Research on Seismic Reliability Criteria of Urban Lifeline Network Systems

Lin Gao and Mingzhen Wang

ABSTRACT

Urban lifeline network systems are the material base of urban health operations. The components damage and function loss of lifeline system are caused by strong ground motion. Urban lifeline system can continue to run that after the event, the seismic reliability of urban lifeline network must be reasonable determined. Based on the network system characteristics, the three network elements namely nodes, routes and flow of various lifeline systems are given. The especially important components to reduce earthquake disaster in lifeline network system are puts forward clearly. Connectivity, maximum flow, service and economic loss as a quantitative measure of lifeline engineering system network performance. Connectivity, maximum flow, service and economic loss are regarded as the representative quantitative measures of network performance. The performance standards of lifeline system consist of three aspects by quantitative expression as followed: the number affected by interrupted lifeline, the disaster influence range affected by interrupted lifeline and the time required to complete repair after earthquakes. The performance standards of lifeline system are classified by the total number, the disaster influence range affected by interrupted lifeline and the time required to complete repair after earthquakes. And the seismic reliability criteria of urban lifeline network systems are suggested finally.

INTRODUCTION

Lifeline are the sum of systems and networks who are essential for maintaining urban functions, such as transportation system, communication system, power supply system, water supply system, drainage system, gas supply system, oil transmission system and so on. Modern city highly depend on various types of lifeline systems. Seismic reliability of lifeline system is a main content of urban disaster prevention planning. Actual earthquake damage data show that lifeline systems are vulnerable.

Lin G. Chongqing University of Arts and Sciences, 319 Hong He Street, Yong Chuan District, Chongqing 402160, China
Mingzhen W. Chongqing University of Arts and Sciences, 319 Hong He Street, Yong Chuan District, Chongqing 402160, China
The bigger city scale and the higher modernization degree, the greater the loss caused by earthquakes. The Loss usually include public utilities service interruptions, direct economic and property damage, secondary disasters loss, unemployment, natural environment disaster and so on [1][2]. Therefore, the seismic reliability levels of lifeline network systems need to be determined. The network reliability is effectively increased and the aseismic capability of the whole system is improved.

CLASSIFICATION AND COMPOSITION OF LIFELINE SYSTEM

 Lifeline system is the combination of structural engineering and system engineering in essence. The main characteristic compare with general building structure is that the distributions of components are in a large geographical scope, every component of the system under seismic actions may be different. Systems have network characteristics. A damage location may affect the function of a region and even the whole network system. Based on the network theory, a network consists of three elements, namely nodes, routes and flows [3]. The corresponding meanings of three elements for network model are listed in table 1.

Classification of Lifeline System	Nodes	Routes	Flows
(1) Energy System	Power Plant, Substation, Gas Station, Gas holder	Power Supply Line, Gas Pipeline	Voltage, Current, Gas flow, Pressure
Gas Supply System	Oilfield, Oil Refinery, Oil Tank, Pumping Station	Oil Pipeline	Oil flow, Pressure
Oil Transmission System	Water Source, Water Plant, Pumping Station	Water pipeline	Water Flow, Pressure, Flow Rate
(2) Water	Sewage Treatment Plant, Pumping Station	Drainage Pipeline	Displacement
Water Supply System	Communication Center, Base Station, Interchange Station, User	Communication Link	Communication Capacity, User Numbers
Drainage System	Traffic Lines (Including Large Bridges, Tunnels)	Transportation Amount	
(3) Communication System	Station, Port, Wharf, Airport		
(4) Transportation System			

Among them, some nodes itself is a small system, such as power plant, water plant and so on. Therefore the diversity of three elements of lifeline system make the seismic reliability analysis work become complex problems, so effective analysis methods must be used to calculate typical parameters reflected the function reduction or failure of network system instead of just individual nodes and routes. And the nodes and routes in different parts should be treated differently at the same time.

COMPONENT VULNERABILITY OF LIFELINE SYSTEM

In general, the ground component vulnerability is primarily from strong ground motions. But the seismic damages of underground structures are mainly the foundation
failure effect such as permanent ground displacement, settlement, fault and liquefaction besides the ground motion. Some components in function and operation or huge investment of lifeline system are particularly important. These components under seismic action are damageable or difficult to repair, which damage will cause huge economic losses, directly endanger personal safety and health. So, the vulnerability analyses of important components should be given special attention. The especially important components to reduce earthquake disaster in lifeline network system are listed in table 2.

Table II. The especially important components to reduce earthquake disaster in lifeline network system.

Lifeline System	Important Components
Power Supply System	Power Plant, Nuclear Power Plant, Cooling
	Tower, Control Room, Alternating-Direct
	Current Exchange Station, Backup Generator
Gas Supply System	Pressure Station, Control Room, Gasholder,
	Pipeline, Nodes at Main Trunk
	Oilfield Facility, Refinery, Oil Tank, Pumping
Oil Transmission System	Station, Main Valve, Pipeline, Monitoring System
Communication System	Communication Launch Tower, Control Station,
	Base Station, Communication Center
	Bridges, Tunnels, Railway and Road Bed
	Highway, Navigation Tower, Port Facilities,
	Communication Apparatus, Metro, Urban Rail Transit
Transportation System	Reservoir Dam, Water Treatment Plant, Water Intake Well, Water Storage Facilities
	Pumping Station, Pipeline, Water Conduit Bridge
Water Supply System	Intake Well, Water Storage Facilities, Pumping
	Station, Pipeline, Water Conduit Bridge
Drainage System	Sewage Treatment Plant, Pressure Station, Pipeline, Nearshore Facilities

The vulnerability state of components can use two-states, many-states or continuous model to express. The two-states use two opposite states to define, such as damage and no damage, on and off, function and no function. The many-states model expand vulnerability states to many levels, such as basic intact, slight damage, moderate damage, severe damage and destroy. The continuous model is vulnerability function that is component continuum possible states of different destruction expression under seismic actions. Component is the basic unit of lifeline system. The concept of component and system is relative. An object could be regarded as system in some researches, but could be regarded as component in the larger scale. Be regarded as system or component depends on the purpose and precision of research.

QUANTITATIVE MEASURE OF NETWORK PERFORMANCE

The representative quantitative measures of network performance are connectivity, maximum flow, service and economic loss. Network connectivity can calculate easily by binary variables. The connectivity of any specific nodes or a set of nodes selected under seismic actions could be calculated, but the connected degree could not be expressed quantitatively further. Maximum flow from any source to any route could calculate easily in a certain load capacity network. Maximum flow is a
better standard to reflect the performance of network system, also could be used to illustrate the boundary value of economic loss roughly. Network service is measured by the percentage of the population in service. It is a multidimensional measure of connectivity, service state of each node can be directly obtained by using the total population in service. Network service is a better relative scale to evaluate performance of all kinds of lifeline system. The most attention scale of network performance is the direct and indirect economic loss caused by under-supply or interrupt. And calculation model should be determined.

THE REFERENCE STANDARD OF NETWORK PERFORMANCE

The performance standards of lifeline system consist of three aspects by quantitative expression as followed: the number affected by interrupted lifeline, the disaster influence range affected by interrupted lifeline and the time required to complete repair after earthquakes [4]. The classifications of performance level for lifeline network system after earthquakes are listed in table 3.

Performance Level	The maximum percentage of influence number due to service interruptions (%)	The longest interrupting time (days)	The complete repair time (days)
AA	Keep complete functions	-	-
A	0.1	1/4	1
B	0.5	1	7
C	1	3	14
D	2	7	30
E	10	14	90
F	50	14	180

The acceptable performance standards of various lifeline systems under seismic actions are given in table 4. The state of reliability level A refers to one day service interruption and one week complete repair in less than 5% of intensity area. The state of reliability level B refers to one week service interruption and one month complete repair in less than 20% of intensity area. The state of reliability level C refers to one week service interruption and three months complete repair in less than 50% of intensity area [5].
Table IV. The suggested reliability levels of various lifeline systems.

Lifeline System	Components	The reliability under seismic actions
		Strong ground motion
		(Seismic intensity: IX-XII)
		Moderate strong ground motion
		(Seismic intensity: VI-VIII)
Power Supply System	Nuclear Power Plant*	Keep complete functions
	Power Plant* (Except Nuclear Power Plant)	A
	Power Transmission*	B
	Power Distribution*	B
	gas transmission*	A
	Gas Storage*	A
	gas distribution	B
	Oil Refinery*	A
	Oil Storage*	A
	Oil transportation*	B
Gas Supply System	gas transmission*	A
	Gas Storage*	A
	gas distribution	B
Oil Transmission System	Oil Refinery*	A
	Oil Storage*	A
	Oil transportation*	A
Communication System	Launch Tower	A
	Broadcast and TV	A
	Telephone	A
	Highway and railway Bridges*	(don’t collapse)
Transportation System	Road and railway	B
	Airport Control	A
	Facilities, airport runaway*	A
	Reservoir Dam*	Do not appear damage endangered the life safety
Water Supply System	Firewater	A
	(proper storage)	A
	Disposal facilities	B
	Water Distribution Network	(Moving vehicles can be used for water supply)
	catchment water*	C
	disposal facilities*	B
Drainage System	Disposal facilities*	B

CONCLUDING REMARKS

To sum up, the following five aspects work need to be researched to determine reasonable reliability level of lifeline network system under seismic actions.

(1) The work of seismic geology and seismology. Area earthquake environment of nodes and routes for lifeline system is determined according to the recognition of potential earthquake source.

(2) The work of structure engineering. According to the characters of each member in lifeline system, the corresponding structural dynamics models is identified, and the seismic vulnerability of each component and their combinations are analyzed.
(3) The work of network theory. The aseismic reliability of the whole lifeline network composed of components or subsystems are analyzed by using effective network analysis methods. The weak links of systems are found out, which will contribute to establish emergency planning and disaster relief planning.

(4) The work of economics. The economic loss caused by earthquakes should be analyzed on the basis of above research work since lifeline systems have generally huge investments.

(5) The work of decision-making. An acceptable balance between cost and risk are sought, which are mainly used for vulnerability assessment, existing system transformation, aseismic reliability level of nodes and routes reasonable confirmation, earthquake insurance and so on.

ACKNOWLEDGEMENTS

This technical work is financially supported by Talents Introduction Project for Chongqing University of Arts and Sciences (R2015JJ06), Scientific Research Fund of Chongqing Municipal Education Commission (KJ1601132) and National Natural Science Foundation of China (51678544).

REFERENCES

1. Fragiadakis, M., Vamvatsikos, D., Karlaftis M.G., Lagaros N.D., Papadrakakis, M. 2015. “Seismic assessment of structures and lifelines,” Journal of Sound and Vibration, 334: 29-56.
2. Baohua Y., Lili X., Enjie H. 2004. “A comprehensive study method for lifeline system interaction under seismic conditions,” Earthquake Science, 17(2): 211-221.
3. Campbell, K.W. 1982. “Bayesian Analysis of Extreme earthquake occurrences. Part I. Probabilistic Hazard Model,” Bulletin of the Seismological Society of America, 72(5): 1689-1705.
4. Da H., Yanyan C., Guangyuan W. 2003. “Genetic Algorithm for Optimum Decision on Earthquake Fortification Level of Lifeline System,” China Civil Engineering Journal, 36(5): 17-63.
5. Zaiyong Z. 1996. Analysis and Application of seismic risk. Tongji University Press, pp. 253-278.