How do type of preoperative P2Y$_{12}$ receptor inhibitor and withdrawal time affect bleeding? Protocol of a systematic review and individual patient data meta-analysis

Michael Schoerghuber,1 Gudrun Pregartner,2 Andrea Berghold,2 Ines Lindenau,1,3 Robert Zweiker,4 Andreas Voetsch,5 Elisabeth Mahla,1 Andreas Zirlik4

ABSTRACT

Introduction In order to reduce the risk of bleeding in patients on P2Y$_{12}$ receptor inhibitors presenting for non-emergent coronary artery bypass grafting (CABG), current guidelines recommend a preoperative discontinuation period of at least three, five and seven days for ticagrelor, clopidogrel and prasugrel, respectively, to allow for recovery of platelet function. However, there is still substantial interinstitutional variation in preoperative management and relevant covariates of CABG-related bleeding are largely elusive so far.

Methods and analysis We will search PubMed (July 2013 to November 2021) and EMBASE (January 2014 to November 2021) using the following terms, MeSH terms and their synonyms: clopidogrel, prasugrel, ticagrelor, dual antiplatelet, P2Y$_{12}$ receptor inhibitor, CABG, bleeding, haemorrhage. Two independent reviewers will screen all abstracts and full papers for eligibility. Disagreements will be solved by consulting with a third reviewer.

The primary outcome is the incidence of Bleeding Academic Research Consortium type-4 bleeding depending on type of P2Y$_{12}$ receptor inhibitor and preoperative withdrawal period. The secondary outcomes are mortality and ischaemic events according to the Academic Research Consortium 2 Consensus Document. We will perform an individual patient data meta-analysis (IPD-MA) with drug-specific preoperative withdrawal time and adjust for demographic and procedural variables. Subgroup analyses will be performed for anaemic patients and patients undergoing non-emergent versus urgent/emergent surgery.

Ethics and dissemination This IPD-MA consists of secondary analyses of existing non-identifiable data and meets the criteria for waiver of ethics review by the local Research Ethics Committee. Data sharing and transfer will be subject to a confidentiality agreement and a data use agreement. Findings will be disseminated through peer-reviewed publication and conference presentation.

PROSPERO registration number CRD42022291946.

BACKGROUND

In the 54 European Society of Cardiology (ESC) member countries, 34.9 million people lived with ischaemic heart disease in 2017. The median age-standardised prevalence per 1 000 000 inhabitants of each member country was 2270 (IQR 1508–2565) and was lower for females compared with males. In the 2018/2019 survey, these figures translated into a median of 2047 (IQR 1478–2588) percutaneous coronary interventions and...
301.1 (IQR 245.0–440.0) coronary artery bypass grafting operations (CABGs) per one million inhabitants.1

Dual antiplatelet therapy (DAPT) with a P2Y12 receptor inhibitor on top of aspirin is the cornerstone to prevent thrombotic complications in patients with acute coronary syndromes (ACS) and/or after percutaneous coronary interventions with stents, although at the risk of increased bleeding.2,5

Large observational studies have demonstrated an association between the severity of cardiac surgery-related bleeding and 30-day postoperative morbidity and mortality.6–10 A sub-study of the Transfusion Avoidance in Cardiac Surgery study demonstrated that two consensus-based scoring systems for assessing the severity of bleeding, the Universal Definition of Perioperative Bleeding in Adult Cardiac Surgery (UDP) and the European Coronary Artery Bypass Grafting Bleeding Severity Grade instead of European Coronary Artery Bypass Graft (E-CABG), performed well in predicting 28-day mortality. Specifically, severe bleeding defined as either UDP class 3 or E-CABG grade 2, both of which comprise transfusion of ≥5 units of red blood cells, was associated with about 40% relative increased risk of mortality.6 Suggested mechanisms for bleeding-associated mortality are organ dysfunctions triggered by decreased oxygen delivery and hypotension following major blood loss in patients with atherosclerotic disease and adverse effects of transfusion.11,12 Preventing perioperative blood loss may be more efficacious in improving outcome than mere reduction of allogenic blood components.7

Currently, almost 11% of patients presenting with ACS have to undergo aorto-coronary bypass grafting during DAPT.13

In order to reduce the risk of bleeding in patients on P2Y12 receptor inhibitors presenting for non-emergent cardiac surgery, current ESC and American Heart Association/American College of Cardiology (AHA/ACC) guidelines recommend a ‘standardised’ preoperative discontinuation period of at least 3 days for ticagrelor, 5 days for clopidogrel and 7 days for prasugrel (II a recommendation) to allow for recovery of platelet function.14,15 However, there is still substantial inter-institutional variation in preoperative management of ACS patients on DAPT, and there is heterogeneity in the definition and incidence of bleeding. Moreover, data on prasugrel are sparse.7,16

Two big registries used different bleeding definitions to evaluate the overall incidence of major CABG-related bleeding in patients on clopidogrel as compared with ticagrelor and the specific impact of preoperative withdrawal time.8,9 The Swedish registry including 2244 patients with ACS who underwent CABG demonstrated a 5% lower incidence of Bleeding Academic Research Consortium (BARC) type-4 bleeding in patients on ticagrelor as compared with clopidogrel (12.9% vs 17.6%, p=0.033). This difference was mainly driven by a sharp decline in bleeding after 72 hours withdrawal of ticagrelor as compared with a more gradual decrease with clopidogrel. Importantly, incidence of BARC-4 bleeding was 38% and 31% when ticagrelor / clopidogrel was discontinued less than 24 hours, preoperatively.8 In contrast, a subgroup analysis of 1376 patients from the E-CABG registry demonstrated a similar incidence of severe or massive UDPB (11.2% vs 8.7%, p=0.14) and BARC-4 bleeding (13.2% vs 11.6%, p=0.38) in clopidogrel and ticagrelor treated patients, and a similar decrease in bleeding with increasing days off P2Y12 receptor inhibitors, compatible with time-dependent recovery of platelet function. In a propensity score-matched analysis, 4–5 days off clopidogrel reduced severe/massive UDPB class by 7.3% as compared with a 3-day preoperative withdrawal period (p=0.031). Similarly, 3 days off ticagrelor reduced bleeding by 13.3% as compared with a 0–2 days preoperative withdrawal period (p=0.003).9

However, the additional impact of covariates known to affect CABG-related bleeding, the potential bias introduced by preoperative anaemia, occurring in up to 40% of patients undergoing cardiac surgery, and the incidence of myocardial infarction in this particular patient population remain largely elusive so far.17–21

The proposed review is therefore needed to determine the effect of preoperative P2Y12 receptor inhibitors and time of preoperative withdrawal in patients undergoing on-pump CABG on primary (BARC-4 bleeding) and secondary outcomes (all-cause mortality and myocardial infarction) in studies published from July 2013 to November 2021. Studies published until June 2013 have been included in a prior pooled meta-analysis which demonstrated that late preoperative discontinuation of P2Y12 receptor inhibitors (<5 days) was associated with a 2.5-fold and 1.5-fold increased risk of reoperation for bleeding and death, respectively, as compared with early (≥5 days) preoperative discontinuation.22

Although not yet validated regarding the risk of CABG-associated morbidity and mortality, we decided to use the BARC-4 bleeding definition because BARC bleeding has been introduced as a standardised bleeding endpoint for patients receiving antithrombotic therapy.23

To fill the gaps in the knowledge as outlined above, we will aim to conduct an individual patient data meta-analysis (IPD-MA). The primary objective will be to assess the incidence of BARC-4 bleeding depending on type of P2Y12 receptor inhibitors and drug-specific preoperative withdrawal period. Furthermore, the effect of preoperative P2Y12 receptor inhibitors on in-hospital/30-day all-cause mortality and myocardial infarction in on-pump CABG patients will be evaluated. We will correct for demographic and procedural variables and we will perform subgroup analyses to identify the influence of preoperative anaemia and non-emergent CABG versus urgent/emergent CABG on outcome.
METHODS AND ANALYSES

The review will be reported according to the Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data (PRISMA-IPD) Statement.25

Sources of evidence and search strategy

We will search PubMed (July 2013 to November 2021, search strategy see table 1) and EMBASE (2014–2021, search strategy see table 2) for a combination of terms, MeSH terms and their synonyms in titles and abstracts like ‘clopidogrel’, ‘prasugrel’, ‘ticagrelor’, ‘dual antiplatelet’, ‘P2Y12 receptor inhibitor’, ‘P2Y12 antagonist’, ‘P2Y12 inhibitor’, ‘CABG’, ‘bleeding’, ‘haemorrhage’. Vocabulary and syntax will be adjusted across databases. This strategy was reviewed by a librarian of the Medical University of Graz. Two researchers (IL and MS) will search separately according to the search strategy as described in tables 1 and 2. We will also search the Cochrane Library and will carry out a hand search. Unpublished ongoing clinical studies will be searched from WHO International Clinical Trials Registry Platform, ClinicalTrials.gov and Prospero (until November 2021).

Inclusion and exclusion criteria

We will include randomised controlled trials (RCTs) and observational trials that evaluate the effect of different P2Y12 receptor inhibitors (clopidogrel, prasugrel and ticagrelor) and drug-free period prior to surgery on any of the defined outcome measures (BARC-4 bleeding, mortality, non-fatal myocardial infarction), to assess differences depending on

1. The individual P2Y12 receptor inhibitor.
2. Preoperative withdrawal time.

We will include adult female and male patients of any age undergoing on-pump CABG during DAPT with aspirin and a P2Y12 receptor inhibitor.

Inclusion criteria are

► Full text articles in English.

Table 1 Search strategy for PubMed

ID	Query
#1	(clopidogrel OR Prasugrel OR Ticagrelor OR dual antiplatelet OR dual-antiplatelet OR P2Y12 receptor inhibitor OR p2y12 receptor antagonist OR p2y12 Inhibitor OR p2y12-inhibitor OR P2Y12 inhibit* OR P2Y12-Inhibit* OR platelet aggregation inhibitor* OR thienopyridine* OR ADP receptor blocking agent* OR ADP receptor antagonist OR ADP-receptor antagonist OR Adenosine diphosphate receptor antagonist OR ADP-Receptor* OR ADP Receptor* OR Purinergic P2Y Receptor Antagonists [MeSH])
#2	(cabg OR cardiac surgery OR coronary artery bypass OR Coronary artery surgery OR Coronary bypass surgery OR heart surgery OR *on pump* OR on-pump OR Coronary revascularization OR Coronary revascularisation OR myocardial revascularization OR myocardial revascularisation OR ((coronary OR cardiac) AND (bypass OR surgery OR surgical OR operation OR operative)) OR Coronary Artery Bypass [MeSH] OR myocardial revascularisation [MeSH])
#3	(bleeding OR bleed* OR hemorrhage OR hemorrhag* OR haemorrhage OR haemorrhag* OR barc OR Blood loss OR Blood Loss, Surgical [MeSH] OR hemorrhage (MeSH Terms))
#4	#1 AND #2 AND #3
#5	#4 AND July 2013–November 2021
#6	#5 AND English

Table 2 Search strategy for Embase

ID	Query
#1	clopidogrel OR Prasugrel OR Ticagrelor OR dual antiplatelet* OR dual-antiplatelet* OR P2Y12 receptor inhibitor OR p2y12 receptor antagonist OR p2y12 Inhibitor OR p2y12-inhibitor OR P2Y12 inhibit* OR P2Y12-Inhibit* OR platelet aggregation inhibitor* OR thienopyridine* OR ADP receptor blocking agent* OR ADP receptor antagonist* OR ADP-receptor antagonist* OR Adenosine diphosphate receptor antagonist OR ADP-Receptor* OR ADP Receptor* OR Purinergic P2Y Receptor Antagonists [MeSH]
#2	cabg OR cardiac surgery* OR coronary artery bypass OR Coronary artery surgery OR coronary bypass surgery OR heart surgery OR *on pump* OR on-pump OR Coronary revascularization OR Coronary revascularisation OR myocardial revascularization OR myocardial revascularisation OR ((coronary OR cardiac) AND (bypass OR surgery OR surgical OR operation OR operative)) OR Coronary Artery Bypass [MeSH] OR myocardial revascularisation [MeSH]
#3	bleed* OR hemorrhag* OR haemorrhag* OR barc OR Blood los*
#4	Blood adj3 los
#5	#3 OR #4
#6	#1 AND #2 AND #5
#7	#6 AND English language
#8	#7 AND 2014–current
Isolated on-pump CABG.

Patients on DAPT (irrespective of type of P2Y₁₂ inhibitor) with the withdrawal period being equal to or shorter than 7 days.

At least one BARC-4 criteria documented.

Exclusion criteria are

- Off-pump CABG.
- Complex surgery (eg, CABG+valve).
- Timing of surgery based on preoperative platelet function.

Intervention

Intervention: CABG with a drug-specific preoperative withdrawal time of P2Y₁₂ receptor inhibitors (clopidogrel, prasugrel or ticagrelor) shorter than suggested by ESC and AHA/ACC guidelines.

Comparison: CABG with a drug-specific preoperative withdrawal period of P2Y₁₂ receptor inhibitors (clopidogrel, prasugrel or ticagrelor) according to the ESC and AHA/ACC guidelines.

OUTCOMES

Primary outcome

BARC-4 bleeding, defined as any of the following:

- Perioperative intracranial bleeding within 48 hours,
- Reoperation after closure of sternotomy for the purpose of controlling bleeding,
- Transfusion of 5 units or more of packed RBCs within 48 hours or
- 24-hour chest tube drainage of 2000 mL or more.

Secondary outcomes

- Mortality (in-hospital mortality/30-day mortality).
- Ischaemic end points defined according to the Academic Research Consortium-2 Consensus Document comprising death, myocardial infarction and stent thrombosis.

Languages

English.

Time

Study start April 2021; anticipated study end March 2023.

STUDY RECORDS

Data management

All search results will be downloaded into a compatible version of MS Excel (MS Office Professional Plus 2016) from the interfaces. We will transfer these results into a common Excel file for deduplication. For manual deduplication we will have two criteria, title and author, to unambiguously recognise duplicates. Finally, we will do a cross check of the number of included studies.

Selection process

Using the results of the above searches, two authors (IL and MS) will independently screen all titles and abstracts for eligibility. Each of the two authors will document the reason for exclusion of each trial to be excluded. All records deemed potentially relevant by at least one author will be obtained in full text format and assessed according to eligibility criteria independently by IL and MS. In a second step, these evaluations will be discussed with a third researcher (EM) to resolve disagreements. The selection process will be plotted in a flow diagram in accordance with the PRISMA-P statement.

Data extraction and management

We will independently extract study characteristics such as study design (RCTs, observational trials), authors, year of publication and setting of study. We will aim to perform an IPD-MA for the review questions because the main outcome of interest, BARC-4 bleeding, is not generally reported in the literature. IPD-MA would furthermore allow for the direct incorporation of demographic and procedural variables that were previously identified as potential confounders of increased bleeding into the analysis.

Following the selection process, we will address the first author or, if unavailable, the corresponding author of each identified study. All authors will be asked to provide a selection of parameters from their original datasets in a
pseudonymised fashion that does not allow identification of individual identities. We will provide an Excel sheet outlining the requested parameters (see Table 3). After accepting the invitation to collaborate and signing both a confidentiality and data transfer agreement, the authors will be asked to share their data via a secure server of the Medical University of Graz. This uploading process is encrypted. The stored data will be protected by access authorisation. The received data will be reviewed to assess the completeness and accuracy of the dataset.

Plausibility checks of the received data will be performed by comparing summary measures of the IPD with the published data as well as by checking plausibility of the individual values in a clinical context. Any implausibilities will be resolved with the original authors through queries. Individual datasets will be preprocessed and merged into

Table 3	Parameters requested from individual studies
Demographics	**Categories/unit**
Age*	years
Gender*	M/F
Weight	kg
Height	m
BMI	kg/m²
Creatinine	mg/dL or µmol/L
Creatinine clearance*	mL/min
Diabetes mellitus	y/n
Liver disease	y/n
LVEF*	%
Euroscore 2	
UFH or LMWH or fondaparinux (within 24 hours preop)	y/n
Procedural variables	**Categories/unit**
Urgency*	Elective/urgent/emergency/salvage
CABG indication	Stable CAD/NSTEMI/STEMI
CPB time	minutes
No of arterial grafts	y/n
No of distal anastomoses	y/n
Tranexamic acid during surgery	y/n
Hb preoperative	g/L
Platelets preoperative	x10⁹/L
Institutional protocol for treating postpump bleeding	y/n
ASS perioperative continuation	y/n
ASS cessation prior to surgery	days
Clopidogrel preoperative	y/n
Clopidogrel cessation prior to surgery	days
Prasugrel preoperative	y/n
Prasugrel cessation prior to surgery	days
Ticagrelor preoperative	y/n
Ticagrelor cessation prior to surgery	days
Outcome	**Categories/unit**
Chest tube drainage volume within 24 hours†	ml
Reoperation due to bleeding	y/n
Intracranial bleeding within 48 hours perioperatively	y/n
No of transfused red blood cell units within 48 hours from incision	y/n
Postoperative MI	y/n
In-hospital mortality	y/n
30-day mortality	y/n

*Part of euroscore II.
†If unavailable chest tube drainage volume obtained during shorter observation period (define observation period).

ASS, Aspirin; BMI, body mass index; CABG, coronary artery bypass grafting; CAD, Coronary Artery Disease; CPB, Cardiopulmonary Bypass; Hb, Haemoglobin; LMWH, Low Molecular Weight Heparin; LVEF, Left ventricular ejection fraction; MI, Myocardial infarction; NSTEMI, Non-ST-Elevation Myocardial Infarction; STEMI, ST-Elevation Myocardial Infarction; UFH, Unfractionated heparin.
a single datafile for analysis. At the end of the study, all
original individual datasets will be deleted.

RISK OF BIAS
Two authors (IL and MS) will assess the risk of bias for
each trial independently. Possible disagreements will be
resolved by consensus, or with consultation of a third
party (EM).

For RCTs, we will assess risk of bias using the Cochrane
Collaboration’s tool.27 We will use the following bias
criteria:
► Random sequence generation (selection bias).
► Allocation concealment (selection bias).
► Blinding (performance bias and detection bias), sepa-
rate for blinding of participants and personnel and
blinding of outcome assessment.
► Incomplete outcome data (attrition bias).
► Selective reporting (reporting bias).
► Other bias.

We will judge risk of bias criteria as ‘low risk’, ‘high risk’
or ‘unclear risk’ as described in the Cochrane Handbook
for Systematic Reviews of Interventions.27

For observational studies, the quality of each study
will be assessed using the Robins-I Tool as suggested
by the Cochrane Handbook for Systematic Reviews of
Interventions.27

The following domains will be assessed:
► Bias due to confounding.
► Bias in selection of participants into the study.
► Bias in classification of interventions.
► Bias due to deviations from intended interventions.
► Bias due to missing data.
► Bias in measurement of outcomes.
► Bias in selection of the reported result.

DATA SYNTHESIS
The primary analysis will be performed as a two-stage
IPD-MA. For this approach, each study will first be indi-
vidually analysed according to a prespecified regression
model for each type of P2Y12 inhibitor including drug
specific preoperative withdrawal time as well as relevant
confounders (see table 3). The results of these analyses
will be presented as odds ratios (OR) and 95% con-
fidence intervals (CI) and can be displayed in a forest plot.
For the second stage, these results will be pooled using
standard meta-analytic methods, in our case random-
effects models.

If we cannot get individual patient data for all identi-
fied studies, the risk of availability bias will be assessed by
comparing study characteristics of those providing data
and those that do not. For studies not providing individual
patient data but presenting the respective outcomes, we
will incorporate these results in a sensitivity analysis to
test the robustness of the IPD findings. Furthermore, the
equivalent to the well-known Funnel plot will be visually
assessed.

Additionally, subgroup analyses are planned for:
► Patients undergoing non-emergent CABG versus
patients undergoing urgent/emergent CABG because
of ACS.
► Patients preoperatively presenting with anaemia
according to the WHO-definition of less than 13 g/
dL for men and less than 12 g/dL for women versus
preoperatively non-anaemic patients.

Furthermore, sensitivity analyses will test the robustness
of our findings for the analysis of the primary outcome.
They will be performed for study quality and drug-specific
preoperative withdrawal periods for each single day of
withdrawal, including no preoperative withdrawal.

The analyses will be performed using a current version
of R. No imputation for missing data is planned. The an-
alyses are performed in accordance with the handbook
of the Cochrane collaboration and results will be presented
according to the PRISMA-IPD statement.23

Author affiliations
1Division of Anesthesiology for Cardiovascular Surgery and Intensive Care Medicine,
Medical University of Graz, Graz, Austria
2Institute for Medical Informatics, Statistics and Documentation, Medical University
of Graz, Graz, Austria
3Department of Anesthesiology and Intensive Care Medicine, Hospital
Hochsteiermark, Steiermärkische Krankenanstaltengesellschaft mbH, Leoben,
Austria
4Division of Cardiology, Department of Internal Medicine, Medical University of Graz,
Graz, Austria
5Department of Cardiovascular and Endovascular Surgery, Paracelsus Medical
University Salzburg, Salzburg, Austria

Contributors MS: study design, bibliographic research, design of data entry forms,
data management, conduct of study, protocol and manuscript writing. GP: study
design, data management, statistical analysis, protocol and manuscript writing
and review. AB: study design, statistical analysis, protocol and manuscript writing
and review. IL: bibliographic search, design of data entry forms, data management,
conduct of study, protocol and manuscript review. RZ: Scientific coordination,
protocol and manuscript writing and review. AZ: Scientific coordination, protocol
and manuscript review. AE: Scientific coordination, protocol and manuscript
review

Funding The authors have not declared a specific grant for this research from any
funding agency in the public, commercial or not-for-profit sectors.

Competing interests AZ received honoraria for lectures and consulting of
Daichi Sankyo, Lilly, AstraZeneca, Bristol Myers Squibb, Pfizer, Bayer, Boehringer
Ingelheim.

Patient and public involvement Patients and/or the public were not involved in
the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.
Open access This is an open access article distributed in accordance with the
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited, appropriate credit is given, any changes made indicated, and the use
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Andrea Berghold http://orcid.org/0000-0001-5187-9105

Schoerghuber M, et al. BMJ Open 2022;12:e060404. doi:10.1136/bmjopen-2021-060404
REFERENCES

1. Timmis A, Townsend N, Gale CP, et al. European Society of cardiology: cardiovascular disease statistics 2019. *Eur Heart J* 2020;41:12–85.

2. Neumann F-J, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. *Eur Heart J* 2019;40:87–165.

3. Levine GN, Bates ER, Bittl JA. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American heart association Task force on clinical practice guidelines. *J Am Coll Cardiol* 2016;62:1931–47.

4. Collet J-P, Thiele H, Barbato E, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. *Eur Heart J* 2021;42:1289–367.

5. Mullen L, Meah MN, Elamin A, et al. Risk of major bleeding with potent antiplatelet agents after an acute coronary event: a comparison of ticagrelor and clopidogrel in 5116 consecutive patients in clinical practice. *J Am Heart Assoc* 2021;10:e019467.

6. Bartoszko J, Wijeysondera DN, Karkouli K, et al. Comparison of two major perioperative bleeding scores for cardiac surgery trials: universal definition of perioperative bleeding in cardiac surgery and European coronary artery bypass grafting bleeding severity grade. *Anesthesiology* 2018;129:1092–100.

7. Biancari F, Mariscalco G, Gherli R, et al. Variation in perioperative antithrombotic strategy, severe bleeding, and use of blood products in coronary artery bypass grafting: results from the multicentre E-CABG registry. *Eur Heart J Qual Care Clin Outcomes* 2018;4:246–57.

8. Hansson EC, Jidéus L, Åber, et al. Coronary artery bypass grafting-related bleeding complications in patients treated with ticagrelor or clopidogrel: a nationwide study. *Eur Heart J* 2016;37:189–97.

9. Holm I, Biancari F, Khodabandeh S, et al. Bleeding in patients treated with ticagrelor or clopidogrel before coronary artery bypass grafting. *Ann Thorac Surg* 2019;107:1690–8.

10. Tomlak A, Schoborgh MA, Manshanden JSJ, et al. Coronary artery bypass grafting-related bleeding complications in patients treated with dual antiplatelet treatment. *Eur J Cardiothorac Surg* 2016;50:849–56.

11. Genéreux P, Giustino G, Witzenbichler B, et al. Incidence, predictors, and impact of post-discharge bleeding after percutaneous coronary intervention. *J Am Coll Cardiol* 2015;66:1036–45.

12. Mahla E, Tantry US, Schoerghuber M, et al. Platelet function testing in patients on antiplatelet therapy before cardiac surgery. *Anesthesiology* 2020;133:1263–76.

13. Masoudi FA, Ponirakis A, Yeh RW, et al. Cardiovascular care facts: a report from the National cardiovascular data registry. 2011. *J Am Coll Cardiol* 2013;62:1931–47.

14. Valgimigli M, Bueno H, Byrne RA. Esc focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the task force for dual antiplatelet therapy in coronary artery disease of the European Society of cardiology (ESC) and of the European association for Cardio-thoracic surgery (EACTS). *Eur Heart J* 2017;39:213–60.

15. Lawton JS, Tamis-Holland JE, Bangalore S. ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American College of Cardiology/American heart association joint committee on clinical practice guidelines. *J Am Coll Cardiol* 2021:2021.

16. Voetsch A, Pregartner G, Berghold A, et al. How Do Type of Preoperative P2Y12 Receptor Inhibitor and Withdrawal Time Affect Bleeding? *Ann Thorac Surg* 2021;111:77–84.

17. Biancari F, Airakxinen KEJ, Lip GYH. Benefits and risks of using clopidogrel before coronary artery bypass surgery: systematic review and meta-analysis of randomized trials and observational studies. *J Thorac Cardiovasc Surg* 2012;143:865–75.

18. Boer C, Meesters MI, Mlijovic M, et al. 2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery. *J Cardiothorac Vasc Anesth* 2018;32:88–120.

19. Mahla E, Prullier F, Farzi S, et al. Does platelet reactivity predict bleeding in patients needing urgent coronary artery bypass grafting during dual antiplatelet therapy? *Ann Thorac Surg* 2016;102:2019–7.

20. Ranucci M, Baryshnikova E, Soro G, et al. Multiple electrode whole-blood aggregometry and bleeding in cardiac surgery patients receiving thienopyridines. *Ann Thorac Surg* 2011;91:123–9.

21. Siller-Matula JM, Petre A, Delle-Karth G, et al. Impact of perioperative use of P2Y12 receptor inhibitors on clinical outcomes in cardiac and non-cardiac surgery: a systematic review and meta-analysis. *Eur Heart J Acute Cardiovasc Care* 2017;6:753–70.

22. Mehran R, Rao SV, Bhatt DL, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the bleeding academic research Consortium. *Circulation* 2011;123:2736–47.

23. Stewart LA, Clarke M, Rovers M, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. *JAMA* 2015;313:1657–65.

24. Garcia-Garcia HM, McFadden EP, Farb A, et al. Standardized end point definitions for coronary intervention trials: the academic research Consortium-2 consensus document. *Circulation* 2018;137:2635–50.

25. Shamsiee L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ* 2015;350:g7647.

26. Ferraris VA, Saha SP, Oestreich JH, et al. 2012 update to the Society of thoracic surgeons guideline on use of antiplatelet drugs in patients having cardiac and noncardiac operations. *Ann Thorac Surg* 2012;94:1761–81.

27. Higgins J, Thomas J, Chandler J. *Cochrane Handbook for systematic reviews of interventions* 2021.