Coupling, lifetimes and “strong coupling”
maps for single molecules at plasmonic
interfaces

Monosij Mondal,*† Maicol A. Ochoa,∗† Maxim Sukharev,*‡¶ and Abraham
Nitzan∗†§

†Department of Chemistry, University of Pennsylvania, Philadelphia PA 19104, USA
‡College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
¶Department of Physics, Arizona State University, Tempe, AZ 85287, USA
§School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

E-mail: monosij@sas.upenn.edu; maicol@umd.edu; maxim.sukharev@asu.edu;
anitzan@sas.upenn.edu

Abstract

The interaction between excited states of a molecule and excited states of metal
nanostructure (e.g. plasmons) leads to hybrid states with modified optical properties.
When plasmon resonance is swept through molecular transition frequency an avoided
crossing may be observed, which is often regarded as a signature of strong coupling
between plasmons and molecules. Such strong coupling is expected to be realized when
$2|U|/\hbar \Gamma > 1$, where U and Γ are the molecule-plasmon coupling and the spectral width
of the optical transition respectively. Because both U and Γ strongly increase with
decreasing distance between a molecule and a plasmonic structure it is not obvious that this condition can be satisfied for any molecule-metal surface distance. In this work we investigate the behavior of U and Γ for several geometries. Surprisingly, we find that if the only contributions to Γ are lifetime broadenings associated with the radiative and nonradiative relaxation of a single molecular vibronic transition, including effects on molecular radiative and nonradiative lifetimes induced by the metal, the criterion $2|U|/\hbar\Gamma > 1$ is easily satisfied by many configurations irrespective of the metal-molecule distance. This implies that the Rabi splitting can be observed in such structures if other sources of broadening are suppressed. Additionally, when the molecule-metal surface distance is varied keeping all other molecular and metal parameters constant, this behavior is mitigated due to the spectral shift associated with the same molecule-plasmon interaction, making the observation of Rabi splitting more challenging.

1 Introduction

Plasmonic excitations occurring in small nanoparticles provide an interesting avenue for light and energy manipulation below the diffraction limit. Collective excitations of the electrons in the nanoparticle can couple to nearby molecules, and applications in nano-optics1–4, nanosensing5–9, nanocatalysis10–20, plasmonic photosynthesis21–23, quantum information24,25 and energy-harvesting technologies26–31 have emerged.

In standard molecular spectroscopy and photochemistry, the molecule-photon encounter is essentially described as a scattering process that results in both species changing their quantum states (eigenstates of their respective Hamiltonians), with the added provision that the photon species is not conserved and can be converted to other forms of molecular energy. The molecule-photon coupling weighted by the density of photon states is weak, as exemplified by the relatively slow spontaneous emission rates ($\sim 10^9$ s-1 for allowed electronic transitions), although using a high-intensity radiation field can lead to a strong and often non-linear molecular response. Different situations are encountered when the molecule
interacts with one or a few localized photon mode(s), as encountered in optical cavities32–37. Coupling to such modes is strong because of their localized nature, and the system response is best described in terms of hybrid radiation-matter states (polaritons) that diagonalize the strongly coupled part of the Hamiltonian, which include the molecule, these localized modes and their mutual interaction. The most prominent manifestation of this hybridization is the avoided crossing (Rabi splitting, Ω_R), observed in the optical response of such systems when the molecular transition frequency approaches and crosses a cavity mode frequency. Importantly, because the cavity photon interacts through the transition dipole of the whole molecular system, the coupling strength reflected in the observed splitting depends also on the number of molecules N and is given by $\Omega_R \sim 2g\sqrt{N}$ if the molecular aggregate is much smaller than the cavity mode wavelength. Here g is the coupling parameter of a dipole \mathbf{D} (representing the transition dipole of a single molecule) to the radiative mode, given for a rectangular cavity of volume V and dielectric constant $\varepsilon = \varepsilon_r\varepsilon_0$ by $g = D(\hbar\omega/2\varepsilon V)^{1/2}$.

By this experimental measure, “strong coupling” is often defined by the observability of this spectral structure, namely by the condition $\Omega_R/\Gamma > 1$, where Γ is the width of the polaritonic peaks. The possible consequences of strong coupling for transport phenomena38–46 and chemical rates29,35,47–70 have been subject to intense discussion over the last decade.

Along with Fabri-Pérot type cavities, where the localization length is limited by the optical mode wavelength and is bounded by the cavity size, strong coupling phenomena are also observed in interacting plasmon-exciton systems71–74. In particular, metallic nanostructures offer alternative setups for localization of electromagnetic modes, where considerably higher dissipation rates due to losses in the metal constituents are compensated by the considerably smaller, sub-wavelength localization volumes. Intermetallic gaps between plasmonic structures are known to support particularly strong localization. Such localities have been identified as “hotspots” in studies of surface-enhanced spectroscopies75–78, and are now referred to as plasmonic cavities79–84. A cavity-like structure is not, however, an absolute requirement. It was recently pointed out that strong coupling, as defined above, may be
realized even in the vicinity of single plasmonic particles85–88.

In addition to the usual spectroscopic implications (i.e. the observed Rabi splitting), the emergence of strong coupling in plasmonic cavities and other localities characterized by strong focusing of the electromagnetic field suggests, as pointed out above, that other dynamical processes may be modified in such strong coupling situations. In particular, while photochemical processes can be enhanced or induced at plasmonic interfaces due to the focused nature of the local EM field89,90 or as a consequence of plasmon-induced generation of hot electrons91,92, strong coupling induced modification of inter and intra-molecular interactions may lead to new or modified chemistry even without incident light65,93–95.

With the latter possibility in mind, in this paper we study the emergence of light-matter strong coupling near several prototype plasmonic structures, aiming to map the phenomenon as a function of nanostructure geometry and molecular position and orientation. This study is motivated by three related considerations. First, while even in Fabri-Pérot-like cavities coupling of molecules to the cavity mode(s) depends on the molecular position in the cavity96, this dependence is expected to be much more pronounced near plasmonic structures. Secondly, while in Fabri-Pérot cavities strong coupling can be observed only with relatively large molecular ensembles, the much smaller volume of their plasmonic counterparts makes it possible to observe this phenomenon down to a single nanodot80,88,97–99 and even a single molecule85,100–102. In the latter case, averaging over molecular orientation is not an option and orientation dependence should be addressed explicitly. Yet another important factor is the geometry of the plasmonic structure that can be used to tune the plasmonic resonance. Here we examine the dependence of strong coupling as experienced by a single molecule, represented by a point-dipole and positioned near metallic spheres, ellipsoids and bispherical dimers, on these structural parameters.

Finally, as defined, a practical manifestation of “strong coupling” is a relative concept: The possibility to observe Rabi splitting in the optical response of a metal-plasmonic structure composite reflects not only the magnitude of the molecule-radiation field coupling, an
intrinsic property of this composite, but also the linewidth which can have many origins including spectral connection within the molecule as well as its interaction with the thermal environment. Limiting ourselves to lifetime broadening, it is often the case that, at close proximity to a metal structure, this attribute of the optical response is also dominated by the molecule-metal interaction, namely by effect of the metal structure on the radiative and non-radiative relaxation of the excited molecule. It is therefore useful to examine the relative magnitudes of the molecule-plasmon coupling strength and the metal induced lifetime broadening as providing an intrinsic bound to the presence of strong coupling as manifested by the observability of strong coupling. A recent observation of Rabi splitting in the zero-phonon line of a single molecule located in a plasmonic cavity at low temperature suggests that “strong coupling” may be more pervasive in such systems and can be observed if other sources of spectral line broadening are eliminated.

While light-matter interaction has important quantum ramifications, the information needed to establish the occurrence of strong coupling can be obtained from classical considerations and we invoke this approach in the present study. Furthermore, our focus on nanoparticles and their close vicinity makes it possible to ignore retardation effects and work in the electrostatic limit. Furthermore, we represent the molecule as a point-dipole emitter. While such a model is useful for mapping regions of strong coupling about the considered nanostructures, it should be kept in mind that any realistic calculation on a specific molecule should take its finite size and specific structure into account.

The models used in this study and our method of calculation are described in Section 2. Details of the calculations performed for the different models are provided in Section 3 and in the SI. Some representative results are presented and discussed in Section 4. Section 5 concludes.
2 Models and method

Figure 1 displays the models used in this study. The plasmonic system comprises of either a metallic ellipsoid (that includes a sphere as a limiting case), shown in Figure 1a, or a metallic bispherical dimer, shown in Figure 1b – systems for which analytical solutions to the relevant electrostatic boundary value problem can be obtained. The metal is represented as a continuum dielectric whose dielectric response function is given in the Drude form

\[
\varepsilon_{\text{ns}}(\omega) = \varepsilon_b \left[1 - \frac{\omega_p^2}{\omega(\omega + i\gamma_p)} \right]
\]

(1)

where \(\varepsilon_b\) is the background permittivity from the bound electrons in the metal, \(\omega_p\) is the bulk plasma frequency and \(\gamma_p\) is a phenomenological damping constant. In the calculations presented below the following parameters were used: for gold\(^1\): \(\varepsilon_b = 9.84\), \(\omega_p = 2.872\) eV = \(4.363 \times 10^{15}\) rad/s, and \(\gamma_p = 0.072\) eV = \(1.094 \times 10^{14}\) rad/s, and for silver\(^2\): \(\varepsilon_b = 5\), \(\omega_p = 3.98\) eV = \(6.05 \times 10^{15}\) rad/s, and \(\gamma_p = 0.039\) eV = \(5.93 \times 10^{13}\) rad/s. These metal particles are embedded in a uniform dielectric environment with a dielectric constant \(\varepsilon_s\), taken to be 1. Other model dielectric functions can, of course, be used. In particular, to include effects of interband transition in the metal or the motion of the ionic core, one often considers Drude-Lorentz type dielectric response functions\(^3\). The molecule is taken as a point-dipole characterized by its magnitude and its position and orientation relative to the plasmonic structure. Finite molecular size effects can be considered as described in Ref. (104) but are disregarded in the present calculation.

The consequences of coupling between a dipole emitter and a plasmonic nanostructure can be calculated in terms of the Dyadic Green’s function \(\mathbf{G}(\mathbf{r}, \mathbf{r}', \omega)\) that describes the response at \(\mathbf{r}\) to a point-current positioned at a given location \(\mathbf{r}'\) and orientation relative to this plasmonic structure\(^4\). In particular, for a dipole oscillating at frequency \(\omega\) this Green’s function yields the field associated with the oscillating dipole, leading to the interaction between the dipole and the plasmonic system in the form \(\mathbf{U} = -\mathbf{D} \cdot \mathbf{E}\) where \(\mathbf{D} = \mathbf{D}_{12}\) is
Figure 1: (a) An emitter, represented by an oscillating dipole, is positioned (at $r_1(\xi_1, \eta_1)$ in prolate spheroidal coordinates; SI Section ??) near a prolate spheroidal metal nanoparticle orienting in an arbitrary direction with respect to the nanoparticle surface. The nanoparticle surface is described by ξ_0. The spheroid aspect ratio is the ratio between the semi-major and the semi-minor axis p/q. (b) An emitter is positioned (at $r_1(\mu_1, \pi)$ in bispherical coordinates; SI Section ??) on the internuclear (azimuthal) axis between two nanospheres of radii r_L and r_R with a gap d in between them, oriented in an arbitrary direction with respect to the azimuthal axis.
the transition dipole between the relevant states 1 and 2 of the molecular emitter and its
direction reflects the molecular orientation in space, and \(\mathbf{E} \) is the electric field associated with
the response of the plasmonic structure to this dipole, calculated at the dipole position. In the
quantum case \(\mathbf{D} \) and \(\mathbf{E} \) are replaced by their quantum operators counterparts, but classical
considerations are known to be sufficient for the present purpose\(^{109-114}\). The relaxation
induced by the plasmonic nanostructure can be obtained from the same calculation: at
steady state, the energy dissipation rate can be obtained from the average work per unit
time that this field does on the oscillating dipole. Furthermore for a dipole oscillating in an
environment characterized by a real dielectric response function, the spontaneous radiative
relaxation rate can be described by the golden rule,

\[
\gamma_R = \frac{2\omega}{\hbar \varepsilon_0} |\mathbf{D}|^2 \rho(\mathbf{r}, \omega)
\]

in terms of the local density of states \(\rho(\mathbf{r}, \omega) = \frac{2\omega}{\pi c^3} \text{Im} \{ \text{Tr} [\mathbf{G}(\mathbf{r}, \mathbf{r}, \omega)] \} \), providing an elegant framework for
analyzing the effect of an inhomogeneous dielectric environment on the emission rate (Purcell
effect).

In the electrostatic limit and point-dipole emitter model considered here, this formulation
can be made significantly simpler and can take two forms. First, following Gersten and
Nitzan\(^{111}\), the point-dipole, positioned at \(\mathbf{r}_1 \), is assumed to oscillate with constant amplitude
\(\mathbf{D}(\omega) \) (taken as the transition dipole of the molecular emitter) and frequency \(\omega \), thereby
driving the nearby plasmonic structure. The Laplace equation is solved for given \(\varepsilon_{\text{ns}}(\omega) \)
(Eq. (1)) and \(\varepsilon_s \) and standard boundary conditions at the surface of the dielectric nano-
structure to yield the electrostatic potential \(\Phi(\mathbf{r}, \omega) \) and electric field \(\mathbf{E}(\mathbf{r}, \omega) = -\nabla \Phi(\mathbf{r}, \omega) \) anywhere in the system (excluding the point occupied by the dipole) and in particular in
the volume occupied by the nanostructure. Furthermore, the reaction field – the part \(\mathbf{E}_r \)
of the field \(\mathbf{E} \) that arises from the polarization induced in the dielectric structure is ob-
tained as \(\mathbf{E}_r(\mathbf{r}, \omega) = \mathbf{E}(\mathbf{r}, \omega) - \mathbf{E}_d(\mathbf{r}, \omega) \) where \(\mathbf{E}_d \) is the field of the bare dipole. Note that
these response functions depend on \(\omega \) through the frequency dependence of \(\varepsilon_{\text{ns}}(\omega) \) and that
retardation effects are insignificant for the assumed small system. Also note that the lin-
ear response nature of standard electrostatics implies that these responses are linear in the
driving dipole \mathbf{D}.

The calculation then proceeds in the following way:

1. For the given dipole-nanostructure configuration, and a dipole oscillating with a frequency ω according to

$$\mathbf{D}(t) = \mathbf{D}(\omega) e^{-i\omega t} + \mathbf{D}(-\omega) e^{i\omega t}$$ \hfill (2)

the local electric field $\mathbf{E}(\omega) = \mathbf{E}(-\omega)^*$ associated with the polarization induced by the dipole in the nanostructure (the reaction field) is calculated. The component $E(\omega)$ of this field, calculated at the dipole position and in the dipole direction, is used to define the needed component G of the Green’s function:

$$E(\omega) = G(\omega)D(\omega)$$ \hfill (3)

This is essentially the electrostatic limit of the relevant component of the Dyadic Green’s function mentioned above (calculated at the dipole position) except that the term associated with the bare dipole field is ignored.

2. The coupling between the dipole emitter and the plasmonic nanostructure, at a frequency ω_p of a plasmon peak, is estimated using the following approximate procedure. First, the interaction of the dipole with the nanostructure is written in the form

$$\mathcal{U} = -M_y \mathbf{D}$$ \hfill (4)

where y is a dimensionless coordinate associated with the nanostructure, whose deviation from zero describes the polarization of this structure, and M_y is the field associated with this polarization at the position and direction of the dipole. If the deviation of y from zero is induced by the dipole, then $M_y = GD$. In the quantum analog of Eq. (4), $M \hat{y}$ is the electric field operator at the molecular position and \hat{D} is the molecular
dipole operator. The coupling is given by the matrix element between the state \(|1,1\rangle\), in which the molecule is in the ground state 1 and the field has one photon, and the state \(|2,0\rangle\), where the molecule is in the excited state 2 and the field has 0 photon (with the actual field amplitude accounted by the parameter \(M\)):

\[
U = -\langle 1,1|\hat{U}|2,0\rangle = -M\langle 1|\hat{y}|0\rangle\langle 1|\hat{D}|2\rangle = -MD_{12} \tag{5}
\]

Our task is to find \(M\). In a vacuum system of volume \(V\)

\[
M = \sqrt{\frac{\hbar\omega}{2\varepsilon_0 V}} \tag{6}
\]

It is worth pointing that \(My\) is the classical analogue to the quantum expression of the electric field \(iM(\hat{a} - \hat{a}^\dagger)\). To evaluate \(M\) for a given molecule-nanostructure configuration we assume that the underlying dynamics associated with the plasmonic peak at \(\omega_p\) is that of a damped harmonic oscillator

\[
\ddot{y} + \gamma pl\dot{y} + \omega_p^2 y = \frac{2\omega_0}{\hbar}MD \tag{7}
\]

The term on the right\(^1\) is the force exerted on \(y\) by its interaction with the dipole as derived from Eq. (4). \(\omega_0\) is the transition frequency of the free emitter. The long time solution of Eq. (7) under driving in (2) is \(y(\omega)e^{-i\omega t} + y(-\omega)e^{i\omega t}\) where

\[
y(\omega) = \frac{2\omega_0}{\hbar} \frac{MD(\omega)}{\omega_p^2 - \omega^2 - i\omega\gamma pl}
\]

\(^1\)The factor \(2\omega_0/\hbar\) on the right side enters to make \(y\) dimensionless (distance is measured in units of \(\sqrt{m\omega/\hbar}\)).
whence

\[G(\omega) = \frac{2\omega_0}{\hbar} \frac{M^2}{\omega_p^2 - \omega^2 - i\omega \gamma_{pl}}; \]

\[\left| G(\omega) \right|^2 = \left(\frac{2\omega_0}{\hbar} \right)^2 \frac{M^4}{(\omega_p^2 - \omega^2)^2 + (\omega \gamma_{pl})^2} \] \hspace{1cm} (8)

The field-dipole coupling parameter \(M \) is estimated by using the Laplace equation to obtain the reaction field \(E(\omega) \) at the position of a driving dipole \(D(\omega) \) near the metal nanostructure, and fitting \(\left| G(\omega) \right|^2 = \left| E(\omega) \cdot D(\omega)/D(\omega) \right|^2 \) to the form given by Eq. (8). In Section 4 we present the so obtained coupling parameter in terms of an effective volume defined by

\[M = \sqrt{\frac{\hbar \omega_p}{2\varepsilon_0 V_{\text{eff}}}} \] \hspace{1cm} (9)

3. The total dipole moment of the composite system, \(D_{\text{tot}}(\omega) \), is calculated as \(D_{\text{tot}}(\omega) = D(\omega) + D_{\text{ns}}(\omega) \) where \(D_{\text{ns}}(\omega) \) is the dipole induced on the nanostructure which is obtained as the following integral over the nanoparticle volume \(V_{\text{ns}} \):

\[D_{\text{ns}}(\omega) = (\varepsilon_{\text{ns}}(\omega) - \varepsilon_s)\varepsilon_0 \int_{V_{\text{ns}}} E(\mathbf{r}, \omega) d\mathbf{r} \] \hspace{1cm} (10)

4. The radiative decay rate, modified by the presence of the nanostructure is obtained from\(^{111,115}\)

\[\Gamma_R(\omega) = \frac{\sqrt{\varepsilon_s \omega^3}}{3hc^34\pi\varepsilon_0} \left| D_{\text{tot}}(\omega) \right|^2 \] \hspace{1cm} (11)

Obviously, the ratio \(|D_{\text{tot}}|^2/|D|^2 \), represents the Purcell lifetime modification factor for the present situation.

5. The non-radiative relaxation affected by the presence of the dielectric nanostructure is
calculated as the rate of Ohmic heat generation on the nanostructure, given by the following integral over the nanostructure volume:

$$\Gamma_{NS}^{\omega} = \frac{\varepsilon_0 \text{Im}[\varepsilon_{ns}(\omega)]}{2\hbar} \int_{V_{ns}} \left| E(r, \omega) \right|^2 dr$$ \hspace{1cm} (12)

In addition to the non-radiative relaxation rate associated with dissipation in the dielectric nanostructure, an intrinsic molecular component, denoted Γ_{NR}^0, results from the interaction of the molecule with its thermal environment and, for large molecules, also with intramolecular relaxation processes. This relaxation is molecule specific and cannot be quantitatively accounted for in our generic model. In the calculations reported below, unless otherwise stated, we have taken this intrinsic molecular relaxation rate to be equal to the radiative decay rate of the free molecule, implying that the emission yield of the free molecule is 0.5.

6. The emission quantum yield of the molecular emitter-plasmonic nanostructure system is given by

$$Y(\omega) = \frac{\Gamma_R(\omega)}{\Gamma_R(\omega) + \Gamma_{NS}^{\omega}(\omega) + \Gamma_{NR}^0(\omega)}$$ \hspace{1cm} (13)

7. The strong coupling condition on this level of treatment is given by

$$2U > \hbar \Gamma = \hbar (\Gamma_R + \Gamma_{NS}^{\omega} + \Gamma_{NR}^0)$$ \hspace{1cm} (14)

with U given by Eq. (5).

The above calculation scheme provides a rather straightforward, albeit approximate, procedure for mapping strong coupling regions in a system of coupled nanostructure and molecular emitter, where the driving frequency ω is naturally taken to be the relevant molecular transition frequency ω_0. It suffers, however from a drawback, originating from the fact that since...
the dipole emitter is assumed to drive the system, such calculation cannot account for any
spectral shift that is another manifestation of the molecule-radiation field coupling. The
criterion (14), in which the coupling and relaxation rates are calculated for the driving fre-
quency ω, may thus be viewed as an approximate criterion for the onset of strong coupling,
but may not fully account for the spectral structure and dynamics beyond it.

To overcome the latter limitation the calculation should be done self-consistently (see,
e.g., Refs 116–118). Here the system, comprising the molecular emitter and the nanostruc-
ture, is driven by an external oscillating electric field, $\mathbf{E}(t) = \mathbf{E}(\omega) \cos(\omega t) = \mathbf{E}(\omega) \text{Re} e^{-i\omega t}$
with a real amplitude $\mathbf{E}(\omega)$, that couples to the molecular emitter. The dynamics of the
latter can be represented as a driven damped harmonic oscillator, which in Fourier space
takes the form

$$
(\omega_0^2 - \omega^2 - i\omega \Gamma_0) \mathbf{D} = \alpha\omega_0^2 \left[\mathbf{E}(\omega) + \mathbf{G}(\mathbf{r}_1, \omega) \mathbf{D} \right]
$$

(15)

where α is the static polarizability tensor and $\mathbf{G}(\mathbf{r}, \omega)$ was defined by Eq. (3). Here ω_0 is
the transition frequency of the free emitter while Γ_0 represents the combined radiative, Γ^0_R,
and non-radiative, Γ^0_{NR}, relaxation rates associated with this free emitter. For simplicity, we
assume that the molecular polarizability tensor is diagonal, $\alpha = \alpha_x \mathbf{e}_x + \alpha_y \mathbf{e}_y + \alpha_z \mathbf{e}_z$ with
$\mathbf{e}_j, j = x, y, z$ being unit vectors. Eq. (15) can then be written for each component of \mathbf{D} in
the form

$$
(\omega_0^2 - \omega^2 - i\omega \Gamma_0) D_j = \alpha_j \omega_0^2 \left[E_j(\omega) + \sum_{j'} G_{jj'}(\mathbf{r}_1, \omega) D_{j'} \right]
$$

(16)

Here, the static polarizability of the 2-level molecular model is given by

$$
\alpha_j = 2 \frac{|D^{(j)}_{12}|^2}{\hbar \omega_0}
$$

(17)
where $D^{(j)}_{12}$ is the j-th component of the molecular transition matrix element \mathbf{D}_{12}. Making another simplifying assumption that \mathbf{G} is diagonal (this will be true for geometries considered in our calculations below), this leads to

$$D_j = \left[1 - \left(\frac{\omega}{\omega_0} \right)^2 - i \frac{\omega \Gamma^0}{\omega_0^2} - \alpha_j G_{jj}(\mathbf{r}_1, \omega) \right]^{-1} \alpha_j E_j(\omega) \tag{18}$$

The absorption lineshape $A(\omega)$ may be calculated as the work done on the molecular dipole per unit time, averaged over the driving period, $\overline{E_j(t) \dot{D}_j(t)}$. This yields

$$A(\omega) = \frac{\omega \left(\frac{\omega \Gamma^0}{\omega_0^2} + \alpha_j \text{Im} G_{jj}(\mathbf{r}_1, \omega) \right)}{\left[1 - \left(\frac{\omega}{\omega_0} \right)^2 - \alpha_j \text{Re} G_{jj}(\mathbf{r}_1, \omega) \right]^2 + \left[\frac{\omega \Gamma^0}{\omega_0^2} + \alpha_j \text{Im} G_{jj}(\mathbf{r}_1, \omega) \right]^2} \tag{19}$$

The αG term in Eq. (18) represents the effect of the nanostructure on the dynamics of the molecular emitter. Its real and imaginary part lead respectively to a spectral shift and to modifications in the radiative and nonradiative relaxation rates. When $G(\omega)$ is characterized by a resonance structure, e.g. a distinct plasmonic peak as seen in Eq. (8)2, a split peak structure may appear in $A(\omega)$ and will indicate the onset of strong coupling. The following points should be noted:

(a) The classically calculated absorption lineshape, Eq. (19) can be used to calculate the optical response of the molecular dipole-nanostructure composite as function of frequency, thereby directly looking at the spectral manifestation of strong coupling, not just at the

2Such a peak appears when a pole of the response function is characterized by an imaginary part that is smaller than its distance from other poles. Such behavior is manifested by the dipolar plasmon of some metals and semiconductors. In the electrostatic limit under consideration these poles depend on the shape, but not the size of the dielectric nanostructure. An example is shown in the SI, section ?? for the dipolar plasmons of a prolate spheroid.
approximate condition Eq. (14) for its onset. The needed response function G is obtained as function of ω from the solution of the Laplace equation as described above Eq. (3). The same calculation also yields the radiative and nonradiative decay rates, and the quantum yield as functions of ω, as described above.

(b) In setting up the model of Eq. (15), we aimed to examine the effect of proximity of the molecular emitter to a plasmonic nanostructure. We have therefore implemented the driving by an external field as acting only on the molecular emitter. In reality, both the molecule(s) and nanostructure comprising the system that responds to the incident field, and the effect of directly driving the nanostructure by this field should be included. In this case $E(\omega)$ on the RHS of Eq. (15) will be replaced by the vector sum of the incident field and the field created by the polarization induced on the nanostructure by the incident field – an important ingredient in the electromagnetic theory of surface enhanced spectroscopies. Consequently, after making the same simplifying assumptions as above, $E_j(\omega)$ in Eq. (18) will be augmented by the corresponding additive field from that polarization. This will not change the consequences regarding strong coupling as determined by the denominator in Eq. (18).

(c) The simple criterion Eq. (14) for strong coupling, namely the appearance of split peak at the crossing of the molecular transition and a plasmonic resonance frequency is derived from a model in which the plasmon is represented, like the molecule in Eq. (15), as a damped harmonic oscillator with bilinear coupling between these oscillators. This is a reasonable approximation where the distance between the molecular emitter and the plasmonic structure is large enough to represent the response of the latter by its dipolar plasmon alone. In the general case, while the condition for strong coupling is again contained in the properties of the denominator in Eq. (18), its actual manifestation depends on the properties of the response function G and can be determined only numerically. Note that G accounts not only for plasmonic effects but also for other electrostatic aspects of the response such as the lightning rod effect.
Whichever level of analysis we aim at, a prerequisite of the calculation is the evaluation of the response function G as well as the radiative and non-radiative relaxation rates of the molecular emitter when oscillating in close proximity to the given nanostructure. The models depicted in Figures 1a and 1b admit analytical solutions for these functions. These are described in Section 3 and the SI. Using these solutions we will analyze in Section 4, for silver and gold particles (as represented by their dielectric response function) in some select configurations, the emergence of strong coupling and the molecular emission properties as functions of geometrical parameters. Section 5 concludes.

3 Response function, relaxation rates and emission yield

In this section we present analytical results for the response function G as well as the radiative and non-radiative relaxation rates for several geometries associated with the structures displayed in Figures 1a and 1b (The case of a molecule near a spherical particle is obviously a limit of the spheroid results presented below). The solutions of the Laplace equations are obtained as infinite sums that are computed numerically by truncating the series while ensuring convergence beyond a desired accuracy. For quick estimates, we focus on the procedure described in Eqs. (3)-(14). In Section 3.3, we provide some details pertaining to the calculation based on Eq. (19).

3.1 A Molecular (point) dipole near a prolate spheroidal nanoparticle

The solution of the Laplace equation for this geometry is best done in the prolate spheroidal coordinate system (SI, Section ??). In this coordinate system the nanoparticle surface is defined by $\xi = \xi_0$. The potentials inside and outside the spheroidal particle
(solutions of the Laplace equation) are written in the form

\[\Phi_{\text{in}}(\xi, \eta, \phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} A_{l,m} P_{l}^{m}(\xi) P_{l}^{m}(\eta) \cos m\phi; \vphantom{A_{l,m}} \]
\[\xi < \xi_0 \]
(20)

\[\Phi_{\text{out}}(\xi, \eta, \phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} B_{l,m} Q_{l}^{m}(\xi) P_{l}^{m}(\eta) \cos m\phi + \frac{1}{4\pi\varepsilon_0\varepsilon_s} \frac{D \cdot (r - r_1)}{|r - r_1|^3}; \]
\[\xi > \xi_0 \]
(21)

\(P_{l}^{m}(\xi) \) and \(Q_{l}^{m}(\xi) \) are the associated Legendre functions of the first and second kind respectively. The two foci of the nanoparticle overlap with that of the coordinate system itself at \(\pm \frac{a}{2} \). Here and below, the dielectric response functions of the nanoparticle and the environment are taken as \(\varepsilon_d(\omega) \) and \(\varepsilon_s \) (assumed frequency independent), respectively. The dipole \(D \) is situated at \(r_1(\xi_1, \eta_1, 0) \) (implying that it is on the \(xz \) plane) with an arbitrary orientation relative to the nanoparticle surface, \(D = D_{\xi} \hat{\xi} + D_{\eta} \hat{\eta} \) where \(\hat{\xi} \) and \(\hat{\eta} \) are the unit vectors along the coordinates \(\xi, \eta \) respectively. Following Ref. (111), we impose continuity of the potential \(\Phi \) and of the component of the displacement field normal to the spheroidal surface, \(\varepsilon \frac{\partial\Phi(\xi, \eta, \phi)}{\partial\xi} \), on this surface. To this end the dipole potential (last term of Eq. (21)) is written in prolate spheroidal coordinates (Eq. (??) in the SI) and imposing these boundary conditions leads to the coefficients \(A_{l,m} \) and \(B_{l,m} \) as follows:

\[A_{l,m} = H_{l,m}(\xi_1, \eta_1) \times \frac{P_{l}^{m'}(\xi_0)Q_{l}^{m}(\xi_0) - P_{l}^{m}(\xi_0)Q_{l}^{m'}(\xi_0)}{\varepsilon_d P_{l}^{m'}(\xi_0)Q_{l}^{m}(\xi_0) - \varepsilon_s P_{l}^{m}(\xi_0)Q_{l}^{m'}(\xi_0)} \]
(22)
\[B_{l,m} = -H_{l,m}(\xi_1, \eta_1) \frac{\varepsilon_d - \varepsilon_s}{\varepsilon_s} \times \frac{P_l^m(\xi_0)P_l^m(\xi_0)}{\varepsilon_d P_l^m(\xi_0)Q_l^m(\xi_0) - \varepsilon_s P_l^m(\xi_0)Q_l^m(\xi_0)} \]

(23)

where

\[
H_{l,m}(\xi_1, \eta_1) = K_{l,m} \frac{2 \pi \varepsilon_0 a^2}{\sqrt{\xi_1^2 - \eta_1^2}} \left[\sqrt{\frac{\xi_1^2 - 1}{\xi_1^2 - \eta_1^2}} Q_l^m(\xi_1)P_l^m(\eta_1)D_\xi \right. \\
+ \left. \sqrt{\frac{1 - \eta_1^2}{\xi_1^2 - \eta_1^2}} Q_l^m(\xi_1)P_l^m(\eta_1)D_\eta \right] \\
(24)
\]

and

\[
K_{l,m} = (-1)^m \frac{2}{a} (2l + 1)(2 - \delta_{m0}) \left[\frac{(l - m)!}{(l + m)!} \right]^2 \\
(25)
\]

The solution \(\Phi^{\text{out}}(\xi, \eta, \phi) \) of Eq. (21) is related to the response Dyadic \(\mathbf{G} \) according to

\[-\nabla \Phi(\mathbf{r}) = \mathbf{G} \cdot \mathbf{D}. \]

In particular, the component of \(\mathbf{G} \) in the dipole direction is evaluated here. To exemplify, for the configuration where the dipole is placed along the major axis of the nanoparticle and is oriented perpendicular to the nanoparticle surface, i.e., \(\eta_1 = 1 \), \(\mathbf{D} = D_\xi \hat{\mathbf{\xi}} \), the component \(G_{\text{sphd}}^{\text{maj}, \perp} \) is obtained in the form (maj=\text{major}, sphd=\text{spheroid}):

\[
G_{\text{sphd}}^{\text{maj}, \perp} = \frac{2}{\pi \varepsilon_0 \varepsilon_s a^2} \sum_{l=0}^{\infty} (2l + 1) \times \frac{(\varepsilon_d - \varepsilon_s)P_l(\xi_0)P_l'(\xi_0)Q_l'(\xi_1)^2}{\varepsilon_d P_l'(\xi_0)Q_l(\xi_0) - \varepsilon_s P_l(\xi_0)Q_l(\xi_0)} \\
(26)
\]
For the same configuration, the non-radiative decay rate associated with heat production in the spheroid is calculated from Eq. (12) which leads to

\[
\Gamma_{\text{NR,sphd}}^{\text{maj,\perp}} = \frac{D^2 \Im \left[\varepsilon_d(\omega) \right]}{\pi \varepsilon_0 a^3 \hbar \left(\xi_0^2 - 1 \right)} \times \sum_{l=0}^{\infty} \left| \frac{(2l + 1) P_l(\xi_0) P'_l(\xi_0) Q'_l(\xi_1)}{\varepsilon_d P'_l(\xi_0) Q_l(\xi_0) - \varepsilon_s P_l(\xi_0) Q'_l(\xi_0)} \right|^2
\]

(27)

Also, from Eq. (10) we calculate the total dipole in the molecule-dielectric spheroid system. The result is

\[
D_{\text{net}}^{\text{maj,\perp}} = D_\xi \left[1 - \frac{(\varepsilon_d - \varepsilon_s)\xi_0 Q'_1(\xi_1)}{\varepsilon_s [\varepsilon_d Q_1(\xi_0) - \varepsilon_s \xi_0 Q'_1(\xi_0)]} \right]
\]

(28)

This can be used with Eq. (11) to calculate the radiative decay rate. Finally, the emission yield is calculated from Eq. (13). The detailed derivation of Eqs. (22)-(28) is provided in the SI. Similar results for several other configurations are also detailed in the SI.

3.2 A Molecular (point) dipole between two nanospheres

As in Ref. (120), the Laplace equation for this problem is solved in a bispherical coordinate system \((\mu, \eta, \phi)\) (SI, Section ??). The nanospheres of radii \(r_R\) and \(r_L\) (their surfaces defined by \(\mu_R\) and \(\mu_L\) respectively) are characterized by the dielectric response functions \(\varepsilon_R(\omega)\) and \(\varepsilon_L(\omega)\) with their centers positioned on the \(z\)-axis at \(z = a \coth \mu_i, i = L,R\), \(x = y = 0\) (in Cartesian coordinates) where the poles of the coordinate system are at \(z = \pm a\) on the \(z\)-axis. The dipole is also positioned on this line at \((\mu_1, \pi, 0)(x_1 = y_1 = 0\) in Cartesian coordinates).

Parallel configuration. For a dipole oriented along the line connecting the sphere...
centers, \(D = D\hat{\mu} \) where \(\hat{\mu} \) is the unit vector corresponding to the coordinate \(\mu \). The azimuthal symmetry of this configuration simplifies the solution. The solution of the Laplace equation for \(\mu > \mu_R > 0 \), namely inside the right sphere is written in the form

\[
\Phi^{\text{in}}_R(\mu, \eta) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=0}^{\infty} A_{R,n}^{\text{in}} e^{-(n+1/2)\mu} P_n(\cos \eta)
\]

(29)

While for \(\mu < \mu_L < 0 \), namely inside the left sphere we have

\[
\Phi^{\text{in}}_L(\mu, \eta) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=0}^{\infty} B_{L,n}^{\text{in}} e^{(n+1/2)\mu} P_n(\cos \eta)
\]

(30)

The potential outside both the nanoparticles takes the form

\[
\Phi^{\text{out}}(\mu, \eta) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=0}^{\infty} \left[C_{n}^{\text{out}} e^{-(n+1/2)\mu} + D_{n}^{\text{out}} e^{(n+1/2)\mu} \right] P_n(\cos \eta) + D \frac{\hat{\mu} \cdot \nabla}{4\pi \varepsilon_0 \varepsilon_s} \frac{1}{|\mathbf{r} - \mathbf{r}_1|}
\]

(31)

where the dipole potential is written explicitly (last term in Eq. (31)). The boundary conditions, given by

\[
\Phi^{\text{in}}_R(\mu_R, \eta) = \Phi^{\text{out}}(\mu_R, \eta)
\]

(32)

\[
\Phi^{\text{in}}_L(\mu_L, \eta) = \Phi^{\text{out}}(\mu_L, \eta)
\]

(33)

\[
\varepsilon_R \frac{\partial \Phi^{\text{in}}_R(\mu, \eta)}{\partial \mu} \bigg|_{\mu=\mu_R} = \varepsilon_s \frac{\partial \Phi^{\text{out}}(\mu, \eta)}{\partial \mu} \bigg|_{\mu=\mu_R}
\]

(34)

\[
\varepsilon_L \frac{\partial \Phi^{\text{in}}_L(\mu, \eta)}{\partial \mu} \bigg|_{\mu=\mu_L} = \varepsilon_s \frac{\partial \Phi^{\text{out}}(\mu, \eta)}{\partial \mu} \bigg|_{\mu=\mu_L}
\]

(35)
yield an infinite linear system of equations for the coefficients (see SI, Section ??) that can be solved numerically after truncating at a desired order n_{max} to give the needed coefficients up this order. Expressions for the component of \mathbf{G} in the dipole direction and the radiative and nonradiative rates in terms of these coefficients are provided in the supplement (see SI, Section ??).

Perpendicular configuration. As before, the molecule is positioned at $(\mu_1, \pi, 0)$ on the line connecting centers of the two nanoparticles with parameters defined as in the parallel configuration case. The environment is described by a frequency independent dielectric constant ε_s as usual. The molecular transition dipole is taken to be oriented perpendicular to the line connecting the sphere centers, given by $\mathbf{D} = D\hat{\eta}$ where $\hat{\eta}$ is the unit vector of the coordinate η. As this configuration no longer has an azimuthal symmetry, the solutions of the Laplace equation for $\mu > \mu_R > 0$ (inside the right sphere) and $\mu < \mu_L < 0$ (inside the left sphere) are written as:

$$\Phi^{\text{in}}_R(\mu, \eta, \phi) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=1}^{\infty} A_{R,n}^{\text{in}} e^{-(n+1/2)\mu} \times P_n^1(\cos \eta) \cos(\phi - \phi_1) \quad (36)$$

and

$$\Phi^{\text{in}}_L(\mu, \eta, \phi) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=1}^{\infty} B_{L,n}^{\text{in}} e^{(n+1/2)\mu} \times P_n^1(\cos \eta) \cos(\phi - \phi_1) \quad (37)$$
respectively. The potential outside both the nanoparticles is given by:

\[
\Phi_{\text{out}}(\mu, \eta, \phi) = \sqrt{\cosh \mu - \cos \eta}
\]

\[
\times \sum_{n=1}^{\infty} \left[C_n^{\text{out}} e^{-(n+1/2)\mu} + D_n^{\text{out}} e^{(n+1/2)\mu} \right]
\]

\[
\times \cos(\phi - \phi_1) P_n^1(\cos \eta)
\]

\[
+ \frac{D}{4\pi \varepsilon_0 \varepsilon_s} \hat{\eta} \cdot \nabla_1 \frac{1}{|\mathbf{r} - \mathbf{r}_1|}
\]

\((38) \)

The same boundary conditions given by Eqs. (32)-(35) yield an infinite linear system of equations for the coefficients (SI, Section ??) and are solved numerically as done for the parallel configuration. The radiative and nonradiative rates and the relevant component of \(\mathbf{G} \) in terms of these coefficients are provided in the supplement (see SI, Section ??).

3.3 The self-consistent procedure

For the configurations discussed above, once the needed component of the Green’s dyadic has been evaluated, we can use Eqs. (19) and (17) and the given free molecule parameters \(\Gamma^0 \) and \(\omega_0 \) to calculate the absorption lineshape for the given dipole-metal nanostructure configuration. We emphasize again that Eq. (19) is an expression for the absorption lineshape for a model in which the incident light interacts with the molecular dipole only. In such a model, a distinct plasmon-dominated peak accompanying the molecular response is a manifestation of “strong coupling”. Generalization to the case where the incident radiation drives both the molecular dipole and the metal nanostructure is straightforward, but more costly and the resulting lineshape will also show the signature of interference between the dipole and the metal responses.
4 Results and discussions

Here we present numerical results that map single molecule strong coupling regions about spherical, spheroidal and bispherical structures. Three comments are in order. First, since strong coupling as defined by Eq. (14) or by the appearance of split peaks at the overlap of the molecular and plasmon resonances as calculated from Eq. (19), it necessarily depends on properties of the molecular resonance (non-radiative relaxation aside from that due to coupling to the metal nanostructure as well pure dephasing) that are not addressed in the present analysis. The results shown below are obtained by assuming that the quantum yield for emission by a free molecule is 0.5 and that pure dephasing is absent.

Second, our classical calculations disregard quantum mechanical effects, mainly tunneling and non-locality of the dielectric response, which are expected to become important at small molecule-metal distances\(^{104}\). Classical estimates should be regarded reliable only at distances larger than, say, 0.3 nm where both effects are small.

Finally, as discussed in Section 2, estimates of strong coupling based on Eq. (14) are made at a given frequency, usually taken (as in Figures 2-7 below) as the transition frequency \(\omega_0\) of the free molecule. Because of the metal-induced spectral shift, satisfying the inequality (14) at this frequency, while indicating strong coupling, does not therefore guarantee the appearance of a split peak in the actual plasmon-molecule system. The actual spectral shape is obtained from Eq. (19) as demonstrated in Figures 8-9 below.

Figures 2-7 show the coupling strength \(U\), the lifetime broadening \(\Gamma\) and the coupling-broadening ratio (CBR) \(2|U|/\hbar\Gamma\) calculated at the resonance frequency of the free molecule for several geometries. A value larger than 1 of the CBR indicates strong coupling by the criterion (14). For definiteness, in the calculation shown below, the molecular transition dipole is taken to be 10 D. However the free molecule transition frequency \(\omega_0\) is taken to be equal to the dipolar plasmon frequency of the metal corresponding to geometry under consideration. For example, when considering a molecular dipole near small gold and silver spheres, the molecular frequencies are taken equal to corresponding dipolar plasmon frequencies, 2.62 eV.
and 3.37 eV for gold and silver spheres respectively. However, the coupling strength, which is calculated by fitting the calculated G to the plasmon peak is, by this definition, frequency independent.

The calculations of the radiative and metal-induced nonradiative contributions to Γ (Eqs. (11), (12)) have been extensively discussed before111, and typical results showing the dependence of these rates on the molecular orientation and its distance from the metal structure, and on the size and shape of this structure are shown in the SI (Section ??). We emphasize again, that the only contributions to the linewidth Γ that are considered here are the lifetime (radiative and non-radiative) of the free molecule, and the metal induced modifications of these lifetimes, and that in the calculations reported below we have assumed that a free molecule has an intrinsic non-radiative relaxation rate that is equal to its radiative rate, implying that the emission yield of a free molecule is 0.5. Note that if the intrinsic non-radiative relaxation rate of the free molecule is disregarded, the remaining contributions to the linewidth are proportional to the square of the molecular transition dipole D_{12}, whereas the coupling U (Eq. (5)) is linear in this parameter. Consequently, and perhaps counter-intuitively, the CBR satisfies $2|U|/\hbar\Gamma \propto 1/D_{12}$ and decreases with increasing molecular transition dipole. The relaxation rates (and magnitude of coupling) are normalized by the radiative relaxation rate Γ_R^0 of a free molecule which is calculated from $\sqrt{\varepsilon_s \omega_0^3 D_{12}^2/(3\hbar c^3 4\pi \varepsilon_0)}$ at the respective molecular frequency.
Figure 2: The CBR parameter, $2|U|/\hbar \Gamma$ (left axis, solid lines) and total relaxation rate Γ (right axis, dashed lines), plotted as functions of the molecule-sphere surface distance, shown for gold and silver nanospheres of radius 10 nm for (a) normal and (b) parallel molecular orientations relative to the sphere surface. ω_0 is taken to be in resonance with the dipolar plasmon of the metal particle (2.62 eV for gold and 3.37 eV for silver). $\Gamma_0^R = 7.38 \times 10^7$ s$^{-1}$ (gold) and 1.57×10^8 s$^{-1}$ (silver) at the respective molecular frequency of the emitter.

Figure 2 depicts the CBR for a molecule near spherical gold and silver particles of radius 10 nm, in normal and parallel orientations relative to the sphere surface, as a function of the molecule-surface distance. Also shown is the combined relaxation rate Γ. It is seen that “strong coupling” as defined by the CBR > 1 criterion, is not necessarily associated with close proximity. Both and U and Γ go quickly to zero when the molecule-surface distance increases, however their ratio varies relatively slowly, and remains larger than 1 in all the distance range studied. It is interesting to note that in both the normal and parallel configurations this ratio goes through maximum for silver and decreases beyond a distance ~ 1 nm while for gold it rises monotonically with increasing distance. The metal induced nonradiative relaxation, being the major contribution to the combined relaxation rates, is very large when close to the nanoparticle surface. As a consequence, for silver there is an optimum distance of the molecule from the surface where the CBR is maximum. For gold, on the other hand, because the extent of the effect of nonradiative decay rate is even more, for the distance considered, CBR is larger as the molecule is distant from the surface. Qualitatively for both perpendicular and parallel orientation, these observations are
Figure 3: (a) The CBR parameter, $2|U|/\hbar \Gamma$, and (b) total relaxation rate Γ plotted against molecule-surface distance for a molecule near a gold nanoparticle in the perpendicular orientation. ω_0 for the molecule is equal to the dipolar plasmon resonance frequency of gold (2.62 eV). Results are shown for spheres of radii 5 nm, 10 nm and 20 nm. Free emitter radiative decay rate, $\Gamma_0^R \approx 7.38 \times 10^7$ s$^{-1}$.

These estimates of strong coupling show considerable dependence on the size and shape of the dielectric nanostructure. Figure 3 shows the CBR parameter as well as the lifetime broadening Γ plotted against the molecule-(spherical gold) nanoparticle surface distance for different particle sizes in the perpendicular dipole orientation, while Figures 4 and 5 show similar results for different particle shapes by considering metal spheroids of constant volume ($= \text{volume of a sphere of radius } 10 \text{ nm}$) and different aspect ratios p/q when the molecule is positioned on the long axis with a normal orientation relative to the nanoparticle surface. In the latter figures (4-5) we show the magnitude of coupling U (panel b in these figures) and total relaxation rates Γ (panel c in the same figures). More details on the radiative and non-radiative contributions to Γ for a molecular dipole positioned near gold and silver nanospheroids, are provided in the SI, Section ??.
Figure 4: (a) The CBR parameter (b) the magnitude of coupling, $-U/\hbar$, and (c) the total relaxation rate Γ as functions of the molecule to the (spheroidal gold) nanoparticle surface distance when the molecule is placed on the long axis oriented perpendicular to the spheroid surface. The aspect ratio of the spheroids p/q varies from 1 to 6 keeping the particle volume constant (all have the volume of a sphere of radius 10 nm). For each aspect ratio we take ω_0 in resonance with the respective longitudinal dipolar plasmon (excited along the particle long axis) and use the corresponding free molecule radiative decay rate: 2.62 eV and 7.38×10^7 s$^{-1}$ for $p/q = 1$, 2.36 eV and 5.39×10^7 s$^{-1}$ for $p/q = 2$, 1.92 eV and 2.89×10^7 s$^{-1}$ for $p/q = 4$, and 1.59 eV and 1.66×10^7 s$^{-1}$ for $p/q = 6$.

Figure 5: Similar to Figure 4, now with spheroidal silver nanoparticles. Molecular frequency and the corresponding free molecule radiative decay rate are chosen similar to Figure 4: 3.37 eV and 1.57×10^8 s$^{-1}$ for $p/q = 1$, 2.85 eV and 9.55×10^7 s$^{-1}$ for $p/q = 2$, 2.15 eV and 4.06×10^7 s$^{-1}$ for $p/q = 4$, and 1.71 eV and 2.06×10^7 s$^{-1}$ for $p/q = 6$.

Figures 6 and 7 show similar quantities for a molecular dipole positioned between two metal spheres. The (point) dipole is placed on the axis connecting the sphere centers (called the intersphere axis) and oriented parallel (and normal) to this axis. The molecular transition frequency is taken to be in resonance with the stronger plasmon peak associated with the corresponding configuration (see Figure ?? for the optical response of gold and silver bispherical structures).
Figure 6: (a) The CBR parameter (b) the magnitude of coupling $-U/\hbar$, and (c) the total relaxation rate Γ as functions of the position of a molecular dipole in between the two nanospheres on the intersphere axis, shown for molecules in parallel and perpendicular orientations relative to this axis. The spheres are identical with 10 nm radii with a 2 nm gap in between. The position of the molecule is shown relative to the center of the gap. For the parallel configuration, ω_0 used in these calculations are 2.47 eV (for gold) and 3.07 eV (for silver). For the perpendicular configurations, they are taken as 2.64 eV for gold and 3.41 eV for silver. The corresponding free molecule radiative relaxation rates are 6.20×10^7 s$^{-1}$ (gold, parallel), 1.19×10^8 s$^{-1}$ (silver, parallel), 7.53×10^7 s$^{-1}$ (gold, perpendicular), and 1.64×10^8 s$^{-1}$ (silver, perpendicular).

Next, we consider the effect of the gap size for the likes of the configurations shown in Figure 6, i.e., molecule in the gap in between nanosphere dimers, specifically for the parallel molecular orientation relative to the intersphere axis. In particular, in Figure 7, the CBR parameter, the coupling magnitude, and the combined relaxation rate are displayed for both gold and silver nanoparticle dimers. In all calculations, the molecule is assumed to be positioned in the middle of the gap. To note, the molecular frequency ω_0 is taken to be in resonance with the higher plasmon peak for the configuration with two 10 nm metal nanoparticles with a 2 nm gap. For this reason, the calculated combined relaxation rate Γ in Figure 7c shows a clear maximum for 2 nm gap size for silver. This also explains the slight deviation from the trend for gold.
Figure 7: Same as Figure 6, where here U, Γ and the CBR parameter, $2|U|/h\Gamma$ are plotted against the gap size between the spherical gold and silver particles, where the molecule is positioned at the center of the gap and oriented parallel to the intersphere axis. The molecular frequencies are taken the same as in Figure 6 (in resonance with the brightest plasmon of the 2 nm gap structure) with the same choices for the free molecule radiative relaxation rates.

The configuration considered here, with the molecule positioned in the space between two nanoparticles, is often referred to as a plasmonic cavity. The effective cavity volume can be determined from the calculated $M = U/D_{12}$ using Eq. (9). Obviously this “effective volume” can be defined also for configurations that cannot be perceived as cavities, such as used in Figures 2-5 (dipole-sphere/spheroid systems), and it depends on the particular geometry considered, including the dipole position and orientation. It is therefore of limited value for molecules interacting with plasmonic structures, but because of its prominence in many discussions we show several examples of this parameter in the SI (Figures ??-??).

Considering the results displayed in Figures 2-7, the following observations are notable:

(A) The interplay between coupling and broadening that determine “strong coupling” according to Eq. 14 depends strongly on geometry. While this fact is widely appreciated, the particulars of these dependence are sometimes surprising as exemplified in points (C) and (D) below.

(B) In the plasmonic structures studied, the intrinsic coupling-broadening ratio (CBR) parameter is usually large, and by itself satisfies the strong coupling criterion. Here, “intrinsic” implies that we consider only spectral broadening effects that reflect (a) the molecular radiative lifetime and fluorescence yield associated with the transition considered and (b)
the effect of the electromagnetic molecule-metal interaction on the molecule radiative and non-radiative relaxation rates. This intrinsic broadening disregards other sources of spectral broadening such as congestion of many overlapping transitions and environmentally induced thermal relaxation.

(C) While both the molecule-plasmon coupling and the intrinsic molecular lifetime broadening (by “intrinsic” we mean broadening associated only with the isolated molecule, the plasmonic nanostructure and their interaction) strongly decrease with increasing molecule-metal surface distance, the CBR remains large and the corresponding criterion for “strong coupling” persists at large distances. This observation by itself is meaningless as other sources of broadening as well as limited resolution will usually mask the Rabi structure. This does indicates, however, that if other sources of broadening and relaxation are eliminated (such as with zero-phonon transitions at cryogenic temperatures), signature of strong coupling would be observed in single molecule plasmonic cavities, in agreement with a recent observation.

(D) Because of the interplay between local electromagnetic coupling and particle induced relaxation, “hotspots” characterized by a large enhancement of the local electromagnetic fields do not necessarily stand out with regard to the CBR. To illustrate this consider the perpendicular and parallel orientation of a molecular dipole of 10 D transition dipole moment positioned 1 nm apart from a silver nanosphere of 10 nm radius. For the perpendicular orientation, the coupling strength is larger in magnitude than the parallel orientation:

\[-U_{\perp}/\hbar = 1.272 \times 10^{14} \text{ s}^{-1} \text{ (perpendicular)} \text{ and } -U_{\parallel}/\hbar = 8.935 \times 10^{13} \text{ s}^{-1} \text{ (parallel)}.\]

However, the associated nonradiative relaxation rate is also larger for perpendicular orientation:

\[\Gamma_{\perp}^{\text{NR}} = 6.437 \times 10^{12} \text{ s}^{-1} \text{ (perpendicular)} \text{ and } \Gamma_{\parallel}^{\text{NR}} = 2.091 \times 10^{11} \text{ s}^{-1} \text{ (parallel)} \text{ (the radiative decay rate is smaller than these number by } \sim 1 \text{ order of magnitude at this small distance from metal surface, so does not have significant contribution to the CBR). As a result, the value of CBR for parallel orientation is more than twice the value for perpendicular case (CBR}^\perp = 36.733, \text{ CBR}^\parallel = 80.744).\]

\(^3\)For the metal-molecule distances considered in our calculations, the intrinsic lifetime broadening is dominated by the molecule-metal interaction.
Finally, consider the self-consistent treatment of Eq. (19). We reiterate that the results shown in Figures 2-7 are based on a calculation of U, Γ_R, Γ_{NR} computed in a model in which the molecular dipole drives the system and do not reflect the actual lineshape. In particular, such a calculation does not account for spectral lineshifts induced by the proximity of the molecule to the metal nanostructure and for the relative peaks intensities, even if Rabi splitting occurs. Therefore, the results shown in Figures 2-7 only indicate the fulfillment of the strong coupling criterion (Eq. (14)) but not the observability of an actual Rabi splitting. Figures 8-9 show results based on the self-consistent calculation, Eqs. (15)-(19), which yields the actual absorption lineshape for the process in which a dipolar emitter, coupled to the metal nanostructure, is driven by an incident external field.

Figure 8 shows this lineshape, calculated for a dipole emitter near a spherical gold nanosphere (radius 10 nm), oriented perpendicular to the sphere surface and parallel to the incident field. The transition frequency ω_0 is taken as 2.62 eV, in resonance with the dipolar plasmon frequency of the gold nanosphere. As before, the relaxation rate Γ^0 of the free molecule is taken to be twice the radiative relaxation rate, corresponding to an emission yield of 0.5 for the free molecule. Figure 8a depicts the absorption lineshape for a dipole situated at 0.5 nm away from the sphere surface for different values of the molecular transition dipole moment in the range $2 - 10$ D. Figure 8b displays the absorption lineshape for an emitter with transition dipole moment 10 D placed at different distances (0.5 – 5 nm) from the sphere surface. Similar results for silver are shown in Figure ??.

Figure 9 shows similar results for a molecular dipole in the middle of the gap between two identical gold spheres (radii 10 nm) oriented parallel to the intersphere axis, where the incident electric field is parallel to this axis as well. For a bispherical structure, the plasmonic response for an incident plane field is characterized by a double-peak structure which results from the interacting dipolar plasmonic responses of the individual spheres and depends on the inter-sphere distance. The emitter transition frequency is taken to be in resonance with the lower frequency and more intense one of these peaks (see Figure ??).
9a are for an intersphere gap size 1 nm and different values of the molecular transition dipole moment, while Figure 9b shows the lineshapes for a transition dipole 10 D at varying gap sizes.

![Figure 8](image-url)

Figure 8: The absorption lineshape, $A(\omega)$ (Eq. (19)), displayed as a function of the driving frequency ω for an emitter near a spherical gold nanoparticle of radius 10 nm, perpendicular to the sphere surface. The emitter transition frequency is taken 2.62 eV, in resonance with the dipolar plasmon of a small gold particle, and the relaxation rate of the free molecule is taken to be twice the corresponding radiative relaxation rate (the latter are 2.95×10^6 s$^{-1}$, 1.18×10^7 s$^{-1}$, 2.66×10^7 s$^{-1}$, 4.72×10^7 s$^{-1}$ and 7.38×10^7 s$^{-1}$ for $D_{12} = 2, 4, 6, 8, 10$ D respectively). (a) An emitter with varying dipole moment placed at a distance 0.5 nm from the sphere surface. The inset shows a closeup of the small higher energy peak structure that is dominated by the metal plasmon response. (b) An emitter with a transition dipole moment 10 D is placed at different distances from the sphere surface. The inset displays the small higher energy peak structures (not shown in the main figure as they are practically invisible).

Consider first the case of an emitter near a spherical gold nanoparticle (Figure 8). Keeping in mind that in this model calculation the incident field is taken to be coupled only to the emitter, it is the emitter absorption peak that is seen for weak coupling (orange line in panel (a) and black line in panel (b)). The main effect of strong coupling upon increasing the molecular transition dipole is seen to be a strong red shift of the molecule-dominated peak. The particle’s optical signature, resulting the molecule-particle interaction is seen on the high energy side of the spectrum, is small, leading us to conclude that a pronounced Rabi splitting is not expected in this configuration. In contrast, the optical response of a system
comprising a molecule positioned between two gold spheres does show a clear evidence of such splitting as seen in Figure 9. This observation is consistent with that of Ref. (121) that for a dimer-like structure of gold nanoparticles, a strong coupling situation is likely to result when the interparticle gap is less than 2 nm.

Figure 9: Same as Figure 8 for an emitter placed at the middle of the gap between two identical gold nanospheres of 10 nm radii oriented parallel to the bispherical axis and the incident field. As in Figure 6 (for gold, parallel configuration), the molecular transition frequency is chosen to be in resonance with the brightest plasmon peak of the corresponding gold bispherical structure with gap size 2 nm (2.47 eV). (a) The intersphere gap size is 1 nm and result are shown for different emitter transition dipole moments in the range 2 – 10 D. (b) The emitter transition dipole moment is 10 D and the lineshape is shown for gap sizes ranging from 1.6 – 2.4 nm. The inset shows a closeup for the higher energy peaks arising from the metal-molecule coupling. Because the molecular transition frequency used here is different from that used in Figure 8, the corresponding radiative relaxation rates are slightly different: $2.48 \times 10^6 \text{ s}^{-1}$, $9.92 \times 10^6 \text{ s}^{-1}$, $2.23 \times 10^7 \text{ s}^{-1}$, $3.97 \times 10^7 \text{ s}^{-1}$ and $6.20 \times 10^7 \text{ s}^{-1}$ for 2, 4, 6, 8, 10 D respectively.

While “strong coupling” between a single molecule and a metal-plasmon excitation, manifested in the split-peak structure of the absorption lineshape, is seen in the calculated spectra in Figure 9, these results also indicate that the simpler model calculation of the CBR shown in Figures 2-7 is not by itself sufficient to predict the observability of this spectral feature. The CBR, Eq. (14), does provide an estimate of the relationship between the molecule-metal nanostructure coupling and the associated broadening, but does not necessarily lead
to an observed Rabi splitting which is usually assumed to be a prime manifestation of such strong coupling. We have identified the strong spectral shift, another manifestation of this coupling, as the main reason for this apparent discrepancy. This may also lead to apparent counter-intuitive observations: for example, comparing the lineshapes in Figure 9a, a clear Rabi splitting is seen for an emitter with transition dipole 4 D, while a single peak is seen for a 2 D emitter. In the stronger coupling case of an emitter with transition dipole moment ≥ 6 D, a larger Rabi splitting is indicated by the calculation, but the dominance of the lower energy peak may appear as a single peak in a realistic observations. It should be noted that this shift will also affect the distance dependence of the radiative and radiationless relaxation rates of a molecule approaching a metal surface and may potentially play a role in the observed “quenching of quench”, where the emission yield of an emission appears to increase, rather than decrease, as the molecule-surface distance decreases (see Ref. (101) and references therein). We emphasize however that no such trend in the emission yield Y, Eq. (13), was seen in our calculations.

5 Conclusions

Strong radiation matter coupling is often characterized in the literature as a relative concept, by comparing the absolute magnitudes of the coupling U and the broadening Γ, and the strong coupling criterion $2|U|/\hbar\Gamma$, an indication that Rabi splitting may be observed when the molecular and plasmon optical transition come into resonance, is often used. While usually observed when an optical mode interacts with many molecules, it has been noted, as outlined in the introduction, that this criterion can be satisfied even for single molecules interacting with metallic plasmonic structures. A necessary condition for observing this phenomenon in such setting is that the coupling-broadening ratio (CBR), $2|U|/\hbar\Gamma$, satisfies the strong coupling criterion when Γ and U are derived from the interaction between a single molecular transition when the molecule interacts only with the plasmonic structure, in
the absence of other sources of broadening. Using simple analytically solvable model structures, representing the molecule as a point dipole and treating radiation-matter coupling in the long wavelength approximation whereas all distances are assumed small relative to the radiation wavelength, we have found that this condition is easily satisfied. Surprisingly, we observe that this remains true when the molecule-metal distance increases so that the absolute coupling itself becomes small. This suggest that Rabi splitting can be observed in systems involving a single molecule interacting with small metal particles if other sources of broadening can be suppressed, as was recently observed using the low temperature molecular zero-phonon transition103.

It should be kept in mind that even if the strong coupling criterion, Eq. (14), is satisfied, such observation by itself is not an indication of strong radiation-matter coupling when this coupling is compared to other molecular energetic parameters. Furthermore, by considering the results of a self-consistent calculation that addresses directly the absorption lineshape in a system of interacting a molecule and the plasmonic structure, we find that the intrinsic CBR satisfying the strong coupling criterion does not guarantee the observation of Rabi splitting in the absorption spectrum because the coupling induced spectral shift together with the strong frequency dependence of the imaginary part of plasmonic response can result in a spectrum dominated by a single, albeit shifted, molecular peak.

Acknowledgement

M.S. acknowledges the financial support by the Air Force Office of Scientific Research under Grant No. FA9550-19-1-0009. A.N. acknowledges the support of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.
References

(1) Benz, F.; Tserkezis, C.; Herrmann, L. O.; De Nijs, B.; Sanders, A.; Sigle, D. O.; Pukenas, L.; Evans, S. D.; Aizpurua, J.; Baumberg, J. J. Nanooptics of molecular-shunted plasmonic nanojunctions. *Nano letters* **2014**, *15*, 669–674.

(2) Lin, L.; Zapata, M.; Xiong, M.; Liu, Z.; Wang, S.; Xu, H.; Borisov, A. G.; Gu, H.; Nordlander, P.; Aizpurua, J., et al. Nanooptics of plasmonic nanomatrioshkas: shrinking the size of a core–shell junction to subnanometer. *Nano letters* **2015**, *15*, 6419–6428.

(3) Karnetzky, C.; Zimmermann, P.; Trummer, C.; Duque Sierra, C.; Wörle, M.; Kienberger, R.; Holleitner, A. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. *Nature Communications* **2018**, *9*, 2471.

(4) Kamp, M.; Nijs, B. d.; Kongsuwan, N.; Saba, M.; Chikkaraddy, R.; Readman, C. A.; Deacon, W. M.; Griffiths, J.; Barrow, S. J.; Ojambati, O. S.; Wright, D.; Huang, J.; Hess, O.; Scherman, O. A.; Baumberg, J. J. Cascaded nanooptics to probe microsecond atomic-scale phenomena. *Proceedings of the National Academy of Sciences* **2020**, *117*, 14819–14826, Publisher: National Academy of Sciences Section: Physical Sciences.

(5) Sekhon, J. S.; Verma, S. Optimal dimensions of gold nanorod for plasmonic nanosensors. *Plasmonics* **2011**, *6*, 163–169.

(6) Jeong, H.-H.; Mark, A. G.; Alarcón-Corra, M.; Kim, I.; Oswald, P.; Lee, T.-C.; Fischer, P. Dispersion and shape engineered plasmonic nanosensors. *Nature communications* **2016**, *7*, 11331.

(7) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. *Nanoscience and Technology: A Collection of Reviews from Nature Journals*; World Scientific, 2010; pp 308–319.
(8) Choi, I.; Choi, Y. Plasmonic nanosensors: review and prospect. *IEEE Journal of Selected Topics in Quantum Electronics* **2011**, *18*, 1110–1121.

(9) Verschueren, D.; Shi, X.; Dekker, C. Nano-Optical Tweezing of Single Proteins in Plasmonic Nanopores. *Small Methods* **2019**, *3*, 1800465.

(10) de Nijs, B.; Benz, F.; Barrow, S. J.; Sigle, D. O.; Chikkaraddy, R.; Palma, A.; Carnegie, C.; Kamp, M.; Sundararaman, R.; Narang, P., et al. Plasmonic tunnel junctions for single-molecule redox chemistry. *Nature communications* **2017**, *8*, 994.

(11) Tesema, T. E.; Kafle, B.; Habteyes, T. G. Plasmon-Driven Reaction Mechanisms: Hot Electron Transfer versus Plasmon-Pumped Adsorbate Excitation. *The Journal of Physical Chemistry C* **2019**, *123*, 8469–8483.

(12) Shaik, F.; Peer, I.; Jain, P. K.; Amirav, L. Plasmon-Enhanced Multicarrier Photocatalysis. *Nano letters* **2018**, *18*, 4370–4376.

(13) Wu, J.; Wang, J.; Wang, T.; Sun, L.; Du, Y.; Li, Y.; Li, H. Photocatalytic reduction of p-nitrophenol over plasmonic M (M= Ag, Au)/SnNb2O6 nanosheets. *Applied Surface Science* **2019**, *466*, 342–351.

(14) Yu, S.; Wilson, A. J.; Heo, J.; Jain, P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. *Nano letters* **2018**, *18*, 2189–2194.

(15) Ochoa, M. A.; Chen, P.; Loring, R. F. Single turnover measurements of nanoparticle catalysis analyzed with dwell time correlation functions and constrained mean dwell times. *The Journal of Physical Chemistry C* **2013**, *117*, 19074–19081.

(16) Baffou, G.; Quidant, R. Nanoplasmonics for chemistry. *Chemical Society Reviews* **2014**, *43*, 3898–3907.
(17) Huang, L.; Zou, J.; Ye, J.-Y.; Zhou, Z.-Y.; Lin, Z.; Kang, X.; Jain, P. K.; Chen, S. Synergy between Plasmonic and Electrocatalytic Activation of Methanol Oxidation on Palladium-Silver Alloy Nanotubes. *Angewandte Chemie* 2019,

(18) Gellé, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. *Chemical Reviews* 2020, *120*, 986–1041, Publisher: American Chemical Society.

(19) Zhang, Z.; Zhang, C.; Zheng, H.; Xu, H. Plasmon-Driven Catalysis on Molecules and Nanomaterials. *Accounts of Chemical Research* 2019, *52*, 2506–2515, Publisher: American Chemical Society.

(20) Nazemi, M.; El-Sayed, M. A. Plasmon-enhanced photo(electro)chemical nitrogen fixation under ambient conditions using visible light responsive hybrid hollow Au-Ag2O nanocages. *Nano Energy* 2019, *63*, 103886.

(21) Zeng, Z.; Mabe, T.; Zhang, W.; Bagra, B.; Ji, Z.; Yin, Z.; Allado, K.; Wei, J. Plasmon–Exciton Coupling in Photosystem I Based Biohybrid Photoelectrochemical Cells. *ACS Applied Bio Materials* 2018, *1*, 802–807.

(22) Yu, S.; Jain, P. K. Selective Branching of Plasmonic Photosynthesis into Hydrocarbon Production and Hydrogen Generation. *ACS Energy Letters* 2019, *4*, 2295–2300, Publisher: American Chemical Society.

(23) Kontoleta, E.; Askes, S. H. C.; Garnett, E. C. Self-Optimized Catalysts: Hot-Electron Driven Photosynthesis of Catalytic Photocathodes. *ACS Applied Materials & Interfaces* 2019, *11*, 35713–35719, Publisher: American Chemical Society.

(24) del Pino, J.; Feist, J.; García-Vidal, F.; García-Ripoll, J. J. Entanglement Detection in Coupled Particle Plasmons. *Physical Review Letters* 2014, *112*, 216805.

38
(25) Bogdanov, S. I.; Boltasseva, A.; Shalaev, V. M. Overcoming quantum decoherence with plasmonics. *Science* **2019**, *364*, 532–533, Publisher: American Association for the Advancement of Science Section: Perspective.

(26) Kamat, P. V. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. *The Journal of Physical Chemistry C* **2007**, *111*, 2834–2860.

(27) Mackowski, S. Hybrid nanostructures for efficient light harvesting. *Journal of Physics: Condensed Matter* **2010**, *22*, 193102.

(28) Boghossian, A. A.; Sen, F.; Gibbons, B. M.; Sen, S.; Faltermeier, S. M.; Giraldo, J. P.; Zhang, C. T.; Zhang, J.; Heller, D. A.; Strano, M. S. Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. *Advanced Energy Materials* **2013**, *3*, 881–893.

(29) Herrera, F.; Spano, F. C. Cavity-Controlled Chemistry in Molecular Ensembles. *Physical Review Letters* **2016**, *116*, 238301.

(30) Jiang, Y.; McNeill, J. Light-harvesting and amplified energy transfer in conjugated polymer nanoparticles. *Chemical reviews* **2016**, *117*, 838–859.

(31) Li, J.; Cushing, S. K.; Meng, F.; Senty, T. R.; Bristow, A. D.; Wu, N. Plasmon-induced resonance energy transfer for solar energy conversion. *Nature Photonics* **2015**, *9*, 601–607, Number: 9 Publisher: Nature Publishing Group.

(32) Walther, H.; Varcoe, B. T. H.; Englert, B.-G.; Becker, T. Cavity quantum electrodynamics. *Reports on Progress in Physics* **2006**, *69*, 1325–1382, Publisher: IOP Publishing.

(33) Aspelmeyer, M.; Kippenberg, T. J.; Marquardt, F. Cavity optomechanics. *Reviews of Modern Physics* **2014**, *86*, 1391–1452, Publisher: American Physical Society.
(34) Ebbesen, T. W. Hybrid Light–Matter States in a Molecular and Material Science Perspective. *Accounts of Chemical Research* 2016, 49, 2403–2412, Publisher: American Chemical Society.

(35) Ribeiro, R. F.; Martínez-Martínez, L. A.; Du, M.; Campos-Gonzalez-Angulo, J.; Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. *Chemical Science* 2018, 9, 6325–6339.

(36) Frisk Kockum, A.; Miranowicz, A.; De Liberato, S.; Savasta, S.; Nori, F. Ultrastrong coupling between light and matter. *Nature Reviews Physics* 2019, 1, 19–40, Number: 1 Publisher: Nature Publishing Group.

(37) Basov, D. N.; Asenjo-Garcia, A.; Schuck, P. J.; Zhu, X.; Rubio, A. Polariton panorama. *Nanophotonics* 2021, 10, 549–577, Publisher: De Gruyter Section: Nanophotonics.

(38) Feist, J.; Garcia-Vidal, F. J. Extraordinary Exciton Conductance Induced by Strong Coupling. *Physical Review Letters* 2015, 114, 196402, Publisher: American Physical Society.

(39) Schachenmayer, J.; Genes, C.; Tignone, E.; Pupillo, G. Cavity-Enhanced Transport of Excitons. *Physical Review Letters* 2015, 114, 196403, Publisher: American Physical Society.

(40) Garcia-Vidal, F. J.; Feist, J. Long-distance operator for energy transfer. *Science* 2017, 357, 1357–1358, Publisher: American Association for the Advancement of Science Section: Perspective.

(41) Sáez-Blázquez, R.; Feist, J.; Fernández-Domínguez, A. I.; García-Vidal, F. J. Organic polaritons enable local vibrations to drive long-range energy transfer. *Physical Review B* 2018, 97, 241407, Publisher: American Physical Society.
(42) Groenhof, G.; Toppari, J. J. Coherent Light Harvesting through Strong Coupling to Confined Light. *The Journal of Physical Chemistry Letters* **2018**, *9*, 4848–4851, Publisher: American Chemical Society.

(43) Hagenmüller, D.; Schachenmayer, J.; Schütz, S.; Genes, C.; Pupillo, G. Cavity-Enhanced Transport of Charge. *Physical Review Letters* **2017**, *119*.

(44) Hagenmüller, D.; Schütz, S.; Schachenmayer, J.; Genes, C.; Pupillo, G. Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics. *Physical Review B* **2018**, *97*, 205303, Publisher: American Physical Society.

(45) Rozenman, G. G.; Akulov, K.; Golombek, A.; Schwartz, T. Long-Range Transport of Organic Exciton-Polaritons Revealed by Ultrafast Microscopy. *ACS Photonics* **2018**, *5*, 105–110, Publisher: American Chemical Society.

(46) Yang, C.; Wei, X.; Sheng, J.; Wu, H. Phonon heat transport in cavity-mediated optomechanical nanoresonators. *Nature Communications* **2020**, *11*, 4656, Number: 1 Publisher: Nature Publishing Group.

(47) Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. *Angewandte Chemie International Edition* **2012**, *51*, 1592–1596, _eprint_: https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201107033.

(48) Kowalewski, M.; Bennett, K.; Mukamel, S. Non-adiabatic dynamics of molecules in optical cavities. *The Journal of Chemical Physics* **2016**, *144*, 054309, Publisher: American Institute of Physics.

(49) Kowalewski, M.; Bennett, K.; Mukamel, S. Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings. *The Journal of Physical Chemistry Letters* **2016**, *7*, 2050–2054, Publisher: American Chemical Society.
(50) Feist, J.; Galego, J.; Garcia-Vidal, F. J. Polaritonic Chemistry with Organic Molecules. *ACS Photonics* **2018**, *5*, 205–216, Publisher: American Chemical Society.

(51) Herrera, F.; Spano, F. C. Theory of Nanoscale Organic Cavities: The Essential Role of Vibration-Photon Dressed States. *ACS Photonics* **2018**, *5*, 65–79, Publisher: American Chemical Society.

(52) Munkhbat, B.; Wersäll, M.; Baranov, D. G.; Antosiewicz, T. J.; Shegai, T. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. *Science Advances* **2018**, *4*, eaas9552, Publisher: American Association for the Advancement of Science Section: Research Article.

(53) Martínez-Martínez, L. A.; Ribeiro, R. F.; Campos-González-Angulo, J.; Yuen-Zhou, J. Can Ultrastrong Coupling Change Ground-State Chemical Reactions? *ACS Photonics* **2018**, *5*, 167–176.

(54) Campos-Gonzalez-Angulo, J. A.; Ribeiro, R. F.; Yuen-Zhou, J. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. *Nature Communications* **2019**, *10*, 4685, Number: 1 Publisher: Nature Publishing Group.

(55) Yuen-Zhou, J.; Menon, V. M. Polariton chemistry: Thinking inside the (photon) box. *Proceedings of the National Academy of Sciences* **2019**, ISBN: 9781900795111 Publisher: National Academy of Sciences Section: Commentary.

(56) Galego, J.; Climent, C.; Garcia-Vidal, F. J.; Feist, J. Cavity Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivity. *Physical Review X* **2019**, *9*.

(57) Shi, X.; Ueno, K.; Oshikiri, T.; Sun, Q.; Sasaki, K.; Misawa, H. Enhanced water splitting under modal strong coupling conditions. *Nature Nanotechnology* **2018**, *13*, 953–958, Number: 10 Publisher: Nature Publishing Group.
(58) Du, M.; Ribeiro, R. F.; Yuen-Zhou, J. Remote Control of Chemistry in Optical Cavities. *Chem* 2019, 5, 1167–1181.

(59) Thomas, A.; George, J.; Shalabney, A.; Dryzhakov, M.; Varma, S. J.; Moran, J.; Chervy, T.; Zhong, X.; Devaux, E.; Genet, C.; Hutchison, J. A.; Ebbesen, T. W. Ground-State Chemical Reactivity under Vibrational Coupling to the Vacuum Electromagnetic Field. *Angewandte Chemie (International ed. in English)* 2016, 55, 11462–6.

(60) Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R. M.; George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Tilting a ground-state reactivity landscape by vibrational strong coupling. *Science* 2019, 363, 615–619.

(61) Fregoni, J.; Granucci, G.; Persico, M.; Corni, S. Strong Coupling with Light Enhances the Photoisomerization Quantum Yield of Azobenzene. *Chem* 2020, 6, 250–265.

(62) Lather, J.; Bhatt, P.; Thomas, A.; Ebbesen, T. W.; George, J. Cavity Catalysis by Cooperative Vibrational Strong Coupling of Reactant and Solvent Molecules. *Angewandte Chemie International Edition* 2019, 58, 10635–10638, _eprint_: https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201905407.

(63) Mandal, A.; Huo, P. Investigating New Reactivities Enabled by Polariton Photochemistry. *The Journal of Physical Chemistry Letters* 2019, 10, 5519–5529, Publisher: American Chemical Society.

(64) Mandal, A.; Krauss, T. D.; Huo, P. Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics. *The Journal of Physical Chemistry B* 2020, 124, 6321–6340, Publisher: American Chemical Society.

(65) Semenov, A.; Nitzan, A. Electron transfer in confined electromagnetic fields. *Journal of Chemical Physics* 2019, 150.
(66) Avramenko, A. G.; Rury, A. S. Quantum Control of Ultrafast Internal Conversion Using Nanoconfined Virtual Photons. *The Journal of Physical Chemistry Letters* **2020**, 11, 1013–1021, Publisher: American Chemical Society.

(67) Chupeau, M.; Gladrow, J.; Chepelianskii, A.; Keyser, U. F.; Trizac, E. Optimizing Brownian escape rates by potential shaping. *Proceedings of the National Academy of Sciences* **2020**, 117, 1383–1388, ISBN: 9781910677117 Publisher: National Academy of Sciences Section: Physical Sciences.

(68) Davidsson, E.; Kowalewski, M. Atom Assisted Photochemistry in Optical Cavities. *The Journal of Physical Chemistry A* **2020**, 124, 4672–4677, Publisher: American Chemical Society.

(69) Flick, J.; Narang, P. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. *The Journal of Chemical Physics* **2020**, 153, 094116, Publisher: American Institute of Physics.

(70) Herrera, F.; Owrutsky, J. Molecular polaritons for controlling chemistry with quantum optics. *The Journal of Chemical Physics* **2020**, 152, 100902, Publisher: American Institute of Physics.

(71) Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. *Nature* **2003**, 424, 824–830, Number: 6950 Publisher: Nature Publishing Group.

(72) Törmä, P.; Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. *Reports on Progress in Physics* **2014**, 78, 013901, Publisher: IOP Publishing.

(73) Sukharev, M.; Nitzan, A. Optics of exciton-plasmon nanomaterials. *Journal of Physics: Condensed Matter* **2017**, 29, 443003, Publisher: IOP Publishing.
(74) Vasa, P.; Lienau, C. Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures. *ACS Photonics* **2018**, *5*, 2–23, Publisher: American Chemical Society.

(75) Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. *Chemical Reviews* **2011**, *111*, 3913–3961, Publisher: American Chemical Society.

(76) Wei, H.; Xu, H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. *Nanoscale* **2013**, *5*, 10794–10805, Publisher: The Royal Society of Chemistry.

(77) Kleinman, S. L.; Frontiera, R. R.; Henry, A.-I.; Dieringer, J. A.; Duyne, R. P. V. Creating, characterizing, and controlling chemistry with SERS hot spots. *Physical Chemistry Chemical Physics* **2012**, *15*, 21–36, Publisher: The Royal Society of Chemistry.

(78) Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. *Optics Express* **2011**, *19*, 22029–22106, Publisher: Optical Society of America.

(79) Pérez-González, O.; Zabala, N.; Borisov, A. G.; Halas, N. J.; Nordlander, P.; Aizpurua, J. Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities. *Nano Letters* **2010**, *10*, 3090–3095, Publisher: American Chemical Society.

(80) Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. *Nature Communications* **2016**, *7*.

(81) Hugall, J. T.; Singh, A.; Van Hulst, N. F. Plasmonic Cavity Coupling. *ACS Photonics* **2018**, *5*, 43–53.

(82) Aguilar-Galindo, F.; Díaz-Tendero, S.; Borisov, A. G. Electronic Structure Effects in
the Coupling of a Single Molecule with a Plasmonic Antenna. *The Journal of Physical Chemistry C* 2019, *123*, 4446–4456, Publisher: American Chemical Society.

(83) Berghuis, A. M.; Serpenti, V.; Ramezani, M.; Wang, S.; Gómez Rivas, J. Light–Matter Coupling Strength Controlled by the Orientation of Organic Crystals in Plasmonic Cavities. *The Journal of Physical Chemistry C* 2020, *124*, 12030–12038, Publisher: American Chemical Society.

(84) Rousseaux, B.; Baranov, D. G.; Antosiewicz, T. J.; Shegai, T.; Johansson, G. Strong coupling as an interplay of quantum emitter hybridization with plasmonic dark and bright modes. *Physical Review Research* 2020, *2*, 033056, Publisher: American Physical Society.

(85) Trügler, A.; Hohenester, U. Strong coupling between a metallic nanoparticle and a single molecule. *Physical Review B* 2008, *77*, 115403, Publisher: American Physical Society.

(86) Delga, A.; Feist, J.; Bravo-Abad, J.; Garcia-Vidal, F. Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching. *Physical Review Letters* 2014, *112*, 253601, Publisher: American Physical Society.

(87) Balci, F. M.; Sarisozen, S.; Polat, N.; Balci, S. Colloidal Nanodisk Shaped Plexcitonic Nanoparticles with Large Rabi Splitting Energies. *The Journal of Physical Chemistry C* 2019, *123*, 26571–26576, Publisher: American Chemical Society.

(88) Groß, H.; Hamm, J. M.; Tufarelli, T.; Hess, O.; Hecht, B. Near-field strong coupling of single quantum dots. *Science Advances* 2018, *4*, eaar4906, Publisher: American Association for the Advancement of Science Section: Research Article.

(89) Nitzan, A.; Brus, L. E. Theoretical model for enhanced photochemistry on rough surfaces. *The Journal of Chemical Physics* 1981, *75*, 2205–2214, Publisher: American Institute of Physics.
(90) Nitzan, A.; Brus, L. E. Can photochemistry be enhanced on rough surfaces? *The Journal of Chemical Physics* 1981, 74, 5321–5322, Publisher: American Institute of Physics.

(91) Narang, P.; Sundararaman, R.; Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. *Nanophotonics* 2016, 5, 96–111, Publisher: De Gruyter Open Section: Nanophotonics.

(92) Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J. R.; Wei, W. D. Surface-Plasmon-Driven Hot Electron Photochemistry. *Chemical Reviews* 2018, 118, 2927–2954.

(93) Flick, J.; Ruggenthaler, M.; Appel, H.; Rubio, A. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. *Proceedings of the National Academy of Sciences* 2017, 114, 3026–3034, Publisher: National Academy of Sciences Section: Physical Sciences.

(94) Schäfer, C.; Ruggenthaler, M.; Rubio, A. *Ab initio* nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling. *Physical Review A* 2018, 98, 043801.

(95) Jestädt, R.; Ruggenthaler, M.; Oliveira, M. J. T.; Rubio, A.; Appel, H. Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications. *Advances in Physics* 2019, 68, 225–333, Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00018732.2019.1695875.

(96) Ahn, W.; Vurgaftman, I.; Dunkelberger, A. D.; Owrutsky, J. C.; Simpkins, B. S. Vibrational Strong Coupling Controlled by Spatial Distribution of Molecules within the Optical Cavity. *ACS Photonics* 2018, 5, 158–166, Publisher: American Chemical Society.
(97) Savasta, S.; Saija, R.; Ridolfo, A.; Di Stefano, O.; Denti, P.; Borghese, F. Nanopolari-
tons: Vacuum Rabi Splitting with a Single Quantum Dot in the Center of a Dimer Nanoantenna. *ACS Nano* **2010**, *4*, 6369–6376, Publisher: American Chemical Society.

(98) Stete, F.; Schoßau, P.; Bargheer, M.; Koopman, W. Size-Dependent Coupling of Hybrid Core–Shell Nanorods: Toward Single-Emitter Strong-Coupling. *The Journal of Physical Chemistry C* **2018**, *122*, 17976–17982, Publisher: American Chemical Society.

(99) Park, K.-D.; May, M. A.; Leng, H.; Wang, J.; Kropp, J. A.; Gougousi, T.; Pelton, M.; Raschke, M. B. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. *Science Advances* **2019**, *5*, eaav5931, Publisher: American Association for the Advancement of Science Section: Research Article.

(100) Dvoynenko, M. M.; Wang, J.-K. Revisiting strong coupling between a single molecule and surface plasmons. *Optics Letters* **2013**, *38*, 760–762, Publisher: Optical Society of America.

(101) Kongsuwan, N.; Demetriadou, A.; Chikkaraddy, R.; Benz, F.; Turek, V. A.; Keyser, U. F.; Baumberg, J. J.; Hess, O. Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities. *ACS Photonics* **2018**, *5*, 186–191, Publisher: American Chemical Society.

(102) Chikkaraddy, R.; De Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. *Nature* **2016**, *535*, 127–130.

(103) Pscherer, A.; Meierhofer, M.; Wang, D.; Kelkar, H.; Martín-Cano, D.; Utikal, T.; Götzinger, S.; Sandoghdar, V. Single-Molecule Vacuum Rabi Splitting: Four-Wave Mixing and Optical Switching at the Single-Photon Level. *Physical Review Letters* **2021**, *127*, 133603, Publisher: American Physical Society.
(104) Neuman, T.; Esteban, R.; Casanova, D.; García-Vidal, F. J.; Aizpurua, J. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. *Nano Letters* **2018**, *18*, 2358–2364, Publisher: American Chemical Society.

(105) Derkachova, A.; Kolwas, K.; Demchenko, I. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres. *Plasmonics* **2016**, *11*, 941–951.

(106) Yang, H. U.; D’Archangel, J.; Sundheimer, M. L.; Tucker, E.; Boreman, G. D.; Raschke, M. B. Optical dielectric function of silver. *Physical Review B* **2015**, *91*, 235137.

(107) Sukharev, M.; Nitzan, A. Topical Review: optics of exciton-plasmon nanomaterials. 2017,

(108) Novotny, L.; Hecht, B. *Principles of Nano-Optics*; Cambridge University Press: Cambridge, 2006.

(109) Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. IV. General theory for spontaneous emission in finite geometries. *Physical Review A* **1975**, *12*, 1475–1497, Publisher: American Physical Society.

(110) Wijnands, F.; Pendry, J. B.; Garcia-Vidal, F. J.; Bell, P. M.; Roberts, P. J.; Moreno, L. M. Green’s functions for Maxwell’s equations: application to spontaneous emission. *Optical and Quantum Electronics* **1997**, *29*, 199–216.

(111) Gersten, J.; Nitzan, A. Spectroscopic properties of molecules interacting with small dielectric particles. *The Journal of Chemical Physics* **1981**, *75*, 1139–1152.

(112) Ruppin, R.; Martin, O. J. F. Lifetime of an emitting dipole near various types of interfaces including magnetic and negative refractive materials. *The Journal of Chemical Physics* **2004**, *121*, 11358–11361, Publisher: American Institute of Physics.
(113) Marocico, C. A.; Knoester, J. Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries. Physical Review A **2011**, *84*, 053824, Publisher: American Physical Society.

(114) Sukharev, M.; Freifeld, N.; Nitzan, A. Numerical Calculations of Radiative and Non-Radiative Relaxation of Molecules Near Metal Particles. The Journal of Physical Chemistry C **2014**, *118*, 10545–10551.

(115) Gersten, J. I. In *Radiative Decay Engineering*; Geddes, C. D., Lakowicz, J. R., Eds.; Topics in Fluorescence Spectroscopy; Springer US: Boston, MA, 2005; pp 197–221.

(116) Kirakosyan, A. S.; Stockman, M. I.; Shahbazyan, T. V. Surface plasmon lifetime in metal nanoshells. Physical Review B **2016**, *94*, 155429, Publisher: American Physical Society.

(117) Pustovit, V. N.; Urbas, A. M.; Shahbazyan, T. V. Energy transfer in plasmonic systems. **2014**, *16*, 114015, Publisher: IOP Publishing.

(118) Pustovit, V. N.; Shahbazyan, T. V. Plasmon-mediated superradiance near metal nanostructures. Physical Review B **2010**, *82*, 075429, Publisher: American Physical Society.

(119) Chen, Y. P.; Sha, W. E. I.; Choy, W. C. H.; Jiang, L.; Chew, W. C. Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function. Optics Express **2012**, *20*, 20210–20221, Publisher: Optical Society of America.

(120) Morse, Philip McCord and Feshbach, H. *Methods of theoretical physics, Part II*; Technology Press, 1946.

(121) Heintz, J.; Markešević, N.; Gayet, E. Y.; Bonod, N.; Bidault, S. Few-Molecule Strong
Coupling with Dimers of Plasmonic Nanoparticles Assembled on DNA. *ACS Nano* 2021, Publisher: American Chemical Society.
Supporting Information: Coupling, lifetimes and “strong coupling” maps for single molecules at plasmonic interfaces

Monosij Mondal,*,† Maicol A. Ochoa,*,† Maxim Sukharev,*,‡,¶ and Abraham Nitzan*,†,§

†Department of Chemistry, University of Pennsylvania, Philadelphia PA 19104, USA
‡College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
¶Department of Physics, Arizona State University, Tempe, AZ 85287, USA
§School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

E-mail: monosij@sas.upenn.edu; maicol@umd.edu; maxim.sukharev@asu.edu; anitzan@sas.upenn.edu

*Present addresses: Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.

For completeness, here we provide details of the calculations described in Section ?? of the main text. Those done with prolate spheroid follow the procedure of Ref. (1), while those associated with a bispherical nanostructure follow Ref. (2).
S1 A molecular dipole near a prolate spheroidal nanoparticle (arbitrary orientation)

S1.1 Prolate spheroidal coordinate system

This orthogonal coordinate system is obtained by rotating elliptic coordinates along the major axis of the ellipse. With the foci of the spheroid at \(x = 0, y = 0, z = \pm a/2 \), and distances \(r_1, r_2 \) from the foci to the point \((x, y, z) \) respectively, the prolate spheroidal coordinates \((\xi, \eta, \phi)\) are defined as:

\[
\begin{align*}
\xi &= \frac{r_1 + r_2}{a}, \quad \eta = \frac{r_1 - r_2}{a}, \quad \phi = \arctan\left(\frac{y}{x}\right)
\end{align*}
\]

where

\[
\begin{align*}
 r_1 &= \sqrt{x^2 + y^2 + (z + \frac{a}{2})^2} \\
 r_2 &= \sqrt{x^2 + y^2 + (z - \frac{a}{2})^2}
\end{align*}
\]

and

\[
1 \leq \xi < \infty, \quad -1 \leq \eta \leq 1, \quad 0 \leq \phi < 2\pi
\]

Cartesian coordinates are related to prolate spheroidal coordinates by following relations:

\[
\begin{align*}
x &= \frac{a}{2} \sqrt{(\xi^2 - 1)(1 - \eta^2)} \cos \phi \\
y &= \frac{a}{2} \sqrt{(\xi^2 - 1)(1 - \eta^2)} \sin \phi \\
z &= \frac{a\xi\eta}{2}
\end{align*}
\]
The scale factors in this system are:

\[
\begin{align*}
 h_\xi &= \frac{a}{2} \sqrt{\frac{\xi^2 - \eta^2}{\xi^2 - 1}} \\
 h_\eta &= \frac{a}{2} \sqrt{\frac{\xi^2 - \eta^2}{1 - \eta^2}} \\
 h_\phi &= \frac{a}{2} \sqrt{(1 - \eta^2)(\xi^2 - 1)}
\end{align*}
\]

The aspect ratio of semimajor (long) axis and semiminor (short) axis of a spheroid, \(p : q \) is given by: \(\frac{p}{q} = \frac{\xi}{\sqrt{\xi^2 - 1}} \). Increasing \(a \) keeping \(\xi \) constant gives larger spheroids with same aspect ratio. Volume of a spheroid is given by: \(V_{\text{sphd}} = \frac{4}{3} \pi (a/2)^3 \xi (\xi^2 - 1) \)

S1.2 The electric potential and field

An oscillating dipole \(\mathbf{D} \) is located at \(\mathbf{r}_1(\xi_1, \eta_1, 0) \) near a prolate spheroidal metal nanoparticle surface described by \(\xi_0 \). The general solution for the electric potential inside the nanoparticle is given by

\[
\Phi^{\text{in}}(\xi, \eta, \phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} A_{l,m} P^m_l (\xi) P^m_l (\eta) \cos m\phi \tag{S1}
\]

Outside the nanoparticle,

\[
\Phi^{\text{out}}(\xi, \eta, \phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} B_{l,m} Q^m_l (\xi) P^m_l (\eta) \cos m\phi \\
+ \frac{1}{4\pi \varepsilon_0 \varepsilon_s} \frac{\mathbf{D} \cdot (\mathbf{r} - \mathbf{r}_1)}{|\mathbf{r} - \mathbf{r}_1|^3} \tag{S2}
\]

We have

\[
\frac{(\mathbf{r} - \mathbf{r}_1)}{|\mathbf{r} - \mathbf{r}_1|^3} = \nabla_1 \frac{1}{|\mathbf{r} - \mathbf{r}_1|} \tag{S3}
\]
\[
\frac{1}{|r - r_1|} = \sum_{l=0}^{\infty} \sum_{m=0}^{l} K_{l,m} \cos m\phi P_l^m(\eta_1)P_l^m(\eta) \times \begin{cases}
P_l^m(\xi_1)Q_l^m(\xi); & \xi > \xi_1 \\
(P_l^m(\xi))^2; & \xi < \xi_1
\end{cases} \tag{S4}
\]

where

\[
K_{l,m} = (-1)^m \frac{2}{a} (2l + 1)(2 - \delta_{m0}) \left[\frac{(l - m)!}{(l + m)!} \right]^2
\]

For \(\xi < \xi_1\) this implies

\[
\Phi_{\text{out}}(\xi, \eta, \phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \left[B_{l,m} Q_l^m(\xi) + \frac{H_{l,m}(\xi_1, \eta_1)}{\varepsilon_s} P_l^m(\xi) \right] \times P_l^m(\eta) \cos m\phi \tag{S5}
\]

where

\[
H_{l,m}(\xi_1, \eta_1) = \frac{K_{l,m}}{2\pi \varepsilon_0 a} \left[\sqrt{\frac{\xi_1^2 - 1}{\xi_1^2 - \eta_1^2}} Q_l^m(\xi_1) P_l^m(\eta_1) D_\xi \\
+ \sqrt{\frac{1 - \eta_1^2}{\xi_1^2 - \eta_1^2}} Q_l^m(\xi_1) P_l^m(\eta_1) D_\eta \right]
\]
We use the following boundary conditions:

\[\Phi^{in}(\xi_0, \eta, \phi) = \Phi^{out}(\xi_0, \eta, \phi) \]

(S6)

and

\[\varepsilon \frac{\partial \Phi^{in}(\xi, \eta, \phi)}{\partial \xi} \bigg|_{\xi = \xi_0} = \varepsilon \frac{\partial \Phi^{out}(\xi, \eta, \phi)}{\partial \xi} \bigg|_{\xi = \xi_0} \]

(S7)

So,

\[A_{l,m} = B_{l,m} \frac{Q^m_l(\xi_0)}{P^m_l(\xi_0)} + \frac{H_{l,m}(\xi_1, \eta_1)}{\varepsilon_s} \]

(S8)

\[A_{l,m} = \frac{\varepsilon_s Q^m_l(\xi_0)}{\varepsilon_d P^m_l(\xi_0)} B_{l,m} + \frac{1}{\varepsilon_d} H_{l,m}(\xi_1, \eta_1) \]

(S9)

Solving S8 and S9 we have

\[A_{l,m} = H_{l,m}(\xi_1, \eta_1) \]

\[\times \frac{P^m_l(\xi_0) Q^m_l(\xi_0) - P^m_l(\xi_0) Q^m_l(\xi_0)}{\varepsilon_s P^m_l(\xi_0) Q^m_l(\xi_0) - \varepsilon_s P^m_l(\xi_0) Q^m_l(\xi_0)} \]

(S10)

and

\[B_{l,m} = -H_{l,m}(\xi_1, \eta_1) \frac{\varepsilon_d - \varepsilon_s}{\varepsilon_s} \]

\[\times \frac{P^m_l(\xi_0) P^m_l(\xi_0)}{\varepsilon_d P^m_l(\xi_0) Q^m_l(\xi_0) - \varepsilon_s P^m_l(\xi_0) Q^m_l(\xi_0)} \]

(S11)
Now that we have $A_{l,m}$ and $B_{l,m}$ we find the electric field and hence the component of G in the dipole direction:

$$G_{\text{sphd-D}}(\mathbf{r}_1)$$

$$= -\frac{\mathbf{D}}{|\mathbf{D}|^2} \cdot \nabla \Phi_{\text{out}}(\xi_1, \eta_1, \phi_1)$$

$$= \sum_{l=0}^{\infty} \sum_{m=0}^{l} \frac{K_{l,m}}{\pi \varepsilon_0 a^2 |\mathbf{D}|^2} \frac{\varepsilon_d - \varepsilon_s}{\varepsilon_s}$$

$$\times \frac{P^m_l(\xi_0) P^{m'}_{l'}(\xi_0)}{\varepsilon_d P^m_l(\xi_0) Q^m_l(\xi_0) - \varepsilon_s P^{m'}_{l'}(\xi_0) Q^{m'}_{l'}(\xi_0)}$$

$$\left[\sqrt{\frac{\xi_1^2 - 1}{\xi_1^2 - \eta_1^2}} Q^m_l(\xi_1) P^m_l(\eta_1) D_\xi$$

$$+ \sqrt{\frac{1 - \eta_1^2}{\xi_1^2 - \eta_1^2}} Q^{m'}_{l'}(\xi_1) P^{m'}_{l'}(\eta_1) D_\eta \right]^2 \quad (S12)$$

Special case 1: Molecule on major (\textit{maj}) axis, dipole perpendicular to nanoparticle surface:

$$\eta_1 = 1, \mathbf{D} = D_\xi \hat{\xi}$$

$$G_{\text{sphd}}^{\text{maj,\perp}}(\xi_1)$$

$$= \frac{2(\varepsilon_d - \varepsilon_s)}{\pi \varepsilon_0 \varepsilon_s a^3} \sum_{l=0}^{\infty} (2l + 1)$$

$$\times \frac{P_l(\xi_0) P'_l(\xi_0) Q'_l(\xi_1)^2}{\varepsilon_d P'_l(\xi_0) Q_l(\xi_0) - \varepsilon_s P_l(\xi_0) Q'_l(\xi_0)} \quad (S13)$$

Special case 2: Molecule on major axis, dipole parallel to nanoparticle surface:

$$\eta_1 = 1, \mathbf{D} = D_\eta \hat{\eta}$$
\[G_{\text{sphd}}^{\text{maj,}\parallel}(\xi_1) \]
\[= \frac{(\varepsilon_d - \varepsilon_s)\sum_{l=1}^{\infty} (2l + 1)}{\pi \varepsilon_0 \varepsilon_s a^2 (1 - \xi_1^2)} \times \frac{P^{(l)}_l(\xi_0)P^{(l)'}_l(\xi_0)Q^{(l)}_l(\xi_1)^2}{\varepsilon_d P^{(l)'}_l(\xi_0)Q^{(l)}_l(\xi_0) - \varepsilon_s P^{(l)}_l(\xi_0)Q^{(l)'}_l(\xi_0)} \]
\[(S14) \]

Special case 3: Molecule on minor (= min) axis, dipole perpendicular to nanoparticle surface:
\[\eta_1 = 0, \quad D = D \xi \]

\[G_{\text{sphd}}^{\text{min,}\perp}(\xi_1) \]
\[= \frac{(\varepsilon_d - \varepsilon_s)}{\pi \varepsilon_0 \varepsilon_s a^2} \sum_{l=0}^{\infty} \sum_{m=0}^{l} K_{l,m} \]
\[\times \frac{P^{(m)}_l(\xi_0)P^{(m)'}_l(\xi_0)Q^{(m)}_l(\xi_1)^2}{\varepsilon_d P^{(m)'}_l(\xi_0)Q^{(m)}_l(\xi_0) - \varepsilon_s P^{(m)}_l(\xi_0)Q^{(m)'}_l(\xi_0)} \]
\[(S15) \]

Special case 4: Molecule on minor axis, dipole parallel to nanoparticle surface:
\[\eta_1 = 0, \quad D = D \eta \]

\[G_{\text{sphd}}^{\text{min,}\parallel}(\xi_1) \]
\[= \frac{(\varepsilon_d - \varepsilon_s)P^{(m)}_l}{\pi \varepsilon_0 \varepsilon_s a^2} \sum_{l=0}^{\infty} \sum_{m=0}^{l} K_{l,m} \]
\[\times \frac{(\xi_0)P^{(m)}_l(\xi_0)Q^{(m)}_l(\xi_1)^2P^{(m)'}_l(0)^2}{\varepsilon_d P^{(m)'}_l(\xi_0)Q^{(m)}_l(\xi_0) - \varepsilon_s P^{(m)}_l(\xi_0)Q^{(m)'}_l(\xi_0)} \]
\[(S16) \]

S1.3 The nonradiative decay rate

The nonradiative decay rate is given by the following volume integral of the amplitude of electric field inside the nanoparticle squared\(^1\):
\[\Gamma_{NR,sphd} = \frac{\sigma}{2\hbar \omega} \int_V dr|E_{in}|^2 \]
\[= \varepsilon_0 \text{Im}[\varepsilon_d(\omega)] \int_S \Phi_{in}^\ast \nabla \Phi_{in} \cdot dS \]
(S17)

\[\int_S \Phi_{in}^\ast \nabla \Phi_{in} \cdot dS \]
\[= \frac{a}{2} (\xi_0^2 - 1) \int_S \Phi_{in}^\ast \frac{\partial \Phi_{in}}{\partial \xi} d\eta d\phi \]
\[= \pi a (\xi_0^2 - 1) \sum_{l,m} |A_{l,m}|^2 P_l^m(\xi_0) P_{l'}^m(\xi_0) \]
\[\times \frac{(1 + \delta_{m0})(l + m)!}{(2l + 1)(l - m)!} \]
(S18)

Hence,

\[\Gamma_{NR,sphd} \]
\[= \pi a \varepsilon_0 \text{Im}[\varepsilon_d(\omega)] \frac{(\xi_0^2 - 1)}{2\hbar} \]
\[\times \sum_{l,m} |A_{l,m}|^2 P_l^m(\xi_0) P_{l'}^m(\xi_0) \frac{(1 + \delta_{m0})(l + m)!}{(2l + 1)(l - m)!} \]
(S19)

Special case 1: Molecule on major axis, dipole perpendicular to nanoparticle surface:
Special case 2: Molecule on major axis, dipole parallel to nanoparticle surface:

\[
\Gamma_{\text{maj,}\parallel}^{\text{NR,sphd}} = \frac{D_\xi^2 \text{Im}[\varepsilon_d(\omega)]}{2\pi \varepsilon_0 a^3 h (\xi_1^2 - 1)} \times \sum_{l=1}^{\infty} \frac{(2l + 1)P_l(\xi_0)P'_l(\xi_0)Q'_l(\xi_1)}{\varepsilon_d P'_l(\xi_0)Q_l(\xi_0) - \varepsilon_s P_l(\xi_0)Q'_l(\xi_1)}
\]

(S21)

Special case 3: Molecule on minor axis, dipole perpendicular to nanoparticle surface:

\[
\Gamma_{\text{min,}\perp}^{\text{NR,sphd}} = \frac{D_\xi^2 \text{Im}[\varepsilon_d(\omega)]}{\pi \varepsilon_0 a^3 h (\xi_0^2 - 1) \xi_1^2} \times \sum_{l,m} (2l + 1)(2m + 1) \frac{(l - m)!}{(l + m)!} \frac{P_l^m(\xi_0)P_l^{m'}(\xi_0)Q_l^m(\xi_1)^2 P_l^m(0)^2}{\varepsilon_d P_l^{m'}(\xi_0)Q_l^m(\xi_0) - \varepsilon_s P_l^m(\xi_0)Q_l^{m'}(\xi_0)}
\]

(S22)

Special case 4: Molecule on minor axis, dipole parallel to nanoparticle surface:
The radiative decay rate can be calculated by evaluating the effective dipole in the system and then using

\[
\Gamma_R(\omega) = \frac{\sqrt{\varepsilon_s \omega^3}}{3 \hbar^2 e^4 \pi \varepsilon_0} \left| D_{\text{tot}}(\omega) \right|^2 \quad (S24)
\]

The needed total dipole can be evaluated from the asymptotic behavior of the calculated electrostatic potential at large distance from the molecule-particle system. This asymptotic behavior corresponds to the net dipole moment of the system.

In this limit,

\[
\Phi^{\text{out}} \to \sum_{m=0}^{1} \left[B_{1m} + J_{1,m}(\xi_1, \eta_1) \right] \\
\times \cos m\phi Q_1^m(\xi) P^m_1(\eta)
\]

Where
\[J_{l,m}(\xi_1, \eta_1) \]
\[= \frac{2}{a} K_{l,m} \left[\sqrt{\frac{\xi_1^2}{\xi_1^2 - \eta_1^2}} P_{l}^{m'}(\xi_1) P_{l}^{m}(\eta_1) D_\xi + \sqrt{\frac{1 - \eta_1^2}{\xi_1^2 - \eta_1^2}} P_{l}^{m}(\xi_1) P_{l}^{m'}(\eta_1) D_\eta \right] \]

Special case 1: Molecule on major axis, dipole perpendicular to nanoparticle surface:

\[D_{\text{tot}, \perp}^{\text{maj}} = D_\xi \left[1 - \frac{(\varepsilon_d - \varepsilon_s)\xi_0 Q_1'(\xi_1)}{\varepsilon_s [\varepsilon_d Q_1(\xi_0) - \varepsilon_s \xi_0 Q_1'(\xi_0)]} \right] \] (S25)

Special case 2: Molecule on major axis, dipole parallel to nanoparticle surface:

\[D_{\text{tot}, \parallel}^{\text{maj}} = D_\eta \left[1 - \frac{(\varepsilon_d - \varepsilon_s)P_1'(\xi_0) P_1'\varepsilon_d Q_1'(\xi_0) Q_1(\xi_1)}{\varepsilon_s P_1(\xi_1) [\varepsilon_d P_1'(\xi_0) Q_1(\xi_0) - \varepsilon_s P_1'(\xi_0) Q_1'(\xi_0)]} \right] \] (S26)

Special case 3: Molecule on minor axis, dipole perpendicular to nanoparticle surface:

\[D_{\text{tot}, \perp}^{\text{min}} = D_\xi \left[1 - \frac{(\varepsilon_d - \varepsilon_s)P_1'(\xi_0) P_1'\varepsilon_d Q_1'(\xi_0) Q_1(\xi_1)}{\varepsilon_s P_1(\xi_1) [\varepsilon_d P_1'(\xi_0) Q_1(\xi_0) - \varepsilon_s P_1'(\xi_0) Q_1'(\xi_0)]} \right] \] (S27)
Special case 4: Molecule on minor axis, dipole parallel to nanoparticle surface:

\[
D_{\text{tot}}^{\text{min,||}} = D_\eta \left[1 - \frac{(\varepsilon_d - \varepsilon_s)P_1(\xi_0)Q_1(\xi_1)}{\varepsilon_s P_1(\xi_1) [\varepsilon_d Q_1(\xi_0) - \varepsilon_s \xi_0 Q'_1(\xi_0)]} \right]
\]

(S28)

S2 The spherical limit

Here we derive expressions for electric field and decay rates for a system of an oscillating dipole \(\mathbf{D} \) located at \(\mathbf{r}_1 \) near a spherical metal nanoparticle of radius \(a \) by solving the boundary conditions.

S2.1 The electric potential and field

As the natural symmetry of the system dictates, we will use spherical coordinates. Spherical harmonics are defined by

\[
Y_{l,m}(\theta, \phi) = \sqrt{\frac{2l + 1}{4\pi} \frac{(l - m)!}{(l + m)!}} P^m_l(\cos \theta) e^{im\phi}
\]

Inside the nanosphere, the electric potential in general is

\[
\Phi^{\text{in}}(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l,m} r^l Y_{l,m}(\theta, \phi)
\]

(S29)

where \(Y_{l,m}(\theta, \phi) \) are the spherical harmonics.

Outside, it is
\[
\Phi_{\text{out}}(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{B_{l,m}}{r^{l+1}} Y_{l,m}(\theta, \phi)
\]
\[
+ \frac{1}{4\pi\varepsilon_0\varepsilon_s} \frac{D \cdot (r - r_1)}{|r - r_1|^3}
\]
(S30)

and

\[
\frac{1}{|r - r_1|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l + 1} r_{l+1}^{l} Y_{l,m}^*(\theta_1, \phi_1) Y_{l,m}(\theta, \phi)
\]
(S31)

For the region \(r < r_1 \),

\[
\frac{1}{4\pi\varepsilon_0\varepsilon_s} \frac{D \cdot (r - r_1)}{|r - r_1|^3}
\]
\[
= D \cdot \frac{1}{\varepsilon_0\varepsilon_s} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l + 1} r_{l+1}^{l}
\]
\[
\times Y_{l,m}(\theta, \phi) Q_{l,m}^*(r_1, \theta_1, \phi_1)
\]
(S32)

where

\[
Q_{l,m}^*(r_1, \theta_1, \phi_1)
\]
\[
= \left[- (l + 1) \frac{Y_{l,m}^*(\theta_1, \phi_1)}{r_{l+2}^{l+2}} \hat{r} + \frac{1}{r_{l+2}^{l+2}} \frac{\partial Y_{l,m}^*(\theta_1, \phi_1)}{\partial \theta_1} \hat{\theta} + \frac{1}{r_{l+2}^{l+2} \sin \theta_1} \frac{\partial Y_{l,m}^*(\theta_1, \phi_1)}{\partial \phi_1} \hat{\phi} \right]
\]

S13
The molecular dipole is in general in an arbitrary orientation \(\mathbf{D} = D_r \hat{\mathbf{r}} + D_\theta \hat{\theta} + D_\phi \hat{\phi} \).

So,

\[
\frac{1}{4\pi \varepsilon_0 \varepsilon_s} \frac{\mathbf{D} \cdot (\mathbf{r} - \mathbf{r}_1)}{|\mathbf{r} - \mathbf{r}_1|^3} = \frac{1}{\varepsilon_0 \varepsilon_s} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{r^l}{2l+1} Y_{l,m}(\theta, \phi) \mathcal{P}_{l,m}^*(r_1, \theta_1, \phi_1)
\]

(S33)

Where

\[
\mathcal{P}_{l,m}^*(r_1, \theta_1, \phi_1) = \left[-D_r (l+1) \frac{Y_{l,m}^*(\theta_1, \phi_1)}{r_1^{l+2}} + \frac{D_\theta}{r_1^{l+2}} \frac{\partial Y_{l,m}^*(\theta_1, \phi_1)}{\partial \theta_1} + \frac{D_\phi}{r_1^{l+2} \sin \theta_1} \frac{\partial Y_{l,m}^*(\theta_1, \phi_1)}{\partial \phi_1} \right]
\]

We have two boundary conditions as follows:

\[
A_{l,m} = \frac{B_{l,m}}{a^{2l+1}} + \frac{1}{\varepsilon_0 \varepsilon_s} \frac{\mathcal{P}_{l,m}^*(r_1, \theta_1, \phi_1)}{2l+1}
\]

(S34)

and

\[
A_{l,m} = -\frac{\varepsilon_s (l+1)}{\varepsilon_d} \frac{B_{l,m}}{l} \frac{1}{a^{2l+1}} + \frac{1}{\varepsilon_0 \varepsilon_d} \frac{\mathcal{P}_{l,m}^*(r_1, \theta_1, \phi_1)}{2l+1}
\]

(S35)

Solving S34 and S35, we have:
\[A_{l,m} = \frac{\mathcal{P}_{l,m}^*(r_1, \theta_1, \phi_1)}{\varepsilon_0 [l \varepsilon_d + (l + 1) \varepsilon_s]} \]
(S36)

and

\[B_{l,m} = \frac{l}{(2l + 1)} \frac{\varepsilon_s - \varepsilon_d}{\varepsilon_0 \varepsilon_s [l \varepsilon_d + (l + 1) \varepsilon_s]}
\times a^{2l+1} |\mathcal{P}_{l,m}^*(r_1, \theta_1, \phi_1)|^2 \]
(S37)

So we have the potential inside and outside the nanoparticle. We obtain the component of \(\mathbf{G} \) in the direction of the dipole:

\[G_{\text{sph}}(r_1) \]

\[= \frac{1}{|\mathbf{D}|^2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{l}{(2l + 1)} \frac{\varepsilon_s - \varepsilon_d}{\varepsilon_0 \varepsilon_s [l \varepsilon_d + (l + 1) \varepsilon_s]} a^{2l+1}
\times |\mathcal{P}_{l,m}(r_1, \theta_1, \phi_1)|^2 \]
(S38)

Special case 1: Dipole perpendicular to sphere surface

\(\mathbf{D} = D \hat{r} \):
\[G_\text{sph}(r_1) \]

\[= \sum_{l=0}^{\infty} \frac{l(l+1)^2}{(2l+1)} \frac{\epsilon_s - \epsilon_d}{\epsilon_0 \epsilon_s [l\epsilon_d + (l+1)\epsilon_s]} \frac{a^{2l+1}}{r_1^{2l+4}} \]

\[\times \sum_{m=-l}^{l} |Y_{l,m}^{*}\!(\theta_1, \phi_1)|^2 \]

\[= \frac{1}{4\pi \epsilon_0 \epsilon_s a^3} \sum_{l=0}^{\infty} \frac{(\epsilon_s - \epsilon_d)l(l+1)^2}{[l\epsilon_d + (l+1)\epsilon_s]} \left(\frac{a}{r_1} \right)^{2l+4} \] \hspace{1cm} (S39)

In the last step we have used following property of Spherical Harmonics\(^3\):

\[\sum_{m=-l}^{l} |Y_{l,m}(\theta, \phi)|^2 = \frac{2l+1}{4\pi} \]

Special case 2: Dipole parallel to sphere surface

\(\mathbf{D} = D_\theta \hat{\theta} \):

\[G_\parallel_\text{sph}(r_1) \]

\[= \sum_{l=0}^{\infty} \frac{l}{(2l+1)} \frac{\epsilon_s - \epsilon_d}{\epsilon_0 \epsilon_s [l\epsilon_d + (l+1)\epsilon_s]} \frac{a^{2l+1}}{r_1^{2l+4}} \]

\[\times \sum_{m=-l}^{l} \left| \frac{\partial Y_{l,m}^{*}\!(\theta_1, \phi_1)}{\partial \theta_1} \right|^2 \]

\[= \frac{1}{8\pi \epsilon_0 \epsilon_s a^3} \sum_{l=0}^{\infty} \frac{(\epsilon_s - \epsilon_d)l(l+1)^2}{[l\epsilon_d + (l+1)\epsilon_s]} \left(\frac{a}{r_1} \right)^{2l+4} \] \hspace{1cm} (S40)

where

\[\sum_{m=-l}^{l} \left| \frac{\partial Y_{l,m}(\theta, \phi)}{\partial \theta} \right|^2 = \frac{l(l+1)(2l+1)}{8\pi} \]

S2.2 The nonradiative decay rate

The electric field inside the sphere is given by:
\[E_{\text{in}}(r, \theta, \phi) = -\sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l,m} \left[b_{l} r^{l-1} Y_{l,m}(\theta, \phi) \hat{r} + r^{l-1} \frac{\partial Y_{l,m}(\theta, \phi)}{\partial \theta} \hat{\theta} + \frac{r^{l-1}}{\sin \theta} \frac{\partial Y_{l,m}(\theta, \phi)}{\partial \phi} \hat{\phi} \right] \]

As before,

\[\oint_{S} \Phi^{\text{in}} \nabla \Phi^{\text{in}} \cdot dS = \oint_{S} r^{2} \sin \theta \Phi^{\text{in}} \frac{\partial \Phi^{\text{in}}}{\partial r} d\theta d\phi \]

\[= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} l |A_{l,m}|^{2} a^{2l+1} \] \hspace{1cm} (S41)

Special case 1: Dipole perpendicular to sphere surface

\[\Gamma_{\text{NR,sph}}^{\perp} = \frac{\varepsilon_0 \text{Im}[\varepsilon_d(\omega)] D_{\text{c}}^2}{2h \varepsilon_0^3 a^3} \sum_{l=0}^{\infty} \frac{l(l+1)^2}{|\varepsilon_d + (l+1)|^2 (\frac{a}{r_1})^{2l+4}} \times \sum_{m=-l}^{l} |Y_{l,m}^{*}(\theta_1, \phi_1)|^2 \]

\[= \frac{\text{Im}[\varepsilon_d(\omega)] D_{\text{c}}^2}{8\pi \varepsilon_0 h a^3} \sum_{l=0}^{\infty} \frac{l(l+1)^2(2l+1)}{|\varepsilon_d + (l+1)|^2 (\frac{a}{r_1})^{2l+4}} \] \hspace{1cm} (S42)
Special case 2: Dipole parallel to sphere surface

\[\Gamma_{\parallel NR, sph} = \text{Im} \left[\varepsilon_d(\omega) \right] D_\theta^2 \theta \frac{l}{2\hbar \varepsilon_0 a^3} \sum_{l=0}^{\infty} \frac{l}{|l \varepsilon_d + (l+1) \varepsilon_s|} \left(\frac{a}{r_1} \right)^{2l+4} \times \sum_{m=-l}^{l} \left| \frac{\partial Y_{l,m}^*(\theta_1, \phi_1)}{\partial \theta_1} \right|^2 \]

\[= \frac{\text{Im} \left[\varepsilon_d(\omega) \right] D_\theta^2}{16\pi \varepsilon_0 \hbar a^3} \sum_{l=0}^{\infty} \frac{l^2(l+1)(2l+1)}{|l \varepsilon_d + (l+1) \varepsilon_s|} \left(\frac{a}{r_1} \right)^{2l+4} \] \hspace{1cm} (S43)

S2.3 The radiative decay rate

In far field,

\[\Phi_{\text{out}}(r >> r_1, \theta, \phi) \to \sum_{m=-1}^{1} \left[\frac{3\varepsilon_0 \varepsilon_s B_{1,m}}{\mathcal{R}_{1,m}^*(r_1, \theta_1, \phi_1)} + 1 \right] \times \frac{\mathcal{R}_{1,m}^*(r_1, \theta_1, \phi_1) Y_{1,m}(\theta, \phi)}{3\varepsilon_0 \varepsilon_s} \frac{1}{r^2} \] \hspace{1cm} (S44)

where

\[\mathcal{R}_{i,m}^*(r_1, \theta_1, \phi_1) = \left[D_i r_1^{l-1} Y_{l,m}^*(\theta_1, \phi_1) + D_\theta r_1^{l-1} \frac{\partial Y_{l,m}^*(\theta_1, \phi_1)}{\partial \theta_1} \right. \]

\[+ \left. \frac{D_\phi r_1^{l-1} \partial Y_{l,m}^*(\theta_1, \phi_1)}{\sin \theta_1 \frac{\partial \theta_1}{\partial \phi_1}} \right] \]

Special case 1: Dipole perpendicular to sphere surface
\[\Phi^{\text{out}} \rightarrow \left[1 - \frac{2(\varepsilon_s - \varepsilon_d) a^3}{(\varepsilon_d + 2\varepsilon_s) r_1^3} \right] \frac{D_r \cos \theta}{4\pi\varepsilon_0\varepsilon_s r^2} \]

\[= \frac{D_{\text{tot.sph}}^\perp \cos \theta}{4\pi\varepsilon_0\varepsilon_s r^2} \]

where

\[D_{\text{tot.sph}}^\perp = \left[1 - \frac{2(\varepsilon_s - \varepsilon_d) a^3}{(\varepsilon_d + 2\varepsilon_s) r_1^3} \right] D_r \]

(S45)

Special case 2: Dipole parallel to sphere surface

\[\Phi^{\text{out}} \rightarrow \left[1 + \frac{\varepsilon_s - \varepsilon_d}{[\varepsilon_d + 2\varepsilon_s] r_1^3} \right] \frac{D_\theta \sin \theta \cos \phi}{4\pi\varepsilon_0\varepsilon_s r^2} \]

\[= \frac{D_{\text{tot.sph}}^\parallel \sin \theta \cos \phi}{4\pi\varepsilon_0\varepsilon_s r^2} \cos \phi \]

where

\[D_{\text{tot.sph}}^\parallel = \left[1 + \frac{\varepsilon_s - \varepsilon_d}{[\varepsilon_d + 2\varepsilon_s] r_1^3} \right] D_\theta \]

(S46)

S3 A molecule in the gap of a bispherical dimer

S3.1 Bispherical coordinate system

We describe the orthonormal set of coordinates \((\mu, \eta, \phi) \), which are transformed into Cartesian coordinates \((x, y, z)\) by:
\[
x = \frac{a \sin \eta \cos \phi}{\cosh \mu - \cos \eta} \\
y = \frac{a \sin \eta \sin \phi}{\cosh \mu - \cos \eta} \\
z = \frac{a \sinh \mu}{\cosh \mu - \cos \eta}
\]

with scaling factors

\[
h_\mu = h_\eta = \frac{a}{\cosh \mu - \cos \eta} \\
h_\phi = \frac{a \sin \eta}{\cosh \mu - \cos \eta}
\]

with \(-\infty < \mu < \infty, 0 \leq \eta < \pi\) and \(0 < \phi < 2\pi\). The two poles \((\mu = \pm\infty)\) are at \(x = y = 0, z = \pm a\). The surface with \(\mu\) constant, say \(\mu_0\), is a sphere of radius \(a|\text{csch} \mu_0|\) with center at \(x = y = 0, z = a \text{coth} \mu_0\).

We limit ourselves to geometries in which the molecule is placed between the spheres, on the axis connecting their centers, with the molecular dipole perpendicular or parallel to this axis.

S3.2 Parallel configuration

Consider first the case where the molecule is on the axis connecting the spheres centers with the molecular dipole parallel to this axis (subsequently parallel configuration). The general solution to the Laplace equation in this coordinate system is:
\[\tilde{\Phi}(\mu, \eta, \phi) = \sqrt{\cosh \mu - \cos \eta} \]

\[\times \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left[A_n e^{-(n+1/2)\mu} + B_n e^{(n+1/2)\mu} \right] \]

\[\times \left[E_m \cos(m\phi) + F_m \sin(m\phi) \right] P_m^m(\cos \eta) \quad (S47) \]

As usual, we will represent the molecule by a point dipole \(\mathbf{D} \), located at \(\mathbf{r}_1(\mu_1, \eta_1, \phi_1) \) (we may as well set \(\phi_1 = 0 \)) The Green’s function \(1/|\mathbf{r} - \mathbf{r}_1| \) reads:

\[\frac{1}{|\mathbf{r} - \mathbf{r}_1|} = \frac{1}{a} \sqrt{(\cosh \mu - \cos \eta)(\cosh \mu_1 - \cos \eta_1)} \]

\[\times \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left[2 - \delta_{m0} \right] \frac{(n - m)!}{(n + m)!} \cos[m(\phi - \phi_1)] \]

\[\times P_n^m(\cos \eta_1) P_n^m(\cos \eta) e^{-(n+1/2)|\mu - \mu_1|} \quad (S48) \]

In this particular orientation, the molecular transition dipole is given by \(\mathbf{D} = D\hat{\mu} \).

This position choice corresponds to \(x_1 = y_1 = 0 \) in Cartesian coordinates and \(\eta_1 = \pi \) in bispherical coordinates. The resulting system has an azimuthal symmetry and we have the simpler expressions as follows:

\[\tilde{\Phi}(\mu, \eta, \phi) = \sqrt{\cosh \mu - \cos \eta} \]

\[\times \sum_{n=0}^{\infty} \left[A_n e^{-(n+1/2)\mu} + B_n e^{(n+1/2)\mu} \right] P_n(\cos \eta) \]
and

\begin{align*}
\frac{1}{|\mathbf{r} - \mathbf{r}_1|} &= \frac{1}{a} \sqrt{(\cosh \mu - \cos \eta)(\cosh \mu_1 - \cos \eta_1)} \\
&\times \sum_{n=0}^{\infty} e^{-(n+1/2)|\mu - \mu_1|} P_n(\cos \eta_1) P_n(\cos \eta)
\end{align*}

(S49)

Inside the sphere (on the “right”) \(\mu > \mu_R > 0 \)

\[\Phi^\text{in}_R(\mu, \eta) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=0}^{\infty} A_{R,n}^\text{in} e^{-(n+1/2)\mu} P_n(\cos \eta) \]

(S50)

and inside the sphere (on the “left”) \(\mu < \mu_L < 0 \)

\[\Phi^\text{in}_L(\mu, \eta) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=0}^{\infty} B_{L,n}^\text{in} e^{(n+1/2)\mu} P_n(\cos \eta) \]

(S51)

The potential outside both nanoparticles is:

\[\Phi^\text{out}(\mu, \eta) = \sqrt{\cosh \mu - \cos \eta} \]

\[\times \sum_{n=0}^{\infty} \left[C_n^\text{out} e^{-(n+1/2)\mu} + D_n^\text{out} e^{(n+1/2)\mu} \right] P_n(\cos \eta) + \frac{D}{4\pi \varepsilon_0 \varepsilon_s} \hat{\mu} \cdot \nabla_1 \frac{1}{|\mathbf{r} - \mathbf{r}_1|} \]

(S52)
\[\hat{\mu} \cdot \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_1|} = \frac{1}{h_\mu} \frac{\partial}{\partial \mu} \frac{1}{|\mathbf{r} - \mathbf{r}_1|} \]
\[= \frac{\sqrt{\cosh \mu_1 + 1}}{a^2} \sqrt{(\cosh \mu - \cos \eta)} \]
\[\times \sum_{n=0}^{\infty} P_n(\cos \eta)(-1)^n \]
\[\times \left[\frac{\sinh \mu_1}{2} + (-1)^{H(\mu - \mu_1)+1} \left(n + \frac{1}{2}\right) \right] \]
\[\times (\cosh \mu_1 + 1) e^{-\left(n+1/2\right)|\mu - \mu_1|} \]

Where \(H(\mu - \mu_1) \) is the Heaviside function.

Following are the boundary conditions we apply:

\[\Phi_{\text{in}}(\mu_R, \eta) = \Phi_{\text{out}}(\mu_R, \eta) \quad (S53) \]
\[\Phi_{\text{in}}(\mu_L, \eta) = \Phi_{\text{out}}(\mu_L, \eta) \quad (S54) \]
\[\varepsilon_R \frac{\partial \Phi_{\text{in}}(\mu, \eta)}{\partial \mu} \bigg|_{\mu = \mu_R} = \varepsilon_s \frac{\partial \Phi_{\text{out}}(\mu, \eta)}{\partial \mu} \bigg|_{\mu = \mu_R} \quad (S55) \]
\[\varepsilon_L \frac{\partial \Phi_{\text{in}}(\mu, \eta)}{\partial \mu} \bigg|_{\mu = \mu_L} = \varepsilon_s \frac{\partial \Phi_{\text{out}}(\mu, \eta)}{\partial \mu} \bigg|_{\mu = \mu_L} \quad (S56) \]

Eqs. S53-S56 when written explicitly, gives following infinite linear system of equations for the coefficients Eqs. S57 through S60.

Once we have the coefficients calculated numerically, it is straightforward to find the required component of \(\mathbf{G} \) and the decay rates.
\[A_{R,n}^\text{in} - C_n^\text{out} - D_n^\text{out} e^{(2n+1)\mu_R} = \mathbb{P}_n(\mu_1) \tag{S57} \]

\[B_{L,n}^\text{in} - C_n^\text{out} e^{-(2n+1)\mu_L} - D_n^\text{out} = \mathbb{Q}_n(\mu_1) \tag{S58} \]

\[
\begin{align*}
\frac{\varepsilon_R}{\varepsilon_s} \mathbb{P}_n(\mu_R) e^{-(n+1/2)\mu_R} A_{R,n}^\text{in} - \mathbb{R}_n(\mu_R) e^{-(n+1/2)\mu_R} C_n^\text{out} - \mathbb{S}_n(\mu_R) e^{(n+1/2)\mu_R} D_n^\text{out} \\
+ \frac{\varepsilon_R n}{\varepsilon_s} e^{-(n-1/2)\mu_R} A_{R,n-1}^\text{in} - \frac{n}{2} e^{-(n-1/2)\mu_R} C_{n-1}^\text{out} + \frac{n}{2} e^{(n-1/2)\mu_R} D_{n-1}^\text{out} \\
+ \frac{\varepsilon_R n + 1}{\varepsilon_s} e^{-(n+3/2)\mu_R} A_{R,n+1}^\text{in} - \frac{n + 1}{2} e^{-(n+3/2)\mu_R} C_{n+1}^\text{out} + \frac{n + 1}{2} e^{(n+3/2)\mu_R} D_{n+1}^\text{out} \\
= \mathbb{R}_n(\mu_R) \mathbb{P}_n(\mu_1) e^{-(n+1/2)\mu_R} + \frac{n}{2} \mathbb{P}_{n-1}(\mu_1) e^{-(n-1/2)\mu_R} + \frac{n}{2} \mathbb{P}_{n+1}(\mu_1) e^{-(n+3/2)\mu_R} \tag{S59} \end{align*}
\]

and

\[
\begin{align*}
- \frac{\varepsilon_L}{\varepsilon_s} \mathbb{S}_n(\mu_L) e^{(n+1/2)\mu_L} B_{L,n}^\text{in} + \mathbb{R}_n(\mu_L) e^{-(n+1/2)\mu_L} C_n^\text{out} + \mathbb{S}_n(\mu_L) e^{(n+1/2)\mu_L} D_n^\text{out} \\
+ \frac{\varepsilon_L n}{\varepsilon_s} e^{(n-1/2)\mu_L} B_{L,n-1}^\text{in} + \frac{n}{2} e^{-(n-1/2)\mu_L} C_{n-1}^\text{out} - \frac{n}{2} e^{(n-1/2)\mu_L} D_{n-1}^\text{out} \\
+ \frac{\varepsilon_L n + 1}{\varepsilon_s} e^{(n+3/2)\mu_L} B_{L,n+1}^\text{in} + \frac{n + 1}{2} e^{-(n+3/2)\mu_L} C_{n+1}^\text{out} - \frac{n + 1}{2} e^{(n+3/2)\mu_L} D_{n+1}^\text{out} \\
= -\mathbb{S}_n(\mu_L) \mathbb{Q}_n(\mu_1) e^{(n+1/2)\mu_L} + \frac{n}{2} \mathbb{Q}_{n-1}(\mu_1) e^{-(n-1/2)\mu_L} + \frac{n}{2} \mathbb{Q}_{n+1}(\mu_1) e^{(n+3/2)\mu_L} \tag{S60} \end{align*}
\]

where

\[
\mathbb{P}_n(\mu_1) = (-1)^n K \sqrt{\cosh \mu_1 + 1} \left[\sinh \frac{\mu_1}{2} + \left(n + \frac{1}{2} \right) (\cosh \mu_1 + 1) \right] e^{(n+1/2)\mu_1}
\]

\[
\mathbb{Q}_n(\mu_1) = (-1)^n K \sqrt{\cosh \mu_1 + 1} \left[\sinh \frac{\mu_1}{2} - \left(n + \frac{1}{2} \right) (\cosh \mu_1 + 1) \right] e^{-(n+1/2)\mu_1}
\]

\[
\mathbb{R}_n(\mu) = \left[\frac{\sinh \mu}{2} - \left(n + \frac{1}{2} \right) \cosh \mu \right]
\]

\[
\mathbb{S}_n(\mu) = \left[\frac{\sinh \mu}{2} + \left(n + \frac{1}{2} \right) \cosh \mu \right]
\]

with \(K = D/(4\pi\varepsilon_s\varepsilon_0a^2) \)
\[G_{\text{bisph}}^\parallel (r_1) = \frac{\sinh \mu_1 \sqrt{\cosh \mu_1 + 1}}{2aD} \times \sum_{n=0}^{\infty} (-1)^{n+1} \left[C_n^{\text{out}} e^{-(n+1/2)\mu_1} + D_n^{\text{out}} e^{(n+1/2)\mu_1} \right] \]
\[+ \frac{(\cosh \mu_1 + 1)^{3/2}}{aD} \sum_{n=0}^{\infty} (-1)^{n+1} \left(n + \frac{1}{2} \right) \times \left[-C_n^{\text{out}} e^{-(n+1/2)\mu_1} + D_n^{\text{out}} e^{(n+1/2)\mu_1} \right] \]

In addition, we evaluate the non-radiative and radiative decay rates as shown in following subsections.

S3.2.1 The nonradiative decay rate

The volume element in the bispherical coordinate system is given by:

\[dV = \frac{a^3 \sin \eta}{(\cosh \mu - \cos \eta)^3} d\mu d\eta d\phi \]

\[\Gamma_{\text{NR}} \sim \int_{V_L+V_R} d\mathbf{r} |\mathbf{E}|^2 \]
\[= \int_{S_L+S_R} \Phi^* \nabla \Phi \cdot d\mathbf{S} \]

\[d\mathbf{S} = \frac{a^2 \sin \eta}{(\cosh \mu - \cos \eta)^2} d\eta d\phi \hat{\mu} \]
\[\oint_{S_R} \Phi_R^{in} \nabla \Phi_R^{in} \cdot dS = -\pi a \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \sinh R \mu R A_{R,n}^{in} A_{R,n'}^{in} \times e^{-(n+n'+1)\mu R} \int_{-1}^{1} \frac{P_n(x)P_{n'}(x)}{(cosh R - x)} dx \]
\[+ 2\pi a \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \left(n' + \frac{1}{2} \right) A_{R,n}^{in} A_{R,n'}^{in} \times e^{-(n+n'+1)\mu R} \int_{-1}^{1} P_n(x)P_{n'}(x) dx \]

(S61)

where \(x = \cos \eta \).

The second integral in Eq. S61 is evaluated from simple orthonormality property of Legendre polynomials:

\[\int_{-1}^{1} P_n(x)P_{n'}(x) dx = \frac{2}{2n+1} \delta_{nn'} \]

but the first integral can be obtained from a corollary of Neumann’s formula for the Legendre Functions^5:

\[\frac{1}{2} \int_{-1}^{1} \frac{P_n(x)P_{n'}(x)}{z - x} dx = P_{n'}(z)Q_n(z), \quad n' \leq n \]

where \(|z| > 1\) (\(\cosh \mu \geq 1 \)).

So,
\[
\int_{SR} \Phi^*_R \nabla \Phi^*_{in} \cdot dS
\]

\[
= -\pi a \sum_{n=0}^{\infty} \sum_{n'=0}^{n} \sinh \mu_R A^*_{R,n} A^*_{R,n'} \times e^{-(n+n'+1)\mu_R} \int_{-1}^{1} \frac{P_n(x)P_{n'}(x)}{(\cosh \mu_R - x)} \, dx
\]

\[
= -\pi a \sum_{n=0}^{\infty} \sum_{n'=n+1}^{\infty} \sinh \mu_R A^*_{R,n} A^*_{R,n'} \times e^{-(n+n'+1)\mu_R} \int_{-1}^{1} \frac{P_n(x)P_{n'}(x)}{(\cosh \mu_R - x)} \, dx
\]

\[
+ 2\pi a \sum_{n=0}^{\infty} |A^*_{R,n}|^2 e^{-(2n+1)\mu_R}
\]

\[
= -2\pi a \sum_{n=0}^{\infty} \sum_{n'=0}^{n} \sinh \mu_R A^*_{R,n} A^*_{R,n'} \times e^{-(n+n'+1)\mu_R} P_{n'}(\cosh \mu_R)Q_n(\cosh \mu_R)
\]

\[
- 2\pi a \sum_{n=0}^{\infty} \sum_{n'=n+1}^{\infty} \sinh \mu_R A^*_{R,n} A^*_{R,n'} \times e^{-(n+n'+1)\mu_R} P_n(\cosh \mu_R)Q_{n'}(\cosh \mu_R)
\]

\[
+ 2\pi a \sum_{n=0}^{\infty} |A^*_{R,n}|^2 e^{-(2n+1)\mu_R} \tag{S62}
\]

For \(\mu_L \),
\[
\int_{S_L} \Phi_L^{in^*} \nabla \Phi_L^{in} \cdot dS
\]
\[
= \pi a \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \sinh \mu_L B_{L,n}^{in^*} B_{L,n'}^{in}
\times e^{(n+n'+1)\mu_L} \int_{-1}^{1} \frac{P_n(x) P_{n'}(x)}{(\cosh \mu_L - x)} dx
+ 2\pi a \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \left(n' + \frac{1}{2} \right) B_{L,n}^{in^*} B_{L,n'}^{in}
\times e^{(n+n'+1)\mu_L} \int_{-1}^{1} P_n(x) P_{n'}(x) dx
\]
\[
= 2\pi a \sum_{n=0}^{\infty} \sum_{n'=0}^{n} \sinh \mu_L B_{L,n}^{in^*} B_{L,n'}^{in}
\times e^{(n+n'+1)\mu_L} P_{n'} (\cosh \mu_L) Q_n(\cosh \mu_L)
+ 2\pi a \sum_{n=0}^{\infty} \sum_{n'=n+1}^{\infty} \sinh \mu_L B_{L,n}^{in^*} B_{L,n'}^{in}
\times e^{(n+n'+1)\mu_L} P_n (\cosh \mu_L) Q_{n'} (\cosh \mu_L)
+ 2\pi a \sum_{n=0}^{\infty} \left| B_{L,n}^{in} \right|^2 e^{(2n+1)\mu_L}
\] (S63)

S3.2.2 The radiative decay rate

The total dipole moment of the composite system is given by \(D_{\text{tot}}(\omega) = D(\omega) + D_{\text{ns}}(\omega) \)
where \(D_{\text{ns}}(\omega) \) is the dipole induced on the nanostructure given by the integral:

\[
D_{\text{ns}}(\omega) = (\varepsilon_{\text{ns}}(\omega) - \varepsilon_s) \varepsilon_0 \int_{V_{\text{ns}}} E(r, \omega) d\mathbf{r}
\] (S64)
\[
\int_{V_{nu}} E(r, \omega) dr = - \oint_{S_L} \Phi_{in}^L (r, \omega) dS - \oint_{S_R} \Phi_{in}^R (r, \omega) dS \quad (S65)
\]

For bispherical coordinate, the unit vector \(\hat{\mu} \) is given by:

\[
\hat{\mu} = \left[-\hat{i} \sinh \mu \sin \eta \cos \phi - \hat{j} \sinh \mu \sin \eta \sin \phi \right]
+ \hat{k} \left\{ \cosh \mu - \frac{\sinh^2 \mu}{(\cosh \mu - \cos \eta)} \right\} \quad (S66)
\]

where \(\hat{i}, \hat{j}, \hat{k} \) are unit vectors in Cartesian coordinates.

For this particular configuration, the integral corresponding to the sphere \(\mu_R \) is:

\[
- \oint_{S_R} \Phi_{in}^R (r, \omega) dS = \hat{k} 2\pi a^2 \sum_{n=0}^{\infty} A_{R,n}^i e^{-(n+1/2)\mu_R}
\times \int_0^\pi \left\{ \cosh \mu_R - \frac{\sinh^2 \mu}{(\cosh \mu_R - \cos \eta)} \right\}
\times \frac{P_n(x) \sin \eta}{(\cosh \mu_R - \cos \eta)^{3/2}} d\eta
\]

For the sphere \(\mu_L \)
\[
\int_{S_L} \Phi^\text{in}_L(r, \omega) dS = -\hat{k} 2\pi a^2 \sum_{n=0}^{\infty} B^\text{in}_{L,n} e^{(n+1/2)\mu_L} \\
\times \int_0^\pi \left\{ \cosh \mu_L - \frac{\sinh^2 \mu_L}{\cosh \mu_L - \cos \eta} \right\} \\
\times \frac{P_n(x) \sin \eta}{(\cosh \mu_L - \cos \eta)^{3/2}} dx
\]

These integrals are obtained numerically.

S3.3 Perpendicular configuration

When the molecule lies on the line connecting centers of the two nanoparticles orienting perpendicular to this line, molecular transition dipole is given by \(D = D\hat{\eta} \). This choice of position also corresponds to \(x_1 = y_1 = 0 \) in Cartesian coordinates and \(\eta_1 = \pi \) in bispherical coordinates. The resulting composite system does not have the azimuthal symmetry anymore.

\[
\frac{1}{|r - r_1|} = \frac{1}{a} \sqrt{(\cosh \mu - \cos \eta)(\cosh \mu_1 - \cos \eta_1)} \\
\times \sum_{n=0}^{\infty} \sum_{m=0}^{n} (2 - \delta_{m0}) \frac{(n - m)!}{(n + m)!} \cos[m(\phi - \phi_1)] \\
\times P^m_n(\cos \eta_1) P^m_n(\cos \eta) e^{-(n+1/2)\mu - \mu_1}
\]

We have:
Because \(\sin \eta_1 = 0 \) and in the limit \(\eta_1 \rightarrow \pi \), \(\sin \eta_1 P_n^{m'}(\cos \eta_1) \) is only nonzero for \(m = 1 \) with the value \(\frac{(-1)^n n (n+1)}{2} \). From this one finds:

\[
\Phi^{\text{out}}(\mu, \eta, \phi) = \sqrt{\cosh \mu - \cos \eta} \\
\times \sum_{n=1}^{\infty} \left[C_n e^{-(n+1/2)\mu} + D_n e^{(n+1/2)\mu} + (-1)^{n+1} K (\cosh \mu_1 + 1)^{3/2} e^{-(n+1/2)|\mu-\mu_1|} \right] \\
\times \cos(\phi - \phi_1) P_n^1(\cos \eta)
\]

(S67)

where \(K = D/(4\pi \varepsilon_\varepsilon_0 a^2) \).

The potential inside the spheres must be finite. This implies that for the sphere (on the “right”) \(\mu > \mu_R > 0 \)
\[\Phi_{\text{in}}^R(\mu, \eta, \phi) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=1}^{\infty} A_{\text{in},n} R e^{-(n+1/2)\mu} \times P_n^1(\cos \eta) \cos(\phi - \phi_1) \] (S68)

and for the sphere (on the “left”) \(\mu < \mu_L < 0 \)

\[\Phi_{\text{in}}^L(\mu, \eta, \phi) = \sqrt{\cosh \mu - \cos \eta} \sum_{n=1}^{\infty} B_{\text{in},n} L e^{(n+1/2)\mu} \times P_n^1(\cos \eta) \cos(\phi - \phi_1) \] (S69)

From same boundary conditions as with the parallel orientation of the dipole with the internuclear axis (Eqs. S53-S56), we obtain the following infinite system of linear equations (Eqs. S70-S73) and solve this system numerically by truncating to find the the coefficients.

From the calculated coefficients, the required component of \(\mathbf{G} \) is obtained as

\[G_{\text{bisph}}^\perp(r_1) = \left(\frac{\cosh \mu_1 + 1}{aD} \right)^{3/2} \times \sum_{n=1}^{\infty} (-1)^n \left[C_n^\text{out} e^{-(n+1/2)\mu_1} + D_n^\text{out} e^{(n+1/2)\mu_1} \right] \times \sin \eta P_n^{1'}(\cos \eta) \]

using the limit \(\lim_{x \to -1^+} (1 - x)^{1/2} P_n^{1'}(x) = (-1)^n n(n + 1)/2 \).
\[A_{R,n}^{\text{in}} - C_n^{\text{out}} - D_n^{\text{out}} e^{(2n+1)\mu_R} = T_n(\mu_1)e^{(n+1/2)\mu_1} \] \tag{S70}

\[B_{R,n}^{\text{in}} - C_n^{\text{out}} e^{-(2n+1)\mu_L} - D_n^{\text{out}} = T_n(\mu_1)e^{-(n+1/2)\mu_1} \] \tag{S71}

\[\frac{\varepsilon_R}{\varepsilon_s} R_n(\mu_R)e^{-(n+1/2)\mu_R} A_{R,n}^{\text{in}} - R_n(\mu_R)e^{-(n+1/2)\mu_R} C_n^{\text{out}} - S_n(\mu_R)e^{(n+1/2)\mu_R} D_n^{\text{out}}
+ \frac{\varepsilon_R n - 1}{2} e^{-(n+1/2)\mu_R} A_{R,n-1}^{\text{in}} - \frac{n - 1}{2} e^{-(n+1/2)\mu_R} C_{n-1}^{\text{out}} + \frac{n - 1}{2} e^{(n+1/2)\mu_R} D_{n-1}^{\text{out}}
+ \frac{\varepsilon_R n + 2}{2} e^{-(n+3/2)\mu_R} A_{R,n+1}^{\text{in}} - \frac{n + 2}{2} e^{-(n+3/2)\mu_R} C_{n+1}^{\text{out}} + \frac{n + 2}{2} e^{(n+3/2)\mu_R} D_{n+1}^{\text{out}}
= R_n(\mu_R)T_n(\mu_1)e^{-(n+1/2)(\mu_R-\mu_1)} + \frac{n - 1}{2} T_{n-1}(\mu_1)e^{-(n+1/2)(\mu_R-\mu_1)}
+ \frac{n + 2}{2} T_{n+1}(\mu_1)e^{-(n+3/2)(\mu_R-\mu_1)} \] \tag{S72}

and

\[\frac{\varepsilon_L}{\varepsilon_s} S_n(\mu_L)e^{(n+1/2)\mu_L} B_{L,n}^{\text{in}} + R_n(\mu_L)e^{-(n+1/2)\mu_L} C_n^{\text{out}} + S_n(\mu_L)e^{(n+1/2)\mu_L} D_n^{\text{out}}
+ \frac{\varepsilon_L n - 1}{2} e^{(n+1/2)\mu_L} B_{L,n-1}^{\text{in}} + \frac{n - 1}{2} e^{-(n+1/2)\mu_L} C_{n-1}^{\text{out}} + \frac{n - 1}{2} e^{(n+1/2)\mu_L} D_{n-1}^{\text{out}}
+ \frac{\varepsilon_L n + 2}{2} e^{(n+3/2)\mu_L} B_{L,n+1}^{\text{in}} + \frac{n + 2}{2} e^{-(n+3/2)\mu_L} C_{n+1}^{\text{out}} + \frac{n + 2}{2} e^{(n+3/2)\mu_L} D_{n+1}^{\text{out}}
= -S_n(\mu_L)T_n(\mu_1)e^{(n+1/2)(\mu_L-\mu_1)} + \frac{n - 1}{2} T_{n-1}(\mu_1)e^{(n+1/2)(\mu_L-\mu_1)}
+ \frac{n + 2}{2} T_{n+1}(\mu_1)e^{(n+3/2)(\mu_L-\mu_1)} \] \tag{S73}

where

\[T_n(\mu_1) = (-1)^{n+1}K(\cosh \mu_1 + 1)^{3/2} \]

\[R_n(\mu) = \left[\frac{\sinh \mu}{2} - \left(n + \frac{1}{2} \right) \cosh \mu \right] \]

\[S_n(\mu) = \left[\frac{\sinh \mu}{2} + \left(n + \frac{1}{2} \right) \cosh \mu \right] \]
S3.3.1 The nonradiative decay rate

\[\Phi_{\text{in}} R^* \nabla \Phi_{\text{in}} R \cdot dS \]

\[= a \sum_{n=1}^{\infty} \sum_{n'=1}^{\infty} A_{R,n}^{\text{in}^*} A_{R,n'}^{\text{in}} e^{-(n'+n+1)\mu} \]

\[\times \left[\frac{\sinh \mu}{2(\cosh \mu - \cos \eta)} - \left(n' + \frac{1}{2} \right) \right] \]

\[\times \sin \eta P_n^1(\cos \eta) P_{n'}^1(\cos \eta) \cos^2(\phi - \phi_1) d\eta d\phi \]

\[
\oint_{S_R} \Phi_{\text{in}} R^* \nabla \Phi_{\text{in}} R \cdot dS
\]

\[= -\pi a \sum_{n=1}^{\infty} \sum_{n'=1}^{\infty} \sinh \mu_R A_{R,n}^{\text{in}^*} A_{R,n'}^{\text{in}} \]

\[\times e^{-(n+n'+1)\mu_R} \int_{-1}^{1} \frac{P_n^1(x)P_{n'}^1(x)}{(\cosh \mu_R - x)} dx \]

\[+ \pi a \sum_{n=1}^{\infty} \sum_{n'=1}^{\infty} \left(n' + \frac{1}{2} \right) A_{R,n}^{\text{in}^*} A_{R,n'}^{\text{in}} \]

\[\times e^{-(n+n'+1)\mu_R} \int_{-1}^{1} P_n^1(x)P_{n'}^1(x) dx \]

where \(x = \cos \eta \).

The second integral is evaluated from simple orthonormality property of associated Legendre polynomials:

\[
\int_{-1}^{1} P_n^1(x)P_{n'}^1(x) dx = \frac{2n(n + 1)}{2n + 1} \delta_{nn'}
\]

The first integral is obtained from a corollary of Neumann’s formula for the Legendre Functions\(^5\):

\[-\frac{1}{2} \int_{-1}^{1} \frac{P_n^1(x)P_{n'}^1(x)}{z - x} dx = P_{n'}^1(z)Q_n^1(z), \quad n' \leq n\]
where $|z| > 1$ (cosh $\mu \geq 1$).

So,

$$
\oint_{S_R} \Phi_R^{\text{in}} \nabla \Phi_R^{\text{in}} \cdot dS
\quad = \quad -\frac{\pi a}{2} \sum_{n=1}^{\infty} \sum_{n'=1}^{n} \sinh(\mu_R A_{R,n}' A_{R,n}^{\text{in}})
\times e^{-(n+n'+1)\mu_R} \int_{-1}^{1} \frac{P_n^1(x) P_{n'}^1(x)}{(\cosh \mu_R - x)} dx
\quad - \frac{\pi a}{2} \sum_{n=1}^{\infty} \sum_{n'=n+1}^{\infty} \sinh(\mu_R A_{R,n}' A_{R,n}^{\text{in}})
\times e^{-(n+n'+1)\mu_R} \int_{-1}^{1} \frac{P_n^1(x) P_{n'}^1(x)}{(\cosh \mu_R - x)} dx
+ \pi a \sum_{n=1}^{\infty} \left| A_{R,n}^{\text{in}} \right|^2 \frac{n(n+1)e^{-(2n+1)\mu_R}}{n(n+1)}
$$

$$
= \pi a \sum_{n=1}^{\infty} \sum_{n'=1}^{n} \sinh(\mu_R A_{R,n}' A_{R,n}^{\text{in}})
\times e^{-(n+n'+1)\mu_R} P_n^1(\cosh \mu_R) Q_{n'}^1(\cosh \mu_R)
+ \pi a \sum_{n=1}^{\infty} \sum_{n'=n+1}^{\infty} \sinh(\mu_R A_{R,n}' A_{R,n}^{\text{in}})
\times e^{-(n+n'+1)\mu_R} P_n^1(\cosh \mu_R) Q_{n'}^1(\cosh \mu_R)
+ \pi a \sum_{n=1}^{\infty} \left| A_{R,n}^{\text{in}} \right|^2 \frac{n(n+1)e^{-(2n+1)\mu_R}}{n(n+1)}
$$

(S74)

For μ_L,

S35
\[
\int_{S_L} \Phi^\text{in}_L \nabla \Phi^\text{in}_L \cdot d\vec{S}
\]
\[
= \frac{\pi a}{2} \sum_{n=0}^{\infty} \sum_{n'=1}^{\infty} \sinh \mu_L B^\text{in}_{L,n} B^\text{in}_{L,n'}
\times e^{(n+n'+1)\mu_L} \int_{-1}^{1} \frac{P^1_n(x) P^1_{n'}(x)}{(\cosh \mu_L - x)} dx
\]
\[
+ \pi a \sum_{n=1}^{\infty} \sum_{n'=1}^{\infty} \left(n' + \frac{1}{2} \right) B^\text{in}_{L,n} B^\text{in}_{L,n'}
\times e^{(n+n'+1)\mu_L} \int_{-1}^{1} P^1_n(x) P^1_{n'}(x) dx
\]
\[
= -\pi a \sum_{n=1}^{\infty} \sum_{n'=1}^{\infty} \sinh \mu_L B^\text{in}_{L,n} B^\text{in}_{L,n'}
\times e^{(n+n'+1)\mu_L} P^1_{n'}(\cosh \mu_L) Q^1_n(\cosh \mu_L)
\]
\[
- \pi a \sum_{n=1}^{\infty} \sum_{n'=n+1}^{\infty} \sinh \mu_L B^\text{in}_{L,n} B^\text{in}_{L,n'}
\times e^{(n+n'+1)\mu_L} P^1_n(\cosh \mu_L) Q^1_{n'}(\cosh \mu_L)
\]
\[
+ \pi a \sum_{n=1}^{\infty} |B^\text{in}_{L,n}|^2 n(n+1) e^{(2n+1)\mu_L}
\] (S75)

S3.3.2 The radiative decay rate

As evaluated in Subsection S3.2.2, the total dipole moment of the composite system, given by \(D^\text{tot}(\omega)\), is obtained from Eq. S64. For this particular configuration, the integral corre-
sponding to the sphere μ_R is:

$$- \int_{S_R} \Phi_{R}^{in}(\mathbf{r}, \omega) dS = \hat{i} \pi a^2 \sinh \mu_R \sum_{n=1}^{\infty} \frac{A_{R,n}^i}{e^{(n+1/2)\mu_R}} \times \int_{0}^{\pi} \frac{P_{n}^{1}(\cos \eta) \sin^2 \eta}{(\cosh \mu_R - \cos \eta)^{5/2}} d\eta$$

For the sphere μ_L

$$- \int_{S_L} \Phi_{L}^{in}(\mathbf{r}, \omega) dS = - \hat{i} \pi a^2 \sinh \mu_L \sum_{n=1}^{\infty} \frac{B_{L,n}^i}{e^{(n+1/2)\mu_L}} \times \int_{0}^{\pi} \frac{P_{n}^{1}(\cos \eta) \sin^2 \eta}{(\cosh \mu_L - \cos \eta)^{5/2}} d\eta$$

These integrals are obtained numerically.

S4 Results for some additional configurations

S4.1 A molecule near a prolate spheroidal nanoparticle on the major axis with the dipole perpendicular to the nanoparticle surface

For the perpendicular orientation of the transition dipole near gold and silver spheroidal nanoparticles as shown in main text, the variations of nonratiative and radiative relaxation rates as functions of molecule to nanoparticle surface distance are shown here.
Figure S1: (a) Radiative (Γ_R) and (b) nonradiative (Γ_{NR}) relaxation rates as functions of the molecule to spheroidal gold nanoparticle surface distance as aspect ratio of the spheroids p/q varies from 1 to 6 keeping the particle volume constant (and all have the volume of a sphere of radius 10 nm). The molecule is perpendicular to the surface of the nanospheroid on long axis. For each aspect ratio we take the molecular frequency equal to the frequency of the respective longitudinal dipolar plasmon (excited along the particle long axis).

Figure S2: (a) Radiative (Γ_R) and (b) nonradiative (Γ_{NR}) relaxation rates as functions of the molecule to spheroidal silver nanoparticle surface distance as aspect ratio of the spheroids p/q varies from 1 to 6 keeping the particle volume constant (and all have the volume of a sphere of radius 10 nm). The molecule is perpendicular to the surface of the nanospheroid on long axis. For each aspect ratio we take the molecular frequency equal to the frequency of the respective longitudinal dipolar plasmon (excited along the particle long axis).
S4.2 A molecule near a prolate spheroidal nanoparticle on the major axis with the dipole parallel to the nanoparticle surface

In addition to the perpendicular orientation of the transition dipole near gold and silver spheroidal nanoparticles discussed in the main text, here we show the results for the parallel orientation. The parameter M, the total relaxation rate Γ normalized by the radiative relaxation rate of a free molecule and the strong coupling parameter $2|U|/\hbar\Gamma$ are plotted against the distance of the molecule from the nanoparticle surface. Four different aspect ratios ($= 1, 2, 4, 6$) of the nanospheroid are considered. Their volumes are kept constant to that of a 10 nm nanosphere. For each aspect ratio, molecular frequency is fixed to be the resonance frequency of the longitudinal plasmon of the respective geometry. As usual, the transition dipole is taken to be 10 D. For each aspect ratio we take the molecular frequency equal to the frequency of the respective transverse dipolar plasmon (excited along the particle short axis).

Figure S3: (a) The CBR parameter $2|U|/\hbar\Gamma$, (b) magnitude of coupling $-U/\hbar$, and (c) total relaxation rate Γ as functions of the molecule to spheroidal gold nanoparticle surface distance when a molecule is oriented parallel to the surface of gold nanospheroid on the long axis as the aspect ratio of the spheroids p/q varies from 1 to 6. Molecular frequency and the corresponding free molecule radiative decay rate are chosen as: 2.62 eV and 7.38×10^7 s$^{-1}$ for $p/q = 1$, 2.68 eV and 7.96×10^7 s$^{-1}$ for $p/q = 2$, 2.72 eV and 8.24×10^7 s$^{-1}$ for $p/q = 4$ and 2.72 eV and 8.32×10^7 s$^{-1}$ for $p/q = 6$.

S39
Figure S4: (a) The CBR parameter (b) magnitude of coupling ($-U/\hbar$), and (c) total relaxation rate \(\Gamma \) as functions of the molecule to spheroidal silver nanoparticle surface distance when a molecule is oriented parallel to the surface of silver nanospheroid on the long axis as the aspect ratio of the spheroids \(p/q \) varies from 1 to 6. Molecular frequency and the corresponding free molecule radiative decay rate are chosen as: 3.37 eV and \(1.57 \times 10^8 \) s\(^{-1} \) for \(p/q = 1 \), 3.52 eV and \(1.79 \times 10^8 \) s\(^{-1} \) for \(p/q = 2 \), 3.59 eV and \(1.90 \times 10^8 \) s\(^{-1} \) for \(p/q = 4 \) and 3.61 eV and \(1.94 \times 10^8 \) s\(^{-1} \) for \(p/q = 6 \).

S4.3 Effective volume

Figure S5: Effective volume \(V_{\text{eff}} \) of the resulting plasmonic cavity for a molecular dipole near (a) spherical nanoparticles of 10 nm radius and (b) spheroidal nanoparticles of aspect ratio 2 with same volume as (a), plotted against molecule to surface distance. In both cases, molecular dipole is in perpendicular orientation. \(V_{\text{eff}} \) is normalized by the nanoparticle volume \((V_0) \).
Figure S6: Same as Figure S5, but now V_{eff} is normalized by the cube of the respective molecule to surface distance (d^3).

Figure S7: Effective volume V_{eff} of the plasmonic cavity when a molecular dipole is placed in a 2 nm gap of a nanoparticle dimer (each of 10 nm radius) of silver and gold in both orientations, parallel and perpendicular, relative to the intersphere axis plotted against the position of the molecule relative to the center of the gap. Here V_{eff} is normalized by the cube of the gap size.
S4.4 Nanoparticle dimer in uniform electric field

![Graph showing normalized total dipole moment as functions of driving frequency for gold and silver nanoparticle dimers.](image)

Figure S8: Normalized total dipole moment of the system as functions of driving frequency for (a) gold and (b) silver nanoparticle dimer of 10 nm radius and 2 nm gap size in a uniform electric field. Both polarization of incident field—parallel and perpendicular relative to the intersphere axis—are shown.

S4.5 Absorption lineshape from self-consistent method for a molecule near a silver sphere

Here we show the absorption lineshape calculated from Eq. (??) for a dipole emitter near a spherical silver nanosphere (radius 10 nm), oriented perpendicular to the sphere surface and parallel to the incident field. The transition frequency ω_0 is taken to be 3.37 eV, in resonance with the dipolar plasmon frequency of the silver nanosphere. As before, the relaxation rate Γ^0 of the free molecule is taken to be twice the radiative relaxation rate, corresponding to an emission yield of 0.5 for the free molecule.
Figure S9: The absorption lineshape, $A(\omega)$, as a function of the driving frequency ω for a molecule near a silver nanosphere of radius 10 nm, perpendicular to the sphere surface. The relaxation rate of the free molecule is taken to be twice the corresponding radiative relaxation rate (the latter are 6.29×10^6 s$^{-1}$, 2.52×10^7 s$^{-1}$, 5.66×10^7 s$^{-1}$, 1.01×10^8 s$^{-1}$ and 1.57×10^8 s$^{-1}$ for $D_{12} = 2, 4, 6, 8, 10$ D respectively). (a) An emitter with varying dipole moment placed at a distance 0.5 nm from the sphere surface. The inset shows a closeup of the small higher energy peak structure. (b) An emitter with a transition dipole moment 10 D is placed at different distances from the sphere surface. The inset displays the small higher energy peak structures (not shown in the main figure).

S4.6 Plasmon frequency of a spheroidal metal nanoparticle as altered by the shape

The optical response of a small spheroid particles is characterized by plasmon oscillations along the long and short axes. Following Ref. (6) we refer to them as longitudinal and transversal, respectively. The dipolar plasmon resonance frequencies are shown as functions of the spheroidal aspect ratio in Figure S10.
Figure S10: Dipolar plasmon resonance frequencies ω_{plasmon} of a gold nanoparticle with prolate spheroidal geometry as a function of aspect ratio p/q for longitudinal (green circles) and transverse (blue diamonds) plasmon resonance.

References

(1) Gersten, J.; Nitzan, A. Spectroscopic properties of molecules interacting with small dielectric particles. *The Journal of Chemical Physics* **1981**, *75*, 1139–1152.

(2) Aravind, P. K.; Nitzan, A.; Metiu, H. The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. *Surface Science* **1981**, *110*, 189–204.

(3) Jackson, J. D. *Classical electrodynamics; 3rd ed.*; Wiley: New York, NY, 1999.

(4) Morse, Philip McCord and Feshbach, H. *Methods of theoretical physics, Part II*; Technology Press, 1946.

(5) Macrobert, T. M. On neumann’s formula for the legendre functions. *Proceedings of the Glasgow Mathematical Association* **1952**, *1*, 10–12.

(6) Link, S.; El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. *International Reviews*
in Physical Chemistry 2000, 19, 409–453, Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/01442350050034180.