First description of *Escherichia coli* producing CTX-M-15- extended spectrum beta lactamase (ESBL) in out-patients from south eastern Nigeria

Ifeanyichukwu R Iroha\(^1\)\(^{1}\)*, Charles O Esimone\(^3\), Sandra Neumann\(^2\), Lennart Marlinghaus\(^2\), Miriam Korte\(^2\), Florian Szabados\(^2\), Sören Gatermann\(^2\) and Martin Kaase\(^2\)

Abstract
We studied the presence of extended spectrum beta lactamases (ESBLs) in 44 clinical isolates of *Escherichia coli* collected from out-patients in two university teaching hospitals in South-Eastern Nigeria. Species identification was performed by standard microbiology methods and re-confirmed by MALDI-TOF technology. Phenotypic characterization of ESBL enzymes was done by double disc synergy test and presence of ESBL genes was determined by specific PCR followed by sequencing. Transfer of plasmid DNA was carried out by transformation using *E. coli* DH5 as recipient strain. Phenotypic characterization identified all isolates to be ESBL positive. 77% of strains were from urine, 13.6% from vaginal swabs and 9.0% from wound swabs. 63.6% were from female patients, 68% were from outpatients and 95.5% from patients younger than 30 years. All ESBL producers were positive in a PCR for \(\text{bla}_{\text{CTX-M-1}}\) cluster, in exemplary strains \(\text{bla}_{\text{CTX-M-15}}\) was found by sequencing. In all strains \(\text{IS}_{\text{Ecp1}}\) was found upstream and ORF477 downstream of \(\text{bla}_{\text{CTX-M}}\). PCR for \(\text{bla}_{\text{TEM}}\) and \(\text{bla}_{\text{OXA-1}}\) was positive in 93.1% of strains, whereas \(\text{bla}_{\text{SHV}}\) was not detected, \(\text{aac(6')}\)-Ib-cr was found in 97.7% of strains. RAPD analysis revealed seven different clonal groups named A through G with the majority of the strains (65.9%) belonging to clone A. Transfer of an ESBL plasmid with co-resistance to gentamicin, kanamycin, tobramycin, doxycycline and trimethoprim-sulfamethoxazole was successful in 19 (43.2%) strains. This study showed a high rate of CTX-M-1 cluster - ESBLs in South-Eastern Nigeria and further confirms the worldwide spread of CTX-M ESBL in clinical isolates.

Keywords: Outpatients, ESBL, CTX-M, *Escherichia coli*

Introduction
Microbial resistance is a growing major public health issue and a strong concern for the medical community. Production of \(\beta\)-lactamases is a major means by which Gram-negative bacteria exhibit resistance to \(\beta\)-lactam antibiotics [1]. Extended spectrum \(\beta\)-lactamases (ESBLs) are a group of enzymes that can hydrolyze a variety of \(\beta\)-lactams including cephalosporins like cefazidime, cefotaxime, ceftriaxone and monobactams like aztreonam in addition to penicillins but do not hydrolyze cephamycins like cefoxitin. Most of the ESBLs also have the ability to hydrolyze fourth generation cephalosporins like cefepime [2]. Until recently, ESBL-producing organisms were viewed as hospital-acquired or health care-associated pathogens, i.e. affecting patients who had typically been in hospitals or other health care facilities like nursing homes [3,4]. In the last decades however, these infections have increasingly been recognized in patients who had no prior contact with the health care system [5,6]. *E. coli* strains producing CTX-M type ESBLs drive this new epidemic. Reports on this newer group of ESBLs, coined CTX-M for their preferential hydrolysis of cefotaxime over ceftazidime started to emerge in *E. coli* in the late 1990s [7]. Studies have indicated that the genes for CTX-M type ESBLs were mobilized from the chromosomes of *Klebsiella* spp. to *E. coli* plasmids through transposon-mediated events [8,9]. Currently five clusters of CTX-M type ESBLs have been

*Correspondence: ifynero@yahoo.com
1Department of Applied Microbiology, Faculty of Biological Sciences, Ebonyi State University, P.M.B. 053, Abakaliki, Nigeria
2Department for Medical Microbiology, German Reference Laboratory for Multidrug-Resistant Gram-negative bacteria, Ruhr-University Bochum, Bochum, Germany
Full list of author information is available at the end of the article

© 2012 Iroha et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
identified namely the CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, and CTX-M-25 clusters. CTX-M-14 belonging to the CTX-M-9 cluster and CTX-M-15 belonging to the CTX-M-1 cluster are particularly associated with community-acquired isolates. In the present study, we investigated the molecular epidemiology of clinical isolates of ESBL producing *Escherichia coli* isolated from outpatients in South-Eastern Nigeria.

Materials and methods

A total of 44 clinical isolates of *E. coli* were isolated from patients attending University of Nigeria teaching hospital, Enugu (HA, *n* = 28) and Ebonyi State University teaching hospital Abakaliki (HB, *n* = 16). All isolates were characterized using standard microbiology methods and re-confirmed by MALDI-TOF [10,11]. Extended spectrum beta lactamase enzymes were determined by double disc synergy test (DDST) method with disks of ceftazidime, cefotaxime, ceftriaxone, cefepime, and aztreonam (30 μg each) placed at a distance of 15 mm (center to center) from a disk containing amoxicillin plus clavulanic acid (20 and 10 μg, respectively) [12].

Isolation of genomic DNA of ESBL *E. Coli*

Genomic DNA of ESBL *E. coli* was prepared using the NucleoSpin Kit (Macherey & Nagel, Germany) following manufacturer’s instructions.

Detection of resistance gene using PCR method

Primers used for amplification of resistance genes are shown in Table 1. Cycling conditions were as follows: initial denaturation at 94°C for 5 min, followed by 34 cycles of denaturation at 94°C for 30 s and a final extension step at 72°C for 5 min. Annealing temperatures differed according to the primer pair used and were 42°C for TEM, 47°C for SHV, 52°C for OXA-1, 58.8°C for CTX-M-1. Amplified PCR products were separated on 0.8% agarose gels, stained with ethidium bromide and visualized under UV illumination. Appropriate positive and negative controls were used in all cases [13-15]. Some PCR products were sequenced with 3730 sequencer (applied biosystem). The nucleotide and deduced amino acid sequence were analyzed and compared to sequence available over the Internet at the National Center for Biotechnology Information (http:IIwww.ncbi.nlm.gov). A PCR with specific primers for *aac(6′)-Ib-cr* was performed [16] with the primers shown in Table 1 and an annealing temperature of 45°C and followed by restriction with *BseGI*. The genetic environment of *blaCTX-M* [17] was analyzed by PCR for ISEcp1 upstream and ORF477 downstream with the primers shown in Table 1.

Randomly amplified polymorphic DNA (RAPD) analysis

RAPD was performed with all the 44 ESBL positive strains using a single primer as showed in Table 1 with annealing temperature of 37°C [18].

Transformation studies

Plasmid DNA was extracted with the Qiagen Midi Kit PC100 (Qiagen, Germany). Transformation of plasmids was carried out by electroporation with *E. coli* DH5 cells as recipient strain at 2.5 kV, 25 F and 200 using a Gene-Pulser (Bio-Rad, Hemel hempstead, UK). Samples from

Table 1 Primers used in this study
Primer
TEM_seq
TEM_rev
SHV_seq
SHV_rev
CTX-M_seq
CTX-M_rev
OXA-1-fw
OXA-1_rev
ISEcp1_5′
MA1_rev
CTX-M-1_54 0
orf477_rev
aac6-Lb-fw
aac6-Lb-rev
RAPD_1290
Table 2 PCR results in relation to RAPD groups (n = 44)

PCR tests	Clona A (n = 29)	Other clones (n = 15)	Total
CTX-M-1	29(100%)	15(100%)	44(100%)
\(\text{ISEp}1\)	29(100%)	15(100%)	44(100%)
ORF 477	29(100%)	15(100%)	44(100%)
\(\text{bla}_{\text{SHV}}\)	0(0%)	0(0%)	0(0%)
\(\text{bla}_{\text{TEM}}\)	26(89.7%)	15(100%)	41(93.1%)
\(\text{bla}_{\text{CTX-M-15}}\)	28(96.5%)	13(85%)	41(93.1%)
\(\text{aac}(6)'-\text{Ib-cr}\)	28(96.5%)	15(100%)	3(97.7%)

Discussions

This study was carried out in two major university teaching hospitals in South-Eastern Nigeria where there is no record of investigation of molecular epidemiology of ESBL E. coli. Nosocomial bacterial infections constitute a substantial cause of morbidity and mortality in developing countries such as Nigeria. E. coli is known to be one of the major organisms causing nosocomial infections within the hospital and has also been implicated in community acquired ESBL [19,20]. The observation of ESBL producing E. coli strains in this study is very alarming and this could be attributed to the indiscriminate and widespread use of antibiotics, particularly beta lactam antibiotics that are sold over the counter in pharmacy shops without doctors’ prescription in Nigeria. This misuse of antibiotics might have contributed to the emergency of ESBL producing isolates. All 44 ESBL E. coli strains harbored ESBLs of the CTX-M-1 cluster. In three exemplary strains the CTX-M-15 ESBL could be confirmed which belongs to the CTX-M-1 cluster. These results further emphasize that this enzyme is now one of the most common CTX-M ß-lactamases worldwide. In several countries CTX-M-15 is currently the most frequent ESBL in E. coli like in the UK, India, Spain, France, Latin America and Lebanon [20]. In Nigeria ESBL has been described in Enterobacter spp.
from Western Nigeria several years ago [21] and CTX-M-15 ESBL in K. pneumoniae from the same region four years later [22] while ESBL was also reported in E. coli from South Eastern Nigeria this same year [23] but no description of CTX-M-15 ESBL from outpatients has been reported. Recently CTX-M-15 ESBL producing E. coli was reported from hospital patients in Osogbo in Western Nigeria [24]. CTX-M-15 has also been reported from other African countries like Egypt [25], Algeria [26], Tunisia [27], Tanzania [28], and Cameroon [29]. One of the most alarming findings of our study is that most ESBL isolates were detected in urine from young outpatients; urine was the source of 81.8% of ESBL strains, 68.2% of patients were of an age below 30 years. This strongly indicates that CTX-M-15 carrying E. coli strains can cause community-acquired urinary tract infections and that those ESBL strains are not only present in a hospital environment but also in the community population of this area of Nigeria. Similar observations have been made also in other parts of the world [5,6].

Typing of isolates via RAPD grouped the isolates into seven different clones. Seven strains could not be typed by this method and the majority of ESBL E. coli strains studied in this work belongs to a single clone as determined by RAPD. Of particular interest is that this clone A was detected in two hospitals located more that 70 km away from each other. One possible explanation is patient-to-patient transmission in both hospitals and introduction of clone A into another hospital by patient transfer. Hospital A serves as referral hospital for patients in hospital B with serious medical problems. A certain degree of inter-hospital spread was discovered because two patients with clone A ESBLs were known to have visited both hospitals during our study period. Thus, it is of high importance to apply specific infection control measures like hand disinfection in hospitals. Considering that also clone A ESBL isolates were found in young outpatients, another possible explanation might be that clone A occurs rather frequently in the population of this area. If so, it would be worth the effort to exclude a possible common source like drinking water or food products.

As observed worldwide for CTX-M-15 ESBL E. coli strains, we found a high association of CTX-M-1 cluster ESBLs with IS{ECp1} upstream and ORF 477 downstream of the gene, with the presence of TEM and OXA-1 beta lactamases and with the detection of aac(6’)-Ib-cr. The latter gene mediates resistance to tobramycin and decreased susceptibility to ciprofloxacin [30]. Thus it is one of several factors responsible for multi-drug resistance also to non-beta lactam antibiotics in ESBL strains.

Conclusions
For the first time ESBL E. coli strains could be demonstrated from Southeastern Nigeria with CTX-M-1 cluster enzymes present in all isolates. Most of the ESBL strains also carried TEM, OXA-1 and aac(6’)-Ib-cr and the majority of strains were isolated from outpatients below the age of 30. Based on our findings we suggest that antimicrobial resistance surveillance network be established in the two hospitals to monitor the trends and new types of resistance mechanism in Southeastern, Nigeria.

Ethics
Ethical committee of the two hospitals approved the use of their hospitals for this study and patients gave consent for the collection of their samples.

Competing interests
No interest to declare.

Authors’ contributions
MKa and IRI planned this study. IRI performed most of the experiments. MKo, LM and SM performed parts of the experiments. MKa, FS and SG revised the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This study was sponsored by Alexander von Humboldt Stiftung foundation (George-Foster).

Author details
1Department of Applied Microbiology, Faculty of Biological Sciences, Ebonyi State University, P.M.B. 053, Abakaliki, Nigeria. 2Department for Medical Microbiology, German Reference Laboratory for Multidrug-Resistant Gram-negative bacteria, Ruhr- University Bochum, Bochum, Germany. 3Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria.

Received: 9 May 2012 Accepted: 1 July 2012 Published: 23 July 2012

References
1. Medeiros AA: Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin Infect Dis 1997, 24(Suppl1): S19–S45.
2. Bradford PA: Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistant threat. Clin Microbiol Rev 2001, 14:933–951.
3. Amber RP, Coulson AFW, Frere JM, Ghuyendt JM, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG: A standard numbering scheme for the class A β-lactamases. Biochem J 1991, 276:269–272.
4. Kasi-Kihikani V, Vimont S, Asselat K, Trivalle C, Minassian B, Gautier V, et al: CTX-M β-lactamase producing E. coli in long term care facilities, France. Emerg Infect Dis 2004, 10:1697–1698.
5. Borer A, Gilad J, Menasche G, Peid N, Riesenberg K, Schlaeffer F: Extended-spectrum beta-lactamase-producing Enterobacteriaceae strains in community-acquired bacteremia in Southen Israel. Med Sci Monit 2002, B2844–C297.
6. Pitout JDD, Normann P, Laupland KB, Poirel L: Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamase (ESBL) in the community. J Antimicrob Chemother 2005, 56:52–59.
7. Pitout JDD, Gregson DB, Church DL, Elsayed S, Laupland KB: Community-wide outbreaks of clonally related CTX-M-14 β-lactamase-producing Escherichia coli strains in the Calgary health region. J Clin Microbiol 2005, 43:2844–2849.
8. Paterson DL, Bonomo RA: Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005, 18:657–686.
9. Poirel L, Kamfer P, Nordmann P: Chromosomally-encoded Amber class A β-lactamases of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended spectrum β-lactamases. Antimicrob Agents Chemother 2002, 46:4039–4040.
10. Murray PR, et al: Manual of Clinical Microbiology, 7th edition. Washington DC USA: American Society for Microbiology Press, 2002.

11. Pineda FJ, Lin LS, Pensalau C, Dinarov PA: Testing the significance of micro-organism identification by mass spectrometry and protein database search. Anal Chem 2000, 72:3739–3744.

12. Pfitzcr JS, Adiflume H, Hanson HD: Phenotypic and Molecular detection of CTX-M-β-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 2004, 42(12):5715–5721.

13. Schlesinger J, Navon Venezia S, Chmelnistsky I, Hammer-Munz O, Leavitt A, Gold HS: Extended spectrum β-lactamases among Enterobacter isolates Obtained in Tel Aviv, Israel. Antimicrob. Agents Chemother 2005, 49(3):1150–1156.

14. Erpel J, Baraniak A, Literacka E, Mrowka A, Fiett J, Hryniewicz EW, et al: Random amplification of polymorphic DNA reveals serotype-specific clonal clusters among entero toxigenic Escherichia coli from humans. J Clin Microbiol 1997, 35(6):1521–5.

15. Jacoby GA, Han P: Detection of extended-spectrum - lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 1996, 34(9):908–911.

16. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper HC: Prevalence in the United States of ß-lactamase encoding a ciprofloxacin-modifying enzymes. Antimicrob Agents Chemother. 2006, 50:3053–3055.

17. Eckert C, Gautier V, Arlet G: DNA sequence analysis of the genetic environment of various ß-lactamases from Nigeria. J Antimicrob Chemother 2006, 57(1):14–23.

18. Pacheco AB, Guth BE, Soares KC, Nishimura L, de Almeida DF, Ferreira LC: Detection of ß-lactamases in clinical isolates of Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae from Lagos, Nigeria. J Clin Microbiol 2003, 36(8):241–249.

19. Soge O, Queenan AM, Ojo KK, Adeniyi BA, Roberts MC: CTX-M-15 extended spectrum ß-lactamases from Nigeria Klebsiella pneumoniae. J Antimicrob Chemother 2006, 57:224–30.

20. Khalil NG, Eleeteby ME, Hanson ND: Characterization of CTX-M ESBLs in Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae from Cairo, Egypt. BMC Infect Dis 2009, 9(84):1–5.

21. Blomberg B, Jureen R, Marj K, Tamkin BS, Mwakagile DSM, et al: High rate of cases of pediatric septicaemia caused by Gram-negative bacteria with extended spectrum ß-lactamases in Dar es Salaam, Tanzania. J Clin Microbiol 2005, 43:745–749.

22. Kaye KM, Girk M, Amsel R, et al: Nosocomial outbreak caused by Salmonella enteric serotype producing CTX-M-27 extended-spectrum ß-lactamase in a neonatal unit in Sousse, Tunisia. J Clin Microbiol 2005, 43:1843–1849.

23. Baramidani-Bouguessa N, Mendonica N, Levtoa J, Ferreira J, Tazir M: CTX-M-3 and CTX-M-15 extended spectrum ß-lactamases in isolates of Enterococci from a hospital in Algiers, Algeria. J Clin Microbiol 2006, 44(12):4584–4586.

24. Boualique-Gdoret O, Benalem Y, Fabre L, Demartin M, Grimaud P, Mouchli A, et al: Nosocomial outbreak caused by Salmonella enteric serotype producing CTX-M-27 extended-spectrum ß-lactamase in a neonatal unit in Sousse, Tunisia. J Clin Microbiol 2005, 43:1843–1849.

25. Blomberg B, Jureen R, Marj K, Tamkin BS, Mwakagile DSM, et al: High rate of cases of pediatric septicaemia caused by Gram-negative bacteria with extended spectrum ß-lactamases in Dar es Salaam, Tanzania. J Clin Microbiol 2005, 43:745–749.

26. Gangoue-Pieboji J, Miragou V, Vouri S, Tzavelis E, Ngassam P, Tzouveleakis LS: Emergence of CTX-M-15-producing enterobacteria in Cameroon and characterization of a bla CTX-M-15- carrying element. Antimicrob Agents Chemother 2005, 49(1):441–443.

27. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A: Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 2009, 22 (4):664–689.