Optimal Estimation of Sea Surface Temperature from AMSR-E

Pia Nielsen-Englyst, Jacob L. Høyer, Leif Toudal Pedersen, Chelle Gentemann, Emy Alerskans, Tian Tian & Tom Block
Outline

- Motivation
- Multi-sensor matchup data base (MMD)
- Optimal estimation retrieval algorithm
- Performance
- Conclusion and way forward
Motivation

- Little European activity within the PMW SST retrieval work
- PMW SST retrievals are valuable supplement to IR SSTs due to the capability to see through clouds and small response to aerosols
- Optimal Estimation provides pixel-level information on the retrieval quality
- Optimal Estimation is currently being developed for Sea Ice within ESA CCI Sea Ice (SICCI) context
- A new PMW satellite (CIMR) is candidate for the Copernicus expansion mission
Multisensor Matchup Dataset (MMD6C)

- AMSR-E L2A TBs from RSS (NSIDC), version 7
 - Resampled to resolution; 10 km, all channels
 - Orbit files, ascending and descending

- Every matchup includes:
 - 21x21 extract of AMSR-E TBs + aux info
 - 5x5 extract of NWP variables
 - 60 vertical layers for NWP
 - In situ SST history
 - 5x5 sea ice

- Netcdf format

2002-2011
Optimal Estimation (OE) setup

- Wentz-DMI FW model
- Important with iterations

\(y: \) TBs (6V/H, 10V/H, 18V/H, 23V/H, 36V/H)
\(x: \) State vector (SST, TCWV, TCLW, WS)
\(S_e: \) Measurement and FW model error covariance
\(S_a: \) á priori error of state variables
\(x_0: \) First Guess values
Uncertainty in SST retrieval

- RMSE TB as quality indicator
- Can be used for:
 - Filtering
 - Uncertainty estimate

Filter	Bias/K OE-Drifter	std/K OE-Drifter	N (10^6)	
Convergence test passed	0.02	0.57	3.7429	=100%
RMSE_{TB} < 1 K	0.02	0.51	3.4329	=92%
RMSE_{TB} < 0.50 K	0.02	0.47	2.3953	=64%
RMSE_{TB} < 0.35 K	0.02	0.45	1.5681	=42%
Global validation

- High standard deviations in e.g.,
 - The Gulf Stream Extension
 - The Kuroshio Current
 - The Aghulas Retroflection areas

- OE SST better than NWP SST in mid-latitudes, while NWP SST is better in the tropics.
Impact from clouds and aerosols (1)

MODIS cloud fraction avg
sample size = 28300

sample size = 29154

Modis cloud fraction

Number of pixels containing aerosols (1-15)
Impact from clouds and aerosols (2)

Total ice water content (TIWC; g/m²)

Opaque cloud top height (CTH; km)

Number of pixels containing deep convective clouds (1-15)
Performance and filtering effects

SST (OE-In situ)	Calipso (100 %)	Calipso (50 %)	Calipso (0 %)
Mean	-0.02	-0.00	-0.00
Std	0.56	0.51	0.50
Num	29,154	26,492	23,994
SST uncertainty vs. cloud parameters

Number of pixels containing deep convective clouds

Total ice water content (TIWC; g/m²)
Total cloud liquid water content

OE TCLW

NWP TCLW
Conclusion

- PMW SST OE retrievals developed:
 - Updating state vector important
 - Performance and uncertainty estimates very good

- Atmospheric impact on SST retrieval:
 - Generally very stable performance
 - Impact from deep convective clouds
 - OE can identify and remove these effects
Way forward

- Improve the Wentz-DMI forward model
- Further assess atmospheric influence on retrieval
- Inter-compare RTTOV and Wentz-DMI forward models
- Implement OE for AMSR-2
Thank you!
Distribution of deep convective clouds

Distribution of the number of pixels, ranging from 1 to 15, containing deep convective clouds averaged for 2x2 degree bins
The SST sensitivity is lowest in high latitudes and increases towards the equatorial region, which is consistent with the fact that $\partial \text{TB}/\partial \text{SST}$ is smaller for cold waters (especially for X-band 10.65 GHz channels).