Recent Progress in the Theory of the Crystalline Undulator

A. Kostyuk

Autogenstraße 11, 65933 Frankfurt am Main, Germany

Abstract

If an ultrarelativistic charged particle channels inside a single crystal with periodically bent crystallographic planes, it emits hard electromagnetic radiation of the undulator type. Due to similarity of its physical principles to the ordinary (magnetic) undulator, such a device is termed as the crystalline undulator. Recent development of a new Monte Carlo code ChaS made possible a detailed simulation of particle channeling and radiation emission in periodically bent crystals. According to recent findings, energy of the electron beam below 1 GeV is sufficient to observe the undulator effect in a periodically bent crystal. Even more exciting results were obtained for a crystalline undulator whose bending period is shorter than the period of the channeling oscillations and the bending amplitude is smaller than the width of the planar channel. Such a crystalline undulator is far superior to what was proposed previously. It allows for a large effective number of undulator periods. Therefore, it is predicted to emit intense undulator radiation in the forward direction. A narrow undulator peak is seen for both positron and electron beams. Using positrons is, however, more desirable because in this case the intensity of the undulator radiation is higher while the background is lower.

Keywords: channeling, radiation by moving charges, crystalline undulator, channeling radiation, electron and positron beams, synchrotron radiation sources, Monte Carlo method, strained layer superlattice

PACS: 61.85.+p, 41.60.-m, 41.75.Fr, 02.70.Uu

The idea of the crystalline undulator (CU) was proposed more than three decades ago [1, 2, 3, 4]. It was suggested to use a periodically bent crystal to generate hard electromagnetic radiation of undulator type. Ultrarelativistic electrons or positrons were supposed to channel through such a crystal following the sinusoidal shape of the bent crystallographic planes. Due to nearly harmonic transverse oscillations of the particles, the electromagnetic waves emitted in the forward direction were expected to have a narrow spectral distribution, similarly to an ordinary (magnetic) undulator [3, 4].

The extremely strong electromagnetic fields inside the crystal can steer the beam particles much more effectively than it would be possible even with the best superconductive magnets. Therefore, the period of the crystalline undulator can be made orders of magnitude smaller than that of the magnetic undulator. Hence, the crystalline undulator is potentially capable of generating hard X rays and gamma rays.

There is, however, a price to pay for taking advantage of the crystalline field. In contrast to the ordinary undulator, the particles move in a dense medium instead of vacuum. They experience random collisions with crystal constituents and, therefore, they emit bremsstrahlung which may constitute a substantial background. Coherent effects contaminate the spectrum even stronger. In addition to undulator oscillations, the particle has to perform channeling oscillations around the minimum of the planar potential (similarly to its motion in a straight crystal). As a result, channeling radiation is present in the spectrum of the crystalline undulator in addition to undulator radiation and bremsstrahlung.

Channeling radiation has a lot in common with undulator radiation [8]. Therefore, even a straight crystal can be used to build a source of hard photons. However, this approach has a disadvantage. Because the shape of the transverse potential is not parabolic, the transverse motion of the particles is not harmonic. As a result, the spectrum of the channeling radiation is broader than that of the undulator radiation, especially in the case of negatively charged projectiles [1, 2].

An interesting phenomenon of narrowing the planar channeling radiation peak has been observed for positrons [13, 14]. The reason is a partial compensation of the potential inharmonicity by deviations from the dipole approximation in the radiation emission [15]. This takes, however, place only at a certain 'magic' beam energy. This means that the position of the narrow peak is fixed for every crystal channel, i.e. the radiation frequency can be varied only within a very limited interval.

Another difference between channeling radiation and undulator radiation is that the latter one can be coherent if the particle beam is modulated (bunched) in the longitudinal direction with the period equal to the wavelength of the undulator peak. In this case the different particles radiate electromagnetic waves with nearly the same phase. Therefore, the intensity of the radiation becomes proportional to the number of particles squared (in contrast to a linear proportionality for an unmodulated beam). This way of producing coherent radiation is utilized in free electron lasers [16] (see e.g. [17] for a modern review). Similar effect should be observed in a crystalline undulator if it is fed by a bunched particle beam [18, 19]. In contrast, channeling radiation will not become coherent even in the case of a modulated beam because the phases of the channeling oscillations are arbitrary and random.

Email address: andriy.p.kostyuk@gmail.com (A. Kostyuk)
The CU approach does not have such restrictions. The undulator radiation peak can be shifted within a wide range of values by varying the beam energy and the bending period. But one has to put up with the contamination of the spectrum by channeling radiation unless one finds a way to get rid of it.

The radiation background is not the only challenge faced by the CU. It was realized at the very beginning [4] that the effective length of the crystalline undulator is limited by the attenuation of photons in the crystal medium. This limitation is, however, essential if rather soft photons, $h\omega \lesssim 100$ keV are to be produced.

A more severe restriction on the effective length of the bent crystal is imposed by the dechanneling phenomenon [16]. The incoherent bremsstrahlung is not the only undesirable effect of random scattering of the projectiles by the crystal constituents. Due to the random collisions, the transverse energy of the channeling particle fluctuates. Positive fluctuations are, however, more likely than negative ones. Therefore, the projectile gains on average the transverse energy. If the latter exceeds the height of the interchannel potential barrier, the particle leaves the channel [17]. Starting from this point, it does not follow the shape of the channel and, consequently, it does not emit undulator radiation. For this reason, the effective number of undulator periods N_u is limited by the average length L_d at which the dechanneling takes place:

$$N_u \approx \frac{L_d}{\lambda_u},$$
(1)

where λ_u is the bending period of the crystalline undulator. The number of undulator periods has to be large, $N_u \gg 1$, to ensure a narrow spectral distribution of the undulator radiation. Therefore, the following condition has to be satisfied by the undulator period

$$\lambda_u \ll L_d.$$
(2)

In its initial form, the idea of the CU was based on the assumption that the projectile should follow the sinusoidal shape of the bent crystallographic planes and perform, at the same time, channeling oscillations around the central plane of the channel. This implied that the bending period of the undulator had to be much larger than the period of channeling oscillations

$$\lambda_u \gg \lambda_c.$$
(3)

In addition, the undulator bending amplitude a_u has to be much larger than the typical amplitude of channeling oscillations a_c. This condition can be rewritten in the form [18]

$$a_u \gg a_c$$
(4)
due to the fact that $a_c \lesssim d/2$, where d is the channel width (the distance between the bent crystallographic planes that form the channel). The strong inequality (4) has to be satisfied to ensure a higher intensity of the undulator radiation relative to the channeling radiation.

In the following, the crystalline undulator satisfying conditions (3) and (4) will be referred to as LALP CU (large amplitude and long period crystalline undulator). The complete list of conditions that have to be satisfied by the parameters of LALP CU can be found in [19].

One more condition is relevant to the present discussion. It ensures a stable channeling of the projectile in the periodically bent crystal of LALP CU [24]. Initially, similar condition was obtained for channels with constant curvature [20]. It is convenient to write it down in the form

$$1 > \frac{F_d}{U_{\max}'} = \frac{4\pi^2 m a_u E}{\lambda_u^2 U_{\max}'}.$$
(5)

Here C is the centrifugal parameter [19], F_d is the maximal centrifugal force acting on the projectile in the periodically bent channel, U_{\max}' is the maximal force that keeps the particle in the channel and E is the energy of the projectile.

Conditions (2), (3) and (5) are difficult to satisfy simultaneously. In particular, they cannot be satisfied in the case of electron beam of moderate energy, $E \lesssim 1$ GeV. For instance, if one sticks with (3), the most favorable conditions for observing undulator radiation from $E = 855$ MeV electrons in the Si(110) channel are $a_u \approx 4 \mu$m and $C \approx 0.3$. This corresponds to $a_u \approx 0.84$ Å ($a_u d/\approx 0.44$), i.e. condition (3) is broken. Taking into account that the dechanneling length $L_d \approx 8.3$ μm even for the straight Si(110) channel [21] one sees that the strong inequality (2) is not satisfied either. As a result, the undulator peak is rather small and not very sharp while the spectrum is dominated by the channeling radiation (see figure 1).

Still, it is remarkable that the undulator effect is predicted to be detectable even using electron beams of moderate energies. This awakes expectation that a successful proof of principle experiment can be done in the nearest future, for example, at Mainz Microtrone (MAMI).

The LALP CU conditions can be fulfilled for positron beams (see [19] and references therein) and for high energy, $E > 10$ GeV, electrons [23].

An example of a spectrum of a positron-based LALP CU is shown in figure 2. The undulator peak is narrow and is substantially higher than the channeling radiation maximum. Nevertheless, the total energy of channeling radiation (integrated over the photon energy interval 0.8 MeV $\lesssim h\omega \lesssim 12$ MeV) exceeds that of undulator radiation. This is even more true for high energy electrons (see e.g. figure 4 of [24]). Moreover, the channeling photons are harder than the undulator ones and, therefore, they cannot be easily screened out. This may cause serious problems for many potential applications.

1. It was argued in [24] that condition (4) is necessary to ensure separation of the undulator radiation and the channeling radiation in the spectrum. In fact, it is not so. The separation is ensured by (5). The latter inequality does follow from (1) when it is supplemented by (5), but (4) can be fulfilled even if $a_u \lesssim d$. However, the intensity of the undulator radiation will be small in this case. This is the reason why (4) is necessary in the case of LALP CU.

2. The centrifugal parameter can be also expressed in the form $C = R_c/R_{\min}$, where $R_c = E/U_{\max}'$ in the critical radius of the channel [22] (also known as Tsyganov’s radius) and $R_{\min} = d^2/(4\pi^2 a_u)$ is the minimal curvature radius of a sinusoid with the period λ_u and the amplitude a_u.

3. Dechanneling is defined in [23] as crossing the channel boundary. Other authors (see e.g. [24]) define dechanneling as raising the energy of the channeling oscillations above the interchannel barrier. The value of the dechanneling length depends only slightly on the definition that is used for its computation. The difference does not exceed a few hundreds of nanometers.
The previous version of the code used the electron distribution calculated from Molière’s parametrization of the atomic electrons channeling in a 24μm long LALP CU with the bending period $\lambda_0 = 4 \mu$m and the centrifugal parameter $C = 0.3$. The undulator radiation peak is seen at $\hbar \omega = 1.6$ MeV. The spectrum is dominated by channeling radiation (the broad maximum at 8 MeV $\lesssim \hbar \omega \lesssim$ 9 MeV).

The results of Monte Carlo simulations shown in figures 1 and 2 were obtained with a new computer code ChaS (Channeling Simulator). The code performs a 3D simulation of particle motion in the crystal and calculates the spectral and angular distribution of the emitted radiation.

The previously existing channeling codes can be divided into two main categories. There are codes based on the continuous potential approximation [24, 25, 26, 27, 28, 29, 30] and those considering binary collisions of the projectile with the crystal atoms [31, 32, 33, 34, 35]. In the latter case, the atom is usually taken as as a whole, i.e. incoherent collisions with atomic electrons are ignored. In contrast, the algorithm of ChaS is based on the binary collisions of the projectile with target electrons and target nuclei. This novel approach is especially beneficial in the case of negatively charged projectiles, that have to cross the crystal plane during the channeling process. Indeed, the continuous potential approximation becomes inaccurate in the vicinity of the atomic nuclei while the electron density near the crystal plane is much higher than the average one.

The previous version of the code used the electron distribution calculated from Molière’s parametrization of the atomic potential. The obtained results were published in [21, 36]. They demonstrated reasonable agreement with experimental data [21]. The present version of ChaS employs a more efficient and robust algorithm for the calculation of the emitted radiation. In addition, it has an option of using the first principle distribution of electrons in the crystal instead of Molière’s parametrization. The first principle distribution is calculated within the density functional theory using the computer code ABINIT [37].

The code ChaS in its present version is most suitable for the analysis of the channeling of electrons and positrons with energy E in the range from a few hundreds of MeV to a few GeV with the emission of not very soft: $\hbar \omega \gtrsim 0.5$ MeV and at the same time not too hard $\hbar \omega \ll E$ photons. The algorithm takes into account all the physics that is relevant to this domain. A number phenomena are neglected in the model (e.g. influence of the crystal medium on the emission and propagation of the radiation, quantum effects in the motion of the projectile, losses of the projectile energy due to emission of photons, a shift of the photon energy due to recoil etc.) They are expected to be small and do not influence the results substantially [21, 38].

For simplicity, the emittance of the particle beam was neglected in all simulations presented in this article. The particles were assumed to enter the crystal at zero angle to the crystallographic planes. This is a reasonable approximation in the case of channeling experiments with high quality electron beams [39]. It may not be the case for position beams, but the beam divergence depends on details of the experimental conditions whose analysis is out of the scope of the present contribution.

It was suggested recently [40] that conditions (4) and (5) are not necessary. In fact, an intense source of hard photons with a narrow spectral distribution can be created if both conditions are violated.

First, let us reanalyze the reasons behind condition (4). It is needed to make sure that the spectrum is dominated by the undulator radiation rather than by the channeling one. However,
the amplitude of undulator oscillations has to be much larger than that of the channeling oscillations only if the frequency of the undulator radiation ω_u is smaller than the frequency of channeling oscillations ω_c. Indeed, the energy radiated in a certain direction (the forward direction in the present case) by a moving particle in the dipole approximation has the following dependence on the transverse oscillation amplitude a and the radiation frequency ω:

$$\frac{dE}{d\omega d\Omega} \bigg|_{(d=0)} \sim a^2 \omega^4. \quad (6)$$

Here $d\Omega$ is the differential of the solid angle and θ is the angle between the direction of the radiation emission and the average direction of the particle motion. Therefore, condition (4) is not necessary, i.e. the amplitude of the undulator bending can be smaller than the channel width,

$$a_u < d, \quad (7)$$

if the frequency of the undulator radiation is considerably larger than that of the channeling radiation

$$\omega_u \gg \omega_c. \quad (8)$$

To fulfill this condition, the period of the crystal bending λ_u has to be much smaller than the smallest period of channeling oscillations λ_c:

$$\lambda_u \ll \lambda_c. \quad (9)$$

The last inequality violates condition (5). This can be seen from the following consideration. The period of the channeling oscillations can be estimated by

$$\lambda_c \approx 2\pi \sqrt{\frac{E}{U''(0)}}, \quad (10)$$

where $U''(0)$ is the second derivative of the transverse potential energy with respect to y in the point of its minimum $y = 0$ (the axis y is perpendicular to the channel boundaries). Taking into account that

$$U''_{\text{max}} \lesssim U''(0)d \quad (11)$$

in combination with (10) and (2) one obtains from (5)

$$1 > C \gg \frac{a_u}{d}. \quad (12)$$

The bending amplitude of the crystalline undulator a_u cannot be much smaller than the channel width d otherwise it becomes comparable to (or even smaller than) the amplitude of thermal vibrations of the atoms in the crystal. Clearly, the undulator effect will not be present in this case. If a_u is comparable to d, the two inequalities of (12) become incompatible. One might expect that it destroys the undulator effect, but, fortunately, it does not. Condition (5) is, in fact, not applicable in the case of SASP CU (small amplitude (7) and short period (9) crystalline undulator).

In figure 3 simulated trajectories of a positron (upper panel) and an electron channeling in a crystalline undulator with a small amplitude, $a_u = 4.0\,\text{Å}$, and a short period, $\lambda_u = 400\,\text{nm}$. The projectile does not follow the shape of the bent crystallographic planes (the thick wavy lines). It performs channeling oscillations with roughly the same period as in a straight crystal. The effect of crystal bending on the shape of trajectories is barely seen. The figure is a modified version of Fig. 1 published in [40].

Figure 3: Simulated trajectories of a positron (upper panel) and an electron (lower panel) with energy $E = 855\,\text{MeV}$ channeling in a crystalline undulator with a small amplitude, $a_u = 4.0\,\text{Å}$, and a short period, $\lambda_u = 400\,\text{nm}$. The projectile does not follow the shape of the bent crystallographic planes (the thick wavy lines). It performs channeling oscillations with roughly the same period as in a straight crystal. The effect of crystal bending on the shape of trajectories is barely seen. The figure is a modified version of Fig. 1 published in [40].
is a big practical advantage since electron beams are usually of higher quality and are less expensive than positron ones. Still, positrons are more preferable. As one sees from figures 4 and 5, they allow for a higher intensity of the undulator peak accompanied by a lower background.

The undulator radiation of SASP CU is much harder than the channeling radiation (ChR). It is an important advantage of SASP CU over LALP CU. It is usually much easier to get rid of a soft photon background and preserve the hard part of the spectrum than to do the opposite. For example, a detector can be made sensitive to hard photons, but be screened from (or made insensitive to) soft photons. It is difficult and sometimes even impossible to do vice versa. For this reason, SASP CU is expected to be much more suitable for many potential applications than LALP CU.

Due to its much smaller bending period, SASP CU can produce by about two orders of magnitude harder photons when used with a beam of the same energy as LALP CU. Or, in other words, SASP CU will require a much smaller and, therefore, a much less expensive accelerator than the one which would be needed for the production of radiation of the same frequency with LALP CU.

Hence, the crystalline undulator that violates conditions (4) and (5) has a number of advantages with respect to LALP CU. From the technological point of view, SASP CU is more challenging than LALP CU. There exist at least four technologies suitable for the fabrication of LALP CU. The oldest idea of using ultrasonic waves [2, 4] is, unfortunately, still waiting for its experimental implementation. Two other technologies utilize the idea of imposing periodic stresses on the surface of the crystal sample. These are making regularly spaced grooves on the crystal surface either by a diamond blade [41, 42] or by means of laser-ablation [43] and deposition of periodic Si$_3$N$_4$ layers onto the surface of a Si crystal [42]. Finally, there is a way to create periodically varying stresses in the crystal volume by growing a crystal with periodically varying chemical composition. The most mature technology is the creation of strained layer superlattices by periodically varying germanium concentration x in a Si$_{1-x}$Ge$_x$ crystal with a periodically varying Ge content x [45, 46].

The potential applicability of ultrasound in the case of SASP CU requires further investigations. The methods based on surface stresses cannot be applied because they require the transverse dimension of the crystal to be of the order of the bending period [47]. The latter is smaller than 1 μm in the case of SASP CU. Only the last approach, the growing of Si$_{1-x}$Ge$_x$ strained layer superlattices, is suitable for the fabrication of SASP CU. This technology has been already used for manufacturing the LALP CU that is being used in ongoing experiments at Mainz Microtron [48]. It was demonstrated recently [49] that a Si$_{1-x}$Ge$_x$ crystalline heterostructure can be grown with the parameters that have been used in the simulations presented in figures 4 and 5. Moreover, the strained layer crystal with parameters of SASP CU was predicted to be stable against misfit dislocations, in contrast to LALP CU which is only metastable.

In conclusion, the crystalline undulator with a small amplitude and a short period can be created and it is predicted to be far superior with respect to LALP CU.

In the present contribution, production of undulator radiation with photon energy in the range of tens of megaelectrons-volts is considered. These results are important because the hard photon range is unattainable for the present state-of-the-art.
synchrotron radiation sources. It would be, however, interesting to consider production of softer photons, in the range of a few hundreds or even tens of kiloelectronvolts. This domain is on the edge of the capability of the presently existing and constructed facilities [11, 50]. This facilities are, however, unique and very expensive. Due to the fact that SASP CU requires a much smaller accelerator than a conventional undulator for production of photons of the same energy, it has a potential to be made affordable even to medium size university labs or hospitals. A theoretical investigation of the low energy SASP CU is, however, more challenging, because quantum effects definitely cannot be neglected in this case.

Even more exciting future tasks of this field of science is exploring the possibility to produce coherent radiation with SASP CU [12].

Acknowledgements

I am very much obliged to the Organizing Committee of the International Conference “Channeling 2012” and especially to Sultan Dabagov for the great opportunity to present my scientific results in Alghero.

The financial support of the European Physical Society is highly appreciated.

I am grateful to X. Artru, H. Backe, V. Baryshevsky, S. Dabagov, M. Garattini, V. Guidi, A. Mazzolari, M. Motapothula, A. Shchagin, N. Shul’ga, V. Tikhomirov, W. Wagner for their interest to the work, for stimulating discussions and critical comments.

At its initial stage, the work was partially done in Frankfurt Institute for Advanced Studies (FIAS) and was supported by Deutsche Forschungsgemeinschaft (DFG). Numerical simulations were done at the Center for Scientific Computing of the J.W. Goethe University, Frankfurt am Main (Germany).

References

[1] V. V. Kaplin, S. V. Plotnikov, and S. A. Vorobiev, in Abstracts of the 10th Conference on the Application of Charged Particle Beams for Studying the Composition and Properties of Materials (Moscow State University, Moscow, 1979), p. 28.
[2] V. V. Kaplin, S. V. Plotnikov and S. A. Vorobiev, Zh. Tekh. Fiz. 50, 1079–1081 (1980), (Sov. Phys. Tech. Phys. 25, 650–651 (1980)).
[3] V. G. Baryshevsky, in Proceedings of the 14th Winter School on Physics of Atomic Nucleus (Leningrad Inst. of Nucl. Phys., Leningrad, 1979), p. 158–167 (in Russian).
[4] V. G. Baryshevsky, I. Ya. Dubovskaya and A. O. Grubich, Phys. Lett. A 77, 61–64 (1980).
[5] V.L. Ginzburg, Izv. Akad. Nauk. SSSR, Ser. Fiz. 11, 165–181 (1947).
[6] H. Motz, J. Appl. Phys. 22, 527–535, ibid. 1217 (1951).
[7] H. Motz, W. Thon, and R. N. Whirehurst J. Appl. Phys. 24, 826–833 (1953).
[8] M. A. Kumakhov, Phys. Lett. A 57, 17–18 (1976).
[9] J.M.J. Madey, J. Appl. Phys. 42, 1906–1913 (1971).
[10] P. Schmüser, M. Dohlus, J. Rossbach, “Ultraviolet and Soft X-Ray Free-Electron Lasers”, Springer. Berlin Heidelberg, (2008).
[11] A. Kostyuk, A. V. Korol, A. V. Solov’yov and W. Greiner, J. Phys. B 43, 151001 (2010).
[12] W. Greiner, A. V. Korol, A. Kostyuk, A. V. Solovyov, “Vorrichtung und Verfahren zur Erzeugung elektromagnetischer Strahlung”, German Patent DE102010023632, December 20 (2011).
[13] M. Atkinson et al., Phys. Lett. B 110, 162–166 (1982).
[14] J. Bak et al., Nucl. Phys. B 254, 491–527 (1985).
[15] J. A. Ellison et al., Phys. Lett. B 112, 83–87 (1982).
[16] A. V. Korol, A. V. Solovov and W. Greiner, Int. J. Mod. Phys. E 8, 49–100 (1999).
[17] J. Lindhard, Kong. Danske Vid. Selsk. Mat.-Fys. Medd. 34(14) (1965).
[18] A. V. Korol, A. V. Solov’yov and W. Greiner, J. Phys. G 24, L45–L53 (1998).
[19] A. V. Korol, A. V. Solov’yov and W. Greiner, Int. J. Mod. Phys. E 13, 867–916 (2004).
[20] E.N. Tsyganov, TM-682, TM-684, Fermilab, Batavia (1976).
[21] A. Kostyuk et al., J. Phys. B. At. Mol. Opt. Phys. 44, 075208 (2011).
[22] Biryukov V M, Chesnokov Yu A, Kotov V I 1997 *Channeling and its Application at High-Energy Accelerators* (Berlin Heidelberg New York: Springer).
[23] M. Tabrizi et al., Phys. Rev. Lett. 98, 164801 (2007).
[24] X. Artru, Nucl. Instrum. Meth. B 48, 278–282 (1990).
[25] V. Biryukov, Phys. Rev. E 51, 3522–3528 (1995).
[26] V.O. Bogdanov et al., J.: Phys.: Conf. Ser. 236, 012029 (2010).
[27] V. Guidi, A. Mazzolari and V. Tikhomirov, J. Appl. Phys. 107, 114908 (2010).
[28] A. V. Korol, A. V. Solov’yov and W. Greiner, J. Phys. G 27, 95–125 (2001).
[29] K. Saitoh, J. Phys. Soc. Japan, 54 151–162 (1985).
[30] A.M. Taratin, E.N. Tsyganov and S.A. Vorobiev, Phys. Lett. A 72 145–146 (1979).
[31] M. T. Robinson and O. S. Oen, Appl. Phys. Lett. 2, 30–32 (1963); Phys. Rev. 132, 2385–2396 (1963).
[32] V.V. Kudrin, Yu. A. Timoshchenkov and S.A. Vorobiev, Phys. Stat. Sol. B 58 409–414 (1973).
[33] S. K. Andersen et al., Nucl. Phys. B 167, 1–40 (1980).
[34] J. F. Bak et al., Nucl. Phys. B 242, 1–30 (1984).
[35] P.J.M. Smulders and D.O. Boerma, Nucl. Instrum. Meth. B 29, 471–481 (1987).
[36] A. Kostyuk et al., [arXiv:1104.3890] [physics.acc-ph].
[37] X. Gonze et al., Zeit. Kristallogr. 220, 558–562 (2005); Comp. Phys. Commun. 180, 2582–2615 (2009).
[38] U. I. Uggerhøj, Rev. Mod. Phys. 77, 1131–1171 (2005).
[39] H. Backe et al. Nucl. Instrum. Meth. B 266, 3835–3851 (2008).
[40] A. Kostyuk, Phys. Rev. Lett. (in print) [arXiv:1210.3408].
[41] S. Bellucci et al., Phys. Rev. Lett. 90, 034801 (2003).
[42] V. Guidi et al., Nucl. Instrum. Meth. B 234, 40–46 (2005).
[43] P. Balling et al., Nucl. Instrum. Meth. B 267, 2952–2957 (2009).
[44] M. B. H. Beece, Nucl. Instrum. Meth. B 152, 540–547 (1997).
[45] U. I. Uggerhøj and E. Uggerhøj, Nucl. Instrum. Meth. B 160, 435–439 (2000).
[46] W. Krause et al., Nucl. Instrum. Meth. A 483, 455–460 (2002).
[47] A. Kostyuk et al., Nucl. Instrum. Meth. B 266, 972–987 (2008).
[48] H. Backe, Nuovo Cimento C 34,1 (2011), 157–165 (2011).
[49] A. Kostyuk, [arXiv:1301.4491] [physics.acc-ph].
[50] Philip Willmott, “An Introduction to Synchrontron Radiation: Techniques and Applications”, John Wiley and Sons (2011).