ABSTRACT: Environment-dependent reproductive isolation was established between cage populations (B_s) of Drosophila melanogaster originated from a Greek natural population (summer 1973) and maintained for about five years under different diets (poor-rich). The detected deviation from random mating involved no homogametic or heterogametic preference but rather, a significantly increased activity of males from populations maintained on the rich food medium. This observation indicates that the male parental investment is not negligible and under certain conditions sexual isolation can be a function not only of female behavior but also of male behavior. Differences also were found in various enzyme activities on the inter- and intra-population levels. Given those observations as well as the observed different behavioral patterns of B_s and C_s-D_s populations, a preliminary attempt was made to associate adaptive evolution with differences in enzyme activities. The differences in enzyme activities between populations reared on different media are not due to allozymic differences. It also was shown that in some populations environmental effects do not always elicit differences in enzyme activity. It was concluded, therefore, that the observed variations were the result of environmental effects interacting with modifier genes.

We recently demonstrated that stable environment-dependent sexual isolation had been established between cage populations of Drosophila melanogaster maintained under different environmental conditions (temperature and humidity) for about five years, whereas the isolation of populations alone did not lead to ethological isolation. Since the isolation of populations is considered to be an important factor in the development of reproductive isolation, we investigated a set of four additional cage populations (possessing a common gene pool at their origin) maintained in duplicate under different food media (poor-rich), for about six years, in order to assess: 1) whether or not reproductive isolation was established and, if so, whether it was correlated to environmental manipulation or to the isolation of populations. 2) Since the environmental factor used in the present study (food medium) differs from...
those utilized before19 (temperature-relative humidity), a comparison also was made regarding the patterns of ethological isolation.

The ecological factor food medium (poor-rich) was found to induce dramatic genetic differentiation in Adh and α-Gpdh allozymic and inversion frequencies8 as well as in the frequencies of lethal bearing chromosomes1 during the initial 30 generations. Taking into account the situation already revealed in the populations, we thought it of interest also to measure the quantitative genetic variation of enzyme activities in our preliminary effort to see whether or not correlation exists between changes in enzyme activities and in reproductive isolation. Since it was suggested31 that in natural populations there may be several polymorphic loci affecting the expression of a given structural gene and therefore contribute to variation in the enzyme activity, this study may ultimately prove useful to test the adaptive significance of enzyme quantitative variability. At the same time, it also will have a bearing on the suggestion that regulatory variation of enzyme activity is a more important source of adaptive variation than structural variation8,14,31,34.

Materials and Methods

Four cage populations designated 1B\(_1\), 1B\(_2\), 1B\(_3\), 1B\(_4\) were studied. Enzyme activities were measured in flies from two additional cage populations (1C, 1D). The last two populations have been studied and described previously19. The B\(_4\) populations originated from a common parental population (1B) by replication, 10 generations after the latter originated. Consequently, we may regard the four derived populations as possessing practically the same gene pool at their origin. Population 1B was established in the autumn of 1973 from flies captured during the summer of 1973 from the Greek island of Cephalonia (for more details see Alahiotis1). All B\(_4\) populations were maintained at 25 ± 0.8\(^\circ\)C and a mean relative humidity of 43 ± 4 percent, in 12-hour daylight cycles. Populations 1B\(_1\) and 1B\(_2\) were kept on the dead-yeast-sugar-agar medium, which is characterized as a rich food medium (RFM)7, while populations 1B\(_3\) and 1B\(_4\) were maintained on the cornmeal-NAD-SdDHs27, 6PGD and G6PD22). The enzymes assayed in this study are: α-Glycerophosphate dehydrogenase (α-glycerophosphate: NAD\(^+\) oxidoreductase, EC 1.1.1.8.), glucose-6-phosphate dehydrogenase (G6PD; D-glucose-6-phosphate: NADP\(^+\) oxidoreductase, EC 1.1.1.49.), 6-phosphogluconate dehydrogenase (6PGD 6-phospho-D-gluconate: NADP\(^+\) oxidoreductase, EC 1.1.1.44.), alcohol dehydrogenase (ADH; alcohol: NAD\(^+\) oxidoreductase, EC 1.1.1.1.), isocitrate dehydrogenase (NADP[1DH-NADP\(^+\) L-isocitrate:NADP\(^+\) oxidoreductase (decarboxylating, EC 1.1.1.42.), acetylcholinesterase (ACHE). The enzyme activities were measured in about eight replicates in at least two separate experiments. The flies used were 3 to 4 days old in all assays. The enzyme assays have been described elsewhere (ACHE and IDH\(_2\), ADH\(_{15}\), α-GPDH\(_{17}\), NAD-SdDHs, 6PGD and G6PD22).

Table I. Mating preferences in crosses between isolated cage populations of Drosophila melanogaster

| Cross A × B | A\(_A\) × A\(_A\) | A\(_A\) × A\(_B\) | B\(_A\) × A\(_B\) | B\(_A\) × B\(_B\) | \(x^2(1 df)\) | SE of \(I\) = \(\sqrt{1 - I^2/N}\).
|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1. 1B\(_1\) × 1B\(_2\) | 29 | 31 | 35 | 34 | 0.703 | 0.616 | 0.073 | 0.073 | -0.023 | 0.080 | 0.000 |
| 2. 1B\(_1\) × 1B\(_3\) | 32 | 14 | 18 | 15 | 2.138 | 5.582 | 1.870 | 10.569 | 0.189 | 0.110 | 0.000 |
| 3. 1B\(_1\) × 1B\(_4\) | 59 | 27 | 35 | 39 | 0.900 | 4.900 | 7.450 | 13.900 | 0.225 | 0.077 | 0.000 |
| 4. 1B\(_2\) × 1B\(_3\) | 41 | 16 | 26 | 18 | 1.672 | 10.732 | 1.830 | 15.300 | 0.168 | 0.098 | 0.000 |
| 5. 1B\(_2\) × 1B\(_4\) | 45 | 19 | 26 | 11 | 7.218 | 16.429 | 0.000 | 25.040 | 0.108 | 0.098 | 0.000 |
| 6. 1B\(_3\) × 1B\(_4\) | 42 | 19 | 12 | 20 | 0.013 | 0.013 | 0.000 | 0.064 | 0.000 | 0.044 | 0.000 |
| 7. 1B\(_1\) × 1B\(_4\) [comm. cross] | 20 | 19 | 12 | 20 | 0.013 | 0.013 | 0.000 | 0.044 | 0.000 | 0.044 | 0.000 |

Table II. Mating preferences in crosses between Or-k flies raised on RFM or PFM

| Cross [A × B] | Or-k\(_{RFM}\) × Or-k\(_{PFM}\) | A\(_A\) × A\(_A\) | A\(_A\) × A\(_B\) | B\(_A\) × A\(_A\) | B\(_A\) × A\(_B\) | \(x^2(1 df)\) | SE of \(I\) = \(\sqrt{1 - I^2/N}\).
|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Generations | 25 | 26 | 24 | 26 | 0.010 | 0.089 | 0.010 | 0.023 | 0.010 | 0.099 | 0.000 |
| 3 | 23 | 22 | 21 | 22 | 0.045 | 0.000 | 0.045 | 0.023 | 0.022 | 0.106 | 0.000 |
| 5 | 23 | 22 | 23 | 22 | 0.000 | 0.014 | 0.000 | 0.014 | 0.000 | 0.105 | 0.000 |
| Or-k × Or-k | 19 | 22 | 20 | 22 | 0.012 | 0.301 | 0.014 | 0.326 | -0.012 | 0.109 | 0.000 |

(in common conditions)