The resonance peak in the electron-doped cuprate superconductors

J.-P. Ismer1,2, Ilya Eremin1,2, Enrico Rossi3, Dirk K. Morr3
1 Max-Planck Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
2 Institute für Mathematische und Theoretische Physik, Technische Universität Carolo-Wilhelmina zu Braunschweig, 38106 Braunschweig, Germany
3 Department of Physics, University of Illinois at Chicago, Chicago, IL 60607
(Dated: February 15, 2007)

We study the emergence of a magnetic resonance in the superconducting state of the electron-doped cuprate superconductors. We show that the recently observed resonance peak in the electron-doped superconductor Pr0.88LaCe0.12CuO4−δ with δ = 0.12 (PLC0.12CO) [1] observed a resonance peak in the superconducting (SC) state, a phenomenon similar to that observed in the hole-doped cuprates [2–4]. While the resonance frequency in PLC0.12CO, ωres ≈ 11 meV, obeys the same scaling with Tc as that in the hole-doped HTSC, there exist two significant differences. First, the resonance is confined to a small momentum region around Q = (π, π), where it is almost dispersionless. Second, angle-resolved photoemission (ARPES) experiments on PLC0.11CO [5] estimated, based on measurements of the leading edge gap, a maximum SC gap located at the “hot spots” [the Fermi surface (FS) points connected by Q] of Δhs ≈ 5 meV. Assuming the same SC gap in PLC0.12CO, this would suggest that the resonance is located slightly above the onset of the particle-hole (ph) continuum given by 2Δhs, a result which would challenge the interpretation of the resonance as a spin exciton [4, 6–8]. However, the uncertainties in ARPES and INS experiments are currently such that it is not possible to determine the relative magnitude of ωres and 2Δhs and thus ascertain the validity of the spin exciton scenario.

In this Letter we address this issue and study the emergence of a resonance mode in the SC state of electron-doped HTSC. We show that the experimental features of the resonance in PLC0.12CO can be explained within a spin exciton scenario. In particular, we demonstrate that the position of the hot spots close to the Brillouin zone (BZ) diagonal [9, 10] combined with the momentum dependence of the fermionic interaction leads to an almost dispersionless resonance that is confined to a small momentum region around Q. Moreover, while the resonance is always located below the ph continuum in systems with a quasi-particle lifetime, 1/Γ → ∞, we show that the maximum of the resonance’s intensity can be shifted to frequencies above the ph continuum when 1/Γ is sufficiently small. In this case, the form of the spin susceptibility is more reminiscent of the magnetic coherence effect in La2−xSrxCuO4 [11, 12] than of the resonance observed in the hole-doped HTSC. We present two predictions for further experimental tests of the spin exciton scenario. First, we show that a magnetic field in the ab-plane leads to an energy splitting of the resonance which for typical fields is sufficiently large to be experimentally observed in the electron-doped HTSC. Second, we predict that in those parts of the phase diagram, where dxy-y-wave superconductivity (dSC) coexists with an antiferromagnetic spin density wave (SDW) [13–15] and T_N < T_c, the resonance evolves into the Goldstone mode of the SDW state as T_N is approached.

Starting point for our study of the resonance mode in the electron-doped cuprates is the Hamiltonian

\[H = \sum_{k,\sigma} \varepsilon_k c_{k,\sigma}^\dagger c_{k,\sigma} + \sum_{k} \Delta_k c_{k,\uparrow}^\dagger c_{-k,\downarrow}^\dagger + h.c., \] (1)

where c_{k,\sigma}^\dagger creates an electron with spin σ and momentum k, and Δ_k is the SC gap with dxy-y-wave symmetry. The normal state tight binding dispersion

\[\varepsilon_k = -2t (\cos k_x + \cos k_y) - 4t' \cos k_x \cos k_y - 2t'' (\cos 2k_x + \cos 2k_y) - \mu \] (2)

with t = 250 meV, t'/t = −0.4, t''/t = 0.1 and $\mu/t = −0.2$ reproduces the position of the hot spots and the underlying FS [Fig. 1(a)] as inferred from ARPES [5].

Despite the same FS topology in the electron-doped and hole-doped cuprates, the angular dependence of the superconducting gap along the FS is qualitatively different in these systems. Based on a scenario in which superconductivity arises from the exchange of antiferromagnetic spin fluctuations, it was argued that the maximum SC gap is achieved near the hot spots [10, 16, 17]. In the hole-doped cuprates, the hot spots are located close to $q = (\pm \pi, 0)$ and $(0, \pm \pi)$, resulting in a SC dxy-y-wave gap that varies monotonically along the FS, as shown in Fig. 1(b). In contrast, in the electron-doped cuprates,
the hot spots are located much closer to the zone diagonal [Fig. 1(a)], leading to a non-monotonic behavior of the SC gap [10, 17], in agreement with ARPES experiments [5]. A good fit of Δ_k to the experimental data is achieved via the inclusion of a higher harmonic, such that $\Delta_k = \frac{\Delta_0}{2} (\cos k_x - \cos k_y) + \frac{\Delta_{1}}{2} (\cos 2k_x - \cos 2k_y)$ where $\Delta_1/\Delta_0 = 0.63$ ensures that the maximum of $|\Delta_k|$ along the FS is located at the hot-spots, as shown in Fig. 1(b). Since the magnitude of the SC gap in PLC$_{0.12}$CO is still unknown, we use $\Delta_0 = 10$ meV which yields $\Delta_{hs} = 5$ meV thus reproducing the ARPES estimate of the SC gap at the hot spots of PLC$_{0.11}$CO.

![Graph 1](image.png)

FIG. 1: (color online) (a) Fermi surface in optimally electron-doped cuprates. The arrow indicates the scattering of quasiparticles by Q. (b) Angular dependence of the SC gap for electron and hole-doped HTSC.

Similar to the hole-doped HTSC [4, 6–8] the resonance peak in the SC state of the electron-doped cuprates can be understood by considering the dynamical spin susceptibility within the random phase approximation (RPA)

$$
\chi(q, \omega) = \frac{\chi_0(q, \omega)}{1 - U(q)\chi_0(q, \omega)}
$$

where $U(q)$ is the fermionic four-point vertex, and $\chi_0(q, \omega)$ is the free-fermion susceptibility given by the sum of two single bubble diagrams consisting of either normal or anomalous Greens functions. While momentum independent and strongly momentum dependent forms of $U(q)$ were used in the hole-doped cuprates [4, 6–8], the close proximity of the (commensurate) antiferromagnetic and SC phases in the electron-doped HTSC suggests that $U(q)$ is momentum dependent, with a maximum at $Q = (\pi, \pi)$ [18]. Here, we use $U_q = -\frac{U_0}{2}(\cos q_x + \cos q_y)$ which reproduces a nearly dispersionless resonance mode around Q. The form of χ_0 in the hole-doped and electron-doped HTSC is qualitatively similar, and has been extensively discussed for the former [4, 6–8]. For momenta q near Q and $\Gamma = 0^+$, Imχ_0 is zero at low frequencies, and exhibits a discontinuous jump at the onset frequency of the ph continuum $\Omega_c(q) = |\Delta_k| + |\Delta_{k+q}|$, where both k and $k + q$ lie on the FS. For $q = Q$ one has $\Omega_c(Q) = 2\Delta_{hs}$. The discontinuity in Imχ_0 leads to a logarithmic singularity in Reχ_0. As a result, the resonance conditions (I)

$$
U_Q \text{Re}\chi_0(Q, \omega_{res}) = 1 \quad \text{and} \quad (II) \quad \text{Im}\chi_0(Q, \omega_{res}) = 0
$$

can be fulfilled simultaneously at $\omega_{res} < \Omega_c$ for any $U_Q > 0$, leading to the emergence of a resonance peak as a spin exciton. Note that for finite Γ, condition (I) can only be satisfied if U_Q exceeds a critical value, and condition (II) is replaced by $U_Q \text{Im}\chi_0(Q, \omega_{res}) \ll 1$.

In Figs. 2(a) and (b), we present Im$\chi(Q, \omega)$ for two different values of Γ. Since the INS data suggest that the resonance is located close to the ph continuum, we have chosen $U_0 = 0.854$ eV such that for $\Gamma \rightarrow 0$ (not shown), the resonance is located at $\omega_{res} = 9.8\text{meV} = 0.98\Omega_c$. For small $\Gamma = 0.5$ meV [Fig. 2(a)], the resonance broadens but only exhibits a negligible frequency shift. However, for larger $\Gamma = 3$ meV [Fig. 2(b)], the resonance has not only become much broader but its peak intensity has also shifted to $\omega_{res} \approx 11\text{meV} = 1.1\Omega_c$ well above the onset of the ph continuum. In this case, neither of the resonance conditions is satisfied, and Imχ is more reminiscent of the magnetic coherence effect in La$_{2-x}$Sr$_x$CuO$_4$ [11, 12] than of the resonance in the hole-doped HTSC. Note that the observed spectral weight in Imχ at frequencies much below Ω_c is consistent with a shorter lifetime $1/\Gamma$, arising, for example, from the interaction with collective modes or disorder effects. Whether the INS data are better described by the results shown in Fig. 2(a) [albeit with a larger Δ_{hs} such that the experimentally determined $\omega_{res} = 11$ meV corresponds to $0.98\Omega_c$], or
in Fig. 2(b), is presently unclear, mainly due to experimental resolution effects which are in general difficult to account for. Moreover, since the resonance’s maximum intensity is affected by its distance to the ph continuum, the band structure, the magnitude of the SC gap, and 1/Γ, we expect it to be smaller in the electron-doped HTSC than in the hole-doped cuprates.

In Fig. 2(c) we present a contour plot of Imχ for Γ = 0.5 meV along q = π(π, π) together with the momentum dependence of the ph continuum. The resonance is almost dispersionless and exists only in a small momentum region (0.96Q ≤ q ≲ 1.04Q) around Q, in agreement with experiment [1]. This effect arises from the momentum dependence of U(q), combined with the fact that the resonance at Q is located only slightly below the ph continuum, which leads to a “merging” of the resonance with the ph continuum at small deviations from Q. The momentum connecting the nodal points, qres ≈ 0.9Q, where Ωc(q) reaches zero, is much closer to Q than in the hole-doped systems where qres ≈ 0.8Q, leading to an additional narrowing of the dispersion.

The phase diagram of the electron-doped HTSC, and a SC gap that is much smaller than in the hole-doped cuprates, provide further opportunities for testing the nature of the resonance peak. Consider, for example, the effects of a magnetic field H in the ab-plane, which enters the calculation of χ only through the Zeeman-splitting of the electronic bands, while orbital effects are absent [19]. This lifts the degeneracy of the transverse and longitudinal components of χ0 which are given by

\[
\chi_0^\pm \left(q, \omega \right) = \sum_k \left\{ c^+ \frac{f_{k+q} - f_{k}^+}{\omega - i\nu_k^{\pm} + \xi_k} + c^- \frac{f_{k+q} - f_{k}^-}{\omega - i\nu_k^{\pm} + \xi_k} \right\}
\]

\[
\chi_0^{uu} \left(q, \omega \right) = \sum_k \left\{ c^+ \frac{f_{k+q} - f_{k}^+}{k - E_k + \xi_k} + c^- \frac{f_{k+q} - f_{k}^-}{k - E_k + \xi_k} \right\}
\]

where χ0 = χ0uu + χ0dd, ξk = Ek ± H, f± = f(ξk±) is the Fermi-function, c± = ½ (1 ± ξkEkk+ΔkΔk±), and E_k = √ξ_k^2 + Δ_k^2 (we set gμBS = 1). The RPA result for the full susceptibility is

\[
\chi = \frac{1}{2} \left(\frac{\chi_0^+}{1 - U_q \chi_0} + \frac{\chi_0^-}{1 - U_q \chi_0} \right) + \frac{\chi_{uu}^{zz} + \frac{1}{2} U_q \chi_0^{dd} \chi_0^{uu}}{1 - U_q^2 \chi_0^{uu}} \chi_0^{dd} .
\]

The Zeeman term in the denominators of χ0 shifts Ωc(q) in χ0 (χ0uu) by +2H ≈ 1 meV (−2H), while Ωc(q) remains unaffected in χ0uu [20]. This effect leads to a splitting of the resonance into three peaks [21], as shown in Fig. 3 for H = 8T ≪ H^{ab}_c(T = 0) ≈ 30 T [22] (for the results in Fig. 2(b), the magnetic field effects are negligible). If the resonance is located close to the ph continuum [Fig. 3(a)], the splitting results in an asymmetric resonance, while for a resonance located well below Ωc, Imχ exhibits a symmetric splitting [Fig. 3(b)]. Hence, the resonance’s asymmetry is an indication for the proximity of the ph continuum. Since the experimental resolution worsens with increasing frequency, the magnetic field splitting of the resonance might be more easily resolved in the electron than in the hole-doped HTSC.

One of the most important questions regarding the nature of the resonance mode in the hole-doped cuprates is whether with decreasing doping, the resonance mode transforms into the Goldstone mode of the antiferromagnetic parent compounds. Important insight into this question can be provided by those electron-doped cuprates, in which superconductivity coexists with a commensurate SDW [13–15]. Extending the spin-exciton scenario to such a coexistence phase [23], we find that the spin response at (π, π) only possesses a Goldstone mode at zero energy but no additional resonance at higher energies. Since the existence of a Goldstone mode requires the condition UQReχ0(Q, ω) = 1 to be satisfied at ω = 0, and since Reχ0(Q, ω) increases monotonically with frequency up to Ωc, the resonance conditions can only be satisfied once, namely at ω = 0. In contrast, in a “pure” SC state, the resonance is necessarily located at ωres ≠ 0. Moreover, recent experiments [15, 24] suggest that there exist electron-doped HTSC with TN < TC for these materials, it follows from the above discussion that the resonance of the pure SC state shifts downward in energy with decreasing temperature, until it reaches zero.
energy at T_N and forms the Goldstone mode. Within
the spin exciton scenario, this requires that $U(q)$ in-
creases with decreasing temperature (the detailed cal-
culation of this temperature dependence is beyond the
scope of the present work). In order to exemplify the
resonance’s temperature evolution, we consider a system
with $T_N < T_c$ (for concreteness we chose $T_N = T_c/6$).
We assume (somewhat arbitrarily) that U_0 varies linearly
with temperature while the momentum dependence of
$U(q)$ remains unchanged, such that the resonance at Q
and $T = 0.75T_c$ is located at $\omega_{res} \approx 0.92\Omega_c$, while for
$T = T_N$, we have $\omega_{res} = 0$. In Fig. 4, we present the con-
tour plots of $\text{Im} \chi$ for four different temperatures. While

the resonance shifts downwards with decreasing tempera-
ture, it remains nearly dispersionless over some temper-
ture range below T_c [see Figs. 4(a) and (b)]. However,
upon decreasing temperature even further [Fig. 4(c)], the
“flat” dispersion evolves continuously into an upward dis-
> 0.8784 eV − 0.0014 eV/K · T. The white dashed line in (d)
> represents the dispersion of the Goldstone mode.

We would like to thank A. Chubukov, F. Krüger, P.
Dai and J. Zaanen for helpful discussions and P. Dai for
sharing with us his experimental data. This work was
supported by the DAAD under Grant No. D/05/50420,
the Alexander von Humboldt Foundation (D.K.M), the
NSF under Grant No. DMR-0513415 (D.K.M), the U.S.
DOE under Award No. DE-FG02-05ER46225 (D.K.M),
and the IMPRS on “Dynamic Processes in Atoms, Mole-
cules, and Solids” (J.-P.I.).

[1] S.D. Wilson et al., Nature 442, 59 (2006).
[2] J. Rossat-Mignod et al., Physica C 185-189, 86 (1991).
[3] H.A. Mook et al., Phys. Rev. Lett. 70, 3490 (1993); P.
Bourges et al., Phys. Rev. B 53, 876 (1996); P. Dai et al.
ibid., Phys. Rev. Lett. 77, 5425 (1996); H.F. Fong et al.,
Nature (London) 398, 588 (1999); P. Dai et al., Science
284, 1344 (1999); H. He et al., Science 295, 1045 (2002);
S. Paillès et al., Phys. Rev. Lett. 93, 167001 (2004); S.
Hayden et al., Nature (London) 429, 531 (2004); C.
Stock et al., Phys. Rev. B 69, 014502 (2004).
[4] H. F. Fong et al., Phys. Rev. Lett. 75, 316 (1995).
[5] H. Matsui et al., Phys. Rev. Lett. 95, 017003 (2005).
[6] D. Z. Liu, Y. Zha, and K. Levin, Phys. Rev. Lett. 75,
4130 (1995); A. J. Millis and H. Monien, Phys. Rev. B
54, 16172 (1996); A. Abanov, and A.V. Chubukov, Phys.
Rev. Lett. 83, 1652 (1999); J. Brinckmann and P. A. Lee,
Phys. Rev. Lett. 82, 2915 (1999); D. Manske, I. Eremin,
and K. H. Bennemann, Phys. Rev. B 63, 054517 (2001);
I. Sega, P. Prelovšek, and J. Bonca, Phys. Rev. B 68,
054524 (2003).
[7] M.R. Norman, Phys. Rev. B 61, 14751 (2000); ibid 63,
092509 (2001).
[8] I. Eremin et al., Phys. Rev. Lett. 94, 147001 (2005).
[9] F. Onufrieva, and P. Pfentty, Phys. Rev. Lett. 92, 247003
(2004).
[10] P. Krotkov, and A.V. Chubukov, Phys. Rev. Lett. 96,
107002 (2006); ibid., Phys. Rev. B 74, 014509 (2006).
[11] D.K. Morr, and D. Pines, Phys. Rev. B 61, R6483 (2000);
ibid. Phys. Rev. B 62, 15177 (2000).
[12] T.E. Mason et al., Phys. Rev. Lett. 77, 1604 (1996); B.
Lake et al., Nature 400, 43 (1999).
[13] G.M. Luke et al., Phys. Rev. B 42, 7281 (1990).
[14] P.K. Mang et al., Phys. Rev. Lett. 93, 027002 (2004).
[15] S.D. Wilson et al., Phys. Rev. B 74, 144514 (2006).
[16] G. Blumberg et al., Phys. Rev. Lett. 88, 107002 (2002).
[17] D. Manske, I. Eremin, and K.-H. Bennemann, Phys. Rev.
B 62, 13922 (2000).
[18] E. M. Motoyama et al., Nature 445, 186 (2007).
[19] For a discussion of orbital effects, see M. Eschrig, M.R.
Norman, and B. Janko, Phys. Rev. B 64, 134509 (2001).
[20] The effect of H on the Fermi-functions is negligible
around the hot spots, at least for $T \ll T_c$.
[21] Note that in H.-M. Jiang and J.-X. Li, Phys. Rev. B 73,
224507 (2006) no splitting of the resonance was found
since only x^+2 was considered.
[22] The effect of H on the SC gap was taken into account.
[23] J.R. Schrieffer, X.G. Wen, and S.C. Zhang, Phys. Rev. B
39, 11663 (1989).
[24] P. Dai, private communication.