An alternative order-parameter for non-equilibrium generalized spin models on honeycomb lattices

Francisco Sastre1 and Malte Henkel2

1 Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León de la Universidad de Guanajuato, AP E-143, CP 37150, León, México
2 Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine Nancy, BP 70239, F-54506 Vandœuvre-lès-Nancy, France

E-mail: sastre@fisica.ugto.mx and malte.henkel@univ-lorraine.fr

Received 11 December 2015, revised 21 February 2016
Accepted for publication 22 February 2016
Published 14 March 2016

Abstract
An alternative definition for the order-parameter is proposed, for a family of non-equilibrium spin models with up–down symmetry on honeycomb lattices, and which depends on two parameters. In contrast to the usual definition, our proposal takes into account that each site of the lattice can be associated with a local temperature which depends on the local environment of each site. Using the generalised voter motel as a test case, we analyse the phase diagram and the critical exponents in the stationary state and compare the results of the standard order-parameter with the ones following from our new proposal, on the honeycomb lattice. The stationary phase transition is in the Ising universality class. Finite-size corrections are also studied and the Wegner exponent is estimated as $\omega = 1.06(9)$.

Keywords: critical phenomena, voter model, critical exponents, Ising universality

(Some figures may appear in colour only in the online journal)

1. Introduction

For equilibrium systems, the universality hypothesis allows to cast all critical systems in universality classes, of which the Ising model universality class is the best-known example. The concept of universality can be extended to non-equilibrium critical systems [1, 2]. In particular, a widely accepted conjecture states that non-equilibrium models with up–down symmetry and spin-flip dynamics fall in the universality class of the Ising model [3]. A family
of generalized spin models (GSM) that do not satisfy the detailed-balance condition and which present a non-equilibrium steady-state, was proposed by Oliveira et al [4, 5]. The collective behaviour of the ‘spins’ shares many aspects with the well-established theory of non-equilibrium phase transitions and results from simulations can be analysed similarly [1]. In these GSM, the system evolves following a competing dynamics induced by heat baths at two different temperatures (on two-dimensional square lattices) [6–8] and hence have a non-equilibrium stationary state. In the original version of the GSM [4], each lattice site is occupied by a spin, σ_i, that interacts with its nearest neighbours. The system evolves in the following way: during an elementary time step, a spin $\sigma_i = \pm 1$ on the lattice is randomly selected, and flipped with a probability given by

$$p = \frac{1}{2} [1 - \sigma_i f(H_i)],$$

where H_i is the local field produced by the nearest neighbours to the site i and $f(H_i)$ is a local function bounded by $|f(H_i)| \leq 1$. On a square lattice, one habitually uses one of two possible sets of parameters, such that

$$f(H_i) = \begin{cases}
 f(2) = -f(-2) = x = \tanh(2/\beta_2), \\
 f(0) = 0, \\
 f(4) = -f(-4) = y = \tanh(4/\beta_4).
\end{cases}$$

The dynamics is described by two parameters: either the pair (x, y) which act analogously to a noise in the system, or else by a pair of effective inverse temperatures (β_2, β_4) [4, 8]. In the second case, to each site one associates a ‘temperature’ that depends on its instant local environment. This locally fluctuating ‘temperature’ should affect the model’s macroscopic behaviour. Several known models are known special cases of the dynamics equations (1) and (2): the majority voter model (MVM) corresponds to $y = x$ or $\beta_2 = 2\beta_4$; the Glauber–Ising model (GIM) corresponds to $y = 2x/(1 + x^2)$ or $\beta_2 = \beta_4$. Numerical simulations confirm that these models, on a square lattice, belong to the Ising model universality class [4, 9–11]. In this work, we propose a new order-parameter with the following features: (i) it must take into account that the local variable has extra degrees of freedom because there is not just one heat bath involved, and (ii) it must recover the standard Ising model when the heat baths are at the same temperature. Additionally, we can introduce in this way a new model of out of equilibrium mixed-spin models, similar to the ferrimagnetic models (see [12] and references therein).

This work is organised as follows: in section 2 we described how to implement the new order parameter on the honeycomb lattice. In section 3, the finite-size scaling method used to analyse its stationary state is outlined. In section 4, the results of the Monte Carlo simulation for a particular case, the equivalent MVM, are reported and the critical parameters are extracted. We conclude in section 5.

2. Model

In analogy with simple Ising magnets the paramagnetic-ferromagnetic phase transition can be measured with the standard order-parameter, on a square lattice $\Lambda \subset \mathbb{Z}^2$, with $N = L^2 = |\Lambda|$ sites
\[\langle m \rangle = \frac{1}{N} \left(\sum_{i \in \Lambda} \sigma_i \right). \]

(3)

In this work, we propose an alternative definition for an order parameter, as follows

\[\langle \mu \rangle = \left(\sum_{i \in \Lambda} \beta_H \right)^{-1} \left\{ \sum_{i \in \Lambda} \beta_H \sigma_i \right\}. \]

(4)

such that the value of the inverse temperature \(\beta_H \) is selected on each site, depending on the local field \(H_i \), according to equation (2). Certainly, when \(\beta_2 = \beta_4 \), one should recover \(\langle \mu \rangle = \langle m \rangle \). However, on lattices where each site has an even number of nearest neighbours, the order parameter \(\langle \mu \rangle \) is not uniquely defined, since for configurations with a local field \(H_i = 0 \) at the site \(i \), a further un-specified parameter \(\beta_0 \) must be introduced. A work-around is to consider lattices where sites have an odd number of nearest neighbours, such as the honeycomb lattice (see figure 1). For the honeycomb lattice, the available values for the local field are \(H_i = \pm 1, \pm 3 \) and the extra parameter \(\beta_0 \) is no longer needed.

On the honeycomb lattice, equation (2) is replaced by

\[f(H_i) = \begin{cases} f(1) = -f(-1) = x = \tanh(\beta_1), \\ f(3) = -f(-3) = y = \tanh(3\beta_3). \end{cases} \]

(5)

Again, we recover some known models: the MVM corresponds now to \(x = y \) and \(\beta_1 = 3\beta_3 \) and the GIM corresponds to \(y = (3x + x^3)/(1 + 3x^2) \) or \(\beta_1 = \beta_3 \). Analogously we can define the ‘susceptibility’ for the new order parameter as

\[\chi = N x \left(\langle \mu^2 \rangle - \langle \mu \rangle^2 \right) \]

(6)

(this terminology is inspired from the obvious analogue with equilibrium, and because it allows for a ready-made comparison with the Ising model exponents).

For a qualitative illustration of the difference between the two order parameters, in figure 2 we present snapshots along the line \(x = y \) for three different values of \(x \) for a lattice of size \(L = 200 \). The left column (a) corresponds to the ordered phase, the central column (b) to the critical point and the right column (c) to the disordered phase. While the standard order parameter \(\langle m \rangle \) permits to distinguish between the ordered and disordered phases, our new proposal \(\langle \mu \rangle \) clearly hints at additional structure not captured by \(\langle m \rangle \). Curiously, there is a cusp in \(\langle \beta \rangle \) which occurs very closely to the location \(x_c \) of the critical point. While the increase of \(\langle \beta \rangle \) with \(x \) in the disordered phase should mainly reflect the dependence of \(\beta_1 \) on \(x \), the cusp could be related to the increase of sites with an inverse temperature \(\beta_3 = \frac{1}{3} \beta_1 \), as is also suggested by the snapshots in figure 2.

Since both the MVM and the GIM present a continuous phase-transition, it is natural to assume that a critical line should exist in the \(x-y \) plane. In analogy to the square lattice case, this line starts at the voter critical point, \((x, y) = (1/3, 1) \) for the honeycomb lattice, and ends at the extremal value \((x, y) \approx (1, 0.88) \). In order to sketch the critical line, we carried out rough simulations with small lattice sizes, \(L = 24, 28, 32 \) and 36, at different fixed \(x \) values. In order to estimate the critical points, we used the standard method of the crossing point of
Figure 1. Honeycomb lattice used for the simulations, with this geometry we use skew boundary conditions at the horizontal boundary.

Figure 2. Snapshots of the honeycomb lattice of size $L = 200$ along the line $y = x$, for (a) $x = 0.95$ (b) $x = 0.8720$ and (c) $x = 0.20$. The upper row corresponds to the new order parameter $\langle \mu \rangle$, see (4). Sites with a local spin $\sigma \beta_{\mu} = \{+\beta_1, +\beta_1, -\beta_1, -\beta_2\}$ are represented by the shades (black, dark grey, light grey, white), respectively. The lower row corresponds to the standard order parameter $\langle m \rangle$, see (3). Sites with spin $\sigma = \{+1, -1\}$ are represented by the shades (black, white), respectively. The order-parameter values are (a) $\langle m \rangle \simeq 0.943$, $\langle \mu \rangle \simeq 0.928$, (b) $\langle m \rangle \simeq 0.052$, $\langle \mu \rangle \simeq 0.040$ and (c) $\langle m \rangle \simeq 0.009$, $\langle \mu \rangle \simeq 0.007$.
the fourth-order Binder cumulant \[U^{(4)} = 1 - \frac{\langle \mu^4 \rangle}{3\langle \mu^2 \rangle^2} \tag{7} \]

For both order parameters (3), (4) simulations were carried out by starting with a random configuration of spins, and letting the system evolve according to the dynamics given by equations (1) and (5). In figure 4, we show the phase diagram as estimated in the plane (x, y)
for the honeycomb lattice. Skew boundary conditions in the horizontal direction and periodic
boundary conditions in the vertical direction were used, since their use simplifies the
simulations, see figure 1. In all cases, the uncertainties in the critical values are around 10^{-3}.
Clearly, we see from figure 4 that the critical boundaries estimated from both order-
parameters are compatible (see also table 1).

3. Finite-size scaling technique

We shall use the method proposed in [15], where three different cumulants are used for the
evaluation of the critical point: (i) the fourth-order or Binder cumulant, equation (7), (ii) the
third-order cumulant (where $\langle \mu^3 \rangle$ is defined analogously to equation (4))

$$U^{(3)} = 1 - \frac{\langle \mu^3 \rangle}{2\langle \mu \rangle \langle \mu^2 \rangle},$$

and (iii) the second-order cumulant

$$U^{(2)} = 1 - \frac{2\langle \mu^2 \rangle}{\pi \langle \mu \rangle^2}.$$

The scaling forms for the thermodynamic observables, in the stationary state, and together
with the leading finite-size correction exponent ω (or Wegner’s exponent), are given by

$$\mu(\epsilon, L) \approx L^{-\beta/\nu} (\hat{M}(\epsilon L^{1/\nu}) + L^{-\omega} \hat{M}(\epsilon L)),$$

$$\chi(\epsilon, L) \approx L^{\gamma/\nu} (\hat{\chi}(\epsilon L^{1/\nu}) + L^{-\omega} \hat{\chi}(\epsilon L)),$$

$$U^{(p)}(\epsilon, L) \approx \hat{U}^{(p)}(\epsilon L^{1/\nu}) + L^{-\omega} \hat{U}^{(p)}(\epsilon L),$$

where $\epsilon = x - x_c$ is the distance from criticality, $p = 2, 3$ or 4. The parameters β, γ and ν are the critical exponents for the infinite system, see [1] for details.

In principle, the critical point x_c is found from the crossing points in the cumulants $U^{(p)}$.
A precise estimation of x_c is achieved by taking into account the crossing points for different

x	χ_m	χ_μ
0.500	0.982	0.982
0.550	0.970	0.970
0.600	—	0.956
0.650	—	0.941
0.700	0.925	0.925
0.750	0.909	0.908
0.800	—	0.891
0.850	0.880	0.875
0.900	0.866	0.864
0.950	0.861	0.858
0.999	—	0.879
1.000	0.884	—
cumulants $U^{(p)}$ and $U^{(q)}$ with $p \neq q$ arise for different values of L. The values of x, where the cumulant curves $U^{(p)}(x)$ for two different linear sizes L_i and L_j intercept are denoted as $x_{ij}^{(p)}$. We expand equation (12) around $\epsilon = 0$ to obtain

$$U^{(p)} \approx U_\infty^{(p)} + \tilde{U}^{(p)} L^{1/\nu} + \tilde{U}^{(p)} L^{-\omega} + O(\epsilon^2, \epsilon L^{-\omega}),$$

(13)

where $U_\infty^{(p)}$ are universal quantities, but $\tilde{U}^{(p)}$ and $\tilde{U}^{(p)}$ are non-universal. The value of ϵ where the cumulant curves $U^{(p)}$ for two different linear sizes L_i and L_j intercept is denoted as $\epsilon_{ij}^{(p)}$. At this crossing point the following relation must be satisfied:

$$L_i^{1/\nu} \epsilon_{ij}^{(p)} + B^{(p)} L_i^{-\omega} = L_j^{1/\nu} \epsilon_{ij}^{(p)} + B^{(p)} L_j^{-\omega}.$$

(14)

Here $B^{(p)} := \tilde{U}^{(p)} / \tilde{U}^{(p)}$. Combining for different cumulants ($q \neq p$) we get

$$x_{ij}^{(p)} + x_{ij}^{(q)} \over 2 = x_c - (x_{ij}^{(p)} - x_{ij}^{(q)}) A_{pq},$$

(15)

where $A_{pq} = (B^{(p)} + B^{(q)})/[2(B^{(p)} - B^{(q)})]$ and is non-universal (see [15, 16] for additional details). Equation (15) is a linear equation that makes no reference to ν or ω and requires as inputs only the numerically measurable crossing couplings $x_{ij}^{(p)}$. The intercept with the ordinate gives the critical point location.

4. Results

For the determination of the critical point and the critical exponents for the MVM, we performed simulations on lattices with linear sizes $L = 24, 32, 40, 48, 60, 76$ and 96, following the procedure used for the evaluation of the critical line of section 2. We let the system evolve during a transient time, that varied from 4×10^5 Monte Carlo time steps (MCTS) for $L = 24$ to 1.5×10^6 MCTS for $L = 96$. Averages of the observables were taken over 1×10^6 MCTS for $L = 24$ and up to 1.5×10^7 MCTS for $L = 96$. Additionally, for
each value of x and L, we performed 300 (bigger lattices) to 500 (smaller lattices) independent runs, in order to improve the statistics.

For the evaluation of the critical points, we used a third-order polynomial fit for the cumulant curves. Recalling equation (15), the estimation of the critical point is shown in figure 5, where we plot the variable $\sigma := (x_j^{(4)} + x_j^{(2)})/2$ over against the variable $\delta := x_j^{(4)} - x_j^{(2)}$. We observe that the curves $\sigma(\delta)$ are not linear as expected from equation (15), this means that the finite-size effects are significant in this case and the curvature is due to the neglected higher order terms in equation (12). When we compare the data for the crossing of the $U^{(2)} - U^{(4)}$ curves with the previous reported data for the standard order parameter given by equation (3) from [14], the range in the differences δ is almost two times larger with this new order parameter (see figure 2(c) in [14]) and that the smallest difference is around 7×10^{-5} (corresponding to the crossing between $L = 96$ and $L = 76$). When we compare with results for the antiferromagnetic MVM on honeycomb lattices (figure 4(b) on [17]) we observe that the scaling effect, like the range in the differences δ and the departure from the linear behaviour of $\sigma(\delta)$, are more notorious with the new order parameter. With the second order polynomial fits of equation (15) we obtain the result for the critical point of

$$x_c = 0.87195(22),$$

where the number in brackets give the estimated uncertainty in the last given digit(s). This results is in good agreement with the reported value for the critical point of the standard order parameter for the ferromagnetic and antiferromagnetic MVM on honeycomb lattice [14, 17].

Once that we have the critical point, we can also analyse eventual finite-size corrections, which are described in terms of Wegner’s correction-to-scaling exponent ω, which was already defined in equations (10)–(12). We evaluate the Wegner exponent ω and the universal quantities $U^{(p)}$ by using a nonlinear fit with (12) and $\epsilon = 0$. Again, we can observe that the scaling effects are more pronounced here, compared to the antiferromagnetic case with the standard order parameter on the same lattice (see figure 8(b) in [17]). Our estimated value for the Wegner exponent is
The usual prediction for ω, based on 2D conformal invariance [18–20] gives $\omega = 2$ for the Ising model, on a square lattice with periodic boundary conditions. Early suggestions that ω might be as small as $4/3$ have been disproved numerically, in favour of $\omega = 2$ [21]. However, in certain cases the corresponding amplitude may vanish and this leads to an effective value $\omega = 4$, as seen for the Ising model on honeycomb and triangular lattices [22]. For open boundary conditions or Brascamp-Kunz boundary conditions, one rather finds $\omega = 1$ [23–25]. Finally, on the triangular lattice, effective values in the range $1.2 \lesssim \omega_{\text{eff}} \lesssim 2$ were reported [26].

The values for the cumulants are $U_{\infty}^{(2)} = 0.301(6), U_{\infty}^{(3)} = 0.430(7)$ and $U_{\infty}^{(4)} = 0.597(7)$; they are all compatible with the reported values for the antiferromagnetic MVM on honeycomb lattices with the same boundary conditions [17].

The critical exponents can be evaluated, by using equations (12), at the critical point $\epsilon = 0$. One expects the following finite-size scaling behaviour

\begin{align*}
 m(L) & \sim L^{-\beta/\nu} (1 + a_m L^{-\omega}) \\
 \chi(L) & \sim L^{\gamma/\nu} (1 + a_\chi L^{-\omega})
\end{align*}

and

\begin{equation}
 \left. \frac{\partial U^{(p)}}{\partial x} \right|_{x=x_c} \sim L^{\gamma/\nu} (1 + a_{U^{(p)} L^{-\omega}}),
\end{equation}

where the correction-to-scaling exponent, with the value $\omega = 1.06$, must be included, since the correction-to-scaling effects are important in this case. The parameters a_{ω} are non-universal. In figure 7, we show the derivatives of the cumulants at the critical point. From the finite-size scaling law (20), we obtain the following results: $1/\nu = 0.97(4), 0.99(4)$ and 0.99 (3) from $\partial U^{(2)}/\partial x$, $\partial U^{(3)}/\partial x$ and $\partial U^{(4)}/\partial x$, respectively. After combining our results we finally obtain $1/\nu = 0.98(4)$, in good agreement with the result for the two-dimensional Ising model. The evaluation of γ/ν is shown in figure 8, with the relation (19) we obtain
1. We present in figure 9 the evaluation of b_n, with equation (18) we obtain 0.1285. All reported numerical estimates are very close to the exactly known values of the two-dimensional Ising ferromagnet, e.g. [1, appendix A].

5. Conclusions

We have introduced a new definition of an order-parameter for a family of GSM in honeycomb lattices. This definition (4) of the new order parameter μ can be extended to other lattice types with an odd number of nearest neighbours. We studied through intensive Monte Carlo
simulations the stationary state for a particular case that corresponds to the MVM. We have found that the phase-diagram for this order-parameter in the two-parameter space \((x, y)\) is equivalent to the phase diagram for the standard order parameter, in both ferromagnetic and antiferromagnetic versions of the MVM. Furthermore, the estimated critical exponents

\[
\frac{1}{\nu} = 0.98(4), \quad \frac{\gamma}{\nu} = 1.75(2), \quad \frac{\beta}{\nu} = 0.128(5)
\]

of the stationary state are, as expected, compatible to the ones of the 2D Ising model universality class. One important difference with respect to the previous numerical studies concerns the correction-to-scaling effects. Their analysis permits to estimate the Wegner exponent \(\omega\). Our result \(\omega_{\text{MVM}} = 1.06\) is not compatible with the conventional value \(\omega_{\text{Ising}} = 2\) of the two-dimensional Ising model. Such small values of \(\omega\) have usually been reported on certain non-periodic lattices in the 2D Ising model \([22, 23, 25]\) while here, it arises as a result of the chosen dynamics. The only other known value for the MVM is for the three-dimensional cubic lattice \([16]\); in this case the value of \(\omega\) is compatible with the value of the Ising model. Further simulations should be performed in order to test further whether there is a new correction exponent for this model.

Finally, the use of \(\mu\) might offer a finer view on the mechanism of a phase transition, see figures 2 and 3, and probably can be extended beyond the Ising model. We hope to return elsewhere to further exploration of new insights, especially in the context of non-equilibrium phase transitions.

Acknowledgments

FS thanks the Groupe de Physique Statistique à l’Université de Lorraine Nancy for warm hospitality. This work was partly supported by the Collège Doctoral franco-allemand Nancy-Leipzig-Coventry (‘Systèmes complexes à l’équilibre et hors équilibre’) of UFA-DFH.

References

[1] Henkel M, Hinrichsen H and Lübeck S 2008 *Nonequilibrium Phase Transitions, Vol I: Absorbing Phase Transitions* (Heidelberg: Springer)

[2] Täuber U C 2014 *Critical Dynamics* (Cambridge: Cambridge University Press)

[3] Grinstein G, Jayaprakash C and He Y 1985 *Phys. Rev. Lett.* **55** 2527

[4] de Oliveira M J, Mendes J F F and Santos M A 1993 *J. Phys. A: Math. Gen* **26** 2317

[5] Tomé T and de Oliveira M J 2014 *Dinâmica Estocástica e Irreversibilidade* 2a edição (São Paulo: Livraria de Física)

[6] Droz M, Rác Z and Schmidt J 1989 *Phys. Rev. A* **39** 2141

[7] Tamayo P, Alexander F J and Gupta R 1994 *Phys. Rev. E* **50** 3474

[8] Drouffe J-M and Godrèche C 1999 *J. Phys. A: Math. Gen.* **32** 249

[9] de Oliveira M J 1992 *J. Stat. Phys.* **66** 273

[10] Kwak W, Yang J-S, Sohn J-I and Kim I-M 2007 *Phys. Rev. E* **75** 061110

[11] Wu Z-X and Holme P 2010 *Phys. Rev. E* **81** 011133

[12] Žuković M and Bobák A 2015 *Physica A* **436** 509

[13] Binder K 1981 *Z. Phys. B* **43** 119

[14] Acuña-Lara A, Sastre F and Vargas-Arriola J 2014 *Phys. Rev. E* **89** 052109

[15] Pérez G 2005 *J. Phys.: Conf. Ser.* **23** 135

[16] Acuña-Lara A and Sastre F 2012 *Phys. Rev. E* **86** 041123

[17] Sastre F and Henkel M 2016 *Physica A* **444** 897

[18] Henkel M 1999 *Conformal Invariance and Critical Phenomena* (Heidelberg: Springer)

[19] Caselle M, Hasenbusch M, Pelissetto A and Vicari E 2002 *J. Phys. A: Math. Gen.* **35** 4861

[20] Izmailian N 2011 *Phys. Rev. E* **84** 051109
[21] Blöte H and den Nijs M 1988 Phys. Rev. B 37 1766
[22] de Queiroz S 2000 J. Phys. A: Math. Gen. 33 721
[23] Salas J 2002 J. Phys. A: Math. Gen. 35 1833
[24] de Queiroz S 2011 Phys. Rev. E 84 031107
[25] Janke W and Kenna R 2002 Phys. Rev. B 65 064110
[26] Guo W, Blöte H and Ren Z 2005 Phys. Rev. E 71 046126