Title
Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US

Permalink
https://escholarship.org/uc/item/1rc7070r

Journal
Atmospheric Environment, 40(22)

ISSN
1352-2310

Authors
Helmig, Detlev
Ortega, John
Guenther, Alex
et al.

Publication Date
2006-07-01

DOI
10.1016/j.atmosenv.2006.02.035

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US

Detlev Helmiga,*, John Ortegaa, Alex Guentherb, Jeffrey D. Herrickc, Chris Gerond
d
aInstitute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
bAtmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80307, USA
cUS Environmental Protection Agency, QAQPS, Research Triangle Park, NC 27711, USA
dNational Risk Management Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA

Received 19 August 2005; received in revised form 24 February 2006; accepted 24 February 2006

Abstract

Sesquiterpene (SQT) and montoterpene (MT) emissions from loblolly pine (Pinus taeda L.) were studied by branch enclosure experiments at Duke Forest in Chapel Hill, NC. Four SQT (β-caryophyllene, α-bergamotene, α-humulene, β-farnesene), five MT (α-pinene, β-pinene, β-myrcene, β-phellandrene, limonene), and the oxygenated MT linalool were identified. Emission rates of both compound classes increased exponentially with temperature, albeit SQT temperature coefficients (0.12–0.18 K°C1) were higher than for MT (0.068–0.15 K°C1), resulting in an increased contribution of SQT to the overall biogenic volatile organic compound (BVOC) flux during warm temperature conditions. The highly correlated variables of light and temperature conditions preclude a rigorous characterization of their individual roles in driving these emissions. However, the observations indicate that there may be both temperature-only and temperature/light-dependent components contributing to SQT emission variations. When normalized to 30°C using the best-fit temperature algorithm, total SQT basal emission rate was 450 ng g°C1 h°C1. The potential contribution of SQT from all pine trees (based on the loblolly pine emission factors) to secondary, biogenic organic aerosol in 12 southeastern US states was estimated to be 7 × 106 kg for the month of September which constitutes an appreciable portion of the overall PM 2.5 emission budget. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Sesquiterpenes; Montoterpenes; Emission factors; Organic secondary aerosol

1. Introduction

Sesquiterpene (SQT) hydrocarbons have been identified in biogenic volatile organic compound (BVOC) emissions in numerous studies (e.g. Winer et al., 1992; Helmig et al., 1999). Quantitative SQT emission rate and landscape flux estimates have been scarce and are highly uncertain. This deficiency stems largely from the high chemical reactivity and low volatility of these compounds which render quantitative landscape flux measurements an experimentally challenging task (Ciccioli et al., 1999). Unidentified reactive BVOC emissions, possibly including SQT, have been speculated to be responsible...
for the unaccounted for OH reactivity in forested environments (Di Carlo et al., 2004). Characterization and recent further developments of analytical techniques for SQT measurements (Helmig et al., 2003, 2004a, b; Pollmann et al., 2005) were applied in this study for a focused study of SQT emission rates from loblolly pine (*Pinus taeda* L.), which is a leading timber species in the United States, predominating on more than 13.4 million hectares of southern forest lands (Shultz, 1997).

2. Experimental

This experiment was conducted during a 1-week study period in September 2004 within a loblolly pine plantation (established in 1983) in the Blackwood division at the Duke Forest FACTS-1 site in North Carolina (35\(^\circ\)97'N, 79\(^\circ\)09'W). Emission rates were determined by the branch enclosure technique. Only a brief summary of the most pertinent parameters will be provided here; further details will be presented by Ortega et al. (2006). Four similar branch enclosure systems (E1–E4) were used. Branches were enclosed with 0.05 mm film FEP Teflon bags. Enclosure volumes were ~50–801. Branches were carefully enclosed with the bags, avoiding wall contact with needles, and branches were allowed to acclimate for ~1 day before sampling was started to avoid the sampling of artificially enhanced, stress-induced BVOC emissions. The enclosures were suspended externally to prevent them from touching the needles. Since SQTs rapidly react in ambient air and can be depleted during the sampling procedure in the presence of ozone (Pollmann et al., 2005), the enclosure purge (ambient) air was first passed through ozone scrubbers (charcoal) for all enclosures. The enclosures were suspended externally to prevent them from touching the needles. Since SQTs rapidly react in ambient air and can be depleted during the sampling procedure in the presence of ozone (Pollmann et al., 2005), the enclosure purge (ambient) air was first passed through ozone scrubbers (charcoal) for all enclosures. In addition, enclosure E3 was equipped with a scrubber in series composed of 25 MnO\(_2\)-coated copper screens (OBE Corporation, Fredricksberg, TX) for ozone removal. The purge flow rates into the enclosures were 10–19 l min\(^{-1}\), resulting in typical bag residence times of approximately 3–6 min. Ozone in the enclosure air was routinely measured with an ozone monitor and found to be <2–3 ppb at all times. In order to (a) minimize excessive heating of the air inside the enclosure and to (b) reduce condensation on the bag walls from transpired water vapor, an ice-bath cooled water trap was used in the inflowing air stream of enclosures E1, E2 and E4 to lower the dewpoint and air temperature. In one of the enclosures (E3) air circulation was increased with an aluminum-blade mixing fan (driven by a shaft/fan motor outside of the enclosure). Needle temperatures were recorded with small thermocouple wires that were attached to needles inside the bag. Air temperature inside and outside the enclosures was measured with temperature probes and radiation shielded thermocouples. Photosynthetically active radiation (PAR) was recorded with PAR sensors (LI-190SA quantum sensor, LI-COR, Lincoln, NE) outside the enclosures and corrected for ~5% transmission loss through the Teflon film. Photosynthesis rates were measured in E1, E2 and E4 with a photosynthesis system (LI-6400, LI-COR). E1 and E4 were deployed on branches approximately 10 m above the ground using a walk-up tower within the canopy and E2 and E3 sampled branches on smaller trees on the edge of the stand near ground level. Branches were harvested after the field portion of the study and needles were picked and dried for scaling emission rates to the dry needle mass in each enclosure. Air samples were drawn from the inside of the bag by pulling air through continuously purged 0.32 mm o.d. Teflon tubing onto solid adsorbent cartridges, either with an automated sampler (E1, E4) as described previously (Helmig et al., 2004a) or with small personal sampling pumps (E2, E3). Most samples were collected onto Tenax GR-filled (Alltech Assoc. Inc., Deerfield, IL) glass adsorbent tubes (a few additional samples were collected onto Tenax TA (Alltech) and Carbopur C adsorbent (Supelco, Bellefonte, PA)). Adsorbent cartridges from E1 and E4 were temperature-controlled at 40 °C to minimize water retention on the adsorbent material during sampling. Adsorbent tubes from E2 and E3 were dry-purged (Karbiwnyk et al., 2002) to eliminate condensed water prior to analysis. Typical sampling rates and times were approximately 175–200 ml min\(^{-1}\) (accurate flow measurements were taken for each sample) for 1 h resulting in approximately 9–121 sample volumes. Sodium thiosulfate impregnated glass fiber filter ozone scrubbers (Helmig, 1997; Pollmann et al., 2005) were placed in the sampling flow upstream of the adsorbent cartridges to further reduce potential SQT sampling losses from ozone reactions during the sampling procedure. These filters were tested daily and found to reduce ozone to <2 ppbv at ~1 l min\(^{-1}\) flow rate (which was ~6 times higher than the BVOC sampling flow rate) at ambient ozone levels ranging between ~15 and 60 ppbv. It has been demonstrated that SQTs are not lost to
these filters (Pollmann et al., 2005). Adsorbent and cartridge properties as well as further analytical conditions for sample analysis and calibration by thermal desorption (Perkin Elmer ATD-400), gas chromatography, and dual detection flame ionization and mass spectrometry (GC/MS/FID), and calibration procedures were similar to those described previously (Helmig et al., 2003, 2004a, b). A low flow \((7.2 \pm 0.2 \text{ ml min}^{-1})\) of a multi-component, ppm-level reference standard (toluene; 1,3,5-trimethylbenzene; 1,2,3,4-tetrahydroxynaphthalene; 1,3,5-tri-isopropylbenzene; \(n\)-nonylbenzene) was added to the enclosure purge air flow in E1 and E4 to provide an independent, second calibration approach. The recoveries of this series of increasing molecular weight aromatic compounds were also monitored to validate the recoveries of analytes over a wide range of vapor pressures. Samples were stored in a freezer \((-10^\circ\text{C})\) between sample collection and analysis of adsorbent cartridges in the laboratory. Montoterpene (MT) and SQTs were identified by their MS and GC retention indices. Alpha-pinene, \(\beta\)-pinene, limonene, \(\beta\)-caryophyllene and \(\alpha\)-humulene identifications were furthermore confirmed by analysis of respective standards. From extensive laboratory experiments as well as from the comparison of the reference standard measurements, SQT concentrations and calculated emission rates are estimated to have \(\pm 15\%\) precision and uncertainty. Analysis of recoveries of the reference and MT standards demonstrated that MT were not completely retained on the adsorbent tubes under the selected sampling conditions. Therefore, corrections were applied for these partial sampling losses resulting in an accuracy and precision of \(\pm 30\%\) for the MT data.

3. Results

Four SQT (\(\beta\)-caryophyllene, \(\alpha\)-bergamotene, \(\alpha\)-humulene, \(\beta\)-farnesene) and five MT (\(\alpha\)-pinene, \(\beta\)-pinene, myrcene, \(\beta\)-phellandrene, limonene) and the oxygenated MT linalool were identified in the loblolly pine emission samples. SQT and MT emission rates for the four most predominant SQT and MT in E1 over a 2-day period as well as concurrent temperature and PAR measurements are illustrated in Fig. 1. The temperature shown in this figure is the air temperature inside the enclosure. Temperatures inside the enclosures were typically within 1°C of ambient air temperatures during morning, evening and nighttime hours, and within 2–4 and 6–7°C during most of the day and times of maximum solar radiation (noontime clear skies conditions), respectively. These temperatures were always within normal September conditions for this site. Needle temperatures typically were \(\sim 1–3^\circ\text{C}\) below the air temperatures inside the enclosure. The gas exchange measurements indicated that mid-day photosynthetic rates ranged from 4 to 5 \(\mu\text{mol m}^{-2}\text{s}^{-2}\) which is consistent with other light-saturated measurements at the site (Myers et al., 1999). Results shown in Fig. 1 are representative and consistent with the three other (E2–E4) experiments.

These data clearly show the strong diurnal variability of SQT emissions from loblolly pine. Emission rates of all identified SQTs increased significantly during the day, reaching maximum values in the early afternoon and dropping to less than 5% of their daytime maxima at night. \(\beta\)-caryophyllene constituted the largest contribution to the overall SQT emission flux, followed by smaller contributions from \(\alpha\)-humulene, \(\beta\)-farnesene and \(\alpha\)-bergamotene. Similar to the SQT results, MT emission rates show a strong diurnal variability. The temperature dependencies of SQT and MT emission rates are shown in Fig. 2 along with regression fits to the data. These graphs include data from all four enclosure experiments. The SQT and MT that are emitted at the highest rates are plotted in the upper graphs. The ones with the lowest emission rates are shown at the bottom. Both SQT and MT emission rates showed large increases with temperature. MT emission rates from pines have extensively been studied before and were found to be well described by exponential temperature algorithms (Guenther et al., 1993). Exponential temperature algorithms were approximated for both SQT and MT and are included in these figures.

The temperature response curves reveal a somewhat stronger temperature dependency for SQT than for MT. The four MT temperature coefficients \((\beta [\text{K}^{-1}])\) ranged from 0.068 to 0.15, while the SQT coefficients ranged from 0.12 to 0.18. The empirical MT temperature coefficients compare well with previous reports. Guenther et al. (1993), for example, recommended 0.09 \text{K}^{-1} for MT. Similarly, the range of SQT temperature coefficients falls within the range of previous reports for \(\beta\)-caryophyllene. Tarvainen et al. (2005) reported values of 0.124–0.186 \text{K}^{-1} for \(\beta\)-caryophyllene emissions from Pinus sylvestris and Hansen and Seufert (2003) reported a coefficient of 0.173 \text{K}^{-1} from
The individual temperature response curves were used to calculate the normalized (30 °C) emission rate of individual as well as the total SQT emission rate from loblolly pine (Fig. 3). Under these conditions, \(\beta \)-caryophyllene is the dominant individual SQT, constituting \(\sim 66\% \) of the total SQT emission rate. The three other SQTs contribute \(\sim 10\% - 13\% \) each.

Schuh et al. (1997) used an environmental control chamber to investigate \(\beta \)-caryophyllene emissions from sunflowers and observed a strong light dependence when light levels were varied while temperature was held constant. In contrast to the light-dependent emissions of isoprene, the \(\beta \)-caryophyllene emissions were not negligible in the dark but were about 20% of the rate observed at a PAR of 1000 \(\mu \text{mol m}^{-2} \text{s}^{-1} \). Tarvainen et al. (2005) and Hansen and Seufert (2003) both investigated \(\beta \)-caryophyllene emissions from tree branch enclosures exposed to ambient conditions of covarying light and temperature. While Tarvainen et al. (2004) could not discern any light dependence, Hansen and Seufert (2003) observed a somewhat better agreement between observed and predicted \(\beta \)-caryophyllene emissions when using a light- and temperature-dependent algorithm rather than a temperature-only algorithm. This was also the case for the loblolly pine SQT emission rate variability observed during this study. Similar to the results reported by Schuh et al. (1997), model performance was maximized when it was assumed that 20% of the total SQT emission from loblolly pine is dependent only on temperature while 80% was light- and temperature-dependent. However, a Monte Carlo probabilistic approach assessment indicated that the performance of the light- and temperature-dependent algorithm for predicting SQT emissions was not significantly better than the simpler temperature-only algorithm that was used for the regional extrapolation described below. Although additional experiments are needed to develop a more robust SQT emission algorithm, the exponential temperature relationship

Fig. 1. Two days of SQT (first graph) and MT (second graph) emission rate measurements on a single loblolly pine branch (E1). The third graph shows the 5-min averages of the photosynthetic photon flux density (PPFD) and the temperature inside and outside of the enclosure.
based on these observations is suitable for an initial assessment of regional SQT emissions from pines.

The observations described above indicate that SQT emission rates will increase proportionally more with increasing temperature than for MT. The sum of all SQT and MT emissions as a function of temperature is illustrated in Fig. 4. These data show that below 30°C, MT make up the largest fraction of BVOC emissions from loblolly pine. With increasing temperature, the relative SQT contribution increases and above 30°C SQT become the dominating BVOC emission from loblolly pine. The normalized, 30°C total SQT emission rate is 450 ng g⁻¹ h⁻¹. At 40°C the extrapolated total SQT emissions are twice the MT emission rates. This graph re-emphasizes that SQTs have an increasing significance to the BVOC flux and air

Fig. 2. Emission rates and exponential fit curves of four SQT and four MT as a function of enclosure air temperature. These graphs include data from all four (E1–E4) enclosure experiments.

Fig. 3. Contribution of four quantified SQT to the overall SQT emission rate from loblolly pine. This graph shows the normalized distribution at 30°C. The total, normalized 30°C SQT emission rate is 450 ng C g⁻¹ h⁻¹.
chemistry during high temperature and solar radiation conditions. While these data consider only temperature, it is possible that emission rates could be further enhanced under light-saturated conditions. More rigorous light and temperature relationships need to be developed for a more accurate description of these dependencies.

These emission rates were used to develop estimates of landscape fluxes and aerosol yield from SQT oxidation. It is uncertain if the emission rates and temperature algorithms determined during these September experiments are applicable year-round. Other research has shown that MT basal emission rates from coniferous trees undergo significant seasonal changes (e.g. Peñuelas and Llusia, 2001; Komenda and Köppmann, 2002; Pressley et al., 2004; Kim et al., 2005), with maximum emission rates typically observed during the summer. The only seasonal SQT emission rate studies (Scots pine in Finland) reported so far (Tarvainen et al., 2005; Hakola et al., 2005, 2006) similarly suggest higher SQT basal emission rates during the middle of the growing season; early fall (September) emission rates were significantly lower than mid-summer values. These results imply that the emission rates determined in our September experiments may not be valid for other times during the year.

Because of these uncertainties in seasonal emission rate changes, the data from our experiments were used to develop a flux estimate for September conditions only. Typical pine stand needle biomass densities are 400–900 g m$^{-2}$ (dry weight) for fully stocked stands with leaf area indices of 2.5–4.0 (Geron et al., 1994). We used a typical biomass density of 375 g m$^{-2}$ (the lower value is due to the abundance of plantation pines in the US, which on average are maintained at ~50% stacking), the Duke FACTS-1 forest annual 1/2-h temperature record for 1998–1999, and a vertical canopy temperature distribution according to the model by Guenther et al. (2000) to scale the branch enclosure emission rate data to an estimated SQT landscape flux for loblolly pine plantations. Results from these calculations show that during September, daily integrated SQT fluxes frequently reach the ~2–3 mg m$^{-2}$ d$^{-1}$ range. Applying the same basal emission rate to mid-summer temperature conditions will yield typical daily fluxes of approximately 2–5 mg m$^{-2}$ d$^{-1}$. If seasonal SQT emission rates from loblolly pine behave similarly to emissions from Scots pine in the boreal forests (see above), emission rates would be expected to peak during mid-summer, resulting in significantly larger SQT surface fluxes during the June–August period.

For developing a theoretical estimate of potential SQT fluxes in the southeastern US, these loblolly pine SQT fluxes were applied to all of the Southern pine coverage (but omitting all other conifer and deciduous tree land cover types) for 12 states (AR, AL, FL, GA, MS, NC, SC, OK, TN, TX, VA, LA) in the Southeastern US. Pine coverage in these 12 southeastern states is dominated by loblolly pine and exceeds 30 10^6 ha (USDA, 1988). The resulting estimate for the total SQT flux for the southeastern US accounts to ~9 10^6 kg for the month of September. Since other vegetation types not included in this model analysis are expected to have additional contributions to the overall SQT emissions, actual SQT landscape fluxes are expected to be higher than this estimate.

SQTs undergo rapid depletion in the atmosphere from reactions with atmospheric oxidants, in particular from reactions with OH and ozone. Atmospheric lifetimes are estimated to be only a few minutes (Grosjean et al., 1993; Shu and Atkinson, 1994, 1995; Hoffmann et al., 1997). Aerosol yields from SQT gas-phase oxidation are significant and vary depending on reaction conditions. Aerosol yield from 12% to close to 100% have been observed for β-caryophyllene (Grosjean et al., 1993; Hoffmann et al., 1997; Griffin et al., 1999a, b; Jaoui et al., 2003), the primary SQT identified from loblolly pine. Similar aerosol yields have been found in the oxidation of other SQT (Jaoui and Kamens, 2003; Jaoui et al., 2004). These yields generally reflect the percentage of reacted

Fig. 4. Total SQT and MT emission rate from loblolly pine as a function of temperature.
carbon that was found in the aerosol phase. Since
SQT oxidation will result in an increase in
molecular weight (Turpin and Lim, 2001), the
overall aerosol mass yield is expected to be higher
than these estimates. We applied an estimated
average total aerosol mass yield of 75% (which
includes possible mass gain from oxidation) to the
aforementioned SQT flux estimate, which, in respect
of available literature, is likely a conservative
estimate. This calculation results in an estimated
aerosol production from SQT oxidation of
\(7 \times 10^6\) kg for the month of September. This mass
is 3.5–7% of the estimated September anthropo-
genic primary PM 2.5 emission burden of
1–2 \(\times 10^8\) kg in the southeastern US (EPA, 1999).
This is a simplified estimate and it should be noted
that the SQT flux estimates are based solely on the
branch enclosure emission data. Above canopy
fluxes and aerosol production could possibly be
smaller due to deposition losses to non-aerosol
surfaces within and below the canopy; however, the
significance of such potential SQT losses cannot be
quantitatively described with the current under-
standing of these processes. Aerosol growth and
yields will also depend on the levels of primary
aerosol and the temperature-dependent gas-particle
portioning of SQT and their oxidation products.
The aerosol yields provided here are intended as a
first estimate of the magnitude of the possible
contribution of SQT to aerosol production.

4. Conclusion

SQTs constitute a significant portion of BVOC
emissions from loblolly pine. Loblolly pine is an
important tree species in the Southeastern US, used
abundantly in forestry as well as in urban land-
scapes. The results presented here are from a single
site during a narrow window of conditions. Further
extrapolations will require studies on possible
seasonal changes in the SQT basal emission rates.
Furthermore, the derived estimates for an SQT
landscape scale flux and aerosol yields rely on a
number of assumptions that have large uncertainties
and will require further investigations. More re-
search is in progress to further evaluate the
representativeness of the Duke forest results.

Nonetheless, these findings demonstrate the
potentially significant contribution of SQT to the
overall BVOC emission rate from selected tree
species and to BVOC landscape fluxes. Until
recently, SQT emissions have been considered
negligible or highly uncertain and have not been
included in regulatory air quality model simula-
tions. Our findings re-emphasize that SQT likely do
have an important contribution to local atmo-
spheric chemistry involving oxidants and are
suspected to play an appreciable role in secondary
organic aerosol formation in selected ecosystems
and regions with warm climates and high densities
of loblolly pine and other SQT emitting tree species.

Acknowledgements

This research was supported through grants from
the United States National Science Foundation,
Atmospheric Chemistry Program (ATM #0304704)
and the United States Environmental Protec-
tion Agency (#RD-83107901-0). J. Pollmann and
T. Duhl provided assistance with some of the
environmental and analytical data analyses. We
thank Duke University and Brookhaven National
Laboratory for providing access to facilities at the
Duke Forest research site. This facility is supported
by the Office of Science (BER), US Department of
Energy, Grant No. DE-FG02-95ER62083 and
through its Southeast Regional Center (SERC) of
the National Institute of Global Environmental
Change (NIGEC) under Cooperative Agreement
No. DE-FC02-03ER63613. This study does not
necessarily reflect the views of the EPA and no
official endorsement should be inferred. The Na-
tional Center for Atmospheric Research is spon-
sored by the US National Science Foundation.

References

Ciccioli, P., Brancaleoni, E., Frattoni, M., Di Palo, V., Valentini,
R., Tirone, G., Seufert, G., Bertin, N., Hansen, U., Csiky, O.,
Lenz, R., Sharma, M., 1999. Emission of reactive terpene
compounds from orange orchards and their removal by
within-canopy processes. Journal of Geophysical Research
104, 8077–8094.
Di Carlo, P., Brune, W.H., Martinez, M., Harder, H., Lesher, R.,
Ren, X., Thornberry, T., Carroll, M.A., Young, V., Shepson,
P.B., Riemer, D., Apel, E., Campbell, C., 2004. Missing OH
reactivity in a forest: evidence of unknown reactive biogenic
VOCs. Science 304, 722–725.
EPA, 1999. US EPA National Emissions Inventory 1999, 2002
(www.epa.gov/tnn/chief).
Geron, C., Guenther, A., Pierce, T., 1994. An improved model
for estimating emissions of volatile organic compounds from
forests in the eastern United States. Journal of Geophysical
Research 99, 12773–12792.
Griffin, R.J., Cocker III, D.R., Flagan, R.C., Seinfeld, J.H.,
1999a. Organic aerosol formation from the oxidation of
biogenic hydrocarbons. Journal of Geophysical Research 104, 3555–3567.

Griffin, R.J., Cocker III, D.R., Seinfeld, J.H., Dabdub, D., 1999b. Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophysical Research Letters 26, 2721–2724.

Grosjean, D., Williams, E.L., Grosjean, E., Andino, J.M., Seinfeld, J.H., 1993. Atmospheric oxidation of biogenic hydrocarbons: reaction of ozone with z-pinene, o-limonene and trans-caryophyllene. Environmental Science and Technology 27, 2754–2758.

Guenther, A., Zimmerman, P., Harley, P., Monson, R., Fall, R., 1993. Isoprene and monoterpenes emission rate variability: model evaluation and sensitivity analysis. Journal of Geophysical Research 98, 12609–12617.

Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., Fall, R., 2000. Natural emissions of non-methane volatile organic compounds; carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment 34 (12–14), 2205–2230.

Hakola, H., Tarvainen, V., Baekc, J., Ranta, H., Bonn, B., Rinne, J., Kulmala, M., 2005. Seasonal variation of monoo- and sesquiterpene emission rates of Scots pine. Biogeosciences Discussions 2, 1697–1717.

Hakola, H., Tarvainen, V., Rinne, J., Hellén, H., 2006. Sesquiterpene emissions from boreal forest: In: Aerosolitutkimusseura, R.Y. (Ed.), Finnish Association for Aerosol Research, Report in Aerosol Science, Proceedings of the First iLEAPS Science Conference, Boulder, Colorado, USA, 21–26 January 2006, pp. 75–76.

Hansen, U., Seufert, G., 2003. Temperature and light dependence of 3-caryophyllene emission rates. Journal of Geophysical Research 108 (D24).

Helming, D., 1997. Review article: ozone removal techniques in the sampling of atmospheric volatile organic trace gases. Atmospheric Environment 31, 3635–3651.

Helming, D., Klinger, L.F., Guenther, A., Verling, L., Zimmerman, P., Geron, Ch., 1999. Biogenic volatile compound emissions. I. Identifications from three sites in the US. Chemosphere 38, 2163–2187.

Helming, D., Revermann, T., Pollmann, J., Kaltenschmidt, O., Jiménez Hernández, A., Bocquet, F., David, D., 2003. Calibration system for sesquiterpene analysis in air. Journal of Chromatography A 1002, 193–211.

Helming, D., Revermann, T., Hall, B., 2004a. Characterization of a pressurized C5–C16 hydrocarbon gas calibration standard for air analysis. Analytical Chemistry 76, 6528–6534.

Helming, D., Bocquet, F., Pollmann, J., Revermann, T., 2004b. Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments. Atmospheric Environment 38, 557–572.

Hoffmann, T., Odum, J.R., Bowman, F., Collins, D., Klockow, D., Flagan, R.C., Seinfeld, J.H., 1997. Formation of organic aerosol from the oxidation of biogenic hydrocarbons. Journal of Atmospheric Chemistry 26, 189–222.

Jaoui, M., Kamens, R.M., 2003. Gas and particulate distribution form the photooxidation of z-humulenol in the presence of NOx, natural atmospheric air and sunlight. Journal of Atmospheric Chemistry 46, 29–54.

Jaoui, M., Leungsakul, S., Kamens, R.M., 2003. Gas and particle products distribution from the reaction of b-caryophyllene with ozone. Journal of Atmospheric Chemistry 45, 261–287.

Jaoui, M., Sexton, K.G., Kamens, R.M., 2004. Reaction of z-cedrene with ozone: mechanism, gas and particulate products distribution. Atmospheric Environment 38, 2709–2725.

Karbiwnyk, C.M., Mills, C.S., Helming, D., Birks, J.W., 2002. Minimization of water vapor interference in the analysis of non-methane volatile organic compounds by solid absorbent sampling. Journal of Chromatography A 958, 219–229.

Kim, J.C., Kim, K.J., Kim, D.S., Han, J.S., 2005. Seasonal variations of monoterpenes emissions from coniferous trees of different ages in Korea. Chemosphere 59, 1685–1696.

Komenda, M., Koppmann, R., 2002. Monoterpenes emissions from Scots pine (Pinus sylvestris): field studies of emission rate variabilities. Journal of Geophysical Research 107 (Art. No. 4161).

Myers, D.A., Thomas, R.B., Delucia, E.H., 1999. Photosynthetic capacity of loblolly pine (Pinus taeda L.) trees during the first year of carbon dioxide enrichment in a forest ecosystem. Plant Cell and Environment 22, 473–481.

Ortega, J., Helming, D., Herrick, J., 2006. A review of experimental approaches for the study of reactive and low volatility biogenic organic compound (BVOC) emissions by vegetation enclosure techniques. Manuscript in preparation.

Pétiluas, J., Llusia, J., 2001. Seasonal patterns of non-terpenoid C-6-C10VOC emission from seven Mediterranean woody species. Chemosphere 45, 237–244.

Pollmann, J., Ortega, J., Helming, D., 2005. Analysis of atmospheric sesquiterpenes: sampling losses and mitigation of ozone interferences. Environmental Science and Technology 39, 9620–9629.

Pressley, S., Lamb, B., Westberg, H., Guenther, A., Chen, J., Allwine, E., 2004. Monoterpenes emissions from a Pacific Northwest old-growth forest and impact on regional VOC emission estimates. Atmospheric Environment 38, 3089–3098.

Schuh, G., Heiden, A.C., Hoffmann, T., Kuhl, J., Rockel, P., Rudolph, J., Wildt, J., 1997. Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity. Journal of Atmospheric Chemistry 27, 291–318.

Shu, Y., Atkinson, R., 1994. Rate constants for the gas-phase reactions of O3 with a series of terpenes and OH radical formation from the O3 reactions with sesquiterpenes at 298 ± 2K. Journal of Chemical Kinetics 26, 1193–1204.

Shu, Y., Atkinson, R., 1995. Atmospheric lifetimes and fates of a series of sesquiterpenes. Journal of Geophysical Research 100, 7275–7281.

Shultz, R.P., 1997. Loblolly Pine: The Ecology and Culture of Loblolly Pine (Pinus taeda L.). Agriculture Handbook 713. US Department of Agriculture, Forest Service, Washington, DC.

Tarvainen, V., Hakola, H., Hellen, H., Bick, J., Hari, P., Kulmala, M., 2005. Temperature and light dependence of the VOC emissions of Scots pine. Atmospheric Chemistry and Physics 5, 989–998.

Turpin, B.J., Lim, H.J., 2001. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Science and Technology 35, 602–610.

USD, 1988. The South’s 4th Forest. USDA Forest Service Resource Report #24.

Winer, A.M., Arey, J., Atkinson, R., Aschmann, S.M., 1992. Emission rates of organics from vegetation in California’s Central Valley. Atmospheric Environment 26A, 2647–2659.