Integration with respect to Euler characteristic over the projectivization of the space of functions and the Alexander polynomial of a plane curve singularity.

A.Campillo F.Delgado * S.M.Gusein–Zade \+

For a reduced plane curve singularity \(C = \bigcup_{i=1}^{r} C_i\) (\(C_i\) are its irreducible components), let \(\Delta^C(t_1,\ldots,t_r)\) be the Alexander polynomial of the link \(C \cap S^2_{\epsilon} \subset S^3_{\epsilon}\) for \(\epsilon > 0\) small enough (see, e.g., [4]). We fix the Alexander polynomial \(\Delta^C(t_1,\ldots,t_r)\) (in general it is defined only up to multiplication by a monomial \(\pm t_1^{n_1} \cdots t_r^{n_r}\)) assuming that it is really a polynomial (i.e., it does not contain variables in negative powers) and that \(\Delta^C(0,\ldots,0) = 1\). Let \(\zeta_C(t)\) be the zeta-function of the classical monodromy transformation of the singularity \(C\), i.e., of the function germ \(f : (\mathbb{C}^2,0) \to (\mathbb{C},0)\) such that \(C = \{f = 0\}\) (see, e.g., [1]). For \(r > 1\), one has \(\zeta_C(t) = \Delta^C(t,\ldots,t)\) (for \(r = 1\), \(\zeta_C(t) = \Delta^C(t)/(1-t)\)).

It was shown that all the coefficients of the Alexander polynomial \(\Delta^C(\underline{t})\) (\(\underline{t} = (t_1,\ldots,t_r)\)) can be described as Euler characteristics of some spaces – complements to arrangements of projective hyperplanes in projective spaces ([3]). For a hypersurface singularity of any dimension, the Lefschetz numbers of iterates of the classical monodromy transformation have been described as Euler characteristics of some subspaces in the space of (truncated) arcs ([3]). The last result is connected with the theory of integration with

*First two authors were partially supported by DGICYT PB97-0471 and by Junta de Castilla y León: VA51/97. Address: University of Valladolid, Dept. of Algebra, Geometry and Topology, 47005 Valladolid, Spain. E-mail: campillo@cpd.uva.es, fdelgado@agt.uva.es

\+Partially supported by grants RFBR–98–01–00612 and INTAS–97–1644. During the work on the paper the author enjoyed the hospitality of the University of Nice. Address: Moscow State University, Dept. of Mathematics and Mechanics, Moscow, 119899, Russia. E-mail: sabir@mccme.ru
respect to the Euler characteristic in the space of arcs. Here we discuss a
similar notion (integration with respect to the Euler characteristic) in the
projectivization \(\mathbb{P}\mathcal{O}_{\mathbb{C}^n,0} \) of the ring \(\mathcal{O}_{\mathbb{C}^n,0} \) of germs of functions on \(\mathbb{C}^n \) at the
origin (here we consider it as a linear space) and show that the Alexan-
der polynomial and the zeta-function of a plane curve singularity can be
expressed as certain integrals over \(\mathbb{P}\mathcal{O}_{\mathbb{C}^2,0} \) with respect to the Euler charac-
teristic.

Let \(\mathcal{J}_k^{n,0} \) be the space of \(k \)-jets of functions at the origin in \((\mathbb{C}^n,0) \)
(\(\mathcal{J}_k^{n,0} = \mathcal{O}_{\mathbb{C}^n,0}/m^{k+1} \cong \mathbb{C}^{(n+k)} \)), where \(m \) is the maximal ideal in \(\mathcal{O}_{\mathbb{C}^n,0} \). For a
complex linear space \(L \) (finite or infinite dimensional) let \(\mathbb{P}L = (L \setminus \{0\})/\mathbb{C}^{*} \)
be its projectivization, let \(\mathbb{P}^*L \) be the disjoint union of \(\mathbb{P}L \) with a point (in
some sense \(\mathbb{P}^*L = L/\mathbb{C}^{*} \)). One has natural maps \(\pi_{k,\ell} : \mathbb{P}\mathcal{O}_{\mathbb{C}^n,0} \to \mathbb{P}^*\mathcal{J}_k^{n,0} \)
and \(\pi_{k,\ell} : \mathbb{P}^*\mathcal{J}_k^{n,0} \to \mathbb{P}^*\mathcal{J}_\ell^{n,0} \) for \(k \geq \ell \). Over \(\mathbb{P}\mathcal{J}_\ell^{n,0} \subset \mathbb{P}^*\mathcal{J}_\ell^{n,0} \) the map \(\pi_{k,\ell} \) is a
locally trivial (and in fact trivial) fibration, the fibre of which is a complex
linear space of some dimension.

Definition: A subset \(X \subset \mathbb{P}\mathcal{O}_{\mathbb{C}^n,0} \) is said to be cylindric if \(X = \pi_{k}^{-1}(Y) \) for
a semi-algebraic subset \(Y \subset \mathbb{P}\mathcal{J}_k^{n,0} \subset \mathbb{P}^*\mathcal{J}_k^{n,0} \).

Definition: For a cylinder subset \(X \subset \mathbb{P}\mathcal{O}_{\mathbb{C}^n,0} \) (\(X = \pi_{k}^{-1}(Y), Y \subset \mathbb{P}\mathcal{J}_k^{n,0} \))
its Euler characteristic \(\chi(X) \) is defined as the Euler characteristic \(\chi(Y) \) of
the set \(Y \).

Remark. A semi-algebraic subset of a finite dimensional projective space
(e.g., the set \(Y \) above) can be represented as the union of a finite number of
cells which do not intersect each other. The Euler characteristic of such a set
is defined as the alternative sum of numbers of cells of different dimensions.
Defined this way, the Euler characteristic satisfies the additivity property:

\[
\chi(Y_1 \cup Y_2) = \chi(Y_1) + \chi(Y_2) - \chi(Y_1 \cap Y_2),
\]

and therefore can be considered as a generalized (non-positive) measure on
the algebra of semi-algebraic subsets.

Let \(\psi : \mathbb{P}\mathcal{O}_{\mathbb{C}^n,0} \to A \) be a function with values in an Abelian group \(G \).

Definition: We say that the function \(\psi \) is cylindric if, for each \(a \neq 0 \) the
set \(\psi^{-1}(a) \subset \mathbb{P}\mathcal{O}_{\mathbb{C}^n,0} \) is cylindric.

Definition: The integral of a cylindric function \(\psi \) over \(\mathbb{P}\mathcal{O}_{\mathbb{C}^n,0} \) with respect
to the Euler characteristic is

\[
\int_{\mathbb{P}\mathcal{O}_{\mathbb{C}^n,0}} \psi d\chi = \sum_{a \in A, a \neq 0} \chi(\psi^{-1}(a)) \cdot a
\]
if this sum has sense in A. If the integral exists (has sense) the function ψ is said to be integrable.

Remark. In a similar way one can define a generalized Euler characteristic $[X]$ of a cylindric subset of $\mathbb{P}O_{\mathbb{C}^n,0}$ (or of $O_{\mathbb{C}^n,0}$) with values in the Grothendieck ring of complex algebraic varieties localized by the the class L of the complex line and thus the corresponding notion of integration (see, e.g., [3]). For that one can define $[X]$ as $[Y] \cdot \mathbb{L}^{-\binom{n+k}{k}}$.

For a plane curve singularity $C = \bigcup_{i=1}^{r} C_i$, let $\varphi_i : (\mathbb{C},0) \to (\mathbb{C}^2,0)$ be parameterizations (uniformizations) of the branches C_i of the curve C (i.e., $\text{Im} \varphi_i = C_i$ and φ_i is an isomorphism between \mathbb{C} and C_i outside of the origin). For a germ $g \in O_{\mathbb{C}^2,0}$, let $v_i(g)$ be the power of the leading term in the power series decomposition of the germ $g \circ \varphi_i : (\mathbb{C},0) \to \mathbb{C}$: $g \circ \varphi_i(\tau_i) = c_i \cdot \tau_i^n + \text{terms of higher degree}$, where $c_i \neq 0$. If $g \circ \varphi_i(t) \equiv 0$, $v_i(g)$ is assumed to be equal to ∞. Let $u(g) = (v_1(g), \ldots, v_r(g)) \in \mathbb{Z}_{\geq 0}^r$, $v(g) = \|u(g)\| = v_1(g) + \ldots + v_r(g)$. Let $\mathbb{Z}[t]$ (respectively $\mathbb{Z}[t_1, \ldots, t_r]$) be the group (with respect to addition) of formal power series in the variable t (respectively in t_1, \ldots, t_r). For $u = (v_1, \ldots, v_r) \in \mathbb{Z}_{\geq 0}^r$, let $t^u = t_1^{v_1} \cdot \ldots \cdot t_r^{v_r}$; we assume $t^\infty = 0$.

Theorem 1 For each $u \in \mathbb{Z}_{\geq 0}^r$, the set $\{ g \in \mathbb{P}O_{\mathbb{C}^2,0} : u(g) = u \}$ is cylindric. Therefore the functions $t^u(g)$ and $t^v(g)$ on $\mathbb{P}O_{\mathbb{C}^2,0}$ with values in $\mathbb{Z}[t_1, \ldots, t_r]$ and $\mathbb{Z}[t]$ respectively are cylindric.

Proof follows from the fact that, for $g \in m^s$, $v_i(g) \geq s$, i.e., the Taylor series of $g \circ \varphi_i(\tau_i)$ starts from terms of degree at least s. Therefore the functions $t^u(g)$ and $t^v(g)$ on $\mathbb{P}O_{\mathbb{C}^2,0}$ are integrable (since $\sum_{\mathbb{Z}^+} \ell(u \cdot u) t^u \in \mathbb{Z}[t_1, \ldots, t_r]$)

for any integers $\ell(u \cdot u)$.

Theorem 2 For $r > 1$,

$$\int_{\mathbb{P}O_{\mathbb{C}^2,0}} t^u(g) d\chi = \Delta^C(t_1, \ldots, t_r);$$

for $r \geq 1$,

$$\int_{\mathbb{P}O_{\mathbb{C}^2,0}} t^v(g) d\chi = \zeta^C(t).$$

Proof follows from the results of [3].
References

[1] A’Campo N. La fonction zêta d’une monodromie. Comment. Math. Helv., 50 (1975), 233–248.

[2] Craw A. An introduction to motivic integration. Preprint math.AG/9911179.

[3] Denef J., Loeser F. Lefschetz numbers of iterates of the monodromy and truncated arcs. Preprint math.AG/0001105.

[4] Eisenbud D., Neumann W. Three-dimensional link theory and invariants of plane curve singularities. Ann. of Math. Studies 110, Princeton Univ. Press, Princeton, NJ, 1985.

[5] Gusein–Zade S. M., Delgado F, Campillo A. The Alexander polynomial of a plane curve singularity, and the ring of functions on the curve. Russian Math. Surveys, 54 (1999), no. 3(327), 157–158.