ETUDE FAUNISTIQUE ET SYSTEMATIQUE
DES CESTODES D'OISEAUX FORESTIERS ET
DE SAVANE EN COTE-D'IVOIRE

Thèse présentée à la Faculté des Sciences de
l'Université de Neuchâtel pour l'obtention du titre
de Docteur ès Sciences

par

Jean Mariaux
Licencié ès Sciences

Janvier 1991
IMPRIMATUR POUR LA THÈSE

Etude faunistique et systématique des cestodes d'oiseaux forestiers et de savane en Côte d'Ivoire

de Monsieur Jean Mariaux

UNIVERSITÉ DE NEUCHÂTEL
FACULTÉ DES SCIENCES

La Faculté des sciences de l'Université de Neuchâtel sur le rapport des membres du jury,
MM. A. Aeschlimann et Cl. Vaucher (Genève),
Mme L. Gern, MM. F. Bona (Turin) et
J.-Cl. Quentin (Orléans)
autorise l'impression de la présente thèse.

Neuchâtel, le 13 mars 1991

Le doyen:

Cl. Mermod
Ce recueil est une forme réduite de la thèse présentée sous la forme de 9 publications.
Le texte complet de la thèse est déposé chez le directeur de thèse, le Prof. A. Aeschlimann, ainsi qu'à la bibliothèque de l'Institut de Zoologie de l'Université de Neuchâtel.

Mariaux J. & Vaucher C.
1988.
Pseudochoanotaenia eburnea n.sp. (Cestoda: Cyclophyllidea) parasite de cinq espèces de *Cisticola* (Aves: Passeriformes) en République de Côte-d'Ivoire.
Revue Suisse de Zoologie 95: 249-256.

Mariaux J. & Vaucher C.
1989.
Cestodes d'oiseaux de Côte-d'Ivoire. II. Parasites de Coraciiformes et Piciformes.
Systematic Parasitology 14: 117-133.

Mariaux J. 1989.
Cestodes d'oiseaux de Côte-d'Ivoire. III. Sur quelques parasites de Charadriiformes.
Revue Suisse de Zoologie 96: 541-559.

Mariaux J. & Vaucher C.
1990.
A new genus of Dilepididae (cestoda) of the yellowbill *Ceuthmochares aereus* (Cuculidae) from the Ivory Coast.
Journal of Parasitology 76: 22-26.

Mariaux J. & Vaucher C.
1991.
A new species of *Staphylepis* Spassky & Oshmarin, 1954 (Cestoda: Hymenolepididae) found in West African nectariniid birds.
Revue Suisse de Zoologie 98: 261-268.

Mariaux J. 1991.
Cestodes of birds from the Ivory Coast. *Yapolepis yapolepis* n. g., n. sp., a new metadilepidid (Cyclophyllidea: Paruterinoidea) parasite of the icterine greenbul (*Aves: Pycnonotidae*).
Systematic Parasitology 18: 187-191.

Mariaux, J. & Georgiev, B.B.
1991.
An unusual scolex structure of cestodes from the rufous-chested swallow, *Hirundo semirufa*.
Journal of African Zoology 105: 131-134.

Mariaux J. 1991.
Cestodes of birds from the Ivory Coast. Species of the genus *Anonchotaenia* Cohn, 1900.
Systematic Parasitology 20: 109-120.

Mariaux, J.; Bona, F.V. & Vaucher, C. 1992.
A new genus of Metadilepididae (Cestoda: Cyclophyllidea) parasitic in *Terpsiphone rufiventer* (Aves: Muscicapidae) from the Ivory Coast.
Journal of Parasitology 78: 309-313.
Jean MARIAUX et Claude VAUCHER
Pseudochoanotaenia eburnea n. sp.
(Cestoda: Cyclophyllidea)
parasite de cinq espèces de Cisticola
(Aves: Passeriformes) en République de Côte-d'Ivoire
Avec 3 figures

GENÈVE
IMPRIMERIE SRO-KUNDIG
AVRIL 1988
Pseudochoanotaenia eburnea n. sp.
(Cestoda: Cyclophyllidea)
parasite de cinq espèces de Cisticola
(Aves: Passeriformes) en République de Côte-d’Ivoire
par
Jean MARIAUX * et Claude VAUCHER **

Avec 3 figures

ABSTRACT

Pseudochoanotaenia eburnea n. sp. (Cestoda: Cyclophyllidea) parasite in five species of the bird genus Cisticola in Ivory Coast. — The authors describe in this paper a new specie of Pseudochoanotaenia parasite in passerine birds of the genus Cisticola. This new specie is easily distinguished from the two other known species by the presence of minute spines on the suckers and by the particular structure of the rostellum.

La faune des Cestodes d'Oiseaux de Côte-d'Ivoire a été très peu étudiée comme le montre le travail de BAER (1972). C'est pourquoi nous avons entrepris de compléter cette lacune et, à la suite d'une première mission sur le terrain en 1985, nous avons réuni un abondant matériel. Nous présentons ici la description d'un parasite appartenant à un genre peu commun récolté chez différentes espèces d'Oiseaux Sylviidés.

MATÉRIEL ET MÉTHODES

Les Oiseaux ont été capturés au filet et gardés vivants jusqu'au moment où ils ont été endormis puis tués à l'éther sulfurique et immédiatement autopsiés. Le tube digestif

* Institut de Zoologie de l'Université, Chantemerle 22, CH-2007 Neuchâtel, Suisse.
** Muséum d'Histoire naturelle, case postale 434, CH-1211 Genève 6, Suisse.
1 Cette publication fait partie de la thèse du premier auteur.
a été prélevé, sectionné en plusieurs tronçons qui ont été fendus sur toute leur longueur. Les Cestodes récoltés ont été fixés au formol 5% bouillant puis conservés dans le même liquide jusqu'à leur examen. Les individus préparés entre lame et lamelle ont été colorés au carmin chlorhydrique alcoolique, ceux qui sont destinés à être observés au microscope électronique à balayage ont été déshydratés dans l'alcool puis l'acétone, séchés dans un appareil à point critique à CO2, recouverts d'une pellicule de charbon et d'or puis observés avec un microscope Phillips PSEM 500. Les exemplaires restants sont conservés dans l'alcool 70%. Les dépouilles des hôtes ont été préservées dans une solution de phénoxétol et de formol (WEBER et al. 1984), puis remises au Muséum d'Histoire naturelle de Genève (MHNG). Mis en peaux, les Oiseaux sont disponibles pour la confirmation de l'identification.

Pseudochoanotaenia eburnea n. sp.

DESCRIPTION:

Le scolex ne se délimite pas nettement du corps. La zone de croissance est courte et la strobilation apparaît très rapidement. Les anneaux sont tous plus longs que larges. Les pores génitaux débouchent latéralement au premier quart environ de la longueur du proglottis. Ils alternent irrégulièrement. Les canaux excréteurs dorsaux sont très fins, les canaux excréteurs ventraux sont joints dans la partie postérieure de chaque segment par un canal transversal parfois particulièrement difficile à discerner.

S c o l e x : (fig. 1). Il porte 4 ventouses circulaires recouvertes autant sur leur pourtour que dans leur fond de minuscules épines disposées très régulièrement (fig. 2). La poche du rostre est longue et dépasse très nettement l'extrémité postérieure des ventouses. Elle détermine le plus souvent une légère protubérance à l'apex du scolex au centre de laquelle se trouve un pore communicant avec une cavité allongée qui se prolonge jusqu'au rostre. Dans la portion antérieure de la poche, on trouve un sphincter formé de muscles circulaires ainsi que des structures chromophiles qui rappellent des organes glandulaires. Le rostre proprement dit est petit, ovoïde et inerme. Il est situé au fond de la poche.

Appareil génital mâle: (fig. 3). Les testicules sont répartis dans la partie postérieure du proglottis, dans l'espace compris entre les canaux excréteurs et la glande vitellinogène. Ils sont disposés les uns à côté des autres sur une seule couche. Le canal déférent est d'abord large au niveau de l'ovaire puis se rétrécit et forme de nombreuses circonvolutions en se rapprochant de la poche du cirre. Cette dernière dépasse très nettement les canaux excréteurs sans atteindre toutefois le milieu du proglottis. Elle passe, de même que le vagin, entre les canaux excréteurs ventraux et dorsaux. Aucune ornementation n'est visible sur le cirre. Il n'y a pas de vésicules séminales.

Appareil génital femelle: l'ovaire est formé de deux ailes lobées de tailles inégales, l'aile porale étant moins développée que l'aile aporale. La glande vitellogène, massive et de contour irrégulier, est située postérieurement à l'ovaire. L'ootype est central, entre la glande vitellogène et les deux ailes postérieures de l'ovaire. Le vitelloducte est dorsal, le canal séminal ventral. Le vagin s'ouvre postérieurement à la poche du cirre, au fond d'un court atrium. La paroi de sa partie copulatrice est relativement forte et il s'élargit après ce premier segment en une sorte de réservoir. Le réceptacle séminal proprement dit est central. Il est disposé dorsalement par rapport à l'ovaire.
Pseudochoanotaenia eburnea n. sp. Scolex en préparation totale. Echelle 50 μm.

A n n e a u x g r a v i d e s : ces anneaux sont toujours nettement plus longs que larges. Une ébauche utérine dorsale est facilement observable sur les anneaux matures âgés mais semble disparaître très rapidement. Ainsi, il n'y a pas d'utérus gravide visible, ni sur les individus montés in toto ni sur les coupes minces. Nous admettons donc que l'utérus se dissocie en capsules contenant un seul œuf. L'embryophore, ovale, possède deux renflements polaires. Les capsules sont réparties dans la quasi totalité du proglottis et dépassent latéralement les canaux excréteurs.

Les dimensions sont résumées dans le tableau ci-après.

M a t é r i e l e x a m i n é :
Holotype MHNG 985.581 parasite de *Cisticola galactotes amphilecta* Reichw., Adiopodoumé (20 km W d'Abidjan), 16-IX-1985. Paratypes 985.582, coparasites de l'holotype.
	P. eburnea	*P. collocaiae*	*P. collocaiae*	*P. melipagidaru*	*P. melipagidaru*
Présent travail					
L × 1 max (mm)	20 × 0.9	6-10 × 0.6-0.9	12 × 1	12 × 1	env. 45
N anneaux max	44	55		79	
Ø scolex	202-250	165-200	297-330	290-366	env. 200
L × 1 (ou Ø) ventouses	98-140 × 83-114	95-120	160-180 × 133-137	160-180 × 130-150	58-68
Ventouses	Armées	Inermes	Inermes	Inermes	
L × 1 poche du rostre	180-240 × 49-59	140-210 × 66-82	411 × 137 (l)	200-250 × 53-65	97 × 42
L × 1 poche du cirre	70-93 × 36-50	120 × 23	170-206 × 23-27	150-175 × 25-30	120-130 × 30
Cirre	Inermes		Inermes	Inermes	
N testicules	21 (17-26)	14 (12-15)	10-12	11-13	env. 20
Ø testicules	42-51	55-65	57	56-65	36-47
L × 1 (ou Ø) capsules	43-50 × 33-35	24-27 (œufs jeunes)	59	36-48	50-70
Crochets de l’oosphère	12-14				15
Utérus	Capsules à un œuf	Réticulé puis capsules à un œuf	Capsules à un œuf	Capsules à un œuf	Réticulé

Tableau: Comparaison des principales dimensions et caractéristiques des espèces du genre *Pseudozoanotaenia* Burt, 1938 (L: longueur; l: largeur; N: nombre; Ø: diamètre) (*: comme Johnston). Toutes les mesures sont exprimées en µm, sauf indication contraire.

JEAN MARIAUX ET CLAUDE VAUCHER
Figure 2.

Pseudochoanotaenia eburnea n. sp. Scolex. A) Vue générale. B) Détail du rostre et du tégument. C) et D) Épines du tégument de la ventouse. Échelles: A) 20 µm B) 10 µm C) 1 µm D) 0.5 µm.
FIGURE 3.

Pseudochoano taenia eburnea n. sp. Anneau mature. Echelle 100 µm.
Autre matériel: nombreux individus parasites de *Cisticola cantans swanzii* (Sharpe), *C. e. erythropus* (Hartlaub), *C. l. lateralis* (Fraser), *C. natalensis strangei* (Fraser), MHNG 985.583-985.591, Adiopodoumé et Lamto (150 km NW d'Abidjan), 17.VII-22.IX.1985.

Localisation: portion antérieure de l'intestin.

Prévalence: 12/50 (24%).

Intensité: 1 — env. 20 individus.

DISCUSSION

Les caractères du scolex et de l'anatomie du Cestode que nous venons de décrire montrent qu'il appartient au genre *Pseudochoanotaenia* Burt, 1938 (Dilepididae, Dipylidiinae). La particularité la plus originale de ce genre est sans doute la présence d'un rostre inerme, caractéristique partagée uniquement avec le genre *Eugonodaeum* Beddard, 1913 dans la sous-famille concernée. Seules deux espèces de *Pseudochoanotaenia* sont connues à ce jour (Schmidt 1986): *P. meliphagidarum* (Johnston, 1911) décrit dans le sud-est de l'Australie chez diverses espèces de Meliphagidae et retrouvé dans la même région chez les mêmes hôtes par Schmidt (1972); *P. collocaliae* Burt, 1938 découvert à Ceylan chez *Collocalia unicolor* (Apodidae). Baer (1959) le retrouve chez *Apus caffer*, un autre martinet, mais cette fois au Zaïre. En outre, Kornyushin & Pronina (1983) identifient *P. collocaliae* chez un martinet indéterminé à Kiev et Galkin, toujours en 1983, croit le retrouver (scolex sans strobila) chez *Apus apus*. Cette espèce a donc une répartition étonnamment vaste.

Notre matériel se distingue de ces deux espèces par plusieurs caractères importants. L'anatomie du scolex en particulier diffère nettement: tous nos exemplaires présentent une poche du rostre qui se prolonge bien au-delà de l'extrémité postérieure des ventouses alors que cette poche, tant chez *P. meliphagidarum* que chez *P. collocaliae*, atteint à peine ce niveau. La structure même de la poche est originale, les deux autres espèces n'ayant pas un rostre enfoncé si profondément. De plus, les ventouses ne sont pas armées chez les deux espèces déjà décrites.

En ce qui concerne les systèmes génitaux, notre matériel diffère de *P. meliphagidarum* par une poche du cirre plus courte et plus large et par un cirre inerme. Il se distingue de *P. collocaliae* également par la taille du cirre ainsi que par le nombre et la taille des testicules. Enfin, l'utérus réticulé observé par Johnston (1911), Burt (1938) et Schmidt (1972) avant la formation des capsules, n'existe pas.

Nous concluons donc que notre matériel appartient à une espèce nouvelle et proposons de la nommer *Pseudochoanotaenia eburnea* n. sp.

La présence d'un représentant du genre *Pseudochoanotaenia* chez des Sylviidés nous paraît intéressante à relever. Cette famille d'Oiseaux n'a guère d'affinités taxonomiques avec celles hébergeant les deux autres espèces du genre, à savoir les Meliphagidae et les Apodidae, ces derniers n'étant d'ailleurs pas des Passeriformes. *P. eburnea* est bien répandue chez les cisticoles ivoiriennes, en région de savane comme en Basse Côte.
REMERCIEMENTS

Nous remercions les autorités ivoiriennes pour les permis de récolte qu’elles nous ont procurés ainsi que la Commission du Centre suisse de Recherches scientifiques, et en particulier le professeur A. Aeschlimann, qui nous a permis de réaliser le travail de terrain. Nous remercions également M. le Professeur B. Hörling (Berne) pour la mise à disposition de sa bibliothèque, le Dr L. de Roguin (Genève) pour les déterminations d’Oiseaux, le Dr F. Puylaert (Tervuren) pour le prêt de matériel ainsi que M. O. Porgo pour son aide sur le terrain.

Ce travail a bénéficié de la Bourse de Voyage de la Société helvétique de Sciences naturelles (SHSN).

BIBLIOGRAPHIE

BAER, J. G. 1959. Exploration des Parcs nationaux du Congo belge. Mission J. G. Baer-W. Gerber (1958). Fascicule 1. Helminthes parasites. Institut des Parcs nationaux du Congo belge, Bruxelles. 163 pp, VIII planches.
— 1972. Liste critique des parasites (Monogènes, Cestodes et Trématodes) et de leurs hôtes en République de Côte-d’Ivoire. Acta trop. 29: 341-361.
BURT, D. R. R. 1938. A new Avian Cestode Pseudochoanotaenia collocaliae gen. et sp. nov. (Dypilidiinae), from Collocalia unicolor unicolor. Ceylon J. Sci. (B) 21 (1): 15-20.
GALKIN, A. K. 1983. The Cestodes of Apus apus L. on the Kurskii Spit. Trudy zool. Inst. Leningr. 121: 57-67 (en russe).
JOHNSTON, T. H. 1911. New Species of Avian Cestodes. Proc. Linn. Soc. NSW 36: 58-80.
KORNYUSHIN, V. V., A. V. PRONINA. 1983. Bird Cestodes new for the USSR and the Ukraine. Vest. Zool 6: 63 (en russe).
SCHMIDT, G. D. 1972. Cyclophyllidean Cestodes of Australian Birds, with Three New Species. J. Parasit. 58 (6): 1085-1094.
— 1986. CRC Handbook of Tapeworm Identification. CRC Press Inc. Boca Raton, Florida. 675 pp.
WEBER, C., T. JACCOUD, A. DE CHAMBRIER. 1984. A Temporary Field Fixing and Preserving Solution for Ornithological Collecting. Curator 27 (4): 281-286.
Cestodes d’oiseaux de Côte-d’Ivoire. II. Parasites de Coraciiformes et Piciformes*

J. Mariaux1 et C. Vaucher2
1Institut de Zoologie, Université-Mail, CH-2007 Neuchâtel, Suisse
2Muséum d’Histoire Naturelle, CP 434, CH-1211 Genève 6, Suisse

Accepted for publication 31st October, 1988

Résumé

Les cestodes récoltés en Côte d’Ivoire chez deux ordres d’oiseaux, les Coraciiformes et les Piciformes, sont présentés. Un nouveau genre, \textit{Thaumasiolepîs} (Hymenolepididae, Hymenolepidinae), est créé et discuté. Il comprend des cestodes récoltés chez différentes espèces de Capitonidae et caractérisés par des crochets rostraux spiniformes tout à fait originaux. L’espèce \textit{T. microarmata} est créée pour ce matériel. D’autre part deux nouveaux \textit{Railliétina} de Picidae, \textit{R. (S.) campetherae} et \textit{R. (P.) yapoensis} sont décrits. \textit{R. (S.) campetherae} est la première espèce de ce sous genre trouvée chez les Piciformes. \textit{Biuterina meropina macrancistrota} est trouvé chez \textit{Merops albicollis}. Ce taxon est élevé au rang d’espèce et devient par conséquent \textit{B. macrancistrota} Fuhrmann, 1908. \textit{Skrabinoporus merops} (Woodland, 1928) Spassky & Borgarenko, 1960 est retrouvé. Cette espèce peu commune est redécrite et sa position parmi les Metadilepididae confirmée. Enfin, \textit{Raillietina cf (P.) bargetzii} Mahon, 1954 est signalé chez \textit{Gymnobucco calvus}.

Abstract

Cestodes collected in the two bird orders, the Coraciiformes and the Piciformes, in the Ivory Coast are presented. The new genus \textit{Thaumasiolepîs} (Hymenolepididae, Hymenolepidinae) is created and discussed. It includes cestodes collected in two species of the Capitonidae. Its main characteristic is the presence of very unusual spiniform hooks. The species \textit{T. microarmata} is created for this material. We also describe two new species of \textit{Raillietina} parasitising the Picidae, \textit{R. (P.) yapoensis} and \textit{R. (S.) campetherae}, the latter being the first species of this subgenus recorded from the Piciformes. In addition, \textit{Biuterina meropina macrancistrota} has been found in \textit{Merops albicollis}. We recognize a full specific status for this taxon which becomes \textit{B. macrancistrota} Fuhrmann, 1908. \textit{Skrabinoporus merops} (Woodland, 1928) Spassky & Borgarenko, 1960 has been rediscovered. This rare species is redescribed and its position among the Metadilepididae is confirmed. Finally, \textit{Raillietina cf (P.) bargetzii} Mahon, 1954 is recorded from \textit{Gymnobucco calvus}.

* Ce travail fait partie de la thèse du premier auteur.
Introduction

Les parasites d'oiseaux africains sont mal connus et, parmi eux, les cestodes sont particulièrement peu étudiés. Cette constatation nous a amenée à entreprendre la présente étude et à nous rendre par deux fois en Côte d'Ivoire, en été 1985 et en hiver 1987. C'est donc dans le cadre d'un travail plus vaste, consacré à la faune des cestodes d'oiseaux de ce pays, que nous présentons ici les résultats concernant deux ordres d'hôtes, les Coraciiformes et les Piciformes.

Matériel et méthodes

Notre méthode de travail est décrite dans une précédente publication (Mariaux & Vaucher 1988). Rappelons que les oiseaux sont capturés au filet puis sacrifiés à l'éther sulfurique et disséqués immédiatement. Les cestodes sont fixés au formol neutralisé à 4% bouillant et colorés au carmin chlorhydrique alcoolique. Les dépouilles des hôtes, temporairement conservées dans une solution à base de phénoxétol (Weber et al., 1984) sont mises en peau au Muséum d'Histoire Naturelle de Genève (MHNG).

Tout le matériel présenté dans ce travail est déposé au MHNG.

Parasites de Coraciiformes

Parasites de Meropidae

Biuterina macrancistrota Fuhrmann, 1908 n. stat.

Description

(Cyclophyllidea, Paruterinidae). Vers de taille moyenne à anneau légèrement craspédotès. Les proglottis sont plus larges que longs excepté dans les derniers anneaux gravides. Le scolex porte 4 ventouses circulaires inermes ainsi qu'un rostre armé d'une double couronne de crochets triangulaires de tailles inégales (Fig. 1). Il n'y a pas de poche du rostre sensu stricto mais simplement une masse musculaire en forme de cupule (Fig. 2). Les testicules sont disposés sur plusieurs couches dans la région postérieure du proglottis. La poche du cirre est ovale, rétrécie dans sa partie terminale. Elle s'ouvre au premier tiers environ de la longueur du segment et dépasse les canaux excréteurs sans atteindre le milieu du proglottis. Le cirre est inerme. Les pores génitaux alternent irrégulièrement. Le vagin est rectiligne, sa paroi est relativement épaisse et il débouche ventralement à la poche du cirre. On observe un réceptacle séminal allongé central et dorsal. L'ovaire est massif et central. La glande vitellienne, très développée, est située postérieurement à l'ovaire (Fig. 3). L'utérus évolue rapidement. Il prend d'abord un aspect régulier antérieurement à l'ovaire, il se développe ensuite dorsalement en prenant une forme de chevron, la pointe dirigée vers l'avant, puis devient globuleux avant de se scinder en 2 parties circulaires reliées par un isthme dans la moitié postérieure du proglottis. Parallèlement un organe parutérin allongé et important se développe centralement. Il enrobe progressivement l'utérus jusqu'à l'entourer complètement dans les anneaux les plus avancés que nous possédons (Fig. 4).

Dimensions*

Longueur max.: env. 22 mm
Largeur max.: 560
Anneaux matures: 148–212 × 287–400
Anneaux gravides: 390–750 × 293–585
No. proglottis max.: env. 180
Diam. scolex: 283–332
Diam. ventouses: 132–160
No. crochets: 43–49
L. crochets 1ère rangée: 38–44
L. crochets 2ème rangée: 28–34
Poche du cirre: 89–113 × 34–40
No. testicules: 8–11
Diam. testicules: 30–43
Organe parutérin (max.): 560 × 235
Oeufs: 33–38 × 21–26
L. crochets embryonnaires: 15–17

* Sauf indication contraire, toutes les mesures sont exprimées en µm.
Figs 1–4. *Biuterina macrancistrota*. 1. Crochets du rostre. 2. Scolex. 3. Anneau mature. 4. Evolution de l’utérus et de l’organe parutérin dans les anneaux gravi des. *Echelles*: 1, 20 μm; 2, 3, 50 μm; 4, 100 μm.

Matériel examiné: 11 individus (MHNG 987.221–2) provenant de 2 *Merops albicollis* Vieillot. Adiopodoumé (20 km W d’Abidjan), 15.1 et 2.2 1987.

Localisation: Intestin moyen et postérieur.

Prévalence: 2/8 (25%).

Intensité: 6–8 individus.

De plus: (a) Trois lames de *Biuterina meropina macrancistrota*. MHNG 49/72–74. De *Merops apiaster*. Matériel de Fuhrmann, origine non précisée. (b) 24 lames marquées *Biuterina meropina*. MHNG 49/63–71, 75–89. De *Merops superciliosus* et *M. albifrons*. Statut incertain, pas de scolex. Matériel de Fuhrmann, origine non précisée.

Discussion

Nous connaissons aujourd’hui entre 30 et 40 espèces de *Biuterina*, mais il semble que seules deux ou trois d’entre elles soient parasites de Coraciiformes. En effet, la plupart des espèces originellement décrites comme telles se sont révélées appartenir à d’autres genres (Bona & Maffi, 1984). Seuls subsistent *B. fallax* Meggitt, 1928, *B. meropina* (Krabbe, 1869) Fuhrmann, 1908 et *B. meropina macrancistrota* Fuhrmann, 1908 comme parasites de ce groupe d’oiseaux. Nous relevons les caractéristiques de ces trois taxa dans le tableau I et les comparons aux dimensions relevées sur notre propre matériel. D’autre
Description	B. fallax (Meggitt, 1928)	B. meropina (Krabbe, 1869)	B. macrancistota (Fuhrmann, 1908)	Révision	Southwell & Lake (1939)	Present travail
Corps (mm)	20 × 0.4–0.5	40 × 1	–	25 × 0.75	30 × 1	22 × 0.55
No. crochets	18–20	40	40	–	±40	44–49
Crochets I (longueur)	–	27	45	±40–50	38	38–44
Crochets II (longueur)	–	22	36	±28–30	26	28–34
No. testicules	12	–	8–10	–	8	8–11
Poche du cirre	90 × 26	117–133 × 28–33*	95–125 × 36–42	95–125	89–113 × 34–40	longue et étroite
Crochetons embryonnaires	–	10	–	–	–	–
Hôtes	Merops apiaster	Merops superciliosus	Merops apiaster, M. albicollis, M. nubicoides, Melitophagus albifrons, Dryoscopus angolensis	–	–	–
Localités	Afrique	Egypte, Madagascar, Europe	Afrique, Asie, Europe, URS	Côte-d'Ivoire		

*Propre mesure.
part, la description originale de B. m. macrancistrota étant lacunaire, nous avons réexaminé le matériel de Fuhrmann. Malgré le mauvais état de conservation de celui-ci, nous avons pu compléter partiellement la description originale, et établir son identité avec notre propre matériel.

La question de la validité de la sous-espèce mérite toutefois d’être posée. Comme le montre le tableau, il n’existe de différence notable entre les deux taxa que pour la taille des crochets rostraux et embryonnaires. Le reste de l’anatomie, par ailleurs fort mal connue (cf Mathevossian, 1969), ne permet pas de plus ample comparaison. Cependant, les différences considérées étant nettes, il nous paraît important de distinguer le matériel de Krabbe (1869) de celui de Fuhrmann (1908), de Southwell et Lake (1939) et du nôtre. Nous proposons par conséquent d’élèver cette sous-espece au rang d’espèce et de la désigner désormais sous le nom de B. macrancistrota Fuhrmann, 1908.

Skrjabinoporus merops (Woodland, 1928)
Spassky & Borgarenko, 1960

Description

(Cyclophyllidea, Paruterinoidea, Metadilepididae). Vers de taille moyenne à anneaux légèrement plus larges que longs sauf dans les derniers anneaux gravides. Scolex pourvu de 4 ventouses inertes de forme très allongée caractéristique (Fig. 5). Rostre muni d’une double couronne de crochets à lame très courte et à garde bien développée (Fig. 6). Les crochets présentent la particularité d’être courts sur les côtés du scolex pour devenir progressivement plus longs sur les faces ventrales et dorsales (Fig. 7). La poche du rostre est absente mais une puissante masse musculaire en forme de coupe porte les crochets. Le cou est bien marqué. Les testicules sont le plus souvent disposés postérieurement mais sont parfois partiellement superposés à l’ovaire. Ils sont antérieurs ou superposés à la glande vitellogène. La poche du cirre débouche unilatéralement au milieu du segment, sur le côté gauche du vers. Elle dépasse les canaux excréteurs d’un quart de sa longueur au plus. Les conduits génitaux sont ventraux par rapport aux canaux excréteurs. Le vagin débouche dorsalement et légèrement postérieurement à la poche du cirre. C’est un conduit qui possède une paroi bien marquée. Il est rectiligne dans sa première partie mais s’incurve nettement vers l’arrière à partir du centre de l’anneau. Nous n’observons pas de vésicules séminales développées. L’ovaire est antérieur, il a une forme de ‘V’, la pointe dirigée vers l’avant de l’anneau. La glande vitellogène est particulièrement développée et massive. Elle est située dans la partie postérieure du proglottis (Fig. 8). L’utérus apparaît dorsalement et légèrement antérieurement à l’ovaire. Il est d’abord lobé puis prend une forme régulière, sacciforme, dans les anneaux pleinement gravides. Dans ces derniers, il montre souvent une surface plissée transversalement (Fig. 9). Les œufs sont ovales, réguliers. Les canaux excréteurs présentent la particularité d’être inversés, c’est-à-dire que le canal ventral poral se trouvera en position dorsale du côté aporal. Le canal excréteur transversal manque dans certains anneaux.

Dimensions

Les principales dimensions sont données dans le tableau II.

Matériel examiné: Un individu (MHNG 987.223) provenant d’un Merops gularis (Shaw & Nodder), Mont Tonkui, 8.4.87 et 2 individus (MHNG 987.224) provenant d’un Merops albicollis Vieillot, Station ORSTOM de Man, 11.4.87.

Localisation: Intestin.

Prévalence: 1/2 M. gularis, 1/8 M. albicollis.

Intensité: 1–2 individus.

De plus: 9 lames Lateriporus merops (BMNH 1966.1.13.56–66), paratypes. Parasites de Merops apiaster. Soudan.
Figs 5-6 et 8-9. *Skrabinoporus merops*. 5. Scolex. 6. Crochets du rostre. 8. Anneau mature. 9. Evolution de l'utérus dans les anneaux gravides. (Seuls l'utérus, l'ovaire, la glande vitellogène et les canaux excréteurs principaux sont représentés pour la clarté du schéma). Echelles: 5, 50 μm; 6, 5 μm; 8, 50 μm; 9, 100 μm.
Quelques détails diffèrent toutefois entre la des-

dorsales, se réduisant latéralement à une seule
rangées de crochets sur leurs faces ventrales et
demi-couronnes constituées chacune de deux
du matériel-type, toutefois difficile à interpréter,
que celle décrite par Woodland (1928) puis par
Spassky & Borgarenko (1960) observent deux
Woodland (1928) ne voyait qu'une seule
couronne; ayant pu réexaminer une préparation
sur le rostre. Nous observons dans notre matériel
au nombre de testicules plus élevé.

Par rapport à la description de Woodland, il
faut relever que les canaux génitaux sont ven-
traux par rapport aux canaux excréteurs et non
dorsaux, de plus le diamètre du scolex donné par
cet auteur est manifestement erroné. La descrip-
tion de Spassky & Borgarenko se distingue des
autres par un nombre de testicules plus élevé.

Enfin, hormis les dimensions des crochets,
d'autres divergences concernent leur disposition
sur le rostre. Nous observons dans notre matériel
deux couronnes sur tout le pourtour du scolex.
Woodland (1928) ne voyait qu'une seule
couronne; ayant pu réexaminer une préparation
du matériel-type, toutefois difficile à interpréter,
oubs avons également deux couronnes. Enfin
Spassky & Borgarenko (1960) observent deux
demi-couronnes constituées chacune de deux
rangées de crochets sur leurs faces ventrales et
dorsales, se réduisant latéralement à une seule

Discussion

L'ensemble de nos observations montre que
notre matériel appartient bien à la même espèce
que celle décrite par Woodland (1928) puis par
Spassky & Borgarenko (1960) (Tableau II). Quelques détails diffèrent toutefois entre la des-
cription originale, notre révision du matériel
type, la description de Spassky & Borgarenko et
nos propres observations.

Par rapport à la description de Woodland, il
faut relever que les canaux génitaux sont ven-
traux par rapport aux canaux excréteurs et non
dorsaux, de plus le diamètre du scolex donné par
cet auteur est manifestement erroné. La descrip-
tion de Spassky & Borgarenko se distingue des
autres par un nombre de testicules plus élevé.

Enfin, hormis les dimensions des crochets,
d’autres divergences concernent leur disposition
sur le rostre. Nous observons dans notre matériel
deux couronnes sur tout le pourtour du scolex.
Woodland (1928) ne voyait qu’une seule
couronne; ayant pu réexaminer une préparation
du matériel-type, toutefois difficile à interpréter,
nous observons également deux couronnes. Enfin
Spassky & Borgarenko (1960) observent deux
demi-couronnes constituées chacune de deux
rangées de crochets sur leurs faces ventrales et
dorsales, se réduisant latéralement à une seule

Tableau II. Principales dimensions et caractéristiques de Skrjabinoporus merops (Woodland, 1928). Spassky & Borgarenko, 1960. (Toutes les dimensions sont en micromètres, sauf indication contraire).

Description	Matériel de Woodland (1928)	Description originale	Spassky & Borgarenko (1960)
Anneaux muraux	0.17-0.23 x 0.35-0.38	0.33 x 0.5	0.17-0.23 x 0.35-0.38
Anneaux graviens	0.41-0.44 x 0.56-0.73	0.26	0.66-0.89 x 0.73-0.76
Largeur scolex (mm)	0.18	0.26	0.28-0.335
Nombre de crochets	22-36	22	22-30
Longueur des crochets (mm)	21-26	22	18-24
Nombre de testicules ventraux	8-12	10-12	1 ou 2 couronnes selon le secteur
Canaux génitaux dorsaux	77-96 x 30-36	150 x 40	90-120 x 30-40
Poche du citre			
Hôtes			Tadzitan
Localités			Merganser, M. albicollis

Cestodes d’oiseaux de Côte-d’Ivoire. II. 123
rangée. Selon ces auteurs, ces deux demi-couronnes sont indépendantes et ne se rejoignent pas sur les côtés. Plus récemment (1981), Borgarenko admet toutefois que les deux demi-couronnes peuvent se superposer latéralement. Nous admettons pour notre part la présence de deux couronnes de crochets chez *S. merops*.

Précisons finalement que la disposition inversée des canaux excréteurs n'est pas relevée par les auteurs russes. Cette particularité est observable tant sur notre matériel que sur celui de Woodland. Ce critère supplémentaire confirme l'originalité de cette espèce et la nécessité de la placer dans un genre particulier, ce que firent Spassky & Borgarenko (1960). La position systématique de ce dernier, *Skrjabinoporusrus*, a varié: il fut d'abord placé dans la sous-famille des Metadilepidinae (Dilepididae) créée par Spassky (1959). Cette sous-famille, élevée au rang de famille, fut déplacée au sein des Paruterinoidea par Spasskaja & Spassky (1971). Les Metadilepididae regroupent, à notre avis judicieusement, trois genres dépourvus d'organes parutérins, pour cela auparavant placés parmi les Dilepididae, mais présentant d'autres caractéristiques les rapprochant des Paruterinidae.

En effet, malgré des ventouses atypiques parce que très allongées, le scolex est comparable à ceux rencontrés chez les Paruterinidae: d'une part le trajet sinueux des canaux excréteurs derrière les ventouses et à la base du coussinet musculaire ainsi que les crochets à manche légèrement antérieure, comme chez de très nombreux Paruterinidae.

Signalons enfin que si aucun genre dépourvu d'organe parutérin n'est connu chez les Paruterinidae, il en existe chez qui cet organe est singulièrement peu développé ou même (*Deltokeras*) remplacé par une paroi particulièrement épaisse de l'utérus accompagnée d'une densification du parenchyme environnant. Cette transformation du parenchyme peut être plus ou moins étendue et dense suivant les espèces, et dans notre cas elle semble avoir disparu (ou presque), tandis qu'un certain épaississement de la paroi de l'utérus subsiste.

En conclusion, nous estimons comme Spasskaja & Spassky en 1971, que *Skrjabinoporusrus* appartient bien à une unité taxonomique proche mais indépendante des Paruterinidae. Nous confirmons donc la validité de la famille des Metadilepididae (Paruterinoidea) (Spassky, 1959) créée par ces auteurs pour les genres *Metadilepis*, *Proparuterina* et *Skrjabinoporusrus*.

Parasites de Piciformes

Parasites de Capitonidae

Thaumasiolepis microarmata *n. g.*, *n. sp.*

Description

(*Cyclophyllidea, Hymenolepididae, Hymenolepidinae). Vers de taille moyenne à anneaux toujours plus larges que longs. Le scolex est fin et porte 4 petites ventouses circulaires, inermes (Fig. 10). La poche du rostre est allongée, elle atteint le niveau du premier tiers des ventouses environ (Fig. 11). Le rostre lui-même est petit, globuleux et armé d'un nombre variable de très petits crochets, presque des épines, répartis sur une couronne irrégulière (Fig. 12). Il y a un testicule poral et 2 antiporals qui sont le plus souvent l'un devant l'autre, mais parfois aussi partiellement superposés. Les canaux efférents se rejoignent dans le centre de l'anneau en un canal déférent qui débouche dorsalement dans une vésicule séminale externe. Elle-même rejoint une
Figs 10–14. Thaumasiolepis microarmata. 10. Scolex. 11. Poche du rostre. 12. Crochets du rostre. 13. Anneau mature. 14. Anneaux gravides. (Schéma simplifié ne représentant que l'utérus, le réceptacle séminal et la poche du cirre). Échelles: 10, 100 μm; 11, 20 μm; 12, 5 μm; 13, 100 μm; 14, 200 μm.

vésicule séminale interne située dans une poche du cirre de dimension modeste dépassant de peu les canaux excréteurs poraux. Le cirre est inerme. Il débouche un peu en avant du milieu du proglottis. La glande vitellienne est compacte et ventrale. L'ovaire est étalé mais plutôt massif; il est, lui aussi, ventral par rapport aux organes mâles. Le vagin débouche ventralement à la poche du cirre. Il ne présente pas d'ornements et est suivi par un réceptacle séminal qui peut présenter un développement important. Ce réceptacle est ventral et est superposé à la vésicule séminale externe (Fig. 13). L'utérus est relativement régulier, réniforme. La persistance du réceptacle séminal en position dorsale paraît accentuer cette forme et lui donne un aspect caractéristique de fer à cheval (Fig. 14). Il renferme des œufs ovales à bordure irrégulière contenant des oncosphères particulièrement petites. Les canaux génitaux passent entre les canaux excréteurs. Ces derniers ne sont qu'imparfaitement reliés dans les parties postérieures des anneaux et les canaux transversaux manquent même parfois totalement.
Dimensions

Longueur max.: 29 mm
Largeur max.: 0.9 mm
Anneaux matures: 122–220 × 634–732
Anneaux gravides: 268–366 × 707–830
No. anneaux max.: ±185
Diam. scolex: 343–422
Diam. rostre: 22–30
Diam. ventouses: 137–195
No. crochets: variable; 16–34
L. crochets: ±4–5.5
Poche du rostellum: 110–188 × 59–82
Poche du cirre: 118–148 × 47–59
Testicules: 61–92 × 113–153
Vésicule séminale externe: 80–95 × 60–71
Ovaire (largeur maximale): 375
Glande vitellogène: 52–71 × 90–170
Oeufs: 33–38 × 24–30
Diam. oncosphères: 8.5–10.5
L. crochetons embryonnaires: ±3.5–5

Matériel examiné: 13 individus avec scolex et fragments (MHNG 987.225–7) provenant de 2 Lybius dubius (Gmelin). Ouango-Fitini (210 km E de Korhogo), 23.1.1987 ainsi que 6 individus avec scolex et fragments (MHNG 987.228–9) provenant de 2 Gymnobucco c.calvus (Lafresnaye). Forêt classée de l’ORSTOM, Adiopodoumé (20 km W d’Abidjan), 13.3 et 16.4.1987.

Localisation: Intestin.
Prévalence: 2/2 chez les deux hôtes.
Intensité: 2–11 ind. pour L.dubius et 2–4 ind. pour G.calvus.

Discussion

Cet Hymenolepididae présente la particularité d’associer une anatomie des organes reproducteurs classique à une morphologie du rostre très particulière. Cette originalité nous permet de le séparer nettement des genres déjà existants. Nous estimons en effet que ces crochets en forme d’épine ne doivent pas être considérés comme anormaux ou résultant d’un développement avorté, ceci pour deux raisons: d’une part ils sont très semblables d’un scolex à l’autre et d’autre part cette caractéristique se retrouve sur des individus provenant d’hôtes et de localités différentes.

Ce point acquis, il est aisé de montrer que parmi les Hymenolepidinae à trois testicules, aucun genre ne peut actuellement inclure notre matériel. L’absence de différenciation morphologique particulière au niveau du cirre, du vagin et de l’atrium génital le rapproche de Passerilepis Spassky & Spasskaja, 1954 et Variolepis Spassky & Spasskaja, 1954, essentiellement parasites d’oiseaux terrestres, voire de Vampirolepis Spassky, 1954 parasite de mammifères. Passerilepis, en particulier, peut présenter un utérus très comparable à celui de notre matériel. Mais ces trois genres possèdent des couronnes de crochets simples et bien régulières; ces derniers montrent un manche développé leur conférant un aspect caractéristique (type fraternoïde cf Schmidt 1986, p. 324). Les Dicranotaenia Railliet, 1892, aux crochets de type “aploparaxoïde” (Schmidt 1986, p. 320), souvent courts, pourraient eux aussi rappeler notre matériel. Les lames et gardes bien développées de leurs crochets les caractérisent toutefois suffisamment pour les en séparer. De plus, les Dicranotaenia sont typiquement des parasites d’oiseaux aquatiques.

Nous devons donc admettre, en conclusion, que seul un genre nouveau peut inclure le matériel dont nous discutons. Nous en donnons la diagnose ci-dessous.

Thaumasiolepis n. g.

Cyclophyllidea, Hymenolepididae, Hymenolepidinae: Aux caractères de la sous-famille, il faut ajouter: rostre présent, armé d’un nombre variable de crochets spiniformes irrégulièrement implantés. Testicules en triangle, un poral, deux antiporaux. Utérus saccoforme réniforme à paroi peu lobulée. Oeufs petits.

Etymologie: Du grec θαυμαστος qui signifie surprenant.

Afin de souligner sa principale particularité ana-
tomique, nous proposons de nommer cette espèce *T. microarmata* n. sp., qui devient l'espèce type du genre.

Raillietina et bargetzii Mahon, 1954

Un individu de *Gymnobucco c. calvus* (Adiopodoumé 13.3.1987) hébergeait, outre le *Thaumasiolepis* décrit ci-dessus, 8 exemplaires d'un Davaineidae immature (MHNG 987.230) dont nous donnons une brève description.

Le scolex est typique du genre *Raillietina* et porte environ 240 crochets de 17–19 µm de long répartis sur deux couronnes. Le diamètre des ventouses, armées, est de 98–122 µm. Seuls de très jeunes anneaux mâles sont visibles. Les pores génitaux paraissent unilatéraux et 16–20 testicules sont discernables.

Ces observations rapprochent fortement notre matériel de *R. (P.) bargetzii* Mahon, 1954 trouvé chez un *Gymnobucco bonapartei* au Zaïre. Malheureusement les caractères de l'espèce ne sont pas tous observables sur ce matériel immature.

Parasites de Picidae

Raillietina (Skrjabinia) campetherae n. sp.

Description

(Cyclophyllidea, Davaineidae, Davaineinae). Scolex avec 4 ventouses armées sur leur pourtour de crochets de dimensions inégales, plus grands sur les bords antérieurs que postérieurs dans une proportion d'environ 3 à 1. La poche du rostre est peu profonde, le rostre, petit, est orné d'une double couronne de crochets ayant une forme typique (Figs 15,16). Les testicules sont disposés latéralement et postérieurement aux organes femelles dans les anneaux jeunes puis sont repoussés dans la partie postérieure du segment dans les anneaux mûrs, ils peuvent alors être superposés. La poche du cirre est courte, n'atteignant pas les canaux excréteurs poraux. Elle s'ouvre latéralement approximativement au milieu du segment. Le cirre, que nous n'avons jamais observé évaginé, est inerme. Le canal déférent est torsadé dans le prolongement de la poche du cirre. L'ovaire est antérieur, central, grand et plurilibre. La glande vitellogène, compacte et massive lui fait suite postérieurement et ventralement. Le vagin s'ouvre postérieurement à la poche du cirre dans un atrium peu profond. Sa paroi, inerme, est plissée dans sa partie terminale. Il remonte parallèlement au canal déférent en direction de l'ovaire, puis oblique vers la glande vitellogène. Peu avant cet organe on observe un renflement faisant office de réceptacle séminal. Les conduits sexuels passent entre les canaux excréteurs (Fig. 17). Les orifices sexuels s'ouvrent d'un côté ou de l'autre du strobila, l'alternance est irrégulière mais on observe de longues séries unilatérales. Les canaux excréteurs ventraux sont reliés par un canal transversal mais ce dernier n'est pas présent dans tous les anneaux. L'utérus remplit le segment puis se résume en capsules contenant un seul œuf. Toutefois les derniers anneaux observés n'étaient pas assez avancés pour que les crochets embryonnaires soient visibles.

Dimensions

Longueur max.: 40 mm
Largeur max.: 1.68 mm
No. anneaux max.: ±200
Diam. scolex: 340–355
Ventouses: 200 × 141–153
No. crochets: ±140
L. crochets: 10–12
Poche du cirre: 74–95 × 42–50
No. testicules: 17–23

Matériel examiné: Quatre individus (MHNG 987.231–3) provenant d'un *Campethera n. nivosa* (Swainson). Forêt classée de Yapo (60 km N d'Abidjan) 17.3.87. (Coparasites de *R. (Paroniella) yapoensis* décrit ci-dessous); un individu (MHNG 987.233) provenant d'un *Campethera caroli* (Malherbe). Même origine. 19.3.87.
Localisation: Intestin supérieur.
Figs 15–17. Raillietina (S.) campetherae. 15. Scolex. 16. Crochets du rostre. 17. Anneau mature. *Echelles:* 15, 100 μm; 16, 5 μm; 17, 50 μm.
Prévalence: 1/1 pour les deux espèces.
Intensité: 1–4 individus.

Discussion

Les Piciformes sont parasités par une vingtaine d’espèces de Raillietina. Toutefois la quasi totalité de ces espèces appartient aux sous-genres Paroniella ou Raillietina. A notre connaissance aucun Raillietina (Skrjabinia) connu n’est parasite de cet ordre d’oiseaux. Nous comparons cependant notre matériel à l’ensemble des espèces de ce sous-genre.

Si l’on considère les critères habituels de nombre et taille des crochets et de nombre des testicules, seules deux espèces de *R. (Skrjabinia)* possèdent des caractéristiques proches de notre matériel. Elles s’en diffèrentient toutefois aisément:

(i) *R. (S.) cryptocotyle* Baer, 1925 a une poche du cirre beaucoup plus longue et les ventouses ne sont armées que d’une couronne de crochets.
(ii) *R. (S.) dhuncheta* Sharma, 1943 parasite d’un Phasianidae du Népal est décrit sommairement mais semble présenter une forte similitude avec notre matériel. Toutefois sur les schémas de la description il apparaît que la poche du rostre est très développée et atteint l’extrémité postérieure des ventouses. D’autre part les testicules sont disposés tout autour des organes femelles, en partie antérieurement.

Notre matériel appartient donc à une nouvelle espèce que nous proposons de nommer *Raillietina (Skrjabinia) campetherae* n. sp.

Raillietina (Paroniella) yapoensis n. sp.

Description

(Cyclophyllidea, Davaineidae, Davaineinae). Vers de petite taille. Le scolex porte 4 ventouses armées de plusieurs rangées de crochets. Le tégument de la poche du rostre est tapissé de fines épines. Le rostre est peu développé et porte une couronne simple de crochets de forme typique à manche recourbé (Figs 18,19). Les pores génitaux sont unilatéraux et les canaux génitaux passent entre les canaux excréteurs. La poche du cirre s’ouvre au premier tiers environ de la longueur du proglottis. Elle atteint les canaux excréteurs poraux. Le cirre est large et inerme. Il forme généralement une ou deux boucles dans le fond de la poche, rappelant en cela l’aspect d’une petite vésicule séminale interne. Le canal déférent est volumineux et présente de nombreuses circonvolutions dans la partie antérieure de l’anneau. Les testicules, en nombre réduit, sont postéro-dorsaux, partiellement superposés aux organes femelles. Le vagin s’ouvre postérieurement, parfois ventralement, à la poche du cirre dans un atrium génital peu profond. Il ne présente pas d’ornementations particulières, mais il faut remarquer la minceur de sa paroi par rapport au diamètre important de sa lumière. L’ovaire est grand et relativement compact. Il occupe toute la partie centrale du segment. La glande vitellogène est ventrale et massive (Fig. 20). L’évolution des organes génitaux est rapide et la transition entre anneaux gravides et matures s’effectue sur 15–20 proglottis seulement. Les anneaux gravides se remplissent, dans l’espace compris entre les canaux excréteurs, de capsules ovifères circulaires renfermant chacune un seul œuf. Le système excréteur comprend 2 paires de canaux. Les canaux ventraux sont reliés entre eux dans les parties postérieures des anneaux de manière inconstante.

Dimensions

Longueur max.: 16 mm
Largeur max.: 690
No. anneaux max.: ±145
Diam. scolex: 152–176
Ventouses: 75–103 × 52–75
No. crochets: 210–250
L. crochets: env. 6
Poche du cirre: 53–78 × 31–38
No. testicules: 6–8

Matériel examiné: Quatre individus (MHNG 987.234–5) provenant d’un *Campethera* n.
Figs 18–20. Raillietina (P.) yapoensis. 18. Scolex. 19. Crochets du rostre. 20. Anneau mature. *Echelles*: 18, 50 μm; 19, 5 μm; 20, 50 μm.
nivosa (Swainson). Forêt classée de Yapo (60 km N d’Abidjan). 17.3.87. (Coparasites de *R. (S.) campetherae* décrit ci-dessus).

Localisation: Intestin postérieur.

Prévalence: 1/1.

Intensité: Quatre individus.

Discussion

Nous comptons 11 espèces de *R. (Paroniella)* parasites de Piciformes. Seules deux d’entre elles présentent un scolex orné de crochets de petites dimensions. Elles diffèrent toutefois de notre matériel par les aspects suivants:

(i) *R. (P.) dendrocopina* Sawada & Kugi, 1974 a des ventouses plus grandes, armées de crochets plus petits. D’autre part les testicules sont au nombre de 16–20 et la poche du cirre est plus longue.

(ii) *R. (P.) pinsonae* Schmelz, 1941 a un nombre de crochets légèrement plus faible, un scolex plus massif, 10–12 testicules et une poche du cirre plus longue.

Parmi les parasites d’autres ordres d’hôtes, *R. (P.) parbala* Sharma, 1943 et *R. (P.) perreti* Mahon, 1954 ont des scolex armés de façon comparable à notre matériel mais s’en différencient nettement au niveau de la poche du cirre et du nombre de testicules. *R. (P.) symonsii* Johri, 1939 et *R. (P.) capoori* Srivastava & Sawada, 1980 ont des crochets de petite taille mais en nombre différent. *R. (P.) macassarensis* Yama­guti, 1956 est un ver de grande taille avec plus de testicules. *R. (P.) tragopani* (Southwell, 1922) et *R. (P.) fulvia* Meggitt, 1933 ont un faible nombre de testicules mais une poche du cirre plus longue et un nombre de crochets très différent de l’espèce que nous décrivons.

Il résulte de cette comparaison que, à notre connaissance, aucune espèce de *R. (Paroniella)* ne présente les caractéristiques de notre matériel. Nous le considérons donc comme appartenant à une espèce nouvelle que nous proposons de nommer *Raillietina (Paroniella) yapoensis* n. sp. Cette espèce est caractérisée par un rostre armé de crochets de petites dimensions, par un faible nombre de testicules et par une poche du cirre courte.

Considérations faunistiques

Parasites de Coraciiformes (quatre familles en Afrique)

Hôtes Meropidae. Les deux espèces rencontrées sont déjà connues et présentent une variabilité assez faible de leurs caractères. Notons que sur les trois espèces de guêpiers capturées, la plus fréquente, à savoir *Merops pusillus* (12 individus) n’a jamais été trouvée infestée. D’autre part, *Skrjabinoporus merops* parasite deux espèces d’hôtes (*M. albicollis* et *M. gularis*) mais dans une seule région géographique alors que plusieurs *M. albicollis* ont été piégés dans d’autres endroits. Enfin *Biuterina meropina macrancistrota* semble inféodé à *M. albicollis* en Côte d’Ivoire.

Hôtes Alcedinidae. Nous avons examiné 25 oiseaux répartis dans cinq espèces appartenant à cette famille (un *Corythornis leucogaster*; un *C. cristata*; six *Halcyon senegalensis*; quatre *H. malimbicus*; 13 *Ispidina picta*). Aucun n’hébergeait de cestodes. Ce résultat renforce donc l’observation déjà ancienne de Baer (1957) qui notait la surprenante rareté des cestodes dans ce groupe d’hôtes. Une confirmation supplémentaire est d’ailleurs donnée par Bona (comm. pers.) qui n’a pas trouvé de cestodes dans les Alcédinidés d’Amérique du Sud. Les expéditions du Muséum de Genève au Paraguay ont donné les mêmes résultats négatifs. En fait, les deux seules espèces jamais découvertes chez ces oiseaux l’ont été en Australie et en Nouvelle Calédonie (Oshmarin & Ryzhikov 1979). Cette constatation est d’autant plus difficilement explicable que le régime alimentaire des Martins-chasseurs et Martins-pêcheurs semblerait devoir favoriser leur infestation. En ce qui concerne les Martins-pêcheurs sud-américains, ils apparaissent riches par parasités par les trématodes stri-géidés (Dubois, 1985) qui occupent, semble-t-il, la “niche écologique” délaissée par les cestodes.
Hôtes Bucerotidae et Coraciidae. Aucun individu infesté. Ce résultat n'est toutefois pas significatif puisque nous n'avons examiné que cinq Tockus semifasciatus et un seul Coracias cyanogaster.

Parasites de Piciformes (trois familles en Afrique)

Hôtes Picidae. La découverte de deux espèces nouvelles sur deux confirme la grande diversité atteinte par la famille des Davaineidae chez les pics.

Hôtes Capitonidae. La spécificité au niveau ordinal des cestodes d'oiseaux a été mise en évidence à maintes reprises (Baer, 1957). La présence de Thaumasiolepis microarmata dans deux espèces d’hôtes appartenant à des genres différents est en accord avec cette observation. Il faut relever dans ce cas que les deux hôtes habitent des milieux très différents: forêt humide pour G. calvus et savane soudanienne pour L. dubius.

Hôtes Indicatoridae. Aucun individu infesté parmi quatre Indicator indicator et un I. minor. La faune parasitaire de cette famille est pratiquement inconnue.

Remerciements

Nous tenons à remercier ici le Prof. F. Bona (Turin) pour ses conseils et sa lecture attentive de notre manuscrit, le Prof. B. Horning (Berne) pour son aide précieuse en matière de bibliographie, le Prof. A. Aeschlimann (Neuchâtel) ainsi que le Prof. M. Bachmann (Zürich) pour avoir permis la réalisation du travail, le Dr D.I. Gibson, Mme E.A. Harris (BMNH, Londres) et le Dr J.R. Lichtenfels (USNM, Beltsville) pour le prêt de matériel, M.T. Stoyanov pour ses traductions, M.O. Porgo pour sa collaboration sur le terrain, les Autorités ivoiriennes qui ont fourni les permis nécessaires.

La Société Helvétique de Sciences Naturelles (SHSN) par sa bourse de voyage, la Fondation J. de Giacomi, la Fondation Roche de Recherche en Afrique et l’Université de Neuchâtel ont soutenu financièrement ce travail.

Bibliographie

Baer, J.G. (1957) Répartition et endémicité des Cestodes chez les Reptiles, Oiseaux et Mammifères. In: Premier Symposium sur la Spécificité Parasitaire des Vertébrés. Neuchâtel: Institut de Zoologie de l’Université de Neuchâtel, pp. 270–292.

Bona, F. & Maffi, A. (1984) La estructura del género Paruterina Fuhrm., 1906 y consideraciones sobre los géneros Biuterina Fuhrm., 1902, Paruterina Fuhrm., 1911 y Sphaeruterina Johnston, 1914 (Cestoda, Paruterinidae). Bolletino del Museo di Zoologia dell’Università di Torino, 2, 411–444.

Bona, F., Bosco, M.C. & Maffi, A. (1986) Tre nuove specie del genere Paruterina (Cestoda, Paruterinidae) in Trogoniformi (Aves) neotropicali. Bollettino del Museo Regionale di Scienze Naturali, 4, 1–61.

Borgarenko, L.F. (1981) Helminths of birds of Tadzhikistan. Book 1. Cestodes. Dushanbe: Izdatel'stvo 'Danish', 327pp. (en russe).

Dubois, G. (1985) Quelques Strigeoidea (Trematoda) récoltés chez des oiseaux du Paraguay par la Mission Claude Weber, automne 1983, du Muséum d'Histoire Naturelle de Genève. Revue Suisse de Zoologie, 92, 641–648.

Fuhrmann, O. (1908) Das Genus Anonchotaenia und Biuterina. II. Das genus Biuterina Fuhrmann. Centralblatt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten. 1. Abteilung, 48, 412–428.

Krabbe, H. (1869) Bidrag til Kundskab om Fuglenes Baen-dolorme. Videnskabelige Selskab Skrifter, 5. Raekke, Naturvidenskabelig og Mathematisk Afdel, 8, 251–389.

Mathevossian, E.M. (1969) Paruterinoidea. Cestodes of domestic and wild birds En russe. Osnovoy Tsestodologii, 7, 303 pp.

Meggitt, F.J. (1928) Report on a collection of Cestoda, mainly from Egypt. Part III. Cyclophyllidea (Conclusion): Tetraphyllidea. Parasitology, 20, 315–328.

Oshmarin, P.G. & Ryzhikov, K.M. (1979) Helminths of Alcedinidae family birds. 1. Taxonomic review. Helminthologia, 16, 279–286.

Schmidt, G.D. (1986) CRC handbook of tapeworm identification. Boca Raton, Florida: CRC Press Inc, 675pp.

Southwell, T. & Lake, F. (1939) On a collection of Cestoda from Belgian Congo. Annals of Tropical Medicine and Parasitology, 33, 107–123.
Spassky, A.A. (1959) [On phylogenetic relations of the subfamily Metadilepidinae nov. subfam. (Cestoda; Cyclophyllidea).] *Helminthologia*, 1, 155-158. (en russe).
Spassky, A.A. & Borgarenko, L.F. (1960) *Skjabinoporus* gen. nov. (Cestoda: Cyclophyllidea). *Izvestiya Akademii Nauk Tadzhikskoi SSR, Otdelenie le'kolkhozjaistvenikh i biologicheskikh Nauk*, 2, 113-118. (en russe).
Weber, C., Jaccoud, T. & de Chambrier, A. (1984) A temporary field fixing solution for ornithological collecting. *Curator*, 27, 281-286.
Woodland, W.N.F. (1928) On some new avian cestodes from the Sudan. *Parasitology*, 20, 305-314.
Cestodes d’oiseaux de Côte-d’Ivoire
III. Sur quelques parasites de Charadriiformes

par

J. MARIAUX *

Avec 13 figures

ABSTRACT

Cestodes of Birds of Ivory Coast III. On some parasites of Charadriiformes. — Cestodes collected in Charadriiformes birds from Ivory Coast are presented. We describe one new parasite species in Actitis hypoleucos: Anomotaenia hypoleuci which is characterised by 45 to 50 µm long hooks, few testes, well developed vaginal sphincter and eggs with polar filaments. — Kowalewskiella cingulifera (Krabbe, 1869) Lopez-Neyra, 1952 was also found in this host. We have observed testes in antiporal position in this Cestode, and this led us to reexamine and compare the characteristics of the genera Kowalewskiella Baczynska, 1914 and Onderstepoortia Ortlepp, 1938. The type species K. longianulata is redescribed here. — Ratilietina (R.) permista Southwell and Lake, 1939 has also been found in the Common Sandpiper. This Davaineid, which shows a typical scolex, was only known from Picidae. This is the first mention of a Tapeworm of this genus in Charadriiformes birds. — Progynotaenia odhneri Nybelin, 1914, parasitizing Charadrius hiatricula, is new for the Ethiopian region. — Variolepis hughesi Webster, 1947 is redescribed here and placed in the genus Wardium. This Hymenolepidid is also found, with some morphological variations, in North America and Europe.

INTRODUCTION

La faune des parasites d’animaux sauvages africains est relativement mal connue dans son ensemble bien que, dans certains pays, une somme d’observations commence à s’accumuler. Cela est particulièrement vrai pour la République de Côte-d’Ivoire où, depuis plusieurs années, des chercheurs appartenant principalement au Centre suisse de Recherches scientifiques ont étudié divers domaines du parasitisme animal. Ainsi les tiques (cf.

* Université de Neuchâtel, Institut de Zoologie, ch. de Chantemerle 22, 2007 Neuchâtel, Suisse.

1 Ce travail fait partie de la thèse de l’auteur.
AESCHLIMANN 1981) et certaines catégories d’helminthes [monogènes (MURITH 1981), parasites d’amphibiens (MAEDER 1973), de rongeurs (BAER 1972) ou de micromammifères (HUNKELER 1974)] sont maintenant assez bien connues. Par contre, les parasites d’oiseaux n’ont jamais été étudiés et nos connaissances à leur sujet sont des plus fragmentaires. C’est dans le but de combler cette lacune et de tenter d’obtenir une image plus globale de la faune parasitaire ivoirienne que nous avons entrepris ce travail. Deux publications (MARIAUX & VAUCHER 1988, [sous presse]) présentaient la faune parasitaire de Sylviidae (genre *Cisticola*), de Piciformes et de Coraciiformes. Cet article décrit plusieurs parasites de Charadriiformes dont une espèce nouvelle.

MATÉRIEL ET MÉTHODES

Les oiseaux sont capturés au filet et sacrifiés. Les dépouilles sont conservées dans le phénoxétol (WEBER et al. 1984) puis confiées au Muséum d’histoire naturelle de Genève (MHNG) pour confirmation de leur détermination. Le tube digestif est disséqué et les cestodes sont immédiatement fixés au formol 4% bouillant. Ils sont ensuite conservés dans l’alcool à 70°. Ils sont colorés au carmin chlorhydrique alcoolique (LANGERON 1949) avant leur montage dans le Baume du Canada. Les parties scléritées sont observées après squash dans la gomme au chloral de Faure. Les hôtes et les parasites sont déposés au MHNG.

RÉSULTATS

a) **Kowalewskiella cingulifera** (Krabbe, 1869) **LOPEZ NEYRA 1952**

Description:

Scolex à ventouses circulaires inermes pourvu d’un rostre armé d’une unique couronne d’environ 50 très petits crochets (fig. 1). La poche du rostre est ovale. Un étranglement suit le scolex et précède une zone de croissance peu développée. Les premiers organes reproducteurs apparaissent après 150 à 170 anneaux. Les pores génitaux alternent irrégulièrement et débouchent latéralement à la hauteur du premier tiers du proglottis. Les conduits sexuels passent entre les vaisseaux excréteurs.

Les proglottis sont d’abord trapézoïdaux, plus larges que longs, puis s’allongent progressivement pour prendre une forme rectangulaire plus longue que large. Les derniers anneaux gravides sont jusqu’à 16 fois plus longs que larges.

Les testicules, ovales, sont disposés entre les canaux excréteurs et entourent les organes femelles sur trois côtés. Le canal déférent forme une pelote à l’extrémité de la poche du cirre. Cette dernière est ovale, assez courte et dépasse de peu les canaux excréteurs. Elle contient un cirre orné de longues soies. Nous n’observons pas de vésicules séminales.

L’ovaire, nettement poral, est bilobé, petit. Les deux lobes sont subégaux. Postérieurement nous trouvons une glande vitellienne compacte, ovale. Sous la poche du cirre un court vagin, épineux dans sa première moitié, débouche dans un réceptacle séminal ovale de grande dimension. Poche du cirre et vagin débouchent dans un atrium génital armé de fortes et courtes épines.

L’utérus disparaît très précocement et les anneaux gravides présentent, dans l’espace délimité par les canaux excréteurs, de nombreuses cavités contenant chacune un seul œuf.
Dimensions (sauf indication contraire, toutes les dimensions sont exprimées en μm):
- Longueur: env. 60 mm
- Largeur maximale: 1,15 mm
- Nombre de proglottis maximal: env. 280
 - scolax: 89-125
 - ventouses: 45-54
- Nombre de crochets: env. 50
- L crochets: 5-6
 - L x 1 poche du rostre: 86-101 x 51-54
- N testicules: 37-53
 - L x 1 poche du cirre: 85-140 x 32-48
 - L x 1 capsules ovifères: 60-107 x 38-58
- Nombre des oncosphères: 21-30
- L crochetons embryonnaires: 10,5-14.

Matériel examiné:
15 individus (MHNG 985.592-4 et 987.236) provenant de quatre Actitis hypoleucos (L). Marais situés environ 10 km à l’est de Dabou, 2-21.X.1985 et Adiopodoumé (20 km W d’Abidjan) 31.1.1987.

Localisation: portion postérieure de l’intestin.

Prévalence: 4/11 (36%).

Intensité: 1-9 individus.

Discussion:
La présence de K. cingulifera chez A. hypoleucos est bien connue. Ce parasite a en effet été décrit par de nombreux auteurs (Krabbe 1869, Clerc 1903, skriabin 1914, shen tseng 1932, Joyeux & Baer 1936, Baer 1959, Sandeman 1959, Mettrick 1967,...) chez divers oiseaux du groupe des chevaliers (genres Arenaria, Calidris, Capella, Charadrius, Totanus, Tringa...) sur tous les continents sauf en Australie. En Afrique, il est connu au Zaïre (Baer 1959) et en Zambie (Mettrick 1967).

Nos observations concordent avec les descriptions réunies par Mettrick (1967). Un point cependant prête à discussion: Baczynska (1914) dans sa définition du genre Kowalewskiella précise que les testicules sont situés en avant et en arrière des glandes sexuelles femelles. Le genre le plus proche dans la sous-famille des Dipylidiinae est Onderstepoortia Ortlepp, 1938 chez qui les testicules entourent les organes femelles sur trois côtés. A partir de ce critère, notre cestode devrait donc faire partie de ce dernier genre, duquel il diffère cependant par divers caractères, en particulier la forme et la taille des crochets. Plusieurs observateurs avaient déjà remarqué la présence de testicules en position antiporale chez K. cingulifera (cf. MatévoSSian 1963) sans que la diagnose du genre soit modifiée pour autant. Cette situation nous a conduit à réexaminer le matériel type de Baczynska dans lequel nous avons nettement observé que certains proglottis présentaient des testicules en position antiporale (fig. 2). L'iconographie donnée par Baczynska ne représente que des anneaux particulièrement étirés. L’anatomie de proglottis voisins, plus contractés, est sensiblement différente. Ainsi, l’un des critères génériques importants du genre Kowalewskiella devient ambigu. La disposition des testicules ne permet pas de séparer les genres Kowalewskiella et Onderstepoortia: tous deux possèdent des testicules sur trois côtés, même si cette disposition ne se rencontre pas dans tous les proglottis en ce qui concerne Kowalewskiella.

Si la position des organes mâles ne justifie plus le maintien d’Onderstepoortia, d’autres caractères — dont le principal est sans doute la morphologie très différente des crochets du rostre — permettent toutefois la conservation des deux genres. Nous présentons ceux qui nous paraissent le plus important dans le tableau I.
FIGS 1-2.

Fig. 1: *Kowalewskiella cingulifera* (Krabbe), crochets du rostre. Échelle 5 µm. Fig. 2: *K. longiannulata* Baczynska, matériel type. Disposition des testicules dans différents anneaux matures.

TABLEAU 1.

Différenciation des genres *Kowalewskiella* et *Onderstepoortia*

Kowalewskiella (Baczynska, 1914)	*Onderstepoortia* (Ortlepp, 1938)
— Crochets du rostre < 10 µm	— Crochets du rostre > 150 µm
— Moins de 60 testicules	— Plus de 90 testicules *
— Vagin et cirre armés **	— Vagin et cirre non armés
— Ovaire nettement bilobé	— Ovaire multilobé
— Parasite de Charadriidae	— Parasite de Charadriidae et de Burhinidae
(Scolopacinae et Charadriinae)	

** Sauf *K. susanae*
* Sauf *O. vanellorum*
Actuellement les espèces suivantes appartiennent respectivement aux genres Kowalewskiella et Onderstepoortia:

- *K. cingulifera* (Krabbe, 1869) LOPEZ-NEYRA 1952
- *K. longiannulata* Baczynska, 1914
- *K. stagnatilidis* (Burt, 1940) LOPEZ-NEYRA 1952
- *O. coronati* Mettrick, 1961
- *O. lobipluviae* (Burt, 1940) YAMAGUTI 1959
- *O. taeniaformis* Ortlepp, 1938
- *O. vanellorum* Baer, 1959
- et peut-être *K. glareolae* (Burt, 1940) LOPEZ-NEYRA 1952 quoique KORNYUSHIN (1969) le considère comme un synonyme probable de *K. stagnatilidis*.

Remarque: *Choanotaenia lobipluviae* (Burt, 1940) a été transféré dans le genre *Onderstepoortia* par YAMAGUTI (1959). KORNYUSHIN (1969), dans sa révision du genre *Kowalewskiella*, confirme ce transfert, mais MATEVOSSIAN (1963) et SCHMIDT (1986) continuent à considérer ce cestode comme un *Kowaleskiella*. Nous ne partageons pas cet avis au vu des caractères retenus dans le tableau 1. L'identité correcte de cette dernière espèce nous paraît clairement être *O. lobipluviae* (Burt, 1940) YAMAGUTI 1959.

Des autres espèces décrites comme appartenant à ces genres:

- *K. buzzardia* (Tubangui et Masilungan, 1937) a été transféré par YAMAGUTI (1959) dans le genre *Tubanguiella*.
- *K. totani* (Self et Janovy, 1965) est identifié par KORNYUSHIN (1970) à *K. longiannulata*.
- *K. susanae* Burt, 1969 est identifié par KORNYUSHIN (1970) à *K. longiannulata*.
- *K. tringae* (Cholodkowsky, 1912) SPASSKY 1965 est, selon KORNYUSHIN (1969), insuffisamment décrit pour être classé avec certitude. D'après les dessins de CHOLODKOWSKY il n'appartient en tout cas pas à *Kowalewskiella* et SCHMIDT (1986) le classe dans son genre original, c'est-à-dire *Dilepis*.

En conclusion, nous pensons utile de présenter une brève redescription de *K. longiannulata* Baczynska, 1914 à partir des restes du matériel original ainsi qu'une diagnose revue du genre.

Hôte: *Tringa totanus*, lames MHNG 110/73, 74, 75, 76.

Il n'y a pas de scolex in toto dans le matériel type. Dans un exemplaire écrasé, nous trouvons 25 crochets à manches très courts et gardes et lames parallèles, longs de 5 à 6 μm. Les jeunes anneaux sont plus larges que longs, les anneaux matures sont carrés ou légèrement plus longs que larges (530-1000 × 430-570 μm) et les anneaux gravides peuvent présenter des allongements considérables (certains d'entre eux, extrêmement étirés, mesurent jusqu'à 4,6 mm de long pour 185 μm de large). Les pores génitaux alternent irrégulièrement et les conduits sexuels passent entre les canaux excréteurs. Les testicules, au nombre de 38 à 60, entourent les organes génitaux sur trois côtés en position antérieure, postérieure et, dans une moindre mesure, antiporale. La poche du cirre (82-132 × 45-68 μm) atteint les canaux excréteurs. Le cirre est garni de minuscules épines. L'ovaire est petit, central, très nettement bilobé. La glande vitellophagique (56-75 × 73-102 μm) est située derrière l'ovaire. Le vagin présente un élargissement épineux dans sa partie la plus externe. Il forme ensuite un réceptacle séminal situé derrière la poche du cirre. Il n'y a pas d'utérus développé. Ceux que nous observons s'ébauchent dans la partie antiporale de l'anneau sous la forme d'un sac allongé.
Ces observations diffèrent de la description originale par les points suivants:
— Nombre et dimension des crochets. On ne peut toutefois exclure que sur l'unique scolex restant, écrasé de surcroît, certains d'entre eux aient été perdus. Quant à la longueur donnée par Baczynska, dix fois trop importante, elle est très vraisemblablement due à une erreur d'impression.
— Disposition des testicules. Ils apparaissent nettement en position antiporale dans certains anneaux.
— Taille des anneaux gravides.

Kowalewskiella: Dilepididae, Dipylidiinae. Scolex avec rostellum muni d'une seule couronne de petits crochets à manche peu développé. Pores sexuels alternant irrégulièrement. Canaux génitaux passant entre les vaisseaux excréteurs. Testicules principalement situés en avant et en arrière des glandes sexuelles femelles mais parfois aussi en position antiporale. Ovaire bilobé. Utérus sacciforme se divisant en capsules à un seul œuf.

b) Anomotaenia hypoleuci sp. n.

Description:

Cyclophyllidea: Dilepididae. Ver de taille petite à moyenne. Les proglottis sont légèrement plus larges que longs sur la quasi-totalité du corps, seuls les derniers anneaux gravides peuvent atteindre une longueur environ double de leur largeur.

Fig. 3.

Anomotaenia hypoleuci sp. n., crochets du rostre. Noter le manche redressé des crochets de la première couronne (flèches).

Le scolex porte 4 ventouses circulaires inermes ainsi qu'un rostre puissant armé de 20 crochets subégaux disposés sur 2 cercles. Les crochets de la première couronne possèdent un manche légèrement moins courbé (fig. 3) et sont, de très peu, plus longs que
Figs 4-5.

Fig. 4: *A. hypoleuci* sp. n., scolex. Echelle 50 μm. Fig. 5: Anneau mature. Echelle 50 μm.
ceux de la seconde. La poche du rostre, très musculeuse, est allongée et se termine en pointe. Elle dépasse nettement l’extrémité postérieure des ventouses (fig. 4). La zone de croissance est courte et la strobilation apparaît presque immédiatement à la suite de la poche du rostre.

Les conduits sexuels débouchent latéralement au premier quart environ de la longueur des proglottis. Ils alternent irrégulièrement et passent entre les canaux longitudinaux du système excréteur. Les canaux excréteurs ventraux sont reliés par un canal transversal dans la partie postérieure de chaque proglottis.

Les testicules apparaissent au niveau du cinquantième anneau environ. Ils sont disposés sur une seule épaisseur dans la partie postérieure du segment comprise entre les canaux excréteurs et les organes femelles. Le canal déférent est très développé et montre de nombreuses circonvolutions autour de la poche du cirre et au-dessus de celle-ci. La poche du cirre est parfois rectiligne, dirigée obliquement vers l’avant du proglottis, mais le plus souvent coudée en son milieu de manière à accentuer cette direction antérieure. Le cirre est inerme.

L’ovaire est en deux parties plurilobées, l’aile antiporale étant très nettement la plus importante. La grande vitellogène est postérieure à l’ovaire, en position centrale. Elle est massive, bien développée et peu lobée. Le vagin s’ouvre postérieurement à la poche du cirre, au fond d’un atrium génital peu profond et dépourvu d’ornements. Un sphincter massif entoure sa partie la plus distale. Il rejoint un réceptacle séminal central situé entre les deux ailes de l’ovaire en position ventrale (fig. 5).

![Fig. 6.](image)

A. hypoleuci sp. n., œufs.
Dans les anneaux post-matures, l'utérus apparaît d'abord sous une forme réticulée. Il devient ensuite sacciforme régulier et remplit entièrement les anneaux gravides. Les œufs, disposés sur plusieurs épaisseurs, sont munis à chaque extrémité d'un long filament polaire (fig. 6).

Dimensions:
- Longueur: 12-30 mm
- Largeur maximale: 575 (a. matures), 1100 (a. gravides)
- Nombre de proglottis maximal: 88
 - scolex: 120-190
 - ventouses: 85-116
- N crochets: 20
- L crochets 1: 45.5-49
- L crochets 11: 44.5-47.5
- L x 1 poche du rostre: 230-292 x 60-66
- N testicules: 13-18
- L x 1 poche du cirre: 160-232 x 31-38
- L x 1 œufs: 30-50 x 22-29
- L x 1 oncosphères: 21-36 x 17-24
- L crochetons embryonnaires: 11-14

Matériel examiné:
- Holotype MHNG 985.595 parasite d'**Actitis hypoleucos** (L). Marais situés environ 10 km à l'est de Dabou. 21.X.1985. Paratype MHNG 985.596 coparasites de l'holotype.
- Autre matériel: nombreux individus parasites de trois autres chevaliers guignette MHNG 985.597-9, même origine, 4.IX-4.X.1985.
- Localisation: portion antérieure de l'intestin.
- Prévalence: 4/11 (36%).
- Intensité: 2 — env. 20 individus.

Discussion:
L'ensemble des caractères décrits ci-dessus, et en particulier l'utérus réticulé au début de son développement, nous font placer notre matériel dans le genre **Anomotaenia** Cohn, 1900. En nous basant sur les travaux synthétiques, de **JOYEUX & BAER** (1936), **SANDEMAN** (1959), **YAMAGUTI** (1959), **MATEVOSSIAN** (1963) et **SCHMIDT** (1986), nous relevons une cinquantaine d’espèces d’**Anomotaenia** parasite d’oiseaux Charadriiformes sur tous les continents. Toutefois, plusieurs de ces taxons sont probablement placés dans ce genre de manière erronée et devront voir leur position taxonomique révisée. Nonobstant, nous pouvons aisément différencier notre matériel de la plupart de ces espèces, principalement en considérant la taille des crochets et le nombre des testicules. En effet, la majorité d'entre elles possèdent des crochets courts (ordre de grandeur 20-30 μm) ou longs (60-80 μm) et seules quelques-unes sont armées de crochets de dimensions intermédiaires.

Nous discutons ci-dessous des espèces dont l'ensemble des caractères est le plus proche de notre matériel.

A. ovifusa (Spassky et Konovalov, 1967) **SPASSKAYA & SPASSKY** 1973 présente le scolex le plus ressemblant à celui de notre matériel; mais en diffère par un plus grand nombre de testicules (25-30), des œufs dépourvus de filaments polaires, des crochetons embryonnaires plus longs (18-19) et un ovaire massif.

A. citrus (Krabbe, 1869) **FUHRMANN** 1908 montre des crochets légèrement plus longs (43-68) et plus nombreux (20-25(28)) que dans notre matériel. Chez cette espèce, les testicules sont également plus nombreux (18-35) et la poche du cirre est très courte.
Enfin, *A. cingulata* (v. Linstow, 1905) Fuhrmann 1908 est mal connu. Il possède 20 à 25 testicules, le scolex est plus large et le strobila composé de beaucoup moins d’anneaux que notre matériel.

Nous concluons que notre matériel appartient à une espèce nouvelle du genre *Anomo-taenia* caractérisée par la présence de deux couronnes de crochets subégaux d’environ 45 à 50 μm de long, un faible nombre de testicules, un ovaire nettement bipartite, un sphincter vaginal développé et des œufs munis de deux longs filaments polaires. En référence à son hôte définitif, nous proposons de la nommer *Anomotaenia hypoleuci*.

c) *Progynotaenia odhneri* Nybelin, 1914

Nous avons récolté de nombreux exemplaires de cette espèce dans deux grands grave-lots et en donnons une brève description.

Le strobila est composé de 12 à 14 anneaux. Il mesure environ 3 mm de long et sa largeur maximale est de 780 μm. Les organes femelles apparaissent dès le quatrième anneau alors que les testicules ne sont en général bien visibles qu’à partir du 6 ou 7e. Le scolex porte 12 crochets de 54-64 μm répartis sur une seule couronne (fig. 7). Les ventouses ovales mesurent 179-233 x 122-164 μm. Les conduits sexuels débouchent latéralement et alternent régulièrement. La poche du cirre est très longue (270-360 x 62-89 μm), oblique. Elle contient une vésicule séminal interne et un cirre qui peut atteindre 340 μm. Ce dernier est armé de fortes épines sur 100 μm environ dans sa partie basale. Les 10 à 15 testicules sont répartis en deux groupes de 4 à 8 de part et d’autre des organes femelles. L’ovaire est central, en forme de chevron, la pointe dirigée vers l’avant. La glande vitellogène est située derrière l’ovaire, à côté du réceptacle séminal. L’utérus remplit le centre des segments gravides. Il contient de nombreux œufs d’un diamètre de 35 à 43 μm.

Fig. 7.

Progynotaenia odhneri Nybelin, crochets du rostre. Echelle 10 μm.

Ces observations coïncident avec celles de Nybelin (1914), de Joyeux & Baër (1936), de Yurpalova & Spassky (1971) ainsi qu’avec celles de B. Georgiev (Sofia, communication personnelle) qui compte lui aussi 12 crochets sur chacun de ses exemplaires.
Cette unanimité nous fait douter de l’appartenance à cette espèce du matériel de JOYEUX & BAER (1939) qui montre 18 crochets légèrement plus longs que ceux que nous observons. Relevons finalement que *P. odhneri* a déjà été signalé en Europe et en Égypte, mais nous notons sa présence en zone éthiopienne pour la première fois.

Hôte: *Charadrius hiaticula* (L)
Localité: Adiopodoumé (20 km W d’Abidjan)
Date: 30.X.1985 et 27.IV.1988
Prévalence: 3/3 (100%)
Intensité: 6 à 27 ind.
Cote: MHNG 985.601-2, 988.162.

d) *Raillietina (Raillietina) permista* Southwell et Lake, 1939

Description:
Cyclophyllidea: Davaineidae. Le scolex est globuleux et porte des ventouses dont les bords sont armés de plusieurs rangées d’épines. Les crochets du rostre ont une forme de marteau caractéristique des Davaineidae (fig. 8). Ils sont répartis sur deux couronnes, ceux

Figs 8-10.

Fig. 8: *Raillietina (R.) permista* Southwell and Lake. A) Crochets des ventouses, B) Crochets du rostre. Échelle 10 μm. Fig. 9: Anneau mature. Échelle 100 μm. Fig. 10: Poche du cirre, détail. Échelle 20 μm.
de la couronne apicale sont légèrement plus longs que les autres. La zone de croissance n’est pas marquée et la segmentation apparaît directement après le scolex. Les canaux excréteurs ventraux sont reliés dans la partie postérieure de chaque proglottis par un canal transversal. Les pores génitaux sont disposés en de longues séries unilatérales mais alternent deux fois sur la longueur de l’animal. Ils débouchent latéralement dans la partie antérieure du proglottis. Les canaux génitaux passent entre les canaux excréteurs. Les testicules sont disposés de part et d’autre de l’ovaire, certains d’entre eux peuvent parfois être situés dans la partie postérieure du segment, voire être partiellement superposés à l’ovaire. Ils sont distinguables dès le 260e proglottis environ. La poche du cirre n’atteint pas les canaux excréteurs. Le cirre ne présente aucune ornementation. L’ovaire est central, son contour est irrégulier. La glande vitellique est postérieure à l’ovaire, elle persiste longtemps après que les autres organes génitaux aient commencé à disparaître. Le vagin débouche postérieurement à la poche du cirre dans un atrium génital sans particularité (fig. 9, fig. 10). Notre unique spécimen quoique composé de nombreux proglottis ne montre pas d’anneaux entièrement gravides. Les capsules ovifères ne sont donc pas complètement formées. Elles sont toutefois ébauchées dans les anneaux les plus mûrs et il est possible de discerner les traces de plusieurs œufs disposées dans chacune de ces capsules.

Dimensions:
- Longueur: 92 mm
- Largeur maximale: 1,8 mm
- Nombre de proglottis: 410
- L x 1 scolex: 165 x 188
- Ø ventouses: 95-103
- N crochets: 31
- L crochets: 20-21 et 17-18
- N testicules: 12-20
- L x 1 poche du cirre: 69-79 x 38-46.

Matériel examiné:
Un individu (MHNG 985.600) parasite d’*Actitis hypoleucos* (L). Marais situés environ 10 km à l’est de Dabou. 21.X.1985.
- Localisation: intestin
- Prévalence: 1/11 (9%)
- Intensité: 1 individu.

Discussion:
Bien que ne possédant qu’un exemplaire de ce cestode, l’ensemble des caractères du genre *Raillietina* est nettement observable. La question de l’alternance occasionnelle des pores génitaux n’est pas problématique. JOYEUX, en 1923 déjà, remarquait à propos de *R. (R) echinobothrida*: «... les *Taenia* à pores unilatéraux peuvent présenter parfois comme anomalie un changement ou même une alternance plus ou moins complète de ses pores...». Nous admettons donc que notre matériel appartient au sous-genre *Raillietina*. Ce qui nous a conduit à vérifier les descriptions des quelque 180 espèces répertoriées de ce groupe. Certaines caractéristiques de notre matériel, en particulier le très faible nombre de crochets pour un *Raillietina* ou le nombre de testicules, nous ont permis de le différencier facilement de la grande majorité des espèces déjà décrites. Les seules possédant un
scolex comparable sont *R. (R.) macracanthos* Paspaleta et Woidowa, 1969 et *R. (R.) permista* Southwell et Lake, 1939.

R. macracanthos possède des crochets particulièrement développés (82-92 µm), un plus faible nombre de testicules (12-13) et une poche du cirre plus longue (100-110 µm) que ce que nous observons dans notre matériel.

R. permista présente par contre des caractéristiques beaucoup plus proches de celles des vers que nous avons récoltés chez *A. hypoleucos*, ce qui nous a amené à revoir le matériel original (BM 1977.11.14.66). Nos observations correspondent à la description de 1939. Nous pouvons y ajouter les dimensions de la poche du cirre (71-83 x 44-48 µm). Il résulte de cette comparaison qu’un certain nombre de détails différencient *R. permista* de notre matériel. Le vers est nettement plus court, le scolex et les ventouses sont plus grands, l’ovaire est beaucoup plus diverticulé, les anneaux gravides apparaissent nettement plus tôt et, surtout, le nombre de crochets du rostre (36) est légèrement plus élevé. Nous considérons toutefois ces divergences comme pouvant faire partie de la variabilité de l’espèce et admettons que notre matériel appartient à *R. (R.) permista* Southwell et Lake, 1939.

Il convient de relever pour conclure que, à notre connaissance, aucun *Raillietina* n’a été découvert à ce jour chez un Charadriiforme. L’individu que nous avons trouvé, quoique n’étant pas complètement gravide, présente tout de même un développement avancé. Or, *R. permista* a été décrit chez un Picidae. Il faut donc soit admettre que cette espèce n’a pas de spécificité au niveau ordinal, soit, plus vraisemblablement, qu’*Actitis hypoleucos* constitue pour elle un hôte accidentel particulièrement favorable.

c) *Wardium hughesi* (Webster, 1947) comb. n.

Description:

Cyclophyllidea, Hymenolepididae. Le scolex est massif et porte quatre ventouses circulaires inermes. Le rostre est armé de crochets chéliormes à lame et garde parallèles et au manche inexistant (fig. 11). La poche du rostre dépasse légèrement l’extrémité postérieure des ventouses (fig. 12).

Les premiers anneaux apparaissent après une zone de croissance bien marquée. Jusqu’au stade mature âgé, nous ne disposons pas de matériel plus avancé, ils sont toujours plus larges que longs.

L’ébauche des organes reproducteurs apparaît après environ 100 proglottis. Les testicules apparaissent dès le 140e anneau environ. Ils sont ronds à ovalaires, disposés en ligne, centralement, dans la partie postérieure du proglottis. Cette disposition est constante et les testicules persistent pendant le développement des organes femelles. Le cirre est rectiligne, orné de soies très fines, difficiles à observer. La poche du cirre dépasse de peu les canaux excréteurs poraux. Elle contient une vésicule séminale interne allongée. Une vésicule séminale externe globuleuse la prolonge. Cette dernière peut être très développée et partiellement recouvrir la poche du cirre dorsalement.

L’ovaire est peu lobé, ventral. Une glande vitelligène compacte, souvent partiellement superposée au deuxième testicule, le suit en position centrale. Le vagin débouche postérieurement à la poche du cirre dans un atrium génital inerme, relativement profond.

1 Sawada (1965) donne un résumé des caractéristiques de *R. (R.) fuhrmanni* (Southwell, 1922) qui posséderait 25 à 30 crochets de 23 à 29 µm. Cela ne correspond pas à la description originale de Southwell qui a observé, comme un certain nombre d’autres auteurs (cf. Artyukh 1966), 110 crochets chez ce cestode.
Figs 11-13.

Fig. 11: *Wardium hughesi* (Webster), crochets du rostre. Echelle 5 µm.
Fig. 12: Scolex. Echelle 20 µm. Fig. 13: Anneau mature. Echelle 50 µm.
dépourvu de sacculus accessoire et d’ornements. Il est prolongé par un réceptacle séminal de forme variable, généralement arrondi mais qui peut être très allongé, atteignant même parfois les canaux excréteurs antiporaux (fig. 13). Le système excréteur est composé, classiquement, de vaisseaux ventraux et dorsaux, les anastomoses entre les deux vaisseaux ventraux sont très rares.

Nous n’avons pas observé d’anneaux gravides.

Dimensions:
- Longueur maximale: env. 19 mm
- Largeur maximale: 610
- Nombre de proglottis maximal: env. 300
- O sclolex: 200-210
- O ventouses: 82-94
- N crochets: 10 (1 couronne)
- L crochets: 13-15
- L × 1 poche du rostre: 122-130 × 63-70
- N testicules: 2 (4%) — 3 (94%) — 4 (2%)
- O testicules: 60-102
- L × 1 poche du cirre: 118-142 × 33-49
- L cirre: ± 30
- L × 1 vés. sém. interne: 104-128 × 33-43
- L × 1 vés. sém. externe: 66-99 × 47-63
- L × 1 ovaire: 148-204 × 62-76
- L × 1 gl. vitellogène: 41-68 × 24-33
- Fibres musculaires internes: 20-25 par face
- Rapport PC/AM²: 1: 2.4-1: 3.8.

Matériel examiné:
- 3 individus et quelques fragments (MHNG 985.603-4) provenant de 2 Charadrius hiaticula (L).
- Adiopodoumé, 20 km W d’Abidjan. 30.X.1985.
- Localisation: intestin
- Prévalence: 2/3 (67%)
- Intensité: 1-2 individus.

De plus: nombreuses lames de Oligorchis paucitesticulatus hymenolepidoideus et matériel type de Hymenolepis hughesi europaei obligeamment prêté par le professeur S. Deblock (Lille). Une lame type de Hymenolepis hughesi, National Parasite Collection n° 45744, Beltsville, USA.

Discussion:

De nombreuses espèces d’Hymenolepididae de Charadriiformes sont connues. Dans une série de travaux synthétiques, DEBLOCK & ROSÉ (1962, 1964), DEBLOCK (1964), DEBLOCK & TRAN-VAN-KY (1965), DEBLOCK & RAUSCH (1967) en recensent entre 40 et 60 selon les synonymies acceptées. Plus récemment SCHMIDT (1986) reconnaît environ 25 espèces d’Hymenolepididae à crochets aploparaxoides (= chéliformes) appartenant au genre Dicranotaenia (Synonyme de Wardium pour cet auteur) et parasites de cette famille. L’usage de la clé de détermination de DEBLOCK (1964) p727, paragraphe A, nous désigne un petit groupe d’espèces possédant des caractères proches de ceux de notre matériel. La plupart en sont aisément différenciables mais deux d’entre elles, à savoir Variolepis hughesi (Webster, 1947) YAMAGUTI 1959 et Oligorchis paucitesticulatus hymenolepidoideus

² Rapport longueur de la poche du cirre (PC)/largeur de l’anneau mûr (AM).
Deblock et Rosé, 1964 méritent une comparaison détaillée, ce qui nous a amené à en revoir les types. Notons d'abord que *V. hughesi* est, à notre avis, placé dans ce genre de manière erronée: la disposition en ligne des testicules et surtout ses crochets nettement chéliformes ne laissent aucun doute à ce sujet. Deux genres proches, mais non synonymes, présentent des caractéristiques semblables à *Variolepis hughesi*. Il s'agit de *Dicranotaenia Railliet, 1892* et *Wardium Mayhew, 1925*. Nous ne pouvons retenir *Dicranotaenia*, l'espèce type, bien redécrite par CZAPLINSKI (1956), présentant des crochets rostraux avec une ébauche de manche et surtout un sacculus accessorius typique. L'espèce type de *Wardium* par contre, montre un atrium génital plus simple et un rostre portant des crochets à manche complètement absents très semblables à ceux du matériel dont nous discutons. D'autre part, le nombre de crochets (10) est constant dans ce genre. Nous proposons donc de placer cette espèce dans le genre *Wardium Mayhew, 1925*.

Nous observons que notre matériel différe:
— de *O. p. hymenolepidoideus* par la dimension de la poche du cirre (plus courte), le pourcentage d'anneaux contenant les divers nombres de testicules possibles (94% d'anneaux à 3 testicules), les dimensions de la vésicule séminale externe (plus petite) et la forme des crochets (à garde plus longue que la lame),
— de *W. hughesi* par plusieurs points de détail, à savoir: le rapport PC/AM, la largeur totale, la position de la glande vitellogène, le nombre de fibres musculaires internes, le nombre d'anneaux avant l'apparition des testicules.

Ces différences ne justifient cependant à notre avis pas une séparation spécifique. L'espèce est bien répandue et comprend déjà deux variétés (sensu DEBLOCK & ROSÉ) *W. h. hughesi* d'Amérique du Nord et *W. h. europeai* d'Europe, ce qui nous fait admettre une certaine variabilité pour ce taxon. Notre matériel peut dès lors être considéré comme appartenant à *W. hughesi* jusqu'à ce qu'une étude comparative approfondie d'individus des diverses origines géographiques éclaircisse la structure exacte du groupe.

REMERCIEMENTS

Nous tenons à remercier ici toutes les personnes qui, à des degrés divers, nous ont aidé à réaliser ce travail: le professeur A. Aeschlimann (Neuchâtel), le docteur C. Vaucher (Muséum, Genève), le professeur F. Bona (Turin), le docteur B. Georgiev (Sofia), le professeur B. Höning (Berne), le professeur S. Deblock (Lille), le docteur E. A. Harris (Londres), le docteur R. Lichtenfels (Beltsville), le professeur M. Bachmann (Zürich), M. O. Porgo (Abidjan) ainsi que les autorités ivoiriennes grâce à la compréhension desquelles le travail de terrain a été possible.

La Société helvétique des Sciences naturelles (SHSN) par sa Bourse de voyage, la Fondation J. de Giacomi, la Fondation Roche de recherche en Afrique et l'Institut de zoologie de l'Université de Neuchâtel ont soutenu financièrement ce projet.

RÉSUMÉ

Les cestodes récoltés en Côte-d'Ivoire chez des oiseaux Charadriiformes sont présentés. Une espèce nouvelle parasite d'*Actitis hypoleucos* est décrite: *Anomotaenia hypoleucos* caractérisée par des crochets de 45 à 50 μm de longueur, un faible nombre de testicules, un sphincter vaginal marqué et des œufs munis de filaments polaires.
D’autre part, on a retrouvé *Kowalewskia cingulifera* (Krabbe, 1869) Lopez-Neyra, 1952 chez *A. hypoleucos*. La présence de testicules en position antiporale chez cette espèce nous a conduit à discuter les caractéristiques comparées des genres *Kowalewskia* Baczynska, 1914 et *Onderstepoortia* Ortlepp, 1938 puis à redécrire l’espèce type *K. longiannulata*.

Toujours chez ce même hôte, on a découvert *Raillietina (R.) permista* Southwell et Lake, 1939. Ce Davaineidae au scolex caractéristique était connu jusqu’ici des Picidae. Nous signalons pour la première fois un cestode de ce genre chez les Charadriiformes.

Progynotaenia odhneri Nybelin, 1914 de *Charadrius hiaticula* voit sa distribution étendue à la zone éthiopienne.

Enfin, *Wardium hughesi* (Webster, 1947) comb. n. est extrait du genre *Variolepis*. Cet Hymenolepididae est retrouvé avec quelques variations morphologiques en Amérique du Nord, en Europe et, maintenant, en Afrique.

BIBLIOGRAPHIE

AESCHLIMANN, A. 1981. In: Centre suisse de recherches scientifiques en Côte-d’Ivoire. *Commission du CSRS* Ed., *Imp. Herbst*, Zürich. 84 pp.

ARTYUKH, E. S. 1966. [Essentials of Cestodology. Vol. 6. Davaineata.] *Akad. Nauk SSSR. Moscou.* 511 pp. (en russe).

BACZYNSKA, H. 1914. *Etudes anatomicques et histologiques sur quelques nouvelles espèces de cestodes d’oiseaux.* *Bull. Soc. neuchâtel. Sci. nat.* 40: 189-239.

BAER, J. G. 1959. *Exploration des parcs nationaux du Congo belge. Mission J. G. Baer-W. Gerber. Fascicule 1. Helminthes parasites. Inst. Parcs Nationaux Congo belge. Ed., Tervuren.* 163 pp.

— 1972. Trématodes de rongeurs récoltés en Côte-d’Ivoire. *Z. Parasitenk.* 37: 226-254.

BURT, D. R. R. 1940. New species of Cestodes from Charadriiformes, Ardeiformes, and Pelecaniformes in Ceylon. *Ceylon J. Sci. (B).* 23 (1): 1-63.

BURT, M. D. B. 1969. Cyclophyllidean Cestodes from birds in Borneo. *Bull. Br. Mus. nat. Hist.* 17 (8): 283-346.

CHOLODOWSKY, N. 1912. [Explanatory Catalogue of the Collection of Parasites of the Imperial Military Academy of Medicine, 1. Tapeworms (Cyclophyllidea)]. *St. Petersburg.* 1-96 (en russe).

CLERC, W. 1903. Contribution à l’étude de la faune helminthologique de l’Oural. *Revue suisse Zool.* 11: 241-368.

COHN, L. 1900. Zur Kenntnis einiger Vogeltaenien. *Zool. Anz.* 23: 91-98.

CZAPLINSKI, B. 1956. Hymenolepididae Fuhrmann, 1907 (Cestoda) parasites of some domestic and wild anseriformes in Poland. *Acta parasit. pol.* 4 (8): 175-373.

DEBLOCK, S. 1964. Les *Hymenolepis* de Charadriiformes (seconde note à propos d’une vingtaine d’autres descriptions dont deux nouvelles). *Annls Parasit. hum. comp.* 39 (6): 695-754.

DEBLOCK, S. et R. L. RAUSCH. 1967. Les *Hymenolepis (s. l.)* de Charadriiformes (quatrième note à propos de deux espèces nouvelles d’Alaska). *Annls Parasit. hum. comp.* 42 (3): 303-311.
DEBLOCK, S. et F. ROSE. 1962. Les Hymenolepis (sensu lato) de Charadriiformes. A propos de 23 descriptions. Annls Parasit. hum. comp. 37 (5-6): 767-847.

— 1964. Hymenolepididae (Cestoda) de Charadriiformes des Côtes de France. Validité du genre Oligorchis (Fuhrm. 1906) et description d’Hymenolepis longocylindrocirrus n. sp. Annls Parasit. hum. comp. 39 (2): 157-178.

DEBLOCK, S. et P. TRAN-VAN-KY. 1965. Les Hymenolepis (sensu lato) de Charadriiformes. Annls Parasit. hum. comp. 40 (2): 131-139.

FUHRMANN, O. 1908. Die Cestoden der Vögel. Zool. Jb., Supp. X: 1-232.

HUNKELER, P. 1974. Les cestodes parasites des petits mammifères (rongeurs et insectivores) de Côte-d’Ivoire et Haute-Volta. Revue suisse Zool. 80: 809-930.

JOYEUX, C. 1923. Recherches sur la faune helminthologique africaine. Archs Inst. Pasteur Tunis 12 (2): 119-167.

JOYEUX, C. et J. G. BAER. 1936. Faune de France. Vol. 30. Cestodes. Office Central de Faunistique Ed. Paris. 613 pp.

— 1939. Sur quelques Cestodes de Charadriiformes. Bull. Soc. zool. Fr. 64: 171-187.

KORNYUSHIN, V. V. 1969. [Revision of the genus Kowalewskiella Baczynska 1914 (Cestoda, Cyclophyllidea). Communication I.] Vest. Zool. 3 (5): 70-75 (en russe).

— 1970. [Revision of the genus Kowalewskiella Baczynska 1914 (Cestoda, Cyclophyllidea). Communication II.] Vest. Zool. 4 (3): 43-49 (en russe).

KRABBE, H. 1869. Bidrag til Kundskab om Fuglenes Baendelorme. Vidensk. Selsk. Skr., Naturvidenskab. Math. 8 (6): 251-389.

LANGERON, M. 1949. Précis de microscopie. 7e Ed. Masson et Cie. Paris. 1430 pp.

v. LINSTOW, O. 1905. Helminthen der Russischen polar-Expedition 1900-1903. Mém. Acad. Sci. St Pétersb. (8). 18 (1): 1-16.

LOPEZ-NEYRA, C. R. 1952. Análisis critico de los géneros Choanotaenia, Anomotaenia y afines, con redescripción de la Taenia porosa Rudolphi 1810 e invalidez del género Paricterotaenia Fuhrmann 1932 (Segunda parte y final). Revta ibér. Parasit. 12: 1-58.

MAEDER, A.-M. 1973. Monogènes et Trématodes parasites d’Amphibiens en Côte-d’Ivoire. Revue suisse Zool. 80 (2): 267-322.

MARIAX, J. et C. VAUCHER. 1988. Pseudochoanotaenia eburnea n. sp. (Cestoda: Cyclophyllidea) parasite de cinq espèces de Cisticola (Aves: Passeriformes) en République de Côte-d’Ivoire. Revue suisse Zool. 95 (1): 249-256.

— [sous presse]. Cestodes d’Oiseaux de Côte-d’Ivoire. II. Parasites de Coraciiformes et Piciiformes.

MATEVOSSIAN, E. M. 1963. [Essentials of Cestodology. Vol. 3. Dilepidoidea] Akad. Nauk SSSR., Moscou. 687 pp. (en russe).

MAYHEW, R. L. 1925. Studies on the avian species of the Cestode family Hymenolepididae. Illinois biol. Monogr. 10 (1): 1-125.

METTRICK, D. F. 1961. Ondersteypoortia coronati sp. nov., a new cestode from a crowned plover, Stephanibyx coronatus (Boddaert). Rev. Zool. Bot. afr. 64: 133-137.

— 1967. Some Cestodes from Ardeiformes and Charadriiformes in Central Africa. Revue Zool. Bot. afr. 75 (3-4): 333-362.

MURITH, D. 1981. Contribution à l’étude de la systématique des Polystomes (Monogènes, Polystomatidae) parasites d’Amphibiens Anoures de Basse Côte-d’Ivoire. Revue suisse Zool. 88: 475-533.
Nybelin, O. 1914. Notizen über Cestoden. Über Progynotaenia odhneri, einen neuen Vogelcestoden aus Schweden. Zool. Bidrag 3: 225-230.

Ortlepp, R. J. 1938. South African Helminths — Part III. Some mammalian and avian Cestodes. Ondersteypoort J. vet. Sci. Anim. ind. 11 (1): 23-50.

PasPalaWea, A. et S. M. Woidowa. 1969. Raillietina macracanthos sp. n. (Davaineidae) vom Specht Picus viridis (L.). Izv. zool. Inst. 30: 133-139.

Railliet, A. 1892. Notices parasitologiques. Bull. Soc. zool. Fr. 17: 110-117.

Sandeman, I. M. 1959. A contribution to the revision of the dilepid tapeworms from Charadriiformes. Preliminary note. Zool. Anz. 163 (9-10): 278-288.

Sawada, I. 1965. On the genus Raillietina Fuhrmann 1920 (II). J. Nara Gakugei Univ. 13: 5-38.

Schmidt, G. D. 1986. CRC Handbook of Tapeworm Identification. CRC Press, Inc., Boca Raton, Florida. 675 pp.

Self, J. T. and J. Janovy. 1965. Kowalewskiiella totani n. sp. (Cestoda: Dilepididae) from Totanus flavipes. Proc. helminth. Soc. Wash. 32: 169-172.

Shen Tseng. 1932. Studies on Avian Cestodes from China. Part 1. Cestodes from Charadriiform birds. Parasitology, Cambridge. 24 (1): 87-106.

Skrijabin, K. J. 1914. Vogelcestoden aus Russisch Turkestan. Zool. Jb. Syst. 37: 411-492.

Southwell, T. 1922. Cestodes in the collection of the Indian Museum. Ann. trop. Med. Parasit. 16 (2): 127-152.

Southwell, T. and F. Lake. 1939. On a Collection of Cestoda from the Belgian Congo. Ann. trop. Med. Parasit. 33 (1): 63-90.

Spasskaja, L. P. et A. A. Spassky. 1973. [Cestodes of Charadrid birds in the Kamchatka region]. Parasity Zhivotnykh Rast. 9: 49-78 (en russe).

Spassky, A. A. 1965. [Revision of the genus Dilepis (Cestoda: Cyclophyllidea)]. Parasites Anim. Plants 1: 65-83 (en russe).

Spassky, A. A. and Y. N. Konovalov. 1967. [Two new species of Dichoanotaenia (Cestoda: Cyclophyllidea)]. Parazitologiya 1: 207-212 (en russe).

Tubangui, M. A. and V. A. Masilingan. 1937. Tapeworm Parasites of Philippine Birds. Philipp. J. Sci. 62 (4): 409-436.

Weber, C., T. Jaccoud et A. de Chambrier. 1984. A temporary Field Fixing Solution for Ornithological Collecting. Curator 27 (4): 281-286.

Webster, J. D. 1947. Studies on the genus Hymenolepis, with description of three new species. J. Parasit. 33 (2): 99-106.

Yamaguti, S. 1959. Systema Helminthum. Vol. II. Cestodes of Vertebrates. Interscience Publ., New York. 860 pp.

YurpaLOva, N. M. and A. A. Spassky. 1971. [Cestode of Birds in Central Asia]. Parazity Zhivotnykh Rast. 7: 39-56 (en russe).
A NEW GENUS OF DILEPIDIDAE (CESTODA) OF THE YELLOWBILL *CEUTHMOCHARES AEREUS* (CUCULIDAE) FROM THE IVORY COAST

Jean Mariaux and Claude Vaucher*
Institute of Zoology, Ch. de Chantemerle 22, CH 2007 Neuchâtel, Switzerland

ABSTRACT: *Bonaia africana* n. gen., n. sp. (Cestoda: Dilepididae) has been found in *Ceuthmochares aereus* (Aves: Cuculidae) in the Ivory Coast (West Africa). This new tapeworm is mainly characterized by its unusual rostellar hooks that are implanted irregularly and which present a variable form and length in the same rostellum. The differential diagnosis, particularly in comparison with the closely related genera *Liga* and *Amoebotaenia*, is presented: *Liga* possesses an atrial bundle of setae and *Amoebotaenia* 1 row of well built hooks with a typical blade. It is assumed that the unusual disposition of the rostellar hooks described here could be a transitional form between the 1- and 2-row patterns or a degenerate derivative of a regular arrangement.

The Cestode fauna of the Cuculiformes is composed mainly of Davaineidae, especially of *Raillietina* species. Most of the material we have collected in the Ivory Coast belongs to *Raillietina*, but a single species of Dilepididae found in a specimen of *Ceuthmochares aereus* (Vieillot) represents a new genus and species and is described here.

MATERIALS AND METHODS

Birds were caught with a mist net, investigated immediately after being killed, and preserved in a phenoxetol solution (Weber et al., 1984). The Cestodes were fixed with hot 4% formalin. They were stained with alcoholic hydrochloric carmine and mounted in Canada balsam for light microscopy (routine and Nomarsky). The scolices were squashed in Faure's medium. Figures were drawn with the aid of a camera lucida. All measurements are given in μm, the mean followed by the range, unless otherwise stated. The material prepared for SEM was dehydrated in ethanol, transferred to dry acetone, and dried in a critical point dryer using CO₂. These worms were then coated with gold and handled. Parasite of birds (Cuculiformes).

Taxonomic summary

Type species: *Bonaia africana* n. sp.

Etymology: The genus is dedicated to Professor F. Bona from Torino, Italy.

Remarks

Several genera present characteristics that are comparable to our material. The 2 closest ones are *Amoebotaenia* Cohn, 1900, and *Liga* Weinland, 1857. We accept the restrictive definition of this latter genus given by Spassky and Resnik (1966) or Spasskaja and Spassky (1971) but not the ones of Matevossian (1963) or Schmidt (1986). Both *Amoebotaenia* and *Liga* show regularly alternating genital pores and dorsal genital ducts generally associated with a very short strobila. They are nevertheless easily distinguishable from our specimens by the following points: *Liga* typically has an atrial bundle of setae and its double row of rostellar hooks is clearly visible. Moreover, this genus is restricted to Piciformes hosts (Spasskaja and Spassky, 1971). *Amoebotaenia* has a single row of well built hooks with a typical blade. Testes are also disposed on a characteristic posterior line in that genus. Furthermore, *Amoebotaenia* seems to be restricted to the Galiformes. The other closely related genus, *Chettusiana* Singh, 1959, has a bundle of atrial setae and its genital ducts pass between the excretory vessels. In addition, this last genus typically occurs in Charadriiformes. Finally, *Monopylidium* Fuhrmann, 1899, also includes several species of short-bodied worms. But its anatomical characteristics, particularly the position of the genital ducts in relation to the excretory canals, the disposition of the rostellar hooks, and a uterus forming egg capsules, separate it easily from our specimens. These comparisons lead us to conclude that our material belongs to a new genus of Dilepididae.

Bonaia africana n. sp.

(Figs. 1–10)

Diagnosis: Cyclophyllidea, Dilepididae, Dilepidinae. Tiny worms composed of few proglottids. Segments broader than long, except gravid ones (Fig. 1).
Scolex not clearly separated from strobila. Suckers subcircular and unarmed. Rostellar pouch protruding, glandular, reaching posterior extremity of suckers, and showing well marked sphincter composed of circular muscles at its distal extremity; elongate microtriches on its surface (Fig. 2). Rostellum resembling a dumbbell, its posterior globe variable in size (Fig. 3). Rostellar hooks presenting a variable appearance in 1 scolex. Blades usually well formed. Guards and handles rather massive and developed very differently (Fig. 4). In some hooks, guard and handle forming an indistinct and compact structure. Size of hooks consequently variable (Fig. 10). Disposition of hooks irregular; tips of blades regularly alternated on some sectors of rostellum and more or less lined up on others (Figs. 2, 10). Sexual primordia appearing in third or fourth proglottids followed by 1 male, 2 or 3 mature or postmature, and 2 gravid proglottids; last gravid segment, however, nearly always missing. Genital pores on anterior third of lateral margin, alternating regularly. Genital ducts dorsal to excretory vessels, the latter being narrow and very difficult to observe. Male genital system composed of numerous testes disposed in 2 fairly well separated posterolateral fields in young segments but joining in posterior part of mature proglottides. Testes disposed in several rows and in 1 layer only, but frequently partially superimposed. Vas deferens well developed and highly convoluted leading into rather short, oval, cirrus pouch. Pouch just, or not, reaching poral excretory vessels. Cirrus covered with minute spiny structures (Figs. 8, 9). Female system composed of irregular, transversely elongated anterior ovary that often reaches lateral excretory vessels. Vitelline gland posterior to ovary, irregular. Vagina with rather thick walls opening posteriorly to cirrus pouch. Seminal receptacle situated approximately half way between vitelline gland and cirrus pouch (Fig. 5). Young uterus showing anteroposterior oriented fingerlike lobes (Fig. 6), becoming nearly regular and saccular when completely gravid. External envelope of eggs bear short polar filaments (Fig. 7).

Dimensions: Length (maximum): 4 mm (2.7 mm without last proglottid); breadth (maximum): 1.1 mm; number of proglottids: 7–10; / scolex: 354 (317–390); / suckers: 145 (131–160); rostellum: 88 × 34 (77–107 × 30–39); rostellar pouch: 192 × 78 (150–226 × 67–86); number of hooks: 19 (16–23); length of hooks: 9 (8–11.5); number of testes: 32 (27–40); cirrus pouch: 110 × 45 (81–131 × 36–51); cirrus (fully evaginated): 160 × 12–17; eggs: 42 × 32 (39–46 × 30–36); oncospheres: 27 × 21 (25–29 × 19–24); embryonic hooks: 16 (15–17).

Taxonomic summary

Type host: Ceuthmochares aereus (Vieillot) MHNG C1958.

Site of infection: Anterior and middle part of intestine.

Intensity of infection: About 100 specimens.

Type specimens: Holotype MHNG 988.163. Paratypes MHNG 988.164.

Type locality: Prefecture of Bouake. Intersection of the river M'Bé and the track Toure Makari—Wassadougou (about 80 km E of Bouake and 30 km N of M'Bahiakro).

FIGURES 1, 2. Bonaia africana n. gen., n. sp. 1. Worm in toto. Scale bar = 200 µm. 2. Rostellum (SEM). Scale bar = 10 µm.
FIGURES 3–8. *Bonaia africana* n. gen., n. sp. 3. Scolex. Arrow shows muscular sphincter. Scale bar = 50 μm. 4. Three hooks. Scale bar = 10 μm. 5. Mature proglottid. Scale bar = 50 μm. 6. Young uterus (schematic). Scale bar = 100 μm. 7. Eggs. Scale bar = 50 μm. 8. Cirrus pouch. Scale bar = 50 μm.
FIGURE 9. *Bonaia africana* n. gen., n. sp. Apical view of cirrus (SEM). Scale bar = 5 μm.

Remarks

As type and unique species in *Bonaia* n. gen., *B. africana* n. sp. is different from all other known cestodes.

DISCUSSION

Independent of its taxonomic utility, the unusual structure of the hooks of our material poses some questions. The criterion of 1 or 2 rows of hooks is widely used in Cyclophyllidea systematics, and most of the known taxa possess 1 of these classical dispositions of their hooks. Peculiar arrangements such as zigzag rows or other irregular alternations exist but are uncommon. Our material is however different from these patterns. We can observe an arrangement that is intermediate between 1 and 2 rows. Hooks of various sizes also contribute to make the interpretation difficult, especially because reduction in size seems to occur preferentially on 1 hook out of 2, which reinforces a superficial 2-row appearance. However, when this phenomenon is less marked, the pattern is more disordered and

FIGURE 10. *Bonaia africana* n. gen., n. sp. Some aspects of the rostellar hooks. From A to E, the hooks are progressively less well formed and the 2 rows become less and less distinct. Scale bar (A–E) = 10 μm.
can simulate a 1-row structure (Fig. 10A-E). There are 2 possible interpretations of this unusual disposition of the rostellar hooks. We are confronted either with a transition form between a 1- and a 2-row structure or with a degenerate derivative of a regular arrangement.

As shown in Figure 9, the cirrus is not covered with spines and cannot be considered as armed. However, it is covered with numerous minute spiny structures. Beveridge and Smith (1985) clearly showed that the surface of the cirrus is lined with microtriches in *Phyllobothrium vagans*. Therefore, the structures we observed are considered microtriches.

ACKNOWLEDGMENTS

We thank Prof. A. Aeschlimann (Neuchâtel) for his support, Dr. B. Georgiev (Sofia) and Prof. F. Bona (Torino) for their help with literature and critical review, Mr. O. Porgo (Abidjan) for his help in the field, and the authorities of the République de Côte-d’Ivoire for providing the permits.

This work, forming a part of the Ph.D. Thesis of J. Mariaux, was financially supported by the Swiss Academy of Sciences, the Foundation J. de Giacomi, the Roche African Research Foundation, and the University of Neuchâtel.

LITERATURE CITED

BEVERIDGE, L., AND K. SMITH. 1985. An ultrastructural study of the cirrus and vagina of *Phyllobothrium vagans* (Cestoda: Tetraphyllidea). Zeitschrift für Parasitenkunde 71: 609–616.

MATEVOSSSIAN, E. M. 1963. Essentials of cestodology, Vol. III. Dilepidoidea—Cestode. Helminths of domestic and wild animals. Academiya Nauk SSSR, Moscow, 687 p. [In Russian.]

SCHMIDT, G. D. 1986. CRC handbook of tapeworm identification. CRC Press, Inc., Boca Raton, Florida, 675 p.

SPASSKAJA, L. P., AND A. A. SPASSKY. 1971. Cestodes of birds in Tuva. Izdatel’stvo Shtiintsa, Kishinev, 252 p. [In Russian.]

SPASSKY, A. A., AND V. N. RESNIK. 1966. Revision of the genus *Liga* (Cestoda: Dilepididae). Parazity zhivotnych i rasteniy 2: 64–74. [In Russian.]

WEBER, C., T. JACCOUD, AND A. DE CHAMBRIER. 1984. A temporary field fixing and preserving solution for ornithological collecting. Curator 27: 281–286.
A new species of *Staphylepis*
Spassky & Oshmarin, 1954
(Cestoda: Hymenolepididae) found in West African nectariniid birds.

by

J. MARIAUX * and C. VAUCHER **

With 7 Figures

ABSTRACT

We describe *Staphylepis ambilateralis* (Cestoda, Hymenolepididae) a new species parasitizing sunbirds of the Ivory Coast. This species is characterized by an absence of a rostellum. Surprisingly the closest species to *S. ambilateralis* is *S. inhamata* (Rietschel, 1934) which has been found in South American Trochilidae (Hummingbirds). We have found *S. ambilateralis* in sunbirds only at low intensities and prevalences. Furthermore, a seasonal cycle, with a peak during the summer, occurs. These observations may help to explain the small number of parasite species known from this family of hosts until now.

As part of our study of bird cestodes of the Ivory Coast, we have studied a large number of sunbirds (Family Nectariniidae). Until now, few tapeworm species have been found in this family of birds. To our knowledge, they are: – *Anonchotaenia globata* cited by Yamaguti (1959). – *Biuterina ugandae* described by Baylis (1919) in Uganda and refound by Hudson (1934). – *Ophryocotyloides bhaleraoi* Inamdar, 1944 in India. – *Allohymenolepis mitudori* and *A. palawanensis* from the Philippines (Deardorff et al. 1976, 1978). A *Hymenolepis sp.* was reported from Borneo by Burt (1969) and was characterized by an armed rostellum.

* Institute of Zoology, University of Neuchâtel, Chantemerle 22, CH-2007 Neuchâtel, Switzerland.
** Museum of Natural History, P.O. Box 434, CH-1211 Geneva 6, Switzerland.
† This work is a part of the first author’s thesis.
We have discovered three Cestodes species in these birds with very low prevalences and intensities: A Dilepididae with unarmed scolex, a *Raillietina* and a Hymenolepididae. This last taxon only can be satisfactorily described.

MATERIALS & METHODS

Birds are caught with mist nests and examined just after their death. Cestodes are fixed with hot 5% formalin and stained with alcoholic hydrochloric carmine. Observations are made in light microscopy (normal or Nomarsky). Eggs are observed in Faure's medium after dissection of the uterus. Our methods are described more in detail in previous papers (MARIAUX & VAUCHER 1988, 1990).

List of localities: Adiopodoumé: 5° 19' N-4° 06' W, 20 Km W of Abidjan. Dabou: 5° 19' N - 4° 19' W, 40 Km W of Abidjan. Lamto: 6° 13' N - 5° 01' W, 150 Km NW of Abidjan. Taabo: 6° 14' N - 5° 04' W, 10 Km N of Lamto.

Staphylepis ambilateralis n. sp.

DESCRIPTION: Hymenolepididae, Hymenolepidinae. Worm of medium size. Scolex globular, not clearly separated from neck. Suckers circular and unarmed. Apex of scolex with compacted parenchyme, resembling a glandular zone in place of rostellum and rostellar pouch. Integumentary irregularities in front of this structure (Figs 1-2). Proglottides broader than long. Genital pores unilateral on left or right side of body. Genital ducts dorsal to excretory stems. Testes three, dorsal; one poral, posterior; two antiporal, tandem. Cirrus pouch oval, well developed, overreaching longitudinal excretory ducts. Cirrus straight in pouch, possessing strong wall and surrounded with glandular cells. Cirrus and genital atrium unarmed. Round and small internal seminal vesicle in back of pouch. External seminal vesicle usually not well developed, often completely empty. Vagina always posterior to cirrus pouch but sometimes partially superposed to it in its terminal part. Seminal receptacle oval, approximately central, ventral to external seminal vesicle. Ovary ventral, central and massive. Oval vitelline gland postovarian (Fig. 3). Rounded, young uterus appearing ventrally and anteriorly, slightly antiporally. Pregravid uterus generally horseshoe shaped with numerous marginal lobes forming an irregular border. Gravid uterus filling whole proglottis between excretory ducts (Fig. 4). Eggs rounded with smooth external shell. Embryophores oval, usually elongated and often showing small polar irregularities or protuberances. Oncospheres oval. No filaments on either outer membrane nor on embryophore surface. Embryonic hooks of equal size (Fig. 5). Empty postgravid proglottides often present.
Staphylepis ambilateralis n. sp. 1) Scolex. Scale bar: 50 μm; 2) Detail of the apical part of the scolex. Scale bar: 50 μm; 3) Anatomy of mature proglottis. Scale bar: 50 μm; 4) Schematic view of the uterus. Scale bar: 500 μm.
DIMENSIONS\(^1\): Length (max.): 3 cm; breadth (max.): 962; number of proglottides (max.) 100; scolex: 150 (119-170), n=3; suckers: 63 (50-75), sd: 10.6, n=12; testes 100x69 (86-119x57-83), sd: 6.3, 5.5, n=44; cirrus pouch: 148x74 (125-173x54-95), sd: 13.7, 12.3, n=47; int. seminal vesicle: 53 (36-74), sd: 11.2, n=58; ext. seminal vesicle: 108x51 (87-129x38-63), sd: 4.6, 3.3, n=29; eggs: up to 86x68; oncospheres: 25x13 (23-29x11-17), sd: 1.7, 1.3, n=26; embryophores: 36x16 (31-43x13-23), sd: 2.6, 2.2, n=26; embryonic hooks: 10 (9-12), sd: 0.6, n=39.

MATERIAL: 10 specimens found in the intestine of 7 sunbirds (3 scoleces only). *Cinnyris cupreus* 17.7.85, Adiopodoumé and 25.9.85, Lamto. *Cinnyris chloropygius* 27.7.85, Adiopodoumé. *Cinnyris sp.* 10.8.85, Taabo and 30.9.85, Adiopodoumé. *Cyanomitra cyanolaema* 3.10.85, Dabou. *Cyanomitra olivacea* 20.7.85, Adiopodoumé.

Prevalence: 7/124 (5.6%) (Fig. 6).

Intensity: 0.08.

Etymology: The name *ambilateralis* refers to the fact that some specimens possess genital pores opening on the left side of the strobila and other specimens on the right side.

This material is deposited at the Museum of Natural History of Geneva (MHNG). Holotype MHNG 985.610, paratypes MHNG 985.611, other specimens MHNG 985.612-617.

Other studied material: *S. inhamata*, type material from Rietschel. MHNG 58/63-66.

DISCUSSION: The determination of the present material is complicated by the appearance of the scolex. The question is whether or not the observed apical structures should be considered as a rudimentary rostellum. In fact this structure, a compacted parenchyme which may be associated with glandular cells, is extremely difficult to observe (it can only be discerned with a Nomarsky contrast) and such a scolex could easily be considered as totally devoid of apical organization. In consequence, assuming the structure observed in our material is a rudimentary rostellum, it is important to distinguish it from small unarmed rostellums, muscular or glandular, but with well marked walls clearly distinguished from the surrounding parenchyme.

This material can be compared, among bird parasites\(^2\), with the genera totally devoid of a rostellum such as *Arynchotaeniella* Schmidt, 1986 or *Woodlandia* Yamaguti, 1959 or with those harbouring a "rudimentary rostellum" like *Schmelzia* Yamaguti, 1959,

\(^1\) Mean, range, standard deviation (sd) and number of observations (n). In μm if not specified otherwise.

\(^2\) We will not discuss here the parasites of mammals. These cestodes, which are found in rodents, insectivors and bats, have been reviewed by MAS-COMA *et al.* (1980) and MAS-COMA (1982). Their specificity for a family or even a genus of hosts is recognised (VAUCHER 1971; MAS-COMA 1982).
Staphylepis Spassky & Oshmarin, 1954 and Australiolepis Spassky & Spasskaja, 1954 or Hymenolepis Weinland, 1858.

The first three of these genera are easily distinguishable from the present material by obvious characteristics, mainly at the level of the genital organs: presence of a sclerotized vaginal clamp in Arynchotaeniella, extravascular disposition of testes in Woodlandio, glandular structure of rostellum and peculiar egg membranes for Schmelzia. Australiolepis can also be differentiated by its clearly different rostellar structure, the position of its vitelline gland and testes. Hymenolepis sensu lato, has been used for numerous Hymenolepididae possessing three testes. Sensu stricto it is now restricted to a series of hymenolepidid cestodes without or with unarmed rudimentary rostellum (MAS-COMA et al. 1980, SCHMIDT 1986). Until now however all species of Hymenolepis are known from mammals, except H. foveata Meggitt, 1933 which has been found in a duck, but this species comes from a zoological garden and its description is extremely brief. The present material can be differentiated from H. foveata by its 700 μm long cirrus pouch (Meggitt 1933).

In the hymenolepidid systematics, this material can only be placed in the genus Staphylepis which is at present the only one containing species similar to it. This genus was created by SPASSKY & OSHMARIN (1954) for S. contaniana (Polonio, 1860), a parasite of Galliformes. Since this date five species have been added to Staphylepis, mainly by YAMAGUTI (1959). According to SCHMIDT (1986), they are: S. cordobensis (Jordano, 1952) in a pigeon from Spain, S. infrequens (Sharma, 1943) in a duck from Burma, S. inhomota
Prevalence of *Staphylepis ambilateralis* n.sp. in sunbirds of the Ivory Coast

Seasonal variation of the prevalence of *Staphylepis ambilateralis* n.sp. in sunbirds of the Ivory Coast.
NEW SPECIES OF STAPHYLEPS FROM NECTARINIID BIRDS

(Rietschel, 1934) in an hummingbird from Brazil, *S. lamellata* (Woodland, 1930) in a duck from London Zoo and *S. tonkinensis* (Joyeux & Baer, 1935) in a cuckoo from South-Eastern Asia.

Among them *S. inhamata* looks like our material but can be differentiated from it by an absence of a rudimentary rostellum (RIETSCHEL 1934 and personal observation) and by a shorter cirrus pouch [75x24 (65–85)x18–29], n=10 (personal measurements)]. It is concluded that the present material must be considered as a new species and it is proposed to name it *Staphylepis ambilateralis* n.sp. It has to be acknowledged that the position of this species among the genus *Staphylepis* could be temporary. The diversity of both the hosts and geographical origins of the species listed above make the systematics of this group dubious and should lead to its revision.

It is worth noting that *S. inhamata* parasitizes Trochilidae (Hummingbirds) in South America. This convergence in the parasite fauna of vicariant host groups is interesting and surprising as it is well known that these two bird families are phylogenetically separated (SIBLEY et al. 1988).

As said above, Nectariniidae are poorly known from a parasitological point of view. An explanation could lie in the fact that both their prevalences (Fig. 6) and intensities are low. In our case furthermore, a seasonal variation seems to occur. Even if our data do not cover the whole year, all positive cases were recorded between July and October and not one between January and April (Fig. 7). Due to the diet and alimentary behavior of sunbirds (MACKWORTH-PRAED & GRANT 1973), it can be supposed that the intermediate host of *S. ambilateralis* is a small arthropod found in the corolla of flowers.

ACKNOWLEDGEMENTS

We thank Prof. A. Aeschlimann (Neuchâtel), Prof. S. Mas-Coma (Valencia) and Dr. P. Losel (Neuchâtel) for their support, Mr. O. Porgo (Abidjan) for his help in the field and the Authorities of the République de Côte-d’Ivoire for providing the permits.

This work was supported financially by the Swiss Academy of Sciences, the Foundation J. de Giacomi, the Roche African Research Foundation and the University of Neuchâtel.

RÉSUMÉ

Une nouvelle espèce, *Staphylepis ambilateralis* (Cestoda, Hymenolepididae) parasite de divers Nectariniidae en République de Côte-d’Ivoire est décrite. Cette espèce est principalement caractérisée par un scolex dépourvu de rostellum. De manière surprenante, *S. ambilateralis* est extrêmement proche de *S. inhamata* (Rietschel 1934) parasite de Trochilidae (colibris) sud-américains. *S. ambilateralis* n’est rencontré chez les souimangas qu’avec de très faibles intensités et prévalences. Il semble de plus avoir un cycle saisonnier avec un maximum de présence en été. Ces deux observations pourraient
contribuer à expliquer la pauvreté de la faune parasitaire connue chez cette famille d'hôte pour l'instant.

BIBLIOGRAPHY

BAYLIS, H.A. 1919. Some new Entozoa from Birds in Uganda. *Ann. Mag. nat. Hist.* 9: 457–466.

BURT, M.D.B. 1969. Cyclophyllidean Cestodes from Birds in Borneo. *Bull. Br. Mus. nat. Hist., Zoology* 17: 283–346.

DEARDORFF, T.L., G.D. SCHMIDT & R.E. KUNTZ 1976. Tapeworms from Philippine birds, with three new species of *Raillietina* (*Raillietina*). *J. Helminth.* 50: 133–142.

— 1978. *Allohymenolepis palawanensis* sp. n. (Cyclophyllidea: Hymenolepididae) from the Philippine bird, *Nectarinia jugularis* (Tweeddale 1878). *J. Helminth.* 52: 211–213.

HUDSON, J.R. 1934. A list of Cestodes known to occur in East African Mammals, Birds & Reptiles. *J. E. Afr. Uganda nat. Hist. Soc.* 49–50: 205–217.

MACKWORTH-PRAED, C.W. & C.H.B. GRANT 1973. Birds of West Central and Western Africa. African Handbook of Birds. Ser. III, Vol. II. *Longman, London*: 818 pp.

MARIAUx, J. & C. VAUCHER 1988. *Pseudochoanotaenia eburnea* n.sp. (Cestoda: Cyclophyllidea) parasite de cinq espèces de *Cisticola* (Aves: Passeriformes) en République de Côte-d'Ivoire. *Revue suisse Zool.* 95: 249–256.

— 1990. A new genus of Dilepididae (Cestoda) of the yellowbill *Ceuthmochares aereus* (Cuculidae) from the Ivory coast. *J. Parasit.* 76: 22–26.

MAS-COMA, S. 1982. Helminthes de micromammifères. Spécificité, évolution et phylogénie des Cestodes Arostrilepididae Mas-Coma et Tenora, 1981 (Cyclophyllidea: Hymenolepidoidea). *Mém. Mus. Hist. nat. Paris, Nouvelle Série. A. Zoologie* 123: 185–194.

MAS-COMA, S., F. TENORA & J. GALLEGO 1980. Consideraciones sobre los Hymenolepídidos inertes de roedores, con especial referencia a la problemática entorno a *Hymenolepis diminuta*. *Circular Farmacèutica* (Barcelona) 267: 137–152.

MEGGITT, F.J. 1933. Cestodes obtained from animals dying in the Calcutta Zoological Gardens during 1931. *Rec. Indian Mus.* 35: 145–165.

RIETSCHEL, P.E. 1934. Über eine neue *Hymenolepis* aus einem Kolibri. Zugleich ein Beitrag zum Rechts-Links-Problem bei den Cestoden. *Zool. Anz.* 105: 113–123.

SCHMIDT, G.D. 1986. CRC Handbook of Tapeworm Identification. *CRC Press Inc., Boca Raton, Florida*: 675 pp.

SIBLEY, C.G., AHLQUIST J.E. & BURT B.L. Jr. 1988. A classification of the living birds of the world based on DNA-DNA hybridization studies. *Auk* 105: 409–423.

SPASSKY, A.A. & P.G. OSHMARIN 1954. [A new genus of hymenolepidids. *Staphylepis* gen nov. from domestic and wild gallinaceus birds] *Trudy gel'mint. Lab.* 7: 182–184. (in Russian).

VAUCHER, C. 1971. Les cestodes parasites des Soricidae d’Europe. Etude anatomique, révision taxonomique et biologie. *Revue suisse Zool.* 78: 1–113.

YAMAGUTI, S. 1959. *Systema Helminthum*. Vol. II. Cestodes of Vertebrates. *Interscience Publ., New York*: 860 pp.
Cestodes of birds from the Ivory Coast. *Yapolepis yapolepis* n. g., n. sp., a new metadilepidid (Cyclophyllidea: Paruterinoidea) parasite of the icterine greenbul (Aves: Pycnonotidae)

J. Mariaux*
*Institute of Zoology, Université – Mail, CH-2007 Neuchâtel, Switzerland

Accepted for publication 10th July, 1990

Abstract

Yapolepis yapolepis n. g., n. sp. a parasite of the icterine greenbul *Phyllastrephus icterinus* (Aves: Pycnonotidae) in the Ivory Coast is described. Due mainly to the lack of both a rostellar pouch and a paruterine organ, this new genus is classified within the family Metadilepididae Spassky, 1959. *Yapolepis* is principally characterised by its unarmed rostellum and by unilateral genital pores. It is assumed that the Metadilepididae are probably more diversified than presently known, the reason for this being our limited knowledge of the parasite-fauna of the intertropical terrestrial birds which are their main hosts.

Introduction

Continuing a survey of the cestode fauna of Ivory Coast birds, I here describe a new genus and species belonging to the Metadilepididae. This parasite has been found on several occasions during different expeditions but exclusively in the icterine greenbul *Phyllastrephus icterinus* (Bonaparte), a forest pycnonotid (Passeriformes).

Materials and methods

Birds were caught with mist nests and examined just after their death. Cestodes were fixed with hot 5% formalin and stained with alcoholic hydrochloric carmine. Observations were made by light microscopy (bright-field or Nomarsky). Drawings were made with the help of a camera lucida. Eggs were observed in Faure's medium after dissection of the uterus. These methods are described in more detail in previous papers (Mariaux & Vaucher, 1988, 1990). All measurements are given in micrometres (mean, range, standard deviation [sd] and number of observations [n]) except where otherwise specified. The specimens described in this work are deposited at the Museum of Natural History of Geneva (MHNG).

yapolepis n. g.

Diagnosis

Cyclophyllidea, Paruterinoidea, Metadilepididae. Scolex with apical sucker-like, unarmed rostellum. Rostellar pouch absent. Genital pores unilateral. Genital ducts passing between longitudinal excretory ducts. Testes disposed in single dorsal field. Cirrus-pouch becoming huge in gravid proglottides. Ovary bilobed. Young uterus dorsal and anterior, becoming saccular. Uterine wall very thick. Parasite of African pycnonotid birds.

Type and only species: *Yapolepis yapolepis* n. sp.

Etymology: The generic name refers to the name of the type-locality.

This work is a part of the author's thesis.
Yapolepis yapolepis n. sp. (Figs 1–5)

Description

Cyclophyllidea, Paruterinoidea, Metadilepididae. Rather long and slim worm with proglottides broader than long except for some fully gravid ones. Scolex regular, not much larger than neck. Suckers rounded, unarmed. Unarmed rostellum muscular, sucker-like and distinct. Rostellar pouch absent (Fig. 1). Neck long. Integument at scolex and neck level covered with long, clearly visible microtriches: Genital pores unilateral, right or left, opening at anterior extremity of segments. Genital ducts passing between excretory stems. Testes dorsal forming single field almost filling whole proglottid between excretory ducts including dorsally to cirrus-pouch (Fig. 2). Cirrus-pouch large, pyriform, crossing excretory stems and appearing to be functional only in advanced mature proglottides. Cirrus-pouch becoming much bigger in gravid segments than in mature ones, often with cirrus or ejaculatory duct inflation (Fig. 3). Cirrus armed with minute, regularly disposed spines. Ejaculatory duct highly convoluted in pouch. Seminal vesicles absent. Ovary ventral, compact, clearly bilobed. Vitelline gland oval, post-ovarian. Globular seminal receptacle central. Vagina clearly posterior to cirrus-pouch, but occasionally partially superposed to it terminally in gravid segments. Proximal half of its wall surrounded by row of large cells (Fig. 4). Uterus appearing dorsally to ovary, generally between its 2 lobes, developing first somewhat aporally, then rapidly extending transversely; rather irregular when young and showing many internal folds in course of development; almost saccular, filling whole space between excretory stems, in terminal proglottides. Uterine wall very thick during whole development (Fig. 5). Parenchyma surrounding uterus often compacted. Cortical parenchyma of gravid proglottides often exhibiting lacunar structure. Eggs rather large with thin outer membrane. Embryophore not very thick. Oncospheres rounded. Central embryonic hooks long, rather straight, with poorly marked guard. Handle approximately as long as blade. Internal lateral embryonic hooks distinctly shorter and broader; blade more curved and guard well marked; handle about twice as long as blade. Most external embryonic hooks with an intermediate shape (Fig. 6). Classically disposed excretory system in strobila, but ventral ducts becoming greatly enlarged in last proglottides of some specimens. Longitudinal stems join anteriorly just posterior to rostellum.

Measurements

Length (max.) 58 mm; breadth (max.) 780; number of proglottides (max.) c. 430; scolex 298 (259–317), sd = 22.1, n = 6; suckers 136 (106–176), sd = 16.7, n = 28; rostellum 41 × 44 (36–50 × 38–57), sd = 4.7 and 5.6, n = 8; number of testes 13.5 (10–19), sd = 2.5, n = 43; cirrus-pouch 121 × 46 (103–141 × 40–54), sd = 9.9 and 3.1, n = 33; cirrus-pouch in gravid proglottides 238 × 102 (183–282 × 82–118), sd = 30.7 and 11.4, n = 27; ovary 159 × 63 (134–188 × 47–89), sd = 15.3 and 10.9, n = 30; vitelline gland 63 × 37 (42–87 × 28–47), sd = 13.3 and 11.7, n = 30; seminal receptacle 46 (39–54), sd = 3.6, n = 33 (up to 94 × 68 in gravid proglottides); eggs (from dissected uterus) 72 (58–85), sd = 6.2, n = 28; embryophores 39 (33–44), sd = 2.9, n = 32; oncospheres 31 (28–35), sd = 2.1, n = 32; embryonic hooks (central) 23 (21–26), sd = 1.3, n = 30; embryonic hooks (lateral) 18 (16–20), sd = 1.3, n = 32.

Type-host: *Phyllastrephus icterinus* (Bonaparte), Pycnonotidae, Passeriformes.

Type-locality: Yapo Classified Forest. About 50 km N. of Abidjan (5° 45' N; 4° 09' W).

Dates of collection: 16.3 and 22–23.4 1987; 10.3 1988.

Type-specimens: 13 specimens; Holotype MHNG 987.240; paratypes MHNG 987.242; other specimens MHNG 987.239, 987.241, 988.167–168.

Site of infection: Anterior and middle part of intestine.

Intensity of Infection: 1–5 specimens.

Prevalence: 5/19 (26%).

Etymology: The specific name refers to the name of the type-locality.
Figs 1-6. Yapolepis yapolepis n. g., n. sp. 1. Scolex. 2. Mature proglottis, dorsal view showing the disposition of testes. 3. Cirrus-pouch in gravid proglottides (with ejaculatory duct inflation). 4. Anatomy of a mature proglottis, ventral view. 5. (A) Young uterus; (B) uterus in its mid-development. 6. Embryonic hooks (A,B) lateral, (C) central. Scale-bars: 1, 2, 3, 50 μm; 4, 5, 100 μm; 6, 5 μm.
Discussion

The present material shows a sum of typical characteristics which relate it to the family Paruterinidae, such as the antero-medial and dorsal uterine formation, the sucker-like rostellar structure (Bona & Maffi, 1987) and even the dilations of the cirrus-pouch in gravid proglottides which have been described in some Paruterina species\(^1\) (Bona \textit{et al.}, 1986). The lack of a paruterine organ, however, excludes it from this family, as the lack of a rostellar pouch excludes it from the family Dilepididae. We have recently discussed the family Metadilepididae Spassky, 1959, in which Spassky & Spasskaja (1977) accepted eight genera\(^2\), and have confirmed its validity (Mariaux & Vaucher, 1989). Yet, this family, which was originally created to accommodate the genera \textit{Metadilepis} Spassky, 1947, \textit{Skrjabinoporus} Spassky & Borgarenko, 1959 and \textit{Proparuterina} Fuhrmann, 1911, is not widely accepted. Schmidt (1986), in particular, did not recognise it in his keys, but the status this author gives to the genera considered by Spassky & Spasskaja (1977) as belonging to the Metadilepididae is not tenable [for example the synonymies of \textit{Schmidneila} Spassky & Spasskaja, 1972 and \textit{Hamatofuhrmannia} Spassky, 1969 with \textit{Polycerus} Villot, 1883, as proposed by Schmidt (1986), cannot be accepted as these genera do not show rostellar pouches; for the same reason \textit{Proparuterina} must be classified outside the Dilepididae. Furthermore, \textit{Spreotaenia} Spassky, 1969, which shows a very peculiar rostellar apparatus (retracted rostellar hooks with anterior blades), cannot be placed in the genus \textit{Choanotaenia} Railliet, 1896]. I recently had the opportunity of studying different material belonging to the Metadilepididae and observed the main characteristics of the rostellum and uterus. I can confirm the validity of our statement (Mariaux & Vaucher 1989) that the Metadilepididae are close to the Paruterinidae but can be readily distinguished from the latter by the lack of a paruterine organ.

The present material shares strong similarities with the Metadilepididae, the most important of them being the site of formation and the mode of development of the uterus and the typical sucker-like apical structure of the rostellum. Other details, such as the disposition of the excretory ducts in the scolex, are identical in \textit{Skrjabinoporus} (see Mariaux & Vaucher, 1989). For these reasons, I consider that this material must be included within the family Metadilepididae. It cannot, however, be placed within one of the genera listed by Spassky & Spasskaja (1977) for the following reasons. The genital ducts of \textit{Metadilepis} and \textit{Skrjabinoporus} are unilateral but ventral in relation to the osmoregulatory canals. \textit{Cracticotaenia} Spassky, 1966 exhibits very large vaginal sphincters [B. Georgiev, personal communication]. \textit{Hamatofuhrmannia}, \textit{Parvirostrum} Fuhrmann, 1908, \textit{Proparuterina}, \textit{Schmidneila} and \textit{Spreotaenia} have irreglarly alternating genital pores. Furthermore, all these genera show armed rostellae. In consequence, I erect a new genus and name it \textit{Yapolepis} n. g.

This new genus reinforces the integrity of the family Metadilepididae which more and more seems to occupy an interesting position between the two large taxa Dilepididae and Paruterinidae. The type-locality and host of this new material confirms the statement of Spassky & Spasskaja (1973) that, in practice, the Metadilepididae are almost uniquely parasites of intertropical terrestrial birds. The only argument which could minimise the group’s importance is the fact that some of its genera remain monotypic. Nevertheless, in addition to the material described above, I have found two other genera of the family, \textit{Skrjabinoporus} (see Mariaux & Vaucher, 1989) and \textit{Spreotaenia} (unpublished). Consequently, members of the family are not particularly rare, and it can be supposed that the existing situation is due only to our poor knowledge of the parasite fauna of the potential hosts. In conclusion, I agree with Spassky & Spasskaja (1973) in the belief that the var-

\(^1\)In the \textit{Paruterina} material, however, a cellular sheath surrounds the pouch, which does not appear in our specimens.

\(^2\)I accept here the classification of Spassky & Spasskaja (1977) even if the systematic status of some genera, particularly that of \textit{Spreotaenia}, is still dubious. A global discussion dealing with the position of each of these genera should be undertaken elsewhere.
A new genus of the Metadilepididae is probably much greater than is known at present.

Acknowledgements

I am grateful to Dr C. Vaucher (Museum, Geneva), Prof. F. Bona (Torino) and Dr B. Georgiev (Sofia) for their helpful criticism. I also thank Prof. A. Aeschlimann (Neuchâtel) for his support, Mr O. Porgo (Abidjan) for his help on the field and the Authorities of the République de Côte-d’Ivoire for providing the permits.

This work was financially supported by the Swiss Academy of Sciences, the Foundation J. de Giacomi, the Roche African Research Foundation and the University of Neuchâtel.

References

Bona, F.V. & Maffi, A.V. (1987) Los Paruterinidae (Cestoda) con ganchos de patrón “rectanguloide”. Parte I. Observaciones sobre los ganchos rectanguloideos y revisión de la literatura. Bollettino del Museo Regionale di Scienze Naturali, Torino, 5, 455–489.

Bona, F.V., Bosco, M.C. & Maffi, A. (1986) Tre nuove specie del genere Paruterina (Cestoda, Paruterinidae) in Trogoniformi (Aves) neotropicali. Bollettino del Museo Regionale di Scienze Naturali, Torino, 4, 1–61.

Mariaux, J. & Vaucher, C. (1988) Pseudochoanotaenia eburnea n. sp. (Cestoda: Cyclophyllidea) parasite de cinq espèces de Cisticola (Aves: Passeriformes) en République de Côte-d’Ivoire. Revue Suisse de Zoologie, 95, 249–256.

Mariaux, J. & Vaucher, C. (1989) Cestodes d’oiseaux de Côte-d’Ivoire. II. Parasites de Coraciiformes et Piciformes. Systematic Parasitology, 14, 117–133.

Mariaux, J. & Vaucher, C. (1990) A new genus of Dilepididae (Cestoda) of the yellowbill Ceuthmochares aereus (Cuculidae) from the Ivory coast. Journal of Parasitology, 76, 22–26.

Schmidt, G.D. (1986) CRC handbook of tapeworm identification. Boca Raton, Florida: CRC Press Inc., 675p.

Spassky, A.A. & Spasskaja, L.P. (1973) [Genus Schmidneila gen. n. (Cestoda: Metadilepididae).] Izvestiya Akademii Nauk Moldavskoi SSR. Ser. Biologicheskikh i Khimicheskikh Nauk, 1, 58–60. (In Russian).

Spassky, A.A. & Spasskaja, L.P. (1977) [Brief results of the phylogenetic analysis of two dilepidid tapeworm tribes, Dilepidini and Laterotaeniini.] In: Spassky, A.A., Shumilo, R.P. & Kharshun, A.I. (Eds) Ekto- i endoparazity zhivotnykh Moldavii. Kishinev: Izdatel’stvo “Shtiintsa”: 3–30. (In Russian).
An unusual scolex structure of cestodes from the Rufous-chested Swallow, *Hirundo semirufa*

Jean MARIAUX & Boyko B. GEORGIEV

Mariaux, J. & Georgiev B. B. 1991. An unusual scolex structure of cestodes from the Rufous-chested Swallow, *Hirundo semirufa*. J. Afr. Zool. 105: 131-134.

In the course of a taxonomic survey of the cestode fauna of wild birds in the Ivory Coast, eight juvenile cestodes with a very unusual scolex structure have been found in a Rufous-chested Swallow. This structure consists of an apical disk which is composed of numerous very small spines and unarmed integumental protuberances. These specimens seem close to the genus *Neyraia* but differ from it mainly in the absence of a rostellum. It is assumed that this material most probably belongs to a new genus even if the lack of anatomy does not allow us to be more affirmative.

Scolex subglobular and poorly outlined from neck (Fig.1). Suckers unarmed. Rostellum and rostellar sheath not observed (slight modifications of parenchyma behind apical structures not...

INTRODUCTION

In the course of investigations on the avian cestode fauna of the République de Côte-d'Ivoire, one of us (JM.) collected 8 juvenile specimens (scolices with or without very early stages of proglottization) from the small intestines of one Rufous-chested Swallow, *Hirundo semirufa* Sundevall, (locality and date: Adiopodoumé, 20 km W of Abidjan, 11.04.1987; number of *H. semirufa* examined: 14). These scolices have quite unusual apical structures and, as far as we are aware, similar cestodes have not been described previously.

MATERIALS AND METHODS

Our methods are fully described in previous works (Mariaux & Vaucher, 1990). In brief, cestodes were fixed with hot 4% formalin and stained with alcoholic hydrochloric carmine for routine or Nomarsky light microscopy. SEM micrographs were made with a Philips PSEM500 microscope.

The present material is deposited in the Geneva Natural History Museum (MHNG) with the reference MHNG 987.238 and in the Central Laboratory for Helminthology (Sofia) with the reference 1989.12.27.1.

DESCRIPTION

Scolex subglobular and poorly outlined from neck (Fig.1). Suckers unarmed. Rostellum and rostellar sheath not observed (slight modifications of parenchyma behind apical structures not...
excluded). Armament composed of apical disk (Figs. 2-5) consisting of numerous very little spines sunk in the integument. Spines bigger in centre and gradually smaller to disk border, every spine with globular basis and short acute point but neither handle nor guard (Figs. 6-7). Disk centre with several tegumental protuberances, at times digitiformes, covered with microvilli like all other scolex surface and without any sclerified structures (Figs. 2-5, 8). Posterior cestode end with some intensively stained zones, most probably genital primordia of first proglottides.

Measurements (in μm)

Total length: 1306 (805-1669), n = 6; scolex (diameter): 409 (376-449), n = 6; suckers (diameter): 139 (122-155), n = 24; spiny disk (diameter): 70.5 (59-83), n = 5; hooks:

- number: = 184 (=170-195), n = 4;
- diameter of globular basis: 2-6.5;
- length: from less than 2 (outlying hooks) up to 6 (central hooks).

DISCUSSION

The lack of information on the proglottide morphology of the tapeworms studied does not allow their systematic position to be elucidated. Nevertheless, the unusual arrangement of their attachment apparatus gives grounds to compare them with several cyclophyllidean genera, belonging to different groups, and possessing rostellar hooks arranged in more than two rows.

Among the family Idiogenidae (Davaineoidea), there are at least three genera, parasites of bustards (Otididae), with hooks in 3-12 rows: *Sphyrombotae-nia* Ransom, 1911, *Erstinosgenes* Spasskaja, 1961 and *Paraidiogenes* Movsessian, 1970. These cestodes are distinct from the present specimens in having hammer-shaped hooks as have all the other davaineoid tapeworms.

The arrangement of the hooks in several rows is an important feature of the family Dipylidiidae. These cestodes, whose host range is restricted to carnivorous mammals (and birds of prey?), have a well developed rostellum with a rostellar sheath. In contrast, these two organs were not observed in the present material.

It seems that the specimens described above are closer to the Paruterinidae. Among them, the genus *Neyraia* Joyeux & Timon-David, 1934, which includes 8 species parasitizing hoopoes (Coraciiformes: Upupidae and Phoeniculidae) (Schmidt, 1986; Srivastava & Srivastav, 1988), and especially *N. parva* as described by Mahon (1958), looks particularly like the present material. This species was separated from *N. intricata* (type species) mainly by the smaller hooks and its validity was called in question by Spasskaja & Spasskly (1971) on the basis of the possible postlarval or irregular growth of the hooks described for similar paruterinid species. In our opinion, *N. parva* must be regarded as a metacestode with incompletely developed rostellar hooks (most probably of *N. intricata*) by reason of embryonic hooks present in one of the specimens. In contrast, it seems that the tapeworms from *H. semirufa* have completed their larval development, firstly because the initial stage of proglottization was observed and also as embryonic hooks were not found.

There are several differences distinguishing the present material from *Neyraia* spp. This genus was originally described with rostellar hooks arranged in four rows. However, in the specimens of *N. intricata* studied by us (MHNG No. 16/16 and 49/90 and the Collection of the Central Lab. of Helminthology - Sofia No. 8711 and 11219) the position is unclear: at least the rows described by Joyeux & Timon-David (1934) are quite irregular. In addition, a rostellum was not observed in specimens of *H. semirufa*
while in Neyraia spp. this organ is well developed.

The tegumental protuberances on the apical surface of the tapeworms of the present study are very unusual, and, as far as we are aware, such structures have not been described previously. It is doubtful that such apparently unspecialized structures could play a role in attachment and their probable function (receptory, secretory, or other) is difficult to define based on present knowledge.

In conclusion, the cestodes found in *H. semirufa* belong to an unknown species and, most probably, to an unknown genus. They are similar to the
species of the genus *Neyraia* but clearly distinguished from them by the absence of the rostellum. Since the rostellum appears very early in the intermediate host (Ubelaker, 1983), its development cannot be limited as a result of parasitizing an unsuitable final host. Whether *H. semirufa* represents a good or a wrong final host ought to be checked with reference to additional material. We can however state that cestodes with such a scolex have not been found amongst about 1200 ivorian birds belonging to various families.

As *H. semirufa* is a non-migratory swallow living only in the Afrotropical region (Brunel & Thiollay, 1969). The life cycle of the cestode studied is completed locally and their hosts must be found among African animals.

ACKNOWLEDGEMENTS

Thanks are due to Prof. A. Aeschlimann (Neuchâtel), Dr. C. Vaucher (Museum, Geneva) and to the authorities of the République de Côte-d'Ivoire. This work, forming a part of the PhD thesis of J. Mariaux, has been financially supported by the Swiss Academy of Sciences, the Foundation J. de Giacomi, the Roche African Research Foundation and the University of Neuchâtel.

REFERENCES

Brunel, J. & Thiollay, J.M. 1969. Liste préliminaire des Oiseaux de Côte-d'Ivoire (suite). *Alauda*, 37: 315-337.

Joyeux, C. & Timon-David, J. 1934. Sur quelques cestodes d'oiseaux. *Annls Mus. Hist. nat. Marseille*, 26: 1-26.

Mahon, J. 1958. Helminth parasites of reptiles, birds, and mammals of Egypt. *Can. J. Zool.* 36: 577-605.

Mariaux, J. & Vaucher, C. 1990. A new genus of Dilepididae (Cestoda) of the yellow bill *Ceuthmochares aereus* (Cuculidae) from the Ivory coast. *J. Parasit.* 76: 22-26.

Schmidt, G. D. 1986. *CRC Handbook of Tapeworm Identification*. CRC Press Inc., Boca Raton, Florida, 675pp.

Spasskaja, L. P. & Spassky, A. A. 1971. [Cestodes of birds in Tuva.] Izdatel'stvo Shtiinsa, Kishinev, 252pp., (in Russian).

Srivastava, B. K. & Srivastav, A. K. 1988. Report on a new tapeworm, *Neyraia dayali* sp.n., (Cestoda, Dilepididae, Paruterinae) from *Upupa epops* (Linnaeus) in Jhansi, (U.P.) India. *J. Current Biosciences*, 5: 88-90.

Ubelaker, J. E. 1983. Metacestodes: Morphology and development. In: Arme, C. & Pappas, P.W. (eds), *Biology of the Eucestoda*, Vol 1. Academic Press Inc., London, pp. 139-176.

(Manuscript received 30 April 1990, revised 3 September 1990, accepted 5 September 1990)
Cestodes of birds from the Ivory Coast. Species of the genus Anonchotaenia Cohn, 1990

Jean Mariaux*

Institute of Zoology, University of Neuchâtel, Ch. de Chantermerle, 22, CH-2007 Neuchâtel, Switzerland

Accepted for publication 15th November, 1990

Abstract

Five taxa included in the cestode genus Anonchotaenia (Cyclophyllidea, Paruterinidae) have been found in various birds from the Ivory Coast (West Africa). The hosts belong to the families Hirundinidae and Corvidae. A. (Paranonchotaenia) prionopos n. sp., parasitic in Prionops plumata, and A. (P.) malaconoti n. sp, parasitic in Malaconotus blanchoti, are placed in a new subgenus named Paranonchotaenia, which is erected for the Anonchotaenia species showing genital ducts passing between the longitudinal excretory stems. A. (P.) prionopos is characterised by a rather short cirrus-pouch, six to seven testes, and an integumental cavity at the distal extremity of the cirrus-pouch in gravid proglottides. A. (P.) malaconoti differs from the former species mainly by the larger cirrus-pouch and a slightly greater number of testes. The other three species are A. longiovata, parasitic in Hirundo semirufa; A. globata, parasitic in Psadiloprocne obscura (the latter two species are recorded from new hosts and new geographical areas); and Anonchotaenia sp., parasitic in Hirundo rustica. It is assumed that the subgenus A. (Anonchotaenia) is rather a parasite of the Passerida and that the subgenus A. (Paranonchotaenia) tends to be parasitic in the Corvida.

Introduction

When studying the cestode fauna of birds from the Ivory Coast, I have found interesting material, comprising five species of Anonchotaenia Cohn, 1900 in several species of local Passeriformes. Three were parasites of the Hirundinidae (one in the rufous-chested swallow Hirundo semirufa, one in the European swallow H. rustica, one in the fanti rough-winged swallow Psadiloprocne obscura) and two in other birds (one in the grey-headed bush shrike Malaconotus blanchoti and one in the long-crested helmet shrike Prionops plumata). Both these species were usually placed among the Laniidae (Thiollay, 1985), but should now be classified within the Corvidae (Sibley et al., 1988).

Anonchotaenia is a well-defined genus (Cohn, 1901; Fuhrmann, 1908), the history of which has been summarised by Rausch & Morgan (1947). Voge & Davis (1953) published the last important taxonomic paper on the genus. The species are listed in Mathevossian (1969) and Schmidt (1986). Olsen et al. (1978) added A. terricoli (Sharma, 1947) and Jones (1987) A. ranae (Ulmer & James, 1976). Another species, A. singhi, unfortunately inadequately described, has been published by Shinde (1984). All known species in the genus show a great anatomical homogeneity. Sclerified structures, especially, are always lacking either at the level of the scolex or the genital atrium. Furthermore, the

* This paper is a part of the author's thesis.
intraspecific variation seems very large (Illescas-Gomez & Lopez-Roman, 1980). The paruterine organ particularly is too variable to be used in separating the species (Rausch & Morgan, 1947). Moreover, these worms possess proglottides which are much wider than long which makes their anatomy very difficult to observe in the contracted state; consequently, the descriptions to date are often incomplete. Finally, many of the known taxa in the genus have only been found once, which does not allow useful comparisons. One anatomical character, the number of testes, however seems reliable and most of the authors have noticed its surprising stability.

Materials and methods

Our methods are described in detail in previous works (see Mariaux & Vaucher, 1990). In brief, birds were caught with a mist-net and preserved in a phenoxetol solution (Weber et al., 1984). Cestodes were fixed in hot 5% formalin and stained with hydrochloric alcoholic carmine. Both hosts and parasites are preserved at the Geneva Museum of Natural History (MHNG).

In addition to the original material discussed in this work, the following have been studied: Twelve slides (MHNG 50.78–84, 51.73–77) of *A. longiovata*. Material of Parona, Neumann and Shipley used as type by Fuhrmann (1908). Five slides (MRAC* 36.775–6) of *A. globata* from *Hirundo abyssinica*, Zaire. Baer’s material. Two slides (MHNG 51.86–7) of *A. piriformis* Fuhrmann’s material. One slide (MHNG 51.78) of *A. trochili* Fuhrmann’s material.

All the localities cited in this work are in the Ivory Coast (West Africa). Namely: *Adiopodoumé*: About 20 km W of Abidjan. Fields of the ORSTOM research station. 5°19' N, 4°08' W. *Orstom Man*: Fields surrounding the ORSTOM research station in Man. 7°21' N, 3°37' W. *Ouango-Fitini*: Track Ferkessedougou-Bouna, c. 15th km, NW of Guards Station around ancient airfield. 9°37' N, 4°03' W.

* Toro-Kinkene*: Track Kong-Dabakala, c. 40th km, N of Toro-Kinkene village. 8°55' N, 4°25' W.

If not specified otherwise, in the descriptions, all measurements are in micrometres, the mean followed by the range, the number of observations (n) and, if n > 20, by the standard deviation (sd). The length of eggs is indicated by the maximal length observed followed by "(or more)" as real length of the coiled eggs is almost impossible to determine.

Anonchotaenia longiovata (Fuhrmann, 1901)

Fuhrmann, 1908

Material

Ten specimens (MHNG 987.254) from the intestine of one *Hirundo semirufa* Sundevall. 11.4.87. Orstom Man.

Description

Paruterinoidea, Paruterinidae. Worm of medium size with proglottides wider than long. Scolex not enlarged and not demarcated from strobila. No rostellar pouch or rostellum. Suckers circular and unarmed. No marked neck. Excretory system 2 pairs of longitudinal stems, one transverse anastomosis between ventral ducts in posterior part of each proglottis. Genital ducts ventral to longitudinal excretory vessels. Genital pores irregularly alternating and opening in middle of lateral margin. Testes dorsal and central in single row in young male proglottides, in one or 2 parallel rows in mature ones. Cirrus-pouch short, not reaching excretory ducts. Cirrus unarmed. No ornamentations in genital atrium. Ovary oval, regular. Almost circular vitelline gland beside and slightly dorsal to it on its aporal side. Both organs ventral, somewhat poral. Vagina postero-ventral to cirrus-pouch. Seminal receptacle postero-ventral to cirrus-pouch. Young uterus anterior and dorsal to vitelline gland. Paruterine organ appearing anteriorly to uterus and becoming pointed. Both organs egg-shaped when con-

* Musée Royal de l’Afrique Centrale (Tervuren, Belgium).
sider together. Pointed extremity of this whole bent aporally. Pauterine organ then becoming very developed, but no terminal stages nor fully mature eggs present in our material. Eggs first circular, beginning to get longer in our most advanced gravid proglottides. Slim embryonic hooks at beginning of their formation.

Measurements

Length (max.) 18.5 mm; breadth (max.) 660; number of proglottides (max.) = 300; diam. scolex 577 (512–649), n = 4; diam. suckers 218 (190–239), n = 16; no. testes 8.4 [6(3.4%), 7(13.7%), 8(35.2%), 10(10.2%), 11(2.3%)] n = 88, sd 1.0; diam. testes 31 (24–36), n = 100, sd 3.3; cirrus-pouch 61 x 26 (55–67 x 22–30), n = 23, sd 3.3, 2.0; ovary 37 x 60 (32–44 x 48–76), n = 25, sd 3.1, 9.1; vitelline gland 27 x 33 (22–29 x 27–41), n = 25, sd 2.1, 4.0.

Discussion

Less than 10 species of *Anonchotaenia* possess seven to 10 testes. Among them, some show distinctive features, like a genital sphincter (*A. castellanii, A. piriformis*), which clearly differentiates them from the present material, but five, however, remain close to it. As indicated above, the descriptions of these worms are often scanty and very few distinctive characters are available. As far as their measurements are reliable, *A. arhyncha* Fuhrmann, 1918, *A. brasiliensis* Fuhrmann, 1908, *A. mexicana* Voge & Davis, 1953 and *A. quiscali* Rausch & Morgan, 1947 can, however, be separated from the present material by the size of their cirrus-pouch and by minor variations in number of testes. *A. longiovata* (Fuhrmann, 1901) is very similar to the present material in all its dimensions. The original diagnosis has been completed by a corroborating redescription by Voge & Davis (1953). I have checked the type-slides and, as far as this old material can be used, it does not show any contradictions with Fuhrmann's description. In consequence, and on the basis of the available anatomical characters, the present material cannot be separated from *A. longiovata*.

A problem, stemming from the fact that the material of both Fuhrmann (1901) and Voge & Davis (1953) were from South America, remains, making this determination rather unsatisfactory. Nevertheless, no other conclusion is possible based on the information available. Therefore, the geographical distribution of *A. longiovata* is extended to the Old-World. *H. semirufa* is a new host for this parasite.

Anonchotaenia globata (v. Linstow, 1879)

Material

Eight specimens (MHNG 988.183) from the upper and middle intestine of one *Psadiloprocne obscura* (Hartlaub). 18.3.88. Adiopodoumé.

Description

Paruterinoidea, Paruterinidae: Worm of medium size with proglottides always broader than long. Scolex massive, usually broadest part of worm, not clearly separated from strobila. No rostellar pouch or rostellum. Suckers globular and unarmed. Broad unstrobilated zone behind scolex. Excretory system 2 pairs of longitudinal stems with transverse anastomosis between ventral ducts. Genital ducts ventral to longitudinal excretory vessels. Genital pores irregularly alternating and opening at anterior third of lateral margin. Genitalia appearing medially, before apparent segmentation. Male apparatus composed of up to 6 testes disposed in one row, centrally and dorsally to female glands. Cirrus-pouch pear-shaped, narrow and elongate distally, more bulbous proximally. Cirrus unarmed. Genital atrium without ornamentations. Cirrus pouch far from reaching longitudinal excretory stems. No seminal vesicles. Vas deferens rather straight near pouch then convoluted in centre of proglottis. Small, oval ovary, slightly poral. Vitelline gland juxtaposed on aporal side of ovary. Vagina opening posteriorly to cirrus-pouch, but copulatory part sometimes ventral to latter. Seminal receptacle elongate, poorly marked, at level of excretory stems. Young uterus oval, appearing dorsally. Mature uterus
more or less circular with strong walls, situated centrally. Paruterine organ developing anteriorly to uterus, becoming pyramidal and then progressively surrounding uterus; both together form regular oval; however, no completely surrounded uterus present in our material. Structure not tilted; muscular part of paruterine organ remaining anterior and uterine cavity posterior. Immature eggs stumpy becoming vermiform when fully developed. Small embryonic hooks visible only in mature eggs.

Measurements

Length (max.) 11 mm; breadth (max.) 708; number of proglottides (max.) 130; diam. scolex 760 (634–903), n = 6; diam. suckers: 303 (268–356), n = 23, sd 19.6; no. testes 4.1 [2(2.4%), 3(22.9%), 4(39.8%), 5(32.5%), 6(2.4%)], n = 83, sd 0.9; diam. testes 31 (26–39), n = 73, sd 2.7; cirrus-pouch 79 × 30 (71–86 × 26–33), n = 32, sd 4.0, 2.1; ovary 36 × 47 (29–44 × 43–55), n = 25, sd 3.1, 3.0; vitelline gland 26 × 31 (19–33 × 24–38), n = 32, sd 3.8, 3.9; eggs c. 110 (or more) × 8–9, n = 19; embryonic hooks 9 (8–10.5), n = 15.

Discussion

There are few species of *Anonchotaenia* with about four testes. Among them, the present material can only be compared with *A. globata* (v. Linstow, 1879). This species is extremely widespread and seems able to show large variations in its measurements (Illescas-Gomez & Lopez-Roman, 1980). It has been described in various Passeriformes, including the Hirundinidae, in Europe (Illescas-Gomez & Lopez-Roman, 1978; Petrova, 1978), in North America (Stamper & Schmidt, 1984) and also in Africa (Zaire) (Baer, 1959). My observations do not indicate notable differences from the descriptions of these authors, and I, therefore, include my material within the species *A. globata*. The geographical distribution of this species is consequently somewhat increased but is quite logical when considering the hosts' migrations. *P. obscura* is a new host for this taxon.

Anonchotaenia sp.

Material

One complete specimen (MHNG 985.619) from the posterior part of intestine of one *Hirundo rustica* L. 30.10.85. Adiopodoumé.

Description

Paruterinoidea, Paruterinidae: Worm of medium size, with proglottides always broader than long. Scolex massive without rostellum, harbouring 4 circular and unarmed suckers. No marked neck but with rather long unsegmented zone posterior to scolex. Genital pores irregularly alternating. Genital ducts ventral to longitudinal excretory stems. Round to oval testes in straight, dorso-medial line. Cirrus-pouch straight, reaching poral excretory stems in some proglottides but not always. Cirrus unarmed. No seminal vesicle. Vas deferens highly convoluted. Vagina posterior to cirrus-pouch. Seminal receptacle extremely slim, often not visible, at level of longitudinal excretory stems. Ovary oval, ventral and approximately medial. Compact vitelline gland immediately lateral to ovary at its aporal extremity. Uterus appearing dorsally and between ovary and vitelline gland, then developing between centre of proglottis and poral excretory duct. Paruterine organ first visible on antiporal and anterior side of uterus, becoming more or less pyramidal and progressively surrounding uterus. Uterus little by little pushed away towards poral excretory ducts until it touches them. Paruterine organ finally completely surrounding uterus. Terminal structure globular. Eggs vermiform. Hexacanth larva present.

Measurements

Length (max) 24 mm; breadth (max.) 1.1 mm; no. proglottides c. 400; scolex 781; diam. suckers 289 (283–293), n = 4; no. testes 6.8 [5(6.8%), 6(31.8%), 7(38.6%), 8(22.7%)], n = 44, sd 0.9; diam. testes 35 (28–42), n = 36, sd 3.5; cirrus-pouch 97 × 29 (88–114 × 26–36), n = 9; ovary 41 × 56 (36–45 × 51–62), n = 20; vitelline gland 27 × 35 (25–29 × 29–38), n = 20; eggs c. 70 (or...
more) × 8.5 (7.5–9.5), n = 12; embryonic hooks 10 (8.5–12), n = 23, sd 1.0.

Discussion

The observations given above do not permit the separation of the present material from A. arhyncha Fuhrmann (1918), A. brasiliensis sensu Voge & Davis (1953), A. mexicana Voge & Davis (1953) or A. zanthopygiae Yamaguti (1956). These species have been defined by characters, such as the diameter of the suckers or scolex, and on other morphometric data which do not permit clear differentiation. Some of these descriptions are, furthermore, very brief. Nevertheless, since these taxa parasitise quite different hosts with distant geographical origins, it cannot be assumed that they are conspecific. Conversely, the available data do not permit their unconditional acceptance. In view of this and the fact that only a single specimen was available for study, no specific determination was attempted.

Anonchotaenia (Paranonchotaenia) n. subg.

Diagnosis
Cyclophyllidea, Paruterinoidea, Paruterinidae. With all characteristics of the genus Anonchotaenia Cohn, 1900, except: genital ducts lying between longitudinal excretory stems.

Type species: Anonchotaenia (Paranonchotaenia) prionopos n. sp.

Etymology: The subgeneric name is composed of the generic name and the Greek prefix para which means “near to”.

Other species: A. (P.) dendrocitta (Woodland, 1929), A. (P.) malaconoti n. sp.

The erection of the subgenus A. (Paranonchotaenia) requires the definition of the type-subgenus A. (Anonchotaenia), which is as follows.

Anonchotaenia (Anonchotaenia)

Diagnosis
Cyclophyllidea, Paruterinoidea, Paruterinidae. With all characteristics of the genus Anonchotaenia Cohn (1900), and the following precision: genital ducts ventral in relation to the longitudinal excretory stems.

Discussion

The relative position of the genital and excretory ducts is an important character in cyclophyllidean taxonomy, usually considered a feature of generic significance. It appears logical then to separate the A. (Anonchotaenia) species with ventral genital ducts, a rare disposition among cyclophyllideans, from the species with genital ducts between the excretory stems. Since the rest of the morphology is extremely similar, it seems somewhat excessive to create a new genus in this case, but I propose to place the latter taxa in the new subgenus Paranonchotaenia. It is worth noting that, with the following two taxa described in this paper, three species are presently included in A. (Paranonchotaenia), and thus the new subgenus is not created for an isolated taxon but for a collection of species, all of them having acquired the character “genital ducts between the excretory stems”.

An argument related to host phylogeny appears to justify the separation of the two groups of species. Sibley et al. (1988) recently published a revised classification of living birds; the part of this work concerning the suborder Passeri is simplified and reproduced in Fig. 1. This suborder is composed of six superfamilies distributed in two parvorders*. The great majority of the known species of Anonchotaenia with ventral (or undescribed) genital ducts are parasitic to birds classified within the Passeroidea or the Sylvioidea and only a few in birds belonging to the Muscicapoidea or the Corvoidea. In contrast, all three species with genital ducts between the excretory stems parasitise the Corvoidea (Fig. 1). It might then be supposed that the subgenus A. (Anonchotaenia) is primarily

* A taxonomic level inferior to the infraorder.
Fig. 1. Host distribution of the Anonchotaenia species with regard to their genital duct disposition. Abbreviations: thin bars, ventral genital ducts; thick bars, genital ducts between excretory stems; dotted bars, position of genital ducts unknown. (* = personal observation). 1, A. globata; 2, A. arhycha; 3, A. brasiliensis; 4, A. castellanii; 5, A. dendrocrina; 6, A. gaugi; 7, A. indica; 8, A. longiovata; 9, A. macrocephala; 10, A. magniuterina; 11, A. malagonoti; 12, A. mexicana; 13, A. oriolina; 14, A. piriformis; 15, A. prionopos; 16, A. quiscali; 17, A. ranae; 18, A. sbesteriometra; 19, A. singhi; 20, A. tericoli; 21, A. trochili; 22, A. zhantopygiae. [The phylogeny of Corvida and Passerida is simplified from that of Sibley et al., 1988].

a parasite of the parvorder Passerida and the subgenus A. (Paranonchotaenia) a parasite of the parvorder Corvida.

Etymology: The new species is named after the generic name of the host.

Description

Anonchotaenia (Paranonchotaenia) prionopos n. sp. (Figs 2–4, 5A–D)

Material
Ten specimens from 2 Prionops plumata (Shaw) (type-host). Type MHNG 987.251; paratypes MHNG 987.252; other specimens MHNG 987.253.

Date and locality: 21.1.1987, Ouango-Fitini.
Site: First half of intestine.
Prevalence: 2/5.
Intensity: 4 and 6 specimens.

Paruterinoidea, Paruterinidae: Worm of rather large size with proglottides always broader than long except in some terminal ones. Scolex massive. No rostellar pouch or rostellum. Suckers globular and unarmed (Fig. 2). Neck clearly marked and long unstratified zone behind scolex. Excretory system classical. Genital ducts between longitudinal excretory vessels. Genital pores irregularly alternating, opening approximately in middle of lateral margin. Testes disposed on one row, dorsal to female glands. Cirrus-pouch narrow, often twisted, just reaching longi-
Species of *Anonchotaenia* from Ivory Coast birds

Figs 2–4. *Anonchotaenia (Paranonchotaenia) prionopos*. 2. Scolex. 3. Cirrus-pouch in gravid proglottides. 4. Mature proglottis, ventral view (Arrow indicates the anterior extremity of the worm). *Scale-bars: 2, 200 μm; 3, 20 μm; 4, 100 μm.*
tudinal excretory stems in some proglottides but usually shorter. Cirrus unarmed. Genital atrium without ornamentation. Integument forming typical globular capsule at distal extremity of each cirrus-pouch (Fig. 3). (This structure is only visible in gravid proglottides). No seminal vesicles. Vas deferens with thick walls, highly convoluted dorsally to the pouch and medially to excretory ducts. Small, oval ovary slightly poral (Fig. 4). Vitelline gland juxtaposed on aporal side of ovary. Vagina very fine, difficult to observe, opening posteriorly to cirrus-pouch. Seminal receptacle elongate, poorly marked, at the level of excretory stems. Young uterus oval, appearing dorsally to vitelline gland; mature uterus more or less circular, well developed, situated centrally and overlapping longitudinal excretory stems. Young paruterine organ developing anteriorly to uterus and becoming pyramidal but remaining of modest size as compared with uterus. Paruterine organ then forming protuberance inside uterus which progressively fills it, eggs being pushed to its edge. Cavity forms inside the paruterine organ and in very last proglottides, eggs being rapidly passed (one to two segments) from uterus to this cavity posteriorly (Fig. 5). Paruterine organ tilted aporally when young but parallel to antero-posterior axis in fully gravid segments. Immature eggs rapidly becoming vermiform, very long, and surrounded by thin outer membrane. Central embryonic hooks longer than lateral ones and disposed in ‘V’ formation, with closely situated blades and distant handles.

Measurements
Length (max.) 77 mm; breadth (max.) 1.85 mm (very contracted); no. proglottides (max.) c. 940; diam. scolex 750 (683–830), n = 4; diam. suckers 254 (229–273), n = 16; no. testes 6.55 [5(6.7%), 6(43.3%), 7(38.3%), 8(11.7%)], n = 60, sd 0.8; diam. testes: 45 (31–60), n = 41, sd 7.8; cirrus-pouch 91 x 24 (76–107 x 20–28), n = 25, sd 8.8, 2.7; ovary 80 x 41 (55–97 x 26–52), n = 24, sd 11.6, 7.0; vitelline gland 25 x 37 (18–29 x 33–41), n = 24, sd 2.6, 2.1; eggs 130 (or more) x 9 (7.5–13.5), n = 20; embryonic hooks central 12 (10.5–13.5), n = 20, lateral 9 (8–10), n = 20.

Discussion
Practically all the species in the genus *Anonchotaenia* for which this character has been observed have genital ducts ventral to the excretory canals. Only one species, *A. dendrocitta* Woodland (1929), has been described with the genital ducts passing between the excretory stems (Fig. 1). *A. dendrocitta* can be distinguished from the present material by a longer cirrus-pouch and a larger number of testes. Among the other species in the genus, only *A. castellani* Fuhrmann & Baer (1943) has been found in helmet shrikes. This Ethiopian species differs from our material, in addition to the position of the genital ducts, by a characteristic muscular sphincter at the extremity of the cirrus-pouch. Moreover, the species mentioned above do not exhibit the globular cavity which can be seen in our material anterior to the cirrus-pouches. *Mogheia orbiterina* (Moghe, 1933) might also be compared with our material, as this species was placed in *Anonchotaenia* by Mathevossian (1969) (but by neither Rausch & Morgan (1947), nor Schmidt (1986)). The status of this species, and even of the genus *Mogheia* is difficult to appreciate, as I was unable to check original material from Moghe; nevertheless, *M. orbiterina* possesses only antiporal testes and a much larger scolex than the present material. (Note that *M. orbiterina* is a parasite of the Sylvioidea, which suggests that this species may belong to another group and helps to justify its exclusion from the genus *Anonchotaenia*). The present material must consequently be considered as new and I place it in *Paranonchotaenia*, the new subgenus described above, with the specific name *prionopos*.

Anonchotaenia (*Paranonchotaenia*) *malaconoti* n. sp. (Figs 6–8)

Material
Two specimens from the intestine of one *Malaconotus blanchoti* Stephens (type-host). Type MHNG 988.182, paratype 988.184.

Date and locality: 9.4.1988, Toro-Kinkene.
Fig. 5A-D. *Anonchotaenia (Paranonchotaenia) prionopos*. Evolution of the uterus and paruterine organ in gravid proglottides. Scale-bar: 100 μm.
Figs 6–8. Anonchotaenia (Paranonchotaenia) malaconoti. 6. Scolex. 7. Mature proglottis, dorsal view (arrow indicates the anterior extremity of the worm). 8. Gravid proglottis (terminal). Scale-bars: 6, 8, 200 μm; 7, 100 μm.
Species of Anonchotaenia from Ivory Coast birds

Site: Intestine.
Prevalence: 1/1.
Etymology: The new species is named after the host's generic name.

Description

Paruterinoidea, Paruterinidae. Relatively long worm with proglottides clearly broader than long, except for terminal ones which are almost square. Gravid segments becoming very craspedote. Scolex massive, well separated from strobila. Suckers muscular, circular and unarmed. Neither rostellar pouch nor rostellum present (Fig. 6). Long unstrobilated zone behind scolex. Classical excretory system but transverse ducts often lacking. Genital ducts passing between longitudinal excretory stems. Genital pores irregularly alternating and opening at middle of proglottis margin. Cirrus-pouch straight, rather thin, not reaching excretory ducts in most proglottides. No ornamentations at cirrus or atrium level. Vas deferens well developed, coiled between cirrus-pouch and testes. In gravid proglottides, integument forming capsule comparable to that described in previous species. Testes dorsal, in centre of segment, in a single straight transverse line (but with some occasionally superimposed). No seminal vesicle. Ovary oval, ventral, slightly poral. Oval vitelline gland juxtaposed to ovary as its aporal extremity. Thin vagina posterior to cirrus-pouch, sometimes partially ventral (Fig. 7). Seminal receptacle a poorly defined bulge, difficult to observe. Oval young uterus appearing dorsally to vitelline gland but ventrally to male organs. Development of paruterine organ nearly identical to that of P. prionopos. Paruterine organ appearing and growing anteriorly, sometimes slightly aporally to uterus, and becoming conical with rounded point. Then, posterior part of paruterine organ plunging into oval cavity of uterus to eventually almost fill it. Cavity forms in paruterine organ in very last proglottides and eggs pass into it posteriorly (Fig. 8). Mature eggs vermiform with rounded extremities, contain classical hexacanth larva. Central embryonic hooks longer than lateral ones and disposed in 'V'-shape, with closely situated blades and distant handles.

Measurements

Length (max.) 111 mm; breadth (max.) 1.32 mm; no. proglottides (max.) c. 1,950; diam. scolex 854 (805–903), n = 2; diam. suckers 341 (307–366), n = 8; no. testes 7.34 [5(8.0%), 6(20.5%), 7(27.2%), 8(23.2%), 9(16.6%), 10(4.7%)], n = 151, sd 1.3; diam. testes 53 (42–62), n = 50, sd 5.9; cirrus-pouch 121 × 27 (106–135 × 22–31), n = 30, sd 7.2, 2.0; ovary 137 × 51 (113–157 × 40–67), n = 22, sd 11.5, 8.0; vitelline gland 59 × 39 (50–65 × 29–49), n = 20; eggs 106 (or more) × 11 (9.5–12.5), n = 23; embryonic hooks: central 11 (10.5–12), n = 17, lateral 8 (7.5–9.5), n = 22, sd 0.6.

Discussion

This taxon is very close to A. prionopos as described above, particularly in showing details such as a cavity anterior to the cirrus-pouch or a particular disposition of the embryonic hooks. Differences exist, however, in the total length, the dimensions of various organs (suckers, ovary, vitelline gland, eggs) but mainly in those of the cirrus-pouch. The number of testes is also somewhat similar, although significantly different in the two groups. Except for these measurements, the two taxa resemble each other closely, are found in phylogenetically related hosts and in geographically similar locations. The differences observed are, however, sufficient to clearly separate this material from A. prionopos. In consequence, I consider that it forms a new taxon which I propose to name Anonchotaenia (Paranonchotaenia) malaconoti n. sp.

The main character used to separate A. prionopos and A. malaconoti is the difference in the length of the cirrus-pouch. This difference is highly significant, but it should be borne in mind that the data in our possession come from few specimens. If the intraspecific variation for this character appears to be greater when more material is examined, then the validity of these species should be reviewed.
General remarks

All the observed species possess an oncosphere with six embryonic hooks. This observation is fully in accordance with Freeman (1982), and the existence of hookless larvae among Anonchotaenia species must conclusively be considered as an inaccurate observation.

One of the most reliable characters used in Anonchotaenia taxonomy is the number of testes. It is, however, important to note that this number must be the mean of numerous counts, as small variations can occur in different sectors of the same strobila.

Morphological characters will become unusable if the number of Anonchotaenia species described increases greatly, since the lack of distinctive anatomical features and the absence of sclerified structures will not allow these species to be separated with any degree of confidence. It is assumed that in the future other techniques, such as biochemical methods, will have to be used in order to clarify the taxonomy of this group.

Acknowledgements

I am grateful to Prof. A. Aeschlimann (Neuchâtel) for his support, to Dr C. Vaucher (Geneva), Prof. F. Bona (Torino) and Dr B. Georgiev (Sofia) for their helpful suggestions, and to Dr C. Vaucher and Dr F. Puylaert (Tervuren) for the loan of specimens. This work has been financially supported by the Swiss Academy of Sciences, the Foundation J. de Giacomi, the Roche African Research Foundation and the University of Neuchâtel.

References

Baer, J.G. (1959) *Exploration des Parcs Nationaux du Congo Belge. Mission J.G. Baer-W. Gerber* (1958). Fascicule 1. Bruxelles: Institut des Parcs Nationaux du Congo Belge, 163 pp.

Cohn, L. (1901) Zur Anatomie und Systematik der Vogelces-toden. *Nova Acta Academiae Leopoldino-Carolinae*, 79, 267–450.

Fuhrmann, O. (1908) Das Genus Anonchotaenia und Biuterina. *Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene*, 46, 622–631.

Freeman, R.S. (1982) Do any Anonchotaenia, Cyathocephalus, Echeneibothrium, or Tetragnonoccephalum (=Tylocephalum) (Eucestoda) have hookless oncospheres or coracidia? *Journal of Parasitology*, 68, 737–743.

Illescas-Gomez, P. & Lopez-Roman, R. (1978) Primera asistencia de Anonchotaenia globata Linstow, 1879, en sus hospedadores. *Revista Iberica de Parasitologia*, 38, 851–854.

Illescas-Gomez, P. & Lopez-Roman, R. (1980) Variacion en las medidas de Anonchotaenia globata Linstow, 1879, segun sus hospedadores. *Revista Iberica de Parasitologia*, 40, 407–415.

Jones, M.K. (1987) *Nematotaenoides ranae* (Cestoda: Nematotaeniidae) transferred to the genus Anonchotaenia (Paruteriniinae). *Proceedings of the Helminthological Society of Washington*, 54, 158–160.

Mariaux, J. & Vaucher, C. (1990) A new genus of Dilepididae (Cestoda) of the Yellowbill *Cathmöcmora aereus* (Cuculidae) from the Ivory Coast. *Journal of Parasitology*, 76, 22–26.

Mathevossian, E.M. (1969) [Paruterinoidae. Cestodes of domestic and wild birds.] *Osnovy Tsestodologi*, 7, 303 pp. (In Russian).

Olsen, O.W., Haskins, A.G. & Braun C.E. (1978) *Rhabdome-tra alpinensis* n. sp. (Cestoda: Paruterinidae: Dilepididae) from southern white-tailed ptarmigan (*Lagopus leucurus alpineiens* Osgood) in Colorado, U.S.A., with a key to the species of Rhabdometra Cholodkowsky, 1906. *Canadian Journal of Zoology*, 56, 446–450.

Petrova, K. (1978) [Studies on the helminth fauna in wild birds of Thrace. III. Cestodes.] *Khealminologi*, 5, 69–78. (In Bulgarian).

Rausch, R. & Morgan, B.B. (1947) The genus Anonchotaenia (Cestoda: Dilepididae) from north American birds, with the description of a new species. *Transactions of the American Microscopical Society*, 66, 203–211.

Schmidt, G.D. (1986) *CRC handbook of tapeworm identification*. Boca Raton, Florida: CRC Press Inc., 675 pp.

Shinde, G.B. (1984) A new species of the genus Anonchotaenia (Cestoda: Paruterinidae: Dilepididea) from north American birds, with the description of a new species. *Journal of Parasitology*, 70, 462–466.

Sibley, C.G., Ahlquist, J.E. & Monroe Jr, B.L. (1988) A classification of the living birds of the world based on DNA-DNA hybridization studies. *The Auk*, 105, 409–423.

Stamper, J.D. & Schmidt, G.D. (1984) *Angularia auburnensis* sp. n. (Dilepididae) and other Cestodes of cliff swallows in Colorado. *Proceedings of the Helminthological Society of Washington*, 51, 106–108.

Thiollay, J.M. (1985) The birds of the Ivory Coast. *Malimbus*, 7, 1–59.

Voge, M. & Davis B.S. (1953) Studies on the cestode genus Anonchotaenia (Dilepididae, Paruterininae) and related forms. *University of California Publications in Zoology*, 59, 1–30.

Weber, C., Jaccoud, T. & de Chambrier, A. (1984) A temporary field fixing and preserving solution for ornithological collecting. *Curator*, 27, 281–286.
A NEW GENUS OF METADILEPIDIDAE (CESTODA: CYCLOPHYLLIDEA) PARASITIC IN TERPSIPHONE RUFIVENTER (AVES: MUSCICAPIDAE) FROM THE IVORY COAST

Jean Mariaux*, Franco V. Bonaf†, and Claude Vaucher‡
Institute of Zoology, Université Mail, CH-2007 Neuchâtel, Switzerland

ABSTRACT: Pseudadelphoscolex eburnensis, a new genus and species of metadilepidid Cyclophyllidea parasitic in the red-bellied paradise flycatcher, Terpsiphone rufiventer, from the Ivory Coast, is described. The new species is characterized by davaineidlike rostellar hooks, absence of a rostellar pouch, a huge cirrus pouch in gravid proglottids, a bilobed uterus that becomes progressively reticular, absence of a paruterine organ, and eggs with an internal coat forming a crescentic protuberance outside the embryophore. The presence of a single row of rostellar hooks together with the lack of spines on the sucker and the structure and position of the uterus exclude this new material from Davaineidae. It cannot be placed in Dilepididae due to the lack of a rostellar pouch or in Paruterinidae because of the lack of a paruterine organ. The position of the excretory ducts in relation to the genital pores and the alternance of these pores are the main characters used to exclude this new species from the known genera of Metadilepididae. The diversity of forms of Metadilepididae in intertropical terrestrial birds is increased, and the validity of this taxon is strengthened.

In the course of a taxonomic survey of the cestode fauna of wild birds in the Ivory Coast (West Africa), several representatives of the poorly known family Metadilepididae Spassky, 1959, have been described (Mariaux and Vaucher, 1989; Mariaux, 1991). The present work describes a new genus and species of cestode from the red-bellied paradise flycatcher, Terpsiphone rufiventer (Hartlaub).

MATERIALS AND METHODS

Birds were caught with a mist net and examined immediately after being killed. The cestodes were fixed in hot 4% formalin, stained with alcoholic hydrochloric carmine, and mounted in Canada balsam for light microscopy (routine and Nomarski). One scolex was squashed in Faure’s medium (Langeron, 1934). Figures were drawn with the aid of a camera lucida. Unless otherwise stated all measurements were made on adult proglottids and reported in micrometers (range, mean, standard deviation [SD], and number of observations [n]). Sections of gravid proglottids (6 μm thick) were stained with Goldner trichrome. The specimens described in this work are deposited at the Geneva Natural History Museum, Switzerland (MHNG).

Received 15 February 1991; revised 28 October 1991; accepted 28 October 1991.

* Present address: Laboratory of Molecular Systematics, Smithsonian Institution, Museum Support Center, Washington, D.C. 20560.
† Dipartimento Biologia Animale dell Universita, Via Accademia Albertina 17, 10123 Torino, Italy.
‡ Muséum d’Histoire Naturelle de Genève, CP 434, CH-1211 Genève 6, Switzerland.

DESCRIPTION

Pseudadelphoscolex n. gen.

Diagnosis: Cyclophyllidea, Metadilepididae. Rostellum cup-shaped with 1 row of hooks. Rostellar pouch lacking. Hooks hammer-shaped with a short blade and handle but very large guard. Genital pores unilateral. Genital ducts between longitudinal excretory vessels. Testes dorsal, posterior and aporal to ovary. Cirrus pouch well developed, especially in gravid proglottids. Internal seminal vesicle swollen in postadult and gravid proglottids. Ovary bilobed, median. Vitelline gland far posterior. Vagina posterior to cirrus pouch. Uterus dorsal to ovary, first bilobed, then labyrinthic with thick wall, and finally divided into small cavities by thin septa that tend to disappear. Parasite of birds (Passeriformes).

Taxonomic summary

Type species: Pseudadelphoscolex eburnensis n. sp.

Etymology: From the Greek pseudos, adelphos, and scolex, which means false brother worm, in reference to the resemblance of this genus to the Davaineidae.

Remarks

Even though the scolex and the hook shape of the present material show strong similarities with members of the Davaineidae, the following features of this material dissuade us from placing this new genus in that family: presence of a single row of hooks (very seldom occurring among Davaineidae), absence of long spines on the suckers and of little ones behind the rostellar hooks, and the structure and dorsal position of the uterus. Furthermore, even though the rostellar hooks are similar to those of the Davaineidae, they can be distinguished from them by their marked reinforcement from the handle to the guard; besides, hammer-shaped rostellar hooks are characteristic of Davaineidae but not exclusive to that family. Also, this new genus cannot be placed in Dilepididae due to the lack of a rostellar pouch or in Paruterinidae due to the lack
of paruterine organs. In fact, the only familial taxon that could include *Pseudadelphoscolex* is Metadilepididae. This family originally was erected (as a subfamily) for cestodes that were close to both Dilepididae and Paruterinidae but which lacked a rostellar pouch and had gravid proglottids without a real paruterine organ (Spassky, 1959). Our new genus can be distinguished easily from the 9 genera (Spassky and Spasskaja, 1977; Mariaux, 1991) of Metadilepididae mainly by the following points: *Metadilepis* Spassky, 1949, and *Skrjabinoporus* Spassky and Borgarenko, 1960, show ventral genital ducts in relation to longitudinal excretory stems, *Parvirostrum* Fuhrmann, 1908, and *Proparuterina* Fuhrmann, 1911, have irregularly alternating genital pores; and all these genera and *Cracticotenia* Spassky, 1966, possess 2 rows of hooks. *Hamatofuhrmannia*
Spassky, 1969, and Schmidneila Spassky and Spasskaja, 1973, have irregularly alternating genital pores, and Spreotaenia Spassky, 1969, has dorsal genital ducts, irregularly alternating genital pores, and a very different and powerful rostellum that even possibly could exclude this genus from the Metadilepididae. Yapolepis Mariaux, 1991, although showing very comparable gravid proglottids, has an unarmed rostellum. Laterotaenia Fuhrmann, 1906, and Deltokeras Meggitt, 1927, possibly could be compared with Pseudadelphoscolex as their systematic position is uncertain and inclusion in Metadilepididae is possible. However, the species belonging to both these genera have 2 rows of rostellar hooks and are therefore clearly distinct from our material. We conclude from these comparisons that the present material belongs to a new genus of Metadilepididae.

Pseudadelphoscolex eburnensis n. sp.

(Figs. 1–6)

Diagnosis (based on 2 entire worms and 1 specimen without scolex): Cyclophyllidea, Metadilepididae. Medium-sized worms composed of numerous proglottids. Segments broader than long. Scolex not clearly delimited from neck. Suckers small, circular, and unarmed. Rostellar pouch absent. Rostellum cup-shaped. Rostellar hooks hammer-shaped, very robust, in single row. Blades short and curved terminally; guards well developed, handles short. Guard and handle with a marked reinforcement and clearly distinguished from blades (Fig. 1). Excretory ducts, 2 pairs; ventral canals with posterior transverse anastomosis. Sexual primordia appearing in about 50th proglottid. Genital pores unilateral left or right, opening anteriorly. Genital ducts between longitudinal excretory vessels. Testes dorsal, in 1 continuous field in posterior half of proglottid. Testes often immediately dorsal to vitelline gland, sometimes also to part of ovary. Vas deferens surrounded by a cellular sleeve, densely coiled in anterior antiporal part of proglottid. Cirrus pouch oval, large in adult proglottids, larger in older proglottids, and very large in gravid ones (Fig. 4), often reaching midline of segment. Pouch swelling due to inflation of ejaculatory duct forming an internal seminal vesicle (sometimes

FIGURE 4. Evolution of the size of the cirrus pouch from male to advanced gravid proglottids of *Pseudadelphoscolex eburnensis* n. gen., n. sp. (1 value is given for each 10 proglottids).

FIGURE 5. Development of the uterus from young (A) to advanced (E) gravid proglottids in *Pseudadelphoscolex eburnensis* n. gen., n. sp. Note the clearly bilobed young uterus (A) and the cirrus pouch inflation from A to D.
folded) in last proglottids (Fig. 2). Cirrus very large, covered with minute spines. Ovary small, clearly bilobed, median with even outline. Vitelline gland posterior, more irregular than the ovary. Vagina opening posterior to cirrus pouch; its distal part rather broad reaching half length of cirrus pouch, then leading via a narrow duct in an elongated seminal receptacle. Seminal receptacle dorsal, lying between both lobes of ovary (Fig. 3). Uterus appearing dorsal to ovary, first bilobed with a thick wall, becoming reticulate and labyrinthic; later forming thin septa, delimiting small cavities each with 1 or few eggs (Fig. 5). Very thin polysaccharidic layer, secreted and delaminated from uterine septa, surrounding each egg. Oncospheres surrounded by oncospheral membrane, complex internal embryonal coat with 2 layers (embryophore and external part making a single cap pierced in its central and thicker part by small bourgass-shaped tube of particular consistency), thin, membranelike external coat, and finally a thin polysaccharidic layer (Fig. 6). Central embryonic hooks longer than lateral ones.

Dimensions:
- Length (maximum): 55 mm; breadth (maximum): 1.2 mm; number of proglottids (maximum): 293; scolex (diameter): 200–233 (n = 2); suckers (diameter): 78–93 (n = 8); rostellum (diameter): 99–101 (n = 2); number of hooks: 47 (n = 1); length of hooks (Fig. 1): a, 12–13 (12.5; SD, 0.3; n = 7); b, 17–20 (18.5; SD, 0.8; n = 23); number of testes: 8–13 (11.2; SD, 1.4; n = 30); cirrus pouch (mature proglottids): 127–188 × 56–80 (154 × 67; SD, 18.3, 5.3; n = 27); cirrus pouch (gravid proglottids): 230–334 × 113–190 (283 × 156; SD, 30.2, 21.4; n = 35); cirrus (maximum, evaginated): 571 × 57; ovary: 48–68 × 103–154 (58 × 124; SD, 5.1, 14.7; n = 30); vitelline gland: 29–49 × 52–81 (39 × 66; SD, 5.7, 7.7; n = 30); vagina (pars copulatrix): 65–89 × 13–29 (75 × 20; SD, 7.3, 3.8; n = 30); seminal receptacle: 71–90 × 15–24 (n = 6); oncospheres: 36–44 × 29–38 (39 × 32; SD, 2.2, 2.3; n = 30); embryonic hooks (central): 25–30 (27; SD, 1.4; n = 30); embryonic hooks (lateral): 19–21 (20; SD, 0.9; n = 30).

Taxonomic summary

Type host: Terpsiphone rufiventer (Hartlaub), MHNG CI 728.

Site of infection: Anterior and middle part of intestine.

Type locality: Yapo Classified Forest, about 50 km N of Abidjan (5°45'N, 4°9'W).

Etymology: Latin *eburnensis,* in reference to the country where the material was collected.

Prevalence: Found in 3 of 11 (27%) *T. rufiventer* sampled.

Intensity of infection: One specimen in each of 3 infected birds.

Type specimens: Holotype, MHNG 987.258; paratypes, 987.259–260.
Remarks

As type and sole species in *Pseudadelphoscolex* n. gen., *P. eburnensis* is different from all other known cestodes.

DISCUSSION

The validity of *Metadilepididae* was discussed recently (Mariaux and Vaucher, 1989; Mariaux, 1991). This new material clearly shows all the distinctive characteristics of the members of this taxon. The genera included in this family have been classified very diversely in the systematics of tapeworms (Schmidt, 1986), and *Metadilepididae* is recognized rarely except by Russian authors. Another genus in this family raises the total to 10, and that number strengthens its diversity. With *Pseudadelphoscolex*, the *Metadilepididae* begin to show a variety, if not a number of species, comparable to that found in much better known families. This reinforces the statement (Mariaux, 1991) that *Metadilepididae* is a small but clearly defined family that more and more seems to occupy an interesting position among the *Cyclophyllidea*. Moreover, the presence of *Pseudadelphoscolex* in flycatchers of the Ivory Coast confirms the suggestion of Spassky and Spassakaja (1973) that members of *Metadilepididae* are distributed in intertropical terrestrial birds.

Finally, it is important to notice the unusual development of gravid proglottids in the present material. The progression, with the production of thin septa, of an initially saciform cavity in small chambers with single or few eggs seldom occurs amongst the *Cyclophyllidea*, but the delamination of an internal acellular layer from the walls of chambers is even more unusual. We are convinced fully that this thin layer coming from the uterine septum is not homologous to uterine egg capsules. So, it would be incorrect to speak about uterine egg capsules in this case. The structure of the egg coats, especially the cap formed by the external part of the inner coat, also is unique among *Cyclophyllidea*.

ACKNOWLEDGMENTS

We thank A. Aeschlimann (Neuchâtel) for his support, A. Rosso (Torino) for technical assistance, and O. Porgo (Abidjan) for his help in the field. This work was supported financially by the Swiss Academy of Sciences, the Foundation J. de Giacomi, the Roche African Research Foundation, and the University of Neuchâtel.

LITERATURE CITED

Langeron, M. 1934. Précis de microscopie. Masson, Paris, 1,205 p.

Mariaux, J. 1991. Cestodes de birds from the Ivory Coast. *Yapolepis yapolepis* n. g., n. sp., a new *Metadilepididae* (*Cyclophyllidea: Paruterinoidea*) parasite of the icterine greenbul (*Aves: Pycnonotidae*). Systematic Parasitology 18: 187-191.

———, and C. Vaucher. 1989. Cestodes d’oiseaux de Côte-d’Ivoire. II. Parasites de Coraciiformes et Piciformes. Systematic Parasitology 14: 117-133.

Schmidt, G. D. 1986. CRC handbook of tapeworm identification. CRC Press, Boca Raton, Florida, 675 p.

Spassky, A. A. 1959. On phylogenetic relations of the subfamily *Metadilepidinae* nov. subfam. (*Cestoda; Cyclophyllidea*). Helminthologia 1: 1-4. [In Russian.] ———, and L. P. Spasskaja. 1973. Genus *Schmidneila* gen. n. (Cestoda: Metadilepididae). Izvestiya Akademii Nauk Moldavskoi SSR. Ser. Biologicheskikh i Khimicheskikh Nauk 1: 58-60. [In Russian.] ———, and ———. 1977. Brief results of the phylogenetic analysis of two dilepidid tapeworm tribes, *Dilepidini* and *Laterotaenii*. In Ektio- i endoparazity zhivotnykh Moldavii, A. A. Spassky, R. P. Shumilo, and A. I. Karshun (eds.). Izdatelst’stvo “Shtiintsa,” Kishinev, U.S.S.R., p. 3-30. [In Russian.]