Nonminimal Inflation in Supersymmetric GUTs with $U(1)_R \times Z_n$ Symmetry

Muhammad Atif Masouda, Mansoor Ur Rehmana, Mian Muhammad Azeem Abida

aDepartment of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan

Abstract

A supersymmetric hybrid inflation framework is employed to realize a class of non-minimal inflation models with $U(1)_R \times Z_n$ global symmetry. This framework naturally incorporates models based on grand unified theories by avoiding the most commonly faced monopole problem. The predictions of inflationary observables, the scalar spectral index $n_s = 0.960 - 0.966$ and the tensor to scalar ratio $r = 0.0031 - 0.0045$, are in perfect agreement with the Planck 2018 data. For sub-Planckian values of the field the Z_n symmetry is only allowed for $n \leq 4$.

1 Introduction

One of the most favored inflationary model according to Planck 2018 results 1 is the Starobinsky model 2. The scalar field version of this model is equivalent to an inflationary model which exploits a strong non-minimal coupling of the scalar field with gravity. See for example 3 4 for a few of the non-supersymmetric models of non-minimal Higgs inflation. In order to realize non-minimal inflation in supersymmetric framework a special form of Kähler potential is employed. For the feasibility of realizing inflation with standard model like Higgs boson in the minimal supersymmetric standard model see 5 6 7. Further this idea has also been applied to Higgs fields in grand unified theories (GUTs) 8 9.

1E-Mail: atifmasood23@gmail.com
2 E-Mail: mansoor@qau.edu.pk
3 E-Mail: azeem_92@live.com
The supersymmetric hybrid inflation model provides an elegant framework to incorporate GUTs [10][11][12]. However, the standard version of supersymmetric hybrid inflation is plagued with the monopole problem which is a generic prediction of GUTs based on a simple gauge group. In this paper we effectively consider a model of non-minimal GUT Higgs inflation with a special form of Kähler potential that is usually employed in no-scale supergravity models [13]. In this model monopoles are produced during inflation and are inflated away. The viability of non-minimal inflation is explored in a broader context with an additional Z_n symmetry. The predictions of various inflationary parameters are obtained in a generic GUT framework and are consistent with the Planck 2018 results.

2 Superpotential with $U(1)_R \times Z_n$ Symmetry

In a typical supersymmetric hybrid inflation framework based on a given GUT gauge group, G, we usually consider a gauge singlet superfield, S, along with a gauge non-singlet conjugate pair of Higgs superfields H and \bar{H}. Some of the examples of the GUT gauge groups are $SO(10)$, $SU(5) \times U(1)$ and $SU(4)_c \times SU(2)_L \times SU(2)_R$ with Higgs superfields residing in the 16, 10 and $(4,1,2)$ dimensional representations of the respective gauge groups [14]. With this minimal content of superfields and the $U(1)_R \times Z_n$ global symmetry we obtain the following simple form of the superpotential [15, 16],

$$W = \kappa S \left(-\mu^2 + \frac{(H\bar{H})^m}{\Lambda^{2m-2}} \right). \tag{1}$$

Here, κ is a dimensionless coupling, μ is some superheavy mass and Λ is the cut-off scale. Under Z_n symmetry the superfield, S, carries zero charge whereas Higgs superfields carry unit charges. This makes the integer $m = n$ for odd values of n and $m = n/2$ for even values of n [16]. For example, values of $m = 1, 2, 3$ correspond to $n = 2, 4, 3$ respectively. However, for the special case of $m = 1$ we do not need to impose any Z_2 symmetry as GUT gauge symmetry alone is sufficient to restrict the form of the superpotential. Further, the superfield S and the superpotential W carry one unit of R charge whereas $H\bar{H}$ is neutral under $U(1)_R$ symmetry. This R charge assignment ensures a linear relationship of W in terms of S which is necessary to realize a consistent model of inflation [10].

The global supersymmetric minimum occurs at

$$\langle S \rangle = 0, \quad \langle (H\bar{H})^m \rangle = M^{2m} \equiv \mu^2 \Lambda^{2m-2}, \tag{2}$$
where the Higgs vacuum expectation value (VEV) is described by \mathcal{M}. This gauge symmetry breaking scale is taken to be the GUT scale, $M_{\text{GUT}} \equiv 2 \times 10^{16}$ GeV, in our numerical calculations. Further we set $\Lambda = m_P$ where $m_P = 2 \times 10^{18}$ GeV is the reduced Planck mass.

The form of the superpotential considered above has been used before mostly in the context of new inflation in a supersymmetric framework. Once the field S is stabilized we obtain an effective Higgs potential which, for values of fields below M, can be used for new inflation. For example, see [15] where it is used to realize pre-inflation in order to justify the initial conditions of new inflation. In ref. [16], it was used to realize a model of new inflation itself. In ref. [17], flavon inflation is discussed using a similar form of the superpotential. For $SU(5)$ and flipped $SU(5)$ based GUT realization of new inflation see [18]. In this paper, however, we consider the other side of the Higgs potential where field values lie above M and the potential is steep. A special form of the Kähler potential, which is usually employed in the no-scale gravity models, helps to reduce the slope of the potential and makes it suitable for the slow-roll conditions to apply. This setup gives rise to non-minimal Higgs inflation which is discussed below in detail with additional Z_n symmetry.

3 Non-minimal Higgs Inflation with Z_n Symmetry

To achieve non-minimal inflation we consider the following special form of the Kähler potential

$$K = -3m_P^2 \log \left(1 - \frac{|S|^2 + |H|^2 + |\bar{H}|^2}{3m_P^2} \right) + \frac{\chi}{2m_P^2} \left(\frac{(H\bar{H})^n}{\Lambda^{2m-2}} + \text{h.c} \right) + \frac{\gamma |S|^4}{3m_P^2},$$

(3)

where χ and γ are dimensionless parameters. This is a variant of the Kähler potential usually employed in the no-scale supergravity models where moduli fields are assumed to be stabilized [13]. The addition of last term is necessary for the stabilization of S field [7]. The scalar potential and the metric in Jordan and Einstein frames are related via the conformal rescaling factor $\Omega^2 = e^{-K/3m_P^2}$ as,

$$V_J = \Omega^4 V_E, \quad g_{\mu\nu}^J = \Omega^2 g_{\mu\nu}^E.$$

(4)

This defines the Einstein-frame scalar potential V_E in terms of W and K as

$$V_E = e^{K/m_P^2} \left(K_{ij}^{-1} D_iW D_jW^* - 3m_P^{-2} |W|^2 \right) + V_E^D,$$

(5)
where

\[D_z W = \frac{\partial W}{\partial z_i} + \frac{1}{m_P^2} \frac{\partial K}{\partial z_i} W, \quad K_{ij} = \frac{\partial^2 K}{\partial z_i \partial z_j}, \quad D_z W^* = (D_z W)^*, \quad (6) \]

with \(z_i \in \{ S, H, \overline{H} \} \). Here, same notation has been used for the superfields and their scalar components. The Einstein-frame D-term potential is given by

\[V_E^D \propto g^2 (|H|^2 - |\overline{H}|^2). \quad (7) \]

Writing complex Higgs fields in terms of real scalar fields,

\[H = \frac{\phi}{\sqrt{2}} e^{i\alpha} \cos \beta, \quad \overline{H} = \frac{\phi}{\sqrt{2}} e^{i\alpha} \sin \beta, \quad (8) \]

the stabilized D-flat direction is obtained for \(\beta = \pi/4, \alpha = \overline{\alpha} = 0 \) and this implies that

\[H = \overline{H} = \frac{\phi}{2^i}, \quad (9) \]

where \(\phi \) is the canonically normalized real scalar field in the Jordan frame. Finally the scalar potential in the Einstein frame takes the following form

\[V_E = \frac{\kappa^2 \mu^4 \left(1 - \left(\frac{\phi}{2M} \right)^{2m} \right)^2}{\left(1 - \frac{2}{3} \left(\frac{\phi}{2m_P} \right)^2 + \chi \left(\frac{\phi}{2m_P} \right)^{2m} \right)^2}. \quad (10) \]

After conformal rescaling the canonically normalized inflaton field \(\hat{\phi}(\phi) \) in the Einstein frame becomes a function of field \(\phi \) as

\[J(\phi) \equiv \left(\frac{d \hat{\phi}}{d \phi} \right) = \sqrt{\frac{1}{\Omega^2(\phi)} + \frac{3}{2} m_P^2 \left(\frac{d \ln \Omega^2(\phi)}{d \phi} \right)^2}. \quad (11) \]

The slow-roll parameters can now be expressed in terms of \(\phi \) as

\[\epsilon(\phi) = \frac{1}{2} m_P^2 \left(\frac{V_E'}{JV_E} \right)^2, \quad \eta(\phi) = m_P^2 \left(\frac{V_E''}{J^2 V_E} - \frac{J' V_E'}{J^3 V_E} \right), \quad (12) \]

where a prime denotes a derivative with respect to \(\phi \). The scalar spectral index \(n_s \) and the tensor to scalar ratio \(r \) to the first order in slow-roll approximation are given by

\[n_s \simeq 1 - 6\epsilon(\phi_0) + 2\eta(\phi_0), \quad r \simeq 16 \epsilon(\phi_0), \quad (13) \]
Figure 1: The variation of field value ϕ_0 versus κ for $m = 1, 2, 3$ and $N_0 = 50$(left panel), 60(right panel). We set the gauge symmetry breaking scale $M = 2 \times 10^{16}$ GeV.

where the field value, ϕ_0, corresponds to the number of e-folds,

$$N_0 = \frac{1}{\sqrt{2m_P}} \int_{\phi_e}^{\phi_0} \frac{J(\phi)}{\sqrt{\epsilon(\phi)}} d\phi,$$

before the end of inflation at $\phi = \phi_e$ defined by the condition $\epsilon(\phi_e) = 1$. Also, ϕ_0 corresponds to the pivot scale where the amplitude of the scalar power spectrum is normalized by Planck to be,

$$A_s(k_0) = \frac{1}{24 \pi^2 \epsilon(\phi)} \left| V_E(\phi) \right|_{\phi(k_0) = \phi_0} = 2.137 \times 10^{-9},$$

at $k_0 = 0.05$ Mpc$^{-1}$. For non-minimal inflation with sub-Planckian values of the field we need to consider the large χ limit such that $\chi \left(\frac{\phi}{m_P}\right)^{2m} \gg 1$. Therefore, in the non-minimal limit with $\phi_0 \gg M$, above relation can be used to eliminate κ in terms of ϕ_0 as

$$\kappa \simeq \chi \sqrt{24\pi^2 A_s(k_0) \epsilon(\phi_0)} \simeq \sqrt{32\pi^2 A_s(k_0)} \left(\frac{2m_P}{\phi_0}\right)^{2m}. \quad (16)$$

Now we look for a relation of ϕ_0 in terms of N_0. Using Eq. (14) and $\epsilon(\phi_e) = 1$, the field values ϕ_0 and ϕ_e can be written in terms of N_0 as

$$\frac{\phi_0}{2m_P} \simeq \left(\frac{4N_0}{3\chi}\right)^{1/2m}, \quad \frac{\phi_e}{2m_P} \simeq \left(\frac{4}{3\chi^2}\right)^{1/4m}. \quad (17)$$

Therefore, field values are expected to change with m or Z_n symmetry. This is confirmed by the exact numerical results shown in the Fig. (1) for the variation of ϕ_0 with respect to κ. With sub-Planckian field values $\phi_0 \lesssim m_P$.

5
we obtain $\chi \gtrsim \frac{2^{2m+2}}{3} N_0 \gg 1$ which provides a cross-check for using the large χ limit at first place. Using again above value of ϕ_0 in Eq. (16) we obtain a constant value for the ratio κ/χ written in terms of N_0 as

$$
\frac{\kappa}{\chi} \simeq \frac{3\sqrt{2\pi^2 A_s(k_0)}}{N_0} \simeq \begin{cases}
1.23 \times 10^{-5} & \text{for } N_0 = 50, \\
1.03 \times 10^{-5} & \text{for } N_0 = 60.
\end{cases}
$$

This ratio turns out to be of order 10^{-5} showing a weak dependence on m or Z_n symmetry in the non-minimal limit and this can also be seen in our numerical results displayed in the Fig. [2]. We can express field value ϕ_0 in terms of κ using Eq. (18) in Eq. (17) as

$$
\frac{\phi_0}{m_P} \simeq 2 \left(\frac{4N_0/\kappa}{3 \times 10^5} \right)^{1/2m}.
$$

For a given value of κ, this expression explains the observed increasing trend of field values with respect to m as shown in Fig. [1] This trend leads to fine tuning in the solutions with large values of m as soon as ϕ_0 becomes tran-Planckian. Therefore, we allow $m \leq 3$ or $n \leq 4$ for $\phi_0 \lesssim m_P$ with perturbative values of $\kappa \lesssim 0.1$. For $SU(5)$ GUT with Higgs field in the adjoint representation we expect to obtain two more solutions for $m = 3/2$ and $m = 5/2$ effectively.

Finally, the expression of ϕ_0 is used to obtain the scalar spectral index n_s and the tensor to scalar ratio r in terms of N_0,

$$
n_s \simeq 1 - \frac{2}{N_0} \simeq \begin{cases}
0.960 & \text{for } N_0 = 50, \\
0.967 & \text{for } N_0 = 60,
\end{cases} \quad r \simeq \frac{12}{N_0^2} \simeq \begin{cases}
0.0048 & \text{for } N_0 = 50, \\
0.0033 & \text{for } N_0 = 60.
\end{cases}
$$
For \(N_0 = 50 \)

\(m \)	\(r \)	\(n_s \)	\(\phi_0 \)	\(\phi_e \)	\(\chi \)
1	0.0045	0.960	\(5.5 \times 10^{17} \)	\(7.4 \times 10^{17} \)	8194
2	0.0051	0.957	\(1.4 \times 10^{18} \)	\(4.0 \times 10^{17} \)	7718
3	0.0051	0.957	\(2.1 \times 10^{18} \)	\(8.6 \times 10^{17} \)	7693

For \(N_0 = 60 \)

\(m \)	\(r \)	\(n_s \)	\(\phi_0 \)	\(\phi_e \)	\(\chi \)
1	0.0031	0.966	\(5.7 \times 10^{17} \)	\(7.2 \times 10^{16} \)	9848
2	0.0035	0.965	\(1.4 \times 10^{18} \)	\(3.8 \times 10^{17} \)	9337
3	0.0035	0.964	\(2.2 \times 10^{18} \)	\(8.3 \times 10^{17} \)	9331

Table 1: The predicted values of inflationary parameters with gauge symmetry breaking scale \(M = 2 \times 10^{16} \text{GeV} \) and \(\kappa = 0.1 \).

where, \(\epsilon(\phi_0) = \frac{3}{4N_0^2} \) and \(\eta(\phi_0) = -\frac{1}{N_0} \). This result holds in the leading order approximation and also explains the weak dependence of \(n_s \) and \(r \) on \(m \) or \(Z_n \) symmetry as confirmed by our numerical estimates displayed in Table-I. We show the predictions of various inflationary parameters in Table-I, using first order slow-roll approximation, for \(\kappa = 0.1, M = 2 \times 10^{16} \text{ GeV} \) and \(N_0 = (50, 60) \). We obtain \(n_s \approx 0.96 (0.966) \) and \(r \approx 0.0045 (0.0031) \) for \(N_0 = 50 (60) \) respectively, independent of \(m \) and \(\kappa \) values. The non-minimal coupling parameter is large \(\chi \sim 10^5 \) and this is a common feature of these models. An order of magnitude estimate of error expectancy in inflationary parameters can be calculated from the second order slow-roll contribution. This can be described as a fractional change in the corresponding quantity, e.g., \(\Delta n_s/n_s \approx 0.01\%, \Delta r/r \approx 1.5\%, \Delta \phi/\phi \approx 0.4\%, \Delta \chi/\chi \approx 1\% \).

4 Conclusion

We have studied a class of models based on the realization of non-minimal inflation in \(R \)-symmetric supersymmetric hybrid inflation framework with an additional \(Z_n \) symmetry. The requirement of sub-Planckian field values is satisfied in the large \(\chi \) limit. This also restricts the possible values of \(n \leq 4 \) with \(\kappa \lesssim 0.1 \). We have calculated the predictions of \(n_s \) and \(r \) numerically and also provided the analytic justification of these results. Finally, we conclude that the results of non-minimal inflation hold in a rather broad class of supersymmetric GUT models.
References

[1] Y. Akrami et al. [Planck Collaboration], arXiv:1807.06211 [astro-ph.CO].

[2] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980) [Phys. Lett. 91B, 99 (1980)] [Adv. Ser. Astrophys. Cosmol. 3, 130 (1987)].

[3] F. L. Bezrukov, A. Magnin and M. Shaposhnikov, Phys. Lett. B 675, 88 (2009) doi:10.1016/j.physletb.2009.03.035 [arXiv:0812.4950 [hep-ph]]; A. De Simone, M. P. Hertzberg and F. Wilczek, Phys. Lett. B 678, 1 (2009) doi:10.1016/j.physletb.2009.05.054 [arXiv:0812.4946 [hep-ph]]; A. O. Barvinsky, A. Y. Kamenshchik, C. Kiefer, A. A. Starobinsky and C. Steinwachs, JCAP 0912, 003 (2009) doi:10.1088/1475-7516/2009/12/003 [arXiv:0904.1698 [hep-ph]]; N. Okada, M. U. Rehman and Q. Shafi, arXiv:0911.5073 [hep-ph].

[4] N. Okada, M. U. Rehman and Q. Shafi, Phys. Rev. D 82, 043502 (2010) doi:10.1103/PhysRevD.82.043502 [arXiv:1005.5161 [hep-ph]]; A. Linde, M. Noorbala and A. Westphal, JCAP 1103, 013 (2011) doi:10.1088/1475-7516/2011/03/013 [arXiv:1101.2652 [hep-th]]; N. Okada, M. U. Rehman and Q. Shafi, Phys. Lett. B 701, 520 (2011) doi:10.1016/j.physletb.2011.06.044 [arXiv:1102.4747 [hep-ph]]; C. Pallis and Q. Shafi, JCAP 1503, no. 03, 023 (2015) doi:10.1088/1475-7516/2015/03/023 [arXiv:1412.3757 [hep-ph]]; N. Bostan, Ö. Güleryüzy and V. N. Şenoğuz, JCAP 1805, no. 05, 046 (2018) doi:10.1088/1475-7516/2018/05/046 [astro-ph.CO]; N. Bostan and V. N. Şenoğuz, arXiv:1907.06215 [astro-ph.CO].

[5] M. B. Einhorn and D. R. T. Jones, JHEP 1003, 026 (2010) doi:10.1007/JHEP03(2010)026 [arXiv:0912.2718 [hep-ph]].

[6] S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Phys. Rev. D 82, 045003 (2010) doi:10.1103/PhysRevD.82.045003 [arXiv:1004.0712 [hep-th]].

[7] H. M. Lee, JCAP 1008, 003 (2010) doi:10.1088/1475-7516/2010/08/003 [arXiv:1005.2735 [hep-ph]].

[8] C. Pallis and N. Toumbas, JCAP 1112, 002 (2011) doi:10.1088/1475-7516/2011/12/002 [arXiv:1108.1771 [hep-ph]].

[9] W. Ahmed and A. Karozas, Phys. Rev. D 98 (2018) no.2, 023538 doi:10.1103/PhysRevD.98.023538 [arXiv:1804.04822 [hep-ph]].
[10] G. R. Dvali, Q. Shafi and R. K. Schaefer, Phys. Rev. Lett. 73, 1886 (1994) [hep-ph/9406319].

[11] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, Phys. Rev. D 49, 6410 (1994) [astro-ph/9401011].

[12] A. D. Linde and A. Riotto, Phys. Rev. D 56, R1841 (1997) [hep-ph/9703209]; V. N. Senoguz and Q. Shafi, Phys. Rev. D 71, 043514 (2005) doi:10.1103/PhysRevD.71.043514 [hep-ph/0412102]; M. U. Rehman, Q. Shafi and J. R. Wickman, Phys. Lett. B 683, 191 (2010) doi:10.1016/j.physletb.2009.12.010 [arXiv:0908.3896 [hep-ph]].

[13] J. Ellis, D. V. Nanopoulos and K. A. Olive, Phys. Rev. Lett. 111, 111301 (2013) Erratum: [Phys. Rev. Lett. 111, no. 12, 129902 (2013)] doi:10.1103/PhysRevLett.111.129902, 10.1103/PhysRevLett.111.111301 [arXiv:1305.1247 [hep-th]].

[14] V. N. Senoguz and Q. Shafi, Phys. Lett. B 567, 79 (2003) doi:10.1016/j.physletb.2003.06.030 [hep-ph/0305089].

[15] M. Yamaguchi and J. Yokoyama, Phys. Rev. D 70, 023513 (2004) doi:10.1103/PhysRevD.70.023513 [hep-ph/0402282].

[16] V. N. Senoguz and Q. Shafi, Phys. Lett. B 596, 8 (2004) doi:10.1016/j.physletb.2004.05.077 [hep-ph/0403294].

[17] S. Antusch, S. F. King, M. Malinsky, L. Velasco-Sevilla and I. Zavala, Phys. Lett. B 666, 176 (2008) doi:10.1016/j.physletb.2008.07.051 [arXiv:0805.0325 [hep-ph]].

[18] M. U. Rehman, M. M. A. Abid and A. Ejaz, arXiv:1804.07619 [hep-ph].