Prevalence of Obesity and Overweight among Adults in the Middle East Countries from 2000 to 2020: A Systematic Review and Meta-Analysis

Hassan Okati-Aliabad, Alireza Ansari-Moghaddam, Shiva Kargar, and Neda Jabbari

1. Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
2. MSc of Epidemiology, Gerash University of Medical Sciences, Gerash, Iran
3. Department of Environment Health Engineering, School of Health, Zahedan University of Medical Sciences, Zahedan, Iran

Correspondence should be addressed to Shiva Kargar; shivakargar@yahoo.com

Received 15 July 2021; Accepted 17 January 2022; Published 3 February 2022

Academic Editor: Nunzio Velotti

Copyright © 2022 Hassan Okati-Aliabad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Obesity has become a significant public health issue worldwide, and it is a major risk factor for many non-communicable diseases. This systematic review aimed to identify the prevalence of obesity and overweight in the Middle East region and different countries in this region. Materials and Methods. PubMed, Google Scholar, and MEDLINE databases were searched from 2000–2020 to identify relevant studies in the Middle East area. The survey was carried out using combinations of Medical Subject Headings (Mesh) keywords like “body mass index”, “obesity”, “overweight”, “prevalence”, “Middle-East”, and “Countries in the Middle East area”. Analysis of the data was done using STATA-14, and a random-effects model was used to estimate the pooled prevalence. Results. A total of 101 studies with 698905 participants have been identified that met inclusion criteria for this meta-analysis. The pooled estimates of the prevalence of obesity and overweight in the Middle East area were 21.17 (95% CI: 17.05–26.29) and 33.14 (95% CI: 26.87–40.87), respectively. The findings showed that obesity prevalence increased with age so that the highest prevalence of obesity and overweight was observed in people >40 years old. Obesity prevalence in the Middle East area remained steady between 2000–2006 and 2014–2020 (23%). During these time intervals, the prevalence of overweight decreased from 34.83 (95% CI: 32.40–37.45) to 32.85 (95% CI: 31.39–34.38). Conclusions. Despite the relative stabilization of the overweight and obesity trend in the Middle East, current interventions to combat the overweight epidemic need to be maintained and strengthened because the prevalence of overweight and obesity in this region is still very high. The prevalence of obesity increases with age so that people over 40 have the highest percentage of obesity and overweight. Therefore, implementing intervention programs to prevent and control obesity and overweight in the Middle East is essential.

1. Introduction

Obesity and overweight are health problems that indicate excessive and abnormal accumulation of body fat and lead to adverse health effects [1]. Epidemiological studies have identified obesity and overweight as risk factors for several diseases, including diabetes, various cancers, cardiovascular disease, and hypertension [2]. The increasing prevalence of high BMI and its resulting mortality threaten people’s health in many countries. In addition, it causes destructive health effects and financial burden on people and society [3, 4]. The leading causes of the increase in obesity and overweight in the Eastern Mediterranean (EMRO) are lifestyle changes, including unhealthy eating habits, physical inactivity, and cultural, social, and economic changes [5, 6]. On the other hand, using a plant-based diet and physical activity in daily life reduces the risk of obesity [7]. Kuwait, Qatar, and Libya, the three EMRO countries, were among the top ten countries with the highest prevalence of obesity in the world in 2013 [8].
The body mass index (BMI) is a simple index to classify overweight and obesity in adults and is defined as weight in kg/height in m². Individuals with a BMI ≥ 30 kg/m² are considered obese, and individuals with a BMI between 25 and 29.9 kg/m² are considered overweight [9]. Studies show that with age, BMI increases, which is more common in women than men [10].

Up-to-date information on the level and trend of overweight and obesity is needed to prioritize measures to prevent and control weight gain and obesity by health policymakers. Therefore, this systematic review aims to estimate the prevalence of obesity and overweight in general and based on countries in the Middle East. The study also evaluated the attributable risk of obesity-related cardiovascular disease populations in the Middle East.

2. Method

2.1. Search Strategy. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards were used when conducting this systematic review [11]. A literature search was performed in the online database including Google Scholar, PubMed, and MEDLINE to find the relevant article published between 2000 and 2020. The investigation was done using keyword combinations Medical Subject Headings (Mesh) such as “body mass index”, “obesity”, “overweight”, “prevalence”, “Middle-East”, and “Countries in the Middle East area”. Two authors worked separately on the literature search.

2.2. Inclusion and Exclusion Criteria. The following are the criteria for including articles in the meta-analysis:

1. Studies have defined a BMI of ≥ 30 kg/m² as obesity and a BMI of 25–29.9 kg/m² as overweight
2. The classification of overweight and obese people was clearly defined
3. Cross-sectional population-based studies were performed between 2000 and 2020 that reported the prevalence of obesity and overweight
4. Adults over the age of 15 were eligible to participate in the studies

Studies were excluded from the meta-analysis if they were not published in English and if they focused on children and adolescents and populations with specific conditions, such as hypertension, diabetes, and cancer. In addition, studies that provided the only frequency of obesity and overweight, with no data to calculate the 95% confidence interval and mixed reporting of obesity and overweight were excluded.

3. Study Selection and Data Extraction

3.1. Data Extraction. All articles identified in databases were screened based on keyword, title, and abstract by two researchers independently. Then, relevant articles were assessed, and data extraction was done from the eligible articles and information stored into Microsoft Excel using a checklist created by the researcher.

Data extracted for study characteristics contained the following items: names of authors, year of publication, sample size, gender, age, study setting (country, urban/rural), the prevalence of obesity, overweight, and body mass index mean and its 95% confidence interval. Some studies, however, did not report confidence intervals. As a result, the following equation was used to calculate the relevant confidence intervals for each point estimation:

\[\hat{p} + \frac{z^{\alpha/2}}{2n} \pm \frac{\sqrt{p(1-p)\hat{z}^2}}{4n} \left(\frac{1}{1 + \frac{z^2}{n}} \right) \]

3.2. Statistical Analysis. The random-effects models were used to generate pooled estimates. I-square and Q figures were also used to look at potential sources of heterogeneity.

The population attributable risks for cardiovascular diseases such as coronary heart disease (CHD), heart failure (HF), and atrial fibrillation (AF) associated with obesity were calculated by prevalence estimates of the obesity in this meta-analysis and the equation: \(PAR = P \times (RR - 1)/P \times (RR - 1) + 1 \). The RR was obtained from previously published recent meta-analyses that assessed the association between obesity and the disease listed above.

Therefore, the relative risk (RR) and 95% CI for atrial fibrillation (AF) were considered 1.51 (1.35–1.68) [12] and odd ratio (OR) and 95% CI for the association between obesity and coronary heart disease (CHD) and heart failure (HF) were considered 1.20 (1.02–1.41) and 1.62 (1.32–1.99), respectively [13, 14].

4. Result

4.1. Selection of Study and Characteristics. In the primary search, 1037 articles were identified from databases, of which 230 duplicate articles were excluded. In the first phase (assessing title and abstract), 533 articles were removed due to not being a cross-sectional study design, unrelated title, out of the Middle East scope and review article nature. Finally, 274 articles were assessed in full text; of these, 101 articles met the inclusion criteria in this systematic review and meta-analysis. The flowchart of the study selection process and the frequency of factors for exclusion are outlined in Figure 1.

The studies were performed in 17 Middle East countries: Turkey (16 reports), Iran (11), Kuwait (9), Israel (2), Saudi Arabia (11), Oman (4), Palestine (6), Yemen (1), United Arab Emirates (5), Syria (2), Lebanon (6), Iraq (7), Cyprus (2), Bahrain (2), Jordan (8), and Egypt (8).

A total of 698905 participants aged >15 years were included in this systematic review. Studies had a range of sample sizes from 2500 to 257555. The articles were published between 2000 and 2020, including 18 articles during 2000–2006, 40 articles during 2007–2013, and 43 articles during 2014–2020. Moreover, four studies assessed the prevalence of obesity and overweight on only men and thirteen studies on only women. Table 1 summarizes the characteristics of the articles that were used in the study.
4.2. Prevalence of Overweight and Obesity. Overall, the pooled estimates of the prevalence of obesity and overweight in the Middle East countries were 21.17 (95% CI: 17.05–26.29) and 33.14 (95% CI: 26.87–40.87), respectively (Figure 2). However, some heterogeneity was observed between the results of the studies \((p < 0.001)\). The range of prevalence of obesity in the Middle East region was between 40.62 (95% CI: 35.85–46.03) in Syria and 8.80 (95% CI: 7.70–10.00) in Yemen. Also, the range of prevalence of overweight among adults in the Middle East region was between 62.10 (95% CI: 60.30–63.90) in Israel and 23.50 (95% CI: 22.00–25.20) in Yemen.

Based on results of sex-specific subgroup analyses, the prevalence of obesity was significantly higher in women, 25.40 (95% CI: 23.66–27.27), than in men, 19.86 (95% CI: 17.60–22.40) \((p = 0.001)\). In contrast, men were more likely to be overweight than women, with a prevalence of 37.80 (95% CI: 36.20–39.47) compared to 31.24 (95% CI: 29.96–32.57) \((p < 0.001)\).

For residency-specific subgroup analyses, although the rural population had a higher prevalence of obesity and a lower prevalence of overweight than the urban population, it was not statistically significant \((p = 0.59, p = 0.77)\). The findings of age-specific subgroup studies revealed that obesity increased with age, peaking in the 50–59 and 60–69 age ranges. In addition, the 40–49 and 60–69 age groups had the highest prevalence of overweight (Table 2).

4.3. Time Trends in Obesity and Overweight by Country and Gender. Table 3 depicts the prevalence of obesity and overweight in the Middle Eastern countries from 2000 to 2020. From 2000 to 2006, the highest prevalence of obesity was in Saudi Arabia, 39.6 (95% CI: 37.9–41.3), and Syria, 38.2 (95% CI: 36.0–40.3). Moreover, from 2014 to 2020, the highest prevalence of obesity was in Oman, 67.81 (95% CI: 65.22–70.51), and Syria, 43.4 (95% CI: 40.2–46.6). Concerning the prevalence of overweight, from 2000 to 2006, the highest prevalence was observed in Kuwait, 44.85 (95% CI: 38.74–51.93), and Iran, 43.3 (95% CI: 37.6–49.1). Despite this, from 2014 to 2020, the highest prevalence was in Jordan, 39.94 (95% CI: 33.98–46.95), and the United Arab Emirates, 39.81 (95% CI: 33.66–47.08).

Overall, in the Middle East region, obesity prevalence remained stable from 2000 to 2006 and 2014 to 2020, with an average prevalence of 23 percent. However, the prevalence of overweight decreased from 34.83 (95% CI: 32.40–37.45) to 32.85 (95% CI: 31.39–34.38) during these time intervals.

The sex-specific subgroup prevalence showed that in women, the prevalence of obesity and overweight decreased from 26.62 (95% CI: 22.93–30.90) and 32.30 (95% CI: 29.84–34.96) during 2000 to 2006 to 23.15 (95% CI: 20.85–25.70) and 32.85 (95% CI: 31.39–34.38) during 2014 to 2020, respectively.

The prevalence of obesity in men increased from 20.08 (95% CI: 16.24–24.82) from 2000 to 2006 to 23.48 (95% CI: 20.26–27.20) from 2014 to 2020. However, the overweight prevalence was stable at these periods (39%).

4.4. Population Attributable Risk of Cardiovascular Disease for Obesity. Table 4 presents Population Attributable Risk
Authors/year of publication	Setting	Sampling	Age	N.Men	N. female	N. total	Sex/setting	Obesity	Prevalence	95% CI	Overweight	Prevalence	95% CI
Gunaid et al., 2012 [15]	Yemen	R, U	Random sample	≥20	919	1581	2500	FM	8.8	7.7–10	23.5	22–25.2	
Janghorbani et al., 2007 [16]	Iran	—	Stratified probability cluster	15–65	45,082	44,322	89,404	FM	17.6	17.3–17.8	32.2	31.9–32.5	
Kelishadi et al. 2007 [17]	Iran	R, U	—	15–64	45113	44344	89,532	FM	28.6	28.3–28.9	10.8	10.6–11	
Djalalinia et al. 2020 [18]	Iran	R, U	Systematic random sampling cluster	≥18	20280	15,044	29,124	FM	22.7	22.2–23.2	36.6	36.0–37.1	
Ali AL-Nooh et al. 2014 [19]	Bahrain	—	Census	39.1	641	498	1139	FM	38.7	35.7–41.5	39.7	36.8–42.5	
Al-Ansari et al. 2000 [20]	Bahrain	U	Volunteered	17–38	238	406	644	FM	9	6.9–11.4	18.1	15.2–21.3	
Nitzan Kaluski et al. 2007 [21]	Israeli	—	Random sample	25–64	1371	1410	2781	FM	22.8	21.2–24.4	62.1	60.3–63.9	
Fraser et al., 2008 [22]	Israeli	R, U	Convenience, cluster random sample	35–64	363	1117	1480	FM	40.9	38.2–43.3	33.4	30.9–35.8	
Shabu, 2019 [23]	Iraq	U	Multistage sampling	≥18	14,425	14,682	29,107	FM	25.8	24.3–24.2	31.3	30.7–31.8	
AL-Tawil et al., 2005 [24]	Iraq	U	Convenience sample	≥18	322	178	500	FM	7.8	5.6–10.5	35.8	31.5–40.1	
Ali Mansour et al. 2012 [25]	Iraq	U	Simple random population-based	≥18	62.5 ± 82.1	62.5 ± 82.1	62.5 ± 82.1	FM	8.1	5.3–11.6	31.6	26.6–37	
Wafaa et al., 2013 [26]	Iraq	U	Probably	>19	35.2	30.7–39.8	34.5	30.1–39.1					
Jasim et al., 2018 [27]	Iraq	U	Randomly	>19	55	145	200	FM	81.5	75.4–86.6	—	—	
Hayyawi et al., 2016 [28]	Iraq	U	Census	>19	55	145	200	FM	78.1	64.9–88.1	—	—	
Al-Yasseri et al., 2019 [29]	Iraq	U	Convenience sample	50.2 ± 8.4	82.7	75.6–88.5	—	—					
Al-Kilani et al., 2011 [30]	Oman	U	Voluntary basis	18–25	101	101	202	FM	1.49	0.3–4.2	26.7	20.7–33.4	
Authors/year of publication	Setting Country	Rural/urban Method	Sampling	Age	N. Men	N. female	N. total	Sex/setting	Obesity Prevalence	95% CI	Overweight Prevalence	95% CI	
-----------------------------	-----------------	-------------------	----------	-----	--------	-----------	---------	-------------	-------------------	--------	----------------------	--------	
Louay et al., 2015 [31]	Oman U	Census	18–24	43	183	226	FM	M 7.8	4.1–11.2	29.2	23.3–35.6		
Barakat et al., 2009 [32]	Oman R	Randomly selected	≥20	236	643	879	FM	M 22.9	20.1–25.7	32.3	29.2–35.5		
Tengfei et al., 2020 [33]	Oman R	Voluntarily	16–80	554	677	1231	FM	M 28	24.5–31.6	33.1	29.4–36.9		
Abdeen et al., 2011 [34]	Palestine R, U	Randomly	18–64	1725	1653	3378	FM	M 24.6	20.9–28.2	—	—		
Abdul-Rahime et al., 2001 [35]	Palestine U	—	30–65	190	295	485	FM	M 30	23.5–37	—	—		
El Kishawi et al., 2014 [36]	Palestine R, U	Multistage sampling	18–50	209	269	478	FM	M 29.2	25.2–33.5	36.4	32.0–40.8		
Stene et al., 2001 [37]	Palestine R	—	30–65	352	498	850	FM	M 37.5	31.7–43.6	33.8	28.2–39.8		
Damiri et al., 2017 [38]	Palestine U	2 stages stratified random sampling	18–24	352	498	850	FM	M 9.1	6.3–12.5	27.2	22.6–32.2		
El Kishawi et al., 2016 [39]	Palestine U	—	18–50	1381	2208	3589	FM	M 49.3	45.3–49.5	58.4	53.6–63.8		
Weiderpass et al., 2019 [40]	Kuwaiti —	Random sampling	18–69	918	1362	2280	FM	M 47.5	45.3–49.5	80.4	78.7–82.2		
Al Rashdan and Al Nesef 2010 [41]	Kuwaiti —	Random sample	20–67	53	50	103	F	53	50.3–55.6	—	—		
AlMajed et al, 2011 [42]	Kuwaiti U	Randomly	17–24	173	311	484	FM	M 19.8	16.3–23.6	30.6	26.5–34.9		
Raman et al, 2012 [43]	Kuwaiti U	Convenience sample	≥20	432	432	432	FM	M 20.8	17.1–24.9	39.8	35.1–44.6		
Al-Asi 2003 [44]	Kuwaiti —	—	<40	3282	3282	3282	F	27.4	25.9–28.9	47.9	46.2–49.7		
Badr et al., 2012 [45]	Kuwaiti U	A multistage cluster sampling	>50	948	1395	2443	FM	M 30.2	27.2–33.2	45.6	42.3–48.8		
Alkazemi et al, 2019 [46]	Kuwaiti U	Convenience sample	21.57 ±1.99	193	422	615	F	15.7	12.9–18.9	22.7	19.5–26.2		
Authors/year of publication	Setting	Sampling	Obesity	Overweight									
----------------------------	---------	----------	---------	------------									
Authors/year of publication	Setting	Sampling	Obesity	Overweight									
Al-Isa, 2004 [47]	Kuwaiti	—	Systematic random sampling	>20	485	19.7	16.2–23.6	41.2	36.6–45.8				
Zaghoul et al., 2013 [48]	Kuwaiti	—	Using stratified sampling, randomly	≥19	469	43.1	40.0–46.1	33.1	30.2–36				
Adel Bakir et al., 2017 [49]	Syria	U	Randomly	18–60	919	43.4	40.2–46.6	31.3	28.3–34.4				
Fouad, 2006 [50]	Syria	—	Stratified, cluster sampling, randomly	18–65	485	28.4	25.5–31.4	37	33.8–40.2				
Andreou et al., 2017 [49]	Cyprus	U	Stratified random sample	18–80	1393	28.8	27.0–35.4	46.9	42.2–51.3				
Heraclides et al., 2015 [52]	Cyprus	—	Stratifying sampling	24–65	428	21.5	19.4–23.7	—	—				
Abu-Zaiton and Fawwaz 2013 [53]	Jordan	—	Multistage cluster sampling	>18	49	8.3	4.0–14.7	21.67	14.6–30.11				
Suleyman et al., 2009 [54]	Jordan	U	Multistage cluster sampling	17–28	428	10.1	8.5–12	28.5	26.0–31.1				
Attoom, 2018 [55]	Jordan	—	Multistage random	16–46	570	8.8	6.3–11.9	23.3	19.4–27.6				
Khader et al., 2009 [56]	Jordan	U	Systematic random	18–70	168	10.8	8.7–13.2	31.3	28.1–34.7				
Matalqah et al., 2019 [57]	Jordan	U	Convenience sampling	>18	605	14.7	10.8–20.7	36.9	33.4–40.4				
Ahmad et al., 2006 [58]	Jordan	R	Proportional sampling technique	20–25	233	6.8	3.9–10.9	27	21.4–33.2				
Khamaisheh et al., 2015 [59]	Jordan	U	Random sampling	18–24	54	11.1	4.1–22.6	57.4	43.2–70.7				
Abu Ghazaleh and Budair 2013 [60]	Jordan	U	—	43.2	4962	4.8	4.2–43.3	25.7	24.8–28.7				
Mowafi et al., 2013 [61]	Egypt	U	Stratified random sample	≥22	1823	11	11.4–20.1	47.7	41.8–53.6				
Abdel Sadek et al., 2016 [62]	Egypt	U	Multistage stratified random sampling	17–27	1823	23.8	21.9–25.8	41.9	39.6–44.2				
Mohamed Shebl et al., 2015 [63]	Egypt	U	—	≥60	50	6.6	5.0–8.5	28.8	25.8–32				

Journal of Obesity
Authors/year of publication	Country	Setting	Sampling	N. Men	N. female	N. total	Sex/setting	Obesity 95% CI	Overweight 95% CI			
Abdel Rahman et al., 2012 [65]	Egypt	U	Random sample	≥60	112	207	319 FM	27.1–37.7	29.4–24.5–34.8			
Genena and Salama, 2017 [66]	Egypt	U	Randomly	18–26	141	257	389 FM	8.8–15.3	28.9–24.4–33.6			
Farrag et al., 2015 [67]	Egypt	U	—	19.5 ±2.0	136	214	350 FM	9.3–12.2	27.8–25.8–29.9			
Mahfouz et al., 2006 [68]	Egypt	R	Systematically random	≥60	136	1182	1838 FM	23.6–33.3	34–29.0–39.2			
Yount and Li, 2011 [69]	Egypt	—	—	15–49	140	257	400 FM	3.2–7.9	20–16.1–24.2			
Sakr et al., 2016 [70]	Lebanon	U	—	16–32	140	260	400 FM	0.4–6.1	7.1–3.4–12.7			
Fahs et al., 2017 [71]	Lebanon	U, R	Stratified cluster, randomly	≥45	1000	1125	2048 FM	22.8–32.7	48.9–43.4–54.4			
Naja et al., 2011 [72]	Lebanon	R, U	—	20–55	923	1125	2048 FM	21.7–27.3	65.7–62.7–68.9			
Yahia et al., 2008 [73]	Lebanon	U	Randomly	20 ±1.9	96	124	220 FM	6.6–20.8	37.5–27.8–47.9			
Haidar et al., 2016 [74]	Lebanon	U	Randomly	≥18	149	151	300 FM	22.0–32.4	37.6–32.1–43.4			
Samhat et al., 2020 [75]	Lebanon	U	Randomly	24–45	101	206	307 FM	19.4–24.9	31.6–26.4–37.1			
Delibasi et al., 2007 [76]	Turkey	R, U	Randomly	≥18	1324	1322	2646 FM	16.0–18.9	39.6–34.3–43.6			
Erem et al., 2001 [77]	Turkey	U	Random cluster sampling	≥20	5866	7000	12866 FM	26.6–28.1	36.2–35.3–37.3			
D. Yumuk et al., 2005 [78]	Turkey	U	Invited	≥20	641	855	1496 FM	19.1–25.7	43.2–39.3–47.1			
Akbay et al., 2003 [79]	Turkey	U	Stratified random sampling	20–74	6756	6998	13754 FM	28.7–30.2	39.5–38.7–40.4			
Bagiacik et al., 2009 [80]	Turkey	U	Randomly	≥20	218	208	426 FM	20.8–22.8	44.8–43.6–46.6			
Authors/year of publication	Setting Country	Rural/urban	Sampling Method	Age	N. Men	N. female	N. total	Sex/setting	Obesity Prevalence	95% CI	Overweight Prevalence	95% CI
-----------------------------------	-----------------	-------------	---------------------	----------	--------	-----------	----------	-------------	--------------------	--------	----------------------	--------
Gültekin et al., 2009 [81]	Turkey	R, U	Multistage	18–65	1050	1050	2100	FM	27	25.1–29	34.4	32.4–36.5
Ardahan and Konal, 2019 [82]	Turkey	U	Voluntarily		547	476	1023	FM	30.5	27.6–33.4	—	—
Arıkan et al., 2014 [83]	Turkey	R, U	Multistage stratified	≥15	1015	1023	2,038	FM	24.2	22.4–26.2	34.3	32.2–36.4
Delibasi et al., 2007 [76]	Turkey	R, U	Randomly	≥18	3277	1885	5162	FM	29.5	28.2–30.7	30	28.7–31.2
Ustu et al., 2012 [84]	Turkey	U	Random cluster	≥18	527	539	1066	FM	33.6	31.9–35.2	27.6	26.0–29.1
Yabancı et al., 2010 [85]	Turkey	U	Voluntarily	18–59	1524	—	—	M	8.3	6.1–11	40.9	36.7–45.3
Ahin et al., 2011 [86]	Turkey	U	Randomly	≥20	2288	2728	5016	FM	23.5	22.3–24.7	36.8	35.4–38.1
Erem et al., 2004 [87]	Turkey	U	Random cluster sampling	≥20	204	520	2724	FM	31.9	29.6–34.3	32.2	29.9–34.6
Dinc et al., 2006 [88]	Turkey	U	Randomly	15–49	—	1602	—	F	31.9	29.6–34.3	32.2	29.9–34.6
Yalcin et al., 2004 [89]	Turkey	U	Multistage sampling	18–65	980	956	1936	FM	27.3	25.3–29.3	36.1	33.9–38.2
Ucan and Ovaryodu, 2010 [90]	Turkey	U	—	≥18	749	852	1601	FM	41.8	39.4–44.3	30.5	28.2–32.8
Kerkadi et al., 2003 [91]	UAE	U	—	18–25	452	92	544	FM	31.4	27.5–35.5	36.2	31.8–40.3
Kalavathy et al., 2019 [92]	UAE	U	Convenience sampling	18–77	5018	5018	10036	FM	35.4	34.6–35.4	31.9	31.5–32.3
Hajat et al., 2012 [93]	UAE	U	—	18–75	—	—	—	F	38.3	37.8–38.9	28.8	28.2–30.4
Sulaiman et al., 2017 [94]	UAE	—	Systematic random sampling	≥18	2204	520	2724	FM	32.3	30.5–34.1	43	41.1–44.9
Sheikh-Ismailet al., 2009 [95]	UAE	U	Random sample	20–90	—	724	—	F	36.1	32–40.5	35.1	31.0–39.4
Alhakbany et al., 2018 [96]	Saudi Arabia	U	Multistage stratified cluster sampling	14–25	454	81	535	F	8.1	5.8–11	21.4	17.6–25.4
Al-Rethaiaa et al., 2010 [97]	Saudi Arabia	U	Randomly	14–24	357	—	—	M	15.7	12.0–19.8	21.8	17.6–26.5
Al-Baghi et al., 2008 [98]	Saudi Arabia	—	Invited	≥30	99946	95905	195874	FM	43.8	43.5–44	35.1	34.9–35.3
Al-Qahtani, 2019 [99]	Saudi Arabia	U	Voluntary	—	949	732	1681	F	29.1	24.7–31.4	35.4	30.5–37.5
Authors/year of publication	Setting	Sampling	Obesity Prevalence	Sex/age setting	Overweight Prevalence							
-----------------------------	---------	----------	-------------------	----------------	----------------------							
Alsaif et al., 2002 [100]	Saudi Arabia	R, U	A multistage stratified cluster sampling	30–70	1613	1648	3261	FM	39.6	37.9–41.3	36.6	35.0–38.3
Horaib et al., 2013 [101]	Saudi Arabia	—	Multistage stratified random	34.12 ± 7.25	—	—	10,229	FM	29	28.1–29.9	40.8	39.9–41.8
Baig et al., 2015 [102]	Saudi Arabia	U	—	22.40 ± 3.90	610	—	—	M	18.5	15.5–21.8	29.8	26.2–33.6
Al-Ghamdi et al., 2018 [103]	Saudi Arabia	R, U	Multistage sampling	≥18	381	638	1019	FM	27.5	24.8–30.4	26.6	24.0–29.5
Alharthi et al., 2017 [104]	Saudi Arabia	U	Convenience sampling	20–40	387	120	507	FM	29.5	25.6–33.7	36.2	32.4–41
Balgoon et al., 2019 [105]	Saudi Arabia	U	—	18–25	—	164	—	F	14	9.1–20.3	17.6	12.1–24.4
Al-Raddadi et al., 2019 [106]	Saudi Arabia	U	Stratified cluster sampling	≥18	667	752	1419	FM	35.2	32.7–37.7	32.4	29.9–34.9
Tabrizi et al., 2017 [107]	Iran	U	Multistage stratified cluster sampling	15–65	1368	1450	2818	FM	24	22.4–25.6	39.6	37.7–41.4
GHaderian et al., 2018 [108]	Iran	U	Random cluster sampling	≥20	1187	1388	2575	FM	26.5	25.1–28.5	39.3	37.4–41.3
Rezaeian and Salem 2007 [109]	Iran	U	Random sample	>30	316	440	756	FM	11.5	9.3–13	38.2	34.7–41.8
Ayatollahi and Ghoreshizadeh 2010 [110]	Iran	U	Random multistage sample	25–55	1141	1141	2282	FM	16.5	15.8–18.1	40.2	38.2–42.3
Nikooyeh et al., 2016 [111]	Iran	U	Randomly	20–60	114	135	249	FM	25.4	17.7–34.4	38.6	29.6–48.1
Dastgiri et al., 2006 [112]	Iran	U	Simple random	≥18	132	168	300	FM	22.4	17.0–27.6	43.3	37.6–49.1
Najafi et al, 2020 [113]	Iran	U	—	≥35	57,614	71,643	129,257	FM	30.43	30.1–30.6	40.76	40.4–41
Marzban et al., 2020 [114]	Iran	U	Multistage systematic sampling	20–70	395	395	790	FM	21.51	18.7–24.5	35.44	32.1–38.8
Marzban et al., 2020 [114]	Iran	U	Multistage systematic sampling	20–70	395	395	790	FM	21.51	18.7–24.5	35.44	32.1–38.8
(PAR) for cardiovascular disease, including coronary heart disease (CHD), heart failure (HF), and atrial fibrillation (AF). Population Attributable Risk (PAR) for cardiovascular disease was ranged from 0.3 to 19.8% by countries and about 11% of HF, 4% of CHD, and 9% of AF were related to obesity in more countries. The highest PAR was observed for heart failure (HF), of which nearly 11.5% of HF was attributed to obesity. Also, the cardiovascular disease burden related to obesity in Syria, Kuwait, and Iraq was higher than that in other countries due to the high prevalence of obesity in these countries. The fraction of cardiovascular disease attributable to obesity ranged from 3.6 to 10.5% in males and 4.7 to 13.4% in females.

5. Discussion

The results of this systematic review showed that the prevalence of overweight and obesity in the Middle East is 23.5–62.1 and 14.5–40.6, respectively. The difference in socioeconomic status and lifestyle between countries can explain this difference. In this study, the highest prevalence of obesity and overweight was in Kuwait, Syria, and Israel. Lifestyle changes over the past few years, including the use of Arabic diets (high-calorie and fatty foods such as fast foods), alcohol consumption, and reduced physical activity, may explain the high prevalence of noncommunicable diseases, including obesity [115].

Moreover, some studies have shown that the high prevalence of overweight and obesity in deprived sparsely populated groups is partly due to the low quality of their diet [116]. In this study, the lowest prevalence of obesity and overweight was in Yemen, which could be due to the low number of reports of obesity and the lack of new studies.

In this study, the prevalence of obesity was higher in women than men. This result is similar to the study in Spain [10] and contrasts with the study in Turkey [84]. This difference can be partly due to multiple births in women, hormonal differences between men and women, and sedentary lifestyle in women because most women are housewives or have jobs with less physical activity [117]. Studies have also shown that the prevalence of obesity in married people is increasing, which obviously puts women at even greater risk of obesity [118, 119].

Previous studies have shown that aging is strongly associated with the prevalence of obesity, and in general, the prevalence of obesity increases until age 70 and then begins to decrease [18, 120]. The present study results also show the natural pattern of obesity increase with age, at least up to

Figure 2: Overall prevalence of overweight and obesity in Middle East countries.

Country	N.of reports	Prevalence (CI 95%)
Yemen	1	23.50 (22.00–25.20)
Bahrain	2	26.91 (24.66–28.31)
Iraq	6	30.46 (26.44–35.10)
Oman	3	30.65 (27.63–34.00)
Egypt	7	30.73 (28.94–32.63)
UAE	5	31.01 (25.79–37.28)
Palestine	4	31.45 (24.49–40.38)
Syria	2	31.64 (29.99–33.39)
Saudi Arabia	11	31.80 (29.56–34.21)
Turkey	15	32.60 (28.87–36.93)
Jordan	7	33.10 (27.91–39.26)
Iran	11	33.92 (26.47–43.48)
Lebanon	6	34.31 (26.47–44.46)
Cyprus	13	36.00 (33.00–39.10)
Kuwait	9	38.70 (28.72–52.16)
Israel	1	62.10 (60.30–63.90)
Overall	92	33.14 (26.87–40.87)

Country	N.of reports	Prevalence (CI 95%)
Yemen	1	8.80 (7.70–10.00)
Oman	4	14.57 (9.55–35.67)
Jordan	8	16.80 (10.52–26.83)
Lebanon	6	18.30 (12.49–26.84)
Bahrain	2	18.75 (4.49–78.33)
Egypt	8	21.35 (15.09–30.20)
Iran	11	22.41 (19.32–25.99)
Israel	2	22.45 (21.12–23.86)
Palestine	6	22.55 (15.78–32.22)
UAE	5	23.29 (18.84–28.78)
Cyprus	2	23.32 (15.35–35.66)
Turkey	16	23.56 (20.56–27.00)
Saudi Arabia	11	24.95 (21.02–29.61)
Iraq	7	29.07 (18.85–44.84)
Kuwait	9	29.25 (24.32–35.17)
Syria	2	40.62 (35.85–46.03)
Overall	101	21.17 (17.05–26.29)

Country	N.of reports	Prevalence (CI 95%)
Yemen	1	12.4619
Oman	4	63.9269
Jordan	8	4.48911
Lebanon	6	78.3145
Bahrain	2	21.17 (17.05–26.29)
69–60 years, and the highest prevalence of obesity and overweight was seen in people over 40 years. It is thought that the decline in the prevalence of obesity in people over the age of 70 is partly due to a lower survival rate in obese people and a decrease in physical activity with increasing age in men and women. In addition, menopausal women are more prone to weight gain from 45 years [76, 121].

The present study showed that the prevalence of obesity and overweight in the Middle East in the last two decades had been almost a steady trend. However, the prevalence of obesity and overweight is at a high level. Evidence shows that the trend in mean BMI in northwestern European countries and high-income English-speaking regions and Asia-Pacific is flat for both sexes [122].

Furthermore, the results obtained from the Middle East region countries indicate a fundamental difference between the current level and trend of overweight and obesity between countries. In many countries, the prevalence of obesity and overweight has significantly decreased (Table 4). Another study showed that in many European countries, the prevalence of obesity and overweight in children has also stabilized [116]. While the prevalence of overweight and obesity seems to stabilize and even decline at different levels in different countries, it is still an important public health

Table 2: The prevalence of obesity and overweight in the Middle East countries.

Variables	N. of studies (population)	Obesity Prevalence (95% CI)	Test for heterogeneity (p-value)	N. of studies (population)	Overweight Prevalence (95% CI)	Test for heterogeneity (p-value)
Country						
Kuwait	9 (14174)	29.25 (24.32–35.17)		9	38.70 (28.72–52.16)	
Israel	2 (3743)	22.45 (21.12–23.86)		1	62.10 (60.30–63.90)	
Saudi Arabia	11 (215575)	24.95 (21.02–29.61)		11	31.80 (29.56–34.21)	
Oman	4 (2538)	14.57 (5.95–35.67)		3	30.65 (27.63–34.00)	
Palestine	6 (5905)	22.55 (15.78–32.22)		4	31.45 (24.49–40.38)	
Yemen	1 (2500)	8.80 (7.70–10.00)		1	23.50 (22.00–25.20)	
United Arab Emirates	5 (54516)	23.29 (18.84–28.78)		5	31.01 (25.79–37.28)	
Turkey	16 (71268)	23.56 (20.56–27.00)	p < 0.001	15	32.66 (28.87–36.93)	p < 0.001
Syria	2 (2961)	19.40 (35.85–46.03)		2	31.64 (29.99–33.39)	
Lebanon	6 (4275)	18.30 (12.48–26.84)		6	34.31 (26.47–44.46)	
Iraq	7 (32550)	29.07 (18.85–44.84)		6	30.46 (26.44–35.10)	
Cyprus	2 (4022)	23.32 (15.25–35.66)		1	36.00 (33.00–39.10)	
Bahrain	2 (1783)	18.75 (4.49–78.33)		1	26.91 (12.46–58.10)	
Jordan	8 (12668)	16.80 (10.52–26.83)		7	33.10 (27.91–39.26)	
Egypt	8 (12872)	21.35 (15.09–30.20)		7	30.73 (28.94–32.63)	
Iran	11 (257555)	22.41 (19.32–25.99)		11	33.92 (26.47–43.48)	
Total (Middle East)	101 (698905)	21.17 (17.05–26.29)		92	33.14 (26.87–40.87)	
Sex						
Female	70 (361960)	25.40 (23.66–27.27)	p = 0.001	63	31.24 (29.96–32.57)	p < 0.001
Male	62 (340723)	19.86 (17.60–22.40)		56	37.80 (36.20–39.47)	p < 0.001
Residency						
Urban	4 (21684)	19.89 (13.59–29.11)	p = 0.59	4	38.89 (33.53–45.11)	p = 0.77
Rural	4 (9337)	22.81 (16.27–31.96)		4	37.19 (28.41–48.69)	
Age group						
18–29	8 (17825)	10.46 (7.56–14.47)		8	27.51 (21.51–35.18)	
30–39	9 (213681)	21.76 (17.10–27.70)		9	18.32 (18.37–23.35)	
40–49	9 (213681)	29.19 (23.43–36.37)		9	44.19 (37.80–51.67)	
50–59	9 (213681)	37.05 (31.76–43.22)	p < 0.001	9	37.71 (32.79–43.36)	p < 0.001
60–69	8 (238548)	36.10 (32.01–40.72)		8	40.45 (35.90–45.57)	
≥70	5 (206524)	24.05 (18.65–31.02)		5	36.10 (33.34–39.09)	

*NR: number report.
Country	Obesity Prevalence (95% CI)	Overweight Prevalence (95% CI)	Obesity Prevalence (95% CI)	Overweight Prevalence (95% CI)	Obesity Prevalence (95% CI)	Overweight Prevalence (95% CI)
Kuwait	23.53 (17.04–32.48)	44.85 (38.74–51.93)	33.95 (28.02–41.14)	41.01 (24.89–67.58)	25.27 (10.03–63.66)	29.13 (18.05–47.02)
Israel	NA	NA	NA	NA	NA	NA
Saudi Arabia	39.6 (37.9–41.3)	36.6 (35.0–38.3)	35.65 (23.80–53.40)	37.82 (32.64–43.83)	20.98 (16.88–26.08)	28.10 (24.18–32.64)
Oman	NA	NA	13.79 (4.79–39.45)	31.73 (29.04–34.67)	67.81 (65.22–70.51)	29.2 (23.3–35.6)
Palestine	34.71 (24.89–48.40)	36.4 (32–40.8)	24.4 (22.9–25.9)	38.0 (36.3–39.6)	16.12 (4.15–62.62)	26.39 (16.67–41.78)
Yemen	NA	NA	8.8 (7.7–10)	23.5 (22–25.2)	NA	NA
United Arab Emirates	6.7 (4.4–9.7)	19.4 (15.6–23.7)	23.91 (10.98–52.07)	29.68 (25.25–34.90)	32.15 (30.55–33.84)	39.81 (33.66–47.08)
Turkey	25.68 (22.53–29.28)	36.86 (34.93–38.90)	21.21 (16.39–27.45)	29.70 (23.50–37.54)	27.12 (21.62–34.02)	34.3 (32.2–36.4)
Qatar	NA	NA	NA	NA	NA	NA
Syria	38.2 (36.0–40.3)	31.8 (29.8–33.9)	NA	NA	43.4 (40.2–46.6)	31.3 (28.3–34.4)
Lebanon	NA	NA	17.77 (3.13–100.76)	37.08 (16.08–85.50)	17.72 (11.25–27.91)	32.64 (23.46–45.40)
Iraq	25.0 (19.1–31.6)	39.0 (32.2–46.1)	13.78 (4.62–11.1)	33.01 (29.02–37.55)	43.17 (27.26–68.39)	25.69 (16.92–39.01)
Cyprus	NA	NA	29.0 (26.2–31.9)	36.0 (33.0–39.1)	18.8 (17.4–20.2)	NA
Bahrain	9.0 (6.9–11.4)	18.1 (15.2–21.3)	NA	NA	38.7 (35.7–41.5)	39.7 (36.8–42.5)
Jordan	NA	NA	23.60 (10.45–53.30)	28.63 (25.02–32.78)	15.96 (11.18–22.77)	39.94 (33.98–46.95)
Egypt	28.3 (23.6–33.3)	34.0 (29.0–39.2)	37.06 (26.83–51.21)	32.54 (31.58–33.52)	12.89 (7.17–23.16)	28.21 (26.65–29.86)
Iran	22.4 (17–27.6)	43.3 (37.6–49.1)	17.74 (12.61–24.97)	27.02 (13.28–54.94)	25.98 (22.15–30.47)	38.29 (36.0–40.72)
Sex						
Female	26.62 (22.93–30.90)	32.30 (29.84–34.96)	27.20 (23.70–31.22)	33.07 (31.17–35.09)	23.68 (21.16–26.51)	28.87 (26.97–30.91)
Male	20.08 (16.24–24.82)	39.14 (36.0–42.57)	17.09 (14.0–20.87)	36.79 (34.08–39.72)	23.48 (20.26–27.20)	39.03 (37.05–41.10)
Total (Middle East)	23.98 (21.24–27.08)	34.83 (32.40–37.45)	22.62 (20.18–25.35)	32.02 (28.56–35.89)	23.15 (20.85–25.70)	32.85 (31.39–34.38)
issue. Increasing public awareness of the effects of obesity and interventions related to daily physical activity and healthy diets have helped stabilize obesity [116, 123].

The present study showed that 4% of CAD, 11% of HF, and 9% of AF in the Middle East could be attributed to obesity. In general, approximately 8% of cardiovascular diseases in the region is related to obesity. Due to the high prevalence of obesity in people over 40 years of age, the risk of developing the disease in this age group increases. Previous studies have shown a link between obesity and cardiovascular disease [124–126]. Therefore, having a healthy lifestyle that includes healthy nutrition and adequate physical activity can significantly prevent obesity and its complications such as cardiovascular disease [59].

6. Conclusion

This meta-analysis showed that although the prevalence of obesity and overweight has been almost constant in the Middle East over the past two decades, the prevalence of obesity is significantly higher. In addition, the high prevalence of obesity and overweight in people over 40 years of age and the increasing trend of obesity with increasing age is a concern that should be considered by providers of intervention programs in the region. The results also showed that approximately 8% of cardiovascular diseases in the Middle East could be attributed to obesity. Therefore, obesity is a risk factor for CVD, and the necessary interventions to prevent obesity and its complications are essential.

7. Limitations

This study had limitations such as an unequal number of studies in countries, the use of different sampling methods, and differences in the age distribution of participants, which could be the source of differences in the prevalence of obesity and overweight in countries. Another limitation of this study is the lack of reports on obesity and overweight in urban and rural areas. Also, in this study, the unadjusted relative risk was used to calculate the attributable risk, while possible confounders such as blood pressure, smoking, family history of obesity, and socioeconomic status can confound RR as an indicator of the relationship between obesity and cardiovascular disease.

Data Availability

Data are available upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Authors’ Contributions

Shiva Kargar and Alireza Ansari-Moghadam contributed to the conceptualization and methodology. Neda Jabbari and Shiva Kargar conducted the investigation and screening of articles. Shiva Kargar performed data extraction. Shiva Kargar and Hassan Okati-Aliabad wrote the original draft. Shiva Kargar, Hassan Okati-Aliabad, and Alireza Ansari-Moghadam reviewed and edited the article.

References

[1] M. Abdelaal, C. W. le Roux, and N. G. Docherty, “Morbidity and mortality associated with obesity,” Annals of Translational Medicine, vol. 5, no. 7, p. 161, 2017.
[2] D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham, and A. H. Anis, “The incidence of comorbidities related to obesity and overweight: a systematic review and meta-analysis,” BMC Public Health, vol. 9, no. 1, pp. 88–20, 2009.
[3] H. Dai, T. A. Alsahhe, N. Chalghaf, M. Ricco, N. L. Bragazzi, and J. Wu, “The global burden of disease attributable to high body mass index in 195 countries and territories, 1990-2017: an analysis of the Global Burden of Disease Study,” *PLoS Medicine*, vol. 17, no. 7, p. e1003198, 2020.

[4] M. Tremmel, U.-G. Geritham, P. Nilsson, and S. Saha, “Economic burden of obesity: a systematic literature review,” *International Journal of Environmental and Public Health*, vol. 14, no. 4, p. 435, 2017.

[5] A. H. Mokdad, C. E. Bcheraoui, A. Afshin, R. Charara, I. Khalil, and M. Moradi-Lakeh, “Burden of obesity in the eastern Mediterranean region: findings from the global burden of disease 2015 study,” *International Journal of Public Health*, vol. 63, 2018.

[6] A. H. Mokdad, M. H. Forouzanfar, F. Daoud, C. El Bcheraoui, M. Moradi-Lakeh, and I. Khalil, “Health in times of uncertainty in the eastern Mediterranean region, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013,” *Lancet Global Health*, vol. 4, no. 10, pp. e704–e13, 2016.

[7] P. Marconcin, A. Ilhe, A. O. Werneck et al., “The association of healthy lifestyle behaviors with overweight and obesity among older adults from 21 countries,” *Nutrients*, vol. 13, no. 2, p. 315, 2021.

[8] M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz, and C. Margono, “Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013,” *Lancet*, vol. 384, no. 9945, pp. 766–781, 2014.

[9] W. H. Organization, “Obesity: preventing and managing the global epidemic,” WHO, Geneva, Switzerland, 2000.

[10] J. L. Gutiérrez-Fisac, E. López, J. R. Banegas, A. Graciani, and F. Rodríguez-Artalejo, “Prevalence of overweight and obesity in elderly people in Spain,” *Obesity Research*, vol. 12, no. 4, pp. 710–715, 2004.

[11] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and P. Group, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” *PLoS Medicine*, vol. 6, no. 7, p. e1000097, 2009.

[12] Z. Asad, M. Abbas, I. Javed, P. Korantzopoulos, and S. Stavrakis, “Obesity is associated with incident atrial fibrillation independent of gender: a meta-analysis,” *Journal of Cardiovascular Electrophysiology*, vol. 29, no. 5, pp. 725–732, 2018.

[13] R. Mahajan, M. Stokes, A. Elliott et al., “Complex interaction of obesity, intentional weight loss and heart failure: a systematic review and meta-analysis,” *Heart*, vol. 106, no. 1, pp. 58–68, 2020.

[14] H. Riaz, M. S. Khan, T. J. Siddiqi et al., “Association between obesity and cardiovascular outcomes,” *JAMA Network Open*, vol. 1, no. 7, p. e183788–c, 2018.

[15] A. Gunaid, “1187 Obesity, overweight and underweight among adults in an urban community in Yemen,” *Eastern Mediterranean Health Journal*, vol. 18, no. 12, pp. 1187–1193, 2012.

[16] M. Janghorbani, M. Amini, W. C. Willett et al., “First nationwide survey of prevalence of overweight, underweight, and abdominal obesity in Iranian adults,” *Obesity*, vol. 15, no. 11, pp. 2797–2808, 2007.

[17] R. Kelishadi, S. Alikhani, A. Delavari, F. Alaeidini, A. Safaie, and E. Hojjatadzeh, “Obesity and associated lifestyle behaviours in Iran: findings from the first national non-communicable disease risk factor surveillance survey,” *Public Health Nutrition*, vol. 11, no. 3, pp. 246–251, 2008.

[18] S. Djalaninia, S. Saeedi Moghaddam, A. Sheidai et al., “Patterns of obesity and overweight in the Iranian population: findings of STEPs 2016,” *Frontiers in Endocrinology*, vol. 11, p. 42, 2020.

[19] A. A. Al-Nooh, A. Abdulabbas Abdulla Alajmi, and D. Wood, “The prevalence of cardiovascular disease risk factors among employees in the Kingdom of Bahrain between October 2010 and March 2011: a cross-sectional study from a workplace health campaign,” *Cardiology Research and Practice*, vol. 2014, 2014.

[20] M. Al-Ansari, M. Al Mannai, and A. Musaiger, “Body weight of university students in Bahrain,” *Bahrain Medical Bulletin*, vol. 22, no. 3, 2000.

[21] D. N. Kaluski, L. Keinan-Boker, F. Stern et al., “BMI may overestimate the prevalence of obesity among women of lower socioeconomic status,” *Obesity*, vol. 15, no. 7, pp. 1808–1815, 2007.

[22] D. Fraser, N. Bilenko, H. Vardy et al., “Differences in food intake and disparity in obesity rates between adult Jews and Bedouins in southern Israel,” *Ethnicity & Disease*, vol. 18, no. 1, pp. 13–8, 2008.

[23] S. Shabu, “Prevalence of overweight/obesity and associated factors in adults in Erbil, Iraq: a household survey,” *Zanco Journal of Medical Sciences*, vol. 23, no. 1, pp. 128–134, 2019.

[24] N. Al Tawil, M. Abdulla, and A. Abdul Ameer, “Prevalence of factors associated with overweight and obesity among a group of Iraqi women,” *EMHJ-Eastern Mediterranean Journal of Health*, vol. 13, no. 2, pp. 420–429, 2007.

[25] A. Mansour, A. Maliky, and M. Salih, “Population overweight and obesity trends of eight years in Basrah,” *Iraq Epidemiology*, vol. 2, no. 1, p. 110, 2012.

[26] W. Fi, S. M. Hassoon, and M. A. Zadian, “Obesity and overweight among sample of foundation of technical education students in Iraq during 2011,” *Medical Journal of Babylon*, vol. 10, no. 1, 2013.

[27] H. M. Jasim, H. M. Abdul Hussein, and E. A. Al-Kaseer, “Obesity among females in Al-Sader city Baghdad, Iraq, 2017,” *Journal of the Faculty of Medicine, Baghdad*, vol. 60, no. 2, pp. 105–107, 2018.

[28] A. Hayyawi, K. Hasan, and R. Lafta, “Impact of nutrition clinic on obesity in Baghdad, Iraq: first year outcome,” *Saudi Journal of Obesity*, vol. 4, no. 2, pp. 80–85, 2016.

[29] B. J. H. Al-Yasser, A. A. Radi, and M. A. R. Abbas, “Assessment of obesity and central obesity among patients with knee osteoarthritis in Al-Sadder Hospital, Baghdad, Iraq,” *Journal of Ideas in Health*, vol. 2, no. 2, pp. 113–117, 2019.

[30] H. Al-Kilani, M. Waly, and R. Yousef, “Trends of obesity and overweight among college students in Oman: a cross sectional study,” *Sultan Qaboos University Medical Journal*, vol. 12, no. 1, pp. 69–76, 2012.

[31] L. Labban, “The prevalence of overweight and obesity among A’Sharqiyah university students in sultanate of Oman: a randomized study,” *EC Nutrition*, vol. 3, pp. 521–527, 2015.

[32] M. N. Barakat and R. M. Yousef, “Prevalence of dysglycemia and other cardiovascular risk factors among the rural population of Oman,” *Hypertension*, vol. 129, no. 85, pp. 14–17, 2008.

[33] T. Man, I. M. Nolte, D. Jaju et al., “Heritability and genetic correlations of obesity indices with ambulatory and office beat-to-beat blood pressure in the Oman Family Study,” *Journal of Hypertension*, vol. 38, no. 8, pp. 1474–1480, 2020.
[34] Z. Abdeen, C. Jildeh, S. Dkeideek, R. Qasrawi, I. Ghannam, and H. Al Sabbah, “Overweight and obesity among Palestinian adults: analyses of the anthropometric data from the first national health and nutrition survey (1999-2000),” Journal of obesity, vol. 2012, p. 213547, 2012.

[35] H. Abdul-Rahim, N. Abu-Rmeileh, A. Husseini, G. Holmboe-Ottesen, J. Jervell, and E. Bjertness, "Obesity and selected co-morbidities in an urban Palestinian population," International Journal of Obesity, vol. 25, no. 11, pp. 1736–1740, 2001.

[36] R. R. El Kishawi, K. L. Soo, Y. A. Abed, and W. A. M. W. Muda, "Obesity and overweight: prevalence and associated socio demographic factors among mothers in three different areas in the Gaza Strip–Palestine: a cross-sectional study," BMC obesity, vol. 1, no. 1, pp. 1–7, 2014.

[37] L. Stene, R. Giacaman, H. Abdul-Rahim, A. Husseini, K. Norum, and G. Holmboe-Ottesen, "Obesity and associated factors in a Palestinian West Bank village population," European Journal of Clinical Nutrition, vol. 55, no. 9, pp. 805–811, 2001.

[38] B. Damiri, A. Aghbar, S. Alkhoudh, and Y. Arafat, "Characterization and prevalence of metabolic syndrome among overweight and obese young Palestinian students at An-Najah National University," Diabetes & Metabolic Syndrome: Clinical Research Reviews, vol. 12, no. 3, pp. 343–348, 2018.

[39] R. El Kishawi, K. L. Soo, Y. Abed, and W. A. M. W. Muda, "Epidemic of obesity among mothers in the gaza strip-Palestine," Journal of Emergency Medicine, Trauma and Acute Care, vol. 2016, 2016.

[40] E. Weiderpass, E. Botteri, J. C. Longenecker et al., "The prevalence of overweight and obesity in an adult Kuwaiti population in 2014," Frontiers in Endocrinology, vol. 10, p. 449, 2019.

[41] I. Al Rashdan and Y. Al Nesef, "Prevalence of overweight, obesity, and metabolic syndrome among adult Kuwaitis: results from community-based national survey," Angiology, vol. 61, no. 1, pp. 42–48, 2010.

[42] H. T. AlMajed, A. T. Al Attar, A. A. Sadek, T. A. AlMualili, O. A. AlMutairi, and A. S. Shaghoubi, "Prevalence of dyslipidemia and obesity among college students in Kuwait," Alexandria Journal of Medicine, vol. 47, no. 1, 2011.

[43] S. R. Raman, B. Al-Halabi, E. Hamdan, and M. D. Landry, "Prevalence and risk factors associated with self-reported carpal tunnel syndrome (CTS) among office workers in Kuwait," BMC Research Notes, vol. 5, no. 1, pp. 289–296, 2012.

[44] T. Al-Asi, "Overweight and obesity among Kuwait Oil Company employees: a cross-sectional study," Occupational Medicine, vol. 53, no. 7, pp. 431–435, 2003.

[45] H. E. Badr, N. M. Shah, and M. A. Shah, "Obesity among Kuwaitis aged 50 years or older: prevalence, correlates, and comorbidities," The Gerontologist, vol. 53, no. 4, pp. 555–566, 2013.

[46] D. Alkazemi, "Gender differences in weight status, dietary habits, and health attitudes among college students in Kuwait: a cross-sectional study," Nutrition and Health, vol. 25, no. 2, pp. 75–84, 2019.

[47] A. N. Al-Isa, "Factors associated with overweight and obesity among Kuwaiti kindergarten female teachers," Nutrition and Health, vol. 18, no. 1, pp. 67–71, 2004.

[48] S. Zaghloul, S. N. Al-Hooti, N. Al-Hamad et al., "Evidence for nutrition transition in Kuwait: over-consumption of macronutrients and obesity," Public Health Nutrition, vol. 16, no. 4, pp. 596–607, 2013.

[49] M. A. Bakir, K. Hammad, and L. Mohammad, "Prevalence of obesity, central obesity, and associated socio-demographic variables in Syrian women using different anthropometric indicators," Anthropological Review, vol. 80, no. 2, pp. 191–205, 2017.

[50] M. F. Fouad, S. Rastam, K. D. Ward, and W. Maziak, "Prevalence of obesity and its associated factors in Aleppo, Syria," Global Heart, vol. 2, no. 2, pp. 85–94, 2006.

[51] E. Andreou, P. Hajigeorgiou, K. Kyriakou et al., "Risk factors of obesity in a cohort of 1001 Cypriot adults: an epidemiological study," Hippokratia, vol. 16, no. 3, pp. 256–60, 2012.

[52] A. Heraclides, O. Kolokotroni, and A. Charalambous, "Socio-demographic determinants of obesity in a cross-sectional study of adults in CyprusAlexandros Heraclides," The European Journal of Public Health, vol. 25, 2015.

[53] A. Al-Zaiton and A. Al-Fawwaz, "Prevalence of diabetes, obesity, hypertension and associated factors among students of Al-albayt University, Jordan," World Journal of Medical Sciences, vol. 9, no. 1, pp. 49–54, 2013.

[54] A. A. Suleiman, O. K. Alboqai, N. Yasein, J. M. El-Qudah, M. a. F. Bataineh, and B. A. Obeidat, "Prevalence of and factors associated with overweight and obesity among Jordan University students," Journal of Biological Sciences, vol. 9, no. 7, pp. 738–745, 2009.

[55] O. Atoom, "Prevalence of obesity and overweight among military personnel in north of Jordan and some associated risk factors," JRMS, vol. 25, no. 2, pp. 19–26, 2018.

[56] Y. S. Khader, H. A. Bawadi, T. F. Haroun, M. Alomari, and R. F. Tayyem, "The association between periodontal disease and obesity among adults in Jordan," Journal of Clinical Periodontology, vol. 36, no. 1, pp. 18–24, 2009.

[57] L. M. Matalqah, K. M. Radaideh, and R. H. Thabet, "Impact of chronic disorders and obesity on quality of life in Northern Jordan," Journal of Public Health, vol. 29, pp. 1–7, 2019.

[58] M. N. Ahmad, S. K. Tukan, and H. R. Takruri, "Obesity and overweight in young adult females of Northern Badia of Jordan," Malaysian Journal of Nutrition, vol. 12, no. 2, pp. 157–166, 2006.

[59] A. Khamaisheh and M. Al Bashtawy, "Prevalence of obesity and physical inactivity behaviors among nursing students in Mutah University, Jordan," World Journal of Medical Sciences, vol. 12, no. 2, pp. 95–102, 2015.

[60] L. Abu Ghazaleh and Z. Budair, "The relation between stone disease and obesity in Jordan," Saudi Journal of Kidney Diseases and Transplantation, vol. 24, no. 3, p. 610, 2013.

[61] J. F. Alarjjan, O. S. Hindawi, L. W. Judge, Z. A. Aleyadhi, and D. M. Bellar, "Prevalence of obesity and behaviors associated with the development of metabolic disease among medical practitioners in Jordan," Journal of Education and Health Promotion, vol. 4, p. 17, 2015.

[62] M. Mowafy, Z. Khadr, I. Kawachi, S. V. Subramanian, A. Hill, and G. G. Bennett, "Socioeconomic status and obesity in Cairo, Egypt: a heavy burden for all," Journal of epidemiology and global health, vol. 4, no. 1, pp. 13–21, 2014.

[63] H. A. Abdel Sadek, M. W. Abu-Nazel, Z. N. Shata, and N. K. Abd El-Fatah, "The relationship between the BMI and the emotional status of Alexandria University students, Egypt," Journal of the Egyptian Public Health Association, vol. 91, no. 3, pp. 101–108, 2016.

[64] A. M. Shebl, E. S. Z. Hatata, A. M. Boughdady, and S. M. El-Sayed, "Prevalence and risk factors of obesity among elderly attending geriatric outpatient clinics in mansoura city,"
Journal of Education and Practice, vol. 6, no. 30, pp. 136–147, 2015.

[65] Y. A. Al-Rahman, E. M. Mahfouz, and E. S. Mohammed, “Prevalence and comorbidities of overweight and obesity among elderly population residing a rural community, Minia, Egypt,” Egyptian Journal of Community Medicine, vol. 30, no. 4, 2012.

[66] D. M. Genena and A. A. Salama, “Obesity and eating habits among university students in Alexandria, Egypt: a cross sectional study,” World Journal of Nutrition and Health, vol. 5, no. 3, pp. 62–68, 2017.

[67] A. Farrag, A. Eraky, W. Arousyy, G. Sayed, and A. Mahrous, “Obesity and other cardiovascular risk factors in Egyptian University Students: magnitude of the problem,” Epidemiology, vol. 5, no. 181, pp. 2161–1165, 2015.

[68] E. M. Mahfouz, E. Sameh, and T. Arey, Prevalence and Correlates of Overweight and Obesity Among Elderly Population Residing a Rural Community, Minia, Egypt, Faculty of medicine, Minia University, Minya, Egypt, 2006.

[69] K. M. Yount and L. Li, “Domestic violence and obesity in Egyptian women,” Journal of Biosocial Science, vol. 43, no. 1, pp. 85–99, 2011.

[70] F. Sakk, M. Dabbous, J. Safwan, M. Akl, and M. Cherian, “Overweight And obesity; young population concerns IN the LEBANESE community,” Therapy, vol. 7, p. 8, 2016.

[71] I. Fabs, Z. Khalife, D. Malaeb, M. Iskandarani, and P. Salameh, “The prevalence and awareness of cardiovascular diseases risk factors among the Lebanese population: a prospective study comparing urban to rural populations,” Cardiology Research and Practice, vol. 2017, Article ID 3539092, 10 pages, 2017.

[72] F. Naja, L. Nasreddine, L. Itani et al., “Dietary patterns and their association with obesity and sociodemographic factors in a national sample of Lebanese adults,” Public Health Nutrition, vol. 14, no. 9, pp. 1570–1578, 2011.

[73] N. Yahia, A. Achkar, A. Abdallah, and S. Rizk, “Eating habits and obesity among Lebanese university students,” Nutrition Journal, vol. 7, no. 1, pp. 32–36, 2008.

[74] A. Haider, L. Jouni, M. Koubar, S. Daouk, and M. Hoteit, “Impact of active smoking, passive smoking, and smoking cessation on overweight and obesity: first national cross-sectional study,” International Journal of Medical Sciences and Public Health, vol. 6, no. 3, p. 1, 2017.

[75] Z. Samhat, R. Attieh, and Y. Sacc, “Relationship between night shift work, eating habits and BMI among nurses in Lebanon,” BMC Nursing, vol. 19, pp. 25–26, 2020.

[76] T. Delibasi, Y. Karaslan, I. Ustun, E. Koroglu, and S. Hosgorguc, “National prevalence of overweight, obesity and obesity in Turkey: cross sectional study of a representative adult population,” Open Medicine, vol. 2, no. 3, pp. 294–303, 2007.

[77] C. Erem, R. Yildiz, H. Kavaci et al., “Prevalence of diabetes, obesity and hypertension in a Turkish population (Trabzon city),” Diabetes Research and Clinical Practice, vol. 54, no. 3, pp. 203–208, 2001.

[78] V. D. Yumuk, H. Hatemi, T. Tarakci et al., “High prevalence of obesity and diabetes mellitus in Konya, a central Anatolian city in Turkey,” Diabetes Research and Clinical Practice, vol. 70, no. 2, pp. 151–158, 2005.

[79] E. Akbay, R. Bugdayci, H. Tezcan, K. Konca, A. Yazar, and C. Pata, “The prevalence of obesity in adult population in a city on the Mediterranean coast of Turkey,” Turkish Journal of Endocrinology and Metabolism, vol. 1, pp. 31–35, 2003.

[80] N. Bagravic, H. Onat, B. Ilhan, T. Tarakci, Z. Oşar, and M. Ozyazar, “Obesity profile in Turkey,” International Journal of Diabetes and Metabolism, vol. 17, no. 1, pp. 5–8, 2009.

[81] T. Guldekin, B. K. Ozer, G. Akin, Y. Bektas, M. Sagir, and E. Gulec, “Prevalence of overweight and obesity in Turkish adults,” Anthropologischer Anzeiger, vol. 67, pp. 205–212, 2009.

[82] M. Ardañan and E. Konal, “The prevalence of hypertension and obesity and effective factors: a cross-sectional bazaar study,” JPMAMA The Journal of the Pakistan Medical Association, vol. 69, no. 7, pp. 1018–1021, 2019.

[83] A. Tariqan, K. Karakaya, M. Erata et al., “Fighting obesity campaign in Turkey: evaluation of media campaign efficacy,” Central European Journal of Public Health, vol. 22, no. 3, pp. 170–4, 2014.

[84] Y. Ust, M. Ulgurlo, O. Aslan et al., “High prevalence of obesity in Tokat, a northern province of Turkey,” JPMA. The Journal of the Pakistan Medical Association, vol. 62, no. 435, pp. 435–440, 2012.

[85] N. Yabanci, E. Goegeldi, I. Simsek, and S. Kılıç, “Prevalence of obesity, aboriginal obesity and the associated factors among a group of Turkish adults,” Pakistan Journal of Medical Sciences, vol. 26, no. 1, pp. 21–25, 2010.

[86] H. Şahin, B. Çiçek, M. Yılmaz, Ö. Ongan, N. İnanç, and M. Aykut, “Obesity prevalence, waist-to-height ratio and associated factors in adult Turkish males,” Obesity Research & Clinical Practice, vol. 5, no. 1, pp. e29–e35, 2011.

[87] C. Erem, C. Arslan, A. Hascanoglu et al., “Prevalence of obesity and associated risk factors in a Turkish population (Trabzon city, Turkey),” Obesity Research, vol. 12, no. 7, pp. 1117–1127, 2004.

[88] G. Ding, E. Eser, G. L. Saatli et al., “The relationship between obesity and health related quality of life of women in a Turkish city with a high prevalence of obesity,” Asia Pacific Journal of Clinical Nutrition, vol. 15, no. 4, pp. 508–15, 2006.

[89] B. M. Yalcın, E. M. Sahin, and E. Yalcın, “Prevalence and epidemiological risk factors of obesity in Turkey,” Middle East Journal of Family Medicine, vol. 6, no. 6, pp. 1–2, 2004.

[90] O. Ucan and N. Orayolu, “Relationship between diabetes mellitus, hypertension and obesity, and health-related quality of life in Gaziantep, a central south-eastern city in Turkey,” Journal of Clinical Nursing, vol. 19, no. 17–18, pp. 2511–2519, 2010.

[91] A. Kerbati, “Evaluation of nutritional status of United Arab Emirates University female students,” Emirates Journal of Food and Agriculture, vol. 15, no. 2, pp. 42–50, 2003.

[92] R. Kalavathy, S. A. Al Araj, and S. A. Rabbi, “Prevalence of obesity among adults in Ras Al Khaimah, United Arab Emirates,” International Journal of Research in Medical Sciences, vol. 7, no. 2, p. 555, 2019.

[93] C. Hajat, O. Harrison, and Z. Al Siksek, “Weqaya: a population-wide cardiovascular screening program in Abu Dhabi, United Arab Emirates,” American Journal of Public Health, vol. 102, no. 5, pp. 909–914, 2012.

[94] N. Sulaiman, S. Elbadawi, A. Hussein et al., “Prevalence of overweight and obesity in United Arab Emirates Expatriates: the UAE national diabetes and lifestyle study,” Diabetology & Metabolic Syndrome, vol. 9, no. 1, pp. 88-89, 2017.

[95] L. I. Sheikh-Ismail, C. J. K. Henry, H. J. Lightowler, O. Ucan and N. Ovayolu, “Relationship between diabetes, obesity and associated risk factors among a group of Turkish adults,” Diabetes Research and Clinical Practice, vol. 5, no. 1, pp. e29–e35, 2011.
children, adolescents, and adults,” *The Lancet*, vol. 390, no. 10113, pp. 2627–2642, 2017.

[123] T. Olds, C. Maher, S. Zumin et al., “Evidence that the prevalence of childhood overweight is plateauing: data from nine countries,” *International Journal of Pediatric Obesity: IJPO: an official journal of the International Association for the Study of Obesity*, vol. 6, no. 5-6, pp. 342–360, 2011.

[124] J. Opio, E. Croker, G. S. Odongo, J. Attia, K. Wynne, and M. McEvoy, “Metabolically healthy overweight/obesity are associated with increased risk of cardiovascular disease in adults, even in the absence of metabolic risk factors: a systematic review and meta-analysis of prospective cohort studies,” *Obesity Reviews*, vol. 21, no. 12, p. e13127, 2020.

[125] A. K. Dwivedi, P. Dubey, D. P. Cistola, and S. Y. Reddy, “Association between obesity and cardiovascular outcomes: updated evidence from meta-analysis studies,” *Current Cardiology Reports*, vol. 22, no. 4, pp. 25–19, 2020.

[126] S. M. Artham, C. J. Lavie, R. V. Milani, and H. O. Ventura, “Obesity and hypertension, heart failure, and coronary heart disease—risk factor, paradox, and recommendations for weight loss,” *The Ochsner Journal*, vol. 9, no. 3, pp. 124–132, 2009.