THE CONTINUITY METHOD ON MINIMAL ELLIPTIC KÄHLER SURFACES

YASHAN ZHANG AND ZHENLEI ZHANG

Abstract. We prove that, on a minimal elliptic Kähler surface of Kodaira dimension one, the continuity method introduced by La Nave and Tian in [19] starting from any initial Kähler metric converges in Gromov-Hausdorff topology to the metric completion of the generalized Kähler-Einstein metric on its canonical model constructed by Song and Tian in [26].

1. Introduction

In [19], La Nave and Tian introduced a new approach to the Analytic Minimal Model Program. It is a continuity method of complex Monge-Ampère equations. In this note, we will study the geometric convergence of this continuity equation on minimal elliptic surfaces.

Let \(X \) be a minimal elliptic Kähler surface of Kodaira dimension \(\text{kod}(X) = 1 \). By definition (see, e.g., [22, Section I.3] or [26, Section 2.2]), there exists a holomorphic map \(f : X \to \Sigma \), determined by the pluricanonical system \(|mK_X| \) for sufficiently large integer \(m \), from \(X \) onto a smooth projective curve \(\Sigma \) (i.e., the canonical model of \(X \)), such that the general fiber is a smooth elliptic curve and all fibers are free of \((-1)\)-curves. Set \(\Sigma_{\text{reg}} := \{ s \in \Sigma | X_s := f^{-1}(s) \text{ is a nonsingular fiber} \} \) and let \(m_i F_i = X_{s_i} \) be the corresponding singular fiber of multiplicity \(m_i \), \(i = 1, \ldots, k \). We refer readers to [22, Section I.5] for several interesting examples of minimal elliptic surfaces.

In [26], Song and Tian proved that there exists a unique generalized Kähler-Einstein current \(\chi_\infty \) on \(\Sigma \), i.e., \(\chi_\infty \) is a closed positive \((1,1)\)-current on \(\Sigma \) such that \(\chi_\infty \) is smooth on \(\Sigma_{\text{reg}} \) and \(\text{Ric}(\chi_\infty) = -\sqrt{-1} \partial \bar{\partial} \log \chi_\infty \) is a well-defined \((1,1)\)-current on \(\Sigma \) satisfying

\[
\text{Ric}(\chi_\infty) = -\chi_\infty + \omega_{WP} + 2\pi \sum_{i=1}^{k} \frac{m_i - 1}{m_i} [s_i],
\]

where \(\omega_{WP} \) is the induced Weil-Petersson form and \([s_i]\) is the current of integration associated to the divisor \(s_i \) on \(\Sigma \).

In this paper we consider the following continuity method introduced by La Nave and Tian in [19] and Rubinstein in [24] starting from any initial Kähler metric \(\omega_0 \) on \(X \),

\[
\begin{aligned}
(1 + t)\omega(t) &= \omega_0 - t \text{Ric}(\omega(t)) \\
\omega(0) &= \omega_0.
\end{aligned}
\]

According to [19], a solution \(\omega = \omega(t) \) to (1.2) exists uniquely for all \(t \geq 0 \) and the Ricci curvature of \(\omega(t) \) satisfies

\[
\text{Ric}(\omega(t)) \geq -2\omega(t)
\]

Y. Zhang is partially supported by the Science and Technology Development Fund (Macao S.A.R.) Grant FDCT/ 016/2013/A1 and the Project MYRG2015-00235-FST of the University of Macau.

Z. Zhang is partially supported by NSFC 11431009.
for all $t \geq 1$.

Our main result is the following

Theorem 1.1. Assume as above, we have

1. As $t \to \infty$, $\omega(t) \to f^*\chi_{\infty}$ as currents on X and, for any given compact subset V of X_{reg}, there exists a constant $\alpha_V \in (0,1)$ such that $\omega(t) \to f^*\chi_{\infty}$ in $C^{1,\alpha_V}(V,\omega_0)$-topology;
2. For any $s \in \Sigma_{\text{reg}}$, $(1+t)\omega(t)|_{X_s}$ converges in $C^\infty(X_s,\omega_0|_{X_s})$-topology to the unique flat metric in class $[\omega_0|_{X_s}]$ as $t \to \infty$.

Moreover, if we let (X_∞,d_∞) be the metric completion of $(\Sigma_{\text{reg}},\chi_{\infty})$, then

3. (X_∞,d_∞) is a compact length metric space and X_∞ is homeomorphic to Σ as a projective variety;
4. As $t \to \infty$, $(X,\omega(t)) \to (X_\infty,d_\infty)$ in Gromov-Hausdorff topology.

We would like to explain how our result fits the existing literatures. According to the Analytic Minimal Model Program proposed in [26, 27, 28, 19], the Kähler-Ricci flow and the continuity method should deform any Kähler metric on a smooth minimal model (i.e., a Kähler manifold with nef canonical line bundle), say M, to a canonical metric or its metric completion on its canonical model M_{can} in Gromov-Hausdorff topology. If in addition we assume that the canonical line bundle K_M of M is semi-ample, then by semi-ample fibration theorem (see [21, 37]) there exists a fiber space map determined by the pluricanonical system of K_M:

$$\pi : M \to M_{\text{can}}.$$ (1.4)

If $\dim(M_{\text{can}}) = 0$, then M is a Calabi-Yau manifold. By a classical result of Cao [3], Kähler-Ricci flow will deform any Kähler metric to the unique Ricci-flat Kähler metric in the same Kähler class smoothly. It can be easily checked that the same result holds for the continuity method.

If $\dim(M_{\text{can}}) = \dim(M)$, i.e., M is a smooth minimal model of general type, the expected geometric convergence is obtained for Kähler-Ricci flow when $\dim(M) \leq 3$ (see [13, 29]). For the continuity method, the convergence is obtained for any dimension in [20].

The remaining case is $0 < \dim(M_{\text{can}}) < \dim(M)$. In this case, the geometric convergence of Kähler-Ricci flow is obtained in [33] (see [8, 10] for certain special cases) when M_{can} is smooth and the semi-ample fibration (1.4) does not admit any singular fiber. In general, this problem is largely open. Our Theorem 1.1 confirms this expected picture for the continuity method when $\dim(M) = 2$. In fact, our argument can also apply to Kähler-Ricci flow on minimal elliptic Kähler surface of Kodaira dimension one if all its singular fibers are of type mI_0 (see Remark 3.12).

The rest of this paper is organized as follows. We will prove parts (1) and (2) of Theorem 1.1 in Section 2 and prove parts (3) and (4) in Section 3. The key observation in the proof is that the limit space (X_∞,d_∞) is compact.

2. Estimates and local convergence

In this section we will derive necessary estimates and prove parts (1) and (2) of Theorem 1.1. As the first step, we will reduce (1.2) to a scalar equation of Monge-Ampère type as in [19, 20]. Let χ be the restriction on Σ of a multiple of the Fubini-Study metric of a
projective space and Ω a smooth positive volume form on X with \(\sqrt{-1} \partial \bar{\partial} \log \Omega = f^* \chi \). Set \(\omega_t := \frac{1}{1+t} \omega_0 + \frac{t}{1+t} f^* \chi \). Then (1.2) can be reduced to the following equation of \(\varphi = \varphi(t) \)

\[
\begin{cases}
(\omega_t + \sqrt{-1} \partial \bar{\partial} \varphi)^2 = (1 + t)^{-1} e^{\frac{1+t}{1+t} \varphi} \Omega \\
\varphi(0) = 0.
\end{cases}
\]

(2.1)

Namely, \(\omega_t + \sqrt{-1} \partial \bar{\partial} \varphi(t) \) solves (1.2) if \(\varphi(t) \) solves (2.1). We remark that the factor \((1 + t)^{-1}\) in the right hand side of (2.1) comes from the cohomology class and formal scale of volume, which in particular is crucial in obtaining a uniform bound of Kähler potential \(\varphi(t) \), see Lemma 2.1.

Next, following [31], we fix a smooth nonnegative function \(\sigma \) on \(X \), which vanishes exactly on singular fibers and satisfies \(\sigma \leq 1 \), \(\sqrt{-1} \partial \sigma \wedge \bar{\partial} \sigma \leq C f^* \chi \), \(-C f^* \chi \leq \sqrt{-1} \partial \bar{\partial} \sigma \leq C f^* \chi \) (2.2)

on \(X \) for some constant \(C \).

Lemma 2.1. There exists a constant \(C > 0 \) such that for any \(t \geq 1 \),

\[\| \varphi(t) \|_{C^0(X)} \leq C, \]

or equivalently,

\[\frac{C}{1+t} \Omega \leq \omega(t)^2 \leq \frac{C}{1+t} \Omega. \]

(2.4)

Proof. It suffices to prove (2.3). Firstly note that \(\omega_t^2 \leq C \frac{\Omega}{1+t} \). By applying the maximum principle in (2.1), the upper bound of \(\varphi \) follows easily. Then (2.3) can be proved by the Moser iteration as in [26, 39]. We remark that this lemma also follows from general theory of degenerate complex Monge-Ampère equations, see [31]. □

Lemma 2.2. There exists a positive constant \(C \) such that for all \(t \geq 1 \),

\[\text{tr} \omega f^* \chi \leq C. \]

(2.5)

Proof. Along (1.2), the Schwarz Lemma argument (see, e.g., [38, 26]) gives

\[\Delta_\omega (\log \text{tr} \omega f^* \chi - 2(A + 1) \varphi) \geq \text{tr} \omega f^* \chi - 4(A + 1) - 2 \]

for some fixed large constant \(A \). Using the maximum principle and the \(C^0 \)-estimate (2.3), we have proved (2.5). □

Using (2.5) and the same argument in [26], we can find a positive constant \(\lambda_1 \) such that for all \(t \geq 1 \),

\[\sup_{X_s} \varphi - \inf_{X_s} \varphi \leq \frac{C(1 + t)^{-1}}{\sigma^{\lambda_1}}. \]

(2.6)

Next, as in [26], we define a function \(\bar{\varphi} \) on \(\Sigma \) by

\[\bar{\varphi}(s) = \frac{\int_{X_s} \varphi(\omega_0|_{X_s})}{\int_{X_s} \omega_0|_{X_s}}. \]

Then (2.6) implies that

\[(1 + t)|\varphi - \bar{\varphi}| \leq \frac{C}{\sigma^{\lambda_1}}. \]

(2.7)

Lemma 2.3.

\[\Delta_\omega ((1 + t)(\varphi - \bar{\varphi})) \leq -\text{tr} \omega \omega_0 + \frac{1}{Vol(X_s)} \text{tr}_\omega \left(\int_{X_s} \omega_0^2 \right) + 2(1 + t). \]

(2.8)
Proof. The proof is the same as [26, Lemma 5.9]. □

Next lemma can be easily checked by a direct computation.

Lemma 2.4. There exists a positive constant C such that for all $t \geq 1$,
\[
\Delta_\omega \log tr_\omega((1 + t)^{-1}\omega_0) \geq -C tr_\omega \omega_0 - C.
\] (2.9)

Lemma 2.5. There exist positive constants λ_2 and C such that for all $t \geq 1$,
\[
tr_\omega((1 + t)^{-1}\omega_0) \leq Ce^{C\sigma^{-\lambda_2}}.
\] (2.10)

Proof. Set $H = \sigma^{\lambda_2}(\log tr_\omega((1 + t)^{-1}\omega_0) - A(1 + t)(\varphi - \bar{\varphi}))$. By the Schwarz Lemma argument (see, e.g., [38, 26]), we have
\[
\Delta_\omega H \geq A/3 \sigma^{\lambda_2} tr_\omega \omega_0 + 2Re \left(\nabla H \nabla \sigma^{\lambda_2} \right) - 3A(1 + t)
\] if we choose λ_2 and A large enough. Now by the maximum principle and (2.7), (2.10) follows. □

Corollary 2.6. There exist positive constants C and λ_2 such that for all $t \geq 1$,
\[
Ric(\omega) \leq Ce^{C\sigma^{-\lambda_2}} \omega.
\] (2.11)

Proof. Along the continuity equation (1.2) we have, for $t \geq 1$,
\[
Ric(\omega) = t^{-1}\omega_0 - \frac{(1 + t)}{t} \omega.
\]
Thus (2.11) follows from Lemma 2.5 immediately. □

Combining (2.5) and (2.10) we have
\[
tr_\omega \omega_t \leq Ce^{C\sigma^{-\lambda_2}}.
\]
Then
\[
tr_\omega \omega \leq (tr_\omega \omega_t) \frac{\omega^2}{\omega^2_t}
\leq C(tr_\omega \omega_t) \frac{(1 + t)^{-1}\Omega}{(1 + t)^{-1}\omega_0 \wedge f^*\chi}
\leq Ce^{C\sigma^{-\lambda_2}} \sigma^{-\lambda_2}
\leq Ce^{C\sigma^{-\lambda_3}}.
\]
In conclusion,
\[
C^{-1}e^{-C\sigma^{-\lambda_3}} \omega_t \leq \omega \leq Ce^{C\sigma^{-\lambda_3}} \omega_t.
\] (2.12)

Let t_j be any time sequence converging to ∞. Since the cohomology class of $\omega(t)$ is bounded and $\varphi(t)$ is uniformly bounded for all $t \geq 1$, using the weak compactness of currents, we may assume that $\omega(t_j)$ converges to a limit closed positive $(1,1)$-current χ_∞ (see, e.g., [4]), which a priori depends on the given sequence. Note that $\chi_\infty \in [f^*\chi]$, $\chi_\infty = f^*\chi + \sqrt{-1} \partial \bar{\partial} \varphi_\infty$ and $\varphi(t_j) \to \varphi_\infty$ in $L^1(X, \omega_0^2)$, which in particular implies that $\varphi_\infty \in L^\infty(X)$. Indeed, after passing to a subsequence, we may assume $\varphi(t_j) \to \varphi_\infty$ a.e. on X and hence, by Lemma 2.1 $|\varphi_\infty| \leq C$ a.e. on X. Then, for any $x \in X$ and a fixed
local potential u of $f^*\chi$ (i.e. $f^*\chi = \sqrt{-1}\partial\bar{\partial}u$) on $B_{\omega_0}(x, \rho_0)$, applying e.g. [12] Theorem K.15 gives
\[
|(u + \varphi_\infty)(x)| = \left| \lim_{\epsilon \to 0} \frac{\int_{B_{\omega_0}(x,\epsilon)} (u + \varphi_\infty) \omega_0^2}{\int_{B_{\omega_0}(x,\epsilon)} \omega_0^2} \right| \leq C
\]
and so
\[
|\varphi_\infty(x)| \leq C
\]
for some uniform constant C.

Moreover, using the estimates we have obtained above, we can assume that $\varphi(t_j) \to \varphi_\infty$ in $C^{1,\alpha}_{loc}(X_{\text{reg}}, \omega_0)$ for any $\alpha \in (0, 1)$.

Lemma 2.7. There exists a function $\hat{\varphi}_\infty \in PSH(\Sigma, \chi) \cap L^\infty(\Sigma)$ such that $f^*\hat{\varphi}_\infty = \varphi_\infty$.

Proof. We present a proof similar to [7, Theorem 6.3]. It suffices to show that φ_∞ is constant on every fiber $X_s = f^{-1}(s)$. For $s \in \Sigma_{\text{reg}}$, i.e. X_s is a nonsingular fiber, when restricting χ_∞ to such X_s, we see that $\sqrt{-1}\partial\bar{\partial}\varphi_\infty|_{X_s} \geq 0$. Hence φ_∞ is constant on every nonsingular fiber X_s. For a singular fiber, X_0, by Hironaka’s theorems (see [16]) we fix an embedded resolution $\hat{f} : \hat{X} \to X$ of singularities of X_0, i.e., \hat{X} is a compact complex manifold, $\hat{f} : \hat{X} \to X$ is a holomorphic surjective map and is biholomorphic over $X \setminus X_0$, and the proper transform of X_0, denoted by \hat{X}_0, is a smooth connected submanifold of \hat{X}. Now we pullback χ_∞ to \hat{X} to obtain $\pi^*\chi_\infty = \pi^*f^*\chi + \sqrt{-1}\partial\bar{\partial}\pi^*\varphi_\infty$, which is a closed positive $(1,1)$-form on \hat{X}. Now, as before, we can restrict $\pi^*\varphi_\infty$ to X_0 to see that $\pi^*\varphi_\infty$ is plurisubharmonic on \hat{X}_0 and hence is constant on \hat{X}_0, which implies that φ_∞ is constant on X_0.

Lemma 2.7 is proved. \square

In the following, we identify $\hat{\varphi}_\infty$ and φ_∞.

On the other hand, let $\omega_{SF} := \omega_0 + \sqrt{-1}\partial\bar{\partial}\rho_{SF}$, where ρ_{SF} is a smooth function on X_{reg}, be the semi-flat $(1,1)$-form defined by [26, Lemma 3.1]. Define $F := \frac{\Omega}{\omega_{SF}}$, which can be seen as a function $\in L^{1+r}(\Sigma, \chi)$ (see [26, 27, 14]) and is smooth on Σ_{reg}. It was proved in [26] (see also [17] for more general theory) that there exists a unique solution $\hat{\phi} \in PSH(\Sigma, \chi) \cap C^0(\Sigma) \cap C^\infty(\Sigma_{\text{reg}})$ to the following equation on Σ:
\[
\chi + \sqrt{-1}\partial\bar{\partial}\hat{\phi} = F e^{\hat{\phi}} \chi. \tag{2.13}
\]

Here we will use the above estimates to prove the existence of a bounded solution of (2.13). Precisely, we have

Lemma 2.8. φ_∞ is a bounded solution of equation (2.13).

Proof. Since φ_∞ is bounded, $\chi + \sqrt{-1}\partial\bar{\partial}\varphi_\infty$ takes no mass on pluripolar sets, e.g. $\Sigma \setminus \Sigma_{\text{reg}}$ (see e.g. [18]). Moreover, using $F \in L^{1+r}(\Sigma)$ and Hölder inequality, one easily sees that $e^{\varphi_\infty} F \chi$ also takes no mass on $\Sigma \setminus \Sigma_{\text{reg}}$. Therefore, it suffices to show that for any given $K \subset \subset \Sigma_{\text{reg}}$ and any given $\phi \in C^\infty_0(K)$,
\[
\int_K \phi(\chi + \sqrt{-1}\partial\bar{\partial}\varphi_\infty) = \int_K \phi F e^{\varphi_\infty} \chi. \tag{2.14}
\]

To this end, we use an argument similar to [31, Theorem 4.1]. Firstly, using the equation (2.1), we have
\[
\int_X (f^*\phi) e^{\frac{|\chi|}{\sqrt{2}}} \Omega = \int_X (f^*\phi)(1 + t)(\omega_t + \sqrt{-1}\partial\bar{\partial}\varphi)^2. \tag{2.15}
\]
As \(t_j \to \infty \), the left hand side of (2.15) will go to
\[
\int_X (f^*\phi) e^{\varphi_0} \Omega = 2 \int_X (f^*\phi) e^{\varphi_0} F \omega_{SF} \wedge f^*\chi = 2 \int_\Sigma \phi F e^{\varphi_0} \chi \int_{X_s} \omega_{SF}|_{X_s}.
\] (2.16)

For the right hand side of (2.15), we have
\[
\int_X (f^*\phi)(1 + t)(\omega_t + \sqrt{-1} \partial \bar{\partial} \varphi)^2
= \int_X (f^*\phi)(1 + t) \left(\frac{1}{1 + t} \omega_0 + \sqrt{-1} \partial \bar{\partial} (\varphi - \bar{\varphi}) + \frac{t}{1 + t} f^*\chi + \sqrt{-1} \partial \bar{\partial} \bar{\varphi} \right)^2
= \int_X (f^*\phi) \frac{1}{1 + t} \omega_0^2
+ 2 \int_X (f^*\phi) \omega_0 \wedge \sqrt{-1} \partial \bar{\partial} (\varphi - \bar{\varphi})
+ \int_X (f^*\phi)(1 + t)(\sqrt{-1} \partial \bar{\partial} (\varphi - \bar{\varphi}))^2
+ 2 \int_X (f^*\phi)(1 + t) \sqrt{-1} \partial \bar{\partial} (\varphi - \bar{\varphi}) \wedge (\frac{t}{1 + t} f^*\chi + \sqrt{-1} \partial \bar{\partial} \bar{\varphi})
+ 2 \int_X (f^*\phi) \omega_0 \wedge (\frac{t}{1 + t} f^*\chi + \sqrt{-1} \partial \bar{\partial} \bar{\varphi})
= A_1 + A_2 + A_3 + A_4 + A_5.
\]

(1) The first term \(A_1 \) will go to zero as \(t \to \infty \).
(2) The second term
\[
A_2 = 2 \int_X (f^*\phi) \omega_0 \wedge \sqrt{-1} \partial \bar{\partial} (\varphi - \bar{\varphi})
= 2 \int_X (\varphi - \bar{\varphi}) \omega_0 \wedge \sqrt{-1} \partial \bar{\partial} (f^*\phi),
\]
which will go to zero as \(t \to \infty \) by (2.7).
(3) The third term
\[
A_3 = \int_X (f^*\phi)(1 + t)(\sqrt{-1} \partial \bar{\partial} (\varphi - \bar{\varphi}))^2
= \int_X (1 + t)(\varphi - \bar{\varphi}) \sqrt{-1} \partial \bar{\partial} (f^*\phi) \wedge \sqrt{-1} \partial \bar{\partial} (\varphi - \bar{\varphi})
= \int_X (1 + t)(\varphi - \bar{\varphi}) \sqrt{-1} \partial \bar{\partial} (f^*\phi) \wedge \sqrt{-1} \partial \bar{\partial} \varphi|_{X_s}.
\]
Note that \((1 + t)(\varphi - \bar{\varphi}) \) is uniformly bounded on \(K \) by (2.7) and
\[
- (1 + t)^{-1} \omega_0|_{X_s} \leq \sqrt{-1} \partial \bar{\partial} \varphi|_{X_s} \leq C_K (1 + t)^{-1} \omega_0|_{X_s},
\]
by \((2.12)\). Thus \(A_3 \to 0\) as \(t \to \infty\).

(4) The fourth term

\[
A_4 = 2 \int_X (f^* \phi)(1 + t) \sqrt{-1} \partial \bar{\partial} (\phi - \bar{\phi}) \wedge \left(\frac{t}{1 + t} f^* \chi + \sqrt{-1} \partial \bar{\partial} \bar{\phi} \right)
\]

\[
= 2 \int_X (1 + t)(\phi - \bar{\phi}) \sqrt{-1} \partial \bar{\partial} (f^* \phi) \wedge \left(\frac{t}{1 + t} f^* \chi + \sqrt{-1} \partial \bar{\partial} \bar{\phi} \right)
\]

\[
= 0,
\]

since the term \(\sqrt{-1} \partial \bar{\partial} (f^* \phi) \wedge \left(\frac{t}{1 + t} f^* \chi + \sqrt{-1} \partial \bar{\partial} \bar{\phi} \right) = f^* (\sqrt{-1} \partial \bar{\partial} \phi \wedge \left(\frac{t}{1 + t} \chi + \sqrt{-1} \partial \bar{\partial} \bar{\phi} \right))\) and, obviously, \(\sqrt{-1} \partial \bar{\partial} \phi \wedge \left(\frac{t}{1 + t} \chi + \sqrt{-1} \partial \bar{\partial} \bar{\phi} \right)\) vanishes on \(\Sigma\) as \(\dim(\Sigma) = 1\).

(5) For the last term \(A_5\), first note that \((2.7)\) implies that \(\bar{\phi}(t_j) \to \varphi^\infty\) in \(L^\infty(K)\) as \(t_j \to \infty\). So we have

\[
A_5 = 2 \int_X (f^* \phi) \omega_0 \wedge \left(\frac{t_j}{1 + t_j} f^* \chi + \sqrt{-1} \partial \bar{\partial} \bar{\phi}(t_j) \right)
\]

\[
\to 2 \int_X (f^* \phi) \omega_0 \wedge (f^* \chi + \sqrt{-1} \partial \bar{\partial} \bar{\phi})
\]

\[
= 2 \int \phi(\chi + \sqrt{-1} \partial \bar{\partial} \bar{\phi}) \int_{X_s} \omega_0|_{X_s}.
\] (2.17)

Combining \((2.15), (2.16), (2.17)\) and the fact that \(\int_{X_s} \omega_{SF}|_{X_s} = \int_{X_s} \omega_0|_{X_s} \equiv \text{constant}\), we obtain \((2.14)\).

Let \(\chi^\infty = \chi + \sqrt{-1} \partial \bar{\partial} \varphi^\infty\). Since the bounded solution of \((2.13)\) is unique (see e.g. [26]), we conclude that the above convergence holds without passing to a subsequence, i.e.,

Lemma 2.9. \(\varphi(t) \to \varphi^\infty\) in \(L^1(X, \omega_0^2)\) and \(C^{1,\alpha}_{loc}(X_{reg}, \omega_0)\) for any \(\alpha \in (0, 1)\) as \(t \to \infty\).

In particular \(\omega(t) \to f^* \chi^\infty\) in the sense of currents as \(t \to \infty\).

Remark 2.10. Alternatively, we can easily apply arguments in [26, Section 6] to conclude the \(L^1\)-convergence in Lemma [2.9].

Next we shall prove the interior \(C^{1,\alpha}\) estimate for \(\omega(t)\) on \(X_{reg}\), where we will apply an idea due to [11, 15] (see also [8]). Let \(B \subset \Sigma_{reg}\) small enough and \(U = f^{-1}(B)\). There exists a holomorphic function \(z(s)\) on \(B\) such that \(Im(z(s)) > 0\) and \(U\) is biholomorphic to \(B \times \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}z(s)\), which is compatible with the projection to \(B\). Composing the quotient map \(B \times \mathbb{C} \to B \times \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}z(s)\) with this biholomorphism, we obtain a local biholomorphism \(p : B \times \mathbb{C} \to U\) such that \(f \circ p(s, w) = s\) for all \((s, w)\). Moreover, by [15] there exists a closed semi-positive real \((1, 1)\)-form \(\tilde{\omega}_{SF}\) on \(U\) such that \(\tilde{\omega}_{SF} = \omega_0 + \sqrt{-1} \partial \bar{\partial} \rho\) for some \(\rho \in C^\infty(U, \mathbb{R})\), \(\tilde{\omega}_{SF}|_{X_s}\) is a flat metric on \(X_s\) for all \(s \in B\) and \(p^* \tilde{\omega}_{SF} = \sqrt{-1} \partial \bar{\partial} \eta\), where \(\eta(s, w)\) is a smooth real function on \(B \times \mathbb{C}\) satisfying

\[
\eta(s, \lambda w) = \lambda^2 \eta(s, w)
\] (2.18)

for any \(\lambda \in \mathbb{R}\) (note that, a priori, \(\tilde{\omega}_{SF}\) may be different from \(\omega_{SF}\) given by Lemma 3.1 of [26]).
Define $\lambda_t : B \times \mathbb{C} \to B \times \mathbb{C}$ by $\lambda_t(s, w) = (s, \sqrt{1 + t} \cdot w)$. Then using (2.18) we have

$$(1 + t)^{-1} \lambda_t^* p^* \tilde{\omega}_{SF} = (1 + t)^{-1} \lambda_t^* \sqrt{-1} \partial \bar{\partial} \eta$$

where we have used the fact that Ω only depends on χ. Hence we arrive at

$$C^{-1} p^* (\tilde{\omega}_{SF} + f^* \chi) \leq \lambda_t^* p^* \omega(t) \leq C p^* (\tilde{\omega}_{SF} + f^* \chi)$$

on $B \times \mathbb{C}$. Notice that $p^* (\tilde{\omega}_{SF} + f^* \chi)$ is C^∞ equivalent to ω_E, where ω_E is the Euclidean metric on $B \times \mathbb{C}$. So for each given $K \subset B \times \mathbb{C}$ there exists a positive constant C_K such that

$$C_K^{-1} \omega_E \leq \lambda_t^* p^* \omega(t) \leq C_K \omega_E$$

on K. Combining with (2.12) we have

$$- C_K \omega_E \leq \sqrt{-1} \partial \bar{\partial}(\varphi \circ p \circ \lambda_t) \leq C_K \omega_E.$$

On the other hand, if we fix a $\beta \in C^\infty(B, \mathbb{R})$ such that $\chi = \sqrt{-1} \partial \bar{\partial} \beta$ on B, then on $B \times \mathbb{C}$ we have

$$\lambda_t^* p^* \omega = \lambda_t^* p^* \left(\frac{1}{1 + t} \omega_0 + \frac{t}{1 + t} f^* \chi + \sqrt{-1} \partial \bar{\partial} \varphi \right)$$

$$= \frac{1}{1 + t} \lambda_t^* p^* \omega_0 + \frac{t}{1 + t} p^* f^* \chi + \sqrt{-1} \partial \bar{\partial}(\varphi \circ p \circ \lambda_t)$$

$$= \frac{1}{1 + t} \lambda_t^* p^* (\tilde{\omega}_{SF} - \sqrt{-1} \partial \bar{\partial} \rho) + p^* f^* \chi + \sqrt{-1} \partial \bar{\partial}(\varphi \circ p \circ \lambda_t - \frac{1}{1 + t} \beta \circ p \circ f)$$

$$= p^* (\tilde{\omega}_{SF} + f^* \chi) + \sqrt{-1} \partial \bar{\partial}(\varphi \circ p \circ \lambda_t - \frac{1}{1 + t} \beta \circ p \circ f - \frac{1}{1 + t} \rho \circ p \circ \lambda_t).$$

Set $v = \varphi \circ p \circ \lambda_t - \frac{1}{1 + t} \beta \circ f \circ p - \frac{1}{1 + t} \rho \circ p \circ \lambda_t$ on $B \times \mathbb{C}$, which is uniformly bounded on $B \times \mathbb{C}$. Now we translate (2.21) to $B \times \mathbb{C}$ as

$$(\lambda_t^* p^* \omega)^2 = e^{\frac{t}{1 + t} \varphi \circ p \circ \lambda_t} \frac{1}{1 + t} \lambda_t^* p^* \Omega = e^{\frac{t}{1 + t} \varphi \circ p \circ \lambda_t} p^* \Omega,$$

where we have used the fact that Ω only depends on $s \in B$ since $\sqrt{-1} \partial \bar{\partial} \log \Omega = f^* \chi$. Hence we arrive at

$$\log(p^* (\tilde{\omega}_{SF} + f^* \chi) + \sqrt{-1} \partial \bar{\partial} v)^2 = \frac{t}{1 + t} \varphi \circ p \circ \lambda_t + \log p^* \Omega.$$

Lemma 2.11. Given any small $K \subset B \times \mathbb{C}$, there exist two constants $C_K > 0$ and $\alpha_k \in (0, 1)$ such that for all $t \geq 1$,

$$\|\lambda_t^* p^* \omega\|_{C^{1, \alpha_k}(K, \omega_E)} \leq C_K.$$

Proof. Firstly, we may assume that there exists a compact $L \subset B \times \mathbb{C}$ containing K in its interior and some $K_1 \subset X_{\text{reg}}$ such that $p \circ \lambda_t(L) \subset K_1$. Then by (2.22) we can find a positive constant $C_1 = C_1(K_1)$ such that

$$|\Delta_{\omega_E} \varphi \circ p \circ \lambda_t| \leq C_1$$

(2.25)
on L. Combining the fact that $\varphi \circ p \circ \lambda_t$ is uniformly bounded, we obtain by elliptic estimates (see [9]) that, for any fixed $\alpha \in (0, 1)$, we can find a slightly smaller subset L_1 of L (still contains K in its interior) and a constant C_2 depends on K_1 and the uniform bound of φ such that
\[
\|\varphi \circ p \circ \lambda_t\|_{C^{1,\alpha}(L_1, \omega_E)} \leq C_2,
\] (2.26)
Similarly, as we have
\[
\Delta_{\omega_E} v = t r_{\omega_E} \lambda_t^* p^* \omega (t) - t r_{\omega_E} (p^* (\omega SF + f^* \chi))
\] (2.27)
and hence $\Delta_{\omega_E} v$ is bounded in L, there exists a slightly smaller subset L_2 (still contains K in its interior) of L_1 and a positive constant C_3 such that
\[
\|v\|_{C^{1,\alpha}(L_2, \omega_E)} \leq C_3.
\] (2.28)
Now we can apply a complex version of Evans-Krylov theory (see e.g. [1, Theorem 3.1]) to conclude that for some $\alpha_0 \in (0, 1)$ and a slightly smaller subset L_3 (still contains K in its interior) of L_2,
\[
\|v\|_{C^{2,\alpha_0}(L_3, \omega_E)} \leq C_4.
\] (2.29)
Equivalently,
\[
\|\lambda_t^* p^* \omega\|_{C^{\alpha_0}(L_3, \omega_E)} \leq C_4,
\] (2.30)
and hence
\[
\| (\lambda_t^* p^* \omega)^{-1}\|_{C^{\alpha_0}(L_3, \omega_E)} \leq C_5.
\] (2.31)
Furthermore, for $i \in \{1, 2\}$, differentiating (2.23) by ∂_i gives
\[
\Delta_{\lambda_t^* p^* \omega} (\partial_i v) = \frac{t}{1 + t} \partial_i (\varphi \circ p \circ \lambda_t) + A,
\] (2.32)
where A is a term whose C^{α_0}-norm with respect to ω_E is uniformly bounded. Then combining (2.26), (2.30) and (2.31), we know that the coefficients and right hand side of (2.32) are in $C^{\alpha_0}(L_2, \omega_E)$ and we can apply Schauder estimates (see [9]) to conclude that for some $L_4 \subset \subset L_3$ (still contains K in its interior),
\[
\|\partial_i v\|_{C^{2,\alpha_0}(L_4, \omega_E)} \leq C_6,
\] which implies
\[
\|v\|_{C^{3,\alpha_0}(L_4, \omega_E)} \leq C_7
\] and
\[
\|\lambda_t^* p^* \omega\|_{C^{2,\alpha_0}(L_4, \omega_E)} \leq C_8.
\] This lemma is proved.

Remark 2.12. (1) Note that, as mentioned during the above proof, the Hölder exponent in Lemma 2.11 is obtained by applying Evans-Krylov theory and hence depends on the chosen compact subset K.

(2) One may like to apply bootstrapping to derive C^k estimates for all k. However, after having C^{3,α_0} bound on v, one may not obtain the $C^{3,\alpha}$ bound on $\varphi \circ p \circ \lambda_t$ and hence can't apply bootstrapping directly.

Consequently, as in [11] (see Lemma 4.5), we have

Proposition 2.13. Given any $K' \subset \subset U$, there exist two positive constants $C_{K'}$ and $\alpha_{K'} \in (0, 1)$ such that for all $t \geq 1$,
\[
\|\omega\|_{C^{1,\alpha_{K'}}(K', \omega_0)} \leq C_{K'}.
\] (2.33)
Combining with Lemma 2.9, we have
Theorem 2.14. For any given compact subset V of X_{reg}, there exists a constant $\alpha_V \in (0,1)$ such that $\omega(t) \to f^*\chi_\infty$ in $C^{1,\alpha_V}(V,\omega_0)$-topology as $t \to \infty$.

Note that χ_∞ is exactly the unique generalized Kähler-Einstein metric on Σ (see [26]). Hence we have proved part (1) of Theorem 1.1.

In the remaining part of this section, we shall give a proof of part (2) of Theorem 1.1 using the method developed in [33]. To this end, we firstly apply a translation to the continuity equation (1.2) in the following manner. Let η and if we set h where

$$\omega(t) \to \infty$$

we have

Lemma 2.15. There exist uniform constants $C > 1$ and $\lambda > 0$ such that for all $u \geq 2$ we have

1. $\|\psi(u)\|_{C^0(\Sigma)} \leq C$;
2. $tr_{\eta(u)} f^*\chi \leq C$;
3. $\lambda e^{-C\sigma^{-\lambda}} \eta_u \leq \eta(u) \leq C e^{C\sigma^{-\lambda}} \eta_u$;
4. $\psi(u) \to \varphi_\infty$ in $L^1(X,\omega_0)$- and $C^{1,\alpha}_{loc}(X_{reg},\omega_0)$-topology, for any $\alpha \in (0,1)$, as $u \to \infty$;
5. $tr_{\eta(u)} f^*\chi_\infty \leq C\sigma^{-\lambda}$.

Proof. Part (5) is concluded from part (2) and Lemma 2.16 in the next section. \qed

Next we prove an analogue of [33, Lemma 3.1] for [33, Lemma 4.6].

Lemma 2.16. There exists a positive function $H(u)$ with $H(u) \to 0$ as $u \to \infty$ such that

$$\sup_{\Sigma} e^{-C\sigma^{-\lambda}} |\psi(u) + \partial_u \psi(u) - \varphi_\infty| \leq H(u).$$

Proof. We begin with the following inequality:

$$\sup_{\Sigma} e^{-C\sigma^{-\lambda}} |\psi(u) - \varphi_\infty| \leq h(u),$$

where $h(u)$ is a positive function and will go to zero as $u \to \infty$. As we have Lemma 2.15, this can be checked by the same argument in the proof of [33, Lemma 4.3]. Thus it suffices to show

$$\sup_{\Sigma} e^{-C\sigma^{-\lambda}} |\partial_u \psi(u)| \leq H(u).$$

To this end, we collect some useful equalities as follows. By taking u-derivative of (2.35) and using the easy facts that $\Delta_\psi \psi = 2 - tr_\eta \eta_u$ and $\partial_u \eta_u = \chi - \eta_u$, we have

$$(1 - e^{-u})\Delta_\eta (\psi + \partial_u \psi) = -(1 - e^{-u})(tr_\eta f^*\chi - 1) + \partial_u \psi - e^{-u} \log \frac{e^u \eta(u)^2}{\Omega}$$

$$\chi.$$
and
\[
\Delta_\eta \left((1 - e^{-u}) \partial_u \partial_u \psi + 2e^{-u} \partial_u \psi - (1 - 3e^{-u}) \psi \right) = \partial_u \partial_u \psi + e^{-u} \log \frac{e^u \eta(u)^2}{\Omega} + (1 - 3e^{-u}) tr_\eta f^* \chi + 4e^{-u} - 2 + (1 - e^{-u})|\partial_u \eta|^2. \tag{2.41}
\]

By using parts (1) and (2) of Lemma \ref{Lemma2.15} and the maximum principle, one can conclude that there exists a positive constant \(C \) such that for all \(u \geq 2 \),
\[
|\partial_u \psi|_{C^0(X)} \leq C \tag{2.42}
\]
from \eqref{2.39} and
\[
\partial_u \partial_u \psi \leq C \tag{2.43}
\]
from \eqref{2.40} and \eqref{2.42}. With \eqref{2.37}, \eqref{2.42} and \eqref{2.43}, we can apply the arguments in Lemma 4.6 of \cite{33} to obtain the desired conclusion \eqref{2.38}. The proof is now completed. \(\square \)

With Lemma \ref{Lemma2.16} and equation \eqref{2.39}, one can apply a maximum principle argument (see \cite{33} Lemma 4.7 for details) to conclude that there exist two positive constants \(C \) and \(\lambda \) such that for all \(u \geq 2 \),
\[
\sup_X e^{-C \sigma - \lambda} (tr_\eta f^* \chi_{\infty} - 1) \leq C \sqrt{H(u)}, \tag{2.44}
\]
where \(H(u) \) is the function satisfying Lemma \ref{Lemma2.16}.

Now we shall give a proof of part (2) of Theorem \ref{Theorem1.1}, which is equivalent to the following

Proposition 2.17. For any \(s \in \Sigma_{reg} \), \(e^u \eta(u)|_{X_s} \) converges in \(C^\infty(X_s, \omega_0|_{X_s}) \)-topology to the unique flat metric in class \([\omega_0]|_{X_s} \) as \(u \to \infty \).

Proof. By part (3) of Lemma \ref{Lemma2.15} there exists a constant \(C > 1 \) such that for all \(u \geq 2 \),
\[
C^{-1} \omega_0|_{X_s} \leq e^u \eta(u)|_{X_s} \leq C \omega_0|_{X_s}. \tag{2.45}
\]
Adapting the arguments in the proof of \cite{35} Theorem 1.1, we can find constants \(C_k \) for all \(k \in \mathbb{N} \) such that for all \(u \geq 2 \),
\[
\|e^u \eta(u)|_{X_s}\|_{C^k(X_s, \omega_0|_{X_s})} \leq C_k. \tag{2.46}
\]
For the sake of convenience, we sketch a proof here by following \cite{35}. For any given \(x \in X_s \), we fix a small chart \((U, (s, w)) \) in \(X \) centered at \(x \) such that \(f \) in this coordinate is given by \(f(s, w) = s \). Without loss of any generality, we assume \(U = \{(s, w) \in \mathbb{C}^2||s| < 1, |w| < 1\} \). Let \(B_r(0) \) be the standard disc in \(\mathbb{C} \) centered at \(0 \in \mathbb{C} \) with radius \(r > 0 \). Define the maps \(F_u : B_r \times B_1 \to U \) for \(u \geq 0 \) as follows:
\[
F_u(s, w) = (se^{-\frac{u}{2}}, w).
\]
Then \(e^u F_u^* \eta \) satisfies
\[
Ric(e^u F_u^* \eta) = \frac{1}{e^u - 1} F_u^* \omega_0 - \frac{1}{e^u - 1} (e^u F_u^* \eta) \tag{2.47}
\]
on \(B_r \times B_1 \) and for any given \(M \subset \subset B_{\frac{r}{2}} \times B_1 \) one can find a constant \(C_M > 1 \) depending only on \(M \) such that
\[
C_M^{-1} \omega_E \leq e^u F_u^* \eta \leq C_M \omega_E \tag{2.48}
\]
on \(M \), where \(\omega_E \) is the Euclidean metric on \(\mathbb{C}^2 \). Note that \eqref{2.47} implies a uniform lower bound for Ricci curvature of \(e^u F_u^* \eta \) and both \(e^u F_u^* \omega_0 \) and its covariant derivative with respect to \(\omega_E \) are uniformly bounded for all \(u \geq 2 \). Thus one can modify Calabi’s \(C^3 \) estimate (see e.g. \cite{23, 25, 15}) to obtain the uniform \(C^1 \) estimate of \(e^u F_u^* \eta \) on a slightly
smaller $M_1 \subset M$. Moreover, by equation (2.47), the components of $e^u F_u \eta$ (resp. $F_u \omega_0$), say g_{ij} (resp. $(g_0)_{ij}$), satisfy

$$
\Delta_g(g_{ij}) = g^{ap} g^{bp} \partial_i g_{ab} \partial_j g_{pq} - \frac{1}{e^u - 1} g_{ij} + \frac{1}{e^u - 1} (g_0)_{ij}.
$$

where g is the metric associated to $e^u F_u \eta$. Thus, a standard bootstrapping argument (see e.g. [15]) will give the higher order estimates for $e^u F_u \eta$ and then, by restricting to $\{0\} \times B_1$ and using a finite cover by local charts of X_s, the desired estimate (2.46) follows.

On the other hand, for any fixed $\bar{s} \in V' \subset \Sigma_{reg}$ if we define a function g on $f^{-1}(V') \times [2, \infty)$ by

$$
g = \frac{e^u \eta|_{X_s}}{\omega_{SF}|_{X_s}},
$$

then

$$
e^u \eta(u)|_{X_s} = g \cdot \omega_{SF}|_{X_s},
$$

and

$$
g = \frac{e^u \eta|_{X_s}}{\omega_{SF}|_{X_s}} = \frac{e^u \eta \wedge f^* \chi_\infty}{\omega_{SF} \wedge f^* \chi_\infty} = \frac{(tr \eta f^* \chi_\infty) e^{u \eta}}{2 \omega_{SF} \wedge f^* \chi_\infty} = \frac{(tr \eta f^* \chi_\infty) e^{u \eta - \psi}}{e^{\psi}}.
$$

Since (2.46) holds uniformly when s varies in any compact subset of Σ_{reg}, we can make use of the estimates obtained above and [33, Lemma 2.4] to conclude that

$$
\sup_{f^{-1}(V')} |g - 1| \to 0
$$

and hence

$$
\|e^u \eta|_{X_s} - \omega_{SF}|_{X_s}\|_{C^0(X_s, \omega_0)|_{X_s}} \to 0
$$

as $u \to \infty$. Combining (2.46), we have proved Proposition 2.17, i.e., part (2) of Theorem 1.1. □

Remark 2.18. Note that the convergence (2.52) holds uniformly as s varies in any given compact subset of Σ_{reg}. If we set $\tilde{\eta}_u = e^{-u} \omega_{SF} + (1 - e^{-u}) f^* \chi_\infty$, then as in [33] one easily obtains that for any given $V \subset X_{reg}$,

$$
\|\eta(u) - \tilde{\eta}_u\|_{C^0(V, \omega_0)} \to 0
$$

and hence

$$
\|\eta(u) - f^* \chi_\infty\|_{C^0(V, \omega_0)} \to 0
$$

as $u \to \infty$.

3. Diameter bounds and Gromov-Hausdorff convergence

In this section we first recall the following lemma, which is proved in [26, Lemma 3.4] and [14, Section 3.3]. Recall that ω_{SF} is the semi-flat $(1,1)$-form on X_{reg} defined by [26, Lemma 3.1] and $F = \frac{\Omega}{\omega_{SF} \wedge \chi}$.

Lemma 3.1 ([26, 14]). Let Δ_r be a disk centered at 0 of small diameter r with respect to χ such that all fibers $X_s, s \neq 0$, are nonsingular. Let $\Delta_r^* = \Delta_r \setminus \{0\}$. Then there exist two constants $C > 1$ and $0 < \beta < 1$ such that for small r,

$$F(s) \leq \frac{C}{|s|^{2\beta}}$$

(3.1)

for all $s \in \Delta_r^*$.

Remark 3.2. Combining the results in [26] and [14], $\beta = \max\{\frac{5}{6}, 1 - \frac{1}{2m_1}, \ldots, 1 - \frac{1}{2m_k}\}$ will satisfy Lemma 3.1. Here m_i's are the multiplicities of singular fibers as in Section 1.

Consequently, we have

Proposition 3.3. There exists a constant $C > 1$ such that for small r

$$\text{diam}(\Delta_r^*, \chi_{\infty}) \leq Cr^{1-\beta}.$$

(3.2)

Proof. Without loss of any generality, we assume that Δ_r is the standard disc in \mathbb{C} and $\chi \leq \omega_E$ on Δ_r, where ω_E is the standard flat metric on Δ_r. For any fixed two points p_1, p_2 in Δ_r^*, we express them in polar coordinates by $p_1 = \rho_1 e^{\sqrt{-1} \theta_1}$, $p_2 = \rho_2 e^{\sqrt{-1} \theta_2}$, where $\rho_1, \rho_2 \in (0, r)$ and $\theta_1, \theta_2 \in [0, 2\pi)$. Without loss of any generality, we assume $\rho_1 < \rho_2$, $\theta_1 < \theta_2$. Set $p_3 = \rho_2 e^{\sqrt{-1} \theta_1}$. Then

$$d_{\chi_{\infty}}(p_1, p_2) \leq d_{\chi_{\infty}}(p_1, p_3) + d_{\chi_{\infty}}(p_3, p_2).$$

We connect p_1 and p_3 by $\gamma_1(t) = te^{\sqrt{-1} \theta_1}$, $t \in [\rho_1, \rho_2]$ and connect p_3 and p_2 by $\gamma_2(s) = \rho_2 e^{\sqrt{-1} \theta_1}$, $s \in [\theta_1, \theta_2]$. Then we have

$$L_{\chi_{\infty}}(\gamma_1) \leq C \int_{\rho_1}^{\rho_2} \sqrt{F(\gamma_1(t))} \, dt$$

and

$$L_{\chi_{\infty}}(\gamma_2) \leq C \rho_2 \int_{\theta_1}^{\theta_2} \sqrt{F(\gamma_2(s))} \, ds.$$

Now by Lemma 3.1, we have

$$F(\gamma_1(t)) \leq C|\gamma_1(t)|^{-2\beta} = C|t|^{-2\beta}.$$

Therefore

$$L_{\chi_{\infty}}(\gamma_1) \leq C \int_{\rho_1}^{\rho_2} |t|^{-\beta} \, dt \leq Cr^{1-\beta}.$$

On the other hand,

$$L_{\chi_{\infty}}(\gamma_2) \leq C \rho_2^{1-\beta} \int_{\theta_1}^{\theta_2} ds \leq Cr^{1-\beta}.$$

Thus the (3.3) is proved. \qed
Now it can be seen that the metric completion \((X_\infty,d_\infty)\) of \((\Sigma_{reg},\chi_\infty)\) is compact and \(X_\infty\) is homeomorphic to \(\Sigma\). In fact, for any \(s \in \Sigma_{reg}\) and \(s_i\), define \(d_\infty(s,s_i) = \lim_{t \to \gamma} d_\infty(s,r'_j)\), where \(\{r'_j\}\) is a sequence contained in \(\Sigma_{reg}\) and converges to \(s_i\). Note that Proposition 3.3 implies that this is well-defined. One can define \(d_\infty(s_i,s_j)\) similarly.

In particular, we have proved part (3) of Theorem 1.1 i.e.,

Proposition 3.4. \((X_\infty,d_\infty)\) is a compact length metric space and \(X_\infty\) is homeomorphic to \(\Sigma\) as a projective variety.

We will denote the metric completion of \((\Sigma_{reg},\chi_\infty)\) by \((\Sigma,d_\infty)\) and its diameter by \(D_\infty\).

In the following, without loss of any generality we assume \(\Sigma\{s_0\}\). For small \(\delta > 0\), let \(B_\infty(s_0,\delta)\) be the ball centered at \(s_0\) of radius \(\delta\) with respect to \(d_\infty\), \(K'_\delta := \Sigma\backslash B_\infty(s_0,\delta)\) and \(K_\delta := f^{-1}(K'_\delta)\). Similarly let \(H'_\delta = \Sigma\backslash B_\chi(s_0,\delta)\) and \(H_\delta := f^{-1}(H'_\delta)\). We remark that, if \(\delta\) is sufficiently small, one can assume that \(B_\chi(s_0,\delta)\) is a standard disc in \(\mathbb{C}\). Moreover Proposition 3.3 implies that there exists a uniform constant \(N > 1\) such that for small \(\delta\),

\[
B_\chi(s_0,\delta) \subset B_\infty(s_0,N\delta^{\frac{1}{N}}). \tag{3.3}
\]

To begin with, we have

Lemma 3.5.

\[
d_{GH}((K'_\delta,d_\infty),(\Sigma,d_\infty)) \leq \delta. \tag{3.4}
\]

Lemma 3.6. For any small \(\delta > 0\), there exists a constant \(T_\delta\) such that for all \(t \geq T_\delta\),

\[
diam(K_\delta,d_\omega(t)) \leq D_\infty + 1. \tag{3.5}
\]

Proof. For any fixed \(p,q \in K_\delta\), one can choose a piecewise smooth curve \(\gamma(z) \subset H'_{(\frac{\delta}{10N})^N}, z \in [0,1]\), connecting \(f(p)\) and \(f(q)\), such that

\[
L_{\chi_\infty}(\gamma) \leq d_\infty(f(p),f(q)) + \frac{\delta}{4}. \tag{3.6}
\]

This can be chosen as follows: first choose a piecewise smooth curve \(\tilde{\gamma} \subset \Sigma_{reg}\) connecting \(f(p),f(q)\) with \(L_{\chi_\infty}(\tilde{\gamma}) \leq d_\infty(f(p),f(q)) + \frac{\delta}{10}\). If \(\tilde{\gamma}\)∩\(B_\chi(s_0,(\frac{\delta}{10N})^N) = \emptyset\), we are done; otherwise we replace the part of \(\tilde{\gamma}\) contained in \(B_\chi(s_0,(\frac{\delta}{10N})^N)\) by a curve lies in \(\partial B_\chi(s_0,(\frac{\delta}{10N})^N)\) with length with respect to \(\chi_\infty\) no more than \(\frac{\delta}{10}\) (here we have identified \(B_\chi(s_0,(\frac{\delta}{10N})^N)\) with some small standard disc in \(\mathbb{C}\)). We obtain a curve \(\gamma\) as desired.

We will lift \(\gamma\) to a curve in \(H_{(\frac{\delta}{10N})^N}\) connecting \(p, q\).

First, without loss of any generality, we assume that \(\gamma(z), z \in [0,1]\), is smooth and covered by two open subsets \(U, V\) of \(\Sigma_{reg}\) such that \(f^{-1}(U) = U \times E, f^{-1}(V) = V \times E\), where \(E\) is a smooth fiber and both equalities mean diffeomorphisms. Fix a point \(r' := \gamma(z_1) \in U \cup V\). Define \(\gamma_1(z) = (\gamma(z), e_1)\) for some \(e_1 \in E\) with \(p = (\gamma(0), e_1), z \in [0, z_1]\) and \(\gamma_2(z) = (\gamma(z - 1), e_2)\) for some \(e_2 \in E\) with \(q = (\gamma(1), e_2), z \in [z_1 + 1, 2]\). Also connect \(\gamma_1(z_1)\) and \(\gamma_2(z_1 + 1)\) by a curve \(\gamma_3(z) \subset E, z \in [z_1, z_1 + 1]\). Now by connecting \(\gamma_1, \gamma_3\) and \(\gamma_2\) we obtain a curve \(\sigma(z) \subset H'_{(\frac{\delta}{10N})^N}, z \in [0, 2]\), connecting \(p\) and \(q\). Note that the diameter of smooth fibers over \(H'_{(\frac{\delta}{10N})^N}\) will go to zero uniformly as \(t \to \infty\), so we can choose \(\gamma_3\) with arbitrarily small length (with respect to \(\omega(t)\)) as long as \(t\) is large enough.
Then we can find a T_δ such that for $t \geq T_\delta$,

$$d_{\omega(t)}(p, q) \leq L_{\omega(t)}(\sigma)$$

$$\leq L_{\omega}(\gamma_1) + L_{\omega}(\gamma_2) + \frac{\delta}{4}$$

$$\leq L_{f^*\chi^\infty}(\gamma_1) + L_{f^*\chi^\infty}(\gamma_2) + \frac{\delta}{2}$$

$$= L_{\chi^\infty}(\gamma) + \frac{\delta}{2}$$

$$\leq d_\infty(f(p), f(q)) + \frac{3\delta}{4}, \quad (3.7)$$

where in the third inequality we have used Theorem 2.14. Thus we obtain

$$d_{\omega(t)}(p, q) \leq L_{\omega(t)}(\sigma)$$

$$\leq L_{\omega(t)}(\gamma_1) + L_{\omega(t)}(\gamma_2)$$

$$\leq L_{f^*\chi^\infty}(\gamma_1) + L_{f^*\chi^\infty}(\gamma_2) + \frac{\delta}{2}$$

$$= L_{\chi^\infty}(\gamma) + \frac{\delta}{2}$$

$$\leq d_\infty(f(p), f(q)) + \frac{3\delta}{4}, \quad (3.7)$$

where in the third inequality we have used Theorem 2.14. Thus we obtain

$$diam(K_\delta, d_{\omega(t)}) \leq D_\infty + \delta.$$

We complete the proof by choosing small $\delta < 1$. \hfill \Box

Lemma 3.7. There exist positive constants D_1 and T_1 such that for all $t \geq T_1$,

$$diam(X, \omega(t)) \leq D_1. \quad (3.8)$$

Proof. Let $\epsilon > 0$ be arbitrary. By Lemma 3.6, we can choose a K_δ and T_1 such that for all $t \geq T_1$,

$$diam(K_\delta, d_{\omega(t)}) \leq D_\infty + 1. \quad (3.9)$$

Using the volume estimate (2.4) along the continuity method and the fact that $X \setminus X_{reg}$ has real codimension 2 (it is a proper analytic subvariety of X), by decreasing δ if necessary, we have

$$Vol_{\omega(t)}(X \setminus K_\delta) \leq (1 + t)^{-1}\epsilon \quad (3.10)$$

for all $t \geq T_1$.

Let $x_t \in X \setminus K_\delta$ be a point which achieves the maximal distance R_t to K_δ in $(X, \omega(t))$. Then $B_{\omega(t)}(x_t, R_t) \subset X \setminus K_\delta$. On the one hand we have

$$\frac{Vol(B_{\omega(t)}(x_t, R_t + D_\infty + 1))}{Vol(B_{\omega(t)}(x_t, R_t))} \geq \frac{Vol_{\omega(t)}(X) - Vol_{\omega(t)}(X \setminus K_\delta)}{Vol_{\omega(t)}(B_{\omega(t)}(x_t, R_t))}$$

$$\geq \frac{(1 + t)^{-1}(C_1 - \epsilon)}{(1 + t)^{-1}\epsilon}$$

$$\geq C_2\epsilon^{-1}. \quad (3.11)$$

On the other hand, by the uniform lower bound of Ricci curvature (1.3), we have

$$\frac{Vol(B_{\omega(t)}(x_t, R_t + D_\infty + 1))}{Vol(B_{\omega(t)}(x_t, R_t))} \leq \frac{\int_{0}^{R_t + D_\infty + 1} sinh^3 v dv}{\int_{0}^{R_t} sinh^3 v dv}. \quad (3.12)$$

Thus if we choose ϵ small enough, R_t will be uniformly bounded and the Lemma 3.7 is proved. \hfill \Box

Lemma 3.8. For any small $\epsilon > 0$, there exists a K_δ and a positive constant T_2 such that for all $t \geq T_2$

$$d_{GH}((K_\delta, d_{\omega(t)}), (X, d_{\omega(t)})) \leq \epsilon. \quad (3.13)$$
Proof. The argument in the proof of Lemma 3.7 implies that, for any \(\epsilon > 0 \), there exist a \(K_\delta \), two positive constants \(C_2 \) and \(T_2 \) such that for all \(t \geq T_2 \),
\[
C_2\epsilon^{-5} \leq \frac{\int_{0}^{R_t} \sinh^3 v \, dv}{\int_{0}^{R_t} \sinh^3 v \, dv}.
\]
(3.14)

Since we have known that \(R_t \) is uniformly bounded, (3.14) gives
\[
\int_{0}^{R_t} \sinh^3 v \, dv \leq C_3\epsilon^5,
\]
which implies that, if \(\epsilon \) small enough, for all \(t \geq T_2 \) we have
\[
R_t \leq \epsilon.
\]
Thus we conclude (3.13).

□

Lemma 3.9. For any fixed \(\delta > 0 \), there exists a \(\delta_0 \) and a \(T_3 > 0 \) such that for any \(p, q \in K_\delta \) and \(t \geq T_3 \), one can find a curve \(\gamma_t \subset K_{\delta_0} \) connecting \(p \) and \(q \) such that
\[
L_{\omega(t)}(\gamma_t) \leq d_{\omega(t)}(p, q) + \frac{\delta}{4}.
\]
(3.15)

Proof. This can be proved by an argument similar to that in the proof of Lemma 3.6. In fact, if the minimal geodesic \(\gamma_t \) in \((X, \omega(t))\) connecting \(p \) and \(q \) intersects \(f^{-1}(B_\chi(s_0, (\frac{\delta}{10N}))^N) \), then we may replace the part of \(\gamma_t \) contained in \(f^{-1}(B_\chi(s_0, (\frac{\delta}{10N}))^N) \) by lifting suitably a curve \(\gamma' \subset \partial B_\chi(s_0, (\frac{\delta}{10N})) \) and obtain a new curve, still denote it by \(\gamma_t \), satisfying (3.15). Now we complete the proof by choosing a sufficiently large \(T_3 \) and a \(\delta_0 < \delta \) with \(H_{\chi(\frac{\delta}{10N})^N} \subset K_{\delta_0} \).

□

Lemma 3.10. There exists a \(T_\delta > 0 \) such that for all \(t \geq T_\delta \),
\[
d_{GH}((K_\delta, d_{\omega(t)}), (K'_{\delta}, d_{\infty})) \leq \delta.
\]
(3.16)

Proof. Define a map \(g : K'_{\delta} \rightarrow K_{\delta} \) by mapping every point \(s \in K'_{\delta} \) to some chosen point \(g(s) \) in \(X \). Given arbitrary \(p, q \in K_\delta \) and \(s, r \in K'_{\delta} \), By Lemma 3.9, for \(t \) large enough, we can find a curve \(\gamma_t \subset K_{\delta_0} \) connecting \(p \) and \(q \) such that
\[
L_{\omega(t)}(\gamma_t) \leq d_{\omega(t)}(p, q) + \frac{\delta}{4}.
\]
(3.17)

By Theorem 2.14 we can find a \(T_\delta \) such that for all \(t \geq T_\delta \),
\[
L_{\omega(t)}(\gamma_t) \geq L_{f \circ \chi}(\gamma_t) - \frac{\delta}{4}
\[
\geq L_{\chi}(f \circ \gamma_t) - \frac{\delta}{4}
\[
\geq d_{\infty}(f(p), f(q)) - \frac{\delta}{4}.
\]
Therefore
\[
d_{\infty}(f(p), f(q)) \leq d_{\omega(t)}(p, q) + \delta.
\]
(3.18)
A similar argument gives
\[
d_{\infty}(s, r) \leq d_{\omega(t)}(g(s), g(r)) + \delta.
\]
(3.19)
On the other hand, using the argument in Lemma 3.6, we can show that, for all \(t \geq T_\delta \) (increase \(T_\delta \) if necessary),

\[
d_{\omega(t)}(g(s), g(r)) \leq d_\infty(s, r) + \delta,
\]

(3.20)

and

\[
d_{\omega(t)}(p, q) \leq d_\infty(f(p), f(q)) + \delta.
\]

(3.21)

Also of course we have, for any \(s \in K'_\delta \),

\[
d_\infty(s, f \circ g(s)) \equiv 0
\]

(3.22)

and for any \(p \in K_\delta \),

\[
d_{\omega(t)}(p, g \circ f(p)) \leq \delta
\]

(3.23)

for all \(t \geq T_\delta \). Combining (3.18), (3.19), (3.20), (3.21), (3.22) and (3.23), we conclude Lemma 3.10.

□

Now we are ready to prove part (4) of Theorem 1.1, i.e.,

Theorem 3.11. \((X, \omega(t)) \to (\Sigma, d_\infty)\) in Gromov-Hausdorff topology as \(t \to \infty \).

Proof. For any small \(\epsilon > 0 \), we fix a \(\delta > 0 \) satisfying

1. \(\delta < \frac{\epsilon}{4} \);
2. \(d_{GH}((K'_\delta, d_\infty), (\Sigma, d_\infty)) < \frac{\epsilon}{4} \);
3. \(d_{GH}((K_\delta, d_{\omega(t)}), (X, d_{\omega(t)})) < \frac{\epsilon}{4} \) for any \(t \geq T_\epsilon \);
4. \(d_{GH}((K_\delta, d_{\omega(t)}), (K'_\delta, d_\infty)) < \frac{\epsilon}{4} \) for any \(t \geq T_\epsilon \).

Note that (2), (3) and (4) are guaranteed by Lemma 3.5, Lemma 3.8 and Lemma 3.10 respectively. In fact the constant \(T_\epsilon \) may also depend on \(\delta \). However \(\delta \) is a fixed constant determined by \(\epsilon \). Therefore \(T_\epsilon \) only depends on \(\epsilon \) and Theorem 3.11 is proved. □

We end this paper by a remark on the Kähler-Ricci flow.

Remark 3.12. Consider the Kähler-Ricci flow \(\bar{\omega}(t) \) on \(X \) starting from \(\omega_0 \),

\[
\begin{align*}
\partial_t \bar{\omega}(t) &= -\text{Ric}(\bar{\omega}(t)) - \bar{\omega}(t), \\
\bar{\omega}(0) &= \omega_0,
\end{align*}
\]

which exists for all \(t \geq 0 \) [3, 30, 36] and converges to \(\text{f}^*\chi_\infty \) in \(C^\infty_{\text{loc}}(X_{\text{reg}}, \omega_0) \)-topology [8] (see also [32]). If \(f : X \to \Sigma \) has only singular fibers of type \(mI_0 \), i.e., every singular fiber \(X_s \) is a smooth elliptic curve of some non-trivial multiplicity \(m_i \) (see, e.g., [22] for more discussions on all possible singular fibers), it is shown in [35] that \(|\text{Rm}(\bar{\omega}(t))|_{\bar{\omega}(t)} \) is uniformly bounded on \(X \times [0, \infty) \). In particular, \(\text{Ric}(\bar{\omega}(t)) \) is uniformly bounded from below on \(X \times [0, \infty) \). Thus in this case we can apply the same arguments to show that, as \(t \to \infty \), \((X, \bar{\omega}(t)) \to (\Sigma, d_\infty)\) in Gromov-Hausdorff topology [4]. Note that if \(X \) has no singular fiber, the Gromov-Hausdorff convergence is known, see [8, 33].

\(^1\) V. Tosatti points out to us that if the only singular fibers are of type \(mI_0 \), then \(X \) has a global finite covering space which is an elliptic bundle and hence one can also use the similar arguments in [34] to conclude this result.
Acknowledgements

Y. Zhang is grateful to Prof. Huai-Dong Cao for constant encouragement and support. He is also grateful to Prof. Valentino Tosatti and Dr. Zhiming Lin for very useful discussions, in particular to Prof. Tosatti for answering his questions on papers [14, 31]. Part of this work was carried out while Y. Zhang was visiting Capital Normal University in Beijing, which he would like to thank for providing warm hospitality and nice working environment.

Both authors thank Yanir Rubinstein for pointing out that the continuity method was also introduced in his paper [24], Valentino Tosatti for giving a comment on Remark and the referee for useful comments.

References

[1] Blocki, Z., Interior regularity of the complex Monge-Ampère equation convex domains, Duke Math. J. 105 (2000), 167-181

[2] Calabi, E., On Kähler manifolds with vanishing canonical class, Algebraic Geometry and Topology, A Symposium in honor of S. Lefschetz, Princeton Univ. Press, Princeton, 1955, 78-89

[3] Cao, H.-D., Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (2), 359-372 (1985)

[4] Demailly, J.-P., Complex analytic and differential geometry, Lecture notes on the author’s homepage, https://www-fourier.ujf-grenoble.fr/ demailly/

[5] Demailly, J.-P. and Pali, N., Degenerate complex Monge-Ampère equations over compact Kähler manifolds, Internat. J. Math. 21 (2010), no. 3, 357-405

[6] Eyssidieux, P., Guedj, V. and Zeriahi, A., A priori L^∞ estimates for Degenerate complex Monge-Ampère equations, Int. Math. Res. Not. IMRN 2008, Art. ID rnn070, 8 pp

[7] Eyssidieux, P., Guedj, V. and Zeriahi, A., Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607-639

[8] Fong, F. and Zhang, Z., The collapsing rate of The Kähler-Ricci flow with regular infinite time singularities, J. Reine Angew. Math. 703 (2015), 95-113

[9] Gilberg, D. and Trudinger, N., Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition

[10] Gill, M., Collapsing of products along the Kähler-Ricci flow, Tran. Amer. Math. Soc. 366 (2014), no.7, 3907-3924

[11] Gross, M., Tosatti, V. and Zhang, Y.-G., Collapsing of abelian fibred Calabi-Yau manifolds, Duke Math. J. 162 (2013), 517-551

[12] Gunning, R.C., Introduction to holomorphic functions of several variables, volume 1: function theory, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990

[13] Guo, B., Song, J. and Weinkove, B., Geometric convergence of the Kähler-Ricci flow on complex surfaces of general type, Int. Math. Res. Not. IMRN 2016, no. 18, 5652-5669

[14] Hein, H.-J., Gravitational instantons from rational elliptic surfaces, J. Amer. Math. Soc. 25 (2012), no. 2, 355-393

[15] Hein, H.-J. and Tosatti, V., Remarks on the collapsing of torus fibered Calabi-Yau manifolds, Bull. Lond. Math. Soc. 47 (2015), no. 6, 1021-1027

[16] Hironaka, H., Bimeromorphic smoothing of a complex-analytic space, Acta Math. Vietnam. 2 (1977), no. 2, 103-168

[17] Kołodziej, S., The complex Monge-Ampère equation, Acta Math. 180(1), 69-117 (1998)

[18] Kołodziej, S., The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. math. Soc. 178 (2005), no. 840, x+64 pp

[19] La Nave, G. and Tian, G., A continuity method to construct canonical metrics, Math. Ann. 365 (2016), 911-921

[20] La Nave, G., Tian, G. and Zhang, Z.-L., Bounding diameter of singular Kähler metric, arXiv:1503.03159 2015
[21] Lazarafeld, J., Positivity in algebraic geometry. I, A Series of Modern Surveys in Mathematics, 48. Springer-Verlag, Berlin, 2004

[22] Miranda, R., The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, Doctorate in Mathematical Research, ETS Editrice, Pisa, 1989

[23] Phong, D. H., Sésun, N. and Sturm, J. Multiplier ideal sheaves and the Kähler-Ricci flow, Comm. Anal. Geom. 15 (2007), no. 3, 613-632

[24] Rubinstein, Y., Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math. 218 (2008), 1526-1565.

[25] Sherman, M. and Weinkove, B., Interior derivative estimates for the Kähler-Ricci flow, Pacific J. Math. 257 (2012), 491-501

[26] Song, J. and Tian, G., The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math., 170, 609-653 (2006)

[27] Song, J. and Tian, G., Canonical measures and the Kähler-Ricci flow, J. Amer. Math. Soc. 25 (2012), no. 2, 303-353

[28] Song, J. and Tian, G., The Kähler-Ricci flow through singularities, to appear in Invent. Math.

[29] Tian, G. and Zhang, Z.-L., Convergence of Kähler-Ricci flow on lower dimensional algebraic manifolds of general type, Int. Math. Res. Not. IMRN 2016, no. 21, 6493-6511

[30] Tian, G. and Zhang, Z., On the Kähler-Ricci flow on projective manifolds of general type, Chi. Ann. of Math. Ser. B 27 (2006), no. 2, 179-192

[31] Tosatti, V., Adiabatic limits of Ricci-flat Kähler metrics, J. Diff. Geom., 84 (2010), 427-453

[32] Tosatti, V., KAWA lecture notes on the Kähler-Ricci flow, to appear in Ann. Fac. Sci. Toulouse Math.

[33] Tosatti, V., Weinkove, B. and Yang, X., The Kähler-Ricci flow, Ricci-flat metrics and collapsing limits, to appear in Amer. J. Math.

[34] Tosatti, V., Weinkove, B. and Yang, X., Collapsing of the Chern-Ricci flow on elliptic surfaces, Math. Ann. 362 (2015), 1223-1271

[35] Tosatti, V. and Zhang, Y.-G., Infinite-time singularities of the Kähler-Ricci flow, Geometry and Topology, 19(2015), 2925-2948

[36] Tsuji, H., Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281, 123-133 (1988)

[37] Ueno, K., Classification theory of algebraic varieties and compact complex spaces, notes written in collaboration with P. Cherenack, Lecture Notes in Mathematics, Vol. 439, Springer-Verlag, Berlin-New York, 1975

[38] Yau, S.-T., A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1), 197-203 (1978)

[39] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339-411

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MACAU, MACAU, CHINA
E-mail address: yashanzh@163.com

DEPARTMENT OF MATHEMATICS, CAPITAL NORMAL UNIVERSITY, BEIJING, CHINA
E-mail address: zhleigo@aliyun.com