The effect of sickle cell genotype on the pharmacokinetic properties of artemether-lumefantrine in Tanzanian children

Sri Riyati Sugiartoa, George M. Bwireb, Brioni R. Moorea, c, d, Madhu Page-Sharpc, Laurens Manningb, e, f, Kevin T. Battyg, d, Omary M.S. Minzib, Billy Ngasalab, Timothy M.E. Davisa, *, Julie Makanih, Sam Salmana, e, i

a Medical School, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
b Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
c Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
d Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
e Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
f Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
g Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
h Muhimbili Sickle Cell Centre, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
i Clinical Pharmacology and Toxicology, PathWest, Nedlands, Western Australia, Australia

\section{Introduction}

Genetically determined variations in the structure and function of haemoglobin underlie differences in malaria susceptibility and severity across human populations (Taylor et al., 2012). These haemoglobinopathies, which include sickle cell disease (SCD) and the thalassemias, may afford protection against malaria, but the infection can still have adverse clinical consequences. In the case of SCD in children, falciparum malaria can result in hospitalisation and even death (Ambe et al., 2001; Makani et al., 2010; McAuley et al., 2010). Ensuring optimal antimalarial therapy remains a priority in this situation.

The World Health Organisation (WHO) recommends artemisinin combination therapy (ACT) as first line treatment for children with uncomplicated falciparum malaria (World Health Organisation, 2021).
Among available ACTs, artemether-lumefantrine (ARM-LUM) is the most commonly prescribed in Sub-Saharan Africa (Ndeffo Mbah et al., 2015). In Tanzania, ARM-LUM has been first-line treatment for malaria for 15 years (Michael and Mkunde, 2017). Although there are some data suggesting that ARM-LUM is safe and effective in African children with SCD (Adjei et al., 2014), there are few studies of the effects of abnormal hemoglobins on the disposition and efficacy of antimalarial drugs, and the data are inconsistent (Sugiarto et al., 2018). For example, one study found a marked difference in the pharmacokinetics of artemisinin in Thai adults with versus without alpha-thalassaemia (Itrarat et al., 1998) but there was no such effect in Papua New Guinean (PNG) children with uncomplicated malaria (Karunajeewa et al., 2004). Similarly, there are in vitro data showing that haemoglobinopathies such as alpha-thalassaemia may reduce the efficacy of the artemisinins (Kamchonwongpaisan et al., 1994), but in vivo studies show that drugs such as artesunate clear parasites promptly in children with this mutation (Karunajeewa et al., 2004).

In the case of sickle cell trait (SCT) and haemoglobin AS genotype and SCD (haemoglobin SS genotype), there are no published studies of the pharmacokinetic properties of artemisinin drugs as part of ACT. However, available data suggest that African children with SCD developing falciparum malaria despite the relative protection associated with their haemoglobinopathy (Eridani, 2011) have delayed initial parasite clearance after ACT (Adjei et al., 2014; Ndounga et al., 2015). This may represent depressed reticuloendothelial (spleenic) function (Pearson et al., 1979) but it could also result from effects of SCD on artemisinin pharmacokinetics (Sugiarto et al., 2018). There are few data on the disposition of longer half-life ACT partner drugs in either SCD or SCT, but SCD has been associated with reduced desethylmefloquine exposure in children with acute malaria treated with artesunate-amodiaquine (Adjei et al., 2019). This finding is consistent with the accelerated clearance of morphine, suggesting the need for higher doses in the management of SCD vaso-occlusive crises (Darbari et al., 2011). There are no studies of the disposition of longer half-life ACT partner drug lumefantrine in either SCT or SCD.

Conventional intensive venous blood sampling schedules for antimalarial drug levels are inappropriate in parasitic, anaemic and crisis-prone children with SCT. The measurement of drug concentrations in small volume dried blood spots (DBS) rather than plasma samples represents an alternative ethical approach (Taneja et al., 2013), and sparse sampling adequate for population pharmacokinetic modelling would further reduce the blood volume required. The data in this way collected could inform antimalarial prescribing in vulnerable children with SCD or SCT who present with malaria. Since malaria increases the already significant risk of hospitalisation and death in SCT and SCD (Komba et al., 2009; Makani et al., 2010; McAuley et al., 2010), optimised ACT treatment regimens should be a priority in these groups.

The aim of the present study was to characterize the pharmacokinetic properties of ARM, LUM and their respective active metabolites dihydroartemisinin (DHA) and desbutyl-lumefantrine (DBL) in Tanzanian children with SCT and SCD compared to children with normal haemoglobin (AA genotype). A secondary aim was to develop a modified ARM-LUM treatment regimen if the population pharmacokinetic properties in the children with SCT and/or SCD suggested that this was warranted.

2. Materials and methods

2.1. Study site, participant sample and approvals

The present study was conducted at Muhimbili University of Health and Allied Sciences (MUHAS) within the national referral hospital in Dar es Salaam, Tanzania between July and November 2017. Recent estimates suggest that the prevalence of SCT and SCD in Tanzania is around 20% and 1.3%, respectively (Ambrose et al., 2018, 2020). Forty children aged 5–10 years with approximately equal numbers with confirmed haemoglobin AA (normal), AS (SCT) or SS (SCD) genotypes were recruited from outpatient clinics. This sample size was sufficient to show clinically relevant changes in key pharmacokinetic parameters and allowed for an average 30% attrition rate in paediatric clinical trials (Zimmerman et al., 2019). Using the Monte-CarloMapped Power method with Perl speaks NONMEM (PsN) and published population PK parameters (Karunajeewa et al., 2004; Salman et al., 2011; Sugiarto et al., 2022), a ≥20% change per sickle gene in the volume of distribution of LUM relative to bioavailability (V/F) at 80% power and α = 0.05 would require ≥9 participants/group, and ≥10 participants/group would be required for a ≥15% change per sickle gene in LUM relative clearance (CL/F).

Inclusion criteria included no known allergy or sensitivity to ARM-LUM, no treatment with an ACT within the previous 28 days, no significant acute illness (including malaria) or other co-morbidity, and willingness to complete allocated sampling. Exclusion criteria included symptomatic anaemia (dyspnea and/or postural hypotension), haemoglobin concentration <60 g/L, and evidence of an emerging crisis. Written informed consent for all children was obtained from their parents. The study was approved by the MUHAS Research and Ethics Committee in Tanzania (2017-05-25/EC/Vol. XII/66) and Human Ethics Research Committee at The University of Western Australia (RA/, 4/1/8920).

2.2. Clinical methods

Participants were recruited from outpatient clinics at the Muhimbili Sickle Cell Centre at MUHAS. In these clinics, children attend 3 monthly appointments for haemoglobin measurement, provision of folic acid 5 mg tablets for daily administration, parenteral penicillin prophylaxis for children under the age of 6 years, and, if indicated, pneumococcal vaccination as per the national immunisation schedule. Each participant’s socio-demographic data and medical history were recorded on standard forms, and a physical examination was performed by a medical officer (SRS). A baseline haemoglobin concentration was measured, a blood film for malaria microscopy was prepared, and a DBS was taken for drug assay. A 3 mL venous baseline blood sample was also taken for subsequent drug assay of separated plasma. Each child was given ARM-LUM (Coartem®, Novartis Pharma, Switzerland) at a dose of 1.7 and 10 mg/kg respectively to the nearest whole tablet at 0, 12, 24, 36, 48 and 60 h. All doses were administered by the parents with at least 50 mL of cow’s milk (equivalent to 2 g of fat) as recommended by the manufacturer to ensure adequate drug absorption. Parents were asked to report if any dose was refused or if vomiting occurred. Any child vomiting a dose within 30 min of administration was to be retreated. The exact dates and times of each dose and DBS/blood sample were recorded.

After the baseline assessment, six DBS samples were taken from each participant from randomly selected time points in the following sparse sampling schedule: 4, 8, 12, 24, 36, 40, 48, 60, 64, 68 and 72 h, and Days 4, 5, 7, 14 and 28. This schedule was developed to reflect the disposition of LUM in children (Karunajeewa et al., 2004; Salman et al., 2011), but approximately 40% of the samples were within 8 h of the prior dose and were therefore potentially suitable for ARM/DHA analysis. The exact dates and times of each sample were recorded. For collection of DBS at each time point, 5 blood spots were collected from a finger prick onto a single filter paper (Whatman 903[®] protein saver card, GE Healthcare Australia Pty Ltd, Parramatta, NSW, Australia). Each DBS was air dried at room temperature, placed into a gas impermeable plastic bag with desiccant. A 3 mL venous blood sample was taken into a VACUETTE[™] 4 ml lithium heparin tube (Greiner Bio-One GmbH, Kremsmünster, Austria) for drug assay at one randomly selected time point in parallel with a DBS sample to allow validation of DBS versus plasma drug concentrations. All venous samples were centrifuged promptly and the separated plasma also stored at −80 °C together with the DBS samples.

Clinical assessment, including a symptom questionnaire, blood film and point-of-care haemoglobin, was repeated according to the individual
DBS sampling schedule.

2.3. Drug assay methods

Previously validated methods were used for assay of ARM, DHA, LUM and DBL in plasma and DBS (Sugiarto et al., 2022) which were performed at Curtin University in Western Australia. A triple quadrupole mass spectrometer with UHPLC pump (LCMS/MS-8060 Shimadzu, Kyoto, Japan) was used for analysis of ARM and DHA, with artesunate as internal standard. Quantitation was performed in DUIS (APCI‘ and ESI’) mode by multiple reaction monitoring. Chromatographic separation was performed on a Synergy MAX-RP column (50 × 2.0 mm, 2.5 μm; Phenomenex, Lane Cove West, Australia). Stock solutions (1 mg/mL) of ARM, DHA and ARS were prepared in methanol, serial dilutions made, and isovolumetric standards spiked in blood to create, after extraction, a plasma calibration curve. DBS were also prepared as for those collected in the field using blood spiked in an appropriate standard series with 50 μL aliquots spotted on a Whatman 903 TM protein saver card. For DBS, the extraction method was based on modified validated methods (Blessborn et al., 2013; Sugiarto et al., 2022). Calibration curves (20–1000 μg/L) were constructed for plasma and DBS. The intra-day and inter-day variability for ARM in DBS were <14.0% and those for DHA in DBS were <12.7%. The intra-day and inter-day variability for ARM in plasma were <11.9% and those for DHA in plasma were <12.9%. Chromatographic data (peak area ratio of ARM, DHA and ARS) were processed using LAB Solution (Version 5.56, Shimadzu, Japan). The lower limit of quantification (LOQ) of ARM and DHA in DBS and plasma were 20 μg/L and 5 μg/L, respectively. The lower limit of detection (LOD) of ARM and DHA in DBS and plasma were 10 μg/L and 2 μg/L, respectively.

Quantification of LUM and DBL in extracted plasma (0.5 mL) and DBS was by validated ultra-high-performance liquid chromatography-tandem mass spectrometry assay (Wong et al., 2011) with modifications (Blessborn et al., 2013; Sugiarto et al., 2022) using LUM-d18 and DBL-d9 as internal standards. Quantitation was performed in ESI+ mode. Chromatographic separation was performed on a Waters Aquity T3 UPLC C18 column (50 × 2.1 mm, 1.7 μm; Waters Corp, Wexford, Ireland). Calibration curves ranged from 1 to 20,000 μg/L. The intra-day and inter-day variability for LUM in DBS was <9.0% and for DBL in DBS <10.7%. The equivalent figures for LUM in plasma were <9.4% and for DBL in plasma <9.9%. The LOQ and LOD of LUM and DBL in DBS were both 2.5 μg/L and 1 μg/L, respectively. The LOQ and LOD of LUM and DBL in plasma were both 2.0 μg/L and 0.6 μg/L, respectively.

2.4. Population pharmacokinetic analysis

There were limited valid DBS data available for paired comparison with plasma concentrations (n = 4 for ARM, n = 1 for DHA) and so the DBS data could not be included in the ARM/DHA pharmacokinetic model. There were 15 plasma concentrations within 8 h after a prior dose when ARM/DHA concentrations would be measurable. Initial modelling utilising these concentrations was unable to generate valid comparisons between haemoglobin genotype groups, the primary variable of interest, with these data and so no formal population pharmacokinetic model was developed. Instead, and given that there is no evidence of significant racial or ethnic differences in the disposition of ACT component drugs (Sugiarto et al., 2017), a numerical predictive check with 1000 replicates was performed using a published pharmacokinetic model in children from Papua New Guinea who were of similar age to those in the present study (Salman et al., 2011). Additionally, as a qualitative visual assessment, 500 datasets were simulated using this model with the 5th, 50th and 95th simulated percentiles compared to the present observed values.

In the case of LUM, there was a significant correlation between DBS and plasma samples (r² = 0.723; P < 0.001), although the slope was significantly lower than 1 (0.231) indicating that the DBS concentrations were only about one quarter those in plasma samples. There was no significant influence of sickle genotype or haemoglobin on this relationship. There was poor correlation between DBS and plasma samples for DBL (r² = 0.485). Although DBL has potent antimalarial activity (Wong et al., 2011), its plasma concentrations are substantially lower and they are much less predictive of recrudescence of falciparum malaria than those of LUM (Kloprogge et al., 2015). Given the limited clinical relevance of these concentrations and concerns regarding their validity in the present study, they were not included in the population pharmacokinetic modelling. Comparisons of DBS and plasma data for LUM and DBL are included in Fig. 1.

Log-concentration-time datasets for lumefantrine were analysed by nonlinear mixed effects modelling using NONMEM (v 7.2.0, ICON Development Solutions, Ellicott City, MD, US) with an Intel Visual FORTRAN 10.0 compiler. Both plasma and DBS concentration were included with a parameter that corrected the DBS concentrations to those in plasma by multiplying by 4.33 based on a single population value for the ratio between the two given only a single paired sample was taken from each patient. The first order conditional estimate with interaction (FOCE with INTER) estimation method was used. The minimum value of the objective function (OFV) and visual predictive checks were used to choose suitable models during the model-building process. A significance level of P < 0.01 was set for comparison of nested models. Allometric scaling for size was employed a priori, with an exponential of 1 for volume (V) and ¾ for clearance (CL) terms (Anderson and Holford, 2009). Residual variability (RV) was estimated as additive error for the log-transformed data with separate terms for plasma and DBS data.

Initial modelling was carried using standard one-, two- and three-compartment models (ADVAN 2, 4 and 12, respectively) provided within NONMEM paired with first order absorption. Once a suitable base model was selected, inter-individual variability (IVIV), as well as correlations between IVIV terms, were evaluated for each suitable parameter and included where supported by the data. Inter-occasion variability (IVOV) was also assessed for bioavailability of the multiple doses, with a median value set at 1. IVIV and IVOV was exponentially modelled for all parameters. Relationships between model parameters and covariates were assessed through inspection of scatterplots and boxplots of individual parameters vs covariate, and subsequently evaluated within NONMEM. The principal covariate was SC genotype, specifically AA, AS and SS. Other covariates assessed included gender, age, haemoglobin at enrolment, and mean upper arm circumference. Selection of a covariate relationship required a significance of P < 0.01, as well as a reduction in IVIV and biological plausibility.

For model evaluation, plots of observed vs individual- and population-predicted values, and time vs WRES, were first assessed. A bootstrap using Perl-speaks-NONMEM (PsN) with 1000 samples was performed, and the parameters derived from this analysis summarised as median and 2.5th and 97.5th percentiles (95% empirical CI) to facilitate evaluation of model parameter estimates. In addition, prediction corrected visual predictive checks (pcVPCs) and numerical predictive checks (NPCs) were performed with 1000 datasets simulated from the final models. These were stratified according to sickle genotype, haemoglobin concentration and sample type (plasma versus DBS), the latter stratification to assess any potential bias introduced through the use of DBS samples for modelling. The observed 5th, 50th, and 95th percentiles were plotted with their respective simulated 90% CIs to assess the predictive performance of the model and to evaluate any major bias.

3. Results

3.1. Participant characteristics and clinical course

Of the 40 children recruited, the parents of two children withdrew them on Day 2 after only a baseline blood sample had been taken. Neither child had experienced any adverse effects during treatment. The characteristics of the remaining 38 children are summarised in Table 1.
The 12 children in the SS group had lower mid-upper arm circumference compared with the 14 in the AS group and they also had significantly lower haemoglobin concentrations than the other two groups. Only one child, in the SS group, was slide positive for \textit{Plasmodium falciparum} malaria on review of a blood smear taken at enrolment, but he was asymptomatic and had a low parasite density (80/μL).

The six doses ARM-LUM were well tolerated, although two participants vomited >2 h after one of the doses and were not retreated. Three children in the SS group (25%) were hospitalised with crises during follow-up, on Day 2, Day 3 and Day 7, respectively. The first child experienced severe limb pain requiring morphine but was able to take study medication and was discharged two days later. The second developed severe anaemia (haemoglobin concentration 51 g/L) and generalised weakness, and was discharged two days later after blood transfusion. The third presented with abdominal pain, anorexia and lethargy, was intravenously rehydrated and given morphine as analgesia, and discharged after two days. These hospitalisations were assessed as unrelated to study medication. The single child who was slide positive for malaria at recruitment was negative by Day 2 and did not have clinical or blood slide evidence of recrudescence during follow-up. One other child in the SS group had an isolated positive blood film for low level \textit{P. falciparum} parasitemia on Day 7 (density 120/μL) but was slide negative on subsequent serial blood films.

3.2. Pharmacokinetic modelling

For ARM/DHA, the NPC using simulated data based on the previously published population pharmacokinetic model (Salman et al., 2011) showed that 85% of the plasma concentrations were within each 90% prediction interval for ARM and DHA (2.5% above and 12.5% below; see Fig. 2).

For LUM, there were 226 DBS and 38 plasma concentrations from the 38 patients that were included in the pharmacokinetic analysis. Less than 2% (n = 4) of the DBS concentrations and none of the plasma

Table 1

Baseline characteristics of children with haemoglobin AA, SS and AS genotypes. Data are presented as mean (SD) [range] or number (%). MUAC = mid-upper arm circumference, BMI = body mass index.

Variable	All (n = 38)	AA (n = 12)	AS (n = 14)	SS (n = 12)	P-value
Age (years)	7.2 (1.7) [4.75–10]	6.9 (1.7) [4.75–10]	7.2 (1.6) [5–10]	7.4 (1.8) [4.92–9.75]	0.75
Male (n (%))	19 (50.0%)	5 (41.7)	7 (50.0)	7 (58.3)	0.72
Height (cm)	117.6 (11.4) [97.4–145.9]	113.7 (10.0) [97.4–125]	121.3 (13.5) [99.9–145.9]	117.3 (9.3) [101.7–128.9]	0.24
Weight (kg)	21.2 (5.4) [13.6–42.4]	19.4 (3.3) [14.2–25.4]	23.2 (7.6) [13.6–42.4]	20.5 (3.3) [20.3–27.5]	0.18
MUAC (cm)	17.0 (1.8) [14.0–22.7]	16.8 (1.3) [15–20]	17.9 (2.2) [15.6–22.7]	16.3 (1.1) [14.9–18.0]	0.045
BMI (kg/m²)	15.1 (1.6) [12–19.9]	15.0 (1.4) [13–17.6]	15.4 (2.0) [12–19.9]	14.8 (1.0) [13.4–16.7]	0.59
Haemoglobin (g/dL)	10.7 (2.2) [6.3–14.1]	11.6 (1.6) [7.2–13.4]	12.3 (0.9) [10.7–14.1]	8.0 (0.9)** [6.3–9.6]	<0.001

** P = 0.045 vs AS adjusted for multiple comparisons using the Bonferroni correction; **P < 0.001 vs AS.

The 12 children in the SS group had lower mid-upper arm circumference compared with the 14 in the AS group and they also had significantly lower haemoglobin concentrations than the other two groups. Only one child, in the SS group, was slide positive for \textit{Plasmodium falciparum} malaria on review of a blood smear taken at enrolment, but he was asymptomatic and had a low parasite density (80/μL).

The six doses ARM-LUM were well tolerated, although two participants vomited >2 h after one of the doses and were not retreated. Three children in the SS group (25%) were hospitalised with crises during follow-up, on Day 2, Day 3 and Day 7, respectively. The first child experienced severe limb pain requiring morphine but was able to take study medication and was discharged two days later. The second developed severe anaemia (haemoglobin concentration 51 g/L) and generalised weakness, and was discharged two days later after blood transfusion. The third presented with abdominal pain, anorexia and lethargy, was intravenously rehydrated and given morphine as analgesia, and discharged after two days. These hospitalisations were assessed as unrelated to study medication. The single child who was slide positive for malaria at recruitment was negative by Day 2 and did not have clinical or blood slide evidence of recrudescence during follow-up. One other child in the SS group had an isolated positive blood film for low level \textit{P. falciparum} parasitemia on Day 7 (density 120/μL) but was slide negative on subsequent serial blood films.

3.2. Pharmacokinetic modelling

For ARM/DHA, the NPC using simulated data based on the previously published population pharmacokinetic model (Salman et al., 2011) showed that 85% of the plasma concentrations were within each 90% prediction interval for ARM and DHA (2.5% above and 12.5% below; see Fig. 2).

For LUM, there were 226 DBS and 38 plasma concentrations from the 38 patients that were included in the pharmacokinetic analysis. Less than 2% (n = 4) of the DBS concentrations and none of the plasma
concentrations were below the limit of quantification and therefore these \(n = 4 \) were censored from the analysis. For the structural model, a two-compartment model outperformed a single compartment with no benefit with the addition of third compartment. Therefore, the structural model parameters were absorption rate \((k_a) \), central volume of distribution \((V_c/F) \), clearance \((CL/F) \) and inter-compartmental clearance \((Q/F) \). IIV was estimable for clearance \((CL/F) \) and bioavailability \((F) \), with IOV also estimated for the latter. The ratio between DBS and plasma samples in the model was estimated as 0.233, corresponding to the value obtained independently through simple linear regression. There was no significant effect of SC genotype on any of the pharmacokinetic parameters when this covariate was examined within the population pharmacokinetic model. No other significant covariate relationships were present.

The final model parameter estimates, and the bootstrap results are summarised in Table 2. Bias was less than 5% for all fixed and random model parameters. Fig. 3 show goodness-of-fit plots, with no bias evident, and Fig. 4 the pcVPC plots. The actual 5th, 50th and 95th percentiles of observed data fell within their respective 95% CI demonstrating suitable predictive performance of the model. Stratified VPCs and NPCs did not suggest bias from sickle genotype status, haemoglobin concentration, or sample type (data not shown). Secondary LUM pharmacokinetic parameters for the participants in the study, stratified according to sickle genotype, are presented in Table 3. While there was trend for higher median AUC extrapolated from baseline to infinity \((AUC_{0-\infty}) \) from AA to AS and SS genotypes, this was not significant \((P > 0.1) \), consistent with the lack of an effect of haemoglobin genotype in the population pharmacokinetic model. The overall AUC \((AUC_{0-\infty}) \) was within the range of a variety of published studies involving different populations, age groups and malaria status (see Table 4).

Table 2

Parameter	Mean	RSE%	Bootstrap median [95% CI]
Objective Function Value	59.992	47.582	47.582 [-25.800 – 109.338]

Table 2 Final population pharmacokinetic estimates and bootstrap results for lumefantrine in children in Tanzania with or without sickle trait or disease.

- **Structural model parameters:**
 - \(CL/F \) (liters/h/70 kg) 6.68 14 6.65 [5.13–8.76]
 - \(V_c/F \) (liters/70 kg) 354 18 345 [238–492]
 - \(Q/F \) (liters/70 kg) 1.53 22 1.53 [1.03–2.57]
 - \(k_a \) 0.392 18 0.392 [0.225–0.636]
 - Ratio (DBS:plasma) 0.233 9 0.229 [0.193–0.277]

- **Variable model parameters [shrinkage %]:**
 - IIV in \(CL/F \) 24.2 [29] 15 22.3 [9.5–35.3]
 - IIV in \(F \) 67.5 [13] 15 65.0 [42.1–84.9]
 - IOV in \(F \) 68.3 22 68.3 [27.4–94.2]
 - RV \((\text{plasma}) \) 41.8 [18] 16 39.8 [24.5–53.3]
 - RV \((\text{DBS}) \) 49.0 [18] 11 48.2 [38.4–59.7]

- **\(k_a \) (absorption rate), \(CL/F \) (clearance), \(V_c/F \) (central volume of distribution), \(Q/F \) (inter-compartmental clearance), \(V_p/F \) (peripheral volume of distribution), IIV (inter-individual variability), IOV (inter-occasion variability) and RV (residual variability). Variability parameters are presented as 100% × \(\sqrt{\text{variability estimate}} \).**

Fig. 2. Simulated 5th, 50th and 95th intervals plotted against observed data for artemether (A) and dihydroartemisinin (B). Observed limit of quantification data is randomly scattered below this limit to separate out points. Data points are separated with respect to genotype; AA - filled circles, AS - half filled circles and SS – empty circles.

Fig. 3. Goodness-of-fit plots for lumefantrine in plasma (A–D) and dried blood spots (E–H), including observed concentrations against population (A, E) and individual predicted concentrations (B, F), and conditional weighted residuals against time from last dose (C, G) and population predicted concentrations (D, H).

4. Discussion

This is the first study to examine the pharmacokinetic properties of
ARM-LUM in children with SCT and SCD. The results provide reassurance that conventional dose regimens for this ACT are appropriate in this vulnerable patient group. Although equivalent DBS data could not be used in analysis, available plasma ARM and DHA concentrations were consistent with those reported previously for paediatric patients from PNG with falciparum malaria treated with the same ARM-LUM regimen (Salman et al., 2011). In addition, the LUM population pharmacokinetic model, which utilised DBS as well as plasma concentration data, generated parameters including total drug exposure from AUC (Salman et al., 2011). In addition, the LUM population pharmacokinetic model, which utilised DBS as well as plasma concentration data, generated parameters including total drug exposure from AUC that were comparable to those in other studies. We found no significant effect of haemoglobin genotype on the disposition of ARM, DHA or LUM.

Studies of the disposition of antimalarial drugs in children with SCD or SCT and malaria present ethical challenges. The recommended maximum blood volume that can be drawn safely in paediatric patients from 0 to 10 years and reported a clearance equivalent to 5.39 L/h for 70 kg (Kanani et al., 2010). Because of these considerations, the present pragmatic study design included use of DBS as the main blood sampling modality, and a sparse sampling schedule limiting participant discomfort but sufficient for valid pharmacokinetic modelling. At the time the study was approved, a DBS assay for ARM-LUM and their active metabolites seemed feasible based on ex vivo experiments. However, due to a range of unanticipated technical and infrastructure issues during the processing of DBS samples, there was a delay of more than 12 months before the DBS samples could be analysed, and optimal conditions for their storage and transportation between Africa and Australia proved difficult to achieve. The apparent lack of validity of ARM, DHA and DBL DBS assays suggests that there are critical steps between fingerprick and mass spectrometry that influence the concentrations of these analytes, as we have since found in other studies using the same approach (Sugiarto et al., 2022).

The present study was primarily designed and powered based on LUM pharmacokinetic characteristics, in part because artesinin compounds are known to have ex vivo stability issues with implications for their measurement in biological samples (Huang et al., 2013). While we have previously reported close agreement between DBS and plasma LUM concentrations in a study of Malaysian adults with knowlesi malaria (Sugiarto et al., 2022), the present DBS concentrations were lower than in reference plasma samples. This suggests degradation, including to DBL (Wong et al., 2011), during transportation and storage which was substantially longer and more difficult in the present study than in our previous Malaysian study (Sugiarto et al., 2022). Consistent with this, DBS DBL concentrations were around five times those in plasma. Fortunately, comparisions with reference plasma concentrations provided relatively robust evidence that this was uniform across all the samples collected with no bias by time of sampling or LUM concentrations. In addition, there was no effect of sample type identified in the LUM pharmacokinetic modelling, further justifying our decision to include LUM concentrations from both DBS and plasma samples.

The final population pharmacokinetic parameters for LUM in the present study were comparable to those found previously in similar studies in children. The population apparent clearance reported in a study of PNG children with uncomplicated malaria was 7.29 L/h/70 kg (Salman et al., 2011), close to the value of 6.68 L/h/70 kg obtained in the present study. The apparent central volume of distribution was lower in the PNG study at 227 L/70 kg compared to the 354 L/70 kg in our participants. While the two studies included children of similar age, there were clinical and analytical differences between them including malaria status and the use of a more complex 3-compartment pharmacokinetic model in the PNG study. A study of Ugandan children reported a higher apparent clearance and central volume of distribution, specifically 10.7 L/h/70 kg and 691 L/70 kg scaled from the reported/8.43 kg (Tchaparian et al., 2016). This difference may reflect the younger age of the Tanzanian participants (6–24 months), especially since the population pharmacokinetic model included increasing bioavailability with age that would result in lower apparent clearance and volume of distribution relative to bioavailability (CL/F and V/F, respectively). All three studies reported a similar and high inter-occasion variability in bioavailability of 59.4%–68.3% (Salman et al., 2011; Tchaparian et al., 2016) as reflected in the wide AUC distributions seen within studies.

The present LUM pharmacokinetic parameters are also comparable to those in a meta-analysis which included studies of both adults and children (Kloprogge et al., 2018). After adjustment for different weights used for allometric scaling (42 kg vs 70 kg) and the saturation model for dose (in mg/kg) effect on bioavailability, the value for CL/F in the meta-analysis is approximately 5.5 L/h/70 kg, aligning with the value obtained in the present study. Hietala et al. studied 50 Tanzanian children aged 1–10 years and reported a clearance equivalent to 5.39 L/h for a 70 kg patient (Hietala et al., 2010), also similar to the present result. Comparisons with this latter study, while most relevant in terms of population demographics, should be made with some caution given the abbreviated sampling duration of only 72 h after the start of treatment and the use of a single compartmental model (Hietala et al., 2010).

Overall exposure (AUC) for LUM, which is correlated with treatment

Table 3

Parameter	Sickle genotype	Whole cohort		
	AA	AS	SS	
$t_{1/2}$ (b)	19.5 [17.7–21.7]	20.2 [19.3–23.2]	21.6 [21.0–22.4]	20.8 [19.3–22.5]
t_{α} (b)	197 [193–205]	209 [199–213]	207 [204–211]	205 [198–211]
AUC$_{\text{ex}}$ (gg.h/L)	421,246 [357,668–918,809]	582,751 [475,759–728,029]	688,784 [497,159–1,127,755]	607,296 [426,480–860,773]

a $t_{1/2}$ is the distribution half-life, and t_{α} is the terminal elimination.

b Represents the AUC$_{\text{ex}}$ for all six doses together.
outcome, was within the range previously reported across a range of studies as summarised in Table 4. While the use of DBS sampling versus plasma concentrations in the other studies might bias the present AUC estimate, the inclusion of plasma samples in the present pharmacokinetic modelling along with reports that mixed capillary and venous LUM -∞-∞ disposition on individual drugs including antimalarials.

Table 4
Summary of studies reporting area under the plasma concentration-time curve (AUC) for lumefantrine.

Sample	Study	AUC∞-0 (µg/l)
Healthy adults	German 2002 (German et al., 2009)	456,000
	Lefevre et al., 2002 (Lefevre et al., 2002)	383,000
	Bindschneider et al., 2000 (Bindschneider et al., 2000)	1,242,000–2,730,000a
Non-pregnant adults with malaria	Lefevre and Thomsen, 1999 (Lefevre and Thomsen, 1999)	925,000–955,000
	Ezzet et al., 2000 (Ezzet et al., 2000)	356,000
Pregnant women with malaria	McGready et al., 2006 (McGready et al., 2006)	AUC∞-0,∞ 252,000
	Tarning et al., 2009 (Tarning et al., 2009)	472,000
Pregnant women without malaria	Hughes et al., 2020 (Hughes et al., 2020)	287,000
Childrens with malaria	Nietal et al., 2010 (Nietal et al., 2010)	AUC∞-0 210,000
	Abdulla et al., 2008 (Abdulla et al., 2008)	574,000–636,000
	Salman et al., 2011 (Salman et al., 2011)	AUC∞-0 257,000
	Mwesigwa et al., 2010 (Mwesigwa et al., 2010)	210,040
Young children with malaria	Tchaparian et al., 2016 (Tchaparian et al., 2016)	347,800
Young children without malaria	Byakika-Kibwika et al., 2012 (Byakika-Kibwika et al., 2012)	281,550b
HIV-malaria-infected adults	Maganda et al., 2015 (Maganda et al., 2015)	784,830
Children with sickle cell disease	Current publication	607,296

a AUC was either a median, geometric mean or mean and was reported to ∞ unless otherwise stated.
b As subjects in Bindschneider et al. (2000) and Byakika-Kibwika et al. (2012) only received a single dose, the reported AUC has been multiplied by six.
c This study used a pooled approach from single observations in each subject to calculate AUC.

date availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Declaration of competing interest

The authors have no conflicts of interest to declare.

Acknowledgements

We would like to thank Jesca Ondego for access to the sickle cell database and contacting the parents of potential recruits, Odillo Byabato and Monica Alex for assistance with venous blood sampling and nursing care, Ezekiel Marandu for help with laboratory tests including blood film microscopy, and Paul C Mrosso for laboratory diagnosis of SS, AS and AA genotype status. We also thank the management of the Jakaya Kikwete Cardiac Institute for granting permission to use their facilities during the study.

Funding information

This study was supported by a grant from the Australian Department of Foreign Affairs and Trade (DFAT). The DSAs assays were developed using funding provided by the National Health and Medical Research Council (APP1124130 and APP1130301). TMED is supported by a Medical Research Future Fund Practitioner Fellowship. These funding sources had no role in the collection, analysis and interpretation of data, in the writing of the report, and in the decision to submit the article for publication.

References

Abdulla, S., Sagara, I., Borrman, S., D’Alessandro, U., Gonzalez, R., Hamel, M., Ogutu, B., Mantel, A., Lyimo, J., Maiga, H., Sani, P., Nahum, A., Bassat, Q., Juma, E., Otieno, L., Bjorkman, A., Beck, H.P., Andriano, K., Cousin, M., Lefever, G., Uden, B., Premji, Z. 2008. Efficacy and safety of artemether-lumefantrine dispersible tablets compared with crushed commercial tablets in African infants and children with uncomplicated malaria: a randomised, single-blind, multicentre trial. Lancet 372, 1819–1827.

Adjei, G.O., Goka, B.Q., Enweru-Laryea, C.C., Rodrigues, O.P., Renner, L., Sulley, A.M., Alifrangis, M., Khalil, I., Kuzhitals, J.A., 2014. A randomized trial of artesunate-amodiaquine versus artether-lumefantrine in Ghanaian paediatric sickle cell and non-sickle cell disease patients with acute uncomplicated malaria. Malar. J. 13, 369.

Adjei, G.O., Afeku, D.K., Ewenu-Laryea, C.C., Rodriguez, O.P., Renner, L., Sulley, A.M., Alifrangis, M., Khalil, I., Kuzhitals, J.A., 2019. Population pharmacokinetic estimates suggest elevated clearance and distribution volume of desethylamodiaquine in pediatric patients with sickle cell disease treated with artesunate-amodiaquine. Curr. Ther. Res. Clin. Exp. 90, 9–15.

Ambe, J.P., Fatunde, J.O., Sodeinde, O.O., 2001. Associated morbidities in children with sickle-cell anaemia presenting with severe anaemia in a malaria area. Trop. Doct. 31, 22–27.

Ambruce, E.E., Makani, J., Chami, N., Masoza, T., Kabeyeme, R., Peck, R.N., Kamugisha, E., Manjarurou, A., Kayange, N., Smart, L.R., 2018. High birth prevalence of sickle cell disease in Northwestern Tanzania. Pediatr. Blood Cancer 63, 2123–2130.

Anderson, B.J., Holford, N.H., 2009. Mechanistic basis of using body size and maturation in prediction of clearance. J. Acquir. Immune Defic. Syndr. 51, 424–429.

Aweeka, F.T., Gremse, D.A., Fillingim, E., Hoff, C.J., Wells, D.J., Boerth, R.C., 1998. Hepatic function as a determinant of artesunate and lumefantrine disposition in healthy volunteers. J. Clin. Pharmacol. 38, 371–378.

Ambrose, E.E., Smart, L.R., Charles, M., Hernandez, A.G., Latham, T., Hokororo, A., Darbari, D.S., Neely, M., van den Anker, J., Rana, S., 2011. Increased clearance of artesunate-amodiaquine in pediatric patients with sickle cell disease treated with artesunate-amodiaquine. Curr. Ther. Res. Clin. Exp. 90, 9–15.

Ametesh, F., van Vugt, M., Nosten, F., Looareesuwan, S., White, N.J., 2000. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute uncomplicated Plasmodium falciparum malaria in Uganda. J. Infect. Dis. 182, 993–1000.

Arendt, N., D'Alessandro, U., Gonzalez, R., Laver, M., Binda, C., Foncette, L., Klay, L., Bojang, K., Sall, B.S., Diatta, A., Pison, J., Gueye, I., Thomas, M., Tishler, S., et al., 2009. Artemether-lumefantrine treatment in HIV-infected adults with complicated malaria: a randomised controlled trial. Lancet 374, 859–868.

Ariyarathne, H., Wannanithi, W., Darmadi, S., Andrade, L.N., Maweed, S., Ilett, K.F., Dufall, K., Kemiki, A., Bockarie, M., Alpers, M.P., Barrett, P.H., Vicini, P., Davis, T.M., 2004. Distribution of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob. Agents Chemother. 48, 4766–4772.

Aronson, J., Holford, N.H., 2009. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metabol. Pharmacokinet. 24, 25–36.

Asfaw, D., Keszler, D., See, K., Johnson, J., et al., 2009. Correlation of artesunate and mefloquine in patients with Plasmodium falciparum malaria treated with combination therapies. Antimicrob. Agents Chemother. 53, 1416–1420.

Atiyeh, B.S., Koch, A., Khoury, J., Darbandi, M., Kassouf, F., El Ansari, S., et al., 2009. Pharmacokinetics and pharmacodynamics of artemether-lumefantrine inComparison of co-artemether (artemether/lumefantrine) and mefloquine given alone or in combination to healthy volunteers. Eur. J. Clin. Pharmacol. 56, 375–381.

Barnes, K.I., Tarning, J., 2018. Artemether-lumefantrine dosing for malaria treatment. Clin. Pharmacokinet. 57, 429–440.

Barquet, R., Antequera, A., et al., 2009. Population pharmacokinetic and pharmacodynamic analysis in pregnant and nonpregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. CPT Pharmacometrics Syst. Pharmacol. 2, e83.

Barnes, K.I., Tarning, J., 2018. Artemether-lumefantrine dosing for malaria treatment. Clin. Pharmacokinet. 57, 429–440.

Barnes, K.I., Tarning, J., 2018. Artemether-lumefantrine dosing for malaria treatment. Clin. Pharmacokinet. 57, 429–440.

Barnes, K.I., Tarning, J., 2018. Artemether-lumefantrine dosing for malaria treatment. Clin. Pharmacokinet. 57, 429–440.

Barnes, K.I., Tarning, J., 2018. Artemether-lumefantrine dosing for malaria treatment. Clin. Pharmacokinet. 57, 429–440.

Barnes, K.I., Tarning, J., 2018. Artemether-lumefantrine dosing for malaria treatment. Clin. Pharmacokinet. 57, 429–440.
uncomplicated *Plasmodium falciparum* malaria. Antimicrob. Agents Chemother. 62, e00518-18.

Maganda, B.A., Ngaimisi, E., Kamubalwa, A.A., Akilla, E., Minzi, O.M., 2015. The influence of nevirapine and efavirenz-based anti-retroviral therapy on the pharmacokinetics of lumefantrine and anti-malarial dose recommendation in HIV-malaria co-treatment. Malar. J. 14, 179.

Makani, J., Komba, A.N., Cox, S.E., Oruo, J., Mwamtemi, K., Kitundu, J., Magesa, P., Rweruzaula, S., Meda, E., Miyaga, J., Pallangyo, K., Okiro, E., Muturi, D., Newton, C.R., Fegan, G., Marsh, K., Williams, T.N., 2010. Malaria in patients with sickle cell anemia: burden, risk factors, and outcome at the outpatient clinic and during hospitalization. Blood 115, 215–220.

Maksoud, E., Koehl, B., Facchin, A., Ha, P., Zhao, W., Kaguelidou, F., Benkerrou, M., Mariani, P., Faye, A., Lorrot, M., Jacqz-Aigrain, E., 2018. Population pharmacokinetics of cefotaxime and dosage recommendations in children with sickle cell disease. Antimicrob. Agents Chemother. 62, e00367-17.

McAuley, C.F., Webb, C., Makani, J., Macharia, A., Uyoga, S., Opi, D.H., Ntoumi, F., Ngatia, A., Scott, J.A., Marsh, K., Williams, T.N., 2010. High mortality from *Plasmodium falciparum* malaria in children living with sickle cell anemia on the coast of Kenya. Blood 116, 1663–1668.

McGready, R., Stepniewska, K., Lindegardh, N., Ashley, E.A., La, Y., Singhhasivanon, P., White, N.J., Nosten, F., 2006. The pharmacokinetics of artemether and lumefantrine in pregnant women with uncomplicated falciparum malaria. Eur. J. Clin. Pharmacol. 62, 1021–1031.

ACTwatch Group, Michael, D., Mkunde, S.P., 2017. The malaria testing and treatment landscape in mainland Tanzania. Malar. J. 16, 202, 2016.

Mwesigwa, J., Parikh, S., McGee, B., German, P., Drysdale, T., Kalyango, J.N., Clark, T. D., Dorsey, G., Lindegardh, N., Annerberg, A., Rosenthal, P.J., Kamya, M.R., Aweke, F., 2010. Pharmacokinetics of artemether-lumefantrine and artesunate-amodiaquine in children in Kampala, Uganda. Antimicrob. Agents Chemother. 54, 52–59.

Ndeffo Mbah, M.L., Parikh, S., Galvani, A.P., 2015. Comparing the impact of artemisinin-based combination therapies on malaria transmission in sub-Saharan Africa. Am. J. Trop. Med. Hyg. 92, 555–560.

Ndounga, M., Pembe Issamou, M., Casimiro, P.N., Koukouikila-Koussounda, F., Bitomo, M., Dissisy Matondo, B., Ndounga Dialou, L.A., Basco, L.K., Ntoumi, F., 2015. Artesunate-amodiaquine versus artemether-lumefantrine for the treatment of acute uncomplicated *Plasmodium falciparum* malaria in children under 10 years old living in a suburban area: a randomized study. Malar. J. 14, 422.

Olufuyi, O., Coleman, M., Badhan, R.K.S., 2017. Development of a paediatric physiologically based pharmacokinetic model to assess the impact of drug-drug interactions in tuberculosis co-infected malaria subjects: a case study with artemether-lumefantrine and the CYP3A4-inducer rifampicin. Eur. J. Pharmac. Sci. 106, 20–33.

Pearson, H.A., McIntosh, S., Ritchey, A.K., Lobel, J.S., Rooks, Y., Johnston, D., 1979. Developmental aspects of splenic function in sickle cell diseases. Blood 53, 358–365.

Salman, S., Page-Sharp, M., Griffin, S., Kose, K., Silva, P.M., Ilett, K.F., Mueller, I., Davis, T.M., 2011. Population pharmacokinetics of artemether, lumefantrine, and their respective metabolites in Papua New Guinean children with uncomplicated malaria. Antimicrob. Agents Chemother. 55, 5306–5313.

Sugiarto, S.R., Davis, T.M.E., Salman, S., 2017. Pharmacokinetic considerations for use of artemisinin-based combination therapies against falciparum malaria in different ethnic populations. Expert Opin. Drug Metabol. Toxicol. 13, 1115–1133.

Sugiarto, S.R., Moore, B.R., Makani, J., Davis, T.M.E., 2018. Artemisinin therapy for malaria in hemoglobinopathies: a systematic review. Clin. Infect. Dis. 66, 799–804.

Sugiarto, S.R., Singh, B., Page-Sharp, M., Davis, W.A., Salman, S., Hii, K.C., Davis, T.M.E., 2022. The pharmacokinetic properties of artemether and lumefantrine in Malaysian patients with *Plasmodium knowlesi* malaria. Br. J. Clin. Pharmacol. 88, 691–701.

Taneja, I., Erukala, M., Raja, K.S., Singh, S.P., Wahajuddin, 2013. Dried blood spots in bioanalysis of antimalarials: relevance and challenges in quantitative assessment of antimalarial drugs. Bioanalysis 5, 2171–2186.

Tarning, J., McGready, R., Lindegardh, N., Ashley, E.A., Pimanpanarak, M., Kamanikom, B., Annerberg, A., Day, N.P., Stepniewska, K., Singhhasivanon, P., White, N.J., Nosten, F., 2009. Population pharmacokinetics of lumefantrine in pregnant women treated with artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria. Antimicrob. Agents Chemother. 53, 3837–3846.

Taylor, S.M., Parobek, C.M., Fairhurst, R.M., 2012. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 457–468.

Tchapaorian, E., Sambol, N.C., Arinaitwe, E., McCormack, S.A., Bigira, V., Wanzira, H., Molindo, M., Creek, D.J., Sukumar, N., Blessborn, D., Tappero, J.W., Kakuru, A., 2016. Population pharmacokinetics and pharmacodynamics of lumefantrine in young Ugandan children treated with artemether-lumefantrine for uncomplicated malaria. J. Infect. Dis. 214, 1243–1251.

Wong, R.P., Salman, S., Ilett, K.F., Silva, P.M., Mueller, I., Davis, T.M., 2011. Desbutyl-lumefantrine is a metabolite of lumefantrine with potent in vitro antimalarial activity that may influence artemether-lumefantrine treatment outcome. Antimicrob. Agents Chemother. 55, 1194–1198.

World Health Organisation, 2021. WHO Guidelines for Malaria. World Health Organisation, Geneva.

Zimmerman, K.O., Smith, P.B., McMahon, A.W., Temeck, J., Avant, D., Murphy, D., 2019. Duration of pediatric clinical trials submitted to the US Food and Drug Administration. JAMA Pediatr. 173, 60–67.