Effects of prednisone on eosinophilic bronchitis in asthma: a systematic review and meta-analysis*, **
Efeitos da prednisona na bronquite eosinofílica na asma: uma revisão sistemática e meta-análise
Thiago Mamôru Sakae, Rosemeri Maurici, Daisson José Trevisol, Marcia Margaret Menezes Pizzichini, Emílio Pizzichini

Abstract
Objective: To evaluate the effect size of oral corticosteroid treatment on eosinophilic bronchitis in asthma, through systematic review and meta-analysis. Methods: We systematically reviewed articles in the Medline, Cochrane Controlled Trials Register, EMBASE, and LILACS databases. We selected studies meeting the following criteria: comparing at least two groups or time points (prednisone vs. control, prednisone vs. another drug, or pre- vs. post-treatment with prednisone); and evaluating parameters before and after prednisone use, including values for sputum eosinophils, sputum eosinophil cationic protein (ECP), and sputum IL-5—with or without values for post-bronchodilator FEV1—with corresponding 95% CIs or with sufficient data for calculation. The independent variables were the use, dose, and duration of prednisone treatment. The outcomes evaluated were sputum eosinophils, IL-5, and ECP, as well as post-bronchodilator FEV1. Results: The pooled analysis of the pre- vs. post-treatment data revealed a significant mean reduction in sputum eosinophils (↓8.18%; 95% CI: 7.69-8.67; p < 0.001), sputum IL-5 (↓83.64 pg/mL; 95% CI: 52.45-114.83; p < 0.001), and sputum ECP (↓267.60 µg/L; 95% CI: 244.57-290.63; p < 0.0001), as well as a significant mean increase in post-bronchodilator FEV1 (↑8.09%; 95% CI: 5.35-10.83; p < 0.001). Conclusions: In patients with moderate-to-severe eosinophilic bronchitis, treatment with prednisone caused a significant reduction in sputum eosinophil counts, as well as in the sputum levels of IL-5 and ECP. This reduction in the inflammatory response was accompanied by a significant increase in post-bronchodilator FEV1.

Keywords: Meta-analysis; Bronchitis; Asthma; Pulmonary eosinophilia; Evidence-based medicine; Prednisone.

Resumo
Objetivo: Avaliar o tamanho do efeito do tratamento com prednisona oral na bronquite eosinofílica na asma por meio de revisão sistemática e meta-análise. Métodos: Revisão sistemática de artigos nas bases de dados do Medline, Cochrane Controlled Trials Register, EMBASE e LILACS. Foram selecionados estudos que preencheram os seguintes critérios: comparar ao menos dois grupos ou dois momentos (prednisona vs. controle, prednisona vs. outra droga ou pré vs. pós-tratamento com prednisona) e avaliar parâmetros antes e depois do uso de prednisona, incluindo eosinófilos, proteína catiônica eosinofílica (PCE) e IL-5 no escarro – com ou sem valores de VEF1, pós-broncodilatador – com os IC95% correspondentes ou com dados suficientes para calculá-los. As variáveis independentes foram uso e dose de prednisona e duração do tratamento. Os desfechos avaliados foram eosinófilos, IL-5 e PCE no escarro, bem como VEF1, pós-broncodilatador. Resultados: A análise agrupada dos dados de pré e pós-tratamento revelaram uma redução significativa nas médias de eosinófilos no escarro (↓8,18%; IC95%: 7,69-8,67; p < 0,001), IL-5 no escarro (↓83,64 pg/mL, IC95%: 52,45-114,83; p < 0,001), PCE no escarro (↓267,60 µg/L, IC95%: 244,57-290,93; p < 0,001), assim como um aumento na média de VEF1, pós-broncodilatador (↑8,09%,IC95%: 5,35-10,83; p < 0,001). Conclusões: Em pacientes com bronquite eosinofílica de moderada a grave, o tratamento com prednisona determinou uma redução significativa nos níveis de eosinófilos no escarro, assim como nos níveis de IL-5 e PCE no escarro. Essa redução na resposta inflamatória foi acompanhada por um aumento significativo em VEF1, pós-broncodilatador.

Descritores: Metanálise; Bronquite; Asma; Eosinofilia pulmonar; Medicina baseada em evidências; Prednisona.

*Study carried out under the auspices of the Graduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
Correspondence to: Emilio Pizzichini. Hospital Universitário da Universidade Federal de Santa Catarina, Núcleo de Pesquisa em Asma e Inflamação das Vias Aéreas (NUPAIVA), Campus Universitário, Trindade, CEP 88040-340, Florianópolis, SC, Brasil.
Tel/Fax: 55 48 3234-7711. E-mail: pizzichi@matrix.com.br
Financial support: None.
Submitted: 20 March 2014. Accepted, after review: 27 June 2014.
**A versão completa em português deste artigo está disponível em www.jornaldepneumologia.com.br

J Bras Pneumol. 2014;40(5):552-563 http://dx.doi.org/10.1590/S1806-37132014000500012
Introduction

Eosinophilic bronchitis is a relatively new concept. The term was initially used in order to define the well-known allergic inflammatory response in asthma, characterized by an elevated number of eosinophils in tissues or bronchial secretions, typically in spontaneous or induced sputum. However, eosinophilia is neither specific to nor exclusive to asthma. Eosinophilic bronchitis has been reported in association with COPD, bronchiectasis, and chronic cough, with or without asthma. Nevertheless, eosinophilic bronchitis in asthma is relevant for various reasons; it precedes the clinical and physiological manifestations of asthma exacerbations induced by the withdrawal of corticosteroid treatment; it has been associated with the risk of such exacerbations; and a reduction in eosinophilia is a recognized marker of response to corticosteroid treatment.

Predicting the response to corticosteroid treatment is relevant, particularly in asthma, because the suppression or attenuation of eosinophilic airway inflammation reduces the risk of subsequent exacerbations. Systemic corticosteroids are potent anti-inflammatory drugs and the most effective therapy for suppressing airway inflammation and eosinophilia. However, their long-term use is limited by side effects including osteoporosis, cataracts, and adrenal suppression. Currently, systemic corticosteroids are recommended to treat acute exacerbations of asthma, because they prevent the progression of exacerbations, decrease the hospitalization rate, reduce morbidity, and can be effective even when used for short periods of time.

Only a few, small studies have examined the effectiveness of using oral corticosteroids to reduce eosinophilic airway inflammation in asthma. We therefore aimed to examine the effect size of oral corticosteroids for the treatment of airway eosinophilia in asthma patients, through systematic review and meta-analysis.

Methods

Search strategy

We searched the literature within the following electronic databases: the Cochrane Central Register.
the definition of asthma severity as used in individual studies. No unpublished or ongoing studies were included.

Two of the authors of the present study, working individually, screened the titles and abstracts of identified citations and independently acquired the full text of any article that they judged potentially eligible. They also independently reviewed and selected trials from the search results, assessing the suitability, methodology, and quality of the studies. Cases of disagreement or uncertainty were resolved by consensus or by consulting one of the other authors.

Data extraction

We extracted the data using a protocol adapted from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, including the study identification data; the duration of the study; the study design; inclusion and exclusion criteria; criteria for asthma diagnosis; the age and gender of the participants; the number of participants; the randomization method; the severity of asthma in the study group(s); the methods of sputum processing and measurement; and the methods of evaluating post-treatment changes in sputum eosinophils, IL-5, and ECP, as well as post-bronchodilator FEV1.

Statistical analysis

We analyzed the data using the MIX software for meta-analysis, version 1.7 (Kitasato Clinical Research Center, Sagamihara, Japan). We pooled the included studies to yield the means or medians of sputum eosinophils, ECP, IL-5, and FEV1, with the respective 95% CIs or SEs. For continuous variables, we calculated the means and 95% CIs. When the authors reported SDs, we used them to calculate SEs with the following formula:

\[SD = SE \times \sqrt{n} \]

When the SDs were not available for these variables, we transformed 95% CIs into SDs, using the following formula:

\[SE = (upper \ limit \ of \ 95\% \ CI \ - \ lower \ limit \ of \ 95\% \ CI)/(1.96 \times 2), \ SD = SE \times \sqrt{n} \]

We quantified inconsistency among the pooled estimates with Higgins’ I2 statistic, which measures the extent of true heterogeneity and is determined as follows:

\[I^2 = \frac{(Q - df)}{Q} \times 100 \]

where \(Q \) is Cochran’s Q (based on the chi-square statistic), and \(df \) is degrees of freedom. This illustrates the percentage variability in effect estimates resulting from heterogeneity rather than sampling error. If heterogeneity was found, we used a random-effects model. We performed sensitivity analyses comparing random-effects and fixed-effects models. We assessed potential for publication bias using Egger’s test, Higgins’ I2, and funnel plots. A random-effects model was used for the analysis of sputum eosinophils, IL-5, and ECP, because of the high heterogeneity of these markers among the studies, being \(Q = 168.1; p < 0.001; I^2 = 96.4\% \), \(Q = 8.7; p = 0.013; I^2 = 77.0\% \), and \(Q = 700.9; p < 0.001; I^2 = 99.6\% \), respectively.

Results

Through the database searches, we identified a total of 223 articles. Upon review of the titles and abstracts, we excluded 191 studies (Figure 1). Among the remaining 32 articles, some were further excluded: for lacking any information on primary outcomes (\(n = 4 \)),(6,16) for being a review article or meta-analysis (\(n = 2 \)),(17,18) for being a case report or case series (\(n = 3 \)),(7,19,20) or for lacking adequate data for the meta-analysis (\(n = 9 \); evaluating a different drug, lacking a control group, or lacking pre- and post-treatment data related to the use of prednisone or prednisolone). We reviewed the remaining 14 articles and found that only 8 met the inclusion criteria. The characteristics of the included studies are presented in Table 1.

Effects on sputum eosinophils, IL-5, and ECP

The pooled analysis (\(n = 198 \)) showed a six-fold mean reduction in the number of sputum eosinophils after treatment (\(\downarrow 8.2\%; 95\% \ CI: 7.7-8.7; p < 0.001 \); Figure 2). Among studies evaluating IL-5 (in pg/mL) before and after treatment with prednisone or prednisolone (\(n = 114 \)), there was an approximately four-fold mean decrease in IL-5 levels (\(\downarrow 83.6\%; 95\% \ CI: 52.5-83.6; p < 0.001 \); Figure 3). In addition, among the studies evaluating ECP (in µg/L) in subjects receiving prednisone or prednisolone (\(n = 80 \)), the treatment resulted in a five-fold...
Effects of prednisone on eosinophilic bronchitis in asthma: a systematic review and meta-analysis

The effects of treatment with prednisone or prednisolone by age, gender, and dose (Figure 6). The prednisone dose appeared to be responsible for the heterogeneity in sputum eosinophil counts ($\chi^2 = 8.753$) and ECP ($\chi^2 = 172.8$). Linear regression did not show an association between prednisone dose and sputum eosinophils ($p = 0.55$), sputum ECP ($p = 0.38$), sputum IL-5 ($p = 1.00$) or post-bronchodilator FEV$_1$ ($p = 0.27$).

Discussion

Our analyses show that treatment with prednisone or prednisolone is highly effective in reducing sputum eosinophils in eosinophilic bronchitis. This is accompanied by a reduction in other sputum inflammatory markers linked to eosinophilic bronchitis, such as ECP and IL-5. In addition, treatment of eosinophilic bronchitis with prednisone or prednisolone was shown to effect a significant increase in post-bronchodilator FEV$_1$.

Data suggest that sputum eosinophilia and high levels of eosinophilic markers are associated with poor asthma control rather than with the severity

mean reduction in ECP levels (↓267.6; 95% CI: 244.6-290.6; $p < 0.001$; Figure 4).

Effects on FEV$_1$

We also analyzed changes in post-bronchodilator FEV$_1$, after treatment with prednisone or prednisolone in the 194 asthma patients for whom the relevant data were available. In that analysis, we also used a random-effects model, because of the high heterogeneity ($Q = 46.03; p < 0.0001; I^2 = 89.1\%$). After 6-14 days of treatment, there was a significant mean increase in post-bronchodilator FEV$_1$ (↑8.1%; 95% CI: 5.3-10.8; $z = 5.8; p < 0.001$; Figure 5). An analysis of the data regarding the absolute values for post-bronchodilator FEV$_1$ (in liters) showed a mean post-treatment increase, from 1.88 to 2.34 L (↑0.46 L; $p < 0.001$; data not shown).

Management of results

Because of the high heterogeneity, we conducted a meta-regression to examine the effects of treatment with prednisone or prednisolone by age, gender, and dose (Figure 6). The prednisone dose appeared to be responsible for the heterogeneity in sputum eosinophil counts ($T^2 = 8.753$) and ECP ($T^2 = 172.8$). Linear regression did not show an association between prednisone dose and sputum eosinophils ($p = 0.55$), sputum ECP ($p = 0.38$), sputum IL-5 ($p = 1.00$) or post-bronchodilator FEV$_1$ ($p = 0.27$).

Discussion

Our analyses show that treatment with prednisone or prednisolone is highly effective in reducing sputum eosinophils in eosinophilic bronchitis. This is accompanied by a reduction in other sputum inflammatory markers linked to eosinophilic bronchitis, such as ECP and IL-5. In addition, treatment of eosinophilic bronchitis with prednisone or prednisolone was shown to effect a significant increase in post-bronchodilator FEV$_1$.

Data suggest that sputum eosinophilia and high levels of eosinophilic markers are associated with poor asthma control rather than with the severity
Table 1: Characteristics of the studies included.

Reference	Design: Characteristics of the study	Treatment	Pre-treatment vs. post-treatment
Baigelman et al.	Design: observational	Drug: prednisone	Sputum eosinophils, mean ± SD: 26.0 ± 19.0% vs. 8.0 ± 5.0%
	Sample: 11 asthma patients (3 males and 8 females; 29-60 years of age) followed for at least 4 years	Dose: 80 mg/day	Sputum ECP: [not measured]
	Profile: asthma exacerbation	Duration: 3 days	post-bronchodilator FEV₁, mean ± SD: 1.03 ± 0.41 L vs. 1.32 ± 0.51 L
			IL-5: [not measured]
Claman et al.	Design: randomized controlled trial	Drug: oral prednisone	Sputum eosinophils, mean ± SE: 14.1 ± 5.0% vs. 1.8 ± 0.8%
	Sample: 24 asthma patients—oral prednisone group (n = 12, 7 males and 5 females)—excluding patients having used inhaled or oral corticosteroids in the last 6 weeks, having had an upper respiratory infection in the last 6 weeks, and having a smoking history of > 10 pack-years	Dose: 0.5 mg/kg per day	Sputum ECP, mean ± SE: 325 ± 131 µg/mL vs. 144 ± 84 µg/mL
	Profile: asthma exacerbation	Duration: 6 days	post-bronchodilator FEV₁, mean ± SD: 88 ± 5.2% vs. 91 ± 4.87%
			IL-5: [not measured]
Keatings et al.	Design: single-blind crossover study	Drug: prednisolone	Sputum eosinophils, mean ± SD: 6.66 ± 0.98% vs. 0.99 ± 0.25%
	Sample: 15 COPD patients (excluded from this meta-analysis) and 11 patients with mild atopic asthma (1 excluded; 10 included for analysis; mean age 29.8 ± 3.4 years)	Dose: 30 mg/day	Sputum ECP, mean ± SD: 687.0 ± 87.0 µg/L vs. 80.2 ± 14.2 µg/L
	Profile: stable asthma	Duration: 2 weeks	post-bronchodilator FEV₁, mean ± SD: 784 µg/L vs. 700 ± 5240 µg/L
			IL-5: [not described]
			in %, mean ± SD: 59.5 ± 5.7% vs. [not described]
			in L, mean ± SE: [not described] vs. 3.92 ± 0.32 L
			IL-5: [not measured]
Pizzichini et al.	Design: observational	Drug: prednisone	Sputum eosinophils, mean ± SD: 17.6 ± 10.0% vs. 0.89 ± 0.90%
	Sample: 10 asthma patients	Dose: 30 mg/day for 5 days, tapered to zero by day 10	Sputum ECP, mean ± SD: 5,338.4 ± 660.7 µg/L vs. 985.5 ± 1311.0 µg/L
	Profile: asthma exacerbation	Duration: 10 days	post-bronchodilator FEV₁, mean ± SD: 1.5 ± 0.3 L vs. 2.5 ± 0.5 L
			IL-5, mean ± SD: 201 ± 128 µg/mL vs. 0.0 ± 55.6 µg/mL
Pizzichini et al.	Design: observational	Drug: prednisone	Sputum eosinophils, mean ± SD: 16.3 ± 32.3% vs. 0.0 ± 0.5%
	Sample: 8 patients with prednisone-dependent asthma; >12% variability in FEV₁, baseline mean, 18.5% (range, 13-27%)	Dose: 30 mg/day	Sputum ECP, mean ± SD: 7480 ± 5240 µg/L vs. 700 ± 784 µg/L
	Profile: severe asthma	Duration: 7 days	post-bronchodilator FEV₁, mean ± SD: 55.7 ± 6.84% vs. 80.0 ± 15.91%
			IL-5, mean ± SD: 66.5 ± 150 µg/mL vs. 44.1 ± 86 µg/mL
Di Franco et al.	Design: randomized controlled trial	Drug: prednisone	Sputum eosinophils: 52.0% [no SD or SE] vs. 11.0% [no SD or SE] vs. [not described]
	Sample: 40 adult nonsmokers (9 males and 31 females; mean age, 45 ± 13 years; 3 excluded), in two arms—fluticasone (1,000 µg/day; n = 18) and prednisone (n = 19)	Dose: 40 mg/day, tapered to 10 mg/day by reducing the dose by 5 mg every other day	Sputum ECP: 904 µg/L [no SD or SE] vs. [not described]
	Profile: asthma exacerbation	Duration: 6 days	post-bronchodilator FEV₁, mean ± SD: 51.5 ± 14.4% vs. 83.6 ± 21.1%
			IL-5: [not measured]
Scheicher et al.	Design: controlled observational	Drug: oral prednisone	-
	Sample: 51 subjects—21 normal subjects and 30 patients with asthma (13 males and 17 females; mean age, 41 years), 9 of whom were steroid-naïve—the 9 steroid-naïve patients receiving oral prednisone and being evaluated before and after the treatment	Dose: 40 mg/day	-
	Profile: stable asthma	Duration: 14 days	-
Dente et al.	Design: randomized controlled trial	Drug: oral prednisone	-
	Sample: 59 patients with severe refractory asthma, randomized to receive prednisone (n = 39) or placebo (n = 20)	Dose: 0.5 mg/kg per day	-
	Profile: severe asthma	Duration: 2 weeks	-

ECP: eosinophil cationic protein.
Effects of prednisone on eosinophilic bronchitis in asthma: a systematic review and meta-analysis

Figure 2 - Reduction in sputum eosinophils after treatment with oral prednisone or prednisolone.

Figure 3 - Reduction in sputum IL-5 levels after treatment with prednisone.
Figure 4 – Reduction in sputum levels of eosinophil cationic protein after treatment with oral prednisone or prednisolone.

Reference	Exposed n/mean/SD	Control n/mean/SD	Weight (%)	Association measure with 95% CI
Claman et al.\(^{(31)}\)	12/91/4.87	12/88/5.2	46.15	3 (−1.0309 a 7.0309)
Pizzichini et al.\(^{(10)}\)	10/80.1/18.4	10/48.1/7.3	4.98	32 (19.731 a 44.269)
Pizzichini et al.\(^{(10)}\)	8/80/15.91	8/55.75/6.84	5.21	24.25 (12.2494 a 36.2506)
Di Franco et al.\(^{(32)}\)	19/83.6/21.1	19/51.5/14.4	5.68	32.1 (20.6136 a 43.5864)
Scheicher et al.\(^{(11)}\)	9/74.1/4.7	9/69.4/7.7	21.59	4.7 (−1.1937 a 10.5937)
Dente et al.\(^{(29)}\)	39/73.8/14.1	39/67.6/16.3	16.39	6.2 (−0.5641 a 12.9641)
Meta-analysis:			100.0	8.0965 (5.3581 a 10.8346)

Figure 5 – Increase in post-bronchodilator FEV\(_1\) (% of predicted) after treatment with prednisone.
uncontrolled asthma who do not present with sputum eosinophilia. Whether that subgroup could be less responsive to corticosteroids remains to be established.

Eosinophils have long been regarded as key inflammatory mediators in the pathogenesis of asthma, although their exact role is unclear. In studies of heterogeneous populations of subjects with asthma, the downregulation of eosinophil activity via targeted inhibition of IL-5 (a pro-eosinophilic cytokine) has yielded disappointing results.\(^{(35)}\)

In one study of patients with severe asthma and refractory eosinophilic airway inflammation,\(^{(22)}\) intramuscular administration of triamcinolone was found to reduce the mean proportion of eosinophils in sputum from 12.6% to 0.2%, similar to the reductions achieved through the use of inhaled corticosteroids (> 1,600 µg/day) or chronic oral prednisone.\(^{(29,32)}\) The authors also observed an increase in FEV\(_1\), and a reduction of asthma.\(^{(7,8,21,26)}\)
The data presented here support the usefulness of sputum eosinophil assessment in predicting when patients with severe asthma might benefit from an increase in the dose of corticosteroids. Classifying severe asthma phenotypes as eosinophilic and non-eosinophilic might have clinical implications for the choice of pharmacological therapy. Persistence of eosinophilia in severe asthma could be a reflection of corticosteroid insensitivity, and refractory asthma might respond to the use of anti-IL-5 therapy with mepolizumab. As previously mentioned, we found that sputum IL-5 levels decreased after treatment with prednisone or prednisolone. Because IL-5 is a pro-inflammatory cytokine that increases the recruitment, activation, and survival of eosinophils, it is considered of pivotal importance in the pathophysiology of asthma. Ying et al. showed that IL-5 is highly expressed in T cells, eosinophils, and mast cells in bronchial biopsy specimens collected from patients with asthma. Other studies have shown that sputum levels of IL-5 trend higher in patients with eosinophilic asthma, whereas those of IL-8 trend higher in patients with non-eosinophilic asthma. There is evidence that IL-5 is detectable in the induced sputum of asthma patients and that sputum levels of IL-5 are higher in patients with severe asthma than in those with mild-to-moderate asthma.

Our results show that systemic corticosteroids are effective not only in reducing sputum eosinophil counts but also in inhibiting the release of pro-inflammatory cytokines that play a relevant role in perpetuating airway inflammation in patients with refractory asthma. Our data agree with those of other studies showing that corticosteroids decrease the number of activated T cells expressing messenger RNA of IL-4 and IL-5 in the BAL fluid of asthma patients, regardless of the severity of the asthma. Our results also show that treatment with prednisone or prednisolone can effect a four-fold reduction in sputum ECP levels. When we considered the ECP levels in sputum supernatants, we found that those levels were associated with poor asthma control, further underscoring the fact that eosinophils play a role in this equation. However, despite expectations that patients with severe asthma would show higher sputum ECP levels, Romagnoli et al. observed no differences among groups of asthma patients, stratified by asthma severity, in terms of the sputum levels of ECP.

In a study of acute exacerbations of asthma, Baigelman et al. demonstrated that FEV1 improves within the first 24 h of treatment with prednisone or prednisolone, further improvement being observed after 48-72 h of such treatment. However, in a similar study, Belda et al. found no change in FEV1 in the first 24 h. Aggarwal & Bhoi also studied acute exacerbations of asthma and suggested that intravenous methylprednisolone followed by oral methylprednisolone is a more efficacious and safer treatment regimen than is intravenous hydrocortisone followed by oral prednisolone. However, those authors employed clinical and spirometric evaluation alone, without analyzing inflammatory mediators in sputum or other respiratory secretions.

In a meta-analysis conducted in 1992, Rowe et al. showed that the use of corticosteroids early in the treatment of asthma exacerbations reduces the number of hospital admissions in adults and children, as well as showing that corticosteroids are effective in preventing relapse in the outpatient treatment of asthma exacerbations. Oral and intravenous corticosteroids appear to have equivalent effects on pulmonary function in acute exacerbations, and recent studies have shown that inhaled and oral corticosteroids are also equally effective.

Despite the heterogeneity among the studies evaluated here, in terms of the doses and duration of treatment/follow-up, most of the exposure to prednisone or prednisolone was at >30 mg/day, which is sufficient to suppress sputum eosinophils, reduce ECP levels, and inhibit IL-5, as well as to increase FEV1. However, because of the high degree of heterogeneity, it was necessary...
Effects of prednisone on eosinophilic bronchitis in asthma: a systematic review and meta-analysis

References

1. Kelly MM, Leigh R, Jayaram L, Goldsmith CH, Parameswaran K, Hargreave FE. Eosinophilic bronchitis in asthma: a model for establishing dose-response and relative potency of inhaled corticosteroids. J Allergy Clin Immunol. 2006;117(5):989-94. http://dx.doi.org/10.1016/j.jaci.2006.01.045

2. Hargreave FE, Parameswaran K, Asthma, COPD and bronchitis are just components of airway disease. Eur Respir J. 2006;28(2):264-7. http://dx.doi.org/10.1183/09031936.06.00056106

3. Hargreave FE, Leigh R, Parameswaran K, Asthma as a disease concept. Lancet. 2006;368(9545):1415-6. http://dx.doi.org/10.1016/S0149-2918(06)9595-0

4. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Pizzichini MM, Pizzichini E, Kamada D, Efthimiadis A, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360(10):985-93. http://dx.doi.org/10.1056/NEJMoa0900899

5. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360(10):985-93. http://dx.doi.org/10.1056/NEJMoa0805435

6. Jayaram L, Pizzichini MM, Cook RJ, Boulet LP, Lemière C, Pizzichini E, et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J. 2008;22(3):483-94. http://dx.doi.org/10.1183/09031936.06.00137704

7. Parameswaran K, Pizzichini MM, Li D, Pizzichini E, Jeffery PK, Hargreave FE. Serial sputum cell counts in the management of chronic airflow limitation. Eur Respir J. 1998;11(6):1405-8. http://dx.doi.org/10.1183/09031936.98.11061405

8. Pizzichini MM, Pizzichini E, Clelland L, Efthimiadis A, Mahony J, Dolovich J, et al. Sputum in severe exacerbations of asthma: kinetics of inflammatory indices after prednisone treatment. Am J Respir Crit Care Med. 1997;155(5):1501-8. http://dx.doi.org/10.1164/ajrccm.155.5.9514849

9. Nolte H, Pavord I, Bockler V, Spector S, Shekar T, Davies G, et al. Dose-dependent anti-inflammatory effect of inhaled mometasone furoate/formoterol in subjects with asthma. Respir Med. 2013;107(5):656-64. http://dx.doi.org/10.1016/j.rmed.2013.02.010

10. Pizzichini MM, Pizzichini E, Clelland L, Efthimiadis A, Pavord I, Dolovich J, et al. Prednisone-dependent asthma: inflammatory indices in induced sputum. Eur Respir J. 1999;13(1):15-21. http://dx.doi.org/10.1183/09031936.99.13101599

11. Kroegel C. Global Initiative for Asthma (GINA) guidelines: 15 years of application. Expert Rev Clin Immunol. 2009;5(3):239-49. http://dx.doi.org/10.1586/eci.09.1

12. Aggarwal P, Bhoi S. Comparing the efficacy and safety of two regimens of sequential systemic corticosteroids in the treatment of acute exacerbation of bronchial asthma. J Emerg Trauma Shock. 2010;3(3):231-7. http://dx.doi.org/10.4103/0974-2700.66522

13. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. http://dx.doi.org/10.1371/journal.pmed.1000100

14. Bax L, Yu LM, Ikeda N, Tsuruda H, Moons KG. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol. 2006;6:50. http://dx.doi.org/10.1186/1471-2288-6-50

15. Highly sensitive search strategies for identifying reports of randomized controlled trials in MEDLINE. In: Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions version 4.2.5. Chichester, UK: John Wiley & Sons; 2005.

16. Jayaram L, Duong M, Pizzichini MM, Pizzichini E, Kamada D, Efthimiadis A, et al. Failure of montelukast to reduce sputum eosinophilia in high-dose corticosteroid-dependent asthma. Eur Respir J. 2005;25(1):41-6. http://dx.doi.org/10.1183/09031936.04.00080104

17. Rowe BH, Keller JL, Oxman AD. Effectiveness of steroid therapy in acute exacerbations of asthma: a meta-analysis. Am J Emerg Med. 1992;10(4):301-10. http://dx.doi.org/10.1073/6757(92)90007-K

18. Bouquet J, Ben-Joseph R, Messonnier M, Alemao E, Gould AL. A meta-analysis of the dose-response relationship of inhaled corticosteroids in adolescents and adults with mild to moderate persistent asthma. Clin Ther. 2002;24(1):1-20. http://dx.doi.org/10.1016/S0149-2918(02)85002-0

19. Parameswaran K, Leigh R, Hargreave FE. Sputum eosinophilic granulocyte count to assess compliance with corticosteroid therapy in asthma. J Allergy Clin Immunol. 1999;104(2 Pt 1):502-3. http://dx.doi.org/10.1016/S0091-6757(99)70402-1

20. Wong AG, Pavord ID, Sears MR, Hargreave FE. A case for serial examination of sputum inflammatory cells.
Effects of prednisone on eosinophilic bronchitis in asthma: a systematic review and meta-analysis

About the authors

Thiago Mamôru Sakae
Professor of Epidemiology. Graduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.

Rosemeri Maurici
Professor. Graduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil.

Daisson José Trevisol
Professor. Graduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil.

Marcia Margaret Menezes Pizzichini
Professor. Graduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.

Emílio Pizzichini
Professor. Graduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.

http://dx.doi.org/10.1590/S1806-37132014000500012 J Bras Pneumol. 2014;40(5):552-563