OPEN PEER REVIEW

Pathogenic helminths in the past: Much ado about nothing
[version 1; peer review: 1 approved]

Christian Mulder
National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721, The Netherlands

Abstract
Despite a long tradition on the extent to which Romanisation has improved human health, some recent studies suggest that Romanisation in general, and Roman sanitation in particular, may not have made people any healthier, given that in Roman times gastrointestinal parasites were apparently widespread, whilst in the present day such parasites rarely cause diseases. Unfortunately, this novel claim neglects the empirical evidence that worldwide infections in over 1.5 billion people are caused by ubiquitous foodborne nematodes. Therefore, many may wonder if fossil remains of soil-transmitted helminths have been reported in ancient sanitation infrastructures. Beneficial access to improved sanitation should always be prioritized, hence how can historical sanitation efforts have ever been harmful? In this short article, a strong plea for caution is given, asking for an augmented nematological record and showing that there is not any evidence against Roman sanitation, neither in the past nor in the present.

Keywords
Human diseases; Endoparasitic nematodes; Roman settlements; Fossil eggs.

F1000Research 2017, 6:852 Last updated: 17 MAY 2019
In her *Nature* feature, Chelsea Wald reviewed some of the conclusions by Piers D. Mitchell and describes the fascinating rise of latrines in Mesopotamia, Greece and the Roman Empire. Both authors tried to point out that most of these sanitation facilities were not doing much for the residents’ health, despite the idea that sophisticated plumbing systems, like those of ancient Rome, may have acted as a kind of control that could benefit even the poor. This debated interpretation was based on the fact that human hosts mainly acquire infective nematodes via the faecal–oral route through the soil, although unembryonated eggs can remain viable in the soil for 15 years. Helminth preservation seems to be the highest in moist anaerobic environments like latrines; therefore, even Roman latrines, with continuous flushing and related sediments (coprolites), can become valuable for the reconstruction of past gastrointestinal infections, if evaluated correctly.

As a matter of fact, water purification will always be one of the most intriguing examples of how public health and societal health are interwoven. Amazing examples come from Roman history, where water and wastewater systems rapidly became pillars for European civilisation. The large-scale introduction by Romans of fountains into or near public buildings, together with closed aqueducts, can be seen as the very first Water Safety Plan. Interestingly, archaeologists somehow seem to be ideologically motivated to conceptualize diseases and outbreaks in Roman times, despite the thin palynological record from ancient sanitation infrastructures around the Mediterranean Sea. (Figure 1).

Many pathogens are reported in ancient latrines because they are intrinsically correlated to human settlements, and not to sanitation infrastructures themselves, which are supposed to reduce the risk of contact with outbreak sources. On one hand, it is true that fossil remains of roundworms, whipworms and hookworms (collectively referred to as soil-transmitted helminths) have been reported from ancient sanitation infrastructures. On the other hand, Romans were fully aware of the importance of clean water and efficient sanitation systems. Already during the short reign of Nerva in Rome (96 – 98 CE), Frontinus decided that water from different sources had to be kept separate: clean water was reserved for potable use, intermediate quality water was used for recreation and only poor quality water was sent for irrigation. Thanks to sophisticated hydraulic systems for aqueducts, cisterns, pipes, terms, baths, fountains and latrines, the capital of the Roman Empire became famous as *Roma regina aquarum*. Due to the greatest care provided to their waters for the health and security of the capital and later of the other cities, these neglected latrines became an open archaeological window not so much on Roman sanitation, but on our civilisation as a whole. Fossilized helminth

Figure 1. Multiple geographical and historical investigation bias between ancient settlements claimed to be infected in the past, and children’s helminthiasises in modern countries. Background map implemented with palaeoparasitological records of roundworms (*Ascaris*) and whipworms (*Trichuris*) recovered from a global selection of archaeological sites built between 200 BCE and 500 CE (Common Era). The background map has been adapted from World Health Organization, program on Control of Neglected Tropical Diseases (gamapserver.who.int/mapLibrary/Files/Maps/STH_2011_global.png).
eggs in dung sediments from latrines are very peculiar tools to reconstruct migration routes, trades, animal domestication, diets, past outbreaks and even urban catastrophes\(^4\). Nematodes are the most frequently occurring invertebrates. These primitive soil organisms occupy diverse trophic levels in ecological networks and can act either as antagonists for soil-borne pests or be pathogens themselves. It can be dangerous to suggest that sanitation may not have made people any healthier, as humans can also get infected with soil nematodes by ingesting unclean vegetables or by contact with infected domestic animals. Along the aforementioned faecal–oral route, behavioral and allometric factors have been put forward in existing literature\(^7\), being the host-related factors linked to human size prominent. According to host–parasite regression models for mammals\(^3\) and assuming on average one adult body weight of 62.0 kg (corresponding to a volume of 61,400 cc), each infected human might contain up to 12,300 helminths.

Hence, it is not surprising to find helminths in sanitation systems of ancient settlements, especially if only the palaeoparasitological data for sites at which these pathogens were detected are gathered together. For instance, archaeological records of common-source outbreaks can be collated to support the idea that sanitation facilities historically linked to Romanisation have widespread helminths, although these cosmopolitan endoparasites are well-known to occur during Roman times even around the Pacific Ocean, including the New World in pre-colonial times\(^8\) (Figure 1). Thus, we have to realize that there would be many more helminth eggs in ancient sanitation facilities if these facilities had not be there in the past. Surprisingly, archaeologists like to invert this basic framework, and suggestive interpretation may be worse than no interpretation at all.

But even if such pathogens are identified, it remains challenging either to exclude false parasitism (incidental presence in human faeces of eggs resulting from the consumption of an infected animal\(^9\)) or to determine with certainty human outbreaks (helminth eggs might demonstrate their human origin by some circumstantial evidence only\(^10\)). Allometric rules that express parasites and non-infected animals per square meter\(^11\), in tandem with the several possible contamination pathways, will always lead to diseases with a high global burden\(^11\). Moreover, a parasitic occurrence can also be related to open water contamination, for instance from livestock grazing in upland areas causing outbreaks downstreams. This has nothing to do with any sanitation structure.

Omitting such a relevant weight of evidence in any comparison between archaeological excavations will introduce de facto a strong bias towards false-positive results into palaeoecological meta-analyses. In the future, to avoid interesting, but geographically misleading or even statistically speculative conclusions, one of the most intriguing hypotheses that will arise might be the investigation by microscopy of soils from archaeological sites associated either with one sanitation infrastructure or without that sanitation. In the case of Roman sanitation, due to the Hadrian’s Wall bordering the northern part of the Roman Empire with all its social infrastructures, including latrines, England (entirely inside the Wall during Roman times) and Scotland (outside the Wall during Roman times) can together provide the perfect study area.

There are 2.5 billion people still living on Earth without improved sanitation facilities. A correct Big Data mining of all nematological palaeorecords\(^4\) combined with objective interpretation of, probably thin, circumstantial evidence will require great care, as the conclusion shall have implications on ongoing global control programs relating to helminthiasis. On the other hand, as the taxonomic status of *Ascaris is* contentious\(^11\), palaeoecological evidence from archaeological sites in synergy with present-day molecular ecology can become an unexplored avenue to improve current control programs.

Competing interests
No competing interests were disclosed.

Grant information
The author(s) declared that no grants were involved in supporting this work.

References

1. Wald C: *The secret history of ancient toilets*. Nature. 2016; 533(7604): 456–458. [Published Abstract](Publisher Full Text)
2. Mitchell PD: *Human parasites in the Roman World: health consequences of conquering an empire*. Parasitology. 2017; 144(1): 48–58. [Published Abstract](Publisher Full Text)
3. Moore PD: *Life seen from a medieval latrine*. Nature. 1981; 294: 614. [Reference Source](Publisher Full Text)
4. Araújo A, Reinhard KJ, Ferreira LF, et al.: *Parasites as probes for prehistoric human migrations?* Trends Parasitol. 2008; 24(3): 112–115. [Published Abstract](Publisher Full Text)
5. Reinhard KJ: *Archaeoparasitology in North America*. Am J Phys Anthropol. 1990; 82(2): 145–163. [Published Abstract](Publisher Full Text)
6. Reinhard KJ, Coniforstiel UE, Hermann B, et al.: *Recovery of parasite remains from coprolites and latrines: Aspects of paleoparasitological technique*. Homo. 1986; 37(4): 217–239. [Reference Source](Publisher Full Text)
7. George-Nascimento M, Munoz G, Marquet PA, et al.: *Testing the energetic equivalence rule with helminth endoparasites of vertebrates*. Ecol Lett. 2004; 7(7): 527–531. [Published Full Text](Publisher Full Text)
8. Mejia R, Vicuña Y, Broncano N, et al.: *A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations*. Am J Trop Med Hyg. 2013; 88(6): 1041–1047. [Published Abstract](Publisher Full Text)
9. von Graevenitz A, Araújo A, Ferreira LF: *Human intestinal parasites in the past: new findings and a review*. Mem Inst Oswaldo Cruz. 2003; 98(Suppl 1): 103–118. [Published Abstract](Publisher Full Text)
10. Leles D, Reinhard K, Fugassa MH, et al.: *A parasitological paradox: Why is ascidian infection so rare in the prehistoric Americas?* J Archaeol Sci. 2010; 37(7): 1510–1520. [Published Full Text](Publisher Full Text)
11. Brinkkemper O, van Haaster H: *Eggs of intestinal parasites whipworm (Trichuris)*
and mawworm (Ascaris): Non-pollen palynomorphs in archaeological samples. Rev Palaeobot Palynol. 2012; 186: 16–21. Publisher Full Text

12. Hechinger RF: Parasites help find universal ecological rules. Proc Natl Acad Sci U S A. 2015; 112(6): 1656–1657. PubMed Abstract | Publisher Full Text | Free Full Text

13. Bethony J, Brooker S, Albonico M, et al.: Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006; 367(9521):

1521–1532. PubMed Abstract | Publisher Full Text

14. Dallas T: helminthR: an R interface to the London Natural History Museum’s Host–Parasite Database. Ecography. 2016; 39(4): 391–393. Publisher Full Text

15. Søe MJ, Kapel CM, Nejsum P: Ascaris from Humans and Pigs Appear to Be Reproductively Isolated Species. PLoS Negl Trop Dis. 2016; 10(9): e0004855. PubMed Abstract | Publisher Full Text | Free Full Text
Christian Mulder’s “Pathogenic helminths in the past: Much ado about nothing” reveals some basic problems with the research presented by Piers Mitchell in “Human parasites in the Roman World: health consequences of conquering an empire. Parasitology”. The critique recognizes that the conclusions of the study are overblown and points to errors in methods and theory. I read Mitchell’s work and concur with Mulder. Mitchell does not approach the problem from the perspective of the science of archaeology nor the science of parasitology. Mulder suggests that Mitchell did not control for false parasitism through spread of eggs through the environment. In the science of archaeology, as applied to parasitology, concentrations of parasite eggs per ml or gr are calculated by researchers. These calculations document the distribution of eggs through strata within pits and across ancient village landscapes. This leads to statistical identification of transmission points. When these archaeological egg accumulations are verified as fecal deposits via ancillary pollen and seed analysis, then fecal contamination “hot spots” are defined. Dating of these points can lead to very solid information about emergence and control of geohelminths. This has been demonstrated archaeologically by the references of Fisher and Trigg’s work below. Secondly, the geohelminth life cycle of ascarids seems to be misunderstood by Mitchell who asserted that people could have been infected in Roman baths.

I have a paper that has just been published addressing rigor in archaeological parasitology. This highlights the sort of issues such as false parasitism noted by Mulder.

I believe that Mulder is spot on with regard to Mitchell’s assertion. I strongly recommend this work for indexing and I would hope that Mulder includes references to the work by Fisher’s team and Trigg’s team. The work by Trigg is in press and can be obtained via Heather Trigg or Steve Mrozowski.

Useful References:
- Fisher et al. (2007)¹
- Trigg et al. (2017)²
- Reinhard (2017)³
References
1. Fisher CL, Reinhard K, Kirk M, DiVirgilo J: Privies and Parasites: The Archaeology of Health Conditions in Albany, New York. *Historical Archaeology*. 2007. 172-197
2. Trigg HB, Jacobucci SA, Mrozowski SA, Steinberg JM: Archaeological Parasites as Indictors of Environmental Change in Urbanizing Landscapes: Implications for Health and Social Status. *American Antiquity*. 2017. 1-19
3. Reinhard K: Reestablishing rigor in archaeological parasitology. *International Journal of Paleopathology*. 2017. Publisher Full Text

Is the topic of the opinion article discussed accurately in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Partly

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Archaeoparasitology, palynology, paleoparasitology, paleonutrition, archaeobotany, palynology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.