Structuring the local handedness of synthetic chiral light: global chirality versus polarization of chirality

Laura Rego1,2,* and David Ayuso2,3,

1 Department of Physics, Imperial College London, SW7 2AZ London, United Kingdom
2 Universidad de Salamanca, 37008 Salamanca, Spain
3 Max-Born-Institut, 12489 Berlin, Germany

* Authors to whom any correspondence should be addressed.
E-mail: laura.rego@imperial.ac.uk and david.ayuso@imperial.ac.uk

Keywords: attosecond physics, ultrafast chiral spectroscopy, high harmonic generation

Abstract
Synthetic chiral light enables ultrafast and highly efficient imaging of molecular chirality. Unlike standard circularly polarized light, the handedness of synthetic chiral light does not rely on the spatial structure of the light field: it is encoded locally, in the chiral trajectory that the tip of the electric-field vector draws in time, at each point in space. Synthetic chiral light that is both locally and globally chiral (Ayuso et al 2019 Nat. Photon. 13 866) allows us to selectively quench the nonlinear response of a selected molecular enantiomer while maximizing it in its mirror twin at the level of total signal intensities. Synthetic chiral light that exhibits polarization of chirality (Ayuso et al 2021 Nat. Commun. 12 3951) allows us to realize a chiral version of Young’s double-slit experiment that leads to enantio-sensitive light bending. Here we connect these new concepts, and show how one can structure the local and global handedness of synthetic chiral light in space to create optical fields which can be both globally chiral and chirality polarized. Using state-of-the-art computational modeling, we show how these local and global properties are imprinted in the enantio-sensitive response of chiral molecules, creating exciting opportunities for ultrafast, all-optical and highly efficient imaging of molecular chirality.

The capability of structuring the physical properties of light in space at will has opened tremendous possibilities for sculpting light-matter interactions [1–3]. Vortex beams, which exhibit a twisted phase profile and carry orbital angular momentum [4], are a typical example of structured light. Such structured light has found unique applications across a number of fields, including particle manipulation [5, 6], information transfer [7], phase contrast [8] and super-resolution microscopies [9], or quantum information [10]. Likewise, light beams with structured polarization [11–13] have been proven to be unique tools at the nanoscale [14–16] due to their superior focusing properties [17].

In the last decade, structured vortex light has been successfully applied to drive highly non-linear interactions in matter, such as structured high-order harmonic generation (HHG), leading to the creation of ultrashort structured pulses in the extreme-ultraviolet domain [18–27]. An interesting aspect of this capacity is that it allows us to spatially separate HHG radiation with different properties, enabling control over the polarization of ultrashort pulses [27, 28] or their spectral content [29].

However, it is not necessary to resort to orbital angular momentum to create structured light. For instance, it is well known that the polarization of a Gaussian beam becomes spatially structured upon tight focusing [30, 31], or when overlapping two laser pulses that propagate non-collinearly [31–33]. Interestingly, non-collinear optical setups [34–41] and tightly focused laser beams [42–44] create unique opportunities for imaging molecular chirality on ultrafast timescales.

Chiral molecules exist in pairs of non-superimposable mirror images: the left- and right-handed enantiomers, which have identical physical and chemical properties, e.g. melting and boiling points, energy levels, etc, and thus behave identically, unless they interact with something that is also chiral. Not surprisingly, structured light is finding interesting applications for detecting and even separating opposite
molecular enantiomers [45–47], although these applications are limited by the weakness of non-electric-dipole interactions. Indeed, the enantio-sensitive response of chiral molecules to an elliptically or circularly polarized field usually relies on weak magnetic or quadrupole effects which arise beyond the electric-dipole approximation [48]. These effects can be enhanced using short-wavelength radiation [49–51], or intense laser fields to drive chiral HHG [52–57].

Alternatively, one can create chiral measurement setups [58, 59], so that the enantio-sensitive response of the molecules is driven by purely electric-dipole interactions. This can be achieved by recording the photoelectron angular distributions upon ionization with circular [60–73], elliptical [74], or two-color [75–78] driving fields, measuring the phase of induced nonlinear polarization [79–85], creating chiral optical centrifuges [86–88], or recording the orbital momentum of photoelectron vortex beams [89].

Another way around this limitation is to create fields which are chiral already within the electric-dipole approximation [36–42, 90–95].

Synthetic chiral light [36] can be seen as an upgrade with respect to circularly polarized light as a chiral photonic reagent [59]. Such light is *locally* chiral: the tip of the electric-field vector draws a chiral Lissajous figure in time, in every point in space. The enantio-sensitive response of chiral molecules is driven by purely electric-dipole interactions, and thus it is stronger than with traditional optical fields. Here we show how, by structuring the local handedness of synthetic chiral light in space, we can imprint the handedness of isotropic chiral matter into different macroscopic observables: the total intensity of harmonic emission [36], and the direction of enantio-sensitive light bending [37].

This paper is structured in four different sections.

- **Section 1** provides a tutorial-style analysis of the local handedness of synthetic chiral light, which is encoded in the relative phase between its frequency components [36]. We highlight the key differences between locally chiral light and circularly polarized light (section 1.1), and review the formalism of chiral correlation functions (1.2), which characterize the local handedness of synthetic chiral light and its nonlinear interaction with chiral matter.

- We continue our analysis in section 2, providing a comprehensive description of the macroscopic properties of synthetic chiral light. We start by describing how we can create locally chiral light using a non-collinear laser configuration that allows us to control its local and global properties. We shall see that we can create locally chiral fields which are:

 * perfectly globally chiral and chirality unpolarized (2.1), as in [36],
 * globally achiral but perfectly chirality polarized (2.2), as in [37],
 * something in between, i.e. light which is both globally chiral and chirality polarized (2.3).

We explicitly show how to control the chirality properties of the field through the two-color phase delays in the proposed optical setup (2.4).

- In section 3, we present numerical results based on a prototypical chiral model: the hydrogen peroxide molecule. Using state-of-the-art computational modeling (3.1), we show how the local and global chirality properties of the field are imprinted in the nonlinear optical response of randomly oriented chiral molecules (3.2). We provide a recipe for creating synthetic chiral light with controlled local and global properties, which can imprint medium’s handedness into different macroscopic observables: the total intensity of harmonic emission (3.3), and the direction of enantio-sensitive light bending (3.4).

- **Section 4** concludes the paper by discussing the unique opportunities enabled by structuring the local handedness of synthetic chiral light in space.

Each section uses concepts introduced in previous sections. However, while sections 1 and 2 contain a comprehensive analysis of the local and global properties of synthetic chiral light, the main ideas are introduced at the beginning of each section. Therefore, readers should feel free to jump to section 3 (numerical results) after reading the first parts of sections 1 and 2, and come back to them afterwards.

1. The local handedness of synthetic chiral light

A laser field is locally chiral if the Lissajous figure characterizing the temporal evolution of its electric-field vector is chiral [36]. To fulfil this requirement, the field needs to be three-dimensional, and thus contain at least two frequencies. Here we use the locally chiral field introduced in [36], where the electric-field vector \mathbf{E} is elliptically polarized at frequency ω in the xy plane and it has a 2ω frequency component along z,

$$
\mathbf{E}(t) = E_\omega \left[\cos(\omega t) \hat{x} + \varepsilon \sin(\omega t) \hat{y} \right] + E_{2\omega} \cos(2\omega t + \phi) \hat{z}.
$$

(1)
The field handedness depends on the two-color phase delay ϕ and on the sign of the ellipticity ε. Figure 1 shows the Lissajous figure that E draws in time, for different values of ϕ. Note that changing ϕ by π is equivalent to reflecting the field on the xy plane, and thus this operation reverses the field's handedness. Therefore, the fields with, e.g. $\phi = 0$ (upper left in figure 1) and $\phi = \pi$ (lower left) can be seen as field enantiomers. Likewise, changing the sign of ε is equivalent to reflection on the xz plane and it also reverses the field’s chirality.

1.1. Locally chiral light vs circularly polarized light

Locally chiral light is fundamentally different from circularly polarized light. First, because its chirality is defined locally, at each point in space—it does not rely on the spatial structure of the wave. As a result, the enantio-sensitive response of the molecules arises already within the electric-dipole approximation. Second, because its handedness cannot be characterized by a real scalar quantity. Let us illustrate this by considering a monochromatic plane wave $E = [E_x, E_y] e^{i \omega t} | e^{-i \mathbf{k} \cdot \mathbf{r}}$, whose handedness is characterized via its ellipticity $-1 < \varepsilon < 1$. A circularly polarized wave is the limit case with $\varepsilon = \pm 1$.

There are two ways of reversing the wave’s chirality in a smooth, continuous way. The first way is to gradually change the amplitude of one of the two field components, e.g. E_y, from $E_{y,0}$ to $-E_{y,0}$, leading to a change of ε from ε_0 to $-\varepsilon_0$. Bolzano’s theorem tells us that, in this continuous transition, the value of ε will inevitably go through zero, meaning that at some point during this transition the field will be linearly polarized, i.e. achiral. The second way involves changing the relative phase between E_x and E_y, from $\theta = \theta_0$ to $\theta = \theta_0 + \pi$, which will also take us from $\varepsilon = \varepsilon_0$ to $\varepsilon = -\varepsilon_0$ via an achiral field with $\varepsilon = 0$. This is not the case in synthetic chiral light.

We can reverse the handedness of our locally chiral field (figure 1) by changing the sign of ellipticity ε, or by shifting the two-color delay ϕ by π. A continuous transition from $\varepsilon = \varepsilon_0$ to $\varepsilon = -\varepsilon_0$ passes through $\varepsilon = 0$, i.e. through a planar field which is achiral. This situation is somewhat equivalent to the case of the elliptical wave. However, the second way of reversing the field’s handedness, shifting ϕ by π, takes us through an infinite set of fields with different chirality, see figure 1. That is, here we have a continuous trajectory in the space of field configurations which takes us from a locally chiral field to its mirror twin without going through an achiral field. This implies that the handedness of synthetic chiral light cannot be characterized by a real scalar quantity.

1.2. Characterizing light’s local handedness: chiral correlation functions

Chiral correlation functions [36] are complex-valued quantities which characterize the local handedness of synthetic chiral light and its enantio-sensitive interaction with isotropic chiral matter. This interaction is nonlinear, as the medium needs to record the phase delay between the different field components in its optical response.

The enantio-sensitive response of chiral matter to our locally chiral field appears at even-order harmonic frequencies [36], and relies on the interference between two multiphoton pathways, see figure 2. We assume weak ε and $E_{2\omega}$, so the molecules can absorb several photons from E_{ω}, but their response to E_{ω} and $E_{2\omega}$ is linear. The chiral pathway (figure 2(a)) involves absorption of $2N + 1$ photons from E_{ω} and emission of 1
photons from \(E_x\). This pathway is exclusive of chiral media, and it leads to polarization at frequency \(2N\omega\) along \(z\), which has opposite phase to molecular enantiomers,

\[
P_e(2N\omega) = \sigma \chi^{(2N+2)}I[F(\omega) \cdot F(\omega)]N[F^*(\omega) \times F(\omega)],
\]

where \(\sigma = \pm 1\) for right-/left-handed molecules, \(\chi^{(2N+2)}I\) is the corresponding \((2N+2)\)-order molecular susceptibility of randomly oriented right-handed molecules, and \(F\) is the Fourier component of the field (equation (1)). In the achiral pathway (figure 2(b)), which is not sensitive to the medium’s handedness, the molecules absorb \(2N-2\) photons from \(E_a\) and 1 photon from \(E_{2\omega}\), also leading to polarization at frequency \(2N\omega\) along \(z\),

\[
P_a(2N\omega) = \chi_a^{(2N-1)}[F(\omega) \cdot F(\omega)]^{N-1}F(2\omega)
\]

Note that \(P_a\) is not sensitive to the medium’s handedness, whereas \(P_e\) has equal amplitude and opposite phase in opposite molecular enantiomers. As a result, the induced polarization \(P = P_e + P_a\) is enantio-sensitive, and the intensity of harmonic emission is proportional to

\[
|P(2N\omega)|^2 = \frac{1}{2}|P_a(2N\omega)|^2 + \frac{1}{2}|P_e(2N\omega)|^2 + \sigma \chi^{(2N-1)}\chi^{(2N+2)}h^{(4N+1)} + c.c.
\]

where \(c.c.\) denotes complex conjugation. The interference term is both enantio-sensitive and dichroic, as it depends on the molecular handedness, \(\sigma = \pm 1\), and on the \((4N+1)\)-order chiral correlation function \(h^{(4N+1)}\), which characterizes the field’s local handedness:

\[
h^{(4N+1)} = [F^*(\omega) \cdot F^*(\omega)]^{N-1} \{F^*(2\omega) \cdot [F^*(\omega) \times F(\omega)]\} \{F(\omega) \cdot F(\omega)\}N.
\]

By adjusting the field parameters, we can control the amplitude and phase of \(h^{(4N+1)}\), and thus the enantio-sensitive interference. The lowest-order chiral correlation function of our field, \(h^{(2)}\), controls enantio-sensitive polarization and emission at frequency \(2\omega\),

\[
h^{(2)} = \{F^*(2\omega) \cdot [F^*(\omega) \times F(\omega)]\} \{F(\omega) \cdot F(\omega)\} \simeq 2i\varepsilon E_{2\omega}E_{2\omega}e^{i\phi}.
\]

Note that equation (6) is the special case of equation (5) with \(N = 1\).

2. Structuring light’s local handedness in space

Our locally chiral field can be created using a non-collinear optical setup [36–38] with two laser beams that propagate in the \(xy\) plane, at small angles \(\pm \alpha\) with respect to the \(y\) axis, see figure 3(a). Each beam \((n = 1, 2)\) carries the fundamental \(\omega\) frequency, polarized in the \(xy\) propagation plane, and its second harmonic, polarized along \(z\),

\[
E_n(r, t) = E^{(0)}_\omega R \{f_{n,\omega}(r, t)e^{i k_r \cdot r - \alpha t} - f_{n,\omega}(r, t)e^{i k_r \cdot r + \alpha t}\} \hat{e}_z + E^{(2)}_{2\omega} R \{f_{n,2\omega}(r, t)e^{i k_r \cdot r - \alpha t - \phi_\omega} - f_{n,2\omega}(r, t)e^{i k_r \cdot r + \alpha t + \phi_\omega}\} \hat{e}_z
\]

where \(E^{(0)}_\omega\) and \(E^{(2)}_{2\omega}\) are the field amplitudes, \(f_{n,\omega}\) and \(f_{n,2\omega}\) are envelope functions describing the temporal and spatial Gaussian profiles [96], \(k_{1,2} = \pm k \sin(\alpha) \hat{x} + k \cos(\alpha) \hat{y}\), with \(k = 2\pi/\lambda\) and \(\lambda\) being the fundamental wavelength, \(\phi_\omega\) is the two-color phase delay in each beam, and \(\hat{e}_1 = \cos(\alpha) \hat{x} + \sin(\alpha) \hat{y}\).

If the beams propagate non-collinearly \((\alpha \neq 0)\), the \(\omega\)-field components are not parallel \((\hat{e}_1 \neq \hat{e}_2)\). As a result, in the overlap region, the total electric-field vector becomes elliptically polarized at frequency \(\omega\) in the \(xy\) plane. The combination of this elliptical polarization with the linearly polarized \(2\omega\) components creates three-dimensional chiral Lissajous figures like the ones depicted in figure 1. Note that \(\alpha \neq 0\) also means that

Figure 2. Multiphoton diagrams describing the enantio-sensitive response of isotropic chiral matter to synthetic chiral light in the perturbative regime, see main text.
the projection of \(\mathbf{k}_n \) over the x axis is different for each beam, i.e. \(\mathbf{x} \cdot \mathbf{k}_1 \neq \mathbf{x} \cdot \mathbf{k}_2 \), and thus the relative phase between frequency components in different beams changes along \(x \), creating amplitude and ellipticity gratings in this direction. As we show in this section, control over such gratings enables control over the global properties of the locally chiral field.

We consider the interaction of our field with randomly oriented molecules in the gas phase, where the two frequency components propagate with approximately the same velocity \(|\omega_1 - \omega_2| \gg |\alpha| \) or in a flat liquid microjet [100–103]. For simplicity, we set \(y = z = 0 \), and write the total electric field resulting from adding the two beams (equation (7)) as

\[
\mathbf{E}(x, t) = E_\omega(x, t) \left[\cos(\omega t) \mathbf{\hat{x}} + \varepsilon \sin(\omega t) \mathbf{\hat{y}} \right] + E_{2\omega}(x, t) \cos(2\omega t + \phi_{\pm}) \mathbf{\hat{z}},
\]

with

\[
E_\omega(x, t) = 2E^{(0)}_\omega A_\omega(t) e^{-x^2/\omega^2} \cos(\alpha) \cos(k_\omega x),
\]

\[
E_{2\omega}(x, t) = 2E^{(0)}_{2\omega} A_{2\omega}(t) e^{-x^2/\omega^2} \cos(2k_\omega x + \phi_{\pm}),
\]

\[
\varepsilon(x) = -\tan(\alpha) \tan(k_\omega x),
\]

where \(A_\omega \) and \(A_{2\omega} \) are envelope functions, \(\omega \) is the beam waist, \(k_\omega = k \sin(\alpha) \), and

\[
\phi_{\pm} = \frac{\phi_2 \pm \phi_1}{2}.
\]

We have neglected the Gouy phase and the wavefront curvature. Direct comparison of equations (8)–(12) and equation (1) shows that the non-collinear setup realizes the locally chiral field of figure 1.

The relative phase delays \(\phi_{\pm} \) (equation (12)) simplify the analysis of the field properties. Loosely speaking, \(\phi_{\pm} \) controls the shape of the projection of \(\mathbf{E} \) over the \(xy \) plane, which can look like an infinite symbol \(\infty \), a smile \(\sim \), or something in between. Note that this shape is maintained in space, although its orientation changes, as \(E_\omega \) and \(E_{2\omega} \) change sign along \(x \) with different spatial periodicity. However, the field’s chirality depends on \(E_{2\omega} \) and \(\varepsilon \) (not on \(E_\omega \)), which change sign along \(x \) with the same periodicity. As we show

![Figure 3](image-url)

Figure 3. Synthetic chiral light that is globally chiral. (a) Non-collinear setup for creating synthetic chiral light that maintains the same handedness in space: the two beams are linearly polarized at frequency \(\omega \) in the \(xy \) plane of propagation, and have a \(2\omega \) frequency component orthogonal to this plane, with opposite two-color phase delay in the two beams, \(\phi_2 = \phi_1 + \pi \). (b) Forward ellipticity in the \(\omega \)-field component (green curve) and normalized \(2\omega \)-field amplitude (purple curve) along the transverse coordinate \(x \), for \(\phi_1 = -\pi/2 \) and \(\phi_2 = \pi/2 \). These ellipticity and amplitude gratings change sign exactly at the same positions. (c) Amplitude (black line) of field component (green curve) and normalized 2\(\omega \)-field amplitude (purple curve) along the transverse coordinate \(t \), for \(\phi_1 = -\pi/2 \) and \(\phi_2 = \pi/2 \). These ellipticity and amplitude gratings change sign exactly at the same positions. (d)–(f). Changing the two-color phase delays in the two beams by \(\pi \) (d) changes the sign of \(\pm \) and equation (12) simplifies the analysis of the field properties. Loosely speaking, \(\phi_{\pm} \) controls the shape of the projection of \(\mathbf{E} \) over the \(xy \) plane, which can look like an infinite symbol \(\infty \), a smile \(\sim \), or something in between. Note that this shape is maintained in space, although its orientation changes, as \(E_\omega \) and \(E_{2\omega} \) change sign along \(x \) with different spatial periodicity. However, the field’s chirality depends on \(E_{2\omega} \) and \(\varepsilon \) (not on \(E_\omega \)), which change sign along \(x \) with the same periodicity. As we show
in the following, we can control whether \(E_{2\omega} \) and \(\epsilon \) change sign at the same positions or not by adjusting the value of \(\phi_- \).

2.1. Global chirality

The key to create locally chiral light that maintains the same handedness in space is to impose that \(E_{2\omega} \) (equation (10)) and \(\epsilon \) (equation (11)) change sign at the same positions, which is achieved by setting \(\phi_- = \pi/2 \), see figure 3. Note that \(\phi_- = \pi/2 \) means having opposite two-color delay in the two beams, i.e. \(\phi_2 = \phi_1 + \pi \) (figure 3(a)). As a result, the \(\epsilon \) and \(E_{2\omega} \) gratings are perfectly aligned (figure 3(b)), and thus the field’s local handedness, characterized by the phase of \(h^{(5)} \), is maintained in space (figure 3(c)).

If we change the two-color delay in the two beams by \(\pi \) (figure 3(d)), \(E_{2\omega} \) flips sign at every point in space (figure 3(e)), and thus the field’s local handedness is reversed globally (figure 3(f)), in a way that the overall structure remains globally chiral. For illustration purposes, we call a locally chiral field with \(\arg\{h^{(5)}\} = -0.5\pi \) left-handed, and a field with \(\arg\{h^{(5)}\} = 0.5\pi \) right-handed, although this is an arbitrary choice, as \(\arg\{h^{(5)}\} \) is a continuous variable, and thus we have an infinite set of field configurations with different local chirality.

Setting \(\phi_- = \pi/2 \) imposes that the field maintains the same handedness in space. Then, by varying \(\phi_+ \), while keeping \(\phi_- = \pi/2 \) constant (i.e. by varying \(\phi_1 \) and \(\phi_2 \) synchronously while keeping \(\phi_2 = \phi_1 + \pi \)), we can tailor the shape of the chiral Lissajous figure (figure 1) in a way that it has exactly the same chirality everywhere in space.

We can quantify the global handedness our field by integrating \(h^{(5)} \) in space [36],

\[
h_0 = \int h^{(5)}(x)dx.
\]

The amplitude of \(h_0 \) maximizes when \(\phi_2 = \phi_1 \pm \pi \) because, in these situations, the field has the same local chirality (\(\arg\{h^{(5)}\} \)) everywhere in space, as shown in figure 3.

2.2. Polarization of chirality

Naively, one could think that synthetic chiral light that is not globally chiral could not be used for enantio-discrimination. Indeed, a locally chiral field that changes handedness periodically in space and is, overall, achiral, can maximize/minimize the response of the L/R enantiomers in some spatial regions, but it will produce the opposite effect in the regions where it has opposite local handedness. However, this does not mean that the macroscopic response of the medium cannot be enantio-sensitive.

If we set \(\phi_1 = \phi_2 \) in our setup, see figure 4, then \(\epsilon \) and \(E_{2\omega} \) change sign at different positions, with a spatial phase delay of \(\pi/2 \) (figure 4(b)). As a result, the field’s chirality changes periodically in space (figure 4(c)), and the overall structure is globally achiral (\(h_0 = 0 \)). Note that the field is symmetric with respect to reflection on the xz plane (up to a global temporal delay).

While the field in figures 4(a)–(c) is not globally chiral, its handedness is spatially structured, and we find pairs of field components with opposite handedness, see figure 4(c). Each of these ‘dimers’ realizes a ‘dipole of chirality’ [37]: a pseudo-vector that points from the left-handed field to the right-handed field (figure 4(c)). Crucially, these dipoles of chirality are oriented, always pointing to the left, and we find the following distribution of handedness as we move towards positive values of \(x \) ... RL RL RL...

As a result, the overall structure acquires polarization of chirality [37].

The amplitude and direction of polarization of chirality can be controlled by controlling the two-color phase delays in our setup. If we change the phase delay in the two beams by \(\pi \) (figure 4(d)), we change the sign of \(E_{2\omega} \) in every point in space (figure 4(e)), reversing the field’s handedness (figure 4(f)). As a result, the dipole of chirality flips direction, and we find the opposite distribution of handedness: ... LR LR LR...

Polarization of chirality can be quantified using chiral correlation functions in the reciprocal space, see [37]. For the locally chiral field considered in this work, we can use a definition that is analogous to the polarization of electric charge [37],

\[
h_x = \int h^{(5)}(x)dx.
\]

\(|h_x| \) maximizes for \(\phi_1 = \phi_2 \), when there is the same amount of left- and right-handed field and the overall structure is globally achiral (\(h_0 = 0 \)), as shown in figure 4.

2.3. Global chirality versus polarization of chirality

We now show how, by controlling the two-color phase delays in our setup, we can create light that is both globally chiral (\(h_0 \neq 0 \)) and chirality polarized (\(h_x \neq 0 \)). Figure 5 shows the amplitude (figure 5(a)) and
Figure 4. Synthetic chiral light that is globally achiral, but chirality polarized. (a) Schematic representation of the non-collinear setup to create synthetic chiral light that changes handedness periodically in space and it has the same amount of opposite field enantiomers: the two beams are linearly polarized at frequency ω in the xy plane of propagation, and have a 2ω frequency component orthogonal to this plane, with the same two-color phase delay in the two beams $\phi_1 = \phi_2$. (b) Forward ellipticity in the ω-field component (green curve) and normalized 2ω-field amplitude (purple curve) along the transverse coordinate x, for $\phi_1 = \phi_2 = 0$. These ellipticity and amplitude gratings change sign at different positions. (c) Amplitude (black line) and phase (color) of $h(5)$, which characterizes the field’s local chirality. The red color indicates $\arg(h(5)) = \pi/2$ and the blue color indicates $\arg(h(5)) = -\pi/2$. In this configuration, the field changes chirality periodically in space, creating dipoles of chirality, and the overall field has polarization of chirality. (d)–(f). Changing the two-color phase delays in the two beams by π (d) changes the sign of $E_{2\omega}$ at each point in space (e), reversing the field’s local handedness (f). As a result, the field remains globally achiral and chirality polarized, and the polarization of chirality changes direction.

Figure 5. Structuring the local handedness of synthetic chiral light. Amplitude (a) and phase (b) of $h(5)$ (equation (6)), which characterizes the field’s local handedness, across the transverse coordinate x, as functions of ϕ_-, for $\phi_+ = 0$ (equation (12)). To obtain $\arg(h(5))$ for a different choice of ϕ_+ one needs to add ϕ_+ to the values shown in panel b (|$h(5)$| does not depend on ϕ_+). If $\phi_- = \pm \pi/2$, the field has the same chirality everywhere in space (b), and thus $|h_0|$ (c, equation (13)) maximizes whereas $h_x = 0$ (d, equation (14)). If $\phi_- = 0$ or π, the field’s local handedness changes periodically in space, and the overall structure is achiral: $h_0 = 0$, with maximum $|h_x|$. For other values of $\phi_-\phi_-$, the field is both globally chiral and chirality polarized.

Varying ϕ_- moves the 2ω amplitude grating (equation (10)) in a way that the shape of the chiral Lissajous figure of our field is not modified as we move along x other than by changes in the amplitude and sign of $E_{2\omega}$. As a result, the phase of $h(5)$ remains constant up to π jumps (figure 5(b)). If $\phi_- = \pm \pi/2$ ($\phi_2 = \phi_1 \pm \pi$), the $E_{2\omega}$ and ξ gratings are perfectly aligned (as in figure 3), and thus the field’s chirality is maintained globally in space. In these cases, $|h_0|$ (figure 5(c)) maximizes whereas $h_x = 0$ (figure 5(d)). Otherwise, if $\phi_2 \neq \phi_1 \pm \pi$, the field’s chirality is reversed periodically in space: $\arg(h(5))$ exhibits π jumps as
Figure 6. Global handedness and polarization of chirality. Amplitude (a), (b) and phase (c), (d) of \(h_0 \) (a), (c), see equation (13), which characterizes the field's global chirality, and of \(h_x \) (b), (d), see equation (14), which characterizes the polarization of chirality, as functions of the two-color phase delays in the individual beams \(\phi_1 \) and \(\phi_2 \) (equation (7)).

we move along \(x \). For \(\phi_1 = \phi_2 \) (\(\phi_2 = 0 \) or \(\pi \)), we have the same amount of left- and right-handed field, which leads to \(h_0 = 0 \) and maximizing \(|h_x| \). The phase of \(h_x \) captures the direction of polarization of chirality, which is opposite e.g. for \(\phi_2 = \phi_1 \) and \(\phi_2 = \pi \).

Note that, for a given field configuration, the definition of \(\phi_{\pm} \) is not unique. Let us consider, for instance, the field defined by setting \(\phi_1 = 0 \) and \(\phi_2 = \pi \). Its local chirality can be characterized by taking the corresponding values of \(\text{arg}(h(5)) \) from figure 5(b), which assumes \(\phi_+ = 0 \), and then adding \(\phi_+ \) to these values. Figure 5(b) shows that, for \(\phi_+ = \pi/2 \), we have \(\text{arg}(h(5)) = 0.5\pi \) everywhere in space. Adding \(\phi_+ \) to this value, we obtain \(\text{arg}(h(5)) = \pi \). Since phase definitions are arbitrary up to \(\pm 2n\pi \) (\(n \in \mathbb{Z} \)), we can represent the exact same field using \(\phi_+ = 2\pi \) instead and keeping \(\phi_2 = \pi \). In this case, the we have \(\phi_- = \pi/2 \) and \(\phi_+ = 1.5\pi \), and thus value that we need take from figure 5(b) is different: \(\text{arg}(h(5)) = -0.5\pi \). However, when we add \(\phi_+ = 1.5\pi \) to this value, we obtain the same result: \(\text{arg}(h(5)) = \pi \) everywhere in space. Despite this ambiguity, characterizing the field's chirality in terms of \(\phi_{\pm} \) is advantageous because, as described above, \(\phi_- \) unequivocally determines whether the field is globally chiral and/or chirality polarized or not, whereas \(\phi_+ \) controls the shape of the chiral Lissajous figure everywhere in space.

The lines with slope -1 in figure 6 connect points with equal \(\phi_+ \) and different \(\phi_- \), and thus the amplitude of \(h_0 \) and \(h_x \) changes along these lines, whereas their phase remains constant up to \(\pi \) jumps. This reflects that,
by varying ϕ, we control the global chirality properties of the field without changing the shape of the field’s chiral Lissajous figure, other than by flips in the direction of the 2ω-field component.

3. Enantio-sensitive control over the nonlinear response of chiral molecules

We now show how the local and global properties of synthetic chiral light can be imprinted in the macroscopic nonlinear response of randomly oriented chiral molecules. We have computed the ultrafast electronic response of the prototypical chiral molecule H_2O_2. The potential energy surface of the electronic ground state has two minima at dihedral angles 112.5° and 247.5°, which correspond to opposite enantiomers [104]. Here we label these configurations left- (112.5°) and right-handed (247.5°). However, because the interconversion energy barrier is small, the molecule exists as a racemic mixture in standard conditions. Still, the relatively small number of nuclei (4) and electrons (18) makes it a convenient 'toy model' to investigate ultrafast chiral light-matter interactions using reasonable computational resources [38].

3.1. Computational method

We have computed the ultrafast evolution of the electron density in H_2O_2 driven by locally chiral light using real-time time-dependent density functional theory (TDDFT) in Octopus [105–108], as described in [38]. We used pseudo-potentials to model the 1s orbitals of the oxygen atoms, and applied the local-density approximation [109–111] to describe electronic exchange and correlation effects, together with the averaged-density self-interaction correction [112]. The Kohn–Sham orbitals and the electronic density were expanded onto a uniform real-space grid enclosed in a sphere of radius 30.7 a.u., with 0.4 a.u. of spacing between neighboring grid points. To avoid spurious reflection effects, we used a complex absorbing potential expanded onto a uniform real-space grid enclosed in a sphere of radius 30.7 a.u., with 0.4 a.u. of spacing.

We assumed the fixed-nuclei approximation because we are interested in ultrafast electronic processes driven by ultrashort laser pulses. While the nuclear motion is expected to give rise to rich dynamics upon photo-excitation, these are expected to take place on a longer timescale, and thus do not significantly affect our results.

We considered 200 different molecular orientations in order to describe the physical situation of randomly oriented molecules. The induced polarization in the randomly oriented ensemble was obtained by averaging over the contribution from all orientations:

\[
P(t,x) = \frac{1}{8\pi^2} \int_0^{2\pi} \int_0^\pi \int_0^{2\pi} P_{\phi \theta \chi}(t,x) \sin(\theta) \, d\phi \, d\theta \, d\chi,
\]

where ϕ, θ and χ are the three Euler angles and $P_{\phi \theta \chi}$ is the induced polarization in a particular molecular orientation in the laboratory frame. We used the Lebedev quadrature [113] of order 11 to integrate over ϕ and θ, and the trapezoid method to integrate over χ.

We run TDDFT simulations for the equilibrium geometry of H_2O_2 with dihedral angle 112°, and the results for the opposite enantiomer were obtained using symmetry considerations. In our modeling, we assume that the phase of the achiral contribution to light-induced polarization depends linearly on the phase of the 2ω component of the locally chiral field, see figure 2(b).

We considered the following laser parameters: fundamental wavelength $\lambda = 400$ nm, peak intensity in each beam of $I_0 = 2.5 \times 10^{13}$ W cm$^{-2}$, beam waist $w = 50 \mu$m, non-collinear angle $\alpha = 10^\circ$, and a sine-squared flat-top envelope of eight laser cycles of the fundamental frequency, with two cycles to rise up, four cycles of constant intensity, and two cycles to go down. The total peak intensity in the overlap region reaches 10^{14} W cm$^{-2}$. The fundamental wavelength was chosen so the relatively low-order harmonic processes that we are interested in are close to electronic resonances. We used ultrashort laser pulses to reduce the computational cost of the simulations, but our findings do not rely on the ultrashort nature of the driving field. That is, we do not expect that increasing the pulse duration would lead to significant changes in our results, other than a spectral narrowing of the harmonic peaks in the induced polarization associated with the spectral narrowing of the driving field.

The amplitude of the 2ω-field component was adjusted so the achiral contribution to the induced polarization at frequency 6ω (figure 2(b)) has the same amplitude as the chiral contribution (figure 2(a)), in order to balance the enanti-o-sensitive interference. Our simulations show that this condition is achieved by setting $\sqrt{I_{2\omega}/I_0} = 0.0125$ in each beam.

The amplitude of emission in the far field was evaluated using Fraunhofer diffraction,

\[
\mathbf{E}(N\omega, \kappa) \propto \int_{-\infty}^{\infty} [\mathbf{P}_x(N\omega, x)\mathbf{x} + \mathbf{P}_y(N\omega, x)\mathbf{y}] e^{-iN\omega x \kappa / c} \, dx.
\]
where N is the harmonic number, c is the speed of light in vacuum, $\hat{\mathbf{P}} = \hat{P}_x \mathbf{\hat{x}} + \hat{P}_y \mathbf{\hat{y}} + \hat{P}_z \mathbf{\hat{z}}$ is the second derivative of the induced polarization in the frequency domain, and

$$\kappa = \arctan \left(\frac{\dot{N}_x}{\dot{N}_z} \right)$$

is the angle of emission, or divergence, where z_f is the position of the detector relative to the chiral medium, and x_f is the transverse coordinate in the far-field plane.

3.2. Angularly resolved harmonic spectra

The amplitude of harmonic light emitted from the L and R enantiomers of H$_2$O$_2$ upon interaction with synthetic chiral light that is globally chiral and chirality unpolarized (a)–(d), and globally achiral and chirality polarized (e)–(h), as a function of the harmonic order and the divergence angle κ (equation (17)). To maximize $|h_0|$ and suppress $|h_0|$ (a)–(d), we impose $\phi_1 = \phi_1 + \pi (\phi_- = \pi/2)$. Setting $\phi_1 = 0.17\pi$ and $\phi_2 = 1.17\pi (\phi_+ = 0.67\pi)$ quenches emission at frequency ω_0 in the left-handed molecule (a) while maximizing it in the right-handed molecule (b). Shifting ϕ_1 and ϕ_2 by $\pi (\phi_1 = 1.17\pi$ and $\phi_2 = 0.17\pi$) changes the field’s local handedness in every point in space, leading to enhancement of emission at frequency ω_0 if the left-handed molecule (c) and suppression in the right-handed molecule (d). To suppress $|h_0|$ and maximize $|h_0|$ (e)–(h), we impose $\phi_1 = \phi_2 (\phi_- = 0)$. Setting $\phi_1 = \phi_2 = 1.17\pi (\phi_+ = 1.17\pi)$ bends the emission of harmonic 6 to the left in the left-handed molecule (e) and to the right (f) in the right-handed molecule. Changing ϕ_1 and ϕ_2 by $\pi (\phi_1 = \phi_2 = 0.17\pi$) changes the field’s local handedness at every point in space, reversing the direction of polarization of chirality, and thus the direction of enantio-sensitive light bending (g), (h).

![Figure 7](image-url) Enantio-sensitive harmonic emission. Amplitude of the z-polarized component of the harmonic light emitted from H$_2$O$_2$ upon interaction with synthetic chiral light that is globally chiral and chirality unpolarized (a)–(d), and globally achiral and chirality polarized (e)–(h), as a function of the harmonic order and the divergence angle κ (equation (17)). To maximize $|h_0|$ and suppress $|h_0|$ (a)–(d), we impose $\phi_1 = \phi_1 + \pi (\phi_- = \pi/2)$. Setting $\phi_1 = 0.17\pi$ and $\phi_2 = 1.17\pi (\phi_+ = 0.67\pi)$ quenches emission at frequency ω_0 in the left-handed molecule (a) while maximizing it in the right-handed molecule (b). Shifting ϕ_1 and ϕ_2 by $\pi (\phi_1 = 1.17\pi$ and $\phi_2 = 0.17\pi$) changes the field’s local handedness in every point in space, leading to enhancement of emission at frequency ω_0 if the left-handed molecule (c) and suppression in the right-handed molecule (d). To suppress $|h_0|$ and maximize $|h_0|$ (e)–(h), we impose $\phi_1 = \phi_2 (\phi_- = 0)$. Setting $\phi_1 = \phi_2 = 1.17\pi (\phi_+ = 1.17\pi)$ bends the emission of harmonic 6 to the left in the left-handed molecule (e) and to the right (f) in the right-handed molecule. Changing ϕ_1 and ϕ_2 by $\pi (\phi_1 = \phi_2 = 0.17\pi$) changes the field’s local handedness at every point in space, reversing the direction of polarization of chirality, and thus the direction of enantio-sensitive light bending (g), (h).
The macroscopic response of H$_2$O$_2$ to synthetic chiral light that is globally achiral ($h_0 = 0$), but chirality polarized ($|h_x| \neq 0$), is presented in figures 7(e)–(h). Here, we maximize $|h_x|$ by setting $\phi_1 = \phi_2 = 0$. The total intensity of emission is no longer enantio-sensitive because $h_0 = 0$. However, because $h_x \neq 0$, the molecular handedness is imprinted in the direction of harmonic emission. Setting $\phi_1 = \phi_2 = 1.17\pi$ ($\phi_+ = 1.17\pi$) bends the nonlinear response of the L and R enantiomers to the left and to the right, respectively (figures 7(e) and (f)). If we shift ϕ_1 and ϕ_2 by π, we reverse the direction of polarization of chirality in the driving field, and thus the directions of harmonic emission (figures 7(g) and (h)).

This analysis shows how, by adjusting ϕ_1 and ϕ_2 in a way that $\phi_2 = \phi_1 \pm \pi$, we can tailor the field’s local handedness to maximize the enantio-sensitive response of the medium at the level of total intensity signals. If we impose $\phi_1 = \phi_2$, instead, we can achieve full control over the direction enantio-sensitive light bending. The two enantio-sensitive observables rely on the interference between two contributions to light-induced polarization (figure 2): P_c (chiral) and P_a (achiral). However, the interference mechanism is different, and thus the values of ϕ_+ which optimize each enantio-sensitive observable are different.

To maximize the enantio-sensitivity in the total intensity of emission when the field is globally chiral (figures 7(a)–(d)), we need to adjust ϕ_+ so that P_c and P_a are in phase in one enantiomer (and thus out of phase in the other) in the near field, at each point in space. As a result, the intensity of the optical response is enantio-sensitive already at the single-molecule level. However, when the field has polarization of chirality (figures 7(e)–(h)), enantio-sensitive light bending relies on the far-field interference of the radiation emitted from P_c and P_a, which is optimized when P_c and P_a radiate with a phase delay of $\pm \pi/2$. That is, in this case, the two contributions to light-induced polarization do not produce an enantio-sensitive intensity at the single-molecule response level, but in the macroscopic harmonic emission. As a result, the optimum values of ϕ_+ when light is globally chiral and unpolarized are shifted by $\pm \pi/2$ with respect to optimum values when light is globally achiral and polarized.

3.3. Control over the total intensity of the harmonic radiation

We now show how the total intensity of harmonic emission can be controlled by controlling the individual two-color phase delays ϕ_1 and ϕ_2 in our setup. Figure 8 shows the total intensity emitted from the L (I_L, figure 8(a)) and R (I_R, figure 8(b)) enantiomers at frequency 6ω, integrated over the divergence angle, as functions of ϕ_1 and ϕ_2. To quantify the enantio-sensitive response, we use a standard definition of the dissymmetry factor,

$$\gamma = \frac{2I_L - I_R}{I_L + I_R}.$$ \hspace{1cm} (18)

As shown in figure 8, we can achieve full control over the total intensity of harmonic emission by adjusting ϕ_1 and ϕ_2, and the dissymmetry factor (figure 8(c)) reaches its maximum values: $\pm 200\%$. These phase scans record the properties of the field and provide valuable information about the ultrafast electronic response of the molecules.
If $\phi_1 = \phi_2$, then the field is not globally chiral ($h_0 = 0$, see figure 6(a)) and thus $I_L = I_R$. This is the origin of the white ($\gamma = 0$) line with slope 1 in figure 8(c), which is characteristic of the field configuration and will be present when recording the enantio-sensitive response of any chiral molecule, at any (even) harmonic order. However, the white line with slope -1 is a molecule-specific feature. It records the relative phase between the two contributions to light-induced polarization (P_c and P_a). If their phase delay is $\pm \pi/2$, the total intensity emitted from the L and R enantiomers is identical, yielding $\gamma = 0$.

Note that $\gamma = 0$ does not mean that the molecular response is not enantio-sensitive. While the total intensity emitted from opposite enantiomers is the same when the field is globally achiral ($h_0 = 0$), these field configurations exhibit polarization of chirality ($h_c \neq 0$), which leads to enantio-sensitive light bending.

3.4. Control over the enantio-sensitive light bending

We now show how the direction of harmonic emission can be controlled by adjusting the individual phase delays ϕ_1 and ϕ_2 in our setup (see equation (7)). We quantify the degree of enantio-sensitive light bending by calculating the average angle of harmonic emission,

$$\langle \phi \rangle = \frac{\int |\phi| \kappa d\phi}{\int |\phi| d\phi},$$

where κ is the divergence angle in the far field (equation (17)). Figure 9 presents the average angle of emission at frequency 6ω from the L (figure 9(a)) and R (figure 9(b)) enantiomers, as a function of ϕ_1 and ϕ_2. By adjusting these parameters, we achieve full control over enantio-sensitive light bending, and $|\langle \phi \rangle|$ exceeds 1.5°.

Enantio-sensitive light bending is optimized in the phase regions where the total intensity of emission is not enantio-sensitive ($\gamma = 0$ in figure 8(c)), as in these regions: (i) the field is globally achiral, but has maximum polarization of chirality ($\phi_\perp = 0$), and (ii) ϕ_\perp favors enantio-sensitive light bending. We find the opposite situation, $|\langle \kappa \rangle| = 0$ and maximum $|\gamma|$, in the regions where (i) the field is perfectly globally chiral, but chirality unpolarized, and (ii) ϕ_\perp favors the enantio-sensitive interference at the single-molecule level.

The $\langle \phi \rangle$ scans in figure 9 contain white lines with $\langle \kappa \rangle = 0$. As in the γ scan in figure 8(c), these nodal lines record the field configuration and the ultrafast chiral response of the chiral medium. Here, the white lines of slope 1 appear at $\phi_2 = \phi_1 \pm \pi/2$, where the field is globally chiral ($h_0 \neq 0$) and unpolarized ($h_c = 0$), see figure 6. These lines are characteristic of the field configuration and independent of the molecular properties, just like the white lines of slope 1 the γ scan (figure 8(c)).

Also like in the γ scan, the white lines of slope -1 record the ultrafast electronic response of the chiral medium, and are molecule-specific features. Here, the nodal lines appear in the regions where P_c and P_a are exactly in phase in one enantiomer and out of phase in the other, because the enantio-sensitive light bending relies on a far-field interference which maximizes when P_c and P_a radiate with a phase delay of $\pm \pi/2$. If P_c and P_a are exactly in or out of phase, then they can efficiently interfere in the near field, but radiate symmetrically with respect to κ, yielding $\langle \kappa \rangle = 0$.

Figure 9. Control over enantio-sensitive light bending. Average angle of harmonic emission $\langle \kappa \rangle$ (equation (19)) at frequency 6ω from left- (a) and right-handed (b) H$_2$O$_2$, as a function of the two-color phase delay in the two beams ϕ_1 and ϕ_2. $|\langle \kappa \rangle|$ maximizes for $\phi_2 = \phi_1$, when the field’s polarization of chirality, quantified by h_c (equation (14)), maximizes. For $\phi_2 = \phi_1 + \pi$, the field is chirality unpolarized ($h_c = 0$), and thus the direction of harmonic emission is not enantio-sensitive.
4. Conclusion and outlook

Synthetic chiral light is a powerful optical tool for chiral recognition, which allows us to bypass two fundamental limitations of (standard) circularly polarized light. The first limitation is related to the strength of the chiro-optical signals. Circularly polarized light is not chiral within the electric-dipole approximation: the Lissajous figure that the tip of the electric-field vector draws in time, in a given point in space, is a (planar) circle. This circle becomes chiral once we include the propagation vector of the light wave and its magnetic-field component, but non-electric-dipole interactions are weak for small to medium-size molecules, and lead to weak enantio-sensitivity. In contrast, the enantio-sensitive response of chiral matter to synthetic chiral light is solely driven by the electric-field vector of the light field.

The second constraint of standard chiral light is that it offers limited opportunities for control: we can change between left and right circular or elliptical polarization, but the phase between the electric and magnetic components of the wave is fundamentally locked. As a result, the enantio-sensitive response of the molecules is not only weak, but also harder to control. In contrast, the handedness of synthetic chiral light depends on the phase delay between its frequency components, which is a continuous and controllable parameter. By adjusting the phase delays in the proposed non-collinear setup, we can shape the Lissajous figure that the tip of the electric-field vector draws in time, at every point in space, in order to maximize the enantio-sensitive response of the chiral medium.

This paper provides a recipe for structuring the local handedness of synthetic chiral light in space, and thus for creating optical fields with tailored local and global chirality properties. Using state-of-the-art computational modeling to evaluate the ultrafast electronic response of a prototypical chiral system, we have shown how these local and global properties are imprinted into enantio-sensitive macroscopic observables. Because the enantio-sensitive signals rely on the interference between two multiphoton pathways which are ubiquitous in chiral molecules driven by locally chiral light, our findings are general and the conclusions of this work remain valid for more complex chiral systems.

We have shown how locally and globally chiral light can enhance the nonlinear response of a selected molecular enantiomer while quenching it in its mirror twin at the level of total intensity signals. However, global chirality is not necessarily needed to produce strongly enantio-sensitive signals. If the driving field is globally achiral, but chirality polarized, it can send the nonlinear response of opposite molecular enantiomers in different directions. In contrast with previous works \cite{36–38}, we have shown how one can engineer synthetic chiral light that is both globally chiral and chirality polarized. Here, the intensity of harmonic emission is enantio-sensitive at the level of total intensity signals, and sent in different directions from opposite molecular enantiomers, although the enantio-sensitivity of both macroscopic observables is reduced.

Our analysis reveals the presence of enantio-sensitive molecule-specific fingerprints in the spectra of harmonic emission. Indeed, the nodal lines in the scans which record the dissymmetry factor (figure 8(c)) and the average emission angles (figure 9), as functions of the two-color phase delays in the incident beams, contain valuable information about the laser field configuration, which could be used for calibration purposes, but also about the enantio-sensitive interplay between the chiral and achiral components of the ultrafast dynamics induced in the molecules.

The possibility of creating synthetic chiral light with controllable local handedness, controllable global handedness, and controllable polarization of chirality, opens exciting avenues for efficient chiral recognition on ultrafast time scales. New opportunities may arise from the possibility of sculpting the local handedness of synthetic chiral light using vortex beams, taking advantage of the structured phase profiles characteristic of such waveforms.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

D A acknowledges endless support, guidance and inspiration from Olga Smirnova and Misha Ivanov, and enlightening discussions with them and with Andrés Ordoñez. L R acknowledges funding from the European Union-NextGenerationEU and the Spanish Ministry of Universities via her Margarita Salas Fellowship through the University of Salamanca; D A acknowledges funding from the Deutsche Forschungsgemeinschaft SPP 1840 SM 292/5-2; L R and D A acknowledge funding from the Royal Society URF\R1\201333 and RF\ERE\210358.
References

[1] Andrews D L 2008 Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic)
[2] Rubinsztein-Dunlop H et al 2016 Roadmap on structured light J. Opt. 19 013001
[3] Forbes A, de Oliveira M and Dennis M R 2021 Structured light Nat. Photon. 15 253
[4] Allen L, Beijersbergen W M, Spreeuw R J C and Woerdman J P 1992 Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes Phys. Rev. A 45 8185
[5] Grier D G 2003 A revolution in optical manipulation Nature 424 810
[6] Simpson N B, Allen L and Padgett M J 1996 Optical tweezers and optical spanners with Laguerre–Gaussian modes J. Mod. Opt. 43 2485
[7] Wang J et al 2012 Terabit free-space data transmission employing orbital angular momentum multiplexing Nat. Photon. 6 488
[8] Fürhapter S, Jascher A, Bernet S and Ritsch-Marte M 2005 Spiral interferometry Opt. Lett. 30 1953
[9] Viczimovini G, Bianchini P and Diaspro A 2018 Sted super-resolved microscopy Nat. Methods 15 173
[10] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Entanglement of the orbital angular momentum states of photons Nature 412 313
[11] Maurer C, Jascher A, Fürhapter S, Bernet S and Ritsch-Marte M 2007 Tailoring of arbitrary optical vector beams New J. Phys. 9 78
[12] Zhan Q 2009 Cylindrical vector beams: from mathematical concepts to applications Adv. Opt. Photon. 1 1
[13] Beckley A M, Brown T G and Alonso M A 2010 Full poincare beams Opt. Express 18 10777
[14] Novotny L, Beverlslui M R, Youngworth K S and Brown T G 2001 Longitudinal field modes probed by single molecules Phys. Rev. Lett. 86 5251
[15] Bautista G, Huttunen M J, Mäkipalto J, Kontio J M, Simonen J and Kauranen M 2012 Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams Nano Lett. 12 3209
[16] Woźniak P, Banzer P and Leuchs G 2015 Selective switching of individual multipole resonances in single dielectric nanoparticles Laser Photon. Rev. 9 231
[17] Dorn R, Quabis S and Leuchs G 2003 Sharper focus for a radially polarized light beam Phys. Rev. Lett. 91 233901
[18] Zürch M, Kern C, Hansing P, Dreischuh A and Spielmann C 2012 Strong-field physics with singular light beams Nat. Phys. 8 743
[19] Hernández-Garcia C, Picón A, San Román J and Plaja L 2013 Attosecond extreme ultraviolet vortices from high-order harmonic generation Phys. Rev. Lett. 111 083602
[20] Gariepy G, Leach J, Kim K T, Hammond T J, Frunkem E, Boyd R W and Corkum P B 2014 Creating high-harmonic beams with controlled orbital angular momentum Phys. Rev. Lett. 113 153901
[21] Géneaux R, Camper A, Auguste T, Gobert O, Caillat J, Tzrie B and Ruchon T 2016 Synthesis and characterization of attosecond light vortices in the extreme ultraviolet Nat. Commun. 7 12583
[22] Kong F et al 2017 Controlling the orbital angular momentum of high harmonic vortices Nat. Commun. 8 14970
[23] Hickstein D D et al 2015 Non-collinear generation of angularly isolated circularly polarized high harmonics Nat. Photon. 9 743
[24] Ellis J L et al 2018 High harmonics with spatially varying ellipticity Optica 5 479
[25] Azaury D, Knoller O, Krüger M, Bruner B D, Cohen O, Mairesse Y and Dudovich N 2019 Interferometric attosecond lock-in measurement of extreme-ultraviolet circular dichroism Nat. Photon. 13 198
[26] de las Heras A et al 2022 Extreme-ultraviolet vector-vortex beams from high harmonic generation Optica 9 71
[27] Dorney K M et al 2019 Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation Nat. Photon. 13 123
[28] Rego L, Román J S, Plaja L and Hernández-Garcia C 2020 Trains of attosecond pulses controlled with time-ordered polarization states Opt. Lett. 45 5636
[29] Rego L, Brooks N J, Nguyen Q L D, Román J S, Binnie I, Plaja L, Kapteyn H C, Murnane M M and Hernández-Garcia C 2022 Necklace-structured high-harmonic generation for low-divergence, soft x-ray harmonic combs with tunable line spacing Sci. Adv. 8 eabj7380
[30] Bauer T, Neugebauer M, Leuchs G and Banzer P 2016 Optical polarization möbius strips and points of purely transverse spin density Phys. Rev. Lett. 117 013601
[31] Bliokh K Y and Nori F 2015 Transverse and longitudinal angular momenta of light Phys. Rep. 592 1
[32] Heyl C M, Bengtsson S N, Carlström S, Mauritssson J, Arnold C L and L’Huillier A 2014 Noncollinear optical gating New J. Phys. 16 052001
[33] Pisanty E, Hickstein D D, Galloway B R, Durfee C G, Kapteyn H C, Murnane M M and Ivanov M 2019 High harmonic interferometry of the lorentz force in strong mid-infrared laser fields New J. Phys. 20 053036
[34] Ayuso D, Ordonez A F, Decleva P, Ivanov M and Smirnova O 2022 Strong chiral response in non-collinear high harmonic generation driven by purely electric-dipole interactions Opt. Express 30 4639
[35] Neufeld O, Ayuso D, Decleva P, Ivanov M Y, Smirnova O and Cohen O 2019 Ultrasmalls chiral spectroscopy by dynamical symmetry breaking in high harmonic generation Phys. Rev. X 9 031002
[36] Ayuso D, Neufeld O, Ordonez A F, Decleva P, Lerner G, Cohen O, Ivanov M and Smirnova O 2019 Synthetic chiral light for efficient control of chiral light-matter interaction Nat. Photon. 13 866
[37] Ayuso D, Ordonez A F, Decleva P, Ivanov M and Smirnova O 2021 Enantio-sensitive unidirectional light bending Nat. Commun. 12 3951
[38] Ayuso D 2022 New opportunities for ultrafast and highly enantio-sensitive imaging of nuclear dynamics enabled by synthetic chiral light Phys. Chem. Chem. Phys. 24 10193
[39] Neufeld O, Hübenner H, Rubio A and De Giovannini U 2021 Strong chiral dichroism and enantiopurification in above-threshold ionization with locally chiral light Phys. Rev. Res. 3 l02006
[40] Katsoulis G P, Dube Z, Corkum P B, Staude A and Emmanouilidou A 2022 Momentum scalar triple product as a measure of chirality in electron ionization dynamics of strongly driven atoms Phys. Rev. A 106 043409

ORCID iDs
Laura Rego https://orcid.org/0000-0002-7214-7402
David Ayuso https://orcid.org/0000-0002-5394-5361
Mayer N, Patchkovskii S, Morales F, Ivanov M and Smirnova O 2022 Imprinting chirality on atoms using synthetic chiral light fields Phys. Rev. Lett. 129 243201

Khokhlova M, Pisanty E, Patchkovskii S, Smirnova O and Ivanov M 2022 Enantiosensitive steering of free-induction decay Sci. Adv. 8 eabeq1962

Ayuso D, Ordonez A F, Ivanov M and Smirnova O 2021 Ultrafast optical rotation in chiral molecules with ultrashort and tightly focused beams Optica 8 1243

Rego L, Smirnova O and Ayuso D 2023 Tilting light's polarization plane to spatially separate the ultrafast nonlinear response of chiral molecules Nanophotonics 12 2873

Cameron R P, Yao A M and Barnett S M 2014 Diffraction gratings for chiral molecules and their applications J. Phys. Chem. A 118 3472

Cameron R P, Barnett S M and Yao A M 2014 Discriminatory optical force for chiral molecules New J. Phys. 16 013020

Liu X, Li J, Zhang Q and Dirbeba M G 2019 Separation of chiral enantiomers by optical force and torque induced by tightly focused vector polarized hollow beams Phys. Chem. Chem. Phys. 21 15339

Barron L D 2004 Molecular Light Scattering and Optical Activity 2nd edn (Cambridge University Press)

Nam Y, Cho D, Gu B, Rouxel J R, Keever D, Govind N and Mukamel S 2022 Time-evolving chirality loss in molecular photodissociation monitored by x-ray circular dichroism spectroscopy J. Am. Chem. Soc. 144 20490

Rouxel J R, Zhang Y and Mukamel S 2019 X-ray Raman optical activity of chiral molecules Chem. Sci. 10 898

Rouxel J R and Mukamel S 2022 Molecular chirality and its monitoring by ultrafast x-ray pulses Chem. Rev. 122 16802

Cireasa R et al 2015 Probing molecular chirality on a sub-femtosecond timescale Nat. Phys. 11 654

Harada Y, Haraguchi E, Kaneshima K and Sekikawa T 2018 Circular dichroism in high-order harmonic generation from chiral molecules Phys. Rev. A 98 021401

Baykusheva D and Wörner H J 2018 Chiral discrimination through bielliptical high-harmonic spectroscopy Phys. Rev. X 8 031060

Smirnova O, Mairesse Y and Patchkovskii S 2015 Opportunities for chiral discrimination using high harmonic generation in tailored laser fields J. Phys. B: At. Mol. Opt. Phys. 48 234005

Ayuso D, Decleva P, Patchkovskii S and Smirnova O 2018 Chiral dichroism in bi-elliptical high-order harmonic generation J. Phys. B: At. Mol. Opt. Phys. 51 06LT01

Ayuso D, Decleva P, Patchkovskii S and Smirnova O 2018 Strong-field control and enhancement of chiral response in bi-elliptical high-order harmonic generation: an analytical model J. Phys. B: At. Mol. Opt. Phys. 51 124002

Ordonez A F and Smirnova O 2018 Generalized perspective on chiral measurements without magnetic interactions Phys. Rev. A 98 063428

Ayuso D, Ordonez A F and Smirnova O 2022 Ultrafast chirality: the road to efficient chiral measurements Phys. Chem. Chem. Phys. 24 26962

Ritchie B 1976 Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions Phys. Rev. A 13 1411

Powis I 2000 Photoelectron circular dichroism of the randomly oriented chiral molecules glyceraldehyde and lactic acid J. Chem. Phys. 112 301

Böwering N, Lischke T, Schmidtke B, Müller N, Khalil T and Heinzmann U 2001 Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light Phys. Rev. Lett. 86 1187

Garcia G A, Nahon L, Lebech M, Houver J-C, Dowek D and Powis I 2003 Circular dichroism in the photoelectron angular distribution from randomly oriented enantiomers of camphor J. Chem. Phys. 119 6781

Lux C, Wollenhaupt M, Bolte T, Liang Q, Kühler J, Sarpe C and Baumert T 2012 Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses Angew. Chem., Int. Ed. 51 5001

Lehmann C S, Ram N B, Powis I and Janssen M H M 2013 Imaging photoexcited circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection J. Chem. Phys. 139 234307

Garcia G A, Nahon L, Daly S and Powis I 2013 Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light Nat. Commun. 4 2132

Janssen M H M and Powis I 2014 Detecting chirality in molecules by imaging photoelectron circular dichroism Phys. Chem. Chem. Phys. 16 856

Lux C, Wollenhaupt M, Sarpe C and Baumert T 2015 Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses ChemPhysChem 16 115

Kastner A, Lux C, Ring T, Züllichoven S, Senftleben A and Baumert T 2016 Enantiomeric excess sensitivity to below one percent by using femtosecond photoelectron circular dichroism ChemPhysChem 17 11119

Comby A et al 2016 Relaxation dynamics in photoexcited chiral molecules studied by time-resolved photoelectron circular dichroism: toward chiral femtochemistry J. Phys. Chem. Lett. 7 4514

Beaulieu S et al 2016 Probing ultrafast dynamics of chiral molecules using time-resolved photoelectron circular dichroism Faraday Discuss. 194 325

Beaulieu S et al 2017 Attosecond-resolved photoionization of chiral molecules Science 358 1288

Beaulieu S et al 2018 Photoexcitation circular dichroism in chiral molecules Nat. Phys. 14 484–9

Comby A, Bloch E, Bond C M M, Descamps D, Miles J, Petit S, Rozen S, Greenwood J B, Blanchet V and Mairesse Y 2018 Real-time determination of enantiomeric and isotopic content using photoelectron elliptical dichroism Nat. Commun. 9 5212

Demekhin P V, Artemyev A N, Kastner A and Baumert T 2018 Photoelectron circular dichroism with two overlapping laser pulses of carrier frequencies ω and 2ω linearly polarized in two mutually orthogonal directions Phys. Rev. Lett. 121 253201

Goetz R E, Koch C P and Greenman L 2019 Quantum control of photoelectron circular dichroism Phys. Rev. Lett. 122 013204

Rozen S et al 2019 Controlling subcycle optical chirality in the photoionization of chiral molecules Phys. Rev. X 9 031004

Ordonez A F and Smirnova O 2022 Disentangling enantiomeric sensitivity from dichroism using bichromatic fields Phys. Chem. Chem. Phys. 24 7264

Fischer P, Wiersma D S, Rigolini H, Champagne B and Buckingham A D 2000 Three-wave mixing in chiral liquids Phys. Rev. Lett. 85 4253

Belkin M A, Han S H, Wei X and Shen Y R 2001 Sum-frequency generation in chiral liquids near electronic resonance Phys. Rev. Lett. 87 113001

Fischer P, Beckwitt K, Wise F and Albrecht A 2002 The chiral specificity of sum-frequency generation in solutions Chem. Phys. Lett. 352 463
[82] Patterson D, Schnell M and Doyle J M 2013 Enantiomer-specific detection of chiral molecules via microwave spectroscopy Nature 497 475
[83] Shubert V A, Schmitz D, Patterson D, Doyle J M and Schnell M 2014 Identifying enantiomers in mixtures of chiral molecules with broadband microwave spectroscopy Angew. Chem., Int. Ed. 53 1152
[84] Shubert V A, Schmitz D, Pérez C, Medcraft C, Krin A, Domingos S R, Patterson D and Schnell M 2016 Chiral analysis using broadband rotational spectroscopy J. Phys. Chem. Lett. 7 341
[85] Pérez C, Steber A L, Domingos S R, Krin A, Schmitz D and Schnell M 2017 Coherent enantiomer-selective population enrichment using tailored microwave fields Angew. Chem., Int. Ed. 56 12512
[86] Owens A, Yachmenev A, Yurchenko S N and Küpper J 2018 Climbing the rotational ladder to chirality Phys. Rev. Lett. 121 193201
[87] Yachmenev A, Onvlee J, Zak E, Owens A and Küpper J 2019 Field-induced diastereomers for chiral separation Phys. Rev. Lett. 123 243202
[88] Milner A A, Fordyce J A M, MacPhail-Bartley I, Wasserman W, Milner V, Tutunnikov I and Averbukh I S 2019 Controlled enantioselective orientation of chiral molecules with an optical centrifuge Phys. Rev. Lett. 122 233201
[89] Planas X B, Ordóñez A, Lewenstein M and Maxwell A S 2022 Ultrafast imaging of molecular chirality with photoelectron vortices Phys. Rev. Lett. 129 233201
[90] Král P, Thanopulos I, Shapiro M and Cohen D 2003 Two-step enanti-selective optical switch Phys. Rev. Lett. 90 033001
[91] Gerbasi D, Bruner P, Thanopulos I, Král P and Shapiro M 2004 Theory of the two step enantiomer purification of 1,3 dimethylallene J. Chem. Phys. 120 11557
[92] Eibenberger S, Doyle J and Patterson D 2017 Enantiomer-specific state transfer of chiral molecules Phys. Rev. Lett. 118 123002
[93] Lehmann K K 2018 Influence of spatial degeneracy on rotational spectroscopy: Three-wave mixing and enantiomeric state separation of chiral molecules J. Chem. Phys. 149 094201
[94] Leibscher M, Giesen T F and Koch C P 2019 Principles of enantio-selective excitation in three-wave mixing spectroscopy of chiral molecules J. Chem. Phys. 151 014502
[95] Lee J, Bischoff J, Hernandez-Castillo A O, Sartakov B, Meijer G and Eibenberger-Arias S 2022 Quantitative study of enantiomer-specific state transfer Phys. Rev. Lett. 128 173001
[96] Boyd R W 2020 Nonlinear Optics (Academic, Elsevier)
[97] Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M and Corkum P B 2006 Measuring and controlling the birth of attosecond xuv pulses Nat. Phys. 2 781
[98] Porat G et al 2018 Attosecond time-resolved photoelectron holography Nat. Commun. 9 2805
[99] Uzan A J, Soifer H, Pedatuzzi O, Clergerie A, Larroque S, Bruner B D, Pons B, Ivanov M, Smirnova O and Dudovich N 2020 Spatial molecular interferometry via multidimensional high-harmonic spectroscopy Nat. Photon. 14 188
[100] Galinis G, Strucka J, Barnard J C T, Braun A, Smith R A and Marangos J P 2017 Micrometer-thickness liquid sheet jets flowing in vacuum Rev. Sci. Instrum. 88 083117
[101] Lau T T, Yin Z, Jain A, Gaumnitz T, Pertot Y, Ma J and Wörner H J 2018 Extreme–ultraviolet high–harmonic generation in liquids Nat. Commun. 9 3723
[102] Ferchaud C, Jarosh S, Avni T, Alexander O, Barnard J C T, Larsen E W, Matthews M R and Marangos J P 2022 Interaction of an intense few-cycle infrared laser pulse with an ultrathin transparent liquid sheet Opt. Express 30 34684
[103] Barnard J C T et al 2022 Delivery of stable ultra-thin liquid sheets in vacuum for biochemical spectroscopy Front. Mol. Biosci. 9 1044610
[104] Kuenerer U and Hofer T S 2019 A periodic numerov approach applied to the torsional tunneling splitting in hydrogen peroxide, aliphatic alcohols and phenol Chem. Phys. Lett. 728 195
[105] Tancogne-Dejean N et al 2020 Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems J. Chem. Phys. 152 124119
[106] Andrade X et al 2015 Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems Phys. Chem. Chem. Phys. 17 31371
[107] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Octopus: a tool for the application of time-dependent density functional theory Physica Status Solidi b 243 2465
[108] Marques M A, Castro A, Bertsch G F and Rubio A 2003 Octopus: a first-principles tool for excited electron-ion dynamics Comput. Phys. Commun. 151 60
[109] Dirac P A M 1930 Note on exchange phenomena in the thomas atom Math. Proc. Camb. Phil. Soc. 26 376–85
[110] Bloch F 1929 Bemerkung zur elektronentheorie des ferromagnetismus und der elektrischen leitfähigkeit Z. Phys. 57 545
[111] Perdew J P and Zunger A 1981 Self-interaction correction to density-functional approximations for many-electron systems Phys. Rev. B 23 5048
[112] Legrand C, Surau E and Reinhard P-G 2002 Comparison of self-interaction-corrections for metal clusters J. Phys. B: At. Mol. Opt. Phys. 35 1115
[113] Lebedev V I and Laikov D N 1999 A quadrature formula for the sphere of the 131st algebraic order of accuracy Doklady Mathematics vol 59 (Pleades Publishing, Ltd) p 477