Unravelling the Configuration of Transient ortho-Quinone Methides by Combining Microfluidics with Gas Phase Vibrational Spectroscopy

Martin Mayer¹, Maik Pahl², Matthias Spanka³, Max Grellmann¹, Marcel Sickert³, Christoph Schneider*³, Knut R. Asmis¹ and Detlev Belder*²

¹Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, D-04103 Leipzig
²Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
³Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany

*knut.asmis@uni-leipzig.de, belder@uni-leipzig.de, schneider@chemie.uni-leipzig.de

Table of contents

1. Microchip fabrication S2
2. Tagging-effect demonstrated for [4a+H]+ S3
3. Band assignment S4
4. Comparison of IRPD spectra to calculated sum spectra S7
5. IRPD spectrum of [4d+H]+ S8
6. Activators S9
7. IRPD spectra of [4a+H]+ generated with different activators S10
8. IRPD spectra of [4b+H]+ generated with different activators S11
9. General Information for synthesis and analysis of benzhydryl alcohols (1) and Tetrahydroxanthenone (2b) S12
10. Synthesis of 2-Hydroxy-4,6-dimethylbenz-1'C-aldehyde (7) S12
11. Synthesis of 2-(hydroxy(phenyl)-1'C-methyl)-3,5-dimethylphenol (1d): S13
12. Synthesis of 2-(hydroxy(phenyl)methyl)-3,5-dimethylphenol (1a): S13
13. Synthesis of 4-(tert-butyl)-2-(hydroxy(4-methoxyphenyl)methyl)phenol (1c): S14
14. NMR spectra and HPLC traces of new compounds S15
15. Coordinates of DFT geometries S20
1. Microchip fabrication

The used microfluidic chips were tailor-made. Common methods were used including photolithography, wet etching and high temperature bonding. A chromium-coated glass slide was coated with a positive photoresist. Then, it was developed after UV irradiation by using a photomask. The chromium and the glass were etched and structured in two successive steps. The structured glass slide was bonded to a cover plate which contained powder blasted holes for microfluidic contacting. The end of the chip was tailored accordingly and grinded for the integrated electrospray emitter. To achieve an even better electrospray performance, the emitter was cleaned with sulfuric acid and was hydrophobized with the fluorinated silane Trichloro(1H,1H,2H,2H-perfluorooctyl)silane.

"Figure S1. Fabrication of full glass microchips with chrome structuring, wet etching and high temperature bonding."
2. Tagging-effect demonstrated for [4a+H]^+

Figure S-2. Simulated harmonic IR spectra of [4a+H]^+. Both, the E- and Z-isomer is shown, with a D$_2$-tagging molecule binding to various positions of the protonated o-QM. The corresponding minimum-energy structures and their ZPE-corrected relative electronic energies are also shown. The OH stretching vibration exhibits a pronounced red-shift for one specific binding site, explaining the splitting of the O-H stretching region in the experimentally obtained spectrum.
3. Band assignment

![Computed harmonic IR spectra of [4a+H]+ (a), [4b+H]+ (b) and [4c+H]+ (c)](image)

Figure S-3. Computed harmonic IR spectra of [4a+H]+ (a), [4b+H]+ (b) and [4c+H]+ in the spectral range from 1125 to 1440 cm⁻¹, which is diagnostic for the configuration of the protonated o-QMs. Isomer-specific IR bands are indicated by the shaded peaks and the ZPE-corrected relative electronic energies (in kJ mol⁻¹) are given in brackets.

Table S-1. Experimental band positions, computed harmonic vibrational frequencies (in cm⁻¹) and band assignments of [4a+H]+.

Band	B3LYP (scaled 0.975)	Experiment	Assignment
a₁²	1372	1382	C-H bend
a₂²	1317	1310	C-H bend
a₃²	1283	1278	C-H bend, O-H bend
a₄²	1238	1243	C-H bend
a₅²	1188	1188	C-H bend, O-H bend
a₆²	1148	1153	C-H bend, O-H bend
a₁¹	1371	1382	C-H bend, O-H bend
a₂¹	1342	1362/1330	C-H bend
a₃¹	1308	1310	C-H bend
a₄¹	1290	1310	C-H bend
a₅¹	1244	1243	C-H bend
a₆¹	1226	-	C-H bend
Table S-2. Experimental band positions, computed harmonic vibrational frequencies (in cm$^{-1}$) and band assignments of $[4b+H]^+$.

Band	B3LYP (scaled 0.975)	Experiment	Assignment
b_1^z	1384	-	C=H bend
b_2^z	1355	-	C=C stretch (ring), O-H bend
b_3^z	1331	-	C-H bend, C-H bend (OMe)
b_4^z	1294	-	C-H bend, C-O stretch
b_5^z	1208	-	C-H bend
b_6^z	1185	-	C-H bend
b_7^z	1168	-	C-H bend
b_1^e	1356	1363	C=H bend, C=C stretch (ring), O-H bend
b_2^e	1326	1330	C-H bend, C-H bend (OMe)
b_3^e	1281	1275	C-H bend, C-O stretch
b_4^e	1252	1256	C-H bend, C=C stretch, O-H bend
b_5^e	1178	1176	C-H bend, O-H bend
b_6^e	1163	1162	C-H bend, O-H bend

Table S-3. Experimental band positions, computed harmonic vibrational frequencies (in cm$^{-1}$) and band assignments of $[4c+H]^+$.

Band	B3LYP (scaled 0.975)	Experiment	Assignment
c_1^z	1380	-	C=H bend
c_2^z	1329	-	C=H bend, O-H bend
c_3^z	1297	-	C=H bend
c_4^z	1257	-	C=H bend, C=C stretch
c_5^z	1217	-	C=H bend
c_6^z	1180	-	C=H bend, O-H bend
c_1^e	1354	1359	C=C stretch, O-H bend
c_2^e	1323	1324	C=H bend, C-O stretch,

S5
\tilde{c}_1	1284	1278	CH bend, C=O stretch
\tilde{c}_2	1236	1240	CH bend
\tilde{c}_3	1212	1213	CH bend
\tilde{c}_4	1173	1173	CH bend, O-H bend
4. Comparison of IRPD spectra to calculated sum spectra

Figure S-4. IRPD spectrum of the three protonated o-QMs, compared to calculated sum spectra of the Z- and E-isomer and the respective cosine similarity score.
Figure S-5. (a) Simulated IR spectrum of [4d+H]⁺ (13C-labeled) and [4a+H]⁺ (b), obtained from harmonic B3LYP/Def2-TZVP frequencies and intensities. Both calculated spectra are obtained by assuming the presence of the Z- and E-isomer with a ratio of 6/4. The corresponding experimentally obtained IRPD spectra of D₂-tagged [4d+H]⁺ (c) and [4a+H]⁺ (d) are shown below. The IRPD spectra were measured at 13 K.
6. Activators

Table S-4. These different activators were used for the generation of the corresponding q-QMs.

Precursor	Activator
1a	HCO$_2$H
	HCO$_2$Na, HCO$_2$Cs
	BINOL phosphoric acid
	KI
1b	HCO$_2$H BINOL phosphoric acid
	KI
1c	HCO$_2$H
1d	HCO$_2$H
Figure S6. D$_2$-tagged IRPD spectra of [4a+H]$^+$, measured at 13K. The particular α-QM [4a+H]$^+$ was generated on chip by the reaction with various activators. (a) potassium iodide, (b) caesium formate, (c) sodium formate, (d) chiral BINOL phosphoric acid, (e) formic acid. The IRPD spectra show no significant differences.
8. IRPD spectra of [4b+H]+ generated with different activators

Figure S-7. D2-tagged IRPD spectra of [4b+H]+, measured at 13K. The particular o-QM [4b+H]+ was generated on chip by the reaction with various activators. (a) potassium iodide, (b) chiral BINOL phosphoric acid, (c) formic acid. The IRPD spectra show no significant differences.
9. General Information for synthesis and analysis of benzhydryl alcohols (1) and Tetrahydroxanthenone (2b):

1H and 13C NMR spectra were recorded in CDCl$_3$ using a Varian MERCURYplus 300 spectrometer (300 MHz), Varian MERCURYplus 400 spectrometer (400 MHz) and Brucker Avance III HD 400 (400 MHz). The signals were referenced to residual chloroform (7.26 ppm, 1H, 77.16 ppm, 13C). Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), bs (broad singlet), d (doublet), t (triplet) and m (multiplet). IR spectra were obtained with a FTIR spectrometer (JASCO FT/IR-4100), bands are characterized as strong (s), medium (m), or weak (w). ESI-HR mass spectra were recorded on a Brucker ESI-TOF microTOF and Impact II Bruker Daltonics. Melting points were determined uncorrected on a Boetius heating table. THF for the synthesis of 1 was purified and dried by a Solvent Purification System MB SPS-800 (Braun). The solvents for column chromatography were distilled from indicated drying reagents: hexane (KOH), ethyl acetate (KOH). Flash column chromatography was performed by using Merck silica gel 60 230-400 mesh (0.040-0.063 mm). Analytical thin-layer chromatography (TLC) was performed on Macherey-Nagel precoated TLC-sheets AlugramXtra SIL G/UV254. Spots were visualized by UV (λ = 254 nm) and treated with a solution of vaniline in methanol (technical grade). Et$_3$N was destilled freshly prior to use over CaH$_2$. The 13C-labeled paraformaldehyde 6 was purchased from Sigma Aldrich (isotope purity: 99 atom% 13C), 3,5-dimethylphenol 5 is commercially available and was used as purchased. Formylation of phenol 5 proceeded via a well established protocol. The non-13C-labeled benzhydryl alcohol 1a was prepared according to the procedure of 13C-labeled benzhydryl alcohol 1d, PMP-substituted benzhydryl alcohol 1b was prepared according to a literature known procedure and the analytic data matched the previously reported. The analytic data and X-Ray single crystal analysis of tetrahydroxanthenone 2a and 2b was reported earlier by Schneider (unpublished experiments).

10. Synthesis of 2-Hydroxy-4,6-dimethylbenz-13C-aldehyde (7):

In a heat gun dried 50 mL two necked round bottom flask with reflux condenser were added 482 mg (3.95 mmol, 1.00 equiv) 3,5-dimethylphenol (5), 546 mg (5.92 mmol, 1.50 equiv) anhydrous MgCl$_2$ and 490 mg (15.8 mmol, 4.00 equiv) 13C-paraformaldehyde (6). 10 mL THF and 1.29 mL (939 mg, 9.28 mmol, 2.35 equiv) freshly distilled Et$_3$N were added, the apparatus flushed for 10 min with N$_2$ and the reaction heated to reflux for 2 h. After 2 h complete conversion of 5 was observed via TLC and the reaction subsequently cooled to rt. 25 mL 1N HCl were added, the biphasic system stirred for 5 min and the phases separated. The aqueous phase was extracted with ethyl acetate (3x25 mL), the combined organic phases dried with Na$_2$SO$_4$ and the solvent removed under reduced pressure. The crude product was purified via column chromatography (10% EE in hexan). 469 mg (79%) of an amorphous colorless solid was obtained.

R$_f$ (hexan/EE 2/1): 0.69. IR (KBr): 3442 (m), 2979 (w), 2969 (w), 2927 (w), 2872 (m), 1632 (s), 1614 (s), 1580 (s), 1570 (s), 1503 (s), 1451 (s), 1377 (s), 1346 (s), 1307 (s), 1290 (s), 1235 (s), 1191 (s), 1151 (s), 1038 (m), 846 (s), 793 (s), 754 (s), 724 (s), 502 (s). HRMS (ESI) calculated for 13CC$_8$H$_{10}$NaO$_2$: [M+Na]$^+$: 174.0607, found 174.0607. 1H-NMR (400 MHz; CDCl$_3$): 11.94 (d, 3J$_{HC}$ = 0.9 Hz, 1H), 10.23 (d, 3J$_{HC}$ = 175.3 Hz, 1H), 6.62 (bs, 1H), 6.53 (bs, 1H), 5.55 (bs, 1H), 2.55 (s, 3H), 2.30 (s, 3H), 2.03 (s, 3H), 1.50 (s, 3H), 1.00 (s, 3H), 0.79 (s, 3H), 0.69 (s, 3H), 0.61 (s, 3H), 0.59 (s, 3H).
3H). 13C-NMR (101 MHz; CDCl$_3$): 194.7, 163.6, 149.4, 142.0 (d, 2J$_{C,C}$ = 4.1 Hz), 123.3 (d, 2J$_{C,C}$ = 3.8 Hz), 116.7 (d, 1J$_{C,C}$ = 56.0 Hz), 116.3 (d, 1J$_{C,C}$ = 2.3 Hz), 22.3, 18.2 (d, 3J$_{C,C}$ = 4.1 Hz).

11. Synthesis of 2-(hydroxy(phenyl)-13C-methyl)-3,5-dimethylphenol (1d):

In a 25 mL two necked round bottom flask with reflux condenser were added 167 mg (6.88 mmol, 2.60 equiv) Mg turnings and the apparatus dried with a heat gun. 4 mL THF were added and additional 692 μL (1.04 g, 6.62 mmol, 2.50 equiv) bromobenzene dropwise at rt. After initiation of the Grignard reagent formation the mixture was stirred for an additional 30 min at rt, plus 30 min at reflux. The Grignard reagent was cooled to 0°C and 398 mg (2.65 mmol, 1.00 equiv) 2-hydroxy-4,6-dimethylbenzaldehyde (dissolved in 5 mL THF) added at 0°C. After 2 h stirring at rt the complete conversion of 7 was observed via TLC and subsequently 15 mL NH$_4$Cl(aq.) were added. The two phases were stirred for 10 min at rt, the phases separated and the aqueous phase extracted with ethyl acetate (3x 25 mL). The combined organic phases were washed with water and dried with Na$_2$SO$_4$. The solvent was removed under reduced pressure and the crude product purified via column chromatography (10% EE in hexan). 588 mg (97%) of an amorphous colorless solid was obtained.

R$_f$ (Hexan/EE 2/1): 0.61. IR (KBr): 3386 (s), 3246 (s), 3028 (w), 2921 (w), 1627 (s), 1577 (m), 1494 (m), 1460 (m), 1447 (m), 1400 (w), 1183 (w), 1132 (w), 991 (s), 852 (m), 830 (s), 723 (s), 639 (m), 527 (m).

HRMS (ESI): calculated for 13CC$_{14}$H$_{16}$NaO$_2$+ [M+Na]$^+$: 252.1076, found 252.1081.

1H-NMR (400 MHz; CDCl$_3$): 8.47 (s, 1H), 7.47−7.27 (m, 5H), 6.62 (bs, 1H), 6.53 (bs, 1H), 6.15 (dd, 1J$_{H,H}$ = 144.8 Hz, 1J$_{H,H}$ = 2.7 Hz, 1H), 2.27 (s, 3H), 2.14 (s, 3H). 13C-NMR (101 MHz; CDCl$_3$): 156.3, 141.2 (d, 1J$_{C,C}$ = 47.5 Hz), 139.1, 135.8 (d, 2J$_{C,C}$ = 3.8 Hz), 128.9 (d, 2J$_{C,C}$ = 3.8 Hz), 128.4, 127.2 (d, 3J$_{C,C}$ = 3.1 Hz), 123.2 (d, 3J$_{C,C}$ = 3.4 Hz), 121.3 (d, 1J$_{C,C}$ = 49.3 Hz), 116.4 (d, 1J$_{C,C}$ = 2.0 Hz), 74.8, 21.1, 19.7 (d, 3J$_{C,C}$ = 3.5 Hz).

12. Synthesis of 2-(hydroxy(phenyl)methyl)-3,5-dimethylphenol (1a):

In a 25 mL two necked round bottom flask with reflux condenser were added 167 mg (6.88 mmol, 2.60 equiv) Mg turnings and the apparatus dried with a heat gun. 4 mL THF were added and additional 692 μL (1.04 g, 6.62 mmol, 2.50 equiv) bromobenzene at rt. After initiation of the Grignard reagent formation the mixture was stirred for an additional 30 min at rt, plus 30 min at reflux. The Grignard reagent was cooled to 0°C and 398 mg (2.65 mmol, 1.00 equiv) 2-hydroxy-4,6-dimethylbenzaldehyde (dissolved in 5 mL THF) added at 0°C. After 2 h stirring at rt the complete conversion of the benzaldehyde was observed via TLC and subsequently 15 mL NH$_4$Cl(aq.) were added. The two phases were stirred for 10 min at rt, the phases separated and the aqueous phase extracted with ethyl acetate (3x 25 mL). The combined organic phases were washed with water and dried with Na$_2$SO$_4$. The solvent was removed under reduced pressure and the crude product purified via column chromatography (10% EE in hexan). 588 mg (97%) of an amorphous colorless solid was obtained.
pressure and the crude product purified via column chromatography (10% EE in hexan). 573 mg (95%) of an amorphous colorless solid was obtained.

Rf (Hexan/EE 2/1): 0.61. **IR (KBrs):** 3387 (s), 3248 (s), 3029 (w), 2920 (w), 1626 (s), 1578 (m), 1494 (m), 1460 (m), 1447 (m), 1407 (m), 1298 (s), 1217 (m), 1184 (w), 1135 (s), 1011 (s), 851 (s), 811 (s), 726 (s), 695 (m), 642 (m), 528 (m).

HRMS (ESI): calculated for C₁₅H₁₆NaO₂⁺ [M+Na]⁺: 251.1043, found 251.1040.

1H-NMR (400 MHz; CDCl₃): 8.41 (s, 1H), 7.41 – 7.25 (m, 5H), 6.63 (bs, 1H), 6.53 (bs, 1H), 6.17 (d, 3J = 2.8 Hz, 1H), 2.84 (d, 3J = 3.0 Hz, 1H), 2.27 (s, 3H), 2.14 (s, 3H).

13C-NMR (101 MHz; CDCl₃): 156.3, 141.2, 139.1, 135.8, 128.9, 128.4, 127.2, 123.2, 121.3, 116.3, 74.8, 21.1, 19.7.

13. **Synthesis of 4-(tert-butyl)-2-(hydroxy(4-methoxyphenyl)methyl)phenol (1c):**

In a 250 mL two necked round bottom flask with reflux condenser were added 1.42 g (58.5 mmol, 2.60 equiv) Mg turnings and the apparatus dried with a heat gun. 30 mL THF were added and additional 7.04 mL (10.5 g, 56.3 mmol, 2.50 equiv) 4-bromoanisole at rt. After initiation of the Grignard reagent formation the mixture was stirred for an additional 30 min at rt, plus 30 min at reflux. The Grignard reagent was cooled to 0°C and 4.01 g (22.5 mmol, 1.00 equiv) 5-(tert-butyl)-2-hydroxybenzaldehyde (dissolved in 10 mL THF) added at 0°C. After 2 h stirring at rt the complete conversion of the benzaldehyde was observed via TLC and subsequently 150 mL NH₄Cl (aq.) were added. The two phases were stirred for 10 min at rt, the phases separated and the aqueous phase extracted with ethyl acetate (3x 100 mL). The combined organic phases were washed with water and dried with Na₂SO₄. The solvent was removed under reduced pressure and the crude product purified via column chromatography (10% EE in hexan). 6.26 g (97%) of an amorphous colorless solid was obtained.

Rf (Hexan/EE 2/1): 0.58. **IR (KBrs):** 3374 (s), 3206 (s), 3031 (w), 2960 (s), 2905 (m), 2868 (m), 1606 (s), 1507 (s), 1466 (s), 1392 (m), 1367 (s), 1301 (m), 1245 (s), 1174 (s), 1027 (s), 1007 (s), 843 (s), 830 (s), 581 (m), 530 (m). **HRMS (ESI):** calculated for C₁₈H₂₂NaO₃⁺ [M+Na]⁺: 309.1461, found 309.1463. **1H-NMR (400 MHz; CDCl₃):** 7.70 (s, 1H), 7.35 – 7.26 (m, 2H), 7.22 (dd, J = 8.5, 2.5 Hz, 1H), 6.93 – 6.85 (m, 3H), 6.84 (d, J = 8.5 Hz, 1H), 5.95 (bs, 1H), 3.80 (s, 3H), 2.82 (d, J = 2.9 Hz, 1H), 1.23 (s, 9H). **13C-NMR (101 MHz; CDCl₃):** 159.6, 153.2, 142.7, 134.3, 128.4, 127.2, 123.2, 121.3, 116.3, 77.4, 55.4, 34.2, 31.6.
Figure S8: 1H and 13C of benzaldehyde 7.
Figure S9: 1H and 13C of benzaldehyde 1d.
Figure S-10: 1H and 13C of benzaldehyde 1a.
Figure S-11: 1H and 13C of benzaldehyde 1c.

Overlay of 13C labeled (1d) and non-13C-labeled benzhydryl alcohol (1a):
Figure S12: Overlay of 1H and 13C of benzhydryl alcohol 1d and 1a.

15. Coordinates of DFT geometries
Table S6. $Z\{4b+1\}$

Total energy: -691.831202 Hartree, zero-point energy: 0.236206 Hartree

Tag	Symbol	X	Y	Z
1	C	-3.8484600	1.1865980	0.1179030
2	C	-2.5046230	0.8489760	0.2332410
3	C	-2.0864610	-0.4992530	0.0394120
4	C	-3.1067070	-1.4606120	-0.2118660
5	C	-4.4265440	-1.1147840	-0.3456100
6	C	-4.7958480	0.2237990	-0.1816060
7	H	-4.1499270	2.2157000	0.2728870
8	H	-2.8093170	-2.4950390	-0.3233030
9	H	-5.1723790	-1.8659190	-0.5613970
10	H	-5.8343880	0.5135310	-0.2716200
11	C	-0.7702900	-1.0238180	0.1268410
12	H	-0.7824810	-2.1006960	0.2661310
13	C	0.5279110	-0.5131830	0.0408020
14	C	1.5817300	-1.4259540	0.3458180
15	C	0.9026970	0.7923330	-0.3976230
16	C	2.9004320	-1.0689720	0.2829820
17	H	1.3231410	-2.4320490	0.6503350
18	C	2.2134150	1.1473350	-0.4951400
19	H	0.1423060	1.4995680	-0.6771840
20	C	3.2353420	0.2344200	-0.1389990
21	H	3.6677240	-1.7827730	0.5391420
22	H	2.5088330	2.1266770	-0.8446000
23	O	4.4674650	0.6878880	-0.2483780
24	C	5.5898530	-0.1505100	0.0826980
25	H	6.4658300	0.4672960	-0.0846230
26	H	5.5405860	-0.4536960	1.1283950
27	H	5.6170830	-1.0219090	-0.5709430
28	O	-1.5894010	1.7691090	0.5852820
29	H	-2.0162180	2.6123230	0.7877970

Table S7. $E\{4b+1\}$

Total energy: -691.835454 Hartree, zero-point energy: 0.236430 Hartree

Tag	Symbol	X	Y	Z
1	C	4.401082	0.183029	-0.140073
2	C	3.176354	0.842751	-0.135237
3	C	1.966614	0.121779	0.100066
4	C	2.069685	-1.267959	0.371515
Tag	Symbol	X	Y	Z
-----	--------	-------	-------	-------
1	C	-2.381929	-1.401914	-0.2229
2	C	-1.057687	-1.00086	-0.26867
3	C	-0.694783	0.376272	-0.074535
4	C	-1.773823	1.323345	0.124026
5	C	-3.065827	0.873256	0.188557
6	C	-3.396039	-0.486255	0.020146
7	H	-2.624484	-2.445203	-0.387366
8	H	-3.864184	1.580122	0.371605
9	C	0.605424	0.880395	-0.160319

Table S8. Z[4a+H]

Total energy: -655.919639 Hartree, zero-point energy: 0.258478 Hartree
Tag	Symbol	X	Y	Z
10	H	0.636448	1.946964	-0.348705
11	C	1.908014	0.327137	-0.036202
12	C	2.97272	1.108281	-0.551785
13	C	2.221968	-0.870081	0.647126
14	C	4.278381	0.675074	-0.461731
15	H	2.747417	2.048296	-1.039226
16	C	3.532942	-1.272583	0.773401
17	H	1.438015	-1.450401	1.103615
18	C	4.559965	-0.516721	0.202886
19	H	5.079196	1.265983	-0.883745
20	H	3.769525	-2.175693	1.318897
21	O	-0.089474	-1.873188	-0.571574
22	H	-0.462862	-2.737499	-0.791873
23	C	-4.822518	-0.917946	0.094779
24	H	-5.427058	-0.357202	-0.622052
25	H	-4.942001	-1.98108	-0.101434
26	H	-5.228834	-0.698547	1.085713
27	C	-1.500819	2.788386	0.30952
28	H	-0.850323	2.97673	1.165041
29	H	-1.024039	3.223707	-0.572403
30	H	-2.432159	3.324965	0.473004
31	H	5.585199	-0.850363	0.295734

Table S9. E[4a+H]¹
Total energy: -655.918782 Hartree, zero-point energy: 0.258457 Hartree

Tag	Symbol	X	Y	Z
1	C	-3.0558	0.912691	0.247716
2	C	-1.752069	1.344041	0.088019
3	C	-0.67725	0.415239	-0.168067
4	C	-1.028565	-0.969731	-0.379334
5	C	-2.341689	-1.341434	-0.234163
6	C	-3.364121	-0.433474	0.108307
7	H	-3.833694	1.627949	0.486022
8	H	-2.616574	-2.370316	-0.429144
Table S-10, Z\{4c+H\}'

Total energy: -849.170099 Hartree, zero-point energy: 0.348291 Hartree

Tag	Symbol	X	Y	Z
1	C	2.154974	2.251756	-0.153382
2	C	0.895874	1.683678	-0.25943
3	C	0.764512	0.265935	-0.215204
4	C	1.964839	-0.492228	-0.117518
5	C	3.220642	0.061454	0.013133
6	C	3.284863	1.462787	-0.005535
7	H	2.255025	3.330097	-0.193905
8	H	4.240272	1.958875	0.079485
Table S11. $E_{[4e+H]}$

Total energy: -849.175804 Hartree, zero-point energy: 0.348392 Hartree

Tag	Symbol	X	Y	Z
1	C	2.719253	-0.301773	0.021722
2	C	1.378295	-0.017785	0.109336
3	C	0.863911	1.30641	0.030082
---	---	---	---	
4	C	1.794629	2.376493	-0.111442
5	C	3.153285	2.098706	-0.213495
6	C	3.594586	0.793125	-0.155628
7	H	0.683042	-0.812148	0.318557
8	H	3.861293	2.908818	-0.339834
9	H	4.658139	0.612804	-0.231546
10	C	-0.500946	1.630468	0.154791
11	H	-0.696855	2.668102	0.40215
12	C	-1.647043	0.835226	0.014941
13	C	-2.875282	1.368728	0.490622
14	C	-1.684338	-0.448827	-0.602549
15	C	-4.045787	0.65729	0.439849
16	H	-2.875219	2.358057	0.929948
17	C	-2.847396	-1.155526	-0.680362
18	H	-0.796702	-0.846733	-1.068957
19	C	-4.043517	-0.625706	-0.141306
20	H	-4.955347	1.085233	0.83164
21	H	-2.893411	-2.118693	-1.168999
22	O	-5.109949	-1.396632	-0.254752
23	C	-6.386292	-0.950849	0.234047
24	H	-6.701761	-0.050353	-0.29344
25	H	-7.073189	-1.763653	0.023736
26	H	-6.340232	-0.770034	1.308239
27	O	1.307067	3.625123	-0.178676
28	H	2.019389	4.27347	-0.252966
29	C	3.289259	-1.71443	0.133785
30	C	4.071154	-2.041934	-1.15237
31	H	4.488241	-3.047556	-1.0866
32	H	3.421307	-1.99984	-2.027975
33	H	4.901097	-1.353484	-1.314192
34	C	2.187462	-2.763476	0.314139
35	H	1.616883	-2.603091	1.230909
36	H	1.496244	-2.774984	-0.53128
37	H	2.636898	-3.75396	0.380196
38	C	4.236086	-1.78236	1.346695
39	H	5.06987	-1.085757	1.252786
40	H	3.704865	-1.551282	2.271358
41	H	4.654587	-2.785534	1.43657

Table S12. TS[4a•H]"
Total energy: -655.893703 Hartree, zero-point energy: 0.255849

Tag	Symbol	X	Y	Z
1	C	-2.594164	-1.24171	0.073984
2	C	-1.295907	-1.184839	-0.409517
3	C	-0.665572	0.048136	-0.595291
4	C	-1.345977	1.241159	-0.301167
5	C	-2.644261	1.154141	0.181715
6	C	-3.28528	-0.071305	0.37252
7	H	-3.069251	-2.206206	0.213757
8	H	-3.174677	2.070106	0.410232
9	C	0.690685	0.052627	-1.138558
10	H	0.806585	0.086117	-2.222129
11	C	1.852656	0.012112	-0.393114
12	C	3.115481	0.017747	-1.058959
13	C	1.809384	-0.044407	1.032267
14	C	4.276907	-0.029966	-0.329324
15	H	3.138478	0.058037	-2.140361
16	C	2.978512	-0.091774	1.747444
17	H	0.845675	-0.051174	1.522455
18	C	4.205165	-0.084272	1.068065
19	H	5.239315	-0.027143	-0.821211
20	H	2.962762	-0.136149	2.827354
21	O	-0.553328	-2.28593	-0.720928
22	H	-1.076796	-3.090237	-0.619763
23	C	-4.704281	-0.123707	0.860484
24	H	-4.905971	0.674146	1.574832
25	H	-5.397233	0.003069	0.024749
26	H	-4.929945	-1.077993	1.334776
27	C	-0.670313	2.5701	-0.498391
28	H	0.142297	2.716764	0.217929
29	H	-0.240869	2.657902	-1.500352
30	H	-1.37553	3.388115	-0.368507
31	H	5.123573	-0.122171	1.640712

Table S.13. TS[4b+H]

Total energy: -691.815405 Hartree, zero-point energy: 0.234811 Hartree

Tag	Symbol	X	Y	Z
1	C	3.840882	0.452481	-0.953013
2	C	2.628583	0.851808	-0.403181
3	C	2.006973	0.059424	0.567474
Tag	Symbol	X	Y	Z
-----	--------	-------	-------	-------
4	C	2.616775	-1.125017	0.984698
5	C	3.825778	-1.521788	0.432685
6	C	4.434459	-0.729362	-0.533624
7	H	4.316489	1.068488	-1.70701
8	H	4.288841	-2.442723	0.757441
9	H	5.378851	-1.031123	-0.965626
10	C	0.742330	0.512523	1.159121
11	H	0.797725	1.120361	2.060305
12	C	-0.502418	0.233278	0.666361
13	C	-1.664962	0.738289	1.337227
14	C	-0.689198	-0.547813	-0.52505
15	C	-2.917967	0.493026	0.869668
16	H	-1.529005	1.328314	2.234603
17	C	-1.934140	-0.795592	-0.999672
18	H	0.183945	-0.931856	-1.033724
19	C	-3.070252	-0.280802	-0.314071
20	H	-3.782328	0.881483	1.382668
21	H	-2.104935	-1.378283	-1.893944
22	O	-4.225373	-0.574244	-0.850247
23	C	-5.467141	-0.120865	-0.26531
24	H	-5.497930	0.967806	-0.251752
25	H	-6.242211	-0.510185	-0.915908
26	H	-5.577761	-0.528481	0.738655
27	O	1.978950	1.995712	-0.759413
28	H	2.502837	2.499361	-1.394033
29	H	2.138664	-1.732445	1.741932

Table S-14. TS[4c+H] \(^{2}\)

Total energy: -849.153099 Hartree, zero-point energy: 0.346665 Hartree

Tag	Symbol	X	Y	Z
1	C	-2.92645	-0.045135	-0.062749
2	C	-1.692235	-0.121327	0.584885
3	C	-0.767294	0.918795	0.526979
4	C	-1.072089	2.08237	-0.185117
5	C	-2.293568	2.175709	-0.832363
6	C	-3.201674	1.126093	-0.767207
7	H	-1.434013	-1.007649	1.148537
8	H	-2.539133	3.071438	-1.390972
9	H	-4.142716	1.237966	-1.283613
10	C	0.513555	0.828189	1.236092
----	----	----------	----------	----------
11	H	0.542553	1.161409	2.271934
12	C	1.67941	0.358303	0.695302
13	C	2.872229	0.32952	1.489156
14	C	1.753414	-0.09366	-0.665966
15	C	4.052085	-0.122433	0.977233
16	H	2.821198	0.663707	2.515406
17	C	2.925054	-0.538503	-1.182683
18	H	0.853326	-0.06909	-1.267198
19	C	4.094372	-0.560667	1.489156
20	H	4.941622	-1.140735	1.587417
21	H	3.011094	-0.882808	-2.203689
22	O	5.173598	-1.005668	-0.962052
23	C	6.436213	-1.084849	-0.263862
24	H	6.351966	-1.76119	0.585804
25	H	7.135029	-1.482168	-0.9915
26	H	6.749454	-0.09189	0.056095
27	O	-0.121543	3.062002	-0.1969
28	H	-0.444833	3.838345	-0.669372
29	C	-3.902602	-1.221375	0.02349
30	C	-5.198205	-0.948353	-0.74832
31	H	-5.861006	-1.809232	-0.65912
32	H	-5.731128	-0.081962	-0.33416
33	H	-5.012065	-0.786186	-1.811315
34	C	-4.260229	-1.477626	1.499155
35	H	-3.380746	-1.73008	2.09294
36	H	-4.727573	-0.598398	1.945104
37	H	-4.960698	-2.310616	1.575727
38	C	-3.23871	-2.477458	-0.570399
39	H	-2.973176	-2.319721	-1.617188
40	H	-2.332914	-2.752605	-0.028152
41	H	-3.924335	-3.324543	-0.518544

References
(1) Qin, D.; Xia, Y.; Whitesides, G. M. Rapid Prototyping of Complex Structures with Feature Sizes Larger than 20 μm. Adv. Mater. 1996, 8, 917–919.
(2) Lotter, C.; Heiland, J. J.; Thurmann, S.; Mauritz, L.; Belder, D. HPLC-MS with Glass Chips Featuring Monolithically Integrated Electrospray Emitters of Different Geometries. Anal. Chem. 2016, 88, 2856–2863.
(3) Atkins, P. W.; Paula, J. de; Bär, M. Physikalische Chemie, 5. Aufl.; Wiley VCH Lehrbuchkollektion 1; Wiley-VCH Verl.: Weinheim, 2013.
(4) Dubnikova, F.; Lifshitz, A. Isomerization of Dihydrobenzofuran and Isodihydrobenzofuran. Quantum Chemical and Kinetics Calculations. J. Phys. Chem. A 2002, 106, 9278–9283.
(5) Gavriluta, A.; Büchel, G. E.; Freitag, L.; Novitch, G.; Tommasino, J. B.; Jeanneau, E.; Kuhn, P.-S.; González, L.; Arion, V. B.; Luneau, D. Mechanism Elucidation of the cis-trans Isomerization of an Azole Ruthenium-Nitrosyl Complex and its Osmium Counterpart. Inorg. Chem. 2013, 52, 6260–6272.
(6) Rietze, C.; Titov, E.; Lindner, S.; Saalfrank, P. Thermal Isomerization of Azobenzenes: on the Performance of Eyring Transition State Theory. *J. Phys.: Condens. Matter* 2017, 29, 314002.

(7) Hofsløkken, N. U.; Skattesel, L.; Johansson, F.; Bertilsson, S. K.; Andersson, P. G.; Møller, J.; Senning, A.; Yao, X.-K.; Wang, H.-G.; Tuchagues, J.-P. et al. Convenient Method for the ortho-Formylation of Phenols. *Acta Chem. Scand.* 1999, 53, 258–262.

(8) Nouch, R.; Cini, M.; Magre, M.; Abid, M.; Diéguez, M.; Pàmies, O.; Woodward, S.; Lewis, W. Enantioselective Synthesis of 6,6-Disubstituted Pentaffulvenes Containing a Chiral Pendant Hydroxy Group. *Chem. Eur. J.* 2017, 23, 17195–17198.

(9) Lanzi, M.; Merad, J.; Boyarskaya, D. V.; Maestri, G.; Allain, C.; Masson, G. Visible-Light-Triggered C-C and C-N Bond Formation by C-S Bond Cleavage of Benzylic Thioethers. *Org. Lett.* 2018, 20, 5247–5250.

(10) El-Sepelgy, O.; Haseloff, S.; Alametti, S. K.; Schneider, C. Bromsted Acid Catalyzed, Conjugate Addition of β-Dicarbonyls to in situ Generated ortho-Quinone Methides—Enantioselective Synthesis of 4-aryl-4H-chromenes. *Angew. Chem. Int. Ed.* 2014, 53, 7923–7927.