Abstract. We consider the problem of publishing location datasets, in particular 2D spatial pointsets, in a differentially private manner. Many existing mechanisms focus on frequency counts of the points in some a priori partition of the domain that is difficult to determine. We propose an approach that adds noise directly to the point, or to a group of neighboring points. Our approach is based on the observation that, the sensitivity of sorting, as a function on sets of real numbers, can be bounded. Together with isotonic regression, the dataset can be accurately reconstructed. To extend the mechanism to higher dimension, we employ locality preserving function to map the dataset to a bounded interval. Although there are fundamental limits on the performance of locality preserving functions, fortunately, our problem only requires distance preservation in the “easier” direction, and the well-known Hilbert space-filling curve suffices to provide high accuracy. The publishing process is simple from the publisher’s point of view: the publisher just needs to map the data, sort them, group them, add Laplace noise and publish the dataset. The only parameter to determine is the group size which can be chosen based on predicted generalization errors. Empirical study shows that the published dataset can also exploited to answer other queries, for example, range query and median query, accurately.

1 Introduction

The popularity of personal devices equipped with location sensors leads to large amount of location data being gathered. Such data contain rich information and would be valuable if they can be shared and published. As the data may reveal location of identified individual, it is important to anonymize the data before publishing. The recently developed notion of differential privacy [5] provides a strong form of privacy assurance regardless of the background information held by the adversaries. Such assurance is important as many case studies and past events have shown that a seemingly anonymized dataset together with additional knowledge held by the adversary could reveal information on individuals.

Most studies on differential privacy focus on publishing statistical values, for instance, k-means [2], private coreset [7], and median of the database [19]. Publishing specific statistics or data-mining results is meaningful if the publisher knows
what the public specifically want. However, there are situations where the publishers want to give the public greater flexibility in analyzing and exploring the data, for example, using different visualization techniques. In such scenarios, it is desired to “publish data, not the data mining result” [8].

![Twitter location data cropped at the North America region. To avoid clogging, only 10% of the points (randomly chosen) are plotted.](image)

Fig. 1. Twitter location data cropped at the North America region. To avoid clogging, only 10% of the points (randomly chosen) are plotted.

In this paper, we consider the problem of publishing location data, or other low dimensional data in a differential private manner. An example is shown in Fig. 1 which depicts the locations of 183,072 Twitter users in North America [1], and Fig. 2 shows a sequence of sorted real number obtained by mapping the points in Fig. 1 into the unit interval. We proposed a mechanism based on the observation that sorting, as a function that takes in a set of real numbers from the unit interval, interestingly has sensitivity one (Theorem 1). Hence ϵ-differential privacy can be achieved by adding Laplace noise with a scale parameter $1/\epsilon$ directly to the sorted sequence. Fig. 3 shows such noisy data by adding noise to the curve in Fig. 2. Although seemingly noisy, as the original sequence is sorted, there are dependencies among them to be exploited. Fig. 4 shows a reconstructed sequence using isotonic regression.

To further reduce perturbation induced by the Laplace noise, consecutive elements in the sorted sequence can be grouped. However, grouping introduces generalization error. The amount of generalization error in the “worst case” can be analytically determined, and together with the model of error induced by the Laplace noise, the publisher can choose an appropriate group size k based on the privacy requirement ϵ and the total number of points n. For the example in Fig. 1, the group size determined is 300 and the corresponding published and reconstructed data are depicted in Fig. 5. Fig. 6 shows a comparison of the error of each points in the reconstructed sequence. After reconstruction, the inverse mapping is to be applied to the data. Our variant of isotonic regression outputs dataset with larger number of repetition, as shown in Fig. 7. Fig. 8 shows the reconstructed pointset, with a post-processing that maps the repeating points
to the surrounding area of the location. The post-processing is solely for the purpose of visualization. Fig. 9 shows a zoomed version region around New York City.

Fig. 2. The 1D data mapped from 2D Twitter locations (Fig. 1) to the unit interval [0, 1].

Fig. 3. The published noisy location data with group size $k = 1$ and $\epsilon = 1$, that is, there is no grouping. To avoid clogging, only 2% of the published points (randomly chosen) are plotted.

Our choice of the group size k is determined by minimizing an error function which measures the Earth-Mover-Distance (EMD) of the original and reconstructed pointsets. In one-dimension, the EMD of two equal-sized pointsets is simply the L_1 distance between the two respective sorted sequences. Although designed to minimize EMD, the proposed mechanism achieves good accuracy w.r.t. other utilities. Experimental studies show that the proposed mechanism achieves higher accuracy compared to the wavelet-based method for range
Fig. 4. The reconstructed data obtained by performing isotonic regression on the published data as shown in Fig. 3 plotted together with the original data.

Fig. 5. The published noisy location data with grouping (group size $k = 300$) and the corresponding reconstructed data through isotonic regression. The figure shows only the region from 0.5 to 0.7 in the unit interval.

queries[26], and outperforms the equi-width histogram w.r.t. the accuracy in estimation the underlying probability density function.

An advantage of the proposed mechanism is its simplicity from the publisher’s viewpoint. The publisher only has to map the points to the unit interval, sort them, add Laplace noise, and publish the results. By publishing the “raw” noisy data instead of the reconstructed data, users in the public are not confined to a particular inference techniques, and have the flexibility in using different variants of isotonic regression to suit their needs.

In contrast to an equi-width histogram, the bins of an *equi-depth* histogram contains same number of elements, with their width varies. Intuitively, the size of a bin is larger in location with lower “density” of points. There are extensive studies on equi-depth histogram, and it is generally well accepted that an equi-depth histogram provides more useful statistical information[20] compare to equi-width histogram. However, it is not clear how to generate an equi-depth histogram while achieving differential privacy. Interestingly, grouping in our pro-
posed mechanism naturally produces equi-depth histograms: grouping of \(k \) elements leads to a depth of \(k \).

Our approach can be applied to obtain order-statistic, for example, median. Finding median is challenging due to its large sensitivity. Accurate mechanism can be derived by adding Laplace noise proportional to the smooth sensitivity \[^{19}\] instead of the global sensitivity. However, computation of smooth sensitivity takes \(\Theta(n^2) \) time where \(n \) is the dataset’s size. In contrast, our mechanism takes \(O(n) \) time when the dataset is already sorted. Experimental studies on datasets with 129 elements\[^1\] suggest that the proposed mechanism is less sensitive to a higher local sensitivity, or a small \(\epsilon \).

\[^1\] As it is computational intensive to compute smooth sensitivity, we are unable to repeat the experiments for significant larger \(n \).
Fig. 8. Inverse mapped of the reconstructed data followed by post-processing. The post-processing “diffuses” a repeated point to its surrounding and is performed solely for visualization purpose. To avoid clogging, only 10% of the points (randomly chosen) are plotted.

Fig. 9. A zoom-in of Fig. 8 to region within the indicated rectangle.

The locality preserving map is a key component in our mechanism, taking the role of transforming the data points to the one-dimension space. Although there are fundamental limits on locality preserving mapping, fortunately, our problem only requires preservation in the “easier” direction, i.e., any pair of neighbors in the one-dimensional domain are also neighbors in the multi-dimensional domain. The classic Hilbert space-filling curve suffices to provide high accuracy. For other types of non-spatial data, our techniques can be applied as long as an appropriate locality preserving mapping is available.

Organization: We first describe some background materials in the next section (Section 2). In Section 3 we present our main ideas and mechanism, and show that the proposed mechanism achieves differential privacy in Section 4. Next, in section 5 we formulate and analyze the noise incurred by the Laplace and the generalization noise. Based on the noise model, we derive a strategy to choose the group size. In Section 6 we compare our mechanism with three known mech-
anisms: (1) equi-width histogram, (2) wavelet-based method for range queries, and (3) smooth-sensitivity based median finding. In Section 7, we describe a few possible extensions, in particular, a hybrid of our mechanism with equi-width histogram. Lastly, we describe related works in Section 8 and conclude in Section 9.

2 Background

2.1 Differential Privacy and Laplace Noise

We treat a database as a multi-set (i.e., a set with possibly repeating elements), and define two D_1 and D_2 to be neighbor when D_2 can be obtained from D_1 by replacing one element, i.e., $D_1 = \{x\} \cup D_2 \setminus \{y\}$ for some x and y. Let us call the above definition of neighborhood the replacement neighborhood.

A randomized algorithm (also known as a mechanism) A achieves ϵ differential privacy if,

$$\Pr[A(D_1) \in S] \leq \exp(\epsilon) \times \Pr[A(D_2) \in S]$$

for all $S \subseteq \text{Range}(A)$, where $\text{Range}(A)$ denotes the output range of the algorithm A, and for any pair of neighbouring datasets D_1 and D_2.

The replacement neighborhood we adopted is similar to the notion used by Nissim et al [19]. Such variant differs from the well-adopted notion that treats two datasets D_1, D_2 to be neighbors iff $D_2 = D_1 \cup \{x\}$ or $D_2 = D_1 \setminus \{x\}$ for some x. Note that a mechanism that achieves differential privacy under replacement neighborhood can be converted to one that achieves privacy under the well-adopted neighborhood.

For a function $f : D \to \mathbb{R}^k$, the sensitivity [5] of f is defined as

$$\Delta(f) := \max \|f(D_1) - f(D_2)\|_1$$

where the maximum is taken over all pairs of neighboring D_1 and D_2. It can be shown [6] that the mechanism A

$$A(D) = f(D) + (\text{Lap}(\Delta(f)/\epsilon))^k$$

achieves ϵ-differential privacy, where $(\text{Lap}(\Delta(f)/\epsilon))^k$ is a vector of k independently and randomly chosen values from the Laplace distribution with standard deviation $2\Delta(f)/\epsilon$.

It is meaningless if the output of a mechanism is simply noise, even if privacy is achieved. The accuracy of a mechanism is measured by a utility function $u(X, y)$ that measures the quality of the output y given the dataset is X. Alternatively, the utility can be measured by an error function that measures the distance of the output from the ideal output.

The notion of differential privacy has a useful sequential composition property [10]: if mechanisms M_1 and M_2 achieve ϵ_1 and ϵ_2-differential privacy respectively, then the combined mechanism of applying M_1 follows by M_2 achieves $\epsilon_1 + \epsilon_2$ differential privacy.
2.2 Isotonic Regression

Given a sequence of \(n \) real numbers \(a_1, \ldots, a_n \), the problem of finding the least-square fit \(x_1, \ldots, x_n \) subjected to the constraints \(x_i \leq x_j \) for all \(i < j \leq n \) is known as the isotonic regression. Formally, we want to find the \(x_1, \ldots, x_n \) that minimizes

\[
\sum_{i=1}^{n} (x_i - a_i)^2, \text{subjected to } x_i \leq x_j \text{ for all } 1 \leq i < j \leq n
\]

The unique solution can be efficiently found using pool-adjacent-violators algorithms in \(O(n) \) time [10]. When minimizing w.r.t. \(\ell_1 \)-norm, there is also an efficient \(O(n \log n) \) algorithm [23]. There are many variants of isotonic regression, for example, having a smoothness component in the objective function [25,17].

2.3 Locality Preserving Map

A locality preserving map \(T : \mathbb{R}^d \rightarrow \mathbb{R} \) maps \(d \)-dimensional points to real numbers while preserving “locality”. In this paper, we seek mapping whereby two neighboring points in the one-dimensional range are also neighboring points in the \(d \)-dimensional domain. Specifically, there is some constant \(A \) s.t. for any \(x, y \in \mathbb{R}^d \),

\[
\|x - y\|_2 \leq A \cdot \left(T(x) - T(y) \right)^{1/d}
\]

The well-known Hilbert curve achieves \(\|x - y\|_2 \leq 3 \sqrt{|T(x) - T(y)| - 2} \) for two sufficiently far-aparted points \(x, y \) in \(\mathbb{R}^2 \) [9]. Niedermeier et al. [18] showed that with careful construction, the bound can be improved to \(\sqrt{4|T(x) - T(y)| - 2} \).

In our construction, for simplicity, we use Hilbert curve. Note that it is challenging in preserving locality in the other direction, that is, any two neighboring points in the \(d \)-dimensional domain are also neighboring points in the one-dimensional range. Fortunately, in our problem, such property is not required.

2.4 Datasets

We conduct experiments on two datasets: locations of Twitter users [1] (herein called the Twitter location dataset) and the dataset collected by Kaluža et al. [13] (herein called Kaluža’s dataset). The Twitter location dataset contains over 1 million Twitter users’ data from the period of March 2006 to March 2010, among which around 200,000 tuples are labeled with location (represented in latitude and longitude) and most of the tuples are in the North America continent, concentrating in regions around the state of New York and California. Fig. [1] shows the cropped region covering most of the North America continent. The cropped region contains 183,072 tuples. The Kaluža’s dataset contains 164,860 tuples collected from tags that continuously records the locations information of 5 individuals.
3 Proposed Approach

Given the privacy requirement ϵ and a dataset D of size n, the publisher carries out the following:

A1. Maps each point in D to a real number in the unit interval $[0, 1]$ using a locality preserving map T. Let $T(D)$ be the set of transformed points. Determine a group size k based on n and ϵ. For clarity in exposition, let us assume that k divides n.

A2. Sorts $T(D)$. Divides the sorted sequence into groups of k consecutive elements. For each group, determines its sum. Let the sums be $\bar{S} = \langle s_1, \ldots, s_{n/k} \rangle$.

A3. Publishes $\tilde{S} = \bar{S} + (\text{Lap}(\epsilon^{-1}))^{(n/k)}$ and the group size k.

An user in the public may extract information from the published data as follow:

B1. Performs isotonic regression on $k^{-1}\tilde{S}$, and maps the data point back to their original domain. That is, computes $\tilde{D} = T^{-1}(\text{IR}(k^{-1}\tilde{S}))$, where IR(·) denotes isotonic regression. Let us call \tilde{D} the reconstructed data.

Remark.

1. The size of the dataset n is not considered to be a secret and can be derived from the published \tilde{S}. The transformation T and the lookup table for k are public knowledge prior to the publishing.

2. When the database size n is unknown to the user, the publisher can exploit the sequential composition property of differential privacy and carry out the following steps: (1) Firstly, publishes a noisy size \bar{n} using a portion of the privacy “budget”. (2) Next, extracts exactly \bar{n} points from the dataset using a deterministic padding algorithm as follow: if $\bar{n} > n$, inserts $(\bar{n} - n)$ number of 0’s to the dataset; if $\bar{n} < n$, removes $(n - \bar{n})$ smallest elements. (3) Lastly, publishes the padded pointset using our proposed mechanism.

3. To relieve the public users from computing step B1, the regression can be carried out by the publisher on behalf of the users. Nevertheless, the raw data \tilde{S} should be (but not necessary) published alongside the reconstructed data.

4. The public is not confined to adopt a particular isotonic regression. After \tilde{S} is published, various inference techniques can be applied. For instance, a user may perform a variant of isotonic regression that optimizes objective functions with a smoothness component.

5. The publisher’s main design decisions are the choice of T and the group size k. The choice of T depends on the underlying metric of the points. For Euclidean distance in two-dimensional space, the classic Hilbert curve already attains good performance. The group size k can be computed from the lookup table constructed using our proposed noise model.
In this section, we show that the proposed mechanism (Step A1 to A3) achieves differential privacy, and thus also the reconstructed pointset output by B1. The following theorem shows that sorting, as a function, interestingly has sensitivity 1. Note that a straightforward analysis that treats each element independently could lead to a bound of \(n\), which is too large to be useful.

Theorem 1. Let \(S_n(D)\) be a function that on input \(D\), which is a multiset containing \(n\) real numbers from the unit interval \([0, 1]\), outputs the sorted sequence of elements in \(D\). The sensitivity of \(S_n\) w.r.t. the replacement neighborhood is 1.

Proof. Let \(D_1\) and \(D_2\) be any two neighbouring datasets. \(\langle x_1, x_2, \ldots, x_i, \ldots, x_n \rangle\) be \(S_n(D_1)\), i.e. the sorted sequence of \(D_1\). WLOG, let us assume that an element \(x_i\) is replaced by a larger value \(A\) to give \(D_2\), for some \(1 \leq i \leq n-1\) and \(x_i < A\). Let \(j\) to be largest index s.t. \(x_j < A \leq 1\). Hence, the sorted sequence of \(D_2\) is:

\[x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_j, A, x_{j+1}, \ldots, x_n\]

The \(L_1\) difference due to the replacement is,

\[\|S_n(D_1) - S_n(D_2)\|_1 = |x_{i+1} - x_i| + |x_{i+2} - x_{i+1}| + \ldots + |x_j - x_{j-1}| + |A - x_j|\]

\[= (x_{i+1} - x_i) + (x_{i+2} - x_{i+1}) + \ldots + (x_j - x_{j-1}) + (A - x_j)\]

\[= A - x_i \leq 1\]

We can easily find an instance of \(D_1\) and \(D_2\) where the difference \(A - x_i = 1\). Hence, the sensitivity is 1.

In the proof, the fact that the sequence is sorted is exploited to obtain the bound. Since the sensitivity is 1, the mechanism \(S_n(D) + \text{Lap}(1/\epsilon)^n\) enjoys \(\epsilon\)-differential privacy. Also note that the value of \(n\) is fixed. Hence, in the context of data publishing, the size of \(D\) is not a secret and is made known to the public.

Next, we show that grouping (in Step A2) has no effect on the sensitivity.

Corollary 1. Consider a partition \(H = \{h_1, h_2 \ldots h_m\}\) of the indices \(\{1, 2, \ldots, n\}\). Let \(S_H(D)\) be the function that, on input \(D\), which is a multiset containing \(n\) real numbers from the unit interval \([0, 1]\), outputs a sequence of \(m\) numbers:

\[y_i = \sum_{j \in h_i} x_j,\]

for \(1 \leq i \leq m\) where \(\langle x_1, x_2, \ldots, x_n \rangle\) is the sorted sequence of \(D\). The sensitivity of \(S_H\) w.r.t. the replacement neighbourhood is 1.
Proof. Let us consider two neighbouring datasets \(D_1 \) and \(D_2 \), and their respective sorted sequences be

\[x_1, x_2, \ldots, x_n \]

and

\[x'_1, x'_2, \ldots, x'_n \]

WLOG, let us assume that \(D_2 \) is obtained by replacing an element in \(D_1 \) with a strictly larger element. Thus, \(x_i \leq x'_i \) for all \(i \)'s.

The \(L_1 \) difference due to the replacement is

\[
\|S_H(D_1) - S_H(D_2)\|_1 = \sum_{i=1}^{m} \left| \sum_{j \in h_i} x'_i - \sum_{j \in h_i} x_i \right|
\]

\[= \sum_{i=1}^{m} \left(\sum_{j \in h_i} x'_i - \sum_{j \in h_i} x_i \right)\]

\[= \sum_{j=1}^{n} (x'_j - x_j) \leq 1\]

Note that the grouping in step A2 is a special partition with equal-sized \(h_i \)'s. Hence, Corollary \(\text{II} \) gives a more general result where \(H \) can be any partition. From Corollary \(\text{II} \), the proposed mechanism that publishes \(\hat{S} \) achieves \(\epsilon \)-differential privacy.

5 Analysis and Parameter Determination

The main goal of this section is to analyze the effect of the privacy requirement \(\epsilon \), dataset size \(n \) and the group size \(k \) on inducing the error in the reconstructed data, which in turn provides a strategy in choosing the parameter \(k \) from the given \(n \) and \(\epsilon \).

Intuitively, in the absent of “generalization noise”, when \(n \) is larger, there are more constraints in the isotonic regression, leading to a more accurate reconstruction. Grouping affects the accuracy in two opposing ways. It reduces the number of constraints for regression, and introduces generalization error. On the other hand, the Laplace noise is essentially reduced by a factor of \(k \). By taking into account of the above factor, and the effect of generalization noise, we can determine the optimal \(k \).

5.1 Error function and Utility

We use an error function related to the Earth-Mover-Distance (EMD) \([21]\) to quality the utility of the published data. The EMD between two pointsets of
equal size is defined to be the minimum cost of bipartite matching between the two sets, where the cost of an edge linking two points is the cost of moving one point to the other. Hence, EMD can be viewed as the minimum cost of transforming one pointset to the other. Different variants of EMD differ on how the cost is defined. In this paper, we adopt the typical definition that defines the cost as the Euclidean distance between the two points.

In one-dimensional space, the EMD between two sets \(D \) and \(\tilde{D} \) is simply the \(L_1 \) norm of the differences between the two respective sorted sequences, i.e. \(\|S_n(D) - S_n(\tilde{D})\|_1 \), which can be efficiently computed. In other words, \(\text{EMD}(D, \tilde{D}) = \sum_{i=1}^{n} |p_i - \tilde{p}_i| \) (1)

where \(p_i \)'s and \(\tilde{p}_i \)'s are the sorted sequence of \(D \) and \(\tilde{D} \) respectively.

Given a pointset \(D \) and the published pointset \(\tilde{D} \) of a mechanism \(M \) where \(|D| = |\tilde{D}| = n \), let us define the normalized error as \(\frac{1}{n} \text{EMD}(D, \tilde{D}) \) and denote \(\text{Err}_{M,D} \) the expected normalized error,

\[
\text{Err}_{M,D} = \mathbb{E} \left[\frac{1}{n} \text{EMD}(D, \tilde{D}) \right]
\]

where the expectation is taken over the randomness in the mechanism.

Although EMD can be computed efficiently for one-dimensional pointsets, the best known algorithm that computes EMD in higher dimension has cubic running time [14]. Jang et al. [12] proposed a fast approximation that employs a space-filling curve. Similarly, for higher dimensional space, we approximate the EMD by first map each point to a real number in \([0,1]\) through a space-filling curve, and then compute the EMD in the one-dimensional space in \(O(n \log n) \) time.

5.2 Error incurred from Laplace Noise

Let us first omit the effect of grouping and consider cases where \(k = 1 \). We conduct experimental studies on four types of pointsets with varying size \(n \): (1) Multisets containing elements with the same value 0.5 (herein called “repeating single-value dataset”), (2) sets containing equally-spaced numbers \((i/(n - 1)) \) for \(i = 0, \ldots, n - 1 \) (herein call equally-spaced dataset), (3) sets containing \(n \) randomly chosen elements from the Twitter location data [1], and (4) sets containing \(n \) randomly chosen elements from the Kaluža’s data [13].

Fig. 10 shows the expected normalized error. Each value on the graph is the average over 500 sample runs. Not surprisingly, the expected error reduces when the number of points increases. Fig. 11 shows the expected normalized error for dataset on equally-spaced points for different \(\epsilon \). The results agree with the intuition that when \(\epsilon \) is increased by a factor of \(c \), the error would approximately decrease by factor of \(c \) as shown in Fig. 12.
Fig. 10. The expected normalized error without grouping versus the size of the dataset. The red solid line is for repeating single-value dataset, the black dashed line is for equally-spaced numbers, the purple dotted line is for the Kaluža’s dataset and the blue dash-dot line is for the Twitter location dataset.

Fig. 11. The expected normalized error without grouping versus the size of dataset for different the security parameter ϵ.

5.3 Effect of Grouping on Laplace Noise

Now, we consider cases where $k > 1$. Grouping reduces the number of constraints by a factor of k. As suggested by Fig. 10 when the number of datapoint decreases, error increases.

On the other hand, recall that the regression is performed on the published values divided by k (see the role of k in Step B1). This essentially reduces the level of Laplace noise by a factor of k. Hence, the accuracy attained by grouping k elements is “equivalent” to the accuracy attained without grouping but with the privacy parameter ϵ increased by a factor of k.

From Fig. 10 we can predict the effects of grouping on the repeating single-value dataset. For instance, if $n = 10,000$ and $\epsilon = 1$ and $k = 5$, without grouping, the reconstructed points are expected to have a 0.02 error; whereas with grouping
Fig. 12. The ratio of the expected normalized error with different ϵ against the expected normalized error with $\epsilon = 1$.

of size 5, the expected error is $0.05/5 = 0.01$. Fig. 13 shows the predicted errors under different k’s, for $n = 10,000$ and $\epsilon = 1$ of different datasets.

Fig. 13. Predicted error versus different group size without generalization noise for different datasets of size $n = 10,000$ and $\epsilon = 1$. The red solid line is the upper bound, the black dashed line, purple dotted line and blue dash-dot line are for equally-spaced numbers dataset, Kaluža’s dataset and Twitter location dataset respectively.

5.4 Effects of Grouping on Generalization Noise

The negative effect of grouping is the *generalization noise*, as all elements in a group is represented by their mean. Before giving formal description of generalization noise, let us introduce some notations.
Given a sequence \(D = \langle x_1, \ldots, x_n \rangle \) of \(n \) numbers, and a parameter \(k \), where \(k \) divides \(n \), let us call the following function *downsampling*:

\[
\downarrow_k (D) = \langle s_1, \ldots, s_{n/k} \rangle
\]

where each \(s_i \) is the average of \(x_{k(i-1)+1}, \ldots, x_{ik} \). Given a sequence \(D' = \langle s'_1, \ldots, s'_m \rangle \) and \(k \), let us call the following function *upsampling*:

\[
\uparrow_k (D') = \langle x'_1, \ldots, x'_{mk} \rangle
\]

where \(x'_i = s'_{\lfloor (i-1)/k \rfloor + 1} \) for each \(i \).

The normalized generalization error is defined as,

\[
\text{Gen}_{D,k} = \frac{1}{n} \left\| D - \uparrow_k (\downarrow_k (D)) \right\|_1
\]

It is easy to see that, for any \(k \) and \(D \), the normalized generalization error is at most \(k/(2n) \). Fig. 14 shows the generalization error of different group size a dataset containing 10,000 equally-spaced values, a dataset containing 10,000 numbers randomly drawn from the transformed Kaluža’s dataset and a dataset of 10,000 numbers randomly drawn from the transformed Twitter location data. They agree with our upper bound on the generalization error.

Furthermore, the worst case occurred when the values in the groups divided equally between two values, for example, half of them have value 0, and half of them have value 1. This is very unlikely. Intuitively, even if the elements in the groups only have two distinct value \(a \) and \(b \), the number of elements having value \(a \) may vary. Hence, one would expect the average generalization error to be \(k/(4n) \). Fig. 14 shows that such approximation is very accurate and consistent for various datasets.

![Fig. 14. Generalization error of different group size for different datasets of size \(n = 10,000 \) and \(\epsilon = 1 \). The red solid line is for the Kaluža’s dataset, the blue dotted line is for the equally-spaced dataset and the black dashed line for the Twitter location dataset.](image-url)
5.5 Combined effects of grouping

Now, let us combine the effects of both grouping and Laplace noises on the normalized error Err_D. Let us consider the mechanism that, on input D and the parameter k, outputs

$$M_k(D) = \uparrow_k (IR(\downarrow_k (S_n(D)) + Lap(1)^{n/k}))$$

This mechanism is essentially similar to our proposed method, but with the difference on how k is chosen: here, the k is given as a parameter, whereas in Step A1 of the proposed method, the k is chosen from a lookup table. Recall that the expected normalized error produced by this mechanism M_k on D is denoted as $Err_{M_k, D}$. For abbreviation, we write it as

$Err_{k,D}$

Let \tilde{S} to be an instance of $\downarrow_k (S_n(D)) + Lap(1)^{n/k}$, and \tilde{D} the corresponding reconstructed dataset generated by M_k, i.e. $\tilde{D} = \uparrow_k (IR(\tilde{S}))$. We have,

$$EMD(D, \tilde{D}) = \| S_n(D) - \uparrow_k (IR(\tilde{S})) \|_1$$

$$= \| S_n(D) - \uparrow_k (\downarrow_k (S_n(D)))$$

$$+ \uparrow_k (\downarrow_k (S_n(D))) - \uparrow_k (IR(\tilde{S})) \|_1$$

$$\leq n \cdot Gen_{D,k} + \| \uparrow_k (\downarrow_k (S_n(D))) - \uparrow_k (IR(\tilde{S})) \|_1$$

$$= n \cdot Gen_{D,k} + k \cdot \| \downarrow_k (S_n(D)) - IR(\tilde{S}) \|_1$$

$$= n \cdot Gen_{D,k} + k \cdot EMD(\downarrow_k (S_n(D)), IR(\tilde{S}))$$

(3)

Note that the first term $n \cdot Gen_{D,k}$ is a constant independent of the random choices made by the mechanism. Also note that the second term is the EMD between the down-sampled dataset and its reconstructed copy obtained using group size 1. By taking expectation over randomness of the mechanism (i.e. the Laplace noise $Lap(1)^{n/k}$), we have

$$Err_{k,D} \leq Gen_{k,D} + Err_{1,\downarrow_k(D)}$$

(4)

In other words, the expected normalized error is bounded by the sum of normalized generalization error, and the normalized error incurred by the Laplace noise. Figure 15 shows the three values versus different group size k for equally-spaced data of size 10,000. The minimum of the expected normalized error suggests the optimal group size k.

Fig. 16 illustrates the expected errors for different k on the Twitter location data with 10,000 points. The red dotted line is $Err_{k,D}$ whereas the blue solid line is the sum in the right-hand-side of the inequality (4). Note that the differences between the two graphs are small. We have conducted experiments on other datasets and observed similar small differences. Hence, we take the sum as an approximation to the expected normalized error,

$$Err_{k,D} \approx Gen_{k,D} + Err_{1,\downarrow_k(D)}$$

(5)
5.6 Determining the group size k

Now, we are ready to find the optimal k given ϵ and n. From Fig. 10 and Fig. 14 and the approximation given in equation (5), we can determine the best group size k given the size of the database n and the security requirement ϵ. From ϵ and Fig. 10 we can obtain the value $\text{Err}_{1:k(D)}/\epsilon$ for different k. From the database’s size n and Fig. 14 we can approximate $\text{Gen}_{k,D}$ for different n. Thus, we can approximate the normalized error $\text{Err}_{k,D}$ with equation (5) as illustrated in Fig. 15. Using the same approach, the best group size given different n and ϵ can be calculated and is presented in Table 2.
Table 1. The best group size k given n and ϵ

ϵ	0.5	1	2	3
$n=2,000$	44	29	20	12
$n=5,000$	59	37	27	18
$n=10,000$	79	51	36	27
$n=20,000$	121	83	61	41
$n=100,000$	234	150	98	73

5.7 Effect of Isotonic Regression

Isotonic regression is not unbiased. Reconstructed points on the left side (i.e. having value smaller than the median) tend to have negative bias, whereas points on the right side (i.e. having value larger than the median) tend to have positive bias. The biasness usually is smaller for points nearer to the median or the two ends.

We conducted experiments on an equally-spaced data of size 1000 to measure the displacement (the difference between the reconstructed points and the original point). Fig. 17 shows the estimated distribution of the displacement of a smaller point (the 100th point) and a larger point (the 900th point) derived from 200,000 runs of the experiments. The displacement of the smaller point has a mean of -0.0163 and the larger point has a mean of 0.0162, both with a variance of 0.0138.

![Displacement Distribution](image)

Fig. 17. The displacement distribution of the 100th point and the 900th point in the reconstructed sequence of our process on an equally-spaced pointset of size 1000.

6 Comparisons

In this section, we compare the performance of the proposed mechanism with three mechanisms w.r.t. different utility functions. The first mechanism outputs
equi-width histograms differentially privately. We treat the generated equi-width histogram as an estimate of the underlying probability density function, and use the statistical distance between density functions as a measure of utility. Next, we investigate the wavelet-based mechanism proposed by Xiao et al. [26] and measure accuracy of range queries. Lastly, we consider the problem of estimating median, and compare with a mechanism based on smooth sensitivity proposed by Nissim et al. [19]. We remark that although comparisons are based on different utility functions, our proposed mechanism is the same, in particular, the parameter k is chosen from the same lookup table.

6.1 Equi-width Histogram

The equi-width histogram compresses of equal-sized non-overlapping bins. With respect to the replacement neighborhood, the histogram generation has sensitivity of 2 and thus adding the Laplace noise $\text{Lap}(2/\epsilon)$ to each of the frequency counts will give a differentially private histogram. Note that the size of the bins has to be determined prior to publishing. Without good background knowledge of the pointset, it is difficult to determine a good choice of bin size, as the same bin size can lead to significantly different accuracy for different pointsets.

Estimating the underlying pdf: A histogram of a pointset can be treated as an estimate of an underlying density function f whereby the points are drawn from. The value of $f(x)$ can be estimated by the ratio of the number of samples, over the width of the bin where x belongs to, multiplies by some normalizing constant. Essentially, this estimation employs step function as its kernel in estimating the density function.

In this section, we treat the estimation of the density function as the main usage of the published data. Hence, we qualify the mechanism’s utility by the distance between the two estimated density functions: one that is derived from the original dataset, and the other that is derived from the mechanism’s output.

To facilitate comparison, we need an algorithm to estimate the density function from the original pointset D. There are many ways to estimate the density function, and we adopt the following method: Let B be the set of distinct points in D, and let us consider the Voronoi diagram of B. The cells in the Voronoi diagram are taken to be the bins of a histogram, from which an estimate of the density function is obtained. Note that the bins generated have variable sizes, and thus the above process can be treated as a form of “variable-bandwidth” kernel density estimation [22], where the kernels are step functions with different shapes.

Similarly we need to estimate the density function when given the output from our mechanism. Since isotonic regression is performed on the space-filling curve, we adopt a variant of the above estimation with the Voronoi diagram computed in the transformed one-dimensional space. In other words, given the reconstructed \tilde{D} of multidimensional points, let B be the set of distinct-values in $T(\tilde{D})$ where T is the locality preserving map. Next, determine the Voronoi diagram of B, which comprises of a sequence of intervals. Such sequence of intervals
form the bins of a histogram, from which an estimate of the density function is obtained.

Experimental results: Fig. 18, 19 and 20 show the estimated density function from the Twitter’s location dataset, the density functions reconstructed by noisy equi-width histogram and the dataset by our mechanism. For comparisons, 1% of the original points are plotted on top of the two reconstructed density functions. For the original dataset and the reconstructed dataset by our mechanism, we quantize the location domain into 1024×1024 units, and compute the estimated density function using the aforementioned method. For the equi-width histogram, each bin is of 25×25 units, there are in total 1681 bins. Fig. 21 and 22 show the details of the two reconstructed density functions at the region $[420, 560] \times [720, 840]$. Observe that in the density function produced by our mechanism has “variable-sized” cells and thus is able to adaptively capture the fine details with small amount of noise.

![Fig. 18. Density function estimated from the original dataset, with darker area representing larger value.](image)

The statistical difference, measured with ℓ_1-norm and ℓ_2-norm, between the two estimated density functions derived from the original and the mechanism’s output are shown in Table 2. We remark that it is not easy to determine the optimal bin size for the equi-width histogram prior to publishing. Figure 23 shows that the optimal bin size differs significantly for three different datasets.

	equi-width histogram method	proposed method
ℓ_1-norm	1.38	1.19
ℓ_2-norm	0.25	0.20
6.2 Range Query

Many applications are interested to ask the total number of points within the query range in a dataset. It is desired to publish a noisy pointset meeting the privacy requirement, and yet able to provide accurate answers to the range queries. Publishing an equi-width histogram would not attain high accuracy if the size of the query ranges varies drastically. Intuitively, wavelet-based techniques are natural solutions to address such multi-scales queries. Xiao et al. [26] proposed a mechanism of adding Laplace noise to the coefficient of a wavelet transformation of an equi-width histogram. The noisy wavelet coefficients are then published, from which range queries can be answered. Essentially, what being published is a series of equi-width histograms with different widths (scales). Note that there are quite a number of parameters to be determined prior to publishing, including the widths at varies scales and the amounts of privacy budget they consumed.

The answer to range queries can also be inferred from the output of our mechanism. Given a range, we can estimate the number of points within the
Fig. 21. A zoom-in view of Fig. 19.

Fig. 22. A zoom-in view of Fig. 20.
Fig. 23. The errors versus the bin size for different datasets. Each value on the graph is the average over 100 sample runs.

range from the estimated density function (as described in Section 6.1) by accumulating the probability over the query region, and then multiply by the total number of points.

We compare the wavelet-based mechanism, our mechanism and the equi-width histogram mechanism on the Twitter location dataset. For each range query, the absolute difference between the true answer and the answer derived from the mechanism’s output is taken as the error. We only consider square range queries in our experiments. For each query size y, 1,000 randomly selected square ranges with width y are taken as the queries, and the average error is shown in Fig. 24.

In this experiment, we use Haar wavelet, and perform wavelet transform on the equi-width histogram with 512×512 bins. After that, appropriate noise is added to ensure ϵ-differential privacy. To incorporate the knowledge of the database’s size n, the DC component of the wavelet transform is set to be exactly n. Under this setting, the best group size for our mechanism is 51.

Observe that as all mechanisms know the exact value of n, the accuracy improve when the range of the query covers more than half of the dataset. As expected, the wavelet-base method outperforms the equi-width histogram mechanism in larger size range queries, but performs badly for small range due to the accumulation of noise. Surprisingly, our mechanism outperforms the equi-width histogram method for small range queries, and outperforms the wavelet based method for all sizes. This is possibly due to the fact that the locations of our queries are uniformly randomly chosen over a continuous domain, and thus, it is very likely that the query boundaries do not match the bins, leading to large error.

6.3 Median

Finding the median accurately in a differential private manner is challenging due to the high “global sensitivity”; there are two datasets that differ by one element
but having a completely different median. Nevertheless, for many instances, their “local sensitivity” are small. Nissim et al. [19] showed that in general, by adding noise proportional to the “smooth sensitivity” of the database instance, instead of the global sensitivity, can also ensure differential privacy. They also gave an $\Theta(n^2)$ algorithm that find the smooth sensitivity w.r.t. median.

Our mechanism outputs the sorted sequence differential privately, it naturally gives the median. Compare to the smooth sensitivity-based mechanism, our mechanism can be efficiently carried out in $O(n)$ time with an sorted dataset.

We conduct experiments on datasets of size 129 to compare the accuracy of both mechanisms. Due to the quadratic running time in determining smooth sensitivity, we are unable to further investigate larger datasets. The experiments are conducted for different local sensitivity and different ϵ values. To construct a dataset with different local sensitivity, 66 random numbers are generated with exponential distribution and then scaled to the unit interval. The dataset contains the 66 random numbers and 63 ones. Figure 25 shows the average noise level of both mechanisms on different local sensitivity, and Figure 26 shows the noise level with different ϵ on a dataset that has a local sensitivity of 0.3.

Observe that when the local sensitivity of the median is high, our mechanism tends to provide a better result. In addition, our mechanism performs well under higher requirement of security: when the ϵ is smaller, the accuracy of our mechanism decreases slower than the smooth sensitivity-based method.
Fig. 25. The error of median output by the two mechanisms versus different local sensitivities. The blue dots are the error incurred by our mechanism and the black circles are the error incurred by the smooth sensitivity-based mechanism.

Fig. 26. The error of median versus different ϵ. The blue dashed line and black solid line are the error incurred by our mechanism and smooth sensitivity-based mechanism respectively.

7 Extension and Future Works

7.1 Hybrid Method

The proposed mechanism can be viewed as the publishing of a “fixed-depth” histogram, where the number of elements in the histogram bins is fixed prior to publishing, whereas the mechanism outputs noisy bin’s boundary. On the other hand, mechanisms based on frequency counts can be viewed as “fixed-width” histogram, where the boundary of the bins are fixed prior to publishing, whereas the mechanisms output noisy counts of elements in the bins. The fixed-depth and fixed-width histogram could complement each other, by alternatively publishing one after another. Here are two possibilities:
Fixed-width-then-fixed-depth Let us take the Twitter location dataset shown in Figure 1 as an example. Observe that large portion of the region is sparse. If the sparse region can be omitted, the sensitivity of sorting would be significantly reduced. This could be achieved by (1) first publishing an coarse equi-width histogram with large width. (2) Next, for each bin, use the deterministic padding algorithm (Section 3 Remark 2) to extract \tilde{n} points, where \tilde{n} is the noisy count output by the equi-width histogram. (3) Finally, publish the extracted points using our fixed-depth mechanism. Note that the sensitivity for the fixed-depth mechanism is the width (or area) of the bin, which could be significantly smaller than the width (or area) of the whole domain.

Fixed-depth-then-fixed-width The unique solution of isotonic regression is a piecewise constant function. The steps in the solution lead to artifacts of clustered data. It is interesting to investigate whether a subsequent fixed-width histogram could “break” the steps.

7.2 Other Metric

It is interesting to investigate whether the proposed techniques can be applied to multidimensional data other than spatial data, for instance, tuples with attributes of age and gender.

8 Related Work

There are extensive works on privacy-preserving data publishing. The recent survey by Fung et al. [8] gives a comprehensive overview on various notions, for example, k-anonymity [24], ℓ-diversity [15], and differential privacy [5].

Hay et al. [11] proposed exploiting redundancies in the published data to boost accuracy, with supporting examples. One of the examples employs isotonic regression but in a way different from our mechanism. They consider publishing unattributed histogram, which is the (unordered) multiset of the frequencies of a histogram. As the frequencies are unattributed (i.e. order of appearance is irrelevant), Hay et al. proposed publishing the sorted frequencies and later employing isotonic regression to improve accuracy. In contrast, our mechanism publishes the whole database. It is no doubt that median is an important statistic. Finding median in a differentially private way is not easy due to the large global sensitivity. Nissim et al. [19] introduced the notion of smooth sensitivity and proposed an $\Theta(n^2)$ algorithm that computes the smooth sensitivity of an instance w.r.t. median. Median has also been used in the construction of other differential private mechanisms, for e.g. dataset learning [3] and spatial decompositions [4].

9 Conclusion and discussions

Our mechanism is very simple from the publisher’s point of view. The publisher just has to sort the points, group consecutive values, add Laplace noise and
publish the noisy data. There is also minimal tuning to be carried out by the publisher. The main design decision is the choice of the group size k, which can be determined using our proposed noise models, and the locality preserving map which the classic Hilbert curve is suffice in attaining high accuracy. Through empirical studies, we have shown that the published raw data contain rich information for the public to harvest, and provide high accuracy even for usages like median-finding, and range-searching that our mechanism is not initially designed for. Such flexibility is desired for the need of “publish data, not the data mining result” as deliberated by Fung et al. [8].

References

1. Twitter census: Twitter users by location. [http://www.infochimps.com/datasets/twitter-census-twitter-users-by-location].
2. A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the sulq framework. pages 128–138, 2005.
3. A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. pages 609–618, 2008.
4. G. Cormode, M. Procopiuc, E. Shen, D. Srivastava, and T. Yu. Differentially private spatial decompositions. Arxiv preprint arXiv:1103.5170, 2011.
5. C. Dwork. Differential privacy. Automata, languages and programming, pages 1–12, 2006.
6. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. Theory of Cryptography, pages 265–284, 2006.
7. D. Feldman, A. Fiat, H. Kaplan, and K. Nissim. Private coresets. pages 361–370, 2009.
8. B. Fung, K. Wang, R. Chen, and P. Yu. Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys, page 14, 2010.
9. C. Gotsman and M. Lindenbaum. On the metric properties of discrete space-filling curves. IEEE Transactions on Image Processing, pages 794–797, 1996.
10. S. Grotzinger and C. Witzgall. Projections onto order simplexes. Applied mathematics and optimization, pages 247–270, 1984.
11. M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. VLDB Endowment, pages 1021–1032, 2010.
12. M. Jang, S. Kim, C. Faloutsos, and S. Park. A linear-time approximation of the earth mover’s distance. Arxiv preprint arXiv:1106.1521, 2011.
13. B. Kalaža, V. Mirchevska, E. Dovgan, M. Luštrek, and M. Gams. An agent-based approach to care in independent living. Ambient Intelligence, pages 177–186, 2010.
14. E. Lawler. Combinatorial optimization: networks and matroids. Dover Pubns, 2001.
15. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. ℓ-diversity: Privacy beyond k-anonymity. International Conference on Data Engineering, pages 24–24, 2006.
16. F. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. SIGMOD, pages 10–30, 2009.
17. M. C. Meyer. Inference using shape-restricted regression splines. Annals of Applied Statistics, pages 1013–1033, 2008.
18. R. Niedermeier, K. Reinhardt, and P. Sanders. Towards optimal locality in mesh-indexings. pages 364–375, 1997.
19. K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. pages 75–84, 2007.
20. G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples satisfying a condition. pages 256–276, 1984.
21. Y. Rubner, L. Guibas, and C. Tomasi. The earth movers distance, multi-dimensional scaling, and color-based image retrieval. pages 661–668, 1997.
22. D. W. Scott. Variable kernel density estimation. *Annals of Statistics*, 20:1236–1265, 1992.
23. Q. F. Stout. Optimal algorithms for unimodal regression. *Computer Science and Statistics*, pages 109–122, 2000.
24. L. Sweeney. k-anonymity: a model for protecting privacy. *International Journal of Uncertainty, Fuzziness and Knowledge-Based System*, pages 557–570, 2002.
25. X. Wang and F. Li. Isotonic smoothing spline regression. *Journal Computational and Graphical Statistics*, pages 21–37, 2008.
26. X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. *IEEE Transactions on Knowledge and Data Engineering*, pages 1200–1214, 2010.