Star-specific Key-homomorphic PRFs from Linear Regression and Extremal Set Theory†

Vipin Singh Sehrawat1‡, Foo Yee Yeo2, and Dmitriy Vassilyev3

1 Circle Internet Financial
{vipin.sehrawat.cs@gmail.com}
2 Seagate Technology, Singapore
3 Seagate Technology, Longmont, CO, USA

Abstract. We introduce a novel method to derandomize the learning with errors (LWE) problem by generating deterministic yet sufficiently independent LWE instances that are constructed by using linear regression models, which are generated via (wireless) communication errors. We also introduce star-specific key-homomorphic (SSKH) pseudorandom functions (PRFs), which are defined by the respective sets of parties that construct them. We use our derandomized variant of LWE to construct a SSKH PRF family. The sets of parties constructing SSKH PRFs are arranged as star graphs with possibly shared vertices, i.e., the pairs of sets may have non-empty intersections. We reduce the security of our SSKH PRF family to the hardness of LWE. To establish the maximum number of SSKH PRFs that can be constructed — by a set of parties — in the presence of passive/active and external/internal adversaries, we prove several bounds on the size of maximally cover-free at most \(t \)-intersecting \(k \)-uniform family of sets \(\mathcal{H} \), where the three properties are defined as: (i) \(k \)-uniform: \(\forall A \in \mathcal{H} : |A| = k \), (ii) at most \(t \)-intersecting: \(\forall A, B \in \mathcal{H}, B \neq A : |A \cap B| \leq t \), (iii) maximally cover-free: \(\forall A \in \mathcal{H} : A \nsubseteq \bigcup_{B \in \mathcal{H}, B \neq A} B \). For the same purpose, we define and compute the mutual information between different linear regression hypotheses that are generated from overlapping training datasets.

Keywords: Extremal Set Theory · Key-homomorphic PRFs · Learning with Errors · Learning with Linear Regression · Mutual Information · Physical Layer Communications.

1 Introduction

Derandomized LWE. The learning with errors (LWE) problem [390] is at the basis of multiple cryptographic constructions [361, 341]. Informally, LWE requires solving a system of ‘approximate’ linear modular equations. Given positive integers \(w \) and \(q \geq 2 \), an LWE sample is defined as: \((a, b = \langle a, s \rangle + e \bmod q) \), where \(s \in \mathbb{Z}_q^w \) and \(a \xleftarrow{\$} \mathbb{Z}_q^w \). The error term \(e \) is sampled randomly, typically from a normal distribution with standard deviation \(\alpha q \) where \(\alpha = 1/\text{poly}(w) \), followed by which it is rounded to the nearest integer and reduced modulo \(q \). Banerjee et al. [46] introduced a derandomized variant of LWE, called learning with rounding (LWR), wherein instead of adding a random small error, a deterministically rounded version of the sample is announced. Specifically, for some positive integer \(p < q \), the elements of \(\mathbb{Z}_q \) are divided into \(p \) contiguous intervals containing (roughly) \(q/p \) elements each. The rounding function, defined as: \(\lfloor \cdot \rfloor_p : \mathbb{Z}_q \to \mathbb{Z}_p \),

† Preprint
‡ Work done while the author was affiliated to Seagate Technology, Fremont, CA, USA.
maps the given input \(x \in \mathbb{Z}_q \) into the index of the interval that \(x \) belongs to. An LWR instance is generated as: \((a, \lfloor \langle a, s \rangle \rfloor_p)\) for vectors \(s \in \mathbb{Z}_q^w \) and \(a \leftarrow \mathbb{Z}_q^w \). For certain range of parameters, Banerjee et al. proved the hardness of LWR under the LWE assumption. In this work, we propose a new derandomized variant of LWE, called learning with linear regression (LWLR). We reduce the hardness of LWLR to that of LWE for certain choices of parameters.

Physical Layer Communications and Shared Secret Extraction.

In the OSI (Open Systems Interconnection) model, physical layer consists of the fundamental hardware transmission technologies. It provides electrical, mechanical, and procedural interface to the transmission medium for transmitting raw bits over a communication channel. Physical layer communication between parties has certain inherent characteristics that make it an attractive source of renewable, shared secrecy. Multiple methods to extract secret bits from channel measurements have been explored (e.g., [379, 455, 478, 469, 250, 246, 462, 463, 464, 244, 296, 380, 454, 442, 443, 289, 474, 396, 458, 476, 457, 315]). See [410, 375] for an overview of some of the notable results in the area. Channel reciprocity simply means that the signal distortion (attenuation, delay, phase shift, and fading) is identical in both directions of a link. Hence, it follows from channel reciprocity that the two receive-nodes of a channel observe identical channel characteristic and state information. Secrecy of this information follows directly from the spatial decorrelation property, which states that in rich scattering environments, the receivers located at least half a wavelength away experience uncorrelated channels. Therefore, an eavesdropper separated by at least half a wavelength from the two communicating nodes experiences an entirely different channel, and hence cannot make accurate measurements. In typical cellular or wireless LAN frequencies, this distance — of half a wavelength — is less than half a foot, which is an acceptable assumption for separation from an eavesdropping adversary [463]. Both channel reciprocity and spatial decorrelation have been examined extensively and demonstrated to hold in practice [316, 471, 470, 162, 477, 309, 226]. For further details on these two properties of communication channels, we refer the interested reader to [466]. In this work, we use these two properties to securely generate sufficiently independent yet deterministic errors to derandomize LWE.

Cryptography from Physical/Hardware Properties.

Apart from complexity/information-theoretic assumptions, security guarantees of cryptographic protocols can also be based on physical/hardware principles/properties. For instance, the physical principles of non-cloneability of quantum states [356, 451] and monogamy of entanglement [433] are at the heart of quantum cryptography [211, 200] — providing an ensemble of (quantum) cryptographic protocols, including quantum key distribution [59, 165, 58], quantum random number generator [308], closed group quantum digital signatures [127], long-term secure data storage [103] and quantum multiparty computation [437]. In classical, i.e., non-quantum, settings, physical/hardware principles/properties have been used to circumvent impossibility results, and efficiency and security bounds (e.g., [340, 9, 429, 481, 223, 102, 381, 385, 392, 232]). Furthermore, protocols based on physical properties or assumptions may offer qualitatively stronger security guarantees than the ones based on purely complexity-theoretic arguments/assumptions [272]. The subclass of such protocols that is related to a portion of our work concerns the so-called physically uncloneable functions (PUFs) which are cryptographic functions, defined over stateless hardware modules that implement/realize a function family with some threshold min-entropy output [355] (see [146] for the quantum analogue, called quantumPUF). Contrary to the standard digital systems, the output of a PUF depends on the unavoidably and sometimes purposefully included nanoscale
structural disorders in the hardware which lead to a response behavior that cannot be cloned or reproduced exactly, not even by the hardware manufacturer. To capture their complex and disordered structure, formal definitions for PUFs often include requirements for one-wayness and unforgeability of output (typically against a probabilistic polynomial-time (PPT) adversary) [116, 117, 355, 39, 107, 350, 135, 256, 310] — which, in addition to deterministic behavior, are also the requirements for pseudorandom functions (PRFs).

In this work, our protocol relies on the inherent (random) channel errors occurring in physical layer communications over Gaussian channels with nonzero standard deviation. Known information theoretic arguments establish that channel communications always have an inherent random error component. Using mathematical proofs/arguments and statistical randomness tests such as the ones provided by the NIST [51] and Dieharder [104] test suites, channel randomness has been established with respect to various channel characteristics, including received signal strength information [244, 296, 380], channel state information [246, 454] and phase shifts [442, 443].

Determinism from Probabilistic Events. Algorithmic information theory [112, 120] provides a fundamental measure of randomness of (finite) strings and (infinite) sequences in terms of their Kolmogorov complexity [273, 290], leading to the notions of algorithmic [112, 120] and c-Kolmogorov randomness [112]. In classical physical systems, probabilistic/random events can be defined as being deterministically unpredictable over a finite time [431, 26]. Quantum theories, following Born’s interpretation [83] of the wave function\(^\dagger\), establish quantum mechanics as inherently random [261, 280] — satisfying the requirements for pivotal forms of (quantum) algorithmic randomness [61, 276]. Due to scope of this paper, we will not cover the Copenhagen [174] and Bohmian [204] interpretations, but refer the interested reader to the review article by Loewer [300] for a comparative analysis. In (quantum) biology, randomness appears at several places, including cell reproduction, phylogenesis, ontogenesis, morphogenesis of organs, and ontophylogenesis [177, 301, 113, 227]. Unfortunately, a classical computer can at best generate pseudorandom sequences, which are by definition Turing computable and have low Kolmogorov complexity [258]. Their (pseudo)randomness often refers to having a distribution of bits that is without observable regularities [160]. Therefore, in classical computers, randomness, as it is understood in the context of analogous natural systems, must be either introduced via some hardware event (e.g., tunneling and breakdown noise from Zener diode, inherent semiconductor thermal noise, free-running oscillators, and hard-disk seek time) or directly injected from outside. Incidentally, security of PUFs relies on this limitation of classical computers, i.e., because PUFs originate from random nanoscale structural mistakes/disorders in hardware, they are unique and cannot be cloned by another (classical) computer.

It is known that (partially) deterministic procedures and events can lead to (pseudo/perfectly)random outcomes (e.g., see [248, 214, 183, 210, 130]). On the other hand, particle physics establishes that even-even nuclei demonstrate high degree of order in result of completely random interactions [63, 64, 247]. Outside of particle physics, approximating integer programs is an example problem for which probabilistic constructions lead to deterministic outcomes [386]. Our goal is similar in this work: we use probabilistic errors occurring in channel communications to generate a static model \(M\), which can be used as a black box to generate deterministic errors (from target distributions) that are sufficiently independent — to a PPT adversary — due to the probabilistic nature of the channel errors.

Rounded Gaussians. Using discrete Gaussian elements to hide secrets is a common approach in lattice-based cryptography. The majority of digital methods for generating Gaussian random variables are based on

\(^\dagger\) for an introduction to the wave function, see [215] pp. 1-2
transformations of uniform random variables [270]. Popular methods include Ziggurat [317], inversion [234], Wallace [439], and Box-Muller [88]. Sampling discrete Gaussians can also be done by sampling from some continuous Gaussian distribution, followed by rounding the coordinates to nearby integers [360, 88, 239]. Using such rounded Gaussians can lead to better efficiency and, in some cases, better security guarantees for lattice-based cryptographic protocols [239]. In our work, we use rounded Gaussian errors that are derived from deterministic yet sufficiently independent samples taken from continuous Gaussians — which are themselves generated via our model M.

Key-homomorphic PRFs. In a PRF family [203], each function is specified by a key such that it can be evaluated deterministically given the key but appears to be a random function without the key. For a PRF F_k, the index k is called its key or seed. A PRF family F is called key-homomorphic if the set of keys has a group structure and there is an efficient algorithm that, given $F_{k_1}(x)$ and $F_{k_2}(x)$, outputs $F_{k_1 \oplus k_2}(x)$, where \oplus is the group operation [338]. Multiple key-homomorphic PRF families have been constructed via varying approaches [338, 75, 45, 357, 264, 18]. In this work, we introduce and construct an extended variant of key-homomorphic PRFs, called star-specific key-homomorphic (SSKH) PRFs, which are defined for settings wherein parties constructing the PRFs are part of an interconnection network that can be (re)arranged as a graph comprised of only (undirected) star graphs with restricted vertex intersections. An undirected star graph S_k can be defined as a tree with one internal node and k leaves. Figure 1 depicts an example star graph, S_7, with seven leaves.

![Fig. 1: An Example Star Graph, S_7](image)

Henceforth, we use the terms star and star graph interchangeably.

Cover-free Families with Restricted Intersections. Cover-free families were first defined by Kautz and Singleton in 1964 as superimposed binary codes [257]. They were motivated by investigating binary codes wherein disjunction of at most r (≥ 2) codewords is distinct. In early 1980s, cover-free families were studied in the context of group testing [110] and information theory [158]. Erdős et al. called the corresponding set systems r-cover-free and studied their cardinality for $r = 2$ [172] and $r < n$ [171].

Definition 1 (r-cover-free Families [172, 171]). We say that a family of sets $\mathcal{H} = \{H_i\}_{i=1}^\alpha$ is r-cover-free for some integer $r < \alpha$ if there exists no $H_i \in \mathcal{H}$ such that:

$$H_i \subseteq \bigcup_{H_j \in \mathcal{H}^{(r)}} H_j,$$
where $\mathcal{H}^{(r)} \subset \mathcal{H}$ is some subset of \mathcal{H} with cardinality r.

In addition to earlier applications to group testing [110] and information theory [158], cover-free families have found many applications in cryptography and communications, including blacklisting [278], broadcast encryption [114, 188, 424, 425], anti-jamming [143], source authentication in networks [398], group key predistribution [329, 159, 425, 426], compression schemes [241], fault-tolerant signatures [228, 242, 240], frameproof/traceability codes [417, 427], traitor tracing [434], modification localization on signed documents and redactable signatures [243], broadcast authentication [397], batch signature verification [467], and one-time and multiple-times digital signature schemes [369, 468].

In this work, we initiate the study of new variants of r-cover-free families. The motivation behind exploring this direction is to compute the maximum number of SSKH PRFs that can be constructed by overlapping sets of parties. We prove various bounds on the novel variants of r-cover-free families and later use them to establish the maximum number of SSKH PRFs that can be constructed by overlapping sets of parties in the presence of active/passive and internal/external adversaries.

1.1 Our Contributions

Cryptographic Contributions. We know that physical layer communications over Gaussian channels introduce (pseudo)random Gaussian errors. Therefore, it is logical to consider whether we can use some processed form of those Gaussian errors to generate deterministic yet sufficiently independent errors to derandomize LWE without weakening its hardness guarantees. In this work, we prove that channel errors can be used to derandomize LWE. Our algorithm to realize this uses channel communications over Gaussian channels as the training data for linear regression analysis, whose (optimal) hypothesis is used to generate a static model \mathcal{M} that can be used as a black box to compute deterministic yet sufficiently independent errors belonging to the desired Gaussian distributions. We round the resulting error to the nearest integer, hence moving to a rounded Gaussian distribution, which is reduced modulo the LWE modulus to generate the final error. It is worth mentioning that many hardness proofs for LWE, including Regev’s initial proof [390], used an analogous approach — but without the linear regression component — to sample “LWE errors” [390, 205, 150, 239]. We call our derandomized variant of LWE: learning with linear regression (LWLR). We prove that for certain parameter choices, LWLR is as hard as LWE.

We introduce a new class of PRFs, called star-specific key-homomorphic (SSKH) PRFs, which are key-homomorphic PRFs that are defined by the respective sets of parties that construct them. In our construction, the sets of parties are arranged as star graphs wherein the leaves represent the parties and edges denote communication channels between them. Each SSKH PRF, $F_k^{(\partial_i)}$, is unique to the set/star of parties, ∂_i, that constructs it, i.e., for all inputs x, it holds that: $\forall i \neq j : F_k^{(\partial_i)}(x) \neq F_k^{(\partial_j)}(x)$. As an example application of LWLR, we replace LWR with LWLR in the LWR-based key-homomorphic PRF construction from [45] to construct the first SSKH PRF family. Due to their conflicting goals, statistical inference and cryptography are almost dual of each other. Given some data, statistical inference aims to identify the distribution that they belong to, whereas in cryptography the central aim is to design a distribution that is hard to predict. Interestingly, our work uses statistical inference to construct novel a cryptographic tool and protocol. In addition to all known applications of key-homomorphic PRFs — as given in [75, 328] — our SSKH PRF family also allows collaborating parties to securely generate pseudorandom nonce/seed without relying on any pre-provisioned secrets; hence supporting applications such as interactive key generation over unauthenticated channels.
Mutual Information between Linear Regression Models. To quantify the relation between different SSKH PRFs, we examine the mutual information between different linear regression hypotheses that are generated via (training) datasets with overlapping data points. A higher mutual information translates into a stronger relation — and smaller conditional entropy — between the corresponding SSKH PRFs, that are generated via those linear regression hypotheses. The following text summarizes the main result that we prove in this context.

Suppose, for \(i = 1, 2, \ldots, \ell \), we have:

\[
y_i \sim N(\alpha + \beta x_i, \sigma^2) \quad \text{and} \quad z_i \sim N(\alpha + \beta w_i, \sigma^2),
\]

with \(x_i = w_i \) for \(i = 1, \ldots, a \). Let \(h_1(x) = \hat{\alpha}_1 x + \hat{\beta}_1 \) and \(h_2(w) = \hat{\alpha}_2 w + \hat{\beta}_2 \) be the linear regression hypotheses obtained from the samples \((x_i, y_i)\) and \((w_i, z_i)\), respectively.

Theorem 1. The mutual information between \((\hat{\alpha}_1, \hat{\beta}_1)\) and \((\hat{\alpha}_2, \hat{\beta}_2)\) is:

\[
- \frac{1}{2} \log \left(1 - \frac{(\ell C_2 - 2C_1 X_1 + a X_2) (\ell C_2 - 2C_1 W_1 + a W_2)}{\left(\ell X_2 - X_1^2\right)\left(\ell W_2 - W_1^2\right)} + \frac{(a - 1) C_2 - C_3}{\left(\ell X_2 - X_1^2\right)\left(\ell W_2 - W_1^2\right)} \right),
\]

where \(X_1 = \sum_{i=1}^{\ell} x_i \), \(X_2 = \sum_{i=1}^{\ell} x_i^2 \), \(W_1 = \sum_{i=1}^{\ell} w_i \), \(W_2 = \sum_{i=1}^{\ell} w_i^2 \), \(C_1 = \sum_{i=1}^{a} x_i \), \(C_2 = \sum_{i=1}^{a} x_i^2 \), \(C_3 = \sum_{j=1, j \neq i}^{\ell} \sum_{j=1, j \neq i}^{\ell} x_i x_j \).

Bounds on \(t \)-intersection Maximally Cover Free Families. We say that a set system \(\mathcal{H} \) is (i) \(k \)-uniform if: \(\forall A \in \mathcal{H} : |A| = k \), and at most \(t \)-intersecting if: \(\forall A, B \in \mathcal{H}, B \neq A : |A \cap B| \leq t \).

Definition 2 (Maximally Cover-free Families). A family of sets \(\mathcal{H} \) is maximally cover-free if it holds that:

\[
\forall A \in \mathcal{H} : A \not\subseteq \bigcup_{B \in \mathcal{H}, B \neq A} B.
\]

Since we use physical layer communications to generate derandomized LWE instances, a large enough overlap among different sets of parties/devices can lead to reduced collective and conditional entropy for the SSKH PRFs constructed by those sets. It follows trivially that if the sets of parties belong to a maximally cover-free family, then no SSKH PRF can have zero conditional entropy since each set of parties must have at least one member that is exclusive to it. We know from Theorem 1 that we can compute the mutual information between different linear regression hypotheses from the overlap in their respective training data. Since the training dataset for a set of parties performing linear regression analysis is simply the collection of their mutual communications, it follows that the mutual information between any two SSKH PRFs increases with an increase in the overlap between the sets of parties that construct them. Hence, given a maximum mutual information threshold, Theorem 1 can be used to compute the maximum acceptable overlap between different sets of parties. To establish the maximum number of SSKH PRFs that can be constructed by such overlapping sets, we derive multiple bounds for the following two types of set-systems (denoted by \(\mathcal{H} \)):

- \(\mathcal{H} \) is at most \(t \)-intersecting and \(k \)-uniform,
- \(\mathcal{H} \) is maximally cover-free, at most \(t \)-intersecting and \(k \)-uniform.
The following theorem captures our central results on these set-systems:

Theorem 2. Let $k, t \in \mathbb{Z}^+$, and $C < 1$ be any positive real number.

(i) Suppose $t < k - 1$. Then, for all sufficiently large N, the maximum size $\nu(N, k, t)$ of a maximally cover-free, at most t-intersecting and k-uniform family $\mathcal{H} \subseteq 2^{[N]}$ satisfies

$$CN \leq \nu(N, k, t) < N.$$

(ii) Suppose $t < k$. Then, for all sufficiently large n, the maximum size $\varpi(n, k, t)$ of an at most t-intersecting and k-uniform family $\mathcal{H} \subseteq 2^{[n]}$ satisfies

$$\frac{Cn^{t+1}}{k(k-1) \cdots (k-t)} \leq \varpi(n, k, t) < \frac{n^{t+1}}{k(k-1) \cdots (k-t)}.$$

In particular:

$$\nu(N, k, t) \sim N \quad \text{and} \quad \varpi(n, k, t) \sim \frac{n^{t+1}}{k(k-1) \cdots (k-t)}.$$

We also provide an explicit construction for at most t-intersecting and k-uniform set systems.

Maximum Number of SSKH PRFs. We use the results from Theorems 1 and 2 to derive the maximum number, ζ, of SSKH PRFs that can be constructed securely against various adversaries (modeled as PPT Turing machines). Specifically, we prove the following:

- For an external/eavesdropping adversary with oracle access to the SSKH PRF family, we get:

 $$\zeta \sim \frac{n^k}{k!}.$$

- For non-colluding semi-honest parties, we get:

 $$\zeta \geq Cn,$$

where $C < 1$ is a positive real number.

We also establish the ineffectiveness of the man-in-the-middle attack against our SSKH PRF construction.

1.2 Organization

The rest of the paper is organized as follows: Section 2 recalls the concepts and constructs that are relevant to our solutions and constructions. Section 3 reviews the related work. Section 4 gives a formal definition of SSKH PRFs. We prove various bounds on (maximally cover-free) at most t-intersecting k-uniform families in Section 5. In Section 6, we present our protocol for generating the desired Gaussian errors from physical layer communications. The section also discusses the implementation, simulation, test results, error analysis, and complexity for our protocol. In Section 7, we analyze the mutual information between different linear regression hypotheses that are generated from overlapping training datasets. In Section 8, we define LWLR and generate LWLR instances. In the same section, we reduce the hardness of LWLR to that of LWE. In Section 9, we use LWLR to adapt the key-homomorphic PRF construction from [45] to construct the first SSKH PRF family, and prove its security under the hardness of LWLR (and therefore that of LWE). In the same section, we use our results from Sections 5 and 7 to establish the maximum number of SSKH PRFs that can be constructed by a given set of parties in the presence of active/passive and external/inter- nal adversaries. Section 10 gives the conclusion.
2 Preliminaries

For a positive integer \(n \), let: \([n] = \{1, \ldots, n\}\). As mentioned earlier, we use the terms star and star graph interchangeably. For a vector \(\mathbf{v} = (v_1, v_2, \ldots, v_w) \in \mathbb{R}^w \), the Euclidean and infinity norms are defined as:
\[
|\mathbf{v}| = \sqrt{\sum_{i=1}^{w} v_i^2} \quad \text{and} \quad |\mathbf{v}|_{\infty} = \max(|v_1|, |v_2|, \ldots, |v_w|),
\]
respectively. In this text, vectors and matrices are denoted by bold lower case letters and bold upper case letters, respectively. We say that an algorithm is efficient if its running time is polynomial in its input size.

Definition 3. The probability density function (p.d.f.) of a continuous random variable \(X \) with support \(S \) is an integrable function \(f_X \) such that following conditions hold:
\[
\begin{align*}
\forall x \in S & : f_X(x) > 0, \\
\int_S f_X(x)dx &= 1, \\
\Pr[X \in \mathbb{S}] &= \int_{\mathbb{S}} f_X(x)dx.
\end{align*}
\]

Definition 4. The probability mass function (p.m.f.) \(p_X \) of a discrete random variable \(X \) with support \(S \) is a function for which the following hold:
\[
\begin{align*}
\forall x \in S & : \Pr[X = x] = p_X(x) > 0, \\
\sum_{x \in S} p_X(x) &= 1, \\
\Pr[X \in \mathbb{S}] &= \sum_{x \in \mathbb{S}} p_X(x).
\end{align*}
\]

2.1 Entropy

The concept of entropy was originally introduced as a thermodynamic construct by Rankine in 1850 [435]. It was later adapted to information theory by Shannon [409], where it denotes a measure of the uncertainty associated with a random variable, i.e., (information) entropy is defined as a measure of the average information content that is missing when value of a random variable is not known.

Definition 5. For a finite set \(S = \{s_1, s_2, \ldots, s_n\} \) with probabilities \(p_1, p_2, \ldots, p_n \), the entropy of the probability distribution over \(S \) is defined as:
\[
H(S) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i}.
\]

2.2 Lattices

A lattice \(\Lambda \) of \(\mathbb{R}^w \) is defined as a discrete subgroup of \(\mathbb{R}^w \). In cryptography, we are interested in integer lattices, i.e., \(\Lambda \subseteq \mathbb{Z}^w \). Given \(w \)-linearly independent vectors \(\mathbf{b}_1, \ldots, \mathbf{b}_w \in \mathbb{R}^w \), a basis of the lattice generated by them can be represented as the matrix \(\mathbf{B} = (\mathbf{b}_1, \ldots, \mathbf{b}_w) \in \mathbb{R}^{w \times w} \). The lattice generated by \(\mathbf{B} \) is the following set of vectors:
\[
\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{w} c_i \mathbf{b}_i : c_i \in \mathbb{Z} \right\}.
\]

Historically, lattices received attention from illustrious mathematicians, including Lagrange, Gauss, Dirichlet, Hermite, Korkine-Zolotareff, and Minkowski (see [279, 191, 231, 275, 327, 422]). Problems in lattices have
been of interest to cryptographers since 1997, when Ajtai and Dwork [12] proposed a lattice-based public key cryptosystem following Ajtai’s [11] seminal worst-case to average-case reductions for lattice problems. In lattice-based cryptography, \(q \)-ary lattices are of particular interest; they satisfy the following condition:

\[
q\mathbb{Z}^w \subseteq \Lambda \subseteq \mathbb{Z}^w,
\]

for some (possibly prime) integer \(q \). In other words, the membership of a vector \(x \) in \(\Lambda \) is determined by \(x \mod q \). Given a matrix \(A \in \mathbb{Z}_q^{w \times n} \) for some integers \(q, w, n \), we can define the following two \(n \)-dimensional \(q \)-ary lattices,

\[\Lambda_q(A) = \{ y \in \mathbb{Z}^n : y = A^T s \mod q \text{ for some } s \in \mathbb{Z}^w \}, \]

\[\Lambda_q^\perp(A) = \{ y \in \mathbb{Z}^n : Ay = 0 \mod q \}. \]

The first \(q \)-ary lattice is generated by the rows of \(A \); the second contains all vectors that are orthogonal (modulo \(q \)) to the rows of \(A \). Hence, the first \(q \)-ary lattice, \(\Lambda_q(A) \), corresponds to the code generated by the rows of \(A \) whereas the second, \(\Lambda_q^\perp(A) \), corresponds to the code whose parity check matrix is \(A \). For a complete introduction to lattices, we refer the interested reader to the monographs by Grätzer [212, 213].

2.3 Gaussian Distributions

Gaussian sampling is an extremely useful tool in lattice-based cryptography. Introduced by Gentry et al. [198], Gaussian sampling takes a short basis \(B \) of a lattice \(\Lambda \) and an arbitrary point \(v \) as inputs and outputs a point from a Gaussian distribution discretized on the lattice points and centered at \(v \). Gaussian sampling does not leak any information about the lattice \(\Lambda \). It has been used directly to construct multiple cryptographic schemes, including hierarchical identity-based encryption [5, 119], standard model signatures [5, 89], and attribute-based encryption [76]. In addition, Gaussian sampling/distribution also plays an important role in other hard lattice problems, such as, learning single periodic neurons [414], and has direct connections to standard lattice problems [3, 4, 421].

Definition 6. A continuous Gaussian distribution, \(\mathcal{N}_x^w(v, \sigma^2) \), over \(\mathbb{R}^w \), centered at some \(v \in \mathbb{R}^w \) with standard deviation \(\sigma \) is defined for \(x \in \mathbb{R}^w \) as the following density function:

\[
\mathcal{N}_x^w(v, \sigma^2) = \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^w \exp \left(-\frac{||x - v||^2}{2\sigma^2} \right).
\]

A rounded Gaussian distribution can be obtained by simply rounding the samples from a continuous Gaussian distribution to their nearest integers. Rounded Gaussians have been used to establish hardness of LWE [390, 205, 150] — albeit not as frequently as discrete Gaussians.

Definition 7 (Adapted from [239]). A rounded Gaussian distribution, \(\Psi_x^w(v, \hat{\sigma}^2) \), over \(\mathbb{Z}^w \), centered at some \(v \in \mathbb{Z}^w \) with parameter \(\sigma \) is defined for \(x \in \mathbb{Z}^w \) as:

\[
\Psi_x^w(v, \hat{\sigma}^2) = \int_{A_x} \mathcal{N}_s^w(v, \sigma^2) \, ds = \int_{A_x} \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^w \exp \left(-\frac{||s - v||^2}{2\sigma^2} \right) \, ds,
\]

where \(A_x \) denotes the region \(\prod_{i=1}^w [x_i - \frac{1}{2}, x_i + \frac{1}{2}] \); \(\hat{\sigma} \) and \(\sigma \) are the standard deviations of the rounded Gaussian and its underlying continuous Gaussian, respectively, such that \(\hat{\sigma} = \sqrt{\hat{\sigma}^2 + 1/12} \).
Definition 8 (Gaussian channel). A Gaussian channel is a discrete-time channel with input x_i and output $y_i = x_i + \varepsilon_i$, where ε_i is drawn i.i.d. from a Gaussian distribution $\mathcal{N}(0,\sigma^2)$, with mean 0 and standard deviation σ, which is assumed to be independent of the signal x_i.

Definition 9 (Gram-Schmidt norm). Let $B = (b_i)_{i \in [w]}$ be a finite basis, and $\tilde{B} = (\tilde{b}_i)_{i \in [w]}$ be its Gram-Schmidt orthogonalization. Then, Gram-Schmidt norm of B is defined as:

$$||B||_{GS} = \max_{i \in [w]} ||\tilde{b}_i||.$$

For an introduction to Gram-Schmidt orthogonalization, see [286].

Definition 10 (Discrete Gaussian over Lattices). Given a lattice $\Lambda \in \mathbb{Z}^w$, the discrete Gaussian distribution over Λ with standard deviation $\sigma \in \mathbb{R}$ and center $v \in \mathbb{R}^w$ is defined as:

$$D(\Lambda, v, \sigma^2)_x = \frac{\rho_x(v, \sigma^2)}{\rho_{\Lambda}(v, \sigma^2)}; \forall x \in \Lambda,$$

where $\rho_{\Lambda}(v, \sigma^2) = \sum_{x_i \in \Lambda} \rho_{x_i}(v, \sigma^2)$ and

$$\rho_{x}(v, \sigma^2) = \exp\left(-\frac{||x - v||^2}{2\sigma^2}\right).$$

The smoothing parameter is defined as a measure of the “difference” between discrete and standard Gaussians, that are defined over identical parameters. Informally, it is the smallest σ required by a discrete Gaussian distribution, over a lattice Λ, to behave like a continuous Gaussian — up to some acceptable statistical error. For more details, see [321, 322, 125]. Various methods such as computing the cumulative density function, taking convolutions of smaller deviation discrete Gaussians, and rejection/Bernoulli/Binomial/Ziggurat/Knuth-Yao/CDT (cumulative distribution table) sampling have been employed to efficiently sample from discrete Gaussians for lattice-based cryptography [7, 48, 97, 108, 157, 237, 252, 251, 326, 376, 479, 480, 153, 151, 235, 25, 236, 148].

Theorem 3 (Drowning/Smudging [194]). Let $\sigma > 0$ and $y \in \mathbb{Z}$. The statistical distance between $\Psi(v, \sigma^2)$ and $\Psi(v, \sigma^2) + y$ is at most $|y|/\sigma$.

Typically, in lattice-based cryptography, drowning/smudging is used to hide some information by introducing a sufficiently large random noise — with large standard deviation — such that the resulting distribution is, to the desired degree, independent of the information that needs to be hidden [21, 205, 144, 40, 32, 46, 189, 195, 282, 194, 20]. However, in our work, we do not use it for that purpose; instead, we use it argue about the insignificance of a small component of the total error.

2.4 Learning with Errors

The learning with errors (LWE) problem [390] is at the center of the majority of lattice-based cryptographic constructions [361]. LWE is known to be hard based on the worst-case hardness of standard lattice problems such as GapSVP (decision version of the Shortest Vector Problem) and SIVP (Shortest Independent Vectors Problem) [390, 358]. Multiple variants of LWE such as ring LWE [307], module LWE [281], cyclic LWE [217], continuous LWE [105], PRIM LWE [407], middle-product LWE [394], group LWE [185],
entropic LWE [101], universal LWE [461], and polynomial-ring LWE [419] have been developed since 2010. Many cryptosystems rely on the hardness of LWE, including (identity-based, leakage-resilient, fully homomorphic, functional, public-key/key-encapsulation, updatable, attribute-based, inner product, predicate) encryption [34, 263, 446, 390, 198, 14, 307, 6, 99, 206, 139, 41, 84, 85, 86, 96, 173, 87, 302, 303, 71, 320, 75, 404, 182, 389, 253, 208], oblivious transfer [366, 95, 383], (blind) signatures [198, 305, 395, 306, 23, 152, 178], PRFs with special algebraic properties [46, 75, 44, 100, 404, 77, 98, 115, 265, 266, 384, 288, 365, 292, 363], verifiable/homomorphic/function secret sharing [407, 197, 90, 145, 91, 93], hash functions [255, 362], secure matrix multiplication computation [154, 441], verifiable quantum computations [312, 94, 482, 299], noninteractive zero-knowledge proof system for (any) NP language [364], classically verifiable quantum computation [312], certifiable randomness generation [94], obfuscation [293, 196, 225, 101, 35, 134], multilinear computations [312], certifiable randomness generation [94], obfuscation [293, 196, 225, 101, 35, 134], multilinear maps [189, 196, 126], lossy-trapdoor functions [57, 367, 448], quantum homomorphic encryption [311, 121], key exchange [86, 24, 418], zero-knowledge protocols for QMA (Quantum Merlin Arthur: a quantum analogue of NP) [17, 49, 50, 65, 124, 129, 122, 412], and many more [361, 473, 254].

Definition 11 (Decision-LWE [390]). For positive integers w and $q \geq 2$, and an error (probability) distribution χ over \mathbb{Z}, the decision-LWE$_{w,q,\chi}$ problem is to distinguish between the following pairs of distributions:

$$((a_i, \langle a_i, s \rangle + e_i \mod q)_i) \text{ and } ((a_i, u_i)_i),$$

where $i \in \text{poly}(w)$, $a_i \overset{\$}{\leftarrow} \mathbb{Z}_q^w$, $s \in \mathbb{Z}_q^w$, $e_i \overset{\$}{\leftarrow} \chi$, and $u_i \overset{\$}{\leftarrow} \mathbb{Z}_q^w$.

Regev [390] showed that for certain noise distributions and a sufficiently large q, the LWE problem is as hard as the worst-case SIVP and GapSVP under a quantum reduction (see [358, 97, 359] for other reductions). Standard instantiations of LWE assume χ to be a rounded or discrete Gaussian distribution. Regev’s proof requires $aq \geq 2\sqrt{w}$ for “noise rate” $\alpha \in (0, 1)$. These results were extended by Applebaum et al. [37] to show that the fixed secret s can be sampled from a low norm distribution. Specifically, they showed that sampling s from the noise distribution χ does not weaken the hardness of LWE. Later, Micciancio and Peikert discovered that a simple low-norm distribution also works as χ [323].

2.5 Pseudorandom Functions

In a pseudorandom function (PRF) family [203], each function is specified by a key such that it can be evaluated deterministically with the key but behaves like a random function without it. Here, we recall the formal definition of a PRF family. Recall that an ensemble of probability distributions is a sequence $\{X_n\}_{n \in \mathbb{N}}$ of probability distributions.

Definition 12 (Negligible Function). For security parameter L, a function $\eta(L)$ is called negligible if for all $c > 0$, there exists a L_0 such that $\eta(L) < 1/L^c$ for all $L > L_0$.

Definition 13 (Computational Indistinguishability [207]). Let $X = \{X_\lambda\}_{\lambda \in \mathbb{N}}$ and $Y = \{Y_\lambda\}_{\lambda \in \mathbb{N}}$ be ensembles, where X_λ’s and Y_λ’s are probability distributions over $\{0, 1\}^{\kappa(\lambda)}$ for $\lambda \in \mathbb{N}$ and some polynomial $\kappa(\lambda)$. We say that $\{X_\lambda\}_{\lambda \in \mathbb{N}}$ and $\{Y_\lambda\}_{\lambda \in \mathbb{N}}$ are polynomially/computationally indistinguishable if the following holds for every (probabilistic) polynomial-time algorithm D and all $\lambda \in \mathbb{N}$:

$$\left| \Pr[t \leftarrow X_\lambda : D(t) = 1] - \Pr[t \leftarrow Y_\lambda : D(t) = 1] \right| \leq \eta(\lambda),$$

where η is a negligible function.
Remark 1 (Perfect Indistinguishability). We say that \(\{X_\lambda\}_{\lambda \in \mathbb{N}} \) and \(\{Y_\lambda\}_{\lambda \in \mathbb{N}} \) are perfectly indistinguishable if the following holds for all \(t \):

\[
\Pr[t \leftarrow X_\lambda] = \Pr[t \leftarrow Y_\lambda].
\]

We consider adversaries interacting as part of probabilistic experiments called games. For an adversary \(A \) and two games \(G_1, G_2 \) with which it can interact, \(A \)'s distinguishing advantage is:

\[
\text{Adv}_A(G_1, G_2) := \left| \Pr[A \text{ accepts in } G_1] - \Pr[A \text{ accepts in } G_2] \right|.
\]

For the security parameter \(L \), the two games are said to be computationally indistinguishable if it holds that:

\[
\text{Adv}_A(G_1, G_2) \leq \eta(L),
\]

where \(\eta \) is a negligible function.

Definition 14 (PRF). Let \(A \) and \(B \) be finite sets, and let \(\mathcal{F} = \{F_k : A \rightarrow B\} \) be a function family, endowed with an efficiently sampleable distribution (more precisely, \(\mathcal{F}, A, \) and \(B \) are all indexed by the security parameter \(L \)). We say that \(\mathcal{F} \) is a PRF family if the following two games are computationally indistinguishable:

(i) Choose a function \(F_k \in \mathcal{F} \) and give the adversary adaptive oracle access to \(F_k \).
(ii) Choose a uniformly random function \(U : A \rightarrow B \) and give the adversary adaptive oracle access to \(U \).

Hence, PRF families are efficient distributions of functions that cannot be efficiently distinguished from the uniform distribution. For a PRF \(F_k \in \mathcal{F} \), the index \(k \) is called its key/seed. PRFs have a wide range of applications, most notably in cryptography, but also in computational complexity and computational learning theory. For a detailed introduction to PRFs and review of the noteworthy results, we refer the interested reader to the survey by Bogdanov and Rosen [72]. In 2020, Liu and Pass [298] made a remarkable breakthrough and tied the existence of pseudorandom functions — and one-way functions, in general — to the average-case hardness of \(K^{\text{poly}} \)-complexity, which denotes polynomial-time-bounded Kolmogorov complexity (see [413, 273, 290] for an introduction to Kolmogorov complexity).

2.6 Linear Regression

Linear regression is a linear approach to model relationship between a dependent variable and explanatory/independent variable(s). As is the case with most statistical analysis, the goal of regression is to make sense of the observed data in a useful manner. It analyzes the training data and attempts to model the relationship between the dependent and explanatory/independent variable(s) by fitting a linear equation to the observed data. These predictions (often) have errors, which cannot be predicted accurately [230, 331]. For linear regression, the mean and variance functions are defined as:

\[
\mathbb{E}(Y|X = x) = \beta_0 + \beta_1 x \quad \text{and} \quad \text{var}(Y|X = x) = \sigma^2,
\]

respectively, where \(\mathbb{E}(\cdot) \) and \(\sigma \) denote the expected value and standard deviation, respectively; \(\beta_0 \) represents the intercept, which is the value of \(\mathbb{E}(Y|X = x) \) when \(x \) equals zero; \(\beta_1 \) denotes the slope, i.e., the rate of change in \(\mathbb{E}(Y|X = x) \) for a unit change in \(X \). The parameters \(\beta_0 \) and \(\beta_1 \) are also known as regression coefficients.
For any regression model, the observed value \(y_i \) might not always equal its expected value \(E(Y|X = x_i) \). This difference between the observed data and the expected value is called statistical error, and is defined as:

\[
\epsilon_i = y_i - E(Y|X = x_i).
\]

For linear regression, errors are random variables that correspond to the vertical distance between the point \(y_i \) and the mean function \(E(Y|X = x_i) \). Depending on the type and size of the training data, different algorithms such as gradient descent and least squares may be used to compute the values of \(\beta_0 \) and \(\beta_1 \). In this paper, we employ least squares linear regression to estimate the values of \(\beta_0 \) and \(\beta_1 \), and generate the optimal hypothesis for the target function. Due to the inherent error in all regression models, it holds that:

\[
h(x) = f(x) + \varepsilon_x,
\]

where \(h(x) \) is the (optimal) hypothesis of the linear regression model, \(f(x) \) is the target function and \(\varepsilon_x \) is the total (reducible + irreducible) error at point \(x \).

2.7 Interconnection Network

In an interconnection network, each device is independent and connects with other devices via point-to-point links, which are two-way communication lines. Therefore, an interconnection network can be modeled as an undirected graph \(G = (V, E) \), where each device is a vertex in \(V \) and edges in \(E \) represent communication lines/channels between the devices. Next, we recall some basic definitions/notations for undirected graphs.

Definition 15. The degree \(\text{deg}(v) \) of a vertex \(v \in V \) is the number of adjacent vertices it has in a graph \(G \). The degree of a graph \(G \) is defined as: \(\text{deg}(G) = \max_{v \in V} (\text{deg}(v)) \).

If \(\text{deg}(v_i) = \text{deg}(v_j) \) for all \(v_i, v_j \in V \), then \(G \) is called a regular graph. Since it is easy to construct star graphs that are hierarchical, vertex edge symmetric, maximally fault tolerant, and strongly resilient along with having other desirable properties such as small(er) degree, diameter, genus and fault diameter [16, 15], networks of star graphs are well-suited to model interconnection networks. For a detailed introduction to interconnection networks, we refer the interested reader to the comprehensive book by Duato et al. [149].

2.8 Some Useful Results

Here, we recall two useful, elementary results from probability theory.

Definition 16 (Chebyshev inequality [62, 123]). Let \(X \) be a random variable with mean \(\mu \) and variance \(\text{var}(X) = \sigma^2 \). Then, the following holds for all \(\varsigma > 0 \):

\[
\Pr(|X - \mu| \geq \varsigma) \leq \frac{\sigma^2}{\varsigma^2}.
\]

Definition 17 (The Union Bound [81]). For any random events \(A_1, A_2, \ldots, A_n \), it holds that:

\[
\Pr \left(\bigcup_{i=1}^{n} A_i \right) \leq \sum_{i=1}^{n} \Pr(A_i).
\]

Let \(X_1, X_2, \ldots, X_n \) be i.i.d. random variables from the same distribution, i.e., all \(X_i \)'s have the same mean \(\mu \) and standard deviation \(\sigma \). Let random variable \(\overline{X}_n \) be the average of \(X_1, \ldots, X_n \). Then, \(\overline{X}_n \) converges almost surely to \(\mu \) as \(n \to \infty \).
3 Related Work

3.1 Learning with Rounding

Naor and Reingold [339] introduced synthesizers to construct PRFs via a hard-to-learn deterministic function. The obstacle in using LWE as the hard learning problem in their synthesizers is that the hardness of LWE relies directly on random errors. In fact, without the error, LWE becomes a trivial problem, that can be solved via Gaussian elimination. Therefore, in order to use these synthesizers for constructing LWE-based PRFs, there was a need to replace the random errors with deterministic yet sufficiently independent errors such that the hardness of LWE is not (significantly) weakened. Banerjee et al. [46] addressed this problem by introducing the learning with rounding (LWR) problem, wherein instead of adding a small random error, as done in LWE, a deterministically rounded version of the sample is generated. For \(q \geq p \geq 2 \), the rounding function, \(\lfloor \cdot \rceil_p : \mathbb{Z}_q \to \mathbb{Z}_p \), is defined as:

\[
\lfloor x \rceil_p = \lfloor p \cdot x \rceil,
\]

i.e., if \(\lfloor x \rceil_p = y \), then \(y \cdot \lfloor q/p \rceil \) is the integer multiple of \(\lfloor q/p \rceil \) that is nearest to \(x \). Hence, the error in LWR originates from deterministically rounding \(x \) to a (relatively) nearby value in \(\mathbb{Z}_p \).

Definition 18 (LWR Distribution [46]). Let \(q \geq p \geq 2 \) be positive integers, then: for a vector \(s \in \mathbb{Z}_q^w \), LWR distribution \(L_s \) is defined to be a distribution over \(\mathbb{Z}_q^w \times \mathbb{Z}_p \) that is obtained by choosing a vector \(a \leftarrow \mathbb{Z}_q^w \) and outputting \((a, b = \lfloor \langle a, s \rceil_p \)).

For a given distribution over \(s \in \mathbb{Z}_q^w \) (e.g., the uniform distribution), the decision-LWR\(_{w,q,p} \) problem is to distinguish (with advantage non-negligible in \(w \)) between some fixed number of independent samples \((a_i, b_i) \leftarrow L_s\), and the same number of samples drawn uniformly from \(\mathbb{Z}_q^w \times \mathbb{Z}_p \). Banerjee et al. proved decision-LWR to be as hard as decision-LWE for a setting of parameters where the modulus and modulus-to-error ratio are superpolynomial in the security parameter [46]. Alwen et al. [33], Bogdanov et al. [70], and Bai et al. [43] made further improvements on the range of parameters and hardness proofs for LWR. LWR has been used to construct pseudorandom generators/functions [46, 75, 45, 404, 403, 291], and probabilistic [139, 41] and deterministic [456] encryption schemes.

As mentioned earlier, hardness reductions of LWR hold for superpolynomial approximation factors over worst-case lattices. Montgomery [332] partially addressed this issue by introducing a new variant of LWR, called Nearby Learning with Lattice Rounding problem, which supports unbounded number of samples and polynomial (in the security parameter) modulus.

3.2 LWR/LWE-based Key-homomorphic PRFs

Since LWR allows generating derandomized/deterministic LWE instances, it can be used as the hard-to-learn deterministic function in Naor and Reingold’s synthesizers, and therefore, construct LWE-based PRF families for specific parameters. Due to the indispensable small error, LWE-based key-homomorphic PRFs only achieve what is called ‘almost homomorphism’ [75].

Definition 19 (Key-homomorphic PRF [75]). Let \(F : \mathcal{K} \times \mathcal{X} \to \mathbb{Z}_q^w \) be an efficiently computable function such that \((\mathcal{K}, \oplus)\) is a group. We say that the tuple \((F, \oplus)\) is a \(\gamma \)-almost key-homomorphic PRF if the following two properties hold:

(i) \(F \) is a secure PRF,
(ii) for all \(k_1, k_2 \in \mathcal{K}\) and \(x \in \mathcal{X}\), there exists \(e \in [0, \gamma]^w\) such that:

\[
F_{k_1}(x) + F_{k_2}(x) = F_{k_1 \oplus k_2}(x) + e \mod q.
\]

Multiple key-homomorphic PRF families have been constructed via varying approaches [338, 75, 45, 357, 264, 18]. In addition to key-homomorphism, PRF families have been defined/constructed with various other properties and features, e.g., bi-homomorphic PRFs [404], (private) constrained/delegatable/functional PRFs [100, 77, 98, 115, 79, 365, 363, 80, 262, 92], Legendre PRFs [137], power residue PRFs [60], traceable PRFs [209, 313], quantum PRFs [472, 147], oblivious PRFs [118, 78, 180], domain-preserving PRFs [219], structure-preserving PRFs [2], related-key attack (RKA) secure PRFs [56, 55, 201, 304, 370, 38, 1, 288, 75, 45], threshold/distributed PRFs [111, 245, 292, 75, 404, 45], privately programmable PRFs [79, 363], (zero-knowledge) provable PRFs [291, 106], and watermarkable PRFs [265, 266, 384, 460, 445, 365]. Note that key-homomorphic PRFs directly lead to RKA-secure PRFs and (one-round) distributed PRFs [75].

4 SSKH PRF: Definition

For any two sets \(X\) and \(Y\), let \(\text{PartFunc}(X, Y)\) denote the space of partial functions from \(X\) to \(Y\).

Definition 20. An efficient randomized algorithm \(\mathcal{A} : \mathbb{R} \rightarrow \text{PartFunc}(Z, Z)\) is probabilistic to static-independent (P2SI) if it takes some random \(r \in \mathbb{R}\) (chosen according to some fixed probability distribution on \(\mathbb{R}\)) as input, and outputs a deterministic function \(M_r : \mathcal{X}_r \rightarrow Z\), where \(\mathcal{X}_r \subseteq Z\), such that, for all \(x_i, x_j \in Z\) with \(x_i \neq x_j\):

1. the probability distributions of \(M_r(x_i)\) (taken with respect to the randomness \(r \in \mathbb{R}\) such that \(x_i \in \mathcal{X}_r\)) and \(M_r(x_j)\) are both computationally indistinguishable from rounded Gaussians with the same parameters,
2. the following quantities:

\[
H[M_r(x_i)|M_r(x_j)], \quad H[M_r(x_j)|M_r(x_i)], \quad H[M_r(x_i)], \quad H[M_r(x_j)]
\]

are equal up to a negligible function.

Next, we define a star-specific key-homomorphic (SSKH) PRF family. Let \(G = (V, E)\) be a graph, representing an interconnection network, containing multiple star graphs wherein the leaves of each star graph, \(\partial\), represent unique parties and the root represents a central hub that broadcasts messages to all leaves/parties in \(\partial\). Different star graphs may have arbitrary numbers of shared leaves. Henceforth, we call such a graph an interconnection graph. Figure 2 depicts a simple interconnection graph with two star graphs, each containing one central hub, respectively, along with eight parties/leaves out of which one leaf is shared by both star graphs. Note that an interconnection graph can also be viewed as a bipartite graph with its vertices partitioned into two disjoint subsets, \(V_1, V_2 \subset V\), wherein the vertices in \(V_1\) and \(V_2\) represent the central hubs and parties, respectively.

Definition 21. Let graph \(G = (V, E)\) be an interconnection graph with a set of vertices \(V\) and a set of edges \(E\). Let there be \(\rho\) star graphs \(\partial_1, \ldots, \partial_\rho\) in \(G\). Let \(\mathcal{F} = (F^{(\partial_i)})_{i=1,\ldots,\rho}\) be a family of PRFs, where, for each \(i\), \(F^{(\partial_i)} : \mathcal{K} \times \mathcal{X} \rightarrow \mathbb{Z}_q^w\) with \((\mathcal{K}, \oplus)\) a group. Then, we say that the tuple \((\mathcal{F}, \oplus)\) is a star-specific \((\delta, \gamma, p)\)-almost key-homomorphic PRF family if the following two conditions hold:
(i) for all $\partial_i \neq \partial_j (i, j \in [\rho]), k \in \mathcal{K}$ and $x \in \mathcal{X}$, it holds that:
\[
\Pr[F_k^{(\partial_i)}(x) = F_k^{(\partial_j)}(x)] \leq \delta^w + \eta(L),
\]
where $F_k^{(\partial)}(x)$ denotes the PRF computed by parties in star graph $\partial \subseteq V(G)$ on input $x \in \mathcal{X}$ and key $k \in \mathcal{K}$, and $\eta(L)$ is a negligible function in the security parameter L.

(ii) for all $k_1, k_2 \in \mathcal{K}$ and $x \in \mathcal{X}$, there exists a vector $e = (e_1, \ldots, e_w)$ satisfying:
\[
F_{k_1}^{(\partial)}(x) + F_{k_2}^{(\partial)}(x) = F_{k_1 \oplus k_2}^{(\partial)}(x) + e \mod q,
\]
such that for all $a \in [w]$, it holds that: $\Pr[-\gamma \leq e_a \leq \gamma] \geq \rho$.

5 Maximally Cover-free At Most t-intersecting k-uniform Families

Extremal combinatorics deals with the problem of determining or estimating the maximum or minimum cardinality of a collection of finite objects that satisfies some specific set of requirements. It is also concerned with the investigation of inequalities between combinatorial invariants, and questions dealing with relations among them. For an introduction to the topic, we refer the interested reader to the books by Jukna [249] and Bollobás [73], and the surveys by Alon [28, 29, 30, 31]. Extremal combinatorics can be further divided into the following distinct fields:

- Extremal graph theory, which began with the work of Mantel in 1907 [10] and was first investigated in earnest by Turán in 1941 [436]. For a survey of the important results in the field, see [346].
- Ramsey theory, which was popularised by Erdős and Szekeres [168, 169] by extending a result of Ramsey from 1929 (published in 1930 [388]). For a survey of the important results in the field, see [133].
- Extremal problems in arithmetic combinatorics, which grew from the work of van der Waerden in 1927 [438] and the Erdős-Turán conjecture of 1936 [170]. For a survey of the important results in the field, see [283].
- Extremal (finite) set theory, which was first investigated by Sperner [416] in 1928 by establishing the maximum size of an antichain, i.e., a set-system where no member is a superset of another. However, it was Erdős et al. [167] who started systematic research in extremal set theory.
Extremal set theory deals with determining the size of set-systems that satisfy certain restrictions. It is one of the most rapidly developing areas in combinatorics, with applications in various other branches of mathematics and theoretical computer science, including functional analysis, probability theory, circuit complexity, cryptography, coding theory, probabilistic methods, discrete geometry, linear algebra, spectral graph theory, ergodic theory, and harmonic analysis [53, 54, 156, 155, 164, 465, 297, 407, 405, 374, 66, 447, 428, 190, 216, 233]. For more details on extremal set theory, we refer the reader to the book by Gerbner and Patkos [199]; for probabilistic arguments/proofs, see the books by Bollobás [74] and Spencer [415].

Our work in this paper concerns a subfield of extremal set theory, called intersection theorems, wherein set-systems under specific intersection restrictions are constructed, and bounds on their sizes are derived. A wide range of methods have been employed to establish a large number of intersection theorems over various mathematical structures, including vector subspaces, graphs, subsets of finite groups with given group actions, and uniform hypergraphs with stronger or weaker intersection conditions. The methods used to derive these theorems have included purely combinatorial methods such as shifting/compressions, algebraic methods (including linear-algebraic, Fourier analytic and representation-theoretic), analytic, probabilistic and regularity-type methods. We shall not give a full account of the known intersection theorems, but only touch upon the results that are particularly relevant to our set-system and its construction. For a broader account, we refer the interested reader to the comprehensive surveys by Ellis [166], and Frankl and Tokushige [179]. For an introduction to intersecting and cross-intersecting families related to hypergraphs, see [387, 269].

Note 1. Set-system and hypergraph are very closely related terms, and commonly used interchangeably. Philosophically, in a hypergraph, the focus is more on vertices, vertex subsets being in “relation”, and subset(s) of vertices satisfying a specific configuration of relations; whereas in a set-system, the focus is more on set-theoretic properties of the sets.

In this section, we derive multiple intersection theorems for:

1. at most \(t \)-intersecting \(k \)-uniform families of sets,
2. maximally cover-free at most \(t \)-intersecting \(k \)-uniform families of sets.

We also provide an explicit construction for at most \(t \)-intersecting \(k \)-uniform families of sets. Later in the text, we use the results from this section to establish the maximum number of SSKH PRFs that can be constructed securely by a set of parties against various active/passive and internal/external adversaries.

For \(a, b \in \mathbb{Z} \) with \(a \leq b \), let \([a, b] := \{a, a + 1, \ldots, b - 1, b\} \).

Definition 22. \(\mathcal{H} \subseteq 2^{[n]} \) is \(k \)-uniform if \(|A| = k \) for all \(A \in \mathcal{H} \).

Definition 23. \(\mathcal{H} \subseteq 2^{[n]} \) is maximally cover-free if

\[
A \not\subseteq \bigcup_{B \in \mathcal{H}, B \neq A} B
\]

for all \(A \in \mathcal{H} \).

It is clear that \(\mathcal{H} \subseteq 2^{[n]} \) is maximally cover-free if and only if every \(A \in \mathcal{H} \) has some element \(x_A \) such that \(x_A \not\in B \) for all \(B \in \mathcal{H} \) where \(B \neq A \). Furthermore, the maximum size of a \(k \)-uniform family \(\mathcal{H} \subseteq 2^{[n]} \) that is maximally cover-free is \(n - k + 1 \), and it is realized by the following set system:

\[
\mathcal{H} = \{[k - 1] \cup \{x\} : x \in [k, n]\}
\]

(and this is unique up to permutations of \([n]\)).
Definition 24. Let \(t \) be a non-negative integer. We say the set system \(\mathcal{H} \) is
(i) at most \(t \)-intersecting if \(|A \cap B| \leq t \),
(ii) exactly \(t \)-intersecting if \(|A \cap B| = t \),
(iii) at least \(t \)-intersecting if \(|A \cap B| \geq t \),
for all \(A, B \in \mathcal{H} \) with \(A \neq B \).

Property (iii) in Definition 24 is often simply called “\(t \)-intersecting” \([82]\), but we shall use the term “at least \(t \)-intersecting” for clarity.

Definition 25. Let \(\mathcal{F}, \mathcal{G} \subseteq 2^{[n]} \). We say that \(\mathcal{F} \) and \(\mathcal{G} \) are equivalent (denoted as \(\mathcal{F} \sim \mathcal{G} \)) if there exists a permutation \(\pi \) of \([n]\) such that \(\pi^*(\mathcal{F}) = \mathcal{G} \), where
\[
\pi^*(\mathcal{F}) = \{ \{\pi(a) : a \in A \} : A \in \mathcal{F} \}.
\]

For \(n, k, t, m \in \mathbb{Z}^+ \) with \(t \leq k \leq n \), let \(N(n, k, t, m) \) denote the collection of all set systems \(\mathcal{H} \subseteq 2^{[n]} \) of size \(m \) that are at most \(t \)-intersecting and \(k \)-uniform, and \(M(n, k, t, m) \) denote the collection of set systems \(\mathcal{H} \in N(n, k, t, m) \) that are also maximally cover-free.

The following proposition establishes a bijection between equivalence classes of these two collections of set systems (for different parameters):

Proposition 1. Suppose \(n, k, t, m \in \mathbb{Z}^+ \) satisfy \(t \leq k \leq n \) and \(m < n \). Then there exists a bijection
\[
M(n, k, t, m) / \sim \leftrightarrow N(n - m, k - 1, t, m) / \sim.
\]

Proof. We will define functions
\[
\bar{f} : M(n, k, t, m) / \sim \rightarrow N(n - m, k - 1, t, m) / \sim
\]
\[
\bar{g} : N(n - m, k - 1, t, m) / \sim \rightarrow M(n, k, t, m) / \sim
\]
that are inverses of each other.

Let \(\mathcal{H} \in M(n, k, t, m) \). Since \(\mathcal{H} \) is maximally cover-free, for every \(A \in \mathcal{H} \), there exists \(x_A \in A \) such that \(x_A \notin B \) for all \(B \in \mathcal{H} \) where \(B \neq A \). Consider the set system \(\{A \setminus \{x_A\} : A \in \mathcal{H} \} \). First, note that although this set system depends on the choice of \(x_A \in A \) for each \(A \in \mathcal{H} \), the equivalence class of \(\{A \setminus \{x_A\} : A \in \mathcal{H} \} \) is independent of this choice. Hence, we get the following map:
\[
f : M(n, k, t, m) \rightarrow N(n - m, k - 1, t, m) / \sim
\]
\[
\mathcal{H} \mapsto \{A \setminus \{x_A\} : A \in \mathcal{H} \}.
\]

Furthermore, it is clear that if \(\mathcal{H} \sim \mathcal{H}' \), then \(f(\mathcal{H}) \sim f(\mathcal{H}') \). So, \(f \) induces a well-defined map as:
\[
\bar{f} : M(n, k, t, m) / \sim \rightarrow N(n - m, k - 1, t, m) / \sim.
\]

Next, for a set system \(\mathcal{G} = \{G_1, \ldots, G_m\} \in N(n - m, k - 1, t, m) \), define
\[
g : N(n - m, k - 1, t, m) \rightarrow M(n, k, t, m) / \sim
\]
\[
\mathcal{G} \mapsto \{\{G_i \cup \{n - m + i\} : i \in [m]\}.
\]
Again, this induces a well-defined map

$$\bar{g} : N(n - m, k - 1, t, m) / \sim \rightarrow M(n, k, t, m) / \sim$$

since $g(G) \sim g(G')$ for any G, G' such that $G \sim G'$.

We can check that $\bar{f} \circ \bar{g} = id_{N(n - m, k - 1, t, m)}$ and that $\bar{g} \circ \bar{f} = id_{M(n, k, t, m)}$. Hence, \bar{f} and \bar{g} are bijections. ■

Corollary 1. Let $n, k, t, m \in \mathbb{Z}^+$ be such that $t \leq k \leq n$ and $m < n$. Then there exists a maximally cover-free, at most t-intersecting, k-uniform set system $H \subseteq 2^n$ of size m if and only if there exists an at most t-intersecting, $(k - 1)$-uniform set system $G \subseteq 2^{n - m}$.

Remark 2. Both Proposition 1 and Corollary 1 remain true if, instead of at most t-intersecting families, we consider exactly t-intersecting or at least t-intersecting families.

At least t-intersecting families have been completely characterized by Ahlswede and Khachatrian [8], but the characterization of exactly t-intersecting and at most t-intersecting families remain open.

Let $\varpi(n, k, t) = \max \{|H| : H \subseteq 2^n \text{ is at most } t\text{-intersecting and } k\text{-uniform}\}$.

Proposition 2. Suppose $n, k, t \in \mathbb{Z}^+$ are such that $t \leq k \leq n$. Then

$$\varpi(n, k, t) \leq \frac{n}{k} \binom{k}{t+1}.$$

Proof. Let $H \subseteq 2^n$ be an at most t-intersecting and k-uniform family. The number of pairs (X, A), where $A \in H$ and $X \subseteq A$ is of size $t + 1$, is equal to $|H| \cdot \binom{k}{t+1}$. Since H is at most t-intersecting, any $(t+1)$-element subset of $[n]$ lies in at most one set in H. Thus,

$$|H| \cdot \binom{k}{t+1} \leq \binom{n}{t+1} \Rightarrow |H| \leq \frac{n}{k} \binom{k}{t+1}.$$

Using Proposition 1, we immediately obtain the following as a corollary:

Corollary 2. Suppose $H \subseteq 2^n$ is maximally cover-free, at most t-intersecting and k-uniform. Then

$$|H| \leq \frac{n - |H|}{\frac{k-1}{t+1}}.$$

Similarly, by applying Proposition 1, other results on at most t-intersecting and k-uniform set systems can also be translated into results on set systems that, in addition to having these two properties, are maximally cover-free. Thus, henceforth, we do not explicitly state such results when their derivation is trivial.
5.1 Bounds for Small n

In this section, we give several bounds on $\varpi(n, k, t)$ for small values of n.

Lemma 1. Let $n, k, t \in \mathbb{Z}^+$ be such that $t \leq k \leq n < \frac{1}{2}k \left(\frac{k}{t} + 1 \right)$. Let m' be the least positive integer such that $n < m'k - \frac{1}{2}m'(m' - 1)t$. Then
\[
\varpi(n, k, t) = m' - 1.
\]

Proof. First, we show that there exists $m^* \in \mathbb{Z}^+$ such that $n < m^*k - \frac{1}{2}m^*(m^* - 1)t$. Consider the quadratic polynomial $p(x) = xk - \frac{1}{2}x(x - 1)t$. Note that $p(x)$ achieves its maximum value at $x = \frac{k}{t} + \frac{1}{2}$. If we let m^* be the unique positive integer such that $\frac{k}{t} \leq m^* < \frac{k}{t} + 1$, then
\[
p(m^*) \geq p \left(\frac{k}{t} \right) = \frac{1}{2}k \left(\frac{k}{t} + 1 \right) > n,
\]
as required.

Next, suppose \mathcal{H} is an at most t-intersecting, k-uniform set family with $|\mathcal{H}| \geq m'$. Let $A_1, \ldots, A_{m'} \in \mathcal{H}$ be distinct. Then
\[
n \geq \left| \bigcup_{i=1}^{m'} A_i \right| = \sum_{i=1}^{m'} \left| A_i \setminus \bigcup_{j=1}^{i-1} A_j \right| \geq \sum_{i=0}^{m'-1} (k - it) = m'k - \frac{1}{2}m'(m' - 1)t,
\]
which is a contradiction. This proves that $|\mathcal{H}| \leq m' - 1$.

It remains to construct an at most t-intersecting, k-uniform set family $\mathcal{H} \subseteq 2^{[n]}$ with $|\mathcal{H}| = m' - 1$. Let $m = m' - 1$. The statement is trivial if $m = 0$, so we may assume that $m \in \mathbb{Z}^+$. By the minimality of m', we must have $n \geq mk - \frac{1}{2}m(m - 1)t$. Let $k = \alpha t + \beta$ with $\alpha, \beta \in \mathbb{Z}$ and $0 \leq \beta \leq t - 1$. Define a set system $\mathcal{H} = \{A_1, \ldots, A_m\}$ as follows:
\[
A_i = \{(l, \{i, j\}) : l \in [t], j \in [\alpha + 1] \setminus \{i\} \} \cup \{(i, j) : j \in [\beta]\}.
\]
It is clear, by construction, that \mathcal{H} is at most t-intersecting and k-uniform. Furthermore, since $\alpha = \lfloor k/t \rfloor \geq m$, the number of elements in the universe of \mathcal{H} is
\[
t \cdot |\{i, j\} : 1 \leq i < j \leq \alpha + 1, i \leq m| + m\beta
= t \left(\binom{\alpha + 1}{2} - \binom{\alpha + 1 - m}{2} \right) + m\beta
= t \left(\binom{ma - \frac{1}{2}m(m - 1)}{2} \right) + m\beta
= mk - \frac{1}{2}m(m - 1)t.
\]

Proposition 3. Let $n, k, t \in \mathbb{Z}^+$ be such that $t \leq k \leq n$.

(a) If $n < \frac{1}{2}k \left(\frac{k}{t} + 1 \right)$,
\[
\varpi(n, k, t) = \left\lfloor \frac{1}{2} + \frac{k}{t} - \sqrt{\left(\frac{1}{2} + \frac{k}{t} \right)^2 - \frac{2n}{t}} \right\rfloor.
\]
(b) If \(t \mid k \) and \(n = \frac{1}{2}k \left(\frac{k}{t} + 1 \right) \), then
\[
\varpi(n, k, t) = \frac{k}{t} + 1.
\]

Proof. (a) Note that \(m = \left\lfloor \frac{1}{2} + \frac{k}{t} - \sqrt{\left(\frac{1}{2} + \frac{k}{t} \right)^2 - \frac{2n}{t}} \right\rfloor \) satisfies \(n \geq mk - \frac{1}{2}m(m-1)t \) and \(m' = m + 1 \) satisfies \(n < m'k - \frac{1}{2}m'(m' - 1)t \); hence, the result follows immediately from Lemma 1.

(b) Let \(\mathcal{H} \subseteq 2^n \) be an at most \(t \)-intersecting, \(k \)-uniform set family. We may assume that \(|\mathcal{H}| \geq \frac{k}{t} \). We will first show that any three distinct sets in \(\mathcal{H} \) have empty intersection. Let \(A_1, A_2 \) and \(A_3 \) be any three distinct sets in \(\mathcal{H} \), and let \(A_4, \ldots, A_{k'} \in \mathcal{H} \) be such that the \(A_i \)'s are all distinct. Then
\[
\left| \bigcup_{i=1}^{\frac{k}{t}} A_i \right| = \sum_{i=1}^{\frac{k}{t}} |A_i \setminus \bigcup_{j=1}^{i-1} A_j| \geq \sum_{i=0}^{\frac{k-1}{t}} (k-it) = \frac{k}{2} \left(\frac{k}{t} + 1 \right) = n,
\]
and thus we have must equality everywhere. In particular, we obtain \(|A_3 \setminus (A_1 \cup A_2)| = k - 2t \), which together which the fact that \(\mathcal{H} \) is at most \(t \)-intersecting, implies that \(A_1 \cap A_2 \cap A_3 = \emptyset \), as claimed. Therefore, every \(x \in [n] \) lies in at most 2 sets in \(\mathcal{H} \). Now,
\[
|\mathcal{H}| \cdot k = |(A, x) : A \in \mathcal{H}, x \in A| \leq 2n \implies |\mathcal{H}| \leq \frac{2n}{k} = \frac{k}{t} + 1,
\]
proving the first statement.

Next, we shall exhibit an at most \(t \)-intersecting, \(k \)-uniform set family \(\mathcal{H} \subseteq 2^n \), where \(n = \frac{1}{2}k \left(\frac{k}{t} + 1 \right) \), with \(|\mathcal{H}| = \frac{k}{t} + 1 \). Let \(\mathcal{H} = \{ A_1, \ldots, A_{\frac{k}{t} + 1} \} \) with
\[
A_i = \left\{ (l, \{i, j\}) : t \in [t], j \in \left[\frac{k}{t} + 1 \right] \setminus \{i\} \right\}.
\]
It is clear that \(\mathcal{H} \) is exactly \(t \)-intersecting and \(k \)-uniform, and that it is defined over a universe of \(t \cdot \left(\frac{k/t + 1}{2} \right) = n \) elements.

Remark 3. The condition \(n < \frac{1}{2}k \left(\frac{k}{t} + 1 \right) \) in Proposition 3(a) is necessary. Indeed, if \(n = \frac{1}{2}k \left(\frac{k}{t} + 1 \right) \), then
\[
\left| \frac{1}{2} + \frac{k}{t} - \sqrt{\left(\frac{1}{2} + \frac{k}{t} \right)^2 - \frac{2n}{t}} \right| = \frac{k}{t} < \frac{k}{t} + 1.
\]

Next, we examine the case where \(n = \frac{1}{2}k \left(\frac{k}{t} + 1 \right) + 1 \). Unlike earlier cases, we do not have exact bounds for this case. But what is perhaps surprising is that, for certain \(k \) and \(t \), the addition of a single element to the universe set can increase the maximum size of the set family by 3 or more.

Proposition 4. Let \(n, k, t \in \mathbb{Z}^+ \) be such that \(t \leq k \leq n \) and \(t \mid k \). If \(n = \frac{1}{2}k \left(\frac{k}{t} + 1 \right) + 1 \), then
\[
\varpi(n, k, t) \leq \frac{k + 1}{1 - \frac{k}{n}} = \left(\frac{k^2 + kt + 2t}{k^2 - kt + 2t} \right) \left(\frac{k}{t} + 1 \right).
\]
Proof. Let $H \subseteq 2^{[n]}$ be an at most t-intersecting and k-uniform family. There exists some element $x \in [n]$ such that x is contained in at most $\left\lfloor \frac{|H|}{n} \right\rfloor$ sets in H. We construct a set family $H' \subseteq 2^{[n]\setminus \{x\}}$ by taking those sets in H that do not contain x. Since H' is defined over a universe of $\frac{1}{2}k \left(\frac{k}{t} + 1 \right)$ elements, we obtain the following by applying Proposition 3:

$$|H| - \left\lfloor \frac{|H|}{n} \right\rfloor \leq |H'| \leq \frac{k}{t} + 1 \implies \left| \left| H \right| - \frac{|H|}{n} \right| \leq \frac{k}{t} + 1$$

$$\implies \left| \left| H \right| - \frac{|H|}{n} \right| \leq \frac{k}{t} + 1$$

$$\implies \left| H \right| \leq \frac{k}{t} + 1 \leq \frac{1}{1 - \frac{k}{n}}.$$

\[\square\]

Remark 4. (a) If $k = 3$, $t = 1$, and $n = \frac{1}{2}k \left(\frac{k}{t} + 1 \right) + 1 = 7$, then the bound in the Proposition 4 states that $\omega(n, k, t) \leq \left(\frac{k^2 + kt + 2t}{k^2 - kt + 2t} \right) \left(\frac{k}{t} + 1 \right) = 7$. The Fano plane, depicted in Figure 3, is an example of a 3-uniform family of size 7, defined over a universe of 7 elements, that is exactly 1-intersecting. Thus, the bound in Proposition 4 can be achieved, at least for certain choices of k and t. An interesting side note: Fano plane has applications/relations to integer factorization [224, 284, 408] and octonians [181, 141, 142, 42], both of which have direct applications to cryptography [444, 314, 295, 271, 459, 393].

(b) Note that

$$\frac{k^2 + kt + 2t}{k^2 - kt + 2t} \left(\frac{k}{t} + 1 \right) - \left(\frac{k}{t} + 1 \right) = \frac{2k^2 + 2kt}{k^2 - kt + 2t}.$$

We can show that the above expression is (strictly) bounded above by 6 (for $k \neq t$), with slightly better bounds for $t = 1, 2, 3, 4$. It follows that

$$\omega(n, k, t) \leq \begin{cases} \frac{k}{t} + 4 & \text{if } t = 1, \\ \frac{k}{t} + 5 & \text{if } t = 2, 3, 4, \\ \frac{k}{t} + 6 & \text{if } t \geq 5. \end{cases}$$

Furthermore, $\lim_{k \to \infty} \frac{2k^2 + 2kt}{k^2 - kt + 2t} = 2$; thus, for fixed t, we have $\omega(n, k, t) \leq \frac{k}{t} + 3$ for large enough k.

Fig. 3: The Fano plane
Next, we give a necessary condition for the existence of at most t-intersecting and k-uniform families $\mathcal{H} \subseteq 2^{|n|}$, which implicitly gives a bound on $\varpi(n, k, t)$.

Proposition 5. Let $n, k, t \in \mathbb{Z}^+$ satisfy $t \leq k \leq n$, and $\mathcal{H} \subseteq 2^{|n|}$ be an at most t-intersecting and k-uniform family with $|\mathcal{H}| = m$. Then

$$(n-r) \left\lfloor \frac{km}{n} \right\rfloor^2 + r \left\lfloor \frac{km}{n} \right\rfloor^2 \leq (k-t)m + tm^2$$

where $r = km - n \left\lfloor \frac{km}{n} \right\rfloor$.

Proof. Let α_j be the number of elements that is contained in exactly j sets in \mathcal{H}. We claim that the following holds:

\begin{align*}
\sum_{j=0}^{m} \alpha_j &= n, \quad (5.1) \\
\sum_{j=0}^{m} j \alpha_j &= km, \quad (5.2) \\
\sum_{j=0}^{m} j(j-1)\alpha_j &\leq tm(m-1). \quad (5.3)
\end{align*}

(5.1) is immediate, (5.2) follows from double counting the set $\{(A, x) : A \in \mathcal{H}, x \in A\}$, and (5.3) follows from considering $\{(A, B, x) : A, B \in \mathcal{H}, A \neq B, x \in A \cap B\}$ and using the fact that \mathcal{H} is at most t-intersecting. This proves the claim.

Next, let us find non-negative integer values of $\alpha_0, \ldots, \alpha_m$ satisfying both (5.1) and (5.2) that minimize the expression $\sum_{j=0}^{m} j(j-1)\alpha_j$. Note that

$$\sum_{j=0}^{m} j(j-1)\alpha_j = \sum_{j=0}^{m} (j^2\alpha_j - j\alpha_j) = \sum_{j=0}^{m} j^2\alpha_j - km.$$

So, we want to minimize $\sum_{j=0}^{m} j^2\alpha_j$, subject to the restrictions (5.1) and (5.2). If $n \nmid km$, this is achieved by letting $\alpha_{\left\lfloor \frac{km}{n} \right\rfloor} = n-r$ and $\alpha_{\left\lceil \frac{km}{n} \right\rceil} = r$, with all other α_j’s equal to 0. If $n \mid km$, we let $\alpha_{\left\lfloor \frac{km}{n} \right\rfloor} = n$ with all other α_j’s equal to 0.

Indeed, it is easy to see that the above choice of $\alpha_0, \ldots, \alpha_m$ satisfy both (5.1) and (5.2). Now, let $\alpha_0, \ldots, \alpha_m$ be some other choice of the α_j’s that also satisfy both (5.1) and (5.2). We will show that the function $f(\alpha_0, \ldots, \alpha_m) = \sum_{j=0}^{m} j^2\alpha_j$ can be decreased with a different choice of $\alpha_0, \ldots, \alpha_m$.

Suppose $\alpha_i \neq 0$ for some $i \neq \left\lfloor \frac{km}{n} \right\rfloor, \left\lceil \frac{km}{n} \right\rceil$, and assume that $i < \left\lfloor \frac{km}{n} \right\rfloor$ (the other case where $i > \left\lceil \frac{km}{n} \right\rceil$ is similar). Since the α_j’s satisfy both (5.1) and (5.2), there must be some i_1 with $i_1 \geq \left\lceil \frac{km}{n} \right\rceil$ (the inequality is strict if $n \mid km$) such that $\alpha_{i_1} \neq 0$. It follows that if we decrease α_i and α_{i_1} each by one, and increase α_{i+1} and α_{i_1-1} each by one, constraints (5.1) and (5.2) continue to be satisfied. Furthermore, considering that $i_1 \geq \left\lceil \frac{km}{n} \right\rceil + 1 > i + 1$, we get:

\begin{align*}
&f(\alpha_0, \ldots, \alpha_i, \alpha_{i+1}, \ldots, \alpha_{i_1-1}, \alpha_{i_1}, \ldots, \alpha_m) - f(\alpha_0, \ldots, \alpha_i - 1, \alpha_{i+1} + 1, \ldots, \alpha_{i_1-1} + 1, \alpha_{i_1} - 1, \ldots, \alpha_m) \\
&\quad = i^2 - (i+1)^2 - (i_1 - 1)^2 + i_1^2 = 2i_1 - 2i - 2 > 0.
\end{align*}
This proves the claim that the choice of $\alpha \left\lfloor \frac{km}{n} \right\rfloor = n - r$ and $\alpha \left\lceil \frac{km}{n} \right\rceil = r$ minimizes f.

Therefore, we can only find non-negative integers $\alpha_0, \ldots, \alpha_m$ satisfying all three conditions above if and only if
\[
(n - r) \left\lfloor \frac{km}{n} \right\rfloor^2 + r \left\lceil \frac{km}{n} \right\rceil^2 \leq km(\text{m - 1}),
\]
as desired. \[\blacksquare\]

Remark 5. For fixed k and t, if n is sufficiently large, then the inequality in Proposition 5 will be true for all m. Thus, the above proposition is only interesting for values of n that are not too large.

5.2 Asymptotic Bounds

The study of Steiner systems has a long history, dating back to the 19th century work on triple block designs by Plücker [372], Kirkman [267], Steiner [420], Reiss [391], Noether [347], Netto [342], Moore [333], Sylvester [430], Power [378], and Clebsch and Lindemann [128]. The term Steiner (triple) systems was coined in 1938 by Witt [450]. A Steiner system is defined as an arrangement of a set of elements in triples such that each pair of elements is contained in exactly one triple. The Fano plane — discussed in Remark 4 and depicted in Figure 3 — represents a unique Steiner system of order 7; it can be seen as having 7 elements in 7 blocks of size 3 such that each pair of elements is contained in exactly 1 block. Steiner systems have strong connections to a wide range of topics, including statistics, linear coding, finite group theory, finite geometry, combinatorial design, experimental design, storage systems design, wireless communication, low-density parity-check code design, distributed storage, and batch codes. In cryptography, Steiner systems primarily have applications to (anonymous) secret sharing [423, 69] and low-redundancy private information retrieval [175]. For a broader introduction to the topic, we refer the interested reader to [449] (also see [132, 131]).

In this section, we will see how at most t-intersecting families are related to Steiner systems. Using a result from Keevash [259] about the existence of Steiner systems with certain parameters, we obtain an asymptotic bound on the maximum size of at most t-intersecting families.

Definition 26. A Steiner system $S(t, k, n)$, where $t \leq k \leq n$, is a family S of subsets of $[n]$ such that
\begin{enumerate}
 \item $|A| = k$ for all $A \in S$,
 \item any t-element subset of $[n]$ is contained in exactly one set in S.
\end{enumerate}

The elements of S are known as blocks.

From the above definition, it is clear that there exists a family H that achieves equality in Proposition 2 if and only if $S(t + 1, k, n)$ exists. It is easy to derive the following well known necessary condition for the existence of a Steiner system with given parameters:

Proposition 6. If $S(t, k, n)$ exists, then $\binom{n-i}{t-i}$ is divisible by $\binom{k-i}{t-i}$ for all $0 \leq i \leq t$, and the number of blocks in $S(t, k, n)$ is equal to $\binom{n}{t} / \binom{k}{t}$.

In 2019, Keevash [259] proved the following result, providing a partial converse to the above, and answering in the affirmative a longstanding open problem in the theory of designs.

Theorem 4 ([259]). For any $k, t \in \mathbb{Z}^+$ with $t \leq k$, there exists $n_0(k, t)$ such that for all $n \geq n_0(k, t)$, a Steiner system $S(t, k, n)$ exists if and only if
\[
\binom{k-i}{t-i} \text{ divides } \binom{n-i}{t-i} \text{ for all } i = 0, 1, \ldots, t - 1.
\]
Using this result, we will derive asymptotic bounds for the maximum size of an at most \(t \)-intersecting and \(k \)-uniform family.

Proposition 7. Let \(k, t \in \mathbb{Z}^+ \) with \(t < k \), and \(C < 1 \) be any positive real number.

(i) There exists \(n_1(k, t, C) \) such that for all integers \(n \geq n_1(k, t, C) \), there is an at most \(t \)-intersecting and \(k \)-uniform family \(\mathcal{H} \subseteq \mathbb{F}^n \) with

\[
|\mathcal{H}| \geq \frac{Cn^{t+1}}{k(k-1) \cdots (k-t)}.
\]

(ii) For all sufficiently large \(n \),

\[
\frac{Cn^{t+1}}{k(k-1) \cdots (k-t)} \leq \pi(n, k, t) < \frac{n^{t+1}}{k(k-1) \cdots (k-t)}.
\]

In particular,

\[
\pi(n, k, t) \sim \frac{n^{t+1}}{k(k-1) \cdots (k-t)}.
\]

Proof. (i) Let \(t' = t + 1 \). By Theorem 4, there exists \(n_0(k, t') \) such that for all \(N \geq n_0(k, t') \), a Steiner system \(S(t', k, N) \) exists if

\[
\binom{k-i}{t'-i} \mid \binom{N-i}{t'-i} \quad \text{for all } i = 0, 1, \ldots, t'-1. \tag{\ast}
\]

Suppose \(n \) is sufficiently large. Let \(n' \leq n \) be the largest integer such that (\ast) is satisfied with \(N = n' \). Since

\[
\binom{k-i}{t'-i} \mid \binom{N-i}{t'-i} \iff (k-i) \cdots (k-t'+1) \mid (N-i) \cdots (N-t'+1),
\]

all \(N \) of the form \(\lambda k(k-1) \cdots (k-t'+1) + t'-1 \) with \(\lambda \in \mathbb{Z} \) will satisfy (\ast). Hence, \(n - n' \leq k(k-1) \cdots (k-t'+1) \).

By our choice of \(n' \), there exists a Steiner system \(S(t', k, n') \), which is an at most \(t \)-intersecting and \(k \)-uniform set family, defined over the universe \([n'] \subseteq [n] \), such that

\[
|S(t', k, n')| = \frac{n'(n'-1) \cdots (n'-t'+1)}{k(k-1) \cdots (k-t'+1)} \geq \frac{(n-\alpha)(n-\alpha-1) \cdots (n-\alpha-t'+1)}{k(k-1) \cdots (k-t'+1)},
\]

where \(\alpha = \alpha(k, t') = k(k-1) \cdots (k-t'+1) \) is independent of \(n \). Since \(C < 1 \), there exists \(n_2(k, t', C) \) such that for all \(n \geq n_2(k, t', C) \),

\[
\frac{(n-\alpha)(n-\alpha-1) \cdots (n-\alpha-t'+1)}{n^t} \geq C,
\]

from which it follows that

\[
|S(t', k, n')| \geq \frac{Cn^{t'}}{k(k-1) \cdots (k-t'+1)} = \frac{Cn^{t+1}}{k(k-1) \cdots (k-t)}
\]
for all sufficiently large n. From the above argument, we see that we can pick $$n_1(k, t, C) = \max (n_0(k, t'), \alpha(k, t'), n_2(k, t', C)).$$

(ii) By Proposition 2, $$\overline{w}(n, k, t) \leq \left(\frac{n+1}{k+1} \right) = \frac{n(n-1)(n-2)\cdots(n-t)}{k(k-1)(k-2)\cdots(k-t)} < \frac{n^{t+1}}{k(k-1)(k-2)\cdots(k-t)}.$$ The other half of the inequality follows immediately from (i).

Proposition 8. Let $k, t \in \mathbb{Z}^+$ with $t < k-1$, and $C < 1$ be any positive real number. Then for all sufficiently large N,

(i) there exists a maximally cover-free, at most t-intersecting and k-uniform family $\mathcal{H} \subseteq 2^\mathbb{N}$ with $|\mathcal{H}| \geq C N$,

(ii) the maximum size $\nu(N, k, t)$ of a maximally cover-free, at most t-intersecting and k-uniform family $\mathcal{H} \subseteq 2^\mathbb{N}$ satisfies $$CN \leq \nu(N, k, t) < N.$$

Proof. We note that (ii) follows almost immediately from (i). So, we prove (i).

Fix C_0 such that $C < C_0 < 1$. It follows from Propositions 1 and 7 that for all integers $n \geq n_1(k-1, t, C_0)$, there exists a maximally cover-free, at most t-intersecting and k-uniform family $\mathcal{H} \subseteq 2^\mathbb{N}$ with

$$|\mathcal{H}| \geq \frac{C_0 n^{t+1}}{(k-1)(k-2)\cdots(k-t-1)}.$$

Since $C < C_0$, there exist $\delta > 1$ and $\varepsilon > 0$ such that $C_0 > \delta(1 + \varepsilon)C$. Given N, let $n \in \mathbb{Z}^+$ be maximum such that

$$n + \frac{n^{t+1}}{(k-1)(k-2)\cdots(k-t-1)} \leq N.$$

Assume that N is sufficiently large so that $n \geq n_1(k-1, t, C_0$. Then, by the above, there is a maximally cover-free, at most t-intersecting and k-uniform family $\mathcal{H} \subseteq 2^\mathbb{N}$ so that

$$|\mathcal{H}| \geq \frac{C_0 n^{t+1}}{(k-1)(k-2)\cdots(k-t-1)}.$$

Since n is maximal, we have

$$N < (n + 1) + \frac{(n + 1)^{t+1}}{(k-1)(k-2)\cdots(k-t-1)}.$$

If N (and thus n) is sufficiently large such that

$$(n + 1) < \frac{\varepsilon (n + 1)^{t+1}}{(k-1)(k-2)\cdots(k-t-1)} \quad \text{and} \quad \left(1 + \frac{1}{n} \right)^{t+1} < \delta,$$

then

$$N < \frac{(1 + \varepsilon)(n + 1)^{t+1}}{(k-1)(k-2)\cdots(k-t-1)} < \frac{\delta (1 + \varepsilon)n^{t+1}}{(k-1)(k-2)\cdots(k-t-1)}$$

and it follows that

$$|\mathcal{H}| \geq \frac{C_0 n^{t+1}}{(k-1)(k-2)\cdots(k-t-1)} > \frac{C_0 N}{\delta (1 + \varepsilon)} > CN.$$
5.3 An Explicit Construction

While Proposition 7 provides an answer for the maximum size of an at most \(t \)-intersecting and \(k \)-uniform family for large enough \(n \), we cannot explicitly construct such set families since Theorem 4 (and hence Proposition 7) is nonconstructive. In this section, we establish a method that explicitly constructs set families with larger parameters from set families with smaller parameters.

Fix a positive integer \(t \). For an at most \(t \)-intersecting and \(k \)-uniform family \(\mathcal{H} \subseteq 2^{[n]} \), define

\[
s(\mathcal{H}) = \frac{k|\mathcal{H}|}{n}
\]

as the “relative size” of \(\mathcal{H} \) with respect to the parameters \(k \) and \(n \). Note that the maximum possible value of \(|\mathcal{H}| \) should increase with larger \(n \) and decrease with larger \(k \), hence \(s(\mathcal{H}) \) is a reasonable measure of the “relative size” of \(\mathcal{H} \).

The following result shows that it is possible to construct a sequence of at most \(t \)-intersecting and \(k_j \)-uniform families \(\mathcal{H} \subseteq 2^{[n_j]} \), where \(k_j \to \infty \), such that all set families in the sequence have the same relative size.

Proposition 9. Let \(\mathcal{H} \subseteq 2^{[n]} \) be an at most \(t \)-intersecting and \(k \)-uniform family. Then there exists a sequence of set families \(\mathcal{H}_j \) such that

(a) \(\mathcal{H}_j \) is an at most \(t \)-intersecting and \(k_j \)-uniform set family,

(b) \(s(\mathcal{H}_j) = s(\mathcal{H}) \) for all \(j \),

(c) \(\lim_{j \to \infty} k_j = \infty \).

Proof. We will define the set families \(\mathcal{H}_j \) inductively. Let \(\mathcal{H}_1 = \mathcal{H} \), and \(\mathcal{H}_j \subseteq 2^{[n_j]} \) be an at most \(t \)-intersecting \(k_j \)-uniform family for some \(j \in \mathbb{Z}^+ \) such that \(m = |\mathcal{H}_j| \). Consider set families \(\mathcal{G}^{(1)}, \ldots, \mathcal{G}^{(m)}, \mathcal{H}^{(1)}, \ldots, \mathcal{H}^{(m)} \), defined over disjoint universes such that each \(\mathcal{G}^{(\ell)} \) (and similarly, each \(\mathcal{H}^{(\ell)} \)) is isomorphic to \(\mathcal{H}_j \). Let

\[
\mathcal{G}^{(\ell)} = \{ B_1^{(\ell)}, \ldots, B_m^{(\ell)} \}, \quad \mathcal{H}^{(\ell)} = \{ C_1^{(\ell)}, \ldots, C_m^{(\ell)} \}.
\]

For \(1 \leq h, i \leq m \), define the sets \(A_{h,i} = B_h^{(i)} \cup C_i^{(h)} \), and let

\[
\mathcal{H}_{j+1} = \{ A_{h,i} : 1 \leq h, i \leq m \}.
\]

It is clear that \(\mathcal{H}_{j+1} \) is a \(2k_j \)-uniform family defined over a universe of \(2mn_j \) elements, and that \(|\mathcal{H}_{j+1}| = m^2 \). We claim that \(\mathcal{H}_{j+1} \) is at most \(t \)-intersecting. Indeed, if \((h_1, i_1) \neq (h_2, i_2)\), then

\[
|A_{h_1, i_1} \cap A_{h_2, i_2}| = |(B_{h_1}^{(i_1)} \cup C_{i_1}^{(h_1)}) \cap (B_{h_2}^{(i_2)} \cup C_{i_2}^{(h_2)})| = |B_{h_1}^{(i_1)} \cap B_{h_2}^{(i_2)}| + |C_{i_1}^{(h_1)} \cap C_{i_2}^{(h_2)}| = \begin{cases} |C_{i_1}^{(h_1)} \cap C_{i_2}^{(h_2)}| \leq t & \text{if } h_1 = h_2 \text{ and } i_1 \neq i_2, \\ |B_{h_1}^{(i_1)} \cap B_{h_2}^{(i_2)}| \leq t & \text{if } h_1 \neq h_2 \text{ and } i_1 = i_2, \\ 0 & \text{if } h_1 \neq h_2 \text{ and } i_1 \neq i_2. \end{cases}
\]

Finally,

\[
s(\mathcal{H}_{j+1}) = \frac{k_{j+1}|\mathcal{H}_{j+1}|}{n_{j+1}} = \frac{2k_jm^2}{2mn} = \frac{k_j|\mathcal{H}_j|}{n_j} = s(\mathcal{H}_j).
\]

\[\blacksquare\]
Remark 6. In the above proposition, n_j, k_j, and $|H_j|$ grow with j. Clearly, given a family H, it is also possible to construct a sequence of set families H_j such that $s(H_j) = s(H)$ for all j, where n_j and $|H_j|$ grow with j, while k_j stays constant.

It is natural to ask, therefore, if it is possible to construct a sequence of set families satisfying $s(H_j) = s(H)$, where n_j and k_j grow with j, but $|H_j|$ stays constant. In fact, this is not always possible. Indeed, let H be the Fano plane, then $t = 1$, $n = 7$, $k = 3$, and $|H| = 7$. Note that H satisfies Proposition 5 with equality, i.e.,

$$\frac{(k|H|)^2}{n} = k|H| + t(|H|^2 - |H|).$$

If we let $n' = \lambda n$ and $k' = \lambda k$ for some $\lambda > 1$, then

$$\frac{(k'|H|)^2}{n'} = \lambda \left(\frac{k|H|}{n}\right)^2 = \lambda k|H| + t(|H|^2 - |H|) > k'|H| + t(|H|^2 - |H|).$$

Hence, by Proposition 5, there is no k'-uniform and at most t-intersecting family $H' \subseteq 2^{[n']}$ such that $|H'| = |H| = 7$.

6 Generating Rounded Gaussians from Physical Communications

In this section, we describe our procedure, called *Rounded Gaussians from Physical Communications (RGPC)*, that generates deterministic errors from a rounded Gaussian distribution — which we later prove to be sufficiently independent in specific settings. RGPC is comprised of the following two subprocedures:

- Hypothesis generation: a protocol to generate a linear regression hypothesis from the training data, which, in our case, is comprised of the physical layer communications between participating parties.
- Rounded Gaussian error generation: this procedure allows us to use the linear regression hypothesis — generated by using physical layer communications as training data — to derive deterministic rounded Gaussian errors. The outcome of this procedure is that it samples from a rounded Gaussian distribution in a manner that is (pseudo)random to a PPT external/internal adversary but is deterministic to the authorized parties.

6.1 Setting and Central Idea

For the sake of intelligibility, we begin by giving a brief overview of our central idea. Let there be a set of $n \geq 2$ parties, $P = \{P_i\}_{i=1}^n$. All parties agree upon a function $f(x) = \beta_0 + \beta_1 x$, with intercept $\beta_0 \leftarrow \mathbb{Z}$ and slope $\beta_1 \leftarrow \mathbb{Z}$. Let $H \subseteq 2^P$ be a family of sets such that each set $H_i \in H$ forms a star graph ∂_i wherein each party is connected to a central hub $C_i \notin H_i$ (for all $i \in [\lvert H \rvert]$) via two channels: one Gaussian and another error corrected. If H is k-uniform and at most t-intersecting, then each star in the interconnection graph formed by the sets $H_i \in H$ contains exactly k members and $2k$ channels such that $\lvert \partial_i \cap \partial_j \rvert \leq t$. During the protocol, each party P_j sends out message pairs of the form $x_j, f(x_j)$, where $x_j \leftarrow \mathbb{Z}$ and f is a randomly selected function of specific type (more on this later), to the central hubs of all stars that it is a member of, such that:

- $f(x)$ is sent over the Gaussian channel,
- x is sent over the error corrected channel.
For the sake of simplicity, in this section, we only consider a single star. Due to the guaranteed errors occurring in the Gaussian channel, the messages recorded at each central hub C_i are of the form: $y = f(x) + \varepsilon_x$, where ε_x belongs to some Gaussian distribution $\mathcal{N}(0, \sigma^2)$ with mean zero and standard deviation σ. Recall that for most schemes, the value of σ primarily relies on the smoothing parameter. In our experiments, which are discussed in Section 6.3, we choose the range of σ as $\sigma \in [10, 300]$—which lies in the range specified by New Hope [24], BCNS [86], and BLISS [151]; for larger ranges, Gaussian ‘convolutions’ [360] can be used to shrink the range of σ [260]. The central hub, C_i, forwards $\{x, y\}$ to all parties over the respective error correct channels in ∂_i.

In our algorithm, we use least squares linear regression which aims to minimize the sum of the squared residuals. We know that the hypothesis generated by linear regression is of the form: $h(x) = \hat{\beta}_0 + \hat{\beta}_1 x$. Thus, the statistical error, with respect to our target function, comes out as:

$$\bar{e}_x = |y - h(x)|.$$ \hfill (6.1)

Due to the nature of the physical layer errors and independent channels, we know that the errors ε_x are random and independent. Thus, it follows that for restricted settings, the error terms \bar{e}_{x_i} and \bar{e}_{x_j} are independent (with respect to a PPT adversary) for all $x_i \neq x_j$, and — are expected to — belong to a Gaussian distribution. Next, we round \bar{e}_x to the nearest integer as: $e_x = \lfloor \bar{e}_x \rfloor$ to get the final error, e_x, which:

- is determined by x,
- belongs to a rounded Gaussian distribution.

We know from [390, 205, 150, 239] that — with appropriate parameters — rounded Gaussians satisfy the hardness requirements for multiple LWE-based constructions. We are now ready to discuss RGPC protocol in detail.

\textit{Note 2.} With a sufficiently large number of messages, $f(x)$ can be very closely approximated by the linear regression hypothesis $h(x)$. Therefore, with a suitable choice of parameters, it is quite reasonable to expect that the error distribution is Gaussian (which is indeed the case — see Lemma 2, where we use drowning/smudging to argue about the insignificance of negligible uniform error introduced by linear regression analysis). Considering this, we also examine the more interesting case wherein the computations are performed in \mathbb{Z}_m (for some $m \in \mathbb{Z}^+ \setminus \{1\}$) instead of over \mathbb{Z}. However, our proofs and arguments are presented according to the former case, i.e., where the computations are performed over \mathbb{Z}. We leave adapting the proofs and arguments for the latter case, i.e., computations over \mathbb{Z}_m, as an open problem.

6.2 Hypothesis Generation from Physical Layer Communications

In this section, we describe hypothesis generation from physical layer communications which allows us to generate an optimal linear regression hypothesis, $h(x)$, for the target function $f(x)$. As mentioned in Note 2, we consider the case wherein the error computations are performed in \mathbb{Z}_m. As described in Section 6.1, the linear regression data for each subset of parties $H_i \in \mathcal{H}$ is comprised of the messages exchanged within star graph ∂_i — that is formed by the parties in $H_i \cup C_i$.

\textbf{Assumptions.} We assume that the following conditions hold:

1. Value of the integer modulus m:
 - is either known beforehand, or
– can be derived from the target function.

2. Size of the dataset, i.e., the total number of recorded physical layer messages, is reasonably large such that there are enough data points to accurately fit linear regression on any function period. In our experiments, we set it to 2^{16} messages.

3. For a dataset $D = \{(x_i, y_i)\} (i \in [\ell])$, it holds for the slope, β_1, of $f(x)$, that ℓ/β_1 is superpolynomial. For our experiments, we set β_1 such that $\ell/\beta_1 \geq 100$.

Setup. Recall that the goal of linear regression is to find subset(s) of data points that can be used to generate a hypothesis $h(x)$ to approximate the target function, which in our case is $f(x) + \varepsilon_x$. Then, we extrapolate it to the entire dataset. However, since modulo is a periodic function, there is no explicit linear relationship between $x \leftarrow \mathbb{Z}$ and $y = f(x) + \varepsilon_x \mod m$, even without the error term ε_x. Thus, we cannot directly apply linear regression to the entire dataset $D = \{(x_i, y_i)\} (i \in [\ell])$ and expect meaningful results unless $\beta_0 = 0$ and $\beta_1 = 1$.

![Fig. 4: Scatter plot for $y = 3x + \varepsilon_x \mod 12288$ (three periods)](image)

We arrange the dataset, D, in ascending order with respect to the x_i values, i.e., for $1 \leq i < j \leq m$ and all $x_i, x_j \in D$, it holds that: $x_i < x_j$. Let $S = \{x_i\}_{i=1}^{\ell}$ denote the ordered set with x_i ($\forall i \in [\ell]$) arranged in ascending order. Observe that the slope of $y = f(x) + \varepsilon_x \mod m$ is directly proportional to the number of periods on any given range, $[x_i, x_j]$. For example, observe the slope in Figure 4, which depicts the scatter plot for $y = 3x + \varepsilon_x \mod 12288$ with three periods. Therefore, in order to find a good linear fit for our target function on a subset of dataset that lies inside the given range, $[x_i, x_j]$, we want to correctly estimate the length of a single period. Consequently, our aim is to find a range $[x_i, x_j]$ for which the following is minimized:

$$\left|\hat{\beta}_1 - \frac{m}{x_j - x_i}\right|,$$ \hspace{1cm} (6.2)
where \(\hat{\beta}_1 \) denotes the slope for our linear regression hypothesis \(h(x) = \hat{\beta}_0 + \hat{\beta}_1 x \) computed on the subset with \(x \) values in \([x_i, x_j]\).

Generating Optimal Hypothesis.

The following procedure describes our algorithm for finding the optimal hypothesis \(h(x) \) and the target range \([x_i, x_j]\) that satisfies Equation (6.2) for \(\beta_0 = 0 \). When \(\beta_0 \) is not necessarily 0, a small modification to the procedure (namely, searching over all intervals \([x_i, x_j]\), instead of searching over only certain intervals as described below) is needed.

Let \(\kappa \) denote the total number of periods, then it follows from Assumption 3 (from Section 6.2) that \(\kappa \leq \lceil \ell/100 \rceil \). Let \(\delta_{\kappa,i} = |\hat{\beta}_1(\kappa, i) - \kappa| \), where \(\hat{\beta}_1(\kappa, i) \) denotes that \(\hat{\beta}_1 \) is computed over the range \([x_{(i-1)\ell/\kappa} + 1, x_{i\ell/\kappa}]\).

1. Initialize the number of periods with \(\kappa = 1 \) and calculate \(\delta_{1,1} = |\hat{\beta}_1(1, 1) - 1| \).
2. Compute the \(\delta_{\kappa,i} \) values for all \(1 < \kappa \leq \lceil \ell/100 \rceil \) and \(i \in [\kappa] \). For instance, \(\kappa = 2 \) denotes that we consider two ranges: \(\hat{\beta}_1(2, 1) \) is calculated on \([x_1, x_{(\ell/\kappa)}]\) and \(\hat{\beta}_1(2, 2) \) on \([x_{(\ell/\kappa)}+1, x_\ell]\). Hence, we compute \(\delta_{2,i} \) for these two ranges. Similarly, \(\kappa = 3 \) denotes that we consider three ranges \([x_1, x_{(\ell/\kappa)}], [x_{(\ell/\kappa)}+1, x_{2\ell/\kappa}]\) and \([x_{2\ell/\kappa}+1, x_\ell]\), and we compute \(\hat{\beta}(3,i) \) and \(\delta_{3,i} \) over these three ranges. Hence, \(\delta_{\kappa,i} \) values are computed for all \((\kappa, i) \) that satisfy \(1 \leq i \leq \kappa \leq \lceil \ell/100 \rceil \).
3. Identify the optimal value \(\delta = \min_{\kappa,i}(\delta_{\kappa,i}) \), which is the minimum over all \(\kappa \in [\lceil \ell/100 \rceil] \) and \(i \in [\kappa] \).
4. After finding the minimal \(\delta \), output the corresponding (optimal) hypothesis \(h(x) \).

What the above algorithm does is basically a grid search over \(\kappa \) and \(i \) with the performance metric being minimizing the \(\delta_{\kappa,i} \) value.

Grid search: more details

Grid search is an approach used for hyperparameter tuning. It methodically builds and evaluates a model for each combination of parameters. Due to its ease of implementation and parallelization, grid search has prevailed as the de-facto standard for hyperparameter optimization in machine learning, especially in lower dimensions. For our purpose, we tune two parameters \(\kappa \) and \(i \). Specifically, we perform grid search to find hypotheses \(h(x) \) for all \(\kappa \) and \(i \) such that \(\kappa \in [\lceil \ell/100 \rceil] \) and \(i \in [\kappa] \). Optimal hypothesis is the one with the smallest value of the performance metric \(\delta_{\kappa,i} \).

6.3 Simulation and Testing

We tested our RGPC algorithm with varying values of \(m \) and \(\beta_1 \) for the following functions:

- \(f(x) = \beta_0 + \beta_1 x \),
- \(f(x) = \beta_0 + \beta_1 \sqrt{x} \),
- \(f(x) = \beta_0 + \beta_1 x^2 \),
- \(f(x) = \beta_0 + \beta_1 \sqrt[3]{x} \),
- \(f(x) = \beta_0 + \beta_1 \ln(x + 1) \).

To generate the training data, we simulated the channel noise, \(\varepsilon_x \), as a random Gaussian noise (introduced by the Gaussian channel), which we sampled from various distributions with zero mean, standard deviation
\[\sigma \in [10, 300], \quad m \in [20000]. \]

Final channel noise was computed by rounding \(\varepsilon_x \) to the nearest integer and reducing the result modulo \(m \).

For each function, we generated \(2^{16} \) unique input-output pairs, exchanged over Gaussian channels, i.e., the dataset for each function is of the form \(D = \{ (x_i, y_i) \} \), where \(i \in [2^{16}] \). As expected, given the dataset \(D \) with data points \(x_i, y_i = f(x_i) + \varepsilon_i \mod m \), our algorithm always converged to the optimal range, yielding close approximations for the target function with deterministic errors, \(\bar{e}_x = |y - h(x)| \mod m \). Figure 5 shows a histogram of the errors \(\bar{e}_x \) generated by our RGPC protocol — with our training data — for the target (linear) function \(y = 546x + \varepsilon_x \mod 12288 \). The errors indeed belong to a truncated Gaussian distribution, bounded by the modulus 12288 from both tails.

![Distribution plot of \(\bar{e}_x \) for \(y = 546x + \varepsilon_x \mod 12288 \). Slope estimate: \(\beta_1 = 551.7782 \).](image)

Moving on to the cases wherein the independent variable \(x \) and the dependent variable \(y \) have a nonlinear relation: the most representative example of such a relation is the power function \(f(x) = \beta_1 x^{\vartheta} \), where \(\vartheta \in \mathbb{R} \). We know that nonlinearities between variables can sometimes be linearized by transforming the independent variable. Hence, we applied the following transformation: if we let \(x_\vartheta = x^\vartheta \), then \(f_\vartheta(x_\vartheta) = \beta_1 x_\vartheta = f(x) \) is linear in \(x_\vartheta \). This can now be solved by applying our hypothesis generation algorithm for linear functions. Figures 6 to 9 show the histograms of the errors \(\bar{e}_x \) generated by our training datasets for the various nonlinear functions from the list given at the beginning of Section 6.3. It is clear that the errors for these nonlinear functions also belong to truncated Gaussian distributions, bounded by their respective moduli from both tails.

6.4 Complexity

Let the size of the dataset collected by recording the physical layer communications be \(\ell \). Then, the complexity for least squares linear regression is \(\Theta(\ell) \) additions and multiplications. It follows from Assumption 3 (from
Fig. 6: Distribution plot of \bar{e}_x for $y = 240\sqrt{x} + \varepsilon_x \mod 12288$. Slope estimate: $\beta_1 = 239.84$.

Fig. 7: Distribution plot of \bar{e}_x for $y = 125x^2 + \varepsilon_x \mod 10218$. Slope estimate: $\beta_1 = 124.51$.

Star-specific Key-homomorphic PRFs from Linear Regression and Extremal Set Theory
Fig. 8: Distribution plot of \bar{e}_x for $y = 221 \sqrt[3]{x} + \varepsilon_x \mod 11278$. Slope estimate: $\beta_1 = 221.01$.

Fig. 9: Distribution plot of \bar{e}_x for $y = 53 \ln(x + 1) + \varepsilon_x \mod 8857$. Slope estimate: $\beta_1 = 54.48$.
Therefore, the overall asymptotic complexity of our algorithm to find optimal hypothesis, and thereafter generate deterministic rounded Gaussian errors is $O(\ell^3)$. In comparison, the complexity of performing least squares linear regression on a dataset $\{(x_i, y_i)\}$ that has not been reduced modulo m is simply $\Theta(\ell)$ additions and multiplications.

6.5 Error Analysis

Before moving ahead, we recommend the reader revisit Note 2.

Our RGPC protocol generates errors, $e_x = |y - h(x)|$, in a deterministic manner by generating a mapping defined by the hypothesis h. Recall that h depends on two factors, namely the randomly generated function $f(x)$ and the ℓ random channel errors ε_x — both of which are derived via ℓ random inputs $x \leftarrow \mathbb{Z}$. Revisiting Definition 20, we observe that:

- RGPC takes ℓ random elements $x \leftarrow \mathbb{Z}$ and ℓ evaluations of $f(x)$, each with an added random channel error ε_x. Collectively, these form the random input, r, described in Definition 20,
- RGPC returns a deterministic mapping which depends on the above random input, r. Following the notation from Definition 20, we can write it as \mathfrak{M}_r. However, we choose the notation \mathfrak{M}_h instead, but note that both are equivalent henceforth,
- Proving that \mathfrak{M}_h satisfies the requirements outlined for the deterministic function/mapping in Definition 20 would directly establish RGPC as a P2SI algorithm — as described in Definition 20.

Let difference of two values modulo m is always represented by an element in $(-m/2, (m+1)/2]$. We make the further assumption that there exists a constant $b \geq 1$ such that the x_i values satisfy:

$$\frac{(x_i - \bar{x})^2}{\sum_{j=1}^{\ell}(x_j - \bar{x})^2} \leq \frac{b}{\ell} \tag{1}$$

for all $i = 1, \ldots, \ell$, where $\bar{x} = \frac{\sum_{j=1}^{\ell} x_j}{\ell}$.

Observe that if $\ell - 1$ divides $m - 1$ and the x_i values are $0, \frac{m-1}{\ell-1}, \ldots, \frac{(\ell-1)(m-1)}{\ell-1}$, then

$$\sum_{j=1}^{\ell}(x_j - \bar{x})^2 = \frac{\ell(\ell^2 - 1)(m-1)^2}{12(\ell - 1)^2},$$

and the numerator is bounded above by $\frac{(m-1)^2}{4}$. Thus, Equation (1) is satisfied for $b = 3$. In general, by the strong law of large numbers, choosing a large enough number of x_i’s uniformly at random from $[0, m - 1]$ will, with very high probability, yield \bar{x} close to $\frac{m-1}{2}$ and $\frac{1}{\ell} \sum_{j=1}^{\ell}(x_j - \bar{x})^2$ close to $\frac{(m^2-1)}{12}$ (since $X \sim U(0, m - 1) \implies \mathbb{E}(X) = \frac{m-1}{2}$ and $\text{var}(X) = \frac{m^2-1}{12}$). Hence, Equation (1) is satisfied with a small constant b, e.g., $b = 4$.

Recall that the dataset is $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{\ell}$, where $y_i = f(x_i) + \varepsilon_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$. Further recall that the regression line is given by $h(x) = \hat{\beta}_0 + \hat{\beta}_1 x$. Then the error \hat{e}_i is given by

$$\hat{e}_i = (\hat{\beta}_0 + \hat{\beta}_1 x_i) - y_i = (\hat{\beta}_0 + \hat{\beta}_1 x_i) - (\beta_0 + \beta_1 x_i + \varepsilon_i)$$

$$= (\hat{\beta}_0 - \beta_0) + (\hat{\beta}_1 - \beta_1) x_i - \varepsilon_i.$$

The joint distribution of the regression coefficients $\hat{\beta}_0$ and $\hat{\beta}_1$ is given by the following well known result:
Proposition 10. Let \(y_1, y_2, \ldots, y_\ell \) be independently distributed random variables such that \(y_i \sim \mathcal{N}(\alpha + \beta x_i, \sigma^2) \) for all \(i = 1, \ldots, \ell \). If \(\hat{\alpha} \) and \(\hat{\beta} \) are the least square estimates of \(\alpha \) and \(\beta \) respectively, then:

\[
\left(\frac{\hat{\alpha}}{\hat{\beta}} \right) \sim \mathcal{N}\left(\left(\begin{array}{c} \alpha \\ \beta \end{array} \right), \sigma^2 \left(\begin{array}{c} \ell \sum_{i=1}^{\ell} x_i^2 - (\sum_{j=1}^{\ell} x_j)^2 \\ \sum_{i=1}^{\ell} x_i^2 \end{array} \right)^{-1} \right).
\]

Applying Proposition 10, and using the fact that \(\mathbf{X} \sim \mathcal{N}(\mu, \Sigma) \implies \mathbf{AX} \sim \mathcal{N}(A\mu, A\Sigma A^T) \), we get:

\[
(\hat{\beta}_0 - \beta_0) + (\hat{\beta}_1 - \beta_1)x_i \sim \mathcal{N}\left(0, \frac{\sigma^2 \sum_{j=1}^{\ell} x_j^2 - 2x_i \sum_{j=1}^{\ell} x_j + \ell x_i^2}{\ell \sum_{j=1}^{\ell} x_j^2 - (\sum_{j=1}^{\ell} x_j)^2}\right) = \mathcal{N}\left(0, \frac{\sigma^2}{\ell} \left(1 + \frac{\ell(x_i - \bar{x})^2}{\sum_{j=1}^{\ell} (x_j - \bar{x})^2}\right)\right).
\]

Thus, by Equation (†), the variance of \((\hat{\beta}_0 - \beta_0) + (\hat{\beta}_1 - \beta_1)x_i \) is bounded above by \((1 + b)\sigma^2/\ell \).

Since \(Z \sim \mathcal{N}(0, 1) \) satisfies \(|Z| \leq 2.807034 \) with probability 0.995, by the union bound, \(\bar{e}_i \) is bounded by

\[
|\bar{e}_i| \leq 2.807034 \left(1 + \sqrt{\frac{1 + b}{\ell}}\right) \sigma
\]

with probability at least 0.99.

Note 3. Our protocol allows fine-tuning the Gaussian errors by tweaking the standard deviation \(\sigma \) and mean \(\mu \) for the Gaussian channel. Hence, in our proofs and arguments, we only use the term “target rounded Gaussian”.

Lemma 2. Suppose that the number of samples \(\ell \) is superpolynomial, and that Equation (†) is satisfied with some constant \(b \). Then, the errors \(e_i \) belong to the target rounded Gaussian distribution.

Proof. Recall that the error \(\bar{e}_i \) has two components: one is the noise introduced by the Gaussian channel and second is the error due to regression fitting. The first component is naturally Gaussian. The standard deviation for the second component is of order \(\sigma/\sqrt{\ell} \). Hence, it follows from drowning/smudging that for a superpolynomial \(\ell \), the error distribution for \(\bar{e}_i \) is statistically indistinguishable from the Gaussian distribution to which the first component belongs. Therefore, it follows that the final output, \(e_i = [\bar{e}_i] \), of the RGPC protocol belongs to the target rounded Gaussian distribution (see Note 3).

To prove that all conditions in Definition 20 are satisfied for \(\mathcal{M}_h \), it remains to show that no external PPT adversary \(A \) has non-negligible advantage in guessing \(e_x \) beforehand. We assume that for an attack query \(x \), \(A \) makes \(\text{poly}(L) \) queries to \(\mathcal{M}_h \) for \(x' \neq x \).

Lemma 3. For an external PPT adversary \(A \), it holds that \(\mathcal{M}_h : x \mapsto e_x \) maps a random element \(x \leftarrow \mathbb{Z} \) to a random element \(e_x \) in the target rounded Gaussian distribution \(\Psi(0, \tilde{\sigma}^2) \).

Proof. It follows from Lemma 2 that \(\mathcal{M}_h \) outputs from the target rounded Gaussian distribution. Note the following straightforward observations:

- Since each coefficient of \(f(x) \) is randomly sampled from \(\mathbb{Z}_m \), \(f(x) \) is a random function.
The inputs to $f(x)$, $x \leftarrow \mathbb{Z}$, are sampled randomly.

The Gaussian channel introduces a noise ε_x to $f(x)$, that is drawn i.i.d. from a Gaussian distribution $\mathcal{N}(0, \sigma^2)$ [244, 296, 380, 454, 442, 443, 462, 246, 469]. Hence, the receiving parties get a random element $f(x) + \varepsilon_x$.

It follows from the observations stated above that $\lceil |f(x) - h(x)| \rceil$ outputs a random element from the target rounded Gaussian $\Psi(0, \hat{\sigma}^2)$.

Hence, $\mathcal{M}_h : x \mapsto e_x$ is a deterministic mapping that maps each of the ℓ inputs $\{x_i\}_{i=1}^{\ell}$ to an element e_x in the desired rounded Gaussian $\Psi(0, \hat{\sigma}^2)$ such that all conditions from Definition 20 are satisfied. It follows that given an input x not seen before, no external PPT adversary \mathcal{A} has non-negligible advantage in guessing e_x. ■

7 Mutual Information Analysis

Definition 27. Let f_X be the p.d.f. of a continuous random variable X. Then, the differential entropy of X is

$$H(X) = - \int f_X(x) \log f_X(x) \, dx.$$

Definition 28. The mutual information, $I(X; Y)$, of two continuous random variables X and Y with joint p.d.f. $f_{X,Y}$ and marginal p.d.f.’s f_X and f_Y respectively, is

$$I(X; Y) = \int \int f_{X,Y}(x,y) \log \left(\frac{f_{X,Y}(x,y)}{f_X(x)f_Y(y)} \right) \, dy \, dx.$$

From the above definitions, it is easy to prove that $I(X; Y)$ satisfies the equality:

$$I(X; Y) = H(X) + H(Y) - H(X,Y).$$

Let us now describe our aim. Suppose, for $i = 1, 2, \ldots, \ell$, we have

$$y_i \sim \mathcal{N}(\alpha + \beta x_i, \sigma^2) \quad \text{and} \quad z_i \sim \mathcal{N}(\alpha + \beta w_i, \sigma^2),$$

with $x_i = w_i$ for $i \in [a]$. Let $h_1(x) = \hat{\alpha}_1 x + \hat{\beta}_1$ and $h_2(w) = \hat{\alpha}_2 w + \hat{\beta}_2$ be the linear regression hypotheses obtained from the samples (x_i, y_i) and (w_i, z_i), respectively. Our goal is to compute an expression for the mutual information

$$I((\hat{\alpha}_1, \hat{\beta}_1); (\hat{\alpha}_2, \hat{\beta}_2)).$$

We begin by recalling the following standard fact:

Proposition 11. Let $X \sim \mathcal{N}(\mathbf{v}, \Sigma)$, where $\mathbf{v} \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$. Then:

$$H(X) = \frac{1}{2} \log(\det \Sigma) + \frac{d}{2} \left(1 + \log(2\pi)\right).$$

Our main result is the following:
Proposition 12. Let $\hat{\alpha}_1$, $\hat{\beta}_1$, $\hat{\alpha}_2$, $\hat{\beta}_2$ be as above. Then

$$H(\hat{\alpha}_1, \hat{\beta}_1) = 2 \log \sigma - \frac{1}{2} \log(\ell X_2 - X_1^2) + (1 + \log(2 \pi)), $$

$$H(\hat{\alpha}_2, \hat{\beta}_2) = 2 \log \sigma - \frac{1}{2} \log(\ell W_2 - W_1^2) + (1 + \log(2 \pi)), $$

and

$$H(\hat{\alpha}_1, \hat{\beta}_1; \hat{\alpha}_2, \hat{\beta}_2)$$

$$= 4 \log \sigma - \frac{1}{2} \log \left((\ell X_2 - X_1^2)(\ell W_2 - W_1^2) \right) + 2(1 + \log(2 \pi))$$

$$+ \frac{1}{2} \log \left(1 - \frac{(\ell C_2 - 2C_1X_1 + aX_2)(\ell C_2 - 2C_1W_1 + aW_2)}{(\ell X_2 - X_1^2)(\ell W_2 - W_1^2)} \right)$$

$$+ \frac{(a - 1)C_2 - C_3)((a - 1)C_2 - C_3 + \ell(X_2 + W_2) - 2X_1W_1)}{(\ell X_2 - X_1^2)(\ell W_2 - W_1^2)}),$$

where $X_1 = \sum_{i=1}^{\ell} x_i$, $X_2 = \sum_{i=1}^{\ell} x_i^2$, $W_1 = \sum_{i=1}^{\ell} w_i$, $W_2 = \sum_{i=1}^{\ell} w_i^2$, $C_1 = \sum_{i=1}^{a} x_i = \sum_{i=1}^{a} w_i$, $C_2 = \sum_{i=1}^{a} x_i^2 = \sum_{i=1}^{a} w_i^2$ and $C_3 = \sum_{i=1}^{\ell} \sum_{j=1, j \neq i} x_i x_j$. The mutual information between $(\hat{\alpha}_1, \hat{\beta}_1)$ and $(\hat{\alpha}_2, \hat{\beta}_2)$ is:

$$I((\hat{\alpha}_1, \hat{\beta}_1); (\hat{\alpha}_2, \hat{\beta}_2))$$

$$= - \frac{1}{2} \log \left(1 - \frac{(\ell C_2 - 2C_1X_1 + aX_2)(\ell C_2 - 2C_1W_1 + aW_2)}{(\ell X_2 - X_1^2)(\ell W_2 - W_1^2)} \right)$$

$$+ \frac{(a - 1)C_2 - C_3)((a - 1)C_2 - C_3 + \ell(X_2 + W_2) - 2X_1W_1)}{(\ell X_2 - X_1^2)(\ell W_2 - W_1^2)}).$$

Proof. The expressions for $H(\hat{\alpha}_1, \hat{\beta}_1)$ and $H(\hat{\alpha}_2, \hat{\beta}_2)$ follow from Propositions 10 and 11, and the expression for $I((\hat{\alpha}_1, \hat{\beta}_1); (\hat{\alpha}_2, \hat{\beta}_2))$ is given by:

$$I((\hat{\alpha}_1, \hat{\beta}_1); (\hat{\alpha}_2, \hat{\beta}_2)) = H(\hat{\alpha}_1, \hat{\beta}_1) + H(\hat{\alpha}_2, \hat{\beta}_2) - H(\hat{\alpha}_1, \hat{\beta}_1, \hat{\alpha}_2, \hat{\beta}_2).$$

It remains to derive the expression for $H(\hat{\alpha}_1, \hat{\beta}_1, \hat{\alpha}_2, \hat{\beta}_2)$.

First, define the matrices

$$X = \begin{pmatrix} 1 x_1 \\ 1 x_2 \\ \vdots \\ 1 x_\ell \end{pmatrix}, \quad W = \begin{pmatrix} 1 w_1 \\ 1 w_2 \\ \vdots \\ 1 w_\ell \end{pmatrix}.$$

Then

$$\hat{\theta} := \begin{pmatrix} \hat{\alpha}_1 \\ \hat{\beta}_1 \\ \hat{\alpha}_2 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \alpha \\ \beta \end{pmatrix} + \left(X^T X \right)^{-1} X^T U \left(W^T W \right)^{-1} W^T V$$

$$= \begin{pmatrix} \alpha \\ \beta \\ \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} (X^T X)^{-1} X^T \\ 0 \quad (W^T W)^{-1} W^T \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix}.$$
where \(\mathbf{U}, \mathbf{V} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d) \). Hence, it follows that:

\[
\var(\hat{\theta}) = \begin{pmatrix}
(X^T \mathbf{X})^{-1} X^T & 0 \\
0 & (W^T W)^{-1}
\end{pmatrix}
\begin{pmatrix}
\var(\mathbf{U}) & 0 \\
0 & \var(\mathbf{V})
\end{pmatrix}
\begin{pmatrix}
(X^T \mathbf{X})^{-1} & 0 \\
0 & (W^T W)^{-1}
\end{pmatrix}.
\]

For any matrix \(\mathbf{M} = (M_{i,j}) \), let \([\mathbf{M}]_a \) denote the matrix with the same dimensions as \(\mathbf{M} \), and with entries

\[
([\mathbf{M}]_a)_{i,j} = \begin{cases}
M_{i,j} & \text{if } i,j \leq a, \\
0 & \text{otherwise.}
\end{cases}
\]

Note that

\[
\var(\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix}) = \begin{pmatrix}
\sigma^2 \mathbf{I}_d & \sigma^2 [\mathbf{I}]_a \\
\sigma^2 [\mathbf{I}]_a & \sigma^2 \mathbf{I}_d
\end{pmatrix},
\]

which implies that

\[
\var(\hat{\theta}) = \sigma^2 \left((X^T \mathbf{X})^{-1} [(W^T W)^{-1}]_a (X^T \mathbf{X})^{-1} \right) \left((X^T \mathbf{X})^{-1} [X^T X]_a (W^T W)^{-1} \right). \]

Hence,

\[
\det(\var(\hat{\theta})) = \sigma^8 \det(A - BD^{-1}C) \det(D),
\]

where

\[
A = (X^T \mathbf{X})^{-1} = \begin{pmatrix}
\frac{X_2}{(X_2 - X_1^2)} & -\frac{X_1}{(X_2 - X_1^2)} \\
-\frac{X_1}{(X_2 - X_1^2)} & \frac{X_1}{(X_2 - X_1^2)}
\end{pmatrix},
\]

\[
B = [(X^T \mathbf{X})^{-1} X^T]_a (W^T W)^{-1}) = \begin{pmatrix}
\sum_{i=1}^a (X_2 - x_iX_1)(W_2 - w_iW_1) \\
\sum_{i=1}^a (x_iX_1)(W_2 - w_iW_1)
\end{pmatrix},
\]

\[
C = [(W^T W)^{-1} X^T]_a (X^T \mathbf{X})^{-1} = \begin{pmatrix}
\sum_{i=1}^a (X_2 - x_iX_1)(W_2 - w_iW_1) \\
\sum_{i=1}^a (x_iX_1)(W_2 - w_iW_1)
\end{pmatrix},
\]

\[
D = (W^T W)^{-1} = \begin{pmatrix}
\ell W_1 \\
W_1 W_2
\end{pmatrix}^{-1}.
\]

After a lengthy computation, we obtain the following expression for \(\det(\var(\hat{\theta})) \):

\[
\frac{\sigma^8}{(X_2 - X_1^2)(\ell W_2 - W_2^2)} \left(1 - \frac{(\ell C_2 - 2C_1X_1 + aX_2)(\ell C_2 - 2C_1W_1 + aW_2)}{(X_2 - X_1^2)(\ell W_2 - W_2^2)} \\
+ \frac{(a-1)C_2 - C_3}{(X_2 - X_1^2)(\ell W_2 - W_2^2)} \right).
\]

The expression for \(H(\alpha_1, \beta_1, \alpha_2, \beta_2) \) follows by applying Proposition 11. ■
8 Learning with Linear Regression (LWLR)

In this section, we define LWLR and reduce its hardness to LWE. As mentioned in Note 3, our RGPC protocol allows freedom in tweaking the target rounded Gaussian distribution \(\Psi(0, \hat{\sigma}^2) \) by simply selecting the desired standard deviation \(\sigma \). Therefore, when referring to the desired rounded Gaussian distribution for the hardness proofs, we use \(\Psi(0, \hat{\sigma}^2) \) (or \(\Psi(0, \hat{\sigma}^2) \) mod \(m \), i.e., \(\Psi_m(0, \hat{\sigma}^2) \)) without divulging into the specific value of \(\sigma \).

Let \(\mathcal{P} = \{ P_i \}_{i=1}^n \) be a set of \(n \) parties.

Definition 29. For modulus \(m \) and a uniformly sampled \(a \leftarrow \mathbb{Z}_m^w \), the learning with linear regression (LWLR) distribution \(\text{LWLR}_{s,m,w} \) over \(\mathbb{Z}_m^w \times \mathbb{Z}_m \) is defined as: \((a, x + e_x) \), where \(x = \langle a, s \rangle \) and \(e_x \in \Psi(0, \hat{\sigma}^2) \) is a rounded Gaussian error generated by the RGPC protocol, on input \(x \).

Theorem 5. For modulus \(m \), security parameter \(\ell = g(\ell) \) samples (where \(g \) is a superpolynomial function), PPT adversary \(A \notin \mathcal{P} \), some distribution over secret \(s \in \mathbb{Z}_m^w \), and a deterministic mapping \(\mathcal{M}_h : \mathbb{Z} \rightarrow \Psi(0, \hat{\sigma}^2) \) generated by the RGPC protocol, where \(\Psi(0, \hat{\sigma}^2) \) is the target rounded Gaussian distribution, solving decision-LWLR_{s,m,w} is at least as hard as solving the decision-LWE_{s,m,w} problem for the same distribution over \(s \).

Proof. Recall from Lemma 2 that, since \(\ell \) is superpolynomial, the errors belong to the desired rounded Gaussian distribution \(\Psi(0, \hat{\sigma}^2) \). As given, for a fixed secret \(s \in \mathbb{Z}_m^w \), a decision-LWLR_{s,m,w} instance is defined as \((a, x + e_x) \) for \(a \leftarrow \mathbb{Z}_m^w \) and \(x = \langle a, s \rangle \). Recall that a decision-LWE_{s,m,w} instance is defined as \((a, (a, s) + e) \) for \(a \leftarrow \mathbb{Z}_m^w \) and \(e \leftarrow \chi \) for a rounded (or discrete) Gaussian distribution \(\chi \). We know from Lemma 3 that \(\mathcal{M}_h \) is a deterministic mapping from random inputs \(x \leftarrow \mathbb{Z} \) to errors \(e_x \in \Psi(0, \hat{\sigma}^2) \). We define the following two games:

- **Game 1 (G1):** In this game, we begin by fixing a secret \(s \). Each query from the attacker is answered with an LWLR_{s,m,w} instance as: \((a, x + e_x) \) for a unique \(a \leftarrow \mathbb{Z}_m^w \) and \(x = \langle a, s \rangle \). The error \(e_x \in \Psi(0, \hat{\sigma}^2) \) is generated as: \(e_x = \mathcal{M}_h(x) \).

- **Game 2 (G2):** In this game, we begin by fixing a secret \(s \). Each query from the attacker is answered with an LWE_{s,m,w} instance as: \((a, (a, s) + e) \) for \(a \leftarrow \mathbb{Z}_m^w \) and \(e \leftarrow \Psi(0, \hat{\sigma}^2) \), where \(\Psi(0, \hat{\sigma}^2) \) denotes a rounded Gaussian distribution that is suitable for sampling LWE errors.

Let the adversary \(A \) be able to distinguish LWLR_{s,m,w} from LWE_{s,m,w} with some non-negligible advantage, i.e., \(Adv_A(\mathcal{E}_1, \mathcal{E}_2) \geq \varphi(w) \) for a non-negligible function \(\varphi \). Hence, it follows that \(Adv_A(\Psi(0, \hat{\sigma}^2), \Psi(0, \hat{\sigma}^2)) \geq \varphi(w) \). However, we have already established in Lemma 3 that \(\mathcal{M}_h \) is random to \(A \notin \mathcal{P} \). Furthermore, we know that \(\hat{\sigma} \) can be brought arbitrarily close to \(\hat{\sigma} \) (see Note 3). Therefore, with careful selection of parameters, it must hold that \(Adv_A(\Psi(0, \hat{\sigma}^2), \Psi(0, \hat{\sigma}^2)) \leq \eta(w) \) for a negligible function \(\eta \), which directly leads to \(Adv_A(\mathcal{E}_1, \mathcal{E}_2) \leq \eta(w) \). Hence, for any distribution over a secret \(s \in \mathbb{Z}_m^w \), solving decision-LWLR_{s,m,w} is at least as hard as solving the decision-LWE_{s,m,w} problem for the same distribution over \(s \).

9 Star-specific Key-homomorphic PRFs

In this section, we use LWLR to construct the first star-specific key-homomorphic (SSKH) PRF family. We adapt the key-homomorphic PRF construction from [45] by replacing the deterministic errors generated from the rounding function in LWR with the errors produced via the deterministic mapping, generated by our RGPC protocol.
9.1 Background

For the sake of completeness, we begin by recalling the key-homomorphic PRF construction from [45]. Let T be a full binary tree with at least one node, i.e., every non-leaf node in T has two children. Let $T.r$ and $T.l$ denote its right and left subtree, respectively, and $[\cdot]_p$ denote the rounding function from LWR (see Section 3.1 for an introduction to LWR).

Let $q \geq 2$, $d = \lceil \log q \rceil$, and $x[i]$ denote the i^{th} bit of a bit-string x. Define a gadget vector as:

$$g = (1, 2, 4, \ldots, 2^{d-1}) \in \mathbb{Z}_d.$$

Define a decomposition function $g^{-1} : \mathbb{Z}_q \rightarrow \{0, 1\}^d$ such that $g^{-1}(a)$ is a “short” vector and $\forall a \in \mathbb{Z}_q$, it holds that: $\langle g, g^{-1}(a) \rangle = a$, where $\langle \cdot \rangle$ denotes the inner product. Function g^{-1} is defined as:

$$g^{-1}(a) = (x[0], x[1], \ldots, x[d-1]) \in \{0, 1\}^d,$$

where $a = \sum_{i=0}^{d-1} x[i] \cdot 2^i$ is the binary representation of a. The gadget vector is used to define the gadget matrix G as:

$$G = I_w \otimes g = \text{diag}(g, \ldots, g) \in \mathbb{Z}_{w \times wd},$$

where I_w is the $w \times w$ identity matrix and \otimes denotes the Kronecker product [399]. The binary decomposition function, g^{-1}, is applied entry-wise to vectors and matrices over \mathbb{Z}_q. Thus, g^{-1} can be extended to get another deterministic decomposition function

$$G^{-1} : \mathbb{Z}_q^{w \times u} \rightarrow \{0, 1\}^{wd \times u}$$

such that $G \cdot G^{-1}(A) = A$.

Given uniformly sampled matrices, $A_0, A_1 \in \mathbb{Z}_q^{w \times wd}$, define function $A_T(x) : \{0, 1\}^{|T|} \rightarrow \mathbb{Z}_q^{w \times wd}$ as:

$$A_T(x) = \begin{cases} A_x & \text{if } |T| = 1, \\ A_{T.l}(x_l) \cdot G^{-1}(A_{T.r}(x_r)) & \text{otherwise}, \end{cases}$$

where $|T|$ denotes the total number of leaves in T and $x \in \{0, 1\}^{|T|}$ such that $x = x_l||x_r$ for $x_l \in \{0, 1\}^{|T.l|}$ and $x_r \in \{0, 1\}^{|T.r|}$. The key-homomorphic PRF family is defined as:

$$\mathcal{F}_{A_0, A_1, T, p} = \left\{ F_s : \{0, 1\}^{|T|} \rightarrow \mathbb{Z}_p^{wd} \right\},$$

where $p \leq q$ is the modulus. A member of the function family \mathcal{F} is indexed by the seed $s \in \mathbb{Z}_q^w$ as:

$$F_s(x) = [s \cdot A_T(x)]_p.$$

9.2 Our Construction

We are now ready to present the construction for the first SSKH PRF family.
Settings. Let $\mathcal{P} = \{P_i\}_{i=1}^n$ be a set of n honest parties, that are arranged as the vertices of an interconnection graph $G = (V, E)$, which is comprised of S_k stars $\partial_1, \ldots, \partial_n$, i.e., each subgraph ∂_i is a star with k leaves. As mentioned in Section 6.1, we assume that each party in ∂_i is connected to ∂_i’s central hub C_i via two channels: one Gaussian channel with the desired parameters and another error corrected channel. Each party in \mathcal{P} receives parameters A_0, A_1, i.e., all parties are provisioned with identical parameters. Hence, physical layer communications and measurements are the exclusive source of variety and secrecy in this protocol. Since we are dealing with vectors, the data points for linear regression analysis, i.e., the messages exchanged among the parties in the stars, are of the form $\{(x_i, y_i)\}_{i=1}^\ell$, where $x_i, y_i \in \mathbb{Z}^{w}$. Consequently, the target rounded Gaussian distribution becomes $\Psi^{wd}(0, \sigma^2)$. Let the parties in each star exchange messages in accordance to the RGPC protocol such that messages from different central hubs C_i, C_j ($\forall i, j \in [\rho]; i \neq j$) are distinguishable to the parties belonging to multiple stars.

Construction. Without loss of generality, consider a star $\partial_i \subseteq V(G)$. Each party in ∂_i follows the RGPC protocol to generate its linear regression hypothesis $h(\partial_i)$. Parties in star ∂_i construct a ∂_i-specific key-homomorphic PRF family, whose member $F_{s_i}^{(\partial_i)}(x)$, indexed by the key/seed $s_i \in \mathbb{Z}_m^w$, is defined as:

$$F_{s_i}^{(\partial_i)}(x) = s_i \cdot A_T(x) + e_b^{(\partial_i)} \mod m,$$

where $A_T(x)$ is as defined by Equation (9.1), $b = s_i \cdot A_T(x)$, and $e_b^{(\partial_i)} = \mathcal{M}_{h(\partial_i)}(b)$ denotes a rounded Gaussian error computed by the deterministic mapping $\mathcal{M}_{h(\partial_i)}$ on input b. Recall that $\mathcal{M}_{h(\partial_i)}$ is generated by our RGPC protocol from hypothesis $h(\partial_i)$. The star-specific secret s_i can be generated by using a reconfigurable antenna (RA) [22, 222] at the central hub, C_i, and thereafter reconfiguring it to randomize the error-corrected channel between itself and the parties in ∂_i. Specifically, s_i can be generated via the following procedure:

1. After performing the RGPC protocol, each party $P_j \in \partial_i$ sends a random $r_j \in \ell$ to C_i via the error corrected channel. C_i broadcasts r_j to all parties in ∂_i and randomizes all error-corrected channels by reconfiguring its RA. If two parties’ r_j values arrive simultaneously, then C_i randomly discards one of them and notifies the corresponding party to resend another random value. This ensures that the channels are re-randomized after receiving each r_j value. By the end of this cycle, each party receives k random values $\{r_j\}_{j=1}^k$. Let φ_i denote the set of all r_j values received by the parties in ∂_i.

2. Each party in ∂_i computes $\bigoplus_{r_j \in \varphi_i} r_j = s \mod m$.

3. This procedure is repeated to extract the required number of bits to generate the vector s_i.

Since C_i randomizes all its channels by simply reconfiguring its RA, no active or passive adversary can compromise all $r_j \in \varphi_i$ values [36, 319, 354, 22, 222, 475, 353, 136]. In honest settings, secrecy of the star-specific secret s_i, generated by the aforementioned procedure, follows directly from the following three facts:

(i) All parties are honest.

(ii) All data points $\{x_i\}_{i=1}^\ell$ are randomly sampled integers, i.e., $x_i \in \mathbb{Z}$.

(iii) The coefficients of $f(x)$, and hence $f(x)$ itself, are random.

In the following section, we examine the settings with active/passive and internal/external adversaries. Note that the protocol does not require the parties to share their identities. Hence, the above protocol is trivially anonymous over anonymous channels (see [138, 163] for surveys on anonymous communications). Since anonymity has multiple applications in cryptographic protocols [423, 368, 69, 268, 382, 407, 406, 52, 140, 192, 348, 218, 349, 238], it is a useful feature of our construction.
9.3 Maximum number of SSKH PRFs and Defenses Against Various Attacks

In this section, we employ our results from Section 5 to derive the maximum number of SSKH PRFs that can be constructed by a set of n parties. Recall that we use the terms star and star graph interchangeably. We know that in order to construct a SSKH PRF family, the parties are arranged in an interconnection graph G wherein the — possibly overlapping — subsets of \mathcal{P} form different star graphs, $\mathcal{S}_1, \ldots, \mathcal{S}_\rho$, within G. We assume that for all $i \in [\rho]$, it holds that: $|\mathcal{S}_i| = k$. Recall from Section 5 that we derived various bounds on the size of the following set families \mathcal{H} defined over a set of n elements:

1. \mathcal{H} is an at most t-intersecting k-uniform family,
2. \mathcal{H} is a maximally cover-free at most t-intersecting k-uniform family.

We set n to be the number of vertices in G. Hence, k represents the size of each star with t being equal to (or greater than) $\max_{i \neq j} |\mathcal{S}_i \cap \mathcal{S}_j|$.

In our SSKH PRF construction, no member of a star \mathcal{S} has any secrets that are hidden from the other members of \mathcal{S}. Also, irrespective of their memberships, all parties are provisioned with identical set of initial parameters. The secret keys and regression models are generated via physical layer communications and collaboration. Due to these facts, the parties in our SSKH PRF construction must be either honest or semi-honest but non-colluding. We consider these factors while computing the maximum number of SSKH PRFs that can be constructed securely against various types of adversaries. For a star \mathcal{S}, let $O_{\mathcal{S}}$ denote an oracle for the SSKH PRF $F^{(\mathcal{S})}_s$, i.e., on receiving input x, $O_{\mathcal{S}}$ outputs $F^{(\mathcal{S})}_s(x)$. Given oracle access to $O_{\mathcal{S}}$, it must hold that for a PPT adversary A who is allowed poly(L) queries to $O_{\mathcal{S}}$, the SSKH PRF $F^{(\mathcal{S})}_s$ remains indistinguishable from a uniformly random function U — defined over the same domain and range as $F^{(\mathcal{S})}_s$.

Let E_i denote the set of Gaussian and error-corrected channels that are represented by the edges in star \mathcal{S}_i.

External Adversary with Oracle Access. In this case, the adversary can only query the oracle for the SSKH PRF, and hence the secrecy follows directly from the hardness of LWLR. Therefore, at most t-intersecting k-uniform families are sufficient for this case, i.e., we do not need the underlying set family \mathcal{H} to be maximally cover-free. Moreover, $t = k - 1$ suffices for this case because maximum overlap between different stars can be tolerated. Hence, it follows from Proposition 7 (in Section 5) that the maximum number of SSKH PRFs that can be constructed is:

$$\zeta \sim \frac{n^k}{k!}.$$

Eavesdropping Adversary with Oracle Access. Wyner’s wiretap model [453] models an eavesdropper observing a degraded version of the information exchanged on the main channel through a wiretap channel. Let A be an eavesdropping adversary with wiretap channels, observing a subset E' of Gaussian and/or error-corrected channels between parties and central hubs. Furthermore, assume that A has oracle access to the target star’s SSKH PRF. Without loss of generality, let \mathcal{S}_i be the target star. Also, note that there can be more than one target stars. Let us analyze the security with respect to this adversary.

1. Secrecy of s_i: After each party $P_z \in \mathcal{S}_i$ contributes to the generation of s_i by sending a random value r_z to C_i, which then broadcasts r_z to all parties in \mathcal{S}_i, C_i randomizes all error-corrected channels by reconfiguring its RA. This means that A cannot compromise all r_z values. Hence, it follows that no
information about \(s_i \) is leaked to \(A \). Furthermore, it follows from the wiretap channel model that \(A \) cannot get precise value of any \(r_z \).

2. Messages exchanged via the channels in \(E' \): leakage of enough messages exchanged within star \(\partial_i \) would allow \(A \) to closely approximate the deterministic mapping \(\mathcal{M}_{h(\partial_i)} \). Note that for this attack to work, \(A \) must successfully eavesdrop on enough channels in \(\partial_i \). However, since \(A \) is an outsider with only access to wiretap channels, it follows from Proposition 12, and known information-theoretic results about physical layer communications [452, 411] and (Gaussian) wiretap eavesdropping [453, 287, 277, 351, 335, 336, 202, 274, 47] that \(A \) cannot gain any non-negligible information on \(\mathcal{M}_{h(\partial_i)} \).

Hence, an eavesdropping adversary with wiretap channels and oracle access has no non-negligible advantage over an external adversary with oracle access. Therefore, it follows that the maximum number of SSKH PRFs that can be constructed in this case is:

\[\zeta \sim \frac{n^k}{k!} \]

Non-colluding Semi-honest Parties. Let \(P_{\partial_i} \subseteq P \) denote the set of parties that form the star \(\partial_i \) — in addition to the central hub \(C_i \). Suppose that some or all parties in \(P \) are semi-honest, i.e., they follow the protocol correctly but try to gain/infer more information than what is allowed by the protocol. Further suppose that the parties do not collude with each other. However, this assumption is redundant if all malicious parties belong to same set of stars because broadcast in our protocol provides malicious parties with all the information exchanged in the stars they belong to. The restriction of non-collusion is required when at least one pair of malicious parties are members of different sets of stars. In such settings, the only way any party \(P_j \notin \partial_i \) can gain additional information about the SSKH PRF \(F_{s_i(\partial_i)} \) is to (mis)use its membership of other stars. For instance, if \(P_j \in P_{\partial_i}, P_{\partial_j}, P_{\partial_o} \) and \(P_{\partial_i} \subset P_{\partial_o} \cup P_{\partial_j} \cup P_{\partial_d} \), then because the parties send identical messages to all central hubs they are connected to, it follows that \(H(F_{s_i(\partial_i)}|P_j) = 0 \). This follows trivially because \(P_j \) can compute \(s_i \). Having maximally cover-free families eliminates this vulnerability against non-colluding semi-honest parties. This holds because with members of a maximally cover-free family denoting unique stars in \(G \), the following can never hold true for any \(P_{\partial_i} \):

\[P_{\partial_i} \subseteq \bigcup_{j \in \rho} P_{\partial_j}, \]

where \(\rho \subseteq [\rho] - \{i\} \). Hence, it follows from Proposition 8 that the maximum number of SSKH PRFs that can be constructed with non-colluding semi-honest parties is at least \(Cn \) for some positive real number \(C < 1 \).

Thus, in order to construct SSKH PRFs that are secure against all types of adversaries and threat models discussed in this section, the underlying family of sets must be maximally cover-free, at most \((k-1)\)-intersecting and \(k\)-uniform.

Man-in-the-Middle. Physical-layer-based key generation schemes exploit the channel reciprocity for secret key extraction, which can achieve information-theoretic secrecy against eavesdroppers. However, these schemes have been shown to be vulnerable against man-in-the-middle (MITM) attacks. During a typical MITM attack, the adversary creates separate connection(s) with the communicating node(s) and relays altered transmission packets to them. Eberz et al. [161] demonstrated a practical MITM attack against RSS-based key generation protocols [244, 318], wherein the MITM adversary \(A \) exploits the same channel characteristics as the target/communicating parties \(P_1, P_2 \). To summarize, in the attack from [161], \(A \) injects
packets that cause a similar channel measurement at both P_1 and P_2. This attack enables \mathcal{A} to recover up to 47% of the secret bits generated by P_1 and P_2.

To defend against such attacks, we can apply techniques that allow us to detect an MITM attack over physical layer [440], and if one is detected, the antenna of ∂_i’s central hub, C_i, can be reconfigured to randomize all channels in ∂_i [354]. This only requires a reconfigurable antenna (RA) at each central hub. An RA can swiftly reconfigure its radiation pattern, polarization, and frequency by rearranging its antenna currents [22, 222]. It has been shown that due to multipath resulting from having an RA, even small variation by the RA can create large variations in the channel, effectively creating fast varying channels with a random distribution [352]. One way an RA may randomize the channels is by randomly selecting antenna configurations in the transmitting array at the symbol rate, leading to a random phase and amplitude multiplied to the transmitted symbol. The resulting randomness is compensated by appropriate element weights so that the intended receiver does not experience any random variations. In this manner, an RA can be used to re-randomize the channel and hence break the temporal correlation of the channels between \mathcal{A} and the attacked parties, while preserving the reciprocity of the other channels.

Therefore, even if an adversary \mathcal{A} is able to perform successful injection in communication round β, its channels with the attacked parties would be randomly modified (by the RA) when it attempts injections in round $\beta+1$. On the other hand, the channels between the parties in star ∂_i and the central hub C_i remain reciprocal, i.e., they can still make correct/identical measurements. Hence, by reconfiguring C_i’s RA, we can prevent further injections from \mathcal{A} without affecting the legitimate parties’ ability to make correct channel measurements. Further details on this defense technique are beyond the scope of this paper. For detailed introduction to the topic and its applications in different settings, we refer the interested reader to [36, 319, 354, 22, 222, 475, 353, 136]. In this manner, channel state randomization can be used to effectively reduce an MITM attack to the less harmful jamming attack [330]. See [371] for a thorough introduction to jamming and anti-jamming techniques.

9.4 Runtime and Key Size

We know that the complexity of a single evaluation of the key-homomorphic PRF from [45] is $\Theta(|T|w^\omega \log^2 m)$ ring operations in \mathbb{Z}_m, where $\omega \in [2, 2.37286]$ is the exponent of matrix multiplication [27, 67]. Using the fast integer multiplication algorithm from [229], this gives a time complexity of $\Theta(|T|w^\omega m \log^3 m)$. The time taken by the setup of our SSKH PRF construction is equal to the time required by our RGPC algorithm to find the optimal hypothesis, which we know from Section 6.4 to be $\Theta(\ell)$ additions and multiplications. If B is an upper bound on x_i and y_i, then the time complexity is $O(\ell B \log B)$. Once the optimal hypothesis is known, it takes $\Theta(wm \log^2 m)$ time to generate a deterministic LWLR error for a single input. Hence, after the initial setup, the time complexity of a single function evaluation of our SSKH PRF remains $\Theta(|T|w^\omega m \log^3 m)$.

Similarly, the key size for our SSKH PRF family is the same as that of the key-homomorphic PRF family from [45]. Specifically, for security parameter L and 2^L security against the well known lattice reduction algorithms [13, 176, 184, 186, 187, 285, 345, 343, 325, 324, 373, 400, 401, 402, 344, 377, 294, 19, 68, 220, 337, 334, 109, 221], the key size for our SSKH PRF family is L.

9.5 Correctness and Security

Recall that LWR employs rounding to hide all but some of the most significant bits of $\lfloor s \cdot A \rfloor_p$; therefore, the rounded-off bits become the deterministic error. On the other hand, our solution, i.e., LWLR, uses linear regression hypothesis to generate the desired rounded Gaussian errors, which are derived from the
(independent) errors occurring in the physical layer communications over Gaussian channel(s). For the sake of simplicity, the proofs assume honest parties in the absence of any adversary. For other supported cases, it is easy to adapt the statements of the results according to the bounds/conditions established in Section 9.3.

Recall that the RGPC protocol ensures that all parties in a star \(\Delta \) receive an identical dataset \(\mathcal{D} \), and therefore arrive at the same linear regression hypothesis \(h(\Delta) \) and errors \(e_b^{(\Delta)} \).

Theorem 6. The function family defined by Equation (9.2) is a star-specific key-homomorphic PRF under the decision-LWE assumption.

Proof. We know from Theorem 5 that for \(s_i \leftarrow \mathbb{S} \mathbb{Z}_m^w \) and a superpolynomial number of samples \(\ell \), the LWLR instances generated in Equation (9.2) are as hard as LWE — to solve for \(s_i \) (and \(e_b^{(\Delta)} \)). The randomness of the function family follows directly from the randomness of \(s_i \). The deterministic behavior follows from the above observation and the fact that \(A_T(x) \) is a deterministic function. Hence, the family of functions defined in Equation (9.2) is a PRF family.

Define

\[
G^{(\Delta)}(x) = s \cdot A_T(x) + \lfloor |e_b^{(\Delta)}| \rfloor \mod m,
\]

where \(e_b^{(\Delta)} \) is the (raw) Gaussian error corresponding to \(b \) for star \(\Delta \); define \(G^{(\Delta)} \) similarly. Since the errors \(e_b^{(\Delta)} \) and \(e_b^{(\Delta)} \) are independent Gaussian random variables, each with variance \(\sigma^2 \), it holds that:

\[
\begin{align*}
\Pr[G^{(\Delta)}(x) = G^{(\Delta)}(x)] &= \Pr[|e_b^{(\Delta)}| = |e_b^{(\Delta)}|] \\
&\leq \Pr[|e_b^{(\Delta)} - e_b^{(\Delta)}| < 1] \\
&= \Pr[|Z| < (\sqrt{2\sigma})^{-1}]
\end{align*}
\]

where \(Z \) is a standard Gaussian random variable.

Furthermore, since the number of samples is superpolynomial in the security parameter \(L \), by drowning/smudging, the statistical distance between \(e_b^{(\Delta)} \) and \(e_b^{(\Delta)} \) is negligible (similarly for \(e_b^{(\Delta)} \) and \(e_b^{(\Delta)} \)). Hence,

\[
\begin{align*}
\Pr[F^{(\Delta)}(x) = F^{(\Delta)}(x)] &= \Pr[G^{(\Delta)}(x) = G^{(\Delta)}(x)] + \eta(L) \\
&\leq \Pr[|Z| < (\sqrt{2\sigma})^{-1}] + \eta(L),
\end{align*}
\]

where \(\eta(L) \) is a negligible function in \(L \). By choosing \(\delta = \Pr[|Z| < (\sqrt{2\sigma})^{-1}] \), this function family satisfies Definition 21(i).

Finally, by Chebyshev’s inequality and the union bound, for any \(\tau > 0 \),

\[
F^{(\Delta)}(x) + F^{(\Delta)}(x) = F^{(\Delta)}(x) + e' \mod m,
\]

where each entry of \(e' \) lies in \([-3\tau, 3\tau]\) with probability at least \(1 - 3\tau^2 \). For example, choosing \(\tau = \sqrt{300} \) gives us the bound that the absolute value of each entry is bounded by \(\sqrt{2700}\sigma \) with probability at least 0.99.

Therefore, the function family defined by Equation (9.2) is a SSKH PRF family — as defined by Definition 21 — under the decision-LWE assumption. \(\blacksquare \)
10 Conclusion

In this paper, we introduced a novel derandomized variant of the celebrated learning with errors (LWE) problem, called learning with linear regression (LWLR), which derandomizes LWE via deterministic, yet sufficiently independent, errors that are generated by using special linear regression models whose training data consists of physical layer communications over Gaussian channels. Prior to our work, learning with rounding and its variant nearby learning with lattice rounding were the only known derandomized variant of the LWE problem; both of which relied on rounding. LWLR relies on the naturally occurring errors in physical layer communications to derandomize LWE while maintaining its hardness — for specific parameters.

We also introduced star-specific key-homomorphic (SSKH) pseudorandom functions (PRFs), which are directly defined by the physical layer communications among the respective sets of parties that construct them. We used LWLR to construct the first SSKH PRF family. In order to quantify the maximum number of SSKH PRFs that can be constructed by sets of overlapping parties, we derived:

- a formula to compute the mutual information between linear regression models that are generated from overlapping training datasets,
- bounds on the size of at most t-intersecting k-uniform families of sets. We also gave an explicit construction to build such set systems,
- bounds on the size of maximally cover-free at most t-intersecting k-uniform families of sets.

Using these results, we established the maximum number of SSKH PRFs that can be constructed by a given set of parties in the presence of active/passive and internal/external adversaries.

References

1. Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. Algebraic XOR-RKA-secure pseudorandom functions from post-zeroizing multilinear maps. In ASIACRYPT, pages 386–412, 2019.
2. Masayuki Abe, Jan Camenisch, Rafael Dowsley, and Maria Dubovitskaya. On the impossibility of structure-preserving deterministic primitives. Journal of Cryptology, 32:239–264, 2019.
3. Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the shortest vector problem in 2^n time using discrete gaussian sampling: Extended abstract. In STOC, pages 733–742, 2015.
4. Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the closest vector problem in 2^n time - the discrete gaussian strikes again! CoRR, 2015. arXiv:1504.01995.
5. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In CRYPTO, pages 98–115, 2010.
6. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional Encryption for Inner Product Predicates from Learning with Errors. In ASIACRYPT, pages 21–40, 2011.
7. Carlos Aguilar-Melchor, Martin R. Albrecht, and Thomas Ricosset. Sampling from arbitrary centered discrete gaussians for lattice-based cryptography. In Applied Cryptography and Network Security, pages 3–19, 2017.
8. Rudolf Ahlswede and Levon H. Khachatrian. The complete intersection theorem for systems of finite sets. European Journal of Combinatorics, 18(2):125–136, 1997.
9. Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungyoung Lee. OBFUSCRO: a commodity obfuscation engine on Intel SGX. In NDSS. The Internet Society, 2019.
10. M. Aigner. Turán’s graph theorem. The American Mathematical Monthly, 102(9):808–816, 1995.
11. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, pages 99–108, 1996.
12. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In STOC, pages 284–293, 1997.
13. Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In STOC, pages 601–610, 2001.
14. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In TCC, pages 474–495, 2009.
15. Sheldon B. Akers, Dov Harel, and Balakrishnan Krishnamurthy. The star graph: An attractive alternative to the n-cube. In *Interconnection Networks for High-Performance Parallel Computers*, pages 145–152. IEEE Computer Society Press, Washington, DC, USA, 1994.

16. Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretic model for symmetric interconnection networks. *IEEE Transactions on Computers*, 38(4):555–566, 1989.

17. Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive classical verification of quantum computation. In *TCC*, pages 153–180, 2020.

18. Navid Alamati, Hart Montgomery, and Sikhar Patranabis. Ring key-homomorphic weak PRFs and applications. Cryptology ePrint Archive, Report 2020/606, 2020. https://ia.cr/2020/606.

19. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret. On the complexity of the BKW algorithm on LWE. *Designs, Codes and Cryptography*, 74:325–354, 2015.

20. Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-optimal verifiable oblivious pseudorandom functions from ideal lattices. In *PKC*, pages 261–289, 2021.

21. Martin R. Albrecht and Amit Deo. Large modulus ring-LWE \geq module-LWE. In *ASIACRYPT*, pages 267–296, 2017.

22. Mohammad Ali. *Reconfigurable Antenna Design and Analysis*. Artech House, 2021.

23. Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Kramer, Patrick Longa, and Jefferson E. Ricardini. The lattice-based digital signature scheme qTESLA, April 2020. URL: https://eprint.iacr.org/2019/085.pdf.

24. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key Exchange—A new hope. In *USENIX Security Symposium*, pages 327–343, 2016.

25. Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. NEWHOPE on ARM Cortex-M. In *SPACE*, pages 332–349, 2016.

26. Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke. *Chaos - An Introduction to Dynamical Systems*. Textbooks in Mathematical Sciences. Springer New York, NY, 1996.

27. Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In *SIAM Symposium on Discrete Algorithms (SODA)*, pages 522–539, 2021.

28. Noga Alon. Problems and results in extremal combinatorics – I. *Discrete Mathematics*, 273(1-3):31–53, 2003.

29. Noga Alon. Problems and results in extremal combinatorics – II. *Discrete Mathematics*, 308(19):4460–4472, 2008.

30. Noga Alon. Problems and results in extremal combinatorics – III. *Journal of Combinatorial Theory*, 7(2-3):233–256, 2016.

31. Noga Alon. Problems and results in extremal combinatorics – IV. 2020. arXiv:1401.3665.

32. Jacob Alperin-Shiffrin and Chris Peikert. Circular and KDM security for identity-based encryption. In *PKC*, pages 334–352, 2012.

33. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with Rounding, Revisited. In *CRYPTO*, pages 57–74, 2013.

34. Prabhanjan Ananth, Xiong Fan, and Elaine Shi. Towards attribute-based encryption for RAMs from LWE: Sub-linear decryption, and more. In *ASIACRYPT*, pages 112–141, 2019.

35. Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguishability obfuscation without multilinear maps: New paradigms via low degree weak pseudorandomness and security amplification. In *CRYPTO*, pages 284–332, 2019.

36. T. Aono, K. Higuchi, T. Ohira, B. Komiyama, and H. Sassaoka. Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. *IEEE Transactions on Antennas and Propagation*, 53(11):3776–3784, 2005.

37. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In *Hard Learning Problems*. Artech House, 2015.

38. Benny Applebaum and Eyal Widder. Related-key secure pseudorandom functions: The case of additive attacks. Cryptology ePrint Archive, Report 2014/478, 2014. https://ia.cr/2014/478.

39. Frederik Armknecht, Daisuke Moriyama, Ahmad-Reza Sadeghi, and Moti Yung. Towards a unified security model for physically unclonable functions. In *CT-RSA*, pages 271–287, 2016.

40. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Multiparty computation with low communication, computation and interaction via threshold FHE. In *EUROCRYPT*, pages 483–501, 2012.

41. Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen, and Zhenfei Zhang. Round5: Compact and fast post-quantum public-key encryption. In *PQCrypto*, pages 83–102, 2019.

42. John C. Baez. The Octonions. *Bull. Amer. Math. Soc.*, 39:145–205, 2002. Errata in Bull. Amer. Math. Soc. 42 (2005) 213.

43. Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. Improved security proofs in lattice-based cryptography: Using the Rényi divergence rather than the statistical distance. *Journal of Cryptology*, 31:610–640, 2018.
44. Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie Stevens. Key-Homomorphic Constrained Pseudorandom Functions. In TCC, pages 31–60, 2015.
45. Abhishek Banerjee and Chris Peikert. New and Improved Key-Homomorphic Pseudorandom Functions. In CRYPTO, pages 353–370, 2014.
46. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In EUROCRYPT, pages 719–737, 2012.
47. Joao Barros and Miguel R. D. Rodrigues. Secrecy capacity of wireless channels. In 2006 IEEE International Symposium on Information Theory, pages 356–360, 2006.
48. Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Mélissa Rossi, and Mehdi Tibouchi. GALACTICS: Gaussian sampling for lattice-based constant-time implementation of cryptographic signatures, revisited. In ACM CCS, pages 2147–2164, 2019.
49. James Bartusek, Yael Tauman Kalai, Alex Lombardi, Fermi Ma, Giulio Malavolta, Vinod Vaikuntanathan, Thomas Vidick, and Lisa Yang. Succinct classical verification of quantum computation. Cryptology ePrint Archive, Paper 2022/857, 2022. URL: https://eprint.iacr.org/2022/857.
50. James Bartusek and Giulio Malavolta. Indistinguishability obfuscation of null quantum circuits and applications. Cryptology ePrint Archive, Paper 2021/421, 2021. URL: https://eprint.iacr.org/2021/421.
51. Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles E. Smid, Stefan D. Leigh, M Levenson, M Vangel, Nathanael A. Heckert, and D L. Banks. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report 800-22 Rev 1a, 2010.
52. Amos Beimel and Matthew K. Franklin. Weakly-private secret sharing schemes. In TCC, pages 253–272, 2007.
53. Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic complexity of the worst functions. In TCC, pages 317–342, 2014. Full Version (2017) available at: https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/BIKK.pdf.
54. Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conversion and private information retrieval. In IEEE 37th Conference on Computational Complexity, pages 258–268, 2012.
55. Mihir Bellare and David Cash. A theoretical treatment of related-key attacks: RKA PRPs, RKA-PRFs, and applications. In EUROCRYPT, pages 491–506, 2003.
56. Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure against related-key attacks. In CRYPTO, pages 666–684, 2010.
57. Mihir Bellare, Ilke Kiltz, Chris Peikert, and Brent Waters. Identity-based (lossy) trapdoor functions and applications. In EUROCRYPT, pages 228–245, 2012.
58. Charles H. Bennett, François Bessette, Gilles Brassard, Louis Salvail, and John Smolin. Experimental quantum cryptography. Journal of Cryptology, 5:3–28, 1992.
59. Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560:7–11, 2014.
60. Ward Beullens and Cyprien Delpech de Saint Guilhem. LegRoast: Efficient Post-quantum Signatures from the Legrendre PRF. In PQCrypto, pages 130–150, 2020.
61. Tejas Bhojraj. Algorithmic Randomness and Kolmogorov Complexity for Qubits. PhD thesis, University of Wisconsin-Madison, 2021.
62. L.-J. Bienaymé. Considérations à l’appui de la découverte de laplace. Comptes Rendus de l’Académie des Sciences, 37:309–324, 1853.
63. R. Bijker and A. Frank. Band structure from random interactions. Phys. Rev. Lett., 84:420–422, Jan 2000.
64. Roodolf Bijker and Alejandro Frank. Playing dice with nuclei: Pattern out of randomness? Nuclear Physics News, 11(4):15–20, 2001.
65. Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds. In STOC, pages 269–279, 2020.
66. Simon R. Blackburn. Frameproof codes. SIAM Journal on Discrete Mathematics, 16(3):499–510, 2003.
67. Jonah Blasiak, Henry Cohn, Joshua A. Grochow, Kevin Pratt, and Chris Umans. Matrix Multiplication via Matrix Groups. In Innovations in Theoretical Computer Science Conference (ITCS), volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1–19:16, 2023.
68. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the statistical query model. Journal of the ACM, 50(4):506–519, 2003.
69. C. Blundo and D. R. Stinson. Anonymous secret sharing schemes. Designs, Codes and Cryptography, 2:357–390, 1996.
70. Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the Hardness of Learning with Rounding over Small Modulus. In TCC, pages 209–224, 2016.
71. Andrej Bogdanov, Miguel Cueto Noval, Charlotte Hoffmann, and Alon Rosen. Public-key encryption from continuous lwe. Cryptology ePrint Archive, Report 2022/093, 2022. https://ia.cr/2022/093.

72. Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In Tutorials on the Foundations of Cryptography, Information Security and Cryptography, pages 79–158. Springer, Cham, 2017.

73. B. Bollobás. Extremal Graph Theory. Academic Press, London, 1978.

74. B. Bollobás. Combinatorics. Cambridge University Press, 1986.

75. D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic PRFs and their applications. In CRYPTO, pages 410–428, 2013. Full version published via: Cryptology ePrint Archive, Paper 2015/220, https://eprint.iacr.org/2015/220.

76. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT, pages 533–556, 2014.

77. Dan Boneh, Sam Kim, and Hart Montgomery. Private puncturable PRFs from standard lattice assumptions. In EUROCRYPT, pages 415–445, 2017.

78. Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom functions from isogenies. In ASIACRYPT, pages 520–550, 2020.

79. Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In PKC, pages 494–524, 2017.

80. Dan Boneh and Brent Waters. Constrained Pseudorandom Functions and Their Applications. In ASIACRYPT, pages 280–300, 2013.

81. George Boole. The Mathematical Analysis of Logic – Being an Essay Towards a Calculus of Deductive Reasoning. Cambridge University Press, 2009 (First published in 1847).

82. Peter Borg. Intersecting families of sets and permutations: a survey, 2011. arXiv:1106.6144.

83. Max Born. Zur quantenmechanik der stoßvorgänge. Zeitschrift für Physik, 37:863–867, 1926.

84. Joppe Bos, Léo Ducas, Elke Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-kyber: A CCA-secure module-lattice-based KEM. In IEEE European Symposium on Security and Privacy (EuroS&P), pages 353–367, 2018.

85. Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange from LWE. In ACM SIGSAC Conference on Computer and Communications Security, pages 1006–1018, 2016.

86. Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key exchange for the tls protocol from the ring learning with errors problem. In IEEE Symposium on Security and Privacy (S&P), pages 553–570, 2015.

87. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for a ring-based fully homomorphic encryption scheme. In IMA International Conference on Cryptography and Coding, pages 45–64, 2013.

88. George E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates. Ann. Math. Statist., 29(2):610–611, 1958.

89. Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more. In PKC, pages 499–517, 2010.

90. Elette Boyle. Recent advances in function and homomorphic secret sharing. In INDOCRYPT, pages 1–26, 2017.

91. Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations of homomorphic secret sharing. Cryptology ePrint Archive, Report 2017/1248, 2017. https://ia.cr/2017/1248.

92. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional Signatures and Pseudorandom Functions. In PKC, pages 501–519, 2014.

93. Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices without FHE. In EUROCRYPT, pages 3–33, 2019.

94. Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas Vidick. A cryptographic test of quantumness and certifiable randomness from a single quantum device. Journal of the ACM, 68(5):1–47, 2021.

95. Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE. In TCC, pages 370–390, 2018.

96. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. ACM Transactions on Computation Theory, 6(3), July 2014.

97. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

98. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained PRFs (and more) from LWE. In TCC, pages 264–302, 2017.

99. Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In CRYPTO, pages 505–524, 2011.
100. Zvika Brakerski and Vinod Vaikuntanathan. Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions – or: How to Secretly Embed a Circuit in Your PRF. In TCC, pages 1–30, 2015.

101. Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating conjunctions under entropic ring LWE. In ACM Conference on Innovations in Theoretical Computer Science, pages 147–156, 2016.

102. André Brandão, João S. Resende, and Rolando Martins. Hardening cryptographic operations through the use of secure enclaves. Computers & Security, 108, 2021.

103. Johannes Braun, Johannes Buchmann, Denise Demirel, Matthias Geihs, Mikio Fujiwara, Shiiho Moriai, Masahide Sasaki, and Atsushi Waseda. LINCOS: A storage system providing long-term integrity, authenticity, and confidentiality. In Asia CCS, pages 461–468, 2017.

104. Robert G. Brown. Dieharder: A random number test suite, 2023. URL: https://webhome.phy.duke.edu/~rgb/General/dieharder.php.

105. Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang. Continuous LWE, 2020. arXiv:2005.09595.

106. Carlo Brunetta, Bei Liang, and Aikaterini Mitrokotsa. Code-based zero knowledge PRF arguments. In ISC, pages 171–189, 2019.

107. Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically uncloneable functions in the universal composition framework. In CRYPTO, pages 51–70, 2011.

108. Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing, and Patrick Weiden. Discrete Ziggurat: A time-memory trade-off for sampling from a gaussian distribution over the integers. In Selected Areas in Cryptography, pages 402–417, 2013.

109. Alessandro Budroni, Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul Stankovski Wagner. Improvements on making BKW practical for solving LWE. Cryptography, 5(4), 2021.

110. K. A. Bush, W. T. Federer, H. Pesotan, and D. Raghavarao. New combinatorial designs and their applications to group testing. Journal of Statistical Planning and Inference, 10(3):335–343, 1984.

111. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology, 18:219–246, 2005.

112. Cristian Calude. Information and Randomness: An Algorithmic Perspective. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 2002.

113. Cristian S Calude and Giuseppe Longo. Classical, quantum and biological randomness as relative unpredictability. Natural Computing, 15(2):263–278, 2016.

114. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security: a taxonomy and some efficient constructions. In IEEE INFOCOM, volume 2, pages 708–716 vol.2, 1999.

115. Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE. In EUROCRYPT, pages 446–476, 2017.

116. Ran Canetti and Marc Fischlin. Universally composable commitments (extended abstract). In CRYPTO, pages 19–40, 2001.

117. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-party computation without set-up assumptions. In EUROCRYPT, pages 68–86, 2003.

118. Silvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious pseudorandom functions. Cryptology ePrint Archive, Report 2022/302, 2022. https://ia.cr/2022/302.

119. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

120. G. J. Chaitin. Algorithmic information theory. IBM Journal of Research and Development, 21(4):350–359, 1977.

121. Orestis Chardouvelis, Nico Döttling, and Giulio Malavolta. Rate-1 quantum fully homomorphic encryption. In TCC, pages 149–176, 2021.

122. Orestis Chardouvelis and Giuli Malavolta. The round complexity of quantum zero-knowledge. In TCC, pages 121–148, 2021.

123. P. L. Chebyshev. Des valeurs moyennes. Journal de Mathématiques Pures et Appliquées, 12(2):177–184, 1867.

124. Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical verification of quantum computations with efficient verifier. In TCC, pages 181–206, 2020.

125. Kai-Min Chung, Daniel Dadush, Feng-Hao Liu, and Chris Peikert. On the lattice smoothing parameter problem. In IEEE Conference on Computational Complexity, pages 230–241, 2013.

126. Gu Chunsheng. Multilinear maps using a variant of ring-LWE. Cryptology ePrint Archive, Report 2017/342, 2017. https://eprint.iacr.org/2017/342.

127. Patrick J. Clarke, Robert J. Collins, Vedran Dunjko, Erika Andersson, John Jeffers, and Gerald S. Buller. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nature Communications, 3(1174), 2012.
128. Alfred Clebsch and Ferdinand Lindemann. *Vorlesungen über Geometrie*. Wentworth Press, 2016 (First published in 1876).
129. Andrea Coladangelo, Thomas Vidick, and Tina Zhang. Non-interactive zero-knowledge arguments for QMA, with preprocessing. In *CRYPTO*, pages 799–828, 2020.
130. Roger Colbeck and Renato Renner. Free randomness can be amplified. *Nature Physics*, 8:450–453, 2012.
131. Andrea Coladangelo, Thomas Vidick, and Tina Zhang. Non-interactive zero-knowledge arguments for QMA, with preprocessing. In *CRYPTO*, pages 799–828, 2020.
132. Roger Colbeck and Renato Renner. Free randomness can be amplified. *Nature Physics*, 8:450–453, 2012.
133. Charles J. Colbourn and Jeffrey H. Dinitz. *Handbook of Combinatorial Designs*. Discrete Mathematics and Its Applications. Chapman and Hall/CRC, 2006.
134. Charles J. Colbourn and Alex Rosa. *Triple Systems*. Oxford Mathematical Monographs. Clarendon Press and Oxford University Press, 1999.
135. Dana Dachman-Soled, Nils Fleischhacker, Jonathan Katz, Anna Lysyanskaya, and Dominique Schröder. Feasibility and infeasibility of secure computation with malicious PUFs. *Journal of Cryptology*, 33:595–617, 2020.
136. Michael P. Daly. *Physical layer encryption using fixed and reconfigurable antennas*. PhD thesis, University of Illinois at Urbana-Champaign, 2012.
137. Ivan Bjerre Damgård. On the randomness of Legendre and Jacobi sequences. In *CRYPTO*, pages 163–172, 1988.
138. George Danezis and Claudia Diaz. A survey of anonymous communication channels. Technical report, 2008. ftp://ftp.research.microsoft.com/pub/tr/TR-2008-35.pdf.
139. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. Saber: Module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In *AFRICACRYPT*, pages 282–305, 2018.
140. Vanesa Daza and Joezef Domingo-Ferrer. On partial anonymity in secret sharing. In *EuroPKI*, pages 193–202, 2007.
141. Michel Rausch de Traubenberg and M. J. Slupinski. Commutation relations of g_2 and the incidence geometry of the Fano plane, 2022. arXiv:2207.13946.
142. Michel Rausch de Traubenberg and Marcus J. Slupinski. Incidence geometry of the Fano plane and Freudenthal’s ansatz for the construction of (split) octonions, 2022. arXiv:2203.03261.
143. Yvo Desmedt, R. Safavi-Naini, Huaxiong Wang, C. Charnes, and J. Pieprzyk. Broadcast anti-jamming systems. In *IEEE International Conference on Networks*, pages 349–355, 1999.
144. Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Public-key encryption schemes with auxiliary inputs. In *TCC*, pages 361–381, 2010.
145. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its applications. In *CRYPTO*, pages 93–122, 2016.
146. Mina Döttling, Giulio Malavolta, and Sihang Pu. A combinatorial approach to quantum random functions. In *ASIACRYPT*, pages 614–632, 2020.
147. Yusong Du and Xiao Ma. On the rejection rate of exact sampling algorithm for discrete Gaussian distributions over the integers. *Theory of Computing Systems*, 66:1099–1122, 2022.
158. A. G. D’yachkov and V. V. Rykov. Bounds on the length of disjunctive codes. *Probl. Peredachi Inf.*, 18(3):7–13, 1982.

159. Martin Dyer, Trevor Fenner, Alan Frieze, and Andrew Thomason. On key storage in secure networks. *Journal of Cryptology*, 8:189–200, 1995.

160. D. Eastlake, S. Crocker, and J. Schiller. RFC1750: Randomness recommendations for security, December 1994.

161. Simon Eberz, Martin Strohmeier, Matthias Wilhelm, and Ivan Martinov. A practical man-in-the-middle attack on signal-based key generation protocols. In *European Symposium on Research in Computer Security*, pages 235–252, 2012.

162. Matthew Edman, Aggelos Kiayias, Qiang Tang, and Bülent Yener. On the security of key extraction from measuring physical quantities. *IEEE Trans. Inf. Forensics Security*, 11:1796–1806, 2016.

163. Matthew Edman and Bülent Yener. On anonymity in an electronic society: A survey of anonymous communication systems. *ACM Computing Surveys*, 42(1):1–35, 2009.

164. Klim Efremenko. 3-query locally decodable codes of subexponential length. In *STOC*, pages 39–44, 2009.

165. Artur K. Ekert. Quantum cryptography based on Bell’s theorem. *Phys. Rev. Lett.*, 67:661–663, Aug 1991.

166. David Ellis. Intersection problems in extremal combinatorics: Theorems, techniques and questions old and new, 2021. arXiv:2107.06371.

167. P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. *The Quarterly Journal of Mathematics*, 12(48):313–320, 1961.

168. Paul Erdős. Some remarks on the theory of graphs. *Bull. Amer. Math. Soc.*, 53:292–294, 1947.

169. Paul Erdős and George Szekeres. A combinatorial problem in geometry. *Compositio Mathematica*, 2:463–470, 1935.

170. Paul Erdős and Paul Turán. On some sequences of integers. *Journal of the London Mathematical Society*, 11(4):261–264, 1936.

171. P. Erdős, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the union of r others. *Israel J. Math.*, 51:79–89, 1985.

172. P. Erdős, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the union of two others. *Journal of Combinatorial Theory, Series A*, 33(2):158–166, 1985.

173. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

174. Jan Faye. Copenhagen interpretation of quantum mechanics. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, Winter 2019 edition.

175. Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Codes for distributed pir with low storage overhead. In *IEEE International Symposium on Information Theory (ISIT)*, pages 2852–2856, 2015.

176. Peter Frankl and Norihide Tokushige. Invitation to intersection problems for finite sets. In *Combinatorial Theory Series A*, 144, 2016.

177. Vincent Fleury and Richard Gordon. Coupling of growth, differentiation and morphogenesis: An integrated approach to design in embryogenesis. In *Origin(s) of Design in Nature*, Cellular Origin, Life in Extreme Habitats and Astrobiology, pages 385–428. Springer, Dordrecht, 2012.

178. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pournin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON: Fast-fourier lattice-based compact signatures over NTRU. URL: https://falcon-sign.info/falcon.pdf.

179. Peter Frankl and Norihide Tokushige. Invitation to intersection problems for finite sets. *J. Combinatorial Theory Series A*, 144, 2016.

180. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious pseudorandom functions. In *TCC*, pages 303–324, 2005.

181. Hans Freudenthal. Oktaven, Ausnahmegruppen und Oktavengometrie. *Geometriae Dedicata*, 19:7–63, 1985.

182. Xingbing Fu, Yong Ding, Haifeng Li, Jianting Ning, Ting Wu, and Fagen Li. A survey of lattice based expressive attribute based encryption. *Computer Science Review*, 43, 2022.

183. Rodrigo Gallego, Lluís Masanes, Gonzalo De La Torre, Chirag Dhara, Leandro Aolita, and Antonio Acín. Full randomness from arbitrarily deterministic events. *Nature Communications*, 4(2654), 2013.

184. Nicolas Gama, Nick Howgrave-Graham, Henrik Koy, and Phong Q. Nguyen. Rankin’s constant and blockwise lattice reduction. In *CRYPTO*, pages 112–130, 2006.

185. Nicolas Gama, Malika Izabachéne, Phong Q. Nguyen, and Xiang Xie. Structural lattice reduction: Generalized worst-case to average-case reductions and homomorphic cryptosystems. In *EUROCRYPT*, pages 528–558, 2016.

186. Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within Mordell’s inequality. In *STOC*, pages 207–216, 2008.

187. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme pruning. In *EUROCRYPT*, pages 257–278, 2010.
188. Juan A. Garay, Jessica Staddon, and Avishai Wool. Long-lived broadcast encryption. In CRYPTO, pages 333–352, 2000.
189. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In EUROCRYPT, pages 1–17, 2013.
190. L. Gargano, J. Körner, and U. Vaccaro. Capacities: From information theory to extremal set theory. Journal of Computer and System Sciences, 68(2):296–316, 1994.
191. Karl Friedrich Gauss. Disquisitiones arithmeticae. G. Fleischer Leipzig, 1801.
192. Christian Gehrmann. Topics in Authentication Theory. PhD thesis, Lund University, 1997.
193. Nicholas Genise and Daniele Micciancio. Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In EUROCRYPT, pages 174–203, 2018.
194. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
195. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
196. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In Theory of Cryptography, pages 498–527, 2015.
197. Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactively publicly verifiable secret sharing with thousands of parties. Cryptology ePrint Archive, Report 2021/1397, 2021. https://ia.cr/2021/1397.
198. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In-stoc, pages 197–206, 2008.
199. Daniel Gerbner and Balazs Patkos. Extremal Finite Set Theory. Chapman and Hall/CRC, 2018.
200. Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryptography. Rev. Mod. Phys., 74:145–195, Mar 2002.
201. David Goldenberg and Moses Liskov. On related-secret pseudorandomness. In TCC, pages 255–272, 2010.
202. Ziv Goldfeld, Paul Cuff, and Haim H. Permuter. Semantic-security capacity for wiretap channels of type II. IEEE Transactions on Information Theory, 62(7):3863–3879, 2016.
203. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM (JACM), 33:792–807, Oct. 1986.
204. Sheldon Goldstein. Bohmian mechanics. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2021 edition.
205. S. Goldwasser, Y.T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the learning with errors assumption. In Innovations in Computer Science, pages 230–240, 2010.
206. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In STOC, pages 555–564, 2013.
207. Shafi Goldwasser and Silvio M Micali. Probabilistic encryption & how to play mental poker keeping secret all partial information. In STOC, pages 365–377, 1982.
208. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE. In CRYPTO, pages 503–523, 2015.
209. Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu. Beyond software watermarking: Traitor-tracing for pseudorandom functions. In ASIACRYPT, pages 250–280, 2021.
210. P. Grangier and A. Auffèves. What is quantum in quantum randomness? Phil. Trans. R. Soc. A, 376(2123), 2018.
211. Federico Grasselli. Quantum Cryptography – From Key Distribution to Conference Key Agreement. Quantum Science and Technology. Springer Cham, 2021.
212. George Grätzer. General Lattice Theory (Second Edition). Birkhäuser Basel, 2003.
213. George Grätzer. Lattice Theory: First Concepts and Distributive Lattices. Dover Books on Mathematics. Dover Publications, 2009.
214. Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic progressions. Annals of Mathematics, 167(2):481–547, 2008.
215. David J. Griffiths and Darrell F. Schroeter. Introduction to Quantum Mechanics - 3rd Edition. Cambridge University Press, 2018.
216. Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica, 20:71–86, 2000.
217. Charles Grover, Cong Ling, and Roope Vehkalahti. Non-commutative ring learning with errors from cyclic algebras, 2020. arXiv:2008.01834.
218. Mida Guillermoand, Keith M. Martin, and Christine M. O’Keefe. Providing anonymity in unconditionally secure secret sharing schemes. Designs, Codes and Cryptography, 28:227–245, 2003.
219. Chun Guo, Yaobin Shen, Lei Wang, and Dawu Gu. Beyond-birthday secure domain-preserving PRFs from a single permutation. Designs, Codes and Cryptography volume, 87:1297–1322, 2019.
220. Qian Guo and Thomas Johansson. Faster dual lattice attacks for solving LWE – with applications to CRYSTALS. In ASIACRYPT, pages 33–62, 2021.

221. Qian Guo, Erik Mårtensson, and Paul Stankovski Wagner. Modeling and simulating the sample complexity of solving LWE using BKW-style algorithms. Cryptography and Communications, 2022.

222. Yingjie Jay Guo and Pei-Yuan Qin. Handbook of antenna technologies. chapter Reconfigurable Antennas for Wireless Communications, pages 2987–3032. Springer, Singapore, 2016.

223. Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin Butler, and Patrick Traynor. Using Intel software guard extensions for efficient two-party secure function evaluation. In Financial Cryptography and Data Security, pages 302–318, 2016.

224. R. K. Guy. How to factor a number. In Manitoba Conf. Numerical Math., pages 49–89, 1975.

225. Shai Halevi, Tzipora Halevi, and Victor Shoup. Implementing BP-obfuscation using graph-induced encoding. In CCS, pages 331–356, 2016.

226. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer Series in Statistics. Springer-Verlag New York, 2009.

227. C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, deuxième lettre. J. Reine Angew. Math, 40:279–290, 1850.

228. Dijiang Huang. Pseudonym-based cryptography for anonymous communications in mobile ad hoc networks. International Journal of Security and Networks, 2(3-4):272–283, 2007.

229. Andreas Hülsing, Tanja Lange, and Kit Smeets. Rounded gaussians – fast and secure constant-time sampling for lattice-based crypto, 2017. https://eprint.iacr.org/2017/1025.

230. Thais Bardini Idalino and Lucia Moura. Efficient unbounded fault-tolerant aggregate signatures using nested cover-free families. In International Workshop on Combinatorial Algorithms, pages 52–64, 2018.

231. Thais Bardini Idalino and Lucia Moura. Embedding cover-free families and cryptographical applications. Advances in Mathematics of Communications, 13(4):629–643, 2019.

232. Thais Bardini Idalino and Lucia Moura. Nested cover-free families for unbounded fault-tolerant aggregate signatures. Theoretical Computer Science, 854:116–130, 2021.

233. Andrzej Jarecki, Hugo Krawczyk, and Jason Resch. Threshold partially-oblivious PRFs with applications to key management. Cryptology ePrint Archive, Report 2018/733, 2018. https://ia.cr/2018/733.
246. Z. Jiang, J. Zhao, X.-Y. Li, J. Han, and W. Xi. Rejecting the attack: Source authentication for Wi-Fi management frames using CSI information. In Proc. IEEE Infocom, pages 2544–2552, 2013.

247. C. W. Johnson, G. F. Bertsch, and D. J. Dean. Orderly spectra from random interactions. Phys. Rev. Lett., 80:2749–2753, March 1998.

248. Jakob Jordan, Mihai A. Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz Meier, Markus Diesmann, and Tom Tetzlaff. Deterministic networks for probabilistic computing. Scientific Reports, 9(18303), 2019.

249. Stasys Jukna. Extremal Combinatorics. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg, 2011.

250. D. Kapetanovic, G. Zheng, and F. Rusek. Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Commun. Mag., 53(6):21–27, 2015.

251. Angshuman Karmakar, Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede. Constant-time discrete Gaussian sampling. IEEE Transactions on Computers, 67(11):1561–1571, 2018.

252. Charles F. F. Karney. Sampling exactly from the normal distribution. ACM Transactions on Mathematical Software, 42(1):1–14, 2016.

253. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Adaptively secure inner product encryption from LWE. In ASIACRYPT, pages 375–404, 2020.

254. Jonathan Katz and Vadim Lyubashevsky. Lattice-Based Cryptography. Cryptography and Network Security. CRC Press, 2021.

255. Jonathan Katz and Vinod Vaikuntanathan. Smooth Projective Hashing and Password-Based Authenticated Key Exchange from Lattices. In ASIACRYPT, pages 636–652, 2009.

256. Sam Kim. Multi-authority attribute-based encryption from LWE in the OT model. Cryptology ePrint Archive, Report 2019/280, 2019. https://eprint.iacr.org/2019/280.

257. Sam Kim and David J. Wu. Watermarking cryptographic functionalities from standard lattice assumptions. In CRYPTO, pages 503–536, 2017.

258. Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger security via extractable PRFs. In CRYPTO, pages 335–366, 2019.

259. A. N. Kolmogorov. Three approaches to the quantitative definition of information. International Journal of Computer Mathematics, 2(1-4):157–168, 1968.
274. Long Kong, Yun Ai, Lei Lei, Georges Kaddoum, Symeon Chatzinotas, and Björn Ottersten. An overview of generic tools for information-theoretic secrecy performance analysis over wiretap fading channels. EURASIP Journal on Wireless Communications and Networking, (194), 2021.
275. A. Korkine and G. Zolotarev. Sur les formes quadratiques. Math. Ann., 6:336–389, 1873.
276. Jerzy Król, Krzysztof Bielas, and Torsten Asselmeyer-Maluga. Random world and quantum mechanics. Foundations of Science, 2022.
277. Megha. S. Kumar, R. Ramanathan, and M. Jayakumar. Key less physical layer security for wireless networks: A survey. Engineering Science and Technology, an International Journal, 35, 2022.
278. Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for blacklisting problems without computational assumptions. In CRYPTO, pages 609–623, 1999.
279. L. Lagrange. Recherches d’arithmétique. Nouv. Mém. Acad., pages 265–312, 1773.
280. Klaas Landsman. Randomness? What randomness? Foundations of Physics, 50:61–104, 2020.
281. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.
282. Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient multilinear maps from ideal lattices. In EUROCRYPT, pages 239–256, 2014.
283. Choongbum Lee. Problems in Extremal and Probabilistic Combinatorics. PhD thesis, University of California, Los Angeles, 2012.
284. D. H. Lehmer and Emma Lehmer. A new factorization technique using quadratic forms. Mathematics of Computation, 28(126):625–635, 1974.
285. A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:515–534, 1982.
286. Steven J. Leon, Åke Björck, and Walter Gander. Gram-schmidt orthogonalization: 100 years and more. Numerical Linear Algebra - With Applications, 20(3):492–532, 2012.
287. S. Leung-Yan-Cheong and M. Hellman. The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4):451–456, 1978.
288. Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Improved constructions of PRFs secure against related-key attacks. In International Conference on Applied Cryptography and Network Security, pages 44–61, 2014.
289. Guyue Li, Aiqun Hu, Junqing Zhang, Linning Peng, Chen Sun, and Daming Cao. High-agreement uncorrelated secret key generation based on principal component analysis preprocessing. IEEE Transactions on Communications, 66(7):3022–304, 2018.
290. Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Texts in Computer Science. Springer Cham, 2008.
291. Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-based PRFs and applications to e-cash. In ASIACRYPT, pages 304–335, 2017.
292. Benoît Libert, Damien Stehlé, and Radu Titiu. Adaptively secure distributed PRFs from LWE. In TCC, pages 391–421, 2018.
293. Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In EUROCRYPT, pages 28–57, 2016.
294. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In Topics in Cryptology - CT-RSA, pages 319–339, 2011.
295. Z. Lipiński. Symmetric and asymmetric cryptographic key exchange protocols in the octonion algebra. Applicable Algebra in Engineering, Communication and Computing, 32:81–96, 2021.
296. Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Conditional disclosure of secrets via non-linear reconstruction. In CRYPTO, pages 758–790, 2017.
297. Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In FOCS, pages 1243–1254, 2020.
298. Zhenning Liu and Alexandru Gheorghiu. Depth-efficient proofs of quantumness. 2021. arXiv:2107.02163.
299. Barry Loewer. Copenhagen versus Bohmian interpretations of quantum theory. British Journal for the Philosophy of Science, 49(2):317–328, 1998.
300. Giuseppe Longo and Maël Montévil. Perspectives on Organisms - Biological time, Symmetries and Singularities. Lecture Notes in Morphogenesis. Springer Berlin, Heidelberg, 2014.
301. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.
303. Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan He, Bao Li, and Kunpeng Wang. Lac: Practical ring-lwe based public-key encryption with byte-level modulus. Cryptology ePrint Archive, Report 2018/1009, 2018. https://eprint.iacr.org/2018/1009.

304. Stefan Lucks. Ciphers secure against related-key attacks. In FSE, pages 22–35, 2004.

305. Vadim Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In ASIACRYPT, pages 598–616, 2009.

306. Vadim Lyubashevsky. Lattice Signatures without Trapdoors. In EUROCRYPT, 2010.

307. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors over Rings. In EUROCRYPT, 2010.

308. Xiongfeng Ma, Xiao Yuan, Zhu Cao, Bing Qi, and Zhen Zhang. Quantum random number generation. npj Quantum Information, 2(16021), 2016.

309. M. G. Madiseh, S. He, M. L. McGuire, S. W. Neville, and X. Dong. Verification of secret key generation from UWB channel observations. In IEEE International Conference on Communications, pages 1–5, 2009.

310. Bernardo Magri, Giulio Malavolta, Dominique Schröder, and Dominique Unruh. Everlasting UC commitments from fully malicious PUFs. Journal of Cryptology, 35(20), 2022.

311. Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In FOCS, pages 332–338, 2018.

312. Urmila Mahadev. Classical verification of quantum computations. In FOCS, pages 259–267, 2018.

313. Sarasij Maitra and David J. Wu. Traceable PRFs: Full collusion resistance and active security. In PKC, pages 439–469, 2022.

314. Ehsan Malekian and Ali Zakerolhosseini. OTRU: A non-associative and high speed public key cryptosystem. In CSI International Symposium on Computer Architecture and Digital Systems, pages 83–90, 2010.

315. Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm for the shortest vector problem. In SIAM Symposium on Discrete Algorithms (SODA), pages 1468–1480, 2010.

316. Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient, generic, constant-time. In CRYPTO, pages 455–485, 2017.

317. H. Minkowski. Geometrie der Zahlen. Leipzig: Teubner, 1910.

318. Nolan Miranda, Foo Yee Yeo, and Vipin Singh Sehrawat. Function-private conditional disclosure of secrets and multi-evaluation threshold distributed point functions. In CANS, volume 13099, pages 334–354. LNCS, Springer, 2021.

319. Chris J. Mitchell and Fred C. Piper. Key storage in secure networks. Discrete Applied Mathematics, 21:215–228, 1988.

320. Hart Montgomery. A nonstandard variant of learning with rounding with polynomial modulus and unbounded samples. In PQCrypto, pages 312–330, 2018.

321. Eliakim H. Moore. Concerning triple systems. Math. Ann., 43:271–285, 1893.
334. Tamalika Mukherjee and Noah Stephens-Davidowitz. Lattice reduction for modules, or how to reduce ModuleSVP to ModuleSVP. In CRYPTO, pages 213–242, 2020.

335. Mohamed Nafea and Aylin Yener. A new wiretap channel model and its strong secrecy capacity. IEEE Transactions on Information Theory, 64(3):2077–2092, 2018.

336. Mohamed Nafea and Aylin Yener. Generalizing multiple access wiretap and wiretap II channel models: Achievable rates and cost of strong secrecy. IEEE Transactions on Information Theory, 65(8):5125–5143, 2019.

337. Satoshi Nakamura and Masaya Yasuda. Dynamic self-dual DeepBKZ lattice reduction with free dimensions and its implementation. Discrete Applied Mathematics, 304:220–229, 2021.

338. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and KDCs. In EUROCRYPT, pages 327–346, 1999.

339. Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of pseudo-random functions. Journal of Computer and System Sciences, pages 336–375, 1999.

340. Kartik Nayak, Christopher W. Fletcher, Ling Ren, Nishanth Chandran, Satya V. Lokam, Elaine Shi, and Vipul Goyal. HOP: hardware makes obfuscation practical. In NDSS. The Internet Society, 2017.

341. Hamid Nejatollahi, Nikil Dutt, Sandip Ray, Francesco Regazzoni, Indranil Banerjee, and Rosario Cammarota. Post-quantum lattice-based cryptography implementations: A survey. ACM Comput. Surv., 51(6), 2019.

342. Eugen Netto. Zur theorie der Triplesysteme. Math. Ann., 42:143–152, 1893.

343. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.

344. Phong Q. Nguyen and Damien Stehlé. An LLL algorithm with quadratic complexity. SIAM Journal on Computing, 39(3):874–903, 2009.

345. Yanjun Pan. Enhance Wireless Network Performance and Security with Reconfigurable Antennas. PhD thesis, The University of Arizona, 2021.

346. Yanjun Pan, Ziqi Xu, Ming Li, and Loukas Lazos. Man-in-the-middle attack resistant secret key generation via channel randomization. In MobiHoc, pages 231–240, 2021.

347. Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-way functions. Science, 297(5589):2026–2030, 2002.

348. James L. Park. The concept of transition in quantum mechanics. Foundations of Physics, 1:23–33, 1970.

349. Jhordany Rodriguez Parra, Terence Chan, and Siu-Wai Ho. A Noiseless Key-Homomorphic PRF: Application on Distributed Storage Systems. In ACISP, pages 505–513, 2016.

350. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. STOC, pages 333–342, 2009.

351. C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-LWE for any ring and modulus. In STOC, pages 461–473, 2017.

352. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In CRYPTO, pages 80–97, 2010.

353. Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical Computer Science, 10(4):283–424, 2016.

354. Chris Peikert and Alon Rosen. Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices. In TCC, pages 145–166, 2006.

355. Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the LWE way. In PKC, pages 675–701, 2018.
364. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors. In CRYPTO, pages 89–114, 2019.
365. Chris Peikert and Sina Shiehian. Constraining and watermarking PRFs from milder assumptions. In PKC, pages 431–461, 2020.
366. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A Framework for Efficient and Composable Oblivious Transfer. In CRYPTO, pages 554–571, 2008.
367. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. Lossy trapdoor functions and their applications. In STOC, pages 187–196, 2008.
368. Steven J. Phillips and Nicholas C. Phillips. Strongly ideal secret sharing schemes. ACM SIGSAC Bulletin, 15(1):37–44, 1981.
369. Monika Polak, Urszula Romanczuk, Vasyl Ustimenko, and Aneta Wróblewska. On the applications of extremal graph theory to coding theory and cryptography. Electron. Notes Discret. Math., 43:329–342, 2013.
370. H. Vincent Poor and Rafael F. Schaefer. Wireless physical layer security. National Academy of Sciences, 114(1):19–26, 2017.
371. Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signatures on reconfigurable hardware. In CHES, pages 353–370, 2014.
372. Eamonn W. Postlethwaite and Fernando Virdia. On the success probability of solving unique SVP via BKZ. In PKC, pages 68–98, 2021.
373. A. M. Raigorodskii and D. D. Cherkashin. Extremal problems in hypergraph colourings. Russ. Math. Surv., 75(1):89–146, 2020.
374. Frank P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical Society, 30:264–286, 1930.
375. Prasanna Ravi, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. Lattice-based key-sharing schemes: A survey. ACM Computing Surveys, 54(1):1–39, 2022.
376. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages 84–93, 2005.
377. M. Reiss. Über eine Steinersche combinatorische Aufgabe. J. Reine Angew. Math., 56:326–344, 1859.
378. Yanjing Ren, Jingwei Li, Zuoru Yang, Patrick P. C. Lee, and Xiaosong Zhang. Accelerating encrypted deduplication via SGX. In USENIX, pages 303–316, 2021.
379. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.
380. Miruna Roșca, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. Middle-product learning with errors. In CRYPTO, pages 283–297, 2017.
395. Markus Rücker. Lattice-Based Blind Signatures. In ASIACRYPT, pages 413–430, 2010.
396. Henri Ruotsalainen, Junqing Zhang, and Stepan Grebeniuk. Experimental investigation on wireless key generation for low-power wide-area networks. IEEE Internet of Things Journal, 7(3):1745–1755, 2020.
397. R. Safavi-Naini and H. Wang. New results on multi-receiver authentication codes. In EUROCRYPT, pages 527–541, 1998.
398. R. Safavi-Naini and H. Wang. Multireceiver authentication codes: Models, bounds, constructions, and extensions. Information and Computation, 151:148–172, 1999.
399. Kathrin Schäcke. On the Kronecker product, 2004. URL: https://www.math.uwaterloo.ca/~hwolkowi/henry/reports/kronthesisschaecke04.pdf.
400. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer Science, 53(2-3):201–224, 1987.
401. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical Programming, 66:181–199, 1994.
402. C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In EUROCRYPT, pages 1–12, 1995.
403. Vipin Singh Sehrawat. Privacy Enhancing Cryptographic Constructs for Cloud and Distributed Security. PhD thesis, The University of Texas at Dallas, 2019.
404. Vipin Singh Sehrawat and Yvo Desmedt. Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption. In CANS, volume 11829, pages 3–23. LNCS, Springer, 2019.
405. Vipin Singh Sehrawat and Yvo Desmedt. Access structure hiding secret sharing from novel set systems and vector families. In COCOON, volume 12273, pages 246–261. LNCS, Springer, 2020.
406. C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In EUROCRYPT, pages 1–12, 1995.
407. Vipin Singh Sehrawat, Yogendra Shah, Vinod Kumar Choyi, Alec Brusilovsky, and Samir Ferdi. Certificate and signature free anonymity for V2V communications. In IEEE Vehicular Networking Conference (VNC), pages 139–146, 2017.
408. Vipin Singh Sehrawat, Foo Yee Yeo, and Yvo Desmedt. Extremal set theory and LWE based access structure hiding verifiable secret sharing with malicious-majority and free verification. Theoretical Computer Science, 886:106–138, September 2021.
409. Daniel Shanks. Solved and unsolved problems in number theory, 3rd edition. page 202 and 238. American Mathematical Society/Chelsea, 1985.
410. J. N. Staddon, D. R. Stinson, and Ruizhong Wei. Combinatorial properties of frameproof and traceability codes. Designs, Codes and Cryptography, 12:215–243, 1997.
411. J. Stassen, Menno ten Tije, and H. Wang. Theoretical basis for the key-homomorphic PRF family. In PKC, pages 1–15, 2017.
412. J. Steiner. Combinatorische aufgabe. 1853.
413. E. Steif. On a class of Markov chains and their ergodic properties. The Annals of Probability, 24(1):137–165, 1996.
414. D. Stinson and S. A. Vanstone. A combinatorial approach to threshold schemes. In Design, Codes and Cryptography, pages 330–339, 1987.
415. D. Stinson and Tran van Trung. Some new results on key distribution patterns and broadcast encryption. Designs, Codes and Cryptography, 14:261–279, 1998.
416. J. Stinson. Combinatorial designs and their applications. In Handbook of Combinatorics, pages 1131–1185. Elsevier, 1995.
417. J. Stein. Some results on cyclic codes and their applications. Information and Control, 7:193–203, 1964.
418. D. Stinson and S. A. Vanstone. A combinatorial approach to threshold schemes. In CRYPTO, pages 50–61, 1991.
419. D. Stinson and R. Wei. Secret key distribution to mobile users and related results. Designs, Codes and Cryptography, 14:261–279, 1998.
420. D. Stinson and R. Wei. Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discrete Math., 11(1):41–53, 1998.
421. D. M. Strong. On some methods for unconditionally secure key distribution and broadcast encryption. Designs, Codes and Cryptography, 14:261–279, 1998.
422. D. M. Strong. On some methods for unconditionally secure key distribution and broadcast encryption. Designs, Codes and Cryptography, 14:261–279, 1998.
423. D. M. Strong. On some methods for unconditionally secure key distribution and broadcast encryption. Designs, Codes and Cryptography, 14:261–279, 1998.
424. D. M. Strong. On some methods for unconditionally secure key distribution and broadcast encryption. Designs, Codes and Cryptography, 14:261–279, 1998.
425. D. M. Strong. On some methods for unconditionally secure key distribution and broadcast encryption. Designs, Codes and Cryptography, 14:261–279, 1998.
459. Song Y. Yan. *Primality Testing and Integer Factorization in Public-Key Cryptography*. Springer Publishing Company, Incorporated, 2nd edition, 2008.
460. Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion resistant watermarkable PRFs from standard assumptions. In *CRYPTO*, pages 590–620, 2020.
461. Shaojun Yang and Xinyi Huang. Universal product learning with errors: A new variant of LWE for lattice-based cryptography. *Theoretical Computer Science*, 2022.
462. C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam. Information-theoretically secret key generation for fading wireless channels. *IEEE Trans. Inf. Forensics Security*, 5(2):240–254, 2010.
463. C. Ye, A. Reznik, and Y. Shah. Extracting secrecy from jointly Gaussian random variables. In *IEEE International Symposium on Information Theory*, pages 2593–2597, 2006.
464. C. Ye, A. Reznik, G. Sternburg, and Y. Shah. On the secrecy capabilities of ITU channels. In *Proc. IEEE 66th Veh. Technol. Conf.*, pages 2030–2034, 2007.
465. Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. *Journal of the ACM (JACM)*, 55(1):1–16, 2008.
466. Bin Zan, Marco Gruteser, and Fei Hu. Improving robustness of key extraction from wireless channels with differential techniques. In *International Conference on Computing, Networking and Communications (ICNC)*, pages 980–984, 2012.
467. G.M. Zaverucha and D.R. Stinson. Group testing and batch verification. In *International Conference on Information Theoretic Security*, pages 140–157, 2009.
468. G.M. Zaverucha and D.R. Stinson. Short one-time signatures. *Theoretical Computer Science*, 5:473–488, 2011.
469. K. Zeng. Physical layer key generation in wireless networks: challenges and opportunities. *IEEE Commun. Mag.*, 53(6):33–39, 2015.
470. Christian Zenger, Hendrik Vogt, Jan Zimmer, Aydin Sezgin, and Christof Paar. The passive eavesdropper affects my channel: Secret-key rates under real-world conditions. In *IEEE Globecom TCPLS Workshops*, pages 1–6, 2016.
471. Christian Zenger, Jan Zimmer, and Christof Paar. Security analysis of quantization schemes for channel-based key extraction. In *EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services*, pages 267–272, 2015.
472. Mark Zhandry. How to construct quantum random functions. In *FOCS*, pages 679–687, 2012.
473. Jiang Zhang and Zhenfeng Zhang. *Lattice-Based Cryptosystems - A Design Perspective*. Data Structures and Information Theory. Springer Singapore, 2020.
474. Junqing Zhang, Ming Ding, Guyue Li, and Alan Marshall. Key generation based on large scale fading. *IEEE Transactions on Vehicular Technology*, 68(8):8222–8226, 2019.
475. Junqing Zhang, Guyue Li, Alan Marshall, Aiqun Hu, and Lajos Hanzo. A new frontier for IoT security emerging from three decades of key generation relying on wireless channels. *IEEE Access*, 8:138406–138446, 2020.
476. Junqing Zhang, Alan Marshall, and Lajos Hanzo. Channel-envelope differencing eliminates secret key correlation: LoRa-based key generation in low power wide area networks. *IEEE Transactions on Vehicular Technology*, 67(12):12462–12466, 2018.
477. Junqing Zhang, Roger Woods, Trung Q. Duong, Alan Marshall, Yuan Ding, Yi Huang, and Qian Xu. Experimental study on key generation for physical layer security in wireless communications. *IEEE Access*, 4:4464–4477, 2016.
478. Junxing Zhang, Mohammad Hamed Firooz, Neal Patwari, and Sneha Kumar Kasera. Advanced wireless link signatures for location distinction. In *ACM MobiCom*, pages 26–37, 2008.
479. Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: COmpact and Scalable Arbitrary-Centered discrete Gaussian sampling over integers. In *PQCrypto*, pages 284–303, 2020.
480. Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. FACCT: FAst, Compact, and Constant-Time discrete Gaussian sampler over integers. *IEEE Transactions on Computers*, 69(1):126–137, 2020.
481. Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and Feifei Li. VeriDB: An SGX-based verifiable database. In *International Conference on Management of Data*, pages 2182–2194, 2021.
482. Daiwei Zhu, Gregory D. Kahanamoku-Meyer, Laura Lewis, Crystal Noel, Or Katz, Bahaar Harraz, Qingfeng Wang, Andrew Risinger, Lei Feng, Debopriyo Biswas, Laird Egan, Alexandru Gheorghiu, Yunseong Nam, Thomas Vidick, Umesh Vazirani, Norman Y. Yao, Marko Cetina, and Christopher Monroe. Interactive protocols for classically-verifiable quantum advantage, 2021. *arXiv:2112.05156*.
