Comparison of Small Polaron Migration and Phase Separation in Olivine LiMnPO and LiFePO using Hybrid Density Functional Theory

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Ong, Shyue Ping, Vincent L. Chevrier, and Gerbrand Ceder. “Comparison of Small Polaron Migration and Phase Separation in Olivine LiMnPO and LiFePO using Hybrid Density Functional Theory.” Physical Review B 83.7 (2011): [7 pages].
As Published	http://dx.doi.org/10.1103/PhysRevB.83.075112
Publisher	American Physical Society
Version	Author's final manuscript
Accessed	Thu Sep 24 14:50:22 EDT 2015
Citable Link	http://hdl.handle.net/1721.1/69945
Terms of Use	Creative Commons Attribution-Noncommercial-Share Alike 3.0
Detailed Terms	http://creativecommons.org/licenses/by-nc-sa/3.0/
Comparison of Small Polaron Migration and Phase Separation in
Olivine LiMnPO\textsubscript{4} and LiFePO\textsubscript{4} using Hybrid Density Functional
Theory

Shyue Ping Ong,∗ Vincent L. Chevrier,† and Gerbrand Ceder‡

Department of Materials Science and Engineering,
Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, USA

(Dated: January 20, 2011)

Abstract

Using hybrid density functional theory based on the Heyd-Scuseria-Ernzerhof (HSE06) functional, we compared polaron migration and phase separation in olivine LiMnPO\textsubscript{4} to LiFePO\textsubscript{4}. The barriers for free hole and electron polaron migration in the Mn olivine system are calculated to be 303 meV and 196 meV respectively, significantly higher than the corresponding barriers of 170 meV and 133 meV respectively for the Fe olivine system, in agreement with previous experimental findings. These results suggest that the electronic conductivities of LiMnPO\textsubscript{4} and MnPO\textsubscript{4} are about 177 and 11 times lower than their respective Fe analogues at room temperature. In the presence of lithium vacancies or ions, the barriers for both hole and electron polaron migration were found to be around 100-120 meV higher in the Mn olivine. The HSE06 functional, with its more universal treatment of self-interaction error, was found to be essential to the proper localization of a polaron in the Mn olivine, but predicted qualitatively incorrect phase separation behavior in the Li\textsubscript{x}FePO\textsubscript{4} system.
I. INTRODUCTION

The olivine LiMPO$_4$ family of compounds, where M is typically Fe, Mn, Co or Ni, are a promising class of cathode materials for rechargeable lithium-ion batteries. LiFePO$_4$ has already found widespread applications in industry due to its reasonable theoretical capacity of 170 mAh g$^{-1}$ and voltage of 3.5 V, low cost, low toxicity and safety. In recent years, there has been increasing interest in the Mn analogue, LiMnPO$_4$, which has a higher voltage of 4.1 V vs Li/Li$^+$ that is still well within the limitation of existing electrolytes.

However, previous work have identified several potential issues with LiMnPO$_4$, including low ionic and electronic conductivities, a high surface energy barrier for Li diffusion, significant volume change at the phase boundary, and relatively poor thermal stability of the charged state. Kang et al.’s attempts to optimize LiMnPO$_4$ using a proven off-stoichiometric optimization approach for LiFePO$_4$ have also met with limited success, suggesting that there are other intrinsic kinetic limitations compared to LiFePO$_4$.

Previous theoretical work by Maxisch et al. and various experimental works have provided evidence of a small polaron diffusion mechanism of electronic conduction in LiFePO$_4$. Electronic conduction in the structurally similar LiMnPO$_4$ is likely to be via a similar mechanism. Indeed, Yamada et al. postulated that a large polaron effective mass in the Mn olivine due to the Jahn-Teller active Mn$^{3+}$ ion is the likely explanation for the observed low electronic conductivities. Yamada et al. also suggested large local lattice deformation due to Mn$^{3+}$ during phase transformation to be a further factor limiting the intrinsic kinetics in LiMnPO$_4$.

In this work, we investigated the polaron migration and phase separation in LiMnPO$_4$ and LiFePO$_4$ using hybrid density functional theory based on the Heyd-Scuseria-Ernzerhof (HSE06) functional. Previous theoretical work has shown that standard local density (LDA) and generalized gradient approximations (GGA) to density functional theory (DFT) are generally insufficient to treat electron correlation in the localized d states in transition metal oxides and tends to lead to an over-delocalization of the d electrons. A more sophisticated treatment with the application of a Hubbard U term (LDA+U or GGA+U) to penalize partial occupancies in the site-projected d orbitals is needed. For LiMPO$_4$ olivine systems in particular, GGA+U has been shown to give significantly better descriptions of the electronic structures, which are essential to achieving more accurate predictions of
the lithium intercalation potential,2 phase stability and separation behavior,26–28 and other properties.

Exact Hartree-Fock (HF) exchange cancels the unphysical self-interaction by construction. As such, hybrid functionals, which incorporate a fraction of exact exchange, can be considered an alternative approach to dealing with the over-delocalization of d-orbitals in transition metal ions by conventional semi-local functionals, albeit at a significantly higher computational cost than GGA+U. In recent years, hybrid calculations have seen greater use in solid-state applications, such as the study of redox potentials29 and polarons in doped BaBiO$_3$30 and cuprates.31 The advantage of hybrid functionals over GGA+U is the lack of a species-specific U parameter and perhaps more importantly, a more universal treatment of the self-interaction error over all species and occupied states rather than specific atomic orbital projections on specific ions.

II. METHODS

A. Small polaron migration

![FIG. 1. Single layer of olivine LiMPO$_4$ supercell viewed in projection along the [100] direction, showing polaron hops considered in polaron investigations. The lithium atom marked with the X is the atom removed when calculating polaron barriers in the presence of vacancies.]

A slow moving electron or hole in a dielectric crystal induces a local lattice distortion,
which acts as a potential well that causes the charge carrier to become self-trapped. The quasiparticle formed by the charge carrier and its self-induced distortion is called a small polaron if the range of the lattice distortion is of the order of the lattice constant. In this work, we adopted the same methodology used by Maxisch et al.14 for their GGA+\(U\) study of polarons in the Fe olivine as well as Iordanova et al.32,33 for their study of polarons in oxides. We will briefly summarize the methodology here, and interested readers are referred to that work for more details.

The olivine LiMPO\(_4\) compounds have an orthorhombic \(Pnma\) spacegroup where the transition metal (M) ions are sixfold coordinated by oxygen ions forming layers of edge-sharing octahedra. Because the layers are separated by PO\(_4\) tetrahedra, we can assume that electron transfer is confined to a single layer, and no charge transfer occurs between layers (hop 1 in Fig. 1). To fulfill the requirements of spin conservation and the Frank-Condon principle, we calculated the polaron migration barriers using an A-type antiferromagnetic structure.34 A \(1 \times 2 \times 2\) supercell containing 16 formula units was used to minimize the interaction between periodic images, while keeping computational costs at a reasonable level.

In LiMPO\(_4\), polaronic charge carriers are holes on M\(^{3+}\) sites whereas in MPO\(_4\), the charge carriers are electrons on M\(^{2+}\) sites. A hole (electron) polaron was formed on one of the transition metal ions by removing (adding) an electron to the fully relaxed LiMPO\(_4\) (MPO\(_4\)) supercell. Overall charge neutrality was preserved via a compensating background charge. If \(\{q_i\}\) and \(\{q_f\}\) denote the initial and final ion positions respectively, the migration of the polaron can then be described by the transfer of the lattice distortion over a one-dimensional Born-Oppenheimer surface, with a energy maximum at a configuration between \(\{q_i\}\) and \(\{q_f\}\). To determine this maximum, we computed the energies for a set of cell configurations \(\{q_x\}\) linearly interpolated between \(\{q_i\}\) and \(\{q_f\}\), i.e., \(\{q_x\} = (1-x)\{q_i\} + x\{q_f\}\) where \(0 < x < 1\).

During the charging and discharging of a battery, lithium or vacancies are injected in the pristine olivine structure respectively. To study polaron migration in the presence of lithium and vacancies, we introduced a single lithium or vacancy into the supercell and calculated barrier for the polaron to migrate from a M site nearest to the lithium ion/vacancy to a M site further away within the same layer (hop 2 in in Fig. 1).
B. Phase separation behavior

To study the phase separation behavior of the Mn and Fe olivines, we calculated the formation energies $\Delta E(x)$ of Li$_x$MPO$_4$ at $x = 0.25, 0.5, 0.75$, which is given by the following equation:

$$\Delta E(x) = E(Li_xMPO_4) - (1 - x) \times E(MPO_4) - x \times E(LiMPO_4)$$ (1)

For the formation energy calculations, only a single unit cell of LiMPO$_4$ was used, and all symmetrically distinct charge ordering configurations at each concentration were calculated. There is only one symmetrically distinct configuration of Li-ions each for $x = 0.25$ and $x = 0.75$. For $x = 0.5$, the lowest energy Li-ion configuration found is when the two Li are at fractional coordinates $(0.5,0,0.5)$ and $(0.5,0.5,0.5)$ in the standard olivine unit cell. The magnetic moments were initialized in the ground state antiferromagnetic configuration, and the net difference in the number of spin-up and spin-down electrons was fixed at the value expected from the number of M$^{2+}$ and M$^{3+}$ ions present in the structure. For example, for Li$_{0.25}$FePO$_4$, one of the four Fe ions in the unit cell is a Fe$^{2+}$, and the remaining Fe ions are Fe$^{3+}$, resulting in an expected $+1$ net difference in the number of spin-up and spin-down electrons in the unit cell.

C. Computational Methodology

All energies were calculated using the Vienna ab initio simulation package (VASP) [20] within the projector augmented-wave approach. A plane wave energy cut-off of 500 eV was used. The hybrid functional chosen was the HSE06 functional as implemented in VASP. The HSE06 functional is a screened implementation of the PBE functional, which combines the exchange of the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with Hartree-Fock (HF) exchange as follows:

$$E^{PBE0}_{xc} = a_0 E^\text{HF}_x + (1-a_0) E^\text{PBE}_x + E^\text{PBE}_c, a_0 = 0.25$$ (2)

where E^HF_x and E^PBE_x are the HF and PBE exchange energies respectively, and E^PBE_c is the PBE correlation energy. The HSE06 functional further divides the exchange term into short-range and long-range terms via a screening parameter chosen as a compromise between
TABLE I. Average M-O bond lengths of polaron and non-polaron sites in the Mn and Fe olivines in angstroms. Ranges are shown in brackets for the polaron sites.

	Average M-O bond length in LiMPO₄ (Å)	Average M-O bond length in MPO₄ (Å)		
	hole polaron site	non-polaron site	electron polaron site	non-polaron site
Mn	2.07 (1.92-2.28)	2.20	2.18 (2.02-2.38)	2.07
Fe	2.06 (1.99-2.13)	2.16	2.13 (1.97-2.26)	2.03

speed and accuracy, and the long-range exchange is replaced by long-range PBE exchange. This screening procedure reduces the computational cost significantly while achieving similar accuracy to PBE0.

For the polaron supercell calculations, a minimal Γ-centered $1 \times 1 \times 1$ k-point grid was used to keep computational cost at a reasonable level. No k-point convergence study was done as any increase in the k-point grid size rendered the computation far too expensive. Nonetheless, given the size of the supercell, we would expect the calculations to be reasonably converged. The single unit cell Li$_x$MPO₄ formation energies were calculated using a larger k-point grid chosen such that total energies were converged to within 10 meV/formula unit.

GGA+U calculations were also performed where possible to serve as a basis for comparison. In this work, the rotationally invariant, spherically averaged GGA+U functional, which requires only a single effective interaction parameter U, was used. U values of 4.3 eV and 4.5 eV were used for Mn and Fe respectively, based on values determined previously using a self-consistent linear response scheme. Given that the U parameter was self-consistently determined, this approach to GGA+U can be considered to be a completely first principles method with no adjustable parameters.

III. RESULTS

A. Polaron bond lengths and electronic structure

Table I summarizes the average M-O bond lengths for the polaron and non-polaron sites in the supercell structures. Though the average polarization induced by polaron formation appear to be similar for the Mn and Fe systems, the actual lattice distortions are very different, as evidenced by the much wider range of bond distances for both the hole and
electron Mn polarons. This observation may be attributed to the fact that Mn\(^{3+}\) is a Jahn-Teller active ion for which orbital degeneracy is usually broken by a distortion of the \(\text{Mo}_6\) octahedron.\(^{41}\)

Figure 2 shows the densities of states (DOSs) stacked area plots for the \(\text{LiMPO}_4\) structures where we attempted to localize a single hole polaron using HSE06 and GGA+\(U\).

For \(\text{LiFePO}_4\), clear evidence of a localized polaron can be seen in the GGA+\(U\) and HSE06 DOSs. Fe\(^{2+}\) has a high-spin \(t^{2}_{2g}(\uparrow)t^{1}_{2g}(\downarrow)e^{2}_{g}(\uparrow)\) electronic configuration. Removal of an electron to form a hole polaron should result in a spin-down state being pushed above the Fermi level, which can be seen in Figures 2(c) and 2(d). We also note that the polaron states and the states near the Fermi level have predominantly \(d\) character in the Fe olivine.

For \(\text{LiMnPO}_4\), we were unable to localize a hole polaron using GGA+\(U\). The electronic structure of Mn\(^{2+}\) is \(t^{2}_{2g}(\uparrow)e^{2}_{g}(\uparrow)\). Removal of an electron to form a hole polaron should result in a spin-up state being pushed above the Fermi level. No such state was observed in the GGA+\(U\) DOS (Figure 2(a)), while clear evidence of a localized hole polaron in \(\text{LiMnPO}_4\) was seen in the HSE06 DOS (Figure 2(b)). We note that there are other works reporting the localization of polarons in \(\text{LiMnPO}_4\) using GGA+\(U\),\(^{42,43}\) but in all these works, the localization of a polaron is assisted by the presence of Li vacancies. To our knowledge, there is no work in the literature reporting the localization of a polaron in the pristine \(\text{LiMnPO}_4\) material using GGA+\(U\).

Similar observations were made for electron polaron localization in \(\text{FePO}_4\) and \(\text{MnPO}_4\) based on the DOSs (provided in the supplementary material).

The reason for this failure of GGA+\(U\) is apparent when we consider the HSE06 orbital-projected DOSs, which clearly shows a significant contribution from the oxygen \(p\) orbitals in the polaron states and the states near the Fermi level. This observation points to an inherent difference between the electronic structures of \(\text{LiMnPO}_4\) and \(\text{LiFePO}_4\); the transition metal is much more strongly hybridized with the nearest neighbor oxygen atoms in the Mn olivine compared to the Fe olivine. Indeed, the hole polaron charge densities clearly showed a greater localization of charge on the Fe ion in \(\text{LiFePO}_4\), while the polaron charge carrier appeared to have localized in Mn-\(d\)-O-\(p\) hybrid orbitals in \(\text{LiMnPO}_4\) (see supplementary material). In their investigation of polaronic hole trapping in doped \(\text{BaBiO}_3\), Franchini et al.\(^{30}\) found that they were unable to stabilize a bipolaron using a one-center LDA+\(U\) treatment because the Bi \(s\) orbitals were too delocalized. In the case of the Mn olivine, we believe that the
reason for the failure of GGA+ U is different: the relevant localized orbitals in which to apply self-interaction correction are not the onsite atomic transition metal d orbitals, but rather the hybridized molecular orbitals formed by specific transition metal d orbitals and oxygen p orbitals. To our knowledge, no existing DFT code provides a functionality to apply Hubbard U corrections to non-atomic orbitals. A recent work by Ylvisaker et al. applied a novel tight-binding Hamiltonian approach to apply U corrections to molecular oxygen π^* orbitals in RbO$_2$, but the greater complexity of the olivine structure makes developing a similar model difficult. In this work, we chose to avoid the issue of applying a Hubbard U on hybridized orbitals by using hybrid functionals.

FIG. 2. Density of states (DOS) stacked area plots for LiMPO$_4$ olivine containing a single hole polaron. The height of each colored area shows the contribution of each orbital type at each energy level. To obtain a more accurate DOS, a non-self-consistent run using a $2 \times 2 \times 2$ Monkhorst-Pack k-point grid on the structure optimized using the default single Γ point was performed.
B. Polaron Migration Barriers

Figure 3 shows the calculated LiMPO$_4$ free hole and MPO$_4$ free electron polaron migration barriers. For the Fe olivine system, we performed both HSE06 and GGA+\(U\) calculations to compare the differences in the predictions between the two treatments of the polaron problem. Only HSE06 results are presented for the Mn system as we were unable to localize polarons using GGA+\(U\) with the self-consistently determined \(U\).

For LiFePO$_4$ and FePO$_4$, the HSE06 polaron migration barriers were smaller than the GGA+\(U\) ones. As highlighted in previous work,\(^{29}\), we found that HSE06 in general tends to result in a smaller amount of charge localization as compared to GGA+\(U\). Hence, it is likely that the polaron migration is artificially aided by some residual itinerant character of the charge carriers. The GGA+\(U\) migration barriers in this paper are in good agreement with the values previously calculated by Maxisch \textit{et al}.\(^{14}\)

Comparing the Mn versus Fe HSE06 barrier values, we see that the free polaron migration barriers in the Mn olivine system are significantly higher than in the Fe olivine. The
free hole polaron migration barrier in LiMnPO$_4$ was around 135 meV higher than that in LiFePO$_4$, while the free electron polaron migration barrier in MnPO$_4$ was around 72 meV higher. Such significantly higher polaron migration barriers would imply much lower electronic conductivities in the Mn olivine in both the charged and discharged state compared to the Fe olivine.

![Graph showing polaron migration barriers](image)

FIG. 4. Calculated bound polaron migration barriers in HSE06.

We also investigated the polaron migration barriers in the presence of lithium ions (in MPO$_4$) or vacancies (in LiMPO$_4$) using the same $1 \times 2 \times 2$ supercell to simulate electronic conduction during the initial stages of charging or discharging. Figure 4 shows the calculated barriers for polaron migration from a site nearest to the lithium ion or vacancy to a site further away. As we are only interested in relative barriers, we made no corrections for the interactions between periodic images of the lithium ion or vacancy and charge carriers, as was done in Maxisch et al. work14 (because the charges and structures are similar in all instances, the corrections would amount to approximately the same additive term).

We may observe that the bound polaron migration barriers are higher than the free polaron migration barriers. In particular, the electron polaron migration barrier in Li$_{1/16}$MnPO$_4$
increases significantly, and both hole and electron migration barriers are around 100-120 meV higher in the Mn olivine than the Fe olivine. Hence, polaronons have a tendency to become trapped by the presence of lithium ions and vacancies, further reducing electronic conductivity.

In a recent work, Seo et al.42 reported a GGA+\textit{U} polaron migration barrier of more than 808 meV in Li\textsubscript{x}MnPO\textsubscript{4} calculated via a nudged elastic band method and noted this value to be “over 100 meV” higher than the barrier in Li\textsubscript{x}FePO\textsubscript{4} calculated by Maxisch et al.14 However, the barrier calculated by Seo et al. is for an “undefined” combination of a lithium migration and a polaron migration process, and hence cannot be compared directly to either Maxisch et al.’s work or the barriers calculated in this work. Furthermore, Seo et al. used a supercell with an approximate 1/3 Li concentration. Polaron migration barriers under 1/3 Li concentration are likely to be different from the far more dilute 1/64 concentration investigated by Maxisch et al. and 1/16 concentration investigated in this work.

C. Li\textsubscript{x}MPO\textsubscript{4} formation energies

The structural evolution of an electrode material upon delithiation can be evaluated by computing the formation energies of states with lithium content intermediate between the lithiated and fully delithiated states. The formation energy of LixMPO\textsubscript{4}, \(\Delta E(x)\), is its energy minus the concentration weighted average of MPO\textsubscript{4} and LiMPO\textsubscript{4}. A large positive \(\Delta E(x)\) indicates that no intermediate phases form and a two-phase reaction is likely, while a negative \(\Delta E(x)\) indicate the presence of ordered Li-vacancy solid solutions.

Figure 5 presents the formation energies of Li\textsubscript{x}MPO\textsubscript{4} calculated using different functionals. In agreement with the previous work of Zhou \textit{et al.},26 standard GGA led to qualitatively incorrect negative or near-zero formation energies for the intermediate phases in the Li\textsubscript{x}MPO\textsubscript{4} system. Both LiFePO\textsubscript{4} and LiMnPO\textsubscript{4} are well-known to undergo a two-phase reaction upon delithiation,1,3 implying that the formation energy should be positive. GGA+\textit{U} with the self-consistently determined \textit{U} gives positive formation energies. Zhou \textit{et al.} has conclusively shown that accounting for the correlation between the localized \textit{d}-orbitals of the transition metal is necessary to obtain this phase separating behavior. We would like to note that the GGA+\textit{U} formation energy for Li\textsubscript{0.5}FePO\textsubscript{4} we calculated (\(\approx 13\) meV) is much lower than the value reported for \textit{U} = 4.5 eV (\(\approx 80\) meV) in ref [26], but is very close to
the lowest formation energy for the same structure reported in a later work by the same author for a set of 245 calculated structures used to fit a cluster expansion.

The HSE06 formation energies for the Li$_x$MnPO$_4$ structures are higher than the GGA+U values and predicts qualitatively correct phase separating behavior.

However, the results of the HSE06 Li$_x$FePO$_4$ formation energies are surprising. We would expect that a functional that is designed to explicitly treat the self-interaction error would result in at least qualitatively correct formation energies. As can be seen from Figure 5, the HSE06 formation energies for Li$_x$FePO$_4$ for $x = 0.25, 0.75$ are even more negative than the GGA formation energies. This is despite us having achieved the proper charge localization for these structures, i.e., the final magnetic moments of the Fe ions confirmed that Li$_{0.25}$FePO$_4$ contains one Fe$^{2+}$ and three Fe$^{3+}$ ions, while Li$_{0.75}$FePO$_4$ contains one Fe$^{3+}$ and three Fe$^{2+}$ ions (see supplementary material).

![Formation energies of Li$_x$MPO$_4$ using different functionals.](image)
IV. DISCUSSION

A. Intrinsic kinetic differences between the Mn and Fe olivines

Our results show that there are intrinsic differences in the electronic structures and kinetics of LiMnPO$_4$ and LiFePO$_4$. The free hole and electron polaron migration barriers in the Mn olivine are predicted to be 133 meV and 63 meV higher than that in Fe olivine respectively. In the presence of lithium ions or vacancies, both the hole and electron polaron migration barriers are ≈ 100-120 meV higher in the Mn olivine relative to the Fe olivine. In terms of the formation energies of the partially lithiated LiMPO$_4$ structures, we found that the Mn and Fe systems had approximately the same formation energies in GGA^+U, and that the HSE06 formation energies for the Mn olivine were similar to the GGA^+U values.

Using the calculated polaron migration barriers, we may make an approximation to the difference in electronic conductivities between the Mn and Fe olivines. Assuming the same attempt frequency and a simple Arrhenius like relationship, the free hole polaron migration is predicted to be about 177 times slower in LiMnPO$_4$ than in LiFePO$_4$ at room temperature, while the electron polaron migration is predicted to be about 11 times slower in MnPO$_4$ than in FePO$_4$. In the presence of Li ions or vacancies, both hole and electron migration are predicted to be around 77 times slower in the Mn olivine as compared to the Fe olivine. These predictions are in good agreement with the results of Yonemura et al.4 who measured conductivities of $<10^{-10}$ Scm$^{-1}$ for LiMnPO$_4$ compared to 10^{-8} Scm$^{-1}$ for LiFePO$_4$. It should be noted that there are some discrepancies in the literature. For instance, Delacourt et al.5 found that LiMnPO$_4$ had a five orders of magnitude lower conductivity, which implies a factor of two higher activation energy, compared to LiFePO$_4$. Nonetheless, the qualitative assessment that the Mn olivine has a much lower electronic conductivity still stands.

There are several implications from the much lower conductivity for LiMnPO$_4$ relative to LiFePO$_4$. Firstly, size effects would be far more pronounced, and indeed Drezen et al.46 found that a reduction in particle size from 270 nm to 140 nm significantly improved the rate capability of LiMnPO$_4$ as an electrode, and even better performance was subsequently achieved by Martha et al.47 with carbon-coated 30-nm particles. It should be noted that carbon coating merely improves inter-particle conductivity and not intra-particle conduc-
tivity; hence a small particle size is still necessary to achieve low transport distances. If the requisite particle sizes to achieve a similar performance as LiFePO$_4$ are significantly smaller, the overall effective gravimetric and volumetric capacity of the cathode could be adversely affected, and the potential thermal stability issues in the charged state$^{9-11}$ could be further exacerbated.

The GGA+ U formation energies for states with intermediate lithium concentration in the Fe and Mn olivine are similar and consistent with the observed two-phase equilibria in both systems. The HSE06 formation energies were too unreliable for us to make any reasonable assessment. While we are unable to provide a quantitative discussion of the phase separation kinetics in the olivines, we note two observations from our work that may point to slower phase separation kinetics in LiMnPO$_4$. Firstly, lower electronic conductivities arising from higher polaron migration barriers in the Mn olivine may impede phase transformation because both Li and electrons must diffuse to the site of transformation for phase transformation to occur. Secondly, the greater lattice mismatch between the delithiated and lithiated phases of the Mn olivine suggests that nucleation barriers in the Mn olivine are likely to be higher than in the Fe olivine due to higher coherency strain at the phase transformation interface.

B. Successes and limitations of HSE06 versus GGA+ U

Beyond the insights into the differences between the Mn and Fe olivines, our investigations also highlighted the successes and limitations of the HSE06 hybrid density functional versus conventional DFT based on GGA+ U. On one hand, the HSE06 functional was essential in achieving a proper localization of the polaron in the more strongly hybridized Mn olivine system where the GGA+ U was unable to achieve such a localization. On the other, it failed to predict even qualitatively correct formation energies for the Li$_x$FePO$_4$. Our results suggest that while the HSE06 functional provides a more universal treatment of self-interaction over all atomic species, its treatment of electron correlation in strongly localized transition metal states such as those in the Fe olivine is still deficient. This deficiency is likely to be present in all hybrid functionals derived from PBE0 with a 0.25 fraction of exact exchange.

Despite this noted failure and significantly higher computational costs, we believe that
the more universal approach to treating self-interaction offered by hybrid functionals such as HSE06 is important in capturing the essential physics of systems with strongly hybridized localized states that are not captured in current formulations of DFT+ \(U \). But our results also show that the hybrid functionals in their current state of development cannot be regarded as a panacea to self-interaction error correction, and in some systems, DFT+ \(U \) provides a better qualitative description.

V. CONCLUSION

In this work, we studied polaron migration and phase separation in olivine LiMnPO\(_4\) and LiFePO\(_4\) using hybrid density functional theory based on the HSE06 functional. The barriers for free hole and electron polaron migration in the Mn olivine system are 133 meV and 63 meV higher than that in the Fe olivine system respectively, suggesting 177 times slower electronic conduction in LiMnPO\(_4\) and 11 times slower electronic conduction in MnPO\(_4\) relative to the Fe analogues. In the presence of lithium vacancies or ions, the barriers for both hole and electron polaron migration were found to be around 100-120 meV higher in the Mn olivine. The HSE06 functional, with its more universal treatment of self-interaction error, was found to be essential to the proper localization of a polaron in the Mn olivine, but predicted qualitatively incorrect phase separation behavior in the Li\(_x\)FePO\(_4\) system.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy under Contract DE-FG02-96ER45571 and the BATT program under Contract DE-AC02-05CH11231.

* shyue@mit.edu
† vchev@mit.edu
‡ gceder@mit.edu; http://ceder.mit.edu

1 A. Padhi, K. Nanjundaswamy, and J. Goodenough, Journal of the Electrochemical Society, 144, 1188 (1997), ISSN 1540-7330.
2 F. Zhou, M. Cococcioni, K. Kang, and G. Ceder, Electrochem. Commun., 6, 1144 (2004), ISSN 1388-2481.
3 A. Yamada, Y. Kudo, and K.-Y. Liu, Journal of The Electrochemical Society, 148, A1153 (2001), ISSN 00134651.
4 M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, and R. Kanno, Journal of The Electrochemical Society, 151, A1352 (2004), ISSN 00134651.
5 C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M. Tarascon, and C. Masquelier, Journal of The Electrochemical Society, 152, A913 (2005), ISSN 00134651.
6 L. Wang, F. Zhou, and G. Ceder, Electrochemical and Solid-State Letters, 11, A94 (2008), ISSN 10990062.
7 A. Yamada and S.-C. Chung, Journal of The Electrochemical Society, 148, A960 (2001), ISSN 00134651.
8 N. Meethong, H.-Y. Huang, S. Speakman, W. Carter, and Y.-M. Chiang, Advanced Functional Materials, 17, 1115 (2007), ISSN 1616301X.
9 S.-W. Kim, J. Kim, H. Gwon, and K. Kang, Journal of The Electrochemical Society, 156, A635 (2009), ISSN 00134651.
10 G. Chen and T. J. Richardson, Journal of Power Sources, 195, 1221 (2010), ISSN 03787753.
11 S. P. Ong, A. Jain, G. Hautier, B. Kang, and G. Ceder, Electrochemistry Communications, 12, 427 (2010), ISSN 13882481.
12 B. Kang and G. Ceder, Journal of The Electrochemical Society, 157, A808 (2010), ISSN 00134651.
13 B. Kang and G. Ceder, Nature, 458, 190 (2009).
14 T. Maxisch, F. Zhou, and G. Ceder, Physical Review B, 73, 1 (2006), ISSN 1098-0121.
15 K. Zaghib, A. Mauger, J. B. Goodenough, F. Gendron, and C. M. Julien, Chemistry of Materials, 19, 3740 (2007), ISSN 0897-4756.
16 B. Ellis, L. K. Perry, D. H. Ryan, and L. F. Nazar, Journal of the American Chemical Society, 128, 11416 (2006), ISSN 0002-7863.
17 C. G. Kuper and G. D. Whitfield, Polaron and Excitons (1962).
18 H. Fröhlich, Advances in Physics, 3, 325 (1954), ISSN 0001-8732.
19 J. Heyd, G. E. Scuseria, and M. Ernzerhof, Journal of Chemical Physics, 118, 8207 (2003), ISSN 00219606.
20. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Journal of Chemical Physics, 124, 219906 (2006), ISSN 0021-9606.
21. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyán, Journal of Chemical Physics, 124, 154709 (2006), ISSN 0021-9606.
22. V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Physical Review B, 48, 16929 (1993).
23. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Physical Review B, 44, 943 (1991).
24. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Physical Review B, 52, R5467 (1995), ISSN 0163-1829.
25. F. Zhou, K. Kang, T. Maxisch, G. Ceder, and D. Morgan, Solid State Communications, 132, 181 (2004), ISSN 00381098.
26. F. Zhou, C. A. Marianetti, M. Cococcioni, D. Morgan, and G. Ceder, Physical Review B, 69, 201101 (2004), ISSN 1098-0121.
27. F. Zhou, T. Maxisch, and G. Ceder, Physical Review Letters, 97, 155704 (2006), ISSN 0031-9007.
28. S. P. Ong, L. Wang, B. Kang, and G. Ceder, Chemistry of Materials, 20, 1798 (2008), ISSN 0021-9606.
29. V. L. Chevrier, S. P. Ong, R. Armiento, M. K. Y. Chan, and G. Ceder, Physical Review B, 82, 075122 (2010).
30. C. Franchini, G. Kresse, and R. Podloucky, Physical Review Letters, 102, 256402 (2009), ISSN 0031-9007.
31. C. Patterson, Physical Review B, 77, 094523 (2008), ISSN 1098-0121.
32. N. Iordanova, M. Dupuis, and K. M. Rosso, Journal of Chemical Physics, 123, 074710 (2005), ISSN 0021-9606.
33. N. Iordanova, M. Dupuis, and K. M. Rosso, Journal of Chemical Physics, 122, 144305 (2005), ISSN 0021-9606.
34. E. O. Wollan and W. C. Koehler, Physical Review, 100, 545 (1955).
35. G. Kresse and J. Furthmüller, Physical Review B, 54, 11169 (1996).
36. C. Adamo and V. Barone, Journal of Chemical Physics, 110, 6158 (1999), ISSN 00219606.
37. J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters, 77, 3865 (1996), ISSN 0031-9007.
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Physical Review B, 57, 1505 (1998), ISSN 0163-1829.

F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, and G. Ceder, Physical Review B, 70, 235121 (2004), ISSN 1098-0121.

M. Cococcioni and S. de Gironcoli, Physical Review B, 71, 1 (2005), ISSN 1098-0121.

C. Marianetti, D. Morgan, and G. Ceder, Physical Review B, 63 (2001), ISSN 0163-1829, doi:10.1103/PhysRevB.63.224304.

D.-H. Seo, H. Gwon, S.-W. Kim, J. Kim, and K. Kang, Chemistry of Materials, 7, 09123161926007 (2009), ISSN 0897-4756.

Z. X. Nie, C. Ouyang, J. Z. Chen, Z. Y. Zhong, Y. L. Du, D. S. Liu, S. Q. Shi, and M. S. Lei, Solid State Communications, 150, 40 (2010).

E. R. Ylvisaker, R. R. P. Singh, and W. E. Pickett, Physical Review B, 81, 180405 (2010), ISSN 1098-0121.

F. Zhou, Models for transition metal oxides and for protein design, Thesis, Massachusetts Institute of Technology (2006).

T. Drezen, N.-H. Kwon, P. Bowen, I. Teerlinck, M. Isono, and I. Exnar, Journal of Power Sources, 174, 949 (2007), ISSN 03787753.

S. K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi, and I. Exnar, Journal of The Electrochemical Society, 156, A541 (2009), ISSN 00134651.