ON TWO CONGRUENCE CONJECTURES OF Z.-W.
SUN INVOLVING FRANEL NUMBERS

GUO-SHUAI MAO AND YAN LIU

Abstract. In this paper, we mainly prove the following conjectures of Z.-W. Sun [17]: Let \(p > 2 \) be a prime. If \(p = x^2 + 3y^2 \) with \(x, y \in \mathbb{Z} \) and \(x \equiv 1 \pmod{3} \), then

\[
x \equiv \frac{1}{4} \sum_{k=0}^{p-1} (3k + 4) \frac{f_k}{2^k} \equiv \frac{1}{2} \sum_{k=0}^{p-1} (3k + 2) \frac{f_k}{(-4)^k} \pmod{p^2},
\]

and if \(p \equiv 1 \pmod{3} \), then

\[
\sum_{k=0}^{p-1} \frac{f_k}{2^k} \equiv \sum_{k=0}^{p-1} \frac{f_k}{(-4)^k} \pmod{p^3},
\]

where \(f_n = \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right)^3 \) stands for the \(n \)th Franel number.

1. Introduction

In 1894, Franel [2] found that the numbers

\[
f_n = \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right)^3 \quad (n = 0, 1, 2, \ldots)
\]

satisfy the recurrence relation (cf. [12, A000172]):

\[
(n + 1)^2 f_{n+1} = (7n^2 + 7n + 2)f_n + 8n^2 f_{n-1} \quad (n = 1, 2, 3, \ldots).
\]

These numbers are now called Franel numbers. Callan [1] found a combinatorial interpretation of the Franel numbers. The Franel numbers play important roles in combinatorics and number theory. The sequence \((f_n)_{n \geq 0} \) is one of the five sporadic sequences (cf. [21, Section 4]) which are integral solutions of certain Apéry-like recurrence equations and closely related to the theory of modular forms. In 2013, Sun [17] revealed some unexpected connections between the numbers.

Key words and phrases. Congruences; franel numbers; \(p \)-adic Gamma function; Gamma function.

Mathematics Subject Classification. Primary 11A07; Secondary 05A10; 05A19; 33B15.

The first author is the corresponding author. This research was supported by the Natural Science Foundation of China (grant 12001288).
\[f_n \text{ and representations of primes } p \equiv 1 \pmod{3} \text{ in the form } x^2 + 3y^2 \text{ with } x, y \in \mathbb{Z}, \text{ for example, Z.-W. Sun } [17] \text{ (1.2) showed that} \]

\[\sum_{k=0}^{p-1} \frac{f_k}{2^k} \equiv \sum_{k=0}^{p-1} \frac{f_k}{(-4)^k} \equiv 2x - \frac{p}{2x} \pmod{p^2}, \quad (1.1) \]

and in the same paper, Sun proposed some conjectures involving Franel numbers, one of which is

Conjecture 1.1. Let \(p > 2 \) be a prime. If \(p = x^2 + 3y^2 \) with \(x, y \in \mathbb{Z} \) and \(x \equiv 1 \pmod{3} \), then

\[x \equiv \frac{1}{4} \sum_{k=0}^{p-1} (3k + 4)f_k \equiv \frac{1}{2} \sum_{k=0}^{p-1} (3k + 2) \frac{f_k}{(-4)^k} \pmod{p^2}. \]

For more studies on Franel numbers, we refer the readers to \([3, 4, 6, 7, 8, 15, 18]\) and so on.

In this paper, our first goal is to prove the above conjecture.

Theorem 1.1. Conjecture 1.1 is true.

Z.-W. Sun \([17]\) also gave the following conjecture which is much difficult and complex.

Conjecture 1.2. Let \(p > 2 \) be a prime. If \(p \equiv 1 \pmod{3} \), then

\[\sum_{k=0}^{p-1} f_k 2^k \equiv \sum_{k=0}^{p-1} \frac{f_k}{(-4)^k} \pmod{p^3}. \]

Our last goal is to prove this conjecture.

Theorem 1.2. Conjecture 1.2 is true.

We are going to prove Theorem 1.1 in Section 2. Section 3 is devoted to proving Theorem 1.2. Our proofs make use of some combinatorial identities which were found by the package \textit{Sigma} \([11]\) via the software \textit{Mathematica} and the \(p \)-adic Gamma function. The proof of Theorem 1.2 is somewhat difficult and complex because it is rather convoluted. Throughout this paper, prime \(p \) always \(\equiv 1 \pmod{3} \), so in the following Lemmas \(p > 5 \) or \(p > 3 \) or \(p > 2 \) is the same, we mention it here first.

2. Proof of Theorem 1.1

For a prime \(p \), let \(\mathbb{Z}_p \) denote the ring of all \(p \)-adic integers and let \(\mathbb{Z}_p^\times := \{ a \in \mathbb{Z}_p : a \text{ is prime to } p \} \). For each \(\alpha \in \mathbb{Z}_p \), define the \(p \)-adic
order $\nu_p(\alpha) := \max\{n \in \mathbb{N} : p^n \mid \alpha\}$ and the p-adic norm $|\alpha|_p := p^{-\nu_p(\alpha)}$. Define the p-adic gamma function $\Gamma_p(\cdot)$ by

$$\Gamma_p(n) = (-1)^n \prod_{1 \leq k < n \atop (k,p)=1} k, \quad n = 1, 2, 3, \ldots,$$

and

$$\Gamma_p(\alpha) = \lim_{|\alpha-n|_p \to 0} \Gamma_p(n), \quad \alpha \in \mathbb{Z}_p.$$

In particular, we set $\Gamma_p(0) = 1$. Following, we need to use the most basic properties of Γ_p, and all of them can be found in [9, 10]. For example, we know that

$$\frac{\Gamma_p(x+1)}{\Gamma_p(x)} = \begin{cases} -x, & \text{if } |x|_p = 1, \\ -1, & \text{if } |x|_p > 1. \end{cases} \quad (2.1)$$

$$\Gamma_p(1-x)\Gamma_p(x) = (-1)^{a_0(x)}, \quad (2.2)$$

where $a_0(x) \in \{1, 2, \ldots, p\}$ such that $x \equiv a_0(x) \pmod{p}$. And a property we need here is the fact that for any positive integer n,

$$z_1 \equiv z_2 \pmod{p^n} \implies \Gamma_p(z_1) \equiv \Gamma_p(z_2) \pmod{p^n}. \quad (2.3)$$

Lemma 2.1. ([17, Lemma 2.2]) For any $n \in \mathbb{N}$ we have

$$\sum_{k=0}^{n} \binom{n}{k}^3 z^k = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n+k}{3k} (2k) \binom{3k}{k} z^k (1+z)^{n-2k} \quad (2.4)$$

and

$$f_n = \sum_{k=0}^{n} \binom{n+2k}{3k} (2k) \binom{3k}{k} (-4)^{n-k}. \quad (2.5)$$

For $n, m \in \{1, 2, 3, \ldots\}$, define

$$H_n^{(m)} = \sum_{1 \leq k \leq n} \frac{1}{k^m},$$

these numbers with $m = 1$ are often called the classic harmonic numbers.

Recall that the Bernoulli polynomials are given by

$$B_n(x) = \sum_{k=0}^{n} \binom{n}{k} B_k x^{n-k} \quad (n = 0, 1, 2, \ldots).$$
Lemma 2.2. ([13, 14]) Let \(p > 5 \) be a prime. Then

\[
H_{p-1}^{(2)} \equiv 0 \pmod{p}, \quad H_{p-1}^{(2)} \equiv 0 \pmod{p}, \quad H_{p-1} \equiv 0 \pmod{p^2},
\]

\[
\frac{1}{3} H_{\left\lfloor \frac{p}{3} \right\rfloor}^{(2)} \equiv H_{\left\lfloor \frac{p}{3} \right\rfloor}^{(2)} \equiv \frac{1}{2} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p},
\]

\[
H_{\left\lfloor \frac{p}{2} \right\rfloor} \equiv -2q_p(2) - \frac{3}{2} q_p(3) + p q_p^2(2) + \frac{3p}{4} q_p^2(3) - \frac{5p}{12} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^2},
\]

\[
H_{\left\lfloor \frac{p}{4} \right\rfloor} \equiv -\frac{3}{2} q_p(3) + \frac{3p}{4} q_p^2(3) - \frac{p}{6} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^2},
\]

\[
H_{\left\lfloor \frac{p}{6} \right\rfloor} \equiv -2q_p(2) + p q_p^2(2) \pmod{p^2}, \quad H_{\left\lfloor \frac{p}{4} \right\rfloor} \equiv (-1)^{p-1} 4E_{p-3} \pmod{p},
\]

\[
H_{\left\lfloor \frac{p}{4} \right\rfloor} \equiv -\frac{3}{2} q_p(3) + \frac{3p}{4} q_p^2(3) + \frac{p}{3} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^2},
\]

where \(q_p(a) = (a^{p-1} - 1)/p \) stands for the Fermat quotient.

Lemma 2.3. Let \(p > 2 \) be a prime and \(p \equiv 1 \pmod{3} \). If \(0 \leq j \leq (p-1)/2 \), then we have

\[
\binom{3j}{j} \binom{p+j}{3j+1} \equiv \frac{p}{3j+1} (1 - pH_{2j} + pH_j) \pmod{p^3}.
\]

Proof. If \(0 \leq j \leq (p-1)/2 \) and \(j \neq (p-1)/3 \), then we have

\[
\binom{3j}{j} \binom{p+j}{3j+1} = (p+j) \cdots (p+1) p(p-1) \cdots (p-2j) \quad \frac{j!(2j)!}{(3j+1)!}
\]

\[
\equiv \frac{pj!(1+pH_j)(-1)^{2j}(2j)!(1-pH_{2j})}{j!(2j)! (3j+1)}
\]

\[
\equiv \frac{p}{3j+1} (1 - pH_{2j} + pH_j) \pmod{p^3}.
\]

If \(j = (p-1)/3 \), then by Lemma [2.2], we have

\[
\binom{p-1}{\frac{p-1}{3}} \binom{p+\frac{p-1}{3}}{\frac{p-1}{3}}
\]

\[
\equiv \left(1 - pH_{\frac{p-1}{3}} + \frac{p^2}{2} (H_{\frac{p-1}{3}}^2 - H_{\frac{p-1}{3}}) \right) \left(1 + pH_{\frac{p+1}{3}} + \frac{p^2}{2} (H_{\frac{p+1}{3}}^2 - H_{\frac{p+1}{3}}) \right)
\]

\[
\equiv 1 - p^2 H_{\frac{p-1}{3}}^{(2)} \equiv 1 - \frac{p^2}{2} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^3}
\]

and

\[
1 - pH_{\frac{p-1}{3}} + pH_{\frac{p+1}{3}} \equiv 1 - \frac{p^2}{2} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^3}.
\]

Now the proof of Lemma 2.3 is complete. \(\Box \)
Proof of Theorem 1.1. With the help of (2.4), we have

\[
\sum_{k=0}^{p-1} (3k + 4) f_k = \sum_{k=0}^{p-1} \frac{3k + 4}{2^k} \sum_{j=0}^{[k/2]} \binom{k+j}{j} \binom{3j}{3j} 2^{k-2j}
\]

\[
= \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j} \binom{3j}{3j}}{4^j} \sum_{k=2j}^{p-1} (3k + 4) \binom{k+j}{3j}. \tag{2.6}
\]

By loading the package \texttt{Sigma} in the software \texttt{Mathematica}, we find the following identity:

\[
\sum_{k=2j}^{n-1} (3k + 4) \binom{k+j}{3j} = 9nj + 3n + 9j + 5 \binom{n+j}{3j+1}.
\]

Thus, replacing \(n \) by \(p \) in the above identity and then substitute it into (2.6), we have

\[
\sum_{k=0}^{p-1} (3k + 4) f_k \equiv \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j} \binom{3j}{3j}}{4^j} \frac{9p + 3p + 9j + 5}{3j+2} \binom{p+j}{3j+1}. \tag{2.7}
\]

Hence we immediately obtain the following result by Lemma 2.3

\[
\sum_{k=0}^{p-1} (3k + 4) f_k \equiv p \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j} 9j + 5}{4^j (3j+1)(3j+2)} \mod p^2. \tag{2.8}
\]

It is easy to verify that

\[
p \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j} 9j + 5}{4^j (3j+1)(3j+2)} \equiv S_1 + S_2 \mod p^2,
\]

where

\[
S_1 = p \sum_{j=0}^{(p-1)/2} \binom{(p-1)/2}{j} (-1)^j \left(\frac{2}{3j+1} + \frac{1}{3j+2} \right) \tag{2.9}
\]

and

\[
S_2 = \frac{3p + 2}{p + 1} \left(\frac{(2p - 2)/3}{(p - 1)/3} \right)^{4(p-1)/3} - \left(\frac{(p-1)/2}{(p-1)/3} \right).
\]

Applying the famous identity

\[
\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{k+x} = \frac{n!}{x(x+1)\cdots(x+n)} \tag{2.10}
\]
with \(x = 1/3, n = (p - 1)/2 \) and \(x = 2/3, n = (p - 1)/2 \), we may simplify (2.9) as
\[
S_1 = \frac{4p}{3p - 1} \left(\frac{1}{(1/3)^{(p-1)/2}} \right) + \frac{2p}{3p + 1} \left(\frac{1}{(2/3)^{(p-1)/2}} \right),
\]
where \((a)_n = a(a + 1) \cdots (a + n - 1) \) is the rising factorial or the Pochhammer symbol.

In view of (2.1) and (2.2), we have
\[
\frac{4p}{3p - 1} \left(\frac{1}{(1/3)^{(p-1)/2}} \right) = \frac{4p}{3p - 1} \left(\frac{1}{\Gamma(\frac{1}{3} + \frac{p-1}{2})} \right) = \frac{4p}{3p - 1} \left((-1)^{\frac{p-1}{2}} \Gamma_p(\frac{p+1}{2}) \Gamma_p(\frac{1}{3}) \right)
\]
\[
= \frac{12}{1 - 3p} \frac{\Gamma_p(\frac{p+1}{2}) \Gamma_p(\frac{1}{3})}{\Gamma_p\left(\frac{p+1}{2} - \frac{1}{3}\right)} = \frac{12(-1)^{\frac{p-1}{2}}}{1 - 3p} \Gamma_p\left(\frac{p+1}{2}\right) \Gamma_p\left(\frac{1}{3}\right) \Gamma_p\left(\frac{7}{6} - \frac{p}{2}\right),
\]
where \(\Gamma(\cdot) \) is the Gamma function. It is known that for \(\alpha, s \in \mathbb{Z}_p \), we have
\[
\Gamma_p(\alpha + ps) \equiv \Gamma_p(\alpha) + ps\Gamma'_p(\alpha) \pmod{p^2}
\]
and
\[
\frac{\Gamma'_p(\alpha)}{\Gamma_p(\alpha)} \equiv 1 + H_{p-\langle \alpha \rangle - 1} \pmod{p},
\]
where \(\Gamma'_p(x) \) denotes the \(p \)-adic derivative of \(\Gamma_p(x) \), \(\langle \alpha \rangle_n \) denotes the least non-negative residue of \(\alpha \) modulo \(n \), i.e., the integer lying in \(\{0, 1, \ldots, n - 1\} \) such that \(\langle \alpha \rangle_n \equiv \alpha \pmod{n} \).

Therefore modulo \(p^2 \), we have
\[
\frac{4p}{3p - 1} \left(\frac{1}{(1/3)^{(p-1)/2}} \right) \equiv \frac{12(-1)^{\frac{p-1}{2}}}{1 - 3p} \Gamma_p\left(\frac{p+1}{2}\right) \Gamma_p\left(\frac{1}{3}\right) \Gamma_p\left(\frac{7}{6} - \frac{p}{2}\right) \left(1 + \frac{p}{2} \left(H_{p-1} - H_{p-7/6}\right)\right).
\]

In view of (2.11) and (2.12), we have
\[
\frac{4p}{3p - 1} \left(\frac{1}{(1/3)^{(p-1)/2}} \right) \equiv \frac{2(1 + 3p)\Gamma_p\left(\frac{p+1}{2}\right) \Gamma_p\left(\frac{1}{3}\right) \Gamma_p\left(\frac{7}{6} - \frac{p}{2}\right) \left(1 + \frac{p}{2} \left(H_{p-1} - H_{p-7/6}\right)\right) \pmod{p^2}.
\]

And then by using [20, Proposition 4.1], we have
\[
\frac{\Gamma_p\left(\frac{p+1}{2}\right) \Gamma_p\left(\frac{1}{3}\right) \Gamma_p\left(\frac{7}{6} - \frac{p}{2}\right) \left(1 + \frac{p}{2} \left(H_{p-1} - H_{p-7/6}\right)\right) \pmod{p^2}.
\]

Then with the help of [20, Theorem 4.12] and Lemma 2.2, we have
\[
\frac{4p}{3p - 1} \left(\frac{1}{(1/3)^{(p-1)/2}} \right) \equiv 4x + 3pxq_p(3) - \frac{p}{x} \pmod{p^2}
\]
(2.13)
and
\[\frac{2p}{3p + 1} \cdot \frac{(p-1)/2}{(2/3)(p-1)/2} \equiv \frac{p}{x} \pmod{p^2}. \]
(2.14)
Hence
\[S_1 \equiv 4x + 3pxq_p(3) \pmod{p^2}. \]
(2.15)

Lemma 2.4. Let \(p > 3 \) be a prime. For any \(p \)-adic integer \(t \), we have
\[\left(\frac{p-1}{2} + pt \right) \equiv \left(\frac{p-1}{3} \right) \left(1 + pt \left(H_{p-1} - H_{p-1} \right) \right) \pmod{p^2}. \]
(2.16)

Proof. Set \(m = (p-1)/2 \). It is easy to check that
\[\left(\frac{m+pt}{(p-1)/3} \right) = \frac{(m+pt) \cdots (m+pt-(p-1)/3+1)}{(p-1)/3)! \]
\[\equiv \frac{m \cdots (m-(p-1)/3+1)}{(p-1)/3)! (1 + pt(H_m - H_{m-(p-1)/3})) \]
\[= \left(\frac{m}{(p-1)/3} \right) (1 + pt(H_m - H_{m-(p-1)/3})) \pmod{p^2}. \]
So Lemma 2.4 is finished. \(\Box \)

Now we evaluate \(S_2 \) modulo \(p^2 \). It is easy to obtain that
\[S_2 \equiv 2 \left(\left(-\frac{1}{2} \right) - \left(\frac{(p-1)/2}{(p-1)/3} \right) \right) \]
\[\equiv -p \left(\frac{(p-1)/2}{(p-1)/3} \right) (H_{(p-1)/2} - H_{(p-1)/6}) \]
\[\equiv -3pxq_p(3) \pmod{p^2} \]
(2.17)
with the help of Lemma 2.2, Lemma 2.4 and [20, Theorem 4.12].
Therefore, in view of (2.7), (2.8), (2.15) and (2.17), we immediately get the desired result
\[\frac{1}{4} \sum_{k=0}^{p-1} (3k + 4) \frac{f_k}{2^k} \equiv x \pmod{p^2}. \]

On the other hand, we use the equation (2.5) to obtain that
\[\sum_{k=0}^{p-1} (3k + 2) \frac{f_k}{(-4)^k} = \sum_{k=0}^{p-1} 3k + 2 \sum_{j=0}^k \binom{k + 2j}{3j} \binom{2j}{3j} (3j) (3j) (-4)^{k-j} \]
\[= \sum_{j=0}^{p-1} \frac{(2j)}{(-4)^j} \sum_{k=j}^{p-1} (3k + 2) \binom{k + 2j}{3j}. \]
By using the package \texttt{Sigma} again, we find the following identity:
\[
\sum_{k=j}^{n-1} (3k + 2) \binom{k + 2j}{3j} = \frac{9nj + 3n + 1}{3j + 2} \binom{n + 2j}{3j + 1}.
\]

Thus,
\[
\sum_{k=0}^{p-1} (3k + 2) \frac{f_k}{(-4)^k} = \sum_{j=0}^{p-1} \binom{3j}{j} \frac{\binom{p+2j}{3j+1}}{(-4)^j} \frac{9pj + 3p + 1}{3j + 2}.
\] (2.18)

\textbf{Lemma 2.5.} Let \(p > 3 \) be a prime and \(p \equiv 1 \) (mod 3). If \(0 \leq j \leq (p - 1)/2 \) and \(j \neq (p - 1)/3 \), then
\[
\binom{3j}{j} \binom{p + 2j}{3j + 1} \equiv \frac{p(-1)^j}{3j + 1} (1 + pH_{2j} - pH_j) \pmod{p^3}.
\]
If \((p + 1)/2 \leq j \leq p - 1 \), then
\[
\binom{3j}{j} \binom{p + 2j}{3j + 1} \equiv \frac{2p(-1)^j}{3j + 1} \pmod{p^2}.
\]

\textbf{Proof.} If \(0 \leq j \leq (p - 1)/2 \) and \(j \neq (p - 1)/3 \), then we have
\[
\binom{3j}{j} \binom{p + 2j}{3j + 1} = \frac{(p + 2j) \cdots (p + 1)p(p - 1) \cdots (p - j)}{j!(2j)!(3j + 1)}
\]
\[
\equiv \frac{p(2j)!(1 + pH_{2j})(-1)^j(1 - pH_j)}{j!(2j)!(3j + 1)}
\]
\[
\equiv \frac{p(-1)^j}{3j + 1} (1 + pH_{2j} - pH_j) \pmod{p^3}.
\]
If \((p + 1)/2 \leq j \leq p - 1 \), then
\[
\binom{3j}{j} \binom{p + 2j}{3j + 1}
\]
\[
= \frac{(p + 2j) \cdots (2p + 1)(2p) \cdots (p + 1)p(p - 1) \cdots (p - j)}{j!(2j)!(3j + 1)}
\]
\[
\equiv \frac{2p^2(2j) \cdots (p + 1)(p - 1)!(-1)^j(j)!}{j!(2j)!(3j + 1)} = \frac{2p(-1)^j}{3j + 1} \pmod{p^2}.
\]
Now the proof of Lemma 2.5 is complete. \(\Box \)

It is known that \(\binom{2k}{k} \equiv 0 \pmod{p} \) for each \((p + 1)/2 \leq k \leq p - 1 \), and it is easy to check that for each \(0 \leq j \leq (p - 1)/2 \),
\[
\binom{3j}{j} \binom{p + 2j}{3j + 1} \equiv \frac{p(-1)^j}{3j + 1} \pmod{p^2}.
\]
These, with (2.18) yield that

\[
\sum_{k=0}^{p-1} (3k + 2) f_k \equiv \sum_{j=0}^{\frac{p-1}{2}} \frac{(2j)}{j} \frac{p(-1)^j}{3j + 1} \frac{9pj + 3p + 1}{3j + 2} + \sum_{j=\frac{p+1}{2}}^{p-1} \frac{(2j)}{j} \frac{2p(-1)^j}{3j + 1} \frac{1}{3j + 2}
\]

\[
\equiv \sum_{j=0}^{\frac{p-1}{2}} \binom{\frac{p-1}{2}}{j} \frac{p(-1)^j}{3j + 1} \frac{1}{3j + 2} + S_3
\]

\[
= p \sum_{j=0}^{\frac{p-1}{2}} \binom{\frac{p-1}{2}}{j} (-1)^j \left(\frac{1}{3j + 1} - \frac{1}{3j + 2} \right) + S_3 \pmod{p^2}, \quad (2.19)
\]

where

\[
S_3 = \binom{\frac{2p-2}{3}}{\frac{p-1}{3}} \frac{1}{p+1} \frac{p-1}{3} \frac{1}{p+1} - \binom{\frac{p-1}{2}}{\frac{p-1}{3}} \frac{1}{4} \frac{2p-2}{3}^2
\]

\[
= \frac{1}{p+1} \left(\frac{-1/2}{p-1/3} - \binom{\frac{p-1}{2}}{\frac{p-1}{3}} \right) - \frac{-1/2}{(2p-2)/3}
\]

In the same way of above, with (2.10), (2.13), (2.14), Lemma 2.2 and [20, Theorem 4.12], we have the following congruence modulo \(p^2\)

\[
p \sum_{j=0}^{\frac{p-1}{2}} \binom{\frac{p-1}{2}}{j} (-1)^j \left(\frac{1}{3j + 1} - \frac{1}{3j + 2} \right) \equiv 2x + \frac{3px}{2} q_p(3) - \frac{3p}{2x}, \quad (2.20)
\]

Now we evaluate \(S_3\). It is easy to see that

\[
\left(-\frac{1}{2} \right) \left(-\frac{1}{2} - 1 \right) \cdots \left(-\frac{1}{2} - \frac{2p-2}{3} + 1 \right) = \frac{(-\frac{p-1}{2})!}{(2p-2)!} \frac{1}{(2p-2)!}
\]

\[
= \frac{\left(-\frac{p-1}{2} \right)! \cdots \left(-\frac{p-1}{2} - 1 \right)! \left(\frac{p}{2} \right)! \cdots \left(\frac{p}{2} + \frac{p-7}{6} \right)!}{(2p-2)!}
\]

\[
= \frac{\left(-\frac{p-1}{2} \right)! \cdots \left(-\frac{p-1}{2} - 1 \right)! \left(\frac{p}{2} \right)! \cdots \left(\frac{p}{2} + \frac{p-7}{6} \right)!}{(2p-2)!}
\]

\[
= (-1)^{\frac{p-1}{2}} \left(\frac{p-1}{2} \right)! \left(\frac{p-7}{6} \right)! \equiv (-1)^{\frac{p-1}{2}} \frac{1}{3p} \frac{1}{(\frac{p-1}{2})!}
\]

\[
\equiv -3p(-1)^{(p-1)/2} \left(\frac{2p-2}{3} \right)^{(p-1)/2} \pmod{p^2}.
\]
In view of (2.17) and [20, Theorem 4.12], we immediately obtain that
\[S_3 \equiv -\frac{3px}{2}q_p(3) + \frac{3p}{2x} \pmod{p^2}. \]
This, with (2.19) and (2.20) yields that
\[\frac{1}{2} \sum_{k=0}^{p-1} (3k + 2) \frac{f_k}{(-4)^k} \equiv x \pmod{p^2} \]
Now the proof of Theorem 1.1 is complete. □

3. Proof of Theorem 1.2

Proof of Theorem 1.2 With the help of (2.4), we have
\[\sum_{k=0}^{p-1} \frac{f_k}{2^k} = \sum_{k=0}^{p-1} \frac{1}{2^k} \sum_{j=0}^{\lfloor k/2 \rfloor} \binom{k+j}{3j} \binom{2j}{j} \binom{3j}{j} 2^{k-2j} \]
\[= \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j} \binom{3j}{j}}{4^j} \sum_{k=2j}^{p-1} \binom{k+j}{3j}. \quad (3.1) \]

By loading the package Sigma in the software Mathematica, we have the following identity:
\[\sum_{k=2j}^{n-1} \binom{k+j}{3j} = \binom{n+j}{3j+1}. \]
Thus, replace \(n \) by \(p \) in the above identity and then substitute it into (3.1), we have
\[\sum_{k=0}^{p-1} \frac{f_k}{2^k} = \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j} \binom{3j}{j}}{4^j} \binom{p+j}{3j+1}. \]
Hence we immediately obtain the following result by Lemma 2.3,
\[\sum_{k=0}^{p-1} \frac{f_k}{2^k} \equiv p \sum_{j=0, j \neq \frac{p-1}{3}}^{(p-1)/2} \frac{\binom{2j}{j} \binom{3j}{j}}{4^j} \frac{1 - pH_{2k} + pH_k}{(3j+1)} + S_1 \pmod{p^3}, \quad (3.2) \]
where
\[S_1 = \frac{\binom{2p-2}{p-1} \binom{p-1}{p-1}}{4^{\frac{p-1}{3}}} = \left(-\frac{1}{2} \right) \left(\frac{p-1}{p-1} \right) \left(\frac{p}{p-3} \right). \]
It is easy to verify that
\[
\begin{align*}
\frac{(p-1)/2}{4j} \frac{1}{3j+1}
\end{align*}
\]
\[
\equiv \frac{p}{j=0} j \neq \frac{p-1}{2} \left(-1 \right)^j \left(1 - pH_{2k} + pH_k \right)
\end{align*}
\]
\[
\equiv \frac{p}{j=0} j \neq \frac{p-1}{2} \frac{(-1)^j}{3j+1} \left(1 - p \sum_{r=1}^{j} \frac{1}{2r-1} \right)
\end{align*}
\]
\[
\equiv \frac{p}{j=0} j \neq \frac{p-1}{2} \frac{(-1)^j}{3j+1} \left(1 + \frac{p}{2} H_k \right) - S_2 \pmod{p^3},
\]
where
\[
S_2 = \frac{\left(\frac{p-1}{p-1} \right) \left(1 + \frac{p}{2} H_{p-1} \right)}{p}.
\]
So
\[
\sum_{k=0}^{p-1} \frac{f_k}{2k} \equiv p \sum_{j=0}^{(p-1)/2} \frac{\left(\frac{p-1}{j} \right) \left(1 + \frac{p}{2} H_k \right)}{3j+1} + S_1 - S_2 \pmod{p^3}. \quad (3.3)
\]

It is easy to see that
\[
\frac{2p}{3p-1} \left(\frac{1}{2} \right) \frac{\left(p-1 \right)!}{\left(\frac{p-1}{3} \right)!} = \frac{\left(\frac{p-1}{2} \right)!}{\frac{1}{3} \cdots \left(\frac{p-1}{3} \right) \left(\frac{p-1}{3} + 1 \right) \cdots \left(\frac{p-1}{3} + \frac{p-1}{6} \right)} \equiv \frac{\left(\frac{p-1}{3} \right)!}{\left(\frac{p-1}{2} \right)!} \pmod{p}.
\]
\[
(3.4)
\]
On the other hand, We have
\[
\sum_{k=0}^{p-1} \frac{f_k}{(-4)^k} \equiv \sum_{k=0}^{p-1} \frac{1}{(-4)^k} \sum_{j=0}^{k} \binom{k+2j}{3j} \binom{2j}{j} \binom{3j}{j} (-4)^{k-j}
\end{align*}
\]
\[
= \sum_{j=0}^{p-1} \frac{(-1)^j}{(-4)^j} \sum_{k=j}^{p-1} \binom{k+2j}{3j} \binom{2j}{j} \binom{3j}{j} = \sum_{j=0}^{p-1} \frac{(-1)^j}{(-4)^j} \binom{2j}{j} \binom{3j}{j} \binom{p+2j}{3j+1}.
\]
So by Lemma 2.5 and the fact that for each $0 \leq k \leq (p-1)/2$,
\[
\frac{\left(\frac{2k}{k} \right)}{(-4)^k} \equiv \frac{\left(\frac{p-1}{2} \right)!}{\left(1 - p \sum_{j=1}^{k} \frac{1}{2j-1} \right)^{2j-1}} \pmod{p^2}, j \frac{\binom{2j}{j}}{\left(\frac{2p-2j}{p-j} \right)} \equiv 2p \pmod{p^2}
\]
\[
(3.4)
\]
for each $(p+1)/2 \leq j \leq p-1$, we have the following congruence modulo p^3,

\[
\sum_{k=0}^{p-1} \frac{f_k}{(-4)^k} - S_3 \equiv p \sum_{j=0}^{p-1} \frac{(2j)(1 + pH_{2j} - pH_j)}{(3j + 1)4^j} + 2p \sum_{j=\frac{p+1}{2}}^{p-1} \frac{(2j)}{(3j + 1)4^j}
\]

\[
\equiv \sum_{j=0}^{p-1} \frac{p(-1)^j \left(\frac{p-1}{3} \right) (1 + 2pH_{2j} - \frac{3}{2}pH_j)}{3j + 1} + \sum_{j=\frac{p+1}{2}}^{p-1} \frac{4p^2}{4^j(3j + 1)j(\frac{2p-2j}{p-j})}
\]

\[
\equiv \sum_{j=0}^{p-1} \frac{p(-1)^j \left(\frac{p-1}{3} \right) (1 + 2pH_{2j} - \frac{3}{2}pH_j)}{3j + 1} + \sum_{j=1}^{\frac{p-1}{2}} \frac{p^24^j}{(3j - 1)j(\frac{2j}{j})} - S_4,
\]

where

\[
S_3 = \left(\frac{2p-2}{p-1}\right) \left(\frac{p-1}{3}\right) \left(\frac{p+2p-2}{p}\right) \left(-\frac{1}{(p-3)}\right) \left(\frac{p-1}{p-3}\right) \left(\frac{p+2p-2}{p}\right),
\]

\[
S_4 = \left(\frac{p-1}{p-3}\right) \left(1 + 2pH_{2\frac{p-1}{2}} - \frac{3}{2}pH_{\frac{p-1}{2}}\right).
\]

Hence we have

\[
\sum_{k=0}^{p-1} \frac{f_k}{(-4)^k} - \sum_{k=0}^{p-1} \frac{f_k}{2^k}
\]

\[
\equiv 2p^2 \sum_{j=0}^{p-1} \frac{(-1)^j(H_{2j} - H_j)}{3j + 1} + S_5 + \sum_{j=1}^{\frac{p-1}{2}} \frac{p^24^j}{(3j - 1)j(\frac{2j}{j})} \pmod{p^3},
\]

(3.5)

where

\[
S_5 = S_3 - S_4 + S_2 - S_1.
\]

By \textit{Sigma}, we can find and prove the following identity:

\[
\sum_{j=0}^{n} \frac{2(n)}{j}(-1)^j(H_{2j} - H_j)
\]

\[
\sum_{j=0}^{n} \frac{3k}{3j + 1}
\]

\[
= \frac{1}{3n + 1} \prod_{k=1}^{n} 3k - 2 \left(\sum_{k=1}^{n} \prod_{j=1}^{k} \frac{3j - 2}{3j} - \sum_{k=1}^{n} \prod_{j=1}^{k} \frac{2(3j - 2)}{3(2j - 1)}\right)
\]

\[
= \frac{(1)_n}{(3n + 1) \left(\frac{1}{3}\right)_n} \left(\sum_{k=1}^{n} \left(\frac{1}{k(1)}\right)_k - \sum_{k=1}^{n} \left(\frac{1}{k} \cdot \left(\frac{1}{2}\right)\right)_k\right).
\]

(3.6)
In view of Lemma 3.1 and Lemma 2.2 we have
\[
\sum_{k=1}^{n-1} \frac{\binom{k}{3}}{k(1)_k} = \sum_{k=1}^{n-1} \frac{(-1/3)}{k(1)_k} = \frac{3}{2} q_2(3) - \frac{3p}{4} q_2^2(3) - \frac{p}{3} \sum_{k=1}^{n-1} \frac{4^k}{k^2(2k)_k} \quad (\text{mod } p^2). \tag{3.7}
\]

\[
\sum_{k=1}^{n-1} \frac{\binom{1}{3}}{k(1/2)_k} = \sum_{k=1}^{n-1} \frac{(-1/3)}{k(1/2)_k} \equiv \frac{4p}{3} (-1)^{p-3} E_{p-3} + \frac{3}{2} q_2(3) - \frac{3p}{4} q_2^2(3) - \frac{2p}{3} (-1)^{p-3} \sum_{k=1}^{n-1} \frac{4^k}{(2k-1)k(2k)_k} \quad (\text{mod } p^2). \tag{3.8}
\]

It is easy to check that
\[
\sum_{k=1}^{n-1} \frac{4^k}{(2k-1)k(2k)_k} = 2 \sum_{k=1}^{n-1} \frac{4^k}{(2k-1)(2k)_k} - \sum_{k=1}^{n-1} \frac{4^k}{k(2k)_k}. \tag{3.9}
\]

And by Lemma 2.2, we have
\[
\frac{1}{\binom{n+1+k}{k}} = (n+1) \sum_{r=0}^{n} \binom{n}{r} (-1)^r \frac{1}{k + r + 1}. \tag{3.10}
\]

\[
2 \sum_{k=1}^{n-1} \frac{4^k}{(2k-1)(2k)_k} \equiv 2 \sum_{k=1}^{n-1} \frac{(-1)^k}{(2k-1)(\binom{p-1}{k})} \equiv (-1)^{p-1} \sum_{k=1}^{n-1} \frac{(-1)^k}{(k+1)(\binom{p-1}{k})} \equiv (-1)^{p-1} \binom{n}{p-1} \left(\sum_{k=0}^{\binom{n}{2}} \frac{(-1)^k}{(k+1)(\binom{p-1}{k})} - \sum_{k=0}^{\binom{n}{2}} \frac{(-1)^k}{(k+1)(\binom{p-1}{k})} \right) \quad (\text{mod } p). \tag{3.11}
\]

By Sigma, we find the following identity which can be proved by induction on \(n\):
\[
\sum_{k=0}^{n} \frac{(-1)^k}{(k+1)(\binom{n}{k})} = \frac{2(-1)^n - 1}{n+1} - (n+1) H_n^{(2)} - 2(n+1) \sum_{k=1}^{n} \frac{(-1)^k}{k^2}. \tag{3.12}
\]

So by setting \(n = (p - 1)/2\) in the above identity, we have
\[
\sum_{k=0}^{\binom{n}{2}} \frac{(-1)^k}{(k+1)(\binom{p-1}{k})} = 2 \left((-1)^{p-1} - 1 \right) - (-1)^{p-1} 2E_{p-3} \quad (\text{mod } p). \tag{3.12}
\]
And by (3.10), we have
\[
\sum_{k=0}^{\frac{p-1}{6}} \frac{(-1)^k}{(k+1)\left(\frac{k}{k}\right)} = \sum_{k=0}^{\frac{p-7}{6}} \frac{1}{(k+1)\left(\frac{k}{k}\right)}
\]
\[= \sum_{k=0}^{\frac{p-7}{6}} \frac{1}{k+1} \left\{ \sum_{r=0}^{\frac{p-3}{2}} \left(\frac{p-3}{2r}\right)(-1)^r \frac{1}{k+r+1} \right\}
\]
\[= -\frac{1}{2} \sum_{k=1}^{\frac{p-1}{6}} \frac{1}{k} \sum_{r=0}^{\frac{p-3}{2}} \left(\frac{p-3}{2r}\right)(-1)^r \frac{1}{k+r}
\]
\[= -\frac{1}{2} H_{\frac{p-1}{6}}^{(2)} - \frac{1}{2} \sum_{r=1}^{\frac{p-3}{2}} (-1)^r \left(\frac{p-3}{2r}\right) \sum_{k=1}^{\frac{p-1}{6}} \left(1 - \frac{1}{k + r}\right) \pmod{p}.
\]

It is easy to check that
\[
H_{\frac{p-1}{6}}^{(2)} - \sum_{k=1}^{\frac{p-1}{6}} \frac{1}{k + r} \equiv -\sum_{k=1}^{r} \frac{1}{k(6k-1)} \pmod{p}.
\]

And by Sigma again, we have
\[
\sum_{r=1}^{n} \frac{(-1)^r}{r} \binom{n}{r} \sum_{k=1}^{r} \frac{1}{k(6k-1)} = H^{(2)}_n - \sum_{k=1}^{n} \frac{(1)_k}{k \left(\frac{2}{6}\right)_k}
\]

So by Lemma (2.2) and [20], we have
\[
\sum_{k=0}^{\frac{p-7}{6}} \frac{(-1)^k}{(k+1)\left(\frac{k}{k}\right)}
\]
\[\equiv \frac{(-1)^{\frac{p-1}{x}}}{x} - 2 - \frac{5}{4} \left(\frac{p}{3}\right) B_{p-2} \left(\frac{1}{3}\right) - \frac{1}{2} \sum_{k=1}^{\frac{p-1}{2}} \frac{(-1)^k}{k^2 \left(\frac{2}{6}\right)} \pmod{p}.
\]
Again, by (3.10), we have
\[
\sum_{k=0}^{p-1} \frac{(-1)^k}{k^2 \left(-\frac{5}{k} \right)} = - \frac{6}{5} \sum_{k=1}^{p-1} \frac{(-1)^k}{k \left(-\frac{5}{k-1} \right)} \equiv \frac{6}{5} \sum_{k=0}^{p-1} \frac{(-1)^k}{k+1} \left(\frac{\frac{p-1}{k}}{k+1} \right)
\]
\[
= \frac{6}{5} \sum_{k=0}^{p-3} \frac{1}{k+1} \left(\frac{k+5}{k+6} \right) = \frac{6}{5} \sum_{k=0}^{p-3} \frac{1}{k+1} - \frac{6}{6} \sum_{r=0}^{p-1} (-1)^r \left(\frac{\frac{p-1}{6}}{r} \right) \frac{1}{k+1+r}
\]
\[
\equiv \sum_{k=1}^{p-1} \frac{1}{k} \sum_{r=0}^{p-1} (-1)^r \left(\frac{\frac{p-1}{6}}{r} \right) \frac{1}{k+r}
\]
\[
= H_{\frac{p-1}{2}} + \sum_{r=1}^{p-1} \frac{(-1)^r}{r} \left(\frac{\frac{p-1}{6}}{r} \right) \sum_{k=1}^{p-1} \left(\frac{1}{k} - \frac{1}{k+r} \right) \pmod{p}.
\]
Also it is easy to see that
\[
H_{\frac{p-1}{2}} - \sum_{k=1}^{p-1} \frac{1}{k+r} \equiv - \sum_{k=1}^{p-1} \frac{1}{k(2k-1)} \pmod{p}.
\]
And by \textit{Sigma}, we have
\[
\sum_{r=1}^{n} \frac{(-1)^r}{r} \left(\frac{n}{r} \right) \sum_{k=1}^{r} \frac{1}{k(2k-1)} = H^{(2)}_n - \sum_{k=1}^{n} \frac{4^k}{k^2 \binom{2k}{k}}.
\]
So by Lemma 2.2, we have
\[
\sum_{k=1}^{p-1} \frac{(-1)^k}{k^2 \left(-\frac{5}{k} \right)} \equiv \sum_{k=1}^{p-6} \frac{4^k}{k^2 \binom{2k}{k}} - \frac{5}{2} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p}.
\]
Hence
\[
\sum_{k=0}^{p-7} \frac{(-1)^k}{(k+1) \left(\frac{k+1}{k} \right)} \equiv \frac{(-1)^{p-1}}{x} - 2 - \frac{1}{2} \sum_{k=1}^{p-1} \frac{4^k}{k^2 \binom{2k}{k}} \pmod{p}.
\]
This, with (3.11) and (3.12) yields that
\[
2 \sum_{k=1}^{p-1} \frac{4^k}{(2k-1)}
\]
\[
\equiv - 2 + \frac{1}{x} + 2E_{p-3} - \frac{1}{2}(-1)^{p-2} \sum_{k=1}^{p-6} \frac{4^k}{k^2 \binom{2k}{k}} \pmod{p}.
\]
By Sigma, we have
\[
\sum_{k=1}^{n} \frac{4^k}{k(2k)} = -2 + 2 \frac{4^n}{(2n)}.
\] (3.14)

So by \([20]\), we have
\[
\sum_{k=1}^{\frac{p-1}{2}} \frac{4^k}{k(2k)} \equiv -2 + \frac{2}{\left(\frac{p-1}{2}\right)} \equiv -2 + \frac{1}{x} \pmod{p}.
\]

This, with \((3.9)\) and \((3.13)\) yields that
\[
\sum_{k=1}^{\frac{p-1}{2}} \frac{4^k}{(2k)} \equiv 2E_{p-3} - \frac{1}{2}(-1)^{\frac{p-1}{2}} \sum_{k=1}^{\frac{p-1}{2}} \frac{4^k}{k^2} \pmod{p}.
\]

This with \((3.8)\) yields that
\[
\sum_{k=1}^{\frac{p-1}{2}} \frac{1}{3k} \equiv 3q_p(3) - \frac{3p}{4}q_p^2(3) + \frac{p}{3} \sum_{k=1}^{\frac{p-1}{2}} \frac{4^k}{k^2} \pmod{p^2}.
\] (3.15)

So by \((3.7)\), we have
\[
\sum_{k=1}^{\frac{p-1}{2}} \frac{1}{3k} \equiv -p^2 \sum_{k=1}^{\frac{p-1}{2}} \frac{4^k}{k^2} \pmod{p^3}.
\] (3.16)

Now we evaluate the second sum in the right side of \((3.5)\). It is easy to see that
\[
\sum_{j=1}^{\left(\frac{p-1}{2}\right)} \frac{4^j}{(3j-1)j(2j)} = 3\sum_{j=1}^{\left(\frac{p-1}{2}\right)} \frac{4^j}{(3j-1)(2j)} - \sum_{j=1}^{\left(\frac{p-1}{2}\right)} \frac{4^j}{j(2j)}.
\] (3.17)

It is easy to see from \((3.14)\) that
\[
\sum_{j=1}^{\left(\frac{p-1}{2}\right)} \frac{4^j}{j(2j)} \equiv -2 + 2(-1)^{\frac{p-1}{2}} \pmod{p}.
\] (3.18)
Now we consider the first sum of the right side in (3.17).

\[
\sum_{j=1}^{p} \frac{4^j}{(3j-1)\binom{2j}{j}} = \sum_{j=1}^{\frac{p-1}{3}} \frac{4^j}{(3j-1)\binom{2j}{j}} + \sum_{j=\frac{p+2}{3}}^{\frac{p-1}{3}} \frac{4^j}{(3j-1)\binom{2j}{j}}.
\]

The following identity is very important to us:

\[
\sum_{k=1}^{n} \frac{4^k}{(k+n)\binom{2k}{k}} = -2 + 2 \frac{4^n}{\binom{2n}{n}} - n \frac{n}{4^n} \sum_{k=1}^{n} \frac{4^k}{k^2\binom{2k}{k}}.
\] (3.19)

This, with (20) yields that

\[
3 \sum_{j=1}^{\frac{p-1}{2}} \frac{4^j}{(3j-1)\binom{2j}{j}} \equiv \sum_{j=1}^{\frac{p-1}{3}} \frac{4^j}{(j + \frac{p-1}{3})\binom{2j}{j}}
\]

\[
\equiv -2 + \frac{2}{(-1/2)^{\frac{p-1}{3}}} + \frac{1}{3} \left(\frac{-1/2}{\frac{p-1}{3}}\right) \sum_{k=1}^{\frac{p-1}{3}} \frac{4^k}{k^2\binom{2k}{k}}
\]

\[
\equiv -2 + \frac{1}{3} \left(\frac{-1}{\frac{p-1}{3}}\right) \sum_{k=1}^{\frac{p-1}{3}} \frac{4^k}{k^2\binom{2k}{k}} \pmod{p}.
\] (3.20)

It is easy to check that And by (3.19), we have

\[
3 \sum_{j=\frac{p+2}{3}}^{\frac{p-1}{2}} \frac{4^j}{(3j-1)\binom{2j}{j}} \equiv 3 \sum_{j=0}^{\frac{p-7}{6}} \frac{4^j}{(6j+5)\binom{2j}{j}} \equiv (-1)^{\frac{p-1}{2} - j} \frac{(-1)^{\frac{p-1}{2} - j}}{\binom{2j}{j}}
\]

\[
\equiv 6(-1)^{\frac{p+1}{2}} \sum_{j=0}^{\frac{p-7}{6}} \frac{4^j}{(6j+5)\binom{2j}{j}} \equiv (-1)^{\frac{p+1}{2}} \sum_{j=0}^{\frac{p-7}{6}} \frac{(-1)^j}{(j + \frac{p+5}{6})\binom{2j}{j}}
\]

\[
\equiv 6 \frac{(-1)^{\frac{p+1}{2}}}{5} + (-1)^{\frac{p+1}{2}} \sum_{j=1}^{\frac{p+5}{6}} \frac{4^j}{(j + \frac{p+5}{6})\binom{2j}{j}} + \frac{3}{\binom{2\frac{p}{2}}{\frac{p}{2}}} \pmod{p}.
\] (3.21)

By (3.19) and (20), we have

\[
\sum_{j=1}^{\frac{p+5}{6}} \frac{4^j}{(j + \frac{p+5}{6})\binom{2j}{j}} \equiv -\frac{16}{5} + 5(-1)^{\frac{p-1}{6}} \frac{4^j}{2x} - (-1)^{\frac{p-1}{6}} \sum_{k=1}^{\frac{p-1}{6}} \frac{4^k}{k^2\binom{2k}{k}} \pmod{p}.
\]
This, with (3.21) yields that
\[
3 \sum_{j=p+1}^{p+2} \frac{4^j}{(3j-1) \binom{2j}{j}} \equiv 2(-1)^{p+1} - \frac{1}{x} + \frac{1}{3} \left(\frac{p-1}{3} \right) \sum_{k=1}^{p-1} \frac{4^k}{2k^2(2k)} \mod p.
\]
Combining this with (3.20), we have
\[
3 \sum_{j=1}^{\frac{p-1}{2}} \frac{4^j}{(3j-1) \binom{2j}{j}} \equiv -2 + 2(-1)^{p+1} + \frac{1}{3} \left(\frac{p-1}{3} \right) \left(\sum_{k=1}^{p-1} \frac{4^k}{k^2(2k)} + \sum_{k=1}^{p-1} \frac{4^k}{2k^2(2k)} \right) \mod p.
\]
Thus, by (3.17) and (3.18), we have
\[
\sum_{j=1}^{\frac{p-1}{2}} \frac{4^j}{(3j-1) \binom{2j}{j}} \equiv \frac{1}{3} \left(\frac{p-1}{3} \right) \left(\sum_{k=1}^{p-1} \frac{4^k}{k^2(2k)} + \sum_{k=1}^{p-1} \frac{4^k}{2k^2(2k)} \right) \mod p.
\]
This, with (3.5) and (3.16) yields that
\[
\sum_{k=0}^{p-1} \frac{f_k}{(-4)^k} - \sum_{k=0}^{p-1} \frac{f_k}{2^k} \equiv S_5 \mod p^3. \tag{3.22}
\]
While
\[
S_5 = \left(\frac{-1}{p-1} \right) \left(\frac{p-1}{3} \right) \left(\sum_{k=1}^{p-1} \frac{4^k}{k^2(2k)} \right) + \frac{2p}{(p-1)^3} \left(H_{\frac{p-1}{3}} - H_{\frac{2p-2}{3}} \right).
\]
It is easy to check that
\[
\left(\frac{p + 2p-2}{p-1} \right) \equiv 1 + pH_{\frac{2p-2}{3}} + \frac{p^2}{2} \left(H_{\frac{2p-2}{3}} - H_{\frac{2p-2}{3}} \right) \mod p^3
\]
and
\[
\left(\frac{p + p-1}{p-1} \right) \equiv 1 + pH_{\frac{p-1}{3}} + \frac{p^2}{2} \left(H_{\frac{p-1}{3}} - H_{\frac{p-1}{3}} \right) \mod p^3.
\]
So by Lemma 2.2 and the fact that $H_{p-1-k}^{(2)} \equiv -H_k^{(2)} \pmod{p}$ for each $0 \leq k \leq p-1$, we have

\[\left(p + \frac{2p-2}{3} \right) \equiv p \left(H_{\frac{2p-2}{3}}^{(2)} - H_{\frac{p-1}{3}}^{(2)} \right) \equiv p^2 \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^3} \]

and

\[2p \left(H_{\frac{p}{3}}^{(2)} - H_{\frac{2p-2}{3}}^{(2)} \right) \equiv -p^2 \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^3}. \]

So by \(\left(\frac{1}{p+1} \right) \equiv \left(\frac{p-1}{2} \right) \pmod{p} \) and \(\left(\frac{p-1}{2} \right) \equiv (-1)^{\frac{p-1}{2}} = 1 \pmod{p} \), we can immediately obtain that

\[S_5 \equiv 0 \pmod{p^3}. \]

This, with (3.22) yields that

\[\sum_{k=0}^{p-1} \frac{f_k}{(-4)^k} \equiv \sum_{k=0}^{p-1} \frac{f_k}{2k} \pmod{p^3}. \]

Now the proof of Theorem 1.2 is complete. \(\square \)

Acknowledgment. The first author is funded by the National Natural Science Foundation of China (12001288) and China Scholarship Council (202008320187).

References

[1] D. Callan, *A combinatorial interpretation for an identity of Baruacand*, J. Integer Seq. 11 (2008), Article 08.3.4, 3pp (electronic).
[2] J. Franel, *On a question of Laisant*, L’Intermédiaire des Mathématiciens 1 (1894), 45–47.
[3] V.J.W. Guo, *Proof of two conjectures of Sun on congruences for Franel numbers*, Integral Transforms Spec. Funct. 24 (2013), 532–539.
[4] V.J.W. Guo, *Proof of a superconjecture conjectured by Z.-H. Sun*, Integral Transforms Spec. Funct. 25 (2014), 1009–1015.
[5] E. Lehmer, *On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson*, Ann. Math. 39 (1938), 350–360.
[6] J.-C. Liu, *On two congruences involving Franel numbers*, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Math. 114 (2020), Art.201.
[7] G.-S. Mao, *On two congruences involving Apéry and Franel numbers*, Results Math. 75 (2020), Art 159.
[8] G.-S. Mao, *Proof of some congruence conjectures of Z.-H. Sun involving Apéry-like numbers*, preprint, arXiv:2111.08778.
[9] M. R. Murty, *Introduction to p-adic analytic number theory*, AMS/IP Studies in Advanced Mathematics, 27, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.
20 GUO-SHUAI MAO AND YAN LIU

[10] A. M. Robert, *A course in p-adic analysis*, Graduate Texts in Mathematics, 198. Springer-Verlag, New York, 2000.
[11] C. Schneider, *Symbolic summation assists combinatorics*, Sémin. Lothar. Combin. **56** (2007), Article B56b.
[12] N. J. A. Sloane, Sequence A000172 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org/A000172.
[13] Z.-H. Sun, *Congruences concerning Bernoulli numbers and Bernoulli polynomials*, Discrete Appl. Math. **105** (2000), no. 1-3, 193–223.
[14] Z.-H. Sun, *Congruences involving Bernoulli and Euler numbers*, J. Number Theory **128** (2008), no. 2, 280–312.
[15] Z.-H. Sun, *Congruences for sums involving Franel numbers*, Int. J. Number Theory, **14** (2018), no. 1, 123–142.
[16] Z.-H. Sun, *Super congruences concerning Bernoulli polynomials*, Int. J. Number Theory **11** (2015), no. 8, 2393–2404.
[17] Z.-W. Sun, *Connections between p = x^2 + 3y^2 and Franel numbers*, J. Number Theory **133** (2013), 2914–2928.
[18] Z.-W. Sun, *Congruences for Franel numbers*, Adv. in Appl. Math. **51** (2013), no. 4, 524–535.
[19] B. Sury, T.-M. Wang and F.-Z. Zhao, *Identities involving reciprocals of binomial coefficients*, J. Integer Seq. **7** (2004), Article 04.2.8.
[20] K. M. Yeung, *On congruences for Binomial Coefficients*, J. Number Theory **33** (1989), 1–17.
[21] D. Zagier, *Integral solutions of Apéry-like recurrence equations*, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349–366.

(Guo-Shuai Mao) Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044, People’s Republic of China, maogsmath@163.com

(Yan Liu) Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044, People’s Republic of China, 1325507759@qq.com