Comparative In Vitro Activities of SMT19969, a New Antimicrobial Agent, against 162 Strains from 35 Less Frequently Recovered Intestinal Clostridium Species: Implications for Clostridium difficile Recurrence

Ellie J. C. Goldstein,a,b Diane M. Citron,a Kerin L. Tyrrella
R. M. Alden Research Laboratory, Culver City, California, USAa; David Geffen School of Medicine at UCLA, Los Angeles, California, USA

We determined the comparative activity of SMT19969 (SMT) against 162 strains representing 35 well-characterized Clostridium species in clusters I to XIX and 13 Clostridium species that had no 16S rRNA match. SMT MICs ranged from 0.06 to >512 μg/ml and were not species related. SMT might have less impact on normal gut microbiota than other Clostridium difficile infection (CDI) antimicrobials.

Clostridium difficile infections (CDI) have increased in frequency and severity over the past decade and are a leading cause of hospital-acquired infections, contributing to increased hospital length of stay and costs, as well as associated increased mortality, especially among the elderly (1, 2). Standard therapy has been associated with 20 to 30% relapse rates (3, 4). Consequently, new CDI therapeutic approaches have emerged.

Recurrences of CDI are associated with disruption in the patient microbiome, with changes in richness, evenness, and diversity (5). This antibiotic-induced depletion of normal microbiota allows C. difficile to proliferate, produce toxin, and cause disease. Several investigators have suggested that a reduced impact by antimicrobials on normal flora might lower the risk of recurrent disease, especially on the Bacteroides fragilis group species and Clostridium species cluster XIVa and, to a lesser extent, cluster IV, which contain a large number of butyrate-producing anaerobes (6–8).

SMT19969 (SMT) is a novel, narrow-spectrum, nonabsorbable agent with previously shown activity against C. difficile but with poor activity against B. fragilis (9). Information about its effect on other gut organisms is limited, including data about its activity against the other Clostridium species/clusters. Consequently, we studied the comparative in vitro activity of SMT19969 against 162 strains of Clostridium representing 35 well-characterized species and 13 strains with no PCR species match within 8 different Clostridium clusters, especially those of cluster XIVa.

Isolates were recovered from clinical specimens from 1985 to 2013. They were identified by standard methods (10, 11) and by 16S RNA gene sequencing as previously published (12) and stored in 20% skim milk at −70°C. They were taken from the freezer and transferred at least twice on supplemented brucella broth to ensure purity and good growth. Inocula were prepared by direct suspensions of cells into brucella broth to achieve the turbidity of the 0.5 McFarland standard. The final inoculum was ~10^5 CFU/spot. Susceptibility to SMT19969, fidaxomycin, vancomycin, and metronidazole was determined using the agar dilution method according to the CLSI approved standard for anaerobes (M11-A8) (13).

The results of this study are shown in Table 1. SMT MICs were variable (range, 0.06 to >512 μg/ml). Resistance (MIC > 32 μg/ml) was not cluster or species related and occurred in Clostridium ramosum (10 of 10 samples), Clostridium cadaveris (2 of 6), Clostridium colinoides (1 of 2), Clostridium glycolicum (2 of 5), Clostridium paraputrificum (6 of 8), Clostridium perfingens (9 of 11), Clostridium rectum (3 of 3), Clostridium sardiniense (1 of 1), Clostridium scindens (1 of 5), Clostridium sordellii (1 of 6), Clostridium sporogenes (3 of 5), and 8 of 13 Clostridium species with no species match by 16S RNA gene sequencing. MICs of ≥32 μg/ml also occurred with fidaxomycin (MIC range of ≤0.03 to >128 μg/ml), but these species were different from the SMT-resistant species. The MIC range for vancomycin was 0.5 to >32 μg/ml and for metronidazole was ≤0.06 to 16 μg/ml, with one or more strains of the unidentifiable Clostridium species showing decreased susceptibility or resistance.

Louie et al. (7) suggested that poor in vitro activity against aerobic and facultative Gram-negative bacteria, Bacteroides species, and other Gram-negative anaerobes would result in a “reduced ecological impact.” They performed fecal quantitative counts of Bacteroides species on patients receiving either vancomycin or fidaxomycin in a phase II trial and noted that fidaxomycin’s reduced activity was less suppressive. Tannock et al. (5) extended these observations on the fecal microbiota using temporal temperature gradient electrophoresis (TTGE) and quantification of phylogenetic groups using fluorescent in situ hybridization and flow cytometry (FISH/FC). In contrast to vancomycin, clostridial cluster XIVa and IV populations increased during and after fidaxomycin treatment. They postulated that this effect of these clusters and Bifidobacterium spp. might explain the reduced relapse rate of fidaxomycin in clinical trials.

Antharam et al. (6) studied the distal fecal flora of 39 patients with CDI and compared them to those of 36 C. difficile-colonized patients and 40 healthy controls. They found that there was a
RMA no.	Species	Clostridial cluster	MIC (µg/ml)	SMT19969	Fidaxomicin	Metronidazole	Vancomycin
18328	Clostridium baratii	I	>512	≤0.03	1	2	
6392	C. baratii-like	I	0.5	≤0.03	1	2	
19025	Clostridium butyricum	I	0.25	0.06	0.5	0.5	
19848	C. butyricum	I	0.25	≤0.03	0.5	0.5	
21418	C. butyricum	I	0.25	0.06	1	0.5	
22044	C. butyricum	I	0.25	0.06	1	0.5	
22081	C. butyricum	I	0.5	0.125	1	0.5	
14198	Clostridium cadaveris	I	1	≤0.03	0.125	2	
16516	C. cadaveris	I	2	≤0.03	0.125	2	
16863	C. cadaveris	I	1	0.06	0.125	4	
18944	C. cadaveris	I	32	≤0.03	0.125	2	
19962	C. cadaveris	I	256	0.06	0.125	2	
20805	C. cadaveris	I	0.25	≤0.03	0.06	2	
6433	Clostridum colicani	I	0.5	≤0.03	2	>32	
6786	C. colicani	I	64	≤0.03	2	2	
15999	Clostridium disporicum	I	0.06	≤0.03	1	0.5	
21544	C. disporicum	I	0.25	≤0.03	0.25	0.25	
12757	Clostridium fallax	I	0.125	≤0.03	0.5	0.5	
21095	C. fallax	I	0.06	≤0.03	1	1	
12522	Clostridium novyi A	I	0.25	≤0.03	1	0.5	
15199	Clostridium paraputrflicum	I	1	0.06	2	1	
16518	C. paraputrflicum	I	64	≤0.03	2	2	
18947	C. paraputrflicum	I	64	≤0.03	1	1	
21627	C. paraputrflicum	I	64	≤0.03	0.5	2	
21630	C. paraputrflicum	I	64	≤0.03	2	1	
22852	C. paraputrflicum	I	0.5	≤0.03	2	1	
16521B	C. paraputrflicum	I	64	≤0.03	1	1	
16397A	C. paraputrflicum	I	64	≤0.03	2	1	
21966	Clostridium perfringens	I	256	≤0.03	1	1	
22113	C. perfringens	I	>512	≤0.03	2	1	
22244	C. perfringens	I	>512	≤0.03	0.5	1	
22245	C. perfringens	I	>512	≤0.03	1	1	
22509	C. perfringens	I	>512	0.06	4	1	
22671	C. perfringens	I	>512	0.06	4	1	
22722	C. perfringens	I	>512	≤0.03	2	1	
22810	C. perfringens	I	64	≤0.03	1	1	
22842	C. perfringens	I	256	≤0.03	2	1	
22885	C. perfringens	I	1	≤0.03	0.5	1	
23087	C. perfringens	I	8	≤0.03	4	1	
21091	Clostridium sardinense	I	>512	≤0.03	4	32	
9638	Clostridium sporogenes	I	0.5	0.06	0.25	4	
10379	C. sporogenes	I	64	0.06	0.25	2	
10900	C. sporogenes	I	64	0.06	0.25	4	
15061	C. sporogenes	I	64	0.06	0.25	2	
16077	C. sporogenes	I	4	≤0.03	≤0.06	2	
15329	Clostridium subterminale group	I	0.125	≤0.03	0.25	1	
18693	C. subterminale group	I	2	≤0.03	0.5	1	
19908	C. subterminale group	I	0.125	≤0.03	0.5	0.5	
20775	C. subterminale group	I	0.5	≤0.03	0.25	1	
8622B	C. subterminale group	I	≤0.03	≤0.03	0.5	1	
14609	Clostridium tertium	I	0.5	≤0.03	1	2	
16273	C. tertium	I	1	≤0.03	1	2	
18836	C. tertium	I	4	≤0.03	2	2	
19847	C. tertium	I	4	≤0.03	1	2	
22841	C. tertium	I	0.5	0.06	2	2	
18623	Clostridium bartlettii	XI	1	≤0.03	1	2	
5262	Clostridium bifermentans	XI	0.125	≤0.03	0.5	0.5	
5324	C. bifermentans	XI	0.5	≤0.03	0.5	0.5	
9640	C. bifermentans	XI	0.5	≤0.03	0.5	0.5	
9897	C. bifermentans	XI	0.5	≤0.03	0.5	0.5	

(Continued on following page)
RMA no.	Species	Clostridial cluster	SMT19969	Fidaxomicin	Metronidazole	Vancomycin
9948	C. bifermantans	XI	0.5	≤0.03	0.5	1
21658	C. bifermantans	XI	0.25	≤0.03	1	0.5
9388B	C. bifermantans	XI	0.25	≤0.03	2	0.5
8910	Clostridium glycolicum	XI	32	≤0.03	0.125	0.5
14467	C. glycolicum	XI	0.5	0.5	0.25	0.5
15023	C. glycolicum	XI	0.5	0.5	0.125	0.5
16312	C. glycolicum	XI	0.5	0.25	0.25	2
7121	C. glycolicum-like	XI	32	1	0.25	0.5
22811	Clostridium mayomebi-like	XI	0.5	0.5	1	0.25
16782	Clostridium sordellii	XI	1	≤0.03	2	1
18788	C. sordellii	XI	64	≤0.03	4	1
21861	C. sordellii	XI	16	≤0.03	4	0.5
21976	C. sordellii	XI	1	≤0.03	8	1
22672	C. sordellii	XI	8	0.125	4	1
4634	C. sordellii-like	XI	2	≤0.03	1	1
16057	Clostridium aldeneense	XIVa	0.5	64	≤0.06	1
18348	C. aldeneense	XIVa	0.5	64	≤0.06	1
18939	C. aldeneense	XIVa	0.5	64	≤0.06	1
23550	C. aldeneense	XIVa	0.125	64	≤0.06	2
20918A	Clostridium aminovalericum	XIVa	0.25	2	0.25	8
10036	Clostridium bolteae	XIVa	0.25	128	≤0.06	1
18941	C. bolteae	XIVa	0.5	128	0.125	2
21972	C. bolteae	XIVa	0.125	64	0.125	1
22131	C. bolteae	XIVa	0.5	64	≤0.06	1
12934	Clostridium celercrencs	XIVa	0.125	8	0.5	1
19024	C. celercrencs	XIVa	0.25	32	0.5	1
19963	C. celercrencs	XIVa	0.5	32	0.5	1
15980	Clostridium citroniae	XIVa	0.125	64	0.25	1
21971	C. citroniae	XIVa	0.125	128	0.125	1
23088	C. citroniae	XIVa	0.125	64	0.125	1
16102A	C. citroniae	XIVa	0.06	64	≤0.06	1
16521A	C. citroniae	XIVa	0.25	64	≤0.06	1
20713	Clostridium clostridioforme	XIVa	0.125	64	0.25	1
21282	C. clostridioforme	XIVa	0.25	128	≤0.06	1
21626	C. clostridioforme	XIVa	0.25	>128	≤0.06	2
22060	C. clostridioforme	XIVa	0.125	128	≤0.06	2
22084	C. clostridioforme	XIVa	0.25	128	≤0.06	2
18723	Clostridium hathewayi	XIVa	0.125	32	0.25	0.5
20145	C. hathewayi	XIVa	0.125	16	0.125	0.5
20647	C. hathewayi	XIVa	0.5	16	0.5	0.5
21975	C. hathewayi	XIVa	0.125	2	0.125	0.5
2489	Clostridium hylemonae	XIVa	0.06	≤0.03	0.5	1
13503	C. hylemonae	XIVa	0.5	0.25	0.25	2
15944	C. hylemonae	XIVa	0.5	0.25	0.125	2
16423	C. hylemonae	XIVa	0.5	0.25	0.125	2
16895	C. hylemonae	XIVa	0.5	0.25	0.125	2
18591	C. hylemonae	XIVa	0.5	0.25	0.25	2
22200	C. hylemonae	XIVa	0.5	0.25	0.25	2
15073A	C. hylemonae	XIVa	0.5	0.25	0.125	2
10628	Clostridium lavalense	XIVa	0.5	0.06	0.125	1
12736	Clostridium sciendens	XIVa	0.125	0.02	0.125	0.5
21863	C. sciendens	XIVa	0.06	0.06	0.125	0.5
21878	C. sciendens	XIVa	0.66	1	0.5	0.5
22045	C. sciendens	XIVa	0.125	0.06	0.25	0.5
22624	C. sciendens	XIVa	0.25	1	0.25	0.5
20753	Clostridium symbiosum	XIVa	0.25	4	0.125	1
21214	C. symbiosum	XIVa	0.25	2	0.125	0.5
21868	C. symbiosum	XIVa	0.5	2	0.125	1
22082	C. symbiosum	XIVa	0.25	2	0.25	1
22366	C. symbiosum	XIVa	0.125	2	0.125	1

(Continued on following page)
“paucity of Firmicutes sequences in the aggregate gut microbiota” in the CDI and *C. difficile*-colonized patients compared to in controls. The majority (68.4%) of Firmicutes were clostridia, and “strikingly members of Clostridium cluster XIVa” and to a lesser extent cluster IV” were depleted in those CDI and colonized patients. They suggested that “mechanistic studies focusing on the functional roles of these organisms in diarrheal diseases and *C. difficile* colonization resistance” be performed.

Previously, Goldstein et al. (9) studied the comparative in vitro activity of SMT19969 against 174 Gram-positive and 136 Gram-negative intestinal anaerobes and 40 Gram-positive aerobes. SMT19969 was generally less active against Gram-negative anaerobes, especially the *Bacteroides fragilis* group species, than vancomycin and metronidazole, suggesting a lesser impact on the normal intestinal microbiota that maintain colonization resistance. SMT19969 showed limited activity against other Gram-positive anaerobes, including *Bifidobacterium* species, *Eggerthella lenta*, *Fusobacteria magnus*, and *Peptostreptococcus anaerobius*, with MIC values of >512, >512, 64, and 64 μg/ml, respectively. This suggested that SMT19969’s selective activity makes it an excellent candidate for therapy of CDI.

Our current study extends these observations to 162 *Clostridium* strains representing 35 species within 8 clusters. *Clostridium* species showed varied susceptibility to SMT19969. *Clostridium innocuum* (cluster XVII) was susceptible (MIC₉₀ of 1 μg/ml) and *C. ramosum* (cluster XVI) and *C. perfringens* (cluster I) were non-susceptible (MIC₉₀ of >512 μg/ml) to SMT19969. Against *Clostridium* cluster XIVa, the MICs ranged from 0.125 to 64 μg/ml.

TABLE 1 (Continued)

RMA no.	Species	Clostridial cluster	MIC (μg/ml)			
			SMT19969^a	Fidaxomicin	Metronidazole	Vancomycin
20132	*Clostridium xylanolyticum*	XIVa	0.125	16	1	0.5
15167	*Clostridium lactifermentans*	XIVb	0.06	0.06	0.25	>32
5491	*Clostridium innocuum*	XVI	0.25	>128	2	8
5615	*C. innocuum*	XVI	0.25	>128	1	16
20638	*C. innocuum*	XVI	1	256	0.5	16
20645	*C. innocuum*	XVI	0.25	256	0.5	16
20648	*C. innocuum*	XVI	0.25	128	0.5	16
20913	*C. innocuum*	XVI	0.25	256	1	16
21213	*C. innocuum*	XVI	0.06	256	1	16
21737	*C. innocuum*	XVI	1	256	1	16
21860	*C. innocuum*	XVI	0.25	256	1	16
21903	*C. innocuum*	XVI	0.25	256	16	16
22441	*C. innocuum*	XVI	0.25	512	0.5	16
23130	*C. innocuum*	XVI	0.125	128	2	16
10072	*Clostridium rectum*-like	XIX	>512	>128	0.5	>32
14707	*C. rectum*-like	XIX	>512	>128	1	>32
16549	*C. rectum*-like	XIX	0.03	0.25	1	16
20917	*Clostridium ramosum*	XVIII	>512	>512	0.5	4
21212	*C. ramosum*	XVIII	>512	>512	0.5	4
21215	*C. ramosum*	XVIII	>512	>512	0.5	4
21414	*C. ramosum*	XVIII	>512	>512	8	4
21738	*C. ramosum*	XVIII	128	>512	0.5	4
21862	*C. ramosum*	XVIII	>512	>512	0.5	4
21902	*C. ramosum*	XVIII	512	>512	0.5	4
21974	*C. ramosum*	XVIII	512	>512	1	4
22193	*C. ramosum*	XVIII	>512	>512	1	4
22623	*C. ramosum*	XVIII	>512	>512	1	4
705	*Clostridium* species	0.5	=0.03	0.125	1	
9906	*Clostridium* species	>512	129	0.125	32	
10271	*Clostridium* species	1	=0.03	2	0.5	
14137	*Clostridium* species	32	>128	2	>32	
16187	*Clostridium* species	>512	>128	2	>32	
16338	*Clostridium* species	>512	>128	2	>32	
19909	*Clostridium* species	0.25	>128	16	16	
21472	*Clostridium* species	32	>128	4	>32	
21876	*Clostridium* species	0.25	=0.03	1	8	
22256	*Clostridium* species	32	=0.03	0.25	1	
22279	*Clostridium* species	32	=0.03	0.25	1	
15596B	*Clostridium* species	0.06	=0.03	0.05	1	
18576W	*Clostridium* species	32	0.06	0.125	2	
16034	*Flavonifractor plautii*	0.06	=0.03	0.25	8	
22112	*Robinsoniella* species	0.06	2	2	2	

^a RMA, R.M. Alden Research Laboratory number.

^b SMT19969, Summit 19969.
were species specific. Comparatively, XIVa isolates, except for *Clostridium hylemonae*, *Clostridium lavalense*, and some *C. scindens* isolates, had higher MICs to fidaxomicin (0.006 to >128 μg/ml) and vancomycin (0.5 to 2 μg/ml) and lower MICs to metronidazole (0.05 to 1 μg/ml). SMT19969 had higher MICs than fidaxomicin against *C. paraputrificum* (cluster I) and *C. sordellii* (cluster XI).

These data show that SMT19969’s activity was variable according to *Clostridium* species and strains within species. Coupled with its lack of activity against *B. fragilis* and aerobic enteric flora, it might have a lesser impact than other antimicrobials used for CDI therapy on the normal gut microbiota that maintains colonization resistance. Further evaluation by clinical trials seems warranted.

ACKNOWLEDGMENTS
This study was sponsored by a grant from Summit Corp. PLC.

We thank Richard Vickers for his guidance and review of the manuscript, Eliza Leoncio for technical assistance, and Judee H. Knight and Alice E. Goldstein for other various forms of assistance.

REFERENCES
1. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, Bourgault AM, Nguyen T, Frenette C, Kelly M, Viben A, Brassard P, Fenn S, Dewar K, Hudson TJ, Horn R, Rene P, Monczak Y, Dascal A. 2005. A predominantly clonal multi-institutional outbreak of *Clostridium difficile*-associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 353:2442–2449. http://dx.doi.org/10.1056/NEJMoa051639.
2. Miller BA, Chen LF, Sexton DJ, Anderson DJ. 2011. Comparison of the burdens of hospital-onset, healthcare facility-associated *Clostridium difficile* infection and of healthcare-associated infection due to methicillin-resistant *Staphylococcus aureus* in community hospitals. Infect. Control Hosp. Epidemiol. 32:387–390. http://dx.doi.org/10.1086/659156.
3. Gerdning DN, Johnson S. 2010. Management of *Clostridium difficile* infection: thinking inside and outside the box. Clin. Infect. Dis. 51:1306–1313. http://dx.doi.org/10.1086/657116.
4. Zar FA, Bakkanagari SR, Moorthi KM, Davis MB. 2007. A comparison of vancomycin and metronidazole for the treatment of *Clostridium difficile*-associated diarrhea, stratified by disease severity. Clin. Infect. Dis. 45:302–307. http://dx.doi.org/10.1086/519265.
5. Tannock GW, Munro K, Taylor C, Lawley B, Young W, Byrne B, Emery J, Louie T. 2010. A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of *Clostridium difficile*-infected patients than does vancomycin. Microbiology 156(Part 11): 3354–3359. http://dx.doi.org/10.1099/mic.0.042010-0.
6. Antharam GC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP. 2013. Intestinal dysbiosis and depletion of butyrogenic bacteria in *Clostridium difficile* infection and nosocomial diarrhea. J. Clin. Microbiol. 51:2884–2892. http://dx.doi.org/10.1128/JCM.00843-13.
7. Louie TJ, Emery J, Krulicki W, Byrne B, Mah M. 2009. OPT-80 eliminates *Clostridium difficile* and is sparing of bacteroides species during treatment of *C. difficile* infection. Antimicrob. Agents Chemother. 53: 261–263. http://dx.doi.org/10.1128/AAC.01443-07.
8. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA. 1994. The phylogeny of the genus *Clostridium*: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826. http://dx.doi.org/10.1099/00207713-44-4-812.
9. Goldstein EJ, Citron DM, Tyrrell KL, Merriam CV. 2013. Comparative in-vitro activity of SMT19969, a new antimicrobial agent, against *Clostridium difficile* and 350 Gram-positive and negative aerobic and anaerobic intestinal flora isolates. Antimicrob. Agents Chemo. 57:4872–4876. http://dx.doi.org/10.1128/AAC.01136-13.
10. Joussimies-Somer HR, Summanen P, Citron DM, Baron EJ, Wexler HM, Finegold SM. 2002. Wadsworth–KTL anaerobic bacteriology manual. Star Publishing, Belmont, CA.
11. Versalovic J, Carrol KC, Funke G, Jorgensen JH, Landry ML, Warnock DW. 2011. Manual of clinical microbiology. ASM Press, Washington, DC.
12. Tyrrell KL, Warren YA, Citron DM, Goldstein EJ. 2011. Re-assessment of phenotypic identifications of *Bacteroides putredinis* to *Alistipes* species using molecular methods. Anaerobe 17:130–134. http://dx.doi.org/10.1016/j.anaerobe.2011.04.002.
13. Clinical and Laboratory Standards Institute. 2012. Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard—8th edition. CLSI document M11-A8. CLSI, Wayne, PA.