Title
Derived crystal structure of martensitic materials by solid-solid phase transformation.

Permalink
https://escholarship.org/uc/item/0245c8rd

Journal
Acta crystallographica. Section A, Foundations and advances, 76(Pt 4)

ISSN
2053-2733

Authors
Karami, Mostafa
Tamura, Nobumichi
Yang, Yong
et al.

Publication Date
2020-07-01

DOI
10.1107/s2053273320006087

Peer reviewed
Derived Crystal Structure of Martensitic Materials by Solid-Solid Phase Transformation

MOSTAFA KARAMI,¹ NOBUMICHI TAMURA,² YONG YANG³ AND XIAN CHEN ¹*

¹Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, ²Advanced Light Source, Lawrence Berkeley National Laboratory, California, United States, and ³Mechanical Engineering, City University of Hong Kong, Hong Kong.

E-mail: xianchen@ust.hk

Abstract

We propose a mathematical description of crystal structure consisting of two parts: the underlying translational periodicity and the distinct atomic positions up to the symmetry operations in the unit cell, consistent with the International Table for Crystallography. By the Cauchy-Born hypothesis, such a description can be integrated with the theory of continuum mechanics to calculate a derived crystal structure produced by solid-solid phase transformation. In addition, we generalize the expressions for orientation relationship between the parent lattice and the derived lattice. The derived structure rationalizes the lattice parameters and the general equivalent atomic positions that assist the indexing process of X-ray diffraction analysis for low symmetry martensitic materials undergoing phase transformation. The analysis is demonstrated in a CuAlMn shape memory alloy. From its austenite phase (L2₁ face-centered cubic structure), we identify that the derived martensitic structure has the orthorhombic symmetry Pmmn with the derived lattice parameters $a_d = 4.36491\text{Å}$, $b_d = 5.40865\text{Å}$ and $c_d = 4.2402\text{Å}$, by which the complicated X-ray Laue diffraction pattern can be well indexed, and the orientation relationship can be verified.
1. Introduction

Martensitic materials show great potential in many emerging applications such as biomedical implants, nano/microactuators and solid state caloric coolings for their ability to recover a large macroscopic deformation (i.e. 5% – 10%) during the reversible structural transformation (Chang & Read, 1951; Tadaki, 1998; Miyazaki et al., 1982). In real application, it requires that these materials can run millions of transformation cycles, yet their functionality typically degrades quickly in the first couple of hundreds of cycles, even for the most successful commercial alloy – Nitinol. (Otsuka & Ren, 2005) Recent significant advances in developing ultra-low fatigue martensitic materials (Song et al., 2013; Chluba et al., 2015) show that the design of phase-transforming materials can be guided through some kinematic compatibility principles called cofactor conditions (Chen et al., 2013), i.e. the super compatibility conditions for the existence of stressed-free microstructure during phase transformation. When the cofactor conditions are satisfied, the thermal hysteresis is minimized without compromising the amount of latent heat. (Song et al., 2013) Meanwhile the thermomechanical response does not degrade at all even upon tens of millions of mechanically induced transformation cycles. (Chluba et al., 2015) These discoveries underlie a theory-driven design strategy for phase transforming materials, of which the most crucial step is to precisely determine the crystal structures of the transforming material as austenite (high symmetry structure in high temperature phase) and martensite (low symmetry structure in low temperature phase). However, this step is non-trivial, and often quite tedious.

In principle, the structural parameters of a crystalline solid are determined by X-ray diffraction (XRD) experiments. One of the most common XRD measurement used for structural determination is Rietveld refinement of powder diffraction data obtained with either CuKα or MoKα radiation (Young, 1993). The testing specimen should be either in powder or bulk form with sufficient randomization of grain orientations illuminated by the monochromatic X-ray beam. However, the as-cast metallic specimen after proper heat treatment produced in laboratory is mostly in bulk form with coarse grain size. For example, the grain size of common Cu-based β alloys is about 200 – 500 μm. (Bhattacharya et al., 2003) The orientation randomness of the specimen from the lab production
is insufficient for ordinary XRD powder method, especially for the low symmetry structures. In most cases, the crystal structure of the developed material is unknown, which makes the Rietveld analysis impossible. On the other hand, the structure determination through single crystal X-ray diffraction requires isolated good quality single crystals and is therefore hardly applicable to the bulk samples. The lack of structural knowledge for low symmetry metallic materials highly hinders the material development for desirable properties. Therefore, it is very important to have a unified way for structural determination especially when the preliminary crystallographic information is limited.

The martensite phase forms from a high temperature phase, austenite, through a solid-solid phase transformation, known as the martensitic transformation. This transformation can be reversible as seen in shape memory alloys if the point group of martensite is a subgroup of the point group of austenite, while it can be irreversible as seen in steels if the group-subgroup relationship breaks down (Bhattacharya et al., 2004). In both cases, the martensite lattice can be considered as the deformed austenite lattice, which is characterized by the transformation strains based on specific orientation relationship. For example, the body-centered cubic α–Fe formed from the face-centered cubic γ–Fe is derived by the Bain correspondence that gives the Bain strains (Bain & Dunkirk, 1924). Due to the lattice symmetry, there are various crystallographically equivalent ways to distort the austenite lattice to form different variant of martensite. For reversible martensitic transformation, the number of the distinct martensite variants is characterized by the quotient of the order of point group of austenite lattice divided by the order of the point group of martensite lattice. For reconstructive transformation such as precipitation, the precipitates can be treated as the deformed configuration from the matrix phase through a stretch tensor (Chen et al., 2011). The formation of semi-coherent interface between ellipsoid precipitates and the matrix depends on the weak compatibility conditions given by the stretch tensor and its crystallographically equivalent variants (Chen et al., 2011). The nature of the martensitic transformation and the conditions of crystallographic compatibility between austenite and martensite can be used to propose a universal structural determination method for the martensite structure transformed from the austenite structure with cubic
symmetry. The cubic structures, including simple cubic, face-centered cubic and body-centered cubic, have only one structural dimensional parameter, a_0 that can be accurately determined by ordinary XRD experiments. The martensite structure generated from austenite through certain lattice correspondence and distortions can be derived based on the Cauchy-Born rule for solid-solid phase transformation (Bhattacharya et al., 2003; Ericksen, 2008; Weinan & Ming, 2007; Chen et al., 2016a). Slight lattice parameter perturbation of the derived lattice is needed to generate the initial structural parameters for advanced structural characterization and analysis such as XRD, EBSD and so on. In this paper, we provide the fundamental formulation for the derived lattice from a cubic structure based on Cauchy-Born rule. We then use synchrotron Laue X-ray microdiffraction experiment combined with energy scans to demonstrate our method for an unknown Cu-based β alloy. To bridge the discrepancy between the previous mathematical description of lattice (Ball et al., 1992; Pitteri, 1998) and the symmetry calculation of crystal structures by the International Union of Crystallography (Hahn et al., 1983), we propose a modified description for the crystal structure consisting of two parts: underlying translational periodicity and the fractional atomic positions in the unit cell consistent with the general equivalent positions used in the International Table for Crystallography. Consider the parent and child phases as two discrete vector spaces mapped by a homogeneous linear transformation, the orientation relationship can be generalized and the associated vector/planar parallelisms can be defined.

2. Derived crystal structure from solid-solid phase transformation

2.1. Bravais lattice

Our theoretical calculations in this paper are adapted to both reversible martensitic (Ericksen, 1991) and reconstructive (sometimes refer to “diffusional”) (Dmitriev et al., 1996) transformations in crystalline solids. The continuum mechanics theories as well as the non-linear crystallographic theory of martensite (Bhattacharya et al., 2003) are used to underlie the framework of the derived structure from cubic austenite. The symmetry-breaking structural transformations are characterized by a set of stretch tensors, which are defined as the martensitic variants by Ball and James
(Ball & James, 1987; Ball et al., 1992). Their definition of Bravais lattices for bulk crystalline solids is

Definition 1 (Adopted from the Definition 2.1 in (Ball et al., 1992)). A set of points \mathcal{L} in \mathbb{R}^3 is a Bravais lattice if and only if there exists an invertible matrix $E \in \mathbb{R}^{3 \times 3}$ such that

$$
\mathcal{L} = \mathcal{L}(E) := \{ x : x = E\mu, \forall \mu \in \mathbb{Z}^3 \}. \tag{1}
$$

The columns of E are three linearly independent vectors underlying the lattice basis while the components of integer vector μ are the contravariant component of a lattice vector written in basis E. Let e_1, e_2 and e_3 be the three columns of E, the calculation of a lattice vector is conducted as matrix multiplication

$$
x = [e_1 \ e_2 \ e_3] \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix} = e_i \mu^i. \tag{2}
$$

In the most right part of the equation above, the Einstein summation convention is used.

Definition 2. The unit cell of a Bravais lattice $\mathcal{L}(E)$ is

$$
\mathcal{U} = \mathcal{U}(E) := \{ x : x = Ea, \forall a \in [0,1)^3 \}. \tag{3}
$$

The symmetry of a Bravais lattice $\mathcal{L}(E)$ is characterized by its point group.

Definition 3. A group of orthogonal transformations \mathcal{R} is a point group of a Bravais lattice $\mathcal{L}(E)$ if and only if

$$
\forall Q \in \mathcal{R}, x \in \mathcal{L} \implies Qx \in \mathcal{L}. \tag{4}
$$

It has been proven that (Ericksen, 1980; Pitteri, 1984; Ball et al., 1992) an orthogonal transformation Q belongs to the point group of a Bravais lattice $\mathcal{L}(E)$ if and only if there exists a $A \in GL(3,\mathbb{Z})$ such that

$$
QE = EA, \tag{5}
$$

where $GL(3,\mathbb{Z})$ is the group of all 3×3 invertible integer matrices. Equation (5) is computed as

$$
[Qe_1 \ Qe_2 \ Qe_3] = [e_1 \ e_2 \ e_3] \begin{bmatrix} \lambda_1^1 & \lambda_2^1 & \lambda_3^1 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \\ \lambda_1^3 & \lambda_2^3 & \lambda_3^3 \end{bmatrix} \text{ for } \lambda_i^j \in \mathbb{Z}. \tag{6}
$$
To consider the orientation invariance of the lattice parameters, we use the lattice metric tensor (Pitteri, 1998):

Definition 4. For a Bravais lattice \(\mathcal{L}(E) \), the lattice metric tensor is

\[
C = E^T E. \tag{7}
\]

The matrix representation of a lattice metric tensor is always positive definite and symmetric. The lattice parameters of \(\mathcal{L}(E) \) are a sextuplet \((p_1, p_2, p_3, p_4, p_5, p_6)\) depending on the lattice metric tensor through

\[
p_1 = \sqrt{C_1^1}, \quad p_2 = \sqrt{C_2^2}, \quad p_3 = \sqrt{C_3^3}, \quad p_4 = \frac{C_4^2}{p_2 p_3}, \quad p_5 = \frac{C_5^1}{p_1 p_3}, \quad p_6 = \frac{C_6^2}{p_1 p_2}. \tag{8}
\]

The underlying periodicity of a Bravais lattice can be described by either the lattice metric tensor or the lattice parameters, which are both invariant under symmetry operations and rigid body rotations. Table 1 lists the expressions of lattice parameters for all 14 Bravais lattices in 3-dimension written in their primitive basis.

Table 1. Lattice parameters sextuplets of the 14 Bravais lattices
Bravais lattice

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1 Including both proper and improper rotational symmetries.
2 \(\alpha = \sqrt{2a^2+c^2} \)
3 \(\alpha = \sqrt{b^2+c^2}, \beta = \sqrt{a^2+c^2}, \gamma = \sqrt{a^2+b^2} \)
4 \(\alpha = \sqrt{a^2+b^2+c^2} \)
5 \(m = \sqrt{a^2+b^2} \)
2.2. Multilattice and rebase

The basis E given in Definition 1 is also called the *primitive basis* of the Bravais lattice $\mathcal{L}(E)$, as there is only one point in its unit cell. However, crystallography theory often does not deal with the primitive lattice basis, because it is not always the most orthogonal basis for all types of Bravais lattices. To facilitate the crystallographic calculations, X-ray crystallographers usually use the *conventional basis* in their formula and equations. There are 7 out of 14 Bravais lattices in Table 1: fcc, bcc, bct, bco, fco, ico and bcm, whose primitive basis is different from their conventional basis. In these lattices, the unit cell $\mathcal{U}(K)$ where K is the conventional basis of the lattice consists of more than one lattice point of the original lattice $\mathcal{L}(E)$ inside. In fact the lattice spanned by the conventional basis K is a *sublattice* of the original Bravais lattice.

Definition 5. A *sublattice* of a Bravais lattice $\mathcal{L}(E)$ is a Bravais lattice formed by a subset of $\mathcal{L}(E)$.

By periodicity, if $\mathcal{L}(S)$ is a sublattice of $\mathcal{L}(E)$, S must be related to E via $S = EA$ for some integer matrix A. When $\det A > 0$, the basis chirality is preserved. When $|\det A| > 1$, $\mathcal{L}(EA)$ is a Bravais lattice with fewer lattice points than $\mathcal{L}(E)$. The missing lattice points can be added back to the unit cell using a *multilattice* presentation defined as following.

Definition 6. A *multilattice* is a set of points M if and only if there exist a basis E and a set of lattice points $W = \{w_i \in [0,1)^3 : i = 1, \ldots, m\}$ such that

$$M = M(E,W) = \mathcal{L}(E) + EW := \{y : y = x + Ew, \forall x \in \mathcal{L}(E), w \in W\}$$

Such M is also called an m–lattice, due to $|W| = m$.

By Definition 6, not every multilattice equals to some Bravais lattice. A necessary condition for the multilattice $M(S,W)$ equivalent to a Bravais lattice is that $0 \in W$. Any Bravais lattice $\mathcal{L}(E)$ equals to a trivial 1-lattice $M(E, \{0\})$, which should be equivalent to infinitely many multilattices.
by changing the basis (i.e. \(S = E\Lambda \) with \(|\det \Lambda| = 1\)) (Ball et al., 1992). Due to the conservation of lattice point density, for those \(\mathcal{M}(S, \mathcal{W}) \) where \(\mathcal{L}(S = E\Lambda) \) is a sublattice of \(\mathcal{L}(E) \) with \(|\det \Lambda| = |\mathcal{W}|\). Physically, \(|\mathcal{W}| \) represents the number of points in \(\mathcal{M} \cap \mathcal{U}(S) \), which should equal to \(|\det \Lambda|\) as the quotient of the sizes of unit cells \(\mathcal{U}(S) \) and \(\mathcal{U}(E) \).

The symmetry of multilattices is described by space groups instead of point groups. Before defining space groups, we need to introduce the concept of isometry transformation.

Definition 7. An isometry transformation \((Q|c)\) is a pair of orthogonal transformation \(Q \in O(3)\) and translation \(c \in \mathbb{R}^3\) that transforms any point \(x \in \mathbb{R}^3\) according to

\[
(Q|c)x = Qx + c.
\]

(11)

Definition 8. A group of isometry transformations \(G\) is a space group of the multilattice \(M\) if and only if

\[
\forall (Q|c) \in G, \ x \in M \implies Qx + c \in M.
\]

(12)

If \(\mathcal{M}(S, \mathcal{W}) = \mathcal{L}(E)\), then the space group \(G\) of \(\mathcal{M}\) is the same as the point group \(R\) of \(\mathcal{L}\), that is

\[
G = \{(Q|0) : \forall Q \in R\}.
\]

In crystallography, we use the multilattice to present each of the 14 Bravais lattices. Most frequently, we use the conventional multilattice for base-centered, face-centered and body-centered lattices. Let \(\mathcal{M}(S = E\Lambda, \mathcal{W})\) be the conventional multilattice of \(\mathcal{L}(E)\), we use \(X = \Lambda^{-1}\) as the conversion matrix that maps the coordinates written in terms of primitive basis to the conventional basis. For example, we can choose the conventional basis \(a_0I\) to express the fcc lattice using the multilattice

\[
\mathcal{M}_{\text{fcc}} = \mathcal{M}(a_0I, \{w_1, w_2, w_3, w_4\}),
\]

(13)

where

\[
\begin{align*}
 w_1 &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, &
 w_2 &= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}, &
 w_3 &= \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, &
 w_4 &= \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix}.
\end{align*}
\]

(14)
The above 4-lattice \mathcal{M}_{fcc} is the same as $\mathcal{L}_{\text{fcc}} = \mathcal{L}(\mathbf{E})$ with

$$\mathbf{E} = \frac{a_0}{2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix},$$

being the primitive lattice basis. The conversion matrix is

$$\mathbf{X} = \begin{bmatrix} \frac{1}{7} & 0 & \frac{1}{2} \\ \frac{1}{7} & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} w_2 & w_3 & w_4 \end{bmatrix}.$$ (16)

Let \mathbf{x} be a point in \mathcal{M}_{fcc}, we have

$$\mathbf{x} = a_0 \mathbf{I}(\mathbf{n} + \mathbf{w}_i) \text{ for some } \mathbf{n} \in \mathbb{Z}^3 \text{ and } i \in \{1, 2, 3, 4\}.$$ (17)

That leads to

$$\mathbf{x} = \mathbf{E}\mathbf{X}^{-1}(\mathbf{n} + \mathbf{w}_i).$$ (18)

Since \mathbf{X}^{-1} is an integer matrix and $\mathbf{X}^{-1}\mathbf{w}_i$ are integer vectors, by Definition 1, $\mathbf{x} \in \mathcal{L}(\mathbf{E})$. This proves that any point in \mathcal{M}_{fcc} is in $\mathcal{L}(\mathbf{E})$. Thus, $\mathcal{M}_{\text{fcc}} = \mathcal{L}(\mathbf{E})$. Under the same coordinate system used in (13), the generators of \mathcal{M}_{fcc}’s space group $Fm\bar{3}m$ (number: 225) can be represented as

$$\left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \bigg| \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right),$$

$$\left(\begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \bigg| \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right),$$

$$\left(\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \bigg| \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right).$$ (19)

By direct calculation, (12) in Definition 8 can be verified.

Among the 14 Bravais lattices, there are 7 choices of the conventional basis corresponding to the 7 crystal systems. They are the bases of simple cubic, hexagonal, trigonal, primitive tetragonal, primitive orthorhombic, primitive monoclinic (with b-axis as the unique axis) and triclinic. The periodicity of the other non-primitive Bravais lattices can be expressed by the multilattice description using the corresponding conventional basis. Then each point in the sublattice $\mathcal{L}(\mathbf{E})$ in (10) is $\mathbf{x} = \mathbf{E}\mathbf{\mu}$ for some integer vector $\mathbf{\mu}$. Its components as an integer triplet (μ^1, μ^2, μ^3) is
consistent with the notation of Miller indices for crystallographic direction introduced by William Hallowes Miller in crystallography (Miller, 1839). Since the reciprocal basis is derived by taking the inverse transpose of the conventional basis of the real lattice, all the calculations for the reciprocal lattice remain the same as given in (10), except that the integer triplets represent the indices of crystallographic planes.

In order to represent the formation of multilattice from a Bravais with the conservation of all lattice points, we define an lattice operation \textit{rebase} as following.

Definition 9. Let the multilattice \(M(S, W) \) equal to the Bravais lattice \(\mathcal{L}(E) \). An invertible matrix \(L \in \mathbb{R}^{3 \times 3} \) is a rebase of \(M \) if and only if there exists an integral matrix \(\Lambda \in \mathbb{Z}^{3 \times 3} \) such that

\[
L = S^{-1} E \Lambda. \tag{20}
\]

The new multilattice \(M(S', W') \) is given by

\[
S' = E \Lambda, \tag{21}
\]

and

\[
W' = S'^{-1} (\mathcal{L} \cap \mathcal{U}(S')) := \left\{ S'^{-1} x : x \in \mathcal{L} \cap \mathcal{U}(S') \right\}. \tag{22}
\]

Note that Definition 9 only accounts the rebase of the multilattice as the representation of a Bravais lattice. Using \(S'^{-1} (\mathcal{L} \cap \mathcal{U}(S')) = S'^{-1} \mathcal{L} \cap \mathcal{U}(I) \) and \(S'^{-1} E = \Lambda^{-1} \), the following algorithm provides a way of rebase operation:

1. Find the smallest eigenvalue \(\lambda \) of \(\Lambda^{-T} \Lambda^{-1} \). \(\lambda > 0 \) because \(\Lambda^{-T} \Lambda^{-1} \) is positive definite.

2. Traverse all integer points in the cube \([-1/\sqrt{\lambda}, 1/\sqrt{\lambda}]^3\).

3. For each of the integer point \(\mu \) visited in the previous step, the lattice point \(w \in W' \) is computed as \(w = \Lambda^{-1} \mu \) if \(w \in [0, 1)^3 \).

Continue our example of the fcc lattice. The matrix

\[
L = \begin{bmatrix}
\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{bmatrix} \tag{23}
\]
is a rebase matrix of \mathcal{M}_{fcc} because it is invertible and there is an integer matrix

$$\Lambda = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \quad (24)$$

such that $L = (a_0 I)^{-1} E \Lambda$. Since $\det \Lambda = 2$, to make $\mathcal{M}(a_0 L, W)$ an equivalent representation of \mathcal{M}_{fcc} there should be 2 lattice points in W. By (22), first we have

$$\mathcal{M}_{\text{fcc}} \cap U(a_0 L) = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{a_0}{2} \\ \frac{a_0}{2} \end{bmatrix} \right\}. \quad (25)$$

Then,

$$W = \frac{L^{-1}}{a_0} \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{a_0}{2} \\ 0 \\ \frac{a_0}{2} \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 1/2 \\ 0 \\ 0 \end{bmatrix} \right\}. \quad (26)$$

From the lattice metric tensor

$$a_0^2 L^T L = a_0^2 \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad (27)$$

the lattice parameters are $(a_0/\sqrt{2}, a_0/\sqrt{2}, a_0, 0, 0, 0)$. This set of lattice parameters together with the lattice points in (26) describes a body centered tetragonal lattice. In this case, it in fact has a higher symmetry due to the special a/c ratio of $1/\sqrt{2}$.

2.3. Crystal structure

To be consistent with the symmetry operations defined in the International Tables for Crystallography, we need to distinguish the two concepts: 1) lattice points and 2) sites. A Bravais lattice, as well as the equivalent multilattices, defined above describes only the lattice points. Only by attaching a motif of atoms to each lattice points one can get a crystal structure. Atomic positions in the motif are further divided into groups called sites, due to symmetry.

Definition 10. Let $\mathcal{M}(E, W)$ be a multilattice that equals to some Bravais lattice. A crystal structure made of a single atomic species with \mathcal{M} as its underlying lattice is

$$\mathcal{S}(M, Q) = \mathcal{S}(E, W, Q) = M + EQ := \{ x : x = m + Eq, \forall m \in M, q \in Q \}, \quad (28)$$
where the non-empty set
\[Q = \left\{ q_\alpha \in [0,1)^3 : \alpha = 1,...,\nu \right\} \tag{29} \]
is the set of spatial positions occupied by atoms/molecules in the unit cell, which is usually referred as atomic positions.

A crystal structure made of \(n \) atomic species with \(\mathcal{M} \) is
\[\bigcup_{i=1}^{n} S(\mathcal{M}, Q_i), \tag{30} \]
where \(S(\mathcal{M}, Q_i) \) is the structure for the \(i \)-th species.

Applying a rebase matrix \(\mathbf{L} \) as defined in Definition 9 to the underlying lattice of \(S(\mathbf{E}, \mathbf{W}', Q') \) leads to an equivalent structure \(S(\mathbf{E}', \mathbf{W}', Q') \), where \(\mathbf{E}' = \mathbf{E} \mathbf{L} \), \(\mathbf{W}' \) is given by (22), and
\[Q' = \mathbf{L}^{-1} Q \mod 1. \tag{31} \]
The “mod 1” operation on a vector means by adding or subtracting integers to move all of its components into \([0,1)\). The equation (31) suggests \(|Q| = |Q'| \) since \(|\mathbf{W}'||Q| = |\det \mathbf{L}||\mathbf{W}'||Q'| \) and \(|\mathbf{W}| = |\det \mathbf{L}||\mathbf{W}'| \). In other words, we transform the underlying lattice according to (22), then attach the same motif to it using the new basis.

For example, we assign three atomic positions to the 4-lattice \(\mathcal{M}_{\text{fcc}} \) to construct a mono-species structure \(S(a_0 \mathbf{L}, \{w_1, w_2, w_3, w_4\}, Q) \) where the set \(Q \) consists of
\[q_1 = \left[\begin{array}{c} 1/4 \ 1/4 \ 1/4 \end{array} \right], \quad q_2 = \left[\begin{array}{c} 1/4 \ 1/4 \ 3/4 \end{array} \right], \quad q_3 = [0,0,0]. \tag{32} \]
We use the rebase matrix given in (23) to rewrite the structure \(S(a_0 \mathbf{L}, \mathbf{W}', Q') \). By equation (22), \(\mathbf{W}' \) consists of two lattice points
\[w'_1 = [0,0,0], \quad w'_2 = \left[\begin{array}{c} 1/2 \ 1/2 \ 1/2 \end{array} \right], \tag{33} \]
and by equation (31) \(Q' \) consists of three atomic positions
\[q'_1 = \left[\begin{array}{c} 1/2 \ 0 \ 1/4 \end{array} \right], \quad q'_2 = \left[\begin{array}{c} 1/2 \ 0 \ 3/4 \end{array} \right], \quad q'_3 = [0,0,0]. \tag{34} \]
This rebase changes the underlying lattice from 4 lattice points per unit cell to 2, but keeps 3 atomic positions per unit cell.

Mathematically, a structure is also a multilattice:

\[S(E, W, Q) = M(E, (W + Q) \mod 1) \]

Thus, \(S(E, W, Q) \) satisfies the same space group as \(M(E, (W + Q) \mod 1) \). For a multi-species structure to satisfy a space group, all of its mono-species sub-structure must satisfy the same space group. The separation of \(W \) and \(Q \) in \(S(E, W, Q) \) is mainly by their physical meaning: the former are the lattice points, while the latter are the atomic positions. Atomic positions are often grouped into *sites*. Atoms in the same site must be positioned cooperatively to satisfy the space group of the structure.

Definition 11. A site of a structure \(S(E, W, Q) \) having the space group \(G \) is a subset of atomic positions, \(A \subseteq Q \), such that \(S(E, W, A) \) still satisfies \(G \), but none of the proper subsets of \(A \) does.

We continue the above example of filling the 4-lattice \(M_{\text{fcc}} \) in (13) using the \(q_1, q_2, q_3 \) in (32). First, we directly verify that the structure satisfies the space group \(Fm\bar{3}m \) generated by (19). Furthermore, by Definition 11 this structure occupies two sites:

\[A_{8c} = \{q_1, q_2\}, \quad A_{4a} = \{q_3\}. \quad (35) \]

The International Table for Crystallography lists all 230 space groups in \(\mathbb{R}^3 \). The site in Definition 11 is often classified as the *Wyckoff positions* (Aroyo et al., 2006) among crystallographers and materials scientists. The subscripts \(8c \) and \(4a \) in (35) are examples of the common notations for Wyckoff positions. In X-ray experiments, the diffraction intensity strongly depends on the scattering of atoms occupying the certain sites of a crystal structure having special site symmetry, although the necessary condition of diffraction (i.e. Bragg condition) is governed by the underlying periodicity. X-ray analysis software generally requires the knowledge of both the lattice parameters for the skeleton lattice (i.e. parameters in Table 1), the target space group, and all sites occupied by different species of atoms.
For cubic structures, it is not very hard to make an ansatz for the sites in the conventional unit cell. For example, for most AB type alloys, the site is among the special positions such as corners, side centers, face centers and body centers. In some cases, atoms of small radii occupy the tetrahedron interstitial sites such as \([\frac{1}{4}, \frac{1}{4}, \frac{1}{4}]\) and \([\frac{1}{4}, \frac{1}{4}, \frac{3}{4}]\). However, for some complex crystal structures with low symmetry, \(e.g.,\) martensite structures, there is no reliable analytic way of obtaining the sites for each of the atoms. From the database of the binary phase diagram (Okamoto, 2010), we observe that many low symmetry structures of metallic materials are in fact formed through solid–solid phase transformations from a high temperature phase of cubic symmetry. Examples include steel, CuAl alloy, Nitinol, and many other Cu-based \(\beta\) shape memory alloys. Using the mathematical formulation of the crystal structure given in (28), we can derive the crystal structure of the low symmetry phase from their cubic parent phase through the assigned lattice correspondences.

2.4. Lattice correspondences and orientation relationships

Consider a solid-solid phase transformation from the high symmetry parent structure \(S_A\) to the low symmetry product structure \(S_M\) of a specific atomic species. We assume the average lattice distortion that takes all atoms in \(S_A\) to the new equilibrium positions in \(S_M\) is a linear transformation \(F \in \mathbb{R}^{3 \times 3}\) that deforms a parent unit cell \(U_A\) — not necessarily a primitive or conventional one — to a product unit cell \(U_M\). Let \(S_A\) and \(S_M\) be the basis of the sublattices spanned by \(U_A\) and \(U_M\) respectively. In other words, the three column vectors of \(S_M\) and \(S_A\) are the three edges of \(U_A\) and \(U_M\) respectively. Then we have

\[
S_M = FS_A. \tag{36}
\]

\(S_M\) and \(S_A\) are allowed to be freely rotated to any convenient orientation, because only the stretch part of \(F\) matters. As a convention, we usually pick \(S_M\) to be the conventional basis of the product structure. Then \(S_A\) must be chosen appropriately to have a “similar size and shape” as \(S_M\). This results in that \(S_A\) is almost always different from the conventional basis \(K_A\) of the parent structure. The rebasis matrix expressed as

\[
G = K_A^{-1}S_A \tag{37}
\]
transforms the conventional multilattice into the one with basis S_A. Here we use the rebase matrix G to present the lattice correspondence matrix for solid-solid phase transformation. That is, for any lattice point x in $\mathcal{L}(K_A)$, it can be expressed by its integer index μ_k as $x = K_A \mu_k$, which equals to $S_A G^{-1} \mu_k$ by (37). Therefore the index of the same vector x in basis S_A is

$$\mu_s = G^{-1} \mu_k.$$ \hspace{1cm} (38)

Note that μ_s is not necessarily an integer index. During the phase transformation, the lattice correspondence matrix G asserts that the index $[\mu_k^1 \mu_k^2 \mu_k^3]$ in the parent phase becomes the index $[\mu_s^1 \mu_s^2 \mu_s^3]$ in the product phase, while the associated lattice points in parent and product phases are related through small distortion and rotation. Such an assertion underlies a parallelism between the parent and product phases. \footnote{Sometimes we can multiply μ_s by an integer n to make it an integer triplet. This is possible because μ_s is rational. Then $[n \mu_s^1, n \mu_s^2, n \mu_s^3]$ corresponds to $[\mu_s^1 \mu_s^2 \mu_s^3]$.}

Similarly for any lattice plane $\bar{x} = K_A^{-T} \bar{\mu}_k$, there exists a corresponding index $\bar{\mu}_s$ in basis S_A^{-T} calculated as

$$\bar{\mu}_s = G^T \bar{\mu}_k.$$ \hspace{1cm} (39)

We consider the index of lattice plane $([\bar{\mu}_k^1 \bar{\mu}_k^2 \bar{\mu}_k^3]$ becomes the index of the plane $([\bar{\mu}_s^1 \bar{\mu}_s^2 \bar{\mu}_s^3]$ during the phase transformation.

In literature, people use the orientation relationship as an alternative to the lattice correspondence. To derived an orientation relationship for a directional index $[\mu_k^1 \mu_k^2 \mu_k^3]_A$ or a planar index $(\bar{\mu}_k^1 \bar{\mu}_k^2 \bar{\mu}_k^3)_A$ written in conventional basis of the parent phase, we calculate the corresponding $[\mu_s^1 \mu_s^2 \mu_s^3]_M$ for direction and $(\bar{\mu}_s^1 \bar{\mu}_s^2 \bar{\mu}_s^3)_M$ for plane by (38) and (39), and then express the orientation relationship as

$$[[\mu_k^1 \mu_k^2 \mu_k^3]_A || [\mu_s^1 \mu_s^2 \mu_s^3]_M]; \quad (\bar{\mu}_k^1 \bar{\mu}_k^2 \bar{\mu}_k^3)_A || (\bar{\mu}_s^1 \bar{\mu}_s^2 \bar{\mu}_s^3)_M.$$ \hspace{1cm} (40)

By (38), (39), (40) and the Cauchy-Born rule in (36), we generalize the presentation of orientation relationships and the associated transformation strains for solid-solid phase transformation through a unified quantity: the lattice correspondence matrix.
The linear transformation $F = S_M S_A^{-1} \in \mathbb{R}^{3 \times 3}$ is considered as the deformation gradient underlying the symmetry-breaking phase transformation based on the Cauchy-Born hypothesis through a proper choice of lattice correspondences (Ericksen, 1980; Bhattacharya et al., 2004; Cayron, 2019). To rationalize the lattice correspondences selection, it is shown (Chen et al., 2016a; Koumatos & Muehlemann, 2016; Koumatos & Muehlemann, 2017) that an admissible correspondences matrix should give the least transformation strain when used in (36), where the transformation strain is defined as $\sqrt{F^T F - I}$. The mathematical expressions of lattice correspondences vary from reference to reference. In this paper, we use the representation of the lattice correspondence matrix introduced by Chen et al. (2016a) in consistent with the aforementioned assertions.

As an example, we assume the parent structure is $S_A = S(M_{fcc}, \{0\})$. Consider the lattice correspondence matrix:

$$G = \begin{bmatrix}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{bmatrix}
$$

we can derive many orientation relationships by selecting different directional and planar indices of the parent phase. Among them, there are three typical directional and planar correspondences:

$$[100]_A || [10\bar{1}]_M;\ (010)_A || (010)_M,$$

$$[\bar{1}10]_A || [\bar{1}11]_M;\ (111)_A || (110)_M,$$

$$[\bar{1}01]_A || [001]_M;\ (111)_A || (110)_M.$$

for bcc product structure, the set of parallelisms in (42), (43) and (44) are the Bain (Bain & Dunkirk, 1924), K-S (Kurdjumow & Sachs, 1935), N-W (Nishiyama, 1934; Schumann, 1974) orientation relationships in the $\gamma - \alpha$ transformation of steel often referred in the literature. In fact they are essentially the same lattice correspondences.

2.5. Derived structure

The goal of all the aforementioned mathematical definitions is to underlie a technique derived structure that helps the structure determination for the low symmetry phase transformed from a high symmetry phase through phase transformation.
This technique assumes the full crystallographic knowledge of the parent structure in the conventional basis \(K \), and some knowledge about the product phase that can help us to propose a lattice correspondence matrix \(G \). If a rough estimate of the lattice parameters is given, we can search for candidates of lattice correspondence matrices algorithmically (Chen et al., 2016a).

Once a lattice correspondence matrix \(G \) is proposed, the equations (22) and (31) calculate a reference structure

\[
S_r = S(S_r = KG, W_r, Q_r).
\]

(45)

The reference structure can not be used to index the diffraction pattern of the low symmetry product phase, because it essentially represents the same structure \(S_A \) of the parent phase by the rebase operation. Therefore it generates the same diffraction pattern as what the parent phase does. We need to distort the reference structure slightly to break its symmetry. First, we apply a small deformation \(P \) to the basis \(S_r \). The generic form of \(P \) is

\[
P = \begin{bmatrix}
\delta_1 & \gamma_{12} & \gamma_{13} \\
0 & \delta_2 & \gamma_{23} \\
0 & 0 & \delta_3
\end{bmatrix},
\]

(46)

where \(\delta_1, \delta_2, \delta_3 \) are small stretches in the vicinity of 1, and \(\gamma_{12}, \gamma_{13}, \gamma_{23} \) are small shears in the vicinity of 0. This calculates a new basis \(S_d = PS_r \). From the reference structure to the derived structure with basis \(S_d \), both lattice points and sites may change to match the broken space group symmetry of the distorted unit cell. The determination of the lattice points and sites are usually empirical. Without any pre-knowledge of the space group, we can always assign both to the “P1” description: \(\{0\} \) and \((W + Q) \mod 1\), i.e. each of the atomic positions is a site with multiplicity 1. In case we have some information of the space group, \(W_r \) and \(Q_r \) needs to be redistributed and slightly shuffled to new sets of lattice points \(W_d \) and atomic positions \(Q_d \) with site symmetry included in the Wyckoff positions listed in the International Table for Crystallography (cry, 2019).

The new derived structure is expressed as

\[
S_d = S(S_d, W_d, Q_d).
\]

(47)

Note that the expression of \(S_d \) may not be unique, which depends on the choices of the orientation and origin of the unit cell \(U(S_d) \). The derived structure \(S_d \) can be used to analyze and predict the
low symmetry phase such as indexing of the unknown diffraction pattern by XRD. If the result is not satisfactory, we iterate the above process to find another derived structure.

Using $S_A = S(M_{fcc}, \{0\})$ as the parent structure and lattice correspondence (41) as an example, we can demonstrate the derived lattice by the following calculations. By rebase operation, the basis of reference structure is calculated as

$$S_r = a_0 G = a_0 \begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$ \hfill (48)

According to (22), the collection of lattice points of the reference structure is

$$W_r = S_r^{-1} (M_{fcc} \cup U(S_r)) = \left\{ \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix} \right\}.$$ \hfill (49)

Our first attempt is to distort S_r by $\delta_1 = \delta_3 = 0.9$, $\delta_2 = 1.05$, $\gamma_{12} = \gamma_{13} = \gamma_{23} = 0$ according to (46). The derived basis is

$$S_{d1} = a_0 \begin{bmatrix} 0.45 & 0 & -0.45 \\ 0 & 1.05 & 0 \\ 0.45 & 0 & 0.45 \end{bmatrix}.$$ \hfill (50)

The lattice metric is then

$$S_{d1}^T S_{d1} = a_0^2 \begin{bmatrix} 0.6364 & 0 & 0 \\ 0 & 1.0500 & 0 \\ 0 & 0 & 0.6364 \end{bmatrix},$$ \hfill (51)

which gives a tetragonal lattice $(0.6364a_0, 1.05a_0, 0.6364a_0, 0, 0, 0)$. Together with W_r in (49) and $Q_r = \{0\}$, we have a body-centered tetragonal $I4/m$ (number: 877) with only the $2a$ site occupied.

Our second attempt is to further lower the unit cell symmetry by an additional shear deformation $\gamma_{13} = -0.1$. Then the derived basis and the lattice metric are

$$S_{d2} = a_0 \begin{bmatrix} 0.4 & 0 & -0.5 \\ 0 & 1.05 & 0 \\ 0.45 & 0 & 0.45 \end{bmatrix},$$ \hfill (52)

$$S_{d2}^T S_{d2} = a_0^2 \begin{bmatrix} 0.3625 & 0 & 0.0025 \\ 0 & 1.0500 & 0 \\ 0.0025 & 0 & 0.4525 \end{bmatrix},$$ \hfill (53)

The lattice parameters are $(0.6020a_0, 1.05a_0, 0.6727a_0, 0, \cos 89.65^\circ, 0)$, which is a monoclinic lattice with the b–axis as its unique axis. As its current form, it could be a Pm (number: 6) monoclinic with $1a$ and $1b$ sites occupied. That is $S(S_{d2}, \{0\}, W_r)$, where W_r is given by (49). But we could
also shift the positions by \([\frac{1}{4}, \frac{1}{4}, \frac{1}{4}]\), which is equivalent to the isometry transformation \((I - \frac{1}{4}S_{\delta 2})\), and get a new pair of lattice positions

\[
\left\{ \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{3}{4} \\ \frac{1}{4} \\ 0 \end{bmatrix} \right\}
\]

(54)

By Definition 11 and the International Table for Crystallography, this pair occupies a single site, \(2e\), of the space group \(P2_1/m\) (number: 11), with \(x = z = \frac{1}{4}\). Finally we shuffle the site slightly to \(x = 0.2\) and \(z = 0.3\) and get the derived structure

\[S_{\delta 2} = S \left(S_{\delta 2}, \{0\}, \left\{ \begin{bmatrix} 0.2 \\ 0.25 \\ 0.3 \end{bmatrix}, \begin{bmatrix} 0.8 \\ 0.75 \\ 0.7 \end{bmatrix} \right\} \right). \]

(55)

If we have a reason to believe the monoclinic structure is \(m\)-layer modulated along \(c\)-axis, we conduct an extra rebase on \(S_d\) by

\[M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & m \end{bmatrix}. \]

(56)

The new set of \(m\) lattice points \(W_m\) can be computed by (22) and the new 2-atom motif \(Q_m\) is obtained by (31). We then redistribute \(W_m\) and \(Q_m\) into \(\{0\}\) and \((W_m + Q_m) \mod 1\). The result is a \(P2_1/m\) structure with \(2m\) atoms occupying \(m\) \(2e\) sites. The overall lattice correspondence matrix is \(MG\). If needed, the symmetry of the derived structure can be further lowered by slightly shuffles of each of the sites. For \(m = 9\), the derived structure is considered as M18R structure in literature.

3. Structural determination of martensite CuAlMn

Among all shape memory alloys, CuAuZn, CuAlNi and CuAlZn alloy systems form the second largest group of material candidates used in research and development. However, their commercialization is highly confined due to the poor fatigue life when they are in a polycrystalline state. Compared to these Cu-based alloy systems, the CuAlMn system is much less developed. For some aluminum compositions, people demonstrated good ductility in this alloy system (Sutou *et al.*, 2008). In-depth study of the crystallography and the formation of microstructure is highly hindered in this system because of the lack of the structural parameters for martensite. Some discussions about
its micromechanical behaviors are based on the lattice parameters of the cubic to monoclinic transformation of its sibling system CuAlNi (Wang et al., 2002; Fornell et al., 2017). In this section, we will show how the derived lattice assists the analysis of the structural determination of martensite structure of CuAlMn alloy.

According to the binary phase diagram of Cu-Al alloy system, the martensite can be induced by suppressing the eutectic transformation through the rapid cooling process. The high temperature β phase directly transforms into an ordered structure β_1 (DO3, or L2$_1$) at T_c (marked as the red curve in Figure 1). The β_1 phase further undergoes a martensitic transformation at temperature M_s marked as the blue curve in Figure 1. This also works for ternary Cu-based β alloys doped by Mn (Sutou et al., 1999), except that the β_1 zone (the yellow region in Figure 1) and the composition dependent M_s curve may vary with the addition of Mn. The symmetry of the product phase formed by martensitic transformation from the β_1 phase varies with the Al concentration (Warlimont & Delaey, 1974; Sutou et al., 1999; Sutou et al., 2002).

![Fig. 1. Binary phase diagram of Cu-Al alloy from FScopp alloy database 2012.](image)

The most studied compositions of Cu-Al-Mn are those with Al compositions 14 - 17 at% and Mn composition around 10 at% (Kainuma et al., 1996; Sutou et al., 1999; Sutou et al., 2002; Sutou et al., 2004) since the alloys within this compositional range show a better ductility than CuAlNi.
and CuAlZn in polycrystalline form (Sutou et al., 1999; Sutou et al., 2008). The crystal structure of martensite has been characterized by both X-ray powder diffraction and transmission electron microscopy for Al compositions 14, 16 and 17 at%. It was found that the martensite of as-aged samples are 18R (i.e. 18 layers modulated monoclinic structure). In our study, we choose the alloy of composition Cu$_{67}$Al$_{24}$Mn$_9$ (at%) to demonstrate our derived structure theory, the understanding of martensitic structure for Al composition larger than 17 at % has not been reported (Obradó et al., 1997).

3.1. Experiment

A mixture of high purity Cu (99.99 wt%), Al (99.999 wt%), and Mn (99.95 wt%) ingots were melted in a quartz tube placed in an evacuated (10^{-5} mbar) induction furnace under argon atmosphere. The melt was injected into a cylindrical copper mold and solidified as a rod of diameter 5 mm. It was homogenized at 800°C for 3 hours under argon atmosphere, then cooled down in the furnace. We cut the rod into thin slices of thickness 1 mm, which were sealed in a vacuum quartz tube, heat treated at 900°C for 1 hour and quenched in water.

The transformation temperature of the specimen was measured by differential scanning calorimetry (DSC) by TA Instruments Q1000 at a heating and cooling rate of 10°C/min for three complete thermal cycles in the range from -75°C to 20°C. The austenite start/finish A_s/A_f temperatures and martensite start/finish M_s/M_f temperatures are determined as the onsets of the heat absorption/emission peaks as shown in Figure 2: $A_s = -26°C$, $A_f = -8°C$, $M_s = -48°C$ and $M_f = -62°C$. The thermal hysteresis is quite large and measured to be $\Delta T = \frac{1}{2}(A_s + A_f - M_s - M_f) = 38°C$. Unlike those reported transforming Cu-based β alloys (Kainuma et al., 1996; Mallik & Sampath, 2008), this one shows the thermal bursts in large magnitude over a wide temperature range during the phase transformation. Evidently this thermal signature was observed in a close-by alloy system with slightly different manganese compositions (Obradó et al., 1997), but the detailed crystal structure of martensite has not been thoroughly studied for this series. In their work, the total entropy change from the cubic phase (austenite) is calculated based on the DSC measurements,
which was found to be highly correlated to the average electron concentration \(i.e. e/a \) of the alloy. Only those with \(e/a > 1.46 \) showed the jerky thermal behaviors, which was conjectured as a different type of martensitic transformation: bcc to 2H. Their room-temperature powder diffraction measurement showed some residual peaks corresponding to the 2H structure. The martensite finish temperatures of this series are quite low, \(i.e. \) around \(-60^\circ C\), therefore the room-temperature diffractometry with mixed phases is not sufficient to identify and solve the martensite crystal structure for the 2H phase, nor the report of lattice parameters were reported for this phase in any other CuAlMn system.

Fig. 2. Differential Scanning Calorimetry of CuAl\(_{24}\)Mn\(_9\).

3.2. Advanced structural characterization by synchrotron X-ray microdiffraction

To obtain precise information for the crystal structures of austenite and martensite and to show how the derived structure theory assists the structure determination, we conducted a temperature-varying single crystal synchrotron X-ray Laue microdiffraction experiment combined with monochromatic energy scans (Tamura, 2014) at beamline 12.3.2 of the Advanced Light Source, Lawrence Berkeley National Lab. The X-ray beam with energy bandpass from 6 keV to 24 keV was focused down to 1 \(\mu m \) in diameter by a pair of elliptically bent Kirkpatrick-Baez mirrors. The focused high-brightness X-rays illuminated a single grain of the bulk sample, and generated a single crystal Laue pattern. We used the custom-made thermal stage (Chen et al., 2016\(b\)) to drive the phase
transformation of the bulk sample, which controls the sample temperature from -100°C to 200°C with ramping rate of 15°C/min. The bulk sample was polished in the austenite form at room temperature. An optical microscope attached to the end-station optic box allows to observe in-situ the sample surface reliefs while collecting the Laue patterns at a specified sample position during cooling process.

Figures 3 (a) – (c) show the evolution of Laue patterns as the sample was cooled down through the phase transformation temperature while the corresponding microstructures in Figure 3 (d) – (f) sufficiently reveal that the Laue pattern in (a) purely represents the austenite phase. As the temperature going down, we observed that martensite laths appear and grow as shown in Figure 3 (e) and (f). The Laue patterns (b) and (c) suggest that they are purely in the martensitic phase.

![Laue diffraction patterns](image)

Fig. 3. (a) – (c) Laue diffraction patterns of the bulk sample from high temperature to low temperature corresponding to the microstructures in (d) – (f), in which the red circles denote the surface positions illuminated by the focused X-ray beam.

We used the L2₁ structure (space group Fm\overline{3}m) to index the austenite Laue pattern. The crystal structure is depicted in Figure 4(b). (Tilley, 2006) The stoichiometric ratio of atoms for L2₁ is supposed to be ABC₂ where A atoms occupy the 4a site at [0, 0, 0], B atoms occupy the 4b site at \([\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]\), and C atoms occupy the 8c site at \([\frac{1}{4}, \frac{1}{4}, 0]\). In the case of Cu₆₇Al₂₄Mn₉, we assume that
the Al atoms occupy the 4a site, the Mn atoms occupy the 4b site and the Cu atoms occupy the 8c sites. Using the XMAS software (Tamura, 2014), we successfully indexed the Laue pattern by the proposed L2₁ structure as shown in Figure 4(a). To determine the austenite lattice parameter, we chose four \((hkl)\) reflections: (252), (170), (238) and (176), and precisely measure their interplanar distances by performing energy scans of the reflections. The refined lattice parameter was measured to be \(a₀ = 5.87897\,\text{Å}\).

In our notation the three mono-species sub-structures are

\[S_i = S(M_{fcc}, A_i), i = \text{Al, Mn, Cu}, \] (57)

where

\[A_{\text{Al}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, A_{\text{Mn}} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ 1 \\ 0 \end{bmatrix}, A_{\text{Cu}} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ 0 \\ \frac{1}{2} \end{bmatrix}. \] (58)

3.3. Determination of martensitic structure by derived structure theory

We assume the Bain lattice correspondence for the phase transformation from L2₁ to orthorhombic:

\[G = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}. \] (59)

As we have already shown in the examples in Section 2.5, the underlying multilattice is rewritten in the basis \(a₀G\) with lattice points in the set

\[W = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}, \quad \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} \] (60)

The new sets of atomic positions upon such basis transformation are, by (31),

\[Q_{\text{Al}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, Q_{\text{Mn}} = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}, Q_{\text{Cu}} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}. \] (61)

The new lattice parameters computed from \(a₀^2G^T G\) are \((a₀/\sqrt{2}, a₀, a₀/\sqrt{2}, 0, 0, 0)\).
Fig. 4. Austenite crystal structure of Cu$_{67}$Al$_{24}$Mn$_9$: (a) Indexed Laue pattern by (b) the L2$_1$ structure. (c) The stereographic projection of the reciprocal lattices of austenite and the transformed martensite with respect to the stage coordinate system (X – Y – Z). (d) The theoretical atomic structure in (010) plane that is aligned horizontally along [101] direction.

In Figure 4 (d), the red and blue boxes underlie the cells of $\mathcal{L}(a_0 \mathbf{G})$. Our first attempt to generate a derived structure is to apply simple stretches $\delta_1 = 1.05$, $\delta_2 = 1.02$ and $\delta_3 = 0.92$ to $a_0 \mathbf{G}$. The distorted lattice parameters are $(a_d, b_d, c_d, 0, 0, 0)$, where $a_d = 4.36491 \text{Å}$, $b_d = 5.40865 \text{Å}$ and $c_d = 4.2402 \text{Å}$. By observation, all three mono-species structures satisfy the Immm (number: 71) space group, with Q_{Al}, Q_{Mn} and Q_{Cu} being the $2a$, $2d$ and $4h$ ($y = \frac{1}{4}$) sites respectively (Table 2). We denote this new multi-species structure $\mathcal{S}_{I}mmm$.

IUCr macros version 2.1.11: 2019/01/14
Fig. 5. Derived orthorhombic structures of CuAl$_{24}$Mn$_9$ with space group (a) I_{mmm} and (b) P_{mmn}, by which the synchrotron X-ray Laue diffraction pattern of martensite is indexed in (c) and (d) respectively.

Table 2. *Wyckoff positions of derived I_{mmm} structure (Hahn et al., 1983) for CuAlMn*

Atomic species	Wyckoff position	Site with lattice points: $[0,0,0] + \left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]$
Al	2a	$[0,0,0]$
Mn	2d	$[\frac{1}{2}, 0, \frac{1}{2}]$
Cu	4h	$[0, y, \frac{1}{2}], [0, \bar{y}, \frac{1}{2}]; y = \frac{1}{4}$

We use this crystal structure as input for the XMAS Laue indexing algorithm, and get the indexed Laue pattern of martensite. The indexing program suggests two martensite variants corresponding to the indexed reflections marked by yellow and orange colors respectively in Figure 5(c). However, the indices of many major reflections are still not found by the crystal structure $S_{I_{mmm}}$, which suggests the martensite may have a lower symmetry structure.

Then we attempt to generate a second derived structure by further lowering its symmetry. First, we rewrite the $S_{I_{mmm}}$ structure in the “P1” description. That means to reduce the lattice point...
set \{0\}, and expand the atomic positions to
\[
\mathbf{Q}'_\text{Al} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \right\}, \quad \mathbf{Q}'_\text{Mn} = \left\{ \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} \\ 0 \\ \frac{1}{3} \end{bmatrix} \right\}, \quad \mathbf{Q}'_\text{Cu} = \left\{ \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \right\}.
\] (62)

We then shift the origin to \([-\frac{1}{3}, 0, 0]\), and get new atomic positions
\[
\mathbf{Q}''_\text{Al} = \left\{ \begin{bmatrix} \frac{1}{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \right\}, \quad \mathbf{Q}''_\text{Mn} = \left\{ \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} \\ 0 \\ \frac{1}{3} \end{bmatrix} \right\}, \quad \mathbf{Q}''_\text{Cu} = \left\{ \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \right\}.
\] (63)

Now the structure satisfies the Pmmn (number: 59) space group (origin choice 1). \(^2\) \(\mathbf{Q}'_\text{Al}''\) occupies the 2a site with \(x_\text{Al} = \frac{1}{4}\), \(\mathbf{Q}'_\text{Mn}''\) occupies the 2b site with \(x_\text{Mn} = \frac{1}{4}\), and \(\mathbf{Q}'_\text{Cu}''\) occupies the 4e site with \(x_\text{Cu} = \frac{3}{4}\) and \(y_\text{Cu} = \frac{1}{4}\).

We then propose to shuffle \(x_\text{Al}\) and \(x_\text{Mn}\) to \(\frac{1}{3}\), and \(x_\text{Cu}\) to \(\frac{2}{3}\). In other words, the neighboring (012) planes move \(a_d/6\) along \(x\)-axis relative to each other, as frequently reported in Cu-based alloys (Warlimont & Delaey, 1974). Then we obtain the second derived structure \(\mathcal{S}_{\text{Pmmn}}\) with atomic positions listed in (64) and Table 3
\[
\mathbf{Q}'''_\text{Al} = \left\{ \begin{bmatrix} \frac{1}{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ 0 \end{bmatrix} \right\}, \quad \mathbf{Q}'''_\text{Mn} = \left\{ \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} \\ 0 \\ \frac{1}{3} \end{bmatrix} \right\}, \quad \mathbf{Q}'''_\text{Cu} = \left\{ \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \right\}.
\] (64)

Table 3. Wyckoff positions of derived Pmmn structure (Hahn et al., 1983) for CuAlMn

Atomic species	Wyckoff position	Site with lattice points: [0,0,0]
Al	2a	\([x, 0, 0], [x, \frac{1}{2}, 0], x = \frac{1}{3}\)
Mn	2b	\([x, \frac{1}{3}, 0], [x, 0, 0], x = \frac{1}{3}\)
Cu	4e	\([x, y, 0], [x, y, 0], \frac{x}{2}, \frac{y}{2}, x = \frac{2}{3}, y = \frac{1}{2}\)

Using the second derived crystal structure \(\mathcal{S}_{\text{Pmmn}}\) as the input for XMAS Laue indexing algorithm, we get the indexed Laue pattern of martensite in Figure 5(d). All major reflections are indexed by two martensite variants, which implies that the possible crystal structure of martensite is likely to be \(\mathcal{S}_{\text{Pmmn}}\).

Finally, the orientation relationship between the austenite (Fm3m) and the derived martensite (Pmmn) is confirmed by overlapping their stereographic projections calculated from the indexed Laue patterns, shown in Figure 4 (c). The normal vectors of the crystallographic planes (001), (110)

\(^2\)We change the special axis from \(z\) in the International Table for Crystallography to \(x\), which is crystallographically equivalent.
and (110) in austenite lattice are parallel to those of the crystallographic planes (010), (001) and (100) in the lattice of one of the martensite variants. This result also confirms our conjecture of the lattice correspondence for the derived martensite structure by (59).

Table 4. The results of monochromatic energy scan and the corresponding indices obtained from numerical analysis for martensite phase.

hkl	E (keV)	λ (Å)	θ (°)	d_{exp} (Å)	d_{theo} (Å)	d_{exp}/d_{theo}
(514)	11.0201	1.12507	101.1893	0.728038	0.727824	1.00029
(642)	14.4006	0.860965	88.1896	0.618645	0.618648	1.00000
(542)	13.4255	0.923498	82.8361	0.697982	0.697949	1.00005
(432)	12.0003	1.033176	73.7746	0.860631	0.860778	0.99983
(322)	11.3352	1.093798	69.8314	0.697949	0.697949	1.00000
(522)	12.6406	0.980841	77.6421	0.782307	0.782578	0.99965
(721)	13.1555	0.942451	101.2271	0.609698	0.609752	0.99991
(521)	9.9452	1.246674	98.0783	0.825439	0.825409	1.00004
(412)	12.0503	1.028889	84.3184	0.966504	0.966894	0.99960
(601)	12.3899	1.000688	86.8573	0.727825	0.727816	1.00001
(501)	10.7153	1.157076	83.5984	0.867996	0.867833	1.00019
(401)	9.1151	1.360207	78.7222	1.072370	1.072365	1.00000

In the pure martensite phase, we conduct the monochromatic energy scan in a wide photon energy spectrum (i.e. from 8keV to 16keV), and get a list of interplanar distance measures in Table 4 for the indexed crystallographic planes in a reference Laue pattern. In general, the theoretical interplanar distance for a plane $h = (hkl)$ can be expressed as $d_{theo} = |E^* h|$ where $E^* = E^{-T}$. Here E^* is the reciprocal lattice basis for the Bravais lattice $L(E)$. In the case of orthorhombic lattice, the lattice basis E is a diagonal matrix with diagonal elements (a, b, c). The values of (a, b, c) are determined as the minimizers

$$
(a^*, b^*, c^*) = \arg \min_{(a,b,c) \in \mathbb{R}^3} \sum_{h \in \mathcal{H}} \|d_{theo}(a, b, c; h) - d_{exp}(h)\|^2,
$$

in which the set \mathcal{H} consists of all selected $h = (hkl)$ corresponding to the experimentally measured $d_{exp}(h)$ listed in Table 4. We use the derived lattice parameters (a_d, b_d, c_d) as the initial condition and get the refined lattice parameters $a = 4.43196\,\text{Å}, b = 5.34533\,\text{Å}, c = 4.26307\,\text{Å}$. Using the refined lattice parameters, we calculated the interplanar distances for the (hkl) planes shown in Table 4, which agree with the measured values up to 0.01%.
4. Conclusion

This paper provides a series of mathematical definitions for crystalline solids, by which we underlie a method to calculate the derived crystal structure for the martensitic materials transformed from the cubic austenite through solid-solid phase transformations. We classify the lattice points, atomic positions and sites, which are associated with the space group symmetry in the International Table for Crystallography. This approach is demonstrated in Cu$_{67}$Al$_{24}$Mn$_9$ alloy that undergoes cubic to orthorhombic phase transformation. We derive two possible martensitic structures I_{mmm} and P_{mmn}, in which the derived structure P_{mmn} gives a promising indexing of the Laue pattern measured by synchrotron X-ray diffraction. It makes the further monochromatic energy scan possible to refine the lattice parameters.

M. K and X.C. thank the HK Research Grants Council for financial support under Grants No. 16207017 and No. 16201019. X.C. also thanks the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the program “The Mathematical Design of New Materials,” when work on this paper was undertaken. This work was supported by EPSRC Grant No. EP/R014604/1. The research of YY is supported by City University of Hong Kong with the grant number 9610391. Beamline 12.3.2 and the Advanced Light Source were supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231.

References

(2019). Bilbao crystallography server. http://www.cryst.ehu.es.
Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Zeitschrift für Kristallographie-Crystalline Materials, 221(1), 15–27.
Bain, E. C. & Dunkirk, N. (1924). Trans. AIME, 70(1), 25–47.
Ball, J. & James, R. (1987). Archive for Rational Mechanics and Analysis, 100(1), 13–52.
Ball, J. M., James, R. D. & Smith, F. (1992). Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 338(1650), 389–450.
Bhattacharya, K., Conti, S., Zanzotto, G. & Johannes, Z. (2004). Nature, 428, 55–59.
Bhattacharya, K. et al. (2003). Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect, vol. 2. Oxford University Press.
Cayron, C. (2019). Acta Crystallographica Section A: Foundations and Advances, 75(3).
Chang, L. & Read, T. (1951). Trans Met Soc AIME, 191, 47.
Chen, X., Cao, S., Ikeda, T., Srivastava, V., Snyder, G. J., Schryvers, D. & James, R. D. (2011). Acta materialia, 59(15), 6124–6132.
Chen, X., Song, Y., Tamura, N. & James, R. D. (2016a). Journal of the Mechanics and Physics of Solids, 93, 34–43.
This paper underlies a mathematical description for the derived lattice/structure for the low symmetry phase through solid-solid phase transformation. As an application, we illustrated and verified our mathematical concepts in a phase-transforming alloy by synchrotron X-ray diffraction experiment.

Synopsis

This paper underlies a mathematical description for the derived lattice/structure for the low symmetry phase through solid-solid phase transformation. As an application, we illustrated and verified our mathematical concepts in a phase-transforming alloy by synchrotron X-ray diffraction experiment.