Abstract

The emission angle and the transverse momentum distributions of projectile fragments (PFs) produced in fragmentation of silicon on carbon and polyethylene targets at 800 A MeV are measured. It is found that the angular and transverse distribution of PFs do not evidently depend on the mass of target nucleus, the averaged emission angle and transverse momentum decrease with increase of the charge of PF for the same target, and no obvious dependence on the target mass is found for the same PF. The cumulated squared transverse momentum distribution of PF can be well explained by a single Rayleigh distribution. The temperature parameter of PF emission source is determined, which is about 2-4 MeV and independent of the target and PF size.

Keywords: Heavy ion collision; angular distribution; transverse momentum distribution; temperature.

1. Introduction

Heavy ion fragmentation at intermediate and high energies is very important in nuclear physics, astrophysics and medical physics. Such study can help to understand not only the fundamental nuclear physics processes involved in nuclear collisions but also the origin and propagation process of galactic cosmic rays (GCR). One of the major interests in the study of intermediate and high energy heavy ion collisions is the understanding of the
multifragmentation phenomenon and its connection with liquid-gas phase transitions. For this it has to be assumed that in a heavy ion collision at some stage a part of the system is both in thermo-dynamical equilibrium and instable. Such a configuration is often termed a freeze-out configuration. The multifragmentation process would reflect the parameters of this source, i.e. its temperature and density. Experimentally the fragment energy spectra are described in terms of such freeze-out models to extract these parameters. The information of these quantities is also sought from isotope rations of fragments and from excited state populations. Furthermore, silicon ions are also copiously produced in the fragmentation of iron ions and other heavier ions. So the fragmentation of silicon ions is not only relevant to the space radiation but also to the understanding the fragmentation mechanism.

The total charge-changing cross sections and the partial cross sections of the fragmentation of $^{28}$Si ions on various targets at different energies have been investigated by many groups, such as Zeitlin et al. (2007), Price et al. (1991), Brechtmann et al. (1989), Gupta et al. (2013), Cecchini et al. (2008), Flesch et al. (2001), and Webber et al. (1990). The temperature parameter of PFs emission source is also investigated by many groups using the PFs kinetic energy distribution, isotope rations of PFs and excited state populations methods, such as Serfling et al. (1998), Odeh et al. (2000). The typical temperature of PFs emission source is about 5-6 MeV based on the isotope thermometer, it is lower than that based on PFs kinetic energy spectrum method which is about 10 to 12 MeV.

In this paper we present the results of the emission angular distribution, transverse momentum distribution and the temperature of PFs emission source in fragmentation of 800 A MeV $^{28}$Si on C and CH$_2$ targets respectively.

2. Experimental details

Stacks of C, and CH$_2$ targets sandwiched with CR-39 detectors were exposed normally to 800 A MeV $^{28}$Si beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the Japanese National Institute of Radiological Sciences (NIRS). The beam fluence is about 1250 ions/cm$^2$. The configuration of sandwiched target is shown in Fig.1. A type of HARZLAS TD-1CR-39 sheet manufactured by Fukui Chemical Industry Co., LTD., about 0.8 mm in thickness, is placed before and after the targets. The thickness of carbon and polyethylene targets is 5 and 7 mm, respectively. After exposure, the CR-39 detectors are etched in 7N NaOH aqueous solution at temperature of 70°C for 15 hours. Then, the beam ions and their fragments manifest in the CR-39 as etch-pit cones on both sides of CR-39 sheets. The images of ion tracks are scanned and analyzed automatically by HSP-1000 microscope system and the PitFit track measurement software provided by Seiko Precision Inc. (2014), then checked manually. $^{28}$Si trajectories and the ones of secondary PFs are reconstructed in the scanned stack. Details of track tracing and reconstruction, identification of charge of PFs can be found in our papers by Zhang et al. (2013) and Li et al. (2014).

3. Results and discussions

Emission angular distribution and transverse momentum distribution of PFs provide the information of the nuclear structure and the mechanism of the interactions, which are also important in designing experiments with radioactive nuclear beams.

Emission angle ($\theta$) of each PF related beam direction is calculated from the coordinates of track positions on the top and bottom surfaces of CR-39 sheet after the target. The mean reflection angles of beam related normal direction are 0.80° and 1.42° for C and CH$_2$ targets respectively. Then the transverse momentum per nucleon ($p_t$) of PF is
calculated on the basis of its emission angle, $p_i = p \sin \theta$, where $p$ is the momentum per nucleon of beam which can be calculated from the beam energy per nucleon ($E$), $p = \sqrt{E^2 + 2m_0E}$, $m_0$ is the nucleon rest mass.

Fig. 2 and 3 show the angular and transverse momentum distributions of the PFs from the fragmentation of $^{28}$Si on C and CH$_2$ targets, respectively. Most PFs have an emission angle less than 2.0 degree, little of them have an emission angle greater than 2.0 degree. With the decrease of the charge of PF, both angular distribution and transverse momentum distribution are widened. The angular distribution and transverse momentum distribution do not obviously depend on the target mass for the same PF. Most angular and transverse momentum distributions can be well fitted by a single Gaussian distribution, but some of them cannot be well fitted by a single Gaussian distribution because of the lower statistics.

Fig. 2. (Color online) The emission angle distribution of PFs from the fragmentation of $^{28}$Si on C (left) and CH$_2$ targets (right).

Fig. 3. (Color online) The transverse momentum distribution of PFs from the fragmentation of $^{28}$Si on C (left) and CH$_2$ targets (right).

Fig. 4 and 5 show the dependence of mean emission angle and mean transverse momentum on the charge of PFs from the fragmentation of $^{28}$Si on C and CH$_2$ targets, respectively. It is found that the mean emission angle and mean
transverse momentum of PFs decrease with the increase of the charge of PFs, no obvious target size dependence is found in present investigation.

According to the participant-spectator concept and the fireball model by Westfall et al. (1976), if we assume that the emission of PFs is Maxwell-Boltzmann distribution in projectile rest frame with a certain temperature $T$, then the integral frequency distribution of the squared transverse momentum per nucleon is

$$\ln F(\tau^2) = -\frac{A}{2m_p} \tau^2 T$$

where $A$ is the mass number of PF, $m_p$ is the mass of proton. The linearity of such a plot would be strong evidence for a single temperature of emission source. Fig. 6 shows the cumulative plots of $F$ as a function of $\tau^2$ for PFs from the fragmentation of $^{28}$Si on C and CH$_2$ targets. All of the plots can be fitted by a single Rayleigh distribution of the form

$$F(\tau^2) = C \exp\left(-\frac{\tau^2}{2\sigma^2}\right)$$

where $\sigma = \sqrt{2/\pi} <\tau>$, which is related to the temperature of PF emission source. The fitting parameters including the temperature are presented in Table 1. It is shown that the temperature of PF emission source does not obviously depend on PF and target size. The temperature of PF emission source is about 2-4 MeV for the PFs with charge in the range from 5 to 13, which is in good agreement with findings of Serfling et al. (1998) based on isotope thermometers but less than the results of Odeh et al. (2000) based on the PF kinetic energies spectrum.
4. Conclusion

The emission of PFs produced in fragmentation of 800 A MeV $^{28}$Si on C and CH$_2$ targets is investigated. The mean emission angle and transverse momentum increase with decrease of the charge of PF, and no obvious target size dependence is found. The cumulated squared transverse momentum distribution of PFs can be well explained by a single Rayleigh distribution. The temperature of PF emission source is about 2 to 4 MeV, it does not obviously depend on the PF and the target size.

Acknowledgements

We are grateful to Dr. N. Yasuda for providing the CR-39 stacks. The project supported by the National Natural Science Foundation of China (11075100), Natural Science Foundation of Shanxi Province, China (2011011001-2).

References

Brechtmann, C., Heinrich, W., Benten, E.V., 1989. Fragmentation cross sections of $^{28}$Si at 14.5 GeV/nucleon. Phys. Rev. C 39, 2222-2226.

Cecchini, S., Chiarusi, T., Giacomelli, G., Giorgini, M., Kumar, A., Mandrioli, G., Manzoor, S., Margiotta, A.R., Mennacelli, E., Patrizii, L., Pappa, V., Quareshi, E., Sirri, G., Spuria, M., Togo, V., 2008. Fragmentation cross sections of $^{28}$Si, $^{34}$S and $^{44}$Ca ions of 0.3-10 A GeV on polyethylene, CR39 and aluminum targets. Nucl. Phys. A 807, 206-213.

Flesch, F., Iancu, G., Heinrich, W., Yasuda, H., 2001. Projectile fragmentation of silicon ions at 490 A MeV. Rad. Meas. 34, 237-240.

Gupta, R., Kumar, A., 2013. Fragmentation cross-section of 600 A MeV Si$^{14+}$ ions in thick polyethylene target. Eur. Phys. J. A. 49, 98.

Li, Y.J., Zhang, D.H., Yan, S.W., Wang, L.C., Cheng, J.X., Li, J.S., Kodaira, S., Yasuda, N., 2014. Projectile fragment emission in the fragmentation of $^{56}$Fe on C, Al and CH$_2$ targets at 471 A MeV. Chin. Phys. C 38, 014001.

Price, P.B., He, Y.D., 1991. Behavior of nuclear projectile fragments produced in collisions of 14.5 A GeV $^{28}$Si. Phys. Rev. C 43, 835-848.

Seiko Precision Inc. 2014. Wide-area high-speed image acquisition microscope HSP-1000 user manual.

Webber, W.R., Kish, J.C., Schrier, D.A., 1990. Individual isotopic fragmentation cross sections of relativistic nuclei in hydrogen, helium, and carbon targets. Phys. Rev. C 41, 547-565.

Webber, W.R., Kish, J.C., Schrier, D.A., 1990. Individual charge changing fragmentation cross sections of relativistic nuclei in hydrogen, helium, and carbon targets. Phys. Rev. C 41, 533-546.

Westfall, G.D., Gosset, J., Johansen, P.J., Poskanzer, A.M., Meyer, W.G., Gutbrod, H.H., Sandoval, A., Stock, R., 1976. Nuclear fireball model for proton inclusive spectra from relativistic heavy ion collisions. Phys. Rev. Lett. 37, 1202-1205.

Zeitlin, C., Fukumura, A., Guetersloh, S.B., Heibronn, L.H., Iwata, Y., Miller, J., Murakami, T., 2007. Fragmentation cross sections of $^{28}$Si at beam energies from 290 A to 1200 A Mev. Nucl. Phys. A 784, 341-367.

Zhang, D.H., Wang, L.C., Li, Y.J., Kodira, S., Yasuda, N., 2013. Projectile fragmentation of 471 A MeV $^{56}$Fe in polyethylene, carbon and aluminium targets. Rad. Meas. 50, 56-60.