Modulation of adult-born neurons in the inflamed hippocampus

Karim Belarbi1,2 and Susanna Rosi1,2,3*

1 Brain and Spinal Injury Center, San Francisco General Hospital, University of California at San Francisco, San Francisco, CA, USA
2 Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA
3 Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA

INTRODUCTION

In the adult mammalian brain, the subgranular zone of the dentate gyrus (DG) is one of the brain regions where robust neurogenesis continues throughout life (Altman and Das, 1965; Eriksson et al., 1998; Spalding et al., 2013). Adult-born neurons have the capacity to migrate into the granule cell layer, to differentiate into mature granule neurons and to functionally integrate into hippocampal neural networks. This process is highly plastic, influenced by environmental and endogenous factors, and it appears to be altered during neuropathological conditions (Parent et al., 1997; Dash et al., 2001; Ekdahl et al., 2003). In this review, we summarize the current knowledge on the plasticity of adult-born neurons in animal models of brain injury associated with neuroinflammation and we discuss the role of activated microglia and the contribution of specific inflammatory factors.

FROM NEURAL PROGENITORS TO NEURONAL INTEGRATION INTO HIPPOCAMPAL NETWORKS

Hippocampal adult-born neurons originate from neural precursor cells located in the subgranular zone of the DG and these cells have limited self-renewal capacity (Kempermann et al., 2003). While most of the newly generated cells die shortly after generation (Kempermann et al., 1997; Biebl et al., 2000), some of the progeny gives rise to neuroblasts that migrate into the DG granule cell layer where they mature into fully functional granule neurons (Kempermann et al., 2003; Esposito et al., 2005). The new cells that become synaptically integrated, receive inputs from the entorhinal cortex, and send axonal projections to hilar neurons and CA3 pyramidal cells (Markakis and Gage, 1999; Laplagne et al., 2007; Ioni et al., 2008) can be activated by various stimuli, including behavioral experience (Jesberger and Kempermann, 2003; Ramirez-Amaya et al., 2006; Kee et al., 2007; Belarbi et al., 2012a) or high-frequency electrical perforant path stimulation (Bruel-Jungerman et al., 2006; Jungenitz et al., 2013). During their maturation process, new neurons differ substantially from existing granule cells. Electrophysiological data show that they exhibit a decreased overall induction threshold for long-term potentiation and enhanced synaptic plasticity compared to older neurons (Schmaltz-Hieber et al., 2004; Ge et al., 2007). In response to spatial exploration, new neurons are also more likely to express plasticity-related immediate-early genes (IEGs) such as Arc (activity-regulated cytoskeleton-associated protein) or IEGs encoding transcription factors such as c-fos (Ramirez-Amaya et al., 2006; Kee et al., 2007). Furthermore, numerous studies abating or enhancing adult neurogenesis have demonstrated that hippocampal adult-born neurons are required for hippocampus-dependent forms of spatial memory (Celland et al., 2009; Touche et al., 2009; Goodman et al., 2010; Nakashiba et al., 2012). Collectively, these data indicate that adult-born neurons are more likely than existing granule neurons to be recruited into hippocampal networks that process spatial and contextual information and exert a critical role in hippocampus-dependent functions.
THE INFLAMED HIPPOCAMPUS AND THE MULTIFACETED ROLE OF MICROGLIA ACTIVATION

Microglia derive from primitive myeloid progenitors and constitute the resident immune system in the brain (Cinboux et al., 2010; Kierdorf et al., 2013). In the absence of pathological insult, microglia exist in a ramified morphological phenotype termed “resting microglia.” Through their highly motile ramifications, resting microglia continuously scan their territorial domain and communicate with the other surrounding cells by distinct signaling pathways (Davalos et al., 2005; Nimmerjahn et al., 2005; Hanisch and Kettenmann, 2007; Kettenmann et al., 2011). Furthermore, microglia transiently make contact with presynaptic boutons, postsynaptic spines, and the synaptic cleft (Wake et al., 2009; Tremblay et al., 2010) and facilitate synapse elimination and pruning, therefore likely contributing to the stability and organization of neural networks (Wake et al., 2009; Tremblay et al., 2010; Paolicelli et al., 2011). As a consequence of brain pathology, microglia respond to pathogen-associated or damage-associated molecules and acquire a reactive profile usually referred as “activated microglia.” Typical morphological changes associated with microglia activation include thickening of ramifications and of cell bodies followed by acquisition of a rounded ameboid shape (Kettenmann et al., 2011). This process is accompanied by expression of novel surface antigens and production of mediators that build up and maintain the inflammatory response of the brain parenchyma. This response is often associated with the recruitment of blood-borne macrophages from the periphery which migrate into the injured brain parenchyma (Schilling et al., 2005; Schwartz and Shechter, 2010). Monocyte-derived macrophages are distinct in nature from resident microglia (for review, see London et al., 2013).

Activated microglia in the brain can operate as damage associated cells, producing a plethora of molecules that are essential for the elimination of pathogens, toxic factors (such as protein aggregates) and cellular debris (following neuronal death for example). By producing neurotrophic and growth factors that are pivotal for the elimination of pathogens, toxic factors (such as protein aggregates) and cellular debris (following neuronal death for example), they can exert supportive and detrimental effects dependent upon their phenotype and the factors being released (Butovsky et al., 2006; Figure 1).

PRODUCTION OF NEURONS IN THE INFLAMED HIPPOCAMPUS

Proliferation, differentiation, and survival of neurons in the adult brain has been shown to be modulated in pathological conditions associated with inflammation (Cho and Kim, 2010; Mu and Gage, 2011; Kohman and Rhodes, 2013). Animal models of brain irradiation typically display a significant loss of neural precursor cells that occurs within a few hours (Mizumatsu et al., 2003) and is still present several months after relatively low radiation doses (Tada et al., 2000; Raber et al., 2004b; Belbari et al., 2013). Similarly, neuroinflammation induced by central or systemic administration of LPS significantly reduces basal neurogenesis (Ekdahl et al., 2003; Monje et al., 2003; Fujikawa and Akema, 2010), although this is not observed when very low doses of LPS are chronically infused in the ventricular system (Belbari et al., 2012a).

In contrast, increased neuronal production has been observed in animal models mimicking Alzheimer’s disease amyloid pathology (APP23: Stalder et al., 1999; Bornemann et al., 2001; PS/APP: Matsuoka et al., 2001; PS1 + APP: Gordon et al., 2002; Tg2576: Frautschy et al., 1998; Benzing et al., 1999; Sasaki et al., 2002) or tau pathology (P301S tau: Belucci et al., 2004; Yoshiyama et al., 2007; TgTauP301L: Sasaki et al., 2008; Thy-Tau22: Belbari et al., 2011). Normal aging is also characterized by chronic low-level of inflammation and increased microglia reactivity (Burgens and Johnson, 2012).

Both macrophages (Porta et al., 2009) and microglia (Michelucci et al., 2009) can undergo different forms of polarized activation leading to a potentially neurotoxic “classic or M1 activation” (characterized by a release of pro-inflammatory factors) or a potentially neuroprotective “alternative or M2 activation” (characterized by anti-inflammatory cytokines). M1 activation is characterized by the release of several pro-inflammatory and neurotoxic factors including reactive oxygen species, nitric oxide, TNF-alpha, IL-6, IL-1beta, IL-12, and monocyte chemoattractant protein (MCP)-1 (Meda et al., 1986; Kettenmann et al., 2011; Qin et al., 2013). Polarization toward classic activation (M1) can be induced experimentally by exposure to pro-inflammatory cytokines such as interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, as well as bacterial-derived LPS (Edwards et al., 2003). Alternative M2 (protective) activation of microglia is characterized by increased expression of the anti-inflammatory cytokines IL-4, IL-10, and transforming growth factor (TGF)-beta, CD200, and growth factors such as insulin growth factor (IGF)-1, nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF; Butovsky et al., 2005; 11 et al., 2012). Alternative activation can be induced experimentally by anti-inflammatory cytokines such as IL-4 and IL-13 (Butovsky et al., 2006; Colton, 2009). The regulation of this functional polarization after brain injury is still not clear and evidence shows that it should be considered as a dynamic process (Colton, 2009). For example, following ischemia-induced injury in the striatum, microglia initially express the classic activation phenotype, but with time a portion of the cells acquire the alternative activation phenotype (Thored et al., 2009). Therefore, the link between activated microglia and neurogenesis is multifaceted, combining both supportive and detrimental effects dependent upon their phenotype and the factors being released (Butovsky et al., 2006; Figure 1).
Belarbi and Rosi Neurogenesis in the inflamed hippocampus

FIGURE 1| Schematic drawing representing the impact of classical (depicted in red) and alternative (depicted in blue) activation of microglia on adult-born neurons (depicted in green) in the hippocampus. In response to changes in the microenvironment microglia can undergo to a potentially neurotoxic “classical activation” (characterized by the release of proinflammatory factors) or a potentially neuroprotective “alternative activation” (characterized by the release of anti-inflammatory cytokines). Polarization toward classical activation can be induced experimentally by exposure to pro-inflammatory cytokines such as IFN-gamma, tumor necrosis factor (TNF)-alpha and interleukin (Il)-1beta, as well as bacterial-derived LPS. Classically activated microglia has been shown to: (1) decrease the production of neurons, (2) alter their migration pattern, and (3) reduce their recruitment into neuronal networks (red arrow). Alternative activation of microglia can be induced experimentally by anti-inflammatory cytokines such as Il-4 and Il-13 and can increase the production of neurons (blue arrow). The impact of alternative activation of microglia on the migration and the integration of new neurons remains unknown.

reported in animal models of experimental traumatic brain injury (Dash et al., 2001; Kerrie et al., 2001; Chrumamilla et al., 2002; Emery et al., 2005; Sun et al., 2007), brain ischemia (Liu et al., 1998; Kee et al., 2001; Yagita et al., 2001; Nakatomi et al., 2002; Choi et al., 2003), and kainic acid-induced or picrotoxin-induced status epilepticus (Parent et al., 1997; Choi et al., 2003). Different animal models of Alzheimer’s disease, provided equivocal data, demonstrating both increased and decreased hippocampal neurogenesis (as reviewed in Mu and Cagle, 2011). While differences in many parameters (bromodeoxyuridine administration, cell markers, etc.) could be the cause for these discrepancies, such data provide strong evidence that the modulation of hippocampal adult-born neurons is dependent on the nature of the injury and the time following injury. The initial work investigating the role of activated microglia on neurogenesis found an acute detrimental role for these cells. Classic activation of microglia induced through administration of LPS, either centrally or peripherally, has been shown to block hippocampal neurogenesis (Ekdahl et al., 2003; Monje et al., 2003; Butovsky et al., 2006). In addition, inhibition of microglial activation through administration of minocycline or indomethacin was shown to rescue hippocampal neurogenesis after LPS-induced inflammation (Monje et al., 2003), cranial irradiation (Ekdahl et al., 1997), or focal cerebral ischemia (Hohs et al., 2005; Liu et al., 2007). In contrast, alternative microglia activation through Il-4 or low level of IFN-gamma could promote neurogenesis (Butovsky et al., 2006). Proinflammatory cytokines released by classically activated microglia can specifically inhibit neural precursor generation, neuronal differentiation, and survival. These include TNF-alpha (Cacci et al., 2005; Heldmann et al., 2005; Jouss et al., 2006), Il-Beta (Goshen et al., 2008; Koo and Duman, 2008; Kuzumaki et al., 2010; Wu et al., 2012), and Il-6 (Villiers et al., 2002). Conversely, factors released by alternative activation of microglia seem to support the production of neurons as shown for Il-4 (Kiyota et al., 2010), Il-10 (Kiyota et al., 2012), TGF-beta (Batista et al., 2006; Mathieu et al., 2010), and IGF-1 (Choi et al., 2008; Annenkov, 2009). Taken together, these findings suggest that classically activated microglia generally impair neurogenesis whereas alternatively activated microglia promote it, and that these opposite effects are likely dependent upon the specific factors being released (Figure 1).

DISTRIBUTION OF ADULT-BORN NEURONS IN THE INFLAMED HIPPOCAMPUS

In the normal hippocampus neuronal precursors migrate a few micrometers into the granule cell layer where they differentiate into new neurons during the first 2 weeks after production (Kempermann et al., 2003; Seki et al., 2007; Sandoval et al., 2011; Belarbi et al., 2013). Comparative analyses of the distribution of adult-born neurons in different animal models of brain injury suggest...
that the migration process is altered during pathological conditions. Parent and colleagues first reported ectopic destinations of neural progenitor cells after pilocarpine-induced seizure. Mature neurons were detected not only inside the granule cell layer but also in the molecular layer and inside the hilus of the DG (Parent et al., 1997, 2006). Altered distribution of new neurons within the hippocampus has also been reported in murine models of stroke (Kernie and Parent, 2010), traumatic brain injury (Rossi et al., 2012), cranial-irradiation (Belarbi et al., 2013), and LPS-induced chronic inflammation (Belarbi et al., 2012a). In these models, new neurons were distributed in average a longer distance from the subgranular zone into the granule cell layer. Additional evidence for modified migration of new neurons in the inflamed hippocampus comes from the work of Belmadani et al. (2006) who demonstrated that small cytokine signaling proteins, named chemokines, regulate the migration of neural progenitors to sites of neuroinflammation. In that study neural progenitor cells were grafted into the DG of cultured hippocampal slices and inflammation was achieved by injecting a solution, containing TNF-alpha, IFN-gamma, LPS, glycogen protein 120, or a beta-amyloid-expressing adenovirus, into the area of the fimbria. In control slices, neural progenitors showed little tendency to migrate, while in slices injected with inflammatory stimuli, neural progenitors migrated toward the site of the injection. However, when neural precursors from mice lacking the C–C chemokine receptor type 2 (CCR2 knock-out) were transplanted into slices, they exhibited a greatly reduced migration toward sites of inflammation (Belmadani et al., 2006). CCR2 and its primary ligand MCP-1 are considered to be critical for macrophage trafficking and activation in the brain (Prinz and Priller, 2010). CCR2 has also been shown to be expressed by neural progenitors (Tran et al., 2007). Therefore, these data further support a role for chemokines in the migration of neural progenitor during inflammation. In line with these findings, we recently reported that CCR2 deficiency, through genetic manipulation in mice, was sufficient to prevent the aberrant migration of new neurons observed in vivo following irradiation (Belarbi et al., 2013). Similarly, in the pilocarpine-induced status epilepticus rat model, the blockade of the MCP-1/CCR2 interaction with a selective CCR2 antagonist attenuated the ectopic migration of neuronal progenitors into the hilus (Hung et al., 2013). Collectively, these findings indicate that adult-born neurons have the capacity to migrate to the site of damage in response to the chemokine MCP-1/CCR2 signaling pathway. Currently, it is not known whether the change in migration induced by inflammation is beneficial, as, for example, increased migration would allow new neurons to replace dying or lost neurons, or deleterious, as altered migration could reflect the formation of aberrant circuits disrupting hippocampal functions.

RECRUITMENT OF ADULT-BORN NEURONS INTO BEHAVIORALLY RELEVANT NEURAL NETWORKS IN THE INFLAMED HIPPOCAMPUS

It is widely accepted that induction of effective synaptic plasticity associated with learning and memory requires de novo protein synthesis (Miyashita et al., 2008). The IEG Arc and its protein are dynamically regulated in response to neuronal activity, and are directly involved in plasticity processes that underlie memory consolidation (Guzowski et al., 2000). The expression of behaviorally induced Arc can be used to study the recruitment of adult-born mature neurons into functional neural networks. Using plasticity-related Arc expression, Ramirez-Amaya and coworkers demonstrated that the proportion of mature new neurons that expressed Arc in response to exploration was significantly higher than the proportion of cells that expressed Arc in the already existing population of granule cells. These data indicate that new neurons are preferentially recruited into hippocampal networks encoding spatial and contextual information (Ramirez-Amaya et al., 2008). In a rat model of LPS-induced chronic neuroinflammation 2-month-old neurons retained the capacity to express behaviorally induced Arc in response to spatial exploration. However, the proportion of new neurons that expressed behaviorally induced Arc was significantly lower than that from sham control animals, indicating that chronic inflammation decreased the recruitment of new neurons into hippocampal networks (Belarbi et al., 2012a). These findings are consistent with the work of Jakubs et al. (2008) that reported an increased inhibitory synaptic drive of new neurons that developed during LPS-induced neuroinflammation. Although adult-born neurons likely contribute to the encoding of recent spatial and contextual information, it is difficult to determine whether decreased excitability of new neurons is beneficial or deleterious to brain function during inflammatory conditions. Indeed, because neuroinflammation was shown to increase the proportion of granule cells expressing behaviorally induced Arc (Rossi et al., 2005), the decrease in new neurons expressing behaviorally induced Arc may be a compensatory mechanism to maintain an optimal level of neuronal activation and ensure the maintenance of pattern separation using a very sparse coding strategy (McNaughton et al., 1996; Rossi, 2011). Arc expression in new neurons as response to behavioral exploration was also reported in mice following exposure to low-dose irradiation combined or not with a subsequent traumatic brain injury in the presence of activated microglia (Rossi et al., 2012). Collectively, these findings show that while new neurons retain the capacity to be recruited into behaviorally relevant neural networks following brain injury, their recruitment is significantly decreased following classical microglia activation.

The chemokine receptor CX3CR1 is present in microglia and circulating monocytes and its unique ligand fractalkine (CX3CL1) is expressed in neurons and peripheral endothelia cells (Bazan et al., 1997; Mizutie et al., 1999). CX3CL1 signaling in the brain promotes microglial survival and controls microglial neurotoxicity through its receptor CX3CR1 under certain neuregenerative and inflammatory conditions (Garcia et al., 2013). CX3CL1/CX3CR1 signaling is regulated in the inflamed brain, and CX3CR1 is a key regulator of microglia activation contributing to adaptive immune responses (Garcia et al., 2013). Recent evidence demonstrates that in the uninjured brain microglia play a critical role in monitoring and maintaining synapses by directly interacting with synaptic elements (Wake et al., 2009; Tremblay et al., 2010; Paolicelli et al., 2011). Using CX3CR1 knock-out mice, Paolicelli et al. (2011) reported a transient reduction in microglial numbers paralleled by a delay in synaptic pruning with consequent excess of dendritic spines and a delayed maturation of neurons, consistent with our findings. In a rat model of LPS-induced chronic neuroinflammation 2-month-old neurons retained the capacity to express behaviorally induced Arc in response to spatial exploration. However, the proportion of new neurons that expressed behaviorally induced Arc was significantly lower than that from sham control animals, indicating that chronic inflammation decreased the recruitment of new neurons into hippocampal networks (Belarbi et al., 2012a). These findings are consistent with the work of Jakubs et al. (2008) that reported an increased inhibitory synaptic drive of new neurons that developed during LPS-induced neuroinflammation. Although adult-born neurons likely contribute to the encoding of recent spatial and contextual information, it is difficult to determine whether decreased excitability of new neurons is beneficial or deleterious to brain function during inflammatory conditions. Indeed, because neuroinflammation was shown to increase the proportion of granule cells expressing behaviorally induced Arc (Rossi et al., 2005), the decrease in new neurons expressing behaviorally induced Arc may be a compensatory mechanism to maintain an optimal level of neuronal activation and ensure the maintenance of pattern separation using a very sparse coding strategy (McNaughton et al., 1996; Rossi, 2011). Arc expression in new neurons as response to behavioral exploration was also reported in mice following exposure to low-dose irradiation combined or not with a subsequent traumatic brain injury in the presence of activated microglia (Rossi et al., 2012). Collectively, these findings show that while new neurons retain the capacity to be recruited into behaviorally relevant neural networks following brain injury, their recruitment is significantly decreased following classical microglia activation.

The chemokine receptor CX3CR1 is present in microglia and circulating monocytes and its unique ligand fractalkine (CX3CL1) is expressed in neurons and peripheral endothelia cells (Bazan et al., 1997; Mizutie et al., 1999). CX3CL1 signaling in the brain promotes microglial survival and controls microglial neurotoxicity through its receptor CX3CR1 under certain neuregenerative and inflammatory conditions (Garcia et al., 2013). CX3CL1/CX3CR1 signaling is regulated in the inflamed brain, and CX3CR1 is a key regulator of microglia activation contributing to adaptive immune responses (Garcia et al., 2013). Recent evidence demonstrates that in the uninjured brain microglia play a critical role in monitoring and maintaining synapses by directly interacting with synaptic elements (Wake et al., 2009; Tremblay et al., 2010; Paolicelli et al., 2011). Using CX3CR1 knock-out mice, Paolicelli et al. (2011) reported a transient reduction in microglial numbers paralleled by a delay in synaptic pruning with consequent excess of dendritic spines and a delayed maturation of neurons.
excitatory transmission in the developing brain. These results, together with recent data (Rogers et al., 2011; Hirokubo et al., 2012) suggest that CX3CL1/CX3CR1 is an important neuron-microglia signaling pathway necessary for synaptic pruning and maturation (Paolicelli et al., 2011). In light of the role of CX3CL1/CX3CR1 signaling in synaptic maturation together with its involvement in inflammatory events, it is possible that a macrophage-microglial response to kainic acid-induced neuronal degeneration drives the production of CX3C motif.

membrane-bound chemokine with a critical role in immune and neuronal signaling. CX3CL1/CX3CR1 signaling pathway necessary for synaptic pruning and maturation

Perspectives and concluding remarks

Available data indicate that the generation, migration, and functional integration of adult-born neurons can be modulated in the inflamed hippocampus, and this modulation appears to differ depending on the activation phenotype of microglia and the specific factors that they release. It is now clear that the range of impact of microglia on adult-born neurons is wider than previously thought, as demonstrated by the anti-neurogenic and pro-neurogenic effects of opposite pro-inflammatory and anti-inflammatory polarized microglia. Previous strategies aimed to maintain functional neurogenesis have mainly focused on decreasing microglia activation. While recent data highlight the potential neuroprotective role of microglia following brain injury, it appears that transforming their phenotype toward alternative activation states could optimize the production, migration, and integration of neurons. Future studies are needed to (i) characterize the phenotype of microglia and the microglia-released factors following brain injury, taking into account the nature of the injury and the timing following the injury; (ii) understand how specific microglia activation states and microglia-released factors impact functional neurogenesis, including migration and functional integration; (iii) identify ways to induce activation of microglia that would support functional neurogenesis in the injured brain. These steps are of critical importance to develop immune-mediated strategies to promote efficient adult-born neurons integration for the maintenance or improvement of hippocampus-dependent cognitive function.

Acknowledgments

We would like to thank Professor John R. Fike for the editorial help with this manuscript. This work was supported by the NIH R01 CA135216 (Susanna Rosi) and the Alzheimer’s Association IRG-11-202064 (Susanna Rosi).

References

Allman, J., and Dus, G. D. (1963). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 310–335. doi: 10.1002/cne.91012403

Andersson, P. B., Perry, V. H., and Gordon, S. (1991). The kinetics and morphological changes of the murine macrophage-microglial response to kainic acid-induced neuronal degeneration. J. Neurosci. 11, 272–284. doi: 10.1523/JNEUROSCI.11-02-0021

Annenkov, A. (2009). The insulin-like growth factor (IGF) receptor type 1 (IGFIR) as an essential component of the signalling network regulating neurogenesis. Nat. Neurosci. 40, 199–212. doi: 10.1038/nn.2304

Autopsies, K., Tewaide, D., Arellano, C., Luo, W., Greig, N. H., et al. (2012b). TNF-alpha protein synthesis inhibitor cytoxan is neuroprotective and reverses cognitive deficits induced by chronic neuroinflammation. J. Neuroinflamm. 9:209. doi: 10.1186/1742-4682-9-23

Belarbi, K., Burnouf, S., Fernandez-Gomez, F. J., Laurent, C., Leustal, S., Fagan, M., et al. (2011). Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease: the role of the hippocampus. J. Neurosci. 31, 2094–9. doi: 10.1523/JNEUROSCI.0782-09

Belarbi, K., Jopson, T., Arellano, C., Fike, J. R., and Rosi, S. (2013). CCR2 deficiency limits chronic neuroinflammation in aged APP/PS1 transgenic mice. Neurosci. Aging 34, 183–196. doi: 10.1016/j.nia.2012.06.005

Belarbi, K., Jopson, T., Arellano, C., Fike, J. R., and Rosi, S. (2012c). CXCR2 deficiency prevents the development of cognitive impairments induced by chronic neuroinflammation. J. Neurosci. 32, 1287–1299. doi: 10.1523/JNEUROSCI.1506-12

Berke, M., Cooper, C. M., Winkler, J. and Kahn, H. G. (2003). Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci. Lett. 331, 17–20. doi: 10.1016/S0304-3940(02)00669-9

Block, M. L., Zeeb, L., and Hong, J. S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev. Neurosci. 8, 557–68. doi: 10.1038/nrn218

Bonfanti, K., Wiedohl, K. H., Paul, C., Ermini, F., Stadler, M., Schnull, L., et al. (2001). Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am. J. Pathol. 158, 65–75. doi: 10.1016/S0002-9440(10)63944-5

Bouscary, D., Messaoudi, A., Lantin, G., Talpade, A. E., Schurr, M., et al. (2006). Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. J. Exp. Med. 203, 381–391. doi: 10.1084/jem.20051005

Bruel-Jungerman, E., Davis, S., Lampros, C., and Lavoie, S. (2006). Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J. Neurosci. 26, 5888–5897. doi: 10.1523/JNEUROSCI.3872-06

Butovsky, O., Talpade, A. E., Ben-Yakim, K., and Schwartz, M. (2003). Microglia-derived tumor necrosis factor-alpha exaggerates death of newborn hippocampal progenitor cells in vitro. J.

“incl-07-00145” — 2013/9/5 — 15:31 — page 5 — #5

Frontiers in Cellular Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 141 | 5

Belarbi and Rosi Neurogenesis in the inflamed hippocampus
Lavoie, L. J., Perry, V. H., Drp, P., and Gorden, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult and adult brains. Neuroscience 30, 151–170. doi: 10.1016/0306-4522(90)90229-W
Lahamah, S., Masson, L., Folliet, P., Jensen, E. F., Ratan, R., Rosenberg, P. A., et al. (2005). Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. U.S.A. 102, 8514–8519. doi: 10.1073/pnas.0407100102
Lin, L., Sebok, K., Mammen, R. O., and Sharpe, R. R. (1998). Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbil. J. Neurosci. 18, 7768–7778.
Lin, Z., Fan, Y., Wenn, S. J., Neu- marm, M., Hu, D., Zhou, L., et al. (2007). Chronic treatment with minocycline promotes adult neurogenesis and reduces cognitive impairment after focal cerebral ischemia Stroke 38, 146–152. doi: 10.1161/01.STR.0000231971.64110.9D
Londono, A., Cohes, M., and Schwab, M. (2013). Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front. Cell. Neurosci. 7:54. doi: 10.3389/fncel.2013.00038
Merklin, E. A., and Gage, F. H. (1993). Adult neurogenesis in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J. Comp. Neurol. 332, 149–160. doi: 10.1002/cne.9033201016
Mathieu, F., Pierrat, A., and Pinton, P. (2013). Chronic expression of CX3C chemokine in the hippocampus enhances adult neurogenesis. Nau- ron 79, 267–274. doi: 10.1016/j.neuron.2013.04.027
Matsuoka, Y., Picciano, M., Malester, B., Lafrancois, J., Zehr, C., Patino, A. P., et al. (2013). Development and function of adult dentate granule cells mediates pattern separation, whereas old granule cells facilitate pattern completion. J. Cell. 149, 186–201. doi: 10.1016/j.cell.2012.07.005
Nakatomi, H., Kitani, T., Okabe, S., Yamamoto, S., Hatao, O., Kowashahi, N., et al. (2002). Regulation of hippocampal pyramidal neuron survival after ischemic brain injury by recruitment of endogenous neurotrophic factors. J. Cell. 110, 424–441. doi: 10.1002/jcb.20084102
Neumann, J., Ganten, M., Gagez, H. O., Ulbrich, O., Reyman, K. F., and Dirks, K. (2000). Microglia provide neuroprotection after ischemia. FEBS Lett. 505, 71–76. doi: 10.1016/S0014-5793(00)01355-1
Neumann, A., Katchoff, E., and Helmchen, F. (2005). Bmping microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318. doi: 10.1126/science.1110847
Pardo, K. C., Bohos, G., Papagi, F., Magi, L., Scann, M., Pan- zelli, P., et al. (2013). Syringeal pruning by microglia is necessary for normal brain development. Science 335, 146–148. doi: 10.1126/science.1212529
Parent, J. M., Elliott, R. C., Pleasure, S. J., Barbaro, N. M., and Lowenstein, D. H. (2006). Aberrant seizure-induced neurogenesis in experimental tempo- ral lobe epilepsy. Ann. Neurol. 59, 81–91. doi: 10.1002/ana.20389
Parent, J. M., Yu, T. W., Leveson, R. T., Geschwind, D. H., Howieson, R. S., and Lowenstein, D. H. (1997). Dementia granule cell neurogenesis is increased by seizures and contributes to abnor- mal network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738.
Pax, C. S., Stancia, A. A., Wu, J., Sutterhause, B., Zhao, Z., Caban- bat, R., et al. (2013). Late enor- duced inflammation induces cognitive dysfunction following traumatic brain injury. Proc. Natl. Acad. Sci. U.S.A. 55, 20392–20396. doi: 10.1036/01597-01012.007-0095-1
Porta, C., Rimmoli, M., Raas, G., Bys, E., Ghion, P., Zen, D., and Zeppet, S. (2009). Tolerance and M3 (alter- native macrophage polarisation) are related processes orchestrated by p21 nuclear factor kappaB. Proc. Natl. Acad. Sci. U.S.A. 96, 1007–1012. doi: 10.1073/pnas.0809036096
Prinz, M., and Priller, J. (2010). Tick- et to the brain: role of CXCR2 and CXCL1 in emphysema cell entry in the CNS. J. Neuroimmunol. 224, 80–84. doi: 10.1016/j.jneuroim.2010.05.015
Qiu, L., Liu, Y., Hong, J. S., and Cone, E. T. (2013). NADPH oxidase and aging drive microglial activation, oxidative stress, and dendritic neurogene- generation following systemic LPS administration. J. Cell. 40, 875–886. doi: 10.1016/j.jcb.2013.08.005
Rabin, J., Fan, F., Matsumoto, Y., Liu, Z., Weimann, P. R., Fili, R. J., et al. (2004a). Irradiation attenuates neuro- genesis and exacerbates subcortical infarcted deficits. Ann. Neurol. 55, 383–389. doi: 10.1002/ana.10535
Rabin, J., Rollo, B., Lefrout, A., Merhard, D., Cuffy, J., Minami, M.,
S., et al. (2004b). Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat. Res. 162, 59–67. doi: 10.1667/RR199.2006

Ramirez-Amaya, V., Marrone, A., Fike, J. R. (2008). Cra-1 expression. Neurobiol. Dis. 32, 544–554. doi: 10.1016/j.nbd.2008.02.084

Rase, S., Andreis-Mach, M., Fishman, K., Obenaus, A., et al. (2005). CX3CR1 deficiency leads to impairment of hippocampal neurogenesis after cerebral irradiation alters the behavioral and the plasticity-related immediate-early gene Arc. Proc. Natl. Acad. Sci. U.S.A. 102, 11672–11677. doi: 10.1073/pnas.0501277102

Rase, S., Fishman, K., Obenaus, A., et al. (2002). Amyloidogenic pattern of behaviorally induced microglia with amyloid deposits in brains of APP23 transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 99, 12139–12144. doi: 10.1073/pnas.172130599

Sasaki, A., Shibata, H., Okada, M., Haga, S., et al. (2004). Intracerebral injection of HIV-1 Tat protein inhibits IL-1beta and tumor necrosis factor-alpha production in the brain. Brain Res. 999, 234–245. doi: 10.1016/j.brainres.2003.12.029

Sawers, M., Sluyter, C., Jander, T., Fleischhauer, K., et al. (2009). Resting microglia directly monitor the functional state of neurons in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 5124–5136. doi: 10.1523/JNEUROSCI.2546-08.2009

Schnell, M., Kowall, N. W., Gisler, R., Darsalia, V., Tanega, J., et al. (2005). Long-term accumulation of microglia with proinflammatory phenotype concomitant with persistent neurogenesis in adult substantia nigra pars lateralis. Proc. Natl. Acad. Sci. U.S.A. 102, 1154–1159. doi: 10.1073/pnas.0408162102

Schilling, M., Röske, K., Obenaus, A., et al. (2008). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nat. Neuronal. 42, 184–187. doi: 10.1038/nrn2330

Selkoe, D. J. (2007). Anatomical and clinical integration of newly generated dentate granule neurons into functional neural networks. Neuroscience 149, 1239–1252. doi: 10.1016/j.neuroscience.2007.08.024

Selman, W., Sibley, L. D., Wyss-Coray, T., and Mucke, L. (2009). Resting microglia directly monitor the functional state of neurons in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 441, 358–367. doi: 10.1008/j.1528-1167.2008.01490.x

Sekine, T., Namba, T., Mochizuki, H., et al. (2002). Amyloid cored microglial response to a focal cerebral ischemia: an investigation by green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol. 176, 377–394. doi: 10.1006/exnr.2001.6766

Shichita, T., Nishiyama, H., and Onodera, M. (2007). Clustering, migration, and neurite formation of neural precursor cells in the ischemic ventricular zone after stroke. Glia. 55, 337–351. doi: 10.1002/glia.20810

Shimizu, Y., Higashida, M., Zhang, B., Huang, S. M., Iwata, N., Saida, T., et al. (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 357–370. doi: 10.1016/j.neuron.2007.01.010

Sibley, L. D., and Mucke, L. (2004). Inflammatory immune reaction in response to neurotoxic implications for the neuropathology associated with epilepsy. Nat. Rev. Neurol. 1, 342–353. doi: 10.1038/nrneurol.2007.13

Sibley, L. D., and Mucke, L. (2005). Long-term accumulation of microglia with proinflammatory phenotype concomitant with persistent neurogenesis in adult substantia nigra pars lateralis. Proc. Natl. Acad. Sci. U.S.A. 102, 154, 1673–1684. doi: 10.1073/pnas.0408162102

Sohr, J., Lidtke, P., and Ramboar, M. (2012). Modulation of adult neural stem cells in the inflamed hippocampus. Front. Cell. Neurosci. 6:145. doi: 10.3389/fncel.2012.00145

Sugiyama, A., Kitani, S., Etani, K., et al. (2002). Reduction of microglial activation and determination of human tauopathies and neuronal dystrophic neurites. Acta Neuropathol. 96, 441–451. doi: 10.1007/s00401-001-0542-z

Sun, D., Mengin, M. J., Zhou, Z., Harvey, H. B., Bullock, M. R., and Goldie, R. J. (2007). Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp. Neurol. 204, 266–272. doi: 10.1016/j.expneurol.2006.11.015

Tada, E., Parent, J. M., Lowenstein, D. H., and Fike, J. R. (2006). X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 99, 33–41. doi: 10.1016/j.neuroscience.2005.01.021

Thorst, P., Heldmann, U., Gaus, W., Kägi, R., Dardas, V., Sanata, J., et al. (2005). Long-term accumulation of microglia with proinflammatory phenotype concomitant with persistent neurogenesis in adult substantia nigra pars lateralis. Proc. Natl. Acad. Sci. U.S.A. 102, 11673–11678. doi: 10.1073/pnas.0506205102

Tremblay, M. E., Lowery, R. L., Lombardi, G., Robak, C. E., Gage, F. H., et al. (2006). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907. doi: 10.1038/nn1756

Tran, P. R., Banihashemi, T., Ren, D., Conta, A., and Miller, R. J. (2007). Cholinergic receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J. Comp. Neurol. 500, 1007–1013. doi: 10.1002/jcn.21229

Turecki, G., Bontempi, B., Beaujot, P., and Rampon, C. (2007). Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc. Natl. Acad. Sci. U.S.A. 104, 5193–5198. doi: 10.1073/pnas.0607154104

Uchiyama, Y., Naito, N., Byun, J. Y., Oh, S. H., et al. (2011). CX3CR1 in the adult dentate gyrus is required for adult neurogenesis. Nat. Neurosci. 14, 22, 321–334. doi: 10.1038/nn.2767

Venema, A., Barun, J., and Debler, E. (2009). Resting microglia directly monitor the functional state of neurons in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 5124–5136. doi: 10.1523/JNEUROSCI.2546-08.2009

Vonlanthen, T., Strohmaier, K., Dardas, V., et al. (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 357–370. doi: 10.1016/j.neuron.2007.01.010