Induction of pulmonary HLA-G expression by SARS-CoV-2 infection

Barbara Seliger1,2,3 · Simon Jasinski-Bergner1 · Chiara Massa1 · Anja Mueller1 · Katharina Biehl1 · Bo Yang1 · Michael Bachmann4 · Danny Jonigk5,6 · Philip Eichhorn7 · Arndt Hartmann7 · Claudia Wickenhauser8 · Marcus Bauer8

Received: 19 July 2022 / Revised: 5 October 2022 / Accepted: 7 October 2022 / Published online: 5 November 2022
© The Author(s) 2022

Abstract
The non-classical human leukocyte antigen (HLA)-G exerts immune-suppressive properties modulating both NK and T cell responses. While it is physiologically expressed at the maternal–fetal interface and in immune-privileged organs, HLA-G expression is found in tumors and in virus-infected cells. So far, there exists little information about the role of HLA-G and its interplay with immune cells in biopsies, surgical specimen or autopsy tissues of lung, kidney and/or heart muscle from SARS-CoV-2-infected patients compared to control tissues. Heterogeneous, but higher HLA-G protein expression levels were detected in lung alveolar epithelial cells of SARS-CoV-2-infected patients compared to lung epithelial cells from influenza-infected patients, but not in other organs or lung epithelia from non-viral-infected patients, which was not accompanied by high levels of SARS-CoV-2 nucleocapsid antigen and spike protein, but inversely correlated to the HLA-G-specific miRNA expression. High HLA-G expression levels not only in SARS-CoV-2-, but also in influenza-infected lung tissues were associated with a high frequency of tissue-infiltrating immune cells, but low numbers of CD8+ cells and an altered expression of hyperactivation and exhaustion markers in the lung epithelia combined with changes in the spatial distribution of macrophages and T cells. Thus, our data provide evidence for an involvement of HLA-G and HLA-G-specific miRNAs in immune escape and as suitable therapeutic targets for the treatment of SARS-CoV-2 infections.

Keywords HLA-G · SARS-CoV-2 · microRNA · Immune cell infiltration · Immune response

These authors contributed to a comparable extent to the manuscript.

Barbara Seliger
immunologie@uk-halle.de; barbara.seliger@uk-halle.de

1 Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany
2 Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
3 Institute of Translational Immunology, Medical School “Theodor Fontane”, 14770 Brandenburg, Germany
4 Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
5 Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
6 German Center for Lung Research (DZL), Hannover Medical School (BREATH), 30625 Hannover, Germany
7 Institute of Pathology, Friedrich-Alexander University, 91054 Erlangen, Germany
8 Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany

Abbreviations

Ab	Antibody
ACE2	Angiotensin-converting enzyme 2
ARDS	Acute respiratory distress syndrome
CDS	Coding sequence
CoV-2	Coronavirus-2
COVID-19	Coronavirus disease-2019
CTL	Cytotoxic T lymphocytes
DFS	Disease-free survival
ELISA	Enzyme-linked immunosorbent assay
FFPE	Formalin-fixed, paraffin-embedded
G-CSF	Granulocyte colony stimulating factor
GM-CSF	Granulocyte–macrophage colony stimulating factor
HLA	Human leukocyte antigen
HLA-G	Human leukocyte antigen-G
HE	Hematoxylin and eosin
HOTAIR	HOX transcript anti-sense RNA
IDO	Indoleamine 2,3-dioxygenase
IFN	Interferon
IHC	Immunohistochemistry
IL	Interleukin
Introduction

The human leukocyte antigen (HLA)-G is a non-classical HLA class I molecule, which was first characterized by its expression at the feto-maternal interface. In contrast to classical HLA class I antigens, HLA-G is less polymorphic and exists in seven different isoforms, from which four are membrane bound (HLA-G1 to -G4) and three are soluble forms (sHLA-G5 to -G7) [1]. In addition, some novel HLA-G isoforms have been recently identified, but their functions have not yet been determined [2, 3]. In addition to alternative splicing, sHLA-G1 can be generated by proteolytic cleavage mainly mediated by the activity of matrix metalloproteinases (MMPs) [4]. Under physiologic conditions, HLA-G has a highly restricted tissue distribution and is mainly expressed on immune-privileged organs, i.e., thymus, cornea, testis, erythroblasts, mesenchymal stem cells, and cytotoxic cells. In these tissues, the most common HLA-G isoforms are HLA-G1, sHLA-G1 and HLA-G5 [5]. HLA-G exerts immune-suppressive properties on CD8+ cytotoxic T lymphocytes (CTL), natural killer (NK) cells, B cells and dendritic cells by interacting with the appropriate immune cell inhibitor receptors, in particular the Ig-like transcript (ILT)-2, ILT-4, the killer cell immunoglobulin-like receptor (KIR)-2DL4, NKG2A/CD94 and CD160 [5–9]. Next to the interactions with its receptors, the HLA-G-associated tolerance induction could be also mediated by intracellular transfer mechanisms, such as trogocytosis, extracellular vesicles (EV), or tunneling nanotubes [10–12].

The expression of HLA-G is tightly regulated at distinct levels [13]. These include a transcriptional up-regulation of HLA-G by various cytokines, such as interferon (IFN)-γ and tumor necrosis factor (TNF)-α, and growth factors, like, e.g., the transforming growth factor (TGF)-β, granulocyte–macrophage colony stimulating factor (GM-CSF), and granulocyte colony stimulating factor (G-CSF) [14–16] as well as microenvironmental factors including indoleamine 2,3-dioxygenase (IDO), hypoxia, metabolites and stress factors, such as heat shock and chemicals, [13, 17]. In addition, HLA-G is altered by epigenetic processes mediated by methylation and histone acetylation [18] or by post-transcriptional control [19]. The latter is due to RNA-binding proteins (RBPs) and/or microRNAs (miRNAs) directed against the 3′ untranslated region (UTR) or the coding sequence (CDS) of HLA-G, thereby inhibiting the HLA-G expression [20–24]. In addition, the long non-coding RNA HOX transcript antisense RNA (HOTAIR) has been shown to downregulate HLA-G expression [25].

During the last two decades, highly variable levels of HLA-G neo-expression leading not only to escape from immune surveillance, but also to tolerogenic responses of transplants have been described in different neoplasms, autoimmune, and inflammatory diseases as well as upon pathogen infection by parasites, bacteria, and viruses [26–35]. In addition, the pathophysiologic neo-expression of HLA-G surface antigens and of sHLA-G isoforms in tumors or upon viral infections was associated with disease progression, poor clinical outcome, and adverse therapy response of patients [36–46]. Recently, evidence accumulated that HLA-G is an emerging susceptibility and/or protection relevant factor for unresolved virus infection and viral resistance [47]. Thus, targeting of HLA-G, its receptors, or HLA-G-relevant molecules might offer a novel therapeutic strategy for malignant tumors and also viral infections.

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel RNA beta coronavirus, which causes the coronavirus disease-2019 (COVID-19) [48]. In March 2020, the World Health Organization (WHO) declared COVID-19 as a pandemic public health disease. This disease is associated with infection of the upper respiratory tract with the risk of sustaining a pneumonia and/or an acute respiratory distress syndrome (ARDS) accompanied by a high patients’ morbidity and mortality rate depending on the virus strain [49]. SARS-CoV-2 enters the host cells through its spike protein by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, which is abundantly expressed on alveolar type II epithelial cells of the respiratory tract [50]. SARS-CoV-2 infection often causes an immune deregulation including sustained cytokine production and hyperinflammation, which in turn is associated

Glossary

- **mAb**: Monoclonal antibody
- **miRNA**: microRNA
- **MMP**: Matrix metalloproteinase
- **MSI**: Multispectral imaging
- **NK**: Natural killer
- **OS**: Overall survival
- **PD-1**: Programmed cell death protein 1
- **PD-L1**: Programmed death ligand 1
- **RBP**: RNA-binding protein
- **ROI**: Region of interest
- **RT-PCR**: Real-time polymerase chain reaction
- **SARS-CoV-2**: Severe acute respiratory syndrome coronavirus-2
- **sHLA-G1**: Soluble HLA-G1
- **TGF**: Transforming growth factor
- **TIGIT**: T cell immunoglobulin and mucin domain
- **TIL**: Tissue-infiltrating lymphocyte
- **TIM-3**: T cell immunoglobulin and mucin domain
- **TNF**: Tumor necrosis factor
- **UTR**: Untranslated region
- **WHO**: World Health Organization
were available (see Table 1). The FFPE tissues derived from SARS-CoV-2-infected patients, FFPE tissues from further organs of SARS-CoV-2 infection [58]. Thus, HLA-G expression and/or secretion might reflect a negative feedback response to inflammatory processes during viral infections [29]. Despite HLA-G has been suggested to have immune regulatory functions in SARS-CoV-2-infected patients [59–61], a thorough analysis of HLA-G in COVID-19 patients is still lacking. To elucidate the role of HLA-G during COVID-19, membraneous HLA-G expression in organs of SARS-CoV-2-infected patients and respective controls, its spatial context, and interplay with immune cells were determined and correlated with clinical parameters.

Materials and methods

Patients’ characteristics

Formalin-fixed, paraffin-embedded (FFPE) lung tissue samples from 65 SARS-CoV-2-affected patients were collected in Germany between 2020 and 2021 at the Institutes of Pathology of the University Hospital of the Martin-Luther University Halle-Wittenberg, the University Hospital of the Friedrich-Alexander University Erlangen-Nuremberg and of the Hannover Medical School, Hannover. Tissue samples from lungs of patients who died from influenza (n = 12) or from heart attack (n = 10) were collected in the period from 2009 to 2020 and served as controls. In a subset of SARS-CoV-2-infected patients, FFPE tissues from further organs were available (see Table 1). The FFPE tissues derived from autopsies, or in the case of six patients that survived COVID-19, were obtained by interventional tissue resection during the disease. Clinical and laboratory data were collected from the medical records. SARS-CoV-2 and influenza infections were proven by real-time polymerase chain reaction (RT-PCR) during the life-time of the patients. All samples analyzed are summarized in Table 1.

Ethical approval

Autopsies were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All autopsies were conducted after consent for autopsy was obtained from the deceased or next of kin, or autopsies were requested by the health authorities or by the prosecutor’s office. Each participating center had local ethical approval. Clinical parameters were recovered from the final biopsies/autopsy report or the laboratory information system. Only cases with a positive SARS-CoV-2 test (usually antigen tests from either nasopharyngeal or PCR from either nasopharyngeal swab or tissue) either preclinical, clinical, or post-mortem, were implemented in the analyses. Regarding the cause of death, data were taken from the final autopsy report.

The use of collected FFPE tissue samples and serum/plasma samples from patients who survived COVID-19 was approved by the Ethical Committees of the Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (2017-81), of the MHH Hannover (9022-BO.K-22c), and of the Medical Faculty of the University Hospital in Erlangen.

Standard morphological evaluation

Hematoxylin and eosin (HE)-stained tissue slides were used to evaluate the specific pattern of damage following SARS-CoV-2 infection with respect to the following histological patterns of acute interstitial pneumonia: acute exudative, organized, and fibrotic pattern [62, 63]. Furthermore, tissue-infiltrating lymphocytes in the alveolar walls were quantified in accordance to the evaluation of stromal tissue-infiltrating lymphocytes (TILs) using the guidelines of the International Working Group for tumor-infiltrating lymphocytes [64].

Immunohistomorphological evaluation

Conventional immunohistochemistry (IHC) was performed on 3 µm thick, consecutive sections of FFPE samples with
the Bond Polymer refine detection Kit (Leica, DS9800) according to the manufacturer’s instructions on a fully automated IHC stainer (Leica Bond). For IHC staining, the anti-HLA-G monoclonal antibody (mAb) (Abcam, UK, clone 4H84) was used as recently described [22]. In addition, mAbs directed against CD3 (Labvision, Germany, clone SP7), CD20 (DAKO, California, USA, clone L26), CD56 (Cell marque, Massachusetts, USA, clone MRQ-42) and the SARS-CoV nucleocapsid protein (Rockland Inc., Pennsylvania, USA, clone 200-401-A50) and the spike protein (Abcam, UK, clone ab272504) were employed according to the supplier’s instructions. Sections were examined and imaged with a Zeiss Axiophot microscope (Zeiss, Jena, Germany). Two pathologists (MB and CW), independently and blinded to the clinical data, scored all samples. HLA-G expression was analyzed using a Histo-score as previously described [65]. The relative amount of positively stained cells (%) was multiplied by their intensity from 0 (negative), 1 (weak), 2 (moderate) to 3 (intense) leading to the expression intensity (or H-score) that was further classified as absent (0), low (1–100), intermediate (101–200), or strong (201–300) overall expression.

Multispectral imaging

Multispectral imaging (MSI) was performed using the basic protocol described in Wickenhauser et al. [66]. Two multiplex panels with different mAbs and opal-dye combinations were used. The first panel included anti-PD-L1 clone E1L3N (Cell Signaling E1L3N, 1:150) in combination with Opal690, anti-Foxp3 clone 236A/E/ (Abcam, 1:00) with Opal540, anti-CD3 clone SP7 (ThermoFisher SP7, 1:100) with Opal570, anti-CD163 clone MRQ-26 (Cell Marque, 1:50) with Opal620 and anti-panCK Ab AE1/AE3 (Dako, 1:150) with Opal520. The second panel comprised anti-TIM-3 (Abcam, ab241332, 1:1000) with Opal 520, anti-PD-1 (Biocare Medical, NAT105, 1:50) with Opal 540, anti-CD8 (DAKO, C8/144b, 1:50) with Opal 570, anti-TIGIT (Biozol, USC-PAN056HU01-1, 1:50) with Opal 620, anti-CD69 (Abcam, ab233396, 1:50) with Opal 650 and anti-HLA-G (Abcam, clone 4H84, 1:100) with Opal 690. After counterstaining with DAPI (Akoya Biosciences, Marlborough, MA), the sections were mounted and scanned with the Vectra Polaris System (Akoya Biosciences, Marlborough, MA) and a mean of 18 regions of interest (ROIs) per slide were taken with a 20× zoom. The inForm software (Version 2.4.10, Akoya Biosciences) was employed to

Table 1 Clinico-pathological characteristics and sample specifications

Category	SARS-CoV-2	Influenza	Control
Number of patients	65	10	12
Clinical data			
Age min-max (mean)	36–96 (71)	34–84 (64)	54–83 (69)
Gender			
Male	43	6	7
Female	22	4	5
Survival time			
<7 days	17		
>7 days	42		
Survived	6		
Tissues analyzed for HLA-G expression			
Lung	65	10	12
Brain	10	–	–
Heart	12	–	–
Kidney	21	–	–
Pancreas	12	–	–
Spleen	6	–	–
Liver	6	–	–
Samples analyzed for miRNA expression	20	5	5
Samples analyzed by MSI	26	8	5
Histological pattern of acute interstitial pneumonia			
Exudative pattern	12	–	–
Organizing pattern	52	–	–
Fibrosis	1	–	–
perform cell segmentation and phenotyping. PhenoptrRe-
ports scripts were used within R to evaluate the frequency
and density of the different cell types as well as their inter-
spatial relationships.

RNA extraction, cDNA synthesis, and qPCR analyses

Two 5 µm thick FFPE tissue slides of lung tissues were sub-
jected to the extraction of total RNA using the MasterPure™
Complete DNA & RNA Purification Kit according to the
manufacturer’s protocol (Lucigen, Middleton, WI, USA).

For quantification of the selected HLA-G regulatory
miRNAs, template-specific cDNA syntheses were per-
formed with the RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific, Waltham, MA, USA) and
miR specific stem-loop primers [67] as published by Jasin-
ski-Bergner et al. [22]. Subsequently, the qPCR analyses
were performed by calculation of relative copy numbers.
The HLA-G non-relevant and highly abundantly expressed
miR-3960 served as a house keeping gene. For the qPCR
reactions GoTaq® qPCR Master Mix (Promega, Madison,
WI, USA) was employed. The sequences of the stem-loop
primers as well as of the respective qPCR primers and their
amplification settings are listed in Table 2.

Statistics

Statistical analyses were performed employing IBM SPSS
statistic packages (version 25) or GraphPad Prism9. Kol-
mogorov–Smirnov test revealed non-parametric data
(p < 0.05). The Mann–Whitney U test was used to compare
clinical data, frequencies of immune cell subpopulations,
and immunohistochemical expression pattern. For cor-
relation analysis Pearson’s correlation was performed. p
values < 0.05 were considered statistically significant. All
graphs were created using GraphPad Prism 9.

Results

Determination of HLA-G expression in lung tissues
from SARS-CoV-2- and influenza-infected patients
and histomorphologic normal control lung tissues

To determine whether SARS-CoV-2 infection induces
HLA-G expression, lung tissues from SARS-CoV-2-
(n = 65) or influenza- (n = 10) infected patients as well as
from respective controls (n = 12) were stained by IHC with
the HLA-G-specific mAb 4H83 detecting all major HLA-G
isoforms. Representative images of the tissue stainings
are shown in Fig. 1a demonstrating a highly heterogene-
ous HLA-G expression pattern in the lung tissues analyzed
with a predominant positivity in pneumocytes and weaker
expression in immune cells and some cases of bronchial
respiratory epithelia. A comparable staining pattern, but
statistically significant higher HLA-G expression levels
were found in SARS-CoV-2- compared to lung tissues from
influenza-infected patients (Fig. 1b). In contrast, pneumo-
cytes of the lung control samples lacked HLA-G expression,
while a few HLA-G-positive immune cells were detected
(Fig. 1b). To evaluate whether this HLA-G expression was
organ specific or also relevant in other organs receptive to

Primer	Application	Condition (°C)	
miR-148A SL Rkt	GTGCTATCCAGTGCAAGGTCCGAGGTATTGCGACTTGATACGACACAAAG	cDNA synthesis	42
miR-148A qPCR	GCCCTCAAGTGCACTACAGA	qPCR	60
miR-148B SL Rkt	GTGCTATCCAGTGCAAGGTCCGAGGTATTGCGACTTGATACGACACAAAG	cDNA synthesis	42
miR-148B qPCR	GCCCTCAAGTGCACTACAGA	qPCR	60
miR-152 SL Rkt	GCCCTCAAGTGCAAGGTCCGAGGTATTGCGACTTGATACGACACAGT	cDNA synthesis	42
miR-152 qPCR	GCCCTCAAGTGCACTACAGA	qPCR	60
miR-3960 SL Rkt	GTGCTATCCAGTGCAAGGTCCGAGGTATTGCGACTTGATACGACACACCG	cDNA synthesis	42
miR-3960 qPCR	GCCCTCAAGTGCACTACAGA	qPCR	60
miR-548q SL Rkt	GCCCTCAAGTGCAAGGTCCGAGGTATTGCGACTTGATACGACACCCCA	cDNA synthesis	42
miR-548q qPCR	GCCCTCAAGTGCACTACAGA	qPCR	60
miR-628-5p SL Rkt	GTGCTATCCAGTGCAAGGTCCGAGGTATTGCGACTTGATACGACACCTCTA	cDNA synthesis	42
miR-628-5p qPCR	GCCCTCAAGTGCACTACAGA	qPCR	60
miR-744-5p SL Rkt	GTGCTATCCAGTGCAAGGTCCGAGGTATTGCGACTTGATACGACCTCTA	cDNA synthesis	42
miR-744-5p qPCR	GCCCTCAAGTGCACTACAGA	qPCR	60
miR qPCR rev	GTGCTATCCAGTGCAAGGTCCGAGGT	qPCR	60
SARS-CoV-2-induced damage, HLA-G expression was determined in representative samples of kidney (n = 21) and heart tissues (n = 12) obtained from SARS-CoV-2- or influenza-infected patients. All these tissue samples lacked HLA-G expression (data not shown) suggesting a tissue-specific HLA-G neo-expression upon course of COVID-19.

Correlation of HLA-G expression with SARS-CoV-2 nucleocapsid antigen and spike protein expression

Next to HLA-G, the SARS-CoV-2 nucleocapsid and spike protein antigen expression was determined in the lung tissue samples analyzed using IHC. In the group of SARS-CoV-2-infected patients, the nucleocapsid expression was detectable in 23/65 (35.4%), the spike protein in 31/65 (47.7%) of cases. All samples expressing the nucleocapsid were also positive for the spike protein. The expression of the respective markers was detectable in pneumocytes, respiratory epithelia, and lung infiltrating immune cells, but neither in other tissue samples from SARS-CoV-2-infected patients nor in lung epithelium samples of influenza-infected or control patients. All SARS-CoV-2 nucleocapsid antigen-positive lung samples expressed HLA-G, while the 42 nucleocapsid antigen-negative tissues from patients with proven SARS-CoV-2 infection presented a trend towards higher HLA-G expression levels, although statistically non-significant (Fig. 1c).

Inverse correlation of HLA-G expression with HLA-G-specific miRNAs

Building on the miRNA-mediated posttranscriptional regulation of HLA-G expression [20–23, 68], the expression of HLA-G-specific miRNAs known to inhibit HLA-G expression by either binding to the 3’ UTR or CDS was analyzed by
Induction of pulmonary HLA-G expression by SARS-CoV-2 infection

qPCR in lung tissues across the samples and correlated with the HLA-G staining intensity (H-score) obtained by IHC (Fig. 1b). The HLA-G protein levels of FFPE specimen were categorized into a HLA-G negative/weak (n = 8; HLA-G negative with H-score = 0; HLA-G weak H-score < 50) and a HLA-G medium/high (n = 17; HLA-G medium H-score > 50 and < 100; HLA-G high H-score > 100) group. A statistically significant, inverse expression of HLA-G-regulating miRNAs and HLA-G protein was detected for miR-744-5p (p = 0.0063) and for miR-152 (p = 0.036), which bind to the CDS and the 3ʹ UTR of the HLA-G mRNA, respectively, whereas the expression of miR-548q (p = 0.0982) and miR-148B (p = 0.2302) did not reach statistical significance (Fig. 2). The miRNAs miR-628 and miR-148A completely lacked an inverse expression to the HLA-G protein (Fig. 2).

Effect of SARS-CoV-2-infection on immune cell infiltration in lung tissues and correlation with HLA-G expression levels

To investigate whether there exists a link between HLA-G expression levels and the cellular environment as well as its spatial organization, the immune cell infiltration of tissues across all samples was assessed by quantification of lymphocyte infiltration using HE staining, conventional

![Fig. 2 Correlation of HLA-G miRNA expression with HLA-G intensity in lung sections of SARS-CoV-2 patients. Expression of the relative copy numbers of HLA-G-regulating miRNAs was determined by qPCR on the lung sections of SARS-CoV-2 patients. The results are shown as Box-Whiskers Plots upon subdivision of the patients into HLA-G negative/weak (n = 8) and HLA-G medium/high (n = 17) based on the H-score obtained by IHC staining (HLA-G negative = 0; HLA-G weak < 50; HLA-G medium > 50 and < 100; HLA-G high > 100). The statistical significance (p value) was determined by calculation of the two sided student’s t test](image-url)
IHC and MSI (Fig. 3). An increased immune cell infiltration in the lungs of SARS-CoV-2- and to a lesser extent of influenza-infected patients compared to healthy controls was observed (data not shown). Lymphocyte quantification in tissues from SARS-CoV-2-infected patients demonstrated a statistically significant positive correlation of lung-specific HLA-G expression levels and the immune cell density (Fig. 3a). Furthermore, in these patients, pulmonary HLA-G expression was positively correlated with the frequency of CD3+ T cells and CD56+ T/NK cells analyzed by conventional IHC (Fig. 3b, c). In contrast, there was no correlation between HLA-G expression and the frequency of CD20+ B cells (Fig. 3d). Interestingly, lung tissues with detectable

Fig. 3 Altered composition of the immune cell infiltrate in lung tissues of SARS-CoV-2-infected patients. Lung tissues from the SARS-CoV-2 patients (n = 65) were evaluated for lymphocyte infiltration by HE staining (a) or by conventional IHC using mAbs directed against CD3 for total T cells (b), CD56 for NK or NKT cells (c) and CD20 for B cells (d). The resulting cell frequencies are shown in correlation to the H-score of HLA-G. In addition, the Spearman correlation coefficients and p values are given. Lung tissues from SARS-COV-2-diseased patients were stained by MSI and evaluated as described in “Material and Methods”. The minimum distance (in μm) between macrophages and macrophages (e) as well as between conventional T cells (T_conv, i.e. CD3+ Foxp3^{neg}) to T_conv cells (f) is shown as Box-Whiskers plot. The lines represent the median values of the groups.
SARS-CoV-2 nucleocapsid antigen showed a slightly lower lymphocyte infiltration (data not shown).

The analysis of the frequency and composition of the immune cell repertoire was extended by a more detailed examination of the spatial distribution between the different immune cells (Fig. 3e, f). The spotwise evaluation of MSI demonstrated no significant differences in the number of infiltrating immune cells, such as CD163+ macrophages or total CD3+ T cells across the samples (data not shown). However, evaluation of the relative distance among the different immune cells in the lung epithelia highlighted that in the SARS-CoV-2 patient group the macrophages were in closer proximity to each other, while the conventional T cells determined as CD3+ Foxp3neg cells were more distant from each other than in the tissues of controls or influenza-infected patients, respectively (Fig. 3e, f).

Since viral infections have been shown to influence T cell function by inducing hyperactivation and anergy [69], the frequency of CD8+ T cells as well as the expression of the T cell immunoreceptor with Ig and ITIM domains (TIGIT), TIM-3, programmed cell death protein 1 (PD-1), and CD69 was evaluated as surrogate markers by MSI. Data were correlated with the SARS-CoV-2-induced HLA-G expression as representatively shown in Fig. 4a. Higher HLA-G expression levels correlated with lower CD8+ T cell frequencies (Fig. 4b). These CD8+ T cells showed a significantly increased expression of CD69 and TIGIT (Fig. 4c, d), while the expression of TIM-3 and PD-1 (Fig. 4e, f) was significantly lower in high HLA-G-expressing cases. However, even though the activation marker CD69 was significantly higher expressed in these T cells, CD69+ T cells were more distant to high HLA-G-expressing lung epithelial cells with a minimal distance of 1.58 µm versus 3.08 µm, and an average distance of 4.73 µm versus 118.23 µm.

Clinical relevance of HLA-G expression, frequency, and composition of the pulmonary immune cell infiltrate in SARS-CoV-2-infected patients

To determine whether HLA-G expression levels might have a prognostic impact in SARS-CoV-2-infected lungs, the level of HLA-G expression was correlated to the severity of disease. Therefore, the patients with SARS-CoV-2 infection were divided into those who survived and those with early and late disease depending whether death occurred before or after 7 days from the start of respiratory symptoms. In SARS-CoV-2-infected patients HLA-G and nucleocapsid expression levels were associated with the patients’ outcome as shown in Fig. 5. In detail, lung resection tissues of the six SARS-CoV-2 survivors exhibited significantly lower HLA-G levels than lung tissues from deceased patients (Fig. 5a). Among the deceased individuals the HLA-G expression was lower in patients, who survived longer than 7 days compared to patients with a survival of less than 7 days after the first symptoms (Fig. 5a). Interestingly, most patients with detectable SARS-CoV-2 nucleocapsid antigen expression in lung epithelia died early (<7 days after first symptoms, data not shown). It is noteworthy that lung samples with an early acute interstitial pneumonia pattern (exudative phase) showed lower HLA-G expression levels compared to samples with later inflammatory stages (organized and fibrotic phases) (Fig. 5b).

In addition, the correlation of the frequency and localization of lymphocytes to the survival of SARS-CoV-2-infected patients demonstrated a significantly lower frequency of CD3+ T cells in the stroma of lung tissues of survivors (Fig. 5c). In addition, despite not reaching statistical significance, survivors exhibited higher levels of CD20+ and CD56+ cells (Fig. 5d, e). Moreover, a significantly enhanced presence of regulatory T cells (Tregs) determined as CD3+ Foxp3+ cells could be highlighted in the SARS-CoV-2 survivors versus deceased patients (Fig. 5f) although their frequency was low.

Discussion

Recently, HLA-G has been shown to be upregulated by various viruses, such as HCV, HCMV, HPV and HIV [32, 70, 71], which was extended in this report to SARS-CoV-2 infection. We show here for the first time that patients infected with the SARS-CoV-2 and pulmonary disease had a high frequency of membranous HLA-G expression in the lung tissues, predominantly the alveocytes, but not in other tissues suggesting an organ-specific HLA-G neo-expression. Despite sharing a viral pathogenic origin and a similar damage pattern within the lung, the level of HLA-G expression in lung epithelia of COVID-19 patients was higher than that of influenza-diseased patients and might reflect an altered immune response associated with an increased fibrosis score in the lungs of COVID-19 patients [72, 73]. In contrast, lung epithelia of non-virus-infected controls lacked HLA-G expression.

There exist a number of publications on the immune cell repertoire and/or its spatial distribution in COVID-19 damaged lungs ranging from macroscopic to single-cell level [74], but a correlation between HLA-G expression, the immune cell composition, and the clinical course has not yet been described. In agreement with published data using targeted spatial transcriptomics, changes in the cell type composition and interactions between macrophages and T cells using IHC and MSI were found in the diseased lungs. This study showed for the first time that the increased immune cell infiltration was associated with high HLA-G-expression levels, which might be due to cytokines secreted by T cells and macrophages, like...
Induction of pulmonary HLA-G expression by SARS-CoV-2 infection

Correlation of the frequency and function of CD8+ T cells to HLA-G expression. MSI staining was performed as described in Materials and Methods and staining patterns of exhaustion/hyperactivation markers were correlated to HLA-G. a Representative multiplex staining of lung tissues from a SARS-CoV-2 patient with a multiplex panel consisting of mAbs directed against HLA-G (violet), CD69 (red), CD8 (yellow), TIGIT (orange), TIM-3 (green), and PD-1 (turquoise). b Pearson correlation map with association to functional markers: Pearson correlation coefficients are represented by different colors defined in the scale bar on the right side of the correlation map. Significant associations are highlighted by a black frame. Correlation of TIGIT (c), CD69 (d), PD-1 (e) and TIM-3 (f) expression to HLA-Ghigh and HLA-Glow expression levels.

In addition, a negative correlation between the expression of HLA-G, the nucleocapsid, and the spike protein was detected, which point to an altered expression of these molecules during the disease and indicate an up-regulation of viral proteins in the early phase of COVID-19. The negative correlation between HLA-G expression and COVID-19 course underlines that HLA-G might be a potential therapeutic target in this disease. This hypothesis is further supported by an association between the HLA-G variant rs9380142 and the susceptibility to SARS-CoV-2 infection [82].

The molecular mechanisms regulating HLA-G expression are highly complex and comprise single nucleotide polymorphisms (SNPs) in the CDS and 3’ UTR of the HLA-G gene, epigenetic, transcriptional as well as posttranscriptional regulation. In multiple tumor entities, the expression of HLA-G-regulating miRNAs has been shown to be inversely correlated with HLA-G [21, 23]. In this study, we observed that lung biopsies from COVID-19-disease patients displaying increased HLA-G protein expression exhibit lower miR-744-5p and miR-152 expression levels suggesting a deregulated HLA-G-specific miRNA expression due to COVID-19 infection. However, further evaluations are required to identify the processes responsible for directly or indirectly leading to a down-regulation of these miRNAs as well as to understand why the other known HLA-G-regulating miRNAs are not inversely expressed.

Other mechanisms resulting in HLA-G neo-expression are related to the composition of the tissue microenvironment, in particular of immune-suppressive inflammatory cytokines, such as IL-10, TGF-β, and IFN-γ, which are able to upregulate and/or enhance HLA-G expression [83]. Therefore, analysis of cytokine secretion by the different immune cell subpopulations in the SARS-CoV-2-infected lungs might help to evaluate their role in HLA-G neo-expression and in the outcome of SARS-CoV-2-infected patients.

Conclusions

We here propose that HLA-G is a major player in the altered immunogenicity of SARS-CoV-2-infected lung epithelia. Thus, HLA-G might serve as prognostic marker and might also pave the way to develop HLA-G as therapeutic target for the treatment of COVID-19 infection by restoring the exhausted immune responses induced by HLA-G.
Acknowledgements We would like to thank Maria Heise and Nicole Ott for excellent secretarial help.

Author contributions BS designed and guided the project and concept and is responsible for the study. Material preparation, data collection including clinical parameters and analysis were performed by SJB, CM, AM, KB, BY, MB, PE, AH, DJ, CW and MB. The first draft of the manuscript was written by BS, MB, CM and SJB prepared the figure. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by the National University Medicine (NUM) network (Grant no. 01KX2121, BS and CW), the Deutsche Forschungsgemeinschaft (DFG JA 3192/1-1 and 496182670, both

Fig. 5 Clinical relevance of HLA-G expression and immune infiltration. HLA-G expression was correlated with the survival of SARS-CoV-2-infected patients (a) as well as to their histological pattern of acute interstitial pneumonia (b), whereas the frequencies of the different immune cell subpopulations were correlated only with survival (c-f), evaluated as the time from the first symptoms to death (< 7 days and > 7 days) or survival.
BS), DAAD GLACIER (BS), Land Sachsen-Anhalt (BS) and the Jack- stadt Foundation (SJB).

Data availability The datasets generated during and/or analyzed during the current study are not publicly available, since no repository exists, but are available from the corresponding authors.

Declarations

Conflict of interest The authors have declared that they have no relevant financial or non-financial interests to disclose.

Ethics approval The study was performed with the principles of the declaration of Helsinki. Approval was granted by the Ethics Committee of the Medical Faculty of the Martin Luther University of Halle-Wittenberg, Halle, Germany.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Rouas-Freiss N, Khalil-Daher I, Riteau B, Menier C, Paul P, Dausset J, Carosella ED (1999) The immunotolerance role of HLA-G. Semin Cancer Biol 9(1):3–12. https://doi.org/10.1006/scbi.1998.0103
2. Tronik-Le Roux D, Renard J, Verine J, Renault V, Tubacher E, LeMaoult J, Rouas-Freiss N, Deleuze JF, Desgrandschamps F, Carosella ED (2017) Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 11(11):1561–1578. https://doi.org/10.1002/1878-0261.12119
3. Lin A, Zhang X, Zhang RL, Zhang JG, Zhou WJ, Yan WH (2018) Clinical significance of potential unidentified HLA-G isoforms without alpha1 domain but containing intron 4 in colorectal cancer patients. Front Oncol 8:361. https://doi.org/10.3389/fonc.2018.00361
4. Rizzo R, Treniti A, Bortolotti D, Manfrinato MC, Rotola A, Castellazzi M, Melchiorri L, Di Luca D, Dallacchio F, Fainardi E, Bellini T (2013) Matrix metalloproteinase-2 (MMP-2) generates soluble HLA-G1 by cell surface proteolytic shedding. Mol Cell Biochem 381(1–2):243–255. https://doi.org/10.1007/s11010-013-1708-5
5. Liu L, Wang L, Zhao L, He C, Wang G (2020) The role of HLA-G in tumor escape: manipulating the phenotype and function of immune cells. Front Oncol 10:597468. https://doi.org/10.3389/fonc.2020.597468
6. Ho GT, Celik AA, Huyton T, Hiemisch W, Blasczyk R, Simper GS, Bade- Doeding C (2020) NKG2A/CD94 is a new immune receptor for HLA-G and distinguishes amino acid differences in the HLA-G heavy chain. Int J Mol Sci. https://doi.org/10.3390/ijms21124362
7. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J (2015) HLA-G: an immune checkpoint molecule. Adv Immunol 127:33–144. https://doi.org/10.1016/bs.ai.2015.04.001
8. Amodio G, de Albuquerque RS, Gregori S (2014) New insights into HLA-G mediated tolerance. Tissue Antigens 84(3):255–263. https://doi.org/10.1111/tan.12427
9. Xu X, Zhou Y, Wei H (2020) Roles of HLA-G in the maternal-fetal immune microenvironment. Front Immunol 11:592010. https://doi.org/10.3389/fimmu.2020.592010
10. Lin A, Yan WH (2019) Intracellular transfer of HLA-G: its potential in cancer immunology. Clin Transl Immunol 8(9):e1077. https://doi.org/10.1002/cit2.1077
11. Brown R, Kabani K, Favaloro J, Yang S, Ho PJ, Gibson J, Fromm P, Suen H, Woodland N, Nassif N, Hart D, Joshua D (2012) CD86+ or HLA-G+ can be transferred via trogocytosis from myeloma cells to T cells and are associated with poor prognosis. Blood 120(10):2055–2063. https://doi.org/10.1182/blood-2012-03-416792
12. Rebmann V, Konig L, Nardi Fda S, Wagner B, Manvailer LF, Horn PA (2016) The potential of HLA-G-bearing extracellular vesicles as a future element in HLA-G immune biology. Front Immunol 7:173. https://doi.org/10.3389/fimmu.2016.00173
13. Castelli EC, Veiga-Castelli LC, Yaghi L, Moreau P, Donadi EA (2014) Transcriptional and posttranscriptional regulations of the HLA-G gene. J Immunol Res 2014:734068. https://doi.org/10.1155/2014/734068
14. Jorgensen N, Sayed A, Jeppesen HB, Persson G, Weis dorf I, Funck T, Hvid TVP (2020) Characterization of HLA-G regulation and HLA expression in breast cancer and malignant melanoma cells upon IFN-gamma stimulation and inhibition of DNA methylation. Int J Mol Sci. https://doi.org/10.3390/ijms21124307
15. Bukur J, Rebmann V, Grosse-Wilde H, Luboldt H, Ruebben H, Drexler I, Sutter G, Huber C, Seliger B (2003) Functional role of human leukocyte antigen-G up-regulation in renal cell carcinoma. Cancer Res 63(14):4107–4111
16. Moreau P, Flajolet S, Carosella ED (2009) Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med 13(9B):2973–2989. https://doi.org/10.1111/j.1582-4934.2009.00800.x
17. Garziera M, Scarabel L, Toffoli G (2017) Hypoxic modulation of HLA-G expression through the metabolic sensor HIF-1 in human cancer cells. J Immunol Res 2017:4587520. https://doi.org/10.1155/2017/4587520
18. Moreau P, Mouillot G, Rousseau P, Marcou C, Dausset J, Carosella ED (2003) HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA 100(3):1191–1196. https://doi.org/10.1073/pnas.0337539100
19. Verloes A, Spits C, Verschueren M, Geens M, LeMaoult J, Sermon K, Coucke W, Van de Velde H (2017) The role of methylation, DNA polymorphisms and microRNAs on HLA-G expression in human embryonic stem cells. Stem Cell Res 19:118–127. https://doi.org/10.1016/j.scr.2017.01.005
20. Manaster I, Goldman-Wohl D, Greenfield C, Nachmani D, Tsukerman P, Hamani Y, Yagel S, Mandelboim O (2012) MiRNA-mediated control of HLA-G expression and function. PLoS ONE 7(3):e33395. https://doi.org/10.1371/journal.pone.0033395
21. Jasinski-Bergner S, Reches A, Stoehr C, Massa C, Gonschorke E, Hettemaier S, Braun J, Wach S, Ulrich B, Spath V, Wang E, Marincola FM, Mandelboim O, Hartmann A, Seliger B (2016) Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma. Oncotarget 7(18):26866–26878. https://doi.org/10.18632/oncotarget.8567
22. Jasinski-Bergner S, Stoehr C, Bukur J, Massa C, Braun J, Hettemaier S, Spath V, Wartenberg R, Legal W, Taubert H, Wach S, Ulrich B, Hartmann A, Seliger B (2015) Clinical relevance of miR-mediated HLA-G regulation and the associated immune...
cell infiltration in renal cell carcinoma. Oncoimmunology 4(6):e1008805. https://doi.org/10.1080/2162402X.2015.1008805

23. Friedrich M, Vaxevanis CK, Biehl K, Mueller A, Seliger B (2020) Targeting the coding sequence: opposing roles in regulating classical and non-classical MHC class I molecules by miR-16 and miR-744. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000396

24. Reches A, Nachmani D, Berhani O, Duev-Cohen A, Shreibman D, Ophir Y, Seliger B, Mandelboim O (2016) HNRPFP regulates the expression of classical and nonclassical MHC class I proteins. J Immunol 196(12):4967–4976. https://doi.org/10.4049/jimmunol.1501550

25. Song B, Guan Z, Liu F, Sun D, Wang K, Qu H (2015) Long non-coding RNA HOTAIR promotes HLA-G expression via inhibiting miR-152 in gastric cancer cells. Biochem Biophys Res Commun 464(3):807–813. https://doi.org/10.1016/j.bbrc.2015.07.040

26. Shih Ie M (2007) Application of human leukocyte antigen-G expression in the diagnosis of human cancer. Hum Immunol 68(4):272–276. https://doi.org/10.1016/j.humimm.2007.01.010

27. Torun Edis C, Yagci Caglayik D, Uyar Y, Korukluoglu G, Ertek B. Seliger et al. Page 14 of 16 582

28. Catamo E, Zuipin L, Crovella S, Celsi F, Segat L (2014) Non-classical MHC-I human leukocyte antigen (HLA-G) in hepatotropic viral infections and in hepatocellular carcinoma. Hum Immunol 75(12):1225–1231. https://doi.org/10.1016/j.humimm.2014.09.019

29. Amiot L, Vu N, Samson M (2014) Immunomodulatory properties of HLA-G in infectious diseases. J Immunol Res 2014:298569. https://doi.org/10.1155/2014/298569

30. Huang YH, Zozulya AL, Weidenfeller C, Metz I, Buck D, Toya KV, Bruck W, Wiendl H (2009) Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis. Ann Neurol 66(2):171–183. https://doi.org/10.1002/ana.21705

31. White SR, Loisel DA, Stern R, Laxman B, Floreth T, Marroqui BA (2013) Human leukocyte antigen-G expression in differentiated human airway epithelial cells: lack of modulation by Th2-associated cytokines. Respir Res 14:4. https://doi.org/10.1186/1465-9921-14-4

32. Xu HH, Yan WH, Lin A (2020) The role of HLA-G in human papillomavirus infections and cervical carcinogenesis. Front Immunol 11:1349. https://doi.org/10.3389/fimmu.2020.01349

33. Dong DD, Yang H, Li K, Xu G, Song LH, Fan XL, Jiang XL, Yie Hiraoka N, Ino Y, Horis S, Yamazaki-Itoh R, Naito C, Shimasaki H, et al. (2021) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

34. Souza DM, Genre J, Silva TG, Soares CP, Rocha KB, Oliveira CN, Donadi EA, Courtin D (2018) The role of HLA-G in parasitic diseases. HLA 91(4):255–270. https://doi.org/10.1111/tan.13196

35. Sabbagh A, Sonon P, Sadissou I, Mendes-Junior CT, Garcia A, Donadi EA, Courtin D (2018) The role of HLA-G in parasitic diseases. J Immunol 201(1):782–791. https://doi.org/10.2119/molmed.2015.00083

36. Lin A, Yan WH (2015) Human leukocyte antigen-G (HLA-G) expression in cancers: roles in immune evasion, metastasis and target for therapy. Mol Med 21(1):782–791. https://doi.org/10.2119/molmed.2015.00083

37. Bortolotti D, Bocci V, Forni G, Sciaccia G, Giannella V, Marchesi V, et al. (2020) Targeting the coding sequence: opposing roles in regulating classical and non-classical MHC class I antigens, HLA-E and HLA-G, is adversely prognostic in pancreatic cancer patients. Cancer Sci 111(8):3057–3070. https://doi.org/10.1111/cas.14514

38. Xu HH, Gan J, Xu DP, Li L, Yan WH (2021) Comprehensive transcriptomic analysis reveals the role of the immune checkpoint HLA-G molecule in cancers. Front Immunol 12:614773. https://doi.org/10.3389/fimmu.2021.614773

39. Wuerfel FM, Huebner H, Haberer L, Gass P, Hein A, Jud SM, Hack CC, Wunderle M, Schulz-Wendtland R, Erber R, Hartmann A, Ekici AB, Beckmann MW, Fasching PA, Huebner M (2020) HLA-G and HLA-F protein isoform expression in breast cancer patients receiving neoadjuvant treatment. Sci Rep 10(1):15750. https://doi.org/10.1038/s41598-020-72837-3

40. Lazaro-Sanchez AD, Salces-Ortiz P, Velasquez LI, Orozco-Beltran D, Diaz-Fernandez N, Juarez-Marroqui A (2020) HLA-G as a new tumor biomarker: detection of soluble isoforms of HLA-G in the serum and saliva of patients with colorectal cancer. Clin Transl Oncol 22(7):1166–1171. https://doi.org/10.1007/s12094-019-02244-2

41. Rizzo R, Gabrielli L, Bortolotti D, Gentili V, Piccirilli G, Chiereghin A, Pavia C, Bolzani S, Guerra B, Simonazzi G, Cervi F, Capretti MG, Fainardi E, Luca DD, Landini MP, Lazzarotto T (2016) Study of soluble HLA-G in congenital human cytomegalovirus infection. J Immunol Res 2016:3890306. https://doi.org/10.1155/2016/3890306

42. Park Y, Park Y, Lim HS, Kim YS, Hong DJ, Kim HS (2012) Soluble human leukocyte antigen-G expression in hepatitis B virus infection and hepatitis carcinoma. Tissue Antigens 79(2):97–103. https://doi.org/10.1111/j.1399-0039.2011.01814.x

43. Bertol BC, de Araujo JNG, Sadissou IA, Sonon P, Dias FC, Borton RH, de Figueiredo-Feitosa NL, de Freitas LCC, de Miranda Henrique SR, de Tarrac CC, Oliveira Ramos AD, de Luchessi J, Freitas LMZ, Maciel VN, Silbiger and E. et al. Donadi, (2020) Plasma levels of soluble HLA-G and cytokines in papillary thyroid cancer before and after thyroidectomy. Int J Clin Pract 74(10):13585. https://doi.org/10.1111/ijcp.13585

44. Ben Yahia H, Babay W, Bortolotti D, Boujelbene N, Laaribi AB, Zidi N, Kehila M, Chelbi H, Boudabous A, Mard K, Mezlini A, Di Luca D, Ouzari H, Rizzo R, Zidi I (2018) Increased plasmonic soluble HLA-G levels in endometrial cancer. Mol Immunol 99:82–86. https://doi.org/10.1016/j.molimm.2018.04.007

45. Scarabel L, Garziera M, Fortuna S, Asaro F, Toffoli G, Geremia S (2020) Soluble HLA-G expression levels and HLA-G/irinotecan association in metastatic colorectal cancer treated with irinotecan-based strategy. Sci Rep 10(1):8773. https://doi.org/10.1038/s41598-020-65424-2

46. Konig L, Kasmir-Bauer S, Hoffmann O, Bittner AK, Wagner B, Manvailer LF, Schramm S, Bankfalvi A, Giebel B, Kimmig R, Horn PA, Rebmann V (2016) The prognostic impact of soluble and vesicular HLA-G and its relationship to circulating tumor cells in neoadjuvant treated breast cancer patients. Hum Immunol 77(9):791–799. https://doi.org/10.1016/j.humimm.2016.01.002

47. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterisation and transcriptomic analysis reveals the role of the immune checkpoint HLA-G molecule in cancers. Front Immunol 12:614773. https://doi.org/10.3389/fimmu.2021.614773

48. Xu HH, Shi WW, Lin A, Yan WH (2014) HLA-G 3’ untranslated region polymorphisms influence the susceptibility for human papillomavirus infection. J Immunol Res 2016:3890306. https://doi.org/10.1155/2016/3890306
novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323(11):1061–1069. https://doi.org/10.1001/jama.2020.1585

50. Ziegler CGK, Allon SJ, Nyquist SK, Mbanoo IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mafee MD, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucro JMS, Taylor CJ, Lin B, Waghray A, Mitsialis V, Dwyer DF, Buchheit KM, Boyce JA, Barrett NA, Laidlaw TM, Carroll SL, Colonna L, Tkachev V, Peterson CW, Yu A, Zheng HB, Gideon HP, Winchell CG, Lin PL, Bingle CD, Snapper SB, Kropski JA, Theis FJ, Schiller HB, Zaragosi LE, Barbry P, Leslie A, Kiem HP, Flynn JL, Fortune SM, Berger B, Finberg RW, Keen LS, Garber M, Schmidt AG, Lingwood D, Shalek AK, Orlovavas-Montanes J, H. C. A. L. B. Network (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181(5):1016–1035. https://doi.org/10.1016/j.cell.2020.04.035

51. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellington MK, Mao T, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu P, Venkataraman A, Park A, Mohanty S, Wang H, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A, Yale IT, Herbst R, Shaw AC, Medzhitov R, Schulz WL, Grubaugh ND, Dela Cruz C, Farhadian S, Ko AF, Ober EM, Isakwa AS (2020) Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584(7821):463–469. https://doi.org/10.1038/s41586-020-2588-y

52. Park J, Foxx J, Hether T, Danko D, Warren S, Kim Y, Reeves J, Butler DJ, Mozsary C, Rosienne J, Shaiber A, Afshinnekoo E, MacKay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AJ, Kay M, Bram Y, Chandar V, Geiger H, Craney A, Velu
68. McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495. https://doi.org/10.1146/annurev-immunol-041015-055318
69. Rashidi S, Farhadi L, Ghasemi F, Sheikhsemaeli F, Mohammadi A (2020) The potential role of HLA-G in the pathogenesis of HBV infection: Immunosuppressive or immunoprotective? Infect Genet Evol 85:104580. https://doi.org/10.1016/j.meegid.2020.104580
70. Schust DJ, Tortorella D, Ploegh HL (1999) HLA-G and HLA-C at the feto-maternal interface: lessons learned from pathogenic viruses. Semin Cancer Biol 9(1):37–46. https://doi.org/10.1016/s0952-3282(99)00106-X
71. Choreno-Parra JA, Jimenez-Alvarez LA, Cruz-Lagunas A, Rodriguez-Reyna TS, Ramirez-Martinez G, Sandoval-Vega M, Hernandez-Garcia DL, Choreno-Parra EM, Balderas-Martinez YI, Martinez-Sanchez ME, Marquez-Garcia E, Sciutto E, Moreno-Rodriguez J, Barreto-Rodriguez JO, Vazquez-Rojas H, Centeno-Saenz GI, Alvarado-Pena N, Salinas-Carache Garcia, Caribay C, Galeana-Cadena D, Hernandez G, Mendoza-Milla C, Dominguez A, Granados J, Mena-Hernandez L, Perez-Buenfil LA, Dominguez-Cherit G, Cabello-Gutierrez C, Luna-Rivero C, Salas-Hernandez J, Santillan-Doherty EA, Hernandez-Cardenas CM, Khader SA, Zlotnik A, Zuniga J (2021) Clinical and immunological factors that distinguish COVID-19 from pandemic influenza A(H1N1). Front Immunol 12:593595. https://doi.org/10.3389/fimmu.2021.593595
72. Schuurman AR, Reijnders TDY, Saris A, Ramirez Moral I, Schinkel M, de Brabander J, van Linge C, Vermeulen L, Siciliana BP, Wiersinga WJ, Vieira Braga FA, van der Poll T (2021) Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia. Elife. https://doi.org/10.7554/eLife.69661
73. Schulte-Schrepping J, Reusch N, Paclik D, Bassler K, Schlickeiser KM, Vinh MT, Rieke G, Meisel C, Ulas T, Becker M, Geffers R, Wastowski IJ, Simoes RT, Baghi HB (2021) COVID-19 is marked by a dysregulated myeloid cell compartment. Nature 591(7848):92–98. https://doi.org/10.1038/s41586-021-01152-y
74. Alexander A, Schulte-Schrepping J, Haro A, Scharrer L, Han M, Lizcano C, Schuchman EM, Kuchroo VK, Hafler DA (2022) Type I interferon transcriptional network regulates expression of co-inhibitory receptors in human T cells. Nat Immunol 23(4):632–642. https://doi.org/10.1038/s41590-021-01152-y
75. Suryanarayanan R, Bashir R, Aghbash PS, Baghi HB, Xu CJ, Horne A, Herbert M, Drews A, Aghbash PS, Eslami N, Shamekh A, Entezari-Maleki T, Baghi HB (2021) SARS-CoV-2 infection: the role of PD-1/PD-1-L and CTLA-4 axis. Life Sci 270:119124. https://doi.org/10.1016/j.lfs.2021.119124
76. Aghbash PS, Elsamal N, Shamekh A, Entezari-Maleki T, Baghi HB (2021) SARS-CoV-2 infection: the role of PD-1/PD-1-L and CTLA-4 axis. Life Sci 270:119124. https://doi.org/10.1016/j.lfs.2021.119124
77. Reches A, Kuroki K, Rasubala L, Tsumoto K, Kumagai I, Kuroki K, Rasubala L, Tsumoto K, Kumagai I, Kuri-moto E, Kato K, Kohda D, Maenaka K (2006) Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d). Proc Natl Acad Sci USA 103(44):16412–16417. https://doi.org/10.1073/pnas.0605228103
78. B. Investigators (2021) Genetic mechanisms of critical illness in severe COVID-19. Nature 591(7848):92–98. https://doi.org/10.1038/s41586-021-01152-y
79. Westin AT, Gardinassi LG, Soares EG, Da Silva JS, Donadi EA, Da Silva Souza C (2022) HLA-G, cytokines, and cytokine receptors in the non-aggressive basal cell carcinoma microenvironment. Arch Dermatol Res 314(3):247–256. https://doi.org/10.1007/s00403-021-2218-x

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.