Supplemental Information

Ex Vivo COL7A1 Correction for Recessive Dystrophic Epidermolysis Bullosa Using CRISPR/Cas9 and Homology-Directed Repair

Araksya Izmiryan, Clarisse Ganier, Matteo Bovolenta, Alain Schmitt, Fulvio Mavilio, and Alain Hovnanian
Figure S1

Detection of CRISPR/Cas9-mediated HDR at the COL7A1 locus by Taqman-ddPCR on the genomic DNA level. (a) Gene editing detection strategy for COL7A1 by ddPCR. Location of a common primer pair and allele-specific probes conjugated with FAM (specific for the corrected COL7A1) or VIC (specific for the mutated COL7A1) fluorophores are indicated. (b) 2-D fluorescence amplitude plot generated by Quantasoft software showing walls containing both of corrected and mutant COL7A1. The black cluster on the plot represents the negative droplets (Ch1-Ch2-), the blue cluster represent the droplets that are positive for the corrected COL7A1 only (Ch1+Ch2-), the green cluster represents the droplets that are positive for the mutant COL7A1 only (Ch1-Ch2+) and the orange cluster represents the droplets that are positive for both (Ch1+Ch2+). (c) The ‘Events’ histogram shows the total number of droplets positive for FAM (in blue) and VIC (in green) signals which correspond to the corrected or mutated COL7A1, respectively. Ch1: channel 1, corresponds to the FAM amplitude; Ch2: channel 2, corresponds to the VIC amplitude.
TaqMan-ddPCR-based detection of corrected COL7A1 mRNA expression after CRISPR/Cas9-mediated HDR. (a) Gene editing detection strategy for COL7A1 by ddPCR at the mRNA level. In the scheme, the same experimental settings as for the Figure 3a, are shown. The VIC-conjugated specific probe recognizes the housekeeping gene RPLP0. (b) Primary RDEB-K and RDEB-F were transduced with indicated doses of IDLVs (pg p24 per cell). 21-days post transduction, mRNA was extracted, subjected for Reverse Transcription and analyzed by Taqman-ddPCR to detect the expression of corrected COL7A1 relative to the expression level of COL7A1 in normal cells. 1-D fluorescence amplitude plots are shown. Yellow lines indicate borders between different samples. Blue dots correspond to the FAM signal and represent droplets containing the corrected COL7A1. Green dots correspond to the VIC signal and represent housekeeping RPLP0. Grey dots correspond to empty droplets. (c-d) Quantification of positive droplets using Quantasoft. The concentration plot, showing gene-edited wells of FAM and VIC amplicons is automatically determined by the software using the total number of events (displayed in Figure S2) by correcting for Poisson distribution. The blue markers indicate corrected COL7A1 copies/µl and the green markers indicate housekeeping RPLP0 copies/µl. The ‘Ratio’ plot shows the percentage of the corrected COL7A1 normalized to the housekeeping RPLP0 background (orange markers). All error bars were generated by QuantaSoft and represent a 95% confidence interval. The percentage of corrected COL7A1 mRNA in RDEB-K and RDEB-F was calculated by considering the Ratio of COL7A1/RPLP0 in normal cells (NHK and NHF, respectively) as 100%.
Off-target site analysis in genetically corrected RDEB-K 21 days post-transduction.

Genomic DNA from corrected RDEB-K co-treated with IDLVs encoding for the LV-CRISPR-N1 (2 pg p24 per cell) and the LV-Donor (0.5 pg p24 per cell) was extracted and regions corresponding to off-target sequences were amplified by PCR using specific primers (listed in Table S4). The Surveyor cleavage assay was performed at each potential off-target hit. No Surveyor activity indicative of cleavage at predicted off-target sites was detected. nd: non detected.

Absolute quantification the residual Cas9 transcripts in genetically corrected cells and grafted skin equivalents. (a) Standard curve of the lentiCRISPR_v2 plasmid DNA, ranging from 1 to 10^9 copies/µl. The Ct values were plotted against the logarithm of their initial template copy numbers. The standard curve was generated by linear regression of the plotted points. (b) To evaluate the persistence of Cas9 cDNA in cells after IDLV transduction, total mRNA was extracted and cDNA was synthetized from bulk transduced RDEB-K, RDEB-F and from grafted skin equivalents. Cas9 expression in transduced cells and in grafted skin equivalents was evaluated in triplicates. Three independent experiments were performed.
Type VII collagen rescue, localization and AF formation at the dermal-epidermal junction in serial sections of the genetically corrected skin grafts. Immunofluorescence analysis of grafted SE composed of genetically corrected primary RDEB keratinocytes and fibroblasts at 2 months after deflaping. Skin samples composed of genetically corrected cells showed re-expression and normal localization of C7 at the dermal-epidermal junction in serial sections of SE. Scale bar = 100 µm.
Detection of CRISPR/Cas9-mediated HDR at the COL7A1 locus by Taqman-ddPCR on the genomic DNA level in skin grafts. See Figure S1 for the experimental settings. (a) 1 month or 2 months post-grafting, gDNA was extracted from cryosections and analyzed by ddPCR to assess allelic frequency of corrected COL7A1 on the mutated background in skin grafts. 1-D fluorescence amplitude plots are shown for FAM and VIC signals. Blue dots correspond to the FAM signal amplitude and represent droplets containing the normal or corrected COL7A1 alleles. Green dots correspond to the VIC signal amplitude and represent the mutated COL7A1 alleles. Grey dots correspond to empty droplets. Yellow lines indicate borders between different samples. (b) Quantification of positive droplets using QuantaSoft Software. The concentration plot, showing gene-edited wells of FAM and VIC amplicons is automatically determined by the software using the total number of events by correcting for Poisson distribution. The blue markers indicate corrected COL7A1 copies/μl and the green markers indicate mutated COL7A1 copies/μl. The Fractional abundance plot shows the percentage frequency of the corrected COL7A1 on the mutated COL7A1 background. All error bars were generated by QuantaSoft and represent a 95% confidence interval.
Table S1. Sequences of guide RNAs

gRNA	Sequence	gRNA length (bp)	Strand	Cut-to-mutation distance* (bp)	Off target activity	Surveyor digestion product (bp)
N1	GTCCGCAGCTTTCGCTGA	17	First Strand	5 (downstream)	0 MMs = 1 1 MMs = 0 2 MMs = 3	684 (non cleaved) 370 (cleaved) 305 (cleaved)
N2	GAAAGCTGCGGACCTCG	17	Reverse Strand	21 (downstream)	0 MMs = 1 1 MMs = 0 2 MMs = 6	684 (non cleaved) 391 (cleaved) 293 (cleaved)
N3	GATGGCTCCCTCATCCAT	17	First Strand	43 (downstream)	0 MMs = 1 1 MMs = 0 2 MMs = 18	684 (non cleaved) 340 (cleaved) 344 (cleaved)
N4	GGCACACCGCTGTGAC	17	Reverse Strand	31 (upstream)	0 MMs = 1 1 MMs = 0 2 MMs = 14	684 (non cleaved) 444 (cleaved) 240 (cleaved)
N5	GCTCGCGCAATGGATG	17	Reverse Strand	44 (downstream)	0 MMs = 1 1 MMs = 1 2 MMs = 14	684 (non cleaved) 368 (cleaved) 318 (cleaved)
Table S2. Absolute quantification of residual Cas9 cDNA expression in genetically corrected RDEB keratinocytes, fibroblasts and in grafted skin equivalents (SE)

Sample Name	Target gene	Experience N1	Experience N2	Experience N3	Mean Experiences N1-N2-N3	Cas9 copies/µl
RDEB-K (IDLVs : 1.5 / 0.5)	Cas9	27.4	27.76	27.42	27.52	1.39
RDEB-K (IDLVs : 2 / 0.5)	Cas9	26.07	26.97	25.54	26.19	1.8
RDEB-K	Cas9	32.52	32.98	32.01	32.5	-
NHK	Cas9	35.9	34.05	34.04	34.66	-
RDEB-F (IDLVs : 1.5 / 0.5)	Cas9	25.63	26.22	25.91	25.92	1.89
RDEB-F (IDLVs : 2 / 0.5)	Cas9	26.07	26.09	25.73	25.96	1.87
RDEB-F	Undetermined	Undetermined	Undetermined	Undetermined	Undetermined	-
Corrected-SE-1 month - N1	Cas9	32.33	Undetermined	Undetermined	32.33	-
Corrected-SE-1 month - N2	Undetermined	Undetermined	Undetermined	Undetermined	Undetermined	-
Corrected-SE-1 month - N3	Undetermined	Undetermined	Undetermined	Undetermined	Undetermined	-
Corrected-SE-2 months - N1	Cas9	39.34	Undetermined	Undetermined	39.34	-
Corrected-SE-2 months - N2	Undetermined	Undetermined	Undetermined	Undetermined	35.06	-
Corrected-SE-2 months - N3	Undetermined	Undetermined	Undetermined	Undetermined	31.4	-
RDEB-SE-1 month - N1	Undetermined	37.27	Undetermined	Undetermined	37.27	-
RDEB-SE-1 month - N2	Undetermined	30.88	34.83	32.85		
WT-SE-1 month - N1	Undetermined	Undetermined	Undetermined	Undetermined	39.44	-
WT-SE-1 month - N2	Undetermined	Undetermined	Undetermined	Undetermined	20-26%	

Table S3. HDR efficiency in genetically corrected RDEB cells and grafted skin equivalents (SE)

Cells/Grafts	Genetically corrected RDEB-K	Genetically corrected RDEB-F	Grafted SE					
Sample	gDNA	cDNA	Protein	gDNA	cDNA	Protein	gDNA	Protein
Assay	ddPCR	ddPCR	WB	ddPCR	ddPCR	WB	ddPCR	IF
Figure	N3	S2	N5	N3	S2	N5	N6	S6
Correction	19.6%	11%	11%	22.1%	15.7%	-	17-19%	20-26%
Table S4. Oligonucleotides and Probes sequences

Figure	Assay	Primer name	Sequence
N1	NHEJ activity	Fw_Surveyor	GTCCCCCTGCTTATGCCAA
N1	NHEJ activity	Rev_Surveyor	GACCTTCTCTGTCTTGCAGT
N2	Allele specific PCR	Commun_P1	GATTCCTCCTAATTCTGGGACTC
N2	Allele specific PCR	Mutant_P2	GACCTTCTCTGTCTTGCAGTAG
N2	Allele specific PCR	Corrected_P3	GACCTTCTCTGTCAAGAAGTA
N2	Allele specific PCR	Fw_GAPDH	TCCATGCCAT CACTGCCACCCAG
N2	Allele specific PCR	Rev_GAPDH	CATAACAGGAATGAGCTTGACAAAGT
N3; S1, 2, 5	TaqMan-ddPCR	Fw_Exon2	CATGGCCGCGCAATTT
N3; S1, 2, 5	TaqMan-ddPCR	Rev_Exon2	CTGGCTGCTCCAGAAAAGAG
N3; S1, 2, 5	TaqMan-ddPCR	FAM_Probe	TTTCTCGAAGGGCT-G-MGB
N3; S1, 5	TaqMan-ddPCR	VIC_Probe	CTTCTCGAAGGGCTGT-MGB
N6, S3	Off-target activity	Fw_OT1	GCTGCTTCTCTGTACTCACA
N6, S3	Off-target activity	Rev_OT1	TGCCCTTCATAGGAGTGCTG
N6, S3	Off-target activity	Fw_OT2	AATTCGGTTTGCTGAGCAC
N6, S3	Off-target activity	Rev_OT2	ACCACGATGGACTAGAAGGC
N6, S3	Off-target activity	Fw_OT3	AGGTTCAGAGGCTGTAAACG
N6, S3	Off-target activity	Rev_OT3	TCTGCTAGACACCCCTCCTC
N6, S3	Off-target activity	Fw_OT4	GTCGCTTTGCTCTGCTCTG
N6, S3	Off-target activity	Rev_OT4	ACTTCAGAAGTTGAGAGGCC
N6, S3	Off-target activity	Fw_OT5	GATAAGAAATGAGGTAAAGC
N6, S3	Off-target activity	Rev_OT5	CACAGCAAGATACATCATCTA
N6, S3	Off-target activity	Fw_OT6	CCAGGGAAGGCTGTCTTTCTC
N6, S3	Off-target activity	Rev_OT6	TTTGTGGGTCACTTGTGCAG
N6, S3	Off-target activity	Fw_OT7	TCCCAAGTAAGGAGGGCTCA
N6, S3	Off-target activity	Rev_OT7	CCAGAAATGGAGGCTGT
N6, S3	Off-target activity	Fw_OT8	GGGACATGTGCAGACTCA
N6, S3	Off-target activity	Rev_OT8	GAGCCATCTGCGAGGTTTGT
S4	Absolute qPCR	Fw_Cas9	GGACTCGAGAGTAACACTAAG
S4	Absolute qPCR	Rev_Cas9	AAAGTGCGCGAGATCAACAC