Parallel waveform extraction algorithms for the Cherenkov Telescope Array Real-Time Analysis

Andrea Zolia, Andrea Bulgarellia, Adriano De Rosaa, Alessio Aboudana, Valentina Fiorettia, Giovanni De Cesarea, Ramin Marxb, for the CTA Consortium†

aINAF/IASF Bologna, Bologna, Italy
bMax-Planck-Institut für Kernphysik, Heidelberg, Germany

E-mail: zoli@iasfbo.inaf.it

The 34th International Cosmic Ray Conference,
30 July-6 August, 2015
The Hague, The Netherlands

The Cherenkov Telescope Array (CTA) is the next generation observatory for the study of very high-energy gamma rays from about 20 GeV up to 300 TeV. Thanks to the large effective area and field of view, the CTA observatory will be characterized by an unprecedented sensitivity to transient flaring gamma-ray phenomena compared to both current ground (e.g. MAGIC, VERITAS, H.E.S.S.) and space (e.g. Fermi) gamma-ray telescopes. In order to trigger the astrophysics community for follow-up observations, or being able to quickly respond to external science alerts, a fast analysis pipeline is crucial. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a fast and automated science alert trigger system, becoming a key system of the CTA observatory. Among the CTA design key requirements to the RTA system, the most challenging is the generation of alerts within 30 seconds from the last acquired event, while obtaining a flux sensitivity not worse than the one of the final analysis by more than a factor of 3. A dedicated software and hardware architecture for the RTA pipeline must be designed and tested. We present comparison of OpenCL solutions using different kind of devices like CPUs, Graphical Processing Unit (GPU) and Field Programmable Array (FPGA) cards for the Real-Time data reduction of the Cherenkov Telescope Array (CTA) triggered data.

* Speaker.
† Full consortium author list at http://cta-observatory.org
1. Introduction

The Cherenkov Telescope Array (CTA) [1] will be the biggest ground-based very-high energy (VHE) γ-ray observatory, with a factor of 10 improvement in sensitivity compared to both current ground (e.g. MAGIC [2], VERITAS [3], HESS [4]) and space (e.g. Fermi [5]) gamma-ray telescopes considering in lower energy range. To achieve this sensitivity three types of telescopes will be organized in a grid. In order to cover the entire sky, the observatory will be divided into two array of telescopes across two sites, one in each hemisphere.

Both arrays will be able to observe transient phenomena like Gamma-Ray Bursts (GRBs) and gamma-ray flares. To capture these phenomena during their evolution and for effective communication to the astrophysical community, speed is crucial and requires a system with a reliable automated trigger that can issue alerts immediately upon detection. This task will be performed by the level-A analysis, also known as Real-Time Analysis (RTA), system of CTA [6] which is capable of triggering scientific alerts within 30 seconds from the beginning of an event. The RTA sensitivity will be not worse than the final one by more than a factor of 3. The RTA alerts will be used, also, to repoint part or the whole array to observe events that cannot be otherwise possible.

RTA is a key component of the CTA on-site analysis infrastructure, and a huge amount of computing power for the elaboration is foreseen. This work benchmarks both performances and performances per Watt, of different High Performance Computing (HPC) solutions for the RTA waveform extraction, considering both the temporal constraints and the current CTA prototyping data flow.

2. Waveform extraction algorithm

The waveform extraction algorithm is the first step of the RTA pipeline. We used a six-sample sliding window method, one for each waveform, to find the window with the maximum sum of samples and its related time [7]. The extracted \(t \) time associated to the signal window is computed by the mean of the sample time values, weighted by the sample value, using the following equation:

\[
 t = \frac{\sum_{i=0}^{ws-1} t_i s_i}{\sum_{i=0}^{ws-1} s_i}
\]

being \(i \) the sample index within the selected window, \(ws \) the window size, \(s_i \) the sample value and \(t_i \) the \(i \)-sample signal time.

The algorithm input is the camera data generated from the CTA PROD2 simulations [8] and saved using the Streaming Data Format (SDF) [9]. In order to simulate correctly an RTA pipeline and access the camera raw data we used the PacketLib C++ library, preloading the raw camera packets into a circular buffer. Each raw camera packet contains 1141 or 1855 pixels, depending on the camera type, with a fixed number of samples of 40 or 30 for each waveform respectively. Considering the expected triggered camera event rate of 41 kHz, and a mean packet size of 100 kB, samples of two bytes, the waveform extraction algorithm must process 4.1 kB/s of events.

The sequential algorithm version extracts the waveforms per-event using a window of \(M \) and an input size of \(N = WS \), being \(W \) the number of pixels and \(S \) the number of samples of a triggered camera event. The final complexity without optimizations it is \(O(NM) \). We avoided the window
loop, and so the M complexity, reusing the computed sums of the previous windows. The final complexity of our best sequential algorithm is then $O(N)$. We optimized also the case when N is little, splitting the algorithm into two parts: the first computes the sums and their relative times while the second one finds the maximum sum using a reduction, with a lower complexity.

To run the algorithm on multiple threads we used OpenMP [10]. The complexity of the parallel algorithm is $O(N/P)$ where P is the number of threads. In our scenario, the parallel access from multiple threads to the same buffer, represent a critical section. Notice that in a real case the performances and the scalability of the algorithm are in general worse than the theoretical case.

A GPU or an FPGA solution can perform better, so, we tested the algorithm using OpenCL [11]. OpenCL is an open standard framework for writing programs that execute across heterogeneous platforms, providing parallel computing using task-based and data-based parallelism. We implemented two different kernels (C99-like methods) parallelizing on the pixels and on the slices respectively. To reduce the number of OpenCL calls and use correctly the accelerators, we combined multiple events into groups. Testing different group sizes we have found a good trade-off between the buffer size and minimum performances required of 100 events per group regarding the GPU and 10k events for the FPGA. This method emulates the real buffering of the data into different queues depending on the camera type. For the benchmarks we counted the event grouping latency due to the copy. We have performed some optimization, like the coalescent access to the global device memory. For the FPGA we implemented a single work-item kernel unrolling the windows loops, with a resulting board usage of 80%.

Each test was run over the input circular buffer for 100K triggered camera events, considering the entire event loop timing, including the parallel access to the input buffer, the waveform extraction and the data transfer between cpu and accelerators (only using OpenCL). The used test machine has the following tested devices: an Intel Xeon E5-2697 v3 CPU with 132 GB of RAM DDR3, an Nvidia Tesla K40 GPU and the Altera Stratix V GT FPGA. The machine runs CentOS 6.5 with gcc 4.8.2. The OpenCL device drivers versions installed are OpenCL 1.2 (Build 57), provided by the Intel OpenCL Runtime 15, OpenCL 1.1 CUDA 6.5.48 provided by CUDA 6.5.14 and OpenCL 1.0 Altera SDK for OpenCL, Version 14.1.1 provided by the Altera SDK for OpenCL [12]. The sequential and the OpenMP versions are optimized using -O2 compiler optimization options.
3. Results and analysis

Algorithm	Device	Nominal Power watt	Watt watt	Performance kevents/s (GB/s)	Performance per watt kevents/s/watt
Sequential	CPU	147	47	6.66 (0.71)	0.141
OpenMP 8 cores	CPU	147	137	46.80 (4.96)	0.341
OpenMP 56 cores	CPU	147	291	164.40 (17.43)	0.861
OpenCL	CPU	147	248	25.43 (2.70)	0.102
	GPU	163	95	36.97 (3.91)	0.389
	FPGA	164	21	10.93 (0.91)	0.520

Table 1: The collected results for the sequential algorithm on a single CPU core and for the parallel algorithms developed with OpenMP and OpenCL. The nominal power is the power consumption of the test machine at nominal state. The watt column is the power consumption difference from nominal state while running the tests. The target performances are of 40 kevents/s. Higher performances per watt (power efficiency) are better.

The results of our tests are reported in Table 1. We have obtained optimal results in terms of performances using OpenMP using all the 56 cores of the Intel CPU. Regarding the OpenCL solutions, more than half of the time is spent on data transfer to devices, plus an additional time is spent on the host to group the events. The OpenCL kernels execution is memory-bound, with most of the time spent loading and storing data on the device memory. Considering these problems, we can say that GPUs performed quite well, almost reaching the goal of 4 GB/s without much optimization. On the contrary, the given FPGA OpenCL solution gives currently poor performances. The reasons are mainly the kernel design and the bus bottleneck. The current board design is based on a single work-item kernel, exploiting the pipeline parallelism obtained from the window loop unrolling. Better results can be obtained using the “multiple compute units” optimization. With this kernel and using the Altera channels for communication between kernels we can theoretically double the performances. Another way to greatly improve the performances can be the use of a double buffer to parallelize the data transfer to the device and the kernel execution. This improvement applies also to the GPU case. Regarding the other problem of the bus access, instead, we have used the Altera SDK for OpenCL with the Nallatech OpenCL board Intellectual Property (IP). By now, it is not available a PCI-Express v3 bus IP, but only the PCI-Express v2 IP one. So, even if the FPGA is physically attached to a PCI-Express v3 bus, the memory bandwidth reaches only 2.5GB/s on both directions (tested using the provided device memcpy test). This bottleneck should be overcome with the future IP releases. Using the PCI-Express v3 IP the data transfer should be enough to reach the performance goal. It should be even better using the CAPI bus, a dedicated solution developed by IBM to increase the performances of the PCI-E buses 1.

In terms of performances per watt we reached the best results using the FPGA solution. Given a single watt, the FPGA performs 34% better than 8 CPU cores, which are the required to sustain the target event rate of 41 kevents/s. The GPU seems to be quite efficient too, but we its nominal consumption has to be subtracted, so the real consumption is greater than the reported one.

1http://www-304.ibm.com/webapp/set2/sas/f/capi/home.html
4. Summary and conclusion

The heterogenous computing is a key factor to maximize the performances of the RTA pipeline. More importantly, each algorithm can be tailored to run over different kind of devices, obtaining a solution that is also energy efficient. This is important considering that the RTA pipeline will run on-site, but cutting the maintenance costs could be useful even for the CTA software running off-site.

With this work we tested the waveform extraction algorithm using different kind of device and methods. We reached optimal results with the CPU in terms of performances, good ones with GPU and further tests for the FPGA are required. Regarding the energy efficiency, instead, we reached the best results with the FPGA, 34% worse with the CPU and even worse with the GPU.

We plan to to test a better OpenCL kernel for the FPGA as soon as PCI-Express v3 bus IP will be released from Nallatech, we will test a double buffer solutions for OpenCL, we will extend the tests using a IBM Power8 machine and use lower-budget GPUs, we will evaluate the other RTA algorithms. The development of other algorithms for the RTA are in progress. Considering that this problems are more cpu intensive, we expect to see bigger advantages using GPU or FPGA devices.

5. Acknowledgments

We gratefully acknowledge support from the agencies and organizations listed under Funding Agencies at this website: http://www.cta-observatory.org/.

References

[1] B. S. Acharya, et al., Introducing the CTA concept, Astr. Phys. 43 (2013) 3.
[2] C. Bigongiari, et. al., The magic telescope, in proceeding of the International Europhysics Conference on High Energy Physics, PoS(HEP2005)020 (2005)
[3] N. Galante, et al., Status and highlights of VERITAS in proceeding of the 5th International Meeting on High Energy Gamma-Ray Astronomy Conference (2012)
[4] F. Aharonian, et al., Observations of the Crab nebula with HESS Astron.Astrophys. 457 (2006) 899 [astro-ph/0607333].
[5] F. Acero, et al., Fermi Large Area Telescope Third Source Catalog, ApJS, in publication.
[6] A. Bulgarelli, et al., The On-Site Analysis of the Cherenkov Telescope Array, these proceedings.
[7] J. Albert, et al., FADC signal reconstruction for the MAGIC Telescope, Nucl.Instrum.Meth. A 594 (2008) 407 [astro-ph/0612385].
[8] K. Bernlöhr, et al., Monte Carlo design studies for the Cherenkov Telescope Array, Astr. Phys. 43 (2013) 171 [astro-ph/0612385].
[9] A. Bulgarelli, et. al., The Real-Time Analysis of the Cherenkov Telescope Array Observatory, in proceeding of the 33rd 34th International Cosmic Ray Conference, (2015).
[10] B. Chapman, et. al., Using OpenMP: Portable Shared Memory Parallel Programming, The MIT Press, Cambridge (Massachusetts) and London 2007.
[11] J. E. Stone, D. Gohara, and G. Shi., *OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems*, Computing in science & engineering **12** (2010), 66.

[12] T.S. Czajkowski, et. al., *From opencl to high-performance hardware on FPGAs*, in 22nd Field Programmable Logic and Applications Conference (2012).