Absence of bilinear condensate in three-dimensional QED

Nikhil Karthik*
Florida International University
E-mail: nkarthik@fiu.edu

Rajamani Narayanan
Florida International University
E-mail: rajamani.narayanan@fiu.edu

There are plausibility arguments that QED in three dimensions has a critical number of flavors of massless two-component fermions, below which scale invariance is broken by the presence of bilinear condensate. We present numerical evidences from our lattice simulations using dynamical overlap as well as Wilson-Dirac fermions for the absence of bilinear condensate for any even number of flavors of two-component fermions. Instead, we find evidences for the scale-invariant nature of three-dimensional QED.
Absence of bilinear condensate in three-dimensional QED

Nikhil Karthik

1. Introduction

Parity-invariant QED$_3$ with 2N_f flavors of massless two-component fermions coupled to three-dimensional non-compact Abelian gauge-fields has been studied in the past as a quantum field theory which can be tuned to be conformal or to have a mass-gap by changing N_f. The question is the following – is there a critical number of flavors of two-component fermions 2N_f below which massless QED$_3$ in a finite box of length ℓ generates other low-energy length scales which are independent of ℓ as $\ell \to \infty$? One such low-energy length scale that is of interest is the bilinear condensate Σ which, if non-zero, governs the following scaling of the low-lying eigenvalues λ_i of the massless Dirac operator:

$$\lambda_i = \frac{z_i}{\ell^3} \frac{1}{\Sigma},$$

where z_i are universal numbers depending only on the symmetries of the Dirac operator, and can be obtained from a random matrix model with the same symmetries (refer [1] for such a model corresponding to QED$_3$). In this talk, based on our publications [2, 3], we primarily address the existence of Σ for small N_f ($= 1, 2, 3, 4$) by asking if $\lambda \sim \ell^{-(1+p)}$ with $p = 2$. We summarize the status of the understanding of the critical N_f before our studies in Figure 1 (see [2] and references therein, for a complete literature survey). The analytical computations, each with their own limitations, suggested that the critical N_f lie between 0 and 4. The previous lattice studies suggested that it could be 1 or 2.

2. Lattice details

We regulated QED$_3$ in a finite box of physical volume ℓ^3 using L^3 lattices. The lattice coupling
Absence of bilinear condensate in three-dimensional QED

Nikhil Karthik

Figure 2: On the left panel, the \(\ell \) dependence of the six low-lying, continuum extrapolated, eigenvalues of the overlap operator is shown. The Padé approximations to their \(\ell \) dependence with \(p = 1 \) are shown as the solid curves. On the right panel, the likelihood of different values of the exponent \(p \), measured using the \(\chi^2/\text{DOF} \) for the best fit of the Padé approximation with various values of \(p \) to the finite \(\ell \) data, is shown.

appearing in the gauge action is \(\beta = L/\ell \); the continuum limit at a fixed physical length \(\ell \) is taken by extrapolating to \(L \to \infty \). We regulated the two flavors of massless two-component fermions in a parity-invariant way using the Wilson-Dirac as well as overlap fermions. The fermion propagator \(G \) for the parity-preserving Wilson-Dirac fermion is

\[
G^{-1} = \begin{bmatrix}
0 & X \\
-X^\dagger & 0
\end{bmatrix}; \quad X = C_n + B - m_t.
\] (2.1)

\(C_n \) is the two-component naive Dirac operator, \(B \) is the Wilson term and \(m_t \) is tuned such that the lowest eigenvalue \(\lambda_1 \) of \(iG^{-1} \) is minimum. We further improved it by adding a Sheikholeslami-Wohlert term and by using HYP smeared links in the Dirac operator. The fermion propagator \(G \) for the overlap fermion, which has the full \(U(2N_f) \) symmetry even at finite lattice spacing, is given in terms of a unitary matrix \(V = (X^\dagger X)^{-1}X \) as

\[
G^{-1} = \begin{bmatrix}
0 & \frac{1-V}{1+V} \\
\frac{1-V}{1+V} & 0
\end{bmatrix}.
\] (2.2)

We define the “eigenvalues of the Dirac operator” in either case to be the eigenvalues \(\lambda_i \) of \(iG^{-1} \) which are real. We used standard HMC for generating \(\sim 500 \) – \(1000 \) independent gauge configurations at all the simulation points \((4 \leq \ell \leq 250) \). Using Wilson-Dirac fermions we studied \(N_f = 1, 2, 3 \) and \(4 \). With the overlap fermion, we studied \(N_f = 1 \). At each \(\ell \), we used multiple \(L^3 \) lattices \((12 \leq L \leq 24) \) in order to take the continuum limits.

3. Evidence from \(\ell \)-scaling of the low-lying eigenvalues of Dirac operator

In a finite physical box, the spectrum of the Dirac operator is discrete. Thus, one can talk about the \(\ell \)-dependence of the individual low-lying eigenvalues. As we noted in the introduction, the \(i \)-th

\footnote{The Wilson mass \(m_t = 1 \) in overlap simulations
Absence of bilinear condensate in three-dimensional QED

Nikhil Karthik

Figure 3: The plot compares the ℓ-dependence of the first three low-lying eigenvalues, after taking the continuum limit, using Wilson fermions (open symbols) and overlap fermions (filled symbols) for the $N_f = 1$ case.

low-lying eigenvalue λ_i will scale as ℓ^{-3} when there is a condensate Σ. If ℓ^{-3} scaling is not found, we can conclude that a bilinear condensate is absent and instead we can obtain the mass anomalous dimension of the scale-invariant theory; since λ has an engineering dimension of mass, the mass anomalous dimension γ_m is p if $\lambda \sim \ell^{-p-1}$ and $p < 1$.

In the left panel of Figure 2, we show the dependence of the continuum extrapolated values of $\lambda_i \ell$ as a function of $1/\ell$ for the six low-lying eigenvalues of the overlap operator in a log-log plot. At any finite ℓ that we studied, the slope $d\log(\lambda \ell)/d\log(1/\ell)$ is less than 2, the value that is expected if $\Sigma \neq 0$. In fact, it is less than 1. We estimate the exponent of the power-law that would be seen as $\ell \to \infty$ by describing the ℓ-dependence of our data by

$$\lambda \ell = \ell^{-p} F(1/\ell),$$

with an unknown scaling correction F. We approximate F by a $[1/1]$ Padé approximant. We find it numerically stable to write the Padé approximant in terms of $\tanh(1/\ell)$. The best fits of the above ansatz with $p = 1$ to the data are shown by the solid curves in the left panel of Figure 2. In the right panel, we show the χ^2/DOF for such fits to the six low-lying eigenvalues as a function of the exponent p. The value $p = 2$ is clearly ruled out, which implies the absence of a condensate. Assuming the theory does not generate other length scales as well, we can estimate the mass anomalous dimension $\gamma_m = p$ of the theory to be $1.0(2)$ from the same plot. Further, we support the correctness of our result by comparing the ℓ-dependence of the continuum extrapolated low-lying eigenvalues of the two different lattice Dirac operators in Figure 3. A perfect agreement between the Wilson-Dirac and the overlap formalisms is seen. Due to such an agreement, we study the $N_f = 2, 3, 4$ cases using only the Wilson-Dirac fermion.

In Figure 4, we show the ℓ-dependence of the continuum extrapolated smallest eigenvalue for different number of flavors $N_f = 1, 2, 3$ and 4. The eigenvalues scale with a smaller exponent p as N_f increases, consistent with the expectation that if $N_f = 1$ does not have a bilinear condensate, the $N_f = 2, 3, 4$ also would not. Thus QED$_3$ does not have a bilinear condensate for all non-zero N_f. Again, assuming this means that QED$_3$ is scale-invariant for all N_f, we estimate the mass anomalous dimension to be $\gamma_m = 1.0(2), 0.6(2), 0.37(6)$ and $0.28(6)$ for $N_f = 1, 2, 3, 4$ respectively. Surprisingly, this agrees with an analytical calculation [10] of γ_m to $\mathcal{O}(1/N_f^2)$ where no assumption
Absence of bilinear condensate in three-dimensional QED

Nikhil Karthik

Figure 4: The ℓ-dependence of the smallest eigenvalue of the Wilson-Dirac operator for $N_f = 1, 2, 3$ and 4. The expected scaling when a bilinear condensate is present, $\lambda \ell \sim \ell^{-2}$, is shown by the black straight line in this log-log plot. The exponent p for the asymptotic ℓ-scaling seems to decrease as $1/N_f$.

Figure 5: (Left) The zero spatial momentum scalar correlator $G(t) = \langle \Sigma(0)\Sigma(t) \rangle$ as a function of temporal separation t. The different lines are tangents to the correlator, with slope $k(t)$, at various t on the log-log plot. (Right) The mass anomalous dimension given by $\gamma_m(t) = 1 - k(t)/2$ is plotted as a function of the scale t.

about bilinear condensate is made; the analytical values are $\gamma_m = 1.19, 0.56, 0.37$ and 0.28 for $N_f = 1, 2, 3, 4$ respectively.

The other way to obtain the mass anomalous dimension is to study the scalar correlator $G(t) = \langle \Sigma(0)\Sigma(t) \rangle$ projected to zero spatial momentum. The correlator is shown as a function of the temporal separation t in the left panel of Figure 5. The first thing to notice is the concave-up nature of the correlator. This indicates the absence of a mass-gap, thereby ruling out the presence of another length scale in addition to a bilinear condensate. The slope on the log-log plot, $k(t) = \frac{d\log(G(t))}{d\log(t)}$, is related to a scale dependent mass anomalous dimension $\gamma_m(t)$ as $\gamma_m(t) = 1 - k(t)/2$. This is shown as a function of $1/t$ in the right panel of Figure 5. The mass anomalous dimension at the IR fixed point to which QED$_3$ with $N_f = 1$ flows to, is $\gamma^* = \lim_{t \to \infty} \gamma_m(t)$. We estimate by an extrapolation that $\gamma^* = 0.8(1)$. This is consistent with the estimate $1.0(2)$ from the eigenvalues.
The Inverse Participation Ratio (IPR) is defined as

\[I_2 = \left\langle \int (\psi_\lambda^*(x) \psi_\lambda(x))^2 d^3x \right\rangle, \tag{4.1} \]

where \(\psi_\lambda \) is the normalized eigenvector corresponding to the eigenvalue \(\lambda \). In random matrix models, which are ergodic, \(I_2 \sim \ell^{-3} \). Thus, if the theory has a condensate, the low-lying eigensystem of the Dirac operator would be described by a random matrix model. Thus the IPR corresponding to the low-lying eigenvalues should show a \(\ell^{-3} \) scaling. This is another test for the presence of \(\Sigma \). Instead, if the theory is scale-invariant, the finite size scaling of IPR would be \(I_2 \sim \ell^{-3+\eta} \), where \(\eta \) is a critical exponent. The exponent \(\eta \) is related to a quantity called number variance \(\Sigma \) which measures correlations between the eigenvalues. The number variance \(\Sigma_2(n) \) is defined as the variance of the number of eigenvalues below a value \(\lambda \) which on the average contains \(n \) eigenvalues. In ergodic random matrix models, \(\Sigma_2(n) \sim \log(n) \). For a critical theory, \(\Sigma_2(n) \sim (\eta/6)n \), where \(\eta \) is the critical exponent from the IPR [11].

In the left panel of Figure 6, we have shown the \(\ell \)-scaling of IPR for \(N_f = 1 \). For large \(\ell \), the onset of scaling is clearly seen. The scaling is \(I_2 \sim \ell^{-2.62(1)} \). Firstly, this rules out the ergodic \(\ell^{-3} \) scaling. The theory has a non-zero critical exponent \(\eta = 0.38(1) \). As explained above, in a critical theory, \(\eta \) should satisfy a critical relation to the slope of number variance. In the right panel of Figure 6, we have shown \(\Sigma_2(n) \) as a function of \(n \). Again, clearly there is a disagreement with the expectation from the nonchiral random matrix theory thereby ruling out condensate in another way. We see a linear rise in \(\Sigma_2(n) \) indicating a critical behavior. As \(\ell \) is increased, the slope of the linear
rise seems to approach $\eta/6$, as shown by the black line in the figure. Thus, both the IPR and Σ_2 show critical behavior, and also they satisfy the critical relation between the two.

5. Conclusions

In this talk, we presented convincing numerical evidences for the absence of a bilinear condensate for all N_f. Instead, we found evidences for QED$_3$ to be scale-invariant, and we estimated the mass anomalous dimension at the infra-red fixed point at various N_f. In another work [12], we established the presence of a condensate in the 't Hooft limit using the same methods we described here. This suggests an interesting phase diagram in the (N_f,N_c) plane whose one side is conformal while the other side has a mass-gap, providing a powerful system to understand the generation of mass in QFTs. We aim to present results on this in a future Lattice meeting.

The authors acknowledge partial support by the NSF under grant number PHY-1205396 and PHY-1515446.

References

[1] J. J. M. Verbaarschot and I. Zahed, Random matrix theory and QCD in three-dimensions, Phys. Rev. Lett. 73 (1994) 2288–2291, [hep-th/9405005].

[2] N. Karthik and R. Narayanan, Scale-invariance of parity-invariant three-dimensional QED, Phys. Rev. D94 (2016) 065026, [1606.04109].

[3] N. Karthik and R. Narayanan, No evidence for bilinear condensate in parity-invariant three-dimensional QED with massless fermions, Phys. Rev. D93 (2016) 045020, [1612.02993].

[4] T. W. Appelquist, M. J. Bowick, D. Karabali and L. C. R. Wijewardhana, Spontaneous Chiral Symmetry Breaking in Three-Dimensional QED, Phys. Rev. D33 (1986) 3704.

[5] T. Appelquist, A. G. Cohen and M. Schmaltz, A New constraint on strongly coupled gauge theories, Phys. Rev. D60 (1999) 045003, [hep-th/9901109].

[6] L. Di Pietro, Z. Komargodski, I. Shamir and E. Stamou, Quantum Electrodynamics in $d=3$ from the θ Expansion, Phys. Rev. Lett. 116 (2016) 131601, [1508.06278].

[7] S. M. Chester and S. S. Pufu, Anomalous dimensions of scalar operators in QED$_3$, JHEP 08 (2016) 069, [1603.05582].

[8] S. J. Hands, J. B. Kogut, L. Scorzato and C. G. Strouhos, Non-compact QED(3) with $N(f) = 1$ and $N(f) = 4$, Phys. Rev. B70 (2004) 104501, [hep-lat/0404013].

[9] O. Raviv, Y. Shamir and B. Svetitsky, Nonperturbative beta function in three-dimensional electrodynamics, Phys. Rev. D90 (2014) 014512, [1405.6916].

[10] J. A. Gracey, Electron mass anomalous dimension at $O(1/(Nf(2))$ in quantum electrodynamics, Phys. Lett. B317 (1993) 415–420, [hep-th/9309092].

[11] V. Chalker, J.T. amd Kravtsov and I. Lerner, Spectral rigidity and eigenfunction correlations at the Anderson transition, Pis'ma v ZhETF 64 (1996) 355–360.

[12] N. Karthik and R. Narayanan, Bilinear condensate in three-dimensional large-N_c QCD, Phys. Rev. D94 (2016) 045020, [1607.03905].