Background. Norovirus is a leading cause of acute gastroenteritis (AGE) across the age spectrum; candidate vaccines are in clinical trials. While norovirus diagnostic testing is increasingly available, stool testing may not be performed routinely, which can hamper surveillance and burden of disease estimates. Our objectives were to understand physicians’ stool testing practices in outpatients with AGE, and physical knowledge of norovirus, in order to improve surveillance and prepare for vaccine introduction.

Methods. Internet and mail survey on AGE and norovirus conducted January to March 2018 among national networks of primary care pediatricians (Peds), family practice (FP) and general internal medicine (GIM) physicians.

Results. The response rate was 59% (820/1,383). During peak AGE season, physicians estimated they ordered stool tests for a median of 15% (interquartile range: 5–33%) of their outpatients with AGE. Stool tests were more often available for ova and parasites, Caenorhabditis difficile, and bacterial culture (>95% for all specialties) than for norovirus (6–33% across specialties); even when available, norovirus-specific tests were infrequently ordered. Most providers were unaware that norovirus is a leading cause of AGE across all age groups (Peds 80%, FP 86%, GIM 89%) or that alcohol-based hand sanitizers are ineffective against norovirus (Peds 51%, FP 66%, GIM 62%).

Conclusion. Physicians infrequently order stool tests for outpatients with AGE, and have knowledge gaps on norovirus prevalence and hand hygiene for prevention. Understanding the limitations of surveillance that relies on physician-ordered stool diagnosis, and closing physician knowledge gaps, can help support norovirus vaccine introduction.

Disclosures. All authors: No reported disclosures.

1625. Risk of Invasive Group A Streptococcus, Group B Streptococcus, and Streptococcus pneumoniae Infection Among Adults Experiencing Homelessness—Anchorage, Alaska, 2002–2015

Emily Moisten, MPH1; Tammy Zulz, MPH2; Dana Bruden, MS3; Leisha Nolen, MD, PhD4; Anna Frick, MPH4; Louisa Castrodever, DVM, MPH5; Joseph McLaughlin, MD6; Chris Van Beneden, MD, MPH7; Thomas Hennessy, MD8, MPH9; Michael Bruce, MD MPH10; Arctic Investigations Program, Division of Preparedness and Emerging Emergencies, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska; 1CDC, Anchorage, Alaska; 2Centers for Disease Control and Prevention, Anchorage, Alaska; 3Alaska SOE, Anchorage, Alaska; 4Section of Epidemiology, Division of Health and Social Services, State of Alaska, Anchorage, Alaska; 5CDC AIP, Anchorage, Alaska

Session: 163. Public Health
Friday, October 4, 2019: 12:15 PM

Background. People experiencing homelessness (PEH) have an increased risk of infectious disease. However, for many infections, this increased risk has not been clearly quantified. For example, the risk of invasive streptococcal infection has not been established among PEH in the United States.

Methods. We compared the incidence of detected cases of invasive group A Streptococcus (GAS) infection, group B Streptococcus (GBS) infection, and Streptococcus pneumoniae (pneumococcal) infection among adult PEH to that in the general adult population in Anchorage, Alaska from 2005 through 2015 using data from the CDC, Arctic Investigations Program surveillance system, the US census, and the Anchorage Point in Time count (PIT [a yearly census of PEH]).

Results. During 2005–2015, the PIT counted a mean number of 970 adults (minimum 795, maximum 1486) in Anchorage who were homeless, which accounted for 0.4% of the total population. Compared with the general population, PEH were 53 times as likely to have invasive GAS infection (95% CI 47–61), 7 times as likely to have invasive GBS infection (95% CI 6.8, 9), and 36 times as likely to have invasive pneumococcal infection (95% CI 33.4, 40). Of all invasive GAS cases in Anchorage over the time period, 19% occurred within the homeless population, while 33% of invasive GBS and 14% of invasive pneumococcal cases were within the homeless population. Additionally, the predominant subtypes of GAS and pneumococcus differed among PEH compared with the general population.

Conclusion. A disproportionate burden of invasive streptococcal disease in Anchorage was detected among PEH, indicating a need for further focus on this high-risk group.

Disclosures. All authors: No reported disclosures.

1626. A Primary Amebic Meningoencephalitis Case Associated with Surfing in an Inland Surf Park

Jennifer R. Cope, MD, MPH1; Mia Mattioli, PhD2; Vaiideh Shah, MPH3; Rebecca Greshel, MPH4; Michele Hlavsa, RN, MPH5; Vincent Hill, PhD6; 1Centers for Disease Control and Prevention, Atlanta, Georgia; 2Waco-McLennan County Public Health District, Waco, Texas; 3New Jersey Department of Health, Trenton, New Jersey

Session: 163. Public Health
Friday, October 4, 2019: 12:15 PM

Background. Naegleria fowleri is a thermophilic ameba that is found in freshwater and causes primary amebic meningitis (PAM; 0–8 infections per year in the United States) when it enters the nose and migrates to the brain. Patient exposure to water containing the ameba typically occurs in warm freshwater lakes and ponds and following freshwater activities. In September 2018, a 29-year-old man died of PAM after visiting a Texas inland surf park.

Methods. To determine water exposures, we reviewed medical records and conducted interviews with family and individuals who had traveled with the patient. To further investigate the inland surf park as a possible exposure source, we visited the facility and collected water, biofilm, and sediment samples from the surf park and other venues (water slides, lazy river, and cable park) within the facility. We assessed water source and treatment practices, analyzed water quality tests, and tested for the presence of N. fowleri by culture and real-time PCR.

Results. Interviews revealed that the case-patient’s most probable water exposure in the 10 days before becoming ill occurred while surfing in an inland freshwater surf park. No personal protective equipment was worn while off the surfboard in the water multiple times. The on-site investigation of the facility revealed a practice of manual chlorine treatment with monitoring, but no water filtering or record keeping to document water quality. Surf park water temperature was warm (25°C) and chlorine residual was negligible. N. fowleri was detected in a single sedent sample collected at the cable park venue, and viable thermophilic ameba were detected in all samples collected from the cable park venue, water slide, and cable park venues, as well from the sediment in the open-air groundwater reservoir feeding the venues.

Conclusion. This investigation documents a novel exposure in an inland surf park as the likely exposure causing PAM. Conditions in the surf park were conducive to amebic growth. Novel types of recreational water venues that do not meet traditional definitions of swimming pools, such as this surf park, might not meet the water quality standards for indoor pools or similar public health officials should remain vigilant for nontraditional exposures to water.

Disclosures. All authors: No reported disclosures.

1627. Outbreaks of Klebsiella pneumoniae in Special Care Nurseries (SCN) in Jamaica: Role of Whole-Genome Sequencing

Malith Azz, MD1; Alison M. Nicholson, DVM2; Maya Nadimpalli, PhD3; Pajevce Saray, MS4; Lance Prichard, MD5; Vinay Liu, MD, PhD6; 1The George Washington University, Washington, DC; 2University of the West Indies, Kingston, Kingston, Jamaica; 3Tufts University, Medford, Massachusetts; 4The George Washington University, Washington, DC

Session: 163. Public Health
Friday, October 4, 2019: 12:15 PM

Background. Klebsiella pneumoniae is a frequent cause of neonatal sepsis and carries a high mortality rate in lower and middle-income countries (LMICs). From March-November 2015, two Jamaican hospitals experienced K. pneumoniae outbreaks in their Special Care Nurseries (SCNs). New admissions to both SCNs were temporaril y halted while additional infection control strategies were implemented. 31 babies were infected, of which 15 died. International collaboration was requested to help investigate if the sepsis cases were nosocomial transmission, repeated introductions from the community, or both using whole-genome sequencing.

Methods. We sequenced DNA from 19 outbreak isolates (n = 13 from Hospital A, n = 6 from Hospital B) on an Illumina HiSeq2000 instrument and assembled short-reads using SPAdes. We used ResFinder v3.1.0 to screen resistance genes and assigned MLSTs using in-house scripts. To compare the outbreak isolates, we selected a reference genome from among the assembled isolates, aligned raw reads using the Burrows–Wheelier Aligner (BWA), identified SNPs using GATK UnifiedGenotyper, and removed the recombined regions using Gubbins v2.3.4. We further contextualized the 19 outbreak isolates against a global collection of more than 300 K. pneumoniae genomes.

Results. All 13 isolates from Hospital A appeared to be from a single source. All were carbapenem-resistant and encoded blaKPC, which confers extended-spectrum β-lactam (ESBL) resistance and assigned MLSTs using in-house scripts. To compare the outbreak isolates, we selected a reference genome from among the assembled isolates, aligned raw reads using the Burrows–Wheelier Aligner (BWA), identified SNPs using GATK UnifiedGenotyper, and assigned MLSTs using in-house scripts. To compare the outbreak isolates, we selected a reference genome from among the assembled isolates, aligned raw reads using the Burrows–Wheelier Aligner (BWA), identified SNPs using GATK UnifiedGenotyper, and assigned MLSTs using in-house scripts. To compare the outbreak isolates, we selected a reference genome from among the assembled isolates, aligned raw reads using the Burrows–Wheelier Aligner (BWA), identified SNPs using GATK UnifiedGenotyper, and assigned MLSTs using in-house scripts.

Conclusion. Our findings indicate nosocomial transmission was responsible for both neonatal K. pneumoniae outbreaks, rather than repeat introductions from the community. The main sequence types we detected (ST45 and ST268) are not known pandemic clones and may circulate regionally. Multifected infection control measures were implemented for effectively halting outbreaks.

Disclosures. All authors: No reported disclosures.