The ILW hierarchy

Y Tutiya and J Satsuma

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan

Abstract

In this paper, we present a new hierarchy which includes the intermediate long wave (ILW) equation at the lowest order. This hierarchy is thought to be a novel reduction of the 1st modified KP type hierarchy. The framework of our investigation is Sato theory.

1 Introduction

It is well known that Sato theory was established by M. Sato around 1980 to give a unified viewpoint for integrable soliton equations [1]. A lot of important studies have been based on this magnificent theory since then. In this paper, we focus on one of the basic ideas of the theory, summarized as follows [2].

“Start from an ordinary differential equation and suppose that the solutions satisfy certain dispersion relations. Then, as conditions the coefficients must satisfy, we obtain a set of nonlinear partial differential equations. If we assume a particular set of linear dispersion relations, we obtain the KP hierarchy as the corresponding PDEs.”

It is known that most nonlinear partial differential equations which have N-soliton solutions correspond to certain equations of KP hierarchy. But, in the case of the intermediate long wave (ILW) equation, although its N-soliton solutions and an inverse scattering transform were well-known [3,4,5], the correspondence to the KP hierarchy has remained unclear.

The ILW equation was proposed by Joseph [6] and Kubota et al. [7] to describe long internal gravity waves in a stratified fluid with finite depth. It is written in the form

$$u_t + \frac{1}{\delta} u_x + 2uu_x + T(u_{xx}) = 0,$$

(1)

where $T(\cdot)$ is the singular integral operator given by

$$T(u) = P \int_{-\infty}^{\infty} \frac{1}{2\delta} \cot \left[\frac{\pi}{2\delta}(\xi - x) \right] u(\xi) d\xi$$

(2)

(P represents the principal value of the integral). Depending on the parameter δ (which controls the depth of the internal wave layer) (1) reduces to the Korteweg-de Vries (KdV) equation as $\delta \to 0$ or to the Benjamin-Ono (BO) equation as $\delta \to \infty$.

In this paper, we present a new hierarchy which includes the ILW equation at the lowest order. This hierarchy is thought to be a novel reduction of the 1st modified KP type hierarchy. In section 2, we propose a set of differential-difference dispersion relations, and introduce a corresponding 1st modified KP type hierarchy. In section 3, this 2 + 1 dimensional hierarchy will be reduced to a 1 + 1 dimensional hierarchy which contains the ILW equation at its lowest order. In section 4, we discuss more general dispersion relations of differential-difference type.
2 The dispersion relations and their corresponding hierarchy

Let us introduce a pseudo-differential operator,

\[W = 1 - \frac{U}{2}\partial^{-1} + w_2\partial^{-2} + w_3\partial^{-3} + \cdots + w_m\partial^{-m}, \]

where \(U \) and \(w_j \) \((j = 1, 2, \cdots)\) are functions of continuous variables \(t = (t_1, t_2, \cdots) \) and a discrete variable \(z \). We sometimes use \(x \) instead of \(t_1 \) to follow the convention. \(\partial^{-n} \) denotes

\[\partial^{-n} = \left(\frac{d}{dt_1} \right)^{-n}. \]

If we employ the Leibniz rule,

\[\partial^n f(t_1) = \sum_{r=0}^{\infty} \frac{n(n-1)\cdots(n-r+1)}{r!} \left(\frac{\partial^r f}{\partial t_1^r} \right) \partial^{n-r}, \]

then \(\partial^n \) can be a well-defined operator even for negative integer \(n \). Though the theory is developed for the case of \(m \to \infty \) in general, we, in this paper, confine ourselves to (3) for simplicity \([2]\). It is remarked that the essence of the general theory is still kept in this simplification.

Let us consider the ordinary differential equation,

\[W\partial^m f(t, z) = (\partial^m - \frac{U}{2}\partial^{m-1} + w_2\partial^{m-2} + \cdots + w_m) f(t, z) = 0 \]

which has \(m \) linearly independent solutions, \(f^{(1)}(t, z), f^{(2)}(t, z), \cdots, f^{(m)}(t, z) \). We assume here that \(f^{(1)}(t, z), f^{(2)}(t, z), \cdots, f^{(m)}(t, z) \) satisfy the following dispersion relations,

\[\begin{cases} i^{1-n}\partial_\tau f^{(j)} + \partial^n f^{(j)} = 0 \\ \Delta_z f^{(j)} = \partial f^{(j)} \end{cases} \quad (j = 1, 2, \cdots, m \text{ and } n = 1, 2, \cdots), \]

where \(\Delta_z \) denotes a difference operator,

\[\Delta_z g(z) = \frac{e^{2iz\delta \tau} - 1}{g(z)} \frac{g(z + 2i\delta) - g(z)}{2i\delta} \]

(\(\delta \) is an arbitrary constant).

It should be remarked that \(U \) and \(w_j \) are expressible by means of a \(\tau \)-function, which is the Wronskian of \(f^{(1)}(t, z), f^{(2)}(t, z), \cdots, f^{(m)}(t, z) \), i.e.

\[U = 2 \frac{\tau_2}{\tau}, \quad w_2 = \frac{1}{2} \left(\frac{\tau_2}{\tau} - \frac{\tau_{xx}}{\tau} \right), \cdots. \]

Let \(B_n \) \((n = 1, 2, \cdots)\) and \(C \) be pseudo-differential operators,

\[B_n = (W\partial^n W^{-1})^+, \quad C = (\bar{W}\partial W^{-1})^+, \]

where \(\bar{W}(z) = W(z + 2i\delta) \) and \((A)^+\) denotes the differential part of the pseudo differential operator \(A \). We use \(\tau \) to denote a shift operator: \(z \to z + 2i\delta \). Then we introduce time evolution equations for \(W \) by

\[\begin{cases} i^{1-n}\frac{\partial W}{\partial t_1} = B_n W - W \partial^n \\ \bar{W} - \frac{W - \bar{W}}{2i\delta} = CW - \bar{W}\partial \end{cases} \quad (n = 1, 2, \cdots), \]

2
which are Sato type equations. From (12) we get an infinite system of the Zakharov-Shabat type equations

\[
\begin{cases}
 i^{l-l} (C)_t - \frac{B_l - B_t}{2i\delta} + CB_t - B_tC = 0 \\
 i^{l-l} (B_k)_{t_k} - i^{l-k} (B_l)_t + [B_k, B_l] = 0 \\
 \quad (k, l = 1, 2, \ldots).
\end{cases}
\]

Furthermore from (13) we can deduce a system of partial differential-difference equations for \(U \). The first few are explicitly given by

\[
\begin{align*}
 i(\bar{U} - U)_{t_2} + \frac{i}{\delta}(\bar{U} - U)_{x} + (\bar{U} - U)(\bar{U} - U)_{x} + (\bar{U} + U)_{xx} &= 0, \\
 2(\bar{U} - U)_{t_3} - \frac{3i}{2}(\bar{U} - U)_{xt_2} + \frac{1}{2}(\bar{U} - U)_{xxx} &+ \frac{3i}{2\delta}(\bar{U} + U)_{xx} + \frac{6i}{2\delta}(\bar{U} - U)(\bar{U} - U)_x + \frac{3}{2\delta}(\bar{U} - U)_x \\
 &+ \frac{3}{2}(\bar{U} + U)_{xx} (\bar{U} - U) + \frac{3}{2}(\bar{U} + U)_x (\bar{U} - U)_x + \frac{3}{2}(\bar{U} - U)^2(\bar{U} - U)_x = 0, \\
 -i(\bar{U} - U)_{t_4} - \frac{1}{2}(\bar{U} + U)_{t_2 t_2} + \frac{i}{2}(\bar{U} - U)_{xxx} + (\bar{U} + U)_{xxxx} &+ 3(\bar{U} - U)_x (\bar{U} - U)_{xx} - \frac{i}{2}(\bar{U} + U)_{t_2} (\bar{U} - U)_x - i(\bar{U} - U)_{t_2} (\bar{U} + U)_x \\
 &+ \frac{i}{\delta^2}(\bar{U} + U)_{xt_2} + \frac{i}{\delta^2}(\bar{U} - U)_{t_2} + \frac{1}{\delta^2}(\bar{U} + U)_{xt_2} + \frac{i}{\delta^2}(\bar{U} - U)_{xxx} \\
 &+ \frac{1}{\delta^2}(\bar{U} - U)(\bar{U} - U)_{t_2} + (\bar{U} - U)(\bar{U} - U)_{xxxx} - \frac{i}{2}(\bar{U} - U)^2(\bar{U} - U)_{t_2} = 0.
\end{align*}
\]

Substituting (9) into (14)-(16), we also have the equations for \(\tau \) by

\[
\begin{align*}
 \left(iD_{t_2} + \frac{i}{\delta} D_x + D_x^2 \right) \bar{\tau} \cdot \tau &= 0, \\
 \left(4D_{t_3} - 3i D_x D_{t_2} + D_x^3 + \frac{3i}{\delta} D_x^2 - \frac{3}{\delta^2} D_x \right) \bar{\tau} \cdot \tau &= 0, \\
 \left(-2i D_{t_4} - D_x^2 - iD_x D_x^2 + \frac{1}{\delta} D_{t_2} D_x + \frac{i}{\delta^2} D_{t_2} \right) \bar{\tau} \cdot \tau &= 0
\end{align*}
\]

(\(D \) denotes Hirota’s differential operator). It should be remarked that (17)-(19) are essentially the same as the first few of the 1st modified KP hierarchy [8],

\[
\begin{align*}
 (D_{t_1}^2 + D_{t_2}) \tau_n \cdot \tau_{n+1} &= 0, \\
 (D_{t_1}^3 - 4D_{t_3} - 3D_{t_1} D_{t_2}) \tau_n \cdot \tau_{n+1} &= 0, \\
 (-D_{t_1}^2 D_{t_2} + D_{t_2}^2 + 2D_{t_4}) \tau_n \cdot \tau_{n+1} &= 0.
\end{align*}
\]

3 Solutions and special reductions

\(N \)-soliton solutions for (17)-(19) will be written in the form

\[
\tau = \begin{pmatrix}
 1 + c_1 e^{\eta(t,p_1) - \eta(t,q_1)} & \ldots & \ldots & 1 + c_N e^{\eta(t,p_N) + \eta(t,q_N)} \\
 l(q_1) + l(p_1) c_1 e^{\eta(t,p_1) - \eta(t,q_1)} & \ldots & \ldots & l(q_N) + l(p_N) c_N e^{\eta(t,p_N) - \eta(t,q_N)} \\
 \vdots & \ddots & \ddots & \vdots \\
 l(q_1)^{N-1} + l(p_1)^{N-1} c_1 e^{\eta(t,p_1) - \eta(t,q_1)} & \ldots & \ldots & l(q_N)^{N-1} + l(p_N)^{N-1} c_N e^{\eta(t,p_N) - \eta(t,q_N)} \\
 \prod_{j' < j} (l(q_{j'}) - l(q_j))
\end{pmatrix}
\]
\[
\sum_{J \subseteq I} \left(\prod_{j \in J} c_j \right) \left(\prod_{j, j' \not\in J} a_{jj'} \right) \exp \left(\sum_{j \in J} \eta(t, p_j) - \eta(t, q_j) \right)
\]
\tag{23}
\]
where the summation is taken over all subsets \(J \) of \(I = \{1, 2, \cdots, m\} \). \(\eta(t, p), l(p) \) and \(a_{jj'} \) are defined by
\[
\eta(t, p) = pz + \sum_{n=1}^{\infty} i^{n-1} l(p)^n t_n,
\]
\[
l(p) = e^{2i\delta p} - \frac{1}{2i\delta},
\]
\[
a_{jj'} = \frac{l(p_j) - l(p_{j'})}{l(p_j) - l(q_{j'})},
\]
and the \(c_j \) are constants. Notably, the bilinear identity to \(\tau \) is given as follows.

Lemma 3.1 For arbitrary \(t = (t_1, t_2, \cdots), t' = (t'_1, t'_2, \cdots) \) and \(z, \tau \) satisfies
\[
\oint e^{-i\xi(k, t-t')} (1 + 2i\delta k) \tau(z + 2i\delta, t - i\epsilon(k^{-1})) \tau(z, t + i\epsilon(k^{-1})) \frac{dk}{2\pi i} = 0,
\]
where \(\xi(k, t) = \sum_{n=0}^{\infty} t_n k^n \), \(\epsilon(k^{-1}) = (\frac{1}{k}, \frac{1}{2k}, \cdots, \frac{1}{nk}, \cdots) \). The curve is taken around \(\infty \) and excludes the singular points \(il(p_n), il(q_n) \).

Proof. Substitute (23) into (27) and we see that \(\text{Res}(il(p_n)) + \text{Res}(il(q_n)) = 0 \) for \(\forall n \).

We impose the condition
\[
p_j - q_j = l(p_j) - l(q_j) = k_j \tag{28}
\]
on (23). Then, it is reduced to
\[
\tau = \sum_{J \subseteq I} \left(\prod_{j \in J} c_j \right) \left(\prod_{j, j' \not\in J} a_{jj'} \right) \exp \left(\sum_{j \in J} k_j z + \sum_{n=1}^{\infty} \mu_n(k_j) t_n \right)
\]
\tag{29}
for appropriately-defined functions \(\mu_n(k) \). It should be noticed that (29) is the same as the soliton solution of the ILW equation [9]. We here present the 1-soliton solution as an example.

\[
\tau = 1 + c \exp \left[k z + k t_1 + (k^2 \cot k \delta - \frac{k}{\delta}) t_2
\right.
\]
\[
+ \frac{1}{4} \left(k^3 - 3k^3 \cot^2 k \delta + \frac{6}{\delta} k^2 \cot k \delta - \frac{3}{\delta^2} k \right) t_3
\]
\[
+ \frac{1}{2} \left(-k^4 \cot k \delta + k^4 \cot^3 k \delta - \frac{3}{\delta} k^3 \cot^2 k \delta + \frac{1}{\delta} k^3 + \frac{3}{\delta^2} k^2 \cot k \delta - \frac{1}{\delta^3} k \right) t_4 + \cdots
\]
\tag{30}
\]
We can regard \(z \) and \(t_1 \) as the same variable under this reduction, because the coefficient of \(z \) is equal to that of \(t_1 \) in the exponentiated part of (29). It also should be noticed that

Lemma 3.2 If \(k_j \)'s are real, \(\mu_n(k_j) \) and \(a_{jj'} \) are also real \((j, n = 1, 2, \cdots)\).

Proof.
From (25) and (28), we get
\[
l(p_j) + l(q_j) = -ik_j \cot k_j \delta + \frac{i}{\delta}.
\]
\tag{31}
Because \(l(p_j) + l(q_j) \) is purely imaginary and \(l(p_j) - l(q_j)(= k_j) \) is real, there exist real \(r, \theta \) by which
\[
l(p_j) = re^{i\theta}, \quad l(q_j) = re^{i(\pi-\theta)}.
\]
\tag{32}
By the definition of $\mu_n(k_j)$, we have

$$
\mu_n(k_j) = i^{n-1} (l(p_j) - l(q_j))^n
$$

$$
= i^{n-1} \left(r e^{in\theta} - r e^{in(\pi-\theta)} \right)
$$

$$
= \left\{ \begin{array}{ll}
2i^{n-1}r^n \cos(n\theta) & \text{for } n \text{ odd} \\
2i^{n}r^n \sin(n\theta) & \text{for } n \text{ even.}
\end{array} \right.
$$

(33)

Hence $\mu_n(k_j)$ is real. We also deduce

$$
a_{jj'} = \frac{l(p_j) - l(p_{j'})}{l(q_j) - l(q_{j'})} \cdot \frac{l(q_j) - l(q_{j'})}{l(p_j) - l(p_{j'})}
$$

$$
= \frac{(r e^{i\theta} - r' e^{i\theta}) (r e^{-i\theta} - r' e^{-i\theta})}{(r e^{i\theta} - r' e^{i\theta}) (r e^{-i\theta} - r' e^{-i\theta})}
$$

$$
= \frac{r^2 + r'^2 - rr' \cos(\theta - \theta')}{r^2 + r'^2 - rr' \cos(\theta + \theta')},
$$

(34)

which gives that $a_{jj'}$ is real.

By this reduction, the x-shifts can take the place of the z-shifts and (14)-(16) are rewritten into the equations for $U_{\pm}(x) := U(x \mp i\delta)$, i.e.

$$
i(U^- - U^+)_t + \frac{i}{6}(U^- - U^+)_x + (U^- - U^+)(U^- - U^+)_x + (U^- + U^+)_xx = 0,
$$

(35)

$$
2(U^- - U^+)_t - \frac{3i}{2}(U^- - U^+)_{xt} + \frac{1}{2}(U^- - U^+)_{xxx} + \frac{3i}{2\delta}(U^- + U^+)_{xx}
$$

$$
+ \frac{3i}{\delta}(U^- - U^+)(U^- - U^+)_{xx} - \frac{3}{2\delta^2}(U^- - U^+)_{xx} + \frac{3}{2}(U^- + U^+)_{xx}(U^- - U^+)
$$

$$
+ \frac{3}{2}(U^- + U^+)_{xx}(U^- - U^+) + \frac{3}{2}(U^- - U^+)^2(U^- - U^+)_x = 0,
$$

(36)

$$
i(U^- - U^+)_t - \frac{1}{2}(U^- + U^+)_tx + \frac{i}{2}(U^- - U^+)_{xx} + (U^- + U^+)_xxx
$$

$$
+ 3(U^- - U^+)(U^- - U^+)_{xx} - \frac{i}{2}(U^- + U^+)_{tt} + (U^- - U^+)_{tx} - i(U^- - U^+)_{tx} + i(U^- - U^+)_t (U^- + U^+)_x
$$

$$
- \frac{i}{2}(U^- + U^+)_{tt}(U^- - U^+) + \frac{1}{2\delta^2}(U^- - U^+)_{tt} + \frac{1}{2\delta}(U^- + U^+)_{tx} + \frac{i}{\delta}(U^- - U^+)_{xxx}
$$

$$
- \frac{1}{\delta}(U^- - U^+)(U^- - U^+)_{tx} + (U^- - U^+)(U^- - U^+)_{xxx} - \frac{i}{2}(U^- - U^+)^2(U^- - U^+)_{tx} = 0.
$$

(37)

If we consider lemma 3.2 and suppose that $U(x)$ is analytic in the horizontal strip between $\text{Im } x = -i\delta$ and $\text{Im } x = i\delta$, we can introduce a dependent variable u which satisfies [9]

$$
u = \frac{i}{2}(U^- - U^+),
$$

(38)

$$
T(u) = \frac{1}{2}(U^- + U^+).
$$

(39)

Substituting this u into (35)-(37), we obtain

$$
u_{tx} + \frac{1}{\delta}u_x + 2u u_x + T(u_{xx}) = 0,
$$

(40)

$$
-4u_{tx} - 3T(u_{tx}) - u_{xxx} - 6u T(u_{xx}) - 6u_x T(u_x) + 12u^2 u_x
$$

$$
- \frac{12}{\delta}u u_x + \frac{3}{\delta} T(u_{xx}) + \frac{3}{\delta^2} u_x = 0,
$$

(41)

$$
-2u_{tx} - T(u_{tx}) + u_{xtx} + 4u^2 u_x - 2u_x T(u_x) - 4u_{tx} T(u_x)
$$

$$
-2u T(u_{tx}) + 2T(u_{xxx}) - 12u_{xxx} u_x - 4u u_{xxx} + \frac{1}{\delta} T(u_{xx}) + \frac{2}{\delta} u_{xxx} - \frac{4}{\delta} u u_x + \frac{1}{\delta^2} u_x = 0.
$$

(42)
Because the lowest order is nothing but the intermediate long wave equation, this hierarchy should be called the ILW hierarchy.

4 More general dispersion relations

Other possible differential-difference dispersion relations than (7) can be

\[
\begin{cases}
 i^{1-n} \partial_{t_n} f^{(j)} = \partial^n f^{(j)} \\
 i^{s-1} \Delta_z f^{(j)} = \partial^s f^{(j)},
\end{cases}
\]

where \(s \) is some fixed positive integer, \(j = 1, 2, \cdots, m \) and \(n = 1, 2, \cdots \). Notably, (43) corresponds to (7) when \(s = 1 \).

For each \(s \), we can deduce the corresponding hierarchy in the same way as in the preceding sections. Hence we just present the bilinear identity which generates the hierarchy for \(\tau \) [8],

\[
\oint e^{-i\xi(k, t-L)}(1 - 2\delta(-k)^s)\tau(z + 2i\delta, t - i\epsilon(k^{-1}))\tau(z, t + i\epsilon(k^{-1}))\frac{dk}{2\pi i} = 0. \tag{44}
\]

The \(N \)-soliton solution to the hierarchy is written in the form

\[
\tau = \left| \begin{array}{ccccc}
1 + c_1 e^{H(t,p_1)-H(t,q_1)} & \cdots & 1 + c_N e^{H(t,p_N)-H(t,q_N)} \\
L(q_1) + L(p_1) c_1 e^{H(t,p_1)-H(t,q_1)} & \cdots & L(q_N) + L(p_N) c_N e^{H(t,p_N)-H(t,q_N)} \\
\vdots & \cdots & \vdots \\
L(q_1)^{N-1} + L(p_1)^{N-1} c_1 e^{H(t,p_1)-H(t,q_1)} & \cdots & L(q_N)^{N-1} + L(p_N)^{N-1} c_N e^{H(t,p_N)-H(t,q_N)} \\
\prod_{j,j' > j} (L(q_{j'}) - L(q_j))
\end{array} \right| \prod_{j \in J} C_j \prod_{j,j' \in J} A_{jj'} \exp \left(\sum_{j \in J} H(t,p_j) - H(t,q_j) \right), \tag{45}
\]

where the summation is taken over all subsets \(J \) of \(I = \{1, 2, \cdots, m\} \). \(H(t,p), L(p) \) and \(A_{jj'} \) are defined by

\[
H(t,p) = pz + \sum_{n=1}^{\infty} i^{n-1} L(p) t_n, \tag{46}
\]

\[
i^{1-s} L(p)^s = \frac{e^{2i\delta p} - 1}{2i\delta}, \tag{47}
\]

\[
A_{jj'} = \frac{L(p_j) - L(p_{j'})}{L(p_j) - L(q_{j'})} \frac{L(q_j) - L(q_{j'})}{L(q_j) - L(p_{j'})}. \tag{48}
\]

It should be noticed that \(L(p) \) is multi-valued. It is easy to check that this soliton solution satisfies the bilinear identity (44).

We impose the reduction condition,

\[
p_j - q_j = i^{s-1} (L(p_j)^s - L(q_j)^s) = (-1)^{s-1} \frac{c^{2i\delta p_j} - c^{2i\delta q_j}}{2i\delta} = k_j \quad (j = 1, 2, \cdots). \tag{49}
\]

Substituting (49) into (45), we have

\[
\tau = \sum_{J \in I} \left(\prod_{j \in J} C_j \right) \left(\prod_{j,j' \in J, j' > j} A_{jj'} \right) \exp \left(\sum_{j \in J} k_j z + \sum_{n=1}^{\infty} M_n(k_j) t_n \right) \tag{50}
\]

for appropriately-defined functions \(M_n(k) \). We can regard \(z \) and \(t_n \) as the same variable under this reduction. Furthermore, the following lemma holds.
LEMMA 4.1 If k_j's are real, $M_n(k_j)$ and $A_{ij'}$ are also real ($i = 1, 2, \ldots$).

Proof. From (48) and (50), we see that

$$L(p_j)^s - L(q_j)^s = (i)^{1-s}k_j,$$

$$L(p_j)^s + L(q_j)^s = (i)^s \left((-1)^sk_j \cot k_j \delta + \frac{2}{\delta} \right).$$

If s is odd, $L(p_j)^s - L(q_j)^s$ is real and $L(p_j)^s + L(q_j)^s$ is purely imaginary. Hence there exists real $r, 0 \leq \theta \leq 2\pi$ by which

$$L(p_j)^s = re^{i\theta}, \quad L(q_j)^s = re^{i(\pi-\theta)}.$$

If s is even, $L(p_j)^s - L(q_j)^s$ is purely imaginary and $L(p_j)^s + L(q_j)^s$ is real. Then we have

$$L(p_j)^s = re^{i\theta}, \quad L(q_j)^s = re^{-i\theta}.$$

For both cases, we choose $L(p_j), L(q_j)$ as

$$L(p_j) = \sqrt{r}e^{i\frac{\theta}{2}}, \quad L(q_j) = \sqrt{r}e^{i(\pi-\frac{\theta}{2})}.$$

Because $L(p_j) - L(q_j)$ is defined to be real and $L(p_j) + L(q_j)$ to be purely imaginary, we see that $M_j, A_{ij'}$ are real by means of lemma 3.2. This, at the same time, takes care of the multi-valuedness of the function $L(p)$.

If we consider lemma 4.1 and suppose that $U(t_s)$ is analytic in the horizontal strip between $\text{Im } t_s = -i\delta$ and $\text{Im } t_s = i\delta$, we can introduce a dependent variable u which satisfies

$$u = \frac{i}{2}(U(t_s + i\delta) - U(t_s - i\delta)), \quad T_s(u) = \frac{1}{2}(U(t_s + i\delta) + U(t_s - i\delta)),$$

where

$$T_s(u(t_s)) = P \int_{-\infty}^{\infty} \frac{1}{2\delta} \cot \left[\frac{\pi}{2\delta}(\xi - t_s) \right] u(\xi)d\xi.$$

As another concrete example, different from the ILW hierarchy, we apply the preceding argument to the case $s = 2$. From (44), we get

$$\int e^{-i\xi(k, k' \cdot t)} (1 - 2\delta k^2) \tau(z + 2i\delta, t - i\xi(k^{-1})) \tau(z, t + i\xi(k^{-1})) \frac{dk}{2\pi i} = 0,$$

which generates the hierarchy for τ. The first few hierarchy equations are

$$\begin{cases}
-2D_{t_3} + D_z^4 + 3iD_zD_{t_2} + \frac{3}{\delta}D_z \cdot \tau = 0, \\
6D_{t_4} - 4iD_{t_3}D_z - 3iD_z^2 - iD_z^4 - \frac{12j}{\delta}D_z^2 - \frac{6}{\delta}D_{t_2} \cdot \tau = 0.
\end{cases}$$

This hierarchy is essentially the same as the 2nd modified KP hierarchy [8]

$$\begin{align*}
(2D_{t_3} + D_z^4 + 3D_zD_{t_2}) \tau_n \cdot \tau_{n+2} &= 0, \\
(D_z^4 - 4D_zD_{t_3} - 3D_z^2 - 6D_{t_2}) \tau_n \cdot \tau_{n+2} &= 0, \\
\cdots
\end{align*}$$

The 1-soliton solution for this hierarchy is written in the form

$$\tau = 1 + C \exp[H(t, p) - H(t, q)],$$

$$H(t, p) = (p - q)z + \sum_{n=1}^{\infty} i^{n-1}L(p)^n t_n,$$

$$L(p)^2 = \frac{-e^{2isp} + 1}{2\delta}.$$
By the reduction condition

\[p - q = i (L(p)^2 - L(q)^2) = e^{2i\delta p} - e^{2i\delta q} \]
\[= \frac{k}{2i\delta} \]

(67)

(64) is reduced to

\[
\tau = 1 + \exp \left[k z + \sqrt{k \cot k\delta - \delta^{-1} + \sqrt{(k \cot k\delta - \delta^{-1})^2 + k^2}} t_1 + k t_2 \right. \\
\left. + \sqrt{k \cot k\delta - \delta^{-1} + \sqrt{(k \cot k\delta - \delta^{-1})^2 + k^2}} \times \left(-k \cot k\delta + \delta^{-1} + \sqrt{(k \cot k\delta - \delta^{-1})^2 + k^2/\sqrt{2}} \right) t_3 + \cdots \right] .
\]

(68)

Thus the \(t_2 \)-shifts take the place of the \(z \)-shifts. If we impose the analytic condition as before on \(U \), there exists \(u \) which satisfies

\[u = \frac{i}{2} (U(t_2 + i\delta) - U(t_2 - i\delta)) , \]

(69)

\[T_2(u) = \frac{1}{2} (U(t_2 + i\delta) + U(t_2 - i\delta)) . \]

(70)

Now, (60) and (61) are expressible by means of \(u \) as

\[
2u_{t_3} - u_{xxx} + 3T_2(u_{xt_2}) - 3(uT_2(u_x))_x + 3u^2 u_x \\
- 3 \left(u \int^{x}_{-\infty} u_x \, dx \right)_x + \frac{3}{\delta} u_x = 0 ,
\]

(71)

\[
6u_{t_4} + T_2(u_{xxxx}) - 4(uu_x)_x + 12T_2(u)T_2(u_x) + 4u^3 u_x \\
- 6(6u^2T_2(u_x))_x + 4T_2(u_{xt_2}) - 4u_x \int^{x}_{-\infty} u_t_3 d\xi - 4uu_{t_3} + 3T_2(u_{xt_2}) \\
- 6u_{t_2} \int^{x}_{-\infty} u_{tx} \, d\xi + \frac{12}{\delta} T_2(u_{xx}) - \frac{24}{\delta} uu_x - \frac{6}{\delta} u_{t_2} = 0 .
\]

(72)

Acknowledgment. This work was partially supported by a Grant-in-Aid from the Japan foundation for the Promotion of Science (JSPS). The authors would like to thank T. Tokihiro, R. Willox and Y. Ohta for discussions and advice.

References

[1] M.Sato, RIMS Kôkyûroku 439 (1981) 30.

[2] Y.Ohta, J.Satsuma, D.Takahashi, T.Tokihiro, Prog. Theor. Phys. Suppl. 94 (1988) 210.

[3] J.Satsuma, M.J.Ablowitz, Y.Kodama, Phys. Lett. 73A (1979) 283.

[4] Y.Kodama, M.J.Ablowitz, J.Satsuma, J. Math. Phys. 23 (1982) 564.

[5] J.Satsuma, T.R.Taha, M.J.Ablowitz, J. Math. Phys. 25 (1984) 900.

[6] R.I.Joseph, J. Phys. A10 (1977) L225.

[7] T.Kubota, D.R.S.Ko, D.Dobbs, J. Hydronaut. 12 (1978) 157.

[8] M.Jimbo, T.Miwa, Publ. RIMS Kyoto Univ. 19 (1983) 943.

[9] J.Satsuma, in Nonlinear Integrable Systems - Classical Theory and Quantum Theory, Eds. M.Jimbo, T.Miwa (World Scientific, Singapore) (1983) 183.