Keratinophilic fungi from warm, moist, cattle - house of Bilaspur Central - India

Abstract

Soil is a well known source that harbors a wide variety of microorganisms. The current study briefly explains the isolation and identification of keratinophilic fungi, which is responsible for the degradation of most abundant and highly stable animal protein keratin. Soil is the home of several such fungi which are not even noticed from various unexplored habitats. During the course of study approximately 18 different fungal species were isolated and identified. The Vanbreuseghem’s hair bait techniques were used for the isolation of fungi. The present study includes important fungi like Aspergillus, Chrysosporium, Microsporum, Trichophyton, etc isolated from cattle house located in and around the Bilaspur town of Chhattisgarh state in Central - India.

Keywords: Aspergillus, Chrysosporium, Microsporum, Trichophyton

Introduction

The Soil supports a range of microorganisms and is one of the most complex microbial habitats, allowing the fungi to sustain their entire life cycle. Soil is a cosmopolitan habitat for majority of microbial population that can be explored to find out more specific fungal flora.\(^1\) The soils rich in keratinous material were found to more conducive for keratinophilic fungi\(^2\)\(^-\)\(^13\) where this group of fungi usually grow abundantly and reproduce. The fungi’s nourishment is provided by the keratin substances in skin, hair, nail, feather, horn, hooves, beak etc. The fungi use the keratinous material as carbon source either living or dead.\(^12\)\(^-\)\(^13\) Within the potential keratinolytic specificity, some of fungi of this group are potential pathogens to human beings and animals.

Keratinophilic fungi are widely distributed and are responsible for causing dermal infection in man and animal groups.\(^14\) This is one of the most special homogenous groups of fungi which are regarded as potent dermatophytes causing cutaneous infections.\(^15\) In general, the qualitative and quantitative composition of these fungi can be multifunctional and serve as bio-indicators of environmental pollutants. It means that the composition not only include the presence of keratin remnants but also fecal contaminants in the environment and respond to the changes in environmental conditions.\(^15\)\(^,\)\(^14\)

The distribution of keratinophilic fungi is influenced by the amount of available keratin wastes which are usually found in dumping yards, animal house, poultry and veterinary farms. However, their number is restricted because these are mostly confined to habitats rich in keratin wastes.\(^15\) Since the habitat of birds (bird’s nest, poultry farm) and animal house with different keratin waste set of predominating species to the possibility of fungal growth and to obtain growth indices of keratin degrading species, therefore in present investigation the cattle forms / yards and houses with variable keratin waste seems worthwhile to find out fungal growth indices under any condition. Although a number of keratinophilic fungi from zoo and other cattle farms have been isolated by different workers\(^10\)\(^-\)\(^18\) but the amount of available literature to support the claim is less.

In cattle house plenty of keratin waste found as an important source promoting growth and contamination by keratinophilic fungi contamination of keratinophilic fungi. Therefore occurrence of keratinophilic fungi in animal house is quite obvious.

In general dermatophytes are mostly found in temperate conditions however the hot and humid climate, with a temperature 22 - 30°C in wet season and the acidic pH of the soils in the state seems to be more conducive in wet season rather than dry and hot summer season of low-land area in Chhattisgarh state. Furthermore the distribution of keratinophilic fungi found that Trichophyton ajelloi is commonly found in colder climates but found sporadic in hot climates, where dry hot conditions hindering the fungal germination. Moreover they exclaimed that the fungus is to be more often found associated with acidic soils than with alkaline soils.

Several studies have demonstrated the ability of the fungi to invade keratinized living tissue of the body including skin, hair, nails etc.\(^1,\)\(^11\)\(^-\)\(^13\)\(^,\)\(^19\) The dermatophytic fungi are classified in to three ecologically groups,

i. Geophiles, which are primarily inhabit the soil
ii. Zoophiles are essentially animal pathogens and
iii. Anthropohiles restricted to man, which very rarely infect animals.

Evidently, the occurrence of keratinophilic fungi is mainly influenced by keratin waste, but the survival and occurrence of these fungi also affected and controlled by the ecological habitats.\(^10\) Several studies on epidemiology of human dermatophytosis in India confirm the prevalence of fungi in rural areas. However, the prevalence and
Keratinophilic fungi from warm, moist, cattle - house of Bilaspur Central - India

Materials and methods

Soil samples were collected from different cattle sheds i.e. such as the state government veterinary farm, Zoo-Kanan Pendari, Dahiyan of domestic or wild animal, and many private cattle houses, in and around the municipal area of Bilaspur. The site is often reserved for domestic animals (cow, sheep, goat, etc.) or preferred by wild animals (baisen) locally called Dahiyan. The soil samples were recovered from the superficial layer of soil (not exceeding 5 cm in depth). In every sample sterile spatula was used for sample collection. These samples were brought to the lab in sterilized polythene bags. Ten Petri plates with baited soil were used for every soil sampling areas and were incubated at 28°C.

Results and discussions

During present investigation the keratin material collected from different cattle houses yielded 18 keratinophilic fungi (Table 1). The Chrysosporium indicum, C. tropicum, were found to be the most common isolates in cattle farm soil samples. The Microsporum gypseum a well known geophilic dermatophyte was also one of the most frequently isolated species from the soil. In addition to this some of the isolates of saprophytic molds, belonging to the species of Aspergillus, Acremonium, Alternaria, Fusarium and Malbranchea aurantiaca grew on the hair-baits used in soil samples. The predominant keratinophilic fungi reported in most of the samples include Chrysosporium spp (C. indicum, C. tropicum and the dermatophytes M. gypseum). In addition, zoophilic dermatophytic fungus (T. mentagrophytes) was also isolated from the soil samples.

The Aspergillus and Chrysosporium were commonly found in soils of cattle house. The Chrysosporium indicum has been considered as the most abundant keratinophilic species in some soil survey in India.16,21 These fungi exhibits keratinophilic tendency and were found in abundance in alkaline soil. However, the present study revealed the abundant prevalence of C. tropicum species probably due to acidic soil type. Microsporum gypseum was most common species among dermatophytes found in soil samples of domestic animal habitats (21), Plate: 3, 4, 5 & 6 followed by pathogenic T. mentagrophytes.

The other closely related non-dermatophytes keatinophilic species of fungi commonly found are (in decreasing order) Aspergillus, Acremonium, Alternaria, Fusarium, Geotrichum, penicillium Scytalidium. Their occurrence varies according to the geographical area. The study demonstrates that dermatophytes are responsible for infections of the toe-nails in human beings. The fungi usually use the keratin of dead animals or hairs, feathers, and skin,21 that have been shed in the vicinity of cattle houses. That is why the cattle breeders and veterinarians occasionally suffer from dermatosis caused by Trichophytton, which causes skin inflammation and scalp lesions. The fungus is transmitted from stray dogs, and its infections are very often known to be higher in rural areas and tribal masses. The occurrence of Scytalidium species in abundance was significant because it is rarely isolated from temperate regions. This in turn enhances the possibility of dermal infection in working groups.

No.	Name of the Fungi	1	2	3	4	5	%
1	Aspergillus fumigatus	1	2	-	2	3	8
2	A. flavus	2	1	1	-	1	5
3	A. niger	1	1	1	1	-	4
4	A. Terreus	1	2	1	2	1	7
5	Acremonium sp.	1	1	-	1	1	4
6	Alternaria sp.	+	2	-	1	2	5
7	Chrysosporium indicum	1	2	1	2	2	8
8	Chrysosporium tropicum	1	3	1	3	2	10
9	Curvularia lunata	1	1	-	1	4	
10	Fusarium oxysporium	1	2	1	3	8	
11	Humicola insolens	1	1	-	1	3	
12	Microsporum gypseum	1	3	1	3	2	10
13	Malbranchea aurantiaca	1	1	-	1	3	
14	Penicillium sp.	1	2	1	-	5	
15	Paecilomyces varioti	1	1	1	-	3	
16	Trichophytton rubrum	-	1	1	1	4	
17	T. mentagrophytes	1	2	1	1	6	
18	Scytalidium sp.	1	2	-	2	5	

Total 17 30 11 23 102

Cattle Farm / yards and houses

During the course of study, classification of different cattle house as per specificity of keratinophilic fungi, was difficult because of their occurrence and distribution which relies on the amount of keratin waste and the number of cattle in the house / farm and the population animals in zoo and other places where animal (herbivores) live in.
collective groups. The soil samples collected from the zoo showed The number of keratinophilic fungi isolates collected from zoo soil samples were same as that of the number of isolates obtained from the state government veterinary farm house center. It is to be noted that the occurrence of keratinophilic fungi is not confined to cattle farms but are found in many other habitats. This may be due to the wide occurrence of spores of keratinophilic fungi and their distribution through air, water and domestic animals.

The richness of soil with a sufficient amount of organic content in natural habitats of zoo, dahiyan seems to be more important for the occurrence of keratinophilic fungi. Because, the above defined protected or unprotected areas explain availability of various types of keratin substances; such as hair, horn, nails, feathers, for survival and sporulation of the fungi. The number of private cattle farms nearby Bilaspur town also showed a considerable number of keratinophilic fungi, which differs in amount of keratin waste as per the number of farms in the house. The farmers keep domestic animal in houses which have not been exposed to sunshine and this promotes fungal growth.

It has been noted that keratinophilic fungi isolates not only occur in cattle farms, but are found in most of the habitats that have been investigated in Bilaspur division. Microsporum and Trichophyton verrucosum species are usually found in pet dogs’ goats, sheep, and horses. Hence, it is quite obvious that houses can also serve as a habitat that promotes the fungal growth and the infection can spread from the pet animals to humans. Moreover, infective prop gules (spores and conidia) of pathogenic geophilic dermatophytes originating from saprobic sources, are transmitted directly or indirectly by the combined effect of warm and humid environment of Chhattisgarh.

Acknowledgement
None.

Conflict of interest
The authors declare there is no conflict of interest.

References
1. Salmon Nicola, Claire Fuller. Fungal skin infections: current approaches to management Prescriber. Fungal skin infections. 2013;24(8):31–36.
2. Kaul S, Sumbali G. Keratinophilic fungi from poultry farm soils of Jammu, India. Mycologist. 2000;14(2):89–91.
3. Densmuhk SK, Shukla RV. Isolation of Keratinophilic fungi from poultry farms soils of Chhattisgarh. Kavak. 2001;28&29:55–58.
4. Vidyasagar GM. Keratinophilic Fungi isolated from hospitals dust and soils of public places of Gulbarga, India. Mycopathologia. 2005;159(1):13–21.
5. Sharma R, Rajak RC. Keratinophilic fungi: Nature’s keratin degrading machines? Their isolation, identification, and ecological role. Resonance. 2003;8(9):28–40.
6. Moalalai H, Zaini F, Piher M, et al. Isolation of keratinophilic fungi from soil samples of forests and palm yards. Iran J Publ Health. 2006;35(4):62–69.
7. Sharma R, Presber WB, Rajak RC, et al. Molecular detection of Microsporum persicolor in soil suggesting widespread dispersal in central India. Med Mycol. 2008;46(1):67–73.
8. Densmuhk SK, Verekr SA. Incidence of keratinophilic fungi from the soils of Vedanthangal Water Bird Sanctuary (India). Mycoses. 2011;54(6):487–490.
9. Mini KD, Mini K Paul, Jyothis Mathew. Screening of fungi isolated from poultry farm soil for keratinolytic activity. Advances in Applied Science Research. 2012;3(4):2073–2077.
10. Pahare Shikha, Shukla RV. Occurrence of keratinophilic fungi in coal mines soils, Korba, Chhattisgarh. J Mycopathol Res. 2014;52(1):76–80.
11. Pahare Shikha, Shukla RV. Occurrence of keratinophilic fungi in paddy fields and infestation of field workers of Chhattisgarh, Central - India. J Mycopathol Res. 2016;54(1):11–17.
12. Achterman RR, White TC. Dermatophyte Virulence Factors: Identifying and Analyzing Genes That May Contribute to Chronic or Acute Skin Infections. Int J Microbiol. 2012;2012:538305.
13. Mohamed SA, Rana MFJ. Keratinophilic fungi and related dermatophytes in polluted soil and water habitats. In: Kushwaha RKS, Guarno J, editors. Revista Ibero Americana de mycologia. Bilbao, Spain 2000. p. 51-59.
14. Boni E Elevorsi. Onychomycosis Pathogenesis Diagnosis and Management. Clin Microbiol Rev. 1998;11(3):415–429.
15. K Ulfig. Studies of Keratinolytic and Keratinophilic Fungi in Sewage Sludge by Means of a Multi-Temperature Hair Baiting Method. Pol J Environ Stud. 2003;12(4):461–466.
16. Boyanowski KI, hrke PJ, Moriello KA, et al. Isolation of fungal flora from the hair coats of shelter cats in the Pacific coastal USA. Veterinary Dermatology 2000;11(2):143–150.
17. Moriello, KA, Newbury S. Dermatophytoysis. In: Miller L, Hurley K, editors. Infectious disease management in animal shelters. Ames, IA: Blackwell Publishing; 2009:243–273.
18. Samuel P, Prince L, Prabakaran P. Assessment of mycological diversity of marine sediments of south east coast of Tamilnadu, India. European J Exp Biol. 2011;1(3):130–138.
19. Rippon JW. Host specificity in dermatophytes. In: Baxter M, editor. Proceedings of the eight congress of the international society for human and animal Mycology. Massey University, Palmerston North, 1982:28–33.
20. Weitzenman Irene, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8(2):240–259.
21. Harish C Gugnani, Soni Sharma, Brijinder Gupta, et al. Prevalence of keratinophilic fungi in soils of St. Kitts and Nevis. J Infect DevCtries. 2012;6(4):347–351.
22. Deshmukh SK, Verekar SA. Keratinophilic fungi from the soils of mud houses soils of Khammam district of Andhra Pradesh, India. Kavak. 2005;33:57–59.
23. Torres-Rodriguez JM, Lopez-Jodra O. Epidemiology of nail infection due to keratinophilic fungi. Rev Iberoam Micol. 2000;17:122–135.
24. Hubalek Z. Keratinophilic fungi associated with free-living mammals and birds. Revista Iberoamericana de Micologia. 2000:93–103.
25. Shipton WA. The Biology of Fungi Impacting Human Health. Partridge: India; 2014.