Producing Optimum Quality Grinding Spindle Using Hardened AISI 4340 Steel through a Cylindrical Grinding Process

Manikandan.M, Prabagaran.S, Sivaram.N.M, Milon Selvam Dennison

Abstract: The intent of this study is to produce optimum quality grinding spindle using hardened AISI 4340 steel through the cylindrical grinding process. Primarily the AISI 4340 steel specimens are cut according to the product specification and subjected to rough machining. Then the steel specimens are subjected to a heat-treatment process to enhance the mechanical property hardness so that the specimen becomes wear-resistant. The experimental runs are planned depending on Taguchi’s L27(3^7) array and conducted in a cylindrical grinding machine (Toyota G32 cylindrical grinding machine). The surface roughness of the machined specimens is measured using a calibrated surface roughness tester. A prediction model is created through regression analysis for the outcome. The significance of the selected grinding factors and their levels on surface roughness is found by analysis of variance (ANOVA) and F-test and finally. An affirmation test is directed to produce the ideal components.

Keywords: Grinding spindle; Cylindrical grinding; AISI 4340; Taguchi; Regression analysis, ANOVA.

I. INTRODUCTION

Superior efficiency, precision and the reduced expense of manufacturing process are the prime target of the engineering industry [1]. The act of machining is the premise of the engineering industry and associated with every item either straightforwardly or in a roundabout way in the present development [2]. The machining is the metal cutting process wherein excessive metals are expelled from the workpiece to frame the required size, shape and surface completion of the item [3]. The various metal cutting procedures are turning, drilling, boring, reaming, milling, planning and shaping, threading and tapping, grinding, burningish and deburring [4-5].

Among them, the grinding process was created as a metal cutting procedure in the nineteenth century [6]. In the middle of the twentieth century, it was understood that the grinding process was the highest innovation process in the manufacturing of engine parts, bearings, microelectronic devices, transmission, astronomical instruments, and the grinding process was identified as a key to achieve desired quality [7]. Grinding is a machining process utilized for completing an activity on the workpiece for high precision, low material expulsion, and high surface completion of hard materials with close dimensional tolerances [8]. The cylindrical grinding is an indispensable and basic type of cylindrical grinding process in which the workpiece is rotated by work head of the machine, held between work head and tailstock centres [9]. The grinding wheel approaches the workpiece automatically during the transverse acting of the rotating workpiece during traverse grinding, and in plunge grinding the rotating workpiece is kept stationary without table traverse [18-19]. The improved productivity in machining depends on the higher material removal rate with higher surface finish achieved through the correct choice of process parameters which require in-depth knowledge on wheel and machine cutting parameters [10].

The parameter configuration approach of Taguchi’s technique is applied for the enhancement of tube-shaped crushing procedure parameters [11]. In Taguchi technique, a symmetrical cluster is utilized to structure the tests, Signal to Noise(S/N) and crude information investigation are utilized to assess the effect of granulating process parameters on Material Removal Rate (MRR), and the Analysis of Variance (ANOVA) is utilized to assess the nature of the procedure [12]. The parameter arrangement approach of Taguchi’s system is associated with the improvement of barrel-shaped crushing procedure parameters [13]. In the Taguchi procedure, the symmetrical cluster is used to design the tests, and Analysis of Variance (ANOVA) is used to evaluate the impact of the variables [14].

Many researchers and practitioners have adapted Design of Experiment (DoE) technique for planning the experiments in the machining of carbon steel alloy, and a few are discussed in the following section.

Yang et al. [15] investigated the processing factors in turning and created a predictor for surface roughness using DoE. Their experimentation revealed that the feed was the most prominent factor on roughness trail by cutting speed. The same result was validated through experimentation by, Zerti et al., [16]. Xiao et al., [17] analyzed the consequence of velocity, profundity of slash and nourish towards the exterior cease by ANOVA and regression model. It was suggested that the feed had utmost control on the surface cease compared to the depth of cut and speed. Mia and...
Dhar [18] analyzed the surface cease in spinning of steel and found that the material hardness was the most affecting factor on surface finish and interface temperature, and increasing cutting speed led to achieving a good surface finish with high-pressure coolant condition.

It seems certain that machining studies have been completed by different scientists. In any case, there are problems in the machining of metal which requires that additional investigation must be completed to place a sensible resolution. The intent of this research work is to produce the best quality grinding spindle using hardened AISI 4340 steel through the cylindrical grinding process. The examination of grinding is done by making use of the demonstrated test structure strategy.

II. EXPERIMENT DETAILS

A. Work Piece

The cylindrical workpiece made of AISI 4340 steel was selected for this study. AISI 4340 steel is high tensile alloy steel with wear resistance properties and extensively used in the automotive and general engineering applications which include aircraft, propeller or gear shafts, connecting rods and aircraft landing gear components. The geometry of the grinding spindle is shown in Figure 1. The chemical composition of AISI 4340 steel is shown in Table 1.

Table 1: Chemical Composition of AISI 4340

Element	%Composition
Fe	95.195 - 96.33
Ni	1.65 - 2.00
Cr	0.900 - 1.400
Mn	0.600 - 0.800
C	0.370 - 0.430
Mo	0.200 - 0.500
Si	0.150 - 0.300
Cu	0.180 - 0.310

B. Heat Treatment

The AISI 4340 rough machined specimens were heat-treated following the standard ASTM D6200 – 01 [19]. The AISI 4340 steel specimens were heated gradually to 850°C and subsequent to quenched in oil and the specimens were put in a salt tub, which would lessen the likelihood of decarburization or scaling. Thus, hardening of the AISI 4340 steel specimens was performed. The photograph of the heat-treated specimens is shown in Figure 2.

C. Grinding wheel

White Aluminium oxide grinding wheels of grades AA46/54-K5-V8, AA60-K5-V8, A80-K5-V10 of different wheel grit sizes 46, 60 and 80 were used to conduct this research work.

D. Cutting Fluid

Servosynth is water-soluble synthetic grinding fluid. The arrangements of these liquids are completely clear and free from oil or grease. Servosynth emulsified with water was utilized as a cutting liquid for machining the steel examples. Properties of cutting fluid Servosynth grade oil are given in Table 2.

Table 2: Fluid Properties of Servosynth grade oil

Property	Value
Flash Point	150°C
Kinematic Viscosity at 40°C	60St
Specific Gravity	1.206

E. Experimental Conditions

The highly influencing machining factors were considered for the experimentation and their levels are indicated in Table 3. The trials were arranged in view of Taguchi's orthogonal array in a cylindrical grinding machine (Toyoda G32), as shown in Figure 3. The conditions of the experimentation are specified in Table 4.

Table 3: Control factors and levels

Notation	Parameters	Unit	Levels
A	Wheel Grit Size		46 60 80
B	Work speed	m/min	10 14 18
C	Table feed, mm/rev of job		8 12 16
D	Grinding depth of cut	μm	12 18 24
E	Dressing feed	mm/min	170 220 270
F	Dressing depth of cut	μm	5 10 15
G	Coolant flow	l/min	30 40 50

Table 4: Experimental conditions

Workpiece used	AISI 4340
Grinding wheel	White Aluminium oxide of wheel grit sizes 46, 60 and 80
Machine tool	Toyoda G32 cylindrical grinding machine
Cutting fluid	Servosynth
Planning of the experiment	Taguchi’s orthogonal array
Output response	Surface roughness
F. Surface Roughness tester

The surface roughness of the turned samples was tested using a surface roughness tester (Carl Zeiss Surfcom 130A) shown in Figure 4.

![Figure 5: Photograph of surface roughness tester](image)

Figure 5: Photograph of surface roughness tester

III. RESULTS AND DISCUSSION

A. Optimization by Taguchi Technique

A.1 S/N ratio calculation

The quality attribute with the sort of ‘smaller-the-better’ measured in this research work was surface roughness of the machined samples. The S/N ratio for the yield response was computed by using the following Equation (1) for each machining condition and their values are given in Table 5, where, ‘Ra’ is the average surface roughness value of the trials Ra1, Ra2, Ra3, Ra4 of the single machined component.

\[
S/N(dB) = -10\log_{10}\left(\frac{1}{n}\sum_{i=1}^{n}Ra_i^2\right)
\]

where \(i = 1, 2, \ldots, n\) (here \(n = 7\)) and Ra is the response value.

Expt. run	Wheel Grit Size	Wheel Grit Size	Table speed, mm/rev of job	Table speed, mm/rev of job	Grinding Depth of cut	Dressing Feed	Dressing Depth of cut	Coolant flow	Coolant flow	Surface Roughness	Surface Roughness	S/N Ratio	S/N Ratio
A	(m/min)	(mm/rev)	(µm)	(mm/min)	(µm)	(µl/min)	(µl/min)	(µm)	(µm)	Ra1	Ra2	Ra3	Ra4
B	1	46	10	8	12	170	5	30	0.383	0.384	0.384	0.383	0.384
C	2	46	10	12	18	220	10	40	0.349	0.349	0.349	0.349	0.349
D	3	46	10	16	24	270	15	50	0.409	0.409	0.409	0.409	0.409
E	4	46	14	8	18	270	15	50	0.478	0.478	0.478	0.478	0.478
F	5	46	14	12	24	170	5	30	0.283	0.282	0.282	0.282	0.282
G	6	46	14	16	12	220	10	40	0.339	0.339	0.339	0.339	0.339
H	7	46	18	8	24	220	10	40	0.404	0.404	0.404	0.404	0.404
I	8	46	18	12	12	270	15	50	0.441	0.441	0.441	0.441	0.441
J	9	46	18	16	18	170	5	30	0.260	0.260	0.260	0.260	0.260

![Figure 3: Photograph of cylindrical grinding machine](image)

Figure 3: Photograph of cylindrical grinding machine

![Figure 4: Machined AISI 4340 specimens](image)

Figure 4: Machined AISI 4340 specimens
Producing Optimum Quality Grinding Spindle Using Hardened AISI 4340 Steel through a Cylindrical Grinding Process

Expt. Run	Wheel Grit Size	Work speed (m/min)	Table feed, mm/rev of job	Grinding Depth of cut (µm)	Dressing feed (mm/min)	Dressing Depth of cut (µm)	Coolant flow	Surface Roughness (µm)
A	B	C	D	E	F	G		
1	46	10	8	12	170	15	5	0.485
2	46	10	12	18	220	10	40	0.485

Table 6: Analysis of Variance

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F-Value	P-Value
A	1	0.053970	21.34%	0.018750	0.018750	78.78	0.0001
B	1	0.000228	0.09%	0.003923	0.003923	16.48	0.0100
C	1	0.007850	3.10%	0.000285	0.000285	1.19	0.3260
D	1	0.003554	1.41%	0.000911	0.000911	3.83	0.1080
E	1	0.000110	0.04%	0.000270	0.000270	11.37	0.0200
F	1	0.149000	58.91%	0.061794	0.061794	259.63	0.0001
G	1	0.008399	3.32%	0.000003	0.000003	0.01	0.9200
AB	1	0.000354	0.14%	0.000478	0.000478	2.01	0.1260
AC	1	0.002464	0.97%	0.000100	0.000100	0.42	0.5460
AD	1	0.000368	1.21%	0.000054	0.000054	0.23	0.6540
AE	1	0.000055	0.02%	0.000127	0.000127	5.37	0.0080
AF	1	0.000640	2.63%	0.000442	0.000442	1.86	0.2310
BC	1	0.000074	0.03%	0.000035	0.000035	0.15	0.7180
BD	1	0.004416	1.75%	0.006323	0.006323	26.56	0.0040
BF	1	0.003161	1.25%	0.000273	0.000273	1.15	0.3330
BG	1	0.002727	0.88%	0.000239	0.000239	1.00	0.3620
CD	1	0.000419	1.63%	0.000191	0.000191	17.61	0.0090
CF	1	0.000121	0.44%	0.000439	0.000439	1.84	0.2330
CG	1	0.000576	0.23%	0.000065	0.000065	0.27	0.6230
DF	1	0.000112	0.04%	0.000112	0.000112	0.47	0.5220
EF	1	0.000223	0.09%	0.000223	0.000223	0.94	0.3770
Error	5	0.001190	0.47%	0.000028	0.000028		
Total	26	0.252910	100.00%				

R²adj=99.8% R²(adj)=97.55%

Table 7: Experimental results and deviations

Expt. Run	Wheel Grit Size	Work speed (m/min)	Table feed, mm/rev of job	Grinding Depth of cut (µm)	Dressing feed (mm/min)	Dressing Depth of cut (µm)	Coolant flow	Surface Roughness (µm)
A	B	C	D	E	F	G		
1	46	10	8	12	170	15	5	0.3840
2	46	10	12	18	220	10	40	0.3498

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Retrieval Number: B6437129219/2019©BEIESP
DOI: 10.35940/ijeet.B6437.129219
The estimation of ‘Prob.>F’ in Table 6 for the model is under 0.05, which demonstrates that the model is significant, which is desirable as it shows that the terms in the model significantly affect the yield response. From ANOVA, it is evident that dressing depth of cut impacts more on the surface roughness, trailed by the wheel grit size, coolant flow, table feed, mm/rev of job, grinding depth of cut, work speed, and dressing feed. This is harmonizing with the current hypotheses of machining.

A.2 Mathematical model

By means of regression analysis with the aid of MINITAB 17 statistical software, the effect of machining parameters on mean surface roughness (Ra) was modeled as follows.

\[
Ra = 1.609 + 0.0021A - 0.1252B + 0.0279C - 0.0528D - 0.000518E - 0.0428F0.00830G + 0.000119AB + 0.000235AD + 0.000028AE + 0.000292AF + 0.000288BC + 0.002589BD + 0.00260BF + 0.00120BG + 0.01795CD - 0.000455CF - 0.00070CG + 0.00123DF - 0.00036EF
\]

(2)

For the above mathematical model, it was found that \(R^2 = 0.99 \), where ‘R’ is the correlation coefficient and the value range of ‘R^2’ should be between 0.8 and 1 [20]. The value of ‘R^2’ indicates the nearness of the mathematical model representing the yield response. The experimental results and the deviations are given in Table 7 and the plot of the deviation is shown in Figure 6.
The average deviation between predicted and actual experimental response values was found to be 1.41%. Since error percentage is lesser than 5%, the mathematical model illustrated in equation (2) could be used for predicting surface roughness for various machining conditions.

A.3 Response curves

Response curves are a graphical depiction of the adjustment in execution uniqueness for the variety in factor levels. Figure 7 outlines the response graph for seven variables and three levels. From the graph, the pinnacle focuses were picked as the ideal levels of machining factors i.e. wheel grit size at first level, the work speed at second level, table feed mm/rev of job at second level, grinding depth of cut at first level, dressing feed at the second level, dressing depth of cut at the first level and coolant flow at the third level.

![Response graph](image)

Figure 7: Response graph

The surface roughness of the machined steel alloy components increases with an increase in all the machining factors. The surface roughness of the machined steel alloy components was more while machining at higher dressing depth of cut and minimum surface roughness was observed while machining at minimum dressing depth of cut, the trend graph of surface roughness was decreasing from 15µm to 5µm of the dressing depth of cut. At higher table feed and work speed, more material has to be removed which results in increased cutting force on the tool concurrently increasing the energy required to machine the steel alloy components. This increased cutting force diminishes the surface quality of the steel alloy components.

A.4 Affirmation test

The affirmation test was directed at the ideal levels of machining parameters and the outcome is given in Table 8.

![Normal probability plot of residuals for surface roughness data](image)

Figure 8: Normal probability plot of residuals for surface roughness data

Table 8: Affirmation test

Factors	Surface roughness (Ra) in µm	Deviation %								
Wheel Grit Size	Work speed	Table feed, mm/rev of job	Grinding Depth of cut	Dressing feed	Dressing Depth of cut	Coolant flow	Experimented	Predicted		
A (m/min)	B (m/min)	C (mm/rev)	D (µm)	E (mm/min)	F (µm)	G (l/min)				
46	14	12	12	220	5	50	0.2843	0.2992	4.9716	
The ammepnness of the modular has been researched by the assessment of residuals. The residuals, which are the difference between the particular observed response and the anticipated response, are analyzed utilizing ordinary normal probability plots of the residuals and the plots of the residuals versus the anticipated response. In the event that the model is sufficient, the focus on the normal probability plots of the residuals should shape a straight line. Then again, the plots of the residuals versus the anticipated response ought to be structureless, that is, they ought to contain no undeniable example. The normal probability plots of the residuals and the plots of the residuals versus the anticipated response for the surface roughness esteem appear in Figures 8 and Figure 9. It reveals that the residuals by and large fall in a straight line suggesting that the mistakes are disseminated ordinarily. This shows that the replica proposed is satisfactory and there is no motivation to associate any infringement with the autonomy or steady difference suspicion.

IV. CONCLUSION

In this background, the study reported in this paper was the surface roughness test conducted during cylindrical grinding operation of AISI 4340 steel with a white Aluminium oxide grinding wheel of three grit sizes in flooded coolant condition. The following conclusions were drawn out from the present examination;

i. From ANOVA, it is evident that dressing depth of cut impacts more on the surface roughness, trailed by the wheel grit size, coolant flow, table feed, mm/rev of job, grinding depth of cut, work speed, and dressing feed.

ii. A generalized mathematical model was developed through regression analysis using Minitab statistical software for the mean surface roughness. From the equation the mean surface roughness value could be calculated if the factors namely wheel grit size, the work speed, table feed mm/rev of job, grinding depth of cut, dressing feed, dressing depth of cut and coolant flow are known.

iii. The mathematical models obtained for surface roughness was verified with the actual values and an average variation of 1.41% was observed in the case of surface roughness.

iv. From the experimentation it is clear that, wheel grit size at first level, the work speed at second level, table feed mm/rev of job at second level, grinding depth of cut at first level, dressing feed at the second level, dressing depth of cut at the first level and coolant flow at the third level yielded minimum surface roughness, which is the sign of better quality machined components.

v. The optimum grinding condition found in this research work could be used when AISI 4340 steel alloy is used for the production of grinding spindle.

REFERENCES

1. Mehrabi, M.G., Ulsoy, A.G. and Koren, Y., 2000. Reconfigurable manufacturing systems: Key to future manufacturing. Journal of Intelligent manufacturing, 11(4), pp.403-419.

2. Lieder, M. and Rashad, A., 2016. Towards circular economy implementation: a comprehensive review in context of manufacturing industry. Journal of cleaner production, 115, pp.36-51.

3. Schreiber, A.T., Schreiber, G., Akkermans, H., Anjewierden, A., Shadbolt, N., de Hoog, R., Van de Velde, W., Shadbolt, N.R. and Wielinga, B., 2000. Knowledge engineering and management: the CommonKADS methodology, MIT press.

4. Rajurkar, K.P., Zhu, D., McGeough, J.A., Kozak, J. and De Silva, A., 1999. New developments in electro-chemical machining. CIRP annals, 48(2), pp.567-579.

5. Selvam, M.D. and Senthil, P., 2016. Investigation on the effect of turning operation on surface roughness of hardened C45 carbon steel. Australian Journal of Mechanical Engineering, 14(2), pp.131-137.

6. Selvam, M.D., Senthil, P. and Sivaram, N.M., 2017. Parametric optimisation for surface roughness of AISI 4340 steel during turning under near dry machining condition. International Journal of Machining and Machinability of Materials, 19(6), pp.554-569.

7. Dhar, N.R., Kamruzzaman, M. and Ahmed, M., 2006. Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of materials processing technology, 172(2), pp.299-304.

8. Ezugwu, E.O., 2005. Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45(12-13), pp.135-1367.

9. Selvam, M.D. and Sivaram, N.M., 2018. A comparative study on the surface finish achieved during turning operation of AISI 4340 steel in flooded, near-dry and dry conditions. Australian Journal of Mechanical Engineering, pp.1-10.

10. Bennett, R.S. and May, C.F., 1966. Performance studies on a typical centreless grinding machine with reference to truing and balancing of the grinding wheel. International Journal of Machine Tool Design and Research, 6(2), pp.47-101.

11. Scott, D., Boyina, S. and Rajurkar, K.P., 1991. Analysis and optimization of parameter combinations in wire electrical discharge machining. The International Journal of Production Research, 29(11), pp.2189-2207.

12. Jahan, M.P., Rahman, M. and Wong, Y.S., 2011. A review on the conventional and micro-electrodischarge machining of tungsten carbide. International Journal of Machine Tools and Manufacture, 51(12), pp.837-858.

13. Dennison, M.S., Meji, M.A., Nelson, A.J.R., Balakumar, S. and Prasath, K., 2019. A comparative study on the surface finish achieved during face milling of AISI 1045 steel components using eco-friendly cutting fluids in near dry condition. International Journal of Machining and Machinability of Materials, 215(6), pp.337-356.

Nomenclature

AISI - American Iron and Steel Institute
ANOVA - Analysis of Variance
OA - orthogonal array
S/N - Signal to Noise
DoE - Design of Experiment
Ra - Mean surface roughness in µm
ASTM - American Society for Testing and Materials
°C - Degree Celsius
cSt - centiStokes
m/min - metre per minute
mm/rev - millimeter per revolution
µm - micrometre
mm/min - millimetre per minute
l/min - litre per minute
R - Correlation coefficient

Figure 9: The plot of residuals vs. fitted surface roughness values

Figure 8: The plot of residuals versus the anticipated response. In the event that the model is sufficient, the focus on the normal probability plots of the residuals should shape a straight line. Then again, the plots of the residuals versus the anticipated response ought to be structureless, that is, they ought to contain no undeniable example. The normal probability plots of the residuals and the plots of the residuals versus the anticipated response for the surface roughness esteem appear in Figures 8 and Figure 9. It reveals that the residuals by and large fall in a straight line suggesting that the mistakes are disseminated ordinarily. This shows that the replica proposed is satisfactory and there is no motivation to associate any infringement with the autonomy or steady difference suspicion.
Advances in Science, Technology and Engineering fields of machining in Karpagam Academy of Technology, Coimbatore in 2008; MTech degree in Industrial Safety Engineering from National Institute of Technology, Tiruchirappalli in 2010 and Ph.D. degree in Mechanical Engineering from Anna University, Chennai through PSG College of Technology, Coimbatore in 2014. He is currently working as Assistant Professor in the Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal, India. He has 24 papers published in international journals. His current research interests include manufacturing engineering and industrial safety engineering.

N.M.Sivaram

Milton Selvam Dennison received his BTech degree in Mechanical Engineering from Bharath Institute of Higher Education and Research, Chennai, India, ME degree in Manufacturing Engineering from Anna University, India and a Ph.D. degree from Karpagam Academy of Higher Education, India in 2007, 2009 and 2018 respectively. Presently, he is doing research in the field of metal cutting fluids. He has various publications in both national and international journals. He is currently working as Senior Lecturer in the Department of Mechanical Engineering, Kampala International University, Uganda. His current research interests include manufacturing of materials, metal cutting, metal cutting fluids and machining optimisation.

AUTHORS PROFILE

M.Manikandan has obtained his bachelor degree in Mechanical Engineering from Periyar University and Master Degree in Engineering Design from Anna University, Chennai. Currently he is working for his research in the field of machining in Karpagam Academy of Higher Education as a research scholar. His area of interest includes machining of heat treated steel and parameter optimization.

Dr. S. Prabagaran has completed his Diploma in Mechanical Engineering from DOTE - Tamilnadu in the year 1979. He started his career at Lakshmi Machine Works Limited (LMW) from 1979 as Supervisor and grew up as a Manager, having 31 years of industrial experience at LMW. He completed his Undergraduate Degree B.E in Mechanical Engineering from Bharathiyar University at Govt. College of Technology, Coimbatore in the year 1986. He completed his Post graduate Degree M.E in Machine Tool Engineering from Bharathiyar University at P.S.G.College of Technology, Coimbatore in the year 1988. He obtained his Master’s Degree M.S in Manufacturing Management from BITS – Pilani, in the year 2002. He was awarded with Ph.D in Manufacturing (Research work in Metal Matrix Hybrid Composites) by Karpagam University in the year 2015. He started his Teaching career from 4.1.2010 at Karpagam University, Coimbatore as Assistant Professor in Mechanical Engineering Dept. and now working as Professor in Mechanical Engineering. He has authored for 6 Technical articles (manufacturing) which are published in reputed international journals and co – authored for 25 Technical articles (manufacturing) which are published in reputed international journals. He has co-authored a text book on “A Smart LEAN practice in SME” published by “Lambert Academic Publishing”, Germany. He is an approved Technical and Management article reviewer of the international Journal “Advances in Science, Technology and Engineering Systems Journal (ASTESJ)”.

N.M.Sivaram

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication

Milton Selvam Dennison