High in vitro activity of DIS-73285, a novel antimicrobial with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae

Susanne Jacobsson¹, Clive Mason², Nawaz Khan², Paul Meo² and Magnus Unemo³ ¹*

¹WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden;
²Summit Therapeutics, Merrifield Centre, Rosemary Lane, Cambridge, UK
³Corresponding author. E-mail: magnus.unemo@regionorebrolan.se

Received 9 April 2020; accepted 22 June 2020

Background: The rising incidence of antimicrobial resistance in Neisseria gonorrhoeae may result in untreatable gonorrhoea in certain circumstances and development of novel antimicrobials is urgently needed.

Objectives: To evaluate the in vitro activity of a novel small-molecule antimicrobial with a new mechanism of action, DIS-73285, against a large geographically, temporally and genetically diverse collection of clinical N. gonorrhoeae isolates and reference strains, including various types of high-level resistant, MDR and XDR gonococcal isolates (n = 262).

Methods: MICs (mg/L) of DIS-73285 were determined by agar dilution and by Etest for ceftriaxone, cefixime, azithromycin, ciprofloxacin, ampicillin, spectinomycin and tetracycline.

Results: DIS-73285 was substantially more potent than any of the currently or previously used therapeutic antimicrobials, with MICs ranging from ≤0.001 to 0.004 mg/L, and the MIC₅₀, MIC₉₀ and modal MIC all ≤0.001 mg/L (lowest MIC tested). No correlation with the MICs of DIS-73285 and the MICs of any of the currently or previously used antimicrobials was observed.

Conclusions: The novel chemotype, small-molecule antimicrobial DIS-73285, demonstrated high in vitro potency against all tested N. gonorrhoeae isolates. Further in vitro and in vivo studies, evaluating efficacy, resistance emergence, pharmacokinetic/pharmacodynamic parameters, toxicity and safety, should be conducted to evaluate DIS-73285 as a therapy specifically for urogenital and extra-genital gonorrhoea.

Introduction

The rising incidence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae, the causative agent of gonorrhoea, may result in untreatable gonococcal infections in certain circumstances. The bacterium has evolved from a pathogen highly susceptible to most antimicrobials into a superbug, displaying both MDR and XDR phenotypes.¹-³ The extended-spectrum cephalosporin (ESC) ceftriaxone is currently the last remaining effective option for empirical first-line monotherapy. Current gonorrhoea management guidelines by the WHO, in Europe and in most high-income countries worldwide recommend empirical dual treatment with ceftriaxone (250–500 mg) intramuscularly plus oral azithromycin (1–2 g).⁴-⁸ However, some countries recommend high-dose (1 g) ceftriaxone monotherapy when Chlamydia trachomatis infection has been excluded.⁹-¹¹ Worryingly, failure in treating pharyngeal gonorrhoea with dual therapy was reported in 2016.¹² A ceftriaxone-resistant gonococcal strain has been spreading globally since 2015,¹³-¹⁹ and the first strain with resistance to ceftriaxone and high-level azithromycin resistance was isolated in England and Australia in 2018.²⁰-²²

As a response to this AMR development, the WHO has stressed the crucial need for new treatments for gonorrhoea, and N. gonorrhoeae was recognized as a priority pathogen for research and development of new antimicrobial agents in 2017.²³ Since then, novel antibacterial compounds that selectively target N. gonorrhoeae have been discovered; one of these is DIS-73285, a novel highly potent and selective novel small-molecule antimicrobial belonging to the DDS-03 series.²⁴-²⁶ The discovery and development of the DDS-03 series has been enabled by the Summit Therapeutics’ Discuva Platform. This platform uses proprietary high-density transposon libraries that identify an antibacterial compound’s mechanism of action and routes to resistance.²⁴,²⁵ The target and mechanism of action of DIS-73285 involve the
electron transfer proteins (ETFs) A/B/D in *N. gonorrhoeae*.25,26 DIS-73285 has shown low MICs in single *N. gonorrhoeae* and *Neisseria meningitidis* reference strains, but very high MICs in single reference strains of 28 other bacterial species.25,26 In vitro absorption, distribution, metabolism and excretion (ADME) and toxicological assays have also been performed using standard protocols, showing a clean ADME and toxicity profile.16

The aim of the present study was to comprehensively investigate the *in vitro* activity of the new therapeutic compound DIS-73285 against a large collection of clinical *N. gonorrhoeae* isolates (*n* = 228) and international reference strains (*n* = 34), including numerous MDR and XDR gonococcal isolates.

Materials and methods

Neisseria gonorrhoeae isolates

A geographically (from 23 countries mainly globally), temporally, phenotypically and genetically diverse selection of 262 *N. gonorrhoeae* isolates were investigated. The collection consisted of 34 international gonococcal reference strains originally isolated from 1991 to 2013, 100 consecutive isolates were defined as previously 27,28 WHO A-E, WHO I, WHO J, CCUG 41810-41813, A02, A17, A25, G07-700, A04, G07-672, G06-1153, FA1090 and MS11. The selected AMR isolates 26 WHO A-E, WHO I, WHO J, CCUG 41810-41813, A02, A17, A25, G07-700, A04, G07-672, G06-1153, FA1090 and MS11. The selected AMR isolates 26 WHO A-E, WHO I, WHO J, CCUG 41810-41813, A02, A17, A25, G07-700, A04, G07-672, G06-1153, FA1090 and MS11. The selected AMR isolates, but very high MICs in single reference strains of 28 other bacterial species.25,26 In vitro absorption, distribution, metabolism and excretion (ADME) and toxicological assays have also been performed using standard protocols, showing a clean ADME and toxicity profile.16

Antimicrobial susceptibility testing

The MICs (mg/L) of DIS-73285 (Summit Therapeutics, Cambridge, UK), dissolved and diluted in DMSO (<1% in all agar plates used for testing), were determined by the agar dilution technique, according to current CLSI guidelines.10 The MICs (mg/L) of ceftriaxone, cefixime, azithromycin, ciprofloxacin, spectinomycin, tetracycline and ampicillin were determined using the Etest method (AB bioMérieux, Marcy l’Étoile, France), in accordance with the manufacturer’s instructions. Only whole MIC dilutions (half MIC dilutions were rounded up to the next whole MIC dilutions) are reported in the present study. All MICs, except for DIS-73285, were interpreted as susceptibility (S); susceptibility, increased exposure (I); and resistance (R) using current breakpoints stated by EUCAST (www.eucast.org/clinical_breakpoints).

For azithromycin and ampicillin, no clinical breakpoints are stated by EUCAST. Consequently, the azithromycin epidemiological cut-off of MIC >1 mg/L was used to indicate isolates with azithromycin resistance determinants (referred to as resistant in this study) and the clinical breakpoints for benzylpenicillin were used for ampicillin (www.eucast.org/clinical_breakpoints).

Results

The results of the antimicrobial susceptibility testing for DIS-73285 and the seven antimicrobials currently or previously used for the treatment of gonorrhoea are summarized in Table 1.

DIS-73285 showed highly potent *in vitro* activity against all *N. gonorrhoeae* isolates tested (*n* = 262), with an MIC range of \(\leq 0.001\)–0.004 mg/L (MIC \(\leq 0.001\) mg/L, *n* = 235; MIC = 0.002 mg/L, *n* = 26; MIC = 0.004 mg/L, *n* = 1). The MIC\(_{50}\), MIC\(_{90}\) and modal MIC were all \(\leq 0.001\) mg/L (lowest MIC tested), which is substantially lower than those observed for all the other antimicrobials tested (Table 1). No cross-resistance or correlation between the MICs of DIS-73285 and the MICs of any of the currently or previously used therapeutic antimicrobials was observed (data not shown).

Table 1. MIC range, MIC\(_{50}\), MIC\(_{90}\) and modal MIC values for DIS-73285 and therapeutic antimicrobials currently or previously recommended for *N. gonorrhoeae* isolates

Antimicrobial and isolate group (n)	MIC\(^a\) range (mg/L)	MIC\(_{50}\) (mg/L)	MIC\(_{90}\) (mg/L)	Modal MIC (mg/L)	S/I/R\(^b\) (%)
DIS-73285 (N = 262 isolates)	\(\leq 0.001\)–0.004	\(\leq 0.001\)	\(\leq 0.001\)	\(\leq 0.001\)	ND
consecutive (100)	\(\leq 0.001\)–0.002	\(\leq 0.001\)	\(\leq 0.001\)	\(\leq 0.001\)	ND
reference (34)	\(\leq 0.001\)–0.002	\(\leq 0.001\)	\(\leq 0.001\)	\(\leq 0.001\)	ND
selected AMR (128)	\(\leq 0.001\)–0.004	\(\leq 0.001\)	\(\leq 0.002\)	\(\leq 0.001\)	ND
CRO-resistant isolates (15)	\(\leq 0.001\)–0.002	\(\leq 0.001\)	\(\leq 0.002\)	\(\leq 0.001\)	ND
AZM-resistant isolates (116)	\(\leq 0.001\)–0.004	\(\leq 0.001\)	\(\leq 0.002\)	\(\leq 0.001\)	ND
CIP-resistant isolates (139)	\(\leq 0.001\)–0.004	\(\leq 0.001\)	\(\leq 0.002\)	\(\leq 0.001\)	ND
CRO (262)	0.002–4	0.008	0.064	0.004	94.3/ND/5.7
CFM (262)	\(\leq 0.016\)–0.8	\(\leq 0.016\)	0.25	\(\leq 0.016\)	88.2/ND/11.8
AZM (262)	0.016–0.256	0.5	2	1	55.7/ND/44.3
SPT (262)	4 to 1024	16	16	16	98.1/ND/1.9
CIP (262)	\(\leq 0.002\) to >32	2	\(>32\)	>32	46.9/0.0/53.1
AMP (262)	\(\leq 0.016\) to >256	0.5	4	1	13.7/61.1/25.2
TET (262)	0.125–256	2	16	4	24.8/21.8/53.4

\(\text{CRO, ceftriaxone; AZM, azithromycin; CIP, ciprofloxacin; CFM, cefixime; SPT, spectinomycin; AMP, ampicillin; TET, tetracycline; ND, not determined due to lack of interpretative criteria.}

\(\text{MIC was determined using the agar dilution technique for DIS-73285 and Etest for the additional antimicrobials.}

\(\text{S, susceptible; I, susceptible, increased exposure; R, resistant. The EUCAST clinical breakpoints (www.eucast.org/clinical_breakpoints) were applied for all antimicrobials.}\)
Discussion

This is the first extensive evaluation of the in vitro activities of the novel small-molecule antimicrobial DIS-73285 against a large geographically, temporally and genetically diverse collection of clinical N. gonorrhoeae isolates and international reference strains, including various types of high-level resistant, MDR and XDR gonococcal isolates. DIS-73285 was shown to be substantially more potent, with an MIC₉₀ of ≤0.001 mg/L, than any of the additional antimicrobials tested, i.e. ceftriaxone, cefixime, azithromycin, spectinomycin, ciprofloxacin, ampicillin and tetracycline.

As previously mentioned, as a consequence of the widespread AMR and cross-resistance between antimicrobials in N. gonorrhoeae, new antimicrobials with novel targets and mechanism of action, such as DIS-73285, are urgently needed and novel approaches like Summit’s proprietary transposon and bioinformatics-based Discuva platform are very important. Briefly, this platform enables the identification of novel antibacterial chemical classes that are distinct from current antibiotic classes and with novel targets and mechanism of action lacking overlap with currently used antimicrobial classes. Other promising antimicrobials in the pre-clinical and/or clinical pipeline for treatment of gonorrhoea include SMT-571 (belonging to the DDS-01 series), which is another small-molecule antimicrobial revealed by the same Discuva platform. Additional novel gonorrhea therapeutic antimicrobials are the pleuromutilin lefamulin, the triazaacenaphthylene gepotidacin and the spiropyrimidinetrione zoliflodacin, which has recently entered a Phase 3 randomized controlled clinical trial (RCT). Although both gepotidacin and zoliflodacin performed relatively well regarding safety, tolerability and in eradicating urogenital gonorrhoea, rare treatment failures were reported in their Phase 2 RCTs.

In conclusion, the novel small-molecule antimicrobial, DIS-73285, displays a novel target and mechanism of action, with high in vitro potency against N. gonorrhoeae. Further in vitro and in vivo studies, evaluating efficacy, resistance emergence, pharmacokinetic/pharmacodynamic parameters, toxicity and safety, are required to evaluate if DIS-73285 can be an effective and safe treatment specifically for urogenital and extra-genital gonorrhoea.

Acknowledgements

We are grateful to Summit Therapeutics, Cambridge, UK, for providing DIS-73285. The work was performed at the WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, SE-701 85 Örebro, Sweden.

Funding

This work was supported by grants from the Örebro County Council Research Committee, Örebro, Sweden; the Foundation for Medical Research at Örebro University Hospital, Örebro, Sweden; and Summit Therapeutics, Cambridge, UK.

Transparency declarations

C.M., N.K. and P.M. are employed by and hold shares in Summit Therapeutics, Cambridge, UK. S.J. and M.U.: none to declare.

References

1. Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 2016; 27: 587–613.
2. Wö T, Lahra MM, Nduwa F et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med 2017; 14:e1002344.
3. Unemo M, Lahra MM, Cole M et al. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sex Health 2019; 16: 412–25.
4. World Health Organization (WHO). WHO Guidelines for the Treatment of Neisseria gonorrhoeae; WHO; 2016. http://www.who.int/reproductivehealth/publications/rtis/gonorrhoea-treatment-guidelines/en/.
5. Workowski KA, Bolan GA; Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 2015; 64: 1–137.
6. Bignell C, Unemo M; European STI Guidelines Editorial Board. European guideline on the diagnosis and treatment of gonorrhoea in adults. Int J STD AIDS 2012; 24: 85–92.
7. Romanowski B, Robinson J, Wong T. Gonococcal infections chapter. In: Canadian Guidelines on Sexually Transmitted Infections. 2013. www.phac-aspc.gc.ca/std-mts/sti-ts/stds-gst/section-5-6-eng.pdf.
8. Australasian Sexual Health Alliance (ASHA). Gonorrhoea. In: Australian STI guideline on the diagnosis and treatment of Neisseria gonorrhoeae in adults. Int J STD AIDS 2017; 24: 735–40.
9. Fifer H, Saunders J, Soni S et al. 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int J STD AIDS 2020; 31: 4–15.
10. Bokio I, Golparian D, Krynytska I et al. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates and treatment of gonorrhoea patients in Ternopil and Dnipropetrovsk regions of Ukraine, 2013-2018. APMIS 2019; 127: 503–9.
11. Japanese Society for Sexually Transmitted Infections. Gonococcal infection. Sexually transmitted infections, diagnosis and treatment guidelines 2011 [in Japanese]. Jpn J Sex Transm Dis 2011; 22 Suppl 1: S2–9.
12. Fifer H, Natarajan U, Jones L et al. Failure of dual antimicrobial therapy in treatment of gonorrhoea. N Engl J Med 2016; 374: 2504–6.
13. Nakayama S-I, Shimoto M, Furuoyayoshi K-I et al. New ceftriaxone and multitraffic-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother 2016; 60: 4339–41.
14. Lahra MM, Martin I, Demczuk W et al. Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg Infect Dis 2018; 24: 735–40.
15. Lefebvre B, Martin I, Demczuk W et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg Infect Dis 2018; 24: 381–3.
16. Terkelsen D, Tolstrup J, Jonsen CH et al. Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Euro Surveill 2017; 22 pii: 17-00659.
17. Poncin T, Fouere S, Braille A et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill 2018; 23: pii=1800264.
18. Golparian D, Rose L, Lynam A et al. Multidrug-resistant Neisseria gonorrhoeae isolates, belonging to the internationally spreading Japanese FC428
High in vitro activity of DIS-73285 against N. gonorrhoeae

clon with ceftriaxone resistance and intermediate resistance to azithromycin in Ireland, August 2018. Euro Surveill 2018; 23: pii=1800617.

19 Eyre DW, Town K, Street T et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clon with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Euro Surveill 2019; 24: pii=1900147.

20 Eyre DW, Sanderson ND, Lord E et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill 2018; 23: pii=1800323.

21 Whiley DM, Jennison A, Pearson J et al. Genetic characterization of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect Dis 2018; 18: 717–18.

22 Jennison AV, Whiley D, Lahra MM et al. Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Euro Surveill 2019; 24: pii=1900118.

23 World Health Organization. Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1.

24 Mason C, Meo P, Avis T et al. High density transposon mutant profiling to enable discovery and development of novel antimicrobials. In: Abstracts of the ASM Microbe 2018, Atlanta, USA, 2018. Abstract 662. https://www.summitplc.com/publications/.

25 Breidenstein EBM, Avis T, Coward C et al. High density transposon mutant profiling enables the discovery and development of novel antimicrobials. In: Abstracts of the ESCMID/ASM 2018, Lisbon, Portugal, 2018. Abstract 55. https://www.summitplc.com/publications/.

26 Avis T, Breidenstein EBM, Coward C et al. DDS-03: a highly potent and selective novel small molecule series to treat multi-drug resistant Neisseria gonorrhoeae. In: Abstracts of the ASM Microbe 2018, Atlanta, USA, 2018. Abstract 648. https://www.summitplc.com/publications/.

27 Unemo M, Fasth O, Fredlund H et al. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J Antimicrob Chemother 2009; 63: 1142–51.

28 Unemo M, Golparian D, Sánchez-Busó L et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2016; 71: 3096–108.

29 Gianecini RA, Golparian D, Zittermann S et al. Genome-based epidemiology and antimicrobial resistance determinants of Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina in 2011-16. J Antimicrob Chemother 2019; 74: 1551–9.

30 CLSI. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Eleventh Edition: M07. 2018.

31 Jacobsson S, Unemo M, Khan N et al. In vitro activity of SMT-571 and comparators against clinical isolates and reference strains of Neisseria gonorrhoeae. In: Abstracts of the ASM Microbe 2019, San Francisco, USA, 2019. Abstract 758. https://www.summitplc.com/publications/.

32 Jacobsson S, Mason C, Khan N et al. In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae—future treatment option for gonorrhoea? J Antimicrob Chemother 2019; 74: 1591–4.

33 Paukner S, Gruss A, Jensen JS. In vitro activity of lefamulin against sexually transmitted bacterial pathogens. Antimicrob Agents Chemother 2018; 62: e02380–17.

34 Jacobsson S, Paukner S, Golparian D et al. In vitro activity of the novel pleuromutilin lefamulin (BC-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2017; 61: e01497–17.

35 Taylor SN, Morris DH, Avery AK et al. Gepotidacin for the treatment of uncomplicated urogenital gonorrhoea: a Phase 2, randomized, dose-ranging, single-oral dose evaluation. Clin Infect Dis 2018; 67: 504–12.

36 Scangarella-Oman NE, Hassain M, Dixon PB et al. Microbiological analysis from a Phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhoea caused by Neisseria gonorrhoeae. Antimicrob Agents Chemother 2018; 62: e01221–18.

37 Unemo M, Ringlander J, Wiggins C et al. High in vitro susceptibility to the novel spiropyrimidinetrione ETX0914 (AZD0914) among 873 contemporary clinical Neisseria gonorrhoeae isolates from 21 European countries from 2012 to 2014. Antimicrob Agents Chemother 2015; 59: 5220–5.

38 Basarab GS, Kern GH, McNulty J et al. Responding to the challenge of untreatable gonorrhoea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci Rep 2015; 5: 11827.

39 Taylor SN, Marrazzo J, Bateleiger BE et al. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhoea. N Engl J Med 2018; 379: 1835–45.