ACL 2013 MultiLing Pilot Overview

Jeff Kubina
U.S. Department of Defense
9800 Savage Rd., Ft. Meade, MD 20755
jmkubin@tycho.ncsc.mil

John M. Conroy, Judith D. Schlesinger
IDA/Center for Computing Sciences
17100 Science Dr., Bowie, MD
conroy@super.org, drj1945@gmail.com

Abstract

The 2013 Association for Computational Linguistics MultiLing Pilot posed a task to measure the performance of multilingual, single-document, summarization systems using a dataset derived from many Wikipedias. The objective of the pilot was to assess automatic summarization of multilingual text documents outside the news domain and the potential of using Wikipedia articles for such research. This report describes the pilot task, the dataset, the methods used to evaluate the submitted summaries, and the overall performance of each participant’s system.

1 Introduction

Document summarization is an active subject of research and development. The ACM Digital Library has about 806 reports on the subject published since 1993, with over half of them appearing in the last five years. While the impetus for much of this research is the annual Text Analysis Conference (TAC) workshop on document summarization, there is a growing demand in the consumer market for news summarization applications being met by tablet and smart-phone applications such as Clipped\(^1\), Summoner\(^2\), TLDR\(^3\), and Yahoo News. Yahoo and Google even acquired two companies developing such applications, Summly (Stelter, 2013) and Wavii (Tsotsis, 2013) respectively, earlier this year. While summarization technology for news sources is coming to fruition, the performance of such technology on non-English documents outside the news domain has not been thoroughly assessed and may need further research. Since the datasets used by the TAC summarization workshops have predominately been English news articles, with some exceptions (Giannakopoulos et al., 2011), the objective of the 2013 ACL MultiLing Pilot was to assess the performance of automatic multilingual single-document summarization systems on non-English text outside the news domain and to determine the potential of using Wikipedia articles for such research.

This report starts with a description of the task and dataset, the methods used to evaluate the submitted summaries, the performance of each participating system, and concludes with an assessment of the pilot and potential future work.

2 Task and Dataset Description

The objective of each participant system of the pilot was simple: compute a summary for each document in at least two of the datasets languages. No restrictions were placed on the languages that could be chosen nor was any target summary size specified.

The dataset was derived from a corpus created in 2010 to measure the performance of the CLASSY (Conroy et al., 2009) summarization algorithm on non-English documents outside the news domain. At the time such a corpus did not exist so one was created from the Wikipedias. To date there are Wikipedias in 285 languages comprising over 75 million pages. Some of the Wikipedias maintain a list of Feature Articles, which are articles reviewed and voted upon by editors as the best that fulfill Wikipedia’s requirements in accuracy, neutrality, completeness, and style. One such requirement is that the article have a lead section that should

\[\ldots\text{be able to stand alone as a concise overview. It should }\ldots\text{summarize the most important points }\ldots\text{material in the lead should roughly reflect its im-}\]

\(^1\text{http://goo.gl/dFKD9}\)
\(^2\text{http://goo.gl/0QFiaZ}\)
\(^3\text{http://goo.gl/qEgCs}\)
portance to the topic . . .

So the lead section of a featured article is an excellent summary of it, hence, the featured articles were used to create the corpus. In 2010 there were 41 Wikipedias with more than nine featured articles. The Perl module Text::Corpus:Summaries::Wikipedia was developed to automatically create the corpus from the featured articles of those Wikipedias. The corpus is publicly available (Kubina, 2010) and the Perl module can be used to create an updated corpus.

The dataset for the pilot was created from a subset of the 2010 corpus. This was done to ensure that each language had 30 articles and that the size of each article’s body text was sufficiently large. First, for each article the summary and body were compressed to approximate their information content size. For example, given a Chinese and English article with the same character length the Chinese article will usually contain more information than an English article and their compressed sizes will approximate their true information content. Next, if the compressed body size of an article was less than five times its compressed summary size, then the article was discarded. The factor of five was simply chosen to ensure the body of each article was sufficiently large relative to the summary size. For each language the median of the ratio of compressed body size to compressed summary size was computed and only the 30 articles closest to the median were included in the dataset. This filtering reduced the corpus from 12,819 articles in 41 languages to the dataset containing 1,200 articles in 40 languages. For each language in the dataset Table 1 contains the mean size of the articles, their bodies, and their summaries, in characters.

3 Evaluation Methods and Results

Four teams submitted the results of six summarization systems. The teams are denoted by AIS, LAN, MD, and MUS; the MD team submitted three systems. Throughout this report the systems are denoted by AIS, LAN, MD1, MD2, MD3, and MUS. Table 2 contains the list of languages submitted for each system and the mean size, in characters, of the summaries submitted.

For the evaluation a baseline summary was extracted from the each article in the dataset that is the prefix substring of the article’s body text with the same length as the text in the lead section of the article. For the remainder of this report the lead section of an article is called the human summary. An oracle summary was also computed for each article by heuristically extracting sentences from its body text to maximize its ROUGE-2 score against the human summary until its size exceeded the human summary, upon which it was truncated.

Submitted summaries were automatically evaluated against the human summary of each article using ROUGE-1, ROUGE-2 (Lin, 2004) and MeMoG (Giannakopoulos et al., 2008). For ROUGE, the languages Chinese, Japanese, Korean, and Thai were tokenized into individual characters. For MeMoG the character n-gram size used for each language is listed in Table 3, which is the n-gram size that maximized the standard deviation divided by the mean of the n-gram frequency distribution of the language in the dataset. So the selected n-gram size maximizes the variability of the distribution values relative to their mean. A shorter n-gram size would inflate the MeMoG scores because of their inherent frequent co-occurrence and conversely a longer size would penalize MeMoG scores due to their infrequent co-occurrence.

Each scoring method was performed twice, first by truncating, if necessary, each system summary to the size of the human summary, which is called HSS-scoring. The second set of scores were computed by truncating all the summaries of an article, including the human summary, to the size of the shortest summary amongst the system and human summaries for the article, which is called SSS-scoring. For HSS-scoring the system summaries shorter that the human summary are penalized since ROUGE is recall oriented. Alternately, SSS-scoring gives preference to shorter system summaries that have their best content (extracted sentences) first.

The performance for HSS-scoring of the systems on the seven languages that at least two teams submitted summaries for are given in Figures 1, 2, and 3. Table 4 gives an overview of how often significant differences in each of the three automatic metrics was observed. In particular, the last row gives the fraction of times that an non-parametric analysis of variance (ANOVA) indicated that the
ISO	LANGUAGE	ARTICLE	BODY	SUMMARY
af	Afrikaans	24752 (10214)	23448 (10230)	1303 (196)
ar	Arabic	27845 (9490)	26354 (9530)	1491 (220)
bg	Bulgarian	23965 (9248)	22981 (9250)	984 (134)
ca	Catalan	30611 (15248)	29322 (15274)	1289 (140)
cs	Czech	26300 (10453)	24777 (10414)	1522 (190)
de	German	32023 (12522)	31160 (12530)	862 (53)
el	Greek	26072 (11113)	24937 (11096)	1134 (224)
en	English	26572 (9010)	24860 (9013)	1712 (114)
eo	Esperanto	22295 (10031)	21304 (10022)	990 (106)
es	Spanish	40467 (19563)	38726 (19533)	1740 (113)
eu	Basque	17886 (9845)	17231 (9821)	655 (91)
fa	Persian	15132 (7630)	14099 (7217)	1032 (517)
fi	Finnish	27379 (11783)	26353 (11805)	1025 (105)
fr	French	41578 (21952)	40186 (21959)	1392 (73)
he	Hebrew	18492 (8283)	17697 (8283)	794 (82)
hr	Croatian	21132 (11094)	20276 (11113)	855 (96)
hu	Hungarian	26256 (12161)	25175 (12139)	1081 (90)
id	Indonesian	18550 (9131)	17649 (9124)	901 (114)
it	Italian	39189 (19235)	38042 (19220)	1146 (80)
ja	Japanese	14352 (11890)	14131 (11895)	221 (38)
ka	Georgian	15282 (9570)	14558 (9551)	723 (124)
ko	Korean	17140 (7899)	16416 (7889)	724 (175)
ml	Malayalam	27329 (10645)	26158 (10639)	1170 (331)
ms	Malay	19346 (16577)	18436 (16348)	909 (411)
nl	Dutch	29575 (16346)	28580 (16363)	994 (89)
nn	Norwegian-Nynorsk	16107 (8056)	15384 (7917)	722 (297)
no	Norwegian-Bokmal	30225 (17652)	29218 (17594)	1006 (125)
pl	Polish	23028 (12853)	22067 (12861)	960 (66)
pt	Portuguese	30967 (17998)	29310 (18004)	1657 (110)
ro	Romanian	21921 (12812)	20782 (12773)	1139 (108)
ru	Russian	34069 (13792)	33134 (13771)	934 (70)
sh	Serbo-Croatian	21776 (21469)	21060 (21341)	716 (308)
sk	Slovak	21694 (10067)	20983 (10071)	711 (169)
sl	Slovenian	17900 (7222)	17077 (7194)	823 (135)
sr	Serbian	30239 (9812)	28927 (9764)	1312 (176)
sv	Swedish	23476 (10169)	22314 (10156)	1162 (99)
th	Thai	27041 (8312)	25425 (8291)	1616 (226)
tr	Turkish	32956 (16423)	31346 (16338)	1610 (257)
vi	Vietnamese	35376 (16099)	33857 (16050)	1518 (161)
zh	Chinese	10110 (4341)	9608 (4357)	501 (42)

Table 1: The table lists the languages in the dataset with the first column containing the ISO code for each the language, the second column the name of the language, and the remaining columns containing the mean size, in characters, and standard deviation, in parentheses, of the entire article, their bodies, and their summaries. For example, for English the mean size of the human summaries is 1,712 characters.
Table 2: Mean Summary Size For Submitted Languages of Systems

ISO	LANGUAGE	AIS	LAN	MD1	MD2	MD3	MUS	SUM
af	Afrikaans	966	953	967	1303			
ar	Arabic	1461	876	858	874	2232		
bg	Bulgarian	1302	969	946	967	984		
ca	Catalan	911	921	925	1289			
cs	Czech	1061	1020	1062	1491			
de	German	1492	1072	1037	1087	862		
el	Greek	1367	989	979	991	1134		
en	English	1262	944	957	958	1197	1712	
eo	Esperanto	947	933	956	990			
es	Spanish	922	916	927	1740			
eu	Basque	1154	1151	1167	655			
fa	Persian	793	792	800	1032			
fi	Finnish	1328	1284	1323	1025			
fr	French	936	930	952	1392			
he	Hebrew	871	867	876	1098	794		
hr	Croatian	979	954	976	855			
hu	Hungarian	1092	1064	1089	1081			
id	Indonesian	1091	1085	1091	901			
it	Italian	981	952	975	1146			
ja	Japanese	546	564	563	221			
ka	Georgian	1180	1195	1218	723			
ko	Korean	663	638	656	724			
ml	Malayalam	670	648	676	1170			
ms	Malay	1089	1089	1098	909			
nl	Dutch	994	974	1000	994			
nn	Norwegian-Nynorsk	928	908	929	722			
no	Norwegian-Bokmal	967	937	977	1006			
pl	Polish	1086	1056	1083	960			
pt	Portuguese	942	936	939	1657			
ro	Romanian	1311	938	940	948	1139		
ru	Russian	1095	1046	1078	934			
sh	Serbo-Croatian	969	955	983	716			
sk	Slovak	1026	997	1031	711			
sl	Slovenian	967	949	981	823			
sr	Serbian	990	954	979	1312			
sv	Swedish	997	990	1006	1162			
th	Thai	553	566	563	1616			
tr	Turkish	1166	1132	1152	1610			
vi	Vietnamese	696	684	691	1518			
zh	Chinese	523	559	552	501			

Table 2: The mean summary size, in characters, for each language submitted by each system including the mean of the human summaries in the last column named **SUM**.
Table 3: N-gram Size Per Language for MeMoG

ISO	LANGUAGE	SIZE	ISO	LANGUAGE	SIZE
af	Afrikaans	5	ka	Georgian	3
ar	Arabic	3	ko	Korean	1
bg	Bulgarian	4	ml	Malayalam	3
ca	Catalan	4	ms	Malay	4
cs	Czech	4	nl	Dutch	4
de	German	4	nn	Norwegian-Nynorsk	4
el	Greek	4	no	Norwegian-Bokmal	4
en	English	5	pl	Polish	4
eo	Esperanto	4	pt	Portuguese	4
es	Spanish	4	ru	Russian	4
eu	Basque	4	sh	Serbo-Croatian	3
fa	Persian	4	sk	Slovak	4
fi	Finnish	4	sl	Slovenian	4
fr	French	4	sr	Serbian	4
he	Hebrew	3	sv	Swedish	5
hr	Croatian	4	th	Thai	3
hu	Hungarian	4	tr	Turkish	5
id	Indonesian	5	vi	Vietnamese	5
it	Italian	5	zh	Chinese	1

Table 3: The table lists the n-gram size used for each language when evaluating summaries using MeMoG, which is the n-gram size that maximized the standard deviation divided by the mean of the n-gram frequency distribution of the language in the dataset.
Figure 1: ROUGE-1 scores for HSS.

Figure 2: ROUGE-2 scores for HSS.
Table 4: Fraction of time a system beat the baseline for HSS.

System	ROUGE-1	ROUGE-2	MeMoG
AIC	2/5	0/5	0/5
LAN	0/2	0/2	0/2
MD1	15/40	4/40	2/39
MD2	16/40	4/40	0/39
MD3	15/40	4/40	0/39
MUS	2/3	1/3	0/3
ANOVA	28/40	13/40	5/39

Table 4: The table gives the fraction of languages each system significantly outperformed the baseline. The last line gives the number of times an ANOVA rejected the null hypothesis, indicating significance.

The medians of the system scores were not the same, using a rejection threshold of 0.05. Also, the fraction of time that each system significantly outperformed the lead baseline is also recorded. A paired Wilcoxon test was invoked whenever the ANOVA indicated a significant difference was present, with a threshold of 0.05.

Lastly, each system’s performance for SSS-scoring is provided in Figures 4, 5, and 6. Surprisingly, the results change little. Lastly Table 5 contains the number of times that each system beat the baseline summary with a 95% confidence measured as a result of the non-parametric ANOVA and the Wilcoxon paired sign rank test. The results show that the number of significant differences go down for ROUGE scores and up for MeMoG.

4 Summary

Overall, the authors believe the pilot was successful in that it exposed researchers to the potential for using Wikipedia articles for summarization research and demonstrated that generating summaries for the genre of Wikipedia articles is a more challenging task than newswire documents. Notably, no system outperformed the baseline for English! In hindsight this is not too surprising since news articles have a prose style significantly different from Wikipedia articles. Wikipedia articles are written as expositions having a topical flow that can vary significantly between sections but news articles are written in a style that addresses the most important information first—the

\[\text{http://en.wikipedia.org/wiki/News_style}\]
\[\text{http://en.wikipedia.org/wiki/MOS}\]
\[\text{http://en.wikipedia.org/wiki/Inverted_pyramid}\]
Figure 4: ROUGE-1 scores for SSS.

Figure 5: ROUGE-2 scores for SSS.
who, what, when, where and why—with the subsequent text providing more details. Hence news articles have a more even topical flow. The authors hope these results stimulate research and development of summarization algorithms outside the news domain.

As for the metrics, ROUGE-1 observed the most significant differences among the systems and MeMoG observed the least as measured by a non-parametric ANOVA. However, a human evaluation of the summaries generated would be needed to determine which of the automatic metrics is best at predicting significant differences among systems for such data.

References

John M. Conroy, Judith D. Schlesinger, and Dianne P. O’leary. 2009. Classy 2009: summarization and metrics. In Proceedings of the text analysis conference (TAC).

George Giannakopoulos, Vangelis Karkaletsis, George Vouros, and Panagiotis Stamatopoulos. 2008. Summarization system evaluation revisited: N-gram graphs. ACM Trans. Speech Lang. Process., 5(3):5:1–5:39, October.

George Giannakopoulos, Mahmoud El-Haj, Benoît Favre, Marina Litvak, Josef Steinberger, and Va-
sudeva Varma. 2011. Tac 2011 multiling pilot overview.

Jeff Kubina. 2010. Wikipedia featured article corpus. http://goo.gl/AmMGN. [Online; accessed 30-May-2013].

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text Summarization Branches Out: Proceedings of the ACL-04 Workshop, pages 74–81.

Brian Stelter. 2013. He has millions and a new job at yahoo. soon, he’ll be 18. New York Times.

Alexia Tsotsis. 2013. Google buys wavii for north of $30 million. TechCrunch.