MrGrid: A Portable Grid Based Molecular Replacement Pipeline

Jason W. Schmidberger1,*, Mark A. Bate2,*, Cyril F. Reboul2,3, Steve G. Androulakis2,4, Jennifer M. N. Phan2, James C. Whisstock2,3, Wojtek J. Goscinski4, David Abramson4,5, Ashley M. Buckle2

1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden, 2 Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia, 3 ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Australia, 4 Monash eResearch Centre, Monash University, Victoria, Australia, 5 Clayton School of Information Technology, Monash University, Victoria, Australia

Abstract

Background: The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR) is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR.

Methodology/Principal Findings: MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69.

Conclusions: MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success.

Introduction

The most common method of protein structure determination is molecular replacement (MR). This involves using the structure of a protein that shares significant sequence similarity with the protein of unknown structure as a starting point in the structure determination. The process involves four steps: (1) Using sequence-comparison methods such as PSI-BLAST [1] to identify suitable structures that can be used for MR; (2) modification of structures (e.g., removal of flexible loop regions and non-identical side chains), to yield search models; (3) Finding the orientation and position of the search model in the unit cell of the target crystal; (4) Refinement of the model using iterative model-building and maximum likelihood atomic refinement. Although there are other methods of structure determination, molecular replacement is predicted to become an increasingly common technique, for two reasons. First, as the number of new folds reported in the Protein Data Bank (PDB) is decreasing, it is increasingly likely that the unknown target structure will belong to a known fold. Second, the emergence of more sophisticated sequence searching algorithms, such as profile-profile matching [2], improve the probability of finding a suitable search model, even in cases of very low similarity (<20% identity). Finally, the MR algorithms are steadily improving.

Where the sequence similarity between the unknown target and the search model is high (sequence identity >40%) the success rate of MR is very good, even without optimisation of the search model. However, in cases of low similarity (identity <30%) MR, and subsequent structure refinement becomes non-trivial, and can require more complicated strategies to effect a solution. Bearing this in mind, there are several criteria that affect the outcome of the MR calculation; 1) structural similarity between search model and target structure (measured by root mean square deviation (RMSD)); 2) percentage of residues missing from the search model (coverage); 3) the amount of conserved side chains (those expected to remain structurally conserved, e.g., in the protein interior). These factors, and thus the outcome of the MR calculation, can be influenced by improvement of the search model. The simplest
Using Mr Grid to perform parallel MR on a local network

MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the grid and reports all returned results. Utilizing the maximum likelihood based molecular replacement program PHASER [3], MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted, increasing the likelihood of success.

Methods

MrGrid Overview

MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the grid and reports all returned results. Utilizing the maximum likelihood based molecular replacement program PHASER [3], MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted, increasing the likelihood of success.

Test Case Selection

A set of 10 proteins were used as test cases, representing 8 different SCOP [5] families (Table 1), and allowing for the parallel execution of 4 to 54 jobs at any one time. PDB entries were selected on the basis of having 3 or more homologous structures in the PDB, with datasets from a range of point group symmetries (Table 1). Both coordinate and structure factor information was retrieved from the PDB for each protein, along with peripheral information necessary for running the MR experiments (e.g., sequence, ASU content). Homologues for each test protein were identified through a BLASTP search of the PDB using the NCBI server (http://www.ncbi.nlm.nih.gov/). MR search models were generally chosen on the basis of a >30% sequence identity across the majority of the monomer of interest (i.e. no partial matches). The exception was the hypothetical protein TTHA0727 test case, which represented cases of lower identity (<30% ID) along with some examples of subdomain insertion within the chosen search models, relative to the test case protein (PDB ID 2CGQ). The purpose of this example was to provide a non-trivial MR example using a divergent group of proteins (from the AhpD-like Superfamily [6]).
Figure 1. MrGrid web interface showing user input for (a) MTZ file, sequence and space group(s); and (b) search model(s) and RMSD values.
doi:10.1371/journal.pone.0010049.g001
Results and Discussion

Xgrid-accelerated parallel MR using test cases

The purpose of this phase of testing was not to assess the capacity of PHASER to perform MR. Rather, it was our intention to simply investigate the advantage to using MrGrid when screening multiple PHASER jobs at one time. Experimental data (structure factors) from PDB for the 10 proteins listed in Table 1 were each used in test case experiments on MrGrid in order to demonstrate the utility of the system under standard MR situations. For each protein example, data were screened against each homologue search model (including self), searching all alternative SGs belonging to the reported point group (Table 2). The number of jobs submitted to our local Xgrid (Table 3) varied between 4 and 54, and the corresponding speed up factors showed a clear linear relationship with a correlation of 0.85 (Figure 3). Featuring an average speed up value of 3.69 across all the tests, it is clear that MrGrid has the capacity to significantly reduce the time taken to achieve a MR result when screening numerous parameters.

Though a more exhaustive testing may reveal a levelling off of the speed up factors as the number of jobs exceeds the capacity of the grid, the results depicted in Figure 3 display a clear advantage up to 54 jobs when run on our local Xgrid (Table 3). While it is important to note that any particular test case will always run as long as its longest job, in addition to speeding up MR calculations MrGrid provides a convenient solution to screening MR input parameters via a simple web page. It is important to differentiate between making use of spare CPU cycles on desktop computers, as we use here, to form ‘desktop grids’, and dedicated cluster nodes. Performing our experiments on dedicated cluster nodes would clearly increase the efficiency of the calculations.

Table 1. List of test case proteins extracted from the Protein PDB.

PDB ID	Protein Name	Space Group	Resolution Limit (Å)	Molecular Mass (Da)
2GPZ	Transthyretin-like protein	P6	2.5	12700
2NO4	Halocid Dehalogenase	P3_21	1.9	24000
2CWQ	Hypothetical protein	P3_21	1.9	12581
2ENX	Mn-dependent inorganic pyrophosphatase	H32	2.8	33597
2RH5	Adenylate kinase	C222_1	2.48	23231
1S3G	Adenylate kinase	P3_21	2.25	23888
2JCB	5-Formyl-tetrahydrofolate cycligas	P1	1.6	23385
2H74	Thiocholine	P6_4	2.4	11807
1FB0	Thiocholine	P3_21	2.26	11782
2MM1	Myoglobin	P3_21	2.8	17184

Details about respective datasets are also listed.
doi:10.1371/journal.pone.0010049.t001

Table 2. Summary of MrGrid results for 10 test cases studied.

PDB ID	# SGs in Point Group	# Search Models	# Jobs	Linear Time (mins)	MrGrid Time (mins)	Speed Up Factor
2JCB	1	4	4	40.63	20.60	1.97
2EXN	1	7	7	17.65	4.12	4.28
2NO4	3	5	15	1339.22	437.92	3.06
2RH5	2	8	16	98.32	25.20	3.90
2CWQ	3	8	24	1424.5	309.50	4.64
2GPZ	6	4	24	76.89	13.40	5.74
1S3G	3	8	24	438.90	66.97	6.55
1FB0	3	9	27	204.57	29.67	6.89
2MM1	3	12	36	80.68	10.7	7.54
2H74	6	9	54	272.47	22.20	12.27

Note – Search model count includes a ‘self’ model, which was the actual protein being investigated.
doi:10.1371/journal.pone.0010049.t002
Table 3. Specifications of the Xgrid resource utilized during this study.

Machine #	Machine type	Operating System	Processors (GHz)	RAM (GB)
1	G4 iMac	OS X 10.5.2	1.42	1
2	G5 iMac	OS X 10.4.11	2	2
3	Intel iMac	OS X 10.4.11	(2x) 2.16	2
4	G4 MacMini	OS X 10.5.1	1.42	1
5	Intel iMac	OS X 10.4.11	(2x) 2.16	2
6	Intel Quad core Duo	OS X 10.4.11	(8x) 3	8
7	Intel MacBook	OS X 10.4.11	(2x) 2	2
8	G5 iMac	OS X 10.4.11	(2x) 2	2
9	G5 iMac	OS X 10.5.2	(2x) 2	2
10	Intel iMac	OS X 10.4.11	(2x) 1.83	2
11	G5 iMac	OS X 10.4.11	1.8	2
12	Intel iMac	OS X 10.4.11	(2x) 2	2
13	Intel iMac	OS X 10.5.1	(2x) 2.4	2
Total			65.54	30

It should be noted that at particular times some workstations were in use by their operator and thus unavailable to Xgrid.

doi:10.1371/journal.pone.0010049.t003

Example of an evasive MR solution

We set out to test the utility of the MrGrid approach for a challenging MR case where the sequence similarity of available search models is relatively low (<25%). We chose the peroxidase-related protein yp_604910.1 from deinococcus geothermalis (PDB ID 2OYO). A globular all-alpha helical protein, it features two monomers in the ASU. It structure was determined by MAD to 1.52 Å resolution (unpublished). After performing a sequence similarity search using FFAS [2] we identified two potential search models, with sequence identities of 19% (2GMY) and 24% (2O4D). We generated “mixed” models of each (consisting of conserved side chains - all other non alanine/glycine residues truncated at C^ atom) using the SCRWL server [7], as well as poly-Ala models with and without loop regions. This generated a total of 6 search models, which were input into MrGrid. Further screening against 5 RMSD bins generated 30 separate runs of PHASER, looking for both monomers in the ASU. The majority of calculations took >5 hours to complete. In order to assess whether solutions would refine using standard procedures, we input all solutions having Z scores greater than 7.0 into the refinement program ARP/wARP [8] and the automatic building and refinement program ARPP/wARP [9]. From the 7 solutions tested only one solution (Z score = 9.2) produced a substantial decrease in Rfree (initial = 56%, final = 49%) and successfully built to near completion in ARP/wARP.

The value of the MrGrid parallel approach is that it offers considerable time savings, such that potential solutions can be tested relatively quickly. In this particular case, performing the MR calculations allowed all 7 potential solutions to be tested in a standard refinement procedure in a matter of hours. In contrast, this would most likely have taken significantly longer (e.g. days-weeks) using a serial approach, with the sole solution perhaps only being identified by chance after a significant period of time.

This paper reports the development of a new web portal MrGrid, which allows multiple PHASER MR calculations to be performed in parallel over networked computers typically available in protein crystallography laboratory. With a demonstrated capacity to significantly reduce the time taken to screen numerous MR jobs, MrGrid is able to facilitate difficult MR cases. Furthermore, parameters sweeps have the capacity to improve the chances of obtaining MR solutions, thus accelerating the structure elucidation process.

Availability and Future Directions

MrGrid is freely available from http://code.google.com/p/mrgrid/. There are currently efforts to extend MrGrid to non-Apple computing resources, for example using the CONDOR project (http://www.cs.wisc.edu/condor/). In addition, we are also investigating ways of implementing automatic post MR model refinement to provide an automatic method of validation.

Acknowledgments

We thank Ruby Law, Michelle Dunstone, Khalid Mahmood and Randy Read for helpful discussions.

Author Contributions

Conceived and designed the experiments: JWS AMB. Performed the experiments: JWS MAB. Analyzed the data: JWS AMB. Contributed reagents/materials/analysis tools: MAB CFR SGA JCM JWJG DA. Wrote the paper: JWS AMB.

References

1. Abeciau SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
2. Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res 33: W284–286.

Figure 3. Graph depicting the linear relationship between the numbers of jobs submitted to the Xgrid and the respective speed up values. Speed-up is calculated by dividing linear run time by MrGrid total run time. Linear run time is defined as the sum of the run times of all jobs (job1_runtime + job2_runtime + jobN_runtime). MrGrid total run time is defined as the time difference between the start of the first job and the end of the last job (jobN_finish - job1_start). The linear run time is intended to provide an estimation of how long jobs would take to run synchronously on one computer. r^2 represents the goodness of fit of the linear regression line to the data points, y is the intercept on the y axis.

doi:10.1371/journal.pone.0010049.g003

Table 3. Specifications of the Xgrid resource utilized during this study.

Machine #	Machine type	Operating System	Processors (GHz)	RAM (GB)
1	G4 iMac	OS X 10.5.2	1.42	1
2	G5 iMac	OS X 10.4.11	2	2
3	Intel iMac	OS X 10.4.11	(2x) 2.16	2
4	G4 MacMini	OS X 10.5.1	1.42	1
5	Intel iMac	OS X 10.4.11	(2x) 2.16	2
6	Intel Quad core Duo	OS X 10.4.11	(8x) 3	8
7	Intel MacBook	OS X 10.4.11	(2x) 2	2
8	G5 iMac	OS X 10.4.11	(2x) 2	2
9	G5 iMac	OS X 10.5.2	(2x) 2	2
10	Intel iMac	OS X 10.4.11	(2x) 1.83	2
11	G5 iMac	OS X 10.4.11	1.8	2
12	Intel iMac	OS X 10.4.11	(2x) 2	2
13	Intel iMac	OS X 10.5.1	(2x) 2.4	2
Total			65.54	30
3. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, et al. (2007) Phaser crystallographic software. J Appl Crystallogr 40: 658–674.
4. CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D50: 760–763.
5. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540.
6. Ito K, Azai R, Fusatomi E, Kamo-Uchikubo T, Kasuguchi S, et al. (2006) Crystal structure of the conserved protein TTHA0727 from Thermus thermophilus HB8 at 1.9 Å resolution: A CMD family member distinct from carboxymuconolactone decarboxylase (CMD) and AhpD. Protein Sci 15: 1187–1192.
7. Canutescu AA, Shelenkov AA, Dunbrack RL, Jr. (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12: 2001–2014.
8. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255.
9. Morris RJ, Perrakis A, Lamzin VS (2003) ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol 374: 229–244.