QUASI-FOREST SIMPLICIAL COMPLEXES AND ALMOST COHEN-MACAULAY

CHWAS AHMED, AMIR MAFI* AND MOHAMMED RAFIQ NAMIQ

Abstract. In this paper we study the quasi-forest simplicial complexes and we define the concept of simplicial k-cycle (denoted by S_k) and simplicial k-point (denoted by P_k). We show that a simplicial complex Δ is quasi-forest if and only if it does not have any P_k and any S_k for $k \geq 3$. Furthermore we characterize almost Cohen-Macaulay quasi-forest simplicial complexes. In the end we show that the cycle graph $G = C_n$ is almost Cohen-Macaulay if and only if $n = 3, 4, 5, 6, 7, 8, 9, 11$.

Introduction

Throughout this paper, we assume that $R = K[x_1, \ldots, x_n]$ is the polynomial ring in n variables over a field K and G is a simple graph (without loops and multiple edges) with vertex set $V(G) = \{x_1, \ldots, x_n\}$ and edge set $E(G)$. One associates to G the edge ideal $I(G)$ of R which is generated by all monomial x_ix_j such that $\{x_i, x_j\} \in E(G)$. The independence complex and the clique complex of the graph G are defined by $\text{Ind}(G) = \{A \subseteq V(G) | A$ is an independence set in $G\}$ and $\Delta(G) = \{B \subseteq V(G) | B$ is a clique of $G\}$, respectively. Note that an independent set of G is a subset A of $V(G)$ such that none of its elements are adjacent and a clique of G is a subset B of $V(G)$ such that $\{x_i, x_j\} \in E(G)$ for all $x_i, x_j \in B$ with $i \neq j$. It easy to see that $\Delta(G) = \text{Ind}(\overline{G})$, where \overline{G} is the complement of G. Using the Stanley-Reisner correspondence, we can associate to G the independent complex $\text{Ind}(G)$, where $I_{\text{Ind}(G)} = I(G)$. Hence the Stanley-Reisner ring of $\text{Ind}(G)$ is $R/I(G)$. The graph G or the edge ideal $I(G)$ is called Cohen-Macaulay if $R/I(G)$ is Cohen-Macaulay. Cohen-Macaulay graphs were studied in [25, 6]. A complete classification of Cohen-Macaulay graphs does not exist. Also, a graph G or the edge ideal $I(G)$ is called almost Cohen-Macaulay if $R/I(G)$ is almost Cohen-Macaulay. We say that $R/I(G)$ is almost Cohen-Macaulay when $\text{depth } R/I(G) \geq \dim R/I(G) - 1$. Almost Cohen-Macaulay rings have been studied in [13, 17, 18, 16, 2, 20, 21, 19].

Let Δ be a simplicial complex. A facet F of Δ is called leaf, if there exists a facet M of Δ with $F \neq M$ such that $N \cap F \subset M \cap F$ for all facet N of Δ with $N \neq F$. If each subcomplex Γ of Δ has a leaf, then Δ is called a forest. A simplicial complex Δ is called quasi-forest, if there exists an order F_1, \ldots, F_r of the facets of Δ such that F_i is a leaf of the simplicial complex $\langle F_1, \ldots, F_i \rangle$ for each $i = 1, \ldots, r$. A free vertex is a vertex which belongs to precisely one facet. It is known that each

2010 Mathematics Subject Classification. 13C15, 13C13, 13H10.
Key words and phrases. Simplicial complex, Cohen-Macaulay simplicial complex, edge ideal
* Corresponding author.
leaf has a free vertex. But the converse is not true in general. It is clear that every forest is a quasi-forest. We say that the graph \(G \) is quasi-forest when \(\text{Ind}(G) \) is a quasi-forest simplicial complex. The concept of quasi-forest has been studied in \cite{28, 8, 15, 10, 11}.

In this paper we define the concept of simplicial \(k \)-cycle (denoted by \(S_k \)) and simplicial \(k \)-point (denoted by \(P_k \)) and we give some examples. We study the quasi-forest simplicial complex and we prove that a simplicial complex \(\Delta \) is quasi-forest if and only if it does not have any \(P_k \) and any \(S_k \) for \(k \geq 3 \). Furthermore, we characterize almost Cohen-Macaulay quasi-forest simplicial complexes as a generalization of \cite{10} Proposition 2.3. In the end we prove that the cycle graph \(G = C_n \) is almost Cohen-Macaulay if and only if \(n = 3, 4, 5, 6, 7, 8, 9, 11 \). For any unexplained notion or terminology, we refer the reader to \cite{14, 26}. Several explicit examples were performed with help of the computer algebra systems Macaulay2 \cite{12}.

1. Preliminaries

In this section, we recall some definitions and known results which are used in this paper.

A simplicial complex \(\Delta \) on the vertex set \(V = \{x_1, \ldots, x_n\} \) is a collection of subsets of \(V \) such that (i) \(\{x_i\} \in \Delta \) for every \(1 \leq i \leq n \), and (ii) if \(F \in \Delta \) and \(H \subseteq F \), then \(H \in \Delta \). Each element \(F \) of \(\Delta \) is called a face of \(\Delta \) and it is called an \(i \)-face when \(|F| = i + 1 \). The dimension of a face \(F \) is \(|F| - 1 \) and the dimension of \(\Delta \) is defined to be \(\dim \Delta = d - 1 \), where \(d = \max\{|F| \mid F \in \Delta\} \). A facet of \(\Delta \) is maximal face (with respect to inclusion). The set \(\mathcal{F}(\Delta) := \{F_1, \ldots, F_r\} \) is the set of all facets of \(\Delta \). A simplicial complex \(\Delta \) with the facets \(F_1, \ldots, F_r \) is denoted by \(\Delta = \langle F_1, \ldots, F_r \rangle \). The Stanley-Reisner ideal of \(\Delta \) is \(I_{\Delta} := \langle \prod_{x_i \in F} x_i \mid F \not\in \Delta \rangle \) and the quotient ring \(K[\Delta] = R/I_{\Delta} \) is the Stanley-Reisner ring of \(\Delta \) over a field \(K \) where \(R = K[x_1, \ldots, x_n] \). A simplicial complex \(\Delta \) is pure if every facet has the same cardinality. A simplicial complex \(\overline{\Delta} = \langle \overline{F} \mid F \in \mathcal{F}(\Delta) \rangle \) is the complement of \(\Delta \). The Alexander dual of \(\Delta \), denoted by \(\Delta^\vee \), is defined as \(\Delta^\vee = \{V \setminus F \mid F \not\in \Delta\} \). The subcomplex \(\Delta(i) = \{F \in \Delta \mid \dim F = i\} \) is called the pure \(i \)-skeleton of \(\Delta \). Terai \cite{22} proved that if \(I \) is a square-free monomial ideal of \(R \), then the Castelnuovo-Mumford regularity \(\text{reg}(I_{\Delta^\vee}) = \text{proj dim}(R/I_{\Delta}) \).

Herzog, Hibi and Zheng \cite{15} proved the following beautiful result:

Proposition 1.1. A simplicial complex \(\Delta \) is quasi-forest if and only if \(\text{proj dim } I(\overline{\Delta}) = 1 \).

Now, since \(I(\overline{\Delta}) = I_{\Delta^\vee} \) (see \cite{15} Lemma 1.2) and by using Terai’s result we conclude that a simplicial complex \(\Delta \) is quasi-forest if and only if \(\text{reg } I_{\Delta} = 2 \).

Recall that a simplicial complex is called flag, if all minimal nonfaces consist of two elements, equivalently, \(I_{\Delta} \) is generated by quadratic monomials. By \cite{15} Lemma 3.2, a quasi-forest simplicial complex is flag. A monomial ideal \(I \) generated in degree \(d \) has a linear resolution if and only if the Castelnuovo-Mumford regularity of \(I \) is \(\text{reg}(I) = d \) (see \cite{23} Lemma 49). Fröberg \cite{9} proved that the edge ideal \(I(G) \) has a
linear resolution if and only if G is chordal. Recall that a graph G is called chordal if each cycle of length > 3 has a chord.

As before the independent simplicial complex of a graph G is the clique complex of G and vice versa. One can rephrase [15, Lemma 3.1] as follows:

Theorem 1.2. Let G be a graph and $I_\Delta = I(G)$ be its edge ideal. Then

1. $\Delta = \text{Ind}(G)$;
2. $\overline{G} = \Delta(1)$;
3. Δ is quasi-forest if and only if \overline{G} is chordal.

Now, one can conclude that the independence complex $\text{Ind}(G)$ is quasi-forest if and only if the edge ideal $I(G)$ has a linear resolution.

A Ferrers graph is a bipartite graph on two distinct vertex sets $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_m\}$ such that if x_iy_j is an edge of G, then so is x_py_q for all $1 \leq p \leq i$ and $1 \leq q \leq j$.

Corso and Nagel [5, Theorem 4.2] proved the following result:

Theorem 1.3. Let G be a bipartite graph without isolated vertices. Then its edge ideal has a 2-linear resolution if and only if G is (up to a relabeling of the vertices) a Ferrers graph.

By the above theorem, one can conclude that if G is a Ferrers graph, then $	ext{reg}(I(G)) = 2$. In particular, the independence complex $\text{Ind}(G)$ is quasi-forest.

Fröberg [9] proved that the following result:

Theorem 1.4. Let Δ be a $(d-1)$-dimensional quasi-forest. Then $f_{d-1} \leq n - d + 1$ with equality if and only if $K[\Delta]$ is Cohen-Macaulay, where $f(\Delta) = (f_0, f_1, \ldots, f_{d-1})$ is the f-vector of Δ.

2. RELATIONS ON QUASI-FOREST SIMPLICIAL COMPLEX

We start this section by the following definition:

Definition 2.1. An induced k-cycle in a graph G is a 3-cycle or a chordless cycle of length $k \geq 4$, we denote it by C_k. A simplicial k-cycle, denoted by S_k, in Δ is an induced k-cycle C_k in $\Delta(1)$ such that no more than two vertices of C_k are in the same facet of Δ.

Example 2.2. (i) Let Δ be a simplicial complex which has the facets $\{x_1, x_2, x_3\}, \{x_2, x_4, x_5\}, \{x_3, x_4, x_5\}$. The cycle x_2x_3, x_3x_4, x_4x_2 is S_3 in Δ.
(ii) Let Γ be a simplicial complex which has the facets\
\{x_1, x_2, x_3\}, \{x_2, x_4, x_6\}, \{x_3, x_4, x_5\}, \{x_2, x_3, x_4\}. Then Γ does not have any S_k.

Definition 2.3. Let Δ be a simplicial complex. For $k \geq 3$, we say that Δ has a simplicial k-point P_k if there is a vertex $x_t \in V$ and a subset $\{x_{j_1}, \ldots, x_{j_k}\}$ of V such that for each $1 \leq i \leq k$ we have $\{x_t, x_{j_1}, \ldots, \hat{x}_{j_i}, \ldots, x_{j_k}\} \in \Delta$ and $\{x_t, x_{j_1}, \ldots, x_{j_k}\} \notin \Delta$. Also, we say that Δ has a simplicial 2-point P_2 if and only if it contains an S_3.

Example 2.4. Let Θ be a simplicial complex as the following:

Then Θ has P_3 since $x_4 \in V$ and $\{x_1, x_2, x_4\}$, $\{x_1, x_3, x_4\}$, $\{x_2, x_3, x_4\}$ are in Θ and $\{x_1, x_2, x_3, x_4\} \notin \Theta$.

4
Proposition 2.5. If \(\text{Ind}(G) \) is a quasi-forest simplicial complex. Then \(G \) does not contain an induced cycle \(C_k \) for all \(k \geq 5 \).

Proof. Suppose \(G \) contains an induced cycle \(C_k : x_{i_1}x_{i_2}, \ldots, x_{i_{k-1}}x_{i_k}, x_{i_k}x_{i_1}, k \geq 5 \).

Then we have two cases:

1. If \(k = 5 \), then we have a cycle \(x_{i_1}x_{i_2}, x_{i_1}x_{i_4}, x_{i_2}x_{i_3}, x_{i_2}x_{i_5}, x_{i_3}x_{i_4} \) in \(\overline{G} \). Hence by Theorem 1.2, \(\text{Ind}(G) \) is not quasi-forest and this is a contradiction.

2. If \(k \geq 6 \), then \(x_{i_1}x_{i_3} \) and \(x_{i_4}x_{i_5} \) are in \(G \). Hence \(\overline{G} \) contains a cycle \(C_4 \) and so \(\overline{G} \) is not chordal. By Theorem 1.2, \(\text{Ind}(G) \) is not quasi-forest and this is a contradiction.

This completes the proof. \(\square \)

From the above proposition one can deduce that every graph containing \(C_k \) \((k \geq 5)\) is not quasi-forest.

Corollary 2.6. If \(\text{Ind}(G) \) is quasi-forest and \(G \) does not have an induced 3-cycle and any isolated vertex, then \(G \) is a bipartite graph. In particular, \(G \) is a Ferrers graph.

Proof. By Proposition 2.5 and our hypothesis, \(G \) does not have any odd cycle. Thus \(G \) is a bipartite graph. \(\square \)

Let \(I \) be a monomial ideal, in the following we use \(\mathcal{G}(I) \) the unique minimal set of monomial generators of \(I \).

Proposition 2.7. A simplicial complex \(\Delta \) is flag if and only if it does not have any \(\mathcal{P}_k \) for \(k \geq 2 \).

Proof. Suppose that \(\Delta \) is not flag. Then there is a monomial \(x_{j_1} \ldots x_{j_k} \in \mathcal{G}(I_\Delta) \) for \(k \geq 3 \). It follows that \(\{x_{j_2}, x_{j_3}, \ldots, x_{j_k}\}, \{x_{j_1}, x_{j_3}, \ldots, x_{j_k}\}, \ldots, \{x_{j_1}, x_{j_2}, \ldots, x_{j_{k-1}}\} \) are faces of \(\Delta \) and \(\{x_{j_1}, \ldots, x_{j_k}\} \notin \Delta \). Hence \(\Delta \) has a \(\mathcal{P}_{k-1} \) for \(k \geq 3 \).

Conversely, assume \(\Delta \) has a \(\mathcal{P}_k \). If \(k = 2 \), then there are faces \(\{x_{j_1}, x_{j_2}\}, \{x_{j_2}, x_{j_3}\} \) and \(\{x_{j_1}, x_{j_3}\} \) of \(\Delta \) such that \(\{x_{j_1}, x_{j_2}, x_{j_3}\} \notin \Delta \). Hence \(x_{j_1}x_{j_2}x_{j_3} \notin \mathcal{G}(I_\Delta) \). If \(k \geq 3 \), then there is a vertex \(x_t \in V \) and \(\{x_{j_1}, \ldots, x_{j_k}\} \subset V \) such that \(\{x_t, x_{j_1}, \ldots, x_{j_k}\} \) are faces of \(\Delta \) for \(i = 1, \ldots, k \). If \(\{x_{j_1}, \ldots, x_{j_k}\} \notin \Delta \), then \(x_{j_1} \ldots x_{j_k} \notin \mathcal{G}(I_\Delta) \). Now if \(\{x_{j_1}, \ldots, x_{j_k}\} \in \Delta \), then \(x_t x_{j_1} \ldots x_{j_k} \notin \mathcal{G}(I_\Delta) \) since \(\{x_t, x_{j_1}, \ldots, x_{j_k}\} \notin \Delta \). This completes the proof. \(\square \)

Remark 2.8. Consider Examples 2.2 and 2.4, the simplicial complexes \(\Delta \) and \(\Theta \) are not flag since they contain an \(S_3 \) and a \(\mathcal{P}_3 \), respectively. However, the simplicial complex \(\Gamma \) is flag since \(\Gamma \) does not contain any \(\mathcal{P}_3 \).

Theorem 2.9. A simplicial complex \(\Delta \) is quasi-forest if and only if it does not have any \(\mathcal{P}_k \) and any \(S_k \).

Proof. (\(\Rightarrow \)). Suppose \(\Delta \) has a \(\mathcal{P}_k \) such that \(k \geq 2 \). By Proposition 2.7 we obtain that \(\Delta \) is not flag. Hence \(\Delta \) is not quasi-forest and this is a contradiction. Suppose that \(\Delta \) contains an \(S_k \) for \(k \geq 4 \). Then \(C_k \) is in \(\Delta(1) \). Hence \(\overline{G} \) is not chordal. Hence by Theorem 1.2 it follows that \(\Delta \) is not quasi-forest and this is a contradiction. Therefore \(\Delta \) does not have any \(\mathcal{P}_k \) and any \(S_k \).
Suppose, by contrary, that Δ is not quasi-forest. Thus Δ is not flag or $\Delta(1)$ is not chordal. If Δ is not flag, then Proposition 2.7 implies that Δ has a P_k for $k \geq 2$, a contradiction. If $\Delta(1)$ is not chordal, then $\Delta(1)$ contains $C_k, k \geq 4$. By assumption we may assume that at least three vertices of C_k is a face in Δ, say F. Then the 1-faces of F are in $\Delta(1)$. It follows that C_k has a chord and this is a contradiction. Therefore Δ is quasi-forest. □

Remark 2.10. The simplicial complexes Δ and Θ in Examples 2.2, 2.4 are not quasi-forest since they contain an S_3 and a P_3, respectively. The simplicial complex Γ in Example 2.2 is quasi-forest since it does not have any P_k and any S_k.

The following result immediately follows by Theorem 2.9.

Corollary 2.11. A simplicial complex Δ is forest if and only if any subcomplex Γ of Δ does not have a P_k and an S_k.

In Example 2.2 the simplicial complex Γ is not forest since if we remove the facet $\{x_2, x_3, x_4\}$, then Γ is equal to Δ and Δ contains an S_3.

Definition 2.12 ([28, Definition 2.15], [7, Definition 2.1]). Let G be a graph. Two edges xy and zu form a gap in G if G does not have an edge with one endpoint in xy and the other in zu. A graph without gaps is called gap-free. Equivalently, G is gap-free if and only if C_4 is not an induced subgraph of G.

The following result immediately follows by Theorem 2.9.

Corollary 2.13. If $\Delta = \text{Ind}(G)$ is quasi-forest, then G is a gap-free graph.

We recall the definition of a perfect graph and a Berge graph introduced in [3]. A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if and only if neither it nor its complementary graph has an odd induced cycle of length at least five. Chudnovsky et al. in [3] proved that a graph is perfect if and only if it is Berge.

Corollary 2.14. If $\Delta = \text{Ind}(G)$ is a quasi-forest, then G is a perfect graph.

Proof. From Proposition 2.5 and Theorem 2.9 it follows that G is a Berge graph and so G is a perfect graph. □

Note that the converse of Corollaries 2.13 and 2.14 are not true in general, for example, the graph G of independence complex $\text{Ind}(G) = S_4$ is gap-free and perfect, however, $\text{Ind}(G)$ is not quasi-forest.

Following [27] a simplicial complex Δ is recursively defined to be vertex decomposable if it is either a simplex or else has some vertex v so that

1. both $\Delta \setminus v$ and $\text{link}_\Delta v$ are vertex decomposable, and
2. no face of $\text{link}_\Delta v$ is a facet of $\Delta \setminus v$, where $\text{link}_\Delta v = \{F \in \Delta \mid F \cup \{v\} \in \Delta, v \notin F\}$.

Woodroofe in [27, Theorem 1] proved the following theorem:

Theorem 2.15. If G is a graph with no chordless cycle of length other than 3 or 5, then G is vertex decomposable (hence shellable and sequentially Cohen-Macaulay).
The following result immediately follows from Theorem 2.15 and Proposition 2.5.

Corollary 2.16. If $\Delta = \text{Ind}(G)$ is quasi-forest and G does not contain an induced 4-cycle, then Δ is a vertex decomposable (so shellable and sequentially Cohen-Macaulay).

It can be noted from Corollary 2.11 that if Δ is a quasi-forest and contains at most three facets, then Δ is a forest.

Corollary 2.17. The simplicial complex $\text{Ind}(C_k)$ is quasi-forest if and only if $k = 3, 4$. In particular, $\text{Ind}(C_k)$ is a forest if and only if $\text{Ind}(C_k)$ is a quasi-forest.

Proof. If $k = 3, 4$, then it is immediately follows that $\text{Ind}(C_k)$ is quasi-forest. Conversely, we consider the following cases:

1. if $k = 3$, then $\deg(I_{\text{Ind}(C_3)}) = 2$ and $\text{Ind}(C_3) = \langle x_1, x_2, x_3 \rangle$. Thus it is clear that $\text{Ind}(C_3)$ is a forest;
2. if $k = 4$, then $\deg(I_{\Delta(C_4)}) = 2$ and $\text{Ind}(C_4) = \langle x_1x_3, x_2x_4 \rangle$. It therefore follows that $\text{Ind}(C_4)$ is a forest;
3. if $k \geq 5$, then by Proposition 2.5 we get the result.

\[\square \]

3. The h-vector of Cohen-Macaulay quasi-forest

Let I be a homogeneous ideal of R with $\dim R/I = d$. The Hilbert series of R/I is of the form $H_{R/I}(t) = (h_0 + h_1t + h_2t^2 + \ldots + h_st^s)/(1 - t)^d$, where each $h_i \in \mathbb{Z}$. The polynomial $h_{R/I}(t) = h_0 + h_1t + h_2t^2 + \ldots + h_st^s$ with $h_s \neq 0$ is called the h-polynomial of R/I (see [14, Theorem 6.1.3]). The a-invariant is the degree of the Hilbert series $H_{R/I}(t)$, that is, the number $s - d$.

From [24, Corollary B.4.1] we have $a(K[\Delta]) \leq \deg(K[\Delta]) - \text{depth}(K[\Delta])$ with equality if $K[\Delta]$ is Cohen-Macaulay. Then we have the following inequality $\deg(h_{K[\Delta]}(t) - \deg(K[\Delta]) \leq \dim(K[\Delta]) - \text{depth}(K[\Delta])$. The equality holds if $K[\Delta]$ is Cohen-Macaulay or $K[\Delta]$ has a pure resolution (see [11, P. 153]). In particular, if Δ is a quasi-forest, then the equality holds.

Proposition 3.1. (Compare with [11, Proposition 2.3]) Let Δ be a $(d-1)$-dimensional simplicial quasi-forest with $h(\Delta) = (h_0, h_1, \ldots, h_d)$. Then Δ is Cohen-Macaulay if and only if h_2, \ldots, h_d are zero.

Proof. Since Δ is a quasi-forest, we have $\deg h_{K[\Delta]}(t) = \dim(K[\Delta]) - \text{depth}(K[\Delta]) + 1$. If Δ is Cohen-Macaulay, then $\deg h_{K[\Delta]}(t) = 1$. Therefore h_2, \ldots, h_d are zero. Conversely, let h_2, \ldots, h_d be zero. Then $1 = \deg h_{K[\Delta]}(t) = \dim(K[\Delta]) - \text{depth}(K[\Delta]) + 1$. Thus $\dim(K[\Delta]) = \text{depth}(K[\Delta])$ and so Δ is Cohen-Macaulay.

\[\square \]

Theorem 3.2. Let Δ be a $(d-1)$-dimensional simplicial quasi-forest with $h(\Delta) = (h_0, h_1, \ldots, h_d)$. Then Δ is almost Cohen-Macaulay if and only if h_2 is non-positive, and h_3, \ldots, h_d are zero.

Proof. Since Δ is a quasi-forest, we have $\deg h_{K[\Delta]}(t) = \dim(K[\Delta]) - \text{depth}(K[\Delta]) + 1$. If Δ is almost Cohen-Macaulay, then $\deg h_{K[\Delta]}(t) \leq 2$. Therefore h_3, \ldots, h_d are...
zero. By [26, Theorem 6.7.6] \(h_0 = 1 \) and \(h_1 = f_0 - d = n - d \) which is not negative.

Now, we consider the following cases:

(i) : let \(h_1 = 0 \). Then \(f_0 = d \) and so \(h_2 \) is zero;

(ii) : let \(h_1 \) be positive. By Theorem 1.4 we have \(f_{d-1} \leq n - d + 1 \). Since

\[
 f_{d-1} = h_0 + h_1 + \cdots + h_d,
\]

it follows that \(h_0 + h_1 + \cdots + h_d \leq n - d + 1 \). Thus \(h_2 + \cdots + h_d \leq 0 \). It therefore follows that \(h_2 \leq 0 \).

Conversely, suppose that \(h_2 \leq 0 \) and \(h_3 = \cdots = h_d = 0 \). Since \(\dim(K[\Delta]) - \depth(K[\Delta]) + 1 = \deg h_{K[\Delta]}(t) \leq 2 \), it follows that \(\dim(K[\Delta]) - \depth(K[\Delta]) \leq 1 \).

Hence \(\Delta \) is almost Cohen-Macaulay, as required. \(\square \)

As before if \(K[\Delta] \) is Cohen-Macaulay, then \(a(K[\Delta]) = \reg(K[\Delta]) - \depth(K[\Delta]) \).

It is natural to ask whether if \(K[\Delta] \) is almost Cohen-Macaulay, then \(a(K[\Delta]) = \reg(K[\Delta]) - \depth(K[\Delta]) - 1 \) is it true in general. In the following we give a counter example for this question.

Example 3.3. Let \(n = 5 \) and \(I = (x_4 x_5, x_1 x_3 x_5, x_1 x_2 x_5, x_1 x_2 x_3 x_4) \) be an ideal of \(R \). Then by using Macaulay 2 we have \(\dim(R/I) = 3 \) and \(\depth(R/I) = 2 \) and so \(I \) is almost Cohen-Macaulay. On the other hand, \(\reg(R/I) = 3 \) and \(H_{R/I}(t) = \frac{1+2t+2t^2}{(1-t)^3} \).

Thus \(\reg(R/I) = -1 \) and \(\reg(R/I) - \depth(R/I) - 1 \neq a(R/I) \).

Proposition 3.4. (Compare with [4, Corollary 2.8]) Let \(G \) be a Ferrers graph on two distinct vertex sets \(V_1 = \{x_1, \ldots, x_n\} \) and \(V_2 = \{y_1, \ldots, y_n\} \) and \(I = I(G) \) be the edge ideal in the ring \(S = K[x_1, \ldots, x_n, y_1, \ldots, y_n] \). Then \(I \) is Cohen-Macaulay if and only if the Hilbert series \(H_{S/I}(t) = \frac{1+nt}{(1-t)^n} \).

Proof. Let \(I \) be Cohen-Macaulay. Then by Proposition 3.1 \(h_2, \ldots, h_d \) are zero and \(d = \dim R/I = n \). Since \(h_1 = f_0 - d = 2n - n = n \), it follows that \(H_{S/I}(t) = \frac{1+nt}{(1-t)^n} \).

Conversely, suppose \(H_{S/I}(t) = \frac{1+nt}{(1-t)^n} \). Since \(I \) has a linear resolution, we have \(\deg h_{S/I}(t) = \reg(S/I) = \depth(S/I) \) and \(\reg(S/I) = 1 \). By hypothesis \(\deg h_{S/I}(t) = 1 \) and it therefore follows \(\dim(S/I) = \depth(S/I) \) Thus \(I \) is Cohen-Macaulay, as required. \(\square \)

The following result proved by Cimpoeas in [4, Proposition 1.3]:

Proposition 3.5. Let \(G = C_n \) be a cycle graph and \(I = I(G) \). Then \(\depth R/I = \left[\frac{n-1}{3} \right] \).

Theorem 3.6. Let \(G = C_n \) be a cycle graph and \(I = I(G) \). Then \(I \) is almost Cohen-Macaulay if and only if \(n = 3, 4, 5, 6, 7, 8, 9, 11 \).

Proof. \((\Longleftarrow)\). By using Macaulay 2 one can easily obtain the result.

\((\Longrightarrow)\). Let \(J = I(P_n) \), where \(P_n \) is a path of length \(n - 1 \) with \(n - 1 \) edges \(x_i x_{i+1} \) such that \(1 \leq i \leq n - 1 \). Now by induction on \(n \), we prove that \(\dim(R/J) = \left[\frac{n}{3} \right] \).

If \(n = 3 \), then by using Macaulay 2 there is nothing to prove. Suppose \(n \geq 4 \) and the result has been proved for smaller values of \(n \). Consider the exact sequence

\[
0 \rightarrow R/(J : x_n) \xrightarrow{x_n} R/J \rightarrow R/(J, x_n) \rightarrow 0. \quad (*)
\]
Since \((J : x_n) = (I(P_{n-2}), x_{n-1})\), it follows that \(\dim R/(J : x_n) = \dim R'[x_n]/I(P_{n-2}) = \dim R'/I(P_{n-2}) + 1\), where \(R' = K[x_1, \ldots, x_{n-2}]\). Now, by induction hypothesis, we obtain \(\dim R/(J : x_n) = \lfloor \frac{n}{2} \rfloor + 1 = \lfloor \frac{n}{2} \rfloor\). Similarly, \((J, x_n) = (I(P_{n-1}), x_n)\) and again by using induction hypothesis \(\dim R/(J, x_n) = \dim K[x_1, \ldots, x_{n-1}]/(I(P_{n-1})) = \lfloor \frac{n-1}{2} \rfloor\). Since \(\dim R/J = \max \{\dim R/(J : x_n), \dim R/(J, x_n)\}\), it follows that \(\dim R/J = \lfloor \frac{n}{2} \rfloor\). Since \((I : x_n) = (I(P_{n-3}), x_{n-1}, x_1)\), similarly by using \(I\) in stead of \(J\) in the exact sequence (*) , we get \(\dim R/I = \lfloor \frac{n}{3} \rfloor\). Also, by Proposition 3.5 we have depth \(R/I = \lfloor \frac{n-1}{3} \rfloor\). Hence by comparing depth \(R/I\) and \(\dim R/I\) we conclude that \(n = 3, 4, 5, 6, 7, 8, 9, 11\). □

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, UK, (1998).
[2] L. Chu, Z. Tang and H. Tang, A note on almost Cohen-Macaulay modules, J. Algebra Appl. 14 (2015) 1550136.
[3] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Annals of Mathematics, 164 (2006), 51-229.
[4] M. Cimpoeas, On the Stanley depth of edge ideals of line and cyclic graphs, Romanian J. Math. Computer Science, 5 (2015), 70-75.
[5] A. Corso and U. Nagel, Monomial and toric ideals associated to Ferrers graphs, Tran. Amer. Math. Soc., 361 (2009), 1371-1395.
[6] M. Crupi, G. Rinaldo and N. Terai, Cohen-Macaulay edge ideal whose height is half of the number of vertices, Nagoya Math. J. 201 (2011), 117-131.
[7] H. Dao, C. Huneke and J. Schweig, Bounds on the regularity and projective dimension of ideals associated to graphs, J. Alg. Comb., 38 (2013), 37-55.
[8] S. Faridi, Simplicial trees are sequentially Cohen-Macaulay, J. Pure and Appl. Algebra, 190 (2003), 121-136.
[9] R. Fröberg, On Stanley-Reisner rings, in topics in algebra, part 2 (Warsaw, 1988), pp. 57-70, Banach Center Publ., 26, PWN, Warsaw, (1990).
[10] A. Goodarzi, M.R. Pournaki, S.A. Seyed Fakhari and S. Yassemi, On the h-vector of a simplicial complex with Serre’s condition, J. Pure and Appl. Algebra, 216 (2012), 91-94.
[11] A. Goodarzi and S. Yassemi, Shellable quasi-forests and their h-triangles, Manu. Math., 137 (2012), 475-481.
[12] D.R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
[13] Y. Han, D-rings, Acta Math. Sinica, 4 (1998), 1047-1052.
[14] J. Herzog and T. Hibi, Monomial ideals, GTM., 260, Springer, Berlin, (2011).
[15] J. Herzog, T. Hibi and X. Zheng, Dirac’s theorem on chordal graphs and Alexander duality, Eur. J. Comb., 25 (2004), 949-960.
[16] C. Ionescu, More properties of almost Cohen-Macaulay rings, J. Comm. Algebra, 7 (3) (2015) 363-372.
[17] M. Kang, Almost Cohen-Macaulay modules, Comm. Algebra, 29 (2) (2001), 781-787.
[18] M. Kang, Addendum to almost Cohen-Macaulay modules, 30 (2) (2002), 1049-1052.
[19] A. Mafi and D. Naderi, A note on almost Cohen-Macaulay monomial ideal, arXiv:2107.06742v1.
[20] S. Tabejamaat and A. Mafi, About a Serre-type condition for modules, J. Algebra Appl. 16 (2017), 1750206.
[21] S. Tabejamaat, A. Mafi and Kh. Ahmadi Amoli, Property of Almost Cohen-Macaulay over Extension Modules, Algebra Colloquium, 24 (2017), 509-518.
[22] N. Terai, *Generalization of Eagon-Reiner theorem and h-vectors of graded rings*, Preprint (2000).
[23] A. Van Tuyl, *A beginner’s guide to edge and cover ideals*, Lecture notes in Math., **2083**(2013), 63-94.
[24] W.V. Vasconcelos, *Computational methods in commutative algebra and algebraic geometry*, Springer-Verlag, (1998).
[25] R. H. Villarreal, *Cohen-Macaulay graphs*, Manuscripta Math. **66**(3) (1990), 227-293.
[26] R.H. Villarreal, *Monomial Algebras*, Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, (2015).
[27] R. Woodroofe, *Vertex decomposable graphs and obstructions to shellability*, Proc. Amer. Math. Soc, **137**(2009), 3235-3246.
[28] X. Zheng, *Resolution of facet ideals*, Comm. Algebra, **32**(2004), 2301-2324.

Ch. Ahmed, Department of Mathematics, College of Science, University of Sulaimani, Kurdistan Region, Iraq.

Email address: chwas.ahmed@univsul.edu.iq

A. Mafi, Department of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran.

Email address: a_mafi@ipm.ir

M. R. Namiq, Department of Mathematics, College of Science, University of Sulaimani, Kurdistan Region, Iraq.

Email address: mohammed.namiq@univsul.edu.iq