Metabolic Profiling of Parkinson’s Disease and Mild Cognitive Impairment

Florence Burte, PhD,1 David Houghton, PhD,2 Hannah Lowes, BSc,1 Angela Pyle, PhD,1 Sarah Nesbitt, BSc,1 Alison Yarnall, PhD, MD,3 Patrick Yu-Wai-Man, PhD, MD,1 David J. Burn, PhD, MD,3 Mauro Santibanez-Koref, PhD,1 and Gavin Hudson, PhD1.*

1Mitochondrial Research Group, Newcastle University, Newcastle Upon Tyne, UK 2Institute for Cell and Molecular Bioscience, Newcastle University, Newcastle Upon Tyne, UK 3Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK

ABSTRACT

Background: Early diagnosis of Parkinson’s disease and mild cognitive impairment is important to enable prompt treatment and improve patient welfare, yet no standard diagnostic test is available. Metabolomics is a powerful tool used to elucidate disease mechanisms and identify potential biomarkers.

Objectives: The objective of this study was to use metabolic profiling to understand the pathophysiology of Parkinson’s disease and to identify potential disease biomarkers.

Methods: This study compared the serological metabolic profiles of early-stage Parkinson’s patients (diagnosed <12 months) to asymptomatic matched controls using an established array based detection system (DiscoveryHD4TM, Metabolon, UK), correlating metabolite levels to clinical measurements of cognitive impairment.

Results: A total of 1434 serological metabolites were assessed in early-stage Parkinson’s disease cases (n = 41) and asymptomatic matched controls (n = 40). Post–quality control, statistical analysis identified n = 20 metabolites, predominantly metabolites of the fatty acid oxidation pathway, associated with Parkinson’s disease and mild cognitive impairment. Receiver operating curve assessment confirmed that the nine fatty acid oxidation metabolites had good predictive accuracy (area under curve = 0.857) for early-stage Parkinson’s disease and mild cognitive impairment (area under curve = 0.759).

Conclusions: Our study indicates that fatty acid oxidation may be an important component in the pathophysiology of Parkinson’s disease and may have potential as a diagnostic biomarker for disease onset and mild cognitive impairment. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

Key Words: Parkinson’s Disease; fatty acid beta oxidation; metabolomics

Early clinical diagnosis of Parkinson’s disease (PD) is important in reducing symptoms, slowing disease progression, and improving patient welfare.1 Postmortem, PD is confirmed by the presence of Lewy bodies.2 In life, PD diagnosis is based on clinical observation of cardinal features; however, the pathological processes leading to PD can begin decades before the actual symptoms begin, which can be mild in the early stages of disease. Imaging technologies have improved diagnosis; however, translating these into sensitive and specific predictors of individual neurodegenerative predisposition is challenging and, as of yet, there is no single blood-based biomarker that can be used to identify early-stage PD in clinical practice. Moreover, the majority of PD patients will go on to develop cognitive impairment and as of yet there is no predictive tool to identify at-risk individuals.3

Metabolomics is a dynamic field that can be applied to disease pathogenesis to elucidate mechanisms and identify potential biomarkers.4 In recent years, there has been a growing interest in the use of metabolomics in PD research.5–11 However, many of these studies do not corroborate each other, possibly limited by low sample number and confounded by clinical heterogeneity and analytical methodology.6

Here we report comprehensive serological metabolomic profiling using a well characterized cohort of early-stage PD patients and matched controls with the aim of identifying potential biomarkers for the onset of PD and to investigate the pathophysiological changes associated with disease.

Methods

Fasting serum samples from 41 idiopathic early-stage Parkinson’s patients (disease duration < 1 year, mean = 5.4 months, standard deviation = 4.9 months) and 40 age- and gender-matched controls were selected from the Incidence of Cognitive Impairment in Cohorts with
Longitudinal Evaluation – Parkinson’s Disease (ICICLE-PD) study12 and included for metabolomic profiling. All PD cases were assessed locally by a movement disorder specialist using Queen Square Criteria for the diagnosis of PD13 and were treatment naïve. Summary demographic data is shown in Supplementary Table 1.

All PD cases and age-matched controls underwent cognitive assessment. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE)14 and the Montreal Cognitive Assessment (MoCA).15 Mild cognitive impairment (MCI), assessed during ICICLE-PD,12 was determined using published criteria (using 1.5 SD as a cut-off) and all individuals were stratified as MCI-yes or -no.12 Summary clinical data is shown in Supplementary Table 1. Serum brain derived neurotrophic factor (BDNF) levels were measured by an established sandwich enzyme-linked immunosorbent assay (ELISA) kit (Promega, Sweden, Stockholm) as per the manufacturer’s guidelines.

Nontargeted mass spectrometry-based metabolomic profiling (n = 1434 biochemicals) was performed on all 81 serum samples using the established DiscoveryHD4TM Metabolon platform (Metabolon, Cambridge, UK), described previously.11,16-18 Metabolomic profiling was performed in case-control randomized batches to control for run-specific variation. Previously described Quality control (QC) was used.16-18 Briefly serum samples with >10% missing data points (n = 0 case and n = 0 control) were excluded from further analysis, and metabolites with >10% missing data points through limited detection (n = 43) were also removed from further analysis.

Statistical Analysis

Raw metabolite values are normalized by range scaling, setting the median equal to 1.19 Normalized data were analyzed using SPSS (Version 22.0. Armonk, NY: IBM Corp.) with data appropriate tests (detailed in text). Statistical significance was set at $P < .05$ after Bonferroni correction for multiple testing. Principal component analysis (PCA) was performed using the FactoMineR (v1.24) package in R (v3.3.1). Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) plots and associated analysis were generated using MetaboAnalyst 3.0.20

Ethical Approval and Consent to Participate

Serological samples were obtained with consent from Local Research Ethics Committee (LREC) (reference 08/H0906/147).
Compound	Canonical pathway	Mean PD	SEM	Mean control	SEM	Mann–Whitney U	Binary logistic regression	ROC AUC	MCI	BDNF
Oxalate (ethanedioate)	Ascorbate and aldarate metabolism	0.784	0.060	1.105	0.060	8.00 × 10^{-03}	0.756	9.5 × 10^{-02}	2.64 × 10^{-01}	
Tauronate (hydroxymalonate)	Bacterial/fungal	0.841	0.055	1.121	0.056	1.50 × 10^{-02}	0.749	2.6 × 10^{-02}	2.61 × 10^{-01}	
Catechol sulfite	Benzate metabolism	0.831	0.068	1.344	0.073	4.00 × 10^{-02}	0.767	1.3 × 10^{-01}	9.17 × 10^{-04}	
Hexanoylglutamine	Fatty acid metabolism (acyl glutamine)	2.208	0.285	0.836	0.289	8.00 × 10^{-04}	0.790	2.0 × 10^{-03}	2.43 × 10^{-04}	
Decanoylcamitine	Fatty acid metabolism (acyl camitine)	2.050	0.169	1.221	0.177	2.30 × 10^{-03}	0.775	5.0 × 10^{-03}	1.07 × 10^{-02}	
Myristoylecamitine	Fatty acid metabolism (acyl camitine)	2.076	0.189	1.151	0.196	5.10 × 10^{-03}	0.763	4.4 × 10^{-02}	3.03 × 10^{-04}	
Octanoylcamitine	Fatty acid metabolism (acyl camitine)	1.978	0.173	1.184	0.180	6.80 × 10^{-03}	0.759	1.8 × 10^{-02}	1.13 × 10^{-03}	
Oleoylcamitine	Fatty acid metabolism (acyl camitine)	1.257	0.069	0.929	0.070	2.56 × 10^{-02}	0.737	1.0 × 10^{-03}	6.70 × 10^{-03}	
Palmitoylecamitine	Fatty acid metabolism (acyl camitine)	1.563	0.102	1.081	0.104	5.51 × 10^{-02}	0.724	1.2 × 10^{-03}	5.22 × 10^{-03}	
Suberoylcamitine	Fatty acid metabolism (acyl camitine)	1.407	0.239	0.377	0.242	2.00 × 10^{-04}	0.796	1.0 × 10^{-03}	5.27 × 10^{-03}	
Octadecanoidoate	Fatty acid, dicarboxylate	1.427	0.113	0.673	0.118	4.70 × 10^{-03}	0.764	6.3 × 10^{-02}	5.10 × 10^{-03}	
3-hydroxysebacate	Fatty acid, monohydoxy	1.669	0.231	0.662	0.233	8.74 × 10^{-05}	0.819	5.0 × 10^{-03}	3.51 × 10^{-02}	
1-methylhistamin	Histidine metabolism	2.456	0.312	0.955	0.257	4.00 × 10^{-03}	0.767	2.1 × 10^{-01}	2.23 × 10^{-03}	
1-myristoyl-GPC (14:0)	Lysosipid	0.843	0.054	1.237	0.054	5.10 × 10^{-03}	0.763	2.7 × 10^{-02}	1.16 × 10^{-01}	
2-myristoyl-GPC (14:0)	Lysosipid	0.840	0.069	1.319	0.071	3.50 × 10^{-03}	0.769	1.1 × 10^{-01}	1.06 × 10^{-01}	
1,3-dimethylurate	Xanthine metabolism	0.830	0.096	1.496	0.098	3.60 × 10^{-03}	0.768	7.4 × 10^{-02}	8.70 × 10^{-02}	
x - 12462	Unknown	0.742	0.044	1.152	0.047	4.00 × 10^{-04}	0.800	7.3 × 10^{-02}	1.38 × 10^{-03}	
x - 18249	Unknown	1.421	0.088	0.835	0.092	5.10 × 10^{-03}	0.840	3.4 × 10^{-01}	1.74 × 10^{-03}	
x - 21735	Unknown	1.847	0.212	0.912	0.211	1.10 × 10^{-02}	0.751	7.3 × 10^{-02}	1.38 × 10^{-02}	
x - 23756	Unknown	1.754	0.190	0.880	0.194	8.60 × 10^{-03}	0.755	3.5 × 10^{-01}	2.39 × 10^{-02}	

Shown are the normalized mean metabolite levels in PD cases and matched controls, standard error of the mean (SEM), case/control comparison by Mann–Whitney U testing, binary logistic regression (with age, gender, and body mass index—fatty acid metabolism only—as covariates), and receiver operator area under the curve (ROC AUC) assessments of predictive ability. In addition the uncorrected significance of Mann–Whitney U test of mild cognitive impairment (MCI, stratified as y/n) and the bivariate Pearson’s correlation coefficient probability to serological brain derived neurotrophic factor (BDNF) levels are shown.

*Mann–Whitney U testing.

^Binary logistic regression.
Results

PCA of post-QC scaled metabolite data (n = 1393) indicates that early-stage PD cases and matched controls have distinct metabolic profiles (Fig. 1a), supported by separation using cross-validated orthogonal partial least squares discriminant analysis (OPLS-DA, R² = 0.77 and Q² = 0.50; Supplementary Fig. 1).²¹ Mann–Whitney U testing, after Bonferroni correction for multiple testing, identified 20 metabolites that were significantly different between early-stage PD cases and matched controls; 13 were significantly increased and 7 significantly decreased in cases (Fig. 1b and Table 1). Subsequent annotation through the Kyoto Encyclopaedia of Genes and Genomes database revealed a consistent and significant increase of 9 metabolites of the fatty acid beta oxidation (FAO) pathway, including components of both the acyl glutamine and acylcarnitine pathways: hexanoylglutamine, decanoylcarnitine, myristoleoylcarnitine, octanoylcarnitine, oleoylcarnitine, palmitoleoylcarnitine, suberylcar nitine, octadecanediol, and 3-hydroxysebacate. In addition, 1-methylhistamine, a component of histidine metabolism, and 3 xenobiotics (Metabolon ID, x-18249, x-21735, and x-23756) were significantly increased in PD. Because age and gender are predictors of PD²² and, given the strong association to fatty acid metabolism, we confirmed each association through multivariate analysis, with age, gender, and body mass index as covariates (Table 1). Kyoto Encyclopedia of Genes and Genomes annotation of the 7 significantly reduced metabolites identified the following 4 pathways: ascorbate/aldarate metabolism, benzoate metabolism and lysolipid, xanthine metabolism, which remained significant after multivariate analysis with age and gender as covariates (Table 1).

To assess the ability of each metabolite to determine PD status, receiver operator curves (ROC) were generated. All previously significantly different metabolites showed individual areas under the curve (AUC) > 0.70 (Table 1), indicative of good predictive accuracy.²³ Furthermore, a combined ROC curve, constructed using binary logistic regression⁸,⁹ of the metabolically linked FAO metabolites (n = 9, Table 1) indicated increased predictive accuracy (AUC = 0.857) for early-stage PD patients (Fig. 1c).

The measurements of cognitive decline in early-stage PD are well documented,¹² and we identified significant associations (Bonferroni-corrected Mann–Whitney U, P < .05), particularly to metabolites involved in FAO, when stratifying PD cases by mild cognitive impairment (MCI-y) versus cognitively normal (MCI-n; Table 1), with cognitively impaired PD cases having significantly higher levels of FAO metabolites than cognitively normal cases (Supplementary Table 2). Similar to PD, a combined ROC curve of the 9 FAO metabolites indicated good predictive accuracy for MCI in early-stage PD patients (AUC = 0.759, Fig. 1d). However, despite a priori disease association to MMSE and MoCA (Supplementary Table 1), we were unable to correlate either to significant metabolite levels (Supplementary Table 3).

Serological levels of brain-derived neurotrophic factor (BDNF), a neuroprotective member of the trophic family, have been linked to PD.²⁴,²⁵ With this in mind, we correlated the significantly different metabolites in this study to serological BDNF levels in our cohort, identifying a significant correlations (Pearson’s correlation ranges r = 0.33-0.39) between increased metabolites of FAO and increasing BDNF (Table 1).

Discussion

Our metabolomic data suggest that several metabolites, particularly carnitines of the FAO pathway, are highly associated with the onset of PD and correlate with MCI and the expression of the neuroprotective factor BDNF.

Dysregulation of FAO, typically an enzymatic deficiency in either fatty acid breakdown, such as in medium-chain acyl-CoA dehydrogenase deficiency, or disruption of fatty acid transport across the mitochondrial membrane through defects in the carnitine transport system, primarily results in a metabolic disorder with fatty acids reaching cytotoxic levels.²⁶ Our study of early-stage PD serum showed a significant increase of the metabolic intermediates of FAO when compared with controls, an indicator that FAO is actually increased. This is supported by 2 previous metabolic studies⁸,⁹ that identified a significant increase in PD patient urinary furoylglycine, triglylglycine and hexanoylglycine, which are components involved in mitochondrial fatty acid β-oxidation.⁸,⁹,²⁷

When oxygen supply cannot meet demand, that is, during neuronal activation or the development of pathology, the brain shifts from glucose metabolism to inefficient anaerobic respiration.²⁸ However, the brain also has the capacity to shift energy production from glucose metabolism entirely, using FAO or ketones during pathological conditions such as neurodegeneration, hypoxia/ischemia, or posttraumatic brain injury.²⁹ It is therefore possible that the increase in FAO we observed in early-stage PD cases is an attempt at attenuating neuronal cell death, a hypothesis supported by the upregulation of BDNF, a neuroprotective agent and further supported by our observed significant increase in 1-methylhistamine, a metabolite of histamine metabolism. Histamine has a role in neuronal transmission,³⁰ and elevated metabolite levels have been observed in schizophrenia,³¹ Alzheimer’s disease, and PD patients.³² Similar to BDNF, increased histamine is a marker of neuronal damage,³² and our data suggest that 1-methylhistamine could indeed be an additional marker for neurodegeneration in early-stage PD.
In addition, 7 metabolites were significantly reduced in PD cases when compared with controls, supportive of earlier observations in PD. Reduced ascorbate/aldarate metabolism, a marker of vitamin C deficiency, was detected at subclinical levels in a previous study in early PD.\(^3\) Catechol sulfate, a metabolite of benzoate metabolism, is a product of both liver/kidney function and gut microflora metabolism, and a decrease may be indicative of changes in PD gut microbiota.\(^3\)\(^4\) Xanthine metabolism and lysolipid metabolism were both reduced in our early-stage PD cases, characterized by a reduction in 1-myristoyl-glycerol-3-phosphocholin, 2-myristoyl-glycerol-3-phosphocholin and 1,3-dimethylurate, supporting previous observations in PD LRRK2 mutation carriers\(^10\) and indicating that caffeine absorption may be linked to PD.\(^3\)\(^5\)\(^6\)

Despite strong associations in our cohort, we were unable to correlate metabolite levels to typical measures of cognition such as MMSE or MoCA; likely a limitation of the early stage of disease in our cohort, where cognitive decline has yet to fully develop. This is supported by a significant association to MCI, which is more sensitive in early-stage PD\(^3\) but this does indicate that longitudinal studies of PD and cognitive decline are recommended to assess this further.

Given the significant increase of several metabolites in the same FAO pathway and supported by similar results in independent cohorts,\(^8\)\(^9\) we conclude that FAO may be an important component in PD pathophysiology and the development of MCI. Moreover, our data suggest that FAO metabolites are potential biomarkers for the onset of PD and MCI, although further study is recommended.

Acknowledgment: The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health.

References

1. Murman DL. Early treatment of parkinson’s disease: opportunities for managed care. Am J Manag Care 2012;18(7):S183-S188.
2. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008;79(4):368-376.
3. Hely MA, Reid WGJ, Adena MA, Halliday GA, Morris JGL. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov Disord 2008;23(6):837-844.
4. Johnson CH, Ivancevic J, Suzzak G, Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Bio 2016;17(7):451-459.
5. LeWitt PA, Li J, Lu M, et al. 3-Hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord 2013;28(12):1653-1660.
6. Michell AW, Maoedale D, Grainger DJ, Barker RA. Metabolomic analysis of urine and serum in Parkinson’s disease. Metabolomics 2008;4(3):191-201.
7. Bogdanov M, Matson WR, Wang L, et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 2008;131:389-396.
8. Luan H, Liu LF, Meng N, et al. LC-MS-based urinary metabolite signatures in idiopathic Parkinson’s disease. J Proteome Res 2015;14(1):467-478.
9. Luan H, Liu LF, Tang Z, et al. Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Rep 2015;5:13888.
10. Johansen KK, Wang L, Aasly JO, et al. Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One. 2009;4(10):e7551.
11. Guo LN, Milburn MV, Ryals JA, et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci U S A 2015;112(35):E4901-E4910.
12. Yarnall AJ, Breen DP, Egges GD, et al. Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology 2014;82(4):308-316.
13. Berardelli A, Wenning GK, Antonini A, et al. EFNSMDS-ES recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol 2013;20(1):16-34.
14. Roth M, Tym E, Mountjoy CQ, et al. CAMDEX: A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry 1986;149:698-709.
15. Nasreddine ZS, Phillips NA, Bedriyan V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53(4):695-699.
16. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted high performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule component of biological systems. Anal Chem 2009;81(16):6656-6667.
17. Reitman ZJ, Jln GL, Karoly ED, et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A 2011;108(8):3270-3275.
18. Menni C, Kastenmuller G, Petersen AK, et al. Metabolic markers reveal novel pathways of ageing and early development in human populations. Int J Epidemiol 2013;42(4):1111-1119.
19. van den Berg RA, Hoelsloot IJC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006;7:142.
20. Xia JG, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res 2015;43(W1):W251-W257.
21. Wiklund S, Johansson E, Sjostrom L, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 2008;80(1):113-122.
22. Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of mild cognitive impairment and gut microflora metabolism, and a decrease in early PD.
23. Wiklund S, Johansson E, Sjostrom L, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 2008;80(1):113-122.
24. Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 2003;157(11):1013-1022.
25. Agresti A. Categorical Data Analysis. 2nd ed. Hoboken, NJ: Wiley; 2002.
26. Scalzo P, Kummer A, Berts TL, Cardoso F, Texeira AL. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 2010;257(4):540-545.
27. Costa A, Peppe A, Carlesimo GA, et al. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment. Front Behav Neurosci 2013;7:25.
28. Kwiklund S, Johansson E, Sjostrom L, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 2008;80(1):113-122.
29. Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 2003;157(11):1013-1022.
30. Agresti A. Categorical Data Analysis. 2nd ed. Hoboken, NJ: Wiley; 2002.
31. Scalzo P, Kummer A, Berts TL, Cardoso F, Texeira AL. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 2010;257(4):540-545.
32. Costa A, Peppe A, Carlesimo GA, et al. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment. Front Behav Neurosci 2013;7:25.
33. Teim I. Disorders of fatty acid oxidation. Handb Clin Neurol 2013;113:1675-1688.
34. Petersen JE, Jellum E. The identification and metabolic origin of 2-furoylglycin and 2,5-furandicarboxylic acid in human urine. Clin Chem Acta 1972;41:199-207.
35. Schurr A, Rigor BM. Brain anaerobic lactate production: a suicide factor in schizophrenia—their activity. Agents Actions 1994;41:C5-C8.
36. Prins ML. Cerebral metabolic adaptation and ketone metabolism in brain injury. J Cereb Blood Flow Metab 2008;28(1):1-16.
37. Prell GD, Green JP. Measurement of histamine metabolites in brain and cerebrospinal-fluid provides insights into histaminergic activity. Agents Actions 1994;41:C5-C8.
38. Prell GD, Green JP, Kaufmann CA, et al. Histamine metabolites in cerebrospinal-fluid of patients with chronic-schizophrenia—their relationships to levels of other aminergic transmitters and ratings of symptoms. Schizophr Res 1993;14(2):93-104.
ABSTRACT

Background: Cysteamine has been demonstrated as potentially effective in numerous animal models of Huntington’s disease.

Methods: Ninety-six patients with early-stage Huntington’s disease were randomized to 1200 mg delayed-release cysteamine bitartrate or placebo daily for 18 months. The primary end point was the change from baseline in the UHDRS Total Motor Score. A linear mixed-effects model for repeated measures was used to assess treatment effect, expressed as the least-squares mean difference of cysteamine minus placebo, with negative values indicating less deterioration relative to placebo.

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.