Rapid Aquaporin Translocation Regulates Cellular Water Flow

MECHANISM OF HYPTONICITY-INDUCED SUBCELLULAR LOCALIZATION OF AQUPORIN 1 WATER CHANNEL

Matthew T. Conner, Alex C. Conner, Charlotte E. Bland, Luke H. J. Taylor, James E. P. Brown, H. Rheinallt Parri, and Roslyn M. Bill

From the School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom, and the Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom

Background: Aquaporin channels ensure appropriate membrane permeability to water in all cells. The flow of water across cell membranes is fundamental to the physiology of all organisms. It is now clear that osmosis is not sufficient for this purpose; rather aquaporin (AQP) channels are required to ensure appropriate membrane permeability to water molecules (1, 2). Over the past two decades, the molecular basis of selective water passage through the AQP pore (3, 4), as well as the structural biology of the family (5), have been established. However, there is a gap in our current understanding of how AQPs regulate the flow of water in and out of cells to meet the constant and rapid changes in local water availability that challenge them.

Membrane permeability to water is a function of the properties of the AQP pore as well as the abundance of AQP molecules in the cell membrane. The AQP pore is acknowledged widely to be constitutively open and highly specific. Some AQPs are permeable only to water, whereas others (e.g. the aquaglyceroporins) are permeable to both water and small non-ionic molecules such as glycerol, urea, and ammonia (3, 4, 6). Regulation via gating mechanisms, which allow open and closed states, has been reported for some plant and microbial AQPs (7). However, this is not a widely accepted regulatory mechanism for mammalian AQPs (8).

Regulation of AQP abundance, the number of pores per unit plasma membrane, is possible via several mechanisms. Direct regulation by AQP gene expression and/or AQP protein degradation can be achieved over a time scale from hours to days (9, 10). Indirect, receptor-mediated mechanisms (11, 12) also have been described that account for more rapid regulation of AQP abundance on a time scale of minutes (13, 14). The best studied example of this is the regulation of AQP2 translocation in human kidney cells, which is dependent on vasopressin-medi-
Rapid and Reversible Aquaporin 1 Translocation

ATed activation of protein kinase A by the G protein-coupled receptor, vasopressin V2 receptor (15). Of the 13 known AQPs in the human body, AQP1 (16), AQP3 (17), and AQP5 (18) also have been shown to undergo translocation to the plasma membrane in response to hormonal activation of specific G protein-coupled receptors.

Neither gene expression nor indirect, receptor-mediated translocation can explain the direct regulation of AQPs that may be necessary to respond to the rapidly changing extracellular environment on a time scale of seconds. We recently demonstrated that increased translocation of AQP1 is triggered on this rapid timescale by hypotonic stimulus in a specific protein kinase C (PKC)- and microtubule-dependent manner (19). Furthermore, returning the extracellular environment to its original tonicity reversed this dynamic subcellular localization. In contrast, a hypotonic stimulus had little effect on AQP2 localization in the absence of the vasopressin V2 receptor required for AQP2 translocation (19).

The change in cell volume that results from the transport of water across biological membranes is thought to be dependent on PKC and calcium, as well as the presence of transient receptor potential (TRP) channels and AQPs (20–22). The data presented here provide evidence of a mechanistic link between these elements. In this study, we combined laser scanning confocal microscopy of chimeras of AQP1 with green fluorescent protein (AQP1-GFP), calcium imaging, and mutagenesis to determine that AQP1 translocation underpins the regulation of cellular water flow, as measured by changes in cell volume. Our data show that manipulating rapid AQP1 translocation, which can be observed in primary astrocytes as well as model cell lines, modulates changes in cell volume and that this rapid subcellular localization of AQP1 requires extracellular calcium influx, TRP channels, calmodulin, and specific phosphorylation at two known PKC sites, Thr-157 and Thr-239. We therefore suggest that the regulation of AQPs provides the rapid homeostatic control required by cells in a constantly changing osmotic environment.

EXPERIMENTAL PROCEDURES

Materials—Cell-permeable inhibitors were purchased as follows: phorbol 12-myristate 13-acetate (PMA; 0.1mM (23)), 1-octyl-2-acetyl-sn-glycerol (ED$_{90}$ in μM range but more specific than PMA (24, 25)), caffeine (K$_d$ 0.1mM (26)), and W7 calmodulin antagonist (N-$\text{N}-(\text{6-aminohexyl})-5$-chloronaphthalene-1-sulfonamide; K$_d$ 1mM (27, 28)) from Sigma; TRPC1 antagonist SKF96365 (10 μM concentrations are utilized typically to assay TRPC function (29)) from Ascent Scientific, Ltd. (Stevenage, UK); Myr-PKC 19–27 and hypericin (23) from Fisher Scientific (Loughborough, UK); Myr-PKA 14–22 from Merck Chemicals (Nottingham, UK); and CPA (cyclopiazonic acid; inhibits sarco/endoplasmic reticulum Ca$^{2+}$-ATPase with nanomolar affinity (31)) from Tocris Biosciences (Bristol, UK). Fluorodish© dishes were from WPI, Ltd. (Stevenage, UK). Polyclonal rabbit anti-AQP1 was from Alomone (Jerusalem, Israel), secondary goat anti-rabbit IgG-FITC was from Santa Cruz Biotechnology (Santa Cruz, CA), and monoclonal anti-glial fibrillary acidic protein antibody was from Millipore. Gateway vectors and enzymes were from Invitrogen. Unless otherwise specified, all other chemicals were from Sigma or Fisher. Cell culture reagents were from Invitrogen or Sigma. In each experiment, all inhibitors and activators were analyzed using wild-type AQP1-GFP as a control.

Expression Constructs and Mutagenesis—AQPs were fused with carboxyl-terminal GFP using the Invitrogen Gateway™ cloning system according to the manufacturer’s instructions. Sequence-verified AQP cDNAs were a kind gift of Dr. Kristina Hedfalk (Göteborg University). For directional cloning of blunt-ended PCR products into an entry vector using the Gateway™ system, four bases (GGGG) were added to the 5’-end of the forward primer followed by the 25-bp attB1 attachment sequence (underlined). This was followed by five bases (boldface type) to introduce a KozaX sequence upstream and to keep the sequence in frame with the AQP coding sequence. Finally, 18–25 bp of the AQP sequence were added to create the amino-terminal forward primers, 5′-GGGG ACA AGT TTG TAG AAA AAA GCA GGC TCC ACC ATG-AQP(18–25 bp)-3′.

For the reverse primer, four bases (GGGG) were added to the 5’-end followed by the 25-bp attB2 attachment sequence (underlined), and then one base (boldface type) was added to keep the sequence in frame with the AQP coding sequence. Finally, 18–25 bp of the AQP sequence without the stop codon were added to create the carboxyl-terminal forward primers 5′-GGG GAC CAC TTT GTA CAA GAA AGC TGG TGC–AQP(18–25 bp)-3′. DNA polymerase from Thermococcus kodakaraensis (KOD) polymerase was used in PCR amplification of the AQP cDNA. Samples were heated to 94 °C for 2 min, followed by 30 cycles of 94 °C for 30 s, 55 °C for 30 s, and 68 °C for 3 min, then 68 °C for 7 min. Purified PCR products were subcloned into the pDONR221™ entry vector (Invitrogen) using the attB1 and attB2 sites in a reaction with Gateway™ BP Clonase™ enzyme mix (Invitrogen). pDONR221™ vectors containing the required sequences were recombined with the pcDNA-DEST47 Gateway™ vector using the attL and attR reaction with Gateway™ LR Clonase™ enzyme mix (Invitrogen). This created expression vectors with the cycle 3 mutant of the GFP gene at the carboxyl terminus of the AQP gene of interest, which were expressed subsequently as fusion proteins. All mutant constructs were amplified using the well-established, modified QuickChange procedure (Stratagene), as described previously (32). All plasmids were handled and purified using standard molecular biological procedures.

Cell Culture and Transfection—HEK 293 cells were cultured routinely in DMEM supplemented with 10% (v/v) fetal bovine serum in humidified 5% (v/v) CO$_2$ in air at 37 °C. Cells were seeded into 30-mm Fluorodish™ dishes and transfected after 24 h at 50% confluency using the Transfast (Promega) transfection protocol with 3 μg of DNA/dish. Cortices were dissected from neonatal 2–5-day-old Wistar rats and placed in cold HEPES-buffered saline. Following mechanical digestion in modified glial medium (DMEM/F12 culture medium with 10% fetal bovine serum, 1% glutamine, and 10 μg/ml gentamicin), the tissue was digested chemically in 1× trypsin and DNase for 25 min at 37 °C. The tissue was then washed twice with glial medium and dissociated into a cell suspension by trituration three times sequentially through a 5-ml pipette followed by a fire-polished Pasteur pipette. Suspended cells were diluted in
Rapid and Reversible Aquaporin 1 Translocation

10 ml of glial medium, and passed through a 40 μM strainer. Following centrifugation (500 × g for 5 min), the supernatant was removed, and the pellet was suspended in 10 ml of glial medium. Cells were seeded at 2 × 10^6 cells/T75 cm² flask in 15 ml of glial medium and incubated at 37 °C in 5% CO₂, changing the medium every 2 days until confluency was achieved (~6–7 days). Astrocytes were purified by shaking at 350 rpm for 6 h at 37 °C to separate oligodendrocytes from astrocytes; the glial medium and oligodendrocytes were replaced with fresh medium and shaken for 18 h and then again for a further 24 h changing the medium every 6 h. Cells were reseeded at 3 × 10^5 cells/T75 cm² flask. Identification of primary astrocytes was confirmed by immunocytochemistry.

Primary Astrocyte Immunocytochemistry—Endogenous AQP1 protein was visualized in isolated rat primary astrocytes. Cells grown on coverslips and exposed to glial medium or diluted glial medium were fixed by perfusing (optimized to ensure toxicity changes did not affect expression profile) with 4% (v/v) paraformaldehyde in phosphate-buffered saline for 15 min at room temperature, washed twice with phosphate-buffered saline, and permeabilized using a blocking solution containing 0.25% (v/v) Triton X-100, 1% (v/v) goat serum and 1% (w/v) bovine serum albumin in phosphate-buffered saline. Successive incubations with primary and secondary antibodies were carried out for 16 h at 4 °C and 1 h at room temperature, respectively. Primary antibodies (1:500) were detected by species-specific FITC-conjugated secondary antibodies (1:1,000). Cells were washed in phosphate-buffered saline, and coverslips were mounted with Vectorshield (Vector Laboratories). The cells were visualized, and confocal images were acquired using confocal laser scanning microscopy as described below. Because perfused, fixed primary cells were used, the same live cell could not be compared under differing conditions; rather, cells from the same subcultured population were compared on different cover slips.

Confocal Microscopy—AQP-GFP fusion proteins were visualized in live cells enclosed in a full environmental chamber by confocal laser scanning microscopy. Confocal images were acquired with a Leica SP5 laser scanning microscope and a Zeiss Axiovert 200 m inverted microscope with a 63× (1.4 numerical aperture) oil immersion objective for immunocytochemical analysis or a Zeiss Axiovert 200 m upright microscope with a 20× (1.0 numerical aperture) water dipping objective for live cell analysis. The nucleus and the plasma membrane was achieved by staining with FM4-64 and overlaying the GFP images. Nuclei were identified through DAPI stain—fluorescence at the membrane. This was termed the relative membrane expression (RME) (19). Identification of the plasma membrane was achieved by staining with FM4-64 and overlaying the GFP images. Nuclei were identified though DAPI staining. The overlay of the GFP image either with the bright-field image or the red fluorescence emitted by FM4-64 clearly indicated integration of GFP-tagged AQP1 at the plasma membrane as well as in the cytoplasm of HEK293 cells.

Calcium Imaging—Calcium analysis was performed as described previously (33). Briefly, transfected cells were loaded with Fluo-4 AM (Invitrogen) by incubating for 40–60 min at 37 °C with 10 μM of the indicator dye and 0.01% pluronic acid. Cells were placed in a recording chamber with a moveable platform (MP MTP-01, Scientifica, Uckfield, UK) fitted to a Nikon FN-1 upright microscope. Whole-field images were acquired routinely every 5 s with a 20× objective lens using a fluorescence imaging system equipped with a Cairn optoscan monochromator (Cairn Research, Faversham, UK) and an Hamamatsu ORCA-ER camera (Digital Pixel, Brighton, UK). Typical exposure to the selected monochromator light wavelength was 50–100 ms every 1–5 s.

Estimation of Cell Volume—10–Hz confocal x-y images of the same cell under both isotonic and hypotonic conditions were converted to binary format using ImageJ software. The comparative z-position was maintained and confirmed by the appropriation of the z-plane with the largest surface area as well as cross-referencing fluorescence intensity from other areas of the selected image (34). The surface area was then calculated using particle analysis software in ImageJ. Each estimate of cell volume was made from at least 10 independent cells from at least three separate experimental determinations.

RESULTS

Endogenous AQP1 Translocation Is Triggered by Hypotonic Stimulus—AQP1 is found in diverse tissues (35), including astrocytes (36). To confirm the physiological relevance of hypotonicity-triggered AQP1 translocation, pri-
Primary astrocytes from rat cortex were stimulated hypotonically, perfused with formaldehyde, and examined using confocal microscopy. GFAP (glial fibrillary acidic protein) staining confirmed the astrocytic phenotype of the cells. Immunostaining with an anti-AQP1 antibody suggested increased plasma membrane localization of endogenous AQP1: the RME significantly increased from 30% to 62%, \(p < 0.01 \), following hypotonic stimulus (Fig. 1). Interestingly, increased nuclear membrane staining was also apparent in the primary astrocytes (Fig. 1). These results are in agreement with our previous studies using heterologous GFP-tagged AQP1 in HEK293 cells (19). HEK293 cells transfected with heterologous, GFP-tagged AQP1 were therefore used as a model for AQP translocation, allowing live cell imaging of individual, treated cells (compared with the fixed astrocytes), and analysis of AQP mutants. This model was used for all subsequent experiments.

Cell Volume Increases with AQP1 Translocation—To establish that functional AQP1 was inserted into the plasma membrane, a cell-swelling assay was performed as it is established that aquaporins function by allowing water movements across membranes (1, 2). Following hypotonic exposure, cell volume was estimated using x-y surface area measurement at the z-stack plane of maximal area (34). HEK293 cells transfected with wild-type AQP0-GFP had an increase in surface area of 5% (compared with cells in DMEM) after a 30-s hypotonic exposure (\(p < 0.01 \); Fig. 2A) compared with 28% for cells transfected with AQP1-GFP (\(p < 0.01 \); Fig. 2B). This increase was sustained for at least 15 min and was fully reversible on removal of the hypotonic stimulus. These functional experiments correlate aquaporin translocation (as measured by the fluorescence distribution profiles) to functional cell swelling, strongly suggesting that functional AQP1 is inserted into the plasma membrane.

Phosphorylation at Both PKC Sites Is Necessary for AQP1 Translocation—To establish a causal relationship between AQP1 translocation and the estimated increase in cell volume, we searched for mutant forms of AQP1 that would not translocate and therefore should not affect cell volume. We previously showed that the PKC inhibitor, Myr-PKC 19–27, ablates rapid hypotonicity-mediated membrane translocation of AQP1 (19). In peptide mimetic studies, PKC has also been demonstrated to phosphorylate AQP1 at T157 and T239 (37), although no effect on translocation was measured. We therefore mutated the PKC-dependent threonine

FIGURE 1. AQP1 subcellular localization in fixed, primary rat astrocytes. Immunocytochemistry showing expression profiles of endogenous AQP1 in primary rat astrocytes. Cells shown in each representative image are different fixed cells from the same subculture exposed to different osmotic conditions. Fluorescence amplitudes (a.u., arbitrary units) along the line scans (in yellow on the image) are displayed graphically below each image. RME is calculated from at least five line scan analyses performed in triplicate on a minimum of three independent experiments. Control medium and hypotonic medium are DMEM and F12 at a ratio of 1:1 with osmolalities of 322–374 mosM/kg H2O and 107–125 mosM/kg H2O (diluted with water), respectively. All images and analyses shown are a single representation contributing to the mean value quoted in the text and in Table 1.

FIGURE 2. Regulation of hypotonicity-induced increase in cell volume by AQP1 translocation in HEK293 cell. Representative images showing x-y surface area (SA) estimation of cell volume. The binary image and surface area are calculated from the z-stack plane at the maximum area. All measurements were taken at 48 h post-transfection. A, HEK293 cells transfected with wild-type AQP0-GFP. B, HEK293 cells transfected with wild-type AQP1-GFP. C, HEK293 cells transfected with the T157A/T239A translocation-deficient mutant of AQP1-GFP. Control medium and hypotonic medium are DMEM with osmolalities of 322–374 mosM/kg H2O and 107–125 mosM/kg H2O (diluted with water), respectively. Distribution profiles along the line scans (in yellow on the image) are displayed graphically by each image indicating AQP distribution in control and hypotonic medium (a.u. is arbitrary units). All images and analyses shown are a single representation contributing to the mean value quoted in the text and in Table 1.
reresidues of AQP1, individually, to alanine to remove the putative phosphorylation site, and to aspartate to mimic the charge induced by phosphorylation of threonine. This created the AQP1-GFP mutants, T157A, T239A, T157D, and T239D. Surprisingly, all four single mutants translocated to the plasma membrane in hypotonic medium: the RMEs in control medium were 22 ± 3%, 21 ± 5%, 24 ± 3%, and 18 ± 5%, respectively, and were 75 ± 2%, 81 ± 9%, 73 ± 6%, and 69 ± 9% in hypotonic medium, respectively (Table 1). This indicated that mutation of each putative phosphorylation site affected neither AQP1 translocation nor its constitutive surface localization.

In contrast, double mutation of both putative PKC phosphorylation sites to alanine, creating the mutant T157A/T239A, completely ablated hypotonicity-induced translocation of AQP1-GFP: the RME in control medium was 21 ± 5% and in hypotonic medium was 21 ± 2% (Table 1) even after 15 min of exposure. Double mutation of both putative PKC phosphorylation sites to aspartate created the phosphomimetic mutant T157D/T239D. As expected, T157D/T239D translocated to the plasma membrane following hypotonic exposure (RME in control medium was 23 ± 4% rising to 75 ± 7% in hypotonic medium; Table 1). We concluded that although the double aspartate mutant, T157D/T239D, was not constitutively expressed at the cell surface, it is primed for rapid translocation to the membrane following hypotonic exposure.

AQP1 Translocation Regulates Changes in Cell Volume—Changes in cell volume were estimated for cells transfected with mutant AQP1 constructs. After a 30-s hypotonic exposure, HEK293 cells transfected with the translocation-deficient mutant T157A/T239A had an increase of 7 ± 3% compared with cells in DMEM (p < 0.01; Fig. 2C). Cell volume was not significantly different from wild-type (p > 0.05) for all four single mutants (T157A, T239A, T157D, and T239D) or the T157D/T239D mutant. The difference in hypotonicity-induced volume change between cells transfected with wild-type AQP1-GFP (28 ± 4%; Fig. 2B) and those transfected with the translocation-deficient mutant (T157A/T239A) supports an interpretation that AQP1 translocation to the plasma membrane regulates changes in cell volume in response to hypotonic conditions.

Phosphorylation Is Not Sufficient for Hypotonicity-induced AQP1 Translocation—Incubation of cells expressing AQP1-GFP with either the specific PKC inhibitor Myr-PKC 19–27 (19) or hypericin PKC inhibitor, inhibited hypotonicity-induced subcellular localization of wild-type AQP1-GFP (Table 1). We reasoned that if the T157D/T239D mutant was a mimic of a doubly phosphorylated state and hence was primed for localization, these compounds should not inhibit its translocation; indeed, no inhibition of hypotonicity-induced translocation was observed (Table 1). The RME for T157D/T239D in the presence of Myr-PKC 19–27 was 24 ± 6% in control medium rising to 78 ± 8% in hypotonic medium. In the presence of hypericin the RME values of T157D/T239D were 23 ± 5% in control medium and 72 ± 6% in hypotonic medium. Importantly, the PKC activators, PMA and 1-oleoyl-2-acetyl-sn-glycerol, did not stimulate wild-type AQP1 translocation in control medium (following incubation with PMA or 1-oleoyl-2-acetyl-sn-glycerol, RME

Table 1

Construct/initial medium	RME initial medium	RME following hypotonic stimulus	Hypotonicity-induced translocation of AQP	Hypotonicity-induced ([Ca$^{2+}$]$_i$) response (% of basal [Ca$^{2+}$]$_i$)
Wild-type AQP1-GFP				
Control medium	19 ± 3%	73 ± 5%	Y	40 ± 7%
CPA	18 ± 4%	71 ± 9%	Y	43 ± 12%
Extracellular calcium-free medium	21 ± 4%	24 ± 4%	N	0 ± 1%
Extracellular calcium-free medium + CPA	23 ± 3%	25 ± 5%	N	1 ± 1%
Myr-PKC 19–27 inhibitor	21 ± 2%	24 ± 3%	N	33 ± 6%
Hypericin PKC inhibitor	22 ± 4%	23 ± 3%	N	38 ± 7%
W7 CAM inhibitor	25 ± 4%	28 ± 6%	N	38 ± 7%
SKF96365 TRPC1 antagonist	26 ± 5%	25 ± 6%	N	38 ± 7%
PMA PKC activator	20 ± 2%	75 ± 4%	Y	
OAG PKC activator	22 ± 5%	71 ± 7%	Y	
Caffeine	26 ± 4%	72 ± 6%	Y	
T157A AQP1-GFP				
Control medium	22 ± 3%	75 ± 2%	Y	34 ± 5%
T239A AQP1-GFP				
Control medium	21 ± 5%	81 ± 9%	Y	32 ± 6%
T157D AQP1-GFP				
Control medium	24 ± 3%	73 ± 6%	Y	35 ± 4%
T239D AQP1-GFP				
Control medium	18 ± 5%	69 ± 9%	Y	37 ± 6%
T157A/T239A AQP1-GFP				
Control medium	21 ± 5%	21 ± 2%	N	46 ± 10%
T157D/T239D AQP1-GFP				
Control medium	23 ± 4%	75 ± 7%	Y	40 ± 7%
Myr-PKC 19–27 inhibitor	24 ± 6%	78 ± 8%	Y	
Hypericin PKC inhibitor	23 ± 5%	72 ± 6%	Y	
W7 calmodulin antagonist	28 ± 5%	22 ± 4%	N	

Experiments were performed in HEK293 cells expressing the proteins indicated and cultured in the specified medium. RME values are the mean ± S.E. of at least five line scan analyses performed in triplicate on a minimum of three independent experiments. The intracellular calcium ([Ca$^{2+}$]$_i$) responses are the mean ± S.E. of 100 individual cell trace analyses of a minimum of three independent experiments. CaM indicates calmodulin, and OAG indicates 1-oleoyl-2-acetyl-sn-glycerol.
Rapid and Reversible Aquaporin 1 Translocation

Inhibition of Mechanosensitive TRP Channels Prevents Hypotonicity-induced AQP1 Translocation—Calcium-permeable TRP channels are involved in the response of mammalian cells to changes in extracellular osmolality (38). The stretch-activated TRP channel, TRPC1 (39, 40), is known to be present in HEK293 cells (41) and may be activated by the entry of water into cells upon translocation of AQP1. The rapid and transient response of TRPC1 to hypotonicity suggests that calcium entry through TRP channels is a driving force for AQP1 translocation. Supporting this idea, we recently showed that inhibition of TRPC1 channels by the specific antagonist SKF96365 blocks the onset of AQP1 translocation in response to hypotonicity (32). This suggests that calcium entry through TRP channels is necessary for the rapid and transient AQP1 translocation observed upon exposure to hypotonicity.

Extracellular Calcium Influx Is Necessary for Hypotonicity-induced AQP1 Translocation—Our findings are consistent with the role of calcium in AQP1 translocation described by others (21-23). For example, the calcium channel blocker CPA inhibits both calcium-dependent and calcium-independent AQP1 translocation, and the effect of CPA is reversed by incubation in normal medium. This suggests that calcium entry is essential for AQP1 translocation and that calcium is necessary for the ATP-dependent phosphorylation and calcium influx through TRP channels required for AQP1 translocation.

Calcium Entry Mediates AQP1 Translocation—Calcium entry through TRP channels is known to activate the Nterminal domain of AQP1. This domain contains an acidic translocation domain (ATD) that is necessary for AQP1 translocation (24). We recently showed that expression of the ATD domain alone induces AQP1 translocation (25) and that this effect is calcium-dependent (26). These findings support the idea that calcium entry through TRP channels is necessary for AQP1 translocation.

Calcium Entry and AQP1 Translocation—Calcium entry through TRP channels is a key factor in the regulation of AQP1 translocation. Our findings suggest that calcium entry through TRP channels is necessary for the rapid and transient AQP1 translocation observed upon exposure to hypotonicity. This suggests that calcium entry through TRP channels is a driving force for AQP1 translocation and that calcium is necessary for the ATP-dependent phosphorylation and calcium influx through TRP channels required for AQP1 translocation.
nels, calmodulin is a further critical component of the AQP translocation mechanism.

DISCUSSION

There are 13 known members of the AQP family in humans (numbered AQP0 to AQP12), and they are found in different tissues throughout the body; wherever there is water (42). Impaired water homeostasis is associated with a wide range of conditions such as diabetes, high blood pressure, and brain swelling after stroke or head injury. These can become especially problematic as we age because the water content of our body declines from 60–65% of body mass in middle age to 50% by the age of 80 (43). Understanding the mechanisms of AQP regulation will therefore open up new avenues for therapeutic discovery.

Although recent advances have described AQP structure (5) and have established the mechanism of water selectivity through the AQP pore (3, 4), progress in understanding AQP regulation in mammalian cells has been limited to the role of AQP gene expression (9, 10) or AQP translocation via indirect G protein-coupled receptor networks (44) in the medium to long term (10). The latter has been comprehensively studied for AQP2: endocrine activation of vasopressin V2 receptor is required for membrane localization of constitutive, intracellular AQP2 on a 15–60 min time scale (13, 14, 45). In this study,
we describe a physiologically relevant (Fig. 1) and direct mechanism for the regulation of functional AQP1 translocation (Fig. 2) on a timescale of seconds (Fig. 5). This mechanism incorporates our previous observation that AQP1 translocation is mediated by microtubules (19), which also have a role in AQP2 translocation (46).

Role for Calcium in Hypotonicity-induced AQP Translocation—The regulation of cell permeability via the action of AQP channels is central to the control of cell water transport and cell volume. Cells exposed to hypotonic stimuli often exhibit calcium elevations (47), although little is known about the role of this signal. The TRP calcium channel family can be activated by extracellular hypotonicity (48, 49), and members of this family have been shown to be involved in a hypotonicity-induced reduction of AQPs abundance over a period of hours (50). However, to our knowledge, there is no previous indication that hypotonicity-induced calcium elevations directly induce a rapid translocation of AQPs. The findings in this study show that a cytosolic elevation of calcium following hypotonic stimulus evokes, and is necessary for, the translocation of AQP1 to the plasma membrane and that the inhibition of the TRP channel endogenous to HEK293 cells (TRPC1) prevents the hypotonicity-mediated subcellular localization of AQP1 to the plasma membrane. Furthermore, sustained translocation was induced in conditions where intracellular calcium stores were depleted, but only transient translocation, with no maintained plasma membrane localization, was induced in the absence of extracellular calcium, indicating that a calcium signal derived from extracellular or intracellular sources is sufficient. However, the absence of maintained plasma membrane localization with no external calcium, which would also lead to intracellular store depletion, shows that a sustained calcium signal is necessary for continued AQP1 plasma membrane localization. This is supported by the observations that a return to control medium and a reduction in calcium signal coincides with internalization of AQP1. Interestingly, as the sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase inhibitor, CPA, had no effect on sustained AQP1 localization, there may be no requirement for extracellular calcium to first pass through the intracellular stores. This may reflect that under normal conditions, the influx of extracellular calcium is the key requirement.

Phosphorylation-dependent Mechanism for Rapid, Direct Hypotonicity-induced AQP Translocation—The phosphorylation of AQPs is well established and several kinases are implicated in observed increases in water permeability, including protein kinases A and C, casein kinase II, and calcium/calmodulin kinase (9). We show that in addition to the requirement for calcium, hypotonicity-induced AQP1 translocation is both calmodulin- and PKC-dependent. The mechanism for the PKC-dependent nature of this movement requires the synergistic qualities of both known PKC phosphorylation sites of AQP1 (Thr-157 and Thr-239) (37). Neither residue, individually substituted with alanine or aspartate, caused any obvious phenotype under our experimental conditions. However a double alanine substitution (T157A/T239A) blocked all hypotonicity-mediated movement of AQP1. The fact that the T157D/T239D mutation did not result in constitutive plasma membrane localization is further consistent with our proposed mechanism in which hypotonicity-induced calcium elevations are sustained via extracellular-calcium influx and is mediated by calmodulin (Table 1): the calmodulin antagonist, W7, inhibited hypotonicity-induced AQP1 membrane localization but not hypotonicity-induced calcium elevations. It would appear that the T157D/T239D double mutation does not affect the calcium/calmodulin mechanism but rather mimics the charges induced by phosphorylation of Thr-157 and Thr-239, allowing translocation to occur. The calmodulin antagonist W7 inhibited hypotonicity-induced translocation of T157D/T239D but neither PKC inhibitor had any effect on hypotonicity-induced translocation of this construct. This T157D/T239D phosphomimetic AQP mutant is primed for translocation and therefore does not require PKC for membrane localization following hypotonicity-induced influx of extracellular calcium and activation of a calmodulin-dependent mechanism.

Implications—The speed of hypotonicity-induced AQP translocation suggests that constitutively expressed AQPs could participate in initial cell swelling. In many cells, this is often followed by a regulatory volume decrease, achieved by the efflux of ions by ion transporters and also organic osmolytes via volume-regulated anion channels. Our findings show that AQP1 translocation is also PKC- and calmodulin-dependent similar to the translocation of volume-regulated anion channels (51). It has also been suggested that hypotonicity may affect the translocation of sodium channels in cultured renal cell lines (52). Ion channel translocation in plant cells is known to be regulated by hydrostatic pressure (53, 54) and hypotonicity (55), whereas in animal cells, calcium-dependent exocytosis is a major mechanism for the release of neurotransmitters and hormones from neurons and endocrine cells (56).

In astrocytes, AQP1 is known to be involved in cell volume regulation and cerebral edema (57, 58). In the kidney, AQP1 knock-out mice suffer from polyuria (59, 60). AQP1 (unlike AQP2 in the collecting duct) is extensively found in the renal proximal tubule and thin descending limb of Henle, the two
regions responsible for reabsorbing 80% of the fluid from the glomerular filtrate (61). It may be that the quickest response of AQPII-expressing astrocytes and kidney cells to an increase in cellular water levels is a hypotonicity-mediated increase in available AQPI at the appropriate membrane surface, as suggested by studies of the long term expression of AQPI (62). The mechanisms underpinning AQPI regulation therefore have the potential to be manipulated for therapeutic benefit.

In conclusion, we have shown that rapid AQPI translocation involves calcium signaling indicating that this mechanism mediates control of cellular water permeability in response to physiological stimuli. As hypotonicity-induced translocation of AQPI involves ubiquitous and pluripotent calcium, the data described here may serve as a universal prototype for rapid and direct regulation of this important protein family.

REFERENCES

1. Benga, G., Popescu, O., Borza, V., Pop, V. I., Muresan, A., Mocsy, I., Brain, A., and Wrighgess, J. M. (1986) Water permeability in human erythrocytes: Identification of membrane proteins involved in water transport. Eur. J. Cell Biol. 41, 252–262.

2. Nielsen, S., Smith, B. L., Christensen, E. L., and Agra, P. (1993) Distribution of the aquaporin CHIP in secretory and absorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. U.S.A. 90, 7275–7279.

3. de Groot, B. L., Frigato, T., Helms, V., and Grumbüller, H. (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol. 333, 279–293.

4. de Groot, B. L., and Grumbüller, H. (2001) Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GilPf. Science 294, 2353–2357.

5. Walz, T., Fujiiyoshi, Y., and Engel, A. (2009) The AQP structure and functional implications. Handb. Exp. Pharmacol. 190, 31–56.

6. Litman, T., Segaard, R., and Zeuthen, T. (2009) Ammonia and urea permeability of mammalian aquaporins. Handb. Exp. Pharmacol. 190, 327–358.

7. Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tjakhorshid, E., Neute, R., and Kjellborn, P. (2006) Structural mechanism of plant aquaporin gating. Nature 349, 688–694.

8. Wang, Y., and Tjakhorshid, E. (2007) Molecular mechanisms of conductance and selectivity in aquaporin water channels. J. Nutr. 137, 15095–15155.

9. Gunnarson, E., Zelenina, M., and Aperia, A. (2004) Regulation of brain aquaporins. Neuroscience 129, 947–955.

10. Zelenina, M. (2010) Regulation of brain aquaporins. Neurochem. Int. 57, 468–488.

11. Hoffmann, E. K., Lambert, I. H., and Pedersen, S. F. (2009) Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277.

12. Pasantes-Morales, H., and Cruz-Rangel, S. (2010) Brain volume regulation: Osmolytes and aquaporin perspectives. Neuroscience 168, 871–884.

13. Fenton, R. A., Moeller, H. B., Hoffert, J. D., Yu, M. J., Nielsen, S., and Knepper, M. A. (2008) Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc. Natl. Acad. Sci. U.S.A. 105, 3134–3139.

14. Hoffert, J. D., Nielsen, J., Yu, M. J., Pisitkun, T., Schleicher, S. M., Nielsen, S., and Knepper, M. A. (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short term vasopressin treatment in collecting duct. Am. J. Physiol. Renal Physiol. 292, F691–700.

15. Noda, Y., and Sasaki, S. (2005) Trafficking mechanism of water channel aquaporin-2. Biol. Cell 97, 885–892.

16. Marinelli, R. A., Pham, L., Agre, P., and LaRusso, N. F. (1997) Secretion promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J. Biol. Chem. 272, 12984–12988.

17. Yasui, H., Kubota, M., Iguchi, K., Usui, S., Kiho, T., and Hirano, K. (2008) Membrane trafficking of aquaporin 3 induced by epinephrine. Biochem. Biophys. Res. Commun. 373, 613–617.

18. Ishikawa, Y., Iida, H., and Ishida, H. (2002) The muscarinic acetylcholine receptor-stimulated increase in aquaporin-5 levels in the apical plasma membrane in rat parotid acinar cells is coupled with activation of nitric oxide/CGMP signal transduction. Mol. Pharmacol. 61, 1423–1434.

19. Conner, M. T., Conner, A. C., Brown, J. E., and Bill, R. M. (2010) Membrane trafficking of aquaporin 1 is mediated by protein kinase C via microtubules and regulated by toxicity. Biochemistry 49, 821–823.

20. Benfenati, V., and Ferroni, S. (2010) Water transport between CNS compartments: Functional and molecular interactions between aquaporins and ion channels. Neuroscience 168, 926–940.

21. Eveloff, J. L., and Warnock, D. G. (1987) Activation of ion transport systems during cell volume regulation. Am. J. Physiol. 252, F1–10.

22. Benfenati, V., Caprini, M., Dovizio, M., Miyonakou, M. N., Ferroni, S., Ottersen, O. P., and Amiry-Moghaddam, M. (2011) An aquaporin-4–transient receptor potential vanilloid 4 (AQP4–TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. U.S.A. 108, 252–256.
Rapid and Reversible Aquaporin 1 Translocation

Hegge, S., Thomas, D., Schmitt, C. P., Zeier, M., Katus, H., Karle, C., and Schwenger, V. (2007) Aquaporin-1 channel function is positively regulated by protein kinase C. J. Biol. Chem. 282, 20933–20940

Vriens, I., Watanabe, H., Janssens, A., Droogmans, G., Voets, T., and Niels, B. (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. U.S.A. 101, 396–401

Beech, D. J. (2005) TRPC1: Store-operated channel and more. Pflugers Arch. 451, 53–60

Maroto, R., Raso, A., Wood, T. G., Kurosky, A., Martinac, B., and Hamill, O. P. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7, 179–185

Beech, D. J., Xu, S. Z., McHugh, D., and Flemming, R. (2003) TRPC1 store-operated cationic channel subunit. Cell Calcium. 33, 433–440

Agre, P. (2006) The aquaporin water channels. Proc. Am. Thorac. Soc. 3, 5–13

Luckey, A. E., and Parsa, C. J. (2003) Fluid and electrolytes in the aged. Arch. Surg. 138, 1055–1060

Nedvetsky, P. I., Tamma, G., Beulshausen, S., Valenti, G., Rosenthal, W., Klussmann, E. (2009) Regulation of aquaporin-2 trafficking. Handb. Exp. Pharmacol. 190, 133–157

Fenton, R. A., and Moeller, H. B. (2008) Recent discoveries in vasopressin-regulated aquaporin-2 trafficking. Handb. Exp. Pharmacol. 190, 133–157

Brown, D., Katsura, T., and Gustafson, C. E. (1998) Cellular mechanisms of aquaporin trafficking. Am. J. Physiol. Cell Physiol. 275, F328–331

Ding, Y., Schwartz, D., Posner, P., and Zhong, J. (2004) Hypotonic swelling stimulates L-type Ca2+ channel activity in vascular smooth muscle cells through PKC. Am. J. Physiol. Cell Physiol. 287, C413–421

Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S., Sali, A., Hudspeth, A. J., Friedman, J. M., and Heller, S. (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535

Nilius, B., Vriens, J., Prener, J., Droogmans, G., and Voets, T. (2004) TRPV4 calcium entry channel: A paradigm for gating diversity. Am. J. Physiol. Cell Physiol. 286, C195–205

Sidhaye, V. K., Güler, A. D., Schweitzer, K. S., D’Alessio, F., Caterina, M. J., and King, L. S. (2006) Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc. Natl. Acad. Sci. U.S.A. 103, 4747–4752

Fisher, S. K., Cheema, T. A., Foster, D. J., and Heacock, A. M. (2008) Volume-dependent osmolyte efflux from neural tissues: regulation by G protein-coupled receptors. J. Neurochem. 106, 1998–2014

Jans, D., Simaels, J., Cucu, D., Zeiske, W., and Van Driessche, W. (2000) Effects of extracellular Mg2+ on transepithelial capacitance and Na+ transport in A6 cells under different osmotic conditions. Pflugers Arch. 439, 504–512

Homann, U., and Thiel, G. (2002) The number of K+ channels in the plasma membrane of guard cell protoplasts changes in parallel with the surface area. Proc. Natl. Acad. Sci. U.S.A. 99, 10215–10220

Zorec, R., and Tester, M. (1993) Rapid pressure-driven exocytosis-endocytosis cycle in a single plant cell. Capacitance measurements in aleurome protoplasts. FEBS Lett. 333, 283–286

Liu, K., and Luan, S. (1998) Voltage-dependent K+ channels as targets of osmosensing in guard cells. Plant Cell 10, 1957–1970

Dolenšek, J., Skelin, M., and Rupnik, M. S. (2011) Calcium dependencies of regulated exocytosis in different endocrine cells. Physiol. Res. 60, S29–38

McCoy, E., and Sontheimer, H. (2010) MAPK induces AQP1 expression in astrocytes following injury. Glia 58, 209–217

McCoy, E. S., Haas, B. R., and Sontheimer, H. (2010) Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion. Neuroscience 168, 971–981

Schnerrmann, J., Chou, C. L., Ma, T., Traynor, T., Knepper, M. A., and Verkman, A. S. (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc. Natl. Acad. Sci. U.S.A. 95, 9660–9664

Yang, B., Ma, T., Dong, J. Y., and Verkman, A. S. (2000) Partial correction of the urinary concentrating defect in aquaporin-1 null mice by adenovirus-mediated gene delivery. Hum. Gene Ther. 11, 567–575

Lankford, S. P., Chou, C. L., Terada, Y., Wall, S. M., Wade, J. B., and Knepper, M. A. (1991) Regulation of collecting duct water permeability independent of cAMP-mediated AVP response. Am. J. Physiol. 261, F554–566

Boulay, R., Palomino, Z., Tang, S. S., Nunes, P., Kobori, H., Lu, H. A., Shum, W. W., Sabolic, I., Brown, D., Ingelfinger, J. R., and Jung, F. F. (2009) Angiotensin II and hypertonicity modulate proximal tubular aquaporin 1 expression. Am. J. Physiol. Renal Physiol. 297, F1575–1586