THE VANISHING OF A HIGHER CODIMENSION ANALOGUE OF HOCHSTER’S THETA INVARIANT

W. FRANK MOORE, GREG PIEPMEYER, SANDRA SPIROFF, AND MARK E. WALKER

Abstract. We study H. Dao’s invariant η^R_c of pairs of modules defined over a complete intersection ring R of codimension c having an isolated singularity. Our main result is that η^R_c vanishes for all pairs of modules when R is a graded complete intersection ring of codimension $c > 1$ having an isolated singularity. A consequence of this result is that all pairs of modules over such a ring are c-Tor-rigid.

1. Introduction

Let R be an isolated complete intersection singularity, i.e., R is the quotient of a regular local ring (Q, m) by a regular sequence $f_1, \ldots, f_c \in Q$, and R_p is regular for all $p \neq m$. For any pair (M, N) of finitely generated R-modules, the Tor modules $\text{Tor}^R_j(M, N)$ have finite length when $j \gg 0$. Moreover, the lengths of the odd and even indexed Tor modules in high degree follow predictable patterns. There are polynomials $P_{\text{ev}}(j) = a_{c-1}j^{c-1} + \cdots + a_1j + a_0$ and $P_{\text{odd}}(j) = b_{c-1}j^{c-1} + \cdots + b_1j + b_0$ of degree at most $c - 1$ such that

$$\text{length } \text{Tor}^R_{2j}(M, N) = P_{\text{ev}}(j) \quad \text{and} \quad \text{length } \text{Tor}^R_{2j+1}(M, N) = P_{\text{odd}}(j)$$

for all $j \gg 0$ (see, for example, [7, Theorem 4.1]).

The polynomials P_{ev} and P_{odd} need not be the same, nor is it necessary that the coefficients of j^{c-1} coincide. A natural invariant of the pair (M, N) is thus the difference, $a_{c-1} - b_{c-1}$, of these coefficients. Up to a constant factor, this difference is Dao’s η^R_c-invariant.

For example, if $c = 1$, then $P_{\text{ev}} = a_0$ and $P_{\text{odd}} = b_0$ are both constants. This reflects the fact that, in our present context, the Eisenbud operator

$$\chi : \text{Tor}^R_j(M, N) \rightarrow \text{Tor}^R_{j-2}(M, N)$$

is an isomorphism for $j \gg 0$. In this case, the invariant $\eta^R_1(M, N)$ is (one half of) the difference $a_0 - b_0$ of these Tor-lengths. This difference is Hochster’s θ-invariant.

In our previous paper [14] we studied Hochster’s θ-invariant in the special case where R is a graded, isolated hypersurface singularity. Now we employ similar

Date: February 18, 2022.
2000 Mathematics Subject Classification. 13D02, 14C35, 19L10.
The fourth author was supported in part by NSF grant DMS-0601666.
techniques to study the invariant η^R_c for graded, isolated complete intersection singularities of codimension $c > 1$. That is, we assume

\begin{equation}
R = k[x_0, \ldots, x_{n+c-1}]/(f_1, \ldots, f_c)
\end{equation}

where k is a field, the f_i’s are homogeneous polynomials, and $\text{Proj}(R)$ is a smooth k-variety. With these assumptions, the irrelevant maximal ideal $m = (x_0, \ldots, x_{n+c-1})$ of R is the only non-regular prime in $\text{Spec} R$. Our main result is that, for such a ring R, the invariant $\eta^R_c(M, N)$ vanishes for all R-modules M and N, provided $c > 1$. See Theorem 4.5.

H. Dao [7, Theorem 6.3] has proven that the vanishing of $\eta^R_c(M, N)$ implies that the pair (M, N) is c-Tor-rigid, meaning that if c consecutive Tor modules vanish, then all subsequent Tor modules vanish too. We therefore conclude that all pairs of modules over rings of the form (1.1) having an isolated singularity are c-Tor-rigid, provided $c > 1$; our previous result [14, Remark 3.16] shows c-Tor-rigidity for $c = 1$ when the dimension of R is even. In general, one only has $(c + 1)$-Tor-rigidity for pairs of modules over a codimension c complete intersection [15].

We conjecture that $\eta^R_c(M, N) = 0$ for all pairs of modules (M, N) over an isolated complete intersection singularity of codimension $c > 1$, and hence that all pairs of modules over such a ring are c-Tor-rigid. There are many well-known examples (of isolated hypersurface singularities) where (M, N) is not 1-Tor-rigid, and hence $\theta^R(M, N) \neq 0$.

The invariant $\eta^R_c(M, N)$ is also defined for complete intersection rings that are not isolated singularities, provided the pair (M, N) has the property that $\text{Tor}^R_j(M, N)$ has finite length for all $j \gg 0$. We include an example due to D. Jorgensen and O. Celikbas that shows that η^R_2 need not vanish for a complete intersection of codimension 2 if the dimension of the singular locus is positive.

2. Dao’s η^R_c-Invariant

In this section we recall the definition of Dao’s η^R_c-invariant for complete intersections.

Proposition 2.1. Let R be the quotient of a noetherian ring Q by a regular sequence f_1, \ldots, f_c. For a pair of finitely generated R-modules M and N, suppose the Q-module $\text{Tor}^Q_j(M, N)$ vanishes for all $j \gg 0$ and that the R-modules $\text{Tor}^R_j(M, N)$ are supported on a finite set of maximal ideals $\{m_1, \ldots, m_s\}$ of R for all $j \gg 0$. Then there are polynomials $P_{\text{ev}} = P_{\text{ev}}^R(M, N)$ and $P_{\text{odd}} = P_{\text{odd}}^R(M, N)$ of degree at most $c - 1$ so that

\[
\text{length} \text{Tor}^R_{2^j+1}(M, N) = P_{\text{ev}}(j) \quad \text{and} \quad \text{length} \text{Tor}^R_{2^j+1}(M, N) = P_{\text{odd}}(j)
\]

for all $j \gg 0$.

Proof. Apply [7, Theorem 4.1(2)] to each R_{m_i} and add the resulting polynomials to obtain the polynomials here. See Appendix A for an alternative proof of this result. \hfill \Box

The difference of the coefficients of j^{c-1} in $P_{\text{ev}} = P_{\text{ev}}^R(M, N)$ and in P_{odd} is the basis for an invariant of (M, N). We can obtain these coefficients through the
(c − 1)-st iterated first difference: the first difference of a polynomial \(q(j) \) is the polynomial \(q^{(1)}(j) = q(j) - q(j - 1) \), and recursively one defines \(q^{(i)} = (q^{(i-1)})^{(1)} \).

Definition 2.2. In the set up of Proposition 2.1 define
\[
\eta^R_c(M, N) = \frac{(P_{ev} - P_{odd})^{(c-1)}}{2^c \cdot c!}.
\]

This invariant of the pair \((M, N)\) is Dao’s \(\eta^R_c \)-invariant [7, 4.2].

Remark 2.3. For a pair of \(R \)-modules, Dao sets
\[
\beta_j(M, N) = \begin{cases}
\text{length } \text{Tor}_j^R(M, N) & \text{if } \text{length } \text{Tor}_j^R(M, N) < \infty \\
0 & \text{otherwise.}
\end{cases}
\]

It can be shown, as an easy application of Proposition 2.1, that under the assumptions in that result, if \(c > 0 \), then
\[
\eta^R_c(M, N) = \lim_{n \to \infty} \frac{\sum_{j=0}^{n} (-1)^j \beta_j(M, N)}{n^c}.
\]

This limit is the original definition of \(\eta^R_c(M, N) \) due to Dao.

Our main result, Theorem 4.5, suggests the following conjecture:

Conjecture 2.4. Suppose \(R = \mathbb{Q}/(f_1, \ldots, f_c) \) with \(\mathbb{Q} \) a regular noetherian ring and \(f_1, \ldots, f_c \) a regular sequence, with \(c > 1 \). If the singular locus of \(R \) consists of a finite number of maximal ideals, then \(\eta^R_c(M, N) = 0 \) for all finitely generated \(R \)-modules \(M \) and \(N \).

Remark 2.5. The case \(N = k \) of Conjecture 2.4 follows from a result due to L. Avramov, V. Gasharov, and I. Peeva [2, 8.1]. In this case, the length of the Tor\(_j\) record the Betti numbers of \(M \) over \(R \), and part of their result states that both the even and odd Betti numbers grow at the same polynomial rate and have the same leading coefficient.

Example 2.6. The following example is due to D. Jorgensen [13 Example 4.1] and O. Celikbas [5 Example 3.11]. Let \(k \) be a field, and let \(R = k[x, y, z, u]/(xy, zu) \). Then \(R \) is a local complete intersection of codimension two with positive dimensional singular locus. Let \(M = R/(y, u) \), and let \(N \) be the cokernel of the map
\[
R^2 \xrightarrow{\begin{pmatrix} 0 & u \\ -z & x \\ y & 0 \end{pmatrix}} R^3.
\]

Then the pair \((M, N)\) is not 2-Tor-rigid, and hence, by [7 6.3], \(\eta^R_2(M, N) \neq 0 \).

3. The Graded Case

3.1. Let \(Q \) be a graded noetherian ring, \(f_1, \ldots, f_c \) be a \(Q \)-regular sequence of homogeneous elements, and \(R = Q/(f_1, \ldots, f_c) \). Then for each pair of finitely generated graded \(R \)-modules \(M \) and \(N \), \(\text{Tor}_j^R(M, N) \) is a graded \(R \)-module for all \(j \). Moreover, with the notation \(d_i = \deg f_i \), the Eisenbud operators [8] \(\chi_1, \ldots, \chi_c \) determine maps of graded \(R \)-modules
\[
\chi_i : \text{Tor}_j^R(M, N) \to \text{Tor}_{j-2}^R(M, N)(-d_i)
\]
for all \(j \), where for a graded \(R \)-module \(T \), we define \(T(m) \) to be the graded \(R \)-module satisfying \(T(m)_k = T_{k+m} \). Since the actions of the \(\chi_i \) commute, we may view \(\bigoplus_{j,l} \text{Tor}_j^R(M,N)_i \) as a bigraded module over the bigraded ring \(S = R[\chi_1, \ldots, \chi_c] \), where the degree of \(\chi_i \) is \((-2,-d_i)\).

The operators \(\chi_i \) first appeared in work of Gulliksen [10] as (co)homology operators (albeit in a different guise), where he proved that \(\text{Tor}^R_j(M,N) \) is artinian over \(S \) if and only if \(\text{Tor}^Q_j(M,N) \) is artinian over \(Q \). Compare our Appendix A.

Proposition 3.2. Let \(Q \) and \(R \) be as in paragraph 3.1. For a pair of finitely generated graded \(R \)-modules \(M \) and \(N \), suppose the \(Q \)-module \(\text{Tor}_j^Q(M,N) \) vanishes for all \(j \gg 0 \) and there is a finite set of maximal ideals of \(R \) on which the \(R \)-modules \(\text{Tor}_j^R(M,N) \) are supported for all \(j \gg 0 \). Then the action of the Eisenbud operators induces an exact (Koszul) sequence

\[
0 \rightarrow \text{Tor}_j^R(M,N) \rightarrow \bigoplus_{l=1}^c \text{Tor}_{j-2l}^R(M,N)(-d_l) \rightarrow \\
\bigoplus_{l_1 < l_2} \text{Tor}_{j-4}^R(M,N)(-d_{l_1} - d_{l_2}) \rightarrow \cdots \rightarrow \text{Tor}_{j-2c}^R(M,N)(-d_1 - \cdots - d_c) \rightarrow 0
\]

of graded \(R \)-modules for \(j \gg 0 \).

Proof. Within this proof, we use a simplified grading on \(S = R[\chi_1, \ldots, \chi_c] \), effectively ignoring the twists given by the \(d_i \) in 3.1. We let \(R \) lie in degree 0 and let each \(\chi_i \) lie in degree \(-2\). By [7, Lemma 3.2], for a sufficiently large \(J \), the module \(T = \bigoplus_{j \geq J} \text{Tor}_j^R(M,N) \) is graded artinian over the ring \(S \). Consider the Koszul complex \(K = K[\chi_1, \ldots, \chi_c] \otimes_S T \). For \(j \gg 0 \), the complex (3.1) is the \(j \)th graded piece of \(K \). We prove this complex \(K \) is exact in all but finitely many degrees.

As \(T \) is graded artinian over \(S \), the total homology module \(H(K) \) is as well. The descending chain of \(R \)-submodules

\[
H(K) \supseteq \bigoplus_{j \geq 1} H(K)_j \supseteq \bigoplus_{j \geq 2} H(K)_j \supseteq \cdots
\]

intersects to 0. Since \(\chi_i H(K) = 0 \), see [16, IV.A.4], these \(R \)-submodules are in fact \(S \)-submodules. Since \(H(K) \) is artinian over \(S \), the descending chain stabilizes. Thus there exists an \(m > 0 \) such that \(H(K)_j = 0 \) for all \(j \geq m \). \(\square \)

3.3. For the remainder of this section, we assume \(Q = k[x_0, \ldots, x_{n+c-1}] \) is a polynomial ring over a field with each \(x_i \) of degree one, \(f_1, \ldots, f_c \) is a \(Q \)-regular sequence of homogeneous elements, and \(R = Q/(f_1, \ldots, f_c) \). Let \(d_l = \deg(f_l) \). In particular, \(R \) is graded. When \(M \) and \(N \) are finitely generated graded \(R \)-modules, the torsion modules \(\text{Tor}_j^R(M,N) \) are also graded.

Definition 3.4. Let \(R \) be as in paragraph 3.3. For finitely generated graded \(R \)-modules \(M \) and \(N \), and an integer \(F \), define

\[
G_F(x,t) = \sum_{l,j \geq 0} \dim_k (\text{Tor}_j^{F+2j}(M,N)_l) t^l x^j \in \mathbb{Q}[[x,t]].
\]

Remark 3.5. Note that if for some \(F \gg 0 \), \(\text{Tor}_j^{F+2j}(M,N) \) has finite length for all \(j \geq 0 \), then \(G_F(x,t) \) belongs to \(\mathbb{Q}[[t]][[x]] \).
For a finitely generated graded R-module T, its Hilbert series is
\[H_T(t) = \sum_{i \geq 0} \dim_k(T_i)t^i. \]

$H_T(t)$ is a rational function with a pole of order $\dim T$ at $t = 1$. In fact,
\[H_T(t) = \frac{e_T(t)}{(1-t)^{\dim T}}, \tag{3.2} \]
where $e_T(t)$ is a Laurent polynomial \[H_{\mathcal{J}} \] (1.1), sometimes called the multiplicity polynomial of T. The multiplicity polynomial of R is calculated by using the presentation $R = Q/(f_1, \ldots, f_s)$; explicitly, since $\deg(x_i) = 1$ and $\deg(f_i) = d_i$,
\[e_R(t) = \prod_{i=1}^c (1 - t^{d_i})/(1-t)^c. \tag{3.3} \]

For graded R-modules M and N, we write the Hilbert series of $\text{Tor}_j^R(M, N)$ as $H_j(t)$ or just H_j. If M and N are such that the $\text{Tor}_j^R(M, N)$ have finite length for $j \gg 0$, then $H_j(t)$, $j \geq 0$, has the property that the number of initial terms of $H_j(t)$ that vanish goes to infinity as $j \to \infty$. It thus makes sense to form the sum
\[\sum_{j \geq 0} (-1)^j H_j(t), \]
and, more generally, to evaluate $G_F(x, t)$ at $x = 1$ (or any constant; see Remark 3.5). Observe that
\[\sum_{j \geq 0} (-1)^j H_{j+F}(t) = G_F(1, t) - G_{F+1}(1, t), \tag{3.4} \]
for any F.

Lemma 3.6. Let R be a graded ring as in paragraph 3.3, and let M, N be finitely generated graded R-modules such that $\text{Tor}_j^R(M, N)$ has finite length for $j \gg 0$. For $F \gg 0$ there is a unique polynomial $b_F(x, t) \in \mathbb{Q}[x, t]$ such that
\[G_F(x, t) = \frac{b_F(x, t)}{\prod_{i=1}^c (1 - t^{d_i}x)}. \tag{3.5} \]

For $E \gg 0$ and even there is a unique polynomial $\eta^R_{c,E}(M, N)(t) \in \mathbb{Q}[t]$ such that
\[\sum_{j \geq E} (-1)^j H_j(t) = \frac{\eta^R_{c,E}(M, N)(t)c}{e_R(t)(1-t)^c} \quad \text{and} \quad \eta^R_{c,E}(M, N)(1) = 2^c \cdot c! \cdot \eta^R_{c}(M, N), \tag{3.6} \]
where $e_R(t)$ is the multiplicity polynomial of R defined in (3.3).

Proof. Let $s_0 = 1$, $s_1 = t^{d_1} + \cdots + t^{d_c}$, and $s_c = t^{d_1 + \cdots + d_c}$; that is, the s_k are elementary symmetric functions on the symbols t^{d_i}. The exactness of (3.1) for $j \gg 0$ gives the relation
\[s_0 H_j - s_1 H_{j-2} + s_2 H_{j-4} + \cdots + (-1)^c s_c H_{j-2c} = 0, \]
from which it follows that, for $F \gg 0$, we have
\[(1 - s_1 x + s_2 x^2 - \cdots + (-1)^c s_c x^c) G_F(x, t) = b_0 F(t) + b_1 F(t) x + \cdots + b_{c-1} F(t) x^{c-1}, \]
for some polynomials $b_i(t)$. Set $b_F(x, t)$ equal to the right hand side of this equation and use $\sum_{k=0}^n (-1)^k s_k x^k = \prod_{i=1}^c (1 - t^d)$. Then (3.5) follows easily.

To establish (3.6), observe that for $F \gg 0$, we have
\[
\frac{b_F(x, 1)}{(1 - x)^e} = G_F(x, 1) = \sum_{j \geq 0} \dim_k \text{Tor}_{F+2j}^R(M, N)x^j.
\]
Taking $E \gg 0$ to be even, set $\eta^R_{c, E}(M, N)(t)$ to be $b_E(1, t) - b_{E+1}(1, t)$. The first equation in (3.6) follows immediately from (3.3), (3.4), and (3.5).

The leading coefficients of $P_{ev}(M, N)$ and $P_{odd}(M, N)$ are $b_E(1, 1)/(c - 1)!$ and $b_{E+1}(1, 1)/(c - 1)!$, and so the value of $\eta^R_{c, E}(M, N)(t)$ at $t = 1$ is $2^c \cdot c! \cdot \eta^R_{c}(M, N)$. □

Remark 3.7. The polynomials $\eta^R_{c, E}(M, N)(t)$ depend on E, but, as Lemma 3.6 shows, they have a common value at $t = 1$.

4. THE VANISHING OF η^R_{c}

Throughout the remainder of this paper, we use the following notations and assumptions:

- k is a field;
- $R = k[x_0, \ldots, x_{n+c-1}]/(f_1, \ldots, f_c)$, where $\deg x_i = 1$ for all i and the f_i's are homogeneous polynomials in $m = (x_0, \ldots, x_{n+c-1})$ with $d_i = \deg(f_i)$;
- $c > 0$ and f_1, \ldots, f_c forms a regular sequence;
- $X = \text{Proj}(R)$ is a smooth k-variety.

Remark 4.1. Recall that the variety X is smooth if and only if m is the radical of the homogeneous ideal generated by the f_i's and the maximal minors of the Jacobian matrix $(\partial f_i / \partial x_i)$. In particular, by the smoothness assumption, $m = (x_0, \ldots, x_{n+c-1})$ is the only non-regular prime of R.

For a quasi-projective scheme Z over a field k, we let $G(Z)$ and $K(Z)$ denote the Grothendieck groups of coherent sheaves and locally free coherent sheaves, respectively. Recall that if Z is regular (for example, if it is smooth over k), then the canonical map $K(Z) \to G(Z)$ is an isomorphism. For further explanation and discussion of the relevant groups and maps, see [14] §2.1.

From the assumptions (4.1), the smooth variety $X = \text{Proj}(R) \subset \mathbb{P}^{n+c-1}$ has dimension $n - 1$ and degree $d = d_1 \cdots d_c$. When k is infinite, there is a linear rational map $\mathbb{P}^{n+c-1} \dashrightarrow \mathbb{P}^{n-1}$ that determines a regular function on an open subset containing X, and hence it induces a regular map
\[
\rho: X \to \mathbb{P}^{n-1}
\]
that is finite, flat, and of degree d. As X and \mathbb{P}^{n-1} are smooth and ρ is finite, we have the following map and isomorphisms:
\[
\rho_*: K(X) \cong G(X) \to G(\mathbb{P}^{n-1}) \cong K(\mathbb{P}^{n-1}).
\]
We also have the isomorphism
\[
\mathbb{Z}[t]/(1 - t)^n \cong K(\mathbb{P}^{n-1})
\]
Lemma 4.2. \cite{14} Lemma 4.1] Under the assumptions in \cite{4,7} with \(k \) infinite, let \(M \) be a finitely generated graded \(R \)-module and \(\mathcal{M} \) the associated coherent sheaf on \(X \). Then
\[
\rho_*(\mathcal{M}) = (1-t)^n H_M(t)
\]
in \(K(\mathbb{P}^n) \). In particular,
\[
\rho_*(1) = \rho_*(\mathcal{O}_X) = e_R(t) = \prod_{i=1}^c (1 + t + t^2 + \cdots + t^{d_i-1}) \in \mathbb{Q}[t]/(1-t)^n.
\]

Proof. The proof of \cite{14} Lemma 4.1, which is the \(c = 1 \) case, applies verbatim. \(\square \)

Lemma 4.3. \cite{14} Lemma 4.2] Under the assumptions in \cite{4,7} with \(k \) infinite, let \(M \) and \(N \) be finitely generated graded \(R \)-modules. For any sufficiently large even integer \(E \) and for any integer \(m \geq 0 \), the rational function
\[
(1-t)^{n+m-c} \frac{\eta^{R,E}_c(M,N)(t)}{(e_R(t))^2}
\]
does not have a pole at \(t = 1 \). Its image in \(\mathbb{Q}[t]/(1-t)^n \) is
\[
K(\mathbb{P}^n) = (1-t)^n H_M(1) = (1-t)^m \left(\frac{\rho_*(\mathcal{M})}{\rho_*(1)} \cdot \frac{\rho_*(\mathcal{N})}{\rho_*(1)} - \frac{\rho_*(\mathcal{M}) \cdot \rho_*(\mathcal{N})}{\rho_*(1)} \right).
\]
In particular, taking \(m = c - 1 \) yields
\[
(1-t)^{n-1} \eta^{R}_c(M,N) = \frac{1}{2^c \cdot c!} \left(\frac{d \cdot \rho_*(\mathcal{M})}{\rho_*(1)} \cdot \frac{d \cdot \rho_*(\mathcal{N})}{\rho_*(1)} - \frac{d^2 \cdot \rho_*(\mathcal{M}) \cdot \rho_*(\mathcal{N})}{\rho_*(1)} \right),
\]
where \(\deg X = d = d_1 \cdots d_c \).

Proof. As in \cite{14} Lemma 4.2, start with the equation of Hilbert series from \cite{1} Lemma 7], namely
\[
\frac{H_M H_N}{H_R} = \sum_{j \geq 0} (-1)^j H_j.
\]
Splitting the sum at \(E \gg 0 \) and using the first relation in \cite{3,11} gives
\[
\frac{H_M \cdot H_N}{H_R} = \sum_{j=0}^{E-1} (-1)^j H_j + \frac{\eta^{R}_c(M,N)(t)}{e_R(t) \cdot (1-t)^n}.
\]
Upon multiplying by \((1 - t)^m/H_R = (1 - t)^{n+m}/e_R(t)\) and rearranging, this yields
\[
(1 - t)^m \frac{(1 - t)^n H_M}{e_R(t)} - (1 - t)^m \sum_{j=0}^{E-1} (-1)^j \frac{(1 - t)^n H_j}{e_R(t)} = \eta_{c,E}^R(M, N)(t) \cdot \rho_*(1) - \eta_{c,E}^R(M, N)(t)/(e_R(t))^2 - (1 - t)^{n+m-e}.
\]

(4.2)

The first assertion follows from the fact that the expression before the equality in (4.2) does not have a pole at \(t = 1\), using (3.2). Since both sides of this equation are power series in powers of \(1 - t\), we may take their images in \(\mathbb{Q}[t]/(1 - t)^n\). Apply Lemma 4.2. The expression before the equality in (4.2) becomes

\[
(1 - t)^m \frac{\rho_*(\widetilde{[M]}) \rho_*(\widetilde{[N]})}{\rho_*(1)} - (1 - t)^m \sum_{j=0}^{E-1} (-1)^j \frac{\rho_*(\text{Tor}_j^R(M, N))}{\rho_*(1)}.
\]

If \(E\) is large enough so that \(\text{Tor}_j^R(M, N)\) has finite length for \(j \geq E\), then the alternating sum is \(\rho_*(\widetilde{[M] \cdot [N]})/\rho_*(1)\) where \([M] \cdot [N]\) is multiplication in the ring \(K(X)\). This gives the first equation in the Lemma.

For the second equation, set \(m = c - 1\). Define \(g(t) = \eta_{c,E}^R(M, N)(t)/(e_R(t))^2\). As \(e_R(1) = d\) and \(\eta_{c,E}^R(M, N)(t)\) is a polynomial, \(g(t)\) is a rational function without a pole at \(t = 1\). Thus, modulo \((1 - t)^n\),
\[
g(t)(1 - t)^{n-1} = g(1)(1 - t)^{n-1} + \frac{g(t) - g(1)}{1 - t}(1 - t)^n \equiv g(1)(1 - t)^{n-1}.
\]

Multiplication by \(d^2\) establishes the second equation.

□

In the next lemma and in the proof of our main theorem, we use étale cohomology. Assume \(k\) is a separably closed field, fix a prime \(\ell \neq \text{char} k\), and write \(H^*_{\text{ét}}(Z, \mathbb{Q}_\ell(i))\) for the étale cohomology of a scheme \(Z\) with coefficients in \(\mathbb{Q}_\ell(i)\). In addition, write \(H^*_{\text{ét}}(Z, \mathbb{Q}_\ell(\ast))\) for \(\bigoplus_i H^*_{\text{ét}}(Z, \mathbb{Q}_\ell(i))\). This is a commutative ring under cup product. Moreover, the étale Chern character gives a ring homomorphism
\[
ch_{\text{ét}} : K(Z)_Q \rightarrow H^2_{\text{ét}}(Z, \mathbb{Q}_\ell(\ast)).
\]

We refer the reader to [9] for additional background.

Lemma 4.4 [14] Lemma 4.3] Under the assumptions in (4.1) with \(k\) separably closed, the diagram
\[
\begin{array}{ccc}
K(X)_Q & \xrightarrow{\rho_*(1)} & K(\mathbb{P}^{n-1})_Q \\
\downarrow ch_{\text{ét}} & & \downarrow ch_{\text{ét}} \\
H^2_{\text{ét}}(X, \mathbb{Q}_\ell(\ast)) & \xrightarrow{\rho^*_\text{ét}} & H^2_{\text{ét}}(\mathbb{P}^{n-1}, \mathbb{Q}_\ell(\ast))
\end{array}
\]

commutes, where \(\rho^*_\text{ét}\) is the push-forward map for étale cohomology.

Proof. The proof of [14] Lemma 4.4, which is the \(c = 1\) case, applies verbatim. □
The following is the main result of this paper.

Theorem 4.5. Under the assumptions in (4.1) with k separably closed and infinite, let M and N be finitely generated graded R-modules. For E a sufficiently large even integer, $\eta^R_{c,E}(M, N)(t)$ has a zero at $t = 1$ of order at least $c - 1$. In particular, $\eta^R_c(M, N) = 0$ for $c > 1$.

Proof. The claim is vacuous if $c \leq 1$, and so assume $c > 1$. Let γ be the element ω_{ℓ} in $H^4_{\ell}(\mathbb{P}^{n-1}, \mathbb{Q}_{\ell}((-c)))$.

We apply ω_{ℓ} to d^2 times the first equation in Lemma 4.3 and use the commutative diagram in Lemma 4.4 to obtain

\[
\frac{d^2 \cdot \omega_{\ell}((1-t)^{n+m-c} \cdot \eta^R_{c,E}(M, N)(t))}{c \cdot (e_R(t))^2} =
\gamma^m \left(\rho^* \cdot \omega_{\ell} \cdot \omega(\mu) \right).
\]

For $\alpha, \beta \in H^2_{\ell}(X, \mathbb{Q}_{\ell}((-c)))$, define

$\Psi_m(\alpha, \beta) = \gamma^m \left(\rho^* \cdot \omega(\mu) \right)$.

We will prove that Ψ_m vanishes for any $m \geq 1$. Using the projection formula $\rho^* \cdot \omega_{\ell}(\mu) = \alpha' \cdot \omega_{\ell}(\mu)$ with $\omega = 1$, and using the fact that $\rho^* \cdot \omega_{\ell}(\mu) = 0$, we see that if $\alpha' = \rho^* \cdot \omega_{\ell}(\mu)$ for some $\alpha' \in H^2_{\ell}(\mathbb{P}^{n-1}, \mathbb{Q}_{\ell}((-c)))$, then

$\Psi_m(\alpha, \beta) = \gamma^m \left(\rho^* \cdot \omega_{\ell}(\mu) \right) = 0$.

Likewise, $\Psi_m(\alpha, \beta) = 0$ if $\beta = \rho^* \cdot \omega_{\ell}(\mu)$. But since X is a complete intersection in projective space, the map

$\rho^{\omega}_{\ell} : H^2_{\ell}(\mathbb{P}^{n-1}, \mathbb{Q}_{\ell}(j)) \to H^2_{\ell}(X, \mathbb{Q}_{\ell}(j))$

is an isomorphism in all degrees except possibly in degree $2j = n - 1$ (see [18 XI.1.6]). So we may assume n is odd and that $\alpha, \beta \in H^{n-1}_{\ell}(X, \mathbb{Q}_{\ell}(\frac{n-1}{2}))$. Noticing that γ is in $\bigoplus_{i \geq 1} H^2_{\ell}(X, \mathbb{Q}_{\ell}(i))$, we see that $\gamma^m \rho^* \cdot \omega_{\ell}(\mu)$ and $\gamma^m \rho^* \cdot \omega_{\ell}(\mu)$ belong to

$\bigoplus_{i \geq 0} H^{2n-2+2m+2j}_{\ell}(X, \mathbb{Q}_{\ell}(n-1 + m + j))$.

This group vanishes when $m \geq 1$ because $\dim(X) = n - 1$ and étale cohomology vanishes in degrees more than twice the dimension of a smooth variety over a separably closed field [17 X.4.3]. As Ψ_m is zero for $m \geq 1$, so too is the expression on the left-hand side of (4.4).

We have proven that for $m \geq 1,$

\[
\frac{d^2 \cdot \omega_{\ell}((1-t)^{n+m-c} \cdot \eta^R_{c,E}(M, N)(t))}{c \cdot (e_R(t))^2} = 0
\]

and hence

$\omega_{\ell}((1-t)^{n+m-c} \cdot \eta^R_{c,E}(M, N)(t)) = 0.$
But the Chern character map with \(\mathbb{Q}_\ell \) coefficients induces an isomorphism on projective space,

\[
\chi_{\text{ét}} : K(\mathbb{P}^{n-1}) \otimes \mathbb{Q}_\ell \xrightarrow{\cong} H^{2s}(\mathbb{P}^{n-1}, \mathbb{Q}_\ell(*)),
\]

and therefore, \((1 - t)^{n+m-c} \cdot \eta^R_{c,E}(M,N)(t) = 0 \) in \(\mathbb{Q}[t] / (1 - t)^n \). That is, \((1 - t)^n\) divides \((1 - t)^{n+m-c} \cdot \eta^R_{c,E}(M,N)(t) \) in \(\mathbb{Q}[t] \) so that \(\eta^R_{c,E}(M,N)(t) / (1 - t)^{c-m} \) is a polynomial. Taking \(m = 1 < c \) proves the Theorem. \(\square \)

The familiar example below shows that \(\eta^R_c(M,N) \) need not vanish, even under the assumptions (4.1), if \(\dim R \) is odd.

Example 4.6. [12] Example 1.5] The assumption that \(c > 1 \) is necessary in the Theorem. Let \(R = \mathbb{C}[x,y,u,v]/(xu+yv) \) and set \(M = R/(x,y), N = R/(u,v) \), and \(L = R/(x,v) \). Then \(\eta^R_c(M,M) = \frac{1}{2}, \eta^R_c(M,N) = \frac{1}{2}, \) and \(\eta^R_c(M,L) = -\frac{1}{2} \).

Corollary 4.7. Under the assumptions in (4.1) and for every pair of finitely generated, but not necessarily graded, \(R \)-modules \(M \) and \(N \), if \(\dim R > 0 \), then \(\eta^R_c(M,N) \) vanishes when \(c > 1 \). When \(\dim R = 0 \), then \(\eta^R_c(M,N) \) vanishes for all \(c \).

Proof. Upon passing to any faithfully flat field extension \(k' \) of \(k \), the assumptions (4.1) remain valid, and, moreover, for finitely generated \(R \)-modules \(M \) and \(N \), the value of \(\eta^R_c(M,N) \) is unchanged. In more detail, since the lengths involved are dimensions over the field \(k \) for \(\eta^R_c \) and dimensions over the field \(k' \) for \(\eta^R_c \otimes k' \), we have equality

\[
\eta^R_c(M,N) = \eta^R_c \otimes k'(M \otimes_k k', N \otimes_k k').
\]

In particular, by passing to the separable closure of \(k \), we may assume that \(k \) is separably closed.

Since \(\eta^R_c(\cdot, \cdot, \cdot) \) is biadditive [7 Theorem 4.3] and defined for all pairs of finitely generated \(R \)-modules, it follows that \(\eta^R_c \) determines a bilinear pairing on \(G(R) \), and hence on \(G(R)_Q := G(R) \otimes \mathbb{Q} \). It suffices to prove that this latter pairing is zero.

Assume \(\dim R > 0 \). From [14 Section 2.1], we recall the mapping from \(K(X)_Q \) to \(G(R)_Q \) given as follows: if \(T \) is a finitely generated graded \(R \)-module with associated coherent sheaf \(\tilde{T} \) on \(X \), then \(K(X)_Q \rightarrow G(R)_Q \) sends \([\tilde{T}] \in K(X)_Q \) to \([T] \in G(R)_Q \). As proven in [14 (2.4)], this mapping is onto, and hence the vector space \(G(R)_Q \) is spanned by classes of graded \(R \)-modules. Therefore, Theorem 4.3 applies to prove the pairing on \(G(R)_Q \) induced by \(\eta^R_c \) is the zero pairing.

Finally, if \(\dim R = 0 \), then \([R] = \dim_k(R) \cdot [k] \) in \(G(R)_Q \), and hence \([M] = \text{length}(M) \cdot [k] \) in \(G(R)_Q \). Since \(\eta^R_c(R,R) = 0 \) as \(R \) is projective, it follows that \(\eta^R_c \) vanishes for all pairs. \(\square \)

Corollary 4.8. With the assumptions in (4.1), let \(M \) and \(N \) be finitely generated, but not necessarily graded, \(R \)-modules. Then for \(c > 1 \), the pair \((M,N) \) is \(c \)-tor-rigid; that is, if \(c \) consecutive torsion modules \(\text{Tor}_1^R(M,N), \ldots, \text{Tor}^R_{i+c-1}(M,N) \) all vanish for some \(i \geq 0 \), then \(\text{Tor}_j^R(M,N) = 0 \) for \(j \geq i \).

Proof. By Corollary 4.7, \(\eta^R_c(M,N) = 0 \) when \(c > 1 \), and the result immediately follows from [7 Theorem 6.3]. \(\square \)
Appendix A. Adapting Gulliksen’s Work

We show in this appendix how to modify Gulliksen’s work in [10] to give an alternative proof of Proposition 2.1 from the body of this paper. The key result is Proposition A.1 below, which was originally proven by Dao [7, Lemma 3.2]. Using alternative proof of Proposition 2.1 from the body of this paper. The key result is sequence, \(R \), some notation.

Proposition A.1. Assume \(Q \) is a noetherian ring, \(f_1, \ldots, f_c \in Q \) is a regular sequence, \(R = Q/(f_1, \ldots, f_c) \) and \(M \) and \(N \) are finitely generated \(R \)-modules. If for all \(i \gg 0 \), \(\text{Tor}_i^R(M, N) \) has finite length and \(\text{Tor}_i^Q(M, N) = 0 \), then there exists an integer \(j \) such that \(\bigoplus_{i \geq j} \text{Tor}_i^R(M, N) \) is artinian as a module over the polynomial ring \(R[\chi_1, \ldots, \chi_c] \), where the \(\chi_i \)'s act via the Eisenbud operators.

Our proof of this result follows Gulliksen’s proof of [10, Theorem 3.1]; we use two lemmas, both of which are analogues of his results. Our Lemma A.3 sidesteps the issue raised in [7, Example 2.9] while following [10, Lemma 1.2]. First we give some notation.

A.2. Let \(G \) be a \(\mathbb{Z} \)-graded ring concentrated in non-positive degrees (i.e., \(G_i = 0 \) for all \(i > 0 \)). Note that given a graded \(G \)-module \(H \), for any integer \(r \), we have that \(H_{<r} := \bigoplus_{i < r} H_i \) is a \(G \)-graded submodule of \(H \) and \(H_{\geq r} := H/H_{<r} \) is a \(G \)-graded quotient module of \(H \). Following Dao, we say that a graded \(G \)-module \(H \) is almost artinian if there is an integer \(r \) such that \(H_{\geq r} \) is artinian as a \(G \)-module.

Lemma A.3. Let \(G \) and \(H \) be as in paragraph A.2. Assume that \(H_i \) is an artinian \(G_0 \)-module for all \(i \gg 0 \). Let \(X : H \rightarrow H \) be a homogeneous \(G \)-linear map of negative degree. If \(\ker(X) \) is almost artinian as a \(G \)-module, then \(H \) is almost artinian as a \(G[X] \)-module.

Proof. Let \(X \) have degree \(w < 0 \). For each \(r \), there is a map of degree \(w \) on quotient modules given by multiplication by \(X \):

\[
X_{\geq r} : H_{\geq r} \rightarrow H_{\geq r+w}.
\]

Note that \(\ker(X_{\geq r}) = \ker(X)_{\geq r} \), where the latter uses the notation of A.2 and hence \(\ker(X_{\geq r}) \) is artinian as a \(G \)-module for all \(r \gg 0 \), by assumption.

Since \(w < 0 \), there is a canonical surjection \(\pi_{\geq r+w} : H_{\geq r+w} \twoheadrightarrow H_{\geq r} \) of graded \(G \)-modules having degree 0. Define \(Y_{\geq r} = \pi_{\geq r+w} \circ X_{\geq r} \), so that \(Y_{\geq r} \) is the endomorphism of \(H_{\geq r} \) of degree \(w \) given by multiplication by \(X \), and we have the left exact sequence

\[
0 \rightarrow \ker(X_{\geq r}) \rightarrow \ker(Y_{\geq r}) \xrightarrow{X} \ker(\pi_{\geq r+w}).
\]

The module \(\ker(\pi_{\geq r+w}) \) may be regarded as a \(G_0 \)-module via restriction of scalars along the inclusion \(G_0 \hookrightarrow G \). As a \(G_0 \)-module, \(\ker(\pi_{\geq r+w}) \) is a finite direct sum of \(H_i \) for \(i = r + w, \ldots, r \). Hence for \(r \gg 0 \), it is an artinian \(G_0 \)-module by our assumption. So for \(r \gg 0 \), it follows that \(\ker(\pi_{\geq r+w}) \) must also be artinian as a \(G \)-module. Thus for \(r \gg 0 \), the module \(\ker(Y_{\geq r}) \) is an artinian \(G \)-module, as follows from exact sequence A.1.

It follows from [10, Lemma 1.2] that \(H_{\geq r} \) is artinian as a graded \(G[Y_{\geq r}] \)-module, for \(r \gg 0 \); that is, \(H \) is an almost artinian \(G[X] \)-module. □
The Koszul algebra K associated to a regular sequence (f_1, \ldots, f_c) of elements of a commutative ring Q is defined to be the following DG Q-algebra: The underlying graded Q-algebra is the exterior algebra $\Lambda^*_Q(Q^c)$ on the free Q-module Q^c, indexed so that $\Lambda^j_Q(Q^c)$ lies in homological degree j. Let T_1, \ldots, T_c be the standard basis of Q^c. The differential ∂ of K is uniquely determined by setting $\partial(T_i) = f_i$ and requiring that it satisfy the Leibniz rule: $\partial(ab) = \partial(a)b + (-1)^{\deg a}a\partial(b)$.

The Koszul algebra comes equipped with a ring map, called the augmentation, to its degree zero homology, namely $H_0(K) = Q/(f_1, \ldots, f_c) =: R$. Since (f_1, \ldots, f_c) is Q-regular, the augmentation $K \to R$ is a quasi-isomorphism, so that K is a DG algebra resolution of R over Q that is free as a Q-module. Recall that a DG module over K is a graded K-module L equipped with a differential d_L of degree minus one so that $d_L(ax) = \partial(a)x + (-1)^{\deg a}ad_L(x)$ holds for all homogeneous elements $a \in K$ and $x \in L$. See [10] for more background material on DG algebras and DG modules.

A.4. Let K be Koszul algebra over Q associated to a regular sequence f_1, \ldots, f_c in Q and let $I = \ker(K \to R)$ be the augmentation ideal. Let L be a DG module over K that is graded free as a module over the graded ring underlying K. Let N be a finitely generated R-module. Define Y to be $L \otimes_Q R = L/(f_1, \ldots, f_c)L$. For any subset $S = \{i_1, \ldots, i_s\}$ of $\{1, \ldots, c\}$, define $I_S = (T_{i_1}, \ldots, T_{i_s})$ and set $Y^S = Y/I_S$. In particular, $Y^0 = Y$ and $Y^{1, \ldots, c} = Y/IY = L/IL = L \otimes_R R$.

For each S, the complex Y^S is a complex of Q-modules, and in fact of R-modules.

A.5. Gulliksen shows [10] p. 176–8] that for $i \in S$ there is an exact sequence of complexes of Q-modules

$$0 \to Y^S \xrightarrow{T_i} Y^{S\setminus\{i\}} \to Y^S \to 0$$

that is degree-wise split exact. It follows that

$$0 \to Y^S \otimes_Q N \to Y^{S\setminus\{i\}} \otimes_Q N \to Y^S \otimes_Q N \to 0$$

is also exact, giving a long exact sequence in homology. The boundary map in this sequence, $H(Y^S \otimes_Q N) \to H(Y^S \otimes_Q N)$, is, up to sign, the action of X_i on $H(Y^S \otimes_Q N)$ as defined by Gulliksen. Thus X_i has degree -2, since T_i has degree $+1$. Gulliksen proves that these actions commute: $X_iX_j = X_jX_i$ on $H(Y^S \otimes_Q N)$ when $i, j \in S$. When $S = \{1, \ldots, c\}$, these actions endow $H(L/IL \otimes_R N)$ with the structure of a graded module over the graded ring $R[X_1, \ldots, X_c]$ where each X_i has degree -2.

Our next lemma is similar to [10] Lemma 3.2(ii)].

Lemma A.6. With the assumptions in paragraph A.4 and with the X_i from paragraph A.3 if $H_i(L/IL \otimes_R N)$ is artinian as an R-module and $H_i(L \otimes_Q N) = 0$ for $i \gg 0$, then $H_i(L/IL \otimes_R N)$ is almost artinian as an $R[X_1, \ldots, X_c]$-module.

Proof. We have that for $i \gg 0$, the R-module $H_i(Y^{1, \ldots, c} \otimes_R N) = H_i(L/IL \otimes_R N)$ is artinian and $H_i(Y^0 \otimes_Q N) = H_i(L \otimes_Q N) = 0$.

We first observe that, for every $S \subseteq \{1, \ldots, c\}$, $H_i(Y^S \otimes_Q N)$ is also artinian over R, for $i \gg 0$. Indeed, this follows immediately by descending induction on the cardinality of S using the long exact sequence in homology associated to the exact sequence (A.2).
For $S = \{i_1, \ldots, i_s\} \subseteq \{1, \ldots, c\}$, let $G^S = R[X_{i_1}, \ldots, X_{i_s}]$. In particular, $G^\emptyset = R$ and $G^{\{1, \ldots, c\}} = R[X_1, \ldots, X_c]$. We prove $H(Y^S \otimes_Q N)$ is an almost artinian G^S-module for each S, by induction on the cardinality of S. When $S = \emptyset$, then $Y^S = Y^\emptyset = L$ and, by assumption, $H(Y^\emptyset \otimes_Q N) = H(L \otimes_Q N)$ is an almost artinian R-module.

Assume that $i \in S$. The exact sequence (A.2) gives an exact homology sequence

$$
H(Y^{S \setminus \{i\}} \otimes_Q N) \longrightarrow H(Y^S \otimes_Q N) \longrightarrow X_i H(Y^S \otimes_Q N).
$$

By the induction hypothesis, $H(Y^{S \setminus \{i\}} \otimes_Q N)$ is almost artinian as a $G^{S \setminus \{i\}}$-module, and since the graded quotient of an almost artinian module is almost artinian, we see that $\ker(X_i)$ is almost artinian. Since $H_s(Y^S \otimes_Q N)$ is artinian over $G_0 = R$, for $q \gg 0$, as was shown above, Lemma A.3 applies to show $H(Y^S \otimes_Q N)$ is an almost artinian G^S-module.

Proof of Proposition A.1. Regard M as a DG module concentrated in degree 0 via restriction of scalars along the augmentation. Gulliksen shows in [10, Lemma 2.4] how to construct a DG module L over K and a map $L \to M$ of DG modules such that L is free over the graded ring underlying K and the map $L \to M$ is a quasi-isomorphism. Note that $L \to M$ is, in particular, a resolution of M by free Q-modules. Moreover, Gulliksen shows [10, Lemma 2.6] that the projection map $L \to L/IL = L \otimes_K R$ is a quasi-isomorphism where $I = \ker(K \to R)$ is the augmentation ideal. In particular, this means that L/IL is an R-free resolution of M. We therefore obtain the isomorphisms

$$
H_i(L \otimes_Q N) \cong \operatorname{Tor}_i^Q(M, N) \quad \text{and} \quad H_i(L/IL \otimes_R N) \cong \operatorname{Tor}_i^R(M, N)
$$

for any R-module N.

Lemma A.6 now applies to prove that $\bigoplus_i \operatorname{Tor}_i^R(M, N)$ is almost artinian as a $R[X_1, \ldots, X_c]$-module. Finally, Avramov and Sun [4, §4] prove that the X_i’s as constructed by Gulliksen agree with the Eisenbud operators, up to a sign. □

Acknowledgement. We thank the referee for helpful comments regarding this paper.

References

[1] L. Avramov, R.O. Buchweitz, *Lower bounds for Betti numbers*, Compositio Mathematica 86 (1993) no. 2, 147-158. MR1214454 (94a:13011)

[2] L. Avramov, V. Gasharov, I. Peeva, *Complete intersection dimension*, Inst. Hautes Études Sci. Publ. Math. 86 (1998) 67-114. MR1608565 (99c:13033)

[3] L. Avramov, *Infinite free resolutions*, Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 1–118.

[4] L. Avramov, L.C. Sun, *Cohomology operators defined by a deformation*, J. Algebra. 204 (1998), no. 2, 684-710.

[5] O. Celikbas, *Vanishing of Tor over complete intersections*, J. Comm. Alg. 3 (2011) no. 2, 169-206. MR2813471

[6] H. Dao, *Decent intersection and Tor-rigidity for modules over local hypersurfaces*, to appear in Trans. Amer. Math. Soc., preprint http://arxiv.org/pdf/math/0611568v4.pdf

[7] H. Dao, *Asymptotic behavior of Tor over complete intersections and applications*, preprint http://arxiv.org/pdf/0710.5818v1.pdf

[8] D. Eisenbud, *Homological algebra on a complete intersection, with an application to group representations*, Trans. Amer. Math. Soc. 260 (1980) no. 1, 35–64. MR0570778 (82d:13013)
14 W. FRANK MOORE, GREG PIEPMeyer, SANDRA SPIROFF, AND MARK E. WALKER

[9] Eberhard Freitag and Reinhardt Kiehl, Étale cohomology and the Weil conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 13, Springer-Verlag, Berlin, 1988, xviii+317. MR 926276 (89f:14017)

[10] T. H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167–183. MR0364232 (51 #487)

[11] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977, xvi+496. MR0463157 (57 #3116)

[12] M. Hochster, The dimension of an intersection in an ambient hypersurface, Proceedings of the First Midwest Algebraic Geometry Seminar (Chicago Circle, 1980), Lecture Notes in Mathematics 862, Springer-Verlag, New York, 1981, 93–106. MR0644818 (83g:13017)

[13] D. Jorgensen, Complexity and Tor on a complete intersection, J. Algebra 211 (1999) no. 2, 578-598. MR1666660 (99k:13014)

[14] W. F. Moore, G. Piepmeyer, S. Spiroff, M. E. Walker, Hochster’s theta invariant and the Hodge-Riemann bilinear relations, Advances in Math. 226 (2010) no. 2, 1692-1714. MR2737797 (2011m:13029)

[15] M. P. Murthy, Modules over regular local rings, Illinois J. Math. 7 (1963), 558-565. MR0156883 (28 #126)

[16] J. P. Serre, Algèbre locale. Multiplicités., Cours au Collège de France, 1957–1958, Lecture Notes in Mathematics 11, Springer-Verlag, New York, 1965, xvi+496. MR0201468 (34 #1352)

[17] Théorie des topos et cohomologie étale des schémas, Tome 3, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Mathematics 305, Springer-Verlag, Berlin, 1973. MR0354654 (50 #7132)

[18] Groupes de monodromie en géométrie algébrique. II, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Lecture Notes in Mathematics 340, Springer-Verlag, Berlin, 1973. MR0354657 (50 #7135)

Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109

E-mail address: moorewf@wfu.edu

University of Missouri, Columbia, MO 65211

E-mail address: ggpz95@mail.missouri.edu

Department of Mathematics, University of Mississippi, University, MS 38677

E-mail address: spiroff@olemiss.edu

Department of Mathematics, University of Nebraska, Lincoln, NE 68588

E-mail address: mwalker5@math.unl.edu