Melo, Tatiane F. N.; Ferrari, Silvia L. P.; Patriota, Alexandre G. Improved estimation in a general multivariate elliptical model. (English) Zbl 1404.62061 Braz. J. Probab. Stat. 32, No. 1, 44-68 (2018).

Summary: The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many frequently used models are special cases of this general formulation, namely: errors-in-variables models, nonlinear mixed-effects models, heteroscedastic nonlinear models, among others. In any of these models, the vector of the errors may have any multivariate elliptical distribution. We obtain the second-order bias of the maximum likelihood estimator, a bias-corrected estimator, and a bias-reduced estimator. Simulation results indicate the effectiveness of the bias correction and bias reduction schemes.

MSC: 62H12 Estimation in multivariate analysis

Keywords: bias correction; bias reduction; elliptical model; maximum likelihood estimation; general parameterization

Software: Ox; R

Full Text: DOI arXiv Euclid

References:
[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control.19, 716–723. · Zbl 0314.62039
[2] Bull, S. B., Mak, C. and Greenwood, C. M. T. (2002). A modified score function estimator for multinomial logistic regression in small samples. Computational Statistical Data Analysis39, 57–74. · Zbl 1119.62344 · doi:10.1016/S0167-9473(01)00048-2
[3] Cao, C.-Z., Lin, J.-G. and Zhu, X.-X. (2012). On estimation of a heteroscedastic measurement error model under heavy-tailed distributions. Computational Statistics and Data Analysis56, 438–448. · Zbl 1239.62067
[4] Cordeiro, G. M., Ferrari, S. L. P., Uribe-Opazo, M. A. and Vasconcellos, K. L. P. (2000). Corrected maximum-likelihood estimation in a class of symmetric nonlinear regression models. Statistics and Probability Letters46, 317–328. · Zbl 1060.62526
[5] Cordeiro, G. M. and Klein, R. (1994). Bias correction in ARMA models. Statistics and Probability Letters19, 169–176. · Zbl 0791.62087
[6] Cordeiro, G. M. and McCullagh, P. (1991). Bias correction in generalized linear models. Journal of the Royal Statistical Society B53, 629–643. · Zbl 0800.62432
[7] Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman and Hall. · Zbl 0334.62003
[8] Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion). Journal of the Royal Statistical Society B49, 1–39. · Zbl 0616.62006
[9] Cox, D. R. and Snell, E. J. (1968). A general definition of residuals (with discussion). Journal of the Royal Statistical Society B30, 248–275. · Zbl 0164.48903
[10] Cysneiros, F. J. A., Cordeiro, G. M. and Cysneiros, A. H. M. A. (2010). Corrected maximum likelihood estimators in heteroscedastic symmetric nonlinear models. Journal of Statistical Computation and Simulation80, 451–461. · Zbl 1187.62122
[11] Doornik, J. A. (2013). Object-Oriented Matrix Programming Using Ox. London: Timberlake Consultants Press. (ISBN 978-0-9571708-1-0).
[12] Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related Distributions. London: Chapman and Hall. · Zbl 0699.62048
[13] Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika80, 27–38. · Zbl 0769.62085
[14] Gómez, E., Gómez-Villegas, M. A. and Martín, J. M. (1998). A multivariate generalization of the power exponential family of distributions. Communications in Statistics. Part A: Theory and Methods27, 589–600.
[15] Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika76, 297–307. · Zbl 0669.62085
[16] Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational Graphics and Statistics 5, 299–314.

[17] Kosmidis, I. (2014). Improved estimation in cumulative link models. Journal of the Royal Statistical Society 76, 169–196.

[18] Kosmidis, I. and Firth, D. (2009). Bias reduction in exponential family nonlinear models. Biometrika 96, 793–804. · Zbl 1179.62096

[19] Kosmidis, I. and Firth, D. (2011). Multinomial logit bias reduction via the Poisson log-linear model. Biometrika 98, 755–759. · Zbl 1230.62092

[20] Kulathinal, S. B., Kuulasmaa, K. and Gasbarra, D. (2002). Estimation of an errors-in-variables regression model when the variances of the measurement error vary between the observations. Statistics in Medicine 21, 1089–1101.

[21] Lange, K. L., Little, R. J. A. and Taylor, J. M. G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association 84, 881–896.

[22] Lawley, D. N. (1956). A general method for approximating to the distribution of likelihood ratio criteria. Biometrika 43, 295–303. · Zbl 0073.13602

[23] Lemonte, A. J. (2011). Improved maximum-likelihood estimation in a regression model with general parameterization. Journal of Statistical Computation and Simulation 81, 1027–1037. · Zbl 1219.62092

[24] Lemonte, A. J. and Patriota, A. G. (2011). Multivariate elliptical models with general parameterization. Statistical Methodology 8, 389–400. · Zbl 1215.62054

[25] Lucas, A. (1997). Robustness of the student t based M-estimator. Communications in Statistics, Theory and Methods 26, 1165–1182. · Zbl 0920.62041

[26] Magnus, J. R. and Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd ed. Chichester: Wiley. · Zbl 0651.15001

[27] Mehrabi, Y. and Matthews, J. N. S. (2002). Improved estimation in cumulative link models. Journal of the Royal Statistical Society 76, 169–196.

[28] Mitchell, A. F. S. (1989). The information matrix, skewness tensor and $α$-connections for the general multivariate elliptical distribution. Annals of the Institute of Statistical Mathematics 41, 289–304. · Zbl 0691.62049 · doi:10.1007/BF00049397

[29] Patriota, A. G. (2011). A note on influence in nonlinear mixed-effects elliptical models. Computational Statistics and Data Analysis 55, 218–225. · Zbl 1247.62195

[30] Patriota, A. G., Bolfarine, B. and de Castro, M. (2009). A heteroscedastic structural errors-in-variables model with equation error. Statistical Methodology 6, 408–423. · Zbl 1463.62175

[31] Patriota, A. G. and Lemonte, A. J. (2009). Bias correction in a multivariate normal regression model with general parameterization. Statistics & Probability Letters 80, 567–574.

[32] Pettitt, A. N., Kelly, J. M. and Gao, J. T. (1998). Bias correction for censored data with exponential lifetimes. Statistica Sinica 8, 941–963. · Zbl 0993.62047 · doi:10.1214/aos/11763444136

[33] Rosillo, F. G. and Chivelet, N. M. (2009). Lifetime prediction of fluorescent lamps used in photovoltaic systems. Lighting Research and Technology 41, 183–197.

[34] Schwarz, G. (1978). Estimating the dimensional of a model. Annals of Statistics 6, 461–464. · Zbl 0379.62005 · doi:10.1214/aos/11763444136

[35] Tiede, J. J. and Pagano, M. (1979). Application of robust calibration to radioimmunoassay. Biometrics 35, 567–574.

[36] Vanegas, L. H. and Paula, G. A. (2015). A semiparametric approach for joint modeling of median and skewness. Test 24, 110–135. · Zbl 1315.62017

[37] Vanegas, L. H. and Paula, G. A. (2016). Log-symmetric distributions: Statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics 30, 196–220. · Zbl 1381.60047

[38] Vasconcellos, K. L. P. and Cordeiro, G. M. (2000). Bias corrected estimates in multivariate student t regression models. Communications in Statistics, Theory and Methods 29, 797–822. · Zbl 0993.62047

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.