ON FINITE GROUPS WITH EXACTLY TWO NON-ABELIAN CENTRALIZERS

SEKHAR JYOTI BAISHYA

Abstract. In this paper, we characterize finite group G with unique proper non-abelian element centralizer. This improves [5, Theorem 1.1]. Among other results, we have proved that if $C(a)$ is the proper non-abelian element centralizer of G for some $a \in G$, then $\frac{G}{Z(G)}$ is the Fitting subgroup of $\frac{C(a)}{Z(G)}$, $C(a)$ is the Fitting subgroup of G and $G' \subseteq C(a)$, where G' is the commutator subgroup of G.

1. Introduction

Throughout this paper G is a finite group with center $Z(G)$ and commutator subgroup G'. Given a group G, let Cent(G) denote the set of centralizers of G, i.e., $\text{Cent}(G) = \{ C(x) \mid x \in G \}$, where $C(x)$ is the centralizer of the element x in G. The study of finite groups in terms of $|\text{Cent}(G)|$, becomes an interesting research topic in last few years. Starting with Belcastro and Sherman [15] in 1994 many authors have been studied and characterised finite groups G in terms of $|\text{Cent}(G)|$. More information on this and related concepts may be found in [1, 3, 4, 6–14, 17, 21–23].

Amiri and Rostami [5] in 2015 introduced the notion of nacent(G) which is the set of all non-abelian centralizers of G. Schmidt [19] characterized all groups G with $|\text{nacent}(G)| = 1$ which are called CA-groups. The authors in [5] initiated the study of finite groups with $|\text{nacent}(G)| = 2$ and proved the following result ([5, Theorem 1.1]):

Theorem 1.1. Let G be a finite group such that $|\text{nacent}(G)| = 2$. If $C(a)$ is a proper non-abelian centralizer for some $a \in G$, then one of the following assertions hold:

(a) $\frac{G}{Z(G)}$ is a p-group for some prime p.
(b) $C(a)$ is the Fitting subgroup of G of prime index p, p divides $|C(a)|$ and $|\text{Cent}(G)| = |\text{Cent}(C(a))| + j + 1$, where j is the number of distinct centralizers $C(g)$ for $g \in G \setminus C(a)$.

(c) $\frac{G}{Z(G)}$ is a Frobenius group with cyclic Frobenius complement $\frac{C(x)}{Z(G)}$ for some $x \in G$.

2010 Mathematics Subject Classification. 20D60, 20D99.

Key words and phrases. Finite group, Centralizer, Partition of a group.
In this paper, we revisit finite groups G with $|\text{nacent}(G)| = 2$ and improve this result. Among other results, we have also proved that if $C(a)$ is the proper non-abelian element centralizer of G then $\frac{C(a)}{Z(G)}$ is the Fitting subgroup of $\frac{G}{Z(G)}$. $C(a)$ is the Fitting subgroup of G and $G' \in C(a)$.

2. The main results

In this section, we prove the main results of the paper. We make the following Remark from [24, Pp. 571–575] which will be used in the sequel.

Remark 2.1. A collection Π of non-trivial subgroups of a group G is called a partition if every non-trivial element of G belongs to a unique subgroup in Π. If $|\Pi| = 1$, the partition is said to be trivial. The subgroups in Π are called components of Π. Following Miller, if Π is a non-trivial partition of a non-abelian p group G (p a prime), then all the elements of G having order $> p$ belongs to the same component of Π.

A partition Π of a group G is said to be normal if $g^{-1}Xg \in \Pi$ for every $X \in \Pi$ and $g \in G$. A non-trivial partition Π of a group G is said to be elementary if G has a normal subgroup N such that all cyclic subgroups which are not contained in N have order p (p a prime) and are components of Π. All normal non-trivial partitions of a p group of exponent $> p$ are elementary.

A non-trivial partition Π of a group G is said to be non-simple if there exists a proper normal subgroup N of G such that for every component $X \in \Pi$, either $X \leq N$ or $X \cap N = 1$. Let G be a group and Π a normal non-trivial partition. Suppose Π is not a Frobenious partition and is non-simple. Then G has a normal subgroup K of index p (p a prime) in G which is generated by all elements of G having order $\neq p$. So Π is elementary.

Let G be a group and p be a prime. We recall that the subgroup generated by all the elements of G whose order is not p is called the Hughes subgroup and denoted by $H_p(G)$. The group G is said to be a group of Hughes-Thompson type if G is not a p group and $H_p(G) \neq G$ for some prime p. In such a group we have $|G : H_p(G)| = p$ and $H_p(G)$ is nilpotent.

We now determine the structure of finite groups G with $|\text{nacent}(G)| = 2$ which improves ([11, Theorem 1.1]).

Theorem 2.2. Let G be a finite group and $a \in G \setminus Z(G)$. Then $\text{nacent}(G) = \{G, C(a)\}$ if and only if one of the following assertions hold:

(a) $\frac{G}{Z(G)}$ is a non-abelian p-group of exponent $> p$ (p a prime), $|\frac{G}{Z(G)} : H_p(\frac{G}{Z(G)})| = p$, $H_p(\frac{G}{Z(G)}) = \frac{C(a)}{Z(G)}$, $|\frac{C(a)}{Z(G)}| = p$ for any $x \in G \setminus C(a)$ and $C(a)$ is a CA-group.

(b) $\frac{G}{Z(G)}$ is a group of Hughes-Thompson type, $H_p\left(\frac{G}{Z(G)}\right) = \frac{C(a)}{Z(G)}$ (p a prime), $|\frac{C(a)}{Z(G)}| = p$ for any $x \in G \setminus C(a)$ and $C(a)$ is a CA-group.
(c) $\frac{G}{Z(G)} = \frac{C(a)}{Z(G)} \times \frac{C(x)}{Z(G)}$ is a Frobenius group with Frobenius Kernel $\frac{C(a)}{Z(G)}$, cyclic Frobenius Complement $\frac{C(x)}{Z(G)}$ for some $x \in G \setminus C(a)$ and $C(a)$ is a CA-group.

Proof. Let G be a finite group such that $nacent(G) = \{G, C(a)\}$, $a \in G \setminus Z(G)$. Then clearly $C(a)$ is a CA-group.

Note that we have $C(s) \subseteq C(a)$ for any $s \in C(a) \setminus Z(G)$, $C(a) \cap C(x) = Z(G)$ for any $x \in G \setminus C(a)$ and $C(x) \cap C(y) = Z(G)$ for any $x, y \in G \setminus C(a)$ with $C(x) \neq C(y)$. Hence $\Pi = \{\frac{C(a)}{Z(G)}, \frac{C(x)}{Z(G)} | x \in G \setminus C(a)\}$ is a non-trivial partition of $\frac{G}{Z(G)}$. In the present scenario we have $(gZ(G))^{-1}\frac{C(a)}{Z(G)}gZ(G) = \frac{g^{-1}C(a)g}{Z(G)} = \frac{C(g^{-1}ag)}{Z(G)}$ for any $gZ(G) \in \frac{G}{Z(G)}$ and $\frac{C(a)}{Z(G)} \cap \frac{G}{Z(G)}$. Therefore $(gZ(G))^{-1}XgZ(G) \in \Pi$ for every $X \in \Pi$ and $gZ(G) \in \frac{G}{Z(G)}$. Hence Π is a normal non-simple partition of $\frac{G}{Z(G)}$.

In the present scenario, if Π is a Frobenius partition of $\frac{G}{Z(G)}$, then $\frac{G}{Z(G)} = \frac{C(a)}{Z(G)} \times \frac{C(x)}{Z(G)}$ is a Frobenius group with Frobenious Kernel $\frac{C(a)}{Z(G)}$ and cyclic Frobenius Complement $\frac{C(x)}{Z(G)}$ for some $x \in G \setminus C(a)$.

Next, suppose Π is not a Frobenius partition. Then in view of Remark 2.1, $\frac{G}{Z(G)}$ has a normal subgroup of index p (p a prime) in $\frac{G}{Z(G)}$ which is generated by all elements of $\frac{G}{Z(G)}$ having order $\neq p$.

In the present situation if $\frac{G}{Z(G)}$ is not a p group (p a prime), then in view of Remark 2.1 $\frac{G}{Z(G)}$ is a group of Hughes-Thompson type and Π is elementary. That is $\frac{G}{Z(G)}$ has a normal subgroup $\frac{K}{Z(G)}$ such that all cyclic subgroups which are not contained in $\frac{K}{Z(G)}$ have order p (p a prime) and are components of Π. In the present scenario we have $\frac{K}{Z(G)} = H_p(\frac{G}{Z(G)})$. Therefore Π has $\frac{|G|}{p}$ components of order p and these are precisely $\frac{C(x)}{Z(G)}, x \in G \setminus C(a)$. Consequently, we have $H_p(\frac{G}{Z(G)}) = \frac{C(a)}{Z(G)}$.

On the other hand, if $\frac{G}{Z(G)}$ is a p group (p a prime), then in view of Remark 2.1 $\frac{G}{Z(G)}$ is non-abelian of exponent $> p$ and $\frac{G}{Z(G)} : H_p(\frac{G}{Z(G)}) = p$. In the present situation by Remark 2.1 Π is elementary. Therefore using Remark 2.1 again, $H_p(\frac{G}{Z(G)}) = \frac{C(a)}{Z(G)}$ and all cyclic subgroups which are not contained in $\frac{C(a)}{Z(G)}$ have order p and are components of Π. Therefore Π has $\frac{|G|}{p}$ components of order p and these are precisely $\frac{C(x)}{Z(G)}, x \in G \setminus C(a)$. Consequently, we have $H_p(\frac{G}{Z(G)}) = \frac{C(a)}{Z(G)}$.

Conversely, suppose G is a finite group such that one of (a), (b) or (c) holds. Then it is easy to see that $nacent(G) = \{G, C(a)\}$ for some $a \in G \setminus Z(G)$. □

As an immediate consequence we have the following result. Recall that for a finite group G, the Fitting subgroup denoted by $F(G)$ is the largest normal nilpotent subgroup of G.
Theorem 2.3. Let G be a finite group with a unique proper non-abelian centralizer $C(a)$ for some $a \in G$. Then we have

\begin{itemize}
 \item[(a)] $|\text{Cent}(G)| = |\text{Cent}(C(a))| + \frac{|G|}{p} + 1$, (p a prime) or $|\text{Cent}(C(a))| + \frac{|C(a)|}{Z(G)} + 1$.
 \item[(b)] $G' \subseteq C(a)$.
 \item[(c)] $\frac{C(a)}{Z(G)}$ is the Fitting subgroup of $\frac{G}{Z(G)}$.
 \item[(d)] $C(a)$ is the Fitting subgroup of G.
 \item[(e)] $C(a) = P \times A$, where A is an abelian subgroup and P is a CA-group of prime power order.
 \item[(f)] $\frac{G}{C(a)}$ is cyclic.
\end{itemize}

Proof. (a) In view of Theorem 2.2 if $\frac{G}{Z(G)}$ is a Frobenius group then by [3, Proposition 3.1], we have $|\text{Cent}(G)| = |\text{Cent}(C(a))| + \frac{|G|}{p} + 1$.

On the otherhand, if $\frac{G}{Z(G)}$ is not a Frobenius group, then it follows from the proof of Theorem 2.2 that the non-trivial partition $\Pi = \{\frac{C(x)}{Z(G)} \mid x \in G \setminus C(a)\}$ of $\frac{G}{Z(G)}$ has $\frac{|G|}{p}$ components of order p and these are precisely $\frac{C(x)}{Z(G)}$, $x \in G \setminus C(a)$. Hence $|\text{Cent}(G)| = |\text{Cent}(C(a))| + \frac{|G|}{p} + 1$.

(b) If $\frac{G}{Z(G)}$ is a Frobenius group, then by Theorem 2.2, $\frac{G}{Z(G)} = \frac{C(a)}{Z(G)} \rtimes \frac{C(x)}{Z(G)}$ with cyclic Frobenius complement $\frac{C(x)}{Z(G)}$ for some $x \in G \setminus C(a)$. Therefore $\frac{G}{C(a)}$ is cyclic and hence $G' \subseteq C(a)$.

On the otherhand, if $\frac{G}{Z(G)}$ is not a Frobenius group, then it follows from Theorem 2.2 that $C(a) \triangleleft G$ and $\frac{G}{C(a)} = p$ (p a prime). Hence $G' \subseteq C(a)$.

(c) If $\frac{G}{Z(G)}$ is a Frobenius group, then by Theorem 2.2, $\frac{G}{Z(G)} = \frac{C(a)}{Z(G)} \rtimes \frac{C(x)}{Z(G)}$ with cyclic Frobenius complement $\frac{C(x)}{Z(G)}$ for some $x \in G \setminus C(a)$. In the present scenario by [18, Pp. 3], we have $\frac{C(a)}{Z(G)}$ is the Fitting subgroup of $\frac{G}{Z(G)}$.

On the otherhand, if $\frac{G}{Z(G)}$ is not a Frobenius group, then it follows from Theorem 2.2 that $H_p(\frac{G}{Z(G)}) = \frac{C(a)}{Z(G)}$ and $\frac{G}{Z(G)} : H_p(\frac{G}{Z(G)}) = p$. Hence $\frac{C(a)}{Z(G)}$ is the Fitting subgroup of $\frac{G}{Z(G)}$, noting that we have $C(a) \triangleleft G$.

(d) It follows from (c) noting that $F(\frac{G}{Z(G)}) = \frac{F(G)}{Z(G)} = \frac{C(a)}{Z(G)}$.

(e) Using (d) we have $C(a)$ is a nilpotent CA-group. Therefore using [2, Theorem 3.10 (5)], $C(a) = P \times A$, where A is an abelian subgroup and P is a CA-group of prime power order.

(f) It is clear from Theorem 2.2 that if $\frac{G}{Z(G)}$ is a Frobenius group, then $\frac{G}{C(a)}$ is cyclic and $|\frac{G}{C(a)}| = p$, (p a prime) otherwise. \qed
ON FINITE GROUPS WITH EXACTLY TWO NON-ABELIAN CENTRALIZERS

References

[1] A. Abdollahi, S. M. J. Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houst. J. Math., 33 (1) (2007), 43–57.
[2] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), 468–492.
[3] S. M. J. Amiri, H. Madadi and H. Rostami, On 9-centralizer groups, J. Algebra Appl., 14 (1) (2015), 01–13.
[4] S. M. J. Amiri, H. Madadi and H. Rostami, Groups with exactly ten centralizers, Bul. Iran. Math. Soc., 44 (2018), 1163–1170.
[5] S. M. J. Amiri and H. Rostami, Groups with a few non-abelian centralizers, Publ. Math. Debrecen, 87 (3/4) (2015), 429–437.
[6] S. M. J. Amiri, M. Amiri and H. Rostami, Finite groups determined by the number of element centralizers, Comm. Alg., 45 (9) (2017), 1–7.
[7] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq., 7 (2) (2000), 139–146.
[8] A. R. Ashrafi, Counting the centralizers of some finite groups, Korean J. Comput. Appl. Math., 7 (1) (2000), 115–124.
[9] A. R. Ashrafi and B. Taeri, On finite groups with exactly seven element centralizers, J. Appl. Math. Comput., 22 (1–2) (2006), 403–410.
[10] A. R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput., 17 (1–2) (2005), 217–227.
[11] S. J. Baishya, On finite groups with specific number of centralizers, Int. Elect. J. Algebra, 13 (2013) 53–62.
[12] S. J. Baishya, On finite groups with nine centralizers, Boll. Unione Mat. Ital., 9 (2016) 527–531.
[13] S. J. Baishya, On capable groups of order p^2q, Comm. Alg., 48 (6) (2020), 2632–2638.
[14] S. J. Baishya, On finite CG-groups, arXiv.1911.06054v1 [math.GR] 14 Nov 2019.
[15] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Magazine, 67 (5) (1994), 366–374.
[16] M. Herzog, On finite groups which contain a Frobenius subgroup, J. Algebra, 6 (1967), 192–221.
[17] K. Khoramshahi and M. Zarrin, Groups with the same number of centralizers, arXiv:1906.09424v1 [math.GR] 22 Jun 2019.
[18] A. S. Mukitibodh, A study of Camina (Con-Cos) groups, (Ph.D Thesis submitted to Nagpur University, India), (2010).
[19] R. Schmidt, Zentralisatorverbände endlicher Gruppen, Rend. Sem. Mat. Univ. Padova, 44 (1970), 97–131.
[20] M. Zarrin, On element centralizers in finite groups, Arch. Math., 93 (2009), 497–503.
[21] M. Zarrin, Criteria for the solubility of finite groups by their centralizers, Arch. Math., 96 (2011), 225–226.
[22] M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iran. Math. Soc., 39 (3) (2013), 517–521.
[23] M. Zarrin, On non-commuting sets and centralizers in infinite group, arXiv:1412.4349v1 [math.GR] 14 Dec 2014.
[24] G. Zappa, Partitions and other coverings of finite groups, Illinois. J. Math., 47 (1/2) (2003), 571–580.
S. J. Baishya, Department of Mathematics, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath-784184, Assam, India.

Email address: sekharnehu@yahoo.com