Supporting Information:

Extension of an Atom-Atom Dispersion Function to Halogen Bonds and Its Use for Rational Design of Drugs and Biocatalysts

Wiktoria Jedwabny,*† Edyta Dyguda-Kazimierowicz,*† Katarzyna Pernal,‡
Krzysztof Szalewicz,¶ and Konrad Patkowski§

†Department of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
‡Institute of Physics, Łódź University of Technology, Wólczańska 219, 90-924 Łódź, Poland
¶Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
§Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States

E-mail: Wiktoria.Jedwabny@pwr.edu.pl, JedwabnyW@gmail.com; Edyta.Dyguda@pwr.edu.pl
1 Details of $E^{(2)}_{\text{disp}}$ calculations

The majority of the $E^{(2)}_{\text{disp}}$ values were obtained with SAPT(DFT) method implemented in SAPT2008 program,S1 which applied PBE0 functionalS2,S3 with the Fermi-Amaldi-Tozer-Handy asymptotic correction,S4 and the aug-cc-pVTZ basis set,S5 supplemented by a 3s3p2d2f set of bond functions with (0.9,0.3,0.1) and (0.6,0.2) exponents for sp and df functions, respectively. The energies for systems from the X40x10S6 (training dataset), NBC10extS7 and XB51 Kozuch and MartinS8 datasets (test datasets) were calculated with DFT-SAPTS9–S11 method implemented in MOLPROS12,S13 (version 2012.1) without density fitting, which applied PBE0 functional and the gradient-regulated asymptotic correctionS14 and the aug-cc-pVTZ basis set or, in the case of bromine and iodine atoms, the aug-cc-pVTZ-PPS15 basis set (accounting for relativistic pseudopotentials). Experimental ionization potential (IP) values, needed for the asymptotic correction, were obtained from Ref. S16. However, OPH\textsubscript{3}, NBS, and NIS monomers from XB51 dataset lacked the experimental IP values in Ref.,S16 and for these molecules, present in the following dimers: Br\textsubscript{2} – OPH\textsubscript{3}, FI – OPH\textsubscript{3}, CH\textsubscript{3}I – OPH\textsubscript{3}, NCH – NBS, NH\textsubscript{3} – NBS, PCH – NBS, NCH – NIS, NH\textsubscript{3} – NIS, PCH – NIS, IP values were calculated in Gaussian (version 2016 B-01)S17 using the PBE0/aug-cc-pVTZ (including pseudopotentials for bromine and iodine atoms) method.
2 Details of the dispersion fit

The training set used for the determination of D_{as}^{20} parameters, shown in Table S1, consisted of 164 dimers (see Table S2). Geometries of the training set dimers with bromine and iodine atoms were taken from the X40 database, and included four geometries with the center-of-mass (COM) separation (R) smaller than at the minimum, and five geometries with the COM separation larger than at the minimum (together yielding ten different configurations for each dimer). Geometries of the remaining dimers were optimized at the second order Moeller-Plesset MP2/aug-cc-pVTZ level of theory (several minimum geometries were obtained from the S22 or NCCE31/05 datasets, as indicated in Table S2). For these dimers, ten different radial geometries corresponding to the same angular configuration were provided. In particular, the minimum geometry was accompanied by two geometries with the COM separation smaller than at the minimum, and seven geometries with the COM separation larger than at the minimum (up to 10Å). Overall, there were 1640 configurations in the training set, and the MUE and MURE errors associated with the obtained D_{as}^{20} values were equal to 0.1 kcal · mol$^{-1}$ and 5.1%, respectively.

The D_{as}^{20} parameters are given in Table S1. The C_6^x and C_8^x coefficients are given in the units of J · nm6 · mol$^{-1}$ and J · nm8 · mol$^{-1}$, respectively. The values of β_x are given in bohr$^{-1}$. To obtain the values of C_6^x and C_8^x in atomic units, the corresponding values need to be multiplied by 17.34525495 and 6194.102092, respectively.
Table S1: List of D_{as}^{20} dispersion expression parameters.

Element	C_{6x}^a	C_{8x}^b	β_x^c
H-H	0.199730	0.010225	1.898977
H-B	0.625058	0.004286	2.022739
H-C	0.216319	0.002841	1.737714
H-N	0.117956	0.012842	1.456906
H-O	0.155250	0.003195	1.623847
H-F	0.028773	0.005962	1.618463
H-Al	0.984668	0.060477	1.828202
H-Si	0.957855	0.011257	1.627960
H-P	0.338996	0.296480	0.589819
H-S	0.405991	0.011234	1.416878
H-Cl	0.095880	0.008433	1.660460
H-Br	0.185489	0.020926	1.386093
H-I	0.185411	0.045112	1.310652
He	0.071774	0.004783	2.225149
B	0.003104	0.264031	1.695239
C$_{sp}^1$	1.297139	0.171713	1.951721
C$_{sp}^2$	0.914964	0.268786	1.658960
C$_{sp}^3$	0.461576	0.235496	1.780635
N	1.427069	0.070811	2.396253
O	0.723590	0.052314	2.368908
F	0.900101	0.015629	2.458106
Ne	0.261125	0.028508	2.132240
Al	0.415583	0.900131	1.133178
Si	0.009433	0.894086	2.726511
P	0.890484	2.415552	1.634346
S	4.793738	0.825826	2.279597
Cl	6.254113	0.691238	1.643112
Ar	3.331510	0.509268	1.843843
Br	9.995193	1.169732	1.572187
I	21.167203	2.745814	1.463387

*In units of $J \cdot nm^6 \cdot mol^{-1}$. Multiply by 17.34525495 to obtain C_{6x}^a in atomic units.

*In units of $J \cdot nm^8 \cdot mol^{-1}$. Multiply by 6194.102092 to obtain C_{8x}^b in atomic units.

*In units of bohr$^{-1}$.

S-4
Table S2: Monomers used for the fit of D_{20}^{∞} parameters to the benchmark $E_{\text{disp}}^{(2)}$ energies. Dimers denoted in blue, red or green overlap with the S22, NCCE31/05 or both of these test sets, respectively.

A	B
AlCl₃	Ar, He, Ne
AlF₃	AlF₃, Ar, He, Ne
AlH₃	AlH₃, Ar, He, Ne
Ar	Ar, C₂H₂, C₂H₆, CH₃OH, CH₄, CO₂
BCl₃	Ar, BCl₃, He, Ne
BF₃	Ar, BF₃, He, Ne
BH₃	Ar, BH₃, He, Ne
C₂H₂	C₂H₂, C₂H₆, CH₃OH, H₂O, NH₃
C₂H₄	Ar, C₂H₄, CH₄, F₂, H₂O, NH₃
C₂H₆	C₂H₂, C₂H₆, CH₃OH, NH₃, Ne
C₆H₆	Ar, C₆H₆*, CF₃Br, CF₃I, CH₄, H₂O, He, Ne
CH₃Br	C₆H₆, CH₂O
CH₃I	C₆H₆, CH₂O
CH₃OH	CH₃OH, CH₄, H₂O, HBr, HI, Ne, NH₃
CH₄	Br₂, C₂H₂, C₂H₆, CH₄, I₂, Ne, NH₃
CO₂	C₂H₄, C₂H₆, CH₃OH, CH₄, CO₂
H₂	Ar, H₂, H₂O, He, Ne
H₂O	Ar, C₂H₂, C₂H₆, CH₄, ClF, CO₂, H₂O
H₂S	Ar, C₂H₂, C₂H₆, CH₃OH, CO₂, H₂O, HF, H₂S
HCl	Ar, CH₃OH, CH₄, CO₂, H₂O, H₂S, HCl, He
HCONH₂	HCONH₂
HCOOH	HCOOH
HF	Ar, C₂H₂, CH₃OH, CH₄, CO₂, H₂O, HF, N₂
He	Ar, C₂H₆, CH₃OH, CH₄, CO₂, H₂O, H₂S, HF, He
NH₃	Ar, ClF, H₂S, He, Ne, NH₃, CO₂, H₂O
Ne	Ar, CO₂, H₂O, H₂S, HCl, HF, Ne
PCl₃	Ar, He, Ne, PCl₃
PF₃	Ar, He, Ne, PF₃
PH₃	Ar, He, Ne, PH₃
pyrazine	pyrazine
SiCl₄	Ar, He, Ne
SiF₄	Ar, He, Ne, SiF₄
SiH₄	Ar, He, Ne, SiH₄

Benzene dimer in sandwich configuration.
3 Detailed numerical results

Table S3: $E^{(2)}_{\text{disp}}$, D_{as} and D3 correction energies\(^a\) calculated for excluded metal complexes at equilibrium distances\(^b\).

Dimer	$E^{(2)}_{\text{disp}}$	D_{as}	D3(NS)\(^c\)	D3BJ(HF)\(^d\)
Ar – BeH\(_2\)	-0.8	-0.8	-0.7	-0.7
Ar – BeO	-0.9	-0.5	-0.5	-0.5
Ar – Li\(_2\)O	-0.6	-1.0	-6.1	-2.6
Ar – LiH	-0.5	-0.9	-6.0	-2.8
Ar – MgH\(_2\)	-1.0	-0.8	-1.2	-1.2
Ar – MgO	-1.6	-1.1	-0.9	-0.8
Ar – Na\(_2\)O	-0.4	-0.7	-1.9	-1.4
Ar – NaH	-0.5	-0.3	-2.1	-1.7
Be – Be	-7.6	-7.1	-17.3	-9.3
BeH\(_2\) – BeH\(_2\)	-17.3	-16.6	-70.4	-8.7
BeO – BeO	-7.3	-8.6	86.6	-3.9
H\(_2\) – BeH\(_2\)	-1.0	-1.0	-0.5	-0.9
H\(_2\) – BeO	-1.2	-0.8	-0.8	-0.7
H\(_2\) – Li\(_2\)O	-3.0	-2.3	53.5	-3.4
H\(_2\) – LiH	-0.5	-0.9	56.4	-2.5
H\(_2\) – MgH\(_2\)	-1.7	-1.6	9.2	-2.2
H\(_2\) – MgO	-1.9	-1.4	-1.2	-1.0
H\(_2\) – Na\(_2\)O	-6.3	-4.1	51.3	-4.0
H\(_2\) – NaH	-0.8	-0.3	-0.2	-0.3
He – BeH\(_2\)	-0.1	-0.1	-0.1	-0.1
He – BeO	-0.1	-0.1	-0.1	-0.1
He – Li\(_2\)O	-0.2	-0.5	-2.9	-0.9
He – LiH	-0.2	-0.4	-1.5	-0.9
He – MgH\(_2\)	-0.1	-0.1	-0.1	-0.1
He – MgO	0.0	0.0	0.0	0.0
He – Na\(_2\)O	0.0	0.0	-0.1	0.0
He – NaH	-0.1	-0.1	-0.2	-0.2
Li\(_2\)O – Li\(_2\)O	-7.3	-6.8	-192.5	-13.4
LiH – LiH	-9.8	-2.3	-92.3	-7.0
Li – Li	-0.8	-0.8	-1.2	-1.1
MgH\(_2\) – MgH\(_2\)	-5.2	-2.9	-9.9	-3.8
Mg – Mg	-2.9	-2.7	-4.5	-3.7
MgO – MgO	-34.2	-51.7	7.7	-6.5
Na\(_2\)O – Na\(_2\)O	-6.2	-6.4	-100.4	-12.8
NaH – NaH	-8.3	-0.6	-47.1	-7.0
Na – Na	-0.5	-0.5	-0.9	-0.9
Ne – BeH\(_2\)	-0.2	-0.2	-0.2	-0.2
Table S3: continued from previous page.

Dimer	$E_{\text{disp}}^{(2)}$	D_{as}	D3(NS)	D3BJ(HF)
Ne – BeO	-0.2	-0.1	-0.1	-0.1
Ne – Li₂O	-0.3	-0.6	-3.0	-1.2
Ne – LiH	-0.3	-0.5	-2.4	-1.2
Ne – MgH₂	-0.2	-0.2	-0.3	-0.3
Ne – MgO	-0.4	-0.3	-0.2	-0.2
Ne – Na₂O	-0.2	-0.3	-0.6	-0.5
Ne – NaH	-0.2	-0.1	-0.5	-0.6

MUE/MURE: 1.1/41.5 18.5/664.9 1.8/107.5

\(^a\) In units of kcal · mol\(^{-1}\).

\(^b\) Benchmark excluded from final D_{as} parametrization.

\(^c\) D3 correction calculated with no switching.

\(^d\) D3 correction calculated with BJ damping for the HF level of theory.
Table S4: $E_{\text{disp}}^{(2)}$, D_{as}^{20}, and D3 energiesa calculated for each dimer from the S22 databaseb. Corresponding MUE and MURE values are given.

Dimer	$E_{\text{disp}}^{(2)}$	D_{as}^{20}	$D_{\text{3BJ}}(\text{HF})^d$	$D_{\text{3BJ}}(\text{OLYP})^d$	$D_{\text{3BJ}}(\text{revPBE38})^d$	$D_{\text{3J}}(\text{NS})^e$
2-pyridoxine – 2-aminopyridine	-9.7	-2.2	-2.1	-1.9	-1.0	-0.8
adenine – thymine (stack)	-10.0	-2.2	-1.9	-2.0	-1.0	-0.8
adenine – thymine (wc)	-10.3	-2.2	-2.0	-2.0	-1.0	-0.8
NH$_3$ dimer	-9.8	-2.2	-1.9	-2.0	-1.0	-0.8
C$_6$H$_6$ – NH$_3$	-10.1	-2.2	-1.9	-2.0	-1.0	-0.8
C$_6$H$_6$ – CH$_3$	-9.5	-2.2	-1.9	-2.0	-1.0	-0.8
C$_6$H$_6$ – CH$_2$	-9.5	-2.2	-1.9	-2.0	-1.0	-0.8
HCONH$_2$ dimer	-9.8	-2.2	-1.9	-2.0	-1.0	-0.8
HCOOH dimer	-9.5	-2.2	-1.9	-2.0	-1.0	-0.8
indole – C$_6$H$_6$ (stack)	-11.7	-2.2	-1.9	-2.0	-1.0	-0.8
indole – C$_6$H$_6$ (t-shape)	-6.3	-2.2	-1.9	-2.0	-1.0	-0.8
CH$_4$ dimer	-6.3	-2.2	-1.9	-2.0	-1.0	-0.8
phenol dimer	-6.3	-2.2	-1.9	-2.0	-1.0	-0.8
pyrazine dimer	-6.3	-2.2	-1.9	-2.0	-1.0	-0.8
uracil dimer (hb)	-6.3	-2.2	-1.9	-2.0	-1.0	-0.8
uracil dimer (stack)	-6.3	-2.2	-1.9	-2.0	-1.0	-0.8
H$_2$O dimer	-6.3	-2.2	-1.9	-2.0	-1.0	-0.8

MUE/MURE: 0.4/7.1 1.0/11.8 2.1/28.8 2.5/34.5 2.8/34.4 3.0/43.2

aIn units of kcal · mol$^{-1}$.

bBenchmark reported in Ref. S18.

cD$_{\text{as}}$ revision reported herein.

dD$_3$S19 dispersion term calculated with BJ damping for the HF level of theory or given functional.

eD$_3$S19 dispersion term calculated without switching.S20

fErrors calculated for the S22 dataset restricted to dimers not present in the D_{as} training set. See Table S2 for the overlapping dimers.
Table S5: $E_{\text{disp}}^{(2)}$, D_{as}^{20}, and D3 energies\(^a\) calculated for each dimer from the NCCE31/05 database\(^b\). Corresponding MUE and MURE values are given.

Dimer	$E_{\text{disp}}^{(2)}$	D_{as}^{20}\(^c\)	D3BJ(HF)\(^d\)	D3BJ(OLYP)\(^d\)	D3BJ(revPBE38)\(^d\)	D3(NS)\(^e\)
C\(_2\)H\(_2\) dimer	-1.4	-1.3	-1.3	-1.8	-1.1	-1.3
C\(_2\)H\(_2\) – ClF	-5.0	-4.9	-4.1	-4.3	-1.9	-2.1
C\(_2\)H\(_4\) dimer	-2.6	-2.7	-2.9	-3.8	-2.1	-3.1
C\(_2\)H\(_4\) – F\(_2\)	-1.6	-1.3	-0.9	-1.2	-0.6	-0.9
C\(_6\)H\(_6\) – Ne	-1.0	-0.9	-0.8	-1.1	-0.7	-0.6
CH\(_3\)Cl – HCl	-3.6	-3.5	-3.4	-3.9	-1.9	-4.8
CH\(_3\)SH – HCl	-4.6	-4.5	-4.1	-4.7	-2.3	-6.2
CH\(_4\) dimer	-1.3	-1.2	-1.2	-1.6	-1.0	-1.2
CH\(_4\) – Ne	-0.3	-0.3	-0.3	-0.4	-0.2	-0.3
H\(_2\)O – ClF	-4.0	-3.8	-2.5	-2.5	-1.1	-3.1
H\(_2\)O dimer	-2.3	-2.1	-1.6	-1.7	-0.7	-3.6
H\(_2\)S dimer	-2.1	-1.9	-1.7	-2.2	-1.2	-2.0
H\(_2\)S – HCl	-3.0	-2.7	-2.5	-2.9	-1.4	-3.7
HCN – CH\(_3\)SH	-2.7	-2.8	-1.9	-2.2	-1.1	-2.6
HCN – ClF	-4.2	-4.0	-2.8	-3.4	-1.8	-3.2
HCOOH dimer	-8.8	-8.7	-5.3	-5.7	-2.7	-12.3
HCl dimer	-2.1	-1.9	-5.8	-6.0	-2.6	-20.0
HF dimer	-1.7	-1.6	-0.1	-0.1	-0.1	-0.1
He – Ar	-0.1	-0.1	-0.1	-0.1	0.0	-0.1
He – Ne	-0.1	-0.1	-1.2	-1.2	-0.4	-3.4
NH\(_3\) – Cl\(_2\)	-4.7	-3.9	-0.2	-0.3	-0.2	-0.2
NH\(_3\) – ClF	-9.2	-8.7	-0.1	-0.2	-0.1	-0.1
NH\(_3\) – F\(_2\)	-1.8	-1.3	-2.7	-2.9	-1.4	-2.2
NH\(_3\) – H\(_2\)O	-3.0	-2.7	-4.8	-4.2	-1.7	-7.4
NH\(_3\) dimer	-2.1	-1.8	-0.7	-0.9	-0.4	-0.8
Ne – Ar	-0.3	-0.2	-2.1	-2.1	-0.9	-4.1
Ne dimer	-0.2	-0.1	-1.5	-1.7	-0.8	-2.1
C\(_6\)H\(_6\) dimer (P)	-5.8	-5.5	-5.1	-7.2	-5.0	-3.9
C\(_6\)H\(_6\) dimer (S)	-4.7	-4.4	-4.1	-5.8	-4.1	-3.2
C\(_6\)H\(_6\) dimer (T)	-4.1	-4.0	-4.1	-5.5	-3.4	-3.8

MUE/MURE: 0.2/8.1 0.8/22.7 0.8/22.4 1.7/48.3 1.3/33.7
MUE/MURE\(_{12}\): 0.2/8.2 0.6/19.9 0.7/21.6 1.5/49.8 1.1/36.4

\(^a\)In units of kcal · mol\(^-1\).
\(^b\)Benchmark reported in Ref. S21.
\(^c\)\(D_{\text{as}}\) revision reported herein.
\(^d\)D3\(^{S19}\) dispersion term calculated with BJ damping for the HF level of theory or given functional.
\(^e\)D3\(^{S19}\) dispersion term calculated without switching.\(^{S20}\)
\(^f\)Errors calculated for the NCCE31/05 dataset restricted to dimers not present in the \(D_{\text{as}}\) training set.

See Table S2 for the overlapping dimers.
Table S6: $E^{(2)}_{\text{disp}}$, D_{20}^{as}, D3, and DD3S energiesa calculated for each dimer from the XB51 databaseb. Corresponding MUE and MURE values are given.

Dimer	$E^{(2)}_{\text{disp}}$	D_{20}^{as}	D3BJ(HF)d	D3BJ(OLYP)d	D3BJ(revPBE38)d	D3(NS)e	DD3Sf
Br\textsubscript{2} – FCCH	-1.1	-1.2	-0.9	-1.2	-0.7	-0.9	-1.2
Br\textsubscript{2} – CH\textsubscript{3}F	-3.0	-3.2	-2.5	-2.9	-1.5	-3.0	-3.4
Br\textsubscript{2} – NCH	-3.2	-3.0	-2.6	-2.7	-1.3	-2.0	-3.3
Br\textsubscript{2} – NH\textsubscript{3}	-5.5	-5.1	-3.9	-3.8	-1.8	-2.9	-4.7
Br\textsubscript{2} – OCH\textsubscript{2}	-4.0	-4.1	-3.5	-3.7	-1.8	-3.0	-4.5
Br\textsubscript{2} – PCH	-2.5	-2.0	-2.7	-2.9	-1.6	-3.3	-3.4
Br\textsubscript{2} – pyridine	-7.6	-7.5	-5.2	-5.6	-2.9	16.5	-6.4
CH\textsubscript{3}I – FCCH	-0.5	-0.5	-0.3	-0.4	-0.3	-0.3	-1.3
CH\textsubscript{3}I – CH\textsubscript{3}	-4.4	-5.2	-3.8	-3.7	-1.8	-5.3	-3.1
CH\textsubscript{3}I – NCH	-6.3	-7.0	-4.9	-3.9	-1.8	35.2	-2.5
CH\textsubscript{3}I – NH\textsubscript{3}	-8.8	-9.7	-6.7	-5.5	-2.4	-10.5	-3.0
CH\textsubscript{3}I – OCH\textsubscript{2}	-6.3	-7.2	-5.1	-4.5	2.1	21.8	-4.0
CH\textsubscript{3}I – PCH	-4.8	-4.5	-5.7	-4.2	-2.2	-5.7	-3.1
CH\textsubscript{3}I – pyridine	-11.9	-13.9	-7.9	-7.3	-3.8	54.2	-4.8
FI – FCCH	-1.1	-1.1	-0.9	-1.3	-0.7	-0.9	-0.4
FI – CH\textsubscript{3}F	-2.6	-2.6	-2.3	-2.9	-1.6	-2.2	-4.6
FI – NCH	-2.2	-1.9	-1.9	-2.3	-1.2	-1.3	-5.1
FI – NH\textsubscript{3}	-3.0	-2.6	-2.3	-2.8	-1.5	-1.0	-7.4
FI – OCH\textsubscript{2}	-3.1	-3.0	-3.0	-3.6	-1.9	-2.1	-5.7
FI – PCH	-2.1	-1.6	-2.4	-2.8	-1.6	-2.8	-5.4
FI – pyridine	-4.4	-4.0	-3.7	-4.6	-2.6	0.7	-8.7
NCH – F\textsubscript{3}Cl	-2.9	-2.7	-2.6	-2.8	-1.4	-1.2	-3.2
NCH – FBr	-5.5	-5.9	-4.1	-3.4	-1.5	10.2	-4.6
NCH – FC\textsubscript{l}	-3.7	-4.0	-2.8	-2.7	-1.2	-2.7	-3.5
NCH – PhBr	-1.9	-1.6	-1.5	-1.9	-1.0	-1.4	-2.1
NCH – PhI	-2.4	-2.1	-2.0	-2.4	-1.3	-1.4	-2.7
NH\textsubscript{3} – F\textsubscript{3}Cl	-4.2	-3.8	-3.3	-3.6	-1.8	-1.4	-4.2
NH\textsubscript{3} – FBr	-8.9	-9.5	-5.9	-4.8	-2.0	-10.4	-6.7
NH\textsubscript{3} – FC\textsubscript{l}	-7.4	-7.9	-4.6	-4.1	-1.7	-6.0	-5.6
NH\textsubscript{3} – PhBr	-2.6	-2.1	-1.8	-2.3	-1.2	-1.3	-2.4
NH\textsubscript{3} – PhI	-3.3	-2.8	-2.5	-3.0	-1.6	-1.1	-3.2
PCH – F\textsubscript{3}Cl	-2.2	-1.8	-2.6	-2.9	-1.7	-3.0	-3.2
PCH – FBr	-4.1	-3.7	-4.5	-3.7	-1.8	-5.7	-4.7
PCH – FC\textsubscript{l}	-2.8	-2.6	-2.9	-3.0	-1.5	-3.8	-3.6
PCH – PhBr	-2.0	-1.4	-2.0	-2.5	-1.4	-2.4	-2.7
PCH – PhI	-2.2	-1.7	-2.5	-2.9	-1.7	-2.9	-3.1
Br\textsubscript{2} – OPH\textsubscript{3}	-5.1	-5.1	-4.8	-4.8	-2.4	-6.0	-5.9
FI – OPH\textsubscript{3}	-8.2	-9.3	-6.9	-5.7	-2.9	8.4	-7.4
MeI – OPH\textsubscript{3}	-3.8	-4.0	-4.5	-5.1	-2.7	-5.4	-5.7
NCH – NBS	-3.5	-3.4	-2.8	-2.8	-1.4	-1.9	-3.5
NCH – NIS	-4.3	-4.3	-3.7	-3.5	-1.7	3.7	-4.3
Table S6: continued from previous page.

Dimer	\(E_{\text{disp}}^{(2)}\)	\(D_{\text{as}}^{20}\)	D3BJ(HF)	D3BJ(OLYP)	D3BJ(revPBE38)	D3(NS)	DD3S
NH3 – NBS	-5.5	-5.2	-3.9	-3.9	-1.8	-3.0	-4.8
NH3 – NIS	-6.8	-6.8	-5.3	-4.8	-2.3	-5.1	-6.1
PCH – NBS	-2.6	-2.1	-2.9	-3.1	-1.7	-3.5	-3.5
PCH – NIS	-3.1	-2.6	-3.7	-3.6	-2.0	-4.5	-4.2

MUE/MURE: 0.4/10.3 0.9/18.8 1.0/20.0 2.4/51.9 5.5/89.1 0.7/17.5

*In units of kcal \(\cdot\) mol\(^{-1}\).

Benchmark reported in Ref. S8.

\(D_{\text{as}}\) revision reported herein.

\(D_3^{\text{S19}}\) dispersion term calculated with BJ damping for the HF level of theory or given functional.

\(D_3^{\text{S19}}\) dispersion term calculated without switching.\(^{S20}\)

Method reported in Ref. S21.

Table S7: \(E_{\text{disp}}^{(2)}\), \(D_{\text{as}}^{20}\), \(D_{\text{as}}^{10}\), D3, and DD3S energies\(^a\) calculated for each dimer from the NBC10ext database\(^b\). Corresponding MUE and MURE values are given.

Dimer	R/\(R_{eq}\)	\(E_{\text{disp}}^{(2)}\)	\(D_{\text{as}}^{20}\)	\(D_{\text{as}}^{10}\)	D3BJ(HF)	D3BJ(OLYP)	D3BJ(revPBE38)	D3(NS)	DD3S
1 (C\(_6\)H\(_6\) dimer)									
0.82	-12.5	-12.7	-13.4	-11.4	-15.8	-9.5	-8.1	-15.4	
0.85	-10.8	-10.8	-11.4	-9.7	-13.7	-8.5	-7.1	-13.2	
0.87	-9.3	-9.3	-9.7	-8.4	-11.9	-7.6	-6.2	-11.2	
0.90	-8.0	-7.9	-8.3	-7.2	-10.3	-6.7	-5.4	-9.6	
0.92	-7.0	-6.8	-7.1	-6.2	-8.9	-6.0	-4.7	-8.3	
0.95	-6.0	-5.9	-6.1	-5.4	-7.7	-5.3	-4.1	-7.1	
0.97	-5.2	-5.1	-5.3	-4.7	-6.7	-4.7	-3.6	-6.1	
1.00	-4.6	-4.4	-4.5	-4.1	-5.8	-4.1	-3.2	-5.3	
1.03	-4.0	-3.8	-3.9	-3.6	-5.0	-3.7	-2.8	-4.6	
1.05	-3.5	-3.3	-3.4	-3.1	-4.4	-3.2	-2.4	-4.0	
1.08	-3.0	-2.9	-3.0	-2.7	-3.8	-2.9	-2.1	-3.5	
1.15	-2.0	-1.9	-2.0	-1.9	-2.6	-2.0	-1.5	-2.3	
1.28	-1.1	-1.0	-1.1	-1.1	-1.4	-1.1	-0.8	-1.3	
1.41	-0.6	-0.6	-0.6	-0.6	-0.8	-0.7	-0.5	-0.7	
1.54	-0.4	-0.4	-0.4	-0.4	-0.5	-0.4	-0.3	-0.4	
1.67	-0.2	-0.2	-0.2	-0.2	-0.3	-0.2	-0.2	-0.3	
2.56	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2 (C\(_6\)H\(_6\) dimer)									
0.86	-11.0	-11.4	-12.3	-11.2	-13.0	-6.7	-13.1	-15.2	
0.87	-10.2	-10.6	-11.4	-10.4	-12.3	-6.4	-11.9	-14.2	
0.88	-9.5	-9.8	-10.5	-9.7	-11.6	-6.1	-10.8	-13.2	
0.90	-8.2	-8.4	-9.0	-8.4	-10.3	-5.6	-9.0	-11.5	
0.92	-7.0	-7.2	-7.7	-7.3	-9.2	-5.1	-7.5	-9.9	
0.94	-6.1	-6.2	-6.6	-6.3	-8.1	-4.6	-6.3	-8.5	
0.96	-5.2	-5.3	-5.6	-5.4	-7.1	-4.1	-5.2	-7.3	
0.98	-4.5	-4.6	-4.8	-4.7	-6.2	-3.7	-4.4	-6.2	
1.00	-3.9	-3.9	-4.1	-4.0	-5.4	-3.3	-3.7	-5.3	
Dimer	R/R_{eq}	$E_{\text{disp}}^{(2)}$	D_{as}^{20}	D_{as}^{10}	D3BJ(HF)	D3BJ(OLYP)	D3BJ(revPBE38)	D3(NS)	DD3S
-------	------------	-----------------	-----------------	-----------------	---------	-----------	--------------	--------	------
	1.02	-3.4	-3.4	-3.5	-4.7	-3.0	-3.2	-4.6	
	1.04	-3.0	-2.9	-3.0	-4.1	-2.7	-2.7	-3.9	
	1.06	-2.6	-2.5	-2.6	-3.6	-2.4	-2.3	-3.4	
	1.08	-2.2	-2.2	-2.2	-3.1	-2.1	-2.0	-2.9	
	1.10	-2.0	-1.9	-2.0	-2.7	-1.9	-1.7	-2.5	
	1.12	-1.7	-1.7	-1.7	-2.3	-1.7	-2.2	-2.2	
	1.20	-1.0	-1.0	-1.0	-1.4	-0.8	-0.8	-1.2	
	1.30	-0.6	-0.5	-0.6	-0.7	-0.6	-0.4	-0.7	
	1.40	-0.3	-0.3	-0.3	-0.4	-0.3	-0.2	-0.4	
	1.50	-0.2	-0.2	-0.2	-0.2	-0.2	-0.1	-0.2	
	1.60	-0.1	-0.1	-0.1	-0.2	-0.1	-0.1	-0.1	
	0.75	-9.3	-9.2	-8.3	-11.8	-7.6	-6.2	-11.2	
	0.78	-9.2	-9.1	-9.5	-11.7	-7.5	-6.1	-11.1	
	0.81	-9.0	-9.0	-9.4	-11.5	-7.4	-6.1	-10.9	
	0.84	-8.8	-8.7	-9.1	-11.3	-7.2	-5.9	-10.6	
	0.88	-8.5	-8.5	-8.8	-10.9	-7.1	-5.8	-10.3	
	0.91	-8.2	-8.1	-8.5	-10.5	-6.8	-5.6	-9.9	
	0.94	-7.8	-7.8	-8.1	-10.1	-6.6	-5.4	-9.5	
	0.95	-7.6	-7.6	-7.9	-9.9	-6.4	-5.3	-9.3	
	0.97	-7.4	-7.4	-7.7	-9.7	-6.3	-5.2	-9.1	
	0.98	-7.2	-7.2	-7.5	-9.4	-6.1	-5.1	-8.8	
	1.00	-7.0	-7.0	-7.3	-9.1	-6.0	-4.9	-8.6	
	1.06	-6.8	-6.8	-7.1	-8.9	-5.8	-4.8	-8.3	
	1.11	-6.6	-6.6	-6.9	-8.6	-5.7	-4.7	-8.1	
	1.22	-6.2	-6.1	-6.4	-5.7	-5.3	-4.4	-7.6	
	1.33	-5.8	-5.7	-5.9	-7.5	-5.0	-4.1	-7.0	
	1.44	-5.3	-5.2	-5.5	-4.9	-4.6	-3.8	-6.5	
	1.56	-4.9	-4.8	-5.0	-4.5	-4.3	-3.6	-6.0	
	1.67	-4.5	-4.4	-4.5	-4.1	-5.8	-3.9	-5.4	
	0.83	-10.3	-11.4	-13.1	-10.3	-12.4	-6.1	-11.0	
	0.84	-9.5	-10.5	-12.0	-9.5	-11.7	-5.8	-10.0	
	0.87	-8.1	-8.9	-10.2	-8.2	-10.4	-5.3	-8.3	
	0.89	-7.0	-7.6	-8.7	-7.0	-9.2	-4.9	-6.9	
	0.92	-6.0	-6.5	-7.4	-6.0	-8.0	-4.4	-5.8	
	0.95	-5.1	-5.6	-6.3	-5.1	-7.0	-4.0	-4.9	
	0.97	-4.4	-4.8	-5.3	-4.3	-6.1	-3.6	-4.1	
	1.00	-3.8	-4.1	-4.6	-3.7	-5.2	-3.2	-3.5	
	1.03	-3.2	-3.5	-3.9	-3.2	-4.5	-2.8	-3.0	
	1.05	-2.8	-3.0	-3.3	-2.7	-3.9	-2.5	-2.5	
	1.08	-2.4	-2.6	-2.9	-2.3	-3.4	-2.2	-2.2	
	1.11	-2.1	-2.3	-2.5	-2.0	-2.9	-2.0	-1.9	
	1.18	-1.3	-1.5	-1.6	-1.3	-1.9	-1.4	-1.2	
Table S7: continued from previous page.

Dimer	R/Req	$E^{(2)}_{\text{disp}}$	D^{20}_{as}	D^{10}_{as}	D3BJ(HF)	D3BJ(OLYP)	D3BJ(revPBE38)	D3(NS)	DD3S
4 (C$_6$H$_6$ − SH$_2$)	1.25	-1.0	-1.1	-1.1	-0.9	-1.3	-1.0	-0.9	-1.2
	1.32	-0.7	-0.8	-0.8	-0.7	-1.0	-0.7	-0.6	-0.9
	1.38	-0.5	-0.6	-0.6	-0.5	-0.7	-0.5	-0.5	-0.6
	1.45	-0.4	-0.4	-0.4	-0.4	-0.5	-0.4	-0.3	-0.5
	1.58	-0.2	-0.2	-0.2	-0.2	-0.3	-0.2	-0.2	-0.3
	1.71	-0.1	-0.1	-0.1	-0.1	-0.2	-0.1	-0.1	-0.2
	1.84	-0.1	-0.1	-0.1	-0.1	-0.2	-0.1	-0.2	-0.2
	1.97	0.0	-0.1	-0.1	-0.1	-0.1	-0.1	0.0	-0.1
	0.83	-6.7	-6.2	-6.9	-6.4	-7.7	-3.8	-7.7	-8.8
	0.84	-6.2	-5.8	-6.4	-6.0	-7.2	-3.7	-7.0	-8.2
	0.87	-5.3	-4.9	-5.4	-5.1	-6.4	-3.3	-5.8	-7.0
	0.89	-4.6	-4.2	-4.6	-4.4	-5.6	-3.0	-4.8	-6.0
	0.92	-3.9	-3.6	-4.0	-3.8	-4.9	-2.7	-4.0	-5.1
	0.95	-3.4	-3.1	-3.4	-3.2	-4.3	-2.5	-3.3	-4.4
	0.97	-2.9	-2.6	-2.9	-2.8	-3.7	-2.2	-2.8	-3.7
5 (C$_6$H$_6$ − CH$_4$)	1.00	-2.5	-2.3	-2.5	-2.4	-3.2	-2.0	-2.4	-3.2
	1.03	-2.2	-1.9	-2.1	-2.0	-2.8	-1.8	-2.0	-2.7
	1.05	-1.9	-1.7	-1.8	-1.7	-2.4	-1.6	-1.7	-2.3
	1.08	-1.6	-1.5	-1.6	-1.5	-2.1	-1.4	-1.4	-2.0
	1.11	-1.4	-1.3	-1.4	-1.3	-1.8	-1.2	-1.2	-1.7
	1.16	-1.1	-0.9	-1.0	-1.0	-1.3	-1.0	-0.9	-1.2
	1.21	-0.8	-0.7	-0.8	-0.7	-1.0	-0.8	-0.7	-0.9
	1.26	-0.6	-0.5	-0.6	-0.6	-0.8	-0.6	-0.5	-0.7
	1.32	-0.5	-0.4	-0.4	-0.4	-0.6	-0.5	-0.4	-0.5
	1.37	-0.4	-0.3	-0.3	-0.3	-0.5	-0.4	-0.3	-0.4
	1.42	-0.3	-0.3	-0.3	-0.3	-0.4	-0.3	-0.2	-0.3
	1.47	-0.2	-0.2	-0.2	-0.2	-0.3	-0.2	-0.2	-0.3
	1.58	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	-0.1	-0.2
6 (CH$_4$ dimer)	0.86	-3.0	-2.8	-2.9	-3.0	-3.7	-1.8	-3.3	-4.1
	0.88	-2.7	-2.6	-2.7	-2.7	-3.5	-1.7	-3.0	-3.7
	0.89	-2.5	-2.3	-2.4	-2.5	-3.2	-1.6	-2.7	-3.4
	0.92	-2.1	-2.0	-2.0	-2.1	-2.7	-1.4	-2.2	-2.8
	0.94	-1.8	-1.7	-1.7	-1.7	-2.3	-1.3	-1.8	-2.3
	0.97	-1.5	-1.4	-1.5	-2.0	-2.0	-1.2	-1.5	-1.9
	1.00	-1.2	-1.2	-1.2	-1.7	-1.0	-1.0	-1.2	-1.6
	1.03	-1.1	-1.0	-1.0	-1.0	-1.4	-0.9	-1.0	-1.3
	1.06	-0.9	-0.8	-0.9	-0.9	-1.2	-0.8	-0.9	-1.1
	1.08	-0.8	-0.7	-0.7	-0.7	-1.0	-0.7	-0.7	-1.0
	1.11	-0.6	-0.6	-0.6	-0.6	-0.9	-0.6	-0.6	-0.8
	1.14	-0.5	-0.5	-0.5	-0.5	-0.7	-0.5	-0.5	-0.7
	1.17	-0.5	-0.5	-0.5	-0.6	-0.6	-0.5	-0.4	-0.6
	1.19	-0.4	-0.4	-0.4	-0.5	-0.5	-0.4	-0.4	-0.5
Table S7: continued from previous page.

Dimer	R/Req	\(E_{\text{disp}}^{(2)}\)	\(D_{\text{as}}^{0}\)	\(D_{\text{as}}^{10}\)	D3BJ(HF)	D3BJ(OLYP)	D3BJ(revPBE38)	D3(NS)	DD3S
CH₄ dimer	1.22	-0.3	-0.3	-0.3	-0.3	-0.5	-0.3	-0.3	-0.4
	1.28	-0.3	-0.3	-0.3	-0.3	-0.3	-0.2	-0.3	-0.3
	1.33	-0.2	-0.2	-0.2	-0.3	-0.2	-0.2	-0.2	-0.2
	1.39	-0.1	-0.1	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1
	1.50	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
	1.61	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
pyridine	0.84	-13.1	-14.8	-12.1	-16.6	-9.6	-7.8	-16.5	
dimer	0.86	-11.2	-12.5	-10.3	-14.4	-8.7	-7.0	-14.0	
	0.89	-9.6	-10.6	-8.9	-12.5	-7.7	-6.2	-12.0	
	0.92	-8.3	-9.0	-7.6	-10.8	-6.9	-5.4	-10.2	
	0.95	-7.1	-7.7	-6.5	-9.3	-6.1	-4.7	-8.7	
	0.97	-6.2	-6.6	-5.6	-8.1	-5.4	-4.1	-7.5	
	1.00	-5.3	-5.6	-4.9	-7.0	-4.8	-3.6	-6.4	
	1.03	-4.6	-4.9	-4.2	-6.0	-4.3	-3.2	-5.5	
	1.05	-4.0	-4.2	-3.7	-5.2	-3.8	-2.8	-4.8	
	1.08	-3.5	-3.6	-3.2	-4.5	-3.3	-2.4	-4.2	
	1.11	-3.0	-3.2	-2.8	-4.0	-2.9	-2.1	-3.6	
	1.14	-2.7	-2.8	-2.5	-3.5	-2.6	-1.9	-3.1	
	1.16	-2.3	-2.4	-2.2	-3.0	-2.3	-1.6	-2.7	
	1.19	-2.0	-2.1	-1.9	-2.6	-2.0	-1.5	-2.4	
	1.22	-1.8	-1.9	-1.7	-2.3	-1.8	-1.3	-2.1	
	1.27	-1.4	-1.4	-1.3	-1.8	-1.4	-1.0	-1.6	
	1.35	-1.0	-1.0	-0.9	-1.3	-1.0	-0.7	-1.2	
	1.49	-0.5	-0.6	-0.6	-0.7	-0.6	-0.4	-0.7	
	1.62	-0.3	-0.3	-0.3	-0.4	-0.4	-0.2	-0.4	
	1.76	-0.2	-0.2	-0.2	-0.3	-0.2	-0.1	-0.2	
	1.89	-0.1	-0.1	-0.1	-0.1	-0.2	-0.1	-0.2	
pyridine	0.84	-13.7	-15.5	-13.0	-15.0	-7.4	-16.4	-17.8	
dimer	0.87	-10.4	-11.1	-10.3	-12.4	-6.4	-11.4	-14.0	
	0.88	-9.9	-10.5	-11.0	-9.8	-11.9	-6.2	-10.7	-13.4
	0.89	-9.0	-9.5	-9.9	-9.0	-11.1	-5.9	-9.4	-12.3
	0.91	-7.9	-8.3	-8.7	-7.9	-10.0	-5.4	-8.0	-10.9
	0.92	-7.2	-7.6	-7.9	-7.2	-5.1	-7.2	-9.9	
	0.94	-6.2	-6.4	-6.7	-6.2	-4.6	-5.9	-8.4	
	0.96	-5.3	-5.5	-5.7	-5.3	-4.2	-4.9	-7.2	
	0.98	-4.5	-4.7	-4.8	-4.5	-3.8	-4.1	-6.1	
	1.00	-3.9	-4.0	-4.1	-3.9	-3.4	-3.5	-5.2	
	1.02	-3.4	-3.5	-3.4	-4.6	-3.0	-2.9	-4.4	
	1.04	-2.9	-3.0	-2.9	-4.0	-2.7	-2.5	-3.8	
	1.06	-2.5	-2.6	-2.5	-3.5	-2.4	-2.1	-3.2	
	1.08	-2.2	-2.3	-2.2	-3.0	-2.1	-1.8	-2.8	
	1.10	-1.9	-2.0	-1.9	-2.6	-1.9	-1.6	-2.4	
Table S7: continued from previous page.

Dimer	R/Req	E_{disp}^{(2)}	D_{20}^{20}	D_{10}^{as}	D3BJ(HF)	D3BJ(OLYP)	D3BJ(revPBE38)	D3(NS)	DD3S
8 (pyridine dimer)									
1.12	-1.6	-1.7	-1.7	-1.6	-2.2	-1.6	-1.4	-2.1	
1.16	-1.3	-1.3	-1.3	-1.7	-1.7	-1.3	-1.0	-1.6	
1.22	-0.9	-0.9	-0.9	-1.1	-1.1	-0.9	-0.7	-1.1	
1.33	-0.5	-0.5	-0.5	-0.6	-0.5	-0.4	-0.6	-0.6	
1.43	-0.3	-0.3	-0.3	-0.4	-0.4	-0.3	-0.2	-0.3	
1.63	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	
1.84	0.0	0.0	0.0	-0.1	-0.1	-0.1	0.0	-0.1	
9 (C6H6 dimer)									
0.75	-12.5	-12.6	-13.3	-11.3	-15.7	-9.5	-8.0	-15.4	
0.78	-12.3	-12.5	-13.1	-11.2	-15.6	-9.4	-8.0	-15.2	
0.81	-12.1	-12.2	-12.9	-11.0	-15.3	-9.3	-7.9	-14.9	
0.84	-11.8	-11.9	-12.5	-10.7	-15.0	-9.1	-7.7	-14.5	
0.87	-11.4	-11.5	-12.1	-10.4	-14.5	-8.8	-7.6	-14.1	
0.90	-10.9	-11.1	-11.6	-10.0	-14.0	-8.6	-7.3	-13.6	
0.93	-10.4	-10.6	-11.1	-9.6	-13.4	-8.2	-7.1	-13.0	
0.94	-10.2	-10.3	-10.8	-9.4	-13.1	-8.1	-6.9	-12.7	
0.96	-9.9	-10.0	-10.6	-9.1	-12.8	-7.9	-6.8	-12.3	
0.97	-9.6	-9.7	-10.3	-8.9	-12.5	-7.7	-6.6	-12.0	
0.99	-9.4	-9.5	-10.0	-8.6	-12.1	-7.5	-6.4	-11.7	
1.00	-9.1	-9.2	-9.6	-8.4	-11.7	-7.3	-6.3	-11.3	
1.05	-8.8	-8.9	-9.3	-8.1	-11.4	-7.1	-6.1	-10.9	
1.16	-8.2	-8.3	-8.7	-7.6	-10.6	-6.6	-5.7	-10.2	
1.26	-7.7	-7.6	-8.0	-7.1	-9.9	-6.2	-5.4	-9.5	
1.37	-7.1	-7.0	-7.4	-6.5	-9.1	-5.8	-5.0	-8.7	
1.47	-6.5	-6.4	-6.7	-6.0	-8.4	-5.3	-4.6	-8.0	
1.58	-5.9	-5.8	-6.1	-5.5	-7.6	-4.9	-4.3	-7.3	
10 (C6H6 dimer)									
0.75	-6.9	-6.8	-7.1	-6.2	-8.9	-6.0	-4.7	-8.2	
0.78	-6.9	-6.7	-7.0	-6.1	-8.8	-5.9	-4.7	-8.1	
0.82	-6.7	-6.6	-6.9	-6.0	-8.6	-5.8	-4.6	-8.0	
0.85	-6.6	-6.5	-6.7	-5.9	-8.4	-5.7	-4.5	-7.8	
0.88	-6.4	-6.3	-6.5	-5.7	-8.2	-5.6	-4.4	-7.6	
0.92	-6.1	-6.0	-6.3	-5.5	-7.9	-5.4	-4.3	-7.3	
0.95	-5.9	-5.8	-6.0	-5.3	-7.6	-5.2	-4.1	-7.0	
0.97	-5.7	-5.6	-5.9	-5.2	-7.4	-5.1	-4.0	-6.9	
0.98	-5.6	-5.5	-5.7	-5.1	-7.2	-5.0	-3.9	-6.7	
1.00	-5.5	-5.4	-5.6	-5.0	-7.1	-4.9	-3.9	-6.5	
1.06	-5.3	-5.2	-5.4	-4.8	-6.9	-4.7	-3.8	-6.4	
1.12	-5.2	-5.1	-5.3	-4.7	-6.7	-4.6	-3.7	-6.2	
1.18	-5.0	-4.9	-5.1	-4.6	-6.5	-4.5	-3.6	-6.0	
1.29	-4.7	-4.6	-4.8	-4.3	-6.1	-4.2	-3.4	-5.6	
1.41	-4.4	-4.3	-4.4	-4.0	-5.7	-3.9	-3.2	-5.2	
1.53	-4.1	-3.9	-4.1	-3.7	-5.3	-3.7	-2.9	-4.9	
1.65	-3.7	-3.6	-3.8	-3.4	-4.8	-3.4	-2.7	-4.5	
Table S7: continued from previous page.

Dimer	R/Req	\(E_{\text{dispx}}^{(2)} \)	\(D_{\text{as}}^{20} \)	\(D_{\text{as}}^{10} \)	D3BJ(HF)	D3BJ(OLYP)	D3BJ(revPBE38)	D3(NS)	DD3S
	1.76	-3.4	-3.3	-3.4	-3.2	-4.4	-3.1	-2.5	-4.1
MUE/MURE		0.1/4.1	0.3/6.0	0.3/5.3	1.3/30.0	0.9/15.3	1.1/20.3	1.2/25.0	

- \(a \) In units of kcal \(\cdot \) mol\(^{-1} \).
- \(b \) Benchmark reported in Ref. S7.
- \(c \) \(D_{\text{as}} \) revision reported herein.
- \(d \) \(D_{\text{as}} \) revision reported in Ref. S22.
- \(e \) D3\(^{19} \) dispersion term calculated with BJ damping for the HF level of theory or given functional.
- \(f \) D3\(^{19} \) dispersion term calculated without switching.
- \(g \) Method reported in Ref. S21.

Table S8: MP2 and MED interaction energy with its \(E_{EL,MTP}^{(10)} \) and \(D_{\text{as}}^{20} \) contributions\(^a\), computed for uPA inhibitors.

Inhibitor	\(pIC_{50}^{b} \)	\(E_{EL,MTP}^{(10)} \)	\(D_{\text{as}}^{20} \)	MED	MP2\(^c\)
1	8.19	-157.6	-69.1	-226.7	-135.8
2	6.27	-129.8	-55.6	-185.4	-122.6
3	6.12	-149.9	-56.4	-206.3	-133.2
4	6.11	-130.3	-50.8	-181.1	-124.0
5	3.80	-102.1	-37.2	-139.3	-119.6

- \(a \) In units of kcal \(\cdot \) mol\(^{-1} \).
- \(b \) Numbering of the inhibitors is consistent with Ref. S23, from which the \(pIC_{50} \) values were taken.
- \(c \) Values were provided by Grzywa et al.\(^{S23} \).

Table S9: MP2 and MED interaction energy with its \(E_{EL,MTP}^{(10)} \) and \(D_{\text{as}}^{20} \) contributions\(^a\), computed for HB alcohol dimers.

Dimer \(^b\)	SAPT\(^b\)	MP2	\(E_{EL,MTP}^{(10)} \)	\(D_{\text{as}}^{20} \)	MED
H\(_2\)O	-4.6	-3.2	-4.9	-2.3	-7.1
MeOH	-5.4	-5.5	-7.1	-4.8	-11.8
EtOH	-5.6	-5.7	-6.8	-5.3	-12.0
nPrOH	-5.9	-5.9	-6.3	-5.4	-11.7
nBuOH	-6.0	-5.9	-5.8	-5.5	-11.4
iPrOH	-6.5	-6.5	-5.9	-6.9	-12.7
tBuOH	-7.2	-7.3	-7.7	-7.6	-15.4

- \(a \) In units of kcal \(\cdot \) mol\(^{-1} \).
- \(b \) Naming of dimers is consistent with Ref. S24, from which the reference SAPT energy values were taken.
Table S10: Performance of the selected empirical scoring functions\(^a\) for the ranking of uPA inhibitors.

Inhibitor	PLANTS\(^b\)	PLANTS\(^c\)	PLANTS\(^d\)	PLANTS\(^e\)	PLANTS\(^f\)	ChemScore	CHEMPLP	Vina	DSX	GoldScore	AutoDock	RankScore	\(R^2\)	\(N_{\text{pred}}\)	\(X_{\text{pred}}\)	
1	45.5	0.0	53.9	1.5	-38.8	9.4	25.3	15.4	35.4	30.5	42.4	2.1	0.86	0.81	0.74	0.00
2	47.2	-17.4	56.1	-1.9	-44.9	14.1	29.2	24.9	44.5	31.5	37.0	1.7	0.81	0.63	0.66	0.00
3	44.8	-12.6	54.4	-0.5	-32.0	13.0	25.0	9.8	35.1	29.5	32.0	3.1	0.81	0.40	0.40	0.00
4	48.1	2.2	46.1	0.2	-25.2	1.6	5.7	11.1	6.0	26.1	30.0	1.6	0.81	0.37	0.37	0.00
5	58.0	-31.8	66.2	-4.5	-60.1	18.2	41.4	21.6	37.2	30.0	40.0	4.6	0.81	0.86	0.74	0.00

\(^a\)The scores obtained with particular scoring functions are given in units of kcal \(\cdot\) mol\(^{-1}\) (PLANTS\(^{PLP}\), PLANTS\(^{CHEMPLP}\), Vina, AutoDock) or in arbitrary units (GoldScore, ChemScore, ChemPLP, ASP, DSX, RankScore).

\(^b\)Numbering of the inhibitors is consistent with Ref. S23.

\(^c\)Correlation coefficient between the energy obtained at a given level of theory and the experimental inhibitory activity (expressed as \(pIC_{50}\) values) taken from Ref. S23. In the case of GoldScore, ChemScore, ChemPLP and ASP functions, for which higher score indicates greater inhibitory activity, the opposite of the correlation coefficient value is given to facilitate direct comparison with the results of the remaining empirical scoring functions (or the MED model), wherein the more potent inhibitor is associated with a lower score (or the binding energy) value.

\(^d\)Percentage of successful predictions \([\%]\).
Table S11: Differential intermediate state stabilizationa in ketosteroid isomerase-catalyzed reaction.b

Residue	$E_{EL,MTP}^{(10)}$	D_{as}^{20}	MED
TYR14	-7.7	-0.7	-8.5
LEU18	-0.2	-0.1	-0.3
PRO39	0.3	0.0	0.3
PHE54	0.4	0.4	0.8
TYR55	-1.6	0.0	-1.7
SER58	0.8	0.1	0.9
LEU59	0.0	0.0	0.0
LEU61	0.2	0.0	0.2
LEU63	0.0	0.0	0.0
VAL65	-0.2	0.0	-0.2
PHE80	0.1	0.0	0.1
PHE82	-1.0	-0.1	-1.1
VAL84	-0.1	-0.1	-0.2
PHE86	-0.2	0.2	0.1
THR93	0.2	0.0	0.2
VAL95	0.5	0.0	0.5
PRO97	-0.3	-0.1	-0.4
ASP99	-6.4	-0.5	-7.0
MET112	-2.1	-0.4	-2.5
ALA114	-1.0	-0.5	-1.5
PHE116	1.2	-0.2	1.0
ILE121	-0.1	0.0	-0.1
total	-17.3	-2.1	-19.4

aIn units of kcal · mol-1.

bThe structures of enzyme-intermediate and enzyme-substrate complexes of\textit{C. testosteroni} ketosteroid isomerase were derived from the QM/MM simulation reported in Ref. S25.
Table S12: Differential intermediate state stabilizationa in ketosteroid isomerase-catalyzed reaction — amino acid residue rotamers optimized with respect to DISS lowering. For comparison with the total DISS value characterizing the KSI structures reported in Ref. S25, the respective DISS contributions of Pro39, Pro97, and Ala114 residues are included without rotamer modification.

Residue	$E_{EL,MT}^{(10)}$	D_{as}^{20}	MED
TYR14	-5.7	-0.5	-6.2
LEU18	-0.4	0.0	-0.4
PRO39b	0.3	-0.0	0.3
PHE54	0.0	0.0	0.0
TYR55	-0.9	0.0	-0.9
SER58	-0.3	0.1	-0.2
LEU59	0.0	0.0	0.0
LEU61	0.0	0.0	0.0
LEU63	-0.1	0.0	0.0
VAL65	-0.2	0.0	-0.2
PHE80	-0.4	0.0	-0.4
PHE82	-1.5	-0.2	-1.8
VAL84	-0.8	-0.1	-0.8
PHE86	-0.3	0.2	-0.1
THR93	0.0	0.0	0.0
VAL95	-0.4	0.0	-0.4
PRO97b	-0.3	-0.1	-0.4
ASH99	-6.5	-0.4	-6.9
MET112	-2.0	-0.2	-2.2
ALA114b	-1.0	-0.5	-1.5
PHE116	1.2	-0.1	1.1
ILE121	0.1	0.0	0.1
total	-19.0	-1.8	-20.8

aIn units of kcal \cdot mol-1.

bThe structures of enzyme-intermediate and enzyme-substrate complexes of \textit{C. testosteroni} ketosteroid isomerase were derived from the QM/MM simulation reported in Ref. S25.
Figure S1: Signed relative errors (in percent) of the new $D_{\text{as}}^{(2)}$ function with respect to the benchmark $E_{\text{disp}}^{(2)}$ for all dimers from the training set.
Figure S1: continued from previous page.
Figure S1: continued from previous page.
Figure S1: continued from previous page.
References

(S1) Bukowski, R.; Cencek, W.; Jankowski, P.; Jeziorska, M.; Jeziorski, B.; Kucharski, S.; Lotrich, V.; Misquitta, A.; Moszynski, K., R. Patkowski; Podeszwa, R.; Rybak, S.; Szalewicz, K.; Williams, H.; Wheatley, R.; Wormer, P.; Žuchowski, P. SAPT2008: An ab initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies. 2016; http://www.physics.udel.edu/szalewic/SAPT/SAPT.html, Version 2008.2, University of Delaware and University of Warsaw.

(S2) Perdew, J. P.; Emzerhof, M.; Burke, K. Generalized gradient approximation made simple. Phys. Rev. Lett. **1996**, *77*, 3865–3868.

(S3) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **1999**, *110*, 6158–6170.

(S4) Misquitta, A. J.; Szalewicz, K. Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. *J. Chem. Phys.* **2005**, *122*.

(S5) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. *J. Chem. Phys.* **1992**, *96*, 6796–6806.

(S6) Rezac, J.; Riley, K. E.; Hobza, P. Benchmark calculations of noncovalent interactions of halogenated molecules. *J. Chem. Theory Comput.* **2012**, *8*, 4285–4292.

(S7) Smith, D. G.; Burns, L. A.; Patkowski, K.; Sherrill, C. D. Revised damping parameters for the D3 dispersion correction to density functional theory. *J. Phys. Chem. Lett.* **2016**, *7*, 2197–2203.
(S8) Kozuch, S.; Martin, J. M. L. Halogen bonds: Benchmarks and theoretical analysis. *J. Chem. Theory Comput.* **2013**, *9*, 1918–1931.

(S9) Hesselmann, A.; Jansen, G. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn-Sham density functional theory. *Chem. Phys. Lett.* **2002**, *362*, 319–325.

(S10) Hesselmann, A.; Jansen, G. First-order intermolecular interaction energies from Kohn-Sham orbitals. *Chem. Phys. Lett.* **2002**, *357*, 464–470.

(S11) Hesselmann, A.; Jansen, G. Intermolecular dispersion energies from time-dependent density functional theory. *Chem. Phys. Lett.* **2003**, *367*, 778–784.

(S12) Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. MOLPRO: a general-purpose quantum chemistry program package. *Wiley Interdiscip. Rev. Comput. Mol Sci.* **2012**, *2*, 242–253.

(S13) Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; O’Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M. MOLPRO, version 2012.1, a package of ab initio programs. 2012; http://www.molpro.net.

(S14) Gruning, M.; Gritsenko, O. V.; van Gisbergen, S. J. A.; Baerends, E. J. Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region. *J. Chem. Phys.* **2001**, *114*, 652–660.
(S15) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. *J. Chem. Phys.* **2003**, *119*, 11113–11123.

(S16) Lias, S. G. *NIST Chemistry WebBook*, NIST standard reference database number 69; National Institute of Standards and Technology, Gaithersburg MD, 20899, doi:10.18434/T4D303, (retrieved July 16, 2018).

(S17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16* Revision B.01. 2016; Gaussian Inc. Wallingford CT.

(S18) Jurecka, P.; Sponer, J.; Cerny, J.; Hobza, P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1985–1993.

(S19) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

(S20) Shahbaz, M.; Szalewicz, K. Do semilocal density-functional approximations recover dispersion energies at small intermonomer separations? *Phys. Rev. Lett.* **2018**, *121*, 113402.

(S21) Verma, P.; Wang, B.; Fernandez, L. E.; Truhlar, D. G. Physical molecular mechanics method for damped dispersion. *J. Phys. Chem. A* **2017**, *121*, 2855–2862.

(S22) Podeszwa, R.; Pernal, K.; Patkowski, K.; Szalewicz, K. Extension of the Hartree-Fock plus dispersion method by first-order correlation effects. *J. Phys. Chem. Lett.* **2010**, *1*, 550–555.

(S23) Grzywa, R.; Dyguda-Kazimierowicz, E.; Sieńczyk, M.; Feliks, M.; Sokalski, W. A.; Oleksyszyn, J. The molecular basis of urokinase inhibition: From the nonempirical analysis of intermolecular interactions to the prediction of binding affinity. *J. Mol. Model.* **2007**, *13*, 677–683.

(S24) Hoja, J.; Sax, A. F.; Szalewicz, K. Is electrostatics sufficient to describe hydrogen-bonding interactions? *Chem. Eur. J.* **2014**, *20*, 2292–2300.

(S25) van der Kamp, M. W.; Chaudret, R.; Mulholland, A. J. QM/MM modelling of ketosteroid isomerase reactivity indicates that active site closure is integral to catalysis. *FEBS J.* **2013**, *280*, 3120–3131.