Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short Review

Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces

Jiri Mestecky a, b, c, *, Michael W. Russell d, e

a Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35295–2170, United States
b Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295–2170, United States
c Department of Microbiology and Immunology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
d Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214–3900, United States
e Department of Oral Biology, University at Buffalo, Buffalo, NY 14214–3000, United States

Article info

Article history:
Received 19 March 2009
Accepted 26 March 2009
Available online 5 April 2009

Keywords:
Secretory IgA
Mucosal immunity
Glycans
Bacterial adherence

Abstract

An explanation of the principles and mechanisms involved in peaceful co-existence between animals and the huge, diverse, and ever-changing microbiota that resides on their mucosal surfaces represents a challenging puzzle that is fundamental in everyday survival. In addition to mechanical barriers and a variety of innate defense factors, mucosal immunoglobulins (Igs) provide protection by two complementary mechanisms: specific antibody activity and innate, Ig glycan-mediated binding, both of which serve to contain the mucosal microbiota in its physiological niche. Thus, the interaction of bacterial ligands with IgA glycans constitutes a discrete mechanism that is independent of antibody specificity and operates primarily in the intestinal tract. This mucosal site is by far the most heavily colonized with an enormously diverse bacterial population, as well as the most abundant production site for antibodies, predominantly of the IgA isotype, in the entire immune system. In embodying both adaptive and innate immune mechanisms within a single molecule, S-IgA maintains comprehensive protection of mucosal surfaces with economy of structure and function.

© 2009 Elsevier B.V. All rights reserved.

1. Role of secretory IgA (S-IgA) in mucosal immunity

Large surface areas of mucosal membranes (~200–400 m²) are in constant contact with a highly diverse microbiota [1–6] estimated to comprise ~15,000–36,000 species and 1800 genera [7,8] and exceeding the total number of nucleated cells by an order of magnitude [1,2,5,9] (10¹³ nucleated cells vs. ~10¹⁴ bacterial cells). More than 99.9% of all commensal bacteria are found in the gastrointestinal tract, particularly in the large intestine [5,10]. Through evolution, the selective pressure arising from environmental antigens of microbial and food origin has resulted in a strategic, functionally advantageous distribution of cells involved in antigen uptake and processing, and the initiation of immune responses in mucosal tissues [9,11–13]. The mucosal immune system contains this antigen onslaught without compromising the integrity of the mucosal barrier [11] or exhausting the immune system, in part through the induction of mucosal (oral) tolerance [14,15]. In addition to mechanical barriers and humoral effectors of innate immunity [6,11,16], mucosal antibodies and mucosal T cells provide antigen-specific protection [12,17].

The characteristic distribution of antibodies in blood and external secretions, indicating the intestinal fluid, reflects the functional adaptation of various Ig isotypes to different immune compartments. Given that mucosal membranes are the most important site of antigen encounter, it should not be surprising that most antibody production takes place in mucosal tissues, particularly the intestine, rather than in the bone marrow, spleen, and lymph nodes [12,18–21], and that the daily synthesis of IgA far exceeds that of IgG, IgM, IgD and IgE combined [19–22]. Importantly for mucosal protection, more than two-thirds of total IgA production ends up in the external secretions [19,21]. Quantitative studies of the origin of mucosal antibodies, particularly in the intestinal tract, demonstrate that ~95% is of local origin and only trace amounts are derived from the circulation [19,22,23].

The mucosal microbiota, epithelial cells, and the mucosal immune system constitute a stable and interdependent “tripod” that maintains mucosal homeostasis by complex mechanisms [3,4,6,24–28]. For example, epithelial cells display surface receptors that are selectively exploited by bacteria adhering to their apical surfaces [12,28–30], and express the basolateral membrane receptor (polymeric Ig receptor; pIgR) that transports locally produced polymeric (p) IgA into the external secretions [23]. Bacteria

* Corresponding author at: University of Alabama at Birmingham, Department of Microbiology, BBIBB 757, 845 19th Street South, Birmingham, AL 35294–2170, USA.
Tel.: +1 205 934 2225; fax: +1 205 934 3894.
E-mail address: mestecky@uab.edu (J. Mestecky).
endogenous to the intestinal tract, coated in vivo with S-IgA [9,13,17,31–39] that limits their epithelial adherence and penetration, thereby confining them to the mucosal surfaces. Numerous models have demonstrated the role of antibodies, especially S-IgA, in protecting the intestinal and other mucosal tracts. This has most convincingly been demonstrated in vivo in germ-free, colostrum-deprived newborn piglets [40–42], which, unlike humans, mice, rats, or rabbits, are born without transplacentally acquired Ig. In the absence of maternal as well as endogenous antibodies, milk-deprived piglets die of septicemia (usually E. coli) within 1–2 days after birth, whereas milk-fed animals survive [40]. Furthermore, piglets fed milk or serum, survive oral challenge with E. coli, whereas control animals deprived of Ig, irrespective of its source, succumb to the infection. In mice in which plgA is copiously expressed on hepatocytes (not the case in humans, pigs, or dogs) and plgA from the circulation is selectively transported into the bile and thence into the gut lumen [23,43], pathogen-specific plgA hybridoma antibodies derived from “backpack tumors” [44–47] protect mice against oral challenge with Salmonella enterica serovar Typhimurium, Vibrio cholerae, or rotavirus [44,45,47–49]. In contrast IgG hybridoma antibodies of the same specificity are not protective, due to the lack of receptor-mediated transport of IgG into the intestine.

1.1. Mechanisms of S-IgA-mediated protection

Numerous such experiments clearly demonstrate protection in vivo dependent on the presence of antigen-specific IgA antibodies that interfere with pathogen adherence to or penetration through the mucosal barrier, or neutralize biologically active antigens such as viruses or toxins [41,47,48,50–54]. Likewise many in vitro studies of specific antibody mediated inhibition of bacterial adherence to epithelial cells corroborate these findings [30,55–57]. However, agglutination and inhibition of the adherence of E. coli with Type 1 fimbriae to colonic epithelial cells that express a corresponding receptor can be mediated by IgA independently of specific antibody [30,58,59]. S-IgA and IgA myeloma proteins of both subclasses agglutinate E. coli, and mannose (Man) inhibits this agglutination. Furthermore, adherence of E. coli to human epithelial colonic cells can be inhibited by S-IgA as well as by IgA2 myeloma proteins. Analysis of the carbohydrate composition and complete primary structure of the oligosaccharide side-chains reveal that the most active plgA2 myeloma protein contain several Man-rich glycan chains [30]. Thus, Man-dependent adherence of E. coli to epithelial cell receptors mediated by Type 1 fimbriae is competitively inhibited by similar glycans on S-IgA and IgA2 myeloma proteins acting as decoy receptors. Consequently, we have proposed that IgA proteins exhibit protective functions through antibody-dependent specific immunity as well as glycans-dependent innate immunity [30]. This concept was confirmed in vitro for other microbial ligand-glycan receptors [1,26,29,60–78]. In addition to E. coli, many other bacteria such as Helicobacter pylori, Streptococcus pneumoniae, Clostridium difficile, Shigella flexneri, Pseudomonas aeruginosa and Neisseria gonorrhoeae, and some viruses (Table 1) interact with epithelial receptors via their glycan moiety.

Thus, it has become obvious that the N- and O-glycans of S-IgA provide a link between innate glycan-mediated and adaptive specific antibody-dependent protection (Fig. 1). This concept, of paramount importance in IgA-mediated mucosal defense, prompts additional considerations. First, it has been shown that bacteria indigenous to the oral cavity and intestinal tract are coated in vivo with IgA [9,17,31–39,79–81]. However, it is not known whether this coating depends on specific antibody-antigen or glycan-mediated interactions. Considering the enormous numbers of bacteria (∼10^{12}/g of intestinal content) [10], their diversity (∼15,000–36,000 species of 1800 genera) [7], and the large number of potential antigenic determinants on many bacterial structures, it is unlikely that such coating is based exclusively on specific recognition by S-IgA antibodies. Secondly, in the large intestine IgA2-producing cells are dominant in contrast to other mucosal tissues [82,83], and antibodies to antigens (e.g., endotoxin) of Gram-
negative bacteria are associated predominantly with the S-IgA2 subclass [84–86]. Thirdly, in addition to glycans on the H chain of IgA [87–91], secretory component (SC), the extracellular segment of pgR, is extremely rich in glycans comprising 7 N-linked chains [88,92–94] that also act as highly effective inhibitors of adherence for some bacterial species (e.g., Shigella, S. pneumoniae [64,65,67–70]). Finally, prevention of the adherence of enormously diverse and variable mucosal microbiota is likely to be at least partially independent of specific antibody activity, reflecting the immediate need for protection against a broad spectrum of daily encountered microorganisms. Thus, in concert with the postulated Fab-mediated “polyreactivity” of S-IgA antibodies [95–100], glycan-mediated interactions are likely to further enforce protective functions of S-IgA.

Skeptics of these concepts may argue that mucosal defenses in IgA-deficient individuals should be significantly compromised. Indeed, the majority of such patients display a higher incidence of respiratory and intestinal infections [101–103]. Currently, IgA deficiency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA [100–103]. Indeed, the majority of such patients display a higher incidence of respiratory and intestinal infections [101–103]. Currently, IgA deficiency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA [100–103]. The result of these genetic influences on S-IgA is extremely rich in glycans comprising 7 N-linked chains [88,92–94] that also act as highly effective inhibitors of adherence for some bacterial species (e.g., Shigella, S. pneumoniae [64,65,67–70]). Finally, prevention of the adherence of enormously diverse and variable mucosal microbiota is likely to be at least partially independent of specific antibody activity, reflecting the immediate need for protection against a broad spectrum of daily encountered microorganisms. Thus, in concert with the postulated Fab-mediated “polyreactivity” of S-IgA antibodies [95–100], glycan-mediated interactions are likely to further enforce protective functions of S-IgA.

Skeptics of these concepts may argue that mucosal defenses in IgA-deficient individuals should be significantly compromised. Indeed, the majority of such patients display a higher incidence of respiratory and intestinal infections [101–103]. Currently, IgA deficiency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA [100–103]. Indeed, the majority of such patients display a higher incidence of respiratory and intestinal infections [101–103]. Currently, IgA deficiency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA [100–103]. The result of these genetic influences on S-IgA is extremely rich in glycans comprising 7 N-linked chains [88,92–94] that also act as highly effective inhibitors of adherence for some bacterial species (e.g., Shigella, S. pneumoniae [64,65,67–70]). Finally, prevention of the adherence of enormously diverse and variable mucosal microbiota is likely to be at least partially independent of specific antibody activity, reflecting the immediate need for protection against a broad spectrum of daily encountered microorganisms. Thus, in concert with the postulated Fab-mediated “polyreactivity” of S-IgA antibodies [95–100], glycan-mediated interactions are likely to further enforce protective functions of S-IgA.

Skeptics of these concepts may argue that mucosal defenses in IgA-deficient individuals should be significantly compromised. Indeed, the majority of such patients display a higher incidence of respiratory and intestinal infections [101–103]. Currently, IgA deficiency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA [100–103]. Indeed, the majority of such patients display a higher incidence of respiratory and intestinal infections [101–103]. Currently, IgA deficiency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA [100–103]. The result of these genetic influences on S-IgA is extremely rich in glycans comprising 7 N-linked chains [88,92–94] that also act as highly effective inhibitors of adherence for some bacterial species (e.g., Shigella, S. pneumoniae [64,65,67–70]). Finally, prevention of the adherence of enormously diverse and variable mucosal microbiota is likely to be at least partially independent of specific antibody activity, reflecting the immediate need for protection against a broad spectrum of daily encountered microorganisms. Thus, in concert with the postulated Fab-mediated “polyreactivity” of S-IgA antibodies [95–100], glycan-mediated interactions are likely to further enforce protective functions of S-IgA.

Skeptics of these concepts may argue that mucosal defenses in IgA-deficient individuals should be significantly compromised. Indeed, the majority of such patients display a higher incidence of respiratory and intestinal infections [101–103]. Currently, IgA deficiency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA [100–103]. Indeed, the majority of such patients display a higher incidence of respiratory and intestinal infections [101–103]. Currently, IgA deficiency is defined as <50 mg IgA/100 ml of serum, regardless of S-IgA [100–103]. The result of these genetic influences on S-IgA is extremely rich in glycans comprising 7 N-linked chains [88,92–94] that also act as highly effective inhibitors of adherence for some bacterial species (e.g., Shigella, S. pneumoniae [64,65,67–70]). Finally, prevention of the adherence of enormously diverse and variable mucosal microbiota is likely to be at least partially independent of specific antibody activity, reflecting the immediate need for protection against a broad spectrum of daily encountered microorganisms. Thus, in concert with the postulated Fab-mediated “polyreactivity” of S-IgA antibodies [95–100], glycan-mediated interactions are likely to further enforce protective functions of S-IgA.

2. IgA-associated glycans display remarkable heterogeneity

Structural studies of human polyclonal S-IgA and monoclonal (myeloma) IgA1 and IgA2 proteins reveal considerable heterogeneity with respect to number, sites of attachment, composition, and primary structure of their glycan side-chains [30,71–77,87–94,115,122–127], which is likely to be of enormous biological importance. Because different microorganisms interact with epithelial cells through diverse glycan receptors, heterogeneity of IgA-associated glycans affords a variety of structures that can effectively inhibit these interactions.

Glycan moieties in S-IgA molecules are associated with H chains, J chain, and SC [88,90–94,124], but Man-rich N-linked glycans that inhibit the binding of Type 1 fimbriae to epithelial receptors occur only on the H chains [30,122]. However, other bacteria may interact with N- or O-linked glycans on H chains or SC (Table 1, section B). Although the majority of N-linked glycans are found in the Fc region of the α chains [88–89,114,115,124], there is great heterogeneity in the number and composition of individual glycan chains [30,122] and additional N-linked glycan chains may also be present in the Fd fragment (N-terminal half of the α chain comprising VH and CH1 domains), within the third complementarity-determining region (CDR3) [97,98,128]. The authors of these novel and functionally important studies propose that a high rate of somatic mutation in the CDR3 taking place within intestinal IgA-producing cells [97,98,116,117,128,129] generates a glycosylation-signaling sequence that alters the specificity of intestinal IgA antibodies. Thus, antigen-binding by Fab segments of S-IgA is determined by both specific antibody activity and glycan-dependent interactions.

The heterogeneity of N- and O-linked side-chains, with respect to their number, composition, and types of glycosidic bonds is further extended because many of them are incomplete, truncated forms [30,78,88,122]. Most importantly, and in sharp contrast to the combinatorial possibilities of amino acids, glycans can generate a remarkably higher number of structures, due to the variety of glycosidic bonds. Thus, a sequence of 6 (out of 20) amino acids can theoretically generate 6.4 × 10^21 distinct hexapeptides, while there are potentially 1.44 × 10^13 different hexasaccharides [130].

Specific antibody diversity is generated in an antigen-independent fashion during the differentiation of B lymphocytes by a number of mechanisms including recombination of multiple VJ (for L chains) and VDJ (for H chains) gene segments, combinatorial diversity of L and H chains, somatic hypermutation, gene conversion, and others [131]. The result of these genetic events is the generation of B lymphocytes with surface membrane Ig molecules that accommodate an enormous number of potential antigens, leading, after antigen-specific recognition, to B cell proliferation, differentiation, and the ultimate secretion of large amounts of antigen-specific antibodies. It is conceivable that analogous mechanisms operate in the generation of innate, glycan-mediated mechanisms of protection. Through random generation of enormously diverse glycan structures on mucosal glycoproteins, including S-IgA, S-IgM, SC, mucin, and lactoferrin, glycan configurations are generated that complement the equal heterogeneity of microbial adhesins. The protective effectiveness of these mechanisms may be further enhanced by subsequent somatic mutations within V regions of H and L chains, including the generation of glycosylation signals that lead to alterations of antibody specificities.

Parallel structural and functional exploration of the principles of adaptive (specific antibody) and innate (glycan) S-IgA-mediated immunity is likely to generate novel approaches to the design of broadly protective compounds that work by selectively interfering with the adherence and penetration of pathogens, or that contain the commensal microbiota residing at mucosal surfaces.

Acknowledgements

This work was supported in part by grants, 5 U19AI028147, the Czech Republic (VZM0021620812), DE006746, AI074791, and the John R. Oishei Foundation.
References

[1] Abraham SN, Bishop BL, Sharon N, Ofek I. Adhesion of bacteria to mucosal surfaces. In: Mestecky J, Bienstock J, Lamm ME, Mayer L, McGhee J, Strober W, editors. Mucosal Immunology. 3rd ed. Amsterdam: Elsevier/Academic Press; 2005. p. 35–48.

[2] Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005;307:1915–20.

[3] Cash HL, Hooper LV. Commensal bacterial shape change intestinal immune system development. ASM News 2005;71:77–83.

[4] Hooper LV, Gordon JI. Glycans as legislators of host-microbial interactions. Glycobiology 2005;15:115–8.

[5] Savage DG, Mucosal microbiota. In: Mestecky J, Bienstock J, Lamm ME, Mayer L, McGhee J, Strober W, editors. Mucosal Immunology. 3rd ed. Amsterdam: Elsevier/Academic Press; 2005. p. 19–33.

[6] Tlaskalova-Hogenova H, Tlaskalova A, Tlaskal J, Kolinska J, Rossman P, Stepankova R, et al. Interaction of mucosal microbiota with the innate immune system. Scand J Immunol 2005;62(Suppl 1):106–13.

[7] Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalance in human intestinal bowel diseases. Proc Natl Acad Sci USA 2007;104:13780–5.

[8] Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355–9.

[9] Macpherson AJ, Geuking MB, McCoy KD. Immune responses that adapt the intestinal mucosa to commensal bacterial infection. Immunology 2005;115:153–62.

[10] Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1996;93:12126–31.

[11] KAETZEL, CS, MOSTOV, K. Immunoglobulin transport and the polymeric IgA receptor. In: MacDonald TT, Challacombe SJ, editors. Mucosal Immunology. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2005. p. 267–89.

[12] MESTECKY, J, BLUMBERG, RS, KIYONO, H, MCGHEE, JR, STROBER, W, editors. Mucosal Immunology. 3rd ed. Amsterdam: Elsevier/Academic Press; 2005. p. 195–208.

[13] Abraham SN, Bishop BL, Sharon N, Ofek I. Adhesion of bacteria to mucosal surfaces. In: Mestecky J, Bienstock J, Lamm ME, Mayer L, McGhee J, Strober W, editors. Mucosal Immunology. 3rd ed. Amsterdam: Elsevier/Academic Press; 2005. p. 35–48.

[14] MESTECKY, J, MUELLER, M, ROBISON, K, GARDNER, J, KUHN, J, KRAUSE, M, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355–9.
Perrier C, Sprenger N, Corthesy B. Glycans on secretory component par-
Korhonen TK, Vaisanen-Rhen V, Rhen M, Pere A, Parkkinen J, Finne
Brandtzaeg P, Carlsen HS, Farstad IN. The human mucosal B-cell system. In:
van der Waaij LA, Mesander G, Limburg PC, van der Waaij D. Direct flow
Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate
Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B.
Takahashi Y, Ruhl S, Yoon JW, Sandberg AL, Cisar JO. Adhesion of viridans group
Phalipon A, Corthesy B. Novel functions for mucosal SIgA. In: Kaetzel CS, editor.
Schroten H, Stapper C, Plogmann R, Kohler H, Hacker J, Hanisch FG. Press; 1988. p. 340–5.
Immunity and Infections at Mucosal Surfaces. New York: Oxford University
Cisar JO, Takahashi Y, Ruhl S, Donkersloot JA, Sandberg AL. Specific inhibitors
Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W, editors.
Mucosal Immune Defense: Immunoglobulin A. New York: Springer; 2007. p.
Arnold RR, Cole MF, Prince S, McGhee JR, Secretory. IgM antibodies to
Burrows PD, Cooper MD. IgA deficiency. Adv Immunol 1997;65:245–76.
Cunningham-Rundles C. Immunodeficiency and mucosal immunity. In:
Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W. editors. 
Mucosal Immunology. 3rd ed. Amsterdam: Elsevier/Academic Press; 2005. p.
Mestecky J, Hammadström L. IgA-associated diseases. In: Kaetzel CS, editor. 
Mucosal Immune Defense: Immunoglobulin A. New York: Springer; 2007. p.
Arnold RR, Cole MF, Prince S, McGhee JR, Secretory. IgM antibodies to Stre-
tococcus mutans in subjects with selective IgA deficiency. Clin Immunol
Barros MD, Porto MH, Leser PG, Grumach AS, Carneiro-Sampaio MM. Study of 
colitis of a patient with selective IgA deficiency. Allergol Immunopathol
Brandtzæg P. Human secretory immunoglobulin M. An immunoechemical and 
immunohistochemical study. Immunology 1975;29:559–70.
Brandtzæg P, Fjellanger I, Gjeruldsen ST. Immunoglobulin M: local synthesis 
or absorption of IgM and secretory IgM. Adv Immunol 1976;191:390–2.
Crammer K. The unique role of human IgA in the immune system. Scand J Immunol 
1979;18:471–82.
J. Mestecky, M.W. Russell / Immunology Letters 124 (2009) 57–62
[116] Boursier L, Dunn-Walters DK, Spencer J. Characteristics of IgVH genes used by human intestinal plasma cells from childhood. Immunology 1999;97:538–64.
[117] Fischer M, Kuppers R. Human IgA- and IgM-secreting intestinal plasma cells carry heavily mutated VH region genes. Eur J Immunol 1998;28:2971–7.
[118] Chapman A, Kornfeld R. Structure of the high mannose oligosaccharides of a human IgM myeloma protein. I. The major oligosaccharides of the two high mannose glycopeptides. J Biol Chem 1979;254:816–23.
[119] Cohen RE, Ballou CE. Linkage and sequence analysis of mannos-rich glycoprotein core oligosaccharides by proton nuclear magnetic resonance spectroscopy. Biochemistry 1980;19:4345–58.
[120] Jouanneau J, Fournet B, Bourrillon R. Localization and overall structure of a mannos-rich glycopeptide from a pathologic immunoglobulin. Biochim Biophys Acta 1981;667:277–84.
[121] Monica TJ, Williams SB, Goochee CF, Maiorella BL. Characterization of the glycosylation of a human IgM produced by a human-mouse hybridoma. Glycobiology 1995;5:175–85.
[122] Endo T, Mestecky J, Kulhavy R, Kobata A. Carbohydrate heterogeneity of human myeloma proteins of the IgA1 and IgA2 subclasses. Mol Immunol 1994;31:1415–22.
[123] Field MC, Amatayakul-Chantler S, Rademacher TW, Rudd PM, Dwek RA. Structural analysis of the N-glycans from human immunoglobulin A1: comparison of normal human serum immunoglobulin A1 with that isolated from patients with rheumatoid arthritis. Biochem J 1994;299(Pt 1):261–75.
[124] Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, et al. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcε receptor interactions. J Biol Chem 1998;273:2260–72.
[125] Renfrow MB, Cooper HJ, Tomana M, Kilhavy R, Hiki Y, Toma K, et al. Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem 2005;280:19116–45.
[126] Renfrow MB, Mackay CL, Chalmers MJ, Julian BA, Mestecky J, Kilian M, et al. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem 2007;389:1397–407.
[127] Tarelli E, Smith AC, Hendry BM, Challacombe SJ, Pauria S. Human serum IgA1 is substituted with up to six O-glycans as shown by matrix assisted laser desorption ionisation time-of-flight mass spectrometry. Carbohydr Res 2004;339:2329–35.
[128] Dunn-Walters D, Boursier L, Spencer J. Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol Immunol 2000;37:107–13.
[129] Dunn-Walters DK, Spencer J. Strong intrinsic biases towards mutation and conservation of bases in human IgVH genes during somatic hypermutation prevent statistical analysis of antigen selection. Immunology 1998;95:339–45.
[130] Weiss AA, Lyer SS. Glycomics aims to interpret the third molecular language of cells. Microbe 2007;2:489–97.
[131] Max EE. Immunoglobulins: molecular genetics. In: Paul WE, editor. Fundamental Immunology. 6th ed. Philadelphia: Lippincott, Williams & Wilkins; 2008. p. 192–236.
[132] Compans RW, Herrler G. Virus infection of epithelial cells. In: Mestecky J, Bienewski J, Lamm ME, Mayer L, McGhee JR, Strober W, editors. Mucosal Immunology. 3rd ed. Amsterdam: Elsevier/Academic Press; 2005. p. 769–82.