Isolation and characterization of multidrug resistance bacteria from hospital sewage samples, Maharashtra, India

Bhaurao Bapurao Choushette¹, Rajendra A. Satpute² and Sarita Laxmikant Solunke¹

¹Plot No- 15, Near D.ed College, Pahadsingnpura, Caves Road Aurangabad, India.
²Government Institute of Science, Aurangabad, India.

Received 5 August, 2021; Accepted 7 January, 2022

Multiple antibiotic resistance is a major cause of clinical infections worldwide. This study determined the pattern of multidrug bacterial resistance in hospital sewage samples from the Marathwada region of India. Forty-eight isolates of bacteria were obtained from 6 locations of Aurangabad. An antibiotic sensitivity test was carried out using the disc diffusion method. Among all the antibiotics tested, the highest level of resistance was observed in the beta lactam class (85%), followed by Tetracycline (58%), Cephalosporin (58%), quinolones (52%) and gentamycin (45%). Escherichia coli and Klebsiella pneumoniae are the most prevalent bacteria, showing antibiotic resistance to all tested antibiotics with a MAR index of 1. It is concluded that hospital sewage water could be a reservoir of antibiotic resistant bacteria, which may further contaminate drinking water bodies, potentially presenting a public health risk to the general populace.

Key words: Antibiotics, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas species, Staphylococcus aureus, Streptococcus pyogenes.

INTRODUCTION

Antibiotics are compounds produced by micro-organisms and that are capable of inhibiting bacterial growth. Nowadays, the term antibiotic is broadly used for all those compounds that can be used against the bacterial infection. However, antibiotic resistance is increasing, and it is projected that by 2050, antibiotic resistant organisms will contribute to over 10 million deaths annually worldwide (De Kraker et al., 2016). This is mainly because of the slow pace of developing new antibiotics (De Kraker et al., 2011). The problem of antibiotic resistance has attracted the attention of World Health Organization (WHO) and several other stakeholders. The WHO announced in 2011 that antibiotic resistance is an urgent priority of research area (WHO, 2011) and several countries, including India (Government of India, 2017) accordingly framed their national health action plans for managing drug resistant bacteria (Smith et al., 2016).

*Corresponding author. E-mail: bhau64te@gmail.com, Tel: 0086-851-28927815.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
The problem of antibiotic resistance occurs due to the uncontrolled and excessive use of antibiotics by hospital and home care patients (Sidhu et al., 2016). This leads to the spread of resistant genes in water systems (Mukhopadhyay et al., 2012). For instance, Sidhu et al. (2016) analyzed and demonstrated the presence of E. coli in the drinking water from different schools in Northern India. Many multiple drug resistant bacteria like Pseudomonas aeruginosa, coliforms and Enterococcus species have been isolated from household water samples in Karnataka, India (Mukhopadhyay et al., 2012). Mulamattathil et al. (2014) documented the multiple antibiotic resistance profile in bacteria from sewage water samples (Mafikeng, South Africa).

In rural communities of developing countries like the India, untreated water from rivers, dams, and streams is directly used for drinking (Biyela et al., 2004). These water resources could possibly be contaminated with microbes from sewage water through rainfall runoff and other sources (Obi et al., 2002). Most of the areas are semi-arid with very low rainfall and a high evaporation rate, so water should be reused (Mckenzie et al., 2003). For obtaining good quality water, there is need for proper waste water treatment procedures. Biological waste water treatment processes may selectively increase the antibiotic resistance in water, which is a major health concern issue of reuse of water (Mulamattathil et al., 2000). Release of hospital sewage directly into the water ecosystem further contributes to the antibiotic resistant bacteria. Therefore, there is pressing need to focus on this aspect locally and globally. Hence, the current study has been undertaken to evaluate the presence of potential pathogenic bacteria in hospital sewage samples from Marathwada region of Maharashtra, India, as well as to determine the antibiotic resistance profiles of the isolated bacteria.

MATERIALS AND METHODS

Collection of sewage samples

One hundred milliliters of hospital sewage samples were collected from six different sites in Aurangabad, Maharashtra region, in sterile screw cap tubes and brought to the laboratory in a cooled condition. Serial dilutions \(10^{-5}\) of each samples were prepared, and 1 ml of each sample were spread on the nutrient agar medium. Further plates were incubated at 37°C for 24 h and different colonies were obtained. Pure bacteria were procured by streak plate method utilizing Mueller-Hinton agar (Hi-Media, India) or Nutrient Agar [Hi-Media, India]. The isolated bacteria were characterized on the basis of colony morphology study. All the pure colonies were subjected to Grams staining and distinguished bacteria in two groups, viz: Gram positive and Gram negative. These pure cultures were further subjected to biochemical tests according to Nandi and Mandal (2016), Holt (1984) and Forbes et al. (2007). Morphologically different colonies of bacteria were maintained on Nutrient Agar or Cystine tryptone agar (Hi-Media, India) stabs, at 4°C for further studies. Of the 30 isolates obtained, eight were further used for antibiotic sensitivity testing.

Collection of samples

A total of six hospital sewage samples were collected during the study period, from different sampling sites of Marathwada region, Maharashtra, India and labelled as S1, S2, S3, S4, S5 and S6 (Figure1) in sterile plastic bottles. After dilution and inoculation of each sample on nutrient agar plates, many colonies were obtained. Three Gram positive and 5 Gram negative bacteria were isolated from each of the 6 hospital sewage samples (Table 1). Further, their sensitivity to different classes of antibiotics namely beta lactam group, cephalosporin group, tetracycline, quinolones and aminoglycosides was analyzed. It was observed that all of the 6 samples carry antibiotic resistant bacteria for different antibiotics (Tables 2 and 3).

Antibiotic sensitivity test

Isolated bacteria were further subjected to the antibiotic sensitivity tests by disc diffusion method given by Kirby-Bauer. It was performed through following steps.

Preparation of the test organisms for sensitivity test

Three colonies from each sample were taken and subcultured in sterile nutrient broth aerobically at 37°C for 24 h. Broth cultures of the isolates were centrifuged at 3000 rpm for 10 min. The sediments were diluted with sterile phosphate buffer saline (PBS) and adjusted to the \(10^8\) CFU/ml using McFarland matching standard (mixture of 0.6 ml of 1% BaCl\(_2\), H\(_2\)O and 99.4 ml of 1% concentrated H\(_2\)SO\(_4\)) using spectrophotometer at 540 nm.

Antibiotic sensitivity testing

100 µl of each aliquot was spread on nutrient agar or Mueller Hinton agar medium. By using sterile forceps, antibiotic sensitivity discs were applied on the surface of the medium. The set-up was incubated aerobically at 37°C for 24 h. The inhibition zone diameters were measured using meter rule after 24 h, incubated and recorded.

The results, in terms of ZDI (zone diameter of the inhibition) values of the test antibiotics, were interpreted following the guidelines of the Clinical and Laboratory Standards (CLSI) Institute (2011). As per the CLSI guidelines, bacteria were classified into three groups viz. resistant, intermediate and sensitive to a particular antibiotic.

Determination of antibiotic resistance pattern

Bacteria showing antibiotic resistance to three or more antibiotics were considered as the multiple antibiotic resistant bacteria [MAR] and MAR index value for each sample using the following formula.

\[
\text{MAR index} = \frac{M}{n}
\]

Where, \(M\) is number of antibiotics to which the isolate showed resistance and \(n\) is the number of total antibiotics used in the test (Krumperman, 1983) that was calculated. Generally, MAR index value higher than 0.2 indicates the isolate is multiple antibiotic resistant (Adesiyoe and Okoh, 2017).

To know the prevalence of antibiotic resistance as per the sample collection sites, ARI [Antibacterial resistance index] was determined using the formula described by Krumperman (1983), which is mathematically expressed as
Figure 1. Hospital sewage sample location map of Aurangabad Urban Area, Maharashtra India.

ARI = y/nx

Where, y is actual number of resistance microbes in the sample, n is the number of isolates tested and x is the total antibiotics tested in sensitivity test. Generally, ARI index is directly proportional to the prevalence of antibiotic resistance as per sample collection sites.

RESULTS AND DISCUSSION

Biochemical analysis

Further, by using the biochemical tests and referring to
the Bergey’s Manual of Systematic Bacteriology, all isolates were identified (Table 1). In biochemical tests carried out for 48 isolates, we found a total of 6 different types of bacteria out of which 3 were Gram negative and 3 were Gram positive namely, *Klebsiella pneumoniae*, *Escherichia coli* and *Pseudomonas species*. Additionally, we were able to identify 4 strains of *Escherichia coli* and 1 strain of *Klebsiella pneumoniae* through biochemical tests. Table 1 provides a summary of the biochemical tests performed on the 48 isolates, including the results for glucose, sucrose, lactose, maltose, and mannitol fermentation, as well as the bacterial identity of each strain.
Table 2. Results of staining, biochemical tests and identity of isolates selected for further study.

Site	Sample ID	GS	Biochemical test and results	Sugar fermentation test results	Bacterial identity											
			CO	CI	IN	CT	OD	MR	VP	DN	Glucose	Sucrose	Lactose	Maltose	Mannitol	
S1	S16	+	+	-	-	+	+	+	+	+	+	+	+	+	+	Staphylococcus aureus
	S17	+	+	-	-	-	-	ND	+	ND	+	+	+	+	+	Enterococcus faecalis
	S18	+	+	-	-	-	-	ND	+	ND	+	+	+	+	+	Enterococcus faecalis
S2	S26	+	+	-	-	+	+	+	+	+	+	+	+	+	+	Staphylococcus aureus
	S27	+	-	ND	-	-	-	+	-	+	+	+	+	-	-	Streptococcus pyogenes
	S28	+	+	-	-	-	-	+	+	+	+	+	+	+	+	Staphylococcus aureus
S3	S36	+	-	ND	-	-	-	+	-	+	+	+	+	-	-	Streptococcus pyogenes
	S37	+	+	-	-	-	-	+	+	+	+	+	+	+	+	Staphylococcus aureus
	S38	+	+	-	-	-	-	ND	+	ND	+	+	+	+	+	Enterococcus faecalis
S4	S46	+	+	-	-	-	-	+	+	+	+	+	+	+	+	Staphylococcus aureus
	S47	+	+	-	-	-	-	+	+	+	+	+	+	+	+	Staphylococcus aureus
	S48	+	+	-	-	-	-	ND	+	ND	+	+	+	+	+	Enterococcus faecalis
S5	S56	+	+	-	-	-	-	+	+	+	+	+	+	+	+	Staphylococcus aureus
	S57	+	+	-	-	-	-	+	+	+	+	+	+	+	+	Staphylococcus aureus
	S58	+	+	-	-	-	-	ND	+	ND	+	+	+	+	+	Staphylococcus aureus
S6	S66	+	+	-	-	-	-	+	+	+	+	+	+	+	+	Staphylococcus aureus
	S67	+	+	-	-	-	-	ND	+	ND	+	+	+	+	+	Enterococcus faecalis
	S68	+	+	-	-	-	-	ND	+	ND	+	+	+	+	+	Enterococcus faecalis

Cl: Citrate, IN: Indole, CT: Catalase, OD: Oxidase; MR: Methyl red; VP: Voges–Proskauer; - Negative; +: Positive; CO: coagulase, DN: Dnase, ND: No data; V= variable.

Escherichia coli, Pseudomonas species, Staphylococcus aureus, Enterococcus faecalis and Streptococcus pyogenes. Among all bacteria obtained, Gram negative *E. coli* and Gram positive bacteria *S. aureus* were the most prevalent bacteria found at all sites.

Antibiotic resistance pattern

Based on the zone of inhibition (mm) obtained, antibiotic sensitivity of isolates as per the guidelines given by Clinical and Laboratory Standards Institute (CLSI, 2009) mentioned in Table 3 (Gram negative bacteria) and Table 4 (Gram positive bacteria), the isolates are divided into 2 types, viz: resistant and sensitive. Isolates with intermediate phenotypes obtained in AST were considered as antibiotic resistant bacteria. Among all the antibiotics tested, highest level of resistance was observed for beta lactam class [85%], then for Tetracycline [58%], Cephalosporin [58%], quinolones [52%] and gentamycin [45%] (Figure 2). *E. coli* was the most prevalent bacteria showing antibiotic resistance to all tested antibiotics.

Multiple antibiotic resistance pattern

Further MAR index values were calculated for all the isolates. MAR index values indicate the number of antibiotics to which the isolate is showing resistance. When the MAR index value is >0.2, the bacteria is considered as multiple antibiotic resistant bacteria. From the MAR index values we can predict that around 41 out of 48 isolates show multiple antibiotic resistance and only four are not MAR (Tables 5 and 6). Some of the isolates S11, S22, S34, S35, S38, S54, S55, S56 and S64 were found to be resistant to all the
Table 3. Results of antibiotic sensitivity test of Gram negative isolates.

Site	Sample ID	Zone of Inhibition (mm)	Beta lactams [Amp]	Tetracycline [Tet]	Cephalosporin	Quinolones [Cip]	Aminoglycosides
S1	S11	10	14	12	11	11	
	S12	20	10	23	15	09	
	S13	19	22	13	14	10	
	S14	23	12	10	24	20	
	S15	29	14	11	26	28	
S2	S21	18	22	20	17	24	
	S22	14	11	08	10	12	
	S23	29	18	00	28	24	
	S24	22	10	10	26	18	
	S25	20	25	18	14	25	
S3	S31	06	22	23	27	26	
	S32	09	24	13	15	11	
	S33	29	22	11	26	28	
	S34	12	14	10	13	10	
	S35	19	12	08	10	09	
S4	S41	20	11	10	30	25	
	S42	30	18	17	18	14	
	S43	20	18	09	13	08	
	S44	21	11	19	27	22	
	S45	22	12	13	22	19	
S5	S51	12	11	26	27	18	
	S52	14	09	11	24	06	
	S53	24	12	24	24	22	
	S54	19	14	13	14	11	
	S55	10	13	10	11	10	
S6	S61	16	09	08	08	20	
	S62	12	05	07	09	22	
	S63	30	11	10	11	23	
	S64	10	14	13	10	10	
	S65	08	25	19	15	21	

antibiotics tested in the present study while the sample S48 and S58 showed sensitivity to all the antibiotics used. Mainly, *K. pneumoniae* bacteria showed resistance to most of the tested antibiotics.

ARI index

ARI index indicates the prevalence of antibiotic resistant and sensitive bacteria as per the locations. In the present study, it was observed from the ARI (Table 7) that beta lactam resistant bacteria are more prevalent in nature as compared to other antibiotics at all the sample collection sites. The prevalence of antibiotic resistant bacteria is shown in Graph 1. Beta lactam antibiotic resistant bacteria are the more prevalently occurring bacteria in nature. Bacteria obtained from the site 1 appear more resistant to all the antibiotics as compared to other sites.

Conclusion

The present study on the hospital sewage water collected from six different locations of Aurangabad, Maharashtra, India has shown *E coli* as the most prevalent antibiotic resistant bacteria. We obtained Gram negative bacteria more abundantly in hospital sewage samples. Isolates number 48 and 41 showed >0.2 MAR indices and hence, it is considered to have the potential to cause human infections. Most of the isolates showed multiple antibiotic resistance. Among tested antibiotics, beta lactam group antibiotic resistant bacteria were found to be most prevalent and comparatively less number of isolates was resistant to gentamycin. Therefore, there is need to prepare effective guidelines for judicious use of antibiotics and release of hospital sewage directly into the water bodies, in order to avoid the spread of bacterial multiple antibiotic resistances.
Table 4. Results of antibiotic sensitivity test of Gram positive isolates.

Site	Sample ID	Zone of Inhibition (mm)
		Beta Lactams [Amp] Cephalosporin [Cx] Quinolones [Cip] Aminoglycosides [Gen] Tetracycline [Tet]
		20 16 14 14 11
	S1	18 20 22 10 20
	S17	19 22 12 09 10
	S2	18 23 18 10 15
	S26	15 20 22 19 13
	S27	06 06 32 20 06
	S28	08 19 24 24 09
	S3	12 11 13 10 25
	S36	13 10 10 24 09
	S37	07 08 30 25 11
	S38	20 30 30 11 31
	S4	32 25 22 23 25
	S46	13 11 14 11 09
	S47	12 11 30 22 20
	S48	29 22 30 30 21
	S5	12 18 '13 16 22
	S56	06 20 21 23 22
	S57	06 20 21 23 22
	S58	06 20 21 23 22
	S6	06 20 21 23 22
	S66	06 20 21 23 22
	S67	06 20 21 23 22
	S68	06 20 21 23 22

![Figure 2. Prevalence of antibiotic resistance.](image-url)
Table 5. MAR index values of Gram negative isolates.

Site	Sample ID	Beta lactams [Amp]	Tetracycline [Tet]	Cephalosporin [Cx]	Quinolones [Cip]	Aminoglycoside [Gen]	MAR
S1	S11	R	R	R	R	R	1
	S12	R	R	S	R	R	0.8
	S13	R	S	R	R	R	0.8
	S14	R	R	R	S	S	0.6
	S15	S	R	R	S	S	0.4
S2	S21	R	S	S	R	S	0.4
	S22	R	R	R	R	R	1
	S23	S	S	R	S	S	0.2
	S24	R	R	R	S	R	0.8
	S25	R	S	S	R	S	0.4
S3	S31	R	S	S	S	S	0.2
	S32	R	S	R	R	R	0.8
	S33	S	S	R	S	S	0.2
	S34	R	R	R	R	R	1
	S35	R	R	R	R	R	1
S4	S41	R	R	R	S	S	0.6
	S42	S	S	S	S	S	0.2
	S43	R	S	R	R	R	0.8
	S44	R	R	S	S	S	0.4
	S45	R	R	R	S	S	0.6
S5	S51	R	R	S	S	S	0.4
	S52	R	R	R	S	R	0.8
	S53	R	R	S	S	S	0.4
	S54	R	R	R	R	R	1
	S55	R	R	R	R	R	1
S6	S61	R	R	R	R	S	0.8
	S62	R	R	R	R	S	0.8
	S63	S	R	R	R	S	0.6
	S64	R	R	R	R	R	1
	S65	R	S	S	R	S	0.4

Table 6. MAR index values of Gram positive isolates.

Site	Sample ID	Beta Lactams [Amp]	Cephalosporin [Cx]	Quinolones [Cip]	Aminoglycoside [Gen]	Tetracycline [Tet]	MAR
S1	S16	R	I	R	I	R	0.6
	S17	R	S	S	R	S	0.4
	S18	R	S	R	R	R	0.8
S2	S26	R	S	I	R	I	0.4
	S27	R	S	S	S	R	0.4
	S28	R	R	S	S	S	0.6
S3	S36	R	S	S	S	R	0.4
	S37	R	R	R	R	S	0.8
	S38	R	R	R	S	R	1
S4	S46	R	R	S	S	R	0.6
	S47	R	S	S	R	S	0.4
	S48	S	S	S	S	S	0
S5	S56	R	R	R	R	R	1
Table 6. Contd.

Site	R	R	S	S	S	0.4
S57	R	R	S	S	S	0.4
S58	S	S	S	S	S	0
S66	R	S	R	I	S	0.4
S67	R	S	S	S	S	0.2
S68	R	S	R	S	S	0.4

Table 7. ARI index.

Site	Beta Lactams [Amp]	Cephalosporin [Cx]	Quinolones [Cip]	Aminoglycosides [Gen]	Tetracycline [Tet]
S1	0.175	0.125	0.125	0.15	0.15
S2	0.175	0.1	0.1	0.075	0.125
S3	0.175	0.15	0.125	0.1	0.1
S4	0.15	0.1	0.025	0.075	0.1
S5	0.175	0.125	0.075	0.1	0.15
S6	0.175	0.1	0.175	0.05	0.1

Graph 1. Prevalence of antibiotic resistance as per site of sample collection.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Adefisoye MA, Okoh AI (2017). Ecological and public health implications of the discharge of multidrug-resistant bacteria and physicochemical contaminants from treated wastewater effluents in the Eastern Cape, South Africa. Water 9(8):562.

Biyela PT, Lin J, Bezuidenhout CC (2004). The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Science and Technology 50(1):45-50.

Clinical and Laboratory Standards Institute (CLSI) (2011). Performance standards for antimicrobial susceptibility testing, 21st informational supplement M100S21. CLSI, Wayne, Pa.

Clinical and Laboratory Standards Institute (CLSI) (2009). Performance Standards for Antimicrobial Susceptibility Testing M100-S19;
Nineteenth Informational Supplement. Vol. 29, Clinical and Laboratory Standards Institute, Wayne.

De Kraker ME, Stewardson AJ, Harbarth S (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Medicine 13(11):e1002184.

De Kraker MEA, Davey PG, Grundmann H (2011). Mortality and Hospital Stay Associated with Resistant Staphylococcus aureus and Escherichia coli Bacteremia: Estimating the Burden of Antibiotic Resistance in Europe. PLoS Medicine 8(10):e1001104.

Forbes BA, Sahm DF, Weissfeld AS (2007). Bailey and Scott's diagnostic of microbiology”. 12th Edition, Mosby (Elsevier), USA.

Government of India (2017). National Action Plan on Antimicrobial Resistance (NAP-AMR) 2017-2021. [accessed on May 15, 2019] Available from: http://www.searo.who.int/india/topics/antimicrobial_resistance/n ap_amr.pdf .

Holt JG (1984). Bergey's Manual of Systematic Bacteriology”. Williams and Wilkins, Baltimore.

Krumperman PH (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology 46(1):165-170.

Mckenzie R, Buckle J, Wegelin W, Meyer N (2003). Water demand management cookbook, rand water in collaboration with WRP, managing water for African Cities UN Habitat Programme, New York. Medical Bulletin 68:199-208.

Mukhopadhyay C, Vishwanath S, Eshwara VK, Shankaranarayana SA, Sagir A (2012). Microbial quality of well water from rural and urban households in Karnataka, India: a cross-sectional study. Journal of infection and Public Health 5(3):257-262.

Mulamattathil SG, Bezuidenhout C, Mbewe M, Ateba CN (2014). Isolation of environmental bacteria from surface and drinking water in Mafikeng, South Africa, and characterization using their antibiotic resistance profiles. Journal of Pathogens 10(4):1-11.

Mulamattathil SG, Esterhuysen H.A, Pretorius PJ (2000). Antibiotic-resistant Gram-negative bacteria in a virtually closed water reticulation system. Journal of Applied Microbiology 88(6):930-937.

Nandi S, Mandal S (2016). Bacteriological profiling of commercially available eye cosmetics and their antibiotic susceptibility pattern. Translational Biomedicine 7(3):1-8.

Obi CL, Potgieter N, Bessong PO, Matsaung G (2002). Assessment of the microbial quality of river water sources in rural Venda communities in South Africa. Water SA 28(3):287-292.

Sidhu S, Malhotra S, Devi P, Gupta A (2016). Bacteriological analysis of the drinking water from different schools in Northern India: a concern in developing countries. International Journal of Medical Research and Review 4(4):630-634.

Smith E, Lichten CA, Taylor J, MacLure C, Lepetit L, Harte E (2016). Evaluation of the action plan against the rising threats from antimicrobial resistance. Final Report. European Commission. 2016. [accessed on May 15, 2019]. Available from: https://www.ec.europa.eu/health/amr/sites/amr/files/amr_final-report_2016_rand.pdf .

World Health Organization (WHO) (2011). Regional office for South-East Asia. Jaipur declaration on antimicrobial resistance. 2011. [accessed on May 15, 2019]. http://www.who.int/iris/handle/10665/205397.