XAFS analysis for quantification of the gallium coordinations in Al$_2$O$_3$-supported Ga$_2$O$_3$ photocatalysts

M. Akatsuka1, T. Yoshida2, N. Yamamoto1, M. Yamamoto1, S. Ogawa1, S. Yagi2
1Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
2Eco Topia Science Institute, Nagoya University, Nagoya464-8603, Japan

E-mail: akatsuka.masato@d.mbox.nagoya-u.ac.jp, tyoshida@ocarina.osaka-cu.ac.jp

Abstract. Ga$_2$O$_3$ loaded Al$_2$O$_3$ samples (Ga$_2$O$_3$/Al$_2$O$_3$) were prepared to change coordination structures around Ga atoms. Ga K-edge XANES spectra of the Ga$_2$O$_3$/Al$_2$O$_3$ samples showed two peaks assigned to Ga atoms having tetrahedral coordination structure (Ga(t)) and octahedral one (Ga(o)). Curve-fitting analysis of XANES spectra was carried out with a set of pseudo-Voight and arctangent functions, and the fractions of Ga(t) and Ga(o) were quantitatively estimated from the ratio of the peak areas. EXAFS curve-fitting analysis also evaluated the fractions of Ga(t) and Ga(o) and they were in good agreement with those obtained by XANES analysis. It was revealed that the fraction of Ga(t) increased with the decrease in the loading amount of Ga$_2$O$_3$ due to the interaction of Ga species with Al$_2$O$_3$. The fractions of Ga(t) and Ga(o) might relate to the photocatalytic activity for CO$_2$ reduction with H$_2$O over the Ga$_2$O$_3$/Al$_2$O$_3$ samples.

1. Introduction

Gallium oxide (Ga$_2$O$_3$) photocatalysts can reduce CO$_2$ to CO with H$_2$O, although the efficiency of CO production is very low [1]. Generally, photocatalytic activity depends on the coordination structure of the surface active site [2]. However, there are few works investigating the influence of Ga$_2$O$_3$ coordination structure on the CO$_2$ photocoreduction activity. Ga$_2$O$_3$ has two coordination structures, tetrahedral coordination site (Ga(t)) and octahedral one (Ga(o)). In β-Ga$_2$O$_3$ crystal, for example, the ratio of Ga(t) to Ga(o) is known as 1:1 [3], and the other crystal phases of Ga$_2$O$_3$ have different ratios. In addition, it has been reported that GaAl-oxide has only Ga(t) [4]. Thus, we think that the ratio of Ga(t) to Ga(o) can be controlled by loading Ga$_2$O$_3$ on the Al$_2$O$_3$-support to improve photocatalytic activity of Ga$_2$O$_3$.

In this study, we prepared Ga$_2$O$_3$ loaded Al$_2$O$_3$ samples (Ga$_2$O$_3$/Al$_2$O$_3$) and measured Ga K-edge XAFS spectra of these samples. The fractions of Ga(t) and Ga(o) were calculated by curve-fitting analysis of XANES spectra and were confirmed by curve-fitting analysis on EXAFS of first neighboring oxygen atoms (Ga-O shell). In addition, the EXAFS of the second neighboring atoms was investigated in detail to obtain the information about interaction between Ga$_2$O$_3$ and Al$_2$O$_3$. We also carried out the photocatalytic CO$_2$ reduction over Ga$_2$O$_3$/Al$_2$O$_3$ samples to reveal the correlation between the photocatalytic activity and the ratio of Ga(t) to Ga(o).

2. Experiment

Ga$_2$O$_3$/Al$_2$O$_3$ samples were prepared by impregnation of γ-Al$_2$O$_3$ with aqueous solution of gallium nitrate followed by dry and calcination in the air at 773 K for 4 h, as described elsewhere [5]. The loading amounts of Ga$_2$O$_3$ were 1, 5, 10 and 20 wt%. Unsupported Ga$_2$O$_3$ sample was also prepared by calcination of gallium nitrate similarly to Ga$_2$O$_3$/Al$_2$O$_3$. The Ga$_2$O$_3$ sample was employed for XRD measurement to identify the crystal phase of Ga$_2$O$_3$. Surface areas of all the prepared samples were measured by BET method.
The Ga K-edge XAFS measurement of the samples were conducted at the beamline 5S1 in Aichi Synchrotron Radiation Center. The beamline was equipped with Si(111) double-crystal monochromators. The data were recorded in a transmission mode or a fluorescent X-ray yield mode with a 19 channel silicon semiconductor detector.

XANES spectra were curve-fitted with pseudo-Voigt function (1) and arctangent function (2).

\[
\begin{align*}
 f(x) &= \frac{A}{1+M(x-x_0)^2/\beta^2}\exp((1-M)[(ln2)(x-x_0)^2/\beta^2]) \\
 g(x) &= B\left\{(1/\pi)\arctan\left(\frac{x-x_0'}{\gamma/2}\right) + (1/2)\right\}
\end{align*}
\]

In these formula, A, B are heights and \(\beta, \gamma\) are full width at half maximum. \(x_0\) and \(x_0'\) are position of the peak of pseudo-Voigt curve and the inflection point of arctangent curve, respectively. M is the ratio of contribution of Lorentzian in pseudo-Voigt curve. Nishi et al. carried out curve-fitting with Gaussian and arctangent curves on Ga K-edge XANES spectra of Ga_2O_3 loaded Al_2O_3 samples although the Gaussian fitting arose some deviation from a XANES spectrum especially around the edge [5]. On the other hand, pseudo-Voigt curve used in this study was more suitable for the curve-fitting because XANES spectrum includes natural width due to electron excitation as well as that of the measurement system. Therefore, it is expected that the present curve-fitting leads to better accuracy in the quantitative estimation of Ga(t) and Ga(o). The fractions of Ga(t) and Ga(o) were also evaluated by the non-linear least squares curve-fitting analysis of EXAFS spectra [6].

Photocatalytic CO_2 reduction with H_2O was carried out over Ga_2O_3/Al_2O_3 and Ga_2O_3 samples. Ga_2O_3/Al_2O_3 sample was put into the fixed-bed flow reactor cell under CO_2 gas with a flow rate at 3.0 mL/min and irradiated by UV-light in the range of 254 ± 10 nm was 29.5 mW/cm². The reaction gases were measured with the GC-TCD (SHIMADZU, GC-8A).

3. Results and discussion

Unsupported Ga_2O_3 was identified as \(\gamma\)-Ga_2O_3 by the XRD pattern. On the other hand, very weak and broad lines due to Ga oxide phase were observed for Ga_2O_3/Al_2O_3 samples but could not be identified clearly. In the EDS measurements of Ga_2O_3/Al_2O_3 samples, no remarkable Ga oxide particles were observed. These results suggested that the loaded Ga_2O_3 species were highly dispersed on Al_2O_3. Based on the BET measurements for a bare Al_2O_3 and Ga_2O_3/Al_2O_3 samples, we roughly estimated the surface area of Ga oxide phase in each Ga_2O_3/Al_2O_3 sample by subtracting the component of Al_2O_3 support. We regarded that the surface areas of Ga oxide phase are almost the same each other.

Ga K-edge XANES spectra of Ga_2O_3/Al_2O_3 samples are shown in Figure 1 together with those of \(\gamma\)-Ga_2O_3 and \(\beta\)-Ga_2O_3. Two peaks shown at 10375 eV and 10379 eV are attributed to Ga(t) and Ga(o), respectively [5]. In addition, a small peak is observed around 10384 eV. This peak would be influenced by a multiple scattering of photoelectrons by neighboring atoms. The XANES spectra of the Ga_2O_3/Al_2O_3 samples showed both peaks at 10375 eV and 10379 eV, and the former peak reduced and the latter peak grew with increased amount of Ga_2O_3 supported on Al_2O_3. It is likely that the Ga_2O_3/Al_2O_3 samples contain two kinds of Ga species, Ga(t) and Ga(o), and the fraction of each species differs with the loading amount of Ga_2O_3.

Here, we calculate the fractions of Ga(t) and Ga(o) in each Ga_2O_3/Al_2O_3 sample by curve-fitting on each XANES spectrum with two sets of pseudo-Voigt and arctangent curves. The simulation of the spectrum was made on the basis of the following assumptions: [7] 1) the spectrum is composed of two components; 2) each component consists of an arctangent curve for continuum absorption and a pseudo-Voigt curve for the white line; 3) the ratio of the height of each arctangent curve is equal to the ratio of the peak area of each pseudo-Voigt curve; 4) the small peak around 10384 eV is not employed for the curve-fitting analysis. Figure 2 shows the curve-fitting on XANES spectrum of \(\beta\)-Ga_2O_3. The fractions of Ga(t) and Ga(o) in \(\beta\)-Ga_2O_3 were evaluated as 51% and 49 %, and the fractions were well accorded with the crystal data of \(\beta\)-Ga_2O_3 (fractions of Ga(t) and Ga(o) are 50% and 50 %).
[8]. This result suggests that the fractions of Ga(t) and Ga(o) in Ga₂O₃/Al₂O₃ samples can be estimated quantitatively by our curve-fitting analysis, and we also decided the parameter M in the pseudo-Voigt curve as 0.7. Table 1 summarizes the other parameters used for the curve-fitting analysis on XANES spectra of Ga₂O₃/Al₂O₃ samples, and the calculated fractions of Ga(t) in the Ga₂O₃/Al₂O₃ samples are also shown in Table 2. It is revealed that the coordination structure around a Ga atom was controlled by loading Ga₂O₃ on the Al₂O₃-support and the Ga(t) was formed preferentially in the sample with lower loading amount of Ga₂O₃.

Table 1. Curve-Fitting parameters

Samples	Ga(t) species (eV)	Ga(o) species (eV)						
	position	fwhm	β	γ	position	fwhm	β	γ
β-Ga₂O₃	10374.9	10372	2.3	3	10378.5	10376	2.3	3
γ-Ga₂O₃	10374.3	10371.7	2	4	10378	10375	3	2.5
Ga₂O₃/Al₂O₃								
1 wt%	10373.8	10372.5	2.1	2	10379.5	10378	3	4
5 wt%	10374.6	10373.5	2.5	4	10378.8	10377	3	4
10 wt%	10375.1	10373.1	2.1	4	10378.6	10377	3	4
20 wt%	10375.2	10373.1	2.1	4	10378.5	10376	3	4

Fitting error of XANES spectrum with these parameters is ±5%.

Table 2. The fraction of Ga(t) in Ga₂O₃/Al₂O₃ estimated by XANES and EXAFS analyses

Loading amount of Ga₂O₃ (wt%)	1	5	10	20	γ-Ga₂O₃
Ga(t) (%)	75	60	46	39	36
Ga(o) (%)	25	40	54	61	64

Errors of Ga(t) and Ga(o) fractions estimated by XANES and EXAFS are ±2% and ±8%, respectively.

We also measured k³-weighted Ga K-edge EXAFS spectra of Ga₂O₃/Al₂O₃ and γ-Ga₂O₃ samples as shown in Supporting Information with Figure S1. The Fourier transform was performed on each EXAFS spectrum in the 2-13.7 Å⁻¹ region and the radial structure function (RSF) was obtained as shown in Figure 3. Peak appearing at 1-2 Å is assigned to the backscattering from the adjacent oxygen atoms, and peaks around 3 Å show the presence of the second-neighboring metal atoms (Ga or Al). Note that the RSFs of the 10 and 20 wt% Ga₂O₃/Al₂O₃ samples were similar to that of γ-Ga₂O₃ rather than β-Ga₂O₃.

The first peak at 1-2 Å was sharp and high for 1 wt% Ga₂O₃/Al₂O₃ while it became broader and lower for the other Ga₂O₃/Al₂O₃ samples. We performed curve-fitting analysis for the inverse Fourier transform of the first peak at 1-2 Å with two Ga-O shells. For the reference sample, β-Ga₂O₃, the curve-fitting results indicate coordination shells with 2.0 oxygen atoms at 1.85 Å and 3.0 oxygen atoms at 2.00 Å, which is in good agreement with the crystallographic data for Ga(t)-O and Ga(o)-O shells, respectively. Similar short Ga(t)-O and long Ga(o)-O shells were found for all Ga₂O₃/Al₂O₃ samples, then we estimated the fractions of Ga(t) and Ga(o) by using of the coordination numbers for Ga(t)-O and Ga(o)-O, and the results are also summarized in Table 2. The fractions of Ga(t) and Ga(o) obtained by XANES and EXAFS analyses are good agreement with each other, supporting that the fraction of Ga(t) is higher for the sample with lower loading amount of Ga₂O₃.

Here, we investigated the second-neighboring metal atoms in the low and high loaded Ga₂O₃/Al₂O₃ samples. Figure 4 shows the envelope functions of inverse Fourier transform of the second peak around 3 Å in RSFs of 1, 20 wt% Ga₂O₃/Al₂O₃ samples and γ-Ga₂O₃. The maximum in the envelope appeared at a low k value for the 1 wt% Ga₂O₃/Al₂O₃ sample while that in the other envelopes was observed at 8-9 Å⁻¹. This result clearly indicates that the envelope of 1 wt% Ga₂O₃/Al₂O₃ sample is due to backscatterer lighter than Ga atoms, i.e., Al is very likely. Therefore, in the low loaded Ga₂O₃/Al₂O₃ sample, highly dispersed Ga species would interact with Al₂O₃ support to form Ga(t) structure, while in the high loaded...
Ga$_2$O$_3$/Al$_2$O$_3$ sample, the aggregation of Ga species would produce similar structure as γ-Ga$_2$O$_3$ to decrease in the fraction of Ga(t).

Figure 4. The envelope functions of inverse Fourier transform of the second peak around 3 Å in radial structure functions of 1, 20 wt% Ga$_2$O$_3$/Al$_2$O$_3$ and γ-Ga$_2$O$_3$.

Photocatalytic CO$_2$ reduction with H$_2$O was carried out over the Ga$_2$O$_3$/Al$_2$O$_3$ sample. CO production rates over 5, 10 and 20 wt% Ga$_2$O$_3$/Al$_2$O$_3$ samples were higher than those over β-Ga$_2$O$_3$ and Al$_2$O$_3$ samples, while over 1 wt% Ga$_2$O$_3$/Al$_2$O$_3$, it was almost the same as that over Al$_2$O$_3$ sample. At present, the reason for a small amount of CO production over 1 wt% Ga$_2$O$_3$/Al$_2$O$_3$ has not been clarified yet. This sample probably forms a GaAl-oxide and such a solid state sample might show low activity for CO$_2$ photoreduction.

Figure 5 shows the variation of CO production rate per a Ga atom with the fraction of Ga(t) in 5, 10 and 20 wt% Ga$_2$O$_3$/Al$_2$O$_3$ samples. As mentioned above, since Ga$_2$O$_3$ species would be highly dispersed on Al$_2$O$_3$, we assumed that the Ga(t) fraction evaluated by XANES and EXAFS corresponds to the Ga(t) fraction at the surface. In this figure, CO production rate per a Ga atom seemed to decrease with the fraction of Ga(t). However, it might be required to estimate carefully the numbers of the surface Ga(t) and Ga(o) really contributing to the photocatalytic reaction by CO$_2$ and H$_2$O adsorption experiments in our future work.

4. Conclusion
Ga K-edge XAFS spectra were recorded on the Ga$_2$O$_3$ loaded Al$_2$O$_3$ photocatalysts. Curve-fitting analysis of XANES spectra could estimate the fractions of tetrahedral and octahedral Ga species (Ga(t) and Ga(o)) in these samples, which was confirmed by EXAFS curve-fitting analysis. We concluded that the fraction of Ga(t) increased with lower loading amount of Ga$_2$O$_3$. CO production rate per a Ga atom seemed to increase with the fraction of Ga(t), however, the further quantitative analysis for the surface Ga(t) and Ga(o) will be required.

5. Acknowledgment
This work was supported by a Grant-in-Aid for Scientific Research (No.24360332 and 24656489) from the Japan Society for the Promotion of Science (JSPS). Synchrotron experiments were carried out at Aichi Synchrotron Radiation Center which is supported by No.201505044.

References
[1] Yoshida H, Zhang L, Sato M, Morikawa T, Kajino T et al. 2015 Catal. Today 251 132.
[2] Yoshida S et al. 1992 Catal. Lett. 12 277.
[3] Cramer S et al. 1976 J. Am. Chem. Soc. 98 1287.
[4] Takahashi M et al. 2005 SPring-8 User Experiment Report No. 15 A 261.
[5] Nishi K, Shimizu K, Takamatsu M, Yoshida H et al. 1998 J. Phys. Chem. B 102 10190.
[6] Yoshida T, Tanaka T, Yoshida H, Funabiki T and Yoshida S 1996 J. Phys. Chem. 100 2302.
[7] Kato Y et al. 2001 Phys. Chem. Chem. Phys. 3 1925.
[8] Geller S 1960 J. Chem. Phys. 33 676.