Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutants in the Sf9 Cell Expression System

Erich H. Schneider and Roland Seifert

Contents

1 Principles of GPCR Analysis in the Sf9 Cell Expression System
 1.1 The Sf9 Cell Expression System
 1.2 Methods for the Characterization of Histamine Receptors in Sf9 Cell Membranes
2 Pharmacological Characterization of Human Histamine Receptors in Sf9 Insect Cells
 2.1 The Histamine H1 Receptor
 2.2 The Histamine H2 Receptor
 2.3 The Histamine H3 Receptor
 2.4 The Histamine H4 Receptor
3 Summary and Outlook

Abstract

A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and \[^{35}\text{S}]\text{GTP}_{\gamma}\text{S} \text{ assays}). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell \(\text{G}_{\alpha}\). By contrast, functional expression of the hH2R required the generation of

Parts of this chapter were previously used in a habilitation thesis (EHS).

E.H. Schneider (✉) • R. Seifert
Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
e-mail: schneider.erich@mh-hannover.de

© Springer International Publishing AG 2017
Handbook of Experimental Pharmacology, DOI 10.1007/164_2016_124
an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαo in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li+, Na+, K+) and anions (Cl−, Br−, I−) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high-affinity state. A detailed characterization of affinity and activity of a series of hH4R antagonists/inverse agonists allowed first conclusions about structure/activity relationships for inverse agonists at hH4R. In summary, the Sf9 cell system permitted a successful side-by-side comparison of all four human histamine receptor subtypes. This chapter summarizes the results of pharmacological as well as medicinal chemistry/molecular modeling approaches and demonstrates that these data are not only important for a deeper understanding of HxR pharmacology, but also have significant implications for the molecular pharmacology of GPCRs in general.

Keywords

[^35S]GTPγS binding • GPCRs • Histamine receptors • Radioligand binding • Sf9 insect cells • Steady-state GTPase assay

Abbreviations

[^3H]histamine Tritated histamine
[^3H]NAMH Tritated Nα-methylhistamine
[^35S]GTPγS GTPγS, labeled with ^35S
α2AR α-Adrenoceptor, subtype 2
β1AR, β2AR β-Adrenoceptor subtypes
β2ARCAM β2-Adrenoceptor, constitutively active mutant
[^32P]GTP GTP, γ-labeled with ^32P
A2aR Adenosine receptor subtype 2A
AC Adenylyl cyclase
ACKR1 Atypical chemokine receptor 1
Term	Definition
AIPGs	N^G-acylated imidazolylpropylguanidines
B2R	Bradykinin B₂ receptor
Balb/C, C57Bl/6	Mouse strains
cAMP	3′,5′-Cyclic adenosine monophosphate
CCR5	C–C chemokine receptor type 5
CNS	Central nervous system
D₁R, D₂R	Dopamine receptor subtypes
DRY	Aspartate–arginine–tyrosine motif at the bottom of the third transmembrane helix of a GPCR
e	Extracellular loop (e.g. e2)
EAE	Experimental autoimmune encephalitis
ECL	Extracellular loop
FLAG	Peptide tag (DYKDDDDDK)
FPR1	Formyl peptide receptor 1
FPR26	FPR1 isoform
GABA_BR	Receptor for γ-amino butyric acid, subtype B
GAIP	Goα-interacting protein (= regulator of G protein signaling RGS19)
GDP	Guanosine-5′-diphosphate
gp	Guinea pig (prefix)
GPCR	G protein-coupled receptor
Gsα_L	Stimulatory G protein, long splice variant
Gsα_S	Stimulatory G protein, short splice variant
GTP	Guanosine-5′-triphosphate
GTPγS	Guanosine 5′-O-[γ-thio]triphosphate (non-hydrolysable GTP derivative)
Gα₁₁, Gα₁₂, Gα₁₃, Gα_{ι/0}	Inhibitory G protein isoforms
Gα-q	G protein isoform activating phospholipase C
Gt_s	Stimulatory G protein
Gβ_{1γ}2	G protein complex, consisting of Gβ₁ and Gγ₂
h	Human (prefix)
h(gpE2)H₁R	Chimeric receptor (human H₁R with second extracellular loop from guinea pig H₁R)
h(gpNggE2)H₁R	Chimeric receptor (human H₁R with N-terminus and second extracellular loop from guinea pig H₁R)
H₁R, H₂R, H₃R, H₄R	Histamine receptor subtypes
HDC	Histidine decarboxylase
HeLa	Cervix carcinoma cell line
His₆	Hexahistidine tag
HL-60	Human promyelocytic leukemia cell line
HPLC-MS/MS	High performance liquid chromatography-coupled tandem mass spectrometry
K_D	Ligand dissociation constant
K_M	Michaelis–Menten constant, substrate concentration resulting in 50% of maximum enzymatic reaction speed
LH/CG receptor	Receptor for luteinizing hormone/choiogonadotropin
1 Principles of GPCR Analysis in the Sf9 Cell Expression System

1.1 The Sf9 Cell Expression System

Pharmacological characterization of GPCRs is commonly performed in transfected mammalian cells or in cells that endogenously express the receptor of interest (Kenakin 1996). There are, however, several problems of mammalian cell systems.
First, mammalian cells normally express various additional GPCRs, which may result in GPCR heteromerization or signaling crosstalk (Breitwieser 2004; Prezeau et al. 2010; Gomes et al. 2016). For example, signaling crosstalk between GPCRs has been described for the Gαi-coupled GABABR and the Gαq-coupled mGlu1AR (Rives et al. 2009). Another example is ACKR1 (atypical chemokine receptor 1), which has been shown to functionally antagonize CCR5 by forming ACKR1/CCR5 heterodimers (Chakera et al. 2008). Second, the presence of other constitutively active receptors may interfere with the analysis of agonist-independent activity of the receptor of interest. For example, the inverse FPR1 agonist cyclosporin H failed to inhibit basal Gαi protein activity in HL-60 cells, indicating that these cells additionally express other constitutively active receptors different from FPR1 (Wenzel-Seifert and Seifert 1993; Seifert and Wenzel-Seifert 2003). Third, promiscuous G protein coupling of GPCRs in the presence of several G protein subtypes may preclude the analysis of GPCR-G protein selectivity (Woehler and Ponimaskin 2009). Finally, some GPCRs are only expressed at low levels in mammalian cells, rendering it difficult to obtain a sufficiently high signal-to-noise ratio in functional and ligand binding assays.

As discussed in a comprehensive review article (Schneider and Seifert 2010c), the problems listed above are effectively addressed by using the Sf9 cell expression system. Sf9 cells are derived from the Sf21 cell line, which had been originally isolated from the pupal ovarian tissue of the American fall army worm (Spodoptera frugiperda). The protein of interest is expressed by infecting Sf9 cells with baculoviruses encoding the corresponding gene. Although Sf9 cells express Gαi-, Gαq-, and Gαs-like proteins, insect cell Gαi is not activated by mammalian GPCRs. This renders Sf9 cells a functionally “Gαi-free” system and permits the analysis of Gαi-coupled receptors without the necessity of pertussis toxin (PTX)-mediated GPCR/Gαi uncoupling. Also, PTX would not be active in Sf9 cells, because it does not enter the cells (Wenzel-Seifert et al. 1998). By contrast, uncoupling of Gαi-coupled GPCRs by PTX in mammalian cells is problematic. Despite entering mammalian cells, PTX is not capable of completely inactivating all Gαi proteins (Wenzel-Seifert and Seifert 1990).

Moreover, Sf9 cells do not express constitutively active GPCRs and therefore provide a low-background environment for the analysis of agonist-independent receptor activity. Furthermore, the highly efficient baculovirus promoters lead to very high expression levels of GPCRs in Sf9 cells. This results in high signal-to-noise ratios in binding assays and allows the purification of receptor protein, e.g. for crystallization purposes. Finally, as explained below, Sf9 cell membranes expressing large amounts of GPCRs and G proteins can be used to study G protein activation in steady-state GTPase assays and experiments with [35S]GTPγS ([35S]-labeled guanosine 5′-O-[γ-thio]triphosphate).

For the preparation of baculoviruses encoding the gene of interest, several straightforward methods are established. The Sf9 cell studies discussed in this chapter were performed by using the BaculoGold™ kit from Invitrogen. As explained in Fig. 1, the gene of interest (in this example hH4R) is cloned into a pVL1392 baculovirus transfer vector, which is transfected into Sf9 cells together with the missing part of the baculovirus genome (BaculoGold™ DNA).
After that, the full baculovirus genome with the integrated receptor gene is reconstituted in the host cells by homologous recombination. The cell then releases virus particles into the surrounding medium which is harvested and used for further infections. A detailed protocol for the production and maintenance of genetically modified baculoviruses was published in *Methods in Enzymology* (Schneider and Seifert 2010a). Numerous examples of the characterization of Gαq-, Gαs-, and Gαi-coupled receptors reconstituted in Sf9 insect cells were documented by Schneider and Seifert (2010c). In this chapter, an in-depth discussion of the pharmacological characterization of histamine receptors in Sf9 cell membranes is provided.

1.2 Methods for the Characterization of Histamine Receptors in Sf9 Cell Membranes

1.2.1 The G Protein Cycle

The G protein activation cycle (Gilman 1987; Oldham and Hamm 2008), which is explained in the following, is the basis for the methods used to generate the functional histamine receptor data discussed in this chapter. When histamine binds to the hH₄R, the receptor protein undergoes a conformational change and interacts with an inactive GDP-bound heterotrimeric G protein (Fig. 2 step 1). This induces GDP release and the formation of the so-called ternary complex, which contains agonist, receptor and guanine-nucleotide-free G protein (Fig. 2, step 2). It is generally accepted that a GPCR exhibits its highest agonist-binding affinity, when it is part of the ternary complex. The interaction between agonist-bound...
GPCR and G protein promotes GTP binding to the Gα-subunit. This weakens the intermolecular interactions in the G protein and in the ternary complex, breaking the complex up into agonist and GPCR as well as Gα- and Gβγ subunit (Fig. 2, step 3).

After their dissociation from the receptor, the active GTP-loaded Gα subunit and the Gβγ part interact with various effector proteins (Fig. 2, step 4) and induce numerous biochemical processes. Such effects include activation (Gαs) or inhibition (Gαi) of membranous adenylyl cyclase (AC), modulation of ion channel activity (Gβγ, Gαi) or stimulation of phospholipase C (PLC) activity followed by intracellular Ca²⁺ mobilization (Gβγ, Gαq). As long as GTP is bound to Gα, the Gα and Gβγ subunits are active. To terminate signaling, the Gα subunit inactivates itself by its intrinsic GTPase activity, resulting in conversion of the bound GTP to GDP and release of inorganic phosphate (Fig. 2, step 5). The inactive GDP-bound Gα subunit re-associates with Gβγ and becomes available for another cycle (Fig. 2, step 6).

1.2.2 High Affinity Radioligand Binding

High affinity radioligand binding with histamine receptors is performed with radiolabeled agonists, e.g. tritiated histamine ([³H]histamine). Normally, agonists show their highest affinity to the ternary complex (Fig. 2, step 2) and stabilize the active receptor conformation. Thus, agonistic radioligands preferentially label the G protein-coupled high-affinity receptor population. When two populations of GPCRs with different G protein coupling states occur simultaneously, the saturation or competition curves with agonistic radioligands may become biphasic, which allows the determination of high-affinity and a low-affinity binding constants. This was, e.g., demonstrated for histamine H₄R (Houston et al. 2002) as well as for the β₂-adrenergic receptor (β₂AR) or the dopamine D₁R (Gille and Seifert 2003). By contrast, inverse agonists interact preferentially with the inactive receptor state and...
therefore show increased affinity to uncoupled GPCRs. Neutral antagonists do not
discriminate between active and inactive receptor states and label both receptor
conformations with comparable affinity.

For some experiments it may be required to convert GPCRs to their inactive
conformation by disrupting receptor-G protein interactions. This is achieved by
addition of GTPγS (guanosine 5'-O-[γ-thio]triphosphate), which binds to the G-
α-subunit like GTP (Fig. 2, step 3), but cannot be hydrolyzed by the Gα subunit
(Gilman 1987). Thus, no GDP-loaded G protein is available anymore for the
formation of new ternary complexes resulting in uncoupling of the entire GPCR
population. This is normally reflected by a dramatic reduction in the binding affinity
of agonistic radioligands. A detailed protocol for high-affinity agonist binding
assays as well as example data for various receptor/G protein systems is provided
in book chapters about GPCR/G protein co-expression and fusion protein systems
in Sf9 cell membranes (Schneider and Seifert 2010a, b).

1.2.3 Steady-State GTPase Assays
In steady-state GTPase assays, the intrinsic GTPase activity (Fig. 2, step 5) of the
active GTP-bound Gα-subunit is determined (Gilman 1987; Schneider and Seifert
2010a). This is achieved by quantitating radioactive inorganic phosphate released
after Gα-mediated hydrolysis of [γ-32P]GTP. The steady-state GTPase assay
represents a very proximal readout of GPCR activation, which directly reflects
GPCR-mediated G protein stimulation. By contrast, functional assays analyzing
more distal parameters (e.g., Ca2+, cAMP- or reporter gene assays) are often
influenced by signal amplification processes, making valid conclusions about the
original extent of receptor activation difficult. Technical details of the steady-state
GTPase assay were explained in two book chapters about GPCR/G protein
co-expression and fusion protein systems in Sf9 cells (Schneider and Seifert
2010a, b).

Steady-state GTPase assays can be used for the functional characterization of
ligands in medicinal chemistry projects. In addition, these assays provide information
about the efficacy of receptor-G protein interactions. In Michaelis–Menten
kinetics experiments with increasing concentrations of the substrate [γ-32P]GTP,
the K_M and V_{max} value of the Gα-GTPase can be determined (Schneider and Seifert
2009, 2010a). Subtraction of the GTPase activity in the presence of a full inverse
agonist from the activity elicited by a full agonist yields the total receptor-regulated
GTPase activity (ΔV_{max}). Dividing the ΔV_{max} value by B_{max} (maximum number of
radiolabeled receptor proteins) provides the so-called turnover number, which
signifies the number of GTP molecules hydrolyzed per minute, resulting from the
activation of a single GPCR protein (Schneider and Seifert 2010a).

1.2.4 [35S]GTPγS Binding Assays
The [35S]GTPγS binding assay is another method to determine the functional effect
of a ligand at a very proximal level of GPCR signal transduction. As depicted in
Fig. 2, GTPγS binds to the activated Gα-subunit instead of GTP, resulting in the
dissociation of the ternary complex (Fig. 2, step 3). Unlike GTP, however, GTPγS
cannot be hydrolyzed by the intrinsic GTPase activity of Go (Gilman 1987), resulting in an accumulation of GTPγS-bound Go-subunits. When radiolabeled [35S]GTPγS is used, the amount of activated Go subunits can be quantitated by scintillation counting, allowing the characterization of Go activation kinetics (time course of [35S]GTPγS-Go accumulation) and the determination of agonist- and inverse-agonist modulated Go activation. When the total ligand-regulated Go activation (maximum effect of full agonist minus activation level in the presence of a full inverse agonist) is divided by the B_{max} value from radioligand binding, the so-called coupling factor is obtained. Similar to the aforementioned turnover number, the coupling factor provides information about the number of Go subunits stimulated by a single GPCR protein.

Furthermore, saturation binding experiments with increasing concentrations of [35S]GTPγS yield information about alterations of Go affinity to [35S]GTPγS under various conditions (e.g., constitutive receptor activity, agonist- or inverse agonist-induced effects). Finally, [35S]GTPγS binding assays are useful to pharmacologically characterize new ligands synthesized during the course of medicinal chemistry projects. A detailed experimental protocol of [35S]GTPγS binding assays as well as an explanation of how to analyze and interpret the data is provided in comprehensive book chapters about the characterization of GPCR/Go co-expression and fusion protein systems in Sf9 cell membranes (Schneider and Seifert 2010a, b).

1.2.5 Fusion Protein Systems

Mammalian GPCRs and G protein Go and Gβγ subunits can be readily co-expressed in the baculovirus/Sf9 cell system yielding useful systems for the pharmacological characterization of GPCR ligands and receptor-G protein interactions. However, sometimes co-expression systems produce only insufficient GPCR-mediated Go activation (Seifert et al. 1998a; Gille and Seifert 2003). Specifically, Go proteins rapidly dissociate from the plasma membrane (Yu and Rasenick 2002) and therefore cannot be efficiently activated by a co-expressed GPCR. This problem is solved by constructing GPCR-Go fusion proteins (Fig. 3) that guarantee close proximity of receptor and G protein.

This approach was successfully used for the pharmacological characterization of Go-coupled receptors like the β2AR (Bertin et al. 1994; Seifert et al. 1998a) or the histamine H2R (Wenzel-Seifert et al. 2001). GPCR-Go fusion proteins of β2AR, FPR1 or dopamine D1R allowed a detailed examination of Go-isoform specificity of these receptors (Wenzel-Seifert et al. 1999; Wenzel-Seifert and Seifert 2000; Gille and Seifert 2003). GPCR-Go fusion proteins are also useful controls to exclude activation of Sf9 cell G proteins by a specific mammalian GPCR. Normally, the turnover number from steady-state GTPase assays or the coupling factor from [35S]GTPγS binding experiments should be around unity in fusion protein systems, corresponding to linear signaling. A coupling factor >1 in a GPCR-Go fusion protein system, however, indicates additional activation of insect cell proteins.

The fusion protein approach can also be applied to generate GPCR-RGS fusion proteins. RGS proteins (regulators of G protein signaling) activate the intrinsic GTPase activity of Go proteins. GPCR-RGS fusion proteins bring the RGS protein in close proximity to receptor and G protein. This may enhance signal intensity in...
steady-state GTPase assays. The first GPCR-RGS fusion proteins were constructed in 2003 (Bahia et al. 2003). A detailed discussion of various aspects of co-expression and fusion protein systems was provided in Methods in Enzymology (Schneider and Seifert 2010a, b).

2 Pharmacological Characterization of Human Histamine Receptors in Sf9 Insect Cells

The biogenic amine histamine is formed by histidine decarboxylase (HDC)-mediated decarboxylation of the precursor amino acid histidine. Histamine is stored in granula of mast cells and basophils and occurs in enterochromaffin-like cells of the stomach (Panula et al. 2015). Moreover, by means of a highly sensitive HPLC-MS/MS-based detection method, histamine was identified in lymph nodes and thymus of C57Bl/6 and Balb/c mice (Zimmermann et al. 2011). In the central nervous system (CNS), histamine occurs as a neurotransmitter. It is synthesized in histaminergic neurons that emerge from the tuberomammillary nucleus (TMN) in the posterior hypothalamus and spread to numerous regions throughout the brain (Schneider et al. 2014a, b; Panula et al. 2015). The distribution of histamine in the body indicates its most important functions, namely the regulation of inflammatory/allergic reactions, stimulation of gastric acid secretion and neurotransmission. Most of the histamine effects are mediated by four G protein-coupled receptors, H1R, H2R, H3R, and H4R (Seifert et al. 2013; Panula et al. 2015). Additionally histamine acts on some non-histaminergic targets, e.g. at NMDA
receptors (Vorobjev et al. 1993; Panula et al. 2015), which, however, is not in the focus of mainstream histamine research.

This section addresses the results obtained from the pharmacological characterization of the four human histamine receptor isoforms in Sf9 cells. Other species variants will only be mentioned, when this is required by the context (e.g., comparisons of human and guinea pig H₁R or H₂R). Moreover, data from the characterization of ligands in medicinal chemistry projects will only be discussed, when they lead to new insights about structure and conformation of the corresponding receptor. Finally, publications that contain only “in silico” results without experimental verification will be omitted, since the purpose of this chapter is specifically the expression and characterization of human histamine receptors in the Sf9 cell system. For detailed information on the analysis of histamine receptor species variations in Sf9 cells or for the characterization of histamine receptor subtypes in cellular systems other than insect cells, the reader is referred to comprehensive review articles (Seifert et al. 2013; Strasser et al. 2013; Panula et al. 2015).

2.1 The Histamine H₁ Receptor

2.1.1 General Information About the Histamine H₁R

The H₁R is ubiquitously expressed, specifically in lung, CNS, and blood vessels. It preferentially couples to Goαq/11 proteins, causing PLC and protein kinase C (PKC) activation as well as inositol-1,4,5-trisphosphate (IP₃) formation and intracellular Ca²⁺ release (Seifert et al. 2013; Panula et al. 2015). The typical signs of a type I allergic reaction like pruritus, increased vascular permeability, and edema are caused by H₁R activation. Therefore, administration of H₁R antagonists (so-called antihistamines) belongs to the most important anti-allergic therapeutic interventions (Simons and Simons 2011), e.g. for the treatment of allergic rhinitis. The H₁R is expressed on various types of immune cells, specifically on T cell subsets and dendritic cells and influences T cell polarization (Neumann et al. 2014). Moreover, as indicated by results from H₁R-deficient mice, the H₁R plays a role in various models of inflammatory diseases, e.g. nasal allergy, Th2-driven allergic asthma, atopic dermatitis or experimental autoimmune encephalitis (EAE) (Neumann et al. 2014). In the CNS, H₁R is involved in the regulation of locomotor activity, emotions, cognitive functions, arousal, sleep and circadian rhythm or pain perception (Schneider et al. 2014a). Moreover, the H₁R participates in the modulation of energy consumption, food intake, and respiration. H₁R blockade with antagonists increases susceptibility to seizures (Schneider et al. 2014a). Sedation, the most important side effect of brain-penetrating first-generation antihistamines, is caused by antagonism at H₁R in the CNS (Simons and Simons 2011; Neumann et al. 2014). The human H₁R (hH₁R) is endogenously expressed by various human cell lines. HeLa cervix carcinoma cells as well as U373 MG astrocytoma cells are used since more than two decades to study hH₁R pharmacology and signal transduction (Seifert et al. 2013). In the following, the
results from the characterization of the human H_1R in the Sf9 insect cell expression system will be discussed.

2.1.2 Characterization of the hH_1R in Sf9 Cell Membranes

The hH_1R was extensively characterized in Sf9 cells with regard to ligand pharmacology, and activation of G proteins. Moreover, the pharmacological differences between the hH_1R and its guinea pig orthologue (gpH_1R) were addressed by mutational and molecular modeling studies. An overview of the most important results is provided in Table 1.

Although Sf9 cells contain an endogenous PLC-stimulating G_{α_q}-like protein (Hepler et al. 1993), histamine does not induce a significant rise in steady-state GTPase activity in Sf9 cell membranes expressing the hH_1R alone (Houston et al. 2002). Only co-expression of the hH_1R with the regulators of G protein signaling RGS4 and GAIP (G-alpha-interacting protein, RGS19) unmasks an interaction of hH_1R with insect cell G_{α_q}, resulting in histamine-induced stimulatory effects of 142% (RGS4) and 126% (GAIP) (Houston et al. 2002). These results indicate that the intrinsic GTPase activity of Sf9 cell G_{α_q} is rate-limiting for hH_1R-mediated G protein activation in Sf9 cell membranes. This is probably due to a low number of G proteins relative to hH_1R molecules. RGS proteins commonly accelerate the intrinsic GTPase activity of G proteins, which results in a higher turnover and in increased availability of inactive GDP-bound G_{α} subunits (Fig. 2).

Due to its favorable properties, the Sf9 cell hH_1R/RGS protein co-expression system is routinely used to characterize affinity (radioligand binding), activity (steady-state GTPase assays), and binding mode of hH_1R ligands in medicinal chemistry projects. This revealed major pharmacological differences between H_1R species isoforms. Specifically, some agonistic bulky 2-phenylhistamines and histaprodifens exhibited increased efficacy and up to tenfold higher potency at gpH_1R as compared to hH_1R (Seifert et al. 2003). Such differences were also observed for antagonists. Most notably, the potency of several arpromidine-type H_1R antagonists was up to tenfold higher at gpH_1R than at hH_1R (Seifert et al. 2003). Mutagenesis experiments were performed to elucidate the molecular basis of these pharmacological species differences. Basing on the hypothesis that smaller amino acid substitutions render the gpH_1R binding pocket more flexible than the corresponding site at the hH_1R, the amino acids 153 or 433 of the hH_1R were mutated into “gpH_1R direction” (Phe-153 → Leu 153 or Ile-433 → Val 433) (Seifert et al. 2003). Although this attempt was unsuccessful in terms of generating gpH_1R-like pharmacology, the mutations dramatically decreased hH_1R receptor expression, function, electrophoretic mobility as well as $[^3H]$mepyramine (tritiated 2-((2-(Dimethylamino)ethyl)(p-methoxybenzyl)amino)-pyridine) affinity, suggesting that these amino acid positions are essential for correct folding and expression of the H_1R (Seifert et al. 2003). In addition, the hH_1R-F153L/I433V double mutant was studied. Although this protein was excellently expressed in Sf9 cell membranes, there were only partial changes in pharmacology. Thus, Phe-153 and Ile-433 cannot fully explain the species difference between hH_1R and gpH_1R (Seifert et al. 2003).
Table 1 Overview on the pharmacological characterization of the human histamine H\(_1\)R in the Sf9 cell expression system

Expressed proteins	Most important new findings	Reference
Only hH\(_1\)R	No histamine-induced signal in steady-state GTPase assays → no interaction with Sf9 cell G proteins	Houston et al. (2002)
hH\(_1\)R + RGS4	- Interaction of hH\(_1\)R with insect cell G\(_{\alpha}\) unmasked - Intrinsic GTPase activity of Sf9 cell G\(_{\alpha}\) is rate-limiting for hH\(_1\)R-mediated G protein activation in Sf9 cell membranes. - Histamine-induced stimulation in steady-state GTPase assay: 142% with RGS4 and 126% with GAIP	
hH\(_1\)R + GAIP	- Interaction of hH\(_1\)R with insect cell G\(_{\alpha}\) unmasked - Intrinsic GTPase activity of Sf9 cell G\(_{\alpha}\) is rate-limiting for hH\(_1\)R-mediated G protein activation in Sf9 cell membranes. - Histamine-induced stimulation in steady-state GTPase assay: 142% with RGS4 and 126% with GAIP	
hH\(_1\)R, gpH\(_1\)R + RGS4 or GAIP	- Higher efficacy and up to tenfold higher potency of bulky 2-phenylhistamines and histaprodifens at gpH\(_1\)R than at hH\(_1\)R - Potency of several arpromidine-type H\(_1\)R antagonists up to tenfold higher at gpH\(_1\)R than at hH\(_1\)R	Seifert et al. (2003)
hH\(_1\)R-F153L\(^a\) hH\(_1\)R-L433V\(^a\) + RGS4 or GAIP	Compared to wild-type hH\(_1\)R: - Dramatic reduction of expression, function and \(^{[3]}\)H)mepyramine affinity, altered electrophoretic mobility - Mutated amino acid positions required for correct folding and expression of the H\(_1\)R	
hH\(_1\)R-F153L/L433V\(^a\) double mutant + RGS4 or GAIP	- Excellent expression, but only partial change of pharmacological properties (compared to wild-type hH\(_1\)R) - Mutated amino acid positions not solely responsible for the pharmacological difference between hH\(_1\)R and gpH\(_1\)R	
hH\(_1\)R, gpH\(_1\)R, rH\(_1\)R, bh\(_1\)R + RGS4	- Differential interaction of chiral histaprodifens with hH\(_1\)R, gpH\(_1\)R, rH\(_1\)R, and bh\(_1\)R - Two compounds showed agonism at gpH\(_1\)R, but antagonism at hH\(_1\)R, bh\(_1\)R, and rH\(_1\)R. - Potency rank order of histaprodifens: hH\(_1\)R < bh\(_1\)R < rH\(_1\)R < gpH\(_1\)R; structure and pharmacology of hH\(_1\)R similar to bh\(_1\)R; gpH\(_1\)R resembles rH\(_1\)R - Docking studies (active-state model of gpH\(_1\)R): multiple interaction sites between dimeric histaprodifen and gpH\(_1\)R (Asp-116, Ser-120, Lys-187, Glu-190, and Tyr-432)	Strasser et al. (2008a)
hH\(_1\)R, gpH\(_1\)R h(gpNgpE2)H1R\(^b\) h(gpE2)H1R\(^c\) + RGS4	- Higher maximum G\(_{\alpha}\)-activation and lower potency of histamine at h(gpNgpE2)H\(_1\)R as compared to hH\(_1\)R or h(gpE2)H\(_1\)R - Differences between hH\(_1\)R and gpH\(_1\)R in N-terminus and ECL2 not responsible for pharmacological species differences - Unexpected reduction of pK\(_i\) and pEC\(_{50}\) in the series hH\(_1\)R > h(gpE2)H\(_1\)R > h(gpNgpE2)H\(_1\)R for three phenoprodifens (change of ligand orientation?)	Strasser et al. (2008b)

(continued)
A series of chiral histaprodifens was pharmacologically characterized at hH1R and gpH1R as well as rat (r) and bovine (b) H1R, revealing differential interaction with H1R species isoforms. Two of the compounds showed agonism at gpH1R, but were antagonists at hH1R, bH1R, and rH1R. The histaprodifens followed the rank order of potency hH1R < bH1R < rH1R < gpH1R. The hH1R was pharmacologically and structurally similar to bH1R, while gpH1R resembled rH1R (Strasser et al. 2008a). Docking studies with an active-state model of the gpH1R and dimeric histaprodifen revealed multiple interaction sites, involving hydrogen bonds and electrostatic interactions with Asp-116, Ser-120, Lys-187, Glu-190 and Tyr-432 (Strasser et al. 2008a).

Since the amino acid sequence of the N-terminus and the second extracellular loop (ECL2) exhibit major differences between hH1R and gpH1R, it was hypothesized that these structures may be responsible for the preferred binding of bulky agonists to gpH1R as compared to hH1R. To address this hypothesis, wild-type hH1R and gpH1R as well as the chimeric receptors h(gpE2)H1R (hH1R with ECL2 from gpH1R) and h(gpNgpE2)H1R (hH1R with N-terminus and ECL2 from gpH1R) were co-expressed with RGS4 in Sf9 cells and compared in radioligand binding and steady-state GTPase assays (Strasser et al. 2008b). A small inverse agonistic effect of mepyramine suggests that all four receptors show only low constitutive activity. Histamine potency in steady-state GTPase assays decreased in the series hH1R > h(gpE2)H1R > h(gpNgpE2)H1R. Maximum Gq-protein activation by histamine and the $ΔV_{\text{max}}/B_{\text{max}}$ ratio (turnover number) was significantly enhanced at

Expressed proteins	Most important new findings	Reference
hH1R, gpH1R	• Association rate constants for h(gpNgpE2)H1R significantly different from the constants for hH1R and gpH1R. • Extracellular surface of the H1R influences ligand binding and recognition and guiding of the ligand into the binding pocket.	Wittmann et al. (2011)
hH1R, gpH1R, bH1R, rH1R + RGS4	• Identification of bulky phenylhistamines with higher potency and affinity at hH1R than at gpH1R • Molecular modeling: higher hH1R potency possibly due to a more effective van der Waals interaction with Asn$^{2.61}$ of hH1R as compared to Ser$^{2.61}$ of gpH1R • Two distinct binding modes of phenoprodifens cause Trp$^{6.48}$ (part of the rotamer toggle switch activation mechanism) to assume either an active or an inactive conformation	Strasser et al. (2009)
hH1R, gpH1R + RGS4 or GAIP	N6-acylated imidazolylpropylguanidines are partial H1R agonists with higher efficacies at hH1R than at gpH1R	Xie et al. (2006a, b)

¹Mutations were performed to make the hH1R “more similar” to gpH1R and to investigate the resulting alterations of receptor pharmacology
²Human H1R with N-terminus and ECL2 of guinea pig H1R
³Human H1R with ECL2 of the guinea pig H1R

Table 1 (continued)
h(gpNgpE2)H1R as compared to hH1R, gpH1R, and h(gpE2)H1R, despite a very low expression level of h(gpNgpE2)H1R. This indicates that histamine induces a h(gpNgpE2)H1R conformation which is specifically efficient at activating G proteins (Strasser et al. 2008b). Molecular dynamics simulations suggest that the replacement of N-terminus and ECL2 affect the network of hydrogen bonds between N-terminus, ECL1 and ECL2 and alter the conformation and flexibility of ECL2. Thus, either the replacement of the N-terminus or the combined exchange of N-terminus and ECL2 induces conformational alterations that increase the stimulatory effect of histamine and reduce its potency (Strasser et al. 2008b).

The hypothesis that major differences of N-terminus and ECL2 cause the distinct pharmacology of hH1R and gpH1R, however, had to be rejected, since neither binding assays nor steady-state GTPase assays revealed more pronounced “gpH1R-like” properties of h(gpNgpE2)H1R and h(gpE2)H1R (Strasser et al. 2008b). Instead, three members of a new class of histaprodifens (phenoprodifens) even exhibited a reduction of pKi and pEC50 values in the series hH1R > h(gpE2)H1R > h(gpNgpE2)H1R (Strasser et al. 2008b). Previous molecular dynamics simulations with these compounds had suggested that they can adopt two distinct orientations in the gpH2R binding pocket (Strasser et al. 2008a). Thus, the data may be explained by a change in ligand orientation in the series hH1R – h(gpE2)H1R – h(gpNgpE2)H1R. Such changes, however, are probably determined early in ligand binding, which can only be addressed by kinetic binding studies (Strasser et al. 2008b).

Such experiments were performed with the antagonist [3H]mepyramine and the partial agonist phenoprodifen using Sf9 cell membranes expressing RGS4 together with hH1R, gpH1R as well as the chimeric receptors h(gpNgpE2)H1R and h(gpE2)H1R (Wittmann et al. 2011). With regard to the association rate constant, h(gpNgpE2)H1R significantly differed from both hH1R and gpH1R. Molecular dynamics simulations helped to explain, how the extracellular surface of the H1R influences ligand binding kinetics, recognition of the ligand and guiding of the ligand into the binding pocket (Wittmann et al. 2011).

There are also exceptions, where bulky agonists do not interact more efficiently with gpH1R than with hH1R. Specifically, N^G-acylated imidazolylpropylguanidines (AIPGs) are partial H1R agonists that exhibit higher efficacies at hH1R as compared to gpH1R (Xie et al. 2006a, b). Moreover, another study addressing the pharmacology of phenylhistamines and phenoprodifens at human, guinea pig, bovine, and rat H1R identified bulky phenylhistamines with higher potency and affinity at hH1R as compared to gpH1R (Strasser et al. 2009). A comparison of the hypothesized binding modes of these compounds with the binding mode of the previously characterized N^G-acylated imidazolylpropylguanidine UR-AK57 (N^1-(3-Cyclohexylbutanoyl)-N^2-[3-(1H-imidazol-4-yl)propyl]guanidine) (Xie et al. 2006b) suggests that the higher potency at the hH1R is caused by a more pronounced van der Waals interaction with Asn^2.61 of hH1R as compared to Ser^2.61 of gpH1R (Strasser et al. 2009). Moreover, phenoprodifens seem to adopt two distinctly oriented binding modes that cause the highly conserved Trp^6.48, which is part of the toggle switch mechanism of GPCR activation (Shi et al. 2002), to assume either an active or an inactive conformation (Strasser et al. 2009).
2.2 The Histamine H₂ Receptor

2.2.1 General Information About the Histamine H₂R
The H₂R is ubiquitously expressed, most importantly in stomach, heart, and CNS (Seifert et al. 2013; Schneider et al. 2014a; Panula et al. 2015). Agonist binding to this receptor results in activation of Gα₅-proteins that stimulate the adenyllylcyclase-mediated production of the second messenger cAMP (Panula et al. 2015). The central role of the H₂R in the regulation of gastric acid production is the basis for the therapeutic use of H₂R antagonists to treat gastroesophageal reflux disease (Schubert and Peura 2008). The function of the H₂R in the brain is less well documented as for H₁R, but includes, e.g. modulation of cognitive processes and of circadian rhythm (Schneider et al. 2014a). Moreover, H₂R influences glucose metabolism and food intake (Schneider et al. 2014a).

Experiments with knockout mice have revealed that the histamine H₂R is involved in the regulation of immune responses, specifically in the modulation of Th1- or Th2-cell polarization. It should be noted, however, that the analysis of H₂R-deficient mice yields conflicting results, probably because of the variability of the disease models studied (Neumann et al. 2014). The human histamine H₂R (hH₂R) has been pharmacologically characterized in both human cells and in the Sf9 cell expression system (Seifert et al. 2013). Neutrophils are specifically well suited for the analysis of hH₂R pharmacology, because they are primary cells that can be easily isolated from human blood in large numbers. The hH₂R inhibits superoxide anion production induced by chemotactic peptides in neutrophils (Burde et al. 1989, 1990; Reher et al. 2012a) and eosinophils (Reher et al. 2012a). Moreover, H₂R activation induces functional differentiation of HL-60 promyelocytes (Klinker et al. 1996). Furthermore, it is discussed that decreased hH₂R function may contribute to inflammation in bronchial asthma (Seifert et al. 2013).

2.2.2 Characterization of the hH₂R in Sf9 Cell Membranes
The hH₂R was extensively characterized in Sf9 cells with regard to ligand pharmacology, and activation of G proteins. Moreover, the pharmacological differences between the hH₂R and its guinea pig orthologue (gpH₂R) were addressed by mutational and molecular modeling studies. An overview of the most important results is provided in Table 2.

Functional expression of the human hH₂R in Sf9 cells requires Gα₅ proteins as intracellular coupling partners. Indeed, Sf9 cells express endogenous Gα₅ proteins and activation of Sf9 cell Gα₅ has been reported for mammalian GPCRs, e.g. the bradykinin B2 receptor (Shukla et al. 2006), the LH/CG receptor (Narayan et al. 1996), or the histamine H₂R (Kühn et al. 1996). Mostly, however, the interaction of mammalian GPCRs with Sf9 cell Gα₅ shows only low productivity, which is most likely due to rapid dissociation of the activated Gα₅ subunit from the plasma membrane. Redistribution of stimulated Gα₅ proteins has been investigated in more detail in S49 lymphoma cells treated with the β-AR agonist isoproterenol (Ransnäs et al. 1989).
Table 2
Overview on the pharmacological characterization of the human histamine H2R in the Sf9 cell expression system

Expressed proteins	Most important new findings	Reference
hH2R-GsαS	Some H2R agonists distinguish between H2R species isoforms (steady-state GTPase assay)	Seifert et al. (2003)
gpH2R-GsαS	**Comparison of hH2R- GsαL and hH2R- GsαS:**	
 - Similar expression level and [3H]tiotidine binding
 - Bmax from ligand-regulated [35S]GTPγS binding >> Bmax from [3H]tiotidine binding → large part of fusion proteins not radiolabeled
 - GDP/GTPγS exchange velocity: hH2R-GsαL > hH2R-GsαS
 - Similar constitutive activity; comparable pharmacological properties of partial/inverse agonists | Wenzel-Seifert et al. (2001) |
| hH2R-GsαS, hH2R-GsαS | **Only hH2R: no agonist-induced signal in steady-state GTPase assays, not even with GAIP**
 - AC activation by hH2R (Sf9 Gαs) and by hH2R-GsαS
 - No activation of insect cell or co-expressed mammalian Gαq by hH2R in Sf9 cells
 - Mammalian Gαq most likely inactive in Sf9 cells | Houston et al. (2002) |
| hH2R-GsαS, gpH2R-GsαS | **Affinity of large guanidine-type agonists in [3H]tiotidine binding: hH2R-GsαS < gpH2R-GsαS**
 - Disruption of guanidine-type agonist high-affinity binding by GTPγS more effective at hH2R-GsαS than at gpH2R-GsαS
 - Potencies and efficacies of guanidines in steady-state GTPase assays: gpH2R-GsαS > hH2R-GsαS | Kelley et al. (2001) |
| hH2R-GsαS, gpH2R-GsαS, hH2R-A271D-GsαS, NgpChH2R-GsαS, NhCgpH2R-GsαS | **Higher (more “gpH2R-like”) potencies of guanidines in steady-state GTPase assays at hH2R-A271D-GsαS and NhCgpH2R-GsαS than at hH2R-GsαS**
 - Efficacies of guanidines at hH2R-GsαS, hH2R-A271D-GsαS, NgpChH2R-GsαS and NhCgpH2R-GsαS are lower than at gpH2R-GsαS
 - Potency and efficacy are independent H2R properties | Preuss et al. (2007b) |
| hH2R-GsαS, gpH2R-GsαS, hH2R-C17Y-GsαS, hH2R-C17Y-A271D-GsαS | **Potencies and efficacies of guanidines in steady-state GTPase assays with hH2R-C17Y-A271D-GsαS:**
 - Higher than at hH2R-GsαS, but lower than at gpH2R-GsαS → Tyr-17/Asp-271 interaction not solely responsible for h/gp species differences
 - Possibly stabilization of ligand-specific receptor conformations
 - hH2R-C17Y-GsαS: basal AC activity and agonist-induced steady-state GTPase activity reduced (impaired G protein coupling or degradation of GαS?) | Preuss et al. (2007b) |

(continued)
Fusion of a GPCR to \(\text{G}\alpha_s\) keeps the G protein at the cell membrane and largely enhances G protein activation. This approach was used for the human histamine H2R, which was expressed in Sf9 cells as a fusion protein with the long (Gs\(\alpha_L\)) or short (Gs\(\alpha_S\)) splice variant of G\(\alpha_s\) (Wenzel-Seifert et al. 2001). Both fusion proteins were expressed at a similar level in Sf9 cell membranes and the affinity of the radiolabeled H2R agonist \(\text{[3H]}\)tiotidine (tritiated 1-cyano-3-[2-[2-(diaminomethylideneamino)-1,3-thiazol-4-yl][methylsulfonyl][ethyl]-2-methyl-guanidine) was comparable (~32 nM) for hH2R-Gs\(\alpha_L\) and hH2R-Gs\(\alpha_S\) (Wenzel-Seifert et al. 2001). Unexpectedly, the \(B_{\text{max}}\) values of ligand-regulated \(\text{[35S]}\)GTP\(\gamma_S\) binding for hH2R-Gs\(\alpha_L\) or hH2R-Gs\(\alpha_S\) exceeded the \(B_{\text{max}}\) value from \(\text{[3H]}\)tiotidine binding by ~tenfold, which suggests that a large subpopulation of fusion proteins is not labeled by the radioligand (Wenzel-Seifert et al. 2001).

Gs\(\alpha_L\) exhibits lower GDP affinity than Gs\(\alpha_S\), and therefore, the \(\beta_2\)AR-Gs\(\alpha_L\) fusion protein shows higher constitutive activity than \(\beta_2\)AR-Gs\(\alpha_S\) (Seifert et al. 1998b). Similarly, the hH2R-Gs\(\alpha_L\) fusion protein exhibited a faster GDP/GTP\(\gamma_S\) exchange than hH2R-Gs\(\alpha_S\). Surprisingly, however, unlike the corresponding \(\beta_2\)AR fusion proteins, hH2R-Gs\(\alpha_L\) and hH2R-Gs\(\alpha_S\) showed similar constitutive activity and comparable pharmacological properties of partial agonists and inverse agonists in steady-state GTPase and \(\text{[35S]}\)GTP\(\gamma_S\) binding assays (Wenzel-Seifert et al. 2001). This illustrates that the GDP affinity of G proteins does not influence the constitutive activity of all GPCRs to the same extent (Wenzel-Seifert et al. 2001).

It has been reported that the rH2R couples to insect cell G\(\alpha_q\) and increases intracellular Ca\(^{2+}\) in Sf9 cells (Kühn et al. 1996). However, this effect could not be confirmed and was also not observed with hH2R or gpH2R (Houston et al. 2002). Moreover, co-expressed GAIP did not unmask a potential interaction of hH2R with insect cell G\(\alpha_q\) (steady-state GTPase assays) although this approach was successful.

Table 2 (continued)

Expressed proteins	Most important new findings	Reference
hH2R-gpE2-Gs\(\alpha_S\)	Pharmacology of guanidines in steady-state GTPase assays not significantly changed by the mutations → interaction of the mutated residues with the guanidine-binding pocket unlikely	Preuss et al. (2007c)
hH2R-K173A-Gs\(\alpha_S\)	• Neither Lys-173- nor Lys-175 influence agonist binding in the hH2R	
• Significantly lower histamine-induced steady-state GTPase signals of hH2R-K173A-Gs\(\alpha_S\) or hH2R-K175A-Gs\(\alpha_S\) → Lys173 and Lys175 important for Gs\(\alpha_S\) activation? | |

\(^a\)Sequence from N-terminus to TM3 from gpH2R and sequence from TM4 to C-terminus from hH2R
\(^b\)Sequence from N-terminus to TM3 from hH2R and sequence from TM4 to C-terminus from gpH2R
\(^c\)Four e2 amino acids of hH2R exchanged by the corresponding residues of gpH2R
\(^d\)Four e2 amino acids of gpH2R exchanged by the corresponding residues of hH2R
with hH1R (Houston et al. 2002). The hH2R did not even activate mammalian Goq co-expressed in Sf9 cells or fused to the hH2R (Ca2+ assays, high-affinity agonist binding and [35S]GTPγS binding) (Houston et al. 2002). Surprisingly, not even the hH1R was able to activate co-expressed mammalian Goq in Sf9 cells. Thus, mammalian Goq was probably inactive in Sf9 cells, despite high expression levels, and therefore, Sf9 cells are not suited to investigate the interaction of GPCRs with mammalian Goq (Houston et al. 2002).

When only hH2R was expressed in Sf9 cells, no ternary complex formation with insect cell Goq was observed in high-affinity agonist binding with [3H]tiotidine (effect of GTPγS on histamine competition curve) and in [35S]GTPγS binding (characterization of the stimulatory effect of histamine). Surprisingly, however, AC assays clearly indicated hH2R-mediated activation of insect cell Goq. Thus, AC assays probably exhibit higher sensitivity than [3H]tiotidine high-affinity agonist binding or [35S]GTPγS binding and detect even very low insect cell Goq stimulation (Houston et al. 2002). Co-expression of hH2R with mammalian Gsαs resulted in efficient G protein interaction (high-affinity agonist binding, [35S]GTPγS binding, AC assays). A further increase in interaction efficiency was observed for the hH2R-Gsαs fusion protein (Houston et al. 2002).

The fusion protein approach was also used for the pharmacological comparison of hH2R and gpH2R (Kelley et al. 2001). In [3H]tiotidine radioligand binding assays, the hH2R-Gsαs fusion protein expressed in Sf9 cells bound large guanidine-type agonists with lower affinity than gpH2R-Gsαs. Moreover, GTPγS disrupted high-affinity binding of guanidine-type agonists at hH2R-Gsαs more efficiently than at gpH2R-Gsαs. This indicates that the guanidine-stabilized conformation of gpH2R interacts more tightly with the tethered G protein than the corresponding conformation of hH2R (Kelley et al. 2001). In steady-state GTPase assays, the potencies and efficacies of guanidines were also higher with gpH2R-Gsαs than with hH2R-Gsαs. However, the species isoforms did not differ in case of small agonists or antagonists (Kelley et al. 2001).

Based on molecular modeling data (bovine rhodopsin-based alignment), it was hypothesized that the high potency of guanidine-type agonists at gpH2R is caused by the non-conserved Asp-271 in TM7 (Ala-271 in hH2R). This hypothesis was tested by expressing the mutant hH2R-A271D-Gsαs as well as the chimeras NgpChH2R-Gsαs (N-terminus – TM3 from gpH2R and TM4–C-terminus from hH2R, containing Ala-271) and NhCgpH2R-Gsαs (N-terminus – TM3 from hH2R, and TM4–C-terminus from gpH2R, containing Asp-271) in Sf9 cell membranes (Kelley et al. 2001). In fact, steady-state GTPase assay data clearly showed increased potency of guanidines at both hH2R-A271D-Gsαs and NhCgpH2R-Gsαs, confirming the importance of Asp-271 in the gpH2R for guanidine binding. Unexpectedly, the efficacies of guanidine-type agonists at hH2R-Gsαs and NgpChH2R-Gsαs as well as the more “gpH2R-like” constructs hH2R-A271D-Gsαs and NhCgpH2R-Gsαs were lower than at gpH2R. This demonstrates that potency and efficacy are independent properties of the H2R. The modeling and experimental data suggest that an interaction between TM1 (Tyr-17) and TM7 (Asp-271) is important for the stabilization of the guanidine-induced agonistic conformation of the gpH2R and therefore for guanidine efficacy.
This interaction is absent in hH2R and in the other constructs analyzed by Kelley et al. (2001).

The hypothesis that a Tyr-17/Asp-271 interaction in the gpH2R molecule stabilizes an active receptor conformation and increases efficacy of guanidine-type agonists was tested by characterizing the mutant fusion proteins hH2R-C17Y-Gs\(\alpha\)S and hH2R-C17Y-A271D-Gs\(\alpha\)S (Preuss et al. 2007b). As expected, the potencies and efficacies of guanidines in the steady-state GTPase assay were higher at the hH2R-C17Y-A271D-Gs\(\alpha\)S double mutant as compared to the wild-type hH2R-Gs\(\alpha\)S fusion protein, but they were still below the values determined for wild-type gpH2R-Gs\(\alpha\)S. Thus, the Tyr-17/Asp-271 interaction is probably not solely responsible for the different pharmacology of hH2R and gpH2R (Preuss et al. 2007b). Moreover, the data suggest the stabilization of ligand-specific receptor conformations by agonists and inverse agonists in wild-type and mutant hH2R-Gs\(\alpha\)S fusion proteins (Preuss et al. 2007b).

The results from the analysis of the hH2R-C17Y-Gs\(\alpha\)S single mutant support the notion that an H-bond between Tyr-17 and Asp-271 stabilizes an active receptor conformation (Preuss et al. 2007b). The hH2R-C17Y-Gs\(\alpha\)S fusion protein exhibits lower basal AC and decreased agonist-induced GTPase activities (Preuss et al. 2007b), indicating impaired G protein coupling. One possible explanation may be degradation of the hH2R-C17Y-Gs\(\alpha\)S fusion protein in the Sf9 cells. This is suggested by the apparent molecular mass of 40 kDa instead of the expected ~80 kDa in Western blots (Preuss et al. 2007b).

In bovine rhodopsin (Palczewski et al. 2000) as well as in various aminergic GPCRs, e.g. dopamine D2R (Shi and Javitch 2002), adenosine A2aR (Kim et al. 1996), or muscarinic M3 receptor (Scarselli et al. 2007), residues in the second extracellular loop, ECL2, probably contribute to ligand binding. Thus, it was hypothesized that differences in e2 may also determine the distinct pharmacology of hH2R-Gs\(\alpha\)S and gpH2R-Gs\(\alpha\)S (Preuss et al. 2007c). This hypothesis was addressed by generating mutant fusion proteins with the four e2 amino acids of hH2R exchanged by the corresponding residues of gpH2R (hH2R-gpE2-Gs\(\alpha\)S) and vice versa (gpH2R-hE2-Gs\(\alpha\)S). Steady-state GTPase assays, however, revealed that this exchange of ECL2 did not significantly alter the pharmacology of the receptors. Thus, the mutated residues most likely do not interact with the guanidine-binding pocket (Preuss et al. 2007c).

In both hH2R and gpH2R, Cys-174 probably forms a disulfide bond with Cys-91 in TM3 and is framed by two lysines in position 173 and 175 (Preuss et al. 2007c). A homology model of the hH2R predicted that these two lysines are located close to the binding site of guanidine-type agonists and are involved in agonist binding (Preuss et al. 2007c). Thus, the two mutated fusion proteins hH2R-K173A-Gs\(\alpha\)S and hH2R-K175A-Gs\(\alpha\)S were expressed in Sf9 cells and analyzed in steady-state GTPase activity assays. The results, however, indicate that these mutations were ineffective at altering potency or efficacy of small as well as bulky H2R agonists (Preuss et al. 2007c). Interestingly, the effect of histamine on steady-state GTPase activity of both hH2R-K173A-Gs\(\alpha\)S and hH2R-K175A-Gs\(\alpha\)S was reduced, which
suggests that the lysines in positions 173 and 175 increase the efficiency of hH2R-coupling to GoS (Preuss et al. 2007c).

2.3 The Histamine H3 Receptor

2.3.1 General Information About the hH3R

The Goi/o-coupled histamine H3R is mainly expressed on neurons and acts as a presynaptic auto- and heteroreceptor. It inhibits the release of histamine (Arrang et al. 1983, 1985), but also of other neurotransmitters such as acetylcholine, noradrenaline, dopamine, or glutamate (Haas et al. 2008). Additionally, there is increasing evidence that H3R is expressed postsynaptically (Ellenbroek and Ghiabi 2014), where it regulates, e.g. dopamine D1R signaling (Ferrada et al. 2008; Brabant et al. 2009). Knockout mouse models demonstrate that the H3R regulates numerous behaviors like locomotor activity, pain perception, food intake, memory, circadian rhythm, cognition, and anxiety (Schneider et al. 2014b). Moreover, H3R-deficiency reduces addictive behavior in mouse models of ethanol consumption, which is probably due to the reward-inhibiting function of an increased histamine release (Vanhanen et al. 2013; Schneider et al. 2014b). This renders the H3R an interesting target for the treatment of alcohol addiction (Nuutinen et al. 2012). Despite the decade-long research on H3R pharmacology, only the inverse H3R agonist pitolisant is currently used as an orphan drug to treat narcoleptic patients (Dauvilliers et al. 2013). Mouse models suggest that, in contrast to the other three histamine receptor subtypes, the H3R does not seem to play a major role in immunological processes and inflammation (Neumann et al. 2014).

2.3.2 Characterization of the hH3R in Sf9 Cell Membranes

There is no standard human cell culture model available that endogenously expresses hH3R. Thus, expression and characterization of hH3R and its species orthologues in the Sf9 insect cell system is of major importance (Schnell et al. 2010a, b; Schnell and Seifert 2010; Seifert et al. 2013; Strasser et al. 2013). Sf9 cells do not express endogenous Gai-like protein that could interact with the corresponding mammalian GPCRs. It is, therefore, required to co-express the receptor of interest with mammalian Gai and Gbγ subunits. This, however, provides the unique opportunity to freely combine Gai-coupled receptors with any Gai/i/o isoform, allowing the characterization of Gai isoform specificity of GPCRs. As described in the following sections, the pharmacology of the hH3R was extensively characterized in Sf9 cells. An overview of the most important results is provided in Table 3.

Specificity of the hH3R for Gai/o Isoforms and Investigation of Protean Agonism

The hH3R was co-expressed in Sf9 cells with Gbγ2 and Gai1, Gai2, Gai3, or Gao. All hH3R/G protein combinations could be readily expressed in Sf9 cells, and a semiquantitative analysis of expression levels by Western blot (purified Gai2 and
Table 3 Overview on the pharmacological characterization of the human histamine H₃R in the Sf9 cell expression system

Expressed proteins	Most important new findings	Reference
hH₃R	No relevant stimulation of insect cell G proteins	
hH₃R + Gα₁, Gα₂, Gα₃ or Gα + Gβ₁γ₂	• hH₃R/Gα coupling ratio between 1:2 and 1:11	
• Steady-state GTPase assay: high constitutive activity of hH₃R (comparable to hH₄R)		
• [³H]NAMH binding and steady-state GTPase assays: pharmacological properties independent of the type of co-expressed Gαio protein		
• No protean agonism of proxyfan	Schnell et al. (2010a)	
hH₃R-Gα₂ or hH₃R-Gαo + Gβ₁γ₂	• Similar pharmacological properties of hH₃R-Gα₂ and hH₃R-Gαo (steady-state GTPase assays) → hH₃R pharmacology independent of Gαio isoform	
• No protean agonism of proxyfan		
rH₃R + Gα₁, Gα₂, Gα₃ or Gα + Gβ₁γ₂	• rH₃R/Gαio coupling stoichiometry similar to hH₃R	
• High constitutive activity with all Gαio subunits		
• Pharmacological properties independent of co-expressed Gαio isoform (similar to hH₃R)		
• No protean agonism of proxyfan	Schnell et al. (2010b)	
rH₃R or hH₃R + Gα₂ + Gβ₁γ₂	[³H]NAMH binding and/or steady-state GTPase assays:	
• No species selectivity of histamine, Nα-methylhistamine, (R)-α-methylhistamine, imetit, and clobenpropit		
• Striking species selectivity of imoproxifan: nearly full agonist at hH₃R, but inverse agonist at rH₃R		
• Imoproxifan: pEC₅₀ > pKᵢ (hH₃R and rH₃R) → conformations with low partial/inverse agonist affinity, but efficient Gα interaction?		
hH₃R + Gα₂ + Gβ₁γ₂	Influence of ions on hH₃R properties	
[³H]NAMH radioligand binding:		
Increase in radioligand B_max and no significant reduction of binding affinity by 100 mM of NaCl		
Effect of NaCl (100 mM) in steady-state GTPase assays:		
• Increase in efficacy and reduction of potency of histamine		
• Reduction of efficacy and increase in potency of thioperamide → stabilization of hH₃R inactive state by NaCl		
Comparison of various cations and anions:		
Rank order of efficacy at inhibiting hH₃R constitutive activity: Li⁺ ~ Na⁺ ~ K⁺ < Cl⁻ < Br⁻ < I⁻	Schnell and Seifert (2010)	
hH₃R + Gα₁, Gα₂, Gα₃ or Gα + Gβ₁γ₂	NaCl effect on hH₃R basal activity: strongest NaCl-mediated reduction of constitutive activity in the presence of Gα₃	

(continued)
Gαo as reference) yielded receptor-to-G protein ratios between 1:50 and 1:100 (Schnell et al. 2010a). The receptor expression levels determined by Western blot were confirmed by radioligand saturation binding assays with the antagonist \([3H]JNJ-7753707\ ((4-Fluorophenyl)(1-methyl-2-[1-(1-methylethyl)piperidin-4-yl]methoxy)-1H-imidazol-5-yl)methanone). By contrast, quantitation of the total number of activated Gαi/o proteins in \([35S]GTP_γS\) binding assays revealed a much lower amount of \([35S]GTP_γS\) binding sites as compared to the Western blot results, yielding hH3R/Gαi isoform coupling ratios between 1:2 (hH3R/Gαi1) and 1:11 (hH3R/Gαo) (Schnell et al. 2010a).

Potencies and efficacies of the physiological agonist histamine and the inverse agonist thioperamide (N-Cyclohexyl-4-(imidazol-4-yl)-1-piperidinecarbothioamide) were determined in steady-state GTPase assays for all hH3R/Gαi/o combinations (Schnell et al. 2010a). When hH3R was expressed in Sf9 cell membranes without any mammalian G protein, the signals induced by histamine and thioperamide were only small, indicating that hH3R-mediated stimulation of insect cell G proteins was virtually absent (Schnell et al. 2010a). A comparison of all five expression systems (hH3R alone and combined with Gαi1, Gαi2, Gαi3 or Gαo, + Gβ1γ2) revealed the relative stimulatory signal of histamine and the relative inhibitory signal of thioperamide were comparable, indicating that the constitutive activity of hH3R does not depend on the type of co-expressed Gαi/o protein (Schnell et al. 2010a). Overall, the constitutive activity of the hH3R was similar to the basal activity of the hH4R (Schneider et al. 2009) (see following section).

Steady-state GTPase experiments were also performed with various hH3R standard ligands in all hH3R/Gαi/o co-expression systems. Nα-methylhistamine (NAMH) and (R)-α-methylhistamine (RAMH) turned out to be full agonists under all conditions and imetit almost reached full efficacy. Proxyfan (4-[3-(Phenylmethoxy)propyl]-1H-imidazole) and impentamine (4-(5-Aminopentyl)imidazole) were partial agonists with comparable efficacy under all conditions. Ciproxifan (cyclopropyl-(4-(3-(1H-imidazol-4-yl)propyloxy)phenyl) ketone), clobenpropit (N-(4-Chlorobenzyl)-S-[3-(4(5-imidazolyl)propyl)isothiourea), and thioperamide exhibited inverse agonism in all systems, but efficacies were significantly different between the various Gαi/o proteins. Nevertheless, the rank orders of potency and efficacy of the ligands remained unaltered. Taken together, these experiments again confirm the notion that the hH3R

Table 3 (continued)
Expressed proteins

hH3R-D2.50N + Gαi2 + Gβ1γ2
• Constitutive activity (steady-state GTPase assays) completely eliminated
• Stimulatory effect of histamine still NaCl-sensitive
hH3R-D2.50N + Gαi1, Gαi2, Gαi3 or Gαo, + Gβ1γ2
exhibits similar pharmacological properties independently of the co-expressed Gαi/o isoforms (Schnell et al. 2010a).

As mentioned above, the hH3R/G protein ratios ranged between 1:2 and 1:11, indicating that it is difficult to exactly control the expression levels of receptor and G proteins. Thus, the fusion protein approach was used to ensure a 1:1 coupling ratio of hH3R and Gα subunit. The hH3R was fused to Gα12 and Gαo, because these two Gαi/o isoforms exhibit the lowest structural similarity. The pharmacological properties of the standard ligands histamine, imetit, proxyfan, clobenpropit, and thioperamide were similar in steady-state GTPase assays with hH3R-Gα12 and hH3R-Gαo. This indicates again that the hH3R pharmacology is largely independent of the type of co-expressed or fused Gα subunit (Schnell et al. 2010a).

Previously published studies about hH3R pharmacology had reported that, depending on the expression system and the functional readout, proxyfan can be a full, a partial, or even an inverse agonist (Gbahou et al. 2003; Krueger et al. 2005). This was explained by the phenomenon of “protean agonism,” which is the ability of a ligand to induce GPCR conformations with lower G protein-coupling efficiency than the agonist-stimulated or constitutively active receptor (Gbahou et al. 2003). It has been hypothesized that protean agonism of proxyfan is due to functional selectivity, i.e. G protein coupling of the proxyfan-bound hH3R differentiates between various Gαi/o isoforms. The data reported by Schnell et al. (2010a), however, strongly suggest that neither proxyfan nor any other of the tested hH3R ligands exhibits this kind of functional selectivity, at least when the hH3R is co-expressed with or fused to various Gαi/o isoforms in Sf9 cell membranes. One reason for this discrepancy could be the influence of different types of Gβγ subunits, which was not systematically investigated in Sf9 cells, because in the experiments performed by Schnell et al. (2010a) all hH3R/Gαi/o combinations were uniformly co-expressed with Gβ1γ2. Moreover, specific combinations of various Gαi/o isoforms or cross-talk between signaling pathways could have influenced the results reported by Gbahou et al. (2003) and Krueger et al. (2005).

Species Differences Between Human and Rat Histamine H3R
As discussed in the preceding section, the study of Gbahou et al. (2003) suggested that proxyfan shows protean agonism, which, however, was not confirmed in the Sf9 cell system (Schnell et al. 2010a). One of the reasons for this discrepancy could be a pharmacological difference in H3R isoforms. Gbahou et al. (2003) used rat H3R (rH3R), while the experiments of Schnell et al. (2010a) were performed with hH3R. To test this hypothesis, both species isoforms were directly compared in the Sf9 cell expression system (Schnell et al. 2010b).

Similar to the human isoform (Schnell et al. 2010a), the rH3R was also co-expressed with Gβ1γ2 and the Gαi/o isoforms Gα11, Gα12, Gα13, or Gαo. A quantitation of rH3R binding sites by radioligand binding with [3H]JNJ-7753707 and of receptor-coupled Gα subunits by [35S]GTPγS binding revealed a rH3R/G protein stoichiometry between 1:2 and 1:7 (Schnell et al. 2010b), which is comparable to the properties of the corresponding hH3R membranes (Schnell et al. 2010a). Moreover, similar to the hH3R, the rH3R showed similar high constitutive activity with each of the four Gαi/o
subunits as indicated by comparable relative effects of the agonist histamine and the inverse agonist thioperamide (Schnell et al. 2010b). The independence of rH3R pharmacology of the co-expressed Gαi/o type was confirmed by steady-state GTPase experiments.

Several H3R standard ligands were characterized at rH3R (+ Gαi2Gβ1γ2) and hH3R (+ Gαi2Gβ1γ2) in [³H]NAMH radioligand binding assays. The affinities of histamine, Nα-methylhistamine, (R)-α-methylhistamine, imetit, proxifan, and clobenpropit did not differ between species isoforms, while the affinities of impentamine, imoproxifan, ciproxifan, and thioperamide were increased at the rH3R (Schnell et al. 2010b). The radioligand binding results were largely confirmed on the functional level by steady-state GTPase experiments. Histamine, Nα-methylhistamine, RAMH, imetit, and clobenpropit did not show species selectivity. Impentamine, however, was more potent at rH3R than at hH3R. Additionally, ciproxifan and thioperamide exhibited higher potency but less efficacy at rH3R as compared to hH3R (Schnell et al. 2010b). The hypothesis that the protean agonism of proxyfan reported by Gbahou et al. (2003) was characteristic for the rat H3R orthologue had to be rejected, because proxyfan acted as a strong partial agonist at rH3R expressed in Sf9 cells, independently of the co-expressed G protein (Schnell et al. 2010b).

A striking difference between hH3R and rH3R was observed for the H3R ligand imoproxifan, which acted as a nearly full agonist at the hH3R, but exhibited inverse agonism at the rat orthologue (Schnell et al. 2010b). To explain this switch in quality of action, molecular modelling studies were performed by docking imoproxifan into the binding site of the active hH3R and the inactive rH3R. The simulations revealed different electrostatic surfaces between TM V and TM III. While the hH3R shows a positive surface potential in this region (NH moiety of Trp6.48), the corresponding part of the rH3R is slightly negatively charged (OH moiety of Thr6.52), which results in different orientations of the ligand at both receptors. Moreover, hH3R differs from rH3R in amino acid position 3.37. Thr3.37 of the hH3R interacts with Glu5.46, making Glu5.46 pointing away from the binding pocket, which creates a binding site for the imoproxifan methyl moiety (Schnell et al. 2010b). By contrast, an alanine in position 3.37 of the rH3R precludes any electrostatic interaction between Glu5.46 and position 3.37.

Ala3.40 of hH3R is replaced by the bulkier Val3.40 in rH3R. Thus, the imoproxifan oxime moiety points downward towards Ala3.40 in hH3R and stabilizes Trp6.48 in its horizontal conformation via a hydrogen bond. By contrast, the oxime moiety is directed upwards in rH3R and interacts with Thr6.52, while the methyl group of imoproxifan fits into a pocket between Val3.40 and Trp6.48. This stabilizes Trp6.48 of rH3R in its vertical conformation. According to the rotamer toggle switch mechanism of GPCR activation (Shi et al. 2002), the horizontal conformation of Trp6.48 corresponds to the active state, while the vertical conformation stabilizes the inactive receptor state. Thus, this model explains the different quality of action of imoproxifan at hH3R and rH3R (Schnell et al. 2010b).

Interestingly, in case of imoproxifan, a comparison of steady-state GTPase assay and [³H]NAMH radioligand binding data revealed that the pEC50 values at hH3R...
and rH₃R were significantly higher than the corresponding pKᵢ values. This suggests that both hH₃R and rH₃R can adopt conformations with low affinity to partial/inverse agonists that nevertheless exhibit efficient G protein interaction (Schnell et al. 2010b).

Influence of Monovalent Ions on hH₃R Function

According to the (simplifying) two-state model of receptor activation (Fig. 4), GPCRs can adopt an active or an inactive conformation (Leff 1995). The equilibrium between both receptor states is shifted to the active side by (partial) agonists and/or interaction with G proteins. The inactive state, however, is stabilized by (partial) inverse agonists (Schneider et al. 2010b; Sato et al. 2016). The degree of constitutive activity depends on the intrinsic tendency of the receptor protein to occur in the active state. It is well established that ions are able to modulate GPCR function (Strasser et al. 2015). Specifically, sodium represents an allosteric stabilizer of the inactive receptor conformation and inhibits constitutive activity, which was, e.g., demonstrated for chemoattractant receptors (Seifert and Wenzel-Seifert 2001, 2003).

As discussed above, the hH₃R exhibits high constitutive activity. Thus, hH₃R represents an interesting model for the detailed investigation of the activity-modulating effects of ions. The hH₃R was co-expressed with Gαi₂ and Gβ₁γ₂ in Sf9 cells and the influence of 100 mM of NaCl on [3H]NAMH high-affinity agonist binding and on GTP hydrolysis in the steady-state GTPase assay was investigated. Unexpectedly, in contrast to the data reported for other Gαᵢ/o-coupled receptors like FPR1 (Seifert and Wenzel-Seifert 2003), the affinity of the hH₃R to the radioligand

![Fig. 4](image-url) Two-state model of receptor activation and factors stabilizing the active (R*) and inactive (R) receptor conformation. Every GPCR population exists in an equilibrium of active and inactive receptor conformations. Full agonists produce a maximum shift towards the active side, while inverse agonists cause a maximum stabilization of the inactive GPCR conformation. Partial agonists and partial inverse agonists induce only an incomplete shift towards either side. Neutral antagonists bind to all receptor states with the same affinity and therefore do not change the equilibrium. G proteins stabilize the active conformation, while sodium ions usually uncouple GPCRs from their G proteins by shifting the equilibrium towards the inactive side. It should be noted that, despite its usefulness, the two-state model is very simplistic and does not account for the numerous distinct ligand- and G protein-specific receptor conformations occurring in reality. Adapted from Schneider and Seifert (2010a)
was not significantly reduced by NaCl. Moreover, most surprisingly, the B_{max} value was even increased by NaCl. The NaCl resistance of the hH3R in the $[^3\text{H}]\text{NAMH}$ radioligand binding assays is not fully explained yet, but may be caused by the extremely high constitutive activity of the hH3R (Schnell and Seifert 2010).

The resistance of the hH3R to the effect of NaCl in radioligand binding was not reflected by the data from steady-state GTPase experiments. In the presence of 100 mM of NaCl, the efficacy of histamine (full agonist) was increased and the pEC$_{50}$ value of histamine was reduced from 8.01 to 7.53. By contrast, the pIC$_{50}$ value of thioperamide (inverse agonist) was increased from 7.15 to 7.43 by NaCl, while the efficacy of thioperamide was reduced. This clearly indicates that NaCl stabilizes the inactive state of the hH3R and reduces the constitutive activity of the system, which agrees with the predictions of the two-state model system of receptor activation (Schnell and Seifert 2010).

Since NaCl does not only contain sodium cations but also chloride anions, it is not clear if the effect of NaCl on hH3R constitutive activity is mediated by Na$^+$, by Cl$^-$ or by both ions. To address this question, a profile of the effects of various monovalent cations (Li$^+$, Na$^+$, and K$^+$) as well as of different anions (Cl$^-$, Br$^-$, and I$^-$) was determined in steady-state GTPase assays with membranes expressing hH3R plus α_Gi2 and $\beta_1\gamma_2$. The rank order of efficacy was Li$^+ \sim$ Na$^+ \sim$ K$^+ <$ Cl$^- <$ Br$^- <$ I$^-$. This indicates a direct proportionality between anion radii and reduction of basal hH3R activity and shows that anions contribute more to the salt-induced reduction of constitutive activity than cations. Moreover, the different efficacies of the anions exclude the possibility that an increased osmolality may be responsible for the effect on constitutive activity (Schnell and Seifert 2010). Similar results had been previously obtained with the hβ_2AR-Gsα_i fusion protein, and it had been hypothesized that anions may enhance GDP affinity to the G protein, reducing the ability of the receptor to promote GDP dissociation (Seifert 2001). Interestingly, a comparison of the NaCl effect on hH3R basal activity in membranes co-expressing $\beta_1\gamma_2$ and various $\alpha_{i/o}$ subunits (α_{i1}, α_{i2}, α_{i3} or $\alpha_{i/o}$) revealed the strongest NaCl-mediated reduction of constitutive activity in the presence of α_{i3} (Schnell and Seifert 2010).

It is generally assumed that the highly conserved Asp$^{2.50}$ acts as a Na$^+$ binding site in GPCRs (Horstman et al. 1990; Wittmann et al. 2014). Thus, the functional consequences of a charge-neutralizing mutation from Asp$^{2.50}$ to Asn$^{2.50}$ in the hH3R protein were investigated. In the absence of sodium, the D2.50N mutant (co-expressed with α_{i2} and $\beta_1\gamma_2$) exhibited a reduced number of $[^3\text{H}]\text{NAMH}$ binding sites and an affinity reduction of $[^3\text{H}]\text{NAMH}$ by about 90% as compared to the wild-type hH3R (Schnell and Seifert 2010). Constitutive activity in steady-state GTPase assays was completely eliminated by the D2.50N mutation (co-expressed with α_{i2} and $\beta_1\gamma_2$) and consequently, neither thioperamide nor NaCl further inhibited basal activity. Interestingly, however, the stimulatory effect of histamine at the D2.50N mutant was highly sensitive to NaCl and was completely eliminated at NaCl concentrations > 90 mM. Most surprisingly, the D2.50N mutation introduced G protein selectivity, as the mutant did not productively interact any more with α_{i3}, but still activated α_{i1}, α_{i2}, and α_{i1}. Thus, Asp$^{2.50}$ seems to play a decisive role in the hH3R/α_{i3}-interaction (Schnell and Seifert 2010). In
summary, the characterization of the hH3R in the Sf9 cell expression system by Schnell and Seifert (2010) revealed that Gαi3 interacts with hH3R in a very distinct manner as compared to the other tested Gαi/o isoforms (stronger NaCl effect on activity of wild-type hH3R and complete inactivity of the hH3R-D2.50N mutant). Interestingly, the D2.50N mutant was not completely NaCl-insensitive, which indicates that the interaction between ions and hH3R is more complex and cannot be explained by a single interaction site (Schnell and Seifert 2010).

In contrast to the hH3R, the structurally similar hH4R (see Sect. 2.4) exhibits completely NaCl-resistant constitutive activity (Schneider et al. 2009). A potential explanation for this discrepancy was recently offered by Wittmann et al. (2014). A comparison of various human aminergic GPCRs revealed that in the majority of receptors, glycine is the most abundant (80%) amino acid in the sodium binding channel between the ligand binding site and the sodium binding region (Wittmann et al. 2014). This is, however, not the case for hH3R and hH4R. Moreover, in hH4R the glutamine in position 7.42 disrupts a water chain, which is extending from Asp3.32 (orthosteric binding site) to Asp2.50 (allosteric binding site). This might kinetically prevent sodium from binding to the allosteric binding site (Wittmann et al. 2014).

2.4 The Histamine H4 Receptor

The fourth histamine receptor couples to PTX-sensitive Gαi proteins, specifically to Gαi2 and shows high constitutive activity (Schneider et al. 2009). The H4R is a chemotactic receptor mainly expressed on hematopoietic cells, specifically on eosinophils (O’Reilly et al. 2002; Buckland et al. 2003; Reher et al. 2012b). Human eosinophils belong to the best characterized primary cells endogenously expressing hH4R, but it is difficult to isolate this rare cell type in sufficiently high purity and numbers from healthy volunteers (Seifert et al. 2013). Moreover, H4R is expressed on mast cells (Hofstra et al. 2003; Jemima et al. 2014) as well as dendritic cells (Gutzmer et al. 2005; Damaj et al. 2007; Bäumer et al. 2008; Gschwandtner et al. 2011) and expression on natural killer cells has been reported, too (Damaj et al. 2007). The presence of the H4R on monocytes is discussed controversially (Damaj et al. 2007; Gschwandtner et al. 2013; Werner et al. 2014). Data from a comprehensive analysis of hH4R expression on various myeloid cell types have been published very recently (Capelo et al. 2016). H4R knockout mouse models suggest that this receptor plays a role in the pathophysiology of itch, experimental asthma and EAE (Neumann et al. 2014).

The H4R represents an interesting target for anti-inflammatory drugs. For example, the H4R regulates eosinophilic inflammation in a mouse model of ovalbumin-induced allergic asthma (Hartwig et al. 2015). Moreover, the hH4R seems to be a key player in pruritus during inflammatory reactions (Bell et al. 2004; Dunford et al. 2007; Rosbach et al. 2011). However, studies with mouse models should be interpreted with caution, because H4R pharmacology strongly differs between various species (Strasser et al. 2013). For example, the “prototypical” hH4R antagonist JNJ7777120 (1-[(5-Chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine) is an inverse
agonist at the hH₄R, but a partial agonist at the rat, mouse, and canine orthologues (Schnell et al. 2011; Strasser et al. 2013). Another caveat is H₄R-induced G protein-independent β-arrestin signaling. Although JNJ-7777120 is an inverse H₄R agonist with regard to G protein activation, it exhibits agonistic effects on H₄R-dependent β-arrestin signaling (Rosethorne and Charlton 2011; Seifert et al. 2011; Nijmeijer et al. 2013). Recently, the H₄R antagonist JNJ 39758979 ((R)-4-(3-amino-pyrrolidin-1-yl)-6-isopropyl-pyrimidin-2-ylamine) was shown to be safe and efficacious at reducing histamine-induced pruritus in a phase 1 clinical study (Kollmeier et al. 2014).

2.4.1 Successful Reconstitution of Functional Human Histamine H₄R (hH₄R) in Sf9 Cells

The N-terminally FLAG-tagged and C-terminally His-tagged wild-type hH₄R was co-expressed with Go₁₂ and Gβ₁γ₂ in Sf9 cells. Binding studies with [³H]histamine revealed a Kᵰ value of ~10 nM (Schneider et al. 2009), which fits well to the literature range (5–20 nM). Steady-state GTPase and [³⁵S]GTPγS binding experiments confirmed the high constitutive activity of the hH₄R, which was effectively inhibited by the inverse agonist thioperamide (Schneider et al. 2009). Surprisingly, thioperamide was not able to suppress [³⁵S]GTPγS binding in the co-expression system (hH₄R + Go₁₂ + Gβ₁γ₂) to the level of control membranes expressing only Go₁₂ and Gβ₁γ₂ (Schneider et al. 2009). This strongly indicates that thioperamide is only a partial H₄R inverse agonist and not, as originally suggested in the literature (Lim et al. 2005), a full inverse agonist. The Sf9 cell system provides a “clean” background devoid of mammalian Go proteins and their cognate GPCRs. Thus, expression of mammalian G proteins without GPCRs in Sf9 cells provides a valid control for baseline Go activity and for the maximum possible effect of a full inverse agonist. In the following, the most important results from the pharmacological characterization of the hH₄R in Sf9 cell membranes are discussed. An overview of the most important results is provided in Table 4.

2.4.2 G Protein-Independent High-Affinity-State of the hH₄R

According to the ternary complex model (De Lean et al. 1980), a GPCR shows its highest agonist affinity, when it is part of the ternary complex (Sect. 1.2.1, Fig. 2). Ternary complex formation, however, is prevented in the presence of GTPγS which binds to the Go subunit like GTP (Gilman 1987), but cannot be hydrolyzed. Thus, GTPγS disrupts the G protein cycle, resulting in the accumulation of uncoupled inactive GPCRs with reduced agonist affinity. Surprisingly the hH₄R shows an active state which is completely independent of G proteins (Schneider et al. 2009). This is supported by the following four observations: First, high-affinity [³H]histamine binding (Kᵰ and Bₘₐₓ) to membranes expressing hH₄R, Go₁₂, and Gβ₁γ₂ was retained in the presence of GTPγS. Second, [³H]histamine binding affinity was almost identical in the hH₄R/Go₁₂/Gβ₁γ₂ co-expression system and in Sf9 cell membranes expressing hH₄R in the absence of mammalian G proteins. Third, the Kᵰ values of the inverse hH₄R agonists thioperamide and JNJ-7777120 were unaltered in membranes expressing only hH₄R, although the two-state model of receptor activation (Fig. 4) suggests that inverse agonist affinity increases, when
Table 4 Overview on the pharmacological characterization of the human histamine H₄R in the Sf9 cell expression system

Expressed proteins	Most important new findings	Reference
hH₄R	• GTPγS-insensitive high-affinity agonist binding	
 • No activation of insect cell G proteins | |
| hH₄R + Gα₁₁, Gα₂₂, Gα₂₃ or Gα₆ + Gβ₁γ₂ | • hH₄R most efficiently activates Gα₂₂
 • Least efficient interaction with Gα₆ | Schneider et al. (2009) |
| hH₄R + Gα₂₂ + Gβ₁γ₂ | • GTPγS-insensitive high-affinity agonist binding
 • Very high sodium-insensitive constitutive activity
 • Structural instability
 • Catalytic signaling | |
| hH₄R-Gα₂₂ + Gβ₁γ₂ | • Compared to co-expression system (hH₄R + Gα₂₂ + Gβ₁γ₂):
 • Increased expression level
 • Unaltered histamine affinity
 • More efficient hH₄R/Gα₂₂ interaction
 • Increased constitutive activity
 • Linear signaling | |
| hH₄R-A6.30E + Gα₂₂ + Gβ₁γ₂ | Compared to wild-type (hH₄R + Gα₂₂ + Gβ₁γ₂):
 • Slight (non-significant) reduction of constitutive activity and G protein coupling efficiency
 • Unaltered Kᵟ of histamine
 • G protein-independent high-affinity binding retained | Schneider et al. (2010a) |
| hH₄R-R3.50A + Gα₂₂ + Gβ₁γ₂ | Compared to wild-type (hH₄R + Gα₂₂ + Gβ₁γ₂):
 • G protein coupling eliminated
 • Affinity of thioperamide increased
 • Affinity of histamine reduced | |
| hH₄R + RGS4 + Gα₂₂ + Gβ₁γ₂ | Compared to wild-type co-expression system (+ Gα₂₂Gβ₁γ₂):
 • No significant change of histamine effect and baseline steady-state GTPase activity
 • Significant increase of thioperamide inverse agonistic effect | Schneider and Seifert (2009) |
| hH₄R-RGS4 + Gα₂₂ + Gβ₁γ₂ | Compared to wild-type co-expression system (+ Gα₂₂Gβ₁γ₂):
 • Significant increase of baseline steady-state GTPase activity and of thioperamide inverse agonistic effect
 • Significantly increased EC₅₀-values of histamine and JNJ-7777120 (~twofold)
 • Significantly increased apparent Kᵅ value of Gα₂₂ intrinsic GTPase activity in the presence of histamine | |

(continued)
the receptor is not coupling to G proteins and assumes an inactive state. Finally, steady-state GTPase assays with membranes co-expressing hH₄R, Gαᵢ₂ and Gβ₁γ₂ revealed that the constitutive activity of the hH₄R is insensitive to sodium ions. According to the standard two-state model of receptor activation depicted in Fig. 4, however, it is expected that Na⁺ stabilizes the inactive state of a GPCR. This has been shown previously, e.g. for FPR-26 (Wenzel-Seifert et al. 1998; Seifert and Wenzel-Seifert 2001) or the α₂-adrenoceptor (Tian and Deth 2000).

2.4.3 Analysis of hH₄R-G Protein Coupling

Analysis of hH₄R activation in the steady-state GTPase assay in membranes co-expressing hH₄R with Gβ₁γ₂ and a specific Gα subunit (Gαᵢ₁, Gαᵢ₂, Gαᵢ₃ or

Expressed proteins	Most important new findings	Reference
hH₄R + GAIP + Gαᵢ₂ + Gβ₁γ₂	Compared to wild-type co-expression system (+ Gαᵢ₂Gβ₁γ₂):	
• No significant change of signal range and baseline activity in steady-state GTPase assays		
• Significantly increased apparent K_M value of Gαᵢ₂ intrinsic GTPase activity in the presence of histamine		
hH₄R-GAIP + Gαᵢ₂ + Gβ₁γ₂	Compared to wild-type co-expression system (+ Gαᵢ₂Gβ₁γ₂):	
• Basically identical pharmacological properties		
• Significantly increased relative histamine- and thioperamide-induced signals in steady-state GTPase assays		
hH₄R-GAIP + Gαᵢⱼ, Gαᵢ₂, Gαᵢ₃ or Gαᵦ + Gβ₁γ₂	Identical G protein selectivity of hH₄R-GAIP and hH₄R → G protein coupling is mainly determined by the GPCR, but not by the RGS protein	
hH₄R-F169V+S179A or hH₄R-F169V+S179M		
 hH₄R-F169V
 hH₄R-S179A
 hH₄R-S179M
 + Gαᵢ₂ + Gβ₁γ₂ | Compared to wild-type hH₄R: constitutive activity not affected by the S179A or S179M single mutations.
Constitutive activity slightly reduced in F169V single mutant; stronger reduction in double mutants.
S179A single mutant: increased potency and affinity of JNJ-7777120 | Wifling et al. (2015b) |
| mH₄R-V171F
 mH₄R-V171F+M181S
 + Gαᵢ₂ + Gβ₁γ₂ | No constitutive activity of wild-type mH₄R and mH₄R-V171F mutant, but weak constitutive activity of mH₄R-V171F +M181S double mutant | |
| hH₄R-F168A + Gαᵢ₂ + Gβ₁γ₂ | Total loss of hH₄R constitutive activity. | Wifling et al. (2015a) |
Gαo) revealed that Gαi2 was most effectively stimulated by the hH4R. By contrast, the hH4R hardly activated Gαo proteins (Schneider et al. 2009). Since Gαo is the main G protein subtype in the brain, this result suggests that the hH4R is not of major importance in the CNS. We have seriously questioned the widespread but largely unfounded notion of functional hH4R expression on neurons (Schneider and Seifert 2016).

The stoichiometry of the receptor-G protein interaction can be calculated by dividing the total number of receptor-regulated G proteins (from GTPγS binding assays) by the number of receptors per cell (Bmax from radioligand binding or from Western blot). When co-expressed with Gαi2 and Gβ1γ2 in Sf9 cell membranes, the hH4R catalytically activates up to five Gαi2 subunits simultaneously (Schneider et al. 2009). The affinity of [35S]GTPγS to the Gα subunit (K_D value) reflects efficiency of G protein activation. The inverse agonistic character of thioperamide was confirmed in [35S]GTPγS assays with membranes co-expressing hH4R, Gαi2 and Gβ1γ2. While the [35S]GTPγS K_D value was 3.4 nM in the presence of histamine, it was about threefold increased by thioperamide (Schneider et al. 2009), indicating reduced [35S]GTPγS affinity of the Gα subunit due to uncoupling from the hH4R.

2.4.4 Conformational Instability of hH4R

As demonstrated for the constitutively active mutant of the β2-adrenoreceptor (β2ARCAM) (Gether et al. 1997), constitutive activity of a GPCR increases conformational flexibility and favors denaturation. By contrast, ligand binding reduces conformational flexibility and stabilizes the receptor. Thus, addition of ligands to a cell culture expressing β2ARCAM increased the Bmax value of this receptor (Gether et al. 1997). This effect was caused by both agonists and inverse agonists, suggesting that it is the switch between different activation states rather than the nature of the activation state, which destabilizes the receptor.

The high constitutive activity of the hH4R prompted us to investigate its conformational stability and the stabilizing effect of ligands. In fact, addition of histamine (10 μM) or thioperamide (1 μM) to Sf9 cells co-expressing hH4R, Gαi2 and Gβ1γ2 significantly increased the Bmax value in histamine high-affinity agonist binding assays (Schneider et al. 2009). Interestingly, this effect was not visible in immunoblots, indicating that histamine and thioperamide mainly support the correct folding of hH4R in the cell membrane, but not during intracellular protein synthesis. This was confirmed in experiments, where denaturation of hH4R (co-expressed with Gαi2 and Gβ1γ2) was induced by incubation of the membranes at 37°C. After 120 min, almost 70% of the histamine binding sites in the ligand-free control were lost, but only 35% in the presence of histamine. Most surprisingly, however, thioperamide increased the Bmax by 30–40%, suggesting that it did not only prevent hH4R denaturation, but even re-folded a priori misfolded receptors. This intriguing “refolding” effect of the inverse agonist thioperamide was confirmed in a two-step assay, during which the receptor was first denatured and then incubated with thioperamide.
2.4.5 Characterization of the hH4R-Gαi2 Fusion Protein

To analyze the interaction of the hH4R with Gαi2, the C-terminus of the receptor was fused to the N-terminus of the G protein by using a His6 linker (Fig. 3). The hH4R-Gαi2 protein co-expressed with Gβ1γ2 in Sf9 cell membranes exhibited linear signaling with a coupling factor of ~1 in [35S]GTPγS binding assays and a turnover number of ~1 in steady-state GTPase assays. Thus, hH4R exclusively activates the tethered mammalian G protein but not the insect cell G proteins (Schneider et al. 2009). This was additionally supported by the lack of [35S]GTPγS binding in membranes expressing non-fused hH4R in the absence of mammalian G proteins (Schneider et al. 2009). The Kd value of [35S]GTPγS in the presence of the full hH4R agonist histamine or the inverse agonist thioperamide in membranes co-expressing hH4R-Gαi2 and Gβ1γ2 was significantly reduced as compared to the coexpression system, indicating enhanced efficiency of G protein activation (Schneider et al. 2009). A higher GTP affinity of Gαi2 in the fusion protein was also reflected by a significantly decreased Km value in the presence of histamine in steady-state GTPase assays. Moreover, a slight increase of constitutive activity in steady-state GTPase assays additionally demonstrates the increased efficiency of G protein activation in the fusion protein system (Schneider et al. 2009). Interestingly, the Bmax value of the hH4R-Gαi2 fusion protein in immunoblots and [3H]histamine binding assays was increased as compared to the non-fused receptor (Schneider et al. 2009). This suggests a chaperone-like stabilizing effect of Gαi2, favoring membrane insertion of the receptor protein. Incubation of the cell culture with histamine or thioperamide did not further enhance the Bmax value of the fusion protein in [3H]histamine binding (Schneider et al. 2009), suggesting that the fusion of hH4R to Gαi2 induces already the maximum possible number of correctly folded receptors. An overview of the most important features of the hH4R-Gαi fusion protein in comparison to the co-expression system (hH4R + Gαi2 + Gβ1γ2) is provided in Table 4.

2.4.6 Role of Glycosylation for hH4R Expression and Function

Western blotting of hH4R-expressing Sf9 cell membranes revealed two bands at 43 and 46 kDa. Incubation of the baculovirus-infected Sf9 cell culture with the glycosylation inhibitor tunicamycin removed the 46 kDa band, indicating that this is most likely a glycosylated H4R species (Schneider et al. 2009). Although the total protein amount on the Western blot was comparable for both untreated and tunicamycin-treated H4R protein (2.5–3 pmol/mg as assessed by using FLAG-β2AR standard membranes with known receptor expression levels), the Bmax value in [3H]histamine binding was reduced by 75% after tunicamycin treatment. Nevertheless, the Kd value of [3H]histamine remained unchanged (Schneider et al. 2009). Thus, hH4R deglycosylation does not significantly affect the [3H]histamine binding site of functional hH4R, although it significantly reduces the amount of correctly folded receptor protein.

The activation of Gαi2 proteins by deglycosylated hH4R was investigated in [35S]GTPγS saturation binding and steady-state GTPase assays. Even in the presence of histamine, the deglycosylated hH4R in the tunicamycin-treated membranes...
activated Goi2 less efficiently than the glycosylated H4R (increased KD value of [35S] GTPγS) (Schneider et al. 2009). Thus, proper glycosylation of hH4R seems to be a prerequisite for efficient G protein coupling. By contrast, determination of the KM value of GTP at the Goi2 subunit in steady-state GTPase assays only revealed a non-significant trend towards an increased KM-value in the tunicamycin-treated membranes (Schneider et al. 2009).

In [35S]GTPγS binding assays, deglycosylation reduced the constitutive activity of H4R coexpressed with Goi2 and Gβ1γ2 from 70 to 40% (Schneider et al. 2009). Neither the coupling factor from [35S]GTPγS binding assays nor the turnover number from steady-state GTPase assays changed significantly, when hH4R was deglycosylated (Schneider et al. 2009). This suggests that deglycosylation of hH4R reduces efficacy of Goa activation without affecting the total number of activated G proteins.

2.4.7 Reasons for the High Constitutive Activity of hH4R

The inactive state of GPCRs is established by intramolecular interactions that conformationally restrain the receptor. Data obtained from the rhodopsin molecule have led to the assumption that the so-called ionic lock is highly important for the inactivation of GPCRs (Palczewski et al. 2000; Vogel et al. 2008). The ionic lock is a salt bridge between a highly conserved glutamate in position 6.30 of TM6 and the arginine of the DRY motif located on the bottom of TM3 (position 3.50). The importance of the ionic lock for the regulation of odorant GPCR activity has been shown recently (de March et al. 2015). However, some receptors do not form an ionic lock, despite the presence of the required amino acids. This has been reported, e.g. for the human β2AR (Cherezov et al. 2007; Rasmussen et al. 2007; Rosenbaum et al. 2007) or the human A2A adenosine receptor (Jaakola et al. 2008), both of which show considerable constitutive activity.

The hH4R is the only histamine receptor with an alanine in position 6.30, which precludes ionic lock formation (Schneider et al. 2010a) and possibly explains the observed high G protein-independent activity of the hH4R (Schneider et al. 2009). To test this hypothesis, the TM6 part of the potential ionic lock was reconstituted by introducing the A6.30E mutation, and the resulting mutant was analyzed in the Sf9 cell expression system. Immunoblots and [3H]histamine saturation binding indicated comparable expression levels of the mutant and the wild-type hH4R. Unexpectedly, the pharmacological properties of hH4R-A6.30E (co-expressed with Goi2 and Gβ1γ2) in radioligand binding, steady-state GTPase assay and [35S]GTPγS binding assays were basically unaltered as compared to the wild-type hH4R (Schneider et al. 2010a). The replacement of alanine 6.30 by glutamate resulted in a slight but non-significant reduction of coupling factor ([35S]GTPγS binding), turnover number (steady-state GTPase assay) and constitutive activity ([35S]GTPγS binding and steady-state GTPase assay). This indicates that the ionic lock interaction was either not fully reconstituted or not sufficient to stabilize the inactive conformation of hH4R (Schneider et al. 2010a). An overview of the most important features of the hH4R-A6.30E mutation in comparison to the wild-type hH4R is provided in Table 4.

E.H. Schneider and R. Seifert
Molecular modeling studies revealed potential interactions that may stabilize the active conformation despite the presence of the reconstituted ionic lock. The hH4R active state was modeled in complex with the C terminus of Gαi2 by using the crystal structures of the turkey β1AR (Warne et al. 2008) and the human adenosine A2A receptor (Jaakola et al. 2008) as templates. This revealed an additional salt bridge between D5.69 at the N-terminus of the second cytoplasmic loop (CL3) and R6.31, which may stabilize an active receptor conformation (Schneider et al. 2010a). Since D5.69 is nearly unique among the GPCRs for biogenic amines, this salt bridge may be at least partly responsible for the high constitutive activity of hH4R and should be analyzed in future studies.

Recently, the reasons for the high constitutive activity of hH4R were further elucidated (Wifling et al. 2015a, b). These studies made use of the large pharmacological differences between human and rodent H4R (Schnell et al. 2011; Strasser et al. 2013). For example, constitutive activity of mH4R and rH4R is strongly reduced as compared to hH4R (Schnell et al. 2011) and the inverse hH4R agonist JNJ7777120 exhibits partial agonism at mH4R and rH4R. Moreover, the potency of the agonist histamine is lower for the rodent orthologues as compared to hH4R (Schnell et al. 2011). Mutational studies indicate that position 169 of the second extracellular loop is an important determinant of the distinct agonist binding properties of human and mouse H4R (Lim et al. 2008). The F169 of the hH4R is replaced by a V169 in the mH4R. Thus, Wifling et al. (2015b) performed a detailed analysis of the “mouse-like” hH4R-F169V mutant in the Sf9 cell system. In fact, hH4R-F169V exhibited decreased constitutive activity as compared to wild-type hH4R, resulting in an increased agonistic effect of histamine. Moreover, histamine binding affinity as well as the inverse agonistic effect of thioperamide was reduced (Wifling et al. 2015b). The second key amino acid identified by Wifling et al. (2015b) was S179, which is replaced by methionine in the mH4R and by alanine in the rH4R. The double mutants hH4R-F169V+S179A and hH4R-F169V+S179M showed an even stronger reduction of constitutive activity as compared to the hH4R-F169V single mutant (Wifling et al. 2015b). These results suggest that the constitutively active state of hH4R at least partly depends on hydrophobic interactions between the extracellular domains of TM 5, 6, and 7 and ECL2. A hydrogen bond between S179 and T323 additionally stabilizes the agonist-free active state of the hH4R (Wifling et al. 2015b).

These mutations, however, did not completely eliminate the constitutive activity of hH4R. A total loss of constitutive activity was only achieved by introducing the F168A mutation (Wifling et al. 2015a). This indicates that – despite the strong reduction of constitutive activity in the hH4R-F169V mutation – the adjacent amino acid in the FF motif, F168, is the key residue responsible for the high constitutive activity of hH4R (Wifling et al. 2015a). An FF motif in ECL2 is also present in other GPCRs, e.g. β2AR, hH3R and M2R, suggesting a similar role of the ECL2 conformation on constitutive activity of these receptors.
2.4.8 The Role of the DRY Motif in G Protein Activation by the Human hH₄R

The arginine R3.50 of the DRY motif at the bottom of TM3 stabilizes the inactive receptor state by forming a salt bridge with the adjacent D/E3.49 residue (Nygaard et al. 2009). Therefore, we analyzed the effect of the hH₄R-R3.50A mutation on constitutive activity and ligand binding in membranes co-expressing hH₄R-R3.50A, Gαᵢ₂ and Gβ₁γ₂. Surprisingly, the R3.50A exchange totally eliminated G protein coupling as indicated by the complete absence of receptor-regulated steady-state GTPase activity (Schneider et al. 2010a). Moreover, the hH₄R-R3.50A mutant adopted an inactive state with reduced affinity of the agonist histamine and increased affinity of the inverse agonist thioperamide (Schneider et al. 2010a). However, introduction of the R3.50A mutation reduced histamine affinity only by 50% and did not affect Bₘₐₓ. This suggests that the hH₄R-R3.50A mutant still adopts a “residual” G protein-independent high-affinity state.

To explain the total loss of G protein coupling of the hH₄R-R3.50A mutant, molecular modelling studies were performed using the active-state of the hH₄R in complex with the C-terminus of Gαᵢ₂. This analysis revealed that R3.50 of the hH₄R may interact with the backbone oxygens of C352 and G353 in the Gαᵢ₂ C-terminus (Schneider et al. 2010a). This supports the adoption of the Gαᵢ₂ conformation, which is required for interaction with TM6 of the receptor. Thus, the R3.50A mutation hampers G protein recognition by hH₄R. Nevertheless, the hH₄R-R3.50A mutant is still able to form the salt bridge between D5.69 and R6.31, which stabilizes an active state. This could explain why hH₄R-R3.50A still exhibits relatively high histamine affinity (Schneider et al. 2010a). However, the effect of mutations in the E/DRY motif is not disrupting G protein coupling in all GPCRs. Rovati et al. (2007) described two phenotypes P1 and P2 that are produced by mutations of the E/D3.49- or the R3.50-residue. While in P1-type receptors high-affinity agonist binding and G protein coupling are retained after mutating position R3.50, P2-type receptors show a disrupted receptor-G protein interaction and reduced agonist binding affinity (Rovati et al. 2007). Accordingly, the hH₄R belongs to the group of P2-type GPCRs. An overview of the most important features of the hH₄R-R3.50A mutation in comparison to the wild-type hH₄R is provided in Table 4.

2.4.9 Pharmacological Characterization of hH₄R Ligands

As explained above, co-expression of the hH₄R and its cognate mammalian G proteins in Sf9 cells results in high constitutive activity (Schneider et al. 2009). This reduces the maximum available signal range, yielding a very low signal-to-noise ratio. Even in the presence of 100 mM of NaCl, the full agonist histamine produced only a signal intensity of ~30% (related to baseline) (Schneider and Seifert 2009). The expression of an hH₄R-Gαᵢ₂ fusion protein did not improve the signal-to-noise ratio, but resulted in even higher constitutive activity and reduced relative intensity of histamine-induced signals (Schneider et al. 2009). Thus, the properties of the hH₄R/G protein co-expression system and the hH₄R-Gαᵢ₂ fusion protein are rather unfavorable for the characterization of hH₄R ligands.
This prompted us to perform a closer investigation of the effects of regulators of G protein signaling (RGS proteins). A common feature of RGS proteins is the 120 amino acid RGS domain, which interacts with Gα subunits and increases their intrinsic GTPase activity (Willars 2006). RGS proteins are classified in eight subfamilies that differ from each other by protein size and the presence of additional functional domains. They regulate the activity of Gαi/o or Gαq proteins, but no RGS protein-mediated activation of Gαs has been reported to date. Due to their mechanism of action, RGS proteins should enhance signal intensity in steady-state GTPase assays. In fact, fusion of the α2AR C-terminus to the RGS4 N-terminus significantly increased α2AR-mediated stimulation of GTPase activity (Bahia et al. 2003).

For the experiments with the hH4R, the two RGS proteins RGS4 and GAIP (Gα-interacting protein; also known as RGS19) were selected. RGS4 and GAIP both exhibit a simple protein structure without additional functional domains. Therefore, only activation of Gαi GTPase activity is expected. Both RGS proteins were fused to the hH4R via a His6 linker (Fig. 5), very similar to the previously described hH4R-Gαi2 fusion protein approach (Fig. 3). The hH4R-RGS fusion proteins were co-expressed with Gαi2 and Gβ1γ2 in Sf9 cell membranes. The corresponding co-expression system was characterized by infecting Sf9 cells with baculoviruses encoding hH4R, Gαi2, Gβ1γ2 and RGS4 or GAIP.

Both RGS4 and GAIP, irrespective of whether they were co-expressed or fused to hH4R, increased the apparent K_M value of Gαi2 in the presence of histamine in steady-state GTPase assays. This effect reached significance for the co-expressed GAIP and the hH4R-RGS4 fusion protein (Schneider and Seifert 2009). By contrast, there was no effect of RGS proteins on the K_M value in the presence of the inverse agonist thioperamide (Schneider and Seifert 2009). This suggests that GPCR-mediated activation of the G protein is a prerequisite for the RGS protein effect.

![Fig. 5 Schematic depiction of the hH4R-RGS fusion protein. The C-terminus of the hH4R is fused to the N-terminus of the RGS protein by a hexahistidine linker. This brings the RGS protein into close proximity to the heterotrimeric G protein. Adapted from Schneider and Seifert (2010c)](image-url)
Compared to the RGS4-free co-expression system (hH₄R + Gα₂ + Gβ₁γ₂), both the quadruple expression system (hH₄R + Gα₂ + Gβ₁γ₂ + RGS4) and the fusion protein system (hH₄R-RGS4 + Gα₂ + Gβ₁γ₂) yielded a significantly increased relative steady-state GTPase signal of the inverse agonist thioperamide, while the histamine-induced signal remained unaffected (Schneider and Seifert 2009). The only major difference between co-expressed and hH₄R-attached RGS4 was an increased baseline steady-state GTPase activity in the hH₄R-RGS4 fusion protein system, but an unaltered baseline, when RGS4 was co-expressed (Schneider and Seifert 2009).

Co-expression of GAIP with hH₄R, Gα₂ and Gβ₁γ₂ had no significant effect on baseline activity or thioperamide- and histamine-induced signals in steady-state GTPase assays. However, when GAIP was fused to hH₄R, the histamine-induced relative signal in steady-state GTPase assays was significantly increased by ~69% and the thioperamide-induced signal was enhanced by ~45%. The baseline activity of the GAIP-hH₄R fusion protein system, however, remained unaffected (Schneider and Seifert 2009). Thus, in contrast to hH₄R-RGS4, the hH₄R-GAIP fusion protein (co-expressed with Gα₂ and Gβ₁γ₂) enhanced the absolute histamine-induced signal without changing baseline activity. Therefore, the relative stimulatory effect of histamine was increased (Schneider and Seifert 2009).

The different behavior of RGS4 and GAIP in the fusion proteins is surprising, because both RGS proteins have a similar RGS domain and no additional functionalities. Possibly, the differences are caused by distinct G protein affinities of these RGS proteins. According to the UniProtKB database entry P49795, GAIP binds to Gαᵢ proteins in the rank order Gαᵢ₃ > Gαᵢ₁ > Gαₒ >> Gαᵢ₂/Gαᵢ₄. Thus, among the Gαᵢ isoforms, Gαᵢ₂ is the one with the lowest affinity to GAIP. This means that the effect of GAIP may only become visible, when the number of activated Gαᵢ₂ subunits exceeds a certain threshold. While under basal conditions the number of activated Gαᵢ₂ subunits is too low for a visible hH₄R-GAIP-mediated effect, stimulation by histamine increases the number of active Gαᵢ₂ to a level, where the GAIP-mediated effect becomes visible. By contrast, RGS4 may exhibit a higher Gαᵢ₂ affinity than GAIP and therefore show already an effect under basal conditions. This hypothesis, however, should be tested by a side-by-side comparison of the Gαᵢ₂ protein affinity of RGS4 and GAIP.

Co-expression of the hH₄R-GAIP fusion protein with Gα₂ and Gβ₁γ₂ produces a system with improved signal-to-noise ratio as compared to the standard co-expression system (hH₄R + Gα₂ + Gβ₁γ₂). A comparison of hH₄R-GAIP and wild-type hH₄R (both co-expressed Gα₂ and Gβ₁γ₂) in steady-state GTPase assays revealed comparable pharmacological properties. First, potency and efficacy of selected hH₄R standard ligands were unaltered. Second, similar to wild-type hH₄R, the hH₄R-GAIP fusion protein exhibited sodium chloride-insensitive constitutive activity (Schneider and Seifert 2009). Third, the hH₄R-GAIP fusion protein showed an unchanged G protein selectivity profile as compared to the unmodified hH₄R protein (Schneider et al. 2009; Schneider and Seifert 2009). The unaltered G protein profile is surprising, because GAIP shows distinct affinities to different Gαᵢ isoforms, which should theoretically influence the interaction between hH₄R-GAIP
and the G protein. The results, however, indicate that the G-protein-specificity of the hH4R-GAIP fusion protein is governed by the properties of the receptor rather than by the RGS protein part. In summary, the hH4R-GAIP fusion protein (co-expressed with Gαi2 and Gβ1γ2) can fully replace the standard co-expression system (hH4R + Gαi2 + Gβ1γ2) in steady-state GTPase assays and allows the functional characterization of new hH4R ligands with higher sensitivity and signal-to-noise ratio. The hH4R-GAIP fusion protein approach was successfully used to evaluate a new class of Nα-acetylated imidazolylpropyl-guanidine-derived hH4R agonists (Ghorai et al. 2008; Igel et al. 2009b) or of cyanoguanidine-related hH4R agonists (Igel et al. 2009a; Geyer et al. 2016). An overview of the most important features of the various H4R/RGS fusion protein and co-expression approaches in comparison to the “standard” co-expression system (hH4R+Gαi2 +Gβ1γ2) is provided in Table 4.

2.4.10 Structure-Activity Relationships of hH4R Inverse Agonists

The high constitutive activity of hH4R significantly reduces the signal-to-noise ratio in steady-state GTPase assays and reduces the sensitivity of agonist assays. However, this feature becomes an advantage, when inverse agonists are characterized. The hH4R may maintain its constitutive activity under physiological conditions, because it is resistant to high sodium concentrations. As hypothesized by Schneider et al. (2009), on the one side, inverse agonists could be therapeutically advantageous in case of pathophysiologically increased constitutive H4R activity, because they may exert a stronger anti-pruritic effect than neutral antagonists. On the other side, the re-folding of misfolded hH4R protein observed with the inverse agonist thioperamide (Schneider et al. 2009) (Sect. 2.4.4) may be a general effect of inverse H4R agonists. Thus, inverse agonist-mediated upregulation of intact H4R protein may result in rebound effects after drug discontinuation (Schneider et al. 2009). Although these hypotheses were not proven yet under physiological conditions, they illustrate the potential importance of characterizing inverse H4R agonism during drug development. Therefore, structure-activity relationships for hH4R inverse agonism should be established.

A series of 25 previously described (Venable et al. 2005) H4R ligands (indoles, benzimidazoles, and thienopyrroles; Fig. 6) structurally derived from the prototypical H4R antagonist JNJ7777120 (Thurmond et al. 2004) was characterized in [3H]histamine binding assays and steady-state GTPase assays using membranes expressing hH4R + Gαi2 + Gβ1γ2. The steady-state GTPase assays were performed in the absence of sodium chloride to obtain maximum constitutive activity.

The steady-state GTPase assay data reveal that most of the compounds were inverse agonists with a lower efficacy than thioperamide. Only three of the 25 compounds (~12%) were neutral antagonists (Schneider et al. 2010b). This confirms a previous analysis of literature data on 380 antagonists binding to 73 GPCRs. Only 15% of these compounds were neutral antagonists (Kenakin 2004). Thus, neutral antagonism seems to be a rare phenomenon.

In general, the pKᵦ values from steady-state GTPase assays in the presence of histamine fit very well to the pKᵦ values from [3H]histamine binding. In a subset of
compounds, the pEC\textsubscript{50} values determined in the absence of histamine were significantly lower than the pK\textsubscript{i} and/or pK\textsubscript{b} values. Such discrepancies have been reported before for inverse agonists, e.g. at the hH\textsubscript{4}R (Smits et al. 2008) or the \beta\textsubscript{2}AR (Chidiac et al. 1994). Maybe, this subset of hH\textsubscript{4}R antagonists discriminates between the agonist-free constitutively active receptor and the histamine-activated receptor state (Schneider et al. 2010b). These observations confirm the insufficiency of the two-state model of receptor activation and point to the existence of ligand-specific receptor states.

The potential binding mode of inverse hH\textsubscript{4}R agonists of the indole series was analyzed by molecular dynamics simulations with the completely unsubstituted indole compounds (R4-7 = H; Fig. 6). The positively charged piperazine amino group interacts electrostatically with the highly conserved Asp3.32. Moreover, both the carbonyl moiety and the indole NH of the ligand establish an interaction with the side chain of the uncharged Glu5.46. The indole moiety of the ligand shows a hydrophobic interaction with the indole part of Trp6.48 (Schneider et al. 2010b). Trp6.48 is a key player in the so-called rotamer toggle switch mechanism of receptor activation, which had been previously postulated for the \beta\textsubscript{2}AR (Shi et al. 2002). The stabilization of Trp6.48 in its vertical conformation by the indole-derived ligand is a typical feature of the inactive receptor conformation and may explain the inverse agonism of such compounds. The benzimidazole-related structures bind in a similar way, but, in contrast to the indole-derived compounds, they form two tautomers with distinct binding modes (Schneider et al. 2010b).

Fig. 6 Scaffold structure of three classes of H\textsubscript{4}R antagonists/inverse agonists. The numbers in brackets indicate the number of compounds tested.
Replacement of the R5/R7 hydrogen of the indole derivatives by the more space-filling chlorine increases H4R binding affinity. Molecular dynamics simulations suggest that two small binding pockets in the H4R protein may be filled by these chlorine residues, which increases the ligand-receptor contact area (Schneider et al. 2010b). Substitution of R5 by -OCH3 reduces binding affinity, suggesting that larger substituents may be unfavorable. However, there is no significant correlation between molar volume and affinity of a series of indole compounds, suggesting that the volume of R5 may not be the only descriptor that influences binding affinity (Schneider et al. 2010b). By contrast, the size of R5 correlates excellently with the inverse agonistic efficacy of a subset of eight indole-derived compounds with varying R5 substituents. A calculation of the descriptors logP, molar refractivity, molar volume, polarizability, refraction index and polar surface area revealed that inverse agonistic efficacy solely depended on molar volume, but not on the other factors. The inverse agonistic efficacy of these compounds was inversely correlated to the molar volume of the substituent R5 (Schneider et al. 2010b).

In summary, despite the limited number of compounds and substitution patterns available, in this study the first structure-activity relationships for inverse H4R agonism were identified. It was, however, not possible to predict all changes in binding mode and receptor conformation that result from small structural alterations of the ligand. Moreover, a general model that applies to structurally distinct classes of hH4R inverse agonists could not be established yet. In the future, the hH4R should be co-crystallized with various inverse agonists to elucidate the exact binding mode of these compounds. Although this would be a very ambitious project, the numerous crystallized ligand-receptor complexes published in the recent years (Cherezov et al. 2007; Rasmussen et al. 2007, 2011; Shonberg et al. 2015) demonstrate that this is not impossible.

3 Summary and Outlook

In this chapter, the results from the characterization of all four histamine receptor subtypes in the Sf9 insect cell system were summarized. On the one hand, it might be argued that insect cells do not represent physiological conditions as well as primary cells. On the other hand, it is difficult to isolate primary cells in sufficiently high numbers. Moreover, a side-by-side comparison of receptor isoforms or species orthologues in a defined environment is virtually impossible in primary cells. Since cells from different tissues have to be used, cell type-specific properties like crosstalk with other receptors or special features of the signaling pathways can lead to heterogeneous results, even for the same receptor isoform. Also, for some receptors like H3R, no suitable primary cell system is available (Seifert et al. 2013).

Thus, for a comparison of the intrinsic properties of GPCR isoforms, e.g. G protein affinity/selectivity or constitutive activity, Sf9 cells represent a superior option. As explained in this chapter, Sf9 cells do not contain background GPCR activity and do not produce endogenous agonists activating mammalian GPCRs. Moreover, Sf9 cells allow the co-expression of defined mammalian Gsa or Gs.
protein subunits on a “clean” signaling background. This was demonstrated by the analysis of the hH3R interaction with long and short Gαs splice variants or by in-depth studies of hH3R/hH4R Gαi isoform specificity and ion sensitivity. Table 5 shows numerous aspects of histamine receptor pharmacology addressed by using the Sf9 insect cell expression system.

The ligand binding studies and the G protein activation assays discussed in this chapter were all performed with radiolabeled reagents. Radioactivity-based assays, however, are increasingly hampered by legal overregulation and growing waste disposal costs. In this situation, fluorescence-based GPCR ligand binding and G protein activation assays could represent interesting alternatives. Unfortunately, many histamine receptor ligands are rather small molecules and easily lose binding affinity when coupled to a bulky fluorophore. Nevertheless, some progress has been made during the past years. For example, a cyanine dye-labeled aminopotentidine derivative exhibited nanomolar hH2R potency (Xie et al. 2006c). Moreover, fluorescent pyrylium- or cyanine-labeled dimeric carbamoylguanidines were synthesized, but these compounds failed in binding assays due to intracellular accumulation and the resulting high fluorescence background (Kagermeier et al. 2015). A high-affinity fluorescent H1R antagonist was obtained by labeling mepyramine with a BODIPY (4,4-difluoro-4-bora-3a,4a-diazas-indacene)-derived dye (Rose et al. 2012). Fluorescent hH3R-selective ligands were developed by using the chalcone partial structure (Tomasch et al. 2012). Moreover, a compound named “Bodilisant,” which has been reported recently, is a BODIPY-labeled non-imidazole ligand with nanomolar hH3R affinity (Tomasch et al. 2013). Some progress has also been made in the field of fluorescence-based G protein activation assays. For example, a europium-labeled non-hydrolysable GDP derivative can replace [35S]GTPγS in GTPγS binding assays (Koval et al. 2010). This enables a time-resolved fluorescence-based assay that is, e.g., suited for the functional characterization of hH3R ligands (Singh et al. 2012).

The functional assays described in this chapter focused on the determination of GPCR-mediated G protein activation (steady-state GTPase and [35S]GTPγS binding assays). However, GPCRs can additionally activate G protein-independent signaling mechanisms, most importantly through β-arrestin recruitment (Lefkowitz and Shenoy 2005; Shukla et al. 2014). The hH4R ligand JNJ-7777120, which acts as an inverse hH4R agonist in G protein activation assays (Schneider et al. 2009), unexpectedly turned out to be an agonist with regard to hH4R-mediated β-arrestin recruitment (Rosethorne and Charlton 2011). This phenomenon is also known as “biased signaling” or “functional selectivity” and has important implications for drug development (Seifert et al. 2011; Nijmeijer et al. 2013). In future studies, biased signaling of hH1R, hH2R, or hH3R and functional selectivity of the corresponding ligands should be investigated in more detail.

However, the most important, but also most ambitious, goal in future studies would be the crystallization of all four histamine receptor subtypes. To date, only the crystal structure of the hH1R has been resolved (Shimamura et al. 2011). The crystal structures of the histamine receptors are required to answer several still unresolved questions. For example, exact knowledge of the hH4R conformation could help to explain, why this receptor shows such a high constitutive activity
Table 5 Various aspects of histamine receptor pharmacology and medicinal chemistry investigated in the Sf9 insect cell expression system

Aspect	Receptor subtype	Example	Reference
Species-specificity of receptor pharmacology	H1R	• Efficacy/potency of some agonistic bulky 2-phenylhistamines and histaprodifens: gpH1R > hH1R	Seifert et al. (2003)
		• Potency of several arpromidine-type H1R antagonists: gpH1R > hH1R	
	H2R	• Affinity of large guanidine-type agonists in [3H]tiotidine binding: hH2R-GsαS < gpH2R-GsαS	Kelley et al. (2001)
		• GTPγS-sensitivity of high-affinity agonist binding: hH2R-GsαS > gpH2R-GsαS	
		• Potencies and efficacies of guanidines (steady-state GTPase): gpH2R-GsαS > hH2R-GsαS	
	H3R	Imoproxifan: nearly full agonist at hH1R, but inverse agonist at rH1R (steady-state GTPase)	Schnell et al. (2010b)
	H4R	Constitutive activity of mH4R and rH4R < hH4R; inverse hH4R agonist JNJ7777120 is a partial agonist at cH4R, mH4R and rH4R; histamine potency at cH4R, mH4R and rH4R < hH4R	Schnell et al. (2011)
Studies with chimeric receptor proteins	H1R	N-terminus and ECL2 of hH1R replaced by guinea-pig sequences (h(gpNgpE2)H1R): higher maximum Gq-activation and lower histamine potency as compared to hH1R or h(gpE2) H1R; extracellular surface of the H1R influences ligand binding, recognition and guiding into the binding pocket	Strasser et al. (2008b) and Wittmann et al. (2011)
	H2R	Comparison of hH2R-A271D-GsαS, NhCgpH2R-GsαS, NgpChH2R-GsαS, hH1R-GsαS and gpH1R-GsαS to investigate the causes for the pharmacological differences between hH2R and gpH2R with regard to large guanidine-type agonists	Kelley et al. (2001)

(continued)
Table 5 (continued)

Aspect	Receptor subtype	Example	Reference
Importance of individual amino acids for defined receptor functions	H₁R	hH₁R-F153L and hH₁R-I433V: reduced expression, function and [³H]mepyramine affinity, altered electrophoretic mobility; hH₁R-F153L/I433V double mutant: excellent expression, but only partial change of pharmacological properties (compared to wild-type hH₁R)	Seifert et al. (2003)
	H₂R	hH₂R-K173A-G_αS or hH₂R-K175A-G_αS: reduced histamine-induced steady-state GTPase signals	Preuss et al. (2007c)
	H₃R	hH₃R-D2.50N: interaction with G_α_{i3} disrupted, but still activation of G_α_{i1}, G_α_{i2} and G_α_{o1}	Schnell and Seifert (2010)
	H₄R	hH₄R-F168A: Contribution of ECL2 to ligand binding and constitutive activity	Wifling et al. (2015a)
		hH₄R-R3.50A: DRY motif important for G protein coupling	Schneider et al. (2010a)
Medicinal chemistry, SARs for ligands	H₂R	Replacement of the imidazolyl moiety in the imidazolylpropylguanidine structure by an aminothiazol moiety increases selectivity for H₂R over H₁R, H₃R and H₄R	Kraus et al. (2009)
	H₄R	N²-acylation increases hH₄R affinity and efficacy of the partial H₁R/H₄R agonist 3-(1H-Imidazol-4-yl)propylguanidine (SK&F 91486) and reduces efficacy at hH₁R ─ increase of hH₄R selectivity	Igel et al. (2009b)
		5-Methyl substitution of imbutamine increases selectivity for hH₄R over hH₃R	Geyer et al. (2014)
Factors reducing constitutive activity	H₁R	Weak inverse agonism of some antidepressants or antipsychotics (e.g., chlorpromazine)	Appl et al. (2012)
	H₂R	hH₂R-G_αS or hH₂R-G_αL: weak inverse agonism of ranitidine and famotidine (efficacy higher at hH₂R-G_αS than at hH₂R-G_αL)	Wenzel-Seifert et al. (2001)
	H₃R	Inverse agonist: thioperamide; inhibition of hH₃R constitutive activity by anions or cations	Schnell and Seifert (2010)
Table 5 (continued)

Aspect	Receptor subtype	Example	Reference
Stoichiometry of receptor/G protein coupling	H₄R	(Partial) inverse agonist: thioperamide; insensitivity of constitutive activity to sodium	Schneider et al. (2009)
Selectivity for closely related G proteins	H₂R	hH₂R-Gsα fusion protein: similar apparent constitutive activity with Gsα₁ and Gsα₅	Wenzel-Seifert et al. (2001)
	H₃R	Interaction of hH₃R with Gα₁₁, Gα₂₂, Gα₃₃, and Gα₆₁ (co-expression): no pharmacological differences	Schnell et al. (2010a)
	H₄R	Co-expression system, comparison of hH₄R coupling to Gα₁₋₃ and Gα₆: most efficient activation of Gα₁₂, least efficient interaction with Gα₆	Schneider et al. (2009)
Role of N-terminal glycosylation for receptor function	H₄R	Tunicamycin (glycosylation inhibitor): no effect on total hH₄R protein expression and on [³H]histamine affinity, but reduction of Bₘₐₓ value → N-terminal glycosylation important for correct folding; less efficient activation of Gα₁₂ by deglycosylated hH₄R	Schneider et al. (2009)
Function of RGS proteins in receptor/G protein coupling	H₁R	Co-expression of hH₁R with RGS4 or GAIP unmasks a productive interaction with insect cell Gα₉	Houston et al. (2002)
	H₄R	hH₄R-RGS4 fusion protein: increase of baseline steady-state GTPase activity and of thioperamide inverse agonistic effect (compared to hH₄R); hH₄R-GAIP: pharmacological properties unchanged (compared to hH₄R), but significantly increased relative histamine- and thioperamide-induced GTPase signals	Schneider and Seifert (2009)
Aspect	Receptor subtype	Example	Reference
--------	-----------------	---------	-----------
Analysis of the G protein cycle	H₂R	Different ternary complex stabilization of hH₂R-Gαt or gpH₂R-Gαy, by N²-acylated imidazolylpropylguanidines (AIPGs) as compared to the corresponding guanidines	Xie et al. (2006a)
	H₄R	GTPγS binding: GTPγS affinity of Gαt₂ (co-expressed with hH₄R and Gβ₁γ₂) was significantly reduced by the inverse agonist thioperamide; fusion of Gαt₂ to hH₄R increases Gαt₂ affinity	Schneider et al. (2009)
	H₄R	GTP hydrolysis: a GTP turnover number of ~4 was determined for hH₄R (+Gβ₁γ₂, +Gαi₂); the influence of regulators of G protein signaling (co-expressed or fused to hH₄R) on the Kₑ value of the Gαi₂ GTPase activity was determined	Schneider et al. (2009) and Schneider and Seifert (2009)
	H₂R	Effector activation: Comparison of AC activity (basal, with GTP and with GTP/histamine) in membranes expressing h, gp, r or cH₂R (alone or combined with Gsα, or fused to Gsα) → highest basal and GTP-induced AC activity detected for cH₂R	Preuss et al. (2007a)
	H₄R	Two-state model: high tendency of the hH₄R to occur in the active state; no stabilization of the inactive state by sodium; equilibrium shifted to the inactive side by thioperamide and other inverse agonists	Schneider et al. (2009)
Probing of receptor models	H₃R, H₄R	Proten agonism: Steady-state GTPase assays with membranes co-expressing hH₃R with Gβ₁γ₂ plus Gαt₁, Gαt₂, Gαt₃, or Gαο₁ as well as with membranes co-expressing hH₃R-Gαt₂ or hH₄R-Gαt₂ did not confirm the previously reported proten agonism of proxyfan	Schnell et al. (2010a)
	H₃R, H₄R	Comparison of H₃R mutants/species orthologues with different constitutive activities: JNJ-7777120 is a proten agonist	Wifling et al. (2015b)
Moreover, a crystal structure of the hH3R may provide important information about the hH3R-G protein interaction interface and possibly answer the question, why the hH3R discriminates between G\(\alpha_{i3}\) and other G\(\alpha_{i/o}\) isoforms (Schnell and Seifert 2010). Furthermore, an hH3R crystal may lead to the identification of the anion binding sites responsible for the monovalent anion-mediated reduction of constitutive hH3R activity (Schnell and Seifert 2010). Finally, the knowledge of H\(_x\)R crystal structures could lead to the development of compounds that alter H\(_x\)R function as allosteric modulators. The concept of GPCR modulation by allosteric ligands is well established, and such ligands have been identified, e.g. for dopamine, muscarinic, adenosine, or chemokine receptors (Christopoulos 2014). By contrast, to the best of our knowledge, to date nothing is known about allosteric modulation of histamine receptors.

As a prerequisite for the preparation of H\(_x\)R crystals, high amounts of receptor protein have to be expressed, e.g. in Sf9 cells. After purification and solubilization,
the physical properties of the receptors can be investigated, e.g. with fluorescence-based methods. Such studies have been previously performed with the β2AR (Gether et al. 1995; Kobilka 1995; Neumann et al. 2002) and were important steps towards the final goal of receptor crystallization (Cherezov et al. 2007; Rasmussen et al. 2007, 2011).

References

Appl H, Holzammer T, Dove S, Haen E, Strasser A, Seifert R (2012) Interactions of recombinant human histamine H1R, H2R, H3R, and H4R receptors with 34 antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 385:145–170

Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302:832–837

Arrang JM, Garbarg M, Schwartz JC (1985) Autoregulation of histamine release in brain by presynaptic H1-receptors. Neuroscience 15:553–562

Bahia DS, Sartania N, Ward RJ, Cavalli A, Jones TL, Druey KM, Milligan G (2003) Concerted stimulation and deactivation of pertussis toxin-sensitive G proteins by chimeric G protein-coupled receptor-regulator of G protein signaling 4 fusion proteins: analysis of the contribution of palmitoylated cysteine residues to the GAP activity of RGS4. J Neurochem 85:1289–1298

Bäumer W, Wendorff S, Gutzmer R, Werfel T, Dijkstra D, Chazot P, Stark H, Kietzmann M (2008) Histamine H4 receptors modulate dendritic cell migration through skin--immunomodulatory role of histamine. Allergy 63:1387–1394

Bell JK, McQueen DS, Rees JL (2004) Involvement of histamine H2 and H1 receptors in scratching induced by histamine receptor agonists in Balb C mice. Br J Pharmacol 142:374–380

Bertin B, Freissmuth M, Jockers R, Strosberg AD, Marullo S (1994) Cellular signaling by an agonist-activated receptor/Gα fusion protein. Proc Natl Acad Sci U S A 91:8827–8831

Brabant C, Alleva L, Grisar T, Quer temont E, Lakaye B, Ohtsu H, Lin JS, Jatlow P, Picciotto MR, Tirelli E (2009) Effects of the H3 receptor inverse agonist thioperamide on cocaine-induced locomotion in mice: role of the histaminergic system and potential pharmacokinetic interactions. Psychopharmacology (Berl) 202:673–687

Breitwieser GE (2004) G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Circ Res 94:17–27

Buckland KF, Williams TJ, Conroy DM (2003) Histamine induces cytoskeletal changes in human eosinophils via the H4 receptor. Br J Pharmacol 140:1117–1127

Burde R, Seifert R, Buschauer A, Schultz G (1989) Histamine inhibits activation of human neutrophils and HL-60 leukemic cells via H2-receptors. Naunyn Schmiedebergs Arch Pharmacol 340:671–678

Burde R, Buschauer A, Seifert R (1990) Characterization of histamine H2-receptors in human neutrophils with a series of guanidine analogues of imipramide. Are cell type-specific H2-receptors involved in the regulation of NADPH oxidase? Naunyn Schmiedebergs Arch Pharmacol 341:455–461

Capelo R, Lehmann C, Ahmad K, Snodgrass R, Diehl O, Ringleb J, Flamand N, Weigert A, Stark H, Steinhilber D, Kahnt AS (2016) Cellular analysis of the histamine H4 receptor in human myeloid cells. Biochem Pharmacol 103:74–84

Chakera A, Seeber RM, John AE, Eidne KA, Greaves DR (2008) The Duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol Pharmacol 73:1362–1370

Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265
Chidiac P, Hebert TE, Valiquette M, Dennis M, Bouvier M (1994) Inverse agonist activity of β-adrenergic antagonists. Mol Pharmacol 45:490–499

Christopoulos A (2014) Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol 86:463–478

Damaj BB, Becerra CB, Esber HJ, Wen Y, Maghazachi AA (2007) Functional expression of H₄ histamine receptor in human natural killer cells, monocytes, and dendritic cells. J Immunol 179:7907–7915

Dauvilliers Y, Bassetti C, Lammers GJ, Arnulf I, Mayer G, Rodenbeck A, Lebert P, Ding CL, Lecomte JM, Schwartz JC, HARMONY I study group (2013) Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol 12:1068–1075

De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255:7108–7117

de March CA, Yu Y, Ni MJ, Adipietro KA, Matsunami H, Ma M, Golebiowski J (2015) Conserved residues control activation of mammalian G protein-coupled odorant receptors. J Am Chem Soc 137:8611–8616

Dunford PJ, Williams KN, Desai PJ, Karlsson L, McQueen D, Thurmond RL (2007) Histamine H₄ receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol 119:176–183

Ellenbroek BA, Ghiabi B (2014) The other side of the histamine H₃ receptor. Trends Neurosci 37:191–199

Ferrada C, Ferré S, Casado V, Cortés A, Justinova Z, Barnes C, Canela EI, Goldberg SR, Leurs R, Lluis C, Franco R (2008) Interactions between histamine H₃ and dopamine D₂ receptors and the implications for striatal function. Neuropharmacology 55:190–197

Gbahou F, Rouleau A, Morisset S, Parmentier R, Crochet S, Lin JS, Ligneau X, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz JC, Arrang JM (2003) Protein agonism at histamine H₃ receptors in vitro and in vivo. Proc Natl Acad Sci U S A 100:11086–11091

Gether U, Lin S, Koblika BK (1995) Fluorescent labeling of purified β₂ adrenergic receptor. Evidence for ligand-specific conformational changes. J Biol Chem 270:28268–28275

Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Koblika BK (1997) Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 272:2587–2590

Geyer R, Kaske M, Baumeister P, Buschauer A (2014) Synthesis and functional characterization of imbutamine analogs as histamine H₃ and H₄ receptor ligands. Arch Pharm (Weinheim) 347:77–88

Geyer R, Nordemann U, Strasser A, Wittmann HJ, Buschauer A (2016) Conformational restriction and enantioseparation increase potency and selectivity of cyanoguanidine-type histamine H₄ receptor agonists. J Med Chem 59:3452–3470

Ghorai P, Kraus A, Keller M, Goette C, Igel P, Schneider E, Schnell D, Bernhardt G, Dove S, Zabel M, Elz S, Seifert R, Buschauer A (2008) Acylguanidines as bioisosteres of guanidines: N⁶-acylated imidazolylpropylguanidines, a new class of histamine H₂ receptor agonists. J Med Chem 51:7193–7204

Gille A, Seifert R (2003) Co-expression of the β₂-adrenoceptor and dopamine D₁-receptor with Gₛα proteins in Sf9 insect cells: limitations in comparison with fusion proteins. Biochim Biophys Acta 1613:101–114

Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KD, Devi LA (2016) G Protein-coupled receptor heteromers. Annu Rev Pharmacol Toxicol 56:403–425
Gschwandtner M, Mommerst, Köther B, Werfel T, Gutzmer R (2011) The histamine H4 receptor is highly expressed on plasmacytoid dendritic cells in psoriasis and histamine regulates their cytokine production and migration. J Invest Dermatol 131:1668–1676

Gschwandtner M, Koether B, Werfel T, Stark H, Gutzmer R (2013) Profiling of histamine H4 receptor agonists in native human monocytes. Br J Pharmacol 170:136–143

Gutzmer R, Dietzel C, Mommerst, Köther B, Stark H, Wittmann M, Werfel T (2005) Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells. J Immunol 174:5224–5232

Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241

Hartwig C, Munder A, Glase D, Wedekind D, Schenck H, Seifert R, Neumann D (2015) The histamine H4-receptor (H4R) regulates eosinophilic inflammation in ovalbumin-induced experimental allergic asthma in mice. Eur J Immunol 45:1129–1140

Hepler JR, Kozasa T, Smrcka AV, Simon MI, Rhee SG, Sternweis PC, Gilman AG (1993) Purification from Sf9 cells and characterization of recombinant Gαq and G11α. Activation of purified phospholipase C isozymes by Gq subunits. J Biol Chem 268:14367–14375

Hofstra CL, Desai PJ, Thurmond RL, Fung-Leung WP (2003) Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther 305:1212–1221

Horstman DA, Brandon S, Wilson AL, Guyer CA, Cragoe EJ, Limbird LE (1990) An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J Biol Chem 265:21590–21595

Houston C, Wenzel-Seifert K, Bürcstüümmer T, Seifert R (2002) The human histamine H4-receptor couples more efficiently to Sf9 insect cell Gα-proteins than to insect cell Gq-proteins: limitations of Sf9 cells for the analysis of receptor/Gq-protein coupling. J Neurochem 80:678–696

Igel P, Geyer R, Strasser A, Dove S, Seifert R, Buschauer A (2009a) Synthesis and structure-activity relationships of cyanoguanidine-type and structurally related histamine H4 receptor agonists. J Med Chem 52:6297–6313

Igel P, Schneider E, Schnell D, Elz S, Seifert R, Buschauer A (2009b) Nγ-acylated imidazolylpropylguanidines as potent histamine H4 receptor agonists: selectivity by variation of the Nγ-Substituent. J Med Chem 52:2623–2627

Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

Jemima EA, Prema A, Thangam EB (2014) Functional characterization of histamine H4 receptor on human mast cells. Mol Immunol 62:19–28

Kagermeier N, Werner K, Keller M, Baumeister P, Bernhardt G, Seifert R, Buschauer A (2015) Dimeric carbamoylguanidine-type histamine H2 receptor ligands: a new class of potent and selective agonists. Bioorg Med Chem 23:3957–3969

Kelley MT, Bürcstüümmer T, Wenzel-Seifert K, Dove S, Buschauer A, Seifert R (2001) Distinct interaction of human and guinea pig histamine H2-receptor with guanidine-type agonists. Mol Pharmacol 60:1210–1225

Kenakin T (1996) The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol Rev 48:413–463

Kenakin T (2004) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 65:2–11

Kim J, Jiang Q, Glashofer M, Yehle S, Wess J, Jacobson KA (1996) Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. Mol Pharmacol 49:683–691

Klinker JF, Wenzel-Seifert K, Seifert R (1996) G-protein-coupled receptors in HL-60 human leukemia cells. Gen Pharmacol 27:33–54

Koblika BK (1995) Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal Biochem 231:269–271
Kollmeier A, Francke K, Chen B, Dunford PJ, Greenspan AJ, Xia Y, Xu XL, Zhou B, Thurmond RL (2014) The histamine \(H_4 \) receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. J Pharmacol Exp Ther 350:181–187

Koval A, Kopein D, Purvanov V, Katanaev VL (2010) Europium-labeled GTP as a general nonradioactive substitute for \([^{35}\text{S}]\text{GTP}\gamma\text{S}\) in high-throughput \(\text{G} \) protein studies. Anal Biochem 397:202–207

Kraus A, Ghora P, Birnkanmer T, Schnell D, Elz S, Seifert R, Dove S, Bernhardt G, Buschauer A (2009) \(N^\text{Ac} \)-acylated aminothiazolylpropylguanidines as potent and selective histamine \(H_2 \) receptor agonists. ChemMedChem 4:232–240

Krueger KM, Witte DG, Ireland-Denny L, Miller TR, Baranowski JL, Buckner S, Milicie I, Esbenshade TA, Hancock AA (2005) \(\text{G} \) protein-dependent pharmacology of histamine \(H_3 \) receptor ligands: evidence for heterogeneous active state receptor conformations. J Pharmacol Exp Ther 314:271–281

Kühn B, Schmid A, Harteneck C, Gudermann T, Schultz G (1996) \(\text{G}_q \) family couple the \(H_2 \) histamine receptor to phospholipase C. Mol Endocrinol 10:1697–1707

Leff P (1995) The two-state model of receptor activation. Trends Pharmacol Sci 16:89–97

Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by \(\beta \)-arrestins. Science 308:512–517

Lim HD, Jongejan A, Bakker RA, Haaksma E, de Esch IJ, Leurs R (2008) Phenylalanine 169 in the second extracellular loop of the human histamine \(H_4 \) receptor is responsible for the difference in agonist binding between human and mouse \(H_4 \) receptors. J Pharmacol Exp Ther 327:88–96

Nakashima P, Gray J, Puett D (1996) Expression of functional lutropin/choriogonadotropin receptor in the baculovirus system. Mol Cell Endocrinol 117:95–100

Neumann L, Wohland T, Whelan RJ, Zare RN, Kobilka BK (2002) Functional immobilization of a ligand-activated \(\text{G} \)-protein-coupled receptor. Chembiochem 3:993–998

Neumann D, Schneider EH, Seifert R (2014) Analysis of histamine receptor knockout mice in models of inflammation. J Pharmacol Exp Ther 348:2–11

Nijmeijer S, Vischer HF, Sirici F, Schultes S, Engelhardt H, de Graaf C, Rosethorne EM, Charlton SJ, Leurs R (2013) Detailed analysis of biased histamine \(H_4 \) receptor signalling by \(\text{JN} \) 7777120 analogues. Br J Pharmacol 170:78–88

Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW (2009) Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 30:249–259

O’Reilly M, Alpert R, Jenkinson S, Gladue RP, Foo S, Trim S, Peter B, Trevelop M, Fidock M (2002) Identification of a histamine \(H_4 \) receptor on human eosinophils--role in eosinophil chemotaxis. J Recept Signal Transduct Res 22:431–448

Oldham WM, Hamm HE (2008) Heterotrimeric \(\text{G} \) protein activation by \(\text{G} \)-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71

Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a \(\text{G} \) protein-coupled receptor. Science 289:739–745

Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WL, Stark H, Thurmond RL, Haas HL (2015) International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 67:601–655

Preuss H, Ghorai P, Kraus A, Dove S, Buschauer A, Seifert R (2007a) Constitutive activity and ligand selectivity of human, guinea pig, rat, and canine histamine \(H_2 \) receptors. J Pharmacol Exp Ther 321:983–995
Preuss H, Ghorai P, Kraus A, Dove S, Buschauer A, Seifert R (2007b) Mutations of Cys-17 and Ala-271 in the human histamine H2 receptor determine the species selectivity of guanidine-type agonists and increase constitutive activity. J Pharmacol Exp Ther 321:975–982
Preuss H, Ghorai P, Kraus A, Dove S, Buschauer A, Seifert R (2007c) Point mutations in the second extracellular loop of the histamine H2 receptor do not affect the species-selective activity of guanidine-type agonists. Naunyn Schmiedebergs Arch Pharmacol 376:253–264
Prezeau L, Rives ML, Comps-Agrar L, Maurel D, Kniazeff J, Pin JP (2010) Functional crosstalk between GPCRs: with or without oligomerization. Curr Opin Pharmacol 10:6–13
Ransnäs LA, Svoboda P, Jasper JR, Insel PA (1989) Stimulation of β-adrenergic receptors of S49 lymphoma cells redistributes the α subunit of the stimulatory G protein between cytosol and membranes. Proc Natl Acad Sci U S A 86:7900–7903
Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387
Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555
Reher TM, Brunskole I, Neumann D, Seifert R (2012a) Evidence for ligand-specific conformations of the histamine H2-receptor in human eosinophils and neutrophils. Biochem Pharmacol 84:1174–1185
Reher TM, Neumann D, Buschauer A, Seifert R (2012b) Incomplete activation of human eosinophils via the histamine H4-receptor: evidence for ligand-specific receptor conformations. Biochem Pharmacol 84:192–203
Rives ML, Vol C, Fukazawa Y, Tinel N, Trinquet E, Ayoub MA, Shigemoto R, Pin JP, Prézeau L (2009) Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J 28:2195–2208
Rose RH, Briddon SJ, Hill SJ (2012) A novel fluorescent histamine H1 receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. Br J Pharmacol 165:1789–1800
Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318:1266–1273
Rosethorne EM, Charlton SJ (2011) Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins. Mol Pharmacol 79:749–757
Rossbach K, Nassenstein C, Gschwandtner M, Schnell D, Sander K, Seifert R, Stark H, Kietzmann M, Bäumer W (2011) Histamine H1, H3 and H4 receptors are involved in pruritus. Neuroscience 190:89–102
Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol 71:959–964
Sato J, Makita N, Iiri T (2016) Inverse agonism: the classic concept of GPCRs revisited. Endocr J 63:507–514
Scarselli M, Li B, Kim SK, Wess J (2007) Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J Biol Chem 282:7385–7396
Schneider EH, Seifert R (2009) Histamine H4 receptor-RGS fusion proteins expressed in SF9 insect cells: a sensitive and reliable approach for the functional characterization of histamine H4 receptor ligands. Biochem Pharmacol 78:607–616
Schneider EH, Seifert R (2010a) Coexpression systems as models for the analysis of constitutive GPCR activity. Methods Enzymol 485:527–557
Schneider EH, Seifert R (2010b) Fusion proteins as model systems for the analysis of constitutive GPCR activity. Methods Enzymol 485:459–480
Schneider EH, Seifert R (2010c) SF9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 128:387–418
Schneider EH, Seifert R (2016) The histamine H4-receptor and the central and peripheral nervous system: a critical analysis of the literature. Neuropharmacology 106:116–128
Schneider EH, Schnell D, Papa D, Seifert R (2009) High constitutive activity and a G-protein-independent high-affinity state of the human histamine H4-receptor. Biochemistry 48:1424–1438
Schneider EH, Schnell D, Strasser A, Dove S, Seifert R (2010a) Impact of the DRY motif and the missing “ionic lock” on constitutive activity and G-protein coupling of the human histamine H4 receptor. J Pharmacol Exp Ther 333:382–392
Schneider EH, Strasser A, Thurmond RL, Seifert R (2010b) Structural requirements for inverse agonism and neutral antagonism of indole-, benzimidazole-, and thienopyrrole-derived histamine H4 receptor ligands. J Pharmacol Exp Ther 334:513–521
Schneider EH, Neumann D, Seifert R (2014a) Modulation of behavior by the histaminergic system: lessons from H1R- and H2R-deficient mice. Neurosci Biobehav Rev 42:252–266
Schneider EH, Neumann D, Seifert R (2014b) Modulation of behavior by the histaminergic system: lessons from HDC-, H3R- and H4R-deficient mice. Neurosci Biobehav Rev 47:101–121
Schnell D, Seifert R (2010) Modulation of histamine H3 receptor function by monovalent ions. Neurosci Lett 472:114–118
Schnell D, Burleigh K, Trick J, Seifert R (2010a) No evidence for functional selectivity of proxyfan at the human histamine H3 receptor coupled to defined Gi/Go protein heterotrimers. J Pharmacol Exp Ther 332:996–1005
Schnell D, Strasser A, Seifert R (2010b) Comparison of the pharmacological properties of human and rat histamine H3-receptors. Biochem Pharmacol 80:1437–1449
Schnell D, Brunskole I, Ladova K, Schneider EH, Igel P, Dove S, Buschauer A, Seifert R (2011) Expression and functional properties of canine, rat, and murine histamine H4 receptors in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacal 383:457–470
Schubert ML, Peura DA (2008) Control of gastric acid secretion in health and disease. Gastroenterology 134:1842–1860
Seifert R (2001) Monovalent anions differentially modulate coupling of the β2-adrenoceptor to Gsα splice variants. J Pharmacol Exp Ther 298:840–847
Seifert R, Wenzel-Seifert K (2001) Unmasking different constitutive activity of four chemoattractant receptors using Na+ as universal stabilizer of the inactive (R) state. Receptors Channels 7:357–369
Seifert R, Wenzel-Seifert K (2003) The human formyl peptide receptor as model system for constitutively active G-protein-coupled receptors. Life Sci 73:2263–2280
Seifert R, Lee TW, Lam VT, Kobilka BK (1998a) Reconstitution of β2-adrenoceptor-GTP-binding-protein interaction in Sf9 cells--high coupling efficiency in a β2-adrenoceptor-Gsα fusion protein. Eur J Biochem 255:369–382
Seifert R, Wenzel-Seifert K, Lee TW, Gether U, Sanders-Bush E, Kobilka BK (1998b) Different effects of Gsα splice variants on β2-adrenoceptor-mediated signaling. The β2-adrenoreceptor coupled to the long splice variant of Gsα has properties of a constitutively active receptor. J Biol Chem 273:5109–5116
Seifert R, Wenzel-Seifert K, Bückstümer T, Pertz HH, Schunack W, Dove S, Buschauer A, Elz S (2003) Multiple differences in agonist and antagonist pharmacology between human and guinea pig histamine H1-receptor. J Pharmacol Exp Ther 305:1104–1115
Seifert R, Schneider EH, Dove S, Brunskole I, Neumann D, Strasser A, Buschauer A (2011) Paradoxical stimulatory effects of the “standard” histamine H4-receptor antagonist JNJ7777120: the H4 receptor joins the club of 7 transmembrane domain receptors exhibiting functional selectivity. Mol Pharmacol 79:631–638
Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34:33–58
Shi L, Javitch JA (2002) The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 42:437–467
Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA, Javitch JA (2002) β2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem 277:40989–40996
Shimamura T, Shirouhi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70
Shonberg J, Kling RC, Gmeiner P, Löber S (2015) GPCR crystal structures: medicinal chemistry in the pocket. Bioorg Med Chem 23:3880–3906
Shukla AK, Haase W, Reinhart C, Michel H (2006) Functional overexpression and characterization of human bradykinin subtype 2 receptor in insect cells using the baculovirus system. J Cell Biochem 99:868–877
Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskine AN, Doisy AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL, Kobilka BK, Skiniotis G, Lefkowitz RJ (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512:218–222
Simons FE, Simons KJ (2011) Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol 128:1139–1150.e1134
Singh JK, Maniyar RC, Shirsath VS (2012) Development of time-resolved fluorescent based [EU]-GTP binding assay for selection of human Histamine 3 receptor antagonists/inverse agonist: a potential target for Alzheimer’s treatment. Ann Neurosci 19:71–75
Smits RA, de Esch IJ, Zuiderveld OP, Broeker J, Sansuk K, Guaita E, Coruzzi G, Adam M, Haaksema E, Leurs R (2008) Discovery of quinazolines as histamine H4 receptor inverse agonists using a scaffold hopping approach. J Med Chem 51:7855–7865
Strasser A, Striegel B, Wittmann HJ, Seifert R (2008a) Pharmacological profile of histaprodifens at four recombinant histamine H1 receptor species isoforms. J Pharmacol Exp Ther 324:60–71
Strasser A, Wittmann HJ, Seifert R (2008b) Ligand-specific contribution of the N terminus and E2-loop to pharmacological properties of the histamine H1-receptor. J Pharmacol Exp Ther 326:783–791
Strasser A, Wittmann HJ, Kunze M, Elz S, Seifert R (2009) Molecular basis for the selective interaction of synthetic agonists with the human histamine H1-receptor compared with the guinea pig H1-receptor. Mol Pharmacol 75:454–465
Strasser A, Wittmann H-J, Buschauer A, Schneider EH, Seifert R (2013) Species-dependent activities of G-protein-coupled receptor ligands: lessons from histamine receptor orthologs. Trends Pharmacol Sci 34:13–32
Strasser A, Wittmann H-J, Schneider EH, Seifert R (2015) Modulation of GPCRs by monovalent cations and anions. Naunyn Schmiedebergs Arch Pharmacol 388:363–380
Thurmond RL, Desai PJ, Dunford PJ, Fung-Leung WP, Hofstra CL, Jiang W, Nguyen S, Riley JP, Sun S, Williams KN, Edwards JP, Karlsson L (2004) A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties. J Pharmacol Exp Ther 309:404–413
Tian WN, Deth RC (2000) Differences in efficacy and Na+ sensitivity between α2B and α2D adrenergic receptors: implications for R and R* states. Pharmacology 61:14–21
Tomasch M, Schwed JS, Weizel L, Stark H (2012) Novel chalcone-based fluorescent human histamine H3 receptor ligands as pharmacological tools. Front Syst Neurosci 6:14
Tomasch M, Schwed JS, Paulke A, Stark H (2013) Bodilisant-a novel fluorescent, highly affine histamine H3 receptor ligand. ACS Med Chem Lett 4:269–273
Vanhanen J, Nuutinen S, Lintunen M, Mäki T, Rämö J, Karlstedt K, Panula P (2013) Histamine is required for H3 receptor-mediated alcohol reward inhibition, but not for alcohol consumption or stimulation. Br J Pharmacol 170:177–187
Venable JD, Cai H, Chai W, Dvorak CA, Grice CA, Jablonowski JA, Shah CR, Kwok AK, Ly KS, Pio B, Wei J, Desai PJ, Jiang W, Nguyen S, Ling P, Wilson SJ, Dunford PJ, Thurmond RL, Lovenberg TW, Karlsson L, Carruthers NI, Edwards JP (2005) Preparation and biological evaluation of indole, benzimidazole, and thienopyrrole piperazine carboxamides: potent human histamine H4 antagonists. J Med Chem 48:8289–8298

Vogel R, Mahalingam M, Lüdeke S, Huber T, Siebert F, Sakmar TP (2008) Functional role of the “ionic lock”--an interhelical hydrogen-bond network in family A heptahelical receptors. J Mol Biol 380:648–655

Vorobjev VS, Sharonova IN, Walsh IB, Haas HL (1993) Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurons. Neuron 11:837–844

Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454:486–491

Wenzel-Seifert K, Seifert R (1990) Nucleotide-, chemotactic peptide- and phorbol ester-induced exocytosis in HL-60 leukemic cells. Immunobiology 181:298–316

Wenzel-Seifert K, Seifert R (1993) Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L-leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E. J Immunol 150:4591–4599

Wenzel-Seifert K, Seifert R (2000) Molecular analysis of β2-adrenoceptor coupling to Gαi, Gαs, and Gαq-proteins. Mol Pharmacol 58:954–966

Wenzel-Seifert K, Hart CM, Seifert R (1998) High constitutive activity of the human formyl peptide receptor. J Biol Chem 273:24181–24189

Wenzel-Seifert K, Arthur JM, Liu HY, Seifert R (1999) Quantitative analysis of formyl peptide receptor coupling to Gα1i, Gα2i, and Gα3i. J Biol Chem 274:33259–33266

Wenzel-Seifert K, Kelley MT, Buschauer A, Seifert R (2001) Similar apparent constitutive activity of human histamine H2-receptor fused to long and short splice variants of Gαs. J Pharmacol Exp Ther 299:1013–1020

Werner K, Neumann D, Buschauer A, Seifert R (2014) No evidence for histamine H4 receptor in human monocytes. J Pharmacol Exp Ther 351:519–526

Wifling D, Bernhardt G, Dove S, Buschauer A (2015a) The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity. PLoS One 10:e0117185

Wifling D, Löffel K, Nordemann U, Strasser A, Bernhardt G, Dove S, Seifert R, Buschauer A (2015b) Molecular determinants for the high constitutive activity of the human histamine H4 receptor: functional studies on orthologues and mutants. Br J Pharmacol 172:785–798

Willars GB (2006) Mammalian RGS proteins: multifunctional regulators of cellular signalling. Semin Cell Dev Biol 17:363–376

Wittmann HJ, Seifert R, Strasser A (2011) Influence of the N-terminus and the E2-loop onto the binding kinetics of the antagonist mepyramine and the partial agonist phenoprodifen to H3R. Biochem Pharmacol 82:1910–1918

Wittmann HJ, Seifert R, Strasser A (2014) Sodium binding to hH3R and hH4R--a molecular modeling study. J Mol Model 20:2394

Woehler A, Ponimaskin EG (2009) G protein--mediated signaling: same receptor, multiple effectors. Curr Mol Pharmacol 2:237–248

Xie SX, Ghorai P, Ye QZ, Buschauer A, Seifert R (2006a) Probing ligand-specific histamine H1-- and H2-receptor conformations with N^G-acylated imidazolylpropylguanidines. J Pharmacol Exp Ther 317:139–146

Xie SX, Kraus A, Ghorai P, Ye QZ, Elz S, Buschauer A, Seifert R (2006b) N^1-(3-cyclohexylbutanoyl)-N^2-[3-((H-imidazol-4-yl)propyl]guanidine (UR-AK57), a potent partial agonist for the human histamine H1- and H2-receptors. J Pharmacol Exp Ther 317:1262–1268
Xie SX, Petrache G, Schneider E, Ye QZ, Bernhardt G, Seifert R, Buschauer A (2006c) Synthesis and pharmacological characterization of novel fluorescent histamine H$_2$-receptor ligands derived from aminopotentidine. Bioorg Med Chem Lett 16:3886–3890

Yu JZ, Rasenick MM (2002) Real-time visualization of a fluorescent Go$_s$: dissociation of the activated G protein from plasma membrane. Mol Pharmacol 61:352–359

Zimmermann AS, Burhenne H, Kaever V, Seifert R, Neumann D (2011) Systematic analysis of histamine and N-methylhistamine concentrations in organs from two common laboratory mouse strains: C57Bl/6 and Balb/c. Inflamm Res 60:1153–1159