Bosminopsis deitersi (Crustacea: Cladocera) as an ancient species group: a revision

Petr G. Garibian Equal first author, 1, Dmitry P. Karabanov 2, Anna N. Neretina 1, Derek J. Taylor 3, Alexey A Kotov Corresponding author

1 Laboratory of Aquatic Ecology and Invasions, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
2 Laboratory of Fish Ecology, I.D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok, Yaroslavl Area, Russia
3 Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States

Corresponding Author: Alexey A Kotov
Email address: alexey-a-kotov@yandex.ru

Water fleas (Crustacea: Cladocera) of the Family Bosminidae have been studied since the founding of paleolimnology and freshwater ecology. However, one species, *Bosminopsis deitersi*, stands out for its exceptional multicontinental range and broad ecological requirements. Here we use an integrated morphological and multilocus genetic approach to address the species problem in *B. deitersi*. We analyzed 32 populations of *B. deitersi* s.lat. Two nuclear and two mitochondrial loci were used to carry out the bGMYC, mPTP and STACEY algorithms for species delimitation. Detailed morphological study was also carried out across continents. The evidence indicated a widely distributed cryptic species in the Old World (*Bosminopsis zernowi*) that is genetically divergent from *B. deitersi* s.str. We revised the taxonomy and redescribed the species in this complex. Our sampling indicated that *B. zernowi* had weak genetic differentiation across its range. A molecular clock and biogeographic analysis with fossil calibrations suggested a Mesozoic origin for the *Bosminopsis deitersi* group. Our evidence rejects the single species hypothesis for *B. deitersi* and is consistent with an ancient species group (potentially Mesozoic) that shows marked morphological conservation. The family Bosminidae, then, has examples of both rapid morphological evolution (Holocene *Bosmina*), and morphological stasis (*Bosminopsis*).
Bosminopsis deitersi (Crustacea: Cladocera) as an ancient species group: a revision

Petr G. Garibian 1*, Dmitry P. Karabanov 2, Anna N. Neretina 1, Derek J. Taylor 3 and Alexey A. Kotov 1*

1 Laboratory of Aquatic Ecology and Invasions, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia.
2 Laboratory of Fish Ecology, I.D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok, Yaroslavl Area, Russia.
3 Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, USA.

* Equal first authors

Corresponding author: Alexey A. Kotov
Leninsky prospect 33, Moscow, 119071, Russia
alexey-a-kotov@yandex.ru

Abstract
Water fleas (Crustacea: Cladocera) of the Family Bosminidae have been studied since the founding of paleolimnology and freshwater ecology. However, one species, *Bosminopsis deitersi*, stands out for its exceptional multicontinental range and broad ecological requirements. Here we use an integrated morphological and multilocus genetic approach to address the species problem in *B. deitersi*. We analyzed 32 populations of *B. deitersi* s. lat. Two nuclear and two mitochondrial loci were used to carry out the bGMYC, mPTP and STACEY algorithms for species delimitation. Detailed morphological study was also carried out across continents. The evidence indicated a widely distributed cryptic species in the Old World (*Bosminopsis zernowi*) that is genetically divergent from *B. deitersi* s.str. We revised the taxonomy and redescribed the species in this complex. Our sampling indicated that *B. zernowi* had weak genetic differentiation across its range. A molecular clock and biogeographic analysis with fossil calibrations suggested a Mesozoic origin for the *Bosminopsis deitersi* group. Our evidence rejects the single species hypothesis for *B. deitersi* and is consistent with an ancient species group (potentially Mesozoic) that shows marked morphological conservation. The family Bosminidae, then, has examples of both rapid morphological evolution (Holocene *Bosmina*), and morphological stasis (*Bosminopsis*).

Keywords: Phylogeography, Phylogeny, Molecular clock, Taxonomy, Cladocera, Eurasia

Running title: *Bosminopsis deitersi* as an ancient group

Introduction

Frey (*Frey*, 1962) demonstrated morphological stasis for the water fleas (Cladocera) based
on paleolimnological records from the Quaternary. He later based the paradigm of “non-cosmopolitanism” (Frey, 1982, 1987b) on this apparent long-term stability in morphology. According to non-cosmopolitanism, geographic differentiation occurred mainly due to vicariant events related to the disruption of Pangaea and the dispersal barriers imparted by subsequent continental drift. The process (often termed “continental endemism”) now has strong support among "traditional" taxonomists (Van Damme & Kotov, 2016; Smirnov & Kotov, 2018; Neretina, Kotov & Van Damme, 2019) and molecular ecologists (Xu et al., 2009; Heads, 2012). Frey’s early insights on non-cosmopolitanism made the Cladocera (Frey, 1982, 1987a) a model group for freshwater animals. However, a transcontinental distribution for many freshwater taxa persists. One of these species reported from many continents is Bosminopsis deitersi Richard, 1895 (Cladocera: Bosminidae). After the first description of B. deitersi from La Plata (Richard, 1895), the species was found in many tropical (Daday, 1903; Brehm, 1913, 1939; Rahm, 1956; Dumont, 1981; Idris, 1983; Collado, Fernando & Sephton, 1984; Dumont, 1986; Tanaka & Ohtaka, 2010; Korovchinsky, 2013; Kotov et al., 2013) and temperate (Linko, 1901; Birge, 1918; Ueno, 1932; Pirozhnikov, 1937; Ueno, 1937a; Ueno, 1937b, 1940; Tanaka, 2000; Jeong, Kotov & Lee, 2014; Beaver et al., 2018) regions. Citing minor morphological differences from B. deitersi (see checklist below), several authors described regional taxa. Bosminopsis zernowi Linko, 1901, found in European Russia, was the second taxon to be named in this group. Burckhardt (Burckhardt, 1909) concluded that there are three alternative views of the group’s diversity: 1) at least eight local forms ("Lokalväriataten"), 2) multiple independent species, and 3) a single broadly distributed taxon, B. deitersi. Later he advocated 11 extant "taxa" in the group (Burckhardt, 1924).

Burckhardt’s view failed to gain support, with most authors recognizing that Bosminopsis
is a monotypic genus (Krasnodebski, 1937; Ueno, 1937a; Ueno, 1937b; Chiang & Du, 1979; Yoon, 2010). Behning (Behning, 1941) and Manujlova (Manujlova) regarded some forms described by Burckhardt as regional subspecies but gave very obscure diagnoses. At the end of the 20th century, researchers of tropical populations (Frey, 1982; Smirnov & Timms, 1983; Michael & Sharma, 1988; Smirnov, 1995; Sanoamuang, 1997) also assigned specimens to a single taxon, B. deitersi. Indeed, Kořínek (Korinek, 1984) directly stated that "Bosminopsis deitersi was regarded as the only species within the genus". However, in the last third of the 20th century, two species of Bosminopsis beyond the B. deitersi group were found in the Amazon River basin (Brandorff, 1976; Rey & Vasquez, 1989).

B. deitersi, as presently described, has an unusually broad biogeographic range and ecological preference for a cladoceran species. Wolsky (Wolski, 1932) wrote that Bosminopsis deitersi prefers "warm water". However, Pirozhnikov (Pirozhnikov, 1937) detected Bosminopsis in high latitude waters of the Ob and Yenisei river deltas. Kotov (Kotov, 1997b) suggested that these North Eurasian populations belong to a separate taxon from B. deitersi, B. zernowi Linko, 1900.

An integrated approach, which combines molecular phylogeny, phylogeography, formal biogeography, and morphological analysis has advanced the taxonomy of several difficult groups (Dayrat, 2005; Padial & La Riva, 2010). Here we use an integrated approach to address the taxonomy of the B. deitersi group. We find evidence that the group contains several related species with modest geographic ranges and weak morphological differentiation. We reconstruct this group’s evolutionary history and provide evidence for the antiquity and morphological conservation of the genus Bosminopsis. We also redescribe B. deitersi and B. zernowi and analyze their synonyms.
Materials & Methods

Ethic statement

Field collection in public property in Russia does not require permissions. Samples in South Korea were collected in the frame of cooperation between A.A. Kotov and the National Institute of Biological Resources of Korea and does not require special permission. The sample from Arkansas, USA was obtained from collections resulting from a previous NSF grant. The samples from Japan, China, and Thailand were provided by our colleagues having permissions to collect them due to their scientific activity in the governmental institutes in the corresponding countries. Formalin samples from Brazil were kept in the Collection of Zoological Museum of Moscow State University for a long time, they were collected before the time when Brazil introduced very strict regulations for sampling. The species were not assessed as endangered at the time of collection and are currently not subject to specific regulations, however all efforts were taken to ensure that the collection and preservation of animals was performed with due consideration of their welfare. The number of individuals taken did not represent a significant proportion of the population present at each site.

Sample collection and morphological analyses

Samples from different localities were collected via small-sized plankton nets (with mesh size 50 µm) and fixed via 4% formaldehyde or 96% ethanol in the fields, using conventional techniques. All samples were initially examined using a stereoscopic microscope LOMO. Individuals of *Bosminopsis* were initially identified via available references using morphological
features (Kotov, 1997a, 1997b; Rogers et al., 2019). Existing museum samples were used for morphological analysis (see the list of material in Supplementary Table S1).

The morphology of populations from the Neotropics and the Palaearctic was examined in detail to assess the presence of taxonomically significant characters. Specimens of *Bosminopsis* from presorted formalin and alcohol samples were selected under a binocular stereoscopic microscope LOMO. They were then studied in toto under optical microscopes (Olympus BX41 or Olympus CX 41) in a drop of glycerol formaldehyde or a glycerol-ethanol mixture. Then, at least two parthenogenetic females, two ephippial females, and two males (if available) from each locality were dissected under a stereoscopic microscope for appendages and postabdomens.

Drawings were prepared using a camera lucida attached to the optical microscopes.

Some individuals from Neotropical and Palaearctic localities were dehydrated in an ethanol series (30, 50, 70, 95%) and 100% acetone and then dried from hexametyldisilazane. Dried specimens were mounted on aluminum stubs, coated by gold in S150A Sputter Coater (Edwards, United Kingdom), and examined under a scanning electron microscope (Vega 3 Tescan Scanning Electron Microscope, TESCAN, Czech Republic).

DNA extraction, amplification and sequencing

Only alcohol samples were used for the genetic analysis. Each specimen was accurately identified by morphological characters (Supplementary Table S1). Genomic DNA was extracted from single adult females using the Wizard Genomic DNA Purification Kit (Promega Corp., Madison, WI) and QuickExtract DNA Extraction Solution (Epicentre by part Illumina, Inc., Madison, WI) using manufacturer’s protocols. Two mitochondrial and two nuclear markers were investigated here: (1) the 5’-fragment of the first subunit of mitochondrial cytochrome oxidase
(COI) – a protein-coding marker widely used in DNA barcoding (Hebert et al., 2003); (2) the 5’-fragment of the mitochondrial 16S rRNA gene (16S) with a mosaic of highly conservative duplexes and variable loops (Yang et al., 2014); and (3-4) 5’-fragments of the nuclear ribosomal genes (18S rRNA and 28S rRNA). Each fragment contains both long conservative portions and two variable domains. Although these nuclear markers are predominantly used for divergent taxa (Hovmoller, Pape & Kallersjo, 2002), they are informative at the species level for many microcrustaceans (Karabanov et al., 2018).

Primers used for amplification are listed in Table 4. Polymerase chain reactions (PCR) were carried out in a total volume of 20 μl, consisting of 2 μl of genomic DNA solution, 1 μl of each primer (10 mM), 6 μl of double-distilled H₂O and 10 μl of ready-to-use PCR Master Mix 2X solution (Promega Corp., Madison, WI). PCR products were visualized in a 1.5% agarose gel stained with ethidium bromide and purified by QIAquick Spin Columns (Qiagen Inc., Valencia, CA). The PCR program included a pre-heating of 3 min at 94°C; 40 cycles (initial denaturation of 30 sec at 94°C, annealing of 40 sec at a specific temperature, an extension of 80 sec at 72°C); and a final extension of 5 min at 72°C (Table 4). Each PCR product was sequenced bi-directionally on an ABI 3730 DNA Analyzer (Applied Biosystems) using the ABI PRISM BigDye Terminator v.3.1 kit at the Syntol Co, Moscow. The authenticity of the sequences was verified by BLAST comparisons with published cladoceran sequences in mBLAST (Boratyn et al., 2013).

The sequences from this study were submitted to the NCBI GenBank database for 16S acc. no. MT757174-MT757231, for COI acc. no. MT757459-MT757473, for 18S acc. no. MT757232-MT757274 and for 28S acc. no. MT757314-MT757388.
Population analysis, alignment and phylogenetic analysis

Alignment of sequences from each locus was carried out using the MAFFT v.7 algorithm \cite{Katoh2019} available on the server of the Computational Biology Research Center, Japan (http://mafft.cbrc.jp). For the protein-coding gene COI, we used the "Translation Align" option with the FFT-NS-i strategy. For alignment of the ribosomal-coding loci, we used the Q-INS-i strategy (secondary structure is considered by this algorithm). Linking sequences and their partitioning for subsequent analyses were made in SequenceMatrix v.1.8 \cite{Vaidya2011}.

Nucleotide diversity analysis \cite{Nei2000} and neutrality tests were carried out using DnaSP v.6.12 \cite{Rozas2017}. We applied the Fs \cite{Fu1997} and D \cite{Tajima1989} tests to confirm neutrality and describe demographic processes in Bosminopsis population \cite{Ramirez-Soriano2008,Garrigan2010}. To determine the most probable demographic model for Bosminopsis sequences, we performed a coalescent simulation for each locus (1000 replications) in DnaSP v.6.12 \cite{Rozas2017} using five demographic models (Standard Neutral Model, Population Growth, Population Decline, Population Bottleneck, Population Split/Admixture). The best model was selected based on the Theta-W (theta with Watterson) estimator \cite{Watterson1975,Nei2000}.

The best-fitting models of the nucleotide substitutions for each locus and for linked data were selected using ModelFinder v.1.6 \cite{Kalyaanamoorthy2017} at the Center for Integrative Bioinformatics Vienna web-portal, Austria (http://www.iqtree.org) \cite{Trifinopoulos2016} based on minimal values of the Bayesian information criteria (BIC) \cite{Schwarz1978}. The BIC model parameters were almost identical to those obtained using the corrected Akaike's information criterion, AICc.
For the COI locus, the substitution model was partitioned by the nucleotide position of codons (1st, 2nd, 3rd). We used the multi-taxon coalescence model "star" in BEAST2 (Heled & Drummond, 2010) with partitioned models (Chernomor, Haeseler & Minh, 2016). Phylogenetic reconstructions based on the maximum likelihood (ML) and Bayesian (BI) methods were made for each gene separately, the full set of mitochondrial genes, the full set of nuclear genes, and for all "unlinked" genetic data. We included sequences with incomplete or missing data as exclusion can reduce the accuracy of phylogenetic reconstruction (Molloy & Warnow, 2018).

We used the IQ-TREE v.1.6.9 algorithm (Nguyen et al., 2015) via a web-portal CIBIV, Austria for ML tree estimation. Each set of sequences was analysed based on the best model found automatically by the W-IQ-TREE (Trifinopoulos et al., 2016). To estimate the branch support values, we used UFboot2 (Hoang et al., 2018). The Topology of the ML trees was evaluated based on PhyML SH-like tests (Shimodaira, 2002), performed in the block Building Phylogenetic Tree in uGENE v.34 (Okonechnikov, Golosova & Fursov, 2012). BI analysis was performed in BEAST2 v.2.6.2 (Bouckaert et al., 2019), with all of the parameters of the substitution model using the BIC criterion from BEAUti v.2.5.2 (Drummond et al., 2012). In each analysis, we conducted four independent runs of MCMC (40M generations and a sampling interval of 10k generations), with effectiveness control in Tracer v.1.7 (Rambaut et al., 2018). A consensus tree based on the maximum clade credibility (MCC) was obtained in TreeAnnotator v.2.5.2 (Drummond et al., 2012) with a burn-in of at least 20%. Because the main clades for BI and ML were congruent, we presented the BI trees, with ML branch support/ BI posterior probabilities for key nodes.

A haplotype network was constructed for Bosminopsis zernowi (the most sampled taxon in this study) in popART v.1.7 with the Integer Neighbor-Joining Network algorithm (Leigh,
Cybertaxonomic species delimitation based on DNA data

Our approach to cybertaxonomic taxon delimitation was described in a previous paper (Kotov et al., 2021). An integrated approach based on genetic species delimitation combined with "traditional" morphological taxonomy was used to estimate the species richness. We used the bGMYC, mPTP and STACEY algorithms for species delimitation (Carstens et al., 2013).

The general mixed Yule-coalescent model (GMYC) was made to assign analyzed individuals to the species according to ultrametric time trees derived from single-locus data (Pons et al., 2006). But the "classical" GMYC has limitations (Lohse, 2009). We used the Bayesian GMYC model in the ‘bGMYC’ package (Reid & Carstens, 2012) for the statistical language “Microsoft R-Open and MKL” 64-bit v.3.5.3 (http://mran.microsoft.com). Ultrametric trees for each mitochondrial and nuclear datasets were evaluated in BEAST2. For MCMC, we used 50M generations with a sampling interval of 50k trees. We used Tracer v.1.7 to evaluate the convergence of parameters (based on ESS>200). Sequences of Triops and Bosmina were used as outgroups. Sorting, re-rooting of the trees and outgroup deletion was carried out in “R” according to the script of Sweet et al. (2018). For the bGMYC analysis, we randomly selected 100 ultrametric trees from the 1000 trees after burn-in from BEAST2. The results were accepted as statistically significant at a modified P > 0.99 level.

Analysis of Multi-rate Poisson Tree Processes (mPTP) (Kapli et al., 2017) was performed on the web-server of Heidelberg Institute for Theoretical Studies (http://mptp.h-its.org/). As the input trees, we used the phylogenetic BI trees from BEAST2 and the ML-tree obtained using W-IQ-TREE for each locus. Delimitation results were congruent for separate loci and were
composed of mitochondrial and nuclear datasets.

The combined species tree estimation and species delimitation analysis for STACEY (Species Tree And Classification Estimation, Yarely) (Jones, 2017), was made in BEAST2. Genealogical relationships were estimated by STACEY with four independent generations (50M generations of MCMC, sampling of every 10k generation) after incorporating the suggestions from an initial run. STACEY log files were examined with Tracer v.1.7 to evaluate the convergence of parameters based on ESS>400. Supports for the tree topologies estimated by STACEY were examined by constructing a maximum clade credibility tree using TreeAnnotator v2.6 (part of the BEAST2) after discarding half of all estimated trees. Species delimitations based on the trees estimated by STACEY were assessed using the Jones’ java-application speciesDA http://www.indriid.com/software.html.

Phylogenetic reconstruction and molecular clock

Two approaches were used for molecular clock estimation. A strict molecular clock was based on the assumption of a relatively regular mutation rate in mitochondrial genes. The speed of mutation accumulation differs among organisms. For the crustaceans the rate is ca. 0.11-2.4% per MYA (Knowlton & Weigt, 1998; Schubart, Diesel & Hedges, 1998; Schwentner et al., 2013; Bekker et al., 2018). Apparently this is a very rough estimation (Schwartz & Maresca, 2006). An alternative approach uses paleontological data to calibrate “molecular clocks”.

To estimate the probability of molecular clock-like data, we applied a Maximum Likelihood method implemented in MEGA-X v.10.1.8 (Kumar et al., 2018). A Maximum Likelihood substitution model was estimated for each locus (separately for each nucleotide
position for translated genes, and jointly for non-translated fragments). We used the best model
as selected by the lowest BIC (Bayesian Information Criterion) scores and an ML tree with
Bosmina as the outgroup.

For determination of the relative rate of substitutions, we used both paleontological
information (*Kotov & Taylor*, 2011) and points based on molecular phylogenetic data
(*Schwentner* et al., 2013). As calibration points (with 15% standard deviations), we used the
following estimates: *Triops* all groups 340 MYA, *Daphnia* *Simocephalus* 145 MYA,
Cyclestheria groups 120-70 MYA, and *Bosmina* / *Bosminopsis* without an exact date. The age of
lineage differentiation according to a strict molecular clock model was estimated in BEAST
v.1.10.4 (*Suchard* et al., 2018) with a Yule speciation model as the most proper for datasets with
several potential species (*Gernhard*, 2008). Four independent runs of 50M generations were
done, with each 100k tree sampled. Subsequent analysis was performed as above for BI
following the recommendations (*Barido-Sottani* et al., 2018).

Phylogeographic reconstructions

To test phylogeographic models, we used the packet BioGeoBEARS (*Matzke*, 2013) with
the integrated statistical package of the “R” language in RASP4 v.4.2 (*Yu* et al., 2015). The data
set was composed based on the maximum number of geographic localities and representation of
all phylogenetic lineages revealed by cybertaxonomic methods. We estimated a mitochondrial
phylogenetic tree based on sequences of two genes (*COI* and *16S*) for *Bosminopsis* cf. *deitersi*.
Objective software limitations allowed us to analyze only 27 sequences from five phylogenetic
lineages and seven main geographic regions.

We tested six biogeographic models in BioGeoBEARS (standard dispersion-vicariant, and
those with a correction for speciation events +J), estimated according to the AICc_wt criterion (Matzke, 2014). A phylogeny for RASP4 was reconstructed in BEAST2. In each analysis, we conducted four independent runs of MCMC (40M generations, with a sampling interval of 10k generation). The best model according to the maximum AICc_wt value was DIVALIKE+J, which takes into consideration new lineage origin upon colonization by a founder without the existence of a widely distributed ancestor (Clark et al., 2008). For estimates of the age of historical processes, we used an outgroup "calibration". Palaeoreconstruction was performed in GPlates v.2.2 (Muller et al., 2018) with PALEOMAP PaleoAtlas v.3 by Christopher R. Scotese (https://www.earthbyte.org/paleomap-paleoatlas-for-gplates).

Abbreviations

Abbreviations for collections

MGU ML – collection of Zoological Museum of Moscow State University.

Abbreviations in illustrations and text

I–V – thoracic limbs I–V; dag – distal armature of gnathobase; dis – distal setae of exopodite; ejh – ejector hooks on limb I; epp – epipodite; ext – exopodite; fpl – filter plate of gnathobase; lat – lateral setae of exopodite; mxp – maxillar process of limb I; odl – outer distal lobe of limb I; pep – preepipodite; pos – posterior setae; sdl – inner subdistal lobe of limb I.

Results
We analyzed 118 specimens from 32 populations belonging to the *B. deitersi* group. The specimens originated mainly from Eurasia (Fig. 1), but a single population from North America and a single population from South America were also analyzed (Supplementary Table S1).

We obtained 58 original sequences of *16S*, 15 sequences of *COI*, 43 sequences of *18S*, and 75 sequences of *28S*. Populations had a relatively high genetic polymorphism (Table 1). In contrast, the number of haplotypes was small. Each locus had a differing optimal substitution model (Supplementary Table S2).

Three major clades of the *Bosminopsis deitersi* group were revealed from a tree based on the mitochondrial dataset (Supplementary Figure 1A). The first clade was *B. zernowi* – widely distributed in Eurasia and represented by two sub-clades (1 and 2). The second clade was *B. deitersi* distributed in the Americas, it is represented by two sub-clades: 1 in South America (*B. deitersi* s.str.) and 2 in North America. Both geographic subclades had modest support. Further study is necessary to examine the independent status of North American populations. A third clade (*Bosminopsis* sp.) was detected from a single population in Thailand.

The tree based on the nuclear dataset (*18S* + *28S*) had a similar topology to the mtDNA tree, but note that nuclear gene sequences were unavailable for *Bosminopsis* sp. from Thailand. The large clade of *B. zernowi* was again subdivided into two subclades (1 and 2) with low support. There were some conflicts between mitochondrial and nuclear sequences. Some specimens from the mitochondrial sub-clade 1 belonged to the nuclear sub-clade 2 (they are marked by asterisks in Supplementary Figure S1, A-B). As support for both mitochondrial and nuclear subclades was low, we do not discuss this below. The *18S* locus was almost identical in all populations, suggesting the locus is most informative at the genus level. The *28S* locus
demonstrated substantial variability in the D1 and D2 variable domains and appeared to contain information for taxa within the genus. Based on the neutrality tests and coalescent simulations in DnaSP v.6, we concluded that the most probable demographic model was a "bottleneck" model reflecting historical processes.

The final tree based on combined mitochondrial and nuclear datasets (Supplementary Figure S1C) was fully congruent with the mitochondrial tree – major clades were well-supported. No conflicts were found for ML and BI (with unlinked data) trees among genes or with the consensus tree.

The results of the phylogenetic reconstructions suggested a deep demographic subdivision of the *B. deitersi* group. The tests of neutrality were consistent with such a division (Fu’s F$_{s}$$\leq$0 with Tajima D$>$0). The most probable demographic process in this group evolution was an expansion with a strong founder effect resulting in strong differentiation between populations. We further explored the genetic diversity within each group and addressed the taxonomic uncertainty within these lineages.

For cybertaxonomic taxon delimitations (Fig. 2), both bGMYC and mPTP (for both mitochondrial and nuclear genes) suggested a deep divergence within the *B. deitersi* group. All approaches suggested an independent status of *B. zernowi*, *B. deitersi* and *Bosminopsis* sp. from Thailand. Only the nuclear tree suggested a "Far Eastern" sub-clade based on the information in the hypervariable domains D1 and D2. There was some evidence that North American and South American populations of *B. deitersi* form independent species. More sampling of North American populations and loci is warranted to test this hypothesis further. Compared to bGMYC and mPTP, STACEY suggested significantly more taxa. However, increased splitting is expected (compared to morphological evidence) with STACEY (*Jones*, 2017; *Vitecek* et al., 2017).
To estimate divergences among selected OTUs, we calculated "simple" uncorrected \(p \)-distances for the best sampled locus, 16S (Table 2). *Bosmina* was the outgroup. Distances among outgroups are ca. two times greater than the maximum distances within the *B. deitersi* groups. Groups "Eurasia", "Thailand", and "Americas" are well-differentiated, while differences between two sub-clades of Eurasia are less than 0.5%. The two subclades may result from moderately separated mitochondrial lineages, which are common in cladocerans (*Bekker* et al., 2018; *Kotov* et al., 2021). Again, North and South American populations may be separate species, but more sequences are needed to test this hypothesis.

A network of 16S mitochondrial haplotypes (Fig. 3) revealed that all populations from Northern Eurasia belonged to only four haplotypes (Fig. 2): haplotype H1 included 73% of studied specimens and distributed from the Volga basin in European Russia to Pacific coast including Sakhalin Island (but not in Korea and Japan). H2 haplotype was endemic to the Yenisey Basin in Eastern Siberia and seemed to be a derivate of H1. Another well-represented haplotype (H3) differed by two substitutions from H1 and was associated with a rare haplotype H4. H3 and H4 were detected only in Japan and Korea. Overall, haplotypic differentiation within groups was weak.

The Maximum Likelihood tests (Table 3) suggested that the hypothesis of molecular clocks is not rejected for each locus tested. In general, the topology of the tree constructed for the molecular clock calculations (Fig. 4A) is congruent with the multilocus tree described above. Differences in the divergence pattern of the American (*B. deitersi*) and Thailand (*B. sp.*) clades may be explained by heterochrony in the appearance and fixation of the substitutions in mitochondrial and nuclear genomes (*Vawter & Brown*, 1986). Minor heterochrony is not an insurmountable obstacle for phylogenetic reconstructions (*Allio* et al., 2017).
"Simple" p-distances between *B. zernowi* and *B. deitersi* (based on the COI locus), gave a divergence time estimate of 17–30 MYA ($p=0.241$). The estimate used an average divergence time for crustaceans of ca. 0.8–1.4 % per 1 Myr, which is similar to the age of divergence based on the coalescent model (Fig. 4A). Based on the time of divergence of the outgroup (*Bosmina*), we estimated the divergence of the *B. deitersi* group at around 200 MYA. Using RASP4, the taxa under consideration had an origin consistent with Laurasia (ancestral distribution range (C(ABCGEF)G), see Fig. 4B, 4C). However, note that Gondwanan populations from Africa, Australia, and India were not studied here. An alternative explanation is that the divergence of *Bosminopsis* sp. could be explained by its Gondwanan proto-range and subsequent colonization of Eurasia (i.e., due to India’s continental drift). *Bosminopsis* sp. (ancestral range (G)) was separated in the Early Cretaceous from a Euro-Asian-American population of the group (CE(AB)GF). Subsequent history was probably related to the disruption of Laurasia into Eurasian (CA(BCG)) and American (EF) groups of populations also in Cretaceous. Separation of North (F) and South American (E) populations had no ready explanation – it may be associated with the Gondwana-Laurasia split in the Cretaceous or a significantly more recent dispersal event (Neogene). A strong founder effect could then explain the genetic differences between Neogene populations of the two continents. In any event, the divergence of the entire *Bosminopsis* group is likely very ancient (at least the Early Cretaceous) and potentially affected by the split of proto-continents.

Morphological analysis

Order Anomopoda Sars, 1865
Family Bosminidae Baird, 1845

Genus *Bosminopsis* Richard, 1895

Short diagnosis. Dorsal head pores absent in adults. Basal spine on postabdominal claw very large, as large as claw itself. Antennae I in females with proximal parts fused. Both exopod and endopod of antenna II three-segmented, antennal formula 0-0-3/1-1-3. Five pairs of thoracic limbs.

Checklist of the formal taxa in the genus *Bosminopsis*

1. *Bosminopsis deitersi* Richard, 1895 – valid species.
2. *Bosminopsis zernowi* Linko, 1901 – valid species.
3. *Bosminella Anisitsi* Daday, 1903 – junior synonym of *B. deitersi*.
4. *Bosminopsis ishikawai* Klocke, 1903 – junior synonym of *B. zernowi*.
5. *Bosminella Anisitsi* var. *africana* Daday, 1908 – status must be checked, it could be a valid species.
6. *Bosminopsis deitersi* var. *typica* Burckhardt, 1909 – junior synonym of *B. deitersi*.
7. *Bosminopsis deitersi birgei* Burckhardt, 1924 – valid species.
8. *Bosminopsis deitersi brehmi* Burckhardt, 1924 – junior synonym of *B. africana*.
9. *Bosminopsis deitersi klockei* Burckhardt, 1909 – junior synonym of *B. zernowi*.
10. *Bosminopsis deirestsi pernodi* Burckhardt, 1924 – possible junior synonym of *B. zernowi*.
11. *Bosminopsis deirestsi schroeteri* Burckhardt, 1924 – junior synonym of *B. zernowi*.
12. *Bosminopsis stingelini* Burckhardt, 1924 – junior synonym of *B. deitersi*.
13. *Bosminopsis deitersi* var. *africana* Rahm, 1956 – junior homonym of *B. africana*.
14. *Bosminopsis negrensis* Brandorff, 1976 – valid species, endemic of Brazil.

15. *Bosminopsis devendrari* Rane, 1984 – *species inquirenda*, it could be a valid taxon from SE Asia.

16. *Bosminopsis macaguensis* Rey & Vasquez, 1986 – junior synonym of *B. deitersi* (see *Kotov*, 1997b).

17. *Bosminopsis brandorffi* Rey & Vasquez, 1989 – valid species, endemic of Brazil.

Unavailable name:

18. *Bosminopsis granulata* Daday – unpublished taxon name for Indian populations; slides of E. Daday labeled by this name are kept in the Collectio Dadayana of the Hungarian Natural History Museum, Budapest, Hungary.

Bosminopsis deitersi group

Diagnosis. Valve with a single mucro or several mucro-like spines at postero-ventral valve portion. No postero-dorsal spine (caudal needle) on carapace. Basis of postabdominal setae not inflated.

Comments. Among 17 available taxa listed above, 15 belong to the *B. deitersi* group. Only two valid species are not members of the *B. deitersi* group, both are andemics of Amazonia (*B. negrensis* and *B. brandorffi*, numbers 14 and 17 in our checklist). Most taxa of the *B. deitersi* group were poorly described. Here we try to start the revision of the group, redescribing *B. deitersi* s.str. and *B. zernowi*. We do not have adequate material (i.e. populations with males and ephippial females) for revision of North American, SE Asian, African, and Australian taxa.
Bosminopsis deitersi Richard, 1895 s.str.

Figures 5A–E, 6–9

Bosminopsis deitersi Richard 1895. Richard, 1895, p. 96–98, figs 1–4; Richard, 1897, p. 283–286, figs 28–31; Stingelin, 1904, p. 584–586, Pl. 20: figs 7–10; Burckhardt, 1909, p. 251;

Burckhardt, 1924, p. 221–228; Rey & Vasquez, 1986, p. 222–225, Pl. 2: figs 1–16; Kotov, 1997a, p. 26–29, figs 1–2; Kotov, 1997b, p. 6–26, figs 1–13; Kotov & Ferrari, 2010, p. 51.

Bosminopsis deitersi var. typica n.n. in Burckhardt, 1909, p. 251.

Bosminopsis stingelini Burckhardt 1909. Burckhardt, 1909, p. 251, text-figure: A-B;

Burckhardt, 1924, p. 228–229, figs 2, 8.

Bosminopsis macaguensis Rey and Vásquez 1986. Rey & Vasquez, 1986, p. 220–222, Pl. 1: figs 1–18.

Bosminella Anisitsi Daday 1903. Daday, 1903, p. 594–597, figs 1–3; Daday, 1905, p. 199–200, Pl. 13: figs 1–5.

Type locality. "... l'eau douce à La Plata (Buenos-Ayres)" (Richard, 1895), Argentina.

Type material. Lost, absent in the Collection of Jules Richard at the National Museum of Natural History, U.S.A. (Kotov & Ferrari, 2010).

Material studied here. See Supplementary Table S1.

Short diagnosis. Body of large adult parthenogenetic female subovoid, in younger adults more elongated, with a short postero-dorsal spine, but a caudal needle absent. Reticulation well-expressed on valves and head. Valve with a single short mucro at postero-ventral valve portion, or it is completely reduced. Postabdomen without inflated basis of postabdominal setae. Limb I
with epipodite having two finger-like projections. Juvenile female with a long postero-ventral mucro, supplied by minute denticles. Free and fused parts of antennae I, mucro, rostrum, ventral valve edge, base of caudal spine covered with small spinules. Ephippial female with egg chamber sculpture represented by large polygons. A strong medial keel on dorsum, strong paired lateral keels well distinguishable from the dorsal view. Adult male with dorsal contour of head humped, head large, with a smooth rostrum and expressed ocular dome, a short mucro always present postero-ventrally. Postabdominal claw bears a basal spine comparable in size with the latter. Antenna I free, remarkably curved distally. A relatively long (somewhat longer than exopod itself), curved at tip additional male seta on endopod apical segment in position of a rudimentary spine in female. Limb I a copulatory hook relatively large and regularly thick, its tip blunt. Size 0.17–0.41.

Redescription

Adult parthenogenetic female. Body short and almost round in lateral view (body height/length ratio about 0.65–0.69), dorsal margin regularly curved from base of antenna I to posterodorsal angle (Figs 5A, 6A). Reticulation prominent, both on head and on valves. Posterior margin straight, with height about half of total body height, postero-dorsal angle expressed. Head in lateral view with a low ocular dome (Fig. 6B), body contour between head and proboscis rostral part (fused bases of antennae I) depressed. Frontal head pore ovoid, located almost in the middle of rostral part, somewhat anteriorly to level of frontal sensory setae (Fig. 6C–D). Lateral and dorsal head pores absent in adults. Compound eye of moderate size. Ocellus absent. Labrum as a fleshy appendage, its anterior contour convex. Antero-ventral portion of valves with setulated setae (Fig. 6E), ventral margin slightly convex, with a series of spinules, a long seta...
(seta Kurzi) and a rudimentary mucro at poster-ventral angle (Fig. 6F–G). Postabdomen
compressed laterally, slightly and regularly narrowing distally, without inflated basis of
postabdominal setae (Fig. 7A–C). Preanal margin long, straight to slightly concave, without
setules. Anal margin straight, preanal angle expressed, but postanal angle absent. Anal and
postanal portion with small denticles and as a postabdominal claw terminally supplied with a
strong basal spine, almost as large as claw, both claw and basal spine slightly curved.
Postabdominal seta bisegmented, shorter than postabdomen.

Proximal portions of two antennae I fused together and with rostrum, both lateral portions
directed downwards and slightly curved laterally (Fig. 6C–D, H). Antennular sensory setae
located on fused portion of antennas I. Distal portions with nine aesthetascs subequal in size.
Antenna II (Fig. 6I) with a coxal portion bearing a long seta and a short seta on a conical
elevation, elongated basal segment and short three-segmented exopod and endopod, antennal
formula: setae 0-0-3/1-1-3; spines 0-0-1/0-0-1, but apical spines greatly reduced in size. All
apical and lateral (on endopod first and second segment) setae subequal in size, covered by fine
setules.

Limb I large, its corm conically narrowing distally. Epipodite (Fig. 7D: epp) with two long
finger-like projections. Outer distal lobe (Fig. 7D: odl) with two setae of different size, feathered
by sparse, long, robust setules. Inner subdistal lobe (in terms of Kotov 1997a) (Fig. 7D: isl) with
a single seta, densely fringed by delicate setules. On inner limb edge, three soft setae. A bunch of
long setules is located near these setae. Two robust ejector hooks (Fig. 7D: ejh) strongly different
in size, armed with short denticles. The maxillar process (Fig. 7D: mxp), a derivative of
gnathobase I, with a single long, densely setulated seta, at base of the limb.

Limb II relatively small, with epipodite supplied by a finger-like projection. Inner limb
portion with an anterior row of 6 setae (homologs of "scrapers" of the chydorids, see Fryer, 1968) (Fig. 7E: 1–6) and disjuncted posterior row two setae (Fig. 7E: pos): a seta near gnathobase and another one near the proximal end of the limb. Gnathobase II with distal armature (Fig. 7E: dag) of three setae of different armature. Filter plate consists of five long setulated setae (Fig. 7E: fpl).

Limb III with epipodite (Fig. 7F: epp) supplied with a finger-like projection. Exopodite rectangular, bearing two lateral (Fig. 7F: lat=6–7) and five (Fig. 7F: dis=1–5) distal setae, seta 1 shorthest among distal setae. Each seta covered by long setules. Distal endite (in terms of Kotov 2013) with three anterior setae (Fig. 7F, G: 1–3): setae 1 and 2 long; seta 3 especially short. Proximal endite with two small anterior setae (Fig. 7F, G: 4–5). Eight soft setae on posterior face of limb, plus a seta of unclear homology (Fig. 7F: ?). Distal armature of gnathobase (Fig. 7F: dag) with three setae and a small sensillum. Filter plate (Fig. 7F: fpl) with five setae of subequal size.

Limb IV with small ovoid setulated pre-epipodite (Fig. 7H: pep) and a finger-like epipodite (Fig. 7H: epp). Exopodite circular with eight soft setae (1–8), no subdivision into lateral and distal setae. The longest seta covered by fine stiff setulae, others with long setules. The distalmost portion of exopodite as a densely setulated flat lobe. Inner distal portion with four anterior setae (Fig. 7H: 1–4); among them distal most setae 1 especially thick. Four thin long setae on posterior limb face. Distal armature of gnathobase (Fig. 7H: dag) with two elements represented by a thin sensillae. Filter plate (Fig. 7H: fpl) with four setae subequal in size.

Limb V (Fig. 7I) with a small, ovoid setulated preepipodite and an epipodite supplied with a long finger-like projection. Exopodite with five soft setae (1–5) covered by long setules, seta 5 exceptionally long. The distalmost portion of limb as a densely setulated flat lobe, two soft setae
near it, two setulated setae of subequal length near gnathobase. Filter plate with two long setae.

Juvenile female. Instar I has a dorsal head pore (Kotov, 1997b). Body elongated, head relatively high, elevating over valves, without a cervical incision (Fig. 5E). Carapace with a short posterior spine and a long postero-ventral mucro, supplied with minute denticles. Antenna I relatively longer than in female. Free and fused parts of antennules, mucro, rostrum, ventral valve edge, base of caudal spine covered with relatively small spinules.

Ephippial female. Only dorsal portion of valves modified as compared to parthenogenetic female (Fig. 5B–D, 6I–K). Ephippium yellowish, ovoid, not clearly demarked from ventral and lateral portions of valves. Egg chamber with a single egg, elongated, its sculpture represented by large polygons well visible under light microscope with very clearly, minute wrinkles and tubercles in each polygon. A strong medial keel on dorsum, strong paired lateral keels well distinguishable from the dorsal view. From the dorsal view, keels projected laterally out of body contour.

Juvenile male. Body elongated, with a clear dorsal depression posteriorly to head (Fig. 8A–B). Head large, with ill-developed ocular dome (Fig. 8C–D). Armature of antero-ventral valve portion (Fig. 8E) as in female. Mucro well-developed (Fig. 8G–H). Postabdomen short, gonopores not visible (Fig. 8I–J). Antennae I fused to rostrum, but their bases are not fused together (Fig. 9D). Limb I with a short, thick copulatory hook (Fig. 8K–M).

Adult male. Shape significantly different from that in female, body short (body height/length ratio about 0.65), dorsal contour of head humped, dorsal contour of carapace straight, valve anterior portion with few setae anteriorly, ventral margin convex, with setules as in female (Fig. 9A). Head large, with a smooth rostrum and expressed ocular dome, compound eye large (Fig. 9B–C). Valve armature as in female (Fig. 9D), but a short mucro always present
postero-ventrally (Fig. 9E). Postabdomen similar with that in female, its ventral margin slightly
convex, preanal margin slightly to moderately concave. Anal margin almost straight, postanal
angle absent. Postabdominal claw bears a basal spine comparable in size with the latter (Fig. 9F),
both claw and basal spine slightly and regularly bent.

Antenna I free, remarkably curved distally (Fig. 9G). Frontal sensory seta long, located at
middle of antennular body, a short male seta somewhat anteriorly to that, several fields of short
spinules located at antenna I anterior face. Long aesthetasc located subterminally, two of them
are located on the tip of antenna I, the others located on its lateral surface in two rows. Antenna
II with apical and lateral setae as in female. A relatively long (somewhat longer than exopod
itself), curved at tip additional male seta on endopod apical segment in position of a rudimentary
spine in female (Fig. 9H). Limb I with outer distal lobe bearing two setae strongly unequal in
size, copulatory hook relatively large and regularly thick, its tip blunt, not expanded bearing
small denticles (Fig. 9I).

Size. Females 0.17–0.45 mm, adult males 0.29–0.31 mm.

Differential diagnosis. *B. deitersi* differs from *B. zernowi* in (1) only a single mucro at
postero-ventral valve angle in both females and males; (2) different proportions of setae in
exopodite, inner limb portion and distal armature of gnathobase of limb III and on exopodite V;
(3) male basal spine on postabdominal claw significantly shorter that the claw itself; (4) male
antenna I strongly bent distally; and (5) additional seta on apical segment of male antenna II
curved at tip. Morphological differences from other taxa revealed above genetically are not
studied yet.

Distribution and ecology. Widely distributed in the Neotropical zone. Records from
Mexico (*Elias-Gutierrez* et al., 2008) and Central America (*Collado, Fernando & Sephton,
1984) need to be checked as they could belong to *B. deitersi* s.str. or the poorly described *B. birgei*.

Populations with a single mucro in juveniles are present on other continents (Fig. 5F–H), but they belong to other taxa that need to be revised.

Bosminopsis zernowi Linko, 1901

Figures 10–14

gen.? sp.? in Zernov, 1901, p. 34, Pl. 4: Fig. 27.

Bosminopsis zernowi Linko 1901. *Linko*, 1901, p. 345–347, text-fig.; *Meissner*, 1902, p. 52; *Meissner*, 1903, p. 180–190, Plates 2–4; *Zykoff*, 1906, p. 22–24, text-fig.; *Burckhardt*, 1909, p. 251; *Burckhardt*, 1924, p. 229–230.

Bosminopsis deitersi zernowi in Behning, 1941, p. 190–191, Fig. 83; *Manujlova*, 1964, p. 265, Fig. 147 (1, 3).

Bosminopsis deitersi in Krasnodebski, 1937, p. 357–360, Pl. 12: Fig. 1; *Smirnov et al.*, 1995, p. 66, Fig. 58 (1–2); *Song & Mizuno*, 1982, p. 343, Fig. 2–3; *Yoon & Kim*, 1987, p. 194, Fig. 8e–g; *Kim*, 1988, p. 58, Fig. 40; *Lieder*, 1996, p. 29–31, Fig. 1a–c, 2a-f; *Tanaka*, 2000, p. 110, Fig. 1–2; *Yoon*, 2010, p. 94–95, Fig. 49; *Jeong, Kotov & Lee*, 2014, p. 221; *Bledzki & Rybak*, 2016, p. 172.

Bosminopsis ishikawai Klocke 1903. *Klocke*, 1903, p. 130–134, figs 5–8, Pl. 4: figs 2, 6; *Burckhardt*, 1924, p. 222.

Bosminopsis klockei Burckhardt 1909. *Burckhardt*, 1909, p. 251; *Burckhardt*, 1924, p. 222.

Bosminopsis pernodi Burckhardt 1909. *Burckhardt*, 1909, p. 251; *Burckhardt*, 1924, p.
Bosminopsis deitersi pernodi in Manujlova 1964, p. 265.

Bosminopsis schroeteri Burckhardt 1909. Burckhardt, 1909, p. 251; Burckhardt, 1924, p. 229, Fig. 1, 4, 6–7.

Type locality. "Flusse Wjatka gefunden" = the Vyatka River (affluent of the Kama River which is a large affluent of Volga) near Malmyzh (Zernov, 1901), Kirov Area, European Russia.

Type material. Lost.

Material studied here. See Supplementary Table S1.

Short diagnosis. Body of large adult parthenogenetic female (Figs 10A, 11A–B) subovoid, in younger adults more elongated, with a short postero-dorsal spine, but a caudal needle absent. Reticulation ill-expressed on valves and head (Fig. 11C–D). Valve (Fig. 11E–H) with a series of mucro-like spines at postero-ventral valve portion, or they are completely reduced. Postabdomen without inflated basis of postabdominal setae (Fig. 12A–C). Antenna I and II (Fig. 11I–J) as in previous species. Limb I with epipodite having two finger-like projections, limbs in general as in previous species (Fig. 12D–M), but seta 1 on exopodite III relatively shorter, seta 7 there relatively longer (Fig. 12F), seta 2 on inner-distal limb portion longer than seta 1, longest setae in distal armature of gnathobase III strongly longer than other setae (Fig. 12G); on exopodite V, seta 2 and 3 short (Fig. 12M). Juvenile female (Fig. 10F–G) with a series of long, thin mucro-like spines. Free and fused parts of antennae I, mucro, rostrum, ventral valve edge, base of caudal spine covered with small spinules. Ephippial female (Figs 10B–D, 11K–L) with egg chamber sculpture represented by large polygons, but this sculpture is less represented as compare too previous species. A strong medial keel on dorsum, strong paired lateral keels well
distinguishable from the dorsal view. Juvenile male (Fig. 10H, Fig. 13) as in previous species.

Adult male with a dorsal contour of head humped (Fig. 14A); head large (Fig 14B–C), with a smooth rostrum and expressed ocular dome, a series of mucro-like spines always present postero-ventrally. Valve as in female (Fig. 14D–E). Basal spine on postabdominal claw shorter than the claw itself (Fig. 14F). Antenna I free, its distal portion only slightly bent (Fig. 14C, G).

A long additional male seta on endopod not curved at tip (Fig. 14H). Limb I with a copulatory hook (Fig. 14I) relatively more massive that in previous species.

Size. Females 0.25–0.47 mm, adult males 0.26–0.30 mm.

Differential diagnosis. It differs from *B. deitersi* in (1) several mucro-like spines at postero-ventral valve angle in both females and males; (2) different proportions of setae in exopodite, inner limb portion and distal armature of gnathobase of limb III and on exopodite V; (3) male basal spine on postabdominal claw approximately as long as claw itself; (4) male antenna I almost not bent distally; (5) additional seta on apical segment of male antenna II without curved tip.

Distribution. In Europe, *B. zernowi* is recorded from the Neman basin in Poland (*Wolski*, 1932), Dniepr River basin (including Dniepr itself, Desna and Pripyat, in Ukraine and Belarus, and, most probably, the Russian portion of the basin) (*Werestchagin*, 1912; *Charleman*, 1915, 1922; *Vezhnovets*, 2005). Bledzki and Rybak (*Bledzki & Rybak*, 2016) included the Danube basin as the part of its range, but no records from this river are known to us. Negrea (*Negrea*, 1983) wrote that the species "could be present in Romania", but to date it was not recorded from this country. In European Russia, *B. zernowi* was recorded from many rivers of the Volga basin, including the Volga itself, Kostroma, Wyatka, Kama, Kerzhenets, Sura, Kubra, Oka, Nara, and Moskva rivers (*Skadowskiy; Meissner*, 1902; *Skorikov, Bolokhontsev & Meissner*, 1903; *Zykoff*,...
The species was found in the basins of all the great rivers of Western and Eastern Siberia: the Ob' River basin (Leschinskaya, 1962) including its Arctic portion (Werestchagin, 1913), the Tom' River (Petlina et al., 2000) and the Chulym River (Kukharskaya & Dolgin, 2009); Subarctic portion of the Yenisey River (Pirozhnikov, 1937); Lena River (Abramova & Zhulai, 2016), Amur River basin (Afonina, 2013). The opinion of Manujlova (Manujlova) that "in the USSR it was not found east to Ob' River" was based on inadequate knowledge of previous literature, i.e. (Pirozhnikov, 1937). It is widely distributed in Korea (Cho & Mizuno, 1977) (also see descriptions above) and Japan (Ueno, 1937b) (and our data), and present in South China and Vietnam (our data). Most probably, it is present on the Pacific coast of Asia from the Amur to the Mekong basins.

But previous records from China (Ueno, 1932; Ueno, 1944; Mashiko, 1953; Du Nan-shan, 1973; Chiang & Du, 1979; Xiang et al., 2015) need to be checked, as they could belong both to B. zernowi (Amur basin) (i.e. (Ueno, 1937a; Ueno, 1940)) and the SE Asia taxon (at least some populations in southernmost China). "B. schröteri" described from "Sutschaufluss bei Schanghai" (Burckhardt, 1909), is a junior synonym of B. zernowi (as it has several mucro-like spines at postero-ventral angle).

Most probably, the tropical countries of Asia are fully populated by other taxa, as in all illustrations the females have a single strong mucro (Rane, 1984; Idris, 1983; Michael & Sharma, 1988; Pascual et al., 2014). Also, a single mucro is illustrated in the figures of Bosminopsis from North America (Birge, 1918), Africa (Korinek, 1984) and Australia (Smirnov & Timms, 1983) (Fig. 15).
Discussion

Old Mesozoic group

Our results are consistent with the hypothesis that *B. deitersi* is, in fact, a species group. We find no evidence for the nominate species in the Palearctic. However, we did find evidence for a genetically divergent and morphologically differentiated Old World lineage. Notably, the strong genetic divergences that we observed and our ancient age estimates were unaccompanied by strong morphological divergences. With our integrated approach, we hoped to mitigate some of the limitations of molecular datasets. As coalescent analyses can oversplit taxa, multigene data benefit from morphological and ecological information. Single gene datasets may disagree with one another and with the species tree for manifold reasons (*Fisher-Reid & Wiens*, 2011; *Hailer et al.*, 2012). In the present analysis, the topological disagreements (e.g. subclades) were weakly supported, indicating that random error may play a role.

A mature biogeography is only possible with an understanding of timescale (*Rosen*, 1978). The antiquity of cladocerans of different ranks, from genera to orders, has been confirmed by the fossil record, i.e., from the Mesozoic (*Smirnov*, 1992; *Kotov & Korovchinsky*, 2006; *Kotov & Taylor*, 2011; *Liao et al.*, 2020). Unfortunately, the Palaeozoic records (*Anderson, Crighton & Hass*, 2004; *Womack et al.*, 2012) are dubious: the described animals could belong to the Cladocera, but also could be members of other crustacean groups (*Van Damme & Kotov*, 2016). Kotov and Taylor (*Kotov & Taylor*, 2011) demonstrated that extant genera of the Daphniidae and even the subgenera of the genus *Daphnia* existed at the Jurassic/Cretaceous boundary, ca. 145 MYA. More fossil calibrations are possible for the group.
Efforts to use fossil calibrations with molecular data have been limited for Cladocera (Sacherova & Hebert, 2003; Schwentner et al., 2013; Cornetti et al., 2019). Perhaps the only known calibration point for relaxed molecular clocks is the Daphnia/Ctenodaphnia/Simocephalus split at 145 MYA (Kotov & Taylor, 2011). Non-calibrated molecular clocks also suggest earlier differentiation of the cladocerans, i.e., differentiation of the subfamilies within Chydoridae in the mid-Palaeozoic (Sacherova & Hebert, 2003). A fast molecular clock estimate gave a divergence time for Daphnia at more than 66 MYA (Cornetti et al., 2019). This value is probably too young given the calibration point of 145 MYA. A more realistic estimate should exceed the minimum fossil calibration (Kotov, 2013).

The Family Bosminidae contains only the genus Bosmina and the genus Bosminopsis. Our very rough estimation (see Fig. 4A) suggests that the Bosminidae could be even older than the Daphniidae. Such a conclusion agrees with the hypothesis that bosminids are a sister group to Chydoridae (Kotov, 2013). Chydorids are probably of Palaeozoic origin (Sacherova & Hebert, 2003). No Mesozoic bosminids are known to date. Bosmina was one of the first genera to be studied with paleolimnology. Unlike Bosmina, subfossil remains for Bosminopsis are unknown from the Holocene and Pleistocene bottom sediments (Austin, 1942; Hofmann, 1984). It seems unlikely that a detailed fossil record will be found for Bosminopsis. So molecular clocks are the only method to estimate the time of its differentiation. We estimate that the differentiation of the main Bosminopsis lineages took place in the Cretaceous, and coincided with the disruption of Pangaea, or later disruption of Laurasia. Mesozoic lineages survived in SE Asia and elsewhere in Eurasia (the exact location is unclear) after a mass extinction during the mid-Caenozoic (Korovchinsky, 2006; Van Damme & Kotov, 2016). Most probably, the Pacific Coast Region ("Far East") was the center of B. zernowi diversificaton, as this region is the richest in
mitochondrial haplotypes (Fig. 3), and is often a center of diversity for cladoceran taxa (Kotov et al., 2021).

While there is strong genetic divergence between New World and Old World lineages, a more detailed assessment of the divergence time awaits further geographic and genomic sampling for the New World. Within B. zernowi, our results suggest a mitochondrial differentiation in the mid-late Caenozoic (or even Quaternary), but the divergence of its mitochondrial haplotypes was weak.

Korovchinsky (Korovchinsky, 2006) postulated that extant cladocerans are relicts of a mass extinction in the mid-late Caenozoic. For Cladocera, Pleistocene mass extinction in the Holarctic due to glaciation and aridization (Hewitt, 2000) also has phylogeographic support (Taylor, Finston & Hebert, 1998; Cox & Hebert, 2001). But phylogeographic publications referring to previous epochs with non-Holarctic samples are rare (Xu et al., 2009; Kotov et al., 2021). For Bosminopsis, our results suggest a Mesozoic differentiation of the lineages and then survival of only two main lineages in the mid-Caenozoic. We failed to detect divergences consistent with the Quaternary. Our results are consistent with continental endemism and longterm morphological stasis.

Morphological divergence in Bosminopsis appears to be weak since the Mesozoic. This divergence involves fine-scaled characters such as the mucro-like spine number, male basal spine, and antenna I appearance and armature. Such subtle differences among species are known in other cladoceran groups (Kotov et al., 2021) but can only rarely be associated with a timescale.

There are no known fossil records for the globally distributed B. deitersi group. However, Bosminopsis may be a "living fossil" sensu Darwin (Darwin, 1859). The B. deitersi group has survived with very little morphological change since the Mesozoic despite profound abiotic and
biotic changes to the continental water bodies over this timescale. Our results indicate that the
occupation of differing climates has also left a weak morphological signature. While the concept
of "living fossil" is somewhat ambiguous (Casane & Laurenti, 2013) there are several groups
that appear to have undergone morphological stasis since the Mesozoic. Our evidence is
consistent with Frey (1962) who expected stasis to account for continental endemism in
Cladocerans.

Preliminary comments on further taxonomic revision

Further studies are needed to demonstrate that the North American populations form a
separate species from South American specimens. If so, then the taxonomic name for North
American specimens would be Bosminopsis birgei Burckhardt, 1924. Records of Bosminopsis
are infrequent in North America and are mainly from the southeastern USA (Pennak, 1953;
Beaver et al., 2018). Recent biotic exchange between North America and South America has
occurred for several cladoceran genera (Mergeay et al., 2008). In such cases, there is very little
genetic differentiation for mitochondrial markers among continents. The status of populations
from East Asia (Idris, 1983; Michael & Sharma, 1988) must also be addressed, including that of
B. devendrari Rane (a possible proper name for the SE taxon recorded above). To date, we have
no information on Bosminopsis cf. deitersi from Africa, i.e., described by Daday (Daday, 1908)
from Lake Nyassa as Bosminella Anisitsi var. africana with a single mucro. This taxon is found
in different African countries (Brehm, 1913; Rahm, 1956; Korinek, 1984). The status of
Australian populations (Smirnov & Timms, 1983), also having single mucro, remains unclear.
Subtle geographic variation in the morphology of Bosminopsis has been known since the
early 1900’s. Meissner (Meissner, 1903) and Klocke (Klocke, 1903), for example, pointed out
the numerous stout spines at the postero-ventral corner of the valves from Russian and Japanese
Bosminopsis – the most prominent difference between B. deitersi and B. zernowi. Still, subsequent authors failed to recognize this variation as taxonomically valuable. Klocke (Klocke, 1903) concluded that there are two species in Japan, B. ishikawai and B. deitersi. He concluded that the former has stronger denticles on antenna I, better-developed reticulation, a postero-dorsal projection located more dorsally and longer spines at postero-dorsal angle "making it similar to Ilyocryptus". In reality, all listed differences are characteristic of juvenile females. Therefore, Klocke (Klocke, 1903) erroneously regarded the populations with large adults and without large adults those as two separate species. The same mistake was made by Rey and Vasquez (Rey & Vasquez, 1986), who described B. macaguensis referring to differences of juvenile males of B. deitersi in Venezuelan populations (Kotov, 1997a).

Conclusions

Here we revised only populations from Eurasia. Other taxa discussed above in the genetic section must be reconsidered in the future, and biological differences must be studied in detail. Each of these putative species has a single mucro at a postero-dorsal angle and minimal differences between parthenogenetic females. We expect that comparing males will be the most fruitful for assessing morphological diagnoses, as male morphology tends to differ among species more than female morphology in cladocerans (Popova et al., 2016; Sinev, Karabanov & Kotov, 2020).

Data availability
All data generated or analysed during this study are included in Open Science Framework project (https://osf.io/4fjnm/) and this published article. All sequences are deposited at the NCBI GenBank accs. no. MT757174-MT757274, MT757314-MT757388, MT757459-MT757473. Specimen series from which DNA was extracted are deposited at Zoological Museum of Moscow State University.

Acknowledgements

Many thanks to E.S. Chertoprud, D.E. Gavrilko, L. Hovind, S. Ishida, H.G. Jeong, N.M. Korovchinsky, W.H. Piel, D.E. Shcherbakov, A.Y. Sinev for zooplankton samples, K.S. Chae, H.J. Dumont, B.P. Han, S.J. Ji, H.S. Kim for assistance during sampling. SEM works are carried out at the Joint Usage Center "Instrumental Methods in Ecology" at A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences.

Funding

Whole this study was supported exclusively by the Russian Science Foundation (grant no. 18-14-00325 for PGG. DPK, ANN and AAK) except of sample collecting preceding the project. Sampling in South Korea was supported by a grant from of the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea for AK. DJT has no specific support.

Authors’ contributions
PG and AN conducted all morphological analysis, DK, DT and AK made all genetic works and subsequent analysis of phylogenetic information, all authors participated in the writing of different portions of the manuscript.

References

Abramova EN, Zhulai IA. 2016. Appearance of new zooplankton species in water bodies of the Lena River delta. Trudy Zoologicheskogo Instituta Rossiyskoy Akademii Nauk 320 (4):473–487.

Afonina EY. 2013. Review of rotifers (Rotifera) and crustaceans (Cladocera, Calanoidea, Cyclopoida, Harpacticoida) diversity in streams and lakes of the Upper Amur River Basin. Amurian zoological journal 5 (3):248–255.

Allio R, Donega S, Galtier N, Nabholz B. 2017. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Molecular biology and evolution 34 (11):2762–2772.

Anderson LI, Crighton WRB, Hass H. 2004. A new univalve crustacean from the Early Devonian Rhynie chert hot-spring complex. Transactions of the Royal Society of Edinburgh: Earth Sciences 94 (4):355–369.

Austin TS. 1942. The fossil species of Bosmina, App. 1 of Studies on Connecticut Lake sediments. American journal of science 240 (5):325–331.

Barido-Sottani J, Boskova V, Du Plessis L, Kuhnert D, Magnus C, Mitov V, Muller NF, PecErska J, Rasmussen DA, Zhang C, Drummond AJ, Heath TA, Pybus OG, Vaughan TG, Stadler T. 2018. Taming the BEAST - a community teaching material resource for BEAST2. Systematic biology 67 (1):170–174.

Beaver JR, Renicker TR, Tausz CE, Vitanye BT. 2018. Distribution of six taxa in the family Bosminidae Baird (Crustacea: Branchiopoda: Anomopoda) in the plankton of lakes and reservoirs within the continental United States, including expanded range of the invasive cladoceran Bosmina (Eubosmina) coregoni Baird. Zootaxa 4407 (4):506–520.

Behning AL. 1928. Materials on the hydrofauna of the assessoriy systems of the Volga River. V. Material on the hydrofauna of the Kama. Trudy Volzhskoy Biologicheskoy Stantsii 9 (4-5):179–297.

Behning AL. 1941. Kladotsera Kavkaza - The Cladocerans of the Caucasus. Tbilisi: Gruzmedgiz Publishing.
Bekker EI, Karabanov DP, Galimov YR, Haag CR, Neretina TV, Kotov AA. 2018. Phylogeography of *Daphnia magna* Straus (Crustacea: Cladocera) in Northern Eurasia: Evidence for a deep longitudinal split between mitochondrial lineages. *PLoS one* 13 (3):e0194045.

Birge EA. 1918. The water fleas (Cladocera). In: Ward HB, Whipple GC, eds. *Freshwater biology*. New York: John Wiley & Sons, 676–740.

Bledzki LA, Rybak JI. 2016. *Freshwater Crustacean Zooplankton of Europe*. Cham: Springer International Publishing.

Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I. 2013. BLAST: a more efficient report with usability improvements. *Nucleic acids research* 41 (Web Server issue):W29–33.

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M, Gavryushkina A, Heled J, Jones G, Kuhnert D, Maio N de, Matschiner M, Mendes FK, Muller NF, Ogilvie HA, Du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie D, Zhang C, Stadler T, Drummond AJ. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLoS computational biology* 15 (4):e1006650.

Brandorff G-O. 1976. A new species of *Bosminopsis* (Crustacea, Cladocera) from the Rio Negro. *Acta Amazonica* 6 (1):109–114.

Brehm V. 1913. *Cladoceren. Wissenschaftliche ergebnisse der zweiten deutschen Zentral Africa-Expedition 1910–1911 unter Fuhrung Adolf Friedrichs*. Leipzig: Klinkhardt & Biermann.

Brehm V. 1939. La fauna microscópica del lago Peten, Guatemala. *Anales de la escuela nacional de ciencias biologicas* 1 (2):173–203.

Burckhardt G. 1909. Neues uber das *Bosminopsis* Richard = *Bosminella* Daday. *Zoologischer Anzeiger* 34:248–253.

Burckhardt G. 1924. Wissenschaftliche Ergebnisse einer Reise um die Erde von M. Pernod und C. Schroter. III. Zooplankton aus ost- und sud-asiatischen Binnengewassern. *Zeitschrift fur Hydrologie* 2:217–242.

Carstens BC, Pelletier TA, Reid NM, Satler JD. 2013. How to fail at species delimitation. *Molecular ecology* 22 (17):4369–4383.

Casane D, Laurenti P. 2013. Why coelacanths are not 'living fossils': a review of molecular and morphological data. *BioEssays* 35 (4):332–338.

Charleman NW. 1915. On some crustaceans of the Dniepr. *Entomologischesky Vestnik* 2:125–129.

Charleman NW. 1922. Bemerkung uber einige Crustaceen (Amphipoda und Cladocera) des Dniepr. *Russische Hydrobiologische Zeitschrift* 1 (11-12):322–324.

Chernomor O, Haeseler A von, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. *Systematic biology* 65 (6):997–1008.
Chiang S-c, Du NS. 1979. *Crustacea: freshwater Cladocera*. Peking: Science Press.

Cho KS, Mizuno T. 1977. Comparison of limnological conditions and plankton communities in the Uiam Lake consisting of the two different river systems. *Korean Journal of Limnology* 10 (3-4):73–85.

Clark JR, Ree RH, Alfaro ME, King MG, Wagner WL, Roalson EH. 2008. A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages. *Systematic biology* 57 (5):693–707.

Collado C, Fernando CH, Sephton D. 1984. The freshwater zooplankton of Central America and the Caribbean. In: Dumont HJ, Tundisi JG, eds. *Tropical Zooplankton*. Dordrecht: Springer Netherlands, 105–119.

Cornetti L, Fields PD, Van Damme K, Ebert D. 2019. A fossil-calibrated phylogenomic analysis of *Daphnia* and the Daphniidae. *Molecular phylogenetics and evolution* 137:250–262.

Cox AJ, Hebert PDN. 2001. Colonization, extinction, and phylogeographic patterning in a freshwater crustacean. *Molecular ecology* 10 (2):371–386.

Daday E von. 1903. Eine neue Cladoceren-Gattung aus der Familie der Bosminiden. *Zoologischer Anzeiger* 26 (704):594–597.

Daday E von. 1905. Untersuchungen über die Susswasser Mikrofauna Paraguays. *Zoologica* 44 (3-6):1–374.

Daday E von. 1908. Adatok Nemet-Kelet-Afrika edesvizi mikrofaunajanak iameretehez. *Mathematikai es Termeszettudomanyi Ertesito, Budapest* 26:(1): 1–42, 43–57; (2): 200–220; (3): 294–321; (4): 374–404, 405–421; (5): 455–474.

Darwin C. 1859. *On the Origin of Species by means of Natural Selection, or the preservation of favoured races in the struggle for life*. London: John Murray.

Dayrat B. 2005. Towards integrative taxonomy. *Biological Journal of the Linnean Society* 85 (3):407–415.

Drummond AJ, Bouckaert RR. 2015. *Bayesian evolutionary analysis with BEAST2*. Cambridge, United Kingdom: Cambridge University Press.

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. *Molecular biology and evolution* 29 (8):1969–1973.

Du Nan-shan. 1973. *Cladocera of China*. Peking: Science Press.

Dumont HJ. 1981. Cladocera and free-living Copepoda from the Fouta Djalon and adjacent mountain areas in West Africa. *Hydrobiologia* 85 (2):97–115.

Dumont HJ. 1986. The Nile River system. In: Davies BR, Walker KF, eds. *The Ecology of River Systems*, vol. 60. Dordrecht: Springer Netherlands, 61–88.

Elias-Gutierrez M, Suarez Morales E, Gutierrez Aguirre M, Silva Briano M, Granados Ramirez JG, Garfias Espejo T. 2008. *Cladocera y copepoda de las aguas continentales de Mexico: Guía ilustrada*. Mexico City: Universidad Nacional Autonoma de Mexico.
Fisher-Reid MC, Wiens JJ. 2011. What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. *BMC evolutionary biology* **11**:P300.

Frey DG. 1962. Cladocera from the Eemian interglacial of Denmark. *Journal of Paleontology* **36** (6):1133–1154.

Frey DG. 1982. Questions concerning cosmopolitanism in Cladocera. *Archiv fur Hydrobiologie* **93** (4):484–502.

Frey DG. 1987a. *The non-cosmopolitanism of chydorid Cladocera: implications for biogeography and evolution*. Rotterdam: A.A. Balkema.

Frey DG. 1987b. The taxonomy and biogeography of the Cladocera. *Hydrobiologia* **145** (1):5–17.

Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. *Genetics* **147** (2):915–925.

Garrigan D, Lewontin R, Wakeley J. 2010. Measuring the sensitivity of single-locus "neutrality tests" using a direct perturbation approach. *Molecular biology and evolution* **27** (1):73–89.

Gernhard T. 2008. The conditioned reconstructed process. *Journal of theoretical biology* **253** (4):769–778.

Greze BS. 1921. Microscopic fauna of the Volga River near Kostroma. *Trudy Kostromskogo Nauchnogo Obschestva po Izucheniyu Mestnogo Kraya* **27**:3–12.

Greze BS. 1929. On the biology of oxbow lakes. 1. Zooplankton of lakes in valley of the Kostroma River. *Trudy Kostromskogo Nauchnogo Obschestva po Izucheniyu Mestnogo Kraya* **43**:1–20.

Hailer F, Kutschera VE, Hallström BM, Klassert D, Fain SR, Leonard JA, Arnason U, Janke A. 2012. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. *Science* **336** (6079):344–347.

Heads MJ. 2012. *Molecular panbiogeography of the tropics*. Berkeley: University of California Press.

Hebert PDN, Cywinska A, Ball SL, deWard JR. 2003. Biological identifications through DNA barcodes. *Proceedings of the Royal Society of London. Series B, Biological sciences* **270** (1512):313–321.

Heled J, Drummond AJ. 2010. Bayesian inference of species trees from multilocus data. *Molecular biology and evolution* **27** (3):570–580.

Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. *Nature* **405** (6789):907–913.

Hoang DT, Chernomor O, Haeseler A von, Minh BQ, Le Vinh S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. *Molecular biology and evolution* **35** (2):518–522.

Hofmann W. 1984. Postglacial morphological variation in *Bosmina longispina* Leydig (Crustacea, Cladocera) from the Grober Ploner See (north Germany) and its taxonomic implications. *Journal of Zoological Systematics and Evolutionary Research* **22** (4):294–301.
Hovmoller R, Pape T, Kallersjo M. 2002. The Palaeoptera problem: basal Pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics: the international journal of the Willi Hennig Society 18 (3):313–323.

Idris BAG. 1983. Freshwater zooplankton of Malaysia (Crustacea: Cladocera). Pertanian Malaysia: Perenbit University Press.

Jeong H, Kotov AA, Lee W. 2014. Checklist of the freshwater Cladocera (Crustacea: Branchiopoda) of South Korea. Proceedings of the Biological Society of Washington 127 (1):216–228.

Jones G. 2017. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of mathematical biology 74 (1-2):447–467.

Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler A von, Jermiin LS. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature methods 14 (6):587–589.

Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T. 2017. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics (Oxford, England) 33 (11):1630–1638.

Karabanov DP, Bekker EI, Shiel RJ, Kotov AA. 2018. Invasion of a Holarctic planktonic cladoceran Daphnia galeata Sars (Crustacea: Cladocera) in the Lower Lakes of South Australia. Zootaxa 4402 (1):136–148.

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics 20 (4):1160–1166.

Kim IH. 1988. Key to the Korean freshwater Cladocera. Korean journal of systematic zoology n.nsptc.2 (Special Issue, 2):43–65.

Klocke E. 1903. Bosminopsis in Japan. Nebst Bemerkungen uber einige andere japanische Cladoceren und den Hakonesee. Annotationes Zoologicae Japonenses 4 (5):123–135.

Knowlton N, Weigt LA. 1998. New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London. Series B, Biological sciences 265 (1412):2257–2263.

Korinek V. 1984. Cladocera. In: Symoens J-J, ed. Hydrobiological Survey of Lake Bangweulu and Luapulu River Basin, vol. 13. Bruxelles: Cercle Hydrobiologique de Bruxelles, 1–117.

Korovchinsky NM. 2006. The Cladocera (Crustacea: Branchiopoda) as a relict group. Zoological journal of the Linnean Society 147 (1):109–124.

Korovchinsky NM. 2013. Cladocera (Crustacea: Branchiopoda) of South East Asia: history of exploration, taxon richness and notes on zoogeography. Journal of Limnology 72 (s2):109–124.

Kotov AA. 1997a. Structure of thoracic limbs in Bosminopsis deitersi Richard, 1895 (Anomopoda, Branchiopoda). Hydrobiologia 360 (1-3):25–32.

Kotov AA. 1997b. Studies on the morphology and variability of Amazonian Bosminopsis deitersi Richard, 1895 (Anomopoda Bosminidae). Arthropoda selecta 6 (1-2):3–30.
Mashiko K. 1953. Cladocera and Rotatoria of Central China (Studies of the freshwater plankton of Central China, III). *The Science Reports of Kanazawa University* 2 (1):49–73.

Matzke NJ. 2013. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. *Frontiers of biogeography* 5 (4):242–248.

Matzke NJ. 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. *Systematic biology* 63 (6):951–970.

Meissner VI. 1902. Animal world of the Volga River near Saratov. *Trudy Saratovskogo Obschestva Estestvoispitateley i Liubiteley Estestvoznaniya* 3:1–70.

Meissner VI. 1903. Materials to the study of entomostracans of River Volga. *Arbeiten der Biologischen Wolga-Station* 1:159–201.

Mergeay J, Aguilera X, Declerck S, Petrusék A, Huyse T, Meester L de. 2008. The genetic legacy of polyploid Bolivian *Daphnia*: the tropical Andes as a source for the North and South American *D. pulicaria* complex. *Molecular ecology* 17 (7):1789–1800.

Michael RG, Sharma BK. 1988. *Fauna of India and adjacent countries. Indian Cladocera (Crustacea: Branchiopoda: Cladocera).* Calcutta: Zoological Survey of India.

Molloy EK, Warnow T. 2018. To include or not to include: The impact of gene filtering on species tree estimation methods. *Systematic biology* 67 (2):285–303.

Muller RD, Cannon J, Qin X, Watson RJ, Gurnis M, Williams S, Pfaffelmoser T, Seton M, Russell SHJ, Zahirovic S. 2018. GPlates: building a virtual Earth through deep time. *Geochemistry, Geophysics, Geosystems* 19 (7):2243–2261.

Muraveisky SD. 1924. Über das tierische Plankton des Flusses Kerschenetz. *Arbeiten der Biologischen Wolga-Station* 7 (4-5):123–140.

Negrea S. 1983. Cladocera. In: *Fauna Republicii Socialiste Romania. Volumul IV, CRUSTACEA. Fascicula 12.* Bucuresti: Editura Academiei Republicii Socialiste Romania, 1–399.

Nei M, Kumar S. 2000. *Molecular evolution and phylogenetics.* New York: Oxford University Press.

Neretina AN, Kotov AA, Van Damme K. 2019. A new case of false "wide" distribution for tropical cladocerans: the genus *Notoalona* Rajapaksa & Fernando, 1987 (Crustacea: Cladocera) in the Old World. *Zootaxa* 4615 (3):489–510.

Nguyen L-T, Schmidt HA, Haeseler A von, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular biology and evolution* 32 (1):268–274.

Okonechnikov K, Golosova O, Fursov M. 2012. Unipro UGENE: a unified bioinformatics toolkit. *Bioinformatics (Oxford, England)* 28 (8):1166–1167.

Padial JM, La Riva I de. 2010. A response to recent proposals for integrative taxonomy. *Biological Journal of the Linnean Society* 101 (3):747–756.
Pascual JAF, Rizo EZC, Han BP, Dumont HJ, Papa RDS. 2014. Taxonomy and distribution of four Cladoceran families (Branchiopoda: Cladocera: Moinidae, Bosminidae, Chydoridae and Sididae) in Philippine inland waters. The Raffles bulletin of zoology 62:771–794.

Pennak RW. 1953. Fresh-water invertebrates of the United States. New York: The Ronald Press Company.

Petlina AP, Yyrakova TV, Zalozniy NA, Bocharova TA, Lukjantseva LV, Podzhunas SS. 2000. Hydrobionts of small water currents of The Lower Tom Diver and their significance in the evaluation of the ecological state of water bodues. Sibirskii Ekologicheskii Zhurnal 3:323–335.

Pirozhnikov PL. 1937. Zooplankton of the Yenisey River and Yenisey Bay and its role in the fish feeding. Trudy Vsesoyuznogo Arkticheskogo Instituta 98:1–61.

Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic biology 55 (4):595–609.

Popova EV, Petrushak A, Kořínek V, Mergeay J, Bekker EI, Karabanov DP, Galimov YR, Neretina TV, Taylor DJ, Kotov AA. 2016. Revision of the Old World Daphnia (Ctenodaphnia similis) group (Cladocera: Daphniidae). Zootaxa 4161 (1):1–40.

Rahm U. 1956. Cladoceren aus den Regenwaldgebiet der Elfenbeinkuste. Verhandlungen der Naturforschenden Gesellschaft in Basel 67 (2):239–268.

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic biology 67 (5):901–904.

Ramirez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A. 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179 (1):555–567.

Rane P. 1984. A new species of the genus Bosminopsis (Crustacea: Cladocera: Bosminidae) from India. Journal of the Bombay Natural History Society 81 (3):668–669.

Reid NM, Carstens BC. 2012. Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC evolutionary biology 12:196.

Rey J, Vasquez E. 1986. Bosminopsis macaguensis n. sp. et Alona ovata n. sp. (Crustacea, Cladocera), Cladoceres nouveaux du Venezuela. Annales de Limnologie - International Journal of Limnology 22 (3):219–229.

Rey J, Vasquez E. 1989. Bosminopsis brandorffi n.sp. (Crustacea, Cladocera) une nouvelle espéce de Bosminidae des systemes Amazone et Orenoque. Annales de Limnologie - International Journal of Limnology 25 (3):215–218.

Richard J. 1895. Description d'un nouveau Cladocere, Bosminopsis deitersi, n. gen., n.sp. Bulletin de la Societe Zoologique de France 20:96–98.

Richard J. 1897. Entomostraces de l'Amerique du Sud, recueillis par MM. U. Deiters, H. von Ihering, G. W. Muller et C. O. Poppe. Memoires de la Societe zoologique de France 10:263–301.
Rogers DC, Kotov AA, Sinev AY, Glagolev SM, Korovchinsky NM, Smirnov NN, Bekker EI. 2019. Chapter 16.2. Arthropoda: Class Branchiopoda. In: Rogers CD, Thorp JH, eds. Thorp and Covich's Freshwater Invertebrates. Volume 4: Keys to Palaearctic Fauna. London: Academic Press, 643–724.

Rosen DE. 1978. Vicariant Patterns and Historical Explanation in Biogeography. Systematic zoology 27 (2):159–188.

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution 34 (12):3299–3302.

Rylov VM. 1940. Vetvistousie rakoobraznie - Cladocerans (Cladocera). In: Zhadin VI, ed. Zhizn presnich vod. Moscow: Nauka, 331–357.

Sacherova V, Hebert PDN. 2003. The evolutionary history of the Chydoridae (Crustacea: Cladocera). Biological Journal of the Linnean Society 79 (4):629–643.

Sanoamuang L-O. 1997. Contributions to the knowledge of the Cladocera of north-east Thailand. Hydrobiologia 362 (1-3):45–53.

Schubart CD, Diesel R, Hedges SB. 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393 (6683):363–365.

Schwartz JH, Maresca B. 2006. Do molecular clocks run at all? A critique of molecular systematics. Biological theory 1 (4):357–371.

Schwarz G. 1978. Estimating the dimension of a model. The Annals of Statistics 6 (2):461–464.

Schwentner M, Clavier S, Fritsch M, Olesen J, Padhye S, Timms BV, Richter S. 2013. Cyclestheria hislopi (Crustacea: Branchiopoda): a group of morphologically cryptic species with origins in the Cretaceous. Molecular phylogenetics and evolution 66 (3):800–810.

Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic biology 51 (3):492–508.

Sinev AY, Karabonov DP, Kotov AA. 2020. A new North Eurasian species of the Alona affinis complex (Cladocera: Chydoridae). Zootaxa 4767 (1):115–137.

Skadowskiy SN. Some data on the biology of Bosminopsis zernowi Linko. Contributions to the studies of plankton of the Moscow River near Zvenigorod. Uchenije Zapiski Universiteta imeni A.L. Shaniavskogo. Trudy Biologicheskoy Laboratorii 1:1–62.

Skorikov AS, Bolokhontsev EN, Meissner VI. 1903. List of organisms found by Volga Biological Station in the area of its activity and identified to date (1900-1902). Ezhegodnik Volzhskoy Biologicheskoy Stantsii 1:20–47.

Smirnov NN. 1992. Mesozoic Anomopoda (Crustacea) from Mongolia. Zoological journal of the Linnean Society 104 (2):97–116.

Smirnov NN. 1995. Check-list of the Australian Cladocera (Crustacea). Arthropoda selecta 4 (1):3–6.

Smirnov NN, Kotov AA. 2018. On morphological radiation of Cladocera (Crustacea). Invertebrate Zoology 15 (3):231–248.
Smirnov NN, Timms BV. 1983. A revision of the Australian Cladocera (Crustacea). Records of the Australian Museum, Supplement 1:1–132.

Song HH, Mizuno T. 1982. Composition and characteristics of plankton community in Lake Ok-Keong. Bulletin of the Korean Fisheries Society 15:333–344.

Stingelin T. 1904. Entomostracen, gesammelt von Dr. G. Hagmann in Mundungsgebiet des Amazonas. Zoologische Jahrbucher. Abteilung fur Systematik, Geographie und Biologie der Tiere 20 (6):575–590.

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus evolution 4 (1):vey016.

Sweet AD, Boyd BM, Allen JM, Villa SM, Valim MP, Rivera-Parra JL, Wilson RE, Johnson KP. 2018. Integrating phylogenomic and population genomic patterns in avian lice provides a more complete picture of parasite evolution. Evolution 72 (1):95–112.

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 (3):585–595.

Tanaka S. 2000. A taxonomic revision of Japanese Bosminidae (Crustacea, Cladocera). Research Report of the Scientific and Cultural Center of Toyama City 23:109–125.

Tanaka S, Ohtaka A. 2010. Freshwater Cladocera (Crustacea, Branchiopoda) in Lake Tonle Sap and its adjacent waters in Cambodia. Limnology (Tokyo) 11 (2):171–178.

Tarbeev ML, Golubeva AV, Tarasova AF, Shurganova GV. 2011. Evaluation of water quality in small and mirrle rivers of Nizhegorodskoe Povolzhje based on analysis of indicator species of zooplankton. Voda: Khinija i Ecologija 10 (40):87–92.

Taylor DJ, Finston TL, Hebert PDN. 1998. Biogeography of a widespread freshwater crustacean: Pseudocongruence and cryptic endemism in the North American Daphnia laevis complex. Evolution 52 (6):1648–1670.

Trifinopoulos J, Nguyen L-T, Haeseler A von, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids research 44 (W1):W232-5.

Ueno M. 1932. Contributions to the knowledge of the Cladocera fauna of China. Internationale Revue der gesamten Hydrobiologie und Hydrographie 27 (1-3):234–251.

Ueno M. 1937a. Cladocera of Manchoukuo. Internationale Revue der gesamten Hydrobiologie und Hydrographie 35 (1-6):199–216.

Ueno M. 1937b. Order Branchiopoda (Class Crustacea). Fauna Nipponica, Tokyo 9 (1):1–135.

Ueno M. 1940. Cladocera of Manchoukuo. Phylopora of Manchoukuo. In: Reports of Limnology Survey in Kwantung and Manchoukuo, Dairen. Kwantung: Kwantung Ministry of Civil, 323–367, 368–381.

Ueno M. 1944. Cladocera of the Yangtze Delta. (Reports on the limnological survey of Central China. XXIII). Journal of the Shanghai Science Institute 14 (5):399–418.
Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics: the international journal of the Willi Hennig Society 27 (2):171–180.

Van Damme K, Kotov AA. 2016. The fossil record of the Cladocera (Crustacea: Branchiopoda): Evidence and hypotheses. Earth-Science Reviews 163:162–189.

Vawter L, Brown WM. 1986. Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234 (4773):194–196.

Vezhnovets VV. 2005. Crustaceans (Cladocera, Copepoda) in the water ecosystems of Belarus, a catalog and identification keys. Minsk: Belorusskaya Nauka.

Vitecek S, Kucinic M, Previsic A, Zivic I, Stojanets L, Balint M, Hoppeler F, Waringer J, Graf W, Pauls SU. 2017. Integrative taxonomy by molecular species delimitation: Multi-locus data corroborate a new species of Balkan Drusinae micro-endemics. BMC evolutionary biology 17 (1):129.

Watterson GA. 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7 (2):256–276.

Werestchagin GY. 1912. On fauna of Cladocera of European Russia. Trudy gidrobiologicheskoy stantsii na Glubokom ozere 4:121–132.

Werestchagin GY. 1913. The plankton of the Yamal Peninsula reservoirs. Annuaire du Musee Zoologique de l’Academie des Sciences St.-Petersburg 18 (2):169–220.

Wolski TB. 1932. Bosminopsis deitersi Richard, eine fur Polen neue Cladoceren-Art. Fragmenta Faunistica Musei Zoologici Polonici 1 (16):439–447.

Womack T, Slater BJ, Stevens LG, Anderson LI, Hilton J. 2012. First cladoceran fossils from the Carboniferous: Palaeoenvironmental and evolutionary implications. Palaeogeography, Palaeoclimatology, Palaeoecology 344-345:39–48.

Xiang X-F, Ji G-H, Chen S-Z, Yu G-L, Xu L, Han B-P, Kotov AA, Dumont HJ. 2015. Annotated Checklist of Chinese Cladocera (Crustacea: Branchiopoda), Part I. Haplopora, Ctenopoda, Onychopoda and Anomopoda (families Daphniidae, Moinidae, Bosminidae, Ilyocryptidae). Zootaxa 3904 (1):1–27.

Xu S, Hebert PDN, Kotov AA, Cristescu ME. 2009. The noncosmopolitanism paradigm of freshwater zooplankton: Insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda). Molecular ecology 18 (24):5161–5179.

Yang L, Tan Z, Wang D, Xue L, Guan M-X, Huang T, Li R. 2014. Species identification through mitochondrial rRNA genetic analysis. Scientific reports 4:4089.

Yoon SM. 2010. Arthropoda: Branchiopoda: Anostraca, Notostraca, Spinicaudata, Laevicaudata, Ctenopoda, Anomopoda, Haplopora Branchiopods. Invertebrate fauna of Korea 21 (2):1–156.

Yoon SM, Kim HS. 1987. A systematic study on the freshwater Cladocera from Korea. Korean journal of systematic zoology 3 (2):175–207.
Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. *Molecular phylogenetics and evolution* **87** (1):46–49.

Zernov SA. 1901. Note on zooplankton of rivers Shoshma and Vyatka Malmyzhskogo uezda Vyatskoj gubernii. *Dnevnik Zoologicheskogo Otdeleniya Imperatorskogo Obshchestva Lubiteley Estestvoznaniya, Antropologii i Etnografii* **3** (2):4–36.

Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. *Bioinformatics (Oxford, England)* **29** (22):2869–2876.

Zykoff W. 1906. *Bosminopsis* in Centralrussland. *Zool. Anzeiger* **30** (1-2):22–24.
Captions to figures

Fig. 1. Distribution of studied populations of the *Bosminopsis deitersi* group belonging to two major phylogroups: *B. zernowi* (red rectangles) and *Bosminopsis* sp. (blue rectangle). Visualisation of the localities was made in free software DIVA-GIS7.5.0 (https://www.diva-gis.org) using Open Access spatial GIS data from http://www.naturaleartheadata.com as the layers.

Fig. 2. BI multi-locus tree based on the **COI** + **16S** + **18S** + **28S** sequences, with a summary of results of the cybertaxonomic species delimitation by different methods. Analyses referring are based on mitochondrial (mit.), nuclear (nuc.) and multi-locus datasets (STACEY). Node supports are: UFboot2 (ML) and posterior probabilities (BI), in percent for mitochondrial genes in the numerator and nuclear genes in the denominator. Dashes indicate branches that were not supported by a method.

Fig. 3. A haplotype **16S** network for *Bosminopsis zernowi*.

Fig. 4. Biogeographic history of *B. deitersi* group. A – a possible phylogenetic tree for four loci based on the strict molecular clock, speciation by Yule process. Alternative topology of mitochondrial tree is represented by dotted line. Stratigraphic chart according to the International Commission on Stratigraphy (https://stratigraphy.org/chart). B – a proposed biogeographic history of the *B. deitersi* group on the consensus mitochondrial tree combined with the result of DIVALAKE+J model. Only tree topology is represented. Pie charts in each node demonstrate probabilities of alternative ancestral ranges; the most probable range is marked by the letter in the center. C – Possible ancestral ranges on palaeo-maps are represented at: 198 MYA, 72 MYA
and 5 MYA. The maps are from the PalaeoAtlas for GPlates free software under GNU – General Public License (GPL) Ver. 2 (http://www.gnu.org/licenses/old-licenses/gpl-2.0.html).

Fig. 5. *Bosminopsis deitersi* Richard, 1895 from Brazil (A–E) and *Bosminopsis* sp. from Bung Pueng, Kalasin Province (F) and Lake Bueng Khong Long, Nong Khai Province (G–H) in Thailand (F–H). A, Adult parthenogenetic female from Rio Xingu. B–D, Ephippial female from Lago do Castanho, lateral, dorsal and anterior view. E, Juvenile female from Rio Tapajos. F, Large adult parthenogenetic female. G–H, Juvenile female and its mucro. Scale bars: A–G = 0.1 mm, H = 0.01 mm.

Fig. 6. *Bosminopsis deitersi* Richard, 1895, parthenogenetic (A–I) and ephippial (J–K) females from Lago do Castanho and Lago Cristalino, both in Amazonas, Brazil. A, Adult parthenogenetic female, lateral view. B, Its head, lateral view. C–D, Head, anterior view. E, Postero-ventral portion of valve. F–G, Posteroventral portion of valve. H, Antenna I. I, Antenna II. J, Mature ephippial female, lateral view. K, Mature ephippial female, dorsal view. Scale bars = 0.1 mm.

Fig. 7. *Bosminopsis deitersi* Richard, 1895, parthenogenetic female from Lago do Castanho, Amazonas, Brazil. A–C, Postabdomen, lateral view. D, Limb I. E, Limb II. F, Limb III. G, Gnathobase of limb III. H, Limb IV. I, Limb V. Scale bar = 0.1 mm.

Fig. 8. *Bosminopsis deitersi* Richard, 1895, juvenile male from Lago do Castanho (Amazonas, Brazil). A–B, Lateral view. C, Head, lateral view. D, Head, anterior view. E–F,
Antero-ventral portion of valve. G–H, Postero-ventral portion of valve. I–J, Postabdomen. K–M, Limb I. Scale bars = 0.1 mm.

Fig. 9. *Bosminopsis deitersi* Richard, 1895, adult male from Lago do Castanho, Amazonas, Brazil. A–B, Lateral view. C, head, anterior view. D, Antero-ventral portion of valve. E, Postero-ventral portion of valve. F, Postabdomen. G, Antenna I. H, Antenna II. I, Limb I. Scale bars = 0.1 mm.

Fig. 10. *Bosminopsis zernowi* Linko, 1900 from Sai-no-Kami Ike, Japan (A, C, G), Lake Ilinskoe, Primorsky Territory, Russia (B, D, F, H) and Lena River near Yakutsk, Yakutia Republic, Russia (E). A, Adult parthenogenetic female. B–D, Ephippial female in lateral and dorsal view and sculpture of ephippium. E, Pre-ephippial female. F–G, Juvenile female; H, Juvenile male II. Scale bars: A–C, E–H = 0.1 mm, D = 0.01 mm.

Fig. 11. *Bosminopsis zernowi* Linko, 1901, large parthenogenetic females from Ivankovskoe Water Reservoir on Volga River, European Russia (A–J) and mature ephippial female from a tributary of Dnepr River, Ukraine (K–L). A–B, Lateral view. C, Head, lateral view. D, Head, anterior view. E, Setae at antero-ventral valve portion. F–H, Spines at postero-ventral valve margin. I, Antenna I. J, Antenna II. K, Ephippial female, lateral view. L, Its dorsal view. Scale bars = 0.1 mm.

Fig. 12. *Bosminopsis zernowi* Linko, 1901, parthenogenetic female Ivankovskoe Water Reservoir on Volga River, Tver' Area, European Russia. A–C, Postabdomen. D, Limb I. E,
Ejector hooks I. F, Limb II. G, Distal armature of its gnathobase. H, Limb III. I, Its inner-distal portion. J, Granthobase III. K, Limb IV. L, Its inner-distal portion. M, Limb V. Scale bar = 0.1 mm.

Fig. 13. *Bosminopsis zernowi* Linko, 1901, juvenile male of instar II (A, C–G, I, K) and instar I (B, H, J) from Lake Livadijskoe, Primorski Territory, Far East of Russia. A–B, Lateral view. C, Head, lateral view. D, Its anterior view. E, Antero-ventral valve portion. F–G, Posterior portion of valve. H–I, Postabdomen. J–K, Limb I. Scale bars = 0.1 mm.

Fig. 14. *Bosminopsis zernowi* Linko, 1901, adult male from Lake Livadijskoe, Primorski Territory, Far East of Russia. A, Lateral view. B, Head, lateral view. C, Its anterior view. D, Valve antero-ventral portion. E, Posterior portion of valve. F, Postabdomen. G, Antenna I. H. Antenna II. I, Limb I. Scale bars = 0.1 mm.

Fig. 15. Schematic representation of distribution of two major morphotypes of the juvenile parthenogenetic female: with several mucro-like spines (red) and a single mucro (blue). Visualisation was made in free software DIVA-GIS7.5.0 using free spatial GIS data from (http://www.naturalearthdata.com) as the layers. Symbols are inserted manually.
Captions to supplements

Supplementary Table S1. Source information.

Supplementary Table S2. Models of nucleotide substitutions.

Supplementary Figure S1. ML tree (based on IQ-TREE algorithm) for mitochondrial (A), nuclear (B) and full (C) datasets. Branches with support more than 0.7 are bold, while with lower support - thin. Asterisks mark conflicts where taxa were placed in subclade 1 in the mitochondrial tree and subclade 2 in nuclear tree.
Distribution of studied populations of the *Bosminopsis deitersi* group belonging to two major phylogroups: *B. zernowi* (red rectangles) and *Bosminopsis* sp. (blue rectangle).

Visualisation of the localities was made in free software DIVA-GIS7.5.0 (https://www.diva-gis.org) using Open Access spatial GIS data from http://www.naturalearthdata.com as the layers.
Figure 2

BI multi-locus tree based on the COI + 16S + 18S + 28S sequences, with a summary of results of the cybertaxonomic species delimitation by different methods.

Analyses referring are based on mitochondrial (mit.), nuclear (nuc.) and multi-locus datasets (STACEY). Node supports are: UFboot2 (ML) and posterior probabilities (BI), in percent for mitochondrial genes in the numerator and nuclear genes in the denominator. Dashes indicate branches that were not supported by a method.
Figure 3

A haplotype 16S network for *Bosminopsis zernowi*.
Figure 4

Biogeographic history of *B. deitersi* group.

A – a possible phylogenetic tree for four loci based on the strict molecular clock, speciation by Yule process. Alternative topology of mitochondrial tree is represented by dotted line. Stratigraphic chart according to the International Commission on Stratigraphy (https://stratigraphy.org/chart). B – a proposed biogeographic history of the *B. deitersi* group on the consensus mitochondrial tree combined with the result of DIVALAKE+J model. Only tree topology is represented. Pie charts in each node demonstrate probabilities of alternative ancestral ranges; the most probable range is marked by the letter in the center. C – Possible ancestral ranges on palaeo-maps are represented at: 198 MYA, 72 MYA and 5 MYA. The maps are from the PalaeoAtlas for GPlates free software under GNU – General Public License (GPL) Ver. 2 (http://www.gnu.org/licenses/old-licenses/gpl-2.0.html).
Figure 5

Fig. 5. *Bosminopsis deitersi* Richard, 1895 from Brazil (A–E) and *Bosminopsis* sp. from Bung Pueng, Kalasin Province (F) and Lake Bueng Khong Long, Nong Khai Province (G–H) in Thailand (F–H).

A, Adult parthenogenetic female from Rio Xingu. B–D, Ephippial female from Lago do Castanho, lateral, dorsal and anterior view. E, Juvenile female from Rio Tapajos. F. Large adult parthenogenetic female. G–H, Juvenile female and its mucro. Scale bars: A–G = 0.1 mm, H = 0.01 mm.
Figure 6

Bosminopsis deitersi Richard, 1895, parthenogenetic (A–I) and ephippial (J–K) females from Lago do Castanho and Lago Cristalino, both in Amazonas, Brazil.

A, Adult parthenogenetic female, lateral view. B, Its head, lateral view. C–D, Head, anterior view. E, Postero-ventral portion of valve. F–G, Posteroventral portion of valve. H, Antenna I. I, Antenna II. J, Mature ephippial female, lateral view. K, Mature ephippial female, dorsal view. Scale bars = 0.1 mm.
Figure 7

Bosminopsis deitersi Richard, 1895, parthenogenetic female from Lago do Castanho, Amazonas, Brazil.

A–C, Postabdomen, lateral view. D, Limb I. E, Limb II. F, Limb III. G, Gnathobase of limb III. H, Limb IV. I, Limb V. Scale bar = 0.1 mm.
Figure 8

Bosminopsis deitersi Richard, 1895, juvenile male from Lago do Castanho (Amazonas, Brazil).

A–B, Lateral view. C, Head, lateral view. D, Head, anterior view. E–F, Antero-ventral portion of valve. G–H, Postero-ventral portion of valve. I–J, Postabdomen. K–M, Limb I. Scale bars = 0.1 mm.
Figure 9

Bosminopsis deitersi Richard, 1895, adult male from Lago do Castanho, Amazonas, Brazil.

A–B, Lateral view. C, head, anterior view. D, Antero-ventral portion of valve. E, Postero-ventral portion of valve. F, Postabdomen. G, Antenna I. H, Antenna II. I, Limb I. Scale bars = 0.1 mm.
Figure 10

Bosminopsis zernowi Linko, 1900 from Sai-no-Kami Ike, Japan (A, C, G), Lake Ilinskoe, Primorsky Territory, Russia (B, D, F, H) and Lena River near Yakutsk, Yakutia Republic, Russia (E).

A, Adult parthenogenetic female. B–D, Ephippial female in lateral and dorsal view and sculpture of ephippium. E, Pre-ephippial female. F–G, Juvenile female; H, Juvenile male II.

Scale bars: A–C, E–H = 0.1 mm, D = 0.01 mm.
Figure 11

Bosminopsis zernowi Linko, 1901, large parthenogenetic females from Ivankovskoe Water Reservoir on Volga River, European Russia (A–J) and mature ephippial female from a tributary of Dnepr River, Ukraine (K–L).

A–B, Lateral view. C, Head, lateral view. D, Head, anterior view. E, Setae at antero-ventral valve portion. F–H, Spines at postero-ventral valve margin. I, Antenna I. J, Antenna II. K, Ephippial female, lateral view. L, Its dorsal view. Scale bars = 0.1 mm.
Figure 12

Bosminopsis zernowi Linko, 1901, parthenogenetic female Ivankovskoe Water Reservoir on Volga River, Tver' Area, European Russia.

A–C, Postabdomen. D, Limb I. E, Ejector hooks I. F, Limb II. G, Distal armature of its gnathobase. H, Limb III. I, Its inner-distal portion. J, Granthobase III. K, Limb IV. L, Its inner-distal portion. M, Limb V. Scale bar = 0.1 mm.
Figure 13

Bosminopsis zernowi Linko, 1901, juvenile male of instar II (A, C–G, I, K) and instar I (B, H, J) from Lake Livadijskoe, Primorski Territory, Far East of Russia.

A–B, Lateral view. C, Head, lateral view. D, Its anterior view. E, Antero-ventral valve portion. F–G, Posterior portion of valve. H–I, Postabdomen. J–K, Limb I. Scale bars = 0.1 mm.
Figure 14

Bosminopsis zernowi Linko, 1901, adult male from Lake Livadijskoe, Primorski Territory, Far East of Russia.

A, Lateral view. B, Head, lateral view. C, Its anterior view. D, Valve antero-ventral portion. E, Posterior portion of valve. F, Postabdomen. G, Antenna I. H, Antenna II. I, Limb I. Scale bars = 0.1 mm.
Figure 15

Schematic representation of distribution of two major morphotypes of the juvenile parthenogenetic female: with several mucro-like spines (red) and a single mucro (blue).

Visualisation was made in free software DIVA-GIS7.5.0 https://www.diva-gis.org using free spatial GIS data from http://www.naturalearthdata.com as the layers. Symbols are inserted manually.
Table 1 (on next page)

Genes, primers and annealing temperatures used in this study of the Bosminopsis deitersi species complex.
Gene	Primers	Sequence 5'-3'	Temp. (°C)	Amplicon length	Reference
COI	COI_Bosm_F	TGTAACAGCTCACGCATTTG	50-54	415	This paper
	COI_Bosm_R	ACCTGCTAGAAGGGAAGAC	50-54		This paper
16S	16S-ar5	CGCCTGTTTATC AA AACAT	46-57	500-506	(Chapco, Kuperus, & Litzenberger, 1999)
	16S-br3	CCGGTCTGAACTCAGATCAGT	46-57		(Chapco et al., 1999)
18S	18a1	CCTAYCTGTTGATCCTGCGACGT	52-59	562	(Reumont et al., 2009)
	700R	CGCGGCTGCTGCGAACCAGAC	52-59		(Reumont et al., 2009)
28S	D1a	CCCSCGTAAYTTAAAGCATAT	48-50	370-373	(Reumont et al., 2009)
	D2b2	CGTACTATTGAACCTCTCTCTT	48-50		(Reumont et al., 2009)
Table 2

Metrics of genetic diversity from mitochondrial and nuclear loci in *Bosminopsis*.

N – number of sequences; n – total number of sites (excluding sites with gaps or missing data); S – number of segregating (polymorphic) sites; Hd – haplotype diversity; h – number of haplotypes; Pi – nucleotide diversity per site; k – average number of nucleotide differences; Fs – Fu’s neutrality statistic (Fu, 1997); D – Tajima D neutrality test (Tajima, 1989), the star-sign is indicated statistical significance P<0.05; DemMod – most likely demographic model by DnaSP v.6 coalescent simulation (PB – population bottleneck, PD – population decline, n/d – not defined) based on Theta-W, probability P(Sim<Obs) is indicated as a percentage in brackets.
Loci	N	n	S	h	Hd	Pi	k	Fs	D	DemMod
COI	16	415	100	2	0.125	0.038	12.5	17.06	-2.52*	PB (4.8)
(mit.)										
16S	60	500	99	8	0.647	0.044	23.9	26.70	-0.04	PD (4.9)
(mit.)										
18S	43	562	6	5	0.221	0.001	0.36	-3.02	-2.11*	n/d
(nucl.)										
28S	75	377	50	5	0.392	0.039	14.3	26.25	0.99	PB (0.01)
(nucl.)										
Table 3 (on next page)

Estimates of evolutionary divergence over sequence pairs between groups.

The number of base differences per site from averaging over all sequence pairs between groups are shown. Standard error estimates are shown above the diagonal and were obtained by a bootstrap procedure (100 replicates). This analysis involved 61 nucleotide 16S sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). There was a total of 507 positions in the final dataset. Evolutionary analyses were conducted in MEGA-X (Kumar et al., 2018).
Groups	1	2	3	4	5	6
Eurasia	0.003	0.014	0.014	0.015	0.020	
Far East	0.004	0.014	0.014	0.015	0.020	
North America	0.122	0.122	0.014	0.017	0.021	
South America	0.116	0.112	0.128	0.012	0.019	
Thailand	0.114	0.110	0.137	0.084	0.020	
OUT	0.224	0.226	0.223	0.212	0.214	
Table 4 (on next page)

Results of a molecular clock test using the Maximum Likelihood method.

Null hypothesis of equal evolutionary rate throughout the tree (at a 5% significance level). TMC – test for molecular clock in MEGA-X (Kumar et al., 2018). Models: JC – Jukes-Cantor, nst=1 (Jukes & Cantor, 1969); K2 – Kimura 2-parameter, nst=2 (Kimura, 1980); HKY – Hasegawa-Kishino-Yano, nst=2 (Hasegawa, Kishino, & Yano, 1985); GTR – general time reversible, nst=6 (Rodriguez, Oliver, Marin, & Medina, 1990). Non-uniformity of evolutionary rates among sites may be modeled by using a discrete Gamma distribution (+G) with 5 rate categories and by assuming that a certain fraction of sites are evolutionarily invariable (+I).
Locus	Substitution model in MEGA-X	TMC: with clock (lnL)	TMC: without clock (lnL)	Null
COI (mit.) 1st+2nd+3th	HKY+I	-1154.9	-1152.1	Not rejected
16S (mit.)	GTR+G	-1588.4	-1582.1	Not rejected
18S (nucl.)	JC	-1034.8	-1033.1	Not rejected
28S (nucl.)	K2+G	-956.9	-946.3	Not rejected