Genome-wide characterization, evolutionary analysis of WRKY genes in Cucurbitaceae species and assessment of its roles in resisting to powdery mildew disease

Zigao Jiao*, Jianlei Sun*, Chongqi Wang, Yumei Dong, Shouhua Xiao, Xuli Gao, Qiwei Cao, Libin Li, Wendong Li, Chao Gao*

Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China

* These authors contributed equally to this work.
* gsuperman114@163.com

Abstract

The WRKY proteins constitute a large family of transcription factors that have been known to play a wide range of regulatory roles in multiple biological processes. Over the past few years, many reports have focused on analysis of evolution and biological function of WRKY genes at the whole genome level in different plant species. However, little information is known about WRKY genes in melon (Cucumis melo L.). In the present study, a total of 56 putative WRKY genes were identified in melon, which were randomly distributed on their respective chromosomes. A multiple sequence alignment and phylogenetic analysis using melon, cucumber and watermelon predicted WRKY domains indicated that melon WRKY proteins could be classified into three main groups (I-III). Our analysis indicated that no recent duplication events of WRKY genes were detected in melon, and strong purifying selection was observed among the 85 orthologous pairs of Cucurbitaceae species. Expression profiles of CmWRKY derived from RNA-seq data and quantitative RT-PCR (qRT-PCR) analyses showed distinct expression patterns in various tissues, and the expression of 16 CmWRKY were altered following powdery mildew infection in melon. Besides, we also found that a total of 24 WRKY genes were co-expressed with 11 VQ family genes in melon. Our comparative genomic analysis provides a foundation for future functional dissection and understanding the evolution of WRKY genes in cucurbitaceae species, and will promote powdery mildew resistance study in melon.

Introduction

WRKY proteins are widely distributed in all plants and comprise one of the largest transcription factor families. Over the past decades, these proteins have been found to play an increasing number of functions in a wide range of physiological and biochemical processes [1–5]. The WRKY family proteins are defined by a highly conserved domain with approximately 60
amino acid residues in length, which contains one or two highly conserved short peptide WRKYGQK as well as a conserved C2H2- or C2HC-type zinc finger motif [6–8]. The conserved short peptide also consists of various forms, such as WRKYGKK, WRKDYQK, and WRKYDHK. Based on the number of WRKY domains and the type of zinc finger motif, the WRKY family proteins can be classified into three groups [7,8]. Group I contains two WRKY motifs and a C2H2 type zinc finger motif (C-X4-5-C-X22-23-H-X1-H). Group II contains one WRKY motif and a C2H2 type zinc finger motif. Group III also contains only one WRKY motif but has a C2HC type zinc finger motif (C-X7-C-X23-H-X1-C). WRKY transcription factors in group II can be further divided into five subgroups (IIa, IIb, IIc, IId, and Ile) according to their phylogenetic relationship [6].

With the release of an increasing number of genome sequences, more and more WRKY genes have been identified in a wide range of plant species [9–14], suggesting that WRKY proteins have evolved diverse functions with different biochemical properties. To date, many plant WRKY proteins have also been functionally studied in detail, suggesting that they are implicated to modulate seed development, flowering, fruit ripening, senescence and various metabolic processes by binding to W-box element ((C/T)TGAC(T/C)) in the promoter of downstream target genes [15–19]. For example, a WRKY protein is strongly expressed in the endothelium of developing seeds, and plays important role during seed coat development in Arabidopsis [20]. In soybean, differential expression of GsWRKY15a between wild and cultivated soybean pods was correlated with different seed size [19]. Besides, VvWRKY26, a TTG2-like homolog protein, controls vacuolar acidification, transport and flavonoid biosynthesis in grapevine, and plays important regulatory roles in fleshy fruit development [17].

Recent studies revealed that a large part of WRKY proteins were also involved in response to biotic (bacterial, fungal and viral pathogens) defense and abiotic stress (salinity, drought, heat, cold and osmotic stress) [21]. In many plants, expression of WRKY family genes was significantly up- or down-regulated in response to drought and salt stress. Furthermore, overexpression of TaWRKY2 and TaWRKY19 confer tolerance to salt, drought, and cold stresses in transgenic Arabidopsis plants and overexpression of TaWRKY44 gene in tobacco improved osmotic stress tolerance [22,23]. Notably, increasing reports showed that the regulatory roles of WRKY proteins in plant defense response are closely associated with hormone-mediated signal pathways such as salicylic acid (SA) signaling pathway, abscisic acid (ABA) signaling pathway, jasmonic acid (JA) signaling pathway and so on [24–26]. For instance, various phytohormone treatments significantly altered the expression patterns of 54 WRKY genes in rice [27]. AtWRKY50 and AtWRKY51 work as positive regulators in the SA signaling pathway but as negative regulators in JA signaling pathway [25].

Melon (Cucumis melo L.), watermelon (Citrullus lanatus L.) and cucumber (Cucumis sativus L.) are economically important fruit crop that belong to cucurbitaceae family. Recently, the genome sequences of melon, watermelon and cucumber have been released, which provides an important reference for genome-wide analysis of gene families and compare evolutionary relationship among their homologs [28–30]. In the previous study, WRKY family genes in cucumber and watermelon have been respectively identified and characterized. Meanwhile, their structure, chromosome distribution, phylogeny, conserved motifs as well as expression patterns under various abiotic stresses were also analyzed, which provide important information for the evolutionary analysis and functional characterization of the WRKY gene family among cucumber, watermelon and other species [11,14]. However, the basic knowledge of the melon WRKY family genes as well as the evolutionary relationship, functional conservation and diversification among WRKY family genes in cucurbitaceae species have still not been reported.

Thus, our aim was mainly focus on the identification and characterization of WRKY family genes in melon and analysis the evolutionary relationships of WRKY family genes among
cucurbitaceae species. In the present study, we identified a total of 56 proteins with complete WRKY domains in melon using a hidden Markov model (HMM) that allows for the detection of the WRKY domain across highly divergent sequence. Multiple sequence alignments, phylogenetic relationships, chromosome distributions, gene duplication, syntenic relationship and selection pressure analysis of WRKY orthologous pairs from cucurbitaceae species were also performed. In addition, this study also determined the expression patterns of CmWRKY genes in 29 different tissues and measured their abundance under powdery mildew fungus infection using quantitative RT-PCR (qRT-PCR). Furthermore, we also performed the correlation analysis between CmWRKYs and CmVQs expression using the data from RNA-seq. Our results will undoubtedly provide a foundation for further evolution and functional studies of cucurbitaceae WRKY family genes.

Materials and methods

Plant materials and powdery mildew fungus inoculation

Powdery mildew fungus was collected from cultivated melon grown on the experimental farm of Shandong Academy of Agricultural Sciences with normal day/night period. Cultivated melon (B29) were grown in the greenhouse with a photoperiod of 16/8 h (day/night) and a temperature of 22˚C/12˚C (day period/night period). Plants with two or three true leaves were inoculated by powdery mildew fungus with a concentration of 1×10^6/mL as previously described [31]. Leaves were harvested at 0, 24, 72, 168 h post inoculation, and immediately frozen in liquid nitrogen and stored at -80˚C for the following RNA extraction. Three biological replicates were prepared for each sample.

Identification of candidate WRKY gene family members in melon

The Hidden Markov Model (HMM) of the WRKY domain (PF03106) was downloaded from the Pfam protein family database (http://pfam.sanger.ac.uk/) and used to identify putative WRKY proteins from the melon protein sequence database (http://cucurbitgenomics.org/) using the HMMER search program with E-value threshold of 0.01 (HMMER 3.0; http://hmmer.janelia.org/). All non-redundant protein sequences encoding complete WRKY domains were selected as putative WRKY proteins and confirmed using the SMART software program (http://smart.embl-heidelberg.de/).

Multiple sequence alignment and phylogenetic analysis

Multiple sequence alignment of all conserved WRKY core domains was determined using Clustal Omega online software (http://www.ebi.ac.uk/Tools/msa/clustalw2/) with default parameters: number of combined iterations (0), max guide tree iterations (-1) and max HMM iterations (-1). Subsequently, MEGA7.0 software was used for phylogenetic analysis using the neighbor-joining (NJ) method under the Jones—Thornton—Taylor (JTT) model with 1000 replicates of bootstrap based on the alignment results and the flowing parameters: substitution type, poisson model, uniform rates, partial deletion. The phylogenetic tree showed only branches with a bootstrap consensus > 50. Furthermore, a phylogenetic tree was also constructed using Maximum Likelihood (ML) method based on the JTT matrix-based model with 1000 replicates of bootstrap and the flowing parameters: substitution type, poisson model, uniform rates, partial deletion. Branches corresponding to partitions reproduced in less than 30% of bootstrap replicates were collapsed. Based on the multiple sequence alignment, phylogenetic analysis and the previously reported classification of CsWRKY and CiWRKY genes, the CmWRKY genes were assigned to different groups and subgroups.
Chromosomal location, gene duplication and selection pressure analysis
The chromosomal location information of all melon WRKY genes was obtained from cucurbit genomics database (http://cucurbitgenomics.org/). The map was generated using MapInspect software (http://mapinspect.software.informer.com/). To detect segmental and tandem duplication events, every WRKY sequence was respectively aligned against the other WRKY protein sequences in melon using BLASTp program to identify potential homologous gene pairs (E-value < 1e-5, top 3 matches) and output format as tabular. Then, the destination tabular file and the GFF file of melon genome were inputted into software MCScanX to analyze duplication types with the flowing parameters: match score (>50); match size (5); gap penalty (-1); overlap window (5); E-value: 1e-5; max gaps (25) and visualized using CIRCOS (http://circos.ca/) [32]. Non-synonymous (Ka) and synonymous (Ks) substitution of each orthologous gene pair were calculated by PAL2NAL program based on the codon sites model with the following option setting: Codon table, universal; Remove mismatches, yes; Use only selected positions, yes; Output format, PAML. With this setting, the codon alignment corresponding to the specified regions is generated in the PAML format [33,34].

RNA-seq based expression analysis and correlation calculation
The normalized expression levels of melon WRKY and VQ genes in different tissues as well as in leaves artificially inoculated with powdery mildew fungus based on RNA-seq data were obtained from the Meloneat database for functional genomics study of muskmelon (http://gene.melonet-db.jp/cgi-bin/top.cgi). Gene expression data are presented as log2 (FPKM value +1) to reveal difference in expression levels among different tissues. To visualize the expression patterns of the WRKY genes in different melon organs, a heat map was created using R project (http://www.r-project.org/). The co-expression analysis among WRKY and VQ genes was performed using R programming language (http://www.r-project.org/). Firstly, the Pearson Correlation Coefficient (r) and respective false discovery rate (FDR) adjusted p-values were calculated according to the expression values in different tissues as well as different developmental stages using multiple hypothesis testing method included in R software package. Then co-expressed WRKY and VQ gene pairs with r > 0.6 and FDR < 0.05 were selected to construct co-expression network using Cytoscape software (http://www.cytoscape.org/).

RNA isolation and qRT-PCR analysis
Total RNA samples were extracted from leaves using the Trizol reagent according to the manufacturer’s instruction (Invitrogen, CA, USA). Reverse transcription reactions were performed at 42˚C for 1 h and were terminated at 85˚C for 5 min with 20 μl system contained 1×reverse transcriptase buffer, 50 nM Olig(dT) primer, 0.25 mM each of dNTPs, 50 units reverse transcriptase, 4 units RNase inhibitor and 2 μg DNase I-treated total RNA. CmActin was used as the internal control. The qRT-PCR program was set as follows: 95˚C for 5 min, then followed by 40 cycles of 95˚C for 15 s and 60˚C for 1 min. The 2^{-ΔΔCt} method was used to calculate the relative expression levels and the analysis of covariance method (ANCOVA) was used to access whether the results were statistically different. Primers used for qRT-PCR experiments were listed in S1 Table.

Results
Identification of WRKY family genes in melon
To identify WRKY family genes in melon, Hidden Markov Model (HMM) and BLASTP searches were performed against reference genomes of melon using the consensus sequence of
the WRKY domain. As a result, a total of 56 proteins with complete WRKY domains were identified in melon, which were termed as CmWRKY1 to CmWRKY56. The numbers of WRKY family members was approximately equal with other cucurbitaceae species cucumber and watermelon but less than that in model plants Arabidopsis (74 members) and in rice (109 members). The nucleotide and amino acid sequences of all identified WRKY families are presented in S2 Table. As shown in S2 Table, the lengths of the putative CmWRKY proteins ranged from 111 to 768 amino acids, with an average of 342 amino acids. Based on the number of WRKY domain and the type of zinc finger motif, CmWRKY proteins could be classified into three groups, group I (11 sequences), group II (40 sequences) and group III (5 sequences) based on the number of WRKY domain and the type of zinc finger motif (S3 Table).

Multiple sequence alignment and phylogenetic analysis of WRKY domains

The WRKY domain consists of approximately 60 amino acid residues and contains one or two highly conserved short peptide WRKYGQK as well as a conserved C2H2- or C2HC-type zinc finger motif. The conserved short peptide WRKYGQK is considered to be important for recognizing and binding to W-box elements. A multiple sequence alignment of the core WRKY domain in melon were performed and shown in S1 Fig. WRKYGQK sequences represented the major variant in 54 melon WRKY proteins. WRKYGKK sequence was observed only in two WRKY proteins (CmWRKY16 and CmWRKY48) that belong to group IIa.

To identify the evolutionary relationships of the WRKY proteins among three cucurbitaceae species (melon, cucumber, and watermelon), a NJ and a ML phylogenetic tree were generated using multiple sequence alignments of all the conserved WRKY domain sequences with a bootstrap analysis (1,000 replicates), respectively. Based the classification of WRKY domains in cucumber and watermelon, all melon WRKY genes were classified into three main groups, with five subgroups in group II. As shown in Fig 1 and S2 Fig, group I contained 11 melon WRKYS, 11 watermelon WRKYS and 12 cucumber WRKYS. While, group III contained 5 melon WRKYS, 8 watermelon WRKYS and 6 cucumber WRKYS in both NJ and ML phylogenetic tree. Besides, 40 CmWRKY proteins in group II could be classified into five subgroups based on the phylogenetic trees, IIa (3 sequences), IIb (7 sequences), IIC (15 sequences), IId (7 sequences), and IIE (8 sequences). Meanwhile, 34 ClWRKY proteins in group II could be classified into IIa (2 sequences), IIb (8 sequences), IIC (11 sequences), IId (6 sequences) and IIE (7 sequences), and 38 ClWRKY proteins in group II could be classified into IIa (5 sequences), IIb (7 sequences), IIC (12 sequences), IId (7 sequences) and IIE (7 sequences). Interestingly, many WRKYS belong to group IIa in NJ phylogenetic tree were classified into group IIC in ML phylogenetic tree, which may because the domain sequences of WRKYS in group IIC were prone to mutate. Detailed information about the classification of the WRKY genes, as well as the sequences of conserved WRKY domains and zinc-finger motifs in each gene can be found in S3 Table.

Genome-wide distribution and duplication of WRKY family genes

Fig 2 showed the distribution of the WRKY genes on melon chromosomes. As shown in the figures, the WRKY genes were unevenly distributed throughout all chromosomes, and the number on each chromosome was not related to its length. In melon, chromosome 6 contained the largest number (9) of CmWRKY genes. Several patterns of gene duplication including whole-genome duplication (or segmental duplication) and single gene duplication have been identified. Single gene duplication is involved in five types of duplication- tandem, proximal, retrotransposed, DNA-transposed and dispersed duplication. Of these patterns, segmental and tandem duplications have been suggested to represent two of the main causes of gene
family expansion in plants. Therefore, we focused on segmental and tandem duplication events in our study. To access the contribution of segmental and tandem duplications to the genome-wide expansion of \textit{WRKY} family in the melon genome, we evaluated the gene duplication events of \textit{CmWRKY} genes using MCScanX program. There are 8 \textit{CmWRKY} pairs (\textit{CmWRKY2-CmWRKY39}, \textit{CmWRKY3-CmWRKY43}, \textit{CmWRKY9-CmWRKY25}, \textit{CmWRKY9-CmWRKY35}, \textit{CmWRKY15-CmWRKY49}, \textit{CmWRKY25-CmWRKY35}, \textit{CmWRKY27-CmWRKY45}, \textit{CmWRKY26-CmWRKY50}) were identified as segmental duplications and no tandem duplication was identified (Fig 3), suggesting that most \textit{CmWRKY} genes were possibly generated by gene segmental duplication. Indeed, Ling has discovered that no tandem gene duplication events occurred in \textit{CsWRKY} gene evolution because of no paralogs of cucumber can be detected through phylogenetic and nucleotide identity analysis.

![Fig 1. Phylogenetic relationships of WRKY domains from melon (red square), cucumber (blue square) and watermelon (green circle) using NJ method. The domains were clustered into three major groups I, II, III, and five subgroups (a, b, c, d, and e) in group II.](https://doi.org/10.1371/journal.pone.0199851.g001)

![Fig 2. Chromosomal location of WRKY family genes in melon. The size of a chromosome is indicated by its relative length. The chromosome numbers were shown at the top of each chromosome.](https://doi.org/10.1371/journal.pone.0199851.g002)
Orthologous gene identification and selection pressure analysis of WRKY orthologous genes among cucurbitaceae species

In our study, we further identified 44 orthologous pairs between melon and watermelon, 43 orthologous pairs between melon and cucumber, and 40 orthologous pairs between watermelon and cucumber according to the phylogenetic and homogeneity analysis (S4 Table). The highest and lowest amino acid identity between melon and cucumber were the pairs CmWRKY50-CsWRKY24 (98.62%) and CmWRKY7-CsWRKY35 (74.21%) with an average sequences identity of 93.00%. The highest and lowest protein sequence identity between melon and watermelon were the pairs CmWRKY53-ClWRKY16 (95.92%) and CmWRKY5-ClWRKY26 (65.51%) with an average sequences identity of 83.57%. The highest and lowest amino acid identity between watermelon and cucumber were the pairs CsWRKY24-CiWRKY15 (95.65%) and CsWRKY37-CiWRKY45 (61.67%) with an average sequences identity of 83.93%. The chromosomal location and syntenic relationship of orthologous gene pairs were shown in Fig 4. Physical mapping revealed that most WRKY genes (98%) in cucurbitaceae species were not located in the corresponding chromosomes of melon, watermelon and cucumber, suggesting the occurrence of large chromosome rearrangement in the cucurbitaceae genomes. Furthermore, the dissimilarity level between the non-synonymous substitution (dN) and synonymous substitution (dS) values was used to infer the direction and magnitude of natural selection acting on WRKY orthologous gene pairs in melon, watermelon and cucumber. The results showed that the WRKY orthologous gene pairs in cucurbitaceae species underwent strong purifying pressure during evolution (Table 1).

Fig 3. Synteny analysis of melon genome and segmental duplications of CmWRKYS. Gray curves denote the details of syntenic regions in melon genome and red curves denote CmWRKY gene pairs with segmental duplication.

https://doi.org/10.1371/journal.pone.0199851.g003

Orthologous gene identification and selection pressure analysis of WRKY orthologous genes among cucurbitaceae species

In our study, we further identified 44 orthologous pairs between melon and watermelon, 43 orthologous pairs between melon and cucumber, and 40 orthologous pairs between watermelon and cucumber according to the phylogenetic and homogeneity analysis (S4 Table). The highest and lowest amino acid identity between melon and cucumber were the pairs CmWRKY50-CsWRKY24 (98.62%) and CmWRKY7-CsWRKY35 (74.21%) with an average sequences identity of 93.00%. The highest and lowest protein sequence identity between melon and watermelon were the pairs CmWRKY53-ClWRKY16 (95.92%) and CmWRKY5-ClWRKY26 (65.51%) with an average sequences identity of 83.57%. The highest and lowest amino acid identity between watermelon and cucumber were the pairs CsWRKY24-CiWRKY15 (95.65%) and CsWRKY37-CiWRKY45 (61.67%) with an average sequences identity of 83.93%. The chromosomal location and syntenic relationship of orthologous gene pairs were shown in Fig 4. Physical mapping revealed that most WRKY genes (98%) in cucurbitaceae species were not located in the corresponding chromosomes of melon, watermelon and cucumber, suggesting the occurrence of large chromosome rearrangement in the cucurbitaceae genomes. Furthermore, the dissimilarity level between the non-synonymous substitution (dN) and synonymous substitution (dS) values was used to infer the direction and magnitude of natural selection acting on WRKY orthologous gene pairs in melon, watermelon and cucumber. The results showed that the WRKY orthologous gene pairs in cucurbitaceae species underwent strong purifying pressure during evolution (Table 1).
Expression patterns of CmWRKYs in different tissues at different developmental stages

To gain insights into the potential functions of CmWRKYs, the expression patterns of the CmWRKYs were investigated using publicly available data from RNA-seq of melon transcript expression generated from 29 different tissues as well as different development stages of melon. The results showed that the transcript abundances of different CmWRKYs were extremely diverse (Fig 5). Among the 56 CmWRKYs, 27 CmWRKYs were detected in all 29 tissues. 55 CmWRKYs expect for CmWRKY5 expressed in root with the transcripts of CmWRKY6, CmWRKY23, CmWRKY29, CmWRKY40, CmWRKY43, CmWRKY47, CmWRKY51, CmWRKY52, CmWRKY53, CmWRKY55 were more abundant than the other CmWRKYs. 51 CmWRKYs expressed in leaf with CmWRKY6, CmWRKY23, CmWRKY28, CmWRKY29, CmWRKY46 and CmWRKY50 had a high expression levels both in young and old leaves. While CmWRKY8, CmWRKY17, CmWRKY19, CmWRKY30, CmWRKY49 showed higher expression levels in young leaf than old leaves, whereas CmWRKY14, CmWRKY16, CmWRKY24, CmWRKY26, CmWRKY27, CmWRKY31, CmWRKY33, CmWRKY34, CmWRKY42, CmWRKY43, CmWRKY47, CmWRKY48, CmWRKY52 and CmWRKY55 had a
Table 1. Ka/Ks calculation of each orthologous pairs among three cucurbitacea species.

Orthologous gene pairs	Protein identity (%)	S	N	dS	dN	dN/dS	Selection pressure
CmWRKY50 - CsWRKY24	98.62	407.5	1110.5	0.0787	0.0064	0.0813	Purity selection
CmWRKY53 - CsWRKY3	98.3	263	616	0.111	0.0066	0.0592	Purity selection
CmWRKY31 - CsWRKY45	98.18	407.5	1110.5	0.0787	0.0064	0.0813	Purity selection
CmWRKY41 - CsWRKY7	98.04	73.5	259.5	0.167	0.0422	0.2527	Purity selection
CmWRKY47 - CsWRKY11	97.23	506.6	1221.4	0.0622	0.0133	0.2132	Purity selection
CmWRKY22 - CsWRKY20	97.19	382.7	1213.3	0.0864	0.0117	0.1352	Purity selection
CmWRKY49 - CsWRKY49	97.18	157.1	580.9	0.0561	0.0056	0.0994	Purity selection
CmWRKY55 - CsWRKY12	97.14	236.3	702.7	0.097	0.01	0.1033	Purity selection
CmWRKY31 - CsWRKY45	98.18	107.8	387.2	0.1389	0.0078	0.0559	Purity selection
CmWRKY41 - CsWRKY7	98.04	73.5	259.5	0.167	0.0422	0.2527	Purity selection
CmWRKY47 - CsWRKY11	97.23	506.6	1221.4	0.0622	0.0133	0.2132	Purity selection
CmWRKY22 - CsWRKY20	97.19	382.7	1213.3	0.0864	0.0117	0.1352	Purity selection
CmWRKY49 - CsWRKY49	97.18	157.1	580.9	0.0561	0.0056	0.0994	Purity selection
CmWRKY55 - CsWRKY12	97.14	236.3	702.7	0.097	0.01	0.1033	Purity selection
CmWRKY31 - CsWRKY45	98.18	107.8	387.2	0.1389	0.0078	0.0559	Purity selection
CmWRKY41 - CsWRKY7	98.04	73.5	259.5	0.167	0.0422	0.2527	Purity selection
CmWRKY47 - CsWRKY11	97.23	506.6	1221.4	0.0622	0.0133	0.2132	Purity selection
CmWRKY22 - CsWRKY20	97.19	382.7	1213.3	0.0864	0.0117	0.1352	Purity selection
CmWRKY49 - CsWRKY49	97.18	157.1	580.9	0.0561	0.0056	0.0994	Purity selection
CmWRKY55 - CsWRKY12	97.14	236.3	702.7	0.097	0.01	0.1033	Purity selection
CmWRKY31 - CsWRKY45	98.18	107.8	387.2	0.1389	0.0078	0.0559	Purity selection
CmWRKY41 - CsWRKY7	98.04	73.5	259.5	0.167	0.0422	0.2527	Purity selection
CmWRKY47 - CsWRKY11	97.23	506.6	1221.4	0.0622	0.0133	0.2132	Purity selection
CmWRKY22 - CsWRKY20	97.19	382.7	1213.3	0.0864	0.0117	0.1352	Purity selection
CmWRKY49 - CsWRKY49	97.18	157.1	580.9	0.0561	0.0056	0.0994	Purity selection
CmWRKY55 - CsWRKY12	97.14	236.3	702.7	0.097	0.01	0.1033	Purity selection
higher expression levels in 6th, 9th, 12th leaves than that in young leaf. 46 CmWRKYs were expressed in stem with 15 CmWRKYs had a higher expression levels. 48 CmWRKYs were expressed in tendril. 49 CmWRKYs were expressed in flower and ovary, and 50 CmWRKYs were expressed in fruit flesh and epicarp. Interestingly, CmWRKY14, CmWRKY17, CmWRKY20, CmWRKY35, CmWRKY41, CmWRKY43, CmWRKY55 had a higher expression levels in epicarp than that in flesh. Besides, 41 CmWRKYs were detected in dry seed, and CmWRKY19, CmWRKY23, CmWRKY51, CmWRKY52 had a higher expression levels both in flesh and epicarp.

Table 1. (Continued)

Orthologous gene pairs	Protein identity (%)	S	N	dS	dN	dN/dS	Selection pressure
CmWRKY40 CjWRKY36	90.97	195.3	629.7	0.2305	0.0474	0.2056	Purity selection
CmWRKY29 CjWRKY7	90.69	392.9	1206.1	0.1965	0.0393	0.2	Purity selection
CmWRKY28 CjWRKY6	90.53	568.5	1702.5	0.214	0.0391	0.1827	Purity selection
CmWRKY18 CjWRKY17	90.35	63.3	314.7	0.2074	0.0402	0.1936	Purity selection
CmWRKY24 CjWRKY19	90.27	179.2	582.8	0.1152	0.0212	0.1841	Purity selection
CmWRKY49 CjWRKY18	90	165.6	566.4	0.2669	0.0316	0.1905	Purity selection
CmWRKY17 CjWRKY4	89.93	236.3	645.7	0.3601	0.0518	0.1318	Purity selection
CmWRKY25 CjWRKY4	89.9	236.3	645.7	0.3196	0.0499	0.1563	Purity selection
CmWRKY1 CjWRKY50	89.82	101.5	393.5	0.1136	0.0154	0.1358	Purity selection
CmWRKY20 CjWRKY23	89.34	432.5	1487.5	0.2561	0.0928	0.3625	Purity selection
CjWRKY42 CmWRKY43	89.33	253.4	637.6	0.2128	0.0371	0.1744	Purity selection
CmWRKY23 CjWRKY41	89.13	379.7	1129.3	0.1165	0.0422	0.2634	Purity selection
CjWRKY49 CjWRKY18	88.8	164.4	561.6	0.277	0.0426	0.1538	Purity selection
CmWRKY20 CjWRKY12	88.66	354.9	1070.1	0.2695	0.0541	0.2006	Purity selection
CjWRKY14 CjWRKY12	88.66	362.3	1062.7	0.2792	0.0534	0.1911	Purity selection
CjWRKY55 CjWRKY46	88.64	263.2	801.8	0.1251	0.0478	0.3821	Purity selection
CmWRKY34 CjWRKY55	88.45	264.1	716.9	0.0614	0.0199	0.3243	Purity selection
CjWRKY54 CjWRKY7	88.45	390.3	1187.7	0.1619	0.0443	0.2738	Purity selection
CjWRKY42 CjWRKY9	88.37	260.5	630.5	0.2472	0.0376	0.1522	Purity selection
CjWRKY19 CjWRKY42	88.37	260.5	630.5	0.2472	0.0376	0.1522	Purity selection
CjWRKY4 CjWRKY25	88.35	222.5	572.5	0.2964	0.0604	0.2037	Purity selection
CjWRKY46 CjWRKY6	88.32	365.7	1110.3	0.2069	0.052	0.2512	Purity selection
CmWRKY38 CjWRKY33	88.31	223.6	682.4	0.308	0.0282	0.0917	Purity selection
CmWRKY51 CjWRKY21	88.18	212.9	660.1	0.0917	0.0468	0.5108	Purity selection
CmWRKY10 CjWRKY36	88.17	275.9	696.1	0.2561	0.0338	0.1318	Purity selection
CjWRKY11 CjWRKY36	87.8	288.8	698.2	0.2964	0.0553	0.1864	Purity selection
CjWRKY45 CjWRKY27	87.72	108.5	383.5	0.3832	0.0347	0.0905	Purity selection
CjWRKY34 CjWRKY33	87.65	222.6	677.4	0.2915	0.027	0.2896	Purity selection
CmWRKY26 CjWRKY30	87.5	379.3	1099.7	0.1975	0.0572	0.2896	Purity selection
CmWRKY31 CjWRKY27	87.5	115	392	0.3184	0.0367	0.1152	Purity selection
CmWRKY6 CjWRKY6	87.43	278.8	657.2	0.1844	0.0092	0.0497	Purity selection
CjWRKY56 CmWRKY11	87.39	140.4	366.6	0.1198	0.0254	0.2116	Purity selection
CmWRKY42 CjWRKY8	87.33	133.7	724.3	0.0467	0.0361	0.7734	Purity selection
CjWRKY32 CjWRKY21	87.24	311.1	975.9	0.1726	0.0514	0.298	Purity selection
CjWRKY5 CmWRKY14	86.68	487.4	1333.6	0.3027	0.0412	0.1962	Purity selection
CmWRKY23 CjWRKY39	86.21	380.5	1149.5	0.2195	0.0665	0.303	Purity selection
CmWRKY40 CjWRKY40	85.16	215.4	609.6	0.3486	0.0692	0.1985	Purity selection
CmWRKY3 CjWRKY24	85.11	228.3	596.7	0.3651	0.0657	0.18	Purity selection

https://doi.org/10.1371/journal.pone.0199851.t001

Genome-wide characterization, evolutionary analysis of WRKY genes in Cucurbitaceae species

PLOS ONE | https://doi.org/10.1371/journal.pone.0199851 December 27, 2018 10 / 19
Co-expression analysis of *CmWRKY* and *CmVQ* in response to powdery mildew infection

In order to gain information about hypothetical interactions between WRKY proteins and VQ proteins in melon, we performed the expression correlation analysis between *CmWRKY*s and *CmVQ*s using the data from RNA-seq. Firstly, 24 VQ motif-containing proteins were identified in melon genome. A total of 24 *CmWRKY* genes were co-expressed with 11 *CmVQ* genes with the correlation coefficient was greater than 0.7 (Fig 6; S5 Table). Nine *CmWRKY* genes were simultaneously co-expressed with two different *CmVQ* genes and 15 *CmWRKY* genes were only co-expressed with one *CmVQ* gene. Besides, some *CmWRKY* (VQ) genes showed co-expression patterns with other members of WRKY (VQ) family genes. Therefore, the co-expression may be important for further functional analysis of *CmWRKY*s.

To access the function of WRKY and VQ family genes in resisting to powdery mildew fungus infection, expression profiles of all *CmWRKY* and *CmVQ* in leaves artificially inoculated with powdery mildew fungus were performed based on data from RNA-seq. A total of 16 *CmWRKY* and five *CmVQ* exhibited different expression levels in response to powdery mildew inoculation, indicating that they are powdery mildew fungus responsive genes and might play important roles in resisting to powdery mildew disease in melon (Fig 7). Among them, most *CmWRKY* were up-regulated after inoculation except for *CmWRKY15*. Besides, up-regulation was also observed for *CmVQ6*, *CmVQ16*, *CmVQ23*, while *CmVQ18* and *CmVQ21* showed the
Fig 6. Co—expression network of melon WRKY genes and VQ genes according to correlation coefficient > 0.7 and p < 0.05. The circles represent CmWRKY genes and the diamonds represent CmVQ genes.

https://doi.org/10.1371/journal.pone.0199851.g006

Fig 7. Expression patterns of powdery mildew fungus responsive CmWRKY and CmVQ genes after powdery mildew fungus infection. The expression values were measured as fragments per kilobase of exon model per million mapped reads (FPKM) and shown as log2 (value + 1). The color scale is shown at the right and higher expression levels are shown in red.

https://doi.org/10.1371/journal.pone.0199851.g007
opposite pattern after inoculation. To validate the RNA-seq data, qRT-PCR was performed to examine the expression of several \(CmWRKYs \) and \(CmVQs \) that may be involved in resisting to powdery mildew disease and the results were in agreement with the sequencing data (Fig 8).

Discussion

Genome-wide exploration and phylogenetic analysis of WRKY genes among cucurbitaceae species

The evolutionary relationship and function analysis of WRKY genes have been thoroughly studied in most plants. In the previous report, genome-wide analysis of WRKY family genes in cucumber and watermelon has also performed, and 55 \(CsWRKYs \) as well as 63 \(CiWRKYs \) in the cucumber and watermelon genome were identified, respectively [11,14]. To further gain information with respect to the evolutionary relationship and function of WRKY genes among cucurbitaceae species, we exploited available genomic resources to characterize the WRKY genes.
family genes in the other cucurbitaceae species, melon. A total of 56 putative WRKY genes (proteins) were identified in the genome of melon. The numbers of WRKY family members in melon were approximately equal to that in cucumber (56) and grape (55) but less than that in Arabidopsis (72 members) and in rice (102 members), peanut (152) and other crops, which maybe because unlike Arabidopsis and rice, cucurbitaceae species and grape have a much smaller genome and have not undergone recent whole-genome duplication after the differentiation of eudicots and monocots. Indeed, previous studies showed that Arabidopsis has undergone three whole-genome duplication events, and rice has also undergone at least one whole-genome duplication event, which promoted the rapid expansion of gene family [35,36]. However, Huang and Garcia-Mas have respectively observed the absence of recent whole-genome duplications in cucumber and melon genomes [28,29].

It is worth noting that ClWRKY11 that contain one WRKY domain were clustered in group IN from the phylogenetic analysis. Meanwhile, two CsWRKY, CsWRKY46 and CsWRKY51, were clustered in group IN, and CsWRKY47 and CsWRKY52 were clustered in group IC. Thus, these WRKYs in group II may have arisen from a two-domain WRKY protein in group I that lost one of its WRKY domains located in the N-terminal or C-terminal during evolution. The previous studies have reported that group I, group II, group III contained 13, 45, 14 WRKY proteins in Arabidopsis and 13, 42, 47 WRKY proteins in rice, respectively [37]. Compared with the numbers of WRKY families in Arabidopsis and rice, it is apparent that variations in the number of WRKY genes in group III are the primary cause of the diversity of WRKY gene family size between melon and other plants. Therefore, a key role of group III WRKY genes in plant evolution may exist, which is possible that the genome or gene family duplication events have resulted in the different size of the group III WRKY genes among cucurbitaceae species, Arabidopsis and rice.

The orthologous and expression analysis of WRKY genes provide important clues for their function

The recent gene duplication events including segmental duplication and tandem duplication are most important in the expansion and evolution of gene families, and were considered to be important driving forces in the expansion and evolution of gene families and the raw materials for new biological functions. Therefore, we further analyzed the influence of recent duplication events to WRKY family genes in cucurbitaceae species. The results showed that no recent tandem duplication event in WRKY family genes of melon was found. Besides, only 8 segmental duplications of CmWRKY were confirmed in melon genome, suggesting that suggesting that low tandem and segmental duplications events existed in CmWRKY genes family, which consists with the results in watermelon and cucumber [14]. Therefore, the absence of recent duplication events in melon, watermelon and cucumber genome may attribute to the small size of WRKY members.

Given that orthologous genes among different plants are generally supposed to retain similar functions and to share other key properties. Thus, the comparative analysis of WRKY orthologous genes among cucurbitaceae species could help to predict their genetic relationship and the potential functions of WRKY proteins in melon, cucumber and watermelon. For example, AtWRKY46 played very important roles in response to drought and salt stresses in Arabidopsis, and as the orthologous gene of AtWRKY46 in watermelon, ClWRKY23, was also reported to be up-regulated under drought and salt stresses, implying that these two WRKY play similar functions in different plant species [14]. In our study, a total of 44 orthologous pairs between melon and watermelon, 43 orthologous pairs between melon and cucumber were identified, which provided important clues for further functional prediction of WRKY.
genes in melon. A WRKY transcription factor from cucumber, \textit{CsWRKY46}, confers cold resistance in transgenic plants by regulating a set of cold-stress responsive genes in an ABA-dependent manner [38]. As its orthologous genes, \textit{CmWRKY29} may also play similar roles in response to cold stress in melon. However, further molecular and biological experiments should be carried out to investigate their biological function.

WRKY transcription factors play very critical roles in different tissues or different developmental stages to control plant growth and development. For instance, virus-induced silencing of \textit{GmWRKY58} and \textit{GmWRKY76} in soybean causes severe stunted growth with reduced leaf size and plant stature, and overexpression of the \textit{OsWRKY31} could reduce lateral root formation and elongation [39,40]. To provide important clues for gene function prediction, thus, we conducted a digital gene expression analysis for \textit{CmWRKY} genes in different tissues including leaf, root, stem, tendril and flower ovary and fruit as well as their different developmental stages using released data from RNA-seq. The temporal and spatial diversification of \textit{WRKY} gene expression is widespread, which is important for gene function analysis. \textit{CmWRKY6}, \textit{CmWRKY17}, \textit{CmWRKY19}, \textit{CmWRKY23}, \textit{CmWRKY42}, \textit{CmWRKY47} and \textit{CmWRKY52} had a higher expression level in all tested tissues, implying that these genes play key roles in the whole-plant growth and development. Furthermore, many \textit{CmWRKY}s had a higher expression level in certain organs/tissues or in different developmental stages, which suggested that they play divergent roles in the different developmental processes.

\textbf{CmWRKY might play important roles in resistance to powdery mildew disease through interaction with CmVQ}

In addition to the roles of WRKY proteins in plant growth and development, increasing reports indicated that WRKY proteins in various plant species are involved in the response to various biotic and abiotic stresses. Moreover, many WRKY proteins are also the components of plant biotic stress regulatory networks and directly regulate the expression of several critical genes of defense-signaling pathways [41,42]. For example, \textit{AtWRKY33} can positively modulate defence-related gene expression and improve resistance to \textit{B. cinerea} disease, while \textit{AtWRKY7} and \textit{AtWRKY48} have an immediate negative effect on plant defense response [43–47]. Overexpression of \textit{OsWRKY67} in rice confirmed enhanced disease resistance to \textit{Magnaporthe oryzae} and \textit{Xanthomonas oryzae}, but led to a restriction of plant growth in transgenic lines [48]. Furthermore, Guo demonstrated that 16 \textit{VvWRKY} have a negative effect on grape powdery mildew resistance and 22 \textit{VvWRKY} have a positive effect on grape powdery mildew resistance in grape [49]. Transcriptome analysis and qRT-PCR expression profiles in melon leaves generated in the current study also revealed that many WRKY genes were responsive to powdery mildew inoculation, thus highlighting the extensive involvement of \textit{WRKY} genes in resisting to powdery mildew disease.

Previous reports showed that some rice and grape WRKY genes were co-expressed with VQ genes during the response to attacks by three different pathogens [50,51]. Further studies have showed that WRKY proteins can interact physiologically with VQ motif-containing proteins [2,52]. Thus, VQ and WRKY proteins might assemble to form one complex to regulate the target gene. Indeed, VQ9 protein acts as a repressor of the WRKY8 protein to modulate salinity stress tolerance and pathogen resistance in \textit{Arabidopsis} [53]. In the present study, we found that 24 \textit{CmWRKY} genes were co-expressed with 11 \textit{CmVQ} transcription factors (Fig 6). Furthermore, some of the co-expressed \textit{CmWRKY} and \textit{CmVQ} genes were shown to be response to powdery mildew infection, implying that these VQ and WRKY proteins are involved in the same biological pathway. For example, \textit{CmVQ6} positively co-expressed with \textit{CmWRKY47}, \textit{CmWRKY55}, \textit{CmWRKY56} and all these were up-regulated by powdery mildew inoculation.
(Figs 7 and 8), suggesting that different WRKY have the same VQ partner. From above results, we have shown which WRKY proteins interact with which VQ proteins. Further research should be carried out to explore their physical interactions in vitro during the responses to powdery mildew infection as well as various abiotic stresses in melon to provide further molecular evidence for these interactions.

Conclusions

In this study, we identified 56 WRKY family genes in melon. WRKY proteins in cucurbitaceae species were under strong purifying pressure. The expression pattern analysis of CmWRKYs in different tissues as well as under powdery mildew infection indicated that they were involved in the growth and development of various tissues and that they might positively or negatively participated in plant tolerance against powdery mildew disease. Furthermore, the co-expression analysis between CmWRKY and CmVQ will assist in understanding the roles of these CmWRKY transcription factors in response to powdery mildew disease and their potential interactions among defence-related genes in the disease resistance network. Collectively, our findings provide valuable clues for further research on the specific function and regulatory mechanisms of WRKYs in cucurbitaceae species, and could help to select appropriate candidate genes for further characterization of their pathogen resistant functions in melon.

Supporting information

S1 Fig. Multiple sequence alignment of 56 conserved WRKY domains in melon. Highly conserved amino acids in WRKY domain are shown in black. (TIFF)

S2 Fig. Phylogenetic relationships of WRKY domains from melon (diamond), cucumber (square) and watermelon (circle) using ML method. The domains were clustered into three major groups I, II, III, and five subgroups (a, b, c, d, and e) in group II. (TIF)

S1 Table. Oligonucleotide primer sequences used for qRT-PCR. (XLS)

S2 Table. The full-length nucleotide sequences and amino acid sequences of all identified WRKY family members in three cucurbitaceae species. (DOCX)

S3 Table. The detailed information of all identified WRKY family members in melon. (XLSX)

S4 Table. The information of orthologous gene pairs among cucurbitaceae species. (XLSX)

S5 Table. The correlation coefficient values of CmWRKY and CmVQ genes. (XLSX)

Author Contributions

Data curation: Chao Gao.
Investigation: Chongqi Wang.
Methodology: Jianlei Sun.
Resources: Shouhua Xiao.
Software: Chao Gao.
Validation: Qiwei Cao, Wendong Li.
Visualization: Yumei Dong.
Writing – original draft: Zigao Jiao.
Writing – review & editing: Xuli Gao, Libin Li.

References
1. Lagace M, Matton DP. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta. 2004; 219(1):185–9. https://doi.org/10.1007/s00425-004-1253-2 PMID: 15045588
2. Lai ZB, Li Y, Wang F, Cheng Y, Fan BF, Yu JQ, et al. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell. 2011; 23(10):3824–41. https://doi.org/10.1105/tpc.111.090571 PMID: 21990940
3. Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, et al. WRKY transcription factors: key components in abscisic acid signaling. Plant Biotechnol J. 2012; 10(1):2–11. https://doi.org/10.1111/j.1467-7652.2011.00634.x PMID: 21696534
4. Rinerson CI, Rabara RC, Tripathi P, Shen QJ, Rushton PJ. The evolution of WRKY transcription factors. BMC Plant Biol. 2015; 15:66. https://doi.org/10.1186/s12870-015-0456-y PMID: 25849216
5. Kloth KJ, Wiegers GL, Busscher-Lange J, van Haarst JC, Kruijer W, Bouwmeester HJ, et al. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. J Exp Bot. 2016; 67(11):3383–96. https://doi.org/10.1093/jxb/erw159 PMID: 27107291
6. Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000; 5(5):199–206. PMID: 10785665
7. Zhang YJ, Wang LJ. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol. 2005; 5:1. https://doi.org/10.1186/1471-2148-5-1 PMID: 15629062
8. Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010; 15(5):247–58. https://doi.org/10.1016/j.tplants.2010.02.006 PMID: 20304701
9. Dong JX, Chen CH, Chen ZX. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol. 2003; 51(1):21–37. PMID: 12602888
10. Ryu HS, Han MH, Lee SK, Cho J, Ryoo N, Heu S, et al. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 2006; 25(8):836–47. https://doi.org/10.1007/s00299-006-0138-1 PMID: 16528562
11. Lin J, Jiang WJ, Zhang Y, Yu HJ, Mao ZC, Gu XF, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics. 2011; 12:471. https://doi.org/10.1186/1471-2164-12-471 PMID: 21955985
12. He HS, Dong Q, Shao YH, Jiang HY, Zhu SW, Cheng BJ, et al. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Rep. 2012; 31(7):1199–217. https://doi.org/10.1007/s00299-012-1241-0 PMID: 22371255
13. Huang SX, Gao YF, Liu JK, Peng XL, Niu XL, Fei ZZ, et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics. 2012; 287(6):495–513. https://doi.org/10.1007/s00438-012-0696-6 PMID: 22570076
14. Yang XZ, Li H, Yang YC, Wang YQ, Mo YL, Zhang RM, et al. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus). PLoS ONE. 2018; 13(1):e0191308. https://doi.org/10.1371/journal.pone.0191308 PMID: 28938040
15. Balazadeh S, Riano-Pachon DM, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. 2008; 10(1):63–75.
16. Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol. 2008; 68(1–2):81–92. https://doi.org/10.1007/s11103-008-9353-1 PMID: 18523729
17. Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, Ruperti B, et al. A grapevine TTG2-Like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Front Plant Sci. 2016; 7:1979. https://doi.org/10.3389/fpls.2016.01979 PMID: 28105033
18. Cheng Y, JalalAhammed G, Yu J, Yao Z, Ruan M, Ye Q, et al. Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper. Sci Rep. 2016; 6:39000. https://doi.org/10.1038/srep39000 PMID: 27991526

19. Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, et al. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot. 2017; 68(11):2717–29. https://doi.org/10.1093/jxb/erx147 PMID: 28472462

20. Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell. 2002; 14(6):1359–75. https://doi.org/10.1105/tpc.014004 PMID: 12084832

21. Jiang JJ, Ma SH, Ye NH, Jiang M, Cao JS, Zhang JH. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol. 2017; 59(2):86–101. https://doi.org/10.1111/jipb.12513 PMID: 27995748

22. Niu CF, Wei QY, Tian AG, Hao YJ, Zhang WK, et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ. 2012; 35(6):1156–70. https://doi.org/10.1111/j.1365-3040.2012.02480.x PMID: 22205797

23. Wang X, Zeng J, Li Y, Rong X, Sun J, Sun T, et al. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci. 2015; 6:615. https://doi.org/10.3389/fpls.2015.00615 PMID: 26322057

24. van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM. A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant physiol. 2008; 146(4):1983–95. https://doi.org/10.1109/tpc.014004 PMID: 18263781

25. Gao QM, Venugopal S, Navarre D, Kachroo A. Low oleic acid—derived repression of jasmonic acid-induced defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol. 2011; 155(1):464–76. https://doi.org/10.1104/pp.110.166876 PMID: 21030507

26. Luo DL, Ba LJ, Shan W, Kuang JW, Lu WJ, Chen JY. Involvement of WRKY transcription factors in abscisic-acid-induced cold tolerance of banana fruit. J Agric Food Chem. 2017; 65(18):3627–35. https://doi.org/10.1021/acs.jafc.7b00915 PMID: 28445050

27. van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM. A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant physiol. 2008; 146(4):1983–95. https://doi.org/10.1109/tpc.014004 PMID: 18263781

28. Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009; 41(12):1275–81. https://doi.org/10.1038/ng.475 PMID: 19881527

29. Garcia-Masa J, Benjak A, Sanseverino W, Bourgeois M, Mira G, Gonzalez VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA. 2012; 109(29):11872–77. https://doi.org/10.1073/pnas.1205415109 PMID: 22753475

30. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. The draft genome of watermelon (Citrus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013; 45(1):51–58. https://doi.org/10.1038/ng.2470 PMID: 23179023

31. Cohen R. A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Dis. 1993; 77(5):135–44.

32. Andolfio G, Ruocco M, Di Donato A, Fruscianti L, Lorito M, Scala F, et al. Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC Plant Biol. 2015; 15(1):51.

33. Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006; 34(2):609–12.

34. Yang Z. PAML4: phylogenetic analysis by maximum likelihood. Mol Bio Evol. 2007; 24(8):1586–91.

35. Blanc G, Hokamp K, Wolfe KH. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 2003; 13(2):137–44. https://doi.org/10.1101/gr.751803 PMID: 12566392

36. Wu KL, Guo ZJ, Wang HH, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res. 2005; 12(1):9–26. PMID: 16106749

37. Jang JY, Choi CH, Hwang DJ. The WRKY superfamily of rice transcription factors. Plant Pathol J. 2010; 26(2):110–14.

38. Zhang Y, Yu HJ, Yang XY, Li Q, Ling J, Wang H, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem. 2016; 108:478–87. https://doi.org/10.1016/j.plaphy.2016.08.013 PMID: 27592172

39. Zhang J, Peng YL, Guo ZJ. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res. 2008; 18(4):508–21. https://doi.org/10.1038/cr.2007.104 PMID: 18071364
40. Yang Y, Chi YJ, Wang Z, Zhou Y, Fan BF, Chen ZX. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. J Exp Bot. 2016; 67(15):4727–42. https://doi.org/10.1093/jxb/erw252 PMID: 27335454

41. Chen H, Lai ZB, Shi JW, Xiao Y, Chen ZX, Xu XP. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol. 2010; 10:281. https://doi.org/10.1186/1471-2229-10-281 PMID: 21167067

42. Li GJ, Meng XZ, Wang RG, Mao GH, Han L, Liu YD, et al. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 2012; 8:e1002767. https://doi.org/10.1371/journal.pgen.1002767 PMID: 22761583

43. Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant Journal. 2006; 48(4):592–605. https://doi.org/10.1111/j.1365-313X.2006.02901.x PMID: 17059405

44. Kim KC, Fan BF, Chen ZX. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol. 2006; 142(3):1180–92. https://doi.org/10.1104/pp.106.082487 PMID: 16963526

45. Lippok B, Birkenbihl RP, Rivory G, Bramer G, Schmelzer E, Logemann E, et al. Expression of AtWRKY33 encoding a pathogen- or PAMP- responsive WRKY transcription factor is regulated by a composite DNA motif containing W-box elements. Mol Plant Microbe Interact. 2007; 20(4):420–9. https://doi.org/10.1094/MPMI-20-4-0420 PMID: 17427812

46. Xing DH, Lai ZB, Zheng ZY, Vinoda KM, Fan BF, Chen ZX. Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant. 2008; 1(3):459–70. https://doi.org/10.1093/mp/ssn020 PMID: 19825553

47. Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 2012; 159(1):266–85. https://doi.org/10.1104/pp.111.192641 PMID: 22392279

48. Vo KTX, Kim CY, Hoang TV, Lee SK, Shirsekar G, SeoYS et al. OsWRKY67 Plays a Positive Role in Basal and AX21-Mediated Resistance in Rice. Front Plant Sci. 2018; 8:2220.

49. Guo CL, Guo RR, Xu XZ, Gao M, Li XQ, Song JY, et al. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot. 2014; 65(6):1513–28. https://doi.org/10.1093/jxb/eru007 PMID: 24510837

50. Li N, Li XH, Xiao JH, Wang SP. Comprehensive analysis of VQ motif-containing gene expression in rice defense responses to three pathogens. Plant Cell Rep. 2014; 33(8):1493–505. https://doi.org/10.1007/s00299-014-1633-4 PMID: 24871256

51. Wang M, Vannozzi A, Wang G, Zhong Y, Corso M, Cavallini E, et al. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Front Plant Sci. 2015; 6:417. https://doi.org/10.3389/fpls.2015.00417 PMID: 26124765

52. Cheng Y, Zhou Y, Yang Y, Chi YJ, Zhou J, Chen JY, et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol. 2012; 159(2):810–25. https://doi.org/10.1104/pp.112.196816 PMID: 22535423

53. Hu YR, Chen LG, Wang HP, Zhang LP, Wang F, Yu DQ. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant Journal. 2013; 74(4):730–45. https://doi.org/10.1111/tpj.12159 PMID: 23451802