Notes on Chain Recurrence and Lyapunov Functions

John Franks

April 25, 2017

Abstract

This short expository note provides an introduction to the concept of chain recurrence in topological dynamics and a proof of the existence of complete Lyapunov functions for homeomorphisms of compact metric spaces due to Charles Conley [C]. I have used it as supplementary material in introductory dynamics courses.

1 Epsilon Chains

We briefly review the definition of \(\varepsilon \)-chains and chain recurrence developed by Charles Conley in [C]. In the following \(f : X \to X \) will denote a homeomorphism of a compact metric space \(X \).

Definition 1.1. An \(\varepsilon \)-chain from \(x \) to \(y \) for \(f \) is a sequence of points in \(X \), \(x = x_0, x_1, \ldots, x_n = y \), with \(n \geq 1 \), such that

\[
d(f(x_i), x_{i+1}) < \varepsilon \quad \text{for } 0 \leq i \leq n - 1.
\]

A point \(x \in X \) is called chain recurrent if for every \(\varepsilon > 0 \) there is an \(\varepsilon \)-chain from \(x \) to itself. The set \(\mathcal{R}(f) \) of chain recurrent points is called the chain recurrent set of \(f \).

Exercise 1.2. Let \(f : X \to X \) be a homeomorphism of a compact metric space.

1. The set \(\mathcal{R}(f) \) is closed (hence compact) and invariant under \(f \).
2. If \(x_0, x_1, \ldots, x_n \) is an \(\varepsilon \)-chain from \(x \) to \(y \) and \(y_0, y_1, \ldots, y_m \) is an \(\varepsilon \)-chain from \(y \) to \(z \), then \(x_0, x_1, \ldots, x_n = y_0, y_1, \ldots, y_m \) is an \(\varepsilon \)-chain from \(x \) to \(z \).

3. If for every \(\varepsilon > 0 \) there is an \(\varepsilon \)-chain from \(x \) to \(y \) for \(f \) then for every \(\varepsilon > 0 \) there is a \(\varepsilon \)-chain from \(y \) to \(x \) for \(f^{-1} \).

Recall that a point \(x \) is called recurrent for \(f : X \to X \) if \(x \) is a limit point of the sequence \(x, f(x), f^2(x), \ldots f^n(x), \ldots \). Clearly any recurrent point is also chain recurrent. The converse is not true.

Recall that if \(\mu \) is a finite Borel measure on \(X \) and \(f : X \to X \) is a, not necessarily invertible, function then we say \(\mu \) is \(f \)-invariant provided \(\mu(E) = \mu(f^{-1}(E)) \) for every measurable subset \(E \subset X \).

If there is a finite \(f \)-invariant measure on \(X \) then almost every point of \(X \) (in the measure sense) is recurrent.

Theorem 1.3 (Poincaré Recurrence Theorem). Suppose \(\mu \) is a finite Borel measure on \(X \) and \(f : X \to X \) is a measure preserving transformation. If \(E \subset X \) is measurable and \(\mathcal{N} \) is the subset of \(E \) given by

\[
\mathcal{N} = \{ x \in E \mid f^k(x) \notin E \text{ for at most finitely many } k \geq 1 \},
\]

then \(\mathcal{N} \) is measurable and \(\mu(\mathcal{N}) = 0 \).

Proof. Define

\[
E_N = \bigcup_{n=0}^{\infty} f^{-n}(E) \text{ and } F = \bigcap_{n=0}^{\infty} E_n.
\]

Then \(F \) is the set of points whose forward orbit hits \(E \) infinitely often so \(\mathcal{N} = E \setminus F \) and \(\mathcal{N} \) is measurable. Since \(E_{n+1} = f^{-1}(E_n) \) we have \(\mu(E_{n+1}) = \mu(E_n) \) for all \(n \geq 0 \). Since \(E_0 \supset E_1 \supset E_2 \ldots \) we have

\[
\mu(F) = \mu\left(\bigcap_{n=0}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n) = \mu(E_0).
\]

Hence \(\mu(E_0 \setminus F) = \mu(E_0) - \mu(F) = 0 \). Since \(E \setminus F \subset E_0 \setminus F \) we conclude \(\mu(\mathcal{N}) = \mu(E \setminus F) = 0 \).

Corollary 1.4. Suppose \(\mu \) is a probability measure on \(X \). If \(\mu \) is \(f \)-invariant then the set \(\mathcal{N} \) of points which are not recurrent has measure \(\mu(\mathcal{N}) = 0 \).
Proof. Let \(\mathcal{N}_n \) denote the set of points \(x \in X \) such that \(d(x, f^k(x)) > 1/n \) for all \(k > 0 \). We wish first to show \(\mu(\mathcal{N}_n) = 0 \) for all \(n > 0 \).

To do this suppose \(B \) is an open ball in the metric space \(X \) of radius \(1/2n \) so the distance between any two points of \(B \) is less than \(1/n \). We conclude from Theorem (1.3) that \(\mu(B \cap \mathcal{N}_n) = 0 \). But since \(X \) is compact it can be covered by finitely many balls \(B \) of radius \(1/2n \) so we conclude \(\mu(\mathcal{N}_n) = 0 \).

Since \(\mathcal{N}_n = \bigcup_{n=1}^{\infty} \mathcal{N}_n \) we conclude \(\mu(\mathcal{N}) = 0 \). \qed

We have the following immediate corollary.

Corollary 1.5. Suppose \(f : X \to X \) preserves a finite Borel measure \(\mu \) and \(\mu(U) > 0 \) for every non-empty open set \(U \). Then there are recurrent points in every such \(U \). I.e. the recurrent points are dense in \(X \).

It is easy to see that in this case the chain recurrent set \(\mathcal{R}(f) \) is all of \(X \). Also, as we now show, in this circumstance if \(X \) is connected, then for any points \(x, y \in X \) there is an \(\varepsilon \)-chain from \(x \) to \(y \).

Proposition 1.6. Suppose \(\mu \) is an \(f \)-invariant measure on \(X \) satisfying \(\mu(X) = 1 \) and \(\mu(U) > 0 \) for every non-empty open set \(U \subset X \) and suppose that \(X \) is connected. Then for any \(x, y \in X \) and any \(\varepsilon > 0 \), there is an \(\varepsilon \)-chain from \(x \) to \(y \).

Proof. Fix a value of \(\varepsilon > 0 \). We construct an equivalence relation \(\sim_\varepsilon \) on the space \(X \) as follows. Let \(x \sim_\varepsilon y \) provided there is an \(\varepsilon \)-chain from \(x \) to \(y \) and one from \(y \) to \(x \). This clearly defines a symmetric and transitive relation. It is reflexive as well, however. To see this, let \(U \) be a neighborhood of \(x \) such that \(U \) and \(f(U) \) have diameter less than \(\varepsilon \). Clearly if \(f^n(U) \cap U \neq \emptyset \) for some \(n > 0 \) then there is an \(\varepsilon \)-chain from \(x \) to \(x \). In fact, if \(x_0, f^n(x_0) \in U \), we can define \(x_1 = x, x_i = f^i(x_0), 1 < i < n \) and the only “jumps” needed are from \(f(x) \) to \(x_2 = f(x_0) \) and from \(f(x_{n-1}) = f^n(x_0) \) to \(x_n = x \).

But for any open \(U \) it must be the case that \(f^n(U) \cap U \neq \emptyset \) for some \(n > 0 \) since otherwise the sets \(f^i(U) \) are pairwise disjoint and all have the same positive measure which would mean the measure of \(X \) is infinite. Hence the relation \(\sim_\varepsilon \) is reflexive and thus an equivalence relation.
From the definition of ε-chain it is immediate that the equivalence classes are open sets in X. Since the equivalence classes form a partition of X into pairwise disjoint open sets and X is connected, there must be a single equivalence class. Thus for any $x, y \in X$ there is an ε-chain for X from x to y. Since ε was arbitrary the result follows.

2 The “Fundamental Theorem of Dynamical Systems”

In this section we briefly review the elementary theory of attractor-repeller pairs and complete Lyapunov functions developed by Charles Conley in [C]. We give Conley’s proof of the the existence of complete Lyapunov functions, (which is sometimes called the “Fundamental Theorem of Dynamical Systems”)

If $A \subset X$ is a compact subset and there is an open neighborhood U of A such that $f(\text{cl}(U)) \subset U$ and $\cap_{n \geq 0} f^n(\text{cl}(U)) = A$, then A is called an attractor and U is an isolating neighborhood. It is easy to see that if $V = X \setminus \text{cl}(U)$ and $A^* = \cap_{n \geq 0} f^{-n}(\text{cl}(V))$, then A^* is an attractor for f^{-1} with isolating neighborhood V. The set A^* is called the repeller dual to A. It is clear that A^* is independent of the choice of isolating neighborhood U for A. Obviously $f(A) = A$ and $f(A^*) = A^*$.

Lemma 2.1. The set of attractors for f is countable.

Proof. Choose a countable basis $\mathcal{B} = \{V_n\}_{n=1}^\infty$ for the topology of X. If A is an attractor with open isolating neighborhood U, then U is a union of sets in \mathcal{B}. Hence, since A is compact, there are V_{i_1}, \ldots, V_{i_k} such that $A \subset V_{i_1} \cup \cdots \cup V_{i_k} \subset U$. Clearly $A = \cap_{n \geq 0} f^n(U) = \cap_{n \geq 0} f^n(V_{i_1} \cup \cdots \cup V_{i_k})$. Consequently there are at most as many attractors as finite subsets of \mathcal{B}, i.e., the set of attractors is countable.

Lemma 2.2. If $\{A_n\}_{n=1}^\infty$ are the attractors of f and $\{A_n^*\}$ their dual repellers, then the chain recurrent set $\mathcal{R}(f) = \cap_{n=1}^\infty (A_n \cup A_n^*)$.

Proof. We first show $\mathcal{R}(f) \subset \cap (A_n \cup A_n^*)$. This is equivalent to showing that if $x \notin A \cup A^*$ for some attractor A, then $x \notin \mathcal{R}(f)$. If U is an open isolating neighborhood of A and $x \notin A \cup A^*$, then $x \in f^{-n}(U)$ for some n. Let m be the smallest such n. Replacing U with $f^{-m}(U)$ we can assume $x \in U \setminus f(U)$.

4
Now choose \(\varepsilon_0 > 0 \) so that any \(\varepsilon_0 \)-chain \(x = x_1, x_2, x_3 \) must have \(x_3 \in f^2(U) \). If \(\varepsilon_1 = d(X \setminus f(U), \text{cl}(f^2(U))) \) and \(\varepsilon = \frac{1}{2} \min \{ \varepsilon_0, \varepsilon_1 \} \), then no \(\varepsilon \)-chain can start and end at \(x \), since no \(\varepsilon \)-chain from a point of \(f^2(U) \) can reach a point of \(X \setminus f(U) \). Thus \(x \notin \mathcal{R}(f) \). We have shown \(\mathcal{R}(f) \subset \cap (A_n \cup A_n^*) \).

We next show the reverse inclusion. Suppose \(x \in \bigcap_{n=1}^{\infty} (A_n \cup A_n^*) \). If \(x \) is not in \(\mathcal{R}(f) \), there is an \(\varepsilon_0 > 0 \) such that no \(\varepsilon_0 \)-chain from \(x \) to itself exists. Let \(\Omega(x, \varepsilon) \) denote the set of \(y \in X \) such that there is an \(\varepsilon \)-chain from \(x \) to \(y \).

By definition, the set \(V = \Omega(x, \varepsilon_0) \) is open. Moreover, \(f(\text{cl}(V)) \subset V \), because if \(z \in \text{cl}(V) \), there is \(z_0 \in V \) such that \(d(f(z), f(z_0)) < \varepsilon_0 \) and consequently an \(\varepsilon_0 \)-chain from \(x \) to \(z_0 \), gives an \(\varepsilon_0 \)-chain \(x = x_0, x_1, \ldots, x_k, z_0, f(z) \) from \(x \) to \(f(z) \). Hence \(A = \bigcap_{n \geq 0} f^n(\text{cl}(V)) \) is an attractor with isolating neighborhood \(V \). By assumption either \(x \in A \) or \(x \in A^* \). Since there is no \(\varepsilon_0 \)-chain from \(x \) to \(x \), \(x \notin A \). On the other hand, if \(\omega(x) \) denotes the limit points of \(\{ f^n(x) \mid n \geq 0 \} \), then clearly \(\omega(x) \subset V \), but this is not possible if \(x \in A^* \) since \(A^* \) is closed and \(x \in A^* \) would imply \(\omega(x) \subset A^* \). Thus we have contradicted the assumption that \(x \notin \mathcal{R} \).

Exercise 2.3. Let \(f = \text{id} : X \to X \) be the identity homeomorphism of a compact metric space. Find all attractors of \(f \) and their dual repellers.

If we define a relation \(\sim \) on \(\mathcal{R} \) by \(x \sim y \) if for every \(\varepsilon > 0 \) there is an \(\varepsilon \)-chain from \(x \) to \(y \) and another from \(y \) to \(x \), then it is clear that \(\sim \) is an equivalence relation.

Definition 2.4. The equivalence classes in \(\mathcal{R}(f) \) for the equivalence relation \(\sim \) above are called the chain transitive components of \(\mathcal{R}(f) \).

Proposition 2.5. If \(x, y \in \mathcal{R}(f) \), then \(x \) and \(y \) are in the same chain transitive component if and only if there is no attractor \(A \) with \(x \in A \), \(y \in A^* \) or with \(y \in A \), \(x \in A^* \).

Proof. Suppose first that \(x \) and \(y \) are in the same chain transitive component, i.e., \(x \sim y \), and \(x \in A \). If \(U \) is an open isolating neighborhood for \(A \), let \(\varepsilon = \text{dist}(X \setminus U, \text{cl}(f(U))) \). There can be no \(\varepsilon/2 \)-chain from a point in \(f(U) \) to a point in \(X \setminus U \), hence none from a point in \(A \) to a point in \(A^* \). By Lemma 2.2 we know \(y \in A \cup A^* \), but \(x \sim y \) implies \(y \notin A^* \), so \(y \in A \). This proves one direction of our result.

To show the converse, suppose that for every attractor \(A \), \(x \in A \) if and only if \(y \in A \) (and hence \(x \in A^* \) if and only if \(y \in A^* \)). Given \(\varepsilon > 0 \) let \(V = \Omega(x, \varepsilon) = \{ z \in X \mid \text{for which there is an } \varepsilon \text{-chain from } x \text{ to } z \} \).
to z. Since x is chain recurrent \(x \in V \). Also as in the proof of Lemma 2.2, V is an isolating neighborhood for an attractor \(A_0 \). Since \(x \in A_0 \cup A_0^* \) and \(x \in V \) we have \(x \in A_0 \). Thus \(y \in A_0 \subset V \) so there is an \(\varepsilon \)-chain from \(x \) to \(y \). A similar argument shows there is an \(\varepsilon \)-chain from \(y \) to \(x \) so \(x \sim y \).

We are now prepared to present Conley’s proof of the existence of a complete Lyapunov function.

Definition 2.6. A complete Lyapunov function for \(f : X \to X \) is a continuous function \(g : X \to \mathbb{R} \) satisfying:

1. If \(x \notin \mathcal{R}(f) \), then \(g(f(x)) < g(x) \)
2. If \(x, y \in \mathcal{R}(f) \), then \(g(x) = g(y) \) if and only if \(x \sim y \) (i.e., \(x \) and \(y \) are in the same chain transitive component).
3. \(g(\mathcal{R}(f)) \) is a compact nowhere dense subset of \(\mathbb{R} \).

By analogy with the smooth setting, elements of \(g(\mathcal{R}(f)) \) are called critical values of \(g \).

Lemma 2.7. There is a continuous function \(g : X \to [0, 1] \) such that \(g^{-1}(0) = A, g^{-1}(1) = A^* \) and \(g \) is strictly decreasing on orbits of points in \(X \setminus (A \cup A^*) \).

Proof. Define \(g_0 : X \to [0, 1] \) by

\[
g_0(x) = \frac{d(x, A)}{d(x, A) + d(x, A^*)}.
\]

Let \(g_1(x) = \sup\{g_0(f^n(x)) \mid n \geq 0\} \). Then \(g_1 : X \to [0, 1] \) and \(g_1(f(x)) \leq g_1(x) \) for all \(x \). We must show \(g_1 \) is continuous. If \(\lim x_i = x \in A \), then clearly \(\lim g_1(x_i) = 0 \) so \(g_1 \) is continuous at points of \(A \) and the same argument shows it is continuous at points of \(A^* \). If \(U \) is an open isolating neighborhood as above, let \(N = \text{cl}(U) \setminus f(U) \). Let \(x \in N \) and \(r = \inf\{g_0(x) \mid x \in N\} \). Since \(f^n(U) \subset f^n(\text{cl}(U)) \) and \(\bigcap_{n \geq 0} f^n(\text{cl}(U)) = A \), it follows that there is \(n_0 > 0 \) such that \(g_0(f^n(U)) \subset [0, r/2] \) whenever \(n > n_0 \). Hence for \(x \in N \),

\[
g_1(x) = \max\{g_0(f^n(x)) \mid 0 \leq n \leq n_0\}
\]

6
so \(g_1 \) is continuous on \(N \). Since \(\bigcup_{n=-\infty}^{\infty} f^n(N) = X \setminus (A \cup A^*) \), \(g_1 \) is continuous. Finally, letting

\[
g(x) = \sum_{n=0}^{\infty} \frac{g_1(f^n(x))}{2^n+1}
\]

we obtain a continuous function \(g : X \to [0,1] \) such that \(g^{-1}(0) = A \), \(g^{-1}(1) = A^* \). Also

\[
g(f(x)) - g(x) = \sum_{n=0}^{\infty} \frac{g_1(f^{n+1}(x)) - g_1(f^n(x))}{2^{n+1}}
\]

which is negative if \(x \notin A \cup A^* \), since \(g_1(f(y)) \leq g_1(y) \) for all \(y \) and \(g_1 \) is not constant on the orbit of \(x \). \(\Box \)

The following theorem is essentially a result of \([C]\). We have changed the setting from flows to homeomorphisms.

Theorem 2.8 (Fundamental Theorem of Dynamical Systems). If \(f : X \to X \) is a homeomorphism of a compact metric space, then there is a complete Lyapunov function \(g : X \to \mathbb{R} \) for \(f \).

Proof. By Lemma (2.4) there are only countably many attractors \(\{A_n\} \) for \(f \). By Lemma (2.7) we can find \(g_n : X \to \mathbb{R} \) with \(g_n^{-1}(0) = A_n \), \(g_n^{-1}(1) = A^*_n \) and \(g_n \) strictly decreasing on \(X \setminus (A_n \cup A^*_n) \). Define \(g : X \to \mathbb{R} \) by

\[
g(x) = \sum_{n=1}^{\infty} \frac{2g_n(x)}{3^n}.
\]

The series converges uniformly so \(g(x) \) is continuous. Clearly if \(x \notin \mathcal{R}(f) \), then there is an \(A_i \) with \(x \notin (A_i \cup A^*_i) \) so \(g(f(x)) < g(x) \).

Also, if \(x \in \mathcal{R}(f) \), then \(x \in (A_n \cup A^*_n) \) for every \(n \), so \(g_n(x) = 0 \) or 1 for all \(n \). It follows that the ternary expansion of \(g(x) \) can be written with only the digits 0 and 2, and hence \(g(x) \in C \), the Cantor middle third set. Thus \(g(\mathcal{R}(f)) \subset C \) so \(g(\mathcal{R}(f)) \) is compact and nowhere dense. This proves (3) of the definition.

Finally, if \(x, y \in \mathcal{R}(f) \) then \(g(x) = g(y) \) if and only if \(g_n(x) = g_n(y) \) for all \(n \). This is true since \(2g_n(x) \) is the \(n \)th digit of the ternary expansion of \(g(x) \) so \(g(x) = g(y) \) implies \(g_n(x) = g_n(y) \) for all \(n \). But \(g_n(x) = g_n(y) \) for all \(n \) if and only if there is no \(n \) with \(x \in A_n \), \(y \in A^*_n \) or with \(x \in A^*_n \), \(y \in A_n \). Thus by Proposition (2.6), \(g(x) = g(y) \) if and only if \(x \) and \(y \) are in the same chain transitive component. \(\Box \)
References

[C] C. Conley, *Isolated Invariant Sets and the Morse index*, C.B.M.S. Regional Conference Series in Math \textbf{38}, Amer. Math. Soc., Providence, RI, 1978.