Properties of contact matrices induced by pairwise interactions in proteins

Sanzo Miyazawa
Faculty of Technology, Gunma University, Kiryu, Gunma 376-8515, Japan

Akira R. Kinjo
Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan

(Dated: February 4, 2008)

Properties of contact matrices (C-matrices) for native proteins to be the lowest energy conformations are considered in relation with a contact energy matrix (E-matrix) under an assumption that the total conformational energy of a protein can be approximated by a sum of pairwise interaction energies represented as a product of corresponding elements of these matrices each of which corresponds to a conformation-dependent function and an sequence-dependent energy parameter. Such pairwise interactions in proteins force native C-matrices to be in a relationship as if the interactions are a Go-like potential [2] for the native C-matrix, because the lowest bound of the total energy function is equal to the total energy of the native conformation interacting in a Go-like pairwise potential. This relationship between C- and E-matrices corresponds to 1) a parallel relationship between the eigenvectors of C-matrix and those of E-matrix and a linear relationship between their eigenvalues, 2) a parallel relationship between a contact number vector and the principal eigenvectors of C-matrix and of E-matrix, where E-matrix is expanded in a series of eigenspaces with an additional constant term. The additional constant term in the spectral expansion of E-matrix is indicated by the lowest bound of the total energy function to correspond to a threshold of contact energy that approximately separates native contacts from non-native contacts. Inner products between the principal eigenvector of C-matrix, that of E-matrix, and a contact number vector have been examined for 182 proteins each of which is a representative from each family of the SCOP database, and the results indicate the parallel tendencies between those vectors. A statistical contact potential [4, 5] estimated from protein crystal structures was used to evaluate pairwise residue-residue interactions in proteins. In addition, the spectral representation of C- and E-matrices reveals that pairwise residue-residue interactions, which depends only on the types of interacting amino acids but not on other residues in a protein, are insufficient and other interactions including residue connectivities and steric hindrance are needed to make native structures the unique lowest energy conformations.

PACS numbers: 87.15.Cc, 87.14et, 87.15.ad, 87.15.-v

I. INTRODUCTION

Predicting a protein three dimensional structure from its sequence is equivalent to reproducing a three dimensional structure from one dimensional information encoded in its sequence. From such a viewpoint, there are many studies that try to reconstruct three dimensional structures from one dimensional information such as contact numbers and the principal eigenvector of a contact matrix [6, 7, 8, 9]. An important question is not only what kind of one dimensional information is needed to reconstruct protein structures but also why such information is critical to reconstruct protein structures.

Let us think about a distance matrix each element of which is equal to distance between atoms or residues specified by its column and row. Information contained in the distance matrix is equivalent with the specification of three-dimensional coordinates of each atom/residue, except that a mirror image of the native structure cannot be excluded in distance information. Reconstructing a distance matrix from one-dimensional vectors requires in principle the specification of all eigenvectors as well as eigenvalues. In other words, for an $N \times N$ matrix, N N-dimensional vectors are required. However, protein’s particular characteristics may allow the reconstruction of a distance matrix with fewer one-dimensional vectors.

A contact matrix whose element is equal to one for contacting atom/residue pairs or zero for no-contacting atom/residue pairs or more generally a value between one and zero representing the degree of contact is a simplification of a distance matrix with two categories, contact or non-contact for the distance of atom/residue pairs, but keeps almost all information needed to reconstruct three-dimensional structures of proteins. In the case of a contact matrix consisting of discrete values, one and zero, for residues, Porto et al. [7] showed that the contact map of the native structure of globular proteins can be reconstructed starting from the sole knowledge of the contact map’s principal eigenvector, and the reconstructed contact map allow in turn for the accurate reconstruction of the three-dimensional structure.

A vector of contact numbers, which is defined as the number of atoms or residues in contact with each atom/residue in a protein, is another type of one-dimensional vector that is often used as a one-
A question is why the principal eigenvector of a contact matrix and a contact number vector contain significant information of protein structures. Here, we consider what properties of contact matrices are induced by pairwise contact interactions for native proteins to be the lowest energy conformations. For simplicity, a total conformational energy is assumed to consist of pairwise interactions over all atom or residue pairs. It is further assumed that the pairwise interaction can be expressed as a product of a conformation-dependent (C-dependent) factor and a sequence-dependent (S-dependent) factor; the S-dependent factor corresponds to an energy parameter specific to a given pair of atom/residues. Here we call a matrix of C-dependent factor a generalized contact matrix or even simply a contact matrix (C-matrix), and call a matrix of S-dependent factor a generalized contact energy matrix or even simply contact energy matrix (E-matrix). A simple linear algebra indicates that such a total energy function is bounded by the lowest value corresponding to the total energy for a C-matrix in which all pairs with lower contact energies than a certain threshold are in contact. Such a lower bound is achieved if and only if proteins are ideal to have the so-called Go-like potential [2]. The Go-like potential is defined as one in which interaction energies between native contacts are always lower than those between non-native contacts. Real pairwise interactions in proteins couldn’t be the Go-like potential. In other words, real proteins could not achieve this lowest bound of a pairwise potential because of atom/residue connectivities and steric hindrance that are not included in this type of total energy function. How should they approach to the lowest bound as closely as possible? The lowest bound can be approached by making the singular vectors of C-matrix parallel to the corresponding singular vectors of E-matrix with the same value of the singular values. Also, in the lowest bound a contact number vector tends to be parallel to the principal eigenvectors of C-matrix and of E-matrix. The most effective way would be to first make the principal singular vector of a contact matrix. Kabakçıoğlu et al. [6] suggested that the number of feasible protein conformations that satisfy the constraint of a contact number for each residue is very limited.

A question is why the principal eigenvector of a contact matrix and a contact number vector contain significant information of protein structures. Here, we consider what properties of contact matrices are induced by pairwise contact interactions for native proteins to be the lowest energy conformations. For simplicity, a total conformational energy is assumed to consist of pairwise interactions over all atom or residue pairs. It is further assumed that the pairwise interaction can be expressed as a product of a conformation-dependent (C-dependent) factor and a sequence-dependent (S-dependent) factor; the S-dependent factor corresponds to an energy parameter specific to a given pair of atom/residues. Here we call a matrix of C-dependent factor a generalized contact matrix or even simply a contact matrix (C-matrix), and call a matrix of S-dependent factor a generalized contact energy matrix or even simply contact energy matrix (E-matrix). A simple linear algebra indicates that such a total energy function is bounded by the lowest value corresponding to the total energy for a C-matrix in which all pairs with lower contact energies than a certain threshold are in contact. Such a lower bound is achieved if and only if proteins are ideal to have the so-called Go-like potential [2]. The Go-like potential is defined as one in which interaction energies between native contacts are always lower than those between non-native contacts. Real pairwise interactions in proteins couldn’t be the Go-like potential. In other words, real proteins could not achieve this lowest bound of a pairwise potential because of atom/residue connectivities and steric hindrance that are not included in this type of total energy function. How should they approach to the lowest bound as closely as possible? The lowest bound can be approached by making the singular vectors of C-matrix parallel to the corresponding singular vectors of E-matrix with the same value of the singular values. Also, in the lowest bound a contact number vector tends to be parallel to the principal eigenvectors of C-matrix and of E-matrix. The most effective way would be to first make the principal singular vector of a contact matrix. Kabakçıoğlu et al. [6] suggested that the number of feasible protein conformations that satisfy the constraint of a contact number for each residue is very limited.

A question is why the principal eigenvector of a contact matrix and a contact number vector contain significant information of protein structures. Here, we consider what properties of contact matrices are induced by pairwise contact interactions for native proteins to be the lowest energy conformations. For simplicity, a total conformational energy is assumed to consist of pairwise interactions over all atom or residue pairs. It is further assumed that the pairwise interaction can be expressed as a product of a conformation-dependent (C-dependent) factor and a sequence-dependent (S-dependent) factor; the S-dependent factor corresponds to an energy parameter specific to a given pair of atom/residues. Here we call a matrix of C-dependent factor a generalized contact matrix or even simply a contact matrix (C-matrix), and call a matrix of S-dependent factor a generalized contact energy matrix or even simply contact energy matrix (E-matrix). A simple linear algebra indicates that such a total energy function is bounded by the lowest value corresponding to the total energy for a C-matrix in which all pairs with lower contact energies than a certain threshold are in contact. Such a lower bound is achieved if and only if proteins are ideal to have the so-called Go-like potential [2]. The Go-like potential is defined as one in which interaction energies between native contacts are always lower than those between non-native contacts. Real pairwise interactions in proteins couldn’t be the Go-like potential. In other words, real proteins could not achieve this lowest bound of a pairwise potential because of atom/residue connectivities and steric hindrance that are not included in this type of total energy function. How should they approach to the lowest bound as closely as possible? The lowest bound can be approached by making the singular vectors of C-matrix parallel to the corresponding singular vectors of E-matrix with the same value of the singular values. Also, in the lowest bound a contact number vector tends to be parallel to the principal eigenvectors of C-matrix and of E-matrix. The most effective way would be to first make the principal singular vector of a contact matrix. Kabakçıoğlu et al. [6] suggested that the number of feasible protein conformations that satisfy the constraint of a contact number for each residue is very limited.

A question is why the principal eigenvector of a contact matrix and a contact number vector contain significant information of protein structures. Here, we consider what properties of contact matrices are induced by pairwise contact interactions for native proteins to be the lowest energy conformations. For simplicity, a total conformational energy is assumed to consist of pairwise interactions over all atom or residue pairs. It is further assumed that the pairwise interaction can be expressed as a product of a conformation-dependent (C-dependent) factor and a sequence-dependent (S-dependent) factor; the S-dependent factor corresponds to an energy parameter specific to a given pair of atom/residues. Here we call a matrix of C-dependent factor a generalized contact matrix or even simply a contact matrix (C-matrix), and call a matrix of S-dependent factor a generalized contact energy matrix or even simply contact energy matrix (E-matrix). A simple linear algebra indicates that such a total energy function is bounded by the lowest value corresponding to the total energy for a C-matrix in which all pairs with lower contact energies than a certain threshold are in contact. Such a lower bound is achieved if and only if proteins are ideal to have the so-called Go-like potential [2]. The Go-like potential is defined as one in which interaction energies between native contacts are always lower than those between non-native contacts. Real pairwise interactions in proteins couldn’t be the Go-like potential. In other words, real proteins could not achieve this lowest bound of a pairwise potential because of atom/residue connectivities and steric hindrance that are not included in this type of total energy function. How should they approach to the lowest bound as closely as possible? The lowest bound can be approached by making the singular vectors of C-matrix parallel to the corresponding singular vectors of E-matrix with the same value of the singular values. Also, in the lowest bound a contact number vector tends to be parallel to the principal eigenvectors of C-matrix and of E-matrix. The most effective way would be to first make the principal singular vector of a contact matrix. Kabakçıoğlu et al. [6] suggested that the number of feasible protein conformations that satisfy the constraint of a contact number for each residue is very limited.

A question is why the principal eigenvector of a contact matrix and a contact number vector contain significant information of protein structures. Here, we consider what properties of contact matrices are induced by pairwise contact interactions for native proteins to be the lowest energy conformations. For simplicity, a total conformational energy is assumed to consist of pairwise interactions over all atom or residue pairs. It is further assumed that the pairwise interaction can be expressed as a product of a conformation-dependent (C-dependent) factor and a sequence-dependent (S-dependent) factor; the S-dependent factor corresponds to an energy parameter specific to a given pair of atom/residues. Here we call a matrix of C-dependent factor a generalized contact matrix or even simply a contact matrix (C-matrix), and call a matrix of S-dependent factor a generalized contact energy matrix or even simply contact energy matrix (E-matrix). A simple linear algebra indicates that such a total energy function is bounded by the lowest value corresponding to the total energy for a C-matrix in which all pairs with lower contact energies than a certain threshold are in contact. Such a lower bound is achieved if and only if proteins are ideal to have the so-called Go-like potential [2]. The Go-like potential is defined as one in which interaction energies between native contacts are always lower than those between non-native contacts. Real pairwise interactions in proteins couldn’t be the Go-like potential. In other words, real proteins could not achieve this lowest bound of a pairwise potential because of atom/residue connectivities and steric hindrance that are not included in this type of total energy function. How should they approach to the lowest bound as closely as possible? The lowest bound can be approached by making the singular vectors of C-matrix parallel to the corresponding singular vectors of E-matrix with the same value of the singular values. Also, in the lowest bound a contact number vector tends to be parallel to the principal eigenvectors of C-matrix and of E-matrix. The most effective way would be to first make the principal singular vector of a contact matrix. Kabakçıoğlu et al. [6] suggested that the number of feasible protein conformations that satisfy the constraint of a contact number for each residue is very limited.

A question is why the principal eigenvector of a contact matrix and a contact number vector contain significant information of protein structures. Here, we consider what properties of contact matrices are induced by pairwise contact interactions for native proteins to be the lowest energy conformations. For simplicity, a total conformational energy is assumed to consist of pairwise interactions over all atom or residue pairs. It is further assumed that the pairwise interaction can be expressed as a product of a conformation-dependent (C-dependent) factor and a sequence-dependent (S-dependent) factor; the S-dependent factor corresponds to an energy parameter specific to a given pair of atom/residues. Here we call a matrix of C-dependent factor a generalized contact matrix or even simply a contact matrix (C-matrix), and call a matrix of S-dependent factor a generalized contact energy matrix or even simply contact energy matrix (E-matrix). A simple linear algebra indicates that such a total energy function is bounded by the lowest value corresponding to the total energy for a C-matrix in which all pairs with lower contact energies than a certain threshold are in contact. Such a lower bound is achieved if and only if proteins are ideal to have the so-called Go-like potential [2]. The Go-like potential is defined as one in which interaction energies between native contacts are always lower than those between non-native contacts. Real pairwise interactions in proteins couldn’t be the Go-like potential. In other words, real proteins could not achieve this lowest bound of a pairwise potential because of atom/residue connectivities and steric hindrance that are not included in this type of total energy function. How should they approach to the lowest bound as closely as possible? The lowest bound can be approached by making the singular vectors of C-matrix parallel to the corresponding singular vectors of E-matrix with the same value of the singular values. Also, in the lowest bound a contact number vector tends to be parallel to the principal eigenvectors of C-matrix and of E-matrix. The most effective way would be to first make the principal singular vector of a contact matrix. Kabakçıoğlu et al. [6] suggested that the number of feasible protein conformations that satisfy the constraint of a contact number for each residue is very limited.
where $\mathcal{E}_{ij}(S)$ and $\Delta_{ij}(C)$ are the S-dependent term and C-dependent term for the pairwise interaction energy between the ith and jth units, respectively. $N_c(C)$ is the total number of contacts between units and defined as

$$N_c(C) = \frac{1}{2} \sum_i \sum_j \Delta_{ij}(C) = \frac{1}{2} \sum_i n_i(C),$$

where the generalized contact number n_i is the total number of units contacting with ith unit is defined as

$$n_i(C) = \sum_j \Delta_{ij}(C).$$

Each $\Delta_{ij}(C)$ is a function of coordinates of ith and jth units, and assume values between 0 and 1, with the diagonal elements always defined to be equal to 0. The S-dependent term $\mathcal{E}_{ij}(S)$ can include not only two-body interactions but multi-body effects as a mean-field, that is, not only depends on the type of a unit pair but on the entire protein sequence. We call the matrix $\Delta(C) \equiv (\Delta_{ij}(C))$ as a generalized contact matrix or C-matrix for short. Similarly, we call the matrix $(\mathcal{E}_{ij}(S))$ as a generalized contact energy matrix or E-matrix for short. Each element of the energy function of Eq. (1) can represent either attractive or repulsive interactions but not both. In the next sections, we consider mathematical lower limits of the total contact energy ignoring atomic details of proteins such as atom/residue connectivities and steric hindrance. The volume exclusions between atoms are assumed to be satisfied and are not included in the total energy function. To minimally reflect the effects of steric hindrance, the total number of contacts N_c is explicitly treated in the evaluation of the total energy, Eq. (2), by introducing a constant ε_0 in Eq. (3). The expression of Eq. (1) can be regarded as a special case of Eq. (2) in which ε_0 is equal to zero.

Lower bounds of the total contact energy

Let us consider lower bounds of the total contact energy represented by Eq. (1) under a condition that each element of C-matrix can independently take any value within $0 \leq \Delta_{ij} \leq 1$ irrespective of whether or not they can be reached in real protein conformations; in other words, atom/residue connectivities and steric hindrance are completely ignored.

If one regards $\delta \mathcal{E}_{ij}$ and Δ_{ij} as the elements of vectors $\delta \mathcal{E}(S)$ and $\Delta(C)$ in N^2-dimensional Euclidean space, it will be obvious that the first term of Eq. (2) can be bounded by a product of the norms of those two vectors:

$$E^e(C, S) \geq -\frac{1}{2} \|\delta \mathcal{E}(S)\| \|\Delta(C)\| + \varepsilon_0 N_c(C),$$

where $\|\ldots\|$ means a Euclidian norm. Obviously the equality of Eq. (6) is achieved if and only if those vectors are anti-parallel to each other:

$$\delta \mathcal{E}_{ij}(S) = \varepsilon \Delta_{ij}(C),$$

where ε is a negative constant.

In addition, there is a simple mathematical limit for the total energy of Eq. (1) for which C-matrix is equal to $H_0(-\delta \mathcal{E}_{ij})$:

$$E^e(C, S) \geq \frac{1}{2} \sum_i \sum_j \delta \mathcal{E}_{ij}(S) \Delta_{ij}(C_{\text{min}}) + \varepsilon_0 N_c(C_{\text{min}})$$

$$\geq \frac{1}{2} \sum_i \sum_j \mathcal{E}_{ij}(S) H_0(-\delta \mathcal{E}_{ij}(S)),$$

$$\Delta_{ij}(C_{\text{min}}) = H_0(-\delta \mathcal{E}_{ij}(S)),$$

where $H_0(x)$ is the Heaviside step function that takes one for $x > 0$ and zero for otherwise. C_{min} is the lowest energy conformation with a constraint on the total contact number N_c, although it is not necessarily reached due to atom and residue connectivity, and steric hindrance. If each Δ_{ij} is allowed to take either 0 or 1 only, and also each $\delta \mathcal{E}_{ij}$ takes either one of two real values only to be able to satisfy Eq. (7), both the lower bounds of Eq. (6) and Eq. (8) are equal to each other. Otherwise, the lower bound of Eq. (8) is further bounded by the lower bound of Eq. (9), or the equality in Eq. (8) cannot be achieved with $0 \leq \Delta_{ij} \leq 1$, but Eq. (6) is always satisfied. If the total number of contacts N_c is constrained to be equal to $N_c(C_{\text{min}})$, then ε_0 must be properly chosen as a non-positive value so that Eq. (6) is satisfied. Otherwise, ε_0 should be taken to be zero to obtain the lower bound of Eq. (9). Eq. (9) describes the lowest bound without any constraint on the number of contacts and corresponds to the energy of the conformation C_{min} for $\varepsilon_0 = 0$.

The potentials that satisfies Eq. (7) and Eq. (10) are just a Go-like potential [2], in which interactions between native contact pairs are always more attractive than those between non-native pairs. Let us call proteins with a Go-like potential as ideal proteins. There are multiple levels of nativelikeliness in the Go-like potential. The most nativelike potential of the present Go-like potentials is one in which all interactions between native contacts are attractive and other interactions are all repulsive. In other words, \mathcal{E}_{ij} is negative for native contacts and positive for non-native contacts. In such a Go-like potential, the native conformation can attain the lowest bound of Eq. (9), which is equivalent to Eq. (8) with $\varepsilon_0 = 0$. A less nativelike potential is one in which interactions between non-native contact pairs can be attractive but always less attractive than those between native contact pairs. An ideal protein with such a potential can attain Eq. (8) with a proper value of ε_0, which is the threshold energy for native and non-native contacts. In real protein, we should define ε_0 as a threshold of contact energy under which unit pairs tend to be in contact in native conformations.

In ideal proteins, the lowest energy conformation must be one for which the contact potential looks like a Go-like potential, and inversely the potential must be a Go-like potential for the lowest energy conformation. In real
proteins, it would be impossible that contact potentials for native structures are exactly like a Go-like potential such as Eq. \[7\] and Eq. \[10\], even though the contact potential considered here may be an effective one that includes not only actual pairwise interactions but also the effects of higher order interactions near native structures. In other words, the lowest bound of Eq. \[3\] could not be achieved for real pairwise potentials, because of atom/residue connectivities and steric hindrance. However, it is desirable to reduce frustrations among interactions so that an effective pairwise potential in native structures must approach the Go-like potential. Then, a question is how native contact energies approach the mathematical lowest limit. In the following, we will show tips of how the C-matrix should be designed to decrease the total energy towards the theoretical lowest limit.

It should be noted here that the lowest energy conformation, C-matrix, is considered for a given potential, E-matrix, but not its inverse problem, which is to consider an optimum potential or an optimum sequence for a given conformation, that is, an optimum E-matrix for a given C-matrix. In the inverse problem, the total partition function varies depending on each sequence, and it must be taken into account to evaluate the stability of the given C-matrix in relative to the other conformations \[16, 17, 18, 19\]. The Z-score of the energy gap between the given C-matrix and other compact conformations may be used to evaluate the optimality of each sequence \[13, 20\].

Spectral relationship between C- and E-matrices

We apply singular value decomposition to both C-matrix (generalized contact energy matrix) and E-matrix (generalized contact energy matrix). C-matrix is decomposed as

\[
\Delta_{ij}(C) = \sum_{\mu} |\lambda_{\mu}(C)| L_{\mu j}(C) R_{\mu i}(C),
\]

where \(\lambda_{\mu}(C)\) is the \(\mu\)th non-negative singular value of \(\Delta(C)\) arranged in the decreasing order, and \(L_{\mu}(C) \equiv \{L_{\mu 1}, \ldots, L_{\mu N}\}\) and \(R_{\mu}(C) \equiv \{R_{\mu 1}, \ldots, R_{\mu N}\}\) are the corresponding left and right singular vectors; both \(L \equiv \{L_1, \ldots, L_N\}\) and \(R\) are orthonormal matrices. Note that the singular values for a symmetric matrix such as a contact matrix is equal to the absolute value of its eigenvalue. We choose the eigenvector corresponding to the eigenvalue \(\lambda_{\mu}(C)\) as a right singular vector \(R_{\mu}(C)\) and if \(\lambda_{\mu}(C) \geq 0\), \(L_{\mu}(C) \equiv R_{\mu}(C)\) and otherwise \(L_{\mu}(C) \equiv -R_{\mu}(C)\).

Likewise, E-matrix, \(E_{ij}(S)\), is decomposed as

\[
E_{ij}(S) = \sum_{\nu} |\varepsilon_{\nu}| U_{i\nu}(S) V_{j\nu}(S) + \varepsilon_0,
\]

where the absolute value of the eigenvalue, \(|\varepsilon_{\nu}(S)|\), and \(U_{\nu}(S) \equiv \{U_{\nu 1}, \ldots, U_{\nu N}\}\) and \(V_{\nu}(S) \equiv \{V_{\nu 1}, \ldots, V_{\nu N}\}\) are the \(\nu\)th singular value, left and right singular vector of the matrix \(\delta E_{ij}(S)\), respectively. We choose the eigenvalue corresponding to the eigenvalue \(\varepsilon_{\nu}(C)\) as a right singular vector \(V_{\nu}(C)\) and if \(\varepsilon_{\nu}(C) \geq 0\), \(U_{\nu}(C) \equiv V_{\nu}(C)\) and otherwise \(U_{\nu}(C) \equiv -V_{\nu}(C)\).

We then substitute Eq. \[11\] and Eq. \[13\] into the definition of the total energy, Eq. \[1\], and obtain

\[
E^c(C, S) = \frac{1}{2} \sum_{\mu} \sum_{\nu} |\lambda_{\mu}(C)||\varepsilon_{\nu}(S)| \omega_{\mu\nu}(C, S) + \varepsilon_0 N_C(C),
\]

where

\[
\omega_{\mu\nu}(C, S) = \sum_i L_{\mu i}(C) U_{i\nu}(S) \sum_j R_{\nu j}(C) V_{j\mu}(S) = [L_{\mu}(C)U_{\nu}(S)]^T R_{\mu}(C)V_{\nu}(S).
\]

Because the first term in Eq. \[15\] is simply the trace of the product of two matrices, \(tr(\delta^t \Delta)\), Neumann’s trace theorem \[21\] leads to the following inequality:

\[
E^c(C, S) \geq -\frac{1}{2} \sum_{\{\xi|\varepsilon_{\xi}(S)\geq 0\}} |\lambda_{\varepsilon}(C)\varepsilon_{\varepsilon}(S)| + \varepsilon_0 N_C(C).
\]

The equality in Eq. \[17\] is achieved if and only if

\[
\omega_{\mu\nu} = -\delta_{\mu\nu}\quad for\ \{\mu|\lambda_{\mu}\varepsilon_{\mu} \neq 0\},
\]

that is, all the corresponding left and right singular vectors of the C- and E-matrices are exactly parallel/anti-parallel to each other. Then, regarding the singular values as the elements of a vector, i.e., \(\vec{\lambda}(C) \equiv \{\lambda_1, \ldots, \lambda_N\}\) and \(\vec{\varepsilon}(S) \equiv \{\varepsilon_1, \ldots, \varepsilon_N\}\), the sum of the products of the eigenvalues of E- and C-matrices in Eq. \[17\] can be bounded by the product of the norms of those two vectors, which is equal to the product of the norms of the vectors consisting of E- or C-matrix elements. As a result, we obtain the lower bound corresponding to Eq. \[6\] already derived in the previous section:

\[
E^c(C, S) \geq -\frac{1}{2} ||\vec{\lambda}(C)||_{\{\xi|\lambda_{\xi}\varepsilon_{\xi} \neq 0\}} ||\vec{\varepsilon}(S)||_{\{\xi|\lambda_{\xi}\varepsilon_{\xi} \neq 0\}} + \varepsilon_0 N_C(C)
\]
the spectral representation of C- and E-matrices reveals that the relation of Eq. $[21]$ is required only for the eigenspaces of $\lambda_\xi \xi \neq 0$.

Is a pairwise residue-residue potential sufficient to make native structures the unique lowest energy conformations?

If there exists ξ such that $\varepsilon_\xi = 0$, and the C-matrices for two conformations C and C' satisfy $(\Delta(U(\Delta(C) - \Delta(C'))_{ij}) = 0$ for $\{\varepsilon_\xi \neq 0\}$ and $N_\xi(C) = N_\xi(C')$, those two conformations have the same conformational energy, because the total contact energy can be represented as

$$E^c(C,S) = \sum_\nu |\varepsilon_\nu| \langle U \Delta(C) \rangle_{\nu} + \varepsilon_0 N_\xi(C). \quad (22)$$

If the contact interactions are genuine two-body between residues, $E_{ij}(S)$ and $\delta E_{ij}(S)$ will depend only on the residue type of ith and jth units and therefore $\text{rank}(\delta E_{ij})$ will be less than or equal to the number of amino acid types in a protein; therefore, $\text{rank}(\delta E_{ij}) \leq 20$. Thus, in the case of genuine two-body interactions between residues, there must exist ξ such that $\varepsilon_\xi = 0$ for any chain longer than 20 residues, that is, multiple C-matrices with the same energy. In other words, other interactions than pairwise interactions are needed to make native structures the unique lowest energy conformations.

Relationship between a contact number vector n and the eigenvectors of E-matrix

A contact number vector is C-matrix summed over a row or a column. Thus, to obtain a relationship between the contact number vector n and eigenvector R_μ, and $\|R_\mu n\|$ is one between the eigenvector R_μ and the vector n whose elements are all equal to one. $\langle n^2 \rangle$ represents the second moment of contact numbers over all units. We can say that the eigenvalue λ_μ is equal to the weighted average of contact number n_i with each component of the eigenvector, R_μ, and also that it is roughly proportional to the square root of the second moment of contact numbers. The principal eigenvalue has a value within the range of $2N_c/N \leq \lambda_1 \leq \max_i n_i \quad [29]$. The larger the ratio, $\langle R_\mu n \rangle / \|R_\mu n\|$, of the cosine is, the larger the eigenvalue λ_μ becomes.

Relationship between a contact number vector n and the eigenvectors of C-matrix

Eq. $[17]$ indicates that the larger the principal eigenvalue is, the lower the lower bound of the total contact energy is. The eigenvalue λ_μ satisfies

$$\lambda_\mu(C) = \frac{\langle tR_\mu(C)n(C) \rangle}{\|R_\mu(C)\|} \cdot 1 \quad (23)$$

$$= \langle n^2 \rangle^{1/2} \frac{\langle R_\mu n \rangle}{\|R_\mu n\|}, \quad (24)$$

where $\|R_\mu n\|$ is the cosine of the angle between the contact number vector n and eigenvector R_μ, and $\|R_\mu n\|$ is one between the eigenvector R_μ and the vector n whose elements are all equal to one. $\langle n^2 \rangle$ represents the second moment of contact numbers over all units. We can say that the eigenvalue λ_μ is equal to the weighted average of contact number n_i with each component of the eigenvector, R_μ, and also that it is roughly proportional to the square root of the second moment of contact numbers. The principal eigenvalue has a value within the range of $2N_c/N \leq \lambda_1 \leq \max_i n_i \quad [29]$. The larger the ratio, $\langle R_\mu n \rangle / \|R_\mu n\|$, of the cosine is, the larger the eigenvalue λ_μ becomes.

$$E^c(C,S) \approx \frac{1}{2} \sum_i \sum_j \frac{1}{N} \sum_k \delta E_{ik}(S) \Delta_{ij}(C) + \varepsilon_0 N_c(C) \quad (25)$$

$$= \frac{1}{2} \frac{\langle t \delta E^c(S) n(C) + \varepsilon_0 N_c(C) \rangle}{\| \delta E^c(S) \| / \| n(C) \| + \varepsilon_0 N_c(C)}, \quad (26)$$

where the mean contact energy vector δE^c is defined as $\delta E^c(S) \equiv \langle \frac{1}{N} \sum_k \delta E_{ik}(S) \rangle$. The equality in Eq. (27) holds if and only if the two vectors δE^c and n are anti-parallel:

$$\frac{\delta E^c(S)}{\| \delta E^c(S) \|} = - \frac{n(C)}{\| n(C) \|}. \quad (28)$$

Eq. $[28]$ above is equivalent to the following relation between the contact number vector and the eigenvector of E-matrix:

$$\frac{\langle tV_\nu n \rangle}{\| V_\nu n \|} = - \varepsilon_\nu \left(\sum_\nu \varepsilon_\nu \langle tV_\nu n \rangle / \| n \| \right)^{1/2}. \quad (29)$$

If E-matrix can be well approximated by a primary eigenvector term only, then this condition leads to the parallel
orientation between \mathbf{n} and the primary eigenvector of E-matrix, that is, $\mathbf{V}_1 \mathbf{n} / ||\mathbf{n}|| \simeq 1$. It has been reported that the contact number vector is highly correlated with the principal eigenvector of the C-matrix \[7\,8\].

If the conformation for the lower bound of the total energy is also the lower-bound conformation even for this averaging over E-matrix, Eq. (28) or Eq. (29) above together with Eq. (18), Eq. (24), $n = \sum \lambda_\mu R_\mu (\mathbf{U}_\mu 1)$ and $\delta \mathcal{E} = \sum \alpha_i \varepsilon_i \mathbf{V}_\nu (\mathbf{V}_\nu 1)$ leads to Eq. (21) between the eigenvalues of C- and E-matrices as follows:

$$
\frac{\Lambda_\xi (C)}{\varepsilon} \approx \frac{\left(\sum \xi (\xi R_\xi 1 / ||1||^2)^{1/2} \right)}{\left(\sum \xi (\xi V_\xi 1 / ||1||^2)^{1/2} \right)}$$

If $R_\xi = \pm \mathbf{V}_\xi$ (30),

$$= \xi \varepsilon$$

with a negative constant, $\varepsilon < 0$, (31)

where ε is a constant taking any negative value.

III. DATA ANALYSES

Eq. (17) indicates that with an optimum value for ε_0 the spectral relationship of Eq. (18) between E- and C-matrices tend to be satisfied in the lowest energy conformations. Here we will examine it by crudely evaluating pairwise interactions with a contact potential between amino acids, which was estimated as a statistical potential from contact frequencies between amino acids observed in protein crystal structures.

A pairwise contact potential used

A contact potential used is a statistical estimate [4] of contact energies with a correction [3] for the Bethe approximation [30, 31]. The contact energy between amino acids of type a and b was estimated as

$$e_{ab} = e_{rr} + \alpha' [\Delta e_{ar}^{\text{Bethe}} + \Delta e_{rb}^{\text{Bethe}} + \frac{\beta'}{\alpha} \delta e_{ab}^{\text{Bethe}}].$$

where e_{rr} is part of contact energies irrespective of residue types and is called a collapse energy, which is essential for a protein to fold by cancelling out the large conformational entropy of extended conformations but cannot be estimated explicitly from contact frequencies between amino acids in protein structures. $\Delta e_{ar}^{\text{Bethe}}$ and $\delta e_{ab}^{\text{Bethe}}$ are the values of Δe_{ar} and δe_{ab} evaluated by the Bethe approximation from the observed numbers of contacts between amino acids. $\Delta e_{ar} + e_{rr}$ is a partition energy or hydrophobic energy for a residue of type a. δe_{ab} is an intrinsic contact energy for a contact between residues of type a and b; refer to [4] for those exact definitions. The proportional constants for correction was estimated as $\beta'/\alpha' = 2.2$ and $\alpha' \leq 1$ [4]. Here energy is measured in φT units; φ is the Boltzmann constant and T is temperature. With the spectral expansion of the second term of Eq. (32), the contact energies can be represented by

$$e_{ab} = e_{rr} + \alpha' [\sum e_{i} Q_{a i} q_{b i} + e_{0}],$$

where e_{i} and $Q_{a i}$ are eigenvalues and eigenvectors for the second term of Eq. (32) with a constant e_{0}. Li et al. [32] showed that the contact potential [30, 31] corresponding to $\beta'/\alpha' = 1$ between residues can be well approximated by the principal eigenvector term together with a constant term.

Then, the following relationship is derived for the eigenvalues and eigenvectors between E-matrix (\mathcal{E}_{ij}) and the contact energy matrix (e_{ij}):

$$e_{0} = e_{rr} + \alpha' e_{0},$$

$$e_{i} \approx \alpha' e_{i} \sum Q_{a i} q_{a i} = \alpha' e_{i} (Q_{a i}^2) N,$$

$$V_{i j} \approx Q_{a i} v_{i} / \left(\sum Q_{a i}^2\right)^{1/2},$$

where $q_{a i}$ is the amino acid type of ith residue, and N is protein length. It should be noted here that the eigenvectors $V_{i j}$ do not depend on the value of α'.

C-matrix, $\Delta(C)$, is defined in such a way that non-diagonal elements take a value one for residues that are completely in contact, the value zero for residues that are too far from each other, and values between one and zero for residues whose distance is intermediate between those two extremes. Contacts between neighboring residues are completely ignored, that is, $\Delta_{i j} = 0$ for $|i - j| \leq 1$. The geometric center of side chain heavy atoms or C_{a} atom for glycine is used to represent each residue. Previously, this function was defined as a step function for simplicity. Here, it is defined as a switching function as follows: in the equation below to define residue contacts, r_{i} means the position vector of a geometric center of side chain heavy atoms or the C_{a} atom for glycine:

$$\Delta(r_{i}, r_{j}) \equiv S_{w}(|r_{i} - r_{j}|, d_{i}^{c}, d_{j}^{c}),$$

$$S_{w}(x, a, b) \equiv \begin{cases} 1 & \text{for } x \leq a \\ \left[\left(b^{2} - x^{2}\right)^{2} / (b^{2} - a^{2})^{3}\right] & \text{for } a < x < b, \\ 0 & \text{for } b \leq x \end{cases}$$

where S_{w} is a switching function that sharply changes its value from one to zero between the lower distance d_{i}^{c} and the upper distance d_{j}^{c}. Those critical distances d_{i}^{c} and d_{j}^{c} are taken here as 6.65 Å and 7.35 Å, respectively.

Protein structures analyzed

Proteins each of which is a single-domain protein representing a different family of protein folds were collected. In the case of multi-domain proteins in which contacts between domains are significantly less that those within domains, a contact matrix could be approximated by a direct sum of subspaces corresponding to each domain.
This characteristic of multi-domain proteins has been used for domain decomposition \cite{33} and for identification of side-chain clusters in a protein \cite{34,35}. Thus, only single-domain proteins are used here. Release 1.69 of the SCOP database \cite{3} was used for the classification of protein folds. We have assumed that proteins whose domain specifications in the SCOP database consist of protein ID only, are single-domain proteins. Representatives of families are the first entries in the protein lists for each family in SCOP; if these first proteins in the lists are not appropriate (see below) to use, for the present purpose, then the second ones are chosen. These species are all those belonging to the protein classes 1 to 4; that is, classes of all α, all β, α/β, and $\alpha+\beta$ proteins. Classes of multi-domain, membrane and cell surface proteins, small proteins, peptides and designed proteins are not used. Proteins whose structures \cite{50} were determined by NMR or having stated resolutions worse than 2.0 Å are removed to assure that the quality of proteins used is high. Also, proteins whose coordinate sets consist either of only C^α atoms, or include many unknown residues, or lack many atoms or residues, are removed. In addition, proteins shorter than 50 residues are also removed. As a result, the set of family representatives includes 182 protein domains.

IV. RESULTS

The spectral relationship between C-matrix and E-matrix is analyzed for single domain proteins that are representatives from each family of class 1 to 4 in the Scop database of version 1.69. The statistical potential used is crude, so that the following analyses are limited only to relationships between the principal eigenvectors of C-matrix and of E-matrix and contact number vector. It should be noted here that the crude evaluation of the pairwise interactions may make their relationships unclear.

Eq. (24) indicates that the eigenvalues of C-matrix are proportional to the square root of the second moment of contact numbers. The proportional constant for the principal eigenvalue of C-matrix, that is, $\langle R_1 n \parallel 1 \rangle / (\langle R_1 1 \parallel n \rangle)$, is plotted for each protein in Fig. 1. The dotted lines are iso-cosine lines for the angle between the principal eigenvector of C-matrix and the contact number vector, whose values are written in the figure. The ratios are scattered between 1.2 and 1.6, although the value of the ratio depends on the value of the abscissa, $\langle R_1 1 \parallel 1 \rangle$. Cosine of angle is upper bounded by the value of one, and therefore the value of the cosine becomes correlated with the value of the denominator of the ratio, i.e., $\langle R_1 1 \parallel 1 \rangle$. The important fact is that the ratio takes values larger than one, making the principal eigenvalue larger. Here, it should be noted that the lower bound of conformational energy linearly depends on the principal eigenvalue of C-matrix; see Eq. (17). Thus, the larger the principal eigenvalue is, the lower the conformational energy becomes. In practice, this condition seems to yield the high correlation between the principal eigenvector and the contact number vector; the most values of the $\langle R_1 n \parallel n \rangle$, are greater than 0.7.

FIG. 1: The ratio of $\langle R_1 n \parallel n \rangle$ to $\langle R_1 1 \parallel 1 \rangle$ is shown for each of 182 proteins, which are representatives of single domain protein from each family of class 1 to 4 in the SCOP version 1.69. R_1 and n are the principal eigenvector and the contact number vector of the native C-matrix, respectively. The dotted lines indicate the iso-value lines for $\langle R_1 n \parallel n \rangle$, whose values are shown in the figure.

Now let us think about the relationship between the C-matrix and the pairwise interactions. Pairwise interactions between residues are evaluated by using a statistical estimate \cite{5} of contact energies with a correction \cite{4} for the Bethe approximation. Figure 2 shows the average of $\langle R_1 V_1 \rangle$ over all proteins for each value of e_0. The average $\langle R_1 V_1 \rangle$ takes the maximum value 0.699 at $e_0 = 1.3$, although its decrements according to the increase of e_0 are not large. In the following, $e_0 = 1.3$ is used to calculate

FIG. 2: The mean of $\langle R_1 V_1 \rangle$ over 182 proteins is plotted with plus marks against e_0. These proteins are representatives of single domain protein from each family of class 1 to 4 in the SCOP version 1.69. R_1 is the principal eigenvector of the native C-matrix. V_1 is the principal eigenvector for E-matrix with the value of e_0 specified on the abscissa.
The eigenvectors of E-matrices.

FIG. 3: The value of tR_1V_1 is plotted against $^tR_11\parallel 1\parallel$ for each of 182 proteins, which are representatives of single domain protein from each family of class 1 to 4 in the SCOP version 1.69. R_1 is the principal eigenvector of the native C-matrix. V_1 is the principal eigenvector for E-matrix with $c_0 = 1.3$. The dotted line shows the line of equal values between the ordinate and abscissa.

The value of tR_1V_1 for each protein is plotted against the value of $^tR_11\parallel 1\parallel$ in Fig. 3. The value of tR_1V_1 is larger for most of the proteins than that of $^tR_11\parallel 1\parallel$. If the direction of R_1 is randomly distributed in the domain of $R_11 > 0$, the probability that tR_1V_1 is larger than $^tR_11\parallel 1\parallel$ must be smaller than 0.5. Then, in such a random distribution, a probability to observe Fig. 3 in which 175 of 182 proteins fall into the region of $^tR_1V_1 > ^tR_11\parallel 1\parallel$, must be smaller than $182C_{175}(0.5)^{175} = \exp(-91.6)$. Also t-test is performed for a correlation coefficient between R_1 and V_1 for each protein. The geometric mean of probabilities for significance over 182 proteins examined here is equal to $\exp(-18.4)$. Thus, it is statistically significant that the direction of the vector R_1 is closer to V_1 rather than 1 whose elements do not depend on residues in proteins. This fact indicates again that the parallel orientation between the principal eigenvectors of C-matrix and of E-matrix is favored.

Eq. (28) indicates that the mean contact energy vector $\delta \mathcal{E}_i(\equiv (1/N) \sum_k \delta \mathcal{E}_{ik}(S))$ being anti-parallel to the contact number vector is favorable to decrease the conformational energy. Figure 4 does not show strong but statistically significant tendency that the value of $-^{t}\delta \mathcal{E}_n/|| \delta \mathcal{E}_n || n || 1 ||$ tends to be larger than $^{t}n1/||n||1||$; in t-tests for correlation coefficients between $\delta \mathcal{E}_n$ and n, the geometric mean of probabilities for significance over 182 proteins is equal to $\exp(-27.9)$. If the E-matrix can be approximated by the primary eigenvector term, this fact indicates that the contact number vector tends to be parallel to the principal eigenvector of E-matrix. Actually this is the case for the present estimate of contact energies; the figure of $^{t}V_1n/ || n ||$ versus $^{t}n1/ || n || 1 ||$ is not shown. In t-tests for correlation coefficients between V_1 and n, the geometric mean of probabilities for significance is equal to $\exp(-28.8)$.

Here, we have shown that the principal eigenvector among other eigenvectors of C-matrix seems to be a main contributor to minimize conformation energy. It is important to take notice that the principal eigenvector of C-matrix corresponds to the lower frequency normal modes of protein motion. Let us think about a Kirchhoff matrix that is defined as

$$K_{ij} \equiv n_i \delta_{ij} - \Delta_{ij},$$

where δ_{ij} is a Kronecker’s delta. The eigenvalue of the Kirchhoff matrix are equal to the square of normal mode angular frequency in a system in which i and jth units are connected to each other by a spring with a spring constant equal to Δ_{ij}. If contact number n_i is equal to a constant n_c irrespective of unit i, then the eigenvalue of the Kirchhoff matrix is equal to $n_c - \lambda_\mu$. In other words, in this case the principal eigenvector of C-matrix corresponding to the largest eigenvalue is equal to the eigenvector of the Kirchhoff matrix corresponding to the smallest eigenvalue, that is, the lowest frequency normal mode corresponding to a motion that leads to the large conformational change.

In actual proteins, contact number n_i depends on unit i, and then the cor-
The lower bounds of the total contact energy lead to the relationship between \(E \)- and \(C \)-matrices such that the contact potential looks like a Go-like potential. Such a relationship may be realized only for ideal proteins, but in real proteins, atom- and residue-connectivity and steric hindrance not included in the contact energy can significantly reduce conformational space; the number of possible \(C \)-matrices is the order of \(2^{N(N-1)/2} \) but the conformational entropy of self-avoiding chains is proportional to at most \(N \), where \(N \) is chain length. As a result, Eq. (18) is expected to be approximately satisfied only for some singular spaces, probably for singular values taking relatively large values, but at least for the primary singular space. It was confirmed in the representative proteins that the inner products of the principal eigenvectors of \(E \)- and \(C \)-matrices are significantly biased toward the value, one, at a certain value of the threshold energy \(\varepsilon_0 \) for contacts, where their average over all proteins has a maximum; see Fig. 3. Parallel relationships were also indicated and confirmed between the primary eigenvector \(\mathbf{R}_1 \) and the contact number vector \(\mathbf{n} \) of \(C \)-matrix, and between the mean contact energy vector \(\delta \mathbf{E} \) and the contact number vector \(\mathbf{n} \); see Fig. 4 and Fig. 5. In these analyses, a statistical potential was used to evaluate contact energies between residues, and the coarse grain of the evaluations limits the present analysis to a relationship between the primary eigenvectors of \(E \)- and \(C \)-matrices, and also can make the relationship between these matrices vague. However, the results clarify significance of the principal eigenvectors of \(E \)- and \(C \)-matrices and the contact number vector in protein structures. Here, it may be worthy of note that the primary eigenvector of \(C \)-matrix corresponds to the lower frequency normal modes of protein structures.

The condition for the lowest bound of energy, Eq. (10), indicate that \(\varepsilon_0 \) in real proteins corresponds to a threshold of contact energy for a unit pair to tend to be in contact in the native structures. In principle, such a threshold for contact energy depends on the size of protein and protein architecture; it should be noted that many types of interactions in real proteins are missed in representing interactions by contact potentials. The estimate of \(\varepsilon_0 \) shown in Fig. 2 is an estimate only for the present specific type of a contact potential. The important things are that the total contact energy is bounded by Eq. (8) with a constant term, and that the spectral relationships of Eq. (18) and Eq. (21) between \(E \)- and \(C \)-matrices are expected for the conformations of the lower bounds if \(E \)-matrix is decomposed with a constant term as shown in Eq. (13).

Besides that, the spectral representation of \(C \)- and \(E \)-matrices reveals that pairwise residue-residue interactions, which depends only on the types of interacting amino acids but not on other residues in a protein, are insufficient and other interactions including residue connectivities and steric hindrance are needed to make native structures the unique lowest energy conformations.

V. DISCUSSION

The lower bounds of the total contact energy lead to the relationship between \(E \)- and \(C \)-matrices such that
[1] A. R. Kinjo and S. Miyazawa, Chem. Phys. Lett. 451, 132 (2008).
[2] N. Go, Annu. Rev. Biophys. Bioeng. 12, 183 (1983).
[3] A. G. Murzin, S. E. Brenner, T. Hubbard and C. Chothia, J. Mol. Biol. 247, 536 (1995).
[4] S. Miyazawa and R. L. Jernigan, Proteins 34, 49 (1999).
[5] S. Miyazawa and R. L. Jernigan, Proteins 50, 35 (2003).
[6] A. Kabakcioğlu, I. Kanter, M. Vendruscolo and E. Doman, Phys. Rev. E 65, 041904- (2002).
[7] M. Porto, U. Bastolla, H. E. Roman and M. Vendruscolo, Phys. Rev. Lett. 92, 218101-1 (2004).
[8] A. R. Kinjo and K. Nishikawa, Bioinformatics 21, 2167 (2005).
[9] A. Vullo, I. Walsh and G. Pollastri, BMC Bioinformatics 7, 180-1 (2006).
[10] K. Nishikawa and T. Ooi, J. Peptide Protein Res. 16, 19 (1980).
[11] K. Nishikawa and T. Ooi, J. Biochem. 100, 1043 (1986).
[12] A. R. Kinjo, K. Horimoto and K. Nishikawa, Proteins 58, 158 (2005).
[13] H. Cao, Y. Ihm, C. Z. Wang, J. R. Morris, M. Su, D. Dobbs and K. M. Ho, Polymers 45, 687 (2004).
[14] H. Cao, C. Z. Wang, D. Dobbs, Y. Ihm and K. M. Ho, Phys. Rev. E 74, 031921-1 (2006).
[15] U. Bastolla, M. Porto, H. E. Roman and M. Vendruscolo, Proteins 58, 22 (2005).
[16] F. Seno, M. Vendruscolo, A. Maritan and J. R. Banavar, Phys. Rev. Lett. 77, 1901 (1996).
[17] J. M. Deutsch and T. Kurosky, Phys. Rev. Lett. 76, 323 (1996).
[18] M. Morisseey and E. I. Shakhnovich, Folding & Design 1, 391 (1996).
[19] S. Miyazawa and R. L. Jernigan, Proteins 36, 357 (1999).
[20] L. Mirny, V. Abkevich and E. I. Shakhnovich, Folding & Design 1, 103 (1996).
[21] R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge: Cambridge University Press, 1985).
[22] S. Miyazawa and R. L. Jernigan, J. Chem. Phys. 122, 024901-1 (2005).
[23] P. J. Munson and R. K. Singh, Protein Sci. 6, 1467 (1997).
[24] G. Chikenji, Y. Fujitsuka and S. Takada, Proc. Natl. Acad. Sci. USA 103, 3141 (2006).
[25] P. J. Fleming, H. Gong and G. D. Rose, Protein Sci. 15, 1829 (2006).
[26] L. A. Mirny and E. I. Shakhnovich, J. Mol. Biol. 264, 1164 (1996).
[27] D. Toby and R. Elber, Proteins 41, 40 (2000).
[28] D. Toby, G. Shafran, N. Linial and R. Elber, Proteins 40, 71 (2000).
[29] B. Bollobás, Modern graph theory (Berlin: Springer Verlag, 1998).
[30] S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534 (1985).
[31] S. Miyazawa and R. L. Jernigan, J. Mol. Biol. 256, 623 (1996).
[32] H. Li, C. Tang and N. Wingreen, Phys. Rev. Lett. 79, 765 (1997).
[33] L. Holm and C. Sander, Proteins 19, 256 (1994).
[34] N. Kannan and S. Vishveshwarar, J. Mol. Biol. 292, 441 (1999).
[35] N. Kannan and S. Vishveshwarar, Protein Eng. 13, 753 (2000).
[36] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne, Nucl. Acid Res. 28, 235 (2000).
[37] M. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996).