Colaterais portossistêmicas adquiridas: aspectos anatômicos e imaginológicos*

Acquired portosystemic collaterals: anatomy and imaging

Melo-Leite AF, Mota Jr. A, Chagas-Neto FA, Teixeira SR, Elias Junior J, Muglia VF. Colaterais portossistêmicas adquiridas: aspectos anatômicos e imaginológicos. Radiol Bras. 2016 Jul/Ago;49(4):251–256.

Resumo
As vias colaterais ou shunts portossistêmicos são trajetos vasculares calibrosos de comunicação patológica entre a circulação esplâncnica e a sistêmica. Suas causas são multifatoriais, compartilhando um mecanismo de elevação da pressão venosa portal, que promove o desvio do fluxo sanguíneo do trato gastrintestinal para a circulação sistêmica. Múltiplas vias de colaterais estão descritas na literatura, sendo congênitas ou adquiridas. Ambas as causas, congênitas e adquiridas, resultam na redistribuição de volume vascular do trato gastrintestinal de veias sistêmicas e um aumento concomitante na pressão venosa portal. Os objetivos deste ensaio são: 1) discutir as características anatômicas e de imagem dos shunts portossistêmicos; 2) fornecer uma revisão robusta (com ilustrações e desenhos esquemáticos) para detectar e reconhecer os shunts portossistêmicos adquiridos. A importância do seu reconhecimento recai sobre o fato que, em alguns casos, eles são os únicos sinais que predizem a presença de hipertensão portal, sendo a avaliação do radiologista de grande valia na escolha de tratamentos endovasculares e na detecção de suas complicações.

Unitermos: Shunts portossistêmicos; Vias colaterais; Hipertensão portal.

Abstract
Portosystemic shunts are enlarged vessels that form collateral pathological pathways between the splanchnic circulation and the systemic circulation. Although their causes are multifactorial, portosystemic shunts all have one mechanism in common—increased portal venous pressure, which diverts the blood flow from the gastrointestinal tract to the systemic circulation. Congenital and acquired collateral pathways have both been described in the literature. The aim of this pictorial essay was to discuss the distinct anatomic and imaging features of portosystemic shunts, as well as to provide a robust method of differentiating between acquired portosystemic shunts and similar pathologies, through the use of illustrations and schematic drawings. Imaging of portosystemic shunts provides subclinical markers of increased portal venous pressure. Therefore, radiologists play a crucial role in the identification of portosystemic shunts. Early detection of portosystemic shunts can allow ample time to perform endovascular shunt operations, which can relieve portal hypertension and prevent acute or chronic complications in at-risk patient populations.

Keywords: Collateral circulation; Splanchnic circulation; Hypertension, portal/complications.

INTRODUÇÃO
A literatura radiológica brasileira vem, recentemente, ressaltando a importância dos exames de imagem no aprimoramento do diagnóstico das afecções do sistema hepato-biliar(1–6). O aperfeiçoamento dos métodos de imagem faz crescer a importância do reconhecimento dos shunts anômalos portossistêmicos, especialmente nas situações em que os sinais de hipertensão portal e suas complicações são primeiramente detectados pelo radiologista, antes mesmo da manifestação de sinais clínicos.

Colaterais, ou shunts portossistêmicos (SPSs), são comunicações anômalas entre o sistema portal e a circulação sistêmica, podendo ser congênitas ou adquiridas(7,8). Os shunts congênitos podem ser intra- ou extra-hepáticos, possuem classificação complexa e seu estudo vai além do escopo deste ensaio. Por ora, nos deteremos em descrever e exemplificar aspectos anatômicos e imaginológicos das principais vias de drenagem portossistêmicas adquiridas(9).

A hipertensão portal secundária a hepatopatia crônica (cirrose) é o fator mais associado a SPS. A obstrução portal pode ocorrer em sítios pós-sinusoidal, sinusoidal ou pré-sinusoidal, e a trombose da veia porta é a principal causa de hipertensão portal pré-hepática e pode estar associada a processos inflamatórios, coagulopatias, trauma e neoplasias(9).
Para uma completa compreensão fisiopatológica da re-distribuição hepatofugal do fluxo sanguíneo portal são necessários dados semiológicos e cronológicos, além de reconhecimento dos aspectos de imagem nas diversas modalidades de estudo.

ANATOMIA DO SISTEMA PORTA

O sistema venoso portal é composto por vascularização que drena o trato digestivo, o baço, o pâncreas e o sistema biliar. A veia porta repousa em uma fissura transversal entre os lobos quadradro e caudado, na face visceral do fígado. Comumente, é formada na região do colo do pâncreas pela união das veias mesentérica superior e esplênica (Figura 1).

O ligamento falciforme na face diafragmática e o ligamento redondo na face visceral constituem o remanescente fibroso da veia umbilical, que na fase fetal transportou sangue da placenta à porta hepatis. O ligamento venoso corresponde à via de drenagem de fluxo desviado da veia umbilical para a veia cava inferior por meio do ducto venoso. Na vida adulta, estes ligamentos são marcos anatômicos importantes. O ligamento falciforme separa o segmento medial (IV) dos laterais (II e II) do lobo hepático esquerdo na sua face superior. Na face visceral, o ligamento redondo marca o limite entre o lobo quadradro e o lobo hepático esquerdo, e o ligamento venoso, por sua situação posterior, demarca o lobo caudado e o lobo hepático esquerdo (11).

A veia esplênica recebe várias tributárias, incluindo ramos vasculares que drenam o pâncreas, veias gástricas curtas e a veia gastroepiploica esquerda. A veia mesentérica superior é responsável pela drenagem do cólon direito, delgado e pâncreas, e a veia mesentérica inferior é responsável pela drenagem do cólon esquerdo e do reto (10) (Figura 2). Fisiologicamente, a pressão no sistema portal é resultado do fluxo sanguíneo multiplicado pela resistência vascular (lei de Ohm). A partir do conhecimento anatômico e do sistema de pressão elevado, é possível predizer rotas alternativas e comunicantes que permitam a redistribuição pressórica do sistema. As colaterais gastroesofágicas, as varizes paraesofágicas, os shunts gastorrrenal e esplenorrrenal, bem como a recanalização da veia umbilical, são as vias mais comuns (12).

ESTUDO E DESCRIÇÃO DOS SHUNTS

A veia coronária (gástrica esquerda) é a colateral portossistêmica mais comumente detectada (12) (Figuras 3A e 4).
Ela drena as superfícies anterior e posterior do estômago e ascende pela pequena curvatura pelo hiato esofágico, onde recebe as veias esofagianas, continuando seu curso inferiormente e para a direita, terminando na veia porta. Quando acima de 6 mm, sugere hipertensão portal. A veia coronária tem dois ramos: o anterior, que origina as varizes esofagianas (Figura 4A), e o posterior, que origina as veias paraesofágicas \(^7\) (Figura 3B). Usualmente, elas não se comunicam.

A veia esplênica e a renal esquerda apresentam comunicação fisiológica entre si. Essa conexão pode ser mediada pela gástrica esquerda, gástricas posteriores, gástricas curtas ou outras tributárias da veia esplênica (Figuras 5 e 6). As colaterais têm um curso indeterminado, podendo ser perirrenais anteriores, posteriores ou transpor o espaço adrenal \(^7\).

A recanalização da veia umbilical pode ocorrer na conjuntura de hipertensão portal, percorrendo pelo ligamento...
Figura 5. A: Corte longitudinal de ultrassonografia com Doppler demonstrando a presença de vasos calibrosos e tortuosos (seta) entre o rim esquerdo e o baço. B: Ressonância magnética em ponderação T2 mostrando vasos calibrosos representados por estruturas serpentiformes tortuosas que exibem baixo sinal T2 e se localizam entre o baço e o rim esquerdo (seta). C: Ressonância magnética no plano coronal na ponderação T1 pós-contraste identificando o shunt (seta).

Figura 6. Shunt esplenorenal em um paciente hepatopata por vírus C (seta).

Figura 7. A: Corte longitudinal ultrassonográfico em modo B demonstrando a recanalização da veia paraumbilical preenchida parcialmente por conteúdo hipoecogênico no seu interior, configurando trombo parcial. B: Ressonância magnética no plano coronal e ponderação T2 demonstrando todo o trajeto da veia paraumbilical desde a sua saída pelo ligamento redondo até a cicatriz umbilical (setas).

Além destes, outros SPSs menos comuns podem ser encontrados, como as colaterais da parede da vesícula biliar (plexo de Sharpey)\(^{15}\), shunts da mesentérica superior para a veia renal direita, varizes mesentéricas e colaterais infra-diafragmáticas.
As varicosidades da parede da vesícula biliar correspondem à comunicação das veias císticas (sistema porta) com vasos da parede abdominal (circulação sistêmica)\(^\text{[16]}\). Geralmente são identificadas após trombose da veia porta com transformação cavernomatosa (Figura 8).

As anastomoses entre a veia mesentérica superior e veias pericapsulares renais são shunts raros, de fisiopatologia incerta, que drenam para a veia renal direita, veia cava inferior e circulação sistêmica. Podem ser identificadas nas várias modalidades de imagem pela presença de vasos dilatados e tortuosos junto à cápsula renal (Figura 9).

As varizes mesentéricas são colaterais também incomuns\(^\text{[16]}\) que comunicam o trato intestinal e/ou tributárias retroperitoneais superiores ou inferiores com a circulação sistêmica (veia gonadal, veia renal ou veia cava inferior) (Figura 10).

Figura 8. A: Desenho esquemático mostrando as veias císticas e pericolecísticas na parede da vesícula biliar (seta branca). B: Corte axial de tomografia do abdome com contraste mostrando as veias císticas pericolecísticas ao longo da parede da vesícula biliar (seta). Observar também, curiosamente (em A), os vasos ao longo da veia paraumbilical (seta preta), como demonstrado na Figura 7.

Figura 9. A: Ressonância magnética na ponderação T1 pós-contraste revelando shunt raro caracterizado pela presença de vasos dilatados e tortuosos junto à cápsula renal (seta). B: Ressonância magnética no plano coronal na ponderação em T2 demonstrando o shunt representado por vasos com baixo sinal (seta). C,D: Cortes longitudinal de ultrassonografia com Doppler e tomografia computadorizada com reformatação sagital mostrando os mesmos achados (setas).

Figura 10. Ressonância magnética na ponderação T2 (A) e T1 pós-contraste (B) identificando varizes mesentéricas tortuosas e dilatadas (setas), com provável drenagem para a veia gonadal, veia renal ou veia cava inferior.
No shunt infradiafragmático esquerdo o vaso se origina de um ramo periférico esquerdo da veia porta e se comunica com a veia frênica inferior na altura do ligamento triângular, drenando subsequentemente para a veia renal esquerda ou veia cava inferior[16]. Em oposição, à direita, ele se origina de um ramo periférico da veia porta medial e transcorre para a face diafragmática do fígado, fazendo anastomose com a torácica interna ou veias intercostais.

CONCLUSÃO

A hipertensão portal e os achados de imagem dos SPSs têm apresentação variável. O radiologista deve estar preparado para as diversas apresentações dos shunts, relatando de forma objetiva suas características, facilitando a investigação diagnóstica e a terapêutica.

REFERÊNCIAS

1. Francisco FAF, Araújo ALE, Oliveira Neto JA, et al. Hepatobiliary contrast agents: differential diagnosis of focal hepatic lesions, pitfalls and other indications. Radiol Bras. 2014;47:301–9.
2. Pedrassa BC, Rocha EL, Kierszenbaum ML, et al. Uncommon hepatic tumors: iconographic essay – Part 1. Radiol Bras. 2014;47:310–6.
3. Pedrassa BC, Rocha EL, Kierszenbaum ML, et al. Uncommon hepatic tumors: iconographic essay – Part 2. Radiol Bras. 2014;47:374–9.
4. Nascimento JHR, Soder RB, Epifanio M, et al. Accuracy of computer-aided ultrasound as compared with magnetic resonance imaging in the evaluation of nonalcoholic fatty liver disease in obese and eutrophic adolescents. Radiol Bras. 2015;48:225–32.
5. Szejnfeld D, Nunes TF, Fornazari VAV, et al. Transcatheter arterial embolization for unresectable symptomatic giant hepatic hemangiomas: single-center experience using a lipiodol-ethanol mixture. Radiol Bras. 2015;48:154–7.
6. Bormann RL, Rocha EL, Kierszenbaum ML, et al. The role of gadoteric acid as a paramagnetic contrast medium in the characterization and detection of focal liver lesions: a review. Radiol Bras. 2015;48:43–51.
7. Henseler KP, Pozniak MA, Lee FT Jr, et al. Three-dimensional CT angiography of spontaneous portosystemic shunts. Radiographics. 2001;21:691–704.
8. Stringer MD. The clinical anatomy of congenital portosystemic venous shunts. Clin Anat. 2008;21:147–57.
9. Sharma M, Rameshbabu CS. Collateral pathways in portal hypertension. J Clin Exp Hepatol. 2012;2:338–52.
10. Schmidt S, Dernartines N, Soler L, et al. Portal vein normal anatomy and variants: implication for liver surgery and portal vein embolization. Semin Intervent Radiol. 2008;25:86–91.
11. Couinaud C. Liver anatomy: portal (and suprahepatic) or biliary segmentation. Dig Surg. 1999;16:459–67.
12. Widrich WC, Srinivasan M, Semine MC, et al. Collateral pathways of the left gastric vein in portal hypertension. AJR Am J Roentgenol. 1984;142:375–82.
13. de Oliveira IR, Widman A, Fukushima JT, et al. Doppler ultrasonography evaluation of paraumbilical vein and portal hypertension. J Radiol. 2001;82:1627–31.
14. MacMathuna PM. Mechanisms and consequences of portal hypertension. Drugs. 1992;44 Suppl 2:1–13.
15. Charnsangavej C, Thornhill B, Chuang VP, et al. Gallbladder varices: a potential collateral pathway in portal hypertension and portal vein occlusion. Cardiovasc Intervent Radiol. 1984;7:247–50.
16. Wu Q, Shen L, Chu J, et al. Characterization of uncommon portosystemic collateral circulations in patients with hepatic cirrhosis. Oncol Lett. 2015;9:347–50.