Measurements of the electroweak diboson production cross sections in proton-proton collisions at $\sqrt{s} = 5.02$ TeV using leptonic decays

The CMS Collaboration

Abstract

The first measurements of diboson production cross sections in proton-proton interactions at a center-of-mass energy of 5.02 TeV are reported. They are based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 302 pb$^{-1}$. Events with two, three, or four charged light leptons (electrons or muons) in the final state are analyzed. The WW, WZ, and ZZ total cross sections are measured as $\sigma_{WW} = 37.0^{+5.5}_{-5.2}\,(\text{stat})^{+2.7}_{-2.6}\,(\text{syst})\,\text{pb}$, $\sigma_{WZ} = 6.4^{+2.5}_{-2.1}\,(\text{stat})^{+0.5}_{-0.3}\,(\text{syst})\,\text{pb}$, and $\sigma_{ZZ} = 5.3^{+2.5}_{-2.1}\,(\text{stat})^{+0.5}_{-0.4}\,(\text{syst})\,\text{pb}$. All measurements are in good agreement with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.127.191801.
The study of diboson production at the CERN LHC is an important test of the standard model (SM) of particle physics because of its sensitivity to the self-interactions between gauge bosons via trilinear gauge couplings [1]. Understanding diboson production is also important for Higgs boson measurements and for a multitude of beyond-the-SM searches where these diboson processes represent irreducible background contributions. The CMS and ATLAS Collaborations have measured diboson production cross sections in proton-proton (pp) collisions at center-of-mass energies of 7, 8, and 13 TeV [2–18]. In this Letter, we present the first measurements of electroweak diboson production cross sections at $\sqrt{s} = 5.02$ TeV. All measurements are performed with pp collision data corresponding to an integrated luminosity of 302 pb$^{-1}$, collected in November 2017 with the CMS detector [19] at the LHC. The maximum instantaneous luminosity delivered by the LHC during this period was 1.37×10^{33} cm$^{-2}$ s$^{-1}$, and the mean number of pp interactions per bunch crossing, assuming a total inelastic cross section of 65 mb, was 2.0.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end cap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and end cap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, is reported in Ref. [19].

Signal and background processes are simulated by using several Monte Carlo (MC) generators. The propagation of the generated particles through the CMS detector and the modeling of the detector response is performed using GEANT4 [20], assuming alignment and calibration from real data. Simulated signal events are generated at next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD) and dynamic renormalization and factorization scales using POWHEG (v2) [21–23]. The WW, WZ, and ZZ signal cross sections are scaled from NLO to next-to-next-to-leading order (NNLO) using MATRIX calculations [24]. The MADGRAPH5_aMC@NLO [25] generator is used to simulate W and Z/\gamma^*+jets at NLO. The simulation includes up to two extra partons at the matrix element level and uses the FxFx merging scheme [26]. Simulated top quark events—top quark pair production (tt) and single top quark processes—are also generated using POWHEG. All the events are then interfaced with PYTHIA 8 (v8.2) [27] for parton showering, hadronization, and the underlying event simulation, using the CP5 tune [28, 29]. The NNPDF3.1 [30] NNLO parton distribution functions (PDFs) are used. The simulated samples include pileup collisions.

The particle-flow (PF) algorithm [31] reconstructs and identifies each individual particle in an event, with an optimized combination of information from the various elements of the CMS detector. The energy of photons is obtained from the ECAL measurement. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The energy of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies. For each event, hadronic jets are clustered from these reconstructed particles using the anti-k_T algorithm [32, 33] with a distance parameter of 0.4. Jet momentum is determined as the vectorial sum of all particle momenta in
the jet, and, based on simulation, is typically within 5 to 10% of the true momentum over the entire transverse momentum (p_T) spectrum and detector acceptance. The missing transverse momentum vector \vec{p}_T^{miss} is computed as the negative vector p_T sum of all the PF candidates in an event, and its magnitude is denoted as p_T^{miss} [34]. The \vec{p}_T^{miss} is modified to account for corrections to the energy scale of the reconstructed jets in the event [35]. The candidate vertex with the largest value of summed physics-object p_T^2 is the primary pp interaction vertex. The physics objects used to calculate the primary vertex are the leptons, jets and the p_T^{miss} associated with this event.

Electrons are identified with a multivariate analysis (MVA) discriminant [36, 37] and are required to have a p_T larger than 8 GeV and $|\eta| < 2.5$. Electrons matched to a secondary vertex consistent with a photon conversion or having at least one missing hit in the pixel tracking system are vetoed. Muons are identified as tracks in the central tracker consistent with either a track or several hits in the muon system, and associated with calorimeter deposits compatible with the muon hypothesis. Reconstructed muons are required to have $p_T > 8$ GeV and $|\eta| < 2.4$, and must fulfill criteria on the geometrical matching between the tracker and the muon track, and the quality of the global fit [38]. An upper threshold of 0.4 on the relative isolation (as defined in Ref. [39]), is applied for both electrons and muons. Lepton candidates are selected if the transverse (longitudinal) impact parameter with respect to the primary vertex does not exceed 0.05 (0.1) cm. Identification criteria are specifically designed to separate prompt leptons—electrons and muons from the decay of a W or Z boson either directly or mediated by a leptonic τ decay—from leptons that arise from other sources, such as c or b decays. Two lepton categories, loose and tight, are defined. The loose identification criteria refer to the requirements presented above and are used to provisionally select all leptons in the events. The tight selection is based on an MVA discriminant—a gradient boosted decision tree—trained to separate between prompt and nonprompt lepton sources [40] and includes, in addition to the loose selection, (i) a tighter upper threshold on the relative isolation (0.085 for electrons and 0.325 for electrons and muons), and (ii) a threshold on the b-tagging DEEPJET discriminator [41–43] for any jet that contains a lepton to reduce the $t\bar{t}$ background. Jets with $p_T > 25$ GeV and $|\eta| < 2.4$ which do not overlap ($\Delta R < 0.4$) with a lepton passing the loose criteria are selected.

Events of interest are selected using a two-tiered trigger system [44]. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage. Events that pass at least one single-lepton trigger with p_T thresholds of 17 (electrons) or 12 (muons) GeV are selected. Candidate events are further required to have at least two loose leptons (electrons or muons, ℓ) with a minimal invariant mass of any lepton pair greater than 12 GeV.

The WW signal region (SR) requirements are exactly two tight leptons with opposite charge and different flavor; the p_T of the leading (subleading) lepton >20 (10) GeV; the p_T of the dilepton system >20 GeV; the azimuthal separation between the two leptons >2.8 radians; and the transverse mass of any combination of a lepton with the $p_T^{\text{miss}} > 20$ GeV. In addition, events with jets are rejected.

For the WZ measurement two SRs are defined: one with three leptons (3ℓ) and another with two muons with the same electric charge ($2\mu ss$). In the 3ℓ category, events with exactly three loose leptons with at least one opposite-sign same-flavor (OSSF) pair are selected. To exploit
the characteristic kinematics of on-shell WZ production, an algorithm is applied to tag the two leptons from the Z boson decay (ℓ_Z and ℓ'_Z) and that of the W boson decay (ℓ_W). If only one OSSF lepton pair occurs in the event, the leptons corresponding to it are tagged as ℓ_Z and ℓ'_Z, whereas the different flavor one is tagged as ℓ_W. If multiple OSSF pairs are found, the OSSF lepton pair with invariant mass closest to that of the Z boson is selected for the ℓ_Z ℓ'_Z pair. Then, a p_T threshold of 8 GeV is imposed. Additional selection criteria are applied to increase the purity of WZ events. The invariant mass of the ℓ_Z and ℓ'_Z lepton pair must be consistent with the Z boson mass, $|m_{\ell_{Z}}-91.2\text{ GeV}| < 30\text{ GeV}$. The two same-sign leptons are required to pass the tight lepton requirements, the p_T of ℓ_W must be $>20\text{ GeV}$, and the invariant mass of the three lepton system must be $>100\text{ GeV}$. For the 2ℓ category, events with two tight muons and zero jets are selected. The p_T of the leading (subleading) muon must be >20 (10) GeV. To ensure a high-quality charge measurement, the relative uncertainty in the curvature of the muon track must be $<20\%$. Additionally, a minimal requirement of $p_T^{\text{miss}} > 25\text{ GeV}$ is included.

For the ZZ measurement, two categories are defined: one with four leptons (4ℓ) and another with two leptons (2ℓ). For the 4ℓ category, exactly four loose leptons with $p_T > 8\text{ GeV}$ are required. For the 2ℓ2ν category, events with exactly two tight OSSF leptons are selected. The p_T of the leading (subleading) muon must be >20 (10) GeV. The invariant mass of the leptons must be close to the Z boson peak, $|m_{\ell\ell'}-91.2\text{ GeV}| < 10\text{ GeV}$. The axial p_T^{miss} in the event [9], which expresses the p_T projection of the neutrino pair of the invisibly decaying Z boson onto the p_T direction of the Z boson decaying to charged leptons, must exceed 50 GeV. The relative difference between p_T^{miss} and the dilepton p_T with respect to the dilepton p_T must be smaller than 0.3 [9]. Events with jets are rejected.

Most background contributions, including photon conversions, charge mismeasurement, and those processes yielding prompt leptons in the final state, such as $t\bar{t}$, single top, Drell–Yan (DY), and diboson production, are estimated from simulation. Backgrounds involving one or more nonprompt leptons are estimated from simulation aided by control samples in data in those categories with two leptons in the final state and exclusively from simulation otherwise. Nonprompt-lepton background sources are composed of processes in which at least one of the final-state leptons does not come from the decay of a W or Z boson either directly or mediated by a leptonic τ decay. Dominant SM sources of nonprompt background depend on the specific decay channel: Z+jets and dileptonic $t\bar{t}$ production for those channels with at least three leptons, W+jets and semileptonic $t\bar{t}$ for channels with two leptons in the final state. The nonprompt-lepton contribution is estimated using a lepton misidentification rate method [45] based on the misidentification rate measured in a simulated $t\bar{t}$ sample and applied to control region data. The main background contributions differ in each SR because of the different final states under study. The dominant background contributions for the WW measurement come from nonprompt lepton and top quark production processes. For the WZ 3ℓ, the background is mainly arising from Z+jets. For the WZ 2ℓSS and ZZ 2ℓ2ν SRs the main background is nonprompt leptons. The ZZ 4ℓ SR is very clean with a small background contribution of nonprompt leptons.

Although the measurements presented in this Letter are dominated by the statistical limitation of the size of the data set, the impact of different sources of systematic uncertainties is studied. The lepton identification scale factors are estimated using the tag-and-probe method [46] as a function of the lepton p_T and η for loose and tight electrons and muons. These scale factors are close to 1 and have an uncertainty of the order of 1–3%, except for a few bins limited by statistics. Corrections to the jet energy scale are applied to data and simulation separately as η- and p_T-dependent corrections. Jet energy corrections are derived from simulation to bring
the measured response of jets to that of particle-level jets on average. In situ measurements of
the momentum balance in dijet, photon+jet, Z+jet, and multijet events are used to correct any
residual differences in jet energy scale in data and simulation [35]. The jet energy resolution
amounts typically to 15% at 10 GeV and 8% at 100 GeV. During the 2017 data taking, a gradual
shift in the input timing of the ECAL L1 trigger in the region of $|\eta| > 2.0$ caused a trigger
inefficiency of 1%–4%. Correction factors were computed from data and applied to the accep-
tance evaluated by simulation. For the selected events the trigger efficiency is very close to 1
in all channels, and no further correction is applied to the simulation. The relative difference
between the trigger efficiency estimated in the WW, WZ, and ZZ samples and 100% is used as
an uncertainty in the respective cross section measurement.

The uncertainty arising from the choice of PDF is determined by reweighting the sample of
simulated diboson events according to the 32 replica PDF sets from PDF4LHC15 [47]. The
envelope of the variations in the signal yields is used as the estimate of the uncertainty. The
systematic bias due to the missing higher-order diagrams in POWHEG is estimated by varying
the default renormalization and factorization scale choices independently by a factor of 2 or
1/2. The uncertainty is assigned from the maximum difference in the signal yields for each
variation, excluding the two extreme up or down combinations, with the nominal values.

The uncertainty assigned to the nonprompt lepton contribution in the two-lepton categories
is based on the differences between the lepton misidentification rate estimated for all flavor jets,
and the b-flavor jets and light-flavor jets, separately. The uncertainty affects mostly electrons:
a 30% uncertainty is used per electron and 15% per muon in the categories with two leptons in
the final state. Normalization uncertainties of 30% for conversions, 20% for nonprompt leptons,
charge mismeasurement, and diboson, and 10% for top quark and DY processes are assigned.

An uncertainty of 1.9% in the integrated luminosity, estimated offline using the methodology
described in Ref. [48], is applied as a global normalization uncertainty for all processes.

The statistical uncertainties due to the limited size of the MC samples are treated according to
the Barlow–Beeston method [49]; individual nuisance parameters (per process and per chan-
nel) are used when the corresponding expected amount of events in the bin is smaller than 10
events.

A summary of the expected event yields for signal and each of the background processes, and
the observed data in the WW SR is shown in Table 1. For the other SRs, the expected event
yields for signal and the total background, and the observed data, are shown in Table 2.

Table 1: Expected event yields in the WW SR and observed number of events. The uncertain-
ties correspond to the statistical and systematic component, respectively.

Source	Number of events
Top quark	$9.0 \pm 0.1 \pm 1.1$
WZ+ZZ	$5.6 \pm 1.0 \pm 1.1$
Drell–Yan	$1.8 \pm 0.5 \pm 0.2$
Conversions	$2.7 \pm 0.7 \pm 0.7$
Nonprompt ℓ	$11.2 \pm 1.3 \pm 3.4$
Background	$30.3 \pm 1.9 \pm 3.9$
WW signal	$55.2 \pm 0.3 \pm 1.8$
Data	101

The cross sections are measured in regions, called total regions, defined to provide a mea-
surement without any detector acceptance requirements. As outlined below, each channel
Table 2: Expected event yields for the signal and total background in the WZ and ZZ SRs, and observed number of events. The uncertainties correspond to the statistical and systematic component, respectively.

SR	Background	Signal	Data
WZ 3ℓ	4.0 ± 0.6 ± 0.4	14.8 ± 0.1 ± 0.6	12
WZ 2µss	0.6 ± 0.1 ± 0.1	3.2 ± 0.8 ± 0.2	4
ZZ 4ℓ	0.5 ± 0.2 ± 0.1	2.5 ± 0.0 ± 0.1	3
ZZ 2ℓ2ν	4.8 ± 0.3 ± 0.7	3.8 ± 0.0 ± 0.2	12

has a different total region defined at generator level with dressed leptons (the momenta of generator-level photons within a cone of ∆R(ℓ, γ) < 0.1 is added to the lepton momenta). All total regions are defined as excluding events containing any OSSF lepton pair with invariant mass below 4 GeV. For the WW total region, no further requirements are applied. For the WZ total region, an additional kinematic requirement is imposed that selects events consistent with the on-shell Z boson production: 60 < m_{ℓℓ} < 120 GeV. For the ZZ total region, this additional kinematic requirement is applied to both Z boson candidates. The lepton tagging algorithm defined above to assign leptons to either the W or Z boson decay is applied. In the case of the ZZ 2ℓ2ν SR, one Z boson is reconstructed from the two leptons and the other from the neutrinos.

The total cross section, \(\sigma \), is computed as

\[
\sigma = \frac{N_{\text{SR}}^{\text{signal}}}{B(W \rightarrow ℓν \text{ or } Z \rightarrow ℓℓ) B(W \rightarrow ℓν \text{ or } Z \rightarrow ℓℓ) \epsilon L'}
\]

where \(L \) is the total integrated luminosity, \(\epsilon \) is the efficiency of the lepton reconstruction and the additional phase space requirements, and \(N_{\text{SR}}^{\text{signal}} \) is the number of obtained signal events, estimated for each SR by performing a maximum likelihood fit to the yields with a single free-floating parameter that corresponds to the normalization of the signal process. The efficiency values are computed using the signal simulated samples as the ratio of the number of events that fulfill the SR requirements over those that only pass the total region ones. An extrapolation from the lepton final state to the total production cross section is done by dividing by the branching fractions (\(B \)) of each of the W and/or Z bosons to leptons, which are taken from Ref. [50]. The distributions of the dilepton \(p_T \) and W boson transverse mass in the WW and WZ 3ℓ signal region, respectively, are shown in Fig. 1. Good agreement between the observed data and prefit and postfit predictions is found in all channels.

The uncertainties derived above are propagated to the final result through the numerator of Eq. (1). The measured values for the WW, WZ, and ZZ total cross sections, shown in Fig. 2, are

\[
\sigma_{WW} = 37.0^{+5.5}_{-3.2} \text{(stat)}^{+2.7}_{-2.6} \text{(syst)} = 37.0^{+6.2}_{-5.8} \text{ pb},
\]

\[
\sigma_{WZ} = 6.4^{+2.5}_{-2.1} \text{(stat)}^{+0.5}_{-0.3} \text{(syst)} = 6.4^{+2.5}_{-2.1} \text{ pb},
\]

\[
\sigma_{ZZ} = 5.3^{+2.5}_{-2.1} \text{(stat)}^{+0.5}_{-0.4} \text{(syst)} = 5.3^{+2.6}_{-2.1} \text{ pb},
\]

respectively. Figure 2 also presents a summary of the diboson production cross section measurements at different center-of-mass energies and a comparison with fixed-order predictions produced via the MATRIX framework [24]. For the WZ measurement, the result is consistent with the SM prediction within two standard deviations. The calculations are performed with the NNPDF31_nnlo_as_0118_luxqed [51] PDF set (NNPDF31_nnlo_as_0118_luxqed_nf4 for WW production). The quark-induced processes are calculated at NNLO in QCD and NLO in electroweak (EW) corrections. For the WW and ZZ processes, the gluon induced contribution is
Figure 1: Distribution of the dilepton p_T in the WW signal region (left). Events from DY, conversions, and diboson processes are grouped into the 'Others' category. Distribution of the W boson transverse mass in the WZ 3ℓ signal region (right). Events from conversions, and DY processes are grouped into the Others category. The vertical error bars represent the statistical uncertainty in the data and the shaded band the uncertainty in the prediction. The signal contributions are scaled to the measured cross sections (postfit).

calculated at NLO in QCD [52]. Photon-induced contributions are included at up to NLO EW. The quark-induced NNLO QCD and NLO EW contributions are combined multiplicatively (NNLO QCD \(\times \) NLO EW), and the gluon- and photon-induced contributions are combined additively, following the procedure described in Ref. [53].

The diboson production cross sections are measured for the first time at a new energy, 5.02 TeV, using data collected with the CMS detector corresponding to an integrated luminosity of 302 pb\(^{-1}\). The analysis is performed in the leptonic decays of the W and Z bosons with at least two leptons in the final state. The measured total cross sections are consistent with theoretical calculations at combined next-to-next-to-leading order quantum chromodynamics and next-to-leading order electroweak accuracy.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT
Figure 2: Results obtained in this analysis and other diboson production cross section measurements at different center-of-mass energies for the CMS [11–18], ATLAS [2–10], CDF [54, 55], and D0 [56–58] Collaborations are presented, and compared with the NNLO QCD × NLO EW and NLO predictions from MATRIX. The vertical error bars represent the uncertainty in the measured cross section.

References

[1] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld, “Low-energy effects of new interactions in the electroweak boson sector”, Phys. Rev. D 48 (1993) 2182,
[2] ATLAS Collaboration, “Measurement of W^+W^- production in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector and limits on anomalous WWZ and WWγ couplings”, Phys. Rev. D 87 (2013) 112001, doi:10.1103/PhysRevD.87.112001, arXiv:1210.2979 [Erratum: doi:10.1103/PhysRevD.88.079906].

[3] ATLAS Collaboration, “Measurement of total and differential W^+W^- production cross sections in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings”, JHEP 09 (2016) 029, doi:10.1007/JHEP09(2016)029, arXiv:1603.01702.

[4] ATLAS Collaboration, “Measurement of the W^+W^- production cross section in pp collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV with the ATLAS experiment”, Phys. Lett. B 773 (2017) 354, doi:10.1016/j.physletb.2017.08.047, arXiv:1702.04519.

[5] ATLAS Collaboration, “Measurement of WZ production in proton-proton collisions at $\sqrt{s}=7$ TeV with the ATLAS detector”, Eur. Phys. J. C 72 (2012) 2173, doi:10.1140/epjc/s10052-012-2173-0, arXiv:1208.1390.

[6] ATLAS Collaboration, “Measurements of W^+Z production cross sections in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings”, Phys. Rev. D 93 (2016) 092004, doi:10.1103/PhysRevD.93.092004, arXiv:1603.02151.

[7] ATLAS Collaboration, “Measurement of W^+Z production cross sections and gauge boson polarisation in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector”, Eur. Phys. J. C 79 (2019) 535, doi:10.1140/epjc/s10052-019-7027-6, arXiv:1902.05759.

[8] ATLAS Collaboration, “Measurement of the ZZ production cross section in proton-proton collisions at $\sqrt{s}=7$ TeV and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector”, JHEP 03 (2013) 128, doi:10.1007/JHEP03(2013)128, arXiv:1211.6096.

[9] ATLAS Collaboration, “Measurement of the ZZ production cross section in proton-proton collisions at $\sqrt{s}=8$ TeV using the ZZ $\rightarrow \ell^-\ell^+\ell^-\ell^+$ and ZZ $\rightarrow \ell^-\ell^+\nu\bar{\nu}$ channels with the ATLAS detector”, JHEP 01 (2017) 099, doi:10.1007/JHEP01(2017)099, arXiv:1610.07585.

[10] ATLAS Collaboration, “ZZ $\rightarrow \ell^+\ell^-\ell'^+\ell'^-$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector”, Phys. Rev. D 97 (2018) 032005, doi:10.1103/PhysRevD.97.032005, arXiv:1709.07703.

[11] CMS Collaboration, “Measurement of the W^+W^- cross section in pp collisions at $\sqrt{s}=7$ TeV and limits on anomalous WWγ and WWZ couplings”, Eur. Phys. J. C 73 (2013) 2610, doi:10.1140/epjc/s10052-013-2610-8, arXiv:1306.1126.

[12] CMS Collaboration, “Measurement of the W^+W^- cross section in pp collisions at $\sqrt{s}=8$ TeV and limits on anomalous gauge couplings”, Eur. Phys. J. C 76 (2016) 401, doi:10.1140/epjc/s10052-016-4219-1, arXiv:1507.03268.

[13] CMS Collaboration, “W^+W^- boson pair production in proton-proton collisions at $\sqrt{s}=13$ TeV”, Phys. Rev. D 102 (2020) 092001, doi:10.1103/PhysRevD.102.092001, arXiv:2009.00119.
References

[14] CMS Collaboration, “Measurement of the WZ production cross section in pp collisions at $\sqrt{s} = 7$ and 8 TeV and search for anomalous triple gauge couplings at $\sqrt{s} = 8$ TeV”, *Eur. Phys. J. C* 77 (2017) 236, doi:10.1140/epjc/s10052-017-4730-z, arXiv:1609.05721.

[15] CMS Collaboration, “Measurements of the pp \rightarrow WZ inclusive and differential production cross section and constraints on charged anomalous triple gauge couplings at $\sqrt{s} = 13$ TeV”, *JHEP* 04 (2019) 122, doi:10.1007/JHEP04(2019)122, arXiv:1901.03428.

[16] CMS Collaboration, “Measurement of the ZZ production cross section and search for anomalous couplings in 2l2ℓ' final states in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* 01 (2013) 063, doi:10.1007/JHEP01(2013)063 arXiv:1211.4890.

[17] CMS Collaboration, “Measurement of the pp \rightarrow ZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at $\sqrt{s} = 8$ TeV”, *Phys. Lett. B* 740 (2015) 250, doi:10.1016/j.physletb.2014.11.059 arXiv:1406.0113 [Erratum: doi:10.1016/j.physletb.2016.04.010].

[18] CMS Collaboration, “Measurements of pp \rightarrow ZZ production cross sections and constraints on anomalous triple gauge couplings at $\sqrt{s} = 13$ TeV”, *Eur. Phys. J. C* 81 (2021) 200, doi:10.1140/epjc/s10052-020-08817-8 arXiv:2009.01186.

[19] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[20] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[21] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, *JHEP* 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040 arXiv:hep-ph/0409146.

[22] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070 arXiv:0709.2092.

[23] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, *JHEP* 06 (2010) 043, doi:10.1007/JHEP06(2010)043 arXiv:1002.2581.

[24] M. Grazzini, S. Kallweit, and M. Wiesemann, “Fully differential NNLO computations with MATRIX”, *Eur. Phys. J. C* 78 (2018) 537, doi:10.1140/epjc/s10052-018-5771-7 arXiv:1711.06631.

[25] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* 07 (2014) 079, doi:10.1007/JHEP07(2014)079 arXiv:1405.0301.

[26] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, *JHEP* 12 (2012) 61, doi:10.1007/JHEP12(2012)061 arXiv:1209.6215.

[27] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024 arXiv:1410.3012.
[28] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 tune”, Eur. Phys. J. C 74 (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630

[29] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, doi:10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179

[30] NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428

[31] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965

[32] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\(k_T\) jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[33] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097

[34] CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at \(\sqrt{s} = 13\) TeV using the CMS detector”, JINST 14 (2019) P07004, doi:10.1088/1748-0221/14/07/P07004, arXiv:1903.06078

[35] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663

[36] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at \(\sqrt{s} = 8\) TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701

[37] CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, doi:10.1088/1748-0221/16/05/P05014, arXiv:2012.06888

[38] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at \(\sqrt{s} = 13\) TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528

[39] CMS Collaboration, “Search for new physics in same-sign dilepton events in proton–proton collisions at \(\sqrt{s} = 13\) TeV”, Eur. Phys. J. C 76 (2016) 439, doi:10.1140/epjc/s10052-016-4261-z, arXiv:1605.03171

[40] CMS Collaboration, “Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at \(\sqrt{s} = 13\) TeV”, Eur. Phys. J. C 81 (2021) 378, doi:10.1140/epjc/s10052-021-09014-x, arXiv:2011.03652

[41] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158
[42] E. Bols et al., “Jet flavour classification using deepJet”, *JINST* 15 (2020) P12012, doi:10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.

[43] CMS Collaboration, “Performance of the Deepleet b tagging algorithm using 41.9 fb$^{-1}$ of data from proton-proton collisions at 13 TeV with phase 1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-058, 2018.

[44] CMS Collaboration, “The CMS trigger system”, *JINST* 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[45] CMS Collaboration, “Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying τ leptons at $\sqrt{s} = 13$ TeV”, *JHEP* 08 (2018) 066, doi:10.1007/JHEP08(2018)066, arXiv:1803.05485.

[46] CMS Collaboration, “Measurements of inclusive W and Z cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* 01 (2011) 080, doi:10.1007/JHEP01(2011)080, arXiv:1012.2466.

[47] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, *J. Phys. G* 43 (2016) 023001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865.

[48] CMS Collaboration, “Luminosity measurement in proton-proton collisions at 5.02 TeV in 2017 at CMS”, CMS Physics Analysis Summary CMS-PAS-LUM-19-001, 2021.

[49] R. J. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, *Comput. Phys. Commun.* 77 (1993) 219, doi:10.1016/0010-4655(93)90005-W.

[50] Particle Data Group, P. A. Zyla et al., “Review of Particle Physics”, *Prog. Theore. Expt. Phys.* 2020 (2020) 083C01, doi:10.1093/ptep/ptaa104.

[51] NNPDF Collaboration, “Illuminating the photon content of the proton within a global PDF analysis”, *SciPost Phys.* 5 (2018) 008, doi:10.21468/SciPostPhys.5.1.008, arXiv:1712.07053.

[52] M. Grazzini, S. Kallweit, M. Wiesemann, and J. Y. Yook, “ZZ production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel”, *JHEP* 03 (2019) 070, doi:10.1007/JHEP03(2019)070, arXiv:1811.09593.

[53] M. Grazzini et al., “NNLO QCD + NLO EW with Matrix+OpenLoops: precise predictions for vector-boson pair production”, *JHEP* 02 (2020) 087, doi:10.1007/JHEP02(2020)087, arXiv:1912.00068.

[54] CDF Collaboration, “Measurement of the WW and WZ production cross section using final states with a charged lepton and heavy-flavor jets in the full CDF Run II data set”, *Phys. Rev. D* 94 (2016) 032008, doi:10.1103/PhysRevD.94.032008, arXiv:1606.06823.

[55] CDF Collaboration, “Measurement of the ZZ production cross section using the full CDF II data set”, *Phys. Rev. D* 89 (2014) 112001, doi:10.1103/PhysRevD.89.112001, arXiv:1403.2300.

[56] D0 Collaboration, “Measurements of WW and WZ production in W+jets final states in pp collisions”, *Phys. Rev. Lett.* 108 (2012) 181803, doi:10.1103/PhysRevLett.108.181803, arXiv:1112.0536.
[57] D0 Collaboration, “A measurement of the WZ and ZZ production cross sections using leptonic final states in 8.6 fb$^{-1}$ of p\bar{p} collisions”, *Phys. Rev. D* **85** (2012) 112005, doi:10.1103/PhysRevD.85.112005, arXiv:1201.5652

[58] D0 Collaboration, “Measurement of the ZZ production cross section and search for the standard model Higgs boson in the four lepton final state in p\bar{p} collisions”, *Phys. Rev. D* **88** (2013) 032008, doi:10.1103/PhysRevD.88.032008, arXiv:1304.5422
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, J.W. Andrejkovic, T. Bergauer, S. Chatterjee, M. Dragicevic, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, P. Paulitsch, F.M. Pitters, J. Schieck, R. Schöfbeck, M. Spanring, S. Tempel, W. Waltenberger, C.-E. Wulz

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, X. Janssen, T. Kello, A. Lelek, H. Rejeb Sfar, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, J. D’Hondt, J. De Clercq, M. Delcourt, H. El Faham, S. Lowette, S. Moortgat, A. Morton, D. Müller, A.R. Sahasransu, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, L. Favart, A. Grebenyuk, A.K. Kalsi, K. Lee, M. Mahdavikhorrami, I. Makarenko, L. Moureaux, L. Pêtré, A. Popov, N. Postiau, E. Starling, L. Thomas, M. Vanden Bemden, C. Vander Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, J. Knolle, L. Lambrecht, G. Mestdach, M. Niedziela, C. Roskas, A. Samalan, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Bethani, G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, I.S. Donertas, A. Giammanco, K. Jaffel, Sa. Jain, V. Lemaitre, K. Mondal, J. Prisciandaro, A. Taliercio, M. Teklishyn, T.T. Tran, P. Vischia, S. Wertz

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. BRANDAO MALBOISSON, W. Carvalho, J. Chinellato, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, D. Matos Figueiredo, C. Mora Herrera, K. Mota Amarilo, L. Mundim, H. Nogima, P. Rebelo Teles, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
T. Cheng, Q. Guo, T. Javaid, M. Mittal, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, C. Dozen, Z. Hu, J. Martins, Y. Wang, K. Yi

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, F. Iemmi, A. Kapoor, D. Leggat, H. Liao, Z.-A. LIU, V. Milosevic, F. Monti, R. Sharma, J. Tao, J. Thomas-wilsker, J. Wang, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, A. Levin, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, H. Okawa

Zhejiang University, Hangzhou, China
Z. Lin, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
A. Attikis, K. Christoforou, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim, Y. Assran, Y. Assran, Y. Assran

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, R.K. Dewanjee, K. Ehat, M. Kadastik, S. Nandan, C. Nielsen, J. Pata, M. Raidal, L. Tani, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
S. Bharthuar, E. Brück, F. Garcia, J. Havukainen, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, M. Lotti, L. Martikainen, M. Myllymäki, J. Ott, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.O. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, A. Cappati, C. Charlot, O. Davignon, B. Diab, G. Falmagne, S. Ghosh, R. Granier de Cassagnac, A. Hakimi, I. Kucher, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zhigache

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Apparu, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, D. Darej, J.-C. Fontaine, U. Goerlach, C. Grimault, A.-C. Le Bihan, E. Nibigira, P. Van Hove

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, S. Perries, K. Shchablo, V. Sordini, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze, I. Lomidze, Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M.P. Rauch, N. Röwert, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Dodonova, D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, F. Ivone, H. Keller, L. Mastrolirenzo, M. Merschmeyer, A. Meyer, G. Mocellin,
S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, L. Vigilante, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

C. Dziwok, G. Flügge, W. Haj Ahmad, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany

H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke, A. Bermúdez Martínez, S. Bhattacharya, A.A. Bin Anuar, K. Borras, V. Botta, D. Brunner, A. Campbell, A. Cardini, C. Cheng, F. Colombina, S. Consuegra Rodríguez, G. Correia Silva, V. Danilov, L. Didukh, G. Eckerlin, D. Eckstein, L.I. Estevez Banos, O. Filatov, E. Gallo, A. Geiser, A. Giraldi, A. Grohsjean, M. Guthoff, A. Jafari, N.Z. Jomhari, H. Jung, A. Kasem, M. Kasemann, H. Kaveh, C. Kleingwort, D. Krücker, W. Lange, J. Lidrych, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer, M. Meyer, J. Mnich, A. Mussgiller, Y. Otarid, D. Pérez Adán, D. Pitzl, A. Raspereza, B. Ribeiro Lopes, J. Rübenach, A. Saggio, A. Saiibel, M. Savitskyi, M. Scham, V. Scheurer, C. Schwanenberger, A. Singh, R.E. Sosa Ricardo, D. Stafford, N. Tonon, O. Turkot, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, L. Wiens, C. Wissing, S. Wuchterl

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Albrecht, S. Bein, L. Benato, A. Benecke, P. Connor, K. De Leo, M. Eich, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, P. Gunnellini, J. Haller, A. Hinzmann, G. Kasieczka, R. Klanner, R. Kogler, T. Kramer, V. Kutzner, J. Lange, T. Lange, A. Lobanov, A. Malara, A. Negamova, K.J. Pena Rodriguez, O. Rieger, P. Schleper, M. Schröder, J. Schwandt, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, A. Tews, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, K. El Morabit, N. Faltermann, M. Giffels, J.o. Gosewisch, A. Gottmann, F. Hartmann, C. Heidecker, U. Husemann, I. Katkov, P. Keicher, R. Koppenhöfer, S. Maier, M. Metzler, S. Mitra, Th. Müller, M. Neukum, A. Nürnberg, G. Quast, K. Rabbertz, J. Rauer, D. Savoiu, M. Schnepf, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, J. Van Der Linden, R.F. Von Cube, M. Wassmer, M. Weber, S. Wieland, R. Wolf, S. Wozniewski, S. Wunsch

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece

M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraka, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, E. Tziaferi, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece

G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, N. Manthos, I. Papadopoulos, J. Strologas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University,
Budapest, Hungary
M. Csanad, K. Farkas, M.M.A. Gadallah26, S. Lőkös27, P. Major, K. Mandal, A. Mehta, G. Pasztor, A.J. Rádl, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók28, G. Bencze, C. Hajdu, D. Horvath29, F. Sikler, V. Veszpremi, G. Vesztergombi†

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi28, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi30, B. Ujvari

Karoly Robert Campus, MATE Institute of Technology
T. Csorgo31, F. Nemes31, T. Novak

Indian Institute of Science (IISc), Bangalore, India
J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati32, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu33, A. Nayak33, P. Saha, N. Sur, S.K. Swain, D. Vats33

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhingra34, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Meena, K. Sandeep, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti35, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Dutta, B. Gomber36, M. Maity37, P. Palit, P.K. Rout, G. Saha, B. Sahu, S. Sarkar, M. Sharan, B. Singh35, S. Thakur35

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, K. Naskar38, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, M. Kumar, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee

Indian Institute of Science Education and Research (IISER), Pune, India
K. Alpana, S. Dube, B. Kansal, A. Laha, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Department of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi39, M. Zeinali40

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani41, S.M. Etesami, M. Khakzad, M. Mohammadi Najaabadi
University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia a,b, R. Alyn a,b, C. Aruta a,b, A. Colaleo a,b, D. Creanza a,c, N. De Filippis a,c, M. De Palma a,b, A. Di Florio a,b, B. Elmetenawee a,b, L. Fiore a,b, A. Gelmi a,b, M. Gul a,b, G. Iaselli a,c, M. Ince a,b, S. Lezki a,b, G. Maggi a,c, M. Maggi a,b, I. Margiaka a,b, V. Mastrapasqua a,b, J.A. Merlin a, S. My a,b, S. Nuzzo a,b, A. Pellecchia a,b, A. Pompili a,b, G. Pugliese a,c, A. Ranieri a, G. Selvaggi a,b, L. Silvestris a, F.M. Simone a,b, R. Venditti a, P. Verwilligen a

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi a,b, C. Battilana a,b, D. Bonacorsi a,b, L. Borgonovi a, L. Brigliadori a,b, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a,b, M. Cuffiani a,b, G.M. Dallavalle a, T. Diotalevi a,b, F. Fabbri a,b, A. Fanfani a,b, P. Giacomelli a, L. Giommi a,b, C. Grandi a,b, L. Guiducci a,b, S. Lo Meo a,b, C. Lunerti a,b, S. Marcellini a, G. Masetti a, F.L. Navarra a,b, A. Perrotta a, F. Primavera a,b, A.M. Rossi a,b, T. Rovelli a,b, G.P. Sirolli a,b

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergo a,b, S. Costa a,b, A. Di Mattia b, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbagli a,b, A. Cassesse a,b, R. Ceccarelli a,b, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, G. Latino a,b, P. Lenzi a,b, M. Lizzo a,b, M. Meschini a, S. Paoletti a, R. Seidita a,b, G. Squazzoni a,b, L. Villiani a,b

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benucci, S. Bianco, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzo a,b, F. Ferro a, R. Mulargia a,b, E. Robutti a,b, S. Tosi a,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benaglia a, F. Brivio a,b, F. Cetorelli a,b, V. Ciriolo a,b, F. De Guio a,b, M.E. Dinardo a,b, P. Dini a,b, S. Gennai a,b, A. Ghetti a,b, P. Govoni a,b, L. Guzzì a,b, M. Malberti a,b, S. Malvezzi a,b, A. Massironi a,b, D. Menasce a,b, L. Morioni a,b, M. Paganoni a,b, D. Pedrini a,b, S. Ragazzi a,b, N. Redaelli a,b, T. Tabarelli de Fatis a,b, D. Valsecchi a,b, D. Zuolo a,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempo a,b, F. Carnevali a,b, N. Cavallolo a,c, A. De Iorio a,b, F. Fabozzi a,c, A.O.M. Iorio a,b, L. Lista a,b, S. Meola a,d, F. Montagna a,b, B. Rossi a,b, C. Sciaccia a,b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi a,b, N. Bacchetta a,b, D. Bisello a,b, P. Bortignon a, A. Bragagnolo a,b, R. Carlin a,b, P. Checchia a,b, T. Dorigo a,b, U. Dosselli a, F. Gasparini a,b, U. Gasparini a,b, S.Y. Hahn a,b, L. Layer a,b, M. Marzocchi a,b, A.T. Meneguzzo a,b, J. Pazzini a,b, M. Presilla a,b, P. Ronchese a,b, B. Rosin a,b, F. Simonetto a,b, G. Strong a,b, M. Tosi a,b, H. YARAR a,b, M. Zanetti a,b, P. Zotto a,b, A. Zucchetta a,b, G. Zumerle a,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
C. Aime a,b, A. Braghieri a,b, S. Calzaferri a,b, D. Fiorina a,b, P. Montagna a,b, S.P. Ratti a,b, V. Re a,b, C. Riccardi a,b, P. Salvini a, I. Vai a, P. Vitullo a,b
INFIN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
P. Asenov a,b, G.M. Bilei a, D. Ciangottini a,b, L. Fanò a,b, P. Lariccia a,b, M. Magherini b, G. Mantovani a,b, V. Mariani a,b, M. Menichelli a, F. Moscatelli a,b, A. Piccinelli a,b, A. Rossi a,b, A. Santocchia a,b, D. Spiga a, T. Tedeschi a,b

INFIN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
P. Azzurri a, G. Bagliesi a, V. Bertacchi a,c, L. Bianchini a, T. Boccali a, E. Bossini a,b, R. Castaldi a, M.A. Ciocci a,b, V. D’Amante a,d, R. Dell’Orso a, M.R. Di Domenico a,d, S. Donato a, A. Giassi a, F. Ligabue a,c, E. Manca a,c, G. Mandolesi a,c, A. Messineo a,b, F. Palla a, S. Parolino a,b, G. Ramírez-Sanchez a,c, A. Rizzi a,b, G. Rolandi a,c, S. Roy Chowdhury a,c, A. Scribano a, N. Shafiei a,b, P. Spagnolo a, R. Tenchini a, G. Tonelli a, R. Tramontano a,b

INFIN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
M. Campana a,b, F. Cavallari a, D. Del Re a,b, E. Di Marco a, M. Diemoz a, E. Longo a,b, P. Meridiani a, G. Organtini a,b, F. Pandolfi a, R. Paramatti a,b, C. Quaranta a,b, S. Rahatlou a,b, C. Roevelli a, F. Santanastasio a,b, L. Soffii a, R. Tramontano a,b

INFIN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapane a,b, R. Arcidiacono a,c, S. Argiro a,b, M. Arneodo a,c, N. Bartosik a, R. Bellan a,b, A. Bellora a,b, J. Berenguer Antequera a,b, C. Biino a, N. Cartiglia a, S. Cometti a, M. Costa a,b, R. Covarelli a,b, N. Demaria a, B. Kiani a,b, F. Legger a, C. Mariotti a, S. Maselli a, E. Migliore a,b, E. Monteil a,b, M. Monteno a, M.M. Obertino a,b, G. Ortona a, L. Pacher a,b, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a,b, M. Ruspa a,c, K. Shchelina a,b, F. Siviero a,b, V. Sola a, A. Solano a,b, D. Soldi a,b, A. Staiano a, M. Tornago a,b, D. Trocino a,b, A. Vagnerini

INFIN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belforte a, V. Candelise a,b, M. Casarsa a, F. Cossutti a, A. Da Rold a,b, G. Della Ricca a,b, G. Sorrentino a,b, F. Vazzoler a,b

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, S. Lee, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon
University of Seoul, Seoul, Korea
W. Jang, D. Jeon, D.Y. Kang, Y. Kang, J.H. Kim, S. Kim, B. Ko, J.S.H. Lee, Y. Lee, I.C. Park, Y. Roh, M.S. Ryu, D. Song, I.J. Watson, S. Yang

Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea
M. Choi, Y. Jeong, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia
T. Torims, V. Veckalns

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Carvalho Antunes De Oliveira, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, M. Leon Coello, J.A. Murillo Quijada, A. Sehrawat, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, M. Gorski, M. Kazana, M. Szleper, P. Zalewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, M. Pisano, J. Seixas, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, D. Budkouski, I. Golutvin, I. Gorbunov, V. Karjavine, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, M. Savina, D. Seitova, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, B.S. Yuldashev, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sokov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gudin, N. Golubev, A. Karneyeu, D. Kirpichnikov, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lykhtovskaya, A. Nikitenko, V. Popov, A. Spiridonov, A. Stepanov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, A. Oskin, P. Parygin, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, A. Kozyrev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, D. Elumakhov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borshch, V. Ivanchenko, E. Tcherniaev
University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. FOUZ, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, Á. Navarro Tobar, Á. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, L. Urda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, C. Ramón Álvarez, J. Ripoll Sau, V. Rodríguez Bouza, A. Trapote, N. Trevisani

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, C. Fernandez Madrazo, P.J. Fernandez Manteca, A. García Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, P. Matorras Cuevas, J. Piedra Gomez, C. Priéels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan García

University of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy, D.U.J. Sonnadara, DDC Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, J. Alimena, E. Auffray, G. Auzinger, J. Baechler, P. Baillon†, D. Barney, J. Bendavid, M. Bianco, A. Bocci, T. Camporesi, M. Capeans Garrido, G. Cerminara, S.S. Chhibra, M. Cipriani, L. Cristella, D. d’Enterria, A. Dabrowski, N. Daci, A. David, A. De Roeck, M.M. Defranchis, M. Deile, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emrskova, F. Fallavollita, D. Fasanella, S. Fiorendi, A. Florent, G. Franzoni, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Haranko, J. Hegeman, Y. Iiyama, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, S. Laurila, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, S. Mallios, M. Mannelli, A.C. Marini, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrelli, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Piparo, M. Pitt, H. Qu, T. Quast, D. Rabady, A. Racz, G. Reales Gutiérrez, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwik, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas, S. Summers, V.R. Tavolaro, D. Treille, A. Tsiourou, G.P. Van Onsem, M. Verzetti, J. Wanczyk, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, A. Ebrahimi, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, M. Missiroli, T. Rohe
ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
K. Androsov, M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, F. Eble, K. Gedia, F. Glessgen, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, A.-M. Lyon, R.A. Manzoni, C. Martin Perez, M.T. Meinhard, F. Nessi-Tedaldi, J. Niedziela, F. Pauss, V. Perovic, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, V. Stampf, J. Steggemann, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
K. Amsler, P. Bärtschi, C. Botta, D. Brzhechko, M.F. Canelli, K. Cormier, A. De Wit, R. Del Burgo, J.K. Heikkilä, M. Huwiler, W. Jin, A. Jofrehei, B. Kilminster, S. Leontsinis, S.P. Liechti, A. Macchiolo, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, A. Reimers, P. Robmann, S. Sanchez Cruz, K. Schweiger, Y. Takahashi

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Yy. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, H.y. Wu, E. Yazgan, Pr. Yu

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarsecki, Z.S. Demiroglu, F. Dolek, I. Dumanoglu, E. Eskut, Y. Guler, E. Gurpinar Guler, I. Hos, C. Isik, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Özdemir, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Türkacar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
D. Anthony, E. Bhal, S. Bologna, J.J. Brooke, A. Bundock, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, M.I. Holmberg, L. Kreczko, B. Krikler, S. Paramesvaran, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianou, K. Walkingshaw Pass, R. White

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, C. Cooke, K.V. Ellis, K. Harder,
S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D.PETYT, T. REIS, T. SCHUH, C.H. Shepherd-Themistocleous, I.R. Tomalin, T. WILLIAMS

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, V. Cepaitis, G.S. CHAHAI, D. Colling, P. Dauncey, G. Davies, M. Della Negra, S. Fayer, G. Fedi, G. Hall, M.H. Hassanshahi, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, D.G. Monk, J. Nash, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. SEEZ, A. Shtipliyski, A. Tapper, K. Uchida, T. VIRDEE, M. Vojinovic, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid, L. Teodeorescu, S. ZAHID

Baylor University, Waco, USA
S. Abdullin, A. Brinkerhoff, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, B. McMaster, N. Pastika, M. Saunders, S. Sawant, C. Sutantawibul, J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek, A. Domínguez, R. UNIYAL, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, D. Di Croce, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. WEST

Boston University, Boston, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, E. Fontanesi, D. Gastler, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, A. Tsatsos, S. Yuan, D. ZOU

Brown University, Providence, USA
G. Benelli, B. Burkle, X. COUBEZ, D. Cutts, M. Hadley, U. Heintz, J.M. Hogan, G. Landsberg, K.T. Lau, M. Lukasik, J. Luo, M. Narain, S. Sagir, E. Usai, W.Y. WONG, X. Yan, D. YU, W. ZHANG

University of California, Davis, Davis, USA
J. Bonilla, C. Brainerd, R. Breeden, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, P.T. Cox, R. Erbacher, G. Haza, F. Jensen, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, B. Regnery, D. Taylor, Y. YAO, F. ZHANG

University of California, Los Angeles, USA
M. Bachtis, R. Cousins, A. Datta, D. Hamilton, J. Hauser, M. Ignatenko, M.A. Iqbal, T. Lam, W.A. Nash, S. Regnard, D. Saltzberg, B. Stone, V. VALUEV

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, M. Gordon, G. Hanson, G. Karapostoli, O.R. Long, N. Manganeli, M. Olmedo Negrete, W. SI, S. Wimpenny, Y. ZHANG

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, D. Diaz, J. Duarte, R. Gerosa, L. Giannini, D. Gilbert, J. Guiang, R. Kansal, V. Krutelyov, R. Lee, J. Letts, M. Masciovecchio, S. May, M. Pieri, B.V. Sathia Narayanan, V. Sharma, M. Tadel, A. Vartak, F. Würthwein, Y. XIANG, A. YAGIL

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, M. Kilpatrick, J. Kim, B. Marsh, H. Mei, M. Oshiro, M. Quinnan, J. Richman, U. Sarica, J. Sheplock, D. Stuart, S. Wang
California Institute of Technology, Pasadena, USA
A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, M. Spiropulu, J.R. Vlimant, C. Wang, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
J. Alison, S. An, M.B. Andrews, P. Bryant, T. Ferguson, A. Harilal, C. Liu, T. Mudholkar, M. Paulini, A. Sanchez

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Hassan, E. MacDonald, R. Patel, A. Perloff, C. Savard, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, S. Bright-thonney, Y. Cheng, D.J. Cranshaw, S. Hogan, J. Monroy, J.R. Patterson, D. Quach, J. Reichert, M. Reid, A. Ryd, W. Sun, J. Thom, P. Wittich, R. Zou

Fermi National Accelerator Laboratory, Batavia, USA
M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauer, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, K.F. Di Pietro, V.D. Elvira, Y. Feng, J. Freeman, Z. Gecse, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klimsnma, B. Klima, K.H.M. Kwo, S. Lammel, D. Lincoln, R. Lipton, T. Liu, C. Madrid, K. Maeshima, C. Mantilla, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, J. Ngadiuba, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena57, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Staut, T. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, E. Koenig, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, A. Muthirakalayil Madhu, N. Rawal, D. Rosenzweig, S. Rosenzweig, K. Shi, J. Sturdy, J. Wang, E. Yigitbasi, X. Zu

Florida State University, Tallahassee, USA
T. Adams, A. Askey, R. Habibullah, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, O. Viazlo, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy90, M. Hohlmann, R. Kumar Verma, D. Noonan, M. Rahmani, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, A.H. Merrit, C. Mills, G. Oh, T. Roy, S. Rudrabhatla, M.B. Tonjes, N. Varelas, J. Viinikainen, X. Wang, Z. Wu, Z. Ye

The University of Iowa, Iowa City, USA
M. Alhusseini, K. Dilsiz91, R.P. Gandrajula, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili92, J. Nachtman, H. Ogu93, Y. Onel, A. Penzo, C. Snyder, E. Tiras94

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, J. Davis, M. Emini, A.V. Gritsan, S. Kyriacou, P. Maksimovic, J. Roskes, M. Swartz, T.A. Vámi
The University of Kansas, Lawrence, USA
A. Abreu, J. Anguiano, C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, Z. Flowers, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, M. Lazarovits, C. Lindsey, J. Marquez, N. Minafra, M. Murray, M. Nickel, C. Rogan, C. Royon, R. Salvatico, S. Sanders, E. Schmitz, C. Smith, J.D. Tapia Takaki, Q. Wang, Z. Warner, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, K. Nam

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, C. Palmer, M. Seidel, A. Skuja, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, G. Andreassi, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, J. Eysermans, C. Freer, G. Gomez Ceballos, M. Goncharov, P. Harris, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, B. Maier, C. Mironov, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Tatar, J. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, M. Bryson, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, C. Joo, I. Kravchenko, M. Musich, I. Reed, J.E. Siado, G.R. Snow, T. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, H. Bandyopadhyay, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, A. Williams

Northeastern University, Boston, USA
G. Alverson, E. Barberis, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, Y. Liu, N. Odell, M.H. Schmitt, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Band, R. Bucci, A. Das, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, K. Lannon, J. Lawrence, N. Loukas, D. Lutton, N. Marinelli, I. Mcalister, T. McCauley, F. Meng, K. Mohrman, Y. Musienko, R. Ruchti, P. Siddireddy, A. Townsend, M. Wayne, A. Wightman, M. Wolf, M. Zarucki, L. Zygala

The Ohio State University, Columbus, USA
B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, M. Nunez Ornelas, K. Wei, B.L. Winer, B.R. Yates

Princeton University, Princeton, USA
F.M. Addesa, B. Bonham, P. Das, G. Dezoort, P. Elmer, A. Frankenthal, B. Greenberg,
N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A.S. Bakshi, V.E. Barnes, R. Chawla, S.Das, L. Gutay, M. Jones, A.W. Jung, S. Karmarkar, M. Liu, G. Negro, N. Neumeister, G. Paspalaki, C.C. Peng, S. Piperov, A. Purohit, J.F. Schulte, M. Stojanovic, J. Thieman, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
J. Dolen, N. Parashar

Rice University, Houston, USA
A. Baty, M. Decaro, S. Dildick, K.M. Ecklund, S. Freed, P. Gardner, F.J.M. Geurts, A. Kumar, W. Li, B.P. Padley, R. Redjimi, W. Shi, A.G. Stahl Leiton, S. Yang, L. Zhang, Y. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thyil, S. Thomas, H. Wang

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, B. Tannenwald, S. White, E. Wolfe

Wayne State University, Detroit, USA
N. Poudyal

University of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, F. Fienga, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, S. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens
†: Deceased
1: Also at TU Wien, Wien, Austria
2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at University of Chinese Academy of Sciences, Beijing, China
7: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
8: Also at UFMS, Nova Andradina, Brazil
9: Also at Nanjing Normal University Department of Physics, Nanjing, China
10: Now at The University of Iowa, Iowa City, USA
11: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
12: Also at Joint Institute for Nuclear Research, Dubna, Russia
13: Also at Helwan University, Cairo, Egypt
14: Now at Zewail City of Science and Technology, Zewail, Egypt
15: Also at Suez University, Suez, Egypt
16: Now at British University in Egypt, Cairo, Egypt
17: Also at Purdue University, West Lafayette, USA
18: Also at Université de Haute Alsace, Mulhouse, France
19: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
20: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
21: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
22: Also at University of Hamburg, Hamburg, Germany
23: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
24: Also at Brandenburg University of Technology, Cottbus, Germany
25: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
26: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
27: Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
28: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
29: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
30: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
31: Also at Wigner Research Centre for Physics, Budapest, Hungary
32: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
33: Also at Institute of Physics, Bhubaneswar, India
34: Also at G.H.G. Khalsa College, Punjab, India
35: Also at Shoolini University, Solan, India
36: Also at University of Hyderabad, Hyderabad, India
37: Also at University of Visva-Bharati, Santiniketan, India
38: Also at Indian Institute of Technology (IIT), Mumbai, India
39: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
40: Also at Sharif University of Technology, Tehran, Iran
41: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
42: Now at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
43: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
44: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
45: Also at Università di Napoli 'Federico II', NAPOLI, Italy
46: Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, PERUGIA, Italy
47: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
48: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
49: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
50: Also at Institute for Nuclear Research, Moscow, Russia
51: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
52: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
53: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
54: Also at University of Florida, Gainesville, USA
55: Also at Imperial College, London, United Kingdom
56: Also at P.N. Lebedev Physical Institute, Moscow, Russia
57: Also at California Institute of Technology, Pasadena, USA
58: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
59: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
60: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
61: Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy, Pavia, Italy
62: Also at National and Kapodistrian University of Athens, Athens, Greece
63: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
64: Also at Universität Zürich, Zurich, Switzerland
65: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
66: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
67: Also at Şırnak University, Şırnak, Turkey
68: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
69: Also at Konya Technical University, Konya, Turkey
70: Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
71: Also at Piri Reis University, Istanbul, Turkey
72: Also at Adiyaman University, Adiyaman, Turkey
73: Also at Ozyegin University, Istanbul, Turkey
74: Also at Izmir Institute of Technology, Izmir, Turkey
75: Also at Necmettin Erbakan University, Konya, Turkey
76: Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey, Yozgat, Turkey
77: Also at Marmara University, Istanbul, Turkey
78: Also at Milli Savunma University, Istanbul, Turkey
79: Also at Kafkas University, Kars, Turkey
80: Also at Istanbul Bilgi University, Istanbul, Turkey
81: Also at Hacettepe University, Ankara, Turkey
82: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
83: Also at Vrije Universiteit Brussel, Brussel, Belgium
84: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
85: Also at IPPP Durham University, Durham, United Kingdom
86: Also at Monash University, Faculty of Science, Clayton, Australia
87: Also at Università di Torino, TORINO, Italy
88: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
89: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
90: Also at Ain Shams University, Cairo, Egypt
91: Also at Bingol University, Bingol, Turkey
92: Also at Georgian Technical University, Tbilisi, Georgia
93: Also at Sinop University, Sinop, Turkey
94: Also at Erciyes University, KAYSERI, Turkey
95: Also at Texas A&M University at Qatar, Doha, Qatar
96: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea