UC San Diego
UC San Diego Previously Published Works

Title
Further intracellular proteins and signaling pathways regulated by angiotensin-(1-7) in human endothelial cells.

Permalink
https://escholarship.org/uc/item/51w1q0wv

Authors
Meinert, Christian
Kohse, Franziska
Böhme, Ilka
et al.

Publication Date
2017-02-01

DOI
10.1016/j.dib.2016.12.004

Peer reviewed
Data Article

Further intracellular proteins and signaling pathways regulated by angiotensin-(1–7) in human endothelial cells

Christian Meinert a,b, Franziska Kohse c, Ilka Böhme c, Florian Gembarde d, Anja Tetzner b,c, Thomas Wieland a, Barry Greenberge e, Thomas Walthera,b,c,*

a Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Universität Heidelberg, Mannheim, Germany
b Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
c Departments of Obstetrics and Pediatric Surgery, Division of Women and Child Health, Universität Leipzig, Leipzig, Germany
d Division of Nephrology, Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
e Division of Cardiology, University of California, San Diego, USA

A R T I C L E I N F O

Article history:
Received 12 November 2016
Received in revised form
27 November 2016
Accepted 2 December 2016
Available online 8 December 2016

Keywords:
Angiotensin-(1-7)
Antibody microarray
Cell signaling
Endothelium
Renin-Angiotensin system

A B S T R A C T

In 2016, Meinert et al. (doi: 10.1016/j.jprot.2015.09.020) published the first 25 proteins in a protein array regulated in Human Umbilical Vein Endothelial Cells (HUVEC) by the heptapeptide angiotensin (Ang)-(1–7) and the first 10 intracellular signaling cascades at different time points. This supporting data article shows further proteins and pathways stimulated by Ang-(1–7) in human endothelial cells at time points of 1 h, 3 h, 6 h, and 9 h. HUVECs were stimulated with Ang-(1–7), and regulated proteins were identified via antibody microarray. Bioinformatics software IPA was used for association of regulated proteins to metabolic pathways.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Cardiovascular
More specific subject area	Renin-angiotensin system
Type of data	5 tables
How data was acquired	Antibody microarray for regulated proteins using a GenePix 4100A Microarray Scanner (Molecular Devices, Sunnyvale, USA), and the program IPA (Ingenuity Systems, Redwood City, USA) for the identification of potential metabolic pathways.
Data format	analyzed
Experimental factors	Human Umbilical Vein Endothelial Cells were stimulated with angiotensin-(1–7)
Experimental features	Screening of proteins and pathways in angiotensin-(1–7) stimulated Human Umbilical Vein Endothelial Cells
Data source location	Cork, Ireland
Data accessibility	Data within this article

Value of the data

- First screening of 725 proteins potentially regulated by angiotensin (Ang)-(1–7) in endothelial cells via antibody microarray.
- As often slightly regulated proteins have already dramatic biological effects, identification of further proteins altered by Ang-(1–7) might have significant scientific relevance.
- Detailed description of Ang-(1–7) effects on intracellular signaling pathways under non-pathophysiological circumstances can identify further areas of benefit using Ang-(1–7).
- The understanding of intracellular network signaling initiated by Ang-(1–7) might allow conclusions on how the heptapeptide can oppose the effects of the detrimental Ang II.

1. Data

The antibody microarray identified 110 regulated proteins in human umbilical vein endothelial cells (HUVEC) cells after 1-h stimulation with Ang-(1–7), 119 after 3 h, 31 after 6 h, and 86 after 9 h. The first 25 regulated proteins have been published in Meinert et al. [1] in Tables 1–4. Here the name and ranking of the next regulated proteins are shown (Tables 1–4). Additionally, further intracellular pathways affected by Ang-(1–7) are shown in Table 5A–D.

2. Experimental design, materials and methods

2.1. Cell culture and cell stimulation

HUVEC were grown on 100-mm dishes in EBM (Endothelial basal medium)-2 medium under standard conditions of 37 °C in a humidified incubator and 5% CO₂ [2]. Cells were used in passage 6. When they reached 70% confluence, they were washed twice with DPBS (Dulbecco's phosphate-buffered saline) and serum starved for 1 h in supplements-free medium. HUVECs were stimulated with 10⁻⁷ M Ang-(1–7) for 1 h, 3 h, 6 h and 9 h. Control cells were treated only with DPBS (solvent).
Table 1
The proteins ranked 26–100 based on the detected fold changes after 1 h incubation of HUVEC with 10^{-7} M Ang-(1–7). The order of the numbers is oriented on the highest single value. Expression fold change lower than 1.5 is given in hyphen. Data that could not be detected is marked as n.d. Proteins marked in Italic show repeatedly identified differentially expressed proteins (RIDEPs). The mentioned dye indicates with which dye the unstimulated sample was labeled with.

	Protein	Antibody id	Cy3	Cy5	Cy5
26.	CIN85	C8116	2.68	–	–
27.	Annexin VII	A4475	–	2.64	–
28.	AOP1	A7574	2.44	2.64	n.d
29.	RALAR	R8529	2.63	2.03	–
30.	PINCH-1	P9371	–	2.61	–
31.	Rab9	R5404	2.6	1.76	–
32.	BOB1/BOF.1	B7810	2.57	–	n.d
33.	GF11	G6670	–	2.51	–
34.	MAPK14 (NonActivated)	M8432	2.5	2.09	–
35.	Bim	B7929	2.49	–	n.d
36.	PSF	P2860	2.45	1.57	–
37.	ERK2	M7431	2.44	1.69	–
38.	ASPP2	A4480	1.64	2.44	n.d
39.	BACE1	B0806	2.43	2.29	–
40.	MTBP	M3566	2.43	1.79	–
41.	RICK	R9650	2.43	1.66	–
42.	Bmf	B1684	1.53	2.38	–
43.	MADD	M5683	–	2.37	–
44.	c-Raf (pSer621)	R1151	1.95	2.36	n.d
45.	p53R2	P4993	2.35	1.54	–
46.	SUPR/MAGI-3	S191	2.35	1.77	–
47.	SMAD4	S3934	2.30	–	–
48.	ASC-2	A5355	1.59	1.61	2.28
49.	Calretinin	C7479	2.25	1.96	n.d
50.	TBP	T1827	n.d	n.d	2.24
51.	PRNP	P5999	2.23	–	n.d
52.	SIAH2	S7945	2.23	–	–
53.	MTA2	M7569	2.18	1.56	1.62
54.	FAK (pTyr397)	F7926	1.73	–	2.17
55.	Nuf2	N5287	2.16	–	–
56.	UCHL1	U5258	2.16	–	–
57.	NBS1	N9287	2.16	–	–
58.	FKHRL1	F2178	1.74	2.15	–
59.	RAIDD	R5275	2.15	–	n.d
60.	Cyclin A	C4710	n.d	2.14	–
61.	BAP1	B7930	–	2.14	n.d
62.	p57kip2	P7273	–	2.13	–
63.	Importin α1	I9658	2.12	–	–
64.	WAVE	W0392	2.10	–	–
65.	Caldesmon	C6542	2.08	1.64	–
66.	AP1	A5968	2.08	1.60	–
67.	Zip Kinase	Z0134	2.07	1.66	n.d
68.	FLIPγ/δ	F9925	2.07	–	–
69.	ARC	A8344	–	2.05	–
70.	Fas	F4424	2.04	1.54	–
71.	Pan Cytokeratin	C2931	1.92	–	2.03
72.	S100	S2352	2.00	1.68	–
73.	H3 (Ac-Lys9, pSer10)	H0788	–	2.00	–
74.	H3 (Ac-Lys9)	H0913	1.99	1.52	–
75.	Nitrotyrosin	N0409	1.98	1.50	–
76.	PID/MTA2	P5118	1.98	–	n.d
77.	APRIL	A7126	1.91	1.95	–
78.	δ-Catenin/NPRAP	C4864	1.95	–	–
79.	hABH2	A8228	1.94	1.57	–
80.	Desmosomal Protein	D1286	1.94	–	–
81.	Collin	C1862	1.89	1.94	–
82.	H3 (diMe-Lys9)	D5567	–	1.94	–
Table 1 (continued)

Protein	Antibody id	Cy3	Cy5	Cy5
83. TRF1	T1948	1.92	1.52	–
84. cAbl	A5844	1.91	–	–
85. Tyrosin Hydrolase	T2928	1.91	1.59	–
86. β-COP	G6160	1.91	–	n.d
87. EZF1	E9026	1.77	1.85	–
88. SUMO1	S5446	–	1.85	–
89. Parkin	P6248	1.85	–	–
90. SynCAM	S4945	1.60	1.84	–
91. Protein Kinase Cβ2	P2584	n.d	n.d	1.84
92. MT1	M1320	1.84	–	–
93. BUB1	B0561	1.82	1.64	–
94. ASPP1	A4355	1.82	–	n.d
95. Caspase 13	C8854	1.82	1.75	
96. FXR2	F1554	1.82	–	–
97. Caspase 10	C1229	1.81	1.75	–
98. PKR	P0244	–	1.81	
99. hnRNP-C1/C2	R5028	1.80	–	–
100. Importin α3	I9783	1.77	1.74	–

Table 2

The proteins ranked 26–100 based on the detected fold change values after 3 h incubation of HUVEC with 10^{-7} M Ang-(1–7). The order of the numbers is oriented on the highest single value. Expression fold change lower than 1.5 is given in hyphen. Data that could not be detected is marked as n.d. Proteins marked in italic show repeatedly identified differentially expressed proteins (RIDEPs). The mentioned dye indicates which dye the unstimulated sample was labeled with.

Protein	Antibody id	Cy3	Cy5	Cy5
26. BID	B3183	2.85	–	–
27. β-Tubulin	T5201	2.47	2.85	2.11
28. Centrin	C7736	1.98	–	2.75
29. p21	P1484	2.12	–	2.68
30. FOXC2	F1054	–	–	2.67
31. PIAS2	P9498	–	2.64	2.09
32. Annexin VII	A4475	–	2.64	1.69
33. Neurofibromin	N3662	1.59	–	2.64
34. AOP1	A7674	n.d	2.64	–
35. TRAIL	T9191	–	2.31	2.62
36. Rab5	R7904	2.05	–	2.57
37. GFI1	G6670	n.d	2.51	n.d
38. DRAK1	D1314	2.48	–	1.76
39. Cdk3	C9987	2.01	2.47	1.57
40. ASPP2	A4480	1.77	2.44	n.d
41. S100	S2532	2.40	1.68	2.03
42. N-Cadherin	C2542	1.83	–	2.40
43. Nitrotyrosin	N0409	1.74	1.5	2.39
44. MADD	M5683	n.d	2.37	1.81
45. hSNF5/INI1	H9912	1.56	–	2.33
46. IKKα	I6139	1.52	–	2.33
47. PRMT1	P6871	1.78	–	2.32
48. DR3	D3563	–	–	2.32
49. PP2A	P8109	–	2.31	–
50. Connexin-32	C3470	1.73	–	2.30
51. Tal	T1075	1.61	–	2.29
52. BACE 1	B0806	–	2.29	–
53. Sir2	S5313	–	–	2.27
54. ARP3	A5979	1.74	–	2.27
55. Striatin	S6096	–	–	2.26
56. SMAD4	S3934	1.60	–	2.18
57. Apaf1	A8469	2.18	–	–
Table 2 (continued)

Protein	Antibody id	Cy3	Cy5	Cy5
58. p57kip2	P2735	1.84	2.13	2.16
59. Sirt1	S5196	1.82	–	–
60. RICK	R6560	2.16	1.66	–
61. FAK (pTyr577)	F8926	2.15	–	1.56
62. FKHR1	F2178	–	2.15	–
63. Cyclin A	C4710	n.d	2.14	n.d
64. BAP1	B9303	–	2.14	–
65. MBD4	M5812	–	–	2.12
66. MeCP2	M9317	1.66	1.63	2.10
67. HDAC8	H6412	2.05	–	2.10
68. MAPK14 (nonActivated)	M8432	–	2.09	–
69. TOM22	T6319	1.54	1.66	2.08
70. Annexin V	A8604	1.89	–	2.06
71. c-Myc	M4439	–	–	2.06
72. DEDAF	D3316	2.06	–	–
73. eNOS	N9532	1.64	–	2.05
74. RALAR	R8529	–	2.03	n.d
75. H3 (Ac-Lys9, pSer10)	H0788	–	2.00	2.03
76. TSG101	T826	2.02	1.95	–
77. Dystrophin	D8186	1.66	–	2.02
78. Connexin 43	C8093	–	–	2.01
79. p53	P3262	1.89	–	1.96
80. Protein Kinase Bα	P2482	–	–	1.96
81. Calretinin	C4794	–	1.94	–
82. Coilin	C1862	–	1.94	–
83. MyD88	M9534	–	–	1.91
84. ROCK 2	R8653	1.77	–	1.90
85. I-Afadin	A0349	1.52	–	1.90
86. Connexin 43	C6219	1.56	–	1.89
87. α-Actinin	A5044	1.58	–	1.88
88. E2F1	E9026	1.88	1.85	–
89. Chk2	C9233	1.88	–	1.84
90. Importin α1	I9658	1.87	–	–
91. F1α	F3428	–	1.86	–
92. SUMO1	S5446	–	1.85	–
93. APP1	A4355	1.84	–	–
94. SynCAM	S4845	–	1.84	–
95. Chk1	C9358	1.80	1.51	1.70
96. Sp1	S9809	1.80	–	1.60
97. Pyk2 (pTyr579)	P7114	n.d	1.80	n.d
98. RIP	R8274	1.63	–	1.79
99. Transportin 1	T0825	1.54	–	1.77
100. GADD153	G6916	1.56	–	1.76

Table 3
The proteins ranked 26–31 based on the detected fold change values after 6 h incubation of HUVEC with 10⁻⁷ M Ang-(1–7). The order of the numbers is oriented on the highest single value. Expression fold change lower than 1.5 is given in hyphen. Data that could not be detected is marked as n.d. Proteins marked in Italic show repeatedly identified differentially expressed proteins (RIDEPs). The mentioned dye indicates which dye the unstimulated sample was labeled with.

Protein	Antibody id	Cy3	Cy5	Cy5
26. E2F1	E9026	1.89	–	–
27. Zip Kinase	Z0134	–	1.87	–
28. BID	B3183	–	–	1.85
29. Cyclin D1	C4746	–	1.85	–
30. Nerve Growth Factor β	N3279	1.81	n.d	–
31. HDAC7	H2537	1.78	1.57	–
Table 4
The proteins ranked 26–86 based on the detected fold change values after 9 h incubation of HUVEC with 10^{-7} M Ang-(1–7). The order of the numbers is oriented on the highest single value. Expression fold change lower than 1.5 is given in hyphen. Data that could not be detected is marked as n.d. Proteins marked in Italic show repeatedly identified differentially expressed proteins (RIDEPs). The mentioned dye indicates which dye the unstimulated sample was labeled with.

Protein	Antibody id	Cy3	Cy5	Cy5
26. DR3	D3563	2.67	–	–
27. DNase I	D0188	2.65	–	–
28. Nitrotyrosin	N0409	2.61	2.27	–
29. NGF R	N3908	n.d	2.57	–
30. MDC1	M24444	2.55	–	–
31. p120	P1870	2.54	–	–
32. mTor	T2949	–	2.48	–
33. BID	B3183	2.43	1.71	2.14
34. MDM2	M4308	2.42	–	–
35. WAVE	W0392	2.38	–	–
36. MAP1	M6783	n.d	2.38	–
37. c-Raf (pSer621)	R1151	n.d	2.37	n.d
38. TGF β	T9429	n.d	1.41	2.31
39. DR4	D3813	2.28	–	–
40. HDAC6	H2287	2.26	–	–
41. Desmosomal Protein	D1286	2.24	–	–
42. Calnexin	C4731	2.21	–	–
43. FGFR	F1672	2.19	–	–
44. Collin	C1862	2.18	1.61	–
45. Phospholipase C71	P8104	2.17	2.17	–
46. APRIL	A1851	2.17	n.d	n.d
47. TBP	T1827	–	2.08	2.16
48. DRAK1	D1314	n.d	1.81	2.13
49. UCHL1	U5258	2.12	–	–
50. Parkin	P6248	2.09	–	–
51. PIASγ	P0104	2.09	–	–
52. GF11	G6670	2.07	–	–
53. HDAC5	H4538	2.07	–	–
54. Protein Kinase Cβ2	P3203	1.89	2.05	–
55. Apaf1	A8469	2.03	–	–
56. MRP2	M3692	n.d	2.01	–
57. Neurabin II	N5037	1.99	–	–
58. AP1	A5968	1.98	–	–
59. p19	P4354	1.97	–	–
60. hABH2	A8228	1.96	–	–
61. E2F1	E9026	1.95	1.87	1.63
62. E2F6	E1532	n.d	n.d	1.95
63. PRMT2	P0748	–	–	1.95
64. TAP	T1076	1.94	–	–
65. PRMT1	P6871	n.d	–	1.89
66. c-Tubulin	T1323	1.89	–	–
67. MDMX	M0445	1.88	1.52	–
68. Paxillin	P1093	1.88	–	–
69. Filamin	F1888	1.88	1.69	–
70. Caldesmon	C6542	1.88	1.85	–
71. p34	C3065	1.87	–	–
72. JNK	J4500	1.86	1.6	–
73. Survivin	S8191	1.86	–	–
74. Melanocortin 3	M49337	1.86	–	–
75. H3 (pSer10)	H6409	1.85	–	1.86
76. Sir2	S5313	1.50	1.84	–
77. Ciliated Cell Marker	C5867	1.84	–	–
78. Collagen Type IV	C1926	1.82	–	–
79. MAPK14	M8432	1.81	–	–
80. FANCD2	F0305	1.81	–	–
81. Syntaxin 8	S8945	1.81	–	–
82. S6 Kinase	S4047	–	–	1.80
Table 4 (continued)

Protein	Antibody id	Cy3	Cy5	Cy5
83. HDAC10	H3413	1.64	1.76	–
84. Chk1	C9358	1.52	–	1.60
85. Bcl-x	B9304	1.59	1.53	–
86. Aly	A9979	1.59	1.57	–

Table 5

Metabolic pathways ranked position 11–25 (bold) using the p-values associated by the IPA software to each of the different antibody microarray sets (A: 1 h; B: 3 h; C: 6 h; D: 9 h). For completion, the ranking of the first ten pathways are also listed (in Italic). The ratio states the number of proteins detected in the microarray versus the total number of proteins being part of the particular pathway.

A)

Pathway	1 h p-Value	Ratio
1. Molecular Mechanisms of Cancer	3.67E–11	17/379 (4.5%)
2. p53 Signaling	6.57E–09	9/96 (9.4%)
3. Glucocorticoid Receptor Signaling	9.70E–09	13/295 (4.4%)
4. Chemokine Signaling	2.44E–07	7/73 (9.6%)
5. Cyclins and Cell Cycle regulation	6.24E–07	7/89 (7.9%)
6. PI3K/AKT Signaling	7.24E–07	8/140 (5.7%)
7. ATM Signaling	7.59E–07	6/54 (11.1%)
8. VEGF Signaling	8.91E–07	7/99 (7.1%)
9. Apoptosis Signaling	1.26E–06	7/96 (7.3%)
10. Death Receptor Signaling	1.58E–06	6/95 (9.9%)
11. Chronic Myeloid Leukemia Signaling	2.00E–06	7/105 (6.7%)
12. ERK/MAPK Signaling	2.94E–06	9/204 (4.4%)
13. Cholecystokinin/Gastrin-mediated Signaling	3.62E–06	7/106 (6.6%)
14. Parkinson’s Signaling	4.80E–06	4/18 (22.2%)
15. Pancreatic Adenocarcinoma Signaling	5.01E–06	7/119 (5.9%)
16. CCR5 Signaling in Macrophages	5.92E–06	6/94 (6.4%)
17. PTEN Signaling	6.31E–06	7/124 (5.6%)
18. PDGF Signaling	6.80E–06	6/79 (7.6%)
19. Renin-Angiotensin Signaling	7.30E–06	7/126 (5.6%)
20. PI3K Signaling in B Lymphocytes	2.40E–05	7/143 (4.9%)
21. Protein Kinase A Signaling	2.76E–05	10/328 (3.0%)
22. Breast Cancer Regulation by Stathmin1	3.17E–05	8/210 (3.8%)
23. B Cell Receptor Signaling	3.40E–05	7/156 (4.5%)
24. IGF-1 Signaling	4.50E–05	6/107 (5.6%)
25. IL-15 Signaling	5.18E–05	5/67 (7.5%)

B)

Pathway	3 h p-Value	Ratio
1. Molecular Mechanisms of Cancer	1.20E–22	32/379 (8.4%)
2. p53 Signaling	3.00E–20	19/96 (19.7%)
3. Chronic Myeloid Leukemia Signaling	1.59E –14	15/105 (14.3%)
4. Cyclins and Cell Cycle regulation	2.70E–14	14/89 (15.7%)
5. Death Receptor Signaling	3.51E –13	12/65 (18.5%)
6. Cell Cycle: G1/S Checkpoint regulation	3.98E–12	11/61 (18.0%)
7. PTEN Signaling	3.16E–11	13/124 (10.5%)
8. VEGF Signaling	5.01E –11	12/99 (12.1%)
9. PI3K/AKT Signaling	1.58E –10	13/140 (9.3%)
10. Huntington’s Disease Signaling	7.94E –10	16/238 (6.7%)
11. TNFRI1 Signaling	1.94E –09	9/33 (17.0%)
Table 5 (continued)

Pathway	Ratio	p-Value
B)		
12. Aryl Hydrocarbon Receptor Signaling	2.24E-09	13/159
13. Apoptosis Signaling	2.51E-09	11/96 (11.5%)
14. IL-8 Signaling	3.80E-09	14/193 (7.3%)
15. Small Cell Lung Cancer Signaling	3.98E-09	18/89 (11.2%)
16. ATM Signaling	5.01E-09	9/54 (16.7%)
17. Glioma Signaling	6.31E-09	11/112 (9.8%)
18. Role of PKR in Interferon Induction and Antiviral Response	1.22E-08	8/46 (17.4%)
19. Pancreatic Adenocarcinoma Signaling	2.00E-08	11/119 (9.2%)
20. TWEAK Signaling	4.66E-08	7/39 (17.9%)
21. Glucocorticoid Receptor Signaling	5.01E-08	15/295 (5.1%)
22. Myc Mediated Apoptosis Signaling	5.08E-08	8/61 (13.1%)
23. Type 1 Diabetes Mellitus Signaling	5.15E-08	10/121 (8.3%)
24. Induction of Apoptosis by HIV1	5.22E-08	8/66 (12.1%)
25. Hereditary Breast Cancer Signaling	5.25E-08	10/129 (7.8%)
C)		
1. Molecular Mechanisms of Cancer	1.33E-09	3/379 (2.4%)
2. Small Cell Lung Cancer Signaling	7.65E-08	5/89 (5.6%)
3. Cyclins and Cell Cycle regulation	1.31E-07	5/89 (5.6%)
4. VEGF Signaling	2.14E-07	5/99 (5.1%)
5. p53 Signaling	2.99E-07	5/96 (5.2%)
6. Chronic Myeloid Leukemia Signaling	3.16E-07	5/105 (4.8%)
7. Glioma Signaling	3.98E-07	5/112 (4.5%)
8. GM-CSF Signaling	3.16E-06	4/67 (6.0%)
9. IL-8 Signaling	6.31E-06	5/193 (2.6%)
10. HGF Signaling	2.00E-05	4/105 (3.8%)
11. Huntington's Disease Signaling	2.19E-05	5/238 (2.1%)
12. Pancreatic Adenocarcinoma Signaling	2.29E-05	4/119 (3.4%)
13. PTEN Signaling	2.69E-05	4/124 (3.2%)
14. 14-3-3-mediated Signaling	3.28E-05	4/120 (3.3%)
15. PI3K/AKT Signaling	3.31E-05	4/140 (2.9%)
16. p70S6K Signaling	4.15E-05	4/130 (3.1%)
17. Melanoma Signaling	4.41E-05	3/46 (6.5%)
18. Cell Cycle: G1/S Checkpoint regulation	8.91E-05	3/61 (4.9%)
19. Induction of Apoptosis by HIV1	1.28E-04	3/66 (4.5%)
20. IL-15 Signaling	1.36E-04	3/67 (4.5%)
21. Retinoic acid Mediated Apoptosis Signaling	1.44E-04	3/68 (4.4%)
22. Non-Small Cell Lung Cancer Signaling	1.83E-04	3/79 (3.8%)
23. Chemokine Signaling	6.31E-04	3/73 (4.1%)
24. ERK/MAPK Signaling	6.37E-04	4/204 (2.0%)
25. Integrin Signaling	6.41E-04	4/210 (1.9%)
2.2. Antibody microarray

After Ang-(1–7) stimulation, 1 mg/ml protein cell extract was labeled with Cy™3 or Cy™5 dye. The antibody microarray was performed as described in the Panorama Antibody Microarray-XPRESS Profiler725 Kit manual (Sigma-Aldrich, St. Louis, USA). After incubation with the labeled samples, washing and air drying images were acquired using GenePix 4100A Microarray Scanner (Molecular Devices, Sunnyvale, USA). Data was imported into Acuity 4.0 software (Molecular Devices, Sunnyvale, USA) and normalized using the nonlinear Lowess normalization method. Association of regulated proteins to metabolic pathways was done by IPA software (Ingenuity Systems, Redwood City, USA). The software calculated a p-value using the right tailed Fisher Exact test. The p-value gives the probability that the association between regulated detected proteins and the pathways is due to random association. The software considers a p-value < 0.05 as statistically significant.

Acknowledgements

The study was supported by the NIH (R01HL091191-01A2) and the Deutsche Forschungsgemeinschaft (WA1441/22-2). We thank Victoria Hodgkinson for introducing us into the analysis of the antibody microarray data.

Appendix A. Transparency document

Transparency data associated with this article can be found in the online version at: http://dx.doi.org/10.1016/j.dib.2016.12.004.
References

[1] C. Meinert, F. Gembardt, I. Boehme, A. Tetzner, T. Wieland, B. Greenberg, T. Walther, Identification of intracellular proteins and signalling pathways in human endothelial cells regulated by angiotensin-(1–7). J. Proteom. 130 (2016) 129–139.

[2] A. Tetzner, K. Gebolys, C. Meinert, S. Klein, A. Uhlich, J. Trebicka, O. Villacañas Pérez, T. Walther, The G protein-coupled receptor MrgD is a receptor for angiotensin-(1–7) involving adenylyl cyclase, cAMP, and phosphokinase A, Hypertension 68 (2016) 185–194.