Synthetic properties of bright metal-poor variables
II. BL Hercules stars
M. Di Criscienzo1,2, F. Caputo3, M. Marconi1, and S. Cassisi4

1 INAF – Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy
e-mail: marcella@na.astro.it
2 Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
3 INAF – Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Italy
4 INAF – Osservatorio Astronomico di Collurania, via Maggini, 64100 Teramo, Italy

Received 11 October 2006 / Accepted 16 May 2007

ABSTRACT

We investigate the properties of the so-called BL Her stars, i.e., Population II Cepheids with periods shorter than 8 days, using updated pulsation models and evolutionary tracks computed by adopting a metal abundance in the range of $Z = 0.0001$ to $Z = 0.004$. We derive the predicted period-magnitude (PM) and period-Wesenheit (PW) relations at the various photometric bands and we show that the slopes of these relations are in good agreement with the slopes determined by observed variables in Galactic globular clusters, independently of the adopted $M_V(RR)$–[$Fe/H]$ relation to get the cluster RR Lyrae-based distance. Moreover, we show that the distances provided by the predicted PM and PW relations for BL Her stars agree within the errors with the RR Lyrae-based values. Using the predicted relations with W Vir stars, which are Population II Cepheids with periods longer than 8 days, provides no clear evidence for or against a change in the PM and PW slopes around $P \sim 10$ days.

Key words. stars: evolution – stars: population II – stars: variables: general

1. Introduction

Population II pulsating variables play a fundamental role in our understanding of the properties of old stellar populations, as well as in the definition of the cosmic distance scale. Among them, RR Lyrae stars are definitively the most abundant and the ones currently used as tracers of dynamical and chemical properties. Moreover, they are used as standard candles to establish the globular cluster distance scale, and they provide the calibration of secondary distance indicators, such as the globular cluster luminosity function in external galaxies (see Di Criscienzo et al. 2006, and references therein).

However, other classes of radial pulsators are actually observed in globular clusters and similar metal-poor stellar fields. In the current nomenclature, they are called Population II Cepheids (P2Cs) and anomalous Cepheids (ACs); the former ones, with periods P from ~ 1 to ~ 25 days, are observed in clusters with few RR Lyrae stars and blue horizontal branch (HB) morphology, while the latter, with $\sim 0.3 \leq P \leq \sim 2$ days, are observed in the majority of the Local Group dwarf galaxies that have been surveyed for variable stars. These two classes are both brighter but either less massive (P2Cs) or more massive (ACs) than RR Lyrae stars with similar metal content.

In three previous papers (Marconi et al. 2004; Caputo et al. 2004; Fiorentino et al. 2006) dealing with the investigation of the ACs and their role as distance indicators, we discussed the pulsation and evolution properties of these variables and showed that they originate from $Z \leq 0.0004$ central He-burning models more massive than $\sim 1.3 M_\odot$, which evolve through the pulsation region at luminosity and effective temperature increasing, on average, as the mass increases. Given the basic equation for radial pulsation ($P_{2}^{12} = Q$, where ρ is the star density and Q the pulsation constant), the effect of the higher luminosity is balanced by the higher mass and temperature and consequently, in spite of their bright luminosity, the ACs show periods that are not significantly longer than those typical of RR Lyrae stars.

Concerning the P2Cs, which are often separated into BL Her stars ($log P < 1$) and W Vir stars ($log P > 1$), several authors (e.g., Gingold 1985; Bonn et al. 1997; Wallerstein & Cox 1984; Harris 1985; Wallerstein 1990, 2002) have already suggested that they stem from hot, low-mass stellar structures that started the main central He-burning phase on the blue side of the RR Lyrae gap and now evolve toward the asymptotic giant branch crossing the pulsation region with the luminosity and the effective temperature that increases and decreases, respectively, while decreasing the mass; for this reason, these bright low-mass pulsators should reach periods of several days. Moreover, as also shown by Caputo et al. (2004) (see their Fig. 4) on theoretical grounds, at a fixed period the ACs are more luminous than P2Cs, a feature at the origin of their supposed “anomaly”.

On the observational side, Nemec et al. (1994) derived metal-dependent period-luminosity (PL) relations in various photometric bands, suggesting that observed P2Cs pulsate either in the fundamental or in the first-overtone mode and that the slopes of the PL relations are significantly different for the two modes. On the other hand, on the basis of a sample of P2Cs identified in the OGLE-II variable star catalogue for the Galactic bulge fields, Kubia& Udalsky (2003) found that all the observed stars, which have periods from ~ 0.7 to about 10 days, follow the same PL relation. Similar results are derived by Pritzl et al. (2003) and Matsunaga et al. (2006) for P2Cs in Galactic

\footnotesize{1 In their recent review, Sandage & Tammann (2006) adopt a different classification. However, in the present paper we use the classical one.}
globular clusters. Furthermore, these last two investigations support the hypothesis that the same PL relation holds for BL Her and W Vir stars, without a steepening of the slope for periods longer than $P \sim 10$ days, as earlier suggested by McNamara (1995).

From the theoretical point of view, the pulsation models by Buchler & Moskalik (1992) and Buchler & Buchler (1994), based on a linear and nonlinear radiative analysis, showed that the blue edge for first-overtone pulsation was very close ($\lesssim 100$ K) to the fundamental one, producing a very narrow region of FO-only pulsation. More recently, Bono et al. (1997) computed nonlinear convective models, finding a good agreement between the predicted and the observed boundaries of the P2C instability strip and suggesting that the observed variables are pulsating in the fundamental mode with a typical mass of ~ 0.52–0.59 M_\odot.

However, the Bono et al. (1997) nonlinear convective models, although also able to provide reliable information on the red edge of pulsation region, were limited to a quite restricted range of stellar parameters and adopted an old input physics (see Bono & Stellingwerf 1994, for details). For this reason, following our program dealing with a homogeneous study of radially pulsating stars with various chemical compositions, masses, and luminosities, in the present paper we discuss the results of updated pulsation models with mass 0.50–0.65 M_\odot and luminosity $log L/L_\odot = 1.81$–2.41 in order to build a sound theoretical scenario for the analysis of the P2Cs. In particular, we derive the predicted relations connecting evolutionary and pulsation properties for BL Her stars and verify their use as distance indicators.

The paper is organized as follows. In Sect. 2, we present the evolutionary and pulsation models, while in Sect. 3 we deal with the evolution-pulsation connection and give the predicted relations. The comparison with observed variables is presented in Sect. 4 and the conclusions close the paper.

2. Theoretical framework

The pulsation models computed for the present paper, as listed in Table 1, adopt the same nonlinear, nonlocal and time-dependent convective hydrodynamical code and the same physical assumptions (i.e., equation of state and opacity tables) already used for the analysis of Classical Cepheids (Caputo et al. 2005; Marconi et al. 2005; Fiorentino et al. 2007), RR Lyrae stars (Marconi et al. 2003; Di Criscienzo et al. 2004) and Anomalous Cepheids (Marconi et al. 2004; Fiorentino et al. 2006). In those papers, several relations connecting pulsational and evolutionary parameters were derived, whose slopes show a general consistency with the observed values. Moreover, they gave also a good agreement with the features of observed light curves of Classical Cepheids (Bono et al. 2002) and RR Lyrae stars (Bono et al. 2000; Castellani et al. 2002; Di Criscienzo et al. 2004; Marconi & Clementini 2005). For this reason, our pulsation models appear able to provide reliable information on the structural parameters of observed variables and, in turn, on the distance modulus, although we cannot exclude that the theoretical results are affected by unknown systematic errors and that further work is needed to refine our knowledge. However, our computations provide a homogeneous pulsational scenario for the study of complex stellar systems where a variety of pulsating stars can be observed.

The model sequences discussed in this paper are computed as one parameter families with constant chemical composition, mass, and luminosity, by varying the effective temperature T_e by steps of 100 K. These models, which adopt a value of the mixing length parameter $l/H_p = 1.5$ to close the system of convective and dynamic equations, are fully described by Marconi & Di Criscienzo (2007), so we report only the results relevant for the purpose of the present paper. For the sake of the following discussion, let us first make clear that increasing (decreasing) by 100 K the effective temperature of the computed bluest (reddest) fundamental (F) or first-overtone (FO) model yields non-pulsating structures in the corresponding mode. Accordingly, we adopt the effective temperature of the computed bluest FO and F models, increased by 50 K, as the first-overtone (FOBE) and the fundamental blue edge (FBE), respectively, and the effective temperature of the reddest FO and F models, decreased by 50 K, as the first-overtone (FORE) and the fundamental red edge (FRE), respectively. This yields that the effective temperatures given in Table 1 have the intrinsic uncertainty of ± 50 K.

Starting with the models with 0.65 M_\odot and $log L/L_\odot = 1.81$, we note that they follow the well-known behavior of RR Lyrae stars in that FO models are generally bluer than the F ones, but with the FORE redder than the FBE. As a consequence, we find that: a) the limits of the whole pulsation region are described by the FBE and the FRE; b) both the pulsation modes are stable in the middle zone delimited by the FBE and the FORE; c) F-only pulsators are located between the FRE and the FORE and FO-only pulsators between the FBE and the FBE. By increasing the luminosity, the whole pulsation region moves towards the red, but with a significant shrinking of the FO-only pulsation region. Based on the values listed in Table 1, the difference FBOE–FBE is ~ 300 K at $log L/L_\odot = 1.81$ and ~ 100 K at $log L/L_\odot = 1.91$. A further increase of the luminosity yields that the FBOE becomes redder than the FBE (with a difference FBOE–FBE ~ 150 K at $log L/L_\odot = 2.01$), with the total disappearance of stable FO models at $log L/L_\odot \geq 2.11$.

When varying the mass, we note that no FO model with 0.60 M_\odot is stable at $log L/L_\odot \geq 1.95$, while with 0.55 M_\odot we get FBOE = FBE at $log L/L_\odot = 1.80$ and only F models above this luminosity level. On the other hand, by relying on the

Z	M	$log L$	FBOEa	FBEa	FOREa	FREa
0.0001	0.60	1.95	–	6850	–	5750
2.05	6750	–	5650	–	5550	–
2.15	–	6750	–	5550	–	5550
0.65	1.91	6950	6850	6050	5750	–
2.01	6750	6850	6250	5750	–	–
2.11	–	6750	–	5550	–	5550
0.001	0.50	2.11	–	6650	–	5450
0.50	2.41	–	6350	–	5150	–
0.55	1.81	6850	6850	6350	5650	–
1.91	–	6850	–	5550	–	5450
2.01	–	6750	–	5450	–	5450
0.65	1.81	7050	6750	6650	5750	–
1.91	6850	6750	6150	5650	–	–
2.01	6650	6750	6350	5650	–	–

Note: a) First Overtone Blue Edge; b) Fundamental Blue Edge; c) First Overtone Red Edge; d) Fundamental Red Edge. If no value is given at FBOE and FORE, we found only fundamental models. A helium abundance $Y = 0.24$ and a mixing-length parameter $l/H_p = 1.5$ has been adopted. Mass and luminosity are in solar units.
computations discussed by Marconi et al. (2003) and Di Criscienzo et al. (2004), we recall that, for models with $0.80 \, M_\odot$, the difference FOBE–FBE is $\sim +400$ K at log $L/L_\odot = 1.72$ and ~ -200 K at log $L/L_\odot = 1.91$.

In summary, the results listed in Table 1 confirm earlier suggestions (see Tuggle & Iben 1972; Bono et al. 1995, 1997) that an “intersection” luminosity L_{IP} exists, for each given mass and helium content, where FOBE = FBE, and that only the fundamental mode is stable above this luminosity. On these grounds, one finds that the red limit of the instability strip is always determined by the FRE, while the blue limit is given by the FOBE or the FBE depending on whether the luminosity is fainter or brighter, respectively, than L_{IP}.

Based on present computations and the quoted RR Lyrae models, we estimate at $Y = 0.24$

$$\log L_{IP} \sim 2.3 + 1.9 \log M,$$

where mass and luminosity are in solar units. Concerning the limits of the instability strip, we adopt

$$\log T_e(\text{FOBE}) = 3.970(\pm 0.004) - 0.057 \log L + 0.094 \log M, (2)$$

as determined by Marconi et al. (2003) from pulsation models with $L < L_{IP}$, while a linear interpolation through the present results gives

$$\log T_e(\text{FRE}) = 3.912(\pm 0.007) - 0.035 \log L + 0.048 \log M $$

$$\log T_e(\text{FBE}) = 3.925(\pm 0.006) - 0.075 \log L + 0.118 \log M, (4)$$

where the uncertainties include the intrinsic uncertainty of ± 50 K on the FOBE, FBE, and FRE temperatures. Moreover, we derive that the pulsation equation for the fundamental mode can be approximated as

$$\log P_F = 11.579(\pm 0.015) + 0.89 \log L$$

$$-0.89 \log M - 3.54 \log T_e$$

where for the few first-overtone models we get log $P_{FO} \sim \log P_{FE} - 0.12$, at constant mass, luminosity, and effective temperature. Before proceeding, it is worth mentioning that the adopted helium content $Y = 0.24$ accounts for the most recent estimate (Cassisi et al. 2003; Salaris et al. 2004) based on measurements of the R parameter2 in a large sample of Galactic globular clusters. To quantify the dependence on the helium abundance, we computed specific models for RR Lyrae with $Y = 0.20$ and 0.35 showing that reasonable variations in the helium content ($\Delta Y = \pm 0.03$ in metal-poor stars have negligible effects on the effective temperature of the instability strip edges ($\Delta T_e \sim \pm 80$ K). Moreover, we wish to recall that the onset of pulsation also depends on the efficiency of convection in the star’s external layers, namely on the adopted value of the mixing length parameter αH_p. Since the effect of convection is to quench pulsation and the depth of convection increases from high to low effective temperatures, we expect that varying the αH_p value will modify the effective temperature at FRE by a larger amount with respect to FBE or FOBE. Indeed, the additional computations with $\alpha H_p = 2.0$ computed by Marconi & Di Criscienzo (2007) have confirmed the general trend shown by RR Lyrae (Marconi et al. 2003; Di Criscienzo et al. 2004) and classical Cepheid models (Fiorentino et al. 2007) in that, at constant mass and luminosity, the FBE and FRE effective temperatures increase by ~ 100 and ~ 300 K, respectively. The effects of different αH_p values on the predicted relations will be discussed in the next section.

Table 2. Chemical compositions of the adopted evolutionary models.

Z	Y	[\alpha/Fe]	[Fe/H]
0.0001	0.245	0.4	-2.62
0.001	0.246	0.4	-1.62
0.004	0.251	0.4	-1.01
0.0001	0.245	0.0	-2.27
0.001	0.246	0.0	-1.27
0.004	0.251	0.0	-0.66

For the evolutionary framework, we adopt the models computed by Pietrinferni et al. (2004, 2006) for scaled solar and α-enhanced ([\alpha/Fe] = 0.4) metal distributions in order to cover (see Table 2) the [Fe/H] range between -2.6 and -0.7. All the models have been transferred from the theoretical HR diagram to the various observational planes by adopting updated color-effective temperature relations and bolometric corrections (see Pietrinferni et al. 2004; Cassisi et al. 2004) and the reader is referred to these papers3 for information on the physical inputs and numerical assumptions. Here, it seems sufficient to note that this evolutionary framework is based on the most updated physical scenario and that the various stellar models have been followed all through the main core H-burning phase and advanced core and shell He-burning evolutionary phases. All the He-burning models adopted in the present analysis were computed by accounting for an He-core mass and He-envelope abundance on the zero age horizontal branch (ZAHB) characteristic of a red giant branch (RGB) progenitor with an initial total mass equal to $\sim 0.8 \, M_\odot$, corresponding to an age at the RGB tip on the order of 13 Gyr. The reliability and accuracy of the whole evolutionary scenario have already been tested by comparison with various empirical data sets (see also Riello et al. 2003; Salaris et al. 2004; Recio-Blanco et al. 2005) and, in summary, it appears quite suitable for investigating the populations of variable stars in Galactic globular clusters. Finally, let us note that these evolutionary computations so far represent the most updated and complete set of low-mass, He-burning models currently available. As a fact, the unique set of similar stellar models is the one published a long time ago by Dorman et al. (1993), which is based on physical inputs that are any longer updated. However, in the following section we discuss how the uncertainties in the evolutionary framework would affect the predicted relations.

The procedure for deriving the observational parameters of the predicted pulsators is in principle quite simple and has been described in several previous investigations (Bono et al. 1997; Marconi et al. 2003; Fiorentino et al. 2006). As shown in Fig. 1, the relations of the predicted edges of the instability strip (Eqs. (2)–(4)) give us the way to select the models evolving with a luminosity higher than log L_{IP} and showing FBE $\geq \log T_e \geq$ FRE. In this way, we find that the mass range of the predicted fundamental pulsators varies from 0.515–0.62 M_\odot at [Fe/H] $= -2.6$ to 0.50–0.55 M_\odot at [Fe/H] = -0.7. These mass values are coherent with the mass range of the pulsating models listed in Table 1. However, as shown in Table 3, the average luminosity of the pulsators with a given mass increases as the metal content decreases, yielding that the [Fe/H] $= -2.6$ pulsators less massive than 0.53 M_\odot are more luminous than our brightest pulsating models. Since we cannot a priori be sure that the edge and period relations provided by the pulsation models listed in Table 1 can be extrapolated to higher luminosity levels, in the following we will use only the predicted pulsators whose mass and luminosity

2 This parameter is the number ratio of HB to red giant branch stars brighter than the HB level.

3 The whole set of stellar models can be retrieved at the following URL site: http://www.te.astro.it/BASTI/index.php
Fig. 1. Selected evolutionary tracks with $Z = 0.0001$ and [α/Fe] = 0.4 in comparison with the predicted FOBE, FBE and FRE. At luminosity levels brighter than the intersection between FOBE and FBE, we found only fundamental models.

Table 3. Luminosity L_{FBE} at the fundamental blue edge of the models with the labeled metal content and [α/Fe] = 0.4, compared to the luminosity L_{α} at the intersection between FOBE and FBE.

M/M_\odot	$\log L_{\text{FBE}}$	$\log L_{\alpha}$	$\log L_{\text{FBE}}$	$\log L_{\alpha}$
0.500	-2.05	1.88	2.27	2.07
0.505	-2.05	1.88	2.27	2.07
0.510	-2.05	1.88	2.27	2.07
0.515	-2.05	1.88	2.27	2.07
0.520	-2.05	1.88	2.27	2.07
0.525	-2.05	1.88	2.27	2.07
0.530	-2.05	1.88	2.27	2.07
0.535	-2.05	1.88	2.27	2.07
0.540	-2.05	1.88	2.27	2.07
0.545	-2.05	1.88	2.27	2.07
0.550	-2.05	1.88	2.27	2.07
0.560	-2.05	1.88	2.27	2.07
0.570	-2.05	1.88	2.27	2.07
0.580	-2.05	1.88	2.27	2.07
0.590	-2.05	1.88	2.27	2.07
0.600	-2.05	1.88	2.27	2.07
0.610	-2.05	1.88	2.27	2.07
0.620	-2.05	1.88	2.27	2.07

Table 4. Predicted PM_C, PM_H, and PM_K relations for fundamental pulsators with iron content in the range of [Fe/H] = −2.6 to −0.7 and $P \leq 8$ days.

M_\odot	a	b	c	d
M_\odot	-0.26	-2.10	$+0.04$	-0.24
M_\odot	-0.64	-2.29	$+0.04$	-0.16
M_\odot	-0.95	-2.34	$+0.04$	-0.08
M_\odot	-0.97	-2.38	$+0.06$	-0.06

As already found for other pulsating variables, the effect of the intrinsic width in effective temperature of the instability strip (see Fig. 1) is greatly reduced when moving from optical to near-infrared magnitudes. On this basis, it is quite clear that synthetic PM_B to PM_K relations will significantly depend on the actual distribution of the pulsators within the pulsation region, at variance with the case of the near-infrared magnitudes. Moreover, we wish to recall that a variation in the mixing length parameter from $H/\mu_H = 1.5$ to 2.0 gives hotter FBE and FRE by about 100 K and 300 K, respectively. Consequently, the pulsator distribution is slightly shifted toward shorter periods, yielding mildly steepened (less than 2%) and brighter pulsator distribution is slightly shifted toward shorter periods, yielding mildly steepened (less than 2%) and brighter fundamental models yield the linear relations listed in Table 4: as a result, we find that the apparent distance modulus μ_H of observed variables can be determined within ±0.20 mag, including the uncertainty due to the mixing-length parameter, whereas both μ_H and μ_K can be determined with a formal accuracy of 0.07 mag. Given the residual effect of the intrinsic width of the instability strip, the PM_H relation yields μ_H within 0.15 mag.

It is widely acknowledged that the scatter in optical magnitudes can be removed if a period-magnitude-color (PMC) is considered, i.e., if the pulsator magnitude is given as a function of the period and color. Several previous papers (see, e.g., Madore 1982; Madore & Freedman 1991; Tanvir 1999; Caputo et al. 2000, 2004) have already shown that the color coefficient of the various PMC relations is not too different from the extinction-to-reddening ratio provided by optical and near-infrared reddening laws (see Dean et al. 1978; Caldwell & Coulson 1987; Cardelli et al. 1989; Laney & Siobie 1993). On this basis, adopting the reddening insensitive Wesenheit functions, where the magnitude
is corrected for the color according to the interstellar extinction, also removes the largest part of the effect of differing effective temperatures. In the following, when adopting $A_V = 3.1E(B-V)$, $A_R = 2.45E(B-V)$, $A_I = 1.85E(B-V)$, $A_J = 0.897E(B-V)$, $A_H = 0.574E(B-V)$ and $A_K = 0.372E(B-V)$, we will refer to the Wesenheit functions $WBV = V - 3.1E(B-V)$, $WVR = V - 4.77(V - R)$, $WVI = V - 2.48(V - I)$, $WVJ = V - 1.407(V - J)$, $WVH = V - 1.227(V - H)$, and $WVK = V - 1.136(V - K)$. Moreover, since only near-infrared data are available for several P2Cs, we will consider also the function $WJK = K - 0.709(J - K)$.

As shown in Fig. 3, where the fundamental pulsators with $l/H_p = 1.5, Z = 0.001$, and $[\alpha/Fe] = 0.4$ are plotted, in some selected PW diagrams, the magnitude dispersion at fixed period is indeed greatly reduced, leading to tight linear PW relations. With regard to the effect of the increased value of the mixing length parameter, we find that moving from $l/H_p = 1.5$ to 2.0 yields slightly brighter PW relations, while leaving the slope almost unvaried (less than 2%). By a least square fit to all the fundamental pulsators, we derive the coefficients listed in Table 5. These relations give us a very safe way to estimate the intrinsic distance modulus m_0 of observed variables with a formal accuracy of ± 0.1 mag, independent of the reddening. Concerning the WBV function, we show in Fig. 4 that the pulsator distribution in the log P_V--WBV plane is much better represented by a quadratic relation, i.e., $WBV = a + b \log P_v + c(\log P_v)^2$, mainly for the lower metal content. Note also that, at variance with the other Wesenheit functions, the WBV function becomes brighter as the pulsator metal content increases, at a fixed period, with the magnitude difference increasing towards the longer periods. As a whole, the least-square fit to all the fundamental pulsators yields $a = -1.06(\pm 0.09), b = -2.96(\pm 0.08) - 0.36[Fe/H]$ and $\gamma = -0.17(\pm 0.05) + 0.13[Fe/H]$. To close of this section, let us note that the dependence of the HB luminosity at the RR Lyrae gap on the metal content Z seems to be a robust result of stellar evolution and that all the available sets of evolutionary models, with few exceptions, predict similar trends (see Fig. 13 in Pietrinferni et al. 2004). Unfortunately, no comparison with other recent models can be made for He-burning low-mass models, so we adopt an uncertainty of about 0.04 dex of the logarithm luminosity as a safe estimate. However, when accounting for the dependence of the pulsation period on the stellar luminosity, this uncertainty on the stellar brightness has no significative effects on the predicted PM and PW relations given in Tables 4 and 5, respectively. Indeed, an increase of 0.04 dex in the luminosity, for any fixed effective temperature, causes a period variation $\delta log P = 0.036$, while all the magnitudes and Wesenheit functions become brighter by 0.1 mag. As a consequence of these simultaneous variations, the "new" PM and PW relations will be brighter by 0.02 mag at most.

4. Comparison with observations

The Galactic globular clusters with observed P2Cs are listed in Table 6 with their reddening $E(B-V)$, apparent visual magnitude $V(HB)$, and HB type, as given by Harris (1996). We recall that the HB type is the ratio $(B - R)/(B + V + R)$, where V is the number of RR Lyrae variables, while B and R are the numbers of HB stars that are bluer and redder, respectively, than RR Lyrae stars. For all the P2Cs, we adopt the periods and the apparent magnitudes provided by Pritzl et al. (2003, BVJ, hereafter Pr03) and Matsumaga et al. (2006, $HJKs$, hereafter Ma06).

In their investigations, Pr03 and Ma06 find fairly tight linear correlations of the absolute magnitudes of P2Cs, as derived from RR Lyrae-based distance moduli, with log P, without clear evidence of a change in the slope between BL Her and W Vir stars. In particular, by adopting $M_V(RR) = 0.89 + 0.22[Fe/H]$, Ma06 derive $\delta M_J/\delta \log P = -2.23(\pm 0.05)$, $\delta M_H/\delta \log P = -2.34(\pm 0.05)$ and $\delta M_K/\delta \log P = -2.41(\pm 0.05)$, which are in excellent agreement with the predicted slopes given in Table 4. In that study, it is also mentioned that the slope of the observed near-infrared PM relations is not affected by

Table 5. PW relations for fundamental pulsators with iron content in the range of $[Fe/H] = -2.6$ to -0.7 and period $P \leq 8$ days.

W	a	b	c	d
WVR	-1.07 ± 0.07	-2.42 ± 0.02	$+0.01 \pm 0.01$	-0.10
WVI	-1.16 ± 0.07	-2.43 ± 0.02	$+0.04 \pm 0.01$	-0.10
WVJ	-1.04 ± 0.06	-2.37 ± 0.02	$+0.05 \pm 0.01$	-0.08
WVH	-1.20 ± 0.06	-2.58 ± 0.02	$+0.06 \pm 0.01$	-0.07
WVK	-1.13 ± 0.06	-2.52 ± 0.02	$+0.06 \pm 0.01$	-0.06
WJK	-1.15 ± 0.06	-2.60 ± 0.02	$+0.06 \pm 0.01$	-0.06
Table 6. Galactic globular clusters with observed P2Cs.

Name	E(B−V)	[Fe/H]	V(B)}	HB type	N_{BL}	N_{WV}
HP1	1.19	−1.55	18.60	−	0	2
N1904	0.01	−1.57	16.15	+0.89	0	1
N2419	0.11	−2.12	20.45	+0.86	1	0
N2808	0.22	−1.15	16.22	−0.49	1	0
N4372	0.39	−2.09	15.50	+1.00	2	0
N5139-ω Cen	0.12	−1.62	14.53	+0.94	9	2
N5272-M3	0.01	−1.57	15.68	+0.08	0	1
N5904-M5	0.03	−1.27	15.07	+0.31	0	2
N5986	0.28	−1.58	16.52	+0.97	0	1
N6093-M80	0.18	−1.75	16.10	+0.93	0	1
N6205-M13	0.02	−1.54	15.05	+0.97	4	1
N6218-M12	0.19	−1.48	14.60	+0.97	0	1
N6229	0.01	−1.43	18.03	+0.24	0	1
N6254-M10	0.28	−1.52	14.65	+0.98	1	2
N6256	1.03	−0.70	18.50	−	0	1
N6266-M62	0.47	−1.29	16.25	+0.32	0	1
N6273-M19	0.41	−1.68	16.50	−	1	2
N6284	0.28	−1.32	17.40	−	2	0
N6293	0.41	−1.92	16.50	+0.90	1	0
N6325	0.89	−1.17	17.90	−	0	2
N6341-M92	0.02	−2.28	15.10	+0.91	1	0
N6388	0.37	−0.60	16.85	−	2	1
N6402-M14	0.60	−1.39	17.30	+0.65	2	3
N6441	0.47	−0.53	17.51	−	2	5
N6453	0.66	−1.53	17.53	−	0	2
N6569	0.55	−0.86	17.52	−	0	1
N6626-M28	0.40	−1.45	15.55	+0.90	2	2
N6626-M28	0.40	−1.45	15.55	+0.90	0	1
N6715-M54	0.15	−1.58	18.17	+0.75	2	0
N6749	1.50	−1.60	19.70	+1.00	1	0
N6752	0.04	−1.56	13.70	+1.00	1	0
N6779-M56	0.20	−1.94	16.16	+1.00	1	1
N7078-M15	0.10	−2.26	15.83	+0.67	2	1
N7089-M2	0.06	−1.62	16.05	+0.96	0	4
TonI	2.28	−1.30	21.40	−	0	1

With \(P \leq 8 \) days, supporting the hypothesis of similar relations for BL Her and W Vir stars. In addition, we wish to mention that the [Fe/H] effect on the zero-point of the near-infrared PM relations, as estimated by Ma06, is about 0.1 mag dex\(^{-1}\), again in agreement with our theoretical value.

On this ground, we can use the predicted relations derived in the previous section to derive the P2C distance moduli. With this purpose, since the Pietrinferni et al. (2004, 2006) magnitudes are in the Bessell & Brett (1988) near-infrared photometric system, the relations provided by Carpenter (2001) are used to transform the original 2MASS JHK\(_s\) data given by Ma06 into standard JHK magnitudes. For the P2C reddening and metal content, we adopt the values of the hosting globular cluster; however, for NGC 6388 and NGC 6441 we consider also [Fe/H] = −2.0, as adopted by Pr03 and Ma06.

By excluding the globular clusters with only W Vir stars and NGC 6341 V7, which will be discussed separately, we find some points worthy of mention:

- from the BVI magnitudes of the NGC 6441 P2Cs, we find an increasing discrepancy between the \(\mu_{0, \text{WBV}} \) and \(\mu_{0, \text{WVI}} \) values of a given variable when moving from short to long period stars. With [Fe/H] = −0.53, we get \(\mu_{0, \text{WBV}} - \mu_{0, \text{WVI}} \sim 0.4 \) mag at \(P \sim 1.1 \) and \(\sim 0.8 \) mag at \(P \sim 1.3 \). It is interesting to note that, if [Fe/H] = −2.0 is adopted, these differences are reduced to \(\sim 0 \) and \(\sim 0.3 \) mag, respectively. This would suggest that, despite the cluster high metallicity, the P2Cs may have a low metal content. However, we remind that the different assumptions on the slope of the \(M_V(\text{RR})-[\text{Fe/H}] \) relation. In fact, by repeating the Ma06 procedure but adopting \(M_V(\text{RR}) = 0.8 \text{ mag} \) and \(M_V(\text{RR}) = 0.94 + 0.30[\text{Fe/H}] \) (Sandage 1993: S93), we show in Fig. 5 (upper panels) that the variation to the near-infrared \(PM \) slopes is less than 2 percent. Here, we add that this holds also for the \(PW \) relations based on \(VJHK \) magnitudes. The arrow in this figure refers to NGC 6341 V7 (Del Principe et al. 2005) which will be discussed separately.

Turning to the Pr03 optical magnitudes, some comments should be made to the data plotted in Fig. 6. First, even removing the too faint outliers (i.e., the \(BVI \) data of V24 and V28 in NGC 4372 and the \(BV \) data of V12 and V32 in NGC 6205 and of V3 in NGC 6254, see also Pr03), a significant dispersion in the \(PM \) and \(PW \) planes, as well as some evidence that the W Vir stars follow steeper \(PM \) relations than the BL Her stars can be noticed. The observed \(PM \) and \(PW \) relations appear linear and quite tight, with the slope independent of the adopted \(M_V(\text{RR})-[\text{Fe/H}] \) relation and in good agreement with the predicted values. However, it should be mentioned that these results are based on a rather small number of data points (mostly, the variables in NGC 6441).

In summary, we derive that all the observed P2Cs show linear near-infrared \(PM \) relations and linear \(PW \) relations, with the exclusion of \(WBV \), independently of the adopted \(M_V(\text{RR})-[\text{Fe/H}] \) relation. Moreover, the slopes of these relations are in close agreement with our predicted values for variables
and distributions of observed P2Cs under two different assumptions on the absolute magnitude of RR Lyrae stars. The numbers in parentheses are the slopes of the relations, as derived by a linear regression to the data. The arrow indicates V7 in NGC 6341. The infrared magnitudes are taken from Matsunaga et al. (2006).

Eventually, by excluding the $\mu_{0,\text{WBV}}$ values, the mean intrinsic distance moduli listed in Table 7 together with the estimated total uncertainty. As a matter of comparison, we give in the last column the cluster distance determined by adopting the relation $M_V(\text{RR}) = 0.89 + 0.22\,[\text{Fe/H}]$ and the reddening and HB visual magnitude in Table 6. As a whole, given the well known debate on the RR Lyrae distance scale (see the recent review by Cacciari & Clementini 2003), we believe that the P2Cs distances agree with the RR Lyrae based values within the estimated uncertainty. As for a change in the PM and PW slopes around $P \sim 1$, namely between BL Her and W Vir stars, the values listed in Table 8 show similar distances for the variables in ω Cen and NGC 6441, whereas for the remaining clusters there is a subtle discrepancy as the former distance moduli are shorter by ~ 0.15 mag than the latter ones.

We can now study NGC 6341 V7 which has a period $log P = 0.026$ and is deviant from the near-infrared PM relations (see arrow in Fig. 5). With VJK data taken from Del Principe et al. (2005), we would derive $\mu_0 = 13.80 \pm 0.07$ mag or 14.10 ± 0.07 mag, depending on whether the variable is a fundamental or first-overtone BL Her star (i.e., adopting $log P_K = 0.038$). As a whole, these distances are too short with respect to $\mu_0(\text{RR}) = 14.65$ mag, as derived by the relation $M_V(\text{RR}) = 0.89 + 0.22\,[\text{Fe/H}]$ using the values listed in Table 6. On the other hand, comparing the K magnitudes of RR Lyrae stars from Del Principe et al. (2005) with the predicted M_K relations presented by Del Principe et al. (2006), we derive $\mu_0(\text{RR}) = 14.63 \pm 0.08$ mag. Since the relations given in the present paper and those reported by Del Principe et al. (2006) are based on model computations which adopt homogeneous physics and numerical procedures, we can conclude that V7 is not a BL Her star but, due to the evidence that it is brighter than expected for its period, it may be an Anomalous Cepheid. Indeed, using for V7 the PM relations determined by Fiorentino et al. (2006) from evolutionary and pulsation models of fundamental ACs, we derive $\mu_0(\text{AC}) = 14.69 \pm 0.15$ mag.

5. Conclusions

The main results of this study can be summarized as follows:

- On the basis of updated nonlinear convective pulsation models of BL Herculis we derive analytical relations for the boundaries of the instability strip as a function of the adopted stellar physical parameters, as well as derive the pulsation equation for these bright objects. Moreover, we confirm earlier suggestions that for each given mass and helium content

![Fig. 5. PM and PW distributions of observed P2Cs under two different assumptions on the absolute magnitude of RR Lyrae stars. The outliers are V24 and V28 in NGC 4372, V12 and V32 in NGC 6205 and V3 in NGC 6254. The optical magnitudes are taken from Pritzl et al. (2003).](image)

![Fig. 6. PM and PW distributions of observed P2Cs under two different assumptions on the absolute magnitude of RR Lyrae stars. The outliers are V24 and V28 in NGC 4372, V12 and V32 in NGC 6205 and V3 in NGC 6254. The optical magnitudes are taken from Pritzl et al. (2003).](image)
there exists an “intersection” luminosity, as given by the intersection between the FOBE and the FBE, above which only the fundamental mode is stable.

- By combining the pulsational results with the predictions of the evolutionary models by Pietrinferni et al. (2004, 2006), we select models brighter than the “intersection” luminosity and therefore pulsating only in the fundamental mode, corresponding to periods longer than ~0.8d and stellar masses ≤0.62 M⊙.

- For the models which have masses and luminosities consistent with the physical parameters adopted in the pulsation models, we derive the predicted PM and PW relations at the various photometric bands. We show that the predicted slopes are in close agreement with the empirical ones, quite independently of the slope in the adopted M_V (RR)–[Fe/H] relation.

- The predicted PM and PW relations have been applied to all the known P2Cs in Galactic globular clusters and the resulting distance moduli are in statistical agreement with the RR Lyrae based values.

- The variables in ω Cen and NGC 6441 seem to support the hypothesis of unique PM and PW relations for BL Her and W Vir stars. Conversely, for the remaining clusters the former distance moduli are found to be shorter by ~0.15 mag than the latter ones, suggesting steeper relations with $P ≥ 10$ days. On this ground, no firm conclusion can presently be found in favor or against a change in the PM and PW slopes around $log P \sim 1$.

- Finally, the application of the predicted relations to NGC 6341 V7 provides evidence that this variable is not a P2C. Using the results presented by Fiorentino et al. (2006), we confirm the earlier suggestion by Ma06 that this star can be the second AC in Galactic globular clusters.

Acknowledgements. Financial support for this study was provided by MIUR, under the scientific project “On the evolution of stellar systems: fundamental step toward the scientific exploitation of VST” (P.I. Massimo Capaccioli) and by INAF, under the scientific project “A laboratory for the theoretical study of stellar populations” (P.I. A. Buzzoni).

References
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134B
Bono, G., & Stellingwerf, R. F. 1994, ApJS, 93, 233B
Bono, G., Castellani, V., & Stellingwerf, R. F. 1995, ApJ, 445, 145
Bono, G., Caputo, F., & Santolamazza, P. 1997, A&A, 317, 171
Bono, G., Castellani, V., & Marconi, M. 2000, ApJ, 532, L129
Bono, G., Castellani, V., & Marconi, M. 2002a, ApJ, 565, L83
Buchler, J. R., & Moskalik, P. 1994, A&A, 292, 450
Buchler, J. R., & Buchler, N. E. G. 1994, A&A, 285, 213
Cacciari, C., & Clementini, G. 2003, in Stellar Candles for the Extragalactic Distance Scale, ed. D. Alloin, & W. Gieren, Lect. Notes Phys., 635, 105
Caldwell, J. A. R., & Coulson, I. M. 1987, AJ, 93, 1090
Cassisi, S., Salaris, M., & Irwin, A. W. 2003, ApJ, 588, 862
Cassisi, S., Salaris, M., Castelli, F., & Pietrinferni, A. 2004, ApJ, 616, 498
Castellani, V., Deq’l’Innocenti, S., & Marconi 2002, A&A, 387, 861
Caputo, F., Marconi, M., & Musella, I. 2000, A&A, 354, 610
Caputo, F., Castellani, V., Deq’l’Innocenti, S., Fiorentino, G., & Marconi, M. 2001a, A&A, 424, 927C
Caputo, F., Bono, G., Fiorentino, G., Marconi, M., & Musella, I. 2005, ApJ, 629, 1021
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245C
Carpenter, J. 2001, AJ, 121, 2851
Dean, J. F., Warren, P. R., & Cousins, A. W. J. 1978, MNRAS, 183, 569
Del Principe, M., Piersimoni, A. M., Bono, G., et al. 2005, AJ, 129, 2714
Del Principe, M., Piersimoni, A. M., Storm, J., et al. 2006, ApJ, 652, 362
Di Criscienzo, M., Marconi, M., & Caputo, F. 2004, ApJ, 612, 1092D
Di Criscienzo, M., Caputo, F., Marconi, M., & Musella, I. 2006, MNRAS, 365, 1357
Dorman, B., Rood, R. T., & O’Connell, R. W. 1993, 419, 419
Fiorentino, G., Limongi, M., Caputo, F., & Marconi, M. 2006, A&A, 460, 155
Fiorentino, G., Marconi, M., Musella, I., Caputo, F. 2007, A&A, in press [arXiv:astro-ph/0707.0959v1]
Gingold, R. A. 1985, MmSAI, 56, 169
Harris, H. C. 1985, AJ, 90, 756
Harris, H. C. 1996, AJ, 112, 1487
Kubiak, M., & Udalski, A. 2003, AcA, 53, 117
Lanev, C., & Stobie, R. S. 1993, MNRAS, 263, L921
Madore, B. F. 1982, ApJ, 253, 57
Madore, B. F., & Freedman, W. L. 1991, PASP, 103, 933
Marconi, M., Di Criscienzo, M., & Castellani, M. 2007, A&A, in press [arXiv:astro-ph/0701256]
Marconi, M., Caputo, F., Di Criscienzo, M., & Castellani, M. 2003, ApJ, 596, 299M
Marconi, M., Fiorentino, G., & Caputo, F. 2004, A&A, 417, 1101
Marconi, M., Musella, I., & Fiorentino, G. 2005, ApJ, 632, 590
Matsumaga, N., Fukushima, H., Nakada, Y., et al. 2006, MNRAS, 370, 1979
Matsunaga, N., Nakada, Y., et al. 2006, MNRAS, 370, 1979
McNamara, D. H. 1995, AJ, 109, 2134
Nemec, J. M., Nemec, A. F. L., & Lutz, T. E. 1994, AJ, 108, 222
Pritzl, B., Smith, H., Stetson, P., et al. 2003, AJ, 126, 1381
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJ, 612, 168
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2006, ApJ, 642, 797
Recio-Blanco, A., Piotto, G., de Angeli, F., et al. 2005, A&A, 432, 851R
Riello, M., Cassisi, S., Piotto, G., et al. 2003, A&A, 410, 553
Sandage, A., & Tammann, G. M. 2006, ARA&A, 44, 93
Salaris, M., Riello, M., Cassisi, S., & Piotto, G. 2004, A&A, 420, 911S
Sandage, A. 1993, AJ, 106, 687S
Stellingwerf, R. F. 1982, ApJ, 262, 330S
Tuggle, R., & Ibem, I. 1972, ApJ, 8, 5
Wallenstein, G. 1990, ASPC, 11, 56
Wallenstein, G. 2002, PASP, 114, 689
Wallenstein, G., & Cox, A. N. 1984, PASP, 96, 677