Well-posedness of an isothermal diffusive model for binary mixtures of incompressible fluids

A Berti1, V Berti2 and D Grandi2

1 Faculty of Engineering, University e-campus, 22060 Novedrate (CO), Italy
2 Department of Mathematics, University of Bologna, 40126 Bologna, Italy

E-mail: alessia.berti@uniecampus.it, berti@dm.unibo.it and grandi@dm.unibo.it

Received 8 June 2011, in final form 13 September 2011
Published 4 October 2011
Online at stacks.iop.org/Non/24/3143

Abstract

We consider a model describing the behaviour of a mixture of two incompressible fluids with the same density under isothermal conditions. The model consists of three balance equations: a continuity equation, a Navier–Stokes equation for the mean velocity of the mixture and a diffusion equation (Cahn–Hilliard equation). We assume that the chemical potential depends on the velocity of the mixture in such a way that an increase in the velocity improves the miscibility of the mixture. We examine the thermodynamic consistence of the model which leads to the introduction of an additional constitutive force in the motion equation. Then, we prove the existence and uniqueness of the solution of the resulting differential problem.

Mathematics Subject Classification: 35Q35, 76T05

1. Introduction

We consider a model describing the isothermal motion of a mixture of two incompressible fluids following the diffusional approach to binary mixtures. This goes back to model H in the classification by Hohenberg and Halperin [13], which consists of a Cahn–Hilliard diffusion model coupled with a fluid motion. This kind of approach is extensively discussed by Lowengrub and Truskinovsky [15]. Basically, a binary mixture is described in terms of a macroscopic velocity field representing the mean velocity at each spatial point, the total-density field of the mixture, and an order field which describes the actual composition of the mixture at each point. The model consists of three balance equations: a continuity equation, (total) momentum balance (Navier–Stokes equation) and a diffusion equation (Cahn–Hilliard equation). The diffusional model can be considered as an approximation of the classical theory of mixtures (based on two continuity equations and two momentum balance equations, one
for each component) when the momenta and the kinetic energies of the relative motion can be neglected.

The coupling of the motion equation with the Cahn–Hilliard equation has a trivial part due to the presence of the material derivative (rather than the partial time derivative) of the order parameter in the Cahn–Hilliard equation and a less trivial coupling arising from the dependence of stress tensor upon the gradient of the order parameter. The presence of such a coupling has been derived by Gurtin et al on the basis of classical continuum mechanics arguments [12].

In this paper we discuss a variant of this model in which a dependence of the chemical potential on the velocity of the mixture is introduced. We add the velocity-dependent term in the local part of the chemical potential, that is the part independent of the gradients of the order parameter. The effect of velocity can be assimilated to an increase in the temperature (which is a fixed parameter in the isothermal model we are considering), since it reduces the miscibility gap.

In section 2 we review the classical analysis of the thermodynamic consistence which displays the need of an additional constitutive force term in the motion equation.

The subsequent sections are devoted to the proof of existence and uniqueness of the solution of the resulting differential problem. Our mathematical study concentrates on the fully incompressible situation, that is the case of a binary mixture of two incompressible fluids which also have the same density. Clearly, this is an exceptional case from an empirical point of view, but could be an acceptable approximation for a broader class of real situations.

The coupling of the Navier–Stokes equations with the Cahn–Hilliard equation has been extensively studied in the literature. Among the first results concerning existence, uniqueness and asymptotic behaviour of the solutions, we recall the papers [4, 17]. More recently, Abels [1] proves well-posedness and examines long-time behaviour of the Cahn–Hilliard–Navier–Stokes system involving a class of singular free energies (including the logarithmic free energy) which guarantees the boundedness of the order parameter. Further results about the asymptotic behaviour of the solutions and the existence of global and exponential attractors for the coupled system are shown in [10].

The main result of our paper is the proof of existence and uniqueness of the solutions of Cahn–Hilliard–Navier–Stokes equations where a new nonlinear term is present due to the velocity dependence of the chemical potential. Moreover, we add a viscous term in the definition of chemical potential [11] which turns out to be crucial for our purpose. The functional formulation of our problem is given in section 3. In section 4, with the same technique used in [9], we introduce a family of approximating problems, by adding to the Cahn–Hilliard equation a perturbative term proportional to the time derivative of the chemical potential. By means of a fixed point argument, we establish the existence of solutions of the approximated problems. Finally, in section 5 we prove well-posedness of the original problem letting the perturbative term tend to zero.

2. Model equations and thermodynamical consistence

Let us consider a mixture of two partially miscible fluids; we will use a binary index \(i = 1, 2 \) to make reference to each of them. Every spatial volume element \(dV \) will in general contain a mass portion \(dm_i \) of the \(i \)th fluid; we indicate with \(\rho_i \) the apparent density of each fluid:

\[
\rho_i = \frac{dm_i}{dV}.
\]

The adjective ‘apparent’ is used to emphasize that we are considering the ratio of each mass fraction over the total volume element \(dV \), rather than over its own fractional volume \(dV_i \).
An isothermal diffusive model for binary mixtures of incompressible fluids

Each component, which can be compressible or incompressible, is characterized by its own density \(\rho_i^0 = \frac{dm_i}{dV_i} \) under standard conditions of temperature and pressure. Of course, the total density is the sum \(\rho = \rho_1 + \rho_2 \). We also define an order parameter measuring the degree of phase separation as

\[
\varphi = \frac{dm_1 - dm_2}{dm_1 + dm_2} = \frac{\rho_1 - \rho_2}{\rho} \in [-1, 1].
\]

As we are considering mutually non-transforming chemical species, the first general balance laws we have to impose are the mass conservation of each component; so, if \(v_i \) is the velocity of the \(i \)th component, we demand

\[
\frac{\partial \rho_i}{\partial t} + \nabla \cdot (\rho_i v_i) = 0, \quad i = 1, 2. \tag{2.1}
\]

By defining the mean velocity of the mixture as \(v = \rho^{-1}(\rho_1 v_1 + \rho_2 v_2) \) (so that \(\rho v \) is the total momentum density), a global mass continuity law follows

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0. \tag{2.2}
\]

The model we are going to study describes an incompressible mixture of two fluids, so the total density \(\rho = \rho_1 + \rho_2 \) is constant and the continuity equation (2.2) reduces to

\[
\nabla \cdot v = 0.
\]

This means that each fluid component is incompressible and also that each component has the same constant density \(\rho \):

\[
dm_i = \rho dV_i.
\]

From equations (2.1), after a little calculation, the following equation for \(\varphi \) is obtained:

\[
\rho \left(\frac{\partial \varphi}{\partial t} + v \cdot \nabla \varphi \right) = \nabla \cdot \left[\frac{2\rho_1 \rho_2}{\rho} (v_2 - v_1) \right].
\]

We will use the usual notation for the material time derivative related to the mean velocity field \(v \) (barycentric material derivative):

\[
\dot{f} \equiv \frac{\partial f}{\partial t} + v \cdot \nabla f,
\]

for every spatial field \(f(x, t) \). Therefore the equation for \(\varphi \) assumes the form

\[
\rho \dot{\varphi} = \nabla \cdot \mathbf{J}. \tag{2.3}
\]

This is the usual equation for a conserved quantity with respect to the gross motion of the fluid defined by the mean velocity \(v \).

We now introduce a basic physical hypothesis which characterizes the diffusional approach to binary fluids [12, 15]. Accordingly, we will describe the dynamics using a balance law for the total momentum density \(\rho v \) of the mixture, while the effects of relative motion will be described only through the balance law (2.3) for the scalar order field \(\varphi \), not retaining the motion equation for the relative momentum \(\rho_2 v_2 - \rho_1 v_1 \). In other words, the fundamental fields of the model will be \(\rho, v, \varphi \) rather than \(\rho_1, \rho_2, v_1, v_2 \), and the current \(J \) will be given a constitutive law in terms of \(\rho, v, \varphi \) (and their gradients). Physically, this amounts to neglecting the kinetic energies and the momenta of the constituents relative to the mean motion, retaining only the information of the relative mass flux. The resulting model can be considered as the model of a single fluid with an internal variable defined by the conserved field \(\varphi \).
So in this paper we are going to consider a model characterized by the three balance equations:

\[
\begin{align*}
\nabla \cdot v &= 0, \\
\rho \dot{v} &= \nabla \cdot T + \rho d + \rho f, \\
\rho \dot{\psi} &= \nabla \cdot J.
\end{align*}
\] (2.4)

Here \(T \) is the stress tensor, \(d \) a constitutive body force and \(f \) a possible external body force. The (unusual) constitutive force \(d \) is required if we want to construct a thermodynamically consistent model in which a dependence of \(J \) on \(v \) is admitted, as we are going to show.

We begin considering the diffusion equation. We will consider a Cahn–Hilliard-like model, in which the current is expressed as

\[
J = \gamma \nabla \mu,
\] (2.5)

where \(\mu \) is the chemical potential and \(\gamma \) is the mobility coefficient. In the classical Cahn–Hilliard model \([5, 6]\) \(\mu \) is a non-local function of the order field \(\psi \) which takes the form

\[
\mu = \mu_{\text{loc}}(\psi) - \nabla \cdot (\kappa h),
\]

where \(h = \nabla \psi \). Here we consider a generalization of the chemical potential by explicitly admitting a velocity dependence \(\mu_{\text{loc}}(v, \psi) \) in its local part; in particular, we will examine the resulting couplings imposed by the thermodynamic consistence. The underlying physical idea is that the local velocity can influence the miscibility properties of the mixture\(^3\). Such a dependence on velocity obviously introduces a preferential frame of reference in the problem. A preferential frame is in any case present if we consider a mixture moving in a limited domain enclosed in a vessel. Nevertheless, we think that such a dependence on velocity would be naturally occurring, for example, in the case of a fluid moving in a permeable medium. This represents a direct coupling between the macroscopic motion and the diffusive (microscopic) motion, different from the (macroscopic) convective transport processes.

Furthermore, for future utility in the mathematical study, we will add to the chemical potential a dissipative contribution proportional to \(\rho \dot{\psi} \). This term is introduced, for example, in \([11]\), in the context of a general discussion about the thermodynamically allowed constitutive relations. In our case, such a term is not really taken for the sake of generality, but rather to overcome some technical difficulties in the study of the differential problem. So we consider

\[
\mu = \mu_{\text{loc}}(v, \psi) - \kappa_1(\psi) \nabla \cdot (\kappa_2(\psi) h) + \beta \dot{\psi}.
\] (2.6)

We associate a suitable balance of powers with the diffusion equation, which is needed to write the first law of thermodynamics later on. This is obtained by multiplying the diffusion equation by the chemical potential \(\mu \):

\[
\rho \dot{\psi} \mu = \mu \nabla \cdot J.
\] (2.7)

The central issue is to recognize in this equality an internal and an external power. The choice will be influential in satisfying the second law of thermodynamics. In particular, as there are non-local (gradient) contributions in \(\mu \), it would create difficulties to refer completely the term \(\rho \dot{\psi} \mu \) to the internal power.

We will rewrite equation (2.7) in the form

\[
\rho \dot{\psi} \mu_{\text{loc}} + \beta \rho \dot{\psi}^2 + \kappa_2 h \cdot \nabla (\rho \kappa_1 \dot{\psi}) + J \cdot \nabla \mu = \nabla \cdot (\mu J + \rho \kappa_1 \kappa_2 \rho \dot{\psi} h)
\]

\(^3\) A chemical potential depending on the velocity has been considered in [2]. However, the origin of that term is entirely different, as it arises essentially as a consequence of a different definition of the velocity field, which is not the barycentric velocity we are assuming. In this paper, which takes the approach of [15], the added velocity dependence has a completely different significance.
and we ascribe the left-hand side to the internal power P_i^l. Letting $L = \nabla v$ (in components: $L_{ij} = \partial v_i/\partial x_j$), we observe that

$$\nabla \hat{\psi} = \hat{h} + L^T h.$$

We use this identity and (2.5) to write the internal power in the more suited form

$$P_i^l = [\rho \mu_{loc} + \kappa_2 h \cdot \nabla (\rho \kappa_1)] \hat{\psi} + \beta \rho \hat{\psi}^2 + \rho \kappa_1 \kappa_2 h \cdot (\hat{h} + L^T h) + \gamma |\nabla \mu|^2.$$

Next we consider the momentum balance equation. The stress tensor and the constitutive force are given by

$$T = \hat{T}(D, \varphi, h), \quad d = \hat{d}(v, \varphi, \hat{\psi}),$$

where $D : = \frac{1}{2}(L + L^T)$ is the symmetric part of the velocity gradient.

The balance of powers is obtained by multiplying both members of (2.4) by v:

$$\frac{1}{2} \rho (v^2) = [\nabla \cdot (Tv) + \rho f \cdot v] - [T : \nabla v - \rho d \cdot v].$$

The term $d \cdot v$ from the constitutive body force will contribute to the internal power. In particular, the internal mechanical power P_m^i is defined by

$$P_m^i = T : D - \rho d \cdot v.$$

This identification is based on the assumption that stress tensor is a function depending only on the first gradients of the field, namely $T = \hat{T}(D, \varphi, h)$; otherwise, it happens for μ, which is dependent on ∇h, it would be appropriate to refer part of the contribution $T : D$ to the external power.

As we are considering an isothermal model, we use the dissipation inequality

$$\rho \dot{\psi} - P^l_\psi - P^l_m \leq 0,$$

where ψ is the free energy, as the proper version of the second law of thermodynamics. If $\psi = \hat{\psi}(\chi)$, where χ is the list of variables $v, \varphi, \hat{\psi}$ and all their gradients appearing in the constitutive equations, the dissipative inequality is written as

$$\rho \sum_{\beta, \mu, h} \psi_{\chi} \dot{h}_i + [\rho \psi_\mu - \rho \mu_{loc} - \kappa_2 h \cdot \nabla (\rho \kappa_1)] \dot{\psi} - \beta \rho \dot{\psi}^2 + [\rho \psi_h - \rho \kappa_1 \kappa_2 h] \cdot \hat{h}$$

$$= -[T + \rho \kappa_1 \kappa_2 h \otimes h] : D + \rho d \cdot v - \gamma |\nabla \mu|^2 \leq 0,$$

having used $h \cdot (L^T h) = D : (h \otimes h)$. It easily follows that ψ does not depend on any of the variables $\chi_i \neq \psi, h$, that is

$$\psi = \hat{\psi}(\varphi, h).$$

(2.8)

For any given φ, h, it is possible to find processes with $\dot{\psi} = 0, v = 0, D = 0, \nabla \mu = 0$ but otherwise with h arbitrary. This implies

$$\psi_h = \kappa_1 \kappa_2 h.$$

(2.9)

By choosing appropriately \hat{h} we can make $\nabla \mu = 0$ with $\varphi, \hat{\psi}, h, v, D$ arbitrary, so the following inequality holds:

$$[\rho \psi_\mu - \rho \mu_{loc} - \kappa_2 h \cdot \nabla (\rho \kappa_1)] \dot{\psi} - \beta \rho \dot{\psi}^2 - [\hat{T}(D, \varphi, h) + \rho \kappa_1 \kappa_2 h \otimes h] : D$$

$$+ \rho \dot{d}(v, \varphi, \hat{\psi}) \cdot v \leq 0.$$

(2.10)

4 There is an alternate approach to the issue of the energy balance associated with the diffusion equation due to Gurtin. According to this author, the diffusion equation is associated with the internal power $\delta \mu + J \cdot \nabla \mu$, which could be considered as a definition of the chemical potential, which is treated as an independent field. Moreover, the diffusion equation is accompanied by an independent balance equation (microforce balance) which also brings a contribution to the total amount of power.

5 In fact $\nabla \mu = \nabla (\mu_{loc} + \beta \hat{\psi}) + \nabla [\kappa_2 \nabla \cdot (\kappa_1 h)]$, so one can make $\nabla \mu = 0$ by suitably choosing $\nabla \nabla h$ for the given set of conditions.
In the same way, we can make $\nabla \mu \neq 0$ and $\dot{\psi} = 0$, $v = 0$, $D = 0$, so $\gamma > 0$.

Inequality (2.10) implies that $\beta > 0$ (considering processes with $v = 0$, $D = 0$ and $\dot{\psi}$ arbitrary); letting $\dot{\psi} = 0$ and $v = 0$ we have to impose

$$[\tilde{T}(D, \varphi, h) + \rho \kappa_1 \kappa_2 h \otimes h] \colon D \geq 0.$$

Because of the incompressibility, on the one hand the pressure (that is the trace part of T) is not a constitutively determined quantity (it is kinematically determined), on the other hand the trace part of D identically vanishes

$$\text{Tr}(D) = \nabla \cdot v = 0.$$

So, putting for brevity,

$$Q \equiv T + \rho \kappa_1 \kappa_2 h \otimes h,$$

the inequality $Q : D \geq 0$ is equivalent to $\tilde{Q} : \tilde{D} \geq 0$ where the tilde on a tensor indicates its deviatoric part: $\tilde{D} = D - \frac{1}{2} \text{Tr}(D) I$ and similarly for Q. So we assume $\tilde{Q} = 2\nu \tilde{D}$ with $\nu = \dot{\psi}(D, \varphi, h) > 0$, that is

$$T + \rho \kappa_1 \kappa_2 h \otimes h = 2\nu \tilde{D} - p I,$$

(2.11)

where $p = -\frac{1}{\gamma} \text{Tr}(Q)$ is the undetermined component of the pressure.

We are now left with the reduced inequality (for $D = 0$)

$$[\rho \psi_h (\varphi, h) - \rho \mu_{\text{loc}}(\varphi, v) - \kappa_2 h \cdot \nabla(\rho \kappa_1)] \dot{\psi} - \beta \rho \dot{\psi}^2 + \rho \tilde{d}(v, \varphi, \psi) \cdot v \leq 0. \quad (2.12)$$

From that we see that, if there is a non-trivial dependence of μ_{loc} on v, the presence of the constitutive force d is necessary. This circumstance further clarifies the remark made in footnote 3. The constitutive force d is a kind of viscous term; as such, it does not contradict any basic physical principle, such as the material frame indifference principle, which establishes that the internal interactions between the parts of the body have to be independent of the frame of reference, and, for example, rules out a dependence of the stress on the velocity.

The following particular choices are made to satisfy (2.12):

$$d = \delta(v, \varphi) \varphi, \quad (2.13)$$

$$\kappa_1 = \text{constant}, \quad \psi_{\varphi h} = 0, \quad (2.14)$$

$$\beta > 0, \quad \gamma > 0 \quad (2.15)$$

$$\mu_{\text{loc}}(\varphi, v) - \delta \cdot v = \psi_v (\varphi). \quad (2.16)$$

Conditions (2.8), (2.9), (2.11), (2.13)–(2.16) ensure that the dissipation inequality is satisfied.

The specific feature of the model we are going to study (compared with those by Gurtin and Truskinovsky) is a velocity dependence of the chemical potential. We adopt the usual form of the free energy function $\psi(\varphi, h)$ used in the Cahn–Hilliard model of diffusion:

$$\psi = \frac{\kappa}{2} |\nabla \varphi|^2 + u \cdot G(\varphi) + H(\varphi), \quad G(\varphi) \equiv \frac{1}{2} \varphi^2, \quad H(\varphi) \equiv \frac{1}{4} \varphi^2,$$

where $u \in [-1, +\infty[$ is a temperature-dependent parameter, typically

$$u = \frac{\theta - \theta_c}{\theta_c}.$$

The φ-dependent part of ψ is such that for $u \geq 0$ it has a unique minimum at $\varphi = 0$, while for $-1 \leq u < 0$ it has two minima $\pm \bar{\varphi}$ with $\bar{\varphi} \in [0, 1]$. It is known [6] that the unique minimum in the potential corresponds to the situation without a miscibility gap, while in the regime with two minima there is a miscibility gap.

In this paper we assume the following form for the local part of the chemical potential:

$$\hat{\mu}_{\text{loc}}(\varphi, v) = \hat{\psi}_v (\varphi) + \lambda v^2 G' (\varphi),$$

with $\lambda > 0$.

We remark that the effect of velocity can be assimilated with an increase in temperature, that is a restriction of the miscibility gap. So $\delta \cdot v = \lambda v^2 G'(\varphi)$ and we obtain the constitutive force

$$d \cdot v = \lambda v^2 G'(\varphi).$$

We sum up the system of equation in that case, putting everywhere $\rho = 1$ and taking $\gamma, v, \kappa = \kappa_1 \kappa_2 > 0$ constant:

$$\nabla \cdot v = 0, \quad (2.17)$$

$$\dot{v} = -\nabla p + v \Delta v - \kappa \nabla \cdot (\nabla \varphi \otimes \nabla \varphi) + \lambda \varphi \dot{\varphi} v + f, \quad (2.18)$$

$$\dot{\varphi} = \gamma \Delta \mu, \quad (2.19)$$

where

$$\mu = -\kappa \Delta \varphi + \varphi^3 + (u + \lambda v^2) \varphi + \beta \dot{\varphi}. \quad (2.20)$$

3. Notation and functional settings

In order to obtain a precise formulation of the problem, we introduce here some notation and recall the main inequalities used in what follows. We assume that the domain Ω occupied by the system is a bounded subset of \mathbb{R}^2, with smooth boundary $\partial \Omega$.

For each $p \geq 1$ and $s \in \mathbb{R}$, we denote by $L^p(\Omega)$ and $H^s(\Omega)$ the Lebesgue and Sobolev spaces of real-valued or vector-valued functions, according to the context. Let $\| \cdot \|_p$ and $\| \cdot \|_{H^s}$ be the standard norms of $L^p(\Omega)$ and $H^s(\Omega)$, respectively. In particular $\| \cdot \|_2$ stands for the $L^2(\Omega)$-norm. The space $H^1_0(\Omega)$ is the closure of C^∞ functions with compact support with respect to the norm $\| \cdot \|_{H^1}$. Moreover, $H^1(\Omega)'$ is the dual space of $H^1(\Omega)$ endowed with the standard norm

$$\| w \|_{H^1'} = \sup \{ |(w, u)| : u \in H^1(\Omega), \| u \|_{H^1} \leq 1 \}, \quad (3.1)$$

where (\cdot, \cdot) denotes the pairing.

We define

$$\widehat{H}^2(\Omega) = \{ w \in H^2(\Omega) : \nabla w \cdot n|_{\partial \Omega} = 0 \}.$$

For vector-valued functions, we introduce the functional spaces used in the framework of Navier–Stokes equations [19]:

$$H^1_{\text{div}}(\Omega) = \{ w \in H^1_0(\Omega) : \nabla \cdot w = 0 \},$$

$$L^2_{\text{div}}(\Omega) = \{ w \in L^2(\Omega) : \nabla \cdot w = 0, v \cdot n|_{\partial \Omega} = 0 \}.$$

Finally, for any $T > 0$ we define

$$X_\varphi = L^2(0, T; H^3(\Omega) \cap \widehat{H}^2(\Omega)) \cap H^1(0, T; H^1(\Omega)) \cap H^2(0, T; H^2(\Omega))$$

$$X_\psi = L^2(0, T; H^2(\Omega) \cap H^1_{\text{div}}(\Omega)) \cap H^1(0, T; L^2_{\text{div}}(\Omega))$$

$$X_\mu = L^2(0, T; \widehat{H}^2(\Omega))$$

$$X_T = X_\varphi \times X_\psi \times X_\mu$$

endowed with their usual norms $\| \cdot \|_{X_\varphi}, \| \cdot \|_{X_\psi}, \| \cdot \|_{X_\mu}$ and

$$\| (\varphi, \psi, \mu) \|_{X_T}^2 = \| \varphi \|_{X_\varphi}^2 + \| \psi \|_{X_\psi}^2 + \| \mu \|_{X_\mu}^2.$$

Here and henceforth we denote by C any positive constant depending only on the domain Ω which is allowed to vary even in the same formula. Further dependences will be specified.
Since $\Omega \subset \mathbb{R}^2$, the Sobolev embedding theorem implies [3]
\[
\|w\|_p \leq C \|w\|_{H^1}, \quad 2 \leq p < \infty, \quad w \in H^1(\Omega)
\] (3.2)
and the following interpolation inequalities hold as a consequence of the Gagliardo–Nirenberg inequality [8, 16]:
\[
\|w\|^2_4 \leq C \|w\| \|w\|_{H^1}, \quad (3.3)
\|w\|^2_6 \leq C \|w\|^{4/3} \|w\|^{2/3}_{H^1}. \quad (3.4)
\]

If $w \in H^1_0(\Omega)$ or $w \in H^1(\Omega)$ and $\int_{\Omega} w \, dx = 0$, the Poincaré inequality provides [7]
\[
\|w\| \leq C \|\nabla w\|.
\]

From the Agmon inequality [18, p 52], we deduce that
\[
\|w\|_{\infty} \leq C \|w\|^{1/2} \|w\|^{1/2}_{H^1} \leq C \|w\|_{H^1}, \quad w \in H^2(\Omega). \quad (3.5)
\]

Furthermore, for every $v \in H^1(\Omega), u, w \in H^2(\Omega)$ the following interpolation inequalities
\[
\|uvw\|_{H^1} \leq C \|u\|_{H^1} \|v\|_{H^1} \|w\|_{H^2} \quad (3.6)
\]
\[
\|uw\|_{H^2} \leq C \|u\|_{H^1} \|w\|_{H^2} \quad (3.7)
\]
hold as a straightforward consequence of (3.2) and (3.5).

In addition, if $w \in H^2(\Omega) \cap H^1_0(\Omega)$ or $w \in H^2(\Omega)$, then [14, theorem 5.1, p 149]
\[
\|w\|_{H^1} \leq C(\|w\| + \|\Delta w\|).
\]

As a consequence, for every $w \in H^1(\Omega) \cap \tilde{H}^2(\Omega)$, we have
\[
\|w\|_{H^1} \leq C(\|w\|_{H^1} + \|\Delta w\|_{H^1}) \leq C(\|w\| + \|\nabla w\|). \quad (3.8)
\]

For vector-valued functions we define the orthogonal projector $\mathcal{P} : L^2(\Omega) \rightarrow L^2_{\text{div}}(\Omega)$ and the operator A defined as
\[
Aw = -\mathcal{P}\Delta w, \quad w \in H^2(\Omega) \cap H^1_{\text{div}}(\Omega).
\]

It is worth noting that for any $w \in H^2(\Omega) \cap H^1_{\text{div}}(\Omega)$ the elliptic regularity properties for the Stokes operator [20] yield the following estimate:
\[
\|w\|_{H^2} \leq C\|Aw\|.
\]

For later use, we will also need the following result, whose proof is given in [7, theorem 4, p 288].

Theorem 3.1. Suppose $w \in L^2(0, T; H^{m+2}(\Omega))$ and $w_t \in L^2(0, T; H^m(\Omega))$ where m is a non-negative integer. Then $w \in C([0, T]; H^{m+1}(\Omega))$ and
\[
\max_{[0, T]} \|w(t)\|_{H^{m+1}} \leq C(\|w\|_{L^2(0, T; H^{m+2}(\Omega))} + \|w_t\|_{L^2(0, T; H^m(\Omega))}).
\]

the constant C depending only on T, Ω and m.

Finally, for reader’s convenience, we recall Young’s inequality. Let $1 < p, q < \infty$, such that $\frac{1}{p} + \frac{1}{q} = 1$. Then,
\[
ab \leq C(a^p + C(\eta)b^q) \quad (a, b > 0, \eta > 0). \quad (3.9)
\]

The functional formulation of problem (2.17)–(2.20) is the following:

Problem (P). To find a triplet $(\psi, v, \mu) \in X_T$ such that
\[
\beta\psi_t - \kappa \Delta \psi - \mu + \beta v \cdot \nabla \psi + \psi^3 + \omega \psi + \lambda \psi v^2 = 0 \quad (3.10)
\]
\[
v_t + \nabla \nabla + \mathcal{P} \{ \kappa \nabla \cdot (\nabla \psi \otimes \nabla \psi) - \lambda \psi (\psi_t + \nu \cdot \nabla \psi) + (\nabla \psi) v \} = \mathcal{P} f \quad (3.11)
\]
\[
-\gamma \Delta \mu + \psi_t + v \cdot \nabla \psi = 0 \quad (3.12)
\]
a.e. in $\Omega \times (0, T)$, and
\[
\varphi(x, 0) = \varphi_0(x), \quad v(x, 0) = v_0(x), \quad \text{a.e. } x \in \Omega.
\]

Note that equation (3.10), which provides the definition of the chemical potential, is interpreted as a parabolic equation governing the evolution of φ, whereas equation (3.12) is an elliptic equation for the unknown μ. Accordingly, the condition $\beta > 0$ will be crucial in the following analysis to prove well-posedness of the system.

The existence of solutions to problem (P) is proved by introducing a suitable family (P_ε) of approximating problems, where ε is a small parameter such that $0 < \varepsilon < 1$. In section 4 we prove the existence of solutions to (P_ε). Then, by letting $\varepsilon \to 0$, we obtain the existence result for the solutions of problem (P).

4. Approximating problem

We introduce the functional space
\[
X_\varepsilon^\mu = L^2(0, T; H^2(\Omega)) \cap H^1(0, T; L^2(\Omega)).
\]

Problem (P_ε). To find a triplet $(\varphi^\varepsilon, v^\varepsilon, \mu^\varepsilon) \in X_\varepsilon^\mu$ such that
\[
\begin{align*}
\beta \varphi_t^\varepsilon - \kappa \Delta \varphi^\varepsilon - \mu^\varepsilon + \beta v^\varepsilon \cdot \nabla \varphi^\varepsilon + (\varphi^\varepsilon)^3 + \lambda \varphi^\varepsilon (v^\varepsilon)^2 &= 0 \\
\varepsilon \mu_t^\varepsilon - \gamma \Delta \mu^\varepsilon + v^\varepsilon + \nabla \cdot \nabla \varphi^\varepsilon &= 0
\end{align*}
\]
a.e. in $\Omega \times (0, T)$, and
\[
\varphi^\varepsilon(x, 0) = \varphi_{0\varepsilon}(x), \quad v^\varepsilon(x, 0) = v_{0\varepsilon}(x), \quad \mu^\varepsilon(x, 0) = \mu_{0\varepsilon}(x), \quad \text{a.e. } x \in \Omega. \tag{4.4}
\]

From the standard theory of linear parabolic equations (see, e.g. [7, 14, 19]), we deduce the following auxiliary result.

Lemma 4.1 (Existence of solutions of problem (P_ε)). Let $\Phi \in L^2(0, T; H^1(\Omega)) \cap H^1(0, T; H^1(\Omega))$, $\Upsilon \in L^2(0, T; L^2(\Omega))$, $\Lambda \in L^2(0, T; L^2(\Omega))$, $\varphi_{0\varepsilon} \in \tilde{H}^2(\Omega)$, $v_{0\varepsilon} \in H^1(\Omega)$, $\mu_{0\varepsilon} \in H^1(\Omega)$. Then, there exists a unique solution $(\varphi, v, \mu) \in X_\varepsilon^\mu$ of the linear problem (P_ε)
\[
\begin{align*}
\beta \varphi_t - \kappa \Delta \varphi &= \Phi \\
\varepsilon \mu_t - \gamma \Delta \mu &= \Lambda
\end{align*}
\]
with the initial conditions (4.4). In particular, $\varphi \in C([0, T]; \tilde{H}^2(\Omega))$, $v \in C([0, T]; H^1(\Omega))$, $\mu \in C([0, T]; H^1(\Omega))$.

For any $\tau > 0$ we denote by
\[
Y_{\tau} = Y_{\varphi} \times Y_{v} \times Y_{\mu}
\]
with
\[
\begin{align*}
Y_{\tau} &= L^2(0, \tau; H^2(\Omega)) \cap H^1(0, \tau; H^1(\Omega)) \cap C([0, \tau]; L^2(\Omega)) \\
Y_{v} &= L^2(0, \tau; H^2(\Omega) \cap H^1(\Omega)) \cap H^1(0, \tau; L^2(\Omega)) \\
Y_{\mu} &= C([0, \tau]; H^1(\Omega)) \cap H^1(0, \tau; L^2(\Omega)).
\end{align*}
\]
Lemma 4.2. For any $\tau > 0$, let $(\psi, w, \zeta) \in Y_\tau$, $f \in L^2(0, \tau; L^2(\Omega))$. Then, the functions Φ, Υ, Λ defined as

\[\Phi = \zeta - \beta w \cdot \nabla\psi - \psi^3 - u\psi - \lambda\psi w^2 \] (4.8)
\[\Upsilon = P[f - k\nabla \cdot (\nabla\psi \otimes \nabla\psi) + \lambda\psi(\psi_t + w \cdot \nabla\psi)w - (\nabla w)w] \] (4.9)
\[\Lambda = -\psi_t - w \cdot \nabla\psi \] (4.10)

satisfy $\Phi \in L^2(0, \tau; H^1(\Omega)) \cap H^1(0, \tau; H^2(\Omega))$, $\Upsilon \in L^2(0, \tau; \Lambda_2^2(\Omega))$, $\Lambda \in L^2(0, \tau; L^2(\Omega))$.

Proof. From definition (4.8) and inequalities (3.6) and (3.7), it follows that

\[\|\Phi\|_{H^1} \leq C(\|\zeta\|_{H^1} + \|w\|_{H^1} + \|\psi\|_{H^1} + \|\psi^3\|_{H^1} + \|\psi\|_{H^1} + \|\psi w^2\|_{H^1}) \]
\[\leq C(\|\zeta\|_{H^1} + \|w\|_{H^1} + \|\psi\|_{H^1} + \|\psi^2\|_{H^1} + \|\psi\|_{H^1} + \|\psi\|_{H^1}) \]
\[+ \|\psi\|_{H^1} \|w\|_{H^1} + \|\psi\|_{H^1} \|w\|_{H^1} + \|\psi\|_{H^1} \|w\|_{H^1} + \|\psi\|_{H^1} \|w\|_{H^1}) \] (4.11)

The assumption $(\psi, w, \zeta) \in Y_\tau$ and theorem 3.1 guarantee that

\[\int_0^\tau \|\Phi\|^2_{H^1} dt < \infty. \]

In order to prove that $\Phi \in H^1(0, T; H^1(\Omega))$, we differentiate equation (4.8) with respect to t and we evaluate $\|\Phi_t\|_{(H^1)^\prime}$. In view of (3.1) and the regularity of the functions ψ, w, ζ, we have

\[\|\Phi_t\|_{(H^1)^\prime} \leq C(\|\psi\| + \|w\| \|\nabla\psi\|_{H^1} + \|w\|_{H^1} \|\nabla\psi\|_{H^1} + \|\psi\|_{H^1} \|\psi_t\| + \|\psi_t\|_{H^1}) \]
\[+ \|\psi\|_{H^1} \|w\|_{H^1} + \|\psi\|_{H^1} \|w\|_{H^1} \|w\|_{H^1} + \|\psi\|_{H^1} \|w\|_{H^1} \|w\|_{H^1}). \] (4.12)

In addition, Young’s inequality leads to

\[\int_0^\tau \|\Phi_t\|^2_{(H^1)^\prime} dt \leq C \int_0^\tau [(\|\zeta\|^2 + (1 + \|w\|^4_{H^1} + \|\psi\|^4_{H^1})]\|\psi_t\|^2_{H^1} \]
\[+ (\|\psi\|^2_{H^1} \|w\|^4_{H^1} \|\psi\|^2_{H^1}) \|w\|^2 \] dt $< \infty.$

Now we consider equation (4.9). We get

\[\|\Upsilon\| \leq C(\|f\| + \|\psi\|_{H^2} \|\psi\|_{H^1} + \|\psi\|_{H^1} \|\psi_t\|_{H^1} \|w\|_{H^1} + \|\psi^2\|_{H^2} \|w\|_{H^2} \]
\[+ \|w\|_{H^2} \|w\|_{H^2}), \]

which implies $\Upsilon \in L^2(0, \tau; L^2(\Omega))$.

Similarly, from (4.10) we deduce

\[\|\Lambda\| \leq \|\psi_t\| + \|w\|_{H^1} \|\psi\|_{H^2}, \]

so that $\Lambda \in L^2(0, \tau; L^2(\Omega))$. \(\square \)

Theorem 4.1. Suppose that $\varphi_0 \in \widetilde{H}^2(\Omega)$, $v_0 \in H^1(\Omega)$, $\mu_0 \in H^1(\Omega)$, $f \in L^2(0, T; L^2(\Omega))$. Then, problem (P) admits a unique local solution for a sufficiently small time $\tau \in (0, T)$ depending on the size of initial data φ_0, v_0 and μ_0 in their appropriate spaces.

Proof. For any $\tau > 0$, we define

\[S : Y_\tau \to Y_\tau \]
\[(\psi, w, \zeta) \mapsto (\varphi, v, \mu), \]
where \((\varphi, v, \mu)\) is the unique solution of problem \((P_2)\) and \(\Phi, \Upsilon, \Lambda\) are defined by \((4.8)-(4.10)\).

Thanks to lemmas 4.1 and 4.2, \(S\) is well defined and \(S(\varphi, w, \xi) \in X_\tau\). Furthermore, we consider the bounded subset \(B_\tau \subset Y_\tau\) that consists of the functions \((\varphi, w, \xi)\) satisfying the following conditions:

\[
\int_0^T [\|\psi\|^2_{H_1^1} + \|w\|^2_{H^1_2}] dt \leq n_1, \tag{4.13}
\]

\[
\int_0^T [\|\partial_t \psi\|^2_{H_1^1} + \|\partial_t w\|^2 + \|\xi\|^2] dt \leq n_2, \tag{4.14}
\]

\[
\max \{\|\psi\|^2_{H_1^2} + \|w\|^2_{H_2^1} + \|\xi\|^2, \|\psi\|^2\} \leq n_3, \tag{4.15}
\]

where \(n_1, n_2, n_3\) are positive constants which will be specified in what follows.

The proof is divided into two steps.

1. \(S\) maps \(B_\tau\) in itself. Throughout this proof we denote by \(C\) a generic positive constant which is allowed to depend also on \(\varepsilon\). Let us consider equation \((4.5)\). By multiplying in \(L^2(\Omega)\) by \(\varphi\) and integrating by parts, we obtain

\[
\frac{\beta}{2} \frac{d}{dt} \|\varphi\|^2 + \kappa \|\nabla \varphi\|^2 \leq \eta \|\Phi\|^2 + C \|\varphi\|^2,
\]

where \(\eta\) is a (small) positive constant which will be chosen later. From definition \((4.8)\) of \(\Phi\), the Sobolev embedding theorem \((3.2)\) and relation \((4.15)\), we deduce the inequality

\[
\|\Phi\| \leq C(\|\xi\| + \|w\|_{H^1_2} \|\nabla \psi\|_{H^1_1} + \|\psi\|_{H^1_2} + \|\psi\| + \|\psi\|_{H^1_1} \|w\|_{H^1_2}) \leq C(n_3).
\]

Hence, an application of Gronwall’s inequality leads to the estimate

\[
\|\varphi\|^2 \leq e^{Ct} \left[\|\varphi_0\|^2 + \frac{2\eta}{\beta} \int_0^t \|\Phi\|^2 dt \right] \leq e^{Ct} \left[\|\varphi_0\|^2 + C(n_3)\eta t \right].
\]

Choosing \(n_1 > 2\|\varphi_0\|^2\) and \(\eta\) and \(t\) small enough, we infer that \(\|\varphi\|^2 \leq n_1\).

Now we multiply \((4.5)\) in \(L^2(\Omega)\) by \((\varphi_t - \Delta \varphi)\) and we integrate by parts. By taking Young’s inequality into account, we obtain

\[
\frac{\kappa}{2} \frac{d}{dt} \|\Delta \varphi\|^2 + \|\nabla \varphi\|^2 \leq \frac{\beta}{2} \|\varphi_t\|^2_{H_1^1} \leq C \|\Phi\|^2_{H^1_2}.
\]

From \((4.11)\), we deduce that

\[
\|\Phi\|^2_{H^1_2} \leq C(\|\xi\|^2_{H^1_1} + \|\nabla \psi\|^2_{H^1_1}) + \|\varphi\|^2_{H^1_1} \|\psi\|^2_{H^1_1} + \|\varphi\|^2_{H^1_2} + \|\varphi\|^2_{H^1_2} + \|\psi\|^2_{H^1_2}.
\]

In particular, in view of \((3.2), (3.3), (3.5), (3.6)\) and Young’s inequality, we have

\[
\|w \cdot \nabla \psi\|^2_{H^1_2} \leq C(\|w\|_{H^1_2} \|\nabla \psi\|^2_{H^1_1} + \|w\|^2 \|\nabla \psi\|^2_{H^1_2} + \|\nabla \psi\|^2 \|w\|^2) \leq C(\|w\|^2_{H^1_2} \|\psi\|^2_{H^1_1} + \|\psi\|^2 \|w\|^2_{H^1_2} + \|\psi\|^2 \|w\|^2_{H^1_2}) + \eta \|w\|^2_{H^1_2} + \eta \|\psi\|^2_{H^1_2}.
\]

for any \(\eta > 0\). By repeating similar arguments, we infer that

\[
\|w\|^2_{H^1_2} \leq C(\|w\|^2_{H^1_2} + \|\nabla \psi\|^2 + \|\psi\|^2 \|w\|^2) \leq C(\|w\|^2_{H^1_2} + \|\psi\|^2 \|w\|^2_{H^1_2} + \|\psi\|^2 \|w\|^2_{H^1_2} + \|\psi\|^2 \|w\|^2_{H^1_2}) \leq C(\|w\|^2_{H^1_2} + \|\psi\|^2 \|w\|^2_{H^1_2} + \|\psi\|^2 \|w\|^2_{H^1_2} + \eta \|w\|^2_{H^1_2}).
\]

Collecting \((4.16)-(4.19)\) and taking \((4.13)\) and \((4.15)\) into account, we prove the estimate

\[
\frac{\kappa}{2} \|\Delta \varphi\|^2 + \|\nabla \varphi\|^2 + \frac{\beta}{2} \int_0^t \|\psi\|^2_{H_1^2} dt \leq \frac{\kappa}{2} \|\Delta \varphi_0\|^2 + \|\nabla \varphi_0\|^2 + 3\eta n_1 + C(n_3)\tau.
\]
Thus, taking n_2 large enough according to $\|\phi_0\|_{H^2}^2$ and τ, η small enough, we have

$$\int_0^\tau \|\phi_t\|_{H^2}^2 \,dt \leq n_2.$$

From (4.5) it follows that

$$\kappa \|\Delta \phi\|_{H^1} \leq \beta \|\phi\|_{H^1} + \|\Phi\|_{H^1}.$$

Hence, on account of (3.8) and (4.17) we deduce that

$$\int_0^\tau \|\phi\|_{H^1}^2 \leq n_1,$$

with τ small enough and $n_1 > n_2$.

Finally, we observe that by comparison with (4.5) we obtain

$$\|\phi\| \leq C(\|\phi\|_{H^2} + \|\Phi\|) \leq n_3,$$

provided that n_3 is sufficiently large.

Now we multiply (4.6) by $(v + A\nu)$ and we integrate over Ω, thus obtaining

$$\frac{1}{2} \frac{d}{dt} \|v\|_{H^2}^2 + \frac{\nu}{2} \|\nabla \psi\|^2 + \frac{\nu}{2} \|A\nu\|^2 \leq C \|\nabla \tau\|^2.$$

(4.20)

The definition (4.9) of ∇ implies the following inequality

$$\|\nabla\|^2 \leq C(\|f\|^2 + \|\nabla \psi\|^2 + \|\nabla \psi\|^2 + \|\nabla \psi\|^2_H + \|\nabla \nu\|^2_H + C(n_3),$$

(4.21)

for any $\eta > 0$. An integration of (4.20) over $(0, \tau)$ leads to

$$\|v\|_{H^2}^2 + \nu \int_0^\tau (\|\nabla \nu\|^2 + \|\Delta \nu\|^2) \,dt \leq \|v_0\|_{H^2}^2 + \eta (2n_1 + n_2) + C(n_3) \tau + C\|f\|_{L^2(0,\tau;L^2)}^2.$$

We take n_1, n_2 large enough and η, τ small enough. Accordingly,

$$\int_0^\tau \|\nabla \nu\|^2 \,dt \leq C \int_0^\tau (\|\nabla \nu\|^2 + \|A\nu\|^2) \,dt \leq n_1,$$

and a comparison with (4.6) yields

$$\int_0^\tau \|\nabla \nu\|^2 \,dt \leq n_2, \quad \|\nu\|_{H^1} \leq n_3.$$

We multiply (4.7) by $(\mu - \Delta \mu)$ and we integrate over Ω, thus obtaining

$$\frac{\epsilon}{2} \frac{d}{dt} \|\mu\|_{H^1}^2 + \frac{\gamma}{2} \|\Delta \mu\|^2 + \gamma \|\nabla \mu\|^2 \leq C(\|\mu\|^2 + \|\Delta \mu\|^2).$$

(4.22)

In view of (4.10) and (4.15), we infer that

$$\|\Delta \|^2 \leq C(\|\psi\|_{H^2}^2 + \|\nabla \mu\|_{H^2}^2 + \|\Delta \mu\|_{H^1}^2) \leq C(n_3).$$

As a consequence, by applying Gronwall’s inequality to (4.22) we obtain

$$\frac{\epsilon}{2} \|\mu\|_{H^1}^2 + \frac{\gamma}{2} \int_0^\tau \|\Delta \mu\|^2 \,dt \leq C \left[\|\mu_0\|_{H^1}^2 + C(n_3) \tau \right].$$

By choosing n_1 large enough and τ small enough, we deduce that

$$\int_0^\tau \|\mu\|_{H^2}^2 \,dt \leq C \int_0^\tau (\|\mu\|^2 + \|\Delta \mu\|^2) \,dt \leq n_1.$$
A comparison with (4.7) yields
\[\varepsilon^2 \| \mu_t \|^2 \leq 2(\gamma^2 \| \Delta \mu \|^2 + \| \Lambda \|^2) \leq 2\gamma^2 \| \Delta \mu \|^2 + C(n_3). \]

Accordingly, we have
\[\int_0^\tau \| \mu_t \|^2 dt \leq n_2, \]
provided that \(n_2 \) is large enough and \(\tau \) is small enough.

2. \(S \) is a contraction in \(B_r \) if \(\tau \) is small enough. Let \((\psi_1, w_1, \zeta_1), (\psi_2, w_2, \zeta_2) \in B_r \) and \((\varphi_1, v_1, \mu_1), (\varphi_2, v_2, \mu_2) \) be the corresponding two solutions of the linear problem \((P_L)\) with the same initial data. We denote by \(\psi = \psi_1 - \psi_2, w = w_1 - w_2, \zeta = \zeta_1 - \zeta_2 \) and prove that \(S : B_r \to B_r \) is a contraction mapping with respect to the metric induced by the norm
\[||(\psi, w, \zeta)||^2 = ||\psi||_{L^2(0, \tau; H^3)}^2 + ||v||_{L^2(0, \tau; H^2)}^2 + ||w||_{L^2(0, \tau; H^2)}^2 + ||w||_{L^2(0, \tau; L^2)}^2. \]

Therefore, our aim is to prove that
\[||S(\psi_1, v_1, \zeta_1) - S(\psi_2, v_2, \zeta_2)|| \leq L \tau ||(\psi, w, \zeta)||, \]
with \(0 < L \tau < 1 \). From (4.5) and (4.8), we deduce that \(\varphi = \varphi_1 - \varphi_2 \) satisfies the following equation:
\[\beta \varphi_t - \kappa \Delta \varphi = \Phi_1 - \Phi_2, \]
where
\[\Phi_1 - \Phi_2 = \varphi - \beta(v_1 \cdot \nabla \psi + w \cdot \nabla \psi_2) - \psi(\psi^2 + \psi_1 \psi_2 + \psi_2^2) - u \psi - \lambda \psi \frac{w_1^2}{\gamma(\psi_1) + 1} \cdot w. \]

Let us multiply (4.24) by \(\varphi \) and integrate over \(\Omega \). By means of (3.2) and Young's inequality, we obtain
\[\frac{\beta}{2} \frac{d}{dt} ||\varphi||^2 + \kappa ||\nabla \varphi||^2 \leq C ||\psi||^2 + \eta \left[||\varphi||^2 + ||\psi||^2 + ||\psi_1||^2_{H^1} + ||\psi_2||^2_{H^1} + ||\varphi||^2_{H^1} + ||\varphi||^2_{H^1} \right]. \]

for every \(\eta > 0 \). The assumption \((\psi_1, w_1, \zeta_1), (\psi_2, w_2, \zeta_2) \in B_r \) guarantees that
\[\frac{\beta}{2} \frac{d}{dt} ||\varphi||^2 + \kappa ||\nabla \varphi||^2 \leq C ||\varphi||^2 + C \eta \left[||\varphi||^2 + ||\varphi||^2_{H^1} + ||\varphi||^2_{H^1} \right]. \]

Hence Gronwall's inequality leads to the estimate
\[||\varphi||^2 \leq C \eta e^{C \tau} \int_0^\tau \left[||\varphi||^2 + ||\varphi||^2_{H^1} + ||\varphi||^2_{H^1} \right] dt \leq C \eta \tau e^{C \tau} ||(\psi, w, \zeta)||^2. \]

We multiply (4.24) in \(L^2(\Omega) \) by \(\varphi - \Delta \varphi \). An integration by parts and Young's inequality yield
\[\kappa \frac{d}{dt} \| \Delta \varphi \|^2 + \| \nabla \varphi \|^2 + \frac{\beta}{2} \| \varphi \|^2_{H^1} \leq C \| \Phi_1 - \Phi_2 \|^2_{H^1}. \]

From the definition of \(\Phi_1 - \Phi_2 \) and inequalities (3.6), (3.7), we have
\[\| \Phi_1 - \Phi_2 \|^2_{H^1} \leq C \left[\| \varphi \|^2_{H^1} + \| v_1 \cdot \nabla \psi \|^2_{H^1} + \| w \cdot \nabla \psi_2 \|^2_{H^1} \right]. \]
Owing to Sobolev embedding theorem and accounting for (3.2), (3.3) and (4.15), we obtain
\[
\|w_1 + w_2\|_{H^1}^2 \leq C(\|w_1 + w_2\|_{H^1}^2 + \|w\|_{H^1}^2) + C(\|\nabla w_1\|_{L^2}^2 + \|\nabla w_2\|_{L^2}^2) + C(\|\nabla w_1\|_{L^2}^2 + \|\nabla w_2\|_{L^2}^2)
\]
with \(\eta_1 > 0\). Moreover, proceeding as in the second inequalities of (4.18) and (4.19) we can prove the estimates
\[
\|\psi w_1\|_{H^1}^2 \leq C(\|\psi\|_{L^2}^2 + \|\psi\|_{H^1}^2),
\]
\[
\|\psi w_1\cdot\nabla\psi\|_{H^1}^2 \leq C(1 + \|\psi\|_{H^1}^2)\|\psi\|_{H^1}^2 + \eta_2 \|\psi\|_{H^1}^2,
\]
\[
\|w\cdot\nabla\psi\|_{H^1}^2 \leq C(1 + \|\psi\|_{H^1}^2)\|w\|_{H^1}^2 + \eta_1 \|w\|_{H^1}^2,
\]
where \(\eta_1, \eta_2\) are suitable positive constants. Collecting the previous results, we get
\[
\frac{\kappa}{2} \frac{d}{dt} \left(\|\Delta \psi\|^2 + \|\nabla \psi\|^2\right) + \frac{\beta}{2} \|\psi\|_{H^1}^2 \leq 2\eta_1 \|w\|_{L^2(0,T,H^1)}^2 + \eta_2 \|\psi\|_{L^2(0,T,H^1)}^2,
\]
\[
+ C \left(\|\xi\|_{C^0(0,T,H^1)}^2 + \|\psi\|_{L^2(0,T,H^1)}^2\right) + (1 + \|w\|_{H^1}^2 + \|w_2\|_{H^1}^2) \|\psi\|_{L^2(0,T,H^1)}^2.
\]
An integration over \((0, \tau), \text{ theorem 3.1 and Hölder’s inequality yield}
\[
\frac{\kappa}{2} \left(\|\Delta \psi\|^2 + \|\nabla \psi\|^2\right) + \frac{\beta}{2} \int_0^\tau \|\psi\|_{H^1}^2\,dt \leq 2\eta_1 \|w\|_{L^2(0,T,H^1)}^2 + \eta_2 \|\psi\|_{L^2(0,T,H^1)}^2,
\]
\[
+ C \tau \|\psi(w, \xi)\|_{C^0(0,T,H^1)}^2 + \|\psi(w)\|_{L^2(0,T,H^1)}^2 + \|\psi_2\|_{L^2(0,T,H^1)}^2\|\psi\|_{C^0(0,T,H^1)}^2.
\]
Hence, with a suitable choice of \(\eta_1, \eta_2\) and \(\tau\), we have
\[
\frac{\kappa}{2} \left(\|\Delta \psi\|^2 + \|\nabla \psi\|^2\right) + \frac{\beta}{2} \int_0^\tau \|\psi\|_{H^1}^2\,dt \leq L_\tau \|\psi(w, \xi)\|_{C^0(0,T,H^1)}^2,
\]
where \(0 < L_\tau < 1\). A comparison with (4.24) and Young’s inequality yield
\[
\|\Delta \psi\|_{H^1}^2 \leq C(\|\psi\|_{H^1}^2 + \|\Phi_1 - \Phi_2\|_{H^1}^2),
\]
which, in view of (3.8) and (4.25), guarantees
\[
\int_0^\tau \|\psi\|_{H^1}^2\,dt \leq C \int_0^\tau (\|\psi\|_{H^1}^2 + \|\Delta \psi\|_{H^1}^2)\,dt \leq L_\tau \|\psi(w, \xi)\|_{C^0(0,T,H^1)}^2.
\]
From (4.6) and (4.9) it follows that
\[
v_t + v A v = \Upsilon_1 - \Upsilon_2,
\]
where
\[
\Upsilon_1 - \Upsilon_2 = \mathcal{P}[-\kappa \nabla \cdot (\nabla \psi_1 \otimes \nabla \psi + \nabla \psi \otimes \nabla \psi_2) + \lambda \psi_1 \psi_1 w + \lambda \psi_1 \psi_2 w_2 + \lambda \psi_2 \psi_2 w_2
\]
\[
+ \lambda \psi_1 (w_1 \cdot \nabla \psi_1) w + \lambda \psi (w_1 \cdot \nabla \psi_1) w_2 + \lambda \psi_2 (w_2 \cdot \nabla \psi_1) w_2
\]
\[
+ \lambda \psi_2 (w_2 \cdot \nabla \psi_2) w_2 - (\nabla w) w_1 - (\nabla w_2) w_2].
\]
Let us multiply (4.26) by \((v + A v)\) thus obtaining
\[
\frac{1}{2} \frac{d}{dt} \left(\|v\|^2 + \|v^n\|^2\right) + \frac{1}{2} \|A v\|^2 + \|\nabla v\|^2 \leq C \|\Upsilon_1 - \Upsilon_2\|^2.
\]
By means of the Sobolev embedding theorems and inequalities (4.13), (4.14), the same arguments used to prove (4.21) lead to the inequality
\[
\Vert Y_1 - Y_2 \Vert^2 \leq C(\Vert \psi_1 \Vert_{H^2} + \Vert \psi_2 \Vert_{H^2} + 1) \Vert \psi_1 \Vert_{H^2} + \Vert \psi_2 \Vert_{H^2} + \Vert \nabla \psi_1 \Vert_{H^2}^2 \\
+ (\Vert \psi_1 \Vert_{H^2} + \Vert \psi_2 \Vert_{H^2} + 1) \Vert \nabla \psi_1 \Vert_{H^2}^2 + \eta_1 \Vert \psi_1 \Vert_{H^2}^2 + \eta_2 \Vert \psi_2 \Vert_{H^2}^2 + \eta_3 \Vert \psi_3 \Vert_{H^2}^2,
\]
for any \(\eta_1, \eta_2, \eta_3 > 0\). An integration over \((0, \tau)\) leads to
\[
\frac{1}{2} \left(\int_0^\tau (\Vert v \Vert^2 + \Vert \nabla v \Vert^2) + \int_0^\tau (\Vert \nabla v \Vert^2 + \Vert \nabla \psi \Vert^2) \right) dt \leq C \sqrt{\tau} \Vert \psi_1 \Vert_{L^2(0,\tau;H^3)} + \Vert \psi_2 \Vert_{L^2(0,\tau;H^3)} \\
+ C \sqrt{\tau} \Vert \psi_1 \Vert_{L^2(0,\tau;H^3)} + \Vert \psi_2 \Vert_{L^2(0,\tau;H^3)} + \Vert \nabla \psi \Vert_{L^2(0,\tau;H^3)}^2 \\
+ C \tau \left(\Vert \psi_1 \Vert_{C(0,\tau;L^3)}^2 + \Vert \psi_2 \Vert_{C(0,\tau;L^3)}^2 + \Vert \nabla \psi \Vert_{C(0,\tau;H^3)}^2 \right) \\
+ \eta_1 \Vert \psi_1 \Vert_{L^2(0,\tau;H^3)}^2 + \eta_2 \Vert \psi_2 \Vert_{L^2(0,\tau;H^3)}^2 + \eta_3 \Vert \psi_3 \Vert_{L^2(0,\tau;H^3)}^2.
\]
Hence
\[
\frac{1}{2} \left(\int_0^\tau (\Vert v \Vert^2 + \Vert \nabla v \Vert^2) + \int_0^\tau (\Vert \nabla \psi \Vert^2 + \Vert \psi \Vert^2) \right) dt \leq L_1 \| (\psi, w, \zeta) \|. \tag{4.27}
\]
From (4.7) and (4.10), we obtain
\[
C \mu^\epsilon - \gamma \Delta \mu = \Lambda_1 - \Lambda_2, \tag{4.28}
\]
with
\[
\Lambda_1 - \Lambda_2 = -\psi_1 - \nabla \psi - w_1 \cdot \nabla \psi - w_2 \cdot \nabla \psi_2.
\]
We multiply (4.28) by \((\mu - \Delta \mu)\) and we integrate over \(\Omega\):
\[
\frac{\epsilon}{2} \frac{d}{dt} \| \mu \|_{H^1}^2 + \gamma \| \Delta \mu \|_{H^1}^2 + \gamma \| \nabla \mu \|_{H^1}^2 \\
\leq C \| \mu \|_{H^1}^2 + \eta_1 \| \psi_1 \|_{H^1}^2 + \| \psi_2 \|_{H^1}^2 + \| \nabla \psi \|_{H^1}^2 + \| \psi_1 \|_{C(0,\tau;L^3)}^2 \\
+ || \psi_2 \|_{C(0,\tau;L^3)}^2 + \| \psi \|_{C(0,\tau;H^3)}^2 \leq L_1 \| (\psi, w, \zeta) \|_{H^1}^2.
\]
Gronwall’s inequality yields
\[
\frac{\epsilon}{2} \| \mu \|_{H^1}^2 + \gamma \int_0^\tau \| \Delta \mu \|_{H^1}^2 dt \leq \eta \epsilon C \| \psi_1 \|_{L^2(0,\tau;H^3)}^2 + \| \psi_2 \|_{L^2(0,\tau;H^3)}^2 + \| \psi \|_{C(0,\tau;L^3)}^2 \\
+ \| \nabla \psi \|_{C(0,\tau;L^3)}^2 + \| \psi \|_{C(0,\tau;H^3)}^2 \leq L_1 \| (\psi, w, \zeta) \|_{H^1}^2. \tag{4.29}
\]
Therefore, collecting (4.25), (4.27), (4.29) and choosing \(\tau, \eta_1, \eta_2, \eta_3\) small enough, we prove that
\[
\| \psi \|_{L^2(0,\tau;H^3)}^2 + \| \psi \|_{C(0,\tau;L^3)}^2 + \| \psi \|_{C(0,\tau;H^3)}^2 \leq L_1 \| (\psi, w, \zeta) \|_{H^1}^2.
\]
The control on the remaining norms \(\| \psi \|_{C(0,\tau;L^2)}, \| \psi \|_{L^2(0,\tau;L^2)}^2\) and \(\| \psi \|_{L^2(0,\tau;L^2)}^2\) is obtained by comparison with (4.24), (4.26) and (4.28), respectively. Therefore (4.23) is proved.

By means of a fixed point argument, the previous steps allow us to prove that problem \((P_\tau)\) admits a unique local solution \((\psi, w, \mu) \) in \(Y_\tau\), provided that \(\tau\) is small enough according to the norms of the initial data \(\| \psi_0 \|_{H^3}, \| w_0 \|_{H^1}, \| \mu_0 \|_{H^1}\).

Lemma 4.3. Let \((\psi^\epsilon, w^\epsilon, \mu^\epsilon)\) be a solution of problem \((P_\tau)\) with initial data (4.4) satisfying
\[
\| \psi_0 \|_{H^3} + \| w_0 \|_{H^1} + \| \mu_0 \|_{H^1} \leq K, \quad K > 0.
\]
Then the following inequalities hold:
\[\|v^e(t)\|^2 + \|\psi^e(t)\|^2 + \varepsilon \|\mu^e(t)\|^2 \]
\[+ \int_0^t \left[\|\nabla\mu^e\|^2 + \|v^e\|^2_M + \|\psi^e\|^2 + \|\mu^e\|^2_M \right] \, dx \leq C_K, \]
(4.30)
\[\varepsilon \|\mu^e(t)\|^2_M + \int_0^t \|\|\mu^e\|^2_M + \varepsilon \|\mu^e\|^2\| \, dt \leq C_K, \]
(4.31)
\[\|\Delta\psi^e(t)\|^2 + \|\nabla\psi^e(t)\|^2 + \int_0^t \left[\|\nabla\psi^e\|^2 + \|\mu^e\|^2_M + \|\psi^e\|^2 \right] \, dt \leq C_K, \]
(4.32)
for any \(t \in (0, T) \), where \(C_K \) is a positive constant depending on \(K \), \(\|f\|_{L^2(0,T;L^1(\Omega))} \) and \(T \).

Proof. By multiplying (4.1) by \(\psi^e \), we deduce the equality
\[\frac{\kappa}{2} \frac{d}{dt} \|\nabla\psi^e\|^2 + \beta \|v^e\|^2 + v^e \cdot \nabla \psi^e = -\kappa \int_\Omega (v^e \cdot \nabla \psi^e) \Delta \psi^e \, dx \]
\[+ \int_\Omega [(\psi^e)^3 + u \psi^e + \lambda (v^e)^2 \psi^e - \mu^e (\psi^e + v^e \cdot \nabla \psi^e)] \, dx = 0. \]
(4.33)
Now let us multiply (4.2) by \(v^e \)
\[\frac{1}{2} \frac{d}{dt} \|v^e\|^2 + v^e \nabla v^e = \int_\Omega \left[\kappa \nabla \cdot (\nabla \psi^e \otimes \nabla \psi^e) \cdot v^e \right. \]
\[- \lambda (\psi^e)^2 v^e \cdot \nabla \psi^e - f \cdot v^e \, dx = 0. \]
(4.34)
Finally, we multiply (4.3) by \(\mu^e \) and integrate by parts, thus obtaining
\[\frac{\varepsilon}{2} \frac{d}{dt} \|\mu^e\|^2 + \gamma \|\nabla \mu^e\|^2 + \int_\Omega (\psi^e + v^e \cdot \nabla \psi^e) \mu^e \, dx = 0. \]
(4.35)
It is easy to show that since \(v^e \in H^1_{\text{div}}(\Omega) \), the following identity holds:
\[\int_\Omega \nabla \cdot (\nabla \psi^e \otimes \nabla \psi^e) \cdot v^e = \int_\Omega (v^e \cdot \nabla \psi^e) \Delta \psi^e \, dx. \]
Therefore summing up equations (4.33)–(4.35), we have
\[\frac{1}{2} \frac{d}{dt} \left[\kappa \|\nabla\psi^e\|^2 + \|v^e\|^2 + \varepsilon \|\mu^e\|^2 + \frac{1}{2} (\psi^e)^2 + u^2 \right] + \beta \|\psi^e\|^2 + v^e \cdot \nabla \psi^e \|^2 + v \|\nabla v^e\|^2 \]
\[+ \gamma \|\nabla \mu^e\|^2 = -\int_\Omega [(\psi^e)^3 + u \psi^e] v^e \cdot \nabla \psi^e \, dx + \int_\Omega f \cdot v^e \, dx. \]
(4.36)
The first integral on the right-hand side vanishes as a consequence of the identity
\[\int_\Omega [(\psi^e)^3 + u \psi^e] v^e \cdot \nabla \psi^e \, dx = \int_\Omega \nabla \left(\frac{1}{4} (\psi^e)^4 + \frac{u}{2} (\psi^e)^2 \right) \cdot v^e \, dx \]
and by applying the divergence theorem. Therefore, an integration of (4.36) over \((0, t)\) and Poincaré inequality provide
\[\frac{1}{2} \left[\kappa \|\nabla\psi^e(t)\|^2 + \|v^e(t)\|^2 + \varepsilon \|\mu^e(t)\|^2 + \frac{1}{2} (\psi^e(t)^2 + u^2) \right] \]
\[+ \int_0^t \left[\beta \|\psi^e\|^2 + v^e \cdot \nabla \psi^e \|^2 + \frac{\gamma}{2} \|\nabla \mu^e\|^2 \right] \, dt \leq C_K. \]
(4.37)
In addition, an application of Young's inequality leads to
\[\|\psi^e(t)\|^2 \leq C(\|\psi^e(t)\|^2 + u^2 + 1) \leq C_K, \]
(4.38)
for all \(t \in [0, T] \).
Now we multiply (4.1) by $\Delta \varphi^\varepsilon$. An integration by parts, Hölder’s and Young’s inequalities imply
\begin{align*}
\int_0^t \|\Delta \varphi^\varepsilon\|^2 \, dt &\leq C \int_0^t \left(\|\varphi^\varepsilon_t + v^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 + \|\nabla \mu^\varepsilon\|^2 + \|\nabla \varphi^\varepsilon\|^2 + \|(\varphi^\varepsilon)^3 + u \varphi^\varepsilon\|^2 \right) \\
&+ \|\varphi^\varepsilon(t)^2\| \, dt.
\end{align*}
(4.39)
In view of Sobolev embedding theorem we obtain
\begin{align*}
\|\varphi^\varepsilon(t)^3 + u \varphi^\varepsilon\|^2 + \|\varphi^\varepsilon(t)^2\|^2 &\leq C \left(\|\varphi^\varepsilon(t)^6\|_{H^1} + \|\varphi^\varepsilon(t)^2\|^2 + \|\varphi^\varepsilon(t)^2\|^2 \right)
\end{align*}
(4.40)
and by means of (3.4), (4.37) and (4.38), the last term of (4.40) can be estimated as
\begin{align*}
\|\varphi^\varepsilon(t)^2\|^2 &\leq C_K \|\varphi^\varepsilon(t)^8\|^2/\|\varphi^\varepsilon(t)^4\|^2 \\
&\leq C_K \left(\|\varphi^\varepsilon(t)^8\|^2 + \|\varphi^\varepsilon(t)^2\|^2 \right) \\
&\leq C_K \left(\|\varphi^\varepsilon(t)^8\|^2 + \|\varphi^\varepsilon(t)^2\|^2 \right).
\end{align*}
Therefore, on account of (4.37)–(4.40), we have
\begin{align*}
\int_0^t \|\varphi^\varepsilon(t)^2\|_{H^1} \, dt &\leq C \int_0^t \left(\|\varphi^\varepsilon(t)^2\|^2 + \|\Delta \varphi^\varepsilon(t)^2\|^2 \right) \, dt \leq C_K.
\end{align*}
In addition, the following inequality holds
\begin{align*}
\int_0^t \|\varphi^\varepsilon_t(t)^2\| \, dt &\leq C \int_0^t \left(\|\varphi^\varepsilon_t + v^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 + \|v^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 \right) \, dt \\
&\leq C_K \int_0^t \left(\|\varphi^\varepsilon_t\|^2 + \|v^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 \right) \, dt \leq C_K.
\end{align*}
Thus (4.30) is proved.

By multiplying (4.3) in $L^2(\Omega)$ by $-\Delta \mu^\varepsilon$, we obtain
\begin{align*}
\frac{\varepsilon}{2} \frac{d}{dt} \|\nabla \mu^\varepsilon\|^2 + \gamma \|\Delta \mu^\varepsilon\|^2 &\leq \int_\Omega (\varphi^\varepsilon_t + v^\varepsilon \cdot \nabla \varphi^\varepsilon) \Delta \mu^\varepsilon \, dx \leq C \|\varphi^\varepsilon_t + v^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 + \frac{\gamma}{2} \|\Delta \mu^\varepsilon\|^2.
\end{align*}
Hence,
\begin{align*}
\varepsilon \|\nabla \mu^\varepsilon(t)\|^2 + \gamma \int_0^t \|\Delta \mu^\varepsilon\|^2 \, dt &\leq \varepsilon \|\nabla \mu_0\|^2 + C \int_0^t \|\varphi^\varepsilon_t + v^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 \, dt \leq C_K.
\end{align*}
(4.41)
where the last inequality follows from (4.37).

A comparison with (4.3) provides
\begin{align*}
\varepsilon \|\mu^\varepsilon\|^2 &\leq C \left(\|\varphi^\varepsilon\|^2 + \|\varphi^\varepsilon\|^2 + \|\varphi^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 \right).
\end{align*}
(4.42)
Finally, we observe that (4.1) implies
\begin{align*}
\|\mu^\varepsilon\|^2 &\leq C_K \left(\|\varphi^\varepsilon\|^2 + \|\varphi^\varepsilon\|^2 + \|\varphi^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 \right).
\end{align*}
(4.43)
Collecting (4.41)–(4.43), we get (4.31).

In order to prove (4.32) let us multiply (4.1) by $-\Delta \varphi$, (4.2) by $A v$ and integrate over Ω.
By means of Young’s inequality we get
\begin{align*}
\frac{1}{2} \frac{d}{dt} &\left[\kappa \|\Delta \varphi\|^2 + \|\nabla v^\varepsilon\|^2 \right] + \frac{\beta}{2} \|\nabla \varphi^\varepsilon\|^2 + \frac{\nu}{2} \|A v^\varepsilon\|^2 \\
&\leq C \left(\|\nabla \mu^\varepsilon\|^2 + \|\nabla \varphi^\varepsilon\|^2 + \|\nabla \varphi^\varepsilon\|^2 \right) \|\Delta \varphi^\varepsilon\|^2 \\
&+ \|\nabla \varphi^\varepsilon\|^2 + \|\nabla \varphi^\varepsilon \cdot v^\varepsilon\|^2 + \|\varphi^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 + \|\varphi^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 \\
&+ \|\varphi^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 + \|\varphi^\varepsilon \cdot \nabla \varphi^\varepsilon\|^2 + \|f\|^2 \right].
\end{align*}
(4.44)
Owing to (3.4) and (4.30), some of the terms on the right-hand side can be estimated as
\begin{align*}
\|\varphi^\varepsilon\|^2 + \|\nabla \varphi^\varepsilon\|^2 + \|\nabla \varphi^\varepsilon \cdot v^\varepsilon\|^2 &\leq C_K(T) \left(\|\varphi^\varepsilon\|^2 + \|\varphi^\varepsilon\|^2 \right).
\end{align*}
(4.45)
Similarly, the remaining terms can be controlled as
\[
\begin{align*}
\| \phi^\varepsilon (\nabla \phi^\varepsilon \cdot \nabla \phi^\varepsilon) \phi^\varepsilon \|_2^2 & \leq C \| \nabla \phi^\varepsilon \|_6^2 \| \phi^\varepsilon \|_4^2 + \| \nabla \phi^\varepsilon \|_4^2 \| \phi^\varepsilon \|_4^2 \leq \chi(t) (\| \nabla \phi^\varepsilon \|_1^2 + \| \phi^\varepsilon \|_1^2) \\
\| \phi^\varepsilon (\nabla \phi^\varepsilon \cdot \nabla \phi^\varepsilon) \nabla \phi^\varepsilon \|_2^2 & \leq \eta \| \nabla \phi^\varepsilon \|_{H^1}^2 + \chi(t) (\| \nabla \phi^\varepsilon \|_{H^1}^2 + 1) \\
\| (\nabla \nabla \phi^\varepsilon) \phi^\varepsilon \|_2^2 & \leq C \| \nabla \nabla \phi^\varepsilon \|_6^2 \| \phi^\varepsilon \|_4^2 + \| \nabla \phi^\varepsilon \|_4^2 \| \phi^\varepsilon \|_4^2 \leq \eta \| \phi^\varepsilon \|_{H^1}^2 + \chi(t) (\| \phi^\varepsilon \|_{H^1}^2 + 1),
\end{align*}
\] (4.46)

Interpolation inequalities (3.3), (3.4) and estimates (4.30)–(4.31) imply
\[
\begin{align*}
\| \nabla \Delta \phi^\varepsilon \| & \leq \eta_1 \| \phi^\varepsilon \|_{H^2} + \eta_2 \| \phi^\varepsilon \|_{H^3} + C \| \nabla \phi^\varepsilon \|_4 + \| \nabla \mu^\varepsilon \|_4 + \| \nabla \phi^\varepsilon \|_4 + \| \nabla \phi^\varepsilon \|_2 \| \nabla \phi^\varepsilon \|_6 \\
& + \| \nabla \phi^\varepsilon \|_6 \| \nabla \phi^\varepsilon \|_4 + \| \phi^\varepsilon \|_{H^1} + \| \nabla \phi^\varepsilon \|_{H^3} + \| \phi^\varepsilon \|_{H^2} + \| \phi^\varepsilon \|_{H^1} + \| \nabla \phi^\varepsilon \|_{H^2} + \| \phi^\varepsilon \|_{H^1} + \| \phi^\varepsilon \|_{H^0} + \| \phi^\varepsilon \|_{H^1} + \| \phi^\varepsilon \|_{H^2},
\end{align*}
\] (4.50)

with \(\eta_1, \eta_2 > 0 \). Choosing suitably \(\eta_2 \) and owing to (3.8), (4.30), we prove
\[
\| \phi^\varepsilon \|_{H^2}^2 \leq C \| \nabla \phi^\varepsilon \|_2^2 + \| \nabla \mu^\varepsilon \|_2^2 + \chi(t) (\| \nabla \mu^\varepsilon \|_2^2 + 1 + \| \nabla \phi^\varepsilon \|_2^2), \quad \frac{1}{2} \frac{d}{dt} \| \phi^\varepsilon \|_{H^2}^2 + \frac{1}{4} \| \nabla \phi^\varepsilon \|_2^2 + \frac{3}{4} \| \phi^\varepsilon \|_{H^0}^2 + \frac{1}{4} \| \phi^\varepsilon \|_{H^1}^2 + \frac{3}{4} \| \phi^\varepsilon \|_{H^2}^2 + \| \nabla \phi^\varepsilon \|_{H^1}^2 + \| \phi^\varepsilon \|_{H^1}^2 + \| \phi^\varepsilon \|_{H^0}^2 \|
\]

Gronwall’s inequality and a comparison with (4.2) yield (4.32).

\[\square\]

Proposition 4.1. If \(\phi_{0c} \in \tilde{H}^2(\Omega), v_{0c} \in H^1_{div}(\Omega), \mu_{0c} \in H^1(\Omega), f \in L^2(0, T; L^2(\Omega)), \)**

Proof. Theorem 4.1 guarantees the existence of a solution \((\phi^\varepsilon, v^\varepsilon, \mu^\varepsilon)\) defined in a small time interval \((0, \tau)\). In order to extend this solution to the whole interval \((0, T)\) we prove that if
\[
\| \phi_{0c} \|_{H^2} + \| v_{0c} \|_{H^1} + \| \mu_{0c} \|_{H^1} \leq K
\]

then the solution satisfies the following uniform estimate:
\[
\| \phi^\varepsilon (t) \|_{H^2} + \| v^\varepsilon (t) \|_{H^1} + \| \mu^\varepsilon (t) \|_{H^1} \leq C_K, \quad t \in [0, T],
\] (4.51)

where \(K \) is a positive constant independent of \(t \) and \(\tau \). Inequality (4.51) is ensured by the estimates (4.30)–(4.32) of lemma 4.3. Therefore, by applying theorem 4.1, after a finite number of steps we find a global solution of problem \((P_e)\) in \(X_T \). \(\square \)
5. Well-posedness of the original system

5.1. Existence of solutions

Theorem 5.1. Let $\varphi_0 \in \tilde{H}^2(\Omega)$, $v_0 \in H^1_{\text{div}}(\Omega)$. Then for any $T > 0$, there exists at least a solution $(\varphi, v, \mu) \in X_T$ of problem (P).

Proof. Let us consider problem (P_ε) with the same initial data $\varphi_0 = \varphi_0\varepsilon$, $v_0 = v_0\varepsilon$. Since our final goal is to let ε tend to 0, we require that $\mu_{0\varepsilon}$ satisfies the compatibility condition

$$-\beta \gamma \Delta \mu_{0\varepsilon} + \mu_{0\varepsilon} = -\kappa \Delta \varphi_0 + \varphi_0^2 + u\varphi_0 + \lambda \varphi_0 v_0^2,$$

which is obtained from equations (4.1) and (4.3) and accounting for initial data (4.4). Hence $\mu_{0\varepsilon} \in H^1(\Omega)$ and in view of proposition 4.1, there exists a solution $(\varphi_{\varepsilon}, v_{\varepsilon}, \mu_{\varepsilon}) \in X^T_{\varepsilon}$ of (P_{ε}).

Let $(\varphi_{\varepsilon}, \mu_{\varepsilon}, v_{\varepsilon}) \in X^T_{\varepsilon}$ be a global solution of problem (P_{ε}). From the a priori estimates of lemma 4.3, we deduce that

$$\|v(t)\|_{H^1} + \|\varphi(t)\|_{H^2} \leq C_0(T). \quad (5.1)$$

As a consequence there exists a subsequence, also denoted as $(\varphi_{\varepsilon}, v_{\varepsilon}, \mu_{\varepsilon})$ such that

$$\varphi_{\varepsilon} \rightarrow \varphi \quad \text{weakly in } L^2(0, T, H^1(\Omega))$$
$$v_{\varepsilon} \rightarrow v \quad \text{weakly in } L^2(0, T, H^2(\Omega))$$
$$\mu_{\varepsilon} \rightarrow \mu \quad \text{weakly in } L^2(0, T, H^1(\Omega))$$
$$\varepsilon \mu_{\varepsilon} \rightarrow 0 \quad \text{strongly in } L^2(0, T, H^1(\Omega)).$$

In particular, as a consequence of Aubin’s theorem, we have

$$\varphi_{\varepsilon} \rightarrow \varphi \quad \text{strongly in } L^2(0, T, H^2(\Omega))$$
$$v_{\varepsilon} \rightarrow v \quad \text{strongly in } L^2(0, T, H^1(\Omega)).$$

The previous convergences allow us to pass to the limit as $\varepsilon \rightarrow 0$ into (4.1)–(4.3) and to obtain (3.10)–(3.12).

5.2. Uniqueness of solution

Theorem 5.2. Problem (P) admits a unique solution $(\varphi, v, \mu) \in X_T$.

Proof. First we note that by repeating the same arguments of lemma 4.3 with $\varepsilon = 0$, one can easily show that any solution (φ, v, μ) of problem (P) satisfies the following estimate:

$$\|v(t)\|_{H^2}^2 + \|\varphi(t)\|_{H^2}^2 + \int_0^T \left[\|v\|_{H^2}^2 + \|\varphi_t\|_{H^1}^2 \right] \, dt \leq C_0(T). \quad (5.1)$$

Let $(\varphi_1, v_1, \mu_1), (\varphi_2, v_2, \mu_2) \in X_T$ be two solutions to problem (P) with the same initial data and source f. We consider the differences

$$\varphi = \varphi_1 - \varphi_2, \quad v = v_1 - v_2, \quad \mu = \mu_1 - \mu_2,$$
satisfying the following problem
\[\psi_t = -\nabla \cdot \nabla \psi_1 - \nabla \cdot \nabla \psi + \gamma \Delta \mu \] (5.2)
and
\[v_t = -\nabla A v + \beta [\nabla \cdot (\nabla \psi_1 \otimes \nabla \psi + \nabla \varphi \otimes \nabla \varphi_2) + \lambda \varphi_1 (\varphi_1 + v_1 \cdot \nabla \varphi_1) v_1
- \lambda \varphi_2 (\varphi_2 + v_2 \cdot \nabla \varphi_2) v_2 + (\nabla v) v_1 + (\nabla v_2) v_1] \] (5.3)
with
\[\mu = \beta \psi_1 - \kappa \Delta \varphi + \beta v_1 \cdot \nabla \psi + \beta v \cdot \nabla \varphi_2 + (\varphi_1^2 + \varphi_2^2) \varphi + u \varphi + \lambda \varphi v_1^2 + \lambda \varphi_2 (v_1 + v_2) \cdot \nabla \psi \] (5.4)
We append to (5.2)–(5.4) the initial conditions
\[\psi(x, 0) = 0, \quad v(x, 0) = 0, \quad \text{a.e.} \quad x \in \Omega. \]

We multiply equation (5.2) by \(\psi\) and we integrate over \(\Omega\). Thus, we obtain
\[\frac{1}{2} \frac{d}{dt} \|\psi\|^2 = -\int_{\Omega} [(v \cdot \nabla \psi_1 + v_2 \cdot \nabla \psi) \varphi + \gamma \nabla \mu \cdot \nabla \psi] dx. \]
By means of the Hölder and Young inequalities and in view of (5.1), we have
\[\frac{1}{2} \frac{d}{dt} \|\psi\|^2 \leq \|v\|^2 + \frac{\kappa}{8} \|\nabla \mu\|^2 + C \|\varphi\|_{H^1}' \|\mu\|. \]
Now let us multiply (5.2) in \(L^2(\Omega)\) by \(\mu\), thus obtaining
\[\int_{\Omega} [\psi_t \mu + (v \cdot \nabla \psi_1 + v_2 \cdot \nabla \psi) \mu + \gamma \|\nabla \mu\|^2] dx = 0. \]
The first term of the integral may be rewritten by substituting expression (5.4) as
\[\int_{\Omega} \psi_t \mu dx = \frac{\kappa}{2} \frac{d}{dt} \|\nabla \psi\|^2 + \beta \|\varphi_1\|^2 + \gamma \|\nabla \mu\|^2 \leq C \left(1 + \|v_2\|_{L^\infty} \|\varphi\|_{H^1} + \|v\|_{L^4} \|\varphi\| + C\|v\|_{L^p} + \|v_2\|_{L^\infty} \|\nabla \psi\| \right) \|\mu\|. \]

A substitution into (5.6), Hölder’s inequality and a priori estimate (5.1) yield
\[\frac{\kappa}{2} \frac{d}{dt} \|\nabla \varphi\|^2 + \beta \|\varphi_1\|^2 + \gamma \|\nabla \mu\|^2 \leq C \left(1 + \|v_2\|_{L^p} \|\nabla \varphi\|_{H^1} + C \|v\|_{L^p}^2 + \frac{1}{14} \|\nabla v\|^2 + \eta_1 \|\mu\|^2 \right). \]
where \(\eta_1\) is a suitable positive constant.

By multiplying (5.3) by \(v\) and accounting for (5.1), we infer that
\[\|\mu\|^2 \leq C \|\nabla \mu\| \|\nabla \varphi\| + C \|\varphi_1\| + \|v_1\|_{H^1} \|\varphi\|_{H^1} + \|v\|_{H^1} + \|\varphi\|_{H^1} \|\mu\|. \]

Hence
\[\|\mu\|^2 \leq C \|\nabla \mu\|^2 + \|\varphi_1\|^2 + \|v_1\|_{H^1}^2 \|\varphi\|_{H^1}^2 + \|v\|_{H^1}^2 + \|\varphi\|_{H^1}^2. \]

By multiplying (5.3) by \(v\) we obtain
\[\frac{1}{2} \frac{d}{dt} \|v\|^2 + v \|\nabla v\|^2 \leq I_1 + I_2 + I_3 + I_4, \]
where
\[I_1 = \int_{\Omega} \beta (v \cdot \nabla \varphi_1 + v_2 \cdot \nabla \varphi_2) \psi + \lambda \varphi_2 (v_1 + v_2) \cdot \nabla \psi dx, \]
\[I_2 = \int_{\Omega} (v_2 \cdot \nabla \varphi_2) \psi dx, \]
\[I_3 = \int_{\Omega} \lambda \varphi_2 (v_1 + v_2) \cdot \nabla \psi dx, \]
and
\[I_4 = \int_{\Omega} \lambda \varphi_2 (v_1 + v_2) \cdot \nabla \psi dx. \]
An isothermal diffusive model for binary mixtures of incompressible fluids

\[I_1 = \kappa \int_{\Omega} (\nabla \varphi_1 \otimes \nabla \varphi + \nabla \varphi \otimes \nabla \varphi_2) : \nabla \nu \, dx \]

\[I_2 = \lambda \int_{\Omega} (\varphi_1 \nu_1 + \varphi_2 \nu_2) \cdot \nu \, dx \]

\[I_3 = \lambda \int_{\Omega} [\varphi_1 (\nabla \varphi_1) \nu_1 + \varphi_2 (\nabla \varphi_2) \nu_2 + \varphi_1 (\nabla \nu_1) + \varphi_2 (\nabla \nu_2)] \cdot \nu \, dx \]

\[I_4 = - \int_{\Omega} [\nabla \varphi_1 \nu_1 + (\nabla \nu_2) \nu] \cdot \nu \, dx . \]

Hölder's, Young's inequalities, (3.2), (3.3) and an \textit{a priori} estimate (4.34) allow us to estimate \(I_1 \), namely

\[I_1 \leq \kappa (\| \nabla \varphi_1 \|^2 + \| \nabla \varphi_2 \|^2) \| \nabla \varphi_1 \|^2 \| \nabla \varphi_2 \|^2 \leq \frac{\nu}{14} \| \nabla \nu \|^2 + \eta_2 \| \mu \|^2 + C \| \nabla \varphi \|^2 . \]

\[(5.10) \]

Similarly, we obtain

\[I_2 \leq \lambda (\| \varphi \|^2 + \| \varphi_1 \|^2 + \| \varphi_2 \|^2) \| \varphi \|^2 + \| \varphi_1 \|^2 + \| \varphi_2 \|^2 + \| \varphi_1 \|^2 + \| \varphi_2 \|^2 \| \nu \|^4 \]

\[\leq \frac{\nu}{14} \| \nabla \nu \|^2 + \frac{\beta}{8} \| \varphi \|^2 + C (\| \nu \|^2 + \| \varphi_1 \|^2) . \]

\[(5.11) \]

and

\[I_3 \leq \lambda (\| \varphi \|^2 \| \nu_1 \|^2 + \| \varphi_1 \|^2 \| \nu_1 \|^2 + \| \varphi_2 \|^2 \| \nu_2 \|^2 + \| \varphi_1 \|^2 \| \nu_1 \|^2 + \| \varphi_2 \|^2 \| \nu_2 \|^2 \| \nu_1 \| + \| \varphi_1 \|^2 \| \nabla \varphi \| + \| \varphi_2 \|^2 \| \nabla \varphi \|) \]

\[\leq \frac{\nu}{14} \| \nabla \nu \|^2 + \frac{\eta_1}{14} \| \varphi_1 \|^2 + \frac{\eta_2}{14} \| \varphi_1 \|^2 . \]

\[(5.12) \]

Finally, the last integral can be controlled as

\[I_4 \leq \| \nabla \nu \| \| \nu_1 \| \| \nu_2 \| + \| \nabla \varphi_1 \| \| \nu_2 \| + \| \nu_2 \| \| \nu_1 \| \leq \frac{\nu}{14} \| \nabla \nu \|^2 + C (\| \varphi_1 \|^2 \| \nu_1 \|^2 + \| \varphi_2 \|^2 \| \nu_2 \|^2) \| \nu \|^2 . \]

\[(5.13) \]

From (5.4) it follows that

\[\| \Delta \varphi \| \leq C (\| \mu \|^2 + \| \varphi \|^2 + \| \varphi_2 \|^2 + \| \varphi_1 \|^2 + \| \varphi_2 \|^2 \| \nu_1 \| + \| \varphi_1 \|^2 \| \nu_2 \| + \| \varphi_2 \|^2 \| \nabla \varphi \| + \| \nabla \varphi_2 \| + \| \nabla \varphi \|) \]

\[\leq C (\| \mu \|^2 + \| \varphi \|^2 + \| \nu \|^2 + \| \nu_1 \|^2 + \| \varphi_2 \|^2 \| \nu_2 \| + \| \nabla \varphi \|) . \]

As a consequence, by means of (5.8), we have

\[\| \varphi \|^2 \| \nu_1 \|^2 \leq C (\| \varphi \|^2 + \| \Delta \varphi \|^2) \]

\[\leq C \left(\| \nu_1 \|^2 + \| \nu_2 \|^2 + 1 \right) \| \varphi \|^2 + \| \nu \|^2 + \| \nu_2 \|^2 . \]

\[(5.14) \]

Adding inequalities (5.5), (5.7) and (5.9), accounting for (5.8), (5.14) and choosing \(\eta_1, \eta_2 \) small enough, we prove the estimate

\[\frac{1}{2} \frac{d}{dt} (\| \varphi \|^2 + \kappa \| \nabla \varphi \|^2 + \| \nu \|^2) + \frac{\beta}{2} \| \varphi \|^2 + \frac{\gamma}{2} \| \nabla \mu \|^2 + \frac{\nu}{2} \| \nabla \nu \|^2 \leq h(t) (\| \varphi \|^2 + \| \nu \|^2) , \]

where

\[h(t) = C (\| \nu_1 \|^2 + \| \nu_2 \|^2 + 1) \]

is a \(L^1 \)-function of time. Thus, Gronwall’s inequality proves

\[\varphi = 0, \quad \nu = 0 . \]

Accordingly, from (5.4) it follows that \(\mu = 0 \) and we reach the conclusion. \(\square \)
Acknowledgments

The authors are partially supported by G.N.F.M.-I.N.D.A.M. through the project for young researchers ‘Mathematical models for phase transitions in special materials’.

References

[1] Abels H 2009 On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities Arch. Ration. Mech. Anal. 194 463–506
[2] Abels H, Garcke H and Grun G 2011 Thermodynamically consistent, frame-indifferent diffusive interface models for incompressible two-phase flows with different densities arXiv:1104.1336
[3] Adams R A 1975 Sobolev Spaces (New York: Academic)
[4] Boyer F 1999 Mathematical study of multi-phase flow under shear through order parameter formulation Asymptot. Anal. 20 175–212
[5] Cahn J W 1961 On spinodal decomposition Acta Metall. Mater. 9 795–801
[6] Cahn J W and Hilliard J E 1958 Free energy of a nonuniform system: I. Interfacial free energy J. Chem. Phys. 28 258–67
[7] Evans L C 1998 Partial Differential Equations (Graduate Studies in Mathematics vol 19) (Providence, RI: American Mathematical Society)
[8] Gagliardo E 1959 Ulteriori propriet`a di alcune classi di funzioni in pi`u variabili Ricer. Mat. 8 24–51
[9] Gal C 2007 Global well-posedness for the non-isothermal Cahn–Hilliard equation with dynamic boundary conditions Adv. Diff. Eqns 12 1241–74
[10] Gal C and Grasselli M 2010 Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D Ann. Inst. H. Poincaré Anal. Non Linéaire 27 401–36
[11] Gurtin M E 1996 Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance Physica D 92 178–92
[12] Gurtin M E, Polignone D and Vinals J 1996 Two-phase binary fluids and immiscible fluids described by an order parameter Math. Models Methods Appl. Sci. 6 315–31
[13] Hohenberg P C and Halperin B I 1977 Theory of dynamic critical phenomena Rev. Mod. Phys. 49 435–79
[14] Lions J L and Magenes E 1972 Nonhomogeneous Boundary Value Problems and Applications vols I–III (Berlin: Springer)
[15] Lowengrub J and Truskinovsky L 1988 Quasi-incompressible Cahn–Hilliard fluids and topological transitions Proc. R. Soc. Lond. A 454 2617–54 (doi:10.1098/rspa.1988.0273)
[16] Nirenberg L 1959 On elliptic partial differential equation Ann. Sc. Norm. Sup. Pisa 13 115–62
[17] Starovoitov V N 1997 The dynamics of a two-component fluid in the presence of capillary forces Math. Notes 62 244–54
[18] Temam R 1988 Infinite-dimensional Dynamical Systems in Mechanics and Physics (New York: Springer)
[19] Temam R 1995 Navier–Stokes Equations and Nonlinear Functional Analysis (Philadelphia, PA: SIAM)
[20] Temam R 1977 Navier–Stokes Equations: Theory and Numerical Analysis (Amsterdam: North-Holland)