Mechanical control of the sense of touch by β-spectrin

Michael Krieg1,2, Alexander R. Dunn2 and Miriam B. Goodman1,3

The ability to sense and respond to mechanical stimuli emanates from sensory neurons and is shared by most, if not all, animals. Exactly how such neurons receive and distribute mechanical signals during touch sensation remains mysterious. Here, we show that sensation of mechanical forces depends on a continuous, pre-stressed spectrin cytoskeleton inside neurons. Mutations in the tetramerization domain of Caenorhabditis elegans β-spectrin (UNC-70), an actin-membrane crosslinker, cause defects in sensory neuron morphology under compressive stress in moving animals. Through atomic force spectroscopy experiments on isolated neurons, in vivo laser axotomy and fluorescence resonance energy transfer imaging to measure force across single cells and molecules, we show that spectrin is held under constitutive tension in living animals, which contributes to elevated pre-stress in touch receptor neurons. Genetic manipulations that decrease such spectrin-dependent tension also selectively impair touch sensation, suggesting that such pre-tension is essential for efficient responses to external mechanical stimuli.

Owing to their location within skin, muscles, joints and other organs, the sensory neurons responsible for touch, pain and proprioception are continually compressed and stretched. To function properly throughout life, these neurons must therefore resist mechanical stress while retaining sensitivity to minute mechanical stimuli. Cells, including neurons, can be stretched slowly without inducing lasting damage. This structural resilience is believed to depend on a membrane-associated cytoskeleton, but little is known at present about the relevant structures or their mechanical properties within neurons in vivo. We sought to fill this knowledge gap and investigate how cell mechanics controls touch sensation.

In Caenorhabditis elegans, specialized touch receptor neurons (TRNs) are required for sensation of gentle body touch. Physiological studies1,2 demonstrate that touch evokes electrical signals in the TRNs and that such responses trigger a simple escape behaviour. The TRNs are well characterized at the molecular and ultrastructural levels3,4, offering a simple system for investigating how mechanical forces govern cell shape and animal behaviour. Three anterior (ALML, ALMR and AVM) and three posterior TRNs (PLML, PLMR and PVM) tile the body surface, and each is surrounded by a specialized extracellular matrix and the hypodermal cell5. Their non-arborized dendrites are filled with a crosslinked bundle of 15-protofilament microtubules and are approximately 500 μm long and 250 nm wide in adult hermaphrodites4. They are closer to the body surface than most neurons and are positioned within 200 nm of the skin or cuticle3,4. Owing to their anatomical location, TRNs could experience significant mechanical strain not only during body touch but also during locomotion, during which the C. elegans propel themselves forward using rhythmic dorsoventral contractions.

Here, we investigate the role played by β-spectrin in neuronal cell mechanics and touch sensation, using AVM and ALM as models. To relate mechanics to function, we provide evidence from single-cell force spectroscopy and in vivo laser axotomy that individual TRNs are under constitutive mechanical tension. We further show that spectrin is required for neuronal pre-stress and is likely to be under tensile load, as revealed by fluorescence resonance energy transfer (FRET) probes that detect piconewton forces5. We speculate that tension is important for transmission of mechanical force within TRNs, and show that disrupting the spectrin cytoskeleton reduces sensitivity to external touch.

RESULTS

TRNs are subjected to strain in moving animals

To study how neurons react to mechanical deformations, we monitored AVM shape in crawling worms (Fig. 1a and Supplementary Movie 1). The AVM cell closely follows the body's contour in wild-type animals, shortening during ventral bending and elongating during dorsal bending (Fig. 1b,c), similar to a spring under compressive and tensile forces. These observations imply that AVM experiences compressive stress during ventral bending and tensile stress during dorsal bending, and that the cyclical strains generated during crawling produce little physical damage. Thus, wild-type TRNs are both flexible and resistant to mechanical stress. However, the origin of these properties is not fully understood.

1Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA. 2Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA. 3Correspondence should be addressed to M.B.G. (e-mail: mbgoodman@stanford.edu)

Received 07 July 2013; accepted 10 January 2014; published online 23 February 2014; DOI: 10.1038/ncb2915
Spectrin is needed for TRN stabilization

In red blood cells, mechanical resilience has long been attributed to a membrane-subjacent, actin–spectrin cytoskeletal network6–11, and mutations that interfere with network formation cause severe anaemia7. In the nervous system, spectrin assembles with actin to form cylindrical networks12 and spectrin mutations cause motor and cognitive disorders13. β-spectrin has 17 spectrin repeats flanked by actin-binding and pleckstrin homology domains and forms α/β-spectrin heterodimers through tetramerization domains in β-spectrin repeat 17 and α-spectrin repeat 0 (ref. 14). Spectrin proteins are conserved in all eukaryotes from protozoa to humans15 (Supplementary Fig. 1). In C. elegans, unc-70 is the only β-spectrin gene16,17 and is abundantly expressed in neurons.

As loss of UNC-70 β-spectrin causes movement-induced fractures in motor neurons18, we reasoned that it might protect TRNs from the mechanical stresses imposed during locomotion. Consistent with this idea, we found that AVM collapses into striking undulations during ventral bending (compressive stress, \(\varepsilon < 0 \)) that straighten during dorsal bending (tensile stress, \(\varepsilon > 0 \)) in unc-70(s1502) null mutants (Fig. 2a and Supplementary Movie 2). We quantified this buckling phenotype by plotting local AVM curvature against body curvature (Fig. 2b). In wild-type animals, neuron and body curvature were linearly related and tightly correlated under both tensile and compressive stress (\(r = 0.94 \)). In contrast, loss of unc-70 function increased the variance in neuron curvature and significantly decreased its correlation with body curvature under compressive, but not tensile stress (\(r = 0.6; P = 1 \times 10^{-13} \)). This analysis also shows that the largest neuronal deformations were seen at the highest body bends. These findings extend previous observations that UNC-70 β-spectrin is essential to maintain neuronal integrity in moving worms18.

We sequenced the entire unc-70 locus in two mutants, unc-70(e524) and unc-70(n493), and discovered that these alleles encode E2008K and L2044P, respectively. Both missense mutations affect highly conserved residues in spectrin repeat 17 (Supplementary Fig. 1), which is critical for tetramerization and network formation7,14,19,20. As the buckling phenotype was similar in missense and null alleles of unc-70 (Fig. 2), these data point towards an important yet unrecognized role for the spectrin tetramerization domain in the mechanoprotection of neurons in living animals.

In principle, the undulations present in spectrin mutants could reflect a defect in attachment between the AVM and the hypodermis (the epidermis in C. elegans) or cuticle. We reasoned that, if detachment were the primary cause of the morphological defects in unc-70 mutant TRNs, then TRNs would buckle in him-4 hemicentrum mutants in which the neurite is detached from the surrounding hypodermal cell owing to a lack of functional hemidesmosomes21. No buckling was evident in him-4 mutant animals (Supplementary Fig. 2a, b). We furthermore examined the effect of loss of unc-70 function on the spatial distribution of hemidesmosomes, which occur at regular intervals along the length of the AVM neurite. These structures had a similar organization in unc-70 and wild-type TRNs (Supplementary Fig. 2c–i)21,22. Thus, neuron detachment from the hypodermis does not explain the buckling observed under compressive stresses. As β-spectrin is also present in the hypodermis16,17 that surrounds the TRNs, the buckling instability found in unc-70 mutant neurons could reflect a loss of spectrin function in the hypodermis. To test for this possibility, we examined transgenic unc-70 mutants expressing wild-type UNC-70 only in hypodermis. We found that this manipulation decreased, but did not eliminate, the buckling phenotype (Supplementary Fig. 3a, c). Next, we asked whether disrupting spectrin networks only in the TRNs could phenocopy the effect of unc-70 loss of function on neuronal morphology. To do this, we reasoned that overexpressing the tetramerization domain of α-spectrin (repeat 0 and 1) selectively in the TRNs would interfere with spectrin network assembly and act similarly to a dominant-negative mutation. Consistent with this idea, the AVM neurons in these TRN::SPC-1(dn) transgenics showed...
Figure 2 Loss of unc-70 β-spectrin function causes buckling in TRNs during ventral bending. (a) AVM shape during ventral (top) and dorsal (bottom) bending in wild-type and unc-70 mutant TRN::GFP animals. Scale bar, 50 μm. (b) Neuron curvature versus body curvature. Each point is the mean of 10–30 adjacent curvature measurements in a still image (Methods). Shaded areas (beige) indicate the s.d. of neuron curvature; the increased deviation during compressive (positive, ventral) body bends indicates a larger variation in local neuron curvature. r values in unc-70 mutants were significantly different from wild type (Fisher z-transform of r). P values indicated in the upper right. N, number of animals; n, number of still images. The data are from n = 3 imaging sessions. (c) u_{max} of AVM as a function of body strain, computed from the product of body curvature, c, and the radius of curvature, r. Each point is the maximum deformation within a still image. Black lines are running averages of 15 images; beige lines are the calculated buckling deformation of a constrained, flexible filament bundle as a function of compressive strain ε (Supplementary Note 1). Arrows indicate deviation from the model at high curvature due to cuticle buckling. P values derived from linear regression and compared with wild type are indicated in the upper left. Same number of observations as in b. All strains carry the uIs31 transgene encoding TRN::GFP.
compression-induced AVM buckling similar to that observed in \textit{unc-70} mutants (Supplementary Fig. 3b, d).

We propose that the compression-induced undulations in \textit{unc-70} mutants (Fig. 2a and Supplementary Movies 2–4) are analogous to the periodic buckling of an axially compressed flexible beam whose motion is constrained by the surrounding medium\(^{23}\). In this model of constraint Euler buckling, undulation amplitude increases with the square root of the applied force once the compression exceeds a critical value\(^{24–26}\). Consistent with this model, the buckling amplitude, defined as the maximum off-axis deformation, \(u_{\text{max}}\), increased in a nonlinear fashion above a critical value of body strain in \textit{unc-70} mutants (Fig. 2c and Supplementary Note 1). Accordingly, we adapted a model of undulation amplitude and wavelength as a function of the stiffness of the constraining material\(^{23,25,27}\) and used it to draw inferences about material properties of the neuron and its surrounding tissues. The model links \(u_{\text{max}}(\epsilon)\) to the wavelength \(\lambda\) of the undulations and a critical strain \(\epsilon_c\) (refs 24, 25 and Supplementary Note 1):

\[
u_{\text{max}}(\epsilon) = \frac{\lambda}{\pi} \sqrt{\frac{\epsilon - \epsilon_c}{u_0}}, \quad \epsilon > \epsilon_c
\]

where \(u_0 = 0\) is the buckling amplitude below the critical buckling strain, \(\epsilon_c\). The buckling wavelength \(\lambda\) is inversely proportional to the elastic modulus of the surrounding material\(^{24–26}\). Conversely, the critical buckling strain \(\epsilon_c\) is directly proportional to the elasticity and pre-strain within the neurite (Methods), which we anticipate to arise from the cortical spectrin network in our model neuron. Fitting equation 1 to the data (Fig. 2c) enabled us to compare \(\lambda\) among wild-type and \textit{unc-70} mutant alleles, yielding this allelic series: wild-type < \textit{unc-70}(e524) E2008K \leq \textit{unc-70}(n493) L2044P < \textit{unc-70}(s1502) Q575stop. Thus, the effective elasticity of the TRNs and their surroundings is larger in wild-type neurons than in \textit{unc-70} mutants. Consistent with this idea, expressing wild-type UNC-70 protein in the hypodermis of \textit{unc-70} mutant animals reduces buckling amplitude and wavelength, but is not sufficient to buckle to wild-type levels (\textit{unc-70} > \textit{unc-70}Hypo::UNC-70; Supplementary Fig. 3e). In contrast, TRN-specific interference with network formation after overexpression of TRN::SPC-1(dn) shows that a functional spectrin network is needed for stabilization against compressive forces (Supplementary Fig. 3f). Taken together, these findings establish that UNC-70 \(\beta\)-spectrin has cell autonomous and non-autonomous roles in stabilizing TRNs against crawling-induced forces.

\textbf{Spectrin-deficient TRNs have altered mechanical properties}

The picture emerging from these findings is that \(\beta\)-spectrin protects neurons during compression. To directly investigate the role \(\beta\)-spectrin has in cell mechanics, we measured TRN mechanics with two independent approaches: the first uses an atomic force microscope (AFM) to measure the force required to pull membrane tethers from cells in culture\(^{28,29}\) and the second uses laser axotomy and high-speed imaging of axonal retraction. We found that the force needed to deform the plasma membrane into a highly curved tether was significantly lower in \textit{unc-70} mutant TRNs for a wide range of extrusion velocities (Fig. 3a–c). To relate the extrusion or tether force, \(F_t\), to cell mechanical properties, we fitted our force–velocity data to a recent model\(^{30}\), estimated the static force at zero velocity, \(f_0\), and used these values to compute the apparent membrane tension, \(T_{\text{app}}\), which is a sum of the membrane–cytoskeleton adhesion energy (\(W_0\)) and in-plane membrane tension (\(T_m\); refs 30,31). Importantly, we found \(T_{\text{app}}\) was \(\sim 10\) \(\text{pN} \mu\text{m}^{-1}\) lower in spectrin mutant TRNs than in wild-type cells (Fig. 3d), suggesting that spectrin acts to increase resistance to membrane deformation. Treating TRNs with latrunculin A or cytochalasin D (Fig. 3e,f) to disrupt dynamic actin networks had little, if any, effect on the static tether force. Taken together, these results show that a functional spectrin network is critical for TRN membrane mechanics and suggest that spectrin may function independently of actin dynamics.

\textbf{TRNs are under constitutive mechanical tension}

Given the difference in \(T_{\text{app}}\) of \(10\) \(\text{pN} \mu\text{m}^{-1}\) and the end-to-end length of spectrin tetramers (100–200 nm; refs 12,32), we can estimate that a tensile force of \(\sim 1\) \(\text{pN}\) would be applied to each tether if the spectrin network were the main element responsible for the reduced tension in \textit{unc-70} mutants. This implies that individual molecules are stretched and that the spectrin network supports mechanical pre-stress in TRNs in vivo. Such a pre-stressed neuron will retract following laser axotomy (Fig. 4a and Supplementary Fig. 4a) at a rate proportional to the pre-tension\(^{33,34}\). In wild-type TRNs, little retraction was detected (Supplementary Fig. 4b,c). This could indicate a lack of pre-stress or that attachments between the TRNs and hypodermis prevent retraction \textit{in vivo}. We tested for this possibility by carrying out axotomies in \textit{him-4} hemicentin mutants that have defects in TRN attachment, but wild-type touch sensitivity\(^{21}\). As shown in Fig. 4, TRNs retracted several micrometres in less than 1 s. Thus, TRNs recoil as expected for a neuron under tension. To determine the contribution of \(\beta\)-spectrin to pre-stress, we analysed TRN retraction in \textit{him-4}::\textit{unc-70} double-mutant animals. Such double-mutant TRNs retracted more slowly and to a lesser extent than \textit{him-4} single mutant neurons (Fig. 4c), indicating that pre-stress is \textit{unc-70} dependent. Retraction distance and strain rate were also impaired in transgenic animals expressing dominant-negative \(\alpha\)-spectrin selectively in the TRNs (Fig. 4d), indicating that an intact spectrin network is needed within the TRNs themselves to generate proper longitudinal tension.

\textbf{In living neurites \(\beta\)-spectrin is under tension}

In principle, \(\beta\)-spectrin could be held under tension or assist other proteins to maintain or generate pre-stress. We used TSMod, a genetically encoded molecular force sensor\(^8\), to directly visualize tension within spectrin molecules \textit{in vivo} and to differentiate between these possibilities. TSMod consists of a pair of FRET-enabled fluorescent proteins separated by a 40-residue entropic spring derived from spider silk protein\(^{3}\), which decreases the distance between the FRET partners in the absence of a tensile force. Accordingly, TSMod is high in the absence of force or whenever the fluorophores are close together, but decreases if the fluorophores are pulled apart (Fig. 5a). Previous analysis of this sensor indicates that it can resolve forces between 1 and 5 \(\text{pN}\) (ref. 5). Thus, it is well suited to measure the force across spectrin \textit{in vivo}, which we estimated as \(\sim 1\) \(\text{pN}\) in our AFM experiments.

Seeking to maximize mechanosensitivity and to minimize disruption of \(\beta\)-spectrin, we inserted TSMod between the eighth and ninth spectrin repeats of UNC-70 \(\beta\)-spectrin, an interface with high flexibility subjected to force-dependent conformational changes\(^8\). Next, we expressed this fusion protein from the native \textit{unc-70}
Figure 3 Loss of β-spectrin function decreases TRN tension. (a) Micrograph of a GFP-tagged TRN in vitro (left) and schematic diagram of the tether extrusion procedure. A peanut lectin-coated AFM cantilever was held in contact with each cell for about 400 ms and a lipid tube formed following retraction in about 20% of cases; such events result in a downward deflection of the cantilever ($F_c < 0$). (b) Representative force–distance curves (approach in green, withdrawal in blue) acquired at 7 μm s$^{-1}$. The discontinuity during retraction indicates an interaction event and is proportional to the membrane tension. Similar results were observed in more than 17 cells per genotype. (c) Tether force (mean ± s.e.m.) versus cantilever retraction velocity in the presence and absence of drugs that disrupt actin. Latrunculin A (LatA) and cytochalasin D (CytoD) were applied at 1 and 2 μM, respectively. Supplementary Table 3 lists the number of cells and tethers for each condition. Treated and untreated cells were tested in parallel during $n = 3$ AFM sessions. (f) Membrane tension is unaffected by actin-depolymerizing drugs. The triangle inset shows P values as a function of treatment. P values were derived after log-log transformation of the force–velocity data and linear regression followed by a Tukey-type t-test. All strains carry the uas31 transgene encoding TRN::GFP, which was used to identify TRNs in cultures.

promoter in unc-70(s1502) null mutants and tested if the resulting transgene rescued the paralysis seen in unc-70 mutants, which have an average speed of 7.5 ± 0.8 μm s$^{-1}$ (mean ± s.e.m., $n = 47$), five times slower than wild-type animals35. The average crawling speed of transgenic animals (31 ± 9 μm s$^{-1}$, mean ± s.e.m., $n = 31$) was both significantly faster ($P = 1 \times 10^{-14}$, Mann–Whitney U-test) than unc-70(s1502) and comparable to wild-type speeds. UNC-70(TSMod) was expressed broadly in many neurons (Fig. 5b) and, as expected for a protein incorporated into a cytoskeletal network, fluorescence recovery after photobleaching (FRAP) analysis revealed that this protein was significantly less mobile than cytoplasmic TSMod (Supplementary Fig. 5).

Having established that UNC-70(TSMod) mimics the function of the native β-spectrin, we used it to infer stress within neuronal spectrin networks in living animals. We measured FRET by sensitized emission on a pixel-by-pixel calculation (Methods). As both donor and acceptor fluorophores are present within a single protein, the simplest interpretation of differences in FRET efficiency is that they reflect variation in the proximity of the donor to the acceptor. However, FRET could in principle occur between the donor and acceptors present in adjacent molecules. Such intermolecular FRET, if present, is expected to increase with fluorophore concentration. We observed that FRET efficiency was not correlated with acceptor emission (Supplementary Fig. 6a–f), indicating that intramolecular FRET was negligible.

To calibrate our FRET imaging protocol, we replaced the entropic spring in UNC-70(TSMod) with either a stiff linker domain (TRAF) or a short five-residue linker to generate mechanically insensitive, constitutively low- and high-FRET standards (Fig. 5a); UNC-70(TRAF) and UNC-70(5aa) (refs 36–38). We also measured the FRET efficiency of selected TSMod isoforms using fluorescence lifetime imaging microscopy (FLIM) and found similar values for FRET efficiency regardless of whether they were measured with sensitized emission or FLIM (Supplementary Fig. 6g–j). Moreover, FRET values for the constitutive low- and high-FRET standards agree with previously published FRET efficiencies derived from fluorescence lifetime measurements37,38, enabling us to predict relative distances from our FRET efficiency calculations.

With a robust method to quantify FRET as a function of chromophore separation, we measured neuronal FRET in vivo...
Figure 4

unc-70(e524) TRNs fail to retract after laser axotomy. (a) Schematic diagram of the laser cutting experiment. One Ti:sapphire laser was used to cut TRN axons in immobilized worms, whereas a second, identical laser was used to simultaneously image the neuron at 1 kHz. (b) Representative kymographs of control him-4(e1267) (top, left) and mutant him-4(e1267); unc-70(e524) (top, right) TRNs before and after axotomy. For visualization, kymographs were processed with a Laplace edge detection algorithm to highlight fluorescent speckles. Retraction is evident from the outward motion of fluorescence speckles. Time runs from left to right. The asterisks indicate the time of ablation. (c) Retracted distance (left) and strain rate (right) of control and unc-70(e524) mutant TRNs in a him-4 mutant background after laser cutting. Each point is a single axotomy and thick horizontal bars are the median of 69 and 54 axotomies in 19 control and 22 mutant animals, respectively. Data were collected during n = 7 axotomy sessions. Median values were significantly different (U-test); P values are indicated above. (d) Retracted distance, D₀/2 (left), and strain rate (right) of control and TRN::SPC-1(dn) TRNs in a him-4 mutant background after laser cutting. Each point is a single axotomy and thick horizontal bars are the median of 37 and 38 cuts in 16 control and 13 TRN::SPC-1(dn) transgenic animals, respectively. Data in c and d derived by fitting plots of gap width versus time to \(D(t) = D_0(1 - \exp(-t/T)) + D_\infty \), where \(D(t) \) is the gap width as a function of time, \(D_0 \) is the final gap width, and \(D_\infty \) is the initial gap. The retracted distance is given by \(D_0/2 \) and strain rate by \((D_0/2)(t/D_\infty) \).

(Fig. 5c). The average FRET efficiency of UNC-70(TSMod) in the TRNs was intermediate between the average FRET efficiency values observed for UNC-70(TRAf) and UNC-70(5aa) (Fig. 5c). UNC-70(TSMod) is expressed in other neurons (Fig. 5b) that had FRET efficiency values similar to the TRNs (Fig. 5c). From this result, we infer that mechanical tension is a shared property of spectrin-expressing neurons. To interpret UNC-70(TSMod) FRET values and deduce whether or not UNC-70 is under tension, we generated two constructs in which TSMod is predicted to experience little or no strain: cytoTSMod, a soluble protein in the cytoplasm, and UNC-70(N-TSMod), an amino-terminal fusion that places TSMod in a position where it cannot be stretched. Consistent with the hypothesis that UNC-70 is under tension, the FRET efficiency of UNC-70(TSMod) was significantly lower than that found in either of these two constructs (Fig. 5c). We leveraged a previous TSMod calibration and the FRET efficiency of the UNC-70(TSMod) indicator when compared with soluble TSMod to estimate that individual UNC-70 β-spectrin molecules are loaded to \(\sim 1.5 \) pN. This value is surprisingly close to the estimate obtained from our in vitro AFM assay. Thus, not only is β-spectrin required to maintain tension in TRNs, but also the molecule itself is held under steady-state prestress in neurons in vivo.

Next, we determined how manipulations expected to disrupt the spectrin network affect the signals provided by the UNC-70(TSMod) sensor. First, we exploited TRN::SPC-1(dn) to disrupt the spectrin network selectively in the TRNs. As shown in Fig. 5d, this resulted
in higher FRET efficiency (decreased tension) in the TRNs when compared with other neurites in the same animals. Second, we tested whether laser axotomy could release tension within the spectrin network. We found that UNC-70(TSMod) FRET efficiency increased near the cut site and decreased with distance (Fig. 5c, d). The localized increase in FRET (decreased tension) is specific to the force-sensing fusion protein, because we see that no such increase was detected in UNC-70(TRAF) transgensics (Fig. 5f). Collectively, these data show that individual β-spectrin molecules are under constitutive tension in living neurons and contribute to axonal pre-stress.

Loss of spectrin network function impairs touch sensitivity, but not TRN signalling

Other functions important for mechanoreceptor function could include mechanical signal transmission via a pre-stressed cytoskeleton. If a pre-stressed spectrin network serves this function, then manipulations that decrease TRN tension should also compromise touch sensitivity. To investigate this possibility, we quantified the touch sensitivity by scoring avoidance responses evoked by stroking individual animals with an eyebrow hair (Fig. 6a). In ten-trial assays, wild-type animals responded significantly better than spectrin mutants (Fig. 6a–c), indicating that touch sensitivity was decreased, but not eliminated, in spectrin loss of function genotypes. We also tested the influence of spectrin expression in the hypodermis in unc-70(e524) and unc-70(n493) mutants. Whereas the hypodermal rescue reduced compression-induced buckling (Supplementary Fig. 3), it had no apparent effect on the touch response in unc-70 mutants, a result that suggests that the touch defect is due to loss of spectrin-dependent tension in the TRNs themselves. Consistent with this idea, the expression of a dominant negative α-spectrin, SPC-1(dn), in the TRNs was sufficient to decrease touch sensitivity (Fig. 6d). Taken together, these data suggest that β-spectrin acts inside the TRNs to increase sensitivity to gentle touch and that proper mechanical tension is essential for mechanosensitivity.
Spectrin-dependent pre-stress could enhance the ability of the TRNs to detect touch or have a more general role in TRN physiology, including synaptic transmission. To differentiate between these possibilities, we obtained transgenic animals expressing channelrhodopsin-2 in the TRNs (TRN::ChR2). In these animals, TRNs can be activated either mechanically or optically. Consistent with previous studies, only TRN::ChR2 animals grown with all-trans retinal (ATR), which is necessary for ChR2 function, reversed direction in response to blue light (Fig. 6e–g). We also found that unc-70 mutants have wild-type responses to light, but impaired touch sensation. From these data, we infer that loss of β-spectrin function has no detectable effect on TRN physiology or neurotransmission, but that β-spectrin enhances sensitivity to touch by regulating mechanical signal transmission.

DISCUSSION

We combined genetic dissection with in vivo and in vitro analysis of neuronal cell mechanics to show that UNC-70 β-spectrin is needed to protect them from mechanical stress. Several lines of evidence support the conclusion that TRNs are held under mechanical prestress and that the tension is partially borne by a spectrin network. First, unc-70 mutant AVM neurons buckle in response to compressive stress during movement. Second, we show that an intact spectrin network is essential to maintain tension in the TRNs. Third, FRET measurements with UNC-70(TSMod) establish that spectrin is itself under tension. Importantly, such tension can be decreased by both physical and genetic disruption of the spectrin network in the TRNs. Using genetic and optogenetic dissection, we also show that disrupting the TRN spectrin network impairs touch sensation and leaves synthetic light-activated behaviours intact, a result that suggests that spectrin is needed for mechanical activation of the TRNs, but not for downstream signalling in the TRNs or in the neural circuit linking their activation to behavioural responses. Together, these findings show that spectrin contributes to at least two functions in sensory neurons—mechanoprotection and touch sensation.

How might TRNs make use of a mechanically pre-stressed spectrin network? Both the hypodermal and neuronal spectrin networks help to protect neurons from mechanical stress and suppress buckling...
instabilities. By increasing the pre-tension in the neuron, buckling will not occur until the tension is eliminated by the compressive stress, thus providing an effective mechanism for mechanoprotection. The restoring force after a transverse deformation due to a point load is a sum of the pre-stress and elastic contributions. In the limit of small deformations, the elasticity term has little contribution to the total restoring force owing to the negligible flexural rigidity of the neuron. Hence, proper spectrin network formation potentially ensures a restoring force and acts as a strain buffer to protect the neuron from damage during touch and locomotion. If the compressive force, however, exceeds the critical limit and buckling occurs, lateral movement of the neuron will unavoidably deform surrounding tissues. Hence, a higher elasticity of the surrounding hypodermal cell will provide a larger lateral constraint and minimize buckling. Without this further stabilization, the neuron will undergo significant buckling, as seen in animals lacking both neuronal and hypodermal spectrin networks.

Force transmission has been implicated in several systems involving signal transduction via actin stress fibres, during phototransduction in the fly retina and sensory mechanotransduction in vertebrate hair cells. Notably, mechanical stimulation during touch in C. elegans can activate 20–30 MeT channels within milliseconds. Such channels localize to puncta separated by about 2–4 µm (ref. 4), suggesting that signals are transmitted over a distance of the order of 100 µm in a few milliseconds. As pre-stress is known to modulate the transmission speed of mechanical signals in viscoelastic media, we propose that spectrin-dependent tension may govern rapid channel activation and tune sensitivity to applied stresses. Further work will be needed to discover whether such transmission occurs primarily by direct connections between spectrin and MeT channels or through spectrin-guided mechanical signal transmission in the plasma membrane.

As spectrin is a ubiquitous component of the neuronal cytoskeleton from worms to humans, and has recently been shown to form a cylindrical network in neurons, we hypothesize that pre-stress is an emergent property of the cortical cytoskeleton in neurons that helps to protect neurons from damage and may also serve as a molecular stress distributor in sensory neurons embedded in our skin, muscles, joints and internal organs.

ACKNOWLEDGEMENTS

We thank J. Shaw, A. Slade and S. Minne of Bruker Instruments for generous loan of AFM; Z. Liao for worm injections; D. Ramallo, C. Buckley, A. Olson, J. Mulholland for assistance with microscopy; K. Shen for loan of equipment for worm injection and strain integration; C.P. Heisenberg, K.C. Huang and W.J. Nelson for comments. For assistance with microscopy; K. Shen for loan of equipment for worm injection and strain integration; C.P. Heisenberg, K.C. Huang and W.J. Nelson for comments.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at www.nature.com/doifinder/10.1038/ncb2915

Reprints and permissions information is available online at www.nature.com/reprints

1. O’Hagan, R., Chalfie, M. & Goodman, M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8, 43–50 (2005).

2. Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

3. Chalhoub, M. S. & Thomson, J. N. Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. J. Cell Biol. 93, 15–23 (1982).

4. Cueva, J. G., Mulolland, A. & Goodman, M. B. Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J. Neurosci. 27, 14089–14098 (2007).

5. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

6. Bennett, V. & Baines, A. J. Spectrin and ankynin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81, 1553–1392 (2001).

7. Gaetani, M., Moleten, S., Harper, S., Gallagher, P. G. & Speicher, D. W. Structural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site. Blood 111, 5712–5720 (2008).

8. Johnson, C. P., Tang, H.-Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unpacking of proteins within cells. Science 317, 663–666 (2007).

9. Liu, S. C. & Palek, J. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons. Nature 285, 586–588 (1980).

10. Sleep, J., Wilson, D., Simmons, R. & Gratzer, W. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys. J. 77, 3085–3095 (1999).

11. Waugh, R. E. & Agre, P. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis. J. Clin. Invest. 81, 133–141 (1988).

12. Xu, K., Zhang, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

13. Ikeda, Y. et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat. Genet. 38, 184–190 (2006).

14. D. L. et al. A comprehensive model of the spectrin dimer-tetramer binding region deduced using homology modeling and chemical cross-linking of a mini-spectrin. J. Biol. Chem. 285, 29535–29545 (2010).

15. Baines, A. J. Evolution of spectrin function in cytoskeletal and membrane networks. Biochem. Soc. Trans. 37, 796–803 (2009).

16. Hammarlund, M., Davis, W. S. & Jorgensen, E. M. Mutations in beta-spectrin disrupt axon outgrowth and sarcomere structure. J. Cell Biol. 149, 931–942 (2000).

17. Moorthy, S., Chen, L. & Bennett, V. Caenorhabditis elegans beta-spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J. Cell Biol. 149, 915–930 (2000).

18. Hammarlund, M., Jorgensen, E. M. & Bastiani, M. J. Axons break in animals lacking spectrin. J. Cell Biol. 176, 269–275 (2007).

19. Biggione, P. A. & Baines, A. J. Spectrin alpha II and beta II isoforms interact with each other to enhance stability of hemoglobin tetramers. Blood 108, 4843–4852 (2006).

20. Vogel, B. E. & Hedgecock, E. M. Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into organized line-shaped junctions. Development 128, 883–894 (2001).

21. Hresko, M. C., Schriever, L. A., Shirmanki, P. & Waterston, R. H. Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J. Cell Biol. 146, 659–672 (1999).

22. Landau, L. D., Lifshitz, E. M. & S. M. A. Theory of Elasticity, 3rd ed vol. 7 (Butterworth-Heinemann, 1986).

23. Jiang, H. & Zhang, J. Mechanics of microtubule buckling supported by cytoplasm. J. Appl. Mech. 56, 101919–1 to 01919-9 (2008).

24. Xiao, J. et al. Mechanics of buckled carbon nanotubes on elastomeric substrates. J. Appl. Phys. 104, 033543–033543 (2008).

25. Xiao, J. et al. Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates. Nanotechnology 21, 085708 (2010).

26. Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173, 733–741 (2006).

27. Diz-Muñoz, A. et al. Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol. 8, e1000544 (2010).

28. Hochmuth, R. M., Shao, Y., Dai, J. & Sheetz, M. P. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys. J. 70, 358–369 (1996).

29. Brochard-Wyart, F., Borghi, N., Cuevaier, D. & Nassoy, P. Hydrodynamic narrowing of tubes extruded from cells. Proc. Natl. Acad. Sci. USA 103, 7660–7663 (2006).

30. Sheetz, M. P. Cell control by membrane-cytoskeleton adhesion. Nat. Rev. Mol. Cell Biol. 2, 392–396 (2001).

31. Nans, A., Mohandas, N. & Stokes, D. L. Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. Biophys. J. 101, 2341–2350 (2011).

32. Kumar, S. et al. Viscoelastic retraction of single living stress fibres and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).

© 2014 Macmillan Publishers Limited. All rights reserved.
34. Ma, X., Lynch, H. E., Scully, P. C. & Hutson, M. S. Probing embryonic tissue mechanics with laser hole drilling. Phys. Biol. 6, 036004 (2009).
35. Ramot, D., Johnson, B. E., Berry, T. L., Carnell, L. & Goodman, M. B. The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PloS One 3, e2208 (2008).
36. Borghi, N. et al. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Nat. Acad. Sci. USA 109, 12568–12573 (2012).
37. Day, R. N., Booker, C. F. & Periasamy, A. Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. J. Biomed. Opt. 13, 031203 (2008).
38. Koushik, S. V., Chen, H., Thaler, C., Puhl, I. I. I. H. L. & Vogel, S. S. Cerulean, Venus, and VenusY67C FRET reference standards. Biophys. J. 91, L99–L101 (2006).
39. Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Nat. Acad. Sci. USA 105, 6626–6631 (2008).
40. Hart, Anne C. ed. Behavior (July 3, 2006), WormBook, ed. The C. elegans Research Community, WormBook, http://dx.doi.org/10.1895/wormbook.1.87.1 .
41. Pielage, J., Fetter, R. D. & Davis, G. W. Presynaptic spectrin is essential for synapse stabilization. Curr. Biol. 15, 918–928 (2005).
42. Schmitt, C., Schultz, C., Husson, S. J., Liewald, J. F. & Gottschalk, A. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PloS One 7, e43164 (2012).
43. Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J. & Samuel, A. D. T. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat. Methods 8, 147–152 (2011).
44. Hwang, Y. & Barakat, A. I. Dynamics of mechanical signal transmission through prestressed stress fibers. PloS One 7, e35343 (2012).
45. Hardie, R. C. & Franz, K. Photomechanical responses in Drosophila photoreceptors. Science 338, 260–263 (2012).
46. Peng, A. W., Salles, F. T., Pan, B. & Ricci, A. J. Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat. Commun. 2, 523 (2011).
47. Kuiken, G. D. C. Wave propagation in a thin-walled liquid-filled initially stressed tube. J. Fluid Mech. 141, 289–308 (1984).
METHODS

Strains, genome sequencing and transgenesis. C. elegans strains were propagated as described\(^{10}\) and N2 and TU2769 sul31 [Pmnc-17;GFP] were used as wild-type controls. A complete list of strains is presented in Supplementary Table 1. All experiments were carried out with L4 or young adult hermaphrodites.

The molecular defect in unc-70(e524) and unc-70(e983) was determined by sequencing genomic DNA isolated from mixed stage worms (gDNA kit, Qiagen). In brief, the fragment corresponding to the unc-70 locus was amplified with long-range PCR with the primers MK16 and MK09R (Supplementary Table 2). A 9000 base pair (bp) fragment was isolated and sequenced to reveal a single consensus change in each mutant: unc-70(e524) encodes G6024A and E2008K, whereas unc-70(e983) encodes T6132C and L2044P (Supplementary Fig. 1).

Young adult worms were injected with constructs of interest (25 ng µl\(^{-1}\) or 10 ng µl\(^{-1}\)) together with a co-transformation marker (Pmyo-3::mCherry, Pyrno-2::mCherry or Punc-122::RFP (red fluorescent protein) at 2–10 ng µl\(^{-1}\)) and linearized N2 carrier DNA (50 ng µl\(^{-1}\)). At least three lines were subjected to initial analyses; results from a single line are presented for clarity. UNC-70 isoforms were injected into unc-70(s1502);oxl95 animals, which harbour a null allele of unc-70 and an integrated transgene that restores wild-type unc-70 to the hypodermis\(^{16}\).

Strains carrying stable arrays were crossed with N2 to create strains carrying the same array in both the unc-70(s1502) and N2 backgrounds. Transgenic expression of UNC-70(TSMod) in unc-70(s1502) mutants partially rescued locomotion and touch defects. Other transgenics were created in an N2 wild-type background.

Constrasts for transgenic expression. Wild-type UNC-70. A plasmid encoding wild-type UNC-70 was built as follows. First, RNA was extracted from mixed stage worms (TRIZOL, Ambion RNA isolation kit), eluted in RNAse-free water, and used as a template for PCR with reverse transcription (VILO cDNA kit, Invitrogen), which was conducted in the presence of RNAse inhibitor (Supersave, Ambion). unc-70 complementary DNA (cDNA) was isolated in two fragments, 1.5–3200-bp fragment was amplified with primers MK16 and MK12R and a 3’ 3600-bp fragment was amplified with primers MK13F and MK09R. The two fragments were joined using overlap extension PCR (Phusion polymerase, NEB) and blunt-cloned into a pCR Blunt sequencing vector (Invitrogen). Sequencing this product revealed that it corresponds to the main transcript encoded by unc-70, K11C4.3a, which is expressed in adult neurons, hypodermal and muscles.

The endogenous unc-70 promoter was isolated from genomic DNA using primer pair MK17, which contains a HindIII site and an SphI site, and cloned into the pCR Blunt vector to create pCR:Punc-70. Both, pCR:Punc-70 and unc-70 cDNA were digested with HindIII and SpeI to contain the endogenous promoter fused to the full-length unc-70 coding region (encoding residues 1116–2267) and unc-70 cDNA was isolated from genomic DNA using primer pair MK42 to amplify a cDNA encoding the first 170 residues of SPC-1 α-spectrin, which contains spectrin domains 0 and 1 (ref. 49). The resulting product was cloned into vector pMG115 containing Pmnc-17\(^{10}\) and a C-terminal mCherry tag.

Dynamicstudies of body and neuron curvature. Image collection. To image neuron dynamics in moving worms at high resolution (Fig. 1, Fig. 2 and Supplementary Fig. 2, 3), individual sul31 [TRN::GFP] worms were mounted on 1–2% agarose pads, as described\(^{10}\). Worms were free to move without crawling out of the field of view, enabling diffusion-limited observation of neuron morphology. Stills images and short movies (0.5 fps, about 75 s) were collected at ×2 magnification on a Leica SP5. These movies were analysed post hoc to derive the curvature of both the body and the AVL neuron, neuron length l and neuron strain ΔL/l. At least 17 animals and an average of 6.9 still images were examined for each genotype.

Image analysis. Body curvature was calculated as follows. Using Fiji (ref. 52), the ventral side of the animal was marked with 10–20 individual points between the terminal bulb of the pharynx and the nose. The coordinates were imported into IGOR Pro (WaveMetrics) to calculate curvature according to

\[
\frac{x''}{x''} - \frac{y''}{y''} = \left(\frac{x'}{x'} + \frac{y'}{y'}\right)^2
\]

where \(x'\) and \(x''\) are the first and second derivatives of the projection in \(x\); \(y'\) and \(y''\) are the first and second derivatives of the projection in \(y\). When the animal bends towards its ventral (dorsal) side, the curvature is positive (negative). Body curvature was used together with a model of body deformation (Supplementary Information) to calculate body strain \(\varepsilon_{\text{body}}\).

Neuron (AVM) curvature was measured by modifying the strategy for body curvature to account for bucking observed during ventral flexures in unc-70 mutants. The neurite was traced with 20–30 points distributed along a ~100 µm segment centred at the nerve ring and the curvature at each point was calculated. The mean ± s.d. of these curvatures yielded one data point (Fig. 2b, Supplementary Fig. 3b). The s.d. of the neuron curvature in each frame was calculated as a running average of 20 frames and plotted against body curvature (Fig. 2b, Supplementary Fig. 2b, 3b).

Neuron length, \(L\), was determined by tracing the anterior branch of AVM from the nerve ring to the nose. This path was imported into IGOR Pro and its length and curvature, \(c\), were calculated for several consecutive images in a stack. Neuron length was normalized to yield the effective strain, \((L - L_0)/L_0\), with \(L\) as the instantaneous neuron length and \(L_0\) the length at zero curvature, which was determined by fitting a line to the raw data \((L'(c)) = L_0 + x' \times c\) and estimated from the fit parameter \(x'\) as the instantaneous body strain \((L'(c)) \approx \varepsilon_{\text{body}}\).

Dynamic atomic force spectroscopy. Primary cell culture. TRNs were isolated from wild-type (TU2769 sul31) and mutant animals using standard protocols\(^{30}\) and plated onto peanut lectin-coated glass bottom Petri dishes (WillCo). Mixed cultures of embryonic cells were grown for up to 7 days in L-15 medium supplemented with heat-inactivated fetal calf serum (10% v/v), penicillin (10 mg ml\(^{-1}\)) and streptomycin (100 units). Individual TRNs were visualized by their expression of GFP (Fig. 3a).

Atomic force spectroscopy. We used an AFM designed for cell measurements (Bruker BioScope Catalyst, loan from BrukerNano) mounted on a Nikon Eclipse 2000 equipped for epifluorescence to carry out AFM force spectroscopy as described\(^{16}\). Cantilevers (Olympus Biolever, 6 mN m\(^{-1}\)) were coated overnight with peanut lectin (1 mg/ml) in MES buffer (pH 6.0, 50 mM) and calibrated according to a thermal noise method\(^{31}\).

Individual TRNs were identified by GFP fluorescence and positioned under a cantilever, which was used to pull membrane nanotubes from 100–900 ms contact time and 400 pN contact force. Interaction frequency was adjusted so that ~20% of all cell-cantilever contacts yielded a nanotube event, a maneuver that ensures that only single tether events were analysed. Pulling velocity was changed randomly to decrease hysteresis effect. No significant hysteresis effect was observed. The number of cells analysed for each phenotype and condition is given in Supplementary Table 3. Force-distance curves were analysed using a fit stepping algorithm\(^{16}\). Manner force was plotted against extrusion velocity and fit to a recently proposed model\(^{16}\) to estimate the static force, \(f_0\), which was used to estimate tension according to \(f_t = 2\pi\sqrt{2k(T_t + W_t)}\) (refs 29, 30), where \(T_t\) is the in-plane membrane tension and \(W_t\) is the bilayer-cytoskeleton adhesion energy, and \(x\) is the bending rigidity. The bending rigidity was assumed to be \(2.7 \times 10^{-11}\) N m\(^{-1}\) (ref. 29). Log-log-transformed data was used to carry out linear regression followed by Tukey-type test on multiple regressions to
assess statistical significance as a function of genotype. Logarithmically transformed data was well fit by a line with slope 1/3 (not shown) as predicted by the power law. The P value is shown in Fig. 3 for individual comparisons under the hypothesis that the elevation of the line is the same. Latrunculin A (1 μM) and cytochalasin D (2 μM) were added to the experimental solutions for 5 min before acquiring data. All strains were cross-examined to elucidate the role of the genetic factors that influence the spatio-temporal kinetics of the MDCK cells. FRET efficiency was calculated according to $E = 1 - \frac{DD}{DD+DA}$, in which DD is the lifetime of the donor in presence of the acceptor and DA is the lifetime of the donor alone. These independent estimates of FRET efficiency yielded essentially identical values for all TSMod isoforms tested (Supplementary Fig. 6). Moreover, the efficiency values for the low FRET (TRAF) and high FRET (5aa) UNC-70 isoforms are similar to published values derived from in vitro measurements of mTFP-TRAF-Venus and mTFP-5aa-Venus.

FRET imaging following laser axotomy Transgenic animals expressing UNC-70 (TSMod) and UNC-70 (TRAF) were immobilized on the stage of the Leica SP5 fluorescence confocal scanning system. TRNs were anaerobically stopped and excited with the 458 nm and 860 nm laser for 70 s at 30 Hz. The emission was collected with a 60x, 0.9 NA water immersion objective. To achieve a back aperture of the microscope lens.

In vivo laser anatomy and analysis of neurite retraction. Young adult wild type and mutant worms were immobilized in a drug-free manner using a 5% agar pad, as described. All strains used for these experiments (Fig. 4, Supplementary Fig. 3) contained the ALHIII transgene to drive GFP expression in the TRNs. Immunofluorescence samples were placed on the stage of a laser scanning confocal microscope equipped with two pulsed Ti:Sa lasers (Praeter Technology). One laser was used for imaging and the other for anatomy. Both lasers have an average power of 2.7 W (at 860 nm), 190 fs pulse width and a repetition rate of 80 MHz. The ablation laser was tuned to 720 nm and GFP imaging was carried out at 920 nm. The energy pulse per ablation laser was attenuated to $\approx 2 \text{nJ}$ and a pulse train of $\approx 2 \text{ms}$ was delivered into the sample through a 60x, 0.9 NA water immersion objective. To achieve a focused spot at the sample plane, the ablation laser beam was expanded to fill the back aperture of the microscope lens.

To quantify the evolution of the gap-width vs time, kymographs were binned, demeaned and lined-up and fitted using a double exponential correction for spectral bleed-through. The FRET efficiency, E, was extracted by correcting DD and DA, respectively, to DD/DA and fitted by a Gamma-distribution.

Immunofluorescence. Animals were fixed and subjected to antibody labeling as described. Fixed animals were treated with anti-myotactin antibodies (MH46, Developmental Studies Hybridoma Bank) at 1:5 dilution in P-BST (PBS + 0.1% Triton-X100 + 3% BSA), incubated overnight at 4°C, and washed several times in P-BST. Next, samples were treated with an anti-mouse secondary antibody (Alexa567-labelled, 1:2000, LifeTechnologies) overnight, washed in P-BST, and mounted in VectorShield, cured for several hours (4°C), and imaged in a Leica SP5 confocal system. Interpunctum interval (IPI) was determined from intensity profiles, as described. The binsize for IPI histograms was calculated according to Freedman-Diaconis rule: width = 3.4√N/N, where N is the number of observations. Histograms were normalized to yield a probability density function, which were fitted by a Gamma-distribution.

Statistical and computational analysis. Unless indicated, computations and statistical analysis were carried out using Igor Pro 6.04 (WaveMetrics) and image analysis was carried out with NIH Image or Fiji software.
Supplementary Figure 1 unc-70(e524) and unc-70(n493) encode missense mutations of conserved residues in UNC-70 β-spectrin.

a, Chromatogram of the unc-70 locus in wild type (top) and unc-70 mutant (bottom) worms near the codon encoding E2008.

b, Chromatogram of the unc-70 locus in wild type (top) and unc-70 mutant (bottom) worms the codon encoding L2044P.

c, Schematic domain architecture of C. elegans UNC-70 β-spectrin, consisting of an N-terminal actin binding domain (ABD), 17 spectrin repeats and a C-terminal PH domain. Yellow star indicates the position of the premature stop codon encoded by unc-70(s1502); red stars show the position of the missense mutations encoded by unc-70(n493) and unc-70(e524).

d, Close-up view of the sequence alignment of spectrin repeat 17. Highlighted in red are residues that are 100% conserved in all species; green boxes are the two missense mutations used in this study.

e, 3-D model of the α-β tetramerization domain. Orange indicates β-spectrin repeats R16 and R17; green indicates α-spectrin repeats R0 and R1. The two mutated residues, E2008K in unc-70(e524) and L2044P in unc-70(n493) are shown in space-filling mode. Figure assembled in PyMol from PDB 3LBX (Ref. 1).
Supplementary Figure 2 Disrupting the TRN-epidermis attachment is not sufficient to cause buckling and attachments are intact in unc-70 mutants.

a, AVM shape during dorsal (top) and ventral (bottom) bending in him-4(e1267) mutants lacking full hypodermal attachment. b, Neuron curvature vs. body curvature in him-4(e1267) mutants. N = number of animals and n = number of still images; collected during n=4 imaging sessions. c, UNC-70 is not required for TRN attachment. c) Schematic showing the position of the ALML and AVM. The slab visualizes the arrangement of muscles (blue) and TRNs (green) in respect to the body axis. Individual attachment sites linking body wall muscles and TRNs to the hypodermis are shown in magenta. d,f,h, Representative micrographs anti-myotactin showing attachment sites in (d) control, (f) unc-70(e524) and (h) unc-70(n493) mutant animals. e,g,i, Distribution of interpunctum intervals for attachment sites stained in (e) control, (g) unc-70(e524) and (i) unc-70(n493). Distributions were fit to a Gamma-distribution with the median location and the residuals from each fit are shown above each graph. N = number of interpunctum intervals analyzed for each genotype; more than 25 images analyzed for each genotype during n=3 imaging sessions.
Supplementary Figure 3 Expressing wild-type UNC-70 in the epidermis reduces buckling observed in unc-70 mutants. a, Representative images of AVM shape during ventral (top) and dorsal (bottom) bending in unc-70(e1502);oxIs95, unc-70(e524);oxIs95, unc-70(n493);oxIs95 mutant animals. The oxIs95 transgene drives expression of full-length, wild-type UNC-70 in the epidermis. The bright fluorescence in the pharynx is the co-transformation marker used to construct transgenic animals expressing wild-type UNC-70 in the epidermis. b, AVM shape during ventral (top) and dorsal (bottom) bending in transgenic worms expressing a dominant negative c, Maximum off-axis deformation (buckling), μav, of AVM as a function of body strain derived from the data in c and d. Each point is the maximum deformation detected at a given body posture. Solid black line is a running average of 15 images; beige curve is a fit of the buckling deformation as function of ε. e, f, Maximum off-axis deformation (buckling), $\mu_{\varepsilon_{\max}}$, of AVM as a function of body strain derived from the data in c and d. Each point is the maximum deformation detected at a given body posture. Solid black line is a running average of 15 images; beige curve is a fit of the buckling deformation as function of ε.
Supplementary Figure 4 Laser axotomy of TRNs in him-4(+) worms. a, Schematic of the dual-femtosecond laser axotomy set-up. b, Strain rate of control and unc-70 mutant TRNs after laser cutting. Thick horizontal bars are the median and the number of axotomies is indicated in each column. Axotomies were performed in n=16 control, n=5 unc-70(e524), and n=7 unc-70(n493) animals during four imaging sessions/genotype. Negative values occur either due to relaxation of an initially compressed neurite, relaxation after initial expansion during ablation or diffusion of fluorophore into the initially bleached ends proximal to the cut site. Median values were significantly different (U-test); p values (inset) show no significant difference as a function of genotype. c, Retracted distance, D₀/2, in control and unc-70 mutant worms after laser cutting. Bars are the median retracted distance for and p-values derived from a U-test are shown in the inset.
Supplementary Figure 5 UNC-70(TSMod) and UNC-70(N-TSMod) are less mobile than cytoTSMod. **a**, Representative fluorescence recovery after photobleaching (FRAP) trace for cytoplasmic TSMod. Red curve is a single exponential fit to the data points. Similar results obtained in n=17 neurites analyzed during two imaging sessions. Note, recovery was complete after bleaching. **b**, Representative FRAP traces of UNC-70(TSMod) and UNC-70(N-TSMod). Red curves are exponential fits to the data. Similar results were obtained in n=13 neurites for both UNC-70(TSMod) and UNC-70(N-TSMod) analyzed during two imaging sessions. **c**, Diffusion coefficients estimated from rate of fluorescence recovery for UNC-70(TSMod), N-TSMod, and cytoTSMod. Box plots show the median, quartiles and 0.1 and 0.9 percentiles. **d**, Mobile fraction of UNC-70(TSMod), N-TSMod and cytoTSMod-expressing neurites. Box plots show the median, quartiles and 0.1 and 0.9 percentiles.
Supplementary Figure 6 Intermolecular FRET assessment and fluorescence lifetime measurements. **a, b,** Number of photons emitted by UNC-70(5aa)/High FRET worms in the (a) acceptor channel after direct illumination and (b) the corresponding FRET efficiency image based in the number of photons collected for each bleed-through corrected pixel. **c,** Distribution of photons undergoing FRET (FRET efficiency) after donor excitation vs. number of acceptor photon after direct excitation of the acceptor. Each dot indicates a measurement derived from a pixel in (b). Black line is a linear fit to the 200 points with the highest acceptor photon counts. \(r \) is the correlation coefficient of the fit. **d-f** Same representation as above for UNC-70(TSMod) worms. **g,** Representative fluorescence lifetime image (FLIM) of a UNC-70(TSMod) expressing worm. Lookup table corresponds to the fluorescence lifetime at each pixel derived from the photon arrival histogram after fitting with a double exponential decay. Similar images were obtained in more than 6 animals. **h,** Fluorescence lifetime histogram of a representative pixel showing the number of photons collected as a function of arrival time. Black solid line indicates a double exponential fit to the data convolved with a synthetic instrument response function. **i,** Fluorescence lifetime for nine ROIs in \(n=6 \) worms analyzed during two imaging sessions. **j,** Correlation between FLIM-FRET efficiency and sensitized emission FRET efficiency derived from intensity based measurements (mean±SD). Black solid line indicates perfect correlation of the two quantities. Gray dots are values taken from published studies of constructs using the same genetically-encoded fluorophores\(^2,3\). High and low FRET values were taken from Day, et al. (Ref. 3).
Supplementary Table Legends

Supplementary Table 1 *C. elegans* strains and transgenes. List of all of the *C. elegans* strains used or created for this study and all of the transgenes created for this study.

Supplementary Table 2 Primers used to build novel transgenes. Lists the purpose and sequence of PCR primers used in this study.

Supplementary Table 3 Number of tethers analyzed by AFM force spectroscopy as a function of genotype, velocity, and treatment condition.

Supplementary Video Legends

Supplementary Video 1 Control worm expressing GFP in touch receptor neurons. Movie shows AVM morphology during ventral (compressive) and dorsal (tensile) bending. Scale bar: 50µm. Frame rate: 0.5/s.

Supplementary Video 2 *unc-70(s1502)* mutant worm expressing GFP in touch receptor neurons. Movie shows AVM morphology during ventral (compressive) and dorsal (tensile) bending. Scale bar: 50µm. Frame rate: 0.5/s.

Supplementary Video 3 *unc-70(e524)* mutant worm expressing GFP in touch receptor neurons. Movie shows AVM morphology during ventral (compressive) and dorsal (tensile) bending. Scale bar: 50µm. Frame rate: 0.5/s.

Supplementary Video 4 *unc-70(n493)* mutant worm expressing GFP in touch receptor neurons. Movie shows AVM morphology during ventral (compressive) and dorsal (tensile) bending. Scale bar: 50µm. Frame rate: 0.5/s.
Supplementary Note

This note describes how we analyzed neuronal buckling in vivo; this model relates to the data and analyses shown in Fig. 1, 2 and Supplementary Fig. 3. The goal of this analysis was two-fold. First, we sought to quantify AVM buckling as a function of body strain. Second, we applied a simple phenomenological mechanical model to characterize the relationship between neuron buckling and body bending as function of genotype. AVM buckling was measured in these three steps: 1) an ROI containing the neuron of interest was selected and straightened in ImageJ; 2) the image of the straightened neuron was converted to a binary image, denoised and thinned to a 1-pixel skeleton; 3) the maximum off-axis distance in each frame, u_{max}, was determined by computing the least-squared-minimized difference between each pixel in the skeleton and a straight line fit to the data. To derive body strain, we treated the worm’s body as an elastic Euler-Bernoulli tube and derived strain from stress according to $\varepsilon = -r^2 c$ with r as the distance of the neuron from the neutral axis (worm radius at the nerve ring) and c the curvature of the worm’s body. The results of this analysis are plotted in Fig. 2c and Supplementary Fig. 3e, f.

Deformation modeling and assumptions

To interpret these data, we took advantage of a model from continuum mechanics of a slender rod embedded in an elastic matrix. To apply the model, we harness the wealth of the detailed information about the ultrastructure and morphology of TRNs and their environment. For example the TRNs are filled with bundles of cross linked microtubules and we assumed that this long structure behaves like a slender rod embedded in an elastic matrix subjected to compressive forces during body bending.

© 2014 Macmillan Publishers Limited. All rights reserved.
The TRN microtubule bundle is embedded into a visco-elastic cytoplasm surrounded by other cytoskeletal elements. In turn, the neuron is embedded in surrounding tissues within the body of the living animal, imposing physical constraints. In the context of the model, it does not matter whether the dominant elastic elements are within the neuron or surround the neuron. Therefore, we combined all these elements (cytoplasm, neuronal membrane, hypodermis) together and modeled them as a continuum elastic matrix.

In principle, the bending and buckling dynamics of microtubules can be used to probe properties of the local environment of the microtubule6. Here we use an approach that incorporates current knowledge about the neuronal microtubule cytoskeleton to make qualitative inferences about the changes in the mechanical properties of the elastic matrix.

Buckling

We modeled a microtubule bundle embedded in an elastic matrix that undergoes oscillatory buckling undulations with a wavelength λ when the compressive strain exceeds a critical threshold6, 7. The wavelength, λ, depends only on the overall bending rigidity of the bundle, κ_B, and on the elasticity, E_m, of the surrounding matrix according to

$$\lambda = \frac{4}{3} \left(\frac{\kappa_B (1 - \nu^2)}{E_m} \right)^{\frac{1}{2}}$$

with κ_B as the flexural rigidity of the microtubule bundle, ν as the Poisson ratio and E_m as the effective Young’s modulus of the constraining matrix8.

Therefore, it should be possible to use well-characterized microtubule mechanics to estimate the relative differences between effective elasticities from measurements of λ.

© 2014 Macmillan Publishers Limited. All rights reserved.
Beyond critical threshold the maximum amplitude u_{max} of the `buckling wave' scales as the square-root of the axial compressive strain according to as:

$$u_{\text{max}}(\varepsilon) = \frac{\lambda}{\pi}(\varepsilon - \varepsilon_c)^{1/2}$$

(2)

where, ε_c is the critical strain and ε is the compressive strain. To fit this equation to the data in Fig. 2c and Supplementary Fig 3c,d, we multiplied body strain ε by -1. This equation was fit to plots of u_{max} vs. body strain above the approximate ε_c to derive λ (Fig. 2c, Supplementary Fig. 3c, 3d). Similar to λ, ε_c provides insight into the elasticity of the constraining matrix and represents the range of compressive strains over which the rod remains stable. Both the elasticity of the surrounding matrix and pre-tension within the rod can contribute to ε_c (Ref. 6, 8, 10).

Model discussion and assumptions

The buckling filament is stabilized by a linear, isotropic matrix.

Strain and stress during body bending is assumed to be linear, leading to a linearly increasing axial compression force due to the bending moment imposed by muscle contraction. Previous measurements using piezoresistive cantilevers suggests that worms show a linear elasticity at the deformations tested. Because both the neuron and the surrounding hypodermal cell assemble a spectrin network, it is likely that cell-autonomous and cell-nonautonomous factors contribute to the stabilization. This conclusion is supported by data in Supplementary Fig. 3, in which the manipulation of the spectrin network in the hypodermis as well as in the TRNs modulates the buckling behavior.

The neuron deformation is not caused by buckling of the cuticle

Buckling of the cuticle is, likely to play a role at very high body bending, creating strains of more than 100% as seen for unc-70 mutants in Fig. 2c, and
Supplementary Fig 3. In such a situation, the data deviates from the theoretically predicted buckling behavior and off-axis deformations increase

\[u_{\text{max}}(\varepsilon) \gg \frac{\lambda}{\pi} \sqrt{\varepsilon - \varepsilon_c} \]

(3)

In general, we do not observe cuticle buckling at the lower strains that commonly occur during locomotion.

Neuron bending is approximated by the flexural rigidity of the microtubule bundle inside the TRNs

To relate the wavelength \(\lambda \) derived from the fit of Equation 2 to an actual elasticity (Equation 1), we need to make assumptions about the bending elasticity of the microtubule bundle. For the limiting case of a completely uncoupled bundle of microtubules, the flexural rigidity increases linearly with the number of individual microtubules inside the bundle\(^{15} \) according to: \(\kappa_B = N \cdot \kappa_{MT} \). Due to the uncertainty on the behavior of the microtubule bundle, exact absolute values for \(E_m \) cannot be extracted from the model. Electron micrographs show that adult TRNs contain an average of \(N=60 \) microtubules\(^{5} \). If we assume a flexural rigidity of \(\kappa_{MT} = 2.7 \times 10^{-23} \) N m\(^2 \) for an individual microtubule\(^{13, 16} \), then we derive an elasticity for wild type worms of \(E_m = 10^6 \) Pa, surprisingly close to values for elasticity of worm body reported in the literature\(^{14, 17} \).

Neuronal microtubules undergo buckling in living cells

Buckling of microtubules has been observed \textit{in vitro}\(^{11} \), in living cells\(^{6} \) and in organisms\(^{12} \). Microtubules are by orders of magnitude the stiffest components inside living cells\(^{13} \). Given microtubules relative incompressibility, buckling remains an energetically favorable way to reduce length under axially applied forces\(^{7} \).
Supplementary References

1. Ipsaro, J.J. *et al.* Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. *Blood* **115**, 4843-4852 (2010).

2. Borghi, N. *et al.* E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. *Proceedings of the National Academy of Sciences of the United States of America* **109**, 12568-12573 (2012).

3. Day, R.N., Booker, C.F. & Periasamy, A. Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. *Journal of biomedical optics* **13**, 031203 (2008).

4. Chalfie, M. & Thomson, J.N. Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. *The Journal of Cell Biology* **93**, 15-23 (1982).

5. Cueva, J.G., Mulholland, A. & Goodman, M.B. Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. *Journal of Neuroscience* **27**, 14089-14098 (2007).

6. Brangwynne, C.P. *et al.* Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. *The Journal of Cell Biology* **173**, 733-741 (2006).

7. Landau, L.D., Pitaevskii, L.P., Lifshitz, E.M. & Kosevich, A.M. *Theory of Elasticity, Third Edition: Volume 7 (Theoretical Physics).* (Butterworth-Heinemann, 1986).

8. Xiao, J. *et al.* Mechanics of buckled carbon nanotubes on elastomeric substrates. *Journal of Applied Physics* **104**, 033543 (2008).

9. Jiang, H. & Zhang, J. Mechanics of Microtubule Buckling Supported by Cytoplasm. *Journal of Applied Mechanics* **75**, 061019 (2008).

10. Das, M., Levine, A.J. & MacKintosh, F.C. Buckling and force propagation along intracellular microtubules. *Epl* **84** (2008).

11. Kurachi, M., Hoshi, M. & Tashiro, H. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. *Cell Motility and the Cytoskeleton* **30**, 221-228 (1995).

12. Topalidou, I. *et al.* Genetically Separable Functions of the MEC-17 Tubulin Acetyltransferase Affect Microtubule Organization. *Current Biology*, 1-9 (2012).

13. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. *The Journal of Cell Biology* **120**, 923-934 (1993).

14. Park, S.-J., Goodman, M.B. & Pruitt, B.L. Analysis of nematode mechanics by piezoresistive displacement clamp. *Proceedings of the National
Guo, Y., Liu, Y., Tang, J.X. & Valles, J.M. Polymerization force driven buckling of microtubule bundles determines the wavelength of patterns formed in tubulin solutions. *Physical review letters* **98**, 198103 (2007).

Tolomeo, J.A. & Holley, M.C. Mechanics of microtubule bundles in pillar cells from the inner ear. *Biophysical Journal* **73**, 2241-2247 (1997).

Fang-Yen, C. *et al.* Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. *Proceedings of the National Academy of Sciences of the United States of America* **107**, 20323-20328 (2010).