Coefficient estimates for some subclasses of bi-univalent functions related to m-fold symmetry

Waggas Galib Atshan ¹ Salwa Kalf Kazim ²

Department of Mathematics, College of Computer Science and Information Technology, University of AL-Qadisiyah, Diwaniyah-Iraq

E-mail: waggas.galib@qu.edu.iq waggashnd@gmail.com

Recieved : 28\2\2019 Revised : 20\3\2019 Accepted : 22\4\2019

Available online : 2/5/2019

Abstract:
The purpose of present paper is to introduce and investigate two new subclasses \(\mathcal{N}_{\Sigma m}(\tau, \gamma, \alpha) \) and \(\mathcal{N}_{\Sigma m}(\tau, \gamma, \beta) \) of analytic and m-fold symmetric bi-univalent functions in the open unit disk. Among other results belonging to these subclasses upper coefficients bounds \(|a_{m+1}| \) and \(|a_{2m+1}| \) are obtained in this study. Certain special cases are also indicated.

Keywords: m-fold symmetry, bi-univalent functions, coefficient estimates.

Mathematics Subject Classification: 30C45.
1. Introduction

Let S denote the family of functions analytic in the open unit disk $U = \{ z : z \in \mathbb{C}, |z| < 1 \}$ and normalized by the conditions $f(0) = f'(0) - 1 = 0$ and having the form

$$ f(z) = z + \sum_{k=2}^{\infty} a_k z^k. \quad (1) $$

Also let \mathcal{A} denote the subclass of functions in S which are univalent in U.

The Koebe One Quarter Theorem (e.g., see [6]) ensures that the image of $f(z) \in \mathcal{A}$ contains the disk of radius $1/4$. Thus every univalent function f has an inverse f^{-1} satisfying

$$ f^{-1}(f(z)) = z, \quad (z \in U) $$

and

$$ f(f^{-1}(w)) = w, \quad (|w| < r(f), r(f) \geq \frac{1}{4}) $$

where

$$ g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots. \quad (2) $$

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U.

Let Σ denotes the class of analytic and bi-univalent functions in U. Some examples of functions in class Σ are

$$ h_1(z) = \frac{z}{1-z}, \quad h_2(z) = -\log(1-z), \quad h_3(z) = \frac{1}{2} \log \left(\frac{1+z}{1-z} \right), \quad z \in U. $$

For each function $f \in \mathcal{A}$, the function $h(f(z)) = (f(z)^m)^{\frac{1}{m}}$, $(z \in U, m \in \mathbb{N})$ is univalent and maps the unit disk U into a region with m-fold symmetry. A function is said to be m-fold symmetric (see [9,10]) if it has the following normalized form:

$$ f(z) = z + \sum_{k=2}^{\infty} a_{mk+1} z^{mk+1}, \quad (z \in U, m \in \mathbb{N}). \quad (3) $$

We denote S_m the class of m-fold symmetric univalent functions in U, which are normalized by the series expansion (3). In fact, the functions in the class \mathcal{A} are one-fold symmetric. Analogous to the concept of m-fold symmetric univalent functions, we here introduced the concept of m-fold symmetric bi-univalent functions. Each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$. Furthermore, for the normalized form of f is given by (3), they obtained the series expansion for f^{-1} as follows:

$$ g(w) = w - a_{m+1} w^{m+1} + \left((m+1)a_{m+1}^2 - a_{2m+1} \right) w^{2m+1} - \frac{1}{2} (m+1)(3m+2)a_{m+1}^2 - (3m+2)a_{m+1} a_{2m+1} + a_{3m+1} w^{3m+1} + \cdots, \quad (4) $$

where $f^{-1} = g$. We denote by Σ_m the class of m-fold symmetric bi-univalent functions in U. It is easily seen that for $m=1$, the formula (4) coincides with the formula (2) of the class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$ \left(\frac{z^m}{1-z^m}, \frac{1}{2} \log \left(\frac{1+z^m}{1-z^m} \right) \right) $$

with the corresponding inverse functions

$$ \left(\frac{w^m}{1+w^m}, \frac{e^{2w^m} - 1}{e^{2w^m} + 1} \right) \quad \text{and} \quad \left(\frac{w^m - 1}{e^w w^m} \right), $$

respectively.

Recently, many authors investigated bounds for various subclass of m-fold bi-univalent functions (see [1,2,3,4,5,7,9,12,13,15]). The aim of the present paper is to introduce the new subclass $N_{\Sigma_m}(\tau, \gamma; \alpha)$ and $N_{\Sigma_m}(\tau, \gamma; \beta)$ of Σ_m and find estimates on the coefficients $|a_{m+1}|$ and $|a_{2m+1}|$ for functions in each of these new subclass.

In order to prove our main results, we require the following lemma.

Lemma 1. ([6]). If $h \in P$, then $|c_k| \leq 2$ for each $k \in \mathbb{N}$, where P is the family of all functions h analytic in U for which $Re\left(h(z)\right) > 0$, $(z \in U)$

where

$$ h(z) = 1 + c_1 z + c_2 z^2 + \cdots. $$

Definition 1. A function $f(z) \in \Sigma_m$ given by (3) is said to be in the class $N_{\Sigma_m}(\tau, \gamma; \alpha)$ if the following condition are satisfied:

$$ \left| arg \left(1 + \frac{1}{\tau} \left[(1+\gamma) z f''(z) + \gamma f'(z) - 1 \right] \right) \right| < \alpha \frac{\pi}{2}, \quad (z \in U) $$

and

$$ \left| \frac{1}{\tau} \left[(1+\gamma) z f''(z) + \gamma f'(z) - 1 \right] \right| < a \frac{\pi}{2}, \quad (z \in U) $$

where $a = a_{m+1}$.
where the function $g = f^{-1}$ is given by (4).

Definition 2. A function $f(z) \in \mathcal{N}_m$ given by (3) is said to be in the class $\mathcal{N}_m(\tau, \gamma; \alpha)$ if the following conditions are satisfied:

$$\text{Re}\left(1 + \frac{1}{\tau}\left((1 + \gamma)z^2 f''(z) + zf'(z) - 1\right)\right) > \beta,$$

$(z \in U)$

(7)

and

$$\text{Re}\left(1 + \frac{1}{\tau}\left((1 + \gamma)w^2 g''(w) + wg'(w) - 1\right)\right) > \beta,$$

$(w \in U)$

(8)

where the function $g = f^{-1}$ is given by (4).

2. Coefficient Estimates for the Functions Class $\mathcal{N}_m(\tau, \gamma; \alpha)$

We begin this section by finding the estimates on the coefficients $|a_m|_1$ and $|a_{2m+1}|$ for functions in the class $\mathcal{N}_m(\tau, \gamma; \alpha)$.

Theorem 2.1 Let $f(z) \in \mathcal{N}_m(\tau, \gamma; \alpha)$ $(0 < \alpha \leq 1; \tau \in \mathbb{C} \setminus \{0\}; 0 \leq \gamma < 1)$ be of the form (3). Then

$$|a_m|_1 \leq \frac{2\alpha|\tau|}{\sqrt{2m[(2m+2m+1)(m+1)-(m+m+1)(m+1)]}}$$

(9)

and

$$|a_{2m+1}| \leq \frac{2\alpha^2|\tau|^2(m+1)}{m^2(m+m+1)^2} + \frac{\alpha|\tau|}{m^2(2m+2m+1)}$$

(10)

Proof. It follows from (5) and (6) that

$$1 + \frac{1}{\tau}\left((1+\gamma)z^2 f''(z) + zf'(z) - 1\right) = [p(z)]^\alpha$$

(11)

and

$$1 + \frac{1}{\tau}\left((1+\gamma)w^2 g''(w) + wg'(w) - 1\right) = [q(w)]^\alpha$$

(12)

where the functions $p(z)$ and $q(w)$ are in \mathcal{P} and have the following series representations:

$$p(z) = 1 + p_m z^m + p_{2m} z^{2m} + p_{3m} z^{3m} + \ldots$$

and

$$q(w) = 1 + q_m w^m + q_{2m} w^{2m} + q_{3m} w^{3m} + \ldots$$

(13)

Now, equating the coefficients in (11) and (12), we obtain

$$\frac{m(m+m+1)a_{m+1}}{\tau} = \alpha p_m,$$

(15)

and

$$\frac{(2m(2m+2m+1)a_{2m+1} - m(m+m+1)^2 a_{m+1})}{\tau} = \alpha q_m$$

(16)

and

$$\frac{-m(m+m+1)a_{m+1}}{\tau} = \alpha q_m - \frac{\alpha(a-1)}{2} p_m^2$$

(17)

From (15) and (17), we find

$$p_m = -q_m$$

(19)

and

$$2m^2(m+m+1)^2 a_{m+1} \tau = \alpha^2(p_m^2 + q_m^2)$$

(20)

From (16), (18) and (20), we get

$$(2m + 2m + 1)(m+1)-(m+m+1)^2 2ma_{m+1} \tau = \alpha(p_{2m} + q_{2m}) + \frac{(a-1)m^2(m+m+1)}{\tau^2} a_{m+1}$$

(21)

Therefore, we have

$$a_{m+1} \leq \frac{2a^2\tau^2(p_{2m} q_{2m})}{2m[(2m+2m+1)(m+1)-(m+m+1)^2-(a-1)m^2(m+m+1)]}$$

(22)

Applying Lemma 1 for the coefficients p_{2m} and q_{2m}, we have

$$|a_{m+1}| \leq \frac{2a^2|\tau|^2(m+1)}{m^2(m+m+1)^2} + \frac{\alpha|\tau|}{m^2(2m)}$$

(23)

This gives the desired bound for $|a_{m+1}|$ as asserted in (9).

In order to find the bound on $|a_{2m+1}|$, by subtracting (18) from (16), we get

$$2m[(2m+2m+1)a_{2m+1} - (2m+2m+1)(m+1)a_{m+1}] = 4m^2 m[(2m+2m+1)(m+1)-(a-1)m^2(m+m+1)]$$

(24)

It follows from (19) and (24) that

$$a_{2m+1} \leq \frac{a^2\tau^2(p_{2m} + q_{2m})(m+1)}{4m(m+m+1)^2} + \frac{\alpha(p_{2m} - q_{2m})}{4m(2m+2m+1)}$$

(25)
Applying Lemma 1 once again for the coefficients \(p_m, p_{2m}, q_m, \) and \(q_{2m} \), we readily obtain
\[
|a_{2m+1}| \leq \frac{2a^2|\tau|^2(m+1)}{m^2(m+m+1)^2} + \sqrt{\frac{a|\tau|}{m(m+2m+1)}}.
\] (26)

3. Coefficient Bounds for the Functions Class \(\mathcal{N}_{\Sigma m}(\tau, \gamma; \beta) \)

This section is devoted to find the estimates on the coefficients \(|a_{m+1}| \) and \(|a_{2m+1}| \) for functions in the class \(\mathcal{N}_{\Sigma m}(\tau, \gamma; \beta) \).

Theorem 3.1 Let \(f(z) \in \mathcal{N}_{\Sigma m}(\tau, \gamma; \beta) \) \((0 \leq \beta < 1; \tau \in \mathbb{C} \setminus \{0\}, 0 \leq \gamma < 1) \) be of the form (3).

Then
\[
|a_{m+1}| \leq \frac{2|\tau|(1-\beta)}{m((1+2m^2+2m+1)(m+1) - (m+1)^2)}
\] (27)
and
\[
|a_{2m+1}| \leq \frac{4|\tau|^2(1-\beta)^2(m+1)}{m^2(m+2m+1)^2} + \frac{2|\tau|(1-\beta)}{m(2m+2m+1)}
\] (28)

Proof. It follows from (7) and (8) that there exist \(p, q \in \mathbb{P} \) such that
\[
1 + \frac{1}{\tau} \left[(1+\gamma^2)f''(z) + f'(z)(1+\gamma) - \gamma f(z) \right] = \beta + (1-\beta)p(z)
\] (29)
and
\[
1 + \frac{1}{\tau} \left[(1+\gamma^2)g''(w) + g'(w)(1+\gamma) - \gamma g(w) \right] = \beta + (1-\beta)q(w),
\] (30)
where \(p(z) \) and \(q(z) \) have the forms (13) and (14), respectively. By suitably comparing coefficients in (29) and (30), we get
\[
\frac{m(m+m+1)a_{m+1}}{\tau} = (1-\beta)p_m,
\] (31)
\[
(2m(2m+2m+1)a_{2m+1} - (m+m+1)^2a_{m+1}^2) = (1-\beta)p_{2m},
\] (32)
\[
\frac{-m(m+m+1)a_{m+1}}{\tau} = (1-\beta)q_m,
\] (33)
\[
(2m(2m+2m+1)[(m+1)a_{m+1}^2 - a_{2m+1}^2] - (m+m+1)^2a_{m+1}^2) = (1-\beta)q_{2m}.
\] (34)

Adding (32) and (34), we have
\[
\frac{2m^2(m+m+1)^2a_{m+1}^2}{\tau} = (1-\beta)^2(p_m^2 + q_m^2).
\] (36)

Applying Lemma 1 once again for the coefficients \(p_m, p_{2m}, q_m, q_{2m} \), we readily obtain
\[
\frac{((2m+2m+1)(m+1) - (m+m+1)^2)2ma_{m+1}^2}{\tau} = (1-\beta)(p_{2m} + q_{2m}).
\] (37)

Applying Lemma 1, we obtain
\[
|a_{m+1}| \leq \frac{2|\tau|(1-\beta)}{m((2m+2m+1)(m+1) - (m+m+1)^2)}
\] (27)

This is the bound on \(|a_{m+1}| \) asserted in (27).

In order to find the bound on \(|a_{2m+1}| \), by subtracting (34) from (32), we get
\[
2m(2m+2m+1)a_{2m+1} - (2m+2m+1)(m+1)a_{m+1}^2 = (1-\beta)(p_{2m} - q_{2m})
\] (38)

Or, equivalently,
\[
a_{2m+1} = \frac{2m(2m+2m+1)(m+1)a_{m+1}^2}{2m(2m+2m+1)} + \frac{2|\tau|(1-\beta)}{m(2m+2m+1)}.
\] (39)

It follows from (35) and (36) that
\[
a_{2m+1} = \frac{\tau(1-\beta)^2(m+1)(p_m^2 + q_m^2) + \tau(1-\beta)(p_{2m} - q_{2m})}{2m^2(m+m+1)^2}
\] (40)

Applying Lemma 1 once again for the coefficients \(p_m, p_{2m}, q_m, q_{2m} \), we easily obtain
\[
|a_{2m+1}| \leq \frac{4|\tau|^2(1-\beta)^2(m+1)}{m^2(m+m+1)^2} + \frac{2|\tau|(1-\beta)}{m(2m+2m+1)}
\] (41)

4. Corollaries and Consequences

For one-fold symmetric bi-univalent functions and \(\tau = 1 \), Theorem 2.1 and Theorem 3.1 reduce to Corollary 1 and Corollary 2, respectively, which were proven very recently by Frasin [8] (see also [11]).

Corollary 4. Let \(f(z) \in \mathcal{N}_{\Sigma}(\alpha, \gamma)(0 < \alpha \leq 1; 0 \leq \gamma < 1) \) be of the form (1).

Then
\[
|a_2| \leq \frac{2a}{\sqrt{2(1-\alpha) - \gamma(\alpha + 1)}}
\] (42)

and
\[
|a_3| \leq \frac{4a^2}{(2+\gamma)^2} + \frac{a}{(3-2\gamma)}.
\] (43)

Corollary 5. Let \(f(z) \in \mathcal{N}_{\Sigma}(\beta, \gamma)(0 < \alpha \leq 1; 0 \leq \gamma < 1) \) be of the form (1).

Then
\[|a_2| \leq \sqrt{\frac{2(1-\beta)}{(2+2\gamma+y^2)}} \] (44)

and

\[|a_3| \leq \frac{8(1-\beta)^2}{(2+y)^2} + \frac{2(1-\beta)}{3(2y)} \] (45)

The classes \(\mathcal{N}_a(\alpha, \gamma) \) and \(\mathcal{N}_b(\beta, \gamma) \) are defined in the following way:

Definition 3. A function \(f(z) \in \Sigma \) given by (1) is said to be in the class \(\mathcal{N}_a \) if the following conditions are satisfied:

\[\left| \arctan \left(\frac{(1+y)z f''(z)+zf'(z)}{(1+y)zf'(z)-zg'(z)} \right) \right| < \frac{\pi}{2} \quad (z \in U) \] (46)

And

\[\left| \arctan \left(\frac{(1+y)w^2 f''(w)+wzf'(w)}{(1+y)wzg'(w)-wg'(w)} \right) \right| < \frac{\pi}{2} \quad (w \in U) \] (47)

\((0 < \alpha \leq 1 ; 0 \leq \gamma < 1) \),

where the function \(g = f^{-1} \) is given by (2).

Definition 4. A function \(f(z) \in \Sigma \) given by (1) is said to be in the class \(\mathcal{N}_b(\beta, \gamma) \) if the following conditions are satisfied:

\[\text{Re} \left(\frac{(1+y)z f''(z)+zf'(z)}{(1+y)zf'(z)-zg'(z)} \right) > \beta \quad (z \in U) \] (48)

And

\[\text{Re} \left(\frac{(1+y)w^2 f''(w)+wzf'(w)}{(1+y)wzg'(w)-wg'(w)} \right) > \beta \quad (w \in U) \] (49)

\((0 \leq \beta < 1 ; 0 \leq \gamma < 1) \),

where the function \(g = f^{-1} \) is given by (2).

If we set \(\gamma = 0 \) and \(\tau = 1 \) in Theorem 2.1 and Theorem 3.1, then the classes \(\mathcal{N}_a(\tau, \gamma; \alpha) \) and \(\mathcal{N}_b(\tau, \gamma; \beta) \) reduce to the classes \(\mathcal{N}_a^{(m)} \) and \(\mathcal{N}_b^{(m)} \) investigated recently by Srivastava et al. [11] and thus, we obtain the following corollaries:

Corollary 6. Let \(f(z) \in \mathcal{N}_a^{(m)} \) \((0 < \alpha \leq 1) \) be of the form (3).

Then

\[|a_{m+1}| \leq \frac{2\alpha}{\sqrt{m(2m+1)(m+1)^2+2m^2(m+1)^2(\alpha-1)}} \] (50)

and

\[|a_{2m+1}| \leq \frac{2\alpha(m+1)}{m(2m+1)^2} \] (51)

Corollary 7. Let \(f(z) \in \mathcal{N}_b^{(m)} \) \((0 \leq \beta \leq 1) \) be of the form (4).

Then

\[|a_{m+1}| \leq \frac{2(1-\beta)}{\sqrt{m(2m+1)(m+1)^3-m(m+1)^2}} \] (52)

References

[1] S. Altinkaya and S. Yalcin, coefficient for certain subclasses of m-fold symmetric bi-univalent function, Journal of Mathematics, Art. ID 241683, (2015).

[2] S. Altinkaya and S. Yalcin, on some subclasses of m-fold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Series A1, 67(1) (2018).

[3] W. G. Atshan and N. A. J. Al-Ziadi, Coefficient bounds for a general subclasses of m-fold symmetric bi-univalent functions, Journal of AL-Qadisiyah for Computer Science and Mathematics, 9(2) (2017), 33-39.

[4] W. G. Atshan and N. A. J. Al-Ziadi, Coefficient Estimates of Bi-Univalent Functions Based on Subordination Involving Srivastava-Attiya Operator, International Journal of Advanced Research in Science, Engineering and Technology, 4(9) (2017), 4574-4582.

[5] W. G. Atshan and R. A. Hiress, Coefficient estimates for subclasses of bi-univalent functions, Journal of AL-Qadisiyah for Computer Science and Mathematics, 10(3) (2018), 20-26.
[6] P.L. Duren, univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[7] S.S. Eker, coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math., 40(2016).

[8] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacettepe J. Math Stat., 43(2014).

[9] W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105 (1989), 324-329.

[10] C. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J., 25(1962), 259-269.

[11] H.M. Srivastava and D. Bansal, Coefficient estimates for subclasses of analytic and bi-univalent functions, J. Egypt. Math. Soc., 23 (2015), 242-246.

[12] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some sub-classes of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis, 41 (2015), 153-164.

[13] H.M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, 36 B(3)(2016), 863-871.

[14] H.M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2)(2014), 1-10.

[15] H. Tang, H.M. Srivastava, S. Sivasubramanian and P. Gurusamy, the Feketeszegő functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Ineq., 10(2016), 1063-1092.
مختصرات المعاليم لبعض الأصناف الجزئية لدوال ثنائية التكافؤ المرتبطة بالنظرية المتناظرة

سلوى كلف كاظم
قسم الرياضيات / كلية علوم الحاسوب وتكنولوجيا المعلومات
جامعة القادسية – الديوانية – العراق

واقص غالب عطشان
قسم الرياضيات / كلية علوم الحاسوب وتكنولوجيا المعلومات
جامعة القادسية – الديوانية – العراق

المستخلص:

الغرض من البحث الحالي هو أن نقدم ونتخريج عن صنفين جزئيين جديدين $N_{Y_{m}}(r, \gamma, \beta)$ و $N_{Y_{m}}(r, \gamma, \alpha)$ من الدوال ثنائية التكافؤ المستمرة ذات الطولية m، والتحليلة في نجوم الوحدة المنتج ومن بين النتائج الأخرى لهذه الأصناف الجزئية حدود المعاليم العليا ($|a_{2m+1}|, |a_{m+1}|$) تم الحصول عليها في هذه الدراسة.