From Small Space to Small Width in Resolution

Mladen Mikša

KTH Royal Institute of Technology
Stockholm, Sweden

31st Symposium on Theoretical Aspects of Computer Science
Lyon, France
8 March 2014

Joint work with Yuval Filmus, Massimo Lauria, Jakob Nordström, and Marc Vinyals
Proof Complexity and Resolution

Proof complexity: Hardness of reasoning in propositional logic

Resolution

- **Input**: CNF formula F
 \[
 (x \lor \overline{y} \lor z) \land (\overline{y} \lor \overline{z}) \land (x \lor y) \land (\overline{x} \lor \overline{z}) \land (\overline{x} \lor z)
 \]

- **Resolution rule**:
 \[
 \frac{C \lor x \quad D \lor \overline{x}}{C \lor D}
 \]

- **Goal**: Proof of unsatisfiability (refutation) $= \text{Derive empty clause } \bot$

Refer to clauses of formula as **axioms**
Resolution Size, Space, and Width

Can represent refutation as

- annotated list or
- DAG

1. \(x \lor \overline{y} \lor z \) Axiom
2. \(\overline{y} \lor \overline{z} \) Axiom
3. \(x \lor \overline{y} \) Res(1, 2)
4. \(x \lor y \) Axiom
5. \(x \) Res(3, 4)
6. \(\overline{x} \lor \overline{z} \) Axiom
7. \(\overline{x} \lor z \) Axiom
8. \(\overline{x} \) Res(6, 7)
9. \(\bot \) Res(5, 8)
Resolution Size, Space, and Width

Can represent refutation as

- annotated list or
- DAG

Example:

Size: 9
Space: # clauses before used after
Width: size of the largest clause

Example:

\[
\begin{align*}
&x \lor \overline{y} \lor z \\
&\overline{y} \lor \overline{z} \\
&x \lor \overline{y} \\
&x \lor y \\
&x \\
&\overline{x} \lor \overline{z} \\
&\overline{x} \lor z \\
&\overline{x} \\
&\bot
\end{align*}
\]
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof
Space: memory usage (at step t: # clauses before t used after t)
Width: size of the largest clause

Example:
Size
Space
Width
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:

1	$x \lor \overline{y} \lor z$	Axiom
2	$\overline{y} \lor z$	Axiom
3	$x \lor \overline{y}$	Res(1, 2)
4	$x \lor y$	Axiom
5	x	Res(3, 4)
6	$\overline{x} \lor z$	Axiom
7	$\overline{x} \lor z$	Axiom
8	\overline{x}	Res(6, 7)
9	\bot	Res(5, 8)

Size 9
Space
Width
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space
- Width
Can represent refutation as

- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:

	Size	Space	Width
	9	0	

Space at current step 0
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof
Space: memory usage (at step t: # clauses before t used after t)
Width: size of the largest clause

Example:

Size 9
Space 1
Width

Space at current step 1
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof
Space: memory usage (at step \(t \):
 \# clauses before \(t \) used after \(t \))
Width: size of the largest clause

Example:
- Size 9
- Space 2
- Width

Space at current step 2
Resolution Size, Space, and Width

Can represent refutation as
 - annotated list or
 - DAG

Size: number of steps in proof
Space: memory usage (at step t: # clauses before t used after t)
Width: size of the largest clause

Example:
 - Size 9
 - Space 3
 - Width

Space at current step 3
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 3
- Width

Space at current step 2
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 3
- Width

Space at current step 3
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof
Space: memory usage (at step t: # clauses before t used after t)
Width: size of the largest clause

Example:
- Size 9
- Space 3
- Width

Space at current step 2
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t:
$\#$ clauses before t used after t)

Width: size of the largest clause

Example:

Size	9
Space	3
Width	

Space at current step 3
Can represent refutation as

- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:

Size	Space	Width
9	4	

Space at current step 4
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:

Size 9
Space 4
Width

Space at current step 3

$\text{Example clause: } x \lor \neg y \lor z$

Mladen Mikša (KTH)
From Small Space to Small Width in Resolution
STACS '14
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:

Size 9
Space 4
Width

Space at current step 0
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t:
clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 4
- Width 3

Space at current step 0
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in proof

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size: 9
- Space: 4
- Width: 3

Space at current step: 0
Relation Between Width and Size/Space

Width helps us understand size and space
Makes most sense for small width formulas — focus on k-CNFs

Size: Ben-Sasson and Wigderson ’99

\[\log(\text{Size}) \gtrsim \text{Width} \]

Proof by syntactically manipulating short refutation into narrow refutation

Space: Atserias and Dalmau ’03

\[\text{Space} \geq \text{Width} \]

More involved proof in terms of strategies for Ehrenfeucht-Fraïssé games
Relation Between Width and Size/Space

Width helps us understand size and space
Makes most sense for small width formulas — focus on \(k\)-CNFs

Size: Ben-Sasson and Wigderson ’99

\[
\log(\text{Size}) \gtrsim \text{Width}
\]

Proof by syntactically manipulating short refutation into narrow refutation

Space: Atserias and Dalmau ’03

\[
\text{Space} \geq \text{Width}
\]

More involved proof in terms of strategies for Ehrenfeucht-Fraïssé games

Our result: Simple purely syntactic proof
Refutation presented on whiteboard
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
Whiteboard Interpretation of Space

Refutation presented on whiteboard
- Write down axioms
- Use resolution rule
- Erase clause
Whiteboard Interpretation of Space

Refutation presented on whiteboard
- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause
Whiteboard Interpretation of Space

Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard
- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause
Whiteboard Interpretation of Space

Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause

Space: max # clauses on board
No finite model theory and no Ehrenfeucht-Fraïssé games

Want to turn small-height whiteboard into small-width one

\[
\begin{align*}
x \lor \overline{y} \lor \overline{z} \lor v \lor w \\
\overline{y} \lor \overline{z} \lor \overline{w} \lor x \\
x \lor \overline{y}
\end{align*}
\]
Proof Idea in One Slide

No finite model theory and no Ehrenfeucht-Fraïssé games

Want to turn small-height whiteboard into small-width one

Rotate whiteboard and get narrow whiteboard

\[x \lor \neg y \lor \neg z \lor v \lor w \]
\[\neg y \lor \neg z \lor \neg w \lor x \]
\[x \lor \neg y \]
In Somewhat More Detail...

\[
x \lor \overline{y} \lor z \\
\overline{y} \lor \overline{z}
\]
In Somewhat More Detail...

\[\neg((x \lor \overline{y} \lor z) \land (\overline{y} \lor \overline{z})) \]

- View clauses on whiteboard as CNF and negate
In Somewhat More Detail...

- View clauses on whiteboard as CNF and \textbf{negate}
- Apply DeMorgan’s rules
In Somewhat More Detail...

\[\neg(((x \lor \overline{y} \lor z) \land \overline{(y \lor \overline{z})}) \land ((\overline{x} \lor y \lor \overline{z}) \lor (y \lor z)) \lor ((\overline{x} \lor y) \lor (\overline{y} \lor y) \lor (\overline{y} \lor z) \lor (\overline{z} \lor y) \lor (\overline{z} \lor z)) \]

- View clauses on whiteboard as CNF and negate
- Apply DeMorgan’s rules
- Expand the formula into CNF by distributing OR over ANDs
In Somewhat More Detail...

- View clauses on whiteboard as CNF and negate
- Apply DeMorgan’s rules
- Expand the formula into CNF by distributing OR over ANDs
- Remove trivial and redundant clauses
In Somewhat More Detail...

- View clauses on whiteboard as CNF and negate
- Apply DeMorgan’s rules
- Expand the formula into CNF by distributing OR over ANDs
- Remove trivial and redundant clauses
- Write CNF on whiteboard

\[x \lor \bar{y} \lor z \]
\[\bar{y} \lor \bar{z} \]
\[(\bar{x} \land y \land \bar{z}) \lor (y \land z) \]
\[(\bar{x} \lor y) \land (x \lor z) \land (y \land z) \land (\bar{y} \lor z) \land (\bar{z} \lor y) \land (\bar{z} \lor z) \]
\[\bar{x} \lor z \]

Original
Negated

Space (\# clauses) of Original \(\geq \) Width of Negated
Consequences of Negation

Negate every whiteboard and run refutation in reverse

Note: Empty whiteboard turns into contradiction and vice versa

Small space refutation is transformed into narrow one
Missing Details

Need two things

1. **Prove** we have backbone of resolution refutation
2. **Fill in** missing details (without blowing up width)

Proof by *case analysis* over derivation steps:

- Axiom download
- Resolution rule application
- Clause erasure
Original: Erasure weakens whiteboard

Right board weaker than left board
Original: Erasure weakens whiteboard

Right board weaker than left board

Negated: Negation inverts relation

Left board weaker than right board

Negated refutation run in reverse!
Can skip weaker whiteboards
Resolution Rule Application

Original refutation

Original: No change in semantic content

Mladen Mikša (KTH) From Small Space to Small Width in Resolution STACS ’14
Resolution Rule Application

Original refutation: $x \lor \neg y \lor z \land \neg y \lor z \land x \lor \neg y$

Original: No change in semantic content

Negated refutation: $\neg x \lor z \land y$

Negated: No change in syntactic content (after pruning redundant clauses)

Whiteboard stays the same!
Resolution Rule Application

Original refutation

\[x \lor \overline{y} \lor z \]
\[\overline{y} \lor z \]

Negated refutation

Original refutation

\[x \lor \overline{y} \lor z \]
\[\overline{y} \lor z \]
\[x \lor \overline{y} \]

Negated refutation

\[\overline{x} \lor z \]
\[y \]

Original: No change in semantic content

Negated: No change in syntactic content (after pruning redundant clauses)

Whiteboard stays the same!

Note: No work done thus far!
Original: Add axiom A to whiteboard

Original refutation

$x \lor \overline{y} \lor z$

$x \lor \overline{y} \lor z$

$\overline{y} \lor \overline{z}$
Original: Add axiom A to whiteboard

Negated: For every literal $a \in A$ add \overline{a} to all clauses of whiteboard

Use clauses $C \lor \overline{a}$ and A to derive C
Original: Add axiom A to whiteboard

Negated: For every literal $a \in A$ add \bar{a} to all clauses of whiteboard

Use clauses $C \lor \bar{a}$ and A to derive C

$$
\begin{align*}
\bar{y} \lor \bar{z} & \quad \bar{x} \lor y \\
\bar{x} \lor \bar{z} & \quad \bar{x} \lor \bar{z} \\
\end{align*}
$$

Adds constant width to derivation
Original: Add axiom A to whiteboard

Negated: For every literal $a \in A$ add \overline{a} to all clauses of whiteboard

Use clauses $C \lor \overline{a}$ and A to derive C

$$
\frac{\overline{y} \lor \overline{z} \quad \overline{x} \lor y}{\overline{x} \lor \overline{z} \quad \overline{x} \lor z}
$$

Adds constant width to derivation

Theorem

Space \geq Width
Open Problem: Similar Problem for Polynomial Calculus

Polynomial calculus
Stronger proof system based on *algebraic* reasoning
Lines are *polynomial equations* instead of clauses
Degree of refutation analogous to width in resolution

Size: Impagliazzo, Pudlák, and Sgall ’99

\[\log(\text{Size}) \gtrapprox \text{Degree} \]
Polynomial calculus
Stronger proof system based on algebraic reasoning
Lines are polynomial equations instead of clauses
Degree of refutation analogous to width in resolution

Size: Impagliazzo, Pudlák, and Sgall ’99

\[\log(\text{Size}) \gtrapprox \text{Degree} \]

Open Problem
Is Space \(\geq \) Degree in polynomial calculus?

Original motivation for our work
We show our approach is unlikely to work (see paper for details)
Concluding Remarks

- Space upper bounds width in resolution [Atserias and Dalmau '03]
- This work: New simple proof of this theorem
- Open problem: Space-degree relation in polynomial calculus?
Concluding Remarks

- Space upper bounds width in resolution [Atserias and Dalmau ’03]
- **This work:** New simple proof of this theorem
- **Open problem:** Space-degree relation in polynomial calculus?

Thank you for your attention!