A multi-item inventory system with expected shortage level-dependent backorder rate with working capital and space restrictions

A. Gholami-Qadikolaei, A. Mirzazadeh* and M. Kajizad

Department of Industrial Engineering, Tarbiat Moallem University, Tehran, Iran

ARTICLE INFO

Article history:
Received 1 June 2011
Received in revised form July, 29, 2011
Accepted 30 July 2011
Available online 3 August 2011

Keywords:
Inventory system
Stochastic demand
Stochastic lead time
Partial backlogging
Chance-constrained method
Minimax distribution free procedure

ABSTRACT

In this paper, a new multi-item inventory system is considered with random demand and random lead time including working capital and space constraints with three decision variables: order quantity, safety factor and backorder rate. The demand rate during lead time is stochastic with unknown distribution function and known mean and variance. Random constraints are transformed to crisp constraints with using the chance-constrained method. The Minimax distribution free procedure has been used to lead proposed model to the optimal solution. The shortage is allowed and the backlogging rate is dependent on the expected shortage quantity at the end of cycle. Two numerical examples are presented to illustrate the proposed solution method.

1. Introduction

The shortage cost calculation is an important problem in estimating the inventory systems costs including purchasing, set up, holding, stock out costs and, etc. Shortage cost is divided to the backorder and lost sale. Furthermore, Lead time management is a significant issue in production and operation management. As stated in Tersine (1994), lead time usually comprises several components, such as set up time, waiting time, move time and queue time. In many practical situations, lead time can be reduced using an added crashing cost. In other words, lead time is controllable. Liao and Shyu (1991), Ben Daya and Rauf (1994), Ouyang et al. (1996), Park (2007) considered lead time as a variable and controlled it by paying extra crashing cost. They assumed that the lead time could be decomposed into n mutually independent components where each component has fixed crashing cost. Besides Callego and Moon (1993) assumed unfavorable lead time demand distribution and solved both the continuous and periodic review models with a mixture of backorder and lost sale using Minimax distribution free method.

There are some multi-product inventory models with shortage including restrictions on inventory investment, space or reorder work load. Brown and Gerson (1967) proposed some models for multi-
item stochastic inventory system with the limitation on total inventory investment. Schrady and Choe (1971) proposed a model with the total time weighted shortages with limitations on inventory investment and reorder work load. Gardner (1983) developed models for minimizing expected approximate backordered sales with the restrictions on aggregate investment and replenishment work load. Schroeder (1974) presented a model constrained by total expected annual ordering with an objective of minimizing the expected number of unit’s backordered per year.

In many real-world situations, during a shortage period, the longer the waiting time is, the smaller the backlogging rate is. For instance, for fashionable commodities and high-tech products with a product life cycle, the willingness for a customer to wait for backlogging is diminishing with the length of the waiting time. In this way, the researcher used β as the function of τ, the time remaining until the next replenishment. Montgomery et al. (1973) proposed linear function for $\beta(\tau)$. Abad (1996) introduced exponential $\beta(\tau)$ originally, but Papachristors and Skouri (2000) referred it as exponential. Abad (1996) proposed rational $\beta(\tau)$ for the first time and then San Jose et al. (2005) and Silica et al. (2007) used this form and the first to use this form to it. Silica et al. (2009) proposed mixed exponential $\beta(\tau)$ in their study. Some other authors considered β as a function of expected shortage quantity at the end of cycle. Their studies are based upon this assumption, which the larger amount of the expected shortage at the end of cycle, the smaller amount of customer can wait and hence the smaller backorder rate would be. Ouyang and Chaung (2001) were first to introduce this assumption in their model and some other authors generalized this assumption in their models for backorder rate (Lee, 2005; Lee et al., 2007; Lee et al., 2006).

Many models for continuous inventory system with stochastic demand and allowable stock out such as Hadley and Whithin (1963), Parker (1964), Tinareli (1983) and Yano (1976) and some models in the stochastic demand and stochastic lead time environment such as Ord and Bagchi (2006), Burgin (2007) have been studied to find optimal solution on order quantity and backorder rate, which depends on expected shortage quantity and reorder point, which is replaced by safety factor.

Ouyang and Chaung (2001) observed that many products of well-known brand and modish goods like certain brand gum shoes and clothes may lead to a state in which clients prefer their demands to be backordered, whereas shortage happened. Doubtlessly, if the amount of shortage exceeds the waiting patience of client, some clients avoid the backorder case. This phenomenon reveals that as shortage occurs, in the stochastic demand and deterministic lead time area, the longer the length of lead time is the larger amount of shortage is, the smaller proportion of customers can wait and hence the smaller backorder rate would be. However, in our new suggested model, in the stochastic lead time and stochastic demand environment, we consider safety factor, order quantity and backorder rate as the decision variables and assume that the backorder rate is dependent on the expected shortage quantity at the end of cycle. Thus, the larger amount of the safety factor is, the larger amount of safety stock is, the larger holding cost is, the smaller amount of expected shortage quantity through the stochastic lead time is, the larger back order rate is and therefore, the smaller stock out cost would be. Therefore, our suggested model balances holding cost and stock out cost to minimize the total expected cost (TECU).

In this paper, first we consider multi product inventory system with three variables (order quantity, backorder rate and safety factor) with space and working capital constraints. We assume that the probability distribution of demand during lead time is unknown, but mean and variance of demand are known. Then, we utilize Minimax distribution free method to minimize the total expected cost per unit time. We transform random working capital and random space constraints to crisp constraints with using the chance-constrained method and then, solve the problem with Lagrange's multiplier method. At the end of paper, we present two numerical examples to illustrate our solution procedure.
2. Notation and assumption

The following notations have been used in this paper:

Indices:

\(n \) Number of items

\(i \) Index of items

Parameters:

\(\pi_{i1} \) Penalty cost per unit for \(i \)-th item

\(\pi_{i2} \) Marginal profit per unit for \(i \)-th item

\(c_i \) Purchasing cost per unit for \(i \)-th item

\(f_i \) Space used per unit for \(i \)-th item

\(A_i \) Ordering cost per order for \(i \)-th item

\(\theta_i \) Backorder parameter (\(\theta_i \geq 0 \)) for \(i \)-th item

\(B \) Maximum inventory investment for all items

\(F \) Maximum available space for all items

Decision variables:

\(Q_i \) Order quantity for \(i \)-th item

\(R_i \) Reorder point (which is replace by safety factor) for \(i \)-th item

\(k_i \) Safety factor for \(i \)-th item

\(\beta_i \) The fraction of demand which is backordered during stockout period for \(i \)-th item

Random variables:

\(D_i \) Demand rate per unit time for \(i \)-th item

\(L_i \) Length of lead time for \(i \)-th item

\(x_i \) Demand during lead time for \(i \)-th

\(x^+ \) Maximum value of \(x \) and 0

\(E(\cdot) \) Mathematical expectation

The developed model is based on these assumptions:

- Shortage is allowed and partially backlogged.
- Demand rate \(D_i \) is a random variable with mean \(E(D_i) \) and standard deviation \(\sigma_{D_i} \).
- Lead time is randomly distributed with mean \(E(L_i) \) and standard deviation \(\sigma_{L_i} \).
- Demand during lead time \(x_i \) is convolution of the demand rate and lead time. If demand rate, \(D_i \), and lead time, \(L_i \), be independent to each other the mean and variance of \(x_i \) is (Tersine (1994)):

\[
E(x_i) = E(D_i) \times E(L_i),
\]

\[
Var(x_i) = \sigma_{x_i}^2 = Var(D_i) \times E(L_i) + (E(D_i))^2 \times Var(L_i).
\]

- The reorder point \(R_i \) is the expected demand during lead time plus safety stock (ss) and \(ss = k_i \times (\text{standard deviation of lead time}) \) i.e. \(R_i = E(x_i) + k_i \sigma_{x_i} \) where \(k_i \) is safety factor satisfying \(P(x_i > R_i) = P(z_i > \alpha_i) = \alpha_i \), \(z_i \) represents the standard normal random variable and \(\alpha_i \) represents the allowable stockout probability during lead time \(E(x_i) \).
• Inventory is continuously reviewed. The replenishments are made whenever the inventory level falls to the reorder point R_i.
• The purchasing cost for i-th item is paid at the time of order received.

3. Model formulation

The system manager places an order of amount Q_i for i-th item, when the inventory level reaches to reorder level. The expected demand during shortage at the end of cycle is:

$$E(x_i - R_i)^+ = \int_{R_i}^{\infty} (x_i - R_i) f(x_i) dx_i$$

(3)

The expected net inventory level at the end of cycle is calculated by (see Fig. 1):

$$\int_{-\infty}^{\infty} (R_i - x_i) f(x_i) dx_i = R_i \int_{-\infty}^{\infty} f(x_i) dx_i - \int_{-\infty}^{\infty} x_i f(x_i) = R_i - E(x_i)$$

(4)

So, the expected number of backorder at the end of cycle is $\beta_i E(x_i - R_i)^+$ and the expected number of lost sale at the end of cycle is $(1 - \beta_i)E(x_i - R_i)^+$. The expected net inventory level just before the order arrives is $R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+$ and the expected net inventory level at the beginning of the cycle is $Q_i + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+$ and holding cost per cycle is calculated as follow (first we do not consider backorder rate):

$$I(t) = (Q_i + R_i - E(x_i)) - E(D_i)t, \quad T_i = \frac{Q_i}{E(D_i)}$$

holding cost per cycle = $h_i \times \int_0^{T_i} [(Q_i + R_i - E(x_i)) - E(D_i)t] dt$

(5)
\[
\begin{align*}
\text{In the above equations, for calculating holding cost per cycle, we don't consider the fraction demand during stockout period which will be backordered} \ (\beta). \text{ It means that all of the demands are backordered. If we consider} \ (\beta), \text{ we have lost sales and holding cost per cycle will be changed as follow (see Appendix A):}
\end{align*}
\]

\[
\frac{Q_i}{E(D_i)} \left[\frac{Q_i}{2} + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+\right] \times h_i
\]

Thus, the mathematical model of the expected cost per cycle can be expressed by:

\[
\sum_i A_i + \frac{Q_i}{E(D_i)} \left[\frac{Q_i}{2} + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+\right] \times h_i + \pi_{i1} \beta_i E(x_i - R_i)^+ +
\]

\[
\pi_{i2}(1 - \beta_i)E(x_i - R_i)^+ \quad (8)
\]

Therefore, the total expected cost per unit time (TECU) is simply calculated by multiplying Eq. (8) in the expected number of cycle and model is transformed as follow:

\[
\text{TECU}(Q_i, R_i, \beta_i) = \text{ordering cost} + \text{holding cost} + \text{stockout cost}
\]

\[
\text{TECU}(Q_i, R_i, \beta_i) = \sum_i E(D_i) A_i + \left[\frac{Q_i}{2} + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+\right] \times h_i +
\]

\[
\frac{E(D_i)}{Q_i} \left[\beta_i E(x_i - R_i)^+ + \pi_{i2}(1 - \beta_i)E(x_i - R_i)^+\right] \quad (9)
\]

We consider backorder rate as a variable, which is dependent on the expected shortage quantity at the end of cycle. It means that when shortage occurs, the larger amount of shortage is, the smaller ratio of client can wait and therefore, the smaller backorder rate would be. Thus, backorder will be function of the expected shortage quantity, which can be expressed as follow:

\[
\beta_i = \frac{1}{1 + \theta_i E(x_i - R_i)^+}. \tag{10}
\]

Backorder parameter (\(\theta_i\)) is a positive constant, which exhibits the importance of shortage in calculating backorder rate (\(\beta_i\)). Our objective is to minimize total expected cost per unit time with two restrictions, working capital and space and our model is formulated as follow:

\[
\min \text{ TECU}(Q_i, R_i, \beta_i)
\]

subject to

\[
\sum_{i=1}^{n} c_i [Q_i + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+] \leq B, \tag{11}
\]

\[
\sum_{i=1}^{n} f_i [Q_i + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+] \leq F.
\]
According to Tersine (1994), the distribution of demand is normal at the factory level; the Poisson at
the retail level; and the exponential at wholesale and retail level. In addition, the distribution of lead
time may be gamma, exponential geometric and normal. Bagchi et al. (1986) discussed elaborately on
these topics. We relaxed the assumption on the distribution of demand rate lead time and demand
during lead time with the following assumptions:

1. The distribution function $F(d_i)$ of D_i belong to the class of distribution function τ_{di} with finite
mean μ_{di} and standard deviation σ_{di}.

2. The distribution function $G(l_i)$ of L_i belong to the class of distribution function τ_{li} with finite
mean μ_{li} and standard deviation σ_{li}.

3. The distribution function $H(x_i)$ of x_i belong to the class of distribution function τ_{xi} with finite
mean μ_{xi} and standard deviation σ_{xi}.

Lemma 1: Callego and Moon (1993)

$$E(D - Q)^+ \leq \frac{(\sigma^2 + (Q - \mu)^2)^{1/2} - (Q - \mu)}{2},$$

(12)

where Q is overcapacity and D is random variable with mean μ and standard deviation σ. Using
the above lemma for any $H(x_i) \in \tau_{xi}$, it can be deduced that (see Appendix B):

$$E(x_i - R_i)^+ \leq \frac{1}{2} \left[\sqrt{Var(x_i) + (R_i - E(x_i))^2} - (R_i - E(x_i)) \right] = \frac{1}{2} \left(\sqrt{1 + k_i^2} - k_i \right) \sigma_{xi}$$

(13)

Then, with considering the definition of β and the above inequality, Eq. (13), we have:

$$\beta_i = \frac{1}{1 + \theta_i E(x_i - R_i)^+}$$

(14)

$$\beta_i \geq \frac{1}{1 + \frac{\theta_i}{2} \left(\sqrt{1 + k_i^2} - k_i \right) \sigma_{xi}}$$

(15)

We assume that $\sqrt{1 + k_i^2} - k_i = \rho(k_i)$.

If the purchasing cost of i-th item is paid at the time of receiving order then the problem can be
formulated by objective function with the random working capital and random space constraints,
which are given below (see Appendix B):

$$\min \{ \text{MaximizTECU}(Q_i, k_i) \} \quad H(x_i) \in \tau_{xi}$$

subject to

$$\sum_{i=1}^n c_i [Q_i + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)] \leq B,$$

(17)

$$\sum_{i=1}^n f_i [Q_i + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)] \leq F,$$

where maximizing TECU yields,
\[
\max \ TECU(Q_i, k_i) = \sum_{i=1}^{n} h_i \left(\frac{Q_i}{2} + k_i \sigma_{x_i} \right) + h_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) + \\
E(D_i) \left\{ A_i + \left(\pi_{i1} \times \frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) + \left(\pi_{i2} \times \frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) \right\}
\] (18)

This problem can be solved with using several methods. We use chance-constrained programming technique in this paper, which is explained in proposition 1:

Proposition 1: (chance-constrained) as the name indicates, the chance-constrained programming technique can be used to solve problems involving chance constraints, i.e. constraints having finite probability of being violated, this technique originally developed by Charnes and Cooper (1959). If \(\varphi \) and \(\gamma \) are the probabilities of non-violation of the constraints then the constraints can be written as:

\[
P \left[\sum_{i=1}^{n} f_i \left[Q_i + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+ \right] \leq F \right] \geq \varphi , \ 0 \leq \varphi \leq 1
\] (19)

\[
P \left[\sum_{i=1}^{n} c_i \left[Q_i + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+ \right] \leq B \right] \geq \gamma , \ 0 \leq \gamma \leq 1
\] (20)

First, we use chance-constrained technique for space constraint:

\[
\varphi \leq P \left\{ \sum_{i=1}^{n} f_i E(x_i) - \sum_{i=1}^{n} f_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) + F \geq \sum_{i=1}^{n} f_i (Q_i + R_i) \right\}
\] (21)

Thus, with Markov inequality formulation above Eq. (21) is changed as follow:

\[
P(x \geq a) \leq \frac{E(x)}{a} \quad \text{(Markov inequality)}
\] (22)

\[
\varphi \leq E \left[\sum_{i=1}^{n} f_i E(x_i) - \sum_{i=1}^{n} f_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) + F \right] / \sum_{i=1}^{n} f_i (Q_i + R_i)
\]

Or

\[
\varphi \sum_{i=1}^{n} f_i (Q_i + R_i) \leq \sum_{i=1}^{n} f_i E(x_i) - \sum_{i=1}^{n} f_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) + F
\] (23)

By the similar way working capital constraint is changed as follow:
Therefore, our model is reduced to:

\[
\begin{align*}
\min & \{ \max \ TECU(Q_i, k_i) \} \\
\max & \ TECU(Q_i, k_i) = \sum_{i=1}^{n} h_i \left(\frac{Q_i}{2} + k_i \sigma_{x_i} \right) + h_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) + \\
& \frac{E(D_i)}{Q_i} \left\{ A_i + \left[\pi_{i1} \times \frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right] + \left[\pi_{i2} \times \frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right] \right\} \\
\text{subject to} & \\
\gamma \sum_{i=1}^{n} c_i (Q_i + E(x_i) + k_i \sigma_{x_i}) + \sum_{i=1}^{n} c_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) - \sum_{i=1}^{n} c_i E(x_i) - B & \leq 0 \\
\varphi \sum_{i=1}^{n} f_i (Q_i + E(x_i) + k_i \sigma_{x_i}) + \sum_{i=1}^{n} f_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) - \sum_{i=1}^{n} f_i E(x_i) - F & \leq 0
\end{align*}
\]

We can solve this model with Lagrange multiplier method. Therefore, the Lagrange function will be:

\[
\begin{align*}
TECU(Q_i, k_i, \lambda_1, \lambda_2) &= TECU(Q_i, k_i) + \\
& \lambda_1 \left[\gamma \sum_{i=1}^{n} c_i (Q_i + E(x_i) + k_i \sigma_{x_i}) + \sum_{i=1}^{n} c_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) - \sum_{i=1}^{n} c_i E(x_i) - B \right] + \\
& \lambda_2 \left[\varphi \sum_{i=1}^{n} f_i (Q_i + E(x_i) + k_i \sigma_{x_i}) + \sum_{i=1}^{n} f_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right) \theta_i} \right) - \sum_{i=1}^{n} f_i E(x_i) - F \right]
\end{align*}
\]

To minimize the above unconstrained function, the Kuhn-Tucker condition for the minimization of a function subject to two inequality constraints are invoked as follow:

\[
\begin{align*}
\frac{\partial TECU(Q_i, k_i, \lambda_1, \lambda_2)}{\partial Q_i} &= 0 \quad (i = 1 \ldots n) \\
\frac{\partial TECU(Q_i, k_i, \lambda_1, \lambda_2)}{\partial k_i} &= 0 \quad (i = 1 \ldots n)
\end{align*}
\]
\[\lambda_1 \left[\gamma \sum_{i=1}^{n} c_i (Q_i + E(x_i) + k_i \sigma_{x_i}) + \sum_{i=1}^{n} c_i \left(\frac{\rho(k_i)^2 (\frac{\sigma_{x_i}}{2})^2 \theta_i}{1 + \rho(k_i) (\frac{\sigma_{x_i}}{2}) \theta_i} \right) - \sum_{i=1}^{n} c_i E(x_i) - B \right] = 0 \] (29)

\[\lambda_2 \left[\varphi \sum_{i=1}^{n} f_i (Q_i + E(x_i) + k_i \sigma_{x_i}) + \sum_{i=1}^{n} f_i \left(\frac{\rho(k_i)^2 (\frac{\sigma_{x_i}}{2})^2 \theta_i}{1 + \rho(k_i) (\frac{\sigma_{x_i}}{2}) \theta_i} \right) - \sum_{i=1}^{n} f_i E(x_i) - F \right] = 0 \] (30)

By simultaneously solving the above equations for \(Q_i, k_i, \lambda_1, \lambda_2 \) \((i = 1, \ldots, n)\) the minimum point \(TECU(Q_i, k_i) \) is obtained. Partial derivatives are obtained as follow:

\[
\frac{\partial TECU(Q_i, k_i, \lambda_1, \lambda_2)}{\partial Q_i} = \frac{h_i}{2} - \frac{E(D_i)}{Q_i^2} \left\{ A_i + \left[\left(\frac{\pi_{i1} \times \rho(k_i) (\frac{\sigma_{x_i}}{2})^2 \theta_i}{1 + \rho(k_i) (\frac{\sigma_{x_i}}{2}) \theta_i} \right) \right] + \lambda_1 \gamma c_i + \lambda_2 \varphi f_i \right\} = 0
\] (27)

From partial derivative Eq. (27), \(Q_i \) is obtained as follow:

\[
Q_i = \left[\frac{E(D_i) \left\{ A_i + \left[\left(\frac{\pi_{i1} \times \rho(k_i) (\frac{\sigma_{x_i}}{2})^2 \theta_i}{1 + \rho(k_i) (\frac{\sigma_{x_i}}{2}) \theta_i} \right) \right] + \lambda_1 \gamma c_i + \lambda_2 \varphi f_i \right\}}{\frac{h_i}{2}} \right]^{\frac{1}{2}}
\] (31)

\[
\frac{\partial TECU(Q_i, k_i, \lambda_1, \lambda_2)}{\partial k_i} = h_i \sigma_{x_i} + h_i \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i \tau(k_i) + \frac{E(D_i)}{Q_i} \left[\left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i \tau(k_i) \pi_{i2} \right] + \lambda_1 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i \tau(k_i) c_i + \lambda_2 \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i \tau(k_i) f_i + \lambda_1 \gamma c_i \sigma_{x_i} + \lambda_2 \varphi f_i \sigma_{x_i} = 0
\] (28)

where

\[
\tau(k_i) = \frac{2 \left(\frac{k_i}{1 + k_i^2} - 1 \right) \rho(k_i) \left(1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i \right) \theta_i - \theta_i \left(\frac{k_i}{1 + k_i^2} - 1 \right) \left(\frac{\sigma_{x_i}}{2} \right)^2 (\rho(k_i))^2}{\left(1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right)^2 \theta_i \right)^2}
\]
\[
\delta(k_i) = \frac{\left(\frac{k_i}{1 + k_i^2} - 1\right) \left(1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2}\right) \theta_i\right) - \theta_i \left(\frac{k_i}{1 + k_i^2} - 1\right) \left(\frac{\sigma_{x_i}}{2}\right) \rho(k_i)}{\left(1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2}\right) \theta_i\right)^2}
\]

\[\beta_i^*\] is obtained as follow:

\[
\beta_i^* = \frac{1}{1 + \frac{\theta_i}{2} \left(\sqrt{1 + k_i^2} - k_i\right) \sigma_{x_i}} \quad (i = 1 \ldots n)
\] (32)

The solution procedure is as follow:

Step 1: obtain from partial derivative of Eq. (27), \(Q_i\) in Eq. (31). Put \(Q_i(i = 1 \ldots n)\) in Eq. (28), Eq. (29) and Eq. (30).

Step 2: obtain \(\lambda_1, \lambda_2\) and \(k_i(i = 1 \ldots n)\) by the simultaneously solving Eqs (28), (29), (30).

Step 3: put \(\lambda_1, \lambda_2\) and \(k_i(i = 1 \ldots n)\) in (31) and find \(Q_i(i = 1 \ldots n)\).

Step 4: put \(k_i(i = 1 \ldots n)\) in Eq. (32) and find \(\beta_i(1 \ldots n)\).

Step 5: put \(k_i(i = 1 \ldots n)\) and \(Q_i(i = 1 \ldots n)\) and \(\beta_i(i = 1 \ldots n)\) in Eq. (26) and find TECU.

4. Numerical examples

Example 1: To illustrate the developed model, consider the numerical data, which has been stated in Table 1 (two items have been considered). Table 2 shows the distribution functions of monthly demand and lead time in days. These two distribution functions are independent. The maximum inventory investment is \(B = 15000\) $ and the total space is \(F = 13000\) \(M^2\). We consider \(\gamma = 0.9\) and \(\varphi = 0.9\).

Table 1
The model’s parameter

Product	\(h_i\) per unit per month	\(c_i\) per unit	\(f_i\) per unit	\(\pi_{i1}\) per unit	\(\pi_{i2}\) per unit	\(A_i\) per cycle
1	10	55	65	10	12	45
2	3.5	77	50	8.5	10	54

Table 2
The distribution functions of monthly demand and lead time in day

Monthly demand \(D_1\)	Probability \(f(d_1)\)	Lead time \(L_1\)	Probability \(f(l_1)\)	Monthly demand \(D_2\)	Probability \(f(d_2)\)	Lead time \(L_2\)	Probability \(f(l_2)\)
385	0.06	4	0.1	530	0.09	1	0.1
393	0.15	5	0.23	540	0.15	2	0.15
398	0.31	6	0.35	549	0.26	3	0.50
405	0.35	7	0.30	554	0.30	4	0.25
412	0.13	8	0.02	557	0.20		

Mean of distribution demand during lead time is:

\[E(D_1) \times E(L_1) = E(x_1) = 400 \times \frac{6}{30} = 80 \text{ units per month}\]
\[E(D_2) \times E(L_2) = E(x_2) = 55 \text{ units per month} \]

Variance of demand during lead time is:

\[\text{Var}(x_1) = \text{Var}(D_1) \times E(L_1) + (E(D_1))^2 \times \text{Var}(L_1) = 169 \text{ units per month} \]

\[\text{Var}(x_2) = \text{Var}(D_2) \times E(L_2) + (E(D_2))^2 \times \text{Var}(L_2) = 324 \text{ units per month} \]

In the Table below, we consider different values for backorder parameter, which is shown the importance of shortage for i-th item. When importance of shortage for i-th item is increased, the safety factor for i-th item will be increased, consequently. It means that the safety stock and holding cost is increased and optimal ordering quantity is decreased by Eq. (31). Table 3 shows that the larger amount of backorder rate is, the smaller amount of total expected cost (TECU) would be.

Table 3

\(k_i^* \)	\(Q_i^* \)	\(\beta_i^* \)	\(\lambda \)	TECU*	
\(\theta_1 = 0 \)	\(k_1 = 0.64 \)	\(Q_1 = 74 \)	\(\beta_1 = 1 \)	\(\lambda_1 = 0.0074 \)	1516
\(\theta_2 = 0 \)	\(k_2 = 1.29 \)	\(Q_2 = 143 \)	\(\beta_2 = 1 \)	\(\lambda_2 = 0.00 \)	1558
\(\theta_1 = 0.25 \)	\(k_1 = 0.84 \)	\(Q_1 = 72 \)	\(\beta_1 = 0.53 \)	\(\lambda_1 = 0.0099 \)	1574
\(\theta_2 = 0.25 \)	\(k_2 = 1.46 \)	\(Q_2 = 137 \)	\(\beta_2 = 0.56 \)	\(\lambda_2 = 0.00 \)	1587
\(\theta_1 = 0.5 \)	\(k_1 = 0.88 \)	\(Q_1 = 72 \)	\(\beta_1 = 0.37 \)	\(\lambda_1 = 0.0109 \)	1574
\(\theta_2 = 0.5 \)	\(k_2 = 1.49 \)	\(Q_2 = 136 \)	\(\beta_2 = 0.42 \)	\(\lambda_2 = 0.00 \)	1587
\(\theta_1 = 1 \)	\(k_1 = 0.91 \)	\(Q_1 = 72 \)	\(\beta_1 = 0.23 \)	\(\lambda_1 = 0.0119 \)	1587
\(\theta_2 = 1 \)	\(k_2 = 1.51 \)	\(Q_2 = 134 \)	\(\beta_2 = 0.26 \)	\(\lambda_2 = 0.00 \)	1605
\(\theta_1 = 5 \)	\(k_1 = 0.92 \)	\(Q_1 = 72 \)	\(\beta_1 = 0.05 \)	\(\lambda_1 = 0.0128 \)	1607
\(\theta_2 = 5 \)	\(k_2 = 1.52 \)	\(Q_2 = 133 \)	\(\beta_2 = 0.07 \)	\(\lambda_2 = 0.00 \)	1610
\(\theta_1 = 10 \)	\(k_1 = 0.92 \)	\(Q_1 = 72 \)	\(\beta_1 = 0.02 \)	\(\lambda_1 = 0.0131 \)	1610
\(\theta_2 = 10 \)	\(k_2 = 1.52 \)	\(Q_2 = 133 \)	\(\beta_2 = 0.04 \)	\(\lambda_2 = 0.00 \)	1611
\(\theta_1 = 100 \)	\(k_1 = 0.92 \)	\(Q_1 = 72 \)	\(\beta_1 = 0.003 \)	\(\lambda_1 = 0.0131 \)	1610
\(\theta_2 = 100 \)	\(k_2 = 1.52 \)	\(Q_2 = 133 \)	\(\beta_2 = 0.004 \)	\(\lambda_2 = 0.00 \)	1611
\(\theta_1 = \infty \)	\(k_1 = 0.92 \)	\(Q_1 = 72 \)	\(\beta_1 = 0 \)	\(\lambda_1 = 0.0131 \)	1611
\(\theta_2 = \infty \)	\(k_2 = 1.52 \)	\(Q_2 = 133 \)	\(\beta_2 = 0 \)	\(\lambda_2 = 0.00 \)	1611

Example 2: In this example, we consider four items and the problem’s inputs are briefly given by Table 4. Maximum inventory investment is \(B = 15000 \) $ and total space is \(F = 13000 M^2 \).

Table 4

Products	\(h_i \) per unit per month	\(c_i \) per unit	\(f_i \) per unit	\(\pi_{i1} \) per unit	\(\pi_{i2} \) per unit	\(A_i \) per cycle
1	10	55	65	10	12	45
2	3.5	77	50	8.5	10	54
3	6	80	45	11.5	19	45
4	8	70	55	10	17	54
Other parameters are:
\[
\begin{align*}
\sigma_{x1} &= 13, \sigma_{x2} = 18, \sigma_{x3} = 19, \sigma_{x4} = 17, \gamma = 0.9, \varphi = 0.9, \theta_i = 1 \ (i=1, 2, 3, 4) \\
E(D_1) &= 400, E(D_2) = 550, E(D_3) = 600, E(D_4) = 380
\end{align*}
\]

Final solution is
\[
Q_1^* = 38, k_1^* = 0.76, Q_2^* = 48, k_2^* = 0.96 \\
Q_3^* = 49, k_3^* = 1.24, Q_4^* = 40, k_4^* = 0.67
\]

\[
TECU^* = 5121 & \lambda_1 = 0.3033, \lambda_2 = 0 \\
\beta_1^* = 0.21 & \beta_2^* = 0.20 \beta_3^* = 0.23 & \beta_4^* = 0.18
\]

Table 5

Total space = 13000	k_1^*	Q_1^*	β_1^*	λ	TECU*
Total capital = 19000	$k_2 = 1.15$	$Q_2 = 63$	$\beta_2 = 0.22$	$\lambda_1 = 0.00$	4393
Total capital = 10000	$k_3 = 1.46$	$Q_3 = 66$	$\beta_3 = 0.25$	$\lambda_2 = 0.240$	5461
Total capital = 15000	$k_4 = 0.75$	$Q_4 = 47$	$\beta_4 = 0.19$		

We consider three different values for the maximum inventory investment and maximum space and obtain Q_i, k_i, β_i and TECU based on these different values. We tabulate final solution in Table 5. According to Table 5, the bigger total space and total inventory investment is, the smaller TECU (total expected cost per unit time) would be.

5. Conclusion

The purpose of this study was to extend multi product inventory system by adding two limitations (working capital and space) and considering backorder rate as a decision variable which is dependent on the expected demand during shortage. It means that when shortage happen, the larger amount of shortage is, the smaller ratio of client can wait and therefore, the smaller backorder would be. We supposed that distribution of demand during lead time was unknown, but the mean and variance of demand during lead time was known. With this assumption, we utilized minimax distribution free method to minimize our model. With chance programming method, we transformed our random
constraints to the crisp constraints. Then, we applied Lagrange multiplier method to solve our model. At the end of paper, we prepared two numerical examples and compared them together.

Appendix A:

The reorder point is:

\[R_i = E(x_i) + k_i \sigma_{x_i} \rightarrow k_i \sigma_{x_i} = R_i - E(x_i) \] \hspace{1cm} (A.1)

Safety stock is:

\[SS_i = R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+ \] \hspace{1cm} (A.2)

The expected inventory during each cycle is:

\[\bar{I} = \frac{Q_i}{2} + SS_i \rightarrow \bar{I} = \frac{Q_i}{2} + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+ \] \hspace{1cm} (A.3)

The expected cycle length for i-th item is:

\[\frac{Q_i}{E(D_i)} \] \hspace{1cm} (A.4)

Therefore, the expected holding cost per cycle is as follow:

\[\frac{Q_i}{E(D_i)} \left[\frac{Q_i}{2} + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+ \right] \times h_i = \frac{Q_i}{E(D_i)} \left[\frac{Q_i}{2} + k_i \sigma_{x_i} + (1 - \beta_i)E(x_i - R_i)^+ \right] \times h_i \] \hspace{1cm} (A.5)

Appendix B

Since

\[(x_i - R_i)^+ = \frac{|x_i - R_i| + (x_i - R_i)}{2} \] \hspace{1cm} (B.1)

The result follows by taking expectations and by using the Cauchy-Schwarz Inequality:

\[E|x_i - R_i| \leq [E(x_i - R_i)^2]^{\frac{1}{2}} = [E\{(x_i - E(x_i)) - (R_i - E(x_i))\}^2]^{\frac{1}{2}} \]

\[= [E\{(x_i - E(x_i))^2 - 2(x_i - E(x_i))(R_i - E(x_i)) + (R_i - E(x_i))^2\}]^{\frac{1}{2}} \] \hspace{1cm} (B.2)

Therefore:
Because:

\[R_i = E(x_i) + k_i \sigma_{x_i} \]

Total expected cost per unit time is:

\[
TECU(Q_i, R_i, \beta_i) = \sum_i \frac{E(D_i)}{Q_i} A_i + \left[\frac{Q_i}{2} + R_i - E(x_i) + (1 - \beta_i)E(x_i - R_i)^+ \right] \times h_i
\]

\[
+ \frac{E(D_i)}{Q_i} \left[\pi_{i1} \beta_i E(x_i - R_i)^+ + \pi_{i2}(1 - \beta_i)E(x_i - R_i)^+ \right]
\]

From definition of \(\beta \) we have:

\[
\beta_i = \frac{1}{1 + \theta_i E(x_i - R_i)^+}
\]

\[
\beta_i \geq \frac{1}{1 + \frac{\theta_i}{2} \left(1 + k_i^2 - k_i \right) \sigma_{x_i}}
\]

With the definition of \(\beta \) and equation (A.4) total expected cost per unit time is changed as follow:

\[
TECU(Q_i, k_i) \leq \sum_{i=1}^n h_i \left(\frac{Q_i}{2} + k_i \sigma_{x_i} \right) + h_i \left[\left(1 - \frac{1}{1 + \left(\frac{\sigma_{x_i}}{2} \right) \left(1 + k_i^2 - k_i \right) \theta_i} \right) \left(\sqrt{1 + k_i^2 - k_i} \left(\frac{\sigma_{x_i}}{2} \right) \right) + \right]
\]

\[
E(D_i) \left\{ A_i + \left[\pi_{i1} \times \frac{1}{1 + \left(1 + k_i^2 - k_i \left(\frac{\sigma_{x_i}}{2} \right) \theta_i \right)} \left(\sqrt{1 + k_i^2 - k_i} \left(\frac{\sigma_{x_i}}{2} \right) \right) + \right] \right\}
\]

\[
\left(1 - \frac{1}{1 + \left(\frac{\sigma_{x_i}}{2} \right) \left(1 + k_i^2 - k_i \right) \theta_i} \right) \left(\sqrt{1 + k_i^2 - k_i} \left(\frac{\sigma_{x_i}}{2} \right) \right)
\]

We assume that \(\sqrt{1 + k_i^2 - k_i} = \rho(k_i) \)

Therefore, our model is reduced to:
\[
\text{max } \; TECU(Q_i, k_i) = \sum_{i=1}^{n} h_i \left(\frac{Q_i}{2} + k_i \sigma_{x_i} \right) + h_i \left(\frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right)^2} \theta_i \right) + \\
E(D_i) \left\{ A_i + \left(\pi_{i1} \times \frac{\rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right)}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right)^2} \theta_i \right) + \left(\pi_{i2} \times \frac{\rho(k_i)^2 \left(\frac{\sigma_{x_i}}{2} \right)^2}{1 + \rho(k_i) \left(\frac{\sigma_{x_i}}{2} \right)^2} \theta_i \right) \right\}^{(B.9)}
\]

Acknowledgment

The authors would like to thank the anonymous referees for their constructive comments on earlier version of this paper.

References

Abad, P.L. (1996). Optimal pricing and lot sizing under condition of perishability and partial backordering. Management Science, 42, 1093-1104.

Bagchi, U., Hayya, J. C., & Chu, C. H. (1986). The effect of lead-time variability: the case of independent demand. Journal of Operations Management, 6(2),159-177.

Ben-Daya, M., & Rauf, A. (1994). Inventory models involving lead-time as a decision variable. Journal of Operational Research Society, 45(5),579-582.

Brown, R.G., & Gerson, G. (1967). Decision rules for inventory management, Holt, Rinehart and Winston, New York.

Burgin, T.A. (2007). Inventory control with normal demand and gamma lead time. Operational research, 23, 73-80.

Callego, G., & Moon, I. (1993). The distribution of free news boy problem: review and extension. Journal of operational research society, 44, 825-834.

Charnes, A., & Cooper, W.W. (1959). Chance constrained programming. Management Science, 6, 73-79.

Gardner, E.S. (1983). Approximate decision rules for continuous review inventory systems. Naval Research Logistics, 30, 59-68.

Hadely, G. & Whitin, T.M. (1963). Analysis of inventory system. Prentice Hall: Englewood cliffs.

Lee, W.C. (2005). Inventory model involving controllable backorder rate and lead time demand with the mixture of distribution. Applied mathematics and computation, 160, 701-717.

Lee, W.C., Wu, J.W., & Hsu, J.W. (2006). Computational algorithm for inventory model with a service level constraint, lead time demand with mixture of distributions and controllable negative exponential backorder rate. Applied Mathematics and Computation, 175, 1125-1138.

Lee, W.C., Wu, J.W. & Lei, C.L. (2007). Computational algorithmic procedure for optimal inventory policy involving ordering cost reduction and backorder discounts when lead time demand is controllable. Applied mathematics and computation, 189, 186-200.

Liao, C.J., & Shyu, C.H. (1991). An analytical determination of lead time with normal demand. International journal of operation production management, 11, 72-78.

Montgomery, D.C., Bazarra, M.S. & Keswani, A.K. (1973). Inventory models with a mixture of backorders and lost sales. Naval Research Logistics, 20, 255-263.

Mood, A.M, Graibill, F.A. & Boes, D.L. (1974). Introduction to theory of statistics. New York: McGraw Hill.

Ord, J.K., & Bagchi, U. (2006). The truncated normal-gamma mixture as a distribution of lead time demand. Naval Research Logistic, 30, 359-365.
Ouyang, L.Y., & Chaung, B.R. (2001). Mixture inventory model involving variable lead time and controllable backorder rate. *Computer and industrial engineering*, 40, 339-348.

Ouyang, L.Y. & Wu, K.S. (1996). A mixture distribution free procedure for mixed inventory model with variable leadtime. *International Journal of Production Economic*, 56, 511-516.

Ouyang, L.Y., Yen, N.C. & Wu, K.S. (1996). Mixture inventory models with backorders and lost sales for variable lead time. *Journal of Operational Research Society*, 47, 829-832.

Papachristors, S., & Skouri, K. (2000). An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging. *Operation Research Letters*, 27, 175-184.

Pardolas, P.M. & Resendem, M. (2002). *Hand Book of Applied Optimization*. Oxford university press.

Park, C. (2007). An analysis of the lead time demand distributions in stochastic inventory system. *International Journal of Production Economic*, 32, 285-296.

Parker, L.L. (1964). Economical reorder quantities and reorder points with uncertain demand. *Naval Research Logistics*, 11, 351-358.

San Jose, L.A., Silica, J. & Gracia-Lagona, J. (2005). The lot size-reorder level inventory system with customers impatience functions. *Computer & Industrial Engineering*, 49, 349-362.

Shrady, D.A., & Choe, U.C. (1971). Models for multi-item inventory continuous review inventory policies subject to constraints. *Naval Research Logistics*, 18, 451-464.

Shroeder, R.G. (1974). Marginal inventory formulations with stock out objectives and fiscal constraints, *Naval Research Logistics*, 21, 375-388.

Silica, J., San Jose, L.A. & Garcia-Laguna, J. (2007). An Inventory model with rational type-backlogged demand rate and quadratic backlogging cost, in: Proceeding of the 2007 IEEE, IEEM, 958-962.

Silica, J., San Jose, L.A. & Garcia-Laguna, J. (2009). An optimal replenishment policy foe an EOQ model with partial backordering. *Annals of Operation Research*, 169, 93-116.

Silver, E.A., & Peterson, R. (1985). *Decision system for inventory management and production planning*. New York: Wiley.

Tersine R.J. (1994). *Principle of Inventory and Material Management*. 4th Ed., 1994, Prentice-Hall, USA.

Tinarelli, G.U. (1983). Inventory control: models and problem. *European journal of operational research*, 4, 1-12.

Yano, C.A. (1976). New Algorithm for (Q,r) system with complete backordering using a fill-rate criterion. *Naval research logistics*, 23, 120-128.