Frequent-Itemset Mining using Locality-Sensitive Hashing

Debajyoti Bera1 and Rameshwar Pratap2

1 Indraprastha Institute of Information Technology-Delhi (IIIT-D), India
\texttt{dbera@iiitd.ac.in}
2 TCS Innovation Labs, India
\texttt{rameshwar.pratap@gmail.com}

Abstract. The Apriori algorithm is a classical algorithm for the frequent itemset mining problem. A significant bottleneck in Apriori is the number of I/O operation involved, and the number of candidates it generates. We investigate the role of LSH techniques to overcome these problems, without adding much computational overhead. We propose randomized variations of Apriori that are based on asymmetric LSH defined over Hamming distance and Jaccard similarity.

1 Introduction

Mining frequent itemsets in a transactions database appeared first in the context of analyzing supermarket transaction data for discovering association rules [2, 1], however this problem has, since then, found applications in diverse domains like finding correlations [12], finding episodes [8], clustering [13]. Mathematically, each transaction can be regarded as a subset of the items (“itemset”) those that present in the transaction. Given a database D of such transactions and a support threshold $\theta \in (0, 1)$, the primary objective of frequent itemset mining is to identify θ-frequent itemsets (denoted by FI, these are subsets of items that appear in at least θ-fraction of transactions).

Computing FI is a challenging problem of data mining. The question of deciding if there exists any FI with k items is known to be NP-complete [6] (by relating it to the existence of bi-cliques of size k in a given bipartite graph) but on a more practical note, simply checking support of any itemset requires reading the transaction database – something that is computationally expensive since they are usually of an extremely large size. The state-of-the-art approaches try to reduce the number of candidates, or not generate candidates at all. The best known approach in the former line of work is the celebrated Apriori algorithm [2].

Apriori is based on the anti-monotonicity property of partially-ordered sets which says that no superset of an infrequent itemset can be frequent. This algorithm works in a bottom-up fashion by generating itemsets of size l in level l, starting at the first level. After finding frequent itemsets at level l they are joined pairwise to generate $l+1$-sized candidate itemsets; FI are identified among the candidates by computing their support explicitly from the data. The algorithm terminates when no more candidates are generated. Broadly, there are
two downsides to this simple but effective algorithm. The first one is that the algorithm has to compute support 3 of every itemset in the candidate, even the ones that are highly infrequent. Secondly, if an itemset is infrequent, but all its subsets are frequent, Apriori doesn’t have any easy way of detecting this without reading every transaction of the candidates.

A natural place to look for fast algorithms over large data are randomized techniques; so we investigated if LSH could be of any help. An earlier work by Cohen et al. [4] was also motivated by the same idea but worked on a different problem (see Section 1.2). LSH is explained in Section 2, but roughly, it is a randomized hashing technique which allows efficient retrieval of approximately “similar” elements (here, itemsets).

1.1 Our contribution

In this work, we propose LSH-Apriori – a basket of three explicit variations of Apriori that uses LSH for computing FI. LSH-Apriori handles both the above mentioned drawbacks of the Apriori algorithm. First, LSH-Apriori significantly cuts down on the number of infrequent candidates that are generated, and further due to its dimensionality reduction property saves on reading every transaction; secondly, LSH-Apriori could efficiently filter out those infrequent itemset without looking every candidate. The first two variations essentially reduce computing FI to the approximate nearest neighbor (cNN) problem for Hamming distance and Jaccard similarity. Both these approaches can drastically reduce the number of false candidates without much overhead, but has a non-zero probability of error in the sense that some frequent itemset could be missed by the algorithm. Then we present a third variation which also maps FI to elements in the Hamming space but avoids the problem of these false negatives incurring a little cost of time and space complexity. Our techniques are based on asymmetric LSH [11] and LSH with one-sided error [9] which are proposed very recently.

1.2 Related work

There are a few hash based heuristic to compute FI which outperform the Apriori algorithm and PCY [10] is one of the most notable among them. PCY focuses on using hashing to efficiently utilize the main memory over each pass of the database. However, our objective and approach both are fundamentally different from that of PCY.

The work that comes closest to our work is by Cohen et al. [4]. They developed a family of algorithms for finding interesting associations in a transaction database, also using LSH techniques. However, they specifically wanted to avoid any kind of filtering of itemsets based on itemset support. On the other hand, our problem is the vanilla frequent itemset mining which requires filtering itemsets satisfying a given minimum support threshold.

3 Note that computing support is an I/O intensive operation and involves reading every transaction.
1.3 Organization of the paper

In Section 2, we introduce the relevant concepts and give an overview of the problem. In Section 3, we build up the concept of LSH-Apriori which is required to develop our algorithms. In Section 4, we present three specific variations of LSH-Apriori for computing FI. Algorithms of Subsections 4.1 and 4.2 are based on Hamming LSH and Minhashing, respectively. In Subsection 4.3, we present another approach based on Covering LSH which overcomes the problem of producing false negatives. In Section 5, we summarize the whole discussion.

2 Background

Notations	Description		
D	Database of transactions: $\{t_1, \ldots, t_n\}$		
D_l	FI of level-l: $\{I_1, \ldots, I_m\}$		
θ	Support threshold, $\theta \in (0, 1)$		
m	Number of transactions		
α_l	Maximum support of any item in D_l		
ε	Error tolerance in LSH, $\varepsilon \in (0, 1)$		
m_l	Number of FI of size l		
δ	Probability of error in LSH, $\delta \in (0, 1)$		
$	v	$	Number of 1's in v

The input to the classical frequent itemset mining problem is a database D of n transactions $\{T_1, \ldots, T_n\}$ over m items $\{i_1, \ldots, i_m\}$ and a support threshold $\theta \in (0, 1)$. Each transaction, in turn, is a subset of those items. Support of itemset $I \subseteq \{i_1, \ldots, i_m\}$ is the number of transactions that contain I. The objective of the problem is to determine every itemset with support at least θn. We will often identify an itemset I with its transaction vector $\langle I[1], I[2], \ldots, I[n] \rangle$ where $I[j]$ is 1 if I is contained in T_j and 0 otherwise. An equivalent way to formulate the objective is to find itemsets with at least θn 1's in their transaction vectors. It will be useful to view D as a set of m transaction vectors, one for every item.

2.1 Locality Sensitive Hashing

We first briefly explain the concept of locality sensitive hashing (LSH).

Definition 1 (Locality sensitive hashing [7]). Let S be a set of m vectors in \mathbb{R}^n, and U be the hashing universe. Then, a family H of functions from S to U is called as $(S_0, (1 - \varepsilon)S_0, p_1, p_2)$-sensitive (with $\varepsilon \in (0, 1]$ and $p_1 > p_2$) for the similarity measure $\text{Sim}(x, y)$ if for any $x, y \in S$:

- if $\text{Sim}(x, y) \geq S_0$, then $\Pr_{h \in H}[h(x) = h(y)] \geq p_1$,
- if $\text{Sim}(x, y) \leq (1 - \varepsilon)S_0$, then $\Pr_{h \in H}[h(x) = h(y)] \leq p_2$.

Not all similarity measures have a corresponding LSH. However, the following well-known result gives a sufficient condition for existence of LSH for any Sim.

Lemma 1 If Φ is a strict monotonic function and a family of hash function H satisfies $\Pr_{h \in H}[h(x) = h(y)] = \Phi(\text{Sim}(x, y))$ for some $\text{Sim} : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \{0, 1\}$, then the conditions of Definition 1 are true for Sim for any $\varepsilon \in (0, 1)$.
The similarity measures that are of our interest are Hamming and Jaccard over binary vectors. Let $|x|$ denote the Hamming weight of a binary vector x. Then, for vectors x and y of length n, Hamming distance is defined as $\text{Ham}(x, y) = |x \oplus y|$, where $x \oplus y$ denotes a vector that is element-wise Boolean XOR of x and y. Jaccard similarity is defined as $\langle x, y \rangle / |x \lor y|$, where $\langle x, y \rangle$ indicates inner product, and $x \lor y$ indicates element-wise Boolean OR of x and y. LSH for these similarity measures are simple and well-known [7, 5, 3]. We recall them below; here I is some subset of $\{1, \ldots, n\}$ (or, n-length transaction vector).

Definition 2 (Hash function for Hamming distance). For any particular bit position i, we define the function $h_i(I) := I[i]$. We will use hash functions of the form $g_J(I) = \langle h_{j_1}(I), h_{j_2}(I), \ldots, h_{j_k}(I) \rangle$, where $J = \{j_1, \ldots, j_k\}$ is a subset of $\{1, \ldots, n\}$ and the hash values are binary vectors of length k.

Definition 3 (Minwise Hash function for Jaccard similarity). Let π be some permutations over $\{1, \ldots, n\}$. Treating I as a subset of indices, we will use hash functions of the form $h_\pi(I) = \arg\min_i \pi(i)$ for $i \in I$.

The probabilities that two itemsets hash to the same value for these hash functions are related to their Hamming distance and Jaccard similarity, respectively.

2.2 Apriori algorithm for frequent itemset mining

As explained earlier, Apriori works in level-by-level, where the objective of level-l is to generate all θ-frequent itemsets with l-items each; for example, in the first level, the algorithm simply computes support of individual items and retains the ones with support at least θn. Apriori processes each level, say level-$(l+1)$, by joining all pairs of θ-frequent compatible itemsets generated in level-l, and further filtering out the ones which have support less than θn (support computation involves fetching the actual transactions from disk). Here, two candidate itemsets (of size l each) are said to be compatible if their union has size exactly $l + 1$. A high-level pseudocode of Apriori is given in Algorithm 1.

| Input: Transaction database D, support threshold θ; |
| Result: θ-frequent itemsets; |
| 1 $l = 1$ /* level */; |
| 2 $F = \{ \{x\} \mid \{x\} \text{ is } \theta\text{-frequent in } D \}$ /* frequent itemsets in level-1 */; |
| 3 Output F; |
| 4 while F is not empty do |
| 5 $l = l + 1$; |
| 6 $C = \{I_a \cup I_b \mid I_a \in F, I_b \in F, I_a$ and I_b are compatible$\}$; |
| 7 $F = \emptyset$; |
| 8 for itemset I in C do |
| 9 Add I to F if support of I in D is at least θn /* reads database*/; |
| 10 end |
| 11 Output F; |
| 12 end |

Algorithm 1: Apriori algorithm for frequent itemset mining
3 LSH-Apriori

The focus of this paper is to reduce the computation of processing all pairs of itemsets at each level in line 6 (which includes computing support by going through \(D \)). Suppose that level \(l \) outputs \(m_l \) frequent itemsets. We will treat the output of level \(l \) as a collection of \(m_l \) transaction vectors \(D_l = \{I_1, \ldots, I_{m_l}\} \), each of length \(n \) and one for each frequent itemset of the \(l \)-th level. Our approach involves defining appropriate notions of similarity between itemsets (represented by vectors) in \(D_l \) similar to the approach followed by Cohen et al.[4]. Let \(I_i, I_j \) be two vectors each of length \(n \). Then, we use \(|I_i, I_j|\) to denote the number of bit positions where both the vectors have a 1.

Definition 4. Given a parameter \(0 < \varepsilon < 1 \), we say that \(\{I_i, I_j\} \) is \(\theta \)-frequent (or similar) if \(|I_i, I_j| \geq \theta n \) and \(\{I_i, I_j\} \) is \((1-\varepsilon)\theta\)-infrequent if \(|I_i, I_j| < (1-\varepsilon)\theta n \). Furthermore, we say that \(I_j \) is similar to \(I_i \) if \(|I_i, I_j| \) is \(\theta \)-frequent.

Let \(I_q \) be a frequent itemset at level \(l - 1 \). Let \(\text{FI}(I_q, \theta) \) be the set of itemsets \(I_a \) such that \(\{I_q, I_a\} \) is \(\theta \)-frequent at level \(l \). Our main contributions are a few randomized algorithms for identifying itemsets in \(\text{FI}(I_q, \theta) \) with high-probability.

Definition 5 (FI(\(I_q, \theta, \varepsilon, \delta\))). Given a \(\theta \)-frequent itemset \(I_q \) of size \(l - 1 \), tolerance \(\varepsilon \in (0, 1) \) and error probability \(\delta \), \(\text{FI}(I_q, \theta, \varepsilon, \delta) \) is a set \(F' \) of itemsets of size \(l \), such that with probability at least \(1 - \delta \), \(F' \) contains every \(I_a \) for which \(\{I_q, I_a\} \) is \(\theta \)-frequent.

It is clear that \(\text{FI}(I_q, \theta) \subseteq \text{FI}(I_q, \theta, \varepsilon, \delta) \) with high probability. This motivated us to propose LSH-Apriori, a randomized version of Apriori, that takes \(\delta \) and \(\varepsilon \) as additional inputs and essentially replaces line 6 by LSH operations to combine every itemset \(I_q \) with only similar itemsets, unlike Apriori which combines all pairs of itemsets. This potentially creates a significantly smaller \(C \) without missing out too many frequent itemsets. The modifications to Apriori are presented in Algorithm 2 and the following lemma, immediate from Definition 5, establishes correctness of LSH-Apriori.

Input: \(D_l = \{I_1, \ldots, I_{m_l}\}, \theta, (\text{Additional}) \text{error probability } \delta, \text{tolerance } \varepsilon; \)
\(a \) (Pre-processing) Initialize hash tables and add all items \(I_a \in D_l \);
\(b \) (Query) Compute \(\text{FI}(I_q, \theta, \varepsilon, \delta) \forall I_q \in D_l \) by hashing \(I_q \) and checking collisions;
\(c \) \(C \leftarrow \{I_q \cup I_b \mid I_q \in D_l, I_b \in \text{FI}(I_q, \theta, \varepsilon, \delta)\}; \)

Algorithm 2: LSH-Apriori level \(l+1 \) (only modifications to Apriori line:6)

Lemma 2 Let \(I_q \) and \(I_a \) be two \(\theta \)-frequent compatible itemsets of size \((l - 1) \) such that the itemset \(J = I_q \cup I_a \) is also \(\theta \)-frequent. Then, with probability at least \(1 - \delta \), \(\text{FI}(I_q, \theta, \varepsilon, \delta) \) contains \(I_a \) (hence \(C \) contains \(J \)).

In the next section we describe three LSH-based randomized algorithms to compute \(\text{FI}(I_q, \theta, \varepsilon, \delta) \) for all \(\theta \)-frequent itemset \(I_q \) from the earlier level. The
input to these subroutines will be D_l, the frequent itemsets from earlier level, and parameters $\theta, \varepsilon, \delta$. In the pre-processing stage at level l, the respective LSH is initialized and itemsets of D_l are hashed; we specifically record the itemsets hashing to every bucket. LSH guarantees (w.h.p.) that pairs of similar items hash into the same bucket, and those that are not hash into different buckets. In the query stage we find all the itemsets that any I_q ought to be combined with by looking in the bucket in which I_q hashed, and then combining the compatible ones among them with I_q to form C. Rest of the processing happens à la Apriori.

The internal LSH subroutines may output false-positives—itemsets that are not θ-frequent, but such itemsets are eventually filtered out in line 9 of Algorithm 1. Therefore, the output of LSH-Apriori does not contain any false positives. However, some frequent itemsets may be missing from its output (false negatives) with some probability depending on the parameter δ as stated below in Theorem 3 (proof follows from the union bound and is given in the Appendix).

Theorem 3 (Correctness). LSH-Apriori does not output any itemset which is not θ-infrequent. If X is a θ-frequent itemset of size l, then the probability that LSH-Apriori does not output X is at most δ^{2^l}.

The tolerance parameter ε can be used to balance the overhead from using hashing in LSH-Apriori with respect to its savings because of reading fewer transactions. Most LSH, including those that we will be using, behave somewhat like dimensionality reduction. As a result, the hashing operations do not operate on all bits of the vectors. Furthermore, the pre-condition of similarity for joining ensure that (w.h.p.) most infrequent itemsets can be detected before verifying them from D. To formalize this, consider any level l with $m_l\theta$-frequent itemsets D_l. We will compare the computation done by LSH-Apriori at level $l+1$ to what Apriori would have done at level $l+1$ given the same frequent itemsets D_l. Let c_{l+1} denote the number of candidates Apriori would have generated and m_{l+1} the number of frequent itemsets at this level (LSH-Apriori may generate fewer).

Overhead: Let $\tau(LSH)$ be the time required for hashing an itemset for a particular LSH and let $\sigma(LSH)$ be the space needed for storing respective hash values. The extra overhead in terms of space will be simply $m_l\sigma(LSH)$ in level $l+1$. With respect to overhead in running time, LSH-Apriori requires hashing each of the m_l itemsets twice, during pre-processing and during querying. Thus total time overhead in this level is $\vartheta(LSH, l+1) = 2m_l\tau(LSH)$.

Savings: Consider the itemsets in D_l that are compatible with any $I_q \in D_l$. Among them are those whose combination with I_q do not generate a θ-frequent itemset for level $l+1$; call them as negative itemsets and denote their number by $r(I_q)$. Apriori will have to read all n transactions of $\sum_{I_q} r(I_q)$ itemsets in order to reject them. Some of these negative itemsets will be added to FI by LSH-Apriori — we will call them false positives and denote their count by $FP(I_q)$; the rest those which correctly not added with I_q — lets call them as true negatives and denote their count by $TN(I_q)$. Clearly, $r(I_q) = TN(I_q)+FP(I_q)$ and $\sum_{I_q} r(I_q) = 2(c_{l+1}-m_{l+1})$. Suppose $\phi(LSH)$ denotes the number of transactions a particular LSH-Apriori reads for hashing any itemset; due to the dimensionality reduction...
property of LSH, $\phi(LSH)$ is always $o(n)$. Then, LSH-Apriori is able to reject all itemsets in TN by reading only ϕ transactions for each of them; thus for itemset I_q in level $l + 1$, a particular LSH-Apriori reads $(n - \phi(LSH)) \times TN(I_q)$ fewer transactions compared to a similar situation for Apriori. Therefore, total savings at level $l + 1$ is $\varsigma(LSH,l + 1) = (n - \phi(LSH)) \times \sum I_q TN(I_q)$.

In Section 4, we discuss this in more detail along with the respective LSH-Apriori algorithms.

4 FI via LSH

Our similarity measure $|I_a, I_b|$ can also be seen as the inner product of the binary vectors I_a and I_b. However, it is not possible to get any LSH for such similarity measure because for example there can be three items I_a, I_b and I_c such that $|I_a, I_b| \geq |I_c, I_c|$ which implies that $\Pr(h(I_a) = h(I_b)) \geq \Pr(h(I_c) = h(I_c)) = 1$, which is not possible. Noting the exact same problem, Shrivastava et al. introduced the concept of asymmetric LSH [11] in the context of binary inner product similarity. The essential idea is to use two different hash functions (for pre-processing and for querying) and they specifically proposed extending MinHashing by padding input vectors before hashing. We use the same pair of padding functions proposed by them for n-length binary vectors in a level l: $P(n,\alpha l)$ for preprocessing and $Q(n,\alpha l)$ for querying are defined as follows.

- In $P(I)$ we append $(\alpha l n - |I|)$ many 1’s followed by $(\alpha l n + |I|)$ many 0’s.
- In $Q(I)$ we append $\alpha l n$ many 0’s, then $(\alpha l n - |I|)$ many 1’s, then $|I|$ 0’s.

Here, $\alpha l n$ (at LSH-Apriori level l) will denote the maximum number of ones in any itemset in D_l. Therefore, we always have $(\alpha l n - |I|) \geq 0$ in the padding functions. Furthermore, since the main loop of Apriori is not continued if no frequent itemset is generated at any level, $(\alpha l - \theta) > 0$ is also ensured at any level that Apriori is executing.

We use the above padding functions to reduce our problem of finding similar itemsets to finding nearby vectors under Hamming distance (using Hamming-based LSH in Subsection 4.1 and Covering LSH in Subsection 4.3) and under Jaccard similarity (using MinHashing in Subsection 4.2).

4.1 Hamming based LSH

In the following lemma (proof is given in appendix), we relate Hamming distance of two itemsets I_x and I_y with their $|I_x, I_y|$.

Lemma 4 For two itemsets I_x and I_y, $\text{Ham}(P(I_x), Q(I_y)) = 2(\alpha l n - |I_x, I_y|)$.

Therefore, it is possible to use an LSH for Hamming distance to find similar itemsets. We use this technique in the following algorithm to compute $\text{FI}(I_q, \theta, \varepsilon, \delta)$ for all itemset I_q. The algorithm contains an optimization over the generic LSH-Apriori pseudocode (Algorithm 2). There is no need to separately
execute lines: 7–10 of Apriori; one can immediately set $F \leftarrow C$ since LSH-Apriori computes support before populating FI.

| Input: $\mathcal{D}_l = \{I_1, \ldots, I_m\}$, query item I_q, threshold θ, tolerance ε, error δ. |
| Result: $FI_q = FI(I_q, \theta, \varepsilon, \delta)$ for every $I_q \in \mathcal{D}_l$. |

6a Preprocessing step: Setup hash tables and add vectors in \mathcal{D}_l;
 i. Set $\rho = \frac{m_l - \theta}{m_l - (1 - \varepsilon) m_l}$, $k = \log \left(\frac{1 + 2\delta}{1 + 2\delta - 2\theta} \right) m_l$ and $L = m_l \rho \log \left(\frac{1}{\delta} \right)$;
 ii. Select functions g_1, \ldots, g_L u.a.r.;
 iii. For every $I_a \in \mathcal{D}_l$, pad I_a using $P()$ and then hash $P(I_a)$ into buckets $g_1(P(I_a)), \ldots, g_L(P(I_a))$;

6b Query step: For every $I_q \in \mathcal{D}_l$, we do the following:
 i. $S \leftarrow$ all I_q-compatible itemsets in all buckets $g_i(Q(I_q))$, for $i = 1 \ldots L$;
 ii. for $I_a \in S$ do
 | If $|I_a|, |I_q| \geq \theta n$, then add I_a to FI_q/* reads database*/;
 | (*) If no itemset similar to I_q found within $\frac{k}{L}$ tries, then break loop;

Algorithm 3: LSH-Apriori (only lines 6a,6b) using Hamming LSH

Correctness of this algorithm is straightforward. Also, $\rho < 1$ and the space required and overhead of reading transactions is $\theta(kLn_l) = o(m_l^2)$. It can be further shown that $\mathbb{E}[FP(I_q)] \leq L$ for $I_q \in \mathcal{D}_l$ which can be used to prove that $\mathbb{E}[c] \geq (n - \phi)(2(c_{l+1} - m_{l+1}) - m_l L)$ where $\phi = kL$. Details of these calculations including complete proof of the next lemma is given in Appendix.

Lemma 5 Algorithm 3 correctly outputs $FI(I_q, \theta, \varepsilon, \delta)$ for all $I_q \in \mathcal{D}_l$. Additional space required is $o(m_l^2)$, which is also the total time overhead. The expected savings can be bounded by $\mathbb{E}[c(l+1)] \geq (n - o(m_l))(c_{l+1} - 2m_{l+1}) + (c_{l+1} - o(m_l^2)))$.

Expected savings outweigh time overhead if $n \gg m_l$, $c_{l+1} = \theta(m_l^2)$ and $c_{l+1} > 2m_{l+1}$, i.e., in levels where the number of frequent itemsets generated are fewer compared to the number of transactions as well as to the number of candidates generated. The additional optimisation (*) essentially increases the savings when all $l+1$-extensions of I_q are $(1 - \varepsilon)\theta$-infrequent — this behaviour will be predominant in the last few levels. It is easy to show that in this case, $FP(I_q) \leq \frac{k}{L}$ with probability at least $1 - \delta$; this in turn implies that $|S| \leq \frac{L}{\theta}$.

So, if we did not find any similar I_a within first $\frac{k}{L}$ tries, then we can be sure, with reasonable probability, that there are no itemsets similar to I_q.

4.2 Min-hashing based LSH

Cohen et al. had given an LSH-based randomized algorithm for finding interesting itemsets without any requirement for high support [4]. We observed that their Minhashing-based technique [3] cannot be directly applied to the high-support version that we are interested in. The reason is roughly that Jaccard similarity and itemset similarity (w.r.t. θ-frequent itemsets) are not monotonic.
to each other. Therefore, we used padding to monotonically relate Jaccard similarity of two itemsets \(I_x \) and \(I_y \) with their \(|I_x, I_y|\) (proof is given in Appendix).

Lemma 6 For two padded itemsets \(I_x \) and \(I_y \), \(JS(P(I_x), Q(I_y)) = \frac{|I_x \Delta I_y|}{2n(m - |I_x, I_y|)} \).

Once padded, we follow similar steps (as [4]) to create a similarity preserving summary \(\hat{D}_l \) of \(D_l \) such that the Jaccard similarity for any column pair in \(\hat{D}_l \) is approximately preserved in \(D_l \), and then explicitly compute \(FI(I_q, \theta, \epsilon, \delta) \) from \(\hat{D}_l \). \(\hat{D}_l \) is created by using \(\lambda \) independent minwise hashing functions (see Definition 3). \(\lambda \) should be carefully chosen since a higher value increases the accuracy of estimation, but at the cost of large summary vectors in \(\hat{D}_l \). Let us define \(\hat{JS}(I_i, I_j) \) as the fraction of rows in the summary matrix in which min-wise entries of columns \(I_i \) and \(I_j \) are identical. Then by Theorem 1 of Cohen et al. [4], we can get a bound on the number of required hash functions:

Theorem 7 (Theorem 1 of [4]). Let \(0 < \epsilon, \delta < 1 \) and \(\lambda \geq \frac{2 \log \frac{1}{\delta}}{\alpha(1 - \alpha)} \). Then for all pairs of columns \(I_i \) and \(I_j \) following are true with probability at least \(1 - \delta \):

- If \(\hat{JS}(I_i, I_j) \geq \omega \), then \(\hat{JS}(I_i, I_j) \geq (1 - \epsilon)\omega \).
- If \(\hat{JS}(I_i, I_j) \leq \omega \), then \(\hat{JS}(I_i, I_j) \leq (1 + \epsilon)\omega \).

```
Input: \( D_l \), query item \( I_q \), threshold \( \theta \), tolerance \( \epsilon \), error \( \delta \)
Result: \( FI_q = FI(I_q, \theta, \epsilon, \delta) \) for every \( I_q \in D_l \).

6a Preprocessing step: Prepare \( \hat{D}_l \) via MinHashing;
   i Set \( \omega = \frac{(1 - \epsilon)^\theta}{2(1 - \epsilon)^\theta} \), \( \epsilon = \frac{\alpha_2 \alpha_4}{\alpha_3(1 - \alpha_4)} \) and \( \lambda = \frac{2 \log \frac{1}{\delta}}{\alpha(1 - \alpha)} \);
   ii Choose \( \lambda \) many independent permutations (see Theorem 7);
   iii For every \( I_a \in D_l \), pad \( I_a \) using \( P() \) and then hash \( P(I_a) \) using \( \lambda \) independent permutations;

6b Query step: For every \( I_q \in D_l \), we do the following;
   i Hash \( Q(I_q) \) using \( \lambda \) independent permutations;
   ii for compatible \( I_a \in D_l \) do
      i If \( \hat{JS}(P(I_a), Q(I_q)) \geq \frac{(1 - \epsilon)^\theta}{2(1 - \epsilon)^\theta} \) for some \( I_a \), then add \( I_a \) to \( FI_q \);
   end
```

Algorithm 4: LSH-Apriori (only lines 6a,6b) using Minhash LSH

Lemma 8 Algorithm 4 correctly computes \(FI(I_q, \theta, \epsilon, \delta) \) for all \(I_q \in D_l \). Additional space required is \(O(\lambda m_l) \), and the total time overhead is \(O((n + \lambda)m_l) \). The expected savings is given by \(\mathbb{E}[s(l + 1)] \geq 2(1 - \delta)(n - \lambda)(c_{l+1} - m_{l+1}) \).

See Appendix for details of the above proof. Note that \(\lambda \) depends on \(\alpha_4 \) but is independent of \(n \). This method should be applied only when \(\lambda \ll n \). And in that case, for levels with number of candidates much larger than the number of frequent itemsets discovered (i.e., \(c_{l+1} \gg \{m_l, m_{l+1}\} \)), time overhead would not appear significant compared to expected savings.

\(^4\) This algorithm can be easily boosted to \(o(\lambda m_l) \) time by applying banding technique (see Section 4 of [4]) on the minhash table.
Due to their probabilistic nature, the LSH-algorithms presented earlier have the limitation of producing false positives and more importantly, false negatives. Since the latter cannot be detected unlike the former, these algorithms may miss some frequent itemsets (see Theorem 3). In fact, once we miss some FI at a particular level, then all the FI which are “supersets” of that FI (in the subsequent levels) will be missed. Here we present another algorithm for the same purpose which overcomes this drawback. The main tool is a recent algorithm due to Pagh [9] which returns approximate nearest neighbors in the Hamming space. It is an improvement over the seminal LSH algorithm by Indyk and Motwani [7], also for Hamming distance. Pagh’s algorithm has a small overhead over the latter; to be precise, the query time bound of [9] differs by at most $\ln(4)$ in the exponent in comparison with the time bound of [7]. However, its big advantage is that it generates no false negatives. Therefore, this LSH-Apriori version also does not miss any frequent itemset.

The LSH by Pagh is with respect to Hamming distance, so we first reduce our FI problem into the Hamming space by using the same padding given in Lemma 4. Then we use this LSH in the same manner as in Subsection 4.1. Pagh coined his hashing scheme as coveringLSH which broadly mean that given a threshold r and a tolerance $c > 1$, the hashing scheme guaranteed a collision for every pair of vectors that are within radius r. We will now briefly summarize coveringLSH for our requirement; refer to the paper [9] for full details.

Similar to HammingLSH, we use a family of Hamming projections as our hash functions: $H_{\mathcal{A}} := \{x \mapsto x \wedge a | a \in \mathcal{A}\}$, where $\mathcal{A} \subseteq \{0,1\}^{(1+2\alpha)xn}$. Now, given a query item I_q, the idea is to iterate through all hash functions $h \in H_{\mathcal{A}}$, and check if there is a collision $h(P(I_x)) = h(Q(I_q))$ for $I_x \in \mathcal{D}_l$. We say that this scheme doesn’t produce false negative for the threshold $2(\alpha_1 - \theta)n$, if at least one collision happens when there is an $I_x \in \mathcal{D}_l$ when Ham($P(I_x), Q(I_q)$) $\leq 2(\alpha_1 - \theta)n$, and the scheme is efficient if the number of collision is not too many when Ham($P(I_x), Q(I_q)$) $> 2(\alpha_1 - (1 - \epsilon)\theta)n$ (proved in Theorem 3.1, 4.1 of [9]). To make sure that all pairs of vector within distance $2(\alpha_1 - \theta)n$ collides for some h, we need to make sure that some h map their “mismatching” bit positions (between $P(I_x)$ and $Q(I_q)$) to 0. We describe construction of hash functions next.

n'	θ	t	e	c	ν
$(1+2\alpha_l)n$	$2(\alpha_1 - \theta)n$	$\frac{\ln m}{2(\alpha_1 - (1 - c)\theta)n}$	$\frac{\alpha_1 - (1 - c)\theta}{\alpha_1 - \theta}$	$\epsilon \in (0,1)$ s.t. $\frac{\ln m}{2(\alpha_1 - (1 - c)\theta)n} + \epsilon \in \mathbb{N}$	$\frac{t + \epsilon}{ct}$

CoveringLSH: The parameters relevant to LSH-Apriori are given above. Notice that after padding, dimension of each item is n', threshold is θ' (i.e., min-support is θ'/n'), and tolerance is c. We start by choosing a random function $\varphi : \{1, \ldots, n\} \rightarrow \{0,1\}^{\theta' + 1}$, which maps bit positions of the padded itemsets to bit vectors of length $\theta' + 1$. We define a family of bit vectors $a(v) \in \{0,1\}^{n'}$, where $a(v) = \langle \varphi(i), v \rangle$, for $i \in \{1, \ldots, n\}$, $v \in \{0,1\}^{\theta' + 1}$ and $(m(i), v)$ denotes the inner product over \mathbb{F}_2. We define our hash function family $H_{\mathcal{A}}$ using all such vectors $a(v)$ except $a(0): \mathcal{A} = \{a(v)|v \in \{0,1\}^{\theta' + 1}/\{0\}\}$.
Pagh described how to construct \(A' \subseteq A \) [9, Corollary 4.1] such that \(H_{A'} \) has a very useful property of no false negatives and also ensuring very few false positives. We use \(H_{A'} \) for hashing using the same manner of Hamming projections as used in Subsection 4.1. Let \(\psi \) be the expected number of collisions between any itemset \(I_q \) and items in \(D_l \) that are \((1 - \varepsilon)\theta\)-infrequent with \(I_q \). The following Theorem captures the essential property of coveringLSH that is relevant for LSH-Apriori, described in Algorithm 5. It also bounds the number of hash functions which controls the space and time overhead of LSH-Apriori. Proof of this theorem follows from Theorem 4.1 and Corollary 4.1 of [9].

\textbf{Theorem 9.} For a randomly chosen \(\varphi \), a hash family \(H_{A'} \) described above and distinct \(I_x, I_q \in \{0, 1\}^n \):

- If \(\text{Ham}(P(I_x), Q(I_q)) \leq \theta' \), then there exists \(h \in H_{A'} \) s.t. \(h(P(I_x)) = h(Q(I_q)) \);
- Expected number of false positives is bounded by \(E[\psi] < 2^{\theta' + 1} m_1 \frac{1}{\epsilon} \);
- \(|H_{A'}| < 2^{\theta' + 1} m_1 \).

\begin{tabular}{l}
\textbf{Input:} \(D_l, \) query item \(I_q \), threshold \(\theta \), tolerance \(\varepsilon \), error \(\delta \). \\
\textbf{Result:} \(FI_q = FI(I_q, \theta, \varepsilon, \delta) \) for every \(I_q \in D_l \).
\end{tabular}

6a \textbf{Preprocessing step:} Setup hash tables according to \(H_{A'} \) and add items:

i. For every \(I_a \in D_l \), hash \(P(I_a) \) using all \(h \in H_{A'} \);

6b \textbf{Query step:} For every \(I_q \in D_l \), we do the following:

i. \(S \leftarrow \) all itemsets that collide with \(Q(I_q) \);

ii. \textbf{for} \(I_a \in S \) \textbf{do}

\textbullet \textbf{if} \(|I_a, I_q| \geq \theta n \) \textbf{then} add \(I_a \) to \(FI_q \) /* reads database*/;

\textbullet \textbf{(*)} If no itemset similar to \(I_q \) found within \(\frac{\psi}{\delta} \) tries, break loop;

\textbf{end}

\textbf{Algorithm 5:} LSH-Apriori (only lines 6a,6b) using Covering LSH

\textbf{Lemma 10} Algorithm 5 outputs all \(\theta \)-frequent itemsets and only \(\theta \)-frequent itemsets. Additional space required is \(O(m_1^{1+\nu}) \), which is also the total time overhead. The expected savings is given by \(E[\varsigma(l + 1)] \geq 2 \left(n - \frac{\log m_1}{\epsilon} - 1 \right) \left((c_{l+1} - m_{l+1}) - m_1^{1+\nu} \right) \).

See Appendix for the proof. The (*) line is an additional optimisation similar to what we did for HammingLSH 4.1; it efficiently recognizes those frequent itemsets of the earlier level none of whose extensions are frequent. The guarantee of not missing any valid itemset comes with a heavy price. Unlike the previous algorithms, the conditions under which expected savings beats overhead are quite stringent, namely, \(c_{l+1} \in \{\omega(m_1^2), \omega(m_1^{l+1})\} \), \(\frac{\alpha}{\delta} > m_1 > \frac{2}{\nu} \) and \(\epsilon < 0.25 \) (since \(1 < c < 2 \), these bounds ensure that \(\nu < 1 \) for later levels when \(\alpha_l \approx \theta \)).

\section{Conclusion}

In this work, we designed randomized algorithms using locality-sensitive hashing (LSH) techniques which efficiently outputs almost all the frequent itemsets with
high probability at the cost of a little space which is required for creating hash tables. We showed that time overhead is usually small compared to the savings we get by using LSH.

Our work opens the possibilities for addressing a wide range of problems that employ on various versions of frequent itemset and sequential pattern mining problems, which potentially can efficiently be randomized using LSH techniques.

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., May 26-28, 1993., pages 207–216, 1993.
2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 487–499, 1994.
3. A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent permutations. J. Comput. Syst. Sci., 60(3):630–659, 2000.
4. E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, and C. Yang. Finding interesting associations without support pruning. IEEE Trans. Knowl. Data Eng., 13(1):64–78, 2001.
5. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB’99, Proceedings of 25th International Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 518–529, 1999.
6. D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S. Sharma. Discovering all most specific sentences. ACM Trans. Database Syst, 28(2):140–174, 2003.
7. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the Thirtieth Annual Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 604–613, 1998.
8. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov., 1(3):259–289, 1997.
9. R. Pagh. Locality-sensitive hashing without false negatives. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1–9, 2016.
10. J. S. Park, M. Chen, and P. S. Yu. An effective hash based algorithm for mining association rules. In Proceedings of the ACM SIGMOD International Conference on Management of Data, San Jose, California, May 22-25, pages 175–186, 1995.
11. A. Shrivastava and P. Li. Asymmetric minwise hashing for indexing binary inner products and set containment. In Proceedings of the 24th International Conference on World Wide Web, 2015, Florence, Italy, May 18-22, 2015, pages 981–991, 2015.
12. C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Generalizing association rules to dependence rules. Data Min. Knowl. Discov., 2(1):39–68, 1998.
13. H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in large data sets. In Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, June 3-6, 2002, pages 394–405, 2002.
Appendix

Theorem 3 (Correctness). LSH-Apriori does not output any itemset which is not \(\theta \)-infrequent. If \(X \) is a \(\theta \)-frequent itemset of size \(l \), then the probability that LSH-Apriori does not output \(X \) is at most \(\delta^l \).

Proof. LSH-Apriori does not output \(X \), whose size we denote by \(l \), if at least one of these hold.

- Any 1 size subset of \(X \) is not generated by LSH-Apriori in level-1
- Any 2 size subset of \(X \) is not generated by LSH-Apriori in level-2

- Any \(l \) size subset of \(X \) (i.e., \(X \) itself) is not generated in level-\(l \)

By Lemma 2, \(\delta \) is the probability that any particular frequent itemset is not generated at the right level, even though all its subsets were identified as frequent in earlier level. Since there are \(\binom{l}{k} \) subsets of \(X \) of size \(k \), the required probability can be upper bounded using Union Bound to

\[
\binom{l}{1}\delta + \binom{l}{2}\delta + \cdots + \binom{l}{l}\delta \leq 2^l \delta.
\]

To get the necessary background, Lemma 13 provides bounds on the hashing parameters \(k, L \) for Hamming distance case. Their proof is adapted from \([5,7,4]\). We first require Lemma 11, 12 for the same.

Lemma 11 Let \(\{I_i, I_j\} \) be a pair of items s.t. \(\text{Ham}(I_i, I_j) \leq r \), then the probability that \(I_i \) and \(I_j \) hash into at least one of the \(L \) bucket of size \(k \), is at least \(1 - (1 - p_1^k)^L \), where \(p_1 = 1 - \frac{\delta}{r} \).

Proof. Probability that \(I_i \) and \(I_j \) matches at some particular bit position \(\geq p_1 \). Now, probability that \(I_i \) and \(I_j \) matches at \(k \) positions in a bucket of size \(k \) \(\geq p_1^k \). Probability that \(I_i \) and \(I_j \) don’t matches at \(k \) positions in a bucket of size \(k \) \(\leq 1 - p_1^k \). Probability that \(I_i \) and \(I_j \) don’t matches at \(k \) positions in none of the \(L \) buckets \(\leq (1 - p_1^k)^L \). Probability that \(I_i \) and \(I_j \) matches in at \(k \) positions positions in at least one of the \(L \) buckets \(\geq 1 - (1 - p_1^k)^L \).

Lemma 12 Let \(\{I_i, I_j\} \) be a pair of items s.t. \(\text{Ham}(I_i, I_j) \geq (1 + \epsilon')r \), then probability that \(\{I_i, I_j\} \) hash in a bucket of size \(k \), is at most \(p_2^k \), where \(p_2 = 1 - (1 + \epsilon')r \).

Proof. Probability that \(I_i \) and \(I_j \) matches 1 at some particular bit position < \(p_2 \). Probability that \(I_i \) and \(I_j \) matches at \(k \) positions in a bucket of size \(k \) \(< p_2^k \).

Lemma 13 Let \(\{I_i\}_{i=1}^m \) be a set of \(m \) vectors in \(R^n \), \(I_q \) be a given query vector, and \(I_{x^*} \) (with, \(1 \leq x^* \leq m \)) s.t. \(\text{Ham}(I_{x^*}, I_q) \leq r \). If we set our hashing parameters \(k = \log \frac{1}{p_2} m \), and \(L = m^\rho \log \left(\frac{1}{\rho} \right) \) (where, \(p_1 = 1 - \frac{\delta}{r} \), \(p_2 = 1 - \frac{r(1+\epsilon')}{n} \), \(\rho = \frac{\log\frac{1}{p_2} m \rho}{\log\frac{1}{p_2} m} \leq \frac{1}{1+\epsilon'} \)), then the following two cases are true with probability > \(1 - \delta \) :
1. for some $i \in \{1, \ldots, L\}$, $g_i(I_{x^*}) = g_i(I_q)$; and
2. total number of collisions with I_{x^*} s.t. $\text{Ham}(I_{x^*}, I_q) > (1 + \epsilon') r$ is at most $\frac{L}{\delta}$.

Proof. Consider the first case, by Lemma 11, we have the following:

$$\Pr[\exists i : g_i(I_{x^*}) = g_i(I_q)] \geq 1 - (1 - p_1^k)^L.$$

If we choose $k = \log_{\frac{p_1}{p_2}} m$, we get $p_1^k = p_1 \log_{\frac{p_1}{p_2}} m = m \log_{\frac{p_1}{p_2}} \frac{p_1}{p_2}$. Let us denote $\rho = \log_{\frac{p_1}{p_2}} \frac{p_1}{p_2}$. Then, $\Pr[\exists i : g_i(I_{x^*}) = g_i(I_q)] \geq 1 - (1 - m^{-\rho})^L$. Now, if we set $L = m^\rho \log \left(\frac{1}{\rho}\right)$, then the required probability is $1 - (1 - m^{-\rho})^L \geq 1 - \frac{\log^2(\frac{1}{\rho})}{\rho} > 1 - \delta$.

Now, let us consider the case 2. Let I_{x^*} be an item such that $\text{Ham}(I_q, I_{x^*}) > r(1 + \epsilon')$. Then by Lemma 12, we have the following:

$$\Pr[g_i(I_q) = g_i(I_{x^*})] \leq p_2^k = p_2 \log_{\frac{p_1}{p_2}} m = \frac{1}{m^\rho} \text{ (as we chose } k = \log_{\frac{p_1}{p_2}} m).$$

Thus, the expected number of collisions for a particular i is at most 1, and the expected total number of collisions is at most L (by linearity of expectation). Now, by Markov’s inequality $\Pr[\text{Number of } I_{x^*} \text{ which are colliding with } I_q > \frac{L}{\delta}] < \frac{L}{\delta} = \delta$. Further, $\rho = \log_{\frac{p_1}{p_2}} \frac{p_1}{p_2} = \frac{n - r}{n - (1 + \epsilon') r} \leq \frac{1}{1 + \epsilon'}$ (after simplification).

Lemma 4 For two itemsets I_x and I_y, $\text{Ham}(P(I_x), Q(I_y)) = 2(\alpha n - |I_x, I_y|)$.

Proof. It is easy to verify that with this mapping $|P(I_x), Q(I_y)| = |I_x, I_y|$. Let $\text{Ham}(I_x, I_y)$ denote the hamming distance between items I_x and I_y. Then, $\text{Ham}(P(I_x), Q(I_y)) = |P(I_x)| + |Q(I_y)| - 2|P(I_x), Q(I_y)| = \alpha n - |I_x| + |I_y| + \alpha n - |I_y| - |I_x| - 2|I_x, I_y| = 2(\alpha n - |I_x, I_y|)$.

Lemma 5 Algorithm 3 correctly outputs $\text{FI}(I_q, \theta, \epsilon, \delta)$ for all $I_q \in \mathcal{D}_1$. Additional space required is $o(m^2)$, which is also the total time overhead. The expected savings can be bounded by $E[c((1 + 1)|\geq (n - o(m))((c_{1+1} - 2m_{1+1}) + (c_{1+1} - o(m_2)))].$

Proof. First, we show that for any query item I_q, Algorithm 3 correctly outputs $\text{FI}(I_q, \theta, \epsilon, \delta)$ for any query $I_q \in \mathcal{D}_1$. Now, if there is an item I_{x^*} such that $|I_{x^*}, I_q| \geq \theta n$, then $\text{Ham}(P(I_{x^*}), Q(I_q)) \leq 2(\alpha - \theta)n$ (by Lemma 4). Let p_1 be the probability that $P(I_{x^*})$ and $Q(I_q)$ matches at some particular bit position, then $p_1 \geq 1 - \frac{2(\alpha n - \theta n)}{2(\alpha n + 2\alpha n)} = 1 + \frac{2\theta}{1 + 2\alpha n}$. Similarly, if there is an item I_{x^*} such that $|I_{x^*}, I_q| \leq (1 - \epsilon)\theta n$, then $\text{Ham}(P(I_{x^*}), Q(I_q)) \geq 2(\alpha - (1 - \epsilon)\theta)n$. Let p_2 be the probability that $P(I_{x^*})$ and $Q(I_q)$ matches at some particular bit position, then $p_2 \geq 1 - \frac{2(\alpha n - (1 - \epsilon)\theta n)}{2(\alpha n + 2\alpha n)} = \frac{1 + 2\epsilon\theta}{1 + 2\alpha n}$. Now, as we have set $k = \log_{\frac{p_1}{p_2}} m = \log_{\frac{p_1}{p_2}} (\frac{1 + 2\epsilon\theta}{1 + 2\alpha n}) m_i$, and $L = m_i^\rho \log \frac{1}{\rho}$, where $\rho = \log_{\frac{p_1}{p_2}} m_i^\rho = \frac{\log(\frac{1 + 2\epsilon\theta}{1 + 2\alpha n})}{\log \frac{1}{\rho}} = \frac{\alpha n - \theta}{\alpha n - (1 - \epsilon)\theta}$ (after simplification); the proof easily follows from Lemma 13.
The space required for hashing an itemset I_q is $\sigma = O(kL) = \tilde{O}(m_{q}^{\theta}) = m_{q}^{\alpha(1)}$, where $\rho = \frac{\alpha_{\gamma} - \theta}{\alpha_{\gamma} - (1-\epsilon)\theta} = o(1)$. Time τ required for hashing I_i is also $O(kL) = \tilde{O}(m_{i}^{\theta}) = m_{i}^{\alpha(1)}$. Thus, total time and space overhead is $m_{i}^{1+\alpha(1)}$, which immediately proves the required space and time overhead.

The number of bits of any vector required by this LSH-function is $\phi = O(kL) = m_{i}^{\alpha(1)}$. We know that TN and FP for an itemset $I_q \in D_l$ are related by $TN(I_q) = r(I_q) - FP(I_q)$, and $\sum I_q' r(I_q) = 2(c_{l+1} - m_{l+1})$. So, $E[\sum TN(I_q)] = \sum r(I_q) - E[\sum FP(I_q)]$. From Lemma 13, $E[FP(I_q)] \leq L$. Combining these facts, we get $E[\sum TN(I_q)] \geq 2(c_{l+1} - m_{l+1}) - m_{i}^{\theta} = 2(c_{l+1} - m_{l+1}) - m_{i}^{1+\alpha(1)}$. Now, using the formula for expected savings from Section 3,

$$E[c(l + 1)] \geq (n - O(kL))(2(c_{l+1} - m_{l+1}) - m_{i}^{1+\alpha(1)})$$

$$= (n - m_{i}^{\alpha(1)})(2(c_{l+1} - m_{l+1}) - m_{i}^{1+\alpha(1)})$$

$$\geq (n - o(m_{i}))(2(c_{l+1} - m_{l+1}) + (c_{l+1} - o(m_{i})))$$

Lemma 6 For two padded itemsets I_x and I_y, $JS(P(I_x), Q(I_y)) = \frac{|I_x, I_y|}{2 \alpha(n - |I_x, I_y|)}$.

Proof. The Jaccard Similarity between items $P(I_x)$ and $Q(I_y)$ is as follows:

$$JS(P(I_x), Q(I_y)) = \frac{|P(I_x) \cap Q(I_y)|}{|P(I_x) \cup Q(I_y)|} = \frac{|P(I_x) : Q(I_y)| - |P(I_x) : Q(I_y)|}{|I_x, I_y|} = \frac{|I_x, I_y|}{2 \alpha(n - |I_x, I_y|)}$$

Lemma 8 Algorithm 4 correctly computes $FI(I_q, \theta, \epsilon, \delta)$ for all $I_q \in D_l$. Additional space required is $O(\lambda m_i)$, and the total time overhead is $O(n + \lambda) m_i$. The expected savings is given by $E[c(l + 1)] \geq 2(1 - \delta)(n - \lambda)(c_{l+1} - m_{l+1})$.

Proof. Now, if there is an item I_x, such that $|I_x, I_y| \geq \theta n$, then $JS(P(I_x), Q(I_y)) \geq \frac{\theta n}{\epsilon (2 \alpha - \theta) n}$ (by Lemma 6). As we set $\omega = \frac{\theta n}{\epsilon (2 \alpha - \theta) n}$ in Algorithm 4, then by Theorem 7 we have $\tilde{JS}(P(I_x), Q(I_y)) \geq \frac{\theta n}{\epsilon (2 \alpha - \theta) n}$, with probability at least $1 - \delta$.

Similarly, if there is an item I_x, such that $|I_x, I_y| < \theta n$, then $JS(P(I_x), Q(I_y)) < \frac{\theta n}{2 \alpha - \theta} (1 - \epsilon) \delta n$ (by Lemma 6). Then by Theorem 7, we have $\tilde{JS}(P(I_x), Q(I_y)) < \frac{\theta n}{2 \alpha - \theta} (1 - \epsilon) \delta n$, with probability at least $1 - \delta$.

We need to set Minhash parameter ϵ such that $\tilde{JS}(P(I_q), Q(I_q)) \geq (1 - \epsilon) \delta n$ for all $I_q \in D_l$. This gives, $\epsilon < \frac{\alpha_{\gamma}}{\alpha_{\gamma}(1 - \epsilon) \delta n}$, which ensures $|I_q, I_a| \geq (1 - \epsilon) \theta n$ with probability at least $1 - \delta$.

The space required for hashing an itemset I_i (for $1 \leq i \leq m$) is $\sigma = O(\lambda)$. Where, $\lambda \geq \frac{2}{\omega^2} \log \frac{1}{\delta}$ and $\epsilon = \frac{\alpha_{\gamma}}{\alpha_{\gamma}(1 - \epsilon) \delta n}$, Total space required for storing hash table is $O(m_{i} \lambda)$. Creating hash table require one pass over D_l, then preprocessing time overhead is $O(n m_{i}).$ We perform query on the hash table, query time overhead is $O(\lambda m_{i}).$ Thus, total time overhead $\vartheta(l + 1) = O((n + \lambda) m_{i})$.

Now, if an itemset I_i is infrequent with I_y, then $Pr[I_a]$ is not reported $\geq 1 - \delta$. As there are $(c_{l+1} - m_{l+1})$ number of infrequent itemsets at level $l + 1$, then,
expected number of infrequent items that are not reported \(E[TN] \geq (1-\delta)(c_{l+1} - m_{l+1})\). Therefore, \(\mathbb{E}[\varsigma(l+1)] = (n-\lambda)E[TN] \geq (n-\lambda)(1-\delta)(c_{l+1} - m_{l+1})\).

Lemma 10 Algorithm 5 outputs all \(\theta\)-frequent itemsets and only \(\theta\)-frequent itemsets. Additional space required is \(O(m^{1+\nu})\), which is also the total time overhead. The expected savings is given by \(\mathbb{E}[\varsigma(l+1)] \geq 2\left(n - \frac{\log m_l}{c} - 1\right)\left((c_{l+1} - m_{l+1}) - m_l^{1+\nu}\right)\).

Proof. By Theorem 9, and our choice of hash function \(H_{A'}\), any pair of similar itemset will surely collide by our hash function, and will not get missed by the algorithm. Moreover, false positives will be filter out by the algorithm in Line 6b of Algorithm 5. Thus, our algorithm outputs all \(\theta\)-frequent itemsets and only \(\theta\)-frequent itemsets.

The space required for hashing an itemset \(I_q\) is \(\sigma = |H_{A'}|\). Total space required for creating hash table is \(O(m_l|H_{A'}|) = O\left(m_l 2^{\vartheta^e+1} m_l^{\frac{1}{2}}\right) = O\left(m_l^{1+\nu}\right)\). Time \(\tau\) require for hashing \(I_l\) is also \(|H_{A'}|\). Thus, total time overhead required (including both preprocessing and querying) is \(\vartheta(l+1) = O(m_l|H_{A'}|) = O(m_l^{1+\nu})\), which proves the required space and time overhead.

The number of bits of any item required by our hash function is \(\phi = \frac{\log m_l}{c} + 1\). We know that \(TN\) and \(FP\) for an itemset \(I_q \in D_l\) are related by \(TN(I_q) = r(I_q) - FP(I_q)\), and \(\sum r(I_q) = 2(c_{l+1} - m_{l+1})\). So, \(\mathbb{E}[\sum TN(I_q)] = \sum r(I_q) - \mathbb{E}[\sum FP(I_q)]\). From Theorem 9, \(\mathbb{E}[FP(I_q)] \leq \psi\). Then, we get \(\mathbb{E}[\sum TN(I_q)] \geq 2(c_{l+1} - m_{l+1}) - m_l \psi\).

As expected savings is \(\varsigma (LSH, l + 1) = (n - \phi) \times \sum I_q TN(I_q)\). We have,

\[
\mathbb{E}[\varsigma(l+1)] \geq \left(n - \frac{\log m_l}{c} - 1\right) (2(c_{l+1} - m_{l+1}) - m_l \psi).
\[
\geq \left(n - \frac{\log m_l}{c} - 1\right) (2(c_{l+1} - m_{l+1}) - m_l 2^{\vartheta^e+1} m_l^{\frac{1}{2}}).
\[
\geq 2\left(n - \frac{\log m_l}{c} - 1\right) (2(c_{l+1} - m_{l+1}) - m_l^{1+\nu}).
\]

We end with a quick proof that the following are sufficient to ensure overhead is less than expected savings. \(c_{l+1} \in \{\omega(m_l^2), \omega(m_{l+1}^2)\}\), \(\frac{2n^2}{\epsilon^2} > m_l > 2^{n/2}, \epsilon < 0.25\).
and $\alpha \approx \theta$. Note that, $2^{cn} > 2^n$ and $5m_l > 2^{-c^{1/d} m_l}$ for any $d > 0$. These imply,

$$nc > \log(m_l) + c \cdot c^{1/d}$$

$$n - c^{1/d} > \frac{\log(m_l)}{c}$$

$$n - 1 > \frac{\log(m_l)}{c} \quad \text{since, } c^{1/d} > 1$$

Furthermore, our conditions imply that $4\epsilon(\alpha_l - \theta)c < c - 1$. This implies,

$$\frac{2\epsilon(\alpha_l - \theta)c}{c - 1} < 1/2$$

$$n - 2 > n/2 > \frac{2\epsilon(\alpha_l - \theta)cn}{c - 1}$$

$$\log(m) > \frac{2\epsilon(\alpha_l - \theta)cn}{c - 1}$$

$$1 = \frac{1}{c} + \frac{c - 1}{c} > \frac{1}{c} + \frac{2\epsilon(\alpha_l - \theta)n}{\log(m)} = \frac{1}{c} + \frac{\epsilon}{cd} = \nu$$