Short communication

Metabolic profiling of the tissue-specific responses in mussel *Mytilus galloprovincialis* towards *Vibrio harveyi* challenge

Xiaoli Liu a,*, Chenglong Ji b, Jianmin Zhao b, Qing Wang b, Fei Li b, Huifeng Wu b

* a School of Life Sciences, Ludong University, Yantai 264025, PR China
* b Laboratory of Coastal Ecotoxicology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China

A R T I C L E I N F O

Article history:
Received 22 January 2014
Received in revised form 7 April 2014
Accepted 27 May 2014
Available online 6 June 2014

Keywords:
Metabolomics
Mytilus galloprovincialis
Digestive gland
Gill
Vibrio harveyi

A B S T R A C T

Mussel *Mytilus galloprovincialis* is a marine aquaculture shellfish distributing widely along the coast in north China. In this work, we studied the differential metabolic responses induced by *Vibrio harveyi* in digestive gland and gill tissues from *M. galloprovincialis* using NMR-based metabolomics. The differential metabolic responses in the two tissue types were detected, except the similarly altered taurine and betaine. These metabolic responses suggested that *V. harveyi* mainly induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, *V. harveyi* basically caused osmotic stress and possible reduced energy demand as shown by the elevated phosphocholine that is involved in one of the metabolic pathways of ATP synthesis from ADP and phosphocholine. The altered mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from *V. harveyi*-challenged mussel *M. galloprovincialis*, meaning that the immune organ, digestive gland, was more sensitive than gill. Overall, our results indicated that *V. harveyi* could induce tissue-specific metabolic responses in mussel *M. galloprovincialis*.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrios, such as *Vibrio anguillarum*, *Vibrio alginolyticus*, *Vibrio splendidus*, *Vibrio furnissii*, *Vibrio paraahemolyticus*, *Vibrio tapetis* and *Vibrio harveyi*, are widely distributed in marine environments and main causative pathogens of vibriosis in both fish and shellfish [1,2]. As a type of vibrios, *V. harveyi* is a gram-negative bacterium and its outbreak is a causative agent for the massive mortality of marine aquaculture animals including fish, crustacean and mollusk in warm seas [3,4]. Marine bivalves such as scallop *Chlamys farreri*, oyster *Crassostrea gigas*, clam *Ruditapes philippinarum* and mussel *Mytilus galloprovincialis* are of substantial economic values and therefore widely cultured in China. The blue mussel *M. galloprovincialis* has a wide geographic distribution and can be consumed as delicious seafood by the residents along the coast in north China. As a filter-feeder, *M. galloprovincialis* is not only a good bioindicator in marine ecotoxicology [5,6], but also used in immunity studies of marine aquaculture animals due to its high accumulation and susceptibility to pathogens [7–9]. For example, Canesi et al. found that infections of vibrios (*V. splendidus* and *V. anguillarum*) induced oxidative and immune stresses in *M. galloprovincialis*, indicated by significant up-regulations of gene expression levels of immune stress-responsive molecules, including anti-oxidant enzymes (catalese and glutathione transferase), lysozymes and metallothioneins [8].

In many previous immunity studies, researchers focused on the special immune-related molecules and their functions involved in immune network in *M. galloprovincialis* [7–10]. With the development of system biology techniques (genomics, transcriptomics, proteomics and metabolomics), researchers have applied these -omic approaches to fish and shellfish immunology, which can provide a comprehensive understanding of immune responses of marine aquaculture animals to pathogen challenges [11,12]. Recently, Ji et al. reported the proteomic responses in *M. galloprovincialis* challenged by another vibrio, *V. anguillarum* [12]. They found that the infection of *V. anguillarum* caused disruption in energy metabolism and oxidative stress in *M. galloprovincialis*, indicated by the proteomic biomarkers, including procollagen-proline dioxygenase, protein disulfide...
Mussels were kept at 25 °C, seawater was renewed daily. During the acclimation period, animals containing 15 individuals in 30 L tanks were acclimated for 10 days. After acclimatization, the animals were randomly divided into three groups (blank, PBS control and V. harveyi challenge) each containing 15 individuals in 30 L filtered seawater. The culture seawater was renewed daily. During the acclimation period, animals were kept at 25 °C under a photoperiod of 12 h light and 12 h dark, and fed with the Chlorella vulgaris at a ration of 2% tissue dry weight daily.

2.2. Challenge experiment

The bacterium, V. harveyi, was kindly provided by Prof. Baozhong Liu (Institute of Oceanology, CAS). The bacteria were cultured in liquid 2216E broth (Tryptone 5 g L⁻¹, yeast extract 1 g L⁻¹, CaH₂Fe₅H₂O 0.1 g L⁻¹, pH 7.6) at 29 °C and centrifuged at 3000 g for 5 min to harvest the bacteria. For challenge experiment, live bacteria of V. harveyi were re-suspended in PBS. Each challenged mussel was injected with V. harveyi (10⁵ CFU/mL) in 50 μL of PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄, pH 7.4) in the adductor muscle. It should be noted that this concentration of bacteria was used to study the differential metabolic effects and mechanisms induced by V. harveyi in digestive gland and gill tissues of M. galloprovincialis using NMR-based metabolomics.

2.3. Metabolite extraction

Polar metabolites in mussel digestive gland and gill tissues (n = 15 for each treatment) were extracted by the modified extraction protocol as described previously [17,18]. Briefly, the tissue (100 mg) was homogenized in 400 μL of methanol and 85 μL of water. Then the mixture was shaken and centrifuged (5 min, 3000 g, at 4 °C), and the supernatant substance was transferred into a glass vial. A total of 200 μL of chloroform and 440 μL of water were added to the supernatant, and the mixture was vortexed and centrifuged again (10 min, 3000 g, 4 °C). The methanol/water layer with polar metabolites was transferred to a glass vial and dried in a centrifugal concentrator. The extracts of tissues were then re-suspended in 600 μL of phosphate buffer (100 mM Na₂HPO₄ and NaH₂PO₄, including 0.5 mM 2,2,3,3-d(4)-3-(trimethylsilyl)propionic acid sodium salt (TSP) as the internal standard, pH 7.0) in D₂O. The mixture was vortexed and centrifuged at 3000 g for 5 min at 4 °C. The supernatant substance (550 μL) was then pipetted into a 5 mm NMR tube prior to NMR analysis.

2.4. RNA extraction and quantitation of gene expressions

Total RNA from mussel digestive gland and gill tissues was extracted following the manufacturer’s directions (Invitrogen, LifeTechnologies, Carlsbad, CA, USA), and the first-strand cdDNA was synthesized according to M-MLV RT Usage information (Promega, Madison, WI, USA). The expressions of the housekeeping genes in M. galloprovincialis were determined by real-time quantitative PCR (qRT-PCR), the data were analyzed with geNorm to calculate the expression stability of the genes (M values) and the optimal number of reference genes required for accurate normalization (V values) [19]. GeNorm identified β-actin as the most stable gene which was then used as the internal control for gene expression normalization (data not shown).

Gene-specific primers (Table 1) for selected genes were used to amplify amplicons specific for M. galloprovincialis. The fluorescent qRT-PCR amplifications were carried out in triplicate in a total volume of 20 μL containing 10 μL of 2 × SYBR Premix Ex Taq™ (TaKaRa), 0.4 μL of 50 × ROX Reference DYE II, 4.8 μL DEPC-treated H₂O, 0.4 μL of each primer, 4.0 μL of 1:20 diluted cdDNA. The qRT-PCR program was as follows: 50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles of 94 °C for 15 s, 58 °C for 45 s, 72 °C for 30 s. Dissociation curve analysis of amplification products was performed at the end of each PCR to confirm that only one PCR product was amplified and detected. After the PCR program, data were analyzed with the ABI 7500 SDS software (Applied Biosystems). To maintain consistency, the baseline was set automatically by the software. The comparative CT method (2⁻ΔΔCT method) was used to analyze the expression level of the genes [20]. One-way ANOVA combined with Tukey’s test was performed on mRNA expression levels between PBS control and V. harveyi-challenged groups, respectively. A P value less than 0.05 was considered statistically significant. The Minitab software (Version 15, Minitab Inc., USA) was used for the statistical analysis.

2.5. ¹H NMR spectroscopy

Metabolite extracts of tissues from mussels were analyzed on a Bruker AV 500 NMR spectrometer performed at 500.18 MHz (at

Gene name	Accession no.	Forward primer (5’-3’)	Reverse primer (5’-3’)
Cu/Zn-SOD	JN863296.1	GGCGAAAGCTTGCTTTCGCA	GAGCTCATTTGCTGCTGCT
HSP90	J05869063.3	GATTGAGCGCGCTTGATTTGGA	CGGCGCTTTCGGTTTCTC
Lysozyme	R244771.1	TGACATGCACTGGATTCGAG	CTACATCTACAGGAGTAA
Defense	JN935272.1	TCAGATGCGCTGAGATG	GAAAATCGTGGCGAAGG

Cu/Zn-SOD, Cu/Zn superoxide dismutase; HSP90, heat shock protein 90; Lysozyme, Lysozyme; Defense, Defense protein.
and PBS groups was found (data not shown), which suggested that no significant separation between blank and PBS control groups. However, no significant separation between blank and PBS control groups was found (data not shown), which suggested that the distributions of adenosine and AMP were significantly different between these two tissues. Clearly, the corresponding loading plot (Fig. 2B) displayed the higher levels of most amino acids (threonine, alanine, glutamate, glutamine, etc.) and glucose, as well as the higher levels of taurine and homarine and lower levels of aspartate and betaine in digestive glands than those in gills. These biological (metabolic) differences between digestive gland and gill tissues suggested the potential differential metabolic responses in these two organs towards *V. harveyi* challenge.

3.2. Differential metabolic responses in digestive gland and gill tissues from *M. galloprovincialis* challenged by *V. harveyi*

O-PLS-DA was conducted on the 1H NMR spectral data to characterize the metabolic responses in digestive gland and gill tissue samples from PBS control group, respectively (Fig. 3). Fig. 3A and C indicated that O-PLS-DA resulted in clear classifications between PBS control and *V. harveyi*-challenged mussel groups, respectively, with reliable Q^2 values (>0.7). From the loading plot (Fig. 3B), the concentrations of adenosine and AMP were significantly ($P < 0.05$) increased in *V. harveyi*-challenged mussel digestive gland. The

Fig. 1. Typical 1-dimensional 500 MHz 1H NMR spectra of tissue extracts of digestive gland (A) and gill (B) from one PBS control mussel *M. galloprovincialis*. **Keys:** (1) leucine, (2) isoleucine, (3) valine, (4) threonine, (5) alanine, (6) arginine, (7) glutamate, (8) glutamine, (9) acetoacetate, (10) succinate, (11) β-alanine, (12) hypouracil, (13) aspartate, (14) dimethylamine, (15) dimethylglycine, (16) asparagine, (17) lysine, (18) malonate, (19) choline, (20) phosphocholine, (21) taurine, (22) glycine, (23) betaine, (24) homarine, (25) AMP, (26) β-glucose, (27) α-glucose, (28) glycogen, (29) unknown 1 (5.95 ppm), (30) ATP, (31) tyrosine, (32) histidine, (33) phenylalanine and (34) adenosine.

3. Results and discussion

3.1. Metabolic differences in digestive gland and gill tissues from *M. galloprovincialis* from PBS control group

As a system biology technique, metabolomics has been widely employed in multiple areas, including toxicology and immunology [11,13,25–30]. Fig. 1 indicates the 1H NMR spectra of tissue extracts of digestive gland (Fig. 1A) and gill (Fig. 1B) samples from PBS control mussel group. The identified metabolites, including amino acids (branched chain amino acids: valine, leucine and isoleucine, aspartate, glutamate, glutamine, tyrosine phenylalanine, etc.), energy storage compounds (ATP, glucose and glycogen), an intermediate in Krebs cycle (succinate), osomyostes (betaine, taurine, glycine and homarine) and a phosphagen (phosphocholine), were labeled in Fig. 1. As shown in Fig. 1, both 1H NMR spectra are dominated by the organic osmyostes, betaine (3.27 and 3.90 ppm), which is synthesized from a two-step reaction of choline: choline \rightarrow betaine aldehyde \rightarrow NAD $^+$ \rightarrow betaine \rightarrow NADH [31]. Since digestive gland is the main organ of glucose and protein metabolisms, the 1H NMR spectrum from the digestive gland sample should present the higher levels of most amino acids and glucose than those in the 1H NMR spectrum from the gill sample. Initially, O-PLS-DA was performed on the NMR spectral datasets from the blank and PBS control groups. However, no significant separation between blank and PBS groups was found (data not shown), which suggested that the single injection of PBS in the adductor muscle did not obviously affect the metabolic profiles in both digestive gland and gill tissues. Therefore, only PBS control was used in further data analysis. O-PLS-DA analysis resulted in a clear separation between the digestive gland and gill samples from PBS control group (Fig. 2A), with a Q^2 value greater than 0.9 showing the robustness of the constructed model, which confirmed the significant metabolic differences between these two tissues. Clearly, the corresponding loading plot (Fig. 2B) displayed the higher levels of most amino acids (threonine, alanine, glutamate, glutamine, etc.) and glucose, as well as the higher levels of taurine and homarine and lower levels of aspartate and betaine in digestive glands than those in gills. These biological (metabolic) differences between digestive gland and gill tissues suggested the potential differential metabolic responses in these two organs towards *V. harveyi* challenge.
levels of aspartate, dimethylglycine, glucose, ATP, taurine and betaine were significantly ($P < 0.05$) decreased. Adenosine plays important roles in both energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP), as well as in signal transduction as cyclic adenosine monophosphate [32]. In the digestive gland from *V. harveyi*-challenged mussels, the depleted ATP meant a reduced energy demand resulting in the elevated AMP meant a reduced energy demand resulting in the elevated adenine and depleted glucose. Apparently, the increased AMP was resulted in the enhanced hydrolysis of ATP, which was also observed in *V. splendidus*-challenged sea cucumber *Apostichopus japonicas* [33]. Dimethylglycine, taurine and betaine are osmolytes in animals. The decreased dimethylglycine, taurine and betaine probably indicated the osmotic stress induced by *V. harveyi* challenge in mussel digestive gland. The level of aspartate was significantly decreased in *V. harveyi*-challenged mussel digestive gland tissues. In marine mollusks, amino acids can be used to regulate animals’ intracellular osmolarity with the environment and also can be oxidized to generate energy [34]. In the energy metabolic pathway, there is substantial conversion of aspartate to succinate with no detectable enrichment of other metabolites under anoxic conditions in mullusk [35]. However, both ATP and glucose were decreased and succinate was not altered in *V. harveyi*-challenged mussel digestive gland. Therefore, the decrease of aspartate could be related to the disruption in osmotic regulation but in energy metabolisms in *V. harveyi*-challenged mussel digestive gland. In a previous study on the effects of *V. harveyi* challenge towards clam *Ruditapes philippinarum*, the elevation of branched chain amino acids (BCAA) was observed in digestive gland of *R. philippinarum* [36]. In the metabolic pathways of innate immunity, BCAAs have an availability on the immune system to function by incorporating BCAAs into proteins, resulting in a remarkable increase in demand for BCAAs for substrates by the immune system [37]. In this work, however, BCAAs were not altered in *V. harveyi*-challenged mussel digestive gland, which suggested the differential responsive mechanisms between mussel *M. galloprovincialis* and *R. philippinarum* to *V. harveyi* challenge.

The metabolic responses in the gill tissues of *V. harveyi*-challenged mussels were different from those in the digestive gland samples. As shown in the corresponding loading plot of O-PLS-DA (Fig. 3D), phosphocholine, hypotaurine, glycine, homarine and an unknown metabolite (1.10 ppm) were increased in *V. harveyi*-challenged mussel gill samples (Fig. 3D). Two organic osmolytes, taurine and betaine were significantly ($P < 0.05$) decreased, which was similar to their alteration in digestive gland of *V. harveyi*-challenged mussels (Fig. 3B). The elevated organic osmolytes, including hypotaurine, homarine and glycine, clearly indicated the osmotic stress caused by *V. harveyi* challenge in the gill of mussel *M. galloprovincialis*. However, other two osmolytes, taurine and betaine were depleted. Since taurine can be synthesized into hypotaurine, the decrease of taurine meant the enhanced synthesis of hypotaurine from taurine, resulting in an increase of hypotaurine in *V. harveyi*-challenged mussel gill samples. Similarly, betaine is synthesized from glycine. Therefore, the depletion of betaine combined with the elevation of glycine indicated the reduced synthesis of betaine *V. harveyi*-challenged mussel gill samples. Ji et al. reported the similar metabolic responses including depleted taurine and betaine and elevated homarine in gill tissues from mussel *M. galloprovincialis* challenged by *V. anguillarum*, which implied the similar disturbance in osmotic regulation induced by both *V. anguillarum* and *V. harveyi* in mussel gills [12]. As a phosphagen, phosphocholine is involved in the conversion of ATP and choline into phosphocholine and ADP, which is catalyzed by choline kinase. Therefore, the elevated phosphocholine probably meant a reduced energy demand in *V. harveyi*-challenged mussel gills via a different metabolic pathway compared with that in digestive gland, as mentioned above.

3.3. Stress-responsive gene expressions in digestive gland and gills from *M. galloprovincialis* challenged by *V. harveyi*

In this study, four stress-responsive genes including heat shock protein 90 (HSP90), superoxide dismutase with copper and zinc (Cu/Zn-SOD), defensin and goose-type lysozyme related to diverse functions were used for the quantification of mRNA expressions. HSP90, Cu/Zn-SOD, defensin and lysozyme play important roles in anti-oxidative stress and immune defense. After *V. harveyi* injection, the mRNA expression levels of HSP90, Cu/Zn-SOD, defensin and lysozyme mRNA in both digestive gland and gill tissues were quantified using qRT-PCR technique with β-actin as internal control (Fig. 4). All the mRNA expression levels of these four selected stress-responsive genes were significantly ($P < 0.05$) up-regulated in *V. harveyi*-challenged mussel digestive gland and gill tissues (Fig. 4). Cu/Zn-SOD is a known anti-oxidant enzyme involved in scavenging reactive oxygen species and HSP90 belongs to a large family of molecular chaperones playing vital roles in preventing irreversible protein denaturation, aggregation and misfolding [38,39]. They can be induced by oxidative stress and pathogen infection [38]. Both
defensin and lysozyme are antibacterial components that have been characterized in marine mollusks [40,41]. In this work, the significant up-regulation of mRNA expression levels of Cu/Zn-SOD, HSP90, defensin and lysozyme indicated the oxidative and immune stresses induced by *V. harveyi* in both digestive gland and gill samples from *V. harveyi*-challenged mussels. Consequently, metabolites that are more abundant in the control group are presented as peaks in the negative direction. *Keys:* (1) aspartate, (2) dimethylglycine, (3) taurine, (4) betaine, (5) adenosine, (6) β-glucose, (7) α-glucose, (8) AMP, (9) ATP, (10) unknown 1 (1.10 ppm), (11) phosphocholine, (12) hypotaurine, (13) glycine and (14) homarine.

In summary, the differential metabolic responses induced by *V. harveyi* in digestive gland and gill tissues from *M. galloprovincialis*

![Fig. 3. O-PLS-DA scores plots derived from 1H NMR spectra of tissue extracts from PBS control (a) and *V. harveyi*-challenged (■) groups, (A) digestive gland and (C) gill and corresponding coefficient plots (B) and (D). The color map shows the significance of metabolite variations between the two classes (control and *V. harveyi* challenge). Peaks in the positive direction indicate metabolites that are more abundant in the *V. harveyi*-challenged groups. Consequently, metabolites that are more abundant in the control group are presented as peaks in the negative direction. *Keys:* (1) aspartate, (2) dimethylglycine, (3) taurine, (4) betaine, (5) adenosine, (6) β-glucose, (7) α-glucose, (8) AMP, (9) ATP, (10) unknown 1 (1.10 ppm), (11) phosphocholine, (12) hypotaurine, (13) glycine and (14) homarine.](image)

![Fig. 4. Expression levels of (A) Cu/Zn-SOD, (B) HSP90, (C) lysozyme and (D) defensin mRNA relative to β-actin measured by qRT-PCR in both digestive gland and gill tissues of *M. galloprovincialis* from PBS control and *V. harveyi*-challenged groups after *V. harveyi* challenge for 24 h. Statistical significances (*P* < 0.05, *) between control and *V. harveyi*-challenged *M. galloprovincialis* samples were determined by one-way ANOVA. *Abbreviations:* Cu/Zn-SOD, superoxide dismutase with copper and zinc and HSP90, heat shock protein 90.](image)
were investigated using NMR-based metabolomics. Overall, V. harveyi induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, V. harveyi basically caused osmotic stress and possible reduced energy demand through the metabolic pathway of conversion of phosphocholine and ADP to choline and ATP. The altered mRNA expression levels of related genes (Cu/Zn-SOD, HSP90, defensin and lysozyme) suggested that V. harveyi induced clear oxidative and immune stresses in both digestive gland and gill tissues. However, the mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from V. harveyi-challenged mussel M. galloprovincialis. This work demonstrated that V. harveyi could induce tissue-specific metabolic responses in the digestive gland and gill tissues from mussel M. galloprovincialis using NMR-based metabolomics.

Acknowledgment

This work was supported by a Project of Shandong Province Higher Educational Science and Technology Program (No. J14LE08). The authors thank Prof. Mark Viant for the use of ProMetab software.

References

[1] Yang S, Wang Y, Dong S. Progress of research on vibriosis in marine cultured fish [In Chinese]. Mar Fish Res 2005;26:75–83.
[2] Wu X, Pan J, Jian J. Advances in studies on shellfish diseases: on microbial diseases of shellfish. Mar Sci Bull 1995;14:82–91.
[3] Austin B, Zhang XH. Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 2006;43(2):119–24.
[4] Travers M-A, Le Goic N, Huchette S, Koken M, Paillard C. Summer immune depression associated with increased susceptibility of the European abalone, Haliotis tuberculata to Vibrio harveyi infection. Fish Shellfish Immunol 2012;32:170–7.
[5] Ciacci C, Barmo C, Gallo G, Maisano M, Cappello T, Agata A, et al. Effects of cadmium and copper on green mussels (Mytilus galloprovincialis) associated with diarthritic shellfish poisoning episodes in China. Toxicon 2012;60:420–5.
[6] Costa MM, Prado-Alvarez M, Gestal C, Li H, Roch P, Novoa B, et al. Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) to pathogen-associated molecular patterns and bacteria. Fish Shellfish Immunol 2009;25:515–23.
[7] Canesi L, Barmo C, Fabbrì R, Ciacci C, Vergani L, Roch P, et al. Effects of vibrio challenge on digestive gland biomarkers and antioxidant gene expression in Mytilus galloprovincialis. Comp Biochem Physiol Part C 2010;152:399–406.
[8] Cellura C, Toubiana M, Parrinello N, Roch P, HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus. Dev Comp Immunol 2006;30:984–97.
[9] Li H, Parisi MG, Toubiana M, Cammarata M, Roch P. Lysozyme gene expression and hemocyte behaviour in the Mediterranean mussel, Mytilus galloprovincialis after injection of various bacteria or temperature stresses. Fish Shellfish Immunol 2008;25:143–52.
[10] Wu H, Ji G, Wei L, Zhao J, Lu H. Proteomic and metabolomic responses in hepatopancreas of Mytilus galloprovincialis challenged by Micrococcus luteus and Vibrio anguillarum. J Proteomics 2013;94:54–67.
[11] Ji C, Wu H, Wei L, Zhao J, Wang Q, Lu H. Responses of Mytilus galloprovincialis to bacterial challenges by metabolomics and proteomics. Fish Shellfish Immunol 2013;35:489–98.
[12] Liu X, Ji C, Zhao J, Wu H. Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges. Fish Shellfish Immunol 2013;35:1014–7.
[13] Matozzo V, Giacomozzo M, Finos L, Marin MG, Bargelloni L, Milan M. Can ecological history influence immunomarker responses and antioxidant enzyme activities in bivalves that have been experimentally exposed to contaminants? A new subject for discussion in “eco-immunology” studies. Fish Shellfish Immunol 2013;35:126–35.
[14] Luna-Acosta A, Saulnier D, Pommier M, Haﬀner P, De Decker S, Renault T, et al. First evidence of a potential antibacterial activity involving a laccate-type enzyme of the phenoloxidase system in Paciﬁc oyster Crassostrea gigas haemocytes. Fish Shellfish Immunol 2011;31:795–800.
[15] Zhang X, Robertson P, Feng J, Ji W, Austin P. Detection of Vibrio harveyi in larval rearing water of Penaeus chinensis (In Chinese). J Ocean Univ Qingdao 1998;28:70–4.
[16] Wu H, Southam AD, Hines A, Viant MR. High throughput tissue extraction protocol for NMR and mass spectrometry based metabolomics. Anal Biochem 2008;372:204–12.
[17] Lin CY, Wu H, Tjerdema RS, Viant MR. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 2007;3:55–67.
[18] Dang W, Sun L. Determination of internal controls for quantitative real time RT-PCR analysis of the effect of Edwardsiella tarda infection on gene expression in turbot (Scophthalmus maximus). Fish Shellfish Immunol 2011;30:720–8.
[19] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25:402–8.
[20] Liu X, Zhang L, You L, Yu J, Zhao J, Li L, et al. Differential toxicological effects induced by mercury in gills from three pedigrees of Manila clam Ruditapes philippinarum by NMR-based metabolomics. Ecotoxicology 2011;20:177–86.
[21] Parsons HM, Ludwig C, Gunther UL, Viant M. Improved classiﬁcation accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarthim transformation. BMC Bioinformatics 2007;8:234.
[22] Feng J, Li J, Wu H, Chen Z. Metabolic responses of Hela cells to silica nanoparticles by NMR-based metabolic analyses. Metabolomics 2013;9:81–86.
[23] Fan WMT. Metabolite proﬁling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectroscopy 1996:28:161–219.
[24] Liu X, Zhang L, You L, Cong M, Zhao J, Wu H, et al. Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics. Environ Toxicol Pharmacol 2011;31:23–32.
[25] Li Z, Wu H, Zhang X, Li X, Liao P, Li W, et al. Investigation on the acute biochemical effects of light rare earths (lanthanum and cerium) by NMR-based metabolic approaches. Chem J Chin Univ 2006;27:438.
[26] Williams TD, Turan N, Diab AM, Wu H, Mackenzie C, Bartie KL, et al. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach. PLoS Comput Biol 2011;7:e1002126.
[27] Wu H, Zhang X, Li X, Wu Y, Pei F. Acute biochemical effects of La(NO3)3 on liver and kidney tissues by magic-angle spinning 1H nuclear magnetic reso-

nance spectroscopy and pattern recognition. Anal Biochem 2005;339:242–8.
[28] Wu H, Zhang X, Wu Y, Pei F. Studies on the acute biochemical effects of La(NO3)3 using 1H NMR spectroscopy of urine combined with pattern recognition. J Inorg Biochem 2005;99:544–51.
[29] Wu H, Wang W-X. NMR-based metabolomic studies on the toxicological ef-
cects of cadmium and copper on green mussels Perna viridis. Aquat Toxicol 2010;100:399–43.
[30] Ferraro LA, Pierce SK. Bacteria aldehyde dehydrogenase kinetics partially ac-
count for oyster population differences in glycine betaine synthesis. J Exp Zool 2000;286:238–48.
[31] Jackson TC, Mi Z, Jackson EK. Modulation of cyclic AMP production by signal transduction pathways in preglomerular microvessels and microvascular smooth muscle cells. J Pharmacol Exp Ther 2004;310:349–58.
[32] Shao Y, Li C, Ou C, Zhang P, Lu Y, Su X, et al. Divergent metabolic responses of Apostichopus japonicus suffered from skin ulceration syndrome and pathogen challenge. J Agric Food Chem 2013 Nov 1;61(45):10766–71.
[33] Viant MR, Rosenblum ES, Tjerdema RS. NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol 2003;37:4802–9.
[34] Graham RA, Ellington WR. Anaerobic aspartate metabolism and the formation of alanine in molluscan cardiac muscle: a 13C NMR study. J Exp Zool 1985;236:365–70.
[35] Liu X, Zhao J, Wu H, Wang Q. Metabolic analysis revealed the differential responses in two pedigrees of clam Ruditapes philippinarum towards Vibrio harveyi challenge. Fish Shellfish Immunol 2013;35:1969–75.
[36] Calder PC. Branched chain amino acids and immunity. J Nutr 2006;136:2285–93.
[37] Wang X, Wang L, Yao C, Liu Q, Zhang H, Zhi Z, et al. Alteration of immune parameters and cellular energy allocation of Chlamys farreri under ammonia-N exposure and Vibrio anguillarum challenge. Fish Shellfish Immunol 2012;32:741–9.
[38] Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002;295:1852–8.
[39] Zhao J, Li C, Chen A, Li S, Xu X, Li T. Molecular characterization of a novel big 24-kDa defensin from clam Venerupis philippinarum. PLoS One 2010;5:e13480.
[40] Zhao J, Qiu L, Ning X, Chen A, Wu H, Li C. Cloning and characterization of an invertebrate type lysozyme from Venerupis philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2010;156:56–60.