Scrape-off layer (SOL) power width scaling and correlation between SOL and pedestal gradients across L, I and H-mode plasmas at ASDEX Upgrade

D Silvagni1,2, T Eich1, M Faitsch1, T Happel1, B Sieglin1, P David1, D Nille1, L Gil3, U Stroth1,2, the ASDEX Upgrade team4 and the EUROfusion MST1 team5

1Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany
2Physik-Department E28, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
3Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Lisboa, PT, Portugal

E-mail: davide.silvagni@ipp.mpg.de

Received 11 November 2019, revised 16 January 2020
Accepted for publication 11 February 2020
Published 26 February 2020

Abstract
A cross-regime (L-mode, I-mode and H-mode) database combining scrape-off layer (SOL) power decay length λ_q divertor measurements and upstream SOL electron pressure, temperature and density decay lengths has been assembled at ASDEX Upgrade. It is found that a cross-regime λ_q scaling is best described by a local edge quantity, such as the edge electron pressure evaluated at $\rho_{pol} = 0.95$. Furthermore, λ_q exhibits a clear correlation with edge electron pressure gradient lengths, no matter if taken inside or outside the separatrix. In addition, the database reveals that SOL and pedestal electron pressure gradients are remarkably well correlated across all confinement regimes. The physical interpretation of this observation is discussed with regard to an edge pressure critical gradient paradigm governing the edge physics and to a turbulence spreading in the SOL. Moreover, it is shown that the Spitzer–Härm electron conduction regime is a reasonable approximation to estimate λ_q across different confinement regimes. The main implication of these findings is that a widening of λ_q is linked to a reduction of edge electron pressure gradients.

Keywords: power exhaust, scrape-off-layer, divertor, tokamak, L-mode, I-mode, H-mode

(Some figures may appear in colour only in the online journal)

1. Introduction

Power exhaust is one of the key challenges on the way to commercial fusion power plants. In a diverted tokamak, the power crossing the separatrix enters a region called the scrape-off layer (SOL), which is characterized by magnetic field lines intercepting the first wall. The related heat flux, if not lost by volumetric processes in the SOL, reaches the divertor target plates and must not exceed material limits [1]. One of the key quantities that sets the peak heat flux entering the divertor chamber is the so-called exponential power decay
length in the SOL, λ_p. The value of this quantity strongly affects the operational window of ITER and of any other next step fusion device in terms of the permissible values of the fusion power and power gain Q [2–4].

Even though in the last years some progress has been made in the fundamental understanding of what sets the power fall-off length [5–7], it remains mainly an empirical science governed by scaling laws. In this respect, a major effort was carried out in 2011 in assembling a multi-machine database of H-mode power decay lengths [8], which have been evaluated between Edge Localized Modes (ELMs) [9, 10]. It was shown that λ_p scales approximately inversely with the poloidal magnetic field at the outer midplane and that such scaling is independent of machine size. More recently, a new attempt to find a cross-regime (L, I and H-mode) λ_p scaling was carried out at Alcator C-Mod [11]. It was found that the power decay length exhibits a dependence on volume-averaged core plasma pressure across all confinement regimes analyzed, $\lambda_p \propto P^{-0.5}$. This may suggest that λ_p is connected to global plasma parameters; however, the fact that critical gradient models for core transport also depend on pedestal top parameters can introduce a correlation between edge and core (and, thus, between edge and global plasma parameters). This can mask the actual physically relevant dependence of λ_p on local edge plasma parameters. In order to disentangle the effect of local and global parameters on λ_p, it is of interest to investigate plasma discharges with similar global parameters and different pedestal top values.

The present work reports on power decay length correlation studies across different confinement regimes present at ASDEX Upgrade (AUG), namely L-mode, I-mode, inter-ELM H-mode and the recently achieved stationary ELM-free H-mode [12]. Three main questions will be addressed throughout this paper: (1) Is a cross-regime λ_p scaling better described by global or local edge plasma parameters? (2) Is there a connection between SOL and pedestal gradients? (3) How are upstream (outer midplane) SOL decay lengths correlated to λ_p across different confinement regimes?

To answer the first question, we analyze a wide range of discharges that allows us to break the correlation between global and edge plasma parameters. In all these discharges, the heat flux profile onto the divertor target is inferred from infrared cameras measurements [13]. Indeed, it is shown that λ_p exhibits a clear correlation with a local edge plasma parameter (the electron pressure measured at $\rho_{pol} = 0.95$) across all confinement regimes, while it shows a more scattered correlation with global quantities such as the volume-averaged core plasma pressure or the average poloidal magnetic field.

To answer the second and third questions, the divertor database is enriched with near-SOL electron pressure, temperature and density decay lengths ($\lambda_{n_e}^{\text{SOL}}$, $\lambda_{T_e}^{\text{SOL}}$ and $\lambda_{n_e}^{\text{SOL}}$, respectively) estimated from the edge Thomson scattering system [14] installed at AUG. To the knowledge of the authors, for the first time this allowed us to build a cross-regime (L, I and H-mode) λ_p and $\lambda_{n_e}^{\text{SOL}}$ database. In agreement with earlier studies [15–17], it is shown that the relation $\lambda_p = \frac{2}{3} \lambda_{n_e}^{\text{SOL}}$ describes the correlation between λ_p at the divertor and $\lambda_{n_e}^{\text{SOL}}$ at the outer midplane well across all confinement regimes analyzed, which are all in attached divertor conditions. On the other hand, a larger scatter is found when λ_p is plotted against $\lambda_{n_e}^{\text{SOL}}$, suggesting a weaker role of $\lambda_{n_e}^{\text{SOL}}$ in setting λ_p. Lastly, evidence of a strong correlation between SOL and pedestal electron pressure gradients across all confinement regimes is shown. The physical interpretation of this observation is discussed, in particular, with regard to a critical edge pressure gradient paradigm governing the edge physics [18, 19] and to a turbulence spreading model for the SOL [20, 21].

The paper is organized as follows: In section 2, the database is described. In section 3, the key diagnostics and the evaluation method are shown. The scaling of λ_p with global and local edge quantities is outlined in section 4, whereas correlations between SOL and pedestal gradients are shown in section 5. In section 6, the relation between upstream SOL decay lengths and λ_p is discussed. Considerations of the presented results are exposed in section 7 and, finally, in section 8, the main conclusions are drawn.

2. Database

ASDEX Upgrade is a medium-size divertor tokamak [22] that can perform discharges both in lower single null (LSN) and in upper single null (USN) plasma configurations. The closed lower outer divertor (vertical target) is composed of bulk tungsten tiles inclined in the toroidal direction to prevent leading edge formation. Therefore, the lower divertor is optimized for one magnetic field direction. On the other hand, the open upper divertor (horizontal target) is composed of tungsten-coated graphite tiles that are not toroidally tilted, allowing thus more flexibility in the magnetic field direction. At AUG, L-mode and H-mode confinement regimes are regularly achieved in both LSN and USN configurations. However, the I-mode [23, 24] needs a higher H-mode power threshold to be accessed. This is usually achieved by using magnetic configurations with the ion ∇B drift pointing away from the active X-point, i.e. the so-called unfavorable configuration in terms of H-mode access. Plasma discharges in the unfavorable configuration can be achieved in both the LSN and USN configuration at AUG. However, in LSN, both the toroidal magnetic field and the plasma current need to be reversed in order to keep the same magnetic field line inclination at the divertor tiles to avoid leading edges. On the contrary, USN plasmas in unfavorable configuration are achieved without reversing the plasma current direction, as the divertor tiles are not optimized for one magnetic field line inclination. Since reversing the plasma current limits the usage of the NBI heating system due to strong ion orbit losses, plasmas in the unfavorable configuration—and thus I-modes as well—are more frequently studied in USN at AUG. Therefore, in this work, I-mode discharges are all in USN configuration, while L-mode and H-mode discharges are
Table 1. Parameter range of the ASDEX Upgrade discharges analyzed.

Configuration	L-mode	I-mode	Type-I-ELM	ELM-free
Discharges	USN/LSN	USN	USN/LSN	LSN
\(\tau_{\text{E}}\) (ms)	32–192	38–140	53–213	180–210
\(W_{\text{MHD}}\) (kJ)	68–310	204–394	259–611	270–300
\(\beta_{\text{pol}}\)	0.2–1.1	0.4–1.2	0.6–1.0	0.7
\(H_{\text{pol}}/2\)	0.5–0.9	0.7–0.9	0.8–1.3	0.9–1.0
\(P_{\text{heat}}\) (MW)	0.5–4.2	2.1–4.2	1.4–6.6	1.4–1.7
\(P_{\text{sep}}\) (MW)	0.2–2.6	1.7–2.8	0.5–3.7	0.5–0.8
\(n_e\) \((10^{19} \text{ m}^{-3})\)	1.4–5.5	2.4–6.0	4.9–9.4	7.8–8.4
\(I_p\) (MA)	0.6–1	0.6–1	0.8–1	0.8
\(\langle B_{\text{pol}} \rangle\) (T)	0.2–0.4	0.2–0.4	0.3–0.4	0.3
\(B_i\) (T)	2.5	1.8–3	2.5	2.5
\(\delta\)	0.1–0.4	0.2–0.3	0.1–0.4	0.3

present in both LSN and USN configurations. This allowed us to study L-mode and H-mode plasmas with both ion \(\nabla B\) drift directions (pointing to and away from the active X-point) and with different divertor geometries (closed lower divertor versus open upper divertor). LSN L-mode discharges described in [25] were reexamined here. H-mode data were taken between type-I-ELMs (both in LSN and USN configurations) and in stationary ELM-free plasmas [12] recently achieved at AUG (only in LSN). The database consists of 34 discharges, among which 12 are in LSN, while 22 are in USN. 16 discharges exhibit both L-mode and I-mode plasmas. To guarantee high-quality IR measurements, discharges with impurity seeding and divertor detachment have not been considered. Only deuterium discharges are considered in this study.

Table 1 shows the parameter range covered in the database. The energy confinement time is denoted \(\tau_{\text{E}}\), \(W_{\text{MHD}}\) is the energy stored in the reconstructed magnetic equilibrium, \(\beta_{\text{pol}}\) is the poloidal beta, \(H_{\text{pol}}/2\) is the energy confinement time normalized to the IPB98(y,2) scaling law [26], \(P_{\text{heat}}\) is the heating power, \(P_{\text{sep}}\) is the power crossing the separatrix given by \(P_{\text{sep}} = P_{\text{heat}} - dW/dt - P_{\text{rad}}\), where \(W\) is the total plasma energy and \(P_{\text{rad}}\) is the power radiated within the separatrix, \(n_e\) is the line averaged electron density measured by the DCC interferometer channel H-1, which crosses the plasma core [27], \(I_p\) is the plasma current, \(B_i\) is the toroidal magnetic field at the magnetic axis, \(\delta\) is the plasma triangularity and \(\langle B_{\text{pol}} \rangle\) is the average poloidal magnetic field defined as

\[
\langle B_{\text{pol}} \rangle = \frac{\mu_0 I_p}{2\pi a} \sqrt{\frac{1+\alpha^2}{2}} = \frac{\mu_0 I_p}{2\pi a \tilde{k}},
\]

where \(a\) is the minor radius, \(\kappa\) is the elongation of the plasma and \(\tilde{k} = \sqrt{\frac{1+\alpha^2}{2}}\).

3. Diagnostics and analysis technique

In this work, the most important measured quantities are (i) the heat flux reaching the divertor targets, (ii) the scrape-off layer (SOL) electron temperature, temperature and density decay lengths and (iii) the electron pressure profile in the confined region of the plasma. The heat flux onto the divertor targets is inferred from surface temperature measurements obtained with infrared (IR) cameras [13] installed on the low field side of AUG. The lower outer divertor is observed with a tangential view, whereas the upper divertor targets are monitored using a poloidal view through a periscope. Both IR cameras measure around a wavelength of 4.7 \(\mu\)m. The spatial resolution for the lower outer target is 0.6 mm/pixel, while for the upper outer (inner) target it is 2.3 mm/pixel (1.5 mm/pixel). The different spatial resolution for the upper outer and inner target is due to the viewing angle of the camera looking at the upper divertor. The flux expansion \(f_s\) between the outer midplane and the lower outer, upper outer and upper inner targets is about 6, 7, and 9.5, respectively. Therefore, the spatial resolution at the outer midplane is \(\approx 0.1, 0.3\) and 0.15 mm, respectively. The camera frame rate is between 400 and 2130 Hz. These sampling frequencies are sufficient to resolve inter-ELM phases, as the ELM frequency of the analyzed H-mode discharges ranges between 10 and 70 Hz.

IR cameras measure the divertor target surface temperature from which the heat flux is calculated using the implicit version [28] of the THEODOR code [29]. Figure 1(e) shows an example of a heat flux profile measured at the upper outer divertor target. Data are fitted with the function [30]:

\[
q(\tau) = \frac{q_0}{2} \exp \left[\frac{S}{2\lambda_q^2} - \frac{\tau}{\lambda_q f_s} \right] \text{erfc} \left(\frac{S}{2\lambda_q} - \frac{\tau}{S f_s} \right) + q_{BG},
\]

where \(\tau = s - s_0\) is the location on target with the origin at the strike line location \(s_0\), \(\lambda_q\) is the power decay length mapped to the outer midplane via the flux expansion \(f_s\), \(S\) is the power broadening also mapped to the outer midplane and \(q_{BG}\) is a background heat flux. In order to evaluate \(\lambda_q\) and \(S\) within a certain time window \(\Delta t\) (about 50 ms), the following method is carried out: First, the fitting function is applied to each heat flux profile within the time interval \(\Delta t\). Second, only pairs of \(\lambda_q\) and \(S\) satisfying the condition \(\lambda_q/S \geq 1.5\) are taken into account. This condition is chosen because when \(\lambda_q \approx S\), the \(\lambda_q\) measured at the divertor target is strongly influenced by the Gaussian broadening taking place in the divertor chamber. Lastly, the median of all the \(\lambda_q\) (and \(S\)) values within the time window is calculated. An example of the \(\lambda_q\) and \(S\) time evolutions calculated with the aforementioned method are shown in figures 1(a) and (b). Other important plasma parameters used in this work are the SOL electron temperature, temperature and density decay lengths. SOL profiles are routinely measured by a vertical Thomson Scattering (TS) system [14] with a time resolution of 120 Hz, from which SOL electron temperature and density decay lengths \(\lambda_q^{\text{SOL}}\) and \(\lambda_n^{\text{SOL}}\) can be calculated. From here on, the subscript ‘SOL’ is omitted for reading purposes and it will be
used only when necessary. The separatrix position is evaluated following the model used in [31], where the electron temperature at the separatrix is given by:

\[T_{\text{sep}} = \left(\frac{7}{4} \frac{R_{\text{sep}}}{\kappa_0} \frac{L_c}{A_{\text{SOL}}} \right)^{\frac{1}{3}}. \]

where \(L_c = \pi q_{\text{SOL}} R \) is the connection length from the outer midplane to the divertor target, \(A_{\text{SOL}} \) is the cross-sectional area of the SOL perpendicular to the magnetic field lines and \(\kappa_0 \approx 2000 \text{ (eV)}^{7/2} \text{ Wm}^{-1} \) is the Spitzer–Härm conductivity constant for electrons. By writing \(A_{\text{SOL}} = 4\pi R \langle \lambda_q \rangle \frac{\langle R_{\text{sep}} \rangle}{R_{\text{sep}}} \), with \(\langle \lambda_q \rangle \) being the poloidally averaged \(\lambda_q \), \(\langle \lambda_q \rangle \approx 0.56 \langle \lambda_q \rangle \) for typical AUG geometries [30], and by using \(q_{\text{SOL}} = \frac{R_{\text{sep}}}{\langle R_{\text{sep}} \rangle} A \) and \(A = R/a \), we rewrite equation (3) as:

\[T_{\text{sep}} \approx \left(\frac{7}{16} \frac{R_{\text{sep}}^2}{\kappa_0 \kappa_2} \langle \lambda_q \rangle \right)^{\frac{1}{3}}. \]
The separatrix temperature is evaluated with equation (4) using λ_q from IR measurements. Once $T_{e, sep}$ is known, the separatrix position (r_{sep}) can be estimated and a subset of selected data (between $r_{sep} - 5$ mm and $r_{sep} + 9$ mm) is fitted with an exponential, i.e. $T_e(r) = T_{e, sep} \exp \left(\frac{r - r_{sep}}{\lambda_e} \right)$, to find the SOL electron temperature decay length λ_e. A similar approach is used to evaluate the SOL electron density decay length λ_n. In order to have a more robust ensemble of datapoints to minimize fitting errors, several TS profiles within a long time window (about 300 ms) are collected before carrying out the fit. Figures 1(f) and (g) show an example of edge electron temperature and density profiles mapped to the outer midplane. Once the SOL λ_e and λ_n are known, the electron pressure decay length is obtained using the relation

$$\frac{1}{\lambda_{p, e}} = \frac{1}{\lambda_e} + \frac{1}{\lambda_n}. \quad (5)$$

At AUG, electron temperature, density and pressure profiles within the confined region of the plasma are evaluated through integrated data analysis (IDA) [32], which combines different diagnostics such as electron cyclotron emission, lithium beam emission spectroscopy, DCN interferometry and Thomson scattering. This allows us to obtain more accurate profiles with reduced uncertainties. IDA profiles will be used in this work to evaluate electron temperature, density and pressure values at $\rho_{pol} = 0.95$. Figure 1 shows an example of how SOL and divertor quantities evolve together along a discharge characterized by L-mode, I-mode and type-I-ELMy H-mode phases. Panels (a) and (b) show λ_q and S, respectively, measured at the inner (>) and outer (<) upper divertor target and then mapped to the outer midplane. As already shown in [17], λ_q gradually decreases when passing from L to I-mode and it is reduced even more after the I–H transition. Note that H-mode λ_q values are about a factor of 1.8 smaller than those predicted by the scaling law in [30], which was obtained in a carbon wall environment. Further studies to address the dependency of λ_q on such plasma conditions are envisaged at AUG. During the L-mode inner and outer divertor λ_q values show a small discrepancy, with $\lambda_q^{\text{out}} > \lambda_q^{\text{in}}$, as already found in [16]. The observed asymmetry could be due to the vertical magnetic drifts of ions and the plasma triangularity [5, 16, 25]. The broadening parameter S does not show any large asymmetry between inner and outer divertors across all confinement regimes, extending to I-mode and H-mode what has been already observed in USN L-mode discharges [16]. The variation of S along the three confinement regimes is reminiscent of the λ_q change: it stays roughly constant during the L-mode phase, then it decreases during the I-mode and eventually remains constant at low values during the H-mode. The SOL electron pressure decay length evolution, panel (c), closely resembles the λ_q evolution, exhibiting a constant gradual decrease going from L to I-mode and from I to H-mode. Likewise, λ_e (squares in panel (d)) shows a similar behavior to λ_q, even though its reduction passing from I to H-mode is less marked. On the other hand, λ_n (triangles in panel (d)) evolves differently: it stays roughly constant passing from L to I-mode, whereas it drops only after the I–H transition [17]. In the following, error bars will be omitted for visibility purposes. The relative error of λ_e and λ_n ranges between 5% and 15%, while the one of λ_q varies approximately between 5% and 30%.

4. Cross-regime scaling of the power decay length λ_q

One of the main goals of this study is to investigate whether a cross-regime λ_q scaling is better described by global or local edge plasma parameters. Figure 2 illustrates the relation between the edge electron pressure evaluated at $\rho_{pol} = 0.95$ ($p_{e, pol}$, which is the pedestal top electron pressure in I-mode and H-mode) and the volume-averaged plasma pressure defined as $\bar{p} = \frac{1}{V_{\text{tot}}} \sum p_i$, where V is the plasma volume. Due to some H-mode data and few L and I-mode data outliers, the database used in this work allows us to disentangle the dependency between volume-averaged and edge plasma parameters. From here on, different confinement regimes will be depicted with the color and symbol code used in figure 2. Figure 3 shows the relation between the average poloidal magnetic field and λ_q. For the same $\langle B_{pol} \rangle$, λ_q can assume different values depending on the confinement regime. In particular, for $\langle B_{pol} \rangle = 0.31$ T, $\lambda_q \in [0.8, 4.5]$ mm, spanning from L to H-mode. This is in accordance with different pre-factors in front of H-mode and L-mode λ_q scaling laws [11, 25, 30].

Figure 4(a) shows the SOL power fall-off length against the volume-averaged plasma pressure \bar{p}. Note that the definition of \bar{p} is equivalent to the one used for the C-Mod studies in [11], which led to the scaling $\lambda_q[\text{mm}] = 0.91 (\bar{p} \text{ [atm]})^{-0.48}$ (or equivalently $\lambda_q[\text{mm}] = 8.35 (\bar{p} \text{ [kPa]})^{-0.48}$). A nonlinear regression of the form $\lambda_q = C < \bar{p} > ^{R}$ is carried out and the result is shown in figure 4(a) as a light green line. λ_q shows a correlation with \bar{p} ($R^2 = 0.62$) with a similar exponent and coefficient as in the C-Mod scaling (at AUG $\alpha = -0.52$ and...
Table 2 summarizes the results of nonlinear regressions of the form $\lambda_q = C \times X^a$ applied to different parameters. In particular, the low R^2 value obtained when T_e^{95} is used in the nonlinear regression ($R^2 = 0.29$) should be noted, in contrast to the high values obtained with p_e^{95} ($R^2 = 0.77$) and n_e^{95} ($R^2 = 0.71$). Therefore, the edge electron temperature is found to be a weak parameter for describing a cross-regime λ_q scaling, in contrast to what has been found when analyzing L-mode data alone [25, 34].

5. On the connection between SOL and pedestal electron pressure gradients

To further investigate the reasons for the λ_q correlation with p_e^{95}, figure 5 shows the relation between λ_q and two edge electron pressure quantities: the SOL electron pressure decay length at the outer midplane $\lambda_{q \text{ SOL}}^{\text{pol}}$ (panel (a)), which has been calculated with equation (5), and the pedestal electron pressure gradient length L_{λ}^{ped} (panel (b)). If the pedestal profile is best described by a straight line, as suggested in [35], L_{λ}^{ped} can be simply estimated by:

$$L_{\lambda}^{\text{ped}} = -\frac{p_e^{95}}{\nabla p_e} \approx \frac{p_e^{95} + p_e^{\text{sep}}}{2}, \frac{R_{\lambda}^{\text{sep}} - R_{\lambda}^{95}}{p_e^{95} - p_e^{\text{sep}}},$$

(7)

where the subscripts "sep" and "95" denote values taken at the separatrix and $\rho_{\text{pol}} = 0.95$, respectively. Both p_e^{sep} and R_{λ}^{sep} are calculated with the method described in section 3.

A clear correlation can be noted between λ_q and both $\lambda_{q \text{ SOL}}$ and L_{λ}^{ped}, in particular, λ_q rises with $\lambda_{q \text{ SOL}}$ or L_{λ}^{ped} increases. Also, the correlations show a similar trend: a certain value is observed ($\lambda_{q \text{ SOL}}^{\text{pol}} \approx 5.5$ mm and $L_{\lambda}^{\text{ped}} \approx 19$ mm), after which λ_q increases more strongly. This change coincides with the transition from I to L-mode and could reflect the larger radial turbulent transport usually found at the edge of L-mode plasmas. Also, it is worth noting the different absolute values of the pedestal and SOL gradient lengths, with the SOL one being steeper than the pedestal one. This observation is in accordance with what was previously found at Alcator C-Mod [18] and with 2D-fluid edge simulations [36], namely that the electron pressure gradient exhibits a minimum in the near-SOL. However, the larger values of pedestal gradient lengths, w.r.t. the SOL, may be also partially explained by the approximate estimation of the pedestal top position, which is here assumed to be at $\rho_{\text{pol}} = 0.95$. Nonetheless, what should be retained from figure 5 is that the steepening of edge pressure profiles (i.e. an increase of pedestal and core pressures) is statistically associated with a reduction of λ_q. Note that this relation is not valid for only one confinement regime, but it is present across all regimes analyzed.

This consideration may have important consequences for next step devices, since the ultimate goal of a fusion power plant is to combine high core plasma pressure (which means steep pedestal pressure gradients, as core profiles are mainly stiff) with a good enough power exhaust solution, which
largely depends on λ_q [2–4]. In addition, it is interesting to notice that the correlation between λ_q and L_{p}^{ped} is broken by few I-mode outliers. The I-mode plasma with $\lambda_q \approx 4$ mm is the burst-dominated I-mode shown in [17]. In such discharges, filamentary transport is suspected to broaden the SOL width and, interestingly, the pressure pedestal gradient length stays at the same typical I-mode values. This case is adding up to other recent findings at AUG that show a widening of the SOL temperature decay length in high-density H-mode discharges [15, 37].

Figure 6 shows the relation between the pedestal and SOL electron pressure gradients ($1/L_{p}^{\text{ped}}$ and 1/λ_{p}^{SOL}, respectively), here normalized to the AUG major radius $R = 1.65$ m. Remarkably, SOL and pedestal gradients appear to be linearly correlated across all confinement regimes, namely an increase of $R/\lambda_{p}^{\text{SOL}}$ corresponds to an according increase of R/L_{p}^{ped}. To quantify their relationship, a linear fit is applied to the data yielding ($R^2 = 0.83$)

$$\frac{R}{L_{p}^{\text{ped}}} = 39.4 + 0.2 \cdot \frac{R}{\lambda_{p}^{\text{SOL}}}.$$

Data are all contained within the 15% error boundaries plotted in figure 6 as black dashed lines. The reasons for the existence of an offset are unclear at this stage.

6. Upstream SOL decay lengths across different confinement regimes

In this section, the relationship between experimental λ_p, λ_T, and λ_n is studied across different confinement regimes. As already shown in figure 1(d) and in [17, 38], SOL electron temperature and density decay lengths behave differently in L-mode, I-mode and H-mode discharges. Figure 7(a) shows the relation between electron temperature λ_T and density λ_n decay lengths across all analyzed confinement regimes. H-mode discharges (both ELMy and stationary ELM-free H-mode) are characterized by short temperature and density SOL decay lengths, whereas L-mode discharges are usually characterized by long temperature and density SOL decay lengths. The well-heated L-mode discharges (i.e. close to the L-H transition), however, can feature short temperature decay lengths, similar to those of marginally-heated H-mode discharges (i.e. close to the L-H transition), such as stationary ELM-free H-mode discharges. On the other hand, I-mode discharges are characterized by small λ_T and large λ_n values. This general behavior is reminiscent of the electron temperature and density pedestal evolution across the different confinement regimes. In figure 7(a), two lines representing different gradient length ratios $\eta_T = \lambda_n/\lambda_T = 1$ and $\eta_T = 2$ are depicted. L-mode and H-mode discharges are characterized by $1 \leq \eta_T \leq 2$. This is in line with previous studies.
Figure 5. SOL power decay length λ_p against (a) SOL electron pressure decay length and (b) pedestal electron pressure gradient length, $L_{\text{ped}}^{\text{ped}}$. L-modes, I-modes, inter-ELM H-modes and stationary ELM-free H-modes are represented in gray circles, red squares, blue triangles and light blue diamonds, respectively.

Figure 6. Normalized pedestal electron pressure gradient against the normalized SOL electron pressure gradient. The result of a linear fit is depicted as a green line. Dashed black lines represent the 15% error boundaries that encompass all data. Remarkably, SOL and pedestal electron pressure gradients are correlated across all confinement regimes.

Conducted at AUG for the type-I-ELMy H-mode regime [15], however, I-mode discharges are characterized by $\eta_e \geq 2$, due to their H-mode-like λ_T (about 7 mm) and L-mode-like λ_n (around 15 mm). This is highlighting the decoupling of SOL electron density and temperature decay lengths that occurs in I-mode plasmas. Figure 7(b) shows the relation between λ_n and λ_T, which are linked through $1/\lambda_n = 1/\lambda_T + 1/\lambda_e$. Substituting $\eta_e = 1$ and $\eta_e = 2$ in the previous formula, one can find the corresponding relations between SOL electron pressure and temperature decay lengths, which are $\lambda_p = \frac{1}{\eta_e} \lambda_T$ and $\lambda_p = \frac{2}{\eta_e} \lambda_T$, respectively. As expected, most of the dataset lies between those two lines except for the I-mode discharges, which have $\eta_e > 2$. What should be retained from this graph is that λ_p and λ_T remain interconnected, even though I-mode discharges have allowed us to enlarge the dataset in the λ_n-λ_T diagram. For this reason, disentangling λ_T and λ_p dependencies with the present database remains challenging. Nevertheless, the variety of combinations of density and temperature SOL decay lengths, obtained thanks to the cross-regime analysis, allows us to study their single effect on λ_p. Figure 8(a) shows the relation between experimentally measured λ_p and the electron temperature SOL decay length λ_T across different confinement regimes at AUG. If in the SOL most of the parallel heat transport is due to electron conduction, λ_p and λ_T are related by the formula $\lambda_p = \frac{2}{3} \lambda_T$ [31]. Previous studies at AUG have shown that this relation holds in L-mode [16], in a single I-mode discharge [17] and H-mode discharges [15] (in the last case λ_T was compared with λ_p estimated by scaling laws). Figure 8(b) shows that all data cluster around the line $\lambda_p = \frac{2}{3} \lambda_T$ across all different confinement regimes. Therefore, it can be concluded that at ASDEX Upgrade the Spitzer–Härm electron heat conduction assumption gives a reasonable connection between λ_T measured upstream and λ_p measured at the target. Figure 8(b) shows the relation between λ_p and λ_T across the different confinement regime analyzed. For $\lambda_p \approx 1.5$ mm, λ_T ranges between 7 and 20 mm; On the other hand, for $\lambda_T \approx 17$ mm, λ_p shows a large variation from 1 mm to about 4.5 mm. This plot suggests a weaker role of the SOL electron density decay length in setting λ_p, when compared to that of λ_T.

7. Discussion

Results from the present study highlight a correlation between SOL and pedestal electron pressure gradients that holds across all analyzed confinement regimes (figure 6). This finding allows us to address two main points:
The nature of λ_q scaling with p_e^{95}. The link between SOL and pedestal electron pressure gradients ultimately leads to a scaling of λ_q with p_e^{95}. If pedestal width and the separatrix pressure do not change significantly, a correlation is introduced between the electron pressure pedestal top and the pedestal gradients. At the same time, it has been shown that pedestal and SOL electron pressure gradients exhibit a linear correlation. Putting together these two findings, a correlation between λ_q and p_e^{95} follows. This may be the explanation behind the Alcator C-Mod scaling as well and it could be supported by their observation of a correlation between λ_q, λ_p and the pedestal pressure evolution [19].

The connection between SOL and edge confined region. At first glance, it may sound surprising that a SOL quantity (λ_{pSOL}), which is set by the competition between parallel and perpendicular transport, and L_{ped}, a quantity of the plasma confined region that is set by perpendicular transport, could be related; however, experimental profiles measured around the separatrix show one characteristic decay length when plotted in logarithmic scale [15, 18]. Also, simulations carried out with the 2D drift-fluid code ESEL [36] show no abrupt change of edge temperature and density profiles around the separatrix. These experimental and numerical evidences point towards a connection between near-SOL and pedestal regions. For completeness, it should be mentioned that in nitrogen seeded discharges at AUG, a de-correlation between pedestal

Figure 7. SOL electron density decay length (a) and SOL electron pressure decay length (b) against SOL electron temperature decay length across different confinement regimes. In panel (a) dashed and solid lines represent $\eta_e = 2$ and $\eta_e = 1$, respectively, with $\eta_e = \lambda_n / \lambda_T$ being the gradient length ratio. In panel (b), the relations $\lambda_{pe} = 2/3 \lambda_T$ and $\lambda_{pe} = \lambda_T/2$ are depicted as a dashed and solid line, respectively.

Figure 8. SOL power decay length λ_q against SOL electron temperature (a) and electron density (b) decay lengths. The light green line in panel (a) represents expected values of λ_q in the Spitzer–Härm electron heat conduction regime.
top electron pressure and SOL electron temperature decay length has been observed [38]; however, it could be that the aforementioned correlation between SOL and pedestal electron pressure gradients is still retained, with the difference being that in this case, a larger pedestal top value is achieved due to the inward shift of the pedestal profile (typical of N seeded discharges [39]). Evidence of a connection between SOL and confined edge region is also given by recent experiments carried out at the TJ-II stellarator [21]. It was observed that the turbulence spreading in the SOL (the nonlinear nonlinear growth rate of turbulence) decreases when a transport barrier in the plasma edge is present (i.e. when turbulence is reduced at the edge plasma). This suggests that the turbulence in the SOL comes from the confined edge region, tightly binding the turbulence in the SOL and confined edge region of fusion devices.

An interesting physical picture that allows us to interpret the observed correlation between SOL and pedestal pressure gradients is given in [18, 19]. As shown in these papers, the edge pressure gradient appears to be set by a critical-gradient (determined by electromagnetic fluid drift turbulence), rather than a classical diffusive-like transport. In other words, the edge electron pressure gradient adjusts to satisfy a marginal stability constraint. In such a picture, the correlation between near-SOL and pedestal gradients can be interpreted as the need for both gradients to satisfy the same marginal stability constraints.

In any case, the main consequence of these observations is that the pedestal electron pressure gradient and λ_p are linked. In other words, across the confinement regimes analyzed, it is difficult to combine a large λ_p with a steep pedestal electron pressure gradient. This would not be an obstacle to obtain high core pressures if the pedestal width could be freely enlarged and, consequently, high pedestal top values could be reached. Unfortunately, the pedestal width is not largely varying, except for some particular cases [39, 40]. Therefore, the highlighted coupling of SOL and pedestal electron pressure gradients may be an obstacle to finding a stable scenario that couples high core performances and a power exhaust solution. Turning our attention to ITER, the scaling law presented here predicts for the baseline $I_p = 15$ MA and $Q = 10$ inductive H-mode burning plasma scenario $\lambda_p,_{ITER} \approx 0.6$ mm and it adds up to other experimental scaling laws [8, 11] that foresee $\lambda_p,_{ITER}$ to be in the same range of values. Yet it should be mentioned that recent gyrokinetic [6] and fluid [7] simulations predict the ITER edge plasma to be in a turbulence dominated regime that is not achievable in present-day machines and that is expected to lead to larger $\lambda_p,_{ITER}$ values of about 5 mm. However, also in light of the correlation between pedestal and SOL electron pressure gradients found in this work, further investigations are needed to unveil whether such turbulence dominated regime will be compatible with the achievement of the desired high core plasma pressure.

8. Conclusions

A database that combines divertor λ_d measurements (from IR cameras) and SOL electron pressure, temperature and density decay lengths (from edge Thomson scattering) at the same time has been assembled at ASDEX Upgrade. The database encompasses different confinement regimes (L-mode, I-mode, inter-ELM H-mode and stationary ELM-free H-mode), different divertor geometries (open versus closed divertor) and different ion ∇B drift directions (pointing to and away from the active X-point). Hence, this database allows us to study λ_d correlations that may hold for very different confinement regimes and divertor conditions. This approach may help unfold the physics that is ultimately setting λ_d, a key quantity that determines the operational window of ITER [2–4] and of any other next step fusion device. In analyzing the database, the following conclusions have been reached:

(i) A cross-regime λ_q scaling is better described by a local edge parameter, i.e. the electron pressure at $\rho_{95} = 0.95$ (p^e_{95}), than by global quantities, such as the volume-averaged plasma pressure \overline{p} or the average poloidal magnetic field (B_{pol}). The λ_q scaling found is: $\lambda_q [\text{mm}] = 2.45 \pm 0.02 \times (p^e_{95} [\text{Pa}])^{-0.34\pm0.01}$. It groups together all the confinement regimes analyzed, highlighting a possible unified physics mechanism setting λ_q.

(ii) The power decay length λ_p is well correlated with both the SOL electron pressure decay length and the pedestal electron pressure gradient length. Hence, the edge electron pressure gradient, no matter if taken inside or outside the last closed flux surface, is found to be a robust local plasma parameter able to scale λ_p across all confinement regimes.

(iii) SOL and pedestal electron pressure gradient are remarkably well correlated with each other across all confinement regimes. This observation may suggest that both near-SOL and pedestal electron pressure gradients are controlled by a critical-gradient transport paradigm, in which both near-SOL and pedestal edge electron pressure gradients adjust themselves to satisfy the same marginal stability constraint, as suggested in [18, 19]. The same observation may also point towards an important role of the turbulence spreading [20] (i.e. the non-local component of turbulence) in setting the radial transport in the SOL, as suggested in [21].

(iv) The Spitzer–Härm electron heat conduction regime is a reasonable approximation to estimate λ_q in these attached plasmas, i.e. $\lambda_q = 2/\pi \lambda_T$. Nonetheless, interestingly λ_q scaling laws better correlate with edge electron pressure parameters, rather than electron temperature ones, see table 2. We believe that this is due to the close correlation between pedestal and SOL electron pressure gradients, which allows one to better characterize a SOL quantity such as λ_q with the plasma parameters of the confined region.

The main implication of this work is that λ_q scales unfavourably with p^e_{95} and/or with the edge electron pressure.
gradient. In particular, an increase of core plasma pressure (which means a rise of $p_{\text{e\, core}}$ or a steepening of the edge electron pressure gradient) is statistically associated with a reduction of λ_e. In other words, across the confinement regimes analyzed, it is difficult to combine a large λ_e with a steep pedestal electron pressure gradient. This may be an obstacle to finding a stable scenario that couples high core performances and a power exhaust solution, which must, in any case, rely on detachment.

Acknowledgments

The authors are grateful for discussions with P Manz, M Hosner and D Brida. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No 633 053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

ORCID iDs

D Silvagni @ https://orcid.org/0000-0003-2103-3592
T Eich @ https://orcid.org/0000-0003-3065-8420
M Faitisch @ https://orcid.org/0000-0002-9809-7490
T Happel @ https://orcid.org/0000-0003-4364-9363
D Nille @ https://orcid.org/0000-0002-4541-320X
L Gil @ https://orcid.org/0000-0002-9970-2154

References

[1] Pitts R et al 2013 Proc. 20th Int. Conf. on Plasma-Surface Interactions in Controlled Fusion Devices; J. Nucl. Mater. 438 S48–56
[2] Kukushkin A et al 2013 Proc. 20th Int. Conf. on Plasma-Surface Interactions in Controlled Fusion Devices; J. Nucl. Mater. 438 S203–7
[3] Reinke M L et al 2017 Nucl. Fusion 57 034004
[4] Goldston R J et al 2017 Plasma Phys. Control. Fusion 59 055015
[5] Goldston R 2011 Nucl. Fusion 52 013009
[6] Chang C S et al 2017 Nucl. Fusion 57 116023
[7] Xu X et al 2019 Nucl. Fusion 59 126039
[8] Eich T et al 2013 Nucl. Fusion 53 093031
[9] Zohm H 1996 Plasma Phys. Control. Fusion 38 105–28
[10] Leonard A W 2014 Phys. Plasmas 21 090501
[11] Brunner D, LaBombard B, Kuang A and Terry J 2018 Nucl. Fusion 58 094002
[12] Gil L et al 2019 46th European Physical Society Conf. on Plasma Physics (http://ocs.ciemat.es/EPSP2019PAP/pdf/O2.110.pdf)
[13] Sieglin B, Faitisch M, Herrmann A, Brucker B, Eich T, Kammerloher L and Martinov S 2015 Rev. Sci. Instrum. 86 113502
[14] Kurzan B and Murmann H D 2011 Rev. Sci. Instrum. 82 103501
[15] Sun H J, Wolfrum E, Eich T, Kurzan B, Potzel S and Stroth U 2015 Plasma Phys. Control. Fusion 57 125011
[16] Faitisch M, Sieglin B, Eich T, Sun H J and Herrmann A 2015 Plasma Phys. Control. Fusion 57 075005
[17] Happel T et al 2019 Nucl. Mater. Energy 18 159–65
[18] LaBombard B, Hughes J, Mossessian D, Greenwald M, Lipschultz B, Terry J and the Alcator C Mod Team 2005 Nucl. Fusion 45 1658–75
[19] LaBombard B et al 2011 Phys. Plasmas 18 056104
[20] Manz P, Ribeiro T T, Scott B D, Birkenmeier G, Carralero D, Fuchert G, Müller S H, Müller H W, Stroth U and Wolfrum E 2015 Phys. Plasmas 22 022308
[21] Grenfell G, van Millingen B, Losada U, Ting W, Liu B, Silva C, Spolaore M and Hidalgo C 2018 Nucl. Fusion 59 016018
[22] Meyer H et al 2019 Nucl. Fusion 59 112014
[23] Ryter F, Suttrop W, Brüsehaber B, Kaufmann M, Mertens V, Murmann H, Peeters A G, Stober J, Schweinzer J, Zohm H and Team A U 1998 Plasma Phys. Control. Fusion 40 725–9
[24] Whyte D et al 2010 Nucl. Fusion 50 105005
[25] Sieglin B, Eich T, Faitisch M, Herrmann A and Scarabosio A 2016 Plasma Phys. Control. Fusion 58 055015
[26] ITER Physics Expert Group on Confinement and Transport-ITER Physics Expert Group on Confinement Modelling and Database and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175–249
[27] Mlynak A, Schramm G, Eichenberger H, Sips G, McCormick K, Zilker M, Behler K, Eheberg J and ASDEX Upgrade Team 2010 Rev. Sci. Instrum. 81 033507
[28] Nille D, von Toussaint U, Sieglin B and Faitisch M 2018 Bayesian Inference and Maximum Entropy Methods in Science and Engineering (Cham: Springer) (https://doi.org/10.1007/978-3-319-91143-4)
[29] Herrmann A, Junker W, Gunther K, Bosch S, Kaufmann M, Neuhauser J, Pautasso G, Richter T and Schneider R 1995 Plasma Phys. Control. Fusion 37 17–29
[30] Eich T, Sieglin B, Scarabosio A, Fundamenski W, Goldston R J, Herrmann A and (ASDEX Upgrade Team) 2011 Phys. Rev. Lett. 107 215001
[31] Stangeby P 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol: Institute of Physics Publishing)
[32] Fischer R, Fuchs C J, Kurzan B, Suttrop W and Wolfrum E 2010 Fusion Sci. Technol. 58 675–84
[33] Nielsen A et al 2019 Nucl. Fusion 59 086059
[34] Faitisch M et al 2018 Plasma Phys. Control. Fusion 60 045010
[35] Schneider P A et al 2012 Plasma Phys. Control. Fusion 54 105009
[36] Militefon F, Fundamenski W, Naulin V and Nielsen A H 2012 Plasma Phys. Control. Fusion 54 095011
[37] Eich T et al 2019 46th European Physical Society Conference on Plasma Physics (http://ocs.ciemat.es/EPSP2019PAP/pdf/O4.106.pdf)
[38] Sun H, Wolfrum E, Eich T, Kurzan B, Kallenbach A, Happel T and Stroth U 2019 Plasma Phys. Control. Fusion 61 014005
[39] Dunne M G et al 2016 Plasma Phys. Control. Fusion 59 014017
[40] Chen X et al 2016 Nucl. Fusion 57 022007