Calculation of two-centre two-electron integrals over Slater-type orbitals revisited.

III. Case study of the beryllium dimer

Michal Lesiuk,1,∗ Michal Przybytek,1 Monika Musial,2 Bogumił Jeziorński,1 and Robert Moszyński1

1Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
2Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

(Dated: October 24, 2014)

In this paper we present results of ab-initio calculations for the beryllium dimer with basis set of Slater-type orbitals (STOs). Nonrelativistic interaction energy of the system is determined using the frozen-core full configuration interaction calculations combined with high-level coupled cluster correction for inner-shell effects. Newly developed STOs basis sets, ranging in quality from double to sextuple zeta, are used in these computations. Principles of their construction are discussed and several atomic benchmarks are presented. Relativistic effects of order α² are calculated perturbatively by using the Breit-Pauli Hamiltonian and are found to be significant. We also estimate the leading-order QED effects. Influence of the adiabatic correction is found to be negligible. Finally, the interaction energy of the beryllium dimer is determined to be 929.0 ± 1.9 cm⁻¹, in a very good agreement with the recent experimental value. The results presented here appear to be the most accurate ab-initio calculations for the beryllium dimer available in the literature up to date and probably also one of the most accurate calculations for molecular systems containing more than four electrons.

PACS numbers: 31.15.vn, 03.65.Ge, 02.30.Gp, 02.30.Hq

I. INTRODUCTION

As a first application of the STOs integral code developed using the methods presented in Part I [1] and Part II [2] we performed calculations for the beryllium dimer in its ground ¹Σ⁺ g state. This is a challenging system, both from the theoretical and experimental point of view. From the theory side, it has already been known that in order to reach accurate results very advanced quantum chemistry methods must be used. In fact, probably the first calculations performed for this system by Fraga and Ransil [3], using the restricted Hartree-Fock (RHF) method, led to the conclusion that the potential energy curve is purely repulsive. Further inclusion of the electron correlation, by using the configuration interaction method (CI) with single and double substitutions (CISD), appeared to confirm this observation [4]. However, more refined calculations with the same method indicated an existence of a weak bond [5, 6], with the interaction energy of order of several tens of cm⁻¹ and equilibrium distance of ≈ 5 Å, which is characteristic for the van der Waals molecules such as Ne₂. A similar conclusion was found in a study [7] employing the coupled cluster (CC) methods with double (and single) excitations (CCD, CCSD).

However, somehow later Harrison and Handy [8] performed frozen-core full configuration interaction (FCI) calculations and found that the interaction energy is at least several hundreds of cm⁻¹ larger. Even more importantly, they reported the presence of a deep minimum around 2.5 Å which was a rather unexpected result at this time. These results indicate that the connected triple (and possibly also quadruple) excitations are responsible for the formation of the bond. Reasons for such slow convergence of the traditional configuration interaction or coupled cluster expansions were analysed in details by Liu et al. [9]. It was shown that the pathological behaviour of this system encountered during studies performed with the single reference methods is mostly due to near-degeneracy of the 2s and 2p orbitals of the beryllium atom. It gives the beryllium dimer a strongly multireference nature. By applying the multireference configuration interaction (MRCI) method, Liu et al. found the interaction energy to be as large as 810 cm⁻¹ and confirmed the existence of the minimum around 2.5 Å. These findings were later verified by several independent MRCI studies [10–17]. Therefore, it is now well established that Be₂ is not a van der Waals molecule.

Since now, a large number of theoretical works entirely devoted to study of the beryllium dimer have been published and a more detailed bibliography is given elsewhere [18, 19]. The interaction energy is typically determined to be within the range of 200-1000 cm⁻¹ and it varies with the level of theory and quality of the basis sets used. However, it appears that in the most recent, and probably the most accurate, studies, the interaction energy fluctuates somewhere around 900 cm⁻¹. For instance, Martin [20] found 944 ± 25 cm⁻¹, Gdanitz [21] - 989 ± 8 cm⁻¹, Pecul et al. [22] - 885 cm⁻¹, Roggen and Veseth [18] - 945 ± 15 cm⁻¹, Patkowski et al. [19] - 938 ± 15 cm⁻¹, Kopcut [23] - 935 ± 10 cm⁻¹, and Sharma et al. - 931.2 cm⁻¹ [24]. Discrepancies between these results are still rather large, though, which indicates that the ground state of the beryllium dimer remains to be a challenge for modern quantum chemistry methods.

From the experimental point of view, the ground state...
of the beryllium dimer is also a demanding system. First empirical confirmation of the fact that Be₂ is a deeply bound system, as theoretically predicted, was reported in the eighties [25–27]. The most frequently cited experimental result for the well-depth was given by Bondybey et al., 790 ± 30 cm⁻¹. This result is not accurate and the true error is much larger than the estimated error bars. However, the discrepancy is not really due to the experimental error but mostly due to theoretical assumptions used to extract the dissociation energy. In fact, in 2006 Spirkó [28] combined the experimental data of Bondybey with the best theoretical potential energy curve available at the time and refined the result to 923 cm⁻¹ which is much closer to the recent theoretical findings. In 2009 a new experiment was performed by Merritt et al. [29] and the interaction energy was found to be 929.7 ± 2.0 cm⁻¹. Additionally, eleven vibrational levels were characterised [30]. Shortly afterwards, Patkowski et al. [31] suggested the existence of the twelfth vibrational level, just 0.44 cm⁻¹ below the dissociation limit, by using the “morphed” theoretical potential energy curves.

It is clear that the ground state of the beryllium dimer is a challenging system, with large requirements for the quality of the basis set and for the theoretical methods. Therefore, it is a good test case for the Slater-type orbitals (STOs) combined with the state-of-the-art quantum chemistry methods. However, calculations with STOs basis sets of quality up to sextuple zeta, aiming at spectroscopic accuracy, have never been performed thus far. In the case of such calculations special attention must be paid to technical issues, such as creation and benchmarking of basis sets, since the strategies adopted in case of Gaussian-type orbitals (GTOs) may not be straightforwardly transferable. In this communication we consider these issues in some detail but restrict ourselves to calculations at the equilibrium internuclear distance, \(R \), equal to 2.4536 Å which is the recent experimental value [29]. The whole potential energy curve will be reported later, along with a detailed study of the related spectroscopical issues.

This paper is organised as follows. In Section II we describe in details the systematic construction of the STOs basis sets. In Section III we present benchmarks for the beryllium atom which verify the reliability of the developed STOs basis sets. Issues connected with extrapolations towards the complete basis set (CBS) are also investigated. In Section IV we present results for the ground state of the beryllium dimer. We calculate the valence and core correlations effects separately and estimate the corresponding errors. Additionally, we compute the values of the relativistic corrections and estimate the effects of the leading-order QED contributions. Finally, in Section V we conclude the paper and give a short outlook.

II. BASIS SETS

In the case of Gaussian-type orbitals (GTO), the contracted functions are typically used to reproduce the Hartree-Fock energy first. Then, additional uncontracted functions are used to describe the electronic correlation, see the works of Dunning [32–40] as a representative example. We found that GTO basis sets designed according to this principle somewhat lack flexibility for the \(l = 0 \) partial wave, especially in the molecular environment, since the number of uncontracted \(1s \) orbitals is typically small. For ordinary GTO calculations this is not a problem, however, because correlation energy retrieved by \(l = 0 \) angular momentum functions is small - at least an order of magnitude below the contribution from \(l = 1 \) partial wave. Therefore, this lack of correlation coming from \(l = 0 \) functions is visible only for very accurate calculations where the contributions from more important partial waves are already sufficiently saturated. Since we aim at high quality results, we do not use contractions of STOs.

There is also another important choice in the design of STO basis sets which is entirely absent in the case of GTO. For GTO calculations one typically uses only \(1s, 2p, 3d \) etc. functions (with \(n = l + 1 \)) since molecular integrals with these kind of functions are particularly straightforward. In the case of STO one can use functions with \(n > l + 1 \) as well. For instance, in the case of \(l = 0 \) orbitals the expansion takes the following form

\[
\psi_l = e^{-\zeta_i r} \sum_k c_{ki} r^k, \tag{1}
\]

where the value of \(\zeta_i \) is characteristic for a given atomic shell. The expansion (1) is quite attractive, mainly because of a small number of nonlinear parameters which need to be optimised - only one per atomic shell, and very systematic enlargement towards the completeness through the parameters \(N_i \). However, in practice we found that there are numerous problems connected with this expansion in our applications. The biggest drawback is the fact that basis sets constructed according to the principle (1) suffer from near-linear dependencies when \(N_i \) gets moderate or large. This effectively prohibits the construction of large basis sets close to completeness when the standard double precision arithmetic is used. Another problem is the fact that the expansion (1) is not as flexible as necessary, especially when transferred from atomic to a weakly bound molecular system.

As a result, we found that more flexible and well-behaved basis sets can be obtained when the orbitals are expanded, similarly as for GTO, in a set of functions with \(n = l + 1 \) and their respective exponents are varied freely i.e.

\[
\psi_l = \sum_k c_{kl} e^{-\zeta_{ik} r}. \tag{2}
\]
This choice, however, brings up the problem of optimisation of a large number of independent parameters \(\zeta_{lk} \). In the biggest basis set created in this work a direct use of Eq. (2) would require free optimisation of several tens of the nonlinear parameters. This is possible but very time consuming. Even daunting problem is the presence of a great number of local minima. There is no guarantee that a brute-force optimisation would have found the true global minimum, even with a decent starting point. This fact puts the reliability of the extrapolations towards the complete basis set (CBS) in question.

Aware of all the aforementioned issues, we adopted the strategy of even-tempering so that the nonlinear parameters for a given angular momentum \(l \) are in the following form

\[
\zeta_{lk} = \alpha_l \beta_l^{k} \quad \text{with} \quad k = 0, 1, 2, \ldots
\]

(3)

Nowadays, even-tempering is routinely applied for construction of GTOs basis sets. However, this technique was originally proposed by Raffenetti and co-workers [47, 48] in the context of STOs. Even-tempering greatly reduces the number of independent parameters which need to be optimised (only two for each partial wave).

The first step in the creation of the STOs basis sets is optimisation of the atomic valence basis set. In this step the core 1s orbital of the beryllium atom is kept frozen and CISD method, equivalent to FCI for the valence shell, is used. The optimisation is carried out to minimise the total energy of the two-electron CISD i.e. sum of the Hartree-Fock and CISD correlation energy.

Since the seminal work of Dunning and co-workers [32–40] it has been known that to allow for a reliable extrapolation towards CBS, basis sets need to be constructed according to the correlation consistency principle. Roughly speaking, it ensures that at a given stage all functions which give approximately the same energy contributions are simultaneously included. Our atomic valence basis sets are denoted ETCC-L which stands for even-tempered correlation consistent and L is the largest angular momentum included. Therefore, ETCC-1 has the composition 6s1p, ETCC-2 – 7s2p1d and so forth, and only functions with \(n = l + 1 \) are used. The initial number of six 1s functions was found to be optimal. Compositions of all basis sets up to \(L = 6 \) are presented in Table I. At some point it becomes unnecessary to include more 1s functions, and thereafter their number was kept fixed. The even-tempered expansion, (3), is used separately for each partial wave.

The second step in construction of the basis set for beryllium is addition of the “tight” functions which are necessary for description of the core-core and core-valence correlations. It is well-known that the core electrons are chemically inert and their contribution to the total energy cancels out to a large extent when interaction energies are computed. This observation is the foundation for the so-called frozen core approximation. However, in accurate calculations the frozen core approximation cannot be applied, especially for an element such as beryllium.

Obviously, valence basis sets cannot describe the core-core and core-valence correlations since polarisation functions with large exponents, characteristic for the core, are absent. We added core polarisation functions to the previously obtained ETCC-L basis sets. Detailed composition of the extended TC-ETCC-L basis sets (where TC stands for “tight core”) is given in Table I for each \(L \). In order to optimise the exponents of the core polarisation functions we minimised the difference between the total energies of all-electron CISD and frozen-core CISD for the beryllium atom. Since the number of independent nonlinear parameters was much smaller than for the valence basis sets, even-tempering of the exponents was not necessary and all variables were optimised freely. A minor detail of the optimisation procedure is that the derivative of the target function with respect to the logarithm of the exponent was used as a gradient, rather than the derivative with respect to the exponent itself. This stabilises greatly the numerical performance of the optimisation.

The third, and final, step of the basis sets creation is the addition of the diffuse functions. These functions are not necessary for the atomic calculations since tails of the electron density do not contribute greatly to the total energies of the atom. However, in a molecular environment tails of the electron density are responsible for the act of bonding in weakly interacting systems and accurate reproduction of the potential energy curve. Basis sets augmented with a set of diffuse functions are called A-ETCC-L, or ATC-ETCC-L in the case of the core-valence basis sets. Detailed structure of the augmented basis sets is given in Table I. Exponents of the diffuse functions were optimised to maximise the absolute value of the beryllium dimer interaction energy calculated with A-ETCC-L basis sets at four electron (valence) CCSD(T) level of theory [41].

Notably, the strategy that the diffuse functions are optimised to maximise the absolute value of the interaction energy makes them formally dependent on the internuclear distance, \(R \). This is, in fact, exactly in line with our intentions. In this work we consider only one value of \(R \), corresponding to the minimum of the potential energy curve, so that there is no ambiguity in how the calculations are carried out. In case when a complete potential energy curve is required, diffuse functions can be optimised for several values of \(R \) and then interpolated smoothly. The present approach is inspired by the works of Kolos and co-workers concerning the hydrogen molecule [42–45]. Basis sets used in these works contained several nonlinear parameters which were handled similarly as described above and no significant difficulties were reported.

All optimisations necessary to construct the basis sets were carried out by using pseudo Newton-Rhapson method with the BFGS update of the approximate Hessian matrix [49]. Our own code, written especially for this purpose, was used throughout. This program is interfaced with the GAMESS package [50, 51] which carries
TABLE I. Composition of STO basis sets for the beryllium atom.

basis set	atomic valence	tight core	diffuse
ATC-ETCC-1	6s1p	1s	1s1p
ATC-ETCC-2	7s2p1d	1s1p	1s1p1d
ATC-ETCC-3	8s3p2d1f	2s2p1d	1s1p1d1f
ATC-ETCC-4	9s4p3d2f1g	2s3p2d1f	1s1p1d1f1g
ATC-ETCC-5	9s5p4d3f2g1h	3s4p3d2f1g	1s1p1d1f1g1h
ATC-ETCC-6	9s6p5d4f3g2h1i	3s5p4d3f2g1h	1s1p1d1f1g1h1i

out the electronic structure calculations. Gradient with respect to nonlinear parameters was calculated numerically with the two-point finite difference formula. Close to a minimum, where more accurate values of the gradient are necessary, the four-point finite difference formula was applied. Optimisation was stopped when the energy differences between two consecutive iterations fell below 1 nH and the largest element of the gradient below 10 µH, simultaneously. Typically, several tens of iterations were necessary to converge to a minimum in the biggest calculations. To avoid the exponent values of two functions to collapse, which occasionally happened, a Gaussian-type penalty function was applied routinely.

STOs constitute a convenient basis set for calculation of the relativistic corrections because of the cusp at the origin. Nonetheless, it is obvious that standard STO basis sets used in calculation of the Born-Oppenheimer potential may not be fully satisfactory. To overcome this problem we modified our ATC-ETCC-L basis sets by replacing all 1s orbitals by a new set, common for each L. The latter consists of fifteen functions and was trained to minimise the Hartree-Fock energy of the beryllium atom. The value obtained, -14.5730231385, differs at 10th significant digit from the best estimate available in the literature, -14.573023168305 [52]. The S-extended basis sets are abbreviated shortly ATC-ETCC-L+S.

Composition of the STO basis sets along with detailed values of the exponents and quantum numbers are given in the Supplementary Material [53].

III. ATOMIC BENCHMARKS

A. Nonrelativistic energy

The beryllium atom is a convenient system for benchmarking purposes because accurate reference values of the total energies and relativistic corrections are available in the literature. Therefore, before the calculations on the diatomic system are given, it is useful to check the adequacy of the strategy and the performance of our basis sets in the atomic case. We calculated the full configuration interaction (FCI) energies of the beryllium atom by using ATC-ETCC-L basis sets with $L = 2,...,6$. Newly developed, general FCI program HECTOR [54], written by one of us (M.P.), was used for this purpose. The starting Hartree-Fock orbitals were taken from the GAMESS program package, interfaced with our STO integral code.

In Table II we present the FCI results for the beryllium atom. It is important for further developments to extrapolate these results towards the complete basis set. Many extrapolation methods were suggested in the literature [55–58], but the following formula was found to be particularly reliable for estimation of the CBS limit of the correlation energy

$$E = A + \frac{B}{L^3} + \frac{C}{L^5},$$

(4)

where L is the largest angular momentum present in the basis set. The Hartree-Fock results were not extrapolated but simply the value in the biggest basis set was taken. Extrapolation of the results given in Table II leads to the result -14.667345 for the total energy of the beryllium atom. This can be compared with the reference value, obtained by Pachucki and Komasa [59] by using explicitly correlated four-electron basis set, -14.667356, and the error is equal to 11µH. Remarkably, the extrapolation reduces the error by an order of magnitude, compared with the largest basis set available. In fact, we found that an essential feature of STOs basis sets is that they provide very reliable extrapolation towards the CBS limit, as compared with GTOs basis sets of a similar quality.

TABLE II. Total energy, E_{total}, and the correlation energy, E_c, of the beryllium atom calculated at the FCI level of theory by using the STOs basis sets ATC-ETCC-L. The limit of the Hartree-Fock energy is assumed to be -14.573023 H.

basis set	E_c/mH	E_{total}/H
ATC-ETCC-2	-85.976	-14.658 998
ATC-ETCC-3	-91.479	-14.664 502
ATC-ETCC-4	-92.994	-14.666 017
ATC-ETCC-5	-93.608	-14.666 631
ATC-ETCC-6	-93.902	-14.666 925
CBS	-94.322	-14.667 345
Pachucki and Komasa [59]	-94.333	-14.667 356
TABLE III. Mass-velocity, \(\langle P_4 \rangle\), and one-electron Darwin, \(\langle D_1 \rangle\), corrections for the beryllium atom at the FCI level of theory. The factor of \(\alpha^2\) is not included. All values are given in the atomic units.

basis set	\(\langle P_4 \rangle\)	\(\langle D_1 \rangle\)
ATC-ETCC-2+S	-270.431 854	222.218 606
ATC-ETCC-3+S	-270.527 702	222.225 660
ATC-ETCC-4+S	-270.568 886	222.232 142
ATC-ETCC-5+S	-270.594 238	222.234 514
ATC-ETCC-6+S	-270.609 955	222.235 299
CBS	-270.648 568	222.236 568

Pachucki and Komasa [59] -270.704 68(25) 222.229 35(13)

B. One-electron relativistic corrections

The leading relativistic corrections (the second order in the fine structure constant, \(\alpha\)) to the energy of light systems can be computed perturbatively as an expectation value of the Breit-Pauli Hamiltonian [60]. For a molecule in a singlet state this correction is [61, 62]

\[
E^{(2)} = \langle P_4 \rangle + \langle D_1 \rangle + \langle D_2 \rangle + \langle B \rangle, \tag{5}
\]

\[
\langle P_4 \rangle = \frac{\alpha^2}{8} \left(\sum_i \nabla_i^4 \right), \tag{6}
\]

\[
\langle D_1 \rangle = \frac{\pi \alpha^2}{2} \sum_a Z_a \left(\sum_i \delta(r_{ia}) \right), \tag{7}
\]

\[
\langle D_2 \rangle = \pi \alpha^2 \sum_{i>j} \delta(r_{ij}), \tag{8}
\]

\[
\langle B \rangle = \frac{\alpha^2}{2} \left(\sum_{i>j} \left[\nabla_i \cdot \nabla_j \frac{r_{ij}}{r_{ij}^3} + \frac{r_{ij} \cdot (r_{ij} \cdot \nabla_j) \nabla_i}{r_{ij}^5} \right] \right), \tag{9}
\]

where \(\langle \hat{\mathcal{O}} \rangle = \langle \Psi | \hat{\mathcal{O}} | \Psi \rangle\). The consecutive terms in the above expression are the mass-velocity \(\langle P_4 \rangle\), one-electron Darwin \(\langle D_1 \rangle\), two-electron Darwin \(\langle D_2 \rangle\), and Breit \(\langle B \rangle\) corrections, respectively. We assume that the value of the fine structure constant, \(\alpha\), is \(1/137.0359997\), as recommended by CODATA [63].

Let us consider the values of the one-electron relativistic corrections, \(\langle P_4 \rangle\) and \(\langle D_1 \rangle\). They can easily be obtained within the STOs framework, since the corresponding one-electron integrals are straightforward to compute. Integrals including the one-electron Dirac delta distribution reduce to the values of STOs at a given point of space which is elementary. Integrals including \(\nabla^4\) operator reduce to combinations of the ordinary overlap integrals over STOs. General subroutines for calculation of the aforementioned integrals are now a part of our STOs integral package. Note, that \(\langle P_4 \rangle\) and \(\langle D_1 \rangle\) corrections (called also collectively the Cowan-Griffin contribution [64]) are very sensitive to the quality of the wavefunction in the vicinity of the nuclei. Therefore, their evaluation by using the STOs basis set is supposed to be particularly advantageous.

In Table III we present values of the one-electron relativistic corrections, calculated with S-extended STOs basis sets. The results are compared with the values reported recently [59] which are considered “exact” in the present context. Remarkably, in the biggest basis set, ATC-ETCC-6+S, the relative error of our values compared with the accurate ones is only \(\approx 0.03\%\) and \(\approx 0.003\%\) for \(\langle P_4 \rangle\) and \(\langle D_1 \rangle\), respectively. Moreover, even in the smallest basis set, ATC-ETCC-2+S, these errors increase to only about 0.1\% and 0.005\%. We found that it is impossible to reach a similar level of accuracy with the available (decontracted) GTOs basis sets, and typically the resulting error is (at least) an order of magnitude larger.

It is also interesting to perform extrapolations of the values of one-electron relativistic corrections towards CBS. We found empirically that the following formulae provide the best fit

\[
A + \frac{B}{(L+1)^2} \quad \text{for} \quad \langle P_4 \rangle, \tag{10}
\]

\[
A + \frac{B}{(L+1)^4} \quad \text{for} \quad \langle D_1 \rangle. \tag{11}
\]

Results of the extrapolations from \(L = 3,4,5,6\) are presented in Table III. The extrapolation reduces the error of the mass-velocity correction to 0.02\%, but increases it insignificantly for the one-electron Darwin correction.

IV. BERYLLIUM DIMER

A. Four-electron (valence) contribution

From earlier studies of the beryllium dimer, it is well-known that a major contribution to the interaction energy comes from the correlations between valence electrons. Freezing both 1s\(^2\) atomic orbitals makes the dimer effectively a four-electron system which can be successfully treated with FCI method in large basis sets. We performed the frozen-core FCI calculations in basis sets A-ETCC-L with \(L = 2,...,6\). The Abelian group, \(D_{2h}\), was used in computations. We believe these are the biggest valence FCI calculations ever performed for this system in terms of the number of configurations included in construction of the Hamiltonian matrix. The results of the calculations are included in Table IV. In all cases the counterpoise correction (CP) for the basis set superposition error (BSSE) was applied [69]. It is clear, that the results are slowly convergent also with respect to the quality of the basis set. This is probably due to the fact that bonding significantly perturbs the atomic densities. The increment of the interaction energy between \(L = 5\) and \(L = 6\) basis sets is as large as 11.9 cm\(^{-1}\), suggesting that the CBS value is still significantly below the \(L = 6\) value.
Because of this observation it is necessary to perform some kind of extrapolation towards the CBS. The correlation energy alone was the subject of the extrapolation, separately for the atom and for the dimer. We used the formula (4) which was previously used successfully for the atomic calculations. We also observe that in the largest basis set, the Hartree-Fock (HF) results are already converged at least to eight significant digits. It is therefore unnecessary to extrapolate the HF results and simply the value obtained in L=6 basis was taken as the CBS result.

Note, that the CBS increment found in the extrapolation of the correlation energy is quite substantial, and crucial for the final results. It amounts to as much as nearly 20 cm\(^{-1}\) in the interaction energy. Thus, it is necessary to additionally verify the reliability of the extrapolation. To do so, we first performed the extrapolation from \(L = 2,3,4,5\) basis sets in order to estimate the \(L = 6\) value. The extrapolated \(L = 6\) value gives the interaction energy equal to 847.4 cm\(^{-1}\) whereas the corresponding true calculated result is 845.7 cm\(^{-1}\). The difference, amounting to 1.7 cm\(^{-1}\), is assumed to be also the error of the CBS extrapolation from \(L = 2,3,4,5,6\). Quality of the extrapolation for the dimer is illustrated at Figure 1. A quite similar excellent fit was obtained for the atomic calculations. Finally, our best estimate for the valence contribution to the interaction energy is 864.9 ± 1.7 cm\(^{-1}\). Note, that this error estimation is a conservative one because extrapolation from a larger number of points can be expected to be more reliable. Additionally, the increment in the interaction energy between \(L = 4\) and \(L = 5\) basis set is significantly larger than between \(L = 5\) and \(L = 6\) or between \(L = 6\) and the estimated CBS. Therefore, it is possible that our extrapolated result is more accurate then we assume here.

Our final result, namely 864.9 ± 1.7 cm\(^{-1}\), is in line with recent findings of other authors. Patkowski et al. [19] found 857 ± 12 cm\(^{-1}\), if we follow their method of error estimation, and Martin [20] gives 872 ± 15 cm\(^{-1}\). Present result lies well within the error bounds obtained in these works. A slight discrepancy is found between our result and the value recently reported by Evangelisti and co-workers [70] who give 850.4 cm\(^{-1}\) without any error estimation. We believe that this result is inaccurate, mainly because lack of the diffuse functions in their GTO basis set. Notably, our error bounds, which are conservative anyway, are an order of magnitude smaller than those obtained in the aforementioned works.

B. Core-core and core-valence contribution

The second step in our calculations is a reliable determination of the core-core and core-valence contribution to the interaction energy. This task, however, is far from being trivial. A brief inspection of values available in the literature reveals that estimations from 65 cm\(^{-1}\) [70] to as large as 89 cm\(^{-1}\) [18] were obtained. Because of the fulfillment of the nuclear cusp condition, the STOs basis used in the present work can be expected to be more suitable for the description of core region than the GTOs used thus far.

Our preliminary study suggests that the CCSDT model is a particularly good method for the estimation of the inner-shell contribution. The effect of connected
TABLE V. Core-core and core-valence contribution to the interaction energy computed at various levels of theory. All values are given in cm$^{-1}$. Extrapolations are performed according to the formula (4), for the atom and dimer separately, using the counterpoise-corrected data.

basis set	N_0	CCSD	CCSDT	CCSD(T)	MP2	MP4
ATC-ETCC-2	62	28.2	31.5	39.0	-34.0	28.9
ATC-ETCC-3	126	50.4	56.7	61.2	57.2	56.4
ATC-ETCC-4	224	55.7	63.9	66.4	63.6	63.5
ATC-ETCC-5	364	57.4	67.7	65.7	65.7	
CBS	∞	59.3	69.6	69.5	67.8	68.4

quadruple excitations was found to be very small in this case. In fact, the effect of quadruples can be highly overestimated in small basis sets but quickly diminishes when the basis set is enlarged. We found this particular behaviour in virtually any approximate quadruples method that was available to us. Therefore, we can conclude that CCSDT method in the CBS limit would probably give the core-core and core-valence contribution accurate to within few parts in cm$^{-1}$. A similar observation was also made implicitly by Martin [20].

Unfortunately, we are able to perform all-electron CCSDT calculation only in ATC-ETCC-L basis sets with $L = 2,3,4$. The results are 31.5 cm$^{-1}$, 56.7 cm$^{-1}$ and 63.9 cm$^{-1}$, respectively. CBS extrapolation from these values can be performed by using the formula (4), giving 69.6 cm$^{-1}$. However, this three-point extrapolation is not particularly trustworthy since CBS increment is rather large and no reliable error estimation can be given. Thus, we must seek some approximate method, with smaller computational costs, giving results comparable to CCSDT in the CBS limit.

In Table V we show inner-shell contributions to the interaction energy computed at various levels of theory. CCSD, CCSD(T) and MP2 calculations were performed with GAMESS package while CCSDT and MP4 energies were evaluated with help of the AcesII program [71]. All values in this table were obtained by subtracting the interaction energy obtained with the frozen core approximation from the corresponding all-electron values. Let us compare the results of MP4 and CCSD(T) with the complete CCSDT model. One sees that MP4 method slightly understimates the inner-shell contribution compared to CCSDT while CCSD(T) model overestimates it significantly, especially in smaller basis sets. Note additionally that MP4 and CCSD(T) results strictly bracket the CCSDT values, as illustrated at Figure 2. If we assume that this behaviour holds further then the CBS limit of the CCSDT method should lie between the corresponding limits of MP4 and CCSD(T). Fortunately, the CBS limit is 68.4 cm$^{-1}$ and 69.5 cm$^{-1}$ for MP4 and CCSD(T), respectively. The exact result probably lies between these values so as the final result we take the average of the two and estimate the error as a half of the difference between them. This gives the final value of the core-core and core-valence contributions to the interaction energy equal to 69.0 ± 0.6 cm$^{-1}$. The small effect of the connected quadruples contribution is probably already incorporated in the error estimation.

FIG. 2. Contribution of the inner-shell effects to the interaction energy, denoted shortly D_{core}^e, calculated by using ATC-ETCC-L basis sets. Black dots are the CCSD(T) results and the black line is the CCSD(T)/CBS extrapolation curve. Analogously, red dots are the MP4 results and the red line is the corresponding CBS extrapolation. Blue squares are the available CCSDT results, for $L = 2,3,4$.

Note that the final value determined by us is significantly smaller than some of the estimations given in the literature. For instance, Martin gives 76.2 cm$^{-1}$ [20] while Patkowski et al. [19] reports as much as 85 ± 5 cm$^{-1}$. We believe that these discrepancies are mainly due to defects in the GTOs basis sets used by authors. In fact, when GTOs basis sets are not designed very carefully in the core region, the inner-shell correlation effects can be significantly overestimated. Naturally, STOs are much more appropriate in this respect which is one of their noteworthy advantages.

C. Relativistic, QED and adiabatic corrections

One-electron relativistic corrections were evaluated by using the S-extended basis sets, described in Section II. The results are presented in Table VI. Calculations of the one-electron expectation values, at the all-electron
we present contributions to the interaction energy and FCI levels of theory. The factor of α^2 is not included. All values are given in the atomic units.

Basis Set	All-electron CCSD	Frozen-core CCSD	Frozen-core FCI			
ATC-ETCC2+S	$\langle P_4 \rangle$	$\langle D_1 \rangle$	$\langle P_4 \rangle$	$\langle D_1 \rangle$	$\langle P_4 \rangle$	$\langle D_1 \rangle$
	-539.847 891	443.692 152	-537.394 631	443.278 203	-537.133 303	443.083 762
ATC-ETCC3+S	-539.971 064	443.675 656	-537.333 536	443.241 928	-537.036 087	443.021 849
ATC-ETCC4+S	-540.030 590	443.664 899	-537.317 658	443.233 044	-537.014 183	443.008 427
ATC-ETCC5+S	-540.073 538	443.665 227	-537.310 464	443.229 426	-537.004 508	443.003 144
CBS	-540.141 465	443.655 919	-537.305 424	443.226 021	-536.995 150	442.996 653

TABLE VI. Mass-velocity, $\langle P_4 \rangle$, and one-electron Darwin, $\langle D_1 \rangle$, corrections for the beryllium dimer calculated at the CCSD and FCI levels of theory. The factor of α^2 is not included. All values are given in the atomic units.

Basis Set	All-electron CCSD	Frozen-core CCSD	Frozen-core FCI						
	$D_e(P_4)$	$D_e(D_1)$	ΣD_e						
ATC-ETCC2+S	-12.40	9.28	-3.12	-11.87	8.87	-3.00	-14.93	11.44	-3.78
ATC-ETCC3+S	-13.35	9.79	-3.57	-12.71	9.41	-3.30	-16.19	11.98	-4.21
ATC-ETCC4+S	-13.63	10.08	-3.54	-12.94	9.56	-3.38	-16.49	12.18	-4.30
ATC-ETCC5+S	-13.72	10.14	-3.58	-13.03	9.61	-3.42	-16.60	12.25	-4.35
CBS	-14.26	10.44	-3.81	-13.10	9.67	-3.44	-16.73	12.34	-4.39

TABLE VII. Contributions to the interaction energy of the beryllium dimer from the mass-velocity, $\langle P_4 \rangle$, and one-electron Darwin, $\langle D_1 \rangle$, corrections calculated at the CCSD and FCI levels of theory. All results are given in cm$^{-1}$.

and frozen-core CCSD level of theory, were performed by using Λ operator technique [65–68] implemented by default in GAMESS package. Relaxation of the Hartree-Fock orbitals is neglected in CCSD calculations. FCI calculations were done using our own program and the expectation values are straightforward to evaluate by using the FCI wavefunctions.

Extrapolations are carried out by using the empirical formula (10) for both $\langle D_1 \rangle$ and $\langle P_4 \rangle$. Our strategy for evaluation of the contribution to the interaction energy from the Cowan-Griffin approximation [64] is as follows. We use the valence FCI values corrected for the core-core and core-valence effects, as a difference between all-electron and frozen-core CCSD results. It was found previously that CCSD method behaves reasonably for the inner-shell correlations (see Table V) and this accuracy is sufficient for the present purposes. In Table VII we present contributions to the interaction energy from $\langle D_1 \rangle$ and $\langle P_4 \rangle$ corrections, calculated at this level of theory. The core-core and core-valence CCSD effect is estimated to be -0.4 cm$^{-1}$, while the pure valence FCI contribution is -4.4 cm$^{-1}$. By summing both corrections we obtain -4.8 ± 0.2 cm$^{-1}$ for the final contribution to the interaction energy coming from the one-electron relativistic corrections. The error is simply taken as the (rounded up) value of the corresponding CBS increment. The obtained value is in a moderate agreement with the values given by Patkowski et al. [19], -4.1 cm$^{-1}$, Martin [20], -4.0 cm$^{-1}$, and Gdanitz [21], -5.2 cm$^{-1}$. However, as far as we can tell, these values are not extrapolated and the authors report no respective error bars of their result. We believe that our final values are much more accurate due to the fact that STOs basis sets were used throughout.

Let us now focus on the two-electron relativistic corrections - two-electron Darwin, $\langle D_2 \rangle$, and Breit, $\langle B \rangle$, contributions. Evaluation of the latter correction within the STOs basis set is not feasible at present. This is mostly due to the fact the matrix elements of the Breit term, Eq. (5), are extremely difficult to compute with the exponential functions. As far as we know, the only accurate molecular calculations of the Breit term within the exponential basis set were performed by Kolos and Wolniewicz [44, 46] for various electronic states of H$_2$.

Because of these difficulties, we calculated $\langle D_2 \rangle$ and $\langle B \rangle$ in GTOs basis sets. It will be shown that contributions of the two-electron relativistic corrections are small and GTOs basis sets are sufficient to meet the prescribed accuracy requirements.

For calculations of the two-electron relativistic corrections we used modified aug-cc-pCVXZ series of GTOs basis sets [32–40]. To improve the quality of the wavefunction the standard set of 1s GTOs orbitals was replaced by a new one comprising 23 1s functions. This set was obtained by minimising the Hartree-Fock energy of the beryllium atom. Apart from that, the original 1s diffuse functions from the initial aug-cc-pCVXZ basis sets were kept. We also decontracted the 2p diffuse functions and removed the redundant orbitals. Higher angular momentum shells were neither modified nor decontracted.

DALTON program package [72] was used for CCSD(T) calculations and our own program for the valence FCI calculations. In Table VIII we show contributions of $\langle D_2 \rangle$ and $\langle B \rangle$ to the interaction energy computed at three
different levels of theory - all-electron and frozen-core CCSD(T), and frozen-core FCI. It is not necessary to perform CBS extrapolations since the contributions to the interaction energy are converged to about 0.01–0.02 cm\(^{-1}\) already in the biggest basis set. We take the frozen-core FCI contribution as our result and additionally correct it for the inner-shell effects as a difference between the all-electron and frozen-core CCSD(T) values. In this way, we obtain the contribution to the interaction energy from the two-electron relativistic correction equal to \(-0.5\) cm\(^{-1}\). The error can be estimated to be much below 0.1 cm\(^{-1}\) by observing the convergence pattern in the available basis sets. Unfortunately, we are not aware of any available literature values that we could compare with.

By summing the computed one- and two-electron relativistic contributions, we find that \(\alpha^2\) effects decrease the interaction energy by 5.3 \(\pm\) 0.2 cm\(^{-1}\). This contribution is quite sizable and definitely needs to be included to obtain a spectroscopically accurate potential energy curve for the beryllium dimer.

Let us now pass to the leading-order QED contribution. Theoretically, this effect should be by a factor \(\alpha\) smaller than the Breit-Pauli contribution and thus entirely negligible within the present accuracy requirements. However, it turns out that among the relativistic contributions to the interaction energy there is a significant cancellation between \(\langle D_1 \rangle\) and \(\langle D_2 \rangle\) terms, so that the result is order of magnitude smaller than the net values of separate terms. Therefore, the leading QED corrections may still contribute to the interaction energy significantly. In fact, this situation was previously encountered in calculations for the dihydrogen [73] and the helium dimer [74]. This suggests that whenever the \(\alpha^2\) relativistic corrections are included in accurate calculations for light systems, the leading-order QED contributions should also be at least estimated.

The leading QED correction (of the order \(\alpha^3\) and \(\alpha^3 \ln \alpha\)) to the electronic energy of a molecular singlet state takes the form [75, 76]

\[
E^{(3)} = \frac{8 \alpha}{3 \pi} \left(\frac{19}{30} - 2 \ln \alpha - \ln k_0 \right) \langle D_1 \rangle + \frac{\alpha}{\pi} \left(\frac{164}{15} + \frac{14}{3} \ln \alpha \right) \langle D_2 \rangle + \langle H_{AS} \rangle,
\]

where \(\ln k_0\) is the so-called Bethe logarithm [60, 77], \(\langle D_1 \rangle\) and \(\langle D_2 \rangle\) are the values of the one- and two-electron Darwin corrections (including the factor of \(\alpha^2\)). The term \(\langle H_{AS} \rangle\) is the Araki-Sucher contribution, given by the following expectation value

\[
\langle H_{AS} \rangle = -\frac{7 \alpha^3}{6 \pi} \left(\sum_{i \neq j} \hat{r}^{-3}_{ij} \right),
\]

and \(\hat{r}^{-3}_{ij}\) denotes the regularised \(r^{-3}_{ij}\) distribution,

\[
\langle \hat{r}^{-3}_{ij} \rangle = \lim_{a \to 0} \langle \theta(r_{ij} - a)r^{-3}_{ij} + 4\pi(\gamma_E + \ln a) \delta(r_{ij}) \rangle,
\]

where \(\gamma_E\) is the Euler-Mascheroni constant. It is well known that computation of the Bethe logarithm and Araki-Sucher terms is extremely difficult and has never been attempted for any molecular system apart from the dihydrogen [73] and the helium dimer [74]. Therefore, we have to adopt some approximate strategy for determination of \(E^{(3)}\). Fortunately, except at very large \(R\), the Araki-Sucher term is small compared to the overall leading-order QED correction and thus can be neglected. The Bethe logarithm, on the other hand, was found to vary insignificantly as the function of \(R\), when \(R\) is moderate (or large), for the helium dimer and dihydrogen. Therefore, the asymptotic (atomic) value of the Bethe logarithm can be adopted.

A very accurate value of \(\ln k_0\) for the beryllium atom has been given recently by Pachucki and Komasa [59], \(\ln k_0 = 5.75034\). We use the extrapolated values of \(\langle D_1 \rangle\) and \(\langle D_2 \rangle\), equal to 0.023613, 0.00522 for the dimer, and 0.011836, 0.000262 for the monomer, respectively. With these assumptions, contribution of the lowest-order QED effects to the interaction energy of the beryllium dimer is calculated to be 0.37 cm\(^{-1}\). This value is an order of magnitude smaller than the relativistic corrections, as expected. However, their omission would significantly increase the total error of our theoretical predictions. It is difficult to estimate strictly what is the effect of the adopted approximations on the value of QED contribution to the interaction energy. For the dihydrogen molecule, exactly the same approximations introduce an error slightly less than 10%, basing on the results presented in Ref. [73]. Therefore, we can assume very conservatively that error of the present calculations is at
most 20%. This finally gives us estimation of the leading-order QED contribution to the interaction energy equal to 0.4 ± 0.1 cm\(^{-1}\).

We also check the next higher-order QED contribution. It is well known from the calculations on the helium atom \cite{78, 79}, that the α^4 effects are dominated by the one-loop term \cite{80} given by

$$E^{(4)}_{\text{one-loop}} = 16\alpha^2 \left(\frac{427}{192} - \ln 2 \right) \langle D_1 \rangle,$$

in the case of the beryllium atom (or dimer). The above quantity is a scaled one-electron Darwin correction and thus can be easily computed. We found that the contribution to the interaction energy of the one-loop term to be approximately 0.017 cm\(^{-1}\), which is well below 0.1 cm\(^{-1}\). Therefore, as anticipated, the higher-order QED contributions can safely be neglected within the present accuracy requirements. This additionally gives a verification that the QED perturbative series converges rapidly for the beryllium dimer.

The remaining missing part of the theory that has to be investigated is the finite nuclear mass \textit{i.e.} the adiabatic correction. We calculated this correction with help of the CFour \cite{81} and MRCC \cite{82, 83} program packages at both all-electron and frozen-core CCSD and CCSDT levels of theory \cite{84}. GTOs basis set which were previously used for computation of the two-electron relativistic corrections were utilised. In all cases we found that the contribution to the interaction energy from the adiabatic correction was significantly below 0.1 cm\(^{-1}\). In fact, the net values of the adiabatic correction for both atom and dimer were large, but they cancelled out almost to zero. This is probably due to the fact that the adiabatic correction contribution to the interaction energy as a function of the internuclear distance, R, crossed zero near the value of R adopted by us (close to the minimum). A similar situation was found in the case of the helium dimer \cite{74}. Our observation is additionally verified by calculations of Koput \cite{23} who found that contribution of the adiabatic correction to the interaction energy varies by only 2 cm\(^{-1}\) along the whole potential energy curve. As a result, we assume that the contribution to the interaction energy coming from the adiabatic effects is equal to zero. We estimate that the error of this result is at most 0.1 cm\(^{-1}\).

D. Total interaction energy

All contributions to the interaction energy of the beryllium dimer computed in this work are listed in Table IX. By summing all contributions we obtain the value 929.0 cm\(^{-1}\) which is the main result of our study. The overall error of the calculations is estimated by summing squares of all fractional errors (1.7, 0.6, 0.2, 0.1, 0.1 cm\(^{-1}\)) and taking the square root, which gives 1.9 cm\(^{-1}\) (rounded up) or 0.2%. The total result, 929.0 ± 1.9 cm\(^{-1}\), is in a very good agreement with the latest experimental value, 929.7 ± 2.0 cm\(^{-1}\), reported by Merritt \textit{et al.} \cite{29}. In fact, the present result lies within the error bars of the empirical value and \textit{vice versa}.

Let us also comment on the timings of the present calculations. It is true that any gain connected with the use of STOs can easily diminish if computation of the STOs two-electron integral files becomes overwhelmingly time consuming, up to a point when it is more expensive than evaluation of the molecular energy. There is such a risk, because STOs integral algorithms are inherently more complicated and demanding than their GTOs counterparts. In fact, we found that calculation of the STOs integrals is one or two orders of magnitude more expensive than in the case of GTOs, with the same size of the basis set. This sounds daunting but the actual situation is more complex. For instance, in the largest basis sets used in this work, the calculation of the GTOs two-electron integrals is a matter of several minutes while in STOs it takes up to few hours. However, full CI or high-level CC calculations typically take several days to converge. Therefore, calculation of the integral files constitutes a small fraction of the total timing and does not pose any practical bottleneck. This is clearly a consequence of relatively low scaling (N^4) of the calculations of the integral files, as compared with high-level CC of FCI methods.

It is also worthy to compare our results with the latest theoretical values predicted by other authors. In Table X we collected most of the theoretical results published in the late 90’ and since then. An extensive bibliography of calculations published prior to this date can be found in Refs. \cite{18} and \cite{19}. Probably the most reliable calculations given thus far for the beryllium dimer are those of Patkowski \textit{et al.} \cite{19}, giving 938 ± 15 cm\(^{-1}\), and Koput \cite{23}, 935 ± 10 cm\(^{-1}\). Our result is slightly lower but it lies within the error bars estimated by authors. Remarkably, the error predicted by us is by an order of magnitude smaller than in the previous works, despite our estimations were rather conservative. Therefore, it seems that the theoretical values published thus far converge towards a value around 930 cm\(^{-1}\), very close to the recent experimental result.

Contribution	Value (cm\(^{-1}\))
Valence correlations	+864.9 ± 1.7
Inner-shell correlations	+69.0 ± 0.6
Relativistic (α^2) effects	-5.3 ± 0.2
Leading-order (α^3) QED effects	+0.4 ± 0.1
Adiabatic correction	+0.0 ± 0.1
Total	+929.0 ± 1.9
Experiment	+929.7 ± 2.0

TABLE IX. Final error budget of the calculations for the ground state ($^1\Sigma_g^+$) of the beryllium dimer obtained in this work. All values are given in cm\(^{-1}\).
TABLE X. Results of the selected theoretical predictions for the ground state of the beryllium dimer published since late 90’s. All values are given in cm$^{-1}$ and error bars are shown if estimated originally. Relativistic corrections are included if calculated. AE and FC denote all-electron and frozen-core, respectively. A majority of the acronyms appearing below is explained in the main text, apart from: ACPF - averaged coupled-pair functional, CC3 - coupled cluster model with an approximate treatment of triple excitations, CAS - complete active space, MR-CISD+Q - multireference configuration interaction with single and double excitations, Q denotes a specific Davidson-type correction for lack of size extensivity.

Year	Method	D_e (cm$^{-1}$)	Reference
1999	FC CCSD(T)+FCI/CBS and AE CAS-ACPF	944 ± 25	Martin [20]
1999	CAS r_{12}-MR-ACPF/GTO(19s11p6d4f3g2h)	898 ± 8	Gdanitz [21]
2000	CC3+FCI/d-aug-cc-pVQZ	885	Pecul et al. [22]
2005	EXRHF/GTO(23s10p8d6f3g2h)	945 ± 15	Roggen and Veseth [18]
2007	AE CCSD(T)/CBS and FC FCI/CBS	938 ± 15	Patkowski et al. [19]
2007	variational Monte Carlo and fixed-node diffusion Monte Carlo	829 ± 64	Harkless and Irikura [85]
2010	FC FCI/CBS and AE MR-CISD+Q	912	Schmidt et al. [14]
2010	AE MRCI/CBS	838	Mitin [15]
2011	AE CCSD(T)/CBS and FC FCI/CBS	935 ± 10	Koprut [23]
2013	FC FCI/CBS and AE CCSD(T)/cc-pV6Z	927.4 ± 12	Evangelisti et al. [70]
2014	density matrix renormalisation group (DMRG)	931.2	Sharma et al. [24]
Present	FC FCI/CBS and AE CCSD(T)/MP4/CBS	929.0 ± 1.9	—

Apart from that, it is worthy to quote three semiempirical results obtained by “morphing” the theoretical potential energy curve in order to reproduce the experimentally measured vibrational levels [31]. These values are 933.0, 933.2 and 934.6 cm$^{-1}$. It is difficult to estimate the error of these values but we feel that these semiempirical results are also consistent with our final value, 929.0 ± 1.9 cm$^{-1}$.

V. CONCLUSIONS AND OUTLOOK

We have obtained a reliable value of the interaction energy for the beryllium dimer by using STOs basis sets combined with high-level quantum chemistry methods. The total error estimated by us, 1.9 cm$^{-1}$, is by an order of magnitude smaller than in the previous theoretical works. The most striking advantages of STOs, as compared with GTOs, are the reliability in estimation of the core-core and core-valence correlation effects, very solid quality of extrapolations towards CBS, and improved performance in calculation of the one-electron relativistic effects. It is clear that all of these features are essential for a spectroscopically accurate determination of the potential energy curves for diatomic systems. We have not found a situation when STOs perform worse than GTOs basis sets of the same size, at least among those available to us. Despite the fact that the evaluation of the two-electron integrals in STOs basis is much more computationally intensive than in the case of GTOs, we have never found it to be a practical bottleneck.

It is also worthy to consider the direction of further advancements which can be taken. Let us recall the fact, that the ground state of the beryllium dimer is a very pathological and difficult system e.g. the triple excitations are responsible for the bonding effects. In many different spectroscopically interesting diatomic systems the situation is not that difficult and the doubly excited determinants give the dominant contribution to the interaction energy. In such situations the explicitly correlated calculations [86, 87] are an option, allowing for a much better saturation at the MP2, CCD or CCSD levels of theory. The F12 theory of explicitly correlated calculations is now well established [88] but to apply STOs in such computations several issues of both technical and theoretical nature need to be resolved. For instance, for GTOs calculations the exponential correlation factor of Ten-no [89, 90] is nowadays routinely used. In the case of STOs basis sets this choice is not feasible at present, due to an extremely complicated theory of evaluation of the resulting molecular two-electron integrals [91, 92]. Therefore, a different correlation factor has to be adapted. Other problems such as quality and design of the auxiliary basis sets [93, 94] for the resolution of identity approximation also need to be addressed. Nonetheless, the work on combining STOs basis sets with explicitly correlated theories is in progress in our laboratory.

Let us suppose that the accuracy of calculation of the Born-Oppenheimer potential energy curves can be further improved by an order of magnitude, say, due to use of the explicitly correlated methods and other theoretical advancements. The dominant error would then come from inaccuracies in calculation of the relativistic effects, especially for heavier systems. If a perturbation theory, using the Breit-Pauli Hamiltonian, can be still applied then it is natural that two-electron relativistic effects should be calculated within the STOs basis sets. Therefore, sooner or later we shall face the problem of evalu-
ation of the matrix elements of the orbit-orbit and spin-orbit operators with the exponential functions. For heavy atoms, where the perturbation theory breaks down, different approaches need to be considered such as Douglas-Kroll-Hess transformations [95–98] or use of effective core potentials [99, 100]. Neither of the above methods can straightforwardly be combined with the STOs basis sets. Nonetheless, our preliminary studies showed that extensions in these directions are feasible.

We can conclude by noting that the present series of papers opens up a possibility for a significant increase of accuracy which can be routinely reached for the diatomic systems with ab-initio methods.

ACKNOWLEDGMENTS

This work was supported by the Polish Ministry of Science and Higher Education, grant NN204 182940. ML acknowledges the Polish Ministry of Science and Higher Education for the support through the project “Diamenasty Grant”, number DI2011 012041. RM was supported by the Foundation for Polish Science through the “Mistrz” program.

[1] M. Lesiuk and R. Moszynski, submitted to Phys. Rev. A (2014).
[2] M. Lesiuk and R. Moszynski, submitted to Phys. Rev. A (2014).
[3] S. Fraga and B. J. Ransil, J. Chem. Phys. 35, 669 (1961).
[4] C. F. Bender and E. R. Davidson, J. Chem. Phys. 47, 4972 (1967).
[5] C. E. Dykstra, H. F. Schaefer III and W. Meyer, J. Chem. Phys. 65, 5141 (1976).
[6] M. R. A. Blomberg and P. E. M. Siegbahn, Int. J. Quantum Chem. 14, 583 (1978).
[7] R. A. Chiles and C. E. Dykstra, J. Chem. Phys. 74, 4544 (1981).
[8] R. J. Harrison and N. C. Handy, Chem. Phys. Lett. 98, 97 (1983).
[9] B. Liu and A. D. McLean, J. Chem. Phys. 72, 3418 (1980).
[10] L. Füsti-Molnár and P. G. Szalay, Chem. Phys. Lett. 258, 400 (1996).
[11] L. Füsti-Molnár and P. G. Szalay, J. Phys. Chem. 100, 6288 (1996).
[12] J. Starck and W. Meyer, Chem. Phys. Lett. 258, 421 (1996).
[13] L. A. Kaledin, A. L. Kaledin, M. C. Heaven and V. E. Bondybey, J. Mol. Struct. (Theochem) 461, 177 (1999).
[14] M. W. Schmidt, J. Ivanic and K. Ruedenberg, J. Phys. Chem. A 114, 8687 (2010).
[15] A. V. Mitin, Int. J. Quantum Chem. 111, 2560 (2011).
[16] C. W. Bauschlicher, Jr., S. R. Langhoff and H. Partridge, J. Chem. Phys. 96, 1240 (1992).
[17] M. E. Khatib, G. L. Bendazzoli, S. Evangelisti, W. Helal, T. Leininger, L. Tenti, and C. Angeli, J. Phys. Chem. A 118, 6664 (2014).
[18] I. Reggen and L. Veseth, Int. J. Quantum Chem. 101, 201 (2005).
[19] K. Patkowski, R. Podeszwa and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007).
[20] J. M. L. Martin, Chem. Phys. Lett. 303, 399 (1999).
[21] R. J. Gdaniec, Chem. Phys. Lett. 312, 578 (1999).
[22] M. Pecul, M. Jaszuński, H. Larsen and P. Jørgensen, J. Chem. Phys. 112, 3671 (2000).
[23] J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011).
[24] S. Sharma, T. Yanai, G. H. Booth, C. J. Umrigar, and G. K. Chan, J. Chem. Phys. 140, 104112 (2014).
[25] V. E. Bondybey and J. M. English, J. Chem. Phys. 80, 568 (1984).
[26] V. E. Bondybey, Chem. Phys. Lett. 109, 436 (1984).
[27] V. E. Bondybey, Science 227, 125 (1985).
[28] V. Spirko, J. Mol. Spectros. 235, 268 (2006).
[29] J. M. Merritt, V. E. Bondybey, M. C. Heavens, Science 324, 1548 (2009).
[30] P. F. Bernath, Science 324, 1526 (2009).
[31] K. Patkowski, V. Spirko, K. Szalewicz, Science 326, 1382 (2009).
[32] T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
[33] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
[34] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).
[35] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 100, 2975 (1994).
[36] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 103, 4572 (1995).
[37] A. K. Wilson, T. van Mourik, T. H. Dunning Jr., J. Mol. Struct. 388, 339 (1996).
[38] A. K. Wilson, D. E. Woon, K. A. Peterson and T. H. Dunning Jr., J. Chem. Phys. 110, 7667 (1999).
[39] T. H. Dunning Jr., K. A. Peterson and A. K. Wilson, J. Chem. Phys. 114, 9244 (2001).
[40] B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning Jr., A. K. Wilson, Theor. Chem. Acc. 128, 69 (2011).
[41] K. Raghavachari, G.W. Trucks, J.A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
[42] W. Kołos and C.C.J. Roothaan, Rev. Mod. Phys. 32, 205 (1960).
[43] W. Kołos and C.C.J. Roothaan, Rev. Mod. Phys. 32, 219 (1960).
[44] W. Kołos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964).
[45] W. Kołos and L. Wolniewicz, J. Chem. Phys. 49, 404 (1968).
[46] L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995).
[47] K. Ruedenberg, R. C. Raffenetti, and R. D. Bardo, Energy, Structure, and Reactivity. Proceedings of the 1972 Boulder Seminar Research Conference on Theoretical Chemistry, edited by D. W. Smith (Wiley, New York, 1973), p. 164.
[48] R. C. Raffenetti, J. Chem. Phys. 59, 5936 (1973).
Supplemental Material.

Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. III. Case study of the beryllium dimer

Michał Lesiuk,¹,* Michał Przybytek,¹ Monika Musiał,² Bogumił Jeziorski,¹ and Robert Moszyński¹

¹Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
²Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

(Dated: October 24, 2014)

The present document serves as a supplemental material for the publication Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. III. Case study of the beryllium dimer. It contains data or derivations which are of some importance but are not necessary for an overall understanding of the manuscript. However, the material presented here will be useful for a reader who wishes to repeat all of our derivations in details. Researchers who wish to repeat some of the calculations independently may also benefit from these additional data.

*e-mail: lesiuk@tiger.chem.uw.edu.pl
I. SUPPLEMENTAL MATERIAL FOR PAPER III

TABLE I. Composition of STO basis sets for the beryllium atom. ETCC-2 basis sets contains all functions from the first column. TC-ETCC-2 basis set contains additionally functions from the second column and ATC-ETCC-2 functions from the third column. A-ETCC-2 contains functions from the first and third columns. The symbol \([k]\) denotes the powers of 10, \(10^k\).

atomic valence	tight core	diffuse
1S	8.12906491[−01]	1S 7.16639837[−01]
1S	1.15567845[+00]	2P 1.05907592[+00]
1S	1.64298439[+00]	3D 1.16078021[+00]
1S	2.335768885[+00]	
1S	3.32067433[+00]	
1S	4.72087725[+00]	
1S	6.71149285[+00]	
2P	1.25956795[+00]	
2P	1.34363972[+00]	
3D	1.22675519[+00]	

TABLE II. Composition of STO basis sets for the beryllium atom. ETCC-3 basis sets contains all functions from the first column. TC-ETCC-3 basis set contains additionally functions from the second column and ATC-ETCC-3 functions from the third column. A-ETCC-3 contains functions from the first and third columns. The symbol \([k]\) denotes the powers of 10, \(10^k\).

atomic valence	tight core	diffuse
1S	8.07003147[−01]	1S 5.78796614[−01]
1S	1.17156475[+00]	1S 2.05467840[+01]
1S	1.70081613[+00]	2P 6.63663083[+00]
1S	2.46915546[+00]	3D 1.13131315[+00]
1S	3.58459012[+00]	4F 1.09034661[+00]
1S	5.20391953[+00]	
1S	7.55477686[+00]	
1S	1.09676280[+00]	
2P	1.07328780[+00]	
2P	1.77687814[+00]	
2P	2.94170463[+00]	
3D	1.30833348[+00]	
3D	2.13842350[+00]	
4F	1.64010475[+00]	
TABLE III. Composition of STO basis sets for the beryllium atom. ETCC-4 basis sets contains all functions from the first column. TC-ETCC-4 basis set contains additionally functions from the second column and ATC-ETCC-4 functions from the third column. A-ETCC-4 contains functions from the first and third columns. The symbol \([k]\) denotes the powers of 10, \(10^k\).

atomic valence	tight core	diffuse
1S 5.56501242\([-01]\)	1S 1.42014407\([+01]\)	1S 4.33207693\([-01]\)
1S 8.08302238\([-01]\)	1S 1.82716996\([+01]\)	2P 6.71390454\([-01]\)
1S 1.17403603\([+00]\)	2P 7.37173108\([+00]\)	3D 7.58415000\([-01]\)
1S 1.70525397\([+00]\)	2P 9.86210540\([+00]\)	4F 8.96307000\([-01]\)
1S 2.47683292\([+00]\)	2P 1.20127077\([+01]\)	5G 1.02303000\([+00]\)
1S 3.59752943\([+00]\)	3D 8.37590965\([+00]\)	
1S 5.22530925\([+00]\)	3D 1.01997372\([+01]\)	
1S 7.58961318\([+00]\)	4F 1.03564887\([+01]\)	
1S 1.10236975\([+01]\)		
2P 1.05442022\([+00]\)		
2P 1.53765795\([+00]\)		
2P 2.24236213\([+00]\)		
2P 3.27003019\([+00]\)		
3D 1.64562346\([+00]\)		
3D 2.00041535\([+00]\)		
3D 2.43169940\([+00]\)		
4F 1.89664325\([+00]\)		
4F 2.36427250\([+00]\)		
5G 2.08339750\([+00]\)		
TABLE IV. Composition of STO basis sets for the beryllium atom. ETCC-5 basis sets contains all functions from the first column. TC-ETCC-5 basis set contains additionally functions from the second column and ATC-ETCC-5 functions from the third column. A-ETCC-5 contains functions from the first and third columns. The symbol $[k]$ denotes the powers of 10, 10^k.

atomic valence	tight core	diffuse
1S 5.56501242$[-01]$	1S 1.41661255$[+01]$	1S 4.33207693$[-01]$
1S 8.08302238$[-01]$	1S 1.82673049$[+01]$	2P 6.71390454$[-01]$
1S 1.17403603$[-00]$	2P 7.64626062$[+00]$	3D 7.58415000$[-01]$
1S 1.70525397$[+00]$	2P 9.32939497$[+00]$	4F 8.96307000$[-01]$
1S 2.47683292$[+00]$	2P 1.22141834$[+01]$	5G 1.02303000$[+00]$
1S 3.59752943$[+00]$	2P 1.49624822$[+01]$	6H 1.15254000$[+00]$
1S 5.22530925$[+00]$	3D 8.37670437$[+01]$	
1S 7.58961318$[+00]$	3D 1.08645717$[+01]$	
1S 1.10236975$[+00]$	3D 1.31895798$[+01]$	
2P 1.02727422$[+00]$	4F 1.05215329$[+01]$	
2P 1.37069132$[+00]$	4F 1.30025625$[+01]$	
2P 1.82891254$[+00]$	5G 1.30737136$[+01]$	
2P 2.44031682$[+00]$		
2P 3.25611314$[+00]$		
3D 1.61171171$[+00]$		
3D 1.99156275$[+00]$		
3D 2.46093774$[+00]$		
3D 3.04095585$[+00]$		
4F 1.88029525$[+00]$		
4F 2.35223572$[+00]$		
4F 2.94262984$[+00]$		
5G 2.07200250$[+00]$		
5G 2.84309322$[+00]$		
6H 2.28502000$[+00]$		
TABLE V. Composition of STO basis sets for the beryllium atom. ETCC-6 basis sets contains all functions from the first column. TC-ETCC-6 basis set contains additionally functions from the second column and ATC-ETCC-6 functions from the third column. A-ETCC-6 contains functions from the first and third columns. The symbol \([k]\) denotes the powers of 10, \(10^k\).

atomic valence	tight core	diffuse
1S 5.56783742\([-01]\)	1S 1.41615676\([+01]\)	1S 4.33207693\([-01]\)
1S 8.08758496\([-01]\)	1S 1.81731145\([+01]\)	2P 6.71390454\([-01]\)
1S 1.17476545\([+00]\)	1S 2.10111090\([+01]\)	3D 7.58415000\([-01]\)
1S 1.70641035\([+00]\)	2P 6.70939146\([+00]\)	4F 8.96307000\([-01]\)
1S 2.74865332\([+00]\)	2P 9.58760679\([+00]\)	5G 1.02303000\([+00]\)
1S 3.60037799\([+00]\)	2P 1.15480836\([+01]\)	6H 1.15254000\([+00]\)
1S 5.22974374\([+00]\)	2P 1.26805311\([+01]\)	7I 1.28205000\([+00]\)
1S 7.59648561\([+00]\)	2P 1.50027450\([+01]\)	\[\]
1S 1.1033062\([+00]\)	3D 8.2450772\([+00]\)	\[\]
1S 1.6027926\([+00]\)	3D 1.0135376\([+00]\)	\[\]
2P 1.0272742\([+00]\)	3D 1.3681905\([+00]\)	\[\]
2P 1.3706913\([+00]\)	3D 1.5970467\([+00]\)	\[\]
2P 1.8289125\([+00]\)	4F 1.01588758\([+01]\)	\[\]
2P 2.4403168\([+00]\)	4F 1.2451336\([+01]\)	\[\]
2P 3.2561131\([+00]\)	4F 1.49991098\([+01]\)	\[\]
2P 4.34462965\([+00]\)	5G 1.2931067\([+00]\)	\[\]
3D 1.6117117\([+00]\)	5G 1.49929135\([+00]\)	\[\]
3D 1.9915627\([+00]\)	6H 1.50083302\([+00]\)	\[\]
3D 2.46093774\([+00]\)	\[\]	\[\]
3D 3.0409358\([+00]\)	\[\]	\[\]
3D 3.75762893\([+00]\)	\[\]	\[\]
4F 1.88029525\([+00]\)	\[\]	\[\]
4F 2.3523573\([+00]\)	\[\]	\[\]
4F 2.94262984\([+00]\)	\[\]	\[\]
4F 3.68120859\([+00]\)	\[\]	\[\]
5G 2.0720025\([+00]\)	\[\]	\[\]
5G 2.84830932\([+00]\)	\[\]	\[\]
5G 3.91547113\([+00]\)	\[\]	\[\]
6H 2.28502000\([+00]\)	\[\]	\[\]
6H 3.42753000\([+00]\)	\[\]	\[\]
7I 2.51517000\([+00]\)	\[\]	\[\]
TABLE VI. Composition of the S-extended set of orbitals which are used for the relativistic calculations. See the main text for a more detailed description. The symbol \([k]\) denotes the powers of 10, \(10^k\).

orbital	exponent
1S	5.30689678\([-01]\)
1S	7.58433830\([-01]\)
1S	1.08391382\[+00\]
1S	1.54907273\[+00\]
1S	2.21385343\[+00\]
1S	3.16392312\[+00\]
1S	4.52171284\[+00\]
1S	6.46219464\[+00\]
1S	9.23542936\[+00\]
1S	1.31987909\[+01\]
1S	1.88630191\[+01\]
1S	2.69580367\[+01\]
1S	3.85270110\[+01\]
1S	5.50607817\[+01\]
1S	7.86899790\[+01\]

TABLE VII. Total energies of the beryllium dimer and atom calculated with frozen-core FCI method. \(E_{HF}\) denotes the Hartree-Fock energy, \(E_c\) denotes the correlation energy. All values are given in the atomic units.

basis set	\(E_{HF}\) dimer	\(E_c\) dimer	\(E_{HF}\) atom	\(E_c\) atom
A-ETCC-2	−29.1339418	−0.1046873	−14.5730210	−0.0456697
A-ETCC-3	−29.1341621	−0.1076574	−14.5730222	−0.0459687
A-ETCC-4	−29.1341745	−0.1076392	−14.5730231	−0.0460547
A-ETCC-5	−29.1341751	−0.1078505	−14.5730231	−0.0460901
A-ETCC-6	−29.1341754	−0.1079423	−14.5730231	−0.0461091

TABLE VIII. Total energies of the beryllium dimer calculated using various methods. These data are used for determination of the inner-shell effects in the main text. All values are given in the atomic units. AE and FC are abbreviations for all-electron and frozen-core, respectively.

method	ATC-ETCC-2	ATC-ETCC-3	ATC-ETCC-4	ATC-ETCC-5
AE CCSD	−29.314113	−29.326129	−29.329407	−29.330683
FC CCSD	−29.234293	−29.236054	−29.236511	−29.236681
AE CCSDT	−29.319440	−29.332239	−29.335682	
FC CCSDT	−29.238668	−29.240909	−29.241460	
AE CCSD(T)	−29.318577	−29.331420	−29.334925	−29.336286
FC CCSD(T)	−29.237825	−29.240129	−29.240743	−29.240976
AE MP2	−29.275033	−29.290336	−29.295338	−29.297525
FC MP2	−29.200976	−29.204964	−29.206567	−29.207354
AE MP4	−29.311536	−29.323856	−29.327167	−29.328456
FC MP4	−29.230630	−29.232484	−29.232926	−29.233094
TABLE IX. Total energies of the beryllium atom calculated using various methods. These data are used for determination of the inner-shell effects in the main text. All values are given in the atomic units. AE and FC are abbreviations for all-electron and frozen-core, respectively.

method	ATC-ETCC-2	ATC-ETCC-3	ATC-ETCC-4	ATC-ETCC-5
AE CCSD	−14.658664	−14.663937	−14.665410	−14.665991
FC CCSD	−14.618818	−14.619015	−14.619088	−14.619088
AE CCSDT	−14.659133	−14.664551	−14.666054	−14.666054
FC CCSDT	−14.618818	−14.619015	−14.619089	−14.619089
AE CCSD(T)	−14.659105	−14.664521	−14.666028	−14.666028
FC CCSD(T)	−14.618818	−14.619015	−14.619089	−14.619089
AE MP2	−14.637838	−14.644723	−14.646999	−14.647990
FC MP2	−14.600887	−14.602168	−14.602758	−14.603055
AE MP4	−14.655016	−14.660288	−14.661743	−14.662320
FC MP4	−14.614629	−14.614731	−14.614767	−14.614789