TOXOPLASMOSIS IN PREGNANT WOMEN IN YEMEN: THE IMMUNE STATUS AND POTENTIAL RISK FACTORS

Nashwa Abdullah Naji Saeed Alqaisi1, Abdulsalam M. AL-Mekhlafi2, Hassan A. Al-Shamahy1,4, Abdool AD Al-Rukeim1, Kaima A. Foras3, Ali Abdulkarim Sheiban3

1Medical Microbiology and Clinical Immunology, Faculty of Medicine and Health Sciences, Sana'a University; 2Department of Medical parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Republic of Yemen; 3Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Sana'a University, Republic of Yemen; 4Department of Medicine, Faculty of Medicine and Health Sciences, Sana'a University, Republic of Yemen.

ABSTRACT

Background and aims: Toxoplasmosis is caused as a result of intracellular protozoan organism, *Toxoplasma gondii*, and is a widespread disease. Toxoplasmosis can progress to a serious systemic disease (congenital form); once a mother becomes infected for the first time for the period of pregnancy, a transient haematopoietic parasite can appear with focal lesions produced within the placenta, thus infecting the fetus. Therefore, this cross-sectional study aimed at assessing the immune status of the pregnant woman towards toxoplasmosis, determining the prevalence of *T. gondii* in Amran city -Yemen, and identifying the potential risk factors that affect the pregnant woman towards toxoplasmosis.

Subjects and methods: This study included 280 pregnant women who were admitted to maternity clinics at Amran General Hospital and Family Health Center in Amran City -Yemen during the period from December 2016 to June 2017. The questionnaire was used to obtain relevant demographic data and potential risk factors. Then, blood samples were collected from pregnant women and tested for identification of IgM and IgG antibodies against *T. gondii* using the ELISA technique.

Results: The total positive rate for IgM antibodies was 3.6%, while for IgG was 27.9%. A high IgM rate equal to 5.3% was observed in the 31-35 age group, and a higher IgG rate (36.8%) was observed in the same age group. There were 69.3% of pregnant women susceptible to infection with toxoplasmosis, 2.9% recently infected, 27.1% protected, and 0.7% had secondary infection. The high rate of IgM positivity was observed in the second trimester of pregnancy (4.7%), while the lowest rate was in the third trimester of pregnancy (2%). There was a significant association between contact with animals such as cats and infection with toxoplasmosis, where OR=5.4, CI=1.01-30.13, \(\chi^2=4.59, p=0.04\). While there was no significant association with the other studied factors. Conclusion: Yemen has less seropositivity than other Arab and African countries as a result of variation in risk factors. Data on *T. gondii* infection during pregnancy is scarce in numerous countries, in particular where there is a lack of political constancy such as Yemen. The risk factors identified included proximity to the cats and domestic animals, and increased maternal age. Toxoplasmosis in pregnancy in Yemen may be a really underestimated health problem. More research is needed.

Keywords: Immunological status, pregnant women, risk factors, Toxoplasmosis, Yemen.

INTRODUCTION

Toxoplasma gondii (*T. gondii*), a widespread single-celled parasite that is an intracellular parasite, is one of the most successful eukaryotic pathogens infecting warm-blooded vertebrates comprise humans, and is capable of causing toxoplasmosis.1,2 The distribution and its capability to preserve a benign symbiosis with its host is a trait that allows it to be widely seen as one of the most successful parasites on Earth.3 It is estimated that equal to a third of the world’s population is carriers of toxoplasma infection, and the life cycle of this parasite participates a large role in its simplicity of transmission.3,4 Toxoplasmosis is found in every country and rates of seropositivity range from 10% to 90%.5 Globally, more than 6 billion people are
infectected with T. gondii5. Humans are generally infected by oral intake of food, water, or ingestion soil polluted with oocytes, or by ingestion of raw vegetables and undercooked meat contaminated with cysts of T. gondii6. Though T. gondii infection is very common, the clinical implication in the immunocompetent host is benign and asymptomatic and only in about 10% of cases, cervical or occipital lymphadenopathy and ocular disease may occur6. The significance is mainly attributable to primary infection during pregnancy that may result in congenital Toxoplasmosis, abortions, perinatal deaths and still births5. This comprises a wide range of symptoms, expanding from mild chorioretinitis, which can appear many years after birth, to mental retardation, miscarriage, hydrocephalus, microcephaly and seizures6,11. Moreover, reactivation of latent infection in immunocompromised conditions may occur resulting in T. gondii encephalitis or disseminated infections9,12. Its infection induces several immunological changes in the body which are characterized by the production of the immunoglobulins IgM, IgG and IgA13. Detection of toxoplasmosis is at present based on serological techniques including examination of IgM and IgG antibodies, the former indicating recent infection while the latter indicating previous exposure with protective immunity2,14,15. The overall incidence rate of Toxoplasmosis in Arab countries is approximately 30% to 50%, making it among the global regions with the highest prevalence. The broad distribution of the infection is likely due to its complex transmission patterns and co-evolution of the parasite with multiple hosts15-17. In Yemen, data on infection among females of childbearing age or during pregnancy are limited. Moreover, few studies have been conducted recently on vulvovaginal candidiasis during pregnancy, vaccination against tetanus among pregnant women, its prevalence, potential risk factors, awareness of congenital CMV, rubella virus infection during pregnancy, and vaccination against tetanus among pregnant women. The total positive rate for IgM antibodies was 3.6%, while for immunosuppressive drugs, or suffering from immunodeficiency diseases.

Data collection: A full history was taken from each studied pregnant woman, and the findings were written down in predesigned questionnaire. The collected data included: Demographic characteristics of participant, and information about the risk factors.

Sample Collection: Four to five ml of venous blood samples were obtained from each pregnant into a plain tube. Then sera were separated from clotted blood and kept in freezer at (-20°C) until tested. The samples were tested for the presence of anti-toxoplasma (IgM and IgG) antibodies by using an Enzyme Linked Immunosorbtent Assay (ELISA) commercial available (Ratio Diagnostics, RD, Germany).

Ethical considerations
During data collection, pregnant women who gave their written consent for screening of their blood to detect T. gondii antibodies were selected. Brief explanation of the objective and the significance of the study were given to each participant in order to obtain verbal consent and to have the signature to avoid misunderstanding. The study proposal was evaluated and approved by the Ethics Committee of Faculty of Medicine and Health Sciences, Sana'a University with a reference number (102) dated 10-04-2016. Also, all data, including patient identification, have been kept confidential.

Statistical analysis
Data were recorded using appropriate descriptive statistics (including frequency, mean, and standard deviation). The odds ratio (OR) was used to determine the strength of the association between two events, such as positive IgG with age, gestation stages, and residence. The association between infection with toxoplasmosis with risk factors as contact with animals etc. The two events in the current study were independent if and only if OR was equal to 1. For sample constraints of odds ratio in small numbers (less than 5), Fisher's exact test was used as an alternative estimator for the association between events in the current study.

RESULTS

The study results illustrated on 5 tables: Table 1 shows the serum level of Toxoplasma IgM and IgG antibodies for different age groups of pregnant women. The total positive rate for IgM antibodies was 3.6%, while for

Table 1: Seroprevalence of Toxoplasma IgM and IgG antibodies for different age groups of pregnant women in Amran city—Yemen 2017.

Age groups(years)	Toxoplasma antibodies positive			
	IgM	IgG		
No.	%	No.	%	
16-20 (n=30)	1	3.3	8	26.7
21-25 (n=101)	3	3.0	24	23.8
26-30 (n=63)	2	3.2	16	25.4
31-35 (n=57)	3	5.3	21	36.8
≥36 (n=29)	1	3.4	9	31.0
Total (n=280)	10	3.6	78	27.9

SUBJECTS AND LABORATORY METHODS

A cross-sectional study was completed during the interval from December 2016 to June 2017. Two hundred and eighty pregnant women, who were attended to the obstetrical clinics in General Amran Hospital, and Family health Centers in Amran city, Yemen, were included in this study.

Inclusion criteria: Inclusion criteria included pregnant women who attended to the obstetrical clinics in General Amran Hospital, and Family health Centers in Amran city.

Exclusion criteria: Exclusion criteria included non-pregnant women, pregnant women with active diseases such as tuberculosis, etc., receiving treatment with...
IgG was 27.9%. A high IgM rate equal to 5.3% was observed in the 31-35 age group, and a higher IgG rate (36.8%) was observed in the same age group. Table 2 shows the serological patterns of T. gondii pregnant women. There were 69.3% of pregnant women susceptible to infection with toxoplasmosis (negative for IgG and IgM), 2.9% recently infected (positive for IgM only), 27.1% protected (IgG positive only), and 0.7% were secondary infected (IgM and IgG positive). Table 3 shows the association of Toxoplasma IgM antibodies with stages of pregnancy. The high rate of IgM positivity was observed in the second trimester of pregnancy (4.7%), while the lowest rate was in the third trimester of pregnancy (2%). Table 4 shows the association of Toxoplasma IgG antibodies with stages of pregnancy.

Table 2: Serological patterns in pregnant women for T. gondii in Amran city – Yemen 2017.

Serological pattern	Number	Percentage	Status
Negative Toxo-IgM with Negative Toxo-IgG	194	69.3%	Susceptible
Positive Toxo-IgM only	8	2.9%	Infected (recently)
Positive Toxo-IgG only	76	27.1%	Protected
Positive Toxo-IgM with positive Toxo-IgG	2	0.7%	Infected (secondary)
Total	280	100.0%	

Table 3: The association of Toxoplasma IgM antibodies with gestational stages of pregnant women in Amran city-Yemen 2017.

Trimesters	Toxoplasma IgM antibodies	\(\chi^2 \)	\(P \)			
	Positive	Negative	\(\chi^2 \)	\(P \)		
First trimester	2	2.7%	72	97.3		
(n=74)						
Second trimester	7	4.7%	141	95.3	1.06	0.58
(n=148)						
Third trimester	1	2.0%	49	98.0		
(n=50)						
Total N=272*	10	3.6%	262	96.3		

A slight increase in the rate of IgG positivity was observed in the third trimester of pregnancy (32%). Table 5 shows the association of toxoplasma IgG antibodies with potential risk factors. There was a significant association between contact with animals such as cats and infection with toxoplasmosis among pregnant women, where OR=5.4, CI=1.01-30.13, \(\chi^2 \) =4.59, \(P \)=0.04. While there was no significant association with the other studied factors.

Table 4: The association of Toxoplasma IgG antibodies with stages of pregnancy in Amran city-Yemen 2017.

Trimesters	Toxoplasma IgG antibodies	\(\chi^2 \)	\(P \)			
	Positive	Negative	\(\chi^2 \)	\(P \)		
First trimester	22	29.7%	52	70.3		
(n=74)						
Second trimester	38	25.7%	110	74.3	0.90	0.63
(n=148)						
Third trimester	16	32.0%	34	68.0		
(n=50)						
Total (n=272*)	76	27.9%	196	72.1		

*8 missing cases, \(\chi^2 \) Chi square ≥ 3.84 (significant), \(P \) Probability value ≤ 0.05 (significant)

DISCUSSION

This study showed an overall 27.9% sero-prevalence of anti-T. gondii IgG antibody among pregnant women in Amran City (Table 1). This result is within the range of seroprevalence of anti-T. gondii IgG antibody among pregnant women reported in previous studies in which they have shown a seropositivity rate in Arab region ranging from 22.9 to 58.2%\(^{24,25}\). This results was lower than that reported from Saudi Arabia, which it range from 38-61%\(^{26,29}\). While 27.9% seroprevalence of anti-T. gondii antibody was slightly higher than that reported from UAE (22.9%)\(^{24}\). When age was considered as a factor effects the prevalence of anti-T. gondii IgG antibody among pregnant women there was slight evaluating in the prevalence of anti-T. gondii IgG antibody with increasing age of pregnant women, e.g. rate in age group 20-24 years was 23.8%, this rate rise to 36.8% in age group 30-34 years (Table 1). This is similar to the results in the North Africa region, where the seroprevalence of T. gondii is higher in older age groups compared to younger age groups\(^{30,31}\), indicating that T. gondii may increase with age. This high rate of seropositivity at older ages may be the result of prolonged exposure to high environmental...
contamination of toxoplasma oocytes from animal sources, inadequate hygiene, and climatic factors appropriate for oocyst survival. There was a significant association between *T. gondii* infection and contact with domestic animals or farm animals (OR = 5.4, CI = 1.01-30.13, χ² = 4.59, p = 0.04). Current results are similar to what Fakhfakh et al., and Zemene et al., findings showing that contact with animals, especially cats, is significantly associated with toxoplasmosis seropositivity. There was no association between eating uncooked or raw meat (OR rate 1.08, 95% CI = 0.13-8.99; p = 0.939) and *T. gondii* seropositivity in the current study. This finding is contradicted by Walle et al., study in Africa where there is a strong association between eating undercooked or raw meat (OR = 5.73, 95% CI = 1.35-24.39; p = 0.02) and toxoplasmosis. These results can be explained by the fact that daily consumption of raw meat is very common in many parts of Africa.

There was no significant association between residence in rural areas (OR = 1.05, 95% CI = 0.41 -1.6; p = 0.47) and *T. gondii*-positive antibody (Table 5).

Risk factors	Toxoplasma IgG antibodies Positive	OR	CI	χ²	P				
	NO	%	No	%					
Contact with animals (cat)	Yes (n=6)	4	66.7	2	33.6	5.40	1.01-30.13	4.59	0.04*
	No (n=274)	74	27.0	200	73.0				
Contact with soil	Yes (n=43)	10	23.3	33	76.7	0.75	0.35-1.60	0.54	0.29
	No (n=233)	67	28.8	166	71.2				
Consumption of uncooked meat	Yes (n=29)	5	17.2	24	82.8	0.49	0.18-1.36	1.90	0.12
	No (n=248)	73	29.4	175	70.6				
Consumption of raw vegetables	Yes (n=209)	5	27.3	152	72.7	0.86	0.46-1.61	0.20	0.38
	No (n=63)	19	30.2	44	69.8				
Residence	Urban (n=150)	4	28.0	108	72.0	1.05	0.62-1.78	0.03	0.47
	Rural (n=124)	36	29.0	88	71.0				

OR Odd ratio > 1 at risk, CI Confidence intervals, χ² Chi square ≥ 3.84 (significant), P Probability value ≤ 0.05 (significant)

These results differ from studies conducted in Egypt and Saudi Arabia, where they located that live in a rural region was an independent predictor of toxoplasmosis. The elevated prevalence in rural regions is an acceptable result in places where there are deprived sanitation facilities, contact with soil or animals, and drinking unpasteurized or un-boiled water and milk, but these conditions are similar in rural and urban areas in Yemen, so there was a similar prevalence in rural areas and urban areas in current study. Unwashed raw vegetables or fruits consumption has been reported as a non-significant factor for *T. gondii* infection in the current study (OR=0.86, 95% CI=0.46 -1.6; p =0.38). This result differs from studies conducted in the Arab countries and China where the seropositivity of toxoplasmosis was significantly associated with eating vegetables that had not been washed. It was found that the seropositivity of *T. gondii* is not significantly correlated with soil contact in the current study (OR=0.75, 95% CI=0.35-1.0; p =0.29). This is separate from the results reported by several studies elsewhere which found that soil contact was associated with increased toxoplasmosis infection.

CONCLUSION

Yemen has the lowest seropositivity than other Arab and African countries because of dissimilarity in risk factors. Information on *T. gondii* infection during pregnancy is scarce in various countries, in particular where there is a lack of political stability such as Yemen. Risk factors identified integrated proximity to cats and pets, and increased maternal life.

Toxoplasmosis during pregnancy in Yemen may be a health problem that has not really been underrated. More research is needed.

AUTHOR’S CONTRIBUTION

The research consists of a master’s thesis prepared by the first author: Nashwa Abdullah Naji Saeed Al-Qaisi under the supervision of Prof. Dr. Hassan Al-Shamahy. All authors analyzed the data, wrote the manuscript, and reviewed it.

ACKNOWLEDGMENTS

Authors acknowledge the financial support of Sana’a University, Yemen.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES

1. Bogitsh BJ, Carter CE, Oeltmann TN. Human parasitology. Academic Press; 2013.
2. El-Shalawy IS, Khalil MI, Bahnass MM. Seroprevalence of Toxoplasma gondii in women in Najran City, Saudi Arabia. Saudi Med J 2014; 35(9):143-146. PMID: 25228193
3. Jiang W, Sullivan AM, Su C, Zhao X. An agent-based model for the transmission dynamics of Toxoplasma gondii. J Theor Biol 2012; 293:15-26. https://doi.org/10.1016/j.jtbi.2011.10.006
4. Shirbazou S, Delipisheh A, Mokhetari R, Tavakoli G. Serologic detection of anti Toxoplasma gondii infection in diabetic patients. Iran Red Crescent Med J 2013; 15(8):701-703. https://doi.org/10.5812/ircmj.5303

Table 5: The association of Toxoplasma IgG antibodies with potential risk factors among pregnant women in Amran city – Yemen 2017.

Risk factors	Toxoplasma IgG antibodies Positive	OR	CI	χ²	P				
	NO	%	No	%					
Contact with animals (cat)	Yes (n=6)	4	66.7	2	33.6	5.40	1.01-30.13	4.59	0.04*
	No (n=274)	74	27.0	200	73.0				
Contact with soil	Yes (n=43)	10	23.3	33	76.7	0.75	0.35-1.60	0.54	0.29
	No (n=233)	67	28.8	166	71.2				
Consumption of uncooked meat	Yes (n=29)	5	17.2	24	82.8	0.49	0.18-1.36	1.90	0.12
	No (n=248)	73	29.4	175	70.6				
Consumption of raw vegetables	Yes (n=209)	5	27.3	152	72.7	0.86	0.46-1.61	0.20	0.38
	No (n=63)	19	30.2	44	69.8				
Residence	Urban (n=150)	4	28.0	108	72.0	1.05	0.62-1.78	0.03	0.47
	Rural (n=124)	36	29.0	88	71.0				
5. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000; 30:1217–1258. https://doi.org/10.1016/S0020-7519(00)00124-7

6. Robert-Gangneux F, Darde ML. Epidemiology of and diagnosis of toxoplasmosis. Clin Microbiol Rev 2012; 25(2):264-96. https://doi.org/10.1128/CMR.05013-11

7. Singh M, Ranjan R, Pradeep Y, Quereshi S, Sahu M. Seroprevalence of toxoplasmosis in pregnant females attending a tertiary care hospital in Uttar Pradesh, India and its effect on perinatal morbidity and mortality. Acta Medica Int 2016; 3(1):50-55. https://doi.org/10.5530/ami.2016.1.12

8. Sroka S, Bartelheimer N, Winter A, et al. Prevalence and risk factors of toxoplasmosis among pregnant women in Fortaleza, Northeastern Brazil. Am J Trop Med Hyg 2010; 83(3):528-533. https://doi.org/10.4269/ajtmh.2010.09-0082

9. Borkakoty B, Biswas D, Jakharia A and Mahanta J. Seroprevalence of Toxoplasma gondii among pregnant women in Northeast India. The J Assoc Phys India 2016; 64(10):24-28. PMID: 27766799.

10. Afghami J, Elamini MH, Alhabib S. Prevalence and genotyping of Toxoplasma gondii among Saudi pregnant women in Saudi Arabia. Saudi J Phad. J 2016 Nov; 24(6):645-651. https://doi.org/10.1016/j.sjph.2015.05.001

11. Vimercati A, Chincoli A, De Gennaro A, et al. Clinical management of infections in pregnancy: update in congenital cytomegalovirus and toxoplasmosis. Management and Therapy of Late Pregnancy Complications 2017; 339-358. https://doi.org/10.4018/978-1-5225-0197-8 chap2-20

12. Derouin F, Pelloux H; ESCMID Study Group on Clinical Parasitology. Prevention of toxoplasmosis in transplant patients. Clin Microbiol Infect 2008; 14(12):1089-101. https://doi.org/10.1111/j.1469-6991.2008.02091.x

13. Ashraf M, Abdul-Haleem S. Seroprevalence of anti Toxoplasma gondii IgG and IgM among pregnant women in Sana’a capital and capital trusteeship. Scient J King Faisal Univ (Basic and applied Sciences) 2010; 11(2):1431. https://doi.org/10.13140/RG.2.2.24704.07688

14. Oz HS. Maternal and congenital toxoplasmosis, currently available and novel therapies in horizon. Front Microbiol 2014; 5:385. https://doi.org/10.3389/fmicb.2014.00385

15. Ahmadpour E, Daryani A, Sharif M, et al. Toxoplasmosis in immunocompromised patients in Iran: a systematic review and meta-analysis J Infect Dev Ctries 2014; 8(12):1503–1510. https://doi.org/10.3855/jidc.4796

16. Pappas G, Roussos N, Falagas ME. Toxoplasmosis snapshots: global status of Toxoplasma gondii sero prevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol 2009; 39 (12):1385–1394. https://doi.org/10.1016/j.ijpara.2009.04.003

17. Lambertson PH, Donnelly CA, Webster JP. Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk. Parasitology 2008; 135(10):1143–1150. https://doi.org/10.1017/S003118208004666

18. Al-Rukeimi AA, Al-Hatami SMM, Al-Danany DA, Al-Shamahy HA, Al Rukeimi RAA. Prevalence and risk factors associated with vulvovaginal candidiasis during pregnancy in Sana’a, Yemen. Universal J Pharm Res, 2020; 20(5):1-5. https://doi.org/10.22270/ujpr.v5i5.407

19. Aljedry ZAHS, Shaib AA, Al-Shamahy HA, Al-Jafy Ay. Tetanus immunisation among pregnant women: coverage and rates of protection at time of delivery. Universal J Pharm Res 2019; 4(1):1-5. https://doi.org/10.22270/ujpr.v4i1.233

20. Edrees WH, Al-Asbahei AA, Al-Shehri WA, Qasem EA. Vulvovaginal candidiasis prevalence among pregnant women in different hospitals in Ibb, Yemen. Universal J Pharm Res 2020; 5(4):1-5. https://doi.org/10.22270/ujpr.v5i4.431

21. Almoush A, Al-Shamahy HA, Ali MM, et al. Prevalence of cytomegalovirus IgG antibodies, potential risk factors and awareness of congenital cytomegalovirus among female doctors. Universal J Pharm Res 2018; 3(5):1-5. https://doi.org/10.22270/ujpr.v3i5.199

22. Abdullah AD Al Rukeimi, Hassan A Al Shamahy, et al. Association of cytomegalovirus and rubella virus infections in pregnant women with bad obstetric history association of cytomegalovirus and rubella virus infections in pregnant women with bad obstetric history. W J Gynecol Women’s Health 2019; 2(3): 2019. https://doi.org/10.33527/WJWHL.2019.02.000538

23. Al-Shamahy RA, Rabbad IA, Al-Hababy A. Hepatitis B virus serum markers among pregnant women in Sana’a, Yemen. Ann Saudi Med 2003; 23(1-2):87-9. https://doi.org/10.4103/0256-4972.30083

24. Shawky S, Soliman NK. Going beyond the curriculum to promote medical education and practice in Saudi Arabia. Saudi Med J 2001; 22:477–480. PMID: 11426235

25. Dar FK, Alkarmi T, Udtuman S, et al. Gestational and neonatal toxoplasmosis: regional seroprevalence in the United Arab Emirates, East. J Epidemiol. 1997; 13:567–573. https://doi.org/10.1016/S0020-6912(05)80037-3

26. Al-Nakib W, Ibrahim ME, Hathout H, Moussa MA, et al. Seroprevalence of viral and toxoplasmal infections during pregnancy among Arab women of child-bearing age in Kuwait. Int J Epidemiol 1993; 12:220–223. https://doi.org/10.1093/ije/12.2.220

27. Al-Mohannad HI, Al-Balsha MH, Al-Moghannum MS. Toxoplasmosis among the pregnant women attending a Saudi maternity hospital: seroprevalence and possible risk factors. Ann Trop Med Parasitol 2010; 104:493–504. https://doi.org/10.1177/0003699910368939443

28. Bin Dajem SM, Almushait MA. Detection of Toxoplasma gondii DNA by PCR in blood samples collected from pregnant women in the United Arab Emirates. J Infect Dev Ctries 2013; 7(12):1350–1354. https://doi.org/10.3855/jidc.4796

29. Shuaib M, Almushait MA. Seroprevalence of Toxoplasma gondii among pregnant women in a tertiary care hospital in Riyadh, Saudi Arabia. Ann Trop Med Parasitol 2010; 104:507–512. https://doi.org/10.1177/000369991038693947

30. Almogren A. Antenatal screening for Toxoplasma gondii infection at a tertiary care hospital in Riyadh, Saudi Arabia. Ann Trop Med Parasitol 2011; 1:359–372. https://doi.org/10.1177/000369991038693947

31. Bouraine A, Siala E, Khallouf HB, MK, et al. Seroprevalence of toxoplasmosis in northern Tunisia. Parasite (Paris, France) 2001; 8(1):61-66. https://doi.org/10.1051/parasite/2001080161

32. Fakhfakh N, Kallel K, Ennigro S, et al. Risk factors for Toxoplasma gondii and immune status of pregnant women: cause and effect? Tunis Med 2013; 91:188–190. PMID: 23586932.

33. Almen S, Alnaimi M, Al Barrak A, et al. Seroprevalence of Toxoplasma gondii among pregnant women in Jimma town, western Ethiopia. BMC Infect Dis 2012; 12:337. https://doi.org/10.1186/1471-2334-12-337

34. Walle F, Kebede N, Tsegaye A, Kassa T. Seroprevalence and risk factors for toxoplasmosis in HIV infected and non-infected individuals in Bahar Dar, Northwest Ethiopia. Parasit Vectors 2013; 6:15. https://doi.org/10.1186/1756-3305-6-15

35. Cook AJ, Gilbert RE, Buffolano W, et al. Sources of toxoplasma infection in pregnant women: European multicentre case-control study. European research
36. Jones JL, Dargelas V, Roberts J, et al. Risk factors for *Toxoplasma gondii* infection in the United States. Clin Infect Dis 2009; 49:878–884. https://doi.org/10.1086/605433

37. Elnahas A, Gerais AS, Elbashir MI, et al. Toxoplasmosis in pregnant Sudanese women. Saudi Med J 2003; 24:868–870. PMID: 12939674

38. Almushait MA, Dajem SM, Elsherbiny NM, et al. Seroprevalence and risk factors of *Toxoplasma gondii* infection among pregnant women in South Western, Saudi Arabia. J Parasit Dis 2014; 38:4–10. https://doi.org/10.1007/s12639-012-0195-z

39. Tammam AE, Haridy MA, Abdellah AH, et al. Seroepidemiology of *Toxoplasma gondii* infection in women with first trimester spontaneous miscarriage in Qena governorate, Egypt. J Clin Diagn Res 2013; 7:2870–2873. https://doi.org/10.7860/JCDR/2013/6480.3780

40. Alsammani MA, Ahimed SR, Alsheeha MA, et al. Co-infection with *Toxoplasma gondii* and Clostridium perfringens in a postpartum woman with uterine gas gangrene: a case report. J Obstet Gynaecol Res 2012; 38:1024–1027. https://doi.org/10.1111/j.1447-0756.2011.01817.x

41. Liu Q, Wei F, Gao S, et al. *Toxoplasma gondii* infection in pregnant women in China. Trans R Soc Trop Med Hyg 2009; 103:162–166. https://doi.org/10.1016/j.trstmh.2008.07.008

42. Abu-Madi MA, Behnke JM, Dabritz HA. *Toxoplasma gondii* seropositivity and co-infection with TORCH pathogens in high-risk patients from Qatar. Am J Trop Med Hyg 2010; 82:626–633. https://doi.org/10.4269/ajtmh.2010-09-0530