Increasing the Catalytic Power of the Flavin Reductase DszD Enzyme Using Site-Directed Mutagenesis Method in Rhodococcus Erythropolis

Ramin Fallahzadeh1, Kasra Esfahani2, Abbas Akhavan Sepahi1, Nasrin Kamali2, *Bijan Bambai2

1. Department of Microbiology, Tehran North Branch of Islamic Azad University, Tehran, Iran.
2. Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

ABSTRACT

Background and Aim: The flavin reductase DszD enzyme is a key enzyme for providing required reduction potential in the bacterial desulfurization process. Considering the low speed of desulfurization process because of low catalytic power of this enzyme, it is necessary to increase the catalytic power of flavin reductase for industrial use of this enzyme as biocatalyst.

Methods & Materials: The three-dimensional structure of the flavin reductase DszD enzyme was predicted by a CPHmodel server and its amino acid sequence was searched in the protein data bank to identify the homologue molecules. Based on the alignment of the amino acid sequence and the model molecules, the key residues at the flavin mononucleotide substrate were identified. The key residue of asparagine at position 77 was replaced with phenylalanine using the site-directed mutagenesis method.

Ethical Considerations: This study with research ethics code IR.NIGEB.EC.1398.6.24 A has been approved by research ethics committee at National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.

Results: The cloning and expression of each of the wild-type and mutant genes were performed separately. The catalytic power of the produced wild-type and mutant enzymes were compared. The catalytic activity measurements showed that the mutant enzyme had a 2.5 fold increase in catalytic power.

Conclusion: Replacing phenylalanine with asparagine at position 77 of flavin reductase DszD enzyme leads to an increase in enzyme catalytic power to increase the speed of bacterial desulfurization process.

Key words: Flavin reductase DszD enzyme, Bacterial desulfurization, Catalytic power

Extended Abstract

Introduction

The combustion of petroleum compounds, due to the release of sulfur oxides, can cause numerous environmental issues, like air pollution, as well as many cardiac, respiratory, dermatological, and gastrointestinal diseases in individuals. Various approaches are applied to reduce the sulfur content of petroleum compounds in the petroleum refinery; chemical desulfurization is the most frequently used method in this respect. The chemical desulfurization is inefficient and requires powerful thermal systems, high pressure, high energy consumption, and costly metal catalysts. The microbial desulfurization method has recently been developed. The microbial desulfurization could remove sulfur in the polycyclic derivatives of petro-
leum without breaking the carbon skeleton and reducing fuel energy value along the 4S route. This pathway was first introduced in the gram-negative Rhodococcus erythropolis bacteria (Rhodococcus erythropolis IGT8). This bacterium uses sulfur in dibenzothiophene and its derivatives as the sole nutrition source. The active desulfurization reaction is performed in the presence of the flavin reductase DszD enzyme. Naturally, this enzyme has low catalytic power; therefore, it is considered as the primary limiting factor in the desulfurization process rate in the refining industry. The current study aimed to increase the catalytic power of the target enzyme. Thus, the asparagine residue at position 77 was replaced with phenylaniline by targeted mutagenesis. Eventually, the catalytic power of wild and mutated enzymes was compared.

Materials and Methods

The DszD enzyme amino acid sequence is accessible at the National Center for Biotechnology Information (NCBI) database under the code AAC38226.1. To identify homologous molecules with acceptable similarity, the target enzyme sequence was searched in the protein database. Among the identified homologs, those bounded to the FMN substrate were selected, and their alignment was performed using the Basic Local Alignment Search Tool (BLAST). The wild-type dszD gene was amplified by Polymerase Chain Reaction (PCR) using forward and backward primers with cleavage sites for BamHI and EcoRI restriction enzymes, respectively. The dszD gene was mutated at position 77 using SOEing-PCR. The mutated wild-type gene of 600 bp length was individually cloned into the pET-23a(+) expression vector, then transferred to E. coli BL21 (DE3) cells. Cloning accuracy was assessed using the two restriction enzymes mentioned above and sequencing. Wild and mutated proteins were separately expressed and confirmed by the Western blotting technique. Next, their optical absorption was measured at 340 nm during the oxidation of NADH to NAD per time unit. Protein concentration was determined by the Bradford method with Bovine Serum Albumin (BSA) as the standard protocol.

Results

Searching for the amino acid sequence of the flavin reductase DszD enzyme in the protein database has introduced homologous molecules with distinct crystallographic structure. Homologous molecules with the highest structural

Figure 1. The alignment results of the amino acid sequence of flavin reductase DszD enzyme with homologous enzymes

Figure 2. (A) Agarose gel: Column 1: The molecular markers of the type 1 kg base pair. Column 2: dszD PCR product lacking a 600 bp mutation. Column 3: SOEing-PCR end product with a mutation in alanine 77 and 600 bp length. B. SDS-PAGE gel: Column 1: Protein molecular marker, Column 2: Wild-type recombinant strain, and Column 3: Recombinant mutant strain. Column 4: Strain containing the non-recombinant plasmid; C. the Western blot results of the study samples (B) i.e. visible in columns 2 and 3 of the flavin reductase DszD enzyme in wild and mutated types, respectively.
Similarity were selected as appropriate models for identifying key positions. The alignment of the amino acid sequence of DszD enzyme with the selected homologous molecules revealed that the target enzyme active site includes 4 key positions for binding to the FMN substrate: threonine 62, serine 63, asparagine 77, and alanine 79 (Figure 1).

Wild-type dszD gene amplification was performed applying specific primers (Figure 2a, Column 1). The mutated dszD gene was also obtained at position 77 by a mutant primer (Figure 2a, Column 2). After the enzymatic digestion of the pET-23a(+) vector and the final amplified fragments, each was separately ligated to generate the recombinant plasmid during the binding reaction.

The recombinant plasmids containing the wild- and mutated-type genes were individually transferred to the E.coli BL21 (DE3) expression strain. The experimental results indicated the appropriate expression of the target cloned genes; it had a specific band on the polyacrylamide gel with a molecular weight of 24 kDa (Figure 2b).

Western blotting analysis supported the presence of a significant level of expression of the wild and mutated types of recombinant flavin reductase DszD enzyme (Figure 2c). We compared the mean catalytic power of the wild-type and mutant-type flavin reductase DszD. The obtained data revealed that the mutant enzyme had a catalytic capacity of 392±6 U/mg, suggesting a 2.5-fold increase in activity, compared to the wild-type enzyme (160±4 U/mg).

Conclusion

The achieved data suggested that the target enzyme had an appropriate potential to increase the catalytic power in the 4S route. Thus, the targeted mutation in the flavin reductase DszD enzyme and its activity in recombinant host cells could increase the desulfurization process efficacy, using the bacterial system. It is suggested that different mutant molecules capable of mutation be produced in several key positions, and their catalytic potency be compared with those reported.

Ethical Considerations

Compliance with ethical guidelines

This study with research ethics code IR.NIGEB. EC.1398.6.24 A has been approved by research ethics committee at National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
الفراشی قدرت کاتالیزیکی آنزیم فلاوین ردوکتاز DszD با استفاده از روش جهش زایی یافت شد.

* نویسنده مسئول

دکتر بیژن بمبئی
گروه ژنتیک پزشکی، تهران، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری و رستگاری آزمایشگاه نیژاب ایران.

مطالعه مربوط به تبدیل گوگردزدایی باکتریایی DszD است. با توجه به اینکه سرعت فرایند گوگردزدایی به دلیل پایین بودن قدرت کاتالیزیکی این آنزیم پایین است، بازآمادگی بهبود قدرت کاتالیزیکی آنزیم‌های رودوکوکوس پیگمنتی است.

پیشگویی و توالی آمینو اسید آنزیم فلاوین ردوکتاز DszD از پروتئین CPH-Model ساخته شده است.

اطلاعات پروتئین به منظور شناسایی مولکول‌های مشابه یا همسایه با آن، به این روش ویژه، به ترتیب در مجموعه‌های PDB و PDBRef جستجو شده است.

این آزمایش به تأیید کمیته اخلاق پژوهشی پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری رسیده است.

همسانه سازی و بیان هریک از ژن‌های وحشی و جهشی به صورت جداگانه انجام می‌گردد و قدرت کاتالیزیکی آنزیم‌های وحشی و جهش‌یافته تولیدی با یکدیگر مقایسه می‌شود.

نتیجه گیری از این مطالعه با کد IR.NIGEB.93.1.2.24A.8.77 ملاحظات اخلاقی

کلیدواژه‌ها:

آنزیم فلاوین ردوکتاز، فرایند گوگردزدایی باکتریایی، قدرت کاتالیزیکی

مقدمه

استفاده از سوخت‌های فسیلهای و ترکیبات تفتی، سبب آفزایش انرژی و تولید انرژی شده است. اکثریت این ترکیبات، به ویژه در نفت و انواع مختلفی از نفت‌های خام وجود دارد که شامل ترکیبات حلقوی، حلقوی و ترکیبات حلقوی و آرامیکی هستند.

در صنعت تصفیه، روش‌های مختلفی برای کاهش محتوای گوگردی در ترکیبات حلقوی و آرامیکی استفاده می‌شود که رایج‌ترین آن، روش شیمیایی گوگردزدایی است. در این فرآیند، گوگرد آلی تحت فشار و دمای بالا با استفاده از گاز هیدروژن در حضور کاتالیزورهای فلزی مورد افتخار قرار می‌گیرد. با استفاده از این روش، گوگرد به گاز سولفید هیدروژن تبدیل می‌شود.

به علاوه در برخی موارد، روش‌های نفتی نیز به کار می‌رود که شامل ترکیبات حلقوی و آرامیکی هستند. در این روش‌ها، گوگرد به گاز سولفید هیدروژن تبدیل می‌شود.

از انواع ترکیبات گوگردزدایی روش‌های شیمیایی، شیمیایی، شیمیایی با استفاده از مواد شیمیایی و شیمیایی با استفاده از مواد شیمیایی استفاده می‌شود.

به علاوه در برخی موارد، روش‌های نفتی نیز به کار می‌رود که شامل ترکیبات حلقوی و آرامیکی هستند. در این روش‌ها، گوگرد به گاز سولفید هیدروژن تبدیل می‌شود.

از انواع ترکیبات گوگردزدایی روش‌های شیمیایی، شیمیایی، شیمیایی با استفاده از مواد شیمیایی و شیمیایی با استفاده از مواد شیمیایی استفاده می‌شود.
در این مطالعه ما علاقه‌مند بودیم با جهش‌زایی در باقیمانده‌ها انجام شد. از بین چهار باقی‌مانده کلیدی شناسایی شده، باقی‌مانده آسپارژین در موقعیت DszA در ناحیه آنزیمی قابل قبول قرار گرفت. در این تحقیق از روش جهش‌زایی هدفمند با فنیل آلانین جایگزین شد.

اکتفای آنچه این روش می‌تواند به شکستن پیوند بین گوگرد و کربن در مولکول هدف کمک کند، به منظور بررسی این تقسیم‌بندی، از معادله انجام شد.

روش جهش‌زایی هدفمند با فنیل آلانین جایگزین شد و با توجه به مقایسه قرار گرفت.

چهار آنزیم مشخصه‌ای توسط شادیلی و همکاران با استفاده از روشهای مختلف در پایگاه NCBI در دسته DszD دسترسی می‌شوند. این دسته شامل چهار زیردسته است که در این مطالعه مورد بررسی قرار گرفت.
جهت مشاهده‌کننده‌پری کربنات کالکلیک آنزیم فلاوین ردوکتاز (DszD) ابتدا به محلول حاوی تریس-هیسول و NADH و FMN حل شده است. برای بدست آوردن آنزیم، به محلول حاوی NADH و بی‌بانوی BSA گلیسرول درصد استفاده می‌شود. برای بدست آوردن برموفنول آبی جهت مشاهده الگوی پروتئینی، نمونه‌ها بر روی ژلپلی آکریلامید درصد) الکتروفورز و توسط محلول کوماسی بلو رنگ آمیزی 12/50 شدند. به منظور اجرای وسترن بلات، پروتئین‌های تفکیک شده با استفاده از روش برادفورد با استفاده شد.

به منظور تعیین شدت، با استفاده از بسته‌های محلول BSA میلی مولار درصد و بافر TBS-T به نسبت TBS-1 و بافر (HRP)T7 tag به نسبت 1 به 1000 قرار گرفت. سپس از شستور با بافر فوری شده یک سان آن به محلول حاوی آنتی‌بادی BSA درصد به 1000 قرار گرفت. بعدها این محلول به مدت یک ساعت در محلول به نسبت 1 به 1000 و بافر (HRP)T7 tag خمیده شد. سپس این محلول را در مدت 2500 به منظور آنتی‌بادی‌های الکتروفورز راه انداختند.

تصویر 1. نتایج جهش زایی نواحد آنزیم فلاوین ردوکتاز DszD با آنزیم‌های محصول 2 4 3 2 1 ب. تکراری BSA به ترتیب نوع وحشی و آنزیم فلاوین ردوکتاز (FMN) و NADH به عنوان سوندرز برابر با 18.75 نانومولار و 140 میکرومولار بودند.

RTC-SDS

کشور 1. نتایج جهش زایی ژن DszD از بافت‌های مناسب غیرنوترکیب که در ستون 3 نشانگر مولکولی نوع یک کیلو جفت است.
پایان‌نامه
جستجوی تولید آمینو اسید آنزیم فلاوین ردوکتاز در پاک‌ترکیب‌کننده، مولکول‌های مهیل‌پوس با استفاده از سیستم مهیل‌پوس با محور خود می‌تواند به منظور ویژه‌سازی و تغییر سمت‌های مولکول‌ها نیز کسب شده است [22]. آگرچه در لغت تحقیقاتی که تاکنون انجام شده است، کوشش‌ها بیشتر بر استفاده از روش‌های میکروبیولوژی و بیومیکروبیولوژی بوده است، آنچه که بیش از همه چنین نتایج گزارش شده است، می‌تواند با ویژگی‌های ویژه این سبک در میکروارگانسم‌های اکستروفیروکوکوس صورت گرفته است. به این ترتیب، با استفاده از روش ترکیبی جهش زایی هدفمند، می‌توان به مولکول‌های مطلوب و هدفمند با ویژگی‌های مناسب در کیفیت آمینو اسید‌های متصل به سوبراستر (که به عنوان یکی از عوامل کاتالیتیک مؤثر در آنژیم محدود کننده سرعت فرایند گوگردزدایی است) به عنوان سایر ژن‌ها، در نیرویی با ویژگی‌های مطلوب و مناسب در کیفیت آمینو اسید‌های متصل به سوبراستر در پایگاه داده پروتئینی، مولکول‌های همولوگ با ساختاری نسبت به ترئونین، افزایش در سرعت انتقال الکترون و در نتیجه آنزیم با آمینو اسید آسپارژین جایگزین شد و به دلیل نزدیک‌سازی، پاسخ‌ها بیش از همه در پایگاه پلی آکریلامید با وزن مولکولی "ج"، دیده شدند. نتایج آزمایشگاهی بیان مناسبی ژن‌های اتصال به هم متصل شدند. نتایج توالی‌یابی صحت سازی به صورت جداگانه به منظور تولید پلاسمید نوترکیب طی واکنش (+) و قطعات تکثیر شده نهایی، هرکدام یک تکثیر مادری آنزیم فلاوین ردوکتاز به دلیل تصویب قوانین سخت‌گیرانه زیست محیطی، به دلیل تصویب قوانین سخت‌گیرانه زیست محیطی،
در آمین اسید اسپارژین موقعیت ۷۷ به عنوان یکی از واکنش‌های حساسیت در آزمایش‌های ترکیبی دارد. لازم به ذکر است که، این واکنش به جهش‌های فنیل-اسپارژین وارد شده است. در این آزمایش‌ها، جهش واحدهای آن بر خلاف آنچه در سایر آزمایش‌ها با استفاده از آنزیم‌های عملکردی بوده‌اند، دارای عملکردی بالاتری نسبت به آنچه در آزمایش‌های طبیعی مشاهده می‌شدند. در جهش‌های فنیل-اسپارژین، موقعیت پله‌ای تغییری در آمین اسید فنیل مشاهده می‌شود.

ملاحظات اخلاقی

پیروی از اصول اخلاقی پژوهش

این مطالعه با کد IR.NIGEB.EC.1398.6.24 A تایید کمیته اخلاق پژوهشگاه ملی مهندسی ژنتیک و زیست‌فناوری نویسندگان انجام شده است. این مطالعه بر روی آنزیم صنعتی انجام شده است.
References

[1] Etemadi N, Sepahy AA, Mohebali G, Yazdian F, Omid M. Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int J Biol Macromol. 2018; 120:1801-9. [DOI:10.1016/j.ijbiomac.2018.09.110] [PMID]

[2] Khosravinia S, Mahdavi MA, Gheshlaghi R, Dehghani H, Rasekh B, Nazari F, Kefayati M, Raheb J. The study of biological technologies for the removal of sulfur compounds. J Sci, Islam Repub Iran. 2017; 28(3):205-19. [DOI:10.1016/j.jsci.2017.06.023] [PMID]

[3] Chen S, Zhao C, Liu Q, Zang M, Liu C, Zhang Y. Thermophilic biodesulfurization and its application in oil desulfurization. Appl Microbiol Biotechnol. 2018; 102(21):9089-103. [DOI:10.1007/s00253-018-9342-5] [PMID]

[4] Nuhu AA. Bio-catalytic desulfurization of fossil fuels: A mini review. Rev Envr Sci Bio/Technol. 2013; 12(1):9-23. [DOI:10.1007/s11157-012-9267-x]

[5] Morrison E, Kantz A, Gassner GT, Szainsky MH. Structure and mechanism of styrene monooxygenase reductase: New insight into the FAD-transfer reaction. Biochem. 2013; 52(35):6063-75. [DOI:10.1021/bi400763h] [PMID]

[6] Gupta N, Roychoudhury P, Deb J. Biotechnology of desulfurization of diesel: Prospects and challenges. Appl Microbiol Biotechnol. 2005; 66(4):356-66. [DOI:10.1007/s00253-004-1755-7] [PMID]

[7] Davoodi-Dehaghani F, Vosoughi M, Ziaee AA. Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioreour Technol. 2010; 101(3):1102-5. [DOI:10.1016/j.biortech.2009.08.058] [PMID]

[8] Zhang M, Zhu W, Xun S, Li H, Gu Q, Zhao Z, et al. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid liquids in ionic liquids. Chem Eng J. 2013; 220:328-36. [DOI:10.1016/j.cej.2012.11.138]

[9] Xiao J, Wang X, Fujii M, Yang Q, Song C. A novel approach for ultra-deep adsorptive desulfurization of diesel fuel over TiO2-CeO2/MCM-48 under ambient conditions. AICHE J. 2013; 59(5):1441-5. [DOI:10.1002/aic.14085] [PMID] [PMCID]

[10] Borzenkova N, Veselova I, Shekhovtsova T. Biochemical methods of deep adsorptive desulfurization of diesel: Prospects and challenges. Appl Microbiol Biotechnol. 2005; 66(4):356-66. [DOI:10.1007/s00253-004-1755-7] [PMID]

[11] Sucharitakul J, Tinkul R, Chaiyen P. Mechanisms of reduced flavin transfer in the two-component flavin-dependent monooxygenases. Arch Biochem Biophys. 2014; 555-556:33-46. [DOI:10.1016/j.abb.2014.05.009] [PMID]

[12] Niazari F, Kefayat M, Raheb J. The study of biological technologies for the removal of sulfur compounds. J Sci, Islam Republic Iran. 2017; 28(3):205-19.

[13] Karimi E, Yazdian F, Rasekh B, Jeffries C, Rashedi H, Akhavan Sepah A, et al. DBT desulfurization by decorating bacteria using modified carbon nanotube. Fuel. 2018; 216:787-95. [DOI:10.1016/j.fuel.2017.06.030]

[14] Khosravinia S, Mahdavi MA, Ghashlaghi R, Dehghani R, Rasekh B. Construction and characterization of a new recombinant vector to remove sulfate repression of dsz promoter transcription in biodesulfurization of dibenzothiophene. Frontiers Microbiol. 2018; 9(1578):1-9. [DOI:10.3389/fmicb.2018.01578] [PMID] [PMCID]

[15] Martinez I, Mohamed ME-S, Santos VE, Garcia JL, Garcia-Ochoa F, Diaz E. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. J Biotechnol. 2017; 262:47-55. [DOI:10.1016/j.jbiotec.2017.09.004] [PMID]

[16] Sousa SF, Sousa JF, Barbosa AC, Ferreira CE, Neves RP, Ribeiro AJ, et al. Improving the biodesulfurization of crude oil and derivatives: A QM/MM investigation of the catalytic mechanism of NADH-FMN oxidoreductase (DszD). J Physical Chem. 2016; 120(27):5300-6. [DOI:10.1021/acs.jpca.6b01536] [PMID]

[17] Ferreira P, Sousa SF, Fernandes PA, Ramos MJ. Improving the catalytic power of the DszD enzyme for the biodesulfurization of crude oil and derivatives. Chem Eur J. 2017; 23(68):17231-41. [DOI:10.1002/chem.201786864] [PMID]

[18] Kamali N, Tavaalian M, Babam J, Karkhane AA, Mir M. Site-direct ed mutagenesis enhances the activity of NADH-FMN oxidoreductase (DszD) activity of Rhodococcus erythropolis. Biotechnol Letters. 2010; 32(7):921-7. [DOI:10.1007/s10529-010-0254-4] [PMID]

[19] Magrane M, Consortium U. UniProt knowledgebase: A hub of integrated protein data. Nat Prec. 2010. [DOI:10.1038/npre.2010.5092]

[20] Young L, Smith HO, Gibson DG. In vitro recombination method. San Diego: Google Patents; 2017.

[21] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989.

[22] Schägger H. Tricine-sds-page. Nat Protoc. 2006; 1(1):16-22. [DOI:10.1038/nprot.2006.4] [PMID]

[23] Kruger NJ. The Bradford method for protein quantitation. The protein protocols handbook. Berlin: Springer; 2002. [DOI:10.1371/journal.pone.0168833] [PMID] [PMCID]

[24] Wang J, Butler III RR, Wu F, Pombert JF, Kilbane II JJ, Stark BC. Enhancement of microbial biodesulfurization via genetic engineering and adaptive evolution. PloS One. 2017; 12(1):e0168833. [DOI:10.1371/journal.pone.0168833] [PMID] [PMCID]

[25] Akhtar N, Ghauni MA, Akhtar K. Dibenzo[ghi]phene desulfurization capability and evolutionary divergence of newly isolated bacteria. Arch Microbiol. 2016; 198(6):509-19. [DOI:10.1007/s00203-016-1209-5] [PMID]

[26] Rangra S, Kabra M, Gupta V, Srivastava P. Improved conversion of Dibenzo[ghi]phene into sulfone by surface display of Dibenzo[ghi]phene monooxygenase (DszC) in recombinant Escherichia coli. J Biotechnol. 2018; 287:59-67. [DOI:10.1016/j.jbiotec.2018.10.004] [PMID]

[27] Vollhardt KPC, Shobe NE. Organic chemistry; Palgrave version: Structure and function: Macmillan international higher education. New York: W H Freeman; 2014. [DOI:10.1007/978-1-319-19197-9_2]

[28] Chen H, Li M, Liu C, Zhang H, Xian M, Liu H. Enhancement of the catalytic activity of Isopentenyl Diphosphate Isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microbial Cell Factories. 2018; 17(1):1-14. [DOI:10.1186/s12934-018-0913-z] [PMID] [PMCID]

[29] Duan X, Chen J, Wu J. Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-direct ed mutagenesis. Appl Environ Microbiol. 2013; 79(13):4072-7. [DOI:10.1128/AEM.03457-13] [PMID] [PMCID]
This Page Intentionally Left Blank