Negatívny vplyv dopravy na znečistenie ovzdušia je všeobecne známy. Automobilová doprava má veľký podiel na znečisťovaní prízemnej vrstvy atmosféry, v ktorej sa rozvíja život, špeciálne imisií, t. j. koncentrácie emitovaných znečisťujúcich látok. Dôvodom je emisia hlavných znečisťujúcich látok z automobilovej dopravy tesne nad povrchom zeme (CO – oxid uhličitý, NO_x – suma oxidov dusíka a VOC – prchavé organické zlúčeniny).

Príspevok sa zaoberá vplyvmi automobilovej dopravy na znečistenie ovzdušia a metodikou na výpočet množstva produkovaných znečisťujúcich látok, ktorá sa pre tento účel používa.

1. Úvod

Problém znečistenia ovzdušia od automobilovej dopravy nie je možné riešiť zvýšením výšky vypúšťania znečisťujúcich látok, ako sa to robi pri priemyselných zdrojoch, kde sa dosiahnuť priprustných imisných limitov rieši stanovením tzv. minimálnej výšky komína. Znížiť dopad automobilovej dopravy na znečistenie ovzdušia pri zemnej vrstve atmosféry znamená znížiť emisie znečisťujúcich látok automobilov technickým zpôsobom, poprípade transformáciou znečisťujúcich látok katalyzátormi. Ďalším riešením môže byť odklonenie alebo presmerovanie automobilovej dopravy v oblasti s najviac znečisteným ovzduším.

2. Vplyv dopravy na znečistenie ovzdušia

Zaťaženie životného prostredia ľudskou činnosťou – dopravou – – vzniká vnášaním chemických, fyzikálnych a biologických prvkov. Dôležité je neprekročiť mieru únosnosti územia, nepoškodiť ho. Doprava zaťažuje životné prostredie počas výstavby a prevádzky, najviac hlukom a emisiami. V súčasnosti však už existujú také technologické postupy a technické vybavenie cestných komunikácií, ktoré dokážu zabezpečiť neprekročenie predpísaných výšiek znečišťovacích činík.

Doprava a dopravný priemysel v Európe spotrebovala 20 % celkovej energie, z tohto množstva až 83 % spotrebovala cestná

* Assoc. Prof., MSc., Daniela Ďurčanská, Ph.D., MSc. prof. Ing. Milan Moravčík, Ph.D.
University of Žilina, Faculty of Civil Engineering, Department of Highway Engineering, Komenského 52, Žilina, E-mail: durcan@fstav.utc.sk
University of Žilina, Faculty of Civil Engineering, Department of Construction Management, Komenského 52, Žilina, E-mail: milanm@fstav.utc.sk
traffic, which also produces 81% of CO and 51% of NOx nitrogen oxides. Highways can decrease this amount by about 25%. [1]

In Slovakia, the share of traffic in air pollution is about 23%, while the main polluter, power engineering has a 42% share in air pollution. The share of mobile sources in production of basic polluting elements in the last years is shown in Table 1 [2].

3. Possibilities of Minimizing the Impact of Traffic on the Environment

Further traffic development is inseparably connected with the issue of life style values, living conditions and the level of economy. The framework defined by the public interest within which traffic concepts can be developed, depends on changing the attitude of the society towards these issues. A traffic policy must therefore consider global and regional conditions. Such strategies that involve changes in traffic systems and some reduction of ineffective traffic seem to be perspective. Harmful effects of the traffic on the environment must be reduced by implementation of faster, safer and more comfortable public traffic service, as well as by limitation of individual traffic, in large cities in particular.

Influence of Layout on Emissions Dispersion

The quality and cleanliness of the atmosphere has become a serious problem in traffic network planning in and outside cities, in traffic organization and regional planning. Traffic collapses in cities lead to higher concentration of pollutants.

Nitrogen oxides belong to such pollutants that represent one of the crucial components of exhaust gases coming from current fuels, because they reach relatively high concentrations of pollutants produced into the atmosphere. They are also easy to monitor and can be estimated by calculation. Therefore they can be used as an indicator of air pollution caused by emissions coming from the traffic exhaust gases.
Poloha komunikácie je po výstavbe nemenná, preto jej treba
venovať pozornosť pri riešení komunikačných systémov sídiel.
Podľa [3] bol sledovaný rozptyl škodlivín v závislosti od polohy
nivelety komunikácie (v záreze, na teréne, v násype) a výsledky
poukazujú na fakt, že táto závislosť sa prejavuje len pri rýchlosti
vetra menšej ako 3 m/s, kedy sa zemné teleso v násype javí ako
vhodnejšie pre rozptyl emisií. Koncentrácie NO\textsubscript{x} namerané
prie komunikácii v násype boli 2-krát menšie ako pri komunikácii
vedenej v úrovni terénu.

The position of the road is permanent after it is constructed,
so it is necessary to pay attention to the design of communication
systems. According to [3], dispersion of pollutants dependent on
the vertical alignment position (in the cut, in the field, on the
embankment) was monitored and the results show that this depen-
dence is seen only when the wind velocity is under 3 m/s, and in
this case the formation level seems to be more suitable for emis-
sion dispersion. NO\textsubscript{x} concentrations monitored near a road on the
embankment were twice lower than the concentrations near a road
located at the ground level.

![Graph](image1)

NO\textsubscript{x} concentrations dependent on the wind velocity

\((p = 4\%, v = 80\ km/h)\)

Fig. 1 The influence of the wind velocity on the emission dispersion

\((p - \text{longitudinal gradient of the vertical alignment}, v - \text{vehicle velocity})\)

Na obr. 1 a 2 sú uvedené porovnávacie údaje vypočítané pre
rovnako smerovo orientovaný úsek komunikácie dlhý jeden km,
šírkové usporiadanie MS 21.5 pre mestský režim jazdy vozidiel, čo
zodpovedá zbernej komunikácii (MS) a R 22.5 pre mimomestský
(plynútý) režim jazdy na rýchlostnej komunikácii (R). Uvažovaný
počet osobných vozidiel bol 10 000 / 24 h, nákladných 1000 / 24 h,
šípáková polohová doprava bola uvažovaná hodnotou 5 \% z celo-
dennej 24-hodinovej dopravy.

Road Greenery

Effective usage of the road greenery can considerably reduce
the negative impact of automobile traffic. In the past, the effect of
greenery was not utilized sufficiently. Nowadays, the protection
and creation of the environment and its enhancement is associated
with the problem of balance between the civilization and biologi-
cal aspects of a man. One of the various functions of the greenery
is filtration, so greenery is planted along roads.

\[\text{Figures 1 and 2 show comparative data calculated for a 1 km}\]

\[\text{long road section with the same directional orientation with the}\]

\[\text{widthness category of MS 21.5 for urban driving mode, which}\]

\[\text{corresponds to a local distributor road and R22.5 for rural (fluent)}\]

\[\text{driving mode on an expressway (R). The assumed number of pas-}\]

\[\text{senger cars was 10,000 / 24 hours, trucks 1,000 / 24 hours, the}\]

\[\text{peak traffic in half an hour was assumed to be 5\% out of the total}\]

\[\text{all-day long 24 hours traffic.}\]

Road Greenery

Effective usage of the road greenery can considerably reduce
the negative impact of automobile traffic. In the past, the effect of
greenery was not utilized sufficiently. Nowadays, the protection
and creation of the environment and its enhancement is associated
with the problem of balance between the civilization and biologi-
cal aspects of a man. One of the various functions of the greenery
is filtration, so greenery is planted along roads.

\[\text{Figures 1 and 2 show comparative data calculated for a 1 km}\]

\[\text{long road section with the same directional orientation with the}\]

\[\text{widthness category of MS 21.5 for urban driving mode, which}\]

\[\text{corresponds to a local distributor road and R22.5 for rural (fluent)}\]

\[\text{driving mode on an expressway (R). The assumed number of pas-}\]

\[\text{senger cars was 10,000 / 24 hours, trucks 1,000 / 24 hours, the}\]

\[\text{peak traffic in half an hour was assumed to be 5\% out of the total}\]

\[\text{all-day long 24 hours traffic.}\]

Road Greenery

Effective usage of the road greenery can considerably reduce
the negative impact of automobile traffic. In the past, the effect of
greenery was not utilized sufficiently. Nowadays, the protection
and creation of the environment and its enhancement is associated
with the problem of balance between the civilization and biologi-
cal aspects of a man. One of the various functions of the greenery
is filtration, so greenery is planted along roads.

\[\text{However, not every form of planting results in improved situa-}\]

\[\text{tion. Depth of the planting and its filtering efficiency are very}\]

\[\text{important. The greenery can capture dust and equally disperse}\]

\[\text{gaseous emissions.}\]

\[\text{Regulation of wind velocity by dense planting increases the}\]

\[\text{volume of dust in the vicinity of the road. The species that allow}\]

\[\text{the wind to blow through are more effective.}\]

\[\text{Obr. 2 Vplyv polohy zemného telesa [3]}\]

\[\text{Fig. 2 The influence of the construction limits position [3]}\]
Krovitý listnatý hustý porast šírky 5 m (obr. 3) spôsobuje redukciu rozptylu škodlivín do okolia asi 20 %. Porast šírky 10 m (obr. 4) spôsobuje v lete redukciu rozptylu škodlivín až 60 %. Najvhodnejšia je kombinácia listnatých a ihličnatých stromov. Nie sú výkyvy v účinnosti výsadby v lete a v zime (obr. 5) [3].

Pri listnatých a ihličnatých stromoch sa prejavuje zachytávanie prachu produkciou kyslíka a spotrebou kysličníka uhličitého. Pri plynných exhalátoch je účinok zelene len pri malých koncentráciiach. V opačnom prípade dochádza k vysychaniu hlavne ihličnatých stromov.

Z uvedených porovnaní vyplýva, že problematiku dopadu dopravy na znečistenie ovzdušia v mestách je potrebné riešiť už na úrovni územnoplánovacej dokumentácie, kde sa rozhoduje o umiestnení komunikácií.

Potreba rovnomáhavého civilizačnej a biologickej složky človeka sa výraznejšie prejavuje v mestskom intraviláne, kde sa na zhoršovaniu životného prostredia podieľa aj automobilová doprava.

V intraviláne miest je citlivého vnímané aj hluk od dopravy. Zeleň popri komunikácii tlmí hluk od dopravy v závislosti od

A bushy, dense deciduous greenery with the width of 5 m (see Fig. 3) reduces the dispersion of the pollutants to the surrounding by approximately 20 %. The greenery with the width of 10 m (see Fig. 4) reduces the dispersion of the pollutants by up to 60 % in the summer. The most proper is the combination of deciduous and coniferous species. There is no oscillation in the efficiency of the planting between summer and winter (see Fig. 5) [3].

The effect of capturing the dust by oxygen production and carbon dioxide consumption can be seen in deciduous and coniferous trees. Considering gaseous pollutants, greenery is effective only in case of low concentrations, otherwise coniferous trees in particular dry up.

It can be seen from the presented comparisons that the question of the impact of traffic on air pollution in urban agglomerations should be solved already at the stage of land planning documentation, where the location of the roads is determined.

The need of the balance between civilization and biological aspects of man is manifested especially in urban agglomerations, where automobile traffic makes the environment worse.

The noise from the traffic is felt as a sensitive issue in urban agglomerations. The greenery mutes this noise depending on the width of the green belt. More significant muting
šírky zeleného pásu. Výraznejšie tlmenie sa prejavuje od šírky 15 – 20 m. V zelenom páse je vhodná kombinácia stromov a kríkov, aby hluk prenikal čo najmenej. Odporúča sa kombinácia listnatých a ihličnatých drevín, nakoľko listnaté vo vegetačnom klude nemajú vplyn na zniženie hluku. Zniženie hlukovej energie spočíva vo veľkom množstve odrazov od listov, konárov a ihličia, teda nie v po-hlcovani.

Protihlukové clony

Osadenie protihlukových clón, stien a valov pozitívne pôsobí aj na rozptyl emisií. Stena síce tvorí bariéru, ktorá ovplyvňuje koncentráciu plynných látok v blízkosti komunikácie, ale pri jej vhodnom umiestnení redukuje túto hodnotu v oblasti za stenou, kde dochádza k znižení koncentrácie. Pokiaľ je teda vybudovaný chodník pre peších za protihlukovou stenou, sú dosahované koncentrácie v ovzduší nižšie.

Noise Barriers

Construction of noise barriers has got positive influence also on the emission dispersion. A wall makes a barrier that affects the concentration of gaseous substances near the road, however, if it is properly situated, it reduces this value in the area behind the wall. Therefore, if footpaths are constructed behind noise barriers, the concentrations in the air are lower.

4. **Možnosti ovplyvnenia produkcie emisií**

Redukovanie zdroja škodlivín predstavuje ovplyvňovanie inten-zity dopravy zmenou dopravných tokov, znížovaním podielu náklad-ných vozidiel, obmedzovaním rýchlosti, čo možno dosiahnuť do-pravným značením a zosúladením režimu dopravy v rámci komu-ničačného systému (zelené vlny).

V grafoch na obr. 10 a 11 sú uvedené porovnávacie údaje o vypracovaných tabuľkách, ktoré môžu byť použitým v praxi.

4. **Possibilities of the Influencing the Production of Emissions**

To reduce sources of pollutants means to influence traffic intensity by changing traffic flows, reducing the number of trucks, limiting speed, which can be achieved by road signs and synchronization of the traffic mode in terms of the communication system (green waves).

Figures 9 and 10 show comparative data calculated for a 1 km long road section with the same directional orientation with the widthness category of MS 21.5 for urban driving mode, which corresponds to a local distributor road (MS) and a R22.5 expressway for rural (fluent) driving mode. The assumed number of passenger cars was 10,000/24 hours, trucks 1,000/24 hours, the peak traffic in half an hour was assumed to be 5% from the total all-day 24 hours traffic. The calculation was done according to the SAV (Slovak Science Academy) methodology. [4]
Vplyv regulácie dopravy na produkciu emisií

Pri skvalitňovaní životného prostredia v mestách zohráva významnú úlohu preventívny prístup k riešeniu problémov. Doprava ako taká je v súčasnosti problémom každého mesta. Jedným z príkladov, ako možno riešiť problem z hľadiska znečisťovania ovzdušia z dopravy, je rozsiahla štúdia pracovníkov Technickej univerzity v Grazi [5].

Pracovníci Technickej univerzity v Grazi vypracovali na základe testovania dopravy vo vopred zvolenej oblasti mesta štúdiu, v ktorej vyhodnotili spotrebu pohonných hmôt a vznik plynných emisií od dopravy v neregulovanej oblasti, pri zavedení obmedzené rýchlosti na 30 km/h a pri rýchlosti 50 km/h v tej istej oblasti.

Sledované boli emisie oxidov dusíka NOx, oxid uhličitý CO, produkcia nespálených uhľovodíkov CxHx (resp. HC), spotreba pohonných hmôt a cestovná rýchlosť. Uvedené faktory boli sledované a prepočítané na tzv. jednotkové osobné vozidlo, ktoré vychádza zo zloženia dopravného prúdu zo 67 % vozidiel s benzíновým motorom (zážihovým) bez katalyzátora, 21 % vozidiel s benzínovým motorom s katalyzátorom a 12 % vozidiel s dieselovým motorom (vznetovým).

Obr. 9 Vplyv rýchlosti jazdy vozidiel
Fig. 9 Effect of the driving speed

Obr. 10 Vplyv pozdĺžneho sklonu komunikácie
Fig. 10 Effect of the slope

Vzhľadom k závislosti na práci motora, ktorá úzko súvisí s profílom komunikácie, s miestom pred a za križovatkou resp. medzi

Because engine work depends on road profile, location in a place in front of or behind or between crossroads, where con-
križovatkami, kde možno hovoriť o konštantnej rýchlosti jazdy, bola vyhodnotená tvorba emisií jednotkového vozidla (pozri obr. 11 - 14). Tvorba emisií uhoľnatého je silne závislá od cestovnej rýchlosti, produkcia uhlovodíkov je tiež závislá od rýchlosti, ale pri oxidoch duska sa cestovná rýchlosť pri ich tvorbe neprejavuje.

5. Matematické modelovanie znečistenia ovzdušia

V prvom približení môžeme považovať cestu za lineárny zdroj znečisťujúcich látok, na ktorom sú produkované znečisťujúce látky rozdelené rovnomerne. Existuje niekoľko principiálne odlišných metód matematického modelovania znečistenia ovzdušia z automobilovej dopravy [4, 9, 10]. Stručne popíšeme analytický model.

Analytický model – lineárny zdroj

Najjednoduchší model automobilového znečistenia ovzduší je založený na jednoduchom poloparametrickom gaussovskom vzťahu pre distribúciu znečisťujúcich látok v dymovej vlečke z lineárneho zdroja na distribúciu koncentrácie znečisťujúcich látok vo vertikálnom smere. Funkcia

\[C(x, y, 0) = \frac{2q}{\sqrt{2\pi U \sin \varphi \sigma_y}} \exp \left(\frac{-y^2}{2} \right) \]

kde \(q \) je emisia lineárneho zdroja v mg.m\(^{-1}\).s\(^{-1}\), \(U \) je rýchlosť vetra v m.s\(^{-1}\), \(\varphi \) je uhol medzi smerom vetra a osou komunikácie, \(\sigma_y \) je empirický parameter, charakterizujúci rozptyl znečisťujúcich látok vo vertikálnom smere. Funkcia \(E(y_1, y_2) \) vyjadruje vplyv konečnosti lineárneho zdroja na distribúciu koncentrácie znečisťujúcich látok v okolí koncov komunikácie

\[E(y_1, y_2) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp \left(\frac{-p^2}{2} \right) dp = \text{erf}(p_2) - \text{erf}(p_1), \]

kde \(p_1 = y_1/\sigma_y \), \(p_2 = y_2/\sigma_y \), \(\sigma_y \) je parameter, charakterizujúci rozptyl znečisťujúcich látok v horizontálnom smere.

Pre nekonečný zdroj, pre ktorý \(y_1 = -\infty, y_2 = \infty \) bude \(E(y_1, y_2) = 1 \).

Uvedený model je veľmi jednoduchý, spolaďný a používa sa na výpočet znečistenia ovzdušia z automobilovej dopravy nad rozpiahľou oblastou. Podrobne bol popisovaný v [6].

5. Mathematical Modeling of Air Pollution

In the first approximation, a street may be taken as a linear source of pollutants, where the produced pollutants are distributed equally. There are several principally different methods of mathematical modeling of air pollution caused by traffic [4, 9, 10]. The analytical model will be described briefly.

Analytical Model – Linear Source

The easiest model of the air pollution caused by traffic is based on the elementary semi-empirical Gauss relationship for pollutant distribution in a smoke tow coming from a linear source. The following will apply for the ground concentration of a pollutant:

\[C(x, y, 0) = \frac{2q}{\sqrt{2\pi U \sin \varphi \sigma_y}} \exp \left(\frac{-y^2}{2} \right) \]

where \(q \) is emission from the linear source (mg.m\(^{-1}\).s\(^{-1}\)), \(U \) is wind velocity (m.s\(^{-1}\)), \(\varphi \) is the angle between the wind direction and the road axis, \(\sigma_y \) is the empirical parameter characterizing vertical dispersion of the pollutants. The \(E(y_1, y_2) \) function expresses the effect of the linear source finitude on the distribution of the pollutants near the ends of the road.

\[E(y_1, y_2) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp \left(\frac{-p^2}{2} \right) dp = \text{erf}(p_2) - \text{erf}(p_1), \]

where \(p_1 = y_1/\sigma_y, p_2 = y_2/\sigma_y \), \(\sigma_y \) is the parameter characterizing horizontal dispersion of the pollutants.

For an unlimited source, where \(y_1 = -\infty, y_2 = \infty \), the \(E(y_1, y_2) \) function will be \(E(y_1, y_2) = 1 \).

The presented model is a simple and reliable one and is used to compute air pollution caused by traffic over large areas. A detailed description of this model is in [6].
Popis programu pre modelovanie produkcie emisií

Matematické modelovanie sa vykonáva na základe dopravnej prognozy. Trasa komunikácie musí byť umiestnená do súradnicového systému. Študované územie okolo trasy alebo objektu sa rozdelí na sieť bodov so vzájomnou zdialenosťou 10 až 100 m, podľa veľkosti územia pre ktoré sa vypočíta produkcia emisií a koncentrácie oxidov dusíka.

Predpoklady a neurčitosti modelového výpočtu

- odhadovaná priemerná rýchlosť dopravného prúdu,
- špecifické emisie automobilov sú uvažované pre všeobecné zloženie dopravného prúdu pre súčasné či budúce veľkosti činnosti,
- veterárné pomery o prevládajúcim smere vetra vychádzajú z prístupových ľudí, zastavca v okolí cesty,
- časový interval hodnotenia produkcie emisií, na výpočet najistnejšej zátiaži dýchacie zóny.

Vstupné údaje modelovania

V numerickom modeli pre modelovanie emisií od mobilných zdrojov sú zohľadnené:
- emisné faktory pre súčasný a budúci vozidlový park,
- objem dopravy a jej zloženie podľa druhov vozidiel,
- pozíčka sklon komunikácie,
- mestský resp. mimoúčasé režim dopravy (plynozraky, zástavba v okolí cesty),
- časový interval hodnotenia produkcie emisií,
- rýchlosť jazdy vozidla,
- poveternostné podmienky (smer a rýchlosť vetra),
- klimatické podmienky (podľa Pasquill-Giffordovských kategórií stability).

Výstupy programového riešenia

- výpočet celkovej produkcie škodlivín do voľnej atmosféry (kg/dňa),
- výpočet koncentrácie škodlivín v ovzduší (μg.m⁻³).

Najvýznamnejším vstupným údajom všetkých matematických modelov znečistenia ovzdušia je emisia zdroja Q. Ako je vidieť, napríklad z vzťahu (1) je koncentrácia znečisťujúcej látky priamo úmerná emisii zdroja. Emisiu komunikácie nie je možné meriť priamo, ako je to napríklad pri stancísných zdrojoch. Počítame ju na základe znalosti emisií automobilov, ktoré prejdú komunikáciou, podľa vzťahu

$$ Q = \frac{PO \cdot EMO + PN \cdot EMN}{3600 \cdot T \cdot S} . \quad (3) $$

Description of the Program for the Emission Production Modeling

Mathematical modeling is done on the basis of a traffic prog-
nosis. Horizontal alignment of the road must be placed into a system of coordinates. The studied area around the road or the object is fit into the grid of the size of 10 or 100 meters between the points, according to the size of the area, for which the emission production and nitrogen oxides concentration are calculated.

Assumptions and Indefinite Aspects of the Model Calculation

- Estimated average speed of the traffic flow,
- Specific emissions are considered for general composition of the traffic flow, for the current traffic volume and the prospective for the next years,
- Windy conditions related to the dominant wind direction are based on the average data from long-term monitoring of SHMU (Slovak Institute of Hydro-Meteorology), the average wind velocity is determined from all the measurements, including dol-
- The most unfavorable air stability is assumed, when there are the highest demands on the breathing zone.

Modeling Input Data

In a numerical model for modeling the emissions coming from mobile sources, the following is considered:
- Emission factors for the current and future fleet,
- Traffic volume and its composition according to a vehicle type,
- Longitudinal gradient of the road,
- Urban or rural traffic mode (driving fluency, buildings along the road),
- Period of the evaluation of emission production,
- Driving speed,
- Meteorological conditions (direction and velocity of the wind),
- Climatic conditions (according to Pasquill-Gifford categories of stability).

Modeling Output Data

- Calculation of the overall production of the pollutants into the atmosphere (kg/day),
- Calculation of the concentration of the pollutants in the atmosphere (μg.m⁻³).

The most significant input data for any mathematical model of air pollution is the source of an emission. For example, in formula (1) the concentration of the pollutant is directly proportional to the source of the emission. Emission of the road cannot be measured directly as it is in the case of a stationary source. The calculation is based on knowing the emissions coming from the vehicles running through the road according to the following relationship:

$$ Q = \frac{PO \cdot EMO + PN \cdot EMN}{3600 \cdot T \cdot S} . \quad (3) $$
kde PO, PN – počet osobných, resp. nákladných vozidiel za čas T. EMO, EMN sú emisné faktory pre osobné, resp. nákladné automobily v mg·m$^{-1}$. S je šírka komunikácie v m.

I keď vieme stanoviť PO, PN s vysokou presnosťou, je prakticky nemožné stanoviť presne emisné faktory EMO a EMN. Môžeme predpokladať, že prakticky každé vozidlo má inú emisiu znečisťujúcich látok a v prípade, ak ide o ten istý typ vozidla, je možné navzájom líšiť zaťaženosťou, technikou jazdy, rýchlosťou a nastavením motora. V slovenskej výpočtovej metodike sú všetky vozidlá charakterizované jediným priemerným emisným faktorom EMO a EMN.

6. Využitie modelu v praxi

Ako priklad uvádzame modelovanie znečistenia ovzdušia od dopravy v meste Žilina.

Mesto Žilina má rozlohu 8 652 ha a 88 tisíc obyvateľov [2]. Okres Žilina má hustotu cestnej siete 0,378 km/km2, resp. 2 km/1000 obyvateľov podľa údajov Slovenskej správy ciest – Cestnej databanky.

Základný komunikačný systém mesta je radiálno-okružný. Je vytvorený z 3 mestských okruhov, radiali tvoria cesty I. a II. triedy a mestské komunikácie.

Matematické modelovanie je vykonané na základe dopravnej progresie pre sledované územie mesta. Prognoza súčasného stavu vychádza z celoštátneho štátneho plánu dopravy v roku 1995 a 2000. Ďalšie údaje o intenzite dopravy sú prevzaté z dopravno-inžinierskych podkladov, ktoré sa spracovávali v rámci prípravy trasy diaľničnej D1 a D18 v okolí Žiliny [3]. Hodnoty intenzity pre rok 2015 sú odvodené prepočtom hodnôt získaných z celoštátneho sčítania dopravy pomocou výhľadových koeficientov.

Študované územie komunikačného systému mesta bolo rozdelené na siet bodov so vzájomnou vzdialenosťou 100 m, pre ktoré boli modelované koncentrácie oxidov dusíka.

Predpoklady a neurčitosti modelového výpočtu

- priemerná rýchlosť dopravného prúdu v meste bola uvažovaná 50 km/h,
- uvažované špecifické emise automobilov sú uvedené v tab. 2.
- priemerná časť časť smerov vetra bola dlhodobo sledovaná na letisku v Dolnom Hričove, priemerná rýchlosť vetra je určená v tab. 3.

Mathematical modeling is done on the basis of a traffic prognosis for the monitored area. The prognosis of the present state is based on the national traffic census from 1995 and 2000. Further data on traffic volume are taken from traffic-engineering materials, which have been processed for the project of the D1 and D18 highway around Žilina. The values for traffic volume for 2015 are derived from the conversion of the values obtained in the national traffic census using the prognosis coefficients.

The communication system of the city was fitted to a grid with the point interval of 100 m, where concentrations of nitrogen oxides were modeled.

Assumptions and Indefinite Aspects of the Model Calculation

- Average speed of the traffic flow in the town was considered to be 50 km/h.
- Considered specific vehicle emissions are given in Table 2.
- Average frequency of wind direction was used from long term monitoring in the Dolný Hričov airport, average wind velocity is estimated from all the measurements, including doldrums and it is presented in Table 3.

Specifické emise automobilov	Tab. 2				
Rok	v [km·h$^{-1}$]	Emisný faktor [g·km$^{-1}$]	CO	NOx	
		os.	nakl.	os.	nakl.
2000	50	17,0	13,0	1,5	9,0
	80	8,0	7,0	1,8	8,0
2015	50	3,7	6,6	0,7	7,3
	80	2,2	2,8	0,9	6,8

Specific vehicle emissions	Table 2				
Year	v [km·h$^{-1}$]	CO	NOx		
	passenger car	truck	passenger car	truck	
2000	50	17,0	13,0	1,5	9,0
	80	8,0	7,0	1,8	8,0
2015	50	3,7	6,6	0,7	7,3
	80	2,2	2,8	0,9	6,8
Očakávané vplyvy dopravy v meste

Pri modelovaní znečistenia ovzdušia boli posudzované množstvá celkovej produkcie znečisťujúcich látok do ovzdušia (t/rok) od celodennej 24-hodinovej dopravy, taktiež boli porovnávané koncentrácie oxidov dusíka NOx (µg/m³) na jednotlivých najťažšých úsekoch komunikačného systému mesta, vznikajúce od priemernej denného intenzity dopravy a boli porovnané s prípustnou priemernou dennou koncentráciou NOx, ktorá je 100 µg/m³.

Na základe matematického modelovania [8] pre roky 2000 a 2015 bolo zistené, že v meste Žilina sa od automobilovej dopravy vo výročí 2000 vyprodukovalo v priemere 660,01 kg NOx za deň, čo je v prepočte 240 t/rok. Z toho 132,9 t/rok (55 %) vyprodukovala osobná doprava. Pre rok 2015 sa predpokladá, že automobilová doprava vyprodukuje 575,45kg NOx za deň, čo je v prepočte 210 t/rok. Z toho 107 t/rok (51 %) vyprodukuje osobná doprava. Maximálna predpokladaná denná koncentrácia NOx v roku 2015 je 15 µg/m³.

7. Záver

Ukážkou výsledkov pomocou matematického modelu chceme naznačiť široké možnosti využitia. V príspevku nie je priestor na prezentovanie celej šírky získaných údajov z alternatívnych modelov. Kvalita a čistota ovzdušia sa stali vážnym problémom pri navrhovaní dopravných sietí v regiónoch i mimo nich, pri organizovaní dopravy aj územnom plánovaní.
Metódy matematického modelovania v súlade s dopravnými prognozami sú veľmi účinným nástrojom v tomto procese a v procese hodnotenia vplyvov na životné prostredie.

Imisná štúdia by preto mala byť súčasťou nielen projektovej dokumentácie cestných komunikácií na úrovni varianta rozhodovania o výbere vhodného umiestnenia cestných ťahov, ale aj neoddeliteľnou súčasťou rozhodovacích procesov na úrovni regionálneho riešenia dopravných problémov. Aby splnila svoj účel, mala by obsahovať modelovanie tvorby imisí z automobilovej dopravy v takom rozsahu, aby bolo možné porovnávať rôzne varianty riešenia a posúdiť prínosy alebo riziká, ktoré do regiónu priniesú.

Literatúra – References

[1] ČERNÝ, M.: Projekt európskych diaľnic AIMSE (Project of European highways AIMSE). Silniční obzor 1/1996
[2] Životné prostredie v Slovenskej republike, vybrané ukazovatele v rokoch 1996 – 2000 (The Environment in the Slovak Republic, Selected Indicators in 1996 - 2000), ŠÚ SR 2000
[3] Merkblatt über Luftverunreinigungen an Strassen, Teil: Strassen ohne oder mit lockerer Randbebauung, MiuS-92, Köln, 1996
[4] HESSEK, F.: Metodika výpočtu automobilového znečistenia ovzdušia (The method of road traffic air pollution calculation), SAV Bratislava 1993
[5] PISCHINGER, R.: Auswirkungen von "Tempo – 30" auf die Kfz - Abgasmissionen in Graz, Eigenverlag Graz, 1991
[6] ŽURCANSKÁ, D., HESSEK, F.: Matematické modelovanie vplyvu diaľnice na znečistenie (Mathematical Modelling of the Highway Influence to Air Pollution), Komunikácie/Communications, vedecké listy ŽU, 4/2000, page 69 – 78
[7] HOLLAREK, T.: Posúdenie širších dopravných vzťahov diaľničných pripojení D1 a D18 v rámci žilinského regiónu (Assessment of broader transport relationships of D1 and D18 highway connections in the Žilina region), Enviconsult Žilina, 1996
[8] HALABUK, M.: Modelovanie znečistenia ovzdušia od automobilovej dopravy, diplomová práca (Modeling of air pollution caused by road traffic, Thesis), University of Žilina 2002
[9] SZABÓ, G.: Dispersion Model of Air Pollutants from Line Sources, Meteorological Journal, 4/2001 ISSN 1335-33X, p. 23-32
[10] http://www.lakes-environmental.com/lakeepa1.html, 2003-01-08