APPLIED ENUMERALS OF CUTOFF RESOLVENT ESTIMATES TO THE WAVE EQUATION

HANS CHRISTIANSON

Abstract. We consider solutions to the linear wave equation on non-compact Riemannian manifolds without boundary when the geodesic flow admits a filamentary hyperbolic trapped set. We obtain a polynomial rate of local energy decay with exponent depending only on the dimension.

1. Introduction

In this paper we consider solutions to the linear wave equation on the non-compact Riemannian manifolds with trapping studied by Nonnenmacher-Zworski [NoZw]. Let \((X,g)\) be a Riemannian manifold of odd dimension \(n \geq 3\) without boundary, with (non-negative) Laplace-Beltrami operator \(-\Delta\) acting on functions. The Laplace-Beltrami operator is an unbounded, essentially self-adjoint operator on \(L^2(X)\) with domain \(H^2(X)\).

In order to quote the results of [NoZw] we also need the following analyticity assumption: \(\exists \theta_0 \in [0,\pi]\) such that the \(a_\alpha(x,h)\) are extend holomorphically to

\[
\left\{ r\omega : \omega \in \mathbb{C}^n, \text{ dist } (\omega, S^n) < \epsilon, \ r \in \mathbb{C}, \ |r| \geq R_0, \ \arg r \in [-\epsilon, \theta_0 + \epsilon]\right\}.
\]

As in [NoZw], the analyticity assumption immediately implies

\[
\partial_x^\beta \left(\sum_{|\alpha| \leq 2} a_\alpha(x,h) \xi^\alpha - |\xi|^2 \right) = o(|x|^{-|\beta|}) \langle \xi \rangle^2, \ |x| \to \infty.
\]

We assume also that the classical resolvent \((-\Delta - \lambda^2)^{-1}\) has a holomorphic continuation to a neighbourhood of \(\lambda \in \mathbb{R}\) as a bounded operator \(L^2_{\text{comp}} \to L^2_{\text{loc}}\).
We consider solutions u to the following wave equation on $X \times \mathbb{R}_t$.

\[
\begin{cases}
(-D_t^2 - \Delta) u(x, t) = 0, & (x, t) \in X \times [0, \infty) \\
u(x, 0) = u_0 \in H^1(X) \cap C^\infty_c(X), \\
D_t u(x, 0) = u_1 \in L^2(X) \cap C^\infty_c(X),
\end{cases}
\tag{1.1}
\]

For u satisfying (1.1) and $\chi \in C^\infty_c(X)$, we define the local energy, $E_\chi(t)$, to be

\[
E_\chi(t) = \frac{1}{2} \left(\| \chi \partial_t u \|^2_{L^2(X)} + \| \chi u \|^2_{H^1(X)} \right).
\]

Local energy for solutions to the wave equation has been well studied in various settings. Morawetz [Mor], Morawetz-Phillips [MoPh], and Morawetz-Ralston-Strauss [MRS] study the wave equation in non-trapping exterior domains in \mathbb{R}^n, showing the local energy decays exponentially in odd dimensions $n \geq 3$, and polynomially in even dimensions. This has been generalized to cases with non-trapping potentials [Val] and compact non-trapping perturbations of Euclidean space [Vod].

In the case of elliptic trapped rays, it is known that (see [Ral]) exponential decay of the local energy is generally not possible. Ikawa [Ika1, Ika2] shows in dimension 3 there is exponential local energy decay with a loss in derivatives in the presence of trapped rays between convex obstacles, provided the obstacles are sufficiently small and far apart. In the case X is Euclidean outside a compact set, $\partial X \neq \emptyset$, and with no assumptions on trapping, Burq shows in [Bur1] that $E_\chi(t)$ decays at least logarithmically with some loss in derivatives. The author shows in [Chr3] that if there is one hyperbolic trapped orbit with no other trapping, then the local energy decays exponentially with a loss in derivative (including the case $\partial X = \emptyset$).

The main result of this paper is that if there is a hyperbolic trapped set which is sufficiently “thin”, then the local energy decays at least polynomially, with an exponent depending on the dimension n.

Theorem 1. Suppose (X, g) satisfies the assumptions of the introduction, $\dim X = n \geq 3$ is odd, and (X, g) admits a compact hyperbolic fractal trapped set, K_E, in the energy level $E > 0$ with topological pressure $P_E(1/2) < 0$. Assume there is no other trapping and $(-\Delta - \lambda^2)^{-1}$ admits a holomorphic continuation to a strip around $\mathbb{R} \subset \mathbb{C}$. Then for each $\epsilon > 0$ and $s > 0$, there is a constant $C > 0$, depending on ϵ, s, and the support of u_0 and u_1, such that

\[
E_\chi(t) \leq C \left(\frac{\log(2 + t)}{t} \right)^{\frac{s}{2}} \left(\| u_0 \|^2_{H^{1+s}(X)} + \| u_1 \|^2_{H^s(X)} \right).
\tag{1.2}
\]

Remark 1.1. It is expected that Theorem 1 is not optimal, and in fact an exponential or sub-exponential estimate holds. Similar to in [Chr3], we expect applications to the nonlinear wave equation, although there are certain technical difficulties to overcome.

The proof of Theorem 1 is a consequence of an adaptation of [Bur1] Théorème 1 to this setting and the following resolvent estimates.

Theorem 2. Suppose (X, g) satisfies the assumptions of Theorem 1. Then for any $\chi \in C^\infty_c(X)$ and any $\epsilon > 0$ there is a constant $C = C_{\chi, \epsilon} > 0$ such that

\[
\| \chi (-\Delta - \lambda^2)^{-1} \chi \|_{L^2(X) \to L^2(X)} \leq C \frac{\log(1 + \langle \lambda \rangle)}{\langle \lambda \rangle},
\]

where $\langle \lambda \rangle$ denotes the topological pressure of K_E.

for
\[\lambda \in \left\{ \lambda : \left|\text{Im} \lambda \right| \leq \begin{cases} C, & |\text{Re} \lambda|^{\frac{3n}{2} - \epsilon}, \\ C', & |\text{Re} \lambda| \geq C \end{cases} \right\}. \]

Remark 1.2. The proof of Theorem 1 depends more on the neighbourhood in which the resolvent estimates hold than on the estimates themselves. Given a complex neighbourhood of the real axis, any polynomial cutoff resolvent estimate will give the same local energy decay rate. Theorem 2 represents a gain over the estimates in [NoZw, Theorem 5] in the sense that the estimate holds in a complex neighbourhood of \(\mathbb{R} \), rather than just on \(\mathbb{R} \).

Acknowledgments. This research was partially conducted during the period the author was employed by the Clay Mathematics Institute as a Liftoff Fellow.

2. Proof of Theorem 2

To prove Theorem 2, we use the results of Nonnenmacher-Zworski [NoZw] to prove a high energy estimate for the resolvent with complex absorbing potential, then use the holomorphic continuation to bound the cutoff resolvent by a constant for low energies. If we consider the problem

\[
(-\Delta - \lambda^2)u = f,
\]

and restrict our attention to values \(|\lambda| \geq C \) for some constant \(C > 0 \), we can transform equation (2.1) into a semiclassical problem for fixed energy by setting

\[\lambda = \sqrt{z}/h \]

for \(z \sim 1 \) and \(0 < h \leq h_0 \). Then (2.1) becomes

\[(P - z)u = h^2 f, \]

where

\[P = -h^2 \Delta \]

is the semiclassical Laplacian.

The following Proposition is the high energy resolvent estimate from [NoZw] with the improvement that the estimate holds in a larger neighbourhood of \(\mathbb{R} \subset \mathbb{C} \).

Proposition 2.1. Suppose \(W \in C^\infty(X; [0, 1]), W \geq 0 \) satisfies

\[\text{supp} W \subset X \setminus B(0, R_1), \quad W \equiv 1 \text{ on } X \setminus B(0, R_2), \]

for \(R_2 > R_1 \) sufficiently large, and

\[\| (P - iW - z)^{-1} \|_{L^2 \to L^2} \leq C_N \left(1 + \log(1/h) + \frac{h^N}{\text{Im} z} \right), \]

for \(z \in [E - \delta, E + \delta] + i(-ch, ch) \). Then for each \(\epsilon > 0 \) and each \(\chi \in C_0^\infty(X) \), there is a constant \(C = C_{\epsilon, \chi} > 0 \) such that

\[\| \chi (P - z)^{-1} \chi \|_{L^2 \to L^2} \leq C \frac{\log(1/h)}{h}, \]

for \(z \in [E - c_1 h, E + c_1 h] + i(-c_2 h^{3n/2 + 1 + \epsilon}, c_2 h^{3n/2 + 1 + \epsilon}) \).
We first improve Lemma 9.2 in order to get cutoff resolvent estimates with the absorbing potential in a polynomial neighbourhood of the real axis. The proof of the following lemma is an adaptation of the “three-lines” theorem from complex analysis and borrows techniques from Chr1, BuZw, NoZw and the references cited therein.

Lemma 2.2. Suppose $F(z)$ is holomorphic on
\[\Omega = [-1, 1] + i(-c_-, c_+), \]
and satisfies
\[
\log |F(z)| \leq M, \quad z \in \Omega,
\]
\[
|F(z)| \leq \alpha + \frac{\gamma}{\Im z}, \quad z \in \Omega \cap \{\Im z > 0\}.
\]
Then if $\gamma \leq \epsilon M^{-3/2}$ for $\epsilon > 0$ sufficiently small, there exists a constant $C = C_\epsilon > 0$ such that
\[
|F(z)| \leq C\alpha, \quad z \in [-1/2, 1/2] + i(-M^{-3/2}, M^{-3/2}).
\]

Proof. Choose $\psi(x) \in C_c^\infty([-1, 1]), \psi \equiv 1$ on $[-1/2, 1/2]$, and set
\[
\varphi(z) = \beta^{-1/2} \int e^{-(x-\beta y)/\beta} \psi(x) dx,
\]
where $0 < \beta < 1$ and $c > 0$ will be chosen later. The function $\varphi(z)$ enjoys the following properties:

(a) $\varphi(z)$ is holomorphic in Ω,
(b) $|\varphi(z)| \leq C$ on $\Omega \cap \{\Im z \leq \beta^{1/2}\}$,
(c) $|\varphi(z)| \geq C^{-1}$ on $\{\Re z \leq 1/2\} \cap \{\Im z \leq \beta\}$ if $c > 0$ is chosen appropriately,
(d) $|\varphi(z)| \leq Ce^{-C/\beta}$ for $z \in \{\pm 1\} + i(-\beta^{1/2}, \beta^{1/2})$.

Now for $a \in \mathbb{R}$ to be determined, set
\[
g(z) = e^{iaz} \varphi(z) F(z).
\]
For $\delta_- > 0$ to be determined, let
\[
\Omega' := \Omega \cap \{-\delta_- \leq \Im z \leq \delta_+\}.
\]
We have the following bounds for $g(z)$ on the boundary of Ω':
\[
\log |g(z)| \leq \begin{cases}
-C/\beta + M - a \Im z, & \text{Re } z = \pm 1, \text{ if } |\Im z| \leq \beta^{1/2}; \\
C + M + a\delta_-, & \text{Im } z = -\delta_- \geq -\beta^{1/2}; \\
C + \log(\alpha + \gamma/\delta_+) - a\delta_+, & \text{Im } z = \delta_+ \leq \beta^{1/2}.
\end{cases}
\]
We want to choose a, β, and δ_\pm to optimize these inequalities. Choosing $a = -2M/\delta_-$ yields
\[
\log |g(z)| \leq C - M \quad \text{for } \Im z = -\delta_-,
\]
and choosing $\delta_+ = |2/a|$ yields
\[
\log |g(z)| \leq C + \log(\alpha + \gamma/\delta_+) + 2, \quad \text{for } \Im z = \delta_+.
\]
Finally, choosing $\beta = C'/M$ for an appropriate $C' > 0$ yields
\[
\log |g(z)| \leq -C^{-1} M \quad \text{for } \Re z = \pm 1, \quad \text{Im } z \leq \max\{\delta_+, \delta_-\},
\]
and taking $\delta_- = C''M^{-1/2}, \delta_+ = C''M^{-3/2}$ gives
\[
\log |g(z)| \leq C'' + \log(\alpha + \gamma/\delta_+) \quad \text{on } \partial \Omega'.
\]
In order to conclude the stated inequality on $F(z)$, we need to invert $e^{-iaz}\varphi(z)$, which, from the definition of a and the properties of φ stated above, is possible for $z \in [-1/2, 1/2] + i(-M^{-3/2}, M^{-3/2})$. Then for z in this range and γ satisfying $\gamma \leq \epsilon M^{-3/2}$,

$$|F(z)| \leq C\alpha(1 + \epsilon) \leq C'\alpha,$$

as claimed. □

Now to prove Proposition 2.1, as in [NoZw], we apply Lemma 2.2 to $F(\zeta) = \langle (P - iW - h\zeta)^{-1}f, g \rangle_{L^2}$, for $f, g \in L^2$. For M we use the well-known estimate

$$\|((P - iW - z)^{-1}\|_{L^2 \rightarrow L^2} \leq C e^{Ch^{-n-\epsilon}}, \quad \text{Im} z \geq -h/C,$$

and take $M = C h^{-n-\epsilon}$. For the other parameters, we take $\gamma = h^N, \quad \alpha = c_0 + \log(1/h)$.

Rescaling, we conclude

$$\|((P - iW - z)^{-1}\| \leq C \frac{\log(1/h)}{h}$$

in the stated region. Then we apply the remainder of the proof [NoZw, Theorem 5]. □

3. Proof of Theorem 1

In this section we adapt the proof of [Bur1, Théorème 1] to the case where one has better resolvent estimates. We first present a general theorem on semigroups (see [Bur1, Théorème 3] and [Leb]).

Let H be a Hilbert space, $B(\xi)$ a meromorphic family of unbounded linear operators on H, holomorphic for $\text{Im} \xi < 0$. Assume for $\text{Im} \xi \leq 0$,

$$\text{Im} (B(\xi)u, u)_H \geq 0.$$

Let $\text{Dom}(B) = \text{Dom}(1 - iB(-i))$ denote the domain of B. Assume for $\text{Im} \xi < 0$, $\xi - B(\xi)$ is bijective and bounded with respect to the natural norm on $\text{Dom}(B)$,

$$\|u\|^2_{\text{Dom}(B)} = \|u\|^2_H + \|B(-i)u\|^2_H,$$

and

$$\|((\xi - B(\xi))^{-1}\|_{H \rightarrow H} \leq C |\text{Im} \xi|^{-1}.$$

Assume that $B(\xi) \in \mathcal{S}^1(\mathbb{R}; \mathcal{L}(\text{Dom}(B), H))$. That is, $B(\xi)$ is a symbol with respect to ξ and assume that, as operators on $\text{Dom}(B)$,

$$B(D_s) e^{i\xi s} = e^{i\xi s} B(\xi + D_s) = e^{i\xi s} B(\xi),$$

since members of $\text{Dom}(B)$ do not depend on s. We assume B satisfies the identity

$$B(D_t) \psi(t)U(t) = \psi(t)B(\psi'/i\psi + D_t)U(t) = \psi(t)(B(D_t) + A(t))U(t),$$

for $\psi(t) \in C^\infty(\mathbb{R})$, and $U \in C^\infty(\mathbb{R}; \text{Dom}(B))$. Here, $A(t)$ is a linear operator, bounded on H and has compact support contained in $\text{supp} \psi'$.
By the Hille-Yosida Theorem, for every \(k \in \mathbb{N} \) and \(s \geq 0 \), we can construct the operators
\[
e^{isB(D_x)}(1 - iB(-i))^k,
\]
where \(e^{isB(D_x)} \) satisfies the evolution equation
\[
\begin{cases}
(D_x - B(D_x))e^{isB(D_x)} = 0, \\
e^{isB(D_x)}|_{s=0} = \text{id}.
\end{cases}
\]

Now suppose \(\chi_j, j = 1, 2 \) are bounded operators \(H \to H \), and \(\chi_1(\xi - B(\xi))^{-1}\chi_2 \) continues holomorphically to the region
\[
\Omega = \left\{ \xi \in \mathbb{C} : |\text{Im}\xi| \leq \begin{cases} C, & |\text{Re}\xi| \leq C \\ P(|\text{Re}\xi|), & |\text{Re}\xi| \geq C \end{cases} \right\},
\]
where \(P(|\text{Re}\xi|) > 0 \) and is monotone decreasing (or constant) as \(|\text{Re}\xi| \to \infty \). Assume
\[
\|\chi_1(\xi - B(\xi))^{-1}\chi_2\|_{H \to H} \leq G(|\text{Re}\xi|)
\]
for \(\xi \in \Omega \), where \(G(|\text{Re}\xi|) = \mathcal{O}(|\text{Re}\xi|^N) \) for some \(N \geq 0 \). We further assume that the propagator \(e^{isB(D_x)} \) “acts finitely locally,” in the sense that for \(s \in [0, 1] \),
\[
\tilde{\chi}_2 := e^{isB(D_x)}\chi_2
\]
is also a bounded operator on \(H \), and \(\chi_1(\xi - B(\xi))^{-1}\tilde{\chi}_2 \) continues holomorphically to \(\Omega \) and satisfies the estimate (3.1) with \(G \) replaced by \(CG \) for a constant \(C > 0 \).

Theorem 3. Suppose \(B(\xi) \) satisfies all the assumptions above, and let \(k \in \mathbb{N} \), \(k > N + 1 \). Then for any \(F(t) \to 0, \) monotone increasing, satisfying
\[
F(t)^{k+1} \leq \exp(tP(F(t))),
\]
we have
\[
\|\chi_1 e^{itB(D_x)}(1 - iB(-i))^k\tilde{\chi}_2\|_{H \to H} \leq CF(t)^{-k}. \tag{3.3}
\]

As in [Bur1], Theorem \(\Delta \) follows from Theorem 3 by setting
\[
B = \begin{pmatrix} 0 & -i\Delta \\ -i\text{id} & 0 \end{pmatrix},
\]
the Hilbert space \(H = H^1(X) \times L^2(X) \), and \(\chi_j \in C_c^\infty(X) \) for \(j = 1, 2 \). The commutator \([\chi_2, B]\) is compactly supported and bounded on \(H \), so if \(\tilde{\chi}_2 \in C_c^\infty(X) \) is supported on a slightly larger set than \(\chi_2 \), we have
\[
\|\chi_1 e^{itB}\chi_2\|_{\text{Dom}(B^k) \to H} = \|\chi_1 e^{itB}\chi_2(1 - iB)^{-k}\|_{H \to H} \leq C\|\chi_1 e^{itB}(1 - iB)^{-k}\tilde{\chi}_2\|_{H \to H}.
\]

Taking \(k = 2, \ P(t) = t^{-3n/2-\epsilon/2} \), and
\[
F(t) = \left(\frac{t}{\log t} \right)^{2/(3n+\epsilon)},
\]
yields (1.2) for \(s \geq k \). We observe the spaces \(H^{1+s} \times H^s \) are complex interpolation spaces, hence interpolating with the trivial estimate
\[
E_\chi(t) \leq \|u_0\|^2_{H^1} + \|u_1\|^2_{L^2},
\]
yields (1.2) for $s \geq 0$.

\[\square \]

Remark 3.1. Evidently, if we have polynomial resolvent bounds in a fixed strip around the real axis, we have exponential local energy decay for the wave equation with a loss in derivatives. Further, if $H = L^2(X)$ for X a compact manifold, this theorem may be applied to the damped wave operator with $\chi_1 = \chi_2 = 1$ to conclude there is exponential energy decay with loss in derivatives for solutions to the damped wave equation if there is a polynomial bound on the inverse of the damped wave operator in a strip. This corrects a mistake in the proof of [Chr1, Theorem 5].

We first need a lemma.

Lemma 3.2. For $k > N + 1$, the propagator satisfies the following identity on H:

\[
e^{itB(D_t)} \frac{(1 - iB(-i))^k}{(1 - iB(-i))^k} = \frac{1}{2\pi i} \int_{Im \xi = -\frac{1}{2}} e^{it\xi}(1 - i\xi)^{-k}(\xi - B(\xi))^{-1}d\xi.\]

Proof. We write I_k for the right hand side and observe both the left hand side and I_k satisfy the evolution equation

\[(D_t - B(D_t))w = 0.\]

To calculate $I_k(0)$, we deform the contour to see

\[I_k(0) = \frac{1}{2\pi i} \left(\int_{Im \xi = -C} - \int_{\partial B(-i, \epsilon)} \right)(1 - i\xi)^{-k}(\xi - B(\xi))^{-1}d\xi.\]

Letting $C \to \infty$, the first integral vanishes. Thus we need to calculate the second integral. For $k = 1$, this is the residue formula, while for $k > 1$ the formula follows by induction and the continuity of $B(\xi)$ as $\epsilon \to 0$.

Thus the left hand side and I_k have the same initial conditions, and the lemma is proved. \[\square \]

Proof of Theorem 3. Now, as in [Bur1], we introduce a cutoff in time to make the equation inhomogeneous, then analyze the integral separately for low and high frequencies in ξ. In order to maintain smoothness, we convolve with a Gaussian. For an initial condition $u_0 \in H$, let $V(t) = e^{itB(D_t)}\chi_2 u_0$, and consider $U(t) = \psi(t)(1 - iB(-i))^{-k}V(t)$ for $\psi(t) \in C^\infty(\mathbb{R})$ satisfying $\psi \equiv 0$ for $t \leq 1/3$, $\psi \equiv 1$ for $t \geq 2/3$, and $\psi' \geq 0$. We observe by the sub-unitarity of $e^{itB(D_t)}$ for $t \geq 0$,

\[||U(t)|| \leq C||V(t)|| \leq C' ||u_0||,\]

where for the remainder of the proof, $|| \cdot || = || \cdot ||_H$ unless otherwise specified.

The family $U(t)$ satisfies

\[(D_t - B(D_t))U = \tilde{A}(t)(1 - iB(-i))^{-k}V(t),\]

where \tilde{A} is a bounded operator on H with support contained in $[1/3, 2/3]$. As $U(0) = 0$, Duhamel’s formula yields

\[U(t) = \int_0^t e^{i(t-s)B(D_t)}\tilde{A}(s)(1 - iB(-i))^{-k}V(s)ds,\]
and by Lemma 3.2
\[U(t) = \int_{s=0}^{t} \int_{\Im \xi = -1/2} e^{i(t-s)\xi} \hat{A}(s)(1 - i\xi)^{-k}(\xi - B(\xi))^{-1} V(s)d\xi ds. \]

For a function \(F(t) > 0 \), monotone increasing in \(t \) to be selected later, we will cut off frequencies in \(|\xi| \) above and below \(F(t)^2 \). We convolve with a Gaussian to smooth this out:
\[
U(t) = \int_{s=0}^{t} \int_{\Im \xi = -1/2} e^{i(t-s)\xi} \hat{A}(s)(1 - i\xi)^{-k}(\xi - B(\xi))^{-1} \cdot (c_0/\pi)^{1/2} e^{-c_0(\lambda - \xi/F(t))^2} V(s)d\lambda d\xi ds \\
= \int_{0}^{t} \int_{\Im \xi = -1/2} \left(\int_{|\lambda| \leq F(t)} + \int_{|\lambda| \geq F(t)} \right) (\cdot) d\lambda d\xi ds \\
=: I_1 + I_2.
\]

Analysis of \(I_1 \): From the resolvent and propagator continuation properties, the integrand in \(I_1 \) is holomorphic in \(\{ \Im \xi < 0 \} \cup \Omega \). Observe if \(|\Re \xi| \geq F(t)^2 \), then the integrand is rapidly decaying, hence we can deform the contour in \(\xi \) to
\[
\Gamma = \{ \xi \in \mathbb{C} : \Im \xi = \begin{cases} C, & \Re \xi \leq C, \\ P(\Re \xi), & \Re \xi \geq C. \end{cases} \}
\]

We further break \(I_1 \) into integrals where \(\Re \xi \) is larger than or smaller than \(F^2(t) \):
\[
I_1 = \int_{0}^{t} \left(\int_{\Gamma \cap \{ |\Re \xi| \leq AF(t)^2 \}} + \int_{\Gamma \cap \{ |\Re \xi| \geq AF(t)^2 \}} \right) \int_{|\lambda| \leq F(t)} (\cdot) d\lambda d\xi ds \\
=: J_1 + J_2.
\]

For \(J_1 \), if \(t \geq 2 \), since \(P(\Re \xi) \) is monotone decreasing, we have
\[
\Im \xi \geq P(AF(t)^2),
\]
and on the support of \(\hat{A} \), we have \(t - s \geq t - 1 \). Hence
\[
\|\chi_1 J_1\| \leq C \int_{\Gamma \cap \{ |\Re \xi| \leq AF(t)^2 \}} \int_{|\lambda| \leq F(t)} e^{-(t-1)P(AF(t)^2)} (\xi)^{-k} G(\Re \xi) \cdot \left| e^{-c_0(\lambda - \xi/F(t))^2} \right| d\lambda d\xi \|u_0\| \\
\leq CAF(t)^2e^{-tP(AF(t)^2)}\|u_0\|.
\]

For \(J_2 \), we observe that for \(A \) large enough and \(|\Re \xi| \geq AF(t)^2 \),
\[
\Re (\lambda - \xi/F(t))^2 \geq C^{-1}(\lambda^2 + (\Re \xi)^2/F(t)^2).
\]

Hence,
\[
\|\chi_1 J_2\| \leq C \int_{\Gamma \cap \{ |\Re \xi| \geq AF(t)^2 \}} \int_{|\lambda| \leq F(t)} (\xi)^{-k} G(\Re \xi) \cdot \left| e^{-c_0(\lambda - \xi/F(t))^2} \right| d\lambda d\xi \|u_0\| \\
\leq C \int_{|\eta| \geq F(t)} F(t)e^{-c_1\eta^2} d\eta \|u_0\| \\
\leq CF(t)e^{-c_2F(t)}\|u_0\|.
\]
Analysis of I_2: Set

$$J(\tau) = \int_{s=0}^{1} \int_{|\lambda| \geq F(t)} A(s)e^{i(\tau - s)\xi} (1 - i\xi)^{-k}(\xi - B(\xi))^{-1}$$

\[
\cdot (c_0/\pi) \frac{1}{2} e^{-c_0(\lambda - \xi/F(t))^2} V(s) d\lambda d\xi ds,
\]

which for $\tau \geq 1$ is equal to $U(\tau)$. Observe

$$(D_\tau - B(D_\tau))J(\tau) = \int_{s=0}^{1} \int_{|\lambda| \geq F(t)} A(s)e^{i(\tau - s)\xi} (1 - i\xi)^{-k}$$

\[
\cdot (c_0/\pi) \frac{1}{2} e^{-c_0(\lambda - \xi/F(t))^2} V(s) d\lambda d\xi ds
\]

$$=: K(\tau).$$

Hence

$$J(t) = e^{itB(D_\tau)}J(0) + \int_{0}^{t} e^{i(t-s)B(D_\tau)} K(s) ds.$$

Again, by the subunitarity of the propagator, we need to estimate $\|J(0)\|$ and $\int_{0}^{t} \|K(s)\| ds$. For $s \in [1, t]$, since $k > N + 1$, we can deform the ξ-contour in the definition of K to $\text{Im} \xi = F(t)$. Then for this range of s,

$$\|K(s)\| \leq C \int_{\eta} e^{-(s-2/3)F(t)} |\eta|^{-k} d\eta \|u_0\|,$$

and hence

$$\int_{1}^{t} \|K(s)\| ds \leq CF(t)^{-1} e^{-F(t)/3}.$$

For $J(0)$, we first consider $\lambda \geq F(t)$. Since $k > N + 1$, we can deform the ξ-contour to

$$\Gamma' = \Gamma_- \cup \Gamma_+$$

where

$$\Gamma_- = \{ \text{Re} \xi \leq F(t)^2/A, \text{Im} \xi = -1/2 \}$$

$$\cup \{ \text{Re} \xi = F(t)^2/A, -F(t) \leq \text{Im} \leq -1/2 \}$$

and

$$\Gamma_+ = \{ \text{Re} \xi \geq F(t)^2/A, \text{Im} \xi = -F(t) \}.$$

If $\xi \in \Gamma_-$, we have

$$\text{Re}(\lambda - \xi/F(t))^2 \geq \lambda^2/C,$$

so

$$\int_{\xi \in \Gamma_-} \int_{\lambda \geq F(t)} (\xi)^{-k} G(|\text{Re} \xi|) \cdot e^{-c_0(\lambda - \xi/F(t))^2} V(s) d\lambda d\xi \leq Ce^{-F(t)^2}.$$

For $\xi \in \Gamma_+$, we have

$$|e^{-i\lambda\xi}| = e^{-F(t)/3},$$

so the contribution to $\|J(0)\|$ coming from $\lambda \geq F(t)$ is bounded by

$$C(e^{-F(t)^2} + e^{-F(t)/3}).$$
The contribution to $\|J(0)\|$ coming from $\lambda \leq -F(t)$ is handled similarly to obtain the same bound.

We have yet to estimate $\int_0^1 \|K(s)\| ds$. For this we use Plancherel’s formula to write
\[
\left(\int_0^1 \|K(s)\| ds \right)^2 \leq \int_{-\infty}^{\infty} \|K(s)\|^2 ds
\]
\[
= \int_{-\infty}^{\infty} \left(1 - i\xi\right)^{-k} \tilde{A}V(\xi) \int_{|\lambda| \geq F(t)} e^{-c_0(\lambda - \xi/F(t))^2} d\lambda \left\| \lambda \right\|^2 d\xi.
\]
If we estimate this integral by again considering regions where $|\xi| \leq F(t)^2/A$ and $|\xi| \geq F(t)^2/A$ respectively, we see (3.4) is majorized by
\[
C(F(t)^{-2k} + e^{-F(t)^2/C}) \int_{-\infty}^{\infty} \left\| \tilde{A}V(\xi) \right\|^2 d\xi
\]
\[
= C(F(t)^{-2k} + e^{-F(t)^2/C}) \int_{-\infty}^{\infty} \|\tilde{A}V(s)\|^2 ds
\]
\[
\leq C(F(t)^{-2k} + e^{-F(t)^2/C}) \|u_0\|^2.
\]
Combining all of the above estimates, we have
\[
\|U(t)\| \leq C \max \left\{ \frac{F(t)^{-2k}}{e^{-F(t)^2/C} + e^{-F(t)^2/C}}, \frac{F(t)^{-1}e^{-F(t)^2/C}}{F(t)^{-2}e^{-F(t)^2/C} + F(t)e^{F(t)}} \right\} \|u_0\|.
\]
Relabelling $F(t)^2$ as $F(t)$ throughout and applying the condition (3.3), we recover (3.3).

□

References

[Bur] Burq, N. Décroissance de l’Énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180, 1998, p. 1-29.

[BuZw] Burq, N. and Zworski, M. Geometric Control in the Presence of a Black Box. J. Amer. Math. Soc. 17, 2004, p. 443-471.

[Chr1] Christianson, H. Semiclassical Non-concentration near Hyperbolic Orbits. J. Funct. Anal. 262, 2007, no. 2, p. 145-195.

[Chr3] Christianson, H. Dispersive Estimates for Manifolds with one Trapped Orbit. preprint. 2006. [http://math.mit.edu/~hans/papers/disp.pdf]

[Ika1] Ikawa, M. Decay of Solutions of the Wave Equation in the Exterior of Two Convex Bodies. Osaka J. Math. 19, 1982, p. 459-509.

[Ika2] Ikawa, M. Decay of Solutions of the Wave Equation in the Exterior of Several Convex Bodies. Ann. Inst. Fourier, Grenoble. 38, 1988, no. 2, p. 113-146.

[Leb] Lefebre, G. Equation des Ondes Amorties. Algebraic and Geometric Methods in Mathematical Physics, A Boutet de Monvel and V. Marchenko (eds.) Kluwer Academic Publishers, Netherlands, 1996. 73-109.

[Mor] Morawetz, C. The decay of solutions of the exterior initial-boundary value problem for the wave equation. Comm. Pure Appl. Math. 14 (1961) p. 561-568.

[MoPh] Morawetz, C. and Phillips, R. The exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle. Bull. Amer. Math. Soc. 68 (1962) p. 593-595.

[MRS] Morawetz, C., Ralston, J., and Strauss, W. Decay of solutions of the wave equation outside nontrapping obstacles. Comm. Pure Appl. Math. 30, No. 4, (1977) p. 447-508.
[NoZw] Nonnenmacher, S. and Zworski, M. Quantum decay rates in chaotic scattering. preprint. 2007.
http://math.berkeley.edu/~zworski/nz3.ps.gz

[Ral]Ralson, J. Trapped rays in spherically symmetric media and poles of the scattering matrix. Comm. Pure Appl. Math. 24 (1971), p. 571-582.

[Vai]Vainberg, B. Asymptotic methods in equations of mathematical physics. Translated from the Russian by E. Primrose. Gordon & Breach Science Publishers, New York, 1989.

[Vod]Vodev, G. Local Energy Decay of Solutions to the Wave Equation for Nontrapping Metrics. Ark. Mat. 42, 2004, p. 379-397.

DEPARTMENT OF MATHEMATICS, MIT, 77 MASSACHUSETTS AVE., CAMBRIDGE, MA USA
E-mail address: hans@math.mit.edu