INTRODUCTION

Oxygen is a key factor in the growth, reproduction and metabolism of aerobic organisms and oxygen content varies due to environmental factors, such as temperature, humidity, atmospheric pressure and altitude. Deficiencies may occur in environments of land-living animals such as high altitudes and underground caves.

Although mammals are largely intolerant of hypoxia, there are a few rodent species that live in hypoxic niches. These animals have evolved complex physiological and molecular adaptive systems that enable them to survive in hypoxic environments. Low O2 can lead to an increase in the production of reactive oxygen species (ROS) in the organism, which in turn triggers oxidative stress. However, antioxidant defense systems in organisms can counteract the adverse effects of ROS. Maintaining a balance between energy production and consumption is also key to tolerating hypoxia. In general, in order to adapt to hypoxia, animals can produce energy through anaerobic metabolism to maintain their metabolism and when the O2 supply is limited, the metabolic rate of most hypoxia-tolerant animals shows a strong decline. In hypoxia-tolerant newborn mammals, oxygen consumption (VO2) was shown not to exceed the baseline level during reoxygenation after hypoxia (15% O2), and rapidly returned to the pre-hypoxia level, and lactate accumulation was observed only in more severe hypoxia (10% O2).
The organism responds to hypoxic stress by regulating downstream gene expression primarily through hypoxia inducible factor-1 (HIF-1).15 HIF-1 is a heterodimeric transcription factor consisting of two subunits, HIF-1α and HIF-1β, of which HIF-1α is the active subunit.16 In hypoxia, HIF-1α is stably transferred to the nucleus and forms a heterodimeric complex with HIF-1β, which regulates the transcription of >150 target genes.17,18 These include the expression of two specific functional genes: vascular endothelial growth factor (VEGF) and erythropoietin (EPO).19,20 VEGF increases endothelial cell proliferation, survival and migration, promotes angiogenesis, and delivers O\textsubscript{2} and nutrients21,22; EPO stimulates the proliferation and survival of red blood cell progenitors, which maintain the O\textsubscript{2}-carrying capacity of the blood.23 An inadequate hypoxic response is often associated with cardiovascular disease, cancer and COVID-19.24,25 This review discusses the possible evolutionary mechanisms of hypoxia adaptation in small mammals living in long-term hypoxic environments and the evidence related to their possible functional role in the treatment of hypoxia-related diseases.

2 | HYPOXIC ENVIRONMENTS ON LAND

O\textsubscript{2} is essential for most aerobic organisms, and its reduction can produce significant physiological stress. At present, some hypoxia-tolerant small mammals have evolved effective strategies to survive under hypoxic conditions which may be related to their long-term existence in hypoxic environments such as the extensively studied plateau areas26 and underground caves.3

2.1 | Plateau environments

Plateaus are special geographical areas of high lands that form unique natural landscapes and ecosystems.27 China’s plateau area is large and rich in natural resources. The area above 3000 m above sea level accounts for about one-sixth of the total area of the country and includes Tibet, Qinghai, Xinjiang, Yunnan and other provinces. The Qinghai-Tibet Plateau in particular is a large area known as ‘the roof of the world’ and contains Mount Everest.28 Low temperatures, lack of O\textsubscript{2}, strong ultraviolet light and dryness are distinctive features of the climate of the plateau.29 These climate factors all directly or indirectly affect the survival of organisms. Typical atmospheric O\textsubscript{2}, N\textsubscript{2} and CO\textsubscript{2} levels are approximately 21%, 78% and 0.03% respectively. However, the concentration of O\textsubscript{2} in the terrestrial environment can be altered by altitude and air circulation problems.30 The atmospheric pressure and O\textsubscript{2} partial pressure decrease by about 0.67 and 0.14 kPa for every 100 m above sea level.31 For example, the O\textsubscript{2} concentration at 4000 m above sea level is only 182.10 g/ m3, equivalent to 60.84% of sea level30; the absolute O\textsubscript{2} level at the summit of Mount Everest, at an altitude of 8844 m, is less than 1/4 of that at sea level.22

2.2 | Underground burrow systems

Globally, more than 300 mammals, such as blind mole rats (BMRs, *Spalax galilii*),33 naked mole rats (NMRs, *Heterocephalus glaber*),34 plateau zokors (*Myospalax baileyi*)25 and others, have settled in underground niches.36 The absolute and relative amounts of O\textsubscript{2} in subterranean caverns fluctuate widely in both time and space.37,38 For example, summer rainfall and winter frozen soil tend to create transient or prolonged low-O\textsubscript{2} conditions in the cave channels.2,39-41 Spatially, the cave system can be a very complex structure.37,38,41 For example, many colony-dwelling moles have deeper nests, an environment that can severely limit ventilation.42 In addition, the presence of a large number of mammals may also lead to rapid and dramatic changes in gas composition of subterranean tunnels.43 Despite the advantages of subterranean tunnels such as microclimatic stability, relatively low temporal variability in the availability of food resources and low predation risk, this is still a highly stressful environment.42

3 | HYPOXIC ADAPTATION STRATEGIES OF SMALL MAMMALS

O\textsubscript{2} is essential for the survival of organisms and is a key factor in maintaining normal life activities.44 However, hypoxia may affect the normal metabolic activities and physiological functions of tissues, and even the vital status of the organism.45

3.1 | Physiochemical properties related to adaptation to hypoxic environments

It is possible that the morphology, blood properties, physiology, biochemistry and gene product structure and function of small mammals living on plateaus or in underground caves may have changed as they adapted to life in a low oxygen environment.46-54 For example, some subterranean mammals that live for long periods of time in anoxic and dark caves have specialized sensory systems, such as specialized circadian rhythms,55-57 heightenened hearing,58-60 degraded vision,55,59,61-63 and oxyphoresis64 (Table 1).

In addition to the possible evolutionary strategies of hypoxia adaptation that are seen in the species shown in Table 1, African mole-rats living in subterranean burrows have developed mechanisms to adapt to hypoxic, hypercapnic and hyperammonic tunneling systems.65,66 They are able to tolerate extremely low oxygen tensions for several hours without any significant cellular damage.67,68 North American deer mice (*Peromyscus maniculatus*), which live in the colder alpine regions, have also evolved more oxidative muscles that can maintain high rates of lipid oxidation to support thermogenesis.69
The antioxidant defense system mainly consists of an antioxidant enzyme system and a small molecule antioxidant system. The antioxidant enzyme system is mainly composed of enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Under normal physiological conditions, ROS is a natural by-product of metabolism, and its production and clearance are in physiological equilibrium. Too much or too little ROS can cause damage to the organism (Figure 1). Hypoxia can lead to
increased ROS production in vivo, which in turn triggers oxidative stress. However, the antioxidant defense system in the organism can counteract the adverse effects of ROS. ROS are also essential signaling molecules for cell growth, so the scavenging of ROS does not completely eliminate them, but maintains them at a low equilibrium to prevent disruption of the redox dynamic balance.

Many studies have indicated that mammals living in chronic hypoxic environments have adaptive tolerance to hypoxic stress. For example, the antioxidant defense system of the Gansu zokors (Myospalax cansus) has evolved as a response to hypoxia, with the activities and gene expression of SOD and CAT being elevated in the brain and liver after hypoxia treatment compared to normoxia. Previous studies have also found that some hypoxia-tolerant species can survive reoxygenation-induced oxidative stress cycles and maintain oxidative damage at manageable levels. For instance, higher ROS scavenging capacity in NMRs may reduce oxidative damage associated with hypoxia/reoxygenation exposure (eg associated ischemia-reperfusion injury). However, blind mole rats (BMRs) have been shown to have higher levels of ROS-processing enzymes compared to hypoxia-tolerant mammals. One of a number of key transcription factors in BMRs, Nrf2, is essential for defense against oxidative stress and has a unique structure. Although Nrf2 is highly conserved in most mammals, it carries 27 specific amino acid substitutions in BMRs, and six of them are within the Neh6 structural domain, and are essential for stabilizing the protein and its transcriptional activity under environmental oxidative stress. The powerful antioxidant mechanism of NMRs is able to quench ROS before it damages DNA and other macromolecules, thus providing cellular homeostasis.

3.3 Energy metabolism under hypoxic stress

In order to survive better in low-O2 environments, O2 ‘adaptors’ either increase O2 utilization or decrease metabolic rates at the whole body and cellular level. In hypoxic environments, the body obtains energy through anaerobic glycolysis, and only 2 molecules of ATP can be produced from 1 molecule of glucose by anaerobic glycolysis. Hence, the key for tolerating chronic hypoxia is to match metabolic demand with energy supply, and most hypoxia-tolerant animals exhibit a strong decrease in metabolic rate during O2 deprivation.

The physiological responses to low-pressure hypoxia in small mammals at high altitude are diverse and numerous. One study found that when Qinghai voles (Neodonz fuscus) were exposed to a hypoxic environment, they appeared to improve fatty acid oxidation based on enhanced oxidative phosphorylation. While up-regulation of Acot4 expression in the peroxisome of Qinghai voles helps them avoid excessive lipid depletion and deleterious effects on the plasma membrane. In contrast, down-regulation of Gpat4 may reduce the synthesis of lysophosphatidic acid based on glycerol 3-phosphoglycerate and acyl-coenzyme A (acyl-CoA), thereby reducing the synthesis of phospholipid and triglyceride. Down-regulated Gpat4 may also promote more acyl-CoA entering mitochondria for β-oxidation. These adaptations may account for the maintenance of adequate energy supply to skeletal muscle tissue in Qinghai voles under hypoxic stress. In addition, the expression of lactate-dehydrogenase-C in the skeletal muscle of plateau pikas (Ochotona curzoniae) increases their anaerobic glycolytic capacity, reduces the animals’ dependence on O2, and enhances their adaptation to the hypoxic environment of the plateau.

One of the biggest challenges faced by mammals in underground tunnels is the high energy cost of excavation in order to find limited food resources underground and maintain cave structures. For example, NMRs, as is typical of the hypoxia-tolerant subterranean rats, have a basal metabolic rate that is about 30% lower than that of similarly sized mammals. NMRs show different behaviors from other adult mammals, mainly consuming lipids under normoxia and undergoing anaerobic fructose-fueled metabolism during severe hypoxia, while their dependence on carbohydrate metabolism is increased by the depletion of hepatic glycogen and the increase in blood glucose during hypoxia. Fructose-driven glycolytic respiration in the tissues of this species avoids feedback inhibition of glycolysis via phosphofructokinase, thereby supporting survival in hypoxic environments. Gansu zokors also use fructose to accelerate energy supply based on glucose as the main metabolic substrate.

3.4 Key genes under hypoxic stress

Higher organisms have evolved complex regulatory mechanisms to respond to changes in O2 concentration in the environment, and this key mechanism of adaptive change is closely connected to the hypoxia inducible activation pathway of hypoxia inducible factor-1α (HIF-1α). To date, a number of key genes and proteins associated with hypoxia adaptation in small mammals have been published (http://ihypoxia.omicsbio.info/).

As a major regulator of the hypoxic response, HIF-1α can target and regulate hundreds of genes directly or indirectly. HIF-1α degrades rapidly under normoxic condition. But in low-O2 conditions, HIF-1α is responsible not only for the switch from oxidative phosphorylation to glycolysis, but also for other adaptive processes such as angiogenesis, cell survival and proliferation. Interestingly, the expression level of HIF-1α mRNA in subterranean rats is significantly higher than that in ground mammals at all developmental stages.

3.4.1 Vascular endothelial growth factor

Vascular endothelial growth factor (VEGF) is a multifunctional growth factor that promotes angiogenesis and diastole, increases...
vascular permeability, and promotes cell proliferation and survival. Hypoxia can rapidly and strongly induce the mRNA expression of VEGF by increasing the stability and DNA ligation capacity of HIF-1α protein. Research has found that tight control of angiogenesis may be a new mechanism for hypoxia tolerance in animals surviving in hypoxic environments. For example, VEGF gene expression was significantly upregulated in the brains of BMRs under hypoxic conditions. The mRNA expression of the VEGF gene in brain tissue and skeletal muscle of plateau zokors was significantly higher than that in Sprague-Dawley (SD) rats. VEGF was also upregulated in brain tissue of Mandarin voles (Lasiopodomys mandarinus). These studies provide further evidence that hypoxia-tolerant species may have a more effective angiogenic or neuroprotective mechanism for adapting to extreme subsurface hypoxic environments.

3.4.2 | Erythropoietin

Erythropoietin (EPO) is a hematopoietic cytokine that regulates erythropoiesis and promotes the differentiation and proliferation of relatively mature erythroid progenitor cells. Moreover, EPO also has a strong pro-endothelial expression effect on vascular endothelial cells. Hypoxia is the most important inducer of EPO, and EPO expression in the kidneys of adult BMRs was significantly higher than in Rattus norvegicus under hypoxic stress. The BMRs can also cope with the extreme hypoxic conditions of underground burrows during floods by overexpressing EPO in vivo. The relative EPO mRNA expression in liver and kidney of plateau zokors at different altitudes increased with altitude, and the increase in kidney was five times greater than that in liver. These findings provide important information for understanding the possible role of EPO in hypoxia-tolerant small mammals.

3.5 | Multi-omics studies on hypoxic adaptation in small mammals

With the rapid development of high-throughput sequencing, more and more data about the animal transcriptome or whole genome has been reported, and the discovery of large amounts of sequence information will provide useful reference data for animal evolutionary studies. Advances in high-throughput sequencing technologies have led to a number of studies using multi-omics approaches to analyze the adaptive evolution of extreme environments.

Genome-wide data analysis has provided insights into the evolution of genome-wide adaptations to subsurface stress in subterranean mammals, in particular to the characterization of hypoxic adaptation, immune facilitation and sensory specialization responses to hypoxia-tolerant life. Genomic studies have revealed adaptive evolution of genes related to vision (Crygs, Crybb3, Gnat2, etc) and skin (Krt9, Pomp, Col4a4, etc) in subterranean mammals and of the subterranean stress resistance complex (shelterin complex, proteasome complex, ribonucleoprotein complex, etc) in BMRs. Large-scale transcriptome sequencing studies in BMRs show that apoptosis is inhibited and angiogenic factor expression is tightly regulated in hypoxic environments.

Comparative transcriptomics was used for the first time to explore the skeletal muscle tissue responses to hypoxic conditions in Qinghai voles, Brandt’s voles and Kunming mice, and it was found that these species use different strategies of O2 transport and energy metabolism to cope with hypoxic conditions. Among them, Qinghai voles promotes oxygen transport by increasing hemoglobin synthesis. This species also regulates lipid synthesis, fatty acid β-oxidation, hemoglobin synthesis, electron-linked transmission, and other biological processes through a combination of genes, including Acs16, Gpat4, and Ndufb7, and thereby ensures that the energy supply to skeletal muscle tissue remains sufficient under low-oxygen conditions. Analysis of transcriptomic data from plateau zokors and NMRs focusing on amino acid loci and gene expression levels revealed the important adaptive evolution in the expression of amino acid sites and genes related to O2 transport, O2 metabolism, DNA repair and other hypoxia-adapted proteins in these two subterranean rats. Transcriptome analysis of the brain and muscle in BMRs also found significant overexpression of genes associated with anti-apoptotic, cancer, embryonic development and angiogenesis processes. These mechanisms help BMRs to survive in subterranean low-O2 environments. In addition, analysis of the brain transcriptome of Mandarin voles under hypoxic conditions also indicated that the upregulated pathways were mainly those that inhibited angiogenesis and responses to external stimuli, while the downregulated pathways were related to O2 consumption processes such as oxidative phosphorylation and protein secretion, suggesting that Mandarin voles have a greater ability to sense and regulate O2.

4 | ANTI-TUMOR MECHANISMS OF SUBTERRANEAN MAMMALS

For many mammals, tumors are a major source of death in later life. Despite the importance of laboratory mice in understanding the mechanisms of carcinogenesis, this model organism for cancer susceptibility has failed to provide satisfactory information about human cancer prevention mechanisms and treatment strategies. Therefore, it would be extremely useful to study animals with natural anti-cancer abilities as models to find ways to prevent cancer before it occurs. Numerous studies have found that subterranean mammals such as NMRs and BMRs have anti-cancer abilities. Further research on these mammals may benefit human health if these mechanisms can be activated in human cells.

4.1 | Blind mole rats

Due to their long-term subterranean habitat, the BMRs are well adapted to anoxic conditions, which makes them a hypoxia-tolerant
model organism. Spontaneous cancer has never been observed in BMRs. The anti-cancer effects of BMRs mainly derive from the following adaptations: (1) Expression of p53 target genes in hypoxia-tolerant subterranean moles is hypoxia dependent and resembles the expression pattern in solid tumors. Cloning of p53 from BMRs reveals exchange of arginine (R) for lysine (K) at codons corresponding to positions 174 and 209 in human for the p53 DNA binding domain. These two amino acid changes are identical to known human tumor-related mutations. (2) A unique acetyl heparinase splice variant significantly reduces tumor size and metastatic activity. (3) BMRs have an efficient DNA repair capability and editing mechanisms. (4) Compared to mice, BMRs have a more active innate immune system and elevated expression of tumor suppressor genes associated with the extracellular matrix. (5) Normal BMR fibroblasts can inhibit growth and kill cancer cells either through direct interaction with cancer cells or through soluble factors. (6) The somatostatin receptor-4 is more highly expressed in BMR tissue and can inhibit the proliferation of normal or tumor cells. These factors may also be the adaptive mechanism of BMRs resist cancer development.

4.2 | Naked mole rats

NMRs are remarkable for their longevity and almost complete resistance to cancer. Hyaluronan and a new glycosaminoglycan variant have been identified as key substances in the anticancer mechanism of naked mole rats. The glycosaminoglycan substance is a high molecular weight hyaluronan (HMW-HA), which is 5 times larger than the corresponding variant in mice and humans. HMW-HA accumulates in large quantities in naked mole rat tissues due to the reduced activity of hyaluronan degrading enzymes and a unique sequence of hyaluronan synthase 2. In addition, 4422 high quality IncRNAs have been successfully identified in the NMR genome. The functions of IncRNAs in NMRs were predicted by co-expression analysis. It was found that about 61.93% of IncRNAs in NMRs were highly correlated with the expression of oncogenes. Moreover, the IncRNAs in NMRs may provide a natural anti-cancer mechanism by regulating the production of hyaluronan. Although NMRs have a higher mutation rate than mice, they are less likely to develop tumors because they are less prone to inflammatory responses. As a tumor suppressor activated by carcinogenic stress, ARF is a tumor suppressor gene in NMR, but it is inhibited in most mammals.

5 | CONCLUSION AND PROSPECTS

China has the highest altitude plateau in the world and rich animal resources. Thus, it is an ideal area to study the adaptive evolution of hypoxic species at different altitudes. A large number of studies have been carried out using modern molecular biology methods to investigate the physiological and biochemical characteristics and molecular mechanisms of hypoxic adaptation in highland species, and breakthroughs have been made. These will provide important guidelines for the control of highland diseases in human and livestock. In addition, mammals living in subterranean caves for long periods of time may have evolved hypoxic adaptations, and the genetic basis and molecular mechanisms of these species have also been obtained through systematic analysis. This research will help to advance our understanding of human hypoxia-like diseases, particularly COVID-19 (a new highly infectious disease caused by Severe Acute Respiratory Syndrome coronavirus,which can cause severe hypoxia in the body). Interestingly, it has been found that naked mole rats and blind mole rats, typical hypoxic model animals, are not only well adapted to the hypoxic environment, but also have the ability to resist tumors. Their anti-tumor mechanisms make these animals ideal model species for human cancer research.

However, the mechanisms of hypoxia adaptation in hypoxia-tolerant mammals are not yet sufficiently well studied. For example, the correlation analysis between the phenotypic, physiological and biochemical characteristics of these mammals and their gene evolution and expression are not perfect, and further discovery and validation of signaling pathways related to hypoxia adaptation is urgently needed. Studying the molecular mechanisms of adaptation in hypoxia-tolerant animals is indeed one of the topical issues in biology and medical research. Continuing investigation of the mechanisms of hypoxia adaptation in hypoxia-tolerant mammals through a combination of whole genome sequencing, transcriptome sequencing, single-cells sequencing and epigenetics may provide a suitable experimental animal model for the study of human hypoxic diseases.

ACKNOWLEDGEMENT

The authors would like to thank group members for helpful suggestions and discussions.

CONFLICT OF INTEREST

The authors declared that they have no conflicts of interest to this work.

AUTHOR CONTRIBUTIONS

MKL conceived and wrote the original draft of the manuscript. ZLW, HC and TS revised the manuscript. All authors critically read and contributed to the manuscript, approving its final version.

ORCID

Mengke Li https://orcid.org/0000-0002-7222-4420
Zhenlong Wang https://orcid.org/0000-0001-5946-2806

REFERENCES

1. Dong Q, Shi L, Li Y, et al. Differential responses of Lasiopodomys mandarinus and Lasiopodomys brandtii to chronic hypoxia: a cross-species brain transcriptome analysis. Bmc Genomics. 2018;19(1):901.
2. Dong Q, Wang Z, Jiang M, et al. Transcriptome analysis of the response provided by Lasiopodomys mandarinus to severe hypoxia includes enhancing DNA repair and damage prevention. Front Zool. 2020;17(1):9.
3. Qiu Q, Zhang G, Ma T, et al. The yak genome and adaptation to life at high altitude. *Nat Genet.* 2012;44(8):946-949.

4. Sun H, Ye K, Liu D, et al. Evolution of hemoglobin genes in a subterranean rodent species (*Lasiopodomys mandarinus*). *Biology.* 2020;9(5):106.

5. Dzal YA, Jenkin SEM, Lague SL, et al. Oxygen in demand: how oxygen has shaped vertebrate physiology. *Comp Biochem Physiol A: Mol Integr Physiol.* 2015;186:4-26.

6. Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex iii: the paradox of increased reactive oxygen species during hypoxia. *Exp Physiol.* 2006;91(5):807-819.

7. Miyata T, Takizawa S, van Ypersele de Strihou C. 1. Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets. *Am J Physiol Cell Physiol.* 2011;300(2):C226-C231.

8. Nam SE, Haque MN, Lee JS, Park HS, Rhee J-S. Prolonged exposure to hypoxia inhibits the growth of pacific abalone by modulating innate immunity and oxidative status. *Aquat Toxicol.* 2020;227:105596.

9. Halliwell B. Oxidants and human disease: some new concepts. *FASEB J.* 1987;1(5):358-364.

10. Staples JF, Buck LT. Matching cellular metabolic supply and demand in energy-stressed animals. *Comp Biochem Physiol A Mol Integr Physiol.* 2009;153(2):95-105.

11. Speers-Roesch B, Sandblom E, Lau GY, et al. Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia. *Am J Physiol Regul Integr Comp Physiol.* 2010;298(1):R104-R119.

12. Guppy M, Fuery CJ, Flanagan JE. Biochemical principles of metabolic depression. *Comp Biochem Physiol Part B: Comp Biochem.* 1994;109(2-3):175-189.

13. Guppy M, Withers P. Metabolic depression in animals: physiological perspectives and biochemical generalizations. *Biol Rev Camb Philos Soc.* 1999;74(1):1-40.

14. Frappell P, Saiki C, Mortola JP. Metabolism during normoxia, hypoxia and recovery in the newborn kitten. *Respir Physiol.* 1991;86(1):115.

15. Ratcliffe PJ. Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. *J Physiol.* 2013;591(8):2027-2042.

16. ZhuWJ, LiP, Wang L, Xu Y-C. Hypoxia-inducible factor-1: a potential pharmacological target to manage psoriasis. *Int Immunopharmacol.* 2020;86:106689.

17. Kietzmann T, Cornesse Y, Brechtel K, Modaresi S, Jungermann K. Perivascular expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver. *Biochem J.* 2001;354(Pt 3):531-537.

18. Tajima T, Goda N, Fujiki N, et al. HIF-1alpha is necessary to support glucogeneogenesis during liver regeneration. *Biochem Bioph Res Commun.* 2009;387(4):789-794.

19. Liao C, Zhang Q. Understanding the oxygen-sensing pathway and its therapeutic implications in diseases. *Am J Pathol.* 2020;190(8):1584-1595.

20. Fukai K, Nakamura A, Hoshino A, et al. Pyk2 aggravates hypoxia-induced pulmonary hypertension by activating HIF-1alpha. *Am J Physiol-Heart Circul Physiol.* 2015;308(8):H951-H959.

21. Basic J, Stojkovic S, Assadian A, et al. The relevance of vascular endothelial growth factor, hypoxia inducible factor-1 alpha, and clusterin in carotid plate instability. *J Stroke Cerebrovasc Dis.* 2019;28(6):1540-1545.

22. Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor-HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing. *Curr Med Chem.* 2012;19(1):90-97.

23. Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. *Physiol (Bethesda, Md.,)*. 2004;19(4):176-182.

24. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. *Mil Med Res.* 2020;7(1):11.

25. Malik A, Korol A, Weber M, Hankeln T, Avivi A, Band M. Transcriptome analysis of the Spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis. *BMC Genom.* 2012;13:615.

26. Roper TJ, Bennett NC, Conradt L, Molteno AJ. Environmental conditions in burrows of two species of African mole-rat, *Georychus capensis* and *Cryptomys damarensis*. *J Zool* 1987;201:101-107.

27. Dou XH, Ma SC, Xu FQ, et al. The analysis of electrocardiogram between Tibetan and han nationality at high elevations more than 3000 meters. *J Clin Eletrocardiol.* 2016;25(3):187-190.

28. Chen FH, Fu BJ, Xia J, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. *Sci China Earth Sci.* 2019;49(11):1659-1696.

29. Li Q, Liu GY, Yuan YL, Zhang L. Research of oxygen-rich environment and its application in high altitude area. *Qinghai Electr Power.* 2014;33(03):17-19.

30. You QL, Kang SC, Tian KM, et al. Preliminary analysis peak yemenchen tanglha Qinghai-Tibet plateau region climate characteristic. *J Mounta Sci.* 2007;4(4):497-504.

31. Wu QS, Liu PS, Yang CP, Chen YB. A review of high-altitude hypoxia adaptation and hypoxic solid tumor. *J Sichuan Univ (Med Sci).* 2021;52(1):50-56.

32. Zhang SY, Chai ZX, Zhong JC. Research progress on hypoxia adaptation of yaks at high altitude. *Jiangsu Agric Sci.* 2016;44(3):13-17.

33. Fang X, Nevo E, Han L, et al. Genome-wide adaptive complexes to underground stresses in blind mole rats *Spalax.* *Nat Commun.* 2014;5(1):1.

34. Pamenter ME, Dzal YA, Thompson WA, Milsom WK. Do naked mole rats accumulate a metabolic acidosis or an oxygen debt in severe hypoxia? *The Journal of Experimental Biology.* 2019;222(3):b191197.

35. Wang Z, Zhang Y. Predicted structural change in erythropoietin of plateau zokors-adaptation to high altitude. *Gene.* 2012;501(2):206-212.

36. Nevo E. Mosaic evolution of subterranean mammals: regression, progression and global convergence. *Oxford University Press Inc.*; 1999.

37. Shams I, Avivi A, Nevo E. Hypoxic stress tolerance of the blind subterranean mole-rat: expression of erythropoietin and hypoxia-inducible factor 1 alpha. *Proc Natl Acad Sci USA.* 2004;101(26):9698-9703.

38. Shams I, Avivi A, Nevo E. Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stresses. *Comp Biochem Physiol A Mol Integr Physiol.* 2005;142(3):376-382.

39. Liu B, Wang Z, Lu J. Response to chronic intermittent hypoxia in blood system of mandarin vole (*Lasiopodomys mandarinus*). *Comp Biochem Physiol A Mol Integr Physiol.* 2010;156(4):469-474.

40. Šumbera R, Chitaukali WN, Elichová M, Kubová J, Burda H. Microclimatic stability in burrows of an afrotropical solitary bathyergid rodent, the silvery mole-rat (*Heliophobius argenteocinereus*). *J Zool.* 1999;263(4):409-416.

41. Holtze S, Braude S, Lemma A, et al. The microenvironment of naked mole-rat burrows in east africa. *Afr J Ecol.* 2018;56(2):279-289.

42. Šumbera R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (*Bathyergidae*, rodentia)-a review. *J Therm Biol.* 2019;79:166-189.

43. Jiang M, Shi L, Li X, et al. Genome-wide adaptive evolution to underground stresses in subterranean mammals: hypoxia adaptation, immunity promotion, and sensory specialization. *Ecol Evol.* 2020;10(14):7377-7388.

44. Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. *Cell Metab.* 2018;27(2):281-298.

45. Zhang JB, Ding XZ, Ahmad AA, Li C, Liang Z, Yan P. Advances in research on adaptive evolution of native animals of Tibetan plateau. *Acta Vet Zootechnica Sin.* 2019;50(9):1723-1736.
46. Zhao Y, Ren JL, Wang MY, et al. Codon 104 variation of p53 gene provides adaptive apoptotic responses to extreme environments in mammals of the Tibet plateau. Proc Natl Acad Sci. 2013;110(51):20639-20644.
47. Cai Z, Wang L, Song X, et al. Adaptive transcriptome profiling of subterranean zokor, Myospalax baileyi, to high-altitude stresses in Tibet. Sci Rep UK. 2018;8(1):1.
48. Cao X, Bai Z, Ma L, Ma S, Ge R-L. Metabolic alterations of Qinhai-Tibet plateau pikas in adaptation to high altitude. High Alt Med Biol. 2017;18(3):219-225.
49. Zhang S, Zhao Y, Hu X, et al. Distinct post-transcriptional regulation of Igfbp1 gene by hypoxia in lowland mouse and Qinhai-Tibet plateau root vole Microtus oeconomus. Mol Cell Endocrinol. 2013;376(1-2):33-42.
50. Grimes KM, Voorhees A, Chiao YA, et al. Cardiac function of the naked mole-rat: ecophysiological responses to working underground. Am J Physiol-Heart Circ Physiol. 2017;309(6):H730-H737.
51. Larson J, Park TJ. Extreme hypoxia tolerance of naked mole-rat brain. NeuroReport. 2009;20(18):1634-1637.
52. Widmer HR, Hoppeler H, Nevo E, et al. Working underground: respiratory adaptations in the blind mole rat. Proc Natl Acad Sci USA. 1997;94(5):2062-2067.
53. Avivi A, Gerlach F, Joel A, et al. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci USA. 2010;107(50):21570-21575.
54. Tomasco IH, Boulosa N, Hoffmann FG, Lessa EP. Molecular adaptive convergence in the α-globin gene in subterranean octodontid rodents. Gene. 2017;628:275-280.
55. Sun H, Cui Z, Zhang Y, Pan D, Wang Z. Expression patterns of clock genes in the hypothalamus and eye of two Lasiopodomys species. Chronobiol Int. 2020;37(3):327-338.
56. Sun H, Dong Q, Wang C, Jiang M, Wang B, Wang Z. Evolution of circadian genes per and cry in subterranean rodents. Int J Biol Macromol. 2018;118(Pt B):1400-1405.
57. Ben-Shlomo R, Ritte U, Nevo E. Activity pattern and rhythm in the subterranean mole rat superspecies Spalax ehrenbergi. Behav Genet. 1995;25(3):239-245.
58. Pyott SJ, van Tuinen M, Screven LA, et al. Functional, morphological, and evolutionary characterization of hearing in subterranean, eusocial african mole-rats. Curr Biol. 2020;30(22):4329-4341.
59. Browe BM, Vice EN, Park TJ. Naked mole-rats: blind, naked, and feeling no pain, Anat Rec (Hoboken). 2020;303(1):77-88.
60. Kim EB, Fang X, Fushan AA, et al. Genome sequencing reveals in response to pathogen and contaminants challenge. Fish Shellfish Immunol. 2011;31(6):831-837.
61. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.
62. Jakubczyk Y, Dec K, Kaldunska J, Kawczuga DO, Kochman J, Janda KA. Reactive oxygen species-sources, functions, oxidative damage. Pol Merkur Lekarski. 2020;48(284):124-127.
63. Avivi A, Ashur-Fabian O, Joel A, et al. P53 in blind subterranean mole rats-loss-of-function versus gain-of-function activities on newly cloned Spalax target genes. Oncogene. 2007;26(17):2507-2512.
64. Nasser NJ, Avivi A, Shafat I, et al. Alternatively spliced Spalax hep-aranose inhibits extracellular matrix degradation, tumor growth, and metastasis. Proc Natl Acad Sci USA. 2009;106(7):2253-2258.
65. Shan M. Expression of Antioxidant Enzymes in Brain and Liver of Gansu Zokors Under Hypoxic Stress and Cloning and Bioinformatics Analysis of Gpx1 Gene. Shaanxi Normal University; 2015.
66. Welker AF, Campos ÉG, Cardoso LA, Hermes-Lima M. Role of catalase on the hypoxia/reoxygenation stress in the hypoxia-tolerant Nile tilapia. Am J Physiol-Regul Integr Comp Physiol. 2012;302(9):R111-R1118.
67. Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of manganese: implications for mitochondrial ROS. Nature (London). 2014;515(7527):431-435.
68. Schülke S, Dreibax D, Malik A, et al. Living with stress: regulation of antioxidant defense genes in the subterranean, hypoxia-tolerant mole rat Spalax. Gene. 2012;500(2):199-206.
69. Nioi P, Nguyen T, Sherratt PJ, Pickett CB. The carboxy-terminal NEH3 domain of NRF2 is required for transcriptional activation. Mol Cell Biol. 2005;25(24):10895-10906.
70. Drew KL, Buck CL, Barnes BM, et al. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem. 2007;102(6):1713-1726.
71. Drew KL, Harris MB, LaManna JC, Smith MA, Zhu XW, Ma YL. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochem Soc T. 2018;46(3):599-607.
72. Gu C, Jun JC. Does hypoxia decrease the metabolic rate? Front Endocrinol. 2018;9:668.
73. Murray AJ, Montgomery HE, Feelsch M, Grocott MPW, Martin DS. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochem Soc T. 2018;46(3):599-607.
74. Mandic M, Speers-Roesch B, Richards JG. Hypoxia tolerance in sculpins is associated with high anaerobic enzyme activity in brain but not in liver or muscle. Physiol Biochem Zool. 2013;86(1):92-105.
75. Gens J, Hyde MB, Svendsen JC, et al. Excess post-hypoxic oxygen consumption is independent from lactate accumulation in two cyprinid fishes. Comp Biochem Physiol A Mol Integr Physiol. 2013;165(1):54-60.
76. Richards JG. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J Exp Biol. 2010;214(2):191-199.
89. Liu G, Zhang Y. Targeting FEPase is an emerging novel approach for cancer therapy. Cancer Cell Int. 2018;18(1):36.

90. Buck LT, Pamenter ME. Adaptive responses of vertebrate neurons to anoxia-matching supply to demand. Resp Physiol Neurobiol. 2006;154(1-2):226-240.

91. Hochachka PW, Buck LT, Doll CJ, et al. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA. 1996;93(18):9493-9498.

92. Hochachka PW. Defense strategies against hypoxia and hypothermia. Science. 1986;231(4735):234-241.

93. Martin DS, Levett DZH, Grocott MPW, Montgomery HE. Variation in human performance in the hypoxic mountain environment. Exp Physiol. 2010;95(3):463-470.

94. Li M, Tian X, Li X, et al. Diverse energy metabolism patterns in females in Neodon fuscus, Lasiohopodus brandtii, and Mus musculus revealed by comparative transcriptomics under hypoxic conditions. Sci Total Environ. 2021;783:147130.

95. Chen YQ, Kuo M, Li S, et al. Agpat6 is a novel microsomal Glycerol-3-phosphate acyltransferase. J Biol Chem. 2008;283(15):10048-10057.

96. Zhu XG, Nicholson Putheveeddu S, Shen Y, et al. Chp1 regulates compartmentalized Glycerolipid synthesis by activating gpat4. Mol Cell. 2019;74(1):45-58.

97. Cooper DE, Grevengoed TJ, Klett EL, Coleman RA. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA. 1996;93(18):9493-9498.

98. Shams I, Nevo E, Avivi A. Ontogenetic expression of erythropoietin and hypoxia-inducible factor-1 alpha genes in subterranean blind mole rats. FASEB J. 2005;19(2):307-309.

99. An ZF, Wei DB, Wei L, Wang Y, Wei LN. The expression of LDH-c in the skeletal muscle of plateau pika (Ochotona curzoniae) enhances adaptation to a hypoxic environment. Mol Cell. 2015;290(24):15112-15120.

100. Wang Y, Wei L, Wei D, Li X, Xu L, Wei L. Testis-specific lactate dehydrogenase (LDH-c4) in skeletal muscle enhances a pika's sprint-running capacity in hypoxic environment. Int J Environ Res Public Health. 2015;12(8):9218-9236.

101. An ZF, Wei DB, Wei L, Wang Y, Wei LN. The expression of LDH-c in the skeletal muscle of plateau pika (Ochotona curzoniae) enhances adaptation to a hypoxic environment. Mol Cell. 2015;290(24):15112-15120.

102. Joyce W, Ozelin K, Mauduit F, et al. Individual variation in whole-animal hypoxia tolerance is associated with cardiac hypoxia tolerance in a marine teleost. Biol Lett. 2016;12(1):20150708.

103. Liu Z, Li Y, Shi F, Lu J, Li M, Wang Z. Mitochondrial genome of plateau Zokormyospalax baileyi. Mitochondr DNA. 2011;22(5-6):174-175.

104. Fang X, Seim I, Huang Z, et al. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep (Cambridge). 2014;8(5):1354-1364.

105. Partha R, Chauhan BK, Ferreira Z, et al. Subterranean mammals show convergent regulation in ocular genes and enhancers, along with adaptation to tunneling. Elife. 2017;6:e25884.

106. Malik A, Korol A, Hubner S, et al. Transcriptome sequencing of the blind subterranean mole rat, Spalax galili: utility and potential for the discovery of novel evolutionary patterns. PLoS One. 2011;6(8):e21227.

107. Deng XG, Wang K, Zhang SD, et al. Transcriptomic determination of convergent evolution between plateau zokors (Eospalax baileyi) and naked mole rats (Heterocephalus glaber). Acta Theriol. 2014;34(2):129-137.

108. Azpurua J, Seluanov A. Long-lived cancer-resistant rodents as new model species for cancer research. Front Genet. 2013;3:319.

109. Manov I, Hirsh M, Iancu TC, et al. Pronounced cancer resistance in a marine teleost. Science. 2005;307(5697):1789-1792.

110. Malik A, Korol A, Hubner S, et al. Transcriptome sequencing of the blind subterranean mole rat, Spalax galili: utility and potential for the discovery of novel evolutionary patterns. PLoS One. 2011;6(8):e21227.

111. Simon F, Scheuerle A, Cazabat E, et al. Erythropoietin during porcine aortic balloon occlusion-induced ischemia/reperfusion injury. Crit Care Med. 2008;36(7):2143-2150.

112. Kim Y, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014;123(5):625-631.

113. Shweiqi I, Díñ A, Soffele K, Dóvett E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843-845.

114. Band M, Shams I, Joel A, Avivi A. Cloning and in vivo expression of vascular endothelial growth factor receptor 2 (Flk1) in the naturally hypoxia-tolerant subterranean mole rat. FASEB J. 2008;22(1):105-112.

115. Zheng YN, Zhu R, Wang DW, Wei L, Wei DB. Gene coding and mRNA expression of vascular endothelial growth factor as well as microvesSEL density in brain of plateau zokor: comparison with other rodents. Acta Physiol Sin. 2011;63(2):155-163.

116. Den W, Boisell JP, Tracy TE, et al. Erythropoietin structure-function relationships: high degree of sequence homology among mammals. Blood. 1993;82(5):1507-1516.

117. Wang Z, Chen Y, Yang J, Chen W, Zhang Y, Zhao X. cDNA cloning and expression of erythropoietin in the plateau zokor (Mospalax baileyi) from the Qinghai-Tibet plateau. Chin Sci Bull. 2012;57(9):997-1006.

118. Yu L, Wang G, Ruan J, et al. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat Genet. 2016;48(8):947-952.

119. Simon F, Scheuerle A, Cazabat E, et al. Erythropoietin during porcine aortic balloon occlusion-induced ischemia/reperfusion injury. Crit Care Med. 2008;36(7):2143-2150.

120. Kim Y, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014;123(5):625-631.

121. Malik A, Korol A, Hubner S, et al. Transcriptome sequencing of the blind subterranean mole rat, Spalax galili: utility and potential for the discovery of novel evolutionary patterns. PLoS One. 2011;6(8):e21227.
112. Avivi A, Ashur-Fabian O, Amariglio N, Nevo E, Rechavi G. P53—a key player in tumoral and evolutionary adaptation: a lesson from the Israeli blind subterranean mole rat. Cell Cycle. 2005;4(3):368–372.

113. Malik A, Domankевич V, Lijuan H, Xiaodong F, Korol A, Avivi A. Genome maintenance and bioenergetics of the long-lived hypoxia-tolerant and cancer-resistant blind mole rat, Spalax: a cross-species analysis of brain transcriptome. Sci Rep. 2016;6:38624.

114. Schmidt H, Malik A, Bicker A, et al. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax: a liver transcriptomics approach. Sci Rep. 2017;7(1):14348.

115. Guo RS, Shi PD, Zhou J, Chen Y-Y. Somatostatin receptors 3, 4 and 5 play important roles in gallbladder cancer. Asian Pac J Cancer Prev. 2013;14(7):4071–4075.

116. Buffenstein R. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B. 2008;178(4):439–445.

117. Rankin KS, Franke D. Hyluronal in cancer-from the naked mole-rat to nanoparticle therapy. Soft Matter. 2016;12(17):3841–3848.

118. Tsepirov RN, Beloded AV. Hyaluronic acid-an “old” molecule with “new” functions: biosynthesis and depolymerization of hyaluronic acid in bacteria and vertebrate tissues including during carcinogenesis. Biochemistry (Moscow). 2015;80(9):1093–1108.

119. Tian X, Azpurua J, Hine C, et al. High-molecular-mass hyluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499(7458):346–349.

120. Jiang J, Cheng L, Wu H, He Y-H, Kong Q-P. Insights into long non-coding RNAs of naked mole rat (Heterocephalus glaber) and their potential association with cancer resistance. Epigenet Chromatin. 2016;9(1):51.

121. Jiang J, Kong Q. Comparative analysis of long noncoding RNAs in long-lived mammals provides insights into natural cancer-resistance. RNA Biol. 2020;17(11):1657–1665.

122. Pamenter ME, Uysal-Onganer P, Huynh KW, Kraev I, Lange S. Post-translational deimination of immunological and metabolic protein markers in plasma and extracellular vesicles of naked mole-rat (Heterocephalus glaber) and their potential association with cancer resistance. Int J Mol Sci. 2019;20(21):5378.

123. Dong Y, Pang Y, Li Q. The anti-tumor mechanisms in long-lived rodents. Yichuan. 2016;38(5):411–417.

124. Miyawaki S, Kawamura Y, Oiwa Y, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7(1):11471.

125. Tian X, Azpurua J, Ke Z, et al. Ink4 locus of the tumour-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proc Natl Acad Sci. 2015;112(4):1053–1058.

126. Lui H, Yu K, Wu SP, et al. Research status and progress of COVID-19 complicated by nervous system diseases. Life Sci Res. 2021;25(1):9–14.

127. Wang FN, Tang MX, Chen Z, et al. Determination of hemogram indicators in plateau pika in different altitude. Chin Qinghai J Anim Vet Sci. 2015;45(2):15–16.

128. Wang XJ, Wei DB, Wei L, et al. Physiological character of erythrocyte adapting to hypoxic in plateau zokor and plateau pika. Sichuan J Zool. 2008;6:1100–1103.

129. Wei L, Wei DB, Wang XJ, Cai Q. Activity and isozyme-spectra of lactate dehydrogenase in heart muscle and skeletal muscle of plateau zokor, pika and sprague-dawley rat. Sichuan J Zool. 2009;28(1):64–68.

130. Milic-Emili J, Grunstein MM. Drive and timing components of ventilation. Chest. 1976;70(1 Suppl):131–133.

131. Bartlett DJ, Tenney SM. Control of breathing in experimental anemia. Respir Physiol. 1970;10(3):384–395.

132. Wang HJ, Fan W, Liu PP, Wang ZD, Wang YP, Ge RL. Expression and significance of HIF-1α and HIF-2α in different tissues of plateau root voles. Basic Clin Med. 2015;35(3):393–394.

133. Johansen K, Lykkeboe G, Weber RE, Maloyi G. Blood respiratory vessel density provides the mole rat physiological tolerance to its hypoxic subterranean habitat. FASEB J. 2005;19(10):1314–1316.

134. Tian R, Wang Z, Niu X, Zhou K, Xu S, Yang G. Evolutionary genetics of hypoxia tolerance in cetaceans during diving. Genome Biol Evol. 2016;8(3):827–839.

135. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(5):245–254.

136. Leonhardt H, Cardoso MC. DNA methylation, nuclear structure, gene expression and cancer. J Cell Biochem. 2000;79(3S):78–83.

137. Kass SU, Pruss D, Wolfe AP. How does DNA methylation repress transcription? Trends Genet. 1997;13:444–449.

138. Zhao Y, Tang JW, Yang Z, et al. Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax. Proc Natl Acad Sci USA. 2016;113(8):2146–2151.

139. Qi XZ, Wang XJ, Zhu SH, Rao XF, Wei L, Wei DB. Hypoxic adaptation of the hearts of plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae). Acta Physiol Sin. 2008;3:348–354.

140. Zhu SH, Qi XZ, Wang XJ, Rao XF, Wei L, Wei DB. Difference in oxygen uptake in skeletal muscles between plateau zokor (Myospalax rufescens baileyi) and plateau pika (Ochotona curzoniae). Acta Physiol Sin. 2009;61(4):373–378.

141. Ar A, Arieli R, Shkolnik A. Blood-gas properties and function in the fossorial mole rat under normal and hypoxic-hypercapnic atmospheric conditions. Respir Physiol. 1977;30(1-2):201–219.