Streptococcal pneumonia-associated hemolytic uremic syndrome treated by T-antibody-negative plasma exchange in children: Two case reports

Xiu-Li Wang, Yue Du, Cheng-Guang Zhao, Yu-Bin Wu, Ni Yang, Liang Pei, Li-Jie Wang, Qiu-Shi Wang

Abstract

BACKGROUND
The occurrence of Streptococcus pneumoniae-associated hemolytic uremic syndrome (SP-HUS) is increasing. Thomsen-Friedenreich antigen activation is highly involved in the pathogenesis of SP-HUS, and T-antibody-negative plasma exchange (PE) may be effective in the treatment of severe cases of SP-HUS.

CASE SUMMARY
We retrospectively reviewed two pediatric patients with SP-HUS. Both clinical features and laboratory examination results of the children were described. T-antibody-negative PE was performed in both cases. Both children made a full recovery after repeated PE and remained well at a 2 year follow-up.

CONCLUSION
Streptococcal pneumonia continues to be an uncommon but important cause of HUS. The successful treatment of the presented cases suggests that T-antibody-negative PE may benefit patients with SP-HUS.

Key Words: Streptococcus pneumoniae; Hemolytic uremic syndrome; Children; Plasma exchange; Thomsen-Friedenreich antigen exposure; Case report
Atypical hemolytic uremic syndrome (HUS) associated with *Streptococcus pneumoniae* (SP-HUS) was first reported by Klein *et al.* [1] in 1977 and Novak *et al.* [2] in 1983. SP-HUS is one of the most commonly seen types of atypical HUS [3-6]. In recent years, an increase in the incidence of reported SP-HUS cases has been noted, which may be due to increased awareness of the syndrome [7].

Thomsen-Friedenreich antigens (T-antigens) of red blood cells (RBCs), platelets and glomerular endothelial cells are exposed through the action of *Streptococcus pneumoniae* neuraminidase, which triggers an antigen–antibody reaction in the plasma, leading to a cascade of thrombotic microangiopathy [7]. T-antibody is commonly seen in the plasma of blood donors. As such, the condition of patients with SP-HUS will be aggravated when treated with plasma exchange (PE) using plasma that contains T-antibody. This and other difficulties make treatment of SP-HUS challenging and contribute to the poor prognosis of SP-HUS patients. T-antibody-negative PE may be valuable for the treatment of SP-HUS based on the removal of naturally occurring antibodies, which reduces activation of T-antigen and the level of neuraminidase [8].

Herein, we present the cases of two pediatric patients with SP-HUS who were successfully treated by T-antibody-negative PE. Notably, the two cases were not linked epidemiologically.

INTRODUCTION

CASE PRESENTATION

Chief complaints

Case 1 presented with fever and cough persisting for 4 d and was admitted to our hospital in April 2019. Case 2 was admitted to our hospital due to fever and cough for 7 d and anuria and feet edema for 2 d in May 2019. They were both 3-year-old boys from Shenyang and had no contact history.

History of present illness

Case 1: A 3-year-old boy presented with fever and cough persisting for 4 d and was admitted to the hospital. His peak temperature before hospitalization was 40.4 °C. He showed no response to oral azithromycin therapy, and chest X-ray showed large dense shadows in the lower lobe of the right lung, an unclear right diaphragm and costal diaphragm angle.

Case 2: A 3-year-old boy was admitted to our hospital due to fever, cough, anuria and feet edema. The fever lasted for 7 d, and the peak temperature was 39 °C with no chills or convulsions. He became anuric for 2 d. Chest X-ray indicated that the patient had bilateral pneumonia and left inferior lobe consolidation. Despite treatment with ceftriaxone, tazobartan sodium, azithromycin and intravenous liquids, symptoms persisted.

History of past illness

The two cases were both healthy in the past.

Core Tip: We present the cases of two pediatric patients with atypical hemolytic uremic syndrome associated with *Streptococcus pneumoniae*-hemolytic uremic syndrome that was successfully treated by T-antibody-negative plasma exchange. The patients were followed up for 2 years with normalization of all laboratory parameters, normal blood pressure and normal renal function.
Personal and family history
Neither of the two cases were vaccinated against pneumococcal. The two cases' parents were in good health and had no family history of similar diseases.

Physical examination
Case 1: Physical examination at admission revealed a pulse rate of 120/min, a respiratory rate of 40/min, a blood pressure of 102/58 mmHg and a temperature of 38.5 °C. The liver and spleen were not palpable. The skin showed no jaundice or purpura.

Case 2: Physical examination at admission revealed a pulse rate of 96/min, a respiratory rate of 35/min, a blood pressure of 96/50 mmHg and a temperature of 36.7 °C. The liver and spleen were not palpable. The skin appeared pale but showed no purpura or jaundice.

Laboratory examinations
Case 1: Laboratory examinations revealed a hemoglobin value of 138 g/L, a white blood cell count of $2.65 \times 10^9/L$, a platelet count of $349 \times 10^9/L$, a procalcitonin level of 74 ng/mL (< 0.05 ng/mL) and a C-reactive protein concentration of 123 mg/L (0-8 mg/L). Arterial blood gas analysis showed hypoxemia (partial pressure of oxygen 36 mmHg). Two days after admission, the patient developed thrombocytopenia as well as liver and renal dysfunction. His serum creatinine value was 98 μmol/L (22-44 μmol/L), and urea nitrogen concentration was 12.2 mmol/L. Microangiopathic hemolytic anemia and thrombocytopenia were suspected based on a platelet count of $14 \times 10^9/L$, unconjugated bilirubin level of 28 μmol/L (3.4-11.9 μmol/L) and lactic dehydrogenase level of 1021 U/L (80-285 U/L). The direct antiglobulin test demonstrated that the patient was weakly positive for anti-C3d and anti-immunoglobulin G. Other blood chemistry results included a serum C3 concentration of 0.388 g/L (0.74-1.4 g/L) and a serum ferritin concentration of 1532 μg/mL (11-336.2 μg/mL). Urinalysis showed albuminuria and hematuria. Tests for polyagglutinability were performed by mixing the patient’s RBCs with serum from an AB type adult blood donor (Table 1). Fragmented erythrocytes were found in a peripheral blood smear. The pleural fluid analysis revealed a white blood cell of $7500 \times 10^6/L$, RBC of $6000 \times 10^6/L$, neutrophil percentage of 75%, monocyte percentage of 40% and Rivalta test positive findings. Culture of the pleural effusion revealed the presence of Streptococcus pneumoniae.

Case 2: Initial laboratory examinations revealed a hemoglobin value of 56 g/L, a white blood cell count of $13.27 \times 10^9/L$, a platelet count of $42 \times 10^9/L$, a serum creatinine concentration of 403 μmol/L and a C-reactive protein level of 150 mg/L. After antibiotic treatment, the C-reactive protein level dropped to 34.9 mg/L. Blood chemistry values included a serum C3 level of 0.492 g/L (0.74-1.4 g/L) and a serum ferritin concentration of 1532 ng/mL (11-336.2 ng/mL). Urinalysis showed albuminuria and hematuria. Tests for polyagglutinability were performed by mixing the patient’s RBCs with serum from an AB type adult blood donor. Fragmented erythrocytes were found in a peripheral blood smear. The pleural fluid analysis revealed a white blood cell of $7500 \times 10^6/L$, RBC of $6000 \times 10^6/L$, neutrophil percentage of 75%, monocyte percentage of 40% and Rivalta test positive findings. Culture of the pleural effusion revealed the presence of Streptococcus pneumoniae. T-antigen exposure was confirmed by a polyagglutinability test. Fragmented erythrocytes were found in a peripheral blood smear.

Imaging examinations
Case 1: Chest computed tomography scanning revealed lung inflammation and pleural effusion.

Case 2: Chest computed tomography scanning showed the presence of bilateral pneumonia with pleural effusion and multiple air sacs in the left lung.

FINAL DIAGNOSIS
The two cases were diagnosed with SP-HUS.
Table 1 Assessment of erythrocyte T-antigen exposure in case 1

Day of hospitalization	Adult AB type plasma	Umbilical cord AB type plasma	Plasma polycogulant reaction	T-antigen exposure
3	4+	Negative	Negative	Yes
4	4+	Negative	Negative	Yes
5	4+	Negative	Negative	Yes
6	4+	Negative	Negative	Yes
10	4+	Negative	Negative	Yes
15	3+	Negative	Weak positive	Suspicious
18	±	Negative	Positive	No
19	Negative	Negative	Positive	No

TREATMENT

Case 1: The patient was treated with T-antibody-negative PE (COBE Spectra, Gambro BCT, Lakewood, CO, United States) four times on days 3, 4, 5 and 6 after admission. On day 6, the patient received a transfusion of a washed erythrocyte unit (100 mL). No adverse effect was observed during PE. The patient’s renal function recovered slowly after the treatment. On day 9, the platelet count had increased from the lowest value of $14 \times 10^9/L$ to $254 \times 10^9/L$, while the serum creatinine concentration decreased from the highest values of $143 \mu mol/L$ to $28 \mu mol/L$ (Table 2).

Case 2: The patient was then treated with T-antibody-negative PE (COBE Spectra, Gambro BCT, Lakewood, CO, United States) two times. The patient also received washed erythrocyte transfusion and albumin infusion therapy. Continuous renal replacement therapy was also performed for 7 d. After the treatment, the platelet count increased from the lowest value of $42 \times 10^9/L$ to $194 \times 10^9/L$ within 4 d, while his serum creatinine level decreased from the highest concentration of $403 \mu mol/L$ to only $29 \mu mol/L$ (Table 3).

The method for obtaining T-antibody-negative plasma was as follows: The Brine medium micro column method was used. The erythrocyte brine medium of patients was washed three times and diluted in 1% enchylema. Then 50 μL of donor plasma and 25 μL of 1% enchylema was added to the neutral micro column for incubation for 10 min at room temperature. After that, the sample was centrifuged for 15 min at 1000 xg. The patient’s own RBCs were prepared as a negative control. The reaction was considered positive if the cells gathered above the micro column or negative if in the bottom. Plasma with a negative reaction was suitable for use in T-antibody-negative PE.

OUTCOME AND FOLLOW-UP

The two cases were both followed up for 2 years with normalization of all laboratory parameters, normal blood pressure and normal renal function.

DISCUSSION

Among children with HUS, approximately 5% have SP-HUS, with 38%-43% of atypical HUS cases being SP-HUS[3,9]. Notably, the occurrence of SP-HUS was reported to be higher than that of typical HUS in Taiwan[10]. Early reports from the late 1980s demonstrated a mortality rate of approximately 50%[11]. An estimated 10% of patients diagnosed with SP-HUS are likely to develop end-stage renal disease, whereas 16% will experience chronic renal disease[12].

Pneumonia with empyema is seen in approximately 67% of SP-HUS patients[13]. According to a PCR analysis, Blaschke et al[14] demonstrated that about 71% of germiculture negative empyema cases were proven to be caused by *Streptococcus pneumoniae*. The two cases reported here were diagnosed with lobar pneumonia with pleural effusion, which is consistent with previous reports in China[15]. The possibility of SP-HUS should be considered if a patient diagnosed with lobar pneumonia with...
pleural effusion develops signs of HUS, even without identified evidence of bacterial infection.

All types of *Streptococcus pneumoniae* can express neuraminidase, but only a small percentage of infected cases will develop HUS. Several hypotheses have attempted to explain this observation. Animal experiments confirmed that *Streptococcus pneumoniae* from biofilm formation is more likely to release neuraminidase than free floating bacteria,[16] which may explain why SP-HUS is more often caused by pneumonia with empyema other than bacteremia.[13] Additionally, different serotypes of *Streptococcus pneumoniae* may have different effects on the amount of neuraminidase production. Notably, 19A was reported to be the most common serotype associated with SP-HUS.[6] Neuraminidase can destroy the binding site of factor H, and *Streptococcus pneumoniae* surface protein C may have a direct role in inhibiting the activity of factor H.[17]

The RBCs of our two cases showed strong positive reactions with adult AB type plasma but no reactions with umbilical AB type plasma. Thus, T-antigen exposure was identified in both cases. Once the patients had recovered from SP-HUS, no reactions occurred with either adult or umbilical AB type plasma, and the polycoagulant reaction returned a positive result with the same type of adult plasma (Table 1).

The plasma used in the cases was confirmed to have no reactions with T-antibody, other possible pathogenic factors like neuraminidase, galectin-3,[18] that might damage the RBCs, platelets and glomerular endothelial cells were all removed by T-antibody negative PE. The presence of
complement factor H in the donor's plasma may be beneficial too.

Anti-infection and supportive treatments are the cornerstones of SP-HUS treatment. Vancomycin with the broad-spectrum cephalosporin is the suggested strategy[19]. It is generally believed that plasma transfusion should be avoided to prevent the possibility of T-antigen exposure to T-antibody in the plasma. Washed RBCs are recommended for clearing any remaining T-antibody in the plasma. However, such therapy has not been able to stop the deterioration of disease in some critical cases. Petras et al[20] treated one SP-HUS patient by PE with 5% albumin replacement with a good outcome. T-antibody, neuraminidase and other possible pathogenic factors were removed by T-antibody-negative PE in the present cases, which was theoretically for etiological treatment. The two cases in our report had a favorable prognosis compared with those in the previous studies[12].

CONCLUSION

T-antibody-negative PE was used to treat the two patients in our report. The platelet counts and serum creatinine levels of the two patients returned to normal in a short time, and their condition remained stable during the follow-up. Thus, T-antibody-negative PE may be an effective method for treating SP-HUS.

REFERENCES

1. Klein PJ, Bulla M, Newman RA, Müller P, Uhlenbruck G, Schaefer HE, Krüger G, Fisher R. Thomsen-Friedenreich antigen in haemolytic-uraemic syndrome. Lancet 1977; 2: 1024-1025 [PMID: 722915 DOI: 10.1016/s0140-6736(77)92915-4]
2. Novak RW, Martin CR, Orsini EN. Hemolytic-uremic syndrome and T-antigen: exposure by neuraminidase-producing pneumococci: an emerging problem? Pediatr Pathol 1983; 1: 409-413 [PMID: 6687290 DOI: 10.3109/15513818309025872]
3. Constantinescu AR, Bitzan M, Weiss LS, Christen E, Kaplan BS, Cnaan A, Trachtman H. Non-enteroheptic hemolytic uremic syndrome: causes and short-term course. Am J Kidney Dis 2004; 43: 976-982 [PMID: 15168377 DOI: 10.1053/j.ajkd.2004.02.010]
4. Copelovitch L, Kaplan BS. Streptococcus pneumoniae-associated hemolytic uremic syndrome. Pediatr Nephrol 2008; 23: 1951-1956 [PMID: 17564729 DOI: 10.1007/s00467-007-0518-y]
5. Schifferli A, von Vigier RO, Fontana M, Sparta G, Schmid H, Bianchetti MG, Rudin C, Swiss Pediatric Surveillance Unit. Hemolytic-uremic syndrome in Switzerland: a nationwide surveillance 1997-2003. Eur J Pediatr 2010; 169: 591-598 [PMID: 19830454 DOI: 10.1007/s00431-009-1079-9]
6. Banerjee R, Hersh AL, Newland J, Beekmann SE, Polgreen PM, Bender J, Shaw J, Copelovitch L, Kaplan BS, Shah SS. Emerging Infections Network Hemolytic-Uremic Syndrome Study Group. Streptococcus pneumoniae-associated hemolytic uremic syndrome among children in North America. Pediatr Infect Dis J 2011; 30: 736-739 [PMID: 21772230 DOI: 10.1097/INF.0b013e3182191c58]
7. Huang DT, Chi H, Lee HC, Chiu NC, Huang FY. T-antigen activation for prediction of pneumococcus-induced hemolytic uremic syndrome and hemolytic anemia. Pediatr Infect Dis J 2006; 25: 608-610 [PMID: 16804436 DOI: 10.1097/01.inf.0000223494.83542.ad]
8. Myers KA, Marrie TJ. Thrombotic microangiopathy associated with Streptococcus pneumoniae bacteremia: case report and review. Clin Infect Dis 1993; 17: 1037-1040 [PMID: 8110927 DOI: 10.1093/clinids/17.6.1037]
9. Mizusawa Y, Pitcher LA, Burke JR, Falk MC, Mizushima W. Survey of haemolytic-uraemic syndrome in Queensland 1979-1995. Med J Aust 1996; 165: 188-191 [PMID: 8773646 DOI: 10.5694/j.1326-5377.1996.tb124922.x]
10. Lee CS, Chen MJ, Chiou YH, Shen CF, Wu CY, Chiou YY. Invasive pneumococcal pneumonia is the major cause of paediatric haemolytic-uraemic syndrome in Taiwan. Nephrology (Carlton) 2012; 17: 48-52 [PMID: 21777347 DOI: 10.1111/j.1440-1797.2011.01500.x]
11. McGraw ME, Lendon M, Stevens RF, Postlethwaite RJ, Taylor CM. Haemolytic ureamic syndrome and the Thomsen-Friedenreich antigen. Pediatr Nephrol 1989; 3: 135-139 [PMID: 2701864 DOI: 10.1007/BF00852894]
12. Spinale JM, Ruebner RL, Kaplan BS, Copelovitch L. Update on Streptococcus pneumoniae associated hemolytic uremic syndrome. Curr Opin Pediatr 2013; 25: 203-208 [PMID: 23481474 DOI: 10.1097/MOP.0b013e32835d7f2c]
13. Brandt J, Wong C, Mihm S, Roberts J, Smith J, Brewer E, Thiagarajan R, Wardady B. Invasive pneumococcal disease and hemolytic uremic syndrome. Pediatrics 2002; 110: 371-376 [PMID: 12165593 DOI: 10.1542/peds.110.2.371]
14. Blaschke AJ, Heyrend C, Byington CL, Obando I, Vazquez-Barba I, Doby EH, Korgenski EK, Sheng X, Poritz MA, Daly JA, Mason EO, Pavia AT, Ampofo K. Molecular analysis improves pathogen identification and epidemiologic study of pediatric parapneumonic empyema. Pediatr Infect Dis J 2011; 30: 289-294 [PMID: 21057372 DOI: 10.1097/INF.0b013e3182002d14]
Wang XL et al. SP-HUS treated by T-antibody-negative PE

15 Meng SS, Yang Q, Han GQ, Yang JH, Zhang HL, Ye LP, Luo YC, Li CC. [Clinical analysis of hemolytic-uremic syndrome associated with Streptococcus pneumoniae serotype 3 infection in a child]. Zhonghua Er Ke Za Zhi 2013; 51: 535-539 [PMID: 24267137 DOI: 10.3760/cma.j.issn.0578-1310.2013.07.013]

16 Parker D, Soong G, Planet P, Brower J, Ratner AJ, Prince A. The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 2009; 77: 3722-3730 [PMID: 19564377 DOI: 10.1128/IAI.00228-09]

17 Ault BH. Factor H and the pathogenesis of renal diseases. Pediatr Nephrol 2000; 14: 1045-1053 [PMID: 10975323 DOI: 10.1007/s004670050069]

18 Burin des Roziers N, Chadebech P, Bodivit G, Guinchard E, Bruneel A, Dupré T, Chevret L, Jugie M, Gallon P, Bierling P, Noizat-Pirenne F. Red blood cell Thomsen-Friedenreich antigen expression and galectin-3 plasma concentrations in Streptococcus pneumoniae-associated hemolytic uremic syndrome and hemolytic anemia. Transfusion 2015; 55: 1563-1571 [PMID: 25556575 DOI: 10.1111/trf.12981]

19 Therapy for children with invasive pneumococcal infections. American Academy of Pediatrics Committee on Infectious Diseases. Pediatrics 1997; 99: 289-299 [PMID: 9024464 DOI: 10.1542/peds.99.2.289]

20 Petras ML, Dunbar NM, Filiano JJ, Braga MS, Chobanian MC, Szczepiorkowski ZM. Therapeutic plasma exchange in Streptococcus pneumoniae-associated hemolytic uremic syndrome: a case report. J Clin Apher 2012; 27: 212-214 [PMID: 22307916 DOI: 10.1002/jca.21208]
