Quotients of Spheres By Linear Actions of Tori

Marisa J. Hughes∗ and Ed Swartz†
Department of Mathematics,
Cornell University, Ithaca NY, 14853-4201, USA,
mjbelk@math.cornell.edu

May 1, 2014

Abstract

We consider quotients of spheres by linear actions of real tori. To each quotient we associate a matroid built out of a diagonalization of the torus action. We find the integral homology groups of the resulting quotient spaces in terms of the Tutte polynomial of the matroid. We also find the homotopy type and homology of the singular space of such an action. Lastly, we consider the circumstances under which the orbit space is a manifold or, more specifically, a (homology) sphere.

1 Introduction

Let G be a compact group that acts by isometries on a Riemannian manifold Y. It is natural to ask whether the orbit space of this action is itself a topological manifold. In order to answer this question, we can consider the behavior of the action on the tangent space. Let x be a point of Y with tangent space $T_x Y$. Denote by S_x the unit tangent vectors in $T_x M$ which are perpendicular to the orbit Gx. The isotropy group of x, $G_x = \{ g \in G : gx = x \}$, acts on S_x. In order for the overall orbit space Y/G to be a manifold, the quotient S_x/G_x must at least be a homology sphere for each
point $x \in Y$. Thus, understanding the topology of quotients S^n/G where $G \subseteq O(n)$ is essential for answering questions about the general orbit space Y/G.

The geometry and topology of quotients of spheres by finite tori (i.e. groups of the form $(\mathbb{Z}_p)^r$, p a prime) was investigated in [8]. Here we use similar techniques to analyze the quotients of spheres by linear actions of real tori $X = S^{2n-1}/T^r$. In order to compute $H_*(X)$ we rewrite the action as a matrix that describes how each circle in the product T^r acts on the invariant circles of S^{2n-1}. The matroid represented by this matrix determines the Poincaré polynomial of the quotient via the Tutte Polynomial.

We then move on to study the singular set of the quotient as an arrangement. The lattice of the singular set arrangement is shown to correspond to the lattice of flats of the matroid described above. The homotopy type of the singular set can then be computed using techniques described in [12] and our previous results. This allows a formulation of the Poincaré polynomial of the singular set in terms of the Tutte polynomial.

Having a formula for the Poincaré polynomial of S^{2n-1}/T^r in terms of the Tutte polynomial gives us the tools necessary to determine when these orbit spaces are manifolds. We classify all the actions of T^r whose orbit space is a manifold, and, even more specifically, when the orbit space is a (homology) sphere.

2 Background and Notation

2.1 Matroids

For a more thorough introduction to the theory of matroids, and proofs of the facts given below, see [6].

A matroid is a pair (E, I) where E is a finite set, $\mathcal{P}(E)$ the power set of E, and $\mathcal{I} \subseteq \mathcal{P}(E)$. The finite set E is known as the ground set, and \mathcal{I} is the set of independent subsets of E. In order to be a matroid, the independent sets must respect the following axioms:

I1) $\emptyset \in \mathcal{I}$

I2) If $I_1, I_2 \in \mathcal{I}$ and $I_2 \subseteq I_1$, then $I_2 \in \mathcal{I}$.

I3) If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$, then $\exists x \in I_2 \setminus I_1$ such that $I_1 \cup \{x\} \in \mathcal{I}$

An element $e \in E$ is called a loop if it is contained in no independent sets. We say $e \in E$ is a coloop if it is contained in every maximal independent set of M. In this
paper, we will only be concerned with representable matroids. These matroids can be represented by a matrix; the ground set is the set of column vectors of a matrix, and the independent sets are precisely the sets of columns which are linearly independent as column vectors. All of our matrices will have \mathbb{Z} coefficients. Linear independence of columns will always be over the rationals. Row operations, which preserve the linear independence relations of the columns, and column switches of a matrix do not change the isomorphism class of the matroid.

The deletion of a matroid element, denoted $M - e$, has ground set $E \setminus e$ and independent sets $\mathcal{I}_{M-e} = \{ I \in \mathcal{I}_M : e \notin I \}$. Deleting e from a representable matroid can be accomplished by deleting the column corresponding to e in a representative matrix.

Another matroid construction, denoted by M/e, is the contraction of M by e. If e is a loop of M, then M/e is the same as $M - e$. Otherwise, M/e has ground set $E \setminus e$ and independent sets $\mathcal{I}_{M/e} = \{ I \setminus e : \{e\} \cup I \in \mathcal{I}_M \}$. In the case of a representable matroid, the contraction by e can be computed by row reducing a representative matrix A such that the column corresponding to e has only one nonzero entry. By deleting the row where this entry is located, along with the column corresponding to e, we get a new matrix that represents the contraction M/e. For a subset A of E the contraction M/A is obtained by contracting each element of A one at a time. It is not hard to show that M/A is independent of the order in which the contractions are performed.

A matroid is a direct sum of matroids, $M = M_1 \oplus M_2$, if the ground set of M is the disjoint union of the ground sets E_1 and E_2, and a set A is independent in M if and only if $A \cap E_1 \in \mathcal{I}_1$ and $A \cap E_2 \in \mathcal{I}_2$. Note that for any matroid M with loop or coloop e, M can be decomposed at $(M - e) \oplus e$.

Every matroid has a rank function $r : E \rightarrow \mathbb{N}_0$ that maps a set to the cardinality of its maximally independent subsets. A flat, or closed set, of a matroid is a subset $F \subseteq E$ such that $\forall e \in E - F$, $r(F) = r(F \cup e) - 1$. A hyperplane H of a matroid is a flat of M such that $r(H) = r(E) - 1$. We will frequently use $r(M)$, or just r, for $r(E)$.

2.2 Lattice of flats

The flats of M form a lattice under inclusion which we will denote L_M. A lattice is a partially ordered set in which each pair of elements has a unique least upper bound and greatest lower bound. The lattice of flats of any matroid is coatomic, i.e. any flat of M can be realized as an intersection of hyperplanes. If F is a flat of M, then the
interval \([F, E] = \{F' \in L_M : F \subseteq F' \subseteq E\}\) is isomorphic as a poset to \(L_{M/F}\).

For any finite poset \(P\) the order complex of \(P\), denoted \(\Delta(P)\), is the simplicial complex whose vertices are the elements of \(P\) and whose faces are chains in \(P\). Let \(\tilde{L}_M\) be \(L_M\) with its least element, the subset of all loops, and greatest element, \(E\), removed. The homotopy type of \(\Delta(\tilde{L}_M)\) plays a key role in Section 5.

\[\text{Theorem 1.} \quad \|\] The order complex \(\Delta(\tilde{L}_M)\) is homotopy equivalent to a wedge of \(\mu(M)\) spheres all of which have dimension \(r(M) - 2\).

2.3 Tutte Invariants

The Tutte Polynomial, written \(T(M; x, y)\), is a matroid invariant that behaves well with respect to deletion and contraction. It is defined as the unique two-variable polynomial satisfying the following recursion:

1) \(T(\text{a single coloop}; x, y) = x\); \(T(\text{a single loop}; x, y) = y\)
2) If \(e\) is a loop or a coloop, then \(T(M; x, y) = T(e; x, y)T(M/e; x, y)\)
3) If \(e\) is neither a loop nor a coloop, then \(T(M; x, y) = T(M - e; x, y) + T(M/e; x, y)\)

It is sometimes preferrable to replace (2) with the following: If \(M = M_1 \oplus M_2\), then \(T(M; x, y) = T(M_1; x, y)T(M_2; x, y)\). This definition is equivalent.

The Tutte polynomial is well-defined and unique for any matroid. See [2] for a proof and many more applications of this polynomial.

The Möbius function of a finite poset is the function \(\mu : L \times L \to \mathbb{Z}\) that satisfies:
\[
\forall x, y, z \in L, \sum_{x \leq y \leq z} \mu(x, z) = \delta(x, z) \quad \text{and} \quad \mu(x, z) = 0 \text{ if } x \nleq z.
\]
As usual, \(\delta\) denotes Kronecker’s Delta.

For the existence and uniqueness of \(\mu\), see [11]. The Möbius function of a matroid is defined as \(\mu(M) = \mu_{L_M}(\emptyset, E)\) where \(\mu_{L_M}\) is the standard Möbius function on the lattice of flats and \(\emptyset\) is the least element in the lattice of flats (which contains all loops of the matroid). When \(M\) has no loops the Möbius function of \(M\) is related to the Tutte polynomial via the equation \(|\mu(M)| = T(M; 1, 0)\) [2].

3 The Matroid Associated to the Action

Denote the \(n\)-torus by \(T^n = T^1_1 \times T^1_2 \times \cdots T^1_r\). We will also use the decomposition of an odd-dimensional sphere into circles: \(S^{2n-1} = S^1_1 \ast S^1_2 \ast \cdots \ast S^1_n\), where \(\ast\) denotes the topological join of spaces. In the interests of notational brevity, we will leave out the
repeated superscript “1” when referring to the circles in either decomposition. Given any linear action of T^r on an even-dimensional sphere there is a pair of antipodal points which are fixed by the action. Hence the quotient space is the suspension of a linear action of T^r on an odd-dimensional sphere. As all of our questions of interest are easily answered for suspensions, we will henceforth assume that the sphere is odd-dimensional.

We wish to study an effective linear actions $T^r \curvearrowright S^{2n-1}$ and the resulting quotient space $X = S^{2n-1}/T^r$. We associate to each such action an $r \times n$ matrix $Z = (z_{ij})$ as follows: Since T^r consists of commuting $n \times n$ orthogonal matrices we can simultaneously diagonalize all of the elements of T^r over the complexes with diagonal entries in the unit circle. Equivalently, T^r is conjugate in $O(n)$ to a torus such that each $e^{\sqrt{-1}\theta} \in T_i$ acts on S_j by $e^{\sqrt{-1}\theta} \cdot e^{\sqrt{-1}\beta} = e^{\sqrt{-1}(z_{ij}\theta + \beta)}$, $z_{ij} \in \mathbb{Z}$. As conjugate tori give isometric quotient spaces, we will assume that T^r is presented in this form.

Lemma 2. Performing any combination of the following \mathbb{Z}-matrix operations on Z does not affect the isometry type of the corresponding quotient space.

1. Reordering the rows of Z
2. Reordering the columns of Z
3. Multiplying any row by ± 1
4. Multiplying a column by ± 1.
5. Adding a multiple of one row to another

Proof.

1) Switching two rows is equivalent to changing the order of the circles in the chosen basis $T^r = T_1 \times \cdots \times T_r$.
2) Column switching is equivalent to changing the order of the circles chosen in the join $S^{2n-1} = S_1 \ast \cdots \ast S_n$.
3) This corresponds to the choice of a preferred orientation for the circles of the torus.
4) This corresponds to the choice of a preferred orientation for the circles of the sphere.
5) Let Z_i and Z_j be rows of the matrix. If we replace Z_j with $Z_j + cZ_i$, then the action $T^r \curvearrowright S^{2n-1}$ corresponding to the new matrix will be the action obtained by precomposing the original action with the group isomorphism $\phi : T^r \rightarrow T^r$ determined by the elementary matrix which is diagonal except for the ji entry which is c.

\[\square \]
We note that if $c \in \mathbb{Z}$ divides an entire row, say row i, then the action is not effective as it has a kernel of the c-th roots of unity of T_i. However, the quotient is isometric to the orbit space of $T^r/\mathbb{Z}_c \cong T^r$, where \mathbb{Z}_c acts trivially except on T_i. We therefore allow division of an entire row in the matrix by c, provided that c divides all of its entries.

As observed previously, there is a natural matroid associated to Z which we denote by M_Z. The ground set of M_Z is the columns of Z, and the independent subsets of M_Z are the linearly independent subsets of columns. An equivalent method for determining M_Z is via representation theory. The real irreducible representations of S^1 are isomorphic to $\mathbb{Z}/\pm 1$. So we can write the representation $\rho : T^r \to O(n)$ given by the action as a direct sum $\rho = \rho_1 \oplus \cdots \oplus \rho_n$ where each $\rho_i \in (\mathbb{Z})^r/\pm 1$. This means that $\{\rho_1, \ldots, \rho_n\}$ has a matroid structure given by viewing each ρ_i as a vector in \mathbb{Q}^r determined up to sign. It is not hard to see that this matroid is M_Z. Thus M_Z only depends on the action $T^r \acts S^{n-1}$, not on the chosen diagonalization. In fact, we will write M_X for this matroid. While it is not immediately obvious, it is possible to reconstruct M_X from the isometry type of X. As we have no use for this fact we do not prove it here. While we prefer to use matroid notation for its simplicity, it is important to keep in mind that our matroids have matrix representations derived from the action. Furthermore, when we refer to $M_X - e_j$ or M_X/e_j, we assume that there is a preferred class of representative matrices for these matroids. In particular we will use X_M to refer to a quotient space even though the matroid (without a particular representation) does not determine the quotient space up to isometry. For instance, if $Z_1 = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$ and $Z_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}$, then the corresponding quotient spaces are non-isometric two-spheres. For an example where one quotient space is $\mathbb{C}P^n$ and the other is not even a manifold, see Section 6.

4 $H_*(X)$

4.1 X as a mapping cone

Let M_X be a matroid corresponding to a quotient space X. Not surprisingly, it is possible to extract a variety of geometric and/or topological data from X through the matroid structure of M_X.

6
Proposition 3. Let \(X = S^{2n-1}/T^r \) and let \(M_X \) be the corresponding matroid. If \(M_X \) contains a loop \(e_j \), then \(X = S_j \ast X_{M-e_j} \).

Note that \(X = S_j \ast X_{M-e_j} \) means that \(X \) is isometric to the given (spherical) join.

Proof. If \(e_j \) is a loop, then the \(j^{th} \) column of any matrix representation of \(M_X \) is the zero vector. This implies that \(T_i \) fixes \(S_j \) for all \(i \). Since \(S_j \) is fixed by the action of \(T^r \), \(X = S_j \ast X_{M-e_j} \).

Now let us consider the situation when \(e_j \) is not a loop. Let \(x \) be a point of \(S_j \). We will denote the stabilizer of \(x \) in \(T^r \) by \(T_x \). We can decompose the quotient map on the sphere induced by the action of \(T^r \) into two parts: \(f : S^{2n-1} \rightarrow S^{2n-1}/T_x^r \) and \(g : S^{2n-1}/T_x^r \rightarrow S^{2n-1}/T^r \). Evidently \(g \) is just the quotient map for the action of \(T^r/T_x^r \) on \(f(S^{2n-1}) \). Then \(g \circ f \) is the projection from \(S^{2n-1} \) to \(X \). The entire circle \(S_j \) is fixed by \(f \), and \(g \) identifies all of \(S_j \) to a single point \(\bar{x} \). Define \(R_x \) to be the quotient of the action of \(T^r \) restricted to the \((2n-3)\)-dimensional sphere \((S_1 \ast \cdots \ast S_j \ast \cdots \ast S_n) \). As \(T^r \) respects the join decomposition of \(S^{2n-1} \) every point \(\bar{y} \neq \bar{x} \) in \(X \), but not in \(R_x \), lies on a unique minimal geodesic from \(\bar{x} \) to \(R_x \). The minimal geodesics in \(X \) with initial value \(\bar{x} \) are parameterized by \((S_1 \ast \cdots \ast \hat{S}_j \ast \cdots \ast S_n)/T_x^r \). This quotient space is usually called the space of directions of \(X \) at \(x \) and we denote it by \(N_x \). All of the minimal geodesics from \(\bar{x} \) to \(R_x \) have length \(\pi/2 \). The above discussion shows that \(X \) is (homeomorphic to) the mapping cone of \(g : N_x \rightarrow R_x \) with cone point \(\bar{x} \). As with any mapping cone, there is an associated Mayer-Vietoris sequence.

\[\cdots \rightarrow \tilde{H}_i(R_x) \rightarrow \tilde{H}_i(X) \rightarrow \tilde{H}_{i-1}(N_x) \rightarrow \cdots \]

(1)

Proposition 4. Let \(X = S^{2n-1}/T^r \) and let \(M_X \) be the corresponding matroid. If \(M_X \) contains a coloop, then \(X \) is a cone.

Proof. Let \(e_j \) be a coloop of \(M \). Then we may row reduce the representative matrix of \(M \) using the Euclidean algorithm so that \(e_j \) is the \(j^{th} \) column, this column contains only one nonzero entry, and that entry is in position \(ij \). In addition, the \(i^{th} \) row is zero except for \(ij \). Since the action is effective this entry must be plus or minus one. With the matrix in this form, it is clear that \(T_x^r = T^r \) for any \(x \in S_j \). Hence for this \(x \) the map which determines the mapping cone structure of \(X \) is the identity.

The above results already make it easy to compute \(\pi_1(X) \). If \(n = 1 \), then \(X \) is homeomorphic to a circle or a point. In all other cases, \(X \) is simply connected.
Theorem 5. If $n \geq 2$, then X is simply connected.

Proof. If $e_1 \in M_X$ is a loop or coloop, then Propositions 3 and 4 immediately imply X is simply connected. So assume that e_1 is neither a loop nor a coloop. For the base case $n = 2$, the only remaining possibility is that $Z = [a_1 a_2]$ with both entries nonzero. This implies X is homeomorphic to $\mathbb{C}P^1$ and hence simply connected (see the proof of Proposition 13). For the induction step, the mapping cone presentation of X shows that X is the union of two simply connected open subsets whose intersection is connected. Apply Siefert-van Kampen.

4.2 $\tilde{P}(X, t)$

In this section we prove that $H_i(X; \mathbb{Z})$ is a free abelian group for all i and that the integral reduced Poincaré polynomial

$$\tilde{P}(X, t) = \sum \text{rk } \tilde{H}_i(X, \mathbb{Z}) t^i$$

equals $t^{r-1} T(M_X; 0, t^2)$. Our strategy is to use induction on n, the recursion which characterizes the Tutte polynomial, and the long exact sequence (1). If M_X contains a coloop, then Proposition 4 works well. However, if M_X does not contain a coloop, then an immediate obstacle to induction is that N_x may not be a quotient of a sphere by a real torus.

Let $x \in S_j$. Recall that $N_x \cong S^{2n-3}/T_x^r$, so we wish to better understand the structure of this isotropy subgroup. By Lemma 2 we can use the Euclidean algorithm to row reduce a representative matrix of M_X so that there is only one nonzero entry in column j, let us say it is in row i. If this ij^{th} entry is a one, then $T_x^r \cong T_1 \times \cdots \times \hat{T}_j \times \cdots \times T_r$. If the entry is some $a \neq 1$, then a is the gcd of column j. Hence, $T_x^r \cong T_1 \times \cdots \times \hat{T}_j \times \cdots \times T_r \times \mathbb{Z}_a$, where \mathbb{Z}_a is the cyclic group $\mathbb{Z}/a\mathbb{Z}$. This demonstrates that $N_x \cong S^{2n-3}/T_x^r$ where $T_x^r \cong T^{r-1} \times \mathbb{Z}_a$ for some $a \in \mathbb{N}$. We can break up this action into two parts: let $\hat{N}_x \cong S^{2n-3}/T^{r-1}$ so that $N_x = \hat{N}_x/\mathbb{Z}_a$ and the matroid corresponding to \hat{N}_x is M_X/e_j.

We wish to show that this extra quotient by a finite group does not affect the rational homology of \hat{N}_x. In order to do so, we require more information about the local structure of N_x and \hat{N}_x.

8
An absolute neighborhood retract (ANR) is a topological space Y with the property that for every normal space Z that embeds in Y as a closed subset, there exists an open set U in Y such that $Z \subset U \subset Y$.

Lemma 6. N_x and \hat{N}_x are both ANRs.

Proof. We say that an action has finite type if there are only a finite number of conjugacy classes of isotropy subgroups. It is shown in Conner [?] that if Γ is a compact abelian Lie group acting on a compact connected finite dimensional ANR X, and the action is of finite type, then the orbit space X/Γ is an ANR. This result also applies to all finite abelian groups Γ. It is well known that every sphere is an ANR. It remains to be shown that the linear action of T^r on S^{2n-1} has finite type. By the definition of the action, all the points x on any given invariant circle S_j have the same isotropy group T^r_j. If $x \in S^{2n-1}$ does not lie on an invariant circle, then there is some minimal subset of circles $\{S_{ik}\}_{k=1}^m$ whose join in S^{2n-1} contains x. By choosing points $y_{ik} \in S_{ik}$, we see that $T^r_x = \bigcap T^r_{y_{ik}}$. This formulation demonstrates that the toral action can only have a finite number of distinct isotropy groups and is thus of finite type.

Lemma 7. Suppose a finite abelian group G acts on \hat{N}_x. Let F be a field of characteristic 0 or of characteristic prime to the order of G. Then $H_n(\hat{N}_x/G; F) \cong [H_n(\hat{N}_x; F)]^G$, the group of invariant homology classes.

Proof. For Čech cohomology, the lemma is a corollary of Theorem III.7.2 in Bredon’s text on transformation groups [?] which states the result for more general quotient spaces. By the previous lemma, N_x and \hat{N}_x are both ANRs. The lemma follows directly since singular cohomology and Čech cohomology are equivalent on ANRs and we are working with field coefficients.

Proposition 8. $H_*(N_x; \mathbb{Z}) \cong H_*(\hat{N}_x; \mathbb{Z})$.

Proof. Let k be a field. If the characteristic of k is zero, then choose any column of Z. When the characteristic of k is positive, choose a column j so that the characteristic of k does not divide the gcd of the entries of the column. There is always such a column, otherwise the action would not be effective. Write $N_x = \hat{N}_x/\mathbb{Z}_{a_j}$ as above. The finite group \mathbb{Z}_{a_j} is a subgroup of the connected group T_j which acts on N_x by isometries. Hence every element of \mathbb{Z}_{a_j} acts on N_x by a map homotopic to the identity. Now, Lemma[?] shows that for any field k, $H_*(N_x; k) \cong H_*(\hat{N}_x; k)$. The universal coefficient theorem finishes the proof.

9
With the main obstacle to induction out of the way we are ready to prove the main theorem of this section.

Theorem 9. Let \(X = S^{2n-1}/T^r \) be a quotient of an odd-dimensional sphere by an effective linear action. Then \(H_*(X; \mathbb{Z}) \) is a finitely generated abelian group and

\[
\hat{P}(X, t) = \sum \text{rk} \hat{H}_i(X, \mathbb{Z}) \ t^i = t^{r-1} T(M_X; 0, t^2).
\]

(2)

Proof. It is sufficient to prove (2) when using arbitrary field coefficients. So let \(k \) be a field (of any characteristic).

We proceed by induction on \(n \). When \(n \) is one there are only two actions to consider. The circle acting on itself and the trivial action of \(T^0 = \{ \text{id} \} \) on the circle. The latter is an effective action in the sense that every nonidentity element of the group acts nontrivially! In both cases (2) is easily verified.

For the induction step there are three cases to consider: \(e_1 \in M_X \) is a coloop, loop, or neither. If \(e_1 \) is a coloop, then Proposition \(4 \) tells us that \(X \) is contractible, so \(\hat{P}(X, t) = 0 \), while Tutte recursion insures that \(T(M_X; 0, t^2) = 0 \). When \(e_1 \) is a loop, Proposition \(3 \) implies that \(X = S^1 \ast X_{M_X-e_1} \). So the induction hypothesis insures that \(\hat{P}(X, t) = t^2 \hat{P}(X_{M_X-e_1}, t) = t^{r-1} t^2 T(M_X - e_1; 0, t^2) = t^{r-1} T(M_X; 0, t^2) \).

So assume that \(e_1 \) is neither a loop nor a coloop. Then we have that \(r(M - e_1) = r(M) \) and \(r(M_X/e_1) = r(M_X) - 1 \). Now consider the long exact sequence (1).

\[
\ldots \hat{H}_i(N_x; \mathbb{k}) \rightarrow \hat{H}_i(R_x; \mathbb{k}) \rightarrow \hat{H}_i(X; \mathbb{k}) \xrightarrow{\partial} \hat{H}_{i-1}(N_x; \mathbb{k}) \rightarrow \hat{H}_{i-1}(R_x; \mathbb{k}) \rightarrow \ldots
\]

The induction hypothesis applied to \(R_x \) and \(N_x \) (via Proposition \(8 \)) implies that, depending on the parity of \(i \), one of two things is happening. One, \(\hat{H}_i(R_x; \mathbb{k}) = 0 \) and \(\hat{H}_{i-1}(N_x; \mathbb{k}) = 0 \), in which case \(\hat{H}_i(X; \mathbb{k}) \cong \hat{H}_i(R_x; \mathbb{k}) \oplus \hat{H}_{i-1}(N_x; \mathbb{k}) \). Combining these two possibilities with the induction hypothesis gives

\[
\hat{P}(X, t) = \hat{P}(R_x, t) + t \hat{P}(N_x, t) = t^{r-1} T(M_X - e_1; 0, t^2) + t^{r-1} T(M_X/e_1; 0, t^2)
\]

\[= t^{r-1} T(M_X; 0, t^2).\]

The above formula raises two immediate questions. Since all of the homology groups are finitely generated free abelian, \(H^i(X) \cong H_i(X) \) for every \(i \).
Problem 1. What is the ring structure of $H^*(X)$?

If the dimension of X is odd, or the rank of M_X is greater than n, then all products in $H^*(X)$ must be trivial for purely dimensional reasons. When M_X is rank one without loops X is a weighted projective space. (See Section 6.) In that special case the ring structure of the cohomology ring of X was determined in [4]. We do not know of any other case with nontrivial products.

As the homology of X vanishes in every other degree, it is natural to ask whether or not the following holds.

Problem 2. Is there a CW-decomposition of X so that all boundary maps are zero?

If so, one might hope that Tutte’s theory of basis activity for graphs [9], extended to matroids by Crapo [3], might be realized with a natural bijection between the cells of the CW-structure and the bases of M_X with internal activity zero.

5 The Singular Set

Given a quotient space $X = Y/T^r$, the rational singular set of the action is the image in the quotient space of the points of Y whose isotropy subgroups are infinite subgroups of T^r. We will denote the rational singular set of the quotient S^{2n-1}/T^r by S and determine its homotopy type.

Let $A = \{e_{i_1}, \ldots, e_{i_k}\} \subseteq M_X$. Define $S^A = \{(x_1, x_2, \ldots, x_{2n-1}) \in S^{2n-1} : x_{2i-1} = x_{2i} = 0 \text{ for all } e_i \notin A\}$. Equivalently, S^A is the join $S_{i_1} \ast \cdots \ast S_{i_k}$ in S^{2n-1}. For $x \in S^{2n-1}$ set A_x to be the minimal A such that $x \in S^A$.

Any $t \in T^r_x$ must fix all of S^{A_x}. Suppose A_x is a spanning subset of M_X. Then the square submatrix of Z whose columns are A_x can be diagonalized over the integers with nonzero diagonal entries $\{c_1, \ldots, c_r\}$ by the elementary row operations covered by Lemma 2. This implies T^r_x is contained in a subgroup of T^r isomorphic to $\mathbb{Z}_{c_1} \oplus \cdots \oplus \mathbb{Z}_{c_r}$ and hence is finite. So, for any $x \in S$ we see that A_x is a nonspanning subset and hence contained in a hyperplane H of M_X.

Conversely, suppose H is a hyperplane of M_X. In the column space of Z, H is the intersection of the columns of Z with a rational hyperplane. This hyperplane is perpendicular to an integer vector. Thus there is an element γ of the row space which is an integral linear combination of the rows of Z such that the zeros of γ correspond to the columns in H. Therefore, there is an element of T^r of infinite order which fixes S^H.

11
As a result, we now know that the preimage of the rationally singular set is the union of all S^H, H a hyperplane of M_X. Each S^H is a sphere of dimension $2|H| - 1$. Hence the image of S^H in X is of dimension $2|H| - 1 - r(H) = 2|H| - 1 - (r(M) - 1) = 2|H| - r(M)$.

We define an arrangement as a finite collection $\mathcal{A} = \{A_1, \ldots, A_m\}$ of closed subspaces of a topological space U such that:

i) $A, B \in \mathcal{A}$ implies that $A \cap B$ is a union of spaces in \mathcal{A}

ii) If $A, B \in \mathcal{A}$ and $A \subseteq B$, then the inclusion map $A \hookrightarrow B$ is a cofibration.

Given $A \subseteq M_X$ define X_A to be $g \circ f(S^A)$. Let \mathcal{A} be the set generated by $\{X_H : H$ is a hyperplane of $M_X\}$ and all of its intersections, including the empty set if this is the intersection of all the $g \circ f(H)$. Now let P be the poset whose elements are the sets in \mathcal{A}, ordered by reverse inclusion. The X_H in \mathcal{S} are the minimal elements of P. Furthermore, the elements of P corresponds to flats of the matroid M_X. In fact, P is isomorphic to $(L_{M_X})^*$, the order dual of the lattice of flats of M with the maximal element $\hat{1}$ corresponding to M_X removed. In other words, P is the poset of flats of M_X, other than M_X, ordered by reverse inclusion.

Proposition 10. If X_F, X_G are elements of the arrangement \mathcal{A} and $X_F > X_G$, then the inclusion map $X_F \hookrightarrow X_G$ is homotopic to the constant map.

Proof. Let $c \in S^{2n-1}$ be a point on an invariant circle S_j such that e_j is in the flat G, but not F. By Proposition 4, $X_F \cup \{e_j\} \subseteq X_G$ in X is a cone with base X_F in X_G.

The above proposition means that we can use the wedge lemma from [12] to compute the homotopy type of \mathcal{S}.

Theorem 11. The singular set \mathcal{S} is homotopy equivalent to

$$\bigvee_{F \in L_{M_X}} X_F \ast \bigvee_{i=1}^{\mu(M_X/F)} S^{r(F) - 2}.$$

Proof. By the wedge lemma in [12], \mathcal{S} is homotopy equivalent to

$$\bigvee_{X_F \in P} X_F \ast \Delta(P_{<X_F}),$$

where $P_{<X_F}$ is the subposet of P consisting of all elements of P strictly less than X_F. By definition this is the order dual of the interval $[F, E]$ in L_{M_X} with F and E removed.
Since the order complex of a poset and its order dual are isomorphic, the result now follows from the fact that \([F, E] \cong L(M_X/F)\) and Theorem 1.

With the homotopy type of singular set in hand, it is easy to compute the reduced Poincaré polynomial of \(S\).

Theorem 12. The reduced Poincaré polynomial of the singular set of the action with integral coefficients is given by \(\tilde{P}(S, t) = t^{r(M)-2}[T(M; 1, t^2) - T(M; 0, t^2)]\).

Proof. By the previous theorem, Theorem 9 and the results of Section 4,

\[
\tilde{P}(S, t) = \sum_{F \in L_M X \atop F \neq E} \tilde{P}(X_F \ast \vee_{t=1}^{\mu(M_X/F) S^{r-r(F)-2}}, t) = \sum_{F \in L_M X \atop F \neq E} t^{r-2} \mu(M_X/F) T(F; 0, t^2), \tag{3}
\]

The last equality uses the usual computation of \(\tilde{P}\) for the join of a space and a wedge of spheres of the same dimension via the Künneth theorem.

Recall from the end of Section 2.3 that \(\mu(M_X/F) = T(M_X/F; 1, 0)\) whenever \(M_X\) has no loops. This is the case here, since for any flat \(F\) of any matroid \(M\), \(M/F\) has no loops. Now compare (3) with the Kook, Reiner Stanton convolution formula [5] for any matroid \(M\),

\[
T(M; 1, t^2) = \sum_{F \in L_M} T(M/F; 1, 0) \cdot T(F; 0, t^2).
\]

6 Manifolds

One natural question to ask is, “When is \(X\) a topological manifold?” The Tutte polynomial specialization \(T(M_X; 0, t^2)\) is always of the form

\[
t^{2(n-r)} + b_{n-r-1}t^{2(n-r-1)} + \cdots + b_1 t^2,
\]

with \(b_i \in \mathbb{Z}_{\geq 0}\). Furthermore, if \(b_i > 0\) and \(i < n\), then \(b_{i+1} > 0\). This can be shown by a deletion and contraction argument. This fact, Poincaré duality, and our formula for
$H_s(X; \mathbb{Q})$, imply that there are only two potential situations for X to be a manifold (without boundary). If $r = 1$, then M_X is the rank one uniform matroid, where a subset of M_X is independent if and only if it has cardinality one or zero. Otherwise, we have $T(M_X; 0, t^2) = t^{2(n-r)}$. If M_X does not meet one of these two criteria, then the $(2n - 1 - r)$-dimensional X has $H_{2n-r-3}(X, \mathbb{Q}) \neq 0$ and $H_2(X, \mathbb{Q}) = 0$, preventing the orbit space from satisfying Poincaré duality.

6.1 $r = 1$

In this case $Z = [a_1 a_2 \ldots a_n]$ with all $a_i \neq 0$. These quotient spaces have been studied under the names twisted projective spaces or weighted projective spaces. By using Lemma 2 we can further simplify and assume all the a_i are positive and $a_1 \geq a_2 \geq \cdots \geq a_n$. For instance, if $Z = [1 \ 1 \ \ldots \ 1]$, then X is $\mathbb{C}P^n$. As we will see below, when $A = \begin{bmatrix} a_1 & a_2 \end{bmatrix}$, the quotient X is always homeomorphic to S^2. On the other hand, consider $Z = [3 \ 1 \ \ldots \ 1]$. Let $x \in S_1$. Then $T_x \cong \mathbb{Z}_3$ which acts on all $S_j, j \neq 1$, by rotation. Hence N_x is a lens space and excision shows $H_s(X, X - \{\bar{x}\})$ is not isomorphic to the homology of a sphere. Thus X cannot be a manifold.

The necessity portion of Proposition 13 can easily be obtained by applying [4, Theorem 1]. However, we give a direct proof here.

Proposition 13. If $Z = [a_1 \ldots a_n]$ with all $a_1 \geq a_2 \geq \cdots \geq a_n > 0$, then X is a manifold if and only if $n = 2$, or $a_1 = a_2 = \cdots = a_{n-1}$ and $a_n = 1$. Furthermore, if X is a manifold, then X is homeomorphic to $\mathbb{C}P^n$.

Proof. Suppose $n = 2$. Consider the mapping cone structure of X. Since $a_2 \neq 0$, R_x is a point. On the other hand, $N_x = S^1/\mathbb{Z}_{a_1}$ and hence homeomorphic to the circle. So X is homeomorphic to the mapping cone of the circle mapped to a point. Thus X is homeomorphic to $\mathbb{C}P^1$.

Now we assume $n \geq 3$. Let $x \in S_1$. Then $T_x = \mathbb{Z}_{a_1}$ and T_x acts nontrivially on every circle S_j with $a_j < a_i$. The homology of N_x, and by excision, the pair $(X, X - \{\bar{x}\})$, will not be that of a sphere unless the action of T_x is trivial on all the $S_i, i \neq n$. Thus $a_1 = a_2 = \cdots = a_{n-1}$. To see that $a_n = 1$, suppose $a_n > 1$. Let $z \in S_n$, so $T_z = \mathbb{Z}_{a_n}$. If a_n divides all of the other a_i, then the action is not effective. If it does not, the T_z acts nontrivially on all of the other circles and the usual excision argument shows that X cannot be a manifold.
Lastly, we have to show that if \(Z = [a_1 \ldots a_1 1] \), then \(X \) is homeomorphic to \(\mathbb{C}P^n \). Break up the action \(T \acts S^{2n-1} \) into two parts. First quotient out by \(\mathbb{Z}_{a_1} \). This subgroup acts trivially on all the circles except \(S_n \). Hence it leaves a quotient space \(\bar{X} \) homeomorphic to \(S^{2n-1} \). Now act on \(\bar{X} \) by \(T/T_{a_1} \). This group is also a rank one torus and this action is equivalent to \(Z = [1 \ldots 1] \). Therefore, \(X \) is homeomorphic to \(\mathbb{C}P^n \).

\[\square \]

6.2 Spheres

When is \(T(M_X; 0, t^2) = t^{2(n-r)} \)? Obviously this is the same as when \(T(M_X; 0, t) = t^{n-r} \).

Proposition 14. Let \(M \) be a rank \(r \) matroid with \(n \) elements. Then \(T(M; 0, t) = t^{n-r} \) if and only if \(M \) is a direct sum of circuits.

Proof. An elementary deletion-contraction argument using the recursive definition of the Tutte polynomial.

As noted in the introduction, one of the obvious questions when considering linear quotients of spheres is, “When is the quotient space homeomorphic to a sphere?” For real tori the answer is, at least in the language of matroids, essentially the same as for \(\mathbb{Z}_2 \)-tori [7, Theorem 4]. In preparation for this result we consider what happens when \(M_X \) is a direct sum of smaller matroids.

Suppose \(M_X = M_1 \oplus \cdots \oplus M_l \). Let \(n_i \) be the cardinality of \(M_i \), and \(r_i \) the rank of \(M_i \). So \(\sum n_i = n \) and \(\sum r_i = r \). Then it is possible, after applying Lemma 2, to write \(Z \) in block diagonal form with \(l \) blocks of size \(r_i \times n_i \). Denote the blocks by \(Z_i \). Each \(Z_i \) corresponds to a quotient space \(X_i = S^{2n_i-1}/T^{r_i} \). Now it is possible to write \(T^r = T^{r_1} \times \cdots \times T^{r_l} \), and \(S^{2n-1} = S^{2n_1-2} \cdots S^{2n_l-1} \) so that each \(T^{r_i} \) acts trivially on every \(S^{2n_j-1} \) when \(i \neq j \). From these decompositions the following proposition is clear.

Proposition 15. Suppose \(M_X = M_1 \oplus \cdots \oplus M_l \) with notation as above. Then \(X = X_1 \cdots X_l \).

Theorem 16. The following are equivalent.

1. \(M_X \) is a direct sum of circuits.

2. \(X \) is homeomorphic to a sphere.
3. X is an integral homology sphere.

Proof. Obviously (2) implies (3). The implication (3) implies (1) follows immediately from Proposition 14 and our formula for the homology of X. So it remains to prove (1) implies (2). Our first simplification is to observe that since joins of spheres are spheres, Proposition 15 shows that it is sufficient to prove that if M_X is a circuit, then X is homeomorphic to a sphere. If $n = 1$, then $r = 0$ and $X = S^1$. So from here on we assume that $r + 1 = n \geq 2$ and M_X is a circuit. This implies that Z can be row reduced to something of the form

$$
\begin{bmatrix}
 a_1 & 0 & 0 & \ldots & 0 & b_1 \\
 0 & a_2 & 0 & \ldots & 0 & b_2 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \ldots & a_{n-1} & b_{n-1}
\end{bmatrix}
$$

with all a_i and b_i nonzero.

Our strategy here is simple: prove that X is a simply connected manifold with the homology of a sphere. We have already seen that X is simply connected (Theorem 5) and that it has the homology of a sphere. So it remains to show that X is a manifold. We will do this by induction on n. The base case $n = 2$ was discussed in the proof of Proposition 13.

Let $\bar{x} \in X$ and x be any preimage of \bar{x} in S^{2n-1}. Now let N_x be the unit tangent vectors in the tangent space of x which are orthogonal to T^r_x, the orbit of x. Since small metric neighborhood of \bar{x} are homeomorphic to a cone over N_x/T^r_x, it is sufficient to prove that this quotient space is homeomorphic to S^{n-1}.

As before, for $x \in S^{2n-1}$ let A_x be the minimal nonempty subset of M_X such that $x \in S^{A_x}$. If $A_x = M_X$, then x is in the principle isotropy group of the torus and \bar{x} is a manifold point. So we can assume that $A_x \neq M_X$. For notational convenience, we can also assume that $e_n \notin A_x$ by reordering the columns if necessary. Since $T^r \cdot S^{A_x} \subseteq S^{A_x}$, $T^r \cdot S_x \subseteq S^{A_x}$. Define three subspaces of the tangent space of x as follows: T are the vectors tangent to T^r, O are vectors tangent to S^{A_x}, but orthogonal to T^r, and N are those orthogonal to T_x, and thus also orthogonal to T^r. Then the tangent space at x is $T \oplus O \oplus N$. In terms of this decomposition, N_x are the unit vectors in $O \oplus N$. The form of Z implies that the rank T^r_x is $|A_x|$, unless $A_x = M_X$, in which case it is only $n - 1 = r$. By construction T^r_x acts trivially on O. Thus we have reduced the problem to showing that $\tilde{N}_x = S^{M_X-A_x}/T^r_x$ is homeomorphic to a sphere, where \tilde{N} are
the unit vectors in \mathcal{N}. The action of T_x^r on $S^{M_X - Ax}$ is the induced action of T^r. This is most easily seen by representing the unit vectors by minimal geodesics beginning at x and ending in $S^{M_X - Ax}$.

As we have seen, T_x^r is a direct sum of a finite group and a torus.

$$T_x^r = \bigoplus_{i \in A_X} \mathbb{Z}_{a_i} \oplus \bigoplus_{i \notin A_x} T_i.$$

First we quotient out by the finite left-hand summand. The action of each cyclic subgroup in this summand on S^{2n-1} is trivial except for S_n where it acts by rotation by $2\pi/a_i$. Hence, after quotienting out by the finite left-hand summand we are left with S^{2n-1} with the same join decomposition as before (except S_n is smaller) and an action of $\tilde{T}^{n - |A_x|}$ whose associated matrix is the same form as before, but of smaller size and all of the $a_i = 1$. Finally, we can apply the inductive hypothesis to see that this quotient space is homeomorphic to a sphere.

\square

References

[1] Anders Björner, *The homology and shellability of matroids and geometric lattices*, Matroid applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cambridge, 1992, pp. 226–283. MR 1165544 (94a:52030)

[2] Thomas Brylawski and James Oxley, *The Tutte polynomial and its applications*, Matroid applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cambridge, 1992, pp. 123–225. MR 1165543 (93k:05060)

[3] H. Crapo, *The tutte polynomial*, Aeq. Math. 3 (1969), 211–229.

[4] Tetsuro Kawasaki, *Cohomology of twisted projective spaces and lens complexes*, Math. Ann. 206 (1973), 243–248.

[5] W. Kook, V. Reiner, and D. Stanton, *A convolution formula for the Tutte polynomial*, J. Combin. Theory Ser. B 76 (1999), no. 2, 297–300. MR 1699230 (2000j:05028)

[6] James G. Oxley, *Matroid theory*, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1992. MR 1207587 (94d:05033)
[7] Ed Swartz, *Matroids and quotients of spheres*, Math. Z. **241** (2002), no. 2, 247–269. MR 1935486 (2003h:05063)

[8] Edward Bruce Swartz, *Matroids and quotients of spheres*, ProQuest LLC, Ann Arbor, MI, 1999, Thesis (Ph.D.)–University of Maryland, College Park. MR 2699788

[9] William Tutte, *A contribution to the theory of chromatic polynomials*, Can. J. Math. **6** (1954), 80–91.

[10] Stephen J. Willson, *The orbit space of a sphere by an action of Z_p^**, Proc. Amer. Math. Soc. **59** (1976), no. 2, 361–365. MR 0428328 (55 #1353)

[11] Thomas Zaslavsky, *The Möbius function and the characteristic polynomial*, Combinatorial geometries, Encyclopedia Math. Appl., vol. 29, Cambridge Univ. Press, Cambridge, 1987, pp. 114–138. MR 921071

[12] Günter M. Ziegler and Rade T. Živaljević, *Homotopy types of subspace arrangements via diagrams of spaces*, Math. Ann. **295** (1993), no. 3, 527–548. MR 1204836 (94c:55018)