On the final limit of a transition matrix

Helmut Kahl

Abstract. For a finite intensity matrix B the final limit of its transition matrix $\exp(tB)$ exists. This is a well-known fact in the realm of continuous-time Markov processes where it is proven by probability theoretic means. A simple proof is presented with help of a Tauberian theorem of complex analytic functions which is used also in [3] to proof the prime number theorem.

Mathematical Subject Classification(2010). 15B51, 30D15, 60J27.

Keywords. intensity/stochastic matrix, Laplace transform, Tauberian theory.

1. Introduction

Square matrices with finite index set Z are considered. A right intensity matrix $B = (b_{ij})$ is defined by $b_{ij} \geq 0$ for all $i, j \in Z$ with $i \neq j$ and by vanishing row sums $\sum_{j \in Z} b_{ij} = 0$ for all $i \in Z$. Its transition matrix is

$$\exp(tB) = \sum_{n=0}^{\infty} \frac{t^n}{n!} B^n, t \in \mathbb{R}.$$

Theorem 1. For a right intensity matrix B the limit $\lim_{t \to \infty} \exp(tB)$ exists.

Proof. A standard proof is given in [6], thm. 5.4.6. The assertion follows also by the Tauberian theorem [2], ch. III, thm. 7.1 from the complex analytic Proposition[5] which is deferred to the next section. □

By matrix transposition one obtains an analogous theorem for vanishing column sums. We still restrict to row vectors.

1The probability distribution P of the corresponding Markov process $\{X_t\}_{t \geq 0}$ on the state space Z with initial probability row vector π fulfills $(P\{X_t = j\})_{j \in Z} = \pi \exp(tB), t \geq 0.$
2. Complex analytic proof of the theorem

First we recall some theory of homogenous linear differential equation systems with constant coefficients. The identity matrix is denoted by I.

Lemma 2. For a complex square matrix A the matrix $Y(z) := \exp(zA)$ fulfills $Y(0) = I$, $Y' = YA = AY$ and $Y(w + z) = Y(w) + Y(z)$ for all $w, z \in \mathbb{C}$. In case the norm of Y is bounded on the positive real axis $t > 0$ every entry of the Laplace transform $z \mapsto (zI - A)^{-1}$ of Y is holomorphic on the right half plane $\Re(z) > 0$.

Proof. The formulas follow easily from the definition. Laplace transformation of $Y' = YA$ in each entry yields $z\hat{Y}(z) - Y(0) = \hat{Y}(z)A$ for the Laplace transform \hat{Y} of Y. Because of $Y(0) = I$ we have indeed $\hat{Y}(z) = (zI - A)^{-1}$. Boundedness of the norm of Y implies boundedness of each entry of Y. So \hat{Y} is well defined on $\Re(z) > 0$. Holomorphy follows from $M^{-1} = \text{adj}M/|M|$ (s. [1], Kap. 1, (25)) with the adjoint $\text{adj}M$ of a matrix M with determinant $|M| \neq 0$. \hfill \Box

Next we need some some theory of stochastic matrices. A square matrix $Q = (q_{ij})_{i,j \in \mathbb{Z}}$ is called (right) stochastic when all its entries $q_{ij} \geq 0$ are non-negative and all its row sums are equal to one. Thus the row sum norm $\|Q\|_\infty = 1$ of Q equals one.

Lemma 3. For a right intensity matrix B its transition matrix $\exp(tB)$ is stochastic, hence fulfills $\|\exp(tB)\|_\infty = 1$ for all $t \in \mathbb{R}$.

Proof. The product AB of any matrix A with B has vanishing row sums. Therefore B^n has vanishing row sums for all $n \in \mathbb{N}$. Hence the partial sums

$$
\sum_{n=0}^{N} \frac{t^n}{n!} B^n = E + tB + \ldots + \frac{t^N}{N!} B^N, \quad N \in \mathbb{N}, t \in \mathbb{R}
$$

have row sums one. By the limiting process with $N \to \infty$ the same assertion holds for $\exp(tB)$. For proving non-negativity we choose a real number μ such that $T := B + \mu I$ has non-negative entries (like in the proof of [4], thm. 2.7). Since $\exp(tT)$ has non-negative entries and $e^{-\mu t} > 0$ the assertion follows by $\exp(tB) = \exp(-\mu I) \exp(tT) = e^{-\mu t} \exp(tT)$. \hfill \Box

A complex square matrix (a_{ij}) is called reducible when there is some non-empty, proper subset J of the index set Z such that for all $i \in Z \setminus J$ and all $j \in J$ it holds $a_{ij} = 0$. Otherwise the matrix is called irreducible. Now we use the notation $D = \text{diag}(D_1, \ldots, D_k)$ for a matrix D of block diagonal form with $k \in \mathbb{N}$ block matrices D_1, \ldots, D_k (in the given order) as main diagonal submatrices of D (with the index set of D as a disjoint union of the index sets of the D_i) and with all other submatrices besides the D_i blockwise equal to the zero matrix O (of appropriate dimension).
Lemma 4. By permutation of the index set a stochastic matrix has either the block diagonal form $R := \text{diag}(R_1, ..., R_k)$ with irreducible stochastic matrices R_i or else the form \(\begin{pmatrix} R & O \\ S & T \end{pmatrix} \) for some matrix $S \neq O$ of appropriate dimension and some square matrix T such that $I - T$ is invertible. For every $i \in \{1, ..., k\}$ the polynomial $z \mapsto |zI - R_i|$ has the simple root $z = 1$.

Proof. One may choose iteratively stochastic main submatrices R_i of B of maximal dimension such that they are irreducible. The iteration stops until there is no further stochastic main sumatrix of B. In the second case it means that T is not stochastic, hence $S \neq O$, and that T has no stochastic submatrix. Then the assertions follow by [1], Kap. 6, Satz 7'&10. \(\square\)

Proposition 5. For an intensity matrix B it exists a $\delta > 0$ such that every holomorphic entry of the matrix valued function $z \mapsto z(zI - B)^{-1}$, $\Re(z) > 0$ is analytically continuable to the half plane $\Re(z) > -\delta$.

Proof. By Lemma [2] & [3] the given function $F(z) := z(zI - B)^{-1}$ is indeed well-defined and (entry-wise) holomorphic on the half plane $\Re(z) > 0$. The polynomial $z \mapsto |zI - B|$ of B has finitely many roots. So F is meromorphic on the whole complex plane. According to [5], prop. 5.12 all eigenvalues of B are elements of the compact disc of radius $\rho := \max\{-b_{ii} \mid i \in Z\}$ around $-\rho$. Hence the non-zero eigenvalues of $B = (b_{ij})_{i,j \in Z}$ have negative real part. So it suffices to show that F is analytically continuable in $z = 0$. Therefore let D be the diagonal matrix with entries $d_i := -b_{ii}, i \in Z$. Let $e_i := (i-th row of I)$ denote the i-th canonical unit vector. In case $d_i = 0$ set the i-th row of Q equal to e_i, otherwise $q_{ii} := 0$ and $q_{ij} := b_{ij}/d_i$ for $j \neq i$. This defines a stochastic matrix $Q = (q_{ij})_{i,j \in Z}$, since in case $d_i \neq 0$ we have

$$\sum_{j \in Z} q_{ij} = \frac{1}{d_i} \sum_{j \neq i} b_{ij} = \frac{-b_{ii}}{d_i} = 1.$$

Moreover it holds $B = DQ - D$. For $j \in Z$ we have e_jB equal to zero if and only if $e_jQ = e_j$. Let J be the set of such indices j; i.e. the index set of zero-rows of B. For the linear hull U of $\{e_j \mid j \in J\}$ there are linear subspaces V, W such that the left null space N of B is the direct sum of U, V, and the left eigenspace E of Q with eigenvalue one is the direct sum of U, W. Due to $B = DQ - D$ the linear map $x \mapsto xD$ maps V isomorphically onto W. So N and E are isomorphic. By suitable permutation of Z we have Q in block form like in Lemma [4] Then also B is in that block form since for all $i \neq j$ holds $q_{ij} = 0$ if and only if $b_{ij} = 0$. In the first case B is of block diagonal form $B = \text{diag}(B_1, ..., B_k)$ with intensity matrices B_i. Let $D = \text{diag}(D_1, ..., D_k)$ be the corresponding block form of diagonal matrices D_i. Then we have $B_i = D_iR_i - D_i$ for all $i \in \{1, ..., k\}$. In the second case we have an additional diagonal matrix D_k+1 such that $C := D_{k+1}T - D_{k+1}$ is the last diagonal block of B and $A := D_{k+1}S - D_{k+1}$ the lower left block of B. By the above isomorph the polynomials $z \mapsto |zI - B_i|$ (with I of
appropriate dimension) have the simple root zero and holds \(|C| \neq 0\). From
\[\text{diag}(zI - B_1, ..., zI - B_k)^{-1} = \text{diag}((zI - B_1)^{-1}, ..., (zI - B_k)^{-1}) \]
and
\[
\begin{pmatrix}
zI - B & O \\
A & zI - C
\end{pmatrix}^{-1} = \begin{pmatrix}
(zI - B)^{-1} \\
-(zI - C)^{-1}A(zI - B)^{-1} & (zI - C)^{-1}
\end{pmatrix}
\]
the assertion follows now. \(\square\)

References

[1] R.H. Gantmacher, *Matrizentheorie* (Übersetzung der zweiten russischen Auflage von 1966), Springer, Berlin (1986)
[2] J. Korevaar, *Tauberian theory*, Springer, Berlin (2004)
[3] D.J. Newman, *Simple analytic proof of the prime number theorem*, Amer. Math. Monthly 87 (1980) 693-696
[4] E. Seneta, *Non-negative Matrices and Markov chains*, 2nd edition, Springer, Berlin (1981)
[5] D. Serre, *Matrices*, 2nd edition, Springer, Berlin (2010)
[6] D.W. Stroock, *An introduction to Markov processes*, 2nd edition, Springer, Berlin (2014)