The Relative Influence of Metal Ion Binding Sites in the I-like Domain and the Interface with the Hybrid Domain on Rolling and Firm Adhesion by Integrin α₄β₇

Received for publication, July 9, 2004, and in revised form, September 9, 2004
Published, JBC Papers in Press, September 24, 2004, DOI 10.1074/jbc.M407773200

JianFeng Chen, Junichi Takagi, Can Xie, Tsan Xiao, Bing-Hao Luo, and Timothy A. Springer

From ‡The CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115 and ¶Institute for Protein Research, Laboratory of Protein Synthesis and Expression, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan

We examined the effect of conformational change at the β₇ I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin α₄β₇. An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the α₄β₇ headpiece. Wild-type α₄β₇ mediates rolling adhesion in Ca²⁺ and Ca²⁺/Mg²⁺ but firm adhesion in Mg²⁺ and Mn²⁺. Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn²⁺, confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn²⁺. Overall, the results demonstrate the importance of headpiece allosteric in the conversion of rolling to firm adhesion.

Integrins are a family of heterodimeric adhesion molecules with noncovalently associated α and β subunits that mediate cell-cell, cell-matrix, and cell-pathogen interactions and that signal bidirectionally across the plasma membrane (1, 2). The affinity of integrin extracellular domains is dynamically regulated by “inside-out” signals from the cytoplasm. Furthermore, ligand binding can induce “outside-in” signaling and activate many intracellular signaling pathways (3–6). Integrin extracellular domains exist in at least three distinct global conformational states that differ in affinity for ligand (5, 7); the equilibrium among these states is regulated by the binding of integrin cytoplasmic domains to cytoskeletal components and signaling molecules (4, 6).

Integrin affinity regulation is accompanied by a series of conformational rearrangements. Electron micrographic studies

of integrins α₅β₃ and α₂β₁ demonstrate that ligand binding, in the absence of restraining crystal lattice contacts, induces a switchblade-like extension of the extracellular domain and a change in angle between the I-like and hybrid domains (5, 7). Recent crystal structures of integrin α₁β₃ in the open, high affinity conformation demonstrate that the C-terminal α7-helix of the β I-like domain moves axially toward the hybrid domain, causing the β hybrid domain to swing outward by 60°, away from the α subunit (8). This conversion from the closed to the open conformation of the ligand-binding domains in the integrin headpiece also destabilizes the bent conformation and induces integrin extension in which the headpiece extends and breaks free from an interface with the leg domains that connect it to the plasma membrane. To stabilize the outward swing of the hybrid domain and the high affinity open headpiece conformation, glycans wedges have been introduced into the interface between the hybrid and I-like domains of β₇ and β₃ integrins (9). The relation between hybrid domain swing-out and high integrin affinity has also been strongly supported by the study of an allosteric inhibitory β₇ integrin antibody SG19, which binds to the outer side of the I-like hybrid domain interface and prevents hybrid domain swing-out as shown by electron micrographic image averages (10). Allosteric inhibition by this mAb was confirmed because it did not inhibit ligand binding to the low affinity state but rather inhibited conversion to the high affinity state. Binding of SG19 mAb to the β₇ wedge mutant was dramatically decreased compared with wild-type, further supporting induction of hybrid domain swing-out by the wedge mutant. Conversely, allosteric activating mAbs have been shown to map to the face of the β hybrid domain that is closely opposed to the α subunit in the closed conformation and therefore appear to induce the high affinity state by favoring hybrid domain swing-out (11). Disulfide cross-links in the β₆-α7 loop (12) and shortening of the α7-helix in the I-like domain (13) also support the conclusion that downward displacement of the α7-helix induces high affinity for ligand. A homologous α7-helix displacement in integrin α subunit I domains similarly induces high affinity for ligand (14).

It has long been known that integrin affinity for ligand is strongly influenced by metal ions, and recently the basis for this regulation has been deduced for the integrin α₄β₇ (15). The integrin α₄β₇ binds the cell surface ligand mucosal cell adhesion molecule-1 (MAdCAM-1) and mediates rolling adhesion by
lymphocytes in postcapillary venules in mucosal tissues and the subsequent firm adhesion in endothelium and trans-endothelial migration. These key steps in lymphocyte trafficking in vivo can be mimicked in vitro by introducing αβ7-transfected cells into parallel wall flow chambers with MAICAM-1 coated on the lower wall. In Ca\(^{2+}\) and Ca\(^{2+}\)/Mg\(^{2+}\), αβ7 mediates rolling adhesion, whereas in Mg\(^{2+}\), Mn\(^{2+}\), or when αββ7 is activated from within the cell, αβ7 mediates firm adhesion (15–17). Unliganded-closed and liganded-closed structures of αββ7 have revealed a linear array of three divergent cation binding sites in the I-like domain (18, 19). The metal coordinating residues in β7 are 100% identical to those in β3. Mutation of these residues in β3, and studies of synergy between Ca\(^{2+}\) and Mg\(^{2+}\) and competition between Ca\(^{2+}\) and Mn\(^{2+}\), revealed the following (15). 1) The middle of the three linearly arraysed sites, the metal ion-dependent adhesion site (MIDAS), is absolutely required for rolling and firm adhesion, and it can bind to MAICAM (and presumably coordinate) either through Ca\(^{2+}\), Mg\(^{2+}\), or Mn\(^{2+}\). 2) The adjacent to MIDAS (ADMIDAS) metal ion binding site functions as a negative regulatory site that stabilizes rolling adhesion. Its mutation results in firm adhesion in Ca\(^{2+}\), Mg\(^{2+}\), or Mn\(^{2+}\). Furthermore, Ca\(^{2+}\) exerts negative regulation at high concentrations at this site by favoring the closed I-like domain conformation, and Mn\(^{2+}\) activates integrins by competing with Ca\(^{2+}\) at this site and favoring an alternative coordination geometry seen in the open I-like domain conformation. 3) The ligand-induced metal binding site (LIMBS) functions as a positive regulatory site that favors firm adhesion. Its mutation results in rolling adhesion in Ca\(^{2+}\), Mg\(^{2+}\), or Mn\(^{2+}\). Furthermore, synergism between low concentrations of Ca\(^{2+}\) and Mg\(^{2+}\) results from their binding to the LIMBS and MIDAS, respectively. Despite these advances in understanding the mechanism by which metal ions stabilize alternative conformations of integrin β I-like domains, several issues remain unresolved. How do the closed and open conformations of the αβ7 headpiece affect rolling and firm adhesion? Does metal ion occupancy at the LIMBS and ADMIDAS or outward swing of the hybrid domain have the strongest effect on I-like domain conformation? If changes occur at both metal binding sites and the I-like/hybrid domain interface, does one dominate the other, or can they be counterbalancing or additive? Here we address these questions and the importance of allostery at the I-like/hybrid domain interface by introducing a glycan wedge mutation into the β7 subunit to stabilize the open conformation of this interface.

MATERIALS AND METHODS

Monoclonal Antibodies—The human integrin αβ7-specific monoclonal antibody Act-1 was described previously (20, 21).

cDNA Construction, Transient Transfection, and Immunoprecipitation—The β7 site-directed mutations were generated using QuikChange (Stratagene). Wild-type human β3 cDNA (22) in vector pcDNA3/1/Hygro(-) (Invitrogen) was used as the template. All mutations were confirmed by DNA sequencing. Transient transfection of 293T cells using calcium phosphate precipitation was as described (23). Transfected 293T cells were metabolically labeled with [3S]cysteine and -methionine, and labeled cell lysates were immunoprecipitated with 1 μl of Act-1 mAb ascites and 20 μl of protein G agarose, eluted with 0.5% SDS, and subjected to non-reducing 7% SDS-PAGE and fluorography (24). The selected protein bands were quantified using a Storm PhosphorImager after 3 h of exposure to storage phosphor screens (Amersham Biosciences).

Immunofluorescence Flow Cytometry—Immunofluorescence flow cytometry was as described (23) using 10 μg/ml purified antibody.

Flow Chamber Assay—A polystyrene Petri dish was coated with a 5-mm diameter, 20-μl spot of 5 μg/ml purified h-MAICAM-1/Fc in coating buffer (phosphate-buffered saline, 10 mM NaHCO\(_3\), pH 9.0) for 1 h at 37 °C followed by 2% human serum albumin in coating buffer for 1 h at 37 °C to block nonspecific binding sites (16). The dish was assembled as the lower wall of a parallel plate flow chamber and mounted on the stage of an inverted phase-contrast microscope (25). 293T cell transfectants were washed twice with Ca\(^{2+}\)- and Mg\(^{2+}\)-free Hanks’ balanced salt solution, 10 mM Hepes, pH 7.4, 5 mM EDTA, 0.5% bovine serum albumin and resuspended at 5 × 10\(^{6}\)/ml in buffer A (Ca\(^{2+}\)-

Table 1

Name	Mutation	Expression (%)
Wild type		100 ± 12
Glycan wedge	Q324T	47 ± 3
LIMBS	D237A	99 ± 20
Wedge/LIMBS	Q324T/D237A	38 ± 10
ADMIDAS	D147A	70 ± 9
Wedge/ADMIDAS	Q324T/D147A	35 ± 8

FIG. 1. Design of the N-glycosylation site (wedge) mutation and confirmation by immunoprecipitation. A, alignment of the relevant portion of the human integrin β3 and β7 I-like domains. The N-glycosylation sites in β3 and β7 wedge mutants are underlined, and the residues mutated to Thr are shown in red. Helices and β-strands are labeled and overlined. B and C, the β3 I-like/hybrid domain interface. The interfaces are shown in the closed (B) (19) and open (8) (C) conformations, with the I-like and hybrid domains shown as cyan and yellow ribbons, respectively. The structures are shown in the same orientation after superposition using allosterically invariant portions of the I-like domain (8). The side chain of the Aan that is N-glycosylated in β3 and β7 wedge mutants is shown. D, lysates from 35S-labeled 293T cell transfectants were immunoprecipitated with Act-1 mAb. Precipitated wild-type (WT) and glycan wedge mutant (Q324T) materials were subjected to non-reducing 7.5% SDS-PAGE and fluorography. Positions of molecular mass markers are shown on the left, and the integrid bands are indicated on the right.
RESULTS

Activation of α5β1 with a Glysyal Wedge Mutation—The mutation Glu-324 → Thr in β3 introduced a N-glycosylation site at Asn-322 in the α4–β5 loop of the I-like domain (Fig. 1A), the same position as used previously for the wedge mutant in the highly homologous β2 subunit (9). Crystal structures have been defined for the β3 I-like/hybrid domain interface in both closed low affinity and open high affinity conformations (5, 8, 19). In the β3 subunit, the identical Asn residue has 5-fold more solvent-accessible surface area as determined with a 1.4 Å probe radius to simulate a water molecule in the open conformation (Fig. 1C) than in the closed conformation (Fig. 1B) of the hybrid/I-like interface. To approximate the size of the first four carbohydrate residues of an N-linked glycan, we used a 10 Å probe radius (see “Materials and Methods”), and we found that the Asn side chain was accessible in the open but not the closed conformation, as would be expected from visual inspection of the interface (Fig. 1, B and C). Similarly to other wedge mutants (9), the α5β2 wedge mutant was expressed somewhat less well than wild type in 293T transfectants (Table I). Immuno-precipitation and SDS-PAGE of [35]S-cysteine- and -methionine-labeled α5β2 showed a 3,000 M_r increase for the Q324T mutant β2 subunit compared with wild type, confirming N-glycosylation of the introduced site (Fig. 1D).

To avoid confusing rolling with small amounts of movement due to tether stretching or measurement error, a velocity of 2 μm/s, which corresponds to a movement of 1/2 cell diameter during the 3 s measurement interval, was the minimum velocity required to define a cell as rolling instead of firmly adherent (26). Microscopic images were recorded on Hi8 videotape for later analysis.

Surface Calculations—Accessible surfaces were calculated with probes of the indicated radii using the buried surface routine of Crystallography and NMR System software (27).

Table II

Effect of the glycan wedge in α5β1 on cleavage of α4 subunit

293T cells were transiently transfected with wild-type (WT) or mutant integrin α5β1 using calcium phosphate precipitation and metabolically labeled with [35]S-cysteine and -methionine as in Fig. 1A. Labeled cell lysates were immunoprecipitated with Act-1 antibody and subjected to non-reducing 7% SDS-PAGE and fluorography. The selected protein bands were quantified using a Storm PhosphorImager after 3 h of exposure to storage phosphor screens. To estimate the percentage of cleavage in each α4 subunit band, we calculated the cleavage as a percent of (α₄¹⁹⁰ + α₄¹⁴⁰)/(α₄¹⁹⁰ + α₄¹⁴⁰ + α₄⁹⁰ + α₄⁷⁰).

Radioactivity in each α4 subunit band	Cleavage
	%
WT	
α₄¹⁹⁰	10
α₄¹⁴⁰	39
α₄⁹⁰	25
α₄⁷⁰	26
Q324T	
α₄¹⁹⁰	8
α₄¹⁴⁰	8
α₄⁹⁰	41
α₄⁷⁰	49

Conversion of Rolling to Firm Adhesion

FIG. 2. Adhesion in shear flow of wild-type and glycan wedge mutant α5β1 cell transfectants on MAdCAM-1 substrates. Cells were infused into the flow chamber in buffer containing 1 mM Ca²⁺, 1 mM Ca²⁺ + 1 mM Mg²⁺, 1 mM Mg²⁺, or 0.5 mM Mn²⁺. Cells transfected with α4 cDNA alone (Mock) or α4₅β1₂ transfectants treated with 5 mM EDTA did not accumulate on MAdCAM-1 substrates. Rolling velocities of individual cells were measured at a series of increasing wall shear stresses, and cells within a given velocity range were enumerated to give the population distribution. dyn, dynes.
ness was more activated than in Mg\(^{2+}\) because more cells accumulated and fewer cells detached at the highest wall shear stress of 32 dynes/cm\(^2\). By contrast with wild type, the 47 Q324T glycan wedge mutant mediated firm adhesion regardless of the divalent cation present (Fig. 2). Furthermore, the accumulation efficiency and shear resistance of the wedge mutant was identical in Ca\(^{2+}\), Ca\(^{2+}\)/Mg\(^{2+}\), and Mn\(^{2+}\) and similar to that of the wild-type 47 293T transfectants in Mn\(^{2+}\). Thus, integrin 47 was constitutively activated by the glycan wedge introduced into the hybrid/I-like domain interface.

Mutation of the 47 cleavage site residue Arg-558 abolishes 47 subunit cleavage and has no effect on 47 adhesion on fibronectin or VCAM-1 (29, 35). We tested the effect of the same mutation in 47 transfectants, and we found it to have no effect on adhesion in shear flow to MAdCAM-1 (data not shown).

As described previously (15), mutation of LIMBS residues stabilizes integrin 47 in the low affinity state. For example, the LIMBS mutant D237A mediates rolling adhesion regardless of the divalent cations that are present (Fig. 3A). The wedge/LIMBS double mutant (Q324T/D237A) was expressed as well as the wedge mutant in 293T transfectants (Table I). Compared with the LIMBS mutation, the wedge/LIMBS double mutation reproducibly increased the number of firmly adherent cells at low shear (1 and 2 dynes cm\(^{-2}\)) in Ca\(^{2+}\), Ca\(^{2+}\)/Mg\(^{2+}\), and Mg\(^{2+}\) (Fig. 3). In Mn\(^{2+}\), the wedge/LIMBS mutant mediated firm adhesion, whereas the LIMBS mutant mediated rolling adhesion (Fig. 3). These data show that the LIMBS is required for full activation by the wedge mutation in Ca\(^{2+}\), Ca\(^{2+}\)/Mg\(^{2+}\), and Mn\(^{2+}\).
and Mg\(^{2+}\) (Q324T/D237A mutant in Fig. 3A compared with Q324T mutant in Fig. 2). Furthermore, activation by Mn\(^{2+}\) of the double wedge/LIMBS Q324T/D237A mutant definitively establishes that the LIMBS is not required for activation by Mn\(^{2+}\).

Increased Firm Adhesion by Double ADMIDAS/Wedge Mutant—Mutation of the negative regulatory ADMIDAS activates firm adhesion even in Ca\(^{2+}\) (15) (D147A mutant in Fig. 4 compared with wild type in Fig. 2). The double wedge/ADMIDAS Q324T/D147A mutant was somewhat less well expressed than the ADMIDAS D147A mutant (Table I). Nonetheless, the double Q324T/D147A mutant showed more firmly adherent cells in Ca\(^{2+}\) and Mn\(^{2+}\) than did the single D147A mutant (Fig. 4) or the single Q324T mutant (Fig. 2).

DISCUSSION

Allosteric transition to the high affinity integrin headpiece conformation is proposed to involve rearrangement of the β I-like LIMBS, MIDAS, and ADMIDAS (LMA) sites, downward displacement of the β I-like α7-helix that connects to the hybrid domain, and outward swing of the β hybrid domain (5, 7–9, 11, 12, 36). Outward swing of the hybrid domain has been demonstrated by electron micrographic studies of liganded α\(_5\)β\(_3\) integrins and crystal studies of liganded α\(_5\)β\(_3\) crystal structure in which crystal lattice and headpiece-leg interactions presumably prevented swing-out when a ligand was soaked into crystals (8, 18). Conversely, introduction of a glycan wedge into the β\(_i\) and β\(_j\) subunits has been demonstrated to induce high affinity for ligand by α\(_5\)β\(_3\) and α\(_5\)β\(_3\) integrins (9). Both of these integrins recognize ligands with RGD sequences. We have extended these results here to the α\(_5\)β\(_3\) integrin, which does not recognize RGD in its ligands and which mediates both rolling and firm adhesion. In α\(_5\)β\(_3\), the glycan wedge converted rolling adhesion in Ca\(^{2+}\) and Ca\(^{2+}\)/Mg\(^{2+}\) to firm adhesion, demonstrating that stabilizing the open conformation at the I-like/hybrid domain interface is sufficient to stabilize high affinity firm adhesion.

Furthermore, we examined here for the first time the interplay between the LMA metal binding sites at the ligand-bind-

FIG. 4. Interaction of glycan wedge and ADMIDAS mutations. Adhesive modality and resistance to detachment in shear flow of ADMIDAS (D147A) and double wedge/ADMIDAS (Q324T/D147A) mutant α\(_5\)β\(_3\) transfectants on the MAdCAM-1 substrates in the presence of the indicated divalent cations. The divalent cation concentrations are the same as in Fig. 2. dyn, dynes.
Conversion of Rolling to Firm Adhesion

55561

firm adhesion by the LIMBS/wedge mutant, showing that the LIMBS is not required for regulation by Mn

Although much progress has been made recently in defining different integrin conformational states, questions remain about how signals are transduced from the cytoplasm to the ligand binding site and whether intermediate conformational states have intermediate affinity for ligand. It appears that the glycan wedge converts the extended conformation with the open headpiece to the bent conformation, which contains a closed headpiece, and the extended conformation with the open headpiece (5). The current study demonstrates that stabilization of the open headpiece by a glycan wedge at the β 1-like/β3 interface is sufficient to convert low affinity rolling adhesion to high affinity firm adhesion. It appears that the glycan wedge converts the extended conformation with the closed headpiece to the extended conformation with the open headpiece. Therefore, this study strongly suggests that within the extended integrin conformation, conversion of the closed to the open conformation is sufficient to convert rolling adhesion to firm adhesion. In an intact integrin, marked separation in the plane of the membrane of the transmembrane domains of the integrin α and β subunits would also stabilize the open headpiece and therefore may be the mechanism for converting rolling adhesion to firm adhesion.

Acknowledgment—We thank Dr. Michael J. Briskin for providing the human MadCAM-1/Fc.

REFERENCES

1. Hynes, R. O. (2002) Cell 110, 673–687.
2. Takagi, J., and Springer, T. A. (2002) ImmunoL Rev. 186, 141–163.
3. Kim, M., Carman, C. V., and Springer, T. A. (2003) Science 301, 1720–1725.
4. Giancotti, F. G., and Ruoslahti, E. (1999) Science 285, 1028–1032.
5. Takagi, J., Petre, B. M., Walz, T., and Springer, T. A. (2002) Cell 110, 599–611.
6. Vinogradova, O., Velvys, A., Velvyiene, A., Hu, B., Haas, T. A., Plow, E. F., and Qin, J. (2002) Cell 110, 587–597.
7. Takagi, J., Strokovich, K., Springer, T. A., and Walz, T. (2003) EMBO J. 22, 4907–4915.
8. Xiao, T., Takagi, J., Wang, J.-h., Collier, B. S., and Springer, T. A. (2004) 432, 59–67.
9. Luo, B.-H., Springer, T. A., and Takagi, J. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2403–2408.
10. Luo, B.-H., Strokovich, K., Walz, T., Springer, T. A., and Takagi, J. (2004) J. Biol. Chem. 279, 27468–27471.
11. Mould, A. P., Barton, S. J., Askari, J. A., McEwan, P. A., Buckley, P. A., Craig, S. E., and Humphries, M. J. (2003) J. Biol. Chem. 278, 17028–17035.
12. Luo, P., Takagi, J., and Springer, T. A. (2004) J. Biol. Chem. 279, 10215–10221.
13. Yang, W., Shimaoka, M., Chen, J. F., and Springer, T. A. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 2333–2338.
14. Springer, T. A., and Wang, J.-h. (2004) in Cell Surface Receptors (Garcia, K. C., ed) pp. 29–63, Elsevier, San Diego, CA.
15. Chen, J. F., Salas, A., and Springer, T. A. (2003) Nat. Struct. Biol. 10, 1045–1051.
16. de Chateau, M., Chen, S., Salas, A., and Springer, T. A. (2001) Biochemistry 40, 13972–13979.
17. Berlin, C., Bargatze, R. F., von Andrian, U. H., Szabo, M. C., Hasslen, S. R., Nielsen, R. D., Berg, E. L., Erlandsen, S. L., and Butcher, E. C. (1993) Cell 80, 413–422.
18. Xiong, J. P., Stlehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnautov, M. A. (2002) Science 296, 151–155.
19. Xiong, J. P., Stlehle, T., Biefenhach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., Goodman, S. L., and Arnautov, M. A. (2001) Science 294, 339–345.
20. Lazarovitz, A. I., Moscicki, R. A., Kurnick, J. T., Camerini, D., Bhan, A. K., Baird, L. G., Erikson, M., and Colvin, R. B. (1984) J. Immunol. 133, 1857–1862.
21. Schweighoffer, T., Tanaka, Y., Tidswell, M., Erle, D. J., Horgan, K. J., Luoe, G. E., Lazarovits, A. I., Buck, D., and Shaw, S. (1993) J. Immunol. 151, 717–729.
22. Tidswell, M., Pachynski, R., Wu, S. W., Qu, S.-Q., Dunham, E., Cochran, N., Briskin, M. J., Kishsh, F. J., Lazarowits, A. I., Andrew, D. P., Butcher, E. C., Veldock, T. A., and Erle, D. J. (1997) J. Immunol. 159, 1497–1505.
23. Lu, C., Oxvig, C., and Springer, T. A. (1998) J. Biol. Chem. 273, 15138–15147.
24. Luo, B.-H., Springer, T. A., and Takagi, J. (2004) PLoS Biol. 2, 776–786.
25. Lawrence, M. B., and Springer, T. A. (1991) Cell 65, 859–873.
26. Salas, A., Shimaoka, M., Chen, S., Carman, C. V., and Springer, T. A. (2002) J. Biol. Chem. 277, 50255–50262.
27. Brunker, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr. Sect. D 54, 905–921.
28. Holzmann, B., and Weissman, I. L. (1989) EMBO J. 8, 1735–1741.
29. Teixido, J., Parker, C. M., Kassner, P. D., and Hemler, M. E. (1992) J. Biol. Chem. 267, 1786–1791.
30. Parker, C. M., Pujades, C., Brenner, M. B., and Hemler, M. E. (1993) J. Biol. Chem. 268, 7028–7035.
31. Hemler, M. E., Eltzes, M. J., Parker, C., and Takada, Y. (1999) Immunol. Rev. 114, 45–65.
32. Sanchez-Madrid, F., De Landazuri, M. O., Morago, G., Cebrian, M., Acevedo, A., and Bernabeu, C. (1986) Eur. J. Immunol. 16, 1343–1349.
33. McIntyre, B. W., Evans, E. L., and Bednarczyk, J. L. (1989) J. Biol. Chem. 264, 13745–13750.
34. Bednarczyk, J. L., Szabo, M. C., and McIntyre, B. W. (1992) J. Biol. Chem. 267, 25274–25281.
35. Bergeron, E., Basak, A., Decroly, E., and Seidah, N. G. (2003) Biochem. J. 373, 475–484.
36. Mould, A. P., Symonds, E. J., Buckley, P. A., Grossmann, J. G., McEwan, P. A., Barton, S. J., Askari, J. A., Craig, S. E., Bell, J., and Humphries, M. J. (2003) J. Biol. Chem. 278, 39993–39999.
37. Salas, A., Shimaoka, M., Kogan, A. N., Harwood, C., von Andrian, U. H., and Springer, T. A. (2004) Immunity 20, 393–406.