Explainable Agents as Static Web Pages: UAV Simulation Example

EXTRAAMAS-2020, New Zealand, 9 - 13 May 2020

Yazan Mualla Timotheus Kampik Igor H. Tchappi Amro Najjar
Stéphane Galland Christophe Nicolle
1 Introduction

2 Motivation

3 Architecture

4 UAV Simulation Example

5 Conclusion
Future AI Systems
- Humanly intelligible
- Social
- Trustworthy

eXplainable Artificial Intelligence (XAI)
- Methods and techniques in AI to facilitate the understandability of AI systems by humans
- Explainability is one of the cornerstones for building trustworthy and responsible AI systems
- **Explainable autonomous agents**
 - Explain the behavior of agents to humans
 - Increase understandability, transparency, and trust of agents by humans

XAI evaluation

- Approaches in Human Computer Interaction (HCI) studies
- Agent-based Simulation (ABS) as an implementation framework
- **Explainable autonomous agents**
 - Explain the behavior of agents to humans
 - Increase understandability, transparency, and trust of agents by humans

XAI evaluation

- Approaches in Human Computer Interaction (HCI) studies
- Agent-based Simulation (ABS) as an implementation framework
Lack of interpretability of both black-box machine learning models and complex rule-based systems

Emerging laws and regulations, e.g. European Union’s GDPR, require that certain decisions of AI systems must be humanly interpretable

Scarce HCI contributions that empirically evaluate XAI systems
Goal

Facilitate HCI studies in implementing explainable agents and Multi-Agent Systems (MAS) that can be:

- Deployed as static files
- Embedded into web front ends and other JavaScript-enabled user interfaces

Process

Demonstrate the approach in a simulation of Unmanned Aerial Vehicles (UAVs) designed to assess the effect of different explainability approaches on human intelligibility
- **Ease of deployment**: static files can be deployed in a straightforward manner

- **Reach**: shared with any potential human user who can access the Internet

- **Scalability**: the program code is executed by the client, and the server provides few static files; hence better scalability
1 Introduction
2 Motivation
3 Architecture
4 UAV Simulation Example
5 Conclusion
The state of the environment and all agents it contains is exposed to a User Interface (UI) manager component.

UI processes the state and makes it available to the following components:

- **A grid world** displays the *physical state* of the environment, *i.e.* the position of agents and artifacts.
- **A state table** provides an overview of relevant information that is not obvious from the grid world representation.
- **A notification system** informs the users about important events. Notifications are displayed as visually invasive alerts.
- **Interaction controls** allow users to switch between different simulation modes and adjust simulation parameters.
SYSTEM ARCHITECTURE

Introduction Motivation Architecture UAV Simulation Example Conclusion

Agent-based Simulation

Agent 0 Agent 1 ... Agent n

ENV

Grid World
State Table
Notification System
Interaction Controls

Complete Program

Static Content Server

Serve

Execute

PC

Mobile Device

End-Users
The simulation makes use of the JS-son library [Kampik and Nieves (2019)]

The simulation is provided in three modes:

- **Basic mode:** It displays the current state of all agents in a table-like overview that updates in real-time
- **Adaptive filter mode:** It aggregates the most important information across agents. When an agent enters a possibly problematic state, an alert is generated
- **Contrastive mode** Alerts are constructed using a contrastive explanation scheme, following the structure:

 Agent A is doing P [instead of Q] because of C

where P is the current behavior, Q is the expected behavior, and C is the execution condition
Drone Delivery Simulation

Legend:
- Drone
- Package to be picked up
- Delivery destination
- Charge station

Controls (click "Restart" to update):
- #Drones: 10 drones
- Choose a model: Adaptive filter
- Speed: 2
- Seed: 5

1 drone(s) on way to package: 3
1 drone(s) on way to target: 2
5 drone(s) need re-charge: 0, 1, 4, 5, 6
2 drone(s) idle: 8, 9

No clear target for drone(s) 7. Assigned package(s) just picked up by other drone(s).
STATE TABLES: BASIC MODE

Drone No.	0	1	2	3	4	5	6	7	8	9
Battery	36	36	36	38	40	36	36	36	36	36
Package loaded?	No	Yes	No	Yes						
Current task	Go to 13	Go to 2	Go to 59	Go to 59	Go to 80	Go to 123	Go to 99	Go to 177	Go to 178	
Task type	Go to plain	Go to target station	Go to station	Go to station	Go to plain	Go to package	Go to package	Go to package	Go to target	
Position	12	8	55	49	48	26	124	85	174	166
Location type	plain									
1 drone(s) on way to package:	4 drone(s) on way to target:	5 drone(s) need(s) re-charge:	0 drone(s) idle							
-------------------------------	-----------------------------	-----------------------------	-----------------							
7	1,6,8,9	0,2,3,4,5								
Basic alert to explain unexpected behavior

Drone(s) 0: target set to **empty field**.

Contrastive alert to explain unexpected behavior

No clear target for drone(s) 6: assigned package(s) just picked up by other drone(s).
Demo link: http://s.cs.umu.se/51x65y
- Explainable agent simulations can be deployed as static web pages
- Light-weight tools with a small development, deployment, and operations footprint can be utilized to:
 - Rapidly develop explainable agent prototypes in a widely-used higher-level programming language
 - Roll-out these prototypes and simulations at scale to large and diverse user groups
From an engineering perspective, extend the JS-son library with additional, generically useful abstractions for implementing explainable reasoning-loop agents.

From HCI and XAI perspectives, extend the simulation to allow for human-in-the-loop feedback.
Thank you for your attention...
Appendix
Kampik, T. and Nieves, J. C. (2019). Js-son-a minimal javascript bdi agent library. In 7th International Workshop on Engineering Multi-Agent Systems (EMAS 2019).