The DODO Survey: Imaging Planets Around White Dwarfs

Emma Hogan, Gemini Observatory

Matt Burleigh, University of Leicester
Fraser Clarke, University of Oxford

[Hogan et al, 2009, MNRAS, 396, 2074]
Planets around WDs?

Mullally et al, 2008

Emma Hogan, 17th European White Dwarf Workshop, August 16-20, 2010
Imaging Planets

Planets Orbiting HR 8799
(Sept. 2008)

~ 7 M$_{\text{Jup}}$
~ 60 Myrs
T$_{\text{eff}}$ ~ 800 - 1100 K

~ 10 M$_{\text{Jup}}$

Marois et al., 2008

1RXS J160929.1-210524

~ 8 M$_{\text{Jup}}$

~ 5 Myrs
T$_{\text{eff}}$ ~ 1800 ± 200 K

2.2”
330 AU at 140 pc

Lafrenière et al., 2010
Reason 1: Contrast

\[\Delta L \sim 10,000 \]

White Dwarfs

Main Sequence

Supergiants

Giants

A and B
Reason 2: Resolution
Reason 2: Resolution
Reason 2: Resolution

\[\frac{M_{\text{MS}}}{M_{\text{WD}}} \]
Why Planets Around WDs?

- Spectroscopy of cool, low mass objects
- Constraints on evolutionary models
- Age of system can be determined without the use of models:
 - white dwarf cooling age
 - mass and lifetime of main sequence progenitor
- Provides model-free benchmark estimates of planetary masses
Degenerate Objects around Degenerate Objects

Emma Hogan, 17th European White Dwarf Workshop, August 16-20, 2010
The DODO Survey

Gemini North + NIRI wide field of view
Gemini South + FLAMINGOS young white dwarfs
white dwarfs within 20 pc nearby white dwarfs
directly imaging extrasolar planets one hour exposures
white dwarfs younger than 4 Gyr planetary mass companions
multi-epoch observations companions in wide orbits
survey began in 2002 common proper motion companions

Total age = main sequence lifetime + white dwarf cooling age

Emma Hogan, 17th European White Dwarf Workshop, August 16-20, 2010
Models

• IFMR (Dobbie et al., 2006):
 \[M_{WD} = 0.133 \, M_{MS} + 0.289 \]

• Main sequence lifetime (Wood, 1992):
 \[t_{MS} = 10 \left(\frac{M_{MS}}{M_{\odot}} \right)^{-2.5} \, \text{Gyrs} \]

• White dwarf cooling age (Fontaine et al., 2001)

• ‘COND’ evolutionary models for cool brown dwarfs and extrasolar planets (Baraffe et al., 2003)
Imaging Planets

- $M_{MS} \sim 1.5 \, M_{\odot}$
- $M_{WD} = 0.133 \, M_{MS} + 0.289 \rightarrow \sim 0.49 \, M_{\odot}$
- $M_{MS} / M_{WD} \sim 3$
- 24 AU \rightarrow 74 AU
- 38 AU \rightarrow 117 AU
- 68 AU \rightarrow 209 AU
- HR8799 is 39.4 pc away $\rightarrow \sim 1.9 - 5.3''$
A Candidate?

Proper Motion Diagram for WD2007–219

Emma Hogan, 17th European White Dwarf Workshop, August 16-20, 2010
No Candidate 😞
Another Candidate?

- $M_{WD} \sim 0.7 \, M_\odot$
- $M_{MS} \sim 3.2 \, M_\odot$
- $M_{MS} / M_{WD} \sim 4.5$
- $t_{tot} \sim 1.3 \text{ Gyrs}$
- $d \sim 50 \, \text{pc}$
- $\sim 36'' \text{ away} \rightarrow$
- $r_{WD} \sim 1850 \, \text{AU}$
- $r_{MS} \sim 400 \, \text{AU}$
Perhaps?
Perhaps?
| White Dwarf | Type | Age [Gyrs] | 50% M [M\textsubscript{Jup}] | 50% T [K] | WD Orbit [AU] | MS Orbit [AU] |
|--------------|------|------------|-----------------|-----------|---------------|---------------|
| WD0115+159 | DQ | 1.7 | 8 ± 1 | 380 | 46 - 675 | 11 - 160 |
| WD0208+396 | DAZ | 2.6 | 9 ± 1 | 360 | 50 - 758 | 14 - 138 |
| WD0644+375 | DA | 2.1 | 8 ± 1 | 360 | 46 - 652 | 17 - 236 |
| WD1055-072 | DC | 3.3 | 9 ± 1 | 340 | 36 - 503 | 8 - 103 |
| WD1134+300 | DA | 0.37 | 3 ± 1 | 350 | 46 - 664 | 9 - 127 |
| WD1647+591 | DAV | 0.91 | 5 ± 1 | 350 | 33 - 372 | 7 - 77 |
| WD1900+705 | DAP | 1.1 | 5 ± 1 | 350 | 39 - 452 | 8 - 89 |
| WD1953-011 | DAP | 2.1 | 8 ± 1 | 360 | 34 - 509 | 7 - 111 |
| WD2007-219 | DA | 1.4 | 7 ± 1 | 370 | 55 - 831 | 12 - 189 |
| WD2326+049 | DAZ | 1.1 | 6 ± 1 | 370 | 41 - 396 | 9 - 89 |
More Results

- The DODO survey can detect companions ≥ 500 K around all targets.

- $\leq 4\%$ of white dwarfs have substellar companions with $T_{\text{eff}} \geq 500$ K between projected physical separations of 60 - 200 AU (20 - 45 AU around MS progenitors.)

- $\leq 8\%$ of white dwarfs have companions with masses above the deuterium burning limit (~ 13 M$_{\text{jup}}$)

- $\leq 9\%$ have companions with masses ≥ 10 M$_{\text{jup}}$
Other surveys

Survey	Targets	Number of targets	Limit \((M_{\text{Jup}}) \)	Separation (AU)	Frequency of companions (%)
McCarthy & Zuckerman (2004)	G K M	102	>12	75–300	1 ± 1
		178	>30	140–1200	0.7 ± 0.7
			5–10	75–300	<3
Farihi et al. (2005)	White dwarfs	261	>52	100–5000	< 0.5
		86	>21	50–1100	< 0.5
Allen et al. (2007)	M7–L8	132	>52	40–1000	< 2.3
Lafrenière et al. (2007)	F G K M	85	13–40	25–250	< 5.6
Nielsen et al. (2008)	A F G K M	60	>4	20–100	<20
Future Work

• Larger sample size
• Deeper images
• First epoch images for 10 new targets
• Watch this space!