An Overview of High-\(k\) Oxides on Hydrogenated-Diamond for Metal-Oxide-Semiconductor Capacitors and Field-Effect Transistors

Jiangwei Liu \(^1,\ast\) and Yasuo Koide \(^2\)

\(^1\) Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
\(^2\) Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan; koide.yasuo@nims.go.jp

\(*\) Correspondence: liu.jiangwei@nims.go.jp; Tel.: +81-29-860-4954; Fax: +81-29-860-854-9060

Received: 17 April 2018; Accepted: 1 June 2018; Published: 4 June 2018

Abstract: Thanks to its excellent intrinsic properties, diamond is promising for applications of high-power electronic devices, ultraviolet detectors, biosensors, high-temperature tolerant gas sensors, etc. Here, an overview of high-\(k\) oxides on hydrogenated-diamond (H-diamond) for metal-oxide-semiconductor (MOS) capacitors and MOS field-effect transistors (MOSFETs) is demonstrated. Fabrication routines for the H-diamond MOS capacitors and MOSFETs, band configurations of oxide/H-diamond heterointerfaces, and electrical properties of the MOS and MOSFETs are summarized and discussed. High-\(k\) oxide insulators are deposited using atomic layer deposition (ALD) and sputtering deposition (SD) techniques. Electrical properties of the H-diamond MOS capacitors with high-\(k\) oxides of ALD-Al\(_2\)O\(_3\), ALD-HfO\(_2\), ALD-HfO\(_2\)/ALD-Al\(_2\)O\(_3\) multilayer, SD-HfO\(_2\)/ALD-HfO\(_2\) bilayer, SD-TiO\(_2\)/ALD-Al\(_2\)O\(_3\) bilayer, and ALD-TiO\(_2\)/ALD-Al\(_2\)O\(_3\) bilayer are discussed. Analyses for capacitance-voltage characteristics of them show that there are low fixed and trapped charge densities for the ALD-Al\(_2\)O\(_3\)/H-diamond and SD-HfO\(_2\)/ALD-HfO\(_2\)/H-diamond MOS capacitors. The \(k\) value of 27.2 for the ALD-TiO\(_2\)/ALD-Al\(_2\)O\(_3\) bilayer is larger than those of the other oxide insulators. Drain-source current versus voltage curves show distinct pitch-off and \(p\)-type channel characteristics for the ALD-Al\(_2\)O\(_3\)/H-diamond, SD-HfO\(_2\)/ALD-HfO\(_2\)/H-diamond, and ALD-TiO\(_2\)/ALD-Al\(_2\)O\(_3\)/H-diamond MOSFETs. Understanding of fabrication routines and electrical properties for the high-\(k\) oxide/H-diamond MOS electronic devices is meaningful for the fabrication of high-performance H-diamond MOS capacitor and MOSFET gas sensors.

Keywords: diamond; high-\(k\); MOS capacitor; MOSFET; gas sensors

1. Introduction

Due to limitation of its bandgap energy, thermal conductivity, and electron saturation velocity, Si-based electronic devices cannot meet future demands in fields of high-power, high-temperature, high-frequency, and low power loss. Wide bandgap semiconductors such as SiC, GaN, and diamond are developed to partly replace Si for next-generation power electronic devices [1–3]. Table 1 summarizes basic physical properties of Si, 4H-SiC, GaN, and diamond [4–6]. Comparing with other semiconductors in this table, diamond has the widest bandgap energy, the highest breakdown field, the largest thermal conductivity, and the largest carrier mobility. Therefore, diamond-based electronic devices are promising for the future applications in fields of high-power handling, high-temperature operation, and high-frequency switching. Meanwhile, since diamond has good chemical inertness, good biocompatibility, and a large electrochemical window, it is also a suitable candidate for...
applications of biosensors [7–9]. Additionally, diamond can also be applied in fields of ultraviolet (UV) light-emitting diodes [10], UV detectors [11], and high-temperature tolerant gas sensors [12–14].

Table 1. Material properties of Si, 4H-SiC, GaN, and diamond at room temperature [4–6].

Properties	Si	4H-SiC	GaN	Diamond
Bandgap energy (eV)	1.12	3.2	3.4	5.47
Breakdown field (MV·cm⁻¹)	0.3	3	5	10
Thermal conductivity (W·cm⁻¹·K⁻¹)	1.5	5.0	1.3	24
Electron mobility (cm²·V⁻¹·s⁻¹)	1450	900	2000	4500
Hole mobility (cm²·V⁻¹·s⁻¹)	480	120	200	3800
Saturation electron velocity (×10⁷ cm⁻¹)	0.86	3	2.5	2
Saturation hole velocity (×10⁷ cm⁻¹)	-	-	-	0.8

Although semiconductor diamond-based devices have many potential applications, lack of shallow dopants hinders the development of them. Activation energies of boron and phosphorus doped p-type and n-type diamond are as large as 370 and 570 meV at room temperature (RT), respectively. They are much higher than the RT thermal energy of around 26 meV. Although thin heavily boron-doped diamond channel layer is promising to resolve this issue [15,16], its hole mobility is not high and growth technique still needs to be improved. A p-type hydrogenated diamond (H-diamond) channel layer is considered as another candidate to resolve this issue [17,18]. Two-dimensional hole gases are accumulated on the surface of the H-diamond caused by transfer of electrons from H-diamond to negatively surface adsorbate layer [19]. Its sheet hole density is around ~10¹³ cm⁻². After exposing H-diamond in NO₂ ambient or annealing treatment in NH₃ + H₂ ambient, its hole density can be enhanced to be as high as ~10¹⁴ cm⁻² [20,21].

Si-, GaAs- and SiC-based metal-oxide-semiconductor (MOS) capacitor and MOS field-effect transistor (MOSFET) gas sensors have been developed greatly [22–26]. Gate metals (such as Pd, Pt, and Ir) have catalytic properties. They can adsorb hydrogen, ammonia, and carbon monoxide gases, leading to the generation of charges at metal/oxide interfaces, which make capacitance-voltage (C-V) curve shift in the depletion region for MOS capacitors and threshold voltage (V_TH) shift for the MOSFETs [27]. Although diamond has superior properties over other semiconductors, there are rarely reports for the diamond-based MOS capacitor and MOSFET gas sensors. In order to fabricate them successfully, it is important to know the fabrication routines and electrical properties of diamond-based MOS capacitors and MOSFETs.

Recently, fabrication techniques for the H-diamond-based MOS capacitors and MOSFETs have been developed greatly. The electrical properties of them have also been improved. The H-diamond MOS capacitors with low leakage current and trapped charge densities were fabricated [28–34]. By improving the device structures, T-type and triple-gate fin-type H-diamond MOSFETs were fabricated successfully with current outputs more than 200 mA·mm⁻¹ [32–34]. The NO₂-treated H-diamond channel layer based MOSFETs could operate well with a current output as high as 1.35 A·mm⁻¹ [35]. Improvement of deposition conditions for the oxide insulators enhanced H-diamond MOSFET’s operation temperature and breakdown voltage to be more than 400 °C and 1000 V, respectively [36]. Additionally, enhancement-mode H-diamond MOSFETs were developed for low power consumption [37–39].

Previously, we have focused on fabrication of high-k oxide/H-diamond MOS electronic devices [28–33]. Figure 1 shows polarization charge and sheet hole density in the H-diamond as functions of electric field [40,41], which is applied to gate oxide insulators of SiO₂, Al₂O₃, HfO₂ [42], and TiO₂ [43]. At the same electric field, the oxide insulator with a higher-k value can respond a larger sheet hole density for the MOS electronic devices. A gate oxide insulator with k value around 100 based on TiO₂ is essential to attain hole densities around 10¹⁴ cm⁻² for the H-diamond channel layer. Here, we summarize our previous reports for
the Al₂O₃, HfO₂, and TiO₂ high-k oxide insulators on the H-diamond for the MOS electronic devices [28–31,44]. The oxide insulators are deposited using atomic layer deposition (ALD) and sputtering deposition (SD) techniques. Band configurations of ALD-Al₂O₃/H-diamond, ALD-HfO₂/H-diamond, and ALD-TiO₂/ALD-Al₂O₃/H-diamond heterojunctions are demonstrated. Electrical properties of H-diamond MOS capacitors with oxides of ALD-Al₂O₃ [28], ALD-HfO₂ [29], ALD-HfO₂/ALD-Al₂O₃ multilayer [28], SD-HfO₂/ALD-HfO₂ bilayer [30], SD-TiO₂/ALD-Al₂O₃ bilayer [31], and ALD-TiO₂/ALD-Al₂O₃ bilayer [31] are summarized and discussed. Analyses for the C-V characteristics of them show that there are low fixed and trapped charge densities for the ALD-Al₂O₃/H-diamond and SD-HfO₂/ALD-HfO₂/H-diamond MOS capacitors. The k value of ALD-TiO₂/ALD-Al₂O₃ bilayer is larger than those of other oxide insulators. There are excellent electrical properties for the ALD-Al₂O₃/H-diamond, SD-HfO₂/ALD-HfO₂/H-diamond, and ALD-TiO₂/ALD-Al₂O₃/H-diamond MOSFETs.

Figure 1. Polarization charge and sheet hole density in the H-diamond as functions of electric field (Reprinted from reference [40]).

2. Materials and Methods

Figure 2a,b show fabrication routines for the H-diamond MOS capacitor and MOSFET, respectively. Ib-type single crystalline diamond (001) substrate is boiled using a hotplate in a H₂SO₄ and HNO₃ mixture solution at 300 °C for 3 h to clean surface contaminations (Figure 2a1,b1). The H-diamond channel layer is epitaxially grown on the cleaned substrate using microwave plasma-enhanced chemical vapor deposition technique (Figure 2a2,b2). Growth gases are H₂ and CH₄ with flow rates of 500 and 0.5 sccm, respectively. Chamber pressure is fixed at 80 Torr. Microwave power and growth temperature are in the range of 880–960 W and 900–940 °C, respectively. Thicknesses of the H-diamond epitaxial layers are in the range of 150–200 nm. Surface roughness confirmed by atomic force microscope is around 1.2 nm [45]. The sheet hole density and mobility investigated by Hall measurement are 10¹³ cm⁻² and 90 cm²·V⁻¹·s⁻¹, respectively. After growing the H-diamond channel layer, mesa-structure is formed for the H-diamond MOSFETs (Figure 2b3) using capacitive coupled plasma dry-etching system. The chamber pressure and etching time are 10 Pa and 90 s, respectively. Etching gas (O₂) flow rate and plasma power are 100 sccm and 50 W, respectively. It should be noted that there is no mesa-structure formation step for the fabrication of oxide/H-diamond MOS capacitor. High-k oxides of the ALD-Al₂O₃, ALD-HfO₂, ALD-HfO₂/ALD-Al₂O₃ multilayer, SD-HfO₂/ALD-HfO₂ bilayer, SD-TiO₂/ALD-Al₂O₃ bilayer, and ALD-TiO₂/ALD-Al₂O₃ bilayer are deposited as high-k oxides for the MOS capacitors and MOSFETs (Figure 2a3,b3). For the SD-HfO₂/ALD-HfO₂ and SD-TiO₂/ALD-Al₂O₃ bilayers, the ALD-HfO₂ and ALD-Al₂O₃ impact as buffer layers with thicknesses of around 4.0 nm to protect the hydrogen surface from being damaged by SD plasma discharge during the SD-HfO₂ and SD-TiO₂ depositions, respectively. For the ALD-TiO₂/ALD-Al₂O₃ bilayer, the ALD-Al₂O₃ with thicknesses of 0–4.0 nm impacts as a buffer layer to suppress high leakage current density (j) of ALD-TiO₂/H-diamond MOS capacitor due to a low valence band offset (ΔEᵥ) between TiO₂ and H-diamond [42]. The ALD-Al₂O₃, ALD-HfO₂, and ALD-TiO₂ are deposited using precursors.
of trimethylaluminum, tetrakis (ethylmethylamino) hafnium, and tetrakis(dimethylamino)titanium with water vapor, respectively. Although the high deposition temperature for the ALD-oxides can increase their properties possibly, we have deposited them at 120 °C. There are two reasons for the low deposition temperature. Since the hydrogen surface of the H-diamond is thermal sensitivity, the low deposition temperature can protect the surface from being damaged by the heating at high temperature. Additionally, since deposition areas of oxide insulators are patterned using LOR 5A/AZ 5214E bilayer photoresists and the temperature limitation of them is 150 °C, we set the temperature of 120 °C to deposit the ALD-oxides. The SD-HfO₂ layer is deposited on the ALD-HfO₂/H-diamond in a pure Ar ambient at RT. The radio-frequency (RF) power, gas flow rate, and chamber pressure are 30 W, 2.0 sccm, and 1 Pa, respectively. The SD-TiO₂ layer is deposited on the ALD-Al₂O₃/H-diamond in an Ar+O₂ ambient at RT. Oxygen content in the SD chamber is in the range of 0~20%. The RF power, total gas flow rate, and chamber pressure are 40 W, 2.0 sccm, and 1 Pa, respectively. Total thickness of oxide insulators for each MOS capacitor is in the range of 18.9~34.1 nm. After depositing the oxide insulators, gate cover metals of Au/Ti or Au/Ti/Pd are formed using evaporator system. Lastly, Au/Ti/Pd triple-layer metals are evaporated on the H-diamond for the source/drain ohmic contacts (Figure 2aiv,bV).

Band configurations of oxide/H-diamond heterointerfaces are determined using X-ray photoelectron spectroscopy (XPS) technique, which is performed with a monochromated Al Kα X-ray source (hv = 1486.6 eV). All core level spectra are recorded with a 0.05 eV step and a 55 eV pass energy. Electrical properties of the MOS capacitors and MOSFETs are measured under a dark condition using MX-200/B prober and B1500A parameter analyzer at RT.

3. Results and Discussion

3.1. Band Configurations of High-k Oxide/H-Diamond Heterointerfaces

Band configurations of heterointerfaces are considered as the most fundamental properties in material physics. Understanding of them for high-k oxide/H-diamond heterojunctions is very important for the development of high-performance H-diamond-based MOS electronic devices. Band configurations of ALD-Al₂O₃/H-diamond [46], ALD-HfO₂/H-diamond [46], and ALD-TiO₂/ALD-Al₂O₃/H-diamond [31] are investigated. The ΔE_V values of ALD-Al₂O₃/H-diamond and ALD-HfO₂/H-diamond heterojunctions are calculated using the equation below,

$$\Delta E_V = (E_{CL} - E_{VBM})_{H-dia.} - (E_{CL} - E_{VBM})_{Oxide} + (E_{H-dia.}^{oxide} - E_{CL}^{oxide})^{Thin}_{Oxide}$$ (1)
where the \((E_{\text{CL}} - E_{\text{VBM}})_{H \rightarrow \text{dia}}\) is the difference in binding energies between C 1s core level (CL) and valence band maximum (VBM) of the H-diamond. The \((E_{\text{CL}} - E_{\text{VBM}})_{\text{AlO}}\) is the difference in binding energies between Al 2p\(3/2\) and VBM for the 20 nm thick Al\(_2\)O\(_3\) sample or between Hf 4f\(7/2\) and VBM for the 20 nm thick HfO\(_2\) sample. The \(\left(E_{\text{H \rightarrow \text{dia}}} - E_{\text{VBM}} \right)_{\text{AlO}}\) is the difference in binding energies between C 1s and Al 2p\(3/2\) for the ALD-Al\(_2\)O\(_3\) (4 nm)/H-diamond sample or between C 1s and Hf 4f\(7/2\) for the ALD-HfO\(_2\) (4 nm)/H-diamond sample. The \(\Delta E_V\) for the ALD-TiO\(_2\)/ALD-Al\(_2\)O\(_3\) heterojunction can be calculated using the equation below,

\[
\Delta E_V = \left(E_{\text{Ti2p3/2}} - E_{\text{VBM}} \right)_{\text{Thick TiO}_2} - \left(E_{\text{Al2p3/2}} - E_{\text{VBM}} \right)_{\text{Al}_2\text{O}_3} - \left(E_{\text{Ti2p3/2}} - E_{\text{Al2p3/2}} \right)_{\text{Thin TiO}_2} \tag{2}
\]

where the \(\left(E_{\text{Ti2p3/2}} - E_{\text{VBM}} \right)_{\text{Thick TiO}_2}\) is the difference in binding energies between Ti 2p\(3/2\) and VBM for the ALD-TiO\(_2\) (25 nm)/ALD-Al\(_2\)O\(_3\) (4 nm) sample. The \(\left(E_{\text{Al2p3/2}} - E_{\text{VBM}} \right)_{\text{Al}_2\text{O}_3}\) is the difference in binding energies between Al 2p\(3/2\) and VBM for the 20 nm thick Al\(_2\)O\(_3\) sample [46]. The \(\left(E_{\text{Ti2p3/2}} - E_{\text{Al2p3/2}} \right)_{\text{Thin TiO}_2}\) is the difference in binding energies between Ti 2p\(3/2\) and Al 2p\(3/2\) for the ALD-TiO\(_2\) (3 nm)/ALD-Al\(_2\)O\(_3\) (4 nm) sample. Since calculations of the \(\Delta E_V\) for the ALD-Al\(_2\)O\(_3\)/H-diamond, ALD-HfO\(_2\)/H-diamond, and ALD-TiO\(_2\)/ALD-Al\(_2\)O\(_3\) heterojunctions are based on the relative energies for the two peaks of each sample, there are no charge-up effects for the deduced \(\Delta E_V\) values.

Figure 3 shows CL and VB spectra for the H-diamond substrate (Figure 3a,b), ALD-Al\(_2\)O\(_3\) (20 nm) (Figure 3c,d), ALD-HfO\(_2\) (20 nm) (Figure 3e,f), and ALD-TiO\(_2\) (25 nm)/ALD-Al\(_2\)O\(_3\) (4 nm) (Figure 3g,h) measured by XPS technique. All the CL peaks are fitted using Voigt (mixed Lorentzian-Gaussian) line shapes and Shirley background. The valence band maxima of the H-diamond and thick oxide insulators are determined by extrapolating linear fitting to leading edges of the VB spectra to intersect with the baselines. The C 1s spectrum of H-diamond [Figure 3a] is fitted with three components of C-C, CH\(_x\), and C-OH [47]. Binding energy difference between C-C and CH\(_x\) is 0.6 eV. That between C-C and C-OH is 1.2 eV [48]. According to angle-resolved XPS measurement result [49,50], the CH\(_x\) and C-OH are attributed to surface contaminations. The Al-O (Figure 3c) and Hf-O [Figure 3e] are used to fit the Al 2p and Hf 4f spectra, respectively. The VBM values for the H-diamond, Al\(_2\)O\(_3\) (20 nm), HfO\(_2\) (20 nm), and ALD-TiO\(_2\) (25 nm)/ALD-Al\(_2\)O\(_3\) samples are determined to be 1.2 ± 0.2, 5.4 ± 0.2, 4.3 ± 0.2 eV, and 3.4 ± 0.2 eV, respectively.

Figure 4a,b show C 1s and Al 2p spectra for the Al\(_2\)O\(_3\) (4 nm)/H-diamond sample, respectively. Figure 4c,d show C 1s and Hf 4f for the HfO\(_2\) (4 nm)/H-diamond sample, respectively. Figure 4e,f show Al 2p and Ti 2p spectra for TiO\(_2\) (3 nm)/Al\(_2\)O\(_3\) (4 nm)/H-diamond sample, respectively. Three components of C-C, CH\(_x\), and C-OH are used to fit each C 1s spectrum, which is similar to those of the H-diamond substrate. The Al-O, Hf-O, and Ti-O are used to fit the Al 2p, Hf 4f, and Ti 2p spectra, respectively. Table 2 summarizes the CL peak energies and VBM values corresponding to the spectra in Figures 3 and 4. The peak energies for the C 1s are relative to the C-C bonds. Binding energy error for each peak is ±0.2 V. By inserting CL binding energies and the VBM values into the Equations (1) and (2), the \(\Delta E_V\) values for the ALD-Al\(_2\)O\(_3\)/H-diamond, ALD-HfO\(_2\)/H-diamond, and ALD-TiO\(_2\)/ALD-Al\(_2\)O\(_3\) heterojunctions are calculated to be 2.9 ± 0.2, 2.6 ± 0.2, and −0.6 ± 0.2 eV, respectively. Based on the bandgap energies of ALD-Al\(_2\)O\(_3\) (7.2 eV) [46], ALD-HfO\(_2\) (5.4 eV) [46], and ALD-TiO\(_2\) (3.4 eV) [51], conduction band offset (\(\Delta E_C\)) values for them can be deduced to be 1.2 ± 0.2, 2.7 ± 0.2, and 3.2 ± 0.2 eV, respectively.
Al₂O₃ heterojunctions are calculated to be 2.9 ± 0.2, 2.6 ± 0.2, and conduction band offset (ΔEE) are used to fit the Al₂O₃ samples, the CHₓ and C-OH are attributed to surface contaminations. The Al-O (Figure 3c) and Hf-O (Figure 3e) components of C-C, CHₓ, and C-OH are used to fit each C 1s spectrum, which is similar to those of the H-film (20 nm), HfO₂ (20 nm), and TiO₂ (25 nm)/Al₂O₃ (4 nm) samples, respectively. The peak energies for the C 1s, Al 2p, Hf 4f, and Ti 2p photoelectron spectra for the H-diamond, Al₂O₃ (4 nm)/H-diamond, respectively; (c,d) C 1s and Hf 4f for the HfO₂ (4 nm)/H-diamond, respectively; (f) Ti 2p. The ΔEV for the ALD-TiO₂/ALD-Al₂O₃ heterojunction can be deduced to be 1.2 ± 0.2, 2.7 ± 0.2, and 3.2 ± 0.2 eV, respectively. Table 2 summarizes the CL peak energies and VBM values corresponding to the ALD-Al₂O₃/H-diamond, ALD-HfO₂/H-diamond, and ALD-TiO₂/ALD-Al₂O₃/H-diamond samples. Binding energy differences between C-C and CHₓ is 0.6 eV. According to angle-resolved XPS measurement result, the thick oxide insulators are determined by extrapolating linear fitting to leading edges of the VB spectra to intersect with the baselines. The C 1s difference in binding energies between Ti 2p and Al 2p for the TiO₂ (3 nm)/Al₂O₃ (4 nm)/H-diamond sample, respectively. Valence band spectra for them are also shown in Figure 3b,d,f,h, respectively (Reprinted from references [31,46]).

Figure 3. (a) C 1s, (c) Al 2p, (e) Hf 4f, and (g) Ti 2p photoelectron spectra for the H-diamond, Al₂O₃ (20 nm), HfO₂ (20 nm), and TiO₂ (25 nm)/Al₂O₃ (4 nm) samples, respectively. Valence band spectra for them are also shown in Figure 3b,d,f,h, respectively (Reprinted from references [31,46]).

Figure 4. (a,b) C 1s and Al 2p for the Al₂O₃ (4 nm)/H-diamond, respectively; (c,d) C 1s and Hf 4f for the HfO₂ (4 nm)/H-diamond, respectively; (e,f) Al 2p and Ti 2p spectra for the TiO₂ (3 nm)/Al₂O₃ (4 nm)/H-diamond, respectively (Reprinted from references [31,46]).
Table 2. The binding energies (eV) of C 1s, Al 2p³/2, Hf 4f·/2, Ti 2p³/2, and VBM for the H-diamond and oxide insulators corresponding to the peaks in Figures 3 and 4 [31,46].

Sample	C 1s	Al 2p/2	Hf 4f/2	Ti 2p/2	VBM
H-diamond	284.3				1.2
Al2O3 (20 nm)	284.0	76.3			5.4
Al2O3 (4 nm)	284.0	74.7			4.3
HfO2 (20 nm)		18.3			0.6
HfO2 (4 nm)	284.0	17.5			
TiO2 (25 nm)/Al2O3	75.0		459.2	3.4	
TiO2 (3 nm)/Al2O3			459.3		

Figure 5a–c show band configurations of the ALD-Al2O3/H-diamond, ALD-HfO2/H-diamond, and ALD-TiO2/ALD-Al2O3/H-diamond heterojunctions, respectively. There are type II staggering-type structures for the ALD-Al2O3/H-diamond and ALD-HfO2/H-diamond heterojunctions and a type I straddling-type structure for the ALD-TiO2/ALD-Al2O3 heterojunction, respectively. The ΔEV between ALD-TiO2 and H-diamond is deduced to be 2.3 ± 0.2 eV. Because there are very large ΔEV values between the H-diamond with ALD-Al2O3, ALD-HfO2, and ALD-TiO2/ALD-Al2O3, they are promising to fabricate MOS electronic devices with low leakage current densities.

3.2.1. ALD-Al2O3 and ALD-HfO2 Single Layers

Since Al2O3 and HfO2 are two common high-k oxide insulators, electrical properties of ALD-Al2O3/H-diamond and ALD-HfO2/H-diamond MOS capacitors have been investigated firstly [28,29]. Figure 6a,b show J-V and C-V characteristics for ALD-Al2O3/H-diamond MOS capacitor, respectively. The J is deduced using leakage current divided by the gate electrode area. It is lower than...
1.0 × 10⁻⁷ A·cm⁻² as the gate voltage in the range of −4.0–4.0 V for the ALD-Al2O3/H-diamond MOS capacitor. Red and green lines in Figure 6b represent the C-V curves with the gate voltage sweeping directions from negative to positive and from positive to negative, respectively. Distinct accumulation region and sharp dependence at depletion region are observed in the C-V curves. Interfacial trapped charge density for the ALD-Al2O3/H-diamond is thus quite low [52]. There is a quite low voltage shift relative to 0 V in the depletion region for the C-V curves, indicating the low fixed charge density in the ALD-Al2O3 [53]. Hysteresis loop voltage for the C-V curves with the change of sweeping directions is 0 V, which suggests that there is low trapped charge density in the ALD-Al2O3 single layer. High quality Al2O3 film is thus deposited by the ALD technique at 120 °C. Maximum capacitance (Cmax) for the MOS capacitor is 0.187 μF·cm⁻². By considering the ALD-Al2O3 thickness of 25.4 nm, the k value of the single ALD-Al2O3 layer can be calculated to be 5.4, which is much lower than that for the ideal Al2O3 of 8.5–9. This is possibly attributed to the low deposition temperature (120 °C) for our ALD-Al2O3 film.

Figure 6. (a,b) J-V and C-V characteristics for the ALD-Al2O3/H-diamond MOS capacitor, respectively (Reprinted from reference [28]); (c) Annealing effect on J-V characteristics of ALD-HfO2/H-diamond MOS capacitors (Reprinted from reference [29]); (d,e) C-V characteristics of the ALD-HfO2/H-diamond MOS capacitors before and after annealing at 300 °C, respectively (Reprinted from reference [29]).
Figure 6c shows annealing effect on the J-V characteristics of the ALD-HfO$_2$/H-diamond MOS capacitors. For gate voltage higher than 0 V, the leakage current densities of the MOS capacitors before and after annealing at 300 °C are lower than 10$^{-8}$ A·cm$^{-2}$. For gate voltage more negative than 0 V, the J of MOS capacitor before annealing increases from 10$^{-8}$ A·cm$^{-2}$ at −3.4 V to 10$^{-2}$ A·cm$^{-2}$ at −5.0 V. However, the J after annealing at 300 °C is still lower than 1.6 × 10$^{-8}$ A·cm$^{-2}$. Therefore, after annealing at 300 °C, the qualities of the ALD-HfO$_2$ film and the ALD-HfO$_2$/H-diamond interface are improved greatly. When the annealing temperature increases to 500 °C, the large J is observed at gate voltage from −5.0 to 4.0 V, which is probably attributed to the formation of polycrystalline HfO$_2$ film at this high temperature [54]. Figure 6d,e show C-V characteristics of ALD-HfO$_2$/H-diamond MOS capacitors before and after annealing at 300 °C, respectively. Both C-V curves shift to the left hand sides greatly relative to 0 V, thus positive fixed charges with high densities exist in the bulk HfO$_2$ film or close to the HfO$_2$/H-diamond interface [53]. Both C-V curves show hysteresis loops with voltages of 0.4 and 0.5 V, respectively, which implies that there are higher trapped charge density in the bulk HfO$_2$ film than that in the ALD-Al$_2$O$_3$ film, which is possibly ascribed to the oxygen vacancies in the ALD-HfO$_2$ film. Noted that the C-V curves in the depletion regions for the ALD-HfO$_2$/H-diamond MOS capacitor after annealing are sharper than those of before annealing and there is no residual capacitance from −1.2 V to −3.8 V in Figure 6e. Therefore, there is a lower interface trapped charge density for the ALD-HfO$_2$/H-diamond interface after annealing than that before annealing [52]. The C_{max} values for both MOS capacitors are 0.393 and 0.359 µF·cm$^{-2}$, respectively. The difference is possibly ascribed to a little variation of gate electrode area during the fabrication. Based on the C_{max} values and the HfO$_2$ thickness (27.3 nm), the dielectric constants of the HfO$_2$ films before and after annealing are calculated to be 12.1 and 11.2, respectively, which are in good agreement with the reported values (11.7~14) of ALD-HfO$_2$ on Si and GaN substrates [54,55]. Low dielectric constants comparing with the ideal value of around 24 are believed to be the intrinsic property for the amorphous ALD-HfO$_2$ deposited at low temperature (120 °C).

3.2.2. ALD-HfO$_2$/ALD-Al$_2$O$_3$ Multilayer and SD-HfO$_2$/ALD-HfO$_2$ Bilayer

Since k value of the ALD-Al$_2$O$_3$ single layer on the H-diamond is not high and there are high positive fixed charge densities in the ALD-HfO$_2$, we investigate electrical properties of ALD-HfO$_2$/ALD-Al$_2$O$_3$ multilayer and SD-HfO$_2$/ALD-HfO$_2$ bilayer on the H-diamond for MOS capacitors [28,30]. Figure 7a,b show J-V and C-V characteristics for the H-diamond MOS capacitor with the ALD-Al$_2$O$_3$/ALD-HfO$_2$ multilayer as the oxide insulator, respectively. The ALD-Al$_2$O$_3$ and ALD-HfO$_2$ are the first and top layers in contact with the H-diamond surface and gate cover metal, respectively. Each monolayer thickness for ALD-Al$_2$O$_3$ and ALD-HfO$_2$ is 1.0 nm with total thickness for the multilayer of 32.0 nm. The J for the MOS capacitor in Figure 7a at −4.0 V is 2.7×10^{-8} A·cm$^{-2}$, which is lower than those of ALD-Al$_2$O$_3$/H-diamond and as-fabricated ALD-HfO$_2$/H-diamond MOS capacitors. The C-V curve of the MOS capacitor in Figure 7b shows decrease of stretch-out in the depletion region compared to that for the as-fabricated ALD-HfO$_2$/H-diamond MOS capacitor. Therefore, the interfacial trapped charge densities for the MOS capacitor with the ALD-HfO$_2$/ALD-Al$_2$O$_3$ multilayer as the oxide insulator are lower than that for the as-fabricated ALD-HfO$_2$/H-diamond MOS capacitor [53]. However, there is a large hysteresis loop voltage of around 1.0 V for the C-V curves in Figure 7b, indicating the high trapped charge density in the ALD-HfO$_2$/ALD-Al$_2$O$_3$ multilayer. The C_{max} for the C-V curves of the MOS capacitor is 0.216 µF·cm$^{-2}$ and the k value for the HfO$_2$/Al$_2$O$_3$ multilayer can be calculated to be 7.8, which is lower than that for the ALD-HfO$_2$ single layer of 12.1 and larger than that for the ALD-Al$_2$O$_3$ single layer of 5.4.
Thicknesses of SD-TiO$_2$ films are 24.4, 18.9, and 23.3 nm with the change of oxygen gas content in the SD chamber during the SD-TiO$_2$ deposition. Depletion regions of the SD-HfO$_2$ single layer. This is probably attributed to the low deposition temperature (at RT) for the SD-HfO$_2$ bilayer on the H-diamond for MOS capacitor, respectively (Reprinted from reference [28]); (c,d) J-V and C-V characteristics for the SD-HfO$_2$/ALD-HfO$_2$/H-diamond MOS capacitor. Thus, the issue of high fixed charge density for the ALD-HfO$_2$/H-diamond MOS capacitor is resolved. Additionally, the C-V curve in the depletion region shows sharp dependence and small hysteresis voltage loop of 0.1 V for the SD-HfO$_2$/ALD-HfO$_2$/H-diamond MOS capacitor, indicating its lower trapped charge densities in the SD-HfO$_2$/ALD-HfO$_2$ bilayer and at the SD-HfO$_2$/ALD-HfO$_2$/H-diamond interfaces.

3.2.3. SD-TiO$_2$/ALD-Al$_2$O$_3$ and ALD-TiO$_2$/ALD-Al$_2$O$_3$ Bilayers

Figure 8a shows J-V characteristics for the SD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOS capacitors. Thicknesses of SD-TiO$_2$ films are 24.4, 18.9, and 23.3 nm with the change of oxygen gas content in the SD chamber of 0%, 10%, and 20%, respectively. When the chamber gas during the SD-TiO$_2$ deposition is only Ar (O$_2$: 0%), the J of the received MOS capacitor is lower than 10$^{-5}$ A·cm$^{-2}$ at gate voltage of −4.0 V. As the gate voltage changes from 0 to −9.0 V, the J increases with the gate voltage changing from −2.0 to 4.0 V. As the oxygen gas content in the SD chamber increases from 0% to as large as 10% and 20%, there are very high leakage current densities for MOS capacitor, respectively (Reprinted from reference [30]).
that there are rarely positive charges for the ALD-Al2O3/H-diamond MOS capacitor. Therefore, the positive charges in the SD-TiO2 (O2: 0%)/ALD-Al2O3/H-diamond MOS capacitor possibly exist in the SD-TiO2/ALD-Al2O3 bilayer. When the gate voltage shifts to the left hand side relative to −2.5 V (blue dashed line), the capacitance maxima separate with the gate voltage sweeping directions, which is possibly attributed to the high J at voltage of −4.0~−2.5 V. A hysteresis loop (0.3 V) for the C-V curve is possibly ascribed to the existence of trapped charges in the SD-TiO2/ALD-Al2O3 bilayer. The Cmax for the SD-TiO2 (O2: 0%)/ALD-Al2O3/H-diamond MOS capacitor is 0.73 µF cm−2 at −2.5 V. The k value of the SD-TiO2/ALD-Al2O3 bilayer can be calculated to be 22.5.

Figure 8. (a) J-V characteristics of the SD-TiO2/ALD-Al2O3/H-diamond MOS capacitors with O2 content in the SD chamber of 0%, 10%, and 20%, respectively (Reprinted from reference [31]); (b) C-V characteristics of the SD-TiO2 (O2: 0%)/ALD-Al2O3/H-diamond MOS capacitor; (c) J-V characteristics of ALD-TiO2/ALD-Al2O3/H-diamond MOS capacitors with ALD-Al2O3 buffer layer thicknesses of 0, 1.0, 2.0, and 4.0 nm, respectively; (d-g) C-V characteristics of the ALD-TiO2/ALD-Al2O3/H-diamond MOS capacitors with ALD-Al2O3 buffer layer thicknesses of 0, 1.0, 2.0, and 4.0 nm, respectively (Reprinted from reference [31]).
Figure 8c shows the leakage current densities of the ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOS capacitors. The ALD-TiO$_2$ thickness for each sample is 25.0 nm. The ALD-Al$_2$O$_3$ buffer layer thicknesses are 0, 1.0, 2.0, and 4.0 nm, respectively. The black, red, green, and blue lines represent the leakage current densities for the MOS capacitors with the ALD-Al$_2$O$_3$ buffer layer thickness changing from 0 to 4.0 nm, respectively. With increase of the ALD-Al$_2$O$_3$ buffer layer thickness, the leakage current density decreases at gate voltage of −4.0 V. Since the ΔE_V at the ALD-TiO$_2$/H-diamond heterointerface is low, the leakage current density for the ALD-TiO$_2$/H-diamond MOS capacitor is quite high [41]. While there is 1.0 nm-thick Al$_2$O$_3$ buffer layer for the ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOS capacitor, the leakage current density is still high due to hole tunneling effect. When the buffer layer thicknesses are 2.0 and 4.0 nm, the leakage current densities of the MOS capacitors are improved to be lower than 1.7×10^{-3} and 6.0×10^{-6} A·cm$^{-2}$, respectively. Figure 8d–g show the C-V characteristics for ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOS capacitors with ALD-Al$_2$O$_3$ buffer layer thicknesses of 0, 1.0, 2.0, and 4.0 nm, respectively. The depletion regions for all the MOS capacitors are plotted at left hand sides relative to 0 V. Thus, there are positive charges at the ALD-TiO$_2$/ALD-Al$_2$O$_3$ bilayers [53]. In Figure 8d–g, the C_{max} values decrease greatly with the gate voltages changing from −1.0 to −4.0 V and from −2.0 to −4.0 V, respectively, which are positively attributed to their high leakage current densities. When the thickness of ALD-Al$_2$O$_3$ buffer layer increases to be 2.0 nm, there are distinct accumulation and depletion regions for the C-V characteristics of the MOS capacitor. However, a small hysteresis loop of 0.3 V exists. On the contrary, the hysteresis loop is only 0.06 V for the MOS capacitor with the ALD-Al$_2$O$_3$ buffer layer thickness of 4.0 nm. According to the C_{max} value of 0.83 μF·cm$^{-2}$ for the ALD-TiO$_2$ (25.0 nm)/ALD-Al$_2$O$_3$ (4.0 nm)/H-diamond MOS capacitor, the k value for the ALD-TiO$_2$/ALD-Al$_2$O$_3$ bilayer is deduced to be 27.2, which is larger than those of other oxide insulators on the H-diamond for the MOS capacitors.

3.2.4. Discussion for High-k Oxide/H-Diamond MOS Capacitors

We have demonstrated above for the electronic properties of several high-k oxide insulators on the H-diamond for the MOS capacitors. The J at −4.0 V, k values of oxide, C-V curve hysteresis loop voltage, and C-V curve voltage shift relative to 0 V for them are summarized in Table 3. Except for SD-TiO$_2$ (O$_2$: 0%) / ALD-Al$_2$O$_3$ / H-diamond MOS capacitors, the J at −4.0 V for other MOS capacitors is lower than 6.0×10^{-6} A·cm$^{-2}$. The k value of ALD-TiO$_2$/ALD-Al$_2$O$_3$ bilayer (27.2) is higher than those of ALD-Al$_2$O$_3$ (5.4), ALD-HfO$_2$ (12.1), ALD-HfO$_2$/ALD-Al$_2$O$_3$ multilayer (7.8), SD-HfO$_2$/ALD-HfO$_2$ bilayer (9.1), and SD-TiO$_2$/ALD-Al$_2$O$_3$ bilayer (22.5). The hysteresis loop voltages for C-V curves of the ALD-Al$_2$O$_3$/H-diamond, SD-HfO$_2$/ALD-HfO$_2$/H-diamond, and SD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOS capacitors are lower than 0.1 V, indicating their low trapped charge densities in the oxide insulators. There are large voltage shift relative to 0 V for the ALD-HfO$_2$/H-diamond, SD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond, and ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOS capacitors. Since hysteresis loop of C-V curves for the MOS capacitor with ALD-HfO$_2$/ALD-Al$_2$O$_3$ multilayer as oxide insulator is very large, we do not show its voltage shift relative to 0 V. There are small voltage shifts for the ALD-Al$_2$O$_3$/H-diamond and SD-HfO$_2$/ALD-HfO$_2$/H-diamond MOS capacitors, indicating their low fixed charged densities in the oxides. For the MOS capacitor gas sensors, reactions between gases and catalytic metals make charges accumulation at the metal/oxide interfaces, leading to the shift of C-V curve in the depletion region. Therefore, the best oxide insulators for the MOS capacitor gas sensors are those having low fixed and trapped charge densities. Based on the electrical properties of MOS capacitors, the ALD-Al$_2$O$_3$ and SD-HfO$_2$/ALD-HfO$_2$ bilayer are possibly two good choices for the applications of the H-diamond MOS capacitor gas sensors.
Table 3. Electrical properties of high-k oxide/H-diamond MOS capacitors.

Oxide Insulators	I at -4.0 V (A-cm$^{-2}$)	k	Hysteresis Loop Voltage (V)	Voltage Shift Related to 0 V (V)
ALD-Al$_2$O$_3$	1.0×10^{-7}	5.4	0	small
ALD-HfO$_2$ (300 °C annealing)	8.5×10^{-9}	11.2	0.5	large
ALD-HfO$_2$/ALD-Al$_2$O$_3$ multilayer	2.7×10^{-8}	7.6	1.0	-
SD-HfO$_2$/ALD-HfO$_2$ bilayer	1.9×10^{-7}	9.1	0.1	small
SD-TiO$_2$(O$_2$: 0%)/ALD-Al$_2$O$_3$ bilayer	1.0×10^{-2}	22.5	0.3	large
ALD-TiO$_2$/ALD-Al$_2$O$_3$ (4 nm) bilayer	6.0×10^{-6}	27.2	0.06	large

3.3. Electrical Properties of H-Diamond MOSFETs

Since there are low fixed and trapped charge densities for the ALD-Al$_2$O$_3$/H-diamond and SD-HfO$_2$/ALD-HfO$_2$/H-diamond MOS capacitors and there is the highest k value for the ALD-TiO$_2$/ALD-Al$_2$O$_3$ bilayer, we will show electrical properties of the ALD-Al$_2$O$_3$/H-diamond, SD-HfO$_2$/ALD-HfO$_2$/H-diamond, and ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOSFETs. Figure 9a,c,e show drain-source current versus drain voltage (I_{DS}-V_{DS}) characteristics for the ALD-Al$_2$O$_3$/H-diamond, SD-HfO$_2$/ALD-HfO$_2$/H-diamond, and ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOSFETs, respectively. Gate length (L_G) and gate width (W_G) are 3 and 100 μm for the ALD-Al$_2$O$_3$/H-diamond MOSFET, respectively [39]. Those are 4 and 150 μm for the SD-HfO$_2$/ALD-HfO$_2$/H-diamond and ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOSFETs, respectively [30]. Interspaces between source/drain and gate are around 1.2 ± 0.1, 5.0, and 4.0 μm for the ALD-Al$_2$O$_3$/H-diamond, SD-HfO$_2$/ALD-HfO$_2$/H-diamond, and ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOSFETs, respectively. Gate-source voltage (V_{GS}) is varied from -9.0 to 0 V in steps of $+0.5$ V and from -9.0 to 0 V in steps of $+0.5$ V, respectively. All of curves show obvious pinch-off and p-type characteristics. The maximum I_{DS} ($I_{DS(max)}$) values are -112.4, -37.6, and -11.6 mA·mm$^{-1}$, respectively. Difference of I_{DS} for the three MOSFETs is attributed to the variations of k. Hole accumulation conditions for the H-diamond channel layer are surface carbon-hydrogen bonds and negatively adsorbed layer [56,57]. Since the carbon-hydrogen bonds are very stable at the temperature lower than 250 °C, the enhancement-mode characteristics for the MOSFETs result from the disappearance of negatively adsorbed layer or the formation of positive charges at the SD-HfO$_2$/ALD-HfO$_2$/H-diamond and ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond interfaces [58]. On/off ratios for all MOSFETs are higher than 10^8. Subthreshold swings are 138, 195, and 79 mV·dec$^{-1}$ for the ALD-Al$_2$O$_3$/H-diamond, SD-HfO$_2$/ALD-HfO$_2$/H-diamond, and ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOSFETs, respectively [31,39].
where the R_{ON} normalized by the W_G was obtained from fitting the $I_{DS}-V_{GS}$ curve. The C_{OX} is the C_{max} of the oxide insulator. The $2R_{SD}$ value was determined based on the linear function between the L_G and R_{ON}. Since the $2R_{SD}$ values for the ALD-Al$_2$O$_3$/H-diamond and ALD-TiO$_2$/ALD-Al$_2$O$_3$/H-diamond MOSFETs were not investigated in our previous studies [31,39], we only calculate the μ_{eff} of H-diamond channel layer for the SD-HfO$_2$/ALD-HfO$_2$/H-diamond MOSFET [30], which is around 38.7 ± 0.5 cm2V$^{-1}$s$^{-1}$.

4. Conclusions

Here, fabrication routines for the H-diamond MOS capacitor and MOSFET, band configurations of high-k oxide/H-diamond heterointerfaces, and electrical properties of the H-diamond
MOS capacitors and MOSFETs were summarized. There were high valence band offsets for ALD-Al₂O₃/H-diamond, ALD-HfO₂/H-diamond, and ALD-TiO₂/ALD-Al₂O₃/H-diamond heterointerfaces. Electrical properties of the H-diamond MOS capacitors with the ALD-Al₂O₃, ALD-HfO₂, ALD-HfO₂/ALD-Al₂O₃ multilayer, SD-HfO₂/ALD-HfO₂ bilayer, SD-TiO₂/ALD-Al₂O₃ bilayer, and ALD-TiO₂/ALD-Al₂O₃ bilayer were investigated and discussed. Except for the SD-TiO₂/ALD-Al₂O₃/H-diamond MOS capacitor, the leakage current densities at −4.0 V for the other MOS capacitors were lower than 6.0 × 10⁻⁶ A·cm⁻². The k value of ALD-TiO₂/ALD-Al₂O₃ bilayer was 27.2, which was higher than those of other oxide insulators. There were low fixed and trapped charge densities for the ALD-Al₂O₃/H-diamond and SD-HfO₂/ALD-HfO₂/H-diamond MOS capacitors and good operations for the MOSFETs. These characteristics made them promising for the fabrication of high-performance H-diamond MOS capacitor and MOSFET gas sensors.

Acknowledgments: This work was supported by KAKENHI (No. 18K13806 and No. 16H06419) projects, Leading Sensors 2018 and Initiative for Excellent Young Researchers (LEADER) program, and NIMS Nanofabrication Platform project sponsored by the Ministry of Education, Culture, Sports, and Technology, Japan.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bhatnagar, M.; Baliga, B.J. Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Tran. Electron Dev. 1993, 40, 645–655. [CrossRef]
2. Saito, W.; Takada, Y.; Kuraguchi, M.; Tsuda, K.; Omura, I.; Ogura, T.; Ohashi, H. High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior. IEEE Tran. Electron Dev. 2013, 50, 2526–2531. [CrossRef]
3. Umezawa, H.; Nagase, M.; Kato, Y.; Shikata, S.I. High temperature application of diamond power device. Diam. Relat. Mater. 2012, 24, 201–205. [CrossRef]
4. Wort, C.J.H.; Balmer, R.S. Diamond as an electronic material. Mater. Today 2008, 11, 22–28. [CrossRef]
5. Gaska, R.; Shur, M.S.; Bykhovski, A.D.; Orlov, A.O.; Snider, G.L. Electron mobility in modulation-doped AlGaN-GaN heterointerfaces. Appl. Phys. Lett. 1999, 74, 287–289. [CrossRef]
6. Trew, R.J. SiC and GaN transistors—is there one winner for microwave power applications? Proc. IEEE 2002, 90, 1032–1047. [CrossRef]
7. Song, K.; Zhang, G.; Nakamura, Y.; Furukawa, K.; Hiraki, T.; Yang, J.; Funatsu, T.; Ohdomari, I.; Kawarada, H. Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution. Phys. Rev. E 2006, 74, 041919. [CrossRef] [PubMed]
8. Dankerl, M.; Eick, S.; Hofmann, B.; Hauf, M.; Ingebrandt, S.; Offenhauser, A.; Stutzmann, M.; Garrido, J.A. Diamond transistor array for extracellular recording from electrogenic cells. Adv. Funct. Mater. 2009, 19, 2915–2923. [CrossRef]
9. Nebel, C.E.; Shin, D.; Rezek, B.; Tokuda, N.; Uetsuka, H.; Watanabe, H. Diamond and biology. J. R. Soc. Interface 2007, 4, 439–461. [CrossRef] [PubMed]
10. Koizumi, S.; Watanabe, K.; Hasegawa, M.; Kanda, H. Ultraviolet emission from a diamond pn junction. Science 2001, 292, 1899–1901. [CrossRef] [PubMed]
11. Mainwood, A. Recent developments of diamond detectors for particles and UV radiation. Semicond. Sci. Technol. 2000, 15, R55–R63. [CrossRef]
12. Gurbuz, Y.; Kang, W.P.; Davidson, J.L.; Kerns, D.V. High-temperature tolerant diamond diode for carbon monoxide gas detection. J. Appl. Phys. 1998, 84, 6935–6936. [CrossRef]
13. Gurbuz, Y.; Kang, W.P.; Davidson, J.L.; Kinser, D.L.; Kerns, D.V. Diamond microelectronic gas sensors. Sens. Actuators B 1996, 33, 100–104. [CrossRef]
14. Davidson, J.L.; Kang, W.P.; Gurbuz, Y.; Holmes, K.C.; Davis, L.G.; Wisitsora-at, A.; Kerns, D.V.; Eidson, R.L.; Henderson, T. Diamond as an active sensor material. Diam. Relat. Mater. 1999, 8, 1741–1747. [CrossRef]
15. Pruvost, F.; Bustarret, E.; Deneuville, A. Characteristics of homoepitaxial heavily boron-doped diamond films from their Raman spectra. Diam. Relat. Mater. 2000, 9, 295–299. [CrossRef]
16. Bustarret, E.; Gheeraert, E.; Watanabe, K. Optical and electronic properties of heavily boron-doped homo-epitaxial diamond. Phys. Status Solidi (a) 2003, 199, 9–18. [CrossRef]
17. Strobel, P.; Riedel, M.; Ristein, J.; Ley, L. Surface transfer doping of diamond. *Nature* 2004, 430, 439–441. [CrossRef] [PubMed]
18. Hayashi, K.; Yamanaka, S.; Okushi, H.; Kajimura, K. Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements. *Appl. Phys. Lett.* 1996, 68, 376–378. [CrossRef]
19. Kawarada, H.; Tsuboi, H.; Naruo, T.; Yamada, T.; Xu, D.; Daicho, A.; Saito, T.; Hiraiwa, A. CH surface. [CrossRef]
20. Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. Normally-off HfO2-based diamond field-effect transistors by AlN/diamond heterostructure. *Phys. Status Solidi (RRL)* 2011, 5, 125–127. [CrossRef]
21. Imura, M.; Hayakawa, R.; Watanabe, E.; Liu, J.W.; Koide, Y.; Amano, H. Demonstration of diamond field effect transistors by AlN/diamond heterostructure. *Phys. Status Solidi (RRL)* 2011, 5, 125–127. [CrossRef]
22. Liu, J.W.; Oosato, H.; Wang, X.; Liao, M.Y.; Koide, Y. Design and fabrication of high-performance diamond field-effect transistors by AlN/diamond heterostructure. *Phys. Status Solidi (RRL)* 2011, 5, 125–127. [CrossRef]
23. Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. *Sens. Actuators B Chem.* 1993, 15, 19–23. [CrossRef]
24. Mizsei, J. How can sensitive and selective semiconductor gas sensors be made? *Sens. Actuators B Chem.* 1995, 23, 173–176. [CrossRef]
25. Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. *Sens. Actuators B Chem.* 1993, 15, 19–23. [CrossRef]
26. Wingbrant, H.; Svenningstorp, H.; Salomonsson, P.; Kubinski, D.; Visser, J.H.; Lofdahl, M.; Spetz, A.L. Using MDSC-FET sensor for detecting NH3 in SCR systems. *IEEE Sens. J.* 2004, 112910. [CrossRef]
27. Kubovic, M.; Kasu, M.; Kageshima, H.; Maeda, F. Electronic and surface properties of H-terminated diamond metal-oxide-semiconductor structures with increased ammonia gas sensitivity. *Appl. Phys. Lett.* 1983, 43, 839–841. [CrossRef]
28. Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. Electrical properties of atomic layer deposited HfO2/Al2O3 multilayer on diamond. *Diam. Relat. Mater.* 2015, 54, 55–58. [CrossRef]
29. Liu, J.W.; Liao, M.Y.; Imura, M.; Oosato, H.; Koide, Y. Electrical properties of atomic layer deposited HfO2/Al2O3 multilayer on diamond. *Diam. Relat. Mater.* 2015, 54, 55–58. [CrossRef]
30. Liu, J.W.; Liao, M.Y.; Imura, M.; Oosato, H.; Koide, Y. Normally-off HfO2-gated diamond field effect transistors. *Appl. Phys. Lett.* 2013, 103, 092905. [CrossRef]
31. Liu, J.W.; Liao, M.Y.; Imura, M.; Banal, R.G.; Koide, Y. Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: Capacitors, field-effect transistors, and logic inverters. *J. Appl. Phys.* 2017, 121, 224502. [CrossRef]
32. Liu, J.W.; Liao, M.Y.; Imura, M.; Oosato, H.; Koide, Y. Diamond field effect transistors with a high-dielectric constant Ta2O5 as gate material. *J. Phys. D Appl. Phys.* 2014, 47, 245102. [CrossRef]
33. Liu, J.W.; Liao, M.Y.; Imura, M.; Tanaka, A.; Iwai, H.; Koide, Y. Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric. *Sci. Rep.* 2014, 4, 6395. [CrossRef] [PubMed]
34. Liu, J.W.; Ohsato, H.; Wang, X.; Liao, M.Y.; Koide, Y. Design and fabrication of high-performance diamond triple-gate field-effect transistors. *Sci. Rep.* 2016, 6, 34757. [CrossRef] [PubMed]
35. Hiramatsuda, H.; Sato, H.; Harada, Y.; Yamamoto, H.; Kasu, M. Diamond field-effect transistors with 1.3 A/mm drain current density by Al2O3 passivation layer. *Jpn. J. Appl. Phys.* 2012, 51, 090112. [CrossRef]
36. Kawarada, H.; Tsuboi, H.; Naruo, T.; Yamada, T.; Xu, D.; Daicho, A.; Saito, T.; Hiraiwa, A. CH surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. *Appl. Phys. Lett.* 2014, 105, 013510. [CrossRef]
37. Kitabayashi, Y.; Kudo, T.; Tsuboi, H.; Yamada, T.; Xu, D.; Shibata, M.; Matsumura, D.; Hayashi, Y.; Syamsul, M.; Inaba, M.; et al. Normally-Off C–H diamond MOSFETs with partial C–O channel achieving 2-kV breakdown voltage. *IEEE Electron Dev. Lett.* 2017, 38, 363–366. [CrossRef]
38. Liu, J.W.; Oosato, H.; Liao, M.Y.; Koide, Y. Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator. *Appl. Phys. Lett.* 2017, 110, 203502. [CrossRef]
39. Liu, J.W.; Ohsato, H.; Liao, M.Y.; Imura, M.; Watanabe, E.; Koide, Y. Logic circuits with hydrogenated diamond field-effect transistors. *IEEE Electron Dev. Lett.* 2017, *38*, 922–925. [CrossRef]
40. Cheng, S.H.; Sang, L.; Liao, M.Y.; Liu, J.W.; Imura, M.; Li, H.; Koide, Y. Integration of high-dielectric constant Ta$_2$O$_5$ oxides on diamond for power devices. *Appl. Phys. Lett.* 2012, *101*, 232907. [CrossRef]
41. Yamasaki, S.; Gheeraert, E.; Koide, Y. Doping and interface of homoepitaxial diamond for electronic applications. *MRS Bull.* 2014, *39*, 499–503. [CrossRef]
42. Kordoš, P.; Gregušová, D.; Stoklas, R.; Gaží, Š.; Novák, J. Transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors with Al$_2$O$_3$ of different thickness. *Solid-State Electron.* 2008, *52*, 973–979. [CrossRef]
43. Marinel, S.; Choi, D.H.; Heuguet, R.; Agrawal, D.; Lanagan, M. Broadband dielectric characterization of TiO$_2$ ceramics sintered through microwave and conventional processes. *Ceram. Int.* 2013, *39*, 299–306. [CrossRef]
44. Zhao, J.; Liu, J.W.; Sang, L.W.; Liao, M.Y.; Coathup, D.; Imura, M.; Shi, B.; Gu, C.Z.; Koide, Y.; Ye, H. Assembly of a high-dielectric constant thin TiO$_2$ layer directly on H-terminated semiconductor diamond. *Appl. Phys. Lett.* 2016, *108*, 012105. [CrossRef]
45. Banal, R.G.; Imura, M.; Liu, J.W.; Koide, Y. Structural properties and transfer characteristics of sputter deposition AlN and atomic layer deposition Al$_2$O$_3$ bilayer gate materials for H-terminated diamond field effect transistors. *J. Appl. Phys.* 2016, *120*, 115307. [CrossRef]
46. Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. Band offsets of Al$_2$O$_3$ and HfO$_2$ oxides deposited by atomic layer deposition technique on hydrogenated diamond. *Appl. Phys. Lett.* 2012, *101*, 252108. [CrossRef]
47. Vanhove, E.; De Sanoit, J.; Arnault, J.C.; Saada, S.; Mer, C.; Mailley, P.; Bergonzo, P.; Nesladek, M. Stability of H-terminated BDD electrodes: An insight into the influence of the surface preparation. *Phys. Status Solidi (a)* 2007, *204*, 2931–2939. [CrossRef]
48. Shi, K.; Liu, X.L.; Li, D.B.; Wang, J.; Song, H.P.; Xu, X.Q.; Wei, H.Y.; Jiao, C.M.; Yang, S.Y.; Song, H.; et al. Valence band offset of GaN/diamond heterojunction measured by X-ray photoelectron spectroscopy. *Appl. Surf. Sci.* 2011, *257*, 8110–8112. [CrossRef]
49. Liu, J.W.; Liao, M.Y.; Cheng, S.H.; Imura, M.; Koide, Y. Interfacial chemical bonding state and band alignment of CaF$_2$/hydrogen-terminated diamond heterojunction. *J. Appl. Phys.* 2013, *113*, 123706. [CrossRef]
50. Liu, J.W.; Cheng, S.H.; Liao, M.Y.; Imura, M.; Tanaka, A.; Iwai, H.; Koide, Y. Interfacial electronic band alignment of Ta$_2$O$_5$/hydrogen-terminated diamond heterojunction determined by X-ray photoelectron spectroscopy. *Diam. Relat. Mater.* 2013, *38*, 24–27. [CrossRef]
51. Liu, G.X.; Shan, F.K.; Lee, W.J.; Shin, B.C. Growth temperature dependence of TiO$_2$ thin films prepared by using plasma-enhanced atomic layer deposition method. *J. Korean Phys. Soc.* 2007, *50*, 1827. [CrossRef]
52. Deal, B.E. Standardized terminology for oxide charges associated with thermally oxidized silicon. *IEEE Trans. Electron Dev.* 1980, *27*, 606–608. [CrossRef]
53. Lai, B.C.M.; Kung, N.H.; Lee, J.Y.M. A study on the capacitance–voltage characteristics of metal-Ta$_2$O$_5$-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications. *J. Appl. Phys.* 1999, *85*, 4087.
54. Chang, Y.C.; Chiu, H.C.; Lee, Y.J.; Huang, M.L.; Lee, K.Y.; Hong, M.; Chiu, Y.N.; Kuo, J.; Wang, Y.H. Structural and electrical characteristics of atomic layer deposited high k HfO$_2$ on GaN. *Appl. Phys. Lett.* 2007, *90*, 232904. [CrossRef]
55. Kukli, K.; Ritala, M.; Sajavaara, T.; Keinonen, J.; Leskelä, M. Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors. *Thin Solid Films* 2002, *416*, 72–79. [CrossRef]
56. Takeuchi, D.; Riedel, M.; Ristein, J.; Ley, L. Surface band bending and surface conductivity of hydrogenated diamond. *Phys. Rev. B* 2003, *68*, 041304. [CrossRef]
57. Maier, F.; Riedel, M.; Mantel, B.; Ristein, J.; Ley, L. Origin of surface conductivity in diamond. *Phys. Rev. Lett.* 2000, *85*, 3472. [CrossRef] [PubMed]
58. Liu, J.W.; Liao, M.Y.; Imura, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Koide, Y. Control of normally on/off characteristics in hydrogenated diamond metal-insulator-semiconductor field-effect transistors. *J. Appl. Phys.* 2015, *118*, 115704. [CrossRef]