Exploring the Anti-Hypertensive Properties of Medicinal Plants and Their Bioactive Metabolites: An Extensive Review

Md. Moaz Ahmed Asif¹*, Susmita Roy Lisa¹*, Nazmul Qais²#

¹Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
²Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh

Email: ¹nqais@du.ac.bd

Abstract

Medicinal plants are extensively used in traditional folk medicine. High blood pressure is associated with the risk of cardiovascular diseases (CVDs) and many other serious health complications resulting from it as a major concern of morbidity and mortality in health sector. Use of diuretics, angiotensin converting enzyme (ACE) inhibitors, beta adrenergic receptor antagonists (beta blockers), alpha adrenergic receptor antagonists (alpha blockers), calcium channel blockers (CCBs) etc. are not efficient enough to cure hypertension. Side effects regarding these medications lead to intolerance, impaired control of the disease, and also mismanagement of therapy. So, approach regarding quenching new potent therapeutic compounds from medicinal plants draws attention nowadays. For example, as a first-line therapeutic agent, an alkaloid is highly effective in lowering systolic blood pressure which is isolated from root extract of the plant of Rauwolfia serpentina species, namely reserpine. This article comes up with a list of 63 plant species from 37 families, compiling information related to plant parts used for making extracts, types of extract and animals used in these studies, antihypertensive effect of the extracts etc. It also refers to 74 chemically defined molecules, with in vitro and in vivo anti-hypertensive potential, isolated from these extracts along with their dosage and mechanism of action by using electronic searches of published articles from various databases and reference books. Our present work would be beneficial for researchers to investigate and invent novel anti-hypertensive therapy to treat hypertension.

*Co-first authors.
#Corresponding author.
Keywords

Hypertension, Anti-Hypertensive, Phytoconstituents, Medicinal Plants, Angiotensin Converting Enzyme, Nitric Oxide

1. Introduction

The definition of hypertension (HTN) is when office systolic blood pressure (SBP) and/or diastolic blood pressure (DBP) is equal or greater than 140 mmHg, and 90 mmHg respectively [1]. HTN is often called “the silent killer”. If HTN is left untreated, end organ damage may occur [2]. People with elevated blood pressure (BP) may face some major risk of being affected by coronary artery disease with the following complications e.g., blindness in diabetic patients, heart failure, renal diseases, and stroke [3]. 972 million people had HTN in 2000 and this number was predicted to be about 1.56 billion in 2025 [4]. Obesity, unhealthy diet, tobacco use, physical inactivity, and HTN are some factors that increase the risk of CVDs [5]. Reducing SBP by 5 mmHg is shown to lower mortality rate by 9%, 14%, and 7% respectively for coronary heart disease, stroke, and in total [6].

Until now, there are different antihypertensive therapies available, such as: ACE (classified as EC3.4.15.1) inhibitors, angiotensin receptor blocker (ARB), beta blockers, diuretics, and also CCBs [7] [8]. They show their antihypertensive effect by controlling cardiac output (CO) (affecting stroke volume and heart rate), and peripheral or systemic vascular resistance.

Impairment in production of nitric oxide (NO) is a very common reason behind endothelial dysfunction, which leads to HTN [9] [10]. Figure 1 shows that, endothelial NO synthase (eNOS) produces NO from L-arginine in the blood vessels to control cardiovascular function [11]. High BP was induced due to chronic blocking of NO after administrating Nω-Nitro-l-arginine methyl ester (l-NAME) depending upon dose and time [12]. l-NAME contributes to endothelial dysfunction in resistant vessels by decreasing metabolites of NO present in plasma and downregulating expression of eNOS protein [13].

Oxidative stress also promotes HTN pathogenesis [15]. In a rat model of NO depletion-induced hypertension, excess reactive oxygen species (ROS) and declined amount of endogenous antioxidant enzymes have been found [16]. High amount of vascular superoxide (O$_2^-$), malondialdehyde (MDA), and plasma protein carbonyl were found in NO deficient hypertensive rats [17] [18]. O$_2^-$ quenches NO to produce peroxynitrite (ONOO$^-$) directly and decreases NO bioavailability [19].

Again, l-NAME causes overproduction of ROS and activates the renin-angiotensin system (RAS) [20] [21]. Angiotensin II (Ang-II) is a potential vasoconstrictor and for that as shown in Figure 2, RAS is a compulsory factor in pathogenesis of HTN [22]. Renin is released by renal artery constriction and Ang-II
Figure 1. The mechanism of action of Nitrates, and nitrites that increase NO in vascular smooth muscle cells (VSMC). Steps producing vascular contraction are presented with red arrows, and those causing vascular relaxation are displayed with blue arrows [14]. MLCK* = activated myosin light-chain kinase; GC* = activated guanylyl cyclase or guanylate cyclase; PDE = phosphodiesterase.

production is increased by activating RAS in NO deficient hypertensive rats [23] [24]. In l-NAME treated rats, Ang-II stimulates the Ang-II type 1 receptor (AT1R) which produces O2− activated by nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase [13]. Elevated ACE, cardiac and plasma Ang-II, and AT1R expression also confirmed RAS stimulation in those above-mentioned rats [25].

RAS is also a vital factor because chronic NO inhibition results in arterial re-modeling and AT1R blockers prevent that [26]. Vascular remodeling occurs by Ang-II binding to AT1R and activating serine/threonine kinase (Akt), one of its own intracellular downstream signaling protein responsible for Ang-II driven proliferation in VSMC [27]. Signal transducers and activators of transcription protein get phosphorylated by Janus kinases induced by AT1R activation that causes vascular proliferation and remodeling [28].
Despite using these agents, many patients cannot control their high BP [29]. HTN cannot be effectively managed in about 30% of the patients who comply with prescription therapies [30]. The available antihypertensive agents are not successful in all the cases along with disease severity [31]. These agents are categorized as combination therapy, costly and their ambiguous regimen of cure decreases drug adherence and may also surge adverse effects as well as drug interactions [32]. Among these, ACE inhibitors cause bronchospasm and cough [33]; ACE inhibitors and CCBs can cause angioedema with upper respiratory tract obstruction [34]; CCBs also increase the risk of cancer by inhibiting the growth of vascular cells and angiogenic growth factors due to increasing apoptosis [35]; beta blockers induce side effects related to central nervous system [36]. Dyspnea, headache, edema, cough, hair loss, and flushes are also reported as side effects of antihypertensive drugs [37]. So, the acceptance of alternative therapy is increasing day by day, as natural herbal products using medicinal plants show fewer side effects [38]. Numerous of them have the potential for therapy of CVDs including, HTN, arrhythmia, and venous insufficiency [39].

The goal of our work is to accumulate various phytoconstituents that exhibit in vitro and in vivo antihypertensive effects so that they can be used to make safe, patient-adhered, low-cost antihypertensive therapy with preferable minimum side effects. Combination of these natural compounds can also be therapeutic as more than one compound, responsible for antihypertensive effect, are
often found in extracts. Our review includes 63 species of plants from 37 family, plant parts used for making extracts, types of extract and animals used for these experiment, antihypertensive effect of the extracts as well as 74 confirmed anti-hypertensive compounds isolated from these extracts with their dosage and mechanism of action.

2. Discussion about Promising Anti-Hypertensive Plants

Herbal medicine is a tremendous source for seeking out novel therapeutic compounds for numerous diseases. The idea of generating medicine from scratch had originally come out from the traditional uses of herbs and plants by our fellow ancestor to cure many of their ailments. Herbal medicines are quite preferable among people for its significantly low side effects and also the belief regarding nature made.

Traditional use of some plants like Cocos nucifera Linn (Arecaceae), Curcuma domestica (Zingiberaceae), Terminalia bellerica Roxb. (Combretaceae) etc. are well known for treating HTN. Aim of this article is highlighting and compiling the data regarding chemo-profiles, pharmacology of various plant species used to treat HTN. Information regarding plant species is collected from online resources and journals such as PubMed, Google Scholar, SciFinder, ScienceDirect and so on. Table 1 illustrates a comprehensive overview of phytoconstituents, dosage, use, extracts of potential medicinal plants with prominent anti-hypertensive activity.

Among the described compounds, we think four of the compounds were therapeutically efficient. The first one, tilianin which is derived from Agastache mexicana, demonstrated dose-dependent anti-hypertensive effects, with an ED$_{50}$ of 53.51 mg/kg which was lower than the LD$_{50}$ of 6624 mg/kg, offers a wide spectrum of pharmacology responses. In addition, this study provides evidence about safety and efficacy of tilianin as antihypertensive agent, as well as, claims of no damage at physiologic, functional and cellular levels in rodent models [41].

The next one is naringenin, isolated from Cochlospermum vitifolium, exhibit a statistically significant dose-dependent decay on SBP (control: 184.00 mmHg vs. sample: 154.93 mmHg) after 24 h post-administration at 50 mg/kg, and also, a significant decrease of SBP (control: 184.00 mmHg vs. sample: 142.64 mmHg) and DBP (control: 159.62 mmHg vs. sample: 122.05 mmHg) at 160 mg/kg [55]. Curcumin nanoemulsion is our favorite choice, prepared from Curcuma domestica and having a 71.166% inhibition (after corrections) on HMGCR (a liver enzyme that contributes to cholesterol synthesis) to assess antihypercholesterolemic activity when compared to pravastatin. Curcumin:

1) Inhibits hepatic HMG-CoA activity and lowers HMGR gene expression (that produces the HMG-CoA enzyme).

2) Suppresses triglyceride and cholesterol accumulation in the liver due to its antihyperlipidemic properties.

3) Enhances PPARα gene expression that regulates fatty acid oxidation.
| Plant (Family) | Plant Parts, Type of extract | Animal used | Isolated Antihypertensive Phytochemicals | Use and Dosage | Mechanism of action | Citation |
|------------------------|------------------------------|-------------|--|----------------|---|----------|
| Acanthopanax sessiliflorus (Araliaceae) | Fruits, Ethanolic extract | Male Wistar rats | (a) 22α-hydroxychiisanoside, (b) 22α-hydroxychiisanogenin, (c) chiisanoside, (d) chiisanogenin, (e) momordin Ib | In vivo antithrombotic and antiplatelet activities, 125, 250, 500 and 1000 mg/kg/day. | Ethanolic extracts from *A. sessiliflorus* showed effects by 1) scavenging free radical 2) NO production facilitation 3) inhibition of ACE | [40] |
| Agastache mexicana (Lamiaceae) | Aerial parts, Methanolic extracts and EtOH: H2O (7:3) extracts | Male Wistar rats | 3(t) tilianin (Figure 3) | Vasorelaxant activity, 12.5, 25, 75, 100 mg/kg, 6624 mg/kg is the lethal dose. | Tilianin isolated from methanolic extract of *A. mexicana* exhibited endothelium-dependent vasorelaxant effect by 1) NO production and 2) opening K+ channel | [41] |
| Allanblackia floribunda Oliv. (Clusiaceae) | Bark, Aqueous extract. | Sucrose-induced hypertensive rats (SuHR), Alcohol-induced hypertensive rats (AHR) | Prevention of HTN in rats induced by alcohol, sugar, and also oxidative stress. | Aqueous extract of 200 and 400 mg/kg/day. | Extract of *A. floribunda* Oliv. significantly impeded 1) the upsurge of MDA, superoxide dismutase (SOD), catalase 2) the decrease of glutathione in kidney, liver, aorta, and heart of SuHR and AHR. | [42] |
| Alstonia scholaris (Apocynaceae) | Bark and leaves, Methanol extract, dichloromethane fraction, ethyl acetate fraction and n-butanol fraction, | Sprague Dawley rats | Not reported | Vasorelaxant activity, 0.5, 1 and 2 mg/mL. | Prepared extracts from *A. scholaris* possess vasodilation by 1) blocking Ca2+ channels 2) soluble guanylate cyclase (sGC) direct activation 3) inhibition of inositol 1,4,5-triphosphate formation | [43] |
| Apium graveolens (Apiaceae) | Plant materials, Hexane, dichloromethane, ethyl acetate and methanol extracts | Male Wistar rats | 3(g) apigenin (Figure 3) | Vasorelaxant activity, 62, 110 and 200 µg/mL (ethyl acetate extract). | Extracts of *A. graveolens* exerts vasodilation by interfering with 1) voltage-dependent Ca2+ channels (VDCC) 2) receptor-operated Ca2+ channels (ROCC). | [44] |
| Areca Catechu L. (Areaceae) | Seed, Areca II-5-C | Male Spontaneous Hypertensive Rats (SHR) | Not reported | Antihypertensive effects, 100 and 200 mg/kg comparable with 30 and 100 mg/kg of captopril, 10 and 15 mg/kg (IV). | Inhibitory hypertensive effect of *A. catechu* specially Areca II-5-C is mediated by the 1) inhibition of pressor responses to both Angiotensin I and Ang-II. | [45] |
| Plant Name | Part of Plant | Extract Type | Species | Effect | Concentration/Dosage | Notes |
|------------|---------------|--------------|---------|--------|----------------------|-------|
| *Artemisia campestris* L. (Asteraceae) | Aerial part | Aqueous extract (AcAE) | Wistar rats and Albino mice | Antihypertensive, hypotensive and vasorelaxant effect. | 40, 150 mg/kg/day | [46] |
| *Berberis vulgaris* (Berberaceae) | Roots | Ethanolic extract | Not reported | In vitro antioxidant effect. | Not reported | [47] |
| *Calpurnia aurea* (Ait.) (Fabaceae) | Seed | 80% methanol extract | Sprague-Dawley rats, Guinea pigs | Hypotensive and antihypertensive effects. | 5 - 250 mg/L of 80% methanol extract, maximum 92.1% relaxation achieved for 250 mg/L | [48] |
| *Camellia sinensis* O. Ktze (Theaceae) | Black tea extract | Male Sprague-Dawley rats | 4(a) theaflavin-3,3′-digallate (TF3) | 1.5 μg/ml extract and 0.1, 0.5 μg/ml TF3 significantly improved (p < 0.05) endothelium-dependent relaxations in homocysteine-treated rat aorta. | Black tea extract exerts effects by 1) promoting Homocysteine metabolism 2) inhibition of phosphorylated ATF3, eIF2α, and cleaved ATF6 expression which reduces endoplasmic reticulum stress 3) reducing oxidative stress | [49] |
Continued

Cecropia glaziovii Sneth (Cecropiaceae)
Leaves, Aqueous extract and n-butanol fraction
Rats and mice of three-month-old
4(b) procyanidin B5
4(c) procyanidin B3
4(d) catechin
4(e) procyanidin B2
4(f) epicatechin
4(g) procyanidin C1
4(h) orientin
4(i) isoorientin and
4(j) isovitexin (Figure 4)
Pronounced hypotension.
0.5 g/kg/bid.
Not reported [50]

Cistus ladaniferus (Cistaceae)
Aerial parts, Aqueous extract
Adult Wistar rats
4(k) quercetin (Figure 4)
Antihypertensive properties.
Aqueous extract of 500 mg/kg/day.
The antihypertensive effects of *C. ladaniferus* are mostly
1) due to an endothelium-dependent vasodilatory activity.
[51]

Clitoria ternatea (Fabaceae)
Petals, Aqueous extract, crude lyophilized extracts (CLE)
Not reported
Not reported
6.7 mg/mL CLE induced 61% ACE I inhibitory activity.
1) Reference [52] found flavonoid compounds like quercetin, kaempferol, quercetin-3-rutinoside, and (-)-epicatechin presenting more than 42% ACE I inhibition. Flavonoids’ number and position of -OH groups in the rings, as well as the existence of double bonds, which form stable chelating complexes with zinc in active site of ACE I [53].
[54]

Cochlospermum vitifolium
Bark, Methanolic extract
Wistar rats and Spontaneously hypertensive rats
4(l) naringenin (NG) (Figure 4)
120 mg/kg extract,
50 and 160 mg/kg NG exerted acute antihypertensive effects
The NO-cGMP pathway has been identified as the most important signaling mechanism of plant extracts and Naringenin’s vasorelaxant activities. Other mechanisms involved also-
1) synthesis of NO
2) PGI2 production
3) Activation of K+ channel on endothelial dysfunction.
[55]

Cocos nucifera Linn.
Endocarp, Ethanolic extract
Male Wistar rats
5(a) ferulic acid
5(b) vanillic acid (Figure 5)
3(h) chlorogenic acid (Figure 3)
Vasorelaxant and antihypertensive effects.
300 mg/kg.
The vasorelaxant and antihypertensive effects of *C. nucifera* ethanolic extract is linked to
1) activating NO/GC pathway directly
2) muscarinic receptors stimulation
3) cyclooxygenase pathway.
[56]
| **Coreopsis tinctoria**
(Asteraceae) | Dried and powdered flower buds, Ethanol extract | Spontaneously hypertensive rats (SHR), Wistar-Kyoto rats | 4(k) quercetin (Figure 4)
5(c) quercetin-7-O-glucoside
5(d) flavanomarein
5(e) marein
5(f) luteolin
5(g) coreopsis chalcones (Figure 5) | Antihypertensive activity.
100 mg/kg ethanol extract. | Flavonoids from *C. tinctoria* ethanolic extracts produce decent effect by 1) downregulating plasma Ang-II and ACE, AT,R transforming grown factor-β (TGF-β) expression in left ventricle, but upregulating ACE II |
| **Cratoxylum formosum**
(Hypericaceae) | Leaves, Aqueous extract | Sprague-Dawley rats | 5(h) phenolic acid (Figure 5) | Aqueous extract of 100, 300, and 500 mg/kg lowered SBP (158.2 ± 1.5 mmHg, 137.4 ± 2.1 mmHg, and 139.3 ± 2.5 mmHg) significantly (p < 0.05, n = 8) in hypertensive rats against control. | *C. formosum* aqueous extract exhibits therapeutic effects by 1) rising plasma NO levels, and decreasing oxidative stress 2) reducing serum ACE, plasma Ang-II and AT,R upregulating in L-NAME induced hypertensive rats 3) suppressing RAS |
| **Croton schiedeanus**
Schlecht (Euphorbiaceae) | Leaves, Aqueous extract | Spontaneously hypertensive rats | Not been elucidated | Antihypertensive, bradycardic, and vasorelaxant effects. Aqueous extract of 5 - 100 mg/kg. | *C. schiedeanus* Aqueous extract exerts antihypertensive, bradycardic, vasorelaxant effects by 1) Ca2+ influx blocking through VDCC |
| **Curcuma domestica**
(Zingiberaceae) | Curcumin nanoemulsion | Not reported | 5(i) curcumin (Figure 5) | Antihyperlipidemic, 71.166% inhibition of HMG-CoA reductase (HMGCR) compared to pravastatin after correction, ACE inhibitory activity of curcumin nanoemulsion at 2 mg/mL. | Curcumin inhibits HMGCR production which synthesizes cholesterol in liver |
| **Echinodorus grandiflorus**
(Cham. & Schltdl.) Micheli. (Alismataceae) | Leaves, Ethanol soluble fraction (ESEG) | Male Wistar rats | Not reported | Diuretic activity like hydrochlorothiazide of ESEG (30 - 300 mg/kg, p.o.), sparing HCO₃⁻ and serum nitrite increased. Furthermore, intraduodenal ESEG administration induces antihypertension and hypotension in 2K1C rats significantly. | The hypotensive and antihypertensive action of ethanol soluble fraction of *E. grandiflorus* are mediated by 1) muscarinic and bradykinin B2 receptor activation, with directly involving NO and prostaglandin pathways.
Eruca sativa Mill., (Brassicaceae)

- Aerial parts, Crude extract of *E. sativa*, n-hexane, chloroform, ethyl acetate, and aqueous extract.
- Male Sprague-Dawley rats and Balb C mice

4(k) Quercetin
- *Figure 4*

5(j) Erucin
- *Figure 5*

Antihypertensive activity
- Vasodilatory and partly cardiac effects at 1, 3, 10, 30 and 100 mg/kg.

Erythrina senegalensis DC, (Fabaceae)

- Stem barks, Aqueous extract
- Male albinos Wistar rats, Hypertensive diabetic rats (HDR)

Alkaloids, Flavonoids, Phenols in extract whose antidiabetic and antihypertensive activity have been showed [64].

Antihypertensive, Cardiomodulator, Antioxidant, Hypolipidemic, and Hypoglycemic properties.

1. 100 and 200 mg/kg of aqueous extract were tested on two groups of HDR, for 28 days.

Eucommia ulmoides Oliv, (Eucommiaceae)

- Barks, 50% ethanol extract (Lignans) (EuL)
- Male Sprague-Dawley rats and male spontaneously hypertensive rats.

Not reported

EuL of 150 and 300 mg/kg bid lowered SBP significantly (p < 0.05, n = 8) than control.

1. 1) Eul. increased plasma NO in vivo. This effect is linked with endothelium, that did not follow the result of *in vitro*. *In vivo* Eul. metabolizes into compounds which release NO from endothelium. EuL *in vitro* cannot do it.

Eugenia uniflora L, (Myrtaceae)

- Leaves, Aqueous Crude Extracts
- Normotensive male Wistar rats

Not reported

For hypotension, ED₃₀ was found to be 3 mg dried leaves (d.l.)/kg.

For diuresis, 120 mg d.l./kg extract exhibited most potently compared to amiloride.

1. 1) Hypotensive effect of the leave extract of *E. uniflora* is moderated by direct vasodilation
2. 2) Weak diuresis is related to renal blood flow increase.

Euphorbia cuneata Vahl, (Euphorbiaceae)

- Aerial parts, Alcoholic extract
- Normotensive albino rats

4(f) Naringenin
- *Figure 4*

5(k) Isoaromadendrin

5(l) Taxifolin

5(m) Isoisensin
- *Figure 5*

Naringenin (3.3 mg/kg) decreased BP by 20 mmHg; Isoaromadendrin (3.3 mg/kg) decreased BP and heart rate (HR) by 36.5 mmHg and 4% respectfully; Taxifolin (3.3 mg/kg) decreased BP by 20 mmHg; Isoisensin (3.3 mg/kg) decreased BP and HR by 15 mmHg and 6.2% respectfully; Isoisensin (6.6 mg/kg) decreased BP and HR by 16.6 mmHg and 16.6% respectfully.

1. 1) Isoisensin found in alcoholic extracts of *E. cuneata* lowers blood pressure due to decrease in HR produced by vasodilation
2. 2) Isoaromadendrin was most potent having four hydroxyl groups.
Inula viscosa L. (Asteraceae)

Component	Hypertensive Activity	Antihypertensive Effect
Leaves, Petroleum ether extract, dichloromethane extract, ethyl acetate extract and methanol extract	**5(n)** 3-O-methylquercetine **5(o)** cynarin **5(f)** luteolin (Figure 5) **3(h)** chlorogenic acid (Figure 3)	1) Methanol extract exhibited antihypertensive effect predominantly by endothelium-dependent vasodilation. 2) Chlorogenic acid and cynarin isolated from *I. viscosa* Methanol extract, possess strong vasorelaxant activity.

Ipomoea hederacea Jacq. (Convolvulaceae)

Component	Hypertensive Activity	Antihypertensive Activity
Dried seeds, Aqueous-ethanolic extracts, butanol fraction (Ih.Bn)		1) Potent hypotensive effect was presented by butanol fractions of *I. hederacea* by β blocking, α1 blocking, and stimulating inducible NO synthase/cyclic guanosine monophosphate (cGMP).

Kalanchoe pinnata (Crassulaceae)

Component	Hypertensive Activity	Antihypertensive Activity
Leaves, Aqueous extract		Antihypertensive extracts of *K. pinnata* act by cardiode-pression, increasing diuresis or through vasorelaxant activity. 1) Conversion from O_2 to H_2O and H_2O_2 is catalyzed by SOD, thus SOD metabolizes O_2 and prevents HTN [72].

Laelia anceps (Orchidaceae)

Component	Hypertensive Activity	Antihypertensive Effects
Roots, crude methanolic extract	5(p) 2,7-dihydroxy-3,4,9-trimethoxyphenanthrene (Figure 5)	Vasorelaxant and antihypertensive effects. L-type (voltage-gated) Ca$^{2+}$ channel (L-VGCC) agonist FPL 64176 (3.16 μM)-induced contraction was significantly diminished by 11.2, 65 μg/mL methanolic extract

Laelia autumnalis (Orchidaceae)

Component	Hypertensive Activity	Antihypertensive Activity
Plant material, crude methanolic extract (MELa)		Methanolic extract of *L. autumnalis* produced antihypertensive effect by 1) inhibiting VGCC, receptor-controlled Ca$^{2+}$ channel, cGMP pathway involving blocking of Ca$^{2+}$ channels through endothelium-independent pathway 2) inhibiting Ca$^{2+}$ mobilization from intracellular stores 3) increasing cGMP levels

Continued
| Lepidium sativum L. (Brassicaceae) | Seeds, Aqueous extract | WKY and spontaneously hypertensive male rats | Not determined | Decreasing BP and increasing water and electrolytes excretion. 20 mg/kg for 3 weeks. | L. Sativum aqueous extract demonstrated antihypertensive effects-
1) by mediated diuretic and natriuretic action. |
| Linum usitatissimum (Liliaceae) | Seed | Sprague Dawley normotensive male rats | 5(q) secoisolariciresinol diglucoside (SDG) (Figure 5) | In vivo antihypertensive activity. Decrease in SBP, DBP, and MAP were dose dependent for SDG of 3, 5 mg/kg, 5 - 150 mins after administration. Pretreatment with methylene blue (1 mg/kg) prevented SDG (10 mg/kg) induced reduction in arterial pressures. | SDG exhibited antihypertensive effect by 1) directly stimulating GC (like nitrovasodilator) and not due to NO synthase 2) due to SDG’s metabolites (secoisolariciresinol, enterolactone and enterodiol) |
| Melothria maderaspatana (Cucurbitaceae) | Leaf, Ethyl acetate extract | Male albino Wistar rats | 5(a) ferulic acid (Figure 5) | In vivo antihypertensive activity. 30, 60, 120 mg/kg BW extract reduced SBP and DBP significantly (p < 0.05) after 6 weeks of administration in DOCA-salt hypertensive rats than control. | Ferulic acid found in the extract was reported having antihypertensive effect on spontaneously hypertensive rats [78] by 1) NO-mediated vasodilation 2) improving bioavailability of NO |
| Mesona procumbens Hems. (Lamiaceae) | Dried full plant, Water extract (WEHT) | Male 6-week-old spontaneously hypertensive rats and Wistar-Kyoto rats | 5(r) caffeic acid (CA) (Figure 5) | In vivo antihypertensive activity. WEHT (1 g/kg of BW) significantly reduced SBP, DBP, HR by 17.7%, 11%, and 7.3%. CA (0.1 g/kg of BW) significantly reduced SBP, DBP, HR by 23.4%, 15%, 11.2%. | 1) Water extract of M. procumbens had scavenging activity on free radicals and ROS (e.g., hydroxyl or peroxyl/hydroperoxy radicals) 2) plasma metabolites of CA act as antioxidants 3) Both reduced oxidative stresses, or increased antioxidant capacity in cell. |
| Moringa oleifera (Moringaceae) | Leaves, Hot water extract | Frog heart, Taenia coli of guinea pig | Not reported | Alkaloidal salts (3 - 48 ng/ml) collected from the extract showed negative inotropic effect on isolated frog heart dose-dependently; inhibited calcium response on frog heart and guinea pig taenia coli. | Alkaloidal salts from M. oleifera hot water extract induced 1) negative inotropic effect because of the presence of CCB, or Ca²⁺ antagonist. |
Mucuna pruriens L. (Fabaceae)

- **Seeds, Ethyl acetate extract (MPEA)**
- **Wistar rats**
- 6(a) genistein
- 6(b) ursolic acid (UA)
- 6(c) L-3,4-dihydroxyphenylalanine (L-DOPA)

In vitro antihypertensive activity.

IC₅₀	Value
MPEA	156.45 ± 3.90 μg/mL
Genistein	68.59 ± 2.47 μg/mL
UA	465.83 ± 51.2 μg/mL
L-DOPA	119.58 ± 4.53 μg/mL

Ethyl acetate extract of *M. pruriens*, Genistein, UA, L-DOPA showed 1) inhibition by non-competitive mode 2) ACE inhibition by protein precipitating (L-DOPA showed very little precipitation).

Nigella damascene (Ranunculaceae)

- **Flour of Seeds, Methanol extract**
- **Not reported**

Highest 43.24%

ACE inhibition was shown for bound phenolic-acid extract of seed flour. Highest 84.385% antioxidant activity was shown for glutelin-1 fraction of free phenolic-25°C extract.

Nigella arvensis (Ranunculaceae)

- **Flour of Seeds, Methanol extract**
- **Not reported**

Highest 55.55%

ACE inhibition was shown for free phenolic-25°C extract of seed flour. Highest 69.76% antioxidant activity was shown for albumin fraction of free phenolic-25°C extract.

Ocimum gratissimum (Lamiaceae)

- **Fresh whole plant with leaves, stems, and flowers, Water extract**
- **Wistar Kyoto rats, spontaneously hypertensive rats**
- 6(d) rutin

In vitro and in vivo antihypertensive activity.

IC₅₀	Value
Water extract and Rutin	56.3 ± 3.12 μg/mL, and 43.08 μg/mL

Rutin found in water extract of *O. gratissimum* showed 1) inhibited ACE 2) inhibited endothelin-1 (ET-1)

Olea europaea L. variety Picual (Oleaceae)

- **Fruits, Water-soluble extract of olive oil**
- **Male Spontaneously hypertensive rats**

In vitro and in vivo antihypertensive effect.

Peptides (0.425 mg/kg of BW) in the extract reduced maximum 20 mmHg BP at 6 h (IC₅₀ = 2.5 ± 0 μg protein/mL, n = 3).

Olve oil water-soluble extract from *O. europaea* showed antihypertensive effect by 1) inhibiting ACE 2) increasing NO bioavailability 3) acting on ET-1 expression
Orthosiphon aristatus (Lamiaceae)

Plant Part	Condition	Extract/Compound	Effect
Leaves, Chloroform-soluble portion from the water decoction of the leaves	Stroke prone spontaneously hypertensive rats (SHRSP), Male Wistar rats, male Hartley guinea pigs	6(e) methylripariochromene A (MRC) 6(f) acetovanillochromene (AVC) 6(g) orthochromene A (OC)	100 mg/kg MRC decreased 15 to 30 mmHg mean BP of SHRSP at 3.5 h to 24 h (p < 0.05 or p < 0.01, n = 8); 3.8 × 10^-5 M and 1.1 × 10^-4 M MRC suppressed contractile force of isolated guinea pig atria by 18.8% ± 2.6% (p < 0.05, n = 4) and 54.74% ± 2.8% (p < 0.01, n = 4). ICs of AVC, OC are 1.01 × 10^-4 M, 1.32 × 10^-4 M.

Osyris abyssinica var. speciosa (Santalaceae)

Plant Part	Condition	Extract/Compound	Effect
Aerial parts, Alcoholic extract	Normotensive Wistar albino rats	4(f) epicatechin (Figure 4)	Epicatechin of 3.3 mg/kg decreased BP, and HR by 8.3 mmHg, and 6% respectfully; and 6.6 mg/kg decreased BP, and HR by 8.3 mmHg, and 7.1% respectfully.

Parkia speciosa (Fabaceae)

Plant Part	Condition	Extract/Compound	Effect
Seeds, Hydrolyzed with and without Alcalase	Not reported	Not found	Hydrolyzed samples showed slightly more DPPH scavenging activity of 2.1 - 2.9 mg gallic acid equivalent (GAE)/g seed than non-hydrolyzed ones (1.6 - 2.2 mg GAE/g seed). Hydrolyzed samples inhibited 50.6% - 80.2% of ACE activity.

Passiflora edulis (Passifloraceae)

Plant Part	Condition	Extract/Compound	Effect
Fruit Peel, Ethanol extract	Male Spontaneously hypertensive rats	6(h) edulilic acid (EA) 6(i) anthocyanin fraction (AF)	For 2.5, and 50 mg ethanol extract/kg BW, maximum MAP reduced were 8.9 ± 3, and 13 ± 2.5 mmHg; maximum SBP reduced were 10 ± 2.9, and 13.8 ± 2.8 mmHg; maximum DBP reduced were 7.6 ± 2.9, and 10.2 ± 2.2 mmHg. EA and AF significantly decreased (p < 0.001) mean variation in HR from baseline over 5 days.

Methylripariochromene A isolated from the leaves of *O. aristatus*
1) decreased the slow Ca\(^{2+}\) inward current
2) decreased CO
3) increased urinary volume and electrolyte excretions
4) have Ca\(^{2+}\) antagonism

Figure 6
Continued

Plant	Part Used	Extract Type	Animal	Not Reported	In vivo and in vitro antihypertensive effect.	Aqueous extract of *P. crispum*	References
Petroselinum crispum (Mill.) Fuss. (Apiaceae)	Aerial parts, Aqueous extract	Albino adult male Wistar rats	Not reported	In vivo and in vitro antihypertensive effect.	Significant reduction of SBP, MAP and DBP (p < 0.01) was observed after 6 h of treating with 160 mg/kg extract. Significant vasorelaxation (p < 0.0001) of aortic rings pre-contracted by epinephrine was seen for 0.02 - 2.5 μg/ml extract (IC50 = 0.38 ± 0.07 μg/ml).	1) decreases tension in endothelium-denuded and endothelium-intact aortic rings 2) blocks the entry of extracellular Ca²⁺ via blocking VOCC and ROCC. 3) increases synthesis of NO.	[89]
Phaseolus vulgaris L. varieties plus black (PB), azufrado higuera (AH) and pinto Saltillo (PS) (Fabaceae)	Seeds, Protein extraction by isoelectric precipitation	Male Wistar spontaneously hypertensive rats	Not reported	Total hydrolysates from each variety showed ACE inhibition of IC50 = 4.34 ± 0.29, 4.82 ± 1.59, 25.96 ± 0.86 μg/mL respectively. Peptide fraction < 1 kDa showed highest % antioxidant activity among each variety (99.2% ± 0.9%, 87.6% ± 0.7%, and 82.7% ± 2.0% respectively). Peptide fraction 3 - 10 kDa of AH variety lowered SBP up to 27.13 ± 11.17 mmHg at 2 h and up to 23.55 ± 12.44 mmHg at 4 h (p ≤ 0.01, n = 3).		Not reported	[90]
Phragmanthera incana (Schum) Balle (Loranthaceae)	Leaves, Ethanol extract	Wistar male rats	Not found	50, 100, 200 mg ethanol extract/kg p.o. significantly decreased (p < 0.05 and p < 0.001, n = 6) SBP compared to the l-NAME rat group after four weeks' treatment. 100, 200 mg ethanol extract/kg p.o. significantly (p < 0.05, p < 0.01 respectively, n = 6) increased serum nitrite levels compared to the l-NAME rat group.	*P. incana* ethanol extract holds antihypertensive and antioxidant activity by 1) reducing peroxidation of lipid 2) restoring plasma nitrite levels counterbalance the effect of ROS	[91]	
Continued

Plant	Organs/Extraction	Description	Dosage	Effects
Picrasma quassiodes (D. Don) Benn. (Simaroubaceae)	Dried branches, Dichloromethane extract	Male spontaneously hypertensive rats (SHR), Wistar Kyoto rats	50, 100, and 200 mg extract/kg	1) vascular oxidative stress minimization by increasing SOD activity 2) endothelial function preservation and increase eNOS expression to promote synthesis and release of NO that result in direct vasorelaxation.
Pistacia atlantica Desf. (Anacardiaceae)	Leaves, Dried residue of organic phase redissolved in absolute methanol	Not reported	In vitro antidiabetic and antihypertension activity.	Phenolic compounds retrieved from leaves of *P. atlantica* show ACE inhibitory activity by 1) forming chelate complex with zinc within the active site of ACE I 2) interactions through hydrogen bonds that is established between -OH groups of compounds close to active site which blocks activity of ACE.
Prunus serotina Ehrh. (Rosaceae)	Fruits, Lyophilized aqueous and methanolic extracts	Adult male Wistar rats	The flesh extract showed E_max of 27.9% ± 3.6%, EC_50 of 120 ± 5.7 μg/mL, peel extract showed E_max of 54.5% ± 4%, EC_50 of 34.9 ± 3.4 μg/mL, and whole fruit extract showed E_max of 59% ± 5.9%, EC_50 of 101.8 ± 7.5 μg/mL vasorelaxant response.	1) synergistic effect of the compounds 2) CGA inhibit ROS generating enzymes (NADPH, xanthine oxidase), reduce the formation of ONOO\(^-\) and increase bioavailability of NO. It also has protective role in eNOS [94].
Psidium guineense Sw. (Myrtaceae)	Leaves, Essential oil	Female and male Swiss mice, female Wistar rats	Antioxidant activity. P. guineense essential oil and spathulenol exhibited DPPH free radical activity of IC_50 = 60.7 - 65.92 and 82.43 - 89.38 μg/mL (n = 3), respectively; and MDA lipoperoxidation with IC_50 = 35.23 - 40.50 and 24.30 - 28.68 μg/mL (n = 3), respectively.	Not reported
Continued

Salvia elegans Vahl. (Lamiaceae)

- Aerial parts (flowers, leaves, and stems), hydroalcoholic extract (SeHA) and n-butanol extract (SeBuOH)

In vitro inhibitory effect on ACE.
- SeHA significantly lowered (p < 0.05) SBP from dose as low as 0.75 μg/kg, DBP at 10 mg/kg.
- SeHA inhibited 50.27% ± 5.09% ACE (n = 5) while SeBuOH inhibited 78.40% ± 2.24% ACE (n = 5).

SeHA inhibited antihypertensive effect by
1) inhibiting the secretion of ET-1
2) increasing NO production and release
3) activating Ca²⁺-dependent K⁺ conductance that allows hyperpolarization after entry of Ca²⁺.

Salvia verbenaca L. (Lamiaceae)

- Aerial parts, Alcoholic extract

Normotensive albino rats
- 7(e) 5-hydroxy-3, 4’, 7-trimethoxyflavone (HMF), 7(f) verbenacoside (VBC) (**Figure 7**)

- HMF (3.3 mg/kg) decreased BP and HR by 30 mmHg and 28.5% respectfully; VBC (3.3 mg/kg) decreased BP and HR by 13.2 mmHg and 15.4% respectfully; Alcoholic extract 0.5 gm/kg decreased BP and HR by 36.2 mmHg and 18.18%.

1) 5-hydroxy-3, 4’, 7-trimethoxyflavone and verbenacoside isolated from alcoholic extract of *S. verbenaca* decreased HR by vasodilatation
2) 5-hydroxy-3, 4’, 7-trimethoxyflavone showed potent activity having four -OH groups
3) alcoholic extract lowered BP by synergistic effect of flavonoids present

Sapium sebiferum (L.) Roxb. (Euphorbiaceae)

- Leaves, Aqueous extract

Spontaneously hypertensive rats
- 7(g) 6-O-galloyl-D-glucose (GDG) (**Figure 7**)

- GDG of 1, and 5 mg/kg lowered MAP by 17.3 ± 7.1 and 29.6 ± 10.4 mmHg (n = 6) in SHR, and decrease in plasma noradrenaline was parallel to the antihypertensive action.

GDG lowers blood pressure by
1) blocking of noradrenaline release and/or
2) direct vasorelaxation

Sechium edule (Jacq.) Sw. (Cucurbitaceae)

- Roots, Hydroalcoholic extract (SeRHA)

Male Sprague-Dawley albino rats, male ICR albino mice
- 7(h) cinnamic acid (**Figure 7**)

- SeRHA of 200 mg/kg decreases DBP, SBP significantly after Ang-II treatment (p < 0.05). SeRHA of 150, 300, 600 μg/ml lowered aorta contraction by 14%, 44%, and 66% of Emax after Ang-II treatment (average EC50 = 1.5 × 10⁻⁸ M).

The hydroalcoholic root extracts of *S. edule* may
1) antagonize AT₁R or by interfering Ca²⁺ fluxes activated by Ang-II
2) obstruct the second messenger system initiated by Ang-II
3) alter Ca²⁺ fluxes in the VSMC and on the RAAS.

DOI: 10.4236/ajps.2021.1211119 1721 American Journal of Plant Sciences
Continued

Solanum capsicoides All. (Solanaceae)
- Aerial parts, Methanol extract
- Normotensive Wistar-Kyoto (WKY) rats, Spontaneously hypertensive rats (SHR)
- Not reported

In vitro, in vivo antihypertensive activity.
- Significant increase in the vasorelaxation of endothelium denuded mesenteric rings from SHR ($E_{\text{max}} = 102.1\% \pm 5.7\%$, $EC_{50} = 29.6 - 55.8 \mu\text{g/ml}$, $p < 0.05$).
- 40 mg/kg methanol extract significantly ($p < 0.05$) reduced MAP greater in SHR ($25.4\% \pm 1.4\%$) when compared WKY rats ($17.7\% \pm 2.6\%$).

Methanol extract induced antihypertensive effect by
1) reducing peripheral vascular resistance
2) reducing sensitivity to the adrenergic agonist
3) increasing NO sensitivity

Solanum melongena Fruits, (Solanaceae)
- Lyophilized powders
- Male 14-week-old spontaneously hypertensive rats
- 7(i) acetylcholine (ACh) ($E_{\text{max}} = 102.1\% \pm 5.7\%$, $EC_{50} = 29.6 - 55.8 \mu\text{g/ml}$, $p < 0.05$).

$10^{-7} - 10^{-5} \mu\text{M ACh}$ which is identified from eggplant powder, exerted concentration-dependent vasorelaxation ($EC_{50} = 0.0372 \pm 0.008 \mu\text{M}$).

And SBP decreased significantly ($p < 0.05$) after 3 h and 9 h by 4.81 and 10 mmHg.

ACh showed antihypertensive activity by
1) activating the M3 muscarinic ACh receptor on blood vessels
2) suppressing the secretion of hypertensive catecholamines
3) suppressing sympathetic nervous activity

Solanum sisymbriifolium Lam. (Solanaceae)
- Root, Hydro ethanolic crude root extract (CRE), Butanol fraction (FBtOH), B3 subfraction
- Swiss adult albino male mice
- 7(j) nutagigenin-3-O-β-chacotriose (B3-1) ($E_{\text{max}} = 100\%$, $EC_{50} = 148.2 \mu\text{g/ml}$ endothelium denuded).

CRE of 50 mg/kg, F_{BtOH} of 5 mg/kg, and B3 subfraction of 1 mg/kg significantly decreased (p < 0.001; n = 6) DBP and SBP. 1, 2.5, 5 mg/kg B3-1 significantly decreased (p < 0.001; n = 6) DBP and SBP.

B3-1 induced vasorelaxation by
1) inhibiting cyclic adenosine monophosphate (cAMP) phosphodiesterase, cAMP increases indirectly in VSMC [102].

Tagetes lucida Cav. (Asteraceae)
- Aerial parts, Ethanolic extract
- Male Wistar rats, male spontaneously hypertensive rats
- 7(k) 6,7,8-trimethoxycoumarin, 7(l) 6,7-dimethoxycoumarin ($E_{\text{max}} = 100\%$, $EC_{50} = 148.2 \mu\text{g/ml}$ endothelium denuded).

Ethanol extract of 3.03 - 1000 μg/ml showed E_{max} of 99%, EC_{50} of 40.5 μg/ml (endothelium intact) and E_{max} of 100%, EC_{50} of 148.2 μg/ml (endothelium denuded). The extract relaxed KCl-induced contraction with EC_{50} of 100 μg/ml and E_{max} of 100%. Both compounds displayed significant activity ($p < 0.05$) in concentration and partly endothelium dependent manner.

Ethanol extract showed endothelium derived relaxant effect by
1) Producing NO that outspreads to VSMC to activate sGC which produces cGMP, and induces relaxes smooth muscle as the main second messenger.
2) Blocking the L-VGCC
Continued

Terminalia bellerica Roxb. (Combretaceae)

Description	Species/Extract	Animals	Effects/Results
Fruits, Aqueous-methanolic extract, crude extract (Tb.Cr)	Sprague-Dawley rats, guinea-pigs, rabbits	Tb.Cr of 100, 30, and 10 mg/kg showed a dose-dependent decrease of 44.7% ± 3.1%, 25.1% ± 2.3%, and 15.6% ± 2.0% in MAP of rats; 0.1 - 10 mg/ml inhibited guinea-pig atrial force and contraction rate (EC50 = 4.5 ± 1.2 and 5.9 ± 1.3 mg/mL respectively, n = 4) and also relaxed K+ and phenylephrine (PE) induced contraction in isolated rabbit aorta (EC50 = 6.4 ± 1.3, 7.5 ± 1.3 mg/mL respectively, n = 4 - 5).	Crude extract of *T. bellerica* fruit induced antihypertension by 1) negative inotropic and chronotropic effect due to the Ca2+ antagonism effect decreasing CO and so reducing BP 2) equipotently blocking Ca2+ influx through VDCC and ROCC 3) suppressing the PE agonist, and thus inhibiting internal store release of Ca2+ 4) endothelium-independent vasodilation

Thymus serpyllum L. (Lamiaceae)

Description	Species/Extract	Animals	Effects/Results
Whole plant, Aqueous and freeze-dried extract	Normotensive Wistar rats, Male spontaneously hypertensive rats	Freeze dried extract (100 mg/kg BW dissolved into saline of 0.2 ml) decreased SBP, DBP, and total peripheral vascular resistance significantly (p < 0.001, n = 7) in SHR. In vitro NO-scavenging ability of 1 mg/ml extract led to 63.43% reduced nitrite production (IC50 = 122.36 μg/ml).	Rosmarinic acid found in this extract had *in vitro* antioxidant effect against low density lipoprotein (LDL) oxidation [106] by 1) inhibiting conjugated diene and TBARS formation.

Tropaeolum majus L. (Tropaeolaceae)

Description	Species/Extract	Animals	Effects/Results
Leaves, semi-purified fraction (TMLR) and hydroethanolic extract (HETM)	Wistar-Kyoto rats, Spontaneously hypertensive rats	50, 100 mg/kg TMLR, 100, 300 mg/kg HETM, and 2, 4 mg/kg ISQ significantly (p < 0.001, n = 6) decreased MAP in a dose-dependent manner in normotensive rats; 300 mg/kg HETM, 50, 100 mg/kg TMLR (p < 0.01) and 10 mg/kg ISQ (p < 0.001) significantly inhibited ACE activity in conscious rats compared to control.	Isoquercitrin inhibited ACE activity but single administration of hydroethanolic extract, semi-purified fraction, Isoquercitrin did not change HR because results of ACE inhibition take several months to bring to light. ACE inhibition by Isoquercitrin may also be occurring in central nervous system.
Vitex pubescens (Lamiaceae) Leaves, Petroleum ether extract (VPPE) Spontaneously hypertensive rats 7(d) Spathulenol (Figure 7) VPPE of 500 mg/kg significantly decreased (p < 0.001, n = 6) SBP, DBP from 3 days, and 0.25 - 4 mg/ml significantly relaxed (p < 0.001, n = 6) pre-contracted endothelium intact aortic ring. Fraction F2-VPPE of 0.5, 1, 2 mg/mL significantly (p < 0.001) attenuated CaCl2-induced of endothelium-denuded aortic ring vasoconstriction. Fraction F2-VPPE of V. pubescens induced relaxation by 1) Activating KATP channel which causes hyperpolarization and Ca2+ inflow inhibition through VDCC 2) intracellular Ca2+ release inhibition from Ca2+ storage 3) extracellular Ca2+ inflow inhibition through ROCC. Spathulenol show vasorelaxant activity [109] by Ca2+ inflow inhibition through VDCC.

4) Elevates the transcription of the LXRα gene, which controls the CYP7A1 enzyme (encoding cholesterol-7a-hydroxylase, an enzyme that participates in converting cholesterol to bile acids before excretion).

5) Prevents atherosclerotic lesion formation in the atherogenic diet-fed mice, as evidenced by a decrease in the atherogenic indicator and an increase in the % ratio of HDL and total cholesterol [60].

In comparison to pure curcumin, curcumin nanoemulsion demonstrated a higher rate of ACE inhibition, which suggests that higher inhibition activity of curcumin exerted by the nanoemulsion carrier system was caused by improving its solubility [61]. The last one 2,7-dihydroxy-3,4,9-trimethoxyphenanthrene, obtained from Laelia anceps, caused relaxant activity on norepinephrine precontracted aortic rings with E\textsubscript{max} of 90% ± 1.35% (with endothelium) and 96.45% ± 1.2% (without endothelium) [74].

3. Observed Compounds Having BP Lowering Properties

The discussed antihypertensive compounds, structure demonstrated in Figures 3-7, are 31 types of compounds, such as 1) anthocyanidin (cyanidin-3-O-rutinoside), 2) anthocyanin (anthocyanin fraction), 3) biogenic amine (acetylcholine), 4) catecholamines (L-3,4-dihydroxyphenylalanine), 5) chalcones (marein, coreopsis chalcones), 6) chromenes (methylripariochromene A, acetovanillochromene, orthochromene A), 7) cinnamates (cynarin, caffeic acid, cinnamic acid), 8) coumarins (6,7,8-trimethoxy coumarin, 6,7-dimethoxy coumarin), 9) cyclic acid glucoside (edulic acid), 10) diarylheptanoid (curcumin), 11) dihydrophenanthrene (2,7-dihydroxy-3,4-trimethoxyphenanthrene), 12) flavones (apigenin, vicenin-2, orientin, isoorientin, isovitexin, luteolin), 13) flavonols (quercetin, taxifolin, 3-O-methylquercetine, rutin, quercetine glycosides, 5-hydroxy-3,4',7-tri- methoxy flavone, verbenacoside, isoquercitrin), 14) flavonoid glucosides (tilianin,
Figure 3. Reported compounds from medicinal plants manifest anti-hypertensive activity.
Figure 4. Reported compounds from medicinal plants manifest anti-hypertensive activity.
Figure 5. Reported compounds from medicinal plants manifest anti-hypertensive activity.
Figure 6. Reported compounds from medicinal plants manifest anti-hypertensive activity.
Figure 7. Reported compounds from medicinal plants manifest anti-hypertensive activity.
quercetagetin-7-O-glucoside, flavanomarein, isosinensin), 15) flavan 3-ols (catechin, epicatechin), 16) flavanones (naringenin, isoaromadendrin), 17) hydroxybenzoate ether (vanillic acid), 18) isoflavone (genistein), 19) isoquinoline alkaloid (berberine), 20) lignan glucoside (secoisolariciresinol diglucoside), 21) phenolic, 22) phenylpropanoids (3,4 Dicaffeoylquinic acid, 3,5-Dicaffeoylquinic acid, 4,5-Dicaffeoylquinic acid, chlorogenic acid, ferulic acid, rosmarinic acid), 23) polyphenolic flavonoid (theaflavin-3,3’-digallate), 24) proanthocyanidins (procyanidin B5, procyanidin B3, procyanidin B2, procyanidin C1), 25) sesquiterpenes (spathulenol), 26) steroidal trisaccharide (Nuatigenin-3-O-β-chacotriose), 27) tannins and galloyl derivatives (glucogallin, gallic acid, galloylshikimic acid, methyl gallate, digalloylquinic acid, digallic acid, trigalloylgucose, tetragalloylquinic acid, 6-O-galloyl-D-glucose), 28) thiocyanate (erucin), 29) triterpene (momordin Ib), 30) triterpenoids (22α-hydroxychiisanogenin, chiisanogenin, ursolic acid), and 31) triterpenoid saponins (22α-hydroxychiisanoside, chiisanoside). Highest number of compounds are tannins and galloyl derivatives, flavonols, flavones, phenylpropanoids, proanthocyanidins and flavonoid glucosides.

Structure of the compounds reveals that most of the compounds possess heterocyclic oxygen atom which is thought to exert the desired antihypertensive or antioxidative activities. The possible way would be chelating with the zinc atom present in the center of the ACE I.

4. Conclusion

The goal of our research is to let everyone know that there are an ample number of natural compounds that can be made into antihypertensive therapies. We noticed that the majority of the researches focused on the effect of the extracts on antihypertensive therapy along with the mechanism of action and more than half of them elucidated structures of compounds responsible for the activity. As a result, expanding studies into mechanisms and structure elucidation can contribute to the development of new drugs. 63 plant species from 37 families and 74 isolated compounds are reviewed here. Among them, tilianin, naringenin, curcumin nanoemulsion, 2,7-dihydroxy-3,4,9-trimethoxyphenanthrene are the topmost candidate for producing antihypertensive therapy from natural products in a safe, efficient, and patient adhering way. On the other hand, relaxation of blood vessels, formation of NO, blockage of calcium channels, increase in potassium, suppression of the renin-angiotensin pathway, activation of intracellular cGMP, and inactivation of the sympathetic system are mostly the mechanisms discovered in these medicinal plants for antihypertensive activity. Depending upon the side effects of the ongoing therapies, we think it is high time that the pharmaceuticals took the appropriate steps to synthesize effective drug candidate from these phytochemicals that can reach every human being’s doorway. Further studies of the rest of the compounds could also lead to promising antihypertensive therapies.
Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., Clement, D.L., Coca, A., de Simone, G., Dominiczak, A., Kahan, T., Mahfoud, F., Redon, J., Ruilope, L., Zanchetti, A., Kerins, M., Kjeldsen, S.E., Kreutz, R., Laurent, S., Lip, G.Y.H., McManus, R., Narkiewicz, K., Ruschitzka, F., Schmieder, R.E., Shlyakhto, E., Tsioffis, C., Aboyans, V., Desormais, I. and ESC Scientific Document Group (2018) 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Experimental Heart Journal, 39, 3021-3104. https://doi.org/10.1093/eurheartj/ehy339

[2] Aggarwal, M. and Khan, I.A. (2006) Hypertensive Crisis: Hypertensive Emergencies and Urgencies. Cardiology Clinics, 24, 135-146. https://doi.org/10.1016/j.ccl.2005.09.002

[3] Abegaz, T.M., Shehab, A., Gebreyohannes, E.A., Bhagavathula, A.S. and Elnour, A.A. (2017) Nonadherence to Antihypertensive Drugs. Medicine, 96, e5641. https://doi.org/10.1097/MD.0000000000005641

[4] Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K. and He, J. (2005) Global Burden of Hypertension: Analysis of Worldwide Data. The Lancet, 365, 217-223. https://doi.org/10.1016/S0140-6736(05)17741-1

[5] Pierdomenico, S.D., Di Nicola, M., Esposito, A.L., Di Mascio, R., Ballone, E., Lapenna, D. and Cuccurullo, F. (2009) Prognostic Value of Different Indices of Blood Pressure Variability in Hypertensive Patients. American Journal of Hypertension, 22, 842-847. https://doi.org/10.1038/ajh.2009.103

[6] Whelton, P.K., He, J., Appel, L.J., Cutler, J.A., Havas, S., Kotchen, T.A., Roccella, E.J., Stout, R., Vallbona, C., Winston, M.C., Karimbakas, J. and for the National High Blood Pressure Education Program Coordinating Committee (2002) Primary Prevention of Hypertension Clinical and Public Health Advisory from the National High Blood Pressure Education Program. JAMA, 288, 1882-1888. https://doi.org/10.1001/jama.288.15.1882

[7] Staffileno, B.A. (2005) Treating Hypertension with Cardioprotective Therapies: The Role of ACE Inhibitors, ARBs, and β-Blockers. Journal of Cardiovascular Nursing, 20, 354-364. https://doi.org/10.1097/00005082-200509000-00010

[8] Niaz, T., Hafeez, Z. and Imran, M. (2017) Prospectives of Antihypertensive Nano-ceuticals as Alternative Therapeutics. Current Drug Targets, 18, 1269-1280. https://doi.org/10.2174/1389450117666160711163119

[9] Hermann, M., Flammer, A. and Loscher, T.F. (2006) Nitric Oxide in Hypertension. The Journal of Clinical Hypertension, 8, 17-29. https://doi.org/10.1111/j.1524-6175.2006.06032.x

[10] Landmesser, U. and Drexler, H. (2007) Endothelial Function and Hypertension. Current Opinion in Cardiology, 22, 316-320. https://doi.org/10.1097/HCO.0b013e3281ca710d

[11] Farah, C., Michel, L.Y.M. and Balligand, J.-L. (2018) Nitric Oxide Signalling in Cardiovascular Health and Disease. Nature Reviews Cardiology, 15, 292-316. https://doi.org/10.1038/nrrcardio.2017.224
[12] Alp Yıldırım, F.I., Eker Kızılay, D., Ergin, B., Balci Ekmekçi, Ö., Topal, G., Kucur, M., Demirci Tansel, C. and Uydeş Doğan, B.S. (2015) Barnidipine Ameliorates the Vascular and Renal Injury in L-NAME-Induced Hypertensive Rats. European Journal of Pharmacology, 764, 433-442. https://doi.org/10.1016/j.ejphar.2015.07.033

[13] Maneesai, P., Prasarttong, P., Bunbupha, S., Kukongviriyapan, U., Kukongviriyapan, V., Tangsucharit, P., Prachaney, P. and Pakdeechote, P. (2016) Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in L-NAME-Induced Hypertensive Rats via Restoration of ENOS and AT,R Expression. Nutrients, 8, 122. https://doi.org/10.3390/nu8030122

[14] Katzung, B.G., Masters, S.B. and Trevor, A.J., Eds. (2012) Basic and Clinical Pharmacology. 12th Edition, McGraw-Hill Medical, New York.

[15] Rodríguez-Rodríguez, P., Ramiro-Cortijo, D., Reyes-Hernández, C.G., López de Pablo, A.L., González, M.C. and Arribas, S.M. (2018) Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Frontiers in Physiology, 9, 602. https://doi.org/10.3389/fphys.2018.00602

[16] Saravanakumar, M. and Raja, B. (2011) Veratric Acid, a Phenolic Acid Attenuates Blood Pressure and Oxidative Stress in L-NAME Induced Hypertensive Rats. European Journal of Pharmacology, 671, 87-94. https://doi.org/10.1016/j.ejphar.2011.08.052

[17] Poasakate, A., Tong-un, T., Ishida, W., Prachaney, P., Maneesai, P., Potue, P. and Pakdeechote, P. (2019) Effect of Cratoxylum formosum Dyer Extract on Sperm Motility and Concentration in L-NAME Hypertensive Rats. Srinagarind Medical Journal, 34, 312-317.

[18] Wunpathe, C., Maneesai, P., Rattanakanokchai, S., Bunbupha, S., Kukongviriyapan, U., Tong-un, T. and Pakdeechote, P. (2020) Tangeretin Mitigates L-NAME-Induced Ventricular Dysfunction and Remodeling through the AT1R/PERK1/2/PJNK Signaling Pathway in Rats. Food & Function, 11, 1322-1333. https://doi.org/10.1039/C9FO02365H

[19] Pacher, P., Beckman, J.S. and Liaudet, L. (2007) Nitric Oxide and Peroxynitrite in Health and Disease. Physiological Reviews, 87, 315-424. https://doi.org/10.1152/physrev.00029.2006

[20] Rincón, J., Correa, D., Arcaya, J.L., Finol, E., Fernández, A., Pérez, M., Yaguas, K., Talavera, E., Chávez, M., Summer, R. and Romero, F. (2015) Role of Angiotensin II Type 1 Receptor on Renal NAD(P)H Oxidase, Oxidative Stress and Inflammation in Nitric Oxide Inhibition Induced-Hypertension. Life Sciences, 124, 81-90. https://doi.org/10.1016/j.lfs.2015.01.005

[21] Sonoda, K., Ohtake, K., Uchida, H., Ito, J., Uchida, M., Natsume, H., Tamada, H. and Kobayashi, J. (2017) Dietary Nitrite Supplementation Attenuates Cardiac Remodeling in L-NAME-Induced Hypertensive Rats. Nitric Oxide, 67, 1-9. https://doi.org/10.1016/j.jniox.2017.04.009

[22] Genest, J. (1961) Angiotensin, Aldosterone and Human Arterial Hypertension. Canadian Medical Association Journal, 84, 403-419.

[23] Johnson, R.A. and Freeman, R.H. (1994) Renin Release in Rats during Blockade of Nitric Oxide Synthesis. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 266, R1723-R1729. https://doi.org/10.1152/ajpregu.1994.266.6.R1723

[24] Pollock, D.M., Polakowski, J.S., Divish, B.J. and Opgenorth, T.J. (1993) Angiotensin Blockade Reverses Hypertension during Long-Term Nitric Oxide Synthase Inhibition. Hypertension, 21, 660-666. https://doi.org/10.1161/01.HYP.21.5.660

DOI: 10.4236/ajps.2021.1211119
[25] Gao, Y., Wang, Z., Zhang, Y., Liu, Y., Wang, S., Sun, W., Guo, J., Yu, C., Wang, Y., Kong, W. and Zheng, J. (2018) Naringenin Inhibits NG-Nitro-L-Arginine Methyl Ester-Induced Hypertensive Left Ventricle Hypertrophy by Decreasing Angiotensin-Converting Enzyme 1 Expression. *Experimental and Therapeutic Medicine*, 16, 867-873. https://doi.org/10.3892/etm.2018.6258

[26] Okazaki, H., Minamino, T., Tsukamoto, O., Kim, J., Okada, K., Myoishi, M., Wakeno, M., Takashima, S., Mochizuki, N. and Kitakaze, M. (2006) Angiotensin II Type 1 Receptor Blocker Prevents Atrial Structural Remodeling in Rats with Hypertension Induced by Chronic Nitric Oxide Inhibition. *Hypertension Research*, 29, 277-284. https://doi.org/10.1291/hypres.29.277

[27] Dugourd, C., Gervais, M., Corvol, P. and Monnot, C. (2003) Akt Is a Major Downstream Target of PI3-Kinase Involved in Angiotensin II-Induced Proliferation. *Hypertension*, 41, 882-890. https://doi.org/10.1161/01.HYP.00000821.62417.35

[28] Touyz, R.M. and Berry, C. (2002) Recent Advances in Angiotensin II Signaling. *Brazilian Journal of Medical and Biological Research*, 35, 1001-1015. https://doi.org/10.1590/S0100-879X2002000900001

[29] de Kloet, A.D., Krause, E.G., Shi, P.D., Zubcevic, J., Raizada, M.K. and Sumners, C. (2013) Neuroimmune Communication in Hypertension and Obesity: A New Therapeutic Angle? *Pharmacology & Therapeutics*, 138, 428-440. https://doi.org/10.1016/j.pharmthera.2013.02.005

[30] Taylor, D.A. and Abdel-Rahman, A.A. (2009) Novel Strategies and Targets for the Management of Hypertension. In: Enna, S.J. and Williams, M., Eds., *Advances in Pharmacology*, Vol. 57, Elsevier Inc., Amsterdam, 291-345. https://doi.org/10.1016/S1054-3589(08)57008-6

[31] Lonn, E. (2004) The Clinical Relevance of Pharmacological Blood Pressure Lowering Mechanisms. *The Canadian Journal of Cardiology*, 20, 83B-88B. https://pubmed.ncbi.nlm.nih.gov/15309210/

[32] Kagathara, V.G., Ambikar, D.B. and Vyawahare, N.S. (2009) Hypertension—Animal Models and Phytomedicines: A Review. *Pharmacologyonline*, 2, 436-461. https://pharmacologyonline.silae.it/front/newsletter_2009_2

[33] Wood, R. (1995) Bronchospasm and Cough as Adverse Reactions to the ACE Inhibitors Captopril, Enalapril and Lisinopril. A Controlled Retrospective Cohort Study. *British Journal of Clinical Pharmacology*, 39, 265-270. https://doi.org/10.1111/j.1365-2125.1995.tb04447.x

[34] Hom, K.A., Hirsch, R. and Elluru, R.G. (2012) Antihypertensive Drug-Induced Angioedema Causing Upper Airway Obstruction in Children. *International Journal of Pediatric Otorhinolaryngology*, 76, 14-19. https://doi.org/10.1016/j.ijporl.2011.07.016

[35] Shapovalov, G., Skryma, R. and Prevarskaya, N. (2013) Calcium Channels and Prostate Cancer. *Recent Patents on Anti-Cancer Drug Discovery*, 8, 18-26. https://doi.org/10.2174/1574982811308010018

[36] McAinsh, J. and Cruickshank, J.M. (1990) Beta-Blockers and Central Nervous System Side Effects. *Pharmacology & Therapeutics*, 46, 163-197. https://doi.org/10.1016/0163-7258(90)90092-G

[37] Özüyrek, E. and Yazganoğlu, K.D. (2014) Adverse Cutaneous Drug Reactions to Cardiovascular Drugs. Springer London, London. https://doi.org/10.1007/978-1-4471-6536-1

[38] Pal, S.K. and Shukla, Y. (2003) Herbal Medicine: Current Status and the Future. *Asian Pacific Journal of Cancer Prevention*, 4, 281-288.
[39] Valli, G. and Giardina, E.-G.V. (2002) Benefits, Adverse Effects and Drug Interactions of Herbal Therapies with Cardiovascular Effects. *Journal of the American College of Cardiology*, **39**, 1083-1095. https://doi.org/10.1016/S0735-1097(02)01749-7

[40] Jung, I.H., Kim, S.E., Lee, Y.-G., Kim, D.H., Kim, H., Kim, G.-S., Baek, N.-I. and Lee, D.Y. (2018) Antihypertensive Effect of Ethanolic Extract from *Acanthopanax sessiliflorus* Fruits and Quality Control of Active Compounds. *Oxidative Medicine and Cellular Longevity*, **2018**, Article: ID 5158243. https://doi.org/10.1155/2018/5158243

[41] Hernández-Abreu, O., Torres-Piedra, M., García-Jiménez, S., Ibarra-Barajas, M., Villalobos-Molina, R., Montes, S., Rembao, D. and Estrada-Soto, S. (2013) Dose-Dependent Antihypertensive Determination and Toxicological Studies of Tiliannin Isolated from *Agastache mexicana*. *Journal of Ethnopharmacology*, **146**, 187-191. https://doi.org/10.1016/j.jep.2012.12.029

[42] Bilanda, D.C., Dimo, T., Dzeufiet Djomeni, P.D., Bella, N.M.T., Aboubakar, O.B.F., Nguèleurack, T.B., Tan, P.V. and Kambouchoung, P. (2010) Antihypertensive and Antioxidant Effects of *Allanblackia floribunda* Oliv. (Clusiaceae) Aqueous Extract in Alcohol- and Sucrose-Induced Hypertensive Rats. *Journal of Ethnopharmacology*, **128**, 634-640. https://doi.org/10.1016/j.jep.2010.02.025

[43] Bello, I., Usman, N.S., Mahmud, R. and Asmawi, Mohd.Z. (2015) Mechanisms Underlying the Antihypertensive Effect of *Alstonia scholaris*. *Journal of Ethnopharmacology*, **175**, 422-431. https://doi.org/10.1016/j.jep.2015.09.031

[44] Jorge, V.-G., Ángel, J.-R.L., Adrián, T.-S., Francisco, A.-C., Anuar, S.-G., Samuel, E.-S., Ángel, S.-O. and Emmanuel, H.-N. (2013) Vasorelaxant Activity of Extracts Obtained from *Apium graveolens* Possible Source for Vasorelaxant Molecules Isolation with Potential Antihypertensive Effect. *Asian Pacific Journal of Tropical Biomedicine*, **3**, 776-779. https://doi.org/10.1016/S2221-1691(13)60154-9

[45] Inokuchi, J., Okabe, H., Yamauchi, T., Nonaka, G. and Nishioka, I. (1986) Antihypertensive Substance in Seeds of *Areca catechu* Life Sciences, **38**, 1375-1382. https://doi.org/10.1016/0024-3205(86)90470-4

[46] Dib, I., Tits, M., Angenot, L., Wauters, J.N., Assaidi, A., Mekhfi, H., Aziz, M., Bnouham, M., Legssyer, A., Frederich, M. and Ziyat, A. (2017) Antihypertensive and Vasorelaxant Effects of Aqueous Extract of *Artemisia campestris* L. from Eastern Morocco. *Journal of Ethnopharmacology*, **206**, 224-235. https://doi.org/10.1016/j.jep.2017.05.036

[47] Abd El-Wahab, A.E., Ghareeb, D.A., Sarhan, E.E., Abu-Serie, M.M. and El Demelawy, M.A. (2013) *In Vitro* Biological Assessment of *Berberis vulgaris* and Its Active Constituent, Berberine: Antioxidants, Anti-Acetylcholinesterase, Anti-Diabetic and Anticancer Effects. *BMC Complementary and Alternative Medicine*, **13**, Article No. 218. https://doi.org/10.1186/1472-6882-13-218

[48] Getiye, Y., Tolessa, T. and Engidawork, E. (2016) Antihypertensive Activity of 80% Methanol Seed Extract of *Calpurnia aurea* (Ait.) Benth. subsp. *aurea* (Fabaceae) Is Mediated through Calcium Antagonism Induced Vasodilation. *Journal of Ethnopharmacology*, **189**, 99-106. https://doi.org/10.1016/j.jep.2016.04.056

[49] Cheang, W.S., Ngai, C.Y., Tam, Y.Y., Tian, X.Y., Wong, W.T., Zhang, Y., Lau, C.W., Chen, Z.Y., Bian, Z.-X., Huang, Y. and Leung, F.P. (2015) Black Tea Protects against Hypertension-Associated Endothelial Dysfunction through Alleviation of Endoplasmic Reticulum Stress. *Scientific Reports*, **5**, Article No. 10340. https://doi.org/10.1038/srep10340

[50] Lima-Landman, M.T.R., Borges, A.C.R., Cysneiros, R.M., De Lima, T.C.M., Sourc-
car, C. and Lapa, A.J. (2007) Antihypertensive Effect of a Standardized Aqueous Extract of Cecropia glaziovii Sneth in Rats: An in Vivo Approach to the Hypotensive Mechanism. *Phytomedicine*, **14**, 314-320. https://doi.org/10.1016/j.phymed.2007.03.003

[51] Belmokhtar, M., Bouanani, N.E., Ziyyat, A., Mekhfi, H., Bnouham, M., Aziz, M., Matéo, P., Fischmeister, R. and Legssyer, A. (2009) Antihypertensive and Endothelium-Dependent Vasodilator Effects of Aqueous Extract of Cistus ladaniferus. *Biochemical and Biophysical Research Communications*, **389**, 145-149. https://doi.org/10.1016/j.bbrc.2009.08.113

[52] Guerrero, L., Castillo, J., Quiñones, M., Garcia-Vallvé, S., Arola, L., Pujadas, G. and Muguerza, B. (2012) Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies. *PLoS ONE*, **7**, e49493. https://doi.org/10.1371/journal.pone.0049493

[53] Loizzo, M.R., Said, A., Tundis, R., Rashed, K., Statti, G.A., Hufner, A. and Menichini, F. (2007) Inhibition of Angiotensin Converting Enzyme (ACE) by Flavonoids Isolated from *Ailanthus excelsa* (Roxb) (Simaroubaceae). *Phytotherapy Research*, **21**, 32-36. https://doi.org/10.1002/ptr.2008

[54] Escher, G.B., Marques, M.B., do Carmo, M.A.V., Azevedo, L., Furtado, M.M., Sant’Ana, A.S., da Silva, M.C., Genovese, M.I., Wen, M., Zhang, L., Oh, W.Y., Shahidi, F., Rosso, N.D. and Granato, D. (2020) *Clitoria ternatea* L. Petal Bioactive Compounds Display Antioxidant, Antihemolytic and Antihypertensive Effects, Inhibit α-Amylase and α-Glucosidase Activities and Reduce Human LDL Cholesterol and DNA Induced Oxidation. *Food Research International*, **128**, Article ID: 108763. https://doi.org/10.1016/j.foodres.2019.108763

[55] Sánchez-Salgado, J.C., Castillo-España, P., Ibarra-Barajas, M., Villalobos-Molina, R. and Estrada-Soto, S. (2010) *Cochlospermum vitifolium* Induces Vasorelaxant and Antihypertensive Effects Mainly by Activation of NO/CGMP Signaling Pathway. *Journal of Ethnopharmacology*, **130**, 477-484. https://doi.org/10.1016/j.jep.2010.05.037

[56] Bankar, G.R., Nayak, P.G., Bansal, P., Paul, P., Pai, K.S.R., Singla, R.K. and Bhat, V.G. (2011) Vasorelaxant and Antihypertensive Effect of *Cocos nucifera* Linn. Endocarp on Isolated Rat Thoracic Aorta and DOCA Salt-Induced Hypertensive Rats. *Journal of Ethnopharmacology*, **134**, 50-54. https://doi.org/10.1016/j.jep.2010.11.047

[57] Yang, Q., Sun, Y., Zhang, L., Xu, L., Hu, M., Liu, X., Shi, F. and Gu, Z. (2014) Antihypertensive Effects of Extract from Flower Buds of *Coreopsis tinctoria* on Spontaneously Hypertensive Rats. *Chinese Herbal Medicines*, **6**, 103-109. https://doi.org/10.1061/S1674-6384(14)60015-0

[58] Potue, P., Maneesai, P., Kukongviriyapan, U., Prachaney, P. and Pakdeechote, P. (2020) *Cratoxylum formosum* Extract Exhibits Antihypertensive Effects via Suppressing the Renin-Angiotensin Cascade in Hypertensive Rats. *Journal of Functional Foods*, **73**, Article ID: 104137. https://doi.org/10.1016/j.jff.2020.104137

[59] Guerrero, M.F., Carrón, R., Martin, M.L., San Román, L. and Reguero, M.T. (2001) Antihypertensive and Vasorelaxant Effects of Aqueous Extract from *Croton schiedeanus* Schlcht in Rats. *Journal of Ethnopharmacology*, **75**, 33-36. https://doi.org/10.1016/S0378-8741(00)00391-3

[60] Shin, S.-K., Ha, T.-Y., McGregor, R.A. and Choi, M.-S. (2011) Long-Term Curcumin Administration Protects against Atherosclerosis via Hepatic Regulation of Lipoprotein Cholesterol Metabolism. *Molecular Nutrition & Food Research*, **55**, 1829-1840. https://doi.org/10.1002/mnfr.201100440
[61] Rachmawati, H. (2016) In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of Curcumin Nanoemulsion. *Scientia Pharmaceutica*, 84, 131-140. https://doi.org/10.3797/scipharm.ISP.2015.05

[62] Prando, T.B.L., Barboza, L.N., de OliveiraAraújo, V., Gasparotto, F.M., de Souza, L.M., Lourenço, E.L.B. and Gasparotto Junior, A. (2016) Involvement of Bradykinin B2 and Muscarinic Receptors in the Prolonged Diuretic and Antihypertensive Properties of *Echinodorus grandiflorus* (Cham. & Schltdl.) Micheli. *Phytotherapy*, 23, 1249-1258. https://doi.org/10.1016/j.phymed.2015.10.020

[63] Salma, U., Khan, T. and Shah, A.J. (2018) Antihypertensive Effect of the Methanolic Extract from *Eruca sativa* Mill., (Brassicaceae) in Rats: Muscarinic Receptor-Linked Vasorelaxant and Cardiotonic Effects. *Journal of Ethnopharmacology*, 224, 409-420. https://doi.org/10.1016/j.jep.2018.06.013

[64] Eka, M.E.B., Itam, E.H., Eyonng, E.U., Anam, E.M. and Nsa, E.E. (2011) Effect of *Erythrina senegalensis* Extract on Serum Glucose Concentration in Alloxan Induced Diabetic Rats after a Treatment Period of 14 Days. *Multidisciplinary Journal of Research Development*, 17, 110-113. https://www.globalacademicgroup.com/node/367

[65] Jiang, C., Liang, L. and Guo, Y. (2012) Natural Products Possessing Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitory Activity Found in the Last Decades. *Acta Pharmacologica Sinica*, 33, 1217-1245. https://doi.org/10.1038/aps.2012.90

[66] Bilanda, D.C., Bidingha, R. à G., Djomeni Dzeufiet, P.D., Fouda, Y.B., Ngapout, R.F., Tcheutchoua, Y., Owona, P.E., Njonte Wouamba, S.C., Tanfack Tchouchou, L., Dimo, T. and Kamchouing, P. (2020) Antihypertensive and Anti diabetic Activities of *Erythrina senegalensis* DC (Fabaceae) Stem Bark Aqueous Extract on Diabetic Hypertensive Rats. *Journal of Ethnopharmacology*, 246, Article ID: 112200. https://doi.org/10.1016/j.jep.2019.112200

[67] Luo, L., Wu, W., Zhou, Y., Yan, J., Yang, G. and Ouyang, D. (2010) Antihypertensive Effect of *Eucommia ulmoides* Oliv. Extracts in Spontaneously Hypertensive Rats. *Journal of Ethnopharmacology*, 129, 238-243. https://doi.org/10.1016/j.jep.2010.03.019

[68] Consolini, A.E., Baldini, O.A.N. and Amat, A.G. (1999) Pharmacological Basis for the Empirical Use of *Eugenia uniflora* L. (Myrtaceae) as Antihypertensive. *Journal of Ethnopharmacology*, 66, 33-39. https://doi.org/10.1016/S0378-8741(98)00194-9

[69] Ahmed, B., Al-Howiriny, T.A., Mossa, J.S. and El Tahir, K.E.H. (2005) Isolation, Antihypertensive Activity and Structure Activity Relationship of Flavonoids from Three Medicinal Plants. *Indian Journal of Chemistry—Section B*, 44B, 400-404. http://nopr.niscair.res.in/handle/123456789/8947 https://doi.org/10.1002/chin.200525220

[70] Hakkou, Z., Maciuk, A., Leblais, V., Bouanani, N.E., Mekhi, H., Bnouham, M., Aziz, M., Ziyyat, A., Rauf, A., Hadda, T.B., Shaheen, U., Patel, S., Fischmeister, R. and Legssyer, A. (2017) Antihypertensive and Vasodilator Effects of Methanolic Extract of *Inula viscosa*: Biological Evaluation and POM Analysis of Cynarin, Chlorogenic Acid as Potential Hypertensive. *Biomedicine & Pharmacotherapy*, 93, 62-69. https://doi.org/10.1016/j.biopha.2017.06.015

[71] Chaudhry, M.A., Alamgeer, Mushraq, M.N., Bukhari, I.A. and Assiri, A.M. (2021) *Ipomoea hederacea* Jacq.: A Plant with Promising Antihypertensive and Cardio-Protective Effects. *Journal of Ethnopharmacology*, 268. Article ID: 113584. https://doi.org/10.1016/j.jep.2020.113584

[72] Wilcox, C.S. (2005) Oxidative Stress and Nitric Oxide Deficiency in the Kidney: A Critical Link to Hypertension? *American Journal of Physiology: Regulatory, Integrative and Molecular Physiology*, 292, 1335-1344. https://doi.org/10.1152/ajpregu.00530.2004
grative and Comparative Physiology, 289, R913-R935.
https://doi.org/10.1152/ajpregu.00250.2005

[73] Bopda, O.S.M., Longo, F., Bella, T.N., Edzah, P.M.O., Taïwe, G.S., Bilanda, D.C., Tom, E.N.L., Kamthoucing, P. and Dimo, T. (2014) Antihypertensive Activities of the Aqueous Extract of Kalanchoe pinnata (Crassulaceae) in High Salt-Loaded Rats. Journal of Ethnopharmacology, 153, 400-407.
https://doi.org/10.1016/j.jep.2014.02.041

[74] Vergara-Galicia, J., Ortiz-Andrade, R., Rivera-Leyva, J., Castillo-España, P., Villalobos-Molina, R., Ibarra-Barajas, M., Gallardo-Ortiz, I. and Estrada-Soto, S. (2010) Vasorelaxant and Antihypertensive Effects of Methanolic Extract from Roots of Laelia anceps Are Mediated by Calcium-Channel Antagonism. Fitoterapia, 81, 350-357.
https://doi.org/10.1016/j.fitote.2009.10.009

[75] Vergara-Galicia, J., Ortiz-Andrade, R., Castillo-España, P., Ibarra-Barajas, M., Gallardo-Ortiz, I., Villalobos-Molina, R. and Estrada-Soto, S. (2008) Antihypertensive and Vasorelaxant Activities of Laelia autumnalis Are Mainly through Calcium Channel Blockade. Vascular Pharmacology, 49, 26-31.
https://doi.org/10.1016/j.vph.2008.04.002

[76] Maghrani, M., Zeggwagh, N.-A., Michel, J.-B. and Eddouks, M. (2005) Antihypertensive Effect of Lepidium sativum L. in Spontaneously Hypertensive Rats. Journal of Ethnopharmacology, 100, 193-197.
https://doi.org/10.1016/j.jep.2005.02.024

[77] Prasad, K. (2004) Antihypertensive Activity of Secoisolariciresinol Diglucoside (SDG) Isolated from Flaxseed: Role of Guanylate Cyclase. International Journal of Angiology, 13, 7-14.
https://doi.org/10.1007/s00547-004-1060-4

[78] Suzuki, A., Kagawa, D., Fuji, A., Ochiai, R., Tokimitsu, I. and Saito, I. (2002) Short-and Long-Term Effects of Ferulic Acid on Blood Pressure in Spontaneously Hypertensive Rats. American Journal of Hypertension, 15, 351-357.
https://doi.org/10.1016/S0895-7061(01)02337-8

[79] Veeramani, C., Al-Numair, K.S., Chandramohan, G., Alsaif, M.A., Alhamdan, A.A. and Pugalendi, K.V. (2012) Antihypertensive Effect of Melothria maderaspatana Leaf Fractions on DOCA-Salt-Induced Hypertensive Rats and Identification of Compounds by GC-MS Analysis. Journal of Natural Medicines, 66, 302-310.
https://doi.org/10.1007/s11418-011-0590-2

[80] Yeh, C.-T., Huang, W.-H. and Yen, G.-C. (2009) Antihypertensive Effects of Hsian-Tsao and Its Active Compound in Spontaneously Hypertensive Rats. The Journal of Nutritional Biochemistry, 20, 866-875.
https://doi.org/10.1016/j.jnutbio.2008.07.015

[81] Dangi, S.Y., Jolly, C.I. and Narayanan, S. (2002) Antihypertensive Activity of the Total Alkaloids from the Leaves of Moringa oleifera. Pharmaceutical Biology, 40, 144-148.
https://doi.org/10.1076/phi.40.2.144.5847

[82] Khan, M.Y. and Kumar, V. (2017) Mechanism of Antihypertensive Effect of Mucuna pruriens L Seed Extract and Its Isolated Compounds. Journal of Complementary and Integrative Medicine, 14, Article ID: 20170014.
https://doi.org/10.1515/jcim-2017-0014

[83] Alu’dat, M.H., Rababah, T., Alhamad, M.N., Gammoh, S., Ereifej, K., Alodat, M., Hussein, N.M., Kubow, S. and Torley, P.J. (2016) Antioxidant and Antihypertensive Properties of Phenolic-Protein Complexes in Extracted Protein Fractions from Nigella damascena and Nigella arvensis. Food Hydrocolloids, 56, 84-92.
https://doi.org/10.1016/j.foodhyd.2015.12.008

[84] Shaw, H.-M., Wu, J.-L. and Wang, M.-S. (2017) Antihypertensive Effects of Oci-
mum gratissimum Extract: Angiotensin-Converting Enzyme Inhibitor in Vitro and in Vivo Investigation. *Journal of Functional Foods*, **35**, 68-73.
https://doi.org/10.4236/ajps.2021.1211119

[85] Alcaide-Hidalgo, J.M., Margalef, M., Bravo, F.I., Muguerza, B. and López-Huertas, E. (2020) Virgin Olive Oil (Unfiltered) Extract Contains Peptides and Possesses ACE Inhibitory and Antihypertensive Activity. *Clinical Nutrition*, **39**, 1242-1249. https://doi.org/10.1016/j.clnu.2019.05.016

[86] Matsubara, T., Bohgaki, T., Watarai, M., Suzuki, H., Ohashi, K. and Shibuya, H. (1999) Antihypertensive Actions of Methylripariochromene A from *Orthosiphon aristatus*, an Indonesian Traditional Medicinal Plant. *Biological and Pharmaceutical Bulletin*, **22**, 1083-1088. https://doi.org/10.1248/bpb.22.1083

[87] Siow, H.-L. and Gan, C.-Y. (2013) Extraction of Antioxidative and Antihypertensive Bioactive Peptides from *Parkia speciosa* Seeds. *Food Chemistry*, **141**, 3435-3442. https://doi.org/10.1016/j.foodchem.2013.06.030

[88] Lewis, B.J., Herrlinger, K.A., Craig, T.A., Mehring-Franklin, C.E., DeFreitas, Z. and Hinojosa-Laborde, C. (2013) Antihypertensive Effect of Passion Fruit Peel Extract and its Major Bioactive Components Following Acute Supplementation in Spontaneously Hypertensive Rats. *The Journal of Nutritional Biochemistry*, **24**, 1359-1366. https://doi.org/10.1016/j.jnutbio.2012.11.003

[89] Ajebli, M. and Eddouks, M. (2019) Antihypertensive Activity of *Petroselinum crispum* through Inhibition of Vascular Calcium Channels in Rats. *Journal of Ethnopharmacology*, **242**, Article ID: 112039. https://doi.org/10.1016/j.ijep.2019.112039

[90] de Jesús Ariza-Ortega, T., Zenón-Briones, E.Y., Casterjón-Flores, J.L., Yáñez-Fernández, J., de las Mercedes Gómez-Gómez, Y. and del Carmen, Oliver-Salvador M. (2014) Angiotensin-I-Converting Enzyme Inhibitory, Antimicrobial, and Antioxidant Effect of Bioactive Peptides Obtained from Different Varieties of Common Beans (*Phaseolus vulgaris* L.) with In Vivo Antihypertensive Activity in Spontaneously Hypertensive Rats. *European Food Research and Technology*, **239**, 785-794. https://doi.org/10.1007/s00217-014-2271-3

[91] Adedapo, A.D.A., Ajayi, A.M., Ekwunife, N.L., Falayi, O.O., Oyagbemi, A., Omobowale, T.O. and Adedapo, A.A. (2020) Antihypertensive Effect of *Phragmanthera incana* (Schum) Balle on NG-Nitro-L-Arginine Methyl Ester (L-NAME) Induced Hypertensive Rats. *Journal of Ethnopharmacology*, **257**, Article ID: 112888. https://doi.org/10.1016/j.ijep.2020.112888

[92] Zhao, W., Yu, J., Su, Q., Liang, J., Zhao, L., Zhang, Y. and Sun, W. (2013) Antihypertensive Effects of Extract from *Picrasma quassiodes* (D. Don) Benn. in Spontaneously Hypertensive Rats. *Journal of Ethnopharmacology*, **145**, 187-192. https://doi.org/10.1016/j.ijep.2012.10.049

[93] Ahmed, Z.B., Yousfi, M., Viaene, J., Dejaegher, B., Demeyer, K., Mangelings, D. and Vander Heyden, Y. (2018) Potentially Antidiabetic and Antihypertensive Compounds Identified from *Pistacia atlantica* Leaf Extracts by LC Fingerprinting. *Journal of Pharmaceutical and Biomedical Analysis*, **149**, 547-556. https://doi.org/10.1016/j.jpba.2017.11.049

[94] Chen, Z.-Y., Peng, C., Jiao, R., Wong, Y.M., Yang, N. and Huang, Y. (2009) Anti-hypertensive Nutraceuticals and Functional Foods. *Journal of Agricultural and Food Chemistry*, **57**, 4485-4499. https://doi.org/10.1021/jf900803r

[95] Luna-Vázquez, F., Ibarra-Alvarado, C., Rojas-Molina, A., Rojas-Molina, J., Yahia, E., Rivera-Pastrana, D., Rojas-Molina, A. and Zavala-Sánchez, Á.M. (2013) Nutraceutical Value of Black Cherry *Prunus serotina* Ehrh. Fruits: Antioxidant and Anti-
hypertensive Properties. *Molecules, 18*, 14597-14612. https://doi.org/10.3390/molecules181214597

[96] do Nascimento, K.F., Moreira, F.M.F., Alencar Santos, J., Kassuya, C.A.L., Croda, J.H.R., Cardoso, C.A.L., do Carmo Vieira, M., Góis Ruiz, A.L.T., Ann Foglio, M., de Carvalho, J.E. and Formagio, A.S.N. (2018) Antioxidant, Anti-Inflammatory, Anti-proliferative and Antimycobacterial Activities of the Essential Oil of *Psidium guineense* Sw. and Spathulanol. *Journal of Ethnopharmacology, 210*, 351-358. https://doi.org/10.1016/j.jep.2017.08.030

[97] Jiménez-Ferrer, E., Hernández Badillo, F., González-Cortazar, M., Tortoriello, J. and Herrera-Ruiz, M. (2010) Antihypertensive Activity of *Salvia elegans* Vahl. (Lamiaceae): ACE Inhibition and Angiotensin II Antagonism. *Journal of Ethnopharmacology, 130*, 340-346. https://doi.org/10.1016/j.jep.2010.05.013

[98] Hsu, F.-L., Lee, Y.-Y. and Cheng, J.-T. (1994) Antihypertensive Activity of 6-O-Galloyl-D-Glucose, a Phenolic Glycoside from *Sapium sebiferum*. *Journal of Natural Products, 57*, 308-312. https://doi.org/10.1021/np50104a019

[99] Lombardo-Earl, G., Roman-Ramos, R., Zamilpa, A., Herrera-Ruiz, M., Rosas-Salgado, G., Tortoriello, J. and Jiménez-Ferrer, E. (2014) Extracts and Fractions from Edible Roots of *Sechium edule* (Jacq.) Sw. with Antihypertensive Activity. *Evidence-Based Complementary and Alternative Medicine, 2014*, Article ID: 594326. https://doi.org/10.1155/2014/594326

[100] Simões, L.O., Conceição-Filho, G., Ribeiro, T.S., Jesus, A.M., Fregoneze, J.B., Silva, A.Q.G., Petreanu, M., Cechinel-Filho, V., Niero, R., Niero, H., Tamanaha, M.S. and Silva, D.F. (2016) Evidences of Antihypertensive Potential of Extract from *Solanum capsicoides* All. in Spontaneously Hypertensive Rats. *Phytomedicine, 23*, 498-508. https://doi.org/10.1016/j.phymed.2016.02.020

[101] Yamaguchi, S., Matsumoto, K., Koyama, M., Tian, S., Watanabe, M., Takahashi, A., Miyatake, K. and Nakamura, K. (2019) Antihypertensive Effects of Orally Administered Eggplant (*Solanum melongena*) Rich in Acetylcholine in Spontaneously Hypertensive Rats. *Food Chemistry, 276*, 376-382. https://doi.org/10.1016/j.foodchem.2018.10.017

[102] Mimaki, Y. (1995) Steroidal Saponins from the Bulbs of *Triteleia lactea* and Their Inhibitory Activity on Cyclic AMP Phosphodiesterase. *Phytochemistry, 38*, 1279-1286. https://doi.org/10.1016/0031-9422(94)00790-Z

[103] Ibarrola, D.A., Hellión-Ibarrola, M.C., Montalbetti, Y., Heinichen, O., Campuzano, M.A., Kennedy, M.L., Alvarenga, N., Ferro, E.A., Dötz-Vargas, J.H. and Momose, Y. (2011) Antihypertensive Effect of Nuatigenin-3-O-β-Chacotriose from *Solanum sisymbriifolium* Lam. (Solanaceae) (Nuatî Pytâ) in Experimentally Hypertensive (ARH + DOCA) Rats under Chronic Administration. *Phytomedicine, 18*, 634-640. https://doi.org/10.1016/j.phymed.2011.01.012

[104] Estrada-Soto, S., González-Trujano, Ma.E., Rendón-Vallejo, P., Arias-Durán, L., Ávila-Villarreal, G. and Villalobos-Molina, R. (2021) Antihypertensive and Vasorelaxant Mode of Action of the Ethanol-Soluble Extract from *Tagetes lucida* Cav. Aerial Parts and Its Main Bioactive Metabolites. *Journal of Ethnopharmacology, 266*, Article ID: 113399. https://doi.org/10.1016/j.jep.2020.113399

[105] Khan, A.-U. and Gilani, A.H. (2008) Pharmacodynamic Evaluation of *Terminalia bellerica* for Its Antihypertensive Effect. *Journal of Food and Drug Analysis, 16*, 6-14. https://doi.org/10.38212/2224-6614.2355

[106] Ahmadvand, H., Khosrobeig, A., Nemati, L., Boshtam, M., Jafari, N., Hosseini, R.H., Pournia, Y., Ahmadvand, H., Khosrobeig, A., Nemati, L., Boshtam, M., Jafari, N.,
Hosseini, R.H. and Pournia, Y. (2012) Rosmarinic Acid Prevents the Oxidation of Low Density Lipoprotein (LDL) in Vitro. *Journal of Biological Sciences*, **12**, 301-307. https://doi.org/10.4236/jbs.2012.301307

[107] Mihailovic-Stanojevic, N., Belščak-Cvitanović, A., Grujić-Milanović, J., Ivanov, M., Jovović, Dj., Bugarski, D. and Miloradović, Z. (2013) Antioxidant and Antihypertensive Activity of Extract from *Thymus serpyllum* L. in Experimental Hypertension. *Plant Foods for Human Nutrition*, **68**, 235-240. https://doi.org/10.1007/s11130-013-0368-7

[108] Gasparotto Junior, A., Gasparotto, F.M., Lourenço, E.L.B., Crestani, S., Stefanello, M.E.A., Salvador, M.J., da Silva-Santos, J.E., Marques, M.C.A. and Kassuya, C.A.L. (2011) Antihypertensive Effects of Isoquercitrin and Extracts from *Tropaeolum majus* L.: Evidence for the Inhibition of Angiotensin Converting Enzyme. *Journal of Ethnopharmacology*, **134**, 363-372. https://doi.org/10.1016/j.jep.2010.12.026

[109] Perez-Hernandez, N., Ponce-Monter, H., Medina, J.A. and Joseph-Nathan, P. (2008) Spasmolytic Effect of Constituents from *Lepechinia caulescens* on Rat Uterus. *Journal of Ethnopharmacology*, **115**, 30-35. https://doi.org/10.1016/j.jep.2007.08.044

[110] Al-Akwa, A.A., Asmawi, M.Z., Dewa, A. and Mahmud, R. (2020) Antihypertensive Activity and Vascular Reactivity Mechanisms of *Vitex pubescens* Leaf Extracts in Spontaneously Hypertensive Rats. *Heliyon*, **6**, e04588. https://doi.org/10.1016/j.heliyon.2020.e04588