CONTACT FLOWS AND INTEGRABLE SYSTEMS

Božidar Jovanović and Vladimir Jovanović

Mathematical Institute SANU, Serbian Academy of Sciences and Arts
Kneza Mihaila 36, 11000 Belgrade, Serbia
E-mail: bozaj@mi.sanu.ac.rs

Faculty of Sciences, University of Banja Luka
Mladen Stošanovića 2, 51000 Banja Luka, Bosnia and Herzegovina
E-mail: vlajov@blic.net

Abstract. We consider Hamiltonian systems restricted to the hypersurfaces of contact type and obtain a partial version of the Arnold-Liouville theorem: the system not need to be integrable on the whole phase space, while the invariant hypersurface is foliated on an invariant Lagrangian tori. In the second part of the paper we consider contact systems with constraints. As an example, the Reeb flows on Brieskorn manifolds are considered.

Contents

1. Introduction 1
2. Isoenergetic and partial integrability 5
3. Contact systems with constraints 13
4. Contact flows on Brieskorn manifolds 16
5. Note on K-contact manifolds 22
References 23

1. Introduction

Usually, integrable systems are considered within a framework of symplectic or Poisson geometry, but there is a well defined non-Hamiltonian (e.g., see [6, 37]) as

Key words and phrases. Contact systems, noncommutative integrability, hypersurfaces of contact type, partial integrability, constraints, Brieskorn manifolds. MSC. 37J55, 37J35, 70H06, 70H45.
well as a contact setting studied in [3, 33, 23, 22, 19, 9]. The aim of this paper is to stress some natural applications of contact integrability to the Hamiltonian systems and to provide examples of contact integrable flows.

In the first part of the paper we consider Hamiltonian systems restricted to the hypersurfaces of contact type and obtain a partial version of the Arnold-Liouville theorem: the system need not be integrable on the whole phase space, while the invariant hypersurface is foliated on invariant Lagrangian tori with quasi-periodic dynamics. The construction can also be applied to the partially integrable systems and the systems of Hess-Appel’rot type, where the invariant hypersurface is foliated on Lagrangian tori, but not with quasi-periodic dynamics [12, 18, 13].

In the second part of the paper we consider contact systems with constraints and derive a contact version of Dirac’s construction for constrained Hamiltonian systems. As an example, the Reeb flows on Brieskorn manifolds are considered. From the point of view of integrability, those Reeb flows are very simple. However, we use them to clearly demonstrate the use of Dirac’s construction and to interpret the regularity of the Reeb flows within a framework of contact integrability.

For the completeness and clarity of the exposition, in Subsections 1.1, 1.2 and 2.1 we recall basic definitions in contact geometry, the notion of contact noncommutative integrability, and the Maupertuis–Jacobi metric, respectively.

1.1. Contact flows and the Jacobi bracket. A contact form \(\alpha \) on a \((2n + 1)\)-dimensional manifold \(M \) is a Pfaffian form satisfying \(\alpha \wedge (d\alpha)^n \neq 0 \). By a contact manifold \((M, H)\) we mean a connected \((2n + 1)\)-dimensional manifold \(M \) equipped with a nonintegrable contact (or horizontal) distribution \(H \), locally defined by a contact form: \(H|_U = \ker \alpha|_U \), \(U \) is an open set in \(M \). Two contact forms \(\alpha \) and \(\alpha' \) define the same contact distribution \(H \) on \(U \) if and only if \(\alpha' = a\alpha \) for some nowhere vanishing function \(a \) on \(U \).

The condition \(\alpha \wedge (d\alpha)^n \neq 0 \) implies that the form \(d\alpha|_x \) is nondegenerate (symplectic) structure restricted to \(H_x \). The conformal class of \(d\alpha|_x \) is invariant under the change \(\alpha' = a\alpha \). If \(V \) is a linear subspace of \(H_x \), then we have well defined its orthogonal complement in \(H_x \) with respect to \(d\alpha|_x \), as well as the notion of the isotropic (\(V \subset \text{orth}_H V \)), coisotropic (\(V \supset \text{orth}_H V \)) and the Lagrange subspaces (\(V = \text{orth}_H V \)) of \(H_x \). A submanifold \(N \subset M \) is pre-isotropic if it is transversal to \(H \) and if \(G_x = T_x N \cap H_x \) is an isotropic subspace of \(H_x \), \(x \in N \). The last condition is equivalent to the condition that distribution \(G = \bigcup_x G_x \) defines a foliation. It is pre-Legendrian submanifold if it is of maximal dimension \(n + 1 \), that is \(G \) is a Lagrangian subbundle of \(H \).

A contact diffeomorphism between contact manifolds \((M, H)\) and \((M', H')\) is a diffeomorphism \(\phi : M \to M' \) such that \(\phi_* H = H' \). An infinitesimal automorphism of a contact structure \((M, H)\) is a vector field \(X \), called a contact vector field such that its local 1-parameter group is made of contact diffeomorphisms. Locally, if \(H = \ker \alpha \), then \(\mathcal{L}_X \alpha = \lambda \alpha \), for some smooth function \(\lambda \).

From now on, we consider co-oriented (or strictly) contact manifolds \((M, \alpha)\), where contact distributions \(H \) are associated to globally defined contact forms \(\alpha \).
The Reeb vector field \(Z \) is a vector field uniquely defined by
\[
(1.1) \quad i_Z \alpha = 1, \quad i_Z d\alpha = 0.
\]

The tangent bundle \(TM \) and the cotangent bundle \(T^*M \) are decomposed into
\[
TM = Z \oplus H \quad \text{and} \quad T^*M = H^0 \oplus Z^0,
\]
where \(Z = \mathbb{R} \) is the kernel of \(d\alpha \), \(Z^0 \) and \(H^0 = \mathbb{R} \) are the annihilators of \(Z \) and \(H \), respectively. The sections of \(Z^0 \) are called semi-basic forms. Whence, we have decompositions of vector fields and 1-forms
\[
(1.2) \quad X = (i_X \alpha)Z + \hat{X}, \quad \eta = (i_Z \eta)\alpha + \hat{\eta},
\]
where \(\hat{X} \) is horizontal and \(\hat{\eta} \) is semi-basic.

The mapping \(\alpha^\flat : X \mapsto -i_X d\alpha \) carries \(X \) into a semi-basic form. The form \(d\alpha \) is non-degenerate on \(H \) and the restriction of \(\alpha^\flat \) to horizontal vector fields is an isomorphism whose inverse will be denoted by \(\alpha^\sharp \). The vector field
\[
(1.3) \quad Y_f = fZ + \hat{Y}_f, \quad \hat{Y}_f = \alpha^\sharp(d\hat{f}).
\]
is a contact vector field \((L_{Y_f} \alpha = Z(f)\alpha)\) and
\[
(1.4) \quad \dot{x} = Y_f
\]
is called the contact Hamiltonian equation corresponding to \(f \). Notice that \(Z = Y_1 \) and \(f = i_{Y_f} \alpha \).

The mapping \(f \mapsto Y_f \) is a Lie algebra isomorphism \((Y_{[f,g]} = [Y_f,Y_g])\) between the set \(C^\infty(M) \) of smooth functions on \(M \) and the set \(\mathcal{N} \) of infinitesimal contact automorphisms. Here, the Jacobi bracket \([\cdot, \cdot]\) on \(C^\infty(M) \) is defined by (see [24])
\[
(1.5) \quad [f,g] = da(Y_f,Y_g) + fZ(g) - gZ(f) = Y_f(g) - gZ(f).
\]
The Jacobi bracket does not satisfy the Leibniz rule. However, within the class of functions that are integrals of the Reeb flow, \(C^\infty_\alpha(M) = \{ f \in C^\infty(M) \mid Z(f) = [1,f] = 0 \} \), the Jacobi bracket has the usual properties of the Poisson bracket: \(g \) is an integral of \((1.3)\) if and only if \([g,f] = 0 \) and if \(g_1 \) and \(g_2 \) are two integrals of \((1.4)\), then \([g_1,g_2] \) is also an integral.

1.2. Contact integrability. A Hamiltonian system on \(2n \)-dimensional symplectic manifold \((P,\omega)\) is noncommutatively integrable if it has \(2n - r \) almost everywhere independent integrals \(F_1, F_2, \ldots, F_{2n-r} \) and \(F_1, \ldots, F_r \) commute with all integrals
\[
(1.6) \quad \{ F_i, F_j \} = 0, \quad j = 1, \ldots, r, \quad i = 1, \ldots, 2n - r.
\]
Regular compact connected invariant manifolds of the system are isotropic tori, generated by Hamiltonian flows of \(F_1, \ldots, F_r \). In a neighborhood of a regular torus, there exist canonical generalized action-angle coordinates such that integrals \(F_i, i = 1, \ldots, r \) depend only on actions and the flow is translation in angle coordinates (see Nekhoroshev [29] and Mishchenko and Fomenko [26]). If \(r = n \) we have the usual commutative integrability described in the Arnold-Liouville theorem [2].
Noncommutative integrability of contact flows can be stated in the following form (see [19]). Suppose we have a collection of integrals \(f_1, f_2, \ldots, f_{2n-r} \) of equation (1.4) on a \((2n+1)\)-dimensional co-oriented contact manifold \((M, \alpha)\), where \(f = f_1 \) or \(f = 1 \) and

\[
[1, f_i] = 0, \quad [f_i, f_j] = 0, \quad i = 1, \ldots, 2n-r, \quad j = 1, \ldots, r.
\]

Let \(T \) be a compact connected component of the level set \(\{ f_1 = c_1, \ldots, f_{2n-r} = c_{2n-r} \} \) and \(df_1 \wedge \cdots \wedge df_{2n-r} \neq 0 \) on \(T \). Then \(T \) is diffeomorphic to a pre-isotropic \(r + 1 \)-dimensional torus \(\mathbb{T}^{r+1} \). There exist a neighborhood \(U \) of \(T \) and a diffeomorphism \(\phi : U \to \mathbb{T}^{r+1} \times D \),

\[
\phi(x) = (\theta, y, x) = (\theta_0, \theta_1, \ldots, \theta_r, y_1, \ldots, y_r, x_1, \ldots, x_{2s}), \quad s = n - r,
\]

where \(D \subset \mathbb{R}^{2n-r} \), such that

(i) \(\alpha \) has the following canonical form

\[
\alpha_0 = (\phi^{-1})^* \alpha = y_0 d\theta_0 + y_1 d\theta_1 + \cdots + y_r d\theta_r + g_1 dx_1 + \cdots + g_{2s} dx_{2s},
\]

where \(y_0 \) is a smooth function of \(y \) and \(g_1, \ldots, g_{2s} \) are functions of \((y, x) \);

(ii) the flow of \(Y_f \) on invariant tori is quasi-periodic

\[
(\theta_0, \theta_1, \ldots, \theta_r) \mapsto (\theta_0 + t\omega_0, \theta_1 + t\omega_1, \ldots, \theta_r + t\omega_r), \quad t \in \mathbb{R},
\]

where the frequencies \(\omega_0, \ldots, \omega_r \) depend only on \(y \).

Note that we can define the notion of noncommutative integrability of contact equations \(\dot{x} = X \) on contact manifolds \((M, \mathcal{H})\) without involving globally defined contact form \(\alpha \) (for more details see [19]).

The case \(r = n \) corresponds to the contact commutative integrability defined by Banyaga and Molino, where the invariant tori are pre-Legendrian [33] (see also [22], [8]). A slightly different notion of (commutative) contact integrability in terms of the modified Poisson (or the Jacobi-Mayer) bracket \((\cdot, \cdot) \) [15],

\[
(f, g) \alpha \wedge (d\alpha)^n = n df \wedge dg \wedge \alpha \wedge (d\alpha)^{n-1},
\]

is given by Webster [33]. Note that the modified Poisson bracket satisfies the Leibniz rule, but does not satisfy the Jacobi identity.

1.3. Outline and results of the paper. In Section 2 we firstly consider integrable Hamiltonian systems restricted to the hypersurfaces of contact type and prove that the appropriate Reeb flows are examples of contact integrable systems (Proposition 2.1). This is a contact analogue of the construction of integrable geodesic flows by the use of the Maupertuis principle [7]. As an example, a contact algebraic hypersurface of degree 4 in \((\mathbb{R}^{2n+2}, q, p, dp \wedge dq)\) with an integrable Reeb flow associated to the Gelfand–Cetlin system on \(n(n+1) \) is given (Proposition 2.1).

Proposition 2.1 is a special case of a more general statement on isoenergetic integrability (Theorem 2.1 Corollary 2.1), where the system doesn’t need to be integrable on the whole phase space, but the relation (1.6) holds on a fixed isoenergetic hypersurface \(M \) of contact type. Then, as in the case of the usual (non-commutative) integrability, \(M \) is foliated on invariant (isotropic) Lagrangian tori with quasi-periodic dynamics.
The construction of partial integrals for natural mechanical systems on a fixed isoenergetic hypersurface is studied by Birkhoff [4, 5]. Although the problem is classical and some variants of restricted integrability on invariant manifolds are already studied (see [31] and references therein), Theorem [2.1] is a benefit of a noncommutative contact integrability given in [19].

When we interchange the role of the Hamiltonian function and one of the integrals we obtain the situation closely related to the partial integrability and the systems of Hess-Appel’rot type [12, 18, 13], where the invariant manifolds are foliated on Lagrangian tori, but not with quasi-periodic dynamics (see Corollary 2.2).

In Section 3 we consider contact flows with constraints and derive the contact version of Dirac’s construction for constrained Hamiltonian systems (Theorem 3.1). As an example of such a construction, we start in Section 4 from a K-contact sphere \(S^{2n+1}_2 \) (see [35]) with a contact integrable Reeb flow (Proposition 4.2). Then, in the rank 1 case, we consider the restriction to a well known codimension 2 Brieskorn submanifold (see [25, 10]). It appears that the construction presented in Theorem 3.1 provides an alternative proof that the Brieskorn manifold is a co-oriented contact manifold. It is well known that all the trajectories of the corresponding Reeb flow are closed and, therefore, the system is integrable in a noncommutative sense. Here, we describe the Jacobi bracket within the corresponding Lie algebra of integrals (Theorem [4.1]).

Further, for a class of the Brieskorn manifolds diffeomorphic to the standard spheres \(S^{4m+1}_m \), \(m \in \mathbb{N} \), and contact flows studied by Ustilovsky [32], we prove contact noncommutative integrability of the flows with generic invariant pre-isotropic tori of dimension \(m + 1 \) (Proposition 4.4).

Finally, we note that the integrability of the Reeb flow on a sphere \(S^{2n+1}_2 \) is a particular case of the integrability of the Reeb flows on compact \(K \)-contact manifolds (Proposition 5.1).

2. Isoenergetic and partial integrability

2.1. Hypersurfaces of contact type. Let \((P, \omega)\) be a symplectic \(2n\)-dimensional manifold. Let \(H\) be a smooth function on \(P\). Consider the Hamiltonian equation

\[
\dot{x} = X_H,
\]

where the Hamiltonian vector field \(X_H\) is defined by

\[
i_{X_H}\omega(\cdot) = \omega(X_H, \cdot) = -dH(\cdot).
\]

The Hamiltonian \(H\) is the first integral of the system. Let \(M\) be a regular connected component of the invariant variety \(H = h (dH|_M \neq 0)\). Since \(dH(\xi) = 0\), \(\xi \in T_xM\), from (2.2) we see that \(X_H\) generates the symplectic orthogonal of \(T_xM\) for all \(x \in M\) — the characteristic line bundle \(L\) of \(M\). It is exactly the kernel of the form \(\omega\) restricted to \(M\). Note that \(L\) is determined only by \(M\) and not by \(H\). If \(F\) is another Hamiltonian defining \(M, M \subset F^{-1}(c), dF|_M \neq 0\), then the restrictions of Hamiltonian vector fields \(X_H\) and \(X_F\) to \(M\) are proportional.
An orientable hypersurface M of a symplectic manifold (P, ω) is of contact type, if there exists a 1-form α on M satisfying

$$d\alpha = j^*\omega, \quad \alpha(\xi) \neq 0, \xi \in \mathcal{L}_M, \xi \neq 0,$$

where $j : M \to P$ is the inclusion (see Weinstein [34]). If (M, α) is of contact type, we see, owing to $\mathcal{L} = \ker \omega_M$, that $H = \{\xi \in T_xM | \alpha(\xi) = 0, x \in M\}$ is a $(2n-2)$-dimensional nonintegrable distribution on which $d\alpha = \omega$ is nondegenerate. Consequently, $\alpha \wedge d\alpha^{n-1}$ is a volume form on M and (M, H) is a co-oriented contact manifold.

Note that, since the corresponding Reeb vector field (1.1) is a section of $\ker d\alpha$, it is proportional to $X_H|_M$. Therefore, the Reeb flow, up to a time reparametrization, coincides with the Hamiltonian flow restricted to M. In particular, a closed Reeb orbit is a closed orbit of the Hamiltonian flow, and this was the motivation for introducing the concept of contact type hypersurfaces [34] (e.g., see [1, 17]).

In the case of an exact symplectic manifold $\omega = d\alpha$, M is of contact type with respect to α if $\alpha(X_H)|_M \neq 0$. Then α has no zeros in some open neighborhood of M. There exists a unique vector field E without zeros such that

$$i_E\omega = \alpha. \quad (2.3)$$

From Cartan’s formula, (2.3) is equivalent to $\mathcal{L}E\omega = \omega$, i.e., E is the Liouville vector field of ω. M is of contact type with respect to α if and only if the Liouville vector field is transverse to M, i.e., $E(H)|_M \neq 0$ (e.g., see Libermann and Marle [24]). It can be shown that the Reeb vector field is given by

$$Z = X_H/E(H)|_M. \quad (2.4)$$

For example, the Reeb vector field Z coincides with the restrictions to M of Hamiltonian vector fields of the functions (e.g., see [20])

$$H_0 = \frac{H - h}{E(H)} \Big|_M = 0, \quad (2.5)$$

$$H_{MJ} = \frac{E(H)}{4h - 4H + 2E(H)} \quad (H_{MJ}|_M = \frac{1}{2}) \quad (2.6).$$

The transformation $H \mapsto H_0$ is a variation of Moser’s regularization of Kepler’s problem [27, 20]. On the other hand, given a natural mechanical system $(Q, \langle \cdot, \cdot \rangle, V)$,

$$H(q,p) = \frac{1}{2} \langle p, p \rangle + V(q) = \frac{1}{2} \sum_{ij} K^{ij} p_i p_j + V(q),$$

and an isoenergetic surface $M_h = H^{-1}(h), h > \max_Q V$, the function (2.6)

$$H_{MJ}(q,p) = \langle p, p \rangle / (4(h - V(q)))$$

is the Hamiltonian of the geodesic flow of the Maupertuis–Jacobi metric $ds^2_{MJ} = 2(h - V(q))ds^2$ on Q. Here $\alpha = pdq$ is the canonical 1-form and $E = \sum_i p_i \partial / \partial p_i$ is the standard Liouville vector field on $T^*Q(q,p)$.
2.2. Isoenergetic integrability

It is well known that the standard metrics on a rotational surface and on an ellipsoid have the geodesic flows integrable by means of an integral polynomial in momenta of the first (Clairaut) and the second degree (Jacobi), respectively \([2]\). The natural question is the existence of metrics on a sphere \(S^2\) with polynomial integral which can’t be reduced to a linear or a quadratic one. The first examples, the Kovalevskaya \(ds^2_K\) and Goryachev–Chaplygin \(ds^2_{GC}\) metrics with additional integrals of 4-th and 3-rd degrees, are given by Bolsinov, Kozlov and Fomenko (see \([7]\)). Namely, the motion of a rigid body about a fixed point in the presence of the gravitation field admits \(SO(2)\)–reduction (rotations about the direction of gravitational field). Taking the integrable Kovalevskaya and Goryachev–Chaplygin cases we get integrable systems on \(T^*S^2\). The metrics \(ds^2_K\) and \(ds^2_{GC}\) are then the appropriate Maupertuis–Jacobi metrics on the sphere.

The following statement is a contact generalization of the construction given in \([7]\).

Let \(\{\cdot, \cdot\}\) be the canonical Poisson bracket on a symplectic manifold \((P, \omega)\).

Proposition 2.1. Suppose that the Hamiltonian equations (2.1) are completely integrable in a noncommutative sense with respect to the integrals \(F_1 = H, \ldots, F_{2n-r}\) satisfying (1.6). Let \(M = H^{-1}(h)\) be a contact type hypersurface, such that the restrictions \(F_2|_M, \ldots, F_{2n-r}|_M\) are independent. Then the Reeb flow on \(M\) is contact completely integrable in a noncommutative sense with respect to the integrals \(f_2|_M, \ldots, f_{2n-r}|_M\).

We can say that Proposition 2.1 is something that one could expect. It follows from a more general and slightly unexpected statement.

Theorem 2.1 (Isoenergetic integrability). Let \(M = H^{-1}(h)\) be a contact type isoenergetic submanifold of the Hamiltonian equations (2.1) with respect to \(\alpha\): \(j^* \omega = d\alpha\), where \(j : M \to P\) is the associated inclusion. Suppose a collection of functions \(F_1 = H, \ldots, F_{2n-r}\) satisfy relations (1.6) on the isoenergetic hypersurface \(M\) and that the restrictions \(f_2 = F_2 \circ j, \ldots, f_{2n-r} = F_{2n-r} \circ j\) are independent. Then the Reeb flow on \(M\)

\[
\dot{x} = Z = \frac{1}{\alpha(X_H)} X_H
\]

is contact completely integrable in a noncommutative sense with respect to the integrals \(f_2, \ldots, f_{2n-r}\). In other words, the regular compact connected components of the invariant level sets

\[
T = T_{f_2, \ldots, f_{2n-r}} : \quad H = h, \quad F_2 = f_2, \quad \ldots, \quad F_{2n-r} = f_{2n-r}
\]

are \(r\)–dimensional isotropic tori of \((P, \omega)\), or pre-isotropic tori considered on \((M, \alpha)\), spanned by the contact commuting vector fields

\[
Y_1 = Z, \quad Y_k = \frac{F_k - \alpha(X_{F_k})}{\alpha(X_H)} X_H + X_{F_k}, \quad k = 2, \ldots, r.
\]

Note that the restriction of the Hamiltonian flow (2.1) to \(M\) and the Reeb flow (2.7) are related by the time reparametrization \(dt = \alpha(X_H)d\tau\).
Proof. As in the proof of the usual noncommutative integrability, from
\[X_{F_i}(F_j) = \{ F_j, F_i \} = 0 \mid M, \quad i = 1, \ldots, r, \quad j = 1, \ldots, 2n - r, \]
we have that \(X_{F_i}, i = 1, \ldots, r \) are tangent to the invariant sets (2.8). Also, if \(T \) is regular component of (2.8), from the dimensional reasons, its tangent space is spanned with \(X_{F_i}, i = 1, \ldots, r \). This is an isotropic manifold since
\[\omega(X_{F_i}, X_{F_j}) = \{ F_j, F_i \} = 0 \mid M, \quad i, j = 1, \ldots, r. \]

It is a nontrivial fact that \(T \) admits a transitive \(\mathbb{R}^r \)-action and therefore it is diffeomorphic to a \(r \)-dimensional torus. Namely, conditions (1.6) on \(M \) imply
\[[X_{F_k}, X_{F_i}] = \sigma_{ki} X_F = \sigma_{ki} X_H, \quad k = 1, \ldots, r, \quad i = 1, \ldots, 2n - r, \]
for certain functions \(\sigma_{ki} \) defined on \(M \). Thus, \(T \) is a torus if one can deform tangent vector fields \(X_{F_i}, \ldots, X_{F_r} \) to commuting independent vector fields on \(T \). This, together with a noncommutative integrability of the Reeb flow (2.7) follows from the consideration below.

To avoid a confusion between the objects defined on \(M \) and \(P \), in what follows by \(\tilde{X} \) we denote the restrictions of the vector fields tangent to \(M \):
\[j^* (\tilde{X}) = X. \]

First note, since \(Z \) is proportional to \(\tilde{X} H \), the restrictions \(f_2, \ldots, f_{2n-r} \) are integrals of the Reeb flow (2.7). That is, \(df_i \) are semi-basic forms on \(M \), or in terms of the Jacobi bracket (1.5):
\[[1, f_i] = 0, \quad i = 2, \ldots, 2n - r. \]

Thus, we need to prove
\[[f_k, f_i] = 0, \quad i = 2, \ldots, 2n - r, \quad k = 2, \ldots, r, \]
which is equivalent to the commuting of the associated contact Hamiltonian vector fields:
\[[Y_{f_k}, Y_{f_i}] = 0. \]

Recall that a horizontal part \(\tilde{Y}_{f_i} \) of \(Y_{f_i} \) (\(\alpha(\tilde{Y}_{f_i}) = 0 \)) is defined by \(\tilde{Y}_{f_i} = \alpha(\tilde{X}_{f_i}) \), and since \(df_i \) is semi-basic, we have
\[i_{\tilde{Y}_{f_i}} d\alpha = -d\tilde{f}_i = -d f_i. \]

On the other hand, the Hamiltonian vector field \(X_{F_i} \) is tangent to \(M \) and satisfies
\[i_{X_{F_i}} \omega = -d F_i. \]

By taking the pull back of (2.11) and combining with (2.10) we get
\[\tilde{Y}_{f_i} = \tilde{X}_{F_i} - \alpha(\tilde{X}_{F_i}) Z, \]

Whence,
\[Y_{f_i} = f_i Z + \tilde{X}_{F_i} - \alpha(\tilde{X}_{F_i}) Z, \quad i = 2, \ldots, 2n - r. \]
By definition of the Jacobi bracket (1.5) we have:

$$[f_k, f_i] = Y_{f_k}(f_i) - f_i Z(f_k)$$

$$= Y_{f_k}(f_i)$$

$$= (f_k Z + \hat{Y}_{f_k})(f_i)$$

$$= \hat{X}_{f_i}(f_k)$$

$$= j^* (X_{F_k}(F_i))$$

$$= j^* \{F_i, F_k\} = 0,$$

for $i = 2, \ldots, 2n - r$, $k = 2, \ldots, r$.

In particular, for $r = n$ we have the isoenergetic version of the Arnold-Liouville theorem:

Corollary 2.1 (Isoenergetic Arnold-Liouville theorem). Let $M = H^{-1}(h)$ be a contact type hypersurface. Suppose a collection of functions $F_1 = H, \ldots, F_n$ Poisson commute on M

$$(2.12)\quad \{F_i, F_j\} = 0|_M$$

and that the restrictions $F_2|_M, \ldots, F_n|_M$ are independent. Then the Reeb flow on M is contact completely integrable with respect to the integrals $F_2|_M, \ldots, F_n|_M$.

Thus, the system doesn’t need to be integrable on the whole phase space, while the isoenergetic hypersurface M is foliated on Lagrangian tori, or pre-Legendrian in the contact sense. In a neighborhood of a torus, there exist contact action-angle coordinates $(\theta_0, \ldots, \theta_{n-1}, y_1, \ldots, y_{n-1})$, such that y_i depends on the integrals $F_2|_M, \ldots, F_n|_M$, the contact form has the canonical form $y_0(y_1, \ldots, y_{n-1}) d\theta_0 + y_1 d\theta_1 + \cdots + y_{n-1} d\theta_{n-1}$ in which the Reeb vector field is linearized

$$Z = \sum_{i=0}^{n-1} \omega_i \frac{\partial}{\partial \theta_i}, \quad \omega_0 = \left(-y_0 + \sum_{i=1}^{n-1} y_i \frac{\partial y_0}{\partial y_i} \right)^{-1}, \quad \omega_i = -\frac{1}{\omega_0} \frac{\partial y_0}{\partial y_i}.$$

Although the problem of existence of polynomial in momenta first integrals for natural mechanical systems on a fixed isoenergetic hypersurface is well known and goes back to Birkhoff [4, 5] (the examples are given by Yehia, see [36] and references therein), the formulation of the isoenergetic integrability, to the authors knowledge, has not been given yet. Furthermore, in the case of the natural mechanical systems, a compact regular component M of the isoenergetic hypersurface $H^{-1}(h)$ is always of contact type. This is obvious, when $h > \max Q V$. In general, if $h < \max Q V$ we can perturb the canonical 1-form pdq by a closed 1-form form β, such that M is of contact type with respect to $pdq + \beta$ (e.g., see [17]).

Another approach to the integrability on invariant manifolds is given by Nekhoroshev [30, 31].

2.3. Partial integrability. Next, we can interchange the role of the Hamiltonian function and one of the integrals in Corollary 2.1.
Corollary 2.2. Suppose that a Hamiltonian system (2.1) has \(n-1 \) commuting integrals \(F_1 = H, F_2, \ldots, F_{n-1} \) and an invariant relation
\[
\Sigma : \quad F_0 = 0,
\]
that is, the trajectories with initial conditions on \(\Sigma \) stay on \(\Sigma \) for all time \(t \). If \(\Sigma \) is of the contact type manifold and if it is invariant for all Hamiltonian flows \(X_{F_i} \), then the compact regular components of the invariant varieties
\[
F_0 = 0, \quad H = F_1 = c_1, \quad F_2 = c_2, \quad \ldots, \quad F_{n-1} = c_{n-1}
\]
are Lagrangian tori.

The situation is closely related to the notion of the systems of Hess-Appel’rot type introduced by Dragović and Gajić [12] as well as the notion of partial integrability given in [18]. Although \(\Sigma \) is foliated on invariant Lagrangian tori, the dynamics of (2.1) does not need to be solvable.

2.4. Remark. If we are interested in the dynamics in the invariant neighborhood \(U \subset M \) of the regular compact invariant level set \(T \) (with the property \(dF_1 \wedge \cdots \wedge dF_{2n-r} \neq 0(U) \)), then instead of the condition that \(M \) is of contact type in Theorem 2.1, we can assume a slightly weaker condition that \(U \) is of contact type. Then we have contact integrability of the Reeb flow restricted to \(U \). Similarly, the invariant relation \(\Sigma \) in Corollary 2.2 does not need to be of contact type.

2.5. Example. A classical example of a partially integrable system is the Hess-Appel’rot case of the heavy rigid body motion around a fixed point. The phase space is the cotangent bundle of \(SO(3) \). In Euler’s angles \((\varphi, \theta, \psi) \), the Hamiltonian of the system can be written in the form
\[
H = \frac{1}{2}(aM_1^2 + aM_2^2 + bM_3^2 + 2cM_1M_3) + k \cos \theta,
\]
where the components of the angular momentum are
\[
M_1 = \frac{\sin \varphi}{\sin \theta}(p_\psi - p_\varphi \cos \theta) + p_\theta \cos \varphi,
M_2 = \frac{\cos \varphi}{\sin \theta}(p_\psi - p_\varphi \cos \theta) - p_\theta \sin \varphi, \quad M_3 = p_\varphi.
\]

The system has two integrals, the Hamiltonian function \(H \) and the Noether integral \(M_3 = p_\varphi \) corresponding to the symmetry of the system with respect to the rotations around the vertical axes \(\vec{e}_3 \). Also, the system has the invariant relation
\[
\Sigma : \quad M_3 = p_\varphi = 0.
\]

Since the Hamiltonian flow of the function \(M_3 \) is given by the vector field \(X_{M_3} = \partial/\partial \varphi \) (rotations of the body around the axes \(\vec{e}_3 \) fixed in the body), we see that \(\Sigma \) is not of the contact type with respect to the canonical 1-form \(p_\varphi d\varphi + p_\theta d\theta + p_\psi d\psi \), but it is of the contact type with respect to the perturbation of the canonical 1-form by a closed 1-form \(d\varphi \):
\[
\alpha = p_\varphi d\varphi + p_\theta d\theta + p_\psi d\psi + d\varphi, \quad \alpha(X_{M_3}) \equiv 1.
\]
Further, since\[\{M_3, M_z\} = 0, \quad \{p_\varphi, p_\psi\} = 0, \]
from Corollary 2.2 we obtain that the regular connected invariant level sets
\[H = h, \quad M_z = c, \quad M_3 = 0, \]
are Lagrangian tori. This is well known and can be seen directly from the fact that, after confining to \(\Sigma \), the Hamiltonian of the Hess-Appel'rot case coincides with the Hamiltonian of the integrable Lagrange case of the heavy rigid body motion. However, the dynamics on \(\Sigma \) of the Hess-Appel'rot system is quite different from the one of the Lagrange top. For a complete integration one should solve an additional Riccati equation (e.g., see [14] for both: the classical and the algebro-geometric integration of the system).

2.6. Example. As an illustration of Proposition 2.1, we give the example of an integrable contact flow, which is not a geodesic flow of the Maupertuis-Jacobi metric. Consider the simplest integrable system on the standard linear symplectic space \((\mathbb{R}^{2n+2}, dp \wedge dq) \), the system of \(n + 1 \) harmonic oscillators with the Hamiltonian
\[H_0 = \sum_{i=0}^{n} \frac{1}{2a_i} (q_i^2 + p_i^2), \]
where \(a_i \) are positive numbers. The commuting integrals are \(F_i = q_i^2 + p_i^2, \) \(i = 0, \ldots, n \). If instead of the canonical 1-form \(pdq \) we take
\[\alpha_0 = \sum_{i=0}^{n} p_i dq_i - \frac{1}{2} d \left(\sum_{i=0}^{n} p_i q_i \right) = \frac{1}{2} \sum_{i} p_i dq_i - q_i dp_i, \]
then \(d\alpha_0 = d(pdq) = dp \wedge dq \) and the only zero of \(\alpha_0 \) is at the origin 0. The corresponding Liouville vector field is
\[E = \frac{1}{2} \sum_{i} q_i \frac{\partial}{\partial q_i} + p_i \frac{\partial}{\partial p_i}. \]

Let \(E_h \) be an ellipsoid \(H_0 = h, \ h > 0 \). We have \(E(H_0)|_{E_h} = h \neq 0 \). Therefore, \(E_h \) is of contact type with respect to \(\alpha_0 \). According to (2.4), the Reeb vector field on \((E_h, \alpha_0) \) is given by \(Z = \frac{1}{h} X_{H_0} \). The contact ellipsoid \((E_h, \alpha_0) \) is contactomorphic to the K-contact structure on a sphere \(S^{2n+1} \) [35] (see Section 4). In particular, for \(a_0 = a_1 = \cdots = a_n = 1 \) we get the standard contact structure on the sphere \(S^{2n+1} = H_0^{-1}(h) \), where the characteristic line bundle defines the Hopf fibration.

Lemma 2.1. The standard linear action of \(U(n+1) \) on \(\mathbb{R}^{2n+2} \cong \mathbb{C}^{n+1} \) \((p+iq = z) \) is Hamiltonian with the momentum mapping
\[\Phi : \mathbb{R}^{2n+2} \rightarrow u(n+1) \cong u(n+1)^*, \quad \Phi(q, p) = p \wedge q + i(q \otimes q + p \otimes p). \]

Here \(u(n+1) \) is identified with \(u(n+1)^* \) by the use of the product proportional to the Killing form: \(\langle \xi, \eta \rangle = -\frac{1}{4} \text{tr}(\xi \eta). \)
The Hamiltonian (2.13) for $a_0 = a_1 = \cdots = a_n = 1$ is a collective function - the pull-back of a linear Casimir function

$$K_0(\xi) = -\frac{1}{2} \text{tr}(\xi \zeta), \quad \zeta = \text{diag}(i, \ldots, i)$$

via the momentum mapping Φ. Note that $\Phi(\mathbb{R}^{2n+2})$ is the union of singular adjoint orbits. For $(q, p) \neq 0$, the orbit through $\Phi(q, p)$ is diffeomorphic to a complex projective space $\mathbb{C}P^n \cong U(n+1)/U(n) \times U(1)$. On the other hand, the orbits of $U(n+1)$-action on \mathbb{R}^{2n+2} for $(q, p) \neq 0$ are the spheres $H_0^{-1}(h)$.

Let us take an arbitrary integrable system on $u(n+1)$. For example, consider the Gelfand–Cetlin system that is defined by the filtration of Lie algebras $u(1) \subset u(2) \subset \cdots \subset u(n+1)$ (e.g., see [16]).

Let $\xi_{u(k)}$ be the projection of ξ to $u(k)$ with respect to the scalar product $\langle \cdot, \cdot \rangle$. The Euler equation $\dot{\xi} = [\xi, \nabla K(\xi)]$ with the Hamiltonians

$$K(\xi) = -\frac{1}{2} \sum_{k=0}^{n} \lambda_k \text{tr}(\xi_{u(k+1)} \xi_{u(k+1)})$$

where λ_k are real parameters, are completely integrable.

Note that the $U(n+1)$-action is multiplicity free, so the system with collective Hamiltonian $H = K \circ \Phi$ is also integrable and we need only Noether integrals for complete integrability [16]. Indeed, we have $H = \sum_{k=0}^{n} \lambda_k H_k(q, p)$, where

$$H_k = \frac{1}{2} \sum_{i=0}^{k} (q_i^2 + p_i^2)^2 + \sum_{0 \leq i < j \leq r} (q_i q_j + p_i p_j)^2 + (q_j p_i - p_j q_i)^2, \quad k = 0, \ldots, n$$

are commuting integrals of the system.

Let $\Sigma : H = h \neq 0$. It is an algebraic surface of degree 4. Since $E(H) = 2h|_{\Sigma}$, Σ is of contact type and the Reeb flow is $Z = (2h)^{-1}X_H|_{\Sigma}$.

We can summarize the considerations above in the following statement.

Proposition 2.2. The Reeb flow on Σ is completely integrable.

Similarly, let a compact connected Lie group G acts in a Hamiltonian way on a symplectic manifold (P, ω) with the equivariant momentum mapping $\Phi : P \to g^*$ (doesn’t need to be multiplicity free action). Let $K : g^* \to \mathbb{R}$ be a Hamiltonian function such that the Euler equations

$$(2.15) \quad \dot{\mu} = -\text{ad}_{dK(\mu)}^* \mu$$

are completely integrable on general co-adjoint orbits $O(\mu) \subset \Phi(M)$ with a set of Lie–Poisson commuting integrals $f_i, \ i = 1, \ldots, N, \ N = \dim O(\mu)$. Then the Hamiltonian equations on P with a collective Hamiltonian function $H = K \circ \Phi$ are completely integrable (in the non-commutative sense). The complete set of first integrals is

$$\{ f_i \circ \Phi \mid i = 1, \ldots, N \} + C_G^G(P),$$

where $C_G^G(P)$ is the algebra of G-invariant functions [8]. Thus, if an isoenergetic hypersurface $M = H^{-1}(h)$ is of a contact type, the associated Reeb vector field will be completely integrable.
Recently, as an application of Proposition 2.1, a discrete Hamiltonian system, namely, Heisenberg model on a product of light-like cones in a pseudo-Euclidean space, which induces an integrable contact transformation on certain contact hypersurfaces is given in [21].

3. Contact systems with constraints

A contact submanifold of the contact manifold \((M, \mathcal{H}_M)\) is a triple \((N, \mathcal{H}_N, j)\), where \((N, \mathcal{H}_N)\) is a contact manifold and \(j : N \to M\) is an embedding such that \(j_*^{-1}(\mathcal{H}_M) = \mathcal{H}_N\).

Let \((M, \alpha)\) be a co-oriented contact manifold and \(j : N \to M\) an embedding. If we define

\[
\mathcal{H}_N = \{ X \in TN \mid j_*(X) \in \mathcal{H}_M \} = j_*^{-1}(\mathcal{H}_M),
\]

then \(\mathcal{H}_N = \ker(j^*\alpha)\). The distribution \(\mathcal{H}_N\) is of codimension one, if \(N\) is transverse to \(\mathcal{H}_M\). In order to induce a contact structure on \(N\) it is also necessary that \(dj^*\alpha\) is non-degenerate on \(\ker(j^*\alpha)\).

We derive a contact version of Dirac’s construction which deals with constrained Hamiltonian vector fields on symplectic manifolds (e.g., see [28]).

Theorem 3.1. Let \((M, \alpha)\) be a \((2n+1)\)-dimensional co-oriented contact manifold, \(G_1, \ldots, G_{2k}\) smooth functions on \(M\),

\[
N = \{ x \in M \mid G_1(x) = \ldots = G_{2k}(x) = 0 \},
\]

and \(j : N \to M\) be the corresponding embedding.

(a) If \([1, G_j] = 0\)\(_N\), \(j = 1, \ldots, 2k\) and

\[
\det([G_j, G_i]) \neq 0|_N
\]

then \((N, j^*\alpha)\) is a contact submanifold of \((M, \alpha)\) with the Reeb vector field that is the restriction of the the Reeb vector field \(Z\) of \((M, \alpha)\).

(b) Let \(f\) be a smooth function on \(M\) and

\[
W_f = Y_f - \sum_{i=1}^{2k} \lambda_i Y_{G_i}.
\]

Then the system

\[
dG_j(W_f) = Y_f(G_j) - \sum_{i} \lambda_i Y_{G_i}(G_j) = 0 \quad j = 1, \ldots, 2k
\]

has a unique solution \(\lambda_1 = \lambda_1(f), \ldots, \lambda_{2k} = \lambda_{2k}(f)\) on \(N\). For the given multipliers,

\[
Y_f^* = W_f
\]
is the contact Hamiltonian vector field of the function \(f \) restricted to \(N \). If \(g \) is any smooth function on \(M \), the Jacobi bracket between the restrictions of \(f \) and \(g \) to \(N \) is given by

\[
[f|_N, g|_N]_N = [f, g] + \sum_{i,j} [G_i|_N, g] A_{ij}[G_j, f],
\]

where \(A_{ij} \) is the inverse of the matrix \(([G_i, G_j]) \). In particular, if either \(Y_f \) or \(Y_g \) is tangent to \(N \), then \([f|_N, g|_N]_N = [f, g] \).

Proof. (a) From the conditions \([1, G_j] = 0|_N, j = 1, \ldots, 2k\) and (3.2), it easily follows that \(dG_1, \ldots, dG_{2k} \) are linearly independent semi-basic forms on \(N \), and that the Reeb vector field \(Z \) is tangent to \(N \). Hence \(N \) is a submanifold transverse to \(H_M \).

Let

\[
H_N = \{ \xi \in T_x N | \alpha(\xi) = 0 \}.
\]

We need to prove that \(da \) is non-degenerate on \(H_N \), i.e. that \(H_N \) is a symplectic subbundle of \(H_M \). Owing to \(\dim H_M = 2n \), \(\dim H_N = 2n - 2k \), we obtain that the dimension of the symplectic orthogonal to \(H_N \) within \(H_M \) equals \(2k \).

Since \(dG_1, \ldots, dG_{2k} \) are independent semi-basic forms on \(N \), we have that \(Z, Y_{G_1}, \ldots, Y_{G_{2k}}, \) i.e., \(\hat{Y}_{G_1}, \ldots, \hat{Y}_{G_{2k}} \) are linearly independent vector fields on \(N \). Whence, from

\[
da(\hat{Y}_{G_j}, X) = -dG_j(X) = 0|_N, \quad X \in H_N,
\]

we see that \(\text{orth}_{H_M} H_N \) is spanned by \(\hat{Y}_{G_1}, \ldots, \hat{Y}_{G_{2k}} \). The relations

\[
da(\hat{Y}_{G_j}, \hat{Y}_{G_i}) = da(Y_{G_j}, Y_{G_i}) = [G_j, G_i]
\]

and (3.2) yield that \(\text{orth}_{H_M} H_N \) is symplectic, hence \(H_N \) is symplectic as well.

Since \(Z \) is tangent to \(N \), it is obvious that \(Z|_N \) is the Reeb vector field of \((N, j^*\alpha)\). Also, note that we have the following decompositions of \(T_x M \) at \(x \in N \):

\[
T_x M = Z_x \oplus H_{M,x} = Z_x \oplus H_{N,x} \oplus \text{orth}_{H_M} H_{N,x} = T_x N \oplus \text{orth}_{H_M} H_{N,x}.
\]

(b) According to (1.5), we can write the equations for multipliers (3.3) in terms of the Jacobi brackets

\[
\sum_i \lambda_i [G_i, G_j] = [f, G_j], \quad j = 1, \ldots, 2k,
\]

where we used \(G_j|_N \equiv 0, j = 1, \ldots, 2k \).

Thus, (3.3) has a unique solution on \(N \),

\[
\lambda_i(f) = \sum_j A_{ij}[f, G_j],
\]

determining the projection \(W_f \) of \(Y_f \) to \(TN \) with respect (3.5). From

\[
i_{W_f} da(\xi) = -df(\xi) + \sum_{j=1}^{2k} \lambda_j dG_j(\xi) = -df(\xi), \quad \xi \in T_x N
\]
we obtain that the contact Hamiltonian vector field of $f|_N$ reads
\[
Y_f^* = \tilde{W}_f + fZ
= Y_f - \sum_i \lambda_i(f)Y_{G_i} - (\alpha(Y_f) - \sum_i \alpha(\lambda_i(f)Y_{G_i}))Z + fZ
= Y_f - \sum_i \lambda_i(f)Y_{G_i} - (f - \sum_i \lambda_i(f)G_i)Z + fZ
= Y_f - \sum_i \lambda_i(f)Y_{G_i}.
\]

Finally, let g be a smooth function on M. Then
\[
[f|_N, g|_N]|_N = Y_f^*(g) - gZ(f)
= Y_f(g) - gZ(f) - \sum_i \lambda_i(f)Y_{G_i}(g)
= [f, g] - \sum_i \lambda_i(f)[G_i, g]
= [f, g] + \sum_i [G_i, g]A_{ij}[G_j, f].
\]

Now, let us consider a general situation, when the Reeb vector field Z of (M, α) is not tangent to the contact co-oriented submanifold $(N, j^*\alpha)$. Then, analogous to (3.5), we have the decompositions of T_xM at the points $x \in N$:
\[
T_xM = Z_x \oplus H_{M_x} = Z_x \oplus H_{N_x} \oplus \text{orth}_{H_{M_x}} H_{N_x}
= Z_x^* \oplus H_{N_x} \oplus \text{orth}_{H_{M_x}} H_{N_x} = T_xN \oplus \text{orth}_{H_{M_x}} H_{N_x},
\]
(3.7)
where Z_x^* is a linear subbundle of TN spanned by the Reeb vector field Z_x of $(N, j^*\alpha)$. For a given smooth function f on M, the contact Hamiltonian vector field of $f|_N$ reads
\[
Y_f^* = \tilde{W}_f + fZ^* = W_f - \alpha(W_f)Z + fZ^*,
\]
where W_f is the projection to TN of Y_f with respect to the decomposition (3.7).

If N is given by (5.1), then we have the same condition (5.2) on the constraints G_1, \ldots, G_{2k} and the same equations (5.6) determining the multipliers $\lambda_1, \ldots, \lambda_{2k}$, while the expression for the Jacobi bracket (3.4) is different:
\[
[f|_N, g|_N]|_N = Y_f^*(g) - gZ^*(f)
= Y_f(g) - \sum_i \lambda_i(f)Y_{G_i}(g) - (f - \sum_i \lambda_i(f)G_i)Z(g) + fZ^*(g) - gZ^*(f)
= [f, g] + gZ(f) - fZ(g) + fZ^*(g) - gZ^*(f) - \sum_i \lambda_i(f)Y_{G_i}(g).
\]
3.1. Integrability of the Reeb flows. Suppose that the Reeb flow
\[\dot{x} = Y_1 = Z \]
on a contact manifold \((M^{2n+1}, \alpha)\) is integrable by means of integrals \(f_1, f_2, \ldots, f_{2n-r}\) satisfying (1.7) and let \(M_{\text{reg}}\) denote an open set foliated on invariant pre-isotropic tori of dimension \(r + 1\). In addition, assume that the system is subjected to the constraints \((3.1)\) satisfying the conditions of Theorem 3.1.

Since the Reeb vector field on \(N\) is the restriction \(Z|_{N}\), it is clear that, in the case \(M_{\text{reg}} \cap N\) is an open dense set of \(N\), a generic Reeb trajectory on \(N\) will be quasi-periodic. However, as the example with the Reeb flow on the Brieskorn manifold suggests (see the next section), the restricted flow not need to be integrable by means of integrals obtained by the restrictions of \(f_1, f_2, \ldots, f_{2n-r}\) to \(N\).

Denote the foliation of \(M_{\text{reg}}\) on invariant pre-isotropic tori by \(F\). Then \(F\) is a \(\alpha\)-complete pre-isotropic foliation and we have the following flag of foliations
\[(3.8) \quad G = F \cap H_M \subset F = \mathbb{Z} \oplus G \subset E = \mathbb{Z} \oplus \text{orth}_{H_M} G. \]

Let \(F_N\) be the foliation given by the level sets \(f_i(x) = c_i, i = 1, \ldots, 2n-r, x \in N_{\text{reg}},\) that is \(F_N = F|_N \cap TN\) (if necessary, in order to obtain a foliation, we restrict functions to some open dense set of \(N_{\text{reg}}\)). Further, let \(G_N = F_N \cap H_N = G|_N \cap H_N\) be an isotropic foliation of \(N_{\text{reg}}\). Then the Reeb flow is integrable by means of integrals \(f_1|_N, \ldots, f_{2n-r}|_N\) if the distribution \(E_N = \mathbb{Z} \oplus \text{orth}_{H_N} G_N\) is a foliation (see \([19]\)). We have
\[E_N = \mathbb{Z} \oplus \text{orth}_{H_N} G_N = \mathbb{Z} \oplus (\text{orth}_{H_M} (G \cap H_N) \cap H_N) \]
\[= \mathbb{Z} \oplus (\text{orth}_{H_M} G + \text{orth}_{H_M} (H_N) \cap H_N) \]
\[= \mathbb{Z} \oplus \text{pr}_{H_N} (\text{orth}_{H_M} G) = \text{pr}_{TN} (\mathbb{Z} \oplus \text{orth}_{H_M} G) = \text{pr}_{TN} E, \]
where \(\text{pr}_{H_N}\) and \(\text{pr}_{TN}\) denote the projections with respect to the decompositions of \(TM\) given in (3.5).

In particular, if \(F|_N\) is tangent to \(N (F_N = F|_N),\) then \(F_N\) is \(\alpha\)-complete pre-isotropic foliation and the Reeb flow on \(N\) is integrable. Indeed, in this case \(E_N\) is an integrable distribution, since \(G|_N \subset H_N\) implies
\[\text{pr}_{H_N} (\text{orth}_{H_M} G) = \text{orth}_{H_M} G \cap H_N \quad \text{and} \quad \text{pr}_{TN} E = E \cap TN. \]

For example, if the generic Reeb trajectories in \(N_{\text{reg}}\) are everywhere dense over the \(r + 1\)-dimensional isotropic tori then it is obvious that \(F_N = F|_N\).

4. Contact flows on Brieskorn manifolds

In Section 2 we started from a system of identical harmonic oscillators and gave a simple construction of a contact hypersurface in \((\mathbb{R}^{2n+2}, (q,p), dp \wedge dq)\) with an integrable Reeb flow associated to the Gelfand–Cetin system on \(u(n+1)\).

In this section we are going to a different direction. We also start from a system of harmonic oscillators \((2.13)\), but then change our contact manifold by imposing
certain constraints thus obtaining the contact structure on the Brieskorn manifold \[25, 10\].

4.1. Complete contact integrability on a sphere. In this section we use the identification \(\mathbb{C}^{n+1} \cong \mathbb{R}^{2n+2}\), \(z_j = x_j + iy_j\), \((j = 0, \ldots, n)\). Let

\[
F(z, \bar{z}) = \sum_{j=0}^{n} |z_j|^2.
\]

Then the unit sphere \(S^{2n+1}\) may be expressed as the level surface \(F = 1\).

In \[35\], the following basic examples of \(K\)-contact manifolds are given:

Proposition 4.1. Let \(a_j (j = 0, \ldots, n)\) be positive real numbers and \(\alpha = i\frac{4}{8} \sum_{j=0}^{n} a_j (z_j d\bar{z}_j - \bar{z}_j dz_j) = \frac{1}{4} \sum_{j=0}^{n} a_j (x_j dy_j - y_j dx_j)\).

Then \((S^{2n+1}, \alpha)\) is a co-oriented contact manifold with the Reeb vector field

\[
Z = 4i \sum_{j=0}^{n} a_j \left(\frac{z_j}{\partial z_j} - \frac{\bar{z}_j}{\partial \bar{z}_j} \right).
\]

Note that the coordinate transformation

\[
p_i = \sqrt{\frac{a_i}{2}} x_i, \quad q_i = \sqrt{\frac{a_i}{2}} y_i, \quad i = 0, \ldots, n
\]
transforms the contact ellipsoid \((E_1/4, \alpha_0)\) to the contact sphere \((S^{2n+1}, \alpha)\). Now, the contact integrability of the Reeb flow on \((S^{2n+1}, \alpha)\) directly follows from Proposition 2.1. However, it is instructive to have a direct proof as well.

Proposition 4.2. The flow induced by the Reeb vector field \(4.1\) is completely contact integrable on \((S^{2n+1}, \alpha)\) and the functions

\[
f_j(z) = |z_j|^2, \quad j = 0, \ldots, n
\]
are its commuting integrals.

Proof. Let

\[
Y_j = \frac{4i}{a_j} \left(\frac{z_j}{\partial z_j} - \frac{\bar{z}_j}{\partial \bar{z}_j} \right), \quad j = 0, \ldots, n.
\]

From

\[
Z f_j = df_j(Z) = (\bar{z}_j dz_j + z_j d\bar{z}_j)(Z) = \frac{4i}{a_j} (\bar{z}_j z_j - z_j \bar{z}_j) = 0
\]
and \(dF(Y_j) = \frac{4i}{a_j} (\bar{z}_j z_j - z_j \bar{z}_j) = 0\), we conclude that \(f_j\) are integrals of \(4.1\) and that \(Y_j\) are tangent to \(S^{2n+1}\). Since

\[
i Y_j da = -(z_j d\bar{z}_j + \bar{z}_j dz_j) = -df_j
\]
and \(\alpha(Y_j) = f_j \), it follows that \(Y_j \) are the contact Hamiltonian vector fields of the functions \(f_j \). Whence, from (1.5), we obtain

\[
[f_j, f_k] = Y_j f_k = df_k(Y_j) = 0, \quad j, k = 0, \ldots, n.
\]

Obviously, the functions \(f_j, j = 0, \ldots, n \) are independent on the open dense subset \(U = \{(z_0, \ldots, z_n) | z_0 \cdot \ldots \cdot z_n \neq 0\} \) of \(\mathbb{C}^{n+1} \), while the restrictions of \(f_j, j = 1, \ldots, n \) to \(S^{2n+1} \) are independent on \(S^{2n+1} \cap U \). Formally, in the polar coordinates (4.4)

\[
z_j = r_j e^{i\phi_j}, \quad j = 0, \ldots, n,
\]

we have \(dF \wedge df_1 \wedge \cdots \wedge df_n = 2^{n+1} r_0 r_1 \cdots r_n dr_0 \wedge dr_1 \wedge \cdots \wedge dr_n \neq 0 | U \). Therefore, \(df_1 \wedge \cdots \wedge df_n \neq 0 | S^{2n+1} \cap U \), considered as a \(n \)-form on \(S^{2n+1} \).

Consider a \((n+1) \)-dimensional invariant torus (4.5)

\[
T_c : \quad f_0 = c_0^2, \quad \ldots, \quad f_n = c_n^2, \quad c_0^2 + c_1^2 + \cdots + c_n^2 = 1
\]

that lays in \(S^{2n+1} \cap U \) \((c_0, \ldots, c_n > 0)\). After a coordinate change (4.4), the Reeb dynamics on \(T_c \) is given by

\[
\dot{\phi}_j = \omega_j = \frac{4}{a_j}, \quad j = 0, \ldots, n.
\]

If \(\omega_0, \omega_1, \ldots, \omega_n \) (that is, \(a_0, a_1, \ldots, a_n \)) are independent over \(\mathbb{Q} \), then the trajectories are everywhere dense over \(T_c \). In general, if among \(\omega_0, \omega_1, \ldots, \omega_n \) we have \(r \) independent relations

\[
\rho_k : \quad m_{0k} \omega_0 + \cdots + m_{nk} \omega_n = 0, \quad m_{ik} \in \mathbb{Z}, \quad k = 1, \ldots, r,
\]

the dimension \(n + 1 - r \) of the closure of trajectories laying on \(T_c \) is equal to the rank of \((S^{2n+1}, \alpha)\) considered as a \(K \)-contact manifold [35].

4.2. Reduction to Brieskorn manifolds. Now, let \(a_j \) \((j = 0, \ldots, n)\) be positive integers. Then the rank of \((S^{2n+1}, \alpha)\) is equal to 1, and the Reeb flow induces a circle action.

Let \(G(z) = \sum_{j=0}^{n} z_j^a \). The set

\[
B = \{ z \in \mathbb{C}^{n+1} : F(z, \bar{z}) = 1, G(z) = 0 \}
\]

is known as Brieskorn manifold and \((B, \alpha)\) is a co-oriented contact manifold with the Reeb vector field (1.1) (see [25]). Therefore, obviously, the system is integrable in a noncommutative sense.

Note that

\[
Z(G) = 4i \cdot G,
\]

implies

\[
[G_1, 1] = [G_2, 1] = 0 | B,
\]
as well as $[G_1, G_2] \neq 0|_B$ (see (1.7)). Here, by G_1 and G_2 we denoted the real and the imaginary part of G:

$$G_1(z, \bar{z}) = \frac{1}{2} \sum_{j=0}^{n} (z_j^{a_j} + \bar{z}_j^{a_j}) = \Re(G),$$

$$G_2(z, \bar{z}) = \frac{1}{2i} \sum_{j=0}^{n} (z_j^{a_j} - \bar{z}_j^{a_j}) = \Im(G).$$

Therefore, the construction presented in Theorem 3.1 provides an alternative proof of the fact that (B, α) is a co-oriented contact manifold.

In what follows we shall describe the Jacobi brackets $[f, g]_B$ within the Lie algebra of integrals of the Reeb flow.

Lemma 4.1. Define

$$V_1 = 2i \sum_{j=0}^{n} \left(z_j^{a_j-1} \frac{\partial}{\partial z_j} - \bar{z}_j^{a_j-1} \frac{\partial}{\partial \bar{z}_j} \right),$$

$$V_2 = -2 \sum_{j=0}^{n} \left(\bar{z}_j^{a_j-1} \frac{\partial}{\partial z_j} + z_j^{a_j-1} \frac{\partial}{\partial \bar{z}_j} \right).$$

Then $V_1(z), V_2(z)$ are tangent to S^{2n+1} for all $z \in B$. The restrictions to B of the contact Hamiltonian vector fields Y_{G_j} on (S^{2n+1}, α) are given by $\hat{V}_j|_B$, $j = 1, 2$.

Proof. We have

$$dF(V_1) = 2i \sum_{j=0}^{n} (z_j^{a_j} - \bar{z}_j^{a_j}) = 0|_B, \quad dF(V_2) = -2 \sum_{j=0}^{n} (z_j^{a_j} + \bar{z}_j^{a_j}) = 0|_B,$$

which proves the first assertion. Now,

$$i_{V_1} \alpha = i \sum_{j=0}^{n} a_j dz_j \wedge d\bar{z}_j(V_1, \cdot)$$

$$= i \sum_{j=0}^{n} a_j (dz_j(V_1) d\bar{z}_j - d\bar{z}_j(V_1) dz_j)$$

$$= -\frac{1}{2} \sum_{j=0}^{n} a_j (z_j^{a_j-1} d\bar{z}_j + \bar{z}_j^{a_j-1} dz_j)$$

$$= -dG_1,$$

and similarly for dG_2. \qed

Theorem 4.1. Let f and g be integrals of the Reeb vector field (1.7). Then

$$[f, g]_B = [f, g] + \frac{df(V_2)dg(V_1) - df(V_1)dg(V_2)}{\mu},$$
where \([\cdot, \cdot]_B\) is the Jacobi bracket on \((B, \alpha)\), \([\cdot, \cdot]\) is the Jacobi bracket on \((S^{2n+1}, \alpha)\) and

\[
\mu = 2 \sum_{j=0}^{n} a_j |z_j|^{2(a_j-1)} = 2 \sum_{j=0}^{n} a_j f_j^{a_j-1} \neq 0.
\]

Proof. Let \(Y_f, Y_{G_1}, Y_{G_2}\) be the contact Hamiltonian vector fields on \((S^{2n+1}, \alpha)\) and

\[
W_f = Y_f - \lambda_1 Y_{G_1} - \lambda_2 Y_{G_2}.
\]

Taking into account (1.5), (4.6), and Lemma 4.1, we have

\[
(G_1, G_2) = Y_{G_1} G_2 = dG_2(Y_f) = dG_2(V_1) = \mu \neq 0 |_B.
\]

Theorem 3.1 implies that the system

\[
\text{d}G_1(W_f) = \text{d}G_2(W_f) = 0,
\]

has a unique solution and \(Y_f^* = W_f\) is the contact Hamiltonian vector field on \((B, \alpha)\). In particular, (4.8) leads to

\[
\lambda_1 = \frac{dG_2(Y_f)}{\mu}, \quad \lambda_2 = -\frac{dG_1(Y_f)}{\mu}
\]

and since \(Z(f) = Z(g) = 0\), we get

\[
[f,g]_B = [f,g] + dG_2(Y_f) Y_{G_1} + dG_1(Y_f) Y_{G_2}
\]

\[
= [f,g] + \left(\frac{dG_2(Y_f)}{\mu} V_1 + \frac{dG_1(Y_f)}{\mu} V_2 \right) g.
\]

Finally, from

\[
dG_j(Y_f) = -d\alpha(Y_{G_j}, Y_f) = -d\alpha(V_j, Y_f) = d\alpha(Y_f, V_j) = -df(V_j), \quad j = 1, 2,
\]

we conclude the proof. \(\square\)

Corollary 4.1. The integrals \([f_j, g]_B\) do not commute on \((B, \alpha)\).

Proof. From

\[
df_j(V_1) = 2i(z_j^{a_j} - \bar{z}_j^{a_j}), \quad df_j(V_2) = -2(z_j^{a_j} + \bar{z}_j^{a_j})
\]

and \([f_j, f_k] = 0\), we obtain

\[
[f_j, f_k]_B = \frac{4i}{\mu} \left((z_j^{a_j} - \bar{z}_j^{a_j})(z_k^{a_k} + \bar{z}_k^{a_k}) - (z_j^{a_j} + \bar{z}_j^{a_j})(z_k^{a_k} - \bar{z}_k^{a_k}) \right)
\]

\[
= \frac{8i}{\mu} \left(z_j^{a_j} z_k^{a_k} - z_j^{a_j} z_k^{a_k} \right) \neq 0,
\]

for \(j \neq k\). \(\square\)

Proposition 4.3. The complete noncommutative set of integrals of the Reeb flow on the Brieskorn manifold \((B, \alpha)\) is given by \(f_j, [f_j, f_k]_B, j, k = 0, \ldots, n\).
Proof. The integrals f_j and

$$f_{j,k} = \mu \left[z_j^{a_j} z_k^{a_k} - z_j^{a_j} \bar{z}_j^{a_j} \right]$$

provide a complete set of noncommuting integrals for the Reeb flow on S^{2n+1} (their level sets are the Reeb circles). Therefore, after restricting them to the Brieskorn manifold B, we get a complete set of integrals for a Reeb flow on B.

Indeed, consider a torus (4.5) and a coordinate change (4.4). The integrals $f_{j,k}$, restricted to T_c, $f_{j,k}|_{T_c} = \imath c_j^{a_j} c_k^{a_k} \left[e^{i(a_k \varphi_k - a_j \varphi_j)} - e^{-i(a_k \varphi_k - a_j \varphi_j)} \right]$, correspond to the rational relations

$$\rho_{j,k} : m_j \omega_j + m_k \omega_k = 0, \quad m_j = a_j, \quad m_k = a_k.$$

Since among $\rho_{j,k}$ we have n independent relations, among $f_{j,k}|_{T_c}$ we have n independent functions. Thus, among $f_j, f_{j,k}$ we have $2n$ independent functions on S^{2n+1}, that is $2n - 2$ independent functions on B. □

In [32], Ustilovsky studied the Brieskorn manifolds (B_p, α_p) with

$$a_0 = p, \quad a_1 = \cdots = a_n = 2,$$

where $n = 2m + 1$ and $p \equiv \pm 1 \pmod{8}$. The manifold B_p is diffeomorphic to a standard sphere S^{4m+1} [11], and as shown in [32], for $p_1 \neq p_2$, the contact structures $H_{p_1} = \ker \alpha_{p_1}$ and $H_{p_2} = \ker \alpha_{p_2}$ are not isomorphic. The proof is based on the study of periodic trajectories of the Reeb flow of the perturbed contact form $\hat{\alpha}_p$, which is equal to the contact flow

$$\hat{z} = Y^*_H$$

on (B_p, α_p), where

$$H = F + \sum_{j=1}^m \epsilon_j g_j, \quad 0 < \epsilon_j < 1, \quad j = 1, \ldots, m,$$

$$g_j = i(\bar{z}_j z_{j+1} - z_j \bar{z}_{j+1}) = 2(y_{2j} x_{2j+1} - y_{2j+1} x_{2j}).$$

From the point of view of integrability, we can consider the contact flow of H as an integrable perturbation of the Reeb flow.

Proposition 4.4. The contact flow (4.11) is completely integrable in a noncommutative sense. Generic invariant pre-isotropic tori are of dimension $m + 1$, spanned by the Reeb flow and the contact flows of integrals g_1, \ldots, g_m.

Proof. Since f_j, g_j are integrals of the system of harmonic oscillators with conditions (4.10), after the coordinate transformation (4.2), from Proposition 2.1
we obtain the following commuting relations on \((S^{4m+3}, \alpha_p)\):

\[
\begin{align*}
[g_i, g_j] &= \{g_j, g_i\}|_{E^*_q} = 0, \\
[g_j, 1] &= \{H_0, g_j\}|_{E^*_q} = 0, \\
[f_0, g_j] &= \{g_j, f_0\}|_{E^*_q} = 0, \\
[f_1, g_j] &= \{g_j, f_1\}|_{E^*_q} = 0, \\
[h_i, g_j] &= \{g_j, h_i\}|_{E^*_q} = 0,
\end{align*}
\]

where \(h_j = f_{2j} + f_{2j+1}, \ j = 1, \ldots, m\).

Next, since

\[
\begin{align*}
dg_j(V_1) &= i(z_{2j+1}dz_{2j} + z_{2j}dz_{2j+1} - z_{2j+1}dz_{2j} - z_{2j}dz_{2j+1})(V_1) \\
&= -2(z_{2j+1}z_{2j} + z_{2j}z_{2j+1} + z_{2j+1}z_{2j} - z_{2j}z_{2j+1}) = 0,
\end{align*}
\]

\[
\begin{align*}
dg_j(V_2) &= i(z_{2j+1}dz_{2j} + z_{2j}dz_{2j+1} - z_{2j+1}dz_{2j} - z_{2j}dz_{2j+1})(V_2) \\
&= -2i(z_{2j+1}z_{2j} + z_{2j}z_{2j+1} + z_{2j+1}z_{2j} - z_{2j}z_{2j+1}) = 0,
\end{align*}
\]

from Theorem 4.1 we get the commuting relations on \((B_p, \alpha_p)\) as well:

\[
\begin{align*}
[g_i, g_j]|_{B_p} &= 0, \quad [f_0, g_j]|_{B_p} = 0, \quad [f_1, g_j]|_{B_p} = 0, \\
[h_i, g_j]|_{B_p} &= 0, \quad [g_j, 1]|_{B_p} = 0.
\end{align*}
\]

Within the set of integrals of the Reeb flow, the Jacobi bracket of two integrals of the system (4.11) is both the integral of (4.11) and of the Reeb flow. Thus, we have a set of integrals

\[(4.12) \quad g_j, \quad h_j = f_{2j} + f_{2j+1}, \quad f_0, \quad f_1, \quad [f_0, h_j]|_{B_p}, \quad [f_1, h_j]|_{B_p}, \quad [h_i, h_j]|_{B_p}, \quad [g_j, 1]|_{B_p} = 0,\]

that commute with \(g_k\), for all \(i, j, k = 1, \ldots, m\).

For the noncommutative integrability, it remains to note that among the integrals (4.12) we have \(3m\) independent functions, including \(g_1, \ldots, g_m\). Indeed,

\[(4.13) \quad dG_1 \wedge dG_2 \wedge dF \wedge dg_1 \wedge \cdots \wedge dg_m \wedge dh_1 \wedge \cdots \wedge dh_m \wedge dq_1 \wedge \cdots \wedge dq_m \neq 0\]

holds on an open dense subset of \(B_p\). Here, since \(\mu\) is an integral of the system, instead of \([f_1, h_j]|_{B_p}\) we consider as in Proposition 4.3 the integrals

\[
g_j = \frac{H}{8}[f_1, h_j]|_{B_p} = i\left[z_{2j}^2z_{2j+1} - z_{2j}^2z_{2j+1}\right] + i\left[z_{2j+1}^2z_{2j} - z_{2j+1}^2z_{2j}\right], \quad j = 1, \ldots, m.
\]

The relation (4.13) can be verified by straightforward calculations in the polar coordinates (4.3).

\[\Box\]

5. Note on \(K\)-contact manifolds

The integrability of the Reeb flow on a sphere (Proposition 4.2) is a particular case of the integrability of the Reeb flows on compact \(K\)-contact manifolds.

Let \((M, \alpha)\) be a \((2n+1)\)-dimensional co-oriented contact manifold. Then \(d\alpha\) induces a symplectic structure on the contact distribution \(\mathcal{H} = \ker \alpha\). In this
situation, there exist a positive definite metric g_H and an almost complex structure J on H, such that

$$g_H(X,Y) = d\alpha(X,JY), \quad g_H(JX,JY) = g_H(X,Y),$$

for all horizontal vector fields X and Y.

The metric $g := g_H \oplus (\alpha \otimes \alpha)$ on M is called an adapted metric to the contact form α. If there exists an adapted metric g, such that the Reeb vector field is a Killing vector field $L_Z g = 0$,

then we call (M, α, g) a K-contact manifold. For example, the Sasakian manifolds have a natural K-contact structure (e.g., see \[10\]).

The following statement is a simple modification of Proposition 2.1 in Yamazaki \[35\].

Proposition 5.1. The Reeb flow on a compact K-contact manifold (M, α, g) is (noncommutative) contact integrable.

Proof. The Reeb flow $\varphi(t)$ is a one-parametric subgroup in a compact Lie group G of isometries of (M, g). It follows that the closure of $\{ \varphi(t) \mid t \in \mathbb{R} \}$ in G is a torus \mathbb{T}^{r+1} for some integer r. Thus, from $\varphi(t)^* \alpha = \alpha$, we have $s^* \alpha = \alpha$ for all $s \in \mathbb{T}^{r+1}$ and (M, α) is a \mathbb{T}^{r+1}-contact manifold (the number $r + 1$ is called the rank of (M, α, g) \[35\] \[10\]).

Let ξ be in the Lie algebra \mathfrak{t}^{r+1} of \mathbb{T}^{r+1}. It induces a contact vector field Y_ξ on M with a Hamiltonian $f_\xi = \alpha(Y_\xi)$ (if $f : M \to (\mathfrak{t}^{r+1})^*$, $f(\xi) := f_\xi$ is known as a contact momentum mapping \[23\] \[10\]). Take a base ξ_0, \ldots, ξ_r of \mathfrak{t}^{r+1} such that $Z = Y_{\xi_0}$, that is $f_{\xi_0} \equiv 1$. Since \mathbb{T}^{r+1} is Abelian, we have $[Y_{\xi_i}, Y_{\xi_j}] = 0$ and $[f_{\xi_i}, f_{\xi_j}] = 0$, $i, j = 0, \ldots, n$.

In a neighborhood of a generic point, the \mathbb{T}^{r+1}-action defines a foliation \mathcal{F} on invariant $r + 1$-dimensional tori. In particular, according to \[15\], we have $d\alpha(Y_{\xi_i}, Y_{\xi_j}) = 0$, so the leaves of \mathcal{F} are pre-isotropic and $r \leq n$. Let $f_{r+1}, \ldots, f_{2n-r}$ be the integrals of \mathcal{F} defined on an open dense set of M. Since $L_{Y_{\xi_j}}(f_i) = 0$, we have

$$[f_i, 1] = 0, \quad [f_i, f_{\xi_j}] = 0, \quad i = r + 1, \ldots, 2n - r, \quad j = 1, \ldots, r,$$

which completes the proof. \[\square\]

Acknowledgments. We are grateful to the referee for useful remarks. The research of B. J. was supported by the Serbian Ministry of Science Project 174020, Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems.

References

[1] P. Albers, U. Frauenfelder, O. van Koert, G. P. Paternain, *The contact geometry of the restricted 3-body problem*, Comm. Pure Appl. Math. 65 (2012), no. 2, 229-263. [arXiv:1010.2140v1 [math.SG]].

[2] V. I. Arnol’d, *Matematicheskie metody klassicheskoi mekhaniki*, Moscow, Nauka 1974 (Russian). English translation: V. I. Arnol’d, *Mathematical methods of classical mechanics*, Springer-Verlag, 1978.
[3] A. Banyaga, P. Molino, *Géométrie des formes de contact complètement intégrables de type torique*, Séminaire Gaston Darboux, Montpellier (1991-92), 1-25 (French). English translation: A. Banyaga, P. Molino, *Complete Integrability in Contact Geometry*, Penn State preprint PM 197, 1996.

[4] G. D. Birkhoff, *Dynamical systems with two degrees of freedom*. Trans. Amer. Math. Soc. 18 (1917), no. 2, 199-300.

[5] G. D. Birkhoff, *Dynamical systems*. American Mathematical Society Colloquium Publications, Vol. IX American Mathematical Society, Providence, R.I. 1966 xii+305 pp.

[6] O. I. Bogoyavlenskij, Extended integrability and bi-hamiltonian systems, Comm. Math. Phys. 196 (1998), no. 1, 19-51.

[7] A. V. Bolsinov, B. Gajić, *Non-commutative integrability, moment map and geodesic flows*. Annals of Global Analysis and Geometry 23, no. 4, 305–322 (2003), arXiv: math-ph/0109031.

[8] C. P. Boyer, *Completely integrable contact Hamiltonian systems and toric contact structures on $S^2 \times S^3$*, SIGMA 7 (2011), Paper 058, 22 pp, arXiv: 1101.5587 [math.SG].

[9] C. P. Boyer, K. Galicki, *Sasakian geometry*. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008. xii+613 pp.

[10] E. Brieskorn, *Beispiele zur Differentiale topology von Singularitäten*, Invent. Math. 2 (1966), 1–14.

[11] V. Dragović and B. Gajić, *Systems of Hess–Appel’rot type*, Comm. Math. Phys. 256 (2006), 397–435; arXiv: math-ph/0602022.

[12] V. Dragović and B. Gajić, *Systems of Hess–Appel’rot type and Zhukovskii property*. Int. J. Geom. Methods Mod. Phys. 6 (2009), no. 8, 1253-1304, arXiv:0912.1875.

[13] B. Gajić, *The rigid body dynamics: classical and algebro-geometric integration*, Zbornik Radova (Belgrade) 16(24) (2013), 16(24) (2013), 5-44, arXiv:1212.6097.

[14] P. A. Griffiths, *Exterior differential systems and the calculus of variations*, Progress in Mathematics, 25. Birkhäuser, Boston, Mass., 1983.

[15] V. Guillemin, S. Sternberg, *On collective complete integrability according to the method of Thimm*, Ergod. Th. Dynam. Sys. 3 (1983), 219–230.

[16] H. Hofer, E. Zehnder, *Symplectic Invariants and Hamiltonian Dynamics*, Birkhäuser 1994.

[17] B. Jovanović, *Partial Reduction of Hamiltonian Flows and Hess–Appelrot Systems on SO(n)*, Nonlinearity 20 (2007), 221–240; arXiv:math-ph/0611062.

[18] B. Jovanović, *Noncommutative integrability and action angle variables in contact geometry*, Journal of Symplectic Geometry 10 (2012), 535–562; arXiv:1103.3611 [math.SG].

[19] B. Jovanović, *On the principle of stationary isoenergetic action*, Publications de l’Institut Mathématique, Nouvelle série, tome 91(105) (2012), 63–81; arXiv:1207.0952.

[20] B. Jovanović, *Heisenberg model in pseudo–Euclidean spaces*, Regular and Chaotic Dynamics, 19 (2014), No. 2, 245–250, arXiv:1405.0905 [nlin.SI].

[21] B. Khesin, S. Tabachnikov, *Contact complete integrability*, Regular and Chaotic Dynamics, 15 (2010) 504-520, arXiv:0910.0375 [math.SG].

[22] E. Lerman, *Contact Toric Manifolds*, J. of Symplectic Geometry 1 (2002), No. 4, 785–828, arXiv:math/0107201 [math.SG].

[23] P. Libermann, C. Marle, *Symplectic Geometry, Analytical Mechanics*, Riedel, Dordrecht, 1987.

[24] R. Lutz, C. Meckert, *Structures de contact sur certaines spheres exotiques*. C.R. Acad. Sci. Paris Ser. A-B 282 (1976) no 11, A591–A593.
[26] A. S. Mishchenko, A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems. Funkts. Anal. Prilozh. 12 (2) (1978), 46–56 (Russian); English translation: A. S. Mishchenko, A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems. Funct. Anal. Appl. 12, 46–56 (1978)

[27] J. Moser, Regularization of Kepler's Problem and the Averaging Method on a Manifold, Comm. Pure and Appl. Math. 23 (1970) 606–636.

[28] J. Moser, E. Zehnder, Notes on Dynamical Systems. AMS (2005).

[29] N. N. Nekhoroshev, Action-angle variables and their generalization, Trans. Moscow Math. Soc. 26, 180–198 (1972).

[30] N. N. Nekhoroshev, The Poincare–Lyapounov–Liouville–Arnold theorem, Funct. Anal. Appl. 28 (1994), 128–129.

[31] I. Ustilovsky, Infinitely Many Contact Structures on S^{4m+1}, Internat. Math. Res. Notices (1999), No 14, 781–791.

[32] S. M. Webster, Quadrics and Complete Integrability in Contact Geometry, Comm. Pure and Applied Math. LVI (2003) 824–838.

[33] A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979), no. 3, 353–358.

[34] T. Yamazaki, A construction of K-contact manifolds by a fiber join, Tohoku Math. J. 51 (1999) 433-446.

[35] H. Yehia, The master integrable two-dimensional system with a quartic second integral. J. Phys. A 39 (2006), no. 20, 5807–5824.

[36] N. T. Zung, Torus actions and integrable systems, In: A. V. Bolsinov, A. T. Fomenko, A. A. Oshemkov (eds.), Topological Methods in the Theory of Integrable Systems 289–328, Cambridge Scientific Publ., (2006), arXiv: math.DS/0407455