Distributive Rings and Some Domains

Shahad Mohammed Moteea1 and Muthana A. Mahmood2

1,2 Department of Mathematics, Faculty of Education For Pure Sciences, University of Anbar, Ramadi, Anbar, Iraq.

Emails: 1sha19u2005@uoanbar.edu.iq, 2m-a-maha@uoanbar.edu.iq

Abstract: In this paper, we study many relationships about Distributive ring and other domain such as Dedekind domain and Noetherian domain. We prove if any divisible module over a ring T, then T is Distributive ring. Also we satisfy if T is invariant ring have multiplication ideal this imply T is a Distributive ring. Finally, we study strongly duo ring and related to Distributive ring.

Keywords: Dedekind domain, Distributive ring, Bezout ring, Multiplication module, Strongly duo ring.

1. Introduction

All rings in this paper are commutative with identities [3], all T-modules is a unitary modules. Suppose that T is a ring. In [16]: "any module M on T is distributive if $A \cap (B + C) = (A \cap B) + (A \cap C)$, where A, B and C are submodules of M and hence any ring T is called Distributive ring if every T-module is a distributive ".

From [18]: "T is called Noetherian ring if we have prime ideal I in T, such that I is f-generated". The author [17]: "said semilocal ring T; if it is has finitely many maximal ideals". "The ring T is called Bezout if each f-generated ideal $I \in T$ is principal" [6]. From [5]: "T is called containment-division ring (C.D.R), if for any two ideals $I_1, I_2 \subseteq T$, then $I_1 \subseteq I_2$ iff I_2 divides I_1". "A ring T is called Artirian if it is satisfies the descending chain condition[4,6]. From" [13]: "T is called P.I.R if any one -sided ideal of T is cyclic". From [17]: "the module M is called divisible if $t \cdot m = m, 0 \neq t \in T, m \in M$". In [12]:" For any $\alpha \in T$, there exist $x \in T$ such that $\alpha^2 x = \alpha$ the element α is called regular". By [1]: "a ring T is called regular if each element in T is regular". Also, in [2]:" I is called maximal ideal if $I \subseteq T$ proper ideal and not contend in any other proper ideal". In [14]:" The module M is called multiplication if for each sub module K of $M K = IM$ for some ideal $I \in T$". Recently, many articles have appeared that support the importance of modules and its relationship to other algebraic concepts [11,3,4,9,15].

2. Main Results
In this section, we study Distributive ring T by depending on some domain. Some new relationships are studied in details, but before that we need to introduce all definitions about the ideas of the topic.

Definition 2.1. [10]. "If T is an integral domain then T is called Dedekind domain iff each ideal $I \in T$ is invertible".

Definition 2.2. [11]. "Let I be an ideal of \mathbb{Z}. Then I is called fractional ideal (FI) if every maximal ideal I_i is a $P.I$ over the ring T_i is invertible".

Remark 2.3. [11]. "A fractional ideal (FI) is called invertible if there exist (FI^{-1}) and $II^{-1} = T^n$.

Now we can introduce the following lemma to show the relationship between (FI) and Distributive ring.

Lemma 2.4. [11]. Let I be an zero fractional ideal (FI) of the ring T. If I is invertible then T is a Dedekind domain and hence T is Distributive ring.

Example and Remark (2.5).

Let T is integral domain then :

1) Every P.I.D is a Dedekind domain.
2) T is P.I.D if and only if any fractional ideal in T is principle.
3) T is unique factorization domain if and only if any fractional ideal in T is principle.
4) Every discreet valuation ring is a Dedekind domain.
5) T is a Dedekind domain if it is C.D.R and Noether in ring.
6) T is a Dedekind domain if and only if any divisible module on T is injective.
7) If T is a Dedekind domain then finite any torsion free submodule is free.

Recall that T is invariant ring if $tT \subseteq Tt$, for each $t \in T$.

Theorem 2.6. Let I be (FI) in T. If I is a f-generated and left principal then T is a Distributive ring.

Proof: The set $\chi = I(T : I)$ sub-set of T. Let I be a f.g.ideal. Therefor $\chi_i = I_i(T : I_i)$. On the other hand, $I_i \neq 0$ is a (P.I). This means $\chi_i = T_i$. Hence $T = I(I$ is invertible ideal $)$. But I is (FI). Then T is a Dedekind domain and thus it is Distributive ring.

In the next theorem, we try to obtain that T is a Distributive ring in case an ideal I is a projective module over T.

Theorem 2.7. Let I be an-ideal of the ring T. If I satisfy the following conditions
1- I is (FI).
2- I is a projective module. Then T is a Distributive-ring.
Proof: Let I be (FI) and let I is a projective module. So this ideals to the following: $\exists J$ as a module $\exists I \oplus J = T$. Let $M : T \to I$ be a projective mapping with $M(\alpha x) = \alpha x$. Also we take the mapping $\psi : I \to T$ with χ th factor. Hence $\forall a = \sum \psi(x)ax; x \in I$ and $\psi(x) = 0 \forall x$. Let $0 \neq b \in I$ and $x \in T$. So $qbx = 0$. $I \in \sum Tq, \psi(x) = 0$. Hence $0 \neq a \in I$. Suppose that $a = \frac{a_1}{b_1}$ and $b = \frac{a_2}{b_2}$; $a_1, a_2, b_1, b_2 \in T$. Hence $a_1, a_2 \in I$ and $a_2b_2\psi(b) = \psi(a_1, a_2) = b_1a_2\psi(a)$. Therefor $aqx = \psi(a) \in T$. Then $IJ \subseteq T$. But $b = M\psi(b)bx$ and hence $1 = bxq$. Thus $IJ = T$. (I invertible). Hence T is a Dedekind domain and from (lemma 2.4); T is a Distributive ring.

Remark 2.8. If I is a (P.I) and (FI) of the ring T, then it is invertible fractional ideal and hence T is a Distributive ring. Therefore need to deal with (P.I.D) in the next results.

Definition 2.9. [9]. "Let T be a domain. Then T is called Dedekind finite if and only if every regular element of T is a unit ".

(*) Any ring T is called quoring if all regular elements of T is invertible. Hence every Dedekind finite domain is a Distributive finite ring.

Theorem 2.10. Let E be an T-module. If T is divisible T-module, then T is a Distributive finite ring.

Proof: Clear. Since T is divisible T-module, then $\chi T = T$. Hence for every regular element χ is a unit. Then T is a Dedekind finite domain. Thus T is Distributive finite ring.

Corollary 2.11. Every quoring T^n such that n is finite is Distributive finite ring.

Corollary 2.12. Every Artinian ring T with zero nilradical is a Distributive finite ring.

Theorem 2.13. [12]. A ring T is Dedekind finite iff it is Artinian and contains nilradical.

Corollary 2.1. Let M be a right multiplication module over invariant ring T with commutative multiplication ideals then M is finite generated if it is finite dimensional.

Definition 2.15. [10]. An integral-domain T, Then T is called generalized domain $G(D)$ iff every $I \in F(D), I = (I^{-1})^{-1}$ is invertible.

Theorem 2.16. Let T be an integral domain and let M be finitely generated free T-module of rank one. Then T is Dedekind domain and Distributive, if there exist m_i set of elements m of M, and f_i T-maps such that $f_i : M \to T$, and $\sum f_i(m)m_i = m$. finite for all $m \in M$.

Proof: Assume that $f(m) = \sum f_i(m)m_i = \sum r_i e_i$. Since M is finitely generated then M is projective of rank one, and M is invertible fractional ideal of T. Also T is Dedekind domain, And all
fractional ideal are principle. Now, let \(I, J, H \), three principle fractional ideal, then \(I, J, H \), are principle. Let \(I = \sum a_f(m),\ J = \sum b_f(m),\ H = \sum c_f(m) \).

Then
\[
I \cap (J + H) = (\sum a_f(m)) \cap ((\sum b_f(m)) + (\sum c_f(m)))
= (\sum a_f(m)) \cap (b \sum f_i(m) + c \sum f_i(m))
= (a \sum f_i(m)) \cap ((b + c) \sum f_i(m))
= (a \cap (b + c))(\sum f_i(m))
= (a \cap b) + (a \cap c)(\sum f_i(m))
= (a \cap b)(\sum f_i(m)) + (a \cap c)(\sum f_i(m))
= (\sum f_i(m)) \cap b(\sum f_i(m)) + a(\sum f_i(m)) \cap c(\sum f_i(m))
= (\sum f_i(m) \cap \sum b f_i(m)) + (\sum a f_i(m) \cap \sum c f_i(m))
= (I \cap J) + (\cap H)
\]

Hence \(T \) is Distributive ring.

Theorem 2.17. Let \(T \) be a left invariant ring with commutative multiplication of ideals. Then \(T \) is left Distributive Dedekind ring and a \(T \)-module \(M = tT \) where \(T = (t_i)r + (t_j)r \) and \(M = \bigoplus_{i=1}^{n} t_iT, j \neq i \).

Proof: Since \(T \) is left invariant ring with commutative multiplication of ideals, then every left ideal of \(T \) is a multiplication and \(T \) finite-dimensional ring. Therefor \(M \) is left finite-dimensional module. Thus \(M \) is a finitely generated. So \(M \) is projective and krull dimension. Hence \(T \) is Artinian, therefor \(T \) is left Notherin ring. Hence \(T \) is Distributive Dedekind ring. Let \(t = t_1 + t_2 + \cdots + t_n \in M, i = 1, 2, \ldots, n \). Since \((t_i)r \) is an ideal of left invariant ring \(T \), and by assumption that \(T = (t_i)r + (t_j)r \), then there exist an element \(m_i \in (t_i)r \) and \((1 - m_i) \in \cap_{j \neq i} (t_i)r \), such that \(t(1 - m_i) = t_i \), then \(t_iT \subseteq tT \) for every \(i \). Hence \(M = tT \).

Theorem 2.18. Let \(T \) be an integral domain and \(M \) be \(T \)-module. If \(T \) is regular multiplication, then the following are equivalent.

1) Every ideal \(I \) contained all regular element of \(T \), the ring \(T/I \) is finite direct sum of (P.I.R).
2) \(I = MI \).
3) \(T \) is Distributive Dedekind domain.
4) \(T \) is Dedekind finite.
Proof : (1) → (2) Suppose that I an ideal of T. Then I are regular ideal (since T is regular multiplication and I has only regular element). Let $I = g_1^{r_1}g_2^{r_2}...g_n^{r_n}$, such that $g_1,g_2,...,g_n$ are distinct maximal ideal of T, and $r_1,r_2,...,r_n$ are positive integer. Then $T/I \cong \oplus_{i=1}^{r_n}T/g_i^{r_i}$, where I is regular. Then $g_i^{r_i}$ is regular ideals of T. So any ideal I of T containing $g_i^{r_i}$ is a multiplication T-module. Thus $I = M$.

(2) → (3) Since $I = M$ then I is multiplication module. Thus T is multiplication domain. Hence T is Distributive Dedekind domain.

(3) → (4) Since T is Dedekind domain and regular multiplication, then every regular ideal in T is invertible. But every regular element is invertible. Therefor T is a quoring ring. Hence T is Dedekind finite.

(4) → (1) Since T is regular multiplication and Dedekind finite, then every regular ideal I of T is invertible multiplication T-module. So T/I is multiplication ring and (P.I.R). Hence T/I is finite direct sum of (P.I.R).

Remark 2.29. If I is regular prime ideal in the regular multiplication ring T, then I is maximal ideal. And every multiplication ring is regular multiplication but the convers is not true. Also M is regular T-module if any $x \in M, A_{nnT}(x) = 0$.

Definition 2.20. [2]. "A ring T is called P-Noetheran if it is $(\frac{T}{I})$ -Noetherian such that P is prime ideal of T".

The next theorem explain the relationship between Noetherian ring T and Distributive ring.

Theorem 2.21. Let T be a P-Noetherian ring. Then for every maximal ideal p of T, T is a Distributive ring.

Proof: For an ideal of T, if P is a maximal of T, there exists $S_p \subseteq I_p$ and F_p is a f-generated sub ideal of I such that $S_p I \subseteq F_p$. S_p generated unit ideal. Then it is true for some finie subset $\{S_{p_1},...,S_{p_n}\}$ of them. Hence $I = (S_{p_1},...,S_{p_n})I \subseteq F_{p_1} + ... + F_{p_n} \subseteq I$. Therefor $I = F_{p_1} + ... + F_{p_n}$ is a f-generated ideal of T. Then T is a Noetherian ring thus T is a Distributive ring.

(*) Consider the proper ideal of T is a proper multiply of prime ideals and denoted by $(\otimes P)$. Therefor any ring T is called $(\otimes P)$-ring if T satisfy (*) and hence T is $(\otimes P)$-ring. So it is a Noetherian ring and finitely it is Distributive ring.
In the next result we introduce a clear relationship between P-ring and Distributive ring.

Corollary 2.22. For each maximal ideal I of T, if T is a P-ring, then it is a Distributive ring.

Proof: Assume that T is a ring such that each ideal is maximal. So T is a Noetherian ring if T is a P-ring. Thus T is a Distributive ring.

Corollary 2.23 Every locally Noetherian ring is a Distributive ring.

Proposition 2.24. Let T be a ring. If T is an Artinian ring, then it is a Distributive ring.

Before prove proposition 2.24, we need to introduce the following lemma.

Lemma 2.25. Let T be a commutative ring. Then $H = \bigcap P_i = \bigcap P_i$ is a nilpotent ideal such that $H^k = (0), k \geq 1$.

Proof: We denote P_i to the finitely distinct primes ideal of T. Therefor all powers of H is decrease and hence we find the smallest k such that $HH^k = H^k$. Assume that $H^k = (0)$, and $0 \neq I$ is maximal. So $IH^k \neq (0)$. Clear $I = (x)$ is a principal. Therefor $xHH^k = xH^k \neq (0)$ and hence $(x) = xH$. $x = xy$, $y \in H$. Then $(1 - y)x = 0$. $(1 - y)$ is a unite because we have $(1 - y) \subseteq$ maximal ideal. C! So $H^k = (0)$.

Now, we return to prove proposition 2.24.

Proof: From lemma 2.25; $H^k = (0)$ We have maximal ideals i_1, i_2, \ldots, A, i_r, $(0) = i_1 i_2 \ldots i_r$. Take $T \triangleright i_1 \triangleright i_1 i_2 \triangleright \cdots \triangleright i_1 i_2 \ldots i_r = (0)$. Since T is an Artinian ring, so i^{th} quotient in (\ast) is Artinian. Also over the filed $\frac{T}{i_j}$ these quotients are Noetherian module over the ring T. So T is a Noetherian ring. Thus T is a Distributive ring.

Example 2.26. The ring \mathbb{Z} is a Distributive ring because it is a Noetherain ring.

Remark 2.27. Any homomorphic image of a Distributive ring is Distributive.

Definition 2.28. A ring T is called Co-Noetherian if the inj-hull of simple module over T is Artinian.

Proposition 2.29. Let T be a ring. If

1) T is a Co-Noetherian ring.
2) T is a semilocal commutative ring. Then T is a Distributive ring.
Proof: Take \(C \) be injective hull such that \(C = C \left(\frac{T}{J} \right) = \bigoplus_{i=1}^{n} C(K_i) \ni K_i \) are simple module over \(T \) and \(J \) is the Jacobson radical of \(T \) and let \(H = I_0 \subseteq I_1 \subseteq \ldots \), is a scenting chain ideals of \(T \). Suppose that \(B_i = \text{ann}(I_i) \). So \(C \ni I_1 \ni I_2 \ni \ldots \). Also, there exists \(d \) integer such that \(B_d = B_{d+s}, s \geq 1 \). Then \(\text{Hom}(I_{d+s}/I_d, C) = B_d/B_{d+s} = 0 \). Since \(C \) is a cogenerator, then \(I_{d+s} = I_d, d \geq 1 \). Hence \(T \) is a Noetherian ring and thus \(T \) is a Distributive ring.

Example 2.30. \(\mathbb{R}[x_1, \ldots, x_n] \) is a right Distributive ring, because it is a Noetherian ring and hence it is an Artinian ring.

(\(\clubsuit \)) The module \(M \) is distributive if and only if the lattic of the submodule \(L(M) \) is distributive.

Recall that \(T \) is strongly regular ring if for each \(t \in T \) theare \(y \in T \) satisfy \(t^2y = t \). The lattice of each f-generated submodule of f-generated \(T \)-module \(M \) is \(L(M) \), and \(L(T_T) \) is the lattice of all principal right ideals of \(T \).

Corollary 2.31. If \(T \) be arbitrary ring and \(M \) be f-generated regular \(T \)-module, then \(L(M) \) is distributive if and only if the ring \(S = \text{End}(M) \) is strongly regular.

Theorem 2.32. If \(T \) be any ring and \(M \) a f-generated \(T \)-module with \(\text{ann}(m) = 0 \) for each \(m \in M \). If:

1) Every f-generated regular submodule is multiplication \(T \)-module.

2) \(S = \text{End}(M) \) is strongly regular ring. Then \(T \) is Dedekind-distributive.

Proof: Let \(m \in M ; \text{ann}(m) = 0 \). Therefor \(m \) is regular element in \(M \). Since \(M \) is f- generated and has regular element, then \(M \) is regular \(T \)-module. By assumption that every f-generated regular submodule is multiplication \(T \)-module. Then each regular ideals are multiplication \(T \)-module. \(T \) is regular multiplication ring. Since \(\text{End}(M) \) is strongly regular ring, then from theorem(2.32) and by (\(\clubsuit \)), every f-generated submodule in \(M \) is distributive. Thus \(M \) is distributive and by the fact that every multiplication ring is Dedekind domain. Thus \(T \) is Dedekind distributive ring.

Recall that the \(T \)- module \(M \) is strongly duo module if for every \(K \) submodule of \(M \) then \(T\sigma(K, M) = K \). Also \(T \) is right strongly duo ring if \(T \) is right strongly duo \(T \)-module.

(\(\clubsuit \)) If \(T \) is right strongly duo ring, then it is right Artinian if it is right Neotherian ring.
Theorem 2.33. If T be an integral domain and M be T-module, then T is Dedekind Distributive ring if for any $m_1, m_2 \in M$ there exists $t_1, t_2, t_3, t_4 \in T$ such that $t_1 + t_2 = 1$ and $m_1 t_1 = m_2 t_3$, $m_2 t_2 = m_1 t_4$, and $T = (m_1: m_2 T) + (m_2; m_1 T)$.

Proof: Let K_1, K_2, K_3 be three submodule of M, and let $k \in (K_1 \cap (K_2 + K_3))$, to show that M is distributive module, let $k = m_1 + m_2$, $m_1 \in K_2$ and $m_2 \in K_3$. By assumption we have $t_1 + t_2 = 1$, $m_1 t_1 \in m_2 T$, and $m_2 t_2 \in m_1 T$, then $kt_2 = (m_1 + m_2)t_2 = m_1 t_2 + m_2 t_2 \in kT \cap m_1 T \subset K_1 \cap K_2$, and $kt_1 = m_1 t_1 + m_2 t_1 \in kT \cap m_2 T \subset K_1 \cap K_3$, then $kt_1 + kt_2 = k(t_1 + t_2) = k \in (K_1 \cap K_2) + (K_1 \cap K_3)$. Thus M is distributive T-module, therefore T is distributive, hence it is Dedekind Distributive ring.

Remarks 2.34.

1) If T is a right quasi-invariant ring and M is a right Bezout T-module. Then T is Distributive ring.
2) If T is a Bezout ring and T is right quasi-invariant, then T is left Distributive ring, and if T is left quasi–invariant then T is right distributive ring.
3) If T is right Bezout ring and $T / J(T)$ is finite direct product of division ring, then T is right Distributive semilocal ring.
4) Every right Bezout domain is Dedekind domain. (since Bezout domain is P.I.D.
5) If T is divisible right duo ring, then it is right strongly duo.

Proposition 2.35. Let T is a right duo right Neotherian ring and T_T is divisible. Then T is Dedekind Distributive ring.

Proof: Since T is right duo and T_T is divisible from Remark 3.34 (5); T is a right strongly duo. And by (**) T is a right Artinian, hence T is Dedekind Distributive ring.

Theorem 2.36. If T is a ring and M be multiplication T-module with any $a \in M$, ann(a) = 0. Then T is a Distributive ring if $S = \text{End}(M)$ is strongly regular ring.

Proof: Let M be a T-module and $S = \text{End}(M)$ is strongly regular ring. Since M is multiplication than it is f-generated and every K submodule of M is f-generated, and we have ann(a) = 0 for all $a \in M$ then M is regular T-module. Since $S = \text{End}(M)$ is strongly regular ring then the lattice of f-generated K of M is distributive, by (**) we get; M is distributive and hence T is a Distributive ring.

3.Conclusions

The main results in this paper showed the relationship Distributive ring and other domains such as the Dedekind domain and the Noetherian domain as a theory (2.6,2.7). Finally we introduced a good result about divisible module, Distributive ring such that we satisfy if T is invariant ring have multiplication ideal this imply T is a Distributive ring and we study strongly duo ring and related to Distributive ring.

References
[1] A. Wardayani, I. Kharismawati and I. Sihwaningrum, Regular Rings and their properties, *Journal of Physics: Conference Series*, doi. 10.1088, 2020, 1742-6596.

[2] A. Schwarz, Bratislava, Prime ideals and maximal ideals in semi groups, Czechoslovak Mathematical Journal, Vol.19, no.1,(1969), 72-79.

[3] Abed, M. M., Al-Sharqi, F., & Zail, S. H. (2021, March). A Certain Conditions on Some Rings Give PP Ring. In *Journal of Physics: Conference Series* (Vol. 1818, No. 1, p. 012068). IOP Publishing.

[4] Abed, M. M., & Al-Sharqi, F. G. (2018, May). Classical Artinian Module and Related Topics. In *Journal of Physics: Conference Series* (Vol. 1003, No. 1, p. 012065). IOP Publishing.

[5] D.A.J. Gómez-Ramirez, J.D. Velez and E. Gallego, Containment-division ring and new characterizations of Dedekind domains, arXiv:1708.00532v1[math.AC] 1Aug 2017.

[6] F. Cheniour, On Bezout Rings, International Journal of Algebra, vol. 6, no. 32, 2012, 1507-1511.

[7] F. Kasch, Modules and rings, Academic press, Vol.17, (1982).

[8] G. Picavet and M.P. Lhermite, Etals Extensions With Finitely Many Subextensions, arXiv: 1509.03868v1[math.AC] 13Sep 2015.

[9] Hammad, F. N., & Abed, M. M. (2021, March). A New Results of Injective Module with Divisible Property. In *Journal of Physics: Conference Series* (Vol. 1818, No. 1, p. 012168). IOP Publishing.

[10] M. Zafrullah, On Generalized Dedekind domains, Mathematika, 33(1986), 285-295.

[11] M. M. Abed, F. G. Al-sharqi and A.A. Mhassin, Study fractional ideals over some domains, Cite as : AIP Conference Proceeding 1238, 030001 (2019); http://doi.org/10.1063/1.5121038, Published Online: 21 August 2019.

[12] O. Alkam and E.A. Osba, on the regular elements in \mathbb{Z}_n, Turk. J. Math. 32(2008).

[13] S. Mohamed, Rings Whose Homomorphic Imags are q-Rings, Pacific Journal of Mathematics, vol. 35, no. 3, 1970.

[14] S. Ebeahimi Atani and S. Khojasteh G. Ghaleh, On Multiplication modules, International Mathematical Forom, 1, no. 24, 2006, 1175-1180.

[15] Talak, A. F., & Abed, M. M. (2021, February). P-(S. P) Submodules and C1 (Extending) Modules. In *Journal of Physics: Conference Series* (Vol. 1804, No. 1, p. 012083). IOP Publishing.

[16] V. A. Andrunakievich and Y. M. R Yabukhin, Radicals of Algebras and structure theory, Nauka, Moscow (1979).

[17] Y. Futa and Y. Shidama, Divisible Z-module, Formalized Mathematics, vol. 24, no. 1, 2016, 37-47.

[18] Z. Bilgin, M.L. Reyes, and U. Tekir, On Right S-Noetherian Rings and S-Noetherian Modules, Mathematics subject classification 16D25, 16D80, 2017.