Talbot Effect of orbital angular momentum lattices with single photons

S. Schwarz,1,2 C. Kapahi,1,2 R. Xu,1,3 A. R. Cameron,1,2 D. Sarenac,1,2 J. P. W. MacLean,1,2 K. B. Kuntz,1,2 D. G. Cory,1,4,5,6 T. Jennewein,1,2 K. J. Resch,1,2 and D. A. Pushin1,2

1Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
2Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
3Department of Electronic & Computer Engineering, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
4Department of Chemistry, University of Waterloo, Waterloo, ON, Canada, N2L3G1
5Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada, N2L2Y5
6Canadian Institute for Advanced Research, Toronto, ON, Canada, M5G 1Z8

The self-imaging, or Talbot Effect, that occurs with the propagation of periodically structured waves has enabled several unique applications in optical metrology, image processing, data transmission, and matter-wave interferometry. In this work, we report on the first demonstration of a Talbot Effect with single photons prepared in a lattice of orbital angular momentum (OAM) states. We observe that upon propagation, the wavefronts of the single photons manifest self-imaging whereby the OAM lattice intensity profile is recovered. Furthermore, we show that the intensity at fractional Talbot distances is indicative of a periodic helical phase structure corresponding to a lattice of OAM states. This phenomenon is a powerful addition to the toolbox of orbital angular momentum and spin-orbit techniques that have already enabled many recent developments in quantum optics.

The Talbot Effect [1] is a near-field diffraction phenomenon whereby periodic phase and amplitude modulations are self-imaged due to free-space propagation. In accordance with Fresnel diffraction [2], replicas of periodic transverse intensity profile reappear after a specific propagation distance known as the Talbot length. The Talbot Effect has been demonstrated in numerous areas of research involving linear and nonlinear optical waves [3–5], single photons [6, 7], x-rays [8], matter-waves [9–12], exciton polaritons [13], and Bose-Einstein condensates [14]. The Talbot Effect has a diverse array of applications in optical metrology [15], imaging processing [16], and lithography [17–19], with potential in data transmission [20].

Here we consider the Talbot effect manifested by lattices of orbital angular momentum (OAM) states. The OAM degree of freedom of light has garnered significant interest in various fields ranging from optical manipulation and high-bandwidth communication [21–24] to quantum information processing [25, 26]. In addition to the photonic applications, OAM beams have been extended to neutrons [27, 28] and electrons [29, 30].

The Talbot Effect has been considered with classical light as well as OAM lattices [31–33]. In this Letter, we report the first demonstration of the Talbot Effect with single photons prepared in a lattice of OAM states. The extension of the Talbot Effect to single photons and OAM techniques offers the possibility of utilizing quantum information processing protocols, such as remote state preparation, to leverage quantum communication advantages [36]. Furthermore, self-imaging has potential applications in implementing quantum logic operations as qudits may be encoded in the transverse spatial profile of single photons [37, 38].

A lattice of spin-orbit states can be obtained by passing circularly polarized light through pairs of birefringent linear gradients whose optical axes are perpendicular to each other [34, 39]. Each lattice cell of such a beam approximates the following spin-orbit state:

\[
|\Psi\rangle = A(r, \phi) \left[\cos \left(\frac{\pi r}{d} \right) |R\rangle + i e^{i\phi} \sin \left(\frac{\pi r}{d} \right) |L\rangle \right],
\]

where \((r, \phi)\) are the cylindrical coordinates, \(\ell\) specifies the OAM number, \(d\) is the distance in which the polarization state performs a full rotation on the Poincaré sphere, \(|R\rangle\) and \(|L\rangle\) denote the right and left circular polarization states, and \(A(r, \phi)\) denotes the envelope. We prepare lattices of OAM states by filtering the polarization that is coupled with OAM.

The operators of the two perpendicular birefringent gradients are described by

\[
\hat{U}_x = e^{i \hat{\sigma}_x (x-x_0)^2} \quad \hat{U}_y = e^{i \hat{\sigma}_y (y-y_0)^2},
\]

where the origin of the gradients is given by \((x_0, y_0)\), and \(\hat{\sigma}_{x,y}\) are Pauli matrices. It was shown in Ref. [34] that linear gradients of Eq. (2) may be implemented via "Lattice of Optical Vortices" (LOV) prism pairs. A LOV prism pair consists of two wedge-shaped birefringent prisms where the optical axis of the first prism is along the wedge incline direction and that of the second is offset by 45° [34]. By sending a photon in the right circular polarization state \(|R\rangle\) through \(N\) sets of LOV prism pairs, we prepare the state

\[
|\Psi_{LOV}^N\rangle = \alpha(x,y)(\hat{U}_x \hat{U}_y)^N |R\rangle,
\]

where \(\alpha(x,y)\) describes the incoming Gaussian beam envelope with beam waist \(w_0\). The periodic nature of polarization rotations enables the linear gradients to prepare a two-dimensional lattice of spin-orbit states.
Filtering on one circular polarization state prepares a periodically structured intensity distribution with a lattice spacing of $a = \lambda/(\Delta n \tan(\theta))^{-1}$, where Δn and θ are the birefringence and the incline angle of the LOV prism pairs respectively, and λ is the wavelength. In our experiment we use $N=2$ LOV prism pairs and we filter on $|L|$ to obtain an initial intensity distribution of the form

$$I(x, y) = |\langle L | \Psi^{N=2}_{\text{LOV}} \rangle|^2 = |\alpha(x, y)|^2 \cos^2 \left(\frac{\pi x}{a} \right) \cos^2 \left(\frac{\pi y}{a} \right) \times (2 - \cos \left(\frac{2\pi(x + y)}{a} \right) - \cos \left(\frac{2\pi(x - y)}{a} \right)),$$

which is depicted in Fig. 1(a). This periodic beam structure imprinted by the LOV prism pairs sets up conditions required for the Talbot Effect. The transmitted light interferes in such a way that after a distance $z_T = 2a^2/\lambda$, the initial periodic intensity pattern reappears. The same intensity distribution also appears at half the distance, $z_T/2$, but with spatial shifts $\Delta a = a/2$ along the x- and y-directions.

Theory predicts the same self-imaging phenomenon for single photons as well. We describe the free-space propagation of single photons by a complex-valued transverse field distribution $E(x, y)$ convoluted with the Fresnel propagator

$$K_F(x, y, z) = \frac{e^{ikz}}{i\lambda z} \exp \left[\frac{ik}{2z} (x^2 + y^2) \right],$$

where k is the wavevector. The field $E(x, y)$ at position z is evaluated via

$$E(x, y, z) = \frac{e^{ikz}}{i\lambda z} \int \int dx' dy' E(x', y', 0) e^{i\frac{2\pi}{\lambda} [(x-x')^2 + (y-y')^2]}.$$

Fig. 1(a) shows the simulated transverse intensity distribution, $I(x, y) = |\langle L | \Psi^{N=2}_{\text{LOV}} \rangle|^2$, before beam propagation. Fig. 1(b) and Fig. 1(d) depict the intensity distribution in the yz-planes at $x = a/4$ for the initial states $\langle L | \psi^{N=2}_{\text{LOV}} \rangle$ and $\langle L | \psi^{N=2}_{\text{LOV}} \rangle$, respectively. Fig. 1(c) and Fig. 1(e) illustrate the intensity distribution in the xy-planes for specific propagation distances. We observe that the initial phase profile defines the transverse intensity pattern at fractional Talbot distances. Furthermore, it can be observed that the OAM phase structure induces an asymmetry between the intensity distributions at propagation distances $\{z_T/8, z_T/4, 3z_T/8\}$ and $\{7z_T/8, 3z_T/4, 5z_T/8\}$.

The experimental setup is schematically depicted in Fig. 2. Degenerate photon pairs are prepared using type-II spontaneous parametric down-conversion in a Sagnac interferometer [10]. We pump a 10 nm long periodically-poled KTP crystal (PPKTP) with a continuous wave diode laser (404.8 nm) to produce correlated photon pairs centered at $\lambda_{\text{SP}} = 810.8$ nm with a spectral bandwidth of 0.4 nm. The pump is horizontally polarized in order to create the target state $|H\rangle_z \otimes |H\rangle_z$. Note that a diagonal polarized pump would offer the ability to generate a polarization entangled target state, however, here we are going to herald signal by means of idler. The outputs of the Sagnac interferometer are coupled into two single-mode fibers, which allow for a distinct separation of signal and idler. The signal photons are sent through a telescope to magnify the beam by a factor of 8.3, followed...
FIG. 2. Schematic of the experimental setup. Correlated photon pairs are generated via type-II spontaneous parametric down-conversion in a Sagnac interferometer and coupled into single mode fibers (SMF). A singles rate of 18 kHz and a coincidence rate of 1.5 kHz is measured after the SMF. After propagating through a 30 m long fiber, the signal photon is sent through a telescope with 8.3x magnification, \(N = 2 \) sets of LOV prism pairs and a polarization filter. The free-space propagation \(z \) can be varied via different flip mirror combinations. The signal photons are then imaged onto an intensified electron-multiplying CCD (emICCD), triggered by the detection of the corresponding idler. The imaging arrangement in the detection unit consists of a telescope with 4x demagnification \((f_3\) and \(f_4\) lenses) followed by a single-lens \((f_5)\) that images the beam onto the detection plane of the emICCD.

by \(N = 2 \) sets of LOV prism pairs. This configuration prepares a lattice of spin-orbit states where one of the polarization states is coupled to \(\ell = 1 \). Higher values of \(\ell \) may be achieved by employing a setup with more LOV prism pairs, while negative values of \(\ell \) may be achieved by changing the input polarization state \[34\].

The polarization state of the signal photon is prepared using a half wave plate (HWP) and a quarter wave plate (QWP). After transmission through the LOV prism pairs, the signal is filtered with respect to left-handed or right-handed circularly polarized light using a QWP. The free-space propagation of the OAM lattice is then analyzed via an arrangement of flip mirrors which effectively change the propagation distance \(z \) before measurement. The single photon detection unit consists of a telescope to demagnify the beam by a factor of 4 \((f_3\) and \(f_4\) lenses in Fig. 2) and a gated intensified electron-multiplying CCD (emICCD PI-Max4: 1024 EMB). The telescope is followed by a single lens \((f_5\) lens in Fig. 2) which images the plane immediately following the telescope.

The idler is detected by an avalanche photodiode, which acts as a trigger for the emICCD, heralding the single photon state. We use a 30 m spool of single-mode fiber to delay the detection of the signal with respect to the idler to accommodate the delays from triggering electronics. We set the delay time between the idler and signal photon for each propagation distance \(z \) and use the emICCD camera to align the coincidence window of 3 ns.

In addition to the single photon setup, we couple light from a linearly polarized laser diode (central wavelength \(\lambda_{LD} = 813.4 \text{ nm} \)) into the signal channel in order to compare images generated by single photons versus laser diode light. We measure the intensity profile using a conventional CCD camera (Coherent LaserCam-HR II) at the same positions as the single photon images captured by the emICCD.

In Fig. 3 we present simulated and measured beam profiles at fractional Talbot distances. Although the theoretical Talbot length is \(z_T = 16 \text{ m} \), the propagation distances in the experimental setup were increased by a constant offset of 0.85 m in order to account for the three lens system in the detection unit \[41\]. Tab. I lists the experimental distances, \(Z_{\text{exp}} \), which correspond to the theoretical distances, \(Z_{\text{theo}} \). The diode images were also measured at distances \(z \in Z_{\text{exp}} \). The central wavelength difference of \(|\lambda_{LD} - \lambda_{SP}| = 2.6 \text{ nm} \) corresponds to a change in Talbot length \(z_T \) of only \(\sim 5 \text{ cm} \).

\(Z_{\text{theo}} \)	\(Z_{\text{exp}} \)	Measured SNR	Post-processed SNR
0	0.71 m	0.584	240.377
\(z_T/8 \)	2.86 m	0.547	181.988
\(z_T/4 \)	4.85 m	0.113	102.514
\(3z_T/8 \)	6.87 m	0.159	126.298
\(z_T/2 \)	8.86 m	0.259	264.755

TABLE I. Experimental propagation distances \(Z_{\text{exp}} \) which correspond to the fractional Talbot distances \(Z_{\text{theo}} \), and single photon signal-to-noise ratio (SNR). The SNR is given by the ratio of the average signal to the standard deviation of the background. In the third (fourth) column, we list the SNR calculated from raw (post-processed) images.
FIG. 3. Simulated and observed self-images at different fractional Talbot lengths. We measure the two-dimensional intensity profile $I(x, y) = |\langle L | \Psi_{LOV}^{N=2} \rangle |^2$ at positions $z \in Z_{exp}$. In the simulation, we multiply a Gaussian beam envelope with the same beam waist w_0 as in the experiment (i.e., $w_0 = (4.1 \pm 0.05) \text{ mm}$) to account for features occurring due to finite beams sizes when propagating along the z-axis. For comparison, we couple light from a laser diode into the signal channel, and measure corresponding self-images at the same positions. Good qualitative agreement is found between the simulated and observed profiles.

The LOV prisms were realigned in the transverse plane to obtain the most pronounced doughnut structures with the diode laser.

The observed intensity profiles are processed using background subtraction and an adaptive two-dimensional Gaussian image filter. Including the quadratic phase profiles of the imaging lenses in the simulation yields good agreement between theoretical and observed lattice spacing. For instance, in the case of single photons, we extract from the transverse intensity distribution at $z = 0.071 \text{ m}$ a separation between two nearest-neighbor lattice sites of $a_{exp} = (0.573 \pm 0.012) \text{ mm}$ from experimental data and $a_{sim} = (0.577 \pm 0.010) \text{ mm}$ from the simulation. Additionally, at half Talbot distance $z_T/2$, the expected half period shift Δa can be evaluated by comparing the effective pixel positions of the lattice sites at propagation distance $z = 0.071 \text{ m}$ with the pixel positions at $z = z_T/2$ yielding $\Delta a_{exp} = (0.273 \pm 0.015) \text{ mm}$ and $\Delta a_{sim} = (0.279 \pm 0.014) \text{ mm}$, respectively.

The robustness of the Talbot effect with a lattice of OAM states is demonstrated by the good qualitative agreement between simulation, single photon, and diode laser images in Fig. 3. The SNR decreases with larger distances, but is increased again depending on the intensity pattern complexity. In Tab. 1, we present the SNR before and after the imaging post-processing for different propagation distances. However, it can be noted that the self-imaging property of this beam can be seen clearly in the similarity between images taken at distances $z = \{0, z_T/2\}$, with the correct spatial shift. Images at $z = \{z_T/8, 3z_T/8\}$ show an orientation about each lattice site that appears counter-clockwise in $z_T/8$ and clockwise in $3z_T/8$. These features are indicative of the OAM state in each lattice site, as shown in Fig. 1(c). Furthermore, gaps in the outermost rings of the $z_T/2$ image can be mitigated by using a beam containing more lattice sites.

In this work we demonstrated and analyzed the Talbot Effect with single photons prepared in a lattice of OAM states. Heralded single photons are sent through $N = 2$ sets of LOV prism pairs and their transverse two-dimensional intensity distribution are measured at various fractional Talbot lengths. The propagation of structured wavefronts is calculated in the near-field and shows good agreement with experimental results. We observe that the initial phase profile defines the transverse intensity pattern at various propagation distances, and thus the Talbot carpet. Future work will scrutinize the
connection between OAM and Talbot physics as a new characterization tool. Other avenues of exploration include the addition of path entangled OAM lattices and the implementation of quantum logic using the Talbot Effect and the OAM degree of freedom.

This research was supported in part by the Canadian Excellence Research Chairs (CERC) program, the Natural Sciences and Engineering Research Council of Canada (NSERC), the NSERC Discovery program, Canada Research Chairs, Industry Canada and the Canada Foundation for Innovation (CFI), Ontario Research Fund (ORF), and the Canada First Research Excellence Fund (CFREF).

[1] H. T. E. F.R.S., The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9, 401 (1836).
[2] J. Wen, Y. Zhang, and M. Xiao, Adv. Opt. Photon. 5, 83 (2013).
[3] R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, Phys. Rev. Lett. 95, 053902 (2005).
[4] W. B. Case, M. Tomandl, S. Deachapunya, and M. Arndt, Optics Express 17, 20666 (2009).
[5] Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, Phys. Rev. Lett. 104, 183901 (2010).
[6] X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, and L.-A. Wu, Phys. Rev. Lett. 107, 033902 (2011).
[7] S. Deachapunya, S. Srisupaphon, P. Panthong, T. Pho-tia, K. Boonkham, and S. Chiangga, Opt. Express 24, 20929 (2016).
[8] F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, Nature Materials 7, 134 (2008).
[9] M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J. Schmiedmayer, B. E. Tannian, S. Wehinger, and D. E. Pritchard, Phys. Rev. A 51, R14 (1995).
[10] L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys. Rev. Lett. 83, 5407 (1999).
[11] S. Wu, E. Su, and M. Prentiss, Phys. Rev. Lett. 99, 173201 (2007).
[12] F. Pfeiffer, C. Grünzweig, O. Bunk, G. Frei, E. Lehmann, and C. David, Phys. Rev. Lett. 96, 215505 (2006).
[13] T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, Phys. Rev. Lett. 117, 097403 (2016).
[14] V. Makhalov and A. Turlapov, Phys. Rev. Lett. 122, 090403 (2019).
[15] E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, Nature Materials 11, 432 (2012).
[16] A. Wang, P. Gill, and A. Molnar, Appl. Opt. 48, 5897 (2009).
[17] A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 27, 2931 (2009).
[18] H. H. Solak, C. Dais, and F. Clube, Opt. Express 19, 10686 (2011).
[19] Y. Liu, X. Zhang, Y. Huang, J. Zhang, W. Hofmann, Y. Ming, and L. Wang, Optik 183, 579 (2019).
[20] J. Azana and M. A. Muriel, Appl. Opt. 38, 6700 (1999).
[21] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[22] M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Phys. Rev. A 54, 1593 (1996).
[23] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nature Photonics 6, 488 (2012).
[24] R. Zhang, L. Li, Z. Zhao, G. Xie, G. Milione, H. Song, P. Liao, C. Liu, H. Song, K. Pang, A. N. Willner, B. Lynn, R. Bock, M. Tur, and A. E. Willner, Opt. Lett. 44, 691 (2019).
[25] M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. 97, 170406 (2006).
[26] M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, Light: Science & Applications 7, 17146 (2018).
[27] C. W. Clark, R. Bankarovan, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, Nature 525, 504 (2015).
[28] D. Sarenac, M. G. Huber, B. Heacock, M. Arif, C. W. Clark, D. G. Cory, C. B. Shahi, and D. A. Pushin, Opt. Express 24, 22528 (2016).
[29] M. Uchida and A. Tonomura, Nature 464, 737 (2010).
[30] B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herz, H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192 (2011).
[31] J. Courtil, R. Zambrini, D. M. R., and M. Vasnetsov, Opt. Express 14, 938 (2006).
[32] S. Vyas and P. Senthilkumaran, Applied optics 46, 2893 (2007).
[33] G.-X. Wei, L.-L. Lu, and C.-S. Guo, Optics Communications 282, 2665 (2009).
[34] D. Sarenac, D. G. Cory, J. Nsofini, I. Hincks, P. Miguel, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, Phys. Rev. Lett. 121, 183602 (2018).
[35] H. Gao, Y. Li, L. Chen, J. Jin, M. Pu, X. Li, P. Gao, C. Wang, X. Luo, and M. Hong, Nanoscale 10, 666 (2018).
[36] J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Phys. Rev. Lett. 105, 030407 (2010).
[37] O. J. Farías, F. de Melo, S. P. Walborn, Phys. Rev. A 91, 062328 (2015).
[38] K. Sawada and S. P. Walborn, Journal of Optics 20, 075201 (2018).
[39] D. Sarenac, J. Nsofini, I. Hincks, M. Arif, C. W. Clark, D. G. Cory, M. G. Huber, and D. A. Pushin, New Journal of Physics 20, 103012 (2018).
[40] L. Verneyden, X. Ma, J. Lavoie, M. Bonsma, U. Sinha, R. Laflamme, and K. J. Resch, Phys. Rev. A 91, 012120 (2015).
[41] J. W. Goodman, Roberts & Co. Publishers, (2005).