A note on commutators in compact semisimple Lie algebras

Linus Kramer

Dedicated to Jacques Tits

Abstract

Given any two elements \(A, B \) in a compact semisimple Lie algebra, we show that there exist elements \(X, Y, Z \) such that

\[
A = [X, Y] \quad \text{and} \quad B = [X, Z].
\]

The proof uses Cartan subalgebras and their root systems. We also review some related problems about Cartan subalgebras in compact semisimple Lie algebras.

Gotô’s Commutator Theorem \([4][9, 6.56]\) states that in a compact connected semisimple Lie group \(G \), every element is a commutator. There is an infinitesimal version of Gotô’s Theorem which says that every element in a compact semisimple Lie algebra \(\mathfrak{g} \) is a commutator, cp. \([8\ Thm. A3.2]\). The proof given in loc.cit, which uses Kostant’s Convexity Theorem, is attributed to K.-H. Neeb. Other proofs were given later by D’Andrea–Maffei and Malkoun–Nahlus \([3, 16, 17]\). We prove the following somewhat stronger result by elementary means.

Theorem 1. Let \(\mathfrak{g} \) be a semisimple compact Lie algebra and let \(A, B \in \mathfrak{g} \). Then there is a regular element \(X \in \mathfrak{g} \) with

\[
A, B \in [X, \mathfrak{g}] = \text{ad}(X)(\mathfrak{g}).
\]

Our Lemma \([6]\) which is the main step of the proof, uses a variant of Jacobi’s method, cp. \([14, 16\ App. B]\) and \([23]\). In the course of the proof we show in Corollary \([7]\) that every linear subspace \(W \subseteq \mathfrak{g} \) of codimension at most 2 contains a Cartan subalgebra.

Definition 2. A finite dimensional real semisimple Lie algebra \(\mathfrak{g} \) is called *compact* if its Killing form \(\langle -,- \rangle \) is negative definite. In this case its adjoint group

\[
G = \langle \exp(\text{ad}(X)) \mid X \in \mathfrak{g} \rangle
\]

\(^1\text{Note that }[16]\text{ and }[17]\text{ differ considerably.}\)
is compact and
\[|X| = \sqrt{-\langle X, X \rangle} \]
is a G-invariant euclidean norm on \mathfrak{g}. In what follows, orthogonality in \mathfrak{g} will always refer to the Killing form. The centralizer of $A \in \mathfrak{g}$ is the Lie subalgebra
\[\text{Cen}_\mathfrak{g}(A) = \{ X \in \mathfrak{g} \mid [X, A] = 0 \}. \]

Lemma 3. Let \mathfrak{g} be a compact semisimple Lie algebra and let $A \in \mathfrak{g}$. Then \mathfrak{g} decomposes (as a $\text{Cen}_\mathfrak{g}(A)$-module) orthogonally as
\[\mathfrak{g} = \text{Cen}_\mathfrak{g}(A) \oplus [A, \mathfrak{g}]. \]

Proof. Let $X, Y \in \mathfrak{g}$. If X centralizes A, then
\[\langle X, [A, Y] \rangle = \langle [X, A], Y \rangle = 0, \]
whence $X \in [A, \mathfrak{g}]^\perp$. Conversely, if $X \in [A, \mathfrak{g}]^\perp$, then
\[0 = \langle X, [A, Y] \rangle = \langle [X, A], Y \rangle \]
holds for all Y and thus $[X, A] = 0$. The Jacobi identity shows that $[X, [A, \mathfrak{g}]] \subseteq [A, \mathfrak{g}]$ for $X \in \text{Cen}_\mathfrak{g}(A)$. \hfill \square

We recall some facts about the structure of compact semisimple Lie algebras, which can be found in [1, 2, 6, 7, 9].

Facts 4. Let \mathfrak{g} be a compact semisimple Lie algebra. We call a maximal abelian subalgebra \mathfrak{h} of \mathfrak{g} a Cartan subalgebra or a CSA for short. All CSAs in \mathfrak{g} are conjugate under the action of G, cp. [6, V.6.4] or [9, 6.27]. The dimension of \mathfrak{h} is called the rank of \mathfrak{g}. Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a CSA. Then
\[T = \{ \exp(\text{ad}(H)) \mid H \in \mathfrak{h} \} \]
is a maximal torus in G. As a T-module, the Lie algebra \mathfrak{g} decomposes as an orthogonal direct sum of irreducible T-modules
\[\mathfrak{g} = \mathfrak{h} \oplus \sum_{\alpha \in \Phi^+} L_\alpha, \]
with Φ^+ the positive real roots. The positive real roots $\alpha \in \Phi^+$ are certain nonzero linear forms $\alpha : \mathfrak{h} \rightarrow \mathbb{R}$. Each T-module L_α is 2-dimensional and carries a complex structure i such that $L_\alpha \cong \mathbb{C}$ and
\[\exp(\text{ad}(H))(X) = \exp(2\pi i \alpha(H))X \]
holds for all $H \in \mathfrak{h}$, $\alpha \in \Phi^+$ and $X \in L_\alpha$. Hence $H \in \mathfrak{h}$ acts on L_α as
\[\text{ad}(H)(X) = [H, X] = 2\pi i \alpha(H)X. \]
The positive real roots separate the points in \(h \), i.e. \(\bigcap \{ \ker(\alpha) \mid \alpha \in \Phi^+ \} = \{ 0 \} \). The centralizer of an element \(H \in h \) is therefore

\[
\mathrm{Cen}_g(H) = h \oplus \sum_{\alpha \in \Phi^+} L_\alpha.
\]

Hence \(\mathrm{Cen}_g(H) = h \) holds if and only if \(\alpha(H) \neq 0 \) for all positive real roots \(\alpha \). Such elements \(H \) are called regular.

Lemma 5. Let \(g \) be a compact semisimple Lie algebra, with a CSA \(h \) and the corresponding decomposition

\[
g = h \oplus \sum_{\alpha \in \Phi^+} L_\alpha
\]

as above, and let \(\gamma \in \Phi^+ \) be a positive real root. Let \(H_\gamma \in h \) be a nonzero vector orthogonal to \(\ker(\gamma) \). Then

\[
m_\gamma = \mathbb{R}H_\gamma \oplus L_\gamma \cong \mathfrak{so}(3)
\]

is the Lie algebra generated by \(L_\gamma \).

Proof. We let \(m_\gamma \) denote the Lie algebra generated by \(L_\gamma \). The centralizer of \(\ker(\gamma) \) is \(h \oplus L_\gamma \), whence \(m_\gamma \subseteq h \oplus L_\gamma \). Let \(X \in L_\gamma \) be an element of norm \(|X| = 1 \). Then \(X, iX \) is an orthonormal basis for \(L_\gamma \), and we put \(Y = [X, iX] \). Then

\[
\langle X, Y \rangle = \langle [X, X], iX \rangle = 0 = \langle X, [iX, iX] \rangle = \langle Y, iX \rangle
\]

and thus \(Y \in h \). For \(H \in h \) we have

\[
\langle H, Y \rangle = \langle [H, X], iX \rangle = 2\pi\gamma(H)\langle iX, iX \rangle = -2\pi\gamma(H),
\]

hence \(Y \) is nonzero and orthogonal to \(\ker(\gamma) \). Moreover, \(\langle Y, Y \rangle = -2\pi\gamma(Y) < 0 \). If we put \(g = \frac{1}{\sqrt{2\pi\gamma(Y)}} \) and \(U = gX, V = g^2X, W = g^3Y \), then

\[
[U, V] = W, \ [V, W] = U, \ [W, U] = V
\]

and thus \(m_\gamma \cong \mathfrak{so}(3) \). \(\Box \)

Key Lemma 6. Let \(g \) be a compact semisimple Lie algebra and let \(A, B \in g \). Suppose that \(A \) is orthogonal to some CSA. Then there exists a CSA \(h \subseteq g \) which is orthogonal both to \(A \) and to \(B \).

Proof. Among all CSAs \(h \) orthogonal to \(A \), we choose one for which the orthogonal projection \(B_0 \) of \(B \) to \(h \) has minimal length \(r = |B_0| \). We claim that \(r = 0 \). Assume towards a contradiction that this is false. We decompose \(g \) orthogonally as

\[
g = h \oplus \sum_{\alpha \in \Phi^+} L_\alpha.
\]
Accordingly we have $A = \sum_\alpha A_\alpha$ and $B = B_0 + \sum_\alpha B_\alpha$, with $A_\alpha, B_\alpha \in L_\alpha$. By assumption, $B_0 \neq 0$. Hence there is a positive real root $\gamma \in \Phi^+$ with $\gamma(B_0) \neq 0$. We decompose B_0 further in \mathfrak{h} as an orthogonal sum $B_0 = B_{00} + H_\gamma$, where $\gamma(B_{00}) = 0$ and $H_\gamma \neq 0$. Then

$$\mathfrak{h} = \mathbb{R}H_\gamma \oplus \ker(\gamma)$$

and

$$\mathfrak{m}_\gamma = \mathbb{R}H_\gamma \oplus L_\gamma \cong \mathfrak{so}(3)$$

by Lemma 5. In the 3-dimensional Lie algebra $\mathfrak{m}_\gamma \cong \mathfrak{so}(3)$ there is a 1-dimensional subspace $V \subseteq \mathfrak{m}_\gamma$ which is orthogonal to H_γ and to A_γ. The adjoint representation of $SO(3)$ on its Lie algebra $\mathfrak{so}(3)$ is transitive on the 1-dimensional subspaces. Hence there is an element $g \in G$ of the form $g = \exp(\text{ad}(Z))$, for some $Z \in \mathfrak{m}_\gamma$, with $g(H_\gamma) \in V$. Moreover, g fixes $\ker(\gamma)$ pointwise. The CSA $\mathfrak{h}' = g(\mathfrak{h}) = V \oplus \ker(\gamma)$ is then orthogonal to A. The projection of B to \mathfrak{h}' is B_{00} and has therefore strictly smaller length than B_0. This is a contradiction. □

Corollary 7. Let \mathfrak{g} be a compact semisimple Lie algebra and let $A, B \in \mathfrak{g}$. Then $A^\perp \cap B^\perp$ contains a CSA \mathfrak{h}.

Proof. We apply Lemma 6 to 0 and A to obtain a CSA which is orthogonal to A. Another application of Lemma 6 to A, B then yields a CSA \mathfrak{h} which is orthogonal to both A and B. □

Proof of Theorem 1. Let \mathfrak{h} be a CSA which is orthogonal to A and to B and let $X \in \mathfrak{h}$ be a regular element. Then $\mathfrak{h} = \text{Cen}_\mathfrak{g}(X)$ and thus $A, B \in [X, \mathfrak{g}]$ by Lemma 3. □

Some remarks and open problems.

We close with some remarks and an open problem. Suppose that \mathfrak{h} is a CSA in the compact Lie algebra \mathfrak{g}. If we pick nonzero elements $Z_\alpha \in L_\alpha$, for every positive root α, and if we put $Z = \sum_{\alpha \in \Phi^+} Z_\alpha$, then $\mathfrak{h} \cap \text{Cen}_\mathfrak{g}(Z) = 0$. Since $\text{Cen}_\mathfrak{g}(Z)$ contains a CSA \mathfrak{h}', this shows that there exists a CSA \mathfrak{h}' which intersects \mathfrak{h} trivially. However, one can do better. The following is shown in [17].

Theorem 8 (Malkoun-Nahlus). Let \mathfrak{h} be a CSA in a compact semisimple Lie algebra \mathfrak{g}. Then there exists a CSA $\mathfrak{h}' \subseteq \mathfrak{h}^\perp$.

We reproduce the beautiful proof from [17].

Proof. We may assume that $\mathfrak{g} \neq 0$. Let w be a Coxeter element in the Weyl group $W = N/T$, where T is the maximal torus corresponding to \mathfrak{h}, and $N \subseteq G$ is the normalizer of T. Then W acts as a finite reflection group on \mathfrak{h}, and 1 is not an eigenvalue of w in this action, cp. [10], 3.16. We choose $X \in \mathfrak{g}$ with $w = \exp(\text{ad}(X))T$ and we claim that every CSA \mathfrak{h}' containing X is orthogonal to \mathfrak{h}. The linear endomorphism $\exp(\text{ad}(X)) - \text{id}_\mathfrak{g}$ of \mathfrak{g} maps \mathfrak{h} onto \mathfrak{h}, and

$$\exp(\text{ad}(X)) - \text{id}_\mathfrak{g} = \sum_{k=1}^\infty \frac{1}{k!} \text{ad}(X)^k = \text{ad}(X) \sum_{k=1}^\infty \frac{1}{k!} \text{ad}(X)^{k-1}.$$

In particular, $\text{ad}(X)(\mathfrak{g}) \supseteq \mathfrak{h}$. Thus $\text{Cen}_\mathfrak{g}(X) \subseteq \mathfrak{h}^\perp$ by Lemma 3. □
Christoph Böhm has explained to me the following remarkable result.

Theorem 9. The orthogonal Lie algebras $\mathfrak{so}(m)$, for $m \geq 3$, can be decomposed as orthogonal direct sum of CSAs.

Proof. The rank of $\mathfrak{so}(m)$ is $r = \lfloor \frac{m}{2} \rfloor$, and the dimension of $\mathfrak{so}(m)$ is $n = \frac{m(m-1)}{2}$. We let e_1, \ldots, e_m denote the standard basis of \mathbb{R}^m, and we put $X_{i,j} = e_i e_j^T - e_j e_i^T$. Then the $X_{i,j}$ with $i < j$ form an orthonormal basis of $\mathfrak{so}(m)$. Moreover, two distinct basis elements $X_{i,j}, X_{k,\ell}$ commute if and only if $\{i, j\} \cap \{k, \ell\} = \emptyset$. The standard CSA for $\mathfrak{so}(m)$ is spanned by $X_{1,2}, X_{3,4}, \ldots, X_{2r-1,2r}$. The claim follows if we can partition the set \mathcal{T}_m of all two-element subsets of $\{1, \ldots, m\}$ into $\frac{n}{r}$ subsets consisting of r pairwise disjoint 2-element subsets. The latter is possible by the scheduling algorithm for round robin tournaments.

An explicit construction of such a partition of \mathcal{T}_m can be described as follows, cp. [22, Ex. 36.2]. For odd $m \geq 3$ put $M_k = \{\{i, j\} \mid i < j \text{ and } i + j \equiv 2k \pmod{m}\}$, for $k = 1, \ldots, m$. The M_k partition \mathcal{T}_m into m subsets of cardinality $\frac{m-1}{2}$, each consisting of pairwise disjoint 2-element subsets. From this we obtain also such a partition of \mathcal{T}_{m+1} by putting $M'_k = M_k \cup \{\{k, m+1\}\}$.

We cannot expect such a result for general compact semisimple Lie algebras. For example, the compact semisimple Lie algebra $\mathfrak{g} = \mathfrak{so}(5) \oplus \mathfrak{so}(3)$ has dimension 13, hence such a decomposition cannot exist. The following question is thus very natural.

Problem 10. Which compact semisimple Lie algebras \mathfrak{g} can be decomposed as an orthogonal sum of CSAs?

The monograph [15] is devoted to the complex version of this problem.

For the Lie algebras $\mathfrak{su}(m)$, the problem can be rephrased as follows, using the Veronese embedding of \mathbb{CP}^{m-1}. To each unit vector $u \in \mathbb{C}^m$, we may assign the selfadjoint projector

$$P(u) = uu^*,$$

where $*$ denotes the conjugate-transpose, and its traceless part

$$P_0(u) = uu^* - \frac{1}{m} \text{id}_{\mathbb{C}^m}.$$

We note that $P(uz) = P(u)$ holds for all complex numbers z with $|z| = 1$. Suppose that u_1, \ldots, u_m is an orthonormal basis of \mathbb{C}^m. Then the projectors $P(u_1), \ldots, P(u_m)$ commute, and the matrices $iP_0(u_1), \ldots, iP_0(u_m)$ span a CSA \mathfrak{h} in $\mathfrak{su}(m)$. Conversely, the CSA \mathfrak{h} determines the set of subspaces $u_1 \mathbb{C}, \ldots, u_m \mathbb{C}$ uniquely, since these are the fixed points of the maximal torus $T \subseteq \text{PSU}(m)$ with Lie algebra \mathfrak{h} in its action on complex projective space \mathbb{CP}^{m-1}. Hence \mathfrak{h} determines the orthonormal basis u_1, \ldots, u_m up to a permutation of vectors, and up to multiplication of the basis vectors by complex numbers of norm 1.
The Killing form for $\mathfrak{su}(m)$ is given by $\langle X, Y \rangle = 2m \text{tr}(XY)$. The CSAs \mathfrak{h} and \mathfrak{h}' provided by two orthonormal bases $u_1, \ldots, u_m, v_1, \ldots, v_m$ are thus orthogonal if and only if

$$|\langle u_k, v_\ell \rangle|^2 = \frac{1}{m}$$

holds for all k, ℓ. In this case, the two bases are called mutually unbiased. Such bases were considered in quantum mechanics by J. Schwinger [18]. The construction of mutually unbiased bases has interesting connections to finite geometry, cp. [11], [12], [19], [20]. It is an open problem in which dimensions m there exist $m + 1$ pairwise mutually unbiased orthonormal bases. They are known to exist if m is a prime power [24], [13]. As we have seen, this question is equivalent to the existence of an orthogonal decomposition of $\mathfrak{su}(m)$ into CSAs. There is a related problem about MASAs in operator theory, cp. [5]. It is presently an open problem if $\mathfrak{su}(6)$ admits an orthogonal decomposition into 7 CSAs.

Acknowledgments

I thank Christoph Böhm, Theo Grundhöfer, Karl Heinrich Hofmann and Karl-Hermann Neeb for helpful remarks.

References

[1] J. F. Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York, 1969. MR0252560

[2] T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1985. MR0781344

[3] A. D’Andrea and A. Maffei, Commutators of small elements in compact semisimple groups and Lie algebras, J. Lie Theory 26 (2016), no. 3, 683–690. MR3447944

[4] M. Gotô, A theorem on compact semi-simple groups, J. Math. Soc. Japan 1 (1949), 270–272. MR0033829

[5] U. Haagerup, Orthogonal maximal abelian \ast-subalgebras of the $n \times n$ matrices and cyclic n-roots, in Operator algebras and quantum field theory (Rome, 1996), 296–322, Int. Press, Cambridge, MA. MR1491124

[6] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York, 1978. MR0514561

[7] J. Hilgert and K.-H. Neeb, Structure and geometry of Lie groups, Springer Monographs in Mathematics, Springer, New York, 2012. MR3025417

[8] K. H. Hofmann and S. A. Morris, The Lie theory of connected pro-Lie groups, EMS Tracts in Mathematics, 2, European Mathematical Society (EMS), Zürich, 2007. MR2337107
[9] K. H. Hofmann and S. A. Morris, The structure of compact groups—a primer for the student—a handbook for the expert, fourth edition, De Gruyter Studies in Mathematics, 25, De Gruyter, Berlin, 2020. MR4201900

[10] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990. MR1066460

[11] W. M. Kantor, MUBs inequivalence and affine planes, J. Math. Phys. 53 (2012), no. 3, 032204, 9 pp. MR2798212

[12] W. M. Kantor, On maximal symplectic partial spreads, Adv. Geom. 17 (2017), no. 4, 453–471. MR3714449

[13] A. Klappenecker and M. Rötteler, Constructions of mutually unbiased bases, in Finite fields and applications, 137–144, Lecture Notes in Comput. Sci., 2948, Springer, Berlin. MR2092627

[14] M. Kleinsteuber, U. Helmke and K. Hüper, Jacobi’s algorithm on compact Lie algebras, SIAM J. Matrix Anal. Appl. 26 (2004), no. 1, 42–69. MR2112851

[15] A. I. Kostrikin and Pham Huu Tiep, Orthogonal decompositions and integral lattices, De Gruyter Expositions in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1994. MR1308713

[16] J. Malkoun and N. Nahlus, Commutators and Cartan subalgebras in Lie algebras of compact semisimple Lie groups, arXiv:1602.03479 [math.GR] (2016).

[17] J. Malkoun and N. Nahlus, Commutators and Cartan subalgebras in Lie algebras of compact semisimple Lie groups, J. Lie Theory 27 (2017), no. 4, 1027–1032. MR3646029

[18] J. Schwinger, Unitary operator bases, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 570–579. MR0115648

[19] K. Thas, Unextendible mutually unbiased bases (after Manduam, Bandyopadhyay, Grassl and Wootters), Entropy 18 (2016), no. 11, Paper No. 395, 14 pp. MR3710158

[20] K. Thas, On the mathematical foundations of mutually unbiased bases, Quantum Inf. Process. 17 (2018), no. 2, Paper No. 25, 17 pp. MR3740501

[21] J. Tits, Liesche Gruppen und Algebren, Hochschultext., Springer-Verlag, Berlin, 1983. MR0716684

[22] J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge University Press, Cambridge, 1992. MR1207813

[23] N. J. Wildberger, Diagonalization in compact Lie algebras and a new proof of a theorem of Kostant, Proc. Amer. Math. Soc. 119 (1993), no. 2, 649–655. MR1151817
[24] W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191 (1989), no. 2, 363–381. MR1003014