochondria-dependent apoptotic pathway. Plos One 2013;1:e70956.
[39] Lin SH, Wu XT, Tao LC, Bei YH, Zhang HF, Zhou YL, Shen ST, Xiao JJ, Li XL. The ginsenoside Rad1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes. Biochem Biophys Res Comm 2015;466:530–5.
[40] Lin SH, Wu XT, Tao LC, Bei YH, Zhang HF, Zhou YL, Shen ST, Xiao JJ, Li XL. The metabolic effects of traditional Chinese medication Qilijiangxin on H9C2 cardiomyocytes. Cell Physiol Biochem 2015;37:2246–56.
[41] Takahashi K, Dan K, Kanzaki S, Hasegawa H, Watanabe K, Ogawa K. Houttuynia, a Japanese herbal medicine, restores metabolic homeostasis between mitochondrial and glycolytic pathways impaired by influenza A virus infection. Pharmacology 2017;99:240–5.