Microwave Irradiation Induces Oxygen Vacancy in Metal Oxides based Materials and Devices: A Review

Kabongo GL1,2, Khawula TNY1, Thokozani T1, Nyongombe EG1, Ozoemenka K1 and Dhlamini S1

1Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
2Department de Physique, Université Pedagogique Nationale, Republique Democratique du Congo

Corresponding author: Guy Kabongo, Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa, Tel: +27713952577; E-mail: Guy.Kabongo@wits.ac.za, geckale@gmail.com

Received date: July 5, 2018; Accepted date: August 9, 2018; Published date: August 17, 2018

Abstract

A mini-review of defects formation and engineering in energy and sensor materials through intentional doping and microwave irradiation is presented. Intensive research interest has been observed in the development of Transition Metal Oxides (TMOs) energy and sensor materials for industrial applications such as energy generation, energy storage and sensor devices. A variety of selected notable reports are organized into sections depicting structural, microstructural, luminescent and electronic properties of TMO materials and devices, regardless of their deep synthetic chemistry. There are three types of Oxygen Vacancies (VO) related to TMO materials among which neutrally ionized V0, singly ionized VO1+ and doubly ionized VO2+. Oxygen vacancies (V) have been characterized using several experimental techniques such as X-ray diffraction, Thermo-Gravimetric Analysis (TGA), Ultra-Violet Visible Spectroscopy (UV-Vis), Photoluminescence (PL) spectroscopy, Raman spectroscopy, Electron Spin Resonance (ESR), Electron Energy Loss Spectroscopy (EELS) and X-ray Photoelectron spectroscopy (XPS). High resolution XPS O 1s core levels analysis is one of the most accurate analytical techniques to characterize VO in conjunction with other techniques. The deconvolution of O 1s core levels using a Gaussian function into three peaks Lattice oxygen (OL), surface hydroxyl oxygen (O-OH) and adsorbed oxygen (OS) has been widely used to correlate XPS to XRD, UV-Vis, PL and Raman data. This review summarizes the representative reports of VO formation via intentional doping or microwave irradiation in TMOs.

Keywords: Oxygen vacancies; TMOs; Doping; Microwave; Energy materials; Sensors

Introduction

Over the past two decades, oxygen vacancies (VO) have been widely reported to dramatically alter structural, luminescent, catalytic and electronic properties of materials applied in a variety of applications such as energy, sensors and display technologies [1-9]. These defects classified as point defects are till now the subject of a hot controversy on their natural origin among the scientific community worldwide due to the inherent challenges related to materials synthesis and characterization management in the vast majority of experimental fields. Oxygen vacancies exist in three states, namely neutrally ionized V0, singly ionized VO1+ and doubly ionized VO2+. The first and the former are stable (10,11) (Figure 1). Hitherto, fundamental studies have been devoted to elucidate the factors characterizing point defects, most of them have been investigated by first principle calculations [11,12]. The main factors are the formation energy and defect concentration, the former is well described in thermodynamic equilibrium by a Boltzmann distribution while at the same time it is closely related to the formation energy, defects with high formation energy are formed in low concentration [11]. The formation energy of point defects should not be considered as a constant due to its dependence to growth conditions. Previous studies have revealed that the formation energy of an oxygen vacancy depends on the abundance of the parent atoms found in the material and becomes more complex when the oxygen vacancy is charged because of the non-negligible effect of the electron chemical potential [11].

The major role of oxygen vacancy on the modification of electronic properties of materials has been discussed in a considerable volume of reports from fundamental studies to experimental investigations. The key fields of interest are primarily energy, secondly sensors and luminescent materials. In all these fields, TMOs have demonstrated exceptional performances, among them ZnO, TiO2, NiO, MnO, CdO, Fe2O4, SnO2, Co3O4 [13-53] are gaining momentum. However, fewer have successfully achieved intentional doping using foreign atoms to control intrinsic materials properties [49-51,54].

More importantly, innovative bi- and tri-metallic multifunctional nanostructure and heterostructure materials have been designed and constructed to achieve extraordinary device performances in selected topics such as reticular chemistry, electrochemical double-layer capacitors (EDLC), pseudo-capacitors, electrochemical sensors, white light emitting devices, solar cells, lithium-ion batteries, lithium-sulfur batteries, photoelectrochemical cells and gas sensors [55-66].

The growing interest in device’s performance engineering stems among others from the possibility to intentionally tailor and control their oxygen vacancy content. To achieve such goal there is a critical need to judiciously undertake synthesis and characterization of materials to be investigated in clean environment and also deeply understand the effects of sample treatment on its lattice structure properties. To date several factors have been identified to remarkably alter the lattice structure properties of TMOs, among the major are the...
pressure, temperature and gas treatment environment. Moreover, the exposure time to electromagnetic radiations sources such as Deep UV lamps, induction sources, and microwave reactors have been found to also contribute to the alteration of materials primitive lattice structure. It should be noted that these lattice structure alterations may have non-negligible direct contribution to the variation of oxygen vacancy content as it can be achieved elsewhere from simple conventional doping processes. Owing to the close correlation between materials lattice structure and electronic band-structure properties, one should have a precise understanding of the material band-structure in order to constructively and optimally describe research observations and findings.

Through structural doping the formation of oxygen defective sites has been successfully achieved, while the resulting tensile strain was revealed by the expansion of material lattice structure. In fact, X-ray diffraction analysis of the lattice structure quality and crystallographic fingerprint may lead to the detection of possible alteration of the lattice structure resulting from foreign atoms insertion. In their report, Kaur et al [68] demonstrated that doping a transition metal oxide host material with foreign atoms resulted in a tensile strain observed from XRD peak shift toward lower angles which leads to better materials properties later on. Moreover, the slight alteration observed in the lattice structure may have dramatic impact in the materials performance enhancement or degradation, depending of the targeted application.

Interestingly, Kumar et al. [69], have recently achieved lattice structure expansion via microwave irradiation, this process leads to the realization of high performing electrochemical spinel cathode materials for energy storage applications. Likew ise, Mesfin et al. [70] and Jafta et al. [71] reported the same phenomenon and achieved exceptional electrochemical properties. Several factors have been identified by these authors to be responsible for these unique observations but oxygen vacancy should be seriously considered as the most plausible cause from a fundamental understanding [71].

Hence, the selection of a particular material synthetic method is of particular importance to the control and care of oxygen vacancy. To date synthesis assisted with microwave treatment has proven to be one of the most effective approaches to meet such performance [70,71]. Microwave irradiation has demonstrated numerous advantages over other conventional materials processing such as fast and effective heating during chemical reactions, high product yield and environmental benign [72-74]. During microwave irradiation, a direct diffusion of electromagnetic wave energy to the material occurs via molecular interaction with the electric and magnetic field vectors of microwaves generated by a magnetron which produces waves in the frequency range of 300 MHz - 300 GHz (λ:1mm-1mm) (Figure 2). It is plausible that during the interaction of microwaves with the material nonequilibrium processes occur, the formation of oxygen deficient sites are then promoted in the material lattice structure consecutively to entropy-driven desorption of lattice oxygen in the lattice structure [75,76] (Figure 3). Seminal studies have established that TMOs are among the most microwave absorbers and that their electrical resistance decreases with temperature increase and that microwave energy heats TMOs better than metals due to their low electric field penetration [77].

This review covers recent studies that focus on spectroscopic investigation of the versatile effects of oxygen vacancy on intrinsic properties of TMO materials for energy conversion, energy storage, sensors and solid state lighting. Special attention was devoted to XPS O 1s core level analysis of oxygen vacancy using GAUSSIAN function deconvolution.

![Figure 1: Local Atomic relaxations domain of oxygen vacancy in the (a) neutrally, (b) singly and (c) doubly ionized states. Reproduced with permission from ref. [78]. Copyright 2009 IOP publishing ltd.](image)

Figure 1: Local Atomic relaxations domain of oxygen vacancy in the (a) neutrally, (b) singly and (c) doubly ionized states.

![Figure 2: Proposed schematic diagram describing the mechanism of oxygen vacancy formation via microwave irradiation and its effect on lattice structure and electronic band- structure. Eg and ΔE represent the energy gap and the quantified red-shift resulting from microwave irradiation which is shown by the red arrow.](image)

Figure 2: Proposed schematic diagram describing the mechanism of oxygen vacancy formation via microwave irradiation and its effect on lattice structure and electronic band-structure.

Formation of Oxygen Vacancy

Structural doping

In a recent study, it has been demonstrated that using dopants one can tune oxygen vacancy in TMO base devices, precisely studies revealed that p-type dopants introduced holes into the system to lower significantly the formation energy of oxygen vacancy [85]. Several other methods have been successfully used to dope transition metal oxide based materials and devices and hence generate oxygen vacancies, such as combustion synthesis, solution- combustion, solid state reaction, sol-gel [86-88], co-precipitation, hydrothermal [89], sonochemical, chemical vapor deposition, plasma enhanced chemical deposition, RF magnetron sputtering, evaporation, electrochemical synthesis, spin coating, spray pyrolysis, and spray coating, etc. Park et al. [90] have successfully doped ZnO with Co ions and remarkably analyzed the variation of VO in the undoped and Co-doped ZnO samples via Maximum entropy method (MEM) using electron density distribution derived from Rietveld refinement. The authors found that...
the ZnO unit cell volume was increased with Co\(^{2+}\) doping concentration and that consequentely the amount of VO increased up to a certain limit before dropping for higher doping concentration. The author faced a challenge to completely assigned the abrupt increase observed in the lowest Co\(^{2+}\) doping concentration and stated that further analysis were needed. It is plausible that Co\(^{2+}\) ions may have reached its saturation limit in the ZnO crystal lattice below 5 mol\% and above 1 mol\% and this could not lead to a continuous increase in VO content probably due to the segregation of Co\(^{2+}\) ions which are very likely to have formed islands of dopants in the crystal lattice instead of bonding.

Characterization of Oxygen Vacancy

Several analytical techniques have been used to characterize oxygen vacancies in transition metal oxides, namely, X-ray diffraction (XRD), Thermo-Gravimetric Analysis (TGA), Ultra-Visible Spectroscopy (UV-Vis), Photoluminescence (PL) spectroscopy, Raman spectroscopy, Electron Spin Resonance (ESR), Electron Energy Loss Spectroscopy (EELS) and X-ray Photoelectron spectroscopy (XPS) [9,90,103-108]. The detailed analysis of XPS O 1s core level which consist of GAUSSIAN function deconvolution has been widely accepted among the analytical techniques used to qualitatively analyze VO and was carefully adopted to get more insights into O 1s medium peak located at ~531 eV presented in Figure 4ab. This peak has been ascribed to surface hydroxyl oxygen (O-OH) related to O\(^{2-}\) ions that are localized in the oxygen deficient regions within the ceramic lattice [109,110]. Moreover, Yoshida et al. successfully investigated the effect of microwave irradiation on electronic band-structure of ZnO via absorption and emission spectroscopy (92). The authors systematically demonstrated via PL spectroscopy that microwaves generated a new deep level defect which lowers the bandgap of ZnO as illustrated in Figure 4cd, and they assigned this defect level to zinc and oxygen plasma or to the thermal effect induced by microwave. However, particular attention should be given to the former assertion because the nonequilibrium processes resulting from thermal effect may have created oxygen vacancies which can be described via energy band-structure as shown in Figure 4e. It is important to note that for detailed quantitative analysis of oxygen vacancy Rutherford backscattering spectroscopy and X-Ray absorption spectroscopy using synchrotron radiation are more appropriate [111,112].

Microwave irradiation

Material and device properties have been successfully tailored via microwave irradiation in a very recent past [81,91-92]. Microwave irradiation is a rapid and efficient heating way for highly homogenous materials processing which is eco-friendly and easy to manipulate as compared to conventional synthetic approaches. This approach has been used for large scale and cost-effective synthesis of supercapacitor electrode materials at desired temperatures up to 1500°C and controlled pressure (≤ 199 bar) at relatively short reaction time [93]. This technique has been used independently or in conjunction with other processing methods to complement them and achieve high yield innovative materials in the so-called microwave-assisted synthesis [94-102]. In a seminal research work, Newham and co-workers investigated the microwave-matter interactions; they reported that subjecting a material to microwave which has two vector components, namely, magnetic and electric field which induces in the material an electric polarization P(C/m\(^2\)) equivalent to the dipole moment (C\(^m\)) per unit volume (m\(^3\)), hence generating thermodynamic nonequilibrium entropy mechanism [77]. The authors identified several polarization mechanisms in solids among which three major leads to loss in the microwave region, namely, space charges arising from localized electrical conduction, rotating electrical dipoles and ionic polarization associated with far-infrared vibrations [77].
Oxygen Vacancy Enhanced Electrochemical Performances for Energy Storage

Very recently exceptional class of materials have been uncovered, these multifunctional materials have tremendous advantages and exceptional performances in energy storage applications, namely, Layered-Double Hydroxides (LDHs), Metal Organic Frameworks (MOFs), Multishelled and nanostructured materials; among various morphologies obtained hollow-spheres are the most efficient in energy storage [113-116].

Oxygen vacancy plays an important role in tuning the physico-chemical properties of these innovative materials applied in supercapacitors, lithium ions batteries, lithium sulfur batteries, sodium ion batteries, magnesium ion batteries and zinc air batteries. Some of these innovative materials were produced via microwave assisted synthesis. Copper and Nickel have been associated to produce via microwave synthesis a Hollow-sphere MOFs material for enhanced lithium battery performances [117]. Moreover, the authors revealed that the matched composition of CuO@NiO resulted in an efficient step-by-step lithium insertion reaction which finally contributed to the excellent electrochemical properties as presented in Figure 5. Furthermore, the core-shell architecture allowed easy lithium/electron diffusion while the volume change was accommodated in the microsphere pores of the bimetallic oxides [117].

Figure 5: (a) Illustration of the cationic exchange process of metal organic framework (MOF) and its conversion to multi-layer hollow structure. Electrochemical performances of multilayer CuO@NiO spheres: (b) cycle voltammogram profile, (c) first cycle discharge (lithium insertion) and charge (lithium extraction) curve, (d) cycling performance at a current of 0.1 A.g⁻¹, and (e) Nyquist plots for the first, third and 200 cycles. Reproduced with permission from Ref. [117]. Copyright 2015 The American Chemical Society.

Figure 4: Deconvoluted XPS O 1s core level for (a) undoped and (b) Yb3⁺-doped ZnO Reproduced with permission from ref. (86). Copyright 2014 Elsevier Ltd. (c) Bandgap electronic structure and corresponding (d) energy band diagram at room temperature for microwave (MW) irradiated and non-irradiated ZnO Reproduced with permission from ref. (92). Copyright 2015 Elsevier Ltd. (e) Electronic energy band structure of eigenstate and oxygen-deficient ZnO, the pink dotted line represents the density of states of O 2p before the reduction, the orange bidirectional arrow indicates the work function (φ, φ'), the oxygen atoms are lost and unshared Zn 3d states move towards the CB to form a donor level (Ed), Evac and Ef are the vacuum level and the Fermi level, respectively. Reproduced with permission from ref. (25). Copyright 2017 Elsevier Ltd.
The concept has been widely adopted and improved by several groups using different combination of TMOs and organic linkers to achieve better storage properties in supercapacitors and batteries as presented in Figures 6 and 7, respectively. Li et al. produced NiO/ZnO hierarchical double-shelled hollow spheres with exceptional cycling stability up to 117% after 2000 cycles at a current density of 5.2 A.g⁻¹ [118]. Bruce Dunn group on the other hand remarkably demonstrated the strategic influence of oxygen vacancy on faster promotion of charge storage kinetics which makes it easy for Li ions intercalation and de-intercalation [9]. That leads to enhanced capacity up to ~320 mA h g⁻¹ as shown in Figure 8. Teng Zhai and co-workers have exceptionally demonstrated that oxygen vacancies could enhance both conductivity and capacitance of nanorods based wearable asymmetric supercapacitor [119]. The remarkable strategy consisted of a simple hydrogenation treatment of MnO2 electrodes which displayed exceptional rate capability and cycling with only a moderate concentration of oxygen vacancies [119].

The increasing demand of clean and environmental benign energy production sources is today in the heart of public and private sector research institutes strategy development plans worldwide due to environmental concerns related to conventional energy sources based on fossil fuels and CO₂ production. Researchers are currently driven to achieve innovative solutions to the betterment of mankind life through the development of pollution-free energy sources such as photovoltaic solar cells. Regardless of the type of mechanism exploited to generate and dissociate electron-hole pairs in solar cells, TiO₂ has been extensively used as a counter electrode and also a hole conducting layer mainly in quantum dot and dye-sensitized solar cells [122-130]. In an astonishing investigation Su et al. [131] have for the first time experimentally demonstrated using Electron Paramagnetic Resonance (EPR) that oxygen vacancy could modulate photoelectrical conversion efficiency in a TiO₂ dye-sensitized solar cell grown via hydrogenation at low temperature and mild pressure. Their exceptional findings are summarized and presented in Figure 9. The effect of oxygen vacancy on the band gap corroborates the results found in previous studies [25]. Microwave synthesis has been used to synthesize highly crystalline TiO₂ with a shorter treatment time as compared to conventional heating sources when used in solar cells application

Figure 6: (a) Schematic illustration showing the formation of the yolk-shell Ni/Zn-MOF microspheres and double-shelled NiO/ZnO hollow spheres. (b) Low- and (c) high-magnification SEM images of the Ni/Zn-MOF microspheres. (d) TEM image of the double-shelled NiO/ZnO hollow spheres. (e) Cyclic voltammetry (CV) and (f) galvanostatic charge-discharge (GCD) curves of the NiO/ZnO electrode at different current densities. (g) Corresponding specific capacitance of NiO/ZnO electrode calculated by the GCD curves. (h) Cycle performance of NiO/ZnO electrode at a current density of 5.2 A.g⁻¹ for 2000 cycles. Reproduced with permission from Ref. [120]. Copyright 2017.

Figure 7: (a) Formation Process of Core/Shell ZnO/ZnCo₂O₄/C Nanospheres (b) CV curves at a scan rate of 0.1 mV s⁻¹ in the voltage range of 0.01-3.0 V. (c) Charge/discharge profiles at a current density of 0.1 A.g⁻¹. (d) Cycling performance at a current density of 0.5 A.g⁻¹. (e) Rate capabilities of ZnO/ZnCo₂O₄/C anode. Reproduced with permission from Ref. [121] Copyright 2015 The American Chemical Society.

Oxygen Vacancy Dynamic in Photovoltaic Solar Cells

The concept of using oxygen vacancy in metal oxides is gaining momentum due to its ability to modulate the electronic properties of the material. Oxygen vacancies have been shown to play a crucial role in the performance of photovoltaic devices, particularly in dye-sensitized solar cells (DSSCs) and quantum dot-sensitized solar cells (QDSSCs). The presence of oxygen vacancies in metal oxides can alter the band structure, improve charge injection, and enhance the charge transport properties of the material. This is particularly important in solar cells, where efficient charge separation and transport are critical for high performance.

In dye-sensitized solar cells, the presence of oxygen vacancies in the metal oxide layer (e.g., TiO₂) has been shown to improve the dye attachment and charge injection efficiency, leading to increased photocurrent and overall cell efficiency. The oxygen vacancies can act as additional electron acceptors, facilitating charge injection from the dye to the conduction band of the metal oxide. This can be particularly advantageous in high-bandgap materials, where charge injection is often a limiting factor.

In quantum dot-sensitized solar cells, the incorporation of oxygen vacancies can also enhance the performance of the cells. Quantum dots with high bandgap energies often suffer from poor charge injection due to the large potential difference between the dye and the quantum dot conduction bands. Oxygen vacancies can lower the energy barrier for charge injection, thereby improving the charge capture efficiency and cell performance.

Moreover, oxygen vacancies can also affect the charge transport properties of the metal oxide layer. They can act as additional conduction pathways, enhancing the overall charge transport and thereby improving the cell efficiency. This is particularly important in large-scale solar cell applications where efficient charge transport over long distances is crucial.

In conclusion, the use of oxygen vacancies in metal oxides for photovoltaic applications is a promising area of research. The ability of oxygen vacancies to modulate the electronic properties of these materials offers opportunities to enhance the performance of solar cells, leading to more efficient and cost-effective renewable energy solutions.
Hence, microwave heating has been demonstrated to be more efficient than conventional heating sources such as muffle furnace, nowadays a worldwide clue. Recently Ghosh and co-workers [133] have systematically designed and fabricated via microwave a high efficient counter electrode based on CuxS and graphene oxide for quantum dot sensitized solar cells. Owing to the challenges involved in photoanode operation, particular care was devoted to its design in order to effectively reduce the oxidized electrolyte, hereafter achieving a 6.81% record efficiency of which corresponding results are depicted in Figure 10.

Figure 8: (a) The most stable oxygen vacancy configuration and polaron formation in R-MoO$_3$-x, calculated from DFT. The Mo$^{5+}$ ions are highlighted with blue. (b) Sweep rate dependence on capacitance, (c) and (d) Cyclic voltammetry of the first three cycles at 10mVs$^{-1}$ and galvanostatic discharge curves (insets, at 50 mA.g$^{-1}$) in F-MoO$_3$ and R-MoO$_3$-x, respectively. Reproduced with permission from ref. (9). Copyright 2016 Macmillan Publishers Limited, part of Springer Nature.

Sensor Sensitivity Derived Oxygen Vacancy

From medical applications, namely, diseases detection and environmental protection in the mining sector, there are rooms for improvements. The growing momentum observed in the design and fabrication of electrochemical, gas and chemical sensors drive researchers and technologists to meet the agenda of the next generation of sensor devices which are sought to be flexible, highly selective and sensitive than ever. TMOs based sensors have been widely investigated for the past two decades and a lot of issues related to their practical application have been exposed and much still need to be done for easy and safe domestic usage. Among the vast majority of synthetic methods used to produce TMOs, microwave has a place of choice due to the extraordinary variety of materials morphology which also exhibit unique physic-chemical properties such as high surface area and exceptional conductivity to cite few. It should be noted that oxygen vacancy plays a critical role in materials conductivity as demonstrated by several authors (9,25,92).

From a fundamental point of view, it is well agreed that the targeted metal oxide sensors resistance modulation is the result of a surface mechanism of oxidation-reduction reaction (ORR) involving chemisorbed oxygen with the molecules of the detected gases [134]. This implies that there exist in metal oxides based sensors a relative correlation between their sensitivity and the concentration of surface adsorbed oxygen [134]. In the same spirit, several authors have reported results in agreement of this understanding, and in particular it should be pointed out that the samples investigated in these studies were produced via microwave-assisted synthesis [89,135-139].

Figure 9: (a) Charge transfer mechanism for photoanode-modified DSSC based on H-TiO$_2$. (b) IPCE spectra of DSSCs based on TiO$_2$ and H-TiO$_2$ annealed at different temperature. (c) Photocurrent- photovoltage curves under illumination (d) Valence band of TiO$_2$ and H-TiO$_2$ treated under different temperatures. (e) EPR spectra recorded at 300 K for TiO$_2$, H-TiO$_2$ samples. (f) Mott-Schottky plots collected in the dark for the TiO$_2$ and the H-TiO$_2$ nanopowders. Inset Figure: Mott-Schottky plots of HTiO$_2$ nanopowders prepared at 300°C, 400°C, 500°C, and 600°C, which was collected under the same conditions. (g) Schematic diagrams of electronic band structure of TiO$_2$ and H-TiO$_2$. E0_V located below the TiO$_2$ conduction band represents the energy levels of oxygen vacancy. Reproduced with permission from ref. [131]. Copyright 2015 The American Chemical Society.
Via oxygen vacancy modulation investigated using XPS, Wang and colleagues [134] enhanced sensing performance and mechanism of hydrogenated NiO particles. The innovative concept investigated based on hydrogenation consisted in increasing the density of unsaturated transition metal atoms with dangling bonds on the surface, this concept was investigated elsewhere using Raman spectroscopy [104]. In the study by Wang et al., for which the sensing reaction mechanism is described and presented in the Figure 11, the XPS analysis revealed that the relative amount (%) of oxygen vacancy increased with increase hydrogenated time as shown in Figure 11. The authors found reasonable to conclude that the sensing properties enhancement resulting from hydrogenation may originate from the increase of the relative percentage of OV and OC GAUSSIAN components in the XPS O 1s core levels and also the decrease in the amount of -OH group [134]. Due to its role on the electronic band gap decrease and conductivity increase discussed earlier in section 3, oxygen vacancy increase could be considered as the main factor responsible for enhanced sensing activity. The response and recovery along with the sensors resistance are summarized in the Figure 12.

Oxygen Vacancy Modulation for Efficient Control of Field Emission and Light Emitting Devices Properties

Since the past two decades, the display technology industry is experiencing a considerable investment of scientists and technologists to the realization of white light emitting materials and devices. It has been however demonstrated that controlling these devices calorimetric performances is closely dependent on their oxygen vacancy content [140-142]. A number of research groups have devoted their efforts to...
synthesize these light emitting materials using microwave approach [143-146].

Two years ago a thorough investigation by Zhang et al. [147] was conducted to elucidate on the role of oxygen vacancy on the persistent luminescence for samples annealed in an oxygen-poor atmosphere. They observed via thermoluminescence spectroscopy analysis that the increase of persistent luminescence was accompanied by oxygen vacancy content increase. Moreover, a comparison of defect energy levels was conducted between their experimental findings and theoretical calculations derived from Khon-Sham levels studies by Freysoldt and co-worker [148]. They proposed a re-evaluation of the theoretical result obtained for the depth of doubly charged VO2+ at 0.69-0.74 eV as compared to 1 eV below the conduction band [147]. In the same line, Xu et al. [149] investigated red phosphorescence of Sr2SnO4:Sm3+ phosphor successively sintered in air and 10-2 Torr vacuum atmosphere. The later treatment option contributed to the increase in oxygen vacancies amount which according to authors acted as the sensitizer and electron traps for effective energy transfer from the host matrix Sr2SnO4 to the dopant Sm3+. The findings of their study are summarized in Figure 13. Finally, remarkable enhanced phosphorescence properties were achieved by the authors after vacuum sintering process [149].

In a very recent research work, Ai-Zhen Liao et al. [150] successfully increased field emission properties of a device based on α-Fe2O3 nanorod arrays via conductivity increase and work function decrease through polaronic hopping mechanism owing to oxygen vacancy. The significant findings of the study among which band-structure modification similarly reported by earlier authors are summarized in the Figure 14 shown below [25,92]. Unambiguously the investigation revealed according to the authors that oxygen deficient HNAs were potential candidates for nanoelectronic applications and more
precisely in cutting-edge field of electron emitter devices and flat panel displays [150].

Figure 14: Left panel (a) UV-vis absorption spectra of the oxygen-deficient HNAs annealed at 300°C, 400°C, 450°C, 500°C, and 550°C, respectively, and pristine HNAs annealed at 550°C. (b) Plots of (absorption in nm) vs (hv) for these samples, from whose tangents we obtain (c) the corresponding variations of the band gap with annealing temperature. Right panel (a) I-V characteristics of oxygen-deficient HNAs annealed at 300°C, 400°C, 450°C, 500°C, and 550°C and pristine HNAs annealed at 550°C, and (b) the corresponding specific conductivity as a function. (c) J-E curves of pristine HNAs annealed at 550°C and oxygen-deficient HNAs annealed at 300°C, 400°C, 450°C, 500°C, and 550°C. Reproduced with permission from ref. [150]. Copyright 2016 The American Vacuum Society.

Conclusion

This mini-review paper provides an overview of microwave irradiation tuning of oxygen vacancy and its role in tailoring materials properties. The key performances of energy storage, sensor and light emitting materials have been widely assigned to oxygen vacancy. Various approaches have been reported to account for oxygen vacancy control among which microwave irradiation is one of the most accessible and cost effective. It has been demonstrated that at some extent oxygen vacancy increase is responsible of the p-type conductivity observed in these materials and plays a considerable role in the exceptional performances documented in the literature. Due to thermodynamic nonequilibrium processes that occur during microwave irradiation which contribute to the formation of oxygen deficient sites in the lattice structure, microwave treatment should be considered as an effective approach to boost electrochemical, sensing and optical properties via protonic conductivity enhancement among others. A consistent observation of the microwave effect on the band structure modification has been established, which in most cases resulted in band-gap decrease due to the creation of defects levels above the valence band highest unoccupied level and below the conduction band lowest occupied level. These lead to the overall agreement that oxygen vacancy enhance electronic conductivity and carriers mobility in most materials and devices leading to easy transport of injected electrons through oxygen deficient sites. Further thermodynamic nonequilibrium processes can be studied from other electromagnetic radiation sources such as UV light to achieve same or better results. However, in devices where exciton dissociation and recombination processes occur, challenging control of interfacial oxygen vacancy is required in order not to degrade their physico-chemical performances. Finally, the attention of the reader should also be directed to the importance of XPS analysis which is one of the most accessible analytical techniques needed for effective oxygen vacancy characterization.

Acknowledgements

One of the authors (G.L.) gratefully acknowledges the University of Witwatersrand financial support via the URC postdoctoral fellowship (#A0055687).

References

1. Cliffe MJ, Wan W, Zhou XD, Chater PA, Kleppe AK, et al. (2014) Correlated defect nanoregions in a metal-organic framework. Nat Commun 5: 4176.
2. Taylor J, Dekura S, Ikeda R, Kitagawa H (2015) Defect control to enhance proton conductivity in a metal-organic framework. Chem Mater 27: 2286-2289.
3. Fu J, Hassan FM, Zhong C, Lu J, Liu H, et al. (2017) Defect engineering of chalcogen-tailored oxygen electrocatalysts for rechargeable quasi-solid-state zinc-air batteries. Adv Mater 29: 1702526.
4. Pan X, Min-Quan Y, Fu X, Zhang N, Yi-Jun X (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5: 3601.
5. Ting Su, Yang Y, Yong Na, Ruisong Fan, Liang Li, et al. (2015) An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl Mater Interfaces 7: 3754-3763.
6. Zhang L, Wang S, Chao Lu (2015) Detection of oxygen vacancies in oxides by defect-dependent cataluminescence. Anal Chem 87: 7313-7320.
7. Cheng F, Zhang T, Zhang Y, Du J, Han X, et al. (2013) Enhancing electrocatalytic oxygen reduction on mno2 with vacancies. Angew Chem Int Ed 52: 2474 -2477.
8. Veal BW, Kim SK, Zapol P, Iddir H, Baldo PM, et al. (2016) Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures. Nat Commun 7.
9. Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, et al. (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16: 454-460.
10. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62: 219-270.
11. Janotti A, Van de Walle CG (2007) Native point defects in ZnO. Phys Rev B 76: 165202.
12. Erhart P, Albe K, Klein A (2006) First-principles study of intrinsic point defects in ZnO: role of band structure, volume relaxation, and finite-size effects. Phys Rev B 73: 205203.
13. Ai-Zhen L, Jian-Biao C, Cheng-Wei W, Xiao-Feng S, Li Y, et al. (2016) Enhanced field emission properties from oxygen-deficient a-Fe2O3 nanorod arrays. J Vac Sci Technol B 34: 021803.

14. Wang M, Wang Y, Liu J, Pei C, Liu B, et al. (2017) Enhanced sensing performance and sensing mechanism of hydrogenated NiO particles. Sensors Actuators B 250: 208-214.

15. Fan YH, Ho CY, Chang YJ (2017) Enhancement of dye-sensitized solar cells efficiency using mixed-phase TiO2 nanoparticles as photoanode. Scanning.

16. Ghosh D, Halder G, Sahasrabudhe A, Bhattacharrya S (2016) A microwave synthesized CuX and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells. Nanoscale 8: 10632.

17. Karpipinen M, Fjellvåg H, Konno T, Morita Y, Motohashi T, et al. (2004) Evidence for Oxygen Vacancies in Misfit-Layered Calcium Cobalt Oxide, [Co2Ca2O3]Co2O2. Chem Mater 16: 2790-2793.

18. Ahmad R, Tripathy N, Ahn MS, Bhatt KS, Mahmoudi T, et al. (2017) Highly efficient non-enzymatic glucose sensor based on CaO modified vertically-grown ZnO nanorods on electrode. Sci Rep 7: 5715.

19. Huygh S, Bogarts A, Neyts EC (2016) How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). J Phys Chem C 120: 21659-21669.

20. Stefl M, Heitlagent FJ, Niederberger M, Gratzel M (2013) Improved Nonaqueous Synthesis of TiO2 for Dye-Sensitized Solar Cells. ACS Nano 7: 8981-8989.

21. Carrettn S, Hao Y, Aguilar-Guerrero V, Bates GC, Trasobares S, et al. (2007) Increasing the Number of Oxygen Vacancies on TiO2 by Doping with Iron Increases the Activity of Supported Gold for CO Oxidation. Chem Eur J 13: 7771-7779.

22. Zhang J, Zhao Z, Wang Y, Xu T, Guan J, et al. (2010) Increasing the oxygen vacancy density on the TiO2 surface by la-doping for dye-sensitized solar cells. J Phys Chem C 114: 18396-18400.

23. Park S, Ahn HS, Lee CK, Kim H, Jin H, et al. (2008) Interaction and ordering of vacancy defects in NiO. Phys Rev B 77: 134103.

24. Brahma S, Liu CP, Shivashankar SA (2017) Microwave irradiation assisted, one pot synthesis of simple and complex metal oxide nanoparticles: a general approach. J Phys D Appl Phys 50: 40LT03.

25. Su XF, Chen JB, He RM, Li Y, Wang J, et al. (2017) The preparation of oxygen-deficient ZnO nanorod arrays and their enhanced field emission. Mater Sci Semiconductor Process 67: 55-61.

26. Simo A, Kavirayarus K, Mwakikunga B, Madjoe R, Gaggini G (1994) Surface chemistry of tin oxide based gas sensors. J Phys D Appl Phys 76: 4467.

27. Sayle T, Parker SC, Catlow CRA (1994) The role of oxygen vacancies on ceria surfaces in the oxidation of carbon-monoxide. Surf Sci 316: 329.

28. Jiang Y, Adams JB, van Schilfgaarde M, Sharma R, Crozier PA (2005) Theoretical study of environmental dependence of oxygen vacancy formation in CeO2. Appl Phys Lett 87: 141917.

29. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett 89: 166601.

30. Nolan M, Fearon JE, Watson GW (2006) Oxygen vacancy formation and migration in ceria. Solid State Ion 177: 3069.

31. Mori-Sanchez P, Recio JM, Silvi B, Sousa C, Pendas AM, et al. (2002) Rigorous characterization of oxygen vacancies in ionic oxides. Phys Rev B 66: 075103.

32. Bredow T, Gerson AR (2000) Phase transition study in strongly correlated VO2 based sensing systems transition study in strongly correlated VO2 based sensing systems. J Electron Spectro Relat Phenomena 216: 33-32.

33. QJ X, Zheng W, Li X, He G (2016) Multishelled NiO hollow microspheres for high-performance supercapacitors with ultrahigh energy density and robust cycle life. Sci Rep 6: 33241.

34. Ren H, Yu R, Wang J, Jin Q, Yang M, et al. (2014) Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett 14: 6679-6684.

35. Ren J, Tang H, Ren H, Yu R, Qi J, et al. (2014) pH-Regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv Mater 1: 1400011.

36. Xu S, Hessel CM, Ren H, Yu R, Jin Q, et al. (2014) a-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7: 632.

37. Sun C, Wang Y, Zou J, Smith SC (2011) A formation mechanism of oxygen vacancies in a MnO2 monolayer: a DFT + U study. Phys Chem Chem Phys 13: 11325-11328.

38. Teresa OH (2017) A study on an oxygen vacancy and conductivity of oxide thin films deposited by rf magnetron sputtering and annealed in a vacuum. Trans Electr Electron Mater 18: 21.
95. Aldshaer E, Ahmed F, Aldawsari Y, Khasawneh M, Abuhimd H, et al. (2016) Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries. Sci Rep 6: 29854.

96. Kiani A, Dastfalkan K, Obeidavi A, Rahimi M (2017) Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization. Solid State Sci 74: 152-167.

97. Motoang DE, Milongho GH, Nikossi SS, Malgas GF, Mwakikunga BW, et al. (2014) Shape-Selective Dependence of Room Temperature Ferromagnetism Induced by Hierarchical ZnO Nanostructures. ACS Appl Mater Interfaces 6: 8981-8995.

98. Palahadegara LR, Dharmaratna S, Kingondo CK, Palahadegara MN, Meng YT, et al. (2014) Microwave-assisted hydrothermal synthesis of aMnO2: lattice expansion via rapid temperature ramping and framework substitution. J Phys Chem C 118: 20363-20373.

99. Mohamed RM, Azzam ES (2012) Synthesis and characterization of CeO2-SiO2 nanoparticles by microwave-assisted irradiation method for photocatalytic oxidation of methylene blue dye. Int J Photoenergy 9: 82760.

100. Liu FW, Hsu CH, Chen FS, Lu CH (2012) Microwave-assisted solvothermal preparation and photoluminescence properties of Y2O3:Eu3+ phosphors. Ceramics International 38: 1577-1584.

101. Palahadegara LR, Dharmaratna S, Kingondo CK, Palahadegara MN, Meng YT, et al. (2014) Microwave-assisted hydrothermal synthesis of a-MnO2: lattice expansion via rapid temperature ramping and framework substitution. J Phys Chem C 118: 20363-20373.

102. Mohamed RM, Azzam ES (2012) Synthesis and characterization of CeO2-SiO2 nanoparticles by microwave-assisted irradiation method for photocatalytic oxidation of methylene blue dye. Int J Photoenergy 9: 82760.

103. Hai-Bo F, Shao-Yan Y, Pan-Feng Z, Hong-Yuan W, Xiang-Lin L, et al. (2007) Investigation of oxygen vacancy and interstitial oxygen defects in zno films by photoluminescence and x-ray photoelectron spectroscopy. Chinese Phys Lett 24: 2108.

104. Liu LZ, Li TH, Wu XL, Shen JC, Chu PK (2012) Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals. J Raman Spectrosc 43: 1423-1426.

105. Nishida K, Osada M, Takeuchi H, Yosiaki I, Sakai J, et al. (2008) Raman spectroscopy study of oxygen vacancies in PrTiO3 thin films generated heat-treated in hydrogen atmosphere. J Appl Phys 47: 7510-7513.

106. Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) UV and visible raman studies of oxygen vacancies in ZnO. Micron 31: 571-580.

107. Wang ZL, Jin YS, Jiang YD (2000) EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 31: 571-580.

108. Wu QH, Thissen A, Jaegermann W, Liu M (2004) Photoelectron spectroscopy study of oxygen vacancies on vanadium oxides surface. Appl Surf Sci 236: 473-478.

109. Kumar V, Swart HC, Ntwaeaborwa OM, Kroon RE, Terblans JJ, et al. (2013) Origin of the red emission in zinc oxide nanophosphors. Materials Letters 101: 57-60.

110. Li Y, Feng Y, Zhou Q, Wu M, Mi J (2017) Effects of microwave irradiation on the structure of Zinc oxide sorbents for high temperature coal gas desulfurization. Energy Fuels 31: 8512-8520.

111. Yang H, Wang YQ, Jia QX (2010) Oxygen concentration and its effect on the leakage current in BiFeO3, thin films. Appl Phys Lett 96: 012909.

112. Ciatto G, Di Trolio A, Fonda E, Alippi P, Testa AM (2011) Evidence of Cobalt-Vacancy Complexes in Zn1-xCoxO. Phys Rev Lett 107: 127206.

113. Yan D, Wang W, Luo X, Chen C, Zeng Y, et al. (2018) NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem Eng J 334: 864-872.

114. Zhai T, Xie S, Yu M, Fang P, Liang G, et al. (2014) Oxygen vacancies enhancing capacity properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8: 255-263.

115. Dillip GR, Banerjee AN, Anitha VC, Raju BDP, Joo SW, et al. (2016) Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphene carbon nanofiber hybrid electrodes. ACS Appl Mater Interfaces 8: 5025-5039.

116. Xiang K, Xu Z, Qu T, Tian Z, Zhang Y, et al. (2017) Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performance. Chem Commun 53: 12410.

117. Guo W, Sun W, Wang Y (2015) Multilayer CuO@NiO hollow spheres: microwave-assisted metal-organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 9: 11462-11471.

118. Li GC, Liu PF, Liu R, Liu M, Tao K, et al. (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans 45: 13311.

119. Zhai T, Xie S, Yu M, Fang P, Liang C, et al. (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors Nano Energy 8: 255-263.

120. Salunke RR, Kaneti YV, Yamauchi Y (2017) Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11: 5293-5308.

121. Ge X, Li Z, Wang C, Yin L (2015) Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7: 26633-26642.

122. Dembele A, Rahman M, MacElroy JMD, Dowling DP (2012) Evaluation of microwave plasma sintering for the fabrication of dye sensitized solar cell (DSSC) electrodes. J Nanosci Nanotechnol 12: 4769-74.

123. Cao Q, Yang S, Gao Q, Lei L, Yu Y, et al. (2016) Fast and controllable crystallization of perovskite films by microwave irradiation process. ACS Appl Mater Interfaces 8: 7854-7861.

124. Po-Shen S, Chuan-Ming T, Ta-Chuan K, Ching-Kuei S, Ming-Hsin L, et al. (2015) Microwave-assisted synthesis of titanium dioxide nanocrystalline for efficient dye-sensitized and perovskite solar cells. Solar Energy 120: 345-356.

125. Liu H, Wu Z, Gao H, Shao J, Zou H, et al. (2017) One-step preparation of cesium lead halide CaPbX3 (X = Cl, Br, and I) perovskite nanocrystals by microwave irradiation. ACS Appl Mater Interfaces 9: 42919-42927.

126. Abulkemu M, Neophytou M, Barbe JM, Tietze ML, El Labban A, et al. (2017) Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. J Mater Chem A 5: 7759-7763.

127. Menzies DB, Dai Q, Cheng YB, Simon GP, Spiccia L (2006) One-step microwave calcination of ZrO2-coated TiO2 electrodes for use in dye-sensitized solar cells. C R Chimie 9: 713-716.

128. Uchida S, Tomiha M, Masaki N, Miyazawa A, Takizawa H (2004) Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28GHz microwave irradiation. Sol Energy Mater Sol Cells 81: 135-139.

129. Wang HE, Zheng LX, Liu CP, Liu YK, Luan CY, et al. (2011) Rapid microwave synthesis of porous TiO2 spheres and their applications in dye-sensitized solar cells. J Phys Chem C 115: 10419-10425.

130. Hart JN, Cervinia R, Cheng YB, Simona GP, Spiccia L (2006) Formation of Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 7: 3754-3763.

131. Hart JN, Menzies D, Cheng YB, Simon GP, Spiccia L (2004) Formation of anatase TiO2 by microwave processing. Sol Energy Mater Sol Cells 84: 135-143.

132. Su T, Yang Y, Na Y, Fan R, Li L, et al. (2015) An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 7: 3754-3763.

133. Ghosh D, Halder G, Sahasrabudhe A, Bhattacharyya S (2016) A microwave synthesized Cs0.05Cd1.95S and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells. Nanoscale 8: 10632.

134. Wang M, Wang Y, Liu J, Pei C, Liu B, et al. Enhanced sensing performance and sensing mechanism of hydrogenated NIO particles. Sensors Actuators B 250: 208-214.
135. Felix S, Chakkravarthy RBP, Grace AN (2015) Microwave assisted synthesis of copper oxide and its application in electrochemical sensing. IOP Conf Ser Mater Sci Eng 73: 012115.

136. Alali KT, Lu Z, Zhang H, Liu J, Liu Q, et al. (2017) P-p heterojunction CuO/CuCo2O4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorg Chem Front 4: 1219-1230.

137. Motaung DE, Mhlongo GH, Makgwana PR, Cummings FR, et al. (2018) Ultra-high sensitive and selective H2 gas sensor manifested by interface of n-n heterostructure of CeO2:SnO2 nanoparticles. Sensors Actuators B: Chem 254: 984-995.

138. Azam A, Habib SS, Salah NA, Ahmed F (2013) Microwave-assisted synthesis of SnO2 nanorods for oxygen gas sensing at room temperature. Int J Nanomedicine 8: 3875-3882.

139. Shingange K, Tshabalala ZP, Nwaeborwa OM, Motaung DE, Mhlongo GH (2016) Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J Colloid Interf Sci 479: 127-138.

140. Luo LB, Wang XH, Xie C, Li ZJ, Lu R, et al. (2017) One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application. Nanoscale Res Lett 9: 637.

141. Su XF, Chen JB, He RM, Li Y, Wang J et al. (2017) The preparation of oxygen-deficient ZnO nanorod arrays and their enhanced field emission. Mater Sci Semicond Process 67: 55-61.

142. Su J, Ye S, Yi X, Lu FQ, Yang XB, et al. (2017) Influence of oxygen vacancy on persistent luminescence in ZnGa2O4:Cr3+ and identification of electron carriers. J Vacuum Sci Technol B 34: 021803.