ON THE GALOIS GROUPS OF THE DUALIZING COVERINGS FOR PLANE CURVES

VIK.S. KULIKOV

Abstract. Let C_1 be an irreducible component of a reduced projective curve $C \subset \mathbb{P}^2$ defined over the field \mathbb{C}, $\deg C_1 \geq 2$, and let T be the set of lines $l \subset \mathbb{P}^2$ meeting C transversally. In the article, we prove that for a line $l_0 \in T$ and any two points $P_1, P_2 \in C_1 \cap l_0$ there is a loop $l_t \subset T$, $t \in [0, 1]$, such that the movement of the line l_0 along the loop l_t induces the transposition of the points P_1, P_2 and the identity permutation of the other points of $C \cap l_0$.

Introduction

Let $C_i \subset \mathbb{P}^2$, $1 \leq i \leq k$, be irreducible reduced curves defined over the field \mathbb{C}, $\deg C_i = d_i \geq 2$, and $C = C_1 \cup \cdots \cup C_k$, $d = \deg C = d_1 + \cdots + d_k$. Denote by $\nu : \overline{C} \to C$ the normalization of the curve C and consider a point $p \in C$ and its image $P = \nu(p) \in \mathbb{P}^2$. Choose homogeneous coordinates (x_1, x_2, x_3) in \mathbb{P}^2 such that $P = (0, 0, 1)$. We can choose a local parameter t in a complex analytic neighborhood $U \subset \overline{C}$ of the point p such that the regular map ν is given by

$$x_1 = \sum_{i=s_p}^{\infty} a_it^i, \quad x_2 = t^{s_p}, \quad x_3 = 1,$$ \hspace{1cm} (1)

where $a_{s_p} \neq 0$ and $s_p > r_p \geq 1$. The integer r_p is called the multiplicity of the germ $\nu(U)$ of the curve C at $P = \nu(p)$, the line $l_p = \{x_1 = 0\}$ is called a tangent line to C at P, and the integer s_p is called the tangent multiplicity of the germ $\nu(U)$ at P.

Let $\hat{C} \subset \hat{\mathbb{P}}^2$ be the dual curve to the curve C (the curve \hat{C} consists of the tangents l_p, $p \in \overline{C}$, to C). The graph of the correspondence between C and \hat{C} is a curve \hat{C} (the so called Nash blow-up of C) in $\mathbb{P}^2 \times \hat{\mathbb{P}}^2$ which lies in the incidence variety $I = \{(P, l) \in \mathbb{P}^2 \times \hat{\mathbb{P}}^2 \mid P \in l\}$,

$$\hat{C} = \{(\nu(p), l_p) \in I \mid p \in C \text{ and } l_p \text{ is the tangent line to } C \text{ at } \nu(p) \in C\}.$$

In the sequel, by $L_p \subset \hat{\mathbb{P}}^2$, we denote the line dual to the point $\nu(p) \in C \subset \mathbb{P}^2$.

This research was partially supported by grants of NSh-2998.2014.1, RFBR 14-01-00160, and by AG Laboratory HSE, RF government grant, ag. 11.G34.31.0023.
Let \(\text{pr}_1 : \mathbb{P}^2 \times \tilde{\mathbb{P}}^2 \to \mathbb{P}^2 \) and \(\text{pr}_2 : \mathbb{P}^2 \times \tilde{\mathbb{P}}^2 \to \tilde{\mathbb{P}}^2 \) be the projections to the factors, \(X = \text{pr}_1^{-1}(C) \cap I \), and \(f' : X \to \tilde{\mathbb{P}}^2 \) the restriction of \(\text{pr}_2 \) to \(X \). Obviously, \(f'^{-1}(l) \) consists of the points \((P, l) \in \mathbb{P}^2 \times \tilde{\mathbb{P}}^2 \) such that \(P \in C \cap l \) and hence \(\deg f' = \deg C = d \).

Denote by \(\nu' : Z \to X \) the normalization of \(X \) and by \(f = f' \circ \nu' : Z \to \tilde{\mathbb{P}}^2 \). We have \(\deg f = d \). We call \(f \) the dualizing covering for \(C \subset \mathbb{P}^2 \). Obviously, the variety \(Z \) is isomorphic to the fibre product \(\tilde{C} \times_C X \) of the normalization \(\nu : \tilde{C} \to C \) and the projection \(\text{pr}_1 : X \to C \). The projection \(\text{pr}_1 : X \to C \) gives on \(X \) a structure of a ruled surface and it induces a ruled structure on \(Z \) over the curve \(\tilde{C} \), \(\rho : Z \to \tilde{C}, \rho^{-1}(p) := F_p \simeq \mathbb{P}^1 \) for \(p \in \tilde{C} \). Note that the curve \(\tilde{C} \) is a section of this ruled structure, where \(\tilde{C} = \nu'^{-1}(\tilde{C}) \subset Z \), and the image \(f(F_p) \) of a fibre \(F_p \) is the line \(L_p \subset \tilde{\mathbb{P}}^2 \) dual to the point \(\nu(p) \in C \subset \mathbb{P}^2 \).

Denote by \(\overline{\mathcal{B}} \subset \tilde{\mathbb{P}}^2 \) the branch locus of \(f \), choose a point \(l_0 \in \tilde{\mathbb{P}}^2 \setminus \overline{\mathcal{B}} \), and number the points of \(f^{-1}(l_0) \). In this case the covering \(f \) induces a homomorphism \(f_* : \pi_1(\tilde{\mathbb{P}}^2 \setminus \overline{\mathcal{B}}, l_0) \to \Sigma_d \) from the fundamental group \(\pi_1(\mathbb{P}^2 \setminus \overline{\mathcal{B}}, l_0) \) to the symmetric group \(\Sigma_d \) acting on the fibre \(f^{-1}(l_0) \). The image, \(Im f_* := G \subset \Sigma_d \), is called the Galois group of the covering \(f \).

Theorem 1. Let \(f : Z \to \tilde{\mathbb{P}}^2 \) be the dualizing covering for a reduced curve \(C \subset \mathbb{P}^2 \), \(\deg C = d \), and \(C_1, \ldots, C_k \) the irreducible components of \(C \), \(\deg C_i = d_i \geq 2 \). Then the Galois group of \(f \) is \(G \simeq \Sigma_{d_1} \times \cdots \times \Sigma_{d_k} \).

The following theorem describes properties of dualizing coverings.

Theorem 2. Let \(C \) be as in Theorem 1 and \(f : Z \to \tilde{\mathbb{P}}^2 \) the dualizing covering for \(C \). Then \(Z \) is a non-singular surface consisting of \(k \) irreducible components and \(f \) is a degree \(d \) finite covering.

The branch locus of \(f \) is \(\overline{\mathcal{B}} = \tilde{C} \cup \tilde{\mathcal{L}} \), where \(\tilde{\mathcal{L}} = \bigcup_{r_p \geq 2} L_p \), \(L_p \) are the lines dual to the points \(\nu(p) \in C \) and the union is taken over all \(p \in \tilde{C} \) for which the multiplicity \(r_p \geq 2 \).

The ramification locus of \(f \) is \(\overline{\mathcal{R}} = \tilde{C} \cup \tilde{\mathcal{F}} \), where \(\tilde{\mathcal{F}} = \bigcup_{r_p \geq 2} F_p \) and the union is taken over all \(p \in \tilde{C} \) for which \(r_p \geq 2 \).

The local degree \(\deg_q f \) of \(f \) at a point \(q = F_p \cap \tilde{C} \) is equal to the tangent multiplicity \(s_p \), and \(\deg_q f = r_p \) at all points \(q \in F_p \setminus \tilde{C} \). For all points \(q \in \tilde{C} \setminus \tilde{\mathcal{F}} \), the local degree \(\deg_q f = 2 \).

For given reduced projective curve \(C \subset \mathbb{P}^2 \), \(\deg C = n \), let \(T_C \) be the set of lines \(l \subset \mathbb{P}^2 \) meeting \(C \) transversally. Let \(l_t \subset T_C, t \in [0, 1] \), be a loop and let \(l_0 \cap C = \{P_1, \ldots, P_n \} \). Then the movement of the line \(l_0 \) along the loop \(l_t \) defines \(n \) paths \(\psi_i(t) = l_t \cap C \subset \mathbb{P}^2, i = 1, \ldots, n \), starting and ending at the points.
P_1, \ldots, P_n and, consequently, induces a permutation of the points P_1, \ldots, P_n called the monodromy of the points P_1, \ldots, P_n along the loop l_t (the start point $P_i = \psi_i(0)$ of the path $\psi_i(t)$ maps to the end point $\psi_i(1) \in l_0 \cap C$).

Corollary 1. Let C_1, $\deg{C_1} \geq 2$, be an irreducible component of a reduced curve $C \subset \mathbb{P}^2$. For a line $l_0 \subset T_C$ and any two points $P_1, P_2 \in C_1 \cap l_0$ there is a loop $l_t \subset T_C$, $t \in [0, 1]$, such that the monodromy along the loop l_t is the transposition of the points P_1, P_2 and the identity permutation of the other points in $C \cap l_0$.

The proof of Theorems 1, 2 and Corollary 1 will be given in Section 3. In sequel, we will assume that each finite set I is a subset of an integer segment $[1, d] = \{1, 2, \ldots, d\}$, so that $\Sigma_I \subset \Sigma_d$.

Let $J = \{I_1, \ldots, I_k\}$ be a partition of the segment $[1, d]$. The partition J defines an embedding of the group $\Sigma_J := \Sigma_{I_1} \times \cdots \times \Sigma_{I_k}$ into Σ_d.

We say that a partition J of $[1, d]$ is invariant under the action of a subgroup $G \subset \Sigma_d$ if $g(I_j) = I_j$ for all $g \in G$ and all $I_j \in J$.

Let $J_1 = \{I_{i_1, 1}, \ldots, I_{i_1, k_1}\}$, $i = 1, 2$, be two partitions of $[1, d]$. We say that the partition J_1 is thinner than J_2 (resp., J_2 is thicker than J_1) and write $J_1 \preceq J_2$ if for each j, $1 \leq j \leq k_1$, there is $t(j)$ such that $I_{j, t(j)} \subset I_{i_2, t(j)}$. For any two partitions $J_i = \{I_{i, 1}, \ldots, I_{i, k_i}\}$, $i = 1, 2$, denote by $J_1 \oplus J_2$ the thinnest partition of $[1, d]$ such that $J_1 \preceq J_1 \oplus J_2$ and $J_2 \preceq J_1 \oplus J_2$.

Claim 1. Let G be a subgroup of Σ_d and let $J_i = \{I_{i, 1}, \ldots, I_{i, k_i}\}$, $i = 1, 2$, be two partitions of $[1, d]$ such that $\Sigma_{J_i} \subset G$ for $i = 1, 2$. Then $\Sigma_{J_1 \oplus J_2} \subset G$.

Proof. Obvious. \hfill \Box

It follows from Claim 1 that for each subgroup G of Σ_d there is the thickest partition of $[1, d]$ (denote it by J_G) such that $\Sigma_{J_G} \subset G$.

Let $\sigma = c_1 \cdot \ldots \cdot c_n \in \Sigma_d$ be the factorization of σ into the product of cycles with disjoint orbits. The number $n_\sigma = n$ will be called the length of cycle factorization.
Lemma 1. Let H be a subgroup of Σ_d generated by a set of transpositions and a permutation σ, and let $\sigma = c_1 \cdot \ldots \cdot c_n$ be the factorization of σ into the product of cycles with disjoint orbits. Assume that for each i, $1 \leq i \leq n$, there is a partition $J_i = \{I_{i,1}, \ldots, I_{i,k_i}\}$ of $[1,d]$ invariant under the action of σ and such that

(i) for each $I_{i,j} \in J_i$ there is at most one cycle $c_{m(i,j)}$ entering into the factorization of σ such that the cycle $c_{m(i,j)}$ acts non-trivially on $I_{i,j}$,

(ii) the cycle c_i acts non-trivially on $I_{i,1}$ and the length of the cycle c_i is strictly less than the cardinality of $I_{i,1}$,

(iii) the group H acts transitively on $I_{i,1}$.

Then $H = \Sigma_{J_H}$ and, in particular, H is generated by transpositions.

Proof. Consider a set $I_{i,1}$. Let $l_{i,1}$ be its cardinality and let l_i be the length of the cycle c_i. We have $l_i < l_{i,1}$ and it follows from (i) and (iii) that there exists a transposition $\tau \in H \cap \Sigma_{I_{i,1}}$ such that it commutes with c_j if $j \neq i$ and it transposes an element entering in the cycle c_i and an element of $I_{i,1}$ which does not enter in c_i. Without loss of generality, we can assume that $I_{i,1} = \{1,2,\ldots,l_{i,1}\}$, $c_i = (1,2,\ldots,l_i)$, and $\tau = (l_i, l_i + 1)$. Therefore

$$\sigma^{-j} \tau \sigma^j = (l_i - j, l_i + 1) \in H$$

for $j = 1, \ldots, l_i - 1$ and hence $H \cap \Sigma_{I_{i,1}} = \Sigma_{l_{i,1} + 1}$, since the subgroup of H, generated by the transpositions $\sigma^{-j} \tau \sigma^j$, $j = 0,1,\ldots,l_i - 1$, acts transitively on the set $\{1,2,\ldots,l_{i,1} + 1\}$. If we apply conditions (i) - (iii) l times, where $l = l_{i,1} - l_i$, we obtain that $\Sigma_{I_{i,1}} \subset H$ for each i and hence σ is a product of some transpositions belonging to H. \qed

The following proposition is an easy consequence of Claim \square and Lemma \square.

Proposition 1. Let G be a subgroup of Σ_d generated by some set of transpositions and by permutations $\sigma_1, \ldots, \sigma_m$. Assume that for each i, $1 \leq i \leq m$, there are partitions $J_{i,j}$ of $[1,d]$, $1 \leq j \leq n_{\sigma_i}$, such that the subgroup H_i of G, generated by transpositions and by σ_i, and the partitions $J_{i,j}$ satisfy the conditions of Lemma \square. Then $G = \Sigma_{J_G}$.

Corollary 2. Let $G \subset \Sigma_d$ satisfy the conditions of Proposition \square. Assume that there is a partition $J = \{I_1, \ldots, I_k\}$ of $[1,d]$ such that G leaves invariant the partition J and acts transitively on each $I_j \in J$, $1 \leq j \leq k$. Then $J = J_G$ and $G = \Sigma_J$.

2. Coverings

By a covering we understand a branched covering, that is a finite morphism \(f : Z \to Y \) from a normal projective surface \(Z \) onto a non-singular irreducible projective surface \(Y \). To each covering \(f \) we associate the branch locus \(B \subset Y \), the ramification locus \(R \subset f^{-1}(B) \subset Z \), and the unramified part \(Z \setminus f^{-1}(B) \to Y \setminus B \) (which is the maximal unramified subcovering). As is usual for unramified coverings of degree \(d \), there is a homomorphism \(f_* \) which acts from the fundamental group \(\pi_1(Y \setminus B, p_0) \) to the symmetric group \(\Sigma_d \) acting on the points of \(f^{-1}(p_0) \). The homomorphism \(f_* \) (called monodromy of \(f \)) is defined by \(f \) uniquely if we number the points of \(f^{-1}(p_0) \); reciprocally, according to Grauert-Remmert-Riemann-Stein Extension Theorem (see, for example, [2]) the conjugacy class of \(f_* \) defines \(f \) up to an isomorphism. The image \(G \subset \Sigma_d \) of \(f_* \) is a transitive subgroup of \(\Sigma_d \) if \(Z \) is irreducible and in general case the number of connected components of \(Z \) is equal to the number of orbits of the action of \(G \) on \(f^{-1}(p_0) \).

An element \(\gamma_q, q \in B \setminus \text{Sing}B \), of the fundamental group \(\pi_1(Y \setminus B, p_0) \) is called a geometric generator if it is represented by a loop \(\Gamma_q \) of the following form. To define \(\Gamma_q \), let \(L \subset Y \) be a curve meeting \(B \) transversely at \(q \) and let \(S^1 \subset L \) be a circle of small radius with center at \(q \). The choice of an orientation on \(Y \) defines an orientation on \(S^1 \). Then \(\Gamma_q \) is a loop consisting of a path \(l \) in \(Y \setminus B \) joining \(p_0 \) with a point \(q_1 \in S^1 \), the loop \(S^1 \) (with positive direction) starting and ending at \(q_1 \), and a return path to \(p_0 \) along \(l \) in the opposite direction (of course, we must note that a geometric generator \(\gamma_q \) depends not only on \(q \), but it depends also on the choice of the path \(l \)). Note that if \(Y \) is simply connected then \(\pi_1(Y \setminus B, p_0) \) is generated by geometric generators.

In the sequel, we will assume that the covering \(f \) satisfies some additional conditions. The first of them is:

\((R_0)\) If for an irreducible component \(B_i \) of the branch curve \(B \) the image \(f_*(\gamma_{q_i}) \) of a geometric generator \(\gamma_{q_i} \in \pi_1(Y \setminus B_i, p_0) \), \(q_i \in B_i \), is not a transposition, then \(B_i \) is a smooth curve and \(f|_{\overline{R}_{i,j}}: \overline{R}_{i,j} \to B_i \) is an isomorphism for all \(j, 1 \leq j \leq n \), where \(\overline{R} \cap f^{-1}(B_i) = \overline{R}_{i,1} \cup \ldots \cup \overline{R}_{i,n} \) is the decomposition of \(\overline{R} \cap f^{-1}(B_i) \) into the union of irreducible components.

Let \(r_{i,j} \) be the ramification multiplicity of \(f \) along \(\overline{R}_{i,j} \) (that is, the local degree of \(f \) at a generic point of \(\overline{R}_{i,j} \)), then the cycle type of the permutation \(f_*(\gamma_{q_i}) \in \Sigma_d \) is \((r_{i,1}, \ldots, r_{i,n})\).

Let for \(B_1 \) the image \(f_*(\gamma_{q_1}) \) be not a transposition and let \(\overline{R}_1, \ldots, \overline{R}_m \) be the irreducible components of \(\overline{R} \cap f^{-1}(B_1) \). For each point \(o \in \overline{B}_1 \cap \text{Sing}B \) let us choose a very small (in complex analytic topology) neighbourhood \(W_o \subset Y \) of
the point o. Denote by $B_1 := \overline{B_1} \setminus \bigcup_{o \in \text{Sing}\overline{B}} W_o$ and $R_j := \overline{R_j} \cap f^{-1}(B_1)$, where $\overline{W_o}$ is the closure of W_o in Y. The following Lemma is well known.

Lemma 2. There are neighbourhoods $U_1 \subset Y$ and $V_j \subset Z$, $j = 1, \ldots, n$, such that

(i) $U_1 \cap \overline{B} = B_1$ and $V_j \cap \overline{R_j} = R_j$,

(ii) U_1 is biholomorphic to $B_1 \times D_1$ and V_j is biholomorphic to $R_j \times D_2$, where $D_1 = \{u_1 \in \mathbb{C} \mid |u_1| < 1\}$ and $D_2 = \{v_1 \in \mathbb{C} \mid |v_1| < 1\}$ are discs in \mathbb{C},

(iii) the restriction of f to each V_j is proper and $f(V_j) = U_1$,

(iv) if u_2 is a local parameter on B_1 at a point $p \in B_1$ and $v_{2,j} = f_{|R_j}^{-1}(u_2)$ is the local parameter at the point $q_j = f_{|R_j}^{-1}(p)$ on R_j, then $f : V_j \to U_1$ is given by $u_1 = v_1^{2i}$ and $u_2 = v_{2,j}$ in a neighbourhood of the point q_j.

Consider a neighbourhood U_1 the existence of which is claimed in Lemma 2. Let $\text{pr} : U_1 \to B_1$ be the projection defined by bi-holomorphic isomorphism $U_1 \simeq B_1 \times D_1$. Let us choose a point $q_1 \in B_1$, a point $p_1 \in \text{pr}^{-1}(q_1) \simeq D_1$ lying in the circle $\delta = \{q_1\} \times \{u_1 \in \mathbb{C} \mid |u_1| = \frac{1}{2}\} \subset \{q_1\} \times D_1 \subset U_1 \setminus B_1$ (let, for definiteness, $u_1 = \frac{1}{2}$ at the point p_1), and a path $l_1 \subset Y \setminus \overline{B}$ connecting the points p_0 and p_1. The choice of l_1 defines homomorphisms $\text{im}_{l_1} : \pi_1(U_1 \setminus B_1, p_1) \to \pi_1(Y \setminus \overline{B}, p_0)$ and $\varphi_1 = f_* \circ \text{im}_{l_1} : \pi_1(U_1 \setminus B_1, p_1) \to \Sigma_d$. Denote by H_{B_1} the image $\varphi_1(\pi_1(U_1 \setminus B_1, p_1))$ in G. Let $\gamma_{q_1} \in \pi_1(U_1 \setminus B_1, p_1)$ be a geometric generator represented by the circle δ (the circuit in positive direction). The cycle type of the permutation $\sigma_1 = \varphi_1(\gamma_{q_1})$ is $(r_{1,1}, \ldots, r_{1,n})$.

Let a set $S = \{o_1, \ldots, o_n\}$ be the intersection of $\overline{B_1}$ and $\text{Sing}\overline{B}$. For a point $o_i \in S$ we choose a small (in complex analytic topology) simply connected neighbourhood $U_{o_i} \subset Y$ of the point o_i such that the number k_i of the connected components $V_{o_i,1}, \ldots, V_{o_i,k_i}$ of $f^{-1}(U_{o_i})$ is equal to the number of points belonging to $f^{-1}(o_i)$. In addition, U_{o_i} can be chosen so that $\overline{W_{o_i}} \subset U_{o_i}$, where W_{o_i} is the neighbourhood of o_i used in the definition of the neighbourhood U_1.

Let us choose points $q_{o_i} \in B_1 \cap U_{o_i}$ and paths $l'_{o_i} \subset B_1$ connecting, respectively, the point q_1 with the points q_{o_i}. Let $l_{o_i} = \{p \in U_1 \setminus B_1 \mid \text{pr}(p) \in l'_{o_i}, u_1(p) = \frac{1}{2}\}$ be paths connecting the point p_1, respectively, with points $p_{o_i} = \text{pr}^{-1}(q_{o_i}) \cap U_1 \cap U_{o_i}$ (without loss of generality, we can assume that $\text{pr}^{-1}(q) \subset U_{o_i}$ if $q \in B_1 \cap U_{o_i}$). Denote by \tilde{l}_{o_i} the composition of paths l_1 and l_{o_i} connecting the point p_0 with the point p_{o_i}.

The path \tilde{l}_{o_i} defines homomorphisms $\text{im}_{\tilde{l}_{o_i}} : \pi_1(U_{o_i} \setminus (U_{o_i} \cap \overline{B}), p_{o_i}) \to \pi_1(Y \setminus \overline{B}, p_0)$ and $\varphi_{l_{o_i}} = f_* \circ \text{im}_{\tilde{l}_{o_i}} : \pi_1(U_{o_i} \setminus (U_{o_i} \cap \overline{B}), p_{o_i}) \to \Sigma_d$. Denote by H_{o_i} the image $\varphi_{l_{o_i}}(\pi_1(U_{o_i} \setminus (U_{o_i} \cap \overline{B}), p_{o_i}))$ in G.
Similarly, if $U = U_1 \cup (\bigcup_{o_i \in S} U_{o_i})$, then the path l_1 defines homomorphisms $\text{im}_{l_1} : \pi_1(U \setminus (U \cap \overline{B}), p_1) \to \pi_1(Y \setminus \overline{B}, p_0)$ and $\varphi = f_* \circ \text{im}_{l_1} : \pi_1(U \setminus (U \cap \overline{B}), p_1) \to \Sigma_d$, and the paths l_{o_i} define homomorphisms $\text{im}_{l_{o_i}} : \pi_1(U_{o_i} \setminus (U_{o_i} \cap \overline{B}), p_{o_i}) \to \pi_1(U \setminus (U \cap \overline{B}), p_1)$ and $\psi_{o_i} = f_* \circ \text{im}_{l_{o_i}} : \pi_1(U_{o_i} \setminus (U_{o_i} \cap \overline{B}), p_{o_i}) \to \Sigma_d$. Denote by $H_{\overline{B}_1}$ the image $\varphi(\pi_1(U \setminus (U \cap \overline{B}), p_1))$ in G. It is easy to see that $\varphi_{l_{o_i}} = \psi_{l_{o_i}}$. Therefore, $H_{B_1} \subset H_{\overline{B}_1}$ and $H_{o_i} \subset H_{\overline{B}_1}$.

Let $\gamma_{q_{o_i}} \in \pi_1(U_{o_i} \setminus (U_{o_i} \cap \overline{B}), p_{o_i})$ be a geometric generator represented by the circle $\delta_{o_i} = \{q_{o_i}\} \times \{u_1 \in \mathbb{C} \mid |u_1| = \frac{1}{2}\} \subset \{q_{o_i}\} \times D_1 \subset U_{o_i} \setminus \overline{B}$ (the circuit in positive direction). It is easy to see that $\text{im}_{l_{o_i}}(\gamma_{q_{o_i}}) = \gamma_{q_i}$. Therefore $\varphi_{l_{o_i}}(\gamma_{q_{o_i}}) = \sigma_1$.

Consider the restriction of f to each $V_{o_i, m}$, $f_{i,m} = f|_{V_{o_i,m}} : V_{o_i,m} \to U_{o_i}$. Denote by $d_{i,m}$ the degree of $f_{i,m}$, $d = d_{i,1} + \cdots + d_{i,k_i}$. By construction, for the point $\overline{v}_{i,m} = V_{o_i,m} \cap f^{-1}(o_i)$ we have $\deg_{\overline{v}_{i,m}} f = d_{i,m}$.

The numbering of the points of $f^{-1}(p_0)$ and the path \overline{l}_0 define a numbering of the points of $f^{-1}(p_{o_i})$. Then the decomposition $f^{-1}(U_{o_i}) = V_{o_i,1} \cup \cdots \cup V_{o_i,k_i}$ defines a partition $J_i = \{I_{i,1}, \ldots, I_{i,k_i}\}$ of $[1, d]$, $j \in I_{i,m}$ if and only if $\overline{l}_j \in f^{-1}(p_{o_i}) \cap V_{o_i,m}$. By construction, the group H_{o_i} leaves invariant the partition J_i and acts transitively on each $I_{i,m} \in J_i$. In particular, the action of σ_1 leaves invariant the partition J_i.

Assume that if \overline{B}_j is an irreducible component of the branch locus \overline{B} of a covering f such that $f_*(\gamma_j)$ is not a transposition, then f satisfies the following conditions:

1. (R1) For each $o_i \in \overline{B}_j \cap \text{Sing} \overline{B}$ and each $V_{o_i,m}$ there is at most one irreducible component $\overline{R}_k \subset f^{-1}(\overline{B}_j)$ of the ramification locus of f which intersects with $V_{o_i,m}$.

2. (R2) For each $\overline{R}_k \subset f^{-1}(\overline{B}_j)$ there is $o_i \in \overline{B}_j \cap \text{Sing} \overline{B}$ and m such that $\overline{R}_k \cap V_{o_i,m} \neq \emptyset$ and $r_k < d_{i,m}$.

3. (R3) If $\overline{R}_k \cap V_{o_i,m} \neq \emptyset$ and \overline{R} is another ramification curve of f such that $\overline{R} \cap V_{o_i,m} \neq \emptyset$, then for a point $q \in f(\overline{R})$ the image $f_*(\gamma_q)$ of a geometric generator γ_q is a transposition in Σ_d.

Lemma 3. Let f and its branch curve B_1 satisfy conditions (R0) – (R3), and let H be a subgroup of $H_{\overline{B}_1}$ generated by σ_1 and the transpositions belonging to $H_{\overline{B}_1}$. Then $H = \Sigma_{J_H}$.

Proof. Let $\sigma = \sigma_1 = \varphi_1(\gamma_{p_1})$ where γ_{p_1} is the geometric generator defined above. Then it is easy to see that condition (R1) implies that H and σ satisfy condition (i) from Lemma 1. Similarly, it follows from conditions (R2) and (R3) that H and σ satisfy conditions (ii) and (iii) from Lemma 1. Therefore, $H = \Sigma_{J_H}$. □
Proposition 2. Let Z_1, \ldots, Z_k be the irreducible components $f : Z \to Y$ be a ramified covering of a simply connected surface Y. Assume that the branch locus B of f satisfies conditions $(R_0) - (R_3)$. Then the Galois group G of f is isomorphic to $\Sigma_{d_1} \times \cdots \times \Sigma_{d_k}$, where $d_i = \deg f|Z_i$.

Proof. The decomposition $Z = Z_1 \sqcup \cdots \sqcup Z_k$ defines a partition $J = \{I_1, \ldots, I_k\}$ of the set $f^{-1}(p_0)$. The group G leaves invariant the partition J and acts transitively on each $I_j \subset J$. Therefore Proposition 2 follows from Lemma 3 and Corollary 2. □

3. Proof of Theorem 1, 2 and Corollary 1

We use notations defined in Introduction and Section 2.

3.1. Proof of Theorem 2. Denote by $\overline{C}_i = \nu^{-1}(C_i)$ the irreducible components of \overline{C}, $1 \leq i \leq k$.

Obviously,

$$Z \simeq \{(p, l) \in \overline{C} \times \hat{P}^2 \mid p \in \overline{C}, \nu(p) \in l\}$$

and it is easy to see that

$$Z_i \simeq \{(p, l) \in \overline{C}_i \times \hat{P}^2 \mid p \in \overline{C}_i, \nu(p) \in l\}$$

are the irreducible components of the surface Z.

Let t be a local parameter in a small neighbourhood $U \subset \overline{C}$ of a point $p \in \overline{C}$ and let the normalization ν be given in U by

$$x_1 = \phi_1(t), \ x_2 = \phi_2(t), \ x_3 = \phi_3(t).$$

(2)

If (y_1, y_2, y_3) are homogeneous coordinates in \hat{P}^2 dual to the coordinates (x_1, x_2, x_3) in \mathbb{P}^2, then the surface Z, in the neighbourhood $U \times \hat{P}^2 \subset \overline{C} \times \hat{P}^2$, is given by equation

$$y_1\phi_1(t) + y_2\phi_2(t) + y_3\phi_3(t) = 0.$$

In particular, if ν is given by equations (1), that is,

$$\phi_1 = \sum_{i=s_p}^{\infty} a_it^i, \ \phi_2 = t^{r_p}, \ \phi_3 = 1,$$

(3)

then $Z \cap (U \times \hat{P}^2)$ lies in $U \times \mathbb{C}^2$, where $\mathbb{C}^2 = \{y_1 \neq 0\}$ is the affine plane in \hat{P}^2, and $Z \cap (U \times \mathbb{C}^2)$ is given by equation

$$\sum_{i=s_p}^{\infty} a_it^i + z_2t^{r_p} + z_3 = 0,$$

(4)

where $z_i = y_i/y_1, \ i = 2, 3$. Therefore Z is a smooth surface and (t, z_2) are coordinates in $Z \cap (U \times \mathbb{C}^2)$.

The restriction of the covering f to $Z \cap (U \times \mathbb{C}^2)$,
$$f_U : Z \cap (U \times \mathbb{C}^2) \rightarrow \mathbb{C}^2,$$
is the restriction of the projection $(t, z_2, z_3) \mapsto (z_2, z_3)$, therefore it is given by
$$z_2 = z_2, \quad z_3 = -(\sum_{i=s_p} a_i t^i + z_2 t^{r_p}). \quad (5)$$
Its Jacobian is equal
$$J(f_U) = -t^{r_p-1}(\sum_{i=s_p} ia_i t^{i-r_p} + r_p z_2).$$
Therefore f_U is ramified along a curve R given by equation
$$1/r_p \sum_{i=s_p} a_i t^{i-r_p} + z_2 = 0 \quad (6)$$
with multiplicity two and along the fibre $F_p = \{ t = 0 \}$ with multiplicity r_p if $r_p \geq 2$ and hence $f(F_p) = L_p \subset \mathbb{P}^2$ is a component of the branch locus of f if $r_p \geq 2$. Note also that R is a section of the ruled surface $Z \cap (U \times \mathbb{C}^2) \rightarrow \mathbb{C}^2$ and, in addition, it is the unique section contained in the ramification locus.
Therefore to show that R is a germ of the curve \tilde{C}, we can assume that the image $\nu(p)$ is a smooth point of C, that is, we can assume that $r_p = 1$ and $\phi_2(t) = t$. Then R is given by $\phi'_1(t) + z_2 = 0$ and the restriction of f_U to R is given by
$$y_1 = 1, \quad y_2 = -\phi'_1(t), \quad y_3 = -\phi_1(t) + t\phi'_1(t). \quad (7)$$
Everyone easily check that that equations (7) together with the equations
$$x_1 = \phi_1(t), \quad x_2 = t, \quad x_3 = 1$$
(defining the germ $\nu(U)$ of C) is a parametrization of $\tilde{C} \subset \mathcal{C}$ over $\nu(U)$.

To count the local degree $\deg_q f_U$ of the covering $f_U : Z \cap (U \times \mathbb{C}^2) \rightarrow \mathbb{C}^2$ at the point $q = (0, 0, 0)$, first of all, note that the curve $\{ z_2 = 0 \}$ does not belong to the ramification locus of f_U, since $a_{sp} \neq 0$ in equation (6). Next, let us choose a new parameter t_1 such that $t_1^{sp} = \sum_{i=s_p} a_i t^i$, then f_U is given by equations of the form
$$z_2 = z_2, \quad z_3 = -(t_1^{sp} + z_2 \sum_{i=r_p} c_i t_1^i) \quad (8)$$
and to count $\deg_q f_U$, it suffices to count the number of points belonging to $f_U^{-1}((z_{2,0}, z_{3,0}))$, where a point $(z_{2,0}, z_{3,0}) \in \text{Im} f_U$ is such that $z_{2,0} = 0$, $z_{3,0} \neq 0$, and $z_{3,0}$ is sufficiently close to zero. It follows from equations (8) that this number is equal to s_p. \qed
3.2. **Proof of Theorem** 1. By Theorem 2, the branch locus \overline{B} of the dualizing covering $f : Z \to \mathbb{P}^2$ consists of the curve \tilde{C} and the lines L_p for which $r_p \geq 2$, the ramification locus \overline{R} consists of the curve \tilde{C} and the fibres F_p with $r_p \geq 2$. Each line L_p and each fibre F_p are smooth and $F_{p_1} \cap F_{p_2} = \emptyset$ for $p_1 \neq p_2$. Next, the restriction $f_{|F_p} : F_p \to L_p$ of f to F_p is an isomorphism and the restriction $f_0 : \tilde{C} \to \tilde{C}$ of f to \tilde{C} is a bi-rational map, and f is ramified along \tilde{C} with multiplicity two. Therefore $f_*(\gamma_1)$ is a transposition for any geometric generator $\gamma_1 \in \pi_1(\mathbb{P}^2 \setminus \overline{B}, l_0)$, $l \in \tilde{C}$, and hence the dualizing covering f and its branch locus \overline{B} satisfy conditions (R_0) and (R_1) (see Section 2). Next, if $F_p \subset \overline{R}$ then the point $q = F_p \cap \tilde{C}$ belongs to $f^{-1}(\text{Sing} \overline{B})$ and $s_p = \deg_q f > r_p$, that is, f and its branch locus \overline{B} satisfy conditions (R_2) and (R_3). Now Theorem 1 follows from Proposition 2.

3.3. **Proof of Corollary** 1. First of all, note that if a line $l \subset \mathbb{P}^2$ is an irreducible component of the curve C then for each loop $l_t \subset T_C$ starting at l_0 the monodromy defined by l_t leaves fixed the point $l \cap l_0$.

Let C_1, \ldots, C_n be the irreducible components of C and let $\deg C_i = d_i \geq 2$ for $i = 1, \ldots, k$ and $\deg C_i = 1$ for $i > k$. Denote by $\text{Sing} C$ the set of singular points of C, by $L_{\text{Sing}} = \bigcup_{P \in \text{Sing} C} L_P \subset \mathbb{P}^2$, by $C' = C_1 \cup \cdots \cup C_k$. Let $f' : Z \to \mathbb{P}^2$ be the dualizing covering for C' and \overline{B} its branch locus (see Theorem 2). Then it is easy to see that $T_C = \mathbb{P}^2 \setminus (\overline{B} \cup L_{\text{Sing}})$.

We have $f^{-1}(l_0) = \{(p_1, l_0), (p_2, l_0), \ldots, (p_d, l_0)\}$, where $p_i = \nu^{-1}(P_i)$, $l_0 \cap C' = \{P_1, P_2, \ldots, P_t\}$, and $P_1, P_2 \in C_1$.

The embedding $i : T_C \hookrightarrow \mathbb{P}^2 \setminus \overline{B}$ defines an epimorphism $i_* : \pi_1(T_C, l_0) \to \pi_1(\mathbb{P}^2 \setminus \overline{B}, l_0)$. By Theorem 1 there is an element $\gamma' \in \pi_1(\mathbb{P}^2 \setminus \overline{B}, l_0)$ such that $f'_* (\gamma') = (1, 2) \in \Sigma_d$, where $(1, 2)$ is the transposition transposing the points (p_1, l_0) and (p_2, l_0). Let l_t be a loop representing an element $\gamma \in \pi_1(T_C, l_0)$ such that $i_* (\gamma) = \gamma'$. It is easy to see that the loop l_t is a desired one.

References

[1] E. Brieskorn, H. Knörrer: *Plane algebraic curves*, Birkhäuser-Verlag, Basel-Boston-Stuttgart, (1986).

[2] Stein, K: *Analytische Zerlegungen komplexer Räume*, Math. Ann. 132 (1956), 63-93.

[3] C.T.C. Wall: *Duality of singular plane curves*. J. London Math. Soc., 50:2 (1994), 265 – 275.

Steklov Mathematical Institute

E-mail address: kulikov@mi.ras.ru