Porosity of the Free Boundary in the Singular p-Parabolic Obstacle Problem

Abdeslem Lyaghfouri
American University of Ras Al Khaimah
Ras Al Khaimah, UAE

Abstract

In this paper we establish the exact growth of the solution of the singular quasilinear p-parabolic obstacle problem near the free boundary from which we deduce its porosity.

2010 Mathematics Subject Classification: 35K59; 35K67; 35K92; 35R35.

Key words: p-Parabolic Obstacle Problem, p-Laplacian, Free boundary, Porosity.

1 Introduction

Let Ω be an open bounded domain of \mathbb{R}^n, $n \geq 2$, $T > 0$. We consider the following problem

\begin{equation}
(P) \quad \begin{cases}
\text{Find } u \in L^p(0, T; W^{1,p}(\Omega)) \text{ such that :} \\
(i) \quad u \geq 0 \quad \text{in } \Omega_T = \Omega \times (0, T), \\
(ii) \quad L_p(u) = u_t - \Delta_p u = -f(x) \quad \text{in } \{u > 0\}, \\
(iii) \quad u = g \quad \text{on } \partial_p \Omega_T = (\Omega \times \{0\}) \cup (\partial \Omega \times (0, T)),
\end{cases}
\end{equation}

where $p > 1$, Δ_p is the p-Laplacian defined by $\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u)$, and f, g are functions defined in Ω_T and satisfying for two positive constants λ_0 and Λ_0

\begin{equation}
0 < \lambda_0 \leq f \leq \Lambda_0 \quad \text{a.e. in } \Omega_T.
\end{equation}

Moreover we assume that

\begin{align}
&f \text{ is non-increasing in } t. \quad (1.2) \\
g(x, 0) = 0 \quad \text{a.e. in } \Omega. \quad (1.3) \\
g \text{ is non-decreasing in } t. \quad (1.4)
\end{align}
The variational formulation of the problem \((P) \) is given by

\[
(V P) \begin{cases}
\text{Find } u \in K_g = \{ v \in V^{1,p}(\Omega_T) / v = g \text{ on } \partial_p \Omega_T, \ v \geq 0 \text{ a.e. in } \Omega_T \} \\
\text{such that for all } h > 0 \text{ and } t < T - h : \\
\int_{\Omega} \partial_t u_h(v - u)dx + \int_{\Omega} (|\nabla u|^{p-2}\nabla u)_h \nabla(v - u)dx + \int_{\Omega} f_h(v - u)dx \geq 0,
\end{cases}
\]

where

\[
V^{1,p}(\Omega_T) = L^\infty(0,T; L^1(\Omega)) \cap L^p(0,T; W^{1,p}(\Omega)),
\]

and \(v_h \) is the Steklov average of a function \(v \) defined by

\[
v_h(x,t) = \frac{1}{h} \int_{t}^{t+h} v(x,s)ds, \quad \text{if } t \in (0,T-h]
\]
\[
v_h(x,t) = 0, \quad \text{if } t > T - h.
\]

Let us recall the following existence and uniqueness theorem of the solution of the problem \((VP)\) [6].

Theorem 1.1. Assume that \(f \) and \(g \) satisfy (1.1)-(1.4). Then there exists a unique solution \(u \) of the problem \((VP)\) which satisfies

\[
0 \leq u \leq M = \| g \|_{\infty, \Omega_T} \text{ in } \Omega_T.
\]
\[
u_t \geq 0 \text{ in } \{ u > 0 \}.
\]
\[
f \chi_{\{u>0\}} \leq \Delta_p u - u_t \leq f \text{ a.e. in } \Omega_T.
\]

Remark 1.1. We deduce from (1.5) and (1.7) [6] that we have \(u \in C^{0,\alpha}_{\text{loc}}(\Omega_T) \cap C^{1,\alpha}_{x,\text{loc}}(\Omega_T) \) for some \(\alpha \in (0,1) \).

The main result of this paper is the next theorem.

Theorem 1.2. Assume that \(1 < p < 2 \) and that \(f \) and \(g \) satisfy (1.1)-(1.4), and let \(u \) be a solution of \((VP)\). Then for every compact set \(K \subset \Omega_T \), the intersection \((\partial\{u > 0\}) \cap K \cap \{ t = t_0 \} \) is porous in \(\mathbb{R}^n \) with porosity constant depending only on \(n, p, \lambda_0, \Lambda_0, \text{dist}(K,\partial_p \Omega_T) \), and \(\| g \|_{\infty, \Omega_T} \).

We recall that a set \(E \subset \mathbb{R}^n \) is called porous with porosity \(\delta \), if there is an \(r_0 > 0 \) such that

\[
\forall x \in E, \ \forall r \in (0,r_0), \ \exists y \in \mathbb{R}^n \text{ such that } B_{\delta r}(y) \subset B_r(x) \setminus E.
\]

A porous set has Hausdorff dimension not exceeding \(n - c\delta^n \), where \(c = c(n) > 0 \) is a constant depending only on \(n \). In particular a porous set has Lebesgue measure zero.
Theorem 1.2 extends the same result established in [6] in the quasilinear degenerate and linear cases \(p \geq 2 \). The proof is based on the exact growth of the solution of the problem \((V F)\) near the free boundary which is given by the next theorem.

Theorem 1.3. Assume that \(1 < p < 2 \) and that \(f \) and \(g \) satisfy (1.1)-(1.4), and let \(u \) be a solution of the problem \((V P)\). Then there exists two positive constants \(c_0 = c_0(n,p,\lambda_0) \) and \(C_0 = C_0(n,p,\lambda_0,\Lambda_0,\|g\|_{\infty,\Omega_T}) \) such that for every compact set \(K \subset \Omega_T \), \((x_0,t_0) \in (\partial\{u > 0\}) \cap K\), the following estimates hold

\[
c_0 r^q \leq \sup_{B_r(x_0)} u(\cdot,t_0) \leq C_0 r^q,
\]

(1.5)

where \(q = \frac{p}{p-1} \) is the conjugate of \(p \).

Since the proof of Theorem 1.2 relies on the one of Theorem 1.3, it will be enough to prove the latter one. On the other hand we observe that the left hand side inequality in (1.5) was established in [6] Lemma 2.1 for any \(p > 1 \), while the right hand side inequality in (1.5) was established only for \(p \geq 2 \). In the next section, we shall establish the second inequality for a class of functions in the singular case i.e. for \(1 < p < 2 \). Then the right hand side inequality in (1.8) will follow exactly as in [6] and we refer the reader to that reference for the details. Hence the proof of Theorem 1.2 will follow.

For similar results in the quasilinear elliptic case, we refer to [4], [1], and [2], respectively for the \(p \)-obstacle problem, the \(A \)-obstacle problem, and the \(p(x) \)-obstacle problem. For the obstacle problem for a class of heterogeneous quasilinear elliptic operators with variable growth, we refer to [3].

2 A class of functions on the unit cylinder

In this section, we assume that \(1 < p < 2 \) and consider the family \(\mathcal{F} = \mathcal{F}(p,n,M,\Lambda_0) \) of functions \(u \) defined on the unit cylinder \(Q_1 = B_1 \times (-1,1) \) by \(u \in \mathcal{F} \) if it satisfies

\[
\begin{align*}
u &\in W^{1,p}(Q_1), \quad \|u_t - \Delta_p u\|_{L^{\infty}(Q_1)} \leq \Lambda_0 \quad \text{in } Q_1 \quad (2.1) \\
0 &\leq u \leq M \quad \text{in } Q_1 \quad (2.2) \\
u(0,0) &= 0 \\
u_t &\geq 0 \quad \text{in } Q_1.
\end{align*}
\]

(2.3)

The following theorem gives the growth of the elements of the family \(\mathcal{F} \) in the singular case. This completes a result proved in [6] for the degenerate case \(p \geq 2 \).

Theorem 2.1. There exists a positive constant \(C = C(p,n,M,\Lambda_0) \) such that for every \(u \in \mathcal{F} \), we have

\[
u(x,t) \leq Cd(x,t) \quad \forall (x,t) \in Q_{1/2}
\]
where $d(x, t) = \sup\{r / Q_r(x, t) \subset \{u > 0\} \}$ for $(x, t) \in \{u > 0\}$, and $d(x, t) = 0$ otherwise, and where $Q_r(x, t) = B_r(y) \times (s − r^q, s + r^q)$.

In order to prove Theorem 2.1, we need to introduce some notations inspired from [6]. For a nonnegative bounded function u, we define the quantities

$$Q_r^- = B_r \times (-r^q, 0), \quad S(r, u) = \sup_{(x, t) \in Q_r^-} u(x, t).$$

We also define for $u \in \mathcal{F}$ the set

$$M(u) = \{j \in \mathbb{N} \cup \{0\} / \ AS(2^{-j-1}, u) \geq S(2^{-j}, u)\}$$

where $A = 2^n\max\left(1, \frac{1}{C_0}\right)$ and C_0 is the constant in (1.8).

As in [6], we first show a weaker version of the inequality.

Lemma 2.1. There exists a constant $C_1 = C_1(p, n, M_0)$ such that

$$S(2^{-j-1}, u) \leq C_1 2^{-qj} \quad \forall u \in \mathcal{F}, \quad \forall j \in M(u).$$

Proof. We argue by contradiction and assume that

$$\forall k \in \mathbb{N}, \quad \exists u_k \in \mathcal{F}, \quad \exists j_k \in M(u_k) \quad \text{such that} \quad S(2^{-j_k-1}, u_k) \geq k 2^{-qj_k}.$$ \quad (2.5)

Let $\alpha_k = 2^{-pj_k} (S(2^{-j_k-1}, u_k))^{2-p}$, and consider $v_k(x, t) = \frac{u_k(2^{-j_k} x, \alpha_k t)}{S(2^{-j_k-1}, u_k)}$ defined in Q_1.

First we observe that since $u(0, 0) = 0$ and u is continuous, we have $\alpha_k \to 0$ as $k \to \infty$.

Moreover, we have

$$\nabla v_k(x, t) = \frac{2^{-j_k}}{S(2^{-j_k-1}, u_k)} \nabla u_k(2^{-j_k} x, \alpha_k t)$$

$$v_{kt}(x, t) = \frac{\alpha_k}{S(2^{-j_k-1}, u_k)} u_{kt}(2^{-j_k} x, \alpha_k t) = \left(\frac{2^{-qj_k}}{S(2^{-j_k-1}, u_k)}\right)^{p-1} u_{kt}(2^{-j_k} x, \alpha_k t)$$ \quad (2.6)

$$\Delta_p v_k(x, t) = \text{div}\left(|\nabla v_k|^{p-2} \nabla v_k\right)$$

$$= \left(\frac{2^{-j_k}}{S(2^{-j_k-1}, u_k)}\right)^{p-1} \text{div}\left(|\nabla u_k(2^{-j_k} x, \alpha_k t)|^{p-2} \nabla u_k(2^{-j_k} x, \alpha_k t)\right)$$

$$= 2^{-j_k} \left(\frac{2^{-qj_k}}{S(2^{-j_k-1}, u_k)}\right)^{p-1} \Delta_p u_k(2^{-j_k} x, \alpha_k t)$$

$$= \left(\frac{2^{-qj_k}}{S(2^{-j_k-1}, u_k)}\right)^{p-1} \Delta_p u_k(2^{-j_k} x, \alpha_k t).$$ \quad (2.7)

We deduce from (2.6)-(2.7) that

$$v_{kt} - \Delta_p v_k(x, t) = \left(\frac{2^{-qj_k}}{S(2^{-j_k-1}, u_k)}\right)^{p-1} (u_{kt} - \Delta_p u_k)(2^{-j_k} x, \alpha_k t).$$ \quad (2.8)
Combining (1.1), (2.1)-(2.5) and (2.8), we obtain

\[\| v_{kt} - \Delta_p v_k \|_\infty \leq \frac{\Lambda_0}{k^{p-1}} \quad \text{in } Q_1 \]

(2.9)

\[0 \leq v_k \leq \frac{S(2^{-j_k}, u_k)}{S(2^{-j_k-1}, u_k)} \leq A \quad \text{in } Q_1^- , \]

(2.10)

\[v_{kt} \geq 0 \quad \text{in } Q_1^- , \]

(2.11)

\[\sup_{Q_{3/4}^+} v = 1 \]

(2.12)

\[v_k(0, t) = 0 \quad \forall t \in (-1, 0). \]

(2.13)

Taking into account (2.9)-(2.10), we deduce (see [5]) that there exist two positive constants \(\beta = \beta(n, p, M, A) \) and \(C = C(n, p, M, A) \) such that \(v_k \in C^{0,\beta}(\overline{Q_{3/4}}) \cap C^{1,\beta}_{x}(\overline{Q_{3/4}}) \) and

\[|v_k|_{\beta, Q_{3/4}} , |\nabla v_k|_{\beta, Q_{3/4}} \leq C , \quad \forall k \]

It follows then from Ascoli-Arzella’s theorem that there exists a subsequence, still denoted by \(v_k \) and a function \(v \in C^{0,\beta}(\overline{Q_{3/4}}) \cap C^{1,\beta}_{x}(\overline{Q_{3/4}}) \) such that \(v_k \rightarrow v \) and \(\nabla v_k \rightarrow \nabla v \) uniformly in \(Q_{3/4}^- \). Moreover, using (2.9)-(2.13), we see that \(v \) satisfies

\[\begin{cases}
 v_t - \Delta_p v = 0 & \text{in } Q_{3/4}^- , \\
 v, v_t \geq 0 & \text{in } Q_{3/4}^- , \\
 \sup_{x \in Q_{i/2}^+} v(x, t) = 1, & v(0, t) = 0 \quad \forall t \in (-3/4, 0).
\end{cases} \]

We discuss two cases:

Case 1: \(\forall (x, t) \in Q_{3/4}^- \) \(v(x, t) = 0 \)

In particular we have \(v \equiv 0 \) in \(Q_{1/2}^- \) which contradicts the fact that \(\sup_{x \in Q_{i/2}^+} v(x) = 1. \)

Case 2: \(\exists (x_0, t_0) \in Q_{3/4}^- \) such that \(v(x_0, t_0) > 0 \)

Since \(v(., t_0) \) is not identically zero and \(v(0, t_0/2) = 0 \), we get from the strong maximum principle (see [7]) that \(v(x, t_0/2) = 0 \) for all \(x \in B_{3/4} \). By the monotonicity of \(v \) with respect to \(t \) and the fact that \(v \) is nonnegative, we have necessarily \(v(x, t) = 0 \) for all \((x, t) \in B_{3/4} \times (-3/4, t_0/2) \), which is in contradiction with the fact that \(v(x_0, t_0) > 0. \)

Proof of Theorem 2.1. Using Lemma 2.1, the proof follows exactly as the one of Theorem 2.2 in [6].

\[\square \]
References

[1] S. Challal, A. Lyaghfouri: *Porosity of Free Boundaries in A–Obstacle Problems*, Nonlinear Analysis: Theory, Methods & Applications, Vol. 70, No. 7 (2009), pp. 2772-2778.

[2] S. Challal, A. Lyaghfouri: *On the Porosity of the Free boundary in the p(x)-Obstacle Problem*, Portugaliae Mathematica, Vol. 68, Issue 1 (2011), pp. 109-123.

[3] S. Challal, A. Lyaghfouri, J. F. Rodrigues, R. Teymurazyan: On the regularity of the free boundary for a class of quasilinear obstacle problems. Interfaces and Free Boundaries. 16, 359-394 (2014).

[4] L. Karp, T. Kilpeläinen, A. Petrosyan and H. Shahgholian: On the Porosity of Free Boundaries in Degenerate Variational Inequalities. J. Differential Equations Vol. 164, 110-117 (2000).

[5] H. J. Choe. A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities. Differential Integral Equations 5, no. 4, 915-944 (1992).

[6] H. Shahgholian: Analysis of the Free Boundary for the p-parabolic variational problem $p \geq 2$. Rev. Mat. Iberoamericana 19, No. 3, 797-812 (2003).

[7] B. Nazaret: Principe du maximum stricte pour un operateur quasilinéaire. C. R. Acad. Sci. Paris, t. 333, Srie I, p. 97102, (2001).