Tropical Forests Are An Ideal Habitat for Wide Array of Wildlife Species

Muhammad Nawaz Rajpar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.73315

Abstract

Tropical forests are one of the most diverse (1 ha may contain more than 1000 plant species) and highly productive ecosystems on the earth. They cover 15.0% of the earth’s surface and harbored 80% terrestrial biodiversity. Tropical forests are home to thousands of endemic, rare, endangered, and threatened wildlife species, which play a significant role in ecosystem functions, such as pest control, pollinators, and seed dispersal. Wildlife species are bioindicators of the tropical forest ecosystems, that is, their presence or absence may provide the information about the habitat dynamics, such as vegetation structure, food resources, productivity, and anthropogenic disturbances. Despite being rich in wildlife resources, tropical forests have been extensively lost and degraded by human intervention, and their destruction is still continuous in a variety of ways. The current information on the tropical forests as an ideal habitat for a wide array of wildlife species is inadequate. It is highly essential to examine with solid grasp the suitability of the tropical forest as attractive habitat for diversity of wildlife species to understand their functional role fragile forest ecosystem and to formulate the better conservation and management strategies in future.

Keywords: tropical forest, diverse, wildlife, ecosystem, habitat, vegetation

1. General background

Tropical forests are located at tropics of Cancer 23°N and Capricorn at 23.5°S to equator (Figure 1) [1]. Around 60% of the tropical forest occurs in Latin America, 25% in Asia-Pacific regions, and rest 15% in Africa [2]. These forests covered <5.0% of earth’s surface and comprised of 17,000 million ha, which is equal to 44.0% of the world’s forest cover and exhibits a higher richness and diversity of flora and fauna species. Tropical forests are rich in vegetation
composition and structure (Figure 2), which has formulated heterogeneity of habitats to attract the wide array of wildlife species to inhabit and utilize the food resources in order to perform various activities and to increase the numbers of their individuals [3]. The richness and
diversity of vegetation could be due to the heterogeneity of topography, site quality, rainfall pattern, and temperature [4–9].

Tropical forests are intact habitats, which are rich in vegetation diversity and food resources that have attracted higher diversity of endemic, rare, threatened, and endangered wildlife species (i.e., such as mammals, birds, reptiles, and amphibians). The wildlife species directly or indirectly depends on tropical forests to perform various activities, such as inhabit, forage, loaf, perch, and breed for their survival and existence. Determining the wildlife population community parameters in the tropical forest habitats is vital important to understand the dynamics of the tropical habitat, ecological processes, and habitat disturbance vital for the occurrence, survival, and conservation of wildlife species.

2. Types of tropical forests

Tropical forests encompass 60% tropical rainforest, while remaining 40% are comprised of seasonally dry tropical forest, mangroves, tropical freshwater swamp forest, dry forest, open eucalyptus forests, tropical coniferous forest, savannah woodlands, and montane forests [10–12]. The tropical forests have been classified as (i) tropical moist broadleaf forests, (ii) tropical dry broadleaf forest, and (iii) tropical coniferous forest. The detail of each forest type has been given below:

2.1. Tropical moist broadleaf forests

These forests are the huge area located at equatorial belts between the tropics of Cancer and Capricorn dominated with semi-evergreen and evergreen deciduous tree species. They receive >200 cm rainfall annually [13]. The tree canopy is multilayered, that is, upper story (emergent crown), medium layer, lower canopy, shrub layer, and understory. These forests are home for more than 50% of world wildlife species. The occurrence of higher number of wildlife species is due to diversity of vegetation (i.e., >1000 plant species/km²) and multilayered vegetation structure. For example, upper story is suitable habitats for apes, monkeys, flying squirrels, and birds (i.e., flycatchers), the understory layer harbored diversity of mammals (big cats) and avian species, (i.e., babblers, bulbuls, and pittas, etc.), while undergrowth vegetation is ideal habitat for gorillas, deer, amphibians, snakes, and lizards.

2.2. Tropical dry broadleaf forests

Tropical dry broadleaved forest is characterized with warm temperature and seasonal rainfalls that enable flora to withstand in rainy season as well as dry season to conserve water and shedding their leaves. These forests are located at tropical and subtropical latitudes, such as southern Mexico, Africa, the Lesser Sunda Islands, Central India, Indochina, Madagascar, New Caledonia, Eastern Bolivia and Central Brazil, Caribbean, North Andes, Ecuador, and Peru. They cover about 6 million km² or 4% of the Earth’s surface [14] and are dominated by teak, ebony, bamboo, and fig trees [15]. The soil is highly productive, and tree canopy may attain 10–30 m tall. Tropical dry broadleaved forest is suitable habitat for mammals (white-fronted capuchin monkeys, mantled howler monkeys, shrews, bats, coyotes, foxes, ringtails, raccoons,
badgers, bobcats, and mountain lions), birds (crested guan, magpie jay, hawks, and bull finches), snakes, lizards, etc.

2.3. Tropical coniferous forests

These forests occur in humid climate region at Nearctic and Neotropical Ecozones from Mid-Atlantic states to Nicaragua, the Greater Antilles, Bahamas, and Bermuda [16]. They are characterized by diverse coniferous species whose needles have adjusted to deal with low precipitation (around 2.4" or 60 mm) and moderate temperature (18 or 64°C or higher). These forests are dominated by *Pinus caribaea*, *P. tropicalis*, *P. chiapensis*, *P. tecunumanii*, *P. ayacahuite*, *P. maximin*, *Byrsonima crassifolia*, *Colpotherinax wrighthii*, *Chrysobalanus icaco*, *Quercus cubana*, *Calophyllum pinetorum*, *Erythroxylum minutifolium*, *Phania cajalbanica*, *Vaccinium cubense*, *Hyperbaena colombica*, *Clusia rosea*, *Aristida spp.*, *Andropogon spp.*, *Quercus corrugata*, *Q. skinneri*, *Q. oleoides*, *Q. candidans*, *Q. acatenangensi*, *Q. brachystachys*, *Q. peduncularis*, *Q. polymorpha*, and *Q. conspersa*. The crown canopy is close and thick, the understory is rich in shrubs and small trees, while the ground is dominantly covered with ferns and grasses. These forests have harbored wide array of mammals (such as *Cervus unicolor*, *Muntiacus muntjak*, *Sus scrofa*, *Selenarctos thibetanus*, *Capricornis sumatraensis*, *Rafuta spp.*) and bird species (i.e., *Polyplectron chalcurum*, *Pericrocotus miniatus*, *Chloropsis venusta*, *Myophonus melanurus*, *Niltava sumatrana*, *Cinclidium diana*, *Pycnonotus leucogrammicus*, *P. tympanistrigus*, *Hypsipetes virescens*, *Zosterops atricapillus*, *Garrulax palliatus*, *Napothera rufipuncta*, etc.).

3. Ecological importance of tropical forests

Tropical forests provide diverse ecosystem services, such as play major role in water cycle, that is, they return around 90.0% precipitation into the atmosphere in the form of water vapors, increase the life span of dams through reducing the sediments into rivers, mitigate the disasters through reducing soil erosion and land sliding, and reduce the intensity and severity of floods [17]. Tropical forests are vital important for human well-being, that is, they contribute major proportion in food security (i.e., around global crops and one-third food supply depend on wild pollinators), regulate weather condition, reduce the negative effects of climate change by acting pollution filters, and serve as storage biodiversity. It has been stated that tropical forest may harbor >50.0% of world’s terrestrial animal species [18]. Tropical forests play a crucial role in climate change, that is, the vegetation of tropical forest stored a huge amount of carbon taking from the atmosphere and stored in their various parts of the body (i.e., in leaves, stems, and roots, etc.) and serves as mega carbon storehouse or sinks (e.g., 25% store of world’s carbon). It has been known that tropical forest can store huge amount of carbon compared to those they release back into atmosphere, slow down the rate of carbon dioxide accumulation in the atmosphere, and reduce the effect of climate change. Hence, this indicated that tropical forests play a significant role to reduce the effects of climate change and reduce 12% emission of greenhouse gases into the atmosphere. Wildlife species are the essential component of the tropical forest ecosystem, that is, they play a major role, that is, pest control, pollination, and seed dispersal in tropical forest ecosystem [19]. At habitat level, the occurrence and richness of wildlife species represent a powerful tool to examine the current status of
particular ecosystem. This could be that wildlife species are ecologically specialized in habitat use, diet, and highly sensitive to habitat and microclimate alteration [20–22].

Being rich in biodiversity, the tropical forests have been vanished and altered due to anthropogenic activities [23–25], habitat destruction and fragmentation, invasive species, over-exploitation, and climate change [26–28].

4. Threats to tropical forests

Currently, tropical forests are facing severe potential threats due to human interventions, such as extensive habitat loss and degradation, isolation, and fragmentation due to heavy exploitation and conversions into agricultural fields and residential areas [29–31], which create a complex spatial disturbance [32–34]. More than 50% of the tropical forest areas have been lost during the past two decades through extensive deforestation for timber, fuelwood, agricultural expansion, and human-induced fire [35–37].

It has been stated that habitat loss and fragmentation of tropical forest is a major threat for wildlife species composition, relative abundance, species richness, and density, that is, it increases higher predation risk, reduced food occurrence and diversity, and genetic variability of birds, mammals, amphibians, and reptiles [38–43]. This may alter habitat thus makes it less productive and attractive thus caused the shift of wildlife species into human-dominated landscape that might be unsuitable and less productive for them [44–48]. However, the consequence of habitat loss and degradation may vary from species to species depending upon the nature and extent of habitat alteration, availability of food resources, and the rate of predation and parasitism [49, 50].

In addition, climate change is an important factor, which has effects on wildlife species phenology, geographic distribution, physiology, vegetation composition, and food resources [51, 52]. Thus, it ultimately exerts negative effects on the population community parameters of the species, i.e., some becomes endangered, vulnerable, and threatened [53–55]. This might be that the climate change may cause the rising of temperature and declining of the precipitation, which make the tropical forest dry and highly susceptible to fire and prone them into shrub lands, grassland, and savannah. The alteration in microclimate may alter the vegetation species composition, richness, and diversity [56, 57].

5. Wildlife fauna of tropical forests

5.1. Birds of tropical forests

Tropical forests are more diverse in vegetation structure and composition, which offer higher habitat complexity, that is, provide a diversity of nesting sites, greater protection from predators and harsh weather, and also plenty of food resources [58]. The vegetation climax and diversity had attracted a wide array of avian species, which are habitat and diet specialist in nature. For example, Black-naped Monarch—Hypothymis azurea—often prefers specialist in canopy and foraged on flying insects, Blue-headed Pitta—Pitta baudii—prefers to utilized the ground
vegetation of evergreen broadleaved forest and prey on caterpillars of insects occurs in grasses, and Scarlet-rumped Trogon—*Harpactes duvaucelli*—is middle story bird often associated with evergreen broadleaved vegetation (Figures 3–5). They prefer to utilize old mature trees (large diameter and height) for foraging and nesting [59, 60]. Avian species often play a crucial role in forest ecosystem functions, that is, they pollinate the flowers and disperse the seeds from one

![Figure 3. Black-naped monarch—*Hypothymis azurea*.](image1)

![Figure 4. Blue-headed pitta—*Pitta baudii*.](image2)

![Figure 5. Scarlet-rumped Trogon—*Harpactes duvaucelli*.](image3)
part of the forest to another [61–63] and control the pest such as rodents, insects, and squirrels, which may cause damage to the forest foliage.

Tropical forest birds are vulnerable to habitat loss, fragmentation, and changes in land use patterns [64–67]. This could be that habitat loss and fragmentation may alter the vegetation structure and composition, reduce the food resources, increase predation and brood parasitism risk, and enhance the competition for food and space [68–71]. It has been illustrated that in Southeast Asia, tropical forests are facing highest rate of habitat destruction [72–76], which exerts immense pressure on the habitat use, foraging behavior, and breeding success of avian species (Table 1).

Family	Scientific name	Common name	Reference
Accipitridae	Haliastur indus	Brahminy kite	[76]
	Spilornis rufipennis	Sulawesi serpent eagle	[76]
	Accipiter trinitatus	Spot-tailed goshawk	[76]
	Ictinactus malayensis	Black eagle	[76]
Bucerotidae	Penelopides exhartus	Sulawesi dwarf hornbill	[76]
Bucerotidae	Rhyticeros cassidix	Knobbed hornbill	[76]
Campephagidae	Coracina bicolor	Pied cuckoo shrike	[76]
	Coracina leucopygia	White-rumped cuckoo shrike	[76]
	Coracina morio	Sulawesi cicadabird	[76]
Cardinalidae	Cyanocompsa parellina	Blue bunting	[77]
	Passerina cyanea	Indigo bunting	[77]
	Granatellus sallei	Gray-throated chat	[77]
	Habia fuscicauda	Red-throated ant tanager	[77]
	Piranga roseogularis	Rose-throated ant tanager	[77]
	Piranga rubra	Summer tanager	[77]
Columbidae	Ducula aenea	Green imperial pigeon	[76]
	Ducula forsteni	White-bellied imperial pigeon	[76]
	Ducula luctuosa	Sliver-tipped imperial pigeon	[76]
	Macropterygia amboinensis	Brown cuckoo-dove	[76]
	Treron griseicuda	Gray-checked green pigeon	[76]
	Ptilinopus melanospila	Black-naped fruit dove	[76]
	Turacoena manadensis	Sulawesi black pigeon	[76]
	Patagioenas flavirostris	Red-billed pigeon	[77]
	Columbina passerina	Common ground dove	[77]
	Columbina talpacoti	Ruddy ground dove	[77]
	Leptotila verreauxi	White-tipped dove	[77]
	Leptotila jamaicensis	Caribbean dove	[77]
Corvidae	Corvus typicus	Piping crow	[76]
	Psilorhinus morio	Brown jay	[77]

Tropical Forests Are An Ideal Habitat for Wide Array of Wildlife Species
http://dx.doi.org/10.5772/intechopen.73315
Family	Scientific name	Common name	Reference
Cuculidae	Cyanocorax yncas	Green jay	[77]
	Cyanocorax yucatanicus	Yucatan jay	[77]
	Surniculus lugubris	Drongo cuckoo	[76]
	Centropus celebensis	Bay coucal	[76]
	Piaya cayana	Squirrel cuckoo	[77]
	Dromococcyx phasianellus	Pheasant cuckoo	[77]
Dicaeida	Dicaeum aureolimbatum	Yellow-sided flowerpecker	[76]
	Dicaeum celebicum	Gray-sided flowerpecker	[76]
Dicruridae	Dicrurus hottentottus	Hair-crested drongo	[76]
Emberizidae	Arremonops rufivirgatus	Olive sparrow	[77]
	Arremonops chloronotus	Green-backed sparrow	[77]
Fringillidae	Euphonia affinis	Scrub euphoria	[77]
	Euphonia hirundinacea	Yellow-throated euphoria	[77]
Furnariidae	Dendrocincla anabatina	Twany-winged woodpecker	[77]
	Dendrocincla homochroa	Ruddy woodpecker	[77]
	Sittasomus griseicapillus	Olivaceous woodpecker	[77]
	Xiphorhynchus flavigaster	Ivory-billed woodpecker	[77]
Icteridae	Dives dives	Melodious blackbird	[77]
	Molothrus aeneus	Bronzed cowbird	[77]
	Icterus prosthemelas	Black-cowled oriole	[77]
	Icterus cucullatus	Hooded oriole	[77]
	Icterus chrysater	Yellow-backed oriole	[77]
	Icterus mesomelas	Yellow-tailed oriole	[77]
	Icterus auratus	Orange oriole	[77]
	Icterus gularis	Altamira oriole	[77]
	Amblycercus holosericeus	Yellow-billed cacique	[77]
Mimidae	Melanoptila glabrirostris	Black catbird	[77]
	Dumetella carolinensis	Gray catbird	[77]
Momotidae	Momotus momota	Amazonian motmot	[77]
	Euomota superciliosa	Turquoise-browed motmot	[77]
Monarchidae	Hypothymis azurea	Black-naped monarch	[76]
Nectariniida	Nectarinia aspasia	Black sunbird	[76]
Odontophoridae	Dactylostynchus thoracicus	Singing quail	[77]
Oriolidae	Oriolus chinensis	Black-naped oriole	[76]
Parulidae	Vermivora cyanoptera	Blue-winged warbler	[77]
	Oreothlypis peregrina	Tennessee warbler	[77]
	Setophaga americana	Northern parula	[77]
Family	Scientific name	Common name	Reference
---------------	-----------------	---------------------------------	-----------
	Setophaga magnolia	Magnolia warbler	[77]
	Setophaga caerulescens	Black-throated blue warbler	[77]
	Setophaga virens	Black-throated green warbler	[77]
	Setophaga dominica	Yellow-throated warbler	[77]
	Mniotilta varia	Black-and-white warbler	[77]
	Setophaga ruticilla	American redstart	[77]
	Seiurus aurocapilla	Ovenbird	[77]
	Geothlypis trichas	Common yellowthroat	[77]
	Setophaga citrina	Hooded warbler	[77]
Pellorneidae	Trichastoma celebense	Sulawesi babbler	[76]
Phasianidae	Gallus gallus	Red junglefowl	[76]
Picidae	Mulleripicus fulvus	Ashy woodpecker	[76]
	Melanerpes aurifrons	Golden-fronted woodpecker	[77]
	Picoides scalaris	Ladder-backed woodpecker	[77]
	Veniliornis fumigatus	Smoky-brown woodpecker	[77]
	Colaptes rubiginosus	Golden-olive woodpecker	[77]
	Dryocopus lineatus	Lineated woodpecker	[77]
Pittidae	Pitta erythrogaster	Blue-breasted pitta	[76]
Polioptilidae	Ramphocaenus melanurus	Long-billed gnat wren	[77]
	Polioptila caerulea	Blue-gray gnatcatcher	[77]
	Polioptila plumbeara	Tropical gnatcatcher	[77]
Psittacidae	Tanygnathus sumatranus	Blue-backed parrot	[76]
	Aratinga nana	Olive-throated parakeet	[77]
	Amazona albifrons	White-fronted parrot	[77]
	Trichoglossus ornatus	Ornate loriikeet	[76]
	Pionitius platirus	Golden-mantled racquet-tailed parrot	[76]
Stenostriridae	Culicicapa helianthea	Citrine flycatcher	[76]
Sturnidae	Aplonis panayensis	Asian glossy starling	[76]
	Basilornis celebensis	Sulawesi-crested myna	[76]
	Streptocitta albicollis	White-necked myna	[76]
Thamnophilidae	Thamnophilus dolius	Barred antshrike	[77]
Thraupidae	Eucometis penicillata	Gray-headed tanager	[77]
	Cyanerpes cyanus	Red-legged honeycreeper	[77]
	Sporophila torquela	White-collar seedeater	[77]
	Tiaris olivaceus	Yellow-faced grassquit	[77]
	Saltator coerulescens	Grayish saltator	[77]
	Saltator atriceps	Black-headed saltator	[77]
Family	Scientific name	Common name	Reference
-----------------	-----------------------------	---------------------------	-----------
Tityridae	*Pachyramphus major*	Gray-collared becard	[77]
	Pachyramphus aglaiae	Rose-throated becard	[77]
	Tityra semifasciata	Masked tityra	[77]
	Tityra inquisitor	Black-crowned tityra	[77]
Troglodytidae	*Pheugopedius maculipuctus*	Spot-breasted wren	[77]
	Thryothorus ludovicianus	Carolina wren	[77]
	Uropsila leucogastra	White-bellied wren	[77]
Trogonidae	*Trogon melanopcephalus*	Black-headed trogon	[77]
	Trogon caligatus	Gartered trogon	[77]
Turdidae	*Hylocichla mustelina*	Wood thrush	[77]
	Turdus grayi	Clay-colored thrush	[77]
Tyrannidae	*Camptostoma imberbe*	Northern beardless tyrannulet	[77]
	Myiopogis viridicata	Greenish elaenia	[77]
	Eliaena flavogaster	Yellow-bellied elaenia	[77]
	Oncostoma cinereigurare	Northern bentbill	[77]
	Tolmomyias sulphurescens	Yellow-olive flatbill	[77]
	Platyrinchus cancrinum	Stub-tailed spadebill	[77]
	Contopus virens	Eastern wood pewee	[77]
	Contopus cinereus	Tropical pewee	[77]
	Empidonax minimus	Least flycatcher	[77]
	Atilla spadiceus	Bright-rumped atila	[77]
	Myiarchus yucatanensis	Yucatan flycatcher	[77]
	Myiarchus tuberculifer	Dusky-capped flycatcher	[77]
	Myiarchus tyrannulus	Brown-crested flycatcher	[77]
	Pitangus sulphuratus	Great kiskadee	[77]
	Megarynchus pitangia	Boat-billed flycatcher	[77]
	Myiozetetes similis	Social flycatcher	[77]
	Tyrannus melancholicus	Tropical kingbird	[77]
	Tyrannus couchii	Couch’s kingbird	[77]
Vireonidae	*Vireo griseus*	White-eyed vireo	[77]
	Vireo pallens	Mangrove vireo	[77]
	Vireo flavifrons	Yellow-throated vireo	[77]
	Hylophilus decurtatus	Lesser greenlet	[77]
	Cyclarhis gujanensis	Rufous-browed pepper shrike	[77]
Zosteropidae	*Zosterops celebese*	Pale-bellied white-eye	[76]

Table 1. List of bird species occurring in tropical forests.
5.2. Mammals of tropical forests

Mammals are crucial elements of tropical forest ecosystems [78, 79]. They exhibit a wide range of niches, exploit diverse tropical forest resources, and play a crucial role in vegetation composition and ecosystem functions, i.e., they forage on the grasses, control weed, pollinate flowers especially bats, and disperse seed from one area to another area after consuming in the form of pallets [63, 80–83].

Mammals are considered the third most threatened and endangered animals, for example, Mantled Hawler Monkey—*Alouatta palliata*—and Amazonian Tapir—*Tapirus terrestris*—(Figures 6 and 7) due to habitat loss and destruction, illegal hunting, and trapping [84–86]. It has been stated that >30% mammal species are threatened and their population is still declining day by day through a variety of ways [87] (Table 2).

![Mantled Hawler monkey](http://www.earthtimes.org/newsimage/211215tapir)

Figure 6. Mantled Hawler monkey—*Alouatta palliata*.

![Amazonian tapir](http://www.earthtimes.org/newsimage/211215tapir)

Figure 7. Amazonian tapir—*Tapirus terrestris*.

Source: URL at http://www.earthtimes.org/newsimage/211215tapir
Family	Scientific name	Common name	Reference
Atelidae	*Alouatta palliata*	Mantled howler monkey	[87]
Bovidae	*Cephalophus harveyi*	Harvey’s duiker	[88]
	Cephalophus spadix	Abbott’s duiker	[88]
	Neotragus moschatus	Suni	[88]
	Syncerus caffer	African buffalo	[88]
Bradypodidae	*Bradypus variegatus*	Brown-throated slot	[87]
Canidae	*Lycalopex culpatus*	Andean fox	[87]
Cebidae	*Cebus aequatorialis*	Ecuadorian capuchin	[87]
Cercopithecidae	*Cercocebus saniei*	Sanje mangabey	[88]
	Papio cynocephalus	Yellow baboon	[88]
	Procolobus gordonorum	Udzungwa red colobus	[88]
	Colobus angolensis	Angolan colobus	[88]
Cuniculidae	*Cuniculus paca*	Lowland paca	[87]
Dasyproctidae	*Dasyprocta punctata*	Central American agouti	[87]
Didelphidae	*Didelphis marsupialis*	Common opossum	[87]
Elephantidae	*Lexodonta africana*	African elephant	[88]
Erinaceidae	*Echinosorex gymnura*	Moon rat	[89]
Felidae	*Herpailurus yagouaroundi*	Eyra cat	[87]
	Leopardus pardalis	Ocelot cat	[87]
	Puma concolor	Cougar	[87]
	Panthera pardus	Leopard	[88]
Herpestidae	*Herpestes brachyurus*	Short-tailed mongoose	[89]
Herpestidae	*Bdeogale crassicauda*	Bushy-tailed mongoose	[88]
	Mungos mungo	Banded mongoose	[88]
Hystricidae	*Hystriches africanus*	Cape porcupine	[88]
Macroscelidae	*Rhinocyon cirnei*	Checkered elephant shrew	[88]
	Rhinocyon udzungwensis	Gray-faced elephant shrew	[88]
	Petrodromus tetradactylus	Four-toed elephant shrew	[88]
Megalonychidae	*Choloepus hoffmanni*	Hoffmann’s two-toed slot	[87]
Muridae	*Leopoldamys sabanus*	Long-tailed giant rat	[89]
	Maxomys baedon	Small spiny rat	[89]
	Maxomys ochraceivent	Chestnut-bellied spiny rat	[89]
	Maxomys rajah	Rajah spiny rat	[89]
	Maxomys surfer	Red spiny rat	[89]
	Maxomys whiteheadi	Whitehead’s spiny rat	[89]
	Niviventer cremorisventer	Dark-tailed tree rat	[89]
Amphibians are most abundant vertebrate in tropical forests, that is, they vary in color, behavior, habitat selection, size, and population density. Tropical amphibians are widely distributed and habitat specialist animals, that is, they often prefer the riparian areas of tropical forests (Figure 8). Amphibians depend on multiple environmental gradients and are closely

Family	Scientific name	Common name	Reference
Rattus exulans	Polynesian rat	[89]	
Rattus rattus	Black rat	[89]	
Rattus tiomanicus	Malayan field rat	[89]	
Sundamys muelleri	Muller’s giant sunda rat	[89]	
Eira barbara	Tayra	[87]	
Lontra longicaudis	Neotropical otter	[87]	
Mellivora capensis	Honey badger	[88]	
Tamandua mexicana	Northern tamandua	[87]	
Nandinia binotata	African palm civet	[88]	
Cricetomys gambianus	Giant pouched rat	[88]	
Dendrohyrax arboreus	Tree hyrax	[88]	
Nasua narica	White–nosed coati	[87]	
Potos flavus	Kinkajou	[87]	
Sciurus granatensis	Red–tailed squirrel	[87]	
Simosciurus stramineus	Guayaquil squirrel	[87]	
Glyphotes sinus	Sculptor squirrel	[89]	
Sundasciurus brookei	Brooke’s squirrel	[89]	
Sundasciurus hippocus	Horse-tailed squirrel	[89]	
Lariscus hosei	Four–striped ground squirrel	[89]	
Sundasciurus lowii	Low’s squirrel	[89]	
Sundasciurus tenuis	Slender squirrel	[89]	
Paraxeus vexillarius	Tanganyika mountain	[88]	
Potamochoerus larvatus	Bush pig	[88]	
Pecari tajacu	Collard peccary	[87]	
Tupaia gracilis	Slender tree shrew	[89]	
Tupaia minor	Pygmy tree shrew	[89]	
Tupaia tana	Large tree shrew	[89]	
Civettictis civetta	African civet	[88]	

Table 2. List of mammal species occurring in tropical forests.

5.3. Amphibians of tropical forests

Amphibians are most abundant vertebrate in tropical forests, that is, they vary in color, behavior, habitat selection, size, and population density. Tropical amphibians are widely distributed and habitat specialist animals, that is, they often prefer the riparian areas of tropical forests (Figure 8). Amphibians depend on multiple environmental gradients and are closely
associated with habitat types, such as riparian, forest, streams, and path or road edge. Amphibian community structure was influenced by habitat heterogeneity, stream turbidity, river size, water depth, occurrence of aquatic vegetation, and density of understorey vegetation [90]. They are closely associated with habitat structure, food resources, and microclimate variables, that is, temperature and precipitation.

The loss of amphibians seriously disturbed ecological function of tropical food chain and food web. This could be that they are important component in tropical food web, that is, have occupied diverse niches from planktivore to carnivore and often serves as major sources of food for wildlife species in tropical forest. From the ecological point of view, they are best indicators of habitat fragments, ecosystem stress, and aquatic pollution, etc. In addition, amphibians have been used in ecological, embryological, physiological, and genetic research purposes.

One-third populations of amphibian species had been listed as threatened and endangered due to human intervention [91, 92]. Habitat characteristics [93], habitat fragments due to forest logging [94–98], habitat loss and degradation [99–101], environment variables [102], invasive predator species [103], diseases [104], and leaf litter [105] are major driven factors which effect on amphibian assemblages and population parameters. However, the effect of these driven factors may vary depending on the nature of the habitat disturbance, change in microclimate, and alteration in food resource. This could be that the leaf litter, canopy cover, tree size, stream size, availability of river, and refuge areas are highly essential for their survival and reproduction (Table 3) [106, 107].

5.4. Reptiles of tropical forests

Tropical forest is diverse and complex ecosystem which harbors most abundant and diverse reptile species [112]. Reptiles are primary consumers, that is, they prey on many animal species, such as birds, mammals, and amphibians (Figure 9). They provide ecological services into tropical forest ecosystem, such as control the population of pest (i.e., insects, rodents,
Family	Scientific name	Common name	Reference
Arthropleptidae	Cardioglossa leucomystax	Silver long-fingered frog	[108]
	Leptopelis hylodes	African tree frog	[108]
	Leptopelis occidentalis	Tai forest tree frog	[108]
	Leptopelis macrotis	Big-eyed forest tree frog	[108]
Astylosternidae	Astylosternus occidentalis	Western night frog	[108]
Bufonidae	Rhinella marina	Cane toad	[109]
	Incilius nebulifer	Coastal-plain toad	[109]
	Ansonia muelleri	Muller’s toad	[111]
	Chaunus marinus	Cane toad	[110]
	Ollotis marmorea	Marbled toad	[110]
Ceratobatrachidae	Platymantis corrugatus	Rough-backed forest frog	[111]
Craugastoridae	Craugastor decoratus	Adorned robber frog	[109]
	Craugastor mexicanus	Mexican robber frog	[110]
	Craugastor hobartsmithi	Pygmy robber frog	[110]
Dicroglossidae	Limnonectes magnus	Mindanao-fanged frog	[111]
Eleutherodactylidae	Eleutherodactylus longipes	Long-footed chirping frog	[109]
	Eleutherodactylus verrucipes	Big-eared chirping frog	[109]
	Eleutherodactylus modestus	Blunt-toed chirping frog	[110]
	Eleutherodactylus nitidus	Spiny peeping frog	[110]
Hylidae	Ecnomiohyla miotympanum	Small-eared tree frog	[109]
	Smilisca baudinii	Baudin’s tree frog	[109]
	Trachycephalus typhonius	Warty tree frog	[109]
	Ectorodon smaragdina	Emerald tree frog	[110]
	Pachymedusa dacnicolor	Mexican leaf frog	[110]
	Smilisca baudinii	Mexican tree frog	[110]
	Smilisca fodiens	Lowland burrowing tree frog	[110]
	Tirolohyla smithii	Dwarf Mexican tree frog	[110]
	Trachycephalus venulosus	Veined tree frog	[110]
	Triprion spatulatus	Shovel-nosed tree frog	[110]
Hyperoliidae	Hyperolius concolor	Hallowell’s sedge frog	[108]
	Hyperolius guttulatus	Dotted reed frog	[108]
	Hyperolius picturatus	Tanzania reed frog	[108]
	Hyperolius sylvaticus	Bobiri reed frog	[108]
	Hyperolius zonatus	Nimba reed frog	[108]
	Hyperolius fusciventris	Lime reed frog	[108]
	Hyperolius chlorosteus	Sierra Leone reed frog	[108]
squirrels, tree shrews, small birds, etc. [113, 114], which are destructive to the vegetation. Likewise, they are also source of food for other animals, such as birds, mammals, amphibians, and even reptiles [115].

Reptiles are facing severe threats due to human activities, that is, habitat loss, and indiscriminate trapping and hunting for their skin and food thus become threatened and endangered [116–118]. The population decline of various reptile species in tropical forest may cause ecological imbalance that effected on the ecological functions (Table 4) [119, 120].

Family	Scientific name	Common name	Reference
Afrixalus dorsalis	Brown banana frog	[108]	
Afrixalus nigeriensis	Nigeria banana frog	[108]	
Afrixalus vibekae	Nimba banana frog	[108]	
Kassina lamottei	Rainforest running frog	[108]	
Acanthixalus sonjae	Ivory Coast wart frog	[108]	
Leptodactylidae	Leptodactylus melanotonus	Black-backed frog	[110]
Megophryidae	Megophrys stejnegeri	Mindanao-horned frog	[111]
Microhylidae	Gastrophryne usta	Two-spaded narrow-mouthed toad	[110]
Kalophrynus pleurostigma	Narrow-mouthed frog	[111]	
Phrynobatrachidae	Phrynobatrachus gutturosus	Chabanaud’s river frog	[108]
	Phrynobatrachus fraterculus	Macenta river frog	[108]
	Phrynobatrachus guineensis	Guinea river frog	[108]
	Phrynobatrachus phylipophilus	Tai river frog	[108]
	Phrynobatrachus libericus	Liberia river frog	[108]
	Phrynobatrachus alleni	Allen’s river frog	[108]
	Phrynobatrachus plicatus	Coast river frog	[108]
	Phrynobatrachus tainensis	Rugegewald river frog	[108]
	Phrynobatrachus annulatus	Ringed river frog	[108]
Ranidae	Lithobates berlandieri	Rio Grande leopard frog	[109]
	Lithobates johni	Moore’s frog	[109]
	Lithobates spectabilis	Showy leopard frog	[109]
	Staurois natator	Rock frog	[111]
	Rana grandocula	Big-eyed frog	[111]
	Lithobates forreri	Forr’ers grass frog	[110]
Rhacophoridae	Polypedates leucomystax	Four-lined tree frog	[111]
	Philautus acutirostris	Pointed-snouted tree frog	[111]
	Chiromantis rufescens	African foam-nested tree frog	[108]

Table 3. List of amphibian species occurring in tropical forests.
Figure 9. Reticulated python—*Python reticulatus*.

Family	Scientific name	Common name	Reference
Agamidae	*Gonocephalus semperi*	Mindoro forest dragon	[111]
	Ptyctolaemus gularis	Green fan-throated lizard	[121]
	Gerrhonotus lioccephalus	Alligator lizard	[110]
Boidae	*Boa constrictor*	Red-tailed boa snake	[110]
Colubridae	*Boiga dendrophila*	Golden-ring cat snake	[111]
	Psammodynastes pulverulentus	Common mock viper	[111]
	Oligodon maculatus	Barred short-headed snake	[111]
	Calamaria gervaisii	Philippine dwarf/Gervais’ worm Snake	[111]
	Lycodon dumerili	Dumeril’s wolf snake	[111]
	Lycodon aulicus	Indian wolf snake	[121]
	Lycodon jara	Twin-spotted wolf snake	[121]
	Lycodon zawi	Zaw’s wolf snake	[121]
	Oligodon dorsalis	Gray’s kukri snake	[121]
	Oligodon taeioliata	Streaked kukri snake	[121]
	Psammodynastes pulverulentus	Common mock viper	[121]
	Ptyas korros	Indo–Chinese rat snake	[121]
	Ptyas mucosa	Oriental rat snake	[121]
	Rhabdophis subminiatus	Red-necked Keelback snake	[121]
Family	Scientific name	Common name	Reference
--------------	-------------------------------	--------------------------------------	-----------
Dipsadidae	Drymarchon corais	Indigo snake	[110]
	Drymobius margaritiferus	Speckled racer snake	[110]
	Lampropeltis triangulum	Milk snake	[110]
	Leptophis diplotropis	Pacific Coast parrot snake	[110]
	Masticophis mentovarius	Neotropical whip snake	[110]
	Oxybelis aeneus	Mexican vine snake	[110]
	Senticolis triaspis	Green rat snake	[110]
	Silvum nebulata	Clouded snake	[110]
	Tantilla calamarina	Pacific Coast centipede snake	[110]
	Trimorphodon biscutatus	Western Lyre snake	[110]
Dactyloidae	Anolis nebulosus	Clouded anole	[110, 122]
Dipsadidae	Hypsiglena torquata	Night snake	[110]
	Leptodeira maculata	South-western cat-eyed snake	[110]
	Manolepis putnami	Ridge-head snake	[110]
	Pseudoleptodeira latifasciata	False cat-eyed snake	[110]
	Leptodeira uribe	Uribe’s false cat-eyed snake	[110]
Elapidae	Naja kaouthia	Monocled cobra	[121]
	Naja naja	Indian cobra	[121]
	Ophiophagus hannah	King cobra	[121]
	Micrurus distans	West Mexican coral snake	[110]
Eublepharidae	Coleonyx elegans	Yucatan-banded gecko	[122]
Gekkonidae	Gekko mindorensis	Mindoro narrow-disked gecko	[111]
	Hemidactylus bauriingii	Oriental leaf-towed gecko	[121]
	Hemidactylus brookii	Brooke’s house gecko	[121]
	Hemidactylus flaviviridis	Yellow-bellied house gecko	[121]
	Hemidactylus frenatus	Pacific gecko	[121]
	Hemidactylus garnotii	Indo-Pacific gecko	[121]
	Hemidactylus platyrus	Flat-tailed house gecko	[121]
	Coleonyx elegans	Yucatan-banded gecko	[110]
	Phylloactylus lanei	Lane’s leaf-toed gecko	[110]
	Hemidactylus frenatus	Pacific gecko	[122]
Geoemydidae	Rhinoclemmys pulcherrima	Painted wood turtle	[110]
	Rhinoclemmys rubida	Mexican-spotted wood turtle	[110]
Helodermatida	Heloderma horridum	Mexican-beaded lizard	[110, 122]
Iguanidae	Ctenosaura pectinata	Mexican spiny-tailed iguana	[110]
Family	Scientific name	Common name	Reference
---------------------	--------------------------------------	--	-----------
Iguana iguana	Iguana iguana	Green iguana	[110, 122]
Phrynosoma asio	Phrynosoma asio	Giant-horned lizard	[110]
Sce1oporus horridus	Sce1oporus horridus	Horrible spiny lizard	[110]
Ctenosaura pectinata	Ctenosaura pectinata	Mexican spiny-tailed iguana	[122]
Leptotyphlopidae	Leptotyphlops humilis	Western thread/Blind snake	[110]
Microhylidae	Hypopachus variolosus	Mexican narrow-mouthed toad	[110]
Pareidae	Pareas monticola	Common slug snake	[121]
Phrynosomatidae	Sce1oporus melanorhinus	Black-nosed lizard	[110]
Sce1oporus utiformis	Sce1oporus utiformis	Spiny lizard	[110]
Urosaurus bizarinatus	Urosaurus bizarinatus	Tropical tree lizard	[110, 122]
Phrynosoma asio	Phrynosoma asio	Giant-horned lizard	[122]
Sce1oporus uniformis	Sce1oporus uniformis	Yellow–backed Spiny Lizard	[122]
Phyllochactus lancei	Phyllochactus lancei	Lane’s leaf-toed gecko	[122]
Plethodontidae	Chiropodtriton chondrostega	Gristle-headed splayfoot salamander	[109]
Pythonidae	Python reticulatus	Reticulated python	[111, 121]
Python molurus	Python molurus	Indian/Black-tailed python	[121]
Loxocemus bicolor	Loxocemus bicolor	Mexican burrowing python	[110]
Scincidae	Sphenomorphus variegatus	Variegated skink	[111]
Sphenomorphus bayeri	Sphenomorphus bayeri	Beyer’s sphenomorphus	[111]
Lipinia pulchella	Lipinia pulchella	Yellow-striped slender tree skink	[111]
Eutropis multicarinata borealis	Eutropis multicarinata borealis	Philippine mabuya	[111]
Eutropis englei	Eutropis englei	Six-striped mabouya	[111]
Lygosoma bowringii	Lygosoma bowringii	Bowring’s supple skink	[121]
Lygosoma lineolatum	Lygosoma lineolatum	Striped writhing skink	[121]
Lygosoma punctata	Lygosoma punctata	Dotted writhing skink	[121]
Sphenomorphus maculatus	Sphenomorphus maculatus	Spotted forest skink	[121]
Takydromus khasiensis	Takydromus khasiensis	Java grass lizard	[121]
Plestiodon parvulus	Plettiodon parvulus	Southern pygmy skink	[110]
Scincella assatus	Scincella assatus	Red forest skink	[110]
Marisora brachypoda	Marisora brachypoda	Middle American short-limbed skink	[122]
Teiidae	Ameiva undulata	Rainbow ameiva lizard	[110]
Aspidoscelis lineattissimus	Aspidoscelis lineattissimus	Many-lined whiptail	[110]
Aspidoscelis communitis lineattissima	Aspidoscelis communitis lineattissima	Giant whiptail lizard	[110, 122]
Typhlopidae	Ramphotyphlops braminus	Brahminy blind snake	[121]
Typhlops diardii	Typhlops diardii	Diard’s blind snake	[121]
Typhlops jerdoni	Typhlops jerdoni	Jerdon’s worm snake	[121]
Varanidae	Varanus bengalensis	Clouded monitor lizard	[121]
6. Conclusion

In conclusion, this review has attempted to highlight that the tropical forests are ideal habitat for a variety of wildlife species, especially birds, mammals, reptiles, and amphibians. This might be due to the occurrence of heterogeneity of vegetation structure and composition, richness and diversity of food resources, safe breeding and nesting sites, and shelter from predators and harsh weather. These forests should be kept intact, preserved, and managed scientifically on a sustainable basis to reduce the human interference and for future generation.

7. Recommendation for future research and conservation

Furthermore, in future, a detailed research on the wildlife ecology should be carried out by investigating the effects of independent environmental variables with respect to the habitat selection and association, vegetation structure and composition, home range and distribution, population parameters, occurrence of food resources and distribution, influence of human interventions on wildlife population, habitat disturbance, etc. This will help to identify the threats facing different wildlife species and their habitats, indicate the current status of wildlife population within the landscape, and determine the productivity of the particular area.

Author details

Muhammad Nawaz Rajpar
Address all correspondence to: rajparnawaz@gmail.com
Department of Forestry, Shaheed Benazir Bhutto University Sheringal, Dir Upper, KPK Pakistan

References

[1] Medina E. Tropical forests: Diversity and functions of dominant life-forms. In: Pugnaire F, Valladares F, editors. Functional plant ecology. 2 & 4 Park Square Milton Park Abingdon, UK; 744p: CRC Press; 2007 ISBN: 978-0849374883
[2] Auchter RJ. Proceedings of conference on improved utilization of tropical forest. 21-26th May, 1978 held in Madison, Wisconsin, USA. 1978; 569p

[3] Whitmore TC. An Introduction to Tropical Rainforests. UK: Oxford University Press; 1998; 296p ISBN: 9780198501473

[4] Valencia R, Foster RB, Villa G, Condit R, Svenning J-C, Hernandez C, Romoleroux K, Losos E, Magard E, Balslev H. Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology. 2004; 92:214-229

[5] Barthold FK, Stallard RF, Elsenbeer H. Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama. Forest Ecology and Management. 2008; 255:1135-1148

[6] Barbier N, Couteron P, Prosisy C, Malhi Y, Gastellu-Etchegary JP. The variation apparent crown size and canopy heterogeneity across lowland Amazonian forests. Global Ecology and Biogeography. 2010; 19:72-80

[7] Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig C, Sikes BA, Callaway RM, Mangan SA, van Nes E, Scheffer M. Soil microbes contribute to the classic plant diversity–productivity pattern. Ecology. 2011; 92:296-302

[8] Dalling JW, Schnitzer SA, Baldeck CA, Harms KE, John R, Mangan SA, Lobo E, Yavitt JB, Hubbell SP. Resource-based habitat associations in a neotropical liana community. Journal of Ecology. 2012; 100:1174-1182

[9] Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Dalling JW. Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society B. Biological Sciences. 2012; 280:2012-2532

[10] Woinarski JCZ, Risler J, Kean L. Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical eucalyptus open forest, Northern Territory, Australia. Austral Ecology. 2004; 29:156-176

[11] Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press. 2005; 155p. ISBN: 1-59726-040-1

[12] Dirzo R, Young HS, Mooney HA, Ceballos G, editors. Seasonally Dry Tropical Forests: Ecology and Conservation. Washington, DC: Island Press. 2011; 392p. ISBN: 9781597267045

[13] WWF. Tropical and Subtropical Moist Broadleaf Forest. 2012; Accessed: September 12, 2017 at https://www.worldwildlife.org/biomes/tropical-and-subtropical-moist-broadleaf-forests

[14] Ramankutty N, Even AT, Monfreda C, Foley JA. Farming the planet: Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles. 2008; 22:1-19

[15] WWF. Tropical and Subtropical Dry Broadleaf Forest Ecoregions. 2012; Accessed: September 12, 2017 at http://wwf.panda.org/about_our_earth-/ecoregions/about/habitat_types/selecting_terrestrial_eco_regions/habitat02.cfm
[16] WWF. Tropical and Subtropical Coniferous Forest Ecoregions. 2012; Accessed on September 12, 2017 at https://www.worldwildlife.org/biomes/tropical-and-suptropical-coniferous-forests

[17] Brandon K. Ecosystem Services from Tropical Forest: Review of Current Science. CGD Working Paper 380. Washington DC, Centre for Global Development. 2014; 85p

[18] Stork NE, Coddington JA, Colwell RK, Chazdon RL, Dick CW, Peres CA, Sloan S, Wills K. Vulnerability and resilience of tropical forest species to land-use change. Conservation Biology. 2009;23(6):1438-1447

[19] Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP. Status and ecological effects of the world’s largest carnivore. Science. 2014;343:1241484

[20] Bregman TP, Sekercioglu CH, Tobias JA. Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem functions and conservation. Biological Conservation. 2014;169:372-383

[21] Newmark WD, Stanley WT, Goodman SM. Ecological correlates of vulnerability to fragmentation among Afrotropical terrestrial small mammals in northeast Tanzania. Journal of Mammalogy. 2014;95:269-275

[22] Keinath DA, Doak DF, Hodges KE, Prugh LR, Fagan W, Sekercioglu CH, Buchart SHM, Kauffman M. A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography. 2017;26:115-127

[23] Hansen MC, Stehman V, Potapove PV. Quantification of global gross forest cover loss. Proceedings of the National Academy of Science. 2010;107:8650-8655

[24] Fisher B. African exception to drivers of deforestation. Nature Geoscience. 2010;3:375-376

[25] DeFries RS, Rudel T, Uriarte M, Hansen M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geoscience. 2010;3:178-181

[26] Lamb D, Erskine PD, Parrotta JA. Restoration of degraded tropical forest landscape. Science. 2005;310:1628-1632

[27] Wright ST, Muller-Landau HC. The future of tropical forest species. Biotropica. 2006;38:287-301

[28] Chazdon RL. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science. 2008;320:1458-1460

[29] Fa JE, Ryan SF, Bell DJ. Hunting vulnerability, ecological characteristics and harvesting rates of bushmeat species in agro–tropical forests. Biological Conservation. 2005;121:167-176

[30] Laurance WF, Alonso A, Lee M, Campbell P. Challenges for forest conservation in Gabon, central Africa. Futures. 2006;38:454-470

[31] Dent DH, Wright SJ. The future of tropical species in secondary forests: A quantitative review. Biological Conservation. 2009;142:2833-2843
[32] Thompson J, Brokaw N, Zimmerman JK, Waide RB, Everham EM, Lodge DJ, Taylor CM, Gracia-Montiel D, Fluet M. Land use history, environment, and tree composition in a tropical forest. Ecological Applications. 2002;12:1344-1363

[33] Ter Steege H, Welch I, Zagt R. Long-term effect of timber harvesting in the Bartica Tringle, Central Guyana. Forest Ecology and Management. 2002;170:127-144

[34] Slik JWM, Verburg RW, PJA K. Effects of forest fire and selective logging on the tree species composition of lowland dipterocarp forest in east Kalimantan, Indonesia. Biodiversity and Conservation. 2002;11:85-98

[35] Wright SJ. Tropical forests in a changing environment. Trends in Ecology & Evolution. 2005;20(10):553-560

[36] Anser GP, Rudel TK, Aide TM, DeFries R, Emerson R. A contemporary assessment of change in humid tropical forests. Conservation Biology. 2009;23(6):1386-1395

[37] Garcia RA, Cabeza M, Rahbek C, Araúj MB. Multiple dimensions of climate change and their implications for biodiversity. Science. 2014;344(6183):1247579

[38] Kerr JT, Deguise I. Habitat loss and the limits to endangered species recovery. Ecology Letters. 2004;7:1163-1169

[39] Mace G, Masundire H, Bailie J, Ricketts T, Brooks T, Hoffmann M. Biodiversity. In: Millennium Ecosystem Assessment. Washington, D.C: Island Press; 2005; 155p ISBN: 1-59726-040-1

[40] Fischer J, Lindenmayer DB. Landscape modification and habitat fragmentation: A synthesis. Global Ecology and Biogeography. 2007;16:265-280

[41] Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Perez HJA, Garland T. Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences. 2009;276:1939-1948

[42] van der Werf GR, Morton DC, DeFries RS, Olivier JJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT. CO₂ emissions from forest loss. Nature Geoscience. 2009;2:737-738

[43] Areendran G, Rao P, Raj K, Mazumdar S, Puri K. Land use/land cover change dynamics analysis in mining areas of Singruli districtin Madhya Pardesh, India. Tropical Ecology. 2013;54:239-250

[44] Pineda E, Halffter G. Species diversity and habitat fragmentation; frogs in a tropical montane landscape in Mexico. Biological Conservation. 2003;117:499-508

[45] Bawa KS, Kress WJ, Nadkarini NM, Lele S, Raven PH, Janzen DH, Lugo AE, Ashton PS, Lovejoy TE. Tropical ecosystem into the 21st century. Science. 2004;306:227-228

[46] Foley JA, DeFries R, Anser GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik GJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. Global consequences of land use. Science. 2005;309:570-574
[47] Lewis OT. Biodiversity change and ecosystem function in tropical forests. Basic and Applied Ecology. 2009;10:97-102

[48] Wanger TC, Isakandar DT, Motzke I, Brook BW, Sodhi NS, Clough Y, Tscharntke T. Effects of land-use change on community composition of tropical amphibians and reptiles in Sulawesi, Indonesia. Conservation Biology. 2010;24:795-802

[49] Lindenmayer DB, Franklin JF. Conservation Biodiversity: A Comprehensive Multi-scaled Approach. Washington, D.C: Island Press; 2002; 351p. ISBN: 9781559639354

[50] Fischer J, Lindenmayer DB, Manning AD. Biodiversity, ecosystem function, and resilience: Ten guiding principles for commodity production landscapes. Frontiers in Ecology and the Environment. 2006;4:80-86

[51] Gordo O, Sanz JJ. Impact of climate change on plant phenology in Mediterranean ecosystem. Global Change Biology. 2010;16:1082-1106

[52] Chen IC, Hill JH, Ohlemuller R, Roy DB, Tomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024-1026

[53] Colwell RK, Brehm G, Cardelus C, Gilman AC, Longino JT. Global warming, elevational range shift, and lowland biotic attrition in the wet tropics. Science. 2008;322:258-261

[54] Urabn MC. Accelerating extinction risk from climate change. Science. 2015;348(6234):571-573

[55] Javeline D, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Cornejo RC. Expert opinion on extinction risk and climate change adaptation for biodiversity. Elementa: Science of the Anthropocene. 2015;3:000057

[56] Ostendorf B, Whilbert D, Shopkins M. The effects of climate change on tropical rainforest vegetation pattern. Ecological Modelling. 2001;145(2–3):211-224

[57] Amissah L, Mohren GMJ, Bongers F, Hawthorne WD, Poorter L. Rainfall and temperature affects tree species distribution in Ghana. Journal of Tropical Ecology. 2014;5:435-446

[58] Bu W, Zang R, Ding Y. Functional diversity increases with species diversity along successional gradient in a secondary tropical lowland rainforest. Tropical Ecology. 2014;55:393-401

[59] Stouffer P, Bierregaard RO, Strong C, Lovejoy T. Long term landscape change and bird abundance in Amazonian rainforest fragments. Conservation Biology. 2006;20:1212-1223

[60] Gray M, Baldauf P, Mayhew P, Hill J. The response of avian feeding guilds to tropical forest disturbance. Conservation Biology. 2007;21:133-141

[61] Wenny DG, DeVault TL, Johnson MD, Sekercioglu CH, Tomback DF, Whelan CJ. On the need to quantify ecosystem services provided by birds. Auk. 2011;128:1-14

[62] Sekercioglu CH. Bird functional diversity and ecosystem services in tropical forest, agroforests and agricultural areas. Journal of Ornithology. 2012;153(1):153-161
[63] Howe HF. Diversity storage: Implications for tropical conservation and restoration. Global Ecology and Conservation. 2014;2:349-358

[64] DeWalt SJ, Maliakal SK, Denslow JS. Changes in vegetation structure and composition along a tropical forest chronosquence: Implications for wildlife. Forest Ecology and Management. 2003;182:139-151

[65] Tews J, Brose U, Grimm V, Tielborger K, Wichmann MC, Schwager M, Jeltsch F. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. Journal of Biogeography. 2004;31:79-92

[66] Wright SJ. The future of tropical forests. Annals of the New York Academy of Sciences. 2010;1195:1-27

[67] Pinotti BT, Pagotto CP, Pardini R. Habitat structure and food resources for wildlife across successional stages in a tropical forest. Forest Ecology and Management. 2012;283:119-127

[68] Arriaga-Weiss S, Calme S, Kampichler C. Bird communities in rainforest fragments: Guild responses to habitat variables in Tabasco, Mexico. Biodiversity and Conservation. 2008;17:173-190

[69] Leyequien E, De Boer WF, Toledo VM. Bird community composition in shaded coffee agro-ecological matrix in Puebla, Mexico: The effects of landscape heterogeneity at multiple spatial scales. Biotropica. 2010;42:236-245

[70] Hernandez-Stefanomi JL, Dupuy JM, Tun-Dzul F, May-Pat F. Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scale. Landscape Ecology. 2011;26:355-370

[71] Pineda-Diaz E, Leon-Cortes JL, Rangel-Salazar JL. Diversity of bird feeding guilds in relation to habitat heterogeneity and land use cover in human modified landscape in southern Mexico. Journal of Tropical Ecology. 2012;28:369-376

[72] Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP. Determination of deforestation rates of the world’s humid tropical forests. Science. 2002;297:999-1002

[73] Mayaux P, Holmgren P, Achard F, Eva HJ, Stibig H, Branthomme A. Tropical forest cover change in the 1990’s and option for future monitoring. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005;360:373-384

[74] Posa MRC, Sodhi NS. Effects of anthropogenic land use on forest birds and butterflies in Subic Bay, Philippines. Biological Conservation. 2006;129:256-270

[75] Trainer CR. Changes in bird species composition on a remote and well forested Wallacean island, Southeast Asia. Biological Conservation. 2007;140:373-385

[76] Martin TE, Blackburn GA. Impacts of tropical forest disturbance upon avifauna on a small island with high endemism: Implications for conservation. Conservation and Society. 2010;8(2):127-139
Santamaria-Rivero W, Leyequin E, Hernandez-Stefanoni JL, Wood P. Influence of landscape structure and forest age on the richness and abundance of different bird feeding guild and forest dependent birds in a seasonal dry tropical forest of Yucatan, Mexico. Tropical Ecology. 2016;57(2):313-332

Kinnaird M, Sanderson E, O’Brien TG, Wibisono H, Woolmer G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conservation Biology. 2003;17:245-257

Ahumada JA, Silva CEF, Gajapersad K, Hallan C, Hurtado J, Martin E, McWilliam A, Mugerwa B, O’Brien T, Rovero F, Sheil D, Spironello WR, Winarni N, Andelman WR. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philosophical Transactions of the Royal Society B. 2011;366:2703-2711

Ingle N. Seed dispersal by wind, birds, and bats between Philippine montane rainforest and successional vegetation. Oecologia. 2003;134:251-261

Harcourt AH, Doherty DA. Species-area relationships of primates in tropical forest fragments: A global analysis. Journal of Applied Ecology. 2005;42:630-637

Roemer GW, Gompper ME, Van Valkenburgh B. The ecological role of the mammalian meso–carnivore. Bioscience. 2009;59:165-173

Sampaio R, Lima PA, Magnusson WE, Peres CA. Long-term persistence of midsized to large bodied mammals in Amazonian landscape under varying contexts of forest cover. Biodiversity and Conservation. 2010;19:2421-2439

Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues AS, Stuart SN, et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science. 2008;322:225-230

Di Marco M, Buchanan GM, Szantoi Z, Holmgren M, Marasini GG, Gross D, Tranquilli S, Boitani L, Rondinini C. Drivers of extinction risk in African mammals: The interplay of distribution state, human pressure, conservation response and species biology. Philosophical Transactions of the Royal Society of London, B: Biological Sciences. 2014;369:20130198

Torres-Porras J, Cobos ME, Seoane JM, Aguirre N. Large and medium-sized mammals of Buenaventura reserve, south-western Ecuador. Check List. 2017;13(4):35-45

IUCN The IUCN Red List of Species. Version 2016.3. International Union for Conservation of Nature, 2016; Accessed on January 29, 2017 at URL: http://www.iucnredlist.org/details/

Rovero F, Martin E, Rosa M, Ahumada JA, Spitale D. Estimating species richness and modelling habitat preferences of tropical forest mammals from camera trap data. PLoS One. 2014;9(7):e103300

Cusack J. Characterising the Responses of Small Mammals to Tropical Forest Loss and Degradation in Northern Borneo Using Capture-Mark-Recapture Methods. Imperial College London, UK: M.Sc Thesis; 2011; 81p
[90] Keller A, Rodel M-O, Linsenmair KE, Grafe TU. The importance of environmental heterogeneity for species diversity and assemblage structure in Bornean stream frogs. Journal of Animal Ecology. 2009;78:305-314

[91] Stuart S, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fishman DL, Waller RW. Status and trends of amphibian’s declines and extinctions worldwide. Science. 2004;306:1783-1786

[92] Gascon C, Collins JP, Moore RD, Church DR, McKay JE, Mendelson JR III, editors. Amphibian Conservation Action Plan. Switzerland and UK. 2007: IUCN/SSC Amphibian Specialist Group; 2007; 64p ISBN: 978-2-8317-1008-2

[93] Parris KM. Environmental and spatial variables influence on the composition of frog assemblages in sub–tropical eastern Australia. Ecography. 2004;27:392-400

[94] Vitt LJ, Cadwell JP. The effects of logging on reptiles and amphibians of tropical Forest. In: Fimbel RA, Grajal A, Robinson J, editors. The Cutting Edge. New York: Columbia University Press; 2001; 239-260p ISBN: 0-231-11454-0

[95] Krishnamurthy SV. Amphibian assemblages in undisturbed and disturbed areas of Kudremukh National Park, central Western Ghats, India. Environmental Conservation. 2003;30:274-282

[96] Haddad CFB, Pardo CPA. Reproductive modes and their unexpected diversity in the Atlantic forest of Brazil. Bioscience. 2005;55:207-217

[97] Becker CG, Fonseca CR, Haddad CFB, Batista RF, Pardo PI. Habitat split and the global decline of amphibians. Science. 2007;318:1775-1777

[98] Walting JL, Donnelly MA. Species richness and composition of amphibians and reptiles in fragmented forest landscape in north–eastern Bolivia. Basic and Applied Ecology. 2008;9:523-532

[99] Fearnside PM. Deforestation in Brazilian Amazonia: History, rate, and consequences. Conservation Biology. 2005;19:680-688

[100] Gardner TA, Fitzherbert FB, Drewes RC, Howell KM, Caro T. Spatial and temporal patterns of abundance and diversity of an east African leaf litter amphibian fauna. Biotropica. 2007;39:105-113

[101] Jongsm GFM, Hedley RW, Duraes R, Karubian J. Amphibian diversity and species composition in relation to habitat type and alteration in the Mache–Chindul reserve, Northwest Ecuador. Herpetologica. 2014;70(1):34-46

[102] Vallan D. Effects of anthropogenic environmental changes on amphibian diversity in the rainforest of eastern Madagascar. Journal of Tropical Ecology. 2002;18:725-742

[103] Dukes JS, Mooney HA. Disruption of ecosystem process in western North America by invasive species. Revista Chilena de Historia Natral. 2004;77:411-437

[104] Cheng TL, Rovita SM, Wake DB, Vredenburg VT. Coincident mass extirpation of Neotropical amphibians with the emergence of the infection fungal pathogen Batrachochytrium
dendrobatidis. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:9502-9507

[105] Ernst R, Rodel M-O. Community assembly and structure of tropical leaf–litter anurans. Ecotropica. 2006;12:113-129

[106] Hillers A, Veith M, Rodel M-O. Effects of forest fragmentation and habitat degradation on west African leaf–litter frog. Conservation Biology. 2008;22:762-772

[107] Galindo-Leal C, Cedeno-Vazquez JR, Calderon R, Augustine J. Arboreal frogs, tank bromeliads and disturbed seasonal tropical forest. In: Contemporary Herpetology; 2003 number 1. Accessed on September 13, 2017 at http://www.webcitation.org/6L77VEI9V

[108] Rodel M-O, Ernst R. Measuring and monitoring amphibian diversity in tropical forest. I. An evaluation of methods with recommendations for standardization. Ecotropica. 2004;10:1-14

[109] Cruz-Elizaldae R, Berriozabal-Islas C, Hernandez-Salinas U, Martinez-Morales MA, Ramirez-Bautista A. Amphibian species richness and diversity in a modified tropical environment of central Mexico. Tropical Ecology. 2016;57(3):407-417

[110] Suazo-Ortuno I, Alvarado-Diaz J, Martinez-Ramos M. Effects of conversion of dry tropical forest to agriculture mosaic on herpetofaunal assemblages. Conservation Biology. 2008;22(2):362-374

[111] Relox RE, Leano EP, Ates-Camino FB. Herpetofaunal endemism and diversity in tropical forests of Mt. Hamigutan in the Philippines. Herpetological Conservation and Biology. 2010;6(1):107-113

[112] Cortez-Gomez AM, Ruiz-Agudelo CA, Valencia-Aguilar A, Ladle RJ. Ecological functions of Neotropical amphibians and reptiles: A review. Universitas Scientiarum. 2015;20(2):229-245

[113] Homyack JA, Sucre FB, Haas CA, Fox TR. Does *Plethodon cinereus* affects leaf litter decomposition and invertebrate abundances in mixed oak forest? Journal of Herpetology. 2010;44:447-456

[114] Best M, Welsh H. The trophic role of a forest salamander: Impacts on invertebrates, leaf litter retention, and humification process. Ecosphere. 2014;5(2):16

[115] Caldart VM, Iop S, Da Rocha MC, Cechin SZ. Diurnal and nocturnal predators of Crossodactyus schmidtii Gallardo, 1961 (Anura, Hylodidae) in southern Brazil. North-Western Journal of Zoology. 2011;7:342-345

[116] Luja VHS, Herrando-Perez S, Gonzalez-Solis D, Luiselli L. Secondary rainforests are not havens for reptile species in tropical Mexico. Biotropica. 2008;40:747-757

[117] Suazo-Ortuno I, Alvarado-Diaz J, Mendoza E, Lopez-Toledo L, Lara-UrIBE N, Marquez-Camargo C, Rangel-Orozco JD. High resilience of herpetofaunal communities in human–modified tropical dry forest landscape in western Mexico. Tropical Conservation Science. 2015;8:396-423
[118] Wong BBM, Candolin U. Behavioral responses to changing environments. Behavioral Ecology. 2015;26:665-673

[119] Reading CJ, Luiselli LM, Akani GC, Bonnet X, Amori G, Ballouard JM, Filippi E, Naulleau G, Pearson D, Rugiero L. Are snake populations in widespread decline? Biology Letters. 2010;6:1-4

[120] Bohm M, Collen B, Baillie EMJ, Chanson J, Cox N, et al. The conservation status of the world’s reptiles. Biological Conservation. 2012;157:372-385

[121] Ali Reza AHM, Perry G. Herpetofaunal species richness in the tropical forests of Bangladesh. Asian Journal of Conservation Biology. 2015;4(2):100-108

[122] Berriozabal-Islas C, Badillo-Saldanal LM, Ramirez-Bautista A, Moreno CE. Effects of habitat disturbance on lizard functional diversity in a tropical dry forest of the Pacific coast of Mexico. Tropical Conservation Science. 2017;10:1-11
