Theoretical investigation on the ground state properties of the hexaamminecobalt(III) and nitro-nitrito linkage isomerism in pentaamminecobalt(III) \textit{in vacuo}

\textit{Jules Tshishimbi Muya}*, \textit{Hoeil Chung}*, \textit{and Sang Uck Lee}b,c* \\
\textit{Hanyang University, Department of Chemistry, Seoul, South Korea} \\
\textit{Hanyang University, Department of Chemical & Molecular Engineering, Sangnok-gu, Ansan 426-791 Korea} \\
\textit{Hanyang University, Department of Bionanotechnology, Sangnok-gu, Ansan 426-791 Korea} \\

Manuscript to be submitted to RSC Advances

Electronic supplementary information

Correspondent author:

Hoeil Chung

hoeil@hanyang.ac.kr

Version December 23, 2017
Figure S1. Selected valence molecular orbitals of $D_{5h} [\text{Co(NH}_3)_6]^{3+}$ computed at wB97XD/6-31+G(d,p)
Figure S2. Optimized geometries of D$_{3d}$ (a) and D$_3$ (b) at wB97XD/6-31+G(d,p)

Figure S3. (a) Equilibrium geometry of Co(NH$_3$)$_6^{3+}$ in D$_{3d}$ symmetry, (b) distortion vector from D$_{3d}$ to D$_3$, and imaginary vibrational modes of a$_{2g}$ (c), a$_{1u}$ (d), e$_g$ (e) and e$_u$ (f) symmetry
Figure S4. Imaginary vibrational modes of TS1-3

Figure S5. Intrinsic reaction coordinates plot of the intramolecular conversion between nitro isomer and endo-nitrito intermediate via TS1 computed at wB97XD/6-31+G(d,p)
Table S1. Energies of valence molecular orbitals in Hartrees of D\textsubscript{3} and D\textsubscript{3d}−[Co(NH\textsubscript{3})\textsubscript{6}]3+ computed at B3LYP/TZVP

D\textsubscript{3d}	Energies	D\textsubscript{3}	Energies
6a\textsubscript{2u}	-0.8392	12e	-0.8355
7e\textsubscript{u}	-0.8345	7a\textsubscript{2}	-0.8354
8a\textsubscript{1g}	-0.8007	9a\textsubscript{1}	-0.7992
6e\textsubscript{g}	-0.7998	13e	-0.7988
7e\textsubscript{g}	-0.5700	14e	-0.5690
9a\textsubscript{1g}	-0.4585	10a\textsubscript{1}	-0.4572
7a\textsubscript{2u}	-0.4091	15e	-0.4049
8e\textsubscript{u}	-0.4039	8a\textsubscript{2}	-0.4039

The HOMO is in italic

Table S2. Relative energies of the D\textsubscript{3}, S\textsubscript{6} and C\textsubscript{2h} epikernels with respect to D\textsubscript{3} geometries computed at B3LYP, ωB97XD and OPBE with ccpVtz.

	B3LYP	ωB97XD	OPBE
D\textsubscript{3}	-1.52	-1.78	-1.64
S\textsubscript{6}	-1.18	-1.35	-1.24
C\textsubscript{2h}	-1.16	-1.32	-1.21
Table S3. Imaginary frequencies of [Co(NH)_3]_6^{3+} in D_{3d} and C_{2h} and its lowest real frequencies of D3 and S6 geometries computed at B3LYP, \(ωB97XD\) and OPBE with ccPVTZ.

	B3LYP	\(ωB97XD\)	OPBE
D_{3d}	i_{132}(a1u)+i_{128}(a2g)	i_{145}(a1u)+i_{141}(a2g)	i_{135}(a1u)+i_{131}(a2g)
	+i_{55}(eg)+i_{19}(eu)	+i_{69}(eg)+i_{33}(eu)	+i_{49}(eg)
D_{3}	80 (e)	81 (e)	84 (e)
S_{6}	40 (eu)	49 (eu)	42 (eu)
C_{2h}	i_{61}(au)+i_{40}(bg)	i_{58}(au)+i_{30}(bg)	i_{65}(au)+i_{38}(bg)

Table S4. Comparison of bond lengths and angles between X-ray structure and calculated geometries of Co-NO2, exo-Co-ONO, endo-Co-ONO and TS complexes computed at \(ωB97XD/6-31+G(d,p)\) and B3LYP/LanL2DZ[] (values of bond lengths in Å and angles in degrees).

parameters	nitro	nitrito	Endo-	TS1					
	This work	Ciofini work\[^{78}\]	Exp[^{79}\]	This work	Ciofini work\[^{78}\]	Exp[^{80}\]	This work	This work	Ciofini work\[^{78}\]
Co-N1	1.924	1.973	1.921	2.776	2.875	2.930	2.269	2.382	
Co-N2	1.997	2.020	1.978	1.993	2.014	1.913	1.992	2.008	2.006
Co-N3	2.064	2.062	1.976	2.024	2.029	1.948	2.031	1.979	2.031
Co-N4	1.995	2.019	1.978	1.993	2.013	1.968	1.998	1.997	2.033
Co-N5	1.999	2.021	1.978	1.997	2.012	1.952	1.999	1.977	2.005
Co-N6	1.997	2.019	1.978	1.988	2.015	1.954	1.990	1.994	2.004
Co-O2	2.719	2.804	-	1.858	1.893	1.927	1.891	2.346	2.409
N1-O2	1.221	1.272	1.161	1.381	1.463	1.244	1.318	1.272	1.344
Table S5. Relative energies (RE in kcal/mol) of different isomers and transition states, HOMO-LUMO gap energies (H-L in eV) of Co-NO$_2$ and Co-ONO computed using different methods at 6-31+G(d,p). TS1 and TS2 are transition states

Methods	RE(exo)	RE(endo)	RE(TS1)	RE(TS2)	H-L
CCSD(T)(a)	2.00	1.12	43.78	10.76	13.64
MP2	3.98	4.81	40.90	12.59	12.95
B3LYP	4.43	2.25	40.73	13.40	4.46
B3LYP-D3	4.42	1.83	-	5.64	4.52
M062X	-0.53	-2.77	36.76	7.00	7.65
wB97XD	3.39	1.32	40.89	12.70	8.68

(a) CCSD(T)/6-31G(d) single point calculation from MP2/6-31+G(d,p) optimized geometry

[78] I. Ciofini, C. Adamo, JPHYSChemA 2001, 105, 1086-1092
[79] F.A Cotton, W.T Edwards, Acta Crystallogr. B 1968, 24, 474
[80] I. Grenthe, E. Nordin, Inorg. Chem. 1979, 18, 1869
Table S6. Energies of valence orbitals in Hartrees of the nitro/nitrito linkage isomers computed at wB97XD/6-31+G(d,p)

Orbitals	Co-NO$_2$	exo-Co-ONO	endo-Co-ONO
L+3	-0.24467	-0.24246	-0.24311
L+2	-0.26644	-0.24388	-0.25377
L+1	-0.31722	-0.30936	-0.31871
L	-0.31968	-0.31741	-0.31964
H	-0.63876	-0.59813	-0.61054
H-1	-0.66656	-0.65652	-0.67549
H-2	-0.67931	-0.68464	-0.68020
H-3	-0.72491	-0.72708	-0.72869
H-4	-0.72828	-0.72858	-0.73044
H-5	-0.73013	-0.73434	-0.73698
H-6	-0.76630	-0.76118	-0.76295

The HOMO (H) and LUMO (L) are in italic.

Table S7. Topological properties of the electron density of Co-NO$_2$ and Co-ONO: electron densities and their Laplacian in parenthesis at different bond critical points in Co-complexes computed at wB97XD/6-31+G(d,p).

Bonds	Co-NO$_2$	Exo-Co-ONO	Endo-Co-ONO
Co-NH$_3$	0.088(-0.108)	0.090(-0.109)	0.090(-0.107)
Co-N	0.118(-0.106)	-	-
Co-O	-	0.116(-0.154)	0.104(-0.136)
ON-O	0.501(0.263)	0.561(0.392)	0.523(0.339)
(Co)O-N	0.499(0.261)	0.340(0.102)	0.399(0.163)
N-H	0.331(0.448)	0.329(0.445)	0.331(0.448)
N…H	0.022(-0.018)	-	-
NO…H	0.019(-0.018)	-	0.022(-0.017)
O…N	-	-	
Gaussian09 outputs of D$_3$ and D$_{3d}$-Co(NH$_3$)$_6^{3+}$ calculations at CCSD(T) and BD(T) levels

(Enter /usr/local/gaussian/g09D01/g09/19999.exe)

1\:\:GINC-QUANTUM33\:SP\:RCCSD(T)\:FC\:6-31+G(d,p)\:Co1H18N6(3+)\:JMUYA\:09-Ma

y-2016/0\:Gp\:ccsd-t-6-31+G(d,p)\:symm=loose\:title\:3,1\:Co,0,0,0,0,0,0

,0,1,390677702,0,85644291,-1,156462665,N,0,0,0463642666,-1,632583673,-1 ,1,56462665,N,0,-1,437040168,0,776140763,-1,156462665,N,0,-1,437040168, ,0,776140763,1,156462665,N,0,0,0463642666,1,632583673,1,156462665,N,0,1 ,390677702,-0,85644291,1,156462665,H,0,1,52323731,0,418728808,-2,07316 ,8164,H,0,1,19998338,1,836474168,-1,378596498,H,0,2,334081969,0,887612 ,993,-0,758916332,H,0,-0,39898887,-1,528526611,-2,073168164,H,0,0,99493 ,4114,-1,9496719,-1,378596498,H,0,-0,398345583,2,465180776,-0,75891633 ,2,185932451,0,113197732,-1,378596498,H,0,-1,935736385,1,5775677 ,83,-0,758916332,H,0,-1,12424844,1,109797802,-2,073168164,H,0,-1,935736 ,385,-1,577567783,0,758916332,H,0,-1,12424844,-1,109797802,2,073168164,H, ,0,1,185932451,-0,113197732,1,378596498,H,0,-0,398345583,2,465180776 ,0,758916332,H,0,-0,39898887,1,528526611,2,073168164,H,0,0,994934114,1 ,9496719,1,378596498,H,0,1,19998338,1,836474168,1,378596498,H,0,2,33 ,4081969,-0,887612993,0,758916332,H,0,1,52323731,-0,418728808,2,0731681 ,64\:Version=ES64L-G09RevD.01\:State=1-A1\:HF=-1717.4954481\:MP2=-1718.888 \:0972\:MP3=-1718.9601737\:MP4D=-1718.9601737\:MP4DQ=-1718.9808716\:CCSD=-1718.9834351\:CCSD(T)=1719.0362302\:RMSD=2.646e-09\:P

G=D03 [O(Con1),X(H18N6)]

-- HE THAT WALD REACHE THE SWEITE ROSE

SULD NOW AND THEN BE SCRATCHED WT THE SCHARPE BREERES.

-- PROVERBS AND REASONS OF THE YEAR 1585

AS REPRINTED IN PAISLEY MAGAZINE 1828.

Job cpu time: 0 days 8 hours 23 minutes 14.5 seconds.

File lengths (MBytes): RWF= 7975 Int= 0 D2E= 0 Chk= 4 Scr= 1

Normal termination of Gaussian 09 at Mon May 9 05:34:18 2016.
(Enter /usr/local/gaussian/g09D01/g09/g09999.exe)

1/1\GINC-QUANTUM04/SP\RCCSD(T)-FC\6-31+G(d,p)\Co1H18N6(3+)\JMUYA\09-Ma
y-2016@\#P ccsd-t/6-31+G(d,p) symm=loose\title\3,1\Co,0,0.,0.,0.,0.,0.,0.
0,0.,1.617737548,1.181828667\N,0,-1.401001814,-0.808868774,1.181828666
7\N,0,1.401001814,-0.808868774,1.181828667\N,0,-1.617737548,-1.1818
28667\N,0,1.401001814,0.808868774,-1.181828667\N,0,-1.401001814,0.8088
68774,-1.181828667\H,0,0.,1.410828064,2.184536\H,0,0.807748578,2.23698
5549,1.068027\H,0,-0.807748578,2.236985549,1.068027\H,0,-1.221812944,-
0.705414032,2.184536\H,0,-2.341160602,-0.418961986,1.068027\H,0,-1.533
412024,-1.818023563,1.068027\H,0,1.533412024,-1.818023563,1.068027\H,0
,2.341160602,-0.418961986,1.068027\H,0,1.221812944,-0.705414032,2.1845
36\H,0,-0.807748578,-2.236985549,-1.068027\H,0,-1.4010828064,-2.1845
36\H,0,0.807748578,-2.236985549,-1.068027\H,0,2.341160602,0.418961986,
-1.068027\H,0,1.221812944,0.705414032,-2.184536\H,0,1.533412024,1.8180
23563,-1.68027\H,0,2.341160602,0.418961986,-1.068027\H,0,-1.53341202
4,1.818023563,1.068027\H,0,-1.221812944,0.705414032,-2.184536\Versio
n=ES64L-G09RevD.01\State=1-A1G\HF=-1717.4924952\MP2=-1718.884245\MP3=--
1718.918593\MP4D=--1718.9566107\MP4DQ=--1718.9381087\MP4SDQ=--1718.97730
2\CCSD=--1718.9800145\CCSD(T)=--1719.032816\RMSD=2.525e-09\PG=D03D [O(Co
1),3SGD(H2N2),X(H12)]\@

UPON JULIA'S CLOTHES

WHENAS IN SILKS MY JULIA GOES,
THEN, THEN, METHINKS, HOW SWEETLY FLOWS
THAT LIQUEFACTION OF HER CLOTHES.
NEXT, WHEN I CAST MINE EYES, AND SEE
THAT BRAVE VIBRATION, EACH WAY FREE,
O, HOW THAT GLITTERING TAKETH ME!

-- ROBERT HERRICK, 1648

Job cpu time: 0 days 3 hours 51 minutes 46.2 seconds.
File lengths (MBytes): RWF= 3988 Int= 0 D2E= 0 Chk= 4 Scr= 1
Normal termination of Gaussian 09 at Mon May 9 05:01:13 2016.
THEORY: SUPPOSITION WHICH HAS SCIENTIFIC BASIS, BUT NOT EXPERIMENTALLY PROVEN.

FACT: A THEORY WHICH HAS BEEN PROVEN BY ENOUGH MONEY TO PAY FOR THE EXPERIMENTS.

-- THE WIZARD OF ID

Leaves Link 601 at Thu Jun 9 03:08:20 2016, MaxMem= 1610612736 cpu: 1.0
(Enter /usr/local/gaussian/g09D01/g09/9999.exe)

1\1\GINC-QUANTUM15\SP\RBD(T,FC)\6-31+G(d,p)\Co1H18N6(3+)\JMUYA\09-Jun-2016\#P BD(T)/6-31+G(d,p) symm=loose\title\3,1\Co,0,0,0,0,0,0,0.046326466,-1.632583673,-1.15
6462665\N,0,-1.437040168,0.776140763,-1.156462665\N,0,-1.437040168,-0.0
776140763,1.156462665\N,0,0.046326466,1.632583673,1.156462665\N,0,1.39
0677702,-0.85644291,1.156462665\H,0,1.52323731,0.418728808,-2.07316816
4\H,0,1.190998338,1.836474168,-1.378596498\H,0,2.334081969,0.887612993
,0.758916332\H,0,-0.39898887,1.528526611,2.073168164\H,0,0.99493411
-1.9496719,-1.378596498\H,0,-0.398345583,-2.465180776,0.758916332\H
528526611,2.073168164\H,0,0.994934114,1.94
96719,1.378596498\H,0,1.190998338,1.836474168,1.378596498\H,0,2.33408
1969,-0.887612993,0.758916332\H,0,1.52323731,-0.418728808,2.073168164;
\Version=ES64L-G09RevD.01\State=1-A1\HF=-1717.4954481\MP2=-1718.8880972\MP3=-1718.9224761\MP4D=-1718.9601737\MP4DQ=-1718.9416767\BDRef=-1717.4360641\BD=-1718.9747775\BD(T)=-1719.0355082\RMSD=2.645e-09\PG=D03 [O (Co1),X(H18N6)]
GARBAGE IN, GARBAGE OUT

Job cpu time: 0 days 14 hours 46 minutes 29.9 seconds.

File lengths (MBytes): RWF= 11680 Int= 0 D2E= 0 Chk= 5 Scr= 1

Normal termination of Gaussian 09 at Thu Jun 9 03:08:22 2016.