Tunable Quantum Tunneling through a Graphene/Bi$_2$Se$_3$ Heterointerface for the Hybrid Photodetection Mechanism

Hoon Hahn Yoon,* Faisal Ahmed, Yunyun Dai, Henry A. Fernandez, Xiaoqi Cui, Xueyin Bai, Diao Li, Mingde Du, Harri Lipsanen, and Zhipei Sun*

ABSTRACT: Graphene-based van der Waals heterostructures are promising building blocks for broadband photodetection because of the gapless nature of graphene. However, their performance is mostly limited by the inevitable trade-off between low dark current and photocurrent generation. Here, we demonstrate a hybrid photodetection mode based on the photogating effect coupled with the photovoltaic effect via tunable quantum tunneling through the unique graphene/Bi$_2$Se$_3$ heterointerface. The tunneling junction formed between the semimetallic graphene and the topologically insulating Bi$_2$Se$_3$ exhibits asymmetric rectifying and hysteretic current–voltage characteristics, which significantly suppresses the dark current and enhances the photocurrent. The photocurrent-to-dark current ratio increases by about a factor of 10 with the electrical tuning of tunneling resistance for efficient light detection covering the major photonic spectral band from the visible to the mid-infrared ranges. Our findings provide a novel concept of using tunable quantum tunneling for highly sensitive broadband photodetection in mixed-dimensional van der Waals heterostructures.

KEYWORDS: tunable quantum tunneling, graphene, topological insulator, heterointerface, asymmetric barrier, hybrid photodetection

INTRODUCTION

Light detection over a wide spectral range, from the visible to the mid-infrared, has a great potential for numerous photonic and optoelectronic applications. In this scenario, graphene can provide a versatile platform for broadband photodetection due to its gapless electronic band structure. However, its low absorption and fast recombination of photogenerated carriers result in low photocurrent with comparably large dark current. These limitations present major challenges, restraining the practical applications of photodetectors based on graphene. Various methods have been introduced to overcome limitations by enhancing the light absorption of graphene-based photodetectors, including plasmonic nanostructures and quantum dots. Although these approaches have unique advantages, their photodetection is limited to a short spectral range because of the sharp resonant absorption.

Hybrid graphene systems combined with mixed-dimensional materials for high-sensitivity broadband light detection have emerged from recent developments by assembling materials into van der Waals heterostructures. In graphene-based van der Waals heterostructures, semiconducting two-dimensional transition-metal dichalcogenide materials are typically used as they exhibit superior light–matter interaction properties that allow for enhanced light absorption. However, the absorption is limited within the visible spectral range due to their band gap. Combining graphene with narrower band gap materials has been proposed for broader light absorption despite the large dark current. Among them, most of the studies using topological insulators focused on the formation of graphene/topological insulator heterostructures to induce the photogating effect, utilizing the novel properties of topological insulators such as graphene-like hexagonal symmetry, direct narrow band gap, and ultrafast photocurrent along the surface. As a material candidate to form van der Waals heterostructures with graphene, topological insulators have advantages beyond the aforementioned properties. For example, compared to black phosphorus, which is similar to topological insulator in terms of band gap and electrical properties such as mobility and carrier multiplication, the surface oxidation of black phosphorus is related to the degradation mechanism and environmental instability, while the surface oxidation of the topological insulators serves to protect the surface states. Moreover, since the topological insulators are Dirac fermion materials like...
Graphene, a Dirac-source field-effect transistor can be realized with the graphene/topological insulator heterostructures. Recent studies reported the control over the dark current in graphene-based photodetectors by introducing an interlayer (e.g., h-BN) tunneling barrier with enhanced photodetectivity. However, the photodetection performance using this method is highly sensitive to the size, thickness, and quality of the interlayer, which makes the fabrication process challenging. As an alternative pathway free from introducing an interlayer, the natural oxidation layer rapidly formed on the surface of topological insulators in the ambient environment can be utilized as the tunneling barrier. In particular, the thickness of the oxidation layer of the topological insulators is saturated within a few hours after exfoliation, and the oxidation process is significantly delayed over time so that a uniform oxidation layer can be obtained over the entire surface.

Here, we demonstrate that the naturally formed oxidation layer at the graphene/Bi$_2$Se$_3$ heterointerface enables incorporation of the quantum tunneling effect into the photodetection mechanism, as evidenced by the transition of charge carrier transport mechanisms from direct tunneling to Fowler–Nordheim (FN) tunneling and/or thermionic emission. In our device architecture, the photogating effect in the graphene/Bi$_2$Se$_3$ heterochannel is coupled to the photovoltaic effect through the rectifying tunneling junction. This significantly enhances the photodetection performance, which is fundamentally different from the typical graphene-based photodetectors previously reported. Accordingly, the normalized photocurrent-to-dark current ratio (NPDR) is enhanced by around an order of magnitude via electrical tuning of tunneling resistance for detection of light covering the major photonic spectral region from the visible to the mid-infrared wavelengths. Our work provides a new perspective on both the tunneling dark current suppression and the efficient photocurrent generation for various photonic and optoelectronic applications.

RESULTS AND DISCUSSION

Graphene/Bi$_2$Se$_3$ Heterojunction Device. Our Dirac-source field-effect transistor based on a lateral heterochannel and a vertical tunneling junction is realized by the graphene/Bi$_2$Se$_3$ heterostructure (see the methods/experimental section for the fabrication details). As shown in Figure 1a, our devices feature a long striped graphene channel in contact with a Bi$_2$Se$_3$ flake on the side. Graphene acts not only as a passivation layer to protect the tunneling junction but also as an efficient charge carrier transport channel. The insulating bulk states of the bottom Bi$_2$Se$_3$ flake combined with the top Al$_2$O$_3$ insulating layer enable us to investigate the mechanism of carrier transport through the interfacial barrier between the conducting Dirac surface states of graphene and Bi$_2$Se$_3$. The device is characterized by optical microscopy (Figure 1b) and Raman spectroscopy (Figures 1c,d and S1). The E_2^g peak intensity mapping image of the Bi$_2$Se$_3$ flake (marked with the red dashed square in Figure 1b) is shown in Figure 1c. The Raman signal of the Bi$_2$Se$_3$ flake on the graphene/Bi$_2$Se$_3$ heterojunction region is almost similar to that on the region without the graphene layer (see Figure S1a). On the other hand, the 2D peak intensity mapping image of graphene, as shown in Figure 1d, is not revealed on the heterojunction region since the Raman signal of graphene is significantly reduced on the heterojunction region compared to that on the region without the Bi$_2$Se$_3$ flake (see Figure S1b).

The graphene layer covering the surface around the edge of Bi$_2$Se$_3$ flake can be clearly identified by the AFM images,
shown in Figures 1e and S2. The average thicknesses of the graphene and Bi2Se3 flakes, measured by AFM, are ~1.3 and 29.2 nm, respectively (see the Supporting Information for more details on the AFM).27–29

Figure 1e shows the XPS on Bi2Se3 (Bi: 5d and Se: 3d) taken after 24 h from exfoliation. The observed oxidation peaks corresponding to BiO3 (at around 26 and 29 eV) and SeO2 (at around 59 eV) represent the existence of the oxidation layer naturally formed on the Bi2Se3 surface.32 The intensity of the SeO2 peak is much lower than that of the BiO3 peak, indicating that the dominant oxidation layer formed on the Bi2Se3 surface is BiO3 rather than SeO2 due to the Se vacancies on the Bi2Se3 surface.30–32 Note that the oxidation time of 24 h after exfoliation under ambient conditions is set to uniform the oxidation layer with the stabilized thickness. Although the formation of the native oxidation layer is very fast at the initial stage after exfoliation,21,22 its thickness is known to saturate since the oxidation process is significantly delayed over time due to the interplay between surface exposure and oxygen incorporation.25 The thickness of the oxidation layer is estimated as ~2 nm (±0.2 nm).21,22,24–26

Tunable Quantum Tunneling through the Heterointerface. The van der Waals heterostructures can enable versatile functionalities with higher performance than each material in the van der Waals heterostructures.13,14 First, we investigated the current–voltage (I–V) characteristics of the graphene/Bi2Se3 heterojunction by choosing different metal electrodes (see the methods/experimental section for the measurement details). When the source and drain are applied across the graphene/Bi2Se3 heterointerface (defined as graphene-Bi2Se3), the I–V curves exhibit the nonlinear I–V relationship (Figure S3c) due to charge carrier transport through the graphene/Bi2Se3 heterointerface. The asymmetric rectifying behavior indicates that the tunneling junction is formed at the interface, and the tunneling barrier heights are asymmetric. The hysteresis effect of I–V curves arises from charge trapping at the interface. For comparison, we also measure a reference graphene transistor (defined as graphene-Bi2Se3), where both source and drain are applied to the graphene channel that partially covers the Bi2Se3 flake (see the Supporting Information for details on the measurement configuration with different electrodes). The I–V curves, as shown in Figure S3a, reveal the typical Ohmic behavior in the reference graphene transistor.

To understand the mechanism of asymmetric rectifying and hysteretic characteristics of the graphene-Bi2Se3, as shown in Figure 2a,b, the I DS–V DS curve (drain–source current ID S as a function of drain–source voltage V DS) at gate–source voltage V GS = 0 V is divided into nine steps, which are marked by Roman numerals from I to IX. Each step represents the transition point, where the transport mechanism changes and the resistance state switches to different resistance states. The oxidation layer naturally formed on the Bi2Se3 surface is known to act as a tunneling barrier in contact with graphene.21,22,24–26 The tunneling resistance is closely related to the potential barrier at the interface and the electronic density of states in graphene and Bi2Se3. Hence, the shape deformation of the asymmetric tunneling barrier will have a great influence on the tunneling current across the interface. The energy band alignments before equilibrium and between each step is drawn in Figure 3 based on the estimation of the dominant transport mechanism, as shown in Figure 3, by fitting Figure 2a to the
Coupling the Photogating Effect with the Photovoltaic Effect. Most graphene-based photodetectors generally focus on one photodetection mechanism: photovoltaic effect, photoconducting effect, photo-thermoelectric effect, and bolometric effect, due to their inherent limitations. On the contrary, in our device, the photogating effect is coupled to the photovoltaic effect through the rectifying tunneling junction across the graphene/Bi$_2$Se$_3$ heterointerface, which is supported by the observation of asymmetric rectifying and hysteretic I–V characteristics, as shown in Figure 2a,b. The photogating effect is known to stem from the change in channel resistance and carrier density due to photogenerated carriers, which can be induced by charge trapping at or charge transfer across the interface. Some of the photogenerated carriers accumulated at the trap states can act as an external bias voltage to shift the Fermi-level of graphene, and the other carriers injected into graphene or Bi$_2$Se$_3$ will contribute to the photocurrent. On the other hand, the photovoltaic effect is driven by separating photogenerated electron–hole pairs through the rectifying junction, which can be further controlled by tuning the tunneling resistance. Before exploring the photogating effect, we first characterized the enhanced photocurrent with the photovoltaic effect, owing to the rectifying tunneling junction, as shown in Figure S3. Interestingly, under the same condition of light illumination (at a wavelength of 532 nm with a laser power of 10 μW) focused onto the same graphene/Bi$_2$Se$_3$ heterojunction region, much higher photocurrent is realized through the graphene/Bi$_2$Se$_3$ heterointerface (Figure S3f, graphene–Bi$_2$Se$_3$), as compared to the reference graphene transistor (Figure S3e, graphene & Bi$_2$Se$_3$). This is because the photocurrent generated in the reference graphene transistor is hindered by the carrier recombination within the graphene channel, while the photocurrent of the rectifying tunneling junction formed through the graphene/Bi$_2$Se$_3$ heterointerface is enhanced with the photovoltaic effect.

We also find that the tunneling resistance can be significantly tuned by varying V_{DS} in our graphene/Bi$_2$Se$_3$ heterochannel due to the strong coupling between the photogating and photovoltaic effects. Here, two different V_{DS} (0.5 and 1.5 V) are chosen to define the high and low tunneling resistance states. Both exhibit high photocurrents, but dark currents are obtained to be considerably different for a proper comparison. Note that this is based on the color plots of I_{PC}, as shown in Figure 4a, where $I_{PC} = I_{light} - I_{dark}$ is the photocurrent, I_{light} is the drain–source current under light illumination, and I_{dark} is the drain–source current in the dark. In addition, it is found to

Figure 3. Asymmetric tunneling barrier heights. (a–b) FN plots of the graphene-Bi$_2$Se$_3$ for $V_{DS} > 0$ (a–d) and $V_{DS} < 0$ (e–h). (i,j) Band alignments across the graphene/Bi$_2$Se$_3$ interface when the FN tunneling occurs in $V_{DS} > 0$ (i) and $V_{DS} < 0$ (j). Each barrier height is extracted from (b,f) respectively.
be more effective for modulating the tunneling resistance by tuning positive V_{DS} along the Bi$_2$Se$_3$ side, due to the lower barrier height for electrons on the graphene side than that toward the Bi$_2$Se$_3$ side, as estimated in Figure 3. The operation principle is described in Figure 4b,c, incorporating the tunneling process into the photodetection mechanism. At the high tunneling resistance state (Figure 4b, $V_{DS} = 0.5 \, \text{V}$), the direct tunneling from graphene to Bi$_2$Se$_3$ will be substantially blocked by the tunneling barrier under the dark condition, while the photoexcited electrons in graphene can be easily injected into Bi$_2$Se$_3$ over the low barrier height. On the other hand, at the low tunneling resistance state (Figure 4c, $V_{DS} = 1.5 \, \text{V}$), the dark current ascribed to the FN tunneling and thermionic emission will exceed the current due to photoexcited electrons. As a result, the dark current will be obtained to be extremely lower in the high tunneling resistance state (Figure 4b) than that in the low tunneling resistance state (Figure 4c), giving rise to noticeable enhancement of the optical switching ratio (I_{PC}) and ratio of I_{PC} to I_{dark}. At $V_{GS} = 0 \, \text{V}$, although the photocurrents ($I_{PC} = I_{light} - I_{dark}$), as shown in Figure 4e,f, are similar to each other, the dark current is measured to be much larger in Figure 4f than that in Figure 4e. This is consistent with the interpretation provided in Figure 4b,c. The zero-crossing point of I_{PC}, where $I_{light} = I_{dark}$, does not appear in Figure 4e, indicating that the photovoltaic effect contributes to the ratio of I_{light} to I_{dark}. Unlike the photogating effect in which one type of photogenerated carriers should be captured in trap states, the photovoltaic effect requires the efficient separation of created electron–hole pairs. Our results suggest that the tunneling junction in the optical switching ratio enhancement plays a crucial role in realizing the tunable photoresponse across the graphene/Bi$_2$Se$_3$ heterointerface.

Optical Switching Ratio Enhancement. The transfer curves (I_{DS} as a function of V_{GS}) of the graphene/Bi$_2$Se$_3$ heterointerface in the dark and under light illumination at various wavelengths of 532, 730, 1550, and 4000 nm with a light power of 10 μW are shown in Figure 4e ($V_{DS} = 0.5 \, \text{V}$) and Figure 4f ($V_{DS} = 1.5 \, \text{V}$). The graphene/Bi$_2$Se$_3$ heterochannel operates as a field-effect transistor, where the carrier mobility depends on the tunneling resistance. The high ($V_{DS} = 0.5 \, \text{V}$) and low ($V_{DS} = 1.5 \, \text{V}$) tunneling resistance states lead to the different average carrier mobilities of 36.8 and 103.2 cm2 V$^{-1}$ s$^{-1}$ for holes and 12.6 and 64.1 cm2 V$^{-1}$ s$^{-1}$ for electrons at room temperature, respectively. From the shift of V_{Tosar} we estimated that the photogating effect is attributed to the trapping of photogenerated carriers at the graphene/Bi$_2$Se$_3$ interface (see the Supporting Information for details on the photogating effect due to the trapping of photogenerated carriers). As shown in the transfer curves, there are almost no hysteresis effects for the V_{GS} sweep, thanks to the Al$_2$O$_3$ top passivation layer, implying that charge trapping at the graphene/Bi$_2$Se$_3$ interface only occurs during the V_{DS} sweep. In particular, the tunnelling dark current is obtained to be quite low, as shown in Figure 4c, giving rise to noticeable enhancement of the optical switching ratio (I_{light}/I_{dark}). At $V_{GS} = 0 \, \text{V}$, although the photocurrents ($I_{PC} = I_{light} - I_{dark}$), as shown in Figure 4e,f, are similar to each other, the dark current is measured to be much larger in Figure 4f than that in Figure 4e. This is consistent with the interpretation provided in Figure 4b,c. The zero-crossing point of I_{PC}, where $I_{light} = I_{dark}$, does not appear in Figure 4e, indicating that the photovoltaic effect contributes to the ratio of I_{light} to I_{dark}. Unlike the photogating effect in which one type of photogenerated carriers should be captured in trap states, the photovoltaic effect requires the efficient separation of created electron–hole pairs. Our results suggest that the tunneling junction in the
graphene/Bi$_2$Se$_3$ heterochannel can be utilized to couple the photogating effect with the photovoltaic effect to enhance the optical switching ratio by tuning the tunneling resistance.

Depending on the tunneling resistance, the electrically tunable photoresponse of graphene-Bi$_2$Se$_3$ is confirmed by photoresponsivity (Figure 5a, $R = I_{ph}/P_{effective}$) and photodetectivity (Figure 5b, $D^* = R \sqrt{A_{active}/A_{dark}}$), where $P_{effective}$ is the effective light power illuminated onto the actual photoactive area A_{active} after considering the input beam waist, and the total area of graphene channel and Bi$_2$Se$_3$ flake to avoid the overestimation of photodetectivity. The photodetectivity of the graphene/Bi$_2$Se$_3$ heterointerface (Figure 5b) can be effectively maximized by tuning V_{DS} to 0.5 V (the high tunneling resistance state). On the contrary, the photoresponse characteristics of the reference graphene transistor (Figure S4c,d) is almost unchanged between V_{DS} = 0.5 and 1.5 V. In other words, the light absorption in the graphene/Bi$_2$Se$_3$ heterostructure does not guarantee the high photodetectivity. This highlights that the charge carrier transport through the graphene/Bi$_2$Se$_3$ tunneling junction is of great importance to couple the photogating effect with the photovoltaic effect in the graphene/Bi$_2$Se$_3$ heterochannel for highly sensitive photodetection.

The dependence of photoresponsivity on light intensity (I) at V_{DS} = 0.5 V and V_{GS} = 0 V is plotted in Figure 5c (see the Supporting Information for details on the relation between light power and responsivity).31 Figure 5d shows that the tunneling resistance at which the values of NPDR and photodetectivity become maximum can be electrically tuned. The NPDR and photodetectivity as a function of wavelength at V_{DS} = 0.5 and 1.5 V. The turquoise dashed circle in (c) represents the group of light intensities used in (d).

CONCLUSIONS

Based on the asymmetric tunneling barrier formed at the graphene/Bi$_2$Se$_3$ interface,$^{24-26}$ we have explored a breakthrough way to improve the photoresponse characteristics of the graphene/Bi$_2$Se$_3$ heterochannel by suppressing the tunneling dark current and injecting the photogenerated carriers. We have found that the tunneling resistance of the graphene/Bi$_2$Se$_3$ heterojunction can be tuned to couple the photogating effect with the photovoltaic effect in the graphene/Bi$_2$Se$_3$ heterochannel. The transition of charge carrier transport mechanisms through the graphene/Bi$_2$Se$_3$...
interface is a key signature to modulate the optical switching ratio. The practical application to improve the device performance through the interface engineering (e.g., asymmetric tunneling barrier height, interface-trap density, and Dirac surface states) or the material combination (e.g., other topological insulators or other materials of small band gap), which is beyond the scope of this study, will be a promising research direction. This study will provide useful information for designing novel photodetectors for highly sensitive broadband photodetection.

■ METHODS/EXPERIMENTAL SECTION

Sample Preparation and Device Fabrication. Our heterojunction phototransistor was fabricated by integrating graphene and Bi$_2$Se$_3$ into van der Waals heterostructures. The Bi$_2$Se$_3$ flakes were mechanically exfoliated from bulk material and transferred onto the highly doped Si substrates with a 285 nm thick SiO$_2$ layer preprocessed with solvent cleaning and O$_2$ plasma treatment. The Bi$_2$Se$_3$ flake surface was naturally oxidized under ambient conditions for 24 h. Owing to the rapid surface oxidation of topological insulators, there was no need to introduce an additional interlayer such as an insulating layer grown by atomic layer deposition (ALD) or h-BN layer before the graphene transfer. In order to form several heterostructures on each substrate at the same time, large-area monolayer graphene grown by chemical vapor deposition, purchased from Graphenea, was wet-transferred onto the substrates. For the complete and smooth coverage of the graphene layer over the entire Bi$_2$Se$_3$ flake, we selected the Bi$_2$Se$_3$ flakes with a few tens of nanometer thick, which allowed us to minimize the defects caused by the steep morphology around the flake edges. Each graphene channel was patterned to a regular shape with electron beam lithography (EVL, Vistec EBPG 5000) and reactive ion etching (Oxford Instruments PlasmaLab 80 Plus). The lateral heterochannel was designed to be the patterned graphene ribbon and transferred Bi$_2$Se$_3$ flake, while the vertical tunneling junction was formed in the overlapping regions. The heterojunction area was estimated to range from 50 to 100 μm2, with an average of 83.7 μm2. Ti/Au electrodes of 5/75 nm were patterned with EBL and deposited through electron beam evaporation (MASA IM-9912) followed by a lift-off process. The metal electrodes on the graphene channel and Bi$_2$Se$_3$ flakes were patterned to be orthogonal and parallel to the graphene channel, respectively. As a passivation layer, a 10 nm thick layer of Al$_2$O$_3$ grown by ALD (ALD, Beneq TFS-500) at 150 °C was used to prevent the surface modification from the adhesion of oxygen or water molecules. After completing the device fabrication, an optical microscope (Olympus BX60) and Micro-Raman (WITec Alpha 300 Raman) setup were used to characterize the graphene/Bi$_2$Se$_3$ heterostructure. The graphene covering the Bi$_2$Se$_3$ flake edge was identified by AFM Dimension Icon (Bruker). XPS was performed on the large area Bi$_2$Se$_3$ flakes using a Kratos Axis Ultra ESCA spectrometer with a monoenergetic Al Kα (1486.96 eV) source. The pass energy was ~20 eV, and the X-ray spot size was ~200 μm. Since X-rays penetrate only the top few layers of flakes, the XPS is useful for quantitative analysis of the surface chemical composition (the outer few nanometers) regardless of the flake thickness.

Experimental Details and Electro-Optical Measurement Setup. The sample holder was designed in a size fitting into a fixing holder in a probe station. After device fabrication, the device chips were mounted onto each printed circuit board (PCB) attached to the sample holder and wire-bonded to the PCB. All the electrical measurements were carried out in an optical microscope (WITec Alpha 300 RA+) or a home-built femtosecond laser based microscopic system with two sorcemeters (Keithley 2400 and 2401) at room temperature under ambient conditions. The gate voltage was applied to the Si substrate, while the source and drain voltages were applied to the metal electrodes connected to the graphene channel or Bi$_2$Se$_3$ flakes. The photocurrent measurements covering from the visible range to near-infrared range were conducted in the WITec system combined with two sourcemeters. The light beams from continuous wave lasers at 532 nm (WITec focus innovations), 730 nm (Thorlabs MCLS1), and 1550 nm (Photometrics) were focused onto the heterojunction through an objective lens (100×, NA = 0.75). The optical microscopy platform system allowed us to focus the laser beam on desired positions in the sample. The diameters of the light spot were around 0.87, 1.18, and 2.49 μm, respectively. The photocurrent measurements in the mid-infrared range were conducted in a home-built femtosecond laser-based microscopic system combined with two sourcemeters. The duration and repetition rate of the incident pulse were 230 fs and 2 kHz. The laser at 4000 nm is focused to cover the graphene/Bi$_2$Se$_3$ heterojunction region by a parabolic mirror. The diameter of the light spot was ~20 μm.

■ ASSOCIATED CONTENT

* Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c18606.

Raman spectra measured near the heterojunction region; AFM characterization of the graphene layer and Bi$_2$Se$_3$ flake; graphene-Bi$_2$Se$_3$ and graphene&Bi$_2$Se$_3$; FN tunneling plot analysis; charge carrier trapping processes at the interface; energy band alignment across the graphene/Bi$_2$Se$_3$ heterointerface; photoresponse characteristics of the graphene&Bi$_2$Se$_3$ output and transfer curves of the Bi$_2$Se$_3$ field-effect transistor; photogating effect due to the trapping of photogenerated carriers; relation between light power and responsivity; and photoswitch characteristics of the graphene-Bi$_2$Se$_3$ (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Hoon Hahn Yoon — Department of Electronics and Nanoengineering, Aalto University, FI-00076 Aalto, Finland; QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland; orcid.org/0000-0002-4081-3343; Email: hoonhahn.yoon@aalto.fi
Zhipei Sun — Department of Electronics and Nanoengineering, Aalto University, FI-00076 Aalto, Finland; QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland; orcid.org/0000-0002-9771-5293; Email: zhipei.sun@aalto.fi

Authors
Faisal Ahmed — Department of Electronics and Nanoengineering, Aalto University, FI-00076 Aalto, Finland
Yunyun Dai — Department of Electronics and Nanoengineering, Aalto University, FI-00076 Aalto, Finland; QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland; orcid.org/0000-0002-1186-1864
Henry A. Fernandez — Department of Electronics and Nanoengineering, Aalto University, FI-00076 Aalto, Finland; QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland; orcid.org/0000-0003-1297-282X
Xiaoqi Cui — Department of Electronics and Nanoengineering, Aalto University, FI-00076 Aalto, Finland; QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
Harri Lipsanen − Department of Electronics and Nanoelectrostatics, Aalto University, FI-00076 Aalto, Finland; orcid.org/0000-0003-2487-4645

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.1c18606

Author Contributions

H.H.Y. conceived the idea, fabricated the devices, conducted the sample characterizations, performed the measurements, and wrote the manuscript. F.A., H.A.F., and X.C. helped the device fabrication. F.A., X.C., X.B., and M.D. contributed to the electrical setup and measurements. Y.D. and D.L. helped device fabrication. F.A., X.C., X.B., and M.D. contributed to and wrote the manuscript. F.A., H.A.F., and X.C. helped the sample characterizations, performed the measurements, wrote the manuscript, and commented on the manuscript.

Notes

The authors declare no competing financial interest.

Acknowledgments

We acknowledge the provision of facilities and technical support from the OtaNano research infrastructure (OtaNano-Micronova Nanofabrication Centre and OtaNano-Nanomicroscopy Centre). This work was supported by the Academy of Finland (314810, 336818, and 340932), the Academy of Finland Flagship Programme (320167, PREIN), ERC (834742), and ERC (820423, S2QUIP), the EU H2020-MSCA-RISE-2014 program (820423, S2QUIP), the EU H2020-MSCA-RISE-2013, the Academy of Finland Flagship Programme (320167, PREIN), the European Union’s Horizon 2020 research and innovation program (820423, S2QUIP), the EU H2020-MSCA-RISE-2018 (IPN-Bio), and ERC (834742).

References

(1) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611−622.
(2) Zhang, Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q. J. Broadband High Photoresponse from Pure Monolayer Graphene Photodetector. Nat. Commun. 2013, 4, 1811.
(3) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780−793.
(4) Sun, Z.; Chang, H. Graphene and Graphene-Like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology. ACS Nano 2014, 8, 4133−4156.
(5) Liu, C.-H.; Chang, Y.-C.; Norris, T. B.; Zhong, Z. Graphene Photodetectors with Ultra-Broadband and High Responsivity at Room Temperature. Nat. Nanotechnol. 2014, 9, 273−278.
(6) Yu, Q. A.; Lee, J. H.; Nguyen, V. L.; Shin, Y. S.; Lim, S. C.; Lee, K.; Heo, J.; Park, S.; Kim, K.; Lee, Y. H.; Yu, W. J. Tuning Carrier Tunneling in van der Waals Heterostructures for Ultrahigh Detectivity. Nano Lett. 2017, 17, 453−459.
(7) Li, A.; Chen, Q.; Wang, P.; Gan, Y.; Qi, T.; Wang, P.; Tang, F.; Wu, J. Z.; Chen, R.; Zhang, L.; Gong, Y. Ultrahigh-Sensitive Broadband Photodetectors Based on Dielectric Shielded MoTe$_2$/Graphene/SnS$_2$ p−n Junctions. Adv. Mater. 2019, 31, 1805656.
(8) Yan, H.; Low, T.; Zhu, W.; Wu, Y.; Freitag, M.; Li, X.; Guinea, F.; Avouris, P.; Xia, F. Damping Pathways of Mid-Infrared Plasmons in Graphene Nanostripes. Nat. Photonics 2013, 7, 394−399.
(9) Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernachea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363−368.
(10) Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Graphene Plasmonics. Nat. Photonics 2012, 6, 749−758.
(11) Ni, G. X.; McLeod, A. S.; Sun, Z.; Wang, L.; Xiong, L.; Post, K. W.; Sunku, S. S.; Jiang, B.-Y.; Hone, J.; Dean, C. R.; Fogler, M. M.; Basov, D. N. Fundamental Limits to Graphene Plasmonics. Nature 2018, 557, 530−533.
(12) Jarwala, D.; Marks, T. J.; Hersam, M. C. Mixed-Dimensional van der Waals Heterostructures. Nat. Mater. 2016, 15, 170−181.
(13) Zhang, Z.; Lin, P.; Liao, Q.; Kang, Z.; Si, H.; Zhang, Y. Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics. Adv. Mater. 2019, 31, 1806411.
(14) Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Sofer, Z.; Min, J.; Gong, J. Graphene-Supported 2D Transition Metal Dichalcogenide van der Waals Heterostructures. Appl. Mater. Today 2020, 19, 100600.
(15) Yu, X.; Li, Y.; Hu, X.; Zhang, D.; Tao, Y.; Liu, Z.; He, Y.; Haque, M. A.; Liu, Z.; Wu, T. Narrow Bandgap Oxide Nanoparticles Coupled with Graphene for High Performance Mid-Infrared Photodetection. Nat. Commun. 2018, 9, 4299.
(16) Qiao, H.; Yuan, J.; Xu, Z.; Chen, C.; Lin, S.; Wang, Y.; Song, J.; Liu, Y.; Khan, Q.; Hoh, H. Y.; Pan, C.-X.; Li, S.; Bao, Q. Broadband Photodetectors Based on Graphene–Bi$_2$Te$_3$ Heterostructure. ACS Nano 2015, 9, 1886−1894.
(17) Kim, J.; Park, S.; Jang, H.; Koizala, N.; Lee, J.-B.; Kim, U. J.; Lee, H.-S.; Roh, Y.-G.; Lee, H. H.; Sim, S.; Cha, S.; In, C.; Park, J.; Lee, J.; Noh, M.; Moon, J.; Salehi, M.; Sung, J.; Chee, S.-S.; Ham, M.-H.; Jo, M.-H.; Oh, S.; Ahn, J.-H.; Hwang, S. W.; Kim, D.; Choi, H. Highly Sensitive, Gate-Tunable, Room-Temperature Mid-Infrared Photo detection Based on Graphene–Bi$_2$Se$_3$ Heterostructures. ACS Photonics 2017, 4, 482−488.
(18) Nechaev, I. A.; Hatch, R. C.; Bianchi, M.; Guan, D.; Friedrich, C.; Aguiler, I.; Mi, J. L.; Iversen, B. B.; Blügel, S.; Hofmann, P.; Chulkov, E. V. Evidence for a Direct Band Gap in the Topological Insulator Bi$_2$Se$_3$ from Theory and Experiment. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 121111.
(19) Braun, L.; Musler, G.; Hruban, A.; Konczykowski, M.; Schumann, T.; Wolf, M.; Münzenberg, M.; Perfetti, L.; Kern, J. Ultrasharp Photocurrents at the Surface of the Three-Dimensional Topological Insulator Bi$_2$Se$_3$. Nat. Commun. 2016, 7, 13259.
(20) Huang, Y.; Qiao, J.; He, K.; Bliznakov, S.; Sutter, E.; Chen, X.; Luo, D.; Meng, F.; Su, D.; Decker, J.; Ji, W.; Ruoff, R. S.; Sutter, P. Interaction of Black Phosphorus with Oxygen and Water. Chem. Mater. 2016, 28, 8330−8339.
(21) Konig, D.; Cha, J. J.; Lai, K.; Peng, H.; Analytis, G. J.; Meister, S.; Chen, Y.; Zhang, H.-J.; Fisher, I. R.; Shen, Z.-X.; Cui, Y. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi$_2$Se$_3$. ACS Nano 2011, 5, 4698−4703.
(22) Green, A. J.; Dey, S.; An, Y. Q.; O’Brien, B.; O’Mullane, S.; Thiel, D.; Diebold, A. C. Surface Oxidation of the Topological Insulator Bi$_2$Se$_3$. J. Vac. Sci. Technol., A 2016, 34, 061403.
(23) Qiu, C.; Liu, F.; Xu, L.; Deng, B.; Xiao, M.; Si, J.; Lin, L.; Zhang, Z.; Wang, J.; Guo, H.; Peng, H.; Peng, L.-M. Dirac-Source Field-Effect Transistors as Energy-Efficient, High-Performance Electronic Switches. Science 2018, 361, 387−392.
(24) Steinberg, H.; Orona, L. A.; Fatemi, V.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunneling in...
Graphene–Topological Insulator Hybrid Devices. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2015, 92, 241409.

(25) Zhang, L.; Yan, Y.; Wu, H.-C.; Yu, D.; Liao, Z.-M. Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions. *ACS Nano* 2016, 10, 3816–3822.

(26) Yoon, H. H.; Ahmed, F.; Dai, Y.; Fernandez, H. A.; Cui, X.; Bai, X.; Li, D.; Mu, M.; Lipsanen, H.; Sun, Z. Graphene/Bi$_2$Se$_3$ Heterojunction Phototransistor Using Photogating Effect Modulated by Tunable Tunneling Resistance. 2021 Conference on Lasers and Electro-Optics/Europe—European Quantum Electronics; IEEE, 2021; p 1.

(27) Steinberg, H.; Gardner, D. R.; Lee, Y. S.; Jarillo-Herrero, P. Surface State Transport and Ambipolar Electric Field Effect in Bi$_2$Se$_3$ Nanodevices. *Nano Lett.* 2010, 10, 5032–5036.

(28) Bansal, N.; Kim, Y. S.; Brehakl, M.; Edrey, E.; Oh, S. Thickness-Independent Transport Channels in Topological Insulator Bi$_2$Se$_3$ Thin Films. *Phys. Rev. Lett.* 2012, 109, 116804.

(29) Hasan, M. Z.; Kane, C. L. Colloquium: Topological Insulators. *Rev. Mod. Phys.* 2010, 82, 3045.

(30) Suh, J.; Fu, D.; Liu, X.; Furdyna, J. K.; Yu, K. M.; Walukiewicz, W.; Wu, J. Fermi-Level Stabilization in the Topological Insulators Bi$_2$Se$_3$ and Bi$_2$Te$_3$: Origin of the Surface Electron Gas. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2014, 89, 115307.

(31) Sapatu, C. D.; Léonard, F. Fermi-Level Pinning, Charge Transfer, and Relaxation of Spin-Momentum Locking at Metal Contacts to Topological Insulators. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2014, 90, 085115.

(32) Yan, B.; Zhang, D.; Felser, C. Topological Surface States of Bi$_2$Se$_3$ Coexisting with Se Vacancies. *Phys. Status Solidi RRL* 2013, 7, 148–150.

(33) Beebe, J. M.; Kim, B.; Gadzuk, J. W.; Frisbie, C. D.; Kushmerick, J. G. Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions. *Phys. Rev. Lett.* 2006, 97, 026801.

(34) Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron Tunneling through Atomically Flat and Ultrathin Hexagonal Boron Nitride. *Appl. Phys. Lett.* 2011, 99, 243114.

(35) Li, H.-M.; Lee, D.; Qu, D.; Liu, X.; Ryu, J.; Seabaugh, A.; Yoo, W. J. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. *Nat. Commun.* 2015, 6, 6564.

(36) Ahmed, F.; Choi, M. S.; Liu, X.; Yoo, W. J. Carrier Transport at the Metal–MoS$_2$ Interface. *Nanoscale* 2015, 7, 9222–9228.

(37) Ren, H.; Li, Q.-X.; Luo, Y.; Yang, J. Graphene Nanoribbon as a Negative Differential Resistance Device. *Appl. Phys. Lett.* 2009, 94, 173110.

(38) Wu, Y.; Farmer, D. B.; Zhu, W.; Han, S.-J.; Dimitrakopoulos, C. D.; Bol, A. A.; Avouris, P.; Lin, Y.-M. Three-Terminal Graphene Negative Differential Resistance Devices. *ACS Nano* 2012, 6, 2610–2616.

(39) Pirkle, A.; Chan, J.; Venugopal, A.; Hinojosa, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The Effect of Chemical Residues on the Physical and Electrical Properties of Chemical Vapor Deposited Graphene Transferred to SiO$_2$. *Appl. Phys. Lett.* 2011, 99, 122108.

(40) Yoon, H. H.; Jung, S.; Choi, G.; Kim, J.; Jeon, Y.; Kim, Y. S.; Jeong, H. Y.; Kim, K.; Kwon, S.-Y.; Park, K. Strong Fermi-Level Pinning at Metal/n-Si(001) Interface Ensured by Forming an Intact Schottky Contact with a Graphene Insertion Layer. *Nano Lett.* 2017, 17, 44–49.

(41) Jung, S.; Yoon, H. H.; Jin, H.; Mo, K.; Choi, G.; Lee, J.; Park, H.; Park, K. Reduction of Water-Molecule-Induced Current-Voltage Hysteresis in Graphene Field Effect Transistor with Semi-Dry Transfer Using Flexible Supporter. *J. Appl. Phys.* 2019, 125, 184302.

(42) Yoon, H. H.; Song, W.; Jung, S.; Kim, J.; Mo, K.; Choi, G.; Jeong, H. Y.; Lee, J. H.; Park, K. Negative Fermi-Level Pinning Effect of Metal/n-GaAs(001) Junction Induced by a Graphene Interlayer. *ACS Appl. Mater. Interfaces* 2019, 11, 47182–47189.

(43) Snodgrass, J. T.; Coe, J. V.; McHugh, K. M.; Freidhoff, C. B.; Bowen, K. H. Photoelectron Spectroscopy of Selenium-and Tellurium-Containing Negative Ions: SeO$_2$-, Se$^-$, and Te$_2$. *J. Phys. Chem.* 1989, 93, 1249–1254.

(44) Fan, H.; Li, H.; Liu, B.; Lo, Y.; Xie, T.; Wang, D. Photoinduced Charge Transfer Properties and Photocatalytic Activity in Bi$_2$O$_3$/BaTiO$_3$ Composite Photocatalyst. *ACS Appl. Mater. Interfaces* 2012, 4, 4853–4857.

(45) Ho, C.-H.; Chan, C.-H.; Huang, Y.-S.; Tien, L.-C.; Chao, L.-C. The Study of Optical Band Edge Property of Bismuth Oxide Nanowires α-Bi$_2$O$_3$. *Opt. Express* 2013, 21, 11965–11972.

(46) Takane, D.; Souma, S.; Sato, T.; Takahashi, T.; Segawa, K.; Ando, Y. Work Function of Bulk-Insulating Topological Insulator Bi$_2$ShTe$_{3-x}$Se$_x$. *Appl. Phys. Lett.* 2016, 109, 091601.

(47) Liu, Y.; Wang, F.; Wang, X.; Wang, X.; Flahaut, E.; Liu, X.; Li, Y.; Wang, X.; Xu, Y.; Shi, Y. Planar Carbon Nanotube—Graphene Hybrid Films for High-Performance Broadband Photodetectors. *Nat. Commun.* 2015, 6, 8589.

(48) Fang, H.; Hu, W. Photogating in Low Dimensional Photodetectors. *Adv. Sci.* 2017, 4, 1700323.

(49) Kim, H.; Lee, K. J.; Park, J.; Shin, G. H.; Park, H.; Yu, K.; Choi, S.-Y. Photoconductivity Switching in MoTe$_2$/Graphene Heterostructure by Trap-Assisted Photogating. *ACS Appl. Mater. Interfaces* 2020, 12, 38563–38569.

(50) Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in Single-Layer MoS$_2$ Field Effect Transistors. *ACS Nano* 2012, 6, 5635–5641.

(51) Yu, W.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. *Nat. Nanotechnol.* 2013, 8, 952–958.

(52) Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. *Adv. Funct. Mater.* 2019, 29, 1803807.