Protein structure modelling and evaluation based on a 4-distance description of side-chain interactions

Vladimir Potapov, Mati Cohen, Yuval Inbar and Gideon Schreiber

Supplementary methods:
• Side chain-main chain contact term ($E_{ScMc}$)

Supplementary tables:
• Table S1. Identities of the side chain atoms in “Atom Set 1” defining 190 ScSc inter-residue interactions
• Table S2. Identities of the side chain atoms in “Atom Set 1” defining 18 ScMc inter-residue interactions
• Table S3. Identities of the side chain atoms in “Atom Set 2” defining 190 ScSc inter-residue interactions
• Table S4. Assessment of four scoring functions for discrimination of the native structure among Decoys ‘R’ Us multiple decoys sets
• Table S5. Assessment of four scoring functions for discrimination of the native structure among CASP 7/8 multiple decoys sets
• Table S6. Side chain prediction accuracy with Hunter for a set of 94 high-resolution protein structures
• Table S7. Normalization factors for 20 different amino acids
• Table S8. Interface remodeling for 20 protein-protein hetero-complexes
• Table S9. The parameter set used in the Lennard-Jones term calculation
**Supplementary Methods**

**Side chain-main chain contact term (E\textsubscript{ScMc})**

The $E_{\text{ScMc}}$ term was constructed in a similar way as the $E_{\text{ScSc}}$ term except changes were made in choosing the four atoms. Two side chain atoms in the first residue and two backbone atoms in the second one define residue-residue interaction in the $E_{\text{ScMc}}$ term. Firstly, $\text{C}\alpha$ and backbone oxygen were chosen as two backbone atoms and were kept fixed for all residue pairs. These two atoms were found to interact more often among other backbone atoms in our analysis of side chain to main chain contacts. Then, side chain atoms were identified by examining all possible side chain atom pairs. Those that gave the largest number of contacts with the chosen backbone atoms in 9394 high-resolution protein structures were used in the calculations (Table S2). Main chain atoms in $\text{ScMc}$ interactions were treated irrespective of the residue type. Therefore, 18 $\text{ScMc}$ interactions were defined. As Ala does not have a flexible side chain and Gly does not have a side chain at all, those residues were not used to define side chain interactions with main chain atoms.

To build the random distributions, the same randomized structures as for the $\text{ScSc}$ term were used since no random control could be really done for the main chain. Probabilities from these distributions were used to calculate the $E_{\text{ScMc}}$ term as follow:

$$E_{\text{ScMc}} = \sum_{i} \sum_{\text{M}} -\ln \frac{P_{\text{real}}(\{\text{dist}\} |AX)P_{\text{real}}(AX)}{P_{\text{rand}}(\{\text{dist}\} |AX)P_{\text{rand}}(AX)}$$

where $AX$ denotes an interaction of side chain atoms of the first residue with main chain atoms of the second residue; $P_{\text{real}}(\{\text{dist}\} |AX)$ and $P_{\text{rand}}(\{\text{dist}\} |AX)$ are the probabilities of observing the $\text{ScMc}$ 4-distance combination $\{\text{dist}\}$ in high-resolution and random structures, respectively; $P_{\text{real}}(AX)$ and $P_{\text{rand}}(AX)$ are the probabilities to observe a $\text{ScMc}$ contact for residue A in real and random structures, respectively; and M is a number of residues. The
summation is done over all contacting residue pairs excluding within-residue interactions and $ScMc$ interaction between neighboring residues.

**Supplementary Tables**

**Table S1 - Identities of the side chain atoms in “Atom Set 1” defining 190 ScSc inter-residue interactions**
Each cell of the table lists two pairs of atoms that define interaction for a particular residue pair: the first atom pair corresponds to a residue in the rightmost column, the second atom pair corresponds to a residue in the top row. The number in each cell gives the number of $ScSc$ contacts extracted for a given residue pair from a set of high-resolution protein structures (see Methods for details).
|      | ALA | ARG | ASN | ASP | GLU | GLN | HIS | ILE | LEU | LYS | MET | PHE | PRO | SER | THR | TRP | TYR | VAL |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CA   | CA  | CB  | CA  | CB  | CB  | CB  | CA  | CB  | CB  | CB  | CB  | CB  | CA  | CB  | CB  | CA  | CB  | CB  | CA  |
| CB   | CA  | CB  | CA  | CB  | CB  | CB  | CA  | CB  | CB  | CB  | CB  | CB  | CA  | CB  | CB  | CA  | CB  | CB  | CA  |
| CG   | NH2 | CG  | NH2 | CG  | NH2 | CG  | NH2 | CG  | NH2 | CG  | NH2 | CG  | NH2 | CG  | NH2 | CG  | NH2 | CG  | NH2 |
| OD1  | ND2 | OD1 | OD2 |
| 15236|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| ASN  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CB   | OD2 | CB  | OD2 | CB  | OD2 | CB  | OD2 | CB  | OD2 | CB  | OD2 | CB  | OD2 | CB  | OD2 | CB  | OD2 | CB  | OD2 | CB  |
| CD   | NH2 | CD  | NH2 | CD  | NH2 | CD  | NH2 | CD  | NH2 | CD  | NH2 | CD  | NH2 | CD  | NH2 | CD  | NH2 | CD  | NH2 | CD  |
| 13711| 3872 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| ASP  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| GLN  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| HIS  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| LEU  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| LYS  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| MET  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| PHE  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| PRO  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| SER  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| THR  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| TRP  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| TYR  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| VAL  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
Table S2 - Identities of the side chain atoms in “Atom Set 1” defining 18 ScMc inter-residue interactions

The ScMc interaction between residues was defined by two pairs of atoms: one atom pair is chosen on the side chain of the first residue, the other atom pair is chosen on the backbone of the second residue. The side chain atom pairs are shown in the table. The backbone atom pairs were kept fixed for all residues (alpha carbon and backbone oxygen).

|     | Constrained atoms | Number of contacts |
|-----|-------------------|--------------------|
| ARG | CG, NH2           | 264471             |
| ASN | OD1, ND2          | 199717             |
| ASP | OD1, OD2          | 231103             |
| CYS | CB, SG            | 90448              |
| GLN | OE1, NE2          | 151895             |
| GLU | CB, OE2           | 236017             |
| HIS | ND1, NE2          | 102061             |
| ILE | CG2, CD1          | 326939             |
| LEU | CD1, CD2          | 386244             |
| LYS | CB, NZ            | 240001             |
| MET | CB, CE            | 110253             |
| PHE | CE1, CE2          | 216867             |
| PRO | CB, CD            | 243007             |
| SER | CB, OG            | 279342             |
| THR | CG2, OG1          | 281782             |
| TRP | NE1, CZ3          | 95316              |
| TYR | CE1, CE2          | 177598             |
| VAL | CG2, CG1          | 381047             |
The pair of side chain atoms was manually picked for each of 20 amino acids. The interaction of two residues was defined by the four distances between two atom pairs. The atom pair for a given residue type is kept fixed. The pair of atoms for each residue type is given in the column “Constrained atoms”. Numbers for each residue pair show amount of ScSc contacts identified in high-resolution protein structures (see Methods for details).

| Constrained atoms | ALA | ARG | ASN | ASP | CYS | GLN | GLU | HIS | ILE | LEU | LYS | MET | PHE | PRO | SER | THR | TRP | TYR | VAL |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ALA               | CA, CB | 28828 |
| ARG               | NH1, NH2 | 16383 | 5676 |
| ASN               | OD1, ND2 | 15236 | 9913 | 6852 |
| ASP               | OD1, OD2 | 18605 | 31262 | 16094 | 7533 |
| CYS               | SG, CB | 8032 | 2271 | 2762 | 2761 | 7400 |
| GLN               | OE1, OE2 | 11327 | 9258 | 10323 | 2156 | 3607 |
| GLU               | OE1, OE2 | 18645 | 35342 | 12534 | 10960 | 5685 |
| HIS               | ND1, NE2 | 10445 | 5905 | 5388 | 10629 | 2438 | 4456 | 10120 | 3473 |
| ILE               | CG2, CD1 | 46439 | 11568 | 11124 | 10400 | 8570 | 10121 | 2438 | 4456 | 10120 | 3473 |
| LEU               | CD1, CD2 | 74802 | 21895 | 15829 | 16513 | 13580 | 17878 | 21679 | 13065 | 104267 | 96776 |
| LYS               | CD, NZ | 14794 | 6826 | 10882 | 27530 | 1804 | 8424 | 32578 | 3883 | 10795 | 17426 | 2539 |
| MET               | SD, CE | 12753 | 3703 | 3397 | 2979 | 2739 | 3050 | 3681 | 2967 | 15528 | 25728 | 3329 | 3080 |
| PHE               | CE1, CE2 | 28729 | 9478 | 8037 | 7166 | 6452 | 7690 | 9106 | 6588 | 38895 | 67488 | 8361 | 12219 | 16140 |
| PRO               | CB, CD | 18679 | 10891 | 8613 | 9456 | 4315 | 7787 | 10526 | 6371 | 16563 | 27200 | 5517 | 5647 | 15125 | 4978 |
| SER               | CB, OG | 22854 | 11722 | 13669 | 22088 | 4515 | 9979 | 16944 | 7826 | 17193 | 25193 | 10002 | 4896 | 12800 | 11851 | 9804 |
| THR               | OG1, CG2 | 26484 | 11706 | 14057 | 19469 | 4558 | 10958 | 17036 | 7480 | 24164 | 36221 | 10274 | 6784 | 15218 | 13074 | 18332 | 9722 |
| TRP               | CE3, NE1 | 6916 | 4607 | 3862 | 4097 | 1973 | 3775 | 4664 | 3051 | 9614 | 18936 | 3527 | 3465 | 8329 | 7399 | 5185 | 5359 | 1566 |
| TYR               | CE1, OH | 17879 | 11522 | 8885 | 12933 | 3174 | 7787 | 13679 | 7342 | 18168 | 30748 | 11760 | 6315 | 15052 | 15382 | 10451 | 11118 | 4942 | 4759 |
| VAL               | CG1, CG2 | 53499 | 13552 | 12128 | 12327 | 9776 | 11170 | 13935 | 8788 | 62218 | 106735 | 11552 | 16012 | 38808 | 20311 | 20169 | 27061 | 10568 | 18718 | 35567 |
Table S4 - Assessment of four scoring functions for discrimination of the native structure among Decoys ‘R’ Us multiple decoys sets

The rank of the native structure is given in the columns. Hunter scores for each decoy structure were calculated using the ScSc term only. The results for OPUS-PSP were taken from Lu et al. [1]. The results for DOPE and DFIRE were taken from Shen et al. [2]. Resolution is given for the native structure.

|                  | Resolution (Å) | Hunter | OPUS-PSP | DOPE | DFIRE |
|------------------|----------------|--------|----------|------|-------|
| 4state_reduced   |                |        |          |      |       |
| 1sn3             | 1.20           | 1      | 1        | 1    | 1     |
| 4rxn             | 1.20           | 1      | 1        | 1    | 1     |
| 4pti             | 1.50           | 1      | 1        | 1    | 1     |
| 1ctf             | 1.70           | 1      | 1        | 1    | 1     |
| 1r69             | 2.00           | 1      | 1        | 1    | 1     |
| 3icb             | 2.30           | 15     | 1        | 1    | 4     |
| 2cro             | 2.35           | 1      | 1        | 1    | 1     |
| fisacasp3        |                |        |          |      |       |
| smd3             | ?              | 1      | 1        | -    | -     |
| 1bg8-A           | 2.20           | 1      | 1        | 1    | 1     |
| 1bl0             | 2.30           | 1      | 1        | 1    | 1     |
| 1eh2             | NMR            | 1      | 1        | -    | -     |
| 1jwe             | NMR            | 1      | 1        | 1    | 1     |
| lattice_ssfit    |                |        |          |      |       |
| 4icb             | 1.60           | 1      | 1        | 1    | 1     |
| 1ctf             | 1.70           | 1      | 1        | 1    | 1     |
| 1fca             | 1.80           | 1      | 1        | 1    | 1     |
| 1pgb             | 1.92           | 1      | 1        | 1    | 1     |
| 1beo             | 2.20           | 1      | 1        | 1    | 1     |
| 1dkt-A           | 2.90           | 1      | 1        | 1    | 1     |
| 1nk1             | NMR            | 1      | 1        | 1    | 1     |
| 1trl-A           | NMR            | 1      | 1        | 1    | 1     |
| lmds             |                |        |          |      |       |
| 1igd             | 1.10           | 1      | 1        | 1    | 1     |
| 2ovo             | 1.50           | 1      | 1        | 1    | 1     |
| 4pti             | 1.50           | 1      | 1        | 1    | 1     |
| 1ctf             | 1.70           | 1      | 1        | 1    | 1     |
| 1b0n-B           | 1.90           | 1      | 1        | 34   | 430   |
| 1shf-A           | 1.90           | 1      | 1        | 1    | 1     |
| 2cro             | 2.35           | 1      | 1        | 1    | 1     |
| 1fc2             | 2.80           | 49     | 409      | 476  | 501   |
| 1bba             | NMR            | 501    | 501      | 501  | 501   |
| 1dtk             | NMR            | 3      | 1        | 1    | 1     |
| **Correct predictions** | **29** | **31** | **28** | **27** |
**Table S5 - Assessment of four scoring functions for discrimination of the native structure among CASP 7/8 multiple decoys sets**

Numbers of in the columns for Hunter, OPUS-PSP, DOPE and DFIRE methods give the rank of the native structure. Hunter scores for each decoy structure were calculated using the ScSc term only. Three methods (OPUS-PSP, DOPE, DFIRE) were chosen for comparison among other methods as they have been successfully applied in the past for discriminating native structures in decoys sets, and the respective programs are readily accessible for performing calculations. In the end of table, the overall number of correct predictions is given, as well as the number of correct prediction considering high-resolution (resolution < 2 Å) decoys only.

| CASP7     | Resolution Å | Hunter | OPUS-PSP | Rosetta | DOPE | DFIRE |
|-----------|--------------|--------|----------|---------|------|-------|
| T0288     | 1.1          | 2      | 1        | 85      | 8    | 4     |
| T0359     | 1.4          | 1      | 1        | 1       | 15   | 1     |
| T0340     | 1.5          | 1      | 1        | 5       | 8    | 7     |
| T0324_D1  | 1.5          | 1      | 1        | 1       | 1    | 2     |
| T0324_D2  | 1.5          | 1      | 1        | 2       | 2    | 3     |
| T0305     | 1.6          | 1      | 1        | 1       | 1    | 1     |
| T0332     | 1.6          | 1      | 1        | 1       | 1    | 1     |
| T0366     | 1.7          | 1      | 1        | 2       | 3    | 9     |
| T0291     | 1.8          | 1      | 1        | 3       | 1    | 1     |
| T0290     | 1.8          | 2      | 1        | 10      | 1    | 1     |
| T0313     | 1.9          | 1      | 1        | 1       | 1    | 1     |
| T0311     | 1.9          | 1      | 1        | 6       | 1    | 3     |
| T0295_D1  | 1.9          | 1      | 1        | 2       | 1    | 1     |
| T0295_D2  | 1.9          | 1      | 1        | 1       | 3    | 1     |
| T0303_D1  | 1.9          | 1      | 1        | 1       | 1    | 1     |
| T0308     | 2.0          | 1      | 1        | 6       | 1    | 1     |
| T0317     | 2.0          | 1      | 1        | 1       | 1    | 1     |
| T0346     | 2.0          | 6      | 1        | 2       | 8    | 12    |
| T0339_D2  | 2.1          | 1      | 1        | 1       | 1    | 1     |
| T0345     | 2.1          | 1      | 1        | 1       | 1    | 1     |
| T0367     | 2.2          | 1      | 1        | 6       | 1    | 5     |
| T0292_D1  | 2.2          | 4      | 1        | 11      | 13   | 15    |
| T0292_D2  | 2.2          | 1      | 1        | 2       | 1    | 1     |
| T0315     | 2.2          | 1      | 1        | 3       | 1    | 1     |
| T0334     | 2.5          | 1      | 1        | 1       | 1    | 1     |
| T0326     | 2.5          | 1      | 1        | 1       | 1    | 1     |
| T0328     | 2.8          | 1      | 1        | 12      | 1    | 1     |

| CASP8     | Resolution Å | Hunter | OPUS-PSP | Rosetta | DOPE | DFIRE |
|-----------|--------------|--------|----------|---------|------|-------|
| T0488-D1  | 1.3          | 1      | 1        | 8       | 1    | 2     |
| T0508-D1  | 1.5          | 1      | 1        | 6       | 1    | 1     |
| T0459-D1  | 1.7          | 1      | 1        | 10      | 13   | 21    |
| T0423-D1  | 1.7          | 1      | 1        | 51      | 1    | 1     |
| T0454-D1  | 1.8          | 22     | 69       | 42      | 14   | 61    |
| T0504-D3  | 1.8          | 1      | 1        | 2       | 1    | 2     |
| T0445-D1  | 1.8          | 1      | 1        | 1       | 1    | 1     |
| T0392-D1 | 1.8 | 1 | 1 | 11 | 7 | 10 |
| T0447-D1 | 1.9 | 1 | 1 | 1 | 1 | 1 |
| T0505-D1 | 1.9 | 1 | 1 | 2 | 1 | 1 |
| T0506-D1 | 1.9 | 1 | 1 | 8 | 1 | 1 |
| T0432-D1 | 1.9 | 1 | 1 | 3 | 1 | 1 |
| T0388-D1 | 2.0 | 1 | 1 | 1 | 1 | 1 |
| T0402-D1 | 2.0 | 1 | 1 | 3 | 1 | 1 |
| T0418-D1 | 2.0 | 1 | 1 | 13 | 1 | 20 |
| T0418-D2 | 2.0 | 1 | 1 | 5 | 2 | 1 |
| T0422-D2 | 2.0 | 1 | 1 | 1 | 1 | 10 |
| T0491-D1 | 2.0 | 12 | 1 | 12 | 13 | 12 |
| T0428-D1 | 2.0 | 3 | 7 | 10 | 8 | 10 |
| T0426-D1 | 2.1 | 3 | 1 | 9 | 6 | 5 |
| T0396-D1 | 2.1 | 1 | 1 | 12 | 1 | 1 |
| T0398-D1 | 2.1 | 1 | 1 | 1 | 3 | 14 |
| T0398-D2 | 2.1 | 1 | 1 | 1 | 2 | 2 |
| T0453-D1 | 2.1 | 3 | 1 | 14 | 5 | 24 |
| T0435-D1 | 2.2 | 1 | 1 | 11 | 1 | 1 |
| T0400-D1 | 2.2 | 1 | 1 | 6 | 1 | 5 |
| T0452-D1 | 2.2 | 1 | 1 | 2 | 1 | 1 |
| T0452-D2 | 2.2 | 1 | 1 | 1 | 1 | 1 |
| T0486-D1 | 2.3 | 1 | 1 | 5 | 1 | 11 |
| T0404-D1 | 2.4 | 1 | 1 | 9 | 1 | 1 |
| T0479-D1 | 2.4 | 4 | 3 | 61 | 9 | 84 |
| T0456-D2 | 2.5 | 2 | 1 | 6 | 1 | 2 |
| T0390-D1 | 2.7 | 1 | 1 | 8 | 2 | 2 |
| T0455-D1 | 2.7 | 1 | 1 | 69 | 7 | 36 |
| T0416-D1 | 2.7 | 1 | 2 | 29 | 3 | 14 |
| T0450-D1 | 2.7 | 3 | 1 | 9 | 2 | 15 |
| T0458-D1 | 2.7 | 7 | 38 | 92 | 6 | 39 |
| T0438-D1 | 2.8 | 5 | 3 | 59 | 4 | 23 |
| T0438-D2 | 2.8 | 11 | 62 | 184 | 133 | 181 |
| T0442-D1 | 2.8 | 11 | 31 | 76 | 78 | 126 |
| T0442-D2 | 2.8 | 66 | 159 | 9 | 161 | 184 |
| T0444-D1 | 2.8 | 7 | 11 | 70 | 17 | 97 |
| T0461-D1 | 2.8 | 1 | 1 | 6 | 1 | 5 |
| T0441-D2 | 2.9 | 1 | 1 | 43 | 1 | 19 |
| T0470-D1 | 2.9 | 36 | 64 | 296 | 188 | 269 |
| T0470-D2 | 2.9 | 16 | 9 | 128 | 165 | 225 |

Correct predictions (all)  
| 53 | 61 | 18 | 42 | 33 |

Correct predictions (R < 2 Å)  
| 24 | 26 | 9 | 18 | 16 |
Table S6 - Side chain prediction accuracy with Hunter for a set of 94 high-resolution protein structures

The average side chain RMSD over a set of 94 structures is 1.47 Å for all residues (0.73 Å for buried residues). A star next to PDB ID indicates structures that contain large ligands or are a part of larger macromolecular assembly. The average RMSD over a set 49 “clean” structures is 1.43 Å (0.68 Å for buried residues) and 1.51 Å (0.79 Å for buried residues) for other 45 structures. RMSD was calculated for side chain atoms (beyond Cβ). The complete rotamer library was used (see Methods for details).

| PDB ID | Resolution, Å | RMSD, Å | Chain Length |
|--------|---------------|---------|--------------|
| 1aac   | 1.31          | 1.03    | 0.60         | 1.24 | 105 |
| 1amm   | 1.20          | 1.46    | 0.55         | 1.76 | 174 |
| 1arb   | 1.20          | 1.03    | 0.98         | 1.07 | 263 |
| 1ben   | 1.40          | 1.70    | 0.72         | 1.85 | 51  |
| 1bpi   | 1.09          | 1.36    | 0.54         | 1.56 | 58  |
| 1cem   | 1.65          | 1.09    | 0.74         | 1.37 | 363 |
| 1cnv   | 1.65          | 1.62    | 0.65         | 2.10 | 283 |
| 1cus   | 1.25          | 1.28    | 0.69         | 1.59 | 197 |
| 1ezm   | 1.50          | 1.35    | 0.57         | 1.73 | 298 |
| 1fus   | 1.30          | 1.48    | 0.51         | 1.90 | 105 |
| 1hfc   | 1.50          | 1.39    | 0.63         | 1.71 | 157 |
| 1lfc   | 1.19          | 1.64    | 0.80         | 1.99 | 131 |
| 1ljd   | 1.10          | 1.20    | 0.43         | 1.32 | 61  |
| 1lit   | 1.55          | 1.33    | 0.45         | 1.65 | 131 |
| 1mla   | 1.50          | 1.53    | 0.75         | 1.92 | 305 |
| 1mrj   | 1.60          | 1.41    | 0.73         | 1.77 | 247 |
| 1osa   | 1.68          | 1.51    | 0.49         | 1.69 | 148 |
| 1php   | 1.65          | 1.54    | 0.81         | 1.83 | 394 |
| 1ple   | 1.33          | 1.17    | 0.55         | 1.45 | 99  |
| 1poa   | 1.50          | 1.71    | 0.62         | 1.97 | 118 |
| 1ptf   | 1.60          | 1.62    | 0.47         | 1.93 | 87  |
| 1ptx   | 1.30          | 1.82    | 0.37         | 1.96 | 64  |
| 1rcf   | 1.40          | 1.28    | 0.79         | 1.55 | 169 |
| 1rie   | 1.50          | 1.26    | 0.47         | 1.55 | 127 |
| 1rro   | 1.30          | 1.55    | 0.74         | 1.83 | 108 |
| 1smd   | 1.60          | 1.40    | 1.16         | 1.63 | 495 |
| 1snc   | 1.65          | 1.94    | 0.63         | 2.24 | 135 |
| 1tca   | 1.55          | 1.04    | 0.58         | 1.34 | 317 |
| 1xyz   | 1.40          | 1.08    | 0.67         | 1.36 | 320 |
| 2ayh   | 1.60          | 1.13    | 0.81         | 1.31 | 214 |
| 2bae   | 1.54          | 1.43    | 0.61         | 1.79 | 258 |
| 2bpl   | 1.63          | 1.46    | 0.66         | 1.79 | 164 |
| 2etc   | 1.40          | 1.16    | 0.78         | 1.43 | 307 |
| 2end   | 1.45          | 1.53    | 0.62         | 1.81 | 137 |
| 2ihi   | 1.40          | 1.54    | 0.54         | 1.84 | 129 |
| Term   | Value1 | Value2 | Value3 | Value4 | Value5 |
|--------|--------|--------|--------|--------|--------|
| 2mcm   | 1.50   | 1.20   | 0.46   | 1.39   | 112    |
| 2mhr   | 1.30   | 1.60   | 1.34   | 1.73   | 118    |
| 2phy   | 1.40   | 1.59   | 0.79   | 1.96   | 125    |
| 2rn2   | 1.48   | 1.83   | 0.68   | 2.14   | 155    |
| 2trx   | 1.68   | 1.40   | 0.55   | 1.65   | 108    |
| 2wpr   | 1.65   | 1.94   | 0.76   | 2.37   | 210    |
| 3chy   | 1.66   | 1.47   | 0.65   | 1.76   | 128    |
| 3ebx   | 1.40   | 1.42   | 0.76   | 1.54   | 62     |
| 3lzrn  | 1.70   | 1.53   | 0.96   | 1.72   | 164    |
| 3pte   | 1.60   | 1.08   | 0.62   | 1.37   | 347    |
| 4fgf   | 1.60   | 1.69   | 0.84   | 1.93   | 124    |
| 4ptp   | 1.34   | 1.32   | 0.63   | 1.66   | 223    |
| 7rsa   | 1.26   | 1.52   | 0.67   | 1.77   | 124    |
| 8abp   | 1.49   | 1.30   | 0.82   | 1.56   | 305    |
| 1ads*  | 1.65   | 1.59   | 1.03   | 1.92   | 315    |
| 1aky*  | 1.63   | 1.32   | 0.72   | 1.52   | 218    |
| 1arul* | 1.60   | 1.30   | 0.86   | 1.60   | 336    |
| 1bkf*  | 1.60   | 1.63   | 1.21   | 1.75   | 107    |
| 1cka*  | 1.50   | 1.44   | 0.48   | 1.71   | 66     |
| 1cpc*  | 1.66   | 1.42   | 0.71   | 1.57   | 172    |
| 1cse*  | 1.20   | 1.06   | 0.78   | 1.18   | 337    |
| 1ctj*  | 1.10   | 1.41   | 0.52   | 1.62   | 89     |
| 1dad*  | 1.60   | 1.48   | 0.89   | 1.76   | 224    |
| 1dif*  | 1.70   | 1.89   | 0.68   | 2.30   | 198    |
| 1fnc*  | 2.00   | 1.42   | 0.73   | 1.71   | 296    |
| 1fxd*  | 1.70   | 1.67   | 0.79   | 1.78   | 58     |
| 1iro*  | 1.10   | 1.18   | 0.46   | 1.35   | 53     |
| 1isu*  | 1.50   | 1.22   | 0.41   | 1.35   | 62     |
| 1jbc*  | 1.15   | 1.27   | 0.78   | 1.52   | 237    |
| 1kap*  | 1.64   | 1.49   | 1.08   | 1.82   | 474    |
| 1knrb* | 1.70   | 1.34   | 0.62   | 1.65   | 186    |
| 1lamb* | 1.60   | 1.42   | 0.85   | 1.72   | 484    |
| 1lkk*  | 1.00   | 1.60   | 0.48   | 1.87   | 109    |
| 1luc*  | 1.50   | 1.60   | 0.98   | 1.92   | 320    |
| 1lfp*  | 1.60   | 1.30   | 0.83   | 1.51   | 228    |
| 1lif*  | 1.70   | 1.53   | 0.79   | 1.88   | 333    |
| 1phpb* | 1.60   | 1.48   | 0.79   | 1.88   | 405    |
| 1ra9*  | 1.55   | 1.36   | 0.65   | 1.60   | 159    |
| 1rge*  | 1.15   | 1.36   | 0.81   | 1.58   | 96     |
| 1rpo*  | 1.40   | 1.61   | 0.95   | 1.80   | 122    |
| 1sgp*  | 1.40   | 1.79   | 1.10   | 1.98   | 51     |
| 1sri*  | 1.65   | 1.86   | 0.97   | 2.18   | 118    |
| 1tta*  | 1.70   | 1.46   | 0.31   | 1.68   | 127    |
| 1whi*  | 1.50   | 2.17   | 1.11   | 2.42   | 122    |
| 1xic*  | 1.60   | 1.95   | 1.23   | 2.27   | 385    |
| 1xso*  | 1.49   | 1.33   | 0.80   | 1.56   | 150    |
| 256b*  | 1.40   | 1.85   | 0.40   | 2.07   | 106    |
| 2bop*  | 1.70   | 1.96   | 0.71   | 2.14   | 85     |
| 2ccy*  | 1.67   | 1.57   | 0.55   | 1.78   | 127    |
| 2er7*  | 1.60   | 1.06   | 0.64   | 1.38   | 336    |
| 2hft*  | 1.69   | 1.44   | 0.69   | 1.70   | 205    |
| 2msb*  | 1.70   | 1.25   | 0.71   | 1.43   | 111    |
| 2olb*  | 1.40   | 1.30   | 0.86   | 1.67   | 520    |
|    |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|
|  2rhe* | 1.60 | 1.58 | 0.40 | 1.86 | 114  |
|  3b5e* | 1.50 | 1.75 | 1.66 | 1.78 | 85   |
|  3grs* | 1.54 | 1.63 | 0.85 | 1.90 | 461  |
|  3sdh* | 1.40 | 1.48 | 0.76 | 1.69 | 145  |
|  451c* | 1.60 | 1.44 | 0.79 | 1.57 | 82   |
|  5p21* | 1.35 | 1.75 | 1.38 | 1.92 | 166  |
Table S7 - Normalization factors for 20 different amino acids

Normalized RMSD (nRMSD) provides a measure of per residue side chain modelling accuracy. The residue’s RMSD in the modelled structure is compared to random rotamer placement according to \( nRMSD = \frac{RMSD}{<RMSD>} \), where \(<RMSD>\) is the average RMSD of a randomly picked rotamer for each one of the 20 amino acids.

| Amino acid | \(<RMSD>\), Å |
|------------|--------------|
| ALA        | 0.00         |
| ARG        | 3.91         |
| ASN        | 2.50         |
| ASP        | 2.46         |
| CYS        | 2.12         |
| GLN        | 3.21         |
| GLU        | 3.23         |
| GLY        | 0.00         |
| HIS        | 3.46         |
| ILE        | 2.33         |
| LEU        | 2.60         |
| LYS        | 3.27         |
| MET        | 2.96         |
| PHE        | 3.94         |
| PRO        | 0.73         |
| SER        | 1.63         |
| THR        | 1.96         |
| TRP        | 4.77         |
| TYR        | 4.46         |
| VAL        | 1.96         |
**Table S8 - Interface remodelling for 20 protein-protein hetero-complexes**

Twenty protein complexes were remodelled with Hunter. Side chain prediction accuracy was calculated separately for all protein residues and for interface residue only. Each protein complex is identified as a 4-letter PDB ID and two 1-letter chain identifiers.

| Complex | Resolution, Å | Hunter All residues | Hunter Interface residues |
|---------|---------------|---------------------|--------------------------|
| 1a4yAB  | 2.00          | 1.76                | 1.88                     |
| 1avwAB  | 1.75          | 1.38                | 0.98                     |
| 1cgiEI  | 2.30          | 1.58                | 1.67                     |
| 1cmxAB  | 2.25          | 1.90                | 1.54                     |
| 1cseEI  | 1.20          | 1.44                | 1.62                     |
| 1czxAB  | 2.20          | 1.97                | 1.79                     |
| 1d09AB  | 2.10          | 1.77                | 2.00                     |
| 1dhkAB  | 1.85          | 1.67                | 1.46                     |
| 1tddB   | 1.65          | 1.50                | 1.81                     |
| 1eayAC  | 2.00          | 1.70                | 2.09                     |
| 1eg9AB  | 1.60          | 1.69                | 1.82                     |
| 1emvAB  | 1.70          | 1.54                | 1.07                     |
| 1f60AB  | 1.67          | 1.70                | 1.06                     |
| 1finAB  | 2.30          | 1.69                | 1.87                     |
| 1jtdAB  | 2.30          | 1.45                | 1.35                     |
| 1lfdAB  | 2.10          | 1.95                | 0.92                     |
| 1smpAI  | 2.30          | 1.40                | 1.79                     |
| 1ycsAB  | 2.20          | 1.95                | 1.55                     |
| 2kauAC  | 2.00          | 1.66                | 1.98                     |
| 2sicEI  | 1.80          | 1.73                | 2.39                     |

|         | Hunter All residues | Hunter Interface residues |
|---------|---------------------|--------------------------|
|         | 1.67                | 1.63                     |
Table S9 - Parameter set used in the Lennard-Jones calculation

The well depths are directly from CHARMM19 [3], while the radii are from the optimization using the 1-dimensional distributions from the PROBE run (see Methods for details).

| Atom class                              | Radius | Well depth |
|-----------------------------------------|--------|------------|
| carbonyl carbon                         | 1.99   | 0.1200     |
| carboxyl carbon                         | 1.92   | 0.1200     |
| aliphatic carbon with 1 H               | 2.31   | 0.0486     |
| aliphatic carbon with 2 H               | 2.12   | 0.1142     |
| aliphatic carbon with 3 H               | 2.10   | 0.1811     |
| aromatic carbon                         | 1.95   | 0.1200     |
| nitrogen bound to one hydrogen          | 1.71   | 0.2384     |
| aromatic nitrogen with no hydrogens     | 1.74   | 0.2384     |
| nitrogen bound to two hydrogens         | 1.73   | 0.2384     |
| nitrogen bound to three hydrogens       | 2.14   | 0.2384     |
| guanidinium nitrogen                    | 1.76   | 0.2384     |
| proline nitrogen                        | 1.98   | 0.2384     |
| hydroxyl oxygen                         | 1.53   | 0.1591     |
| carbonyl oxygen                         | 1.57   | 0.1591     |
| carboxyl oxygen                         | 1.49   | 0.2100     |
| sulphur                                 | 1.97   | 0.1600     |
| backbone nitrogen                       | 2.08   | 0.2384     |
| backbone alpha carbon                   | 2.20   | 0.0486     |
| backbone carbonyl carbon                | 2.23   | 0.1400     |
| backbone oxygen                         | 1.76   | 0.1591     |

References

1. Lu M, Dousis AD, Ma J: **OPUS-PSP: an orientation-dependent statistical all-atom potential derived from side-chain packing.** J Mol Biol 2008, 376:288-301.

2. Shen MY, Sali A: **Statistical potential for assessment and prediction of protein structures.** Protein Sci 2006, 15:2507-2524.

3. Neria E, Fischer S, Karplus M: **Simulation of activation free energies in molecular systems.** J Chem Phys 1996, 105:1902-1921.