Identification of positively selected genes in human pathogenic treponemes: Syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution

Denisa Maděranková¹, Lenka Mikalová², Michal Strouhal², Šimon Vadják¹, Ivana Kuklová³, Petra Pospíšilová², Lenka Krbková⁴, Pavlína Košťová¹, Ivo Provazník¹, David Šmajs²*¹

¹ Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic, ² Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic, ³ Department of Dermatology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic, ⁴ Department of Children’s Infectious Diseases, Faculty of Medicine and University Hospital, Masaryk University, Brno, Czech Republic

* dsmajs@med.muni.cz

Abstract

Background
Pathogenic treponemes related to Treponema pallidum are both human (causing syphilis, yaws, bejel) and animal pathogens (infections of primates, venereal spirochetosis in rabbits). A set of 11 treponemal genome sequences including those of five Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14, Chicago), four T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), one T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPeC) were tested for the presence of positively selected genes.

Methodology/Principal findings
A total of 1068 orthologous genes annotated in all 11 genomes were tested for the presence of positively selected genes using both site and branch-site models with CODEML (PAML package). Subsequent analyses with sequences obtained from 62 treponemal draft genomes were used for the identification of positively selected amino acid positions. Synthetic biotinylated peptides were designed to cover positively selected protein regions and these peptides were tested for reactivity with the patient’s syphilis sera. Altogether, 22 positively selected genes were identified in the TP genomes and TPA sets of positively selected genes differed from TPE genes. While genetic variability among TPA strains was predominantly present in a number of genetic loci, genetic variability within TPE and TEN strains was distributed more equally along the chromosome. Several syphilitic sera were shown to react with some peptides derived from the protein sequences evolving under positive selection.
Conclusions/Significance

The syphilis-, yaws-, and bejel-causing strains differed relative to sets of positively selected genes. Most of the positively selected chromosomal loci were identified among the TPA treponemes. The local accumulation of genetic variability suggests that the diversification of TPA strains took place predominantly in a limited number of genomic regions compared to the more dispersed genetic diversity differentiating TPE and TEN strains. The identification of positively selected sites in \textit{tpr} genes and genes encoding outer membrane proteins suggests their role during infection of human and animal hosts. The driving force for adaptive evolution at these loci thus appears to be the host immune response as supported by observed reactivity of syphilitic sera with some peptides derived from protein sequences showing adaptive evolution.

Author summary

In the genus \textit{Treponema} there are several human and animal pathogens that include the causative agent of syphilis (\textit{Treponema pallidum} ssp. \textit{pallidum}; TPA), the causative agent of yaws (\textit{T. p. ssp. pertenue}; TPE), and the causative agent of endemic syphilis (\textit{T. p. ssp. endemicum}; TEN). \textit{T. paraluisleporidarum} causes venereal spirochetosis in rabbits. We used whole genome sequences of 11 treponemal strains together with additional 62 draft genomic data to identify genes evolving under positive selection. The identified genes evolving under positive selection partly overlapped with the genes previously reported as recombinant and were found to be different in treponemal subspecies. Since both genetic recombination and positive selection could allow a survival of pathogenic bacteria despite the human immune response, identification of such genes could predict the major antigens recognized by the human immune system and also identify the most suitable components for development of an anti-treponemal vaccine.

Introduction

Adaptive evolution including positive selection plays crucial roles in the evolution of bacterial human pathogens and both have been well documented on a genome-wide scale in a number of bacterial genera including \textit{Escherichia}, \textit{Helicobacter}, \textit{Neisseria}, \textit{Listeria}, \textit{Salmonella}, \textit{Streptococcus}, \textit{Campylobacter}, and \textit{Actinobacillus} [1–8].

Pathogenic treponemes are both human and animal pathogens. Human pathogens include \textit{Treponema pallidum} ssp. \textit{pallidum} (TPA), the causative agent of syphilis, \textit{T. p. ssp. pertenue} (TPE, the causative agent of yaws), and \textit{T. p. ssp. endemicum} (TEN, the causative agent of bejel) while animal pathogens include TPE causing non-human primate infections [9–12], and \textit{T. paraluisleporidarum} ecovar Cuniculus (TPeC; formerly denoted as \textit{Treponema paraluiscuniculi}), the causative agent of venereal spirochetosis in rabbits, and \textit{T. paraluisleporidarum} ecovar Lepus, which infects hares [13–15]. Although the recent work of Edmondson \textit{et al.} [16] reported successful long-term cultivation of \textit{T. pallidum} in a tissue culture system, most of the data on treponemal genetics comes from the whole genome sequencing studies [17,18].

The above-listed pathogens are monomorphic, i.e., highly similar at the genetic level and all the genomes of these pathogenic treponemes characterized to date share a genetic identity of 98% or higher [17,18]. The group of human pathogens (TPA, TPE, TEN) are even more
related sharing a genetic identity over 99.7% \([17,19,20]\). Currently, 14 complete treponemal genomes have been published including six TPA genomes, six TPE genomes, one TEN genome, and one TPeC genome \([12,19–29]\). In addition, 23, 25, 8, and 6 draft whole genome sequences of treponemal strains or isolates were published recently by Arora \textit{et al.} \([30]\), Pinto \textit{et al.} \([31]\), Sun \textit{et al.} \([32]\), and Marks \textit{et al.} \([33]\), respectively.

The genomes of pathogenic treponemes related to \textit{T. pallidum} contain no prophages or insertion sequence-elements \([21,34]\), or plasmids \([35]\). Therefore, recombination is expected to be quite infrequent among these treponemes due to a lack of mobile genetic elements \([21]\). However, traces of both intragenomic DNA recombinations via gene conversion \([36–38]\) and intergenomic homologous recombination after DNA horizontal gene transfer have been described \([20,25]\). In addition, traces of positive selection have been detected in previously published papers including TPA and TPE comparisons \([19]\), comparisons within TPA strains \([39]\), and detailed intrastrain analysis \([40]\). However, no comprehensive analysis of positively selected loci in the genomes of pathogenic treponemes has been performed to date.

Despite the fact that treponemes related to \textit{Treponema pallidum} are monomorphic bacteria with extremely low level of genetic diversity \([18]\), it has been shown that human immunity does not protect against different subspecies and not even against different syphilis strains \([41]\). Therefore, divergent genes encoding differences in proteomes of individual treponemal strains and subspecies are likely of importance for development of syphilis vaccine.

In this communication, the whole genome sequences of 11 treponemal strains were systematically analyzed for the presence of positive selection. The identified genes were further reanalyzed relative to all sequences available in 62 draft genomes published to date. The causative agents of syphilis, yaws, and bejel differed in sets of positively selected genes. Moreover, several synthetic peptides covering positively selected protein regions were found to interact with syphilitic sera.

Materials and methods

Strains used in this study

A set of 11 treponemal genomic sequences was examined in this study and included genomes of five TPA strains (Nichols, DAL-1, Mexico A, SS14, Chicago B), four TPE strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), one TEN strain (Bosnia A), and one strain of TPeC (Cuniculi A). An overview of the complete genome sequences used is shown in Table 1. Subsequent analysis of selected genes was performed on additional 62 draft genomes (Arora \textit{et al.} \([30]\); Pinto \textit{et al.} \([31]\); Sun \textit{et al.} \([32]\); GenBank genome TPA sequences [UW074B, UW189B, UW228B, UW254B, UW391B] and TEN Iraq B [CP032303.1]). The overall algorithm is shown in Fig 1.

Identification of genes under adaptive evolution

The TPE Samoa D was used as a reference genome, and all 1068 orthologous genes were extracted from the other 10 complete genomes using given annotation coordinates. The orthologous sequences from the complete genomes were aligned at the codon level using Matlab R2013a software and the Bioinformatics Toolbox. Only genes where at least three nonsynonymous mutations at different sites occurred were further analyzed with respect to the presence of positive selection. A BLAST search was used to determine orthologous sequences in the draft genomes. These sequences were aligned in Matlab at the nucleotide level because large number of ambiguous sites precluded proper automatic ORF localization. Then the sequences from the draft genomes were scanned for nucleotide differences. After filtering sites with unknown nucleotides, insertions, and deletions, only orthologs with more than five nucleotide
differences at different sites were analyzed further. These orthologs were aligned with the corresponding genes from the complete genomes to determine the ORF and identify the number of nonsynonymous mutations. At the same time, the TPeC orthologs were excluded in this step due to frequent sequential diversity and due to the lack of pathogenicity of TPeC to humans. The removal of the TPeC orthologs did not change the number of detected positively selected genes. Compared to an analysis of whole genomes, no new locus with more than three nonsynonymous mutations at different sites was identified during the analysis of draft genomes.

Table 1. Treponemal genomes analyzed in this study.

TP strain	Place and year of isolation	Reference	GenBank Accession number, Genome sequence reference
TPA Nichols	Washington, D.C., USA; 1912	[42]	CP004010.2, [21,26]
TPA DAL-1	Dallas, USA; 1991	[43]	CP003115.1, [29]
TPA SS14	Atlanta, USA; 1977	[44]	CP000111.1, [24,26]
TPA Mexico A	Mexico City, Mexico; 1953	[41]	CP003064.1, [25]
TPA Chicago	Chicago; 1951	[41]	CP001752, [22]
TPE CDC-2	Akorabo, Ghana; 1980	[45]	CP002375.1, [19]
TPE Gauthier	Brazzaville, Congo; 1960	[46]	CP002376.1, [19]
TPE Samoa D	Apia, Samoa; 1953	[41]	CP002374.1, [19]
TPE Fribourg-Blanc	Guinea; 1966	[9,10]	CP003902.1, [12]
TEN Bosnia A	Bosnia; 1950	[47]	CP007548, [20]
TPeC Cuniculi A	unknown; before 1957	[41]	CP002103.1, [27]

*Additional genome sequences of TPE Ghana-051 and CDC 2575 became available recently [28] and TPA Sea81-4 was published as a whole genome sequence [23].

https://doi.org/10.1371/journal.pntd.0007463.t001

Fig 1. The algorithm used for identification of positively selected genes. The original search for positively selected genes started with identification of gene orthologs with 3 or more nucleotide differences leading to nonsynonymous amino acid replacements. The original search was performed on a set of 11 complete treponemal genomes listed in Table 1. Subsequently, orthologous gene sequences extracted from published treponemal draft genomes were used and the Cuniculi A orthologs were removed due to frequent sequential diversity and due to lack of pathogenicity of TPeC to humans. Orthologs from draft genomes were used when available and positively selected genes were analyzed within treponemal subspecies using branch-site PAML model analysis.

https://doi.org/10.1371/journal.pntd.0007463.g001
For each analyzed gene from the complete genomes, a maximum likelihood phylogenetic tree with 50 bootstrap replicates was constructed using MEGA 6 [48]. Different evolution models (Kimura 2-parameter [49], Tamura 3-parameter [50], and Tamura-Nei [51]) were applied to each gene. The trees of each gene were compared by calculating Robinson-Foulds distances [52] using R software (packages phytools and phangorn) [53]. The comparison showed that the choice of the evolution model did not significantly change the topology of the tree; the Tamura-Nei evolution model was chosen for the construction of all phylogenetic trees.

A calculation of mutational rate ratio ω between two gene sequences was the basis for the positive selection analysis. The ω was calculated as a ratio of nonsynonymous to synonymous mutational rates. The ratio indicates negative purifying selection ($0 < \omega < 1$), neutral evolution ($\omega = 1$), and positive selection ($\omega > 1$) [54]. A set of selected genes from complete genomes was tested relative to positive selection using the maximum likelihood method using the CODEML of the PAML software package [55]. PAML version 4 [56] and its user interface PAMLX [57] were used in our study. For each analyzed gene, its maximum likelihood phylogenetic tree was used as an input tree. The CODEML offers several different codon evolutionary models, and the statistical likelihood ratio test (LRT) was used to compare the codon evolutionary model to the null model. The Bayes empirical Bayes method (BEB) [58] was then used to evaluate the posterior probability of sites considered to have been positively selected.

The CODEML models could produce different results (i.e., a list of sites under positive selection) since they calculate different parameter estimates. Site models allow ω to vary in each site (codon) within the gene. Statistical testing was required for sites with $\omega > 1$. Two pairs of models were predominantly used since their LRTs have low false-positive rates. M1a (nearly neutral evolution) was compared to M2a (positive selection) [58,59] and M7 (beta) was compared to M8 (beta & ω) [60]. Our preliminary testing found that the two model pairs gave the same or very similar results. Therefore we chose to use the M7-M8 model pair. The M7 model is a null model that allows 10 classes of sites with a ω beta-distribution within the interval $0 \leq \omega \leq 1$. Sites with $\omega > 1$ are not allowed. The alternative M8 model adds an eleventh class of sites with $\omega > 1$. Each site was tested to determine the class to which it belongs. The LRT compares twice the log-likelihood difference $2\Delta l = 2(l_1 - l_0)$ between the M7 model (log likelihood value l_0) and the M8 model (log likelihood value l_1) to the χ^2 distribution [61]. If the twice log-likelihood difference is above a critical χ^2 value, then the null model is rejected, and the positive selection is statistically significant.

A considerable disadvantage of the site models is that ω was calculated as an average over all codons of the site. Therefore, the site models are not suitable for the data where ω also varies between lineages. In contrast, the branch-site models search for positive selection in sites and pre-specifies lineages where different rates of ω may occur [62]. Sequences of lineages are a priori divided into a group of foreground lineages where positive selection may occur and group of background lineages where only purifying selection or neutral evolution occurs. We used branch-site model A, which allows four classes of sites and different setups of foreground lineages to be tested depending on the gene phylogeny. In branch-site model A, all lineages under purifying selection with a low value of ω_0 belong to site class 0. Weak purifying selection and neutral evolution with ω_1 near to value 1 are allowed in site class 1. In site class 2a, a proportion of class 0 sites in foreground lineages is under positive selection with $\omega_2 > 1$. Similarly, site class 2b is a proportion of class 1 sites under positive selection with $\omega_2 > 1$. The null model for LRT has $\omega_2 = 1$. Critical values of LRT ($2\Delta l$) are 2.71 at 5% and 5.41 at 1% [63]. The posterior probabilities of suggested sites under positive selection were calculated using the BEB method.

The average pairwise p-distances (APD) and average number of mutations (transitions and transversions), calculated using MEGA-X [64], were used to evaluate genetic diversity. A
pairwise deletion of sites with gaps/missing data was used. The Fisher exact statistical test was used to assess the significance of the changes between average numbers of mutations.

Synthetic peptides and chemiluminescent detection of serological reactions

Synthetic biotinylated peptides, covering protein regions containing positively selected residues, were designed. Peptide synthesis was performed by JPT Peptide Technologies (Berlin, Germany) on a 50–200 nmol scale. The lyophilized peptides were resuspended in TBS buffer (25 mM Tris, 150 mM NaCl, pH = 7.2) at 1 mM concentrations and were stored at −20°C. Prior to further use, synthetic peptides were diluted 1000x in TBS buffer.

Streptavidin-coated 96 well plates (Pierce Streptavidin Coated High Binding Capacity White 96-Well Plates; Thermo Scientific, Rockford, USA) were washed three times with 200 μl of washing buffer (TBS buffer containing Tween 20 (0.05%) and Bovine Serum Albumin, BSA (0.1%) (Sigma-Aldrich, Prague, Czech Republic); then 100 μl of diluted peptide was added to each well and incubated for 30 min at room temperature as recommended by the manufacturer (Thermo Scientific) with mild shaking. Subsequently, each well was washed three times with washing buffer (200 μl in each step); then 100 μl of blocking buffer SuperBlock Blocking Buffer in TBS (Thermo Scientific) were added and incubated for 30 min at room temperature with mild shaking. Each well was washed three times with washing buffer (200 μl in each step) and 100 μl of diluted sera (1:500 in washing buffer) were added and incubated for 30 min at room temperature with mild shaking. Each well was washed three times with washing buffer (200 μl in each step) and 100 μl of diluted secondary antibody conjugated with horseradish peroxidase were subsequently added (1:2000 in washing buffer; Goat Anti-Human IgG/IgA/IgM Horseradish Peroxidase Conjugate; Life Technologies, Carlsbad, USA) and incubated for 30 min at room temperature with mild shaking. Each well was then washed three times with washing buffer (200 μl in each step); then 100 μl of chemiluminescent detection solution (Super Signal ELISA Pico Chemiluminescent Substrate; Thermo Scientific) was added. Luminescence was measured on a TriStar² LB 942 luminometer with a Modular Multimode Microplate Reader (Berthold Technologies, Bad Wildbad, Germany). Each experiment was performed at least three times. A signal was considered positive when it was higher than the average of the three lowest values for each serum plus five standard deviations of the average value.

Ethics statement

The human sera were collected from adult patients diagnosed with syphilis at the Department of Dermatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. Sera from child patients diagnosed with Lyme disease were obtained from the Department of Children’s Infectious Diseases, Faculty of Medicine and University Hospital, Masaryk University, Brno, Czech Republic. All clinical samples were obtained after patients or parents of involved children signed an informed consent. The design of the study was approved by the ethics committee of the Faculty of Medicine, Masaryk University. All human sera were collected under established guidelines.

Results

Identification of positively selected genes

A comparison of 47 orthologous gene sequences from the complete genomes where at least three nonsynonymous mutations at different sites occurred was used to identify positively selected genes using the site and branch-site models of the CODEML in PAML package [55].
The completely sequenced genomes are listed in Table 1 and include 11 genomes. In addition, 25 draft TPA genomes [31], 23 draft TPA and TPE genomes [30], 8 TPA genomes [32], 5 TPA genomes from GenBank (UW074B, UW189B, UW228B, UW254B, UW391B), and one TEN (Iraq B) were also analyzed. The overall algorithm is shown in Fig 1.

In all cases of complete treponemal genomes, the genome structure was identical or very similar allowing straightforward identification of gene orthologs. However, in many cases, draft genome sequences were either incomplete or contained many ambiguous bases precluding their use in analyses. This resulted in a variable number of sequences used for identification of positively selected sites within individual loci. Altogether, 22 positively selected genes were identified in the TP genomes using site model analysis in PAML (Table 2). The number of positively selected amino acid sites varied from 1 to 65, with a median value of 8.5. A list of positively selected protein sites identified using PAML software (site and branch-site models) as well as PAML-identified positively selected protein sites within treponemal subspecies are shown in S1 Table.

Average pairwise p-distances (APD) were calculated for each of the 22 genes from 10 complete genomes (Cuniculi A genome was removed from analysis) and from the draft genomes. The APD value for each gene was compared with APD_{w10} = 0.000525 of the 10 complete genomes without 54 variable loci (listed in S2 Table) which can be considered as a background level of polymorphism. All 22 genes evolving under adaptive evolution had elevated nucleotide substitution density.

Out of these 22 genes, 14 genes were previously reported as recombinant (Table 2). These genes are listed in Table 3. Functionally, these genes comprised the tpr genes (tprC, D, G, I, J, L), outer membrane proteins (TP0133, TP0136, TP0548, TP0856, TP0858, TP0865), and genes encoding the outer membrane biogenesis protein (TP0326 [BamA]) and methyl-accepting chemotaxis protein (TP0488 [Mcp-2]). Putative recombination loci were most frequently identified in TEN strain (n = 9) while in other treponemes there were fewer predicted recombinant loci (TPA, n = 7; TPeC, n = 1; TPE, n = 1). When recombinant sequences were removed from analyses, positive selection among 14 these loci (Table 3) was found mostly within TPA strains or isolates (n = 9), within TPE (n = 4), between TEN and TPA/TPE sequences (n = 2), between TPA and TPE strains (n = 1) and between TPA and TPE/TEN sequences (n = 1).

Positively selected genes with no recombination events described so far

A list of the 8 positively selected genes is shown in Table 4. These genes include tprF gene, genes encoding outer membrane proteins (TP0515, TP0733, TP0859), subtilisin-like proteins (TP0314, TP0462), enzymes (TP0619), and hypothetical protein (TP0126b). Evidence of positive selection from analyses performed within the strains belonging to different treponemal subspecies and analyses from the PAML branch-site model revealed that positive selection was found mostly between TPA and TPE strains (n = 6), and within TPA strains or isolates (n = 2). In one case (TP0859), positive selection was found both between TPA and TPE strains (n = 1), and between TEN and TPA/TPE (n = 1).

Identified positively selected genes in various treponemal species and subspecies are shown in Table 5 and Fig 2. While Table 5 lists all identified recombinant and positively selected genes in TPA, TPE, and TEN groups of strains or isolates, Fig 2 shows only recombinant or positively selected genes that were identified within a particular subspecies.

Distribution of genetic diversity among TPA, TPE, and TEN strains

To test whether genetic diversity in treponemal genomes was distributed evenly along the chromosome, an average pairwise p-distance (APD) and average number of mutations (ANM,
transitions and transversions) were calculated (Table 6) for concatenation of 54 genes (S2 Table) representing a total length of 86.8 kbp (7.6% of the genome length). These 54 genes included the tpr genes, genes with traces of possible recombination events (according to Gray et al. [38], and Čejková et al. [19]), genes showing inter-strain variability between TPE and TPA strains and their paralogs (according to Čejková et al. [19]), genes showing intra-strain variability [40], and previously identified positively selected genes (according to Čejková et al. [19]) (S2 Table). The TPA strains contained greater genetic diversity within these genes compared to TPE strains (APD\(_{(\text{TPA})}\) = 420.0 \(\times 10^{-5}\) versus APD\(_{(\text{TPE})}\) = 384.2 \(\times 10^{-5}\)). Note that the average pairwise p-distances within TPA strains (compared to TPE/TEN strains) are lower when complete genomes were analyzed but higher within selected 54 loci (Table 6). In addition, genetic distance within TPA strains (compared to TPE/TEN strains) is markedly lower in complete genomes without selected 54 genes compared to whole genome analyses (p = 0.0008).

Gene ID	Gene name	Protein	No. of positively selected protein sites identified by PAML site or branch-site model (no. of analyzed sequences)	Previoulsy published evidence of recombination	References	Gene average pairwise p-distances
TP0117	tprC	Tpr protein C	22 (41)	+	[38]	0.009171
TP0126b	hypothetical protein	2 (69)	-	0.005899		
TP0131	tprD	Tpr protein D	65 (41)	+	[38]	0.033553
TP0133	outer membrane protein\(^a\)	3 (66)	+	[20]	0.004718	
TP0136	fibronectin binding protein	5 (54)	+	[65]	0.016599	
TP0314	subtilisin-like protein\(^a\)	7 (49)	-	0.026378		
TP0316	tprF	Tpr protein F	5 (33)	-	0.003250	
TP0317	tprG	Tpr protein G	8 (39)	+	[38]	0.003241
TP0326	bamA	BamA	7 (64)	+	[20,25,66]	0.002131
TP0462	lipoprotein, subtilisin-like protein\(^a\)	44 (60)	-	0.009186		
TP0488	mcp2	methyl-accepting chemotaxis protein	50 (64)	+	[20,25,67]	0.002691
TP0515	outer membrane protein	15 (66)	-	0.001381		
TP0548	FadL-like protein\(^b\)	24 (52)	+	[67]	0.010881	
TP0619	Fe, Mn superoxide dismutase\(^b\)	7 (40)	-	0.029166		
TP0620	tprI	Tpr protein I	14 (38)	+	[38]	0.006651
TP0621	tprI	Tpr protein J	52 (40)	+	[38]	0.023909
TP0733	OprG/OmpW-like ion-channel\(^b\)	1 (62)	-	0.005125		
TP0856	FadL-like protein\(^b\)	16 (62)	+	[68]	0.003663	
TP0858	FadL-like protein\(^b\)	2 (61)	+	[33,68]	0.005894	
TP0859	FadL-like protein\(^b\)	7 (33)	-	0.004191		
TP0865	FadL-like protein\(^b\)	13 (64)	+	[30]	0.004430	
TP1031	tprL	Tpr protein L	9 (58)	+	[20]	0.007283

\(^a\)protein predictions by Naqvi et al. [69]
\(^b\)protein predictions by Radolf and Kumar [70]

https://doi.org/10.1371/journal.pntd.0007463.t002
Serological reactivity of human syphilis and Lyme disease sera with synthetic biotinylated peptides derived from positively selected proteins

Synthetic biotinylated peptides were designed to cover protein regions where positively selected amino acid residues were detected. These peptides were tested for reactivity with the patient’s syphilis sera (Table 7). As a control, serum from a patient with Lyme disease was used. A positive result was obtained for one to seven peptides (out of 8 tested) depending on the serum used. At the same time, serum obtained from Lyme disease patient failed to

Table 3. A set of 14 positively selected genes with previously detected recombination events.

Gene	Gene name	Protein	Putative recombination in	Evidence of positive selection among non-recombinant sequences
TP0117	tprC	Tpr protein C	TPA, TEN	within TPA between TPA and TPE
TP0131	tprD	Tpr protein D	two alternative tprD and tprD2 alleles^a	no
TP0133		outer membrane protein^b	TEN	between TEN/TPE and TPA
TP0136		fibronectin binding protein	TPA	within TPA
TP0317	tprG	Tpr protein G	TPA	within TPA
TP0326	bamA	BamA	TPA, TEN	within TPA
TP0488	mcp2	methyl-accepting chemotaxis protein	TPA, TEN	within TPA
TP0548		FadL-like protein^c	TEN	within TPA between TPA and TPE
TP0620	tprI	Tpr protein I	TPE	within TPE
TP0621	tprJ	Tpr protein J	TPA, TPeC	within TPA
TP0836		FadL-like protein^d	TEN	between TEN and TPA/TPE
TP0858		FadL-like protein^d	TEN	within TPE
TP0865		FadL-like protein^d	TPA, TEN	within TPA between TEN and TPA/TPE
TP1031	tprL	Tpr protein L	TEN	within TPA

^atprD and tprD2 alleles existed in both TPA and TPE strains [18,71]

^bprotein predictions by Naqvi et al. [69]

^cprotein predictions by Radolf and Kumar [70]

https://doi.org/10.1371/journal.pntd.0007463.t003

Table 4. Positively selected genes revealed by the PAML program with no recombination events described so far.

Gene	Gene name	Protein	Positively selected branch
TP0126b		hypothetical protein	between TPA and TPE
TP0314		subtilisin-like protein^a	between TPA and TPE
TP0316	tprF	Tpr protein F	between TPA and TPE
TP0462		lipoprotein, subtilisin-like protein^a	between TPA and TPE
TP0515		outer membrane protein	within TPA
TP0619		Fe, Mn superoxide dismutase^a	between TPA and TPE
TP0733		OprG/OmpW-like ion channel^b	between TPA and TPE
TP0859		FadL-like protein^b	between TPA and TPE between TEN and TPA/TPE

^aprotein predictions by Naqvi et al. [69]

^bprotein predictions by Radolf and Kumar [70]

https://doi.org/10.1371/journal.pntd.0007463.t004
recognize peptides derived from treponemal proteins but did react with peptides derived from borrelial protein ErpA.

Discussion

In this study, 22 genes showing traces of positive selection were identified among the TPA, TPE, and TEN genomes. Within this group of genes, recombination was previously reported in 14 genes. Genes with previously detected recombination events were often found to contain positively selected amino acid residues both among the recombinant and the non-recombinant sequences, which indicates that both recombination and positive selection are different mechanisms of treponemal adaptive molecular evolution. Adaptive evolution is common to many bacterial pathogens and can usually be found in genes important to the interaction between the host and the pathogen, i.e., where new protein variants are of selective advantage for the survival of the pathogenic strain. The immune pressure from the host favors, in microbial genes encoding proteins exposed on the surface of the pathogen, emerging genetic variants, which due to immune evasion, get positively selected. In *Escherichia coli*, positive selection is limited to a few dozen genes [3] while in several other genomes, including *Streptococcus* [1] and *Campylobacter* [2], traces of positive selection have been found in more than half of the core genome.

The extent to which adaptive evolution of different bacterial pathogens differs depends on several bacterial features including bacterial mutation rate, frequency of genetic recombination and horizontal gene transfer, and genome size. Genetic recombination occurs more frequently in *Neisseria* [8] and *Helicobacter* [5] compared to several bacterial pathogens such as *Escherichia* [3], *Salmonella* [4], and *Listeria* [6]. Moreover, compared to *E. coli*, *Helicobacter pylori* has about a 100-times higher mutation rate due to the lack of a highly efficient DNA repair system [72]. Treponemes related to *T. pallidum* represent bacterial pathogens with small genomes, with an extreme paucity of outer membrane proteins [73], high genetic similarity, and a relatively low mutation rate [28]. Moreover, there are no known mechanisms of horizontal gene transfer in syphilis, bejel, and yaws treponemes [18]. These features of pathogenic treponemes are consistent with a relatively small number of positively selected genetic loci, which consists of just 22 genes (2.1% of all protein-encoding genes). Moreover, this situation also partly reflects the fact that the number of determined treponemal genomes is quite low due to the difficulties in long-term cultivation of treponemes [16]; the sequenced genomes currently available do not reveal the entire genetic variability present among human pathogenic treponemes. A recently developed MLST typing of TPA treponemes [74,75] revealed a number of genetic variants of the TP0705 gene and the vast majority of these variants resulted in amino acid replacements, which suggests positive evolution at this locus. This locus was not identified in

Treponema pallidum subspecies	Recombinant proteins	Positively selected proteins
TPA	TprC, G, J, BamA, Mcp-2, TP0136	TprC, F, G, J, L, BamA, Mcp-2, TP0126b, TP0133, TP0136, TP0314, TP0462, TP0515, TP0548, TP0619, TP0733, TP0859, TP0865
TPE	TprI	TprE, F, I, TP0126b, TP0133, TP0314, TP0548, TP0619, TP0733, TP0858, TP0859, TP0865
TEN	BamA, Mcp-2, TprL, TP0548, TP0856, TP0858	TprL, TP0856, TP0858, TP0865

https://doi.org/10.1371/journal.pntd.0007463.t005
this study because of the limited variability present in the currently available genome sequences. It is therefore expected that the list of positively selected/recombinant treponemal loci will grow larger as the number of additional genomes accumulate.

Table 6. Average pairwise p-distances (APD) and average number of mutations (ANM, transitions + transversions) within TPA, within TPE/TEN, and between TPA and TPE/TEN, for whole complete genomes, for selected 54 genomic loci, and for complete genomes without selected 54 loci.

TP subspecies	Whole genomes APD (ANM)	54 selected loci (S2 Table) APD (ANM)	Genomes without 54 loci APD (ANM)	
	Within Group	Between groups	Within group	Between groups
TPA	0.000415* (472.7)	TPA-TPE/TEN 0.001908 (2171.4)	0.004200 (361.8)	TPA-TPE/TEN 0.0015227 (1297.0)
		0.000455* (517.4)	0.003842 (325.7)	TPA-TPE/TEN 0.000105* (110.9)
			0.000831 (874.4)	TPA-TPE/TEN 0.000182* (191.7)

*Statistically significant difference for genetic distance within TPA strains compared to TPE/TEN strains when complete genomes and genomes without selected 54 genes were compared (The Fisher exact test, p = 0.0008).

https://doi.org/10.1371/journal.pntd.0007463.t006
Among the genes identified in this study, a substantial number of genes were shown to have evidence of recombination event. Several recent studies revealed that genetic recombination in pathogenic treponemes is not only limited to intra-genomic homologous recombination and gene conversion events involving rDNA loci, \textit{tpr} genes and their paralogs, and the TP0856 and TP0858 genes \cite{36,38,68}. In addition to intra-genome recombinations, two genes, TP0326 and TP0488, in the TPA Mexico A genome, were found as a result of recombination with exogenous DNA, likely as a result of DNA uptake and chromosome incorporation during coinfection with a different treponemal subspecies \cite{25}. Similar recombinations were detected in a TPA isolate from South Africa \cite{66}. In the work of Grange et al. \cite{76}, TEN strain 11qj within the TP0548 locus and a nucleotide sequence almost identical to TPE strains \cite{67,77,78} indicating that the TP0548 locus in other TEN strains is also a result of an interstrain recombination event. In the genome of TPA Sea84-1, the TP0621 locus revealed sequences identical to TPE \cite{23}. Moreover, whole-genome sequencing of TEN Bosnia A revealed several genomic loci similar to TPA strains \cite{20}. All these findings suggest that genetic recombinations of exogenous DNA into the chromosomal loci of treponemes are rare but detectable events. In addition, these findings suggest that the corresponding recombination could be of selective advantage during host infection given the fact that the recombination of foreign DNA without available horizontal gene transfer mechanisms is quite infrequent.

In the work of Arora et al. \cite{30}, the authors find the genes with predicted putative recombinant regions (e.g., TP0136, TP0462, TP0548, TP0733, TP0894-898) using a phylogenetic incongruence method, ClonalFrameML, and Gubbins, overlapping with genes identified in our study. However, several predicted recombinant genes comprising TP0179, TP0313, TP0315, TP0967, TP0968 \cite{30}, were not identified in this study reflecting the fact that not all recombination events result in detectable positive selection signal.

Out of the 22 genes showing adaptive evolution identified in this study, nine genes (40.9\%) were identified in the set of 71 genes showing intra-strain heterogeneity (reviewed in Šmajs et al. \cite{18}). Since most of the observed intra-strain heterogeneity resulted in non-synonymous amino acid changes, identified intra-strain heterogeneity should be considered as ongoing...
adaptive evolution and, as such, it is not surprising that both sets of positively selected/recombinant genes and genes showing intra-strain heterogeneity overlapped considerably.

Functionally, the genes showing adaptive evolution identified in this study were the tpr genes (tprC, D, F, G, I, J, L), outer membrane proteins (TP0133, TP0136, TP0515, TP0548, TP0733, TP0859, TP0865) and genes encoding outer membrane biogenesis protein (BamA), lipoproteins (TP0462, TP0856, TP0858), methyl-accepting chemotaxis protein (TP0488), and three other proteins (TP0126a, TP0314, TP0619). The driving force for adaptive evolution at these loci thus appears to be the host immune response. The observed reactivity of syphilitic sera with some peptides derived from protein sequences evolving under positive evolution supports this prediction.

This study has several limitations. First, the number of analyzed genomes was quite limited, especially regarding the TEN genomes. In addition, in recently published draft genomes of TPA, the candidate genes are often only partially sequenced. With a much larger set of treponemal sequences, one can expect a higher number of positively selected genes. The second major limitation was the disproportional number of analyzed genes per species/subspecies, which reflects genome availability. Another limitation is related to the fact that the analyzed complete genomes were obtained from treponemal strains propagated in rabbits and could therefore reflect adaptation of treponemes to this host. However, the analysis of draft genome sequences in this study obtained directly from clinical material suggests that the observed traces of positive selections are present also during infection of humans. Moreover, the identified positively selected positions may represent recent mutations that were not yet removed by negative selection.

In this study, a detailed analysis of traces of positive selection in 3 T. pallidum subspecies including ssp. pallidum (TPA), ssp. pertenue (TPE), and ssp. endemicum (TEN) enabled us to classify most of the identified positively selected genes to a particular subspecies when analyses were performed separately within strains and isolates of the same subspecies or when a PAML branch-site model was used to identify lineages with positively selected loci. The majority of positively selected genes were identified within the TPA and TPE genomes, likely as a result of the highest number of available sequences for these subspecies. However, TPA sets of positively selected genes differed from TPE genes. Among TPA, members of the paralogous tpr family (tprCGJ) and the TP0136 paralogous gene family (TP0136, TP0462) prevailed, while among TPE, a paralogous gene family containing TP0856, TP0858, TP0859, TP0865, showed adaptive evolution. Interestingly, the genes belonging to the latter family (TP0548, TP0856, TP0858, TP0859) were found to be recombinant among TEN genomes. These findings suggest that genomic loci showing signs of adaptive evolution could differ between TPA and TPE/TEN strains/isolates. This finding supports the observed and consistent genetic differences between treponemal subspecies TPA, TPE, and TEN, and shows that the ways TPA and TPE strains interact with a host during infection is different. Although some authors suggest that the subspecies classification is a case of opportunity and not the consequence of genetic and biological differences [79,80], our findings support the latter explanation.

Supporting information
S1 Table. A list of positively selected protein positions identified by PAML software using site and branch-site models and PAML analysis within treponemal subspecies. (XLSX)
S2 Table. A set of 54 genes representing a total length of 86.8 kbp (7.6% of the genome length) that was removed from the whole genome sequences. (XLSX)
Acknowledgments
We thank Thomas Secrest (Secrest Editing, Ltd.) for the English editing of the manuscript.

Author Contributions
Conceptualization: David Šmajs.
Data curation: Denisa Maděránková, Lenka Mikalová, Šimon Vadják.
Formal analysis: Denisa Maděránková, Lenka Mikalová, Petra Pospíšilová, Pavlina Koščová.
Funding acquisition: Lenka Mikalová, Michal Strouhal, David Šmajs.
Investigation: Denisa Maděránková, Lenka Mikalová, Michal Strouhal, Ivana Kuklová, Pavlina Koščová.
Methodology: Denisa Maděránková.
Project administration: David Šmajs.
Resources: Ivana Kuklová, Lenka Krbová, Ivo Provazník, David Šmajs.
Software: Denisa Maděránková, Šimon Vadják.
Supervision: David Šmajs.
Validation: Denisa Maděránková, Lenka Mikalová, Michal Strouhal, Petra Pospíšilová.
Visualization: Lenka Mikalová.
Writing – original draft: Denisa Maděránková, Lenka Mikalová, David Šmajs.
Writing – review & editing: Denisa Maděránková, Lenka Mikalová, Michal Strouhal, Šimon Vadják, Ivana Kuklová, Petra Pospíšilová, Lenka Krbová, Pavlina Koščová, Ivo Provazník, David Šmajs.

References
1. Lefébure T, Stanhope MJ. Evolution of the core and pan-genome of *Streptococcus*: positive selection, recombination, and genome composition. Genome Biol. 2007; 8: R71. https://doi.org/10.1186/gb-2007-8-5-r71 PMID: 17475002
2. Lefébure T, Stanhope MJ. Pervasive, genome-wide positive selection leading to functional divergence in the bacterial genus *Campylobacter*. Genome Res. 2009; 19: 1224–1232. https://doi.org/10.1101/gr.089250.108 PMID: 19304960
3. Petersen L, Bollback JP, Dimmic M, Hubisz M, Nielsen R. 2007. Genes under positive selection in *Escherichia coli*. Genome Res. 2007; 17: 1336–1343. https://doi.org/10.1101/gr.6254707 PMID: 17675366
4. Soyer Y, Orsi RH, Rodriguez-Rivera LD, Sun Q, Wiedmann M. Genome-wide evolutionary analyses reveal serotype specific patterns of positive selection in selected *Salmonella serotypes*. PLoS Genet. 2009; 5: e1000598. https://doi.org/10.1371/journal.pgen.1000598 PMID: 19318206
5. Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, Kunstmann E, et al. Free recombination within *Helicobacter pylori*. Proc Natl Acad Sci USA. 1998; 95: 12619–12624. https://doi.org/10.1073/pnas.95.21.12619 PMID: 9770535
6. Tsai YH, Maron SB, McGann P, Nightingale KK, Wiedmann M, Orsi RH. Recombination and positive selection contributed to the evolution of *Listeria monocytogenes* lineages III and IV, two distinct and well supported uncommon *L. monocytogenes* lineages. Infect Genet Evol. 2011; 11: 1881–1890. https://doi.org/10.1016/j.meegid.2011.06.001 PMID: 21854875
7. Xu Z, Chen H, Zhou R. Genome-wide evidence for positive selection and recombination in *Actinobacillus pleuropneumoniae*. BMC Evol Biol. 2011; 11: 203. https://doi.org/10.1186/1471-2148-11-203 PMID: 21748728
8. Yu D, Jin Y, Yin Z, Ren H, Zhou W, Liang L, et al. A genome-wide identification of genes undergoing recombination and positive selection in Neisseria. Biomed Res Int. 2014; 2014: 815672. https://doi.org/10.1155/2014/815672 PMID: 25180194

9. Fribourg-Blanc A, Moullaret HH, Niel G. Serologic and microscopic confirmation of treponemosis in Guinea baboons. Bull Soc Pathol Exot Filiales. 1966; 59: 54–59. PMID: 533741

10. Fribourg-Blanc A, Moullaret HH. Natural treponematosis of the African primate. Primates Med. 1969; 3: 113–121. PMID: 5006024

11. Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IA, Nordhoff M, et al. Treponema infection associated with genital ulceration in wild baboons. Vet Pathol. 2012; 49: 292–303. https://doi.org/10.1177/0300985811402839 PMID: 21411621

12. Zobaníková M, Strouhal M, Mikalová L, Čejková D, Ambrožová L, Pospíšilová P, et al. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis. 2013; 7: e2172. https://doi.org/10.1371/journal.pntd.0002172 PMID: 23638193

13. Jacobsthall E. Untersuchungen über eine syphilisähnliche Spontanerkrankungen des Kaninchens (Paralues cuniculi). Derm Wschr. 1920; 71: 569–571.

14. Smith JL, Pesetsky BR. The current status of Treponema cuniculi. Review of the literature. Br J Vener Dis. 1967; 43: 117–127. https://doi.org/10.1136/sti.43.2.117 PMID: 5338028

15. Lumeij JT, Mikalová L, Šmajs D. Is there a difference between hare syphilis and rabbit syphilis? Cross infection experiments between rabbits and hares. Vet Microbiol. 2013; 164: 190–194. https://doi.org/10.1016/j.vetmic.2013.02.001 PMID: 23473645

16. Edmondson DG, Hu B, Norris SJ. Long-Term In Vitro Culture of the Syphilis Spirochete Treponema pallidum subsp. pallidum. MBio 2018; 9: e01153–18. https://doi.org/10.1128/mBio.01153-18 PMID: 29946052

17. Šmajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol. 2012; 12: 191–202. https://doi.org/10.1016/j.meegid.2011.12.001 PMID: 22198325

18. Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. Infect Genet Evol. 2018; 61: 92–107. https://doi.org/10.1016/j.meegid.2018.03.015 PMID: 29578082

19. Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, et al. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis. 2012; 6: e1471. https://doi.org/10.1371/journal.pntd.0001447 PMID: 22292095

20. Študnová B, Strouhal M, Zobaníková M, Čejková D, Fulton LL, Chen L, et al. 2014. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop Dis. 2014; 8: e3261. https://doi.org/10.1371/journal.pntd.0003261 PMID: 25375929

21. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281: 375–388. PMID: 9665876

22. Giacani L, Jeffrey BM, Molini BJ, Le HT, Lukehart SA, Centurion-Lara A, et al. Complete genome sequence and annotation of the Treponema pallidum subsp pallidum Chicago strain. J Bacteriol. 2010; 192: 2645–2646. https://doi.org/10.1128/JB.00159-10 PMID: 20348263

23. Giacani L, Iverson-Cabrai SL, King JC, Molini BJ, Lukehart SA, Centurion-Lara A. Complete genome sequence of Treponema pallidum subsp. endemicum strain Sea81-4 Strain. Genome Announc. 2014; 2: e00333–14. https://doi.org/10.1128/genomeA.00333-14 PMID: 24744342

24. Matějková P, Strouhal M, Šmajs D, Norris SJ, Palžíklí T, Petrošinová JF, et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008; 8: 76. https://doi.org/10.1186/1471-2180-8-76 PMID: 18482458

25. Pětrosovičová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P, Strouhal M, et al. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis. 2012; 6: e1832. https://doi.org/10.1371/journal.pntd.0001832 PMID: 23029591

26. Pětrosovičová H, Pospíšilová P, Strouhal M, Čejková D, Zobaníková M, Mikalová L, et al. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013; 8: e74319. https://doi.org/10.1371/journal.pone.0074319 PMID: 24058545

27. Šmajs D, Zobaníková M, Strouhal M, Čejková D, Dugan-Rocha S, Pospíšilová P, et al. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is
associated with genome decay. PLoS One. 2011; 6: e20415. https://doi.org/10.1371/journal.pone.0020415 PMID: 21655244

28. Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D, Rychlík I, et al. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Africa. Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis. 2017; 11: e0005894. https://doi.org/10.1371/journal.pntd.0005894 PMID: 28886021

29. Zobaniková M, Mikolka P, Čejková D, Pospíšilová P, Chen L, Strouhal M, et al. Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci. 2012; 10: 12–21.

30. Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016; 2: 16245. https://doi.org/10.1038/nmicrobiol.2016.245 PMID: 27918528

31. Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, et al. Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol. 2016; 2: 16190. https://doi.org/10.1038/nmicrobiol.2016.190 PMID: 27748767

32. Sun J, Meng Z, Wu K, Liu B, Zhang S, Liu Y, et al. Tracing the origin of Treponema pallidum in China using next-generation sequencing. Oncotarget. 2016; 7: 42904–42918. PMID: 27344187

33. Marks M., Fookes M., Wagner J., Butcher R., Ghinai R., Sokana O., Sarkodie Y.A., Lukehart S.A., Solarz P., Huang Y., Hatabu H., Diamant S., Soderstrom K., Alperovitch A., Leder K., et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016; 2: 16245. https://doi.org/10.1038/nmicrobiol.2016.245 PMID: 27918528

34. Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004; 52: 1579–1596. https://doi.org/10.1111/j.1365-2958.2004.04086.x PMID: 15186410

35. Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, et al. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol. 2012; 194: 4208–4225. https://doi.org/10.1128/JB.00863-12 PMID: 22661689

36. Čejková D, Zobaniková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, et al. Structure of rm operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paralupisuniculi strains. J Med Microbiol. 2013; 62: 196–207. https://doi.org/10.1099/jmm.0.050658-0 PMID: 23082031

37. Čejková D, Zobaniková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, et al. Structure of rm operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paralupisuniculi strains. J Med Microbiol. 2013; 62: 196–207. https://doi.org/10.1099/jmm.0.050658-0 PMID: 23082031

38. Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004; 52: 1579–1596. https://doi.org/10.1111/j.1365-2958.2004.04086.x PMID: 15186410

39. Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004; 52: 1579–1596. https://doi.org/10.1111/j.1365-2958.2004.04086.x PMID: 15186410

40. Čejková D, Zobaniková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004; 52: 1579–1596. https://doi.org/10.1111/j.1365-2958.2004.04086.x PMID: 15186410

41. Turner TB, Hollander DH. Biology of the treponematodes based on studies carried out at the International Treponematoses Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ. 1957; 35: 3–266.

42. Nichols HJ, Hough WH. Demonstration of Spirochaeta pallida in the cerebrospinal fluid. JAMA-J Am Med Assoc. 1913; 69: 108–110.

43. Wendel GD Jr., Sanchez PJ, Peters MT, Harstad TW, Potter LR, Norgard MV. Identification of Treponema pallidum in amniotic fluid and fetal blood from pregnancies complicated by congenital syphilis. Obstet Gynecol. 1991; 78: 890–895. PMID: 1923218

44. Stamm LV, Kerner TC Jr., Bankaits VA, Bassford PJ Jr. Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli. Infect Immun. 1983; 41: 709–721. PMID: 6347894

45. Liska SL, Perine PL, Hunter EF, Crawford JA, Feeley JC. Isolation and transportation of Treponema pertenue in golden hamsters. Curr Microbiol. 1982; 7: 41–43.
46. Gastinel P, Vaisman A, Hamelin A, Dunoye F. Study of a recently isolated strain of *Treponema pertenue*. Ann Dermatol Syphilit. Paris. 1963; 90: 155–161. PMID: 13946771

47. Turner TB, Hollander DH. Studies on treponemes from cases of endemic syphilis. Bull World Health Organ.1952; 7: 75–81. PMID: 13019545

48. Tamura K, Stecher G, Peterson D, Filipski A, Kuma S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013; 12: 2725–2729.

49. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 16: 111–120. PMID: 7463849

50. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol. 1992; 9: 678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752 PMID: 1630306

51. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evolution. 1993; 10: 512–526.

52. Robinson DR, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981; 53: 131–147.

53. Schliep K, Potts AJ, Morrison, DA, Grimm GW. Intertwining phylogenetic trees and networks. Meth Ecol Evol. 2017; 8: 1212–1220.

54. Nei M., Kumar S. Molecular evolution and phylogenetics. Oxford: Oxford University Press; 2000.

55. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997; 13: 555–556. PMID: 9367129

56. Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007; 24: 1586–1591. https://doi.org/10.1093/molbev/msm088 PMID: 17483113

57. Xu B, Yang Z. PAMLX: a graphical user interface for PAML. Mol Biol Evol. 2013; 30: 2723–2724. https://doi.org/10.1093/molbev/ms179 PMID: 24105918

58. Yang Z, Wong WSW, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol.2005; 22: 1107–1118. https://doi.org/10.1093/molbev/mssi097 PMID: 15689528

59. Wong WSW, Yang Z, Goldman N, Nielsen R. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics. 2004; 168: 1041–1051. https://doi.org/10.1534/genetics.104.031153 PMID: 15514074

60. Yang Z, Nielsen R, Goldman N, Pedersen AMK. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000; 155: 431–449. PMID: 10790415

61. Yang Z, Swanson WJ, Vacquier VD. Maximum likelihood analysis of molecular adaptation in abalone sperm lysozyme reveals variable selective pressures among lineages and sites. Mol Biol Evol. 2000; 17: 1446–1455. https://doi.org/10.1093/molbev msq303 PMID: 11018152

62. Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002; 19: 908–917. https://doi.org/10.1093/molbev/msq303 PMID: 12032247

63. Yang Z, dos Reis M. Statistical properties of the branch-site test of positive selection. Mol Biol Evol. 2011; 28: 1217–1228. https://doi.org/10.1093/molbev/msq303 PMID: 21087944

64. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018; 35: 1547–1549. https://doi.org/10.1093/molbev/ mvy096 PMID: 29722877

65. Grillóvá L, Noda AA, Lienhard R, Blanco O, Rodríguez I, Šmajs D. Multilocus sequence typing of *Treponema pallidum* subsp. *pallidum* in Cuba from 2012 to 2017. J Infect Dis. 2018: Oct 16. https://doi.org/10.1093/infdis/jiy804 [Epub ahead of print] PMID: 30325448

66. Harper K.N., Ocampo P.S., Steiner B.M., George R.W., Silverman M.S., Bolotin S., et al. 2008. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2: e148. https://doi.org/10.1371/journal.pntd.0000148 PMID: 18235852

67. Mikalová L, Strouhal M, Oppelt J, Grange PA, Janier M, Benthaddou N, et al. Human *Treponema pallidum* 11q/j isolate belongs to subsp. *endemicum* but contains two loci with a sequence in TP0548 and TP0498 similar to subsp. *pertenue* and subsp. *pallidum*, respectively. PLoS Negl Trop Dis. 2017; 11; e0005434. https://doi.org/10.1371/journal.pntd.0005434 PMID: 28263990

68. Strouhal M, Mikalová L, Havírik J, Knauf S, Bruisten S, Oppelt J, et al. Complete genome sequences of two strains of *Treponema pallidum* subsp. *pertenue* from Indonesia: modular structure of several treponemal genes. PLoS Negl Trop Dis. 2018; forthcoming.

69. Naqvi AA, Shahbaaz M, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of *Treponema pallidum* ssp. *pallidum*. PLoS One. 2015; 10: e0124177. https://doi.org/10.1371/journal.pone.0124177 PMID: 25894582
70. Radolf JD, Kumar S. The *Treponema pallidum* outer membrane. Curr Top Microbiol Immunol. 2017; https://doi.org/10.1007/82_2017_44 PMID: 28849315

71. Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis. 2013; 7: e2222. https://doi.org/10.1371/journal.pntd.0002222 PMID: 23696912

72. Wang G, Humayun MZ, Taylor DE. Mutation as an origin of genetic variability in *Helicobacter pylori*. Trends Microbiol. 1999; 7: 488–493. PMID: 10603484

73. Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. *Treponema pallidum*, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol. 2016; 14: 744–759. https://doi.org/10.1038/nrmicro.2016.141 PMID: 27721440

74. Grillová L, Bawa T, Gonzales F, Nieslert K, Mikalová L, Gayet-Ageron A, et al. Molecular characterization of *Treponema pallidum subsp. pallidum* in Switzerland and France with a new multilocus sequence typing scheme. PLoS One. 2018; 13: e0200773. https://doi.org/10.1371/journal.pone.0200773 PMID: 30059541

75. Pospíšilová P, Grange PA, Grillová L, Mikalová L, Janier M, Benhaddou N, et al. Multi-locus sequence typing of *Treponema pallidum subsp. pallidum* present in clinical samples from France: infecting treponemes are genetically diverse and belong to 18 genotypes. PLoS One. 2018; 13: e0201068. https://doi.org/10.1371/journal.pone.0201068 PMID: 30024965

76. Grange PA, Allix-Béguec C, Chanal J, Benhaddou N, Gerhardt P, Morini JP, et al. Molecular subtyping of *Treponema pallidum* in Paris, France. Sex Transm Dis. 2013; 40: 641–644. https://doi.org/10.1097/OLQ.000000000000006 PMID: 23859911

77. Grange PA, Mikalová L, Gaudin C, Strouhal M, Janier M, Benhaddou N, et al. *Treponema pallidum* 11q1 subtype may correspond to a *Treponema pallidum subsp. endemicum* strain. Sex Transm Dis. 2016; 43: 517–518. https://doi.org/10.1097/OLQ.0000000000000474 PMID: 23719817

78. Mikalová L, Strouhal M, Grillová L, Šmajs D. The molecular typing data of recently identified subtype 11q1 of *Treponema pallidum subsp. pallidum* suggest imported case of yaws. Sex Transm Dis. 2014; 41: 552–553. https://doi.org/10.1097/OLQ.0000000000000165 PMID: 25118969

79. Mulligan CJ, Norris SJ, Lukehart SA. 2008. Molecular studies in *Treponema pallidum* evolution: toward clarity? PLoS Negl Trop Dis. 2008; 2: e184. https://doi.org/10.1371/journal.pntd.0000184 PMID: 18357339

80. Lukehart SA, Giacani L. When is syphilis not syphilis? Or is it? Sex Transm Dis. 2014; 41: 554–555. https://doi.org/10.1097/OLQ.0000000000000179 PMID: 25118970