Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Prevention and Rehabilitation

The effect of aerobic exercise on immune biomarkers and symptoms severity and progression in patients with COVID-19: A randomized control trial

Ayman A. Mohamed a, b, Motaz Alawna a, c, *

a Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
b Department of Basic Sciences, Faculty of Physical Therapy, Beni-Suef University, Beni Suef, Egypt
c Department of Physiotherapy and Rehabilitation, Faculty of Allied Medical Sciences, Arab American University, Jenin, Palestine

Article info

Article history:
Received 22 December 2020
Received in revised form 9 July 2021
Accepted 31 July 2021

Keywords:
COVID-19
Aerobic exercise
Aerobic capacity
Immune biomarkers
Immune system

Abstract

Background: The World Health Organization in March 2020 has announced that COVID-19 is a world pandemic because the number of infected cases increases rapidly. However, there are several available vaccines, their protection is limited to a certain period. Thus, the role of modalities that improve immune functions should be performed to counter COVID-19 viral load and decrease mortality rates.

Objective: To investigate the effect of aerobic exercise on immune biomarkers, disease severity, and progression in patients with COVID-19.

Design: A randomized controlled study.

Participants: Thirty patients with COVID-19 participated in this study. Participants’ age ranged from 24 to 45 years old. Participants had a mild or moderate COVID-19. Participants were assigned randomly into two groups, exercise and control groups. There were two main dependent variables including blood immune markers and severity of respiratory symptoms.

Interventions: All participants performed 2 weeks of moderate-intensity aerobic exercise for 40 min/session, 3 sessions/week. The measurements were performed at baseline, and after 2-weeks.

Results: At baseline measurements, there were non-significant differences between both groups in the Wisconsin scale total score, Leucocytes, Lymphocytes, Interleukin-6, Interleukin-10, Immunoglobulin-A, and TNF-α (P > .05). After the intervention, the Wisconsin scale (patient-oriented illness-specific quality-of-life) total score significantly decreased in the intervention group (P < .05); while, Leucocytes, Lymphocytes, and Immunoglobulin-A significantly increased in the intervention group (P < .05).

Conclusion: The current study indicated that 2 weeks of moderate-intensity aerobic exercise decreased the severity and progression of COVID-19 associated disorders and quality of life. Also, a 2-weeks of aerobic exercise positively affected immune function by increasing the amounts of Leucocytes, Lymphocytes, Immunoglobulin A.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

At the end of 2019, a series of unknown-cause pneumonia cases have appeared in Wuhan (Hubei, China) (Lu et al., 2020). A lower respiratory tract deep analysis revealed that the cause of this pneumonia was due to a novel virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Huang et al., 2020) or (COVID-19). The World Health Organization in March 2020 has announced that COVID-19 is a world pandemic because the number of infected cases increased rapidly (WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19 - 11 March 2020, n.d.). Until the 27th of October 2020, according to WHO, there were approximately 42, 966, 344 confirmed cases of COVID-19, with 1,152,604 deaths (WHO Coronavirus Disease (COVID-19) Dashboard, n.d.; World Health Organization (WHO), 2020).

COVID-19 is a type of coronaviruses with an enveloped RNA. Its RNA is considered the largest known RNA genomes-30-32 kb-with a 50-cap structure and 30-poly-A tail (Di Gennaro et al., 2020; Guan et al., 2020). The median age of COVID-19 infected individuals is 47
Aerobic exercise produces an immediate enhancement in immune functions (ALAWNA et al., 2021; Amro et al., 2021; Mahmoud Mohamed and Alawna, 2020; Mohamed et al., 2020; Mohamed and Alawna, 2020, 2021), and this might play a major role in the virus entrance. IgA can neutralize the COVID-19 virus earlier to its infection in humoral immunity and it is the most critical immunoglobulin to fight viruses in the respiratory and digestive systems at the point of virus entrance. IgA can neutralize the COVID-19 virus earlier to its reaching and binding to epithelial cells (Chao et al., 2020). Thus, recent immunotherapy strategies try to obtain high serum virus-specific immunoglobulins to neutralize the virus through an active increase of host immune reaction (active immunization) or passive increase of these levels by plasma from recovered patients (Chao et al., 2020).

Aerobic exercise produces an immediate enhancement in immune functions (ALAWNA et al., 2021; Amro et al., 2021; Mahmoud Mohamed and Alawna, 2020; Mohamed et al., 2020; Mohamed and Alawna, 2020, 2021), and this might play a major role in the treatment and prevention of COVID-19 (Dixit, 2020). This can be produced through four main mechanisms: 1) It increases the number of immune markers including, neutrophils, monocytes, T-lymphocytes, and macrophages which are crucial elements that play a major role in human defense against infections (Gonçalves et al., 2020; Li and Cheng, 2007; G. Lippi et al., 2010; Giuseppe Lippi et al., 2014; Lira et al., 2017; Reis Gonçalves et al., 2012). 2) It helps to increase the number of serum immunoglobulins (IgA, IgM, IgG), which plays a major role against lung infections, especially IgA (Cunningham-Rundles, 2008; Hines et al., 1996; G. Mohamed and Taha, 2016; Rodríguez et al., 2005). 3) It helps to regulate the level of C-reactive proteins by producing a short-term minor elevation to help in fighting lung infections (De Gonzalo-Calvo et al., 2015; Marklund et al., 2013; B. K. Pedersen and Hoffmann-Goetz, 2000), and a long-term reduction to help in inhibiting any reduction in lung functions (Okita et al., 2004; Zheng et al., 2019). 4) It reduces anxiety and depression which can improve immune functions through an autonomic modulation (Broman-Fulks and Storey, 2008; Chan et al., 2019; Crabbé et al., 2007; Hogan et al., 2013; Marshall, 2011; Nabkasorn et al., 2006; Reed and Buck, 2009).

Several studies have shown the protective and curative roles of aerobic exercise in lung infections. Barrett et al. (2018) investigated the effect of aerobic exercise on the prevention of acute respiratory infections in patients with an acute respiratory infection (MEPARI-2). They found that aerobic exercise significantly decreased the episodes, duration, and severity of infections. They also observed that aerobic exercise significantly increased serum interleukin-8 and neutrophils. Toledo et al. (2012) studied the effects of 24-weeks mild aerobic exercise on the incidence of pulmonary diseases in rodents. They used the reactive oxygen species as an indicator of the initiation of lung infections. They found that mild aerobic exercise decreased reactive oxygen species concentration in the bronchoalveolar lavage fluid in rodents; which is very important to inhibit or reduce the progression of pneumonia and acute respiratory distress syndromes commonly develop with lung infections (Toledo et al., 2012).

COVID-19 highly spreads across the world and the development of an effective treatment against its COVID-19 derivatives might take a long period, thus the role of the modalities that improve immune functions should be performed to counter COVID-19 viral load and decrease its mortality rates. To the best of our knowledge, no study investigated the effect of aerobic exercise on patients with COVID-19. Thus, this study aimed to investigate the effect of aerobic exercise on immune biomarkers and disease severity and progression in patients with COVID-19.

2. Method

2.1. Study design

A pilot randomized controlled design was used. Each participant was asked to sign an informed consent earlier to participating in this study. This study was approved by the ethics committee of the School of Health Sciences, Istanbul Gelsim University, Turkey. Patients were recruited from April 2020 to June 2020. The participants were collected through reviewing the Turkish hospital's data in Istanbul and persons who were diagnosed with COVID-19 have been contacted with a phone call to ask them for their willingness to participate in this study. The participants, who accepted the participation, were interviewed through video calls using Zoom App to discuss study procedures with them. The participant who accepted to engage in this study was visited by a researcher at home while they are in the quarantine, at this visit the patients signed the consent form, and blood samples were taken. All participants had a medical clearance and permission to perform the aerobic exercise from their physicians (the physician who supervised and diagnosed the patient with COVID-19). The clinical protocol of this study was registered at https://www.clinicaltrials.gov/ platform and this registration number NCT04581291.

2.2. Participants' recruitments

We conducted a priori power test to determine the suitable sample size for our study. The G*POWER program (ver. 3.1.9.2, Heinrich-Heine-University, Düsseldorf, Germany) was used. The criteria introduced to the program included a MANOVA test using 2 groups, 2 measurements, a power level of 80%, a significance level of 0.05, and medium effect size ($d = 0.25$) (Faul et al., 2007). Based on the aforementioned assumptions, the total sample size needed for this study was 30 patients. A minimum power of 80% or more should be used because it is acceptable in most studies (Kadam and Bhalerao, 2010). The flow of participants throughout the study is shown in Fig. 1.

Thirty patients with COVID-19 participated in this study. Participants’ age ranged from 24 to 45 years old. The inclusion criteria included that the patient had a recent mild or moderate COVID-19 with no or low-grade fever 99.5–100.94 °F (37.5–38.3 °C) (Affronti et al., 2010; Zhuang et al., 2020). Mild COVID-19 included that the patient had symptoms of acute upper respiratory tract infection (fever, cough, myalgia, runny nose, fatigue, sore throat, sneezing) or gastrointestinal symptoms (nausea, vomiting, abdominal pain,
diarrhea). Moderate grade of COVID 19 included that the participant had pneumonia (cough, frequent fever) with no obvious hypoxemia, the presence of lesions on chest CT (Yuki et al., 2020). The exclusion criteria included that patient was not hospitalized and had high-grade fever <100.94 °F (<38.3 °C) or other chronic diseases such as heart problems, hypertension, or diabetes. Women who were using contraceptives were excluded because contraceptives decrease immune functions and might affect the subjectivity to autoimmune disorders with marked increases in risk for various autoimmune disorders (Williams, 2017).

2.3. Evaluative procedures

There were two main dependent variables including blood immune markers and severity of respiratory symptoms. These measurements were collected at the baseline and 24 h after the end of the exercise program (two weeks).

A lab technician was asked to visit the patient at home (quarantine). The lab technician wore special protective equipment recommended by WHO (WHO, 2020a; World Health Organization (WHO), 2020). Two visits were performed, one at the beginning of the research procedures, and the last visit at the 24 h after the end of the exercise program (two weeks). The technician collected blood and saliva samples to be analyzed.

3. Blood sample collection

Blood samples were taken in the morning (8:30–9:30) by collecting 10 mL of venous blood. Participants were asked to stop any exercise for at least 24 h before blood sampling. Also, participants were asked to stop eating any food or liquid from 10:00 p.m. the prior day of measurement. Samples were collected in vacutainer tubes with sodium ethylenediamine-nitroacetic acid (EDTA) for plasma separation. The blood was centrifuged at 3000 rpm for 15 min at 4 °C. We measured total lymphocytes, leukocytes, and monocytes from total-blood samples utilizing a multichannel hemocyte analysis system (SE-9000; Sysmex Corp, Hyogo, Japan) (Lira et al., 2017; Shimizu et al., 2011). The concentrations of IL-6, IL-10, and TNF-α were analyzed by using ELISA commercial kits assay (R&D Systems, Minneapolis, USA) following the manufacturer’s instructions for analysis on an EZ-Reader microplate reader at 450 nm (de Souza et al., 2018; Lira et al., 2017). The samples were stored at −20 °C for further analysis.

4. Saliva sample collection

A saliva sample was collected to measure the salivary IgA-S concentration. The saliva sample was taken without any saliva stimulation methods. The participant was asked to rinse their mouths with distilled water and to evacuate their mouth just before the collection. We used the passive drainage method for the collection, in which the participant slightly flexed their head forward to allow the saliva to move into a sterilized and pre-weighed Falcon tube for 5 min. The weight of tubes was measured again following the collection to estimate the volume and the saliva flow rate. The tubes were weighted with 0.1 mg accuracy with proposed saliva density as 1.0 g mL⁻¹. The samples were stored at −80 °C for further analysis. The S-IgA concentration was analyzed utilizing commercial ELISA kits (IgA Salivary, DRG, Minneapolis, USA). The IgA-S secretion rate (ng/min) was measured by multiplying the whole concentration of IgA-S present in the mucosal surface per unit of time by the saliva flow rate (mL/min) (de Souza et al., 2018).
5. Wisconsin upper respiratory symptom survey

The Wisconsin Upper Respiratory Symptom Survey (WURSS) is an empirically derived patient-oriented illness-specific quality-of-life evaluative outcomes instrument (The Wisconsin Upper Respiratory Symptom Survey Is Responsive, Reliable, and Valid) (Barrett et al., 2018). The development process of this survey was described in details by Barrett et al. (The Wisconsin Upper Respiratory Symptom Survey (WURSS); A New Research Instrument for Assessing the Common Cold - PubMed) (Barrett et al., 2018). WURSS-24 is designed to evaluate the negative effect of acute upper respiratory infection, presumed viral (the common cold). It is a validated and reliable measurement method for evaluating the change in the quality of life over time including influenza-like illness symptoms of headache, body aches, and fever (The Wisconsin Upper Respiratory Symptom Survey Is Responsive, Reliable, and Valid; Barrett et al., 2018). The participants were asked to fill the survey before starting the study and after 2 weeks.

5.1. Treatment procedures

Participants were assigned randomly into two groups, exercise and control groups. All participants in both groups followed the WHO guidelines of quarantine (WHO, 2020a) and used standardized medications given by the physician according to the Turkish Ministry of Health, including the Hydrocortisone Sulphate 200 Mg Film Tablet (Plaquenil 200 Mg Film Tablet). The dose was 2 times/day, 200Mg/time, for 5 days (COVID-19 Tedavi, n.d.). Besides, the exercise group performed moderate-intensity aerobic exercise for 40 min/session, 3 sessions/week, for 2 weeks.

Participants in the exercise group performed a two weeks aerobic exercise program. The exercise program consisted of walking/running on a treadmill or bicycling on a stationary bicycle. Each session is composed of a 5-min warm-up slow walking or bicycling. Then the main intervention consisted of 30 min of moderate-intensity aerobic exercise (walking/running or bicycling). Lastly, a 5-min cool-down exercise (walking/running or bicycling). The exercise intensity was 60–75% of the predicted MHR (calculated as MHR = 210–age).

The Borg Rating of Perceived Exertion (RPE) scale was used to control the exercise intensity (The Borg Rating of Perceived Exertion (RPE) Scale, 2017). RPE is a reliable and validated scale to allow individuals to monitor and guide the exercise intensity by rating their level of exertion during exercise (Crawford et al., 2018). After explaining the scale in detail for patients, we asked them to keep the exertion rating level between 12 and 14 (light – somewhat hard) on the Borg Scale, which suggests that the patient is exercising on a moderate exercise level (The Borg Rating of Perceived Exertion (RPE) Scale, 2017). The exercise was stopped if the patient experienced any of the following signs and symptoms: chest pain, shortness of breath, fainting, Claudication, fatigue, ataxia, dizziness, cyanosis, or pallor (Albouaini et al., 2007).

5.2. Data analysis

Participants’ files were encoded by a college administrator who did not participate in this study (Taylor and Murphy, 2010). The intention-to-treat and general linear models of analysis were followed. A multivariate analysis for repeated measurements (MANOVA) test was followed to measure within each group interactions, while an independent MANOVA test was followed to measure between-group comparisons. The outcome measures were measured at the baseline, and 24 h after two weeks of the exercise program. All results were compared to the baseline results. In this study, the baseline characteristics of patients in the intervention and control groups were compared using Pearson chi-squared tests for categorical variables, involving gender, previous lung infection history. A t-test was followed for continuous variables of age and body mass index (BMI). The significance level was set at P < .05. The SPSS (ver. 25, IBM Inc., Armonk, NY, USA) was used for statistical analysis.

5.3. Results

At the baseline, there were non-significant differences between the groups in age, height, and BMI, as (P > .05). The measurement values were normally distributed in both groups (Shapiro-Wilk test, P > .05) (Rochon et al., 2012). The demographic and physical characteristics of participants at the baseline are shown in Table 1.

Between-group comparisons showed that at baseline measurements, there were non-significant differences between groups in Wisconsin scale total score, Leucocytes, Lymphocytes, Interleukin-6, Interleukin-10, Immunoglobulin-A, and TNF-α (P > .05). Wisconsin scale total score significantly decreased in the intervention group when compared to the control group after two weeks of intervention (P < .05). Leucocytes, Lymphocytes, and Immunoglobulin-A significantly increased in the intervention group in comparison to the control group after two weeks of intervention (P < .05). Interleukin-6, Interleukin-10, and TNF-α showed non-significant differences between both groups after two weeks of intervention (P > .05). The between-group comparisons are shown in Table 2 and Fig. 2.

Within-group comparisons showed that the Wisconsin scale total score significantly decreased in both groups (control and intervention) after two weeks of treatment (P < .05). Leucocytes, Lymphocytes, and Interleukin-10 significantly increased in both groups after two weeks of treatment (P < .05). After two weeks of treatment, Interleukin-6, and Immunoglobulin-A significantly increased in the intervention group (P < .05), while it showed non-significant differences in the control group (P > .05). On the other hand, TNF-α showed non-significant differences in the intervention group (P > .05), while it increased significantly in the control group (P < .05). Within-group comparison results are shown in Table 3.

6. Discussion

This study investigated the effect of performing a moderate-intensity aerobic exercise on immune biomarkers, the severity of symptoms, and disease progression in patients with COVID-19. This study is unique as it is the first clinical trial that demonstrates that aerobic exercise could be an adjunct intervention for patients with COVID-19 to enhance our immunity to counter COVID-19 infection.

Regarding the severity and progression of upper respiratory tract infection symptoms, the Wisconsin scale total score has been shown to be significantly lower in the intervention group in comparison with the control group. This difference occurred due to

Items	Control group	Intervention group	P
Age (yrs.)	35.25 ± 1.96	44.56 ± 4.25	>.05
Height (cm)	173.4 ± 5.96	176.1 ± 6.01	>.05
BMI	23.95 ± 1.21	24.65 ± 1.31	>.05
Male	7	8	>.05
Female	8	7	>.05
Smoking	3	4	>.05
Non-smoking	12	11	>.05

SD: standard deviation; P: probability; cm: centimeter; yrs: years; and *: significant.
Table 2
Independent measure MANOVA between groups of immune markers and Wisconsin scale between the baseline, and 2 weeks after intervention.

	Baseline					After 2 Weeks				
	MD±SE	95%CI	P	F	Power	MD±SE	95%CI	P	F	Power
Wisconsin scale	3.33±1.96	0.68–7.35	>0.05	2.90	0.38	12.47±1.99	3.39–16.55	<0.01	39.18	1.00
Leucocytes, × 10^9/L	0.07±0.49	0.04–1.08	>0.05	0.02	0.05	1.61±0.51	0.57–2.64	<0.01	10.12	0.87
Lymphocytes, × 10^9/L	0.01±0.07	0.14–0.15	>0.05	0.01	0.05	0.89±0.07	0.75–1.04	<0.01	15.25	1.00
Interleukin-6, pg/mL	0.32±0.22	0.33–0.89	>0.05	0.01	0.05	0.98±0.42	0.47–12.70	>0.05	0.88	0.15
Interleukin-10, pg/mL	0.09±0.04	0.08–0.09	>0.05	0.04	0.05	0.81±0.33	0.08–1.07	>0.05	3.51	0.44
Immunoglobulin A, g/L	0.14±0.15	0.17–0.44	>0.05	0.85	0.14	0.83±0.17	0.48–1.18	<0.01	23.13	0.99
TNF-α	0.31±0.29	0.29–0.90	>0.05	1.10	0.17	0.48±0.31	0.15–1.11	>0.05	2.45	0.33

Fig. 2. Independent measure MANOVA between groups between the baseline and 2 weeks after intervention. WIS: Wisconsin scale, Leuco: Leucocytes, Lymph: Lymphocytes, Int-6: Interleukin-6, Int-10: Interleukin-10, IgA: Immunoglobulin A, TNF: TNF-α, and *: significance. there were significance difference between the intervention group and control group for Wisconsin scale, Leucocytes, Lymphocytes, and Immunoglobulin A.

Table 3
Repeated measure MANOVA of immune markers and Wisconsin scale between the baseline, and 2 weeks after intervention.

	Baseline					After 2 Weeks				
	M±SD	95%CI	P	M±SD	95%CI	P				
Wisconsin scale	110.33±5.41	104.13–116.55	<0.01	10.78±0.82	10.21–11.36	>0.05				
Leucocytes, × 10^9/L	107.00±5.32	91.67–112.34	<0.01	11.25±0.86	10.78–12.31	>0.05				
Lymphocytes, × 10^9/L	5.37±1.37	5.74–6.00	<0.01	2.25±0.39	2.35–2.45	>0.05				
Interleukin-6, pg/mL	22.73±11.53	23.01±11.45	>0.05	2.25±0.39	2.35–2.45	>0.05				
Interleukin-10, pg/mL	23.05±11.60	26.99±11.86	>0.05	2.35±0.39	2.35–2.45	>0.05				
Immunoglobulin A, g/L	6.18±1.23	7.04±1.17	<0.01	2.38±0.42	3.18–0.43	>0.05				
TNF-α	6.09±1.19	6.23±1.19	<0.03	6.18±1.23	7.04±1.17	<0.01				
	2.25±0.39	2.35±0.39	>0.05	2.38±0.42	3.18±0.43	>0.05				

M: Mean, SD: Standard deviation, CI: Confidence interval, P: Probability, and *: Significant.
several mechanisms. First, moderate aerobic exercise significantly increases the activity of neutral killer cells (NK), especially during exercise. NK plays a major role against upper respiratory tract infection which leads to a decrease in the severity and progression of symptoms (De la Fuente et al., 1993; Murphy et al., 2004; Sugiuira et al., 2001). Second, aerobic exercise increases the amount and activity of macrophages (De la Fuente et al., 1993; Murphy et al., 2004; Sugiuira et al., 2001). The increase in macrophages increases respiratory immunity to virus growth, inactivates the extracellular virus, and suppresses virus replication in the respiratory tract, lungs, or adjacent cells (De la Fuente et al., 1993; Murphy et al., 2004; Sugiuira et al., 2001; Wu and Morahan, 1992).

Moreover, salivary immunoglobulin A showed a significant difference between groups to aerobic exercise. Future research should investigate the effect of moderate-intensity aerobic exercise on COVID-19 associated disorders and quality of life. Also, two weeks of aerobic exercise produced a positive effect on the immune system by increasing the amounts of Leucocytes, Lymphocytes, Immunoglobulin A.

8. Clinical application

This study can clinically help in improving the immune functions which can lead to a decrease in the cost of hospitalization. Also, this study helps to enhance the effectiveness of presented COVID-19 vaccines because of increased immune functions. Lastly, this study helps to decrease the suffering of COVID-19 patients by decreasing its associated disorders and mortality rates.

CRediT authorship contribution statement

Ayman A. Mohamed: Visualization, Investigation. Motaz Alawna: Conceptualization, Methodology, Software.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Arslan, M., Ipekci, S.H., Kebapcilar, L., Dogan Dede, N., Kurban, S., Erbay, E., 2014. Effect of aerobic exercise training on MDA and TNF-α levels in patients with type 2 diabetes mellitus. Int. Sch. Res. Notices 1–5. https://doi.org/10.1155/2014/803787. 2014.

Baldacci, S., Zanuso, S., Niccolucci, A., Fernando, F., Cavallio, S., Cardelli, P., Fallucca, S., Alessi, E., Letizia, A., Fallucca, F., Pugliese, G., 2010. Anti-inflammatory effects of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr. Metabol. Cardiovasc. Dis. 20 (8), 608–617. https://doi.org/10.1016/j.numecd.2009.04.015.

Barrett, B., Hayney, M.S., Muller, D., Rakel, D., Brown, R., Ziegers, A.E., Barlow, S., Hayer, S., Barnet, J.H., Torres, E.R., Coe, C.L., 2018. Meditation or exercise for preventing acute respiratory infection (MEPARI-2): a randomized controlled trial. PLoS One 13 (6).https://doi.org/10.1371/journal.pone.0197778.

Broman-Fulks, J.J., Storey, K.M., 2008. Evaluation of a brief aerobic exercise intervention with high intensity exercise reduces the incidence of colds among postmenopausal women. J. Appl. Physiol. 119 (2), 124–134. https://doi.org/10.1152/japplphysiol.00256.2007.

Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S.C., Di Napoli, R., 2020. Features, evaluation and treatment coronavirus (COVID-19). In: StatPearls. StatPearls Publishing, https://www.ncbi.nlm.nih.gov/pubmed/32195603.

Chao, Y.X., Rottschutz, E.K., 2020. The role of IgA in COVID-19. Brain. Behav. Immunol. 87, 182–183. https://doi.org/10.1016/j.bbi.2020.05.057.

Chubak, J., McIntiernan, A., Sorensen, B., Wener, M.H., Yasui, Y., Velasquez, M., Wood, B., Rajan, K.B., Wetmore, C.M., Potter, J.D., Ulrich, C.M., 2006. Moderate-intensity exercise reduces the incidence of colds among postmenopausal women. Am. J. Med. 119 (11). https://doi.org/10.1016/j.amjmed.2006.06.033.

COVID-19 Tedavi. (n.d.). Retrieved July 11, 2020, from https://covid19bilgi.saglik.gov.tr/

Crabbe, J.B., Smith, J.C., Dishman, R.K., 2007. Emotional and metabolic factors in exercise participation. J. Sports Sci. Med. 8 (4).http://www.jssm.org.

Cunningham-Rundles, C., 2009. Lung disease, antibodies and other unresolved issues in immune globulin therapy for antibody deficiency. Clin. Exp. Immunol. 157 (Suppl. 1), 12–16. https://doi.org/10.1111/j.1365-2249.2009.03952.x.

Di Giorgio, F., Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., Smith, L., 2020. Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. Int. J. Environ. Res. Public Health 17 (8). https://doi.org/10.3390/ijerph170828090. MDPI AG.

Di Gennaro, F., Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., Smith, L., 2020. Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. Int. J. Environ. Res. Public Health 17 (8). https://doi.org/10.3390/ijerph170828090. MDPI AG.

Donald, R.K., 2007. Emotional and metabolic factors in exercise participation. J. Sports Sci. Med. 8 (4).http://www.jssm.org.

Ekblom, B., Kadi, F., 2013. Extensive in vivo exercise testing in horses. J. Vet. Intern. Med. 10 (10), 280–289. https://doi.org/10.1111/vim.2002.13.6.

Ernst, E., Giannitrapani, L., Montalto, G., 2010. Low-grade fever: how to distinguish organic from non-organic forms. Int. J. Clin. Pract. 64 (3), 316–321. https://doi.org/10.1111/j.1742-1241.2009.02256.x.

Fani, M., D’Amore, A., Chafar, S., 2020. Comparison of the COVID-19 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virol. https://doi.org/10.2217/fvl-2020-0050.

Faul, F., Erdfelder, E., Lang, A.G., Buchner, A., 2007. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39 (2), 175–191. https://doi.org/10.3758/BF03193146.

Furhangaalmei, N., Zehsaz, F., Tiidus, P.M., 2009. The effect of tapering period on plasma pro-inflammatory cytokine levels and performance in elite male cyclists. J. Sports Sci. Med. 8 (4). http://www.jsm.org.

Giannitrapani, L., Montalto, G., 2010. Low-grade fever: how to distinguish organic from non-organic forms. Int. J. Clin. Pract. 64 (3), 316–321. https://doi.org/10.1111/j.1742-1241.2009.02256.x.

Gonen, M.S., 2014. Effect of aerobic exercise training on MDA and TNF-α levels in patients with type 2 diabetes mellitus. Int. Sch. Res. Notices 1–5. https://doi.org/10.1155/2014/803787. 2014.

Hayer, S., Barnet, J.H., Torres, E.R., Coe, C.L., 2018. Meditation or exercise for preventing acute respiratory infection (MEPARI-2): a randomised controlled trial. PLoS One 13 (6).https://doi.org/10.1371/journal.pone.0197778.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Chen, Z., Yu, X., Jia, Y., Wei, Y., Wu, W., Xie, Y., Xin, W., Li, H., Liu, M., et al., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5. Kada, K., Bhalaria, S., 2020. Sample size calculation. Int. J. Ayurveda Res. 1 (1), 55–57. https://doi.org/10.9763/j.1939-1676.1996.289.

Kadoglou, N.P.E., Iliadis, F., Angelopoulou, N., Perrea, D., Ampatzidis, G., Liapis, C.D., Alevizos, M., 2007. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur. J. Prev. Cardio. 14 (6), 837–843. https://doi.org/10.1016/j.eurjoc.2007.02.063.c.

Khan, G.L., Chung, S., Chu, W., 2014. Effect of aerobic exercise training in horses. J. Vet. Intern. Med. 10 (10), 280–289. https://doi.org/10.1111/vim.2002.13.6.

Kubicki, J.M., Zaloga, S., 2007. Pharmacokinetics and pharmacodynamics of corticosteroids. J. Allergy Clin. Immunol. 119 (5), 1392–1402. https://doi.org/10.1016/j.jaci.2007.04.027.

Kubicki, J.M., Zaloga, S., 2007. Pharmacokinetics and pharmacodynamics of corticosteroids. J. Allergy Clin. Immunol. 119 (5), 1392–1402. https://doi.org/10.1016/j.jaci.2007.04.027.

Liptak, G., Breathnach, S., Schach, K., 2009. Viral loads of SARS-CoV, MERS-CoV and SARS-CoV-2 in respiratory secretions in immune globulin therapy for antibody de-
Mohamed, A.A., Alawna, M., 2020. Considerations for Quarantine of Individuals in the Context of Containment for Coronavirus Disease (COVID-19). WHO, 2020b. Rational Use of Personal Protective Equipment for Coronavirus Disease 2019 (COVID-19) and Considerations during Severe Shortages. WHO, 2020a. Considerations for Quarantine of Individuals in the Context of Containment for Coronavirus Disease (COVID-19). W.H.O. Director-General’s opening remarks at the media brieﬁng on COVID-19 – 11 March 2020. (n.d.). Retrieved June 28, 2020, from https://www.who.int/dgho/director-general-s-opening-remarks-at-the-media-brieﬁng-on-covid-19-11-march-2020.en.pdf

Izumi, T., Inoue, N., Sano, H., Hase, K., Yagi, H., Saito, H., Takahashi, T., Tanaka, S., Tsuchiya, T., Oka, H., Kato, N., 2002. Effects of regular physical activity on blood mononuclear cell proliferative responses and subsets is mediated by epinephrine. Int. J. Sports Med. 15 (3), 108–114. https://doi.org/10.1055/s-2002-10459.

Tvede, N., Kappel, M., Klarhund, K., Duhn, S., Halkjaer-Kristensen, J., Kjaer, M., Galbo, H., Pedersen, B.K., 2004. Exercise and the immune system: mechanisms of action. Int. J. Sports Med. 15 (2), 513–515. https://doi.org/10.1055/s-2004-77957.

Pedersen, B.K., Hoffman-Goetz, L., 2000. Exercise and the immune system: regulation, integration, and adaptation. Physiol. Rev. 80 (3), 1055–1081. http://dx.doi.org/10.1152/physrev.2000.80.3.1055.

Reed, J., Buck, S., 2009. The effect of regular aerobic exercise on positive-activated a-eta: a meta-analysis. Psychol. Sport Exerc. 10 (6), 581–594. https://doi.org/10.1016/j.psychsport.2008.10.009.

Reid, M.R., Drummond, P.D., Mackinnon, L.T., 2001. The effect of moderate aerobic exercise training on natural killer cells and acute upper respiratory tract infections. Int. J. Sports Med. 21 (6), 467–473. https://doi.org/10.1055/s-2001-104853.

Okita, K., Nishijima, K., Murooka, T., Naka, T., Morita, N., Ito, K., Iii, K., Kawaguchi, H., Kibatake, A., 2004. Can exercise training with weight loss lower serum C-reactive protein levels? Arterioscler. Thromb. Vasc. Biol. 24 (10), 1868–1873. https://doi.org/10.1161/01.ATV.0000140199.14930.32.

Pedersen, B., 1991. Influence of physical activity on the cellular immune system: mechanisms of action. Int. J. Sports Med. 12 (5), 523–529. https://doi.org/10.1055/s-2002-77957.

Pedersen, B.K., Hoffman-Goetz, L., 2000. Exercise and the immune system: regulation, integration, and adaptation. Physiol. Rev. 80 (3), 1055–1081. http://dx.doi.org/10.1152/physrev.2000.80.3.1055.