Efficacy and safety of dual vs single renin–angiotensin–aldosterone system blockade in chronic kidney disease

An updated meta-analysis of randomized controlled trials

Mingming Zhao, PhDa, Hua Qu, PhDb,c,d, Rumeng Wang, MMa, Yi Yu, MMa, Meiying Chang, PhDa, Sijia Ma, MMa, Hanwen Zhanga, Yuejun Wang, MMb, Yu Zhang, PhDa,e

Abstract

Background: To lower albuminuria and to achieve blood pressure (BP) goals, dual renin–angiotensin–aldosterone system (RAAS) inhibitors are sometimes used in clinical practice for the treatment of CKD. However, the efficacy and safety of dual RAAS blockade therapy remains controversial.

Methods: PubMed, EMBASE, and Cochrane Library were searched, and random effects model was used to calculate the effect sizes of eligible studies. Potential sources of heterogeneity were detected by meta-regression and subgroup analysis.

Results: The present meta-analysis of 72 randomized controlled trials with 10,296 patients demonstrated that dual RAAS blockade therapy was superior to monotherapy in reducing the urine albumin excretion, urine protein excretion, and BP. These beneficial effects were related to the decrease of glomerular filtration rate, the increase of serum potassium level, and higher rates of hyperkalemia and hypotension. Meanwhile, these effects did not lead to improvements in short-term or long-term outcomes, including doubling of serum creatinine, acute kidney injury, end-stage renal disease, mortality, and hospitalization. Compared with the single therapy, angiotensin-converting enzyme inhibitor (ACEI) in combination with angiotensin-receptor blocker (ARB) was a better dual therapy than ACEI or ARB in combination with renin inhibitor or aldosterone receptor antagonist in decreasing urine albumin excretion, urine protein excretion and BP, and the combination was not associated with a lower glomerular filtration rate.

Conclusion: Compared with the single therapy, ACEI in combination with ARB was a better dual therapy than ACEI or ARB in combination with renin inhibitor or aldosterone receptor antagonist. Although ACEI in combination with ARB was associated with higher incidences of hyperkalemia and hypotension, careful individualized management and potassium binders may further expand its application (PROSPERO number CRD42020179398).

Abbreviations: ACEI = angiotensin-converting enzyme inhibitor, AKI = acute kidney injury, ARA = aldosterone receptor antagonist, ARB = angiotensin-receptor blocker, BP = blood pressure, CI = confidence interval, CKD = chronic kidney disease, DBP = diastolic blood pressure, ESRD = end-stage renal disease, GFR = glomerular filtration rate, RAAS = renin–angiotensin–aldosterone system, RCTs = randomized controlled trials, RI = renin inhibitor, RR = relative risk, SBP = systolic blood pressure, SMD = standard mean difference, WMD = weighted mean difference.

Keywords: blood pressure, chronic kidney disease, dual therapy, glomerular filtration rate, hyperkalemia, hypotension, proteinuria, renin–angiotensin–aldosterone system blockade
1. Introduction

Chronic kidney disease (CKD), defined as decreased kidney function shown by glomerular filtration rate (GFR) < 60 mL/min/1.73 m², or markers of kidney damage, or both, of at least 3 months duration, regardless of the underlying cause, is an increasing public health issue due to its high prevalence and increased risk of end-stage renal disease (ESRD), cardiovascular disease, and premature death. Prevalence of CKD is estimated to be 8% to 16% worldwide, 78% of which are concentrated in middle- and low-income countries. Hypertension usually coexists with CKD, and its prevalence increases with the decline of renal function. The complex interaction between hypertension and CKD increases the risk of adverse cardiovascular outcomes.

CKD can be detected by routine laboratory tests. The treatment proposed in the guidelines can prevent and slow down the progress of CKD, reduce the complications of reduced GFR and the risk of cardiovascular diseases, and improve the rate of survival and quality of life. For the CKD patients with proteinuria, the renin-angiotensin-aldosterone system (RAAS) has been an important therapeutic target. According to recent guidelines, angiotensin-converting enzyme inhibitor (ACEI) or angiotensin-receptor blocker (ARB) should be the drugs of first choice. A previous meta-analysis demonstrated that the combined RAAS blockade therapy was superior to single RAAS blocker in reducing proteinuria. However, all recent guidelines against the use of dual RAAS blockade therapy based on less benefits for most patients and more adverse events, including renal dysfunction, hyperkalemia, and hypotension. Among the latest published randomized controlled trials (RCTs), the efficacy and safety of dual RAAS blockade therapy remains controversial. Therefore, we conducted the meta-analysis of RCTs to reassess the efficacy and safety of dual RAAS blockade therapy in patients with CKD.

2. Methods

2.1. Data sources and searches

We searched PubMed, EMBASE, and Cochrane Library from inception to March 2020 to retrieve relevant articles. Two reviewers (Mingming Zhao and Rumeng Wang) screened the titles and abstracts and retrieved full-text articles respectively. The disagreements were resolved by consulting a third investigator (Yu Zhang). Medical subject headings terms and free-text terms used in each database were as follows: “diabetic nephropathy,” “hypertensive nephropathy,” “glomerular disease,” “proteinuria,” “renal insufficiency,” “kidney disease,” “chronic renal failure,” “chronic kidney disease,” “drug therapy, combination,” “renin–angiotensin system,” “angiotensin-converting enzyme inhibitor,” “angiotensin-receptor blocker,” “aldosterone blockade,” “selective aldosterone blockade,” “renin inhibitor,” “direct renin inhibitor.” (Item S1, Supplementary Digital Content, http://links.lww.com/MD2/A262)

2.2. Study selection

We included studies if they met the following inclusion criteria:

(1) patients with CKD;
(2) the intervention group received dual RAAS blockade (dual therapy), and the control group received single RAAS blockade (single therapy);
(3) the outcomes involved albuminuria, proteinuria, GFR, serum potassium, blood pressure (BP), or any adverse effect;
(4) randomized, controlled, crossover or parallel trials;
(5) the articles were published in English language.

2.3. Data extraction and quality assessment

Two reviewers (Mingming Zhao and Rumeng Wang) extracted data independently and resolved disagreements by consulting with a third investigator (Yu Zhang). The data extracted from each of the published studies included in our review were as follows: the first author’s name, publication year, study design, intervention, sample size, percentage of men, mean age of subjects, duration of intervention, GFR, urine albumin excretion or urine protein excretion, BP, including systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure, serum potassium, etc. The methodological quality of included studies was assessed based on the Cochrane Handbook, including random sequence generation, assignment concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other biases. Marked 1 point when the risk was low.

2.4. Data synthesis and analysis

The random effects model was used to calculate the effect sizes of eligible studies. For continuous outcomes, we calculated a weighted mean difference (WMD) or standard mean difference (SMD) with a 95% confidence interval (CI). For dichotomous outcomes, we estimated the relative risk (RR) with a 95% CI.

Heterogeneity of included studies was described with the I² index and the chi-square test. I² ≥ 50% and P < .05 indicated medium-to-high heterogeneity. Meta-regression and subgroup analysis were used to detect the potential sources of heterogeneity. Sensitivity analysis was performed to assess the robustness of the pooled results. Begg’s test and Egger’s test were used to evaluate the publication bias. Statistical analysis was performed by Stata (version 15.1). The methodological quality of eligible studies was performed by RevMan5.3. We have registered the protocol for the present systematic review and meta-analysis, and the registered number in PROSPERO is CRD42020179398.

3. Results

3.1. Characteristics and quality of the studies

A total of 25,089 studies (18,664 from PubMed, 4,047 from EMBASE, and 2,378 from the Cochrane Library) were identified, of which 72 studies met the inclusion criteria (Fig. 1).

The characteristics of the individual trials are displayed in Table 1. Seventy-two studies with 10,296 patients consisted of 22 crossover and 50 parallel-arm RCTs. These studies used various combinations of blockers: 95 study arms used ACEI in combination with ARB, 6 study arms used ACEI or ARB in combination with a renin inhibitor (RI), 16 study arms used ACEI or ARB in combination with an aldosterone receptor antagonist (ARA). The sample size varied from 10 to 1,448, and the mean age of the subjects of the trials ranged from 12 to 76 years, and the duration of intervention ranged from 1 to 60 months. Forty-one studies enrolled patients with GFR ≥ 60 mL/min or mL/min/1.73 m² and 10 studies enrolled patients with GFR < 60 mL/min or...
mL/min/1.73 m². Twenty-one studies did not report the subjects' baseline of kidney function. At enrollment, the patients in 25 studies had albuminuria, and those in 36 studies had proteinuria. Eleven studies did not report the urine albumin or protein excretion at enrollment. The trials involved diabetics (32 studies), nondiabetics (22 studies). About 73.61% of the studies were of good quality (score 4–7), while the rest were of fair quality (score 1–3) (Fig. 2).

3.2. Effect of dual renin–angiotensin–aldosterone system blockade therapy on kidney-related endpoints

Twenty-two study arms reported changes in albuminuria and 50 study arms reported changes in proteinuria. Compared with the single therapy, dual therapy significantly reduced the urine albumin excretion (SMD, -0.53; 95% CI, -0.75 to -0.30; P < .001) (Fig. 3, Table 2) and urine protein excretion (SMD, -0.17; 95% CI, -0.27 to -0.07; P = .001) (Fig. 4, Table 2). However, dual therapy did not significantly increase the rate of return to normoalbuminuria (RR, 1.27; 95% CI, 0.95 to 1.71; P = .11) (Fig. 5, Table 3).

Sixty-one study arms reported changes in GFR. Meta-analysis showed that dual RAAS blockade therapy was associated with a decrease in GFR (SMD, -0.07; 95% CI, -0.13 to -0.01; P = .02) compared with monotherapy (Fig. 6, Table 2). No effects of dual RAAS blockade therapy as compared with single RAAS blockade therapy, was observed on doubling of serum creatinine (RR, 1.10; 95% CI, 0.66 to 1.83; P = .73), acute kidney injury (AKI: RR, 1.42; 95% CI, 0.98 to 2.06; P = .07) and ESRD (RR, 0.72; 95% CI, 0.51 to 1.03; P = .07) (Table 3).

Fifty-two study arms reported changes in serum potassium and 43 study arms reported the rate of hyperkalemia. By meta-
Studies	Design	Dual therapy (mg/day)	Single therapy (mg/d)	N (T/C)	Male (%)	Age (Y)	GFR (ml/min or ml/min/1.73 m²)	Albuminuria or proteinuria (g/g or g/24h)	SBP (mm Hg)	DBP (mm Hg)			
Shima et al[30]	Parallel- arm	Lisinopril 20 mg + losartan 100 mg	Lisinopril 20 mg	31/31	58.06	51.61	12.00	11.90	24	120.70	0.60	109.05	63.00
Saglimbore et al[31]	Parallel- arm	ACEI + ARB	ACEI	416/414	27.52	28.75	63.40	62.30	32.4	67.85	0.16	137.90	80.50
Chen et al[32]	Parallel- arm	Ibesartan 150 mg + spironolactone 20 mg	Ibesartan 150 mg	52/52	48.08	52.83	67.00	68.00	18	79.20	0.02	155.00	95.00
Katayama et al[33]	Parallel- arm	ACEI or ARB + finerenone	ACEI or ARB+ placebo	84/12	79.76	83.33	62.40	66.75	3	64.68	0.22	137.04	76.19
Zinellu[18]	Parallel- arm	Irbesartan 300 mg + spironolactone 20 mg	Irbesartan 300 mg	727/94	78.40	73.40	64.34	63.26	3	67.60	0.20	138.18	77.15
Bakris[34]	Parallel- arm	ACEI or ARB+ placebo	ACEI or ARB+ placebo	72/10	78.00	74.80	65.34	64.10	3	67.60	0.20	138.18	77.15
Woo et al[35]	Parallel- arm	Losartan 300 mg + spironolactone 20 mg	Losartan 300 mg	51/52	40.38	37.25	55.00	52.00	36	48.00	1.22	135.50	80.00
Schrier et al[36]	Parallel- arm	Telmisartan 80 mg + spironolactone 20 mg	Telmisartan 80 mg	12/12	33.33	33.33	62.00	67.00	6	48.72	1.22	133.00	95.00
Rajkumar[37]	Parallel- arm	Olmesartan 5 mg+ aliskiren 150 mg	Olmesartan 5 mg+ aliskiren 150 mg	25/25	72.00	64.00	54.28	51.04	2	81.20	0.12	154.18	61.10
Bakris et al[38]	Parallel- arm	Telmisartan 80 mg + aliskiren 150 mg	Telmisartan 80 mg	18/18	77.78	39.30	2	85.20	1.62	116.80	73.80		
Fried et al[39]	Parallel- arm	Losartan 100 mg + spironolactone 20 mg	Losartan 100 mg	70/28	78.00	75.00	63.00	67.90	32	48.00	1.40	136.90	79.00
Meier et al[40]	Parallel- arm	Enalapril 50 mg + spironolactone 25 mg	Enalapril 50 mg	51/52	40.38	37.25	55.00	52.00	36	48.00	1.22	135.50	80.00
Krairittichai and Chaisuvannarat[54]	Parallel- arm	Enalapril 40 mg+ telmisartan 80 mg	Enalapril 40 mg+ telmisartan 80 mg	40/40	53.75	56.67	6	46.33	2.31	140.46	75.47		

Continued...
Table 1 (continued)

Renin-angiotensin-aldosterone system blockade	Design	Male (%)	Age (Y)	Duration (mL/min or SBP/DBP mm Hg)	GFR (mL/min or mL/min/1.73 m²)	Alumunium or oriprima (µg or g/24 h)	DPP	SBP	DBP
Lisinopril 20 mg + valsartan 320 mg	Parallel-arm	GFR 77.50	66.67	59.20	57.00	7.5	119.75	NR	151.75
Valsartan 320 mg									
Knudsen et al[60]	Parallel-arm	GFR 72.00	80.77	56.00	57.00	12	117.50	NR	140.50
Lisinopril 20 mg + candesartan 16 mg									
Lisinopril 40 mg									
Ogawa et al[61]	Parallel-arm	GFR 48.65	47.06	62.00	62.20	24	88.70	0.07	151.50
Temocapril 2 mg + candesartan 4 mg									
Temocapril 4 mg									
Nakamura et al[62]	Parallel-arm	GFR 50.00	50.00	31.00	31.00	12	88.50	1.95	117.50
Temocapril 2 mg + olmesartan 10 mg									
Temocapril 4 mg									
Bakris et al[63]	Parallel-arm	GFR 60.29	63.68	65.50	65.80	5	NR	NR	163.50
Ramipril 10 mg + irbesartan 150 – 300 mg									
Ramipril 10 mg + placebo									
Abe et al[64]	Parallel-arm	GFR 78.57	55.00	59.50	59.80	12	88.50	1.35	146.00
ACEI + losartan 25 mg or 50 ACEI or ARB + placebo									
Song et al[66]	Crossover	GFR 49.00	49.00	4	40.60	4.10	133.00	81.00	139.50
Lisinopril 20 mg + telmisartan 80 mg									
Telmisartan 80 mg									
Lannia et al[68]	Parallel-arm	GFR 80.00	70.00	56.30	59.20	3	74.80	2.55	132.50
ACEI + candesartan 2 mg									
Horita et al[69]	Parallel-arm	GFR 53.85	57.14	38.00	43.00	12	92.55	0.70	118.00
Temocapril 1 mg + losartan 12.5 mg									
Temocapril 1 mg + losartan 25 mg									
Epstein et al[70]	Parallel-arm	GFR 65.93	54.95	58.70	59.65	3	72.51	0.43	144.06
Enalapril 20 mg + eplerenone 50 mg									
Enalapril 20 mg + placebo									
Atmaca and Gedik[72]	Parallel-arm	GFR 37.50	44.44	55.10	55.10	12	NR	0.07	120.00
Lisinopril 10 mg + losartan 50 mg									
Lisinopril 10 mg + placebo									
Schjoedt et al[73]	Crossover	GFR 75.00	45.00	2	NR	0.30	NR	NR	NR
ACEI or ARB + spironolactone 25 mg + placebo									
Scaglione et al[74]	Parallel-arm	GFR 47.06	47.06	58.00	54.00	6	71.50	0.45	139.50
Ramipril 5 mg + losartan 50 mg									
Ramipril 5 mg + Losartan 50 mg + placebo									
Matos et al[75]	Crossover	GFR 25.00	54.74	4	67.00	0.90	154.00	86.00	139.52
Perindopril 8 mg + irbesartan 300 mg									
Perindopril 8 mg + placebo									
Esnault et al[76]	Crossover	GFR 66.67	49.30	1	NR	3.71	NR	NR	NR
Ramipril 5 mg + valsartan 80 mg									
Ramipril 10 mg + valsartan 80 mg									
Rutkowski et al[77]	Crossover	GFR 50.00	35.46	4	85.72	2.13	139.52	90.73	139.52
Benazepril 5 mg + losartan 25 mg									
Benazepril 10 mg + placebo									
Renke et al[78]	Parallel-arm	GFR 68.75	66.67	37.70	43.40	9	94.35	2.93	137.00
Enalapril 10 mg + losartan 25 mg									
Enalapril 10 mg + placebo									
Nakao et al[79]	Parallel-arm	GFR 58.06	54.84	43.20	43.30	36	46.35	1.95	138.00
Trandolapril 3 mg + losartan 100 mg									
Trandolapril 3 mg + Losartan 100 mg									
Morgan et al[80]	Crossover	GFR 49.30	75.00	49.30	1	NR	>0.30	NR	NR
Lisinopril 20 mg + valsartan 320 mg									
Lisinopril 40 mg + valsartan 320 mg									

(continued)
Studies	Design	Renin–angiotensin–aldosterone system blockade	Male (%)	Age (Y)	Duration (months)	GFR (mL/min or mL/min/1.73 m²)	Albuminuria or proteinuria (g/g or g/24H)	SBP (mmHg)	DBP (mmHg)	
		Lisinopril 20mg + candesartan 16mg								
		Candesartan 16mg	23/23	95.65	75.60	1	77.00	NR	124.00	79.90
		Temocapril 1mg + losartan 12.5mg								
		Benazepril 10–20mg + valsartan 160mg	11/10	45.45	40.00	39.60	39.60	6	77.00	79.80
		Ramipril 5–7.5mg + candesartan 4–8mg								
		Lisinopril 20mg + candesartan 16mg	23/23	95.65	75.60	1	77.00	NR	124.00	79.90
Segura et al[83]	Parallel- arm	Temocapril 1mg + losartan 12.5mg								
		Benazepril 10–20mg + valsartan 160mg	11/10	45.45	40.00	39.60	39.60	6	77.00	79.80
		Ramipril 5–7.5mg + candesartan 4–8mg								
		Lisinopril 20mg + candesartan 16mg	23/23	95.65	75.60	1	77.00	NR	124.00	79.90
Rossing et al[84]	Crossover	Acei + candesartan 8mg								
		Benazepril 10–20mg + valsartan 160mg	12/12	83.33	66.67	47.90	49.80	6	70.00	76.50
		Ramipril 5–7.5mg + candesartan 4–8mg								
		Lisinopril 20mg + candesartan 16mg	12/12	83.33	66.67	47.90	49.70	6	71.00	80.00
		Ramipril 5–7.5mg + candesartan 4–8mg								
		Lisinopril 20mg + candesartan 16mg	23/23	95.65	75.60	1	77.00	NR	124.00	79.90
		Temocapril 1mg + losartan 12.5mg								
		Benazepril 10–20mg + valsartan 160mg	12/12	83.33	66.67	47.90	49.70	6	71.00	80.00
		Ramipril 5–7.5mg + candesartan 4–8mg								
		Lisinopril 20mg + candesartan 16mg	23/23	95.65	75.60	1	77.00	NR	124.00	79.90
		Temocapril 1mg + losartan 12.5mg								
		Benazepril 10–20mg + valsartan 160mg	12/12	83.33	66.67	47.90	49.70	6	71.00	80.00
		Ramipril 5–7.5mg + candesartan 4–8mg								
		Lisinopril 20mg + candesartan 16mg	23/23	95.65	75.60	1	77.00	NR	124.00	79.90
		Temocapril 1mg + losartan 12.5mg								
		Benazepril 10–20mg + valsartan 160mg	12/12	83.33	66.67	47.90	49.70	6	71.00	80.00
		Ramipril 5–7.5mg + candesartan 4–8mg								
		Lisinopril 20mg + candesartan 16mg	23/23	95.65	75.60	1	77.00	NR	124.00	79.90

ACEI = angiotensin converting enzyme inhibitor, ARB = angiotensin receptor blocker, C = control group, DBP = diastolic blood pressure, GFR = glomerular filtration rate, N = Number of patients, NR = not reported, sCr = serum creatinine, SBP = systolic blood pressure, T = treatment group, Y = year.

* Value represents urinary albumin excretion.

† Mean arterial pressure.
Figure 2. Risk of bias summary.

Figure 3. Comparison of dual RAAS blockade and single RAAS blockade for urine albumin excretion. RAAS = renin–angiotensin–aldosterone system.
Outcomes	No. study arms	No. participants	Random-effects model	95% CI	P-value	I² (%)	P-value	Begg’s Test	Egger’s test
Urine albumin excretion (g/g of creatinine or g/24 h)	22	1,018	SMD: -0.53 (-0.75, -0.30)	<.001	66.2	<.001	0.004	<.001	
Urine protein excretion (g/g of creatinine or g/24 h)	50	2,586	SMD: -0.17 (-0.27, -0.07)	.001	33.5	.1	12	.10	
Glomerular filtration rate (mL/min or mL/min/1.73 m²)	61	4,162	SMD: -0.07 (-0.15, -0.01)	.02	0.0	1.00	33	.72	
Serum potassium (mmol/L)	52	3,464	WMD: 0.10 (0.05, 0.15)	.001	63.1	<.001	67	.06	
Systolic blood pressure (mm Hg)	76	3,730	WMD: -1.35 (-1.86, -0.84)	<.001	0.0	.53	48	<.001	
Diastolic blood pressure (mm Hg)	76	3,730	WMD: -2.03 (-2.97, -1.09)	<.001	78.1	<.001	58	.007	

CI = confidence interval.

Figure 4. Comparison of dual RAAS blockade and single RAAS blockade for urine protein excretion. RAAS = renin–angiotensin–aldosterone system.
Figure 5. Comparison of dual RAAS blockade and single RAAS blockade for regression to normoalbuminuria. RAAS = renin-angiotensin-aldosterone system.

Table 3
Summary effect of dual vs single RAAS blockade therapy on dichotomous outcomes.

Outcomes	No. study arms	No. participants	Random-effects model	Assessment of heterogeneity	Publication bias (P-value)
			RR (95% CI)	I² (%)	
			P-value	P-value	
Any adverse effect	21	7,530	1.05 (1.00, 1.11)	.07	.67
Development of hyperkalemia	43	9,576	1.78 (1.41, 2.24)	<.001	.19
Development of hypotension	24	3,659	2.38 (1.58, 3.58)	<.001	.00
Doubling of serum creatinine	5	1,872	1.10 (0.66, 1.83)	.73	16.7
Acute kidney injury	4	2,649	1.42 (0.98, 2.06)	.07	13.5
End-stage renal disease	8	3,521	0.72 (0.51, 1.03)	.07	.00
Mortality	8	4,799	0.88 (0.67, 1.16)	.37	28.1
Hospitalization	6	615	1.40 (0.52, 3.74)	.51	37.9
Regression to normoalbuminuria	18	1,100	1.27 (0.95, 1.71)	.11	65.0

CI = confidence interval.
Figure 6. Comparison of dual RAAS blockade and single RAAS blockade for GFR. GFR = glomerular filtration rate, RAAS = renin–angiotensin–aldosterone system.
analysis, dual RAAS blockade therapy significantly increased the serum potassium (WMD, 0.10; 95% CI, 0.05 to 0.15; \(P < .001 \)) (Fig. 7, Table 2). Meta-analysis showed that the rate of hyperkalemia (RR, 1.78; 95% CI, 1.41 to 2.24; \(P < .001 \)) was higher with dual RAAS blockade therapy (Fig. 8, Table 3).

3.3. Effect of dual renin–angiotensin–aldosterone system blockade therapy on blood pressure
Seventy-six study arms reported on changes of SBP and DBP, and 24 study arms reported the rate of hypotension. Compared with the single therapy, dual RAAS blockade therapy significantly
decreased the SBP (WMD, -1.35; 95% CI, -1.86 to -0.84; \(P < .001 \)) and DBP (WMD, -2.03; 95% CI, -2.97 to -1.09; \(P < .001 \)) (Figs. 9 and 10, Table 2). Compared with the single therapy, the rate of hypotension was higher with dual RAAS blockade therapy (RR, 2.38; 95% CI, 1.58 to 3.58; \(P < .001 \)) (Fig. 11, Table 3).

3.4. Effect of dual renin–angiotensin–aldosterone system blockade therapy on other endpoints

Twenty-one study arms reported on the incidence of any adverse effect (as defined in individual trials, such as hyperkalemia, hypotension, cough, dizziness, diarrhea, headache, and so on). Meta-analysis showed that dual RAAS...
Figure 9. Comparison of dual RAAS blockade and single RAAS blockade for systolic blood pressure. RAAS = renin–angiotensin–aldosterone system.
Figure 10. Comparison of dual RAAS blockade and single RAAS blockade for diastolic blood pressure. RAAS = renin–angiotensin–aldosterone system.
blockade therapy did not significantly increase the rate of any adverse effect (RR, 1.05; 95% CI, 1.00 to 1.11; \(P = .07 \)) (Fig. 12, Table 3).

Eight study arms reported on the incidence of mortality and 6 study arms on the incidence of hospitalization. By meta-analysis, dual RAAS blockade therapy was not associated with any of these outcomes (Table 3).

3.5. Sensitivity analysis and meta-regression

To ensure the reliability of the present meta-analysis, we evaluated the robustness of the results (Tables 2 and 3) by sensitivity analysis, which indicated that the results of the meta-analysis were robust.

Significant heterogeneities for the continuous outcomes and dichotomous outcomes were observed (Tables 2 and 3). Based on a priori selected study characteristics, including the mean age of subjects, duration of intervention, baseline of GFR, and quality of included studies, we detected the potential sources of heterogeneity by meta-regression.

A significant heterogeneity for the outcome of urine protein excretion was observed (\(I^2 = 33.5\% \), \(P = .01 \)), which was dependent on the baseline of GFR (exp, 0.99; 95% CI, 0.99 to 1.00; adjusted \(R^2 = 30.97\% \); \(P = .04 \)). A significant heterogeneity for the outcome of serum potassium was observed (\(I^2 = 63.1\% \), \(P < .001 \)), which had obvious correlation with the baseline of GFR (exp, 1.00; 95% CI, 0.99 to 1.00; adjusted \(R^2 = 26.86\% \); \(P = .03 \)). A significant heterogeneity for the outcome of regression to normoalbuminuria was observed (\(I^2 = 65.0\% \), \(P < .001 \)), which had obvious correlation with baseline of GFR (exp, 0.91; 95% CI, 0.87 to 0.96; adjusted \(R^2 = 100.00\% \); \(P = .002 \)). By meta-regression, heterogeneities of urine albumin
excretion and DBP were not associated with priori selected study characteristics.

3.6. Subgroup analysis

To detect the potential sources of heterogeneity, subgroup analysis was performed.

Only 1 study with ACEI or ARB in combination with RI reported on the development of hypotension and only 1 study with ACEI or ARB in combination with ARA reported on the urine protein excretion, which made these studies unable to compare with the corresponding effects of other combination therapies. Compared with the single therapy, ACEI or ARB in combination with RI or ARA did not decrease the urine albumin excretion (ACEI or ARB in combination with ARA: SMD, -0.21; 95% CI, -0.70 to 0.27; P = .39), urine protein excretion (ACEI or ARB in combination with RI: SMD, 0.35; 95% CI, -0.16 to 0.86; P = .18) and SBP (ACEI or ARB in combination with RI: WMD, -1.64; 95% CI, -4.14 to 0.86; P = .20; ACEI or ARB in combination with ARA: WMD, -1.28; 95% CI, -3.12 to 0.55; P = .17), and increased the incidence of hyperkalemia (ACEI or ARB in combination with RI: RR, 1.53; 95% CI, 1.04 to 2.25; P = .03; ACEI or ARB in combination with ARA: RR, 3.75; 95% CI, 1.86 to 7.55; P < .001). Compared with the single therapy, ACEI in combination with ARB was superior in the decrease of urine albumin excretion (SMD, -0.56; 95% CI, -0.80 to -0.32; P < .001), urine protein excretion (SMD, -0.23; 95% CI, -0.31 to -0.15; P < .001) and BP (SBP: WMD, -1.62; 95% CI, -2.35 to -0.89; P < .001; DBP: WMD, -2.13; 95% CI, -3.18 to -1.08; P < .001), and the combination was not associated with a lower GFR (SMD, -0.07; 95% CI, -0.15 to 0.02; P = .11) (Table 4).

3.7. Publication bias

Begg’s test and Egger’s test were used to evaluate publication bias based on the key outcomes of the meta-analysis. The result
suggested less susceptibility to publication bias, except for urine albumin excretion and regression to normoalbuminuria (Tables 2 and 3).

4. Discussion

The present meta-analysis of 72 RCTs demonstrated that dual RAAS blockade therapy was superior to single therapy in reducing urine albumin excretion, urine protein excretion and BP, including SBP and DBP. These beneficial effects were related to the decrease of GFR, the increase of serum potassium, and higher rates of hyperkalemia and hypotension. Meanwhile, these effects did not lead to improvements in short-term or long-term outcomes, including doubling of serum creatinine, AKI, ESRD, mortality, and hospitalization. The results of most subgroup analyses were consistent with the overall results, but some were different. Compared with the single therapy, ACEI in combination with ARB was a better dual therapy than ACEI or ARB in combination with RI or ARA in decreasing urine albumin excretion, urine protein excretion and BP, and the combination was not associated with a lower GFR.

Proteinuria and hypertension are risk factors of progression in CKD [12,13]. Considering traditional cardiovascular risk factors, albuminuria and impaired kidney function may increase the risk of cardiovascular diseases by 2 to 4 times, as well as predict the development of cardiovascular events. The crucial strategy to treat hypertension in renal diseases is to inhibit RAAS. Experimental and clinical studies have demonstrated that dual RAAS blockade therapy is superior to single RAAS blockade in reducing proteinuria and controlling BP.[10,16] The 2012 Kidney Disease: Improving Global Outcomes guideline suggests that patients with IgA nephropathy increase the dose of ACEI or ARB until proteinuria <1 g/d. It should be noted that in order to reduce albuminuria and achieve BP targets, moderate to high doses of RAAS blockers are usually required.[9] ACEI or ARB may reduce proteinuria by up to 40% to 50% in a dose-dependent manner, especially if the patient complies with dietary salt restriction. Proteinuria is still present in some patients after treatment with ACEI or ARB.[18,19] Based on subgroup analyses, ACEI in combination with ARB was a superior dual therapy in reducing urine albumin excretion, urine protein excretion and BP compared with single therapy.

According to our meta-analysis, other RAAS blockers, RI and ARA are also being used in the treatment of CKD, but their efficacy is limited.[20] Considering the adverse effects, aliskiren in combination with ACEI or ARB is contraindicated in patients with diabetes mellitus or CKD stages 3 to 5.[11] Our results not only confirmed that ACEI or ARB in combination with RI increased the incidence of hyperkalemia, but also concluded that ACEI or ARB in combination with RI did not significantly decrease urine protein excretion and SBP in comparison with single RAAS blockade therapy.[21,22]

Despite treatment with agents such as ACEI or ARB, many studies have demonstrated that the RAAS is not completely blocked, showing persistent or elevated plasma aldosterone levels. This phenomenon is often referred to as “aldosterone escape” and is considered to be one of the main factors in the progression of CKD.[23] Increasing researches have shown that ARA, spironolactone, eplerenone and finerenone, can reduce proteinuria and BP in patients at all stages of CKD.[24,25] However, our meta-analysis demonstrated that ACEI or ARB in combination with ARA did not decrease urine albumin excretion and SBP compared with single RAAS blockade therapy, and increased the incidence of hyperkalemia.

The key safety issues associated with dual RAAS block therapy are syncope due to hypotension and AKI and hyperkalemia due to impaired renal function.[26] In this meta-analysis, although overall analysis showed a decrease of GFR was more common in patients with dual RAAS blockade therapy, subgroup analysis revealed ACEI in combination with ARB did not reduce the GFR. On the premise of reducing urine albumin excretion, urine protein excretion and BP, ACEI in combination with ARB increased the incidence of hyperkalemia and hypotension. According to recent researches, the application of dual RAAS blockade therapy may be further expanded by careful individualized management and potassium binders.[20,27]

Potassium binders can optimize RAAS inhibitor therapy in CKD patients at risk of hyperkalemia, obtain the benefits of potassium-rich diet, and improve hemodialysis outcomes.[28,29] When diarrhea or vomiting occurs, it should be instructed to stop dual RAAS blockade therapy, and ambulatory BP monitoring can be used to avoid hypotension.[11]

In recent years, dual RAAS blockade therapy has caused a lot of controversy. In past 7 years, there was no systemic review and meta-analysis had analyzed the efficacy and safety of dual RAAS blockade therapy in patients with CKD. As far as we know, this is the largest systematic review and meta-analysis of patients with CKD to assess the effect of dual RAAS blockade therapy on
kidney-related endpoints, BP, and other clinically important endpoints based on the type of dual therapy. However, several limitations should be noted. ACEI in combination with ARB was used in most of the included studies, while ACEI or ARB in combination with RI or ARA was less; thus, researches on ACEI or ARB in combination with RI or ARA are not enough. The included studies were heterogeneous, and we performed sensitivity analysis, meta-regression and subgroup analysis to warrant the reliability.

5. Conclusion
In conclusion, compared with the single therapy, ACEI in combination with ARB is a better dual therapy than ACEI or ARB in combination with RI or ARA in decreasing urine albumin excretion, urine protein excretion and BP without decreased GFR. Although ACEI in combination with ARB is associated with higher incidences of hyperkalemia and hypotension, careful individualized management and potassium binders may further expand its application.

Author contributions
Conceptualization: Mingming Zhao, Hua Qu, Rumeng Wang, Yu Zhang.
Data curation: Mingming Zhao, Hua Qu, Rumeng Wang, Yi Yu, Meiyiing Chang, Sijia Ma, Hanwen Zhang, Yuejun Wang, Yu Zhang.
Formal analysis: Mingming Zhao, Hua Qu, Rumeng Wang, Yi Yu, Meiyiing Chang, Sijia Ma, Hanwen Zhang, Yuejun Wang, Yu Zhang.
Funding acquisition: Yu Zhang.
Investigation: Mingming Zhao, Hua Qu, Rumeng Wang, Yi Yu, Meiyiing Chang, Yu Zhang.
Methodology: Mingming Zhao, Hua Qu, Rumeng Wang, Sijia Ma, Hanwen Zhang, Yuejun Wang, Yu Zhang.
Project administration: Mingming Zhao, Hua Qu, Rumeng Wang, Yu Zhang.
Resources: Mingming Zhao, Rumeng Wang, Yi Yu, Meiyiing Chang, Yu Zhang.
Software: Mingming Zhao, Hua Qu, Rumeng Wang, Sijia Ma, Hanwen Zhang.
Supervision: Mingming Zhao, Hua Qu, Yu Zhang.
Validation: Mingming Zhao, Hua Qu, Rumeng Wang, Yu Zhang.
Visualization: Mingming Zhao, Hua Qu, Rumeng Wang, Sijia Ma, Hanwen Zhang, Yu Zhang.
Writing — original draft: Mingming Zhao, Hua Qu, Rumeng Wang, Yu Zhang.
Writing — review & editing: Mingming Zhao, Hua Qu, Rumeng Wang, Yi Yu, Meiyiing Chang, Sijia Ma, Hanwen Zhang, Yuejun Wang, Yu Zhang.

References
[1] Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease. Lancet 2017;389:1238–52.
[2] Matsuhashi K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:2073–81.
[3] Jha V, Garcia-Garcia G, Iskci K, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013;382:260–72.
[4] Mills KT, Xu Y, Zhang W, et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int 2015;88:950–7.
[5] Muntner P, Anderson A, Charleston J, et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2010;55:441–51.
[6] Egan BM, Li J, Hutchison FN, et al. Hypertension in the United States, 1999 to 2012: progress toward Healthy People 2020 goals. Circulation 2014;130:1692–9.
[7] Hamrahian SM. Management of hypertension in patients with chronic kidney disease. Curr Hypertens Rep 2017;19:43.
[8] Levey AS, Coresh J. Chronic kidney disease. Lancet 2012;379:165–80.
[9] Kastritis ES, Elaisik MX. Treatment of hypertension in chronic kidney disease. Curr Hypertens Rep 2018;20:64.
[10] Susantitaphong P, Sewardalbashah K, Balk EM, et al. Efficacy and safety of combined vs. single renin-angiotensin-aldosterone system blockade in chronic kidney disease: a meta-analysis. Am J Hypertens 2013;26:424–41.
[11] Esters R, Perez-Gomez MV, Rodriguez-Osorio L, et al. Combination use of medicines from two classes of renin-angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function. Ther Adv Drug Saf 2015;6:166–76.
[12] Liu D, Lj IL. New understanding on the role of proteinuria in progression of chronic kidney disease. Adv Exp Med Biol 2019;1165:487–500.
[13] Nagai K, Yamagata K, Iskci K, et al. Antihypertensive treatment and risk of cardiovascular mortality in patients with chronic kidney disease diagnosed based on the presence of proteinuria and renal function: a large longitudinal study in Japan. PLoS One 2019;14:e0225812.
[14] Gansvoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 2013;382:339–52.
[15] Provenzano M, Coppolino G, Faga T, et al. Epidemiology of cardiovascular risk in chronic kidney disease patients: the real silent killer. Rev Cardiovasc Med 2019;20:209–20.
[16] Zhang F, Liu H, Liu D, et al. Effects of RAAS inhibitors in patients with kidney disease. Curr Hypertens Rep 2017;19:72.
[17] Nakamura T, Usuiyama C, Suzuki S, et al. Effects of angiotensin-converting enzyme inhibitor, angiotensin II receptor antagonist and calcium antagonist on urinary podocytes in patients with IgA nephropathy. Am J Nephrol 2000;20:373–9.
[18] Zinellu A, Sotgia S, Mangoni AA, et al. Effects of ramipril and telmisartan on plasma concentrations of low molecular weight and protein thiols and carotid intima media thickness in patients with chronic kidney disease. Dis Markers 2016;2016:1821596.
[19] Harashi M, Hirata A, Kadomoto Y, et al. Dual blockade of angiotensin II with enalapril and losartan reduces proteinuria in hypertensive patients with type 2 diabetes. Endocr J 2006;53:493–501.
[20] Viazzi F, Bonino B, Cappadona F, et al. Renin-angiotensin-aldosterone system blockade in chronic kidney disease: current strategies and a look ahead. Intern Emerg Med 2016;11:627–35.
[21] Dhakarwal P, Agrawal V, Kumar A, et al. Update on role of direct renin inhibitor in diabetic kidney disease. Ren Fail 2014;36:963–9.
[22] Persson F, Rossing P, Parving HH. Direct renin inhibition in chronic kidney disease. Br J Clin Pharmacol 2013;76:580–6.
[23] Lu Y, Ku E, Campese VM. Aldosterone in the pathogenesis of chronic kidney disease and proteinuria. Curr Hypertens Rep 2010;12:303–6.
[24] Hirsch JS, Drexler Y, Bomback AS. Aldosterone blockade in chronic kidney disease. Semin Nephrol 2014;34:307–22.
[25] Zuo C, Xu G. Efficacy and safety of mineralocorticoid receptor antagonists with ACEI/ARB treatment for diabetic nephropathy: a meta-analysis. Int J Clin Pract 2019;e13413.
[26] Oktaviono YH, Kusumawardhani N. Hyperkalemia associated with renin-angiotensin-converting enzyme inhibitor, angiotensin II receptor antagonist and calcium antagonist on urinary podocytes in patients with IgA nephropathy. Nephrol Ther 2017;13(Suppl 1):S45.
[27] Palmer BF. Potassium binders for hyperkalemia in chronic kidney disease-diet, renin-angiotensin-aldosterone system inhibitor therapy, and hemodialysis. Mayo Clin Proc 2020;95:339–54.
[28] Shimizu Y, Nakashiki S, Sako M, et al. Lisinopril versus lisinopril and losartan for mild childhood IgA nephropathy: a randomized controlled trial (JSKD01 study). Pediatric Nephrol 2019;34:837–46.
[31] Saglimbene V, Palmer SC, Ruospo M, et al. The long-term impact of renin-angiotensin system (RAS) inhibition on cardiovascular outcomes (LIRICO): a randomized, controlled trial. J Am Soc Nephrol: JASN 2018;29:2890–9.

[32] Chen Y, Liu P, Chen X, et al. Effects of different doses of irbesartan combined with spironolactone on urinary albumin excretion rate in elderly patients with type 2 diabetic nephropathy. Am J Med Sci 2018;355:418–24.

[33] Katayama S, Yamada D, Nakayama M, et al. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J Diabetes Complications 2017;31:738–65.

[34] Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 2015;314:884–94.

[35] Woo K-T, Choong H-L, Wong K-S, et al. Aliskiren and losartan trial in non-diabetic chronic kidney disease. J Renin Angiotensin Aldosterone Syst: JRAAS 2014;15:515–22.

[36] Schrier RW, Abebe KZ, Perrone RD, et al. Blood pressure in early hypertensive patients with early type 2 diabetic nephropathy. Nephron Clin Pract 2009;112:242–247.

[37] Kraitritcha U, Chaisuvannarat V. Effects of dual blockade of renin-angiotensin system in type 2 diabetes mellitus patients with diabetic nephropathy. Chotmaithet thangphaet (J Med Assoc Thai) 2009;92:611–7.

[38] Edwards NC, Steeds RP, Stewart PM, et al. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J Am Coll Cardiol 2009;54:305–12.

[39] Zhu S, Liu Y, Wang L, et al. Transforming growth factor-(-1 is associated with kidney damage in patients with essential hypertension: renoprotective effect of ACE inhibitor and/or angiotensin II receptor blocker. Nephrol Dial Transplant 2008;23:2841–6.

[40] Parving H-H, Persson F, Lewis JB, et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 2008;358:2433–46.

[41] Mori-Takeyama U, Minatoguchi S, Murata I, et al. Dual blockade of the renin-angiotensin system versus dual blockade of the renin-angiotensin system and angiotensin II receptor blocker versus maximal recommended dose of spironolactone in type 2 diabetic nephropathy. J Hypertens 2008;26:1860–7.

[42] Knudsen DT, Andersen NH, Poulsen SH, et al. Pulse pressure lowering effect of dual blockade with candesartan and lisinopril vs. high-dose ACE inhibition in hypertensive type 2 diabetic subjects: a CALM II study post hoc analysis. Am J Hypertens 2008;21:172–6.

[43] Ogawa S, Takeuchi K, Mori T, et al. Effects of monotherapy of temocapril or candesartan with dose increments or combination therapy with both drugs on the suppression of diabetic nephropathy. Hypertens Res 2007;30:325–34.

[44] Nakamura T, Inoue T, Sugaya T, et al. Beneficial effects of olmesartan and temocapril on urinary liver-type fatty acid-binding protein levels in normotensive patients with immunoglobulin A nephropathy. Am J Hypertens 2007;20:1195–201.

[45] Bakris GL, Ruilope L, Locatelli F, et al. Treatment of microalbuminuria in hypertensive subjects with elevated cardiovascular risk: results of the IMPROVE trial. Kidney Int 2007;72:879–85.

[46] Altve H, Minatoguchi S, Hashi H, et al. Renoprotective effect of the addition of losartan to ongoing treatment with an angiotensin converting enzyme inhibitor in type 2 diabetic patients with nephropathy. Hypertens Res 2007;30:925–34.

[47] van den Meiracker AH, Baggen RG, Pauli S, et al. Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J Hypertens 2006;24:2285–92.

[48] Song JH, Cha SH, Lee HJ, et al. Effect of low-dose dual blockade of renin-angiotensin system on urinary TGF-beta in type 2 diabetic patients with advanced kidney disease. Nephrol Dial Transplant 2006;21:683–9.

[49] Sengul AM, Altuntas Y, Kürkli A, et al. Beneficial effect of lisinopril plus telmisartan in patients with type 2 diabetes, microalbuminuria and hypertension. Diabetes Res Clin Pract 2006;71:210–9.

[50] Kanno Y, Takenaka T, Nakamura T, et al. Add-on angiotensin receptor blocker in patients who have proteinuric chronic kidney diseases and are treated with angiotensin-converting enzyme inhibitors. Clin J Am Soc Nephrol 2006;1:730–7.

[51] Horita Y, Taura K, Taguchi T, et al. Aldosterone breakthrough during therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in proteinuric patients with immunoglobulin A nephropathy. Nephrology (Carlton) 2006;11:462–6.

[52] Epstein M, Williams GH, Weiberger M, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 2006;1:940–51.

[53] Chrysostomou A, Pedagogos E, MacGregor L, et al. Double-blind, placebo-controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long-term angiotensin-converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clin J Am Soc Nephrol 2006;1:256–62.

Zhao et al. Medicine (2021) 100:35. www.md-journal.com
[72] Atmaca A, Gedik O. Effects of angiotensins-converting enzyme inhibitors, angiotensin II receptor blockers, and their combination on microalbuminuria in normotensive patients with type 2 diabetes. Adv Ther 2006;23:615–22.

[73] Schoedt KJ, Rossing K, Juhl TR, et al. Beneficial impact of spironolactone in diabetic nephropathy. Kidney Int 2003;63:2829–36.

[74] Scaglione R, Argano C, Corrao S, et al. Transforming growth factor-beta I and additional renoprotective effect of combination ACE inhibitor and angiotensin II receptor blocker in hypertensive subjects with minor renal abnormalities: a 24-week randomized controlled trial. J Hypertens 2005;23:657–64.

[75] Matos JP, de Lourdes Rodrigues M, Ismerim VL, et al. Effects of dual blockade of the renin angiotensin system in hypertensive type 2 diabetic patients with nephropathy. Clin Nephrol 2005;64:180–9.

[76] Esnault VL, Ekhlas A, Delcroix C, et al. Diuretic and enhanced sodium restriction results in improved antiproteinuric response to RAS blocking agents. J Am Soc Nephrol: JASN 2005;16:474–81.

[77] Rutkowski P, Tylicki L, Renke M, et al. Low-dose dual blockade of the renin-angiotensin system in patients with primary glomerulonephritis. Am J Kidney Dis 2004;43:260–8.

[78] Renke M, Tylicki L, Rutkowski P, et al. Low-dose angiotensin II receptor antagonists and angiotensin II-converting enzyme inhibitors alone or in combination for treatment of primary glomerulonephritis. Scand J Urol Nephrol 2004;38:427–33.

[79] Nakao N, Seno H, Kasuga H, et al. Effects of combination treatment with losartan and trandolapril on office and ambulatory blood pressures in non-diabetic renal disease: A COOPERATE-ABP substudy (Retraction in: American Journal of Nephrology (2009) 30 6 (563)). Am J Nephrol 2004;24:543–8.

[80] Morgan T, Anderson A, Bertram D, et al. Effect of candesartan and lisinopril alone and in combination on blood pressure and microalbuminuria. J Renin Angiotensin Aldosterone Syst 2004;5:64–71.

[81] Horita Y, Tadokoro M, Taura K, et al. Low-dose combination therapy with temocapril and losartan reduces proteinuria in normotensive patients with immunoglobulin a nephropathy. Hypertens Res 2004;27:963–70.

[82] Song JH, Lee SW, Suh JH, et al. The effects of dual blockade of the renin-angiotensin system on urinary protein and transforming growth factor-beta excretion in 2 groups of patients with IgA and diabetic nephropathy. Clin Nephrol 2003;60:318–26.

[83] Segura J, Praga M, Campo C, et al. Combination is better than monotherapy with ACE inhibitor or angiotensin receptor antagonist at recommended doses. J Renin Angiotensin Aldosterone Syst 2003;4:43–7.

[84] Rossing K, Jacobsen P, Pietraszek L, et al. Renoprotective effects of adding angiotensin II receptor blocker to maximal recommended doses of ACE inhibitor in diabetic nephropathy: a randomized double-blind crossover trial. Diabetes Care 2003;26:2268–74.

[85] Kim MJ, Song JH, Suh JH, et al. Additive antiproteinuric effect of combination therapy with ACE inhibitor and angiotensin II receptor antagonist: differential short-term response between IgA nephropathy and diabetic nephropathy. Yonsei Med J 2003;44:463–72.

[86] Jacobsen P, Andersen S, Rossing K, et al. Dual blockade of the renin-angiotensin system versus maximal recommended dose of ACE inhibition in diabetic nephropathy. Kidney Int 2003;63:1874–80.

[87] Jacobsen P, Andersen S, Jensen BR, et al. Additive effect of ACE inhibition and angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. J Am Soc Nephrol 2003;14:992–9.

[88] Campbell R, Sangalli F, Perticucci E, et al. Effects of combined ACE inhibitor and angiotensin II antagonist treatment in human chronic nephropathies. Kidney Int 2003;63:1094–103.

[89] Tylicki L, Rutkowski P, Renke M, et al. Renoprotective effect of small doses of losartan and enalapril in patients with primary glomerulonephritis. Short-term observation. Am J Nephrol 2002;22:556–62.

[90] Rossing K, Christensen PK, Jensen BR, et al. Dual blockade of the renin-angiotensin system in diabetic nephropathy: a randomized double-blind crossover study. Diabetes Care 2002;25:95–100.

[91] Nakamura T, Ushiyama C, Osada S, et al. Combination therapy of trandolapril and candesartan cilexetil reduces microalbuminuria and urinary endothelin-1 excretion in patients with type 2 diabetes. Clin Exp Nephrol 2002;6:135–9.

[92] Luio J, Barrio V, Goccechea MA, et al. Effects of dual blockade of the renin-angiotensin system in primary proteinuric nephropathies. Kidney Int Suppl 2002;82:S47–52.

[93] Kincaid-Smith P, Fairley K, Packham D. Randomized controlled crossover study of the effect on proteinuria and blood pressure of adding an angiotensin II receptor antagonist to an angiotensin converting enzyme inhibitor in normotensive patients with chronic renal disease and proteinuria. Nephrol Dial Transplant 2002;17:597–601.

[94] Jacobsen P, Andersen S, Rossing K, et al. Dual blockade of the renin-angiotensin system in type 1 patients with diabetic nephropathy. Nephrol Dial Transplant 2002;17:1019–24.

[95] Ferrari P, Marti H-P, Pfister M, et al. Additive antiproteinuric effect of combined ACE inhibition and angiotensin II receptor blockade. J Hypertens 2002;20:125–30.

[96] Berger ED, Bader BD, Ebert C, et al. Reduction of proteinuria; combined effects of receptor blockade and low dose angiotensin-converting enzyme inhibition. J Hypertens 2002;20:739–43.

[97] Tütüncü NB, Gürlek A, Gedik O. Efficacy of ACE inhibitors and ATII receptor blockers in patients with microalbuminuria: a prospective study. Acta Diabetol 2001;38:157–61.

[98] Agarwal R. Add-on angiotensin receptor blockade with maximized ACE inhibition. Kidney Int 2001;59:2282–9.

[99] Ruizlope AM, Aldigier JC, Ponticelli C, et al. Safety of the combination of valsartan and benazepril in patients with chronic renal disease. J Hypertens 2000;18:89–95.