Original Research Article

Assessment of background ionizing radiation exposure levels in industrial buildings in Nnewi, Anambra State, Nigeria

Hyacintosh U. Chiegwu¹, Jonathan O. Onyeka¹, Daniel C. Ugwuanyi¹, Daniel D. Odunk², Michael P. Ogolodom¹*, Awajimijan N. Mbaba³, Victor K. Nwodo¹, Uchenna N. Ezechukwu¹

¹Department of Radiography and Radiological Sciences, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
²Department of Radiology, Federal Medical Centre, Yenagoa, Bayelsa State, Nigeria
³Department of Radiology, Rivers State University Teaching Hospital, Port Harcourt, Rivers State, Nigeria

Received: 01 December 2021
Revised: 06 December 2021
Accepted: 29 December 2021

*Correspondence:
Michael P. Ogolodom,
E-mail: mp.ogolodom@unizik.edu.ng

ABSTRACT

Background: Increased exposure from background radiations and the attendant health effects have in recent times drawn the attention of researchers. This study aimed to assess the indoor and outdoor background radiation levels in selected offices/industrial buildings in Nnewi, Anambra State, Nigeria.

Methods: Forty buildings in the four villages of Nnewi were surveyed using a calibrated international medicom CRM 100 radiation monitor. Radiation readings were obtained in counts per minute and converted to micro-sieverts per hour (µSv h⁻¹). The indoor annual effective dose rate (IAEDR), outdoor annual effective dose rate, excess lifetime cancer risk, and organ doses were calculated using recommended occupancy and conversion factors.

Results: The mean IAEDR and OAEDR were respectively 0.8060±0.056 mSv y⁻¹ and 0.2281±0.020 mSv y⁻¹ with estimated ELCR of 2.822x10⁻³ and 0.799x10⁻³ respectively. The testes received the highest dose (0.843 mSv y⁻¹) followed by bone marrow (0.710 mSv y⁻¹).

Conclusions: The study revealed that the mean background radiation exposures in and outside offices in Nnewi, Anambra State were below the UNSCEAR and ICRP recommended doses for the general public.

Keywords: Annual effective dose rate, Background ionizing radiation, Indoor and outdoor, Offices/industrial buildings

INTRODUCTION

Man is exposed to radiation emitted from natural and man-made sources. The radiation contribution from these natural and artificial sources constitutes the background radiation. The total radiation dose taken at a location is recorded as background radiation if no specified radiation source is available.¹ The sources of background radiations include cosmic radiations (primary and secondary), terrestrial radiations (from natural radium, uranium, and thorium and their decay products; radon gas which is the largest natural source of radiation exposure to human beings) internal radiations (radioactivity in the body) and artificial or man-made sources such as from medical exposure, weapon testing, nuclear technologies and use of office equipment. An increase in the use of technological equipment in offices can also increase the background radiation levels.²,³ Humans are inevitably exposed to background radiations both in work and public environments.⁴ The level of exposure varies...
depending on latitude and longitude. According to Chad-Umorem et al chronic exposure to even low dose rates of nuclear radiations from an irradiated building has the potential to induce cytogenetic damage in human beings. In certain situations where the level exceeds the known average dose, the introduction of health protection measures needs to be considered.\(^5\)

Increased exposure from background radiations and the attendant health effects have in recent times drawn the attention of researchers. Studies have shown exposure to indoor radon to be of greatest concern.\(^6,9\) Apart from lung cancer, exposure to radon can lead to bronchial epithelial cancer, kidney cancer, bone marrow cancer and even stomach cancer due to radon in drinking water.\(^10\) Positive association exists between radon exposure and leukaemia, multiple myeloma and chronic lymphocytic leukaemia with the highest mortality rate occurring among cigarette smokers.\(^11-14\)

According to UNSCEAR report, the worldwide average annual effective dose from natural background radiation is 2.4 mSv.\(^15\) The level is especially high in mines. It is observed that high levels of exposure from background radiation can also occur in areas other than mines and can reach such a level that cannot be ignored from the point of view of radiation protection.\(^6\) Consequently, UNSCEAR classified the annual effective dose rate into four levels, namely, low: 5 mSv y\(^{-1}\) and below (or about twice the global average of 2.4 mSv y\(^{-1}\)), medium (5 – 20 mSv y\(^{-1}\)), high: (20 – 50 mSv y\(^{-1}\)) and very high: (> 50 mSv y\(^{-1}\)).\(^6\)

Background radiation levels have been established in many countries. In India and China, background radiation was reported to contribute about 2.29 mSv y\(^{-1}\) (96.7%) of the total annual effective dose of 2.393 mSv y\(^{-1}\).\(^16\) In Greece, Stoulos et al\(^9\) obtained a mean background exposure dose of 0.5 mSv y\(^{-1}\) and a mean radon exhalation rate of 3.24 Bq m\(^{-3}\) h\(^{-1}\). In Nigeria, many studies have been conducted to determine background radiation levels and results from these studies showed variations in the levels of background radiation doses among states and different locations within a state.\(^17-27\) From the literature search there was no study on background radiation exposure levels for Nnewi and Anambra State. This study aimed to assess the indoor and outdoor background ionizing radiation levels in selected industrial buildings in Nnewi North local government area of Anambra State, Nigeria and to estimate the excess lifetime cancer risks to the inhabitants.

METHODS

This was a cross-sectional survey conducted from August 2018 to September 2019 at Nnewi North local government area (LGA) located between Latitude 6.010 and 6.02\(^0\) North and Longitude 6.95\(^0\) and 6.91\(^0\) East. Consent of the management of the Institutions studied was also obtained. Nnewi has a land area of about 1,076.9 square miles (2, 789 Km\(^2\)) with a population of about 500, 000 in 2010.\(^24\)

A total of sample size of 40 offices included this study was derived from the formula of unknown population given below:

\[n = Z^2 \alpha 2pq + d^2 \]

Where, \(n\)=expected sample size, \(Z\alpha\)=significant level usually set at 95% confidence level, \(Z\) is 1.96 (two sided), \(p\)=proportion of the population with similar attributes under study=50% (0.5), \(d\)=margin of error tolerated or absolute error = 15.5% (0.155), \(q=1-p=1-0.5 =0.5, \) Thus \(n\) was calculated to be \(≈ 40\).

Ten largest-sized buildings with more business activities and a higher population of people in each of the four villages namely Otolo, Uraugu, Nnewi-Ichi, and Umudim that make up of Nnewi-North L.G.A (Figure 1), were selected using a stratified random sampling technique. The indoor and outdoor background radiation measurements of the selected buildings were taken using a well-calibrated International medicon CRM-100 digital radiation monitor (serial no.: 01697). The meter was calibrated at the National institute of radiation protection and research, university of Ibadan, Nigeria. This is a Nigerian secondary standard laboratory and a division of the Nigeria nuclear regulatory authority (NNRA) and certified by the International atomic energy agency (IAEA).

Figure 1: Map of Nnewi showing the four villages covered by the study.

The background radiation readings obtained in Counts per minute CPM was converted to µSv h\(^{-1}\) using the relation: \(10 \text{ CPM} = 0.10 \mu \text{Sv} h^{-1}\) that is, \(100 \text{ CPM} = 1 \mu \text{Sv} h^{-1}\) (CRM-100 guide). The radiation meter has a maximum response to environmental radiation during the hours of 1300 to 1600 hence the readings were taken.
during this period for optimum results. The value of readings obtained and other details for each building were recorded in a purpose data capture sheet.

Radiation measurement procedure

An in situ background radiation measurement approach was adopted. The radiation measurements were made following standard procedure. The readings were taken during working hours with the workers performing their usual daily work. For the indoor measurements, the radiation survey meter was held at a height of 1.0 meter above the floor and from the wall at each location. Four readings were taken at each point facing the wall of the room/apartment and the average recorded. The procedure was carried out for each of the four walls in turn. A similar procedure was used for the outdoor measurements but ensuring that the measurement location was as far as possible from the fence or wall of other nearby buildings. For each outdoor measurement location, three readings were taken and the average recorded. The relevant conversion was then done. The indoor annual effective dose rate (IAEDR) and the outdoor annual effective dose rate (OAEDR) (in mSv y⁻¹) were computed using the respective recommended indoor and outdoor occupancy factors of 0.8 and 0.2. The hourly dose rate (µSv h⁻¹) was converted to the annual dose rate (mSv y⁻¹) as in equations 1, 2, and 3.

Annual dose rate (mSv y⁻¹) = X (µSv h⁻¹) x T x OF

Where; X=hourly dose rate, T=total number of hours in a year (8760 hrs) and OF=occupancy factor (indoor = 0.8 and outdoor=0.2). Based on 24 hours a day and 365 days in a year; the number of hours in a year was 24 x 365 = 8760 hours.

Hence:

\[\text{AIEDR (mSv y⁻¹)} = X (\mu \text{Sv h⁻¹}) \times 8760 \times 0.8 \times 10^3 \]

\[\text{AOEDR (mSv y⁻¹)} = X (\mu \text{Sv h⁻¹}) \times 8760 \times 0.2 \times 10^3 \]

The excess lifetime cancer risk, ELCR (x 10⁻³) was computed using below equation.\(^{10}\)

\[\text{ELCR} = \text{AEDR} \times \text{DL} \times \text{RF} \]

Where; AEDR=total average annual effective dose (mSv y⁻¹), DL=average duration of life (70 years), RF=risk factor per Sv. (RF=0.05 for public, stochastic effects), ELCR= a term used to estimate the difference between the proportion of persons who will develop or die of cancer (per sievert) in an exposed population compared to the people in a similar population that were not exposed to radiation.

Radiation doses to some body organs/tissues such as the lungs, ovaries, bone marrow, testes, kidneys, liver and whole body due to inhalation were computed using equation mentioned below.

\[\text{Dorgan (mSv y⁻¹)} = \text{AEDR} (\text{mSv y⁻¹}) \times \text{CF} \]

Where; CF = the conversion factor of organ doses from air dose and CF = 0.64 for the lungs, 0.58 for ovaries, 0.69 for bone marrow, 0.82 for testes, 0.62 for kidneys, 0.46 for live and 0.68 for whole body.\(^{31,32}\)

Statistical analysis

Data were analyzed using statistical package for social sciences (SPSS) version 21.0 (SPSS Inc. Chicago IL, USA). Descriptive statistics such as mean, standard deviations, tables, and charts were used for statistical analysis.

RESULTS

The total mean indoor and outdoor background ionizing radiation levels, annual effective dose rate and excess life cancer risk (ELCR) for office buildings in Otolo village Nnewi were highest in the Auditorium (0.2901±0.030 µSv h⁻¹, 1.92±0.015 mSv y⁻¹, and 2.086x10⁻³ per sievert respectively) and least in the Cafeteria (0.1801±0.020 µSv h⁻¹, 0.7360±0.025 mSv y⁻¹ and 1.288x10⁻³ per sievert respectively)(Table 1). The total mean indoor and outdoor background ionizing radiation levels, annual effective dose rate and excess life cancer risk (ELCR) of office buildings in Uruagu village Nnewi were highest at Keystone bank (0.3002±0.030 µSv h⁻¹, 1.2097±0.158 mSv y⁻¹ and 2.117 x 10⁻³ per sievert respectively) and least at First bank (0.2001±0.022 µSv h⁻¹, 0.8241±0.049 mSv y⁻¹ and 1.443 x 10⁻³ per sievert respectively)(Table 2).

The total mean indoor and outdoor background ionizing radiation levels, annual effective dose rate, and excess lifetime cancer risk (ELCR) of office buildings in Nnewi-Ichi Village Nnewi were highest at wave diagnostics Lab (0.2500±0.021 µSv h⁻¹, 1.1738±0.077 mSv y⁻¹ and 2.055x10⁻³ per sievert respectively) and least at NAUTH Staff Canteen (0.1602±0.002 µSv h⁻¹, 0.6492±0.009 mSv y⁻¹ and 1.136x10⁻³ per sievert respectively)(Table 3). The total mean indoor and outdoor background ionizing radiation levels, annual effective dose rate, and excess lifetime cancer risk (ELCR) of office buildings in Umudim village Nnewi were highest at FRSC license office block (0.3500±0.050 µSv h⁻¹, 1.5068±0.245 mSv y⁻¹ and 2.637 x 10⁻³ per sievert respectively) and least at LGA Sec. Block C (0.2002±0.002 µSv h⁻¹, 0.8243±0.009 mSv y⁻¹ and 1.443x10⁻³ per sievert respectively)(Table 4). The mean of IAEDR, OAEDR and AEDR for Otolo were (0.8410±0.007 mSv y⁻¹, 0.2620±0.022 mSv y⁻¹ and 1.0820±0.079 mSv y⁻¹), (0.8550±0.072 mSv y⁻¹, 0.2296±0.025 mSv y⁻¹ and 1.0850±0.025 mSv y⁻¹), (0.7291±0.046 mSv y⁻¹, 0.2000±0.010 mSv y⁻¹ and 0.9289±0.056 mSv y⁻¹) and (0.8200±0.046 mSv y⁻¹, 0.0208±0.021 mSv y⁻¹ and 1.0411±0.068 mSv y⁻¹) for
Otolo, Uruagu, Nnewi-ichi and Umudim villages each respectively, (Figure 2) while the ICRP (1990) and UNSCEAR (2008) recommended annual dose level are 1.0 mSv y-1 and 2.4 mSv y-1 respectively.

Table 1: Mean indoor and outdoor background ionizing radiation levels, annual effective dose rate (IAEDR and OAEDR) and excess lifetime cancer risk for office buildings in Otolo village, Nnewi.

Name of office	Mean±SD Indoor dose rate (µSv h⁻¹)	IAEDR (mSv y⁻¹)	ELCR (x 10⁻¹)	Mean±SD Outdoor dose rate (µSv h⁻¹)	OAEDR (mSv y⁻¹)	ELCR (x 10⁻¹)	Total Mean±SD radiation level (IDR and ODR) (µSv y⁻¹)	Total AEDR (IAEDR and OAEDR) (mSv y⁻¹)	Total mean ELCR (x 10⁻¹)
Office, FHST, CHS NAU	0.1301±0.020	0.9120±0.140	3.192	0.1500±0.010	0.2628±0.018	0.920	0.2801±0.03	1.1748±0.158	2.056
Lecture hall block FHST, CHS NAU	0.1200±0.001	0.8410±0.007	2.944	0.1501±0.021	0.2630±0.037	0.920	0.2701±0.022	1.1040±0.440	1.932
ETF lab, CHS NAU	0.1200±0.00	0.8410±0.007	2.943	0.1302±0.020	0.2279±0.035	0.798	0.2502±0.020	1.0690±0.035	1.871
Auditorium, CHS, NAU	0.1300±0.010	0.9110±0.070	3.189	0.1601±0.020	0.2805±0.035	0.982	0.2901±0.030	1.192±0.015	2.086
Cafeteria, CHS, NAU, Okofia	0.0800±0.010	0.5610±0.007	1.962	0.1001±0.010	0.1754±0.018	0.614	0.1801±0.020	0.7360±0.025	1.288
Beh. lab, CHS, NAU	0.1200±0.001	0.8410±0.070	2.943	0.1501±0.020	0.2630±0.035	0.920	0.2701±0.021	1.1040±0.042	1.932
CHS, NAU library, Okofia	0.1100±0.010	0.7709±0.070	2.698	0.1300±0.010	0.2278±0.018	0.797	0.2400±0.020	0.999±0.088	1.748
Anatomy block, CHS, NAU	0.1201±0.011	0.842±0.077	2.946	0.1401±0.012	0.2455±0.021	0.859	0.2602±0.023	1.0880±0.098	1.903
Physiology block, CHS, NAU	0.1200±0.002	0.841±0.140	2.943	0.1502±0.002	0.2632±0.004	0.921	0.2702±0.022	1.1042±0.144	1.932
Family care hospital Obiuno	0.1200±0.001	0.8410±0.007	2.943	0.1001±0.001	0.1754±0.002	0.614	0.2201±0.002	1.0164±0.009	1.780
Mean±SD	0.1170±0.008	0.8200±0.059	2.87±0.207	0.1502±0.014	0.2620±0.022	0.896±0.078	0.2531±0.021	1.0820±0.079	1.850±0.078

The testes have the highest mean AEDR of 0. 843±0.021 mSv y⁻¹ and ELCR of 2. 951 x 10⁻³ while the liver has the least AEDR of 0.473±0.001 mSv y⁻¹ with ELCR of 1.656x10⁻³. The overall AEDR to the four villages was respectively computed and the result revealed that the IAEDR was significantly higher than the OAEDR for all the villages (p<0.05). This could be attributed to contributions from anthropogenic sources and also attenuation of the radiation by the materials used for the buildings. Among the villages, Uruagu has the

DISCUSSION

In this study, the indoor annual effective dose rate (IAEDR) and the outdoor annual effective dose rate (OAEDR) were respectively computed and the result revealed that the IAEDR was significantly higher than the OAEDR for all the villages (p<0.05). This could be attributed to contributions from anthropogenic sources and also attenuation of the radiation by the materials used for the buildings. Among the villages, Uruagu has the...
highest background radiation level, which could be ascribed to the electronic devices used in the numerous financial institutions in Uruagu village when compared to other villages. This implies that inhabitants of this Uruagu village are likely to be at greater risk of cancer.

Table 2: Mean indoor and outdoor background ionizing radiation levels, annual effective dose rate (IAEDR and OAEDR) and excess lifetime cancer risk for office buildings in Uruagu village, Nnewi.

Name of office	Mean±SD Indoor dose rate (µSv h⁻¹)	IAEDR (mSv y⁻¹)	ELCR (x10⁻²)	Mean±SD Outdoor dose rate (µSv h⁻¹)	OAEDR (mSv y⁻¹)	ELCR (x10⁻³)	Total Mean±SD Radiation level (IDR and ODR) (µSv h⁻¹)	Total AEDR (IAEDR and OADEDR) (mSv y⁻¹)	Total ELCR (x10⁻²)
FCMB	0.1400±0.010	0.9811±0.07	3.434	0.0800±0.001	0.1402±0.002	0.491	0.2200±0.011	1.1213±0.072	1.963
Keystone bank	0.1301±0.010	0.9117±0.14	3.191	0.1701±0.010	0.2980±0.018	1.043	0.3002±0.030	1.2097±0.158	2.117
First bank	0.0901±0.002	0.6314±0.014	2.210	0.1100±0.020	0.1927±0.035	0.675	0.2001±0.022	0.8241±0.049	1.443
GT Bank	0.1201±0.010	0.8417±0.07	2.946	0.1800±0.030	0.3154±0.053	1.104	0.3001±0.040	1.1571±0.123	2.025
Diamond bank	0.1301±0.010	0.9117±0.07	3.191	0.1300±0.010	0.2278±0.018	0.797	0.2601±0.020	1.1395±0.088	1.994
Access bank	0.1200±0.001	0.841±0.007	2.943	0.1500±0.020	0.2628±0.035	0.920	0.2700±0.021	1.1038±0.042	1.932
Fire serv.	0.1300±0.010	0.911±0.070	3.189	0.0801±0.001	0.1403±0.002	0.491	0.2101±0.001	1.0513±0.072	1.840
/machine									
Staff Room	0.1100±0.010	0.7709±0.07	2.698	0.1300±0.010	0.2278±0.018	0.797	0.2400±0.020	0.9987±0.088	1.748
AGSS									
SS2, AGSS	0.1300±0.020	0.911±0.04	3.189	0.1200±0.020	0.2102±0.035	0.736	0.2500±0.040	1.1212±0.175	1.963
Admin block	0.1200±0.010	0.841±0.070	2.943	0.1600±0.020	0.2803±0.035	0.981	0.2800±0.030	1.1213±0.105	1.962
AGSS									
Mean±SD	0.1220±0.010	0.855±0.072	2.993±0.252	0.1310±0.014	0.2296±0.025	0.804	0.2531±0.025	1.0850±0.097	1.899±0.340

The mean AEDR for the studied buildings is comparable with the IRCP recommended annual limit of 1.0 mSv y⁻¹ for the general public but well below the UNSCEAR recommended world average value of 2.4 mSv y⁻¹. This implies that the workers and people in those offices are radiologically safe. However, the high mean value of ELCR recorded in this study suggests an increased risk of developing cancer in the long run as a result of chronic exposure. This is more so because commonly consumed food items like rice, yam, garri, beans, groundnuts and vegetables are shown to contain a large concentration of radionuclides. The sandy soil of Nnewi contains large quantities of Uranium-238, Thorium-232, and Radium-226 as these radionuclides are known to contribute significantly to radiation doses. From our study, the average values of IAEDR, OAEDR, and AEDR respectively, were greater than 0.258 mSv y⁻¹ at Ibrahim Badamasi Babangida University, Lapai, Niger State Nigeria, 0.189 mSv y⁻¹ at Minna in a study of two tertiary institutions, 0.155±0.006 mSv y⁻¹ with ELCR of 0.54 x 10⁻³ at Emene industrial layout in Enugu State by Ugbede and Benson, 0.64±0.115 mSv y⁻¹ at Shedu science and technology University, Abuja, 0.123 mSv y⁻¹ in some Northern and Southern parts of Nigeria by Olaelekan et al and 0.16±0.05 mSv y⁻¹ at Effurun and Warri city of Delta State, Ezekeyi.
Table 3: Mean indoor and outdoor background ionizing radiation levels, annual effective dose rate (IAEDR and OAEDR) and excess lifetime cancer risk for office buildings in Nnewi-ichi village, Nnewi.

Name of office	Mean±SD Indoor dose rate (µSv h⁻¹)	IAEDR (mSv y⁻¹)	ELCR (x10⁻³)	Mean±SD Outdoor dose rate (µSv h⁻¹)	OAEDR (mSv y⁻¹)	ELCR (x10⁻³)	Total mean±SD radiation level (IDR and ODR) (µSv h⁻¹)	AEDR (IAEDR and ODAEDR) (mSv y⁻¹)	Total mean ELCR (x10⁻³)
Radiology department	0.1200±0.010 0.8410±0.070 2.943	0.1300±0.020 0.2278±0.035 0.797	0.2500±0.030 1.0688±0.105 1.870						
NAUTH	0.1101±0.001 0.7716±0.007 2.701	0.1200±0.010 0.2102±0.001 0.736	0.2301±0.011 0.9818±0.025 1.719						
Radiology department	0.1200±0.020 0.8410±0.140 2.943	0.1300±0.010 0.2278±0.018 0.797	0.2500±0.030 1.0688±0.158 1.870						
School of nursing	0.1200±0.001 0.8410±0.070 2.943	0.1200±0.001 0.2102±0.002 0.736	0.2400±0.011 1.0512±0.025 1.840						
Academic block	0.1200±0.001 0.5613±0.007 1.965	0.1100±0.001 0.1927±0.018 0.675	0.1901±0.011 0.7540±0.025 1.32						
Physiotherapy	0.0600±0.001 0.4205±0.007 1.472	0.1500±0.001 0.2628±0.002 2.920	0.2100±0.002 0.6833±0.009 1.196						
CHS medical library	0.1200±0.001 0.8410±0.070 2.943	0.1100±0.001 0.1929±0.002 0.675	0.2301±0.002 1.0339±0.009 1.809						
HO Qtrs	0.1400±0.020 0.9811±0.046 2.55±	0.1140±0.006 0.2000±0.010 0.699±	0.2181±0.012 0.9289±0.056 1.626±						
Waves diagnostic lab	0.1040±0.007 0.7291±0.046 2.55±	0.1140±0.006 0.2000±0.010 0.699±	0.2181±0.012 0.9289±0.056 1.626±						

Table 4: Mean indoor and outdoor background ionizing radiation levels, annual effective dose rate (IAEDR and OAEDR) and excess lifetime cancer risk (ELCR) for office buildings in Umudim village, Nnewi.

Name of office	Mean±SD Indoor dose rate (µSv h⁻¹)	IAEDR (mSv y⁻¹)	ELCR (x10⁻³)	Mean±SD Outdoor dose rate (µSv h⁻¹)	OAEDR (mSv y⁻¹)	ELCR (x10⁻³)	Total Mean±SD Radiation level (IDR and ODR) (µSv h⁻¹)	Total AEDR (IAEDR and ODAEDR) (mSv y⁻¹)	Total mean ELCR (x10⁻³)
FRSC office block	0.1401±0.010 0.9818±0.070 3.436	0.1501±0.010 0.2630±0.020 0.920	0.2902±0.020	1.2448±0.090 2.178					
FRSC licence office	0.1700±0.030 1.1914±0.210 4.170	0.1800±0.020 0.3154±0.035 1.104	0.3500±0.050	1.5068±0.245 2.637					
EEDC district office	0.1001±0.002 0.7015±0.014 2.455	0.1201±0.010 0.2104±0.018 0.736	0.2202±0.012	0.9119±0.032 1.596					
LGA secret. Block A	0.1101±0.001 0.7716±0.007 2.701	0.1000±0.001 0.1752±0.002 0.613	0.2101±0.002	0.9468±0.009 1.657					

Continued.
Table 5: Effective dose to some organs (D_{organ}, mSv y⁻¹) from exposure to background radiation in offices in Nnewi, Anambra State, Nigeria.

Villages	Names of offices	Mean AEDR (mSv y⁻¹)	Lungs	Ovaries	Bone marrow	Testes	Kidneys	Liver	Whole body
OTOLO 6.0085° N 6.9538° E	Office block, FHST, CHS NAU	1.1748±0.158	0.752	0.682	0.811	0.964	0.729	0.541	0.799
	Lecture hall block FHST, CHS NAU	1.1040±0.440	0.707	0.640	0.762	0.905	0.685	0.508	0.751
	ETF Lab, CHS NAU	1.0690±0.035	0.684	0.620	0.738	0.877	0.633	0.492	0.727
	Auditorium, CHS, NAU	1.192±0.015	0.763	0.691	0.823	0.977	0.739	0.548	0.811
	Cafeteria, CHS, NAU, Okofia	0.7360±0.025	0.471	0.427	0.508	0.604	0.456	0.339	0.501
	Bch. Lab, CHS, NAU	1.1040±0.042	0.707	0.640	0.762	0.905	0.685	0.508	0.751
	CHS, NAU Library, Okofia	0.999±0.088	0.640	0.680	0.690	0.820	0.620	0.460	0.680
	Anatomy block, CHS, NAU	1.0880±0.098	0.696	0.631	0.751	0.892	0.675	0.501	0.740
	Physiologyblock, CHS, NAU	1.1042±0.144	0.707	0.640	0.762	0.905	0.685	0.508	0.751
	Family Care hospital Obiuno	1.0164±0.009	0.650	0.589	0.701	0.833	0.630	0.467	0.691

Continued.
Villages	Names of offices	Mean AEDR (mSv y⁻¹)	Lungs	Ovaries	Bone marrow	Testes	Kidneys	Liver	Whole body
FCMB			0.717	0.650	0.774	0.919	0.695	0.516	0.762
Keystone bank		1.2097±0.158	0.774	0.702	0.835	0.992	0.750	0.557	0.828
First bank		0.8241±0.049	0.527	0.478	0.569	0.676	0.511	0.379	0.560
GT Bank		1.1571±0.123	0.741	0.671	0.798	0.949	0.717	0.524	0.787
Diamond bank		1.1395±0.088	0.730	0.661	0.787	0.935	0.707	0.524	0.775
Access bank		1.1038±0.042	0.707	0.640	0.762	0.905	0.685	0.508	0.751
Fire serv. /machine part		1.0513±0.072	0.673	0.610	0.725	0.862	0.652	0.484	0.715
Staff room AGSS		0.9987±0.088	0.640	0.580	0.690	0.820	0.620	0.460	0.680
SS2, AGSS		1.1212±0.175	0.717	0.650	0.774	0.919	0.695	0.516	0.762
Admin block AGSS		1.1213±0.105	0.717	0.650	0.774	0.919	0.695	0.516	0.762
Radiology department NAUTH		1.0688±0.105	0.684	0.620	0.738	0.877	0.663	0.492	0.727
Uzodike auditorium NAUTH		0.9818±0.025	0.629	0.570	0.678	0.805	0.609	0.452	0.668
NAUTH staff canteen		0.6492±0.009	0.415	0.376	0.448	0.532	0.402	0.299	0.441
A & E NAUTH		0.8243±0.009	0.527	0.478	0.569	0.676	0.511	0.379	0.560
School of nursing block NAUTH		1.0688±0.158	0.684	0.620	0.738	0.877	0.663	0.492	0.727
Academic block NAUTH		1.0512±0.025	0.673	0.610	0.725	0.861	0.652	0.484	0.715
Physio-therapy clinic NAUTH		0.7540±0.025	0.483	0.437	0.520	0.618	0.468	0.347	0.513
CHS medical library		0.6833±0.009	0.437	0.396	0.471	0.560	0.424	0.314	0.464
HO Qtrs NAUTH		1.0339±0.009	0.662	0.600	0.713	0.848	0.641	0.476	0.703
Waves diagnostic lab		1.1738±0.027	0.751	0.681	0.810	0.963	0.728	0.540	0.798
FRSC Office block		1.2448±0.090	0.797	0.722	0.859	1.021	0.772	0.573	0.847
FRSC Licence office block		1.5068±0.245	0.965	0.874	1.040	1.236	0.934	0.693	1.025
EEDC District office		0.9191±0.032	0.584	0.529	0.629	0.748	0.565	0.420	0.620
LGA secret. block A		0.9468±0.009	0.606	0.549	0.653	0.777	0.587	0.436	0.644
LGA secret. block B		0.10162±0.090	0.650	0.589	0.701	0.833	0.630	0.467	0.691

Continued.
However, the dose rates obtained from our study were lower than dose values obtained at some other places in Nigeria such as 1.04 mSv y⁻¹ to 1.75 mSv y⁻¹ at Akwanga, Nasarawa State 1.29±0.13 mSv y⁻¹ and 0.31±0.04 mSv y⁻¹ (for Akwanga) and 1.08±0.15 mSv y⁻¹ and 0.25±0.04 mSv y⁻¹(for Keffi) of Nasarawa State and 1.3055 mSv y⁻¹, 1.438 mSv y⁻¹, 1.227 mSv y⁻¹, and 1.3289 mSv y⁻¹ respectively for the four locations in Gokana LGA, Rivers State by Avwiri et al. 19,21. The dose values in this study was also lower than values of 65.28 µSv y⁻¹ and 29.80 µSv y⁻¹ for refuse dump sites in Owerri, Imo State, and Lagos State respectively, 1.56±0.3 mSv y⁻¹ in Ondo State, 1.54 mSv y⁻¹ (IAEDR), and 0.44 mSv y⁻¹ (OAEDR) from the laboratory premises of Plateau State University, Bokkos in Jos, Plateau State and 2.733 mSv y⁻¹ and 2.435 mSv y⁻¹ for the laboratory buildings. 22-25 The mean dose from our study was comparable with 0.88±0.28 mSv y⁻¹ obtained at Asaba, Delta State and 0.9746±0.201 mSv y⁻¹ at Makurdi, Benue State.24,47

The difference between the dose rates obtained in this study and those obtained from other parts of the country could be a result of a difference in location and soil type. The high level of background radiation at Nnewi calls for similar studies to be done in other parts of Anambra State. This will be important as it will alert the State to the presence of high background radiation that may require intervention to avert possible danger with the present rate of industrialization in the state. Our results also showed that there were high doses to some body organs. The implication is the possibility of cancer development over a long time especially on the testes and bone marrow. The ELCR obtained for each of the organs in table 5 was higher than what was obtained in other parts of Nigeria such as Delta State, (0.61x10⁻³), Southwestern Nigeria (4.10x10⁻³), Enugu State (0.54x10⁻³) and in India (0.375-0.662 x 10⁻³).42-46 The ELCR to the organs was however comparable to the value of 3.21x10⁻³ obtained for Northern Pakistan where the researcher reported numerous deaths from cancer.50 This again calls for further investigations for Nnewi and Anambra State with emphasis on the radionuclide contents of the soils.

CONCLUSION

The mean background radiation exposure levels in office buildings in Nnewi and its environment were below the values from many other parts of Nigeria and also below the UNSCEAR and ICRP recommended dose for the general public. Therefore, the workers and people in the environment of those offices are radiologically safe at the moment.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. International Atomic Energy Agency. IAEA Safety Glossary 2016 version. Terminology used in nuclear safety and radiation protection 2016. Available at: http://www-ns.iaea.org/standards/safety-glossary.asp. Accessed on 3 January 2018.
2. Arena V. Ionizing radiation and life. St. Louis; The C. V. Mosby Company; 1971.
3. Obed R, Farail P, Jibiri NN. Population Dose Distribution due to soil Radioactivity concentration levels in 18 cities across Nigeria. J Radiol. Protec. 2005;25:305-12.
4. Radiation and your health. Available at: http://www.cdc.gov/nceh/radiation/decay.htm. Accessed on 3 January 2018.
5. Chad-Umoren YE, Adekanmbi M, Harry SO. Evaluation of indoor background ionizing radiation profile of a physics laboratory. Facta University Series: Work. Liv. Environ. Protec. 2007;3(1):1-7.
6. UNSCEAR. Sources and effects of ionizing radiation. Report to General Assembly. Annex B New
Consumed Food Items in Enugu State, Nigeria. The Trop J Health Sci. 2020;27(1):40-6.

34. Abubakar A, Sadiq AA, Musa MG, Hassan J, Malgwi DF. Assessment of indoor ionizing radiation profile in radiology department FMC Asaba Delta State Nigeria. IOSR J Dental and Med Sci. 2017; 16(1):98-101.

35. Strand T. Doses to the norwegian population from naturally occurring raditions and from the chernobyl fallout (doctoral dissertation) National institute of radiation hygiene institute of physics university of Oslo, Norway.1987;1-226.

36. Elbarbary M, Soor AT, Gafaar IM, Abdel-Razek YA, Eldine NW. Evaluation of natural radioactivity for Abu Dabbab and Nuwibi Albite granite, Central Eastern Desert, Egypt. IOSR J Appl Physics. 2019; 11(6 Ser.II):64-77.

37. Shahbazi-Gahrouei D, Gholami M, Setayandeh S. A review on natural background radiation. Adv Biomed Res. 2013;2(3):1-10.

38. Shahbazi-Gahrouei D, Gholami M, Setayandeh S. A review on natural background radiation. Adv Biomed Res. 2013;2(3):1-10.

39. Shahbazi-Gahrouei D, Gholami M, Setayandeh S. A review on natural background radiation. Adv Biomed Res. 2013;2(3):1-10.

40. Shahbazi-Gahrouei D, Gholami M, Setayandeh S. A review on natural background radiation. Adv Biomed Res. 2013;2(3):1-10.

41. Shahbazi-Gahrouei D, Gholami M, Setayandeh S. A review on natural background radiation. Adv Biomed Res. 2013;2(3):1-10.

42. Shahbazi-Gahrouei D, Gholami M, Setayandeh S. A review on natural background radiation. Adv Biomed Res. 2013;2(3):1-10.

43. Shahbazi-Gahrouei D, Gholami M, Setayandeh S. A review on natural background radiation. Adv Biomed Res. 2013;2(3):1-10.

44. James IU, Moses IF, Akueche EC, Kuwen RD. Assessment of indoor and outdoor radiation level and human health risks in sheda science and technology complex and its environ, Abuja, Nigeria. J Appl Sci Environ Manage. 2010;24(1):13-8.

45. Olalekan I, Vyaceslav K, Oleg M, Boris S. Review of distribution of natural radiation in some parts of Nigeria. Nucl Sci. 2019;4(4):52-9.

46. Ezekiel AO. Assessment of excess lifetime cancer risk from gamma radiation levels in Effurun and Warri City of Delta State, Nigeria. J Taibah Univ Sci. 2016;11(2017):367-80.

47. Sombo T, Ichaver A, Isah OH, Asagah E. Preliminary investigation of indoor and outdoor radiation levels within federal university of agriculture, Makurdi Main Campus, North Central Nigeria. IOSR J Appl Physics. 2018;10(1 Ver II):71-4.

48. Ibikunle SB, Arogunjo AM, Ajayi OS. Characterization of Radiation and Excess Lifetime Cancer Risk Due to Natural Radionuclides in soils from Some Cities in Southwestern Nigeria. J Forensic Sci Criminal Inves. 2018;10(4):1-10.

49. Sharma P, Meher PK, Mishra KP. Terrestrial gamma radiation dose measurement and health hazard along river Alknanda and Ganges in India. J Radiat Res Appl Sci. 2014;7(2014):595-600.

50. Qureshi AA, Tariq S, Din KU, Manzoor S, Calligaris C, Waheed A. Evaluation of excess lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci. 2014;7(2014):438-47.

Cite this article as: Chiegwu HU, Onyeka JO, Ugwuanyi DC, Odunk DD, Ogolodom MP, Mbaba AN, et al. Assessment of background ionizing radiation exposure levels in industrial buildings in Nnewi, Anambra State, Nigeria. Int J Res Med Sci 2022;10:305-15.