Optical repumping of triplet P-states enhances magneto-optical trapping of ytterbium atoms

Jun Woo Cho1,2, Han-gyeol Lee1, Sangkyung Lee1, Jaewook Ahn1*, Won-Kyu Lee2, Dai-Hyuk Yu2, Sun Kyung Lee2, and Chang Yong Park2†

1Department of Physics, KAIST, Daejeon 305-701, Korea and
2Korea Research Institute of Science and Standards, Daejeon 305-340, Korea

(Dated: November 29, 2011)

Radiative decay from the excited 1P_1 state to metastable 3P_2 and 3P_0 states is expected to limit attainable trapped atomic population in a magneto-optic trap of ytterbium (Yb) atoms. In experiments we have carried out with optical repumping of $^3P_{0,2}$ states to 3P_1, we observe enhancement of trapped atoms yield in the excited 1P_1 state. The individual decay rate to each metastable state is measured and the results show an excellent agreement with the theoretical values.

PACS numbers: 37.10.De, 42.50.Ct, 95.30.Ky, 32.10.-f

I. INTRODUCTIONS

Ytterbium (Yb, Z = 70) is a rare-earth element of versatile internal level structure, generally referred to as singlet-triplet atomic system, and its narrow intercombination transitions between singlet and triplet spin manifolds have opened the possibility of many fundamental studies and applications, including the optical frequency standards [1–3], parity nonconservation tests [4], and ultracold collision and scattering characterizations [5–10]. The natural abundance in Yb isotopes, furthermore, allows the photo-induced cold molecular formation of bosonic and fermionic, and composite dimers [11]. Recent studies report the sympathetic cooling of 176Yb below the transition temperature and the far-off-resonance trapping of fermionic degenerate 173Yb as well as the realization of Bose-Einstein condensation of 174Yb and 179Yb atoms [12–14].

The energy level structure and the decay rates of 174Yb are shown in Fig. 1. The blue transition with a relatively broad linewidth allows the optical excitation from the $(6s^2)^1S_0$ ground state to the $(6s6p)^1P_1$ excited state to be used in both Zeeman slowing and magneto-optical trapping (MOT). The radiative decay from the 1P_1 excited state to the $^3P_{0,2}$ triplet states via the 3D_2 and 3D_1 states, however, causes the loss of the trapped atoms and, as a result, limits the number of trapped atoms.

In this paper, we report an experimental demonstration of an 174Yb MOT with optical repumping of the metastable states. We use additional laser systems to control the shelving losses to 3P_0 and 3P_2, (i.e. optical repumping of the metastable atoms to $(6s7s)^3S_1$ state) and the atoms in the metastable states continuously decay to the ground state. By doing so, the atom trapping is only hindered by the collisional loss and, as a result, the number and lifetime of trapped Yb atoms are increased.

It is shown, in a master equation calculation performed to verify the atom trapping dynamics, that the trapped-atom collisions against ballistic Yb flux from the Zeeman slower plays a crucial role in reducing the measurement uncertainty. We have measured the individual decay rate to each metastable state, by minimizing the measurement uncertainty coming from Yb-Yb and Yb-background gas collisional losses, and the measured results show an excellent agreement with the theoretical values.

*Electronic address: jwohn@kaist.ac.kr
†Electronic address: cypark@kriss.re.kr
The paper is organized as following: In Sec. II, we describe the experimental setup where the repumping lasers are used to enhance the excited atomic population in the MOT. In Sec III, the calculated population variations of each levels are given after solving the master equations. We present the experimental measurement of decay rate to individual metastable state in Sec. IV before concluding in Sec. V.

II. EXPERIMENTAL DESCRIPTION

Figure 2 shows the schematic setup diagram for the cooling and trapping of 174Yb atoms. A standard six-beam MOT was constructed with a diode laser system that was injection-locked to the wavelength 398.9 nm for the $^1S_0-^1P_1$ transition ($\lambda_L = 398.9$ nm, $\Gamma_0 = 28$ MHz (FWHM)) \[\text{[1]}\]. The master laser was a home-made ECDL (External Cavity Diode Laser), that is 15 MHz red-detuned from the 174Yb $^1P_1-^1S_0$ fluorescence peak. Then the master laser seeded two slave lasers respectively used for the trapping and Zeeman slowing. The output power of the trap laser was up to 40 mW and, with this laser power, the fraction of the number of atoms in the excited state, f, was varied from 0.05 to 0.2. Here f is defined as

$$f = \frac{I/2I_s}{[1 + I/I_s + (2\Delta/\Gamma_0)^2]},$$

where I is the laser intensity and the saturation intensity is $I_s = 59$ mW/cm2 for the $^1S_0-^1P_1$ transition.

For the Zeeman slower laser, a double-pass acousto-optic modulator was used to further red-detune the frequency by 500 MHz from the master laser frequency. The output power of the Zeeman slower laser was 20 mW. The effusive atomic 174Yb beam was generated from an oven heated at a temperature of 400°C, while the oven nozzle was differentially heated at a higher temperature of 415°C. The coil for the Zeeman slower was made of a 1-mm-diameter copper wire, and was wound on a step-like 30-cm-long stainless-steel pipe with a 16-mm inner diameter. When the Zeeman slower laser was operated at the saturation laser intensity, the capture velocity was 260 m/s in the Zeeman slower with a peak magnetic field of 300 G. In the trap region the axial magnetic filed gradient $dB/dz = 30$ G/cm made by anti-helmholtz coils. The Zeeman slower region was designed to maintain nearly constant deceleration of 80 km/s2 and the atomic beam flux was 10^{10-11} s$^{-1}$.

To investigate the enhancement of the trapped atom yield by controlling the shelving loss to the triplet states, the 3P_0 and 3P_2 states were repumped to 3S_1 by additional lasers. We used two repumping laser systems (ECDL) at wavelength of 649.1 nm and 770.2 nm lasers, respectively, frequency-locked to 3P_0-3S_1 and 3P_2-3S_1 transition fluorescence signals. For laser frequency calibration, two more laser systems (ECDL) at wavelength 556 nm and 680 nm were used to induce two-photon transition 1S_0-1P_2-3S_1 and the fluorescence signal was modulation-locked to the 3P_2-3S_1 and 3P_0-3S_1 transitions.

III. RATE EQUATIONS FOR TRAP AND REPUMPING

Considering the slow decays from the 1P_1 state to the $^2D_{1,2}$ compared with ones from the $^3P_{0,1,2}$ to the $^3P_{0,1,2}$, in the time scale of cooling and trapping process, an equivalent system for the 174Yb atom is a 5-level system. For the states denoted by $|g\rangle=|S_0\rangle$, $|e\rangle=|P_1\rangle$, $|0\rangle=|P_0\rangle$, $|1\rangle=|P_1\rangle$, and $|2\rangle=|P_2\rangle$, the rate equations are given as

$$\frac{d}{dt}(N_g + N_e) = -\eta - (a_0 + a_1 + a_2)N_e + \gamma_1N_1 - \gamma_c(N_g + N_e),$$

$$\frac{dN_0}{dt} = a_0N_e - \gamma_c N_0,$$

$$\frac{dN_1}{dt} = a_1N_e - \gamma_c N_1 - \gamma_1 N_1,$$

$$\frac{dN_2}{dt} = a_2N_e - \gamma_c N_2,$$

where η is a loading rate of MOT, a_i($i=0,1,2$) are the decay rates from the excited state to the 3P_i states, γ_c is background collisional loss rate, and γ_1 is the spontaneous decay rate of 1P_1. Including the Yb-Yb collisional term, which is not negligible for some cases in our experiment, the equation for the number of trapped atoms $N = N_g + N_e$ becomes

$$\frac{dN}{dt} = -\eta - [a_{2,0}f(P_T, \Delta) + \gamma_c(f)]N - \beta(f)N^2,$$
where \(a_{2.0} \) is the decay rate of \(^1P_1\) atoms to the both metastable \(^3P_{0,2}\) states and \(\beta(f) \) is the Yb-Yb collision coefficient.

In theory, the decay rates are given as \(a_0 = 6.18 \text{ s}^{-1}, \ a_1 = 5.25, \ \text{and} \ a_2 = 0.37 \) \(^17\). When the atoms in either the \(^3P_0\) state or the \(^3P_2\) state are optically pumped to the \(^3S_1\) state, they spontaneously decay to the three \(^3P_{0,1,2}\) states with a branching ratio of \(a_0 : a_1 : a_2 = 1 : 3 : 5 \), and the atoms in the \(^3P_1\) state immediately decays to the ground state. So, we can consider the following four different repumping cases: (NR) no repumping case, (A) repumping the \(^3P_2\) state only, (B) repumping the \(^3P_0\) state only, and (A+B) repumping both the \(^3P_{0,2}\) states. In the case (NR), the net decay rate of the trapped atom is given as \(a_{\text{NR}} = a_0 + a_2 = 6.55 \text{ s}^{-1} \), simply from Eqs. (3,5). In the case (A), however, the atoms in the \(^3P_2\) state are distributed to the \(^3P_0\) and \(^3P_2\) states and \(a_0 \) in Eq. (3) becomes \(a'_0 = a_0 - \frac{a_1}{a_1 + a_2} a_2 = 6.28 \), from the \(^3S_1\) state to the \(^3P_{0,1,2}\) states. So, the net decay rate of the trapped atom for the case (A) is \(a_A = 6.28 \text{ s}^{-1} \). Likewise, in the case (B), \(a_2 \) in Eq. (3) becomes \(a'_2 = a_2 + \frac{a_1}{a_1 + a_0} a_0 = 3.94 \) and, therefore, the decay rate for the case (B) is obtained as \(a_B = 3.94 \text{ s}^{-1} \). In the case (A+B), the both \(^3P_{0,2}\) states are repumped, and the net decay rate to the triplet \(P \) states become zero, (i.e., \(a_{A+B} = 0 \)).

IV. RESULTS AND DISCUSSIONS

We investigate the decay dynamics of the trapped atoms in the MOT by shutting off the atomic beam and measuring the \(^1P_1-\ ^1S_0\) fluorescence signal as a function of time. The experimental situation for zero Yb flux is the condition \(\eta = 0 \) in Eq. (6), and its solution is given by

\[
N(t) = N(0)e^{-\Gamma t} \left[1 + \frac{\beta N(0)}{\Gamma} (1 - e^{-\Gamma t}) \right]^{-1}, \quad (7)
\]

where \(\Gamma \) is the loss rate of the MOT defined as similarly as the parenthesis in Eq. (6) as

\[
\Gamma = a_x f(P_T, \Delta) + \gamma_C(f), \quad (8)
\]

and the index \(x \) in \(a_x \) indicates a particular experiment among the four repumping cases (i.e. \(x \in \{(NR), (A), (B), (A+B)\} \)). Figure 3 shows a typical behavior of the temporal evolution of the number of trapped atoms \(N(t) \) in the MOT, for the all four repumping cases. Both the lifetime \(\tau \) of the MOT, which is measured as the \(1/e \) decay time, and the steady-state trapped atom number \(N(0) \) is increased by the repumping of the metastable states. The figure shows that, when the repumping scheme (A+B) has increased \(\tau \) by 100%, \(N(0) \) has increased by only 30%. This result is not consistent with the fact that the change of \(N(0) \) should be proportional to the change of \(\tau \), or \(N(0) = \eta \tau \), as \(\tau = 1/\Gamma \) and \(N_0 = \eta/\Gamma \) from Eq. (6) and Eq. (8). However, the collisional loss term \(\gamma_C \) in Eq. (8) is, in fact, factored into two parts: one due to the background residual gas in the chamber, and the other due to the Yb flux from the Zeeman slower. Therefore, the collisional loss term is a function of the loading rate \(\eta \), i.e. \(\Gamma = \Gamma(\eta) \), and, as a result, shutting off the atomic beam has suddenly reduced the loss rate \(\Gamma \). It is noted that the last term in Eq. (6) is responsible for the collision between cold Yb atoms captured in the MOT, not the collision between the Yb in the MOT and the Yb in the atomic beam from the Zeeman slower.

Figure 4 shows the measured results in a logarithmic scale, where \(N(t) \), scaled with \(N(0) \), is plotted as a function of time. It is noted that \(\beta N(0)/\Gamma \) varies from 0 to 1 within the given experimental condition, so the second term in the parenthesis in Eq. (7) needs to be included in a fitting of \(\Gamma \). This is especially clear from the behavior of the (A+B) data, shown in red in Fig. 4 which deviates significantly from a linear line in the given logarithmic plot.

In order to measure \(\Gamma \) for the four different repumping cases, we have performed an experiment for the temporal evolution of the \(^1P_1-\ ^1S_0\) fluorescence at three different trap laser power conditions. The data have been numerically fitted to Eq. (7) to obtain \(\Gamma(f) \), and the result is shown in Fig. 4. The graphs show the linear dependence of \(\Gamma \) on \(f \) for the all four repumping cases. Linear regression analysis predicts that all the four lines can be extrapolated to converge at 0.42 \pm 0.03 as \(f \) approaches zero. It is also predicted that the slope of the fitted lines, that is the decay rate \(a_x \) in Eq. (11), turns out that \(a_{\text{NR}} \leq 6.48, a_A = 6.27, a_B = 4.14, \) and \(a_{A+B} \leq 6.3 \times 10^{-3} \). It is noted that the slope for the (A+B) case suggests that the back-ground collision rate of the trapped atom
FIG. 4: Measurement of the temporal evolution of the trapped atom number of the 174Yb MOT. The result is induced from the $^1P_1^1S_0$ fluorescence signal obtained for the four different repumping cases: (NR) no repumping, (A) repumping 3P_2 state only, (B) repumping 3P_0 state only, and (A+B) repumping the both states. The inset shows the corresponding 174Yb energy levels.

FIG. 5: Measured loss rate (Γ) versus the number of atoms in the excited state (f), obtained for the four different repumping cases. The slopes ($\Delta \Gamma/\Delta f$) were measured as 6.48, 6.27, 4.14, and less than 6.3×10^{-3}, from the top to the bottom curves.

is little dependent on f.

Using the obtained loss rates, we can estimate the decay rate a_0, a_2, and $a_{0,2}$, etc, and the result is summarized in Table II. Although the measurement uncertainty, the newly measured values for the individual decay rate a_0 and a_2 show a good agreement with the theoretically predicted values, and the measurement accuracy is significantly improved, compared to the previous experiments carried out by Loftus et al. [10]. The main uncertainty comes from the estimation of f, as the power fluctuation and spatial beam profile, and the measurement error of the trap laser causes the uncertainty of the saturation parameter s. Also, the uncertainty of Δ/Γ is caused by the magnetic field in the trap, laser frequency detuning, etc, and its uncertainty is estimated by 30%. Including the uncertainty in error fitting, the resulting uncertainty of the decay rate is estimated to 33%. As shown in Table II within the range of uncertainty our measurement agrees well with the theoretically predicted results.

This work	Previous works [16, 20]	Theory [17]
$a_{2,0}$	6.48 (2.11)	23 (11)
a_0	5.96 (1.97)	6.18
a_2	0.42 (0.14)	0.37
a_1	21.3 (2.6)	5.2

V. CONCLUSIONS

We have investigated the trapping dynamics of the 174Yb MOT by eliminating the shelving loss to the metastable $^3P_{0,2}$ states via optical repumping. At the zero Yb loading limit, the individual decay rate to each metastable state is accurately measured, showing an excellent agreement with the result of master equation calculation. With the use of the optical repumping, a faster and a more efficient operation of Yb trapping has become possible, and it is hoped that this result may contribute to the BEC research as well as the uncertainty evaluations with optical lattice clock.

This research was supported by Basic Science Research and Mid-career Researcher Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0090843, 2010-0013899).

[1] N. Poli, Z. W. Barber, N. D. Lemke, C. W. Oates, L. S. Ma, J. E. Stalnaker, T. M. Fortier, S. A. Diddams, L. Hollberg, J. C. Bergquist, A. Brusch, S. Jefferts, T. Heavner, and T. Parker, Phys. Rev. A 77, 050501R (2008).
[2] T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, Appl. Phys. Express 2, 072501 (2009).
[3] N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, Phys. Rev. Lett. 103, 063001 (2009).
[4] D. DeMille, Phys. Rev. Lett. 74, 4165-4168 (1995).

[5] J. Weiner, V. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1-85 (1999).

[6] T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, Phys. Rev. A 59, 1216-1222 (1999).

[7] G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, Phys. Rev. Lett. 85, 2292-2295 (2000).

[8] R. Ciurylo, E. Tiesinga, S. Kotochigova, and P. S. Julienne, Phys. Rev. A 70, 062710 (2004).

[9] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev. A 76, 034501 (2007).

[10] M. Machholm, P. S. Julienne, and K. A. Suominen, Phys. Rev. A 64, 033425 (2001).

[11] M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciurylo, P. Naidon, and P. S. Julienne, Phys. Rev. A 77, 012719 (2008).

[12] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Phys. Rev. Lett. 91, 040404 (2003).

[13] T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi, Phys. Rev. Lett. 98, 030401 (2007).

[14] T. Fukuhara, S. Sugawa, M. Sugimoto, S. Taie, and Y. Takahashi, Phys. Rev. A 79, 041604 (2009).

[15] C. Y. Park and T. H. Yoon, Phys. Rev. A 68, 055401 (2003).

[16] T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, Phys. Rev. A 61, 051401R (2000).

[17] S. G. Porsev, Y. G. Rakhlina, and M. G. Kozlov, Phys. Rev. A. 60, 2781 (1999)

[18] P.-Y. Zhao, Z.-X. Xiong, Y. Long, L.-X. He, and B.-L. Lü, Chin. Phys. Lett. 26, 083702 (2009).

[19] X. Xu, T. H. Loftus, H. L. Hall, A. Gallagher, and J. Ye, J. Opt. Soc. Am. B 20 968-976 (2003).

[20] K. Honda, Y. Takahashi, T. Kuwamoto, M. Fujimoto, K. Toyoda, K. Ishikawa, and T. Yabuzaki, Phys. Rev. A 59, R934-R937 (1999)