ON THE SUM OF THE RECIPROCALS OF THE DIFFERENCES BETWEEN CONSECUTIVE PRIMES

NIANHONG ZHOU

ABSTRACT. Let \(p_n \) denote the \(n \)-th prime number, and let \(d_n = p_{n+1} - p_n \). Under the Hardy–Littlewood prime-pair conjecture, we prove

\[
\sum_{n \leq X} \log \alpha d_n \sim \begin{cases}
\frac{X \log \log X}{\log X} & \alpha = -1, \\
\frac{X \log \log X}{1+\alpha} & \alpha > -1,
\end{cases}
\]

and establish asymptotic properties for some series of \(d_n \) without the Hardy–Littlewood prime-pair conjecture.

1. Introduction

Let \(p_n \) denote the \(n \)-th prime number, and let \(d_n = p_{n+1} - p_n \). In [1], Erdős and Nathanson show that for \(c > 2 \),

\[
\sum_{n=3}^{\infty} \frac{1}{d_n n \log \log n} < +\infty.
\]

The authors give a heuristic argument explaining why the series must diverge for \(c = 2 \). We will prove the above (1.1) by some conclusions of the sieve method.

Let \(\mathcal{H} = \{0, h_1, \ldots, h_{k-1}\} \) be a set of \(k(k \geq 2) \) distinct integers satisfying \(0 < h_1 < h_2 < \cdots < h_{k-1} \) and not covering all residue classes to any prime modulus. Also, denote

\[
\pi(x; \mathcal{H}) = \#\{n \in \mathbb{N} : n + h_{k-1} \leq x, n, n + h_1, \ldots, n + h_{k-1} \text{ are all primes}\}.
\]

The Hardy–Littlewood prime \(k \)-tuple conjecture is that, for \(X \rightarrow +\infty \),

\[
\pi(X; \mathcal{H}) = \mathcal{S}(\mathcal{H}) \frac{X}{\log^k X} (1 + o(1)),
\]

where the singular series

\[
\mathcal{S}(\mathcal{H}) = \prod_p \left(1 - \frac{v_{\mathcal{H}}(p)}{p} \right) \left(1 - \frac{1}{p} \right)^{-k},
\]

with \(p \) running through all the primes and

\[
v_{\mathcal{H}}(p) = \#\{m \pmod{p} : m(m + h_1) \ldots (m + h_{k-1}) \equiv 0 \pmod{p}\}.
\]

We will also need the following well-known sieve bound, for \(X \) sufficiently large,

\[
\pi(X; \{0, h, d\}) \leq 2^3 \times 3! \mathcal{S}(\{0, h, d\}) \frac{X}{\log^2 X} (1 + o(1)),
\]

when \(\mathcal{S}(\{0, h, d\}) \neq 0 \). (See Iwaniec and Kowalski’s excellent monograph [2].)

To prove our main theorem, we will need the following Hardy–Littlewood prime-pair conjecture.

2010 Mathematics Subject Classification. Primary: 11N05, Secondary: 11N36, 11A41.

Key words and phrases. Differences between consecutive primes; Hardy–Littlewood prime-pair conjecture; Applications of sieve methods.
Conjecture 1.1. Let X be sufficiently large and $d \ll \log X$ be a natural number. Then

\begin{equation}
\pi(X, \{0, d\}) = \mathcal{G}(\{0, d\}) \frac{X}{\log^2 X} (1 + o(1)),
\end{equation}

where

\[
\mathcal{G}(\{0, d\}) = \begin{cases}
2 \prod_{p > 2} \left(1 - \frac{1}{(p-1)^2}\right) \prod_{p|d, p > 2} \left(\frac{p-1}{p-2}\right) & \text{if } d \text{ is even}, \\
0 & \text{if } d \text{ is odd}.
\end{cases}
\]

with the product extending over all primes $p > 2$.

Our main result can be summarized as follows under the above conjecture.

Theorem 1.1. Assume that the Hardy–Littlewood prime-pair conjecture holds for all sufficiently large X. Then we have

\[
\sum_{n \leq X} \frac{\log^\alpha d_n}{d_n} \sim \begin{cases}
\frac{X (\log \log X)^{1+\alpha}}{\log X} & \alpha > -1, \\
\frac{X \log \log \log X}{\log^2 X} & \alpha = -1.
\end{cases}
\]

Letting $\alpha = 0$ in above theorem and using Abel’s summation formula, one can obtain the following corollary.

Corollary 1.2. Let X be sufficiently large. Then

\[
\sum_{3 \leq n \leq X} \frac{\log^\alpha d_n}{d_n} \sim \begin{cases}
\frac{\gamma_c + o(1)}{\log \log X} & c > 2, \\
\frac{O((\log \log X)^2 - c)}{(\log \log X)^2 (1 + o(1))} & c < 2,
\end{cases}
\]

where γ_c is a constant.

Without the Hardy–Littlewood prime-pair conjecture, using the same idea one can obtain the following result.

Theorem 1.3. Let X be sufficiently large. Then

\[
\sum_{n \leq X} \frac{\log^\alpha d_n}{d_n} \ll \begin{cases}
\frac{X (\log \log X)^{1+\alpha}}{\log X} & \alpha > -1, \\
\frac{X \log \log \log X}{\log^2 X} & \alpha = -1.
\end{cases}
\]

Similar to Corollary 1.2, one can obtain the following corollary.

Corollary 1.4. Let X be sufficiently large. Then

\[
\sum_{3 \leq n \leq X} \frac{1}{d_n (\log \log n)^c} = \begin{cases}
\frac{\gamma_c + o(1)}{\log \log X} & c > 2, \\
O((\log \log \log X)^2 - c) & c < 2,
\end{cases}
\]

where γ_c is a constant.

2. Basic Lemma

To prove Theorem 1.1, we need the following lemmas.

Lemma 2.1. (See [3, Proposition 1]). Let X be sufficiently large. Then

\[
\sum_{d \leq X} \mathcal{G}(\{0, d\}) - X + \frac{\log X}{2} \ll \log^2 X.
\]

As a special case of [4, Lemma 2], we have
Lemma 2.2. Let d be an even integer. Then

$$\sum_{h=1}^{d-1} \mathcal{S}(\{0, h, d\}) = \mathcal{S}(\{0, d\})d(1 + o_d(1)).$$

The following lemma is important in this paper.

Lemma 2.3. Let $f(x) \in \mathcal{C}^1[2, +\infty)$ be strictly monotonically decreasing to 0, and $\int_2^\infty f(t) \, dt$ divergence. Also, let X sufficiently large, $y = o(\log X)$ and $y \gg \log \log X$.

(a) Using Conjecture 1.1, we have

$$\sum_{d_n \leq y \atop p_n+1 \leq X} f(d_n) \sim \frac{X}{\log X} \int_2^y f(t) \, dt.$$

(b). Without using Conjecture 1.1, we have

$$\sum_{d_n \leq y \atop p_n+1 \leq X} f(d_n) \ll \frac{X}{\log X} \int_2^y f(t) \, dt.$$

Proof. The proof of parts (a) and (b) are essentially the same. Therefore, we prove part (a) only. Firstly, we have

$$\sum_{d_n \leq y \atop p_n+1 \leq X} f(d_n) = \sum_{d \leq y} f(d) \sum_{\substack{d_n = d \atop p_n+1 \leq X}} 1$$

$$= \sum_{d \leq y} f(d) \pi(X; \{0, d\}) + \sum_{d \leq y} f(d) \left(\sum_{\substack{d_n = d \atop p_n+1 \leq X}} 1 - \pi(X; \{0, d\}) \right).$$

By the inclusion-exclusion principle, it is easy to see that

$$\pi(X; \{0, d\}) - \sum_{h=1}^{d-1} \pi(X; \{0, h, d\}) \leq \sum_{\substack{d_n = d \atop p_n+1 \leq X}} 1 \leq \pi(X; \{0, d\}).$$

Hence

$$(2.1) \quad \sum_{d_n \leq y \atop p_n+1 \leq X} f(d_n) = \sum_{d \leq y} f(d) \pi(X; \{0, d\}) + O \left(\sum_{d \leq y} f(d) \sum_{h=1}^{d-1} \pi(X; \{0, h, d\}) \right).$$

Combining (1.2) with Lemma 2.2, we see that the error term in (2.1) is

$$\ll \frac{X}{\log^3 X} \sum_{d \leq y} f(d) \sum_{h=1}^{d-1} \mathcal{S}(\{0, h, d\}) \ll \frac{X}{\log^3 X} \sum_{d \leq y} f(d) d \mathcal{S}(\{0, d\}).$$

Using Abel’s summation formula, noting that $f(x) \in \mathcal{C}^1[2, +\infty)$ is strictly monotonically decreasing to 0 and $y \gg \log \log X$, we have

$$\sum_{d \leq y} f(d) d \mathcal{S}(\{0, d\}) = \int_2^y f(x) d \left(\sum_{d \leq x} \mathcal{S}(\{0, d\}) \right) \ll \int_2^y f(x) x \, dx.$$
Together with (1.1), we have
\[
(2.2) \quad \sum_{d_n \leq y \atop p_{n+1} \leq X} f(d_n) = \frac{X}{\log^2 X} (1 + o(1)) \sum_{d \leq y} f(d) \mathcal{G}(\{0, d\}) + O \left(\frac{X}{\log^2 X} \int_{2}^{y} f(x) x \, dx \right).
\]
Combining Lemma 2.1 and using Abel’s summation formula again, we obtain
\[
\sum_{d \leq y} f(d) \mathcal{G}(\{0, d\}) = \int_{2}^{y} f(x) d \left(\sum_{d \leq x} \mathcal{G}(\{0, d\}) \right)
= \int_{2}^{y} f(x) \, dx + O(1) + O(f(y) \log y) + O \left(\int_{2}^{y} \frac{f(x)}{x} \, dx \right).
\]
Since
\[
\int_{2}^{y} \frac{f(x)}{x} \, dx = f(y) \log y - \int_{2}^{y} f'(x) \log x \, dx + O(1)
\]
and \(-\int_{2}^{y} f'(x) \log x \, dx > 0\) by the assumption on \(f\), hence by (2.2) and (2.3) we have
\[
\sum_{d_n \leq y \atop p_{n+1} \leq X} f(d_n) = \frac{X}{\log^2 X} \left(1 + o(1) \right) \int_{2}^{y} f(x) \, dx + O \left(\int_{2}^{y} \frac{f(x)}{x} \, dx + \int_{2}^{y} \frac{f(x) x \, dx}{\log X} \right).
\]
By using L’Hospital’s rule, we get
\[
\lim_{y \to +\infty} \frac{\int_{2}^{y} f(x) x^{-1} \, dx}{\int_{2}^{y} f(x) \, dx} = 0 \quad \text{and} \quad \lim_{y \to +\infty} \left| \frac{\int_{2}^{y} f(x) x \, dx}{y \int_{2}^{y} f(x) \, dx} \right| \leq 1.
\]
Hence
\[
\sum_{d_n \leq y \atop p_{n+1} \leq X} f(d_n) = \frac{X}{\log^2 X} \left(1 + o(1) + O \left(\frac{y}{\log X} \right) \right) \int_{2}^{y} f(x) \, dx.
\]
On noting that \(y = o(\log X)\), we obtain the proof of part (a).

\[\square\]

Lemma 2.4. Let \(f(x) \in C^1[2, +\infty)\) be strictly monotonically decreasing to 0, and \(\int_{2}^{\infty} f(t) \, dt\) divergence. Also, let \(X\) sufficiently large and \(\log^2 X \leq x < y \leq \log^2 X\). Then we have
\[
\sum_{x < d_n \leq y \atop p_{n+1} \leq X} f(d_n) \ll \frac{X}{\log^2 X} \left(\int_{x}^{y} f(t) \, dt + f(x) \log \log X \right).
\]

Proof. Since \(f(x)\) is strictly monotonically decreasing and \(\log^2 X \leq x < y \leq \log^2 X\), we have
\[
\sum_{x < d_n \leq y \atop p_{n+1} \leq X} f(d_n) = \sum_{x < d \leq y} f(d) \sum_{d_n = d \atop p_{n+1} \leq X} \sum_{x < d \leq y} f(d) \pi(X; \{0, d\})
\ll \frac{X}{\log^2 X} \sum_{x < d \leq y} f(d) \mathcal{G}(\{0, d\}) \ll \frac{X}{\log^2 X} \left(\int_{x}^{y} f(t) \, dt + O(\log t) \right)
\ll \frac{X}{\log^2 X} \left(\int_{x}^{y} f(t) \, dt + f(x) \log y + \int_{x}^{y} |f'(t)| \log t \, dt \right)
\ll \frac{X}{\log^2 X} \left(\int_{x}^{y} f(t) \, dt + f(x) \log \log X \right).
\]
This completes the proof of the lemma. \[\square\]
3. The proof of main theorem

Let \(y = \log X (\log \log X)^{-1} \) and \(f(t) = t^{-1} \log \alpha \), \(\alpha \geq -1 \). Using Lemma 2.3 and Lemma 2.4, we have

\[
\sum_{p_{n+1} \leq X} f(d_n) = \sum_{d_n \leq y} f(d_n) + \sum_{\substack{d_n \leq \log X \leq y \leq d_n \leq \log X}} f(d_n) + \sum_{\substack{d_n > \log X \leq p_{n+1} \leq X}} f(d_n)
\]

\[
= \frac{X}{\log^2 X} \left(1 + o(1) \right) \int_2^y f(x) \, dx + O \left(\frac{X \int_y^{\log X} f(t) \, dt}{\log^2 X} + \frac{X \log X}{\log^2 X} f(y) \right) + O \left(\frac{X f(\log X)}{\log X} \right).
\]

Substituting the values of \(f \) and \(y \) into the above equation, we obtain

\[
\sum_{p_{n+1} \leq X} \frac{\log^\alpha d_n}{d_n} = \frac{X}{\log^2 X} (1 + o(1)) \int_{\log 2}^{\log(\log X (\log \log X)^{-1})} u^\alpha \, du + \frac{X}{\log^2 X} \left(o(1) + O \left((\log \log X)^\alpha \log \log \log X \right) \right).
\]

Hence we get

\[
(3.1) \quad \sum_{p_{n+1} \leq X} \frac{\log^\alpha d_n}{d_n} \sim \begin{cases} \frac{X}{\log^2 X} \frac{(\log \log X)^{1+\alpha}}{\log^{1+\alpha} X} & \alpha > -1, \\ \frac{X}{\log^2 X} \frac{\log \log \log X}{\log^2 X} & \alpha = -1. \end{cases}
\]

By prime number theorem, the maximum integer \(n \) satisfying \(p_{n+1} \leq X \) is \(X \log X (1 + o(1)) \) and substituting these values into (3.1) above completes the proof of the theorem.

Acknowledgment

The author would like to thank the anonymous referees and the editors for their very helpful comments and suggestions. The author also thank Min-Jie Luo for offering many useful suggestions and help.

References

[1] Erdös, P., Nathanson, M.B., On the sum of the reciprocals of the differences between consecutive primes. In: Chudnovsky, D.V., Chudnovsky, G.V., Nathanson, M.B. (eds.) Number theory: New York Seminar 1991–1995, pp. 97–101. Springer, New York (1996)
[2] Iwaniec, H., Kowalski, E.: Analytic number theory, volume. 53, American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI (2004)
[3] Friedlander, J.B., Goldston, D.A., Some singular series averages and the distribution of Goldbach numbers in short intervals. Illinois J. Math. 39(1), 158–180 (1995)
[4] Goldston, D.A., Ledoan, A.H., The jumping champion conjecture. Mathematika. 61(3), 719–740 (2015)

Department of Mathematics, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
E-mail address: nianhongzhou@outlook.com