Prediction of Cardiovascular Disease Risk Accounting for Future Initiation of Statin Treatment

Zhe Xu, Matthew Arnold, David Stevens, Stephen Kaptoge, Lisa Pennells, Michael J. Sweeting, Jessica Barrett, Emanuele Di Angelantonio, and Angela M. Wood

Correspondence to Dr. Angela Wood, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, United Kingdom (e-mail: amw79@medschl.cam.ac.uk).
Author affiliations: Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (Zhe Xu, Matthew Arnold, David Stevens, Stephen Kaptoge, Lisa Pennells, Michael J. Sweeting, Emanuele Di Angelantonio, Angela M. Wood); National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom (Stephen Kaptoge, Emanuele Di Angelantonio, Angela M. Wood); Department of Health Sciences, University of Leicester, Leicester, UK (Michael J. Sweeting); Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, United Kingdom (Jessica Barrett); British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom (Emanuele Di Angelantonio, Angela M. Wood); National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom (Emanuele Di Angelantonio, Angela M. Wood); Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom (Emanuele Di Angelantonio, Angela M. Wood); and the Alan Turing Institute, London, UK (Angela M. Wood).

Funding: This study is based on data from the Clinical Practice Research Datalink (CPRD) obtained under licence from the UK Medicines and Healthcare products Regulatory Agency (protocol 162RMn2). The work was supported by an Alan Turing Institute/British Heart Foundation (BHF) grant. The Cardiovascular Epidemiology Unit is underpinned by program grants from the BHF and UK National Institute for Health Research Cambridge Biomedical Research Centre. ZX is funded by Chinese Scholarship Council. MA, LP and SK is funded by a British Heart Foundation Programme Grant (RG/18/13/33946). DS is funded by the Medical
Research Council (MRC), School of Clinical Medicine at University of Cambridge, a BHF-Turing Cardiovascular Data Science Award and the National Institute for Health Research [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust]. JB was funded by the MRC. MS was funded by the MRC, the BHF and the National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics (NIHR BTRU-2014-10024). AW is supported by a BHF-Turing Cardiovascular Data Science Award and by the EC-Innovative Medicines Initiative (BigData@Heart).

Conflict of interest: none declared.

Running head: CVD Risk Prediction addressing Future Statin Initiation

Abbreviations: CI, confidence interval; CPRD, Clinical Practice Research Datalink; CVD, cardiovascular disease; HDL, high-density lipoprotein; NRI, net reclassification improvement; SBP, systolic blood pressure; SD, standard deviation.
Abstract

Cardiovascular disease (CVD) risk prediction models are used to identify high-risk individuals and guide statin-initiation. However, these models are usually derived from individuals who may initiate statins during follow-up. We present a simple approach to address statin-initiation to predict “statin-naïve” CVD risk. We analyzed primary care data (2004-2017) from the UK Clinical Practice Research Datalink for 1,678,727 individuals (40-85 years) without CVD or statin treatment history at study entry. We derived age- and sex-specific prediction models including conventional risk factors and a time-dependent effect of statin-initiation constrained to 25% risk reduction (from trial results). We compared predictive performance and measures of public-health impact (e.g., numbers-needed-to-screen to prevent one case) against models ignoring statin-initiation. During a median follow-up of 8.9 years, 103,163 individuals developed CVD. In models accounting for versus ignoring statin initiation, 10-year CVD risk predictions were slightly higher; predictive performance was moderately improved. However, few individuals were reclassified to a high-risk threshold, resulting in negligible improvements in numbers-needed-to-screen to prevent one case. In conclusion, incorporating statin effects from trial results into risk prediction models enables statin-naïve CVD risk estimation, provides moderate gains in predictive ability, but had a limited impact on treatment decision-making under current guidelines in this population.

Key words: Cardiovascular disease, risk prediction, future statin initiation, treatment drop-in, electronic health records, longitudinal data
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide (1). Identifying individuals who are at high CVD risk is important for effectively implementing prevention strategies with limited health care resources (2). For this purpose, many prediction models have been developed and subsequently recommended by primary prevention guidelines to help identify individuals at high risk of CVD who should benefit the most from preventive interventions, such as lifestyle advice and statin treatment (3–17). As such, CVD risk prediction models are typically intended for treatment-naïve populations (i.e., for the assessment of CVD risk in the absence of future treatment initiation) (10), however they are rarely developed and validated in populations that remain treatment-naïve throughout follow-up (18–20). Indeed, most contemporary models have been developed using data that excluded statins users at baseline without taking into account statin initiation during follow-up (so-called “treatment drop-ins”) (19,21), leading to a possible underestimation of risk, and hence under-treatment of high-risk individuals (22). The problem of treatment drop-ins in risk prediction modelling is underappreciated (23).

Given the absence of an ideal treatment-naïve population in which to develop risk prediction models, it is important to explore statistical methods that address treatment drop-in effects (23). Previous studies have investigated the use of inverse probability weighting (18) or marginal structural models (20) to enable the estimation of treatment-naïve risks. However, these models require estimating an unbiased treatment effect within the study population, relying on randomised study designs or cohorts with no unmeasured confounders.

Here, we propose incorporating causal evidence from clinical trials to provide a novel and simple approach to address time-dependent treatment drop-in for the estimation of treatment-naïve risks (interpretable as risk estimates in the absence of future treatment initiation) (23). We illustrated
our simple and practical approach through the derivation and validation of a CVD risk model to estimate 10-year statin-naïve CVD risk predictions, using longitudinal electronic health records from a large and representative UK population.

**METHODS**

**Study population**

*Data source.* We used medical records from English National Health Service general practices that contributed anonymised primary care electronic health records to the Clinical Practice Research Datalink (CPRD), covering approximately 6.9% of the UK population. (24) Patients in CPRD are broadly representative of the UK general population with respect to age, sex, and ethnicity (24). CPRD was linked to secondary care admissions from Hospital Episode Statistics, and national mortality records from the Office for National Statistics.

The data used in this study was obtained under licence from the UK Medicines and Healthcare products Regulatory Agency (protocol 162RMn2).

*Study outcomes.* CVD was defined as a combination of new diagnoses of nonfatal or fatal events of coronary heart disease (including myocardial infarction and angina), stroke, and transient ischemic attack, matching the definition used by QRISK algorithm (8,15), which is recommended by UK CVD risk assessment guidelines for 40-84 year olds (25). Read codes (used to identify outcomes in CPRD) and ICD-10 codes (used to identify outcomes in primary or secondary diagnosis fields from Hospital Episode Statistics and in underlying or subordinate cause of death fields from the Office for National Statistics) are provided in the Web Appendix 1.
Web Tables 1 and 2. We defined incident CVD to be the first occurrence of CVD in any of the three databases (CPRD, Hospital Episode Statistics, and Office for National Statistics).

Risk factors. Conventional CVD risk factors (10,26) were selected, which included systolic blood pressure (SBP), total cholesterol, high-density lipoprotein (HDL) cholesterol (for which details of measurements have been previously described (24)), hypertension treatment (yes/no ascertained from CPRD prescription information), smoking status (current smoker or not ascertained from CPRD Read codes), and previous diagnoses of diabetes (yes/no ascertained from CPRD Read codes (27)). Individuals were assumed to have hypertension or diabetes for the rest of follow-up after their first prescription or diagnosis. In addition, we defined statin initiation as the date of first CPRD prescription (code list for CPRD prescription provided in Web Appendix 2 - Web Table 3). The following biologically implausible risk factor values were set to missing: SBP >250 mmHg or <60 mmHg; total cholesterol >20 mmol/L or <1.75 mmol/L; HDL cholesterol >3.1 mmol/L or <0.3 mmol/L (28,29). Values of SBP, total cholesterol, and HDL cholesterol were standardised using sex-specific means and standard deviations.

Study entry and exit. Individuals entered our study on the latest of four dates: the date of 6 months after registration at the general practice; the date the individual turned 40 years of age (note, prior information from age 30 years onwards were extracted for these individuals); the date that the data for the practice were up to standard (30); or April 01, 2004, the date of introduction of the Quality and Outcomes Framework (31). Individuals were censored at the earliest date of the following: the date of deregistration at the practice; the individual’s death; the date that the individual turned 85 years of age (note, follow-up data up to age 95 years were extracted for these individuals); the last contact date for the practice with CPRD; or November 30, 2017, end of data availability.
Study eligibility criteria. Of the 2,589,074 individuals with linked data, those with CVD or statin treatment identified before study entry were excluded. We also excluded individuals who had no measurements of any of SBP, total cholesterol, HDL cholesterol, or smoking status between study entry and exit dates. A total of 1,678,727 individuals (762,606 men and 916,121 women) were included in the study (Flowchart in Web Figure 1).

We randomly allocated 2/3 of practices (263 practices with 1,141,098 individuals) to the derivation dataset and 1/3 of practices (135 practices with 537,629 individuals) to the validation dataset.

Statistical modelling

To utilise all available electronic health records data we used a 2-stage landmark approach for the construction of 10-year CVD risk prediction models (32). We briefly describe the methods here and provide more detail in Web Appendix 3 – Web Figures 2-6. In the derivation dataset, we developed ninety-two age- and sex-specific predictions models (i.e., for men and women and at ages 40, 41, 42, ..., 85, denoted as “landmark ages”). Participants meeting the study eligibility constraints contributed to a model if they had no CVD diagnoses and no statin prescription before the landmark age. Ten-year crude CVD incidence rates and statin initiation rates were calculated for each landmark age and sex.

In the first stage, to better utilise repeat risk factors and allow for incomplete data, error-free risk factor values for SBP, total cholesterol, HDL cholesterol, and smoking status were estimated as Best Linear Unbiased Predictors (BLUPS) from landmark age- and sex-specific multivariate mixed-effects linear regression models (Web Appendix 3). In the second stage, 10-year statin-naïve CVD risk was modelled using landmark age- and sex-specific Weibull models, with time since landmark age as the time scale and with the following risk factors: the most recent
observed diabetes status and hypertension treatment status, estimated error-free risk factor values for SBP, total cholesterol, HDL cholesterol, and smoking status and a time-dependent effect of statin-initiation constrained to a 25% risk reduction as reported from published meta-analyses of trials (33,34). For example, in Stata this can implemented by splitting the follow-up data at the time of statin-initiation and using the offset option in the survival model (see example code in Web Appendix 3). Incorporating the effect of statins in this way ignores the potential error in the effect and assumes homogeneity in treatment effect (i.e. a 25% risk reduction for everyone) regardless of the time on statins and other characteristics. The Weibull distribution and proportional hazards assumptions were checked and verified (see Web Appendix 3 – Web Figures 5 and 6). We also derived a standard model ignoring the effect of statin initiation.

In the validation dataset we predicted 10-year statin-naïve and standard CVD risks, using risk factor values estimated from the multivariate mixed-effects models.

**Assessment of model predictive performance**

Performance measures for the standard CVD models ignoring statin-initiation were calculated from comparisons between the predicted standard CVD risks and observed survival times and risks in the validation dataset. To appropriately assess model performance, we compared statin-naïve CVD risks against observed risks using counterfactual statin-naïve survival times. Under Weibull model, counterfactual survival times were estimated as: $t^* = [t_s^\nu + \exp(0.75) \times (t^\nu - t_s^\nu)]^{1/\nu}$, where $t$ is the observed follow-up time; $t_s$ is the time of statin initiation (which equals $t$ if not observed); $\exp(0.75)$ represents the effect of statins from trial results of 25% risk reduction; and $\nu$ is the shape parameter of Weibull model estimated in the derivation dataset. Further details are provided in Web Appendix 4. Several measures were used to assess model and compare the performance in the validation dataset (full definitions and the use of
counterfactual statin-naïve survival times in performance assessment are provided in Web Table 4). Calibration was assessed visually (35,36) and with the calibration slope (35–38); predictive accuracy and explained variation were assessed using the Brier score and R² respectively (36,39,40), and discrimination was assessed by the D statistic (39) and Harrell’s C-index (35) with bootstrap standard errors. Reclassification measures, including the net reclassification improvement (NRI), with both continuous NRI (41) and categorical NRI (42) which using the predicted 10-year risk cut-off at <10% and ≥10% (i.e., the threshold of recommended statin treatment in the current UK guidelines (25)), together with the integrated discrimination index (42), were used to compare the statin-naïve and the standard CVD risks at ages 40, 50, 60 and 70 years. Potential public health impact, including the number needed to screen and number needed to treat to prevent one CVD event (38,43,44) were estimated under the assumptions that statin treatment is allocated to individuals with 10-year CVD risk greater than 10% and reduces CVD risk by 25%. In addition, to quantify the impact of models accounting for statin initiation on treatment decision-making, we compared the proportion of individuals with 10-year predicted risk exceeding a range of treatment thresholds from 5% to 30% by using the statin-naïve versus the standard CVD risk for each landmark age. Weighted proportion across all ages were calculated using the most recent available data for an age-sex standard England population (2015) (45) between 40-85 years. To directly demonstrate the predictive ability of statin-naïve CVD risk, measures of model performance were also assessed on the subset of individuals with no statin initiation during follow-up.

All statistical analyses were conducted using Stata, version 15.1 (StataCorp LLC, College Station, Texas) and R, version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria), 2-sided P-value <0.05, and 95% confidence intervals (CIs).
RESULTS

Characteristics of participants

At study entry, the mean age was 52.3 (SD=13.5) years and 46% were men. Characteristics of participants in the derivation and validation datasets were similar (Table 1). The median follow-up was 8.9 (interquartile range: 5.3, 11.4) years during which 237,806 individuals initiated statins and there were 103,163 incident CVD events (Web Figure 7).

Statin initiation and CVD incidence rates

Ten-year statin initiation rates were higher in men and increased with age until about 70 years and then declined (Figure 1). The overall 10-year CVD incidence rate was 7.39 (95% CI: 7.34, 7.43) per 1000 person-years. The 10-year CVD incidence rates increased rapidly after age 65, and were higher in men and those who initiated statins during follow-up (Figure 1 and Web Table 5). Rates were broadly similar in the derivation and validation datasets (Web Tables 6 and 7).

Risk factors associations with incident CVD

Hazard ratios (HRs) for CVD attenuated at older landmark ages for all risk factors (Figure 2). HRs for total cholesterol and diabetes were somewhat higher in models accounting for statin initiation during follow-up (particularly between ages 60-70) compared to models ignoring statin initiation, but were similar for other CVD risk factors (Figure 2, Web Tables 8 and 9).
Predicted 10-year CVD risk accounting for future statin initiation

In the validation dataset, the mean of 10-year statin-naïve CVD risks were slightly higher than standard CVD risks (Figure 3, Web Table 10), especially amongst 60-70 year olds. For example, in 65-year old men the mean predicted standard and statin-naïve 10-year CVD risks were 17.3% (95% CI: 17.3%, 17.4%) and 18.5% (95% CI: 18.4%, 18.5%), respectively. Similarly, in 65-year old women, the corresponding mean risks were 9.91% (95% CI: 9.87%, 9.94%) and 10.4% (95% CI: 10.4%, 10.5%). The medians and interquartile ranges of predicted standard and statin-naïve risks are shown in Web Table 11 and Web Figure 8.

Model calibration, performance, and discrimination

The models appeared generally well calibrated, especially at younger ages (Web Figures 9-11). Compared against the models ignoring statin initiation, models accounting for statin initiation generally exhibited better model performance and discrimination, quantified by lower values for overall Brier score (Table 2), higher explained variation (Web Figure 12), higher overall C-index (Table 2) and D measure (Web Figure 13). The age-specific C-indices were higher in women, decreased with age and were slightly higher in models accounting statin initiation, especially between ages 60-70 (Figure 4).

Public health modelling

Reclassification. There were moderate improvements in risk classification using 10-year statin-naïve versus standard CVD predictions. Generally, individuals with future CVD events within 10 years were more likely to be reclassified from <10% to ≥10% risk categories (quantified by the
categorical NRI) and have higher predicted risks (quantified by the category-free integrated discrimination index and continuous NRI) than those individuals who remained CVD event free within 10 years (Tables 3-6). Above the ages of 69 for men, and 76 for women all predicted 10-year statin-naïve and standard CVD risks were greater than 10%.

**Potential public health impact.** Fewer younger people needed to be screened to prevent one CVD event using statin-naïve compared to standard 10-year CVD risk predictions (Figure 5, Web Table 12). Above age 60, the number needed to be screened to prevent one event was generally similar between the two risk predictions, and similarly for the number needed to treat to prevent one event (Figure 5). The weighted proportions across all ages of individuals with 10-year predicted risk exceeding treatment threshold were slightly higher after accounting for statin initiation (Figure 6). For example, at the threshold of $\geq 10\%$, the proportions are 55.6% in men and 33.5% in women using models ignoring statin initiation, 57.1% in men and 34.8% in women using models accounting for statin initiation correspondingly.

Results were similar when analyses were performed using a validation subset including 463,017 individuals who did not initiate statins during the follow-up (Web Tables 13-16; Web Figures 14-21).

**DISCUSSION**

In this study, we described a novel and simple approach to account for statin initiation for the prediction of 10-year statin-naïve CVD risk, illustrated using primary-care data collected in a general UK population, and it is applicable to other study designs with similar information. Our
analyses showed that, after adding a time-dependent effect of statin-initiation constrained to a 25% CVD risk reduction, 10-year CVD predicted risks were higher especially amongst 60-70-year olds. These differences reflect the somewhat stronger associations between total cholesterol and CVD outcome after accounting for statin initiation and are in line with what is expected in a statin-naïve population. Models that accounted for statin initiation also showed moderate improvements in calibration and discrimination, but translated into limited public health and clinical relevance in our study population.

Currently recommended CVD risk prediction models do not consider the effect of statin treatment drop-in during follow-up (19), and produce standard 10-year CVD risk estimates which are often interpreted in clinical practice, by practitioners and patients, as statin-naïve CVD risk predictions (18–21). In our study, we found stronger HRs for total cholesterol in models accounting for statin initiation, a phenomenon previously described as an “intervention effect” in clinical prediction models (46). Despite our study showing that statin-naïve CVD risk predictions are generally higher than standard CVD risk predictions, we found little benefit in their use for clinical decision-making in this population of 40-85 year olds. Accounting for statin initiation made the largest difference to risk estimates for individuals aged 60-70 (i.e., those more likely to start statin initiation), however, a large proportion of these individuals were already categorized as high-risk group (≥10%) on the basis of their age. Greater public health impact may be found (i) in other populations with higher statin initiation rates or with higher CVD risk (e.g., diabetic patients) and/or (ii) models using more conservative CVD endpoint definitions in risk model derivation (10) and/or (iii) with use of age-specific risk thresholds (although these are not currently recommended by clinical guidelines).
Previous studies have attempted to account for statin drop-in by modelling the probability of statin initiation during follow-up (based on baseline risk factors), either through inverse probability weighting (18) or in marginal structural models (20). If the propensity model is incorrectly specified, then it may not fully account for the treatment drop-in. By contrast, our simpler approach incorporated causal evidence of 25% risk reduction with statin initiation from trial results. A similar approach using a time-fixed constrained treatment effect has been applied to estimate medication efficacy in long-term clinical trials (47), in breast cancer prognostic models (48) and to adjust population level incidence rates for CVD (33). However, to our knowledge, incorporating time-dependent statin treatment effects (which results in adjustment of risk factor coefficients) for the prediction of the statin-naïve 10-year CVD risk has not been fully explored and is aligned with the “hypothetical strategy” described previously (23). Our study assumed the same risk reduction effect for all individuals regardless of on-treatment duration and discontinuations. It is possible to extend our model to allow for individuals’ risk reduction in response to statin initiation to vary by dose, treatment duration, and other demographic and socio-economic factors (49,50) which in combination may result in individuals having larger or smaller changes in risk, although on average is likely to be smaller than we have modelled.

In our study, we found a reduction in the prediction ability of CVD risk prediction models at older ages, due to attenuating HRs of conventional risk factors (irrespective of whether statin treatment drop-in was accounted for). Previous assessments of the Framingham Risk Score also noted poorer performance in older individuals (51,52). This was mainly attributed to older individuals still in the risk set being a homogeneous group in whom conventional CVD risk factors have little impact (36). This highlights the need to assess new CVD biomarkers across different age groups.
Our study has several strengths. This study proposed a simple approach to account for statin treatment drop-in, and assessed it using CVD risk factors and events recorded in a large and representative UK population dataset combining primary and secondary care health records. The landmark framework allowed us to optimally use repeated measurements of risk factors recorded in electronic health records data and to assess the changes in HRs and discrimination with age when accounting for statin initiation. Multivariate mixed-effects models allowed estimation of error-free risk factor values at each landmark age, even when some risk factors were not observed, avoiding non-representative “complete-case” analyses. In addition, a parametric Weibull model allowed a closed form estimation of counterfactual statin-naïve survival times, further allowing for model performance assessment in the “statin-naïve” setting, with consistent results using the subset of individuals who remained statin-naïve during follow-up. Our landmark models are easy to derive in standard software and to use in practice. We focused on the effect of statin drop-in but the approach is generalizable to other causal relationships occurring in the follow-up, such as short-term medications (e.g. corticosteroids), long-term medications (e.g. hypertension treatment) and lifestyle modification changes (e.g. smoking and smoking cessation), as well as other diseases.

Our study also has limitations that should be noted. Our data only contains records of statin prescriptions, with no information about treatment adherence, and so statin users may be incorrectly classified or indeed be treatment “drop-outs” as the proportion of people with poor adherence for statins may not be negligible (53). We also ignored any impact of informative observations, whereby more risk factor measurements are made in sicker individuals who visit their GP more frequently, or in the “worried-well” (54,55), however our previous work found that adjusting for the rate of GP visits had negligible impact (32). We further ignored uncertainty
in the constrained effect of statins, which may lead to slight over-precision in other estimated parameters. Additionally, the use of the Weibull model relies on strong parametric assumptions and is less flexible than the commonly used Cox model. It is possible to estimate counterfactual survival times in Cox model with additional efforts (outlined in the Web Appendix 4). However, these limitations are unlikely to affect the between-model comparisons in prediction performance.

In conclusion, information from trials of the statins effect on CVD risk reduction can be simply incorporated into the derivation of risk models using electronic health records, and yields statin-naïve risk estimates interpretable as risk in the absence of future statin initiation. In our study population, accounting for statin initiation moderately improved measures of calibration and discrimination, but had limited benefits for clinical decision-making under current UK guidelines of recommended statin initiation threshold.

ACKNOWLEDGMENTS

Author affiliations: Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (Zhe Xu, Matthew Arnold, David Stevens, Stephen Kaptoge, Lisa Pennells, Michael J. Sweeting, Emanuele Di Angelantonio, Angela M. Wood); National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom (Stephen Kaptoge, Emanuele Di Angelantonio, Angela M. Wood); Department of Health Sciences, University of Leicester, Leicester, UK (Michael J. Sweeting); Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, United Kingdom (Jessica Barrett); British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom (Emanuele Di Angelantonio, Angela M. Wood); National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom (Emanuele Di Angelantonio,
Angela M. Wood); Health Data Research UK Cambridge, Wellcome Genome Campus and
University of Cambridge, Cambridge, United Kingdom (Emanuele Di Angelantonio, Angela M.
Wood); The Alan Turing Institute, London, UK (Angela M. Wood).

This study is based on data from the Clinical Practice Research Datalink (CPRD) obtained under
licence from the UK Medicines and Healthcare products Regulatory Agency (protocol
162RMn2). The work was supported by an Alan Turing Institute/British Heart Foundation (BHF)
grant. The Cardiovascular Epidemiology Unit is underpinned by program grants from the BHF
and UK National Institute for Health Research Cambridge Biomedical Research Centre. ZX is
supported by Chinese Scholarship Council. MA, LP and SK is funded by a British Heart
Foundation Programme Grant (RG/18/13/33946). DS is funded by the Medical Research Council
(MRC), School of Clinical Medicine at University of Cambridge, a BHF-Turing Cardiovascular
Data Science Award and the National Institute for Health Research [Cambridge Biomedical
Research Centre at the Cambridge University Hospitals NHS Foundation Trust]. JB was funded
by the MRC. MS was funded by the MRC, the BHF and the National Institute for Health
Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics
(NIHR BTRU-2014-10024). AW is supported by a BHF-Turing Cardiovascular Data Science
Award and by the EC-Innovative Medicines Initiative (BigData@Heart).

Conflict of interest: none declared.
REFERENCES

1. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.

2. Siontis GCM, Tzoulaki I, Siontis KC, et al. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012;344:e3318.

3. Assmann Gerd, Cullen Paul, Schulte Helmut. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-Year follow-up of the Prospective Cardiovascular Münster (PROCAM) Study. Circulation. 2002;105(3):310–315.

4. Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.

5. Ridker PM, Buring JE, Rifai N, et al. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–619.

6. Woodward M, Brindle P, Tunstall-Pedoe H, et al. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart. 2007;93(2):172–176.

7. Assmann G, Schulte H, Cullen P, et al. Assessing risk of myocardial infarction and stroke: new data from the Prospective Cardiovascular Münster (PROCAM) study. Eur. J. Clin. Invest. 2007;37(12):925–932.

8. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475–1482.

9. D’Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–753.

10. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Part B):2935–2959.

11. JBS3 Board. Joint British Societies’ consensus recommendations for the prevention of cardiovascular disease (JBS3). Heart. 2014;100(Suppl 2):ii1–ii67.

12. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European Heart Journal. 2016;37(29):2315–2381.

13. Anderson TJ, Grégoire J, Pearson GJ, et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Canadian Journal of Cardiology. 2016;32(11):1263–1282.
14. Ueda P, Lung TW-C, Clarke P, et al. Application of the 2014 NICE cholesterol guidelines in the English population: a cross-sectional analysis. Br J Gen Pract. 2017;67(662):e598–e608.

15. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099.

16. Pylypchuk R, Wells S, Kerr A, et al. Cardiovascular disease risk prediction equations in 400 000 primary care patients in New Zealand: a derivation and validation study. The Lancet. 2018;391(10133):1897–1907.

17. Members WC, Arnett DK, Blumenthal RS, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. Journal of the American College of Cardiology. 2019;26029.

18. Pajouheshnia R, Peelen LM, Moons KGM, et al. Accounting for treatment use when validating a prognostic model: a simulation study. BMC Medical Research Methodology. 2017;17(1):103.

19. Pajouheshnia R, Damen JAAG, Groenwold RHH, et al. Treatment use in prognostic model research: a systematic review of cardiovascular prognostic studies. Diagnostic and Prognostic Research. 2017;1(1):15.

20. Sperrin M, Martin GP, Pate A, et al. Using marginal structural models to adjust for treatment drop-in when developing clinical prediction models. Statistics in Medicine. 2018;37(28):4142–4154.

21. Liew SM, Doust J, Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart. 2011;97(9):689–697.

22. Groenwold RHH, Moons KGM, Pajouheshnia R, et al. Explicit inclusion of treatment in prognostic modeling was recommended in observational and randomized settings. J Clin Epidemiol. 2016;78:90–100.

23. van Geloven N, Swanson SA, Ramspek CL, et al. Prediction meets causal inference: the role of treatment in clinical prediction models. Eur. J. Epidemiol. 2020;35(7):619–630.

24. Herrett E, Gallagher AM, Bhaskaran K, et al. Data resource profile: Clinical Practice Research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827–836.

25. National Institute for Health and Care Excellence. Cardiovascular disease: risk assessment and reduction, including lipid modification. Clinical guideline CG181. https://www.nice.org.uk/guidance/cg181. Published July 18, 2014. Updated September 27, 2016. Accessed July 29, 2019.

26. Damen JAAG, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016;353:i2416.

27. Sharma M, Petersen I, Nazareth I, et al. An algorithm for identification and classification of individuals with type 1 and type 2 diabetes mellitus in a large primary care database. Clin Epidemiol. 2016;8:373–380.

28. Littman AJ, Boyko EJ, McDonell MB, et al. Evaluation of a weight management program for veterans. Prev Chronic Dis. 2012;9:E99.
29. Hajifathalian K, Ueda P, Lu Y, et al. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys. *Lancet Diabetes Endocrinol*. 2015;3(5):339–355.

30. Tate AR, Dungey S, Glew S, et al. Quality of recording of diabetes in the UK: how does the GP’s method of coding clinical data affect incidence estimates? Cross-sectional study using the CPRD database. *BMJ Open*. 2017;7(1):e012905.

31. National Health Service. Quality and Outcomes Framework - 2010-11. https://digital.nhs.uk/data-and-information/publications/statistical/quality-and-outcomes-framework-achievement-prevalence-and-exceptions-data/quality-and-outcomes-framework-2010-11. Published October 26, 2011. Accessed December 7, 2020.

32. Paige E, Barrett J, Stevens D, et al. Landmark models for optimizing the use of repeated measurements of risk factors in electronic health records to predict future disease risk. *Am J Epidemiol*. 2018;187(7):1530–1538.

33. Cook NR, Ridker PM. Further insight into the cardiovascular risk calculator controversy: The roles of statins, revascularizations, and under-ascertainment in the Women’s Health Study. *JAMA Intern Med*. 2014;174(12):1964–1971.

34. Collaborators CTT (CTT). The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. *The Lancet*. 2012;380(9841):581–590.

35. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. *Epidemiology*. 2010;21(1):128–138.

36. Steyerberg E. Clinical prediction models: a practical approach to development, validation, and updating. New York: Springer-Verlag; 2009.

37. Miller ME, Langefeld CD, Tierney WM, et al. Validation of probabilistic predictions. *Med Decis Making*. 1993;13(1):49–57.

38. Pennells L, Kaptoge S, Wood A, et al. Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. *Eur Heart J*. 2019;40(7):621–631.

39. Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. *Statistics in Medicine*. 2004;23(5):723–748.

40. Royston P. Explained variation for survival models. *Stata Journal*. 2006;6(1):83–96.

41. Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. *Stat Med*. 2011;30(1):11–21.

42. Pencina MJ, Agostino RBD, Agostino RBD, et al. Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. *Statistics in Medicine*. 2008;27(2):157–172.
43. Rembold CM. Number needed to screen: development of a statistic for disease screening. *BMJ*. 1998;317(7154):307–312.

44. Rembold CM. Number-needed-to-treat analysis of the prevention of myocardial infarction and death by antidyislipidemic therapy. *J Fam Pract*. 1996;42(6):577–586.

45. Office for National Statistics. Population by age, gender and ethnicity. https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/populationbyagegenderandethnicity. Published January 10, 2017. Accessed September 29, 2020.

46. Schuit E, Groenwold RHH, Harrell FE, et al. Unexpected predictor–outcome associations in clinical prediction research: causes and solutions. *CMAJ*. 2013;185(10):E499–E505.

47. Simes J, Voysey M, O’Connell R, et al. A novel method to adjust efficacy estimates for uptake of other active treatments in long-term clinical trials. *PLOS ONE*. 2010;5(1):e8580.

48. Candido Dos Reis FJ, Wishart GC, Dicks EM, et al. An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation. *Breast Cancer Res*. 2017;19(1):58.

49. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. *BMJ*. 2003;326(7404):1423.

50. Fleetcroft R, Schofield P, Ashworth M. Variations in statin prescribing for primary cardiovascular disease prevention: cross-sectional analysis. *BMC Health Services Research*. 2014;14(1):414.

51. Rodondi N, Locatelli I, Aujesky D, et al. Framingham risk score and alternatives for prediction of coronary heart disease in older adults. *PLOS ONE*. 2012;7(3):e34287.

52. Ruijter W de, Westendorp RGI, Assendelft WJJ, et al. Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. *BMJ*. 2009;338:a3083.

53. Chowdhury R, Khan H, Heydon E, et al. Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. *Eur Heart J*. 2013;34(38):2940–2948.

54. Lin H, Scharfstein DO, Rosenheck RA. Analysis of longitudinal data with irregular, outcome-dependent follow-Up. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*. 2004;66(3):791–813.

55. Sperrin M, Petherick E, Badrick E. Informative observation in health data: association of past level and trend with time to next measurement. *Stud Health Technol Inform*. 2017;235:261–265.
Table 1. Characteristics of Participants in Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017 included in the Current Study

| Characteristics                        | Men                                      | Women                                    |                                                                 |
|----------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
|                                        | No. of Individuals with at Least One     | Mean (SD)                                | No. of Individuals with at Least One Measurement                | Mean (SD) | %                        |                                                                 |
|                                        | Measurement                          |                                          |                                                                  |                                      | %                        |
| Derivation dataset                     | 518,367                                 | 50.3 (12.6)                              | 622,731                                                         | 51.3 (13.5)                          | 47.3                     |
| Age at study entry, years              | 518,367                                 | 50.3 (12.6)                              | 622,731                                                         | 51.3 (13.5)                          | 47.3                     |
| Systolic blood pressure, mmHg\(^b\)   | 484,714                                 | 136.9 (18.5)                             | 603,496                                                         | 131.7 (20.4)                         | 38.8                     |
| Total cholesterol, mmol/L\(^b\)       | 374,492                                 | 5.4 (1.0)                                | 437,519                                                         | 5.6 (1.1)                            | 12.6                     |
| HDL cholesterol, mmol/L\(^b\)         | 348,176                                 | 1.3 (0.4)                                | 405,960                                                         | 1.6 (0.4)                            | 5.2                      |
| Current/Ever smoker\(^c\)             | 306,719                                 | 48.6                                     | 295,502                                                         | 47.3                                  | 4.9                      |
| History of diabetes\(^c\)             | 518,367                                 | 7.1                                      | 622,731                                                         | 4.9                                  |
| Prescription for antihypertensive      | 518,367                                 | 35.1                                     | 622,731                                                         | 38.8                                  |
| medication\(^c\)                       |                                          |                                          |                                                                  |                                      | 38.8                     |
| Initiated statins after study entry    | 518,367                                 | 16.2                                     | 622,731                                                         | 12.6                                  |
| Experienced incident CVD event         | 518,367                                 | 7.4                                      | 622,731                                                         | 5.2                                   |
| Validation dataset                     | 244,239                                 | 50.5 (12.6)                              | 293,390                                                         | 51.5 (13.5)                          | 45.9                     |
| Age at study entry, years              | 244,239                                 | 50.5 (12.6)                              | 293,390                                                         | 51.5 (13.5)                          | 45.9                     |
| Systolic blood pressure, mmHg          | 229,861                                 | 136.2 (18.4)                             | 285,603                                                         | 131.2 (20.3)                         | 38.8                     |
| Total cholesterol, mmol/L              | 174,843                                 | 5.4 (1.1)                                | 203,461                                                         | 5.6 (1.1)                            | 12.5                     |
| HDL cholesterol, mmol/L               | 159,466                                 | 1.3 (0.4)                                | 184,901                                                         | 1.6 (0.4)                            | 5.1                      |
| Current/Ever smoker                    | 144,130                                 | 47.9                                     | 139,896                                                         | 45.9                                  |
| History of diabetes                    | 244,239                                 | 6.9                                      | 293,390                                                         | 4.8                                  |
| Prescription for antihypertensive      | 244,239                                 | 34.9                                     | 293,390                                                         | 38.8                                  |
| medication\(^c\)                       |                                          |                                          |                                                                  |                                      | 38.8                     |
| Initiated statins after study entry    | 244,239                                 | 16.0                                     | 293,390                                                         | 12.5                                  |
| Experienced incident CVD event         | 244,239                                 | 7.2                                      | 293,390                                                         | 5.1                                  |

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; HDL, high-density lipoprotein; SD, standard deviation.

\(^a\) Included 1,678,727 individuals aged 40-85 years, without prevalent CVD nor statin initiation at study entry, and with at least one measurement value of systolic blood pressure, total cholesterol, HDL cholesterol, or smoking status between their study entry and study exit dates.

\(^b\) Calculated using the first measurement values taken after study entry

\(^c\) Recorded as yes if any of the measurement values showed yes throughout the follow-up time.
Table 2. Overall Brier Score\textsuperscript{a,b} and C-index\textsuperscript{a} in the Validation Dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017

| Subgroup | Brier Score | 95% CI           | C-index | 95% CI           |
|----------|-------------|------------------|---------|------------------|
| **Men**  |             |                  |         |                  |
| Model ignoring statin initiation\textsuperscript{c} | 0.3671       | 0.3652, 0.3689   | 0.7388  | 0.7369, 0.7407   |
| Model accounting for statin initiation\textsuperscript{d} | 0.3599       | 0.3581, 0.3618   | 0.7411  | 0.7392, 0.7430   |
| Difference | -0.0071     | -0.0073, -0.0070 | 0.0023  | 0.0024, 0.0024   |
| **Women** |             |                  |         |                  |
| Model ignoring statin initiation | 0.2783       | 0.2767, 0.2800   | 0.7872  | 0.7853, 0.7891   |
| Model accounting for statin initiation | 0.2747       | 0.2730, 0.2763   | 0.7890  | 0.7871, 0.7909   |
| Difference | -0.0037     | -0.0038, -0.0036 | 0.0018  | 0.0017, 0.0020   |

Abbreviations: CI, confidence interval.

\textsuperscript{a} Overall Brier score and C-index were calculated by “stacking” the data at each landmark age into a single dataset (the stacked dataset).

\textsuperscript{b} Brier scores were calculated only using information from individuals with at least 10 years follow-up or had an event within 10 years from each landmark age.

\textsuperscript{c} Model ignoring statin initiation: Ignoring statin treatment drop-in effect on CVD risk prediction

\textsuperscript{d} Model accounting for statin initiation: Accounting for statin treatment drop-in effect on CVD risk prediction
Table 3. Ten-year Cardiovascular Disease Risk Classification Comparing Statin-naïve CVD Risk Predictions versus Standard CVD Risk Predictions for Men in the Validation Dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017 (in landmark ages at 40, 50, 60, 70 for presentationa)

|                  | Standard 10-Year CVD Risk Predictions | Statin-Naive 10-Year CVD Risk Predictions |
|------------------|---------------------------------------|------------------------------------------|
|                  | <10%                                   | ≥10%                                     |
| Events within 10 yearsb |                                       |                                          |
| <10%             | 413                                   | 4                                        |
| ≥10%             | 0                                     | 16                                       |
| Subtotal         | 413                                   | 16                                       |
| Events free at 10-yearb |                                      |                                          |
| <10%             | 1,965                                 | 3                                        |
| ≥10%             | 0                                     | 13                                       |
| Subtotal         | 1,865                                 | 13                                       |

Abbreviations: CI, confidence interval; CVD, cardiovascular disease

a The results are presented in 10-year increments in landmark age at 40, 50, 60, 70. Above landmark age 69 for men, the predicted 10-year CVD risk for all individuals in the risk set were greater than 10% for both standard risk predictions and statin-naïve risk predictions, therefore there was no movement between the 2 categories for those older landmark age groups.

b Events within 10-years and events free at 10 year for the reclassification table were defined using the counterfactual follow-up time assuming statin had not been initiated.
Table 4. Ten-year Cardiovascular Disease Risk Classification Comparing Statin-naïve CVD Risk Predictions versus Standard CVD Risk Predictions for Women in the Validation Dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017 (in landmark ages at 40, 50, 60, 70 for presentation)

| Standard 10-Year CVD Risk Predictions | Statin-Naïve 10-Year CVD Risk Predictions |
|---------------------------------------|-------------------------------------------|
|                                       | <10% | ≥10% | Total |
| **Landmark Age 40 Years**             |      |      |       |
| Events within 10 years                |      |      |       |
| <10%                                  | 329  | 0    | 329   |
| ≥10%                                  | 0    | 8    | 8     |
| Subtotal                              | 329  | 8    | 337   |
| Events free at 10-year                |      |      |       |
| <10%                                  | 3,759| 3    | 3,762 |
| ≥10%                                  | 0    | 6    | 6     |
| Subtotal                              | 3,759| 9    | 3,768 |
| **Landmark Age 50 Years**             |      |      |       |
| Events within 10 years                |      |      |       |
| <10%                                  | 723  | 10   | 733   |
| ≥10%                                  | 0    | 59   | 59    |
| Subtotal                              | 723  | 69   | 792   |
| Events free at 10-year                |      |      |       |
| <10%                                  | 3,073| 10   | 3,083 |
| ≥10%                                  | 0    | 43   | 43    |
| Subtotal                              | 3,073| 53   | 3,126 |
| **Landmark Age 60 Years**             |      |      |       |
| Events within 10 years                |      |      |       |
| <10%                                  | 948  | 54   | 1,002 |
| ≥10%                                  | 0    | 277  | 277   |
| Subtotal                              | 948  | 331  | 1,279 |
| Events free at 10-year                |      |      |       |
| <10%                                  | 2,180| 82   | 2,262 |
| ≥10%                                  | 0    | 226  | 226   |
| Subtotal                              | 2,180| 308  | 2,488 |
| **Landmark Age 70 Years**             |      |      |       |
| Events within 10 years                |      |      |       |
| <10%                                  | 19   | 8    | 27    |
| ≥10%                                  | 0    | 1,634| 1,634 |
| Subtotal                              | 19   | 1,642| 1,661 |
| Events free at 10-year                |      |      |       |
| <10%                                  | 7    | 2    | 9     |
| ≥10%                                  | 0    | 1,084| 1,084 |
| Subtotal                              | 7    | 1,086| 1,093 |

Abbreviations: CI, confidence interval; CVD, cardiovascular disease

a The results are presented in 10-year increments in landmark age at 40, 50, 60, 70. Above landmark age 76 for women, the predicted 10-year CVD risk for all individuals in the risk set were greater than 10% for both standard risk predictions and statin-naïve risk predictions, therefore there was no movement between the 2 categories for those older landmark age groups.

b Events within 10-years and events free at 10 year for the reclassification table were defined using the counterfactual follow-up time assuming statin had not been initiated.
Table 5. Reclassification Measures for Ten-year Cardiovascular Disease Risk Prediction Comparing Statin-naïve CVD Risk Predictions versus Standard CVD Risk Predictions for Men in the Validation Dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017 (in landmark ages at 40, 50, 60, 70 for presentation)

| Outcome  | Categorical NRI<sup>b,c</sup> | 95% CI          | IDI<sup>b</sup> | 95% CI          | Continuous NRI<sup>d</sup> | 95% CI          |
|----------|-------------------------------|-----------------|-----------------|-----------------|---------------------------|-----------------|
|          | Landmark Age 40 Years         |                 |                 |                 |                           |                 |
| Event<sup>b,e</sup> | 0.0092                       | 0.0002, 0.0183  | 0.0013          | 0.0011, 0.0016  | 0.8939                    | 0.8394, 0.9484  |
| Non-event<sup>b,e</sup> | -0.0015                      | -0.0032, 0.0002 | -0.0006         | -0.0007, -0.0006 | -0.8665                   | -0.8716, -0.8614 |
| Overall  | 0.0077                        | -0.0015, 0.0169 | 0.0007          | 0.0005, 0.0009  | 0.0274                    | -0.00294, 0.0843 |
| Landmark Age 50 Years         |                 |                 |                 |                 |                           |                 |
| Event    | 0.0423                        | 0.0312, 0.0535  | 0.0043          | 0.0040, 0.0046  | 0.9168                    | 0.8853, 0.9482  |
| Non-event| -0.0325                       | -0.0408, -0.0242| -0.0027         | -0.0028, -0.0026 | -0.8734                   | -0.8786, -0.8633 |
| Overall  | 0.0099                        | -0.0041, 0.0238 | 0.0016          | 0.0012, 0.0019  | 0.0433                    | 0.0095, 0.0772  |
| Landmark Age 60 Years          |                 |                 |                 |                 |                           |                 |
| Event    | 0.0277                        | 0.0204, 0.0350  | 0.0095          | 0.0092, 0.0098  | 0.9736                    | 0.9623, 0.9848  |
| Non-event| -0.0419                       | -0.0523, -0.0315| -0.0075         | -0.0077, -0.0072 | -0.9638                   | -0.9672, -0.9604 |
| Overall  | -0.0142                       | -0.0269, -0.0014| 0.0020          | 0.0016, 0.0024  | 0.0098                    | -0.0036, 0.0231 |
| Landmark Age 70 Years          |                 |                 |                 |                 |                           |                 |
| Event    | 0.0000                        | 0.0000, 0.0000  | 0.0157          | 0.0153, 0.0160  | 0.9824                    | 0.9690, 0.9988  |
| Non-event| 0.0000                        | 0.0000, 0.0000  | -0.0142         | -0.0147, -0.0137| -0.9849                   | -0.9900, -0.9798 |
| Overall  | 0.0000                        | 0.0000, 0.0000  | 0.0015          | 0.0008, 0.0021  | -0.0025                   | -0.0200, 0.0149 |

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; IDI, integrated discrimination improvement; NRI, net reclassification improvement.

<sup>a</sup>The results are presented in 10-year increments in landmark age at 40, 50, 60, 70. Above landmark age 69 for men, the predicted 10-year CVD risk for all individuals in the risk set were greater than 10% for both standard risk predictions and statin-naïve risk predictions, therefore there was no movement between the 2 categories and the categorical NRIs were 0 for those older landmark age groups.

<sup>b</sup>Categorical NRI and IDI were calculated using information from individuals who were not censored at 10 years (either with CVD events within 10 years or events free at 10-year). Events within 10-years and events free at 10 year for the calculation of categorical NRI and IDI were defined using the counterfactual follow-up time assuming statin had not been initiated.

<sup>c</sup>Categorical NRI was calculated based on the four categories of predicted risk of <10% and ≥10%.

<sup>d</sup>Continuous NRI (the prospective form of NRI) was calculated based on continuous predicted risk and used information from all individuals, including the censored ones.

<sup>e</sup>Events and non-events for continuous NRI (the prospective form of NRI) were the expected results estimated using the Kaplan-Meier approach with counterfactual follow-up time assuming statin had not been initiated, so such prospective form of NRI uses the whole sample and does not require the restriction to the non-censored ones.
Table 6. Reclassification Measures for Ten-year Cardiovascular Disease Risk Prediction Comparing Statin-naïve CVD Risk Predictions versus Standard CVD Risk Predictions for Women in the Validation Dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017 (in landmark ages at 40, 50, 60, 70 for presentation)a

| Outcome | Categorical NRI<sup>b,c</sup> | 95% CI  | IDI<sup>b</sup> | 95% CI  | Continuous NRI<sup>d</sup> | 95% CI       |
|---------|-------------------------------|---------|----------------|---------|-----------------------------|--------------|
|         | Landmark Age 40 Years         |         |                |         |                             |              |
| Event   | 0.0000                        | 0.0000, 0.0000 | 0.0007 | 0.0005, 0.0010 | 0.8620 | 0.8156, 0.9084 |
| Non-event | -0.0008                      | -0.0017, 0.0001 | -0.0002 | -0.0002, -0.0002 | -0.7530 | -0.7587, -0.7474 |
| Overall | -0.0008                      | -0.0017, 0.0001 | 0.0006 | 0.0003, 0.0008 | 0.1090 | 0.0619, 0.1562 |
|         | Landmark Age 50 Years         |         |                |         |                             |              |
| Event   | 0.0126                        | 0.0048, 0.0205 | 0.0021 | 0.0018, 0.0023 | 0.8459 | 0.7783, 0.9135 |
| Non-event | -0.0032                      | -0.0052, -0.0012 | -0.0009 | -0.0009, -0.0008 | -0.8095 | -0.8150, -0.8041 |
| Overall | 0.0094                        | 0.0014, 0.0175 | 0.0012 | 0.0009, 0.0015 | 0.0364 | -0.0339, 0.1087 |
|         | Landmark Age 60 Years         |         |                |         |                             |              |
| Event   | 0.0422                        | 0.0310, 0.0535 | 0.0043 | 0.0040, 0.0045 | 0.9455 | 0.9299, 0.9611 |
| Non-event | -0.0330                      | -0.0401, -0.0258 | -0.0029 | -0.0030, -0.0028 | -0.9081 | -0.9123, -0.9038 |
| Overall | 0.0093                        | -0.0041, 0.0226 | 0.0014 | 0.0011, 0.0017 | 0.0374 | 0.0204, 0.0544 |
|         | Landmark Age 70 Years         |         |                |         |                             |              |
| Event   | 0.0048                        | -0.0012, 0.0072 | 0.0098 | 0.0095, 0.0101 | 0.9765 | 0.9640, 0.9890 |
| Non-event | -0.0018                      | -0.0044, 0.0007 | -0.0083 | -0.0085, -0.0080 | -0.9675 | -0.9716, -0.9633 |
| Overall | 0.0030                        | -0.0012, 0.0072 | 0.0015 | 0.0014, 0.0019 | 0.0090 | -0.0061, 0.0241 |

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; IDI, integrated discrimination improvement; NRI, net reclassification improvement

a The results are presented in 10-year increments in landmark age at 40, 50, 60, 70. Above landmark age 76 for women, the predicted 10-year CVD risk for all individuals in the risk set were greater than 10% for both standard risk predictions and statin-naïve risk predictions, therefore there was no movement between the 2 categories and the categorical NRIs were 0 for those older landmark age groups.

b Categorical NRI and IDI were calculated using information from individuals who were not censored at 10 years (either with CVD events within 10 years or events free at 10-year). Events within 10-years and events free at 10 year for the calculation of categorical NRI and IDI were defined using the counterfactual follow-up time assuming statin had not been initiated.

c Categorical NRI was calculated based on the four categories of predicted risk of <10% and ≥10%.

d Continuous NRI (the prospective form NRI) was calculated based on continuous predicted risk and used information from all individuals, including the censored ones.

e Events and non-events for continuous NRI (the prospective form of NRI) were the expected results estimated using the Kaplan-Meier approach with counterfactual follow-up time assuming statin had not been initiated, so such prospective form of NRI uses the whole sample and does not require the restriction to the non-censored ones.
Figure 1. Sex-specific statin initiation rates in the next 10 years (A), 10-year cardiovascular disease incidence rates (B) and 10-year cardiovascular disease incidence rates by statin initiation status in the next 10 years (C) by landmark age, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017.

Figure 2. Hazard ratios for association of systolic blood pressure (SBP) with cardiovascular disease risk for men (A) and women (B), total cholesterol with cardiovascular disease risk for men (C) and women (D), and high-density lipoprotein (HDL) cholesterol with cardiovascular disease risk for men (E) and women (F) in the derivation dataset, from models ignoring statin initiation versus models accounting for statin initiation for the prediction of 10-year cardiovascular disease risk by landmark age, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017. Hazard ratios are given per standard deviation increase for SBP, total cholesterol, and HDL cholesterol. Hazard ratios and 95% confidence intervals are shown on the natural log scale.

Figure 3. Comparison of sex-specific means of the statin-naïve 10-year CVD risk predictions and the standard 10-year CVD risk predictions by landmark age in the validation dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017.

Figure 4. Comparison of C-indices from models ignoring statin initiation versus models accounting for statin initiation for the prediction of 10-year cardiovascular disease risk by landmark age for men (A) and women (B) in the validation dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017.

Figure 5: Number needed to screen (NNS) to prevent one cardiovascular disease event for men (A) and women (B), and number needed to treat (NNT) to prevent one cardiovascular disease event for men (C) and women (D), among people in the risk set at each landmark age model, using standard 10-year cardiovascular risk predictions versus statin-naïve 10-year cardiovascular risk predictions, in the validation dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017. Numbers needed to screen to prevent one event are shown on the natural log scale for presentation.

Figure 6. Proportion of individuals with 10-year predicted risk exceeding a range of treatment thresholds from 5% to 30% using the statin-naïve versus the standard CVD risk, for men (A) and women (B) in the validation dataset, Clinical Practice Research Datalink, Hospital Episode Statistics, and the Office for National Statistics, England, United Kingdom, 2004-2017. Weighted proportion across all ages were calculated using the most recent available data for an age-sex standard England population between 40-85 years.
