Relativistic configuration-interaction calculation of $K\alpha$ transition energies in beryllium-like argon

V A Yerokhin1,2, A Surzhykov2 and S Fritzsche2,3

1 Center for Advanced Studies, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia
2 Helmholtz-Institut Jena, D-07743 Jena, Germany
3 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany

E-mail: yerokhin@spbcas.ru

Received 16 October 2014
Accepted for publication 18 November 2014
Published 30 April 2015

Abstract
Relativistic configuration-interaction calculations have been performed for energy levels of the low-lying and core-excited states of beryllium-like argon, Ar$^{14+}$. These calculations include the one-loop quantum electrodynamics (QED) effects as obtained by two different methods: the screening-potential approach and the model QED operator approach. The calculations are supplemented by a systematic estimation of the uncertainties of the theoretical predictions.

Keywords: energy level, configuration interaction method, relativistic corrections

1. Introduction

This paper explores $K\alpha$ transitions in beryllium-like ions. In these transitions, an electron changes the principal quantum number from $n = 2$ to $n = 1$, filling the vacancy in the K-shell core in the initial state. These transitions contribute to the most prominent K-shell emission lines of highly charged ions, which have been detected in the spectra of nearly all classes of cosmic x-ray sources. In laboratories, moreover, the K-shell emission lines are often used for the diagnostics of hot plasma, notably in magnetic nuclear fusion and tokamaks, and thus help in getting useful information about both the equilibrium and nonequilibrium charge-state distributions of ions and about the electron and ion temperatures. In view of the importance of the $K\alpha$ line for astrophysics and laboratory diagnostics, accurate theoretical predictions are needed for the reliable identification and interpretation of experimental spectral data [1, 2].

In our previous investigations, we performed relativistic configuration-interaction calculations of the $K\alpha$ transitions in lithium-like ions [3] and in beryllium-like iron [4]. In the current work, we extend our calculations to beryllium-like argon to accommodate ongoing experiments on this ion [5–7].

The paper is organized as follows. In the next section, we give a brief outline of our computation method. Section 3 presents the results of our calculations and compares them with the previous theoretical and experimental data. Relativistic units $\hbar = c = 1$ and charge units $e^2/4\pi = \alpha$ are used throughout this paper.

2. Method of calculation

Within relativistic quantum mechanics, the energy of the system can be determined by solving the secular equation

$$\det\left\{\langle \gamma_i \Psi_{\text{PJM}} | H_{\text{DCB}} | \gamma_i \Psi_{\text{PJM}} \rangle - E_{\gamma_i} \delta_{\gamma_i} \right\} = 0,$$

where ‘det’ denotes the determinant of the matrix. H_{DCB} is the no-pair Dirac–Coulomb–Breit (DCB) Hamiltonian,

$$H_{\text{DCB}} = \sum_i h_D(i) + \sum_{i<j} \left[V_C(i,j) + V_B(i,j) \right],$$

where the indices $i, j = 1, \ldots, N$ numerate the electrons, h_D is the one-particle Dirac–Coulomb Hamiltonian, and V_C and V_B are the Coulomb and the Breit parts of the electron–electron interaction. It is assumed that H_{DCB} acts in the space of the wave functions constructed from the positive-energy eigenfunctions of some one-particle Dirac Hamiltonian (the so-called no-pair approximation).

The N-electron wave function, $\Psi \equiv \Psi(\Psi_{\text{PJM}})$, is assumed to have a definite parity P, total angular momentum J, and
angular momentum projection M. In the configuration interaction (CI) method, the eigenfunctions, $\Psi(PJM)$, are represented by a finite sum of the configuration-state functions (CSFs) with the same P, J, and M,

$$\Psi(PJM) = \sum_{\gamma} c_{\gamma} \Phi(\gamma_{PJM}),$$

(3)

where γ_{PJM} denotes the set of additional quantum numbers that determine the CSF. The CSFs are constructed as linear combinations of antisymmetrized products of one-electron orbitals, ψ_{α}. The linear coefficients c_{γ} in equation (3) and the energy of the corresponding atomic state are obtained by solving the secular equation, (1).

The elements of the Hamiltonian matrix are typically calculated as linear combinations of one- and two-particle radial integrals,

$$\langle \gamma_{PJM} | H_{DCB} | \gamma_{PJM} \rangle = \sum_{ab} d_{\alpha}(ab) I(ab) + a \sum_{k abcd} v_{\kappa}(k) R_{k}(abcd).$$

(4)

Here, a, b, c, and d numerate the one-electron orbitals, d_{α} and $v_{\kappa}(k)$ are the angular coefficients, $I(ab)$ are the one-electron radial integrals, and $R_{k}(abcd)$ are the two-electron radial integrals. Details of our implementation of the CI method are described in previous papers [3, 4].

To obtain accurate theoretical predictions for energy levels, the relativistic energies obtained from the DCB Hamiltonian should be supplemented by the quantum electrodynamics (QED) corrections. The ab initio QED method [8] currently provides the most accurate results. Practical calculations within this approach started in late 1990s [9, 10]. Because of significant technical difficulties, however, such ab initio QED calculations are still restricted mainly to low-lying states of helium-like and lithium-like ions [11, 12]. For calculations of more complex atomic systems, one has to rely on one of the simplified treatments of QED effects.

In the present work, we describe the QED effects by means of two different approximate methods. By comparing the results from these approaches, we estimate the uncertainty of our treatment. The first method is based on summing up the self-energy and vacuum-polarization QED corrections calculated for each one-electron orbital in an effective screening potential. The total QED correction for a given many-electron state is then obtained by adding the QED contributions from all one-electron orbitals, weighted by their fractional occupation numbers as obtained from the eigenvectors of the CI calculation. In this method, the QED correction, δE_{QED}, is given by

$$\delta E_{QED} = \sum_{a} q_{a} \left[\langle a | \Sigma_{SE} (e_{a}) | a \rangle + \langle a | \Sigma_{VP} | a \rangle \right],$$

(5)

where the index, a, runs over all one-electron orbitals contributing to the many-electron state of interest, q_{a} is the occupation number of the one-electron orbital, Σ_{SE} is the self-energy operator, e_{a} is the Dirac energy of the one-electron state, a, and Σ_{VP} is the vacuum polarization potential. The numerical method for calculating the one-loop self-energy and vacuum-polarization matrix elements in a general screening potential used in the present work was developed in [13]. This approach for treatment of the Lamb shift in atoms was used in our previous studies [3, 4] and similarly by several other authors, and for beryllium-like ions in particular by Chen and Cheng [14]. In the present work, we use two different screening potentials in which the one-loop QED corrections are calculated: the core-Hartree potential and the localized Dirac–Fock (LDF) potential. The definition of these potentials can be found in our previous works [3, 15].

The second method for evaluation of the QED effects is based on the model QED operator, \hat{h}^{QED}, formulated recently by Shabaev et al [16] and implemented in the QEDMOD Fortran package [17]. To this end, we added the model QED operator to the DCB Hamiltonian by modifying the one-electron integrals $I(a, b)$ of equation (4) in our CI code by

$$I(ab) \rightarrow I(ab) + \delta_{a,\kappa_{a}} \left[a | \hat{h}^{QED} | b \right],$$

(6)

and where κ_{a} denotes the relativistic angular quantum number of the state a. If either a or b is a continuum state (i.e., $e_{a}, e_{b} > m$), the matrix element of \hat{h}^{QED} is assumed to be zero. The QED correction to the energy level is then identified by taking the difference of the CI eigenvalues with and without the \hat{h}^{QED} operator.

Our calculations show that QED corrections obtained by the different methods are in good agreement with each other. In the case of core-excited states, the difference between the results remains well within the 1% range. For the ground and valence-excited states, the deviation is slightly larger, on the level of 1–2%. This is explained by the relatively large effect of the mutual screening of the $1s$ electrons by each other, which is not very well described by approximate methods.

In the present work, we use the QED results obtained with the LDF potential as final values of the QED correction, and we estimate its uncertainty by the maximal difference between the three QED values.

3. Results and discussion

In table 1, we present the calculated energy levels of beryllium-like argon, A_{14+}^{14+}. The total energy is given for the ground $1s^{2}2s^{2}1s$ state, whereas the relative energies (with respect to the ground state) are given for the excited states. Our results are compared with the NIST compilation based on experimental and theoretical data [18, 19], with the relativistic many-body perturbation theory calculation by Safro nova et al [20] and with the multiconfigurational Dirac–Fock calculation of Cota et al [21], as well as with the experimental results [22].

All our theoretical predictions are supplied with the uncertainties, which include the error estimates for the DCB energy and for the QED correction. The former estimate is evaluated by analyzing the configuration-interaction results for successively enlarged basis sets. The QED error was obtained by comparing three different QED values from different approaches. The estimated accuracy of our theoretical
energies of the core-excited states ranges from 10^{-5} to 10^{-4} in relative units, or from 0.002 to 0.02 Rydbergs.

For the valence-excited states, our results are in good agreement with previous calculations [20], experimental data [22], and with the NIST database [18]. For the core-excited states, however, there are only a few entries available in the NIST database, and apparently no experimental results. The only detailed theoretical study of these levels was performed in [21] by the multiconfigurational Dirac–Fock method. Our results are in general agreement with those of [21], but the differences are well outside our error bars. The largest deviations of about 0.1 Ry are found for the $^3 P_1$ states and for the highest core-excited levels. For the other states, the differences are smaller, typically within 0.05 Ry. Note that our result for the $^1 P_1$ state is in excellent agreement with the preliminary result of the Paris experiment [5–7].

In table 2, we present our theoretical results for the wavelength of the $\lambda\kappa$ transition lines in beryllium-like argon.

4. Conclusion

In summary, we performed relativistic configuration-interaction calculations of the energy levels of the ground, valence-excited, and core-excited states in beryllium-like argon.
Ar. The relativistic Dirac–Coulomb–Breit energies obtained by the configuration-interaction method were supplemented with the QED energy shifts, which were calculated separately. The QED corrections were obtained by two different approximate methods: the screening-potential approach and the model QED operator method. From the comparison of the results of these two approaches, we estimated the uncertainty of the overall QED shift. The uncertainty of the Dirac–Coulomb–Breit energies was evaluated by analyzing the convergence of the CI results with respect to the number of partial waves and the size of the one-electron basis. The results obtained for the wavelengths of the αK transitions improve previous theoretical predictions and compare favourably with the preliminary results of the ongoing experiment.

Acknowledgment

The work reported in this paper was supported by BMBF under Contract No. 05K13VHA.

References

[1] Beiersdorfer P, Knapp D, Marrs R E, Elliott S R and Chen M H 1993 Phys. Rev. Lett. 71 3939
[2] Wargelin B J, Kahn S M and Beiersdorfer P 2001 Phys. Rev. A 63 022710
[3] Yerokhin V A and Surzhykov A 2012 Phys. Rev. A 86 042507
[4] Yerokhin V A, Surzhykov A and Fritzsche S 2014 Phys. Rev. A 90 022509
[5] Amaro P, Schlessner S, Guerra M, le Bigot E-O, Isaac J-M, Travers P, Santos J P, Szabo C I, Gumberidze A and Indelicato P 2012 Phys. Rev. Lett. 109 043005
[6] Szabo C I, Amaro P, Guerra M, Schlessner S, Gumberidze A, Santos J P and Indelicato P 2013 in Application of Accelerators in Research and Industry AIP conference proceedings 1525 (Woodbury, NY: AIP Press) p 68
[7] Indelicato P 2014 talk at ICAMPDATA conference unpublished
[8] Shabaev V M and 2002 Phys. Rep 356 119
[9] Artemyev A N, Shabaev V M and Yerokhin V A 1997 Phys. Rev. A 56 3529
[10] Yerokhin V A, Artemyev A N and Shabaev V M 1997 Phys. Lett. A 234 361
[11] Artemyev A N, Shabaev V M, Yerokhin V A, Plunien G and Soff G 2005 Phys. Rev. A 71 062104
[12] Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513
[13] Yerokhin V A 2011 Phys. Rev. A 83 012507
[14] Chen M H and Cheng K T 1997 Phys. Rev. A 55 166
[15] Yerokhin V A 2008 Phys. Rev. A 78 012513
[16] Shabaev V M, Tupitsyn I I and Yerokhin V A 2013 Phys. Rev. A 88 012513
[17] Shabaev V M, Tupitsyn I I and Yerokhin V A to be published
[18] Kramida A, Ralchenko Y and Reader J and NIST ASD Team, NIST atomic spectra database (ver. 5.1) National Institute of Standards and Technology, Gaithersburg, MD, 2013. http://physics.nist.gov/asd [2014, June 27]
[19] Shirai T, Sugar J, Musgrove A and Wiese W L 2000 J. Phys. Chem. Ref. Data, No. 8 (Melville, NY: AIP Press)
[20] Safronova M S, Johnson W R and Safronova U I 1996 Phys. Rev. A 53 4036
[21] Costa A M, Martins M C, Parente F, Santos J P and Indelicato P 2001 At. Data Nucl. Data Tables 79 223
[22] Edlén B 1983 Phys. Scr. 28 51