Effective Dimensionality Reduction for Word Embeddings

Vikas Raunak
vyraun@gmail.com

Abstract

Word embeddings have become the basic building blocks for several natural language processing and information retrieval tasks. Recently, there has been an emphasis on further improving the pre-trained word vectors through post-processing algorithms. One such area of improvement is the dimensionality reduction of word embeddings. Reducing the size of word embeddings through dimensionality reduction can improve their utility in memory constrained devices. In this work, we devise an algorithm that effectively combines PCA based dimensionality reduction with a post-processing algorithm, to construct word embeddings of lower dimensions. Empirical evaluations on 12 standard word similarity benchmarks show that our algorithm reduces the embedding dimensionality by 50%, while achieving similar or (more often) better performance.

1 Introduction

Word embeddings are distributed and dense real-valued representations of words as low dimensional vectors, that geometrically capture the semantic “meaning” of a word, along with several linguistic regularities such as analogy relationships. Such embeddings (e.g. Glove (Pennington et al., 2014), word2vec Skip-Gram (Mikolov et al., 2013)) are learned from unlabeled text corpora and have found great use in several natural language processing and information retrieval tasks (Mu et al., 2017). Given their widespread utility, recently, there as been an emphasis on applying post-processing algorithms on the pre-trained word vectors to further improve their quality. For example, (Mrkšić et al., 2016) try to inject antonymy and synonymy constraints into vector representations, while (Faruqui et al., 2014) refine word vectors by using relational information from semantic lexicons such as WordNet. (Bolukbasi et al., 2016) propose algorithms to remove the biases (e.g. gender biases) present in word embeddings and (Nguyen et al., 2016) try to “de-noise” word embeddings by strengthening salient information and weakening noise. In particular, the post-processing algorithm in (Mu et al., 2017) considerably improves the embeddings’ performance by projecting the embeddings away from the most dominant directions.

Another issue related with word embeddings is their size (Ling et al., 2016). For example, loading an embedding matrix of 2.5M tokens takes up to 6 GB memory (for 300-dimensional vectors, on a 64-bit system). Such large memory requirements impose significant constraints on the practical use of word embeddings, especially on mobile devices where the available memory is often highly restricted. (Ling et al., 2016) try to ameliorate this situation by using limited precision representation during word embedding use and training while (Andrews, 2016) tries to compress word embeddings using different compression algorithms. Our approach differs from both these works as we directly try to reduce the dimensionality of word embeddings instead of using limited precision representation or compressing individual vector values. The next section explains our algorithm’s design and presents its evaluation results.

2 The Algorithm

In this section, we first explain the post-processing algorithm from (Mu et al., 2017) in subsection 2.1. Our algorithm, along with its motivations is explained in subsection 2.2. The experimental results are presented in subsection 2.3.
2.1 Post-Processing Word Embeddings

(Mu et al., 2017) present a simple post-processing algorithm that renders off-the-shelf word embeddings even stronger, as measured on a number of lexical-level and sentence-level tasks. The algorithm (1) is based on the geometric observations that the word embeddings (across all representations such as Glove, word2vec etc.) have a large mean vector and most of their energy (after subtracting the mean vector) is contained in a very low dimensional subspace. Since all embeddings share a common mean vector and have the same dominating directions, both of which strongly influence the representations in the same way, eliminating them renders the embeddings stronger.

Algorithm 1 The Post-Processing Algorithm, PPA(X, D)

Input: Word Embedding Matrix X, Threshold Parameter D.

1. Subtract the Mean:
 $$X = X - \text{mean}(X).$$

2. Compute the PCA Components:
 $$u_i = \text{PCA}(X), \text{where } i = 1, 2, \ldots, d.$$ Where d = Embedding dimensionality.

3. Eliminate Top Components: $\forall v \in X$:
 $$v = v - \sum_{i=1}^{D} (u_i^T \cdot v) u_i$$

Output: Post-Processed Word Embedding Matrix X.

The figure 1(a) demonstrates the impact of the post-processing algorithm (PPA, with $D=7$) as observed on Glove embeddings (300-dimensions). It compares the fraction of variance explained by the top 20 principal components of the original and post-processed word vectors respectively (the total sum of explained variances over the 300 principal components is equal to 1.0). In the post-processed word embeddings, none of the top principal components are disproportionately dominant in terms of explaining the data, which implies that the post-processed word vectors are not as influenced by the common dominant directions as the original embeddings. This makes the individual word vectors more “discriminative”, thereby, improving their quality, as validated on several benchmarks in (Mu et al., 2017).

2.2 Dimensionality Reduction

In this section we explain and present our algorithm that effectively incorporates the post-processing algorithm in the dimensionality reduction procedure. Our algorithm is based on three considerations. First, since the post-processing algorithm demonstrably leads to better word embeddings, it is appropriate that to construct a lower dimensional representation of word embeddings, the dimensionality reduction algorithm (PCA (Shlens, 2014)) be applied on the “purified” word embeddings.

For the second point, consider Figure 1(b). It compares the variance explained by the top 20 principal components for the embeddings constructed by first post-processing the Glove-300D embeddings according to Algorithm 1 (PPA) and then transforming the vectors to 150 dimensions using PCA (labelled as P+PCA); against a further post-processed version of the same embedding (the total sum of explained variances over the 150 principal components is equal to 1.0). We observe that even though PCA has been applied on the post-processed embeddings (which had their dominant directions eliminated), the variance in the resulting embeddings is still explained disproportionately by a few of the top principal components. The re-emergence of this geometric behaviour implies that further post-processing the lower-dimensional embeddings by projecting the
Table 1: Dataset Description (SN = Serial Number, WP = Number of Word Pairs) and Performance ($\rho \times 100$) of Various Algorithms on Glove-300D Embeddings.

SN	Dataset-Name	WP	Glove-300D	PCA-150D+P	PCA-150D	Algo-150D	P+PCA-150D
1	MTurk-771	771	65.01	63.86	52.47	64.58	**65.59**
2	WS-353-SIM	203	66.38	70.87	52.69	71.61	70.03
3	MTurk-287	287	63.32	**64.62**	56.56	63.01	63.38
4	VERB-143	144	30.51	40.14	28.52	**42.24**	39.04
5	WS-353-ALL	353	60.54	66.85	46.52	**67.41**	66.23
6	RW-Stanford	2034	41.18	40.79	27.46	42.21	**43.17**
7	MEN-TR-3K	3000	73.75	75.37	63.35	**75.80**	75.34
8	RG-65	65	**76.62**	74.27	71.71	75.71	73.62
9	MC-30	30	70.26	72.35	70.03	**74.80**	69.21
10	SIMLEX-999	999	**37.05**	33.81	27.21	35.57	36.71
11	WS-353-REL	252	57.26	60.50	41.82	**62.09**	62.02
12	YP-130	130	**56.13**	50.20	36.72	55.91	55.42

Word vectors away from the dominant directions will make the embeddings better. Finally, it is also evident that the extent to which the top principal components explain the data is not as great as in the case of the original 300 dimensional embeddings (Figure 1(a)). Hence, multiple levels of post-processing at different levels of dimensionality will yield diminishing returns. These considerations form the intuition behind our algorithm (2) for constructing lower-dimensional word embeddings, where we apply the post-processing algorithm twice, on either side of a PCA based dimensionality reduction of the word vectors.

Algorithm 2 The Dimensionality Reduction Algorithm

Input: Word Embedding Matrix X, New Dimension N, Threshold Parameter D.

1. Apply the Post-Processing Algorithm:

 $X = PPA(X, D)$.

2. Transform X Using PCA:

 $X = PCA(X)$.

3. Apply the Post-Processing Algorithm:

 $X = PPA(X, D)$.

Output: Word Embedding Matrix X of Reduced Dimension N.

end

2.3 Evaluation

2.3.1 Word Embeddings

The pre-trained word embeddings (for English only) used for evaluating our algorithms are: Glove embeddings\(^1\) of dimensions 300, 200 and 100, trained on Wikipedia 2014 and Gigaword 5 corpus (400K vocabulary) (Pennington et al., 2014) and fastText Skip-Gram embeddings\(^2\) of 300 dimensions trained on Wikipedia using using the Skip-Gram model described in (Bojanowski et al., 2017) (with 2.5M vocabulary).

2.3.2 Datasets

We use the word similarity benchmarks summarized in (Faruqui and Dyer, 2014) for evaluating the word vectors. The datasets have word pairs that have been assigned similarity rating by humans. While evaluating word vectors, the similarity between the words is calculated by the cosine similarity of their vector representations. Then, Spearman’s rank correlation coefficient (ρ) (Myers et al., 2010) between the ranks produced by using the word vectors against the human rankings is calculated. The reported metric in experiments is $\rho \times 100$. Hence, for better word similarity, the evaluation metric will be higher.

2.3.3 Compared Baselines

To evaluate the performance of our algorithm, we establish some baselines comprising of alternative schemes of combining the post-processing algorithm along with PCA based dimensionality reduction. The baseline algorithms are:

1. **PCA**: Transform the word vectors using PCA.
2. **P+PCA**: Transform the word vectors using PCA after applying the post-processing algorithm.

\(^1\)Available at https://nlp.stanford.edu/projects/glove/.

\(^2\)Available at https://github.com/facebookresearch/fastText/.
Table 2: Performance (ρ × 100) of Algorithm 2 across different Embedding Types and Dimensions

Serial No.	FastText-300D	Algo-150D	Glove-100D	Algo-50D	Glove-200D	Algo-100D
1	66.89	**67.29**	58.05	**58.85**	62.12	61.99
2	78.12	77.40	60.35	**66.27**	62.91	**68.43**
3	67.93	66.17	61.93	**64.09**	61.99	**63.55**
4	39.73	34.24	30.23	**33.04**	28.45	36.82
5	73.69	73.16	52.90	**62.05**	57.42	**65.41**
6	48.66	47.19	36.64	36.64	38.95	**39.80**
7	76.37	76.36	68.09	**70.93**	71.01	**74.44**
8	79.74	**80.95**	69.07	64.56	71.26	**71.53**
9	81.23	**86.41**	62.71	**68.79**	66.56	**69.83**
10	38.03	35.47	29.75	29.13	34.03	**34.19**
11	68.21	**69.96**	49.55	**59.55**	54.48	**61.56**
12	53.33	50.90	45.43	41.95	52.21	49.94

3. **PCA+P**: Transform the word vectors using PCA and then apply the post-processing algorithm.

These baselines can also be regarded as ablations on our algorithm and can shed light on whether our intuitions in developing the algorithm were correct. In the comparisons ahead, our algorithm is represented as Algo-N (where N is the new dimensionality of the word embeddings). All evaluations use the PCA implementation available in (Pedregosa et al., 2011). Further, in our implementation, subtracting the common mean vector from word embeddings is done as a pre-processing step before applying PCA on the embedding matrix.

2.3.4 Experimental Results

First we evaluate our algorithm against the 3 baselines mentioned above and then, we evaluate our algorithm across word embeddings of different dimensions and types. In all the experiments, the threshold parameter D in the PPA algorithm was set to 7 and the new dimensionality after applying the dimensionality reduction algorithms, N is set to $d/2$ (where $d =$ embedding dimensionality).

Against Different Baselines: Table 1 summarizes the results of different baselines on the 12 datasets. As expected from the discussions in subsection 2.2, our algorithm achieves the best results on 6 out of 12 datasets when compared across all the columns (the best scores are highlighted in bold). In particular, the 150-dimensional word embeddings constructed using our algorithm performs better than the 300-dimensional embeddings in 7 out of 12 datasets (with an average improvement of 2.74%), does significantly better than PCA, PCA+P baselines and beats the P+PCA baseline in 8 out of the 12 tasks.

Across Different Embeddings: Table 2 summarizes the results of applying our algorithm on 300-dimensional fastText embeddings, 100-dimensional Glove embeddings and 200-dimensional Glove embeddings (the better scores are highlighted in bold). In the case of fastText embeddings, the 150-dimensional word vectors constructed using our algorithm get better performance on 4 out of 12 datasets when compared to the 300-dimensional embeddings. Overall, the 150-dimensional word vectors have a cumulative score of 765.5 against the 771.93 of the 300-dimensional vectors. Hence, overall its performance is quite similar to the 300-dimensional embeddings (with an average performance decline of 0.53%). In the case of Glove embeddings of 100 and 200 dimensions, our algorithm leads to significant gains (with average performance improvements of 2.6% and 3% respectively) and the lower dimensional embeddings achieve better performance on 8 and 10 datasets respectively.

3 Conclusions

To conclude, we restate that our algorithm is effective in constructing lower dimensional word embeddings, while maintaining similar or (more often) better performance. We hope that it will improve the utility of word embeddings on memory restricted devices. In future, we would like to explore combining compression along with dimensionality reduction to further reduce the size of the word embeddings.
References

Martin Andrews. 2016. Compressing Word Embeddings, Springer International Publishing, pages 413–422.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics 5:135–146.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Advances in Neural Information Processing Systems, pages 4349–4357.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and Noah A Smith. 2014. Retrofitting word vectors to semantic lexicons. arXiv preprint arXiv:1411.4166.

Manaal Faruqui and Chris Dyer. 2014. at wordvectors.org. ACL 2014 page 19.

Shaoshi Ling, Yangqiu Song, and Dan Roth. 2016. Word embeddings with limited memory. In The 54th Annual Meeting of the Association for Computational Linguistics, page 387.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositional- ity. In Advances in neural information processing systems, pages 3111–3119.

Nikola Mrkšić, Diarmuid ÓSéaghdha, Blaise Thomson, Milica Gašić, Lina Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young. 2016. Counter-fitting word vectors to linguistic constraints. In Proceedings of NAACL-HLT, pages 142–148.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017. All-but-the-top: Simple and effective postprocessing for word representations. arXiv preprint arXiv:1702.01417.

Jerome L Myers, Arnold Well, and Robert Frederick Lorch. 2010. Research design and statistical analysis. Routledge.

Kim Anh Nguyen, Sabine Schulte im Walde, and Ngoc Thang Vu. 2016. Neural-based noise filtering from word embeddings. arXiv preprint arXiv:1610.01874.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation. In EMNLP. Citeseer.

Jonathon Shlens. 2014. A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100.