On f-Symmetries of the Independence Polynomial

Vadim E. Levit
Department of Computer Science and Mathematics
Ariel University, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Department of Computer Science
Holon Institute of Technology, Israel
eugen.m@hit.ac.il

Abstract
An independent set in a graph is a set of pairwise non-adjacent vertices, and $\alpha(G)$ is the size of a maximum independent set in the graph G.

If s_k is the number of independent sets of cardinality k in G, then

$$I(G; x) = s_0 + s_1 x + s_2 x^2 + ... + s_{\alpha} x^{\alpha}, \alpha = \alpha(G),$$

is called the independence polynomial of G (I. Gutman and F. Harary, 1983).

If $s_{\alpha-i} = f(i) \cdot s_i$ holds for every $i \in \{0,1,\ldots,\lceil \alpha/2 \rceil \}$, then $I(G; x)$ is called f-symmetric (f-palindromic). If $f(i) = 1, i \in \{0,1,\ldots,\lceil \alpha/2 \rceil \}$, then $I(G; x)$ is called symmetric (palindromic).

The corona of the graphs G and H is the graph $G \circ H$ obtained by joining each vertex of G to all the vertices of a copy of H.

In this paper we show that if H is a graph with p vertices, q edges, and $\alpha(H) = 2$, then $I(G \circ H; x)$ is f-symmetric, where

$$f(i) = \left(\frac{p(p-1)}{2} - q \right)^{\frac{\alpha-i}{2}}, 0 \leq i \leq \alpha = \alpha(G \circ H).$$

In particular, if $H = K_r - e, r \geq 2$, we show that $I(G \circ H; x)$ is symmetric and unimodal, with a unique mode. This finding generalizes results due to Stevanović [22] and Mandrescu [21] claiming that $I(G \circ (K_2 - e); x) = I(G \circ 2K_1; x)$ is symmetric and unimodal for every graph G.

Keywords: independent set, independence polynomial, symmetric polynomial, palindromic polynomial.

MSC 2010 classification: 05C69, 05C76, 05C31.

1 Introduction

Throughout this paper G is a simple graph with vertex set $V(G)$ and edge set $E(G)$. If $X \subset V(G)$, then $G[X]$ is the subgraph of G spanned by X.
By $G - W$ we mean the subgraph $G[V - W]$, if $W \subseteq V(G)$. We also denote by $G - F$ the subgraph of G obtained by deleting the edges of F, for $F \subseteq E(G)$, and we write shortly $G - e$, whenever $F = \{e\}$.

The neighborhood of a vertex $v \in V$ is the set

$$N_G(v) = \{w : w \in V \text{ and } vw \in E\},$$

and

$$N_G[v] = N_G(v) \cup \{v\}.$$

If there is no ambiguity on G, we use $N(v)$ and $N[v]$, respectively.

K_n, P_n, C_n denote respectively, the complete graph on $n \geq 1$ vertices, the chordless path on $n \geq 1$ vertices, and the chordless cycle on $n \geq 3$ vertices.

The disjoint union of the graphs G_1, G_2 is the graph $G = G_1 \cup G_2$ having as vertex set the disjoint union of $V(G_1), V(G_2)$, and as edge set the disjoint union of $E(G_1), E(G_2)$. In particular, nG denotes the disjoint union of $n \geq 1$ copies of the graph G. The Zykov sum of the disjoint graphs G_1, G_2 is the graph $G_1 + G_2$ with $V(G_1) \cup V(G_2)$ as a vertex set and

$$E(G_1) \cup E(G_2) \cup \{v_1v_2 : v_1 \in V(G_1), v_2 \in V(G_2)\}$$

as an edge set.

The corona of the graphs G and H is the graph $G \circ H$ obtained from G and $|V(G)|$ copies of H, such that each vertex of G is joined to all vertices of a copy of H.

An independent set in G is a set of pairwise non-adjacent vertices. An independent set of maximum size is a maximum independent set of G, and the independence number $\alpha(G)$ is the cardinality of a maximum independent set in G.

Let s_k be the number of independent sets of size k in a graph G. The polynomial

$$I(G; x) = s_0 + s_1x + s_2x^2 + \ldots + s_\alpha x^\alpha, \quad \alpha = \alpha(G),$$

is called the independence polynomial of G [1]. For a survey on independence polynomials of graphs see [15]. Some basic procedures to compute the independence polynomial of a graph are recalled in the following.

Theorem 1.1 [7] (i) $I(G_1 \cup G_2; x) = I(G_1; x) \cdot I(G_2; x)$;

(ii) $I(G_1 + G_2; x) = I(G_1; x) + I(G_2; x) - 1$;

(iii) $I(G; x) = I(G - v; x) + x \cdot I(G - N[v]; x)$ holds for every $v \in V(G)$.

A finite sequence of real numbers $(a_0, a_1, a_2, \ldots, a_n)$ is said to be:

- **unimodal** if there exists an index $k \in \{0, 1, \ldots, n\}$, called the mode of the sequence, such that
 $$a_0 \leq \ldots \leq a_{k-1} \leq a_k \geq a_{k+1} \geq \ldots \geq a_n;$$

- **f-symmetric (f-palindromic)** if $a_{n-i} = f(i) \cdot a_i$ for all $i \in \{0, \ldots, \lfloor n/2 \rfloor\}$;

- **symmetric (palindromic)** if $a_i = a_{n-i}, i = 0, 1, \ldots, \lfloor n/2 \rfloor$, i.e., $f(i) = 1$ for all $i \in \{0, \ldots, \lfloor n/2 \rfloor\}$.

2
A polynomial is called unimodal (symmetric, f-symmetric) if the sequence of its coefficients is unimodal (symmetric, f-symmetric, respectively). For instance, the independence polynomial:

- \(I(K_{127} + 3K_7; x) = 1 + 148x + 147x^2 + 343x^3 \) is non-unimodal;
- \(I(K_{43} + 3K_7; x) = 1 + 64x + 147x^2 + 343x^3 \) is unimodal and non-symmetric;
- \(I(K_{18} + 3K_3 + 4K_1; x) = 1 + 31x + 33x^2 + 31x^3 + x^4 \) is symmetric and unimodal;
- \(I(K_{52} + 3K_4 + 4K_1; x) = 1 + 68x + 54x^2 + 68x^3 + x^4 \) is symmetric and non-unimodal;
- \(I(P_3 \circ (K_2 \cup K_1); x) = 1 + 12x + 52x^2 + 105x^3 + 104x^4 + 48x^5 + 8x^6 \) is f-symmetric for \(f(i) = 2^{3-i}, 0 \leq i \leq 3 \).

For other examples, see [12, 13, 14, 16, 23, 24]. Alavi, Malde, Schwenk and Erdős proved that for every permutation \(\pi \) of \(\{1, 2, ..., \alpha \} \) there is a graph \(G \) with \(\alpha(G) = \alpha \) such that \(s_{\pi(1)} < s_{\pi(2)} < ... < s_{\pi(\alpha)} \).

Theorem 1.2 [9] \(I(G \circ H; x) = (I(H; x))^n \cdot I \left(G; \frac{x}{I(H; x)} \right) \), where \(n = |V(G)| \).

The symmetry of matching polynomial and characteristic polynomial of a graph were examined in [11], while for independence polynomial we quote [10, 22, 18, 19]. It is known that the product of two unimodal polynomials is not necessarily unimodal.

Theorem 1.3 [2] If \(P \) and \(Q \) are both unimodal and symmetric, then \(P \cdot Q \) is unimodal and symmetric.

However, the above result can not be generalized to the case when \(P \) is unimodal and symmetric, while \(Q \) is unimodal and non-symmetric; e.g.,

\[
\begin{align*}
P &= 1 + x + 3x^2 + x^3 + x^4, \\
Q &= 1 + x + x^2 + x^3 + 2x^4, \text{ while} \\
P \cdot Q &= 1 + 2x + 5x^2 + 6x^3 + 8x^4 + 7x^5 + 8x^6 + 3x^7 + 2x^8.
\end{align*}
\]

It is worth mentioning that one can produce graphs with symmetric independence polynomials in different ways (see, for instance, [3, 13, 22]).

In this paper we prove that if \(H \) is a graph with \(p \) vertices, \(q \) edges, and \(\alpha(H) = 2 \), then \(I(G \circ H; x) \) is f-symmetric, where \(f(i) = \left(\frac{p(p-1)}{2} - q \right)^{\frac{2}{p-1}} \), \(0 \leq i \leq \alpha = \alpha(G \circ H) \).

In particular, if \(H = K_r - e \), where \(r \geq 2 \) and \(e \) is an edge of \(K_r \), then \(I(G \circ H; x) \) is symmetric and unimodal with a unique mode. As a consequence, we deduce that \(I(G \circ (K_2 - e); x) = I(G \circ 2K_1; x) \) is both symmetric [22] and unimodal [21] for every graph \(G \).
2 Results

The polynomial \(P(x) \) is symmetric if and only if it equals its reciprocal, i.e.,

\[
P(x) = x^{\deg(P)} \cdot P \left(\frac{1}{x} \right).
\]

We generalize this observation using \(\frac{1}{cx} \) instead of \(\frac{1}{x} \).

Lemma 2.1 If \(P(x) = \sum_{i=0}^{n} a_i x^i \) is a polynomial of degree \(n \), then

\[
P(x) = c^\frac{n}{2} \cdot x^n \cdot P \left(\frac{1}{cx} \right) \text{ if and only if } a_{n-i} = c^{i-n} a_i, 0 \leq i \leq n.
\]

Proof. Since

\[
c^\frac{n}{2} \cdot x^n \cdot P \left(\frac{1}{cx} \right) = c^\frac{n}{2} \cdot x^n \cdot \sum_{i=0}^{n} \frac{a_i}{(cx)^i} = \sum_{i=0}^{n} c^{\frac{n}{2} - i} \cdot a_i \cdot x^{n-i} = \sum_{i=0}^{n} c^{i-n} \cdot a_{n-i} \cdot x^i,
\]

we infer that

\[
P(x) = c^\frac{n}{2} \cdot x^n \cdot P \left(\frac{1}{cx} \right) \iff a_i = c^{i-n} \cdot a_{n-i} \iff a_{n-i} = c^{i-n} \cdot a_i, 0 \leq i \leq n,
\]

and this completes the proof. ■

If \(\frac{a(x)}{b(x)} = \frac{a(f(x))}{b(f(x))} \), then \(f(x) \) is an invariant of the rational function \(\frac{a(x)}{b(x)} \). Actually, from the point of view of Gutman’s formula from Theorem 1.2, we are mostly interested in finding invariants for rational functions of the form \(\frac{x}{b(x)} \).

Lemma 2.2 The rational function \(\frac{x}{b_0 + b_1 x + b_2 x^2} \) admits only two invariants, namely, \(f_1(x) = x \) and \(f_2(x) = \frac{b_0}{b_2 x} \).

Proof. Since

\[
x \cdot \frac{b_0 + b_1 x + b_2 x^2}{b_0 + b_1 f(x) + b_2 f(x)}^2 \iff b_2 x f(x)^2 - (b_0 + b_2 x^2) f(x) + b_0 x = 0,
\]

we get the following solutions: \(f_1(x) = x \) and \(f_2(x) = \frac{b_0}{b_2 x} \). ■

Theorem 2.3 Let \(G \) be a graph of order \(n \), and \(H \) be a graph of order \(p \) and size \(q \), with \(\alpha(H) = 2 \). Then the polynomial \(I(G \circ H; x) \) is:

(i) \(f \)-symmetric, where \(f(i) = \left(\frac{\alpha(p+1)}{2} - q \right)^{\frac{n}{2} - i}, 0 \leq i \leq \alpha = \alpha(G \circ H); \)

(ii) symmetric if and only if \(H = K_r - e \) for some \(r \geq 2 \).
Proof. (i) Since \(\alpha(H) = 2 \), one can write \(I(H; x) = 1 + px + mx^2 \), where \(m = \frac{p(p-1)}{2} - q \). By Lemma 2.2, the function \(g(x) = (mx)^{-1} \) is the only non-trivial invariant of \(\frac{x}{I(H; x)} \). Thus we get
\[
I(H; g(x)) = 1 + p \cdot g(x) + m \cdot (g(x))^2 = (mx)^{-1} \cdot I(H; x).
\]
According to Lemma 2.2, it follows
\[
I(G \circ H; g(x)) = (I(H; g(x)))^n \cdot I(G; \frac{g(x)}{I(H; g(x))}) = (mx^2)^{-n} \cdot (I(H; x))^n \cdot I(G; \frac{x}{I(H; x)}) = (mx^2)^{-n} \cdot I(G \circ H; x).
\]
Consequently, we have \(I(G \circ H; x) = m^n \cdot x^{2n} \cdot I(G \circ H; \frac{1}{mx}) \). Since every \(v \in V(G) \) is joined in \(G \circ H \) to a copy of \(H \), it follows that each independent set \(S \) of \(G \circ H \) containing a pair of non-adjacent vertices from every copy of \(H \) is a maximum independent in \(G \circ H \), i.e., \(\alpha(G \circ H) = 2n \). Lemma 2.1 implies that \(I(G \circ H; x) \) is \(f \)-symmetric, where
\[
f(i) = \left(\frac{p(p-1)}{2} - q \right)^{n-i}, 0 \leq i \leq 2n = \deg(I(G \circ H; x)).
\]

(ii) The polynomial \(I(G \circ H; x) \) is symmetric if and only if \(f(i) = 1, 0 \leq i \leq \alpha \). By part (i), it means \(\frac{p(p-1)}{2} - q = 1 \), and this holds if and only if \(H = K_p - e \), where \(e \) is some edge of \(K_p \). □

It is worth noticing that \(K_2 - e = 2K_1 \), and this leads to the following.

Corollary 2.4 [22] The polynomial \(I(G \circ 2K_1; x) \) is symmetric for every graph \(G \).

Recall that a graph \(G \) is perfect if \(\chi(H) = \omega(H) \) for every induced subgraph \(H \) of \(G \), where \(\chi(H) \) denotes the chromatic number of \(H \) [4].

Proposition 2.5 [17] If \(G \) is a perfect graph with \(\alpha(G) = \alpha \) and \(\omega = \omega(G) \), then
\[
s_{\lceil \omega \alpha - 1 \rceil/\omega + 1} \geq \ldots \geq s_{\alpha - 1} \geq s_\alpha.
\]

The Strong Perfect Graph Theorem, due to Chudnovsky et al., [5], [6], asserts that a graph \(G \) is perfect if and only if it contains no odd hole (i.e., \(C_{2n+1}, n \geq 2 \)) and no odd antihole (i.e., \(C_{2n+1}, n \geq 2 \)) as an induced subgraph.

Proposition 2.6 If \(G \) is a perfect graph of order \(n \), then the coefficients \(s_i \) of the polynomial \(I(G \circ (K_p \cup K_q); x) \) satisfy the following:
\[
s_{\lceil (2n\omega - 1) / (\omega + 1) \rceil} \geq \ldots \geq s_{2n-1} \geq s_{2n} \quad \text{and} \quad s_0 \leq \ldots \leq s_{t-1} \leq s_t,
\]
where \(t = 2n - \left(\lceil (2n\omega - 1) / (\omega + 1) \rceil - 2n \right) \omega = \max \{ \omega(G), p, q \} \).
Hence we obtain that
\[\left(G \circ (K_p \cup K_q) \right) = 2n, \quad \omega = \omega \left(G \circ (K_p \cup K_q) \right) = \max \{ \omega (G) \cdot p, q \}. \]

Since \(G \circ (K_p \cup K_q) \) has no odd hole and no odd antihole as an induced subgraph, Strong Perfect Graph Theorem assures that \(G \circ (K_p \cup K_q) \) is perfect. According to Proposition 2.7 it follows that
\[s_{[(2n\omega - 1)/(\omega + 1)]} \geq \cdots \geq s_{2n-1} \geq s_{2n}. \]

By Theorem 2.3 we have that
\[s_{2n-i} = (pq)^{n-i} \cdot s_i, 0 \leq i \leq n. \]

Since \(s_{2n-i} \geq s_{2n-i+1} \), for \(2n - i \geq \lceil (2n\omega - 1)/(\omega + 1) \rceil \), we obtain
\[(pq)^{n-i} \cdot s_i \geq (pq)^{n-i+1} \cdot s_{i-1} \iff s_i \geq pq \cdot s_{i-1} \iff s_{i-1} \leq s_i, \]
for \(1 \leq i \leq 2n - \lceil (2n\omega - 1)/(\omega + 1) \rceil \), as claimed. ■

It is easy to see that the sum of two symmetric and unimodal polynomials is not necessarily symmetric and/or unimodal.

Lemma 2.7 Let \(p(x) \) and \(q(x) \) be polynomials of degree \(r \) and \(r-1 \) respectively, for some \(r \geq 2 \), and let \(p(0) \neq 0 \) and \(q(0) = 0 \). If \(p(x) \) and \(q(x) \) are symmetric and unimodal, then so is \(p(x) + q(x) \). Moreover, if the mode of \(p(x) \) or \(q(x) \) is unique, then the mode of \(p(x) + q(x) \) is unique as well.

Proof. The symmetry and unimodality of \(p(x) + q(x) \) were proved in [3].

Assume that the mode of \(p(x) = a_0 + \cdots + a_{s-1}x^{s-1} + a_s x^s + a_{s+1}x^{s+1} + \cdots + a_q x^r \) is equal to \(s \) and is unique, i.e., \(a_0 \leq a_1 \leq \cdots \leq a_{s-1} < a_s > a_{s+1} \geq \cdots \geq a_q \), where \(r = 2s \). The polynomial \(q(x) \) is symmetric, unimodal, deg \(q = r - 1 \), and \(q(0) = 0 \), that is \(q(x) = b_1 x + \cdots + b_1 x^{r-1} \) satisfies \(b_1 \leq \cdots \leq b_{s-1} \leq b_s > b_{s+1} \geq b_{s+2} \). Then \(p(x) + q(x) = a_0 + (a_1 + b_1) x + \cdots + (a_{r-1} + b_{r-1}) x^{r-1} + a_q x^r \) is symmetric, unimodal, and \(a_{s-1} + b_{s-1} < a_s + b_s \), i.e., its mode is equal to \(s \) and it is unique.

Similarly, one can show that the mode of \(p(x) + q(x) \) is unique, whenever the mode of \(q(x) \) is unique. ■

Lemma 2.8 If \(a > 1 \), and \(P = 1 + s_1 x + \cdots + s_{n-1} x^{n-1} + s_n x^n + s_{n-1} x^{n+1} + \cdots + x^{2n} \) is symmetric, unimodal with a unique mode, then \(Q = (1 + ax + x^2) \cdot P \) is symmetric and unimodal with a unique mode, equal to \(n + 1 \).

Proof. The symmetry of \(Q \) follows from Theorem 2.3. The coefficients of \(x^n \), \(x^{n+1} \), \(x^{n+2} \) in \(Q \) are respectively, \(t_n = t_{n+2} = s_n + a s_{n-1} + s_{n-2} \) and \(t_{n+1} = 2s_{n-1} + a s_n \). Hence we obtain that
\[t_{n+1} - t_n = t_{n+1} - t_{n+2} = (s_{n-1} - s_{n-2}) + (a - 1) (s_n - s_{n-1}) > 0, \]
which implies that the mode of \(Q \) is equal to \(n + 1 \) and it is unique. ■
Theorem 2.9 If $H = K_r - e, r \geq 2$, then the polynomial $I(G \circ H; x)$ is unimodal and symmetric for every graph G. Moreover, the mode of $I(G \circ H; x)$ is unique and equal to the order of G.

Proof. The polynomial $I(G \circ H; x)$ is symmetric, according to Theorem 2.3(ii).

We show, by induction on the order $n = |V(G)|$ of G, that $I(G \circ H; x)$ is unimodal and its mode is unique and equal to n.

If $n = 1$, then $G = K_1$ and $I(G \circ H; x) = I(K_{r+1} - e; x) = 1 + (r + 1)x + x^2$, which is clearly unimodal and the mode is unique and equal to n.

If $n = 2$, then either $G = 2K_1$ and

\[I(G \circ H; x) = I(2K_1 \circ H; x) = (1 + (r + 1)x + x^2)^2 = 1 + (2r + 2)x + (r^2 + 2r + 3)x^2 + (2r + 2)x^3 + x^4, \]

or $G = K_2 = \{(v_1, v_2), \{v_1 v_2\}\}$ and

\[I(G \circ H; x) = I(K_2 \circ H - v_1; x) + x \cdot I(K_2 \circ H - N[v_1]; x) = I(H; x) \cdot I(K_{r+1}; x) + x \cdot I(H; x) = (1 + (r + 1)x + x^2)(1 + (r + 2)x + x^2) = 1 + (2r + 3)x + (r^2 + 3r + 4)x^2 + (2r + 3)x^3 + x^4. \]

In both cases, $I(G \circ H; x)$ is clearly unimodal and the mode is unique and equals n.

Let G be a graph of order $n \geq 3$.

Clearly, if $E = \emptyset$, then $I(G \circ H; x) = (1 + (r + 1)x + x^2)^n$, which is unimodal, according to Theorem 1.3 and its mode is unique and equal to n, by Lemma 2.8.

Suppose that $E \neq \emptyset$, and let $v \in V$ be with $N_G(v) = \{u_i : 1 \leq i \leq k\}$.

Applying Theorem 2.3 we obtain

\[I(G \circ H; x) = I(G \circ H - v; x) + x \cdot I(G \circ H - N_G[H \setminus v]; x) = p(x) + q(x), \]

where

\[p(x) = I(G \circ H - v; x) \text{ and } q(x) = x \cdot I(G \circ H - N_G[H \setminus v]; x). \]

Claim 1. $p(x)$ is symmetric, unimodal with a unique mode, equal to n.

First, $p(x) = I(H; x) \cdot I((G - v) \circ H; x)$, because $G \circ H - v$ is the disjoint union of H and $(G - v) \circ H$.

The graph $G \circ H$ has a unique maximum independent set, namely the set S containing the non-adjacent vertices from each H. Hence, we get that $\alpha(G \circ H) = \alpha(G \circ H - v) = 2n$, since $S \cap V(G) = \emptyset$, and $v \in V(G)$. According to Theorem 2.3(ii), the polynomial $I((G - v) \circ H; x)$ is symmetric, and by induction hypothesis, $I((G - v) \circ H; x)$ is also unimodal and its mode is unique and equal to $n - 1$. According to Lemma 2.8 $p(x)$ is symmetric and unimodal with a unique mode, equal to n.

Claim 2. $q(x)$ is symmetric and unimodal.

Since $G \circ H - N_G[H \setminus v]$ consists of the disjoint union of kH and $(G - N_G[v]) \circ H$, we obtain that $q(x) = x \cdot I((H; x))^k \cdot I((G - N_G[v]) \circ H; x)$.

Further, one can see that $\alpha(G \circ H - N_G[H \setminus v]) = |S - \{a_1, a_2\}| = \alpha(G \circ H) - 2$, where $\{a_1, a_2\} = S \cap N_G[H \setminus v]$. The symmetry of $I((G - N_G[v]) \circ H; x)$ follows from
Theorem 2.3 (ii). By induction hypothesis, $I((G - N_G[v]) \circ H; x)$ is unimodal with a unique mode. Lemma 2.8 ensures that $(I(H; x))^k \bullet I((G - N_G[v]) \circ H; x)$ is symmetric and unimodal, with a unique mode.

Claim 3. $I(G \circ H; x)$ is symmetric, unimodal and its mode is unique and equals n.

Since $\deg p = \deg q + 1 \geq 2$, and $p(0) = 1$, while $q(0) = 0$, we finally obtain that $I(G \circ H; x) = p(x) + q(x)$ is symmetric and unimodal with a unique mode, according to Lemma 2.7.

Since $K_2 - e = 2K_1$, we obtain the following.

Corollary 2.10 \([21]\) The polynomial $I(G \circ 2K_1; x)$ is unimodal for every graph G.

3 Conclusions

In this paper we started investigating higher symmetries of polynomials with emphasis on independence polynomials of graphs. This new paradigm already showed its usefulness in revealing a new family of graphs with symmetric independence polynomials. We conclude with the following.

Conjecture 3.1 $I(G \circ H; x)$ is symmetric for every graph G if and only if $H = K_r - e$ for some $r \geq 2$.

Problem 3.2 Describe the set of invariants of a given rational function $\frac{a(x)}{b(x)}$.

References

[1] Y. Alavi, P. J. Malde, A. J. Schwenk, P. Erdős, *The vertex independence sequence of a graph is not constrained*, Congressus Numerantium **58** (1987) 15-23.

[2] G. E. Andrews, *The Theory of Partitions*, Addison-Wesley, Reading, 1976.

[3] P. Bahls, N. Salazar, *Symmetry and unimodality of independence polynomials of path-like graphs*, The Australasian Journal of Combinatorics **47** (2010) 165-176.

[4] C. Berge, *Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung)*, Wiss.Z. Martin-Luther-Univ. Halle **10** (1961) 114-115.

[5] M. Chudnovsky, N. Robertson, P. D. Seymour and R. Thomas, *Progress on perfect graphs*, Mathematical Programming **B 97** (2003) 405-422.

[6] M. Chudnovsky, N. Robertson, P. D. Seymour and R. Thomas, *The Strong Perfect Graph Theorem*, Annals of Mathematics **164** (2006), 51-229.

[7] I. Gutman, F. Harary, *Generalizations of the matching polynomial*, Utilitas Mathematica **24** (1983) 97-106.

[8] I. Gutman, *Independence vertex palindromic graphs*, Graph Theory Notes of New York Academy of Sciences **XXIII** (1992) 21-24.
[9] I. Gutman, *Independence vertex sets in some compound graphs*, Publications de l’Institut Mathématique 52 (1992) 5-9.

[10] I. Gutman, *A contribution to the study of palindromic graphs*, Graph Theory Notes of New York Academy of Sciences XXIV (1993) 51-56.

[11] J. W. Kennedy, *Palindromic graphs*, Graph Theory Notes of New York Academy of Sciences XXII (1992) 27-32.

[12] V. E. Levit, E. Mandrescu, *On unimodality of independence polynomials of some well-covered trees*, DMTCS 2003 (C. S. Calude et al. eds.), LNCS 2731, Springer-Verlag (2003) 237-256.

[13] V. E. Levit, E. Mandrescu, *A family of well-covered graphs with unimodal independence polynomials*, Congressus Numerantium 165 (2003) 195-207.

[14] V. E. Levit, E. Mandrescu, *Very well-covered graphs with log-concave independence polynomials*, Carpathian Journal of Mathematics 20 (2004) 73-80.

[15] V. E. Levit, E. Mandrescu, *The independence polynomial of a graph - a survey*, Proceedings of the 1st International Conference on Algebraic Informatics, Aristotle University of Thessaloniki, Greece, (2005) 233-254. http://web.auth.gr/cai05/papers/20.pdf

[16] V. E. Levit, E. Mandrescu, *Independence polynomials of well-covered graphs: Generic counterexamples for the unimodality conjecture*, European Journal of Combinatorics 27 (2006) 931-939.

[17] V.E. Levit, E. Mandrescu, *Independence polynomials and the unimodality conjecture for very well-covered, quasi-regularizable, and perfect graphs*, Graph Theory in Paris, Trends Math., Birkhäuser, Basel (2007) 243-254.

[18] V. E. Levit, E. Mandrescu, *A family of graphs whose independence polynomials are both palindromic and unimodal*, Carpathian Journal of Mathematics 23 (2007) 108-116.

[19] V. E. Levit, E. Mandrescu, *Graph operations and partial unimodality of independence polynomials*, Congressus Numerantium 190 (2008) 21-31.

[20] V. E. Levit, E. Mandrescu, *On the independence polynomial of an antiregular graph*, Carpathian Journal of Mathematics 28 (2012) 263-272.

[21] E. Mandrescu, *Unimodality of some independence polynomials via their palindromicity*, Australasian Journal of Combinatorics 53 (2012) 76-82.

[22] D. Stevanović, *Graphs with palindromic independence polynomial*, Graph Theory Notes of New York Academy of Sciences XXXIV (1998) 31-36.

[23] Yi Wang, Bao-Xuan Zhu, *On the unimodality of independence polynomials of some graphs*, European Journal of Combinatorics 32 (2011) 10-20.
[24] Z.F. Zhu, *The unimodality of independence polynomials of some graphs*, Australasian Journal of Combinatorics 38 (2007) 27-33.