SHERMAN-MORRISON-WOODBURY IDENTITY FOR TENSORS

SHIH YU CHANG∗

Abstract. In linear algebra, the Sherman-Morrison-Woodbury identity says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix. This identity is crucial to accelerate the matrix inverse computation when the matrix involves correction. Many scientific and engineering applications have to deal with this matrix inverse problem after updating the matrix, e.g., sensitivity analysis of linear systems, covariance matrix update in Kalman filter, etc. However, there is no similar identity in tensors. In this work, we will derive the Sherman-Morrison-Woodbury identity for invertible tensors first. Since not all tensors are invertible, we further generalize the Sherman-Morrison-Woodbury identity for tensors with Moore-Penrose generalized inverse by utilizing orthogonal projection of the correction tensor part into the original tensor and its Hermitian tensor. According to this new established the Sherman-Morrison-Woodbury identity for tensors, we can perform sensitivity analysis for multilinear systems by deriving the normalized upper bound for the solution of a multilinear system. Several numerical examples are also presented to demonstrate how the normalized error upper bounds are affected by perturbation degree of tensor coefficients.

Key words. Multilinear Algebra, Tensor Inverse, Moore-Penrose Inverse, Sensitivity Analysis, Multilinear System

AMS subject classifications. 65R10, 33A65, 35K05, 62G20, 65P05

1. Introduction. Tensors are higher-order generalizations of matrices and vectors, which have been studied abroadly due to the practical applications in many scientific and engineering fields [27, 46, 58], including psychometrics [57], digital image restorations [48], quantum entanglement [22, 44], signal processing [15, 41, 61, 25], high-order statistics [8, 18], automatic control [43], spectral hypergraph theory [21, 13, 51], higher order Markov chains [34, 37, 29], magnetic resonance imaging [48, 47], algebraic geometry [9, 31], Finsler geometry [1], image authenticity verification [60], and so on. More applications about tensors can be found at [27, 46].

In tensor data analysis, the data sets are represented by tensors, while the associated multilinear algebra problems can be formulated for various data-processing tasks, such as web-link analysis [28, 26], document analysis [7, 38], information retrieval [40, 35], model learning [11, 5], data-model reduction [52, 12, 42], model prediction [10], movie recommendation [55], and videos analysis [33, 56], numerical PDE [50]. Most of the above-stated tensor-formulated methodologies depend on the solution to the following tensor equation (a.k.a. multilinear system of equations [28, 39]):

\[A \ast_N X = B, \]

where \(A, B \) are tensors and \(\ast_N \) denotes the Einstein product with order \(N \) [54]. Basically, there are two main approaches to solve the unknown tensor \(X \). The first approach is to solve the Eq. (1.1) iteratively. Three primary iterative algorithms are Jacobi method, Gauss-Seidel method, and Successive Over-Relaxation (SOR) method [49]. Nonetheless, in order to make these iterative algorithms converge, one has to provide some constraints during the tensor update at each iteration. For example, the updated tensor is required to be positive-definite and/or diagonally dominant [32, 14, 45, 46]. When the tensor \(A \) is a special type of tensor, namely \(M \)-tensors, the Eq. (1.1) becomes a \(M \)-equation. Ding and Wei [19] prove that a nonsingular \(M \)-equation with

∗Department of Applied Data Science, San Jose State University, San Jose, CA 95192, USA (shihyu.chang@sjsu.edu).
a positive B always has a unique positive solution. Several iterative algorithms are proposed to solve multilinear nonsingular M-equations by generalizing the classical iterative methods and the Newton method for linear systems. Furthermore, they also apply the M-equations to solve nonlinear differential equations. In [59], the authors solve these multilinear system of equations, especially focusing on symmetric M-equations, by proposing the rank-1 approximation of the tensor A and apply iterative tensor method to solve symmetric M-equations. Their numerical examples demonstrate that the tensor methods could be more efficient than the Newton method for some M-equations.

Sometimes, it is difficult to set a proper value of the underlying parameter (such as step size) in the solution-update equation to accelerate the convergence speed, while people often apply heuristics to determine such a parameter case by case. The other approach is to solve the unknown tensor X at the Eq. (1.1) through the tensor inversion. Brazell et al. [4] proposed the concept of the inverse of an even-order square tensor by adopting Einstein product, which provides a new direction to study tensors and tensor equations that model many phenomena in engineering and science [30]. In [6], the authors give some basic properties for the left (right) inverse, rank and product of tensors. The existence of order 2 left (right) inverses of tensors is also characterized and several tensor properties, e.g., some equalities and inequalities on the tensor rank, independence between the rank of a uniform hypergraph and the ordering of its vertices, rank characteristics of the Laplacian tensor, are established through inverses of tensors. Since the key step in solving the Eq. (1.1) is to characterize the inverse of the tensor A, Sun et al. in [54] define different types of inverse, namely, i-inverse ($i = 1, 2, 5$) and group inverse of tensors based on a general product of tensors. They explore properties of the generalized inverses of tensors on solving tensor equations and computing formulas of block tensors. The representations for the 1-inverse and group inverse of some block tensors are also established. They then use the 1-inverse of tensors to give the solutions of a multilinear system represented by tensors. The authors in [54] also proved that, for a tensor equation with invertible tensor A, the solution is unique and can be expressed by the inverse of the tensor A.

However, the coefficient tensor A in the Eq. (1.1) is not always invertible, for example, when the tensor A is not square. Sun et al. [53] extend the tensor inverse proposed by Brazell et al. [4] to the MoorePenrose inverse via Einstein product, and a concrete representation for the MoorePenrose inverse can be obtained by utilizing the singular value decomposition (SVD) of the tensor. An important application of the MoorePenrose inverse is the tensor nearness problem associated with tensor equation with Einstein product, which can be expressed as follows [36]. Let X_0 be a given tensor, find the tensor $\hat{X} \in \Omega$ such that

$$\left\| \hat{X} - X_0 \right\| = \min_{\hat{X} \in \Omega} \left\| X - X_0 \right\|,$$

where $\left\| \cdot \right\|$ is the Frobenius norm, and Ω is the solution set of tensor equation

$$A \ast_N X = B.$$

The tensor nearness problem is a generalization of the matrix nearness problem that are studied in many areas of applied matrix computations [17, 20]. The tensor X_0 in Eq. (1.2), may be obtained by experimental measurement values and statistical distribution information, but it may not satisfy the desired form and the minimum error requirement, while the optimal estimation \hat{X} is the tensor that not only satisfies
these restrictions but also best approximates X_0. Under certain conditions, it will be proved that the solution to the tensor nearness problem (1.2) is unique, and can be represented by means of the Moore-Penrose inverses of the known tensors [3]. Another situation to apply Moore-Penrose inverse is that the given tensor equation in Eq. (1.1) has a non-square coefficient tensor A. The associated least-squares problem for the solution in Eq. (1.1) can be obtained by solving the Moore-Penrose inverse of the coefficient tensor [4]. Several works to discuss the construction of Moore-Penrose inverse and how to apply this inverse to build necessary and sufficient conditions for the existence of the solution of tensor equations can be found at [23, 24, 3].

In matrix theory, the Sherman-Morrison-Woodbury identity says that the inverse of a rank-k correction of some matrix can be obtained by computing a rank-k correction to the inverse of the original matrix. The Sherman-Morrison-Woodbury identity for matrix can be stated as following:

\[(A + UBV)^{-1} = A^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1},\]

where A is a $n \times n$ matrix, U is a $n \times k$ matrix, B is a $k \times k$ matrix, and V is a $k \times n$ matrix. This identity is useful in numerical computations when A^{-1} has already been computed but the goal is to compute $(A + UBV)^{-1}$. With the inverse of A available, it is only necessary to find the inverse of $B^{-1} + VA^{-1}U$ in order to obtain the result using the right-hand side of the identity. If the matrix B has a much smaller dimension than A, this is much easier than inverting $A + UBV$ directly. A common application is finding the inverse of a low-rank update $A + UBV$ of A when U only has a few columns and V also has only a few rows, or finding an approximation of the inverse of the matrix $A + C$ where the matrix C can be approximated by a low-rank matrix UBV via the singular value decomposition (SVD).

Analogously, we expect to have the Sherman-Morrison-Woodbury identity for tensors to facilitate the tensor inversion computation with those benefits in the matrix inversion computation when the correction of the original tensors is required. The Sherman-Morrison-Woodbury identity for tensors can be applied at various engineering and scientific areas, e.g., the tensor Kalman filter and recursive least squares methods [2]. This identity can significantly speeds up the real time calculations of the tensor filter update because each new observation, which can be described with much lower dimension, can be treated as perturbation of the original covariance tensor. Similar to sensitivity analysis for linear systems [16], if we wish to consider how the solution is affected by the perturbed of coefficients in the tensor A in Eq. (1.1), we need to understand the relationship between the original tensor inverse and the perturbed tensor inverse. The Sherman-Morrison-Woodbury identity helps us to quantify the difference between the original solution and the perturbed solution of Eq. (1.1).

The contribution of this work can be summarized as follows.

1. We establish Sherman-Morrison-Woodbury identity for invertible tensors.
2. Because not every tensors are invertible, we generalize the Sherman-Morrison-Woodbury identity for tensors with Moore-Penrose inverse.
3. The sensitivity analysis is provided to the solution of a multilinear system when coefficient tensors are perturbed.

The paper is organized as follows. Preliminaries of tensors are given in Section 2. In Section 3, we will derive the Sherman-Morrison-Woodbury identity for invertible tensors. In Section 4, the Sherman-Morrison-Woodbury identity is generalized for Moore-Penrose tensor inverse, and two illustrative examples about applying this identity are also presented. We apply Sherman-Morrison-Woodbury identity to analyze the sen-
2. Preliminaries of Tensors. In this work, we denote scalars by lower-case letters (e.g., \(d, e, f\)), vectors by boldface lower-case letters (e.g., \(d, e, f\)), matrices by boldface capital letters (e.g., \(D, E, F\)), and tensors by calligraphic letters (e.g., \(\mathcal{D}, \mathcal{E}, \mathcal{F}\)), respectively. Tensors are multiarray of values which are higher-dimensional generalization of vectors and matrices. Given a positive integer \(N\), let \([N] = 1, \ldots, N\).

An order \(N\) tensor \(\mathcal{A} = (a_{i_1, \ldots, i_N})\), where \(1 \leq i_j \leq I_j\) for \(j \in [N]\), is a multidimensional array with \(I_1 \times I_2 \times \cdots \times I_N\) entries. Let \(\mathbb{C}^{I_1 \times \cdots \times I_N}\) and \(\mathbb{R}^{I_1 \times \cdots \times I_N}\) be the sets of the order \(N\) dimension \(I_1 \times I_2 \times \cdots \times I_N\) tensors over the complex field \(\mathbb{C}\) and the real field \(\mathbb{R}\), respectively. For example, \(\mathcal{A} \in \mathbb{C}^{I_1 \times \cdots \times I_N}\) is a multiway array with \(N\)-th order and \(I_1, I_2, \ldots, I_N\) dimension in the first, second, \ldots, \(N\)th direction, respectively. Each entry of \(\mathcal{A}\) is represented by \(a_{i_1, \ldots, i_N}\). For \(N = 4\), \(\mathcal{A} \in \mathbb{C}^{I_1 \times I_2 \times I_3 \times I_4}\) is a fourth order tensor with entries as \(a_{i_1, i_2, i_3, i_4}\).

For tensors \(\mathcal{A} = (a_{i_1, \ldots, i_M, j_1, \ldots, j_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}\) and \(\mathcal{B} = (b_{i_1, \ldots, i_M, j_1, \ldots, j_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}\), the tensor addition is defined as
\[
(\mathcal{A} + \mathcal{B})_{i_1, \ldots, i_M, j_1, \ldots, j_N} = a_{i_1, \ldots, i_M, j_1, \ldots, j_N} + b_{i_1, \ldots, i_M, j_1, \ldots, j_N}.
\]

If \(M = N\) for the tensor \(\mathcal{A} = (a_{i_1, \ldots, i_M, j_1, \ldots, j_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}\), the tensor \(\mathcal{A}\) is named as a square tensor.

For tensors \(\mathcal{A} = (a_{i_1, \ldots, i_M, j_1, \ldots, j_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}\) and \(\mathcal{B} = (b_{i_1, \ldots, j_N, k_1, \ldots, k_L}) \in \mathbb{C}^{I_1 \times \cdots \times J_N \times K_1 \times \cdots \times K_L}\), the Einstein product with order \(N\) \(\mathcal{A} \ast_N \mathcal{B} \in \mathbb{C}^{I_1 \times \cdots \times I_M \times K_1 \times \cdots \times K_L}\) is defined as
\[
(\mathcal{A} \ast_N \mathcal{B})_{i_1, \ldots, i_M, k_1, \ldots, k_L} = \sum_{j_1, \ldots, j_N} a_{i_1, \ldots, i_M, j_1, \ldots, j_N} b_{j_1, \ldots, j_N, k_1, \ldots, k_L}.
\]

This tensor product reduces to the standard matrix multiplication when we have \(L = M = N = 1\), which also contains the tensor-vector product and the tensor-matrix product as special cases. We need following definitions about tensors. We begin with zero tensor definition.

Definition 2.1. A tensor that all its entries are zero is called zero tensor, denoted as \(\mathcal{O}\).

The identity tensor is defined as following:

Definition 2.2. An identity tensor \(\mathcal{I} \in \mathbb{C}^{I_1 \times \cdots \times I_N \times J_1 \times \cdots \times J_N}\) is defined as
\[
(\mathcal{I})_{i_1 \times \cdots \times i_N \times j_1 \times \cdots \times j_N} = \prod_{k=1}^{N} \delta_{i_k, j_k},
\]
where \(\delta_{i_k, j_k} = 1\) if \(i_k = j_k\), otherwise \(\delta_{i_k, j_k} = 0\).

In order to define a Hermitian tensor, we need following conjugate transpose operation of a tensor.

Definition 2.3. Let \(\mathcal{A} = (a_{i_1, \ldots, i_M, j_1, \ldots, j_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}\) be a given tensor, then its conjugate transpose, denoted as \(\mathcal{A}^H\), is defined as
\[
(\mathcal{A}^H)_{j_1, \ldots, j_N, i_1, \ldots, i_M} = \overline{a_{i_1, \ldots, i_M, j_1, \ldots, j_N}},
\]
where the over line indicates the complex conjugate of the complex number \(a_{i_1, \ldots, i_M, j_1, \ldots, j_N}\). If a tensor with the property \(\mathcal{A}^H = \mathcal{A}\), this tensor is named as Hermitian tensor.
The meaning of the inverse of a tensor is provided as following:

Definition 2.4. For a square tensor \(A = (a_{i_1,\ldots,i_M,j_1,\ldots,j_M}) \in \mathbb{C}^{I_1\times\cdots\times I_M\times J_1\times\cdots\times J_M} \), if there exists \(X \in \mathbb{C}^{I_1\times\cdots\times I_M\times J_1\times\cdots\times J_M} \) such that

\[
A \ast_M X = X \ast_M A = I,
\]

then such \(X \) is called as the inverse of the tensor \(A \), represented by \(A^{-1} \).

Definition 2.5. Given a tensor \(A \in \mathbb{C}^{I_1\times\cdots\times I_M\times J_1\times\cdots\times J_N} \), then the tensor \(X \in \mathbb{C}^{J_1\times\cdots\times J_N\times I_1\times\cdots\times I_M} \), satisfying the following tensor equations:

\[
\begin{align*}
(1) & \ A \ast_N X \ast_M A = A, \\
(2) & \ X \ast_M A \ast_N X = X, \\
(3) & \ (A \ast_N X)^H = A \ast_M X, \\
(4) & \ (X \ast_M A)^H = X \ast_M A,
\end{align*}
\]

is called the Moore-Penrose inverse of the tensor \(A \), denoted as \(A^\dagger \).

The trace of a tensor is defined as the summation of all the diagonal entries as

\[
\text{Tr}(A) = \sum_{1 \leq i_1 \leq I_1, j_1 \in [N]} A_{i_1,\ldots,i_M,i_1,\ldots,i_M}.
\]

Then, we can define the inner product of two tensors \(A, B \in \mathbb{C}^{I_1\times\cdots\times I_M\times J_1\times\cdots\times J_N} \) as

\[
\langle A, B \rangle = \text{Tr}(A^H \ast_M B).
\]

From the definition of tensor inner product, the Frobenius norm of a tensor \(A \) can be defined as

\[
\|A\| = \sqrt{\langle A, A \rangle}.
\]

An unfolded tensor is a matrix obtained by reorganizing the entries of a tensor into a two-dimensional array. For the tensor space \(\mathbb{C}^{I_1\times\cdots\times I_M\times J_1\times\cdots\times J_N} \) and the matrix space \(\mathbb{C}^{(I_1\cdot\cdot\cdot I_M)\times(J_1\cdot\cdot\cdot J_N)} \), we define a map \(\varphi \) as follows:

\[
\varphi : \mathbb{C}^{I_1\times\cdots\times I_M\times J_1\times\cdots\times J_N} \rightarrow \mathbb{C}^{(I_1\cdot\cdot\cdot I_M)\times(J_1\cdot\cdot\cdot J_N)}
\]

\[
\varphi : A = (a_{i_1,\ldots,i_M,j_1,\ldots,j_M}) \rightarrow (A_{\phi(i_1),\phi(j_1)})
\]

where \(\phi \) is an index mapping function from tensor indices to matrix indices with arguments of row subscripts \(i = \{i_1,\ldots,i_M\} \) and row dimensions of \(A \), denoted as \(I = \{I_1,\ldots,I_M\} \). The relation \(\phi(i,I) \) can be expressed as

\[
\phi(i,I) = i_1 + \sum_{m=2}^{M} (i_m - 1) \prod_{u=1}^{m-1} I_u.
\]

Similarly, \(\phi(j,J) \) is an index mapping relation for column dimensions of \(A \) which can be expressed as

\[
\phi(j,J) = j_1 + \sum_{n=2}^{N} (j_n - 1) \prod_{v=1}^{n-1} J_v,
\]

where \(j = \{j_1,\ldots,j_N\} \) and column dimensions of \(A \), denoted as \(J = \{J_1,\ldots,J_N\} \). We will use this unfolding mapping \(\varphi \) to build the condition of the existence of an inverse of a tensor.

Following definition, which is based on the tensor unfolding map introduced by the Eq. (2.10), is required to determine when a given square tensor is invertible.
Therefore, the identity is established.

Definition 2.6. For a tensor $A \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}$, and the map φ defined by the Eq. (2.10), the unfolding rank of a tensor A is defined as the rank of the mapped matrix $\varphi(A)$. If we have $\varphi(A) = I_1 \cdots I_M$ (the multiplication of all integers I_1, \cdots, I_M together), we say that A is full row rank. On the other hand, if we have $\varphi(A) = J_1 \cdots J_N$ (the multiplication of all integers J_1, \cdots, J_N together), we say that A is full column rank.

Based on such unfolding rank definition, we are able to utilize this to give the sufficient and the necessary conditions for the existence of a given tensor provided by the following Lemma 2.7.

Lemma 2.7. A given tensor $A \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_M}$ is invertible if and only if the matrix $\varphi(A)$ is a full rank matrix with rank value $I_1 \cdots I_M$.

Proof: See [36].

3. Identity for Invertible Tensors. The purpose of this section is to prove ShermanMorrisonWoodbury identity for invertible tensors.

Theorem 3.1 (ShermanMorrisonWoodbury identity for invertible tensors.). Given invertible tensors $A \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_K}$ and $B \in \mathbb{C}^{I_1 \times \cdots \times I_K \times I_1 \times \cdots \times I_K}$, and tensors $U \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_K}$ and $V \in \mathbb{C}^{I_1 \times \cdots \times I_K \times I_1 \times \cdots \times I_M}$, if the tensor $(B^{-1} + V \ast_M A^{-1} \ast_M U)$ is invertible, we have following identity:

$$(A + U \ast_K B \ast_K V)^{-1} = A^{-1} - A^{-1} \ast_M U \ast_K (B^{-1} + V \ast_M A^{-1} \ast_M U)^{-1} \ast_K V \ast_M A^{-1}.$$ (3.1)

Proof: The identity can be proven by checking that $(A + U \ast_K B \ast_K V)$ multiplies its alleged inverse on the right side of the ShermanMorrisonWoodbury identity gives the identity matrix (To save space, we omit Einstein product symbol, \ast, between two tensors.):

$$(A + UBV)[A^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1}]$$

$= I + UBV A^{-1} - U(B^{-1} + VA^{-1}U)^{-1}VA^{-1} - UBV A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

$= (I + UBV A^{-1}) - U(B^{-1} + VA^{-1}U)^{-1}VA^{-1} + UBV A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

$= (I + UBV A^{-1}) - (U + UBV A^{-1}U)(B^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

$= I + UBV A^{-1} - (UB(B^{-1} + VA^{-1}U)(B^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

$= I + UBV A^{-1} - UBV A^{-1}VA^{-1} = I$ (3.2)

Similar steps can be applied to prove this identity by multiplying the alleged inverse from the left side of $(A + UBV)$:

$$[A^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1}](A + UBV)$$

$= I + A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1}UBV$$

$= (I + A^{-1}UBV) - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}(V + VA^{-1}UBV)$$

$= (I + A^{-1}UBV) - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}(B^{-1} + VA^{-1}U)BV$$

$= (I + A^{-1}UBV) - A^{-1}UBV = I$ (3.3)

Therefore, the identity is established. \(\square\)
4. Identity for Tensors with Moore-Penrose Inverse. In this section, we will extend our tensor inverse result from previous section to the ShermanMorrisonWoodbury identity for Moore-Penrose inverse in section 4.1. Two illustrative examples for the ShermanMorrisonWoodbury identity for Moore-Penrose inverse will be provided in section 4.2.

4.1. Identity for Moore-Penrose Inverse Tensors. The goal of this section is to establish our main result: the ShermanMorrisonWoodbury identity for Moore-Penrose inverse. We begin with the definitions about row space and column space of a given tensor. Let us define two symbols $I_M \overset{\text{def}}{=} 1 \times \cdots \times 1$ and $I_N \overset{\text{def}}{=} 1 \times \cdots \times 1$.

We define row-tensors of a tensor $A = (a_{i_1, \ldots, i_M, j_1, \ldots, j_N}) \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}$ as subtensors a_{i_1, \ldots, i_M} where $1 \leq i_k \leq I_k$ for $k \in [M]$. The entries in the row-tensor a_{i_1, \ldots, i_M} are entries $a_{i_1, \ldots, i_M, j_1, \ldots, j_N}$ where $1 \leq j_k \leq J_k$ for $k \in [N]$ but fix the indices of i_1, \ldots, i_M. Similarly, column-tensors of a tensor A are subtensors a_{j_1, \ldots, j_N} where $1 \leq j_k \leq J_k$ for $k \in [N]$. The entries in the column-tensor a_{j_1, \ldots, j_N} are entries $a_{i_1, \ldots, i_M, j_1, \ldots, j_N}$ where $1 \leq i_k \leq I_k$ for $k \in [M]$ but fix the indices of j_1, \ldots, j_N.

Let the tensor $A \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}$. The right null space is defined as

$$\mathcal{R}_R(A) \overset{\text{def}}{=} \{z \in \mathbb{C}^{J_1 \times \cdots \times J_N \times 1_M} : A \ast_N z = O\}$$

Then the row space of A is defined as

$$\mathcal{R}(A) \overset{\text{def}}{=} \left\{y \in \mathbb{C}^{J_1 \times \cdots \times J_N \times 1_M} : y = \sum_{i_1, \ldots, i_M} a_{i_1, \ldots, i_M} x_{i_1, \ldots, i_M}, \text{ where } x_{i_1, \ldots, i_M} \in \mathbb{C} \text{ and } a_{i_1, \ldots, i_M} \in \mathbb{C}^{J_1 \times \cdots \times J_N \times 1_M}.\right\}$$

(4.2)

Now from the definition of right null space we have $a_{i_1, \ldots, i_M}^H z = O$, where H is the Hermitian operator and $a_{i_1, \ldots, i_M}^H \in \mathbb{C}^{I_M \times J_1 \times \cdots \times J_N}$. If we take any tensor $y \in \mathcal{R}(A)$, then $y = \sum_{i_1, \ldots, i_M} a_{i_1, \ldots, i_M} x_{i_1, \ldots, i_M}$, where $x_{i_1, \ldots, i_M} \in \mathbb{C}$. Hence,

$$y^H z = (\sum_{i_1, \ldots, i_M} a_{i_1, \ldots, i_M} x_{i_1, \ldots, i_M})^H z$$

$$= (\sum_{i_1, \ldots, i_M} x_{i_1, \ldots, i_M} a_{i_1, \ldots, i_M}^H) z$$

$$= \sum_{i_1, \ldots, i_M} x_{i_1, \ldots, i_M} (a_{i_1, \ldots, i_M}^H z) = O$$

(4.3)

This shows that row space is orthogonal to the right null space.

Following this right null space approach, we also can define the left null space as

$$\mathcal{R}_L(A) \overset{\text{def}}{=} \{z \in \mathbb{C}^{I_1 \times \cdots \times I_M \times 1_N} : z^H \ast_M A = O\}$$

(4.4)

Then the column space of A is defined as

$$\mathcal{C}(A) \overset{\text{def}}{=} \left\{y \in \mathbb{C}^{I_1 \times \cdots \times I_M \times 1_N} : y = \sum_{j_1, \ldots, j_N} a_{j_1, \ldots, j_N} x_{j_1, \ldots, j_N}, \text{ where } x_{j_1, \ldots, j_N} \in \mathbb{C} \text{ and } a_{j_1, \ldots, j_N} \in \mathbb{C}^{I_1 \times \cdots \times I_M \times 1_N}.\right\}$$

(4.5)
From the definition of left null space we have \(z^H a_{j_1, \ldots, j_N} = 0 \), where \(H \) is the Hermitian operator and \(z^H \in \mathbb{C}^{I_K \times I_{K,1} \times \cdots \times I_{K,N}} \). By taking any tensor \(y \in \mathcal{E}(A) \), then
\[
y = \sum_{j_1, \ldots, j_N} a_{j_1, \ldots, j_N} x_{j_1, \ldots, j_N}, \text{ where } x_{j_1, \ldots, j_N} \in \mathbb{C}.
\]
We have,
\[
z^H y = z^H \left(\sum_{j_1, \ldots, j_N} a_{j_1, \ldots, j_N} x_{j_1, \ldots, j_N} \right)
\leq (\sum_{j_1, \ldots, j_N} z^H a_{j_1, \ldots, j_N} x_{j_1, \ldots, j_N})
\leq \sum_{j_1, \ldots, j_N} x_{j_1, \ldots, j_N} (z^H a_{j_1, \ldots, j_N}) = 0
\]

This shows that column space is orthogonal to the left null space.

Given following tensor relation:
\[
S = A + \mathcal{U} \mathcal{B} V,
\]
the goal is to express the Moore-Penrose inverse of \(S \) in terms of tensors related to \(A, U, B, V \). From the definition of column space, we can decompose the tensor \(\mathcal{U} \) into \(X_1 + Y_1 \), where the column-tensors of \(X_1 \) are contained in the clumn space of \(A \), denoted as \(\mathcal{E}(A) \), and the column-tensors of \(Y_1 \) are contained in the left null space of \(A \). Correspondingly, we also can decompose the tensor \(\mathcal{V}^H \) into \(X_2 + Y_2 \), where the column-tensors of \(X_2 \) are contained in the clumn space of \(A^H \), denoted as \(\mathcal{E}(A^H) \), and the column-tensors of \(Y_2 \) are contained in the left null space of \(A^H \). Define tensors \(E_i = \mathcal{E}_i^\dagger Y_i (\mathcal{Y}_i^H \mathcal{Y}_i)^\dagger \) for \(i = 1, 2 \). We are ready to present the following theorem about the identity for tensors with Moore-Penrose inverse.

Theorem 4.1 (ShermanMorrisonWoodbury identity for Moore-Penrose inverse).

Given tensors \(A \in \mathbb{C}^{I_{K,1} \times I_{K,2} \times \cdots \times I_{K,N}}, B \in \mathbb{C}^{I_{K,1} \times I_{K,2} \times \cdots \times I_{K,N}}, \mathcal{U} \in \mathbb{C}^{I_1 \times I_1 \times I_{K,1} \times I_{K,2} \times \cdots \times I_{K,N}} \), and \(V \in \mathbb{C}^{I_1 \times I_1 \times I_{K,1} \times I_{K,2} \times \cdots \times I_{K,N}} \), if following conditions are satisfied:

1. \(\mathcal{U} = X_1 + Y_1 \), where \(X_1 \in \mathcal{E}(A) \) and \(Y_1 \) is orthogonal to \(\mathcal{E}(A) \);
2. \(\mathcal{V}^H = X_2 + Y_2 \), where \(X_2 \in \mathcal{E}(A^H) \) and \(Y_2 \) is orthogonal to \(\mathcal{E}(A^H) \);
3. \((1) E_2 \mathcal{B} E_2^H \mathcal{Y}_1 = E_2, \) \((2) X_1 \mathcal{E}_1^H \mathcal{Y}_2 = X_1 \mathcal{B}, \) \((3) \mathcal{Y}_1 \mathcal{E}_1^H \mathcal{Y}_1 = \mathcal{Y}_1 \);
4. \((1) \mathcal{B} \mathcal{Y}_2^H E_2 \mathcal{B} \mathcal{E}_2^H = E_1^H, \) \((2) \mathcal{B} \mathcal{Y}_2^H E_2 \mathcal{X}_2^H = \mathcal{B} \mathcal{X}_2^H, \) \((3) \mathcal{Y}_2 \mathcal{Y}_2^H E_2 = E_2 \).

Then the tensor
\[
S = A + \mathcal{U} \mathcal{B} \mathcal{V}
\]
has the following Moore-Penrose generalized inverse identity:
\[
S^\dagger = A^\dagger - \mathcal{E}_2 \mathcal{E}_2^H \mathcal{X}_2^H \mathcal{X}_2^H \mathcal{X}_2^H A^\dagger \mathcal{X}_1 \mathcal{Y}_1 \mathcal{E}_1^H + \mathcal{E}_2 \mathcal{E}_2^H \mathcal{B} \mathcal{E}_2 \mathcal{E}_2^H \mathcal{Y}_2 \mathcal{Y}_2^H \mathcal{X}_2^H \mathcal{X}_2^H \mathcal{X}_2^H A^\dagger \mathcal{X}_1 \mathcal{Y}_1 \mathcal{E}_1^H,
\]
where \(\mathcal{E}_i = \mathcal{E}_i^\dagger \mathcal{Y}_i (\mathcal{Y}_i^H \mathcal{Y}_i)^\dagger \) for \(i = 1, 2 \).

Proof: From the definition 2.5, the identity is established by direct computation (To save space, we also omit \(\ast \) product symbol between two tensors in this proof) to verify following four rules:
\[
(1) SS^\dagger S = S, \quad (2) S^\dagger SS^\dagger = S^\dagger,
(3) (SS^\dagger)^H = SS^\dagger, \quad (4) (S^\dagger S)^H = S^\dagger S.
\]
Verify : \((SS^\dagger)^H = SS^\dagger\)

By expansion of \(SS^\dagger\), we have

\[
SS^\dagger = AA^\dagger - AE_2X_2^HA^\dagger - AA^\daggerX_1^HE_1^H + AE_2(B^\dagger + X_2^HE_2X_2^HA^\daggerX_1^HE_1^H +
\]

\[
(\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H A^\dagger - (\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H E_2X_2^HA^\dagger -
\]

\[
(\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H A^\daggerX_1^HE_1^H + (\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H E_2X_2^HA^\daggerX_1^HE_1^H +
\]

\[
(4.9) \quad (\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H E_2B^\daggerE_1^H,
\]

and, since column-tensors of \(\gamma_2\) are orthogonal to \(E(A^H)\), we also have \(AA_2 = O\), \(\gamma_2^HA^\dagger = O\), and \(X_2^H\gamma_2 = O\). From these relations, the Eq. \((4.9)\) can be simplifies as

\[
SS^\dagger = AA^\dagger - AA^\daggerX_1^HE_1^H +
\]

\[
(\lambda_1 + \gamma_1)E_2X_2^HA^\dagger - (\lambda_1 + \gamma_1)E_2X_2^HA^\dagger -
\]

\[
(\lambda_1 + \gamma_1)E_2X_2^HA^\daggerX_1^HE_1^H + (\lambda_1 + \gamma_1)E_2X_2^HA^\daggerX_1^HE_1^H +
\]

\[
(4.10) \quad (\lambda_1 + \gamma_1)E_2B^\daggerE_1^H,
\]

and from the fourth condition at this Theorem 4.1, i.e., \(B^\daggerE_2B^\daggerE_1^H = E_1^H\), and \(B^\daggerE_2X_2^HA^\dagger\) and \(AA^\daggerX_1 = X_1\), we can further simplifies the Eq. \((4.10)\) as :

\[
(4.11) \quad SS^\dagger = AA^\dagger + \gamma_1E_1^H.
\]

Then,

\[
(SS^\dagger)^H = (AA^\dagger + \gamma_1E_1^H)^H
\]

\[
= (AA^\dagger)^H + (\gamma_1E_1^H)^H
\]

\[
= AA^\dagger + \gamma_1E_1^H = SS^\dagger
\]

the third requirement of the definition 2.5 is valid from the Eq. \((4.12)\).

Verify : \((S^\dagger S)^H = S^\dagger S\)

By expansion \(S^\dagger S\) as the Eq. \((4.9)\), we can simplifies such expansion with following relations \(AA^\dagger\gamma_1 = O\), \(\gamma_1^HA^\dagger = O\) and \(X_1^HE_1^H\gamma_1 = O\) due to column-tensors of \(\gamma_1\) are orthogonal to \(E(A)\), \(X_2^HA^\dagger = X_2\) (from the definition of Moore-Penrose inverse of \(A\)), and the third condition at this Theorem 4.1, i.e., \(E_2B^\daggerE_1^H\gamma_1B = E_2\), and \(X_1^HE_1^H\gamma_1B = X_1B\), then we have

\[
(4.13) \quad S^\dagger S = A^\dagger A + E_2\gamma_2^H.
\]

Hence, the fourth requirement of the definition 2.5 is valid from the Eq. \((4.13)\).

Verify : \(SS^\dagger S = S\)

Since, we have

\[
SS^\dagger S = (AA^\dagger + \gamma_1E_1^H)(A + (\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H)
\]

\[
= AA^\dagger A + \gamma_1E_1^H A + AA^\dagger(A + (\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H +
\]

\[
\gamma_1E_1^H (\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H
\]

\[
= A + \gamma_1E_1^H A + AA^\daggerX_1^HE_1^H A + AA^\daggerX_1^HE_1^H A +
\]

\[
\gamma_1E_1^H A + \lambda_1B(X_2 + \gamma_2)H + \gamma_1E_1^H B(X_2 + \gamma_2)H +
\]

\[
(4.14) \quad = A + (\lambda_1 + \gamma_1)B(X_2 + \gamma_2)H = S
\]
where we apply \(\mathcal{A}^\dagger \mathcal{X}_1 = \mathcal{X}_1, \mathcal{A}^\dagger \mathcal{Y}_1 = \mathcal{O}, \mathcal{Y}_1^H \mathcal{A} = \mathcal{O}, \mathcal{Y}_1^H \mathcal{X}_1 = \mathcal{O} \) and (3) of the third condition at this Theorem 4.1, i.e., \(\mathcal{Y}_1 E_1^H \mathcal{Y}_1 = \mathcal{Y}_1 \) at the equality \(\frac{1}{2} \) in simplification.

Verify: \(S_1^1 S_1^1 = S_1^1 \)

Since, we have

\[
S_1^1 S_1^1 = (\mathcal{A}^\dagger \mathcal{A} + E_2 \mathcal{Y}_2^H)(\mathcal{A}^\dagger - E_2 \mathcal{X}_2^H \mathcal{A}^\dagger - \mathcal{A}^\dagger \mathcal{X}_1 \mathcal{E}_1^H + E_2 (\mathcal{B}^\dagger + \mathcal{X}_2^H \mathcal{A}^\dagger \mathcal{X}_1) \mathcal{E}_1^H)
\]

\[
= \mathcal{A}^\dagger \mathcal{A}^\dagger + E_2 \mathcal{Y}_2^H \mathcal{A}^\dagger - \mathcal{A}^\dagger \mathcal{B} \mathcal{E}_2^H \mathcal{A}^\dagger - \mathcal{A}^\dagger \mathcal{A}^\dagger \mathcal{X}_1 \mathcal{E}_1^H - E_2 \mathcal{Y}_2^H \mathcal{A}^\dagger \mathcal{X}_1 \mathcal{E}_1^H + \mathcal{A}^\dagger \mathcal{B} \mathcal{E}_2^H \mathcal{A}^\dagger \mathcal{X}_1 \mathcal{E}_1^H + E_2 \mathcal{Y}_2^H \mathcal{B}^\dagger + \mathcal{X}_2^H \mathcal{A}^\dagger \mathcal{X}_1 \mathcal{E}_1^H
\]

(4.15) \(\frac{1}{2} \mathcal{A}^\dagger - E_2 \mathcal{X}_2^H \mathcal{A}^\dagger - \mathcal{A}^\dagger \mathcal{X}_1 \mathcal{E}_1^H + E_2 \mathcal{B}^\dagger + \mathcal{X}_2^H \mathcal{A}^\dagger \mathcal{X}_1 \mathcal{E}_1^H = S_1^1 \)

where we apply \(\mathcal{A}^\dagger \mathcal{X}_1 = \mathcal{X}_1, \mathcal{A}^\dagger \mathcal{Y}_2 = \mathcal{O}, \mathcal{Y}_2^H \mathcal{A} = \mathcal{O} \) and (3) of the fourth condition at this Theorem 4.1, i.e., \(E_2 \mathcal{Y}_2^H \mathcal{E}_2 = \mathcal{E}_2 \) at the equality \(\frac{1}{2} \) in simplification.

Finally, since all requirements for Moore-Penrose generalized inverse definition have been fulfilled, this main theorem is proved. \(\square \)

There are several corollaries can be extended based on Theorem 4.1. If tensors \(\mathcal{B} \) and \((\mathcal{Y}_i^H \mathcal{Y}_i) \) for \(i = 1, 2 \) are invertible, those requirements in Theorem 4.1 can be reduced. Then, we have following corollary based on the Theorem 4.1.

Corollary 4.2. Given tensors \(\mathcal{A} \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_K} \), and the invertible tensor \(\mathcal{B} \in \mathbb{C}^{I_1 \times \cdots \times I_K \times I_1 \times \cdots \times I_K}, \mathcal{U} \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_K} \) and \(\mathcal{V} \in \mathbb{C}^{I_1 \times \cdots \times I_K \times I_1 \times \cdots \times I_K} \), if following conditions are valid:

1. \(\mathcal{Y}_1 = \mathcal{X}_1 + \mathcal{Y}_1 \), where \(\mathcal{X}_1 \in \mathbb{C}(\mathcal{A}) \) and \(\mathcal{Y}_1 \) is orthogonal to \(\mathbb{C}(\mathcal{A}) \);
2. \(\mathcal{Y}_1^H = \mathcal{X}_2 + \mathcal{Y}_2 \), where \(\mathcal{X}_2 \in \mathbb{C}(\mathcal{A}^H) \) and \(\mathcal{Y}_2 \) is orthogonal to \(\mathbb{C}(\mathcal{A}^H) \);
3. tensors \((\mathcal{Y}_i^H \mathcal{Y}_i) \) for \(i = 1, 2 \) are invertible.

Then the tensor

\[
S = \mathcal{A} + \mathcal{U} \ast_K \mathcal{B} \ast_K \mathcal{V}
\]

(4.16)

\[
= \mathcal{A} + (\mathcal{X}_1 \ast \mathcal{Y}_1) \ast_K \mathcal{B} \ast_K (\mathcal{X}_2 \ast \mathcal{Y}_2)^H,
\]

has the following Moore-Penrose generalized inverse identity:

\[
S_1^1 = \mathcal{A}^\dagger - E_2 \ast_K \mathcal{X}_2^H \ast_N \mathcal{A}^\dagger - \mathcal{A}^\dagger \ast_M \mathcal{X}_1 \ast_K \mathcal{E}_1^H
\]

(4.17) \(+ E_2 \ast_K (\mathcal{B}^\dagger + \mathcal{X}_2^H \ast_N \mathcal{A}^\dagger \ast_M \mathcal{X}_1) \ast_K \mathcal{E}_1^H \),

where \(\mathcal{E}_i \doteq \mathcal{Y}_i (\mathcal{Y}_i^H \mathcal{Y}_i)^{-1} \) for \(i = 1, 2 \).

Proof:

Because \((\mathcal{Y}_i^H \mathcal{Y}_i) \) for \(i = 1, 2 \) are invertible, then

(4.18) \(E_2 \mathcal{B}^\dagger \mathcal{E}_1^H \mathcal{Y}_1 \mathcal{B} = E_2 \mathcal{B}^{-1}[\mathcal{Y}_1 (\mathcal{Y}_1^H \mathcal{Y}_1)^{-1}]^H \mathcal{Y}_1 \mathcal{B} = \mathcal{E}_2. \)

By similar arguments, all following conditions are valid:

- \(\mathcal{X}_1 \mathcal{E}_1^H \mathcal{Y}_1 \mathcal{B} = \mathcal{X}_1 \mathcal{B}, \)
- \(\mathcal{Y}_1 \mathcal{E}_1^H \mathcal{Y}_1 = \mathcal{Y}_1, \)
- \(\mathcal{B} \mathcal{Y}_2^H \mathcal{E}_2 \mathcal{B}^{-1} \mathcal{E}_1^H = \mathcal{E}_1^H, \)
- \(\mathcal{B} \mathcal{Y}_2^H \mathcal{E}_2 \mathcal{X}_2^H = \mathcal{B} \mathcal{X}_2^H, \)
- \(E_2 \mathcal{Y}_2^H \mathcal{E}_2 = \mathcal{E}_2. \)

Therefore, this corollary is proved from Theorem 4.1 because all conditions required at Theorem 4.1 are satisfied. \(\square \)

When the column space projections of the tensors \(\mathcal{U} \) and \(\mathcal{V} \) are zero, i.e., \(\mathcal{X}_1 = \mathcal{O} \) and \(\mathcal{X}_2 = \mathcal{O} \), Theorem 4.1 can be simplified as following corollary.
4.3 Corollary 4.3. Given tensors $A \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_N}$,
$B \in \mathbb{C}^{I_1 \times \cdots \times I_k \times I_1 \times \cdots \times I_K}$, $U \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_K}$ and $V \in \mathbb{C}^{I_1 \times \cdots \times I_K \times I_1 \times \cdots \times I_N}$, if the following conditions are valid:
1. $U = Y_1$, where Y_1 is orthogonal to $E(A)$;
2. $V^H = Y_2$, where Y_2 is orthogonal to $E(A^H)$;
3. $(1) \; E_2B^HE_1Y_1Y_1B = E_2$, $(2) \; Y_1E_1^HY_1 = Y_1^H$;
4. $(1) \; B^HE_2E_1Y_1 = E_2^H$, $(2) \; E_2Y_2E_2 = E_2$.

Then the tensor

\begin{equation}
S = A + U \ast_K B \ast_K V
\end{equation}

has the following Moore-Penrose generalized inverse identity:

\begin{equation}
S^\dagger = A^\dagger + E_2 \ast_K B^\dagger \ast_K E_1^H,
\end{equation}

where $E_i \overset{def}{=} Y_i(Y_i^HY_i)^\dagger$ for $i = 1, 2$.

Proof: The proof can be obtained by replacing tensors X_1 and X_2 as zero tensor O in the proof of Theorem 4.1.

If the tensor A is a Hermitian tensor, we can have following corollary.

4.4 Corollary 4.4. Given tensors $A \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_N}$,
$B \in \mathbb{C}^{I_1 \times \cdots \times I_K \times I_1 \times \cdots \times I_K}$, $U \in \mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_K}$ and $V \in \mathbb{C}^{I_1 \times \cdots \times I_K \times I_1 \times \cdots \times I_M}$, if the following conditions are valid:
1. $A^H = A$, and $U^H = V$;
2. $U = X \ast Y$, where $X \in \mathcal{E}(A)$ and Y is orthogonal to $\mathcal{E}(A)$;
3. $(1) \; E_2B^HE_1Y_1B = E_2$, $(2) \; XE_1^HY_1 = X$, $(3) \; Y^HE_1Y = Y$;
4. $(1) \; B^HE_2E_1Y_1 = E_2^H$, $(2) \; B^HE_2E_1^HY = B^HE$, $(3) \; EY_1E = E$.

Then the tensor

\begin{equation}
S = A + U \ast_K B \ast_K V
\end{equation}

has the following Moore-Penrose generalized inverse identity:

\begin{equation}
S^\dagger = A^\dagger - E \ast_K X^H \ast_N A^\dagger - A^\dagger \ast_M X \ast_K E^H
+ E \ast_K (B^\dagger + X^H \ast_N A^\dagger \ast_M X) \ast_K E^H,
\end{equation}

where $E \overset{def}{=} Y(Y^HY)^\dagger$.

Proof: Because $A^H = A$, and $U^H = V$, the proof from Theorem 4.1 can be applied here by removing those subscript indices, 1 and 2.

4.2 Illustrative Examples. In this section, we will provide two examples to demonstrate the validity of Theorem 4.1 and Corollary 4.3. We have to use following tensor equation in this section.

\begin{equation}
A \ast_N Z \ast_M B = (A \otimes B^H) \ast_{(N+M)} Z,
\end{equation}

where \otimes is the Kronecker product of tensors [53].

Following example is provided to verify Corollary 4.3.
Example 1. Given tensor \(A \in \mathbb{R}^{2 \times 2 \times 2} \)

\[
A = \begin{bmatrix}
 a_{11,11} & a_{11,12} & a_{12,11} & a_{12,12} \\
 a_{21,11} & a_{21,12} & a_{12,21} & a_{12,22} \\
 a_{21,21} & a_{21,22} & a_{22,11} & a_{22,12} \\
 a_{21,21} & a_{21,22} & a_{22,21} & a_{22,22}
\end{bmatrix} = \begin{bmatrix}
 1 & -1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\]

Then, the column tensor \(a_{11} \) of tensor \(A \) is \(\begin{bmatrix} 1 & -1 \end{bmatrix} \), the column tensor \(a_{12} \) of tensor \(A \) is \(\begin{bmatrix} 0 & 0 \end{bmatrix} \), the column tensor \(a_{21} \) of tensor \(A \) is \(\begin{bmatrix} 0 & 1 \end{bmatrix} \), and the column tensor \(a_{22} \) of tensor \(A \) is \(\begin{bmatrix} 0 & 0 \end{bmatrix} \).

If we take Hermition for the tensor \(A \), we have

\[
A^H = \begin{bmatrix}
 a_{11,11} & a_{11,12} & a_{12,11} & a_{12,12} \\
 a_{11,21} & a_{11,22} & a_{12,21} & a_{12,22} \\
 a_{21,11} & a_{21,12} & a_{22,11} & a_{22,12} \\
 a_{21,21} & a_{21,22} & a_{22,21} & a_{22,22}
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & -1 & 0 \\
 0 & 1 & 0 & 0 \\
 -1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix}
\]

Then, the column tensor \(a_{11} \) of tensor \(A^H \) is \(\begin{bmatrix} 1 & 0 \end{bmatrix} \), the column tensor \(a_{12} \) of tensor \(A^H \) is \(\begin{bmatrix} 0 & 1 \end{bmatrix} \), the column tensor \(a_{21} \) of tensor \(A^H \) is \(\begin{bmatrix} 0 & 1 \end{bmatrix} \), and the column tensor \(a_{22} \) of tensor \(A^H \) is \(\begin{bmatrix} 0 & 0 \end{bmatrix} \).

The tensor \(B \in \mathbb{R}^{1 \times 1 \times 1 \times 1} \) has only one entry with value 1, the value in this tensor \(B \) is denoted as \(1 \in \mathbb{R}^{1 \times 1 \times 1 \times 1} \). The tensor \(U \in \mathbb{R}^{2 \times 2 \times 1 \times 1} \) is

\[
U = \begin{bmatrix}
 0 & 0 \\
 0 & 1
\end{bmatrix}
\]

and the tensor \(V \in \mathbb{R}^{1 \times 1 \times 2 \times 2} \) is

\[
V = \begin{bmatrix}
 0 & 1 \\
 0 & 1
\end{bmatrix}
\]

Then, we have the tensor \(S \) expressed as

\[
S = A + UBV
\]

\[
= \begin{bmatrix}
 1 & -1 & 0 & 0 \\
 0 & 0 & -1 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} + U \otimes V^H \ast_4 B
\]

\[
(4.28)
= \begin{bmatrix}
 1 & -1 & 0 & 0 \\
 0 & 0 & -1 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} + \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
 1 & -1 & 0 & 0 \\
 0 & 0 & -1 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 1
\end{bmatrix}
\]

The goal is to verify SHERMAN-MORRISON-WOODBURY identity for the inverse of the tensor \(S \).
Because the tensor A is not invertible, the Moore-Penrose inverse of the tensor A becomes

$$A^\dagger = \begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}.$$ \hspace{1cm} (4.29)

Before applying Theorem 4.1, we have to decompose the tensors U and V^H according to the column-tensor spaces $\mathcal{C}(A)$ and $\mathcal{C}(A^H)$. They are decomposed as following:

$$U = \gamma_1$$
$$= \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix};$$ \hspace{1cm} (4.30)

and

$$V = \gamma_2^H$$
$$= \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}.$$ \hspace{1cm} (4.31)

Therefore, the tensors U and V are at orthogonal spaces of $\mathcal{C}(A)$ and $\mathcal{C}(A^H)$, respectively.

Since we define $E_i = \gamma_i (\gamma_i^H \gamma_i)^\dagger$ for $i = 1, 2$, the tensors E_i can be evaluated as

$$E_1 = \gamma_1 (\gamma_1^H \gamma_1)^\dagger$$
$$= \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix} *_2 (1 \in \mathbb{R}^{1\times1\times1})$$
$$= \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix} \in \mathbb{R}^{2\times2\times1};$$ \hspace{1cm} (4.32)

and

$$E_2 = \gamma_2 (\gamma_2^H \gamma_2)^\dagger$$
$$= \begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix} *_2 (\frac{1}{2} \in \mathbb{R}^{1\times1\times1})$$
$$= \begin{bmatrix}
0 & \frac{1}{2} \\
0 & \frac{1}{2}
\end{bmatrix} \in \mathbb{R}^{2\times2\times1};$$ \hspace{1cm} (4.33)

where $\frac{1}{2} \in \mathbb{R}^{1\times1\times1}$ is a single entry tensor with value $\frac{1}{2}$ with tensor dimension $1 \times 1 \times 1$ (order 4).

We are ready to evaluate following terms $E A_i^H A_i$, $A_i^H X_1 E_i^H$, and $E_2 (B^\dagger + A_2^H A_i^\dagger X_1^H) E_i^H$. But tensors $E A_i^H A_i$ and $A_i^H X_1 E_i^H$ are zero tensors since X_1 and X_2 are zero tensors. Because we also have following:

$$X_2^H A_i^\dagger X_1 = 0 \in \mathbb{R}^{1\times1\times1},$$

we have

$$E_2 (B^\dagger + A_2^H A_i^\dagger X_1^H) E_i^H = E_2 *_2 (1 \in \mathbb{R}^{1\times1\times1}) *_2 E_i^H$$
$$= \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{bmatrix}.$$ \hspace{1cm} (4.35)
Finally, from the Eq. (4.35), we have

\[S^\dagger = A^\dagger + \mathcal{E}_1 (B^\dagger + \mathcal{X}_2^H A^\dagger \mathcal{X}_1^1) \mathcal{E}_1^H \]

(4.36)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & - \frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & \frac{1}{2}
\end{bmatrix}
\]

which is the inverse of the tensor \(S \).

Following example will be more complicated by considering the situations that projected column-tensor parts of \(U \) and \(V \) are non-zero tensors. See Theorem 4.1.

Example 2. Given same tensors \(A \in \mathbb{R}^{2\times2\times2} \) and \(B \in \mathbb{R}^{1\times1\times1} \) as Example 1, the tensor \(U \in \mathbb{R}^{2\times2\times1\times1} \) is

(4.37)

\[
U = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix},
\]

and the tensor \(V \in \mathbb{R}^{1\times1\times2\times2} \) is

(4.38)

\[
V = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}.
\]

Then, we have the tensor \(S \) expressed as

\[
S = A + UBV
\]

(4.39)

\[
\begin{bmatrix}
1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} + U \otimes V^H *_4 B
\]

\[
\begin{bmatrix}
1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} + U \otimes V^H *_4 B = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}.
\]

We wish to show SHERMAN-MORRISON-WOODBURY identity for the inverse of the tensor \(S \).

Before applying Theorem 4.1, we have to decompose the tensors \(U \) and \(V^H \) according to the column-tensor spaces \(\mathcal{E}(A) \) and \(\mathcal{E}(A^H) \). They are decomposed as following:

(4.40)

\[
U = \mathcal{X}_1 + \mathcal{Y}_1 \quad = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},
\]

and

(4.41)

\[
V = \mathcal{X}_2^H + \mathcal{Y}_2^H \quad = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}.
\]

Under this decomposition, the subtensors \(\mathcal{X}_1 \) and \(\mathcal{X}_2 \) are in the column-tensor spaces \(\mathcal{E}(A) \) and \(\mathcal{E}(A^H) \), respectively. Moreover, the subtensors \(\mathcal{Y}_1 \) and \(\mathcal{Y}_2 \) are orthogonal.
to the column-tensor spaces \(\mathcal{E}(A) \) and \(\mathcal{E}(A^H) \), respectively. Since we define \(\mathcal{E}_i \equiv \mathcal{Y}_i(\mathcal{Y}_i^H \mathcal{Y}_i)^\dagger \) for \(i = 1, 2 \), the tensors \(\mathcal{E}_i \) are evaluated at Eqs. (4.32) and (4.33) since \(\mathcal{Y}_i \) are same as the previous example.

We are ready to evaluate following terms \(\mathcal{E}_1 \mathcal{X}_1^H A^\dagger, A^\dagger \mathcal{E}_1 \mathcal{X}_1^H \), and \(\mathcal{E}_2 (B^\dagger + \mathcal{X}_2^H A^\dagger \mathcal{X}_1^H) \mathcal{E}_1^H \).

\[
A^\dagger \mathcal{X}_1^H \mathcal{E}_1^H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} *_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

\[
\mathcal{E}_2 \mathcal{X}_2^H A^\dagger = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} *_2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

\[
\mathcal{X}_2^H A^\dagger \mathcal{X}_1 = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} *_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 \in \mathbb{R}^{1 \times 1 \times 1 \times 1},
\]

we have

\[
\mathcal{E}_2 (B^\dagger + \mathcal{X}_2^H A^\dagger \mathcal{X}_1^H) \mathcal{E}_1^H = \mathcal{E}_2 *_2 (1 \in \mathbb{R}^{1 \times 1 \times 1 \times 1}) *_2 \mathcal{E}_1^H
\]

\[
= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

Finally, from the Eqs. (4.42), (4.43), (4.45), we have

\[
S^\dagger = A^\dagger - A^\dagger \mathcal{X}_1^H \mathcal{E}_1^H - \mathcal{E}_2 \mathcal{X}_2^H A^\dagger + \mathcal{E}_2 (B^\dagger + \mathcal{X}_2^H A^\dagger \mathcal{X}_1^H) \mathcal{E}_1^H
\]

\[
= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix},
\]

which is the inverse of the tensor \(S \).
5. Application: Sensitivity Analysis for Multilinear Systems. In this section, we will apply the results obtained in Section 4 to perform sensitivity analysis for a multilinear system of equations, i.e. $AX = D$, by deriving the normalized upper bound for the error in the solution when coefficient tensors are perturbed in Section 5.1. In Section 5.2, we investigate the effects of perturbation values ϵ_A, ϵ_D to the normalized solution error $\frac{\|Y^n - X^n\|}{\|X^n\|}$, denoted as E_n. All norms discussed in this paper are based on the Frobenius norm definition.

5.1. Sensitivity Analysis. Several preparation lemmas will be given before presenting our results associated to sensitivity analysis for multilinear systems.

Lemma 5.1. Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}$ and $B \in \mathbb{C}^{J_1 \times \cdots \times J_N \times K_1 \times \cdots \times K_L}$, we have following inequality for Frobenius norm of tensors:

\[\|A \ast_N B\| \leq \|A\| \|B\|. \] (5.1)

Proof. Because

\[\|A \ast_N B\|^2 = \sum_{i_1, \ldots, i_M, k_1 \times \cdots \times k_L} \left| \sum_{j_1, \ldots, j_N} a_{i_1, \ldots, i_M, j_1, \ldots, j_N} b_{j_1, \ldots, j_N, k_1, \ldots, k_L} \right|^2 \]

\[\leq \sum_{i_1, \ldots, i_M, k_1 \times \cdots \times k_L} \left(\sum_{j_1, \ldots, j_N} |a_{i_1, \ldots, i_M, j_1, \ldots, j_N}|^2 \right) \times \left(\sum_{j_1, \ldots, j_N} |b_{j_1, \ldots, j_N, k_1, \ldots, k_L}|^2 \right) \]

\[= \left(\sum_{i_1, \ldots, i_M} \left(\sum_{j_1, \ldots, j_N} |a_{i_1, \ldots, i_M, j_1, \ldots, j_N}|^2 \right) \right) \times \left(\sum_{j_1, \ldots, j_N} \left(\sum_{k_1 \times \cdots \times k_L} |b_{j_1, \ldots, j_N, k_1, \ldots, k_L}|^2 \right) \right) = \|A\|^2 \|B\|^2 \] (5.2)

where the inequality is based on Cauchy-Schwarz inequality. By taking square root of both sides, the lemma is established.

Lemma 5.2. Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}$ and $B \in \mathbb{C}^{J_1 \times \cdots \times J_N \times K_1 \times \cdots \times K_L}$, we have following inequality for Frobenius norm of tensors:

\[\|A + B\| \leq \|A\| + \|B\|. \] (5.3)

Proof. Because

\[\|A + B\|^2 \leq \|A\|^2 + \|B\|^2 + 2 \sum_{i_1, \ldots, i_M, j_1, \ldots, j_N} |a_{i_1, \ldots, i_M, j_1, \ldots, j_N}| |b_{i_1, \ldots, i_M, j_1, \ldots, j_N}| \]

\[\leq \|A\|^2 + \|B\|^2 + 2 \|A\| \|B\| \]

\[= (\|A\| + \|B\|)^2 \] (5.4)

where the inequality \leq is based on Cauchy-Schwarz inequality. By taking square root of both sides, the lemma is established.
Given a multilinear system of equations, the exact solution expressed by tensor inverse or Moore-Penrose inverse is given by following Theorem. The proof can be found at [3].

Theorem 5.3. For given tensors \(A \in \mathbb{C}^{K_1 \times \cdots \times K_P \times I_1 \times \cdots \times I_M} \), \(D \in \mathbb{C}^{K_1 \times \cdots \times K_P \times L_1 \times \cdots \times L_Q} \), the tensor equation
\[
A \star_M \mathcal{X} = D,
\]
has a solution if and only if \(A \star_M A^\dagger \star_P D = D \). The solution can be expressed as
\[
\mathcal{X} = A^\dagger \star_P D + (I - A^\dagger \star_P A) \star_M U,
\]
where \(I \) is the identity tensor in \(\mathbb{C}^{I_1 \times \cdots \times I_M \times I_1 \times \cdots \times I_M} \) and \(U \) is an arbitrary tensor in \(\mathbb{C}^{I_1 \times \cdots \times I_M \times L_1 \times \cdots \times L_Q} \).

If the tensor \(A \) is invertible, then the Eq. (5.6) can be further reduced as
\[
\mathcal{X} = A^{-1} \star_P D.
\]

We are ready to present our theorem about sensitivity analysis for solution of a multilinear system.

Theorem 5.4. The original multilinear system of equations is
\[
A \star_M \mathcal{X} = D
\]
where \(A \in \mathbb{C}^{K_1 \times \cdots \times K_P \times I_1 \times \cdots \times I_M} \), \(D \in \mathbb{C}^{K_1 \times \cdots \times K_P \times L_1 \times \cdots \times L_Q} \), and \(\mathcal{O} \neq D \in \mathbb{C}^{K_1 \times \cdots \times K_P \times L_1 \times \cdots \times L_Q} \). The perturbed system can be expressed as
\[
(A + \delta A) \star_M \mathcal{Y} = (D + \delta D),
\]
where \(\delta A \in \mathbb{C}^{K_1 \times \cdots \times K_P \times I_1 \times \cdots \times I_M} \) and \(\delta D \in \mathbb{C}^{K_1 \times \cdots \times K_P \times L_1 \times \cdots \times L_Q} \). If the tensor \(\delta A \) is decomposed as (for example, by SVD decomposition when \(\delta A \) is a square tensor, see [53])
\[
\delta A = UBV = (X_1 + \gamma_1)B(X_2 + \gamma_2)^H,
\]
where \(X_1 \in \mathcal{C}(A) \), \(\gamma_1 \) is orthogonal to \(\mathcal{C}(A) \), \(X_2 \in \mathcal{C}(A^H) \) and \(\gamma_2 \) is orthogonal to \(\mathcal{C}(A^H) \).

We further assume that \(\|X_i\| \leq \epsilon_A \|A\| \) for \(1 \leq i \leq 2 \), \(\|E_i\| \leq \epsilon_A \|A\| \) for \(1 \leq i \leq 2 \) (Recall \(E_i \equiv \gamma_i (\gamma_i^H \gamma_i)^\dagger \)) and \(\|\delta D\| \leq \epsilon_D \|B\| \), then
\[
\frac{\|Y - X\|}{\|X\|} \leq (1 + \epsilon_D) \|A\|^2 (2 \epsilon_A^2 \|A^\dagger\| + \epsilon_A^3 \|A\| + \epsilon_A^4 \|A\|^2 \|A^\dagger\|) + \epsilon_D \|A\|^3 \|A^\dagger\|^2.
\]

Proof:

From Theorem 5.3 and the Eq. 5.6, the solution for the Eq. (5.8) is
\[
\mathcal{X} = A^\dagger \star_P D + (I - A^\dagger \star_P A) \star_M U,
\]
and, similarly, the solution for the Eq. (5.9) is
\[
\mathcal{Y} = (A + \delta A)^\dagger \star_P (D + \delta D) + (I - (A + \delta A)^\dagger \star_P (A + \delta A) \star_M U.\]
Since the tensor \mathcal{U} can be chosen arbitrarily, we can set \mathcal{U} as zero tensor and we have

\[
\mathcal{Y} - \mathcal{X} = (A + \delta A) (D + \delta D) - A^T D = [A + (X_1 + Y_1) B (X_2 + Y_2)^H] (D + \delta D) - A^T D
\]

\[
= \frac{1}{2} (A^T - E_2 X_2^H A^T - A^T X_1^T D + E_2 (B^T + X_2^H A^T X_1^T D + A^T \delta D - (5.15)
\]

where we apply Lemma 5.1 and Lemma 5.2 to the inequality \leq. Because we have that $\|X_i\| \leq \epsilon_A \|A\|$ for $1 \leq i \leq 2$, $\|E_i\| \leq \epsilon_A \|A\|$ for $1 \leq i \leq 2$ (Recall $E_i = Y_i (Y_i^H Y_i)^T$) and $\|\delta D\| \leq \epsilon_D \|D\|$, then the Eq. (5.15) can be further reduced as:

\[
\|\mathcal{Y} - \mathcal{X}\| \leq (1 + \epsilon_D) \|D\| (2 \epsilon_A^2 \|A\| \|A^T\|^2 + \epsilon_A^3 \|A\|^3 + \epsilon_A^4 \|A\|^4 \|A^T\|) +
\]

\[
\epsilon_D \|A\| \|A^T\|,
\]

and since $\|D\| = \|A X\| \leq \|A\| \|X\|$, we have

\[
\frac{\|\mathcal{Y} - \mathcal{X}\|}{\|\mathcal{X}\|} \leq (1 + \epsilon_D) \|A\| (2 \epsilon_A^2 \|A^T\| + \epsilon_A^3 \|A\| + \epsilon_A^4 \|A\|^2 \|A^T\|) +
\]

\[
\epsilon_D \|A\| \|A^T\|.
\]

The theorem is proved.

\[
5.2. \text{Numerical Evaluation.} \quad \text{In this section, we will apply normalized error bound results derived in Section 5.1 to the multilinear equation } A X = D \text{ with following tensors:}
\]

\[
A = \begin{bmatrix}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{bmatrix},
\]

\[
A^T = \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & -0.5 & 0 & -0.5 \\
0 & 0.5 & 0 & 0
\end{bmatrix},
\]
and

(5.20) \[D = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}. \]

In Fig. 1, the normalized error bound for the multilinear system \(AX = D \) is presented against with the change of the Frobenius norm of the tensor \(A \) according to the Theorem 5.4. Fig. 1 delineates the normalized error bound with respect to three different perturbation values \(\epsilon_A = 0.09, 0.05, 0.01 \) of the tensor \(A \) subject to the perturbation value \(\epsilon_D = 0.01 \) of the tensor \(D \). The way we change the Frobenius norm of the tensor \(A \) is by scaling the tensor \(A \) with some positive number \(\alpha \), i.e., \(\alpha A \) is a tensor obtained by multiplying the value \(\alpha \) to each entries of the tensor \(A \). We observe that the normalization error \(E_n \) increases with the increase of the perturbation value \(\epsilon_A \). Given the same perturbation value \(\epsilon_A \), the normalized error bound \(E_n \) can achieve its minimum by scaling the tensor \(A \) properly. For example, when the value \(\epsilon_A \) is 0.09, the minimum error bound happens when the value of \(\| A \| \) is about 2.5.

![Normalized Error Bound](image)

Fig. 1. The normalized error bound \(E_n \) for the perturbed multilinear system \(AX = D \) with respect to the tensor norm \(\| A \| \) for different \(\epsilon_A \) values when the tensor norm \(\| D \| \) is 7 and \(\epsilon_D = 0.01 \).

In Fig. 2, the normalized error bound for the multilinear system \(AX = D \) is presented against with the change of the Frobenius norm of the tensor \(A \). Fig. 2 plots the normalized error bound with respect to three different perturbation values \(\epsilon_D = 0.09, 0.05, 0.01 \) of the tensor \(D \) subject to the perturbation value \(\epsilon_A = 0.01 \) of the tensor \(A \). We find that the normalization error \(E_n \) increases with the increase of the perturbation value \(\epsilon_D \). Given the same perturbation value \(\epsilon_A \), the bound \(E_n \) also can achieve its minimum by scaling the tensor \(A \) properly. For example, when the
value ϵ_D is 0.01, the minimum error bound happens when the value of $\|A\|$ is about 1.25. Compared to Fig. 2, the error bounds difference between various perturbation values ϵ_A becomes more significant when the value of the Frobenius norm of the tensor A increases. On the other hand, the error bounds difference between various perturbation values ϵ_D becomes less significant when the value of the Frobenius norm of the tensor A increases. Both figures show that the error bound variation is more sensitive with respect to the Frobenius norm of the tensor A for smaller value range of $\|A\|$.

![Graph showing normalized error E_n for perturbed multilinear system equations $AX = D$ with respect to the tensor norm $\|A\|$ for different ϵ_D when the tensor norm $\|D\|$ is 7.]

Fig. 2. The normalized error E_n for the perturbed multilinear system equations $AX = D$ with respect to the tensor norm $\|A\|$ for different ϵ_D when the tensor norm $\|D\|$ is 7.

6. Conclusions. Motivated by great applications of the Sherman-Morrison Woodbury matrix identity, analogously, we developed the Sherman-Morrison Woodbury identity for tensors to facilitate the tensor inversion computation with those benefits in the matrix inversion computation when the correction of the original tensors is required. We first established the Sherman-Morrison Woodbury identity for invertible tensors. Furthermore, we generalized the Sherman-Morrison Woodbury identity for tensor with Moore-Penrose inverse by using orthogonal projection of the correction tensor part into the original tensor and its Hermitian tensor. Finally, we applied the Sherman-Morrison Woodbury identity to characterize the error bound for the solution of a multilinear system between the original system and the corrected system, i.e., the coefficient tensors are corrected by other tensors with same dimensions.

There are several possible future works that can be extended based on current work. Because we can quantify the normalized error bound with respect to pertur-
bation values and the Frobenius norm of the coefficient tensor, the next question is how to design a robust multilinear system to have the minimum normalized solution error given perturbation values. Such robust design should be crucial in many engineering problems which are modeled by multilinear systems. We have to decompose the perturbed tensor in the Eq. (5.10) in order to apply our result, similar to the matrix case, how can we select low rank decomposition for the perturbed tensor is the second direction for the future research. Since we have developed a new Sherman-Morrison-Woodbury identity for tensor, it will be interested in finding more impactful applications based on this new identity. We expect this new identity will shed light on the development of more efficient tensor-based calculations in the near future.

Acknowledgments. The helpful comments of the referees are gratefully acknowledged.

REFERENCES

[1] V. Balan and N. Perminov, Applications of resultants in the spectral m-root framework, Applied Sciences, 12 (2010), pp. 20–29.
[2] K. Batselier, Z. Chen, and N. Wong, A tensor network kalman filter with an application in recursive mimo volterra system identification, Automatica, 84 (2017), pp. 17–25.
[3] R. Behera and D. Mishra, Further results on generalized inverses of tensors via the einstein product, Linear and Multilinear Algebra, 65 (2017), pp. 1662–1682.
[4] M. Brazell, N. Li, C. Navasca, and C. Tamon, Solving multilinear systems via tensor inversion, SIAM Journal on Matrix Analysis and Applications, 34 (2013), pp. 542–570.
[5] C. G. Brinton, S. Buccapatnam, M. Chiange, and H. V. Poor, Mining mooc clickstreams: Video-watching behavior vs. in-video quiz performance, IEEE Transactions on Signal Processing, 64 (2016), pp. 3677–3692.
[6] C. Bu, X. Zhang, J. Zhou, W. Wang, and Y. Wei, The inverse, rank and product of tensors, Linear Algebra and Its Applications, 446 (2014), pp. 269–280.
[7] D. Cal, X. He, and J. Han, Tensor space model for document analysis, in Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, Aug. 2006, pp. 625–626.
[8] J.-F. Cardoso, High-order contrasts for independent component analysis, Neural computation, 11 (1999), pp. 157–192.
[9] D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, Linear algebra and its applications, 438 (2013), pp. 942–952.
[10] D. Chen, Y. Tang, H. Zhang, L. Wang, and X. Li, Incremental factorization of big time series data with blind factor approximation, IEEE Transactions on Knowledge and Data Engineering, (2019).
[11] L. Cheng, X. Tong, S. Wang, Y.-C. Wu, and H. V. Poor, Learning nonnegative factors from tensor data: Probabilistic modeling and inference algorithm, IEEE Transactions on Signal Processing, 68 (2020), pp. 1792–1806.
[12] L. Cheng, Y.-C. Wu, and H. V. Poor, Scaling probabilistic tensor canonical polyadic decomposition to massive data, IEEE Transactions on Signal Processing, 66 (2018), pp. 5534–5548.
[13] J. Cooper, Adjacency spectra of random and complete hypergraphs, Linear Algebra and its Applications, (2020).
[14] L.-B. Cui, M.-H. Li, and Y. Song, Preconditioned tensor splitting iterations method for solving multi-linear systems, Applied Mathematics Letters, 96 (2019), pp. 89–94.
[15] L. De Lathauwer, J. Castaing, and J.-F. Cardoso, Fourth-order cumulant-based blind identification of underdetermined mixtures, IEEE Transactions on Signal Processing, 55 (2007), pp. 2965–2973.
[16] A. Deif, Sensitivity analysis in linear systems, Springer Science & Business Media, 2012.
[17] I. S. Dhillon and J. A. Tropp, Matrix nearness problems with bregman divergences, SIAM Journal on Matrix Analysis and Applications, 29 (2008), pp. 1120–1146.
[18] W. Ding, M. Ng, and Y. Wei, Fast computation of stationary joint probability distribution of sparse markov chains, Applied Numerical Mathematics, 125 (2018), pp. 68–85.
[19] W. Ding and Y. Wei, Solving multi-linear systems with \mathcal{M}-tensors, Journal of Scientific Computing, 68 (2016), pp. 689–715.
[20] N. Guglielmi, D. Kressner, and C. Lubich, Low rank differential equations for hamiltonian matrix nearness problems, Numerische Mathematik, 129 (2015), pp. 279–319.

[21] S. Hu and L. Qi, The laplacian of a uniform hypergraph, Journal of Combinatorial Optimization, 29 (2015), pp. 331–366.

[22] S. Hu, L. Qi, and G. Zhang, The geometric measure of entanglement of pure states with nonnegative amplitudes and the spectral theory of nonnegative tensors, arXiv preprint arXiv:1203.3675, (2012).

[23] J. Ji and Y. Wei, The inverse of an even-order tensor and its application to singular tensor equations, Computers & Mathematics with Applications, 75 (2018), pp. 3402–3413.

[24] H. Jin, M. Bai, J. Benítez, and X. Liu, The generalized inverses of tensors and an application to linear models, Computers & Mathematics with Applications, 74 (2017), pp. 385–397.

[25] C. I. Kanatsoulis, N. D. Sidiropoulos, M. Akçakaya, and X. Fu, Regular sampling of tensor signals: Theory and application to fmri, in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, pp. 2932–2936.

[26] T. Kolda and B. Bader, The topkatz model for higher-order web link analysis, in Workshop on link analysis, counterterrorism and security, vol. 7, Apr. 2006, pp. 26–29.

[27] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM review, 51 (2009), pp. 455–500.

[28] T. G. Kolda, B. W. Bader, and J. P. Kenny, Higher-order web link analysis using multi-linear algebra, in Proceedings of IEEE International Conference on Data Mining (ICDM), November 2005, pp. 8–15.

[29] J. Kwak and C.-H. Lee, A high-order markov-chain-based scheduling algorithm for low delay in csma networks, IEEE/ACM Transactions on Networking, 24 (2015), pp. 2278–2290.

[30] W. M. Lai, D. H. Rubin, E. Krempl, and D. Rubin, Introduction to continuum mechanics, Butterworth-Heinemann, 2009.

[31] A.-M. Li, L. Qi, and B. Zhang, E-characteristic polynomials of tensors, arXiv preprint arXiv:1208.1607, (2012).

[32] D.-H. Li, S. Xie, and H.-R. Xu, Splitting methods for tensor equations, Numerical Linear Algebra with Applications, 24 (2017), p. e2102.

[33] Q. Li, X. Shi, and D. Schonfeld, A general framework for robust hosvd-based indexing and retrieval with high-order tensor data, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, May 2011, pp. 873–876.

[34] W. Li, R. Ke, W.-K. Ching, and M. K. Ng, A c-eigenvalue problem for tensors with applications to higher-order multivariate markov chains, Computers & Mathematics with Applications, 78 (2019), pp. 1008–1025.

[35] X. Li, M. K. Ng, and Y. Ye, Har: hub, authority and relevance scores in multi-relational data for query search, in Proceedings of the 2012 SIAM International Conference on Data Mining, SIAM, Apr. 2012, pp. 141–152.

[36] M. Liang and B. Zheng, Further results on moore–penrose inverses of tensors with application to tensor nearness problems, Computers & Mathematics with Applications, 77 (2019), pp. 1282–1293.

[37] D. Liu, W. Li, and S.-W. Vong, Relaxation methods for solving the tensor equation arising from the higher-order markov chains, Numerical Linear Algebra with Applications, 26 (2019), p. e2260.

[38] N. Liu, B. Zhang, J. Yan, Z. Chen, W. Liu, F. Bai, and L. Chien, Text representation: From vector to tensor, in Fifth IEEE International Conference on Data Mining (ICDM’05), IEEE, Nov. 2005, pp. 4–pp.

[39] O. V. Morozov, M. Unser, and P. Hunziker.

[40] M. K.-P. Ng, X. Li, and Y. Ye, Multirank: co-ranking for objects and relations in multi-relational data, in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, Aug. 2011, pp. 1217–1225.

[41] G. Ortiz-Jiménez, M. Coutino, S. P. Chepuri, and G. Leus, Sparse sampling for inverse problems with tensors, IEEE Transactions on Signal Processing, 67 (2019), pp. 6273–6286.

[42] A.-H. Phan, P. Tichavský, and A. Cichocki, Error preserving correction: A method for cp decomposition at a target error bound, IEEE Transactions on Signal Processing, 67 (2018), pp. 1175–1190.

[43] R.-E. Precup, C.-A. Dragos, S. Preitl, M.-B. Radac, and E. M. Petriu, Novel tensor product models for automatic transmission system control, IEEE Systems Journal, 6 (2012), pp. 488–498.

[44] L. Qi, The minimum hartree value for the quantum entanglement problem, arXiv preprint arXiv:1202.2983, (2012).
[45] L. Qi, H. Chen, and Y. Chen, *Tensor eigenvalues and their applications*, vol. 39, Springer, 2018.
[46] L. Qi and Z. Luo, *Tensor analysis: spectral theory and special tensors*, SIAM, 2017.
[47] L. Qi, Y. Wang, and E. X. Wu, *D-eigenvalues of diffusion kurtosis tensors*, Journal of Computational and Applied Mathematics, 221 (2008), pp. 150–157.
[48] L. Qi, G. Yu, and E. X. Wu, *Higher order positive semidefinite diffusion tensor imaging*, SIAM Journal on Imaging Sciences, 3 (2010), pp. 416–433.
[49] Y. Saad, *Iterative methods for sparse linear systems*, vol. 82, SIAM, 2003.
[50] J. K. Sahoo and R. Behera, *Reverse-order law for core inverse of tensors*, Computational and Applied Mathematics, 39 (2020), pp. 1–22.
[51] R. Sawilla, *A survey of data mining of graphs using spectral graph theory*, Defence R & D Canada-Ottawa, 2008.
[52] K. Shin, L. Sael, and U. Kang, *Fully scalable methods for distributed tensor factorization*, IEEE Transactions on Knowledge and Data Engineering, 29 (2016), pp. 100–113.
[53] L. Sun, B. Zheng, C. Bu, and Y. Wei, *Moore–penrose inverse of tensors via einstein product*, Linear and Multilinear Algebra, 64 (2016), pp. 686–698.
[54] L. Sun, B. Zheng, Y. Wei, and C. Bu, *Generalized inverses of tensors via a general product of tensors*, Frontiers of Mathematics in China, 13 (2018), pp. 893–911.
[55] J. Tang, G.-J. Qi, L. Zhang, and C. Xu, *Cross-space affinity learning with its application to movie recommendation*, IEEE Transactions on Knowledge and Data Engineering, 25 (2012), pp. 1510–1519.
[56] D. Tao, X. Li, X. Wu, and S. J. Maybank, *General tensor discriminant analysis and gabor features for gait recognition*, IEEE transactions on pattern analysis and machine intelligence, 29 (2007), pp. 1700–1715.
[57] L. R. Tucker, *Some mathematical notes on three-mode factor analysis*, Psychometrika, 31 (1966), pp. 279–311.
[58] Y. Wei and W. Ding, *Theory and computation of tensors: multi-dimensional arrays*, Academic Press, 2016.
[59] Z.-J. Xie, X.-Q. Jin, and Y.-M. Wei, *Tensor methods for solving symmetric m-tensor systems*, Journal of Scientific Computing, 74 (2018), pp. 412–425.
[60] F. Zhang, B. Zhou, and L. Peng, *Gradient skewness tensors and local illumination detection for images*, Journal of Computational and Applied Mathematics, 237 (2013), pp. 663–671.
[61] M. Zhou, Y. Liu, Z. Long, L. Chen, and C. Zhu, *Tensor rank learning in cp decomposition via convolutional neural network*, Signal Processing: Image Communication, 73 (2019), pp. 12–21.