Immune Responses Regulated by Cannabidiol

James M. Nichols and Barbara L.F. Kaplan*

Abstract

Introduction: Cannabidiol (CBD) as Epidiolex® (GW Pharmaceuticals) was recently approved by the U.S. Food and Drug Administration (FDA) to treat rare forms of epilepsy in patients 2 years of age and older. Together with the increased societal acceptance of recreational cannabis and CBD oil for putative medical use in many states, the exposure to CBD is increasing, even though all of its biological effects are not understood. Once such example is the ability of CBD to be anti-inflammatory and immune suppressive, so the purpose of this review is to summarize effects and mechanisms of CBD in the immune system. It includes a consideration of reports identifying receptors through which CBD acts, since the “CBD receptor,” if a single one exists, has not been definitively identified for the myriad immune system effects. The review then provides a summary of in vivo and in vitro effects in the immune system, in autoimmune models, with a focus on experimental autoimmune encephalomyelitis, and ends with identification of knowledge gaps.

Conclusion: Overall, the data overwhelmingly support the notion that CBD is immune suppressive and that the mechanisms involve direct suppression of activation of various immune cell types, induction of apoptosis, and promotion of regulatory cells, which, in turn, control other immune cell targets.

Keywords: cannabidiol; immune response; inflammation

Cannabidiol History and Therapeutic Uses

Cannabidiol (CBD) is a plant-derived cannabinoid that has structural similarity to the primary psychotropic congener in cannabis, Δ⁹-tetrahydrocannabinol (THC). While CBD was initially isolated in the 1940s, its structure was not elucidated until the 1960s.¹,² Unlike THC, CBD is bicyclic, comprised a terpene and an aromatic ring, and is a pentyl side chain.¹ It exists as two enantiomers, and it is (−)-CBD³ that is one of the major constituents found in Cannabis sp., and will be the focus of this review. For many years, THC and CBD were designated as psychoactive and nonpsychoactive, respectively, owing to the fact that THC produces the euphoric high associated with cannabis use, while CBD does not. However, since we know that CBD produces biological effects in the central nervous system (CNS), perhaps it is better defined as psychoactive, but not psychotropic, since it is active in the CNS without producing the euphoric high.

Perhaps it was the association of the euphoric high with THC that provided the initial focus on THC as opposed to CBD for potential medical use, since THC was originally identified as the active component of the plant.⁴ However, in recent years, researchers have begun to explore CBD more as a therapeutic addition or alternative to THC. In the United States, oral THC (dronabinol, Marinol®) was first approved in 1985 by the Food and Drug Administration (FDA) to treat nausea and vomiting associated with chemotherapy. In 1992, dronabinol was also approved to treat cachexia in AIDS patients.⁵ The next major advancement in cannabinoid pharmaceuticals was not until the mid-2000s when Sativex® (nabiximols), a combination of THC and CBD as an oromucosal spray, was approved in Canada and the EU for neuropathic pain in multiple sclerosis (MS) and intractable cancer pain.⁶ There are several reasons why combining THC and CBD in a single therapeutic could have value.⁶ First, additional therapeutic benefit might be gained from hitting multiple targets; for example, if THC alleviates pain and CBD alleviates anxiety,⁷–¹⁶ the combination therapy could be quite effective for chronic pain sufferers.
Second, for disease states in which both THC and CBD are efficacious, a combination might allow for lower doses of THC, thereby potentially decreasing the psychotropic effects of THC. Third, there are some studies suggesting pharmacokinetic interactions between CBD and THC in which CBD treatment increases THC levels, thereby allowing longer duration of effects of THC. Sativex® has been evaluated in several clinical trials for spasticity associated with MS, neuropathic pain, and other conditions.48–51 It is also clear that CBD possesses therapeutic benefit, and in some cases, the beneficial effects of CBD are for diseases for which other available treatments have not been efficacious.52 Together, these observations demonstrate the critical need to continue research on CBD, and therefore the goal of this review is to provide a summarized view of the effects and mechanisms by which CBD alters immune function. The review will include an evaluation of the role for various receptors through which CBD acts in the immune system. There will also be a description of CBD effects in animal and human immune responses, a characterization of mechanisms by which CBD mediates immune effects, and identification of knowledge gaps regarding CBD’s actions in the immune system.

Identification of CBD Receptors and Other Targets

Upon identification of the cannabinoid receptors, CBD was determined to exhibit low affinity for CB1 receptors and CB2 receptors.54 Consistent with this, we showed CBD-induced suppression of cytokine production in mouse splenocytes in both wild-type and double cannabinoid receptor knockout mice (Cnr1−/−/Cnr2−/− mice).55 Another study demonstrated that ophthalmic administration of CBD following corneal inflammation reduced neutrophils in both wild-type and CB2 receptor knockout mice.56 CBD-mediated suppression of anti-CD3-mediated proliferation of T cells also occurred in both wild-type and CB2 receptor knockout splenocytes.57 However, there are a few reports using inflammatory stimuli in which CBD’s actions have been attributed to either CB1 or CB2 receptors (Table 1). In a sepsis model induced with bacterial lipopolysaccharide (LPS), CBD-mediated inhibition of gastric emptying was reversed with the CB1 receptor antagonist, AM251.58 Similarly, CBD inhibited interleukin (IL)-1 in a hypoxia-ischemia brain insult model and this effect was reversed with the CB2 receptor antagonist, AM630.59 Use of ovalbumin to induce an asthma-like disease in mice demonstrated that some cytokines and chemokines induced in the lungs of mice that were suppressed by CBD (IL-4, IL-5, IL-13, and eotaxin) were differentially regulated by CB1 or CB2 receptors.60 Specifically, CBD-induced suppression of IL-5 was reversed in the presence of the CB2 receptor antagonist, AM630.59 Use of ovalbumin to induce an asthma-like disease in mice demonstrated that some cytokines and chemokines induced in the lungs of mice that were suppressed by CBD (IL-4, IL-5, IL-13, and eotaxin) were differentially regulated by CB1 or CB2 receptors.60 Thus, several studies do suggest a possible role for cannabinoid receptors in CBD-mediated suppression of inflammatory effects. It should also be noted that there are several reports suggesting that CBD acts as an allosteric modulator of CB2 receptors,61–64 although the role for CB2 receptor allosteric modulation by CBD in immune function has not yet been determined.

Another mechanism by which CBD acts is through inhibition of fatty acid amide hydrolase (FAAH),65–67

Receptor	Activity	References
CB1	Agonist	58,60
CB2	Agonist	58,65–67,84,157,160
FAAH	Inhibition	65,66,74,82–88,105,148,194
TRPV1	Agonist	89–91,125,164
Adenosine A3A	Agonist	92–94,96–98,136
PPAR-γ	Activation	59
5-HT1a	Agonist	109,110
GPR55	Antagonist	

FAAH, fatty acid amide hydrolase; PPAR-γ, peroxisome proliferator-activated receptor gamma; TRPV1, transient receptor potential vanilloid 1.
suggesting that some of CBD’s effects are mediated by anandamide elevation since FAAH is responsible for the breakdown of anandamide.65,66 Anandamide is an endogenous cannabinoid that exhibits affinity for CB1 and CB2 receptors.68,69 A recent study suggested that the mechanism by which CBD elevates anandamide involves CBD interaction with fatty acid binding proteins, which prevents anandamide binding to these proteins to block anandamide transport to FAAH.67 Since anandamide exhibits affinity for CB1 and CB2 receptors, and oxidation products of anandamide through cyclooxygenase or cytochrome P450 enzymes produce metabolites that also exhibit affinity for CB1 and CB2 receptors,70,71 anandamide or its metabolites could account for some of the reports that CBD acts through CB1 and/or CB2 receptors.58,61–64,72–84

Actions of CBD in immune function might also be mediated by the transient receptor potential V1, known as the vanilloid receptor (TRPV1), which was found to be activated by CBD.85 Specifically, CBD was found to increase intracellular calcium in HEK cells transfected with TRPV1, and the CBD-induced increase in calcium was blocked by the TRPV1 antagonist, capsazepine.65,66 Follow-up studies demonstrated that CBD desensitizes TRPV1 following activation.85 Other studies have suggested that CBD acts through TRPV1 in the immune system (Table 1). CBD can induce myeloid-derived suppressor cells (MDSCs), a type of regulatory cell, in the liver, and this effect is lost in TRPV1 knockout mice.86 Specifically, regarding inflammation, CBD attenuated thermal hyperalgesia in response to carrageenan injections or in a neuropathic pain model in a capsazepine-dependent manner.87,88 CBD suppression of cytokines in inflamed primary human colonic tissue was attenuated by the TRPV1 antagonist, SB366791.82 SB366791 was also effective in reversing CBD’s suppression of rolling and adherent leukocytes in the sodium monoiodoacetate model of osteoarthritits in rats.83 Together, these data suggest that TRPV1 is a critical receptor through which CBD acts in the immune system.

There have been several critical articles in which adenosine A2A receptors have been shown to mediate CBD’s effects in the immune system.89–91 CBD was shown to inhibit microglial cell proliferation, which was associated with inhibition of adenosine uptake into cells.89 The studies also demonstrated that CBD suppression of tumor necrosis factor-alpha (TNF-α) could be reversed using an adenosine A2A receptor antagonist, and CBD-induced suppression of LPS-stimulated TNF-α was not observed in adenosine A2A receptor knockout mice.89 The role for adenosine A2A receptor in CBD-mediated neuroprotection or suppression of neuroinflammation was demonstrated in a model of hypoxia-ischemia in newborn mouse brains.90 CBD inhibited adenosine uptake into rat microglial cells and CBD enhanced adenosine’s ability to inhibit TNF-α, which was prevented by the adenosine A2A receptor antagonist, ZM241385.91 These studies show that CBD acts through the adenosine A2A receptor, especially in microglial cells.

CBD’s effects have also been shown to be mediated by peroxisome proliferator-activated receptor gamma (PPAR-γ) using PPAR-γ antagonists in models of β amyloid neuroinflammation,92 apoptosis,93,94 dinitrobenzene sulfonic acid (DNBS)-induced colitis,95 human ulcerative colitis,96 LPS activation of microglial cells,97 and hypoxia-ischemia model of neuroinflammation.98

There are several reports that CBD acts through the serotonin 5-HT1a receptor (Table 1). Although most of the evidence for the involvement of this receptor comes from the attenuation of CBD’s effects using the 5-HT1a antagonist, WAY100635, early studies demonstrated that CBD displaced binding of the 5-HT1a agonist, 8-OH-DPAT, in membranes from CHO cells expressing the human 5-HT1a receptor.99 Few of the CBD-mediated effects acting through the serotonin 5-HT1a receptor have been reported in immune cells, but immune cells do express 5-HT1a.100–103 One study showed that IL-1 produced in the brain in response to hypoxia-ischemia insult was inhibited by CBD, and reversed with the 5-HT1a receptor antagonist, WAY100635.59

Studies have suggested that CBD might act through other receptors, including other TRP receptors,79,85,104–107 or opioid receptors.108 There is also evidence that CBD acts through blockade of GPR55,109 and specifically that CBD modestly antagonized proinflammatory effects in human innate cells following GPR55 activation.110 Thus, together, the current data support that immune effects of CBD are mediated through activation of CB1, CB2, TRPV1, adenosine A2A, and PPAR-γ receptors, blockade of GPR55 receptors, and FAAH inhibition.

CBD Immune System Effects and Mechanisms

Immunity is maintained through various cell types acting together to provide protection against foreign invaders, and simultaneously avoid reactions against self-proteins. Thus, an appropriate immune response requires a regulated balance between robust reactions against non-self, but limited or no reactions against self. Cell types include neutrophils, macrophages, and
other myeloid cells comprising the innate immune system, which reacts quickly to destroy pathogens. In the event that an innate response is insufficient, certain innate cells can activate the adaptive immune response, comprised predominantly of T and B cells. T cells can then provide signals that recruit and activate other immune cells, or directly lyse or induce apoptosis of infected cells. T cells can also help stimulate B cells, which produce antibodies to neutralize pathogens and/or enhance destruction of the pathogens. Communication between the various cell types, and therefore the innate and adaptive immune responses, is mediated by expressed or secreted proteins called cytokines or chemokines. Inflammation is the process commonly associated with the innate immune response since pathogen destruction can also cause tissue damage, although T cells certainly are proinflammatory as well. In fact, many cell types, regardless of whether they are immune cells, produce proinflammatory cytokines in response to inflammation.

The effects of CBD on immune responses can involve innate or adaptive responses. In assessing these responses, various cell types and their functions have been examined. For instance, a common end-point to examine regardless of cell type is cytokine or chemokine production. Typical proinflammatory cytokines include IL-1β, IL-6, TNF-α and IL-17A, while IL-10 is considered anti-inflammatory. Some cytokines are produced by specific T cell subsets; for instance, the Th1 subset produces interferon-gamma (IFN-γ) and promotes cell-mediated cytotoxicity, while the Th2 subset produces IL-4 and promotes B cell responses. Other end-points that might provide clues of disruption of immune competence are nitric oxide or myeloperoxidase (MPO) production from innate cells, as these are often released during pathogen destruction. Thus, the effects of CBD on immune function are presented by cell type, outlining known mechanisms by which CBD alters various end-points. Tables 2–4 include the studies described in the

Table 2. Cannabidiol-Induced Immune Suppression by Cell Type in Human Cells In Vitro

Cell type End-point(s)	References
PBMCs	rosette formation 138a, cytokines 111,112a
Human cell lines	cytokines 186, apoptosis 113, oxidative stress 80a
Jurkat and MOLT-4 T cells	apoptosis 119a, adhesion molecules, migration, transcription factors, nitrative stress 55a
Human coronary artery endothelial cells	cytokines, transcription factors 142
Jurkat T cells	migration 195, indoleamine-2, 3-dioxigenase (IDO), cytokines 142
Human neutrophils	apoptosis 114a, proteins and nitric oxide 96, adhesion molecules 118
PBMCs	inflammatory genes 79, phosphoproteins 82a, cytokines 82a
THP-1 cells	apoptosis 114a, ROS 185, proliferation and cytokines 146a
Human mesenchymal stem cell isolates	cytokines 84, apoptosis 115a, CD83 expression in HIV+ dendritic cells 134a

Table 3. Cannabidiol-Induced Immune Suppression by Animal Cell Type In Vitro

Cell type End-point(s)	References
B6C3F1 female splenocytes	IL-2, apoptosis 196
EL-4 T cells	IL-2, cytokines, NF-κB 80b
Mouse EOC-20 microglial cells	proliferation 140b
BALB/c male splenocytes	IL-4 and IFN-γ 55b
B6C3F1 female splenocytes	IL-2 and IFN-γ 55b
BALB/c male thymocytes and EL-4 T cells	apoptosis 150b
BALB/c male splenocytes	apoptosis 151b
Sprague-Dawley rat microglial cells	cytokines, adenine uptake, TNF-α 91b
BV-2 cells	cytokines, NF-κB activation 147b
Mouse brain slices	cytokines 90b
Rat male astrocytes	gliosis 92b
CS7BL/6 male peritoneal macrophages	cytokines 118
BALB/c microglial cells	apoptosis 156b
BV-2 cells	oxidative stress, CD2 148b
MOG-specific female T cells	IL-17A and IL-6 144b
Mouse brain endothelial cells	VCAM-1 and leukocyte adhesion 164b
Rat astrocytes	CD2 146b
RAW cells	TNF-α 148, cytokines 143b
MOG-specific female T cells	proliferation and cytokines 146b
Rat male splenocytes and mesenteric lymph nodes	activation 97b
Primary mouse male and female microglial cells	alteration of circadian rhythm-associated genes 197
BV-2 cells	alteration of miRNAs 161b
BV-2 cells	proliferation and cytokines 57

*Cell line.
bDiscussed in review.
Sex not stated for cells derived from animals (or in the case of primary microglial cell isolates, not determined in newborn animals).
IFN-γ, interferon-gamma; IL, interleukin; miRNA, microRNA; MOG, myelin oligodendrocyte glycoprotein; NF-κB, nuclear factor-κB; TNF-α, tumor necrosis factor-alpha; VCAM-1, vascular cell adhesion molecule-1.
Model	Disease model	Route, dose range, and duration/frequency	Major effects	Reference
Male CD-1 mice	sRBC	i.p. 25 mg/kg 4 days	Modest ↓ antibody production	155
Male DBA/2 mice	Collagen-induced arthritis	i.p. 2.5–20 mg/kg for i.p. 5–50 mg/kg for oral 10 days	↓ disease, ↓ TNF-α and IFN-γ	139b
Male ICR mice	Carrageenan-induced inflammation	ethosomal (CBD in ethosomal gel) 100 mg of ethosomal CBD (3%)	↓ inflammation	198
Male Wistar rats	Carrageenan-induced inflammation	Oral 5–40 mg/kg 3 days	↓ disease, ↓ prostaglandin (PGE₂)	199
Female NOD mice	Diabetes	i.p. 5 mg/kg/day 10–20 injections	↓ disease incidence, ↓ IL-12, TNF-α and IFN-γ	123
Female C57BL/6 mice	EL-4 leukemia growth	i.p. 12.5 or 25 mg/kg once	↑ apoptosis of tumor cells	80b
Male Wistar rats	Sciatic nerve pain or CFA-induced inflammation	Oral 2.5–20 mg/kg 7 days	↓ pain, ↓ TNF-α, ↓ prostaglandin (PGE₂)	88
Male Sprague-Dawley rats	Ischemia-reperfusion injury (myocardial)	i.p. 5 mg/kg twice	Modest ↓ infarct size, ↓ TNF-α	200
C57BL/6J mice	Aβ inflammation	i.p. 2.5 or 10 mg/kg 7 days	↓ IL-1/β, ↓ iNOS	117
Male BALB/c mice	Ovalbumin (asthma)	i.p. 5–20 mg/kg once	↓ serum antibodies, ↓ IL-2, IL-4, and IFN-γ	140b
Male ddY mice	Focal cerebral ischemia	i.p. 3 mg/kg various times surrounding occlusion	↓ infarct size, ↓ neutrophil MPO activity	129b
Female NOD mice	Diabetes	i.p. 5 mg/kg/day 5 injections per week for 4 weeks	↓ disease incidence, ↓ IL-6 and IL-12, ↑ IL-4 and IL-10	124b
Female B6C3F1 mice	sRBC	Oral 25–100 mg/kg/day 5 days	Modest ↓ antibody production	55b
Male ICR mice	DNBS colitis	i.p. 1–10 mg/kg 6 days	↓ inflammation, ↓ colon weight:length ratio, ↓ iNOS, IL-1/β, ↑ IL-10	95b
Male Wistar rats	None	i.p. 2.5 or 5 mg/kg 14 days	↓ blood leukocytes and lymphocytes, ↓B, T and CTL cells, ↑ NK and NKT cells	201
Male CD-1 mice	Diabetes	i.p. or i.n. 0.1–2 mg/kg i.n. 1–20 mg/kg i.p. 3 months	↓ diabetic pain, ↓ density of microglial cells	81b
Male C57BL/6 mice	Streptozotocin-induced diabetes	i.p. 1–20 mg/kg 11 weeks	↓ disease, ↓ TNF-α, NF-κB activity, ICAM-1, VCAM-1, iNOS, p-p38, p-JNK, ↑ p-AKT	120b
Male Wistar rats	TNBS colitis	i.p. 5–20 mg/kg once	Modest ↓ disease, ↓ colonic contractions, ↓ neutrophil MPO activity	130
Male Wistar rats	Cecal ligation and puncture	i.p. 2.5–10 mg/kg once or up to 9 days	↑ disease survival	184

(continued)
Table 4. (Continued)

Model	Disease model	Route, dose range, and duration/frequency*	Major effects	Reference
Female Sabra mice	Hepatic encephalopathy (bile duct ligation)	i.p. 5 mg/kg 4 weeks	Improved disease-associated cognitive impairments, ↓ TNF-α	202
Male BALB/c mice	Ovalbumin (footpad)	i.p. 1–10 mg/kg 5 days	↓ footpad swelling, ↓ TNF-α and IFN-γ, ↑ IL-10	188
Male Swiss OFI mice	LPS i.p.	i.p. 10 mg/kg twice	↓ mast cell infiltration, macrophage activation marker, ↓ TNF-α	96
Female C57BL/6 mice	Experimental autoimmune hepatitis	i.p. 10–50 mg/kg once	↓ hepatic inflammation, ↓ IL-2, TNF-α, IFN-γ, IL-6, IL-17A, IL-12, MCP-1 (CCL-2), and eotaxin, ↑ MDSCs	86b
Male C57BL/6 mice	Ischemia reperfusion injury (liver)	i.p. 3 or 10 mg/kg once	↓ hepatic inflammation, ↓ MIP-1α, ICAM, MIP-2, TNF-α, NF-κB activity, ICAM-1, iNOS, p-p38, p-JNK	118
C57BL/6 mice³	LPS i.v.	i.v. 1 or 3 mg/kg once	↓ vasodilation, leukocyte margination, and extravasation, ↓ COX-2, TNF-α, and iNOS	121
Male C57BL/6 mice	LPS-induced pulmonary inflammation	i.p. 0.3–80 mg/kg once	↓ BALF lymphocytes, macrophages, and neutrophils, ↓ TNF-α, IL-6, MCP-1 (CCL-2), and MIP-2	125b
Male Wistar rats	Meningitis (Streptococcus pneumoniae)	i.p. 2.5–10 mg/kg once or up to 9 days	Improved disease-associated cognitive impairments, ↓ TNF-α	203
C57BL/6 mice³	Cerulein (pancreatitis)	i.p. 0.5 mg/kg twice	↓ disease, ↓ TNF-α and IL-6, ↓ neutrophil MPO	128b
Newborn pigs³	Hypoxia-ischemic brain injury	i.v. 1 mg/kg once	neuroprotection, ↓ IL-1	59b
Male Wistar rats	Ovalbumin (asthma)	i.p. 5 mg/kg twice	↓ TNF-α, IL-6, IL-4, IL-5, and IL-13	127b
Male C57BL/6 mice	LPS-induced pulmonary inflammation	i.p. 20–80 mg/kg once	↓ inflammation, ↓ BALF lymphocytes, macrophages, and neutrophils, ↓ TNF-α, IL-6, MCP-1 (CCL-2), and MIP-2	132
Female C57BL/6 mice	None	i.p. 20 mg/kg once	↑ MDSCs	136b
Female C57BL/6 mice	Malaria (Plasmodium berghei)	i.p. 30 mg/kg 3–5 days	↓ IL-6 and TNF-α	204
Male Sprague Dawley rats	Freund’s Adjuvant (osteoarthritis)	Transdermal 0.06–0.62 mg/day 4 days	↓ inflammation, ↓ TNF-α	205
Male ICR mice	DNBS Colitis	i.p. or oral⁴ 5–30 mg/kg for i.p. 10–60 mg/kg oral 3 days	↓ colon weight:length ratio, ↓ neutrophil MPO	131
Female NOD mice	Type 1 diabetes	i.p. 5 mg/kg 5 injections/week for 10 weeks	↓ disease	206
Male A/J mice	Experimental autoimmune myocarditis	i.p. 10 mg/kg 46 days	↓ disease, ↓ lymphocyte populations in heart, ↓ IL-6, IFN-γ, IL-1β, and MCP-1 (CCL-2)	126b
Male Wistar rats	Middle cerebral artery occlusion	i.c.v. 50–200 ng/rat 5 days	↓ infarct size	149

(continued)
CBD effects and mechanisms of immune suppression in innate cells

One of earliest effects reported with CBD was in human mononuclear cells, in which TNF-α, IFN-γ, and IL-1α were all suppressed (0.01–20 μg/mL CBD or 0.03–64 μM CBD). Later studies focused on human monocyctic cells revealed that CBD can induce apoptosis in either HL-60 (1–8 μg/mL CBD or 3.2–26 μM CBD) or primary human monocyctic cells (1–16 μM CBD). Macrophages are also targets, although they have been studied more commonly in animal models. Peritoneal macrophages were used early on to demonstrate that CBD (3 μg/mL or 10 μM) targets nitric oxide, and this has also been a well-studied target of suppression by CBD in many tissues and cell types. The mechanism by which CBD suppressed nitric oxide

Table 4. (Continued)

Model	Disease model	Route, dose range, and duration/frequency	Major effects	Reference
Male Wistar rats	Middle cerebral artery occlusion	i.c.v. 50–200 ng/rat 5 days	↓ infarct size, ↓ TNF-α	207
Male Wistar rats	Sodium monoiodoacetate (ostearthitis)	Intra-arterial 100–300 μg/rat multiple doses	↓ pain, ↓ rolling and adherent leukocytes, ↓ joint nerve demyelination	83b
Female C57BL/6 mice	Alcoholic liver disease	i.p. 5 or 10 mg/kg 11 days	↓ liver damage, ↓ neutrophils, ↓ TNF-α, MIP-1, IFN-γ, IL-1β, and MCP-1 (CCL-2)	185
Male and female dogs	Osteoarthritis	Oral 2 and 8 mg/kg every 12 h for 4 weeks	↓ pain	208
Male Wistar rats	Ulcerative tongue lesion	i.p. 5 or 10 mg/kg 3 or 7 days	↓ inflammation	209
Female C57BL/6 mice	Spinal cord contusion	1.5 mg/kg 1 and 24 h after injury, on day 3, then twice/week up to 10 weeks	↓ spinal cord CD4 T cells, ↓ IL-23A, IL-23R, IFN-γ, CXCL9, CLC11, NOS2, and IL-10	189
Male Sprague-Dawley rats	Carrageenan-induced inflammation	Oral 100 or 10,000 μg/kg once	↓ hyperalgesia	210
Male Swiss mice	Haloperidol-induced inflammation	i.p. 60 mg/kg twice/day up to 21 days	↓ IL-1β and TNF-α, ↑ IL-10	97b
Male BALB/c mice	Corneal inflammation	Topical (ophthalmic) 3% or 5%	↓ pain, ↓ neutrophils	56b
Male ICR mice	Ischemia-reperfusion injury (kidney)	i.p. 10 mg/kg once	↓ kidney injury, ↑ TH17 cells, ↑ Tregs and Treg17 cells	152b
Female C57BL/6 and BALB/c mice	Syngeneic or allogeneic bone marrow transplant	i.p. 5 mg/kg every other day for 2 weeks	↓ lymphocyte recovery	57
BALB/c mice	Ovalbumin (asthma)	i.p. 5 or 10 mg/kg three times at time of ovalbumin challenge	↓ airway resistance; ↓ IL-4, IL-5, IL-13, and eotaxin	60b

*aMaximum duration or frequency noted; some studies in the article might have been shorter.

bDiscussed in review.

cSex not stated.

dCBD or CBD BDS (botanical drug substance).

eCBD oil.

CBD, Cannabidiol; DNBS, dinitrobenzene sulfonic acid; INOS, inducible nitric oxide synthase; i.n, intranasal; i.p., intraperitoneal; JNK, c-jun N-terminal kinase; LPS, lipopolysaccharide; MDSCs, myeloid-derived suppressor cells; MPO, myeloperoxidase; sRBC, sheep red blood cell; TNBS, 2,4,6-trinitrobenzene sulfonic acid; Treg, regulatory T cell.
involves suppression of endothelial or inducible nitric oxide synthase (iNOS) in response to various inflammatory stimuli. iNOS is known to be regulated by the transcription factor nuclear factor-κB (NF-κB), which is comprised of p65 and other proteins, and becomes active after degradation of the inhibitory protein, IκB. Decreased expression of iNOS by CBD correlated with stimulation of the inhibitory IκB protein and inhibition of NF-κB p65 protein expression. Using peritoneal macrophages from diabetic mice stimulated ex vivo with LPS revealed that macrophages isolated from CBD-treated mice did not produce as much TNF-α or IL-6 as macrophages isolated from vehicle-treated mice. A direct effect of CBD decreasing macrophage numbers in the bronchoalveolar lavage fluid was shown following intranasal LPS administration to induce pulmonary inflammation. There was also decreased expression of F4/80 (a marker of macrophages) mRNA expression by CBD in heart tissue in experimental autoimmune myocarditis. Although this study identified CBD only affecting F4/80 mRNA expression as opposed to F4/80 cell surface staining, it does suggest a novel target (i.e., heart tissue) of CBD in a relatively understudied autoimmune model.

IL-6 is a proinflammatory cytokine produced by many cell types, predominantly innate cells. Many studies have shown that circulating IL-6 is readily inhibited by CBD in inflammatory models, including diabetes, asthma, pancreatitis, and hepatitis. CBD treatment in vivo resulted in lower IL-6 production in peritoneal macrophages stimulated ex vivo with LPS, in the pancreas in acute pancreatitis, and in bronchoalveolar lavage fluid in LPS-induced pulmonary inflammation. There have been some reports that CBD alters neutrophil function. Compromised MPO activity by CBD has been studied in several tissues, including brain, colon, lung, and pancreas. Interestingly, in the pulmonary inflammation studies with LPS, neutrophil cell counts in the bronchoalveolar lavage fluid were also decreased by CBD compared to LPS. Together, the results suggest that CBD’s mechanism for neutrophil suppression involves both decreased numbers of neutrophils and compromised MPO activity.

There are two recent studies focused on CpG stimulation of IFN-α production from human plasmacytoid dendritic cells. While these studies are focused primarily on THC and other CB2 agonists, CBD was also used (1–10 μM) and did not affect IFN-α production. It was interesting, however, that CBD suppressed the CD83 dendritic cell activation marker on dendritic cells derived from HIV+, but not healthy, individuals. Reduction in dendritic cell CD83 signaling can compromise T cell function, although additional studies using CBD in human dendritic cells and T cells are needed to establish the consequences of CBD-induced reduction in CD83 on HIV+ dendritic cells.

Another mechanism by which CBD controls immune function is induction of regulatory cells. MDSCs are innate, myeloid cells that possess the ability to control immune responses. Hegde et al. demonstrated that CBD induced CD11b+Gr-1+ MDSCs in the liver in a mouse hepatitis model. Importantly, the isolated MDSCs were functional, that is, they suppressed proliferation of responder T cells ex vivo and improved liver function when administered before hepatitis induction. CBD-induced MDSCs from the peritoneal cavity were able to attenuate inflammation in response to LPS. In the experimental autoimmune encephalomyelitis (EAE) model, CBD induced MDSCs in the peritoneal cavity, but decreased the infiltration of MDSCs in the spinal cord and brain. CBD-induced MDSCs from the peritoneal cavity were able to attenuate responder T cell proliferation ex vivo and attenuate EAE disease when administered in vivo.

CBD effects and mechanisms of immune suppression in lymphocytes

The area in which most of the effects of CBD in the immune system have been studied is T cells. Early studies examining rosette formation in response to sheep red blood cells (sRBCs) (generally considered to be a T cell response) revealed that CBD (1 and 100 μM) reduced this response. Phytohemagglutinin (PHA)-stimulated IFN-γ production in T cells has also been shown to be inhibited by CBD (0.01–20 μg/mL or 0.03–64 μM). Other studies have provided further evidence that T cell-produced IFN-γ is a critical target of CBD suppression. CBD inhibited IFN-γ production from lymph node cells isolated from arthritic mice stimulated ex vivo with collagen, and from splenocytes isolated from NOD mice stimulated ex vivo with ConA. IFN-γ production from splenocytes isolated from untreated mice was suppressed by CBD following ex vivo stimulation with phorbol 12-myristate 13-acetate/ionomycin (PMA/Io). In the latter study, a 1-h exposure of CBD to the mice was meant to mimic the time for CBD distribution before
receiving antigen sensitization with ovalbumin to induce asthma-like disease. Thus, CBD’s ability to compromise various cytokines at the time of antigen sensitization might suggest that CBD affects primary activation of T cells, as has been suggested as part of the mechanism for other cannabinoids, such as THC. Indeed, we have shown that a 30-min pre-treatment with CBD (0.1–20 μM) suppressed IFN-γ production in mouse splenocytes in response to PMA/Io or anti-CD3/CD28. In these studies, it was shown that the mechanism by which CBD suppressed IFN-γ occurred at the level of transcription and that two important transcription factors for IFN-γ, activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT), were inhibited by CBD, suggesting a transcriptional mechanism for suppression. CBD induced suppression (0.1–10 μg/mL or 0.3–32 μM) of Ifng mRNA expression was shown using PHA-stimulated human PBMCs. Given the many reports that IFN-γ seems to be a sensitive target of suppression by CBD, it was surprising that Ifng mRNA was not affected by CBD (5 μM) using encephalitogenic T cells stimulated by antigen-presenting cells (APCs) and myelin oligodendrocyte glycoprotein peptide (MOG35–55) in vitro. However, CBD did inhibit expression of IFN-γ receptor 1 and CBD increased several IFN-γ-responsive genes known to attenuate T cell proliferation. Overall, the data reveal that an important part of CBD’s action in the immune system is its ability to affect IFN-γ in multiple ways. Not only did CBD directly suppress IFN-γ production through a transcriptional mechanism under several conditions but also suppressed IFN-γ receptor expression, and increased IFN-γ-induced genes that subsequently attenuate other immune targets.

A few other T cell-derived cytokines have been shown to be targets of CBD. As noted above, IL-6 is a critical target of CBD in many cells and tissues, many of which are innate cells. However, IL-6 was also suppressed by CBD (5 μM) using encephalitogenic T cells stimulated by APCs and MOG35–55 in vitro, and “IL-6 signaling” as a critical pathway suppressed by CBD. Interestingly, “IL-17 signaling” was also identified as a critical pathway suppressed by CBD (5 μM) in T cells in vitro. It should be noted that IL-6 promotes the differentiation of TH17 cells, so the simultaneous suppression of IL-6 and IL-17A by CBD is consistent with CBD suppressing TH17 cell differentiation. Indeed, CBD (1–20 μg/mL or 3.2–64 μM) suppressed IL-17A production in human CD3+ T cells (derived from healthy patients or patients with MS or nonseminomatous germ cell tumors) stimulated ex vivo with PMA/Io. Taken together with the data described in innate cells above, it is clear that CBD’s action in inflammation and immune function involves suppression of cytokine production from many different cell types.

The ability of CBD to suppress transcription factors such as NFAT, AP-1, and NF-κB likely accounts for its widespread suppression of many cytokines. Some of the studies suggest that CBD increased, or perhaps stabilized, expression of IκB as part of the mechanism by which it suppresses NF-κB. CBD (4 μM) stimulated IκB-α expression in high glucose-treated human coronary artery endothelial cells. CBD induced expression of IκB-α in heart tissue from diabetic mice in vivo and in LPS-stimulated microglial cells in vitro (CBD 1–10 μM). It is interesting that NF-κB activity has not yet been identified as a target in T cells, suggesting that CBD-mediated suppression of NF-κB plays a bigger role in mediating anti-inflammatory effects in non-T cells. Certainly, some of the dysregulation of these transcription factors is the result of suppression of various kinases upstream of their activation. Extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 MAPKs have all been identified as targets of suppression by CBD in various cell types. Of these reports, one was conducted in human T cells. In these studies, CBD (5 μM) was shown to suppress expression of total and phosphorylated p38 at the 16-h timepoint following CBD treatment. The authors also showed that the CBD-mediated inhibition of phosphorylated p38 was reversed by SR1445328 or tocopherol, suggesting that CBD acts through CB2 and that the mechanism of suppression involves reactive oxygen species (ROS) production.

Although well studied in cancer cell lines and primary tumor tissue, CBD-mediated apoptosis is also a contributor to the immune suppressive mechanism. Initially CBD-induced apoptosis in T cells was described in Jurkat and MOLT4 human T cells. In the same study, McKallip et al. observed increased apoptosis of mouse lymphoma cells injected into, and then recovered from, the peritoneal cavity of mice that were treated with CBD. Since then, there has been a series of studies characterizing the mechanisms by which CBD induced apoptosis in mouse immune cells. CBD (1–16 μM) was shown to induce apoptosis in mouse
The same group demonstrated that CBD (1–16 μM) induced apoptosis in mouse splenocytes, including assessment of CBD-induced apoptosis by cell type (B220+ B cells and CD4+ and CD8+ T cells). In both studies, CBD increased ROS, and CBD-mediated apoptosis was attenuated by N-acetylcysteine. Wu et al. further demonstrated that the CBD increased ROS-activated caspase-8 to mediate apoptosis. In follow-up studies in human monocytes, Wu et al. noted that CBD (1–16 μM) readily induced apoptosis, but that the effect of CBD on apoptosis was lost if the monocytes were pre-cultured for 72 h. The authors suggest that the differential responsiveness to CBD was due to an increase in antioxidant capacity in cultured cells, which is a thought consistent with the mechanism by which CBD induced apoptosis in mouse lymphocytes.

CBD-induced apoptosis (1–16 μM CBD) in human monocytes was due to a cascade of intracellular events, including opening of the mitochondrial permeability transition pore, depolarization of the mitochondrial membrane potential, oxidation of a lipid in the mitochondrial inner membrane, and mitochondrial ROS generation, leading to cytochrome C release. Thus, this latest study demonstrates a critical role of the mitochondria in CBD-induced apoptosis.

Another important mechanism by which CBD acts to control immune responses is through regulatory T cell (Treg) induction. In the ConA model of hepatitis, CBD modestly enhanced Tregs in the liver as quantified by CD4+Foxp3+ cells. A confirmation of in vivo induced Tregs by CBD was noted in an ischemia-reperfusion injury model in the kidney, in which CBD returned the disease-induced reduction in CD3+Foxp3+ cells to baseline. Interestingly, in the ischemia-reperfusion kidney model, CBD also induced “TReg17 cells,” which were defined as CD3+Foxp3+CCR6+STAT3+. It has been suggested that Treg17 cells help control a TH17 response. In vitro, CBD (5 μM) induced a CD69+LAG+ population in CD4+CD25− cells, which were identified as one type of regulatory cell, and induced Il10 mRNA expression. We showed in vitro that CBD (1–15 μM) induced functional CD4+CD25+Foxp3+ T cells under conditions of suboptimal stimulation and that Il10 mRNA expression was induced.

There are only a few studies in which B cells are identified as targets of CBD. CBD given at 25 mg/kg by intraperitoneal (i.p.) injection modestly reduced the sRBC-induced plaque-forming cells, which is a measure of antibody production. We conducted a similar study using oral administration of CBD and also found modest inhibition of antibody production. Other studies have shown that CBD robustly inhibited the sRBC-induced antibody production in vitro, suppressed ovalbumin-induced IgM, IgG1, and IgG2a in an in vivo asthma model, and reduced expression of activation markers such as major histocompatibility complex II, CD25, and CD69, on B cells. CBD has also been shown to induce apoptosis in B cells. Overall, the results suggest that B cells can be targets of suppression by CBD.

CBD-induced neuroprotection by suppression of microglial cell activation

There is no doubt that many of the mechanisms already identified for innate cells and lymphocytes also account for CBD’s ability to decrease microglial cell activation. CBD (1–16 μM) induced apoptosis in microglial cells, which was dependent on activation of caspase 8 and 9, and was reversed in the presence of an agent that depletes cholesterol and disrupts lipid rafts. These results suggest that CBD-induced apoptosis is dependent on lipid raft formation, and indeed, this observation was confirmed by another group in BV-2 microglial cells.

BV-2 microglial cells have been used as a model in several articles, in which detailed transcriptional effects of CBD have been evaluated. The mechanisms contributing to CBD (10 μM)-mediated suppression of LPS-stimulated cytokine production in microglial cells includes decreased activation of the Toll/IL-1 receptor domain-containing adapter-inducing IFN-β (TRIF)/IFN-β/signal transducer and activator of transcription (STAT) signaling pathway. CBD suppressed LPS-stimulated NF-κB activation, and induced LPS-stimulated STAT3 activation, which has been shown to suppress NF-κB activation. CBD (10 μM) was shown to affect several genes involved in lipid metabolism in unstimulated BV-2 cells, which might account for CBD’s ability to increase anandamide or could account for CBD’s dependence on lipid raft formation to induce apoptosis. Follow-up studies examining CBD’s effects in unstimulated BV-2 cells demonstrated that CBD (10 μM) alters zinc homoeostasis, oxidative stress, and glutathione levels in microglial cells. A recent study demonstrated that CBD alters microRNA (miRNA) expression, and two of the CBD miRNA targets identified are discussed. First, CBD downregulated miR146-a, which acts as a negative regulator of inflammation, in both resting and LPS-stimulated cells, thereby contributing to CBD’s ability to downregulate proinflammatory
corticotropin-releasing hormone (CRH), which regulates the hypothalamic-pituitary-adrenal (HPA) axis and stimulates the adrenal glands to release cortisol. CRH is produced primarily in the paraventricular nucleus of the hypothalamus and is regulated by a variety of factors, including stress, sleep, and the immune system. 3×10^6 cells were cultured in DMEM supplemented with 10% FBS for 24 h at 37°C in a humidified atmosphere containing 5% CO2. The cells were then treated with various concentrations of CBD (0.1–5 μg/mL) and incubated for 24 h. The cell viability was measured using the MTT assay, which detects the reduction of yellow MTT to purple formazan crystals by metabolically active cells. The results showed that CBD had a dosedependent inhibitory effect on cell proliferation. The IC50 value, which represents the concentration of CBD required to inhibit cell proliferation by 50%, was calculated to be 1.5 μg/mL. These findings suggest that CBD could be a potential therapeutic agent for the treatment of various cancer types.

Table 5. Cannabidiol Effects in Experimental Autoimmune Encephalomyelitis

Model	Approach	Dosage/concentration	Effects	Reference
EAE in ABH	In vivo	0.5–25 mg/kg i.p.	No effects	211
EAE in C57BL/6	In vivo and in vitro	5 mg/kg i.p.	in vivo: ↓ disease severity, ↓ T cell infiltration into the CNS, ↓ microglial activation, ↓ axonal damage in vitro, ↓ T cell proliferation	163a
TMEV in SJL/J	In vivo and in vitro	5 mg/kg i.p.	in vivo: ↓ disease severity, ↓ leukocyte infiltration into the CNS, ↓ microglial activation, ↓ CCL2 (MCP-1), ↓ CCL5, ↓ IL-1β, ↓ TNF-α in vitro: ↓ leukocyte adhesion, ↓ CCL2 (MCP-1)	164a
MOG35–55-specific T cells from EAE mice	In vitro	0.1, 1, and 5 μM	in vivo: ↓ IL-17A, ↓ IL-6, ↑ IL-10	144a
MOG35–55-specific T cells from EAE mice	In vitro	5 μM	in vivo: ↓ IL-17A, ↓ IL-6, ↑ IL-10, ↑ EGR2, ↑ CD4+CD25 CD69LAG3 phenotype, ↑ STAT5/STAT3, ↓ B cell activity, ↑ Nfatc1, ↑ Casp4, ↑ Cdkn1α, ↑ Icos, ↑ Fas	153a
EAE in C57BL/6	In vivo	5 mg/kg i.p.	in vivo: ↓ disease severity, ↓ leukocyte invasion, ↓ demyelination, ↓ TNF-α, ↓ IFN-γ, ↓ IL-17A	212
EAE in C57BL/6	In vivo	10 mg/kg i.p.	in vivo: ↓ disease severity, ↓ FAS ligand, ↓ ERK phosphorylation, ↓ Caspase-3 activity, ↓ Bax/ Bcl-2, ↓ p53-p21 activation, ↓ apoptosis formation	166a
MOG35–55-specific T cells from EAE mice	In vitro	5 μM	in vitro: ↓ IL-1β, ↓ IL-3, ↓ Xcl1 mRNA, ↓ IL-12a mRNA, ↓ Dusp6 mRNA, ↓ Bcl-a mRNA, ↓ Lag3 mRNA, ↓ Irf4 mRNA, ↓ IL-10 mRNA	143a,b
EAE in C57BL/6	In vivo	10 mg/kg i.p.	in vivo: ↓ disease severity, ↓ leukocyte infiltration, ↑ PI3k/Akt/mTOR phosphorylation, ↑ Sk6 phosphorylation, ↑ BDNF expression, ↑ PPARγ, ↑ IFN-γ, ↓ IL-17A, ↓ JNK activity, ↓ p38 MAP kinase activity	167a
Adoptive Transfer EAE in C57BL/6	In vivo and in vitro	5–50 mg/kg i.p.	in vivo: ↓ disease severity, ↓ leukocyte invasion, ↓ demyelination, ↓ axonal damage, ↓ microglial activation, ↓ CB2 receptor expression in CNS, ↓ GPR55 receptor expression in CNS in vitro: ↓ Cell viability, ↓ IL-6, ↑ apoptosis, ↑ ROS	165a
EAE in C57BL/6	In vivo	20 mg/kg i.p.	in vivo: ↓ disease severity, ↓ leukocyte invasion, ↓ IL-17A, ↓ IFN-γ, ↑ RORα/T, ↑ T-bet, ↑ IL-10, ↑ MDSC ex vivo: ↓ IL-17A, ↓ IFN-γ, ↑ IL-10	137a

Please note that the reference numbers correspond to the year the study was published. The in vivo and in vitro approaches refer to whether the treatment was given in the context of an animal model (in vivo) or in cell culture (in vitro). The dosage/concentration column indicates the range of concentrations used in the experiments. The effects column lists the specific biological effects observed as a result of the treatment with cannabidiol.
administered at the onset of disease attenuated clinical disease, microglial activation, and T cell infiltration into the CNS in EAE, and that CBD reduced T cell proliferation in vitro.163 CBD showed similar effects in the TMEV model, in which Mecha et al. demonstrated that CBD (5 mg/kg i.p.) administered for the first 10 days following disease onset reduced clinical disease and neuroinflammation by decreasing microglial activation and immune cell trafficking signals in the CNS.164 Use of MOG\textsubscript{35–55}-specific T cells isolated from EAE mice in vitro has also been extremely vital to determining how CBD might be affecting T cells in these and other disease models. As outlined above, in the T cell section, in vitro CBD treatment of MOG\textsubscript{35–55}-specific T cells co-cultured with APCs with CBD suppressed IL-17A and IL-6 production, suggesting CBD suppressed TH17 development; however, production of IL10 mRNA was potentiated with CBD treatment, suggesting that CBD may have multiple suppressive mechanisms.144 In vitro treatment of MOG\textsubscript{35–55}-specific T cells with CBD induced a Treg with a CD4+ CD25+ LAG3+ CD69+ phenotype, promoted upregulation of anergy-associated genes, such as Lag3, Erg2, and Il10, and altered the balance between STAT3 and STAT5 activation.153 In another study, CBD administered during disease onset increased the number of functional MDSCs present within the peritoneal cavity, decreased neuroinflammation, and reduced IL-17A and IFN-\textgamma in the serum.137 When splenocytes from these mice were restimulated ex vivo, the CBD-treated mice had significantly decreased levels of IL-17A and IFN-\textgamma, and increased levels of IL-10 in the supernatants.137 Finally, a recent study using an adoptive transfer EAE model showed a reduction in neuroinflammation, demyelination, and axonal damage with CBD treatment during disease onset.165 Adoptive transfer EAE is a variation of the EAE model induced by transfer of encephalitogenic T cells into naive mice, which allows experiments performed with this model to focus more on the T cell-specific mechanisms of pathogenesis in the EAE model. From the accumulation of data, it is obvious that multiple immune cell types, proinflammatory and anti-inflammatory, within the EAE model are modulated by CBD, but overall, CBD appears to downregulate proinflammatory pathways and upregulate anti-inflammatory pathways in the EAE model.

In addition to its immunomodulatory effects, CBD’s neuroprotective properties in the EAE model also indicate its therapeutic potential in MS. CBD has been shown to decrease the activation of proapoptotic proteins, such as caspase-3 and Bax,166 and to counteract the effects of EAE on the PI3K/Akt/mTOR pathway, JNK, and p38 MAP kinases in the CNS of EAE mice.167 Interestingly, the study from Giacoppo et al. found the PI3k/Akt/mTOR pathway was upregulated in neural tissues when EAE mice were treated with CBD.167 However, Kozela et al.153 observed a reduction in the activation of Akt in vitro in MOG\textsubscript{35–55}-reactive T cells, which might suggest a differential role for CBD’s effects on the PI3K/Akt/mTOR pathway in various cell types.

Despite the growing number of studies involving the neuroprotective and immunosuppressive effects of CBD, the majority of human studies involving cannabinoids and MS have been focused on the use of THC:CBD mixtures, with a particular focus on Sativex. Clinical studies that have been performed have shown that Sativex has beneficial effects on spasticity, mobility, bladder function, and pain in MS patients, and is well tolerated22,25,28,31,168–175; however, there has been little focus on the neuroprotective and immunosuppressive effects of THC:CBD mixtures in MS, and so it is difficult to say at this point if the successful results observed with CBD in the animal models of MS will be observed in MS patients. For a more complete review on the effects of Sativex in MS, see Zettl et al.176

Other autoimmune disease states
CBD has been shown to attenuate experimental autoimmune hepatitis,86 experimental autoimmune myocarditis,126 and autoimmune diabetes123,124 in mice. There are few studies done with CBD only in human autoimmune diseases. In human patients, CBD at 20 mg/kg did not reduce clinical Crohn’s disease.177 However, CBD is effective at attenuating intestinal inflammation in other models of human inflammatory bowel disease,82,96 so it is possible that CBD could be effective at higher doses. Indeed, CBD as Epidolex for epilepsy in children is being used as high as 20 mg/kg, but CBD doses as high as 300 mg/kg have been evaluated, and have not exhibited significant adverse effects.178

CBD Immune Enhancement Effects
Much of the data support the fact that CBD is immune suppressive and anti-inflammatory; however, there have been a few reports over the years that CBD has produced some immune enhancing effects (Table 6). The potential for CBD, and other cannabinoids, to produce immune enhancing effects has been attributed to
differences in hormetic (i.e., biphasic) responses depending on CBD concentration/dose, cell culture conditions, including serum presence and/or percent, immune stimulant, and magnitude of cellular activation in response to the immune stimulant. Indeed, studies from our laboratory and others have shown that CBD either enhanced or suppressed cytokine production (IL-2 and IFN-γ) in response to relatively low or high degree of immune stimulation, respectively.154,179,180 The mechanism for the differential responsiveness likely involves alterations in intracellular calcium, as CBD increases intracellular calcium in mouse splenocytes regardless of the increase of intracellular calcium produced by the immune stimulant.179 In addition, the differential cytokine production was correlated with nuclear expression of the NFAT transcription factor,179 which is calcium responsive. Interestingly, CBD’s ability to increase intracellular calcium also likely accounts for some of the other enhancing effects, including stimulation of neutrophil degranulation,181 chemotaxis,182 and mast cell/basophil activation.183

In addition to the ones listed in Table 6, there are a few well-studied end-points for which CBD treatment has produced opposing effects, one of which is apoptosis. As described in detail above, part of the mechanism by which CBD produces immune suppression is induction of apoptosis; however, there are a few studies in which CBD has inhibited inflammation-induced apoptosis.118,120 Interestingly, the reports of CBD on oxidative stress are different across studies, with some articles identifying CBD as an antioxidant,59,118,184,185 and others reporting that CBD induces oxidative stress.114,115,150,151 CBD-mediated effects on IL-10 production also revealed opposing effects when compared across several studies.95,123,124,127,148,186–189 Effects of CBD on IL-10 could be tied to regulatory cell production (i.e., Tregs or MDSCs) or changes in T cell sub-populations.

Although it is not entirely clear why CBD produces opposing effects for many end-points, a critical part in understanding the mechanisms of CBD involves investigation of the consequences of all the changes. Let us consider two examples, the first of which was introduced in the section on cytokines (IFN-γ). We know that IFN-γ is a critical target of suppression by CBD,55,111,112,123,124,139,140,142,143 but there are some conditions under which CBD had no effect143 or enhanced it.179 Perhaps under some conditions, the CBD-induced enhancement of IFN-γ would increase the IFN-γ-responsive genes that attenuate T cell proliferation, as suggested by Kozela et al.143 Thus, although CBD increased a “proinflammatory” cytokine, its consequence could be immune suppression. The second example is IL-2, which was enhanced under conditions of low-level T cell stimulation.154 We recently showed that CBD, by producing IL-2 under some conditions, contributed to the appropriate milieu to drive Treg induction,154 again demonstrating that enhancement of seemingly proinflammatory cytokines by CBD still resulted in immune suppression.

Conclusions, Challenges, and Knowledge Gaps

Considering all the studies conducted on immune responses and inflammation, the data overwhelmingly demonstrate that CBD is immune suppressive and anti-inflammatory (Fig. 1). Critical targets of suppression include cytokines such as TNF-α, IFN-γ, IL-6,
IL-1β, IL-2, IL-17A, and chemokines, such as CCL-2. The overall mechanism of CBD involves direct suppression of target cells, such as effector T cells and microglial cells, through suppression of kinase cascades and various transcription factors. An example of this is CBD-induced suppression of phosphorylated p38, leading to compromised AP-1 or NF-κB activity. Direct suppression of target cells also includes induction of IκB, which could contribute to decreased NF-κB activity. The involvement of regulatory cell induction by CBD is also a major part of the mechanism by which CBD controls immune responses, and CBD has been shown to induce Tregs and MDSCs. Finally, CBD-induced apoptosis is likely an important mechanism in many target cells.

It is often argued that the concentrations/doses at which CBD acts in vitro/in vivo are high. However, it should be noted that CBD is highly lipophilic and subject to first-pass metabolism after oral dosing. In fact, we have shown that in mice at 6 h after oral CBD at 75 mg/kg/day for 3 days resulted in plasma CBD levels of ~40 ng/mL and were not detectable by 24 h. This is ~0.12 μM CBD, which is on the lower end of concentrations typically used in vitro to evaluate the effects of CBD as detailed in this review. On the other hand, recent data obtained in one human clinical trial that was used to support the indication of CBD as Epidiolex in epilepsy studies showed that plasma CBD levels were as high as 400 ng/mL following 20 mg/kg/day dosing for 22 days. This concentration is ~1.2 μM CBD, which is a more common concentration used in vitro at which CBD effects are observed. These two studies in mice and humans suggest that the doses and concentrations of CBD used in many of the studies in this review are appropriate. There are still limitations on our knowledge about CBD dosing and plasma levels and how those relate to immune modulation. Some of these limitations might be clarified with many of the planned clinical trials with CBD in the coming years. Specifically related to immune effects of CBD, there is a planned randomized, open-label interventional study assessing CBD and THC on immune cell activation in HIV+ patients. Importantly, this trial will evaluate dose escalation of relatively high CBD doses compared to THC; the dose escalation for CBD will go from 45–225 mg/kg/day over a 5-week period and then maintain the highest dose for an additional 7 weeks.

In addition to the need for more data on CBD dosing and pharmacokinetics, this broad summary of immune and inflammatory effects of CBD revealed a number of data gaps that should be addressed. First, identification of the receptor(s) through which CBD acts in the immune system remains a critical question. An important part of this question is whether CBD-induced FAAH inhibition generates anandamide metabolites that bind to various receptors to mediate some of the immune suppressive or anti-inflammatory effects of CBD. Coupled with the observation that some of the effects of CBD can be attenuated with PPAR-γ antagonists, the possibility exists that CBD-mediated anandamide production drives the subsequent production of (yet unidentified) metabolites that activate PPAR-γ. Another critical determination needed for many of the receptor studies is identification of the cell type(s) on which the receptors are expressed, which are mediating the CBD effects. Second, although combined cannabinoids were not a major focus of this review, it will be critical to determine the CBD contribution to immune function compromise in cannabis and/or combined pharmaceuticals such as Sativex. Third, there are still several cell types for which little data exist, notably B cells and dendritic cells. Even in the rich CBD-T cell literature, several well-established targets have not been extensively studied in T cells. Fourth, increasing our understanding of CBD’s effects in response to a variety of FIG. 1. Summary of CBD’s mechanisms of immune suppression. Overall, CBD’s immune system suppression is mediated by direct inhibition of various cell types (microglial, innate, and T cells) and induction of apoptosis and regulatory cells (Tregs and MDSCs). CBD, Cannabidiol; MDSCs, myeloid-derived suppressor cells; Treg, regulatory T cell.
immune stimuli and degrees of immune stimulation will help in interpreting effects of CBD in humans and other outbred species that are naturally exposed to a variety of pathogens. Thus, the last identified knowledge gap is the need for increased studies on the effects of CBD in human and veterinary immune responses. These include well-controlled studies considering differences with administration routes, dose, and pharmacokinetics.

Acknowledgments
The authors acknowledge ChemSpider for CBD structure. CSID:559095, www.chemspider.com/Chemical-Structure.559095.html (accessed 16:45, Oct 11, 2018). The authors also acknowledge Ms. Moyim Kim at Mississippi State University for help with illustrations. Research supported by Mississippi State University College of Veterinary Medicine.

Author Disclosure Statement
No competing financial interests exist.

Funding Information
Funding provided by Mississippi State University College of Veterinary Medicine.

References
1. Mechoulam R, Hanus L. Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects. Chem Phys Lipids. 2002;121:35–43.
2. Mechoulam R, Shvo Y. Hashish. I. The structure of cannabidiol. Tetrahydropr. 1963;19:2073–2078.
3. Hanus LO, Thcilbon S, Ponde DE, et al. Enantiomeric cannabidiol derivatives: synthetic and binding to cannabinoid receptors. Org Biomol Chem. 2005;3:1116–1123.
4. Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964;86:1646–1647.
5. Institute of Medicine; Joy JE, Watson SJ Jr., Benson JA. Marijuana and medicine: assessing the science base. National Academies Press: Washington, DC, 1999.
6. Tanasescu R, Rog D, Constantinescu CS. A drug discovery case history of “delta-9-tetrahydrocannabinol, cannabidiol.” Expert Opin Drug Discov. 2011;6:437–452.
7. Guimaraes FS, Chiaretti TM, Graeff FG, et al. Anxiolytic effect of cannabidiol in the elevated plus-maze. Psychopharmacology (Berl). 1990; 100:558–559.
8. Zuardi AW, Cosme RA, Graeff FG, et al. Effects of ipsapirone and cannabidiol on human experimental anxiety. J Psychopharmacol. 1993;7:82–88.
9. Moreira FA, Aguiar DC, Guimaraes FS. Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1466–1471.
10. Campos AC, Guimaraes FS. Involvement of SHT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductual gray of rats. Psychopharmacology (Berl). 2008;199:223–230.
11. Crippa JA, Derenusson GN, Ferrari TB, et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J Psychopharmacol. 2011;25:121–130.
12. Bergamaschi MM, Queiroz RH, Chagas MH, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology. 2011;36:1219–1226.
13. Almeida V, Levin R, Peres FF, et al. Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test. Prog Neuropsychopharmacol Biol Psychiatry. 2011;34:30–35.
14. Fogaça MV, Campos AC, Coelho LD, et al. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling. Neuropsychopharmacology. 2018;135:22–33.
15. De Gregorio D, McLaughlin RJ, Posa L, et al. Cannabidiol modulates serotoninergic transmission and reverses both alloedynia and anxiety-like behavior in a model of neuropathic pain. Pain. 2019;160:136–150.
16. Linares IM, Zuardi AW, Pereira LC, et al. Cannabidiol presents an inverted U-shaped dose-response curve in a simulated public speaking test. Braz J Psychiatry. 2019;41:9–14.
17. Britch SC, Wiley JL, Yu Z, et al. Cannabidiol-Delta(9)-tetrahydrocannabinol interactions on acute pain and locomotor activity. Drug Alcohol Depend. 2017;175:187–197.
18. Bornheim LM, Kim KY, Li J, et al. Effect of cannabidiol pretreatment on the kinetics of tetrahydrocannabinol metabolites in mouse brain. Drug Metab Dispos. 1995;23:825–831.
19. Hlozek T, Uttl L, Kaderabek L, et al. Pharmacokinetic and behavioural profile of THC, CBD, and THC + CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur Neuropsychopharmacol. 2017;27:1223–1237.
20. Nadolski T, Pragst F, Weinberg G, et al. Randomized, double-blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of Delta9-tetrahydrocannabinol (THC) after oral application of THC versus standardized cannabis extract. Ther Drug Monit. 2005;27:799–810.
21. Blake DR, Robson P, Ho M, et al. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology (Oxford). 2006;45:50–52.
22. Collin C, Davies P, Miltikko IK, et al. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur J Neurol. 2007;14:290–296.
23. Russo M, Naro A, Leo A, et al. Evaluating sativex(R) in neuropathic pain management: a clinical and neurophysiological assessment in multiple sclerosis. Pain Med. 2016;17:1145–1154.
24. Nurmiikko TJ, Serpell MG, Hoggart B, et al. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain. 2007;133:210–220.
25. Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther. 2007; 29:2068–2079.
26. Selvarajah D, Gandhi R, Emery CJ, et al. Randomized placebo-controlled double-blind clinical trial of cannabis-based medicinal product (Sativex) in painful diabetic neuropathy: depression is a major confounding factor. Diabetes Care. 2010;33:128–130.
27. Collin C, Ehler E, Waberzinek G, et al. A placebo-controlled, parallel-group study of Sativex, in subjects with symptoms of spasticity due to multiple sclerosis. Neurol Res. 2010;32:451–459.
28. Kavia RB, De Ridder D, Constantinescu CS, et al. Randomized controlled trial of Sativex to treat detrusor overactivity in multiple sclerosis. Mult Scler. 2010;16:1349–1359.
29. Phatnasa N, Alves M, Rätzliffe S, et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols (Sativex(R)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur J Neurol. 2011;18:1122–1131.
30. Schoedel KA, Chen N, Hilliard A, et al. A randomized, double-blind, placebo-controlled, crossover study to evaluate the subjective abuse potential and cognitive Effects of nabiximols oromucosal spray in subjects with a history of recreational cannabis use. Hum Psychopharmacol. 2011;26:224–236.
31. Notcutt W, Langford R, Davies P, et al. A placebo-controlled, parallel-group, randomized withdrawal study of subjects with symptoms of spasticity due to multiple sclerosis who are receiving long-term Sativex(R) (nabiximols). Mult Scler. 2012;18:219–228.
50. Hoffenberg EJ, McWilliams S, Mikulich-Gilbertson S, et al. Cannabis oil
47. Corroon J, Kight R. Regulatory status of cannabidiol in the United States:
46. Reithmeier D, Tang-Wai R, Seifert B, et al. The protocol for the
45. McGuire P, Robson P, Cubala WJ, et al. Cannabidiol (CBD) as an ad-
43. Hess EJ, Moody KA, Geffrey AL, et al. Cannabidiol as a new treatment for
42. Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with sei-
39. Hussain SA, Zhou R, Jacobson C, et al. Perceived efficacy of cannabidiol-
38. Porter BE, Jacobson C. Report of a parent survey of cannabidiol-enriched
35. Flachenecker P, Henze T, Zettl UK. Nabiximols (THC/CBD oromucosal
33. Langford RM, Mares J, Novotna A, et al. A double-blind, randomized, placebo-
32. Johnson JR, Lossignol D, Burnell-Nugent M, et al. An open-label exten-
31. Jones KL, Morgan A, Wuttke W, et al. The effects of cannabidiol on
30. Johnson AM, Peña J, El-Arini A, et al. CB1 receptor stimulation and
29. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol-induced changes
28. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
27. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
26. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
25. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
24. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
23. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
22. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
21. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
20. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
19. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
18. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
17. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
16. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
15. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
14. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
13. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
12. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
11. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
10. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
9. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
8. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
7. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
6. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
5. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
4. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
3. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
2. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the
1. Johnson AM, Morgan A, Wuttke W, et al. Cannabidiol reduces the

NICHOLS AND KAPLAN
16
Esposito G, Scuderi C, Valenza M, et al. Cannabidiol reduces Abeta-induced neuroinflammation and promotes hippocampal neurogenesis through PPARgamma involvement. PLoS One. 2011;6:e28668.

Hind WH, England TJ, O’Sullivan SE. Cannabidiol promotes an in vitro model of the blood-brain barrier from oxygen-glucose deprivation via PPARgamma and 5-HT1A receptors. Br J Pharmacol. 2016;173:824–835.

Russo EB, Burnett A, Hall B, et al. Agonistic properties of cannabidiol at 5-HT1A receptors. Neurochem Res. 2005;30:1037–1043.

Hwang YS, Kim YJ, Kim MO, et al. Cannabidiol upregulates melanin tyrosinase expression through PPARgamma involvement. PLoS One. 2011;6:e28159.

Toth CC, Jedrzejewski NM, Ellis CL, et al. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathy. Mol Pharmacol. 2008;73:1091–1097.

Hind WH, Engla...
114. Wu HY, Chang AC, Wang CC, et al. Cannabidiol induced a contrasting pro-apoptotic effect between freshly isolated and precultured human monocytes. Toxicol Appl Pharmacol. 2010;246:141–147.

115. Wu HY, Huang CH, Lin YH, et al. Cannabidiol induced apoptosis in human monocytes through mitochondrial permeability transition pore-mediated ROS production. Free Radic Biol Med. 2018;124:311–318.

116. Coffey RG, Yamamoto Y, Snella E, et al. Tetrahydrocannabinol inhibition of macrophage nitric oxide production. Biochem Pharmacol. 1996;52:743–751.

117. Esposito G, Scuderi C, Savani C, et al. Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol. 2007;151:1272–1279.

118. Mukhopadhyay P, Rajesh M, Horvath B, et al. Cannabidinol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitritative stress, and cell death. Free Radic Biol Med. 2011;50:1368–1381.

119. Rajesh M, Mukhopadhyay P, Batki S, et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier dysfunction, oxidative stress, and cell death. J Physiol. 2007;589:467–478.

120. Rajesh M, Mukhopadhyay P, Batki S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 2010;56:2115–2125.

121. Ruiz-Valdepenas L, Martinez-Orgado JA, Benito C, et al. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study. J Neuroinflammation. 2011;8.

122. Kleinert H, Pautz A, Linker K, et al. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol. 2004;500:255–266.

123. Weiss L, Zeira M, Reich S, et al. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity. 2006;39:143–151.

124. Weiss L, Zeira M, Reich S, et al. Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology. 2008;54:244–249.

125. Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, et al. Cannabidiol, a non-psychotropic plant-derived cannabinoi, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor. Eur J Pharmacol. 2012;678:78–85.

126. Lee WS, Erdely K, Matyas, C, et al. Cannabidiol limits T-cell mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation. Mol Med. 2016;22:136–146.

127. Vuolo F, Petronilho F, Sonai B, et al. Cannabidiol induces apoptosis in murine thymocytes and EL-4 thymoma cells. Int Immunopharmacol. 2008;8:732–740.

128. Cushman P, Jr. Cannabinols and the rosette forming properties of lymphocytes in vitro. Life Sci. 1976;19:875–885.

129. Malafi AM, Gallily R, Sumariwalla PF, et al. The nonpsychoactive can-nabis constituent cannabidiol is an oral anti-arthritis therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A. 2000;97:9561–9566.

130. Jan TR, Su ST, Wu HY, et al. Suppressive effects of cannabidiol on antigen-specific antibody production and functional activity of spleno- cytes in ovalbumin-sensitized BALB/c mice. Int Immunopharmacol. 2007;7:773–780.

131. Karmaus PW, Chen W, Kaplan BL, et al. Delta9-tetrahydrocannabinol suppresses cytotoxic T lymphocyte function independent of CB1 and CB2, disrupting early activation events. J Neuroimmune Pharmacol. 2012;7:843–855.

132. Jenny M, Santer E, Pirich E, et al. Delta9-tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. J Neuroimmunol. 2009;207:75–82.

133. Kozela E, Juknat A, Gao F, et al. Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoi, in autoimmune T cells. J Neuroinflammation. 2016;13.

134. Kozela E, Juknat A, Kaushansky N, et al. Cannabinoiids decrease the th17 inflammatory autoimmune phenotype. J Neuroimmune Pharmacol. 2013;8:1265–1276.

135. Zhou L, Ivanov II, Spolski R, et al. IL-6 programs Th17 cell differentia- tion by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–974.

136. Zgair A, Lee JB, Wong JCM, et al. Oral administration of cannabis with high content in cannabidiol attenuates chemically-induced intesti- nal inflammation and hypermotility in the mouse. Br J Pharmacol. 2012;7:843–855.

137. Ribeiro A, Almeida VI, Costola-de-Souza C, et al. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury. Immunopharmacol Immunotoxicol. 2015;37:35–41.

138. Henriquez JE, Crawford RB, Kaminski NE. Suppression of CpG-ODN-mediated IFNalpha and TNalpha response in human plasmacytoi dendritic cells (pDC) by cannabinio receptor 2 (CB2)-specific agonists. Toxicol Appl Pharmacol. 2019;369:82–89.

139. Henriquez JE, Rizzo MD, Schulz MA, et al. Delta9-tetrahydrocannabinol suppresses secretion of IFNalpha by plasmacytoid dendritic cells from healthy and HIV-infected individuals. J Acquir Immune Defic Syndr. 2017;75:388–396.

140. Prechtel AT, Steinkasserer A. CD83: an update on functions and pro-pects of the maturation marker of dendritic cells. Arch Dermatol Res. 2007;299:59–69.

141. Hegde VL, Singh UP, Nagarkatti PS, et al. Critical role of mast cells and peroxisome proliferator-activated receptor gamma in the induction of myeloid-derived suppressor cells by marijuana cannabidiol in vivo. J Immunol. 2015;194:5211–5222.

142. Elliott DM, Singh N, Nagarkatti M, et al. Cannabidiol attenuates experiment autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. Front Immunol. 2018;9:1782.

143. Cushman P, Jr. Cannabinols and the rosette forming properties of lymphocytes in vitro. Life Sci. 1976;19:875–885.
155. Zimmerman S, Zimmerman AM, Cameron IL, et al. delta-tetrahydro- cannabinol, cannabidiol and cannabidiol effects on the immune response of mice. Pharmacology. 1977;15:10–23.
156. Wu HY, Goebel K, Mecha M, et al. Cannabidiol-induced apoptosis in murine microglial cells through lipid raft. Glia. 2012;60:1182–1190.
157. Rimmerman N, Juknat A, Kozela E, et al. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells. Cell Mol Neurobiol. 2011;31:921–930.
158. Juknat A, Rimmerman N, Levy R, et al. Cannabidiol affects the expression of genes involved in zinc homeostasis in BV-2 microglial cells. Neurochem Int. 2012;61:923–930.
159. Wu HY, Goble K, Mecha M, et al. Cannabidiol-induced apoptosis in murine microglial cells through lipid raft. Glia. 2012;60:1182–1190.
160. Watanabe K, Kayano Y, Matsunaga T, et al. Inhibition of anandamide amidase activity in mouse brain microsomes by cannabinoids. Biol Pharm Bull. 1996;19:1109–1111.
161. Juknat A, Gao F, Coppola G, et al. miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-effect of cannabidiol. 2015;3:14202001:12–1522.
162. Dendrou CA, Fugger L, Fries MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15:545–558.
163. Kozela E, Lev N, Kaushansky N, et al. Cannabidiol inhibits pathogenic T cells, decreases spiral microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br J Pharmacol. 2011;163:1507–1519.
164. Mecha M, Felu A, Inigo PM, et al. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiol Dis. 2013;59:141–150.
165. Gonzalez-Garcia C, Torres IM, Garcia-Hernandez R, et al. Mechanisms of action of cannabidiol in adaptively transferred experimental autoimmune encephalomyelitis. Exp Neurol. 2017;298:73–67.
166. Giacoppo S, Soundara Rajan T, Kozela E, et al. The non-psychoactive component of Cannabis sativa, alone, counteracts neuronal apoptosis in experimental multiple sclerosis. Eur Rev Med Pharmacol Sci. 2015;19:4906–4919.
167. Giacoppo S, Polastro F, Grassi G, et al. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. Fitothet. 2017;116:77–84.
168. Cosgrove P, Mau P, Monra J, et al. Walking improvements with nabiximols in patients with multiple sclerosis. J Neurol. 2015;262:2472–2477.
169. Lorente Fernandez L, Monte Boquet E, Perez-Miralles F, et al. Clinical experience with cannabinoids in spasticity management in patients with multiple sclerosis. Part B: effects on spasticity in patients with multiple sclerosis. Spasticity: a randomized, double-blind, placebo-controlled, crossover study. Mult Scler. 2004;10:417–424.
170. Rog DJ, Nurmikko TJ, Friede T, et al. Randomized, controlled trial of cannabidiol in Dravet syndrome. Neurology. 2018;90:e1204–e1211.
171. Patti F, Messina S, Solaro C, et al. Efficacy and safety of cannabidiol oromucosal spray for multiple sclerosis spasticity. J Neurol Neurosurg Psychiatry. 2016;87:944–951.
172. Vaney C, Heinzl-Gutenbrunner M, Jobin P, et al. Efficacy, safety and tolerability of an orally administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled, crossover study. Mult Scler. 2004;10:433–441.
173. Zajicek J, Fox P, Sanders H, et al. Cannabidiol for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet. 2003;362:1517–1526.
174. Zettl UK, Rommer P, Hipp P, et al. Evidence for the efficacy and effectiveness of THC-CBD oromucosal spray in symptom management of patients with spasticity due to multiple sclerosis. Ther Adv Neurol Disord. 2016;9:9–30.
175. Naftali T, Mechulam R, Marii A, et al. Low-dose cannabidiol is safe but not effective in the treatment for crohn’s disease, a randomized controlled trial. Dig Dis Sci. 2017;62:1615–1620.
176. Leo A, Russo E, Elia M. Cannabidiol and epilepsy: rationale and therapeutic potential. Pharmacol Res. 2016;107:85–92.
177. Chen W, Kaplan BL, Pike ST, et al. Magnitude of stimulation dictates the cannabidiol-mediated differential T cell response to HIV gp120. J Leukoc Biol. 2012;92:1093–1102.
178. Jan TR, Kaminski NE. Role of mitogen-activated protein kinases in the differential regulation of interleukin-2 by cannabidiol. J Leukoc Biol. 2001;69:841–849.
179. Naccache PH, Volpi M, Becker EL, et al. Cannabidiol induced degranulation of rabbit neutrophils. Biochem Biophys Res Commun. 1982;106:1286–1290.
180. Walter L, Franklin A, Witting A, et al. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci. 2003;23:1398–1405.
181. Giudice ED, Rinaldi L, Passarotto M, et al. Cannabidiol, unlike synthetic cannabinoids, triggers activation of RBL-2H3 mast cells. J Leukoc Biol. 2012;91:8115–1522.
182. Cassol OJ, Jr, Comim CM, Silva BR, et al. Treatment with cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to sepsis by cecal ligation and puncture. Brain Res. 2010;1348:128–138.
183. Wang Y, Mukhopadhyay P, Cao Z, et al. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury. Sci Rep. 2017;7:12064.
184. Zajicek J, Fox P, Sanders H, et al. The non-psychoactive component of marijuana cannabidiol modulates chemotaxis and IL-10 and IL-12 production of murine macrophages both in vivo and in vitro. J Neuroimmunol. 2005;159:97–105.
185. Li DZ, Hu CM, Huang CH, et al. Cannabidiol attenuates delayed-type hypersensitivity reactions via suppressing T-cell and macrophage reactivity. Acta Pharmacol Sin. 2010;31:1611–1617.
186. Li H, Kong W, Chambers CR, et al. The non-psychoactive phytocannabinoid cannabidiol (CBD) attenuates pro-inflammatory mediators, T cell infiltration, and thermal sensitivity following spinal cord injury in mice. Cell Immunol. 2018;329:1–9.
187. Samara E, Bialer M, Mechoulam R. Pharmacokinetics of cannabidiol in dogs. Drug Metab Dispos. 1988;16:469–472.
188. Karmass PW, Wagner JG, Harkema JR, et al. Cannabidiol (CBD) enhances neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol Pharmacol. 2008;73:1405.
189. Lamontagne P, Dubeau L, Chabot P, et al. Anti-inflammatory effect in a murine model. J Control Release. 2003;93:377–387.
190. Samara E, Bialer M, Mechoulam R. Pharmacokinetics of cannabidiol in dogs. Drug Metab Dispos. 1988;16:469–472.
191. Karmaus PW, Wagner JG, Harkema JR, et al. Cannabidiol (CBD) enhances neutrophil-mediated injury. Sci Rep. 2017;7:12064.
192. Kuner T, Nemeroff CB, Flanagan CM, et al. Cannabidiol counteracts neuronal apoptosis in experimental multiple sclerosis. Eur J Pharmacol. 2005;59:141–150.
193. McHugh D, Tanner C, Mechoulam R, et al. Inhibition of human neutrophil cytosolic factor (HNF) by cannabinoids, triggrs activation of RBL-2H3 mast cells. J Leukoc Biol. 2012;91:8115–1522.
194. Fonseca BM, Correia-da-Silva G, Teixeira NA. Cannabidiol-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis. J Physiol Biochem. 2018;74:261–272.
195. McHugh D, Tanner C, Mechoulam R, et al. Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol Pharmacol. 2008;73:441–450.
196. Kaplan BL, Rockwell CE, Kaminski NE. Evidence for cannabinoid receptor-dependent and -independent mechanisms of action in leukocytes. J Pharmacol Exp Ther. 2003;306:1077–1085.
197. Lafaye C, Desterke C, Marulaz L, et al. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addict Biol. 2018 [Epub ahead of print]; DOI: 10.1111/adb.12660.
198. Lodzki M, Godin B, Rakou L, et al. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J Control Release. 2003;93:377–387.
219. Costa B, Colleoni M, Conti S, et al. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn Schmiedebergs Arch Pharmacol. 2004;369:294–299.

220. Durst R, Danenberg H, Gallily R, et al. Cannabidiol, a non-psychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury. Am J Physiol Heart Circ Physiol. 2007;293:H3602–H3607.

221. Ignatowska-Jankowska B, Jankowski M, Glac W, et al. Cannabidiol-induced lymphopenia does not involve NKT and NK cells. J Physiol Pharmacol. 2009;60 Suppl 3:99–103.

222. Magen I, Avraham Y, Ackerman Z, et al. Cannabidiol ameliorates cognitive and motor impairments in bile-duct ligated mice via 5-HT1A receptor activation. Br J Pharmacol. 2010;159:950–957.

223. Barichello T, Ceretta RA, Generoso JS, et al. Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis. Eur J Pharmacol. 2012;697:158–164.

224. Campos AC, Brant F, Miranda AS, et al. Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. Eur J Pain. 2016;20:936–948.

225. Lehmann C, Fisher NB, Tugwell B, et al. Experimental cannabidiol treatment reduces early pancreatic inflammation in type 1 diabetes. Clin Hemorheol Microcirc. 2016;64:655–662.

226. Khaksar S, Bigdeli MR. Intra-cerebral cannabidiol infusion-induced neuroprotection is partly associated with the TNF-alpha/TNFR1/NF-small ka, CyrillicB pathway in transient focal cerebral ischaemia. Brain Inj. 2017;31:1932–1943.

227. Gamble LJ, Boesch JM, Frye CW, et al. Pharmacokinetics, safety, and clinical efficacy of cannabidiol treatment in osteoarthritis dogs. Front Vet Sci. 2018;5:165.

228. Klein M, de Quadros De Bortoli J, Guimaraes FS, et al. Effects of cannabidiol, a Cannabis sativa constituent, on oral wound healing process. Vet Sci. 2018;5:165.

229. Rock EM, Limebeer CL, Parker LA. Effect of cannabidiolic acid and (9)-tetrahydrocannabinol on carrageenan-induced hyperalgesia and edema in a rodent model of inflammatory pain. Psychopharmacology (Berl). 2018;235:3293–3271.

230. Maresz K, Pryce G, Ponomarev ED, et al. Direct suppression of CNS autoimmunity via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med. 2007;13:492–497.

231. Rahimi A, Fazli M, Talebi F, et al. Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience. 2015;290:279–287.

232. Shapiro CM, Orlina AR, Unger PJ, et al.Marihuana-induced antibody response. J Lab Clin Med. 1976;88:194–201.