Synthesis of Bicyclic Hemiacetals Catalyzed by Unnatural Densely Substituted γ-Dipeptides

Maddalen Agirre,†‡,§ Tamara Bello,†‡,# Jinxiu Zhou,†,§,† María de Gracia Retamosa,▲⁻,◊* and Fernando P. Cossío†⁻,◊,*

†Departamento de Química Orgánica I, University of the Basque Country (UPV/EHU), Pº Manuel Lardizabal 3, 20018 Donostia/San Sebastián, Spain.
§CIC Energigune, Parque Tecnológico de Álava, 01510, Vitoria-Gasteiz, Spain.
#Quimatrux Ltd. Parque Tecnológico de Gipuzkoa, 2009 San Sebastián-Donostia, Spain.
▲Department of Polymer Science and Technology, Institute of Polymer Materials, University of the Basque Country UPV/EHU, Pº Manuel Lardizabal 3, 20018 Donostia/San Sebastian, Spain.
§Departmento de Síntesis Orgánica y Departamento de Química Orgánica, Universidad de Alicante 03080-Alicante, Spain.
▲Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
▲Donostia International Physics Center (DIPC), Pº Manuel Lardizabal 4, 20018 Donostia/San Sebastián, Spain.

*These authors contributed equally to this work.

Supporting Information
TABLE OF CONTENTS

1 General Remarks.. S3

2 Procedure for the synthesis of NO$_2$-X$_L$-Gly-OMe 14 organocatalyst S4

3 Screening of different organocatalysts based on proline derivatives for the Michael Addition Reaction ... S4

4 General Procedure for the One-pot Michael-Henry-Acetalization Reaction S6

4.1 Screening of different chiral organocatalysts based on primary amines S6

4.2 Procedure for the synthesis of 10aaa at the 5 mmol scale ... S7

4.3 Isomerization Reaction for the Synthesis of 10aad’ ... S7

4.4 Studies with Other Cyclic Ketones .. S8

5 NMR spectra... S28

6 X-Ray diffraction structures... S57

6.1 X-Ray diffraction of 10aaa (CCDC 2090677) ... S57

6.2 X-Ray diffraction of 10aaa’ (CCDC 2090834) ... S59

7 Computational studies.. S60

7.1 Michael-Henry-Hemiketalization Reaction .. S60

7.2 Isomerization Reaction .. S62

8 References ... S80
1 General Remarks

Unless otherwise noted, reagents (6, 7 and 8) and organocatalysts 11-13, 15 and 16 were purchased from commercial suppliers. Nitrodiene 7i and aldehyde 8f were prepared according to literature. Catalysts NO$_2$-X$_L$-1, NH$_2$-X$_L$-2, X$_L$X$_L$-3, X$_L$X$_L$-4, X$_L$X$_L$Me-5, were prepared following our previously described procedures. 3,4,5,6

TLC was performed on 0.25mm silica gel 60 F254 aluminum plates and visualized with UV lamps or potassium permanganate stain. Flash column chromatography was carried out on columns of silica gel 60 (particle size 23-40 μm).

Optical rotations were measured at 589 nm (Sodium line) in a digital polarimeter with a thermally jacketed 5 cm cell at approximately 20 °C. Concentrations are given in g/100 mL.

Infrared spectra were recorded on an Alpha-Bruker FT-IR spectrometer with a single reflection ATR module. Wavenumbers are given in cm$^{-1}$.

High Resolution Mass Spectra (HRMS) analyses were carried out by SGiker services (Central Service of Alava and Bizkaia, University of the Basque Country) and performed on a LC/QTOF, Agilent mass spectrometer using electrospray ionization (ESI) mode.

NMR spectra were recorded at 400 or 500 MHz for 1H NMR, 101 or 126 MHz for 13C NMR and 376 MHz for 19F NMR using CDCl$_3$, acetone-d_6 and methanol-d_4 as solvents and TMS as internal standard. The data are reported as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, bs = broad signal, coupling constant(s) (J) in Hz, integration. 13C NMR spectra were recorded with 1H decoupling. Structural assignments were made with additional information from gCOSY, gHSQC, and gHMBC experiments.

Enantioselectivities were measured by HPLC using chiral stationary phases (Daicel Chiralpak IA/IB/IC/ID). In these experiments the racemic mixtures were analysed in order to establish the enantiomeric parameters of each enantiomer.

For X-Ray diffraction analyses, Agilent Technologies Super-Nova diffractometer was employed, equipped with monochromated Cu kα radiation ($\lambda = 1.54184$ Å) and Atlas CCD detector. Measurements were accomplished at 100 K with the aid of an Oxford Cryostream 700 PLUS temperature device. Data frames were processed (united cell determination, analytical absorption correction with face indexing, intensity data integration and correction for Lorentz and polarization effects) utilizing the Crysalis software package. 7 The structure was solved by Superflip and refined by full-matrix least-squares with SHELXL-97. Final
geometrical calculations were carried out on Mercury10 and PLATON11 as integrated in WinGX12. Samples were prepared by heating a solution of the compound in a xx yy, followed by slow evaporation.

2 Procedure for the synthesis of NO$_2$-X$_L$-Gly-OMe 14 organocatalyst

Catalysts NO$_2$-X$_L$-Gly-OMe 14 was prepared following our previously described procedures3,4,5,6. To a stirred solution of the corresponding amine (0.8 mmol) in CH$_2$Cl$_2$ (10 mL) was added acid (1.0 mmol), PyBOP (1.0 mmol) and disopropyl ethyl amine (1.4 mmol). The resulting mixture was then stirred until completion of the reaction. Then, the reaction mixture was diluted with CH$_2$Cl$_2$, washed with a 1M HCl solution, saturated aqueous NaHCO$_3$, brine and then dried over Na$_2$SO$_4$. Evaporation of the solvent followed by column chromatography eluting with EtOAc/hexane provided the product described below.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\includegraphics[width=0.5\textwidth]{methyl2-((2S,3S,4R,5S)-4-nitro-3,5-diphenylpyrrolidine-2-carboxamido)acetate (NO$_2$-X$_L$-Gly-OMe 14)}; \end{tikzpicture}
\end{center}

Yield: 72 mg, 85%, yellow syrup; [α]\textsubscript{D} = +86.07 (c 1.15, acetone);

\textbf{FTIR} (neat, cm$^{-1}$): 1744, 1666, 1546, 1208, 698; 1H NMR (500 MHz, CDCl$_3$) δ 7.57 (d, J = 7.3 Hz, 2H, ArH), 7.46 (dd, J = 21.7, 14.7 Hz, 2H, ArH), 7.39 (dd, J = 16.2, 9.0 Hz, 1H, ArH), 7.31 – 7.23 (m, 3H, ArH), 7.23 – 7.18 (m, 2H, ArH), 7.01 (m, 1H, CONH), 5.16 (t, J = 7.7 Hz, 1H, C$_4$H), 4.85 (d, J = 7.9 Hz, 1H, C$_5$H), 4.44 (d, J = 9.5 Hz, 1H, C$_3$H), 4.41 – 4.32 (dd, J = 9.4, 7.6 Hz, 1H, C$_3$H), 3.73 (dd, J = 18.3, 5.2 Hz, 1H, CH$_2$), 3.72 (s, 3H, CO$_2$Me), 3.61 (dd, J = 18.5, 5.0 Hz, 1H, CH$_2$); 13C NMR (101 MHz, CDCl$_3$) δ 170.2, 170.0, 137.0, 137.0, 135.7, 129.2, 129.1, 128.6, 128.4, 128.2, 126.8, 95.2, 66.6, 64.5, 53.1, 52.4, 40.6; HRMS (ESI) m/z: [M + H]$^+$
Calc for C$_{20}$H$_{22}$N$_2$O$_5$ 384.1559. Found: 384.1567.

3 Screening of different organocatalysts based on proline derivatives for the Michael Addition Reaction

Based on previous studies of our research group6 we evaluated different proline derivative organocatalysts in the Michael reaction between cyclohexanone 6a and nitrostyrene 7a in the presence of benzoic acid as additive. The obtained results are shown in Table S1. Reactions were performed under neat conditions using cyclohexanone 6a (0.8 mmol), trans-β-nitrostyrene 7a (0.1 mmol) in presence of the corresponding catalyst (0.03 mmol) and benzoic acid (0.03 mmol).
Under these conditions, L-proline 11 was not very efficient and a low conversion was observed after one day of reaction (Table S1, entry 1). It is interesting to note that Enders and Seki13 observed, under different conditions, medium-low ee’s in the Michael reaction between 6a and 7a (18-57%). Similarly, D-prolinol derivative 12 showed low catalytic activity (Table S1, entry 2). Pro-Gly dimer 13 was moderately efficient in the presence of benzoic acid (Table S1, entry 4). However, no noticeable ee was observed. The α–dipeptide X-L-Gly-OH 14 also showed moderate catalytic activity and a modest ee (Table S1, entry 5). These results show the suitability of γ–depeptides 3 and 4 for the Michael-Henry-hemiketalization reaction discussed in this study.

Table S1. Michael reaction between cyclohexanone 6a and trans-β-nitrostyrene 7a catalyzed by proline derivatives 11-14.a

Entry	Catalyst	Time (d)	Convb (%)	syn:antic	Yieldd (%)	eee (%)
1	11	1	57	ndf	nd	nd
2	12	3	<10%	nd	nd	nd
3f	13	7	22	nd	nd	nd
4	13	7	72	87:13	45	0
5	14	7	74	78:22	38	66

aReactions were conducted under neat conditions using cyclohexanone 6a (0.8 mmol), trans-β-nitrostyrene 7a (0.1 mmol) in the presence of the corresponding catalyst (0.03 mmol) and benzoic acid (0.03 mmol). bConversions to 8aa were measured by 1H NMR of crude reaction mixtures. cSyn:anti ratio was measured by 1H NMR of crude reaction mixtures. dYields refer to isolated pure
Michael adducts. Enantiomeric excesses measured by HPLC correspond to the major syn-diastereomer $(2R,1'S)$-8aa. *nd: not determined because of very low values and/or conversions. $^\circ$The reaction was performed in the absence of PhCO$_2$H. $^\circ$Unreacted 7a was present in the reaction mixture.

4 General Procedure for the One-pot Michael-Henry-Acetalization Reaction

A reaction mixture of X_L-X_LMe-OMe-4 (121.0 mg, 0.2 mmol, 0.2 eq.), acid derivative (0.2 mmol, 0.2 eq.), ketone 6a-c (1 mmol, 1.0 eq.) and nitroolefins 7a-i (1.1 mmol, 1.1 eq.) in 550 μL of DCM was stirred at room temperature until total consumption of the nitroalkene. This step could be monitored by NMR analysis of reaction mixtures, according to our previously described characterization of Michael adducts obtained via monomeric and dimeric species (see refs. 17 and 18 of the main text). Then, the corresponding aldehyde 8a-f (2.0 mmol, 2 eq.) and triethylamine (30 μL, 0.2 mmol, 0.2 eq.) were successively added and the resulting reaction mixture was allowed to stir at the indicated temperature until total consumption of the intermediate γ-nitroketone. Afterwards, the crude mixture was evaporated under reduced pressure and purified by flash column chromatography on silica gel (check each compound for conditions). For the racemic compounds, the reactions were carried out using pyrrolidine (80 μL, 1.0 mmol, 1 eq.).

4.1 Screening of different chiral organocatalysts based on primary amines

The catalytic activities of quinidine derivative 15 and bifunctional amine-thiourea 16 were investigated. In both cases, the Michael step required 10 days to achieve less than 30% conversion. Then, ethyl glyoxylate (2 eq.) and triethylamine (0.2 eq) were added and the resulting reaction mixture was allowed to stir at room temperature for 1 day. The final product 10aaa could not be distinguished in the reaction crude and the enantiomeric excess could not be determined in any case (Scheme S1).
Scheme S1. Unsuccessful screening of organocatalyst 15 and 16.

4.2 Procedure for the synthesis of 10aaa at the 5 mmol scale

A reaction mixture of X-L-XL-Me-OMe-4 (302.5 mg, 1 mmol, 0.1 eq.), salicylic acid (XX mg, 0.2 mmol, 0.2 eq.), ketone 6a (5 mmol, 1.0 eq.) and nitroolefins 7a (5.0 mmol, 1.0 eq.) in 2.75 mL of DCM was stirred 3 days at room temperature until total consumption of the nitroalkene. This step could be monitored by NMR analysis of reaction mixtures, according to our previously described characterization of Michael adducts obtained via monomeric and dimeric species (see refs. 17 and 18 of the main text). Then triethylamine (140 μL, 1.0 mmol, 0.2 eq.) and the freshly distilled ethyl glyoxylate 8a (10.0 mmol, 2.0 eq.) were successively added and the resulting reaction mixture was allowed to stir at room temperature 1 day. Afterwards, the crude mixture was evaporated under reduced pressure and purified by flash column chromatography on silica gel (1:2 EtOAc:Hexane mixture) to provided 10aaa (838 mg, 48%).

4.3 Isomerization Reaction for the Synthesis of 10aad’

A reaction mixture of 10aad (343 mg, 1 mmol, 1 eq.) and DBU (150μL, 1 mmol, 1 eq.) in acetonitrile was stirred at room temperature for 16h. Then, the crude mixture was
evaporated under reduced pressure and purified by flash column chromatography on silica gel (1:2 EtOAc:Hexane mixture) to provided 10aad' (234 mg, 68%).

4.4 Studies with Other Cyclic Ketones

After optimizing the reaction conditions, the scope of this process was investigated employing other cyclic ketones. Unfortunately, the reaction presented some restrictions regarding the nature of the nucleophiles. For instance, when tetrahydro-4H-pyran-4-one 6d and cyclohexane-1,3-dione 6e were selected as starting materials, no formation of the intermediate Michael adducts was observed in the presence of salicylic acid (Scheme S2). Changing the acidic additive into TFA did not still show any formation of the Michael adduct. In contrast, when cyclopentanone 6f was employed as precursor of the corresponding nucleophilic enamine species, complex mixtures of diastereomeric adducts 10faa and Michael intermediate syn-9fa were observed (Scheme S2). "H-NMR spectra of the crude reaction mixtures obtained in different experiments showed that previously characterized syn Michael adduct 9fa and different diastereomers of cyclized product 10faa were formed in a ca. 40:60 ratio. Analyses of the intermediate Michael adducts showed a transient 85:15 ratio of the syn and anti diastereomers of 9fa, from which the different isomers of 10faa, together with an unreacted amount of syn-9fa were finally observed in low yield as an inseparable mixture. Therefore, we concluded that cyclopentanone 6f is not a suitable substrate for this reaction.

Scheme S2. Unsuccessful Michael-Henry-acetalization reactions using ketones 6d-f.
Our attempts turned successful when cycloheptanone 6b and 1,4-cyclohexanedione monoethylene acetal 6c were chosen as starting materials. However, small changes were necessary for the proper synthesis of the corresponding derivatives.

Derivative 10baa demanded equimolar amounts of Et₃N for the total consumption of the γ-nitroketone intermediate. Longer reaction times related to catalytic equivalents resulted in a severe decrease in yield. It should be mentioned that the final product was achieved in moderate yield and excellent enantioselectivities, but in a 92:8 mixture of non-separable diastereomers. Such proportion could be explained by the cyclization of both the syn- and anti- Michael adducts.

In the case of the synthesis of 10caa, the Michael step required 7 days to reach full conversion. The following Henry-acetalization step, on the contrary, was completed in 1 hour. Hence, catalyst O₂N-X₅-X₅-Me-O-Me-4 provided the desired 10caa product as a single diastereomer in 62% yield and 89% of enantiomeric excess.

Ethyl (2S,3R,4S,4aR,8aS)-8a-hydroxy-3-nitro-4-phenyloctahydro-2H-chromene-2-carboxylate (10aaa). The title product was obtained from cyclohexanone 6a, trans-β-nitrostyrene 7a and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 72% (251 mg, 0.72 mmol), white solid. m_p = 169-171 °C. [α]_D^{25} = +52.63 (c 0.95, chloroform). FTIR (neat, cm⁻¹) 3507, 1756, 1545, 1313. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 7.4 Hz, 3H, ArH), 7.13 (d, J = 7.3 Hz, 2H, ArH), 5.14 (d, J = 3.0 Hz, 1H, C₉H), 5.12 (d, J = 4.4 Hz, 1H, C₈H), 4.33 – 4.13 (m, 2H, CH₂CH₃), 3.52 (dd, J = 12.5, 4.8 Hz, 1H, C⁷H), 2.61 (td, J = 12.2, 3.3 Hz, 1H, C⁶H), 2.09 – 1.97 (m, 2H, CH₂, OH), 1.95 (s, 1H, CH₂), 1.78 (d, J = 13.7 Hz, 1H, CH₂), 1.74 – 1.60 (m, 2H, CH₂), 1.39 (d, J = 14.4 Hz, 1H, CH₂), 1.23 (t, J = 7.2 Hz, 3H, CH₂CH₃), 1.18 – 0.98 (m, 1H, CH₂), 0.92 – 0.79 (m, 1H, CH₂). ¹³C{H} NMR (101 MHz, CDCl₃) δ 167.7 (C=O), 136.2 (ArC), 129.1 (ArC), 128.3 (ArC), 128.2 (ArC), 98.1 (C¹), 86.9 (C⁸), 69.3 (C⁹), 62.3 (CH₂CH₃), 44.1 (C⁷), 38.9 (C⁸), 38.5 (CH₂), 26.2 (CH₂), 25.6 (CH₂), 23.1 (CH₂), 14.1 (CH₂CH₃). HRMS (ESI) m/z: [M+H]^+ Calcd for C₁₈H₂₄NO₆ 350.1603; Found 350.1605. HPLC (Chiralpak IA, Hexane:iPrOH = 95:5, flow rate 1 mL/min, λ = 210 nm), t_R (major) = 21.56 min, t_R (minor) = 31.23 min; ee = 99%.
	RT	Height	Area	% Area
1	21.560	772486	70549380	50.95
2	31.230	546319	67923484	49.05

	RT	Height	Area	% Area
1	24.054	932234	74986663	100.0
2				

Ethyl (2S,3S,4S,4aR,8aS)-8a-hydroxy-3-nitro-4-phenyloctahydro-2H-chromene-2-carboxylate (10aa`). The title product was obtained from cyclohexanone 6a, trans-β-nitrostyrene 7a and ethyl glyoxylate 8a employing salicylic acid as additive and 1 equivalent of DBU. Purified on 1:2 EtOAc:Hexane mixture. Yield 65% (226 mg, 0.65 mmol), white solid.

m.p. = 137-139 °C. [α]$_D^{25}$ = -18.28 (c 0.90, chloroform). FTIR (neat, cm$^{-1}$) 3471, 1739, 1550, 1373. 1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.23 (m, 3H, ArH), 7.18 (d, J = 21.5 Hz, 2H, ArH), 5.20 (d, J = 10.3 Hz, 1H, C9H), 4.88 (dd, J = 11.3, 10.3 Hz, 1H, C8H), 4.34 – 4.09 (m, 2H, CH$_2$CH$_3$), 3.54 (t, J = 11.6 Hz, 1H, C7H), 2.25 (d, J = 1.7 Hz, 1H, OH), 1.94 – 1.68 (m, 4H, C6H, CH$_2$), 1.66 (m, 1H, CH$_2$), 1.62 – 1.52 (m, 1H, CH$_2$), 1.25 (t, J = 7.2 Hz, 3H, CH$_2$CH$_2$), 1.22 – 1.05 (m, 3H, CH$_2$). 13C{H} NMR (101 MHz, CDCl$_3$) δ 168.4 (C=O), 136.6 (ArC), 129.2 (ArC), 128.2 (ArC), 97.7 (C1), 89.0 (C8), 70.2 (C9), 62.4 (CH$_2$CH$_3$), 46.7 (C7), 46.4 (C6), 38.3 (CH$_2$), 26.2 (CH$_2$), 25.5 (CH$_2$), 23.0 (CH$_2$), 14.0 (CH$_2$CH$_3$). HRMS (ESI) m/z: [M+H]$^+$ Calcd for C$_{18}$H$_{24}$NO$_3$ 350.1603; Found 350.1605. HPLC (Chiralpak IC, Hexane:iPrOH = 95:5, flow rate 1 mL/min, λ = 210 nm), t_R (minor) = 14.87 min, t_R (major) = 24.39 min; ee = 98%.
Ethyl (2S,3R,4S,4aR,8aS)-8a-hydroxy-4-(4-methoxyphenyl)-3-nitrooctahydro-2H-chromene-2-carboxylate (10aba). The title product was obtained from cyclohexanone 6a, trans-4-methoxy-β-nitrostyrene 7b and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 65% (247 mg, 0.65 mmol), pale brown solid. m.p. = 166-168 °C. [α]D25 = +57.84 (c 0.75, chloroform). FTIR (neat, cm⁻¹) 3460, 2939, 1754, 1548, 1514, 1249. ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 6.98 (m, 2H, ArH), 6.85 (d, J = 8.6 Hz, 2H, ArH), 5.12 (d, J = 3.2 Hz, 1H, C⁹H), 5.08 (dd, J = 4.9, 3.2 Hz, 1H, C⁸H), 4.32 – 4.22 (m, 1H, C₂H₂CH₃), 4.22 – 4.13 (m, 1H, C₂H₂CH₃), 3.78 (s, 3H, OCH₃), 3.46 (dd, J = 12.5, 4.8 Hz, 1H, C⁷H), 2.55 (td, J = 12.4, 3.2 Hz, 1H, C⁶H), 2.22 (bs, 1H, OH), 2.04 – 1.87 (m, 2H, CH₂), 1.83 – 1.73 (m, 1H, CH₂), 1.71 – 1.54 (m, 2H, CH₂), 1.42 – 1.35 (m, 1H, CH₂), 1.31 (dt, J = 12.9, 4.0 Hz, 1H, CH₂), 1.23 (t, J = 7.1 Hz, 3H, CH₂CH₃), 1.08 (qd, J = 12.6, 3.4 Hz, 1H, CH₂). ¹³C{H} NMR (126 MHz, CDCl₃) δ 167.7, 159.3, 129.3, 128.2, 114.5, 98.1, 87.2, 69.3, 62.3, 55.3, 43.28, 39.2, 38.5, 26.2, 25.7, 23.1, 14.1. HRMS (ESI) m/z [M+Na]+ Calcd for C₁₉H₂₅NO₇Na 402.1521; Found 402.1514. HPLC (Chiralpak IA, Hexane:iPrOH = 95:5, flow rate 1 mL/min, λ = 210 nm), tᵣ (major) = 29.22 min, tᵣ (minor) = 45.97 min, ee = 96%.
Ethyl (2S,3R,4S,4aR,8aS)-4-(4-fluorophenyl)-8a-hydroxy-3-nitrooctahydro-2H-chromene-2-carboxylate (10aca). The title product was obtained from cyclohexanone 6a, trans-4-fluoro-β-nitrostyrene 7c and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 62% (228 mg, 0.62 mmol), white solid.

\[m_p = 179-181 \, ^\circ \text{C}. \quad [\alpha]_D^{25} = +57.03 \, (c \, 0.42, \text{chloroform}). \]

FTIR (neat, cm\(^{-1}\))
3483, 2937, 1747, 1548, 1225.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.13 – 7.06 (m, 2H, ArH), 7.02 (t, \(J = 8.6 \, \text{Hz}, 2\text{H}, \text{ArH}\)), 5.13 (d, \(J = 3.1 \, \text{Hz}, 1\text{H}, \text{C}^9\text{H}\)), 5.08 (dd, \(J = 4.8, 3.2 \, \text{Hz}, 1\text{H}, \text{C}^6\text{H}\)), 4.27 (dq, \(J = 10.7, 7.1 \, \text{Hz}, 1\text{H}, \text{CH}_2\text{CH}_3\)), 4.19 (dq, \(J = 10.8, 7.1 \, \text{Hz}, 1\text{H}, \text{CH}_2\text{CH}_3\)), 3.51 (dd, \(J = 12.5, 4.8 \, \text{Hz}, 1\text{H}, \text{C}^7\text{H}\)), 2.55 (tdd, \(J = 12.5, 3.3, 1.5 \, \text{Hz}, 1\text{H}, \text{C}^8\text{H}\)), 2.12 (s, 1H, OH), 2.05 – 1.90 (m, 2H, CH\(_2\)), 1.77 (ddt, \(J = 11.1, 4.5, 2.2 \, \text{Hz}, 1\text{H}, \text{CH}_2\)), 1.72 – 1.65 (m, 1H, CH\(_2\)), 1.59 (d, \(J = 6.7 \, \text{Hz}, 1\text{H}, \text{CH}_2\)), 1.41 – 1.28 (m, 2H, CH\(_2\)), 1.23 (t, \(J = 7.1 \, \text{Hz}, 3\text{H}, \text{CH}_2\text{CH}_3\)), 1.09 (qd, \(J = 14.1, 13.3, 4.2 \, \text{Hz}, 1\text{H}, \text{CH}_2\)).

\(^{13}\)C{H} NMR (126 MHz, CDCl\(_3\)) \(\delta\) 167.6, 162.5 (d, \(^1J_{C,F} = 246.9 \, \text{Hz}\)), 131.9 (d, \(^4J_{C,F} = 3.3 \, \text{Hz}\)), 129.9, 116.1 (d, \(^2J_{C,F} = 21.5 \, \text{Hz}\)), 98.1, 86.9, 69.3, 62.4, 43.4, 39.2, 38.5, 26.2, 25.6, 23.1, 14.1. **\(^19\)F NMR (376 MHz, CDCl\(_3\))** \(\delta\) -113.91.

HRMS (ESI) m/z [M+K]+ Calcd for C\(_{18}\)H\(_{22}\)FNO\(_6\)K 406.1062; Found 406.1058.

HPLC (Chiralpak IA, Hexane:iPrOH = 95:5, flow rate 1 mL/min, \(\lambda = 210 \, \text{nm}\)), \(t_R\) (major) = 24.74 min, \(t_R\) (minor) = 51.81 min, ee = 99%.

RT	Height	Area	% Area	RT	Height	Area	% Area
1	24.738	863261	47.46	1	24.740	1075388	100.0
2	51.806	540955	52.24	2	3865772	100.0	
Ethyl (2S,3R,4S,4aR,8aS)-8a-hydroxy-3-nitro-4-(p-tolyl)octahydro-2H-chromene-2-carboxylate (10ada). The title product was obtained from cyclohexanone 6a, trans-4-methyl-β-nitrostyrene 7d and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 47% (171 mg, 0.47 mmol), white solid. m_p = 174-177 °C. [α]_D^{25} = +57.69 (c 0.5, chloroform). FTIR (neat, cm⁻¹) 3475, 1750, 1549, 1372. \(^1\)H NMR (500 MHz, CDCl₃) δ 7.13 (d, J = 7.7 Hz, 2H, ArH), 7.01 (d, J = 7.6 Hz, 2H, ArH), 5.13 (d, J = 3.0 Hz, 1H, C₉H), 5.09 (s, 1H, C₈H), 4.27 (dd, J = 10.8, 7.0 Hz, 1H, C₇H₂CH₃), 4.17 (dd, J = 11.0, 6.9 Hz, 1H, C₇H₂CH₃), 3.48 (dd, J = 12.5, 4.9 Hz, 1H, C⁷H), 2.57 (td, J = 12.5, 3.4 Hz, 1H, C₆H), 2.32 (s, 3H, CH₃), 2.16 (s, 1H, OH), 2.00 (td, J = 13.7, 4.3 Hz, 1H, C₂H), 1.93 (d, J = 14.1 Hz, 1H, C₂H), 1.77 (d, J = 13.7 Hz, 1H, C₂H), 1.71 – 1.53 (m, 2H, C₂H), 1.44 – 1.26 (m, 2H, C₂H), 1.23 (t, J = 7.1 Hz, 3H, CH₂C₂H₃), 1.09 (qd, J = 12.8, 3.4 Hz, 1H, C₂H). \(^13\)C{H} NMR (126 MHz, CDCl₃) δ 167.7, 137.8, 133.1, 129.8, 128.1, 98.2, 87.1, 69.4, 62.3, 43.7, 39.0, 38.6, 26.2, 25.6, 23.1, 21.2, 14.1. HRMS (ESI) m/z [M+H]^+ Calcd for C₁₉H₂₆NO₆ 364.1760; Found 364.1948. HPLC (Chiralpak IA, Hexane:iPrOH = 95:5, flow rate 1 mL/min, λ = 210 nm), t_R (major) = 18.53 min, t_R (minor) = 28.20 min, ee = 95%.

RT	Height	Area	% Area	RT	Height	Area	% Area		
1	18.536	791336	41797044	54.69	1	18.092	2861341	24594501	97.63
2	28.203	439680	34632155	45.31	2	28.230	77664	5977755	2.37

Ethyl (2S,3R,4S,4aR,8aS)-8a-hydroxy-3-nitro-4-(4-(trifluoromethyl)phenyl)octahydro-2H-chromene-2-carboxylate (10aea). The title product was obtained from cyclohexanone 6a, trans-4-trifluoromethyl-β-nitrostyrene 7e and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 60% (250 mg, 0.60 mmol), white solid. m_p = 167-169 °C. [α]_D^{25} = +27.00
(c 0.80, chloroform). **FTIR** (neat, cm⁻¹) 3474, 2938, 1751, 1551, 1325. \(^1H\) NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H, ArH), 7.31 – 7.21 (m, 2H, ArH), 5.15 (d, J = 3.1 Hz, 1H, C⁶H), 5.11 (dd, J = 4.8, 3.2 Hz, 1H, C⁵H), 4.28 (dq, J = 10.8, 7.2 Hz, 1H, CH₂CH₃), 4.19 (dq, J = 10.8, 7.1 Hz, 1H, CH₂CH₃), 3.60 (dd, J = 12.5, 4.8 Hz, 1H, C⁷H), 2.61 (td, J = 12.4, 3.1 Hz, 1H, C₆H), 2.18 (s, 1H, OH), 2.06 – 1.90 (m, 2H, CH₂), 1.83 – 1.73 (m, 1H, CH₂), 1.66 (ddt, J = 31.0, 13.1, 4.2 Hz, 2H, CH₂), 1.11 (qd, J = 13.3, 2.8 Hz, 1H, CH₂). \(^13C\)H NMR (126 MHz, CDCl₃) δ 167.5, 140.4, 130.5 (d, \(^2JC-F\) = 32.7 Hz), 128.8, 126.1 (q, \(^3JC-F\) = 3.7 Hz), 124.0 (d, \(^1JC-F\) = 272.2 Hz), 97.98, 86.50, 69.27, 62.46, 43.92, 38.99, 38.44, 26.17, 25.54, 23.04, 14.06. \(^19F\) NMR (376 MHz, CDCl₃) δ -62.69. HRMS (ESI) m/z [M+Na]\(^+\) Calcd for C₁₉H₂₂F₃NO₆Na 440.1297; Found 440.1287.

HPLC (Chiralpak IA, Hexane:iPrOH = 95:5, flow rate 1 mL/min, \(\lambda = 210\) nm), \(t_R\) (major) = 9.91 min, \(t_R\) (minor) = 22.49 min, ee = 98%.

RT	Height	Area	% Area	Area	% Area
1	9.913	1763203	52.88	98242087	
2	22.488	1023519	47.12	87536948	

Ethyl (2S,3R,4S,4aR,8aS)-4-(3-bromophenyl)8a-hydroxy-3-nitrooctahydro-2H-chromene-2-carboxylate (10afa). The title product was obtained from cyclohexanone 6a, trans-3-bromo-β-nitrostyrene 7f and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 54% (231 mg, 0.54 mmol), yellow oil. \(\alpha\)_D\(^{25}\) = +41.57 (c 0.75, chloroform). **FTIR** (neat, cm⁻¹) 3469, 2938, 1750, 1549, 1339. \(^1H\) NMR (400 MHz, CDCl₃) δ 7.43 (dt, J = 8.2, 1.2 Hz, 1H, ArH), 7.31 (d, J = 1.9 Hz, 1H, ArH), 7.20 (t, J = 7.9 Hz, 1H, ArH), 7.04 (d, J = 7.8 Hz, 1H, ArH), 5.12 (d, J = 3.1 Hz, 1H, C⁶H), 5.09 (dd, J = 4.7, 3.2 Hz, 1H, C⁵H), 4.28 (dq, J = 11.0, 7.1 Hz, 1H, CH₂CH₃), 4.19 (dq, J = 10.8, 7.1 Hz, 1H, CH₂CH₃), 3.49 (dd, J = 12.4, 4.7 Hz, 1H, C⁷H), 2.55 (td, J = 12.4, 3.1 Hz, 1H, C⁶H), 2.05 – 1.86 (m, 2H, CH₂), 1.78 – 1.67 (m, 4H, CH₂, OH), 1.41 – 1.27 (m, 2H, CH₂), 1.24 (t, J = 7.1 Hz, 3H, CH₃).
1.24 (t, J = 7.1 Hz, 3H, CH₂CH₃), 1.12 (td, J = 12.5, 3.4 Hz, 1H, CH₂) ¹³C{H} NMR (126 MHz, CDCl₃) δ 167.5, 138.6, 131.4, 130.7, 123.1, 98.0, 86.6, 69.3, 62.4, 43.8, 38.9, 38.5, 26.2, 25.6, 23.1, 14.1. HRMS (ESI) m/z [M+Na]+ Calcd for C₁₈H₂₂BrNO₆Na 452.0528; Found 452.0494. HPLC (Chiralpak IA, Hexane:PrOH = 95:5, flow rate 1 mL/min, λ = 210 nm), tᵣ (major) = 8.28 min, tᵣ (minor) = 10.27 min, ee = 99%.

RT	Height	Area	% Area
1	8.280	1569463	49.32
2	10.265	1464174	50.68

Ethyl (2S,3R,4R,4aR,8aS)-4-(furan-2-yl)-8a-hydroxy-3-nitrooctahydro-2H-chromene-2-carboxylate (10aga). The title product was obtained at 0 °C from cyclohexanone 6a, trans-2-(2-nitrovinyl)furan 7g and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. The product was obtained as an inseparable 96:4 mixture of diastereomers. Yield 73% (248 mg, 0.73 mmol), white solid. mᵣ = 173-175 °C. [α]ᵦ⁺²⁵ = +89.49 (c 0.85, chloroform). FTIR (neat, cm⁻¹) 3480, 2938, 1754, 1552, 1209. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (dd, J = 1.8, 0.8 Hz, 1H, ArH), 6.31 (dd, J = 3.2, 1.9 Hz, 1H, ArH), 6.17 (d, J = 3.2 Hz, 1H, ArH), 5.19 (dd, J = 4.8, 3.1 Hz, 1H, C²H), 5.05 (d, J = 3.1 Hz, 1H, C³H), 4.31 – 4.23 (m, 1H, CH₂CH₃), 4.19 (dq, J = 10.7, 7.1 Hz, 1H, CH₂CH₃), 3.66 (dd, J = 12.5, 4.8 Hz, 1H, C⁶H), 2.48 (td, J = 12.4, 3.4 Hz, 1H, C⁶H), 2.24 (s, 1H, OH), 1.92 (t, J = 4.1 Hz, 2H, CH₂), 1.79 – 1.67 (m, 2H, CH₂), 1.66 – 1.53 (m, 1H, CH₂), 1.44 – 1.37 (m, 1H, CH₂), 1.35 – 1.27 (m, 1H, CH₂), 1.24 (t, J = 7.1 Hz, 3H, CH₂CH₃), 1.22 – 1.11 (m, 1H, CH₂).

¹³C{H} NMR (126 MHz, CDCl₃) δ 167.6, 150.3, 142.6, 110.5, 108.5, 97.8, 84.8, 68.9, 62.3, 39.2, 38.3, 26.3, 25.5, 23.0, 14.1. HRMS (ESI) m/z [M+H-H₂O]+ Calcd for C₁₆H₂₅NO₆ 322.1287; Found 322.1282. HPLC (Chiralpak IA, Hexane:PrOH = 95:5, flow rate 1 mL/min, λ = 210 nm), tᵣ (major) = 21.10 min, tᵣ (minor) = 26.41 min, ee = 95%.
Ethyl (2S,3R,4R,4aR,8aS)-8a-hydroxy-3-nitro-4-(thiophen-2-yl)octahydro-2H-chromene-2-carboxylate (10aha). The title product was obtained at 0 °C from cyclohexanone 6a, trans-2-(2-nitrovinyl)thiophene 7h and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 46% (164 mg, 0.46 mmol), white solid. m_p = 144-146 °C. [α]_D^{25} = +57.84 (c 0.75, chloroform). FTIR (neat, cm⁻¹) 3484, 2939, 1749, 1550, 856. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd, J = 5.1, 1.1 Hz, 1H, ArH), 6.96 (dd, J = 5.2, 3.5 Hz, 1H, ArH), 6.84 (d, J = 3.5 Hz, 1H, ArH), 5.15 (m, 2H, C⁹H, C⁸H), 4.32 – 4.24 (m, 1H, CH₂CH₃), 4.19 (dt, J = 10.8, 7.1 Hz, 1H, CH₂CH₃), 3.78 (dd, J = 12.3, 4.5 Hz, 1H, C'H), 2.60 (td, J = 12.3, 3.4 Hz, 1H, C⁶H), 2.15 (s, 1H, OH), 2.04 – 1.94 (m, 1H, CH₂), 1.90 (dt, J = 14.0, 3.0 Hz, 1H, CH₂), 1.81 – 1.59 (m, 3H, CH₂), 1.55 – 1.45 (m, 1H, CH₂), 1.32 (dt, J = 13.0, 3.9 Hz, 1H, CH₂), 1.25 (t, J = 7.1 Hz, 3H, CH₃CH₂), 1.15 (td, J = 12.8, 3.5 Hz, 1H, CH₂). ¹³C{H} NMR (126 MHz, CDCl₃) δ 167.4, 138.6, 127.5, 126.0, 125.0, 98.1, 87.0, 69.3, 62.4, 40.9, 39.61, 38.4, 26.3, 25.6, 23.1, 14.1. HRMS (ESI) m/z [M+Na]^+ Calcd for C₁₆H₂₁NO₆SNa 378.0979; Found 378.0978. HPLC (Chiralpak IA, Hexane:iPrOH = 97:3, flow rate 1 mL/min, λ = 210 nm), t_R (major) = 18.25 min, t_R (minor) = 25.59 min, ee = 95%.
Ethyl (2S,3R,4S,4aR,8aS)-8a-hydroxy-3-nitro-4-((E)-1-phenylprop-1-en-2-yl)octahydro-2H-chromene-2-carboxylate (10aia). The title product was obtained at 0 °C from cyclohexanone 6a, ((1E,3E)-2-methyl-4-nitrobuta-1,3-dien-1-yl)benzene 7i and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 55% (214 mg, 0.55 mmol), white solid. m_p = 157-159 °C. [α]_D^25 = +54.56 (c 0.60, chloroform).

FTIR (neat, cm⁻¹) 3467, 2938, 1740, 1552, 1372. **¹H NMR** (400 MHz, CDCl₃) δ 7.36 (dd, J = 8.7, 6.7 Hz, 2H, ArH), 7.26 (dd, J = 7.9, 6.3 Hz, 3H, ArH), 6.35 (s, 1H, CH=C), 5.22 (dd, J = 4.9, 3.2 Hz, 1H, C₈H), 5.08 (d, J = 3.2 Hz, 1H, C₉H), 4.40 – 4.30 (dq, J = 10.8, 7.1 Hz, 1H, CH₂CH₃), 4.25 (dq, J = 10.8, 7.1 Hz, 1H, CH₂CH₃), 3.02 (dd, J = 12.3, 4.9 Hz, 1H, C₇H), 2.37 (td, J = 12.2, 2.9 Hz, 1H, C₈H), 2.18 (s, 1H, OH), 2.06 – 1.92 (m, 2H, CH₂), 1.88 (d, J = 1.3 Hz, 3H, CH₃C=CH), 1.85 – 1.76 (m, 3H, CH₂), 1.73 – 1.60 (m, 1H, CH₂), 1.38 (dq, J = 12.8, 5.3, 4.5 Hz, 1H, CH₂), 1.30 (d, J = 7.1 Hz, 3H, CH₂CH₃), 1.24 (dd, J = 13.0, 9.7 Hz, 1H, CH₂).

¹³C{H} NMR (126 MHz, CDCl₃) δ 167.8, 137.3, 132.8, 129.6, 129.1, 128.2, 126.9, 97.9, 84.8, 69.2, 62.4, 46.6, 38.6, 38.4, 26.1, 25.7, 23.1, 14.1. **HRMS** (ESI) m/z [M+H]^+ Calcd for C₂₁H₂₈NO₆ 390.1922; Found 390.1924. **HPLC** (Chiralpak IB, Hexane:PrOH = 95:5, flow rate 1 mL/min, λ = 210 nm), t_R (major) = 13.30 min, t_R (minor) = 16.24 min, ee = 99%.
Ethyl \((2S,3R,4S,4aR,9aS)-9a\text{-hydroxy-3-nitro-4-phenyldecahydrocyclohepta}[b]\text{pyran-2-carboxylate} \) \((10\text{baa})\). The title product was obtained from cycloheptanone \(6b\), \(trans\)-\(\beta\)-nitrostyrene \(7a\) and ethyl glyoxylate \(8a\) employing TFA as additive. Purified on 1:1 Diethyl ether:hexane mixture. The product was obtained as an inseparable 92:8 mixture of diastereomers. Yield: 53\% (193 mg, 0.53 mmol), colorless oil.

\(\left[\alpha\right]_{D}^{25} = +42.64 \) \((c 0.25, \text{chloroform})\). \textbf{FTIR} \((\text{neat, cm}^{-1})\) 3404, 2982, 1740, 1552, 1370.

\textbf{\(^1\text{H NMR}\) } \((400 \text{ MHz, CDCl}_3)\) \(\delta 7.38 \) \((dd, J = 8.1, 6.5 \text{ Hz, } 2\text{H, ArH})\), \(7.34 – 7.25 \) \((m, 3\text{H, ArH})\), \(5.25 \) \((dd, J = 11.1, 2.3 \text{ Hz, } 1\text{H, C}^9\text{H})\), \(4.35 – 4.16 \) \((m, 2\text{H, CH}_2\text{CH}_3)\), \(4.16 – 4.08 \) \((m, 1\text{H, C}^8\text{H})\), \(3.94 – 3.86 \) \((m, 1\text{H, C}^7\text{H})\), \(3.24 – 3.14 \) \((m, 1\text{H, OH})\), \(2.85 \) \((ddd, J = 11.6, 8.1, 3.8 \text{ Hz, } 1\text{H, C}^6\text{H})\), \(2.38 – 2.21 \) \((m, 1\text{H, CH}_2)\), \(1.88 – 1.73 \) \((m, 3\text{H, CH}_2)\), \(1.66 \) \((d, J = 53.8 \text{ Hz, } 3\text{H, CH}_2)\), \(1.43 \) \((s, 1\text{H, CH}_2)\), \(1.28 \) \((d, J = 7.1 \text{ Hz, } 3\text{H, CH}_2\text{CH}_3)\), \(1.25 \) \((d, J = 4.0 \text{ Hz, } 1\text{H, CH}_2)\), \(1.22 – 1.06 \) \((m, 1\text{H, CH}_2)\).

\textbf{\(^{13}\text{C(\text{H}) NMR}\) } \((101 \text{ MHz, CDCl}_3)\) \(\delta 170.8, 136.5, 129.2, 129.1, 128.1, 90.1, 69.8, 62.8, 55.2, 46.8, 42.8, 29.5, 28.3, 28.1, 24.8, 14.0\). \textbf{HRMS} \((\text{ESI})\) m/z Calcd for \([\text{M+H}]^+\) \(C_{19}H_{26}NO_6\) 364.1760; Found 364.1761. \textbf{HPLC} \((\text{Chiralpak IC, Hexane:PrOH = 90:10, flow rate 1 mL/min, } \lambda = 214 \text{ nm})\), \(t_R \) \((\text{minor}) = 17.35 \text{ min, } t_R \) \((\text{major}) = 19.42 \text{ min, } ee = 90\%\).
Ethyl (2S,3R,4S,4aR,8aS)-8a-hydroxy-3-nitro-4-phenylhexahydropy-2H,5H-spiro[chromene-6,2’-[1,3]dioxolane]-2-carboxylate (10caa). The title product was obtained from 1,4-cyclohexanedione monoethylene acetal 6c, trans-β-nitrostyrene 7a and ethyl glyoxylate 8a employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield: 62% (253 mg, 0.62 mmol), colorless oil. \(\alpha \) = +13.31 (c 0.7, chloroform). FTIR (neat, cm\(^{-1}\)) 3445, 2963, 1734, 1550, 1370. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.39 – 7.26 (m, 3H, ArH), 7.18 – 7.12 (m, 2H, ArH), 5.13 (d, \(J = 3.1 \) Hz, 1H, C\(^9\)H), 5.10 (dd, \(J = 4.8, 3.2 \) Hz, 1H, C\(^9\)H), 4.28 (dd, \(J = 10.8, 7.1 \) Hz, 1H, CH\(_2\)CH\(_3\)), 4.26 – 4.07 (m, 1H, CH\(_2\)CH\(_3\)), 3.98 – 3.92 (m, 1H, CH\(_2\)O), 3.86 (ddd, \(J = 12.5, 6.9, 5.5 \) Hz, 2H, CH\(_2\)O), 3.82 – 3.74 (m, 1H, CH\(_2\)O), 3.53 (dd, \(J = 12.7, 4.8 \) Hz, 1H, C\(^7\)H), 3.00 (ddd, \(J = 12.7, 9.9, 6.5 \) Hz, 1H, CH\(_2\)), 2.35 (td, \(J = 15.1, 4.8 \) Hz, 1H, ArH), 2.21 (s, 1H, OH), 2.01 – 1.87 (m, 2H, CH\(_2\)), 1.86 – 1.75 (m, 1H, CH\(_2\)), 1.45 (dd, \(J = 8.7, 1.8 \) Hz, 2H, CH\(_2\)), 1.23 (t, \(J = 7.1 \) Hz, 3H, CH\(_2\)CH\(_3\)). \(^{13}\)C{\(^1\)H} NMR (126 MHz, CDCl\(_3\)) \(\delta \) 167.7, 136.0, 129.5, 128.6, 108.6, 97.7, 86.5, 69.9, 64.9, 64.7, 62.7, 43.9, 36.2, 35.9, 35.1, 32.3. HRMS (ESI) m/z [M+H-H\(_2\)O]+ Calcd for C\(_{20}\)H\(_{24}\)NO\(_7\) 390.1546; Found 390.1541. HPLC (Chiralpak IA, Hexane:PrOH = 95:5, flow rate 1 mL/min, \(\lambda = 210 \) nm), \(t_R \) (major) = 24.06 min, \(t_R \) (minor) = 39.51 min, ee = 88%.
The title product was obtained from cyclohexanone 6a, trans-\(\beta\)-nitrostyrene 7a and benzaldehyde 8b employing salicylic acid as additive and 1 equivalent of triethylamine. Purified on 1:3 EtOAc:Hexane mixture. Global yield 65%. Isolated yield 30% (107 mg, 0.30 mmol), white solid.

\[\text{mp} = 195-197 \, ^\circ \text{C}. \] \[\left[\alpha \right]_{D}^{25} = +26.45 \, (c 0.40, \text{chloroform}). \] \[\text{FTIR (neat, cm}^{-1}) 3511, 2922, 1548, 1335. \] \[^{1} \text{H NMR (500 MHz, CDCl}_3) \delta 7.40 – 7.36 (m, 2H, ArH), 7.35 – 7.28 (m, 4H, ArH), 7.27 – 7.24 (m, 2H, ArH), 7.17 (dd, \(J = 7.0, 1.7 \, \text{Hz}, 2H, \text{ArH}), 5.66 \, (d, \(J = 3.1 \, \text{Hz}, 1H, \text{C}^{6}H)), 4.95 \, (dd, \(J = 4.6, 3.2 \, \text{Hz}, 1H, \text{C}^{8}H)), 3.59 \, (dd, \(J = 12.5, 4.5 \, \text{Hz}, 1H, \text{C}^{7}H)), 2.97 \, (ddt, \(J = 14.7, 11.4, 1.6 \, \text{Hz}, 1H, \text{C}^{6}H)), 2.07 \, (td, \(J = 13.7, 4.5 \, \text{Hz}, 1H, \text{CH}_2)), 1.92 \, (bs, 1H, \text{OH}), 1.87 \, (ddt, \(J = 13.7, 4.0, 2.1 \, \text{Hz}, 1H, \text{CH}_2)), 1.84 – 1.76 \, (m, 1H, \text{CH}_2)), 1.76 – 1.64 \, (m, 1H, \text{CH}_2)), 1.48 – 1.35 \, (m, 2H, \text{CH}_2)), 1.26 \, (m, 1H, \text{CH}_2)), 1.19 \, (td, \(J = 12.6, 3.1 \, \text{Hz}, 1H, \text{CH}_2)). \] \[^{13} \text{C} \{ \text{H} \} \text{NMR (126 MHz, CDCl}_3) \delta 136.9, 136.7, 129.2, 128.7, 128.5, 127.9, 126.0, 97.9, 91.9, 71.1, 44.4, 38.9, 38.7, 26.1, 25.9, 23.2. \] \[\text{HRMS (ESI) m/z [M+H-H}_2\text{O}]^+ \text{ Calcd for C}_{21}\text{H}_{22}\text{NO}_3 336.1592; \text{ Found 336.1589.} \] \[\text{HPLC (Chiralpak IA, Hexane:PrOH = 95:5, flow rate 1 mL/min, } \lambda = 210 \, \text{nm), } t_R \text{ (major) } = 21.56 \, \text{min, } t_R \text{ (minor) } = 31.23 \, \text{min, } ee > 99\%. \]
The title product was obtained from cyclohexanone 6a, trans-β-nitrostyrene 7a and benzaldehyde 8b employing salicylic acid as additive and 1 equivalent of triethylamine. Purified on 1:3 EtOAc:Hexane mixture. Global yield 65%. Isolated yield 35% (123 mg, 0.35 mmol), white solid. \(m_p = 223-225 \, ^\circ\text{C}. \) \([\alpha]_{D}^{25} = +31.48 \) (c 0.25, chloroform). FTIR (neat, cm\(^{-1}\)) 3552, 2928, 1544, 1123. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.42 – 7.22 (m, 10H), 5.55 (d, \(J = 10.0 \) Hz, 1H, C\(^9\)H), 4.77 (t, \(J = 10.6 \) Hz, 1H, C\(^8\)H), 3.72 (t, \(J = 11.6 \) Hz, 1H, C\(^7\)H), 2.17 (s, 1H, OH)2.05 (s, 1H, CH\(_2\)), 1.88 (d, \(J = 11.8 \) Hz, 1H, C\(^6\)H), 1.84 – 1.74 (m, 2H, CH\(_2\)), 1.69 (d, \(J = 15.3 \) Hz, 2H, CH\(_2\)), 1.38 – 1.22 (m, 1H, CH\(_2\)), 1.19 (d, \(J = 5.4 \) Hz, 2H, CH\(_2\)). \(^{13}\)C{H} NMR (126 MHz, CDCl\(_3\)) \(\delta \) 136.9, 136.7, 129.2, 128.7, 128.5, 127.9, 126.0, 97.9, 91.9, 71.1, 44.4, 38.9, 38.7, 26.1, 25.9, 23.2. HRMS (ESI) m/z [M+H-H\(_2\)O]+ Calcd for C\(_{21}\)H\(_{22}\)NO\(_3\) 336.1592; Found 336.1591. HPLC (Chiralpak IA, Hexane:iPrOH = 95:5, flow rate 1 mL/min, \(\lambda = 210 \) nm), \(t_R \) (major) = 9.17 min, \(t_R \) (minor) = 11.68 min, ee = 96%.
(2R,3R,4S,4aR,8aS)-2-(4-fluorophenyl)-3-nitro-4-phenyloctahydro-8aH-chromen-8-ol **(10aac)**. The title product was obtained from cyclohexanone **6a**, trans-β-nitrostyrene **7a** and 4-fluorobenzaldehyde **8c** employing salicylic acid as additive and 1 equivalent of triethylamine. Purified on 1:3 EtOAc:Hexane mixture. Global yield 81%. Isolated yield 54% (201 mg, 0.54 mmol), white solid. $m_p = 198-200 \, ^\circ\mathrm{C}$. $[\alpha]_D^{25} = +12.05$ (c 0.60, chloroform). **FTIR** (neat, cm$^{-1}$) 3510, 2950, 1551, 1118. **1H NMR** (400 MHz, CDCl$_3$) δ 7.39 – 7.22 (m, 5H, ArH), 7.21 – 7.11 (m, 2H, ArH), 7.01 (t, $J = 8.7 \, Hz$, 2H, ArH), 5.64 (d, $J = 3.2 \, Hz$, 1H, C$_9$H), 4.91 (t, $J = 3.9 \, Hz$, 1H, C$_8$H), 3.57 (dd, $J = 12.5$, 4.5 Hz, 1H, C$_7$H), 3.04 – 2.89 (m, 1H, C$_6$H), 2.05 (td, $J = 13.6$, 4.4 Hz, 1H, CH$_2$), 1.89 (d, $J = 1.5 \, Hz$, 1H, CH$_2$), 1.88 – 1.77 (m, 1H, CH$_2$), 1.77 – 1.60 (m, 2H, CH$_2$), 1.41 (td, $J = 13.4$, 12.5, 3.8 Hz, 2H, CH$_2$), 1.28 – 1.10 (m, 1H, CH$_2$). **$^{13}C{\{H\}}$ NMR** (126 MHz, CDCl$_3$) δ 162.7 (d, $^1J_{CF} = 246.8 \, Hz$), 136.7, 132.5 (d, $^4J_{CF} = 3.3 \, Hz$), 129.2, 128.0, 127.8 (d, $^3J_{CF} = 8.3 \, Hz$), 115.7 (d, $^2J_{CF} = 21.6 \, Hz$), 97.9, 92.0, 70.5, 44.4, 38.9, 38.6, 26.1, 25.8, 23.2. **^{19}F NMR** (376 MHz, CDCl$_3$) δ -113.56. **HMRS** (ESI) m/z [M+H$_2$O]$^+$ Calcd for C$_{21}$H$_{21}$FNO$_3$ 354.1505; Found 354.1495. **HPLC** (Chiralpak IA, Hexane:PrOH = 95:5, flow rate 1 mL/min, $\lambda = 210 \, nm$), t_R (minor) = 18.21 min, t_R (major) = 37.22 min, ee = >99%.
(2R,3S,4S,4aR,8aS)-2-(4-fluorophenyl)-3-nitro-4-phenylloctahydro-8aH-chromen-8a-ol (10aac'). The title product was obtained from cyclohexanone 6a, trans-β-nitrostyrene 7a and 4-fluorobenzaldehyde 8c employing salicylic acid as additive and 1 equivalent of triethylamine. Purified on 1:3 EtOAc:Hexane mixture. Global yield 81%. Isolate yield 27% (100 mg, 0.27 mmol), white solid. m_p = 206-209 °C. [α]_D^25 = +61.88 (c 0.60, chloroform). FTIR (neat, cm⁻¹) 3484, 2936, 1547, 1115. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, J = 8.5, 5.3 Hz, 2H, ArH), 7.31 – 7.16 (m, 5H, ArH), 7.04 (t, J = 8.6 Hz, 2H, ArH), 5.54 (d, J = 9.9 Hz, 1H, C⁹H), 4.72 (t, J = 10.6 Hz, 1H, C⁸H), 3.71 (t, J = 11.6 Hz, 1H, C⁷H), 2.10 (s, 1H, OH), 1.88 (td, J = 11.8, 3.3 Hz, 1H, C⁶H), 1.77 – 1.55 (m, 4H, CH₂), 1.29 – 1.11 (m, 4H, CH₂). ¹³C{H} NMR (126 MHz, CDCl₃) δ 163.2 (d, J_CF = 247.9 Hz), 136.8, 132.7 (d, J_CF = 3.3 Hz), 129.1 (d, J_CF = 8.3 Hz), 128.1, 115.9 (d, J_CF = 21.7 Hz), 97.5, 95.1, 73.2, 47.1, 46.9, 38.8, 26.2, 25.7, 23.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.35. HRMS (ESI) m/z [M+H]+ Calcd for C₂₁H₂₃FNO₄ 372.1721; Found 372.1720. HPLC (Chiralpak IA, Hexane:PrOH = 95:5, flow rate 1 mL/min, λ = 210 nm), t_R (minor) = 28.52 min, t_R (major) = 36.43 min, ee = 95%.
(2S,3S,4S,4aR,8aS)-2-(furan-2-yl)-3-nitro-4-phenyloctahydro-8aH-chromen-8a-ol (10aad'). The title product was obtained from cyclohexanone 6a, trans-β-nitrostyrene 7a and furfural 8d employing salicylic acid as additive. When one equivalent of Et₃N was used an inseparable 50:50 mixture of 10aad:10aad' isomers was obtained. Global yield 65% (223 mg, 0.65 mmol). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 2H, ArH), 7.52 – 7.00 (m, 10H, ArH), 6.41 (d, J = 3.3 Hz, 1H, ArH), 6.35 (d, J = 3.3 Hz, 1H, ArH), 6.32 (t, J = 2.5 Hz, 1H, ArH), 5.71 (d, J = 3.0 Hz, 1H, 10aad), 5.65 (d, J = 10.3 Hz, 1H, 10aad'), 5.11 (t, J = 10.8 Hz, 1H, 10aad'), 4.98 (t, J = 3.8 Hz, 1H, 10aad), 3.66 (t, J = 11.7 Hz, 1H, 10aad'), 3.52 (dd, J = 12.5, 4.4 Hz, 1H, 10aad), 2.98 – 2.87 (m, 1H, 10aad), 2.08 – 1.96 (m, 1H, 10aad), 1.93 – 1.81 (m, 2H, 10aad and 10aad'), 1.77 (m, 2H, 10aad and 10aad'), 1.66 (m, 4H, 10aad and 10aad'), 1.39 (m, 2H, 10aad and 10aad'), 1.15 (m, 8H, 10aad and 10aad'). The reaction performed at 1 mmol scale with 1 eq. of DBU allowed to obtain 10aad' with complete conversion. Purified on 1:2 EtOAc:Hexane mixture. Yield 68% (230 mg, 0. 68 mmol), white solid. m_p = 252-254 °C. [α]_D^25 = +5.66 (c 0.60, chloroform). FTIR (neat, cm⁻¹) 3539, 2935, 1546, 1124. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 1.7 Hz, 1H, ArH), 7.26 (s, 5H, ArH), 6.41 (d, J = 3.3 Hz, 1H, ArH), 6.32 (dd, J = 3.3, 1.9 Hz, 1H, ArH), 5.65 (d, J = 10.2 Hz, 1H, C³H), 5.11 (dd, J = 11.4, 10.2 Hz, 1H, C³H), 3.66 (t, J = 11.6 Hz, 1H, C³H), 2.15 (s, 1H, OH), 1.89 (tdd, J = 12.0, 3.7, 1.4 Hz, 1H, C³H), 1.83 – 1.75 (m, 2H, CH₂), 1.75 – 1.67 (m, 1H, CH₂), 1.67 – 1.60 (m, 1H, CH₂), 1.32 – 1.11 (m, 4H, CH₂). ¹³C{H} NMR (126 MHz, CDCl₃) δ 149.2, 143.9, 136.9, 128.1, 110.5, 110.4, 97.6, 91.3, 67.1, 46.8, 46.7, 38.6, 26.2, 25.6, 23.0. HPLC (Chiralpak IA, Hexane:iPrOH = 95:5, flow rate 1 mL/min,
$\lambda = 210$ nm), t_R (10aad' minor) = 18.00 min, t_R (10aad major) = 36.46 min, t_R (10aad minor) = 44.74 min, t_R (10aad' major) = 79.02 min. ee 10aad = 98%. ee 10aad' = 98%

10aad

RT	Height	Area	% Area	
1	18.000	692107	82178228	35.51
2	36.456	224401	36263819	15.58
3	44.743	202476	35966472	15.45
4	79.042	267732	78351878	33.66

10aad'

RT	Height	Area	% Area	
1	18.000	692107	82178228	35.51
2	36.456	224401	36263819	15.58
3	44.743	202476	35966472	15.45
4	79.042	267732	78351878	33.66

RT	Height	Area	% Area	
1	19.301	19103	2017127	0.86
2	37.885	1548286	267427094	99.19
3	46.633	19736	2173050	0.81
4	82.577	617310	232611786	99.14
(2R,3R,4S,4aR,8aS)-3-nitro-4-phenyl-2-((E)-styryloctahydro-8aH-chromen-8a-ol (10aae). The title product was obtained from cyclohexanone 6a, trans-β-nitrostyrene 7a and cinnamaldehyde 8e employing salicylic acid as additive. Purified on 1:4 EtOAc:Hexane mixture. Global yield 58% (220 mg, 0.58 mmol), white solid. \(m_p = 198-200^\circ C \). \([\alpha]_D^{25} = +58.20 \) (c 0.10, chloroform). FTIR (neat, cm\(^{-1}\)) 3499, 2922, 1713, 1546. 1\(^{H}\) NMR (500 MHz, CDCl\(_3\)) \(\delta \) 9.74 (d, \(J = 3.2 \) Hz, 1H, CH=CHPh), 7.33 – 7.22 (m, 8H, ArH), 7.22 – 7.14 (m, 2H, ArH), 4.93 (t, \(J = 4.5 \) Hz, 1H, C\(^6\)H), 4.10 (dd, \(J = 12.6, 4.5 \) Hz, 1H, C\(^8\)H), 3.98 (dd, \(J = 12.7, 3.3 \) Hz, 1H, CH=CHPh), 3.46 (dd, \(J = 12.2, 4.5 \) Hz, 1H, C\(^7\)H), 2.65 (td, \(J = 12.2, 3.3 \) Hz, 1H, C\(^8\)H), 2.39 (s, 1H, OH), 1.89 (d, \(J = 13.6 \) Hz, 1H, CH\(_2\)), 1.76 (td, \(J = 13.5, 4.3 \) Hz, 1H, CH\(_2\)), 1.68 (d, \(J = 13.0 \) Hz, 2H, CH\(_2\)), 1.39 – 1.23 (m, 3H, CH\(_2\)), 1.21 – 1.10 (m, 1H, CH\(_2\)). \(^{13}\)C{H} NMR (126 MHz, CDCl\(_3\)) \(\delta \) 206.9, 137.5, 136.0, 129.4, 129.2, 128.5, 128.2, 127.9, 94.9, 73.1, 54.9, 46.8, 42.9, 40.3, 37.5, 25.6, 25.1, 21.2. HRMS (ESI) m/z [M+H]\(^+\) Calcd for C\(_{23}\)H\(_{26}\)NO\(_4\) 380.1862; Found 380.1827. HPLC (Chiralpak IA, Hexane:iPrOH = 95:5, flow rate 1 mL/min, \(\lambda = 210 \) nm), \(t_R \) (minor) = 36.31 min, \(t_R \) (major) = 53.53 min, ee = >99%.

RT	Height	Area	% Area	RT	Height	Area	% Area	
1	36.314	122720	3382833	1				
2	53.522	99835	32558850	2	53.928	447019	159851852	100.0

(2S,3R,4S,4aR,8aS)-2-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-nitro-4-phenyl-octahydro-8aH-chromen-8a-ol (10aaf). The title product was obtained from cyclohexanone 6a, trans-β-nitrostyrene 7a and (R)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde 8f employing salicylic acid as additive. Purified on 1:3 EtOAc:Hexane mixture. Yield 64% (242 mg, 0.64 mmol), colorless oil. \([\alpha]_D^{25} = +34.32 \) (c 0.53, chloroform). FTIR (neat, cm\(^{-1}\)) 3434, 2986, 1546. 1\(^{H}\) NMR (400
MHz, CDCl$_3$) δ 7.29 (dt, J = 13.3, 7.0 Hz, 3H, ArH), 7.17 – 7.09 (m, 2H, ArH), 4.94 (dd, J = 4.7, 2.8 Hz, 1H, C$_8^\text{H}$), 4.29 (dd, J = 8.9, 2.8 Hz, 1H, C$_6^\text{H}$), 4.13 – 4.05 (m, 1H, CHO), 4.00 – 3.92 (m, 2H, CH$_2$O), 3.40 (dd, J = 12.4, 4.8 Hz, 1H, C$_7^\text{H}$), 2.73 (d, J = 3.2 Hz, 1H, C$_6^\text{H}$), 2.27 (s, 1H, OH), 1.89 – 1.78 (m, 1H, CH$_2$), 1.78 – 1.52 (m, 4H, CH$_2$), 1.44 (s, 3H, CH$_3$), 1.37 (dd, J = 12.1, 6.5 Hz, 2H, CH$_2$), 1.28 (s, 3H, CH$_3$), 1.22 – 0.97 (m, 1H, CH$_2$). $^{13}\text{C}^\text{H}$ NMR (126 MHz, CDCl$_3$) δ 136.8, 129.1, 127.9, 110.2, 97.5, 87.5, 74.2, 70.6, 67.5, 43.9, 39.1, 38.8, 27.1, 26.2, 25.8, 25.1, 23.2. HRMS (ESI) m/z [M+H-H$_2$O]$^+$ Calcd for C$_{20}$H$_{26}$NO$_5$ 360.1801; Found 360.1802.

(2S,3R,4S,4aR,8aS)-2-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-nitro-4-phenylhexahydro-2H,8aH-spiro[chromene-6,2’-[1,3]dioxolan]-8a-ol (10caf). The title product was obtained from 1,4-cyclohexanedione monoethylene acetal 6c, trans-β-nitrostyrene 7a and (R)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde 8f employing salicylic acid as additive. Purified on 1:2 EtOAc:Hexane mixture. Yield 52 % (227 mg, 0.52 mmol), colorless oil. $[\alpha]_{D}^{25} = +22.62$ (c 0.33, chloroform). FTIR (neat, cm$^{-1}$) 3393, 2960, 1546.

1H NMR (500 MHz, CDCl$_3$) δ 7.36 – 7.30 (m, 2H, ArH), 7.30 – 7.26 (m, 1H, ArH), 7.15 (dd, J = 7.1, 1.7 Hz, 2H, ArH), 4.93 (dd, J = 4.7, 2.8 Hz, 1H, C$_8^\text{H}$), 4.29 (dd, J = 8.8, 2.8 Hz, 1H, C$_6^\text{H}$), 4.09 (td, J = 7.3, 2.6 Hz, 1H, CHO), 3.99 – 3.97 (m, 1H, CH$_2$O), 3.96 – 3.94 (m, 1H, CH$_2$O), 3.91 – 3.83 (m, 2H, CH$_2$O), 3.83 – 3.77 (m, 1H, CH$_2$O), 3.42 (dd, J = 12.7, 4.6 Hz, 1H, C$_7^\text{H}$), 3.16 – 3.08 (m, 1H, CH$_2$O), 2.18 (td, J = 13.7, 4.4 Hz, 1H, C$_6^\text{H}$), 2.13 – 2.10 (bs, 1H, OH), 1.94 (td, J = 13.4, 4.5 Hz, 1H, CH$_2$), 1.82 – 1.71 (m, 2H, CH$_2$), 1.45 (d, J = 8.7 Hz, 2H, CH$_2$), 1.43 (s, 3H, CH$_3$), 1.29 (s, 3H, CH$_3$), 1.25 (s, 1H, CH$_2$). 13C$^\text{H}$ NMR (126 MHz, CDCl$_3$) δ 136.3, 129.2, 128.1, 110.3, 108.5, 96.7, 86.1, 74.2, 70.9, 67.5, 64.6, 64.4, 43.5, 36.1, 35.6, 34.7, 32.2, 27.1, 25.1. HRMS (ESI) m/z [M+H-H$_2$O]$^+$ Calcd for C$_{22}$H$_{28}$NO$_7$ 418.1859; Found 418.1857.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{figure.png}
\caption{Structure of the title compound.}
\end{figure}
NMR spectra

Compound NO$_2$-X$_L$-Gly-OMe 14

1H NMR (500 MHz, CDCl$_3$) of 14
13C{H} NMR (101 MHz, CDCl$_3$) of 14

COSY (CDCl$_3$) of 14
Compound 10aaa

1H NMR (400 MHz, CDCl$_3$) of 10aaa

![NMR spectrum of 10aaa](image)

13C{H} NMR (101 MHz, CDCl$_3$) of 10aaa

![NMR spectrum of 10aaa](image)
COSY (CDCl₃) of 10aaa

HSQC (CDCl₃) of 10aaa
Compound 10aaa’

1H NMR (400 MHz, CDCl$_3$) of 10aaa’

13C{H} NMR (101 MHz, CDCl$_3$) of 10aaa’
COSY (CDCl₃) of 10aaa'

HSQC (CDCl₃) of 10aaa'
Compound 10aba

1H NMR (400 MHz, CDCl$_3$) of 10aba

![1H NMR spectrum of 10aba](image)

13C{H} NMR (126 MHz, CDCl$_3$) of 10aba

![13C{H} NMR spectrum of 10aba](image)
Compound 10aca

1H NMR (400 MHz, CDCl$_3$) of 10aca

13C{H} NMR (126 MHz, CDCl$_3$) of 10aca
19F NMR (376 MHz, CDCl$_3$) of 10aca
Compound 10ada

1H NMR (500 MHz, CDCl$_3$) of 10ada

13C{H} NMR (126 MHz, CDCl$_3$) of 10ada
Compound 10aea

1H NMR (400 MHz, CDCl$_3$) of 10aea

13C{H} NMR (126 MHz, CDCl$_3$) of 10aea
19F NMR (376 MHz, CDCl$_3$) of 10aea
Compound 10afa

1H NMR (400 MHz, CDCl$_3$) of 10afa

13C{H} NMR (126 MHz, CDCl$_3$) of 10afa
Compound 10aga

\(^1\)H NMR (400 MHz, CDCl\(_3\)) of 10aga

\(\begin{array}{c}
\text{OH} \\
\text{CO}_2\text{Et} \\
\text{NO}_2
\end{array}\)

\(^{13}\)C{H} NMR (126 MHz, CDCl\(_3\)) of 10aga

\(\begin{array}{c}
\text{OH} \\
\text{CO}_2\text{Et} \\
\text{NO}_2
\end{array}\)
Compound 10aha

$^1\text{H NMR (400 MHz, CDCl}_3\text{) of 10aha}$

$^{13}\text{C}{^1}\text{H} \text{NMR (126 MHz, CDCl}_3\text{) of 10aha}$
Compound 10aia

1H NMR (400 MHz, CDCl$_3$) of 10aia

13C{H} NMR (126 MHz, CDCl$_3$) of 10aia
Compound 10baa

1H NMR (400 MHz, CDCl$_3$) of 10baa

13C$\{^1$H$\}$ NMR (101 MHz, CDCl$_3$) of 10baa
Compound 10caa

1H NMR (400 MHz, CDCl$_3$) of 10caa

13C{H} NMR (126 MHz, CDCl$_3$) of 10caa
Compound 10aab

1H NMR (500 MHz, CDCl$_3$) of 10aab

13C{H} NMR (126 MHz, CDCl$_3$) of 10aab
Compound 10aab

1H NMR (400 MHz, CDCl$_3$) of 10aab

13C{H} NMR (126 MHz, CDCl$_3$) of 10aab
Compound 10aac

1H NMR (400 MHz, CDCl$_3$) of 10aac

13C{H} NMR (126 MHz, CDCl$_3$) of 10aac
19F NMR (376 MHz, CDCl$_3$) of 10aac
Compound 10aac'

1H NMR (400 MHz, CDCl$_3$) of 10aac'

13C{H} NMR (126 MHz, CDCl$_3$) of 10aac'
19F NMR (376 MHz, CDCl$_3$) of 10aac'
Compound 10aad'

1H NMR (500 MHz, CDCl$_3$) of 10aad'

13C{H} NMR (126 MHz, CDCl$_3$) of 10aad'
Compound 10aae

1H NMR (500 MHz, CDCl$_3$) of 10aae

13C{H} NMR (126 MHz, CDCl$_3$) of 10aae
COSY (CDCl₃) of 10aae
Compound 10aaf

1H NMR (400 MHz, CDCl$_3$) of 10aaf

13C{H} NMR (126 MHz, CDCl$_3$) of 10aaf
Compound **10caf**

¹H NMR (500 MHz, CDCl₃) of 10caf

¹⁳C{H} NMR (126 MHz, CDCl₃) of 10caf
6 X-Ray diffraction structures

Compounds 10aaa and 10aaa' were recrystallized in a mixture of hexane and ethyl acetate. Crystal growth was performed by slow evaporation at room temperature of the solvent mixture.

6.1 X-Ray diffraction of 10aaa (CCDC 2090677)

Figure S1. ORTEP diagram with thermal ellipsoids in 50% probability for (2S, 3R, 4S, 4aR, 8aS)-10aaa.
CheckCIF/PLATON report for (2S, 3R, 4S, 4aR, 8aS)-10aaa.

Bond precision: C-C = 0.0051 Å	Wavelength = 1.54184
Cell: a=12.2192(6) b=5.5685(2) c=12.6363(6)	alpha=90 beta=90.969(4) gamma=90
Temperature: 100 K	
Calculated Volume 859.68(7)	Reported Volume 859.68(7)
Space group P 21	Hall group P 2yb
Moiety formula C18 H23 N O6	Sum formula C18 H23 N O6
Mr 349.37	349.37
Dx, g cm⁻³ 1.350	1.350
Z 2	2
Mu (mm⁻¹) 0.845	0.844
F000 372.0	372.0
F000' 373.26	
h,k,lmax 14,6,15	14,6,15
Nref 3197 [1777]	5436
Tmin, Tmax 0.769, 0.888	0.501, 1.000
Tmin' 0.582	

Correction method = # Reported T Limits: Tmin = 0.501 Tmax = 1.000
AbsCorr = MULTI-SCAN

Data completeness = 3.06/1.70 Theta(max) = 68.909

R(reflections) = 0.0438(5245) WR2(reflections) = 0.1231(5436)

S = 1.040 Npar = 229
6.2 X-Ray diffraction of 10aaa’ (CCDC 2090834)

Figure S2. ORTEP diagram with thermal ellipsoids in 50% probability for (2S, 3S, 4S, 4aR, 8aS)-10aaa’.
7 Computational studies

7.1 Michael-Henry-Hemiketalization Reaction

DFT calculations at the B3LYP-D3/6-31G(d) level of theory\(^\text{15}\) were performed to understand the Henry-hemiketalization steps, for which no mechanistic studies are available. In these studies, solvent effects were tackled with the Continuum Polarization Method\(^\text{16}\) (PCM, solvent=dichloromethane). All calculations were carried out with the Gaussian suite of programs.\(^\text{17}\) Formation of adduct 10aaa from cyclohexanone 6a, trans-β-nitrostyrene 7a and ethyl glyoxylate 8a in the presence of trimethylamine and salicylic acid was chosen as model
system. The reaction profile obtained for this specific transformation is gathered in Figure S3.

Once Michael intermediate 9aaa is generated, nitronate INT1 is formed as a consequence of the interaction between 9aa and trimethylamine, which is a suitable computational model of triethylamine. Nucleophilic addition of INT1 on the aldehyde moiety of 8a results in the formation of adduct INT2 with a calculated activation energy of ca. 7 kcal/mol. All our attempts of connecting this latter alcohol adduct with hemiacetal 10aaa met with no success. Instead, our calculations showed that participation of one equivalent of salicylic acid (SA) results in the activation of the nucleophilicity of the alcohol group of INT2, together with a slight enhancement of the electrophilicity of the ketone group (double HOMO-rising and LUMO-lowering activation). As a consequence, 10aaa is formed from INT2’ via TS2, with an activation energy similar to that found for the previous step via TS1 (Figure S1). Reorganization of the acid and base additives leads to hemiacetal 10aaa with a considerably exergonic thermodynamic balance from nitronate INT1. It is noteworthy that the C-O bond forming step takes place via an equatorial nucleophilic attack on the cyclohexanone moiety, which determines the (4aR,8aS) configuration of the trans-octahydro-2H-chromene moiety of 10aaa, in which all the substituents occupy equatorial positions, with the only exception of the nitro group.
Figure S3. Reaction profile (B3LYP-D3(PCM)/6-31G(d) level of theory) associated with formation of bicyclic hemiacetal 10aaa via nitronate intermediate INT4 derived from 9aaa. Trimethylamine has been used as a computational model of Et3N. SA stands for salicylic acid. Calculations were performed in dichloromethane solution. Numbers in parentheses are relative Gibbs energies (298 K) with respect to INT4 and are given in kcal/mol. Bond distances are given in Å.

7.2 Isomerization Reaction

This process is mediated by a suitable base such as DBU via nitronate INTaad shown in Figure S4. DFT calculations on these three local minima (B3LYP D3(PCM)/6 31G* level of theory using acetonitrile as solvent) showed that all-equatorial isomer 10aad' is ca. 4 kcal/mol more stable than 10aad, the nitronate intermediate INTaad laying only ca. 2 kcal/mol above 10aad. These results indicate that in the presence of DBU and a polar solvent such as acetonitrile the equilibrium is completely shifted towards the all-equatorial isomer, in nice agreement with our experimental findings.
Figure S4. Reaction profile (B3LYP-D3(PCM,solvent=acetonitrile)/6-31G(d) level of theory) associated with isomerization of bicyclic hemiacetal 10aad to all-equatorial diasteromer 10aad’ mediated by DBU. Numbers in parentheses are relative Gibbs energies (298 K), in kcal/mol. Optimized structures of both diasteremers and nitronate intermediate INTaad bound to DBU are also shown. Bond distances are given in Å.
Table S2.a Energies (E, in a. u.), Zero-Point Vibrational Energies (ZPVE, in a.u.), Thermal Correctionsb for Gibbs Free Energies (TCGE, in a.u. at 298.15 K) and Number of Imaginary Frequenciesc (NIMAG, imaginary wave numbers in cm-1) of the Stationary Points Reported in Figures 3 and 4

Structure	E	ZPVE	TCGE	NIMAG
INT1b	-998.59667	0.41517	0.36108	0
Ethyl glyoxalate b	-381.70803	0.09996	0.06717	0
TS1 b	-1380.32681	0.52168	0.45880	1 (-46.74)
INT2 b	-1380.35850	0.52294	0.46133	0
Salicylic acid (SA) b	-496.06760	0.12042	0.08768	0
INT2+SA b	-1876.45725	0.64548	0.57238	0
INT2' b	-1876.45392	0.64782	0.57274	0
TS2 b	-1876.44136	0.64216	0.56743	1 (-707.28)
10aaa+NMe3+SA b	-1876.45874	0.64760	0.57388	0
10aaa+N(+)HMe3+SA(-)b	-1876.47380	0.65054	0.58079	0
10aad+DBUc	-1629.63603	0.62964	0.56430	0
INTaad+DBUc	-1629.62857	0.62873	0.56021	0
10aad'+DBUc	-1629.64177	0.62957	0.56386	0

aCalculations performed at the B3LYP-D3(PCM)/6-31(d) level of theory. bResults obtained using dichloromethane as solvent. cResults obtained using acetonitrile as solvent.
Cartesian coordinates of stationary points gathered in Figures 3 and 4

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	6	0	-2.432174	-0.095978	0.235440
2	6	0	-4.140504	-0.138668	-1.659308
3	6	0	-4.529494	-1.579940	0.391841
4	6	0	-4.719130	-1.458622	-1.134768
5	6	0	-2.656370	-0.003970	-1.294811
6	1	0	-4.700659	0.704184	-1.229983
7	1	0	-5.129351	-0.802542	0.888132
8	1	0	-4.212394	-2.299506	-1.627673
9	1	0	-2.090497	-0.796770	-1.801743
10	1	0	-2.995765	0.738194	0.681911
11	1	0	-4.261802	-0.079176	-2.747394
12	1	0	-4.856238	-2.551860	0.772649
13	1	0	-5.784360	-1.542828	-1.377936
14	1	0	-2.252697	0.948803	-1.653060
15	6	0	-3.080429	-1.363062	0.794675
16	8	0	-2.483224	-2.140478	1.522027
17	6	0	-0.960193	0.060471	0.689337
18	6	0	-0.449048	1.469961	0.385175
19	6	0	0.392439	4.102901	-0.156090
20	6	0	0.293038	1.761336	-0.765998
21	6	0	-0.764947	2.517546	1.259790
22	6	0	-0.351005	3.823702	0.993776
23	6	0	0.714131	3.065783	-1.034303
24	1	0	0.554965	0.958821	-1.450021
25	1	0	-1.334799	2.305171	2.162080
26	1	0	-0.602201	4.621296	1.688125
27	1	0	1.295180	3.269593	-1.930061
28	1	0	0.721105	5.117814	-0.362728
29	1	0	-0.947176	-0.055896	1.781951
30	6	0	-0.082306	-1.017844	0.128906
31	6	0	-0.385378	-1.731502	-0.621612
32	7	0	1.134006	-1.137754	0.578343
33	8	0	1.685128	-0.405975	1.448886
34	8	0	1.882641	-2.183524	0.049213
35	1	0	2.835290	-1.763673	-0.068013
36	7	0	4.218317	-1.023318	-0.360201
37	6	0	5.029606	-1.791661	-1.312256
38	1	0	4.465232	-1.933726	-2.238864
39	1	0	5.257108	-2.774001	-0.887757
40	1	0	5.977045	-1.281750	-1.550280
41	6	0	4.897242	-0.869778	0.934137
42	1	0	4.212748	-0.378747	1.628618
43	1	0	5.822621	-0.278885	0.842857
44	1	0	5.149037	-1.858573	1.329368
45	6	0	3.831443	0.283912	-0.913845
46	1	0	3.163560	0.783003	-0.208100
47	1	0	3.294298	0.131732	-1.855302
48	1	0	4.708724	0.921604	-1.106957
Ethyl glyoxalate

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-1.383451	-1.495460	0.000000
2	1	0	-1.355234	-2.601259	0.000000
3	8	0	-2.404854	-0.851105	0.000000
4	6	0	0.022302	-0.880699	0.000000
5	8	0	1.010463	-1.588247	0.000000
6	8	0	0.000000	0.447424	0.000000
7	6	0	1.298458	1.111254	0.000000
8	1	0	1.849850	0.782572	-0.886222
9	1	0	1.849850	0.782572	-0.886222

TS1

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	4.498099	-2.704792	0.298027
2	6	0	4.426048	-2.768300	1.690147
3	6	0	3.385042	-2.111466	2.354628
4	6	0	2.426023	-1.399351	1.634517
5	6	0	2.489610	-1.326598	0.232766
6	6	0	3.536004	-1.989145	-0.420822
7	6	0	1.452498	-0.551250	-0.582797
8	6	0	0.066723	-1.105731	-0.296663
9	7	0	-0.637766	-0.853598	0.822923
10	8	0	-0.393082	0.217971	1.514939
11	6	0	1.600065	0.999107	-0.504185
12	6	0	2.991151	1.509580	-0.032623
13	6	0	3.025805	3.042002	0.060341
14	6	0	2.668099	3.703673	-1.275955
15	6	0	1.306952	3.190173	-1.793712
16	6	0	1.319960	1.673625	-1.844096
17	8	0	1.196924	1.066291	-2.900021
18	6	0	-1.511599	0.389610	-1.551537
19	6	0	-2.669073	-0.579797	-1.354444
20	8	0	-2.511446	-1.654682	-2.139843
21	6	0	-3.447668	-2.757388	-1.991908
22	6	0	-2.799314	-3.850085	-1.157043
23	8	0	-1.482487	1.463713	-0.954581
24	8	0	-1.608358	-1.595020	1.179895
25	8	0	-3.611832	-0.369745	-0.615237
26	7	0	-2.691851	1.553576	1.991463
27	6	0	-2.001187	2.315176	3.073488
28	6	0	-3.524857	0.443793	2.549844
29	6	0	-3.478869	2.442965	1.087659
30	1	0	2.639481	4.795315	-1.178231
Center Number	Atomic Number	Atomic Type	X	Y	Z
---------------	---------------	-------------	----------	----------	----------
1	1	0	-2.834640	-4.866030	-0.701660
2	6	0	-2.773320	-3.809082	-0.985210
3	6	0	-3.223872	-1.419595	-0.206078
4	6	0	-1.717174	-1.064731	-0.373732
5	6	0	-1.296878	-3.422649	-1.248303
6	6	0	-3.396629	-2.917168	0.098421
7	1	0	-3.765729	-1.152015	-1.124336
8	1	0	-1.199663	-1.401106	0.525608
9	1	0	-0.691915	-3.630603	-0.357165
10	1	0	-2.922386	-3.136739	1.065583
11	1	0	-3.336662	-3.695304	-1.921228
12	1	0	-3.659736	-0.824578	0.600113
13	1	0	-0.882892	-3.975216	-2.096283
14	1	0	-4.462113	-3.152206	0.208417
15	6	0	-1.257588	-1.939427	-1.543347
16	8	0	-1.060774	-1.501953	-2.668313
17	6	0	-1.419584	0.432012	-0.630306
18	1	0	-1.564781	0.576935	-1.707684
19	6	0	-2.329174	1.438016	0.069458
Number	Atomic Number	Atomic Type	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
--------	---------------	-------------	---------------	---------------	---------------
20	6	0	-3.953925	3.396568	1.285652
21	6	0	-2.867815	2.494817	-0.678041
22	6	0	-2.621189	1.379021	1.441401
23	6	0	-3.427273	2.347142	2.042429
24	6	0	-3.671149	3.467571	-0.079596
25	1	0	-2.655508	2.556314	-1.743155
26	1	0	-2.219011	0.571245	2.042556
27	1	0	-3.643898	2.793050	3.105186
28	1	0	-4.077688	4.276000	-0.681319
29	1	0	-4.581099	4.149353	1.755305
30	6	0	0.059058	0.858779	-0.434042
31	1	0	0.168103	1.887445	-0.776312
32	6	0	1.125864	-0.011583	-1.180016
33	1	0	0.769614	-0.045412	-2.215310
34	7	0	0.498754	0.920438	1.012695
35	8	0	1.221297	-3.150045	-0.714504
36	6	0	2.484310	0.708520	-1.193524
37	8	0	3.504214	0.257398	-0.714868
38	8	0	2.386073	1.889103	-1.822221
39	6	0	3.571567	2.734551	-1.834777
40	1	0	4.445927	2.107775	-2.026203
41	1	0	3.412601	3.402046	-2.683696
42	6	0	3.699555	3.498183	-0.526861
43	1	0	3.843622	2.807876	0.308125
44	1	0	2.798509	4.089944	-0.336876
45	1	0	4.559267	4.174563	-0.578153
46	1	0	1.748600	-1.374165	0.153405
47	7	0	2.612549	-1.910478	1.506329
48	6	0	3.184532	-0.851040	2.344774
49	1	0	2.377881	-0.237989	2.753591
50	1	0	3.822317	-0.215449	1.726816
51	1	0	3.780574	-1.264296	3.176511
52	6	0	3.665469	-2.699874	0.858135
53	1	0	3.206211	-3.455860	0.213322
54	1	0	4.313863	-3.208820	1.591281
55	1	0	4.271191	-2.036176	0.237071
56	6	0	1.694883	-2.762508	2.267633
57	1	0	1.236363	-3.494747	1.594332
58	1	0	0.903732	-2.144468	2.699053
59	1	0	2.207413	-3.305865	3.079788
60	8	0	1.304445	1.801659	1.313362
61	8	0	0.104471	0.059262	1.798008

Salicylic acid (SA)

Center	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	1	0	0.671710 -3.025229 0.000000		
2	6	0	0.867643 -1.957824 0.000000		
3	6	0	1.324179 0.801704 0.000000		
4	6	0	-0.228934 -1.081687 0.000000		
5	6	0	2.162083 -1.456359 0.000000		
6	6	0	2.400224 -0.072033 0.000000		
7	6	0	0.000000 0.319190 0.000000		
8	1	0	2.999827 -2.148383 0.000000		
Center Number	Atomic Number	Atomic Type	X	Y	Z
---------------	---------------	-------------	-------	-------	-------
1	6	0	5.824560	1.606089	1.508781
2	6	0	6.499699	1.540121	0.288607
3	6	0	5.887174	0.920590	-0.803403
4	6	0	4.608377	0.375385	-0.678774
5	6	0	3.919539	0.434442	0.542708
6	6	0	4.547297	1.055292	1.631321
7	6	0	2.505452	-0.109958	0.717019
8	6	0	1.481159	0.965489	0.259992
9	7	0	1.604018	1.379416	-1.188856
10	8	0	1.860043	0.526905	-2.039321
11	6	0	2.263997	-1.534876	0.164395
12	6	0	3.432171	-2.541738	0.390693
13	6	0	3.109178	-3.893390	-0.269983
14	6	0	1.783824	-4.915080	0.227162
15	6	0	0.621144	-3.471506	0.097869
16	6	0	1.072590	-2.225146	0.814812
17	8	0	0.674810	-1.934839	1.944570
18	6	0	-0.011994	0.584214	0.487495
19	6	0	-0.936381	1.797637	0.341206
20	8	0	-0.660147	2.719045	1.273992
21	6	0	-1.454203	3.940207	1.239471
22	6	0	-0.944629	4.885187	0.163738
23	8	0	-0.442350	-0.491107	-0.281150
24	8	0	1.350827	2.554445	-1.451581
25	8	0	-1.814435	1.891167	-0.490878
26	7	0	-1.245741	-0.176839	-2.808482
27	6	0	-0.555690	-1.275692	-3.489318
28	6	0	-1.032736	1.099183	-3.500882
29	6	0	-2.675371	-0.460479	-2.638229
30	1	0	1.534392	-5.401427	-0.329841
31	1	0	3.596529	-2.670496	1.469483
32	1	0	2.076387	-1.485857	-0.908708
33	1	0	0.439140	-3.243834	0.958138
34	1	0	3.054178	-3.748162	-1.358083
35	1	0	1.880981	-4.776945	1.282998
36	1	0	4.357140	-2.134236	-0.024523
37	1	0	-0.300478	-3.855366	0.541632
38	1	0	3.927513	-4.599579	-0.086572
39	1	0	2.319429	-0.170941	1.796091
40	1	0	4.029830	1.107119	2.586684
41	1	0	4.145698	-0.102462	-1.535269
42	1	0	6.405190	0.859867	-1.756741
Number	Atomic Number	Atomic Type	X	Y	Z
--------	---------------	-------------	---------	---------	---------
1	6	0	3.166170	-0.575038	1.561582
2	6	0	3.798431	-0.197723	0.367536
3	6	0	5.098570	-0.695674	0.092566
4	6	0	5.715302	-1.563492	1.016727
5	6	0	5.058863	-1.925654	2.186736
6	6	0	3.778417	-1.430587	2.471096
7	6	0	3.101982	0.689821	-0.625654
8	8	0	3.724530	1.011674	-1.608701
9	8	0	1.919576	1.082952	-0.349512
10	8	0	-0.167832	-0.176942	-1.336903
11	6	0	-1.478864	1.858913	-0.375420
12	6	0	-2.735052	1.004752	-0.502388
13	6	0	-2.727732	-0.213612	0.449184
14	6	0	-1.743130	-1.348156	0.057193
15	6	0	-0.282742	-0.907875	-0.144616

INT2'
16	6	0	-1.309982	2.848010	-1.503214
17	6	0	-2.472538	3.865496	-1.360675
18	6	0	-3.832991	3.150279	-1.316548
19	6	0	-3.882287	2.031427	-0.260185
20	8	0	-0.812942	1.921148	0.654850
21	6	0	0.677932	-2.103610	-0.035387
22	8	0	1.543585	-2.148372	-1.045617
23	6	0	2.599088	-3.144548	-0.960509
24	6	0	3.493253	-2.935795	-2.166310
25	7	0	-2.128863	-2.128655	-1.194123
26	8	0	-1.735785	-2.148372	-1.243951
27	6	0	-4.093405	-0.808377	0.778777
28	6	0	-4.383279	-1.134632	2.111142
29	6	0	-5.600003	-1.978936	1.481761
30	6	0	-6.286299	-1.654831	0.150840
31	6	0	-5.064169	-1.077634	-0.198264
32	8	0	0.669733	-2.859986	0.917498
33	8	0	-2.747824	4.424475	1.383973
34	6	0	2.509213	4.110783	-0.214642
35	6	0	2.576854	3.029832	2.012703
36	6	0	-0.334118	3.336943	-1.438839
37	1	0	-2.810333	0.663134	-1.534883
38	1	0	-4.040030	2.711377	-2.302302
39	1	0	-3.784715	2.711377	-2.302302
40	1	0	-2.328281	4.434792	-0.432148
41	1	0	-1.376901	2.333509	-2.467404
42	1	0	-4.628534	3.879142	-1.121821
43	1	0	-4.849616	1.524518	-0.300473
44	1	0	-2.437677	4.583847	-2.187042
45	1	0	-2.307690	0.148286	1.396117
46	1	0	-1.753787	-2.105981	0.841118
47	1	0	-0.037811	-0.283134	0.723591
48	1	0	2.137103	-4.136511	-0.947071
49	1	0	3.134649	-2.995873	-0.019032
50	1	0	3.913282	-1.926215	-2.165097
51	1	0	2.934046	-3.084084	-3.095715
52	1	0	4.320188	-3.653311	-2.139013
53	1	0	-4.865062	-0.833828	-1.235610
54	1	0	-3.644310	-0.930114	2.882958
55	1	0	-5.803686	-1.960055	3.503156
56	1	0	-7.025654	-1.851405	-0.620958
57	1	0	-7.511666	-2.428879	1.751060
58	1	0	1.266431	2.642031	0.496657
59	1	0	0.036137	3.898043	2.122475
60	1	0	0.007236	4.715965	0.545220
61	1	0	1.113427	5.303860	1.821937
62	1	0	3.179482	3.353350	-0.619305
63	1	0	3.065551	4.961259	0.182597
64	1	0	1.827134	4.443848	-0.998016
65	1	0	3.304804	2.324175	1.616736
66	1	0	1.948607	2.530892	2.751356
67	1	0	3.075882	3.891436	2.459163
68	1	0	0.662245	0.357953	-1.219561
69	8	0	5.759993	-0.376013	-1.033140

S71
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-4.659446	0.135058	-0.945959
2	6	0	-4.286202	-0.194220	0.368751
3	6	0	-5.214504	-0.877664	1.194895
4	6	0	-6.485236	-1.199243	0.693256
5	6	0	-6.829369	-0.855364	-0.608506
6	6	0	-5.916988	-0.187863	1.439644
7	6	0	-2.932906	0.123721	0.890637
8	8	0	-2.590538	-0.219507	2.041254
9	6	0	-2.129828	0.758729	0.076425
10	8	0	0.169360	0.113921	0.367968
11	6	0	1.284683	1.568231	0.595258
12	6	0	2.575028	0.777153	0.851851
13	6	0	2.979659	-0.013768	-0.409209
14	6	0	1.901890	-1.035630	-0.864147
15	6	0	0.481056	-0.420363	-0.887155
16	6	0	0.699090	2.148779	1.871256
17	6	0	1.726023	3.176293	2.394722
18	6	0	3.113886	2.537407	2.583957
19	6	0	3.614531	1.820501	1.315538
20	8	0	1.235044	2.264920	-0.475454
21	6	0	-0.565446	-1.429376	-1.375192
22	8	0	-1.147342	-2.070798	-0.362200
23	6	0	-2.193974	-3.021340	-0.700416
24	6	0	-2.683801	-3.617209	0.603850
25	7	0	1.849268	-2.293839	-0.019220
26	8	0	1.664824	-3.349878	-0.625782
27	6	0	4.352054	-0.671415	-0.369804
28	6	0	5.140512	-0.677240	-1.529106
29	6	0	6.388364	-1.302606	-1.548444
30	6	0	6.872270	-1.930864	0.398851
31	6	0	6.098625	-1.927971	0.764138
32	6	0	4.848588	-1.306539	0.777963
33	8	0	-0.804212	-1.612158	-2.552668
34	8	0	1.937524	-2.205161	1.201116
35	7	0	0.796823	3.662407	1.323249
36	6	0	-0.113036	4.872160	-1.861974
37	6	0	-1.841525	4.012493	-0.321565
38	6	0	-1.343217	2.797788	-2.410360
39	1	0	-0.265270	2.623163	1.662006
40	1	0	2.385455	0.084771	1.673453
41	1	0	3.060727	1.805725	3.402987
42	1	0	3.775080	2.546925	0.507392
43	1	0	1.798456	3.995570	1.666699
44	1	0	0.530721	1.355312	2.606735
45	1	0	3.837469	3.302171	2.891658
46	1	0	4.576857	1.337118	1.512213
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
---------------	---------------	-------------	-------------------------		
			X	Y	Z
1	6	0	5.078040	0.214738	0.183163
2	6	0	4.278038	-0.520115	-0.713550
3	6	0	4.848301	-1.613489	-1.415401
4	6	0	6.196557	-1.940340	-1.205596
5	6	0	6.964366	-1.196708	-0.318929
6	6	0	6.410610	-0.113774	0.382798
7	6	0	2.858025	-0.199539	-0.920023
8	8	0	2.124424	-0.824991	-1.695237
9	8	0	2.396369	0.815513	-0.184258
10	8	0	-0.249679	0.640140	0.073556
11	6	0	-1.218502	1.477694	-0.640655
12	6	0	-2.447673	0.617040	-0.978342
13	6	0	-3.045222	0.012264	0.308938
14	6	0	-1.971071	-0.705033	1.169472
15	6	0	-0.719294	0.186199	1.332470
16	6	0	-0.509681	1.937105	-1.915348
17	6	0	-1.481336	2.758593	-2.776478
18	6	0	-2.771218	1.978056	-3.076568
19	6	0	-3.442729	1.457171	-1.794857
---	---	---	---	---	---
20	8	0	-1.602274	2.536499	0.174209
21	6	0	0.420192	-0.516317	2.073494
22	8	0	1.054934	-1.367998	1.271413
23	6	0	2.125121	-2.180439	1.831133
24	6	0	2.311186	-3.353189	0.889154
25	7	0	-1.553368	-2.054541	0.615442
26	8	0	-1.503061	-2.984397	1.419456
27	6	0	-4.266620	-0.873141	0.111437
28	6	0	-5.329848	-0.780974	1.020408
29	8	0	-6.454138	-1.598635	0.897184
30	6	0	-6.533277	-2.523708	-0.146023
31	6	0	-5.482230	-2.621956	1.419456
32	6	0	-4.357150	-1.805178	-0.932840
33	8	0	0.665216	-0.322076	3.245810
34	8	0	-1.244618	-2.142615	-0.568552
35	7	0	0.569484	3.955049	1.087773
36	6	0	-0.110948	5.160211	1.578112
37	6	0	1.620721	4.298299	0.123732
38	6	0	1.116320	3.168707	2.201380
39	1	0	0.367575	2.534408	-1.644402
40	1	0	-2.076379	-0.193794	2.456751
41	1	0	-3.791141	2.297477	-3.724502
42	1	0	-1.731081	3.679367	-2.234793
43	1	0	-0.150228	1.053276	-2.456751
44	1	0	-3.470839	2.611083	-3.635697
45	1	0	-4.319692	0.851437	-2.046651
46	1	0	-0.987848	3.055130	-3.709176
47	1	0	-3.347960	0.856079	0.943122
48	1	0	-2.373075	-0.943839	2.154118
49	1	0	-1.028508	1.032679	1.950996
50	1	0	1.835929	-2.492213	2.837759
51	1	0	3.017273	-1.550092	1.899221
52	1	0	2.585402	-3.012898	-0.112673
53	1	0	1.381447	-3.926640	0.819067
54	1	0	3.104163	-4.007426	1.265445
55	1	0	-3.548077	-1.897512	-1.649184
56	1	0	-5.276434	-0.058687	1.832071
57	1	0	-7.267563	-1.509215	1.612120
58	1	0	-5.535891	-3.336364	-1.877549
59	1	0	-7.407912	-3.160287	-0.247602
60	1	0	0.775053	3.063126	0.416208
61	1	0	-0.919847	4.871294	2.256283
62	1	0	-0.544273	5.701752	0.731623
63	1	0	0.575261	5.836121	2.115411
64	1	0	2.110413	3.384537	-0.224455
65	1	0	2.387152	4.957119	0.566225
66	1	0	1.176074	4.810412	-0.735266
67	1	0	1.589688	2.262947	1.813730
68	1	0	0.308139	2.878115	2.879287
69	1	0	1.867430	3.734290	2.778051
70	1	0	1.401161	0.798255	-0.228278
71	8	0	4.140197	-2.376727	-2.273545
72	1	0	6.612577	-2.782077	-1.749813
73	1	0	8.007018	-1.462356	-0.167185
74	1	0	7.018226	0.459613	1.075513
75	1	0	4.628776	1.044065	0.718472
Chemical Structure

10aaa + N(+)HMe₃ + SA(-)

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)			
			X	Y	Z	
1	6	0	-6.215513	1.028281	-1.240996	
2	6	0	-6.713723	0.975260	0.062602	
3	6	0	-5.891003	0.521370	1.095955	
4	6	0	-4.578717	0.126202	0.830199	
5	6	0	-4.066957	0.176527	-0.475073	
6	6	0	-4.903810	0.630296	-1.504012	
7	6	0	-2.632136	-0.210840	-0.798863	
8	6	0	-1.66189	0.984027	-0.589101	
9	7	0	-1.736483	1.584461	0.798091	
10	8	0	-1.639481	0.831796	1.773181	
11	6	0	-2.127572	-1.502755	-0.120067	
12	6	0	-2.960147	-2.744841	-0.475782	
13	6	0	-2.410684	-3.986443	0.246853	
14	6	0	-0.915533	-4.205729	-0.037783	
15	6	0	-0.093659	-2.950112	0.293148	
16	6	0	-0.651300	-1.755981	-0.479505	
17	8	0	-0.543324	-1.934551	-1.854543	
18	6	0	-0.204812	0.545984	-0.844711	
19	6	0	0.789478	1.653528	-0.545977	
20	8	0	0.686535	2.631008	-1.441153	
21	6	0	1.522909	3.810685	-1.228279	
22	6	0	0.903079	4.724687	-0.184788	
23	8	0	0.131551	-0.582303	0.067067	
24	8	0	-1.820106	2.805437	0.884344	
25	8	0	1.532956	1.654410	0.416837	
26	7	0	1.187688	0.009288	2.712532	
27	6	0	0.418064	-0.969877	3.540561	
28	6	0	1.091606	1.386156	3.301385	
29	6	0	2.612269	-0.414760	2.520383	
30	1	0	-0.538159	-5.058433	0.539060	
31	1	0	-2.926730	-2.897148	-1.561381	
32	1	0	-2.153034	-1.367962	0.964637	
33	1	0	-0.155816	-2.742484	1.366501	
34	1	0	-2.555704	-3.859426	1.330220	
35	1	0	-0.776288	-4.444799	-1.098716	
36	1	0	-0.2007935	-2.579557	-0.201600	
37	1	0	0.959710	-3.070846	0.023343	
38	1	0	-2.985019	-4.874031	-0.045378	
39	1	0	-2.568247	-0.383832	-1.880062	
40	1	0	-4.523219	0.669614	-2.522165	
41	1	0	-3.952173	-0.219298	1.645517	
42	1	0	-6.270229	0.473113	2.113204	
43	1	0	-6.847513	1.374449	-2.054303	
44	1	0	-7.355201	1.281339	0.270994	
45	1	0	-1.924545	1.813758	-1.245662	
46	1	0	-0.126879	0.312818	-1.909211	
47	1	0	2.522629	3.469116	-0.954144	
48	1	0	1.558408	4.281182	-2.212226	
49	1	0	0.863181	4.229352	0.788977	
Center	Atomic Number	Atomic Number	Type	Coordinates (Angstroms)		
--------	---------------	---------------	------	-------------------------		
				X	Y	Z
1	6	0		-1.539675	-0.272892	2.073957
2	6	0		-1.204472	-1.645582	4.160444
3	6	0		0.093881	-2.187723	2.040786
4	6	0		-0.540579	-2.750785	3.323084
5	6	0		-0.957855	-1.423360	1.220224
6	6	0		-2.208168	-0.831868	3.330661
7	1	0		-0.431862	-0.964602	4.537447
8	1	0		0.915600	-1.512355	2.307022
9	1	0		-1.295702	-3.500691	3.045350
10	1	0		-1.798391	-2.097205	1.034673
11	1	0		-3.055515	-1.457054	3.024986
12	1	0		-1.707772	-2.079227	5.032930
13	1	0		0.524115	-2.996376	1.440362
14	1	0		0.218002	-3.272165	3.919733
15	1	0		-2.606589	0.010818	3.906777
16	8	0		-0.586330	0.669055	2.488592
17	6	0		-0.456451	-0.891391	-0.138397
18	1	0		0.338237	-0.163855	0.061529
19	6	0		-1.529413	-0.026618	-0.845948
20	1	0		-1.083722	0.515266	-1.680036
21	6	0		-2.155298	0.995176	0.139282
22	1	0		-1.337864	1.694017	0.356967
Center Number	Atomic Number	Atomic Type	X	Y	Z	
--------------	--------------	-------------	------------	------------	------------	
23	6	0	-3.259127	1.804330	-0.445817	
24	6	0	-3.332159	3.111400	-0.825762	
25	1	0	-2.544447	3.845845	-0.72036	
26	6	0	-4.645593	3.304698	-1.370968	
27	1	0	-5.062216	4.218901	-1.769967	
28	6	0	-5.272791	2.099789	-1.280238	
29	1	0	-6.258885	1.748961	-1.544780	
30	8	0	-4.443150	1.170303	-0.719798	
31	6	0	-0.118305	-1.926291	-1.091983	
32	6	0	1.206803	-3.749360	-2.941001	
33	6	0	-0.396440	-3.225388	-1.200699	
34	6	0	1.78259	-1.553341	-1.930797	
35	6	0	1.72172	-2.453951	-2.847437	
36	6	0	0.145933	-4.130380	-2.116055	
37	1	0	-1.222807	-3.535552	-0.569500	
38	1	0	1.580541	-0.545355	-1.862046	
39	1	0	2.547930	-2.145439	-3.482208	
40	1	0	-0.262105	-5.135297	-2.182923	
41	1	0	1.629150	-4.456123	-3.649908	
42	7	0	-2.599759	-0.865524	-1.499977	
43	8	0	-3.215912	-1.679987	-0.814811	
44	8	0	-2.806061	-0.674948	-2.697750	
45	1	0	0.217446	0.747543	1.904976	
46	7	0	1.600345	1.552715	1.040036	
47	6	0	2.752363	1.230405	0.517585	
48	6	0	1.152762	2.929754	0.844800	
49	1	0	1.705278	3.606393	1.516677	
50	1	0	0.098596	2.996574	1.129869	
51	6	0	1.384957	3.354864	-0.603602	
52	1	0	0.843480	2.672099	-1.269835	
53	1	0	1.026669	4.370416	-0.801282	
54	6	0	2.884252	3.280499	-0.862552	
55	1	0	3.095462	3.265898	-1.939841	
56	1	0	3.384220	4.165964	-0.446433	
57	6	0	3.233541	-0.185422	0.818770	
58	1	0	2.325515	-0.784388	0.903911	
59	1	0	3.684031	-0.192782	1.820498	
60	6	0	4.186820	-0.830800	-0.190465	
61	1	0	3.868472	-0.581868	-1.207582	
62	1	0	4.093310	-1.927079	-0.113233	
63	6	0	5.647470	-0.422980	0.023164	
64	1	0	6.239178	-0.704757	-0.856982	
65	1	0	6.069942	-0.969127	0.876184	
66	6	0	5.779759	1.085359	0.275859	
67	1	0	6.822041	1.393088	0.134304	
68	1	0	5.527044	1.330801	1.314628	
69	6	0	4.908797	1.934752	-0.651254	
70	1	0	4.974535	1.563792	-1.685155	
71	1	0	5.308405	2.955759	-0.664497	
72	7	0	3.493390	2.076921	-0.264460	
73	8	0	-2.600142	0.375567	1.331540	
			0	1	2	
---	---	---	----	-----	----	
1	6	0	-2.782125	-1.960714	-1.067130	
2	6	0	-4.832865	-2.536686	-2.457864	
3	6	0	-4.140901	-0.122964	-2.167789	
4	6	0	-5.322648	-1.087907	-2.329769	
5	6	0	-3.250557	-0.491217	-0.970478	
6	6	0	-3.960254	-2.917762	-1.256969	
7	1	0	-4.247087	-2.645120	-3.379490	
8	1	0	-3.526957	-0.146444	-3.078319	
9	1	0	-5.983852	-1.004123	-1.454643	
10	1	0	-3.842431	-0.421836	-0.050229	
11	1	0	-4.554216	-2.887833	-0.335914	
12	1	0	-5.681864	-3.227117	-2.532430	
13	1	0	-4.499484	0.905659	-2.049790	
14	1	0	-5.919736	-0.806036	-3.205993	
15	1	0	-3.556339	-3.931462	-1.356930	
16	8	0	-1.916247	-2.153289	-2.184117	
17	6	0	-2.026132	0.456701	-0.838718	
18	1	0	-1.608616	0.606149	-1.846677	
19	6	0	-1.264883	-1.465332	0.803080	
20	1	0	-0.311214	-1.974458	0.967149	
21	6	0	-1.823620	-1.154450	2.167102	
22	6	0	-1.214439	-0.873657	3.355310	
23	1	0	-0.149973	-0.909561	3.537277	
24	6	0	-2.255167	-0.497929	4.271720	
25	1	0	-2.145243	-0.214898	5.309726	
26	6	0	-3.421878	-0.580129	3.575676	
27	1	0	-4.458989	-0.418523	3.827670	
28	8	0	-3.177522	-0.978412	2.287663	
29	6	0	-2.437649	1.840710	-0.337802	
30	6	0	-3.300449	4.378317	0.543365	
31	6	0	-2.583665	2.114321	1.029059	
32	6	0	-2.723255	2.862551	-1.253078	
33	6	0	-3.152688	4.119782	-0.821275	
34	6	0	-3.009882	3.369746	1.466289	
35	1	0	-2.343983	1.348163	1.758155	
36	1	0	-2.601584	2.672068	-2.316998	
37	1	0	-3.365447	4.897137	-1.550895	
38	1	0	-3.112879	3.559749	2.531872	
39	1	0	-3.631347	5.355816	0.884200	
40	1	0	-1.125898	-1.608564	-2.026319	
41	8	0	-2.143326	-2.386940	0.131696	
42	6	0	-0.978754	-0.222083	0.000625	
43	7	0	0.223611	0.333353	0.099119	
44	8	0	1.126467	-0.181335	0.905688	
45	8	0	0.527619	1.384015	-0.569771	
46	1	0	2.548397	0.512732	0.357095	
47	7	0	3.477336	0.846845	0.000055	
48	6	0	4.348153	-0.060543	-0.388430	
49	7	0	5.531859	0.267824	-0.923524	
50	6	0	5.920656	1.683315	-1.051710	
51	1	0	6.602005	1.764121	-1.902069	
52	1	0	6.466470	1.992184	-0.151061	
53	6	0	4.682243	2.552846	-1.265466	
54	1	0	4.236843	2.316287	-2.238165	
55	1	0	4.970873	3.607305	-1.273934	
56	6	0	3.668183	2.288193	-0.156268	
10aad' + DBU

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	1.099071	-2.232123	0.033450
2	6	0	-0.061775	-4.243369	1.012547
3	6	0	-0.696148	-1.903851	1.802376
4	6	0	-0.574497	-3.388378	2.181762
5	6	0	0.628343	-1.377333	1.236182
6	6	0	1.258918	-3.693878	0.454868
7	1	0	-0.807608	-4.249340	0.208553
8	1	0	-1.488583	-1.769515	1.068373
9	1	0	0.120877	-3.482079	3.028762
10	1	0	1.394403	-1.514522	2.012382
11	1	0	2.050627	-3.754088	1.211019
12	1	0	0.075192	-5.282743	1.334221
13	1	0	-0.980240	-1.312355	2.678962
14	1	0	-1.545566	-3.763035	2.528291
15	1	0	1.589175	-4.263968	-0.420429
16	8	0	0.239408	-2.220279	-1.069622
17	6	0	0.622696	0.125507	0.859726
18	1	0	-0.018355	0.260617	-0.016671
19	6	0	2.066530	0.454570	0.437163
20	6	0	2.499317	-0.435037	-0.757786
21	1	0	1.822480	-0.249447	-1.600332
22	6	0	3.883515	-0.132698	-1.208026
23	6	0	4.397343	0.309522	-2.390138
24	1	0	3.836270	0.497116	-3.295139
25	6	0	5.808263	0.473640	-2.185494
26	1	0	6.541241	0.807214	-2.906565
27	6	0	6.045383	0.122272	-0.891585
28	1	0	6.935124	0.075751	-0.281913
29	8	0	4.883552	-0.247385	-0.275764
30	6	0	0.086395	1.020560	1.959696
31	6	0	-0.998021	2.634671	3.993524
32	6	0	0.810149	1.271123	3.133514
33	6	0	-1.189435	1.585224	1.828280
---	---	---	---	---	
34	6	0	-1.730379	2.385739	2.830723
35	6	0	0.273548	2.073859	4.141747
36	1	0	1.797740	0.838269	3.267954
37	1	0	-1.766395	1.388742	0.922901
38	1	0	-2.721169	2.813880	2.705127
39	1	0	0.849413	2.260734	5.044046
40	1	0	-1.413817	3.259758	4.778857
41	1	0	-0.245317	-1.367702	-1.269699
42	7	0	-1.360763	-0.134955	-1.981010
43	6	0	-2.604814	-0.097508	-1.583426
44	6	0	-0.830220	1.035774	-2.676881
45	1	0	-1.116849	0.88470	-3.739548
46	1	0	0.260849	1.002854	-2.636738
47	6	0	-1.348336	2.332317	-2.062016
48	1	0	-0.981646	2.411812	-1.034124
49	1	0	-0.984924	3.210579	-2.605744
50	6	0	-2.869377	2.309379	-2.085203
51	1	0	-3.270805	3.069591	-1.403977
52	1	0	-3.246632	2.544074	-3.090382
53	6	0	-3.138775	-1.402223	-1.013067
54	1	0	-2.257252	-2.009096	-0.804369
55	1	0	-3.674264	-1.936265	-1.809208
56	6	0	-4.035990	-1.275347	0.228736
57	1	0	-3.682731	-0.437623	0.843846
58	1	0	-3.927048	-2.172119	0.849295
59	6	0	-5.514253	-1.077119	-0.13956
60	1	0	-6.056431	-0.669574	0.722538
61	1	0	-5.971705	-2.047924	-0.369232
62	6	0	-5.694417	-0.148701	-1.349553
63	1	0	-6.741933	0.169109	-1.409317
64	1	0	-5.485173	-0.677769	-2.286489
65	6	0	-4.838788	1.116934	-1.295275
66	1	0	-4.905394	1.572437	-0.295190
67	1	0	-5.264503	1.844719	-1.995564
68	7	0	-3.416526	1.001559	-1.675053
69	8	0	2.429383	-1.793587	-0.343878
70	1	0	2.771748	0.314896	1.255369
71	7	0	2.199622	1.903085	0.058910
72	8	0	1.557768	2.299716	-0.914142
73	8	0	2.943313	2.608980	0.735051

8 References

1 a) Tsakos, M.; Trifonidou, M.; Kokotos, C. G. Tetrahedron 2012, 8630-8635. b) Tsakos, M.; Kokotos, C. G.Eur. J. Org. Chem. 2012, 576-580.

2 Leyes, A. E.; Poulter, C. D. Org. Lett. 1999, 1, 1067-1070.

3 Conde, E.; Bello, D.; de Cózar, A.; Sanchez, M.; Vazquez, M. A.; Cossío, F. P. Chem. Sci. 2012, 3, 1486–1491.
4 Retamosa, M. G.; de Cózar, A.; Sánchez, M.; Miranda, J. I.; Sansano, J. M.; Castelló, L. M.; Nájera, C.; Jiménez, A. I.; Sayago, F. J.; Cativiela, C.; Cossío, F. P. Eur. J. Org. Chem. 2015, 2503-2516.

5 Retamosa, M. G.; Ruiz-Olalla, A.; Bello, T.; de Cózar, A.; Cossío, F. P. Angew. Chem., Int. Ed. 2018, 57, 668-672.

6 Retamosa, M. G.; Ruiz-Olalla, A.; Agirre, M.; de Cózar, A.; Bello, T.; Cossío, F. P. Chem. Eur. J. 2021, 27, 15671–15687.

7 CrysAlisPro, Agilent Technologies, Version 1.171.37.31.

8 Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790.

9 a) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122. b) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

10 Macrae, C. F. J. Appl. Cryst. 2008, 41, 466-470.

11 a) Spek, A. L. PLATON, A Multipurpose Crystallographic Tool, Utrecht University, The Netherlands 2010. b) Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.

12 Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837-838.

13 Enders, D; Seki, A. Proline-Catalyzed Enantioselective Michael Additions of Ketones to Nitrostyrene. Synlett 2002, 26-28.

14 Ruiz-Olalla, A.; Retamosa, M. G.; Cossío, F. P. Densely Substituted L-Proline Esters as Catalysts for Asymmetric Michael Additions of Ketones to Nitroalkenes. J. Org. Chem. 2015, 80, 5588-5599.

15(a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (c) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211. (d) Grimme, S.; Antony, J.; Enrlich, S.; Krieg, S. J. Chem. Phys. 2010, 132, 154104. (e) Jensen, F. WIREs Computational Molecular Science 2013, 3, 273-295.

16 (a) Cammi, R.; Mennucci, B.; Tomasi, J. J. Am. Chem. Soc. 1998, 120, 8834-8847. (b) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3094.

17 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparrini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.: Gaussian 16 Rev. C.01. Wallingford, CT, 2016.