Horizontal Path Lifting for General Connections

Phillip E. Parker
Mathematics Department
Wichita State University
Wichita KS 67260-0033
USA
phil@math.wichita.edu

23 May 2011

Abstract: I characterize the existence of horizontal path lifts for general connections with a new property that also gives fresh insight into linear and G-connections.

MSC(2000): Primary 53C29; Secondary 53C05.
1 Introduction and Preliminaries

A general connection on a manifold M is a subbundle \mathcal{H} of the second tangent bundle $\pi_T : TTM \to TM$ which is complementary to the vertical bundle $\mathcal{V} = \ker \pi_* = \ker T\pi$, so that

$$TTM = \mathcal{H} \oplus \mathcal{V}.$$

Connections originally were so named because they connected distant tangent spaces by means of parallel transport [9]. Horizontal lifts of paths in M are used to define parallel transport. So what we want is a theorem like the following for any general connection.

Let $\gamma : I \to M$ be a path with $\gamma(0) = p$ and $\gamma(1) = q$. For every $v \in T_pM$ there exists a unique horizontal lift $\overline{\gamma}$ such that $\overline{\gamma}(0) = v$ and $\overline{\gamma}(1) \in T_qM$.

The usual proof for linear connections starts this way. Consider the pullback bundle γ^*TM over I, let $D = \frac{d}{dt}$ denote the standard vector field on I, let \overline{D} denote its horizontal lift to γ^*TM, and let c denote the unique integral curve of \overline{D} with $c(0) = v$. Then $(\gamma^*\pi)c$ is an integral curve of D with $(\gamma^*\pi)c(t) = t$ on I.

Unfortunately, $(\gamma^*\pi)c$ need not extend over all of I in general. Figure 1 shows a simple 1-dimensional example of this.

![Figure 1](image.png)

Figure 1: Horizontal lifts of a path c from p to q in M. Infinity of the fibers has been brought into the finite plane by a compression such as $y \mapsto \tanh y$. The solid lines begin in one fiber and go away to infinity. The dotted lines do not intersect either fiber. Note that no horizontal lift of c reaches from over p to over q.

1
Definition 1.1 A general connection is uniformly vertically bounded (UVB) if and only if \mathcal{H}_v is bounded away from \mathcal{V}_v in each T_vTM, uniformly along the fibers of TM.

Assuming that \mathcal{H}_v is bounded away from \mathcal{V}_v in each T_vTM, uniformly along the fibers of TM, removes this obstacle by allowing the standard argument to go through, preventing horizontal lifts from running “off the edge” [7] or “away to infinity” [3]. All linear connections are UVB; more generally, so are all G-connections for a Lie group G.

First we need a way to determine how far away \mathcal{H}_v is from \mathcal{V}_v. Wong [10] showed that this can be done with n principal angles between any two n-dimensional subspaces of \mathbb{R}^{2n}. If we let g be an auxiliary Riemannian metric on TM, these can be measured between the respective unit vectors of some g-orthonormal bases of \mathcal{H}_v and \mathcal{V}_v [2]. We denote these principal angles by $\{\theta_i\}$ for $i = 1, \ldots, n$. Since \mathcal{H}_v is complementary to \mathcal{V}_v, each $\theta_i > 0$.

Now recall that linear connections satisfy $\mathcal{H}_{av} = a_* \mathcal{H}_v$ and that a_* is a motion of T_vTM, so therefore preserves the principal angles along the line through 0 in T_pM determined by v [10, 2]. Hence the θ_i are constant along each fiber of T_pM so there is an absolute minimum value among them, say $\theta_m > 0$, and this is uniform along the fiber T_pM.

That G-connections are UVB will not be used here; a proof may be inferred from [3, Sec. 31].

2 Main Theorem

To my knowledge, the following theorem is the first complete characterization of (necessary and sufficient condition for) the horizontal path lifting property (HPL) as first given by Ehresmann [4, p. 36].

Theorem 2.1 Let \mathcal{H} be a general connection on M and let $\gamma : I \rightarrow M$ be a path with $\gamma(0) = p$ and $\gamma(1) = q$. For every $v \in T_pM$ there exists a unique horizontal lift γ such that $\gamma(0) = v$ and $\gamma(1) \in T_qM$ if and only if \mathcal{H} is UVB.

Proof: Consider the pullback bundle γ^*TM over I. Note that $\gamma^*TM \cong I \times \mathbb{R}_p^n$. The label will be used to distinguish copies of \mathbb{R}^n. The pullback $\gamma^*TTM \cong \mathbb{R}^{2n} = \mathbb{R}_B^n \oplus \mathbb{R}_V^n$. The general connection pulls back to the family of horizontal n-planes \mathcal{H}_u for each $u \in \mathbb{R}_T^n$. We may assume that \mathbb{R}_V^n is the vertical space, and shall refer to \mathbb{R}_B^n as the basal space.
We seek a curve \(c : I \to \mathbb{R}^n_T \) such that \(c(0) = v \in \mathbb{R}^n_T \) and \(\dot{c}(t) \in \mathcal{H}_{c(t)} \). It is convenient to identify \(\mathbb{R}^n_T \) and \(\mathbb{R}^n_B \). Let \(D \) denote the usual derivative in \(\mathbb{R}^n \) so that \(Dc \) is the Jacobian matrix of \(c \). Then with \(c(t) \in \mathbb{R}^n_B \), we have \(\dot{c}(t) = (c(t), Dc(t)) \); i.e., \(c(t) \) is the basal component and \(Dc(t) \) is the vertical component of \(\dot{c}(t) \).

Now the UVB condition implies the existence of an upper bound on \(\|Dc\| \) which is uniform along the fibers of \(\gamma^*TM \). With \(I \) compact, the bound may also be taken to be uniform along \(I \). Applying an MVT [11, p. 366], this implies that \(\|c\| \) is bounded on the part of \(I \) where it exists. The FEUT [5, pp. 162f, 169] provides the existence of \(c \), and the Extension Theorem [5, p. 171f] shows that \(c \) extends to all of \(I \).

So we may regard \(c \in \Gamma(\gamma^*TM) \) over \(I \). By definition, \(c \) is a horizontal section. It follows that the pushforward \(\gamma \) of \(c \) is a horizontal section of \(TM \) along \(\gamma \) with \(\gamma(0) = v \) and \(\gamma(1) \in T_qM \). Uniqueness of \(\gamma \) follows immediately from that of \(c \).

The converse follows similarly, noting that \(\|c\| \) bounded implies \(\|Dc\| \) is also bounded since \(c \) is smooth. \(\square \)

Corollary 2.2 Each path \(\gamma \) in \(M \) from \(p \) to \(q \) defines a diffeomorphism \(\mathcal{P}_\gamma : T_pM \to T_qM \) that we call parallel transport along \(\gamma \). Note that

\[
\pi_* \gamma = \gamma \pi
\]

as for vector fields. If \(\gamma \) is not injective, however, this has to be interpreted via the pullback bundle \(\gamma^*TM \).

Proof: Clearly, uniqueness and smooth dependence of integral curves on initial conditions [6, p. 80] imply that the set of all horizontal lifts of \(\gamma \) defines such a diffeomorphism. \(\square \)

It is now routine to obtain all the usual properties of parallel transport as in [8], for example, except of course for linearity of the maps \(\mathcal{P}_\gamma \).

References

[1] R. Bartle, *The Elements of Real Analysis*, 2nd ed. New York: John Wiley, 1976.

[2] A. A. Borisenko and Yu. A. Nikolaevskii, Grassmann manifolds and the Grassmann image of submanifolds, *Russian Math. Surveys* **46** (1991) 45–94.
[3] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry—
Methods and Applications, Part II. GTM 104. New York: Springer, 1985.

[4] C. Ehresmann, Les connexions infinitésimales dans un espace fibré
différentiable, in Colloque de topologie (espaces fibrés), Bruxelles, 1950.
Paris: Masson et Cie., 1951. pp. 29–55.

[5] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems,
and Linear Algebra. PAM 60. New York: Academic Press, 1974.

[6] S. Lang, Differential Manifolds. New York: Addison-Wesley, 1972.

[7] H. B. Lawson The Quantitative Theory of Foliations. CBMS RCSM 27.
Providence: A. M. S., 1977.

[8] W. A. Poor, Differential Geometric Structures. New York: McGraw-Hill,
1981. (Dover reprint, 2007.)

[9] H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 2 (1918) 384–411.

[10] Y.-C. Wong, Differential geometry of Grassmannian manifolds, Proc.
Nat. Acad. Sci USA 57 (1967) 589–594.